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Introduction

In Materials Science, dislocations are line imperfections in the crystalline
structure of materials and their presence (together with their motion) plays
a fundamental role in a large variety of phenomena, such as plastic de-
formations in metals, phase transitions, crystal growth, crack propagation,
ductile-brittle behaviour. The theory of dislocations is relatively young: Al-
though Volterra’s “distorsioni” were introduced for the first time in the early
1900th ([69]), a systematic theory of dislocations has been developed only
thirty years later by Orowan ([54]), Polanyi ([55]) and Taylor ([66, 67])
in order to explain some experimental results relative to the plastic proper-
ties of crystals. After that, several phenomenological models for plasticity
that account for the presence of dislocations at different scales have been
proposed. In the last decades, both the mathematical and the mechani-
cal engineering communities have shown an increasing interest and effort in
the derivation and improvement of these models starting from fundamental
microscopic models, describing single dislocation lines and their collective
behaviour (see for instance [26, 36, 37, 38, 9, 39, 50]). In this direction,
new mathematical methods have been developed in order to study the for-
mation of dislocations and their dynamics. The purpose of this thesis is to
contribute to the mathematical research in this field in the context of the
variational models.

Loosely speaking, a dislocation can be represented by a measure con-
centrate on the dislocation line, to which it is associated a vector, called
Burgers vector. In all the thesis, we focus on the case of straight disloca-
tions. The Burgers vector, allows to classify these dislocations in two main
types: edge if the Burgers vector is orthogonal to the dislocation line, and
screw if it is parallel. Roughly speaking, the former are obtained adding
an “extra half plane” of atoms into the crystal whereas the latter are pro-
duced by skewing a crystal so that the atomic plane produces a spiral ramp
around the dislocation. In this thesis, we study the asymptotic behaviour
of the elastic energy, stored in a crystal, induced by a configuration of screw
(respectively edge) dislocations as the atomic scale goes to zero; moreover,
we propose a purely variational approach to the study of the dynamics of
screw dislocations. Our analysis is based on Γ-convergence (see [18, 29]).

We consider an elastic body with cylindrical simmetry, so that the math-
ematical formulation involves only problems set on the cross section Ω of the
crystal. Assuming that dislocations are straight lines orthogonal to Ω, each
of them is completely identified by its intersection xi with Ω and by a vector
ξi ∈ R3 (representing the Burgers vector). If we are in presence of a system
of screw dislocations, then ξi are vertical vectors whose (suitably rescaled)
modulus is an integer di = |ξi| ∈ Z, representing the multiplicity of the
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dislocation. In the case of edge dislocations, ξi are horizontal vectors and
hence with a little abuse of notation we can identify them with vectors in
R2. More precisely, ξi ∈ S ⊂ R2 where S is a discrete lattice representing the
class of all the horizontal translations under which the crystal is invariant.

We pass now to the description of the energies we consider.
As for the screw dislocations, we study a purely discrete model. We con-

sider the illustrative case of a square lattice of size ε with nearest neighbors
interactions, following along the lines of the more general theory introduced
in [11]. In this framework, a vertical displacement is a scalar function u
defined on the nodes of the lattice in Ω, i.e., u : Ω ∩ εZ2 → R and the
(isotropic) elastic energy associated with u, in absence of dislocations, is
given by

Eelε (u) :=
1

2

∑

i,j∈Ω∩εZ2,|i−j|=ε
| du(i, j)|2,

where du is the discrete gradient of u (namely du(i, j) = u(i) − u(j) with
|i − j| = ε). To introduce the dislocations in this framework, we adopt
the formalism of the discrete pre-existing strains as in [11] and [3]. More
precisely, a pre-existing strain is a function βp representing the plastic part
of the strain defined on pairs of nearest neighbors and valued in Z. The idea
is that the plastic strain does not store elastic energy and hence it has to
be subtracted to the discrete gradient in order to obtain the elastic strain
βe. In view of this additive decomposition du = βp + βe, we have that
the elastic strain is not curl-free (in a discrete suitable sense) and that the
discrete dislocation measure µ(u) := curlβe = −curlβp is nothing but the
incompatibilty maesure of βe, namely µ(u) maesures how far is βe from being
a gradient. Summarizing, the elastic energy of u is obtained by minimizing
the functional

Eelε (u) :=
1

2

∑

i,j∈Ω∩εZ2,|i−j|=ε
|βe(i, j)|2 =

1

2

∑

i,j∈Ω∩εZ2,|i−j|=ε
|du(i, j)−βp(i, j)|2

with respect to the plastic strain βp. Since by our kinematic assumption the
plastic strain takes values in Z, it is clear that the optimal βpu is obtained
projecting du on Z. Therefore, the elastic energy of u is given by

SDε(u) :=
1

2

∑

i,j∈Ω∩εZ2,|i−j|=ε
dist2(u(i)− u(j),Z). (0.1)

Since in the case of edge dislocations, a purely discrete model is not well-
established, we consider a semi-discrete (mesoscopic) model in which the
dislocations are modeled individually, while the underlying atomic lattice is
averaged out. It is clear that in this case only the horizontal components of
the strain are relevant and hence the natural setting is given by the plane
elasticity. In plane linear elasticity, a planar displacement is a regular vector
field u : Ω→ R2. The equilibrium equations have the form DivC[e(u)] = 0,
where e(u) := 1

2(∇u + (∇u)T) is the infinitesimal strain tensor, and C is

a linear operator from M2×2 into itself usually referred to as the elasticity
tensor, incorporating the material properties of the crystal. It satisfies

c1|ξsym|2 ≤ 1

2
C ξ : ξ ≤ c2|ξsym|2 for any ξ ∈M2×2, (0.2)
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where c1 and c2 are two given positive constants and ξsym := 1
2(ξ+ξT). The

corresponding elastic energy, in absence of dislocations, is given by
∫

Ω
W (β) dx, (0.3)

where β = ∇u is the displacement gradient field and W (ξ) = 1
2C ξ : ξ =

1
2C ξ

sym : ξsym is the elastic energy density. If a configuration of edge dislo-

cations µ =
∑N

i=1 ξiδxi is present, we introduce the class of admissible fields
β associated with µ as the matrix valued fields whose circulation around
the dislocation xi is equal to ξi (once again “µ = Curlβ”). These fields by
definition have a singularity at each xi and are not in L2(Ω;M2×2) . To
set up a variational formulation we then follow the so called core radius
approach. More precisely, we introduce a scale parameter ε, proportional to
the lattice spacing of the crystal, and we compute the energy outside the
core region ∪iBε(xi). As in the scalar case of screw dislocations, the elastic
energy stored in the core region is negligible and the elastic distortion decays
as the inverse of the distance from the dislocations, therefore it is commonly
accepted in literature that the linearized elasticity provides a good approx-
imation of the elastic energy stored outside the core region (see [62] for a
justification of these arguments in terms of Γ-convergence).

We introduce the elastic energy induced by an arbitrary configuration
of dislocations µ and an admissible field β

Eel
ε (µ, β) :=

∫

Ωε(µ)
W (β) dx, (Ωε(µ) := Ω \

⋃

i

Bε(xi)). (0.4)

By minimizing the elastic energy (0.4) among all admissible fields, we obtain
the elastic energy Eel

ε (µ) induced by µ.
Summarizing, from a mathematical point of view, dislocations are noth-

ing but the topological singularities of the strain field and hence they can be
studied in analogy with other better understood singularities. In particu-
lar, dislocations exhibits many similarities with vortices in superconductors,
studied within the Ginzburg-Landau model. We recall that, for a given
ε > 0, the Ginzburg-Landau energy GLε : H1(Ω;R2)→ R is defined by

GLε(w) =
1

2

∫

Ω
|∇w|2 dx+

1

2ε2

∫

Ω
(1− |w|2)2 dx. (0.5)

Whereas the variational approach to dislocations is relatively young, the
variational analysis as ε→ 0 of GLε has been the subject of a vast literature
starting from the pioneering book [15]. The analysis in [15] shows that,
as ε tends to zero, vortex-like singularities appear by energy minimization
(induced for instance by the boundary conditions), and each singularity
carries a quantum of energy of order | log ε|. Removing this leading term,
the so-called self-energy, from the energy, a finite quantity remains, called
renormalized energy, depending on the positions of the singularities. This
asymptotic analysis has been also developed through the solid formalism
of Γ-convergence (see [45, 46, 59, 61, 6]). For the convenience of the
reader, we briefly recall it in Chapter 1 of this thesis. It turns out that the
relevant object to deal with is the distributional Jacobian Jw, which, in the
continuous setting, plays the role of the distribution of dislocations; loosely
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speaking, as ε→ 0, the “double-well” potential in (0.5) forces the Jacobian
Jw to concentrate on points, the vortices, which are topological singularities
of the gradient of w as well as the dislocations are topological singularities
of the admissible field β. A remarkable fact is that these Γ-convergence
results also contain a compactness statement. Indeed, for sequences with
bounded energy the vorticity measure is not in general bounded in mass;
this is due to the fact that many dipoles are compatible with a logarithmic
energy bound. Therefore, the compactness of the vorticity measures fails
in the usual sense of weak star convergence. Nevertheless, compactness
holds in the flat topology, i.e., in the dual of Lipschitz continuous functions
with compact support. An essential tool in the proof of the Γ-convergence
result is given by the so-called ball construction, introduced independently
by Sandier [58] and Jerrard [45]: It consists in providing suitable pairwise
disjoint annuli, where much of the energy is stored, and estimating from
below the energy on each of such annuli, using the following easy lower
bound

1

2

∫

BR\Br
|∇w|2 dx ≥ π| deg(w, ∂BR)| log

R

r
, w ∈ H1(BR \Br;S1). (0.6)

Recently, part of this Γ-convergence analysis has been exported to two-
dimensional discrete systems. In [56], it has been proved that the screw
dislocations functionals SDε

| log ε| Γ-converge to |µ|(Ω), where µ is the limiting

vorticity measure and is given by a finite sum of Dirac masses. In [3], it has
been shown that the energies SDε

| log ε|h and GLε
| log ε|h (with h ≥ 1) are variationally

equivalent, which means, roughly speaking, that they have the same Γ-limit
(up to a factor) with respect to the same convergence. The Γ-limit |µ|(Ω) is
not affected by the position of the singularities and hence does not account
for their interaction, which is an essential ingredient in order to study the
dynamics.

The purpose of this thesis is two-fold: on one hand, we derive the renor-
malized energy for SDε (see Chapter 2) and introduce a purely variational
approach to the dynamics of screw dislocations (see Chapter 4), on the other
hand, we extend the Ginzburg-Landau analysis in the self-energy regime to
the vectorial case of edge dislocations (see Chapter 5). Moreover in Chapter
3 we derive the renormalized energy also in the case of anisotropic and long
range interaction screw dislocations energies.

Now we delineate the main features of the Γ-convergence analysis for
the statics and the dynamics of screw dislocations contained in Chapters
2, 3 and 4 (see also [4, 32]). We first notice that the functional SDε can
be regarded as a specific example of scalar system governed by a 1-periodic
potential f acting on nearest neighbors, whose energy is of the type

Fε(u) :=
∑

i,j∈Ω∩εZ2, |i−j|=ε
f(u(i)− u(j)). (0.7)

The functionals in (0.7) have the advantage to include not only the screw
dislocations systems, but also another celebrated model which allows to
describe the formation of topological singularities. This is the so-called XY
model ([14, 48, 49]): Here the order parameter is a vectorial spin field

5



v : Ω ∩ εZ2 → S1 and the energy is given by

XYε(v) :=
1

2

∑

i,j∈Ω∩εZ2, |i−j|=ε
|v(i)− v(j)|2. (0.8)

It is easy to see that XYε(v) can be written in terms of a representative
of the phase of v, defined as a scalar field u such that v = e2πiu and that
XYε(u) has the form in (0.7).

As mentioned above, the first step is given by the derivation of the renor-
malized energy for the functionals Fε by Γ-convergence, using the notion of
Γ-convergence expansion introduced in [10] (see also [21]). Precisely, in
Theorem 2.6 we prove that, given M ∈ N, the functionals Fε(u)−Mπ| log ε|
Γ-converge to W(µ) + Mγ, where µ is a sum of M singularities xi with
degrees di = ±1. Here W is the renormalized energy as in the Ginzburg-
Landau setting, defined by

W(µ) := −π
∑

i 6=j
didj log |xi − xj | − π

∑

i

diR0(xi),

where R0 is a suitable harmonic function (see (1.5)) which rules the inter-
action among the singularities and the boundary of Ω, and γ can be viewed
as a core energy, depending on the specific discrete interaction energy (see
(2.39)).

An intermediate step to prove Theorem 2.6 is Theorem 2.2 (ii), which es-
tablishes a localized lower bound of the energy around the limiting vortices.
This result is obtained using the ball construction, that we have to slightly
revise in order to include our discrete energies. Indeed, in Proposition 3.4
we prove a lower bound for Fε similar to (0.6), but with R/r replaced by
R/(r + Cε| log ε|), the error being due to the discrete structure of our en-
ergies. Nevertheless, this weaker estimate, inserted in the ball construction
machinery, is refined enough to prove the lower bound in Theorem 2.2 (ii).
In Chapter 3 we use analogue tools in order to extend this Γ-convergence
analysis to anisotropic energies with nearest neighbors interaction in the tri-
angular lattice and to the case of isotropic long range interactions (see also
[32]).

Chapter 4 is devoted to the analysis of metastable configurations for
Fε and to our variational approach to the dynamics of discrete topological
singularities. The dynamics is driven by a discrete parabolic flow of the
renormalized energy and it is based on the minimizing movements approach.

We now draw a parallel between the continuous Ginzburg-Landau model
and our discrete systems, stressing out the peculiarities of our framework.

In [51], [44], [60], it has been proved that the parabolic flow of GLε
can be described, as ε→ 0, by the gradient flow of the renormalized energy
W(µ). Precisely the limiting flow is a measure µ(t) =

∑M
i=1 di,0δxi(t), where

x(t) = (x1(t), . . . , xM (t)) solves



ẋ(t) = − 1

π
∇W (x(t))

x(0) = x0 ,
(0.9)

with W (x(t)) = W(µ(t)). The advantage of this description is that the ef-
fective dynamics is described by an ODE involving only the positions of the
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singularities. This result has been derived through a purely variational ap-
proach in [60], based on the idea that the gradient flow structure is consistent
with Γ-convergence, under some assumptions which imply that the slope of
the approximating functionals converges to the slope of their Γ-limit. The
gradient flow approach to dynamics used in the Ginzburg-Landau context
fails for our discrete systems. In fact, the free energy of discrete systems
is often characterized by the presence of many energy barriers, which af-
fect the dynamics and are responsible for pinning effects (for a variational
description of pinning effects in discrete systems see [19], [20] and the ref-
erences therein). As a consequence of our Γ-convergence analysis, we show
that Fε has many local minimizers. Precisely, in Theorem 4.5 and Theorem
4.6 we show that, under suitable assumptions on the potential f , given any
configuration of singularities x ∈ Ω2M , there exists a stable configuration
x̃ at a distance of order ε from x. Starting from these configurations, the
gradient flow of Fε is clearly stuck. Moreover, these stable configurations
are somehow attractive wells for the dynamics. These results are proved for
a general class of energies, including SDε, while the case of the XYε energy,
to our knowledge, is still open. A similar analysis of stable configurations
in the triangular lattice has been recently carried on in [42], combining
PDEs techniques with variational arguments, while our approach is purely
variational and based on Γ-convergence.

On one hand, our analysis is consistent with the well-known pinning
effects due to energy barriers in discrete systems; on the other hand, it is also
well understood that dislocations are able to overcome the energetic barriers
to minimize their interaction energy (see [22, 35, 43, 57]). The mechanism
governing these phenomena is still matter of intense research. Certainly,
thermal effects and statistical fluctuations play a fundamental role. Such
analysis is beyond the purposes of this thesis. Instead, we raise the question
whether there is a simple variational mechanism allowing singularities to
overcome the barriers, and then which would be the effective dynamics. We
face these questions, following the minimizing movements approach à la De
Giorgi ([7, 8, 14]). More precisely, we discretize time by introducing a time
scale τ > 0, and at each time step we minimize a total energy, which is
given by the sum of the free energy plus a dissipation. For any fixed τ ,
we refer to this process as discrete gradient flow. This terminology is due
to the fact that, as τ tends to zero, the discrete gradient flow is nothing
but the Euler implicit approximation of the continuous gradient flow of Fε.
Therefore, as τ → 0 it inherits the degeneracy of Fε, and pinning effects are
dominant. The scenario changes completely if instead we keep τ fixed, and
send ε → 0. In this case, it turns out that, during the step by step energy
minimization, the singularities are able to overcome the energy barriers, that
are of order ε. Finally, sending τ → 0 the solutions of the discrete gradient
flows converge to a solution of (0.9). In our opinion, this purely variational
approach based on minimizing movements, mimics in a realistic way more
complex mechanisms, providing an efficient and simple view point on the
dynamics of discrete topological singularities in two dimensions.

Summarizing, in order to observe an effective dynamics of the vortices
we are naturally led to let ε→ 0 for a fixed time step τ , obtaining a discrete
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gradient flow of the renormalized energy. A technical issue is that the renor-
malized energy is not bounded from below, and therefore, in the step by
step minimization we are led to consider local rather than global minimiz-
ers. Precisely, we minimize the energy in a δ neighborhood of the minimizer
at the previous step. Without this care, already at the first step we would
have the trivial solution µ = 0, corresponding to the fact that dipoles an-
nihilate and the remaining singularities reach the boundary of the domain.
Nevertheless, for τ small the minimizers do not touch the constraint, so that
they are in fact true local minimizers.

In order to discuss some mathematical aspects of the asymptotic analysis
of discrete gradient flows as ε, τ → 0, we need to clarify the specific choice
of the dissipations we deal with. The canonical dissipation corresponding to
continuous parabolic flow is clearly the L2 dissipation. On the other hand,
once ε is sent to zero, we have a finite dimensional gradient flow of the renor-
malized energy, for which it is more natural to consider as dissipation the
Euclidean distance between the singularities. This, for ε > 0, corresponds
to the introduction of a 2-Wasserstein type dissipation, D2, between the
vorticity measures. For two Dirac deltas D2 is nothing but the square of the
Euclidean distance of the masses (for the definition of D2 see (4.20)). We
are then led to consider also the discrete gradient flow with this dissipation.
By its very definition D2 is continuous with respect to the flat norm and
this makes the analysis as ε → 0 rather simple and somehow instructive in
order to face the more complex case of L2 dissipation.

We first discuss in details the discrete gradient flows with flat dissipation.
To this purpose, it is convenient to introduce the functional Fε(µ), defined
as the minimum of Fε(u) among all u whose vorticity measure µ(u) is equal

to µ. We fix an initial condition µ0 :=
∑M

i=1 di,0δxi,0 with |di,0| = 1 and a
sequence µε,0 ∈ Xε satisfying

µε,0
flat→ µ0, lim

ε→0

Fε(µε,0)

| log ε| = π|µ0|(Ω).

Then given δ > 0 and let ε, τ > 0 we define µτε,k by the following minimiza-
tion problem

µτε,k ∈ argmin

{
Fε(µ) +

πD2(µ, µτε,k−1)

2τ
: µ ∈ Xε,

‖µ− µτε,k−1‖flat ≤ δ
} (0.10)

with µτε,0 = µε,0. As a direct consequence of our Γ-convergence analysis,
in Theorem 4.14 we will show that, as ε → 0, µτε,k converges, up to a
subsequence, to a solution µτk ∈ X to

µτk ∈ argmin

{
W(µ) +

πD2(µ, µτk−1)

2τ
: µ =

M∑

i=1

di,0δxi ,
∥∥µ− µτk−1

∥∥
flat
≤ δ
}
.

After identifying the vorticity measure with the positions of its singulari-
ties, we get that the vortices xτk of µτk satisfy the following finite-dimensional
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problem

xτk ∈ argmin

{
W (x) +

π|x− xτk−1|2
2τ

: x ∈ ΩM ,
M∑

i=1

|xi − xτi,k−1| ≤ δ
}
.

In Theorem 4.13 we show that this constrained scheme converges, as
τ → 0, to the gradient flow of the renormalized energy (0.9), until a maximal

time T̃δ. The proof of this fact follows the standard Euler implicit method,
with some care to handle local rather than global minimization. Moreover,
as δ → 0, T̃δ converges to the critical time T ∗ (see Definition 4.10), at which
either a vortex touches the boundary or two vortices collapse.

We now discuss the discrete gradient flow with the L2 dissipation. Once
again, we consider a step by step minimization problem as in (0.10), with
‖µ− µτε,k−1‖2flat replaced by ‖v − vτε,k−1‖2L2/| log τ |. More precisely,

uτε,k ∈ argmin

{
Fε(u) +

‖e2πiu − e2πiuε,k−1‖2L2

2τ | log τ | : ‖µ(u)− µ(uτε,k−1)‖flat ≤ δ
}
.

The prefactor 1/| log τ | in front of the dissipation can be viewed as a time
reparametrization, on which we will comment later.

The asymptotics of these discrete gradient flow as ε → 0 relies again
on a Γ-convergence analysis, which keeps memory also of the L2 limit v
of the variable e2πiuε . Under suitable assumptions on the initial data, in
Theorem 4.27 we show that, as ε → 0, the solutions uτε,k converge, up to a
subsequence, to a solution to

vτk ∈ argmin

{
W(v) +

‖v − vτk−1‖2L2

2τ | log τ | : v ∈ H1
loc(Ω \ ∪Mi=1{yi,k};S1),

Jv =
M∑

i=1

di,0δyi,k , ‖Jv − Jvτk−1‖flat ≤ δ
}
,

where Jv is the distributional Jacobian of v and W is the renormalized en-
ergy in terms of v (see Theorem 2.9); namely, minJv=µW(v) = W(µ). Now,
we wish to send τ to zero. This step is much more delicate than in the case of
flat dissipation. Indeed, it is at this stage that we adopt the abstract method
introduced in [60], and exploit it in the context of minimizing movements
instead of gradient flows. This method relies on the proof of two energetic
inequalities; the first relates the slope of the approximating functionals with
the slope of the renormalized energy; the second one relates the scaled L2

norm underlying the parabolic flow of GLε with the Euclidean norm of the
time derivative of the limit singularities. In our discrete in time framework,
we adapt the arguments in [60] by replacing derivatives by finite differences.
A heuristic argument to justify the prefactor 1/| log τ | is that it is the correct
scaling for the canonical vortex x/|x|. Indeed, given V ∈ R2 representing
the vortex velocity, a direct computation shows that

lim
τ→0

1

τ | log τ |

∥∥∥∥
x

|x| −
x− τV
|x− τV |

∥∥∥∥
2

2

= π|V |2 . (0.11)

As a matter of fact, in order to get a non trivial dynamics in the limit, we
have to accelerate the time scale as τ tends to zero. This feature is well
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known also in the parabolic flow of Ginzburg-Landau functionals. In this
respect, we observe that our time scaling is expressed directly as a function
of the time step τ , while for the functionals GLε it depends on the only
scale parameter of the problem, which is the length scale ε. The explicit
computation in (0.11) has not an easy counterpart for general solutions vτk ,
and (0.11) has to be replaced by more sophisticated estimates (see (4.55)
and (4.94)). This point is indeed quite technical, and makes use of a lot of
analysis developed in [59], [60].

Summarizing, we have noticed that the analogies between screw dislo-
cations and vortices extend to the complete static analysis and, somehow,
to their dynamics. As for the edge dislocations, the precise relation between
the two frameworks appears less clear. The main difference is that, in the
last case, the framework is that of plane elasticity and hence the problem is
vectorial and the energy is not coercive, depending only on the symmetric
part of the deformation gradient.

We develop the Γ-convergence analysis for edge dislocations in Chapter
5 (see also [31]). As mentioned above, the elastic energy induced by a finite
distribution of edge dislocations µ is given by

Eel
ε (µ) = min

Curlβ=µ

∫

Ωε(µ)
W (β) dx.

This variational formulation has been considered in [24] by Cermelli and
Leoni who study the limit of the elastic energy induced by a fixed configura-
tion of edge dislocations (and of its minimizers) as the atomic scale ε tends
to zero.

In order to perform a meaningful analysis in terms of Γ-convergence i.e.,
allowing also the distribution of dislocations to be optimized, we consider
the functional

Eε(µ) = Eel
ε (µ) + |µ|(Ω), (0.12)

where the total variation of µ in Ω, |µ|(Ω), represents the energy stored
in the region surrounding the dislocations. We remark that this term is
essential; indeed, without the core energy any configuration µ such that
Ωε(µ) = ∅ would induce no energy. On the other hand, its specific choice
does not affect the Γ-limit (see [56]). In this respect, it can be seen as the
discrete counterpart of the double-well potential in GLε.

The Γ-convergence analysis for the functionals Eε has been studied by
Garroni, Leoni and Ponsiglione in [36] under the assumption that the dislo-
cations are well separated. They perform a complete analysis, which includes
also different energetic regimes. It is well-known that, also in this vectorial
case, as in the scalar case of screw dislocations, a finite number of edge
dislocations has an elastic energy of order | log ε|. Note that in the regimes
| log ε|h, h > 1 , the number of defects Nε increases, tending to infinity as
ε→ 0, and the interaction between singularities becomes relevant; in partic-
ular they show in terms of Γ-convergence that in the critical | log ε|2 energy
regime (that corresponds to Nε ≈ | log ε|), the two effects of interaction
energy and self-energy are balanced. The limit energy is of the form

∫

Ω
W (β) dx+

∫

Ω
ϕ

(
dµ

d|µ|

)
d|µ|, (0.13)
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where ϕ is a positively 1-homogeneous density function defined by a suitable
cell problem formula, determined only by the elasticity tensor C and the
geometric structure of the crystal. This structure of the limit energy is
set in the framework of so called strain gradient theories for plasticity (see
[34, 40, 27]). Very recently, the analysis in [36] has been exported to the
case of nonlinear semi-discrete dislocation energy (see [53]).

We perform the Γ-convergence analysis for the energy induced by a fi-
nite system of edge dislocations, without assuming the dislocations to be
fixed, uniformly bounded in mass or well-separated. More precisely, in The-
orem 5.4 we prove that the Γ-limit of the functionals Eε

| log ε| is given by

F(µ) :=

∫

Ω
ϕ

(
dµ

d|µ|

)
d|µ|,

where ϕ is obtained throught a cell problem formula as in (0.13). This Γ-
convergence result is obtained with respect to the flat convergence of the
dislocations measures and exploits once again the strong analogy with the
Ginzburg-Landau setting. As mentioned above, the parallel between edge
dislocations and vortices is more delicate. Indeed, in the asymptotics of edge
dislocations, relaxation effects, that are encoded in the definition of ϕ, take
place. Moreover, the fact that the energy is not coercive, depending only
on the symmetric part of the strain, introduces specific difficulties in the
analysis, which make the proofs of compactness and Γ-liminf a challenging
task.

The idea of the proof of Theorem 5.4 relies on the ball construction
technique but the lower bound of the energy on annuli in this case is given
by
∫

BR\Br
W (β) dx ≥ c1|ξ|2

2πK(R/r)
log

R

r
, β ∈ H1(BR\Br;R2), Curlβ = ξ in BR;

here K(ρ) is the Korn’s constant and is such that K(ρ)→ +∞ as ρ→ 1 (see
Section 5.6 for more details). As a consequence, we have to perform the ball
construction avoiding too thin annuli (where the Korn’s constant blows up).
This will be done in Section 5.2 where we construct an ad hoc discrete version
of the ball construction. Once this ball construction is done, we deduce a
lower bound with a pre-factor error due to the use of Korn’s inequality.
Then, compactness is easily deduced in Section 5.3 using arguments similar
to [59]. In view of this analysis, we can easily find the required annuli where
the energy concentrates, providing the optimal lower bound (see Section 5.4).
Finally, in Section 5.5 we provide the upper bound, concluding the proof of
our Γ-convergence result.

In conclusion, this thesis is organized as follows:

In Chapter 1 we introduce the notions of Γ-convergence and Γ-
expansion following the approach in [18] and [10]. Here we collect
some results in [58, 59, 60, 61] relative to the statics and dy-
namics of vortices in the Ginzburg-Landau framework.
In Chapter 2 we give the Γ-expansion of the functionals Fε. All
the results proved in this chapter are contained in [4].

11



In Chapter 3 we perform the Γ-convergence analysis of the anisotropic
and long range interaction energies. These results are contained
in [32].
In Chapter 4 we use the Γ-convergence analysis of Chapter 2 to
prove the existence of many metastable configurations for the sys-
tems we consider. Then we introduce our purely variational ap-
proach to the study of their dynamics. All the results of this
chapter are contained in [4].
In Chapter 5 we prove our Γ-convergence result for Eε

| log ε| . The

results in this chapter are proved in [31].
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CHAPTER 1

Ginzburg-Landau functionals

In this chapter we recall some results of [58, 59, 60, 61] relative to the
Γ-convergence analysis of the Ginzburg-Landau functionals, which will be
useful in the following of this thesis.

Ginzburg-Landau functionals arise in condensed-matter physics; they
have been originally introduced as a phenomenological phase-field type free-
energy of a superconductor, near the superconducting transition, in absence
of an external magnetic field. They involve a complex-valued order param-
eter, which we denote by w, that describes the local state of the material,
|w| ≤ 1 being a local density. The crucial set is the zero-set of w: since w
is complex-valued, it can have a non-zero degree around its zeroes, which
are then called vortices, i.e. topological defects in dimension 2. We recall
that Ω ⊂ R2 is a bounded domain with Lipschitz boundary. The Ginzburg-
Landau energy (without magnetic field) is given by

GLε(w) :=
1

2

∫

Ω
|∇w|2 +

1

2ε2
(1− |w|2)2 dx,

and it is defined over H1(Ω;C); here ε is a length-scale parameter, usually
referred to as the coherence length whileGLε is the corresponding free energy
of the system.

In the first section we introduce the basic notion of Γ-convergence, then
we present the results relative to the static Γ-convergence analysis of GLε
and in the last sections we state some results about the limiting dynamics
of the vortices which are proved in [60] and [59].

1.1. Γ-convergence

Here we introduce the fundamental notion of Γ-convergence following
the notation in [18] (see also [29]). Γ-convergence is designed to express the
convergence of minimum problems: Given a family of functionals Fε defined
on a metric space (X, d), it may be convenient to study the asymptotic
behaviour of a family of problems

mε = min{Fε(x) : x ∈ X} (1.1)

not through the direct study of the properties of the solutions xε but defining
a suitable limit energy F (0) such that, as ε→ 0, the problem

m0 = min{F (0)(x) : x ∈ X0} (1.2)

is a “good approximation” of (1.1), i.e., mε → m0 and xε → x0, where x0

is itself a solution of m0. This latter requirement must be thought upon
extraction of a subsequence if the ‘target’ minimum problem admits more
than a solution. Of course, in order for this procedure to make sense we
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must require a equi-coerciveness (or compactness) property for the energies
Fε.

Definition 1.1. Let (X, d) be a metric space. For any ε > 0, let Fε :
X → [−∞,+∞]. We say that the sequence {Fε} is equi-coercive if for any
sequence {xε} ⊂ X with supε Fε(xε) ≤ C for some C ∈ R, there exists
x ∈ X such that, up to a subsequence, d(xε, x)→ 0.

Definition 1.2. Let (X, d) be a metric space. For any ε > 0, let Fε, F
(0) :

X → [−∞,+∞]. We say that the sequence {Fε} Γ-converges to F0 at x if
the following inequalities hold true

(i) (Γ-liminf inequality) for every {xε} with d(xε, x) → 0, it holds

F (0)(x) ≤ lim infε→0 Fε(xε).
(ii) (Γ-limsup inequality) there exists a (recovery) sequence {x̄ε}, such

that d(x̄ε, x)→ 0 and F (0)(x) ≥ lim supε→0 Fε(x̄ε).

We say that {Fε} Γ-converges to F (0) in X (Fε
Γ→ F (0)) if {Fε} Γ-converges

to F (0) at x for every x ∈ X.

The inequality (i) means that F (0) is a lower bound for the sequence

{Fε} in the sense that F (0)(x) ≤ Fε(xε) + o(1) whenever d(xε, x) → 0 and

(ii) implies that F (0) is an upper bound for {Fε}. We remark that the
lower bound uniquely involves minimization and optimization procedures
and is totally ansatz-free, whereas the computation of the upper bound is
usually referred to an ansatz, suggested by the structure of the minimizing
sequences, on the construction of the recovery sequence {x̄ε}.

We are now in a position to state the fundamental theorem of Γ-convergence,
which ensures the convergence of the infima mε in (1.1) to the minimum m0

in (1.2) and that every cluster point of a minimizing sequence is a minimum

point for F (0).

Theorem 1.3. Let (X, d) be a metric space. Let {Fε} be a equi-coercive

sequence of functions on X and let F (0) be such that Fε
Γ→ F (0). Then

∃minF (0) = lim
ε→0

inf
X
Fε.

Moreover if {xε} is a precompact sequence such that

lim
ε→0

Fε(xε) = lim
ε→0

inf
X
Fε,

then every limit of a subsequence of {xε} is a minimum point for F (0).

Proof. Let {xε} be a minimizing sequence for Fε, that is

lim inf
ε→0

Fε(xε) = lim inf
ε→0

inf
X
Fε.

Since {Fε} is equi-coercive, there exists x0 ∈ X such that, up to a subse-
quence, d(xε, x)→ 0. By (i) in Definition 1.2, we have immediately

inf
X
F (0) ≤ F (0)(x0) ≤ lim inf

ε→0
Fε(xε) = lim inf

ε→0
inf
X
Fε. (1.3)

Moreover for any y ∈ X let {x̄ε,y} be a recovery sequence for x according
with Definition 1.2(ii). Then, by (1.3), we get for any y

F (0)(x0) ≤ lim inf
ε→0

inf
X
Fε ≤ lim sup

ε→0
Fε(x̄ε,y) ≤ F (0)(y).
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It follows that F (0)(x0) = minX F
(0) and that

F (0)(x0) = lim inf
ε→0

Fε(xε).

�

It is clear that the hidden element in the procedure of the computation
of the Γ-limit is the choice of the right metric d. This is actually one of
the main issues in the problem: a convergence is not given beforehand and
should be chosen in such a way that it implies the equi-coercivenss of the
sequence {Fε}. In fact there are two terms in competition: on one hand,
a very weak convergence, with many converging sequences makes the equi-
coerciveness property easier to fulfill but at the same time it makes the
Γ-liminf inequality more difficult to hold. A related issue is that of the
correct energy scaling. In fact, in many cases, the functionals Fε have to be
suitably scaled in order to give rise to an equi-coercive sequence with respect
to a meaningful convergence.

We give now the notion of asymptotic development of a sequence of
functionals by Γ-convergence (or Γ-expansion) as it has been introuduced in
[10]. The idea is that of introducing an asymptotic expansion

Fε = F (0) + εF (1) + . . .+ εkF (k) + o(εk)

of the sequence Fε in such a way that the knowledge of the functionals F (k)

gives an additional information on the limit points of minimizers. Precisely:
Any limit point of a sequence of minimizers xε will also be a minimizer of
each of the functionals F (k) appearing in the development above. We focus
on the first-order expansion by Γ-convergence.

Definition 1.4. [10, Definition 1.3] With the notation above, we say that
the first-order asymptotic development

Fε = F (0) + εF (1) + o(ε) (1.4)

holds, if we have

lim
ε→0

Fε −m0

ε
= F (1).

For k = 0, 1, we denote by Uk the set of minimizers of F (k).

Theorem 1.5. [10, Theorem 1.2] With the notation above, assume that
the first-order Γ-expansion in (1.4) holds true. Let {xε} ⊂ X be such that
d(xε, x̄) → 0 for some x̄ ∈ X and Fε(xε) = min{Fε(x) : x ∈ X}. Then x̄

is a minimizer of both F (0) and F (1) in U0. Moreover , if m1 denotes the
infimum of F (1) on U0, then

mε = m0 + εm1 + o(ε).

1.2. Γ-expansion of GLε

We now introduce the basic functional spaces we use in this thesis. We
recall that W 1,∞(Ω) is the space of Lipschitz continuous functions in Ω and

W 1,∞
0 (Ω) is the subspace of functions with compact support.
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Given w ∈ H1(Ω;C), we recall that the Jacobian Jw of w is the L1

function defined by

Jw := det∇w.
Moreover, we can consider Jw as an element of the dual of W 1,∞ by setting

〈Jw, ϕ〉 :=

∫

Ω
Jw ϕ dx for every of ϕ ∈W 1,∞(Ω).

Notice that Jw can be written in a divergence form as
Jw = div(w1∂x2w2,−w1∂x1w2), i.e., for any ϕ ∈W 1,∞

0 (Ω),

〈Jw, ϕ〉 = −
∫

Ω
w1∂x2w2∂x1ϕ− w1∂x1w2∂x2ϕdx.

Equivalently, we have that Jw = curl(w1∇w2) and Jw = curlj(w), where

j(w) := w1∇w2 − w2∇w1,

is the so-called current.
Notice that if w ∈ L∞(Ω;C), then Jw is in the dual of H1(Ω). Let

A ⊂ Ω with Lipschitz boundary. Then we have
∫

A
Jw dx =

1

2

∫

A
curl j(w) dx :=

1

2

∫

∂A
j(w) · t ds,

where t is the tangent field to ∂A and the last integral is meant in the sense

of H−
1
2 .

Let h ∈ H
1
2 (∂A;C) with |h| ≥ α > 0. The degree of h is defined as

follows

deg(h, ∂A) :=
1

2π

∫

∂A
j(h/|h|) · t ds.

It is well-known that the definition above is well-posed and that deg(h, ∂A) ∈
Z; moreover, whenever w ∈ H1(A;C), |w| ≥ β > 0 in A, deg(w, ∂A) =
0, where in the notation of degree we identify w with its trace. Finally,
deg(w, ∂A) is stable with respect to the strong convergence in H1(A;C).

Notice that w can be written in polar coordinates as w(x) = ρ(x)eiθ(x) on
∂A with |ρ| ≥ α, where θ is the so-called lifting of w. In particular, if
ρ(x) ≡ 1 on ∂A, then the current j(w) is nothing but the gradient of θ and
the degree of w coincides with the circulation of ∇θ on ∂A.

Moreover, by [17, Theorem 1] (see also [17, Remark 3]), if A is simply

connected and deg(w, ∂A) = 0, then the lifting can be selected in H
1
2 (∂A)

with the map u 7→ θ continuous. If the degree d is not zero, then the lifting

can be locally selected in H
1
2 (∂A) with a “jump” of order 2πd.

We state here the Γ-convergence theorem for GLε
| log ε| that collects result

proved in [45, 46, 1].

Theorem 1.6. The following Γ-convergence result holds.

(i) (Compactness) Let {wε} ⊂ H1(Ω;C) be such that GLε(wε) ≤
C| log ε| for some positive C. Then, up to a subsequence, Jwε

flat→
πµ, where µ :=

∑N
i=1 diδxi for some xi ∈ Ω, di ∈ Z.
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(ii) (Γ-liminf inequality) Let {wε} ⊂ H1(Ω;C) be such that Jwε
flat→

πµ := π
∑N

i=1 diδxi. Then, there exists C ∈ R such that, for any

i = 1, . . . , N and for every σ < 1
2dist(xi, ∂Ω ∪⋃j 6=i xj), we have

lim inf
ε→0

GLε(wε, Bσ(xi))− π|di| log
σ

ε
≥ C.

In particular

lim inf
ε→0

GLε(wε)− π|µ|(Ω) log
σ

ε
≥ C.

(iii) (Γ-limsup inequality) For every µ :=
∑N

i=1 diδxi, there exists {wε} ⊂
H1(Ω;C) such that Jwε

flat→ πµ and

π|µ|(Ω) ≥ lim sup
ε→0

GLε
| log ε| .

Before stating the first order Γ-convergence of GLε − π|µ|(Ω)| log ε| to
the renormalized energy introduced in [15], we recall the main definitions
and results of [15] we need.

Let µ =
∑M

i=1 diδxi with di ∈ {−1,+1} and xi ∈ Ω. In order to define
the renormalized energy, consider the following problem

{
∆Φ = 2πµ in Ω
Φ = 0 on ∂Ω,

and let R0(x) = Φ(x)−∑M
i=1 di log |x−xi|. Notice that R0 is harmonic in Ω

and R0(x) = −∑M
i=1 di log |x−xi| for any x ∈ ∂Ω. The renormalized energy

corresponding to the configuration µ is then defined by

W(µ) := −π
∑

i 6=j
didj log |xi − xj | − π

∑

i

diR0(xi). (1.5)

Let σ > 0 be such that the balls Bσ(xi) are pairwise disjoint and contained

in Ω and set Ωσ := Ω \⋃M
i=1Bσ(xi). A straightforward computation shows

that

W(µ) = lim
σ→0

1

2

∫

Ωσ
|∇Φ|2 dx−Mπ| log σ| , (1.6)

In this respect the renormalized energy represents the finite energy induced
by µ once the leading logarithmic term has been removed.

Consider the following minimization problems

m(σ, µ) := min
w∈H1(Ωσ ;S1)

{
1

2

∫

Ωσ
|∇w|2 dx : deg(w, ∂Bσ(xi)) = di

}
,

m̃(σ, µ) := min
w∈H1(Ωσ ;S1)

{
1

2

∫

Ωσ
|∇w|2 dx : (1.7)

w(·) =
αi
σdi

(· − xi)dion ∂Bσ(xi), |αi| = 1

}
,

γGL(ε, σ) := min
w∈H1(Bσ ;C)

{
GLε(w,Bσ) : w(x) ∂Bσ =

x

|x|

}
. (1.8)
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Theorem 1.7. [15] It holds

lim
σ→0

m(σ, µ)−π|µ|(Ω)| log σ| = lim
σ→0

m̃(σ, µ)−π|µ|(Ω)| log σ| = W(µ). (1.9)

Moreover, for any fixed σ > 0, the following limit exists

lim
ε→0

(γGL(ε, σ)− π| log
ε

σ
|) =: γ ∈ R. (1.10)

We are now in a position to state the Γ-expansion of GLε.

Theorem 1.8. The following Γ-convergence result holds.

(i) (Compactness) Let M ∈ N and let {wε} ⊂ H1(Ω;C) be a sequence
satisfying GLε(wε)−Mπ| log ε| ≤ C. Then, up to a subsequence,

Jwε
flat→ πµ for some µ =

∑N
i=1 diδxi with di ∈ Z \ {0}, xi ∈ Ω and∑

i |di| ≤ M . Moreover, if
∑

i |di| = M , then
∑

i |di| = N = M ,
namely |di| = 1 for any i.

(ii) (Γ-liminf inequality) Let {wε} ⊂ H1(Ω;C) be such that Jwε
flat→ µ,

with µ =
∑M

i=1 diδxi with |di| = 1 and xi ∈ Ω for every i. Then,

lim inf
ε→0

GLε(wε)−Mπ| log ε| ≥W(µ) +MγGL. (1.11)

(iii) (Γ-limsup inequality) Given µ =
∑M

i=1 diδxi with |di| = 1 and

xi ∈ Ω for every i, there exists {wε} ⊂ H1(Ω;C) with Jwε
flat→ µ

such that

GLε(wε)−Mπ| log ε| →W(µ) +MγGL.

The basic tool in order to prove Theorem 1.6 and 1.8 is given by the ball
construction introduced by Sandier in [58]: It consists in an efficient way
of selecting balls where the energy concentrates. In the next subsection we
briefly delineate the main features of this powerful machinery that we will
use with some modifications in order to prove the main results of this thesis.

1.2.1. Ball construction for GLε. Let B = {BR1(x1), . . . , BRN (xN )}
be a finite family of pairwise disjoint balls in R2. The ball construction
consists in letting the balls alternatively expand and merge each other. The
expansion phase consists in letting all the balls expand without changing
their centers in such a way that at each (artificial) time the ratio θ(t) :=
ri(t)/ri is independent of i. The expansion phase stops at the first time
T when two balls Bri(t)(xi) and Brj(t)(xj) bump into each other. Then

the merging phase begins. It consists in collecting the balls BRi(T )(xi) in
subclasses and merging all the balls of each subclass in a larger ball BRj (yj)
with the following properties:

(a) Rj is not larger than the sum of all the radii of the balls BRi(T )(xi)
contained in BRj (yj);

(b) the balls BRj (yj) are pairwise disjoint.

After the merging, we define in each ball BRj (yj) a seed size sj by
Rj/sj = θ(T ) = 1 + T (we set sj = rj for t = 0). Then another expansion
phase begins, during the seed sizes are left constant and θ(t) := Rj(t)/sj =
1 + t for t ≥ T . The procedure consists in alternating merging to expansion
phase until a last phase where only a ball expands. Notice that, by property

20



(a), the sum of the seed sizes
∑

j sj does not increase during the merging.
In particular ∑

j

Rj(t) =
∑

j

(1 + t)sj ≤ (1 + t)
∑

i

ri.

Now we assume that to each ball Bri(xi) of the original family B corresponds

some integer multiplicity di ∈ Z and set µ :=
∑N

i=1 diδxi . Let F (B, µ, U) be
defined as follows: If Ar,R(y) := BR(y) \Br(y) is an annulus which does not
intersect any Bri(xi), we set

F (B, µ,Ar,R(y)) := π|µ(Br(y))| log
R

r
;

then, for any open set U ⊂ R2, we set

F (B, µ, U) := sup
∑

i

F (Ai),

where the sup is over all finite families of pairwise disjoint annuli Ai ⊂ U
which do not intersect any Bri(xi).

Remark 1.9. The definition of F is justified by the following fact. Let
w ∈ H1(Ω\∪B∈BB;S1) and let µ :=

∑
B∈C deg(w, ∂B)δxB , where C denotes

the family of balls in B which are contained in Ω and xB is the center of B.
Then, by Jensen inequality it follows that

1

2

∫

BR\Br
|∇w|2 dx ≥ 1

2

∫ R

r

∫

∂Bρ

| (w ×∇w) · τ |2ds dρ

≥
∫ R

r

1

ρ
πd2

i dρ ≥ π|di| log
R

r
.

(1.12)

for any annulusAr,R(y) such thatBri(xi) ⊂ Br(x) andBR(x)∩∪j 6=iBrj (xj) =
∅. As an easy consequence, one has

1

2

∫

U\∪Ni=1Bri (xi)
|∇w|2 dx ≥ F (B, µ, U). (1.13)

Let B(t) be the family of balls at time t (with the convention B(t) =
B(t−) if t is a merging time). By the construction above it easily follows
that for any B ∈ B(t)

F (B, µ,B) ≥ π|µ(B)| log(1 + t). (1.14)

We refer to [58, 59, 61, 6, 45] for the proofs of Theorems 1.6 and
1.8. We remark only that one of the most challenging tasks is the proof of
the compactness property. The main idea is to use the potential term in
(0.5) in order to show that the zeroes of |wε| concentrate on a family B of

balls such that the sum of their radii Rad(B) satisfies Rad(B) ≤ Cε 1
3 | log ε|.

Plugging a Dirac mass, corresponding to the degree of wε, into each of these
balls, and using the Ball Construction above, one can obtain a sequence of
measures µ̃ε that approximates Jwε, carrying all the topological information
and bringing the required compactness.
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1.3. Γ-convergence of gradient flows

In this section we present the abstract approach introduced in [60] to
study the convergence of heat flows of families of energies which Γ-converge
to a limiting energy. In Section 4.3 we will revisit this result in order to
extend it to our discrete gradient flow.

The general framework is the following: LetM be an open subset of an
affine space associated to a Banach space B and let N be an open subset of a
finite-dimensional vector space B′. We assume that B embeds continuously
into a Hilbert space Xε, B′ into Y . Let {Eε} be a family of C1 functionals
defined over M, which Γ-converges to a C1 functional F defined over N .

We first give the definitions we need.

Definition 1.10. [60, Definition 1.1] Let T > 0 and let {uε(t, ·)} ⊂ M for
t ∈ [0, T ). We say that {Eε} Γ-converges along the trajectory uε(t) in the
sense S to F if there exists u : [0, T )→ N , such that, up to a subsequence,

uε(t)
S→ u(t) for any t ∈ [0, T ) and

F (u(t)) ≤ lim inf
ε→0

Eε(uε(t)) ∀t ∈ [0, T ).

Definition 1.11. [60, Definition 1.2] If the differential dEε(u) of Eε at u is
also linear continuous on Xε, we denote by ∇XεEε(u) the gradient at u ∈M
for the structure Xε, that is,

d

dt
|t=0Eε(u+ tφ) = dEε(u) · φ = 〈∇XεEε(u), φ〉Xε .

If this gradient does not exist, we use the convention ‖∇XεEε(u)‖Xε = +∞.

Definition 1.12. [60, Definition 1.3] A solution to the gradient flow of Eε
(with respect to the structure Xε) on [0, T ) is a map uε ∈ H1((0, T );Xε)
such that

∂tuε(t) = −∇XεEε(uε) ∀t ∈ [0, T ). (1.15)

Such a solution is conservative if

Eε(uε(0))− Eε(uε(t)) =

∫ t

0
‖∂tuε(t)‖2Xε ds ∀t ∈ [0, T ).

If {uε} is a family of solutions on [0, T ) to the gradient flow of Eε along

which {Eε} Γ-converges to F and uε(t)
S→ u(t) for any t ∈ [0, T ), we define

the energy excess D(t) as

D(t) := lim sup
ε→0

Eε(uε(t))− F (u(t)).

We notice that D(t) ≥ 0. If D(0) = 0, we say that the family of solutions
{uε} is well-prepared initially.

We are now in a postion to state the abstract result in [60] which makes
a rigorous connection between the convergence of gradient flows and the
Γ-convergence structure.

Theorem 1.13. [60, Theorem 1.4] Let {Eε} and F be C1 functionals over
M and N respectively and let {uε} be a family of conservative solutions

to the flow for Eε (in the sense of (1.15)) on [0, T ), with uε(0)
S→ u0,
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along which {Eε} Γ-converges to F in the sense of Definition 1.10. Assume
moreover that conditions (i) and (ii) below are satisfied.

(i) For a subsequence {uε} such that uε(t)
S→ u(t) for any t ∈ [0, T ),

it holds that u ∈ H1((0, T );Y ) and there exists f ∈ L1((0, T ))
such that for every s ∈ [0, T )

lim inf
ε→0

∫ s

0
‖∂tuε(t)‖2Xε dt ≥

∫ s

0

(
‖∂tu(t)‖2Y − f(t)D(t)

)
dt.

(ii) If uε(t)
S→ u(t) for any t ∈ [0, T ), there exists a locally bounded

function g on [0, T ) such that for any t0 ∈ [0, T ) and any v defined
in a neighborhood of t0 satisfying

{
∂tv(t0) = −∇Y F (u(t0))
v(t0) = u(t0),

there exists vε(t) such that vε(t0) = uε(t0) and

lim sup
ε→0

‖∂tvε(t0)‖2Xε ≤ ‖∂tv(t0)‖2Y + g(t0)D(t0),

lim inf
ε→0

− d

dt
|t=t0Eε(vε(t)) ≥ −

d

dt
|t=t0F (v)− g(t0)D(t0).

Then, if {uε} is well-prepared initially (D(0) = 0), then {uε(t)} is well-

prepared for every t ∈ [0, T ), all the inequalities above are equalities, uε(t)
S→

u(t) for any t ∈ [0, T ) where u is the solution to
{
∂tu = −∇Y F (u)
u(0) = u0.

We omit the proof of Theorem 1.13. We remark only that the conver-
gence of gradient flows does not follow from the Γ-convergence only, since
slight perturbations of the energy landscape of Eε may add local minima
which disappear in the limit. The assumptions (i) and (ii) we need, guaran-
tee that the C1 structure of the energy landscape also converges.

In [60], this abstract scheme is used in order to prove the convergence
result for the heat flow of the Ginzburg-Landau equation.

In this case, the space Xε is nothing but the L2(Ω;C) endowed with the
standard scalar product of L2 scaled by 1

| log ε| and hence

‖ · ‖Xε =
1√
| log ε|

‖ · ‖L2(Ω;C).

Fixed M ∈ N, then Eε(w) = GLε(w) −Mπ| log ε| −MγGL and (1.15) is
given by

1

| log ε|∂tw = ∆w +
w

ε2
(1− |w|2). (1.16)

Moreover Y = R2M and its norm is given by ‖ ·‖Y = 1√
π
‖ ·‖R2M . Finally, we

say that wε(t)
S→ x(t) = (x1(t), . . . , xM (t)) ∈ Y for some t ≥ 0 if Jwε(t)

flat→∑M
i=1 di,0δxi(t) where d1,0, . . . , dM,0 ∈ {+1,−1} do not depend on t.

We remark that with this notation, the family {wε(t)} of solutions to
(1.16) is well prepared initially if {wε(0)} is a recovery sequence in the sense
of Theorem 1.8 (iii).
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Using Theorem 1.13 and Proposition 1.17, the authors prove the follow-
ing result.

Theorem 1.14. [60, Theorem 1.6] Let {wε} be a family of solutions to

(1.16) with homogeneous Neumann boundary conditions such that Jwε(0)
flat→

π
∑M

i=1 di,0δxi,0, where M ∈ N, di,0 ∈ {+1,−1} and xi,0 are distinct points

of R2. Assume moreover that {wε(t)} is well-prepared initially, that is,

lim
ε→0

GLε(wε(0))−Mπ| log ε| −MγGL = W(
M∑

i=1

di,0δxi,0).

Then, there exists a time T ∗ > 0 such that Jwε(t)
flat→ ∑M

i=1 di,0δxi(t) and

lim
ε→0

GLε(wε(t))−Mπ| log ε| −MγGL = W(
M∑

i=1

di,0δxi(t))

for any t ∈ [0, T ∗), where x(t) = (x1(t), . . . , xM (t)) is the solution to
{
ẋi(t) = − 1

π∂xiW(
∑M

i=1 di,0δxi(t)) t ∈ [0, T ∗)

xi(0) = xi,0,

and T ∗ is the minimum among the collision time and the exit time from Ω
for this law of motion.

The main difficulty of proving this result consists in showing that the
assumptions of Theorem 1.13 are satisfied by the energies GLε and W. The
proof of assumption (i) is very smart and it is obtained exploiting an im-
portant result of [59], that we recall in the following section since it will be
useful in order to prove our result on the dynamics of screw dislocations.

1.4. Product-Estimate

In this section we collect some results in [59] that are used in the proofs
of Section 4.3.

We first introduce some notation. Let B be an open bounded subset of
R3. Given w = (w1, w2) ∈ H1(B;C), its Jacobian Jw can be regarded as a
2-form in R3 given by

Jw = dw1 ∧ dw2 =
∑

j<k

(∂jw1∂kw2 − ∂jw2∂kw1) dxj ∧ dxk. (1.17)

Thus Jw acts on vector fields X,Y ∈ C(B;R3) with the standard rule that

dxj ∧ dxk(X,Y ) =
1

2
(XjYk −XkYj) .

The Jacobian Jw can be also identified with a 1-dimensional current ?Jw
which acts on 1-forms ω = ω1 dx1 + ω2 dx2 + ω3 dx3 as

〈?Jw, ω〉 =

∫

B
Jw ∧ ω .9

In particular, for any X,Y ∈ C(B;R3)

〈?Jw,X ∧ Y 〉 =

∫

B
Jw(X,Y ) dx,
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where, with a little abuse of notation, we identify 1-forms with vector fields.
Let T > 0. For a given w ∈ H1([0, T ]× Ω;R2), we denote by µ, V 1, V 2

the L1 functions such that

Jw = µdx1 ∧ dx2 + V 1 dx1 ∧ dt+ V 2 dx2 ∧ dt . (1.18)

The theorem below collects the results of Theorem 1 and Theorem 3 in
[59].

Theorem 1.15. Let wε ∈ H1([0, T ]× Ω;R2) be such that
∫ T

0
GLε(wε(t, ·)) dt+

∫ T

0

∫

Ω
|∂twε(t, x)|2 dx dt ≤ C| log ε| . (1.19)

Then, there exists a rectifiable integer 1-current J such that, up to a subse-
quence,

?Juε
π
→ J in (C0,γ

c ([0, T ]× Ω;R3))′, ∀γ ∈ (0, 1].

Moreover, for any X,Y ∈ C0
c ([0, T ]× Ω;R3)

lim inf
ε→0

1

π| log ε|

(∫

[0,T ]×Ω
|X · ∇wε|2 dx dt

∫

[0,T ]×Ω
|Y · ∇wε|2 dx dt

) 1
2

≥|〈J,X ∧ Y 〉| .

If in addition we assume that

sup
t∈[0,T ]

GLε(wε(t, ·)) ≤ C| log ε|, (1.20)

then, J can be written as in (1.18) with µ ∈ C0, 1
2 ([0, T ]; (C0,γ

c (Ω))′) for every
γ ∈ (0, 1] and V 1, V 2 ∈ L2([0, T ];M(Ω)).

Finally, up to a subsequence,

µε(t)
flat→ µ(t) for all t ∈ [0, T ].

We now state a variant of Corollary 4 in [59] which is a direct conse-
quence of Theorem 1.15.

Corollary 1.16. Let 0 ≤ t1 < t2 and let wε ∈ H1([t1, t2] × Ω;R2) be such
that (1.19) holds true with [0, T ] replaced by [t1, t2], and such that for all
t ∈ [t1, t2]

1

2

∫

Ω
|∇wε(t, x)|2 dx ≤Mπ| log ε|+ C

for some M ∈ N and C ∈ R. Assume moreover that

µε(t)
flat→ µ(t) := π

M∑

i=1

diδxi(t),

with |di| = 1 and xi(t) ∈ C([t1, t2]; Ω) for every i with xi(t) 6= xj(t) for
i 6= j.

Then, for any X,Y ∈ C0
c (Ω;R3)

lim inf
ε→0

1

| log ε|

∫

[t1,t2]×Ω
〈X·∇wε, Y ·∇wε〉dx dt = π

∫ t2

t1

M∑

i=1

〈X(xi(t)), Y (xi(t))〉 dt.

Here we state a result analogous to Corollary 7 in [59].
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Proposition 1.17. Let T̃ > 0 and let wε ∈ H1([0, T̃ ]× Ω;R2) be such that

(1.19) holds true, and such that for all t ∈ [0, T̃ ]

1

2

∫

Ω
|∇wε(t, x)|2 dx ≤Mπ| log ε|+ C

for some M ∈ N and C ∈ R. Assume moreover that

µε(t)
flat→ µ(t) := π

M∑

i=1

diδxi(t),

with |di| = 1 and xi(t) ∈ C([0, T̃ ]; Ω) for any i with xi(t) 6= xj(t) for i 6= j.
Then

lim inf
ε→0

1

| log ε|

∫

[0,T̃ ]×Ω
|∂twε|2 dx dt ≥ π

M∑

i=1

∫ T̃

0
|ẋi|2 dt. (1.21)

Proof. The proof of this result coincides with the one of Corollary 7 in
[59], the only difference being that [59] assumes that for every t ∈ [0, T̂ ]

1

ε2

∫

Ω
(1− |wε(t, x)|2)2 dx ≤ C| log ε|.

Here this assumption is replaced by (1.19), which is enough to apply Corol-
lary 1.16. Once the statement of Corollary 1.16 holds true, the rest of the
proof follows exactly as in in [59]. �
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CHAPTER 2

Γ-convergence expansion for systems of screw
dislocations

In this chapter we perform the Γ-convergence expansion of the energy
SDε defined in (0.1) and for the functional XYε in (0.8). The results proved
in this chapter are contained in [4].

As mentioned in the Introduction, both SDε and XYε can be regarded as
specific examples of scalar systems Fε, whose energy is governed by periodic
potentials acting on first neighbors. In the next section we introduce this
general class of energies and the discrete formalism used in the analysis of
the problem we deal with. We will follow the approach of [11]; specifically,
we will use the formalism and the notation in [3] (see also [56]).

In the following of this thesis, all the results are proved for this general
class of functionals.

2.1. The discrete model for topological singularities

The discrete lattice. For every ε > 0, we define Ωε ⊂ Ω as follows

Ωε :=
⋃

i∈εZ2: i+εQ⊂Ω

(i+ εQ),

where Q = [0, 1]2 is the unit square. Moreover we set Ω0
ε := εZ2 ∩ Ωε, and

Ω1
ε :=

{
(i, j) ∈ Ω0

ε × Ω0
ε : |i− j| = ε, i ≤ j

}
(where i ≤ j means that il ≤ jl

for l ∈ {1, 2}). These objects represent the reference lattice and the class of
nearest neighbors, respectively. The cells contained in Ωε are labeled by the
set of indices Ω2

ε =
{
i ∈ Ω0

ε : i+ εQ ⊂ Ωε

}
. Finally, we define the discrete

boundary of Ω as

∂εΩ := ∂Ωε ∩ εZ2. (2.1)

In the following, we will extend the use of these notations to any given
open subset A of R2.

2.1.1. Discrete functions and discrete topological singularities.
As mentioned in the Introduction the dislocations can be seen as topological
singularities of the deformation gradient. Here we introduce the notion of
topological singularity in our discrete setting. To this purpose, we first set

AFε(Ω) :=
{
u : Ω0

ε → R
}
,

which represents the class of admissible scalar functions on Ω0
ε.

Moreover, we introduce the class of admissible fields from Ω0
ε to the set

S1 of unit vectors in R2

AXYε(Ω) :=
{
v : Ω0

ε → S1
}
, (2.2)
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Notice that, to any function u ∈ AFε(Ω), we can associate a function
v ∈ AXYε(Ω) setting

v = v(u) := e2πiu.

With a little abuse of notation for every v : Ω0
ε → R2 we denote

‖v‖2L2 =
∑

j∈Ω0
ε

ε2|v(j)|2 . (2.3)

Now we can introduce a notion of discrete vorticity corresponding to
both scalar and S1 valued functions. To this purpose, let P : R → Z be
defined as follows

P (t) = argmin {|t− s| : s ∈ Z} , (2.4)

with the convention that, if the argmin is not unique, then we choose the
minimal one.

Let u ∈ AFε(Ω) be fixed. For every i ∈ Ω2
ε we introduce the vorticity

αu(i) := P (u(i+ εe1)− u(i)) + P (u(i+ εe1 + εe2)− u(i+ εe1))

−P (u(i+ εe1 + εe2)− u(i+ εe2))− P (u(i+ εe2)− u(i)).
(2.5)

One can easily see that the vorticity αu takes values in {−1, 0, 1}. Finally,
we define the vorticity measure µ(u) as follows

µ(u) :=
∑

i∈Ω2
ε

αu(i)δi+ ε
2

(e1+e2). (2.6)

This definition of vorticity extends to S1 valued fields in the obvious way, by
setting µ(v) = µ(u) where u is any function in AFε(Ω) such that v(u) = v.

Let M(Ω) be the space of Radon measures in Ω and set

X :=

{
µ ∈M(Ω) : µ =

N∑

i=1

diδxi , N ∈ N, di ∈ Z \ {0} , xi ∈ Ω

}
,

Xε :=



µ ∈ X : µ =

∑

i∈Ω2
ε

α(i)δi+ ε
2

(e1+e2) , α(i) ∈ {−1, 0, 1}



 .

(2.7)

We will denote by µn
flat→ µ the flat convergence of µn to µ, i.e., in the dual

W−1,1 of W 1,∞
0 .

2.1.2. The discrete energy. Here we introduce a class of energy func-
tionals defined on AFε(Ω). We will consider periodic potentials f : R→ R
which satisfy the following assumptions: For any a ∈ R

(1) f(a+ z) = f(a) for any z ∈ Z,

(2) f(a) ≥ 1

2
|e2πia − 1|2 = 1− cos 2πa,

(3) f(a) = 2π2(a− z)2 + O(|a− z|3) for any z ∈ Z.

For any u ∈ AFε(Ω), we define

Fε(u) :=
∑

(i,j)∈Ω1
ε

f(u(i)− u(j)). (2.8)
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As explained in the Introduction, the main motivation for our analysis
comes from the study discrete screw dislocations in crystals and XY spin
systems. We introduce the basic energies for these two models as in [3].

We recall that the energy functional for the screw dislocations model is
defined by

SDε(u) :=
1

2

∑

(i,j)∈Ω1
ε

dist2(u(i)− u(j),Z), (2.9)

where u ∈ AFε(Ω). It is easy to see that this potential fits (up to the
prefactor 4π2) with our general assumptions.

As for the XY model, for any v : Ω0
ε → S1, we define

XYε(v) :=
1

2

∑

(i,j)∈Ω1
ε

|v(i)− v(j)|2. (2.10)

Also this potential fits our framework, once we rewrite it in terms of the
phase u of v. Indeed, setting f(a) = 1− cos(2πa), we have

XYε(v) =
∑

(i,j)∈Ω1
ε

f(u(i)− u(j)) with v = e2πiu. (2.11)

We notice that assumption (2) on Fε reads as

Fε(u) ≥ XYε(e2πiu). (2.12)

Let
{
T±i
}

be the family of the ε-simplices of R2 whose vertices are of the

form {i, i ± εe1, i ± εe2}, with i ∈ εZ2. For any v : Ω0
ε → S1, we denote

by ṽ : Ωε → S1 the piecewise affine interpolation of v, according with the
triangulation

{
T±i
}

. It is easy to see that, up to boundary terms, XYε(v)
corresponds to the Dirichlet energy of ṽ in Ωε; more precisely

1

2

∫

Ωε

|∇ṽ|2 dx+ Cε ≥ XYε(v) ≥ 1

2

∫

Ωε

|∇ṽ|2 dx, (2.13)

where C depends only on Ω.

Remark 2.1. Let v : Ω0
ε → S1. One can easily verify that if A is an open

subset of Ω and if |ṽ| > c > 0 on ∂Aε, then

µ(v)(Aε) = deg(ṽ, ∂Aε), (2.14)

where the degree of a function w ∈ H 1
2 (∂A;R2) with |w| ≥ c > 0, is defined

by

deg(w, ∂A) :=
1

2π

∫

∂A

(
w

|w| × ∇
w

|w|

)
· τ ds , (2.15)

with v ×∇v := v1∇v2 − v2∇v1, for v ∈ H1(A;R2).
In particular, whenever |ṽ| > 0 on i+ εQ we have µ(v)(i+ εQ) = 0.

2.2. Localized lower bounds

In this section we will prove a lower bound for the energies Fε localized
on open subsets A ⊂ Ω. We will use the standard notation Fε(·, A) (and as
well XYε(·, A)) to denote the functional Fε defined in (2.8) with Ω replaced
by A.

To this purpose, thanks to assumption (2) on the energy density f , it
will be enough to prove a lower bound for the XYε energy. As a consequence
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of this lower bound, we obtain a sharp zero-order Γ-convergence result for
the functionals Fε.

2.2.1. The zero-order Γ-convergence. Here we prove the Γ-convergence
result for Fε, which can be seen as the discrete version of Theorem [?]. We
recall that the space of finite sums of weighted Dirac masses has been de-
noted in (2.7) by X.

Theorem 2.2. The following Γ-convergence result holds.

(i) (Compactness) Let {uε} ⊂ AFε(Ω) be such that Fε(uε) ≤ C| log ε|
for some positive C. Then, up to a subsequence, µ(uε)

flat→ µ, for
some µ ∈ X.

(ii) (Localized Γ-liminf inequality) Let {uε} ⊂ AFε(Ω) be such that

µ(uε)
flat→ µ =

∑M
i=1 diδxi with di ∈ Z \ {0} and xi ∈ Ω. Then,

there exists a constant C ∈ R such that, for any i = 1, . . . ,M and
for every σ < 1

2dist(xi, ∂Ω ∪⋃j 6=i xj), we have

lim inf
ε→0

Fε(uε, Bσ(xi))− π|di| log
σ

ε
≥ C. (2.16)

In particular

lim inf
ε→0

Fε(uε)− π|µ|(Ω) log
σ

ε
≥ C. (2.17)

(iii) (Γ-limsup inequality) For every µ ∈ X, there exists a sequence

{uε} ⊂ AFε(Ω) such that µ(uε)
flat→ µ and

π|µ|(Ω) ≥ lim sup
ε→0

Fε(uε)

| log ε| .

The above theorem has been proved in [56] for Fε = SDε and in [3] for
Fε = XYε, with (ii) replaced by the standard global Γ-liminf inequality

π|µ|(Ω) ≤ lim inf
ε→0

Fε(uε)

| log ε| , (2.18)

which is clearly implied by (2.17).
By (2.12), the compactness property (i) follows directly from the zero-

order Γ-convergence result for the XYε energies, while the proof of (ii) re-
quires a specific analysis. For the convenience of the reader we will give a
self contained proof of both (i) and (ii) of Theorem 2.2. We will omit the
proof of the Γ-lim sup inequality (iii) which is standard and identical to the
XYε case.

Before giving the proof of Theorem 2.2, we need to revisit the ball con-
struction introduced in Subsection 1.2.1 in order to include our discrete
case.

2.2.2. Lower bound on annuli. As noticed in Remark 1.9, the key
estimate in order to prove compactness in the continuous Ginzburg-Landau
is given by a sharp lower bound on annuli (see (1.12)). In the following we
will prove an analogous lower bound for the energy XYε(v, ·) in an annulus
in which the piecewise affine interpolation ṽ satisfies |ṽ| ≥ 1

2 . In view of
(2.12) such a lower bound will hold also for the energy Fε.
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Proposition 2.3. Fix ε > 0 and let
√

2ε < r < R−2
√

2ε. For any function
v : (BR \Br) ∩ εZ2 → S1 with |ṽ| ≥ 1

2 in BR−
√

2ε \Br+√2ε, it holds

XYε(v,BR \Br) ≥ π|µ(v)(Br)| log
R

r + ε
(
α|µ(v)(Br)|+

√
2
) , (2.19)

where α > 0 is a universal constant.

Proof. By (2.13), using Fubini’s theorem, we have that

XYε(v,BR \Br) ≥
1

2

∫ R−
√

2ε

r+
√

2ε

∫

∂Bρ

|∇ṽ|2 ds dρ. (2.20)

Fix r +
√

2ε < ρ < R −
√

2ε and let T be a simplex of the triangulation of
the ε-lattice. Set γT (ρ) := ∂Bρ ∩ T , let γ̄T (ρ) be the segment joining the
two extreme points of γT (ρ) and let γ̄(ρ) =

⋃
T γ̄T (ρ); then

1

2

∫

∂Bρ

|∇ṽ|2 ds =
1

2

∫

∪T γT (ρ)
|∇ṽ|2 ds =

1

2

∑

T

|∇ṽ|T |2H1(γT (ρ))(2.21)

≥ 1

2

∑

T

|∇ṽ|T |2H1(γ̄T (ρ)) =
1

2

∫

γ̄(ρ)
|∇ṽ|2 ds.

Setm(ρ) := minγ̄(ρ) |ṽ|; using Jensen’s inequality and the fact thatH1(γ̄(ρ)) ≤
H1(∂Bρ) we get

1

2

∫

γ̄(ρ)
|∇ṽ|2 ds ≥ 1

2

∫

γ̄(ρ)
m2(ρ)

∣∣∣∣
(
ṽ

|ṽ| × ∇
ṽ

|ṽ|

)
· τ
∣∣∣∣
2

ds (2.22)

≥ 1

2

m2(ρ)

H1(γ̄(ρ))

∣∣∣∣∣

∫

γ̄(ρ)

(
ṽ

|ṽ| × ∇
ṽ

|ṽ|

)
· τ ds

∣∣∣∣∣

2

≥ m2(ρ)

ρ
π|d|2 (2.23)

where we have set d := deg(ṽ, ∂Bρ) = µ(v)(Br), which does not depend on
ρ since |ṽ| ≥ 1/2.

Now, let T (ρ) be the simplex in which the minimum m(ρ) is attained.
Without loss of generality we assume that T (ρ) = T−ı̄ for some ı̄ ∈ εZ2 .
Let P one of the points of γ̄(ρ) for which |ṽ(P )| = m(ρ). By elementary
geometric arguments, one can show that

1

2

∫

∂Bρ

|∇ṽ|2 ds ≥ α̃1−m2(ρ)

ε
, (2.24)

for some universal positive constant α̃.
In view of (3.14), (3.18) and (3.19), for any r +

√
2ε < ρ < R−

√
2ε we

have

1

2

∫

∂Bρ

|∇ṽ|2 ds ≥ m2(ρ)

ρ
π|d| ∨ α̃1−m2(ρ)

ε
≥ π|d|α̃
επ|d|+ α̃ρ

.

By this last estimate and (3.13) we get

XYε(v,BR \Br) ≥ π|µ(v)(Br)| log
ε(πα̃ |µ(v)(Br)| −

√
2) +R

ε(πα̃ |µ(v)(Br)|+
√

2) + r
. (2.25)
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Assuming, without loss of generality, α̃ < 1, we immediately get (3.12) for
α = π

α̃ . �

2.2.3. Ball Construction for Fε. Here we introduce the ball con-
struction for the functionals Fε. Let B = {BR1(x1), . . . , BRN (xN )} be a

finite family of pairwise disjoint balls in R2 and let µ =
∑N

i=1 diδxi with
di ∈ Z \ {0}. Let F be a positive superadditive set function on the open
subsets of R2, i.e., such that F (A ∪B) ≥ F (A) + F (B), whenever A and B
are open and disjoint. We will assume that there exists c > 0 such that

F (Ar,R(x)) ≥ π|µ(Br(x))| log
R

c+ r
, (2.26)

for any annulus Ar,R(x) = BR(x) \Br(x), with Ar,R(x) ⊂ Ω \⋃iBRi(xi).
The purpose of this construction is to select a family of larger and larger

annuli in which the main part of the energy F concentrates. Let t be a
parameter which represents an artificial time. For any t > 0 we want to
construct a finite family of balls B(t) which satisfies the following properties

(1)
⋃N
i=1BRi(xi) ⊂

⋃
B∈B(t)B,

(2) the balls in B(t) are pairwise disjoint,
(3) F (B) ≥ π|µ(B)| log(1 + t) for any B ∈ B(t),
(4)

∑
B∈B(t)R(B) ≤ (1 + t)

∑
iRi + (1 + t)cN(N2 + N + 1), where

R(B) denotes the radius of the ball B.

We construct the family B(t), closely following the strategy of the ball
construction introduced in Subsection 1.2.1 with slight modifications that
include our case: The only difference in our discrete setting is the appearance
of the error term c > 0 in (3.21) and in (4), while in the continuous setting
c = 0.

In this case, the ball construction starts with an expansion phase if
dist(BRi(xi), BRj (xj)) > 2c for all i 6= j, and with a merging phase oth-
erwise. Assume that the first phase is an expansion. It consists in letting
the balls expand, without changing theirs centers, in such a way that, at

each (artificial) time, the ratio θ(t) := Ri(t)
c+Ri

is independent of i. We will

parametrize the time enforcing θ(t) = 1 + t. Note that with this choice
Ri(0) = Ri + c so that the balls {BRi(0)(xi)} are pairwise disjoint. The first
expansion phase stops at the first time T1 when two balls bump into each
other. Then the merging phase begins. It consists in identifying a suitable
partition {S1

j }j=1,...,Nn of the family
{
BRi(T1)(xi)

}
, and, for each subclass

S1
j , in finding a ball BR1

j
(x1
j ) which contains all the balls in S1

j such that the

following properties hold:

i) for every j 6= k, dist(BR1
j
(x1
j ), BR1

k
(x1
k)) > 2c;

ii) R1
j − Nc is not larger than the sum of all the radii of the balls

BRi(T1)(xi) ∈ S1
j , i.e., contained in BR1

j
(x1
j ).

After the merging, another expansion phase begins, during which we let the

balls
{
BR1

j
(x1
j )
}

expand in such a way that, for t ≥ T1, for every j we have

R1
j (t)

c+R1
j

=
1 + t

1 + T1
. (2.27)
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Again note that R1
j (T1) = R1

j + c. We iterate this process obtaining a

set of merging times {T1, . . . , Tn}, and a family B(t) = {BRkj (t)(x
k
j )}j for

t ∈ [Tk, Tk+1), for all k = 1, . . . , n− 1. Notice that n ≤ N . If the condition
dist(BRi(xi), BRj (xj)) > 2c for all i 6= j, is not satisfied we clearly can start
this process with a merging phase (in this case T1 = 0).

By construction, we clearly have (1) and (2). We now prove (4). Set
N(t) = ] {B ∈ B(t)} and I(t) = {1, . . . , N(t)}. Moreover, for every merging
time Tk and 1 ≤ j ≤ N(Tk), set

Ij(Tk) :=
{
i ∈ I(Tk−1) : BRk−1

i
(xk−1
i ) ⊂ BRkj (xkj )

}
.

By ii) and (2.27) it follows that for any 1 ≤ k ≤ n

N(Tk)∑

j=1

(Rkj −Nc) ≤
N(Tk)∑

j=1

∑

l∈Ij(Tk)

Rk−1
l (Tk)

=

N(Tk−1)∑

j=1

(
1 + Tk

1 + Tk−1
Rk−1
j +

1 + Tk
1 + Tk−1

c

)

=
1 + Tk

1 + Tk−1

N(Tk−1)∑

j=1

Rk−1
j +

1 + Tk
1 + Tk−1

cN(Tk−1)(2.28)

≤ 1 + Tk
1 + Tk−1

N(Tk−1)∑

j=1

Rk−1
j + (1 + Tk)cN.

Let Tk ≤ t < Tk+1 for some 1 ≤ k ≤ n; by (2.27) and iterating (2.28) we get

N(Tk)∑

j=1

Rkj (t) =
1 + t

1 + Tk

N(Tk)∑

j=1

Rkj +
1 + t

1 + Tk
cN(Tk)

≤ (1 + t)

N∑

i=1

Ri + (1 + t)cN(N2 +N + 1),

(2.29)

and this concludes the proof of (4).
It remains to prove (3). For t = 0 it is trivially satisfied. We will show

that it is preserved during the merging and the expansion times. Let Tk be
a merging time and assume that (3) holds for all t < Tk. Then for every
j ∈ I(Tk)

F (BRkj
(xkj )) ≥

∑

l∈Ij(Tk)

F (BRk−1
l (Tk)(x

k−1
l ))

≥ π log(1 + Tk)

j∑

l=1

|µ(BRk−1
l (Tk)(x

k−1
l ))|

≥ π log(1 + Tk)|µ(BRkj
(xkj ))|.
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Finally, for a given t ∈ [Tk, Tk+1) and for any ball BRki (t)(x
k
i (t)) ∈ B(t)

we have

F (BRki (t)(x
k
i )) ≥ F (BRki (t)(x

k
i ) \BRki (xki )) + F (BRki

(xki ))

≥ π|µ(BRki (t)(x
k
i ))| log

1 + t

1 + Tk
+ π|µ(BRki (t)(x

k
i ))| log(1 + Tk)

= π|µ(BRki (t)(x
k
i ))| log(1 + t),

where we have used that
Rki (t)

c+Rki
= 1+t

1+Tk
.

2.2.4. Proof of Theorem 2.2. First, we give an elementary lower
bound of the energy localized on a single square of the lattice, whose proof
is immediate.

Proposition 2.4. There exists a positive constant β such that for any ε > 0,
for any function v ∈ AXYε(Ω) and for any i ∈ Ω2

ε such that the piecewise
affine interpolation ṽ of v satisfies mini+εQ |ṽ| < 1

2 , it holds XYε(v, i+εQ) ≥
β.

Proof of Theorem 2.2. By (2.12), it is enough to prove (i) and (ii)
for Fε = XYε, using as a variable vε = e2πiuε . The proof of (iii) is standard
and left to the reader.
Proof of (i). For every ε > 0, set Iε :=

{
i ∈ Ω2

ε : mini+εQ |ṽε| ≤ 1
2

}
. Notice

that, in view of Remark 2.1, µ(vε) is supported in Iε + ε
2(e1 + e2).

Starting from the family of balls B√2ε
2

(i + ε
2(e1 + e2))), and eventually

passing through a merging procedure we can construct a family of pairwise
disjoint balls

Bε :=
{
BRi,ε(xi,ε)

}
i=1,...,Nε

,

with
∑Nε

i=1Ri,ε ≤ ε]Iε. Then, by Proposition 2.4 and by the energy bound,
we immediately have that ]Iε ≤ C| log ε| and hence

Nε∑

i=1

Ri,ε ≤ εC| log ε|. (2.30)

We define the sequence of measures

µε :=

Nε∑

i=1

µ(vε)(BRi,ε(xi,ε))δxi,ε .

Since |µε(B)| ≤ ]Iε for each ball B ∈ Bε, by (3.12) we deduce that (3.21)
holds with F (·) = XYε(vε, · \ ∪B∈BεB) and c = ε(α]Iε + 2

√
2).

We let the balls in the families Bε grow and merge as described in Sub-

section 3.2.3, and let Bε(t) :=
{
BRi,ε(t)(xi,ε(t))

}
be the corresponding family

of balls at time t. Set moreover tε := 1√
ε
− 1, Nε(tε) := ]Bε(tε) and define

νε :=
∑

i=1,...,Nε(tε)
BRi,ε(tε)(xi,ε(tε))⊂Ω

µε(BRi,ε(tε)(xi,ε(tε)))δxi,ε(tε). (2.31)
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By (3) in Subsection 3.2.3, for any B ∈ Bε(tε), with B ⊆ Ω, we have

XYε(vε, B) ≥ π|µε(B)| log(1 + tε) = π|νε(B)|12 | log ε|;
by the energy bound, we have immediately that |νε|(Ω) ≤M and hence {νε}
is precompact in the weak∗ topology. By (4) in Subsection 3.2.3, it follows
that

Nε(tε)∑

j=1

Rj(tε) ≤ C
√
ε (]Iε)

4,

which easily implies that ‖νε−µε‖flat → 0; moreover, using (3.22), it is easy
to show that ‖µε − µ(vε)‖flat → 0 as ε → 0 (see [6] for more details). We
conclude that also µ(vε) is precompact in the flat topology.

Proof of (ii). Fix i ∈ {1, . . . ,M}. Without loss of generality, and possi-
bly extracting a subsequence, we can assume that

lim inf
ε→0

XYε(vε, Bσ(xi))− π|di|| log ε|
= lim

ε→0
XYε(vε, Bσ(xi))− π|di|| log ε| < +∞. (2.32)

We consider the restriction v̄ε ∈ AXYε(Bσ(xi)) of vε to Bσ(xi). Notice that
supp(µ(v̄ε) − µ(vε) Bσ(xi)) ⊆ Bσ(xi) \ Bσ−ε(xi). On the other hand, by
(3.24) and Proposition 2.4 it follows that

|µ(vε)|(Bσ(xi) \Bσ−ε(xi)) ≤ C| log ε|. (2.33)

Then, using (2.33) one can easily get

‖µ(v̄ε)− µ(vε) Bσ(xi)‖flat → 0, (2.34)

and hence

‖µ(v̄ε)− diδxi‖flat → 0. (2.35)

We repeat the ball construction procedure used in the proof of (i) with
Ω replaced by Bσ(xi), vε by v̄ε and Iε by

Ii,ε :=

{
j ∈ (Bσ(xi))

2
ε : min

j+εQ
|ṽε| ≤

1

2

}
.

We denote by Bi,ε the corresponding family of balls and by Bi,ε(t) the family
of balls constructed at time t.

Fix 0 < γ < 1 such that

(1− γ)(|di|+ 1) > |di| . (2.36)

Let tε,γ = εγ−1 − 1 and let νε,γ be the measure defined as in (3.23) with Ω
replaced by Bσ(xi) and tε replaced by tε,γ . As in the previous step, since
γ > 0 we deduce that ‖νε,γ − diδxi‖flat → 0; moreover, for any B ∈ Bi,ε(tε,γ)
we have

XYε(vε, B) ≥ π|νε,γ(B)|(1− γ)| log ε|. (2.37)

Now, if lim infε→0 |νε,γ |(Bσ(xi)) > |di|, then, thanks to (3.26), (3.10) holds
true. Otherwise we can assume that |νε,γ |(Bσ(xi)) = |di| for ε small enough.
Then νε,γ is a sum of Dirac masses concentrated on points which converge
to xi, with weights all having the same sign and summing to di. Let C1 > 0
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be given and set t̄ε := σ
C1(]Ii,ε)4ε

− 1. By (2.29), we have that any ball

B ∈ Bi,ε(t̄ε) satisfies

diam(B) ≤ C2

C1
σ,

where C2 > 0 is a universal constant. We fix C1 > 2C2 so that diam(B) < σ
2 .

Recall that, for ε small enough, supp(νε,γ) ⊆ Bσ/2(xi); hence if B ∈ Bi,ε(t̄ε)
with supp(νε,γ) ∩B 6= ∅, then B ⊆ Bσ(xi) and one can easily show that

µ(v̄ε)
( ⋃

B∈Bi,ε(t̄ε)
B⊂Bσ(xi)

B
)

= di.

We have immediately that

XYε(v̄ε, Bσ(xi)\∪B∈Bi,εB) ≥ π
∑

B∈Bi,ε(t̄ε)
B⊂Bσ(xi)

|µ(v̄ε)(B)| log(1+t̄ε) ≥ π|di| log
σ

C1(]Ii,ε)4ε
.

On the other hand, by Proposition 2.4 there exists a positive constant β
such that

XYε(v̄ε, j + εQ) ≥ β for any j ∈ Ii,ε;
therefore, XYε(v̄ε,

⋃
B∈Bi,ε B) ≥ β]Ii,ε. Finally, we get

XYε(v̄ε, Bσ(xi)) ≥ XYε(v̄ε, Bσ(xi) \ ∪B∈Bi,εB) +XYε(v̄ε,∪B∈Bi,εB)

≥ π|di| log
σ

ε
− log

(
C1(]Ii,ε)

4
)

+ ]Ii,εβ ≥ π|di| log
σ

ε
+ C

and (3.10) follows sending ε→ 0. �

2.3. Γ-expansion for Fε

In this section we will derive the Γ-expansion of the functionals Fε, anal-
ogously to what we state in the continuous Ginzburg-Landau framework (see
Theorem 1.8). More precisely, we show that the Γ-limit of Fε−π|µ|(Ω)| log ε|
is given by the renormalized energy in (1.5) plus a term which accounts for
the discrete core energy to this order. Indeed, whereas the renormalized en-
ergy is the same as in the continuous Ginzburg-Landau framework, the core
energy depends on the potential f of the functional Fε. To this purpose,
instead of (1.8), we consider the following discrete minimum problem

γF (ε, σ) := min
u∈AFε(Bσ)

{Fε(u,Bσ) : 2πu(·) = θ(·) on ∂εBσ} , (2.38)

where the discrete boundary ∂ε is defined in (2.1) and θ(x) is the polar
coordinate arctanx2/x1, also referred to as the lifting of the function x

|x| .

Proposition 2.5. For any fixed σ > 0, the following limit exists finite

lim
ε→0

(γF (ε, σ)− π| log
ε

σ
|) =: γF ∈ R. (2.39)

Proof of (2.39). First, by scaling, it is easy to see that γF (ε, σ) = I( εσ )
where I(t) is defined by

I(t) := min
{
F1(u,B 1

t
) | 2πu = θ on ∂1B 1

t

}
.
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We aim to prove that

0 < t1 ≤ t2 ⇒ I(t1) ≤ π log
t2
t1

+ I(t2) +O(t2). (2.40)

Notice that by (2.40) it easily follows that limt→0+(I(t)−π| log t|) exists and
is not +∞. Moreover, by Theorem 2.2, there exists a universal constant C
such that

I(t) ≥ π| log t|+ C ∀t ∈ (0, 1].

We conclude that limt→0+(I(t)− π| log t|) is not −∞.
In order to complete the proof we have to show that (2.40) holds. To

this end, set Ar,R = BR \ Br, and let θ be the lifting of the function x
|x| .

Since |∇θ(x)| ≤ c/r for every x ∈ Ar,R, by standard interpolation estimates
(see for instance [25]) and using assumption (3) on f , we have that, as
r < R→∞,

F1(θ/2π,Ar,R) ≤ π log
R

r
+O(1/r). (2.41)

Let u2 be a minimizer for I(t2) and for any i ∈ Z2 define

u1(i) :=

{
u2(i) if |i| ≤ 1

t2
θ(i)
2π if 1

t2
≤ |i| ≤ 1

t1
,

By (2.41) we have

I(1/R) ≤
∑

(i,j)∈(Br)1
1

i,j∈(Br)1

f(u1(i)− u1(j)) +
∑

(i,j)∈(Ar−
√

2,R)1
1

i,j∈(Ar−
√

2,R)1

f(u1(i)− u1(j))

≤ I(1/r) + π log
r

R
+O(1/r),

which yields (2.40) for r = 1
t2

and R = 1
t1

. �

2.3.1. The main Γ-convergence result. We are now in a position
to state the Γ-expansion result for the functionals Fε.

Theorem 2.6. The following Γ-convergence result holds.

(i) (Compactness) Let M ∈ N and let {uε} ⊂ AFε(Ω) be a sequence
satisfying Fε(uε) −Mπ| log ε| ≤ C. Then, up to a subsequence,

µ(uε)
flat→ µ for some µ =

∑N
i=1 diδxi with di ∈ Z \ {0}, xi ∈ Ω and∑

i |di| ≤ M . Moreover, if
∑

i |di| = M , then
∑

i |di| = N = M ,
namely |di| = 1 for any i.

(ii) (Γ-lim inf inequality) Let {uε} ⊂ AFε(Ω) be such that µ(uε)
flat→ µ,

with µ =
∑M

i=1 diδxi with |di| = 1 and xi ∈ Ω for every i. Then,

lim inf
ε→0

Fε(uε)−Mπ| log ε| ≥W(µ) +Mγ. (2.42)

(iii) (Γ-lim sup inequality) Given µ =
∑M

i=1 diδxi with |di| = 1 and

xi ∈ Ω for every i, there exists {uε} ⊂ AFε(Ω) with µ(uε)
flat→ µ

such that

Fε(uε)−Mπ| log ε| →W(µ) +Mγ.
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In our analysis it will be convenient to introduce the energy functionals
Fε in term of the variable µ, i.e., by minimizing Fε with respect to all
u ∈ AFε(Ω) with µ(u) = µ. Precisely, let Fε : X → [0,+∞] be defined by

Fε(µ) := inf {Fε(u) : u ∈ AFε(Ω), µ(u) = µ} . (2.43)

Theorem 2.6 can be rewritten in terms of Fε as follows.

Theorem 2.7. The following Γ-convergence result holds.

(i) (Compactness) Let M ∈ N and let {µε} ⊂ X be a sequence sat-
isfying Fε(µε) − Mπ| log ε| ≤ C. Then, up to a subsequence,

µε
flat→ µ =

∑N
i=1 diδxi with di ∈ Z \ {0}, xi ∈ Ω and

∑
i |di| ≤M .

Moreover, if
∑

i |di| = M , then
∑

i |di| = N = M , namely |di| = 1
for every i.

(ii) (Γ-lim inf inequality) Let {µε} ⊂ X be such that µε
flat→ µ =

∑M
i=1 diδxi

with |di| = 1 and xi ∈ Ω for every i. Then,

lim inf
ε→0

Fε(µε)−Mπ| log ε| ≥W(µ) +Mγ. (2.44)

(iii) (Γ-lim sup inequality) Given µ =
∑M

i=1 diδxi with |di| = 1 and

xi ∈ Ω for every i, there exists {µε} ⊂ X with µε
flat→ µ such that

Fε(µε)−Mπ| log ε| →W(µ) +Mγ. (2.45)

2.3.2. The proof of Theorem 2.6. Recalling that Fε(u) ≥ XYε(e2πiu),
the proof of the compactness property (i) will be done for Fε = XYε, and
will be deduced by Theorem 2.2. On the other hand, the constant γ in the
definition of the Γ-limit depends on the details of the discrete energy Fε,
and its derivation requires a specific proof.

Proof of (i): Compactness. The fact that, up to a subsequence, µ(uε)
flat→

µ =
∑N

i=1 diδxi with
∑N

i=1 |di| ≤M is a direct consequence of the zero order

Γ-convergence result stated in Theorem 2.2 (i). Assume now
∑N

i=1 |di| = M
and let us prove that |di| = 1. Let 0 < σ1 < σ2 be such that Bσ2(xi)
are pairwise disjoint and contained in Ω and let ε be small enough so that
Bσ2(xi) are contained in Ωε. For any 0 < r < R and x ∈ R2, set Ar,R(x) :=
BR(x) \Br(x). Since Fε(uε) ≥ XYε(e2πiuε),

Fε(uε) ≥
N∑

i=1

XYε(e
2πiuε , Bσ1(xi)) +

N∑

i=1

XYε(e
2πiuε , Aσ1,σ2(xi)). (2.46)

To ease notation we set vε = e2πiuε and we indicate with ṽε the piecewise
affine interpolation of vε. Moreover let t be a positive number and let ε be
small enough so that t >

√
2ε. Then, by (3.10) and (2.13), we get

Fε(uε) ≥ π
N∑

i=1

|di| log
σ1

ε
+

1

2

N∑

i=1

∫

Aσ1+t,σ2−t(xi)
|∇ṽε|2 dx+ C. (2.47)

By the energy bound, we deduce that
∫
Aσ1+t,σ2−t(xi)

|∇ṽε|2 dx ≤ C and

hence, up to a subsequence, ṽε ⇀ vi in H1(Aσ1+t,σ2−t(xi);R2) for some
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field vi. Moreover, since

1

ε2

∫

Aσ1+t,σ2−t(xi)
(1− |ṽε|2)2 dx ≤ CXYε(vε) ≤ C log

1

ε
,

(see Lemma 2 in [2] for more details ), we deduce that |vi| = 1 a.e.
Furthermore, by standard Fubini’s arguments, for a.e. σ1 + t < σ <

σ2 − t, up to a subsequence the trace of ṽε is bounded in H1(∂Bσ(xi);R2),
and hence it converges uniformly to the trace of vi. By the very definition
of degree it follows that deg(vi, ∂Bσ(xi)) = di.

Hence, by (1.12), for every i we have

1

2

∫

Aσ1+t,σ2−t(xi)
|∇vi|2 dx ≥ |di|2π log

σ2 − t
σ1 + t

. (2.48)

By (3.34) and (3.35), we conclude that for ε sufficiently small

Fε(uε) ≥ π
N∑

i=1

(
|di| log

σ1

ε
+ |di|2 log

σ2 − t
σ1 + t

)
+ C

≥Mπ| log ε|+ π
N∑

i=1

(|di|2 − |di|) log
σ2

σ1
+ π

N∑

i=1

|di|2 log
σ1(σ2 − t)
σ2(σ1 + t)

+ C.

The energy bound yields that the sum of the last two terms is bounded;
letting t→ 0 and σ1 → 0, we conclude |di| = 1.

Proof of (ii): Γ-liminf inequality. Fix r > 0 so that the balls Br(xi)
are pairwise disjoint and compactly contained in Ω. Let moreover

{
Ωh
}

be an increasing sequence of open smooth sets compactly contained in Ω
such that ∪h∈NΩh = Ω. Without loss of generality we can assume that
Fε(uε) ≤Mπ| log ε|+ C, which together with Theorem 2.2 yields

Fε(uε,Ω \
M⋃

i=1

Br(xi)) ≤ C. (2.49)

We set vε := e2πiuε and we denote by ṽε the piecewise affine interpola-
tion of vε. For every r > 0, by (3.36) and by (2.12) we deduce XYε(vε \⋃N
i=1Br(xi)) ≤ C. Fix h ∈ N and let ε be small enough so that Ωh ⊂ Ωε.

Then,

1

2

∫

Ωh\⋃Ni=1B2r(xi)
|∇ṽε|2 dx ≤ C;

therefore, by a diagonalization argument, there exists a unitary field v with
v ∈ H1(Ω \ ∪Mi=1Bρ(xi);S1) for any ρ > 0 and a subsequence {ṽε} such that
ṽε ⇀ v in H1

loc(Ω \ ∪Mi=1{xi};R2).

Let σ > 0 be such that Bσ(xi) are pairwise disjoint and contained in Ωh.
For any 0 < r < R < +∞ and for any x ∈ R2, set Ar,R(x) := BR(x)\Br(x),
Ar,R := Ar,R(0). Let t ≤ σ, and consider the minimization problem

min
w∈H1(At/2,t;S1)

{
1

2

∫

At/2,t

|∇w|2 dx : deg(w, ∂B t
2
) = 1

}
.
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It is easy to see that the minimum is π log 2 and that the set of minimizers
is given by (the restriction at At/2,t of the functions in)

K :=

{
α
z

|z| : α ∈ C, |α| = 1

}
. (2.50)

Set

dt(w,K) := min
{
‖∇w −∇v‖L2(At/2,t;R2) : v ∈ K

}
. (2.51)

It is easy to see that for any given δ > 0 there exists a positive ω(δ) (inde-
pendent of t) such that if dt(ṽε(·+ xi),K) ≥ δ, then

lim inf
ε→0

1

2

∫

A t
2 +
√

2ε,t−
√

2ε
(xi)
|∇ṽε|2 dx ≥ π log 2 + ω(δ). (2.52)

By a scaling argument we can assume t = 1. Then, arguing by contradiction,
if there exists a subsequence {ṽε} such that

lim
ε→0

1

2

∫

A 1
2 +
√

2ε,1−
√

2ε
(xi)
|∇ṽε|2 dx = π log 2,

then, by the lower semicontinuity of the L2 norm, we get

π log 2 ≤ 1

2

∫

A1/2,1(xi)
|∇v|2 dx ≤ lim

ε→0

1

2

∫

A 1
2 +
√

2ε,1−
√

2ε
(xi)
|∇ṽε|2 dx = π log 2.

(2.53)
It follows that v(·+xi) ∈ K, and that ṽε → v strongly in H1(A1/2,1(xi);R2),
which yields the contradiction dist(v(·+ xi),K) ≥ δ.

Let L ∈ N be such that Lω(δ) ≥W(µ) +M(γ−π log σ−C) where C is
the constant in (3.10). For l = 1, . . . , L, set Cl(xi) := B21−lσ(xi)\B2−lσ(xi).

We distinguish among two cases.
First case: for ε small enough and for every fixed 1 ≤ l ≤ L, there exists

at least one i such that d21−lσ(ṽε(· + xi),K) ≥ δ. Then, by (3.10), (3.39)
and the lower semicontinuity of the L2 norm, we conclude

Fε(uε,Ω
h) ≥

M∑

i=1

XYε(vε, B2−Lσ(xi)) +
L∑

l=1

M∑

i=1

XYε(vε, Cl(xi))

≥M(π log
σ

2L
+ π| log ε|+ C) + L(Mπ log 2 + ω(δ)) + o(ε)

≥Mπ| log ε|+Mγ + W(µ) + o(ε).

Second case: Up to a subsequence, there exists 1 ≤ l̄ ≤ L such that for

every i we have dσ̄(ṽε(· + xi),K) ≤ δ, where σ̄ := 21−l̄σ. Let αε,i be the
unitary vector such that ‖ṽε − αε,i x−xi|x−xi|‖H1(Cl̄(xi);R2) = dσ̄(ṽε(·+ xi),K).

One can construct a function ūε ∈ AFε(Ω) such that

(i) ūε = uε on ∂ε(R2 \B2−l̄σ(xi));

(ii) e2πiūε = αεe
iθ on ∂εB21−l̄σ(xi)

(iii) Fε(uε, Bσ̄(xi)) ≥ Fε(ūε, Bσ̄(xi))+r(ε, δ) with limδ→0 limε→0 r(ε, δ) =
0.

The proof of (i)-(iii) is quite technical, and consists in adapting standard
cut-off arguments to our discrete setting. For the reader convenience we skip
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the details of the proof, and assuming (i)-(iii) we conclude the proof of the
lower bound.

By Theorem (1.7), we have that

Fε(uε) ≥ XYε(vε,Ωh \
M⋃

i=1

Bσ̄(xi)) +
M∑

i=1

Fε(uε, Bσ̄(xi))

≥ 1

2

∫

Ωh\⋃Mi=1 Bσ̄(xi)
|∇ṽε|2 dx+

M∑

i=1

Fε(ūε, Bσ̄(xi)) + r(ε, δ) + o(ε)

≥ 1

2

∫

Ωh\⋃Mi=1Bσ̄(xi)
|∇ṽε|2 dx+M(γ − π log

ε

σ̄
) + r(ε, δ) + o(ε)

≥ 1

2

∫

Ω\⋃Mi=1 Bσ̄(xi)
|∇v|2 dx+M(γ − π log

ε

σ̄
) + r(ε, δ) + o(ε) + o(1/h)

≥Mπ| log ε|+Mγ + W(µ) + r(ε, δ) + o(ε) + o(σ̄) + o(1/h).

The proof follows sending ε→ 0, δ → 0, σ → 0 and h→∞.
Proof of (iii): Γ-limsup inequality. This proof is standard in the contin-

uous case, and we only sketch its discrete counterpart. Let wσ be a function
that agrees with a minimizer of (3.28) in Ω \ ⋃M

i=1Bσ(xi) =: Ωσ. Then,
wσ = αi

x−xi
σ on ∂Bσ(xi) for some |αi| = 1.

For every ρ > 0 we can always find a function wσ,ρ ∈ C∞(Ωσ;S1) such
that wσ,ρ = αi

x−xi
σ on ∂Bσ(xi), and

1

2

∫

Ωσ
|∇wσ,ρ|2 dx− 1

2

∫

Ωσ
|∇wσ|2 dx ≤ ρ.

Moreover, for every i let wi ∈ AXYε(Bσ(xi)) be a function which agrees
with αi

x−xi
|x−xi| on ∂εBσ(xi) and such that its phase minimizes problem (3.29).

If necessary, we extend wi to (Bσ(xi) ∩ εZ2) \ (Bσ(xi))
0
ε to be equal to

αi
x−xi
|x−xi| . Finally, define the function wε,σ,ρ ∈ AXYε(Ω) which coincides

wσ,ρ on Ωσ ∩ εZ2 and with wi on Bσ(xi)∩ εZ2. Then, in view of assumption
(3) on f , a straightforward computation shows that any phase uε,σ,ρ of wε,σ,ρ
is a recovery sequence, i.e.,

lim
ε→0

Fε(uε,σ,ρ)−Mπ| log ε| = Mγ + W(µ) + o(ρ, σ),

with limσ→0 limρ→0 o(ρ, σ) = 0.

2.3.3. Γ-convergence analysis in the L2 topology. Here we prove
a Γ-convergence result for Fε(uε) − Mπ| log ε|, where M is fixed positive
integer, with respect to the flat convergence of µ(uε) and the L2-convergence
of ṽε, where ṽε : Ωε → R2 is the piecewise affine interpolation of e2πiuε .

To this purpose, for N ∈ N let us first introduce the set

DN := {v ∈ L2(Ω;S1) : Jv = π
N∑

i=1

diδxi with |di| = 1, xi ∈ Ω,

v ∈ H1
loc(Ω \ supp(Jv);S1)}.

(2.54)
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Notice that, if v ∈ DM , then the function

1

2

∫

Ω\⋃Mi=1Bσ(xi)
|∇v|2 dx−Mπ| log σ|,

is monotonically decreasing with respect to σ. Therefore, it is well defined
the functional W : L2(Ω;S1)→ R̄ given by

W(v) =





lim
σ→0

1

2

∫

Ω\⋃Mi=1 Bσ(xi)
|∇v|2 dx−Mπ| log σ| if v ∈ DM ;

−∞ if v ∈ DN for some N < M ;
+∞ otherwise

(2.55)

Notice that, by (1.9) we have that, for every µ =
∑M

i=1 diδxi with |di| = 1

W(µ) = min
v∈H1

loc(Ω\supp(µ);S1)
Jv=µ

W(v). (2.56)

Remark 2.8. We can rewrite W(v) as follows

W(v) =
1

2

∫

Ω\∪iBρ(xi)
|∇v|2 dx+Mπ log ρ+

M∑

i=1

+∞∑

j=0

(
1

2

∫

Ci,j

|∇v|2 dx− π log 2

)
,

where Ci,j denotes the annulus B2−jρ(xi) \ B2−(j+1)ρ(xi). In particular, for

the lower bound (1.12) we deduce that

sup
i,j

1

2

∫

Ci,j

|∇v|2 dx ≤ π log 2 +W(v)−Mπ log ρ. (2.57)

Theorem 2.9. Let M ∈ N be fixed. The following Γ-convergence result
holds.

(i) (Compactness) Let {uε} ⊂ AFε(Ω) be such that Fε(uε) ≤Mπ| log ε|+C.

Then, up to a subsequence, µ(uε)
flat→ µ =

∑N
i=1 diδxi with di ∈ Z\{0}, xi ∈ Ω

and
∑N

i=1 |di| ≤ M . Moreover, if
∑N

i=1 |di| = M , then |di| = 1 and up to a
further subsequence ṽε⇀v in H1

loc(Ω \ supp(µ);R2) for some v ∈ DM .

(ii) (Γ-liminf inequality) Let v ∈ DM and let {uε} ⊂ AFε(Ω) be such that

µ(uε)
flat→ Jv and ṽε → v in L2(Ω;R2). Then,

lim inf
ε→0

Fε(uε)−Mπ| log ε| ≥ W(v) +Mγ. (2.58)

(iii) (Γ-limsup inequality) Given v ∈ DM , there exists {uε} ⊂ AFε(Ω) such

that µ(uε)
flat→ Jv, ṽε⇀v in H1

loc(Ω \ supp(Jv);R2) and

lim
ε→0

Fε(uε)−Mπ| log ε| =W(v) +Mγ. (2.59)

Proof. Proof of (i). The compactness properties concerning the se-
quence {µ(uε)} are given in Theorem 2.6 (i) while the weak convergence up
to a subsequence of {ṽε} to a unitary field v such that v ∈ DM has been
shown in the first lines of the proof of Theorem 2.6 (ii).
Proof of (ii). The proof of Γ-liminf inequality follows strictly the one of
Theorem 2.6 (ii) and we leave it to the reader.
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Proof of (iii). Let Jv = π
∑M

i=1 diδxi , with xi ∈ Ω, |di| = 1. Fix σ > 0
and Ωσ := Ω \ ∪Mi=1Bσ(xi). Without loss of generality we can assume that
W(v) < +∞ and hence for some fixed constant C > 0 and for every σ

1

2

∫

Ωσ
|∇v|2 dx ≤Mπ| log σ|+ C.

Now, fix σ > 0, and let Ci,j denote the annulus B2−jσ(xi)\B2−(j+1)σ(xi).
By Remark 2.8, it follows that for every i = 1, . . . ,M

lim
j→∞

1

2

∫

Ci,j

|∇v|2 dx = π log 2. (2.60)

Recall that π log 2 is the minimal possible energy in each annulus, and that
the class of minimizers is given by the set K defined in (3.37). Using standard
scaling arguments and (2.60), one can show (see (2.53)) that for any j ∈ N
there exists a unitary vector αi,j such that

1

2

∫

Ci,j

∣∣∣∣∇
(
v − αi,j

x− xi
|x− xi|

)∣∣∣∣
2

dx = r(i, j), (2.61)

with limj→∞ r(i, j) = 0. Moreover, we can find a function wj ∈ C∞(Ω2−jσ;S1)
such that

1

2

∫

Ω2−jσ
|∇wj −∇v|2 dx ≤ 1

j
. (2.62)

Let ϕ ∈ C1([1
2 , 1]; [0, 1]) be such that ϕ(1

2) = 1 and ϕ(1) = 0, and let define
the function vi,j in Ci,j , with

vi,j(x) := ϕ(2jσ−1|x− xi|)αi,j
x− xi
|x− xi|

+ (1− ϕ(2jσ−1|x− xi|))wj(x).

Then define the function vj as follows

vj =

{
wj in Ω2−jσ

vi,j in Ci,j .
(2.63)

Finally for every i we denote by v̄εi,j ∈ AXYε(B2−j−1σ(xi)) a function

which agrees with αi,j
x−xi
|x−xi| on ∂εB2−j−1σ(xi) and such that its phase (up

to an additive constant) minimizes problem (3.29). If necessary, we extend

v̄i,j to (B2−j−1σ(xi) ∩ εZ2) \ (B2−j−1σ(xi))
0
ε to be equal to αi,j

x−xi
|x−xi| . Fi-

nally, consider the field the vε,j which coincides with vj on the nodes of

Ω2−j−1σ and with v̄εi,j on B2−jσ(xi) ∩ εZ2. In view of assumption (3) on f ,
a straightforward computation shows that any phase uε,j of vε,j satisfies

lim
ε→0

Fε(uε,j)−Mπ| log ε| = Mγ+
1

2

∫

Ω2−jσ
|∇v|2 dx−Mπ| log(2−jσ)|+ o(j),

with limj→∞ o(j) = 0. A standard diagonal argument yields that there exists
j(ε)→ 0 such that uε,j(ε) is a recovery sequence in the sense of (2.59). �
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CHAPTER 3

Γ-convergence expansion for anisotropic and long
range interaction energies

In this chapter we develop the Γ-convergence analysis for anisotropic
energies defined in the triangular lattice. Moreover we will show that a
similar expansion holds if we consider isotropic long range interactions which
satisfy a decay assumption. The results of this chapter are contained in the
preprint [32]. We first introduce the notation we need.

3.1. The discrete model

We recall that the properties of the potential f and the definition of the
functional spaces AFε(Ω) and AXYε(Ω) are given in Section 2.1.

The discrete energies. Let ce1 , ce2 > 0 and let ce1+e2 ≥ 0. For any
u ∈ AFε(Ω) we define the anisotropic energy in the triangular lattice as

F Tε (u) =
1

2

∑

i∈Ω2
ε

ce1f(u(i+ εe1)− u(i)) + ce2f(u(i+ εe2)− u(i))

+ ce1+e2f(u(i+ εe1 + εe2)− u(i)).

(3.1)

We now introduce the isotropic long range interaction energy. Set Z2
+ :=

{ξ ∈ Z2 : ξ · e2 ≥ 0}, where · denote the usual scalar product in R2. Let
{cξ}ξ be a family of non-negative constants labeled with ξ ∈ Z2

+ such that
cξ = cξ⊥ , ce1 = ce2 > 0 and

∑
ξ∈Z2

+
cξ|ξ|2 < +∞. We define the energy

F lrε (u) :=
1

2

∑

ξ∈Z2
+

cξ
∑

i∈Ω0
ε

[i,i+εξ]⊂Ωε

f(u(i+ εξ))− u(i)). (3.2)

Analogously to the isotropic case, we set

SDT
ε (u) :=

1

2

∑

i∈Ω2
ε

ce1dist2(u(i+ εe1)− u(i),Z)

cε2dist2(u(i+ εe2)− u(i),Z) + ce1+e2dist2(u(i+ εe1 + εe2)− u(i),Z)

SDlr
ε (u) :=

1

2

∑

ξ∈Z2
+

cξ
∑

i∈Ω0
ε

[i,i+εξ]⊂Ωε

dist2(u(i+ εξ)− u(i),Z).
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and

XY T
ε (v) :=

1

2

∑

i∈Ω2
ε

ce1 |v(i+ εe1)− v(i)|2 + cε2 |v(i+ εe2)− v(i)|

+ce1+e2 |v(i+ εe1 + εe2)− v(i)|2,

XY lr
ε (v) :=

1

2

∑

ξ∈Z2
+

cξ
∑

i∈Ω0
ε

[i,i+εξ]⊂Ωε

|v(i+ εξ)− v(i)|2

Once again, we notice that assumption (2) on f implies

F Tε (u) ≥ XY T
ε (e2πiu) . (3.3)

as well as F lrε (u) ≥ XY lr
ε (e2πiu).

For any v : Ω0
ε → S1, we recall that ṽ : Ωε → S1 is the piecewise affine

interpolation of v, according with the triangulation {i+ εT±} defined in
Section 2.1.

For any A ⊂ Ω and for any w ∈ H1(A;R2) we set

FT (w,A) :=
1

2

∫

A
ce1 |∂e1w|2 + ce2 |∂e2w|2 + 2ce1+e2 |∂ e1+e2√

2

w|2 dx. (3.4)

It is easy to see that there exists a positive constant C depending only on
Ω such that

FT (ṽ,Ωε) + Cε ≥ XY T
ε (v) ≥ FT (ṽ,Ωε), (3.5)

where ∂ e1+e2√
2

ṽ(x) := (∂e1 ṽ(i), ∂e2 ṽ(i)) · e1+e2√
2

for any x ∈ i+εQ = i+ε[0, 1]2.

3.2. Γ-expansion for F Tε

In this section we develop the Γ-convergence analysis of the functionals
F Tε as ε→ 0. This analysis is closely related to the one given in the isotropic
case in Chapter 2, but it requires some cares due to the presence of the
anisotropy coefficients and of the interaction in the direction e1+e2√

2
.

3.2.1. The zero-order Γ-convergence. Here we prove the Γ-converegence

result for the energies FTε
| log ε| as ε → 0. By (3.3), it is enough to prove the

compactness property and the Γ-liminf inequality for the functional XY T
ε

whereas the construction of the recovery sequence is standard.
We start with a simple lemma which allows to write the energy in (3.4)

as the (multiple of the) Dirichlet energy of a suitably modified field. To
simplify the notation, we set λ :=

√
ce1ce2 + ce1ce1+e2 + ce2ce1+e2 .

Lemma 3.1. Let A be an open subset of Ω and let w ∈ H1(A;R2). There
exist two positive numbers λ1, λ2 > 0 and two orthonormal vectors ν1, ν2

depending only on ce1 , ce2 , ce1+e2, such that

FT (w,A) =
λ

2

∫

A

λ2
1

λ2
2

|∂ν1w(x)|2 +
λ2

2

λ2
1

|∂ν2w(x)|2 dx. (3.6)

Proof. It is easy to see that

FT (w,A) =
1

2

∫

A
(ce1+ce1+e2)|∂e1w|2+(ce2+ce1+e2)|∂e2w|2+2ce1+e2∂e1w∂e2w dx.
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Let consider the quadratic form on R defined by

Q(X,Y ) := (ce1 + ce1+e2)X2 + (ce2 + ce1+e2)Y 2 + 2ce1+e2XY.

We first notice that if ce1+e2 = 0 than the matrix associated with Q is
diagonal and we set

λ1 := 4
√
ce1 , λ2 := 4

√
ce2 , ν1 := e1, ν2 := e2.

From now on, we will focus on the case ce1+e2 > 0.

Set D :=
√

(ce1 − ce2)2 + 4c2
e1+e2 , a straightforward computation shows

that the eigenvalues of Q are given by

η1 :=
ce1 + ce2 + 2ce1+e2 −D

2
η2 :=

ce1 + ce2 + 2ce1+e2 +D

2
.

Since, by assumption, ce1 , ce2 > 0 and ce1+e2 ≥ 0, η1 and η2 are both strictly
positive and hence there exists λ1, λ2 > 0 such that η1 = λ4

1 and η1 = λ4
2.

We notice that η1 6= η2 since ce1+e2 > 0. Let consider an orthonormal basis
of eigenvectors {ν1, ν2} relative to η1 and η2 by setting

ν1 :=
1√

(ce1 − ce2 +D)2 + 4c2
e1+e2

(−2ce1+e2 , ce1 − ce2 +D) ,

ν2 :=
1√

(ce1 − ce2 −D)2 + 4c2
e1+e2

(2ce1+e2 ,−(ce1 − ce2 −D)) .

Since

FT (w,A) =
1

2

∫

A
λ4

1|∂ν1w|2 + λ4
2|∂ν2w|2 dx

=
λ2

1λ
2
2

2

∫

A

λ2
1

λ2
2

|∂ν1w|2 +
λ2

2

λ2
1

|∂ν2w|2 dx,

the conclusion easily follows noticing that λ2 = η1η2 = λ4
1λ

4
2. �

By Lemma 3.1, a straightforward computation yields the following re-
sult.

Corollary 3.2. Let A be an open subset of Ω, let w ∈ H1(Ω;R2) and let
λ1, λ2, η1, η2 as in Lemma 3.1. Let L : R2 → R2 be defined by

L : ν1 7→
λ2

λ1
ν1, ν2 7→

λ1

λ2
ν2, (3.7)

the field wL(y) := w(L−1y) satisfies

FT (w,A) =
λ

2

∫

L(A)
|∇wL(y)|2 dy. (3.8)

From now on, for any ρ > 0, we set

Eρ(x) := L−1(Bρ(Lx)). (3.9)

We are in a position to prove the zero-order Γ-convergence result.

Theorem 3.3. The following Γ-convergence result holds.
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(i) (Compactness) Let {uε} ⊂ AFε(Ω) be such that F Tε (uε) ≤ C| log ε|
for some positive C. Then, up to a subsequence, µ(uε)

flat→ µ, for
some µ ∈ X.

(ii) (Localized Γ-liminf inequality) Let {uε} ⊂ AFε(Ω) be such that

µ(uε)
flat→ µ =

∑M
i=1 diδxi, with di ∈ Z \ 0 and xi ∈ Ω. Then, there

exists a constant C ∈ R such that, for any i = 1, . . . ,M and for
every σ < 1

2dist(L(xi), L(∂Ω) ∪⋃j 6=i L(xj)), we have

lim inf
ε→0

F Tε (uε, Eσ(xi))− πλ|di| log
σ

ε
≥ C, (3.10)

where L is defined in (3.7). In particular

lim inf
ε→0

F Tε (uε)− πλ|µ|(Ω) log
σ

ε
≥ C.

(iii) (Γ-limsup inequality) For every µ ∈ X, there exists a sequence

{uε} ⊂ AFε(Ω) such that µ(uε)
flat→ µ and

πλ|µ|(Ω) ≥ lim sup
ε→0

F Tε (uε)

| log ε| .

Before giving the proof of Theorem 3.3, we revisit in our anisotropic case
the ball construction in Section 3.2.3.

3.2.2. Lower bound on elliptic annuli. Let 0 < r < R and let
w ∈ H1(ER \ Er;S1) with deg(w, ∂ER) = d. Set wL(y) := w(L−1y) where
L is the change of variable in (3.7), by (3.8) and Jensen’s inequality, we get

FT (w,ER \ Er) =
λ

2

∫

BR\Br
|∇wL(y)|2 dy

≥ λ

2

∫ R

r

∫

∂Bρ

|(wL ×∇wL) · τ |2 ds dρ ≥ λ
∫ R

r

1

ρ
πd2 dρ ≥ λπ|d| log

R

r
,

(3.11)

where we have used that deg(wL, ∂Br) = d since det∇L = 1.

Set m := min
{
λ1
λ2
, λ2
λ1

}
.

Proposition 3.4. Fix ε > 0 and let m2
√

2ε < r < R −m2
√

2ε. For any
function v : (ER \Er)∩ εZ2 → S1 with |ṽ| ≥ 1

2 in ER−
√

2ε \Er+√2ε, it holds

XY T
ε (v,ER \ Er) ≥ λπ|µ(v)(Er)| log

R

r + ε
(
α|µ(v)(Er)|+m−1

√
2
) , (3.12)

where α > 0 is a universal constant.

Proof. By (3.5), using Fubini’s theorem, we have that

XY T
ε (v,ER \ Er) ≥

∫ R−m−1
√

2ε

r+m−1
√

2ε
FT (ṽ, ∂Eρ) dρ. (3.13)

Fix r + m−1
√

2ε < ρ < R −m−1
√

2ε and let T be a simplex of the trian-
gulation of the ε-lattice. Set γT (ρ) := ∂Eρ ∩ T , let γ̄T (ρ) be the segment
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joining the two extreme points of γT (ρ) and let γ̄(ρ) =
⋃
T γ̄T (ρ); then

FT (ṽ, ∂Eρ) =
1

2

∫

∪T γT (ρ)
ce1 |∂e1 ṽ|2 + ce2 |∂e2 ṽ|2 + ce1+e2 |∂ e1+e2√

2

ṽ|2 ds(3.14)

=
1

2

∑

T

(ce1 |∂e1 ṽ|T |2 + ce2 |∂e2 ṽ|T |2 + 2ce1+e2 |∂ e1+e2√
2

ṽ|T |2)H1(γT (ρ))

≥ 1
2

∑
T (ce1 |∂e1 ṽ|T |2 + ce2 |∂e2 ṽ|T |2 + 2ce1+e2 |∂ e1+e2√

2

ṽ|T |2)H1(γ̄T (ρ))

= FT (ṽ, γ̄ρ). (3.15)

Set m(ρ) := minγ̄(ρ) |ṽ|. Recalling the definition of the change of variable L

in (3.7), let ṽL(y) := ṽ(L−1y). By Corollary 3.2 and in particular by (3.6),
we have

FT (ṽ, γ̄(ρ)) =
λ

2

∫

L(γ̄(ρ))
|∇ṽL(y)|2 dy (3.16)

using Jensen’s inequality and the fact thatH1(γ̄(ρ)) ≤ H1(∂Eρ) = H1(L−1(∂Bρ)),
we get

1

2

∫

γ̄(ρ)
|∇ṽL|2 ds ≥ 1

2

∫

L(γ̄(ρ))
m2(ρ)

∣∣∣∣
(
ṽL
|ṽL|
× ∇ ṽL
|ṽL|

)
· τ
∣∣∣∣
2

ds (3.17)

≥ 1

2

m2(ρ)

H1(L(γ̄(ρ)))

∣∣∣∣∣

∫

L(γ̄(ρ))

(
ṽL
|ṽL|
× ∇ ṽL
|ṽL|

)
· τ ds

∣∣∣∣∣

2

≥ m2(ρ)

ρ
π|d|2 (3.18)

where we have set d := deg(ṽ, ∂Eρ) = µ(v)(Er), which does not depend on
ρ since |ṽ| ≥ 1/2 and coincide with deg(ṽL, ∂Bρ).

Now, let T (ρ) be the simplex in which the minimum m(ρ) is attained.
Without loss of generality we assume that T (ρ) = T−ı̄ for some ı̄ ∈ εZ2 .
Let P one of the points of γ̄(ρ) for which |ṽ(P )| = m(ρ). By elementary
geometric arguments, one can show that

FT (ṽ, ∂Eρ) ≥ α̃
1−m2(ρ)

ε
, (3.19)

for some universal positive constant α̃.
In view of (3.16), (3.14), (3.18) and (3.19), for any r + m−1

√
2ε < ρ <

R−m−1
√

2ε we have

FT (ṽ, ∂Eρ) ≥ λ
m2(ρ)

ρ
π|d| ∨ α̃1−m2(ρ)

ε
≥ λπ|d|α̃
ελπ|d|+ α̃ρ

.

By this last estimate and (3.13) we get

XY T
ε (v,ER \ Er) ≥ λπ|µ(v)(Er)| log

ε(
λπ

α̃
|µ(v)(Er)| −m−1

√
2) +R

ε(
λπ

α̃
|µ(v)(Er)|+m−1

√
2) + r

.

(3.20)

Assuming, without loss of generality, α̃ <
λmπ√

2
, we immediately get (3.12)

for α = π
α̃ . �
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3.2.3. Ellipse Construction. Here we introduce a slide modification
of the ball construction in Section 3.2.3. The main difference is that, in order
to deal with our anisotropic energies, we have to consider ellipses in place
of balls.

Let E = {ER1(x1), . . . , ERN (xN )} be a finite family of pairwise disjoint

ellipses in R2 of the type in (3.9) and let µ =
∑N

i=1 diδxi with di ∈ Z \ {0}.
Let F be a positive superadditive set function on the open subsets of R2,
i.e., such that F (A ∪ B) ≥ F (A) + F (B), whenever A and B are open and
disjoint. We will assume that there exists c, C > 0 such that

F (Ar,R(x)) ≥ Cπ|µ(Er(x))| log
R

c+ r
, (3.21)

for any annulus Ar,R(x) = ER(x) \ Er(x), with Ar,R(x) ⊂ Ω \⋃iERi(xi).
Let t be a parameter which represents an artificial time. Using the same

strategy in Section 3.2.3 we can construct, for any t > 0, a finite family of
ellipses E(t) which satisfies the following properties

(1)
⋃N
i=1ERi(xi) ⊂

⋃
E∈E(t)E,

(2) the ellipses in E(t) are pairwise disjoint,
(3) F (E) ≥ Cπ|µ(E)| log(1 + t) for any E ∈ E(t),
(4)

∑
E∈E(t)R(E) ≤ (1 + t)

∑
iRi + (1 + t)cN(N2 + N + 1), where

R(E) denotes the radius of the ball L(E).

3.2.4. Proof of Theorem 3.3. Using the fact thatXY T
ε ≥ min{ce1 , ce2}XYε

and Proposition 2.4, it is immediate tho prove the following lemma.

Lemma 3.5. There exists a positive constant β such that for any ε > 0, for
any function v ∈ AXYε(Ω) and for any i ∈ Ω2

ε such that the piecewise affine
interpolation ṽ of v satisfies mini+εQ |ṽ| < 1

2 , it holds XY T
ε (v, i+ εQ) ≥ β.

By (2.12), it is enough to prove (i) and (ii) for F Tε = XY T
ε , using as a

variable vε = e2πiuε .
Proof of (i). For every ε > 0, set Iε :=

{
i ∈ Ω2

ε : mini+εQ |ṽε| ≤ 1
2

}
.

Notice that, in view of Remark 2.1, µ(vε) is supported in Iε + ε
2(e1 + e2).

Starting from the family of ellipses E
m
√

2ε
2

(i+ ε
2(e1+e2))), and eventually

passing through a merging procedure we can construct a family of pairwise
disjoint ellipses

Eε :=
{
ERi,ε(xi,ε)

}
i=1,...,Nε

,

with
∑Nε

i=1Ri,ε ≤ mε]Iε. Then, by Lemma 2.4 and by the energy bound, we
immediately have that ]Iε ≤ C| log ε| and hence

Nε∑

i=1

Ri,ε ≤ εC| log ε|. (3.22)

We define the sequence of measures

µε :=

Nε∑

i=1

µ(vε)(ERi,ε(xi,ε))δxi,ε .

Since |µε(E)| ≤ ]Iε for each ellipse E ∈ Eε, by (3.12) we deduce that (3.21)
holds with F (·) = XY T

ε (vε, · \ ∪E∈EεE), C = λ and c = ε(α]Iε +
√

2m−1).
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We let the ellipses in the families Eε grow and merge as described in

Subsection 3.2.3, and let Eε(t) :=
{
ERi,ε(t)(xi,ε(t))

}
be the corresponding

family of balls at time t. Set moreover tε := 1√
ε
− 1, Nε(tε) := ]Eε(tε) and

define
νε :=

∑

i=1,...,Nε(tε)
BRi,ε(tε)(xi,ε(tε))⊂Ω

µε(ERi,ε(tε)(xi,ε(tε)))δxi,ε(tε). (3.23)

By (3) in Subsection 3.2.3, for any E ∈ Eε(tε), with E ⊆ Ω, we have

XY T
ε (vε, E) ≥ λπ|µε(E)| log(1 + tε) = π|νε(E)|12 | log ε|;

by the energy bound, we have immediately that |νε|(Ω) ≤M and hence {νε}
is precompact in the weak∗ topology. By (4) in Subsection 3.2.3, it follows
that

Nε(tε)∑

j=1

Rj(tε) ≤ C
√
ε (]Iε)

4,

which easily implies that ‖νε−µε‖flat → 0; moreover, using (3.22), it is easy
to show that ‖µε − µ(vε)‖flat → 0 as ε → 0 (see [6] for more details). We
conclude that also µ(vε) is precompact in the flat topology.

Proof of (ii). The proof of (ii) coincides with the one of (ii) in Theorem
2.6 using the ellipse construction in place of the ball construction. We briefly
sketch it.

Fix i ∈ {1, . . . ,M}. Without loss of generality, and possibly extracting
a subsequence, we can assume that

lim inf
ε→0

XY T
ε (vε, Eσ(xi))− λπ|di|| log ε|

= lim
ε→0

XY T
ε (vε, Eσ(xi))− λπ|di|| log ε| < +∞. (3.24)

We consider the restriction v̄ε ∈ AXYε(Eσ(xi)) of vε to Eσ(xi), it is easy to
see that

‖µ(v̄ε)− diδxi‖flat → 0. (3.25)

We repeat the ellipse construction procedure used in the proof of (i) with
Ω replaced by Eσ(xi), vε by v̄ε and Iε by

Ii,ε :=

{
j ∈ (Eσ(xi))

2
ε : min

j+εQ
|ṽε| ≤

1

2

}
.

We denote by Ei,ε the corresponding family of balls and by Ei,ε(t) the family
of balls constructed at time t.

Fix 0 < γ < 1 such that

(1− γ)(|di|+ 1) > |di| . (3.26)

Let tε,γ = εγ−1 − 1 and let νε,γ be the measure defined as in (3.23) with Ω
replaced by Eσ(xi) and tε replaced by tε,γ . As in the previous step, since
γ > 0 we deduce that ‖νε,γ − diδxi‖flat → 0; moreover, for any E ∈ Ei,ε(tε,γ)
we have

XY T
ε (vε, E) ≥ λπ|νε,γ(E)|(1− γ)| log ε|. (3.27)

Now, if lim infε→0 |νε,γ |(Eσ(xi)) > |di|, then, thanks to (3.26), (3.10) holds
true. Otherwise we can assume that |νε,γ |(Eσ(xi)) = |di| for ε small enough.
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Then νε,γ is a sum of Dirac masses concentrated on points which converge
to xi, with weights all having the same sign and summing to di. Using the
properties of ellipse construction, one can easily show that

µ(v̄ε)
( ⋃

E∈Ei,ε(t̄ε)
E⊂Eσ(xi)

E
)

= di.

We have immediately that

XY T
ε (v̄ε, Eσ(xi) \ ∪E∈Ei,εE) ≥ πλ

∑

E∈Ei,ε(t̄ε)
E⊂Eσ(xi)

|µ(v̄ε)(E)| log(1 + t̄ε)

≥ λπ|di| log
σ

C1(]Ii,ε)4ε
.

On the other hand, by Proposition 2.4 there exists a positive constant β
such that

XY T
ε (v̄ε, j + εQ) ≥ β for any j ∈ Ii,ε;

therefore, XY T
ε (v̄ε,

⋃
E∈Ei,ε E) ≥ β]Ii,ε. Finally, we get

XY T
ε (v̄ε, Eσ(xi)) ≥ XY T

ε (v̄ε, Eσ(xi) \ ∪E∈Ei,εE) +XY T
ε (v̄ε,∪E∈Ei,εE)

≥ πλ|di| log
σ

ε
− log

(
C1(]Ii,ε)

4
)

+ ]Ii,εβ ≥ λπ|di| log
σ

ε
+ C

and (3.10) follows sending ε→ 0.
Proof of (iii) By a standard density argument we can assume di = ±1.

Let uε,i(x) := ±θLi (x), where θLi (x) := θ(Lx−Lxi) and θ(y) is the polar co-

ordinate arctan y2/y1. Then a recovery sequence is given by uε =
∑M

i=1 uε,i.
The straightforwanrd computations are left to the reader.

In the following Subsections we will prove the first order Γ-convergence of
the functionals F Tε to the renormalized energy, introduced in the continuous
framework of Ginzburg-Landau energies in [15]. To this purpose we begin
by extending the many definitions and results of [15] in order to include our
anisotropic case.

3.2.5. The anisotropic renormalized energy. Fix µ =
∑M

i=1 diδxi
with di ∈ {−1,+1} and xi ∈ Ω. We recall the definition of L given in (3.7).

With a little abuse of notation we set Lµ :=
∑M

i=1 diδLxi and we define

WT (µ) := λW(Lµ),

where W is defined in (1.5) and λ =
√
ce1ce2 + ce1ce1+e2 + ce2ce1+e2 .

For any y ∈ R2 \{0}, we define θ(y) as the polar coordinate arctan y2/y1

and let θL(x) := θ(Lx). As done above we define θLi (x) := θ(Lx− Lxi) for
any i = 1, . . . ,M .

We consider the following auxiliary minimum problems.

mT (σ, µ) := min
w∈H1(ΩTσ ;S1)

{
FT (w) : deg(w, ∂Eσ(xi)) = di

}
,

m̃T (σ, µ) := min
w∈H1(ΩTσ ;S1)

{
FT (w) : w(·) = αie

idiθ
L
i (·)on ∂Eσ(xi), |αi| = 1

}
.

(3.28)
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Given ε > 0, we introduce the discrete minimization problem in the
ellipse Eσ

γT (ε, σ) := min
u∈AFε(Eσ)

{
F Tε (u,Eσ) : 2π u(·) = θL(·) on ∂εEσ

}
.(3.29)

By Theorem 1.7, using the change of variable L in (3.7), one can obtain
the following result whose proof is left to the reader.

Theorem 3.6. It holds

lim
σ→0

mT (σ, µ)−λπ|µ|(Ω)| log σ| = lim
σ→0

m̃T (σ, µ)−λπ|µ|(Ω)| log σ| = WT (µ).

(3.30)
Moreover, for any fixed σ > 0, the following limit exists finite

lim
ε→0

(γT (ε, σ)− λπ| log
ε

σ
|) =: γT ∈ R (3.31)

3.2.6. The first-order Γ-convergence result. We are now in a po-
sition to state the first-order Γ-convergence theorems for the functionals
F Tε .

Theorem 3.7. The following Γ-convergence result holds.

(i) (Compactness) Let M ∈ N and let {uε} ⊂ AFε(Ω) be a sequence
satisfying F Tε (uε)−Mλπ| log ε| ≤ C. Then, up to a subsequence,

µ(uε)
flat→ µ for some µ =

∑N
i=1 diδxi with di ∈ Z \ {0}, xi ∈ Ω and∑

i |di| ≤ M . Moreover, if
∑

i |di| = M , then
∑

i |di| = N = M ,
namely |di| = 1 for any i.

(ii) (Γ-lim inf inequality) Let {uε} ⊂ AFε(Ω) be such that µ(uε)
flat→ µ,

with µ =
∑M

i=1 d
iδxi with |di| = 1 and xi ∈ Ω for every i. Then,

lim inf
ε→0

FεT (uε)−Mλπ| log ε| ≥WT (µ) +MγT . (3.32)

(iii) (Γ-lim sup inequality) Given µ =
∑M

i=1 diδxi with |di| = 1 and

xi ∈ Ω for every i, there exists {uε} ⊂ AFε(Ω) with µ(uε)
flat→ µ

such that

F Tε (uε)−Mλπ| log ε| →WT (µ) +MγT .

Proof. The proof of Theorem 3.7 closely follows the proof of Theorem
2.6. Recalling that F Tε (u) ≥ XY T

ε (e2πiu), the proof of the compactness
property (i) will be done for F Tε = XY T

ε . On the other hand, the constant
γT depends on the potential f and on the constants ce1 , ce2 , ce1+e2 , so its
derivation requires a specific proof.

Proof of (i): Compactness. The fact that, up to a subsequence, µ(uε)
flat→

µ =
∑N

i=1 diδxi with
∑N

i=1 |di| ≤M is a direct consequence of the zero order

Γ-convergence result stated in Theorem 3.3 (i). Assume now
∑N

i=1 |di| = M
and let us prove that |di| = 1. Let 0 < σ1 < σ2 be such that Eσ2(xi)
are pairwise disjoint and contained in Ω and let ε be small enough so that
Eσ2(xi) are contained in Ωε. For any 0 < r < R and x ∈ R2, set Ar,R(x) :=

ER(x) \ Er(x). Since F Tε (uε) ≥ XY T
ε (e2πiuε),

F Tε (uε) ≥
N∑

i=1

XY T
ε (e2πiuε , Eσ1(xi)) +

N∑

i=1

XY T
ε (e2πiuε , Eσ1,σ2(xi)). (3.33)
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To ease notation we set vε = e2πiuε and we indicate with ṽε the piecewise
affine interpolation of vε. Moreover let t be a positive number and let ε be
small enough so that t > m

√
2ε. Then, by (3.10) and (3.5), we get

F Tε (uε) ≥λπ
N∑

i=1

|di| log
σ1

ε
+ FT (ṽε, Aσ1+t,σ2−t(xi)) + C. (3.34)

By the energy bound and by the definition of FT , we deduce that∫

Aσ1+t,σ2−t(xi)
|∇ṽε|2 dx ≤ 2

min{ce1 , ce2}
FT (ṽε, Aσ1+t,σ2−t(xi)) ≤ C

and hence, up to a subsequence, ṽε ⇀ vi in H1(Aσ1+t,σ2−t(xi);R2) for some
field vi. Moreover, since

1

ε2

∫

Aσ1+t,σ2−t(xi)
(1− |ṽε|2)2 dx ≤ CXY T

ε (vε) ≤ C| log ε|,

(see Lemma 2 in [2] for more details), we deduce that |vi| = 1 a.e. .
Furthermore, by standard Fubini’s arguments, for a.e. σ1 + t < σ <

σ2 − t, up to a subsequence the trace of ṽε is bounded in H1(∂Eσ(xi);R2),
and hence it converges uniformly to the trace of vi. By the very definition
of degree it follows that deg(vi, ∂Eσ(xi)) = di.

Hence, by (3.11), for every i we have

FT (vi, Aσ1+t,σ2−t(xi)) ≥ λ|di|2π log
σ2 − t
σ1 + t

. (3.35)

By (3.34) and (3.35), we conclude that for ε smal enoughl

F Tε (uε) ≥ λπ
N∑

i=1

(
|di| log

σ1

ε
+ |di|2 log

σ2 − t
σ1 + t

)
+ C

≥ λπ
(
M | log ε|+

N∑

i=1

(|di|2 − |di|) log
σ2

σ1
+

N∑

i=1

|di|2 log
σ1(σ2 − t)
σ2(σ1 + t)

)
+ C.

The energy bound yields that the sum of the last two terms is bounded;
letting t→ 0 and σ1 → 0, we conclude |di| = 1.

Proof of (ii): Γ-liminf inequality. Fix r > 0 so that the ellipses Er(xi)
are pairwise disjoint and compactly contained in Ω. Let moreover

{
Ωh
}

be an increasing sequence of open smooth sets compactly contained in Ω
such that ∪h∈NΩh = Ω. Without loss of generality we can assume that
F Tε (uε) ≤ λMπ| log ε|+ C, which together with Theorem 3.3 yields

F Tε (uε,Ω \
M⋃

i=1

Er(xi)) ≤ C. (3.36)

We set vε := e2πiuε and we denote by ṽε the piecewise affine interpola-
tion of vε. For every r > 0, by (3.36) and (2.12) we deduce XY T

ε (vε,Ω \⋃N
i=1Er(xi)) ≤ C. Fix h ∈ N and let ε be small enough so that Ωh ⊂ Ωε.

Since
∫

Ωh\⋃Ni=1 Er(xi)
|∇ṽε|2 ≤

2

min{ce1 , ce2}
XY T

ε (vε,Ω \
M⋃

i=1

Er(xi)) ≤ C,
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by a diagonalization argument, there exists a unitary field v ∈ H1(Ω \
Er(xi);S1) such that, up to a subsequence, ṽε ⇀ v in H1

loc(Ω\∪Mi=1{xi};R2).

Let σ > 0 be such that Eσ(xi) are pairwise disjoint and contained in Ωh.
For any 0 < r < R < +∞ and for any x ∈ R2, set Ar,R(x) := ER(x)\Er(x),
Ar,R := Ar,R(0). Let t ≤ σ, and consider the minimization problem

min
w∈H1(At/2,t;S1)

{
FT (w,At/2,t) : deg(w, ∂E t

2
) = 1

}
.

It is easy to see that the minimum is λπ log 2 and that the set of minimizers
is given by (the restriction at At/2,t of the functions in)

K :=

{
α
Lz

|Lz| : α ∈ C, |α| = 1

}
. (3.37)

Set

dt(w,K) := min
{
FT (w − v,At/2,t) : v ∈ K

}
. (3.38)

For any v ∈ K and w ∈ H1(At/2,t;R2), using the change of variable L in
(3.7), we have

FT (w − v,At/2,t) = λ

∫

Bt\Bt/2
|∇wL −∇vL|2 dy,

where we have set wL(y) := w(L−1y) and vL(y) := v(L−1y). By this fact,
it follows that (see [4] for further details) for any given δ > 0 there exists a
positive ω(δ) (independent of t) such that if dt(ṽε(·),Ki) ≥ δ, then

FT (ṽε;A t
2

+m−1
√

2ε,t+m−1
√

2ε) ≥ λπ log 2 + ω(δ), (3.39)

where Ki :=
{
α Lz−Lxi
|Lx−Lxi| : α ∈ C, |α| = 1

}
.

Let P ∈ N be such that P ω(δ) ≥WT (µ) +M(γT − λπ log σ−C) where
C is the constant in (3.10). For p = 1, . . . , P , set Cp(Lxi) := E21−pσ(xi) \
E2−pσ(xi).

Now, if for ε small enough and for every fixed 1 ≤ p ≤ P , there exists at
least one i such that d21−pσ(ṽε,Ki) ≥ δ, then by (3.10), (3.39) and the lower
semicontinuity of the functional FT , we conclude

F Tε (uε,Ω
h) ≥

M∑

i=1

XY T
ε (vε, E2−P σ(xi)) +

P∑

p=1

M∑

i=1

XY T
ε (vε, Cp(xi))

≥ λM(π log
σ

2P
+ π| log ε|+ C) + L(Mλπ log 2 + ω(δ)) + o(ε)

≥Mλπ| log ε|+MγT + WT (µ) + o(ε).

Assume that, up to a subsequence, there exists 1 ≤ p̄ ≤ P such that for
every i we have dσ̄(ṽε,Ki) ≤ δ, where σ̄ := 21−p̄σ. Let αε,i be the unitary

vector such that FT (ṽε − αε,i Lx−Lxi|Lx−Lxi| , Cl(xi));R
2) = dσ̄(ṽε,Ki).

One can construct a function ūε ∈ AFε(Ω) such that

(i) ūε = uε on ∂ε(R2 \ E2−l̄σ(xi));

(ii) e2πiūε(i) = αε,i
Li−xi
|Li−Lxi| on ∂εE21−l̄σ(xi)

(iii) F Tε (uε, Eσ̄(xi)) ≥ F Tε (ūε, Eσ̄(xi))+r(ε, δ) with lim
δ→0

lim
ε→0

r(ε, δ) = 0.
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The proof of (i)-(iii) is quite technical, and consists in adapting standard
cut-off arguments to our discrete setting. For the reader convenience we skip
the details of the proof, and assuming (i)-(iii) we conclude the proof of the
lower bound.

By Theorem (1.7), we have that

F Tε (uε) ≥ XY T
ε (vε,Ω

h \
M⋃

i=1

Eσ̄(xi)) +

M∑

i=1

F Tε (uε, Eσ̄(xi))

≥ FT (ṽε,Ω \ ∪Mi=1Eσ̄(xi)) +
M∑

i=1

F Tε (ūε, Eσ̄(xi)) + r(ε, δ) + o(ε)

≥ FT (ṽε,Ω \ ∪Mi=1Eσ̄(xi)) +M(γT − λπ log
ε

σ̄
) + r(ε, δ) + o(ε)

≥ FT (v,Ω \ ∪Mi=1Eσ̄(xi)) +M(γT − λπ log
ε

σ̄
) + r(ε, δ) + o(ε) + o(1/h)

≥Mλπ| log ε|+MγT + WT (µ) + r(ε, δ) + o(ε) + o(σ̄) + o(1/h).

The proof follows sending ε→ 0, δ → 0, σ → 0 and h→∞.
Proof of (iii): Γ-limsup inequality. This proof in analogue to the one

given in (iii) of Theorem 2.6 for the isotropic case. We only sketch its
anisotropic counterpart in our triangular lattice. Let wσ be a function that
agrees with a minimizer of (3.28) in Ω \ ⋃M

i=1Eσ(xi) = ΩT
σ . Then, wσ =

αie
iθλi on ∂Eσ(xi) for some |αi| = 1.

For every ρ > 0 we can always find a function wσ,ρ ∈ C∞(ΩT
σ ;S1) such

that wσ,ρ = αie
iθLi on ∂Eσ(xi), and

FT (wσ,ρ,Ω
T
σ )−FT (wσ,Ω

T
σ ) ≤ ρ.

Moreover, for every i let wi ∈ AXYε(Eσ(xi)) be a function which agrees

with αie
iθLi on ∂εEσ(xi) and such that its phase minimizes problem (3.29).

If necessary, we extend wi to (Eσ(xi) ∩ εZ2) \ (Eσ(xi))
0
ε to be equal to

αie
iθLi . Finally, define the function wε,σ,ρ ∈ AXYε(Ω) which coincides wσ,ρ

on Ωσ ∩ εZ2 and with wi on Eσ(xi) ∩ εZ2. In view of assumption (3) on
f , a straightforward computation shows that any phase uε,σ,ρ of wε,σ,ρ is a
recovery sequence, i.e.,

lim
ε→0

F Tε (uε,σ,ρ)−Mλπ| log ε| = MγT + WT (µ) + o(ρ, σ),

with limσ→0 limρ→0 o(ρ, σ) = 0. �

3.3. Γ-expansion for F lrε

Here we give the asymptotic expansion by Γ-convergence of the func-
tional F lrε . The idea is to decompose the energy F lrε in the sum of isotropic
Fε energies and to use for each of these energies the Γ-convergence analysis
developed in Chapter 2. To this aim, using that cξ = cξ⊥ for any ξ ∈ Z2

+,
we have that for any u ∈ AFε(Ω)

F lrε (u) =
1

2

∑

ξ∈Z2
+

ξ·e1≥0

cξ
∑

i∈Ω0
ε

i+εξ∈Ω0
ε

f(u(i+ εξ)− u(i))
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More precisely, using an idea in [2], given ξ ∈ Z2 with ξ · e1 ≥ 0, we may
partition Z2 as follows

Z2 =

|ξ|2⋃

h=1

(zh + Zξ ⊕ Zξ⊥)

where {zh}h=1,...,|ξ|2 = {z ∈ Z2 : 0 ≤ z · ξ < |ξ|, 0 ≤ z · ξ⊥ < |ξ|}. Then we
may write

F lrε (u) =
∑

ξ∈Z2
+

ξ·e1≥0

cξ

|ξ|2∑

h=1

F ξ,hε (u),

where

F ξ,hε (u) :=
1

2

∑

i∈Zξ,hε (Ω)

f(u(i+ εξ)− u(i)) + f(u(i+ εξ⊥)− u(i)) (3.40)

and Zξ,hε (Ω) := Ωε ∩ ε(zh + Zξ ⊕ Zξ⊥). In the following we will extend

the definition of F ξ,hε to any open A ⊂ R2, by using the standard notation

F ξ,hε (·, A).
Finally, for every ξ ∈ Z2

+ with ξ · e1 ≥ 0 and for i ∈ ε(zh + Zξ ⊕ Zξ⊥),
we set

αξ,hu := P (u(i+ εξ)− u(i)) + P (u(i+ εξ + i+ εξ⊥)− u(i+ εξ))

− P (u(i+ εξ + εξ⊥)− u(i+ εξ⊥))− P (u(i+ εξ⊥)− u(i)),

and define the ξ-discrete vorticity µξ,h(u) as

µξ,h(u) :=
∑

i∈Ω∩ε(zh+Zξ⊕Zξ⊥)
i+εQξ⊂Ω

αu(i)δi+ ε
2

(ξ+ξ⊥).

We remark that if ξ = e1, then the index h above is necessarily equal to 1
and hence µe1,1(u) coincides with µ(u) defined in (2.6).

Here we state the zero-order Γ-convergence result for the functionals F lrε .
We remark that this result has been proved in [2] for the XY lr

ε . Once again,
we notice that assumption (2) on f implies F lrε (u) ≥ XY lr

ε (e2πiu).

Theorem 3.8. The following Γ-convergence result holds.

(i) (Compactness) Let {uε} ⊂ AFε(Ω) be such that F lrε (uε) ≤ C| log ε|
for some positive C. Then, up to a subsequence, µ(uε)

flat→ µ, for
some µ ∈ X.

(ii) (Localized Γ-liminf inequality) Let {uε} ⊂ AFε(Ω) be such that

µ(uε)
flat→ µ =

∑M
i=1 diδxi with di ∈ Z \ {0} and xi ∈ Ω. Then,

there exists a constant C ∈ R such that, for any i = 1, . . . ,M and
for every σ < 1

2dist(xi, ∂Ω ∪⋃j 6=i xj), we have

lim inf
ε→0

F lrε (uε, Bσ(xi))− π
∑

ξ∈Z2
+

ξ·e1≥0

cξ|ξ|2|di| log
σ

ε
≥ C. (3.41)
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In particular

lim inf
ε→0

F lrε (uε)− π
∑

ξ∈Z2
+

ξ·e1≥0

cξ|ξ|2|µ|(Ω) log
σ

ε
≥ C.

(iii) (Γ-limsup inequality) For every µ ∈ X, there exists a sequence

{uε} ⊂ AFε(Ω) such that µ(uε)
flat→ µ and

∑

ξ∈Z2
+

ξ·e1≥0

cξ|ξ|2π|µ|(Ω) ≥ lim sup
ε→0

F lrε (uε)

| log ε| .

Since the proof is based essentially on Theorem 2.2 and on the proof of
Theorem 4.8 in [2] we briefly sketch it.

Sketch of the proof. Since ce1 > 0 the compactness property is a
direct consequence of Theorem 2.2(i).

As for the Γ-liminf inequality, fix i ∈ {1, . . . ,M}, without loss of gener-
ality, we can assume that

lim inf
ε→0

F lrε (uε, Bσ(xi))− π
∑

ξ∈Z2
+

ξ·e1≥0

cξ|ξ|2|di| log
σ

ε

= lim
ε→0

F lrε (uε, Bσ(xi))− π
∑

ξ∈Z2
+

ξ·e1≥0

cξ|ξ|2|di| log
σ

ε
< +∞.

Since each of the functionals F ξ,hε (defined in (3.40)) is bounded from above
by C| log ε|, using the same strategy in the proof of Theorem 4.8 in [2], one
can show that for any ξ and for any h = 1, . . . , |ξ|2

‖µξ,h(uε)− µ(uε)‖flat → 0

and hence µξ,h(uε)
flat→ µ. So we can apply Theorem 2.2 (ii) to each of the

functionals F ξ,hε and hence there exists a universal constant C such that

lim inf
ε→0

F ξ,hε (uε)− π|di| log
σ

ε
≥ C.

By summing over h = 1, . . . , |ξ|2 and over ξ we get (3.41).
The proof of the Γ-limsup inequality is standard and left to the reader.

�

Finally, we state the first order Γ-convergence result for F lrε . To this aim
we have to introduce the following discrete minimum problem

γlrF (ε, σ) := min
u∈AFε(Bσ)

{F lrε (u,Bσ) : 2πu(·) = θ(·) on ∂εBσ},

where the discrete boundary ∂ε in (2.1) and θ(x) is the polar coordinate
arctanx2/x1, also referred to as the lifting of the function x

|x| .
The following Proposition is the analogous of Proposition 2.39 in the

long range interaction case.
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Proposition 3.9. For any fixed σ > 0, the following limit exists finite

lim
ε→0

(γlrF (ε, σ)− π
∑

ξ∈Z2
+

ξ·e1≥0

cξ|ξ|2| log
ε

σ
|) =: γlrF ∈ R. (3.42)

Proof of (3.42). First, by scaling, it is easy to see that γF (ε, σ)lr =
I lr( εσ ) where I lr(t) is defined by

I lr(t) := min
{
F lr1 (u,B 1

t
) | 2πu = θ on ∂1B 1

t

}
.

We aim to prove that

0 < t1 ≤ t2 ⇒ I lr(t1) ≤ π
∑

ξ∈Z2
+

ξ·e1≥0

cξ|ξ|2 log
t2
t1

+ I lr(t2) +O(t2). (3.43)

By (3.43) and by Theorem 3.8(ii), it follows that

∃ lim
t→0+

(I lr(t)− π
∑

ξ∈Z2
+

ξ·e1≥0

cξ|ξ|2| log t|) > −∞.

We prove now that (3.43) holds true. To this end, set Ar,R := BR \Br, and
let θ be the lifting of the function x

|x| . Since

|∇θ(x)| =
√∣∣∣∣∂ ξ

|ξ|
θ(x)

∣∣∣∣
2

+

∣∣∣∣∂ ξ⊥
|ξ|
θ(x)

∣∣∣∣
2

≤ c

r

for every ξ ∈ Z2 and for every x ∈ Ar,R, by standard interpolation estimates
(see for instance [25] and [2]) and using assumption (3) on f , we have that,
as 0 < r < R→∞,

F lr1 (θ/2π,Ar,R) =
1

2

∑

ξ∈Z2
+

ξ·e1≥0

cξ

|ξ|2∑

h=1

F ξ,h1 (
θ

2π
,Ar,R)

=
1

2

∑

ξ∈Z2
+

ξ·e1≥0

cξ

|ξ|2∑

h=1

∑

i∈Zξ,h1 (Ar,R)

∣∣∣∣
θ(i+ ξ)− θ(i)

|ξ|

∣∣∣∣
2

+

∣∣∣∣
θ(i+ ξ⊥)− θ(i)

|ξ|

∣∣∣∣
2

+O(1/r)

≤ π
∑

ξ∈Z2
+

ξ·e1≥0

cξ|ξ|2 log
R

r
+ O(1/r). (3.44)

Let u2 be a minimizer for I(t2) and for any i ∈ Z2 define

u1(i) :=

{
u2(i) if |i| ≤ 1

t2
θ(i)
2π if 1

t2
≤ |i| ≤ 1

t1
,

By (3.44) we have

I(1/R) ≤ I(1/r) + π
∑

ξ∈Z2
+

ξ·e1≥0

cξ|ξ|2 log
r

R
+O(1/r),
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which yields (3.43) for r = 1
t2

and R = 1
t1

. �

To ease the notation, for any µ =
∑M

i=1 diδxi with |di| = 1 and xi ∈ Ω,
we set

Wlr(µ) :=
∑

ξ∈Z2
+

ξ·e1≥0

cξ|ξ|2W(µ),

where W is defined in (1.5).

Theorem 3.10. The following Γ-convergence result holds.

(i) (Compactness) Let M ∈ N and let {uε} ⊂ AFε(Ω) be a sequence
satisfying F lrε (uε) −Mπ

∑
ξ∈Z2

+

ξ·e1≥0

cξ|ξ|2| log ε| ≤ C. Then, up to

a subsequence, µ(uε)
flat→ µ for some µ =

∑N
i=1 diδxi with di ∈

Z \ {0}, xi ∈ Ω and
∑

i |di| ≤M . Moreover, if
∑

i |di| = M , then∑
i |di| = N = M , namely |di| = 1 for any i.

(ii) (Γ-lim inf inequality) Let {uε} ⊂ AFε(Ω) be such that µ(uε)
flat→ µ,

with µ =
∑M

i=1 diδxi with |di| = 1 and xi ∈ Ω for every i. Then,

lim inf
ε→0

F lrε (uε)−Mπ
∑

ξ∈Z2
+

ξ·e1≥0

cξ|ξ|2| log ε| ≥Wlr(µ) +MγlrF .

(iii) (Γ-lim sup inequality) Given µ =
∑M

i=1 diδxi with |di| = 1 and

xi ∈ Ω for every i, there exists {uε} ⊂ AFε(Ω) with µ(uε)
flat→ µ

such that

F lrε (uε)−Mπ
∑

ξ∈Z2
+

ξ·e1≥0

cξ|ξ|2| log ε| →Wlr(µ) +MγlrF .

The proof of the theorem above is the same of Theorem 2.6 and it is
omitted.
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CHAPTER 4

Metastability and dynamics of screw dislocations

In this chapter we apply the Γ-convergence analysis in Chapter 2 in
order to study the dynamics of the discrete topological singularities. All the
results proved here are in [4].

In Section 4.1 below we will prove the existence of many local minimizers
for a large class of discrete energy functionals Fε, which includes the screw
dislocations energy but not the XY functionals. As a consequence we have
that any solution to the gradient flow of Fε starting from these minimizers
is still. In Section 4.2 and 4.3 we introduce a purely variational approach in
order to analyze an effective dynamics of the singularities which overcome
the pinning effect due to the presence of local minima.

4.1. Analysis of local minimizers

In this section we will assume some further hypotheses for the energy
density f in addition to (1), (2) and (3):

(4) f ∈ C0([−1
2 ,

1
2 ]) ∩ C2((−1

2 ,
1
2));

(5) There exists a neighborhood I of 1
2 such that for every x ∈

I we have C1(1
2 − x)2 < f(1

2) − f(x) for some C1 > 0 and

supt∈(− 1
2
, 1
2

) f
′′(t) < 1

9C1;

(6) f is increasing in [0, 1
2 ] and even.

Notice that these conditions are satisfied by the energy density of the
screw dislocations functionals, f(a) = dist2(a,Z), while they are not satisfied
by the energy density of the XY model.

4.1.1. Antipodal configurations and energy barriers. When a
discrete singularity of µ(v) moves to a neighboring cell, then v has to pass
through an antipodal configuration v(i) = −v(j) (i.e., such that the corre-
sponding phase u satisfies dist(u(i)− u(j),Z) = 1

2). We will show that such
configurations are energy barriers.

Lemma 4.1. There exist α > 0 and E > 0 such that the following holds: Let
u ∈ AFε(Ω) such that dist(u(i)−u(j),Z) > 1

2−α for some (i, j) ∈ Ω1
ε. Then

there exists a function w, with w = u in Ω0
ε\{i} such that Fε(w) ≤ Fε(u)−E.

Proof. As a consequence of assumption (5), it is easy to see that there
exists γ > 0 and a positive constant C2 such that

f(1
2)− f(γ)− f(1

2 − γ) > C2 . (4.1)

First, we prove the statement assuming f ∈ C2(R). In this case, as-
sumption (5) implies that f ′(1

2) = 0 and |f ′′(1
2)| > C1.
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Without loss of generality we can assume that u(i) = 0. For sake of
notation we set

Ei(u) =
∑

|l−i|=ε
f(u(l)) . (4.2)

We will assume that i /∈ ∂εΩ, so that i has exactly four nearest neighbors, de-
noted by j, k1, k2 and k3. The case i ∈ ∂εΩ is fully analogous (some explicit
computations are indeed shorter), and left to the reader. By assumption

Ei(u) ≥ f(1
2 + α) +

3∑

l=1

f(u(kl)) . (4.3)

We will distinguish two cases.

Case 1: There exists at least a nearest neighbor, say k1, such that
dist(u(k1),Z) ≥ 1

2 − α. In this case we have that

Ei(u) ≥ 2f(1
2 + α) + f(u(k2)) + f(u(k3)). (4.4)

Now there are two possibilities. In fact we may have either that dist(u(k2),Z)∨
dist(u(k3),Z) < 3α, or that dist(u(k2),Z) ∨ dist(u(k3),Z) ≥ 3α.

In the first case, set w(i) = γ with γ as in (4.1). Then, by continuity we
have

Ei(w) = 2f(1
2 − γ) + 2f(γ) + o(1),

where o(1) → 0 as α → 0. From (4.4) we have Ei(u) ≥ 2f(1
2 + α), which

together with (4.1) yields

Ei(u)− Ei(w) ≥ 2(f(1
2 + α)− f(1

2)) + C2 + o(1) = C2 + o(1) (4.5)

as α → 0. Suppose now that dist(u(k2),Z) ∨ dist(u(k3),Z) ≥ 3α. Then we
define w(i) = 1

2 and we get

Ei(w) ≤ 2f(α) + f(1
2) + f(1

2 + 3α) .

Moreover, thanks to assumption (6) of f we have Ei(u) ≥ 2f(1
2 +α)+f(3α).

We conclude that

Ei(u)− Ei(w) ≥ 7

2
α2(f ′′(0)− f ′′(1

2)) ≥ 7

2
α2C1 (4.6)

Case 2: For every i it holds dist(u(ki),Z) < 1
2 − α. Set w(i) = η with

|η| = 3α and η
∑3

l=1 f
′(u(kl)) ≥ 0. Then

Ei(u)− Ei(w) ≥ f(1
2 + α)− f(1

2 + α− |η|) +
3∑

l=1

f(u(kl))− f(u(kl)− η)

=
1

2
|f ′′(1

2)||η|(|η| − 2α) + η
3∑

l=1

f ′(u(kl))−
1

2
η2

3∑

l=1

f ′′(u(kl)) + o(η2)

≥ 1

2
|f ′′(1

2)|3α2 − 9

2
α2

3∑

l=1

f ′′(u(kl)) + o(α2) ≥ 3

2
(C1 − 9 sup

t
f ′′(t))α2 + o(α2)

(4.7)

The combination of Step 1 and Step 2 allows to conclude the proof in
the case of f ∈ C2(R), by choosing α small enough and E = (7C1 ∧ 3(C1 −
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9 supt f
′′(t)))α2/2. The general case can be recover by approximating f in a

neighborhood of 1
2 with C2 functions still satisfying assumptions (4)-(6). �

Note that in the case of f(a) = dist2(a,Z) the proof of the above Lemma
can be obtained by a direct computation without the regularization.

Remark 4.2. Note that the function w constructed in Lemma 4.1 has a
discrete vorticity that can be different from the one of u only in the four
ε-squares sharing i as a vertex, and hence ‖µ(u)− µ(w)‖flat ≤ 2ε.

Definition 4.3. We say that a function u ∈ AFε(Ω) satisfies the α-cone
condition if

dist(u(i)− u(j),Z) ≤ 1

2
− α for every (i, j) ∈ Ω1

ε .

Remark 4.4. Note that if u ∈ AFε(Ω) satisfies the α-cone condition for

some α > 0, then for every w ∈ AFε(Ω) such that
∑

i∈Ω0
ε
|w(i)−u(i)|2 < α2

16

we have µ(w) = µ(u). In other words, the vorticity measure µ(u) is stable
with respect to small variations of u.

4.1.2. Metastable configurations and pinning. As a consequence
of Lemma 4.1 we prove the existence of a minimizer for the energy Fε, under
assumptions (1)-(6) with singularities close to prescribed positions.

Theorem 4.5. Given µ0 =
∑M

i=1 diδxi with xi ∈ Ω and di ∈ {1,−1} for
i = 1, . . . ,M , there exists a constant K ∈ N such that, for ε small enough,
there exists kε ∈ {1, . . . ,K} such that the following minimum problem is
well-posed

min{Fε(u) : ‖µ(u)− µ0‖flat ≤ kεε}. (4.8)

Moreover, let α be given by Lemma 4.1; any minimizer uε of the problem
in (4.8) satisfies the α-cone condition and it is a local minimizer for Fε.

Proof. For any k ∈ N ∪ {0}, we set

Ikε := inf{Fε(u) : ‖µ(u)− µ0‖flat ≤ (M + 2k)ε}, (4.9)

By constructing explicit competitors one can show that

I0
ε ≤Mπ| log ε|+ C. (4.10)

Then, we consider a minimizing sequence {uk,nε } for Ikε . It is not restrictive to

assume that 0 ≤ uk,nε (i) ≤ 1 for any i ∈ Ω0
ε; therefore, up to a subsequence,

uk,nε → ukε as n → ∞ for some ukε ∈ AFε(Ω). Note that if ukε satisfies the
α-cone condition, then it is a minimizer for Ikε .

Set k̄ := dC−W(µ0)−Mγ
E e+1 and assume by contradiction that there exists

a subsequence, still labelled with ε, such that for every k ∈ {0, 1, . . . , k̄},
there exists a bond (iε, jε) ∈ Ω1

ε, with dist(ukε(iε) − ukε(jε),Z) > 1
2 − α.

Thus, for n large enough, we have

dist(uk,nε (iε)− uk,nε (jε),Z) >
1

2
− α.

By Lemma 4.1, there exists a function wk,nε ∈ AFε(Ω) such that wk,nε ≡ uk,nε
in Ω0

ε \ {i} and Fε(w
k,n
ε ) ≤ Fε(u

k,n
ε ) − E for some E > 0. By construction
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(see Remark 4.2) we have that ‖µ(wk,nε )− µ(uk,nε )‖flat ≤ 2ε. It follows that

Ik+1
ε ≤ Fε(wk,nε ) ≤ Ikε − E.

By an easy induction argument on k and by (4.10), we have immediately
that

Ikε ≤ I0
ε − kE ≤Mπ| log ε|+ C − kE. (4.11)

By the lower bound (2.42) in Theorem 2.6, (4.11), and the definition of k̄
we get

W(µ0) +Mγ ≤ lim inf
ε→0

I k̄ε −Mπ| log ε| ≤ C − k̄E ≤W(µ0) +Mγ − E,

and so the contradiction. Then the statement holds for K = M + 2k̄.
�

Let ε > 0 and let u0
ε ∈ AFε(Ω). We say that uε = uε(t) is a gradient

flow of Fε from u0
ε if uε is a solution of
{ 1
| log ε| u̇ε = −∇Fε(uε) in (0,+∞)× Ω0

ε

uε(0) = u0
ε in Ω0

ε.

Clearly uε(t) ∈ AFε(Ω), and we will write uε(t, i) in place of uε(t)(i).

Theorem 4.6. Let µ0 =
∑M

i=1 diδxi with xi ∈ Ω and di ∈ {1,−1} for
i = 1, . . . ,M . Let {u0

ε} ⊂ AFε(Ω) be such that

lim
ε→0

Fε(u
0
ε)−Mπ| log ε| = W(µ0) +Mγ. (4.12)

Let α be given by Lemma 4.1. Then, for ε small enough, the following
facts hold.

(i) u0
ε satisfy the α-cone condition.

(ii) The gradient flow uε(t) of Fε from u0
ε satisfies µ(uε(t)) = µ(u0

ε)
for every t > 0.

(iii) There exists ū0
ε such that ū0

ε ∈ argmin{Fε(u) : µ(u) = µ(u0
ε)}.

Moreover ū0
ε satisfies the α-cone condition and it is a local mini-

mizer for Fε.

Proof. Proof of (i). Assume, by contradiction, that there exists a
sequence εk → 0 such that u0

εk
does not satisfy the α-cone condition, namely

for every k ∈ N there exists a bond (ik, jk) ∈ Ω1
εk

with

dist(u0
εk

(ik)− u0
εk

(jk),Z) >
1

2
− α.

By Lemma 4.1, for any k there exists a function wεk ∈ AFεk(Ω) such that
wεk ≡ u0

εk
in Ω0

εk
\ {ik} and

Fεk(wεk) ≤ Fε(u0
εk

)− E ≤ Fεk(u0
εk

)− E. (4.13)

Moreover, by construction (see Remark 4.2) we have that ‖µ(wεk)−µ(u0
εk

)‖flat ≤
2εk and so µ(wεk)

flat→ µ0. By the lower bound (2.42) in Theorem 2.6, we get

W(µ0) +Mγ ≤ lim inf
εk→0

Fεk(wεk)−Mπ| log εk| (4.14)

≤ lim
εk→0

Fεk(u0
εk

)−Mπ| log εk| − E = W(µ0) +Mγ − E,

and so the contradiction.
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Proof of (ii). Assume, by contradiction, that there exists a sequence
εk → 0 such that the gradient flows uεk(t) of Fεk from u0

εk
does not satis-

fty (ii). Let tk be the first time (in fact, the infimum) for which µ(uεk(tk)) 6=
µ(u0

εk
); then, there exists (ik, jk) ∈ Ω1

εk
such that dist(uεk(tk, ik)−uεk(tk, jk),Z) >

1
2 − α. By Lemma 4.1 there exists wεk(tk) ∈ AFεk(Ω) such that wεk(tk) ≡
uεk(tk) in Ω0

εk
\ {ik} and Fεk(wεk(tk)) ≤ Fεk(uεk(tk))−E, for some positive

constant E independent of k. Moreover, by (4.2), we have that

‖µ(u0
εk

)− µ(wεk(tk))‖flat = ‖µ(uεk(tk))− µ(wεk(tk))‖flat ≤ 2εk;

Therefore, by the lower bound (2.42) in Theorem 2.6, arguing as in (4.14),
we get a contradiction.

Proof of (iii). Let {unε } be a minimizing sequence for the minimum
problem in (iii). We can always assume that 0 ≤ unε (i) ≤ 1 for any i ∈ Ω0

ε;
therefore, up to a subsequence, unε → ū0

ε as n→∞ for some ū0
ε ∈ AFε(Ω).

To prove that ū0
ε (for ε small enough) is a minimizer, it is enough to show

that µ(ū0
ε) = µ(uε); this follows once we have proved that ū0

ε satisfies the α-
cone condition (see Remark 4.4). Assume by contradiction that there exists
a sequence εk → 0 such that dist(ū0

ε(ik)− ū0
ε(jk),Z) > 1

2 − α for some bond

(ik, jk) ∈ Ω1
εk

. Then, for n large enough, we have

Fεk(unεk) ≤ Fεk(u0
εk

) + εk, dist(unεk(i)− unεk(j),Z) >
1

2
− α . (4.15)

Let n̄ so that (4.15) holds. By Lemma 4.1, there exists a function wεk ∈
AFεk(Ω) such that wεk ≡ un̄εk in Ω0

εk
\ {i} and

Fεk(wεk) ≤ Fε(un̄εk)− E ≤ Fεk(u0
εk

)− E + εk. (4.16)

By construction (see Remark 4.2), we have that ‖µ(wεk) − µ(u0
εk

)‖flat =
‖µ(wεk)− µ(un̄εk)‖flat ≤ 2εk. Therefore, by the lower bound (2.42) in Theo-
rem 2.6, arguing as in (4.14), we get a contradiction.

Finally, by the α-cone condition and Remark 4.4, we have immediately
that Fε(ū

0
ε) ≤ Fε(w) for any function w ∈ AFε(Ω) with ‖w−u‖L2 ≤ α

4 , and

hence ū0
ε is a local minimizer of Fε .

�
Remark 4.7. By Theorem 4.6 it easily follows that there exists tn → ∞
such that u∞ε := limtn→∞ uε(tn) is a critical point of Fε.

4.2. Discrete gradient flow of Fε with flat dissipation

In Section 4.1 we have seen that the energy Fε has many local minimiz-
ers. In particular, Theorem 4.5 shows that the length-scale of metastable
configurations of singularities is of order ε. In this section we consider a
discrete in time gradient flow of the energy Fε which allows to overcome
the pinning effect due to the presence of local minima and then to study
an effective dynamics of the vortices. This is done following the minimizing
movements method.

It turns out that, for ε smaller than the time step τ , the vortices over-
come the energetic barriers and the dynamics is described (as ε, τ → 0)
by the gradient flow of the renormalized energy (see Definition 4.10). This
process requires the introduction of a suitable dissipation. In this section
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we consider a dissipation which is continuous with respect to the flat norm.
To this purpose, we notice that, identifying each µ =

∑N
i=1 diδxi with a

0-current, it can be shown that

‖µ‖flat = min{|S| , S 1-current, ∂S Ω = µ} (4.17)

(see [33, Section 4.1.12]). Moreover, it is an established result in the optimal
transport theory (see for instance [68, Theorem 5.30]) that the minimization
in (4.17) can be restricted to the family

S(µ) :=

{
S =

L∑

l=1

ml[pl, ql] : L ∈ N,ml ∈ Z, , pl , ql ∈ supp(µ) ∪ ∂Ω ,

∂S Ω =
L∑

l=1

ml(δql − δpl) Ω = µ

}
,

where m[p, q] denotes the 1-rectifiable current supported on the oriented
segment of vertices p and q, and with multiplicity m (for a self-contained
proof of this fact we refer also to [52, Proposition 4.4]). Notice that, given

S ∈ S(µ), |S| = ∑L
l=1 |ml||ql − pl|.

We define our dissipation in two steps.
First assume that ν1 =

∑N1
i=1 d

1
i δx1

i
and ν2 =

∑N2
j=1 d

2
jδx2

j
with d1

i , d
2
j ∈ N

for every i = 1, . . . , N1 and j = 1, . . . , N2 and set

D̃2(ν1, ν2) := min

{
L∑

l=1

|ql − pl|2 : L ∈ N, ql ∈ supp(ν1) ∪ ∂Ω, pl ∈ supp(ν2) ∪ ∂Ω,

L∑

l=1

δql Ω = ν1,

L∑

l=1

δpl Ω = ν2

}
.

It is easy to see that D̃
1
2
2 is a distance. Actually, ‖ν1− ν2‖flat and D2(ν1, ν2)

can be rewritten as

‖ν1 − ν2‖flat = min
λ

∫

Ω̄×Ω̄
|x− y|dλ(x, y) ,

D̃2(ν1, ν2) = min
λ

∫

Ω̄×Ω̄
|x− y|2dλ(x, y) ,

where the minimum is taken over all measures λ which are sums of Dirac
deltas in Ω̄× Ω̄ with integer coefficients, and have marginals restricted to Ω
given by ν1 and ν2. This clarifies the connection of the flat distance and of
our dissipation with the Wasserstein distances W1 and W2, defined on pairs
of probability measures in R2, respectivelly (see for instance [68]).

From the very definition of D̃2 one can easily check that

D̃2(ν1 + ρ1, ν2 + ρ2) ≤ D̃2(ν1, ν2) + D̃2(ρ1, ρ2) (4.18)

for any ρ1 and ρ2 sums of positive Dirac masses, and

D̃2(ν1, ν2) ≤ diam(Ω)‖ν1 − ν2‖flat . (4.19)
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For the general case of µ1 =
∑N1

i=1 d
1
i δx1

i
and µ2 =

∑N2
i=1 d

2
i δx2

i
with

d1
i , d

2
i ∈ Z we set

D2(µ1, µ2) := D̃2(µ+
1 + µ−2 , µ

+
2 + µ−1 ), (4.20)

where µ+
j and µ−j are the positive and the negative part of µj . As a conse-

quence of (4.18) and (4.19) we have that D2 is continuous with respect to
the flat norm.

We are now in a position to introduce the discrete gradient flow of Fε
with respect to the dissipation D2.

Definition 4.8. Fix δ > 0 and let ε, τ > 0. Given µε,0 ∈ Xε, we say that
{µτε,k}, with k ∈ N∪{0}, is a solution of the flat discrete gradient flow of Fε
from µε,0 if µτε,0 = µε,0, and for any k ∈ N, µτε,k satisfies

µτε,k ∈ argmin

{
Fε(µ) +

πD2(µ, µτε,k−1)

2τ
: µ ∈ Xε, ‖µ− µτε,k−1‖flat ≤ δ

}
.

(4.21)

Notice that the existence of a minimizer is obvious, since µ lies in Xε

which is a finite set.
We want to analyze the limit as ε→ 0 of the flat discrete gradient flow.

To this purpose, let µ0 :=
∑M

i=1 di,0δxi,0 with |di,0| = 1, and let µε,0 ∈ Xε be
such that

µε,0
flat→ µ0, lim

ε→0

Fε(µε,0)

| log ε| = π|µ0|(Ω).

In Theorem 4.14 we will show that, as ε→ 0, the sequence µτε,k converges to
some µτk ∈ X, whose singularities have the same degrees of those of the initial
datum. Therefore, it is convenient to regard the renormalized energy as a
function only of the positions of M singularities. To this end we introduce
the following notation

W (x) := W(µ) where µ =
M∑

i=1

di,0δxi for every x ∈ ΩM .

The right notion for the limit as ε → 0 of flat discrete gradient flows
of Fε is given by the following definition of discrete gradient flow of the
renormalized energy.

Definition 4.9. Let δ > 0, K ∈ N ∪ {0}, and τ > 0. Fix x0 ∈ ΩM . We say
that {xτk} with k = 0, 1, . . . ,K, is a solution of the discrete gradient flow of

W from x0 if xτ0 = x0 and, for any k = 1, . . . ,K, xτk ∈ ΩM satisfies

xτk ∈ argmin

{
W (x) +

π|xτk − xτk−1|2
2τ

: x ∈ ΩM ,
M∑

i=1

|xi − xτi,k−1| ≤ δ
}
,

(4.22)

where | · | denotes the euclidean norm in Rk for any k ∈ N.

In Theorem 4.13 we show that, as τ → 0, this discrete time evolution
converges, until a maximal time T̃δ, to the gradient flow of the renormalized
energy given by the following definition.
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Definition 4.10. Let M ∈ N and x0 ∈ ΩM . The gradient flow of the
renormalized energy from x0 is given by

{
ẋ(t) = − 1

π
∇W (x(t))

x(0) = x0.
(4.23)

We denote by T ∗ the maximal time of existence of the solution, and we
notice that until the time T ∗ the solution is unique, and that T ∗ is the
minimal critical time among the first collision time and the exit time from
Ω.

As δ → 0, T̃δ converges to the critical time T ∗. Notice that the renormal-
ized energy is not bounded from below and it blows up to −∞ whenever one
of these critical events occur. This justifies the introduction of the param-
eter δ, in order to explore local minima. Nevertheless, the solutions of flat
discrete gradient flows defined above do not touch the constraint and hence,
they satisfy the corresponding unconstrained Euler-Lagrange equations.

4.2.1. Flat discrete gradient flow of W . Fix initial conditions

x0 = (x1,0, . . . , xM,0) ∈ ΩM , d1,0, . . . , dM,0 ∈ {−1, 1},
and fix δ > 0 such that

min{1

2
disti 6=j(xi,0, xj,0),dist(xi,0, ∂Ω)} − 2δ =: cδ > 0. (4.24)

Definition 4.11. We say that a solution of the discrete gradient flow {xτk}
of W from x0 is maximal if the minimum problem in (4.22) does not admit
a solution for k = K + 1.

Let {xτk} be a maximal solution of the flat discrete gradient flow of W
from x0, according with Definitions 4.9, 4.11; we set

kτδ = kτδ ({xτk}) := min{k ∈ {1, . . . ,K} :

min{1

2
disti 6=j(x

τ
i,k, x

τ
j,k), dist(xτi,k, ∂Ω)} ≤ 2δ }. (4.25)

We notice that, since |xτkτδ − x
τ
kτδ−1| ≤ δ and

min{1

2
disti 6=j(x

τ
i,kτδ−1, x

τ
j,kτδ−1), dist(xτi,kτδ−1, ∂Ω)} > 2δ,

then

min{1

2
disti 6=j(x

τ
i,kτδ

, xτj,kτδ
), dist(xτi,kτδ

, ∂Ω)} > δ,

i.e., kτδ < K. It follows that, for any k = 0, 1, . . . , kτδ , we have

xτk ∈ Kδ, (4.26)

where Kδ is the compact set given by

Kδ :=

{
x ∈ ΩM : min{1

2
disti 6=j(xi, xj),dist(xi, ∂Ω)} ≥ δ

}
. (4.27)

Notice that W is smooth on Kδ. In particular, we can set

Cδ := max
x∈Kδ

(W (x0)−W (x)). (4.28)
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Proposition 4.12. For τ small enough the following holds. For every k =
1, . . . , kτδ , we have that

∑M
i=1 |xτi,k − xτi,k−1| < δ and

∂xiW (xτk) + π
xτi,k − xτi,k−1

τ
= 0 for i = 1, . . . ,M. (4.29)

In particular, for every k = 1, . . . , kτδ

|xτk − xτk−1| ≤ max
x∈Kδ

|∇W (x)|τ. (4.30)

Proof. Since the energy W is clearly decreasing in k, for every k =
1, . . . , kτδ we have

|xτk − xτk−1|2
2τ

≤ 1

π
(W (xτk−1)−W (xτk)) ≤W (x0)−W (xτk) ≤ Cδ. (4.31)

It follows that for τ small enough
∑M

i=1 |xτi,k − xτi,k−1| < δ. Therefore,

the minimality of xτk clearly implies (4.29), as well as (4.30). �

Let x(t) be the solution of the gradient flow of W with initial datum x0

(see (4.23)) and let T ∗ be its maximal existence time. We set

Tδ := inf

{
t ∈ [0, T ∗] : min{1

2
disti 6=j(xi(t), xj(t)),dist(xi(t), ∂Ω)} ≤ 2δ

}
.

(4.32)
Notice that by definition we have

lim
δ→0

Tδ = T ∗. (4.33)

For 0 ≤ t ≤ kτδ τ , we denote by xτ (t) = (xτ1(t), . . . , xτM (t)) the piecewise
affine in time interpolation of {xτk}.
Theorem 4.13. Let {xτk}τ>0 be a family of maximal solutions of the flat
discrete gradient flow of W from x0. Then,

T̃δ := lim inf
τ→0

kτδ τ ≥ Tδ, (4.34)

where kτδ is defined in (4.25) and Tδ is defined in (4.32).

Moreover, for every 0 < T < T̃δ, x
τ → x uniformly on [0, T ]. Finally,

T̃δ → T ∗ as δ → 0.

Proof. By the very definition of kτδ , it is easy to prove that

|xτkτδ − x
τ
0 | > cδ ,

where cδ is defined in (4.24). Moreover, by (4.30), for τ small enough we get

|xτkτδ − x
τ
0 | ≤

kτδ∑

k=1

|xτk − xτk−1| ≤ max
x∈Kδ

|∇W (x)|kτδ τ,

and hence

kτδ τ ≥
cδ

max
x∈Kδ

|∇W (x)| > 0.

From (4.30) it is easy to see that xτ are equibounded and equicontinuous in
[0, τkτδ ], and hence by Ascoli Arzelà Theorem, they uniformly converge, up
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to a subsequence, to a function x on [0, T ], for every T < T̃δ. Let t ∈ (0, T̃δ)
and let h > 0, by (4.29) we get

xτ (τb(t+ h)/τc)− xτ (τbt/τc) =

b(t+h)/τc−1∑

k=bt/τc
xτk+1 − xτk = − τ

π

b(t+h)/τc−1∑

k=bt/τc
∇W (xτk).

(4.35)

Taking the limit as τ → 0, and then h → 0, we obtain that the limit x is
the unique solution of (4.23).

Moreover, it is easy to see that xτ (τkτδ )→ x(T̃δ) and hence by definition

of kτδ , it is easy to see that (4.34) holds true and T̃δ < T ∗. Since Tδ → T ∗

(see (4.33)) we conclude that T̃δ → T ∗ as δ → 0.
�

4.2.2. Flat discrete gradient flow of Fε. We are now in a position
to state and prove the convergence of discrete gradient flows as ε→ 0.

Theorem 4.14. Let µ0 :=
∑M

i=1 di,0δxi,0 with |di,0| = 1. Let µε,0 ∈ Xε be
such that

µε,0
flat→ µ0, lim

ε→0

Fε(µε,0)

| log ε| = π|µ0|(Ω).

Let δ > 0 be fixed such that min
{

1
2disti 6=j(xi,0, xj,0), dist(xi,0, ∂Ω)

}
> 2δ.

Given τ > 0, let µτε,k be a solution of the flat discrete gradient flow of Fε
from µε,0.

Then, up to a subsequence, for any k ∈ N we have µτε,k
flat→ µτk, for some

µτk ∈ X with |µτk|(Ω) ≤M .
Moreover there exists a maximal solution of the discrete gradient flow,

xτk = (xτ1,k, . . . , x
τ
M,k), of W from x0 = (x1,0, . . . , xM,0), according with Def-

inition 4.9, such that

µτk =

M∑

i=1

di,0δxτi,k for every k = 1, . . . , kτδ ,

where kτδ is defined in (4.25).

Proof. Since Fε(µτε,k) is not increasing in k, we have

Fε(µτε,k) ≤ Fε(µε,0) ≤Mπ| log ε|+ o(| log ε|).

By Theorem 2.7(i), we have that, up to a subsequence, µτε,k
flat→ µτk ∈ X, with

|µτk|(Ω) ≤M and ‖µτk − µτk−1‖flat ≤ δ. Let k̃τδ be defined by

k̃τδ := sup{k ∈ N : µτl =

M∑

i=1

di,0δxτi,l ,

min{1

2
disti 6=j(x

τ
i,l, x

τ
j,l),dist(xτi,l, ∂Ω)} > 2δ, l = 0, . . . , k}.

(4.36)
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Since |µτ
k̃τδ+1
|(Ω) ≤M and ‖µτ

k̃τδ+1
−µτ

k̃τδ
‖flat ≤ δ, we deduce that µk̃τδ+1 =

∑M
i=1 di,0δxτi,k̃τ

δ
+1

, while

min{1

2
disti 6=j(x

τ
i,k̃τδ+1

, xτ
j,k̃τδ+1

),dist(xτ
i,k̃τδ+1

, ∂Ω)} ≤ 2δ . (4.37)

Moreover, since ‖µτk − µτk−1‖flat ≤ δ, it is easy to see that at each step

k = 1, . . . , k̃τδ + 1 and for every singularity xτi,k−1 of µτk−1, there is exactly
one singularity of µτk at distance at most δ from xτi,k−1; we relabel it xτi,k.

Therefore, by definition of D2 , we have that for k = 1, . . . , k̃τδ + 1

D2(µτk, µ
τ
k−1) = |xτk − xτk−1|2. (4.38)

We now show that for k = 0, 1, . . . , k̃τδ + 1, xτk satisfies (4.22). For

any measure µ =
∑M

i=1 di,0δyi with ‖µ − µτk−1‖flat ≤ δ, by Theorem 2.7
(iii) there exists a recovery sequence {µε} such that Fε(µε)−Mπ| log ε| →
W(µ) +Mγ as ε→ 0. By a standard density argument we can assume that
‖µε − µτε,k−1‖flat ≤ δ. Therefore by (ii) of Theorem 2.7, using the fact that

µτε,k satisfies (4.21) and the continuity of D2 with respect to the flat norm,
we get

W(µτk) +Mγ +
πD2(µτk, µ

τ
k−1)

2τ

≤ lim inf
ε→0

Fε(µτε,k)− πM | log ε|+
πD2(µτε,k, µ

τ
ε,k−1)

2τ

≤ lim
ε→0
Fε(µε)− πM | log ε|+

πD2(µε, µ
τ
ε,k−1)

2τ

= W(µ) +Mγ +
πD2(µ, µτk−1)

2τ
,

i.e., µτk satisfies

µτk ∈ argmin

{
W(µ) +

πD2(µ, µτk−1)

2τ
: µ =

M∑

i=1

di,0δxi ,
∥∥µ, µτk−1

∥∥
flat
≤ δ
}
.

By (4.38) we have that xτk is a solution of the discrete gradient flow of

W from x0 = (x1,0, . . . , xM,0) and by (4.37) that k̃τδ + 1 = kτδ .
�

4.3. Discrete gradient flow of Fε with L2 dissipation

In this section we introduce the discrete gradient flows of Fε with L2

dissipation (for the L2 norm, we will use the notation introduced in (2.3)).

Definition 4.15. Fix δ > 0 and let ε, τ > 0. Given uε,0 ∈ AFε(Ω), we say
that {uτε,k}, with k ∈ N ∪ {0}, is a solution of the L2 discrete gradient flow
of Fε from uε,0 if uτε,0 = uε,0, and for any k ∈ N, uτε,k satisfies

uτε,k ∈ argmin

{
Fε(u) +

‖e2πiu − e2πiuτε,k−1‖2L2

2τ | log τ | : u ∈ AFε(Ω),

‖µ(u)− µ(uτε,k−1)‖flat ≤ δ
}
.

(4.39)
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The constraint ‖µ(u)−µ(uτε,k−1)‖flat ≤ δ is not closed in the L2 topology.
Nevertheless, in Subsection 4.3.2 we prove an existence result for such a
discrete gradient flow.

In the parabolic flow of Ginzburg-Landau functionals it is well known
that, as ε → 0, the dynamics becomes slower and slower, and in order to
capture a non trivial dynamics it is needed to scale the time by | log ε| (see
for instance [60]). In our discrete in time evolution, with τ � ε, it turns
out that the natural scaling involves the time step τ instead of the length
scale ε. Such a time-scaling is plugged into the discrete dynamics through
the 1/| log τ | pre-factor in front of the L2 dissipation.

As in Section 4.2, we want to consider the limit as ε → 0 of such a
discrete gradient flow. To this purpose, we will exploit the Γ-convergence
analysis developed in Section 2.3.3. The limit dynamics will be described
by a discrete gradient flow (that we shall define in the following) of the
functional W (defined in (2.55)).

Let v0 ∈ DM (see (2.54)) be an initial condition with W(v0) < +∞, and
let uε,0 be a recovery sequence for v0 in the sense of (2.59). We will show that
the solutions uτε,k of the L2 discrete gradient flow of Fε from uε,0 converge

(according with the topology of our Γ-convergence analysis in Subsection
2.3.3) to some limit vτk . Moreover, at each time step k, vτk ∈ DM , the Γ-limit
W is finite, and the degrees of the singularities coincide with the degrees di,0
of the initial datum. Finally, {vτk} is a solution of the L2 discrete gradient
flow according with the following definition.

Definition 4.16. Let δ, τ > 0 and K ∈ N. We say that {vτk}, with k =
0, 1, . . . ,K, is a solution of the L2 discrete gradient flow of W from v0 if
vτ0 = v0 and, for any k = 1, . . . ,K, vτk satisfies

vτk ∈ argmin
{
W(v) +

‖v − vτk−1‖2L2

2τ | log τ | : Jv =
M∑

i=1

di,0δyi,k , yi,k ∈ Ω,

v ∈ H1
loc(Ω \ ∪Mi=1{yi,k};S1), ‖Jv − Jvτk−1‖flat ≤ δ

}
.

(4.40)

As in Section 4.2, we first do the asymptotic analysis as τ → 0. In
contrast with the flat gradient flow of W , such step will require a big effort,
and will involve many ingredients developed in [60].

4.3.1. L2 discrete gradient flow of W. Let v0 ∈ DM with Jv0 =∑M
i=1 di,0δxi,0 , and fix δ > 0 such that (4.24) holds true.

Definition 4.17. We say that a solution of the L2 discrete gradient flow
{vτk} of W from v0 is maximal if the minimum problem in (4.40) does not
admit a solution for k = K + 1.

Let {vτk} be a maximal solution of the L2 discrete gradient flow of W
from v0, let Jvτk :=

∑M
i=1 di,0δxτi,k , and let kτδ be defined as in (4.25).

Remark 4.18. Since for any i = 1, . . . ,M , we have that |di,0| = 1 and
thanks to the constraint ‖Jvτk − Jvτk−1‖flat ≤ δ, we get that at each step
k = 1, . . . , kτδ and for each singularity xτi,k−1 of Jvτk−1, there is exactly one
singularity of Jvτk whose distance from xτi,k−1 is less than δ. We label this
singularity xτi,k.
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The above remark guarantees that the following definition is well posed.

Definition 4.19. We set xτk := (xτ1,k, . . . , x
τ
M,k), where xτi,k are labeled ac-

cording with Remark 4.18. Moreover, we define xτ (t) := (xτ1(t), . . . , xτM (t))
as the piecewise affine in time interpolation of {xτk}.

As in Section 4.2 we have that xτk ∈ Kδ , where Kδ is defined in (4.27).
Moreover, the energy W is clearly decreasing in k. Since, for every k =
1, . . . , kτδ we have

‖vτk − vτk−1‖2L2

2τ | log τ | ≤ W(vτk−1)−W(vτk),

then

kτδ∑

k=1

‖vτk − vτk−1‖2L2

2τ | log τ | ≤ W(v0)−W(vτkτδ
)

≤ W(v0)−W (xτkτδ
) ≤ W(v0)−W (x0) + Cδ , (4.41)

where Cδ is defined in (4.28).

Proposition 4.20. For every k = 0, 1, . . . , kτδ we have that ‖Jvτk−Jvτk−1‖flat <

C
√
τ | log τ |, where C > 0 depends only on δ (and on the initial condition

v0).

Proof. Fix 1 ≤ k ≤ kτδ and 1 ≤ i ≤ M . Set ρτi,k := 1
4dist(xτi,k, x

τ
i,k−1).

Note that

deg(vτk , ∂Bρτi,k(xτi,k)) 6= 0 = deg(vτk−1, ∂Bρτi,k(xτi,k)) . (4.42)

Moreover, since W(vτk) ≤ W(v0), from (2.57) we have that
∫

B2ρτ
i,k

(xτ
i,k

)\Bρτ
i,k

(xτi,k)
(|∇vτk |2 + |∇vτk−1|2) dx ≤ 2W(v0) + C . (4.43)

As a consequence of (4.42) and (4.43), we have that

(dist(xτi,k, x
τ
i,k−1))2 ≤ C

∫

B2ρτ
i,k

(xτ
i,k

)\Bρτ
i,k

(xτi,k)
|vτk − vτk−1|2 dx . (4.44)

Indeed, if by contradiction (4.44) does not hold, by a scaling argument we
could find two sequences {wn1 } and {wn2 } of functions in H1(B2 \ B1;S1)
such that∫

B2\B1

(|∇wn1 |2 + |∇wn2 |2) dx ≤ 2W(v0) +C,

∫

B2\B1

|wn1 −wn2 |2 dx→ 0 ,

and such that deg(wn1 , ∂Bρ) 6= deg(wn2 , ∂Bρ) for almost every ρ ∈ [1, 2]. This
is impossible in view of the stability of the degree with respect to uniform
convergence for continuous maps from S1 to S1.

Now, from (4.41) we have that
∫

B2ρτ
i,k

(xτ
i,k

)\Bρτ
i,k

(xτi,k)
|vτk − vτk−1|2 dx ≤ Cτ | log τ |,
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which together with (4.44) yields

‖Jvτk − Jvτk−1‖flat ≤ C
√
τ | log τ | . (4.45)

�

For every k = 0, 1, . . . , kτδ we set

Dτ
k :=W(vτk)−W (xτk). (4.46)

Moreover, set T̃δ := lim infτ→0 k
τ
δ τ , and define for any t ∈ [0, T̃δ), the energy

excess

D(t) = lim sup
τ→0

Dτ
bt/τc ≥ 0. (4.47)

Since W(vτk) ≤ W(v0), by (4.26) we have

Dτ
k =W(vτk)−W (xτk) ≤ W(v0)−W (xτk) ≤ D(0) + Cδ , (4.48)

where Cδ is defined in (4.28). From now on we will say that an initial
condition v0 is well prepared if W (x0) =W(v0), i.e., D(0) = 0.

We are in a position to state the main theorem of this section, which is
the analogous of Theorem 1.14 in our case of discrete topological singulari-
ties.

Theorem 4.21. Let v0 be a well prepared initial condition. Let {vτk}τ>0 be
a family of maximal solutions of the L2 discrete gradient flow of W from v0.
Then,

T̃δ := lim inf
τ→0

kτδ τ ≥ Tδ, (4.49)

where kτδ is defined in (4.25) and Tδ is defined in (4.32).

Moreover, for every 0 < T < T̃δ, x
τ → x uniformly on [0, T ], where

xτ is defined in Definition 4.19, and x is the solution of the gradient flow
of W from x0 according with Definition 4.10. Finally, D(t) = 0 for every

0 ≤ t < T̃δ and T̃δ → T ∗ as δ → 0.

Remark 4.22. As a consequence of the uniform convergence of xτ and the
estimate (4.45), one can prove that the 1-current associated to the polygonal
xτ (with the natural orientation and multiplicity given by the integers di,0),
converges to the current associated to the limit x in the flat norm.

The proof of Theorem 4.21 is postponed at the end of the section, and
will be obtained as a consequence of Theorem 4.23 below, which can be
regarded as the discrete in time counterpart of Theorem 1.13.

Theorem 4.23. Let v0 be a well prepared initial datum, i.e., with W (x0) =
W(v0). Let {vτk}τ>0 be solutions of the L2 discrete gradient flow for W from
v0, let T > 0 be such that kτδ ≥ bT/τc for every τ , and assume that xτ → x

uniformly in [0, T ] for some x(t) ∈ H1([0, T ]; ΩM ). Moreover, assume that
(i) and (ii) below are satisfied:

(i) ( Lower bound) For any s ∈ [0, T ]

lim inf
τ→0

τ

| log τ |

b s
τ
c∑

k=1

∥∥∥∥
vτk − vτk−1

τ

∥∥∥∥
2

L2

≥ π
∫ s

0
|ẋ(t)|2 dt .
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(ii) ( Construction) For any k = 0, 1, . . . , bT/τc − 1, there exists a
field wτk+1 ∈ H1

loc(Ω \∪Mi=1{xτi,k− τ
π∂xiW (xτk)};S1) and a constant

Mδ > 0 such that

W(vτk)−W(wτk+1) ≥ τ

π
|∇W (xτk)|2 − τMδD

τ
k + o(τ),

1

| log τ |

∥∥∥∥
wτk+1 − vτk

τ

∥∥∥∥
2

L2

≤ 1

π
|∇W (xτk)|2 + o(1).

Then, D(t) = 0 for every t ∈ [0, T ], and x(t) is a solution of the gradient
flow (4.23) of W from x0 on [0, T ].

Proof. By (ii) and by the minimality of vτk+1, we have

W(vτk)−W(vτk+1) =W(vτk)−W(wτk+1) +W(wτk+1)−W(vτk+1)

≥ τ

π
|∇W (xτk)|2− τ

2| log τ |

∥∥∥∥
wτk+1 − vτk

τ

∥∥∥∥
2

L2

+
τ

2| log τ |

∥∥∥∥
vτk+1 − vτk

τ

∥∥∥∥
2

L2

−τMδD
τ
k+o(τ)

≥ τ

2π
|∇W (xτk)|2 +

τ

2| log τ |

∥∥∥∥
vτk+1 − vτk

τ

∥∥∥∥
2

L2

− τMδD
τ
k + o(τ).

Now, let s ∈ [0, T ]. Summing over k = 0, 1, . . . , bs/τc − 1, we have

W(vτ0 )−W(vτbs/τc) ≥
1

2π

∫ τbs/τc−τ

0
|∇W (xτbt/τc)|2 dt

+
τ

2| log τ |

bs/τc−1∑

k=0

∥∥∥∥
vτk+1 − vτk

τ

∥∥∥∥
2

L2

−Mδ

∫ τbs/τc−τ

0
Dτ
bt/τc dt+ o(1).

By the uniform convergence of xτ to x in [0, T ] and the fact that x ∈ H1, we
have that also xτb·/τc → x uniformly in [0, T ]. Hence, passing to the lim inf

as τ → 0, using (i) and (4.48), we get

lim inf
τ→0

(W(vτ0 )−W(vτbs/τc)) ≥
1

2

∫ s

0

1

π
|∇W (x(t))|2 + π|ẋ(t)|2 dt

−Mδ

∫ s

0
D(t) dt,

(4.50)

where D(t) is defined in (4.47).
Since W(vτ0 ) =W(v0) = W (x0) = W (x(0)), we have immediately that

lim inf
τ→0

(W(vτ0 )−W(vτbs/τc)) = W (x(0))−W (x(s))−D(s). (4.51)

Combining this with (4.50) yields

W (x(0))−W (x(s))−D(s) ≥1

2

∫ s

0

1

π
|∇W (x(t))|2 + π|ẋ(t)|2 dt

−Mδ

∫ s

0
D(t) dt.

(4.52)

Since

W (x(0))−W (x(s)) =

∫ s

0
〈−∇W (x(t)), ẋ(t)〉dt

≤ 1

2

∫ s

0

1

π
|∇W (x(t))|2 + π|ẋ(t)|2 dt,

(4.53)
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then,

D(s) ≤Mδ

∫ s

0
D(t) dt.

Since D(0) = 0 by assumption, from Gronwall’s lemma we find that D(s) =
0 for all s ∈ [0, T ].

Using that D(s) = 0, by (4.52) and (4.53) we obtain
∫ s

0
| 1√
π
∇W (x(t)) +

√
π ẋ(t)|2 dt ≤ 0,

and hence ẋ(t) = − 1
π∇W (x(t)) a.e. in [0, T ]. �

The following propositions are devoted to shows that the hypothesis
of Theorem 4.23 are satisfied by the L2 discrete gradient flow defined in
Definition 4.16.

Proposition 4.24. Let {vτk}τ>0 be a family of maximal solutions of the L2

discrete gradient flow of W from v0, let kτδ be as in (4.25), and let xτ be
defined as in Definition 4.19. Then

T̃δ = lim inf
τ→0

kτδ τ ≥ π
c2
δ

Cδ
, (4.54)

where Cδ and cδ are defined in (4.28) and (4.24) respectively.

Moreover, there exists a map x ∈ H1([0, T̃δ]; ΩM ) such that, up to a

subsequence, xτ → x uniformly on [0, T ] for every 0 < T < T̃δ and

lim inf
τ→0

τ

| log τ |

bT
τ
c∑

k=1

∥∥∥∥
vτk − vτk−1

τ

∥∥∥∥
2

L2

≥ π
∫ T

0
|ẋ(t)|2 dt. (4.55)

Proof. The starting point of the proof consists in applying Theorem
1.15 to piecewise affine interpolations in time of suitable regularizations of
vτk . Clearly, the Ginzburg-Landau energy of vτk is not bounded. By the very
definition of W, we have

1

2

∫

Ω\∪iBτ (xτi,k)
|∇vτk |2 dx−Mπ| log τ | ≤ W(vτk) ≤ W(v0).

Moreover, the Dirichlet energy stored in Bτ (xτi,k) \ Bτ/2(xτi,k) is bounded.
Therefore, by standard cut off arguments, we can easily construct fields v̂τk
which coincide with vτk in Ω \∪iBτ (xτi,k), are equal to zero in Bτ/2(xτi,k) and
satisfy

1

2

∫

Ω
|∇v̂τk |2 dx ≤Mπ| log τ |+ C. (4.56)

Then, we consider the piecewise affine in time interpolation v̂τ : [0,+∞) ×
Ω→ R2 of v̂τk defined by

v̂τ (t, x) :=





(1− t− kτ
τ

)v̂τk(x) +
t− kτ
τ

v̂τk+1(x) if kτ ≤ t ≤ (k + 1)τ ≤ kτδ τ ,
v̂τkτδ

(x) if t > kτδ τ .

For every fixed t > 0, we denote by µ̂τ (t) the (space) Jacobian of v̂τ .
We will prove the theorem in several steps.
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Step 1. There exists a map x ∈ C0, 1
2 ([0,+∞); ΩM ) such that up to a subse-

quence, for every T > 0 we have

µ̂τ (t)
flat→ µ(t) := π

M∑

i=1

di,0δxi(t) for every t ∈ [0, T ] . (4.57)

Fix T > 0. By the convexity of the Dirichlet energy and by (4.56), it follows
that for any t ∈ [0, T ]

1

2

∫

Ω
|∇v̂τ (t, x)|2 dx ≤Mπ| log τ |+ C. (4.58)

Moreover, by the definition of v̂τk , it follows that for any k = 0, . . . , kτδ − 1
∥∥v̂τk+1 − v̂τk

∥∥2

L2 ≤
∥∥vτk+1 − vτk

∥∥2

L2 + Cτ2;

therefore, by (4.41), we get

∫

[0,T ]×Ω
|∂tv̂τ |2 dt dx =

kτδ−1∑

k=0

τ

∥∥∥∥
v̂τk+1 − v̂τk

τ

∥∥∥∥
2

L2

≤ C| log τ | .

It is easy to see that for every t ∈ [kτ, (k + 1)τ ]

1

τ

∫

Ω
(1− |v̂τ (t, x)|2)2 dx ≤ C

τ

∥∥v̂τk+1 − v̂τk
∥∥2

L2 ≤ C| log τ |. (4.59)

In conclusion, for every t ∈ [0, T ] we have

1

2

∫

Ω
|∇v̂τ |2 +

1

τ
(1− |v̂τ |2)2 dx ≤ C| log τ |

∫

[0,T ]×Ω
|∂tv̂τ |2 dtdx ≤ C| log τ |.

By Theorem 1.15 applied with ε =
√
τ and recalling that µ(0) = µ0 =∑M

i=1 di,0δxi,0 , we deduce that

µ(t) = π

M(t)∑

i=1

diδxi(t), for all t ∈ [0, T ]

for some xi(t) ∈ C0, 1
2 ([0, Ti); Ω) with Ti ≤ T . Here Ti represents the first

time when xi(t) reaches ∂Ω. Finally, by construction xi(t) are defined on
[0, T ], distinct, and contained in Ω. The conclusion follows by a standard
diagonalization argument.

Step 2. Set

T̂δ := inf

{
t ∈ [0,+∞) : min{1

2
disti 6=j(xi(t), xj(t)),dist(xi(t), ∂Ω)} ≤ 2δ

}
.

Then, T̃δ ≥ T̂δ > 0.

Since x ∈ C0, 1
2 and x(0) = x0 satisfies

min{1

2
disti 6=j(xi,0, xj,0),dist(xi,0, ∂Ω)} > 2δ,
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we have T̂δ > 0. Fixed t > T̃δ, by construction and Step 1 we have that

µ̂τ (t) = µ̂τkτδ τ
flat→ π

M∑

i=1

di,0δxi(T̃δ). (4.60)

Set µτ (t) := π
∑M

i=1 di,0δxτi (t) for t ≤ kτδ τ , where xτi are defined in Defini-

tion 4.19. Let 0 ≤ k ≤ kτδ . Since supp(µ̂τ (kτ)), supp(µτ (kτ)) ⊆ ∪iBτ (xτi,k)

and µ̂τ (kτ)(Bτ (xτi,k)) = µτ (kτ)(Bτ (xτi,k)), for any ϕ ∈ C0,1
c (Ω) we have

〈µ̂τ (kτ)− µτ (kτ), ϕ〉 =

M∑

i=1

〈µ̂τ (kτ)− µτ (kτ), ϕ− ϕ̄i〉

≤ (|µ̂τ (kτ)|(Ω) + |µτ (kτ)|(Ω)) τ‖∇ϕ‖L∞ ,
where ϕ̄i denotes the average of ϕ on Bτ (xτi,k). Since, by Remark 2.8, we
have

|µ̂τ (kτ)|(Ω) ≤ C
M∑

i=1

∫

Bτ (xτi,k)\B τ
2

(xτi,k)
|∇v̂τk |2 dx ≤ C ,

we deduce that

max
k=0,1,...,kτδ

‖µ̂τ (kτ)− µτ (kτ)‖flat ≤ Cτ . (4.61)

This fact together with (4.60) yields

M0∑

i=1

di,0δxτ
i,kτ
δ

flat→
M∑

i=1

di,0δxi(T̃δ).

Therefore, by the very definition of kτδ , we have that for every t > T̃δ

min{1

2
disti 6=j(xi(t), xj(t)),dist(xi(t), ∂Ω)} ≤ 2δ.

By continuity, the previous inequality holds also for t = T̃δ, so that we
conclude that T̃δ ≥ T̂δ > 0.

Step 3. xτ → x uniformly on the compact subsets of [0, T̃δ).
Let us show that

max
k=0,1,...,kτδ

‖µ̂τ (kτ)− µ(kτ)‖flat =: ‖µ̂τ (k̄ττ)− µ(k̄ττ)‖flat → 0 . (4.62)

Up to a subsequence we can assume that k̄ττ converges to some t0 ∈ [0, T̃δ].
The fields

ṽτ (t, x) :=

{
v̂τ (t, x) if t ≤ k̄ττ
v̂τ (k̄ττ, x) if t > k̄ττ

(4.63)

satisfy the assumptions of Theorem 1.15, applied with ε =
√
τ ; therefore,

denoting by µ̃τ (t) the (space) Jacobian of ṽτ , we have that, up to a subse-
quence,

µ̃τ (t)
flat→ µ̃(t) :=

{
µ(t) if t ≤ t0
µ(t0) if t > t0 ,

(4.64)
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where the structure of µ̃ is a consequence of the continuity guaranteed by
Theorem 1.15. From (4.64) one can easily prove that µ̂τ (k̄ττ) − µ(t0) con-
verges to zero in the flat norm and hence we get (4.62). Combining (4.61)
with (4.62) we also deduce that

max
k=0,1,...,kτδ

‖µτ (kτ)− µ(kτ)‖flat → 0. (4.65)

Moreover, by the construction of µτ and (4.20), we have that

max
t∈[0,kτδ τ ]

‖µτ (t)− µτ (bt/τcτ)‖flat → 0. (4.66)

Using (4.66), (4.65) and that maxt∈[0,kτδ τ ] ‖µ(bt/τcτ)− µ(t)‖flat → 0, by the
triangular inequality we conclude that

max
t∈[0,kτδ τ ]

|xτ (t)− x(t)| = max
t∈[0,kτδ τ ]

‖µτ (t)− µ(t)‖flat → 0.

Step 4. The function x belongs to H1([0, T̃δ]; ΩM ), and, for any T ∈ [0, T̃δ],

(4.55) holds true. In particular, T̃δ ≥ πc2
δ/Cδ.

The proof of this step is obtained as a consequence of Proposition 1.17
applied to the fields v̂τ , with ε = τ and T̃ = T̃δ. By (4.41) and recalling
(4.59), it easily follows that

1

τ2

∫ T̃δ

0

∫

Ω
(1− |v̂τ |2)2 dx dt ≤ C

kτδ∑

k=1

τ

∥∥∥∥
v̂τk+1 − v̂τk

τ

∥∥∥∥
2

L2

≤ C| log τ |;

and hence (1.21) holds with ε = τ and wε = vτ . This fact together with
(4.57) and (4.58) guarantees that the hypothesis of Proposition 1.21 are
satisfied. Therefore, we deduce that (4.55) holds true with vτk replaced by
v̂τk . Since ‖v̂τk − vτk‖L2 = O(τ2), we deduce (4.55).

Finally, by (4.41) and recalling (4.28), we have

π

∫ T

0
|ẋ(t)|2 dt ≤ lim inf

τ→0

τ

| log τ |

bT
τ
c∑

k=1

∥∥∥∥
vτk − vτk−1

τ

∥∥∥∥
2

L2

≤ lim inf
τ→0

(W(v0)−W(vτbT
τ
c)) ≤ lim inf

τ→0
(W (x0)−W (xτbT

τ
c)) ≤ Cδ.

(4.67)

By Hölder inequality, and recalling (4.24), we conclude

cδ ≤ |x(T̃δ)− x(0)| ≤
∫ T̃δ

0
|ẋ| dt ≤ ‖ẋ‖L2([0,T̃δ];R2M )

√
T̃δ. (4.68)

By (4.67) and (4.68) we immediately get (4.54) �

Since we have proved assumption (i) in Theorem 4.24, it remains to
prove only assumption (ii). To this aim, at each time step k = 0, 1, . . . , kτδ ,
we construct, a field wτk+1 whose vortices are obtained translating xτi,k in the

direction of the renormalized energy ∇W (xτk). The variation of the energy
W associated to the fields vτk and wτk+1 is proportional to the distance among
the vortices of the two functions (i.e. |∇W (xτk)|) up to an error given by the
energy excess Dτ

k defined in (4.48).
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Proposition 4.25. For any k = 0, 1, . . . , kτδ − 1, there exists a field wτk+1 ∈
H1

loc(Ω \
⋃M
i=1

{
xτi,k − τ

π∂xiW (xτk)
}

;S1) such that

W(vτk)−W(wτk+1) ≥ τ

π
|∇W (xτk)|2 −MδτD

τ
k + o(τ) (4.69)

∥∥wτk+1 − vτk
∥∥2

L2

τ2| log τ | ≤ 1

π
|∇W (xτk)|2 + o(1), (4.70)

where Mδ is a positive constant depending only on δ.

Proof. Fix k ∈ {0, 1, . . . , kτδ − 1}; to ease notation we set

Vi = (Vi1, Vi2) := − 1

π
∂xiW (xτk), V := (V1, . . . , VM ). (4.71)

With a little abuse of notation, from now on we will set xi := xτi,k and

yi = xi + τVi for every i = 1, . . . ,M . By (4.25), the balls Bδ/2(xi) are
pairwise disjoint and contained in Ω.

In order to construct the field wτk+1, we wish to “push” the vortices
xi along the direction Vi. For every i = 1, . . . ,M , we can find smooth,
compactly supported vector fields in Ω, Xi1 and Xi2 such that

Xi1(x) = (1, 0) Xi2(x) = (0, 1) for x ∈ Bδ/2(xi),

Xi1(x) = Xi2(x) = (0, 0) for x ∈ Bδ/2(xj), j 6= i

and such that ‖∇Xij‖L∞ ≤ 2
δ for every i, j = 1, . . . ,M . Then, we define

XV =
∑M

i=1

∑
j=1,2VijXij . Since W is smooth in Kδ (see (4.27)), there exists

a constant Mδ depending only on δ such that

‖ det∇XV ‖L∞ ≤
1

2
Mδ . (4.72)

For any t ∈ [0, τ ], we define χt(x) := x+ tXV (x) for every x ∈ Ω; notice that
χt(x) = x+ tVi for x ∈ Bδ/2(xi). For any t ∈ [0, τ ] let Φt be the solution of

{
∆Φt = 2π

∑M
i=1 di,0δxi+tVi in Ω

Φt = 0 on ∂Ω

and

Rt(x) := Φt(x)−
M∑

i=1

di,0 log |x− xi − tVi|. (4.73)

By definition Rt are smooth harmonic functions in Ω; we denote by R̃t theirs
harmonic conjugates with zero average in Ω. Moreover, we denote by θti the

polar coordinates centered at xi+ tVi and set Φ̃t :=
∑M

i=1 di,0θ
t
i + R̃t. Notice

that ∇Φ̃t is nothing but the π/2 rotation of ∇Φt. We define

ψt(·) = Φ̃t(χt(·))− Φ̃0(·). (4.74)

Notice that ψt is a smooth function in Ω, the singularities at xi canceling
out, and that it is smooth in space-time. In particular, using (4.26) one can
show that, for τ small enough, there exists a constant C depending only on
δ such that

sup
t∈[0,τ ]

(
‖∇ψt‖L∞(Ω) + ‖ d

dt
ψt‖L∞(Ω)

)
≤ C . (4.75)
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For any 0 < σ < δ, we define Ωt
σ := Ω \ ∪Mi=1Bσ(xi + tVi). By definition

of Φ̃t, the renormalized energy associated to the configuration xτk + tV is
given by

W (xτk + tV ) = lim
σ→0

1

2

∫

Ωtσ

|∇Φ̃t|2 −Mπ| log σ|. (4.76)

Since vτk ∈ H1(Ω0
σ;S1), there exist a family {Li}i=1,...,M of cuts of the

domain Ω (Li is a segment from xi to ∂Ω) and a function ϕ0 ∈ H1(Ω0
σ \

∪Mi=1 {Li} ;R) such that vτk = eiϕ
0
.

Recalling (4.74), we introduce the field wτk+1 defined by the following
identity (notice that χτ is invertible for τ small enough)

wτk+1(χτ (x)) := vτk(x)eiψ
τ (x) = ei(ϕ

0(x)+ψτ (x)). (4.77)

By definition, wτk+1 ∈ H1(Ωτ
σ;S1) and Jwτk+1 =

∑M
i=1 di,0δyi .

We notice that if ϕ0 = Φ̃0, then by (4.76) we get

W(vτk)−W(wτk+1) = lim
σ→0

1

2

∫

Ω0
σ

|∇vτk |2 dx− 1

2

∫

Ωτσ

|∇wτk+1|2 dy(4.78)

= lim
σ→0

1

2

∫

Ω0
σ

|∇Φ̃0|2 dx− 1

2

∫

Ωτσ

|∇Φ̃τ |2 dy

= W (xτk)−W (xτk + τV ). (4.79)

Recalling (4.26) and (4.27), by Taylor expansion we conclude

W (xτk)−W (xτk −
τ

π
∇W (xτk)) =

τ

π
|∇W (xτk)|2 + O(τ2). (4.80)

We show now that wτk+1 satisfies (4.69) even when vτk is not optimal in
energy. To this purpose, we show that the difference W(vτk)−W(wτk+1) can
be bounded from below by the variation of the renormalized energy up to
an error given by the defect Dτ

k defined in (4.46). More precisely, set

Dτ
σ,k :=

1

2

∫

Ω0
σ

(|∇ϕ0|2 − |∇Φ̃0|2) dx, (4.81)

so that Dτ
k = limσ→0D

τ
σ,k. We want to prove that, for 0 < σ � τ ,

1

2

∫

Ω0
σ

|∇vτk |2 dx− 1

2

∫

Ωτσ

|∇wτk+1|2 dy ≥ 1

2

∫

Ωσ

|∇Φ̃0|2 dx

− 1

2

∫

Ωτσ

|∇Φ̃τ |2 dy −MδτD
τ
σ,k + O(

√
σ| log σ|).

(4.82)

Notice that, taking the limit as σ → 0 in (4.82), we get

W(vτk)−W(wτk+1) ≥W (xτk)−W (xτk − τ∇W (xτk))−MδτD
τ
k ,

which, in view of (4.80), concludes the proof of (4.69).
We now prove (4.82). By the change of variable y = χτ (x) and by

definition of wτk+1 in (4.77), we get

1

2

∫

Ωτσ

|∇wτk+1|2 dy =
1

2

∫

Ω0
σ

|∇wτk+1(χτ )|2|Jχτ |dx

=
1

2

∫

Ω0
σ

|∇ϕ0 +∇ψτ |2|Jχτ |dx (4.83)
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We claim that the following two estimates hold.

1

2

∫

Ω0
σ

|∇ϕ0|2|Jχτ | dx ≤
1

2

∫

Ω0
σ

|∇Φ̃0|2|Jχτ | dx+ (1 +Mδτ)Dτ
σ,k, (4.84)

∫

Ω0
σ

〈∇ψτ ,∇ϕ0〉|Jχτ | dx =

∫

Ω0
σ

〈∇ψτ ,∇Φ̃0〉|Jχτ |dx+O(
√
σ| log σ|). (4.85)

By (4.84) and (4.85), we conclude the proof of (4.82) as follows: Using (4.74)
and the change of variables y = χτ (x), by (4.83) we get

1

2

∫

Ωτσ

|∇wτk+1|2 dy

≤ 1

2

∫

Ω0
σ

|∇Φ̃0 +∇ψτ |2|Jχτ |dx+ (1 +Mδτ)Dτ
σ,k + O(

√
σ| log σ|)

=
1

2

∫

Ωτσ

|∇Φ̃τ |2 dy + (1 +Mδτ)Dτ
σ,k + O(

√
σ| log σ|) . (4.86)

By (4.81) and straightforward algebraic manipulations we obtain (4.82).
Now, we will prove the claims (4.84) and (4.85). Claim (4.84) follows by

1

2

∫

Ω0
σ

(|∇ϕ0|2 − |∇Φ̃0|2)|Jχτ |dx ≤ ‖Jχτ‖L∞Dτ
σ,k

≤ (1 +
1

2
Mδτ +O(τ2))Dτ

σ,k ≤ (1 +Mδτ)Dτ
σ,k.

We pass to the proof of (4.85). We have

∫

Ω0
σ

〈∇ψτ ,∇ϕ0〉|Jχτ | dx

=

∫

Ω0
σ

〈∇ψτ ,∇Φ̃0〉|Jχτ |dx+

∫

Ω0
σ

〈∇ψτ ,∇ϕ0 −∇Φ̃0〉|Jχτ |dx. (4.87)

Using again that ‖Jχτ‖L∞ ≤ 1 +Mδτ and Hölder inequality, we get

∫

Ω0
σ

〈∇ψτ ,∇ϕ0 −∇Φ̃0〉|Jχτ |dx

≤ (1 +Mδτ)

(∫

Ω0
σ

|∇ψτ |2 dx

) 1
2
(∫

Ω0
σ

|∇ϕ0 −∇Φ̃0|2 dx

) 1
2

. (4.88)

Moreover, since W(vτk) ≤ W(v0), we have

∫

Ω0
σ

|∇ϕ0 −∇Φ̃0|2 dx ≤ 2

∫

Ω0
σ

(|∇ϕ0|2 + |∇Φ̃0|2) dx

≤ 4W(v0) + 4Mπ| log σ|+ oσ(1).

By (4.74), since XV has compact support in Ω we have

∂ψt

∂ν
=
∂Φt

∂ν⊥
− ∂Φ

∂ν⊥
= 0 on ∂Ω .
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Therefore, in view of (4.75),

∫

Ω0
σ

|∇ψτ |2 dx =

∫

∂Ω
ψτ
∂ψτ

∂ν
ds−

M∑

i=1

∫

Bσ(xi)
|∇ψτ |2 ds ≤ Cσ2.

Combining the above estimates with (4.87) and (4.88) we get (4.85).
To complete the proof it remains to show that (4.70) holds. By definition

of wτk+1(x) (see (4.77)), we have immediately

∥∥vτk − wτk+1

∥∥2

L2 =

∫

Ω

∣∣∣vτk − vτk(χ−1
τ )eiψ

τ (χ−1
τ )
∣∣∣
2

dy

=

∫

Ω

∣∣vτk − vτk(χ−1
τ )
∣∣2 dy (4.89)

+

∫

Ω

∣∣∣vτk(χ−1
τ )− vτk(χ−1

τ )eiψ
τ (χ−1

τ )
∣∣∣
2

dy (4.90)

+ 2

∫

Ω
〈vτk − vτk(χ−1

τ ), vτk(χ−1
τ )− vτk(χ−1

τ )eiψ
τ (χ−1

τ )〉dy. (4.91)

In order to prove (4.70) it is enough to show that

∫
Ω

∣∣vτk − vτk(χ−1
τ )
∣∣2 dy ≤ πτ2| log τ | |V |2 + o(τ2| log τ |) , (4.92)

∫
Ω

∣∣∣vτk(χ−1
τ )− vτk(χ−1

τ )eiψ
τ (χ−1

τ )
∣∣∣
2

dy ≤ Cτ2; (4.93)

indeed, once we got (4.92) and (4.93), by Hölder inequality, we have imme-

diately that the integral in (4.91) is O(τ2
√
| log τ |).

First, we prove (4.93). By the change of variable y = χτ (x) and the fact
that ψ0 = 0, in view of (4.75), we obtain

∫

Ω

∣∣∣vτk(χ−1
τ )− vτk(χ−1

τ )eiψ
τ (χ−1

τ )
∣∣∣
2

dy =

∫

Ω

∣∣∣1− eiψτ
∣∣∣
2
|Jχτ | dx

≤ (1 +Mδτ)‖ d

dt
ψt‖2L∞(Ω)τ

2|Ω| ≤ Cτ2 .

Finally, to complete the proof of the Theorem it remains to show that (4.92)
holds. By Hölder inequality, we have

∫

Ω\∪iBδ/2(yi)
|vτk − vτk(χ−1

τ )|2 dy

≤
∫

Ω\∪iBδ/2(yi)
τ

∫ τ

0
|∇vτk(χ−1

t )|2‖ d

dt
χ−1
t ‖2L∞ dy dt

≤ C(1 +Mδτ)τ2(W(vτk) +Mπ| log
δ

2
|) ≤ Cτ2 ,

where C depends only on δ and we have used that W(vτk) ≤ W(v0).
In order to complete the proof of(4.92), it is enough to show that
∫

Bδ/2(yi)
|vτk − vτk(χ−1

τ )|2 dy ≤ πτ2| log τ ||Vi|2 + o(τ2| log τ |). (4.94)
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Let N > 0 be given; then, for any i = 1, . . . ,M ,

∫

Bδ/2(yi)
|vτk(χ−1

τ )− vτk |2 dy ≤
∫

Bδ/2(yi)\BNτ (yi)
|vτk(χ−1

τ )− vτk |2 dy + 4N2τ2π.

(4.95)
Without loss of generality we can assume di,0 = deg(vτk , ∂Bδ/2(xi)) = 1.

We first show the estimate (4.94) in the case vτk = x−xi
|x−xi| in Bδ/2(xi). Let

(r, θ) be the polar coordinates with respect to yi; denoting by α = α(r, θ)

the angle between the vectors y−yi
|y−yi| and vτk(y) = y−yi+τVi

|y−yi+τVi| , we have

∫

Bδ/2(yi)\BNτ (yi)

∣∣∣∣
y − yi
|y − yi|

− y − yi + τVi
|y − yi + τVi|

∣∣∣∣
2

dy =

∫ δ/2

Nτ
r dr

∫ 2π

0
4 sin2 α

2
dθ.

(4.96)
Using elementary geometry identities and Taylor expansion, for Nτ ≤ r ≤
δ/2 we get

sinα =
τ |Vi| sin θ

r

1√
1 + τ2|Vi|2

r2 − 2 τ |Vi| cos θ
r

=
τ |Vi| sin θ

r
(1 + O(1/N)),

so that sin2 α
2 = τ2|Vi|2 sin2 θ

4r2 + O(1/N). Therefore, by (4.96) we get

∫

Bδ/2(yi)\BNτ (yi)

∣∣∣∣
y − yi
|y − yi|

− y − yi + τVi
|y − yi + τVi|

∣∣∣∣
2

dy

= τ2|Vi|2
∫ δ/2

Nτ

1

r
dr

∫ 2π

0
sin2 θ dθ + O(1/N)

= πτ2| log τ ||Vi|2 + πτ2 log
δ

2N
|Vi|2 + O(1/N)). (4.97)

Then, (4.94) follows (in the case vτk = x−xi
|x−xi|) by choosing N = | log τ |.

Now, we prove (4.94) in the general case, i.e., without assuming vτk =
x−xi
|x−xi| . Set L := blog2

δ
2Nτ c and let θi be the angle in polar coordinates with

center in yi, i.e., the phase of the function y−yi
|y−yi| . For every l = 1, . . . , L, we

set

Cl(yi) := B2−lδ(yi) \B2−l−1δ(yi), C̃l(yi) := B2−l+1δ(yi) \B2−l−2δ(yi).
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Set ϕ̃0
i,l = 1

|C̃l(yi)|
∫
C̃l(yi)

ϕ0(x) dy and notice that the average of θi is equal

to π. We have

∫

Bδ/2(yi)\BNτ (yi)
|vτk(χ−1

τ )− vτk |2 dy =
L∑

l=1

∫

Cl(yi)
|vτk(χ−1

τ )− vτk |2 dy

=
L∑

l=1

∫

Cl(yi)
|ei(ϕ0(χ−1

τ )−ϕ̃0
i,l+π) − ei(ϕ0−ϕ̃0

i,l+π)|2 dy

=

L∑

l=1

∫

Cl(yi)
|eiθi(χ−1

τ ) − eiθi |2 dy

+

∫

Cl(yi)
|ei(ϕ0(χ−1

τ )−ϕ̃0
i,l+π) − ei(ϕ0−ϕ̃0

i,l+π) − (eiθi(χ
−1
τ ) − eiθi)|2 dy

+2

∫

Cl(yi)
〈eiθi(χ−1

τ )−eiθi , ei(ϕ0(χ−1
τ )−ϕ̃0

i,l+π)−ei(ϕ0−ϕ̃0
i,l+π)−(eiθi(χ

−1
τ )−eiθi)〉 dy .

Estimating the last term of the right hand side of the above formula by
Hölder’s inequality and recalling (4.97), in order to prove (4.94) it is enough
to show the following estimate

L∑

l=1

∫

Cl(yi)

∣∣∣ei(ϕ
0(χ−1

τ )−ϕ̃0
i,l+π) − ei(ϕ0−ϕ̃0

i,l+π) − (eiθi(χ
−1
τ ) − eiθi)

∣∣∣
2

dy ≤ Cτ2 .

By definition of χτ , for any y ∈ Cl(yi), χ−1
τ (y) = y − τVi and then

ei(ϕ
0(χ−1

τ (y))−ϕ̃0
i,l+π) − ei(ϕ0(y)−ϕ̃0

i,l+π) = −
∫ τ

0
∇ei(ϕ0(y−tVi)−ϕ̃0

i,l+π) · Vi dt ,

eiθi(χ
−1
τ (y)) − eiθi(y) = −

∫ τ

0
∇eiθi(y−tVi) · Vi dt ;

then, by Jensen and Cauchy inequalities,

∫

Cl(yi)

∣∣∣ei(ϕ
0(χ−1

τ )−ϕ̃0
i,l+π) − ei(ϕτk−ϕ̃0

i,l+π) − (eiθi(χ
−1
τ ) − eiθi)

∣∣∣
2

dy

=

∫

Cl(yi)

∣∣∣∣
∫ τ

0
(∇eiθi(y−tVi) −∇ei(ϕ0(y−tVi)−ϕ̃0

i,l+π)) · Vi dt

∣∣∣∣
2

dy

≤ τ |Vi|2
∫

Cl(yi)
dy

∫ τ

0

∣∣∣∇eiθi(y−tVi) −∇ei(ϕ
0(y−tVi)−ϕ̃0

i,l+π)
∣∣∣
2

dt

≤ τ2|Vi|2
∫

C̃l(yi)

∣∣∣∇eiθi −∇ei(ϕ
0−ϕ̃0

i,l+π)
∣∣∣
2

dy. (4.98)
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Furthermore

L∑

l=1

∫

C̃l(yi)
|∇eiθi −∇ei(ϕ0−ϕ̃0

i,l+π)|2 dy

≤ 2
L∑

l=1

∫

C̃l(yi)
|∇eiθi |2|1− ei(ϕ0−ϕ̃0

i,l+π−θi)|2 dy +

∫

C̃l(yi)
|∇(θi − ϕ0)|2 dy

≤ 2
L∑

l=1

∫

C̃l(yi)
22l+4δ−2|ei(θi−ϕ0)−ei(−ϕ̃0

i,l+π)|2 dy+

∫

C̄l(yi)
|∇(θi−ϕ0)|2 dy,

(4.99)

where the last inequality follows from the fact that |∇eiθi(y)|2 = 1
|y−yi|2 and

that 2−l−2δ ≤ |y − yi| ≤ 2−l+1δ for y ∈ C̃l(xi).
Finally, by Poincaré inequality, it follows that
∫

C̃l(yi)
|ei(θi−ϕ0) − ei(−ϕ̃0

i,l+π)|2 dx

≤
∫

C̃l(xi)
|θi − ϕ0 − (π − ϕ̃0

i,l)|2 dx ≤ C2−2lδ2

∫

C̃l(yi)
|∇(θi − ϕ0)|2 dy ,

(4.100)

where C is a positive constant. By the minimality of θi, we have
∫

C̃l(yi)
|∇(ϕ0 − θi)|2 dy =

∫

C̃l(yi)
|∇ϕ0|2 −

∫

C̃l(yi)
|∇θi|2 dy .

By (4.99) and Remark 2.8, we obtain

L∑

l=1

∫

C̃l(yi)
|∇ei(ϕ0−ϕ̃τi,l+π) −∇eiθi |2 dy

≤ C
L∑

l=1

∫

C̃l(yi)
(|∇ϕ0|2 − |∇θi|2) dy

= C
L∑

l=1

(∫

C̃l(yi)
|∇ϕ0|2 dx− 6π log 2

)
≤ C .

This together with (4.98) concludes the proof. �

We are now in a position to prove Theorem 4.21.

Proof of Theorem 4.21. By Theorems 4.24, 4.25, we can apply The-

orem 4.23 for any T < π
c2δ
Cδ

, and in view of (4.54) we obtain that

1) xτ converges to the solution x of (4.23), uniformly on [0, T ];
2) D(T ) = 0.

Let Tmax ≤ lim infτ→0 k
τ
δ τ be the maximal time such that 1) and 2) holds

true on [0, T ) for every T < Tmax. Recalling (see (4.33)) that Tδ → T ∗ as
δ → 0, it remains only to prove that Tmax ≥ Tδ. This follows by a standard
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continuation argument: Assume by contradiction that Tmax < Tδ, and let
T < Tmax. Then we have

min
t∈[0,Tmax]

min{1

2
disti 6=j(xi(t), xj(t)), dist(xi(t), ∂Ω)} − 2δ = c′δ > 0.

Consider now xτbT/τc, v
τ
bT/τc as the initial condition of a new L2 discrete

gradient flow. Notice that, in view of 2), these initial conditions are well
prepared; the fact that the initial time is not zero is not relevant, since
all the equations are autonomous. Moreover, even if the initial conditions
depend on τ , they converge as τ → 0. Therefore, Theorems 4.24, 4.25, and
Theorem 4.23 still hold true with the obvious modifications, and we easily
deduce that 1) and 2) holds true as long as 0 ≤ t−T ≤ (c′δ)

2/Cδ. This time
interval in which we can extend the solution is independent of T < Tmax,
which contradicts the maximality of Tmax. �

4.3.2. L2 discrete gradient flow of Fε. We conclude this section by
analyzing the existence of the L2 discrete gradient flow of Fε and studying
its asymptotic behaviour as ε → 0. The existence will be obtained for ε
small enough by making use of the auxiliary problem studied in the previous
section. To this aim it is convenient to introduce a relaxed version of such
discrete evolution.

Definition 4.26. Fix δ > 0 and let ε, τ > 0. Given uε,0 ∈ AFε(Ω), we say
that {ūτε,k : k ∈ N}, is a relaxed L2 discrete gradient flow of Fε from uε,0 if

ūτε,0 = uε,0 and, for any k ∈ N, there exists a sequence {uτε,k,n}n such that

lim
n→∞

‖e2πiuτε,k,n − e2πiūτε,k‖L2 = 0,

‖µ(uτε,k,n)− µ(ūτε,k−1)‖flat ≤ δ for every n ∈ N,

lim
n→∞

Fε(u
τ
ε,k,n) +

‖e2πiuτε,k,n − e2πiūτε,k−1‖2L2

2τ | log τ | = Iτε,k ,

(4.101)

where

Iτε,k = inf
u∈AFε(Ω)

{
Fε(u) +

‖e2πiu − e2πiūτε,k−1‖2L2

2τ | log τ | : ‖µ(u)− µ(ūτε,k−1)‖flat ≤ δ
}
.

The existence of such relaxed discrete gradient flow is obvious. To show
that it is actually a strong L2 discrete gradient flow it is enough to show
that ‖µ(ūτε,k)− µ(ūτε,k−1)‖flat ≤ δ. A key argument is given by the following
estimate that one can easly check by contradiction

lim sup
n→+∞

‖µ(uτε,k,n)−µ(ūτε,k)‖flat ≤ Cε]{(i, j) ∈ Ω1
ε : dist(ūτε,k(i)−ūτε,k(j),Z) = 1

2}
(4.102)

Theorem 4.27. Let v0 be such thatW(v0) < +∞ and let Jv0 =
∑M

i=1 di,0δxi,0 =:
µ0 with |di,0| = 1. Let uε,0 ∈ AFε(Ω) such that

µ(uε,0)
flat→ µ0, Fε(uε,0) ≤ π|µ0|(Ω) log ε+ C.

Let δ > 0 be fixed such that min
{

1
2disti 6=j(xi,0, xj,0), dist(xi,0, ∂Ω)

}
> 2δ.

Given τ > 0, let ūτε,k be a relaxed L2 discrete gradient flow of Fε from uε,0.
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Then, up to a subsequence, for any k ∈ N we have µ(ūτε,k)
flat→ µτk, for

some µτk ∈ X with |µτk|(Ω) ≤ M and there exists a maximal L2 discrete
gradient flow, vτk , of W from v0, according with Definition 4.16, such that

µτk = Jvτk =
M∑

i=1

di,0δxτi,k , for every k = 1, . . . , kτδ , (4.103)

with kτδ as defined in (4.25).

Moreover denoting by ṽτε,k the piecewise affine interpolation of e2πiūτε,k ,
we have

ṽτε,k ⇀ vτk in H1
loc(Ω \ ∪Mi=1{xτi,k};R2) , for every k = 1, . . . , kτδ . (4.104)

Finally for τ and ε small enough such ūτε,k is indeed a minimizer of

problem (4.39) and hence it is a (strong) L2 discrete gradient flow.

Proof. The proof of this result uses the first order Γ-convergence result
(Theorem 2.9) and follows closely the proof of the analogous statement in
Section 4.2 (see Theorem 4.14). Indeed by the definition of relaxed L2

discrete gradient flow we have that for any k ∈ N

Fε(ū
τ
ε,k) +

∥∥∥e2πiūτε,k − e2πiūτε,k−1

∥∥∥
2

L2

2πτ | log τ | ≤ Fε(ūτε,k−1).

By induction on k, one can show that

Fε(ū
τ
ε,k) ≤ Fε(uε,0,Ω) ≤Mπ| log ε|+ C .

This estimate together with (4.102) we obtain that ‖µ(ūτε,k)−µ(ūτε,k−1)‖flat ≤
δ+Cε| log ε|. Then using the Compactness result stated in Theorem 2.6(i),
and arguing as in the proof of Theorem 4.14 we deduce (4.103) and (4.104).

In order to show that, for ε small enough, ūτε,k is an L2 discrete gradient
flow according with Definition 4.15, it is enough to recall that thanks to
Proposition 4.20 we have that ‖µτk − µτk−1‖flat ≤ C

√
τ | log τ |. Then the

conclusion follows by the convergence in the flat norm of µ(ūτε,k) to µτk. �
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CHAPTER 5

Γ-convergence analysis of systems of edge
dislocations

Here we develop the static Γ-convergence analysis for the energy dislo-
cations. All the results in this chapter are proved in [31].

5.1. The main result

In this section we state the main result of this chapter and introduce
the required preliminaries and notation. We recall that Ω is a bounded
open subset of R2 with Lipschitz continuous boundary. Let S be the class
of horizontal slips (translations) under which the crystal is invariant. It is
generated by a set S := {v1, v2} ⊂ R2, where vi are called primitive vectors,
i.e., S = Span ZS (we are implicitly assuming that Ω lies on a slip plane
of the crystal). For instance, in the case of cubic crystals we would choose

S = {e1, e2}, while for fcc crystals S can be chosen as S = {e1,
1
2e1 +

√
3

2 e2}.
The space of finite distributions of edge dislocations Xedge is given by

Xedge := {µ ∈M(Ω,R2) : µ =
N∑

i=1

ξiδxi , N ∈ N, xi ∈ Ω, ξi ∈ S},

whereM(Ω,R2) denotes the set of vector valued Radon measures on Ω. We
endow Xedge with the flat norm ‖µ‖flat defined by

‖µ‖flat := sup
‖φ‖

W
1,∞
0 (Ω)

≤1

∫

Ω
φ dµ;

in particular, we can consider Xedge as a subspace of W−1,1(Ω). We will

denote by µh
flat→ µ the flat convergence of µh to µ.

Fix ε > 0. Given µ ∈ X, we denote by

Ωε(µ) := Ω \
⋃

xi∈supp(µ)

Bε(xi).

With a little abuse of terminology we will call admissible strain associated
with µ any field β ∈ ASε(µ), where

ASε(µ) :=
{
β ∈ L2(Ωε(µ);M2×2) : Curlβ = 0 in Ωε(µ), (5.1)
∫

∂A
β(s) · t(s) ds = µ(A) for every open set A ⊂ Ω

with ∂A smooth: ∂A ⊂ Ωε(µ), and

∫

Ωε(µ)
(β − βT) dx = 0

}
.
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Here t denotes the tangent vector to ∂A and the integrand β·t is intended
in the sense of traces (see Theorem 2 page 204 in [30]). Note that if the
balls Bε(xi), with xi ∈ supp(µ), are pairwise disjoint and contained in Ω,
then the circulation condition in (5.1) reads as

∫

∂Bε(xi)
β(s) · t(s) ds = ξi .

The elastic energy associated with a strain β ∈ ASε(µ) is defined by

Eε(µ, β) :=

∫

Ωε(µ)
W (β) dx,

where W (β) = 1
2Cβ : β. The energy Eε : Xedge → R induced by the

distribution of dislocations µ is given by

Eε(µ) := min
β∈ASε(µ)

Eε(µ, β) + |µ|(Ω).

The rescaled energy functionals Fε : Xedge → R are defined by

Fε(µ) :=
1

| log ε|Eε(µ). (5.2)

The main result of this Chapter is the study in terms of Γ-convergence
with respect to the flat topology of the functionals Fε(µ). We show in
Theorem 5.4 that the Γ-limit is obtained by a suitable relaxation of the so-
called prelogarithmic factor ψ, that we define as follows: Given ξ ∈ R2, we
set, in agreement with [36]

ψ(ξ) := min

{∫

∂B1

W (Γ(θ)) dθ : Γ ∈ L2(∂B1,M2×2), Curl
1

ρ
Γ(θ) = 0,

∫

∂B1

Γ(θ) · t(θ) dθ = ξ

}
, (5.3)

where (ρ, θ) are polar coordinates in R2, t(θ) denotes the tangent vector to
∂B1, and the equation Curl1

ρΓ(θ) = 0 has to be understood in the sense of

distributions in R2 \ {0}. The minimum in (5.3) is attained by a function
denoted by Γξ which is unique up to additive skew matrices.

The displacement uR2(ξ) induced on the whole plane by a straight infi-
nite dislocation centered at 0 with multiplicity ξ is computed explicitly in
the literature (see e.g.,[12, formula (4.1.25)]) and it is of the form

uξR2(ρ, θ) = Fξ(θ) + gξ log ρ ,

where gξ ∈ R2 and the function Fξ is given by Fξ(θ) =
∫ θ

0 fξ(ω) dω for a suit-

able function fξ ∈ C0(∂B1;R2), with
∫ 2π

0 fξ(ω) dω = ξ. The corresponding
strain field is given by

βξR2(ρ, θ) :=
1

ρ
(fξ(θ)⊗ (− sin θ, cos θ) + gξ ⊗ (cos θ, sin θ)) . (5.4)

The equations satisfied by βξR2 are
{

CurlβξR2 = ξδ0 in R2;

DivCβξR2 = 0 in R2.
(5.5)
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It can be proved that a field satisfying (5.4) and (5.5) is unique, so that
the fields fξ(·) and gξ are determined by the vector ξ and the elasticity

tensor C. More precisely βξR2 is given by

βξR2(ρ, θ) =
1

ρ
Γξ(θ) , (5.6)

where Γξ is a minimizer of (5.3) (see [36]). In particular

ψ(ξ) =

∫

∂B1

W (Γξ(θ)) dθ = lim
ε→0

1

log 1
ε

∫

B1\Bε
W (βξR2) dx, (5.7)

where Bρ denotes the ball of radius ρ and center 0.
Let us introduce for any given ξ ∈ R2 and for 0 < r < R, the space

ASr,R(ξ) := {β ∈ L2(BR \Br;M2×2) : Curlβ = 0,

∫

∂Br

β · t ds = ξ,

∫

BR\Br
(β − βT) dx = 0}.

(5.8)

The relation between the prelogarithmic factor defined in (5.3) and our
energy is clarified by the following proposition (proved in [36], Corollary 6).

Proposition 5.1. There exists a constant C0 > 0 such that

|ψ(ξ)− ψε(ξ)| ≤ C0
|ξ|2
| log ε| ,

where

ψε(ξ) :=
1

| log ε| min
β∈ASε,1(ξ)

∫

B1\Bε
W (β) dx .

Remark 5.2. In our analysis it will be convenient to introduce the following
notation for the elastic energy of a dislocation in the annulus BR \Br

ψr,R(ξ) :=
1

logR− log r
min

β∈ASr,R(ξ)

∫

BR\Br
W (β) dx . (5.9)

Using a change of variables we clearly have ψr,R(ξ) = ψ r
R

(ξ), and hence

|ψ(ξ)− ψr,R(ξ)| ≤ C0
|ξ|2

logR− log r
.

In particular
lim
r
R
→0

ψr,R(ξ) = ψ(ξ) .

We introduce the density function ϕ : S 7→ [0,+∞) of the energy F
through the following relaxation procedure

ϕ(ξ) := inf

{
N∑

k=1

|λk|ψ(ξk) :

N∑

k=1

λkξk = ξ, N ∈ N, λk ∈ Z, ξk ∈ S

}
. (5.10)

It can be easily proved (see [36]) that the infimum in (5.10) is in fact a
minimum.

Definition 5.3. We say that b ∈ S is a Burgers vector if ϕ(b) = ψ(b), and
denote by B the class of such vectors.
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It is easy to see that S = Span ZB and that in the relaxation in (5.10)
we can replace S with B, namely for every ξ ∈ S we have

ϕ(ξ) = min

{
k∑

i=1

|λi|ψ(bi) : ξ =
k∑

i=1

λibi, λi ∈ Z, bi ∈ B

}
. (5.11)

The limit energy induced by a configuration µ is the functional

F(µ) :=
N∑

i=1

ϕ(ξi) for any µ =
N∑

i=1

ξiδxi ∈ X , (5.12)

The following Γ-convergence result holds.

Theorem 5.4. Let Fε and F be defined by (5.2) and (5.12).

(i) (Compactness) Let εh → 0 and let {µh} be a sequence in Xedge

such that Fεh(µh) ≤M for some positive constant M independent

of h. Then, (up to a subsequence) µh
flat→ µ ∈ Xedge.

(ii) (Γ-liminf inequality) Let {µh} ⊂ Xedge be such that µh
flat→ µ. Then

F(µ) ≤ lim inf
h→+∞

Fεh(µh).

iii (Γ-limsup inequality) For every µ ∈ X, there exists {µh} ⊂ Xedge,

such that µh
flat→ µ and

lim sup
h→+∞

Fεh(µh) ≤ F(µ).

The proofs of the compactness and the Γ-liminf inequality are quite
technical and are based on the “ball construction” technique. As explained
in the Introduction, a specific difficulty of our context of plane elasticity
is due to the fact that the energy depends only on the symmetric part of
the field β. Moreover, the optimal Korn’s inequality constant blows up on
thin annuli, and the function ψr,R defined in (5.9) vanishes as R/r → 1 (see
Example 5.13). It is then not clear how to estimate the energy from below on
thin annuli. For this reason, in the implementation of the ball construction
technique, we will work only with annuli whose ratio of the radii is given
by a constant c > 1. To this purpose we have to revisit the standard ball
construction in Subsection 1.2.1. We will introduce the needed discrete ball
construction in the next section.

5.2. Revised Ball Construction

As mentioned above, the main goal of the ball construction is to provide
the key lower bounds (see Proposition 5.6) on annular sets, needed in the
proof of the Γ-liminf inequality and of the compactness. First, we give a
lower bound for the energy on a single annulus BR \Br.
Lemma 5.5. Given 0 < r < R and ξ ∈ R2, for any admissible configuration
β ∈ ASr,R(ξ) (defined in (5.8)) we have

∫

BR\Br
|βsym|2 dx ≥ |ξ|

2

2π

1

K(R/r)
log

R

r
,

where K(R/r) is the Korn’s constant defined according with (5.35).
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Proof. We introduce a cut L on the annulus BR\Br so that (BR\Br)\L
is simply connected, and exploit the fact that β is a curl free field in BR\Br.
More precisely, there exists a function u ∈ H1((BR\Br)\L;R2) with∇u = β
in (BR \ Br) \ L. From the circulation condition in (5.8), applying Jensen
inequality, it is easy to see that

∫

BR\Br
|∇u|2 dx ≥

∫ R

r

1

2πρ

∣∣∣∣
∫ 2π

0
∇u · t dθ

∣∣∣∣
2

dρ =
|ξ|2
2π

log
R

r
;

the thesis follows directly by applying classical Korn’s inequality (Theorem
5.35). �

For any given C > 0, let f : R+ × R+ × R+ → R be defined by

f(r,R, t) := Ct log
R

r
. (5.13)

Clearly f satisfies the following properties

i) f(r, ρ, t)+f(ρ,R, t) = f(r,R, t) for every t > 0 and 0 < r < ρ < R
;

ii) if f(ri, Ri, 1) = α for every i = 1, . . . ,m, for some α ∈ R+, then

α = f(
m∑

i=1

ri,
m∑

i=1

Ri, 1).

Fix µ =
∑N

i=1 ξiδxi ∈ X, and set

ωε :=
N⋃

i=1

Bε(xi). (5.14)

Proposition 5.6. Let c > 1 be fixed and let f be defined as in (5.13). Let
F be a positive additive set function on the open subsets of Ω that satisfies

F (BR(x)) ≥ f(r,R, |µ(BR(x))|) + F (Br(x)), (5.15)

for every x ∈ R2 and every r, R ∈ R+ with R
r = c such that BR(x)\Br(x) ⊂

Ω \ ωε. Finally, let ρ > 0 and let A be an open subset of Ω such that
dist(xi, ∂A) ≥ ρ for all xi ∈ A. Then,

F (A) ≥ |µ(A)|f(cNεN,
ρ

2c
, 1). (5.16)

The statement of Proposition 5.6 is proved by computing a lower bound
for the energy on a sequence of larger and larger annuli in which the main
part of the energy is stored. We follow closely the strategy of the ball
construction introduced by Sandier in 1.2.1. The main difference is that
we need to construct annular sets with radii satisfying R/r = c. To this
purpose, our ball construction consists in a discrete rather than continuous
process in which at each step either all the balls expand or some of them
merge together. We proceed by introducing our discrete ball construction.

Discrete Ball Construction

Let {xi}i=1,...,N be a set of points in R2, c > 1, and ε > 0. We set N0 :=
N , x0

i = xi, R
0
i = r0

i = ε, for every 1 ≤ i ≤ N0 and B0 = {BR0
i
(x0
i )}i=1,...,N0 .

Given xn−1
i , Rn−1

i , rn−1
i for i = 1, . . . , Nn−1, we construct recursively xni ,

Rni , rni , for i = 1, . . . , Nn, as follows. First, we consider the family of balls
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{BcRn−1
i

(xn−1
i )}. If these balls are pairwise disjoint, we say that n is an

expansion time. In this case, we set Nn = Nn−1, and

xni = xn−1
i , Rni = cRn−1

i , rni = rn−1
i for all i = 1, . . . , Nn.

If, otherwise, the balls in {BcRn−1
i

(xn−1
i )} are not pairwise disjoint, we say

that n is a merging time. The merging consists in identifying a suitable
partition {Sj}j=1,...,Nn of the family {BcRn−1

i
(xn−1
i )} and, for each subclass

Sj , in finding a ball BRnj (xnj ) which contains all the balls in Sj with the

following properties:

i) the balls BRnj (xnj ) of the new family are pairwise disjoint;

ii) Rnj is not larger than the sum of all the radii of the ballsBcRn−1
i

(xn−1
i ) ∈

Sj , i.e., contained in BRnj (xnj ).

Such a construction can be always done by an induction argument, for more
details we refer to [58]. After the merging, we reset all the quantities intro-
duced above as follows: xnj and Rnj for j = 1, . . . , Nn are determined by the
merging construction, while the parameters rnj , referred to as the seed sizes,

are defined so that, for all 1 ≤ i ≤ Nn−1 and 1 ≤ j ≤ Nn, we have

Rnj
rnj

=
Rn−1
i

rn−1
i

,

and hence

f(rnj , R
n
j , 1) = f(rn−1

i , Rn−1
i , 1). (5.17)

Furthermore, at any step n, we define a parameter τn that counts the
number of merging occurred until the n-th step. More precisely, if n is an
expansion time τn = τn−1 whereas if it is a merging time τn = τn−1 + 1. In
this way, at time n we have made n− τn expansions and τn merging.

Definition 5.7. We refer to the construction above as the Discrete Ball
Construction associated with the points {xi}i=1,...,N . In particular, for every
n ∈ N we have defined a family of balls

Bn = {BRni (xni )}i=1,...,Nn ,

a family of seed sizes {rni }i=1,...,Nn and the merging counter τn.

We are now in a position to prove Proposition 5.6.

Proof of Proposition 5.6. Consider the Discrete Ball Construction
associated to the points xi ∈ A. The balls in Bn satisfy

Rnj ≤ cnε ]{i : Bε(xi) ⊂ BRnj (xnj )} (5.18)

rnj ≤ cτ
n
ε ]{i : Bε(xi) ⊂ BRnj (xnj )}. (5.19)

We first prove (5.18) by induction arguing as follows. If n is an expansion
time, then we clearly have Rnj = cRn−1

j . While if n is a merging time, by

construction (namely, by property ii)) we have

Rnj ≤ c
∑

i:B
Rn−1
i

(xn−1
i )⊂BRn

j
(xnj )

Rn−1
i .
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As for the proof of (5.19), notice that

Rnj
rnj

= c
Rn−1
i

rn−1
i

if n is an expansion step, for any j ∈ Nn = Nn−1, i ∈ Nn−1,

Rjn

rjn
=

Rn−1
i

rn−1
i

if n is a merging step, for any j ∈ Nn, i ∈ Nn−1 .

We deduce that
Rnj
rnj

= cn−τ
n
. Therefore, (5.19) follows by (5.18) since

rnj =
Rnj
cn−τn

≤ cn

cn−τn
ε ]{i : Bε(xi) ⊂ BRnj (xnj )} = cτ

n
ε ]{i : Bε(xi) ⊂ BRnj (xnj )}.

The main point of this construction is that it provides the following
lower bound: for every n ∈ N and for every j = 1, . . . , Nn

F (Bn
j ) ≥ |µ(Bn

j )|f(rnj , R
n
j , 1), (5.20)

where, for sake of simplicity, we have set Bn
j := BRnj (xnj ).

We prove (5.20) by an induction argument. For n = 0 there is nothing to
prove. Suppose that the inequality is true at time n−1. If n is an expansion
time, then

F (Bn
j ) = F (Bn

j \Bn−1
j ) + F (Bn−1

j ) ≥ f(Rn−1
j , Rnj , |µ(Bn

j )|)
+ f(rn−1

j , Rn−1
j , |µ(Bn−1

j )|)|µ(Bn
j )|f(rn−1

j , Rnj , 1) = |µ(Bn
j )|f(rnj , R

n
j , 1),

where we have used (5.15), the induction hypothesis, the fact that the quan-
tity |µ(Bn−1

j )| does not vary during the expansion times and that, since n

is an expansion time, rn−1
j = rnj .

It remains to prove that inequality (5.20) is preserved during a merging

time. Let n be a merging time and let {Bn−1
i }i∈I ⊂ Bn

j . Since µ(Bj
n) =∑

i∈I µ(Bn−1
i ), we have |µ(Bn

j )| ≤ ∑i∈I |µ(Bn−1
i )|. Then, using (5.17), we

conclude

F (Bn
j ) ≥

∑

i∈I
F (Bn−1

i )

≥
∑

i∈I
|µ(Bn−1

i )|f(rn−1
i , Rn−1

i , 1) ≥ |µ(Bn
j )|f(rnj , R

n
j , 1).

Finally, let n̄ ∈ N be the first integer such that at least one ball in Bn̄
intersects ∂A. Clearly

∑N n̄

i=1R
n̄
i ≥ ρ/2; moreover, by (5.19), we immediately

deduce
∑N n̄

i=1 r
n̄
i ≤ cNεN . Now we distinguish two cases. If n̄ is an expansion

time, then using (5.20) and property ii) of f , we get

F (A) ≥
N n̄−1∑

i=1

F (Bn̄−1
i ) ≥

N n̄−1∑

i=1

|µ(Bn̄−1
i )|f(rn̄−1

i , Rn̄−1
i , 1)

=

N n̄∑

i=1

|µ(Bn̄
i )|f(rn̄i ,

Rn̄i
c
, 1) =

N n̄∑

i=1

|µ(Bn̄
i )|f(

N n̄∑

k=1

rn̄k ,
1

c

N n̄∑

k=1

Rn̄k , 1)

≥ |µ(A)|f(cNεN,
ρ

2c
, 1).
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If otherwise n is a merging time, then we conclude

F (A) ≥
N n̄−1∑

i=1

F (Bn̄−1
i ) ≥

N n̄−1∑

i=1

|µ(Bn̄−1
i )|f(rn̄−1

i , Rn̄−1
i , 1) ≥

Nn̄∑

j=1

|µ(Bn̄
j )|f(rn̄j , R

n̄
j , 1)

=
N n̄∑

j=1

|µ(Bn̄
j )|f(

N n̄∑

k=1

rn̄k ,
N n̄∑

k=1

Rn̄k , 1) ≥ |µ(A)|f(cNεN,
ρ

2
, 1).

Since c > 1, the conclusion follows. �
Remark 5.8. Notice that, in order to prove (5.16), we gained indeed the
following stronger estimate: for every n ∈ N, we have

F (A) ≥
∑

Bni ∈Bn
Bni ⊂A

|µ(Bn
i )|f(cNεN,

Nn∑

k=1

Rnk , 1) .

5.3. Compactness

The first step in order to prove the compactness and the Γ-liminf in-
equality is to show a lower bound for the elastic energy of a “cluster” of
dislocations. Let µ :=

∑N
i=1 ξiδxi ∈ X and ε > 0. We recall that ωε is

defined in (5.14) and that K(c) is the Korn’s constant for an annulus with
a cut, whose ratio of the radii is c (see (5.35)). Finally, we recall that c1 is
the constant in (0.2).

Lemma 5.9. Fix ε > 0, let µ :=
∑N

i=1 ξiδxi ∈ X for some xi ∈ Ω and
ξi ∈ S, and let β ∈ ASε(µ). Finally, let 0 < δ < 1 and A ⊂ Ω be open. If
dist(xi, ∂A) ≥ εδ for all xi ∈ A, then, for every constant c > 1, we have
∫

A\ωε
W (β) dx ≥ c1

|µ(A)|
2πK(c)

((1− δ)| log ε| − (N + 1) log c− log 2N). (5.21)

Proof. We apply Proposition 5.6 for f defined as in (5.13) with C =
c1

2πK(c) and

F (U) = Eε(µ, β, U) :=

∫

U\ωε
W (β) dx, (5.22)

for all open subsets U of Ω. By Lemma 5.5 and (0.2) we deduce that (5.15)
holds. Setting ρ = εδ, from (5.16) we conclude
∫

A\ωε
W (β) dx ≥ |µ(A)|f(cNεN,

εδ

2c
, 1) = c1

|µ(A)|
2πK(c)

log
εδ

2cN+1εN

= c1
|µ(A)|
2πK(c)

((1− δ)| log ε| − (N + 1) log c− log 2N).

�

We are now in a position to prove the compactness result. The strat-
egy of the proof is the one for compactness of Jacobians in the context of
Ginzburg-Landau energies (see Proof of Theorem 1.6(i) above). The idea is
to modify a sequence of measures {µh} with equi-bounded energy by iden-
tifying clusters of dislocations with Dirac masses whose multiplicity is given
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by the effective Burgers vector of the cluster, i.e. the total mass of the clus-
ter. Applying our lower bound, we show that the modified sequence {µ̃h} is
bounded in variation and then weakly∗ converges, up to a subsequence, to
some µ ∈ X. We deduce the convergence of µh to µ with respect to the flat
norm by the fact that µh − µ̃h has vanishing flat norm.

Proof of Theorem 5.4(i). Let εh → 0 as h → +∞ and let µh =∑Nh
i=1 ξi,hδxi,h be a sequence such that suphFεh(µh) ≤ M for some positive

constant M . We have to prove that (up to a subsequence) µh
flat→ µ for some

µ ∈ Xedge.
Fix 0 < δ < 1 and let

Aεδh
(µh) =

⋃

xi,h∈supp(µh)

Bεδh
(xi,h) .

Notice in particular that dist(xi,h, ∂Aεδh
) ≥ εδh. Let {Cδl,h}

Lh
l=1 be the family of

the connected components of Aεδh
(µh) which are contained in Ω and satisfy

|µh(Cδl,h)| > 0. By Lemma 5.9 we deduce that for every l = 1, . . . , Lh and

βh ∈ ASεh(µh)

∫

Cδl,hl\ωεh
W (βh) dx ≥ c1

|µh(Cδl,h)|
2πK(c)

((1− δ)| log εh|− (Nh+1) log c− log 2Nh).

Since Nh ≤ |µh|(Ω) ≤ Eεh(µh) ≤M | log εh|, we deduce

Eεh(µh) ≥ c1

Lh∑

l=1

|µh(Cδl,h)|
2πK(c)

(
(1− δ −M log c)| log εh| − log(2cM | log εh|)

)

(5.23)

If c − 1 is small enough we deduce that Lh ≤ L̃ for some L̃ independent of
h, so that, up to a subsequence, we have Lh ≡ L ∈ N. For any l = 1, . . . , L,
let x̃lδ,h ∈ Cδl,h be fixed and set

µ̃h =
L∑

l=1

µh(Cδl,h)δx̃δl,h
.

From (5.23) we easily see that |µ̃h|(Ω) is uniformly bounded; hence the
sequence {µ̃h} is precompact in X with respect to the weak∗ topology, and
therefore also with respect to the flat topology. It remains to prove that
‖µh − µ̃h‖flat → 0 as h → +∞. Fix φ ∈ W 1,∞

0 (Ω) with ‖φ‖
W 1,∞

0 (Ω)
≤

1. Let Dδ
l,h, l = 1, . . . Ñh be the connected components of Aεδh

which are

not contained in Ω, and let Eδl,h, l = 1, . . . N̂h be the remaining ones, i.e.,

contained in Ω. Since φ = 0 on ∂Ω and ‖φ‖
W 1,∞

0 (Ω)
≤ 1 we have

|φ(x)| ≤ diam(Dδ
l,h) ≤ 2Nhε

δ
h ≤ 2Mεδh| log εh| for all x ∈ Dδ

l,h, (5.24)

and so∫

Dδl,h

φ d(µh−µ̃h) ≤ sup
Dlδ,h

|φ|
∫

Dδl,h

d(|µh|+|µ̃h|) ≤ (|µh|+|µ̃h|)(Dδ
l,h) 2Mεδh| log εh|.
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Set φ̄l =
1

|Eδl,h|

∫

Eδl,h

φ dx. As in (5.24), we deduce |φ−φ̄l| ≤ 2Mεδh| log εh|

for all x ∈ Eδl,h. Therefore, for every l = 1, . . . N̂h we have

∫

Eδl,h

φ d(µh − µ̃h) =

∫

Eδl,h

(φ− φ̄l) d(µh − µ̃h) +

∫

Eδl,h

φ̄l d(µh − µ̃h)

≤ (|µh|+ |µ̃h|)(Eδl,h) diam (Eδl,h) ≤ (|µh|+ |µ̃h|)(Eδl,h) 2Mεδh| log εh|.
It follows that

∫

Ω
φ d(µh − µ̃h) =

Ñh∑

l=1

∫

Dδl,h

φ d(µh − µ̃h) +

N̂h∑

l=1

∫

Eδl,h

φ d(µh − µ̃h)

≤ (|µh|+ |µ̃h|)(Ω)
(

4Mεδh| log εh|
)
≤ C| log εh|2εδh, (5.25)

which tends to zero as εh → 0. By the very definition of the flat norm it
follows that ‖µh − µ̃h‖flat → 0 as h tends to infinity. �

5.4. Lower bound

In the proof of the Γ-liminf inequality we will first suitably remove the
clusters of dislocations with zero multiplicity. To this purpose we need a
lemma providing upper bounds for the energy on suitable annuli surrounding
such clusters. We will use the notation of the discrete ball construction (see
Definition 5.7).

Lemma 5.10. For any given ε > 0, let µ ∈ Xedge and β ∈ ASε(µ) be fixed.

Let 0 < γ < α < 1 and let c > 1 be such that log c < | log ε|(α−γ)
|µ|(Ω)+1 .

Then there exists n̄ ∈ N such that

(i) εα ≤
Nn̄∑

i=1

Rn̄i ≤ εγ;

(ii) n̄ is not a merging time;

(iii)

∫

Ω∩∪iBcRn̄
i

(xn̄i )\BRn̄
i

(xn̄i )
W (β) dx ≤ log cEε(µ, β)

| log ε|(α− γ)− log c(|µ|(Ω) + 1)
.

Proof. We denote by nα the first step n in the ball construction such
that

∑Nn
i=1R

n
i ≥ εα and similarly we set nγ , so that for every nα ≤ n ≤ nγ−1

(i) holds true. Notice that in the ball construction

Nn∑

i=1

Rni ≤ c
Nn−1∑

i=1

Rn−1
i .

By a straightforward computation we get

εγ ≤ cnγ−nα+1εα,

and so nγ −nα ≥ (α−γ) log 1
ε

log c −1. Recalling that the total number of merging

is smaller than |µ|(Ω), we deduce that

nγ − 1− τnγ−1 − (nα − 1− τnα−1) ≥ (α− γ)| log ε|
log c

− 1− |µ|(Ω),
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where the left hand side represents the number of expansion times between
nα and nγ − 1. The thesis follows by the mean value theorem since

Eε(µ, β) ≥
∑

nα≤n≤nγ−1
n is an expansion time

∫

Ω∩∪iBcRn
i

(xni )\BRn
i

(xni )
W (β) dx.

�

Proof of Theorem 5.4(ii). Let εh → 0 as h → +∞. For any h ∈ N,

let µh ∈ Xedge, with µh =
∑Nh

i=1 ξi,hδxi,h , such that µh
flat→ µ for some µ =∑N

i=1 ξiδxi ∈ X. We have to prove that

F(µ) ≤ lim inf
h→+∞

Fεh(µh).

By a standard localization argument we can assume µ = ξ0δx0 for some
ξ0 ∈ S, x0 ∈ Ω. Moreover, we can assume that lim infh→+∞Fεh(µh) =
limh→+∞Fεh(µh) ≤M , for some positive constant M .

Let βh ∈ ASεh(µh) be the strain that realizes the minimum in (0.4),
namely Eεh(µh, βh) = minβ∈ASεh (µh)Eεh(µh, β). The idea is to give a lower

bound for the energy on a finite number of shrinking balls where both the
energy and the flat norm concentrate. To this purpose fix 0 < γ < α < 1,
c > 1 such that

log c < min

{
α− γ
M + 1

,
1− α
M

}
. (5.26)

Since

Nh = |µh|(Ω) ≤M | log εh|, (5.27)

we can apply Lemma 5.10; in particular, let n̄ be such that εαh ≤
∑N n̄

i=1R
n̄
i ≤

εγh. Consider the family of balls Bn̄
i := BRn̄i (xn̄i ) in Bn̄ such that BcRn̄i (xn̄i ) ⊂

Ω. We denote by Jh ⊂ {1, . . . , Nn̄} the set of indices i such that BcRn̄i (xn̄i ) ⊂
Ω and µh(Bn̄

i ) = 0, and by Ih ⊂ {1, . . . , Nn̄} the set of indices i such that
BcRn̄i (xn̄i ) ⊂ Ω and µh(Bn̄

i ) 6= 0.

We prove that Ih is finite. Recalling the definition of Eεh in (5.22) and

in view of Remark 5.8 applied with f(r,R, t) = c1
2πK(c) t log R

r we obtain

Eεh(µh, βh,∪i∈IhBn̄
i ) ≥

∑

i∈Ih
|µh(Bn̄

i )|f(cNhεhNh,

Nn̄∑

i=1

Rn̄i , 1)

≥
∑

i∈Ih
c1
|µh(Bn̄

i )|
2πK(c)

(
(1− α−M log c)| log εh| − log(M | log εh|)

)
,

where we have used
∑N n̄

i=1R
n̄
i ≥ εαh and (5.27). Notice that, since S is a

discrete set, |µh(Bn̄
i )| > c > 0 for every i ∈ Ih. Since Eεh(µh, βh,∪i∈IhBn̄

i ) ≤
M | log εh|, and 1 − α −M log c > 0 (see (5.26)), we conclude that ]Ih is
uniformly bounded. Up to a subsequence, we have ]Ih = L for every h ∈ N,
for some L ∈ N.

Consider now i ∈ Jh. Recalling that Curlβh = 0 in the annulus C n̄i :=
BcRn̄i (xn̄i )\BRn̄i (xn̄i ) and µh(BcRn̄i (xn̄i )) = 0, we get that βh = ∇vn̄i,h for some
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vn̄i,h ∈ H1(C n̄i ;R2). Thus, applying Korn’s inequality (Theorem 5.12) to vn̄i,h,
we deduce that∫

Cn̄i

|∇vn̄i,h −An̄i,h|2 dx ≤ K(c)

∫

Cn̄i

|(∇vn̄i,h)sym|2 dx = K(c)

∫

Cn̄i

|βsym
h |2 dx,

where An̄i,h is a suitable skew-symmetric matrix. By a standard extension

argument, there exists a function un̄i,h ∈ H1(BcRn̄i (xn̄i );R2) such that∇un̄i,h =

∇vn̄i,h −An̄i,h in C n̄i and

∫

BcRn̄
i

(xn̄i )
|∇un̄i,h|2 dx ≤ C1

∫

Cn̄i

|∇vn̄i,h −An̄i,h|2 dx

≤ C1K(c)

∫

Cn̄i

|βsym
h |2 dx, (5.28)

for some positive constant C1. Consider the field β̃h : Ω→M2×2 defined by

β̃h(x) :=

{
∇un̄i,h(x) +An̄i,h if x ∈ Bn̄

i with i ∈ Jh,
βh(x) otherwise in Ωεh(µh).

It follows, by the definition of β̃h, by the fact that the matrices An̄i,h are skew

symmetric, and by (5.28), that for every i ∈ Jh the following inequalities
hold ∫

BcRn̄
i

(xn̄i )
W (β̃h) dx ≤ c2

∫

BcRn̄
i

(xn̄i )
|β̃sym
h |2 dx

≤ c2

∫

Cin̄

|βsym
h |2 dx+ c2

∫

Bn̄i

|β̃sym
h |2 dx

≤ c2

c1
(1 + C1K(c))

∫

Cn̄i

W (βh) dx ,

where c1 and c2 are the constants in (0.2). Applying Lemma 5.10, we deduce

1

| log εh|

∫
⋃
i∈Jh BcRn̄i

(xn̄i )
W (β̃h) dx

≤ c2

c1

(1 + C1K(c))M log c

| log εh|(α− γ −M log c)− log c
, (5.29)

which vanishes as εh → 0.
Let us introduce the modified measure

µ̂h =
∑

i∈Ih
µh(Bn̄

i )δxn̄i .

Arguing as in the proof of the compactness property, and more precisely

of estimate (5.25), we deduce that µ̂h − µh
flat−→ 0, and hence, up to a

subsequence, µ̂h
∗
⇀ ξ0δx0 .

The points xn̄i , i ∈ Ih converge, up to a subsequence, to some point in a
finite set of points {y0 = x0, y1, . . . , yL′} contained in Ω̄. Let ρ > 0 be such
that B2ρ(x0) ⊂⊂ Ω and B2ρ(yj) ∩B2ρ(yk) = ∅ for all j 6= k. Then,

xn̄i ∈ Bρ(yj) for some j and for h large enough .
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Thus, using the convergence of µ̂h to ξ0δx0 , one can show that for h large
enough ∑

xn̄i ∈Bρ(x0)

µh(Bn̄
i ) = ξ0 . (5.30)

We finally introduce the measure

µ̃h = µh ∪i∈Ih(ρ)B
n̄
i ,

where we have introduced the notation Ih(ρ) = {i ∈ Ih : xn̄i ∈ Bρ(x0)}; by
(5.29), it follows that

Eεh(µh) ≥
∫

Ωεh (µh)\∪i∈JhBcRn̄i

W (βh) dx ≥
∫

Ωεh (µ̃h)∩B2ρ(x0)
W (β̃h) dx+ o(1).

(5.31)
It remains to prove the lower bound for the right hand side of (5.31).

Fix 0 < η < γ. Let us denote by gh : [η, γ]→ {1, . . . , L} the function which
associates with any δ ∈ (η, γ) the number gh(δ) of the connected components
of ∪i∈Ih(ρ)Bεδh

(xn̄i ). For every h ∈ N, the function gh is monotone so that it

can have at most L discontinuities. Let us denote by δi,h for i = 1, . . . , L̂ ≤ L
such points of discontinuity, with

η ≤ δ1,h < . . . < δL̂,h ≤ γ.

It is easy to see that there exists a finite set ∆ = {δ0, δ1, . . . , δL̃} with
δi < δi+1, such that, up to a subsequence {δi,h}h∈N converges to some point

in ∆, as h → +∞, for every i = 1, . . . , L̂. We may always assume δ0 = η,
δL̃ = γ and L̃ ≤ L̂+ 2.

Now, for any fixed σ > 0 small enough and for h large enough (i.e., such

that for any j = 1, . . . , L̂, |δj,h − δi| < σ for some δi ∈ ∆) the function gh is

constant in the interval [δi + σ, δi+1− σ]. Thus for every i = 0, . . . , L̃− 1 we
can construct a finite family of Ni,h annuli Ci,j,h = B

j,h,ε
δi+σ

h

\ B
j,h,ε

δi+1−σ
h

with j = 1, . . . , Ni,h, such that Ci,j,h are pairwise disjoint for all i and all j
and

⋃

k∈Ih(ρ)

Bn̄
k ⊆

Ni,h⋃

j=1

B
j,h,ε

δi+1−σ
h

(5.32)

for all i = 0, . . . , L̂. Note that, for h large enough, Ci,j,h ⊂ B2ρ(x0) for all
i and j. Recalling (5.9) and in view of Remark 5.2, the following estimate
holds
∫

Ci,j,h

W (β̃h) dx ≥ | log εh|(δi+1 − δi − 2σ)ψ
ε
δi+1−σ
h ,ε

δi+σ

h

(µ̃h(B
j,h,ε

δi+σ

h

))

≥ | log εh|(δi+1 − δi − 2σ)ψ(µ̃h(B
j,h,ε

δi+σ

h

))− C0|µ̃h(B
j,h,ε

δi+σ

h

)|2 .

Notice that in view of (5.32) and of the weak∗ convergence of {µ̂h}, we have

|µ̃h(B
j,h,ε

δi+σ

h

)| ≤
∑

k∈Ih(ρ)

|µ̃h(Bn̄
k )| ≤ |µ̂h|(Ω) ≤ C2 ,
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for some C2 > 0. Summing over i = 0, . . . , L̃ − 1 and j = 1, . . . , Nh,i, we
obtain the following chain of inequalities

∫

Ωεh (µ̃h)∩B2ρ(x0)
W (β̃h) dx ≥

L̃−1∑

i=0

Ni,h∑

j=1

∫

Ci,j,h

W (β̃h) dx

≥
L̃−1∑

i=0

Ni,h∑

j=1

(
| log εh|(δi+1 − δi − 2σ)ψ(µ̃h(B

j,h,ε
δi+σ

h

))− C0|µ̃h(B
j,h,ε

δi+σ

h

)|2
)

≥ | log εh|
L̃−1∑

i=0

(δi+1 − δi − 2σ)ϕ(ξ0)− C0L
2C2

2 ,

where the last inequality is a consequence of (5.30), recalling the definition
of ϕ (see (5.10)). Finally we get

∫

Ωεh (µ̃h)∩B2ρ(x0)
W (β̃h) dx ≥ (γ − η − 2σL̃)| log εh|ϕ(ξ0)− C0L

2C2
2 ,

and hence using (5.31) we have

lim inf
h→+∞

Fεh(µh) ≥ (γ − η − 2σL̃)ϕ(ξ0).

The Γ-liminf inequality follows by taking the limits σ → 0, η → 0 and
γ → 1. �

5.5. Upper Bound

In this section we will prove the Γ-limsup inequality, namely we will
show that for every µ ∈ Xedge there exists a recovery sequence {µh} ⊂ Xedge

that converges to µ in the flat topology and satisfies

lim sup
h→+∞

Fεh(µh) ≤ F(µ).

We first assume that µ belongs to the subclass D of Xedge defined by

D := {µ ∈ X | µ =
N∑

i=1

biδxi , bi ∈ B, xi 6= xj for i 6= j}.

where B is the class of Burgers vectors defined in Definition 5.3. The general
case is obtained by a standard diagonal argument.

Let µ =
∑N

i=1 biδxi in D; then F(µ) =
∑N

i=1 ϕ(bi) =
∑N

i=1 ψ(bi). In this
case, the recovery sequence is given by the constant sequence µh ≡ µ for
every h ∈ N. To show this, for every i = 1, . . . , N , let βbiR2 be the planar strain

field defined in the whole of R2 corresponding to the dislocation centered at
xi with Burgers vector bi. Recalling (5.4), we set

βi(x) := βbiR2(x− xi) =
1

|x− xi|
Γbi(θ) where θ = arctan

x2 − xi,2
x1 − xi,1

,
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and define βµ :=
∑N

i=1 βi. Clearly βµ ∈ ASεh(µh) for every h ∈ N. Then

Fεh(µh) =
1

| log εh|
min

β∈ASεh (µh)

∫

Ωεh (µh)
W (β) dx

≤ 1

| log εh|

∫

Ωεh (µh)
W (βµ) dx =

1

| log εh|

∫

Ωεh (µh)
W
( N∑

i=1

βi
)

dx

≤ 1

| log εh|
N∑

i=1

∫

BR(xi)\Bεh (xi)
W (βi) dx (5.33)

+
2

| log εh|
N∑

i=1

N∑

j=i+1

∫

(Ω\Bεh (xi))\Bεh (xj)
Cβi : βj dx, (5.34)

where R > diam(Ω). As for the integrals in (5.33), from (5.7) we have that
for every i = 1, . . . , N

lim
h→+∞

1

| log εh|

∫

BR(xi)\Bεh (xi)
W (βi) dx = ψ(bi).

In order to conclude, it suffices to prove that each term of the sum in (5.34)
tends to 0 as h→ +∞. To this purpose, for every i, j = 1, . . . , N with i 6= j

set ρij :=
|xi−xj |

2 . Then

∫

(Ω\Bεh (xi))\Bεh (xj)
Cβi : βj dx =

∫

Bρij (xi)\Bεh (xi)
Cβi : βj dx

+

∫

Bρij (xj)\Bεh (xj)
Cβi : βj dx+

∫

(Ω\Bρij (xi))\Bρij (xj)
Cβi : βj dx.

Since βi ∈ L2
loc(R2 \ {xi}) the last term in the right hand side is bounded.

As for the first two integrals, it is enough to apply Hölder’s inequality in
order to obtain
∫

Bρij (xi)\Bεh (xi)
Cβi : βj dx ≤ ‖Cβi‖L2(Bρij (xi)\Bεh (xi))

‖βj‖L2(Bρij (xi)\Bεh (xi))

≤ C ‖βi‖L2(Bρij (xi)\Bεh (xi))
‖βj‖L2(Ω\Bρij (xj))

;

here and in the following lines C denotes a positive constant that may change
from line to line. By (5.6) we get

∫

Bρij (xi)\Bεh (xi)
|βi|2 dx ≤ C| log εh| ,

and hence ∫

(Ω\Bεh (xi))\Bεh (xj)
Cβi : βj dx ≤ C

√
| log εh|

for every i, j = 1, . . . , N with i 6= j. Therefore,

lim
h→+∞

1

| log εh|

∫

(Ω\Bεh (xi))\Bεh (xj)
Cβi,h : βj,h dx = 0,
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and so

lim sup
h→+∞

Fεh(µh) ≤
N∑

i=1

ψ(bi) =
N∑

i=1

ϕ(bi) = F(µ) .

We have proved that the Γ-limsup inequality holds for any µ ∈ D. Now
we conclude noticing thatD is dense inX with respect to the weak∗ topology,
and hence with respect to the flat topology. More precisely, for any µ =∑N

i=1 ξiδxi , with ξi ∈ S = Span ZB (i = 1, . . . , N), we can construct a

sequence {µk} ⊂ D such that F(µk) = F(µ) and µk
∗
⇀ µ. Indeed, by (5.11),

for every i = 1, . . . , N we can find a decomposition of ξi =
∑si

j=1 αijbj such

that ϕ(ξi) =
∑si

j=1 |αij |ψ(bj). Now, for every k ∈ N we define

µk =
N∑

i=1

si∑

j=1

bj

|αij |∑

l=1

δxi,jl(k),

where for every k xi,jl(k) are distinct points in Ω, and |xi,jl(k)− xi| → 0 as

k → +∞. Clearly {µk} ⊂ D and µk
∗
⇀ µ. Moreover

F(µk) =
N∑

i=1

si∑

j=1

|αij |∑

l=1

ϕ(bj) =
N∑

i=1

si∑

j=1

|αij |ψ(bj) =
N∑

i=1

ϕ(ξi) = F(µ).

The thesis follows using a standard diagonal argument. Indeed, since for
any measure in D, the recovery sequence is given by the constant sequence,
we have

lim sup
h→∞

Fεh(µk) ≤ F(µk) = F(µ).

Therefore, there exists a sequence kh → ∞ as h → ∞ such that µh := µkh
is a recovery sequence, i.e.,

lim sup
h→∞

Fεh(µh) ≤ F(µ).

�

Remark 5.11. In the proof of the Γ-limsup inequality we have shown that
configurations of dislocations optimal in energy belong to the class D. As a
consequence, we get the same Γ-limit if we start from an energy for which
the only admissible dislocations are those whose multiplicity belongs to B,
i.e. to the set of Burgers vectors. Precisely, if we define

Gε(µ) =

{
Fε(µ) if µ ∈ D,
+∞ otherwise,

then Gε still Γ-converge to the functional F defined in (5.12). In this re-
spects, the class of Burgers vectors in B are the building blocks to describe
multiple dislocations in S.

5.6. Korn’s inequality in thin annuli

Here we revisit some results concerning the Korn’s inequality in thin
domains. First, we recall the Korn’s inequality on annular sets with a cut.
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Theorem 5.12 (Korn’s inequality). Let 0 < r < R, let L := {0} × (r,R),
and let u ∈ H1((BR\Br)\L;R2) be such that

∫
(BR\Br)\L(∇u−∇uT) dx = 0.

Then, there exists a positive constant K = K(R/r) such that
∫

(BR\Br)\L
|∇u|2 ≤ K(R/r)

∫

(BR\Br)\L
|(∇u)sym|2 dx, (5.35)

where (∇u)sym :=
∇u+∇uT

2
.

The proof of such theorem can be proved for instance covering the an-
nulus (BR \Br)\L with two open overlapping sets A1, A2 ⊂ (BR \Br) with
Lipschitz boundary, and applying classical Korn’s inequality on each Ai, see
for instance [62].

The best constant K of the Korn’s inequality on annular sets (without
cuts) has been explicitly computed in [28]. In this context it’s important to
remark that such Korn’s constant depends only on the ratio of the radii, and
tends to infinity when this parameter tends to 1. In particular, we deduce
that also K(R/r)→∞ as R/r → 1.

A natural question is whether the best (i.e., the lower) Korn’s costant
blows up on thin annuli also in the class of our admissible strains ASr,R(ξ).
Let us show that, actually, this is the case. More precisely, let ξ ∈ R2 and
let rn → 1. Then, there exists a sequence of strains βn ∈ ASrn,1(ξ) such
that ∫

B1\Brn
|βn|2 dx ≥ cn

∫

B1\Brn
|βsym
n |2 dx, (5.36)

for some cn → ∞ as n → ∞. Indeed, by [28] there exists a sequence
un ∈ H1(B1 \Brn ;R2) such that

∫

B1\Brn
|∇un|2 dx ≥ c̃n

∫

B1\Brn
|∇usym

n |2 dx

with c̃n →∞ as n→∞. By homogeneity we may assume
∫

B1\Brn
|∇usym

n |2 dx = 1.

Let β(ρ, θ) := ξ
2πρ ⊗ (− sin θ, cos θ), and notice that β ∈ ASrn,1(ξ) for every

n. Finally, set βn = ∇un + β ∈ ASrn,1(ξ); a straightforward computation
shows that (5.36) holds.

The sequence βn just constructed is such that its symmetric part is
bounded in L2, while its skew part blows up as n → ∞. In particular, the
linearized energy induced by βn on the annuli B1 \Brn is larger than 1− rn.
In the next example we construct a strain β ∈ ASr,1(ξ) for every 0 < r < 1
whose linearized energy density vanishes on thin annuli B1 \Br (as r → 1),
showing that the function ψr,R defined in (5.9) vanishes as R/r → 1.

Example 5.13. Let S(x, y) : R2 7→M2×2 be defined by

S(x, y) :=

(
0 x
−x 0

)
.
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We have Curl S = (1, 0). Set

f(ρ, θ) :=
ρ2

4
− 1

2
log ρ.

Notice that ∆f = 1, and hence curl (−fy, fx) = 1. Finally, set

β(x, y) := S(x, y)−
(
−∂f
∂y

∂f
∂x

0 0

)
.

It is easy to see that β ∈ ASr,1((π, 0)) for every 0 < r < 1 and |βsym|2 ≤
|∇f |2. Moreover, |∇f | = 0 on ∂B1; a straightforward computation shows
that

lim
r→1

1

| log r|

∫

B1\Br
|∇f |2 dx = 0,

so that the density of the linearized elastic energy vanishes on thin annuli
B1 \Br as r → 1.
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Conclusions and perspectives

We have obtained an asymptotic expansion by Γ-convergence for the
functionals SDε that allows us to show existence of metastable configu-
rations, and to introduce a discrete in time variational dynamics, which
overcomes the energy barriers and mimics the effect of more complex mecha-
nisms, as thermal effects. On the other hand, we have proved a Γ-convergence
result for the edge dislocations energy without extra-assumptions on the po-
sition and on the number of singularities.

As for the screw dislocations, we believe that our Γ-convergence analysis
for anisotropic energies defined in the triangular lattice can be used in order
to prove, also in this case, the existence of metastable configurations and the
convergence to a limit dynamics. A more delicate question is the Γ-expansion
of the anisotropic long range (and finite range) interaction energy, for which
a zero-order Γ-convergence result is not yet available.

For the SDε energies, we have described the dynamics up to the first col-
lision time; it would be interesting to model the collision of discrete vortices,
and study the dynamics after the critical time as in the Ginzburg-Landau
setting (see [16, 63, 64]). Moreover, we have focused on Neumann bound-
ary conditions, but we are confident that our analysis could be extended to
the case of Dirichlet boundary conditions.

In the discrete dynamics we have analyzed two different dissipations.
This is motivated also by applications. Indeed, the L2 dissipation is a stan-
dard choice for parabolic flows and measures the variations in the spin vari-
able. While, the dissipation D2 is a natural choice in the study of screw
dislocation dynamics, and can be viewed as a measure of the number of en-
ergy barriers to be overcome in order to move a dislocation. We note that,
in the case of dislocations, one could also consider suitable variants of the
D2 dissipation account for the glide directions of the crystal (see [5]). This
would lead to a different effective dynamics.

Having proved a pinning phenomenon, it remains open to characterize a
critical ε-τ regime for the motion of dislocations, and an effective depinning
threshold in this regime. This is a relevant issue and it might be worth
facing it by using our variational approach.

The effective dynamics of our discrete systems agrees with the asymp-
totic parabolic flow of the Ginzburg-Landau functionals. In the latter, the
time scaling needed to get a non-trivial effective dynamics depends on the
space parameter ε. It is worth noticing that, in our discrete in time gradient
flow with L2 dissipation, the time scaling is expressed only in terms of the
time step τ . In this respect, an analysis of critical ε-τ regimes would make
an interesting bridge between these two approaches.
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The case of edge dislocations is still open since a complete Γ-expansion
of the energy is not yet available. The reason is that the lower bounds in
Chapter 5 are sharp enough to guarantee the Γ-convergence result for the
rescaled energies, but not so good to derive the renormalized energy. We
hope that a refinement of these lower bounds could give on one hand the
Γ-convergence expansion of the energy in the | log ε| regime and on the other
hand to study the case of infinite singularities (corresponding to the | log ε|2
regime) without any a priori assumptions on their position.
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[15] Bethuel F., Brezis H., Hélein F.: Ginzburg-Landau vortices, Progress in Nonlinear
Differential Equations and Their Applications, vol.13, Birkhäuser Boston, Boston
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