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Introduction

Importance of knots and links in lens spaces

History of knots Knot theory is a widespread branch of geometric topo-
logy, with many applications to theoretical physics, chemistry and biology.

The starting point has been the study of knots in the R3, introduced by
Gauss in the beginning of 19th century and then improved by Kelvin and Tait
at the end of the same century, in order to study the atoms conformation.
During the first half of the 20th century knots became important in order to
describe 3-manifolds using Dehn surgery, and they obtained a central role in
geometric topology. In the second half of the 20th century physicists turned
again their attention to knots, by involving them in the description of topo-
logical quantum field theories. A recent progress of this work is topological
quantum computation, a difficult road that may lead to the development
of quantum computers, by exploiting knot theory. In the last decade also
biologists directed their attention to knot theory, because it can explain how
the entanglement of DNA helps or prevents the genes expression.

Topology of knots A knot in the 3-sphere S3 is an embedding of the circle
S1 into S3. A link is an embedding of ν copies of S1. Two links are equivalent
if there exists an ambient isotopy between them. The easiest way to represent
a link is through a regular projection on a plane, and we can understand if
two knots are equivalent because their diagrams can be connected by a finite
sequence of Reidemeister moves. It is hard to distinguish non-equivalent
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2 Introduction

links, because we don’t know when to stop the test with Reidemeister moves.
For this reason, invariants of links were introduced: when they are distinct,
the two links are inequivalent.

We may consider polynomial invariants, such as Alexander, Jones or
HOMFLY-PT polynomials; these invariants cannot distinguish some pairs
of knots or links. We may also consider more geometric and powerful invari-
ant, like the fundamental group (it is a complete invariant for prime knots
[72]) or like the fundamental quandle (a complete invariant for all knots in
S3 [71, 86]), alas if you compute one of these invariants on two knots, it is
usually very difficult to understand if the two results are different.

Surgery on knots Other interesting topological problems about knots are
the ones that arises from the following construction: when you consider a knot
K, take a tubular neighborhood of it, cut it and re-paste sending a meridian
of the torus to the (p, q)-torus knot, then you are performing a rational p/q
surgery on K and you get another 3-manifold M(K)p,q. For example, the
p/q surgery over the unknot U (a knot that bounds a disk) gives us the lens
space L(p, q) := S3(U)p,q.

It is really useful to understand which surgeries on which knots give cer-
tain 3-manifolds. For instance, which knots in S3 give us a lens space? There
is a conjecture of Berge [9] on this problem. An interesting program, estab-
lished by Baker, Grigsby and Hedden in [6] and independently by Rasmussen
in [96], attempts to solve this conjecture. The key step we are interested in is
that the solution requires the study of some knots in lens spaces. A further
step in this conjecture has been done by Greene [60]. A recent generaliza-
tion of Berge conjecture is exposed in [11], while other conjectures [87, 4]
investigate what happens when the surgery is performed on knots in lens
spaces.

Motivations to study knots in lens spaces These just cited conjectures
are the most valuable reason that leads us to study knots and links in lens
spaces, which is the argument of this dissertation. Furthermore there are
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interesting articles explaining applications of knots in lens spaces to other
fields of science: [102] exploits them to describe topological string theories
and [15] uses them to describe the resolution of a biological DNA recombi-
nation problem.

Review of existing literature

Several works on links in lens spaces have been published and different
representations for links in lens spaces are available in literature. We try to
collect the most important results for the representations we are interested
in.

Mixed link diagram The most common representation of links in general
3-manifolds are mixed link diagrams, that is to say, links in S3 where some
components are decorated by a surgery coefficient, since every 3-manifold
can be constructed as a rational surgery on a link. Usually the papers on
this representation deal with surgery problems, such as [3, 4, 15, 87]. Other
works, involving a rigorous definition of these diagrams, Reidemeister-type
moves and a Markov theorem for generic 3-manifolds are [76, 77, 78]. Another
very important result is the algebraic Markov theorem of [38] with rational
surgery description. The statement of this theorem simplify in the case of
lens spaces and the authors announced the computation of the HOMFLY-PT
skein module of L(p, q) using this theorem.

Grid diagram Grid diagrams are an interesting representation of links in
S3, very useful to represent also legendrian links, since they use a piecewise
linear orthogonal projection of the link. For this reason, Baker and Grigsby
introduced in [5] the notion of grid diagram for links in lens spaces. It im-
mediately became clear that grid diagrams were useful also for topological
links in lens space. Manolescu, Ozsváth and Sarkar, in [83], showed a com-
binatorial method to compute knot Floer homology for S3, and in [6] there
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is an improvement of this combinatorial technique for knots in lens spaces
(generalized to links in [20]).

In a similar way, Cornwell in his Ph.D. thesis [30] used grid diagrams
to produce Bennequin-type inequalities for legendrian links in lens spaces
(also published in [32]), and for this reason he developed an HOMFLY-PT
invariant for topological links in lens spaces [31].

Band diagram Hoste and Przytycki [67] introduced band diagrams to
compute the (2,∞)-skein module of L(p, q), that is to say, the Kauffman
bracket skein module (KBSM for sake of brevity). The idea came from ana-
logous computations for the KBSM of the solid torus made by Turaev [107].

Gabrovšek and Mroczkowski improved this idea, using a slightly different
version of band diagrams, that is to say, punctured disk diagrams. They first
set up a tabulation of knots in the solid torus, telling apart different links
with the KBSM [51]. Then, in his Ph.D. thesis [50], Gabrovšek extends that
work to knots in lens spaces. The key for a tabulation in so many different
spaces is that a punctured diagram describe a knot in every lens space. For
this reason, it is enough to identify different knots in the solid torus that are
equivalent in the lens space considered to get a tabulation. Besides this work
on KBSM, they have also found a basis for the HOMFLY-PT skein module
of L(p, 1) [52].

On a similar diagram Stitz obtained a combinatorial description of the
linking number [105], of the Alexander polynomial (using the Alexander ma-
trix of linking numbers) and of the Jones polynomial for links in lens spaces
[104]. Finally, another diagram, which belongs to this family of representa-
tions in the solid torus, is the arrow diagram of Mroczkowski that is displayed
in [50].

Other representations/results Other possible representations of links
in lens spaces are (1, b)-decompositions [39] and thin presentations [49, 35].
Several works investigates the particular case of (1, 1)-decompositions [88,
115, 47, 63, 29, 21, 22, 23, 24, 18], while few others regard thin presentations
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[36, 37, 2]. Studies on links in lens spaces are also performed without fixing
a representation. It is interesting to investigate fibered links in lens spaces
[7, 55] and legendrian links in lens spaces [54, 79, 80]. Other invariants
of (framed) links in lens spaces may be found by specializing the existing
invariants of links in 3-manifolds [44, 114, 98, 10, 89, 90, 84].

Structure of the dissertation

The aim of this thesis is to improve the knowledge of knots and links in
lens spaces. The first chapter is an introduction to lens spaces, considering
four different representations that will be useful to our purpose. The second
chapter shows the known representations of links in lens spaces that we will
use in this thesis (mixed link diagrams, band diagrams and grid diagrams),
along with Reidemeister-type moves for these representations. From the third
chapter on, it starts the original part of this dissertation.

A new diagram In 1991, Drobotukhina [42] introduced a disk diagram for
knots and links in the projective space, which is a special case of lens spaces.
Several invariants have been computed on this diagram [42, 69, 91, 92, 58, 59]
and a tabulation of knots up to 6 crossing has been made [43]. This disk
diagram can be generalized to links in lens spaces as suggested in [56] and in
[81], so we decided to study it in order to find further invariants of links in
lens spaces.

In the third chapter we explain the rigorous construction of the disk
diagram, then we prove a Reidemeister-type theorem stating that two disk
diagrams represent equivalent links if and only if they can be connected
by a finite sequence of Reidemeister-type moves. These moves are of seven
different types and all these results are published in [19]. Moreover we show
the connection between the grid diagrams of [5] and the band diagrams of
[52], because in the subsequent chapters of the thesis we want to investigate
the invariants defined on these other two representations of links in lens
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spaces.

Presentation of the group of the link and twisted Alexander poly-

nomials In this part of the thesis, published in [19], we focus on the gen-
eralization of the paper of Huynh and Le about links in the projective space
[69]: in the fourth chapter a Wirtinger-type presentation for the group of
the link is developed, improving our previous results exposed in [81]. In this
contest the homology groups are not abelian free groups (as in S3), since a
torsion part appears, and we present a method to compute the torsion di-
rectly from the diagram. The provided examples show that some well known
results for the group of links in S3 (that is to say, [93] and [72, Theorem
6.1.12]) cannot generalize to lens spaces.

In the fifth chapter we deal with a certain class of twisted Alexander
polynomials of links in lens spaces. The twisted Alexander polynomials are
constructed as in [110], using the previous presentation of the group of the
link and the Fox calculus [33]. The considered polynomials are the ones
associated to the one dimensional representation of the group of the link over
some particular domains. We find different properties of these polynomials
and the most interesting one is that a subclass of these polynomials becomes
trivial if the link is local, that is to say, if it is contained in a 3-ball. Finally
we show the connection between the twisted Alexander polynomials and the
Reidemeister torsion.

The lift in S3 of links in lens spaces Consider the ciclic covering
P : S3 → L(p, q), the lift of a link L ⊂ L(p, q) is the link ‹L := P−1(L) ⊂ S3.
This geometric invariant is really important: when an invariant for links in
lens spaces is defined, one should check that is not just an invariant of their
lifts in S3 (in this case the invariant is said essential). Sometimes the lift is
used to help the definition of invariants of links in lens spaces [6, 79].

In the sixth chapter of this dissertation we construct a planar diagram
of the lift in S3 starting from a disk diagram of the original link in L(p, q).
A similar construction can be done with band diagrams and it is exactly
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a (p, q)-lens link of Chbili [28], and hence a freely periodic link in the 3-
sphere [61]. In addition, we construct some examples of diagrams of the lift,
showing its behavior under connected sum, for split links and when the link
is described by a braid.

In the seventh chapter we discuss if the lift is a complete invariant, that
is to say, if we can recognize the isotopy class of a link in L(p, q) just by
knowing the isotopy class of its lift. Using the preceding braid form of the
lift, we can perform a small tabulation of the possible lifts of a certain class
of braid links and get some examples of different unoriented links in lens
spaces with equivalent lift, that is to say, a counterexample to the previous
question. Finally we investigate the case of oriented links and the case where
the knots are equivalent up to homeomorphism of pairs. The results of these
two chapters are collected in [82].

Behavior of invariants with respect to the lift In the eighth chap-
ter we investigate if several invariants are essential or not. From [44], the
fundamental quandle of a link in a lens space is isomorphic to the fundamen-
tal quandle of its lift, therefore it is inessential and incomplete. Otherwise,
an essential invariant can be detected by the following method: compute it
on two different links with equivalent lift, if the two values of the invariant
are different, then it is essential. We apply this strategy to several geomet-
ric invariants of links in lens spaces, like fundamental group and twisted
Alexander polynomials. Moreover we investigate the relationship between
the invariants of a link in lens spaces and the corresponding invariants of the
lift, by adapting some known results [65, 27].

In the ninth chapter, after remembering the construction of the KBSM of
L(p, q) [67], we show that it is an essential invariant of links in lens spaces. In
a similar way we show that the HOMFLY-PT invariant of [31] defined on grid
diagrams, is an essential invariant: in order to do this we state a proposition
relating the invariant of an oriented link with the invariant of the link with
opposite orientation and then we prove that the invariant is essential also for
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the unoriented case. This result on the HOMFLY-PT polynomial, together
with a similar result about Heegaard Link Homology for lens spaces, are
collected in [20].



Chapter 1

Representation of lens spaces

The lens spaces are the simplest family of oriented closed 3-dimensional
manifolds. During the first half of the 20th century, several different con-
structions were elaborated for them. See [109] for an interesting historical
introduction. In this chapter, four different equivalent definitions of lens
spaces are described, after giving some basic notations. Moreover we explain
when two different lens spaces are “equivalent”.

The first definition of lens spaces we give is the most intuitive one, and
lens spaces are described as a 3-dimensional ball with points identified on its
boundary. The second definition of lens spaces is obtained by the action of a
finite group on S3. The equivalence between these two definitions is given in
[111]. Since we will use this equivalence, we show a sketch of it. A definition
of lens spaces via Heegaard splittings is also possible, and the equivalence
with the first definition is shown in [99, §9.B] and [103, §8.3] . The second
and the third definitions are equivalent according to [95, §11]. The fourth
definition of lens spaces is obtained by using rational Dehn surgery. It is easy
to find its equivalence with the Heegaard splitting definition.

9



10 1. Representation of lens spaces

1.1 Basic definitions

Let Top denote the category of topological manifolds and continuos maps,
let Diff be the category of differential manifolds and differentiable functions
and let PL (piecewise linear) be the category of PL manifolds and of PL
maps. For details see [73].

Theorem 1.1. [73] In dimension three, the categories Top, Diff and PL are
equivalent.

In particular, we can provide every topological 3-manifold with a piece-
wise linear or a differential structure. For this reason, when necessary, we will
consider PL or differential structures on the object of our study. Moreover,
for all this thesis, we consider only closed compact oriented 3-manifolds.

Let X and Y be two topological spaces. An embedding is a continuos
function f : X → Y such that f : X → f(X) is a homeomorphism. A curve
α in Y is an embedding α : [0, 1]→ Y .

Let f0, f1 : X → Y be two homeomorphisms. We say that f0 and f1 are
isotopic if there exists a map F : X×[0, 1]→ Y×[0, 1] with F (x, t) = (ft(x), t),
x ∈ X, t ∈ [0, 1] such that ∀t ∈ [0, 1], ft is an homeomorphism. The map F
is called isotopy between f0 and f1.

The set Bn+1 := {(x1, . . . , xn+1) ∈ Rn+1 | x2
1 + . . . + x2

n+1 ≤ 1}, is the
(n+ 1)-dimensional ball, that has as boundary the n-dimensional sphere
Sn := {(x1, . . . , xn+1) ∈ Rn+1 | x2

1 + . . .+ x2
n+1 = 1}.

The torus T = S1 × S1 has the following description as a subset of R3:

T = {(x1, x2, x3) ∈ R3 | x1 = (2 + cos b) cos a, x2 = (2 + cos b) sin a,

x3 = sin b, with a, b ∈ [0, 2π]}.

A parallel of the torus T is a curve of the following type:

α := {(x1, x2, x3) ∈ R3 | x1 = (2 + cos k1) cos a, x2 = (2 + cos k1) sin a,

x3 = sin k1, with a ∈ [0, 2π]},
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where k1 is a constant chosen in [0, 2π].

A meridian of T is a curve of the following type:

β := {(x1, x2, x3) ∈ R3 | x1 = (2 + cos b) cos k2, x2 = (2 + cos b) sin k2,

x3 = sin b, with b ∈ [0, 2π]},

where k2 is a constant chosen in [0, 2π].

The solid torus V = S1 ×B2 is the compact subset of R3 bounded by T .

On the torus T let pβ + qα be the closed curve that winds p times around
a meridian and q times around a parallel.

Proposition 1.2 ([95], §14.1). Let pβ + qα be a closed curve on T .

(a) The numbers p and q are coprime.

(b) If two closed curves on the torus are homotopic, then they are isotopic.

Remark 1.3. On the torus T , all meridians are isotopic to each other, and
the same fact holds for parallels. Moreover, Proposition 1.2 shows that any
closed curve J on T is isotopic to pβ+qα for suitable integer coprime numbers
p and q.

1.2 A lens model for lens spaces

All the following definitions are given fixing two integer numbers, p and
q, such that gcd(p, q) = 1 and 0 6 q < p.

Lens spaces may be defined by a lens model: considering the 3-dimensional
ball, let E+ and E− be respectively the upper and the lower closed hemisphere
of ∂B3. The equatorial disk B2

0 is defined by the intersection of the plane
x3 = 0 with B3. Label with N and S respectively the “north pole” (0, 0, 1)

and the “south pole” (0, 0,−1) of B3. Let gp,q : E+ → E+ be the counter-
clockwise rotation of 2πq/p radians around the x3-axis, as in Figure 1.1, and
let f3 : E+ → E− be the reflection with respect to the plane x3 = 0.



12 1. Representation of lens spaces

B0
2

E+

E

2πq/p

x

x2

x3

x1

gp,q

f3◦gp,q (x)

B 

3⊂R 

3

Figure 1.1: Representation of L(p, q).

The lens space L(p, q) is the quotient of B3 by the equivalence relation
on ∂B3 which identifies x ∈ E+ with f3 ◦ gp,q(x) ∈ E−. The quotient
map is denoted by F : B3 → L(p, q) = B3/ ∼. Note that on the equator
∂B2

0 = E+ ∩ E− each equivalence class contains p points, instead of the two
points contained in the equivalence classes of points outside the equator. The
first example is L(1, 0) ∼= S3 and the second example is L(2, 1) ∼= RP3, where
the construction gives the usual model of the projective space: opposite
points on ∂B3 are identified.

1.3 Quotient of S3 model

Another classical model for the lens space is the following: consider S3

as the join of two copies of S1 (in a Hopf link configuration), denote with
Gp,q the cyclic group generated by the action corresponding to the rotation
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of 2π/p radians of the first circle and of 2πq/p radians of the second one,
according to Figure 1.2. Clearly Gp,q is isomorphic to Zp and it acts freely,
in a properly discontinuous way on S3. Therefore the quotient space is a
3-manifold that indeed results to be the lens space L(p, q). Denote with
P : S3 → L(p, q) the quotient map.

2πq/p

2π/p 4π/5

4
3

21
5

4
3 2

1
5

4

32
1

5

4
3 2

15

R

R

Figure 1.2: Lens space L(5, 2) from the solid torus model of S3.

Remark 1.4 (Equivalence with lens model). The proof of the equivalence of
these two constructions can be found in [111], and since it is relevant for our
purpose, we shall remember it briefly here. The construction of S3 as the
join of two circles is the following: S3 = S1×S1× [0, 1]/ ∼J , where ∼J is the
equivalence relation defined by (a1, b, 0) ∼J (a2, b, 0) for all a1, a2 ∈ S1, b ∈ S1

and (a, b1, 1) ∼J (a, b2, 1) for all a ∈ S1, b1, b2 ∈ S1. It is essential to visualize
the two circles in a Hopf configuration. This model of S3 is equivalent to the
following one: considering the solid torus S1 × B2, for each Q ∈ S1 = ∂B2,
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each parallel S1×{Q} of the torus S1×∂B2 collapses to the point Q. Under
this equivalence, the first circle of the join can be thought of as S1×{(0, 0)}
while the second circle can be thought of as {P} × ∂B2/ ∼J , with P ∈ S1.

The effect of the action of Gp,q on this model of S3 is the following: the
circle l = S1 × {(0, 0)} of the solid torus is rotated by 2π/p radians, thus we
identify p equidistant copies of a meridian disk. The second S1, visualized as
a meridian m = {P} × ∂B2 of the torus, is rotated by 2πq/p radians, thus
each of the p copies of the meridian disk is identified with a rotation of 2πq/p

radians.

As Figure 1.2 shows, a fundamental domain under this action is a solid
truncated cylinder R = [0, 1]× B2 with identification on the boundary, pre-
cisely each segment [0, 1]×{Q} (withQ ∈ ∂B2) of the lateral surface collapses
to the point {1/2}, and the top and the bottom disks are identified with each
other after a rotation of 2πq/p radians; in this way we can recognize the first
model of the lens space.

1.4 Genus one Heegaard splitting model

Heegaard splittings are one of the most powerful methods to represent
3-manifolds. They consist of two handlebodies of genus g connected by an
homeomorphism of their boundaries. The lens spaces are the class of 3-
manifolds that can be described by genus one Heegaard splittings: consider
two copies V1 and V2 of a solid torus V = S1 × B2, a genus one Heegaard
splitting V1∪ϕp,q V2 of the lens space L(p, q) is the gluing of the two solid tori
V1 and V2 via the homeomorphism of their boundaries ϕp,q : ∂V2 → ∂V1 that
sends the curve β to the curve qβ + pα. In Figure 1.3 it is illustrated the
case L(5, 2).

Remark 1.5 (Equivalence with lens model). Figure 1.4 explains how to get the
presentation of L(5, 2) via Heegaard splitting starting from the lens model,
and vice versa. The visualization of the general case L(p, q) is left to the
reader.
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φ5,2

V1 V2

Figure 1.3: Heegaard splitting of L(5, 2).

1.5 Dehn surgery model

Dehn surgery is a remarkable method that describes 3-manifolds using
knots and links. Since we are interested only in the rational surgery over the
unknot U , we describe here only this case.

An embedding of a circle in S3 is said to be the unknot U if it bounds a
disk. Considering the ε-neighborhood of U , that is a solid torus H1, we can
remove it from S3 and then paste it back by an homeomorphism between the
boundaries that identify the original meridian β of T to the curve pβ + qα.
We denote this surgery operation by labeling U with the framing p/q (see
Figure 1.5), and from this construction arise the 3-manifold L(p, q).

Remark 1.6 (Equivalence with Heegaard splitting model). Since the standard
genus one Heegaard splitting of S3 is the one where the homeomorphism
sends a meridian β to a parallel α of the boundary torus, then it is enough
to exchange the role of α and β of the description of the genus one Heegaard
splitting of the lens space to get the rational Dehn surgery over the unknot.
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1

2

3

4

5

1

2

3

4

5

Figure 1.4: From the lens model to Heegaard splitting.
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p/q

Figure 1.5: Rational surgery over the unknot for L(p, q).

1.6 Results about lens spaces

In this paragraph we will present classical theorems about lens spaces.

Proposition 1.7. [62] The fundamental group π1(L(p, q), ∗) is isomorphic
to Zp, where ∗ is any point of L(p, q). The homology groups of the lens spaces
are:

• H0(L(p, q)) ∼= Z;

• H1(L(p, q)) ∼= Zp;

• H2(L(p, q)) ∼= 0;

• H3(L(p, q)) ∼= Z =⇒ L(p, q) is orientable.

Therefore two lens spaces L(p, q) and L(p′, q′), if p 6= p′, are neither
homeomorphic nor of the same homotopy type. The classification has been
obtained using Reidemeister torsion.

Proposition 1.8. [14] The lens space L(p, q) is homeomorphic to another
lens space L(p′, q′) if and only if

p = p′ and





q ≡ ±q′ mod p

qq′ ≡ ±1 mod p.

Proposition 1.9. [112] The lens space L(p, q) has the same homotopy type
of L(p′, q′) if and only if p = p′ and ±qq′ is a quadratic residue mod p.

For example, L(5, 1) and L(5, 2) are neither homeomorphic nor with the
same homotopy type, while L(7, 1) and L(7, 2) are still not homeomorphic,
but they are homotopy equivalent, since 1 · 2 ≡ 32 mod 7.





Chapter 2

Links in lens spaces

In this chapter we overview the definition of links in lens spaces, and we
show several presentations for them that can be found in literature: mixed
link diagrams, band diagrams and grid diagrams.

2.1 General definitions

A link L in a 3-manifold M is a pair (M,L), where L is a submanifold
of M diffeomorphic to the disjoint union of ν copies of S1, with ν > 0. We
call component of L each connected component of the topological space L.
When ν = 1 the link is called a knot. We usually refer to L ⊂ M meaning
the pair (M,L). A link L ⊂M is trivial if its components bound embedded
pairwise disjoint 2-disks B2

1 , . . . , B
2
ν in M .

There are at least two possible definitions of link equivalence. The one
we are going to use throughout the thesis is the equivalence by ambient
isotopy: two links L,L′ ⊂ M are called equivalent if there exists a smooth
map H : M × [0, 1]→M where, if we define ht(x) := H(x, t), then h0 = idM ,
h1(L) = L′ and ht is a diffeomorphism of M for each t ∈ [0, 1].

Anyway in some cases it will also be useful to consider the equivalence
by diffeomorphism of pairs. Two links L and L′ in M are diffeo-equivalent if
there exists a diffeomorphism of pairs h : (M,L)→ (M,L′), that is to say a

19
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diffeomorphism h : M → M such that h(L) = L′. It is not necessary that
the diffeomorphism is orientation preserving.

Remark 2.1. Two equivalent links L and L′ in M are necessarily diffeo-
equivalent, since from the ambient isotopy H : M × [0, 1] → M , the map
h1 : (M,L)→ (M,L′) is a diffeomorphism of pairs.

The two definitions are equal for links in S3 up to an orientation reversing
diffeomorphism. For the lens spaces, this is no more true, as we can see from
the construction of the diffeotopies group of lens spaces made by [13] and
[66].

The setting of this thesis is the Diff category (of smooth manifolds and
smooth maps). Every result also holds in the PL category, and in the Top
category if we consider only tame links, that is to say, we exclude situations
like the one of Figure 2.1 (wild knots).

Figure 2.1: Example of wild knot.

Links in 3-manifolds can also be oriented, therefore throughout the thesis
we will state each time whether it will be necessary a specification of the
orientation or not.

The case M = S3 is the classical knot theory and it has been intensively
studied. The best way to represent a knot in the 3-sphere is the planar
diagram obtained by a “regular” projection of the knot onto a plane. On this
diagram, the equivalence problem reduces to Reidemeister theorem.

Theorem 2.2. [1, 97] Two links L and L′ in S3 are equivalent if and only if
their diagrams can be connected by a finite sequence of the three Reidemeister
moves described in Figure 2.2.
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R1

R2

R3

Figure 2.2: Reidemeister moves.

These and other results on knots in the 3-sphere can be found with many
details in [16].

Now let us turn our attention to links in lens spaces. Before seeing some
diagrams for them, we adapt the definitions of certain link constructions to
the case of lens spaces.

Local and split links A link L ⊂ L(p, q) is local if it is contained in-
side a 3-ball. The definition of split links in S3 can be generalized to lens
spaces: a link L ⊂ L(p, q) is split if there exists a 2-sphere in the comple-
ment L(p, q) r L that separates one or more components of L from the other
ones. The 2-sphere separates L(p, q) into a ball B̂3 and L(p, q) r B̂3; as a
consequence, a split link is the disjoint union of a local link and of another
link in lens space.

Satellite and cable links We can easily generalize the definition of satel-
lite knot to lens space, following Section C, Chapter 2 of [16]. Take Kp a
knot in the solid torus T that is neither contained inside a 3-ball nor it is
the core of the solid torus, and call it pattern. Let e : T → L(p, q) be an
embedding such that e(T ) is the tubular neighborhood of a non-trivial knot
Kc ⊂ L(p, q). The knot K := e(Kp) ⊂ L(p, q) is the satellite of the knot Kc,
called companion of K. The satellite of a link can be constructed by spec-
ifying the pattern of each component. In addition the pattern of a satellite
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knot can be a link too. A cable link is a satellite knot with a torus link as
pattern.

Composite and prime links Consider two knots K1 ⊂ L(p, q) and K2 ⊂
S3, let Pi be a point on Ki, and (B3

i , B
1
i ) a regular neighborhood of Pi for

i = 1, 2 respectively in (L(p, q), K1) and in (S3, K2). The connected sum of
two knots K1 and K2 in L(p, q), denoted by K1]K2, is still a knot, obtained
from the disjoint union of the manifold pairs (L(p, q)r int(B3

1), K1r int(B1
1))

and (S3rint(B3
2), K2rint(B1

2)), pasting their boundaries along an orientation
reversing homeomorphism ϕ : (∂B3

2 , ∂B
1
2) → (∂B3

1 , ∂B
1
1). In order to define

the connected sum for links we have to specify the component of each link
on which we choose the attaching points. A prime link is a link L ⊂ L(p, q)

such that, if L = L1]L2 then necessarily either L1 or L2 is the trivial knot.

2.2 Mixed link diagrams

Rational Dehn surgery on a knot K in S3, with coefficient p/q, is the
following topological operation: take a tubular neighborhood of K, cut it out
of S3 and re-paste it back, sending a meridian of this torus to the (p, q)-torus
knot around it. The result is a 3-manifold M(K)p,q. This operation can be
generalized to links and a theorem of Lickorish and Wallace states that every
3-manifold can be obtained by surgery on some link. Another interesting
result states that two links with surgery coefficients representing the same
manifold can be transformed one into the other by two moves, the Kirby
moves. These results are clearly exposed for example in [95, §19].

The notion of mixed link diagram for links in 3-manifolds is common and
can be found for example in [77]. A mixed link diagram of a link L ∪ J is a
classical diagram of L∪J in S3, where every component of J is marked, that
is to say, if we call J1, . . . , Jµ the connected components of J , then every
connected component Ji is decorated with a framing index of surgery mi.
The link J is called the surgery link.



2.3 Band diagrams 23

The surgery description of lens spaces can be done by a rational p/q
surgery over the unknot U , so a link L in L(p, q) can be described by a
mixed link diagram of the link L∪U . An example can be seen in Figure 2.3.
Any other surgery description of lens spaces can be reduced to this one by
Kirby moves.

p/q

Figure 2.3: Example of a mixed link diagram of a link in L(p, q).

For mixed link diagrams of this kind, the Reidemeister-type moves can be
reduced to the classical Reidemeister movesR1, R2 andR3 over the projection
of L ∪ U and one additional move, usually called SL (slide move) that tells
us what happens when an overpass of L crosses U : instead of one underpass,
a (p, q)-torus knot along U arises. This is a simplification of Theorem 5.8 of
[77].

2.3 Band diagrams

Band diagrams were introduced in [67], while the equivalent representa-
tion of punctured disk diagrams can be found in [50].

Consider the link L in the lens space L(p, q) described with rational
surgery over the unknot U , that is to say, consider the mixed link L∪U ⊂ S3.
Let x be a point of U and send it to ∞ in order to describe S3 with the
one-point compactification of R3. Let (x1, x2, x3) be the coordinates of R3.
Assume that U is now described by the x3 axis. Consider the orthogonal
projection p of L on the x1x2 plane. Up to small isotopies on L, we can
assume that this projection is regular, that is to say:
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1) the projection of L contains no cusps;

2) all auto-intersections of p(L) are transversal;

3) the set of multiple points is finite, and all of them are actually double
points.

The punctured disk diagram of L ⊂ L(p, q) is a regular projection of L,
with the addition of a dot representing the projection of U (see an example
in Figure 2.4).

Figure 2.4: An example of punctured disk diagram for a link in lens space.

If we just consider a dotted diagram without surgery, we are describing
links in the solid torus [51].

A band diagram for a link L ⊂ L(p, q) is obtained from a punctured disk
diagram of L through the following construction: suppose that all the arc
projections are contained inside a disk in the plane x1x2 and remove a small
disk around the fixed dot, in order to get an annulus containing the diagram
of L. Then cut this annulus along a line orthogonal to the boundary and
avoiding the crossings of L. Finally, deform the annulus into a rectangle:
this is a band diagram of L (see an example in Figure 2.5). By reversing this
operation we can obtain a punctured disk diagram from a band diagram of
a link in a lens space.

Reidemeister-type moves for this diagrams are described in [67], but is
better to represent them on punctured disk diagrams as in [50]. They are
really similar to the moves on mixed link diagrams described in Section 2.2
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Figure 2.5: Deforming a punctured disk diagram to get a band diagram.

and they work in the following way: besides the classical three Reidemeister
moves, there is a fourth SL move (slide move). This move acts in the follow-
ing way: when a strand crosses the dot, a (p, q)-torus knot that contains all
the diagram is added to that strand (see an example in Figure 2.6).

SL

T T

... ...

Figure 2.6: SL move on punctured disk diagram for the case L(3, 1).

2.4 Grid diagrams

Grid diagrams for links in the 3-sphere have a long history and are known
also as asterisk presentations, fences and arc presentations. They were used
to describe links in lens spaces for the first time in [6]. The key idea is a
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projection of the link on the separating torus of the genus one Heegaard
splitting of L(p, q), where the arcs of the projection consist of an orthogonal
piecewise linear approximation.

Grid diagram of links in lens space A (toroidal) grid diagram G in
L(p, q) with grid number n is a quintuple (T,α,β,O,X) that satisfies the
following conditions (see an example with grid number 3 in L(4, 1) in Fig-
ure 2.7)

X O
XO

X O

10 2 3

10 2 3 0

3

α 0

α 1

α 2

α 0

β1 β0β2 β0β1 β0β2 β1 β0β2 β1 β0β2
α 0

α 1

α 2

α 0

β1 β0β2 β1 β0β2 β1 β0β2 β1 β0β2

Figure 2.7: From a grid diagram with grid number 3 to its corresponding
link in L(4, 1).

• T is the standard oriented torus R2/Z2, where Z2 is the lattice gener-
ated by the vectors (1, 0) and (0, 1);

• α = {α0, . . . , αn−1} are the images in T of the n lines in R2 de-
scribed by the equations y = i/n, for i = 0, . . . , n− 1; the complement
T r (α0 ∪ . . . ∪ αn−1) has n connected annular components, called the
rows of the grid diagram;

• β = {β0, . . . , βn−1} are the images in T of the n lines in R2 described
by the equations y = −p

q
(x− i

pn
), for i = 0, . . . , n− 1; the complement

T r (β0 ∪ . . . ∪ βn−1) has n connected annular components, called the
columns of the grid diagram;

• O = {O0, . . . , On−1} (resp. X = {X0, . . . , Xn−1}) are n points in
T r (α ∪ β) called markings, such that any two points in O (resp.
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X) lie in different rows and in different columns.

In order to make the identifications of the diagram boundary easier to
understand, it is possible to perform the “shift” illustrated in Figure 2.7.
Notice that, if we omit the L(p, q) identifications, the curve β0 divides the
rectangle of a grid diagram into p adjacent squares, that we will call boxes of
the diagram.

The following construction explains why a grid diagram G represents an
oriented link L ⊂ L(p, q). In the case of non-oriented links, you can exchange
the X with the O markings. Denote with V1 and V2 the two solid tori having,
respectively, α and β as meridians. Clearly V1∪ϕp,qV2 is a genus one Heegaard
splitting representing L(p, q). Then connect

(1) each Xi to the unique Oj lying in the same row with an arc embedded
in the row and disjoint from the curves of α, and

(2) each Oj to the unique Xl lying in the same column by an arc embedded
in the column and disjoint from the curves of β,

obtaining a multicurve immersed in T . Finally remove the self-intersections,
pushing the lines of (1) into V1 and the lines of (2) into V2. The orientation
on L is obtained by orienting the horizontal arcs connecting the markings
from the X to the O. An example in L(4, 1) can be seen in Figure 2.7.

Notice that, the presence in the grid diagram of a pair of marking X and
O in the same position corresponds to a trivial component of the represented
link (see the bottom row of the first box of Figure 9.6).

By Theorem 4.3 of [6], each link L ⊂ L(p, q) can be represented by a grid
diagram. The idea of the proof is a PL-approximation with orthogonal lines
of the link projection on the torus.

Equivalence moves for grid diagrams A grid (de)stabilization is a move
that (decreases) increases by one the grid number. Figure 2.8 shows an
example in L(5, 2) of a X : NW grid (de)stabilization, where X is the grid
marking chosen for the stabilization and NW refers to the arrangement of
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the new markings. Of course, we can have also (de)stabilization with respect
to O markings and with NE,SW and SE arrangements.

X O
X O

X O

Figure 2.8: An example of X : NW (de)stabilization in L(5, 2).

A grid diagram commutation interchanges either two adjacent columns
or two adjacent rows as follows. Let A be the annulus containing the two
considered columns (or rows) c1 and c2. The annulus is divided into pn

parts by the rows (columns). Let s1 and s2 be the two bands of the annulus
containing the markings of c1. Then the commutation is interleaving if the
markings of c2 are in different components of A−s1−s2, and non-interleaving
otherwise (see Figure 2.9).

X O
XO

XO
X O

X O
XO

XO
X O

Figure 2.9: An example of non-interleaving commutation in L(3, 1).

Proposition 2.3. [5] Two grid diagrams of links in L(p, q) represent the
same link if and only if there exists a finite sequence of (de)stabilizations and
non-interleaving commutations connecting the two grid diagrams.

There are also two other hidden moves on a grid diagram, depending
directly on the projection of the link on the Heegaard torus: we can make
a cyclic permutation of the rows or of the columns – following the pasting
of the torus – and we can do a reverse connection by connecting the grid
markings also in the opposite direction.



Chapter 3

Disk diagram and

Reidemeister-type moves

In 1991, Drobotukhina introduced a disk diagram for knots and links in
the projective space RP3 ∼= L(2, 1). Using this diagram, she found a Jones
polynomial [42] and a tabulation of prime non-local knots in RP3 [43]. Other
authors showed interesting results working on this diagram [69, 91, 92, 58, 59].
Since this disk diagram can be generalized to links in lens spaces, we decided
to study it in order to find further invariants of links in lens spaces.

In this chapter this new disk diagram for links in lens spaces is introduced
and a generalization of the Reidemeister moves to lens spaces is obtained,
with a proof similar to the one of Roseman [100]. One of these moves allows
the reduction of the disk diagram to a standard form. Moreover we show the
connection of this disk diagram with other representations of links in lens
spaces, such as band and grid diagrams.

The connection between disk diagram and mixed link diagram is omit-
ted. It is quite simple to transform a punctured disk diagram into a mixed
link diagram and vice versa; as a consequence, it is enough to study the
equivalence between disk and band diagrams.

In this chapter all links in L(p, q) are considered up to ambient isotopy
and up to link orientation, unless the ending section on grid diagrams.

29
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3.1 Disk diagram

In this section, we improve the definition of diagram for links in lens
spaces given by Gonzato [56]. This exposition is reported in [19]. Let us
assume p > 1, since the case of S3 is not of our interest. Let L be a link in
the lens space L(p, q) described by the lens model of Section 1.2. Remember
that F : B3 → L(p, q) is the quotient map and consider L′ = F−1(L). By
moving L via a small isotopy in L(p, q), we can suppose that:

i) L′ does not meet the poles N and S of B3;

ii) L′ ∩ ∂B3 consists of a finite set of points;

iii) L′ is not tangent to ∂B3;

iv) L′ ∩ ∂B2
0 = ∅.

The small isotopy that allows L′ to avoid the equator ∂B2
0 is illustrated

in Figure 3.1.

CB
C

B

Figure 3.1: Avoiding ∂B2
0 in L(9, 1).

As a consequence, L′ is the disjoint union of closed curves in intB3 and
arcs properly embedded in B3. Let p : B3 r {N,S} → B2

0 be the projection
defined by p(x) = c(x)∩B2

0 , where c(x) is the circle (possibly a line) through
N , x and S. Take L′ and project it using p|L′ : L′ → B2

0 . As in the classical
link projection, taken a point P ∈ p(L′), its counterimage p−1(P ) in L′ may
contain more than one element, in this case we say that P is a multiple point;
moreover when p−1(P ) contains exactly two points, P is a double point.
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We can assume, by moving L via a small isotopy, that the projection
p|L′ : L′ → B2

0 of L is regular, namely:

1) the projection of L′ contains no cusps;

2) all auto-intersections of p(L′) are transversal;

3) the set of multiple points is finite, and all of them are actually double
points;

4) no double point is on ∂B2
0 .

Finally, double points are represented by underpasses and overpasses as
in the diagram for links in S3. A disk diagram of a link L in L(p, q) is a
regular projection of L′ = F−1(L) on the equatorial disk B2

0 , with specified
overpasses and underpasses. Note that for the case L(2, 1) ∼= RP3 we get
exactly the diagram described in [42].

+1
−1

+2

−2+3 −3 +4

−4

N

x

p(x)

S

Figure 3.2: A link in L(9, 1) and its corresponding disk diagram.

In order to have a more comprehensible diagram (even if this is not a
necessary operation), we index the boundary points of the projection as fol-
lows: at first, we assume that the equator ∂B2

0 is oriented counterclockwise
if we look at it from N , then, according to this orientation, we label with
+1, . . . ,+t the endpoints of the projection of the link coming from the up-
per hemisphere, and with −1, . . . ,−t the endpoints coming from the lower
hemisphere, respecting the rule +i ∼ −i. An example is shown in Figure 3.2.
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3.2 Generalized Reidemeister moves

In this section, published in [19], a Reidemeister-type theorem is shown
for links in lens spaces. The generalized Reidemeister moves on a diagram of
a link L ⊂ L(p, q), are the moves R1, R2, R3, R4, R5, R6 and R7 of Figure 3.3.
Observe that, when p = 2 the moves R5 and R6 are equal, and R7 is a trivial
move.

Theorem 3.1. Two links L0 and L1 in L(p, q) are equivalent if and only if
their diagrams can be joined by a finite sequence of generalized Reidemeister
moves R1, . . . , R7 and diagram isotopies, when p > 2. If p = 2, moves
R1, . . . , R5 are sufficient.

Proof. On one hand, it is easy to see that each Reidemeister move connects
equivalent links, hence a finite sequence of Reidemeister moves and diagram
isotopies does not change the equivalence class of the link.

On the other hand, if we have two equivalent links L0 and L1, then there
exists an isotopy of the ambient space H : L(p, q)× [0, 1]→ L(p, q) such that
h1(L0) = L1. For each t ∈ [0, 1] we have a link Lt = ht(L0).

The link Lt may violate conditions i), ii), iii), iv) and its projection can
violate the regularity conditions 1), 2), 3) and 4), producing some singulari-
ties.

It is easy to see that the isotopy H can be chosen in such a way that con-
ditions i) and ii) are satisfied at any time. Moreover, using general position
theory (see [100] for details) we can assume that there is a finite number of
singularities and that for each t ∈ [0, 1], only one of them may occur. The
remaining conditions might be violated during the isotopy as illustrated in
the left part of Figure 3.3. More precisely,

– conditions 1), 2) and 3) are necessary to avoid the singularities V1, V2

and V3;

– condition iii) prevents the singularity V4;

– condition 4) avoids the singularities represented in V5 and V6; the dif-
ference between the two configurations is that V5 involves two arcs of
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R4

R5

R6

R7

+1

−1

+2
−2

+1

−1

+2
−2

−2
−1

+1
+2

−1

+2

−2
+1

−1

+2

+1
−2

−1

+1

+j

−i

V4

V5

V6

V7

R3

R2

R1

V3

V2

V1

Figure 3.3: Singularities and corresponding generalized Reidemeister moves.
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L′ ending in the same hemisphere of ∂B3, while V6 involves arcs ending
in different hemispheres;

– from condition iv) arises a family of singularities V7,1, . . . , V7,p−1 (see
Figure 3.4); the difference between them is that V7,1 has the endpoints
of the projection identified directly by the map gp,q of Section 1.2, while
V7,k has the endpoints identified by gkp,q, for k = 2, . . . , p− 1.

(gp,q )2 (gp,q )
p–1gp,q

V7,1 V7,2 V7,p–1

Figure 3.4: Singularities V7,1, V7,2, . . . , V7,p−1.

From each type of singularity, a generalized Reidemeister move appears as
follows (see Figure 3.3):

– from V1, V2 and V3 we obtain the usual Reidemeister moves R1, R2 and
R3;

– from V4 we obtain move R4;

– from V5, we obtain two different moves: R5 if the overpasses endpoints
belong to the same hemisphere, and R6 otherwise;

– from V7,1, . . . , V7,p−1 we obtain the moves R7,1, . . . , R7,p−1.

Nevertheless the moves R7,2, . . . , R7,p−1 can be seen as the composition of
R7 = R7,1, R6, R4 and R1 moves. More precisely, the move R7,k, with
k = 2, . . . , p− 1, is obtained by the following sequence of moves: first we
perform an R7 move on the two overpasses corresponding to the points +i

and −i, then we repeat k − 1 times the three moves R6-R4-R1 necessary to
retract the small arc having the endpoints with the same sign (see an example
in Figure 3.5).
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R4

R7

+1

−1
+2−2+3

−3

+1
+2−1+3−2+4

−3

−4
+5

−5
+6 −6+7

−7

+1
+2−1+3−2

+4

−5+6 −6+7

−7

+1

−1
+2 −2+3

−3
R7,3

V7

−3

−4
+5

+1+2

−1

+3
−2

−3
+4 −4+5

−5

R4
+1+2

−1
+3
−2

−3+4 −4+5

−5

+1+2

−1
+3
−2

−3+4 −4+5

−5

R1

R1

+1

−1
+2 −2+3

−3

R6

R6

Figure 3.5: How to decompose a move R7,3.
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Therefore we can drop out R7,2, . . . , R7,p−1 from the set of moves and keep
only R7,1 = R7. As a consequence, any pair of diagrams of two equivalent
links can be joined by a finite sequence of generalized Reidemeister moves
R1, . . . , R7 and diagram isotopies. When p = 2, it is easy to see that R6

coincides with R5, and R7 is a trivial move; so in this case moves R1, . . . , R5

are sufficient (see also [42]).

Remark 3.2. Diagram isotopies have to respect the identifications of bound-
ary points of the link projection. Therefore, move R6 is possible only if there
are no other arcs inside the small circles of the move R6, as illustrated in
Figure 3.3. For example, Figure 3.6 shows the case of a link in L(3, 1) where
the R6 move removing the crossing cannot be performed.

+1

−1
+2

−2
+3

−3

Figure 3.6: A diagram in L(3, 1) where an R6 move cannot be applied.

3.3 Standard form of the disk diagram

A disk diagram is defined standard if the labels on its boundary points,
read according to the orientation on ∂B2

0 , are (+1, . . . ,+t,−1, . . . ,−t).

Proposition 3.3. Every disk diagram can be reduced to a standard disk
diagram using some isotopy on the link: if p = 2, the signs of its boundary
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points can be exchanged; if p > 2, a finite sequence of R6 moves can be applied
in order to bring all the plus-type boundary points aside.

Proof. For p = 2, the exchange of the signs of a boundary point corresponds
to a small isotopy on the link, that crosses the equator of B3.

For p > 2, we have the following situation. By definition, the endpoints
+1, . . . ,+t on the boundary are always in this order if we forget the minus-
type points. The endpoints +i and −i can be moved together along the
boundary, with their respective arcs. Moreover we can assume that this
small isotopy is performed close enough to the boundary that the arcs avoid
the crossings. Our aim is to bring all the plus-type boundary points one
aside the other, respecting their labeling order. The isotopy performed can
exchange +i and −j producing an R6 move.

The algorithm is the following: up to a finite sequence of R6 moves on
the points near +1 and −t, we can assume that the boundary sequence is of
the type (+1, . . . ,−t). In order to get the final desired sequence of boundary
points (+1, . . . ,+t,−1, . . . ,−t), it is enough to apply another finite sequence
of R6 moves, this time with one more attention: when we exchange −j and
+i (with i < j) we move with an isotopy also the other arcs/boundary points,
because we do not want to create other exchanges in the boundary sequence.
An example in shown in Figure 3.7.

R6
−2

+1
+2

−1

+3

−3

R6
−2

+1
+2

−1
+3

−3

−2

+1
+2

−1
+3

−3

Figure 3.7: Example of R6-reduction to standard disk diagram.
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3.4 Connection with band diagram

In this section is described a geometric transformation between disk and
punctured disk diagrams. This is the result of a collaboration with Bostjan
Gabrovšek. The motivation of this effort is the possibility to connect our
findings about links in lens spaces. The results of Section 9.2 are an outcome
of this work. Since punctured disk and band diagrams are similar, it is more
convenient to show the connection between disk and band diagrams.

Let Bt be the braid group on t letters and let σ1, . . . , σt−1 be the Artin
generators of Bt. Consider the Garside braid ∆t on t strands defined by
(σt−1σt−2 · · ·σ1)(σt−1σt−2 · · ·σ2) · · · (σt−1), and illustrated in Figure 3.8. It
is a positive half-twist of all the braid strands. The braid ∆2

t belongs to
the center of the braid group, that is to say, it commutes with every braid.
Moreover ∆−1

t can be written, after some braid operations, as

(σ−1
t−1σ

−1
t−2 · · ·σ−1

1 )(σ−1
t−1σ

−1
t−2 · · · σ−1

2 ) · · · (σ−1
t−1).

+1
+2

+(t -1)
+t −1

−(t -1)
−t

−2

Δ
t −3

+3

Figure 3.8: The braid ∆t.

The following proposition explains how to transform a band diagram into
a standard disk diagram.
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Proposition 3.4. Let L be a link in L(p, q) assigned via a band diagram
BL. A standard disk diagram DL representing L can be obtained with the
following construction, described in Figure 3.9. Consider the band diagram

B

+1

+t −1
−t+2 −2

Δ
tB

Figure 3.9: From band diagram BL to disk diagram DL in L(p, q).

BL, the rectangle has two opposite identified sides, with t points on each of
them; add to the right side of the band diagram the braid ∆t, then put the
resulting band inside a disk, with the opposite sides of the new rectangle on
the boundary of the disk. Add the indexation +1,+2, . . . ,+t on the points of
the left side of the rectangle and −1,−2, . . . ,−t on the other boundary points:
the result is the desired disk diagram DL.

Proof. The band diagram may also be seen as the result of a genus one Hee-
gaard splitting of the lens space L(p, q), where the link is wholly contained
inside one of the two solid tori, and it is regularly projected on an annulus
which has as boundary two longitudes of the solid torus. Equivalently, as
described in Figure 3.10, the band diagram may be seen as an annulus im-
mersed in a solid torus, which has as boundary a longitude and the core.
Following the geometric description of the equivalence between the Heegaard
splitting model and the lens model of the lens spaces, described in Figure 1.4,
we can put the band diagram in one solid torus as described by Figure 3.10,
then put the solid torus inside the lens model of the lens space, and project
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the band diagram onto the equatorial disk. During this operation, we have a
twist, described by the braid ∆t. Finally, adding the labels to the boundary
points, we get the desired standard disk diagram DL.

B

+1
+t −1

−t
+2 −2

Figure 3.10: From the Heegaard splitting to the lens model of L(p, q).

On the other way, when we have the disk diagram of a link L ⊂ L(p, q),
how can we recover the band diagram BL?

Proposition 3.5. Let L be a link in L(p, q), defined by a disk diagram; let
DL be the standard disk diagram obtained from it as Proposition 3.3 suggests.
A band diagram BL for L can be constructed using the following geometric
algorithm, described in Figure 3.11. Consider the disk diagram DL and open
the disk on the right of the +1 point, as Figure 3.11 shows; this way a rect-
angle is obtained, with identified points only on the left and right sides, at
last add the braid ∆−1

t on the right side and this is the desired band diagram
for L.
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+1

+t

−1
−t

+2

−2

Δ
t -1D

+1

+t

−1
−t

+2

−2

D
Figure 3.11: From disk diagram DL to band diagram BL in L(p, q).

Proof. It is exactly the converse geometric construction of the proof of Propo-
sition 3.4.

A naif interpretation of the Reidemeister-type moves on this two kind of
diagrams brings to Table 3.4.

Disk diagram Band diagram

R1 R1

R2 R2

R3 R3

R4 isotopy of an arc and R1

R5 isotopy of a crossing

R6 not allowed on standard diagram

R7 SL
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3.5 Connection with grid diagram

The following two propositions describe how to transform a disk diagram
into a grid diagram representing the same link and vice versa. These results
are reported in [20], and they are carried out in order to investigate the
HOMFLY-PT invariant of links in lens spaces as explained in Chapter 9.
Oriented links are considered in order to have the correct information for the
X and the O markings.

Proposition 3.6. Let L be a link in L(p, q) assigned via a grid diagram GL.
Then we can obtain the disk diagram DL representing L in the following way
(see Figure 3.12):

−2

+1
+2

−1

L1

−2

+1

+2

−1

X O
X O

Figure 3.12: From grid diagram GL to disk diagram DL in L(4, 1).

• consider the grid diagram GL and draw the link according to the previ-
ous convention;

• round the rectangle into a circular annulus, joining the first and the
last columns, that is to say, the horizontal lines become circles and the
vertical lines become radial lines on the disk diagram;
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• the lower boundary points on the rectangle become plus-type boundary
points on the disk; the upper boundary points, instead, are inside the
disk, that is to say, by moving them under all the circle lines we can
bring them on the boundary of the disk, so that they become minus-type
boundary points.

Proof. The grid diagram of a link in a lens space comes from the representa-
tion of lens spaces as Heegaard splitting, namely our grid diagram is the toric
Heegaard surface. If we want to transform the grid diagram into the disk
diagram DL we have to put our Heegaard surface inside the ball B3 of the
lens model of L(p, q). This can be done as Figure 3.13 shows. Now we want

−2
+1

+2 −1

B 
3

Figure 3.13: How to insert the grid diagram of L into the lens model of
L(4, 1).

to project this surface on the equatorial disk B2
0 , and, in order to have a reg-

ular projection of the link, we deform the Heegaard torus as in Figure 3.13.
The projection of the deformed grid diagram on B2

0 gives DL.

Remark 3.7. If the grid diagram GL has grid number n, then the disk diagram
DL, obtained from GL, has at most n(p − 1) boundary points. Indeed, the
number of boundary points of DL is exactly the number of the points onto
the lower and upper sides of the rectangle of GL, that is, at most, n(p− 1).
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In the opposite direction, when we know the disk diagram DL of a link
L ⊂ L(p, q), how can we recover the grid diagram GL?

Proposition 3.8. Let L be a link in L(p, q), defined by a disk diagram DL,
we can then get a grid diagram GL of L as follows (see Figure 3.14):

−2

+1

+2

−1

L2

X O
XO

−2

+1

+2

−1

Figure 3.14: From disk diagram DL to grid diagram GL in L(4, 1).

• consider the disk diagram DL and cut the disk along a ray between the
+1 point and the previous boundary point (according to the orientation
of the disk), obtaining a rectangle;

• make an orthogonal PL-approximation of the link arcs, putting all the
crossings with horizontal overpass and vertical underpass;

• shift the boundary endpoint of −1, . . . ,−t from the lower to the upper
side of the rectangle, passing under all the lines;

• put X and O markings on the square corners of the link projection.
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Proof. It is exactly the converse of the proof of Proposition 3.6. The only
difference is that here we have to use the orthogonal PL-approximation sug-
gested by Theorem 4.3 of [6].

Using Propositions 3.6 and 3.8, it is also possible to find a correspon-
dence between the Reidemeister moves on the disk diagrams (illustrated in
Figure 3.3) and the grid diagram equivalence moves described in the previous
paragraph. This correspondence is summed up in Table 3.5.

Disk diagram Grid diagram

R1 (de)stab.

R2 non-inter. comm.

R3 non-inter. comm.

R4 cyclic perm. of rows

R5 cyclic perm. of rows

R6 non-inter. comm.

R7 column reverse connection





Chapter 4

Group of links in lens spaces via

Wirtinger presentation

The main topological problem of knot theory is to distinguish non-equivalent
links, for this reason we look for invariants of links in lens spaces. If two
links are equivalent (or just diffeo-equivalent), then their complement are
homeomorphic. Hence when the fundamental groups of these two spaces are
different, the links are not equivalent. Can this invariant (named the group
of the link) classify links in lens spaces? For the 3-sphere case we have the
following result: two prime knots are equivalent if and only if their funda-
mental groups are isomorphic (see Theorem 6.1.12 of [72], that is a corollary
of two results, one obtained by [57] and the other one by [113]). Therefore a
method for the computation of the link group in lens spaces is an important
starting point for the classification of links in these manifolds. In order to
investigate this question, in this chapter we generalize the Wirtinger pre-
sentation for the group of links in the 3-sphere to lens spaces, taking hints
from the article [69] that shows the case of the projective space L(2, 1). Fur-
thermore we prove that the first homology group of the complement may
have a non-trivial torsion part. These results are published in [19]. Finally
we present several examples of the group of the knot. These show that the
group of the knot cannot classify prime knots in lens space and that if the

47
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knot group has two generators, this does not imply that the knot is prime
(this is a theorem of Norwood for knots in the 3-sphere [93]).

4.1 Group of the link

Let L be a link in L(p, q), where the lens space is described by the lens
model of Section 1.2 and the link is described by a disk diagram as in Section
3.1. Assume p > 1. Fix an orientation for L, which induces an orientation
on the projection of the link. Perform an R1 move on each overpass of the
diagram having both endpoints on the boundary of the disk; in this way
every overpass has at most one boundary point. Then label the overpasses
as follows: A1, . . . , At are the ones ending in the upper hemisphere, namely
in +1, . . . ,+t, while At+1, . . . , A2t are the overpasses ending in −1, . . . ,−t.
The remaining overpasses are labelled by A2t+1, . . . , Ar. For each i = 1 . . . , t,
let εi = +1 if, according to the link orientation, the overpass Ai starts from
the point +i; otherwise, if Ai ends in the point +i, let εi = −1.

A1

A5

A4

A3

A2

A8

A6

A7

A9

A10
+1

+2
−1

+3

−2

−3 +4

−4f

a5

N

Figure 4.1: Example of overpasses labeling for a link in L(6, 1).

Associate to each overpass Ai a generator ai, which is a loop around the
overpass as in the classical Wirtinger theorem, oriented following the left
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hand rule. Moreover let f be the generator of the fundamental group of the
lens space illustrated in Figure 4.1. The relations are the following:

W: w1, . . . , ws are the classical Wirtinger relations for each crossing, that is
to say aiaja−1

i a−1
k = 1 or aia−1

j a−1
i ak = 1, according to Figure 4.2;

akai aj

ak aj

ai
aiajai

–1ak
–1=1 aiaj

–1ai
–1ak=1

Figure 4.2: Wirtinger relations.

L: l is the lens relation aε11 · · · aεtt = fp;

M: m1, . . . ,mt are relations (of conjugation) between loops corresponding
to overpasses with identified endpoints on the boundary. If t = 1 the
relation is aε12 = a−ε11 f qaε11 f

−qaε11 . Otherwise, consider the point −i and,
according to equator orientation, let +j and +j + 1 ( mod t) be the
type + points aside of it. We distinguish two cases:

• if −i lies on the diagram between −1 and +1, then the relation
mi is

aεit+i =
Ä j∏

k=1

aεkk
ä−1

f q
Ä i−1∏

k=1

aεkk
ä
aεii

Ä i−1∏

k=1

aεkk
ä−1

f−q
Ä j∏

k=1

aεkk
ä
;

• otherwise, the relation mi is

aεit+i =
Ä j∏

k=1

aεkk
ä−1

f q−p
Ä i−1∏

k=1

aεkk
ä
aεii
Ä i−1∏

k=1

aεkk
ä−1

fp−q
Ä j∏

k=1

aεkk
ä
.

Theorem 4.1. Let ∗ = F (N), then the group of the link L ⊂ L(p, q) is:

π1(L(p, q) r L, ∗) = 〈a1, . . . , ar, f | w1, . . . , ws, l,m1, . . . ,mt〉.
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Proof. Remember that the map F : B3 → L(p, q) is the quotient map of the
lens model of L(p, q) described in Section 1.2. Suppose that L′ = F−1(L)

is such that p|L′ : L′ → B2
0 is a regular projection. Consider a sphere S2

ε of
radius 1− ε, with 0 < ε < 1; this sphere splits the 3-ball B3 into two parts:
call B3

ε the internal one and Eε the external one. Choose ε small enough
such that all the underpasses belong into int(B3

ε ). If Nε is the north pole of
B3
ε , let S̃2

ε = S2
ε ∪NNε and B̃3

ε = B3
ε ∪NNε.

In order to compute π1(L(p, q) r L, ∗), we apply Seifert-Van Kampen
theorem with decomposition (L(p, q) r L) = (F (B̃3

ε ) r L) ∪ (F (Eε) r L).
The fundamental group of F (B̃3

ε ) r L can be obtained as in the classical
Wirtinger Theorem:

π1(F (B̃3
ε ) r L, ∗) = 〈a1, . . . , ar | w1, . . . , ws〉.

For F (Eε) r L, we proceed in the following way: first of all observe that
is possible to retract F (Eε)rL to E rL, where E is ∂B3/ ∼. According to
the orientation, fix a point T1 in ∂B2

0 just before +1, such that its equivalent
points T2, . . . , Tp (via ∼) do not belong to p(L′). Following the example
of Figure 4.3, the 2-complex E is a CW-complex composed by: two 0-cells
N = S and T1 = T2 = . . . = Tp, two 1-cells N̆T1 (chosen as a maximal tree
in the 1-skeleton) and T̆1T2 (corresponding to f), and one 2-cell, that is the
upper hemisphere. In order to obtain π1(ErL, ∗), we need to add the loops
d1, . . . , dt around the points of L. The relation given by the 2-simplex is
d1 · · · dt = fp. Hence the fundamental group of E r L is:

π1(E r L, ∗) = 〈d1, . . . , dt, f | d1 · · · dt = fp 〉. (4.1)

Finally, the fundamental group of F (S̃2
ε)rL = (F (B̃3

ε )rL)∩(F (Eε)rL)

is generated by a1, . . . , a2t. By Seifert-Van Kampen theorem, we identify each
a1, . . . , at with the corresponding generator d1, . . . , dt, according to orienta-
tion: aεii = di. Furthermore we need to identify at+1, . . . a2t with suitable
loops in the CW-complex, by distinguishing two cases:

• if −i lies on the diagram between −1 and +1, then we obtain the
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N

d2
d1

f

d3

d3

d1
T1 T2

T3

T4
T5

f

f f

f
d2

1

1

Figure 4.3: Boundary complex for a knot in L(5, 2).

following relation (see an example in Figure 4.4)

aεit+i =
Ä j∏

k=1

dk
ä−1

f q
Ä i−1∏

k=1

dk
ä
di
Ä i−1∏

k=1

dk
ä−1

f−q
Ä j∏

k=1

dk
ä
;

• otherwise, the relation is

aεit+i =
Ä j∏

k=1

dk
ä−1

f q−p
Ä i−1∏

k=1

dk
ä
di
Ä i−1∏

k=1

dk
ä−1

fp−q
Ä j∏

k=1

dk
ä
.

At last we remove d1, . . . , dt from the group presentation, obtaining:

π1(L(p, q) r L, ∗) = 〈a1, . . . , ar, f | w1, . . . , ws, l,m1, . . . ,mt〉.

In the special case of L(2, 1) = RP3, the presentation is equivalent (via
Tietze transformations) to the one given in [69].



52 4. Group of links in lens spaces via Wirtinger presentation

N

d2d1T1

T2

T3

T4

T5

f

d1 d2

a3

a3=d2
-1d1

-1fd1
-1f -1d1d2

Figure 4.4: Example of relation for a link in L(5, 1).

Remark 4.2. If the link diagram does not contain overpasses which are circles
(we can avoid this case by using suitable R1 moves), then the presentation of
Theorem 4.1 is balanced (i.e., the number of generators equals the number
of relations). Indeed, it is enough to think at each intersection between the
diagram and the boundary disk as a fake crossing. Moreover, the product of
the Wirtinger relators represents a loop that is trivial in π1(ErL, ∗), so any
of the Wirtinger relations can be deduced from the other ones, obtaining a
presentation of deficiency one (see [68] for the L(2, 1) case).

4.2 First homology group

In this section we show how to determine, directly from the diagram, the
first homology group of links in L(p, q), which is useful for the computation
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of twisted Alexander polynomials.
Consider a diagram of an oriented knot K ⊂ L(p, q) and let εi be as

defined in the previous section. If n1 = |{εi | εi = +1, i = 1, . . . , t}| and
n2 = |{εi | εi = −1, i = 1, . . . , t}|, define δK = q(n2 − n1) mod p.

Lemma 4.3. If K ⊂ L(p, q) is an oriented knot and [K] is the homology
class of K in H1(L(p, q)), then [K] = δK.

Proof. Let f be the generator ofH1(L(p, q)) = Zp, as illustrated in Figure 4.5.
Let K∩(∂B3/ ∼) = {P1, . . . , Pt}. For i = 1, . . . , t, consider the identification
class [Pi]∼ = {P ′i , P ′′i }, with P ′i ∈ E+ and P ′′i ∈ E−. Denote with γi the path
(actually a loop in L(p, q)) connecting P ′i with P ′′i as in Figure 4.5, oriented
as depicted if εi = +1 and in the opposite direction if εi = −1. Of course its
homology class is [γi] = εiq. The loop K ′ = K ∪ γ1 ∪ · · · ∪ γt is homologically
trivial, so we have: 0 = [K ′] = [K] +

∑t
i=1[γi] = [K] + (n1 − n2)q, and

therefore [K] = δK .

N

T1

f

P1' P2'

P1'
P2'

P3'

P4'

P3'P4'

'
'

'
'

γ1

γ2

γ3

γ4

Figure 4.5: Equatorial arcs for a knot in L(7, 2).
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Corollary 4.4. Let L be a link in L(p, q), with components L1, . . . Lν. For
each j = 1, . . . , ν, let δj = [Lj] ∈ Zp = H1(L(p, q)). Then

H1(L(p, q) r L) ∼= Zν ⊕ Zd,

where d = gcd(δ1, . . . , δν , p).

Proof. We abelianize the fundamental group presentation of Theorem 4.1.
Relations of type W and M imply that generators corresponding to the same
link component are homologous. Therefore H1(L(p, q) r L) is generated by
g1, . . . , gν , which are generators corresponding to the link components, and f .
Relation L becomes: pf − (δ̃1g1 + . . .+ δ̃νgν) = 0, with δ̃j =

∑
Ah⊂Lj εh, where

Lj is the j-th component of L. Therefore H1(L(p, q) r L) ∼= Zν ⊕ Zd, where
d = gcd(δ̃1, . . . , δ̃ν , p). Since gcd(p, q) = 1 and, by Lemma 4.3, δj = −qδ̃j, we
obtain d = gcd(δ̃1, . . . , δ̃ν , p) = gcd(δ1, . . . , δν , p).

4.3 Relevant examples

Example 4.5. The knots K1 and K2 in L(p, q) described in Figure 4.6 have
the following groups.

π1(L(p, q) rK1, ∗) = 〈a1, a2, f | a1 = a2, a1 = fp, a2 = a−1
1 f qa1f

−qa1〉 =

= 〈a1, f | a1 = fp, a1 = a−1
1 f qa1f

−qa1〉 = 〈f〉 ∼= Z



4.3 Relevant examples 55

K1 K2

+1

−1 −2

+1
+2

−1

A1

A2
A2

A1

A3A4

Figure 4.6: The knots K1 and K2 in L(p, q).

π1(L(p, q) rK2, ∗) = 〈a1, a2, a3, a4, f | a1 = a4, a2 = a3, a1a2 = fp,

a3 = a−1
2 a−1

1 f qa1f
−qa1a2, a4 = a−1

2 a−1
1 f qa1a2a

−1
1 f−qa1a2〉 =

= 〈a1, a2, f | a2 = a−1
1 fp, (a1a2 = fp),

a2 = a−1
2 a−1

1 f qa1f
−qa1a2, a1 = a−1

2 a−1
1 f qa1a2a

−1
1 f−qa1a2〉 =

= 〈a1, f | a−1
1 fp = f−pf qa1f

−qfp, a1 = f−pf qfpa−1
1 f−qfp〉 =

= 〈a1, f, z | f qa−1
1 fp−qa−1

1 = 1, z = f qa−1
1 〉 =

= 〈f, z | zfp−2qz = 1〉 = 〈f, z | z2 = f 2q−p〉

When 2q−p = ±1, the group of K2 is isomorphic to Z. As a consequence,
for every odd p, we have found two prime knots, K1 and K2 in L

Ä
p, p±1

2

ä

that have isomorphic group. Are K1 and K2 distinct?
The homology class [K] = δ of a knot in L(p, q) can be 0, 1, . . . p− 1, but

since we do not consider the orientation of the knots, we have to identify ±δ,
so that the knots are partitioned into bp/2c + 1 classes: δ = 0, 1, . . . , bp/2c,
where bxc denotes the integer part of x. If two knots stay in different homol-
ogy classes, they are necessarily different. The same reasoning holds also for
links, with a more subtle partition.

Since [K1] = 1 and [K2] = 2, the knots are different when p > 3 and
this shows that is not possible to extend the result of [72, Theorem 6.1.12]
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to prime knots in lens spaces.

Example 4.6. Let T be the trefoil knot in S3. Let K1 be the knot of
the previous example and consider the connected sum K1]T in L(p, q), as
Figure 4.7 shows.

+1

−1
A2

A1

A3

A4

Figure 4.7: The knot K1]T in L(p, q).

π1(L(p, q)r(K1]T ), ∗) = 〈a1, a2, a3, a4, f | a1a4a
−1
3 a−1

4 = 1, a4a3a
−1
2 a−1

3 = 1,

a3a2a
−1
4 a−1

2 = 1, a1 = fp, a2 = a−1
1 f qa1f

−qa1〉 =

〈a1, a2, a3, a4, f | a1a4a
−1
3 a−1

4 = 1, a4a3a
−1
2 a−1

3 = 1, a3a2a
−1
4 a−1

2 = 1,

a1 = fp, a2 = fp〉 =

= 〈a3, a4, f | fpa4a
−1
3 a−1

4 = 1, a4a3f
−pa−1

3 = 1, a3f
pa−1

4 f−p = 1〉
= 〈a3, a4, f | fpa4a

−1
3 a−1

4 = 1, a4a3f
−pa−1

3 = 1, a4 = f−pa3f
p〉

= 〈a3, f | fpf−pa3f
pa−1

3 f−pa−1
3 fp = 1, f−pa3f

pa3f
−pa−1

3 = 1〉
= 〈a3, f | f−pa3f

pa3f
−pa−1

3 = 1〉

A theorem of Norwood [93] states that every knots in the 3-sphere that
has a minimal presentation for its group with only two generator is prime.
For every lens space L(p, q) with p > 1, we have just found a knot that has
a minimal presentation of the group with two generator, but it is not prime;
as a consequence, this theorem cannot generalize to lens spaces.



Chapter 5

Twisted Alexander polynomials

for links in lens spaces

In this chapter we analyze the twisted Alexander polynomials of links in
lens spaces that are described by 1-dimensional representation over particular
domains that take into account the torsion part of the group of the link. Then
we investigate their relationship with Reidemeister torsion. These results are
published in [19].

5.1 The computation of the twisted Alexander

polynomials

The twisted Alexander polynomials are defined in the following way (for
further references see [110], [108], [46]). Given a finitely generated group π,
denote withH = π/π′ its abelianization and let G = H/Tors(H). Take a pre-
sentation π = 〈x1, . . . , xm | r1 . . . , rn〉 and consider the Alexander-Fox matrix
A associated to the presentation, that is Aij = P( ∂ri

∂xj
), where P is the natural

projection Z[F (x1, . . . , xm)]→ Z[π]→ Z[H] and ∂ri
∂xj

is the Fox derivative of
ri. Moreover let E(π) be the first elementary ideal of π, which is the ideal
of Z[H] generated by the (m− 1)-minors of A. For each homomorphism
σ : Tors(H)→ C∗ = C r {0} we can define a twisted Alexander polynomial

57
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∆σ(π) of π as follows: fix a splitting H = Tors(H)×G and consider the ring
homomorphism that we still denote with σ : Z[H] → C[G] sending (f, g),
with f ∈ Tors(H) and g ∈ G, to σ(f)g, where σ(f) ∈ C∗. The ring C[G]

is a unique factorization domain and we set ∆σ(π) = gcd(σ(E(π)). This is
an element of C[G] defined up to multiplication by elements of G and non-
zero complex numbers. If ∆(π) denote the classical Alexander polynomial
we have ∆1(π) = α∆(π), with α ∈ C∗.

Application to links in lens spaces If L ⊂ L(p, q) is a link in a lens space
then the σ-twisted Alexander polynomial of L is ∆σ

L = ∆σ(π1(L(p, q) r L)).
Since in this case Tors(H) = Zd then σ(Tors(H)) is contained in the cyclic
group generated by ζ, where ζ is a d-th primitive root of the unity. When
Z[ζ] is a principal ideal domain, in order to define ∆σ

L we can consider the
restriction σ : Z[H] → Z[ζ][G]. Note that ∆σ

L ∈ Z[ζ][G] is defined up to
multiplication by ζhg, with g ∈ G. In this setting we recall the following
theorem.

Proposition 5.1. [85] If ζ is a d-th primitive root of unity, then the ring
Z[ζ] is a principal ideal domain if and only if d ≡ 2 mod 4 or d is one of the
following 30 integers: 1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21,
24, 25, 27, 28, 32, 33, 35, 36, 40, 44, 45, 48, 60, 84.

If L has at least two components we can consider the projection
ϕ : Z[ζ][G] = Z[ζ][t1, . . . , tm, t

−1
1 , . . . , t−1

m ]→ Z[ζ][t, t−1], sending each variable
ti to t. The one-variable twisted Alexander polynomial of L is ∆̄σ

L = ϕ(∆σ
L).

Since this is the polynomial on which we focused our attentions, the compu-
tation of ∆̄σ

L for knots in arbitrary lens spaces has been implemented in a pro-
gram using Mathematica code: the input is a knot diagram in L(p, q) given
via a generalization of the Dowker-Thistlewaithe code (see [41, 40, 106]).

The following proposition remember us some properties of the twisted
Alexander polynomials. It is useful to check if errors have been committed
during computations.

Proposition 5.2. [108] Let L be a knot in a lens space, then:
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1) ∆σ
L(t) = ∆σ

L(t−1) (i.e., the twisted Alexander polynomial is symmetric);

2) ∆(1) ≡ |Tors(H1(L(p, q) r L))| mod p.

5.2 Properties of the twisted Alexander poly-

nomials

Remember that a link is called local if it is contained in a ball embedded
in L(p, q). For local links the following properties hold.

Proposition 5.3. Let L be a local link in L(p, q). Then ∆σ
L = 0 if σ 6= 1,

and ∆L = p ·∆L̄, where L̄ is the link L considered as a link in S3.

Proof. The fundamental group of L can be presented with the relations of
Wirtinger-type and the lens relation fp = 1 only. Therefore the column
in the Alexander-Fox matrix A corresponding to the Fox derivative of the
lens relation is everywhere zero except for the entry corresponding to the
f -derivative, which is 1 + f + f 2 + · · ·+ fp−1. Moreover, the cofactor of this
non-zero entry is equal to the Alexander-Fox matrix of L̄. The statement
follows by observing that in the case of ∆L, the generator f is sent to 1,
while if σ 6= 1, the generator f is sent in a k-th root of the unity, where k
divides p, and so σ(1 + f + f 2 + · · ·+ fp−1) = 0.

As a consequence, a knot with a non trivial twisted Alexander polyno-
mial cannot be local. Let T be the trefoil knot in S3. Figure 5.1 shows
the twisted Alexander polynomials of a local trefoil knot T ⊂ L(4, 1) and
proves that twisted Alexander polynomial may distinguish knots with the
same Alexander polynomial.

Let L = L1]L2, where ] denote the connected sum and L2 is a lo-
cal link. The decomposition (L(p, q), L) = (L(p, q), L1)](S3, L2) induces
monomorphisms j1 : H1(L(p, q) r L1) → H1(L(p, q) r L) and j2 : H1(S3 r
L2) → H1(L(p, q) r L). Given σ : Z[H1(L(p, q) r L)] → C[G] induced by
σ ∈ hom(Tors(H1(L(p, q) r L)),C∗), denote with σ1 and σ2 its restrictions
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∆1
T

= 4(t2 − t+ 1)

∆−1
T

= 0

∆i
T

= 0

∆−i
T

= 0

+1

−1
+2 −2

+3

−3
+4

−4
∆1
K = 4(t2 − t+ 1)

∆−1
K = 0

∆i
K = 2(t− 1)

∆−iK = 2(t− 1)

Figure 5.1: Twisted Alexander polynomials for two knots in L(4, 1).

to Z[j1(H1(L(p, q) r L1))] and Z[j2(H1(S3 r L2))] respectively. We have the
following result.

Proposition 5.4. Let L = L1]L2 ⊂ L(p, q), where L2 is local link. With the
above notations we have ∆σ

L = ∆σ1
L1
·∆σ2

L2
.

Proof. Since (L(p, q), L) = (L(p, q), L1)](S3, L2), by Van Kampen theorem
we get π1(L(p, q) r L) = 〈a1, . . . , an, b1, . . . , bm | r1, . . . , rn−1, s1, . . . , sm−1, a1 = b1〉,
where π1(L(p, q) \ L1, ∗) = 〈a1, . . . , an | r1, . . . , rn−1〉 and π1(S3 \ L2, ∗) =

〈b1, . . . , bm | s1, . . . , sm−1〉. As a consequence, the Alexander-Fox matrix of L
is

AL =

á
AL1 0

0 AL2

−1 0 · · · 0 1 0 · · · 0

ë

,

where ALi is the Alexander-Fox matrix of Li, for i = 1, 2. If dk(A) denotes
the greatest common division of all k-minors of a matrix A, then a simple
computation shows that dm+n−1(AL) = dn−1(AL1) · dm−1(AL2). Therefore it
is easy to see that ∆σ

L = ∆σ1
L1
·∆σ2

L2
.

In Figure 5.2 we compute the twisted Alexander polynomials of the con-
nected sum of a local trefoil knot T with the three knots K0, K1, K2 ⊂ L(4, 1)

depicted in the left part of the figure, respectively. Note that for the case of
K2]T , the map σ2, that is the restriction of σ to Z[j2(H1(S3 r T ))], sends
the generator g ∈ Z[H1(S3 rT )] in t2 ∈ Z[H1(L(p, q)rK2]T )] (resp. in −t2)
if σ = 1 (resp. if σ = −1), instead of t as it does for the classical Alexander
polynomial.
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∆1
K0

= 4

∆−1
K0

= 0

∆i
K0

= 0

∆−iK0
= 0

∆1
K0]T

= 4(t2 − t+ 1)

∆−1
K0]T

= 0

∆i
K0]T

= 0

∆−iK0]T
= 0

+1

−1

∆1
K1

= 1

+1

−1

∆1
K1]T

= t2 − t+ 1

+1

−1
+2

−2

∆1
K2

= t+ 1

∆−1
K2

= 1

+1

−1
+2

−2

∆1
K2]T

= (t+ 1)(t4 − t2 + 1)

∆−1
K2]T

= t4 + t2 + 1

Figure 5.2: Twisted Alexander polynomials for six knots in L(4, 1).

5.3 Connection with Reidemeister torsion

Before establishing the relationship between the twisted Alexander poly-
nomials and the Reidemeister torsion we briefly remember the definition of
Reidemeister torsion (for further references see [108]).

If c and c′ are two basis of a finite-dimensional vector space over a field
F, denote with [c/c′] the determinant of the matrix whose columns are the
coordinates of the elements of c respect to c′. Let C be a finite chain complex
of vector spaces

0→ Cm
δm→ Cm−1

δm−1→ · · · δ1→ C0 → 0

which is acyclic (i.e., the sequence is exact) and based (i.e., a distinguished
base is fixed for each vector space). For each i ≤ m, let bi be a sequence of
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vectors in Ci such that δi(bi) is a base of Imδi, and let ci be the fixed base
of Ci. The juxtaposition of δi+1(bi+1) and bi gives a base of Ci denoted by
δi+1(bi+1)bi. The torsion of C is defined as

τ(C) = Πm
i=0[δi+1(bi+1)bi/ci]

(−1)i+1 ∈ F.

If C is not acyclic the torsion is defined to be zero.
For a finite connected CW-complex X, let π = π1(X) and H = H1(X) =

π/π′. Consider a ring homomorphism ϕ : Z[H]→ F and let X̂ be the maximal
abelian covering of X (corresponding to π′). Let C∗(X̂) be the cellular chain
complex associated to X̂. SinceH acts on X̂ via deck transformations, C∗(X̂)

is a complex of left Z[H]-modules. Moreover the homomorphism ϕ endows
F with the structure of a Z[H]-module via fz = fϕ(z), with f ∈ F and
z ∈ Z[H]. Then F⊗ϕ C∗(X̂) is a chain complex of finite dimensional vector
spaces. The ϕ-torsion of X is defined to be τ(F ⊗ϕ C∗(X̂)). It depends on
the choice of a base for F ⊗ϕ C∗(X̂), hence the ϕ-torsion is defined up to
multiplication by ±ϕ(h), with h ∈ H.

Let L be a link in L(p, q) and let X = L(p, q)rL, then X is homotopic to
a 2-dimensional cell complex Y . The ϕ-torsion τϕL of a link L is the ϕ-torsion
of Y . In order to investigate the relationship between the torsion and the
twisted Alexander polynomial, let H = Tors(H) × G and consider a map
σ : Z[H]→ C[G] associated to a certain σ ∈ hom(Tors(H),C∗), as described
in the beginning of this section. If C(G) denotes the field of quotients of
C[G], then by composing with the projection into the quotient, σ determines
a homomorphism Z[H]→ C(G) that we still denote with σ. In this way each
σ ∈ hom(Tors(H),C∗) determines both a twisted Alexander polynomial ∆σ

L

and a torsion τσL .
We say that a link L ⊂ L(p, q) is nontorsion if Tors(H1(L(p, q)rL)) = 0,

otherwise we say that L is torsion. Note that a local link L in a lens space
different from S3 is clearly torsion.

Theorem 5.5. Let L be a link in L(p, q). If L is a nontorsion knot and t
is a generator of its first homology group, then τσL(t − 1) = ∆σ

L. Otherwise
τσL(t) = ∆σ

L.
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Proof. According to Theorem 4.1 and Remark 4.2, the group π1(L(p, q)rL)

admits a presentation withm generators andm−1 relations. The Alexander-
Fox matrix A associated to such presentation is a (m− 1)×m matrix. This
means that ∆σ(L) = gcd(σ(A1), . . . , σ(Am)), where Ai is the (m−1)-minor of
A obtained removing the i-th column. Let ai be a generator of π1(L(p, q)rL).
The formula (σ(ai) − 1)τσL = detAi that holds for links in the projective
space (see [69]) generalizes to lens spaces. Therefore, in order to obtain the
statement it is enough to prove that gcd(σ(a1) − 1, . . . , σ(am) − 1) is equal
to t − 1, where t is a generator of the free part of H1(L(p, q) r L), if L is a
torsion knot, and equal to 1 otherwise.

Let L be a torsion knot and denote with t and u a generator of the
free part and the torsion part of H1(L(p, q) r L) respectively. Moreover let
d be the order of the torsion part of H1(L(p, q) r L). If P(ai) = thiuni

then σ(ai) = thiζni where ζ is a d-th root of the identity. A simple com-
putation shows that g divides t

∑m
i=1

hiζ
∑m

i=1
ni − 1, for any αi ∈ Z, where

g = gcd(σ(a1)− 1, . . . , σ(am)− 1). Since t ∈ P(π1(L(p, q) r L)), there exist
αi such that t = Πm

i=1P(aαii ) = t
∑m

i=1
αihiu

∑m
i=1

αini ; so ∑m
i=1 αihi = 1 and d

divides ∑m
i=1 αini. Then g divides t−1 and therefore either g = 1 or g = t−1.

Analogously, since u ∈ P(π1(L(p, q)rL)), there exists i0 such that g divides
σ(ai0)− 1 = thi0ζni0 − 1 and ni0 is not divided by d. The statement follows
by observing that, in this case, gcd(t− 1, thi0ζni0 − 1) = 1.

If L is torsion and has at least two components then σ(ai) = th111 · · · th1νν ζni ,
where ν is the number of components. The statement is obtained by setting
t2 = · · · = tν = 1 and applying the previous argument to t1.

If L is a nontorsion knot, then H1(L(p, q) r L) = 〈t〉 and σ(ai) = thi . In
this case it is easy to prove that gcd(th1 − 1, . . . , thm − 1) = t− 1.

Finally, if L is nontorsion and has at least two components, then σ(ai) =

th111 · · · th1νν . By letting tj = 1 for j 6= i and applying the previous reason-
ing to ti, for each i = 1, . . . , ν, we obtain gcd(σ(a1) − 1, . . . , σ(am) − 1) =

gcd(t1 − 1, . . . , tν − 1) = 1.

These results generalize those ones obtained in [75] for knots in S3 and [69]
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for link in L(2, 1) ∼= RP3. Moreover, in [74] an analogous result is obtained
for CW-complexes but considering only a one-variable Alexander polynomial
associated to an infinite cyclic covering of the complex.

The same argument used in the previous proof leads to the following
statement, regarding the one-variable twisted polynomial.

Theorem 5.6. Let L be a link in L(p, q) with at least two components. If
L is a nontorsion link and t is a generator of its first homology group then
τσL(t− 1) = ∆̄σ

L. Otherwise τσL(t) = ∆̄σ
L.



Chapter 6

Lifting links from lens spaces to

the 3-sphere

In this chapter we deal with the following powerful invariant of links in
lens spaces: let L be a link in L(p, q), the lift ‹L is the counterimage P−1(L)

in S3 under the quotient map P : S3 → L(p, q) of Section 1.3. To be more
precise, a diagram for the lift ‹L is constructed from a disk diagram of L.
Then analogous constructions for band and grid diagrams are illustrated.
The behavior of the lift on split links and composite knots is investigated.
Finally we show a formula for the lift of a family of links in lens spaces that
can be easily described by a braid. All these results are reported in [82].

How many components has the lift? Let L be a link in L(p, q), denote
with ν its number of components, and with δ1, . . . , δν the homology class in
H1(L(p, q)) ∼= Zp of the i-th component Li of L. In Section 4.4 it is described
a method that allows the computation of the homology classes from the disk
diagram.

Proposition 6.1. Given a link L ⊂ L(p, q), the number of components of ‹L
is

ν∑

i=1

gcd(δi, p).

65
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Proof. The covering P : S3 → L(p, q) is cyclic of order p, so that each com-
ponent Li of L has lift ‹Li with gcd(δi, p) components. As a consequence, if
we sum over all the components of L, the lift ‹L has ∑ν

i=1 gcd(δi, p) compo-
nents.

6.1 Diagram for the lift via disk diagrams

The construction of a diagram for ‹L ⊂ S3 starting from a disk diagram
of L ⊂ L(p, q) is explained by the following two theorems. The case of
L(2, 1) ∼= RP3 is outlined in [42]. Remember that the Garside braid ∆t on
t strands is defined by (σt−1σt−2 · · ·σ1)(σt−1σt−2 · · ·σ2) · · · (σt−1) and it is il-
lustrated in Figure 3.8.

Theorem 6.2. Let L be a link in the lens space L(p, q) and let D be a
standard disk diagram for L; then a diagram for the lift ‹L ⊂ S3 can be found
as follows (refer to Figure 6.1):

• consider p copies D1, . . . , Dp of the standard disk diagram D;

• for each i = 1, . . . , p−1, using the braid ∆−1
t , connect the diagram Di+1

with the diagram Di, joining the boundary point −j of Di+1 with the
boundary point +j of Di;

• connect D1 with Dp via the braid ∆2q−1
t , where the boundary points are

connected as in the previous case.

Proof. Let L be a link in L(p, q) and let D be a standard disk diagram for
it. The lift in S3 can be obtained from the model of S3 where the solid torus
has each parallel collapsing to a point. In this model of the 3-sphere, the lens
space L(p, q) is described as in Remark 1.4, so we can embed into the solid
torus the p copies D1, . . . , Dp of the standard disk diagram D in L(p, q). The
p copies of the diagram are embedded as disks bounded by a meridian. Each
of them is rotated by 2πq/p radians around l = S1×{0}, with respect to the
previous copy of the diagram. By this rotation, if you consider the parallel
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D1

D 2

D
3

D
p

D
p -1

Δ
t
-1

Δ t
-1

Δt
-1

Δ
t 2q

 -1

Figure 6.1: Diagram of the lift in S3 of a link in L(p, q).

S1 × {Q} on the boundary of the torus that passes through the endpoint
+j of Di, then it passes also through −j of Di+1. In the solid torus model,
each of these parallels collapses to a point, so that all the pairs previously
described are identified. If we want to show this identification, we can draw
on our torus each arc of the parallel from +j ∈ Di to −j ∈ Di+1, as Figure 6.2
shows, obtaining a representation for the lift ‹L in the solid torus model of S3.
In order to get a planar diagram for ‹L that comes from this representation,
we can do as follows. Embed the solid torus S1 ×B2 into R3 as described in
Section 1.1 and fix cartesian axis (x1, x2, x3), where x3 is orthogonal to the
plane containing S1. For each copy Di of D, consider its intersection with
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Figure 6.2: Lift in S3 of a link in L(5, 2).
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the plane {x3 = 0} and rotate Di around this diameter by π/2 radians, so
that Di is turned upward. As a result, the connection lines between the two
disks Di and Di+1 are braided by ∆−1

t in order to avoid the projection of the
two disks. Furthermore, when a toric braid, twisting around the core of 2πq,
becomes planar, we have to add another piece of braid, namely ∆2q

t . In this
way we will have exactly the planar diagram of Figure 6.1.

The previous planar diagram of the lift has not the least possible number
of crossings. Indeed if, in the last step of the previous proof, we rotate D1

of π/2 radians and D2 of −π/2 radians around the diameter of the diagram,
we avoid the braid ∆−1

t between the two disks. We now explain how to
get a diagram with fewer crossings. First of all, let us define the reverse
disk diagram D of D: it is the diagram that can be obtained rotating the
link inside the lens model by π radians around the x1 axis. The diagram
D can be obtained directly by the diagram D: consider the image of D
under a simmetry with respect to an external line and then exchange all
overpasses/underpasses.

Theorem 6.3. Let L be a link in the lens space L(p, q) and let D be a
standard disk diagram for L; then a diagram for the lift ‹L ⊂ S3 can be found
as follows (refer to Figure 6.3):

• consider p copies D1, . . . Dp of the standard disk diagram D, then denote
Fi = Di if i is odd, and Fi = Di if i is even;

• for each i = 1, . . . , p − 1, using a trivial braid, connect the diagram
Fi+1 with the diagram Fi joining the boundary point −j of Di+1 with
the boundary point +j of Di;

• connect D1 with Dp via the braid ∆2q−p
t , where the boundary points are

connected as in the previous case.

Please refer to Figure 7.2 for an example of diagram of the lift.

Proof. Consider the planar diagram of the lift of Theorem 6.2 and comb it,
reversing upside down D2, reversing two times D3, three times D4 and so
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F1 F2

F3
2q-pF4

Fp

Δt

Figure 6.3: Another diagram of the lift in S3 of a link in L(p, q).

on. The odd-index diagrams are unchanged and all the even-index diagrams
become D2, D4, . . . in the new diagram of the lift. The p − 1 braids ∆−1

t

between the disks are shifted near the braid ∆2q−1
t , so that you get ∆2q−p

t in
this new form of the diagram and the number of crossings is reduced.

6.2 Diagram for the lift via band and grid dia-

grams

Other geometrical constructions are similar to the one of the lift for links
in lens spaces.
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Diagram for the lift via band diagrams The following theorem, finding
a diagram for the lift starting from a band diagram, is really useful to relate
links in lens spaces to freely periodic links in the 3-sphere.

Proposition 6.4. Let L be a link in the lens space L(p, q) and let B be a
band diagram for L with t boundary points; then a diagram for the lift ‹L ⊂ S3

can be found by juxtaposing p copies of B and closing them with the braid
∆2q
t (refer to Figure 6.4).

B
Δ
t2
q

B B

Figure 6.4: Diagram of the lift of a link in lens spaces from its band diagram.

Proof. Consider the planar diagram of the lift of Theorem 6.2 and convert the
standard disk diagram DL plus the braid ∆−1

t to the equivalent band diagram
BL. This gives exactly the diagram for ‹L illustrated in Figure 6.4.

Remark 6.5. The lift in S3 of a link L ⊂ L(p, q) is exactly a (p, q)-lens link
in S3, according to [28]. Precisely, the n-tangle T that Chbili uses in his
construction is the band diagram BL for L. In the same paper he makes
explicit that the lift is a freely periodic link in S3.

Diagram for the lift via grid diagrams Baker, Grigsby and Hedden in
[6], exploiting grid diagrams for links in lens spaces, are able to construct the
lifts of these links.

Proposition 6.6. [6] A grid diagram in S3 for the lift of links in lens spaces
can be obtained by piling up p copies of a grid diagram of the link in L(p, q).
An example is described in Figure 6.5.
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XO
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X O
X O

XO
XO

XO
XO

XO
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L~

Figure 6.5: Example of the lift of a link represented by a grid diagram.

6.3 Lift of split and composite links

In this section we show the behavior of the lift on split links and composite
knots, in order to better understand the lift diagram construction. Remember
that a knot is trivial if it bounds a 2-disk in L(p, q) and that a link L ⊂ L(p, q)

is local if it is contained inside a 3-ball. The disk diagram of a local link,
up to generalized Reidemeister moves, can avoid ∂B2

0 . As a consequence of
Theorem 6.2, a local link is lifted to p disjoint copies of itself.

Split links Remember that a link L ⊂ L(p, q) is split if there exists a
2-sphere in the complement L(p, q) r L that separates one or more compo-
nents of L from the others. The 2-sphere splits L(p, q) into a ball B̂3 and
L(p, q) r B̂3; as a consequence, a split link is the disjoint union of a local
link and of another link in a lens space. If we consider the lift of a split link
L = L1 t L2, where L1 ⊂ B̂3 and L2 ⊂ L(p, q) r B̂3, then L1 is lifted to p
split copies of L1 and L2 is lifted to some link ‹L2. In formulae:

‹L = L1 t . . . t L1︸ ︷︷ ︸
p

t ‹L2.

Connected sum Let K1 ⊂ L(p, q) be a primitive-homologous knot, that
is to say, a knot whose homology class in H1(L(p, q)) is coprime with p (we
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require this because, according to Proposition 6.1, its lift is a knot). Let
K2 ⊂ S3 be a knot. Then the lift K̃ of the connected sum K = K1]K2 is

K̃ = K̃1]K2] . . . ]K2︸ ︷︷ ︸
p

.

This formula can be proved in the following way: up to generalized Rei-
demeister moves, we can suppose that the disk diagram of K1]K2 has the
projection of K2 all contained in a disk inside B2

0 , therefore from the diagram
of Theorem 6.2 we can easily see the result.

In order to define the connected sum for links we have to specify the
component of each link to which we add the pattern. If we consider a knot
K1 ⊂ L(p, q) such that gcd([K1], p) 6= 1 or a link L1 with more than one
component, then, because of Proposition 6.1, its lift has more than one com-
ponent. In this case the lift can be found selecting the components of K̃1 or
‹L1 where the copies of K2 have to be connected.

Proposition 6.7. Given a link L ⊂ L(p, q), if ‹L is prime, then L is prime.

Proof. From the previous considerations, if a link L ⊂ L(p, q) is composite,
then also its lift ‹L ⊂ S3 is composite.

6.4 Lift of links in lens spaces from braids

We can construct a link L ⊂ L(p, q) starting from a braid B on t strands
by considering the standard disk diagram where the braid B has the two
ends of its strands on the boundary, indexed respectively by the points
(+1, . . . ,+t) and (−1, . . . ,−t). See an example in Figure 6.6. In this case,
we say that B represents L.

Proposition 6.8. If L ⊂ L(p, q) is a link represented by the braid B on
t strands, then ‹L is the link obtained by the closure in S3 of the braid
(B∆−1

t )p∆2q
t .
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−
1
−
2

+1
+2
+3

−
3

Figure 6.6: The braid B = σ2σ1σ2σ1 becomes a standard disk diagram.

Proof. Using Theorem 6.2, we replace the p copies of the disk diagram D

with the braid B representing the link. The result is the closure of the braid
(B∆−1

t )p∆2q
t in S3.

Remark 6.9. The braid (B∆−1
t )p∆2q

t is exactly the (p, q)-lens braid of [27].
It is also possible to simplify this braid. Consider the automorphism of
the braid group Bt that sends the generators σ1, σ2, . . . , σt−1 respectively to
σt−1, σt−2, . . . , σ1. We denote by B the image of the braid B, and this is ex-
actly the construction requested for getting the diagramD fromD. Then, the
braid (B∆−1

t )p∆2q
t representing the lift can be rewritten as F1F2 · · ·Fp∆2q−p

t ,
where Fi = B if i is odd and Fi = B if i is even. This is a direct consequence
of Theorem 6.3.

Which links in lens spaces are lifted to torus links? We have the following
result, stated in [28], that generalizes a result of [61] for torus knots. Remem-
ber that the torus link Tn,m ⊂ S3 is the closure of the braid (σ1σ2 · · ·σn−1)m.

Proposition 6.10. [28] The torus link Tn,m is a (p, q)-lens link (that is to
say, it is the lift of some link in L(p, q)) if and only if p divides m− nq.

Proof. The torus link is the closure of the braid (σ1σ2 · · ·σn−1)m and the lift
of our braid link is the closure of the braid (B∆−1

t )p∆2q
t . We know that in the

braid group the element ∆2
n can be represented by the word (σ1 · · ·σn−1)n.

Therefore the equality becomes (σ1σ2 · · · σn−1)m = (B∆−1
n )p(σ1σ2 · · ·σn−1)nq

and the result is straightforward.



Chapter 7

Different links with equivalent

lifts

An invariant I of links is complete if for every pair of links L1 and L2,
then I(L1) = I(L2) implies that L1 and L2 are equivalent.

In this chapter we investigate if the lift is a complete invariant of unori-
ented links. Several counterexamples are shown, namely a pair of knots in
L(p, p±1

2
) that lift to the trivial knot, a pair of links in L(4, 1) that lift to the

Hopf link and an infinite family of cables of the second pair in L(4, 1). These
results are reported in [82]

In the last section we describe what happens for oriented links and what
happens for links considered up to diffeo-equivalence (see Section 2.1 for
the definition). When both these assumptions hold, a result of Sakuma,
Boileau and Flapan about freely periodic knots, if translated into the lan-
guage of knots in lens spaces, states the completeness of the lift for primitive-
homologous knots in L(p, q) that does not lift to the trivial knot.

It is still unknown if this result holds for knots up to ambient isotopy (but
we expect to find counterexamples also for this case). Moreover we have not
been able to find counter-examples for all lens spaces, so we ask: is the lift a
complete invariant for links in some fixed lens space?

75
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7.1 Counterexamples from braid tabulation

In this section we use the braid construction of the lift described in Sec-
tion 6.4 to find different links in lens spaces with equivalent lifts, that is, to
prove that the lift is not a complete invariant.

Given a braid B, denote by “B the link in S3 obtained by the standard
closure of B, that is to say, where corresponding ends are connected in pairs.
We would like to perform a small tabulation using braids. The first step is
to understand whether the Garside braid produces equivalent links ∆̂k

t ⊂ S3

for different t and k. The computations are summed up in Table 7.1; the
labels of the links are the one of the Knot Atlas [8]. In this table the links are
considered up to mirror image, only when it will be necessary the specification
will be done.

t B “B
1 ∆0

1 01

2 ∆0
2 01 t 01

2 ∆1
2 01

2 ∆2
2 L2a1

2 ∆3
2 31

2 ∆4
2 L4a1

2 ∆5
2 51

2 ∆6
2 L6a3

t B “B
3 ∆0

3 01 t 01 t 01

3 ∆1
3 L2a1

3 ∆2
3 L6n1

3 ∆3
3 L9n15

4 ∆0
4 01 t 01 t 01 t 01

4 ∆1
4 L4a1

5 ∆0
5 01 t 01 t 01 t 01 t 01

5 ∆1
5 L8n3

Table 7.1: Links arising from the closure of Garside braids.

Greater string numbers or greater powers give links outside standard tab-
ulations. Moreover, for negative powers, we obtain the link that is the mirror
image of the link with the corresponding positive power. If the link is am-
phicheiral, like the trivial knot or the Hopf link (also denoted by L2a1), then
the closures are equivalent.

At this stage we are looking for a braid ∆k
t representing a link in L(p, q)

such that its lift is one of the possibilities in Table 7.1. As a consequence of
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Proposition 6.8, the lift is the link represented by the braid (∆k
t∆
−1
t )p∆2q

t .
Hence we look for solutions of the equation: ∆

(k−1)·p
t ∆2q

t = ∆h
t , where h is

the suitable power of ∆t that gives us the desired lift.

Now we list all the possible cases where the braid closures of Table 7.1 are
equivalent, the desired examples will rise from the following computations.

Example 7.1. Different knots in L
Ä
p, p±1

2

ä
with trivial knot lift. The

trivial knot can be obtained either as the closure of any power of ∆1 or as the
closure of ∆±1

2 . In the first case, the link in any lens space L(p, q) represented
by the braid on one single string is lifted to the trivial knot. In the second
case, namely ∆±1

2 , we have to study the equation∆
(k−1)·p
2 ∆2q

2 = ∆±1
2 , that is

to say, kp − p + 2q = ±1. For the positive case kp + 2q − p = 1, integer
solutions with 0 < q < p can be obtained only for k = 0, p odd and q = p+1

2
.

For the negative case, the solution is k = 0, p odd and q = p−1
2
.

If we look for a pair of different knots in the same L(p, q), we have to
restrict to L

Ä
p, p±1

2

ä
with p odd. Consider K1 as the knot represented by the

braid ∆1 = 11 and K2 as the knot represented by the braid ∆0
2 = 12, they

are illustrated in Figure 7.1.

K1

+1

−1 K2
−2

+1

+2

−1

Figure 7.1: Two different knots with equivalent lift in L
Ä
p, p±1

2

ä
.

Since the homology classes are [K1] = 1 and [K2] = 2 as in Example 4.5,
the two knots considered above in L

Ä
p, p±1

2

ä
are different if p > 3 and odd;

if p = 3 they are equivalent.
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Example 7.2. Different links in L(4, 1) with Hopf link lift. As in the
previous case, all the possible solutions of the corresponding equations are
considered for the Hopf link L2a1. Table 7.2 sums up the results.

lift braid equation solutions

for all p, L(p, 1), k = 1
∆2

2 kp+ 2q − p = 2
for all p even, L

Ä
p, p+2

2

ä
, k = 0

for all p, L(p, p− 1), k = −1
∆−2

2 kp+ 2q − p = −2
for all p even, L

Ä
p, p−2

2

ä
, k = 0

∆1
3 kp+ 2q − p = 1 for all p odd, L

Ä
p, p+1

2

ä
, k = 0

∆−1
3 kp+ 2q − p = −1 for all p odd, L

Ä
p, p−1

2

ä
, k = 0

Table 7.2: Links in lens spaces lifting to Hopf link.

We look for solutions in the same lens space, and after excluding equiva-
lent links, we get only the following pair of links in L(4, 1): consider the knot
LA represented by the braid B1 = 12 and the link LB represented by B2 = ∆2.
They are different because they have a different number of components, but
they have the same lift, the Hopf link. In order to better understand the
topological construction of the lift, we illustrate it in Figure 7.2.

The last case of Table 7.1 is the link L4a1, that is not amphicheiral, as
a consequence Table 7.3 is divided into two cases. Let m(L4a1) denote the
mirror image of L4a1. No example rises from this case.

7.2 Counterexamples from satellite construc-

tion

The examples found in Section 7.1 consist of links that are easy to dis-
tinguish, because they have different numbers of components or different
homology classes. Therefore we now construct some satellite link of the pre-
vious examples, in order to get an infinite family of different links with the
same number of components and the same homology class.
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L1
−2

+1

+2

−1 −2

+1

+2

−1 L2

−2 −1

+1

+2

−2 −1

+1

+2

−1

−2

+1+2

−1

−2

+1+2

−2 −1

+1

+2

−2 −1

+1

+2

−1

−2

+1+2

−1

−2

+1+2

Figure 7.2: Two different links with equivalent lift in L(4, 1).

link lift braid equation solutions

m(L4a1) ∆1
4 kp+ 2q − p = 1 for all p odd, L

Ä
p, p+1

2

ä
, k = 0

m(L4a1) for all p, L(p, 2), k = 1
∆4

2 kp+ 2q − p = 4
for all p even, L

Ä
p, p+4

2

ä
, k = 0

L4a1 ∆−1
4 kp+ 2q − p = −1 for all p odd, L

Ä
p, p−1

2

ä
, k = 0

L4a1 for all p, L(p, p− 2), k = −1
∆−4

2 kp+ 2q − p = −4
for all p even, L

Ä
p, p−4

2

ä
, k = 0

Table 7.3: Links in lens spaces lifting to L4a1 or m(L4a1).

Example 7.3. Different links in L(4, 1) with cables of Hopf link as

lift. Consider the knot LA and the link LB of Example 7.2. A satellite of
LB can be the link where the two patterns are described by two braids τn
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and ψm on n and m strands respectively, as in part B1) of Figure 7.3. Label
B such link.

A B

+1

+(n+m)
ψ m

τ n

+n
+(n+1)

−
1

−
(n
+

m
)

−
n
−
(n
+
1)

ψmτ n +(n+m)

+m
+(m+1)

−
1

−
(n
+

m
)

−
m

+1

−
(m
+
1)

τ
ψ

n=m

τ=ψ

τ=Rev (τ)

Δn
-1

ψ

ψ ψ

τ

τ

τ

ψ ψ

ψ ψ

τ

τ

τ

τ

Δn
-1 Δn

-1

Δn
-1

τ
ψ
τ
ψ

Δn
-1

Δn
-1

τ
ψ
τ
ψ

τ
τ
τ
τ

ψ

ψ
ψ

ψ

Δn
-1

Δn
-1

1)

2)

3)

Figure 7.3: Satellite construction of different links with equivalent lift.

We need to make a satellite of the knot LA making the lift equivalent
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to the previous one, therefore we have to put the braids τn and ψm on each
overpass of the diagram of LA, as in part A1) of Figure 7.3. Label A such
link. Note that the boundary points of the two braids mix up, unless we
assume n = m.

The lift diagrams of the two considered links are illustrated in part 2) of
Figure 7.3 and in part 3) it is clear that the companion link is the Hopf link.
The pattern braids are ∆−1

n τψτψ∆−1
n on both sides of A, while for B we have

the braid ∆−1
n τ 4∆−1

n and the braid ∆−1
n ψ4∆−1

n that is reversed upside down.
With the assumption τ = ψ we get ∆−1

n τ 4∆−1
n on both sides of A, whereas

for B we have the same braid on one side and the reversed braid on the other
side.

A paper of Garside [53] tells us that the operation of reversing a braid
is the antihomomorphism of the braid group Rev : Bn → Bn which sends
σi1σi2 · · ·σir into the braid σirσir−1 · · ·σi1 . He proves that Rev(∆) is equi-
valent to ∆ into the braid group; for this reason, it is enough to assume
τ = Rev(τ) in order to have an equivalent lift for A and B. An easy example
of reversible braids are palindromic ones (see [34] for details).

We can make some more assumptions on τ in order to handle a smaller
family of links with known number of components. Let i > 0 and j ≥ 0 be two
integer numbers and let τ = ∆j

i , denote with Ai,j and Bi,j the correspondent
links. The considered braid produces a pattern of the satellite that is a torus
link, that is to say, Ai,j and Bi,j are cables of LA and LB. The links of this
family have different behaviors for different values of i and j:

for i = 1, for all j: we have A1,j = LA and B1,j = LB;

for all even i, for j = 0: the link Ai,0 and Bi,0 are equivalent (it is an easy
exercise using generalized Reidemeister moves);

for all odd i, for j = 0: the links Ai,0 and Bi,0 have respectively n = i and
n = i + 1 components, hence they are an infinite family of different
links with equivalent lift;

for all odd i > 1 or for all odd j > 0: the links Ai,j andBi,j have a differ-
ent number of components, hence they are an infinite family of different
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links with equivalent lift;

for all even i > 1 and for all even j > 0: the links Ai,j and Bi,j have the
same number of components n = i, moreover each of these components
has the same homology class δ = 2; the smaller case, A2,2 and B2,2

is illustrated in Figure 7.4; we cannot prove that all the pairs of links
in this family are different, anyway the computation of the Alexander
polynomials of A2,2 and B2,2 (see Table 8.3) says that the first case
consists of different links.

−2

+1
+2

−1

+3
+4

−3−4A2,2 B2,2
−2−1−3−4

+1
+2
+3
+4

Figure 7.4: Two different links with equivalent lift in L(4, 1).

7.3 The case of oriented and diffeomorphic links

Up to this stage we have considered unoriented links up to ambient iso-
topy. The problem of understanding whether the lift is a complete invariant
can be referred also to oriented links and to links up to diffeo-equivalence.
The answer is slightly different.

First of all, an orientation on the previous counter-examples allows us to
find new examples with different oriented link in lens spaces having equivalent
oriented lift. Moreover another family of counter-examples arises.

Remark 7.4. If we take an oriented knotK ⊂ L(p, q) such that K̃ is invertible
(i.e., it is equivalent to the knot with reversed orientations), then also the
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knot −K ⊂ L(p, q) with reversed orientation has the same lift. Usually −K
is not equivalent to K because the homology class changes. A really simple
example consists of the two knots in L(3, 1) illustrated in Figure 7.5: they
both lift to the trivial knot, nevertheless they have different homology classes
([K] = 1 and [−K] = 2). For links something similar happens, but you have
to be careful to the orientation of each component.

K

+1

−1

+1

−1
−K

Figure 7.5: Two different oriented knots with equivalent trivial lift in L(3, 1).

Furthermore we can consider oriented links up to diffeo-equivalence (see
Section 2.1 for definitions). In this case we analyze the following theorem of
Sakuma, also proved by Boileau and Flapan, about freely periodic knots. Let
K be a knot in the 3-sphere; if Diff∗(S3, K) is the group of diffeomorphisms
of the pair (S3, K), which preserves the orientation of both S3 and K, then
a symmetry G of a knot K in S3 is a finite subgroup of Diff∗(S3, K), up to
conjugation.

Theorem 7.5. [101, 12] Suppose that a knot K ⊂ S3 has free period p. Then
there is a unique symmetry G of K realizing it, provided that (i) K is prime,
or (ii) K is composite and the slope is specified.

If we translate it into the language of knots in lens spaces, we have that
the specification of the slope is equivalent to fixing the q of the lens space. As
a consequence, two primitive-homologous knots K1 and K2 in L(p, q) with
equivalent non-trivial lift are necessarily diffeo-equivalent in L(p, q).
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From the group of diffeotopies of L(p, q) displayed in [13] and [66], we
know that a diffeomorphism in L(p, q) does not always induce an ambient
isotopy of knots, thus this does not provide a complete answer about the
equivalence of K1 and K2 up to ambient isotopy.

Remark 7.6. The Examples 7.1, 7.2 and 7.3 show non isotopic links that
have equivalent lift. Are they still different up to diffeo-equivalence? None
of the examples is included in Theorem 7.5, since the lift is the unknot or
a link with more than one component. In order to investigate this question
we use the group of diffeotopies of L(p, q). For Example 7.1 in the case
L(5, 2), we know that the diffeomorphism σ− : L(5, 2) → L(5, 2), described
in [13], brings K1 to K2, that is to say, these knots are equivalent up to diffeo-
equivalence. On the contrary, the other two examples provide links that are
not diffeo-equivalent: if they were diffeo-equivalent, their complement would
be diffeomorphic and their fundamental group isomorphic. The links L1 and
L2 of Example 7.2 have a different number of component, hence a different
homology group and a different group of the link. The links A2,2 and B2,2 of
Example 7.3 have different Alexander polynomials, hence different groups of
the links.



Chapter 8

Essential geometric invariants

It is clear that every invariant of links in S3 becomes an invariant of links
in lens spaces if the first invariant is computed on their lift in S3. This allow
us to compute a lot of invariants. On the contrary, to create a new invariant
for links in lens space, we have to pay attention that this invariant is not
only an invariant of the lift; we will call essential this kind of invariant.

The different links with equivalent lift of Chapter 7 are the perfect tool
to check whether an invariant I of links in lens spaces is essential: just find
two different knots K1 and K2 with equivalent lift such that I(K1) 6= I(K2).
From now on, the thesis will focus on checking the essentiality of several
invariants of links in lens spaces.

In this chapter we investigate the most geometric invariants: the funda-
mental quandle, the group of the link and the twisted Alexander polynomials.
Then, in the last section we review the relation between some invariants of
links in lens spaces and the corresponding invariant on their lifts.

8.1 The fundamental quandle is inessential

The fundamental quandle is a very strong invariant of links in the 3-
sphere: in fact it is a complete invariant. It can be defined also for links in
lens spaces [86, 44]: is it still a complete invariant? This question is strictly
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related also with the essentiality of the invariant.
Given an oriented link L ⊂ L(p, q), let N(L) denote an open tubular

neighborhood of L, consider the manifold Q = L(p, q) rN(L) and fix a base
point xL in it. Let ΓL be the set of homotopy classes of paths from xL to
∂N(L). We can define an operation ◦ on this set: for every a and b in ΓL,
consider the toric component of ∂N(L) containing the starting point of b and
let m be a meridian of this torus, the operation a ◦ b gives the class of the
path bmb−1a. The set ΓL with the operation ◦ is a distributive groupoid or
equivalently, a quandle. The proof of this fact can be found in [86]. The
algebraic structure (ΓL, ◦) is the fundamental quandle of an oriented link L
in L(p, q).

Proposition 8.1. [44, Lemma 5.4] The fundamental quandle of a link in a
lens space is isomorphic to the fundamental quandle of its lift in S3.

Proof. The fundamental quandle is invariant under cyclic coverings, and if
we consider the cyclic covering P : (S3r‹L)→ (L(p, q)rL), the fundamental
quandle of links in lens space is isomorphic to the fundamental quandle of
its lift.

From this result, follows at once the succeeding corollary.

Corollary 8.2. The fundamental quandle of links in lens spaces is an inessen-
tial invariant.

The fundamental quandle of a link in a 3-manifold is a geometric invariant
that can be explicitly computed on a diagram only for links in S3 [71, 86] and
in RP3 [59]. Proposition 8.1 allows us to compute the fundamental quandle
of a link L in lens spaces by computing the fundamental quandle of the lift
‹L.

Theorem 7.5 can be combined to Proposition 8.1 to get the following
statement.

Corollary 8.3. The fundamental quandle of oriented primitive-homologous
knots in lens spaces can classify them up to diffeo-equivalence, unless the
fundamental quandle is trivial.
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This result, for the case RP3 = L(2, 1), was directly stated in [58], where
it is extended also to non primitive-homologous knots.

Proposition 8.4. [58, Theorem 1] Two knots in RP3 are diffeo-equivalent if
and only if the corresponding fundamental quandles are isomorphic.

We cannot generalize Corollary 8.3 to knots in all lens spaces up to am-
bient isotopy because of Example 7.1. Moreover also for links up to diffeo-
equivalence this is impossible, as a consequence of the non diffeomorphic
pairs of Examples 7.2 and 7.3 (see Remark 7.6).

Corollary 8.5. The fundamental quandle of links in lens spaces is not a
complete invariant for L(4, 1) and L(p, p±1

2
) with p > 3, odd.

Following [17], we can compute other invariants of links in lens space
derived from the quandle theory, such as quandle co-cycles invariants. If
they are an invariant of the quandle, then they are inessential. If we consider
bi-quandles instead, there is an example [59] for links in the projective space
where the co-cycle invariant seems more significant.

If we want a quandle-like structure that results essential we should turn to
the oriented augmented fundamental rack [44], that is a complete invariant
of framed links in 3-manifolds, and for framed links in lens spaces can be
computed using mixed link diagrams.

8.2 The group and the twisted Alexander poly-

nomials are essential

In Chapters 4 and 5 several geometric invariants for links in lens spaces
are considered. In order to understand if they are essential or not, we com-
pute them on Examples 7.1, 7.2 and 7.3, and we list them respectively in
Tables 8.1, 8.2 and 8.3.

Remember that ν is the number of components of the link. The integer d
is the homology torsion index. Thanks to a presentation of the fundamental
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group, we are able to compute the d one-variable twisted Alexander poly-
nomials: ∆̄1, ∆̄ζ , . . ., ∆̄ζd−1 , where ζ is a d-th primitive root of unity. It
is necessary to consider oriented links for the computation of these polyno-
mials: we choose the orientations (shown by the figures in each table) that
make the corresponding oriented lifts equivalent.

K1 K2

+1

−1 −2

+1

+2

−1

ν 1 1

[K] ⊂ H1(L(p, q)) 1 2

π1(L(p, q) rK) Z Z
H1(L(p, q) rK) Z Z

∆̄1(t) 1 1

Table 8.1: Geometric invariants of K1 and K2 in L
Ä
p, p−1

2

ä
.

Moreover, we have examples of links with isomorphic link group but in-
equivalent lift: the links arise from Table 7.3 and the invariants are on Ta-
ble 8.4.

The following two remarks sum up the comments arising from these com-
putations.

Remark 8.6 (Properties of the group of the link). The results of Table 8.2
show that the fundamental group of the complement of the link is an es-
sential invariant. As noted in Example 4.5, from Table 8.1 we have another
interesting information: the knot group is not a complete invariant of prime
knots in lens spaces because the knots K1 and K2 of Example 7.1 are in-
equivalent prime knots with isomorphic knot group. Finally Table 8.4 says
that sometimes the lift can distinguish links with equivalent link group.
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LA LB
−2

+1

+2

−1 −2

+1

+2

−1

ν 1 2

[K] ⊂ H1(L(p, q)) 2 1, 1

π1(L(p, q) r L) 〈a, f | af−1af−3 = 1〉 〈a, f | af = fa〉
H1(L(p, q) r L) Z⊕ Z2 Z⊕ Z

∆̄1(t) t+ 1 t− 1

∆̄−1(t) 1

Table 8.2: Geometric invariants of LA and LB in L(4, 1).

A2,2 B2,2

−2

+1
+2

−1

+3
+4

−3−4 −2−1−3−4

+1
+2
+3
+4

ν 2 2

[K] ⊂ H1(L(p, q)) 2, 2 2, 2

H1(L(p, q) r L) Z⊕ Z⊕ Z2 Z⊕ Z⊕ Z2

∆̄1(t) t7 + t6 − t− 1 t7 − t6 + t5 − t4 + t3 − t2 + t− 1

∆̄−1(t) t6 + 1 t6 + t4 + t2 + 1

Table 8.3: Geometric invariants of A2,2 and B2,2 in L(4, 1).
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M1 M2

−2

+1
+2

−1

+3
+4

−3−4 −2

+1

+2

−1

ν 2 2

[K] ⊂ H1(L(p, q)) 2, 2 1, 1

π1(L(p, q) r L) 〈a, f | af 2 = f 2a〉 〈a, f | af 2 = f 2a〉
H1(L(p, q) r L) Z⊕ Z Z⊕ Z

∆̄1(t) t2 − 1 t2 − 1

Table 8.4: Geometric invariants of M1 and M2 in L(5, 2).

Remark 8.7 (Properties of the Twisted Alexander polynomials). The com-
putations of Tables 8.2 and 8.3 shows that twisted Alexander polynomials
are essential invariants. Table 8.1 says that this invariant is not complete,
while Table 8.4 shows that the lift is sometimes stronger than the Alexander
polynomial.

8.3 Characterization of invariants of the lift

Links in the lens space L(p, q) can be seen also as (p, q)-lens links in S3

[28] and their lift as a freely p-periodic link. This gives us the opportunity
to relate the invariants of the link to the corresponding invariant of its lift.
Moreover when q = 0, interesting results for p-periodic links arise.

The first question that deserves our interest is the following: do the
Alexander polynomial of the lift depends on the twisted Alexander polyno-
mials of the link in lens spaces? Hartley gave the answer for the Alexander
polynomial of freely periodic knots: in [65] there is a formula connecting
the twisted Alexander polynomials in the case that both K ⊂ L(p, q) and
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K̃ ⊂ S3 are knots (see also Example 8.10).

Proposition 8.8. [65] Let ζ be a primitive p-root of unity. If the map
σ : π1(L(p, q) rK)→ Z[ζ][t±1] is the representation we use for the knot in
the lens space and the map σ̃ : π1(S3 r K̃)→ Z[t±1] is the lift of this repre-
sentation to the knot lift, then:

∆̄σ̃
K̃

(t) =
p−1∏

i=0

∆̄σ
K(ζ it) (8.1)

Furthermore, Chbili has shown in [27, 26, 25] some interesting character-
izations for multi-variable Alexander, Jones and HOMFLY-PT polynomials
of the lift of links in lens spaces. Then, in [28], the author exploited these
results to find some criterions to establish whether a certain link in S3 can be
a freely periodic link (or the lift of a link in a lens space, in our perspective).

We report here his result about multivariable Alexander polynomials since
we treat them extensively. Suppose that the link L in the lens space L(p, q)

is represented by a braid B. Specifically, we express the result in terms of
the Alexander invariant DL instead of ∆L. Recall that DL = ∆L/(1 − t) if
L is a knot, and DL is exactly the Alexander polynomial for links with more
than one component.

Proposition 8.9. [27] Let p be a prime, q ∈ N and B an n-braid. Then we
have the following congruence modulo p:

(1− tn1
1 · · · tnkk )D¤�(B∆−1

n )p∆2q
n

(t1, ..., tk) ≡ 1 + (tn1
1 · · · tnkk )qAp1(t1, . . . , tk)+

+ . . .+ (tn1
1 · · · tnkk )(n−1)qApn−1(t1, . . . , tk) (8.2)

where k is the number of components of ¤�
(B∆−1

n )p∆2q
n , n1 + . . .+nk = n, and

A1, . . . , An−1 are elements of Z[t±1
1 , . . . , t±1

k ].

Moreover Jeong and Park in [70] give some conditions on the Vassiliev
invariants for links in S3 in order to be the lift of some lens link: they get
pieces of information about Vassiliev invariants by exploiting the previous
results about Jones and HOMFLY-PT polynomials.
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Finally, Futer, Kalfagianni and Purcell [48] observe that vol(S3 r K̃) =

p · vol(L(p, q) r K) and give a bound for the hyperbolic volume of freely
periodic knots.

We can illustrate Propositions 8.8 and 8.9 with an example.

Example 8.10. Consider the knot H ⊂ L(4, 1) of Figure 8.1, that is de-
scribed by the braid σ−1

2 . Its lift is represented by the braid (σ−1
2 ∆−1

3 )4∆2
3.

−2

+1
+2

−1

+3

−3

Figure 8.1: Knot in L(4, 1) described by the braid σ−1
2 .

The Alexander polynomial of the lift is 1−t+t3−t4+t5−t7+t8. The Alexan-
der polynomial of H in L(4, 1) is p(t) = 1−t+t3−t4+t5−t7+t8, but the map
σ sends the non-torsion generator of the homology presentation we are con-
sidering to t4. As a consequence, the map σ̃ for the Alexander polynomial of
the lift sends the generator of the homology to t4 too and the corresponding
Alexander polynomial of the lift becomes 1−t4+t12−t16+t20−t28+t32. Hence,
if we substitute t with respectively t, −t, it and −it in p(t), Formula 8.1 is
verified:

(1− t4 + t12 − t16 + t20 − t28 + t32) = p(t)p(−t)p(it)p(−it).
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Moreover, Formula 8.2 can be written as:

(1− t3)D¤�(B∆−1
n )p∆2q

n

(t1, ..., tk) = (1− t3)
∆¤�(B∆−1

n )p∆2q
n

(t)

1− t = 1 + t5 + t10 ≡

≡ 1 + (t3)1A4
1(t) + (t3)2·1A4

2(t) ≡ 1 + (t3)t2 + (t6)t4 mod 4,

where the number of strings of the braid is n = 3.

Remark 8.11. On the contrary of these results, can we find pieces of informa-
tion about the twisted Alexander polynomial of a link L ⊂ L(p, q) from the
Alexander polynomial of its lift? From Tables 8.2 and 8.3 we see that this
is not possible, neither for knots nor for links. Another interesting counter-
example for this question is the next one: considering the unknot and the
local trefoil in L(2, 1), their lifts are the unlink with two components and two
split trefoils respectively. The twisted Alexander polynomials of these links
in L(2, 1) are different, their lifts in S3 are different, but their lifts have the
same Alexander polynomial (equal to zero).





Chapter 9

Essential KBSM and

HOMFLY-PT invariants

In this chapter we investigate whether the Kauffman Bracket Skein Mod-
ule for unoriented links in lens spaces and the HOMFLY-PT polynomial for
oriented links in lens spaces, developed in [31], are essential invariants.

9.1 The KBSM of L(p, q) via band diagrams

In this section we describe the rules of the Kauffman Bracket Skein Mod-
ule (also called (2,∞)-skein module) of L(p, q) introduced in [67].

A framed link in a 3-manifold M is a submanifold of M diffeomorphic
to the disjoint union of ν copies of an annulus S1 × B1. Let Lfr be the set
of ambient isotopy classes of unoriented framed links in the 3-manifold M –
we also add the empty knot ∅ to this set. Let L(n) denote the framed link
obtained by L ⊂ Lfr by adding n full right-handed twists to the frame. Let
R = Z[A±1] be the ring of Laurent polynomials in the variable A. Define Sfr

to be the submodule ofRLfr generated by the skein relations L−AL0−A−1L∞

and L(1)+A3L, where L0 and L∞ denote the links obtained by the resolutions
of one crossing of L as Figure 9.1 shows.

The Kauffman bracket skein module (KBSM for sake of conciseness) is

95
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L+ L
∞

L0

Figure 9.1: Resolution of a crossing of L.

the quotient module S2,∞(M) = RLfr/Sfr.
If we want to understand this skein module S2,∞(L(p, q)), we have to find

a free basis of it. The KBSM of the solid torus is necessary to find this free
basis. We use the representation of links in lens space given by punctured
disk/band diagrams. These diagrams are useful also to represent links in the
solid torus (see Section 2.3). Let x0 denote the local unknot in the solid torus
and xi denote the link with i components described in Figure 9.2.

x0 x1 x2 x3 x4

• • •

Figure 9.2: KBSM basis for the punctured disk diagram.

Proposition 9.1. [67, Corollary 2] The KBSM of the solid torus is freely
generated by the set {xi}i∈N.

From this proposition Hoste and Przytycki obtain the following one.

Proposition 9.2. [67, Theorem 4] For p ≥ 1 the KBSM of L(p, q) is freely
generated by x0, x1, . . . , xbp/2c, where brc denotes the integer part of r.
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Remark 9.3. The computation of the Kauffman bracket of a link L in L(p, q)

described by a punctured disk diagram is performed using the following al-
gorithm: simplify all the crossings with the skein relation, obtaining a linear
combination with coefficients in Z[A±1] of the diagrams of Figure 9.2, then
substitute each xi for all i 6= bp/2c with a suitable linear combination of
the basis x0, x1, . . . , xbp/2c. The formula for xi, i > bp/2c, can be found by
considering xi−p (or xp−i if i−p < 0), applying an SL move and resolving the
crossings with the skein relation. We denote the final result by KBSM(L).

As a consequence, the KBSM of a knot in L(p, q) can be recovered from
the KBSM of the corresponding knot in the solid torus. Through this method,
in [50] the author provided the KBSM of all knots in L(p, q) represented by
punctured disk diagrams, up to 5 crossings.

9.2 KBSM is an essential invariant

Similarly to the other invariants of Chapter 8, we would like to know
whether the KBSM is an essential invariant. For this reason, we compute the
KBSM on the Examples 7.1, 7.2 and 7.3 which consist of different links with
equivalent lift. In order to perform the calculations, we should transform
the disk diagrams into punctured disk diagrams, by using the geometric
algorithm of Proposition 3.5. The result of the computations is that the
KBSM is an essential invariant.

Example 9.4. In Figure 9.3 are represented the punctured disk diagrams of
the knots K1 and K2 in L

Ä
p, p±1

2

ä
of Example 7.1, that is to say, when p > 3

and odd.

After an easy calculation, it holds KBSM(K1) = x1 and KBSM(K2) =

Ax2 + A−1x0.

Example 9.5. The two links LA and LB in L(4, 1) of Example 7.2 are
represented by the punctured disk diagrams of Figure 9.4. After an easy
computation, we find that KBSM(LA) = Ax2 +A−1x0 and KBSM(LB) = x2.
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K1 K2

Figure 9.3: Punctured disk diagrams K1 and K2 in L
Ä
p, p±1

2

ä
.

LA LB

Figure 9.4: Punctured disk diagrams for LA and LB in L(4, 1).

Example 9.6. The two links A2,2 and B2,2 in L(4, 1) of Example 7.3 are rep-
resented by the punctured disk diagrams illustrated in Figure 9.5, according
to Proposition 3.5. The skein reduction tree is quite big, therefore we report

A2,2 B2,2

Figure 9.5: Punctured disk diagrams for A2,2 and B2,2 in L(4, 1).
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here only the final result:

KBSM(A2,2) = (3A14 + A10 − 2A8 − A6 − 1)x2+

+ (−A20 + A12 − A6 − A−2 + A−4 − A−8 + A−12 − A−16)x0

KBSM(B2,2) = (3A12 + A8 − 2A6 + 2A2 + 2 + 4A−2 + 2A−4)x2+

+(−A18+A10−A4+1+3A−4−A−6+5A−8−3A−10+4A−12−3A−14−A−18)x0.

9.3 The HOMFLY-PT invariant via grid dia-

grams

In this section we introduce the HOMFLY-PT invariant for oriented links
in lens spaces, developed in [31] (see this reference for the details). This
definition is given on the grid diagrams described in Section 2.4. The aim is
to understand whether the HOMFLY-PT invariant is essential, according to
Chapter 8.

The trivial knot in S3, that is to say, the knot that bounds a disk, is the
ending point of the skein reduction of the HOMFLY-PT polynomial in S3.
In the lens spaces this is not enough. For this reason the definition of trivial
links of Section 2.1 is generalized by [31] to a wider family. We say that a
link in L(p, q) is trivial if it can be represented by a grid diagram satisfying
the following conditions:

• the markings in each box lie only on the principal diagonal (the one
going from NE-corner to the SW-corner);

• all the O-markings are contained in the the first box (from the left);

• the X-markings in the same box are contiguous, and if the first box
contains X-markings, one of them lies in the SW corner;

• for each X-marking, all the other X-markings lying in a row below,
must lie in a column on the left.
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A trivial link will be denoted as Ui0,i1,...,ip−1 where ij ∈ N is the number of
components of the link belonging to the j-th homology class. In Figure 9.6 is
illustrated the trivial link U1,0,1,2 ⊂ L(4, 1) having one 0-homologous compo-
nent, zero 1-homologous component, one 2-homologous component and two
3-homologous components.

XO
O
O
O

X
X

X

Figure 9.6: Grid diagram for the trivial link U1,0,1,2 in L(4, 1).

Theorem 9.7. [31] Let L be the set of isotopy classes of links in L(p, q)

and let T L ⊂ L denote the set of isotopy classes of trivial links. Define
T L∗ ⊂ T L to be those trivial links with no nullhomologous components. Let
U be the isotopy class of the standard unknot, a local knot in L(p, q) that
bounds an embedded disk. Given a value Jp,q(T ) ∈ Z[a±1, z±1] for every
T ∈ T L∗, there is a unique map Jp,q : L → Z[a±1, z±1] such that:

• Jp,q satisfies the skein relation a−pJp,q(L+)− apJp,q(L−) = zJp,q(L0);

• Jp,q(U) =
Ä
a−1−a
z

äp−1;

• Jp,q(U t L) =
Ä
a−p−ap

z

ä
Jp,q(L).

As usual, the links L+,L−, and L0 differ only in a small neighborhood of a
double point: Figure 9.7 shows how this difference appears on grid diagrams.

The HOMLFY-PT invariant produced by Theorem 9.7 is not yet a poly-
nomial, Cornwell suggests to produce a polynomial in the usual HOMFLY
two variables by defining Jp,q on the trivial links as the classic HOMFLY-PT
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X

O
O
O

O
XX

X

L+ L– L0

X

O
O

X

O
O X

X O
O X
X O

O X
X

Figure 9.7: Grid skein relation.

polynomial of their lift in the 3-sphere. Proposition 6.6 describes the con-
struction of the lift starting from a grid diagram. Clearly, the essentiality of
the HOMFLY-PT invariant depends on the assignment of a value to Jp,q on
the class T L∗: an assignment based on the lift makes the invariant much less
sensitive in this direction.

9.4 Behavior under change of orientation

The HOMFLY-PT invariant refers to oriented links, therefore, to under-
stand if it is an essential invariant, we have to consider different oriented
link with equivalent oriented lift. Remark 7.4 provide a wide class of exam-
ples. For this reason we investigate what happens to this invariant when we
change the orientation of every component of the link. In the case of S3, the
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classic HOMFLY-PT polynomial does not change, but, in L(p, q) things are
different since L(p, q) is homologically non-trivial. The result is reported in
[20]

Proposition 9.8. Let L be a link in L(p, q) and denote with −L the link
obtained by reversing the orientation of each component. If the HOMFLY-
PT invariant of L can be written as Jp,q(L) =

∑
akzhJp,q(Ui0,i1,i2,...,ip−1), then

Jp,q(−L) =
∑
akzhJp,q(Ui0,ip−1,...,i2,i1).

Proof. As for the HOMFLY-PT polynomial for links in the 3-sphere, the skein
reduction of both L and −L is the same, because if we change the orientation
in L+, L− and L0, we still get respectively L+, L− and L0. However when the
orientation of a trivial link is changed, then a different trivial link is obtained;
to be more precise, looking at Figure 9.8, if we change the orientation on the
trivial link Ui0,i1,...,ip−2,ip−1 , and perform at first a sequence of non-interleaving
row commutations, a sequence of non-interleaving column commutations and
finally some cyclic permutation of columns, then we obtain the trivial link
Ui0,ip−1,ip−2,...,i1 .

Usually, in L(p, q), the links L and −L are non-equivalent (since they are
generally homologically different). Therefore, the last proposition suggests
a way to construct examples of non-equivalent oriented links with the same
lift in S3, distinguished by the HOMFLY-PT invariant. Indeed it is enough
to find a link L lifting to an invertible link and such that L is non isotopic
to −L.

Example 9.9. The oriented knots K and −K in L(3, 1) in Figure 9.9 are
different since the first one is 1-homologous whereas the second one is 2-
homologous, but they both lift to the trivial knot in S3. In formulae:
J3,1(K) = J3,1(U0,1,0), while J3,1(−K) = J3,1(U0,0,1).
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Figure 9.8: Reduction to trivial link of −U1,2,2,3 in L(4, 1) to U1,3,2,2.
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K -KX O
XO

XO

Figure 9.9: Knots K and −K in L(3, 1) both lifting to the trivial knot in S3.

9.5 The HOMFLY-PT invariant is essential

What does it happen if the links with the same lift do not differ only
from an orientation change? The many examples of Chapter 7 consisting of
different links in L(p, q) with the same covering in S3 help us. We compute
the HOMFLY-PT invariant of some of them. The first two examples are
quite simple, since they are pairs of different trivial links: having the same
HOMFLY-PT invariant or not depends on how we define Jp,q on T L∗. On
the contrary, in the third example, that is much more complicated, the two
links are distinguished by the HOMFLY-PT polynomial. These results are
reported in [20].

Example 9.10. In Figure 9.10 are represented the grid diagrams of the knots
K1 and K2 in L(5, 2) of Example 7.1; the grid diagrams are found from disk
diagrams thanks to Proposition 3.8. The knots are different since K1 is 1-

K1 K2
XO XO

Figure 9.10: Grid diagrams for different knots in L(5, 2) with trivial lift.

homologous, while K2 is 2-homologous, but they both lift to the trivial knot
in S3. Moreover they are trivial: K1 = U0,0,0,0,1 and K2 = U0,0,0,1,0. As a
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consequence, if we assume Jp,q(L) := J1,0(‹L) on trivial links, we clearly have
Jp,q(K1) = 1 = Jp,q(K2). It is possible to generalize this example to L

Ä
p, p±1

2

ä

(see Example 7.1).

Example 9.11. The two links LA and LB in L(4, 1) of Example 7.2 are repre-
sented by the grid diagrams in Figure 9.11, according to Proposition 3.8. The

XO XO
XO

LA LB

Figure 9.11: Grid diagrams for different links in L(4, 1) with Hopf link lift.

knots are non-equivalent since the first one is a knot, whereas the second one
is a two component link. Nevertheless, they both lift to the Hopf link in S3.
After performing some destabilizations and non-interleaving commutations
on LA, we see that they are nothing else than the trivial links LA = U0,0,1,0

and LB = U0,1,0,1. As a consequence, if we assume Jp,q(L) := J1,0(‹L) on
trivial links, we clearly have J4,1(LA) = az + az−1 − a3z−1 = J4,1(LB).

Example 9.12. The two links A2,2 and B2,2 in L(4, 1) of Example 7.3 are
represented by the grid diagrams illustrated in Figure 9.12, according to
Proposition 3.8. The two links are non equivalent, since they have different
Alexander polynomials, but they both lift to the same cable of the Hopf link
in S3. The computation of their HOMFLY-PT invariant is very long. The
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A2,2

B2,2

Figure 9.12: Grid diagrams for different links in L(4, 1) with equivalent lift.

skein reduction tree is quite big, therefore we report here only the final result:

J4,1(A2,2) = (a24 + 3a24z2 + a24z4)J4,1(U0,0,2,0) +

+(3a28z + 4a28z3 + a28z5)J4,1(U1,0,0,0) +

+(3a24z2 + 4a24z4 + a24z6)J4,1(U0,1,0,1),

J4,1(B2,2) = (a24 + 2a24z2 + a24z4)J4,1(U0,0,2,0) +

+(a28z + 2a28z3 + a28z5)J4,1(U1,0,0,0) +

+(a24z2 + 2a24z4 + a24z6)J4,1(U0,1,0,1) +

+(a20z + a20z3)J4,1(U0,2,1,0) +

+(a20z + a20z3)J4,1(U0,0,1,2) + a24z2J4,1(U0,2,0,2).

The lift of U0,1,0,1 is the Hopf link, the lift of U1,0,0,0 is the trivial link with
four components and U0,2,1,0, U0,2,0,2, U0,0,1,2, U0,0,2,0 lift to the closure of the
braid ∆2

4, where ∆4 denotes the Garside braid on 4-strands (see Figure 3.8).
Hence, if we assume J4,1(L) := J1,0(‹L) on trivial links, we get the following
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different HOMFLY-PT polynomials:

J4,1(A2,2) = a9z−3 − 3a11z−3 + 3a13z−3 − a15z−3 + 3a25z−2 − 9a27z−2 +

+9a29z−2 − 3a31z−2 + 3a9z−1 − 15a11z−1 + 21a13z−1 +

−9a15z−1 + 4a25 − 12a27 + 12a29 − 4a31 + a9z − 25a11z +

+62a13z − 38a15z + 3a25z − 3a27z + a25z2 − 3a27z2 +

+3a29z2 − a31z2 − 19a11z3 + 102a13z3 − 99a15z3 + 7a25z3 +

−4a27z3 − 7a11z5 + 94a13z5 − 155a15z5 + 5a25z5 − a27z5 +

−a11z7 + 46a13z7 − 129a15z7 + a25z7 + 11a13z9 − 56a15z9 +

+a13z11 − 12a15z11 − a15z13,

J4,1(B2,2) = a9z−3 − 3a11z−3 + 3a13z−3 − a15z−3 + 2a5z−2 − 6a7z−2 +

+6a9z−2 − 2a11z−2 + a25z−2 − 3a27z−2 + 3a29z−2 − a31z−2 +

+3a9z−1 − 15a11z−1 + 21a13z−1 − 9a15z−1 + 2a5 − 18a7 + 30a9 +

−14a11 + 2a25 − 6a27 + 6a29 − 2a31 + a9z − 25a11z +

+62a13z − 38a15z + a25z − a27z − 20a7z2 + 70a9z2 +

−50a11z2 + a25z2 − 3a27z2 + 3a29z2 − a31z2 − 19a11z3 +

+102a13z3 − 99a15z3 + 3a25z3 − 2a27z3 − 10a7z4 + 88a9z4 +

−110a11z4 − 7a11z5 + 94a13z5 − 155a15z5 + 3a25z5 − a27z5 +

−2a7z6 + 58a9z6 − 128a11z6 − a11z7 + 46a13z7 − 129a15z7 +

+a25z7 + 18a9z8 − 74a11z8 + 11a13z9 − 56a15z9 + 2a9z10 +

−20a11z10 + a13z11 − 12a15z11 − 2a11z12 − a15z13.





Bibliography

[1] J. W. Alexander, G. B. Briggs, On types of knotted curves, Ann. of
Math. 28 (1926/27), 562–586.

[2] K. Baker, Small genus knots in lens spaces have small bridge number,
Algebr. Geom. Topol. 6 (2006), 1519–1621.

[3] K. Baker, Once-punctured tori and knots in lens spaces, Comm. Anal.
Geom. 19 (2011), 347–399.

[4] K. Baker, A cabling conjecture for knots in lens spaces, preprint, 2013,
arXiv:1306.0596.

[5] K. Baker, J. E. Grigsby, Grid diagrams and Legendrian lens space links,
J. Symplectic Geom. 7 (2009), 415–448.

[6] K. Baker, J. E. Grigsby, M. Hedden, Grid diagrams for lens spaces
and combinatorial knot Floer homology, Int. Math. Res. Not. IMRN
10 (2008), Art. ID rnm024, 39 pp.

[7] K. Baker, J. E. Johnson, E. A. Klodginski, Tunnel number one, genus-
one fibered knots, Comm. Anal. Geom. 17 (2009), 1–16.

[8] D. Bar-Natan, S. Morrison et al., The Knot Atlas, http://katlas.org.

[9] J. Berge, Some knots with surgeries yielding lens spaces, unpublished
manuscript.

[10] C. Blanchet, N. Habegger, G. Masbaum, P. Vogel, Three-manifold
invariants derived from the Kauffman bracket, Topology 31 (1992),
685–699.

109



110 Bibliography

[11] M. Boileau, S. Boyer, R. Cebanu, G. S. Walsh, Knot commensurability
and the Berge conjecture, Geom. Topol. 16 (2012), 625–664.

[12] M. Boileau, E. Flapan, Uniqueness of free actions on S3 respecting a
knot, Canad. J. Math. 39 (1987), 969–982.

[13] F. Bonahon, Difféotopies des espaces lenticulaires, Topology 22 (1983),
305–314.

[14] E. J. Brody, The topological classification of the lens spaces, Ann. of
Math. 71 (1960), 163–184.

[15] D. Buck, M. Mauricio, Connect sum of lens spaces surgeries: applica-
tion to Hin recombination, Math. Proc. Cambridge Philos. Soc. 150
(2011), 505–525.

[16] G. Burde, H. Zieschang, Knots, Second edition, de Gruyter Studies in
Mathematics, 5, Walter de Gruyter & Co., Berlin, 2003.

[17] J. Scott Carter, A survey of quandle ideas, Introductory lectures on
knot theory, 22–53, Ser. Knots Everything, 46, World Sci. Publ., Hack-
ensack, NJ, 2012.

[18] A. Cattabriga, The Alexander polynomial of (1,1)-knots, J. Knot The-
ory Ramifications 15 (2006), 1119–1129.

[19] A. Cattabriga, E. Manfredi, M. Mulazzani, On knots and links in lens
spaces, Topology Appl. 160 (2013), 430–442.

[20] A. Cattabriga, E. Manfredi, L. Rigolli, Equivalence of two diagram
representations of links in lens spaces and essential invariants, preprint,
2013, arXiv:1312.2230.

[21] A. Cattabriga, M. Mulazzani, Strongly-cyclic branched coverings of
(1, 1)-knots and cyclic presentations of group, Math. Proc. Cambridge
Philos. Soc. 135 (2003), 137–146.



Bibliography 111

[22] A. Cattabriga, M. Mulazzani, (1, 1)-knots via the mapping class group
of the twice punctured torus, Adv. Geom. 4 (2004), 263–277.

[23] A. Cattabriga, M. Mulazzani, All strongly-cyclic branched coverings of
(1, 1)-knots are Dunwoody manifolds, J. London Math. Soc. 70 (2004),
512–528.

[24] A. Cattabriga, M. Mulazzani, Representations of (1,1)-knots, Fund.
Math. 188 (2005), 45–57.

[25] N. Chbili, Le polynôme de Homfly des nœuds librement périodiques, C.
R. Acad. Sci. Paris Sér. I Math. 325 (1997), 411–414.

[26] N. Chbili, The Jones polynomials of freely periodic knots, J. Knot The-
ory Ramifications 9 (2000), 885–891.

[27] N. Chbili, The multi-variable Alexander polynomial of lens braids, J.
Knot Theory Ramifications 11 (2002), 1323–1330.

[28] N. Chbili, A new criterion for knots with free periods, Ann. Fac. Sci.
Toulouse Math. 12 (2003), 465–477.

[29] D. H. Choi, K. H. Ko, Parametrizations of 1-bridge torus knots, J. Knot
Theory Ramifications 12 (2003), 463–491.

[30] C. Cornwell, Invariants of topological and Legendrian links in lens
spaces with a universally tight contact structure, Ph. D. Dissertation,
Michigan State University, 2011.

[31] C. Cornwell, A polynomial invariant for links in lens spaces, J. Knot
Theory Ramifications 21 (2012), 1250060, 31 pp.

[32] C. Cornwell, Bennequin type inequalities in lens spaces, Int. Math. Res.
Not. IMRN 2012, 1890–1916.

[33] R. H. Crowell, R. H. Fox, Introduction to knot theory, Ginn and Co.,
Boston, Mass., 1963.



112 Bibliography

[34] F. Deloup, D. Garber, S. Kaplan, M. Teicher, Palindromic braids, Asian
J. Math. 12 (2008), 65–71.

[35] A. Deruelle, Thin presentation of knots in lens spaces and RP3-
conjecture, C. R. Math. Acad. Sci. Paris 336 (2003), 937–940.

[36] A. Deruelle, D. Matignon, Thin presentation of knots and lens spaces,
Algebr. Geom. Topol. 3 (2003), 677–707.

[37] A. Deruelle, D. Matignon, Spinal knots in lens spaces, J. Knot Theory
Ramifications 15 (2006), 1371–1389.

[38] I. Diamantis, S. Lambropoulou, Braid equivalence in 3-manifolds with
rational surgery description, preprint, 2013, arXiv:1311.2465.

[39] H. Doll, A generalized bridge number for links in 3-manifold, Math.
Ann. 294 (1992), 701–717.

[40] H. Doll, J. Hoste, A tabulation of oriented link, Math. Comp. 57 (1991),
747–761.

[41] C. H. Dowker, M. B. Thistlethwaite, Classifications of knot projections,
Topology Appl. 16 (1983), 19–31.

[42] Y. V. Drobotukhina, An analogue of the Jones polynomial for links
in RP 3 and a generalization of the Kauffman-Murasugi theorem,
Leningrad Math. J. 2 (1991), 613–630.

[43] J. Drobotukhina, Classification of links in RP3 with at most six cross-
ings, Topology of manifolds and varieties, 87–121, Adv. Soviet Math.,
18, Amer. Math. Soc., Providence, RI, 1994.

[44] R. Fenn, C. Rourke, Racks and links in codimension two, J. Knot The-
ory Ramifications 1 (1992), 343–406.

[45] R. H. Fox, Knots and periodic transformations, 1962, in Topology of
3-manifolds and related topics (Proc. The Univ. of Georgia Institute,
1961) pp. 177–182 Prentice-Hall, Englewood Cliffs, N.J..



Bibliography 113

[46] S. Friedl, S. Vidussi, A survey of twisted Alexander polynomials, The
mathematics of knots, 45–94, Contrib. Math. Comput. Sci., 1, Springer,
Heidelberg, 2011.

[47] H. Fujii, Geometric indices and the Alexander polynomial of a knot,
Proc. Am. Math. Soc. 128 (1996), 2923–2933.

[48] D. Futer, E. Kalfagianni , J. Purcell, Symmetric links and Conway
sums: volume and Jones polynomial, Math. Res. Lett. 16 (2009),
233–253.

[49] D. Gabai, Foliations and the topology of 3-manifolds. III, J. Differential
Geom. 26 (1987), 479–536.

[50] B. Gabrovšek, Classification of knots in lens spaces, Ph.D. thesis, Uni-
versity of Ljubljana, Slovenia, 2013.

[51] B. Gabrovšek, M. Mroczkowski, Knots in the solid torus up to 6 cross-
ings, J. Knot Theory Ramifications 21 (2012), 1250106, 43 pp.

[52] B. Gabrovšek, M. Mroczkowski, The HOMFLY-PT skein module of the
lens space L(p, 1), submitted to Algebr. Geom. Topol.

[53] F. A. Garside, The braid group and other groups, Quart. J. Math.
Oxford, 20 (1969), 235–254.

[54] H. Geiges, S. Onaran Legendrian rational unknots in lens spaces,
preprint, 2013, arXiv:1302.3792.

[55] E. Giroux, N. Goodman, On the stable equivalence of open books in
three-manifolds, Geom. Topol. 10 (2006), 97–114.

[56] M. Gonzato, Invarianti polinomiali per link in spazi lenticolari, M. Sc.
Thesis, University of Bologna, 2007.

[57] C. McA. Gordon, J. Luecke, Knots are determined by their comple-
ments, Bull. Amer. Math. Soc. 20 (1989), 83–87.



114 Bibliography

[58] D. V. Gorkovets, Distributive groupoids for knots in projective space,
Vestn. Chelyab. Gos. Univ. Mat. Mekh. Inform. 6/10 (2008), 89–93.

[59] D. V. Gorkovets, Cocycle invariants for links in projective space, Vestn.
Chelyab. Gos. Univ. Mat. Mekh. Inform. 23/12 (2010), 88–97.

[60] J. E. Greene, The lens space realization problem, Ann. of Math. 177
(2013), 449–511.

[61] R. Hartley, Knots with free period, Can. J. Math. 33 (1981), 91–102.

[62] A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.

[63] C. Hayashi, Genus one 1-bridge positions for the trivial knot and cabled
knots, Math. Proc. Camb. Philos. Soc. 125 (1999), 53–65.

[64] M. Hedden, On Floer homology and the Berge conjecture on knots
admitting lens space surgeries, Trans. Amer. Math. Soc. 363 (2011),
949–968.

[65] J. A. Hillman, C. Livingston, S. Naik, Twisted Alexander polynomials
of periodic knots, Algebr. Geom. Topol. 6 (2006), 145–169.

[66] C. Hodgson, J. H. Rubinstein, Involutions and isotopies of lens spaces,
in Knot theory and manifolds (Vancouver, B.C., 1983), 60–96, Lecture
Notes in Math., 1144, Springer, Berlin, 1985.

[67] J. Hoste, J. H. Przytycki, The (2,∞)-skein module of lens spaces; a
generalization of the Jones polynomial, J. Knot Theory Ramifications
2 (1993), 321–333.

[68] V. Q. Huynh, Reidemeister torsion, twisted Alexander polynomial, the
A-polynomial and the colored Jones polynomial of some classes of knots,
Ph.D Thesis, State University of New York, 2005.

[69] V. Q. Huynh, T. T. Q. Le, Twisted Alexander polinomial of links in the
projective space, J. Knot Theory Ramifications 17 (2008), 411–438.



Bibliography 115

[70] M. Jeong, C. Park, Lens knots, periodic links and Vassiliev invariants,
J. Knot Theory Ramifications 13 (2004), 1041–1056.

[71] D. Joyce, A classifying invariant of knots, the knot quandle, J. Pure
Appl. Algebra 23 (1982), 37–65.

[72] A. Kawauchi, A survey of knot theory, Birkhäuser Verlag, Basel, 1996.

[73] R. C. Kirby, L. C. Siebenmann, Foundational essays on topological
manifolds, smoothings, and triangulations, Ann. of Math. Stud. 88
Princeton Univ. Press., 1977.

[74] P. Kirk, C. Livingston, Twisted Alexander invariants, Reidemeister
torsion, and Casson-Gordon invariants, Topology 38 (1999), 635–661.

[75] T. Kitano, Twisted Alexander polynomial and Reidemeister torsion,
Pacific J. Math. 174 (1996), 431–442.

[76] S. Lambropoulou, Solid torus links and Hecke algebras of B-type, Proc.
Conf. Quant. Topology (1994), 225–245.

[77] S. Lambropoulou, C. P. Rourke, Markov’s theorem in 3–manifolds, To-
pology Appl. 78 (1997), 95–122.

[78] S. Lambropoulou, C. P. Rourke, Algebraic Markov equivalence for links
in three-manifolds, Compos. Math. 142 (2006), 1039–1062.

[79] J. E. Licata, Invariants for Legendrian knots in lens spaces, Commun.
Contemp. Math. 13 (2011), 91–121.

[80] J. E. Licata, Legendrian grid number one knots and augmentations of
their differential algebras, The mathematics of knots, 143–168, Contrib.
Math. Comput. Sci., 1, Springer, Heidelberg, 2011.

[81] E. Manfredi, Fundamental group of knots and links in lens spaces, M.
Sc. Thesis, University of Trieste, 2010.



116 Bibliography

[82] E. Manfredi, Lift in the 3-sphere of knots and links in lens spaces,
preprint, 2013, arXiv:1312.1256.

[83] C. Manolescu, P. Ozsváth, S. Sarkar, A combinatorial description of
knot Floer homology, Ann. of Math. 169 (2009), 633–660.

[84] J. Marché, L’intégrale de Kontsevich des nœuds dans les variétés de
dimension 3, Ph. D. Thesis, Université Denis Diderot, Paris, 2004.

[85] J. M. Masley, H. L. Montgomery, Cyclotomic fields with unique factor-
ization, J. Reine Angew. Math. 286/287 (1976), 248–256.

[86] S. V. Matveev, Distributive groupoids in knot theory, Math. USSR Sb.
47 (1984), 73–83.

[87] M. Mauricio, Distance bounding and Heegaard Floer homology methods
in reducible Dehn surgery, PhD thesis, Imperial College London, 2012.

[88] K. Morimoto, M. Sakuma, On unknotting tunnels for knots, Math.
Ann. 289 (1991), 143–167.

[89] D. Moussard, On Alexander modules and Blanchfield forms of null-
homologous knots in rational homology spheres, J. Knot Theory Ram-
ifications 21 (2012), 1250042, 21 pp.

[90] D. Moussard, Finite type invariants of rational homology 3-spheres,
Algebr. Geom. Topol. 12 (2012), 2389–2428.

[91] M. Mroczkowski, Diagrammatic unknotting of knots and links in the
projective space, J. Knot Theory Ramifications 12 (2003), 637–651.

[92] M. Mroczkowski, Polynomial invariants of links in the projective space,
Fund. Math. 184 (2004), 223–267.

[93] F. H. Norwood, Every two-generator knot is prime, Proc. Amer. Math.
Soc. 86 (1982), 143–147.



Bibliography 117

[94] P. Ozsváth, Z. Szabó, Holomorphic disks and knot invariants, Adv.
Math. 186 (2004), 58–116.

[95] V. V. Prasolov, A. B. Sossinsky, Knots, links, braids and 3-manifolds.
An introduction to the new invariants in low-dimensional topology,
Transl. of Math. Monographs 154, Amer. Math. Soc., Providence, RI,
1997.

[96] J. Rasmussen, Lens space surgeries and L-space homology spheres,
preprint, 2007, arXiv:0710.2531.

[97] K. Reidemeister, Elementare Begründung der Knotentheorie, Abh.
Math. Sem. Univ. Hamburg 5 (1927), 24–32.

[98] N. Reshetikhin, V. G. Turaev, Invariants of 3-manifolds via link poly-
nomials and quantum groups, Invent. Math. 103 (1991), 547–597.

[99] D. Rolfsen, Knots and links, Amer. Math. Soc., Providence, RI, 2003.

[100] D. Roseman, Elementary moves for higher dimensional knots, Fund.
Math. 184 (2004), 291–310.

[101] M. Sakuma, Uniqueness of symmetries of knots, Math. Z. 192 (1986),
225–242.

[102] S. Stevan, Torus Knots in Lens Spaces & Topological Strings, preprint,
2013, arXiv:1308.5509.

[103] J. Stillwell, Classical topology and combinatorial group theory, Second
edition, Grad. Texts in Math. 72, Springer-Verlag, New York, 1993.

[104] C. J. Stitz, Linking numbers and Jones polynomials for lens spaces and
other 3-manifolds, Ph. D. Thesis, Kent State University, 2000.

[105] C. J. Stitz, A combinatorial approach to linking numbers in rational
homology spheres, J. Knot Theory Ramifications 9 (2000), 703–711.



118 Bibliography

[106] P. G. Tait, On Knots I,II,III, in: Scientific Papers, Vol. I, Cambridge
University Press, London, 273–347, 1898.

[107] V. G. Turaev, The Conway and Kauffman modules of a solid torus, J.
Soviet Math. 52 (1990), 2799–2805.

[108] V. Turaev, Torsion of 3-dimensional manifolds, Birkhäuser Verlag,
Basel-Boston-Berlin, 2002.

[109] K. Volkert, Lens spaces in dimension 3: a history,
The manifold atlas (2013), http://www.map.mpim-
bonn.mpg.de/Lens_spaces_in_dimension_three:_a_3history.

[110] M. Wada, Twisted Alexander polynomial for finitely presentable groups,
Topology 33 (1994), 241–256.

[111] M. R. Watkins, A Short Survey of Lens
Spaces, (unpublished, 1990). Available online at
http://empslocal.ex.ac.uk/people/staff/mrwatkin/lensspaces.pdf.

[112] J. H. C. Whitehead, On incidence matrices, nuclei and homotopy types,
Ann. of Math. 42 (1941), 1197–1239.

[113] W. Whitten, Knot complements and groups, Topology 26 (1987),
41–44.

[114] E. Witten, Quantum field theory and the Jones polynomial, Comm.
Math. Phys. 121 (1989), 351–399.

[115] Y.-Q. Wu, ∂-reducing Dehn surgeries and 1-bridge knots, Math. Ann.
295 (1993), 319–331.



Acknowledgements

These three years of Ph.D. course have been incredibly fruitful for me. Be-
sides the collaborations for the mathematical work I have already highlighted
during the dissertation, I want to thank every person who has supported me.

First of all, I thank my advisor Michele Mulazzani and his collaborator
Alessia Cattabriga, no need to say why.

Special thanks go to Sergey Matveev and to the whole department of
“Topology and computer algebra” of Chelyabinsk State University where I
spent three valuable months, in particular Evgeny Fominykh has been really
keen on the organization. Dmitry Gorkovets, Filip Korablev and Valentin
Potapov, I really appreciated how you involved me in mathematical discus-
sions.

I thank Matija Cencelj for inviting me to give a talk in Ljubljana and his
student Bostjan Gabrovšek, for sharing with me his precious knowledge of
knots in lens spaces.

I enjoyed the time I spent in Pisa and Cortona for several workshops and
conferences, hence I owe some thanks to the organizers Bruno Martelli and
Renzo Ricca, and the University of Pisa and Centro de Giorgi. During these
events, Mattia Mecchia gave me useful insights to my work. I would also like
to thank Lorenzo Losa for a lot of worthy conversations about hyperbolic
geometry.

I am pleased I went to Montreal for the “Summer School: Physics and
Mathematics of Link Homology” and for the “Conference Low-dimensional
Topology after Floer”, I thank the CRM of Montreal and INDAM of Italy

119



120 Acknowledgements

for funding that experience, moreover I thank Ken Baker, Ely Grigsby and
Chris Cornwell for the useful conversations we had.

Finally, an interesting hint about the completeness of the lift came from
Stefano Francaviglia.


