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Introduction

In Materials Science, dislocations are line imperfections in the crystalline
structure of materials and their presence (together with their motion) plays
a fundamental role in a large variety of phenomena, such as plastic de-
formations in metals, phase transitions, crystal growth, crack propagation,
ductile-brittle behaviour. The theory of dislocations is relatively young: Al-
though Volterra’s “distorsioni” were introduced for the first time in the early
1900th ([69]), a systematic theory of dislocations has been developed only
thirty years later by Orowan ([54]), Polanyi ([55]) and Taylor ([66, 67])
in order to explain some experimental results relative to the plastic proper-
ties of crystals. After that, several phenomenological models for plasticity
that account for the presence of dislocations at different scales have been
proposed. In the last decades, both the mathematical and the mechani-
cal engineering communities have shown an increasing interest and effort in
the derivation and improvement of these models starting from fundamental
microscopic models, describing single dislocation lines and their collective
behaviour (see for instance [26, 36, 37, 38, 9, 39, 50]). In this direction,
new mathematical methods have been developed in order to study the for-
mation of dislocations and their dynamics. The purpose of this thesis is to
contribute to the mathematical research in this field in the context of the
variational models.

Loosely speaking, a dislocation can be represented by a measure con-
centrate on the dislocation line, to which it is associated a vector, called
Burgers vector. In all the thesis, we focus on the case of straight disloca-
tions. The Burgers vector, allows to classify these dislocations in two main
types: edge if the Burgers vector is orthogonal to the dislocation line, and
screw if it is parallel. Roughly speaking, the former are obtained adding
an “extra half plane” of atoms into the crystal whereas the latter are pro-
duced by skewing a crystal so that the atomic plane produces a spiral ramp
around the dislocation. In this thesis, we study the asymptotic behaviour
of the elastic energy, stored in a crystal, induced by a configuration of screw
(respectively edge) dislocations as the atomic scale goes to zero; moreover,
we propose a purely variational approach to the study of the dynamics of
screw dislocations. Our analysis is based on I'-convergence (see [18, 29]).

We consider an elastic body with cylindrical simmetry, so that the math-
ematical formulation involves only problems set on the cross section €2 of the
crystal. Assuming that dislocations are straight lines orthogonal to €2, each
of them is completely identified by its intersection x; with €2 and by a vector
& € R3 (representing the Burgers vector). If we are in presence of a system
of screw dislocations, then &; are vertical vectors whose (suitably rescaled)
modulus is an integer d; = |§;| € Z, representing the multiplicity of the
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dislocation. In the case of edge dislocations, & are horizontal vectors and
hence with a little abuse of notation we can identify them with vectors in
R2. More precisely, & € S € R? where S is a discrete lattice representing the
class of all the horizontal translations under which the crystal is invariant.

We pass now to the description of the energies we consider.

As for the screw dislocations, we study a purely discrete model. We con-
sider the illustrative case of a square lattice of size € with nearest neighbors
interactions, following along the lines of the more general theory introduced
in [11]. In this framework, a vertical displacement is a scalar function u
defined on the nodes of the lattice in €, ie., u : QN eZ? — R and the
(isotropic) elastic energy associated with w, in absence of dislocations, is
given by

Bl =5 Y )

1,JEQNEZ2,|i—j|=¢
where du is the discrete gradient of u (namely du(i,j) = u(i) — u(j) with
li —j| = €). To introduce the dislocations in this framework, we adopt
the formalism of the discrete pre-existing strains as in [11] and [3]. More
precisely, a pre-existing strain is a function P representing the plastic part
of the strain defined on pairs of nearest neighbors and valued in Z. The idea
is that the plastic strain does not store elastic energy and hence it has to
be subtracted to the discrete gradient in order to obtain the elastic strain
5¢. In view of this additive decomposition du = P + 8¢, we have that
the elastic strain is not curl-free (in a discrete suitable sense) and that the
discrete dislocation measure p(u) := curl ¢ = —curl 5P is nothing but the
incompatibilty maesure of 3¢, namely p(u) maesures how far is £¢ from being
a gradient. Summarizing, the elastic energy of u is obtained by minimizing
the functional

=g Y FGP= X i) -6 0)P
1,j€EQNeZ2,|i—j|=¢e 1,JE€EQNEZ2,|i—j|=¢

with respect to the plastic strain SP. Since by our kinematic assumption the

plastic strain takes values in Z, it is clear that the optimal /% is obtained

projecting du on Z. Therefore, the elastic energy of u is given by

SD.(u) := % S dist(uli) - ulj), 2). (0.1)
1,jEQNEZ?,|i—j|=¢

Since in the case of edge dislocations, a purely discrete model is not well-
established, we consider a semi-discrete (mesoscopic) model in which the
dislocations are modeled individually, while the underlying atomic lattice is
averaged out. It is clear that in this case only the horizontal components of
the strain are relevant and hence the natural setting is given by the plane
elasticity. In plane linear elasticity, a planar displacement is a regular vector
field u :  — R2. The equilibrium equations have the form Div Cle(u)] = 0,
where e(u) := 3(Vu + (Vu)?) is the infinitesimal strain tensor, and C is
a linear operator from M?*? into itself usually referred to as the elasticity
tensor, incorporating the material properties of the crystal. It satisfies

1
c1]€9™1?2 < 5ccg € < el |2 for any & € M2*2, (0.2)
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where c; and ¢y are two given positive constants and £¥™ := %(5 +£¢T). The
corresponding elastic energy, in absence of dislocations, is given by

/ W(B) dz, (0.3)
Q

where = Vu is the displacement gradient field and W (¢) = %(Cf 1€ =
%(C{Sym 1 €™ is the elastic energy density. If a configuration of edge dislo-

cations p = Zfi 1 &0z, is present, we introduce the class of admissible fields
B associated with p as the matrix valued fields whose circulation around
the dislocation z; is equal to &; (once again “p = CurlB3”). These fields by
definition have a singularity at each x; and are not in L?(Q;M?*2) . To
set up a variational formulation we then follow the so called core radius
approach. More precisely, we introduce a scale parameter e, proportional to
the lattice spacing of the crystal, and we compute the energy outside the
core region U; B.(z;). As in the scalar case of screw dislocations, the elastic
energy stored in the core region is negligible and the elastic distortion decays
as the inverse of the distance from the dislocations, therefore it is commonly
accepted in literature that the linearized elasticity provides a good approx-
imation of the elastic energy stored outside the core region (see [62] for a
justification of these arguments in terms of I'-convergence).

We introduce the elastic energy induced by an arbitrary configuration
of dislocations p and an admissible field 3

B (p, B) := W) dz,  (Qu(p):=Q\|JBe(w:).  (04)
Qe(p) i

By minimizing the elastic energy (0.4) among all admissible fields, we obtain

the elastic energy £°(y) induced by pu.

Summarizing, from a mathematical point of view, dislocations are noth-
ing but the topological singularities of the strain field and hence they can be
studied in analogy with other better understood singularities. In particu-
lar, dislocations exhibits many similarities with vortices in superconductors,

studied within the Ginzburg-Landau model. We recall that, for a given
e > 0, the Ginzburg-Landau energy GL. : H'(;R?) — R is deﬁned by

/|Vw|2dx+/ (1— Juw[2)? (0.5)

Whereas the variational approach to dislocations is relatively young, the
variational analysis as € — 0 of GL, has been the subject of a vast literature
starting from the pioneering book [15]. The analysis in [15] shows that,
as € tends to zero, vortex-like singularities appear by energy minimization
(induced for instance by the boundary conditions), and each singularity
carries a quantum of energy of order |loge|. Removing this leading term,
the so-called self-energy, from the energy, a finite quantity remains, called
renormalized energy, depending on the positions of the singularities. This
asymptotic analysis has been also developed through the solid formalism
of I'-convergence (see [45, 46, 59, 61, 6]). For the convenience of the
reader, we briefly recall it in Chapter 1 of this thesis. It turns out that the
relevant object to deal with is the distributional Jacobian Jw, which, in the
continuous setting, plays the role of the distribution of dislocations; loosely
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speaking, as € — 0, the “double-well” potential in (0.5) forces the Jacobian
Jw to concentrate on points, the vortices, which are topological singularities
of the gradient of w as well as the dislocations are topological singularities
of the admissible field 8. A remarkable fact is that these I'-convergence
results also contain a compactness statement. Indeed, for sequences with
bounded energy the vorticity measure is not in general bounded in mass;
this is due to the fact that many dipoles are compatible with a logarithmic
energy bound. Therefore, the compactness of the vorticity measures fails
in the usual sense of weak star convergence. Nevertheless, compactness
holds in the flat topology, i.e., in the dual of Lipschitz continuous functions
with compact support. An essential tool in the proof of the I'-convergence
result is given by the so-called ball construction, introduced independently
by Sandier [58] and Jerrard [45]: It consists in providing suitable pairwise
disjoint annuli, where much of the energy is stored, and estimating from
below the energy on each of such annuli, using the following easy lower
bound

1/ |Vw|? dz > 7| deg(w, dBRr)| log E, w e HY(Bg\ By;SY). (0.6)
2 Bgr\B- r

Recently, part of this I'-convergence analysis has been exported to two-
dimensional discrete systems. In [56], it has been proved that the screw
dislocations functionals &)—g";' [-converge to |u|(€2), where p is the limiting
vorticity measure and is given by a finite sum of Dirac masses. In [3], it has
been shown that the energies “igD; - and “fgLEE' + (with h > 1) are variationally
equivalent, which means, roughly speaking, that they have the same I'-limit
(up to a factor) with respect to the same convergence. The T'-limit |u|(€) is
not affected by the position of the singularities and hence does not account
for their interaction, which is an essential ingredient in order to study the
dynamics.

The purpose of this thesis is two-fold: on one hand, we derive the renor-
malized energy for SD. (see Chapter 2) and introduce a purely variational
approach to the dynamics of screw dislocations (see Chapter 4), on the other
hand, we extend the Ginzburg-Landau analysis in the self-energy regime to
the vectorial case of edge dislocations (see Chapter 5). Moreover in Chapter
3 we derive the renormalized energy also in the case of anisotropic and long
range interaction screw dislocations energies.

Now we delineate the main features of the I'-convergence analysis for
the statics and the dynamics of screw dislocations contained in Chapters
2, 3 and 4 (see also [4, 32]). We first notice that the functional SD. can
be regarded as a specific example of scalar system governed by a 1-periodic
potential f acting on nearest neighbors, whose energy is of the type

Fe(u) == > fu(@) = u(j))- (0.7)

1,JEQNEZ2, |i—j|=¢

The functionals in (0.7) have the advantage to include not only the screw
dislocations systems, but also another celebrated model which allows to
describe the formation of topological singularities. This is the so-called XY
model ([14, 48, 49]): Here the order parameter is a vectorial spin field
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v:QNeZ? — S' and the energy is given by

Xwi=g X )G 08)
1,J€EQNEZ2, [i—j|=¢
It is easy to see that XY.(v) can be written in terms of a representative
of the phase of v, defined as a scalar field u such that v = 2™ and that
XY:(u) has the form in (0.7).

As mentioned above, the first step is given by the derivation of the renor-
malized energy for the functionals F. by I'-convergence, using the notion of
I-convergence expansion introduced in [10] (see also [21]). Precisely, in
Theorem 2.6 we prove that, given M € N, the functionals F.(u) — Mm|loge|
I-converge to W(u) + M+, where p is a sum of M singularities x; with
degrees d; = +1. Here W is the renormalized energy as in the Ginzburg-
Landau setting, defined by

W(,u) = _Wzdidj log \xz — xj| - WZdiR()(xi),
i#] i
where Ry is a suitable harmonic function (see (1.5)) which rules the inter-
action among the singularities and the boundary of €2, and v can be viewed
as a core energy, depending on the specific discrete interaction energy (see
(2.39)).

An intermediate step to prove Theorem 2.6 is Theorem 2.2 (ii), which es-
tablishes a localized lower bound of the energy around the limiting vortices.
This result is obtained using the ball construction, that we have to slightly
revise in order to include our discrete energies. Indeed, in Proposition 3.4
we prove a lower bound for F; similar to (0.6), but with R/r replaced by
R/(r + Ce|logel|), the error being due to the discrete structure of our en-
ergies. Nevertheless, this weaker estimate, inserted in the ball construction
machinery, is refined enough to prove the lower bound in Theorem 2.2 (ii).
In Chapter 3 we use analogue tools in order to extend this I'-convergence
analysis to anisotropic energies with nearest neighbors interaction in the tri-
angular lattice and to the case of isotropic long range interactions (see also
[32]).

Chapter 4 is devoted to the analysis of metastable configurations for
F. and to our variational approach to the dynamics of discrete topological
singularities. The dynamics is driven by a discrete parabolic flow of the
renormalized energy and it is based on the minimizing movements approach.

We now draw a parallel between the continuous Ginzburg-Landau model
and our discrete systems, stressing out the peculiarities of our framework.

In [51], [44], [60], it has been proved that the parabolic flow of GL.
can be described, as € — 0, by the gradient flow of the renormalized energy
W(u). Precisely the limiting flow is a measure u(t) = sz\il di 004, (), Where
x(t) = (z1(t), ...,z (t)) solves

(1) = VIV (x (1)
2(0) = 2o,

with W (z(t)) = W(u(t)). The advantage of this description is that the ef-
fective dynamics is described by an ODE involving only the positions of the

(0.9)
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singularities. This result has been derived through a purely variational ap-
proach in [60], based on the idea that the gradient flow structure is consistent
with I'-convergence, under some assumptions which imply that the slope of
the approximating functionals converges to the slope of their I'-limit. The
gradient flow approach to dynamics used in the Ginzburg-Landau context
fails for our discrete systems. In fact, the free energy of discrete systems
is often characterized by the presence of many energy barriers, which af-
fect the dynamics and are responsible for pinning effects (for a variational
description of pinning effects in discrete systems see [19], [20] and the ref-
erences therein). As a consequence of our I'-convergence analysis, we show
that F. has many local minimizers. Precisely, in Theorem 4.5 and Theorem
4.6 we show that, under suitable assumptions on the potential f, given any
configuration of singularities € Q2 there exists a stable configuration
Z at a distance of order € from z. Starting from these configurations, the
gradient flow of F. is clearly stuck. Moreover, these stable configurations
are somehow attractive wells for the dynamics. These results are proved for
a general class of energies, including SD., while the case of the XY, energy,
to our knowledge, is still open. A similar analysis of stable configurations
in the triangular lattice has been recently carried on in [42], combining
PDEs techniques with variational arguments, while our approach is purely
variational and based on I'-convergence.

On one hand, our analysis is consistent with the well-known pinning
effects due to energy barriers in discrete systems; on the other hand, it is also
well understood that dislocations are able to overcome the energetic barriers
to minimize their interaction energy (see [22, 35, 43, 57]). The mechanism
governing these phenomena is still matter of intense research. Certainly,
thermal effects and statistical fluctuations play a fundamental role. Such
analysis is beyond the purposes of this thesis. Instead, we raise the question
whether there is a simple variational mechanism allowing singularities to
overcome the barriers, and then which would be the effective dynamics. We
face these questions, following the minimizing movements approach a la De
Giorgi ([7, 8, 14]). More precisely, we discretize time by introducing a time
scale 7 > 0, and at each time step we minimize a total energy, which is
given by the sum of the free energy plus a dissipation. For any fixed T,
we refer to this process as discrete gradient flow. This terminology is due
to the fact that, as 7 tends to zero, the discrete gradient flow is nothing
but the Euler implicit approximation of the continuous gradient flow of F.
Therefore, as 7 — 0 it inherits the degeneracy of F, and pinning effects are
dominant. The scenario changes completely if instead we keep 7 fixed, and
send € — 0. In this case, it turns out that, during the step by step energy
minimization, the singularities are able to overcome the energy barriers, that
are of order €. Finally, sending 7 — 0 the solutions of the discrete gradient
flows converge to a solution of (0.9). In our opinion, this purely variational
approach based on minimizing movements, mimics in a realistic way more
complex mechanisms, providing an efficient and simple view point on the
dynamics of discrete topological singularities in two dimensions.

Summarizing, in order to observe an effective dynamics of the vortices
we are naturally led to let € — 0 for a fixed time step 7, obtaining a discrete



gradient flow of the renormalized energy. A technical issue is that the renor-
malized energy is not bounded from below, and therefore, in the step by
step minimization we are led to consider local rather than global minimiz-
ers. Precisely, we minimize the energy in a d neighborhood of the minimizer
at the previous step. Without this care, already at the first step we would
have the trivial solution p = 0, corresponding to the fact that dipoles an-
nihilate and the remaining singularities reach the boundary of the domain.
Nevertheless, for 7 small the minimizers do not touch the constraint, so that
they are in fact true local minimizers.

In order to discuss some mathematical aspects of the asymptotic analysis
of discrete gradient flows as €, 7 — 0, we need to clarify the specific choice
of the dissipations we deal with. The canonical dissipation corresponding to
continuous parabolic flow is clearly the L? dissipation. On the other hand,
once € is sent to zero, we have a finite dimensional gradient flow of the renor-
malized energy, for which it is more natural to consider as dissipation the
Fuclidean distance between the singularities. This, for € > 0, corresponds
to the introduction of a 2-Wasserstein type dissipation, Dy, between the
vorticity measures. For two Dirac deltas Ds is nothing but the square of the
Euclidean distance of the masses (for the definition of Dy see (4.20)). We
are then led to consider also the discrete gradient flow with this dissipation.
By its very definition D is continuous with respect to the flat norm and
this makes the analysis as ¢ — 0 rather simple and somehow instructive in
order to face the more complex case of L? dissipation.

We first discuss in details the discrete gradient flows with flat dissipation.
To this purpose, it is convenient to introduce the functional F.(u), defined
as the minimum of F;(u) among all u whose vorticity measure p(u) is equal
to u. We fix an initial condition pg := Zf‘il di 00z, , With |d;g| = 1 and a
sequence p. o € X, satisfying

peo ™ o, tim T ),
e—=0 |loge|
Then given § > 0 and let ,7 > 0 we define L g by the following minimiza-
tion problem

T Do, 17 go—q)

€ X,
2T H c

pLy, € argmin {]—}(u) +
(0.10)

-
HM - Ms,kflnﬁat <9
with pf o = peo- As a direct consequence of our I'-convergence analysis,

in Theorem 4.14 we will show that, as ¢ — 0, pl, converges, up to a
subsequence, to a solution uj € X to

M

- . W WDQ(M?:U;;fl) . . di o6 T <45

Ly, € argmin (n) + 9y = Z 1,00z, H“ - /‘kleﬂat = :
i=1

After identifying the vorticity measure with the positions of its singulari-
ties, we get that the vortices a7, of p satisfy the following finite-dimensional
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problem

T ; 7T|I' — x;;—lP M - T
xj, € argmin W(x)+T e, Z’xi_xi,kfl‘ <.
i=1

In Theorem 4.13 we show that this constrained scheme converges, as
7 — 0, to the gradient flow of the renormalized energy (0.9), until a maximal
time Ts. The proof of this fact follows the standard Euler implicit method,
with some care to handle local rather than global minimization. Moreover,
as 0 — 0, Ty converges to the critical time T* (see Definition 4.10), at which
either a vortex touches the boundary or two vortices collapse.

We now discuss the discrete gradient flow with the L? dissipation. Once
again, we consider a step by step minimization problem as in (0.10), with
|l — ,u;kleﬁat replaced by |lv — v;k71||%2/| log 7|. More precisely,

H827r71u _ e?m’uak_l ”22

ul; € argmin {Fs<u> + ) — () < a} |

27| log 7|
The prefactor 1/|log7| in front of the dissipation can be viewed as a time
reparametrization, on which we will comment later.

The asymptotics of these discrete gradient flow as € — 0 relies again
on a I'-convergence analysis, which keeps memory also of the L? limit v
of the variable e?™=. Under suitable assumptions on the initial data, in
Theorem 4.27 we show that, as ¢ — 0, the solutions u] ; converge, up to a
subsequence, to a solution to 7

v — vl:—1H%2

: Hl Q UA{ 5 '81
27"10g7’| v E loc( \ z—l{y,k}7 )7

v, € argmin {W(v) +

M
Jv = Zdi,oéyi,kv [Jv = Jvj_1 [lfar < 5} ;
i=1
where Jv is the distributional Jacobian of v and W is the renormalized en-
ergy in terms of v (see Theorem 2.9); namely, min j,—, W(v) = W(u). Now,
we wish to send 7 to zero. This step is much more delicate than in the case of
flat dissipation. Indeed, it is at this stage that we adopt the abstract method
introduced in [60], and exploit it in the context of minimizing movements
instead of gradient flows. This method relies on the proof of two energetic
inequalities; the first relates the slope of the approximating functionals with
the slope of the renormalized energy; the second one relates the scaled L?
norm underlying the parabolic flow of GL. with the Euclidean norm of the
time derivative of the limit singularities. In our discrete in time framework,
we adapt the arguments in [60] by replacing derivatives by finite differences.
A heuristic argument to justify the prefactor 1/|log 7| is that it is the correct
scaling for the canonical vortex x/|z|. Indeed, given V € R? representing
the vortex velocity, a direct computation shows that
2

lim —— | L _ 2=V e, (0.11)
=0 7|logT| |||z] |z —7TV]],
As a matter of fact, in order to get a non trivial dynamics in the limit, we
have to accelerate the time scale as 7 tends to zero. This feature is well
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known also in the parabolic flow of Ginzburg-Landau functionals. In this
respect, we observe that our time scaling is expressed directly as a function
of the time step 7, while for the functionals GL. it depends on the only
scale parameter of the problem, which is the length scale e. The explicit
computation in (0.11) has not an easy counterpart for general solutions v,
and (0.11) has to be replaced by more sophisticated estimates (see (4.55)
and (4.94)). This point is indeed quite technical, and makes use of a lot of
analysis developed in [59], [60].

Summarizing, we have noticed that the analogies between screw dislo-
cations and vortices extend to the complete static analysis and, somehow,
to their dynamics. As for the edge dislocations, the precise relation between
the two frameworks appears less clear. The main difference is that, in the
last case, the framework is that of plane elasticity and hence the problem is
vectorial and the energy is not coercive, depending only on the symmetric
part of the deformation gradient.

We develop the I'-convergence analysis for edge dislocations in Chapter
5 (see also [31]). As mentioned above, the elastic energy induced by a finite
distribution of edge dislocations u is given by

ENp) = min W(p) dx.
Curlf=p Qe (p)

This variational formulation has been considered in [24] by Cermelli and
Leoni who study the limit of the elastic energy induced by a fixed configura-
tion of edge dislocations (and of its minimizers) as the atomic scale ¢ tends
to zero.

In order to perform a meaningful analysis in terms of I'-convergence i.e.,
allowing also the distribution of dislocations to be optimized, we consider
the functional

E(p) = E&(n) + |pl(9), (0.12)

where the total variation of p in €, |u|(£2), represents the energy stored
in the region surrounding the dislocations. We remark that this term is
essential; indeed, without the core energy any configuration p such that
Q:(p) = 0 would induce no energy. On the other hand, its specific choice
does not affect the I'-limit (see [56]). In this respect, it can be seen as the
discrete counterpart of the double-well potential in G L.

The I'-convergence analysis for the functionals & has been studied by
Garroni, Leoni and Ponsiglione in [36] under the assumption that the dislo-
cations are well separated. They perform a complete analysis, which includes
also different energetic regimes. It is well-known that, also in this vectorial
case, as in the scalar case of screw dislocations, a finite number of edge
dislocations has an elastic energy of order |loge|. Note that in the regimes
|loge|", h > 1, the number of defects N. increases, tending to infinity as
€ — 0, and the interaction between singularities becomes relevant; in partic-
ular they show in terms of '-convergence that in the critical |loge|? energy
regime (that corresponds to N. =~ |logel), the two effects of interaction
energy and self-energy are balanced. The limit energy is of the form

wgydr+ [ oS ajul, (0.13)
Q o \dy|
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where ¢ is a positively 1-homogeneous density function defined by a suitable
cell problem formula, determined only by the elasticity tensor C and the
geometric structure of the crystal. This structure of the limit energy is
set in the framework of so called strain gradient theories for plasticity (see
[34, 40, 27]). Very recently, the analysis in [36] has been exported to the
case of nonlinear semi-discrete dislocation energy (see [53]).

We perform the I'-convergence analysis for the energy induced by a fi-
nite system of edge dislocations, without assuming the dislocations to be
fixed, uniformly bounded in mass or well-separated. More precisely, in The-
orem 5.4 we prove that the T-limit of the functionals - is given by

Toge]
dp
F ::/ ()d ,
(1) RAWm ]

where ¢ is obtained throught a cell problem formula as in (0.13). This I'-
convergence result is obtained with respect to the flat convergence of the
dislocations measures and exploits once again the strong analogy with the
Ginzburg-Landau setting. As mentioned above, the parallel between edge
dislocations and vortices is more delicate. Indeed, in the asymptotics of edge
dislocations, relaxation effects, that are encoded in the definition of ¢, take
place. Moreover, the fact that the energy is not coercive, depending only
on the symmetric part of the strain, introduces specific difficulties in the
analysis, which make the proofs of compactness and I'-liminf a challenging
task.

The idea of the proof of Theorem 5.4 relies on the ball construction
technique but the lower bound of the energy on annuli in this case is given
by

WE) de > —lE
Br\B, ~ 2nK(R/r)
here K (p) is the Korn’s constant and is such that K(p) — 400 as p — 1 (see
Section 5.6 for more details). As a consequence, we have to perform the ball
construction avoiding too thin annuli (where the Korn’s constant blows up).
This will be done in Section 5.2 where we construct an ad hoc discrete version
of the ball construction. Once this ball construction is done, we deduce a
lower bound with a pre-factor error due to the use of Korn’s inequality.
Then, compactness is easily deduced in Section 5.3 using arguments similar
to [59]. In view of this analysis, we can easily find the required annuli where
the energy concentrates, providing the optimal lower bound (see Section 5.4).
Finally, in Section 5.5 we provide the upper bound, concluding the proof of
our I'-convergence result.

logE, B € H'(BR\B,;R?), Curl$ = ¢ in Bg;
r

In conclusion, this thesis is organized as follows:

In Chapter 1 we introduce the notions of I'-convergence and I'-
expansion following the approach in [18] and [10]. Here we collect
some results in [58, 59, 60, 61] relative to the statics and dy-
namics of vortices in the Ginzburg-Landau framework.
In Chapter 2 we give the I'-expansion of the functionals F.. All
the results proved in this chapter are contained in [4].
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In Chapter 3 we perform the I'-convergence analysis of the anisotropic
and long range interaction energies. These results are contained

in [32].

In Chapter 4 we use the I'-convergence analysis of Chapter 2 to
prove the existence of many metastable configurations for the sys-
tems we consider. Then we introduce our purely variational ap-
proach to the study of their dynamics. All the results of this
chapter are contained in [4].

In Chapter 5 we prove our I'-convergence result for The

Tog el
results in this chapter are proved in [31].
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CHAPTER 1

Ginzburg-Landau functionals

In this chapter we recall some results of [58, 59, 60, 61] relative to the
I’-convergence analysis of the Ginzburg-Landau functionals, which will be
useful in the following of this thesis.

Ginzburg-Landau functionals arise in condensed-matter physics; they
have been originally introduced as a phenomenological phase-field type free-
energy of a superconductor, near the superconducting transition, in absence
of an external magnetic field. They involve a complex-valued order param-
eter, which we denote by w, that describes the local state of the material,
|w| < 1 being a local density. The crucial set is the zero-set of w: since w
is complex-valued, it can have a non-zero degree around its zeroes, which
are then called vortices, i.e. topological defects in dimension 2. We recall
that Q C R? is a bounded domain with Lipschitz boundary. The Ginzburg-
Landau energy (without magnetic field) is given by

1 1
GL.(w) ::2/Q|w|2+

@(1 — w]?)? dz,

and it is defined over H'(£2;C); here ¢ is a length-scale parameter, usually
referred to as the coherence length while G L. is the corresponding free energy
of the system.

In the first section we introduce the basic notion of I'-convergence, then
we present the results relative to the static I'-convergence analysis of G L.
and in the last sections we state some results about the limiting dynamics
of the vortices which are proved in [60] and [59].

1.1. I'-convergence

Here we introduce the fundamental notion of I'-convergence following
the notation in [18] (see also [29]). I'-convergence is designed to express the
convergence of minimum problems: Given a family of functionals F. defined
on a metric space (X,d), it may be convenient to study the asymptotic
behaviour of a family of problems

me = min{Fy(z) : z € X} (1.1)

not through the direct study of the properties of the solutions x. but defining
a suitable limit energy F(®) such that, as ¢ — 0, the problem

mo = min{F%(z) : z € Xo} (1.2)

is a “good approximation” of (1.1), i.e., me — mg and xz. — z(, where xg
is itself a solution of mg. This latter requirement must be thought upon
extraction of a subsequence if the ‘target’ minimum problem admits more
than a solution. Of course, in order for this procedure to make sense we
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must require a equi-coerciveness (or compactness) property for the energies
F..

Definition 1.1. Let (X,d) be a metric space. For any ¢ > 0, let F; :
X — [—00, +0o0]. We say that the sequence {F.} is equi-coercive if for any
sequence {z.} C X with sup, F:(z.) < C for some C € R, there exists
x € X such that, up to a subsequence, d(x.,z) — 0.

Definition 1.2. Let (X,d) be a metric space. For any ¢ > 0, let F, FO) .
X — [—00,+00]. We say that the sequence {F.} I'-converges to Fy at x if
the following inequalities hold true
(i) (P-liminf inequality) for every {z.} with d(x¢,x2) — 0, it holds
FO (x) < liminf._ Fo(x.).
(ii) (T-limsup inequality) there exists a (recovery) sequence {Z. }, such
that d(Z.,z) — 0 and F(©)(z) > limsup,._,o F.(Z.).

We say that {F.} T-converges to F(©) in X (F. 5 FO)if {F.} T-converges
to F'©) at z for every z € X.

The inequality (i) means that F(©) is a lower bound for the sequence
{F.} in the sense that FO)(z) < F.(z.) + o(1) whenever d(z.,z) — 0 and
(ii) implies that F(©) is an upper bound for {F.}. We remark that the
lower bound uniquely involves minimization and optimization procedures
and is totally ansatzfree, whereas the computation of the upper bound is
usually referred to an ansatz, suggested by the structure of the minimizing
sequences, on the construction of the recovery sequence {:ie}

We are now in a position to state the fundamental theorem of I'-convergence,
which ensures the convergence of the infima m, in (1.1) to the minimum mqg
in (1.2) and that every cluster point of a minimizing sequence is a minimum
point for F©),

Theorem 1.3. Let (X,d) be a metric space. Let {F.} be a equi-coercive
sequence of functions on X and let F(©) be such that F. L FO. Then

Jmin F© = lim inf F..
e—0 X

Moreover if {xzc} is a precompact sequence such that

lim F, = lim inf F;

then every limit of a subsequence of {x.} is a minimum point for FO),
PROOF. Let {z.} be a minimizing sequence for F;, that is
lim inf F, = liminf inf F_.
gl Felee) = B prigt £

Since {F.} is equi-coercive, there exists xyp € X such that, up to a subse-
quence, d(z.,z) — 0. By (i) in Definition 1.2, we have immediately

inf FO < O (z4) < lim inf F; (z.) = lim nf inf F. (1.3)

e—0

Moreover for any y € X let {Z.,} be a recovery sequence for x according
with Definition 1.2(ii). Then, by (1.3), we get for any y

ii).
(0) < liminfi < _ < p(0)
F% (z9) < hran_:glf 1£1(f F. < hr.anj(l)lp Fo(Zey) < FY(y).
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It follows that F(©)(zq) = miny F© and that
FO)(z0) = liminf F.(z.).
e—0
U

It is clear that the hidden element in the procedure of the computation
of the I'-limit is the choice of the right metric d. This is actually one of
the main issues in the problem: a convergence is not given beforehand and
should be chosen in such a way that it implies the equi-coercivenss of the
sequence {F.}. In fact there are two terms in competition: on one hand,
a very weak convergence, with many converging sequences makes the equi-
coerciveness property easier to fulfill but at the same time it makes the
[-liminf inequality more difficult to hold. A related issue is that of the
correct energy scaling. In fact, in many cases, the functionals F. have to be
suitably scaled in order to give rise to an equi-coercive sequence with respect
to a meaningful convergence.

We give now the notion of asymptotic development of a sequence of
functionals by I'-convergence (or I'-expansion) as it has been introuduced in
[10]. The idea is that of introducing an asymptotic ezpansion

F.=FO 4 epM 4 4 ekpk) 4 o(e®)
of the sequence F. in such a way that the knowledge of the functionals F*)
gives an additional information on the limit points of minimizers. Precisely:
Any limit point of a sequence of minimizers x. will also be a minimizer of
each of the functionals F*) appearing in the development above. We focus
on the first-order expansion by I'-convergence.

Definition 1.4. [10, Definition 1.3] With the notation above, we say that
the first-order asymptotic development

F.=FO 1 cF® 4 o(e) (1.4)
holds, if we have
i F2 70 _ )
e—0 I3

For k = 0,1, we denote by Uy, the set of minimizers of F(*).

Theorem 1.5. [10, Theorem 1.2] With the notation above, assume that
the first-order I'-expansion in (1.4) holds true. Let {xc} C X be such that
d(xze,z) — 0 for some T € X and F.(x.) = min{F.(x) : x € X}. Then
is a minimizer of both F©) and FO) in U°. Moreover , if my denotes the
infimum of FY) on U°, then

me = mo + emq + o(e).

1.2. T'-expansion of GL.

We now introduce the basic functional spaces we use in this thesis. We
recall that W1°°(Q) is the space of Lipschitz continuous functions in Q and
VVO1 ">°(Q) is the subspace of functions with compact support.
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Given w € H'(Q;C), we recall that the Jacobian Jw of w is the L!
function defined by

Jw = det Vw.

Moreover, we can consider Jw as an element of the dual of W1 by setting
(Jw, @) = / Jwp dz for every of p € Wh>(Q).
Q

Notice that Jw can be written in a divergence form as
Jw = div(wy g, we, —w105, w2), i.e., for any ¢ € WOI’OO(Q),

(Jw, ) = —/ W1 Oy W20z, @ — W10y, W20y, p di.
Q

Equivalently, we have that Jw = curl(w; Vws) and Jw = curlj(w), where
Jj(w) = w1 Vwy — waVwy,

is the so-called current.
Notice that if w € L°°(Q;C), then Jw is in the dual of H'(Q2). Let
A C Q with Lipschitz boundary. Then we have

1 1
/dex:/curlj(w)dm ::/ j(w) - tds,
A 2Ja 2 Joa

where ¢ is the tangent field to A and the last integral is meant in the sense
of H 3. )
Let h € H2(0A;C) with |h| > o > 0. The degree of h is defined as

follows

2

It is well-known that the definition above is well-posed and that deg(h,0A) €
7Z; moreover, whenever w € H'(A;C), |w| > 8 > 0 in A, deg(w,dA) =
0, where in the notation of degree we identify w with its trace. Finally,
deg(w,dA) is stable with respect to the strong convergence in H'(A;C).
Notice that w can be written in polar coordinates as w(z) = p(z)e?®) on
0A with |p| > «, where 0 is the so-called lifting of w. In particular, if
p(x) =1 on JA, then the current j(w) is nothing but the gradient of § and
the degree of w coincides with the circulation of V6 on 0A.

Moreover, by [17, Theorem 1] (see also [17, Remark 3]), if A is simply

connected and deg(w,dA) = 0, then the lifting can be selected in H%((?A)
with the map u +— 6 continuous. If the degree d is not zero, then the lifting

deg(h, DA) = l/aAj(h/|h|) tds.

can be locally selected in H %(QA) with a “jump” of order 27d.
We state here the I'-convergence theorem for % that collects result

proved in [45, 46, 1].

Theorem 1.6. The following I'-convergence result holds.

(i) (Compactness) Let {w.} C HY(Q;C) be such that GL:(w:) <

C|loge| for some positive C. Then, up to a subsequence, Jw. fag

w, where p = Zf\;l didy, for some x; € Q, d; € Z.

18



(ii) (D-liminf inequality) Let {w.} C H(Q;C) be such that Jw. g

T = Wzij\il didy,. Then, there exists C' € R such that, for any
i=1,...,N and for every o < %dist(xi,ﬁﬂ U,z zj), we have

liminf GL.(we, Bs(x;)) — m|d;| log g >C.
e—0 IS
In particular

o o
hrgn_:élf GL:(we) — m|p|(£2) log - > C.

(iii) (T-limsup inequality) For every p := Zf\il d;0y,, there exists {w.;} C
H(;C) such that Jw. flag T and

£

|l () > limsu .
() > limsup o2

Before stating the first order I'-convergence of GL. — 7|u|(£2)| loge]| to
the renormalized energy introduced in [15], we recall the main definitions
and results of [15] we need.

Let p = Zf‘il didy, with d; € {—1,4+1} and z; € Q. In order to define
the renormalized energy, consider the following problem

A® =2rp in Q
=0 on 01},

and let Ro(z) = ®(x) — .M, dilog |z — x;|. Notice that Ry is harmonic in Q

and Ry(z) = — Zf‘il d;log |x — x;| for any x € 0. The renormalized energy
corresponding to the configuration yu is then defined by

W(n) = -7 Y didjlog|a; — a5] — 7 Y diRo(:). (1.5)
i#j i
Let o > 0 be such that the balls B,(x;) are pairwise disjoint and contained

in Q and set Q7 :=Q '\ Uf\i 1 Bo(x;). A straightforward computation shows
that

1
W(n) = lim — IV®|*dx — Mx|logo|, (1.6)
c—0 2 Qo
In this respect the renormalized energy represents the finite energy induced

by p once the leading logarithmic term has been removed.
Consider the following minimization problems

mio) = w5 [ [GuP do s degtu. 08, (0) = di
m(o, p) = weHI{%g}f;sl) {;/ﬂg \Vw|*dz (1.7)
w() = 25— ) on OB, (), |oil = 1},
Yar(e, o) = weHr{l(iga;C) {GLE(w,Bg) s w(z)LIB, = r;’} (1.8)
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Theorem 1.7. [15] It holds
tim (o, 1) — ]|(2) log o] = lim 1r(o, 1) ] (2) log o] = W(w). (1.9
Moreover, for any fized o > 0, the following limit exists
gig(l)(VGL(& o) — m|log §|) =:v€eR. (1.10)
We are now in a position to state the I'-expansion of GL..

Theorem 1.8. The following I'-convergence result holds.

(i) (Compactness) Let M € N and let {w.} C H'(£;C) be a sequence
satisfying GL:(w:) — M7|loge| < C. Then, up to a subsequence,
Jw, flag wu for some = Zfil dibz, with d; € Z\ {0}, z; € Q and
> ldil < M. Moreover, if Y, |dij| = M, then ), |di| = N = M,
namely |d;| =1 for any i.

(ii) (T-liminf inequality) Let {w.} C H'(%;C) be such that Jw. flag i,
with p = Zf\il diby, with |d;| =1 and x; € Q for every i. Then,

hmiélf GL:(w:) — Mn|loge| > W(u) + M~ar. (1.11)
E—

(iti) (D-limsup inequality) Given p = Y™ d;dy, with |d;| = 1 and

z; € Q for every i, there exists {w.} C H'(;C) with Jw, flag 1
such that

GLe(we) — Mn|loge| = W(u) + Mg

The basic tool in order to prove Theorem 1.6 and 1.8 is given by the ball
construction introduced by Sandier in [58]: It consists in an efficient way
of selecting balls where the energy concentrates. In the next subsection we
briefly delineate the main features of this powerful machinery that we will
use with some modifications in order to prove the main results of this thesis.

1.2.1. Ball construction for GL.. Let B = {Bpg,(z1),...,Bry(zn)}
be a finite family of pairwise disjoint balls in R%2. The ball construction
consists in letting the balls alternatively expand and merge each other. The
expansion phase consists in letting all the balls expand without changing
their centers in such a way that at each (artificial) time the ratio 6(t) :=
r;(t)/r; is independent of i. The expansion phase stops at the first time
T when two balls B,,)(%;) and B, (;)(z;) bump into each other. Then
the merging phase begins. It consists in collecting the balls Bg,(r)(z;) in
subclasses and merging all the balls of each subclass in a larger ball Bg, (y;)
with the following properties:

(a) Rjisnot larger than the sum of all the radii of the balls Bg, (7)(z;)
contained in Bg;(y;);
(b) the balls Bg,(y;) are pairwise disjoint.

After the merging, we define in each ball Bgr,(y;) a seed size s; by
R;j/sj =0(T) =1+T (we set s; = r; for t = 0). Then another expansion
phase begins, during the seed sizes are left constant and 6(t) := R;(t)/s; =
141t for t > T. The procedure consists in alternating merging to expansion
phase until a last phase where only a ball expands. Notice that, by property
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(a), the sum of the seed sizes ), s; does not increase during the merging.

In particular
E R;(t) = E (1+1t)s; < (1+1) g ;.
j i

J

Now we assume that to each ball B, (x;) of the original family B corresponds
some integer multiplicity d; € Z and set p := Zfil di0y;. Let F(B,u,U) be
defined as follows: If A, r(y) := Br(y) \ B;(y) is an annulus which does not
intersect any By, (z;), we set

R
F(B, p, Ar,r(y)) := 7ln(B;(y))| log —
then, for any open set U C R2, we set

F(B,u,U) i=sup y | F(A),

where the sup is over all finite families of pairwise disjoint annuli A; C U
which do not intersect any By, (z;).

Remark 1.9. The definition of F' is justified by the following fact. Let
w € H'(Q\UpepB; S') and let 1 := 3" oo deg(w, dB)d,,, where C denotes
the family of balls in B which are contained in 2 and xp is the center of B.
Then, by Jensen inequality it follows that

1 1 [
/ |Vwl|? dz > / / | (w x Vw) - 7|*ds dp
2 JBp\B, 2Jr Jos,

(1.12)
L R
> / —md;dp > m|d;|log —.
r P r
for any annulus A, g(y) such that By, (z;) C By(x) and Br(x)N\U;% B, (z;) =
(. As an easy consequence, one has

1/ \Vw|? dz > F(B, i1, U). (1.13)
U\UY_, By, (z:)

2

Let B(t) be the family of balls at time ¢ (with the convention B(t) =

B(t™) if t is a merging time). By the construction above it easily follows
that for any B € B(t)

F(B, p, B) > 7|u(B)|log(1 +t). (1.14)

We refer to [58, 59, 61, 6, 45] for the proofs of Theorems 1.6 and
1.8. We remark only that one of the most challenging tasks is the proof of
the compactness property. The main idea is to use the potential term in
(0.5) in order to show that the zeroes of |w,| concentrate on a family B of

balls such that the sum of their radii Rad(B) satisfies Rad(B) < Ces |log £l
Plugging a Dirac mass, corresponding to the degree of w, into each of these
balls, and using the Ball Construction above, one can obtain a sequence of
measures ji. that approximates Jw,, carrying all the topological information
and bringing the required compactness.
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1.3. I'-convergence of gradient flows

In this section we present the abstract approach introduced in [60] to
study the convergence of heat flows of families of energies which I'-converge
to a limiting energy. In Section 4.3 we will revisit this result in order to
extend it to our discrete gradient flow.

The general framework is the following: Let M be an open subset of an
affine space associated to a Banach space B and let N/ be an open subset of a
finite-dimensional vector space B’. We assume that B embeds continuously
into a Hilbert space X., B’ into Y. Let {E.} be a family of C' functionals
defined over M, which I'-converges to a C! functional F' defined over N.

We first give the definitions we need.

Definition 1.10. [60, Definition 1.1] Let 7' > 0 and let {u.(t,-)} € M for
t € [0,T). We say that {E.} T'-converges along the trajectory u.(t) in the
sense S to F if there exists u : [0,7) — N, such that, up to a subsequence,

ue(t) 5 u(t) for any t € [0,T) and
F(u(t)) < h?l_}élf E_(uc(t)) vVt € [0,T).

Definition 1.11. [60, Definition 1.2] If the differential dE.(u) of E. at u is
also linear continuous on X., we denote by Vx_FE.(u) the gradient at u € M
for the structure X,, that is,

d
a|t=0E5(u + t¢) = dEs(u) = <VX5E€(U)? ¢>X5'
If this gradient does not exist, we use the convention ||Vx, E.(u)| y. = +oo.

Definition 1.12. [60, Definition 1.3] A solution to the gradient flow of E.
(with respect to the structure X.) on [0,T) is a map u. € H'((0,7); X.)
such that

Oue(t) = =V x_ Eo(ue) vVt €[0,T). (1.15)

Such a solution is conservative if
t
Ee(us(0)) — Ec(ue(t)) = / 1Oruc(®)l|%, ds V€ [0,T).
0

If {uc} is a family of solutions on [0,7") to the gradient flow of E. along
which {E.} T-converges to F and u.(t) 5 u(t) for any t € [0,T"), we define
the energy excess D(t) as
D(t) := limsup E.(u.(t)) — F(u(t)).
e—0
We notice that D(t) > 0. If D(0) = 0, we say that the family of solutions
{uc} is well-prepared initially.

We are now in a postion to state the abstract result in [60] which makes
a rigorous connection between the convergence of gradient flows and the
I"-convergence structure.

Theorem 1.13. [60, Theorem 1.4] Let {E.} and F be C! functionals over
M and N respectively and let {u.} be a family of conservative solutions

to the flow for E. (in the sense of (1.15)) on [0,T"), with u.(0) 5 ug,

22



along which {E;} T'-converges to F' in the sense of Definition 1.10. Assume
moreover that conditions (i) and (ii) below are satisfied.

(i) For a subsequence {uz} such that u.(t) 5 u(t) for any t € [0,T),
it holds that w € H'((0,T);Y) and there exists f € L'((0,T))
such that for every s € [0,T")

lim in /0 |Brue ()%, dt > /0 (o} - r)D()) at.

(i) If u(t) 5 u(t) for any t € [0,T), there exists a locally bounded
function g on [0,T) such that for any ty € [0,T) and any v defined
i a neighborhood of ty satisfying

{ 8ﬂ](t0) = —VyF(’U,(t()))
U(to) = U(to),
there exists v:(t) such that ve(tg) = uc(ty) and

1imS(1]1p 19pve (to) 1%, < 110w (to) 13- + g(to)D(to),
E—>

.. d d
hran_gélf _E’t:toEe(US(t)) > _a‘t:toF(v) — g(to)D(to)-

Then, if {uc} is well-prepared initially (D(0) = 0), then {us(t)} is well-

prepared for every t € [0,T), all the inequalities above are equalities, u.(t) LS
u(t) for any t € [0,T) where u is the solution to

{ Ou = —Vy F(u)
u(0) = up.

We omit the proof of Theorem 1.13. We remark only that the conver-
gence of gradient flows does not follow from the I'-convergence only, since
slight perturbations of the energy landscape of E. may add local minima
which disappear in the limit. The assumptions (i) and (ii) we need, guaran-
tee that the C! structure of the energy landscape also converges.

In [60], this abstract scheme is used in order to prove the convergence
result for the heat flow of the Ginzburg-Landau equation.

In this case, the space X, is nothing but the L?(Q; C) endowed with the

standard scalar product of L? scaled by m and hence
1
|

|- llx. = \/ﬁ” N2 esc)-
Fixed M € N, then E.(w) = GL.(w) — Mr|loge| — M~gr and (1.15) is
given by
L = Aw+ L= ). (1.16)
[loge| ' g2
Moreover Y = R?M and its norm is given by |||y = ﬁ” -||geas. Finally, we

say that w.(t) 5 x(t) = (x1(t),...,xp(t)) € Y for some t > 0 if Jw.(t) flag

M di 005,y where di, ... ,dno € {+1,—1} do not depend on t.
We remark that with this notation, the family {w.(t)} of solutions to

(1.16) is well prepared initially if {w.(0)} is a recovery sequence in the sense
of Theorem 1.8 (iii).
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Using Theorem 1.13 and Proposition 1.17, the authors prove the follow-
ing result.

Theorem 1.14. [60, Theorem 1.6] Let {w.} be a family of solutions to

(1.16) with homogeneous Neumann boundary conditions such that Jw.(0) flag

wZ?ﬁl di 00z, ,, where M € N, dig € {+1,—1} and ;¢ are distinct points
of R2. Assume moreover that {w.(t)} is well-prepared initially, that is,

M
lim G Le(w:(0)) — Mr|loge| — Mygr, = W) _ d;odz, ,)-
e—0 P

Then, there exists a time T > 0 such that Jw.(t) flaf Zf\il d; 00,1y and

e—0

M
lim GL.(we(t)) — Mn|loge| — Myar = W) _ di o0y,
=1

for any t € [0,T%), where x(t) = (z1(t),...,xp(t)) is the solution to

&i(t) = —+05, WL, digdy,) t€[0,17)
z;(0) = i,

and T* is the minimum among the collision time and the exit time from )

for this law of motion.

The main difficulty of proving this result consists in showing that the
assumptions of Theorem 1.13 are satisfied by the energies GL. and W. The
proof of assumption (i) is very smart and it is obtained exploiting an im-
portant result of [59], that we recall in the following section since it will be
useful in order to prove our result on the dynamics of screw dislocations.

1.4. Product-Estimate

In this section we collect some results in [59] that are used in the proofs
of Section 4.3.

We first introduce some notation. Let B be an open bounded subset of
R3. Given w = (w1, wz) € H'(B;C), its Jacobian Jw can be regarded as a
2-form in R? given by

Jw = dwy A dwg = Z(ajwlasz — 8le2ak’w1) d$j A dxg. (1.17)
Jj<k
Thus Jw acts on vector fields X,Y € C(B;R3) with the standard rule that
1
dz; A dl‘k<X, Y) = B (Xij — XkYJ) .

The Jacobian Jw can be also identified with a 1-dimensional current xJw
which acts on 1-forms w = wi dx1 + wo dzs + w3 dxs as

(xJw,w) :/ JwAw.9
B
In particular, for any X,Y € C(B;R?)
(xJw, X NY) :/ Jw(X,Y)dx,

B
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where, with a little abuse of notation, we identify 1-forms with vector fields.
Let T > 0. For a given w € H'([0,T] x ©;R?), we denote by u, V1, V?
the L! functions such that

Jw = pdry Adze + VVdaey Adt + VEdag Adt. (1.18)

The theorem below collects the results of Theorem 1 and Theorem 3 in
[59].

Theorem 1.15. Let w. € H*([0,T] x Q;R?) be such that

/ GL(we(t )dt+/ /\atwat (t,x)|? dzdt < C|loge|. (1.19)

Then, there exists a rectifiable integer 1-current J such that, up to a subse-
quence,

XU g i (0090, T] x Q:RP)Y, Vo € (0,1].

Moreover, for any X,Y € C2([0,T] x ;R3)

1

1 2
lim inf ——— / \X-Vwedexdt/ Y - Vw2 dzdt | >[(J,X AY)|.
=0 7|logel| \ Jio,mxa 0,7]xQ

If in addition we assume that

sup GL.(we(t,-)) < Clloge|, (1.20)
te[0,T]

then, J can be written as in (1.18) with p € C’O’%([O, T): (C27(Q))) for every
v € (0,1] and V', V2 € L2([0,T); M(Q)).
Finally, up to a subsequence,

pe(t) = flag p(t) for all t € [0,T.

We now state a variant of Corollary 4 in [59] which is a direct conse-
quence of Theorem 1.15.

Corollary 1.16. Let 0 < t1 < t3 and let we € H'([t1,t2] x Q;R?) be such
that (1.19) holds true with [0,T] replaced by [t1,t2], and such that for all
te [tl,tg]

1
2/ |Vwe(t, z)|* de < Mn|loge| + C
Q

for some M € N and C € R. Assume moreover that

pe(t) = ﬂat =m Z d; (5%

with |d;| = 1 and x;(t) € C([t1,t2];Q) for every i with x;(t) # x;(t) for
i .
Then, for any X,Y € C%(Q;R3)

1 r2
liminf —— X-Vwg,Y-Vw,)dzdt = 77/ (z(t x;(t))) dt.
e—0 | log€’ [tl,tQ]X<Q : E t1 ; ( ))>

Here we state a result analogous to Corollary 7 in [59].
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Proposition 1.17. Let T > 0 and let w. € H}([O,T] x Q;R?) be such that
(1.19) holds true, and such that for all t € [0,T]

1
5 /Q |Vw,(t,z)|>dz < Mx|loge| + C

for some M € N and C € R. Assume moreover that
. M
t
pe(t) =% u(t) =7 Y didy 1),
i=1

with |d;| = 1 and 2;(t) € C([0,T);Q) for any i with x;(t) # x;(t) fori # j.
Then

Mo .7

1

lim inf —— |Byw. | da dt > WZ/ |24)2 dt. (1.21)

=0 [logel| Jio <0 = Jo

ProOF. The proof of this result coincides with the one of Corollary 7 in
[59], the only difference being that [59] assumes that for every ¢ € [0, 7]

1

- [ (1- lwe (¢, 2)|?)? dz < C|loge].

£ Ja

Here this assumption is replaced by (1.19), which is enough to apply Corol-
lary 1.16. Once the statement of Corollary 1.16 holds true, the rest of the
proof follows exactly as in in [59]. O
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CHAPTER 2

['-convergence expansion for systems of screw
dislocations

In this chapter we perform the I'-convergence expansion of the energy
SD, defined in (0.1) and for the functional XY; in (0.8). The results proved
in this chapter are contained in [4].

As mentioned in the Introduction, both SD, and XY; can be regarded as
specific examples of scalar systems F;, whose energy is governed by periodic
potentials acting on first neighbors. In the next section we introduce this
general class of energies and the discrete formalism used in the analysis of
the problem we deal with. We will follow the approach of [11]; specifically,
we will use the formalism and the notation in [3] (see also [56]).

In the following of this thesis, all the results are proved for this general
class of functionals.

2.1. The discrete model for topological singularities

The discrete lattice. For every € > 0, we define (). C 2 as follows

Q. = U  (+eQ),

i€eZ2:i+eQCQ

where Q = [0,1]? is the unit square. Moreover we set Q0 := ¢Z2 N €}, and
QL ={(i,j) e W xQ: |i—jl=¢,i<;j} (wherei < j means that i < j
for I € {1,2}). These objects represent the reference lattice and the class of
nearest neighbors, respectively. The cells contained in €2, are labeled by the
set of indices Q2 = {i € Q2 : i +eQ C Q. }. Finally, we define the discrete
boundary of € as

9.0 == 90, NeZ?. (2.1)

In the following, we will extend the use of these notations to any given
open subset A of R2.

2.1.1. Discrete functions and discrete topological singularities.
As mentioned in the Introduction the dislocations can be seen as topological
singularities of the deformation gradient. Here we introduce the notion of
topological singularity in our discrete setting. To this purpose, we first set

AF(Q) = {u: QY — R},
which represents the class of admissible scalar functions on 2.

Moreover, we introduce the class of admissible fields from QU to the set
S! of unit vectors in R?

AXY:(Q) = {v: Q2 = &'}, (2.2)
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Notice that, to any function u € AF.(€2), we can associate a function
v € AXY-(Q) setting
v =uv(u) = >,
With a little abuse of notation for every v : 20 — R? we denote
lollf2 = Y 2ol (2.3)
JEN
Now we can introduce a notion of discrete vorticity corresponding to
both scalar and S' valued functions. To this purpose, let P : R — Z be
defined as follows
P(t) = argmin{|t — s|: s € Z}, (2.4)

with the convention that, if the argmin is not unique, then we choose the
minimal one.

Let u € AF.(Q) be fixed. For every i € Q2 we introduce the vorticity
ay (1) := P(u(i 4+ cer) —u(i)) + P(u(i + ce1 + cea) — u(i + ceq)) (2.5)
—P(u(i+ce; +ecea) —u(i +cez)) — P(u(i + cea) — u(i)). '

One can easily see that the vorticity «, takes values in {—1,0,1}. Finally,
we define the vorticity measure u(u) as follows

() = 3 u(D)is 2 (er-4en)- (2.6)
1€Q2

This definition of vorticity extends to S* valued fields in the obvious way, by
setting pu(v) = p(u) where u is any function in AF.(€2) such that v(u) = v.
Let M(2) be the space of Radon measures in € and set

N
X = {MEM(Q) : ,u:Zdi(Sxi,NEN,d¢€Z\{O},xi€Q},
= (2.7)

Xe=neX i p=> a(i)biss(e e, (i) € {~1,0,1}
€02

We will denote by i, iy u the flat convergence of u, to u, i.e., in the dual
WL of Wy

2.1.2. The discrete energy. Here we introduce a class of energy func-
tionals defined on AF.(€2). We will consider periodic potentials f : R — R
which satisfy the following assumptions: For any a € R

(1) f(a+ z) = f(a) for any z € Z,
(2) f(a) > %]62”“ — 1) = 1 — cos 27a,
(3) f(a) =27%(a — 2)* + O(|a — 2|3) for any z € Z.
For any u € AF.(2), we define
Fo(u):= ) flu(i) —u(j)). (2.8)
(i.j)e
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As explained in the Introduction, the main motivation for our analysis
comes from the study discrete screw dislocations in crystals and XY spin
systems. We introduce the basic energies for these two models as in [3].

We recall that the energy functional for the screw dislocations model is
defined by

1 . ) .
SDe(u) = 5 > dist®(u(i) — u(y), Z), (2.9)
(.)€
where u € AF.(Q). It is easy to see that this potential fits (up to the

prefactor 472) with our general assumptions.
As for the XY model, for any v : Q0 — S!, we define

1 . .
XYe(v) =5 > o) — v (2.10)
(i,5) €t
Also this potential fits our framework, once we rewrite it in terms of the
phase u of v. Indeed, setting f(a) = 1 — cos(2ma), we have

XYe(v) = > fluli) —u(y)) with v = ™™, (2.11)
(i.7)et
We notice that assumption (2) on F reads as
F.(u) > XY (™), (2.12)
Let {Tii} be the family of the e-simplices of R? whose vertices are of the
form {i,i + eeq,i + eea}, with i € ¢Z% For any v : QY — S!, we denote
by ¥ : Q. — S! the piecewise affine interpolation of v, according with the

triangulation {Tli} It is easy to see that, up to boundary terms, XY.(v)
corresponds to the Dirichlet energy of ¥ in €2¢; more precisely

;/ Vo2 dz + Ce > XY.(v) > ;/ \Va|? de, (2.13)

where C' depends only on ).

Remark 2.1. Let v : Q2 — S'. One can easily verify that if A is an open
subset of © and if |0| > ¢ > 0 on JA., then

/L(v)(AE) = deg(ﬁvaAE)v (214)

where the degree of a function w € H%(BA; R?) with |w| > ¢ > 0, is defined
by
1 w w
deg(w,dA) := / < X V> -7ds, 2.15
008 = 3 Joa Tl * VT 219
with v x Vo := v1 Vg — vaVuy, for v € HY(A; R?).
In particular, whenever || > 0 on i + @ we have p(v)(i + Q) = 0.

2.2. Localized lower bounds

In this section we will prove a lower bound for the energies F. localized
on open subsets A C Q2. We will use the standard notation F.(-, A) (and as
well XY.(-, A)) to denote the functional F; defined in (2.8) with  replaced
by A.

To this purpose, thanks to assumption (2) on the energy density f, it
will be enough to prove a lower bound for the XY, energy. As a consequence
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of this lower bound, we obtain a sharp zero-order I'-convergence result for
the functionals F.

2.2.1. The zero-order I'-convergence. Here we prove the I'-convergence
result for F., which can be seen as the discrete version of Theorem [?]. We
recall that the space of finite sums of weighted Dirac masses has been de-
noted in (2.7) by X.

Theorem 2.2. The following I'-convergence result holds.
(i) (Compactness) Let {uz} C AF-(Q) be such that F.(u.) < C|loge|

for some positive C. Then, up to a subsequence, p(uy) flag w, for
some p € X.

(ii) (Localized T-liminf inequality) Let {ucs} C AF:(2) be such that
p(ue) flag =M did,, with d; € Z\ {0} and z; € Q. Then,
there exists a constant C' € R such that, for anyi=1,..., M and
for every o < Ldist(z;,0Q U Uz %5), we have

liminf F.(ue, By (z;)) — 7|di|log < > C. (2.16)
e—0 e
In particular

liminf F. (u.) — 7| () logg > C. (2.17)

e—0
(iii) (T-limsup inequality) For every u € X, there exists a sequence
{u:} € AF(Q) such that p(u.) flag w and
F.
7|pu|(©) > lim sup s(us).
0 |loge|

The above theorem has been proved in [56] for F. = SD. and in [3] for
F. = XY,, with (ii) replaced by the standard global I'-liminf inequality

.. Fa(ua)
< .
mlul(2) < lim inf Toge| (2.18)

which is clearly implied by (2.17).

By (2.12), the compactness property (i) follows directly from the zero-
order I'-convergence result for the XY; energies, while the proof of (ii) re-
quires a specific analysis. For the convenience of the reader we will give a
self contained proof of both (i) and (ii) of Theorem 2.2. We will omit the
proof of the I'-lim sup inequality (iii) which is standard and identical to the
XY, case.

Before giving the proof of Theorem 2.2, we need to revisit the ball con-
struction introduced in Subsection 1.2.1 in order to include our discrete
case.

2.2.2. Lower bound on annuli. As noticed in Remark 1.9, the key
estimate in order to prove compactness in the continuous Ginzburg-Landau
is given by a sharp lower bound on annuli (see (1.12)). In the following we
will prove an analogous lower bound for the energy XY;(v,-) in an annulus
in which the piecewise affine interpolation v satisfies || > % In view of
(2.12) such a lower bound will hold also for the energy Fr.
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Proposition 2.3. Fize > 0 and let \/2e < < R—2+/2¢. For any function
v: (Br\ By) NeZ? — 8" with [0 > § in Byp_ 5.\ B, /3., it holds

R

XY.(v,Br\ By) > m|u(v)(B,)|log , 2.19
0B\ Br) 2 wa(0) (Br)llog —— S (219)
where a > 0 is a universal constant.
PROOF. By (2.13), using Fubini’s theorem, we have that
R—2¢
XY.(v,Br\ By) / / |V |2 dsdp. (2.20)
+v2¢ 0B,

Fix r + V2 < p<R-— V2¢ and let T be a simplex of the triangulation of
the e-lattice. Set yr(p) := 0B, N T, let 47(p) be the segment joining the
two extreme points of yr(p) and let (p) = Uy Y7 (p); then

1 / ~ 12 1 ~ 12 1 ~ 12441
= Vol*ds = / |Vol|*ds = = E Vo [“H (vr(p))2.21)
2 0B, 2 Urvyr(p) 2 T i

1 . _ 1 -
> Y PR G =5 [ (Vi
T ¥(p)

Set m(p) := miny,) |0]; using Jensen’s inequality and the fact that H'(3(p)) <
HY(0B,) we get

1/ (Vo[ ds 1/ mz(p)‘<{] X Vf}> T 2
2 J3(0) ~ 2J50) CIN

V

ds (2.22)

L_mip)_ T v rds
= M) /W)(WW) d
mz(p)w 2
> == Id| (2.23)

where we have set d := deg(v,0B,) = u(v)(B,), which does not depend on
p since |0] > 1/2.

Now, let T'(p) be the simplex in which the minimum m(p) is attained.
Without loss of generality we assume that T(p) = T, for some 7 € £Z? .
Let P one of the points of 7(p) for which |[0(P)| = m(p). By elementary
geometric arguments, one can show that

1 1—m?
/ Vids > ar ), (2.24)
2 9B, e

for some universal positive constant .
In view of (3.14), (3.18) and (3.19), for any r + v/2e < p < R — v/2¢ we
have

1
/ Vo2ds > m(p) 7ld| v &
B, P

1—m?(p) S w|d|&
2 € ~enmld|+ap
By this last estimate and (3.13) we get

e(Flu)(Br) = V2) + R
e(Zlu(v)(By)| +v2) + 1

XYe(v, Br \ By) = 7|u(v)(B,)|log (2.25)
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Assuming, without loss of generality, & < 1, we immediately get (3.12) for
a=1ZI. U

2.2.3. Ball Construction for F.. Here we introduce the ball con-
struction for the functionals F.. Let B = {Bg,(x1),...,Bry(zn)} be a
finite family of pairwise disjoint balls in R? and let pu = Zf\il d;d,, with
d; € Z\ {0}. Let F' be a positive superadditive set function on the open
subsets of R?, i.e., such that F(AU B) > F(A) + F(B), whenever A and B
are open and disjoint. We will assume that there exists ¢ > 0 such that

P(Ay @) = mlu(B (@))] log .

for any annulus A, r(z) = Br(z) \ Br(x), with A, g(z) C Q\ U, Br, ().
The purpose of this construction is to select a family of larger and larger
annuli in which the main part of the energy F' concentrates. Let ¢t be a
parameter which represents an artificial time. For any ¢ > 0 we want to
construct a finite family of balls 5(¢) which satisfies the following properties

(1) UL, Bri(#i) © Upes) B,

(2) the balls in B(t) are pairwise disjoint,

(3) F(B) > m|u(B)|log(1 + t) for any B € B(t),

(4) Xpepwy R(B) < (1+1) 3, Ri + (1 +t)eN(N? + N + 1), where
R(B) denotes the radius of the ball B.

We construct the family B(t), closely following the strategy of the ball
construction introduced in Subsection 1.2.1 with slight modifications that
include our case: The only difference in our discrete setting is the appearance
of the error term ¢ > 0 in (3.21) and in (4), while in the continuous setting
c=0.

In this case, the ball construction starts with an expansion phase if
dist(Br, (z:), Br;(7;)) > 2c for all i # j, and with a merging phase oth-
erwise. Assume that the first phase is an expansion. It consists in letting
the balls expand, without changing theirs centers, in such a way that, at
each (artificial) time, the ratio 0(t) := f_f_%z
parametrize the time enforcing 0(t) = 1 4+ ¢t. Note that with this choice
R;(0) = R; + c so that the balls { B, (%)} are pairwise disjoint. The first
expansion phase stops at the first time 77 when two balls bump into each
other. Then the merging phase begins. It consists in identifying a suitable
partition {Sjl}j=1,...,Nn of the family {BRi(Tl)(l‘i)}, and, for each subclass
S jl, in finding a ball B R (Il‘Jl) which contains all the balls in .S ]1 such that the
following properties hold:

i) for every j # k, dist(BR]l (le')’BRi (z})) > 2¢;
ii) R]l — Nc is not larger than the sum of all the radii of the balls
Br,m)(z:) € Sjl», i.e., contained in Ble. (a:;)

(2.26)

is independent of i. We will

After the merging, another expansion phase begins, during which we let the

balls {B Rt (le)} expand in such a way that, for ¢t > Ti, for every j we have
J

Ri(t) 1+t
c+ Rl 1+

(2.27)
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Again note that le. (Ty) = le. + c¢. We iterate this process obtaining a
set of merging times {T1,...,7,}, and a family B(t) = {BR;?(t)(x?)}j for
t € [T, Tx+y1), for all k =1,...,n — 1. Notice that n < N. If the condition
dist(Bg, (7:), Br,(7;)) > 2c for all i # j, is not satisfied we clearly can start
this process with a merging phase (in this case T} = 0).

By construction, we clearly have (1) and (2). We now prove (4). Set
N(t)=4{B € B(t)} and I(t) = {1,...,N(t)}. Moreover, for every merging
time T} and 1 < j < N(T}), set

I(T}) == {z € I(Ty1) : B (0f71) € B (x§)} .

By ii) and (2.27) it follows that for any 1 < k <n

YRy -No < > > RTHT)
j=1 j=1 lEIj(Tk)
N(Tg-1)
_ Z <1+TkRk;—1+1+ch>
= 1+Tp1 1+ Ty
N(Ty—1)
1—|—Tk E—1 1—|—Tk
= — R +—+——cN(T,_1§2.28
14T,y ; J 1+ Ty ( k 11 )
N(Ti-1)
R 1+ T1%)cN.
T, Z L+ (14 Ty)e

Let T, <t < Tyy1 for some 1 < k < n; by (2.27) and iterating (2.28) we get

N(Ty) N(Ty)
1+t 14+t
RF(t) = RF + N(T,

N
<(1+8)Y Ri+ (1+t)eN(N?+ N +1),
=1

(2.29)

and this concludes the proof of (4).

It remains to prove (3). For t = 0 it is trivially satisfied. We will show
that it is preserved during the merging and the expansion times. Let T} be
a merging time and assume that (3) holds for all ¢ < T;. Then for every
J € I(Tk)

F(Bp(ah) > 3 F(Bgeorpy (@)
1€1;(Ty)

> mlog(1+ Ti) (B (2))].
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Finally, for a given ¢ € [T}, Tj11) and for any ball Bpe (zF () € B(t)
we have

F(Bpegy () = F(Bpug (e5) \ Bpe(ah) + F(Bpe(ak))

14+t
> 71| i(Bpiy (21))| log T

+ 7| i(Bpe gy (7)) 1og (1 + T)

= (B oy () [ log(1 + 1),

Ri(t) _ 14t
c-&-Ri-C 1+Ty

where we have used that

2.2.4. Proof of Theorem 2.2. First, we give an elementary lower
bound of the energy localized on a single square of the lattice, whose proof
is immediate.

Proposition 2.4. There exists a positive constant B such that for anye > 0,
for any function v € AXY(Q)) and for any i € Q? such that the piecewise
affine interpolation & of v satisfies min;y.q 8| < 3, it holds XYz (v,i+eQ) >

B.

PRrROOF OF THEOREM 2.2. By (2.12), it is enough to prove (i) and (ii)
for F. = XY, using as a variable v. = e?™=. The proof of (iii) is standard
and left to the reader.

Proof of (i). For every € > 0, set I := {z €02 min;y.q 0] < %} Notice
that, in view of Remark 2.1, pu(v:) is supported in I + 5(e1 + e2).

Starting from the family of balls B . (i + §(e1 + e2))), and eventually
passing through a merging procedure Wezcan construct a family of pairwise
disjoint balls

BS = {BRi,s (mi’s)}izl,...,Ng ’

with Zlel R; . < efl.. Then, by Proposition 2.4 and by the energy bound,
we immediately have that §I. < C|loge| and hence
Ne
Z R;. <eClloge|. (2.30)
i=1
We define the sequence of measures

Ne

He = Z ﬂ(vs)(BRi’E (l‘iﬁ))éﬂfi,s'

i=1
Since |pe(B)| < $I. for each ball B € B., by (3.12) we deduce that (3.21)
holds with F(-) = XY.(ve, -\ Upes. B) and ¢ = e(afll. + 2v/2).
We let the balls in the families B, grow and merge as described in Sub-
section 3.2.3, and let B.(t) := {BRi,g(t) (@ie (t))} be the corresponding family

of balls at time ¢t. Set moreover t, := % — 1, No(tc) := tB:(t:) and define

T Z ’ug(BRi’S(tS)(wifs(tf)))dl’i,s(ts)' (231)
i=1,...,Ne(te)
BRi,s(te) <mi78 (ts))CQ
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By (3) in Subsection 3.2.3, for any B € B.(t.), with B C ), we have
XY.(0z, B) > nlpe(B) log(1 + t.) = mlu(B) |3 loge];

by the energy bound, we have immediately that |v.|(€2) < M and hence {v.}
is precompact in the weak® topology. By (4) in Subsection 3.2.3, it follows
that

Ne(te)

Rj(te) < C\E (tua)47

j=1
which easily implies that ||vz — pc||gat — 0; moreover, using (3.22), it is easy
to show that || — p(ve)||gae — 0 @as € — 0 (see [6] for more details). We
conclude that also p(v.) is precompact in the flat topology.

Proof of (ii). Fix i € {1,..., M}. Without loss of generality, and possi-

bly extracting a subsequence, we can assume that

limiéanYa(va,Bg(mi)) — m|d;||log €]
e—>
= liIr(l)XYE(vE,Bg(a:i)) —m|d;||loge| < +o0. (2.32)
E—

We consider the restriction v. € AXY.(B,(;)) of ve to By(x;). Notice that
supp(u(ve) — p(ve) L By (x;)) C By(xi) \ By—e(i). On the other hand, by
(3.24) and Proposition 2.4 it follows that

18(02) (B (20) \ Bo—e(w)) < Cllogel. (2.33)
Then, using (2.33) one can easily get
HM(’DE) - M(UE)I—BU(xi)Hﬂat — Oa (2.34)
and hence
[[14(0e) — didz, || gat — 0. (2.35)

We repeat the ball construction procedure used in the proof of (i) with
Q replaced by By (x;), ve by 9. and I. by

1
L. =137 € (By(x;)? : min |t < =}.
e {J (Bo(xi))z + min [0c] < 2}
We denote by B, . the corresponding family of balls and by B; -(t) the family
of balls constructed at time t¢.
Fix 0 < v < 1 such that

(1 =) (Idi| + 1) > |da - (2.36)

Let t., = €771 — 1 and let 1., be the measure defined as in (3.23) with
replaced by B, (z;) and t. replaced by t. .. As in the previous step, since
v > 0 we deduce that ||v; , — d;dg, ||aat — 0; moreover, for any B € B; - (t- )
we have

XYo(ve, B) 2 nlve(B)(1 — 7)) logel (237

Now, if liminf._,q vz 4|(Bo(xi)) > |d;|, then, thanks to (3.26), (3.10) holds
true. Otherwise we can assume that |v. ,|(Bs(x;)) = |d;| for € small enough.
Then v, is a sum of Dirac masses concentrated on points which converge
to x;, with weights all having the same sign and summing to d;. Let Cy > 0
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be given and set t. := W — 1. By (2.29), we have that any ball
B € B, c(t.) satisfies

Co

—0

o’

where Cy > 0 is a universal constant. We fix C > 2C5 so that diam(B) < Z.
Recall that, for ¢ small enough, supp(ve) € B, /2(2i); hence if B € B; (1)

with supp(v: ) N B # 0, then B C B, (z;) and one can easily show that

M(%)( BeBU(t ) B) -
BCE;;(J::-)

diam(B) <

We have immediately that

XY (v:, Bo(2:)\Upep, . B) 2 7Y |u(0:)(B)|log(1+t:) > ldi| log
BGBi,s(t_e)
BCBO‘(xi)

T
Ci(flic)e

On the other hand, by Proposition 2.4 there exists a positive constant [
such that

XY (e, j +6Q) > B forany j € [
therefore, XY: (e, Upep, _B) > Btl; . Finally, we get

X}/E(’U£7 BJ(-TZ)) > X}/E(/lj€7 Ba($i) \ UBEBLEB) + XY’E(Q& UBGBZ',EB)
> 7ldj] logg —log (C1(4T2)") + 41,8 > m|di| logg +C
and (3.10) follows sending € — 0. O

2.3. I'-expansion for F_

In this section we will derive the I'-expansion of the functionals F, anal-
ogously to what we state in the continuous Ginzburg-Landau framework (see
Theorem 1.8). More precisely, we show that the I'-limit of F. —|u|(2)|log €|
is given by the renormalized energy in (1.5) plus a term which accounts for
the discrete core energy to this order. Indeed, whereas the renormalized en-
ergy is the same as in the continuous Ginzburg-Landau framework, the core
energy depends on the potential f of the functional F.. To this purpose,
instead of (1.8), we consider the following discrete minimum problem

vr(g,0) = ueAr%i:(ch) {F.(u,By) : 2mu(-) = 6(:) on 9:B,}, (2.38)
where the discrete boundary 0. is defined in (2.1) and 6(z) is the polar
coordinate arctan z:y/x1, also referred to as the lifting of the function I%I

Proposition 2.5. For any fixed o > 0, the following limit exists finite
€
li — 7| log —|) =: . .
lim(yr(e, 0) —mllog _|) =:7r € R (2.39)

PROOF OF (2.39). First, by scaling, it is easy to see that yp(e,0) = I(£)
where I(t) is defined by

I(t) := min {Fl(u,B;)] 27u =6 on 8131}.
t t
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We aim to prove that
t
0<ti <ty = I(t;) < wlogt—2 + I(t2) + O(ts). (2.40)
1

Notice that by (2.40) it easily follows that lim,_,y+ (I(¢) —7|log t]) exists and
is not +00. Moreover, by Theorem 2.2, there exists a universal constant C'
such that

I(t) > w|logt|+C  Vte (0,1].
We conclude that lim,_,o+(I(¢) — 7| logt|) is not —oo.

In order to complete the proof we have to show that (2.40) holds. To
this end, set A, p = Bgr \ By, and let 6 be the lifting of the function %

Elh
Since |VO(x)| < ¢/r for every x € A, g, by standard interpolation estimates
(see for instance [25]) and using assumption (3) on f, we have that, as
r < R — o0,

Fi(0)2m, Ayp) < wlog =+ O(1/r). (2.41)
T
Let ug be a minimizer for I(t2) and for any i € 72 define

)
ug(i) if il < &
0(:)

u1(2) = { 80 if % < ‘Z’ < %,
By (2.41) we have

IR)< Y flu(i) — w(j)) + > flur(@) — w (7))
(1.)€(Br)} (1.9)€(A,_ vz p)1
i,5€(Br)1 ij€(A,_ 3. p)1
<I(1/r)+ wlog% +0(1/r),
which yields (2.40) for r = % and R = % O

2.3.1. The main I'-convergence result. We are now in a position
to state the I'-expansion result for the functionals F.

Theorem 2.6. The following I'-convergence result holds.

(i) (Compactness) Let M € N and let {u.} C AF-(Q) be a sequence
satisfying Fr(us) — Mn|loge| < C. Then, up to a subsequence,
() o W for some p = Zfil d;0y; with d; € Z\ {0}, z; € Q and
> ldil < M. Moreover, if Y, |d;| = M, then ), |d;j| = N = M,
namely |d;| =1 for any i.

(ii) (T-liminf inequality) Let {u.} C AF-(Q2) be such that p(us) o i,
with u = Zf\il di0y;, with |d;| =1 and x; € Q for every i. Then,

lim ié1f F.(uc) — Mm|loge| > W(u) + M. (2.42)
e—

(iii) (T-limsup inequality) Given p = Zf\il di0y, with |d;| = 1 and
x; € Q for every i, there exists {u.} C AF:(Q) with p(ue) fag 1
such that

F.(ue) — Mml|loge| — W(u) + M~.
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In our analysis it will be convenient to introduce the energy functionals
F. in term of the variable p, i.e., by minimizing F. with respect to all
u € AF-(Q) with p(u) = p. Precisely, let F. : X — [0,400] be defined by

Fe(p) :=1nf {F.(u) : ue AF(Q),pu(u) = p}. (2.43)
Theorem 2.6 can be rewritten in terms of F. as follows.

Theorem 2.7. The following I'-convergence result holds.

(i) (Compactness) Let M € N and let {u-} C X be a sequence sat-
isfying Fe(pe) — Mm|loge| < C. Then, up to a subsequence,
pe ™ =N by, with d; € Z\ {0}, 2; € Q and 3, |di| < M.
Moreover, if Y. |d;| = M, then ), |d;| = N = M, namely |d;| =1
for every 1.

(ii) (T-liminf inequality) Let {u:} C X be such that pie flag w= Zf‘il d;dy
with |d;| =1 and x; € Q for every i. Then,

limiélf}"e(ug) — Mmr|loge| > W(u) + M. (2.44)
e—

(iti) (D-limsup inequality) Given p = S\M d;dy, with |d;| = 1 and
x; € Q for every i, there exists {u:} C X with pe flag W such that
Fe(pe) — Mr|loge| — W(u) + M. (2.45)

2.3.2. The proof of Theorem 2.6. Recalling that F.(u) > XY.(e?™),
the proof of the compactness property (i) will be done for F, = XY., and
will be deduced by Theorem 2.2. On the other hand, the constant v in the
definition of the I'-limit depends on the details of the discrete energy Fg,
and its derivation requires a specific proof.

flat

Proof of (i): Compactness. The fact that, up to a subsequence, p(uz) —
=N did,, with YN | |d;] < M is a direct consequence of the zero order
I-convergence result stated in Theorem 2.2 (i). Assume now ZZ]\L Lldil =M
and let us prove that |d;|] = 1. Let 0 < 01 < o3 be such that By, (x;)
are pairwise disjoint and contained in 2 and let ¢ be small enough so that
By, (x;) are contained in Q.. For any 0 < r < R and x € R?, set A4, g(z) :=
Bgr(x) \ Br(z). Since F.(u.) > XY, (e?mue),

N
V(e By (31)) + 3 XYM, Ag, g (2). (2.46)
=1

AV
i1
<

To ease notation we set v, = €2 and we indicate with 7. the piecewise
affine interpolation of v.. Moreover let ¢ be a positive number and let € be
small enough so that ¢ > /2. Then, by (3.10) and (2.13), we get

(ue) >7rZ]d|log i1 Z/ VEPasC @
01+t g9 — t
~ 12
By the energy bound, we deduce that anlth,art(wi) |[Vie|?dx < C and
hence, up to a subsequence, 9. — v; in H'(Ag, tt.0s—t(z;); R?) for some
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field v;. Moreover, since

1 1
= (1 —|9:/*)?dz < CXY.(v.) < Clog -,
e“ Ja &

o1+t,og—t (-T'L)

(see Lemma 2 in [2] for more details ), we deduce that |v;| =1 a.e.
Furthermore, by standard Fubini’s arguments, for a.e. o1 +t < 0 <
o9 —t, up to a subsequence the trace of 9. is bounded in H'(0B,(z;); R?),
and hence it converges uniformly to the trace of v;. By the very definition
of degree it follows that deg(v;, 0B, (7)) = d;.
Hence, by (1.12), for every i we have

1

/ Vuil? da > |d; | log 22—
2 A01+t,027t(xi)

: 2.4
p—— (2.48)

By (3.34) and (3.35), we conclude that for ¢ sufficiently small

N
o oo —t
i=1
N N
> Mm|loge| +7TZ(|di|2 — |di])log9 +7rz |di|210gm +C.
B =1 o1 P o9(o1 + t)

The energy bound yields that the sum of the last two terms is bounded;
letting ¢ — 0 and o1 — 0, we conclude |d;| = 1.

Proof of (ii): T-liminf inequality. Fix r > 0 so that the balls B, (x;)
are pairwise disjoint and compactly contained in . Let moreover {Qh}
be an increasing sequence of open smooth sets compactly contained in 2
such that UpenQ® = Q. Without loss of generality we can assume that
F.(u:) < Mm|loge| + C, which together with Theorem 2.2 yields

M
Fe(ue, @\ | Br(m:)) < C. (2.49)
=1

We set v, := 2™ and we denote by ¥, the piecewise affine interpola-
tion of v.. For every r > 0, by (3.36) and by (2.12) we deduce XYz (v: \
Ui]\il B,(r;)) < C. Fix h € N and let £ be small enough so that Q" C Q..
Then,

1

2 /ﬂh\uiil Bor(a:)

therefore, by a diagonalization argument, there exists a unitary field v with
ve HYQ\ UM, B,(x;); S!) for any p > 0 and a subsequence {?.} such that
5 — v in HL(Q\ UM, () R?).

Let o > 0 be such that B, (z;) are pairwise disjoint and contained in Q".
For any 0 < r < R < +oc and for any x € R?, set A, p(x) := Br(z)\ B,(z),
A, g = A, g(0). Let t < o, and consider the minimization problem

Vo |* dz < C;

1
min / \Vw|*dz : deg(w,0B:) =17.
weH (Ay2,1:8%) | 2.J4,,,, 2
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It is easy to see that the minimum is 7log 2 and that the set of minimizers
is given by (the restriction at Ay/y; of the functions in)

K= {a; taeClal = 1}. (2.50)

Set
d¢(w, K) := min {HVU} — VUHLQ(At/Q’t;Rz) HEINS IC} . (2.51)

It is easy to see that for any given 0 > 0 there exists a positive w(d) (inde-
pendent of ¢) such that if d¢(0.(- + x;),K) > 6, then

1
lim inf / |Vi.|? dz > 7log 2 + w(d). (2.52)
e—=0 2 A (z5)

%+\/§a,t7\/§€ g

By a scaling argument we can assume ¢ = 1. Then, arguing by contradiction,
if there exists a subsequence {7} such that

1
lim — |Vi.|? dz = 7log 2,

e—0 2 A%+\/§E,17\/§€(xi)

then, by the lower semicontinuity of the L? norm, we get

e—0 2 A%+\/§€717\/§E(xi)

mlog2 < 1/ Vo> dx < lim1 |Vi.|? dz = mlog 2.
A1/2,1(xi)
(2.53)

It follows that v(-+x;) € K, and that 0. — v strongly in H'(A; /91 (x;); R?),
which yields the contradiction dist(v(- + x;), ) > 6.

Let L € N be such that Lw(6) > W(u)+ M(y—7logo —C) where C is
the constant in (3.10). For I =1,..., L, set Ci(x;) := Bai—i,(x;) \ By-1,(z;).

We distinguish among two cases.

First case: for € small enough and for every fixed 1 <[ < L, there exists
at least one ¢ such that dyi—i,(0:(- + x;), L) > 0. Then, by (3.10), (3.39)
and the lower semicontinuity of the L? norm, we conclude

M L M
Fu(ue, @) > 3 XYe(ve, By 1g(ai) + 3 3 XVe(ue, Cifa))
i=1 =1 =1

> M(ﬂlog%—i-ﬂlogs\ +C) 4+ L(Mmlog2 + w(d)) + o(e)

(6
> Mm|loge| + M~ + W(u) + o(e).

Second case: Up to a subsequence, there exists 1 < _l_ < L such that for
every i we have dy(0.(- + 2;),K) < 0, where & := 27lg. Let oz ; be the
unitary vector such that |0 — aE,i%HHl(C[(zi);R% = ds (Ve (- + 2:), K).

One can construct a function 4. € AF.(2) such that

(i) ue = ug on aS(RQ \ By, (4));
(ii) ™ = a.e on 0. Byi_i, ()
(i) Fe(ue, Bs(x;)) > F:(te, Bs(x;))+r(e,d) with lims_ lim._,¢ (e, d) =
0.
The proof of (i)-(iii) is quite technical, and consists in adapting standard
cut-off arguments to our discrete setting. For the reader convenience we skip
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the details of the proof, and assuming (i)-(iii) we conclude the proof of the
lower bound.
By Theorem (1.7), we have that

M M

Fs(ue) > X}/s(vsa Qh \ U Bﬁ(xi)) + ZFE(U€’ Bt?(xi))
i=1 =1

—_

M
=3 0| d Fe(te, Bs(x )
_2/§2h\UM1Ba(mi)|vva| 7+ ) Fellie, Ba (@) + (2 8) + o)

1= =1
1

>

> / Vo2 da + M(y — mlog g)—i—r(s,é)—i—o(a)
2 JamulL, Ba(a) o

vV
NN

/ ]Vv]de+M(7—7rlog§)—1—7“(5,5)—1—0(5)+o(1/h)
UL, Bo(x:) 7

> Mmlloge| + M~y + W(u) + r(e,9) + o(e) + o(a) + o(1/h).

The proof follows sending e — 0, § — 0, 0 — 0 and h — oo.

Proof of (iii): T'-limsup inequality. This proof is standard in the contin-
uous case, and we only sketch its discrete counterpart. Let w, be a function
that agrees with a minimizer of (3.28) in @\ UY, B,(z;) =: Q. Then,
Wy = a; ="+ on 0B, (x;) for some |o;] = 1.

For every p > 0 we can always find a function w, , € C* (Q7; S) such
that wy,, = ;=" on 9B, (z;), and

1 1
5 /QU ]ng,p\2dm — 2/90 |Vw,|?dz < p.

Moreover, for every i let w; € AXY.(By(z;)) be a function which agrees

with o |£ :iq on J: B,(z;) and such that its phase minimizes problem (3.29).

If necessary, we extend w; to (By(z;) N eZ?) \ (By(x;))? to be equal to
aié:i?'. Finally, define the function w.,, € AXY.(Q2) which coincides

We,p o0 27N 72 and with w; on By (x;)NeZ?. Then, in view of assumption
(3) on f, a straightforward computation shows that any phase u. o, of we oy
is a recovery sequence, i.e.,

li_r>r(1) Fs(us,o,p) — M| 10g€‘ = M~y +W(u) +o(p, o),
e

with limg_0lim,_0 0(p, o) = 0.

2.3.3. TI'-convergence analysis in the L? topology. Here we prove
a I'-convergence result for F.(u.) — Mn|loge|, where M is fixed positive
integer, with respect to the flat convergence of y(u.) and the L2-convergence
of ¥, where 7, : Q. — R? is the piecewise affine interpolation of e?™«

To this purpose, for N € N let us first introduce the set

N

Dy = {ve L*(Q;8Y): Jv= Wzdiéxi with |d;| =1, z; € Q,
i=1

v € HL (Q\ supp(Jv); SH}.
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Notice that, if v € D)y, then the function
1

2 /Q\U?il Bo ()

is monotonically decreasing with respect to o. Therefore, it is well defined
the functional W : L?(£; S') — R given by

|Vo|?dz — Mn|log ol

1

lim - y |Vo|?dz — Mr|logo| if v € Dyy;
— o N\Uiz1 Bo (i)
W(v) —00 if v € Dy for some N < M; (2.55)
400 otherwise

Notice that, by (1.9) we have that, for every u = Y™  d;d,, with |d;| =1

() UEHIIOC({ZI\SUPP(M);Sl) ) (2:30)
v=p

Remark 2.8. We can rewrite W(v) as follows
M +oco

1 1
W(v :/ Vo|? dz+Mn log p+ /
=35 fmes P §j§j(2 3

|Vo|?dz — 7 log 2) ,
i=1 j=0

¥
where C;; denotes the annulus By-;,(7i) \ By-+1),(2i). In particular, for
the lower bound (1.12) we deduce that

szujp;/c | |Vo[?dz < wlog2 + W(v) — M log p. (2.57)
’ ¥

Theorem 2.9. Let M € N be fixred. The following I'-convergence result
holds.

(i) (Compactness) Let {u.} C AF-(Q) be such that F.(u:) < Mm|loge|+C.
Then, up to a subsequence, p(ug) flag w= Zf\il d;0y, with d; € Z\{0}, z; € Q
and ZZ]\LI |d;| < M. Moreover, if Zf\il |di| = M, then |d;| =1 and up to a
further subsequence v.—v in H (2 \ supp(p); R?) for some v € Dy;.

(ii) (T-liminf inequality) Let v € Dy and let {u.} C AF-(Q) be such that
p(ue) W Jv and 9. — v in L2(S;R?). Then,

hni}élf F.(ue) — Mm|loge| > W(v) + M~. (2.58)
&

(i1i) (T-limsup inequality) Given v € Dy, there exists {us} C AF-(Q) such
that p(ue) flag Jv, o.—v in HL (Q\ supp(Jv); R?) and
liH(l) F.(ue) — Mml|loge| = W(v) + M~. (2.59)
e—

PROOF. Proof of (i). The compactness properties concerning the se-
quence {u(ue)} are given in Theorem 2.6 (i) while the weak convergence up
to a subsequence of {0.} to a unitary field v such that v € Dj; has been
shown in the first lines of the proof of Theorem 2.6 (ii).

Proof of (ii). The proof of I'-liminf inequality follows strictly the one of
Theorem 2.6 (ii) and we leave it to the reader.

42



Proof of (ii). Let Jv = 732, did,,, with z; € Q, |d;| = 1. Fix o > 0
and Q° = Q\ UM, B,(x;). Without loss of generality we can assume that
W(v) < 400 and hence for some fixed constant C' > 0 and for every o

2

Now, fix 0 > 0, and let C; ; denote the annulus By, (2;) \ By—(j+1),(Z4)-
By Remark 2.8, it follows that for every i =1,..., M

1
/ |Vo|? dz < Mn|logo| + C.
Qo

lim ! Vo|? dz = 7log 2. (2.60)
J—00 CZ,]
Recall that mlog2 is the minimal possible energy in each annulus, and that
the class of minimizers is given by the set K defined in (3.37). Using standard
scaling arguments and (2.60), one can show (see (2.53)) that for any j € N
there exists a unitary vector «; ; such that

1 T — T

hl Vip—q "

2 /Cz (v i xr— xl|>
with lim;_, (i, j) = 0. Moreover, we can find a function w; € C*°(Q2777; S?)
such that

2
dz = (3, j), (2.61)

»J

1 ) 1
- P — <-. .
5 /QQ_jg |Vw; — Vu|*de < 7 (2.62)
Let p € C'([3,1];]0,1]) be such that ¢(3) =1 and ¢(1) = 0, and let define
the function v; ; in Cj ;, with

vig (@) i= (2o o — ;)i j “”’“’Z'| + (1= (@0 Yo — zi])wy(x).

i
o —

Then define the function v; as follows

w;j in Q27
e 2.63
Y {U,‘J‘ in Ci,j . ( )

Finally for every i we denote by o7 ; € AXY:(By-i-1,(2;)) a function
which agrees with O‘%’Jﬁ on 0:By—j-1,(x;) and such that its phase (up
to an additive constant) minimizes problem (3.29). If necessary, we extend

Ui j t0 (Bo—i—1,(z;) N eZ?) \ (By-i-1,(2;))? to be equal to a; ji==2. Fi-

lz—aq]
nally, consider the field the v.; which coincides with v; on the nodes of
02777 and with 5 ; on By-j,(xi) N eZ?. In view of assumption (3) on f,
a straightforward computation shows that any phase u. ; of v, ; satisfies

2

with lim;_, o(j) = 0. A standard diagonal argument yields that there exists
j(g) — 0 such that Ue j(c) 18 a recovery sequence in the sense of (2.59). [

1 .
lim F;(uc ;) — Mm|loge| = M~y + / Vo2 dz — Mr|log(2790)| +o(j),
e—0 02 o
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CHAPTER 3

['-convergence expansion for anisotropic and long
range interaction energies

In this chapter we develop the I'-convergence analysis for anisotropic
energies defined in the triangular lattice. Moreover we will show that a
similar expansion holds if we consider isotropic long range interactions which
satisfy a decay assumption. The results of this chapter are contained in the
preprint [32]. We first introduce the notation we need.

3.1. The discrete model

We recall that the properties of the potential f and the definition of the
functional spaces AF.(§2) and AX)Y(Q2) are given in Section 2.1.

The discrete energies. Let c.,,c., > 0 and let c¢,4e, > 0. For any
u € AF(Q) we define the anisotropic energy in the triangular lattice as

= % D cey f(uli+ eer) = u(i)) + ey f(uli + ge2) — u(i))
ieQ? (3.1)

+ Certeo f(u(i + €1 + €€2) — u(i)).

We now introduce the isotropic long range interaction energy. Set Z%r =
{€ € 7% : € ey >0}, where - denote the usual scalar product in R%. Let
{ce}e be a family of non-negative constants labeled with £ € Zi such that
C¢ = Cely Cey = Cey > 0 and dezi celé|* < +oo. We define the energy

FL'(u) ; ch S fluli+eg)) —u(i). (3.2)
5622 i€Q?
[£,i4-€]CQe

Analogously to the isotropic case, we set

SDT (u Z Ce,dist?(u(i + ee1) — u(i), Z)
ZEQQ

cepdist?(u(i + 662) - () Z) + Cey s epdist? (u(i + cey 4 cen) — u(i), Z)
SD (u) : Z ce Y. dist®(u(i+€) — u(i), Z).

geZZ ieQ?
[7’7Z+€€} CQE
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XYL (v) == Z Cey|V(i + g€1) — v(D)]? + cop|v(i + c€2) — v(i)]
1€Q2

+Cepte, V(i + €1 + €€2) — v(i)|2,

1 . ‘
XVI@)i=g Yee 3 i) — (i)
cez? ieQ?
[i,i+e€)CQe
Once again, we notice that assumption (2) on f implies
FT (u) > XYT (&) (3.3)

as well as F/"(u) > XY/ (e?™i),

For any v : Q¥ — 8!, we recall that 9 : Q. — S! is the piecewise affine
interpolation of v, according with the triangulation {i +eT*} defined in
Section 2.1.

For any A C Q and for any w € H'(A;R?) we set

1
Fl(w, A) := 2/ Cey|Oey W] + Cop|Oeyw]|* + 2061+62]861}62w\2dx. (3.4)
A 2

It is easy to see that there exists a positive constant C' depending only on
Q such that

FL(©5,9:) + Ce > XYV (v) > F1(5,9.), (3.5)

where Oe;tep 0(2) 1= (0, 0(1), Oey 0(1)) - % for any = € i+eQ = i+¢[0,1]%
V)

3.2. I'-expansion for FI

In this section we develop the I'-convergence analysis of the functionals
FI as e — 0. This analysis is closely related to the one given in the isotropic
case in Chapter 2, but it requires some cares due to the presence of the
anisotropy coefficients and of the interaction in the direction %

3.2.1. The zero-order I'-convergence. Here we prove the I'-converegence

result for the energies HZ—ETE' as ¢ — 0. By (3.3), it is enough to prove the
compactness property and the I'-liminf inequality for the functional X YsT
whereas the construction of the recovery sequence is standard.

We start with a simple lemma which allows to write the energy in (3.4)
as the (multiple of the) Dirichlet energy of a suitably modified field. To

simplify the notation, we set A 1= \/c¢,Cey + Ce, Ceytes T CeaCeiten-

Lemma 3.1. Let A be an open subset of Q0 and let w € H'(A;R?). There
exist two positive numbers A1, Ao > 0 and two orthonormal vectors vy, 1o
depending only on ce,, Ceys Ceytey, SUch that

A A

2 )\2
FT(w, A) = 2/“;|aylw(x)|2+ 20 w()? da. (3.6)
2 1

PROOF. It is easy to see that

1
FT(w, A) = 2/(Ce1+ce1+ez)’ae1w|2+(cez+ce1+ez)|8ezw2+2061+62861waeQde'
A
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Let consider the quadratic form on R defined by
Q(X,Y) = (Cey + Cerres) X7 4 (Cey + Cere) Y + 20e, 10, XY

We first notice that if c.,1., = 0 than the matrix associated with @ is
diagonal and we set

Al = Ve, Ay 1= VCey, V1:=e€1, Vo:=e€g.

From now on, we will focus on the case c¢, e, > 0.

Set D := \/ (Cey — Cep)? +4c? a straightforward computation shows

e1+e2’

that the eigenvalues of () are given by
 Cey Tt Cey t+ 2Cey 4oy — D  Cey Tt Cey + 2Cey4ey + D
m = B N2 = 5 .

Since, by assumption, ce,, ce, > 0 and ce,4e, > 0, 71 and 72 are both strictly
positive and hence there exists A1, A2 > 0 such that n; = /\‘11 and n; = )\‘21.
We notice that 71 # 12 since ce,1e, > 0. Let consider an orthonormal basis
of eigenvectors {v, 2} relative to n; and 72 by setting
1
V1= (_2661+627 Cep — Cey T D) )
\/(Cel - 662 + D)2 + 4Cgl+62
1
Vv = (2Ce1+827_(061 — Cey _D))
\/(Cel - C(32 - D)2 + 4021—{-62

Since

1
F7(w, A) = 2AA%|aulwa+A§|ay2w|2dx

MN [ AL e A
S /“%yaylw + ol ar,

the conclusion easily follows noticing that A2 = nm1me = A{A3. O

By Lemma 3.1, a straightforward computation yields the following re-
sult.

Corollary 3.2. Let A be an open subset of Q, let w € H'(;R?) and let
A, A2, M1, M2 as in Lemma 3.1. Let L : R? — R? be defined by

A A
L: V1 — )\—jyl, Vg — T;VQ, (37)
the field wr(y) :== w(L™'y) satisfies
A
Fwd)=5 [ Ves)P (3
L(A)

From now on, for any p > 0, we set
-1
E,(x):= L " (B,(Lx)). (3.9)
We are in a position to prove the zero-order I'-convergence result.

Theorem 3.3. The following I'-convergence result holds.

46



(i) (Compactness) Let {us} C AF-(2) be such that F (u:) < C|loge]

for some positive C. Then, up to a subsequence, u(uy) flag u, for
some p € X.
(i1) (Localized T-liminf inequality) Let {uc.} C AF(Q) be such that

p(ue) flay = Zf\il didg,, with d; € Z\ 0 and x; € Q). Then, there
exists a constant C' € R such that, for any i =1,..., M and for
every o < sdist(L(x;), L(9Q) U Uji L(z;)), we have

liminf F7 (u, B, (z;)) — wAld;|log 2 > C, (3.10)
e—0 €
where L is defined in (3.7). In particular
o o
hrgn_g(r)lf FT(u.) — wA|p|(92) log - > C.

(iii) (T-limsup inequality) For every pu € X, there exists a sequence
{us} € AF.(Q) such that p(ue) g w and

FT
A p] () > limsup —= (ue)

e—0 |10g5| ‘

Before giving the proof of Theorem 3.3, we revisit in our anisotropic case
the ball construction in Section 3.2.3.

3.2.2. Lower bound on elliptic annuli. Let 0 < r» < R and let
w € HY(ER\ E,;S') with deg(w,0ER) = d. Set wr(y) := w(L™'y) where
L is the change of variable in (3.7), by (3.8) and Jensen’s inequality, we get

A

Flw B \E) =5 [ [Vun)Pdy
BR\BT

AR 5 Ry R
> — (wr, x Vwpg) - 7|*dsdp > A —md*dp > Arl|d|log —,
2 ) 9B, r P r
(3.11)
where we have used that deg(wr,0B;) = d since det VL = 1.
Set m := min {%, i—f}
Proposition 3.4. Fix e > 0 and let m2v/2e < r < R—m2y/2e. For any
function v : (Eg\ E,) NeZ? — S' with |5| >  in En_ 5 \E, . f5. it holds
R

XY (v, Ep \ E,) > Ar|u(v)(E,)|log , (3.12
0B\ Br) 2 M) B o o (312
where o > 0 1s a universal constant.
PRrOOF. By (3.5), using Fubini’s theorem, we have that
R—m~1/2¢
XY (v,Er\ E,) > / FL(3,0E,) dp. (3.13)
r+m—1y/2¢

Fix r + m™'/2e < p < R — m~'y/2¢ and let T be a simplex of the trian-
gulation of the e-lattice. Set vr(p) := 0E, NT, let 47(p) be the segment
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joining the two extreme points of vr(p) and let ¥(p) = Uy 47(p); then

1

FT(5,08,) = + / Cer|00r 1% + CenlOunil? + Cor e Deriey 3 dB.14)
Uryr (p V2

2

1 - . .
= 5 2(661 |861’U|T|2 =+ C€2|862U|T|2 =+ 2661+62|6%U\T|2)IH1(VT(p))
T

> % ZT(Cel |8€12~}\T|2 + 062‘8626\T|2 + 2661+€2|8m1~)|T‘2)H1(’7T(p))
V2

= FT (5,4 (3.15)
Set m(p) 1= ming, |o]. ecalling the definition of the change of variable L

n (3.7), let 97 (y) := 9(L~1y). By Corollary 3.2 and in particular by (3.6),
we have

A

== oL (y)]? :
D=5 wEra (3.16)

using Jensen’s inequality and the fact that H!(¥(p)) < H'(0E,) = HY(L71(0B,)),
we get,

1 1 D i 2
2/ |V17L|2d3 > 2/ mg(p)K TN)L X ?L > e
(p) L(3(p)) oL 9]

Fr (5,

=2l

ds (3.17)

2

1 mip) S A7 D
= 2HY(L(¥(p))) /L('y(p)) <’17L\ - \@LO ‘
> mﬂdp (3.18)
=

where we have set d := deg(v,0E,) = u(v)(E,), which does not depend on
p since |0| > 1/2 and coincide with deg(vr,,0B,).

Now, let T'(p) be the simplex in which the minimum m(p) is attained.
Without loss of generality we assume that T(p) = T, for some 7 € £Z2 .
Let P one of the points of 7(p) for which |[0(P)| = m(p). By elementary
geometric arguments, one can show that

2
FT(5,0E,) > @W, (3.19)
for some universal positive constant c.

In view of (3.16), (3.14), (3.18) and (3.19), for any 7 +m~1v/2e < p <

R — m~1v/2¢ we have

1 —m?(p) - Arld|a
T edmld| +ap

2
F1(5,0E,) > AP v a
p
By this last estimate and (3.13) we get

. e(Z|p()(E)| = m™'V2) + R
XY (v, Bg\ Ey) > Ar|pu(v)(Er)| log —

T )| +m~ VD) v
(3.20)

mw

——, we immediately get (3.12
NG y get (3.12)

fora=Z. O

«

Assuming, without loss of generality, & <
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3.2.3. Ellipse Construction. Here we introduce a slide modification
of the ball construction in Section 3.2.3. The main difference is that, in order
to deal with our anisotropic energies, we have to consider ellipses in place
of balls.

Let £ = {ER,(x1),...,Ery(zn)} be a finite family of pairwise disjoint
ellipses in R? of the type in (3.9) and let = SN | did,, with d; € Z\ {0}.
Let F be a positive superadditive set function on the open subsets of R?,
i.e., such that F(AUB) > F(A) + F(B), whenever A and B are open and
disjoint. We will assume that there exists ¢, C > 0 such that

F(Ara(2) 2 Crlu(B(@)] log

for any annulus A, gr(z) = Egr(x) \ Er(x), with A, r(z) C Q\ U, Er, (xi).

Let ¢ be a parameter which represents an artificial time. Using the same
strategy in Section 3.2.3 we can construct, for any ¢ > 0, a finite family of
ellipses £(t) which satisfies the following properties

(1) UleER (@i) € Upeew) £

(2) the ellipses in £(t) are pairwise disjoint,

(3) F(E) > Cr|u(E)|log(1l +t) for any E € £(1),

(4) Xpeewy R(E) < (14+1) 3 Ri + (1 +t)eN(N? + N + 1), where
R(E) denotes the radius of the ball L(E).

(3.21)

3.2.4. Proof of Theorem 3.3. Using the fact that XY > min{c,,, ce, } XYz
and Proposition 2.4, it is immediate tho prove the following lemma.

Lemma 3.5. There exists a positive constant 3 such that for any e > 0, for
any function v € AXY () and for any i € Q? such that the piecewise affine
interpolation ¥ of v satisfies min;y.q 8| < 3, it holds XY (v,i+ Q) > 3.

By (2.12), it is enough to prove (i) and (ii) for FY = XY, using as a
variable v, = e27tue,

Proof of (i). For every e > 0, set I. := {i € Q2 : min;.q|o:| < 5}
Notice that, in view of Remark 2.1, u(v.) is supported in I + §(e1 + e2).

Starting from the family of ellipses E ' 5. (i+5(e1+e2))), and eventually
passing through a merging procedure we czin construct a family of pairwise
disjoint ellipses

85 = {ER@E ({I:Z',E)}Z':L._.,Ns 5

with Zf\fl R; . < metl.. Then, by Lemma 2.4 and by the energy bound, we
immediately have that $I. < C|loge| and hence

Ne
Z R; . <eC|loge|. (3.22)
i=1
We define the sequence of measures
Ne

He 1= Z /"L(UE)(ERLE (mi,s))émiﬁ'
=1

Since |pe(E)| < #1. for each ellipse E € &, by (3.12) we deduce that (3.21)
holds with F(-) = XY (v, \ Upee. E), C = X and ¢ = e(afl. + v2m™1).
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We let the ellipses in the families & grow and merge as described in
Subsection 3.2.3, and let () := {ERi,E(t) (:c,e(t))} be the corresponding

family of balls at time ¢. Set moreover ¢, := % 1, No(t) = tE.(1.) and
define
Vg 1= E IU’S(ER,L,E(tE)(xiﬁ(ta)))émi,a(ts)' (323)
i=1,...,Ne(te)
BRi,5<ta>(ﬂfi,s(ts))CQ

By (3) in Subsection 3.2.3, for any E € & (t.), with E' C €2, we have
XY;‘T(U& E) > >‘7T|M£(E)| IOg(l + ts) = 7T|V€(E)|%| 10g5|§

by the energy bound, we have immediately that |v.|(©2) < M and hence {v.}
is precompact in the weak* topology. By (4) in Subsection 3.2.3, it follows

that
Ne(te)

Y Rjt) < COVE (L)Y
j=1

which easily implies that ||ve — pe||gat — 0; moreover, using (3.22), it is easy
to show that ||pe — p(ve)||gee — 0 as € = 0 (see [6] for more details). We
conclude that also pu(v:) is precompact in the flat topology.

Proof of (ii). The proof of (ii) coincides with the one of (ii) in Theorem
2.6 using the ellipse construction in place of the ball construction. We briefly
sketch it.

Fix i € {1,..., M}. Without loss of generality, and possibly extracting
a subsequence, we can assume that

liminf XY (ve, Ey(x;)) — An|d;|| loge|

e—0

ﬁ%Xﬂ@Emw—Mwmyk+m(M®
e—>

We consider the restriction v, € AXY.(E,(z;)) of vs to Ey(x;), it is easy to
see that
114(0e) — didx;|lfias — O. (3.25)
We repeat the ellipse construction procedure used in the proof of (i) with
Q replaced by E,(z;), ve by U and I. by

. L 1
o= {i e (B0 + minlidl < 3 |

We denote by &; . the corresponding family of balls and by &; .(¢) the family
of balls constructed at time ¢.
Fix 0 < v < 1 such that

(1 =) (Idi| + 1) > |da - (3.26)

Let t., = €771 — 1 and let 1., be the measure defined as in (3.23) with 2
replaced by E,(x;) and t. replaced by t.,. As in the previous step, since
v > 0 we deduce that ||v; — d;0z,||fat — 0; moreover, for any E € &; (t. )
we have

XV (02, E) = Alves () (1 - 7)|loge]. (3.27)
Now, if liminf._,q |vz 4 |(Es(2;)) > |di|, then, thanks to (3.26), (3.10) holds
true. Otherwise we can assume that |v. ,|(Es(x;)) = |d;| for € small enough.
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Then v, is a sum of Dirac masses concentrated on points which converge
to x;, with weights all having the same sign and summing to d;. Using the
properties of ellipse construction, one can easily show that

o) ( EE}J(E | E) =d;.

We have immediately that

XY (0, Eo(w:) \ U, . E) > 70 S [n(5)(E)] log(1 + £.)
Eegiyg(tig)
ECEo—(:Ei)
> Arlds|1 7
mld;| log ——.
B TCT A
On the other hand, by Proposition 2.4 there exists a positive constant
such that
XY (0:, +€Q) > B for any j € I

therefore, XY (v, Uges, . ) > Bilic. Finally, we get
X}/ST(EZ-:? EU(xi)) > XY:ST(T}&’ EO(xi) \ UEG&,EE) + XYVeT(ﬁE-H UEE&',EE)
o o
> mA|di| log — —log (Cr(81;0)") + 81,8 > Ar|d;| log -+C

and (3.10) follows sending € — 0.

Proof of (iii) By a standard density argument we can assume d; = +1.
Let uc;(z) := £0F(z), where 0F(z) := (Lx — Lz;) and 6(y) is the polar co-
ordinate arctan y2/y;. Then a recovery sequence is given by u. = Ef\i 1 Uei-
The straightforwanrd computations are left to the reader.

In the following Subsections we will prove the first order I'-convergence of
the functionals F ST to the renormalized energy, introduced in the continuous
framework of Ginzburg-Landau energies in [15]. To this purpose we begin
by extending the many definitions and results of [15] in order to include our
anisotropic case.

3.2.5. The anisotropic renormalized energy. Fix p = Zf‘il didg,
with d; € {—1,+1} and x; € Q. We recall the definition of L given in (3.7).
With a little abuse of notation we set Ly := Zf\i 1di0rz, and we define

W (1) := AW(Lp),

where W is defined in (1.5) and X\ = \/Ce, Ce, + Ce, Certes T CegCeyten-

For any y € R?\ {0}, we define 6(y) as the polar coordinate arctan y,/y;
and let 9L (x) := §(Lx). As done above we define 61 (x) := §(Lx — Lax;) for
any ¢t =1,..., M.

We consider the following auxiliary minimum problems.

m” (o, ) = . {F ' (w) : deg(w,0E,(x;)) = di},

fnT(a, n) ::weHrllz}%;Sl) {fT(w) cw() = aieidiaiL(')on OE,(x;), |oi| = 1}.
(3.28)
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Given ¢ > 0, we introduce the discrete minimization problem in the
ellipse E,,

T = i FT(u,E,) : 2ru() = 6%(- 9.E, ' (3.29
v (g,0) ueAn}I'lj%Ea){ c (u, By) @ 2mu(-) (-) on }(3.29)

By Theorem 1.7, using the change of variable L in (3.7), one can obtain
the following result whose proof is left to the reader.

Theorem 3.6. It holds
lim 1" (o, 12) — M| | (@) log o| = lim 0 (0, 1) = A | ()| log o = W ().
o—> o—r

(3.30)
Moreover, for any fized o > 0, the following limit exists finite

lim (7 (e, 0) — An|log °|) =: 77 € R (3.31)
e—0 g

3.2.6. The first-order I'-convergence result. We are now in a po-
sition to state the first-order I'-convergence theorems for the functionals
FL.

Theorem 3.7. The following I'-convergence result holds.

(i) (Compactness) Let M € N and let {u.} C AF-(Q) be a sequence
satisfying FX (us) — MArw|loge| < C. Then, up to a subsequence,
() i w for some p = Zf\il di0y, with d; € Z\ {0}, z; € Q and
> ldil < M. Moreover, if Y, |di| = M, then ), |di| = N = M,
namely |d;| =1 for any i.

(ii) (T-liminf inequality) Let {uc} C AF:(2) be such that p(ue) flag L,
with pu = Zf\il di6y, with |d;| =1 and x; € Q for everyi. Then,

lim inf Fel'(u.) — MAr|loge| > W () + M~AT. (3.32)
e—>

(iii) (T-limsup inequality) Given p = Zf\il didy, with |d;] = 1 and

x; € Q for every i, there exists {u.} C AF:(Q) with p(ue) flat i
such that

FL(u.) — MAr|loge| — WT () + M~HT.

PRrROOF. The proof of Theorem 3.7 closely follows the proof of Theorem
2.6. Recalling that FZ(u) > XY (e?™), the proof of the compactness
property (i) will be done for FJ' = XY, On the other hand, the constant
7T depends on the potential f and on the constants ce,, Ce,,Ce; ey, SO its

derivation requires a specific proof.
flat

Proof of (i): Compactness. The fact that, up to a subsequence, u(u.) —
=N did,, with Y | |d;] < M is a direct consequence of the zero order
I'-convergence result stated in Theorem 3.3 (i). Assume now Zf\il |di| = M
and let us prove that |d;| = 1. Let 0 < o1 < o3 be such that E,,(x;)
are pairwise disjoint and contained in 2 and let € be small enough so that
E,,(z;) are contained in .. For any 0 < r < R and x € R?, set A, g(z) :=
Er(z)\ E.(x). Since FI (uz) > XY (e2miue),

N N
Fl(ue) 2 ) XYI(P™ By, (20)) + ) XY (27, By, g, (). (3.33)
=1 =1
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To ease notation we set v, = 2™ and we indicate with 7. the piecewise
affine interpolation of v.. Moreover let ¢ be a positive number and let € be
small enough so that ¢ > m+/2e. Then, by (3.10) and (3.5), we get

N
o ~
FT(ue) >Am " |dy|log ?1 + FL (e, Agy 1,09 —1(x:)) + C. (3.34)
i=1
By the energy bound and by the definition of 7, we deduce that

2
V@ deé-ifT?}"Ao_ oo—t(T; SC
[401+fa02—t(fi) ’ 6‘ mln{ceuceg} ( © 1+to2 ( ))

and hence, up to a subsequence, 9. — v; in H'(Ag, 1t y—t(2;); R?) for some
field v;. Moreover, since
. (1= [i]2)?de < CXYT(v.) < C|logel,
€% J Aoy 11,00 —t(ms)
(see Lemma 2 in [2] for more details), we deduce that |v;| =1 a.e..
Furthermore, by standard Fubini’s arguments, for a.e. o1 +t < 0 <
o2 —t, up to a subsequence the trace of 7. is bounded in H'(OFE, (x;); R?),
and hence it converges uniformly to the trace of v;. By the very definition
of degree it follows that deg(v;, 0E,(x;)) = d;.

Hence, by (3.11), for every i we have
g9 — t
FL (i, Agytton—t(:)) > N di|*7log prard (3.35)

By (3.34) and (3.35), we conclude that for € smal enoughl

N
o1 o9 — 1t
FT(u.) > )\ﬂ'z <|d2| log? + |d;|? log > +C

i=1 o1+t
> A | M]lo 5]+§:(|d 12— |di]) lo 02+§:\d 210g 22 =0 (-
™ il” — [ — i :

= g 2 gUl £ g02(01 1)

The energy bound yields that the sum of the last two terms is bounded;
letting ¢ — 0 and o1 — 0, we conclude |d;| = 1.

Proof of (ii): T-liminf inequality. Fix r > 0 so that the ellipses E,(x;)
are pairwise disjoint and compactly contained in . Let moreover {Qh}
be an increasing sequence of open smooth sets compactly contained in 2
such that UpenQ® = Q. Without loss of generality we can assume that
FI'(u.) < AMr|loge| 4+ C, which together with Theorem 3.3 yields

M
F2 (ue, 0\ | B (1)) < C. (3.36)
=1

We set v, := 2™ and we denote by @, the piecewise affine interpola-
tion of v.. For every r > 0, by (3.36) and (2.12) we deduce XY (v, Q\
Ufil E,.(r;)) < C. Fix h € N and let ¢ be small enough so that Q" C Q..
Since

M
2
Vi < ————— XY (0,0 E,(z;)) < C,
/Qh\Uf-V_1 Er(z;) | | mln{ceuceQ} : ( \ZLJI ( ))
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by a diagonalization argument, there exists a unitary field v € H 1(Q \
E,(z;); 8*) such that, up to a subsequence, ¥ — v in HL_(Q\UM, {z;}; R?).

Let o > 0 be such that E,(z;) are pairwise disjoint and contained in Q".
For any 0 < r < R < +oc and for any = € R?, set A, p(z) := Er(z)\ E,(z),
A, g = A r(0). Let t < o, and consider the minimization problem

i FT(w, Ayjay) : deg(w,0F:) =14 .
weHl?flxlf/IQ,t;sl){ (w, Ayjay) : deg(w,0E+) }

It is easy to see that the minimum is Awlog 2 and that the set of minimizers
is given by (the restriction at Ay/y, of the functions in)

Lz
= — =1;. .
{a|Lz| acC,laf } (3.37)
Set
d¢(w, K) := min { F'(w — v, Ayy) v EK]. (3.38)
For any v € K and w € Hl(At/g,t;]RQ), using the change of variable L in
(3.7), we have
]:T(w — ’U,At/lt) =)\ |Vwp, — VUL|2 dy,
Bi\By s

where we have set wr,(y) := w(L™'y) and vr(y) := v(L~'y). By this fact,
it follows that (see [4] for further details) for any given > 0 there exists a
positive w(d) (independent of ¢) such that if d;(v-(-), ;) > 9, then

FP (03 As ety ppme1ya:) = AT l0g 2+ w(d), (3.39)

where IC; := {oziijﬁiil caeClal = 1}.

Let P € N be such that Pw(8) > W7 (i) + M (7" — Arlog o — C) where
C' is the constant in (3.10). For p =1,..., P, set Cp(Lx;) := Egi-p,(xi) \
EZ—F’U(‘Ti)'

Now, if for € small enough and for every fixed 1 < p < P, there exists at
least one ¢ such that dy1-p, (0, IC;) > 0, then by (3.10), (3.39) and the lower
semicontinuity of the functional 7, we conclude

M P M
Fl(ue, Q") 2 Y XY (ve, Byro(a) + 3> XY (v, Cpli)

i=1 p=1i=1
> )\M(Wlog + mlloge| + C) + L(MArmlog2 + w(d)) + o(e)
> MAr|loge| + MAT + W () + o(e).

Assume that, up to a subsequence, there exists 1 < p < P such that for
every i we have ds (7., K;) < d, where & := 27 Po. Let az; be the unitary
vector such that 7' (7. — a., |L§ ﬁZ' ,Ci()); R?) = ds(0e, K;).

One can construct a function 4. € AF.(2) such that

(i) e = Ue ON OE(RQ'\ EQ—TU(-Ti));
(11) e2mite (i) — aai% on O E21 Iy ("L‘,L)
(iii) FT (ue, Ey(x;)) > FL (i, E5(2;))+7(g,6) with lim lim r (e, §) = 0.

d—0e—0
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The proof of (i)-(iii) is quite technical, and consists in adapting standard
cut-off arguments to our discrete setting. For the reader convenience we skip
the details of the proof, and assuming (i)-(iii) we conclude the proof of the
lower bound.

By Theorem (1.7), we have that

M M
FI (ue) > XY (00, O\ | Eo (@) + ) F (e, Ep ()
i=1 i=1

M
> F (0, Q\ U By (20)) + ) FY (e, Eg(2:)) + 7(2,0) + o(e)
1=1

> FT (5., Q\ UM, By (2:)) + M(77 — Arlog §> +r(e,0) + o(e)
> ]:T(v, Q\ Ui]\ilE;,(:L‘i)) + M(fyT — \rlog g) +7r(g,0) +o(e) +0(1/h)

> MAr|loge| + M~yT + W (1) +7(g,6) + o(e) + o(a) + o(1/h).
The proof follows sending e — 0, 6 — 0, 0 — 0 and h — oo.

Proof of (iii): T'-limsup inequality. This proof in analogue to the one
given in (iii) of Theorem 2.6 for the isotropic case. We only sketch its
anisotropic counterpart in our triangular lattice. Let w, be a function that
agrees with a minimizer of (3.28) in Q\ UY, E,(z;) = QL. Then, w, =
aiew? on OF,(z;) for some |o;| = 1.

For every p > 0 we can always find a function w,, € C*° (QT; S1) such
that wg, = aiewiL on 0E,(z;), and

F (wo,p, Yp) = F' (w5, 25) < p.
Moreover, for every i let w; € AXY (E,(x;)) be a function which agrees
with o€ on 8. E,(x;) and such that its phase minimizes problem (3.29).
If necessary, we extend w; to (E,(z;) N eZ?) \ (Ey(7;))? to be equal to
aiewz‘L . Finally, define the function w. s, € AXY:(?) which coincides ws.,

on Q, NeZ? and with w; on E,(z;) N eZ?. In view of assumption (3) on
f, a straightforward computation shows that any phase ., of we s, is a
recovery sequence, i.e.,

lim F' (e ,p) — MAn|loge| = My" + W' (1) + o(p, 0),
E—>
with limg_0lim,_0 0(p, o) = 0. O

3.3. I'-expansion for F!"

Here we give the asymptotic expansion by I'-convergence of the func-
tional F!". The idea is to decompose the energy F'" in the sum of isotropic
F_ energies and to use for each of these energies the I'-convergence analysis
developed in Chapter 2. To this aim, using that c¢¢ = c,1 for any § € 72,
we have that for any u € AF.(2)

1 . .
Fr(w)=5 D> cc D fluli+e€)—uli)
¢ez? i€l
Ee1>0  itefe

55



More precisely, using an idea in [2], given & € Z? with £-e; > 0, we may
partition Z? as follows
€]
2* = (e + ZE @ ZEY)
h=1
where {zp}bp_1  ep ={2€Z? : 0<z- £ <[¢],0< 2+ & < [¢]}. Then we
may write

€I
Flr( _ Z CgZFﬁh
5622
5el>0
where
F&h (u Z fu(i+€€) — u(i)) + f(u(i+ &) —u(i))  (3.40)

zezﬁ hQ)

and Zg’h(Q) = Q. Ne(zy + ZE @ ZELY). In the following we will extend
the definition of F5" to any open A C R2, by using the standard notation
FEh(- A).

Finally, for every & € Zi with € -e; > 0 and for i € e(z), + Z& © ZEL),
we set

a5 = Plu(i+£8) — u(i)) + P(u(i + e€ + i + e£7) — u(i + £€))
— P(u(i + € + e€*) — u(i + e€7)) — P(u(i +££4) — u(i)),
and define the &-discrete vorticity pu&"(u) as

o (u) = Z au(i)‘swg(&{l)'
1€EQNE(2n +LZEDTEL)
i+eQe CQ
We remark that if £ = e;, then the index h above is necessarily equal to 1
and hence ;! (u) coincides with p(u) defined in (2.6).

Here we state the zero-order I'-convergence result for the functionals F".
We remark that this result has been proved in [2] for the X Y/7. ‘Once again,
we notice that assumption (2) on f implies F!"(u) > XY (e27i),
Theorem 3.8. The following I'-convergence result holds.

(i) (Compactness) Let {u.} C AF-(Q) be such that F" (u.) < C|loge|
for some positive C. Then, up to a subsequence, p(uy) flag u, for
some € X.

(i) (Localized T-liminf inequality) Let {u:.} C AF:(Q2) be such that
p(ue) oy w= Z?il di0y, with d; € Z\ {0} and x; € Q2. Then,
there exists a constant C' € R such that, for anyi=1,..., M and
for every o < Zdist(x;, 02 U Uji 2j), we have

o o

hrsr;%lf E(uz, By(x;)) — Z ce|¢|?|d;| log = > C. (3.41)
¢ez?
£e120
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In particular

sl ir 2 g
liminf F"(u) =7 > celé|ul(@)log Z > C.
cezd
£e1>0

(iii) (T-limsup inequality) For every pu € X, there exists a sequence
{us} € AF.(Q) such that p(ue) g w and

Flr

Z C£|5’27T\M\(Q) > limsup |Fi (u‘f’)
og e

EEZi e—0 g

&e1>0

Since the proof is based essentially on Theorem 2.2 and on the proof of
Theorem 4.8 in [2] we briefly sketch it.

SKETCH OF THE PROOF. Since ¢, > 0 the compactness property is a
direct consequence of Theorem 2.2(i).

As for the I'-liminf inequality, fix i € {1,..., M}, without loss of gener-
ality, we can assume that

. ., o
lim inf F" (uz, By (x;)) — Z c§|£|2|di|logg

e—0 :
gcz?
£-e1>0
. o
:j%ﬁWb&@m—WEZQWWM%g<+w
£ez?
§e1>0

Since each of the functionals F&™" (defined in (3.40)) is bounded from above
by C|loge|, using the same strategy in the proof of Theorem 4.8 in [2], one
can show that for any & and for any h = 1,...,|¢|?

118" (ue) — po(ue) | fas — O

and hence p&"(u.) flag p. So we can apply Theorem 2.2 (ii) to each of the
functionals F§’h’ and hence there exists a universal constant C such that

it FOP () — wld 1 los & >
llgélf F>"(ug) — m|d;| log -2 C.

By summing over h = 1,...,|£|? and over ¢ we get (3.41).
The proof of the I'-limsup inequality is standard and left to the reader.
O

Finally, we state the first order I'-convergence result for F’ ér. To this aim
we have to introduce the following discrete minimum problem

We,o) = i (F (0B s 2nu() = () on 0.5,)

where the discrete boundary 0. in (2.1) and 6(x) is the polar coordinate
arctan xo /1, also referred to as the lifting of the function ‘%'

The following Proposition is the analogous of Proposition 2.39 in the
long range interaction case.
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Proposition 3.9. For any fixed o > 0, the following limit exists finite

hm(’yp(z—: o)—m > celél? |10g—|)— Al e R. (3.42)
£ez?
§'6120

PROOF OF (3.42). First, by scaling, it is easy to see that yp(e, o) =
I'"(£) where I'"(t) is defined by

I'"(t) == min{Fllr( Bi)| 2mu =6 on 8131}
t
We aim to prove that

O0<ty <ty = I"(t1) <7 Y. c§|§]210g + 1 (t2) + O(ty).  (3.43)

cezs
§-e120

By (3.43) and by Theorem 3.8(ii), it follows that
3 tl_i)ré1+(ll’”(t) - Z ce|¢?| logt|) > —oo.
cez?
&-e12>0

We prove now that (3.43) holds true. To this end, set A, r := Bg \ By, and
let 6 be the lifting of the functlon . Since

IVO(z y_\/‘age
€]

for every £ € Z? and for every x € A, g, by standard interpolation estimates
(see for instance [25] and [2]) and using assumption (3) on f, we have that,
as0<r < R— o0,

2

+ <

579(%)
€]

S0

l¢I?
1
Fr(0/2m Arg) = 5 cng“’ rR)
5622
¢ el>0

2

0(i +€) — (i) +OL/n)

€]

&1 ‘

S DICINDS

€ezi  h=liezth(A, g)
5 61>0

2106+ &5 —03)
+‘ g

R
<7 Z c§|§|210g?+0(1/7“). (3.44)
cezd
£e1>0

Let uz be a minimizer for I(t) and for any i € Z? define
. us(i) if [i] <
u(i) '_{ M9l <lif< it
By (3.44) we have
I(1/R) < I(A/r)+7 3 eclélog 1 +0(1/r),

2
gcz?
§-e1>0
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which yields (3.43) for r = L and R = ;. O

To ease the notation, for any u = Zf\il didy, with |d;| = 1 and z; € Q,
we set
W () = Y eeléPW(p),

2
=
£-e120

where W is defined in (1.5).

Theorem 3.10. The following I'-convergence result holds.

(i) (Compactness) Let M € N and let {u.} C AF-(Q) be a sequence

satisfying F"(us) — Mmy) cez? celé?|loge| < C. Then, up to
&e1>0

a subsequence, p(ug) flag w for some p = Zf\il diby, with d; €
Z\A{0}, x; € Q and ), |d;i| < M. Moreover, if Y. |d;| = M, then
Y. ldil = N =M, namely |d;| =1 for any i.

(ii) (T-liminf inequality) Let {uc} C AF:(2) be such that p(us) flag i,
with pu = Zf\il di0y, with |d;| =1 and x; € Q for every i. Then,

limnf FY"(ue) — My celé*[loge| = W' () + M.

2
gez?
§e12>0

(iii) (T-limsup inequality) Given p = Zf\il didy, with |d;] = 1 and
x; € Q for every i, there exists {u.} C AF:(Q) with p(ue) flat 1

such that
FI'(ue) = Mm Y celél?|loge| — W () + M~k
cezs
£-e1>0

The proof of the theorem above is the same of Theorem 2.6 and it is
omitted.
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CHAPTER 4

Metastability and dynamics of screw dislocations

In this chapter we apply the I'-convergence analysis in Chapter 2 in
order to study the dynamics of the discrete topological singularities. All the
results proved here are in [4].

In Section 4.1 below we will prove the existence of many local minimizers
for a large class of discrete energy functionals F., which includes the screw
dislocations energy but not the XY functionals. As a consequence we have
that any solution to the gradient flow of Fy starting from these minimizers
is still. In Section 4.2 and 4.3 we introduce a purely variational approach in
order to analyze an effective dynamics of the singularities which overcome
the pinning effect due to the presence of local minima.

4.1. Analysis of local minimizers

In this section we will assume some further hypotheses for the energy
density f in addition to (1), (2) and (3):
(4) f € CO0-1, ) nC2(-4, 1))

(5) There exists a neighborhood I of % such that for every z €

I we have C1(5 — 2)* < f(3) — f(z) for some C; > 0 and

subre(— 1. 1) I (8) < 50

1

)

Notice that these conditions are satisfied by the energy density of the

screw dislocations functionals, f(a) = dist?(a, Z), while they are not satisfied
by the energy density of the XY model.

(6) f is increasing in [0, 5] and even.

4.1.1. Antipodal configurations and energy barriers. When a
discrete singularity of p(v) moves to a neighboring cell, then v has to pass
through an antipodal configuration v(i) = —v(j) (i.e., such that the corre-
sponding phase u satisfies dist(u(i) — u(j), Z) = 3). We will show that such

configurations are energy barriers.

Lemma 4.1. There exist &« > 0 and E > 0 such that the following holds: Let
u € AF-(Q) such that dist(u(i) —u(j),Z) > 3 —a for some (i,7) € QL. Then
there exists a function w, with w = u in Q°\{i} such that F.(w) < Fe(u)—E.

PROOF. As a consequence of assumption (5), it is easy to see that there
exists v > 0 and a positive constant Cs such that

fE) = f) = fE =) > Cs. (4.1)

First, we prove the statement assuming f € C%(R). In this case, as-
sumption (5) implies that f/(3) =0 and |f”(3)| > Ci.
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Without loss of generality we can assume that u(i) = 0. For sake of

notation we set ‘
Eiw)= > fu(l). (4.2)

[l—i|=¢
We will assume that i ¢ 0.€2, so that i has exactly four nearest neighbors, de-

noted by 7, k1, k2 and k3. The case i € 0:2 is fully analogous (some explicit
computations are indeed shorter), and left to the reader. By assumption

3
E'(u) > f(3+ o)+ fu(kr)). (4.3)
=1

We will distinguish two cases.

Case 1: There exists at least a nearest neighbor, say ki, such that
dist(u(k1),Z) > 1 — a. In this case we have that

Ei(u) = 2£(5 +a) + f(ulk)) + F(u(ks)). (4.4)

Now there are two possibilities. In fact we may have either that dist(u(ks), Z)V
dist(u(ks),Z) < 3a, or that dist(u(ke),Z) V dist(u(ks),Z) > 3a.

In the first case, set w(i) = v with v as in (4.1). Then, by continuity we
have

E'(w) = 2f(3 — ) +2f(v) +o(1),
where o(1) — 0 as @ — 0. From (4.4) we have E‘(u) > 2f(3 + «), which
together with (4.1) yields
E'(u) — E'(w) 2 2(f(3 +a) — f(3)) + Ca+0(1) =Ca+o0(1) (4.5
as @ — 0. Suppose now that dist(u(ke),Z) V dist(u(ks),Z) > 3a. Then we
define w(i) = 1 and we get
E'(w) <2f(a) + f(3) + f(5 + 30).
Moreover, thanks to assumption (6) of f we have E'(u) > 2f(3+a)+ f(3a).
We conclude that
E'(u) = E'(w) = 50*(f"(0) = f"(3)) = 50°C) (4.6)
Case 2: For every i it holds dist(u(k;),Z) < 1 — . Set w(i) = n with
In| = 3a and 37, f'(u(k;)) > 0. Then
3

E'(u) = E'(w) > f(5+a) = f(z +a—n) + ) flu(k) = fu(k) —n)

=1

3 3
= S nl(in] — 20) + 0> (k) — 572 (ulk) + o)

=1 =1
> 102 - 2023 Path) +ofa?) 2 €~ 95up ()0 + ofe?
>3 5)|3a 2a u(ky o(a 2 5(Cy sgpf (t)a” + o(a®)

=1
(4.7)

The combination of Step 1 and Step 2 allows to conclude the proof in
the case of f € C?(R), by choosing a small enough and E = (7C; A 3(C; —
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9sup, f(t)))a?/2. The general case can be recover by approximating f in a
neighborhood of 3 with C? functions still satisfying assumptions (4)-(6). O

Note that in the case of f(a) = dist?(a, Z) the proof of the above Lemma
can be obtained by a direct computation without the regularization.

Remark 4.2. Note that the function w constructed in Lemma 4.1 has a
discrete vorticity that can be different from the one of w only in the four
e-squares sharing ¢ as a vertex, and hence ||u(u) — p(w)||gar < 2¢.

Definition 4.3. We say that a function u € AF.(Q) satisfies the a-cone
condition if

1
dist(u(i) — u(j),Z) < 5@ for every (i,5) € QL.

Remark 4.4. Note that if v € AF.(Q) satisfies the a-cone condition for

. . 2
some a > 0, then for every w € AF(Q2) such that } ;o [w(i) —u(i)]* < $5
we have p(w) = p(u). In other words, the vorticity measure p(u) is stable
with respect to small variations of w.

4.1.2. Metastable configurations and pinning. As a consequence
of Lemma 4.1 we prove the existence of a minimizer for the energy F., under
assumptions (1)-(6) with singularities close to prescribed positions.

Theorem 4.5. Given pig = S0, didy, with z; € Q and d; € {1,-1} for

i=1,..., M, there exists a constant K € N such that, for ¢ small enough,
there exists ke € {1,...,K} such that the following minimum problem is
well-posed

min{Fe(u) : ||p(u) = pollgar < kee} (4.8)

Moreover, let a be given by Lemma 4.1; any minimizer ues of the problem
in (4.8) satisfies the a-cone condition and it is a local minimizer for Fr.

PRrOOF. For any k € NU {0}, we set

I = imf{Fe(u) © [lu(w) = pollnae < (M + 2k)e}, (4.9)
By constructing explicit competitors one can show that
I? < Mr|loge| + C. (4.10)

Then, we consider a minimizing sequence {ulg ™1 for I¥. Tt is not restrictive to
assume that 0 < ufn(z) < 1 for any i € QY; therefore, up to a subsequence,
kn

ug™ — uf as n — oo for some u¥ € AF.(Q). Note that if u¥ satisfies the

a-cone condition, then it is a minimizer for I¥.

Set k := [ww +1 and assume by contradiction that there exists
a subsequence, still labelled with e, such that for every k& € {0,1,...,k},
there exists a bond (ic,j.) € QL, with dist(uf(i) — v#(j.),Z) > § — a.
Thus, for n large enough, we have

1
dist(u®" (i) — uP"(5.), 2) > 5 o

By Lemma, 4.1, there exists a function wh € AF. (Q) such that wh™ = B
in Q0\ {i} and F.(w®™) < F.(u¥™) — E for some E > 0. By construction
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(sce Remark 4.2) we have that [|u(wS™) — ju(ub™)||gas < 2¢. It follows that
I < F(wbmy <1F — E.

By an easy induction argument on k£ and by (4.10), we have immediately
that

IF <1° — kE < Mn|loge| + C — kE. (4.11)
By the lower bound (2.42) in Theorem 2.6, (4.11), and the definition of &
we get

W(p0) + My < limnf IF — Mnl|loge| < C — kE < W(uo) + M~y — E,
e—

and so the contradiction. Then the statement holds for K = M + 2k.
O

Let ¢ > 0 and let u? € AF.(2). We say that u. = u.(t) is a gradient
flow of F. from u? if u. is a solution of
mua = —VFE.(u:) in (0,+00) x Q2
u:(0) = u? in Q.

Clearly u.(t) € AF-(Q2), and we will write u.(t,7) in place of u.(t)(4).
Theorem 4.6. Let g = S0, didy, with z; € Q and d; € {1,-1} for
i=1,...,M. Let {ul} C AF.(Q) be such that
lim F.(u?) — Mr|loge| = W(ug) + M. (4.12)
e—

Let « be given by Lemma 4.1. Then, for € small enough, the following
facts hold.

(i) u? satisfy the a-cone condition.
(ii) The gradient flow us(t) of F- from u® satisfies ju(uc(t)) = p(u?)
for every t > 0.
(iii) There exists uQ such that @0 € argmin{F.(u) : pu(u) = pu(u)}.

Moreover @ satisfies the a-cone condition and it is a local mini-

mizer for F..

PROOF. Proof of (i). Assume, by contradiction, that there exists a
sequence e, — 0 such that ugk does not satisfy the a-cone condition, namely
for every k € N there exists a bond (i, ji) € Qi.k with

dist(u (i) — 3, (34), 2) > 5 — o
By Lemma 4.1, for any k there exists a function w., € AF., () such that
we, = u? in Q2 \ {i} and
Fo(we,) < Fo(u)) — E < F, (u) — E. (4.13)
Moreover, by construction (see Remark 4.2) we have that || p(we, ) —p(ul, ) ||gat <
2ei, and so p(we,) fla o- By the lower bound (2.42) in Theorem 2.6, we get
W(po) + M~y < liglil_i)%f Fy, (we,) — Mm|logeg| (4.14)

(ul ) — Mn|logey| — E = W(uo) + My — E,

and so the contradiction.
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Proof of (ii). Assume, by contradiction, that there exists a sequence
e — 0 such that the gradient flows u, (t) of F;, from ugk does not satis-
fty (ii). Let ¢ be the first time (in fact, the infimum) for which p(u,, (1)) #
u(ugk); then, there exists (ig, jr) € Qik such that dist(ue, (tg, ix) —te, (tk, ji), Z) >
3 — a. By Lemma 4.1 there exists we, () € AF., (Q) such that we, (t;) =
Ug, () in Q2 \ {ix} and Fy, (we, (tr)) < Fry (ue, (tx)) — E, for some positive
constant F independent of k. Moreover, by (4.2), we have that

l(u2,) = plwe, (t) laae = ll(ue, (tr)) = p(we, (t)llaas < 2ek;

Therefore, by the lower bound (2.42) in Theorem 2.6, arguing as in (4.14),
we get a contradiction.

Proof of (iii). Let {ul} be a minimizing sequence for the minimum
problem in (iii). We can always assume that 0 < u”?(i) < 1 for any i € Q;
therefore, up to a subsequence, u? — 42 as n — oo for some 4! € AF ().
To prove that @ (for e small enough) is a minimizer, it is enough to show
that p(a?) = u(ue); this follows once we have proved that 4 satisfies the a-
cone condition (see Remark 4.4). Assume by contradiction that there exists
a sequence £, — 0 such that dist(al(ix) — a2(ji), Z) > & — o for some bond

(ik, Jk) € Qik Then, for n large enough, we have
. . ) 1
Fe(ul ) < F, (ugk) + ek, dist(uz, (i) —ul, (5),Z) > 5o (4.15)

Let 7 so that (4.15) holds. By Lemma 4.1, there exists a function w;, €
AF., (Q) such that we, = u? in Q2 \ {i} and

Fo(we,) < Fo(ul) — E < Fo (u)) — E+¢. (4.16)

By construction (see Remark 4.2), we have that [u(we,) — p(ul )|lgar =
| 1e(we,,) — p(ul,)|lgae < 2ex. Therefore, by the lower bound (2.42) in Theo-
rem 2.6, arguing as in (4.14), we get a contradiction.

Finally, by the a-cone condition and Remark 4.4, we have immediately

that F.(a?) < F.(w) for any function w € AF(Q2) with |[w—u| 72 < ¢, and

0

¢ is a local minimizer of F; .

hence @
O

Remark 4.7. By Theorem 4.6 it easily follows that there exists t, — oo
such that 42 := limy, o us(t,) is a critical point of Fr.

4.2. Discrete gradient flow of F. with flat dissipation

In Section 4.1 we have seen that the energy F. has many local minimiz-
ers. In particular, Theorem 4.5 shows that the length-scale of metastable
configurations of singularities is of order €. In this section we consider a
discrete in time gradient flow of the energy F. which allows to overcome
the pinning effect due to the presence of local minima and then to study
an effective dynamics of the vortices. This is done following the minimizing
movements method.

It turns out that, for ¢ smaller than the time step 7, the vortices over-
come the energetic barriers and the dynamics is described (as e,7 — 0)
by the gradient flow of the renormalized energy (see Definition 4.10). This
process requires the introduction of a suitable dissipation. In this section
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we consider a dissipation which is continuous with respect to the flat norm.
To this purpose, we notice that, identifying each u = ZZ]\; 1 di0z;, with a
O-current, it can be shown that

li4]|gat = min{|S|, S 1-current, dSLQ = u} (4.17)

(see [33, Section 4.1.12]). Moreover, it is an established result in the optimal
transport theory (see for instance [68, Theorem 5.30]) that the minimization
in (4.17) can be restricted to the family

L
S(p) = {S = Zmz[z?l,(ﬂ] c:LeN,m€Z,, p,q € supp(u) U,
=1

L
OSLQ =Y my(dy — bp)LQ = M} :
=1

where m[p, q] denotes the 1l-rectifiable current supported on the oriented
segment of vertices p and ¢, and with multiplicity m (for a self-contained
proof of this fact we refer also to [52, Proposition 4.4]). Notice that, given
L
S e S(u), 1S =221 Imilla — pil.
We define our dissipation in two steps.

. M1 _ N2 g2 S gl g2
First assume that vy = ;™ d; 6,1 and vy = 3 5% dj51,? with d;,d €N

foreveryi=1,...,Nyand j =1,..., Ny and set

L
Dy (v1,v5) := min {Z | —mi> + LEN, q € supp(v1) U I, p; € supp(vz) U Y,
=1

L L
D G LQ=11,) 6,L0= VQ} :
=1 =1

L1
It is easy to see that DJ is a distance. Actually, ||v1 — v2]/gar and Da(v1, 12)
can be rewritten as

|1 — vollgat = mAin/

Qx

_ |ZE - y|d/\(:z:,y) )
Q

Dofi,v) =min [ o= yPdA(z.),

A JaxQ

where the minimum is taken over all measures A which are sums of Dirac
deltas in Q x Q with integer coefficients, and have marginals restricted to
given by 1 and vo. This clarifies the connection of the flat distance and of
our dissipation with the Wasserstein distances Wi and Ws, defined on pairs
of probability measures in R?, respectivelly (see for instance [68]).

From the very definition of Ds one can easily check that
Da(v1 + p1,v2 + p2) < Da(v1,va) + Da(p1, p2) (4.18)

for any p; and ps sums of positive Dirac masses, and

Dy (v1,12) < diam(Q)[Jv1 — va||gat - (4.19)
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For the general case of py = SN dl6,1 and po = SN2 d?6,» with
dl,d? € Z we set

177

Dy(pn, p2) := Do(pf + g s g + 1), (4.20)

where uj and fi; are the positive and the negative part of pj. As a conse-
quence of (4.18) and (4.19) we have that Dy is continuous with respect to
the flat norm.

We are now in a position to introduce the discrete gradient flow of Fg
with respect to the dissipation Ds.

Definition 4.8. Fix § > 0 and let ¢,7 > 0. Given u.9 € X., we say that
{pZ .}, with k € NU{0}, is a solution of the flat discrete gradient flow of F.
from pie o if 7 g = pie,0, and for any k € N, L satisfies

mD2(p, Ng,k71)

5 P € Xe, [l — 1l g1 llfar < 5} .

(4.21)

pL ), € argmin {]:E(u) +

Notice that the existence of a minimizer is obvious, since p lies in X,
which is a finite set.

We want to analyze the limit as € — 0 of the flat discrete gradient flow.
To this purpose, let pg := Zf‘il d; 00z, , With |d; o = 1, and let p. o € X. be
such that

peo ™ o, tim T ),
=0 |logel

In Theorem 4.14 we will show that, as € — 0, the sequence p , converges to
some p;. € X, whose singularities have the same degrees of those of the initial
datum. Therefore, it is convenient to regard the renormalized energy as a
function only of the positions of M singularities. To this end we introduce

the following notation

M
W(z) == W(p) where p = Z d;00z; for every z € QM.
i=1
The right notion for the limit as ¢ — 0 of flat discrete gradient flows
of F; is given by the following definition of discrete gradient flow of the
renormalized energy.

Definition 4.9. Let § > 0, K € NU {0}, and 7 > 0. Fix 29 € QM. We say
that {z]} with £ =0,1,..., K, is a solution of the discrete gradient flow of
W from xzg if xj = x9 and, for any k =1,..., K, 2}, € OM satisfies

- . |y — 932—1‘2 M < T
xy, € argmin ¢ W(z) + — 5 % e QY Z [z —al | <0,
=1

(4.22)
where | - | denotes the euclidean norm in R¥ for any k € N.

In Theorem 4.13 we show that, as 7 — 0, this discrete time evolution
converges, until a maximal time T}, to the gradient flow of the renormalized
energy given by the following definition.
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Definition 4.10. Let M € N and zo € Q™. The gradient flow of the
renormalized energy from zg is given by

{ i(t) = —%VW(:v(t)) (4.23)
z(0) = zo.

We denote by T* the maximal time of existence of the solution, and we
notice that until the time T™ the solution is unique, and that 7™ is the
minimal critical time among the first collision time and the exit time from

Q.

As § — 0, Ty converges to the critical time 7*. Notice that the renormal-
ized energy is not bounded from below and it blows up to —oco whenever one
of these critical events occur. This justifies the introduction of the param-
eter 4, in order to explore local minima. Nevertheless, the solutions of flat
discrete gradient flows defined above do not touch the constraint and hence,
they satisfy the corresponding unconstrained Euler-Lagrange equations.

4.2.1. Flat discrete gradient flow of W. Fix initial conditions
T = (1‘170, .. ,1‘]\/[70) € QM, d1,07 e dM70 S {—1, 1},
and fix 6 > 0 such that
1
min{idisti# (xiV(), xj,O)v dist(xw, 89)} — 20 =:¢5 > 0. (4.24)

Definition 4.11. We say that a solution of the discrete gradient flow {7 }
of W from z is maximal if the minimum problem in (4.22) does not admit
a solution for £k = K + 1.

Let {z}} be a maximal solution of the flat discrete gradient flow of W
from zg, according with Definitions 4.9, 4.11; we set

ki =k;({z;}) :=min{k € {1,..., K} :
1
min{idist#j(xzk,x;k), dist(z;, 002)} <26}, (4.25)

We notice that, since |z}, — 2], ;| < d and
9 é

N .
mln{§dlsti7ﬁj (:L‘Zkl,gil, LL‘;’]C;?]_), dlSt(‘IE;—,k‘gfl7 09)} > 25,
then )
ie., ky < K. It follows that, for any k = 0,1,..., k5, we have
27 € Ks, (4.26)

where K is the compact set given by
1
K5 = {x S QM : min{idisti#(a:i,xj),dist(xi,89)} > 5} . (427)

Notice that W is smooth on K. In particular, we can set
Cs = max (W (xg) — W(z)). (4.28)
zeKs
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Proposition 4.12. For 7 small enough the following holds. For every k =

1,...,k}, we have that sz\i1 |27 — 2l 1| <6 and
T, — T
O, W (af) + b WA=l 0 fori=1,... M. (4.29)
In particular, for every k =1,...,k}
|z}, — z7,_1| < max |[VW (z)|r. (4.30)
ze€Ks

PROOF. Since the energy W is clearly decreasing in k, for every k =
1,...,k; we have

‘m;c— — T ’2 1 T T T

B T ;(W(xk—ﬂ — Wi(zp)) < W) = W(zp) <G5 (4.31)

It follows that for 7 small enough Zf\il |e] . — a7, 4| < 6. Therefore,
the minimality of #, clearly implies (4.29), as well as (4.30). O

Let x(t) be the solution of the gradient flow of W with initial datum zg
(see (4.23)) and let T* be its maximal existence time. We set

Ts := inf {t € 0,77 : min{%disti#(azi(t),a:j(t)),dist(a:i(t), N} < 2(5} .

(4.32)
Notice that by definition we have

lim Ty = T*. 4.33
o (4:33)

For 0 <t < k7, we denote by 27(t) = (2](t),...,2},(t)) the piecewise
affine in time interpolation of {x]}.

Theorem 4.13. Let {z]}+~0 be a family of mazximal solutions of the flat
discrete gradient flow of W from xqy. Then,

Ts := liminf k7 > Ty, (4.34)
7—0

where kf is defined in (4.25) and Ts is defined in (4.32).
Moreover, for every 0 < T < Ty, 27 — x uniformly on [0,T]. Finally,
Ts —T* as 6 — 0.

PRrooF. By the very definition of k%, it is easy to prove that
27 — af| > cs.

where c; is defined in (4.24). Moreover, by (4.30), for 7 small enough we get

kg
’7'7_ _ T < T _ T < VW k,’r
|$k5 zg| < ’;—1 |} — 2] < fé%' (@) |k5 T,
and hence
K> 9 5y
0T max |[VW(z)] ~
zeKs

From (4.30) it is easy to see that 2" are equibounded and equicontinuous in
[0, 7kF], and hence by Ascoli Arzela Theorem, they uniformly converge, up
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to a subsequence, to a function z on [0, T}, for every T < Ts. Let t € (0,Ts)
and let h > 0, by (4.29) we get

L(t+h)/7]—1 _Lehy/r)-1
dT(rl(t+h)/T)) —aT(rltfT) = Y afa —af = = Y VW(p).
k=|t/7] k=lt/7)
(4.35)

Taking the limit as 7 — 0, and then h — 0, we obtain that the limit x is
the unique solution of (4.23).
Moreover, it is easy to see that 27 (7k]) — 2(T5) and hence by definition
of kF, it is easy to see that (4.34) holds true and Ts < T*. Since Ty — T*
(see (4.33)) we conclude that T — T* as § — 0.
U

4.2.2. Flat discrete gradient flow of F.. We are now in a position
to state and prove the convergence of discrete gradient flows as € — 0.

Theorem 4.14. Let pg := Zf\il di 00z, , with |dio| = 1. Let peog € X be
such that
flat fE(IU’E,U)

a lim 220 _ 1 1@).
:U’E,O Ho, gll}’(l) |10g€’ 7T|/j“0|( )

Let 6 > 0 be fized such that min{%dist#j(xi,o,xjjo),dist(:c@o,aﬁ)} > 20.
Given 7 > 0, let pl . be a solution of the flat discrete gradient flow of F.
from .

Then, up to a subsequence, for any k € N we have pg’k ag ., for some
pp, € X with |ug|(2) < M.

Moreover there exists a mazximal solution of the discrete gradient flow,
x] = (x{k, . 7$54,k)’ of W from xog = (21,0,...,2Mm,0), according with Def-
wation 4.9, such that

M
i = Zdivoézh for every k =1,... k3,
i=1

where k is defined in (4.25).
PRrOOF. Since F.(ul,) is not increasing in k, we have
Fe(uiy) < Felpeo) < Mrlloge| + of|logel).

By Theorem 2.7(i), we have that, up to a subsequence, ul fla py, € X, with
lWr|(Q) < M and [|pf — pf_|lnas < 6. Let & be defined by

M
kT -=sup{k e N: puf = Zdw&x;l,
i=1 (4.36)

1
min{gdist#j(azzl,x;’l),dist(a:;l, o)} >26,1=0,...,k}.
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: N _
Since ]ufch](Q) < M and HM’;E
M :
2oz dz’,()%ﬁgﬂ, while

+1—u£g\|ﬂat < 4, we deduce that iz g1 =

(dist(z7. Q) <26 (4.37)

N
mln{gdlst#j(a: ot

T T
it k1)
Moreov?r7 since ||}, — i llaat < 9, it is easy to see that at each step
k=1,...,ki + 1 and for every singularity Ty g of pup_,, there is exactly
one singularity of pj at distance at most § from z7, ;; we relabel it z7,.

Therefore, by definition of Ds , we have that for Kk =1,..., I;:g +1
Do (pfs p—) = |af — 21> (4.38)
We now show that for & = 0,1,...,]%5 + 1, af, satisfies (4.22). For
any measure i = Zi‘il d; 00y, with || — pf_qllaas < 6, by Theorem 2.7
(iii) there exists a recovery sequence {u.} such that F.(p:) — Mw|loge| —
W(un) + M~ as e — 0. By a standard density argument we can assume that
[tte — pZ 11 llaat < 0. Therefore by (ii) of Theorem 2.7, using the fact that
pl,, satisfies (4.21) and the continuity of Dy with respect to the flat norm,
we get,

™D (pifs 1)

W, M
(pur) + M~y + 5r

TFDQ(N;ka M;k_1)

< Timi _—
< h]gl}élffg(us’k) mM|loge| + o
Do (fte, 1L 5
< lim Fo(pe) — mM|loge| + e o)
e—0 2T
7D (p, pij, 1)
= W(u) + My + Tla
i.e., uj, satisfies
: Do (1, py_1) =
[p € argmin {W(,u) + Tl D= Zdiyodgji, H,u, uLlHﬂat <J;.
i=1

By (4.38) we have that x] is a solution of the discrete gradient flow of
W from xg = (x1,0,...,2m0) and by (4.37) that k] +1 = kJ.
(]

4.3. Discrete gradient flow of F. with L? dissipation

In this section we introduce the discrete gradient flows of F. with L?
dissipation (for the L? norm, we will use the notation introduced in (2.3)).

Definition 4.15. Fix § > 0 and let ¢,7 > 0. Given u.o € AF.(Q), we say
that {ul,}, with k € NU {0}, is a solution of the L discrete gradient flow
of F; from we o if uly = ue 0, and for any k € N, uly, satisfies

i 17

cu € AF:(9Q),
27| log 7| ) (4.39)

[1e(w) — p(ug g—1)llgae < 3}
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The constraint |[p(u) —p(ul ;_1)llgat < 6 is not closed in the L? topology.
Nevertheless, in Subsection 4.3.2 we prove an existence result for such a
discrete gradient flow.

In the parabolic flow of Ginzburg-Landau functionals it is well known
that, as ¢ — 0, the dynamics becomes slower and slower, and in order to
capture a non trivial dynamics it is needed to scale the time by |loge| (see
for instance [60]). In our discrete in time evolution, with 7 > ¢, it turns
out that the natural scaling involves the time step 7 instead of the length
scale €. Such a time-scaling is plugged into the discrete dynamics through
the 1/|log 7| pre-factor in front of the L? dissipation.

As in Section 4.2, we want to consider the limit as ¢ — 0 of such a
discrete gradient flow. To this purpose, we will exploit the I'-convergence
analysis developed in Section 2.3.3. The limit dynamics will be described
by a discrete gradient flow (that we shall define in the following) of the
functional W (defined in (2.55)).

Let vg € Dy (see (2.54)) be an initial condition with W(vy) < 400, and
let u. o be a recovery sequence for v in the sense of (2.59). We will show that
the solutions ul , of the L? discrete gradient flow of F. from Ug,0 converge
(according with the topology of our I'-convergence analysis in Subsection
2.3.3) to some limit v]. Moreover, at each time step k, v, € Dy, the I'-limit
W is finite, and the degrees of the singularities coincide with the degrees d; o
of the initial datum. Finally, {0} is a solution of the L? discrete gradient
flow according with the following definition.

Definition 4.16. Let 6,7 > 0 and K € N. We say that {v]}, with k =
0,1,..., K, is a solution of the L? discrete gradient flow of W from wvq if
vy = v and, for any k =1,..., K, v] satisfies

llo = viillze Jv—iw:d»oa yik €Q
. - T, Yi k> 1, b
27[log 7| — " (4.40)

v e Hbpo(@\UX {yiu ki 1), 190 = Jofy s < 3}

v € argmin{W(v) +

As in Section 4.2, we first do the asymptotic analysis as 7 — 0. In
contrast with the flat gradient flow of W, such step will require a big effort,
and will involve many ingredients developed in [60].

4.3.1. L? discrete gradient flow of W. Let vy € Dy with Jug =
M d; 00z, o, and fix 6 > 0 such that (4.24) holds true.

Definition 4.17. We say that a solution of the L? discrete gradient flow
{v[} of W from vy is maximal if the minimum problem in (4.40) does not
admit a solution for k = K + 1.

Let {v]} be a maximal solution of the L? discrete gradient flow of W
from vy, let Jou] = Ef\il di 067, , and let kF be defined as in (4.25).

Remark 4.18. Since for any ¢ = 1,..., M, we have that |d;o| = 1 and
thanks to the constraint ||Jv] — Jv_;|gat < 6, we get that at each step
k =1,...,k} and for each singularity =7, , of Jv]_,, there is exactly one
singularity of Jvj whose distance from :ZJZ s_1 is less than 6. We label this
singularity T 7
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The above remark guarantees that the following definition is well posed.

Definition 4.19. We set ], := (m{k, . ,:BR/M), where z7) are labeled ac-
cording with Remark 4.18. Moreover, we define 27 (t) := (2] (t),...,z},(t))
as the piecewise affine in time interpolation of {z7}.

As in Section 4.2 we have that z] € Ks, where Kj is defined in (4.27).
Moreover, the energy W is clearly decreasing in k. Since, for every k =
1,...,k; we have

ol — o7 2
WEZtialie <y y) - wiep),

27| log 7| -
then
k3 2
v, — Uﬁl”L?
Tk k=1L < (o) — WD,
; 27| logT| (vo) (vké)

< W(vo) = Wi(xgz) < W(w) — Wizo) + Cs, (4.41)
where Cj is defined in (4.28).

Proposition 4.20. For everyk = 0,1, ..., k} we have that ||Jv—Jv]_|lgat <
Cy/7|log |, where C > 0 depends only on § (and on the initial condition
’Uo).

ProOF. Fix 1 <k < kj and 1 <i < M. Set pzk = idist(a:zk,mzkfl).
Note that

deg(vf,0B,;, (¢];) # 0 = deg(v_1,0By7, (a7)).  (4.42)

Moreover, since W(v}) < W(vy), from (2.57) we have that

/ (Vo2 + [Vol_,[2) de < 2W(wo) + €. (4.43)
Bapr o] ) \BoT , (1)

As a consequence of (4.42) and (4.43), we have that

(dist(avzk,3102-77,671))2 <C v, — vgfl\de. (4.44)

szz,k(xZ,M\B”z‘T,k @i %)

Indeed, if by contradiction (4.44) does not hold, by a scaling argument we
could find two sequences {w?} and {wh} of functions in H'(Bs \ By;St)
such that

/ (VW2 + [Vl 2) de < 2W(wg) + C, / o — w2 dz 0,
B2\ B1 B2\ B:

and such that deg(w(, 0B,) # deg(wy,0B,) for almost every p € [1,2]. This
is impossible in view of the stability of the degree with respect to uniform
convergence for continuous maps from S! to S*.

Now, from (4.41) we have that

T T 2
/ ) |vp — vi_4|* dx < C7|log 7|,
BQka(ka)\szk(xi’k)

’
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which together with (4.44) yields

|Jvp, — Jui_q|laas < C+/7|logT|. (4.45)

For every k = 0,1,..., ki we set
&= W(up) — W(zp). (4.46)

Moreover, set Ty := lim inf,_, kj7, and define for any t € [0, T(;), the energy
ercess

D(t) = limsup D], .| > 0. (4.47)
T7—0
Since W(v])) < W(vg), by (4.26) we have
Di = W(vp) = W(zg) < W(vo) = W(zg) < D(0) + Cs, (4.48)

where Cj is defined in (4.28). From now on we will say that an initial
condition vy is well prepared if W (zg) = W (vp), i.e., D(0) = 0.

We are in a position to state the main theorem of this section, which is
the analogous of Theorem 1.14 in our case of discrete topological singulari-
ties.

Theorem 4.21. Let vy be a well prepared initial condition. Let {v]}r>o be
a family of mazimal solutions of the L? discrete gradient flow of W from vg.
Then,

d — . . T > )
Ts hin_)%lf kst > Tj, (4.49)

where k is defined in (4.25) and Ts is defined in (4.32).

Moreover, for every 0 < T < Ts, 7 — x uniformly on [0,T], where
7 is defined in Definition 4.19, and x is the solution of the gradient flow
of W from xy according with Definition 4.10. Finally, D(t) = 0 for every
0<t<TsandTs— T* as § — 0.

Remark 4.22. As a consequence of the uniform convergence of 7 and the
estimate (4.45), one can prove that the 1-current associated to the polygonal
27 (with the natural orientation and multiplicity given by the integers d; ),
converges to the current associated to the limit x in the flat norm.

The proof of Theorem 4.21 is postponed at the end of the section, and
will be obtained as a consequence of Theorem 4.23 below, which can be
regarded as the discrete in time counterpart of Theorem 1.13.

Theorem 4.23. Let vy be a well prepared initial datum, i.e., with W(xg) =
W(vg). Let {v]}r>0 be solutions of the L? discrete gradient flow for W from
vo, let T'> 0 be such that k§ > |T'/7] for every T, and assume that 7 — x
uniformly in [0,T] for some x(t) € HY([0,T];2M). Moreover, assume that
(i) and (ii) below are satisfied:

(i) (Lower bound) For any s € [0,T]

ol — T
k k—1

>7r/ l&(t) |2 dt .

li f—
llTTl_:(I)l | log 7| kz
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(ii) (Construction) For any k=0,1,...,|T/7| — 1, there exists a
field wi € H} (Q\UX b L0, W (z})}; SY) and a constant
Ms > 0 such that
W(vg) = W(wji1) = |VW(€Ek)! — TM;Dj, + o(7),

Wh1 — ”E ?
T

1
|log 7|

< —|VW(:¢;)\2 +o(1).
2 T

Then, D(t) = 0 for every t € [0,T], and xz(t) is a solution of the gradient
flow (4.23) of W from z¢ on [0,T].

PROOF. By (ii) and by the minimality of v]_ ;, we have

W(vg) = W(0j11) = W(og) = W(wi ) + W(wiyy) = W(vj41)

T T2 T T2
T T w — v T v — v
> L 1514 V|2 k+1 k k+1 k _ MDT
- W‘V (@)l 2| log 7| T 2| log 7| T 12 M, D +o(7)
> T VW T\ |2 T vg-‘rl_vg 2 MsDT
—%’ (xk)‘ +2|10g7_’ - LQ_T 0 k+O(T>'
Now, let s € [0,7]. Summing over k =0,1,...,|s/7] — 1, we have
T|s/T]—7
T T 2
W(vg) —W(ULS/TJ) Z 5 / |VW(:UWTJ)| dt
ls/m)=1 r 12 ls/7]—
T Yk+1 — Yk T
4 -t = —Mg/ -1 dt +o(1).
Mogrl 2 |- 7 Nl M), /) diF-o0(1)

By the uniform convergence of x™ to x in [0, 7] and the fact that € H*, we
have that also x[ Jr] T uniformly in [0,7]. Hence, passing to the liminf

as 7 — 0, using (i) and (4.48), we get

liminf(W(vg) — W(v[/r ) = % /05 %lvw(m(t))ﬁ + 7|(t)|? dt

T—0
M, / D(#) dt
0
where D(t) is defined in (4.47).
Since W(v§) = W(vg) = W (xg) = W(x(0)), we have immediately that
(

hmlnf(W( 0) = W([,,)) = W(x(0)) = W(z(s)) — D(s). (4.51)

(4.50)

Combining this with (4.50) yields

W(xz(0)) — W(z(s)) — D(s) >;/ —|VW (2(t))[? + i (t)|* dt
(4.52)
—M(;/ D(t
Since
W(z(0)) — W(x(s)) =/ (=VW (x(t)), &(t)) dt
0 (4.53)

| 9wl + Ali ) .
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then,
D(s) < Mg/ D(t) dt.
0

Since D(0) = 0 by assumption, from Gronwall’s lemma we find that D(s) =
0 for all s € [0, T]
Using that D(s) = 0, by (4.52) and (4.53) we obtain

/ |—VW (t)) + /7 &(t)|*>dt <0,
iy

and hence @(t) = W(z(t)) a.e. in [0, 7. O

The following propositions are devoted to shows that the hypothesis
of Theorem 4.23 are satisfied by the L? discrete gradient flow defined in
Definition 4.16.

Proposition 4.24. Let {v] },~0 be a family of mazimal solutions of the L?
discrete gradient flow of W from vy, let kj be as in (4.25), and let 7 be
defined as in Definition 4.19. Then

_ 2
Ty = liminf kTr > 72, (4.54)
Cs

T7—0

where Cs and cs are defined in (4.28) and (4.24) respectively.
Moreover, there exists a map © € H'([0,Ts]; QM) such that, up to a
subsequence, 7 — x uniformly on [0,T] for every 0 <T < Ts and

2 T
”‘f ]| - / (1) 2 d. (4.55)
2 0

L

1L
liminf ———
I g Z

PRrROOF. The starting point of the proof consists in applying Theorem
1.15 to piecewise affine interpolations in time of suitable regularizations of
vg. Clearly, the Ginzburg-Landau energy of v} is not bounded. By the very
definition of W, we have

1
/ Vol |? dz — Mn|log 7| < W(W]) < W(v).

2 Q\UY; (ka)

Moreover, the Dirichlet energy stored in By (27,) \ B;/z2(2],) is bounded.
Therefore, by standard cut off arguments, we can easily construct fields o],
which coincide with vf in Q\ U; B-(z7,), are equal to zero in By (27, ) and
satisfy

1
2/ |VoT|? dz < Mn|logT| + C. (4.56)
Q

Then, we consider the piecewise affine in time interpolation 97 : [0, 4+00) X
Q — R? of 97 defined by

t—k t—k
0T (¢, 3) = (1- T)@/Z(x)—l—iTka( ) ifkr <t <(k+1)7 <Kkjr,
I L T T
Uz (2) if ¢+ > kJ7.

For every fixed t > 0, we denote by " (t) the (space) Jacobian of 0.
We will prove the theorem in several steps.
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Step 1. There exists a map x € CO’%([O, +00); QM) such that up to a subse-
quence, for every T > 0 we have

M
am(t) flag wu(t) == Z di,00,(1) for every t € [0,T]. (4.57)
i=1

Fix T' > 0. By the convexity of the Dirichlet energy and by (4.56), it follows
that for any ¢t € [0, 7]

1
2
Moreover, by the definition of ©f, it follows that for any & =0,...,kj —1

/ Vo7 (¢, z)|* de < Mr|log 7| + C. (4.58)
Q

H@;-’-l - @EHiQ S HU]ZJ—-&-I — U]Z?—H2LQ + 07_2;
therefore, by (4.41), we get

k7 -1

90712 dtdz = T
/[O,T}XQ‘t ‘ Z

k=0

AT AT 12

Vg1 — Vg
T

< C|logT|.
L2

It is easy to see that for every t € [k, (k + 1)7]

1
s [a- P2 e < S i, - of
QO T

T

|7, < C|log]. (4.59)

In conclusion, for every t € [0,T] we have

1 1

/ Vo712 + =(1 - [97|*)*dz < C|log 7|

2 QO T

/ 10,07 > dt dz < C|log 7|
[0,T]xQ

By Theorem 1.15 applied with e = /7 and recalling that u(0) = py =
M d; 00z, ., we deduce that

M(t)
u(t) =m Z diGzi (1) for all t € [0, T
i=1

for some x;(t) € CO’%([O,Ti);Q) with T; < T. Here T; represents the first
time when z;(t) reaches 0f2. Finally, by construction x;(t) are defined on
[0,T], distinct, and contained in 2. The conclusion follows by a standard
diagonalization argument.

Step 2. Set
Ts := inf {t € [0,400) : min{%disti#(xi(t),xj(t)),dist(wi(t),89)} < 2(5} :

Then, Ts > Tg > 0.
1
Since 2 € C%2 and z(0) = x¢ satisfies

1
min{idist,;# (5131',07 xjy()), dist(a:i70, 89)} > 20,
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we have Tg > 0. Fixed t > T, by construction and Step 1 we have that

i) =i, 8 Zdzod ) (4.60)

Set pu7(t) :=m Zf\/ll 1,007 (1) for t < kf7, where 27 are defined in Defini-
tion 4.19. Let 0 < k < k. Since supp(4” (k7)), supp(u” (k7)) C U; B (27 )

and 17 (kT)(Br(27)) = w7 (kT)(B-(27})), for any ¢ € C () we have

(A7 (kT) = p(k7), ) = Z(/f(kf) — W (k7), 0 — i)

< (|27 (k1) [(Q) + [u" (k7)) 7Vl oo

where @; denotes the average of ¢ on Br(x],). Since, by Remark 2.8, we
have

i <CZ/ VT |2de < C,

(Iz k)\BT xT k

we deduce that

max |47 (k7) = 7 (k7). < C7 - (4.61)
5

This fact together with (4.60) yields

oo flag
Z; dz‘,ofsac; L Z di 00, (7y)-

Therefore, by the very definition of kJ, we have that for every ¢ > Ts
1
min{idist#j(:m(t), xj(t)), dist(x;(t),002)} < 26.

By continuity, the previous inequality holds also for t = T, so that we
conclude that Ty > Ts > 0.

Step 3. &7 — x uniformly on the compact subsets of [0,Ty).
Let us show that
147 (kT) = (k) lgas =2 |27 (K77) — w(K77)|lfas — 0. (4.62)

k_7775

Up to a subsequence we can assume that k™7 converges to some tg € [0, T5].
The fields
o7 (t if t < k7
T(t,x) =1 (t,2) L= (4.63)
0T (kTTx) ift>KTT

satisfy the assumptions of Theorem 1.15, applied with e = |/7; therefore,
denoting by 17 (t) the (space) Jacobian of v7, we have that, up to a subse-
quence,

et p@) it <t
() ) = {M(to) o (4.64)
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where the structure of ji is a consequence of the continuity guaranteed by
Theorem 1.15. From (4.64) one can easily prove that 7 (k77) — u(to) con-
verges to zero in the flat norm and hence we get (4.62). Combining (4.61)
with (4.62) we also deduce that

"(kr) =k 0. 4.65
k=(r)r,ll?)f,kg 117 (k7) = p(kT) [[as — (4.65)

Moreover, by the construction of p” and (4.20), we have that

B [0 (@) = 1" (/7] 7)||gat — O (4.66)

Using (4.66), (4.65) and that max,eo xr-] [|[w([t/7]7) — 11(t)l|lgay — O, by the
triangular inequality we conclude that

Qo 70 =2l = wax 17 () = pOllga = 0

Step 4. The function x belongs to H([0,T5]; @M), and, for any T € [0, T;],
(4.55) holds true. In particular, Ts > mc2/Cs.

The proof of this step is obtained as a consequence of Proposition 1.17
applied to the fields ©7, with ¢ = 7 and T' = Ts5. By (4.41) and recalling
(4.59), it easily follows that

T
72/ / dxdt<CZ

and hence (1.21) holds with ¢ = 7 and w. = v". This fact together with
(4.57) and (4.58) guarantees that the hypothesis of Proposition 1.21 are
satisfied. Therefore, we deduce that (4.55) holds true with v] replaced by
7. Since [|0] — v]||z2 = O(7?), we deduce (4.55).

Finally, by (4.41) and recalling (4.28), we have

T 1) 2
2dt < liminf
”/0 ()| s |1ogr\Z L2 (4.67)

< lim infW(vg) — W(v] Tj)) < hm%lf(W(a:o) - W(x[zj)) < Cs.
T— =

T7—0 T

2
< CllogTl;
L2

NT

AT
Yk+1 ~ Uk

U — V_q
T

By Holder inequality, and recalling (4.24), we conclude

~ T5 ~
¢s < |x(Ts) — 2(0)] < /0 ]t < ]2 .7y 00,V T (4.68)
By (4.67) and (4.68) we immediately get (4.54) O

Since we have proved assumption (i) in Theorem 4.24, it remains to
prove only assumption (ii). To this aim, at each time step k = 0,1,...,kJ,
we construct, a field wy, ; whose vortices are obtained translating 7, in the
direction of the renormalized energy VW (7). The variation of the energy
W associated to the fields v and wy_ , is proportional to the distance among
the vortices of the two functions (i.e. |[VIW(z})|) up to an error given by the
energy excess D] defined in (4.48).
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Proposition 4.25. For any k =0,1,...,k; — 1, there exists a field wi_ , €
HI%JC(Q \ Uzj\il {:I:Z—,]g - %axZW(l';;)} ,81) such that

W(vg) = W(wjy1) 2 %IVW(@"Z)P — MsT D, + o(7) (4.69)

Hwi:+1 _UIZH;

1 2
< —|VW (], 1 4.
7_2|10g7_’ = 7T’ (mk)‘ +O( )7 ( 70)

where Mg is a positive constant depending only on 6.

Proor. Fix k € {0,1,..., k] — 1}; to ease notation we set
1
W = (‘/;'1,%2) = —;OIIW({L‘E), V.= (Vl,,VM) (4.71)
With a little abuse of notation, from now on we will set z; := Ty and

yi = x; + 7V; for every i = 1,..., M. By (4.25), the balls Bjy(z;) are
pairwise disjoint and contained in 2.
In order to construct the field wy_ ,, we wish to “push” the vortices
x; along the direction V;. For every ¢ = 1,...,M, we can find smooth,
compactly supported vector fields in €2, X;1 and X;o such that
le(.%') = (1, 0) ng(x) = (0, 1) for x € B(;/Q(.Z'Z‘),
Xi1(z) = Xiz(z) = (0,0) for z € Bsjp(xj),j # i

and such that |[VX;j| < 2 for every i,j = 1,...,M. Then, we define
Xy = Zf\il > j—19VijXij- Since W is smooth in K (see (4.27)), there exists
a constant Mg depending only on ¢ such that

1

For any t € [0, 7], we define x¢(z) := x +tXy (z) for every x € Q; notice that
Xt(z) = x 4 tVj for x € Bs/o(x;). For any t € [0,7] let ® be the solution of

AD =27 M d; 00,40y, in Q
ol =0 on 0f)

and

M
Ri(x) = ®'(z) = Y diglog|z — a; — tV;. (4.73)
=1

By definition R* are smooth harmonic functions in ; we denote by R* theirs

harmonic conjugates with zero average in §2. Moreover, we denote by 6! the

polar coordinates centered at z; +tV; and set ®! := Zi\i 1 di 00!+ R'. Notice
that V®! is nothing but the 7/2 rotation of V®!. We define

W) = ' (xa(-) — °(). (4.74)

Notice that 1! is a smooth function in €2, the singularities at z; canceling

out, and that it is smooth in space-time. In particular, using (4.26) one can

show that, for 7 small enough, there exists a constant C' depending only on
d such that

d
sup (19610 + |- l~i0) ) < € (4.75)
te(0,7]

79



For any 0 < o < 6, we define Q% := Q\ Uf\ilBg(xi + tV;). By definition
of &, the renormalized energy associated to the configuration x +tV is
given by

Wl +1V) = lim = [ |[V'2 - Mnr|logo]. (4.76)
c—0 2 Qt

Since v], € H'(Q%;S1), there exist a family {L;}i=1,.. m of cuts of the
domain Q (L; is a segment from x; to Q) and a function ¢° € HY(QY \
UM, {L;};R) such that v] = e’

Recalling (4.74), we introduce the field wj_, defined by the following
identity (notice that x, is invertible for 7 small enough)

W1 (X (1)) 1= v (a)e ) = @I, (4.77)

By definition, wj_ , € HY(Q7;S!) and Jwi = Zf\il d;00y, -
We notice that if ¢ = ®°, then by (4.76) we get

T T : 1 T 1 T
W) = W(wiy,) = lim o . |VoT|? dz — 2/% IVwj_ 4] dy4.78)
1 = 1 ~
= i - (I>O 2 - 7 2
i [ 98— [ 9aay
= W(zp) =Wz +7V). (4.79)
Recalling (4.26) and (4.27), by Taylor expansion we conclude
T T T T T T

W(zr) — Wz — ;VW(%)) = ;’VW(%)F +0(7%). (4.80)

We show now that wj_ ; satisfies (4.69) even when vj is not optimal in
energy. To this purpose, we show that the difference W(v]) — W(wj, ;) can
be bounded from below by the variation of the renormalized energy up to
an error given by the defect D] defined in (4.46). More precisely, set

1 -
Dri= [ (96 - V8P da, (1.81)
Q5
so that D = lim,_,0 D] ;.. We want to prove that, for 0 < o < 7,

1 1 1 ~
/ |Vv,:|2dx—/ Vi 4]* dy > / VOO |? dx
2 Jog 2 Jo; 2 Jo.,

(4.82)
1 .
- /Q |V<I>T|2dy—M57'D;k+O( o|logal).

2
Notice that, taking the limit as o — 0 in (4.82), we get
W(vg) = W(wip1) = Wag) = Wz, — 7VW(ag)) — M7 Dy,

which, in view of (4.80), concludes the proof of (4.69).
We now prove (4.82). By the change of variable y = x,(z) and by
definition of w_ , in (4.77), we get

1 T 1 T
2/ [Vwi,,[?dy = 2/ IVwiy () [T x-| da
Qr Q0

1
:/ Ve + Vo Rl de (4.83)
2 Qo

80



We claim that the following two estimates hold.

1 1 -
! / VP xs | de < / VAP Ixe de + (14 Myr)Dly  (4.84)
2 Qg 2 Qg ’

9 Tl de = [ (907,981 x0| da+O(/aTTog ). (455)

0
o Qo‘

By (4.84) and (4.85), we conclude the proof of (4.82) as follows: Using (4.74)
and the change of variables y = x,(z), by (4.83) we get

1 T
Q/QT |Vwk+1|2dy

1 -
< 2/ VO + VT | Jx7| dz + (1 4+ My7) D}, + O(y/o|log o)
05
1 .
= 2/ IVOT[*dy + (14 Ms7)D},; + O(y/o|log o). (4.86)
Q5
By (4.81) and straightforward algebraic manipulations we obtain (4.82).
Now, we will prove the claims (4.84) and (4.85). Claim (4.84) follows by

1 0 T
5 [ (9 = V8P el o < o D

1
< (1+ §M57 +O(t*))D], < (1+ My7)DJ ..

We pass to the proof of (4.85). We have

/QO (V™ , V)| T x| dz

o

:/ <V¢T,V<§O>\JXT]da:+/ (V™ , V¥ — VOO | Jx | dz. (4.87)
Qf Qo

Using again that [|Jxr||z < 1+ Ms7 and Hélder inequality, we get

/QO (VYT , Vi — VO | Ty, | dzx

< (14 MsT) </g;0 |V¢T‘2 d$>

Moreover, since W(v]) < W(vg), we have

=

o

(],

2
\wo—véo\?dx) . (4.88)

/ Ve? — Vol 2 dz < 2/ (V2 + [VDY)?) dz
Q9 Q0

< AW(vo) + 4Mm|loga| + o(1).
By (4.74), since Xy has compact support in {2 we have

oyt 9Bt 9
g—ayﬁ—ayﬁ—o OHaQ.
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Therefore, in view of (4.75),

M
6 T
/ |V¢T|2dx=/ s ds—§j/ VT2 ds < Co?.
Qo o0 v =1/ Bo(z:)

Combining the above estimates with (4.87) and (4.88) we get (4.85).
To complete the proof it remains to show that (4.70) holds. By definition
of wi () (see (4.77)), we have immediately

2
o~ vl = [

= | JoF = v dy (4.89)
Q

|

2 [ O =06 006 ) o0 e ) dy (491)
Q

N
e E ] T

402
oE0G) = i 0 e ay (4:90)

In order to prove (4.70) it is enough to show that
Jolor = v M? dy < wr2llog 7| [V2 +o(72logr]),  (4.92)
Ja

indeed, once we got (4.92) and (4.93), by Holder inequality, we have imme-
diately that the integral in (4.91) is O(7%4/]log 7).

First, we prove (4.93). By the change of variable y = x,(z) and the fact
that ¢° = 0, in view of (4.75), we obtain

J

Finally, to complete the proof of the Theorem it remains to show that (4.92)
holds. By Hoélder inequality, we have

/ o — OGPy
ON\U; Bs2(yi)
d

</ r [ IV gy dy
NU;Bsja(yi) 0

< C(1 4 MsT)T*(W(WE) + Mr|log g]) < Cr?,

12
VEOGY) = oE G e 0D dy < o7, (4.93)

12 o |2
06 i) 0y = /Q 1= e do

d
<( +M57)Ha¢tlliw(m72|m <Cr?.

where C' depends only on § and we have used that W(v}) < W(vo).
In order to complete the proof of (4.92), it is enough to show that

/ v — vf (P dy < 77| log 7| Vil* + o(7%[log 7). (4.94)
Bs2(yi)
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Let N > 0 be given; then, for any i = 1,..., M,

/ i (') — il dy S/ I (x; 1) — vf > dy + 4N?72x.
By 2(yi) Bs/2(yi)\Bn~(yi)
(4.95)

Without loss of generality we can assume d; o = deg(vy, 0Bs/a(7;)) = 1.
We first show the estimate (4.94) in the case v, = 7—74 in Bs/o(7;). Let

|x—a;]
(r,0) be the polar coordinates with respect to y;; denoting by a = «(r, )
the angle between the vectors éizz‘ and v] (y) = %, we have
2 5/2

Y-y Y-y +TVi
lv—wl ly—y+7Vi

27
dr / 4sin? 2 g6.
. 2

(4.96)
Using elementary geometry identities and Taylor expansion, for N7 < r <
d/2 we get

dy =

”
L&/Q(yi)\BNr(yi) Nt

V| sin 1 Vi| sin 6
sina = TViI5D _ - VO 4 o1/,
r \/1+Tl}2/,| _2T|Vi|c059 r

r

so that sin’ 7= W + O(1/N). Therefore, by (4.96) we get
2
/ y_yi_y_yi‘i‘TVi
Bs 2 (yi)\Bnr(y:) ly—vil |y—vyi+ 7V

6/2 1 21
—72%]2/ dr/ sin? 9 df + O(1/N)
Nt 0

r

1)
= 7r7'2| logTHVi\2 + 2 log ﬁ\‘/;]Q + O(1/N)). (4.97)

Then, (4.94) follows (in the case v] = =) by choosing N = |log 7.

T Jr—ay)
Now, we prove (4.94) in the general case, i.e., without assuming vj =

I;:?I' Set L := |log, %J and let 6; be the angle in polar coordinates with
center in y;, i.e., the phase of the function é:gﬁ. Forevery l=1,...,L, we
set

Ci(yi) = Bo-15(yi) \ Bo-1-15(yi),  Cils) = Bo-rs15(yi) \ By-1-25(ys)-
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~ 1 . .
Set go?}l = Gl fC‘z () ¢%(z) dy and notice that the average of 6; is equal
to m. We have

W) —kady—Z/ b P dy

/Bé/z(yz)\BNT( i) Ci(yi)

L
Z/ Z(Soo(x;l)_@?71+ﬁ) B ei(¢0_¢g’l+w)|2 dy
~ Jew)
—Z/ ) — e dy
Ci(yi)
+/‘ |ei(800(XT )_‘Pi,l"'”) . ez(cp —goi’l-‘rw) _ (ei9¢(X;1) _ 61'01')’2 dy
Ci(yi)

+2/C( )<ei9¢(xfl)_eu o1 Oxr )—@?,l-ﬁ-ﬂ)_ei(wo—@?,ﬁﬂ)_(62'91'(x¥1)_ei9¢)>dy'
1\Yi

Estimating the last term of the right hand side of the above formula by
Hélder’s inequality and recalling (4.97), in order to prove (4.94) it is enough
to show the following estimate

L

lz:; /Cl(yi)

By definition of x,, for any y € Ci(y;), x> '(y) = y — 7V; and then

G0 =0 ) _ i(e0—g ) (%0 _ 00| 4y < Or2.

OO W) =80 ) _ i ()@ ) /T Vel (' (y—tVi) =3} +m) Vidt

OO W) _ pifily) /T Velli=tVi) .y gy
0

then, by Jensen and Cauchy inequalities,

2
dy

/ GO0 =0 ) ileE =Y +m) (00 ") _ ¢ifiy
Ci(yi)

a /Cz(yi)

< 7|V;|? dy
Ci(yi) 0

2
dy

/T(Vewi(y—tVi) _ vl V)= gy

0:(y—tVi) _ itV 32, 4m) > g

. - 2
< 72|V / ’Vew — v 4y (4.98)
Cl yz
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Furthermore

L
Z/ Veiti — yeile" =t 2 gy
C~Vl(yz)

Z/ Ve P Ty [ 9 - )Py
=1 Clyz Cl

(v4)
L

<23 [ gt ARy [ v Py,
Ci(vi) Ci(yi
(4.99)
where the last inequality follows from the fact that |Ve® (y)|> = |y_1y_|2 and

that 271726 < |y — y| < 27116 for y € Cy(x).
Finally, by Poincaré inequality, it follows that

/ 610=e0) _ =800t m 2 g
Ci(yi)

< / 16— @ — (m— G2 dz < 02242 / V(0 — ) dy |
Cl(:cz) Cl(

vi)
(4.100)
where C' is a positive constant. By the minimality of 8;, we have
[owe-olay= [ wlp- [ vaPay.
Ci(wi) Ci(wi) Ci(vi)
By (4.99) and Remark 2.8, we obtain
L
Z / [Vl Pt et dy
é’l(yz)
< 02 |, (V& =198 ay
Ci(yi)
L
:CZ / |V<,00|2dx—67rlog2> <C.
=1 Cl(yz)
This together with (4.98) concludes the proof. O

We are now in a position to prove Theorem 4.21.

PROOF OF THEOREM 4.21. By Theorems 4.24, 4.25, we can apply The-
2
orem 4.23 for any T' < ﬂ'%, and in view of (4.54) we obtain that

1) 27 converges to the solution z of (4.23), uniformly on [0, T7;

2) D(T) =0.
Let T™* < liminf, 0 kj7 be the maximal time such that 1) and 2) holds
true on [0,7") for every T' < T™. Recalling (see (4.33)) that Ts — T™* as
0 — 0, it remains only to prove that 7™ > Ty. This follows by a standard
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continuation argument: Assume by contradiction that 7% < T, and let
T <T™% Then we have

1
te[(g?TiIr}laﬂ min{idisti#(:ri(t),:):j(t)),dist(:):z-(t), 00)} —26 = c§ > 0.

Consider now xIT Jr ) UE—T /7| S the initial condition of a new L? discrete

gradient flow. Notice that, in view of 2), these initial conditions are well
prepared; the fact that the initial time is not zero is not relevant, since
all the equations are autonomous. Moreover, even if the initial conditions
depend on 7, they converge as 7 — 0. Therefore, Theorems 4.24, 4.25, and
Theorem 4.23 still hold true with the obvious modifications, and we easily
deduce that 1) and 2) holds true as long as 0 < ¢t —T < (c§)?/Cs. This time
interval in which we can extend the solution is independent of T" < T™*
which contradicts the maximality of T7%*. O

4.3.2. L? discrete gradient flow of F.. We conclude this section by
analyzing the existence of the L? discrete gradient flow of F. and studying
its asymptotic behaviour as ¢ — 0. The existence will be obtained for e
small enough by making use of the auxiliary problem studied in the previous
section. To this aim it is convenient to introduce a relaxed version of such
discrete evolution.

Definition 4.26. Fix 0 > 0 and let ,7 > 0. Given u.o € AF.(Q2), we say
that {a , : k € N}, is a relaxed L? discrete gradient flow of F. from ug o if
ul = ucp and, for any k € N, there exists a sequence {ul ;. }» such that
lim He27riu;km o GQWW;,k ||L2 — 07
n—ro0

Hu(ug,k,n) - M(ag,kfl)uﬂat <94 for every n € N,

(4.101)
||627riu;k7n o 627riﬂ;,k—1 ”22
3 T L2 _ g7
nh—>ngo Fe(en) + 27| log 7| L
where
T 7
I;]f - uejr}f(ﬂ) FE(U) + 27_| 10g7_| : ||/L(’LL) - /‘(ag,k—l)Hﬂat <d,.

The existence of such relaxed discrete gradient flow is obvious. To show
that it is actually a strong L? discrete gradient flow it is enough to show
that [[p(al ;) — p(ul ), )llfat < 0. A key argument is given by the following
estimate that one can easly check by contradiction

lim sup 1(ul g ) =@ ) |l < Cet{ (6, 5) € QL = dist(@l (i)l (5), Z) = 5}
(4.102)

Theorem 4.27. Let vy be such that W(vy) < +oo and let Jvg = Zf\il di 00z, 5 =:
po with |dio| = 1. Let ueg € AF:() such that

fla;
p(ueo) = po,  Felueo) < 7luol(Q)loge + C.

Let 6 > 0 be fized such that min{%dist#j(xw,a:j70),dist(afi,o,89)} > 20.
Given T > 0, let ug be a relazed L? discrete gradient flow of F. from uc.
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Then, up to a subsequence, for any k € N we have ,u(ﬂgk) flag ur, for
some p € X with |uf|(2) < M and there exists a mazimal L* discrete
gradient flow, v, of W from vy, according with Definition 4.16, such that

M
pr, = Juj, = Z di,00z7, » for every k=1,... kf, (4.103)
i=1
with k§ as defined in (4.25).
Moreover denoting by v, the piecewise affine interpolation of e
we have

UV —vp  in HL (Q\ Ui]\il{xzk}; R?), for every k=1,...,kI. (4.104)

a7 T
27”“5,1@7

Finally for T and € small enough such ul, is indeed a minimizer of
problem (4.39) and hence it is a (strong) L? discrete gradient flow.

PROOF. The proof of this result uses the first order I'-convergence result
(Theorem 2.9) and follows closely the proof of the analogous statement in
Section 4.2 (see Theorem 4.14). Indeed by the definition of relaxed L?
discrete gradient flow we have that for any £k € N
2

. .
HGZﬂ'wak _ 627”u5,k—1

L2 < F(ualyy).

F(a
€<u€’k) + 27| log 7|

By induction on k, one can show that
Fo(ul ) < Fe(ueo,Q) < Mn|loge| + C.

This estimate together with (4.102) we obtain that [|u(al ;) —p(ul ;1) lfat <
d + Celloge|. Then using the Compactness result stated in Theorem 2.6(i),
and arguing as in the proof of Theorem 4.14 we deduce (4.103) and (4.104).

In order to show that, for e small enough, u , is an L? discrete gradient
flow according with Definition 4.15, it is enough to recall that thanks to
Proposition 4.20 we have that ||u] — pf_q[laat < C+/7|log7|. Then the
conclusion follows by the convergence in the flat norm of p(af ;) to pj. O
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CHAPTER 5

['-convergence analysis of systems of edge
dislocations

Here we develop the static ['-convergence analysis for the energy dislo-
cations. All the results in this chapter are proved in [31].

5.1. The main result

In this section we state the main result of this chapter and introduce
the required preliminaries and notation. We recall that ) is a bounded
open subset of R? with Lipschitz continuous boundary. Let S be the class
of horizontal slips (translations) under which the crystal is invariant. It is
generated by a set S := {v1, v2} C R?, where v; are called primitive vectors,
i.e., S = SpanzS (we are implicitly assuming that 2 lies on a slip plane
of the crystal). For instance, in the case of cubic crystals we would choose

S = {ey1, ea}, while for fcc crystals S can be chosen as S = {eq, %61 + @eg}.
The space of finite distributions of edge dislocations Xeqqe is given by

N
Xedge = {H € M(Q’R2) Cp= Zfléxﬂ N S N) T € Qv 51 S S}a
i=1

where M (€2, R?) denotes the set of vector valued Radon measures on 2. We
endow Xegge With the flat norm ||ul|g,, defined by

lilgw = sup / bdp;
<1JQ

‘ |W&,O<><Q)f

in particular, we can consider Xeqg. as a subspace of W-LH(Q). We will

denote by up flag u the flat convergence of uy to .
Fix € > 0. Given p € X, we denote by

Qe(p) =0\ |J  Be(w)
z;E€supp(p)

With a little abuse of terminology we will call admissible strain associated
with p any field 8 € AS.(u), where

AS:p) = {8 € L2(Qu(u):M>?) : Curld =0 in Q. () (5.1)
B(s) - t(s)ds = p(A) for every open set A C §2
0A
with 0A smooth: 0A C Q.(u), and / (B—pT)de = O}.
Qe (p)
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Here t denotes the tangent vector to 0 A and the integrand -t is intended
in the sense of traces (see Theorem 2 page 204 in [30]). Note that if the
balls Bc(x;), with x; € supp(u), are pairwise disjoint and contained in €,
then the circulation condition in (5.1) reads as

R CRICITE S
OB (x;)
The elastic energy associated with a strain f € AS.(u) is defined by

B )= | W),
(p

where W(B) = %(CB : B. The energy & : Xeqge — R induced by the
distribution of dislocations p is given by

E(p) == min Ec(p, )+ |ul(2).

BEAS (1)
The rescaled energy functionals F. : X¢qge —+ R are defined by
1
= . 2
Fe(p) |10g€’55(u) (5.2)

The main result of this Chapter is the study in terms of I'-convergence
with respect to the flat topology of the functionals F.(u). We show in
Theorem 5.4 that the I'-limit is obtained by a suitable relaxation of the so-
called prelogarithmic factor v, that we define as follows: Given ¢ € R?, we
set, in agreement with [36]

Y(€) = min{ W((9))df : T € L*(0B;,M?*?), CurI;F(é) =0,
0By

/831 T(6) - £(6) d9 = g}, (5.3)

where (p,6) are polar coordinates in R?, ¢(f) denotes the tangent vector to
0B, and the equation Curl%F(G) = 0 has to be understood in the sense of

distributions in R?\ {0}. The minimum in (5.3) is attained by a function
denoted by I'c which is unique up to additive skew matrices.

The displacement ug2(§) induced on the whole plane by a straight infi-
nite dislocation centered at 0 with multiplicity & is computed explicitly in
the literature (see e.g.,[12, formula (4.1.25)]) and it is of the form

S (p,0) = Fe(0) + gelog p,

where g¢ € R? and the function Fy is given by F¢(6) = foe fe(w) dw for a suit-

able function f¢ € C°(0B;;R?), with f027r fe(w)dw = &. The corresponding
strain field is given by

ﬁf@ (p,0) : (fe(0) ® (—siné, cos ) + ge ® (cosb,sinf)) . (5.4)

1
p
The equations satisfied by 5]1%2 are

{ Curl,é’ﬂi2 =£6) in R?;

5.5
DivCAs, =0 in R%. (5:5)
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It can be proved that a field satisfying (5.4) and (5.5) is unique, so that
the fields f¢(-) and g¢ are determined by the vector { and the elasticity

tensor C. More precisely ﬁﬂ% is given by

B, (0.0) = ;rgwx (5.6)

where I'¢ is a minimizer of (5.3) (see [36]). In particular
. 1
o= [ W@ —tm [ WEd  6)
8B e=0log = /B, \B.

where B, denotes the ball of radius p and center 0.
Let us introduce for any given ¢ € R? and for 0 < r < R, the space

AS, k(€)== {8 € L*(Bg \ Br;M**?) : Curl = 0, / B-tds=¢,
0B,

[ @-gas=o).
BR\BT‘
(5.8)

The relation between the prelogarithmic factor defined in (5.3) and our
energy is clarified by the following proposition (proved in [36], Corollary 6).

Proposition 5.1. There exists a constant Cy > 0 such that

s
[9() = ve(€)] < Corie .

where

1 /
min W(3)dz.
|loge| BeAS.1(¢) B1\B: (6)

Remark 5.2. In our analysis it will be convenient to introduce the following
notation for the elastic energy of a dislocation in the annulus Br \ B,

Ye(§) =

1 ) /
- ‘= ————— min W(B)dz. 5.9
Ur.r(£) log B log 7 e A%0) [, (8) (5.9)
Using a change of variables we clearly have ¢, g(§) = l/J% (£), and hence
96) bl < Com
’ — logR—logr

In particular

Jim 4 R (€) = 9(E).

R—>O

We introduce the density function ¢ : S — [0,+00) of the energy F
through the following relaxation procedure

N N
©(€) := inf {Z Melv(&r) s D M =& NeN, M €L, € S} . (5.10)

k=1 k=1
It can be easily proved (see [36]) that the infimum in (5.10) is in fact a
minimum.

Definition 5.3. We say that b € S is a Burgers vector if p(b) = ¢(b), and
denote by B the class of such vectors.
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It is easy to see that S = Spanz% and that in the relaxation in (5.10)
we can replace S with 28, namely for every £ € S we have

k k
©(€) = min {Z INilo(Bi) 1 €= Nibi, \i € Z, b € %} . (5.11)
i=1 i=1

The limit energy induced by a configuration p is the functional

N N
F(p) =Y _0&)  forany p=>» &b € X, (5.12)
i=1 i=1
The following I'-convergence result holds.

Theorem 5.4. Let F. and F be defined by (5.2) and (5.12).

(i) (Compactness) Let e, — 0 and let {un} be a sequence in Xedge
such that F, (pun) < M for some positive constant M independent

of h. Then, (up to a subsequence) up, flag € Xedge-
(ii) (T-liminf inequality) Let {pn} C Xedge be such that py, flag p. Then
Flu) < liminf F., (up).
() < lim inf F, (pn)

ili (T'-limsup inequality) For every p € X, there exists {pn} C Xedge,
flat
such that up, = p and
lim sup Fz, (pn) < F(p).

h—+o00
The proofs of the compactness and the I'-liminf inequality are quite
technical and are based on the “ball construction” technique. As explained
in the Introduction, a specific difficulty of our context of plane elasticity
is due to the fact that the energy depends only on the symmetric part of
the field 5. Moreover, the optimal Korn’s inequality constant blows up on
thin annuli, and the function ¢, r defined in (5.9) vanishes as R/r — 1 (see
Example 5.13). It is then not clear how to estimate the energy from below on
thin annuli. For this reason, in the implementation of the ball construction
technique, we will work only with annuli whose ratio of the radii is given
by a constant ¢ > 1. To this purpose we have to revisit the standard ball
construction in Subsection 1.2.1. We will introduce the needed discrete ball

construction in the next section.

5.2. Revised Ball Construction

As mentioned above, the main goal of the ball construction is to provide
the key lower bounds (see Proposition 5.6) on annular sets, needed in the
proof of the I'-liminf inequality and of the compactness. First, we give a
lower bound for the energy on a single annulus Bg \ B,.

Lemma 5.5. Given 0 < r < R and ¢ € R?, for any admissible configuration
B € AS, r(§) (defined in (5.8)) we have

g7 1 R

YR dy > 2~ _og —,
/BR\BT | | 2 K(R/r) r
where K(R/r) is the Korn’s constant defined according with (5.35).
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PROOF. We introduce a cut L on the annulus B\ B, so that (Br\B,)\L
is simply connected, and exploit the fact that /3 is a curl free field in Br\ B;.
More precisely, there exists a function u € H((Bg\ B,)\ L; R?) with Vu = 3
in (Br \ B;) \ L. From the circulation condition in (5.8), applying Jensen

inequality, it is easy to see that
2m
/ Vu-tdf
0

|
/ \Vu]deZ/ —
Br\Br r 2T

the thesis follows directly by applying classical Korn’s inequality (Theorem
5.35). O

For any given C > 0, let f : Rt x RT x RT — R be defined by

2

2
s €8

log

flr,R,t) = Ctlog?. (5.13)

Clearly f satisfies the following properties
i) f(r,p,t)+f(p,R,t) = f(r,R,t) foreveryt >0and 0 <r < p < R

ii) if f(r;, R, 1) = a for every i = 1,...,m, for some a € RT, then
= JQ_r ) Ril).
=1 i=1

Fix p = Zfil &bz, € X, and set

N
we := | Be(). (5.14)

i=1
Proposition 5.6. Let ¢ > 1 be fized and let f be defined as in (5.13). Let
F be a positive additive set function on the open subsets of ) that satisfies

F(Br(z)) = f(r, R, |n(Br(z))|) + F(B(x)), (5.15)

for every x € R? and every r, R € RY with & = ¢ such that Bg(z)\ B,(z) C
Q\ we. Finally, let p > 0 and let A be an open subset of Q0 such that
dist(z;,0A) > p for all x; € A. Then,

F(4) > [u(A)|f (e N, 2. (5.16)

The statement of Proposition 5.6 is proved by computing a lower bound
for the energy on a sequence of larger and larger annuli in which the main
part of the energy is stored. We follow closely the strategy of the ball
construction introduced by Sandier in 1.2.1. The main difference is that
we need to construct annular sets with radii satisfying R/r = ¢. To this
purpose, our ball construction consists in a discrete rather than continuous
process in which at each step either all the balls expand or some of them
merge together. We proceed by introducing our discrete ball construction.

Discrete Ball Construction

Let {z;}i=1.. n be a set of points in R?, ¢ > 1, and € > 0. We set N? :=
N, z) =, R =r) =¢, for every 1 <i < N and By = {Bpo(2?)}i=y._no.
Given 71, R 7! for i = 1,..., N1, we construct recursively x7,
R}, r? for i=1,...,N™ as follows. First, we consider the family of balls
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{B_pn—1(z]71)}. If these balls are pairwise disjoint, we say that n is an

expansion time. In this case, we set N* = N"~! and

n _ . n—1 n __ n—1 n _ .n—1 . n
=z, R!=cR'™", ri!=m foralli=1,...,N™.

If, otherwise, the balls in {B,pn-1 (2 1)} are not pairwise disjoint, we say
that n is a merging time. The merging consists in identifying a suitable
partition {S;};=1, . n» of the family {B_pn-1(z'"!)} and, for each subclass
Sj, in finding a ball Bgn (2§) which contains all the balls in S; with the
following properties:

i) the balls B R? (z7}) of the new family are pairwise disjoint;

ii) RY isnot larger than the sum of all the radii of the balls B, pn—1 (2" 1) €

Sj, L.e., contained in Bgr (7).

Such a construction can be always done by an induction argument, for more
details we refer to [58]. After the merging, we reset all the quantities intro-
duced above as follows: x% and RY for j =1,..., N™ are determined by the
merging construction, while the parameters 7, referred to as the seed sizes,

are defined so that, for all 1 <3 < N" ! and 1 < j < N", we have

B _RT
T
and hence
Frf Ry 1) = frp ™ RYH 1), (5.17)

Furthermore, at any step n, we define a parameter 7,, that counts the
number of merging occurred until the n-th step. More precisely, if n is an
expansion time 7, = 7,1 whereas if it is a merging time 7, = 7,1 + 1. In
this way, at time n we have made n — 7,, expansions and 7, merging.

Definition 5.7. We refer to the construction above as the Discrete Ball
Construction associated with the points {z;};=1 . n. In particular, for every
n € N we have defined a family of balls

B, = {BR? (w?)}izl,...,zvn,
a family of seed sizes {7]'}i=1, . n» and the merging counter 7.
We are now in a position to prove Proposition 5.6.

PRrROOF OF PROPOSITION 5.6. Consider the Discrete Ball Construction
associated to the points x; € A. The balls in B,, satisfy

R} < c"et{i: Be(zi) C BR;;(:U?)} (5.18)

i < et{ic Be(zi) C Bry(af)}. (5.19)

We first prove (5.18) by induction arguing as follows. If n is an expansion
time, then we clearly have R} = cR?’fl. While if n is a merging time, by
construction (namely, by property ii)) we have

R} <c > R

. -1
i BR;L,l (2 )CBR? (@)
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As for the proof of (5.19), notice that

R? r1

r—é = ¢ r:‘_l if n is an expansion step, for any j € N* = N*1 e N1,
j i

R}, R

x = r;hl if n is a merging step, for any j € N*, i€ N" 1.

n )
R" n

We deduce that — = ¢"~7". Therefore, (5.19) follows by (5.18) since

J

” n

C . n .
Ty = c”—jT" < Cn_Tnsjj{z . Be(z;) C BR;_L(x?)} =c" et{i: B(x;) C BR;;(ZL‘
The main point of this construction is that it provides the following
lower bound: for every n € N and for every j =1,..., N,
F(B}) = |u(B)|f(r}, R}, 1), (5.20)

where, for sake of simplicity, we have set B} := BR;; (a:;l)
We prove (5.20) by an induction argument. For n = 0 there is nothing to

prove. Suppose that the inequality is true at time n—1. If n is an expansion
time, then

F(B}) = F(B}\ By™") + F(BI™') = f(R'™, RV, |u(B})))
+ L R (B D (B R L) = |w(BY)| (7 R 1),

where we have used (5.15), the induction hypothesis, the fact that the quan-
tity | M(Bn71)| does not vary during the expansion times and that, since n
is an expansion time, r;‘ L—pm,

It remains to prove that inequality (5.20) is preserved during a merging
time. Let n be a merging time and let {B]" '};c; C B} Since ,LL(B]) =
e 1(BPY), we have [u(BI)| < Sy (B2 ). Then, using (5.17), w
conclude

F(B}) = Y F(B™)
i€l
> Y B RN > (B ( RYLL).
i€l
Finally, let 7 € N be the first integer such that at least one ball in B™
intersects 8A Clearly va nl RI' > p/2; moreover, by (5.19), we immediately

deduce ZZ i <ec NeN. Now we distinguish two cases. If 72 is an expansion
time, then using (5.20) and property ii) of f, we get

N’FL—I Nﬁ 1
FA)> S FBIY > S B R
i=1 =1

N™ B ) ) 1 N7 B
= > B Zm ”)!f(ZTZ,EZRZ,l)
=1 k=1 k=1
> |u(A)| (Ve N, 2.1,
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If otherwise n is a merging time, then we conclude

Nﬁ—l NP— 1
F(A) > Y FBY Z u(BE O RET ) >Z|MB" |f(r}, R
i=1 j=1
p
- Zw B Z%ZR’% > ()| (e N, E.0).
k=1
Since ¢ > 1, the conclusion follows. O

Remark 5.8. Notice that, in order to prove (5.16), we gained indeed the
following stronger estimate: for every n € N, we have

N’ﬂ

F(A) = Y [uBYIf(VeN, Y R 1)

Bres" k=1
BrcA

5.3. Compactness

The first step in order to prove the compactness and the I'-liminf in-
equality is to show a lower bound for the elastic energy of a “cluster” of
dislocations. Let p := vazl &y, € X and € > 0. We recall that w, is
defined in (5.14) and that K(c) is the Korn’s constant for an annulus with
a cut, whose ratio of the radii is ¢ (see (5.35)). Finally, we recall that ¢ is
the constant in (0.2).

Lemma 5.9. Fiz ¢ > 0, let p := Zl]\il &0y, € X for some x; € Q and
& €S, and let € AS:(u). Finally, let 0 < § < 1 and A C Q be open. If
dist(z;, 0A) > g9 for all x; € A, then, for every constant ¢ > 1, we have

" W (B)dx > 612"?;;1()0’)((1 —0)|loge| — (N +1)logc—log2N). (5.21)

PROOF. We apply Proposition 5.6 for f defined as in (5.13) with C' =

“__ and

2w K (c)

FO) = Bup0)= [ W) (5.22)

for all open subsets U of 2. By Lemma 5.5 and (0.2) we deduce that (5.15)
holds. Setting p = €%, from (5.16) we conclude

' 4)| &
> A Ne N £ 1) = |M( 1
A\wEW(ﬁ)dx > |p(A)[f(c"e » 5o ) Uork(e] 8 3 IE N
_ w4
=y (L~ Ologel — (N + Dloge — log2N).

O

We are now in a position to prove the compactness result. The strat-
egy of the proof is the one for compactness of Jacobians in the context of
Ginzburg-Landau energies (see Proof of Theorem 1.6(i) above). The idea is
to modify a sequence of measures {py,} with equi-bounded energy by iden-
tifying clusters of dislocations with Dirac masses whose multiplicity is given
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by the effective Burgers vector of the cluster, i.e. the total mass of the clus-
ter. Applying our lower bound, we show that the modified sequence {/is} is
bounded in variation and then weakly* converges, up to a subsequence, to
some p € X. We deduce the convergence of up to p with respect to the flat
norm by the fact that pup, — fip, has vanishing flat norm.

PROOF OF THEOREM 5.4(i). Let ¢, — 0 as h — +oo and let pyj, =
SV &indz,, be a sequence such that sup, Fz, (un) < M for some positive

constant M. We have to prove that (up to a subsequence) pup, fag u for some

ne Xedge-
Fix 0 < 6 < 1 and let

Ay = U Bulwn).
x;,p €supp(h)
Notice in particular that dist(z; p, 8A62) > . Let {Cl‘fh}lL:hl be the family of
the connected components of AE% (1) which are contained in Q and satisfy
|uh(C£h)| > 0. By Lemma 5.9 we deduce that for every [ = 1,..., L and
/Bh S ASEh (Nh)

|Mh(015,h)|
W (B)dx > c1—=—~((1—=9)|logen| — (N, +1)log c—log 2Np,).
/ hl\"‘JEh 27TK(C)

Since Np, < |upl(Q) <&, (Mh) < M|logeyp|, we deduce

\uh
Eon (1) qZ ( — §— Mlogc)|log | — log(2¢M|log i) )

(5.23)
If ¢ — 1 is small enough we deduce that L; < L for some L independent of
h, so that, up to a subsequence, we have L, = L € N. Forany I =1,...,L,
let ff;h € C’fh be fixed and set

L

- )

Hh = Zﬂh(cz,h)(ssz;{h
1=1

From (5.23) we easily see that |fip|(£2) is uniformly bounded; hence the
sequence {fi} is precompact in X with respect to the weak* topology, and
therefore also with respect to the flat topology. It remains to prove that
lpn — finllge — 0 as h — 4oo. Fix ¢ € Wy ™(Q) with I9lly0oqy <

1. Let D?h, [ = 1,...Np be the connected components of Aaz which are

not contained in €2, and let El‘sh7 [ =1,. .. N}, be the remaining ones, i.e.,
contained in . Since ¢ = 0 on 99 and ||ngW1,oo(Q) <1 we have
0

lp(x)] < diam(Df,h) < 2Nped < 2Med|logep| for all z € Dih, (5.24)

and so

/ o) < supld / Al F1in]) < (nl+in))(Df ) 20 log e
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Set ¢; = ¢dr. Asin (5.24), we deduce |¢p—¢y| < 2Med|log ey

‘El(s,h’ E}),

for all z € th. Therefore, for every [ =1, ... N, we have

/ dd(un — fin) = / (¢ — &) d(un — fin) + / drd(pn, — fin)
B}, Ep), B},

< (lpnl + in]) (B] ) diam (B ) < (|| + |iinl) (B} ) 2M <), log p|.
It follows that

Ny, Ny,
¢ d(pn — fin) = ¢ d(pn — fin) + ¢ d(pn — fin)
/ﬂ o Z:/D no Z:/E v

< (] + 7)) (@) (4M<] | log 2] ) < Cllogenlef, (5.25)

which tends to zero as €, — 0. By the very definition of the flat norm it
follows that ||ip, — fin|lg., — O as h tends to infinity. O

5.4. Lower bound

In the proof of the I'-liminf inequality we will first suitably remove the
clusters of dislocations with zero multiplicity. To this purpose we need a
lemma providing upper bounds for the energy on suitable annuli surrounding
such clusters. We will use the notation of the discrete ball construction (see
Definition 5.7).

Lemma 5.10. For any given € > 0, let 1 € Xedge and B € AS: (1) be fized.
Let 0 <y < a<1andlet c>1 be such that logc < %.
Then there exists n € N such that
Nz
(i) e* <> R} <¢&;
i=1
(ii) 7 is not a merging time;

W(,B) dl‘ S 1OgCEE(lUJ75)

[ loge|(a — ) —loge(|ul() + 1)

PRrOOF. We denote by n, the first step n in the ball construction such
that vaznl R} > ¢ and similarly we set n, so that for every n, <n <n,—1
(i) holds true. Notice that in the ball construction

(i) /
QQUZ‘BC R? (CE?)\BR’{I (‘T?)

N™ Nn—l
SRise Y B
=1 1=1

By a straightforward computation we get

E'y S Cn.y—na—i—lga

)

(a=)log L
and S0 1y —ng > ~Togc

is smaller than |u|(©2), we deduce that

— 1. Recalling that the total number of merging

(o —)[loge| _

ny—1—7""1—(ng—1-7%"1> Tog ¢

L= [pl(®),
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where the left hand side represents the number of expansion times between
ne and n, — 1. The thesis follows by the mean value theorem since

Ee(p, B) > >

na<n<n,—1 /QﬂUch ry (#)\Bpp (z7)

n is an expansion time

W(p) dx

O

PROOF OF THEOREM 5.4(ii). Let ¢, — 0 as h — 4o00. For any h € N,
let pp € Xedge, With pp = ZZN:}H &i,n0z; 1, such that py flag u for some pu =
Zfil &0z, € X. We have to prove that

< lim inf :
F(u) < lim inf o, (1n)

By a standard localization argument we can assume p = {pdy, for some
& €S, zop € Q. Moreover, we can assume that liminfy,_, . Fc, (un) =
limp_y 4 o0 Fe, (tn) < M, for some positive constant M.

Let By, € AS., (un) be the strain that realizes the minimum in (0.4),
namely Ee, (pun, Bn) = minge as., (u,) Een (1, 8). The idea is to give a lower
bound for the energy on a finite number of shrinking balls where both the
energy and the flat norm concentrate. To this purpose fix 0 < v < a < 1,
¢ > 1 such that

e~y 11—
log ¢ < min { ]T; +71, Moz} . (5.26)
Since
Np = |un|(Q) < M|logep|, (5.27)

we can apply Lemma 5.10; in particular, let 7 be such that e < ZZ 1 "R <
g}. Consider the family of balls B := B (] ™) in Bj such that Bepn (2] ) C
Q. We denote by J, C {1,..., N} the set of indices i such that BCR?( " c
Q and pp(B]') = 0, and by I, C {1,..., Ni} the set of indices i such that
Bye (a7) © @ and juy (BF) 0.

We prove that I, is finite. Recalling the definition of E., in (5.22) and
in view of Remark 5.8 applied with f(r, R,t) = ﬁl((z)tlog % we obtain

Ee, (iths Bry Uien, BY) = > lun(BY)| f (e h€hNh,ZR
ZGIh
(B Mloge)|1 log(M|1
ZC 27rK (1 —a— Mlogc)|logey| — log(M|logep|) ),

where we have used Zf\i nl Rl > &% and (5.27). Notice that, since S is a
discrete set, |un(B]')| > ¢ > 0 for every ¢ € Ij,. Since E;, (up, Bh, Uier, BY') <
Mllogey|, and 1 —a — Mlogc > 0 (see (5.26)), we conclude that #I} is
uniformly bounded. Up to a subsequence, we have #I;, = L for every h € N,
for some L € N.

Consider now ¢ € J,. Recalling that Curlf;, = 0 in the annulus Clﬁ =
Begr(27)\ Bgn (27) and pup(Be gr(27)) = 0, we get that 8y, = Vo, for some
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oy, € H L(C™; R?). Thus, applying Korn’s inequality (Theorem 5.12) to Vs
we deduce that

/ ]Vfuffh — A?h\Q dx < K(c)/ \(vafh)sym\Q dx = K(c)/ \B,iym|2 dez,
ord cn

n

where A?, is a suitable skew-symmetric matrix. By a standard extension
argument, there exists a function u, € H'(B, ga(27); R?) such that Vul, =
Vol — A%, in CI' and

/ ) |Vuzh|2dx < (i / 7 |vafh — A?hIde
B () cr

cRﬁ
<Cik () [ 157 Pa (629
op

for some positive constant C;. Consider the field 8 : © — M2*2 defined by

Bu(z) == Vui,(x) + A7), if x € Bl with i € Jj,
S Br () otherwise in €, (u).

It follows, by the definition of Bh, by the fact that the matrices A?h are skew

symmetric, and by (5.28), that for every ¢ € Jj the following inequalities
hold

/ W) dr < cQ/ B2 dg
BCR?(Z‘?) B g

CR? (1‘?)

< o /C B2 da + o / 1B da
L By

C2

< (1+C1K(c)) W (Bp,) dz,

C1 Ciﬁ
where ¢; and ¢y are the constants in (0.2). Applying Lemma 5.10, we deduce

1 .
Togen| - W(Bh)da
08n| JUic, Bop )
co (1+C1K(c))Mlogc

= ¢1|logep|(a —y — Mloge) —loge’

(5.29)

which vanishes as 5, — 0.
Let us introduce the modified measure

fin =Y 1n(B )3y
i€lp
Arguing as in the proof of the compactness property, and more precisely
of estimate (5.25), we deduce that fi, — pp, faty 0, and hence, up to a
subsequence, fi, — £95,0.
The points 7', 7 € I}, converge, up to a subsequence, to some point in a

finite set of points {yo = zo,y1,...,yr/} contained in Q. Let p > 0 be such
that Ba,(z9) CC Q and Ba,(y;) N Bay(yx) = 0 for all j # k. Then,

z} € B,(y;) for some j and for h large enough.
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Thus, using the convergence of [i, to {ydz,, one can show that for h large
enough

>, m(B)=¢. (5-30)

z€Byp(20)
We finally introduce the measure
fin = pn L Ujer, () B

where we have introduced the notation Iy (p) = {i € I}, : 2 € B,(z0)}; by
(5.29), it follows that

&, () > /

Qsh(ﬂh)\UiEJthRlﬁ

W (By) dz > / W (Bn) dz + o(1).

Qah (ﬂh)ﬂB%(IO)
(5.31)
It remains to prove the lower bound for the right hand side of (5.31).
Fix 0 < n < ~. Let us denote by g5, : [,7] = {1,..., L} the function which
associates with any § € (7, ) the number g5 (0) of the connected components
of Uier, (p) Bei (). For every h € N, the function gj, is monotone so that it

can have at most L discontinuities. Let us denote by d; , fori =1,..., L<L
such points of discontinuity, with

7]§517h<...<5ih<7.

It is easy to see that there exists a finite set A = {dg,d1,...,d;} with
d; < 6i41, such that, up to a subsequence {0; j, } nen converges to some point
in A, as h — 4o0, for every i = 1,... ,[:. We may always assume dg = 7,
5i:7and[~/§ﬁ+2.

Now, for any fixed o > 0 small enough and for h large enough (i.e., such
that for any j =1,...,L, |0;n — 0;| < o for some §; € A) the function g, is
constant in the interval [0; + 0, d;+1 — o]. Thus for every i =0, ... ,L—1we
can construct a finite family of N;; annuli C; ;5 = Bj,h,aii” \ Bj’hﬁsiﬂfo
with j = 1,..., N; ,, such that C; ; , are pairwise disjoint for all i andh all j
and

Nz,h
U B € U Bj,h,effﬂ_a (5.32)
kEIL(p) J=1

for alli =0,... ,f). Note that, for h large enough, C; ;; C Ba,(xg) for all
i and j. Recalling (5.9) and in view of Remark 5.2, the following estimate
holds

/ W(Bh) da > [logen|(di+1 — 0; — 200 5ip1-0 540 (ﬂh(B'h 65¢+f’))
Cijn € Eh 158

= [logen|(Oi1 = 0 = 2009 (An(B , si0)) = Co\ﬁh(Bjﬁh’aiﬁv)lQ :
Notice that in view of (5.32) and of the weak™ convergence of {/i}, we have

(B ), sio)l < > (B < linl(€) < Ca,
keln(p)
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for some Co > 0. Summing over ¢ = 0,...,L —1and j = 1,...,Np;, we
obtain the following chain of inequalities

3 L—1Nin ~
WEde= 3% [ WiEds
/Qsh(ﬁh)ﬂB2p($o) ;; Cijn
L—1Nin
= (\ log en|(di1 — & — 20)(An(B, , si+0)) = CO’/]h(Bj’h’EfLﬁU)P)

i=0 j=1

L—1
> ]10g Eh’ Z(5i+1 — (52 — 20)(,0(50) — C()L2022,

=0

where the last inequality is a consequence of (5.30), recalling the definition
of ¢ (see (5.10)). Finally we get

/ W(Bn)dz > (v — n — 20L)| log enlio(0) — CoL’CE,
Qe (fin)NBa2p(z0)

and hence using (5.31) we have
liminf F, (un) > (v —n — 20L)p(&o).
h—+o00

The I'-liminf inequality follows by taking the limits ¢ — 0, n — 0 and
v — 1. U

5.5. Upper Bound

In this section we will prove the I'-limsup inequality, namely we will
show that for every p1 € Xegqe there exists a recovery sequence {pin} C Xedge
that converges to 1 in the flat topology and satisfies

limsup F, (1n) < F(p).

h—400
We first assume that p belongs to the subclass D of Xg4e defined by

N

D={peX| ,u:Zbi&xi,biE‘B,xi#xj for i # j}.
i=1

where B is the class of Burgers vectors defined in Definition 5.3. The general
case is obtained by a standard diagonal argument.

Let p = Zfil bidz, in D; then F(u) = Zfil (b)) = Efil ¥ (b;). In this
case, the recovery sequence is given by the constant sequence pp = p for
every h € N. To show this, foreveryi=1,..., N, let B]%'Q be the planar strain
field defined in the whole of R? corresponding to the dislocation centered at
x; with Burgers vector b;. Recalling (5.4), we set

. 1 $2 - x‘,2
Bi(z) = 5]%22 (x —x;) = ml“bi (#) where 6 = arcmnm )
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and define 3, := ZfL Bi. Clearly 3, € ASe, (un) for every h € N. Then

1
F — min / W(B)dx
en (1n) |log ep| BEASe, (1) JQ., (un) )
1 1 3
[log el Ja., (un) B) loger| Ja., (u) (zz; )
1 N
.1 W (8 da 5.33
|log enl ;/Bm)\&h(m . "

9 N N
_Z CB; : B; dz, 5.34
+|log€h\z Z b -y da (5.34)

i=1 j=i+1 /(9\th (@i)\Bey, (25)
where R > diam(Q2). As for the integrals in (5.33), from (5.7) we have that
foreveryi=1,...,N

. 1
lim ——
h—+o0 Hog Eh’ BR(xi)\Bah ()

In order to conclude, it suffices to prove that each term of the sum in (5.34)
tends to 0 as h — +o00. To this purpose, for every ¢, =1,..., N with ¢ # j

set pij = % Then
/ C,Bz : 5]' dr = / (CBZ : Bj dx
(@\Be), (2:))\Bey, () Bp,; (@i)\Bej, (z:)

Bpij (zj)\BEh (:17]) (Q\Bpij (ml))\BP” (xj)

Since f; € L2 (R?\ {z;}) the last term in the right hand side is bounded.

loc

As for the first two integrals, it is enough to apply Hoélder’s inequality in
order to obtain

/sz-]- (xi)\Bsh(iUi(Cﬁi :Bjde < ||(C5i||L2(BpZ.j (@)\Be,, (z:)) HﬁjHLQ(Bpl-j(m)\th(a:i))

< ClIBill2s,, @B, @) 1Bill 20\ B, (2y)) 5

here and in the following lines C' denotes a positive constant that may change
from line to line. By (5.6) we get

/ 1Bi|*dz < C|logey),
Bpij (wi)\BEh (‘T’L)

and hence
Cp; : Bjda < C/|logey|

for every i,j = 1,..., N with ¢ # j. Therefore,
1

lim —
h—-+oo [logen| Jia\B., @)\B., (z;)

/(Q\Beh (:))\Bej, (z;)

CBip = Bjpdr =0,
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and so

N N
lim sup Fz, (1) < Z = Z (bi) = F(u) .
h—+o00 i— i—

We have proved that the I'-limsup inequality holds for any p € D. Now
we conclude noticing that D is dense in X with respect to the weak™ topology,
and hence with respect to the flat topology. More precisely, for any p =
Zij\il &i0z;, With & € S = Spanz®B (i = 1,...,N), we can construct a
sequence {y} C D such that F(u) = F(u) and gy, — p. Indeed, by (5.11),
for every i = 1,..., N we can find a decomposition of & = > 7" | ay;b; such

J
that (&) = D% |ijl(bs). Now, for every k € N we define

|O‘17|

=3, 2 e

=1 j=1 =

where for every k x; j;(k) are distinct points in €, and |z; j;(k) — x;| — 0 as
k — 4o0. Clearly {y} € D and pg — pu. Moreover

s; |l N s N
ZZZSO ZZ!%W(%) :Zw(fi):f(u).
i=1 j=1 I=1 i=1 j=1 i=1

The thesis follows using a standard diagonal argument. Indeed, since for
any measure in D, the recovery sequence is given by the constant sequence,
we have
thUPFEh(Nk) < Fluw) = F(p).
h—o00

Therefore, there exists a sequence kj, — 0o as h — oo such that uj := uy,
is a recovery sequence, i.e.,

lim sup Fz, (pn) < F(p).

h—o0

O

Remark 5.11. In the proof of the I'-limsup inequality we have shown that
configurations of dislocations optimal in energy belong to the class D. As a
consequence, we get the same ['-limit if we start from an energy for which
the only admissible dislocations are those whose multiplicity belongs to ‘B,
i.e. to the set of Burgers vectors. Precisely, if we define

ga(ﬂ):{ Fe(p) it peD,

400 otherwise,

then G. still I'-converge to the functional F defined in (5.12). In this re-
spects, the class of Burgers vectors in 96 are the building blocks to describe
multiple dislocations in S.

5.6. Korn’s inequality in thin annuli

Here we revisit some results concerning the Korn’s inequality in thin
domains. First, we recall the Korn’s inequality on annular sets with a cut.
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Theorem 5.12 (Korn’s inequality). Let 0 < r < R, let L := {0} x (r, R),
and let u € H*((Br\ B,)\ L; R?) be such that f(BR\BT)\L(Vu—VuT) dx = 0.
Then, there exists a positive constant K = K(R/r) such that
/ Vul? < K(R/r)/ [(Vu)™™|? da, (5.35)
(BrR\Br)\L (Br\Br)\L
T
where (Vu)™™ = w

The proof of such theorem can be proved for instance covering the an-
nulus (Bgr\ B;) \ L with two open overlapping sets Ay, As C (Bgr\ B;) with
Lipschitz boundary, and applying classical Korn’s inequality on each A;, see
for instance [62].

The best constant K of the Korn’s inequality on annular sets (without
cuts) has been explicitly computed in [28]. In this context it’s important to
remark that such Korn’s constant depends only on the ratio of the radii, and
tends to infinity when this parameter tends to 1. In particular, we deduce
that also K(R/r) — oo as R/r — 1.

A natural question is whether the best (i.e., the lower) Korn’s costant
blows up on thin annuli also in the class of our admissible strains AS;. r(§).
Let us show that, actually, this is the case. More precisely, let £ € R? and
let r, — 1. Then, there exists a sequence of strains 3, € AS,, 1(§) such
that

/ Bul? da > en / B2 d, (5.36)
Bl\Brn Bl\r

n

for some ¢, — oo as n — oo. Indeed, by [28] there exists a sequence
up € HY(By \ By, ; R?) such that

/B\B |Vun|2dac25n/B\B VY™ |2 da
1 TN 1 TN

with ¢, — 0o as n — oco. By homogeneity we may assume

/B\B |VuY™ % de = 1.
1 ™n

Let 5(p,0) := 27% ® (—sin#, cosf), and notice that 5 € AS,, 1(§) for every
n. Finally, set 8, = Vu, + 8 € AS,, 1(£); a straightforward computation
shows that (5.36) holds.

The sequence [, just constructed is such that its symmetric part is
bounded in L?, while its skew part blows up as n — oco. In particular, the
linearized energy induced by 3, on the annuli By \ B, is larger than 1 —r,.
In the next example we construct a strain g € AS,.1(§) for every 0 <r < 1
whose linearized energy density vanishes on thin annuli By \ B, (as 7 — 1),
showing that the function ¢, r defined in (5.9) vanishes as R/r — 1.

Example 5.13. Let S(z,y) : R? — M2*2 be defined by

S(z,y) == ( _Ox 3 )
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We have Curl S = (1,0). Set

2
P 1
=2 _ Zlogp.
f(p,0) 1 " 5logr

Notice that Af =1, and hence curl (—fy, fz) = 1. Finally, set

af of
B(fﬂvy)izs(x,y)—( an %ﬂ).

It is easy to see that 8 € AS,1((m,0)) for every 0 < 7 < 1 and |3%™|? <
|V f|2. Moreover, |[Vf| = 0 on dBy; a straightforward computation shows
that

. 1 2

lim —— |V f]°dz =0,

r—1 [logr| Jp\B,
so that the density of the linearized elastic energy vanishes on thin annuli
Bi\ Byasr— 1.
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Conclusions and perspectives

We have obtained an asymptotic expansion by I'-convergence for the
functionals SD. that allows us to show existence of metastable configu-
rations, and to introduce a discrete in time variational dynamics, which
overcomes the energy barriers and mimics the effect of more complex mecha-
nisms, as thermal effects. On the other hand, we have proved a I'-convergence
result for the edge dislocations energy without extra-assumptions on the po-
sition and on the number of singularities.

As for the screw dislocations, we believe that our I'-convergence analysis
for anisotropic energies defined in the triangular lattice can be used in order
to prove, also in this case, the existence of metastable configurations and the
convergence to a limit dynamics. A more delicate question is the I'-expansion
of the anisotropic long range (and finite range) interaction energy, for which
a zero-order I'-convergence result is not yet available.

For the S D, energies, we have described the dynamics up to the first col-
lision time; it would be interesting to model the collision of discrete vortices,
and study the dynamics after the critical time as in the Ginzburg-Landau
setting (see [16, 63, 64]). Moreover, we have focused on Neumann bound-
ary conditions, but we are confident that our analysis could be extended to
the case of Dirichlet boundary conditions.

In the discrete dynamics we have analyzed two different dissipations.
This is motivated also by applications. Indeed, the L? dissipation is a stan-
dard choice for parabolic flows and measures the variations in the spin vari-
able. While, the dissipation D9 is a natural choice in the study of screw
dislocation dynamics, and can be viewed as a measure of the number of en-
ergy barriers to be overcome in order to move a dislocation. We note that,
in the case of dislocations, one could also consider suitable variants of the
D, dissipation account for the glide directions of the crystal (see [5]). This
would lead to a different effective dynamics.

Having proved a pinning phenomenon, it remains open to characterize a
critical e-7 regime for the motion of dislocations, and an effective depinning
threshold in this regime. This is a relevant issue and it might be worth
facing it by using our variational approach.

The effective dynamics of our discrete systems agrees with the asymp-
totic parabolic flow of the Ginzburg-Landau functionals. In the latter, the
time scaling needed to get a non-trivial effective dynamics depends on the
space parameter . It is worth noticing that, in our discrete in time gradient
flow with L? dissipation, the time scaling is expressed only in terms of the
time step 7. In this respect, an analysis of critical -7 regimes would make
an interesting bridge between these two approaches.
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The case of edge dislocations is still open since a complete I'-expansion
of the energy is not yet available. The reason is that the lower bounds in
Chapter 5 are sharp enough to guarantee the I'-convergence result for the
rescaled energies, but not so good to derive the renormalized energy. We
hope that a refinement of these lower bounds could give on one hand the
I-convergence expansion of the energy in the |loge| regime and on the other
hand to study the case of infinite singularities (corresponding to the |loge|?
regime) without any a priori assumptions on their position.
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