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Introduction

The Schrödinger equation appears in a large number of different physical and
mathematical contexts. It was formulated in 1926 by the Austrian physicist Erwin
Schrödinger: in [76] he defined the concept of wave function, solution to an appropriate
partial differential equation, in order to describe how the state of a physical system
changes with time in Quantum Mechanics.

The nonlinear Schrödinger equation (later on NLS) is a nonlinear variation of
the Schrödinger equation. It is a classical field equation whose principal applications
are to the propagation of light in nonlinear optical fibers and planar waveguides and
to Bose-Einstein condensates confined to highly anisotropic cigar-shaped traps, in
the mean-field regime. Additionally, the equation appears in the studies of small-
amplitude gravity waves on the surface of deep inviscid (zero-viscosity) water; the
Langmuir waves in hot plasmas; the propagation of plane-diffracted wave beams in
the focusing regions of the ionosphere; the propagation of Davydov’s alpha-helix
solitons, which are responsible for energy transport along molecular chains; the
evolution of vortex filaments; and many others. More generally, the NLS appears as
one of universal equations that describe the evolution of slowly varying packets of
quasi-monochromatic waves in weakly nonlinear media that have dispersion.

The Schrödinger equation is one of the principal examples of dispersive equations :
this category is tranversal with respect to the usual classification in hyperbolic,
parabolic and elliptic partial differential equations, and shows in its equations some
peculiar and common behaviours, linked to dispersion properties. Let us consider a
plane wave function

u(t, x) = Aeiξ·xeiωt, (0.0.1)

where A is the amplitude of the solution, ξ is the wave number and ω is the frequency,
and a general partial differential equation

∂t + ih(D)u = 0, (0.0.2)

with h(D) = F−1(h(ξ)F), where F is the Fourier transform with respect to the spatial
variable x and D = −i∇. We see that a plane wave function u as in (0.0.1) is a
solution of (0.0.2) if and only if the following dispersion relation hold:

ω = −h(ξ) (0.0.3)

that is u(t, x) = Aeiξ·(x+h(ξ)ξ/|ξ|2 t): we define its phase velocity is cp(ξ) := ωξ/|ξ|2
and its group velocity is cg(ξ) := −∇h(ξ). The equation (0.0.2) is dispersive if ∇ξω
is not constant. As said before, the linear Schrödinger equation

i∂tu−∆u = 0 (0.0.4)

iii



Introduction iv

is a dispersive equation as in (0.0.2), with h(ξ) = |ξ|2: each plane wave solution
translates with group velocity cg(ξ) := −∇h(ξ) = −2ξ.

For simplicity, we consider here a nonlinear Schrödinger equation with a power
type nonlinearity in Rn:

{
i∂tu−∆u+ |u|p−1u = 0,

u(0, ·) = u0.
(0.0.5)

It is well known (we refer to the book [13] and to Chapters 1 and 2) that for
1 6 p < 1 + 4/(n − 2) the initial value problem (0.0.5) admits a global solution
u ∈ C(R, H1(Rn)) for every u0 ∈ H1(Rn).

The study of scattering for solutions to the nonlinear Schrödinger equation (0.0.5)
consists in understanding the asymptotic behaviour of the solutions u to (0.0.5) for
time t → ±∞. Intuitively, if for big time the solution is “small”, then the |u|p−1u
term will be even smaller: it will be possible to neglect this term and solutions to
the linear Schrödinger equation (0.0.4) will be “close” to solutions to the nonlinear
equation (0.0.5) for big time. More precisely, we say that scattering holds if for
every u+ ∈ H1(Rn) there exists a unique u0 ∈ H1(Rn) such that, if u is the unique
solution to (0.0.5) with u0 as initial datum, we have

lim
t→+∞

∥∥u(t, ·)− e−it∆u±
∥∥
H1(Rn)

= 0.

In this case we say that u scatters to e−it∆u+. We assign Ω+, the wave operator for
t → ∞: Ω+ : u+ ∈ H1(Rn) 7→ u0 ∈ H1(Rn); if the wave operator is surjective, we
say that the equation is asymptotically complete. Analogous definitions are given
for t→ −∞, defining the wave operator Ω− for t→ −∞. We remark that we are
defining the scattering in H1(Rn), the energy space for the Schrödinger equation,
but analogous definitions can be given in other spaces.

In the case that 1 + 4/n < p < 1 + 4/(n − 2), scattering and asymptotic
completeness hold for the equation (0.0.5): in this case, we define the scattering
operator S := Ω−1

+ ◦ Ω− : u− ∈ H1(Rn) 7→ u+ ∈ H1(Rn).
In order to prove scattering, it is necessary to have some control on the behaviour

of the solutions, namely to prove a priori estimates. This can be accomplished thanks
to the dispersive nature of the Schrödinger equation: since any function can be thought
as superposition of plane waves, we see from the previous arguments that a solution
will spread in many waves of different spacial frequency, each propagating with
velocity depending on the wave number. This phenomenon implies decay properties
on the solutions of the linear and nonlinear Schrödinger equations, described by
means of Strichartz estimates and smoothing estimates.

Strichartz estimates for the Schrödinger equation were introduced by R. Strichartz
in [81], as a consequence of Fourier restriction theorems. In the fundamental paper
[44] by J. Ginibre and G. Velo, using the so called TT ∗ argument, they proved
Strichartz estimates as consequence of decay estimates. In the paper [52], M. Keel
and T. Tao completed the program with the proof of the endpoint estimates.

The natural norms which are considered in this family of estimates are of mixed
type, namely we deal with LptL

q
x–spaces. If u is a solution of (0.0.4), then the

following estimates ∥∥e−it∆f
∥∥
LptL

q
x
6 C‖f‖L2
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hold for any couple (p, q) satisfying the Schrödinger admissibility condition

2

p
=
n

2
− n

q
, p > 2, (n, p, q) 6= (2, 2,∞).

Strichartz estimates represent a crucial instrument to perform fixed point argu-
ments in the study of nonlinear problems. One of the first examples of nonlinear
application of Strichartz estimates was given in [42] for the NLS.

It is frequent for equations with infinite speed of propagation, such as the
Schrödinger equation, that the solution is more regular then the initial data. The
gain of derivatives, which is in fact related to the algebraic structure of the equations,
is a very interesting fact, and is often a crucial improvement for the nonlinear
techniques. The smoothing effect was discovered by T. Kato for the Korteweg-
de Vries equation; for the Schrödinger equation, Kato and Yajima in [49] proved the
well known inequality

∥∥∥〈x〉− 1
2
−|D| 12 eit∆u

∥∥∥
L2
tL

2
x

6 C‖u‖L2 ;

a stronger local version of the previous inequality (see the standard references [20],
[78] and [86]) is the following

sup
R>0

1

R

∫

Rt

∫

BR

|‖(‖eit∆u)|2 dxdt 6 C‖u(0)‖
Ḣ

1
2
,

where |D| 12 = F−1(|ξ| 12F), BR is the ball of radius R centered in the origin and Ḣ
1
2

is the usual homogeneous Sobolev space with the norm

‖f‖
Ḣ

1
2

= ‖|D| 12 f‖L2 .

One of the techniques used for proving smoothing estimates is the Morawetz
multiplier method: namely one multiplies the equation for the appropriate quantity
and, after some manipulation and integrations by parts, gets the required control on
the solution.

This approach can be used for dealing with nonlinearities in the equation, in
order to obtain smoothing estimates for the NLS. This was done the first time by
C. Morawetz in [63] for the Klein-Gordon equation with a general nonlinearity and
were successively used for proving the asymptotic completeness by Lin and Strauss
in [54] and Ginibre and Velo in [43]. Recently, there have been introduced new
bilinear smoothing estimates, named interaction of quadratic Morawetz inequalities:
specificly Morawetz estimates for two solutions (possibly the same solution taken
twice) are computed at once. We quote in this direction the papers [16], [15], [14],
[17], [83], [71] and finally the survey [41] (see moreover Chapters 1 and 2).

The dispersive nature of the Schrödinger equation prevents solutions to be
spatially concentrated for long time, influencing hence the asymptotic behaviour in
the space variable. In detail, the zero solution is the unique solution of the linear
Schrödinger equation (0.0.4) that in two different times has a gaussian profile, with
variances α > 0 and β > 0, i.e.

∥∥∥∥e
|x|2
α2 u(0, ·)

∥∥∥∥
L2(Rn)

+

∥∥∥∥e
|x|2
β2 u(T, ·)

∥∥∥∥
L2(Rn)

< +∞,
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with αβ < 4T . This property is closely related with the Hardy Uncertainty Principle:
if f(x) = O

(
e−|x|

2/β2
)
and its Fourier transform f̂(ξ) = O

(
e−4|ξ|2/α2

)
, then

αβ < 4⇒ f ≡ 0

αβ = 4⇒ f is a constant multiple of e
− |x|

2

β2 .

The connection between the two phenomena is suggested by the formula for solutions
to the free Schrödinger equation, namely u is a solution to (0.0.4) with initial datum
f if

u(x, t) := eit∆f(x) = (2πit)−
n
2 ei

|x|2
4t F

(
ei
|·|2
4t f

)( x
2t

)
.

We see than that the Schrödinger propagator is, apart from a multiplication by a
phase, the Fourier Transform. It is possible then, in principle, to get results for the
Schrödinger propagator from analogous results on the Hardy Uncertainty Principle.

L. Escauriaza, C. Kenig, G. Ponce, and L. Vega in the sequel of papers [33, 31,
32, 34, 35], and with M. Cowling in [21] have developed this approach and have
extended these results to the case of a perturbed linear equation

∂tu = i(∆ + V )u, (0.0.6)

with V = V (t, x) ∈ L∞(R × Rn) ∩ L1(Rt, Ḣ1(Rn)). Fundamental steps in this
program were a proof by means of Real Analysis tools of the Hardy Uncertainty
Principle, that allowed the presence of (possibly rough) potentials V in (0.0.6), and
a deep understanding of logarithmic convexity properties of Schrödinger evolutions,
namely the possibility of estimate weighted norms of a solution in a time interval by
means of the weighted norms of the solution in the extreme points of it.

Aim of the thesis and plan of the work

The aim of this PhD work is to examine in depth and generalize the classical
Theory on the Schrödinger equation considering variable coefficients perturbations:
this is done including the presence of electromagnetic and electrostatic potentials
and considering perturbations of the second order term for the nonlinear Scrödinger
equation. Moreover, in the case of lower spatial dimension, but without the presence
of variable coefficients perturbations, we extend the theory of scattering to the system
framework.

Each chapter of this thesis is almost completely self-contained, and consists of a
different and independent paper: we give here a rapid outline of the results we have
proved, referring to the single introductions for greater details.

In Chapter 1, we prove scattering for a system of weakly coupled Schrödinger
equations in dimensions 1, 2 and 3: we develop new techniques for tackling the
problem of scattering in the system framework and in the low dimensional case. The
reference for the results in this Chapter is [12].

In Chapter 2, we consider the NLS with variable coefficients in dimension n > 3

i∂tu− Lu+ f(u) = 0, Lv = ∇b · (a(x)∇bv)− c(x)v, ∇b = ∇+ ib(x),
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on Rn or more generally on an exterior domain with Dirichlet boundary conditions, for
a gauge invariant, defocusing nonlinearity of power type f(u) ' |u|γ−1u. We assume
that L is a small, long range perturbation of ∆, plus a potential with a large positive
part. The first main result of the paper is a bilinear smoothing (interaction Morawetz)
estimate for the solution. As an application, under the conditional assumption that
Strichartz estimates are valid for the linear flow eitL, we prove global well posedness
in the energy space for subcritical powers γ < 1 + 4

n−2 , and scattering provided
γ > 1 + 4

n . When the domain is Rn, by extending the Strichartz estimates due to
Tataru [84], we prove that the conditional assumption is satisfied and deduce well
posedness and scattering in the energy space. The reference for the results in this
Chapter is [10].

In Chapter 3, we prove a sharp version of the Hardy uncertainty principle for
Schrödinger equations with external bounded electromagnetic potentials, based on
logarithmic convexity properties of Schrödinger evolutions. We provide, in addition,
an example of a real electromagnetic potential which produces the existence of
solutions with critical gaussian decay, at two distinct times. The results in this
Chapter are proved in [11].

Notations.

In this thesis we will use often the following notation: given any two positive real
numbers a, b, we write a . b to indicate a 6 Cb, with C > 0, we unfold the constant
only when needed.

For any 1 6 r 6 ∞ we denote by 1 6 r′ 6 ∞ its Hölder conjugate exponent.
We indicate by Lrx the Lebesgue space Lr(Rn), and respectively by W 1,r

x and H1
x

the inhomogeneous Sobolev spaces W 1,r(Rn) and H1(Rn) (for more details see
[1]). For any N ∈ N, we also set Lrx = Lr(Rn)N and define the Sobolev spaces
W

1,r
x = W 1,r(Rn)N and H1

x = H1(Rn)N . We will make frequent use of the basic
properties of Lorentz spaces Lp,q, in particular precised Hölder, Young and Sobolev
inequalities, for which we refer to Section 2.9.

For any differential operator D we use the symbol Dx (resp. Dy) to explicit the
dependence on the x (resp. y) variable. Finally, in Chapter 3 we will denote by ft
the time derivative ∂tf of any function f .



Chapter 1

H1-scattering for systems of
N-defocusing weakly coupled NLS
equations in low space dimensions

In this chapter we prove scattering for a system of weakly coupled Schrödinger
equations: because of the nonlineary considered, a theorem of existence and unique-
ness is available only if the problem is set in Rn, with n 6 3. We develop hence here
new techniques for tackling the problem of scattering in the system framework and in
the low dimensional case. The reference for the results in the present chapter is [12].

1.1 Introduction

The main object of this chapter is the study of decay and scattering properties
of the solution to the following system of N > 2 defocusing nonlinear Schrödinger
equations in dimension 1 6 n 6 3:





i∂tuµ + ∆uµ −
N∑

µ,ν=1

βµν |uν |p+1|uµ|p−1uµ = 0, µ = 1, . . . , N,

(uµ(0, ·))Nµ=1 = (uµ,0)Nµ=1 ∈ H1(Rd)N .

(1.1.1)

Here, for all µ, ν = 1, . . . , N , uµ = uµ(t, x) : R × Rd → C, βµν > 0, βµµ 6= 0 are
coupling parameters, and we require that the nonlinearity parameter p satisfies the
following conditions:

1 6 p < p∗(n), p∗(n) =

{
+∞ if n = 1, 2,

2 if n = 3.
, (1.1.2)

2

n
< p. (1.1.3)

We recall that the power nonlinearity p∗(n) corresponds to the H1-critical exponent
for the single NLS in Rn, while the lower bound max(1, 2

n) arises from limitations
associated to the well-posedness in the product space H1(Rn)N for the solutions to
(1.1.1), as we see later in the Remarks 1.1.2 and 1.3.4. There is a vast literature

1



Section 1.1. Introduction 2

regarding the global well-posedness theory as well as the bound state theory for the
problem (1.1.1), and moreover the system of Schrödinger equations plays an important
role in many models of mathematical physics: it describes the interactions ofM–wave
packets, the nonlinear waveguides, the optical pulse propagation in birefringent fibers,
the propagation of polarized laser beam in Kerr-like photorefractive media and in
the Bose-Einstein condensates theory, just to name a few. We refer to [19], [37],
[72], [59] and [36] in the case N = 2 and to [55] and [67] in the general case N > 2
for a complete set of references both on mathematical and on physical setting and
applications.

We study the scattering theory in H1(Rn)N for (1.1.1) in analogy with the case
of the single defocusing Schrödinger equation

{
i∂tu+ ∆u− |u|2pu = 0
u(0) = u0 ∈ H1(Rn),

(1.1.4)

with u : R× Rn → C and p > 0.
The basic strategy in this work is to use the interaction Morawetz etimates

for exploiting decay properties of Lq-norms of the solutions to (1.1.1) as t→ ±∞,
provided 2 < q < 6 for n = 3 and 2 < q < ∞ for n = 1, 2, as suggested by the
classical theory available for (1.1.4). Namely, in a first step we obtain Morawetz
identities, interaction Morawetz identities and their corresponding inequalities in the
framework of the system (1.1.1), following the spirit of the paper [87] (we follow the
same path in Chapter 2, Sections 2.4 and 2.5). Then, by localizing the nonlinear part
of Morawetz inequalities above on space-time cubes we are in position, as a second
step, to give a contradiction argument which enables us to say that the solutions
(uµ)Nµ=1 decay (see also Proposition 2.7.3 in Chapter 2). We remark that, in order to
close this contradiction argument we use some terms coming from the nonlinear terms
of the equations, but in fact this is not necessary: one can indeed get a contradiction
with a similar argument using the linear terms, as done in the proof of Proposition
2.7.3 in Chapter 2; we follow this approach in order to simplify the arguments in
dimension n = 1, 2, and in order to give a more complete exposition of the topic in
the present Thesis.

Once proved decay properties for solutions to (1.1.1) thanks to a generalization
of the nonlinear theory developed in [13], we obtain existence of the wave operators
and asymptotic completeness in the energy space H1(Rn)N for the system (1.1.1).
We emphasize that our results rely on an argument which yields the asymptotics in a
single stroke and which does not distinguish the number N of coupled equations. In
fact, by writing the linear part of the interaction Morawetz in an appropriate form
and dealing only with its nonlinear part, it is possible to overcome the mathematical
difficulties, and moreover to provide a further simple proof of scattering results
appearing in [43], [71] and specially in [65]. In this last paper, the author produces a
set of weighted Morawetz estimate and uses the separation of localized energy method
to achieve that the wave operators and the scattering operators for (1.1.4) when
n = 1, 2 are well-defined and bijective in H1, but this is very difficult to extend to a
system of coupled nonlinear Schrödinger equations.

We state now the main result of this chapter.

Theorem 1.1.1. Let 1 6 n 6 3, p ∈ R such that (1.1.2), (1.1.3) hold, then:
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• (existence of wave operators) For every (u±µ,0)Nµ=1 ∈ H1(Rn)N there exist
unique initial data (uµ,0)Nµ=1 ∈ H1(Rn)N such that the global solution to (1.1.1)
(uµ)Nµ=1 ∈ C(R, H1(Rn)N ) satisfies

lim
t→±∞

∥∥∥uµ(t, ·)− eit∆u±µ,0(·)
∥∥∥
H1

= 0 for all µ = 1, . . . , N. (1.1.5)

• (asymptotic completeness) If (uµ,0)Nµ=1 ∈ H1(Rn)N , then there exist (u±µ,0)Nµ=1 ∈
H1(Rn))N such that (1.1.5) holds.

Remark 1.1.2 (Case βµν = 0, µ 6= ν). If, for µ 6= ν, some of the βµν is nonvanishing,
we are forced to assume p > 1 in order to treat the coupling nonlinearity considered
in (1.1.1): this excludes the analisys of the system in dimension n > 4, since in this
case an existence theorem is not available (see Prop. 1.3.1). By the way, in the trivial
case βµν = 0 for all µ 6= ν, we are no longer obliged to assume p > 1, and hence,
as a byproduct of this theory, we get decay (for 0 < p < 2/(n− 2)) and scattering
(for 2/n < p < 2/(n− 2)) results for the solution to the Cauchy problem (1.1.4) in
all dimensions n > 1. We remark that such results were already established in [87],
however our techniques simplify some arguments present in it. Finally, we underline
that this approach eases the well known results [65, 66] for the scattering of (1.1.4)
in lower dimension n = 1, 2.

Morawetz and interaction Morawetz estimates are not available in the system
framework to our knowledge: we recall here some of the known results, other than
the already cited [87], [65] and [66] connected with the problem (1.1.4).

In order to shed light on scattering properties for solutions to (1.1.4) it is necessary
to get fundamental tools such as the Morawetz multiplier technique and the resulting
estimates. These were obtained for the first time in [63] for the Klein-Gordon equation
with a general nonlinearity and were successively used for proving the asymptotic
completeness in [54] for the cubic NLS in R3 and in [43] for the Schrödinger equation
in Rn and with a pure power nonlinearity as in (1.1.4) for 2/n < p < 2/(n− 2) (that
is, L2-supercritical and H1-subcritical). Recently, a new approach has simplified the
proof of scattering, consisting in getting bilinear Morawetz inequalities, also named
interaction of quadratic Morawetz inequalities, specificly Morawetz estimates for two
solutions (possibly the same solution taken twice) are computed at once. We quote in
this direction the papers [16], [15], where cubic and quintic defocusing NLS in R3 are
considered, the [14] in which interaction Morawetz and then asymptotic completeness
are proved for the cubic defocusing NLS in R2, the paper [71] where the interaction
Morawetz estimates which do not involve the bilaplacian of the Morawetz multipliers
are given for the L2-supercritical and H1-subcritical NLS in Rn with n > 1, providing
also application to various nonlinear problems also settled on 3D exterior domains
and finally the survey [41] where the Authors show quadratic Morawetz estimates
and scattering for the NLS and the Hartree equation in the L2-supercritical and
H1-subcritical cases. We quote also [25], [38], [73], [40] (and references therein),
where such a theory is applied considering the presence of electromagnetic potentials
and the paper [64], where the interaction Morawetz technique is extended to the
partially periodic setting in the scattering analysis of the NLS posed on the product
space Rn × T, with n > 1.
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In Section 1.2 we establish the interaction Morawetz identities and inequalities
(in Lemmas 1.2.2) and the corresponding Morawetz estimates (in Propositions 1.2.4
and 1.2.5) for the system of NLS 1.1.1 ancillary for proving the Theorem 1.1.1. The
Section 1.3 is divided in two part: in the former we show how the interactive Morawetz
inequalities give a relevant advantage in the exploitation of the decay of solutions
to 1.1.1, this is contained in the Proposition (1.3.3), which has its own interest; in
the latter we look at the existence of scattering states and wave operators by an
extension of scattering techniques to the systems frame. Finally in the Appendix 1.4
a generalized Gagliardo-Nirenberg inequality is obtained (see for instance [87]).

1.2 Morawetz and interaction Morawetz identities

We provide in this section the fundamental tools for the proof of our main theorem.
We start by obtaining Morawetz-type identities, which are similar to the ones in
Chapter 2, which hold for the single NLS: : we will sketch them for the sake of
completeness, since some care is needed in handling more functions at once. We
introduce the following notations: given a function f ∈ H1(Rn,C), we denote by

mf (x) := |f(x)|2, jf (x) := =
[
f∇f(x)

]
∈ Cn. (1.2.1)

We have the following Lemma.

Lemma 1.2.1 (Morawetz). Let n > 1, and (uµ)Nµ=1 ∈ C(R, H1(Rn)N ) be a global
solution to system (1.1.1), let φ = φ(x) : Rn → R be a sufficiently regular and
decaying function, and denote by

V (t) :=

N∑

µ=1

∫

Rn
φ(x)muµ(x) dx.

The following identities hold:

V̇ (t) =

N∑

µ=1

∫

Rn
φ(x)ṁuµ(x) dx = 2

N∑

µ=1

∫

Rn
juµ(x) · ∇φ(x) dx (1.2.2)

V̈ (t) =

N∑

µ=1

∫

Rn
φ(x)m̈uµ(x) dx (1.2.3)

=
N∑

µ=1

[
−
∫

Rn
muµ(x)∆2φ(x) dx+ 4

∫

Rn
∇uµ(x)D2φ(x) · ∇uµ(x) dx

]

+
2p

p+ 1

N∑

µ,ν=1

βµν

∫

Rn
|uµ(x)|p+1|uν(x)|p+1∆φ(x) dx,

where D2φ ∈ Mn×n(Rn) is the hessian matrix of φ, and ∆2φ = ∆(∆φ) the bi-
laplacian operator.

Proof. We prove the identities for a smooth solution (uµ)µ, letting the general case
(uµ)Nµ=1 ∈ C(R, H1(Rn)N ) to a final standard density argument (see for instance [13,
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Theorem 7.6.4, Step 2], [41, Appendix 4], or the remarks in the beginning of Section
2.3). The equation (1.2.2) is easy to check. We give some details for obtaining (1.2.3).
By means of an integration by parts and thanks to (1.1.1), we have for every fixed µ

2∂t

∫

Rn
juµ(x) · ∇φ(x) dx

= −2=
∫

Rn
∂tuµ(x)[∆φ(x)ūµ(x) + 2∇φ(x) · ∇ūµ(x)] dx

= 2<
∫

Rn
i∂tuµ(x)[∆φ(x)ūµ(x) + 2∇φ(x) · ∇ūµ(x)] dx

= 2<
∫

Rn

[
−∆uµ(x) +

N∑

ν=1

βµν |uν(x)|p+1|uµ(x)|p−1uµ(x)
]

· [∆φ(x)ūµ(x) + 2∇φ(x) · ∇ūµ(x)] dx.

(1.2.4)

We have

2<
∫

Rn
−∆uµ(x)[∆φ(x)ūµ(x) + 2∇φ(x) · ∇ūµ(x)] dx

= −
∫

Rn
∆2φ(x)|uµ(x)|2 dx+ 4

∫

Rn
∇uµ(x)D2φ(x)∇ūµ(x) dx.

(1.2.5)

Moreover

2
N∑

ν=1

βµν<
∫

Rn
|uν |p+1|uµ|p−1uµ(x) · [∆φ(x)ūµ(x) + 2∇φ(x) · ∇ūµ(x)] dx

= 2
N∑

ν=1

βµν<
∫

Rn
|uµuν |p+1∆φ(x) + 2∇φ(x) · ∇|uµ|

p+1

p+ 1
|uν |p+1 dx,

and, summing over ν, µ = 1, . . . , N ,

2
N∑

ν,µ=1

βµν<
∫

Rn
|uµuν |p+1∆φ(x) +∇φ(x) · 2∇|uµ|p+1

p+ 1
|uν |p+1 dx

= 2

N∑

ν,µ=1

βµν<
∫

Rn
|uµuν |p+1∆φ(x) +∇φ(x) · ∇(|uµ|p+1|uν |p+1)

p+ 1
dx

= 2

N∑

ν,µ=1

βµν

(
1− 1

p+ 1

)
<
∫

Rn
|uµuν |p+1∆φ(x) dx,

(1.2.6)

where in the last equality we have used integration by parts. Taking in account
(1.2.4), (1.2.5), summing over µ = 1, . . . , N , and considering (1.2.6), we get the
thesis.

By means of the previous Lemma, we can now prove the following interaction
Morawetz identities.
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Lemma 1.2.2 (Interaction Morawetz). Let (uµ)Nµ=1 ∈ C(R, H1(Rn)N ) be a global
solution to system (1.1.1), let φ = φ(|x|) : Rn → R be a convex radial function,
regular and decaying enough, and denote by ψ = ψ(x, y) := φ(|x− y|) : R2n → R,

I(t) :=
N∑

µ,κ=1

∫

Rn

∫

Rn
ψ(x, y)muµ(x)muκ(y) dx dy.

The following holds:

İ(t) = 2
N∑

µ,κ=1

∫

Rn

∫

Rn
juµ(x) · ∇xψ(x, y)muκ(y) dxdy, (1.2.7)

Ï(t) > 2

N∑

µ,κ=1

∫

Rn

∫

Rn
∆xψ(x, y)∇xmuµ(t, x) · ∇ymuκ(t, y) dxdy +N(p,ψ), (1.2.8)

with

N(p,ψ) =
4p

p+ 1

N∑

µ,ν,κ=1

βµν

∫

Rn

∫

Rn
|uµ(x)|p+1|uν(x)|p+1muκ(y)∆xψ(x, y) dxdy.

(1.2.9)

Proof. As for the previous lemma, we prove the identities for a smooth solution
(uν)Nν=1, letting the general case (uµ)Nµ=1 ∈ C(R, H1(Rn)N ) to a final standard density
argument. First one has

İ(t) =
N∑

µ,κ=1

∫

Rn

∫

Rn

(
ṁuµ(x)muκ(y) +muµ(x)ṁuκ(y)

)
ψ(x, y) dx dy, (1.2.10)

then, due to the symmetry of ψ(x, y) = φ(|x− y|), we obtain that the equality above
is equivalent to

İ(t) = 2

N∑

µ,κ=1

∫

Rn

∫

Rn
ṁuµ(x)muκ(y)ψ(x, y) dx dy.

Therefore, (1.2.7) immediately follows by (1.2.2) and the Fubini’s Theorem. Analo-
gously, we can differentiate again and get the identity

Ï(t) =

N∑

µ,κ=1

∫

Rn

∫

Rn
m̈uµ(x)muκ(y)ψ(x, y) dx dy

+

N∑

µ,κ=1

∫

Rn

∫

Rn
muµ(x)m̈uκ(y)ψ(x, y) dx dy (1.2.11)

+2

N∑

µ,κ=1

∫

Rn

∫

Rn
ṁuµ(x)ṁuκ(y)ψ(x, y) dx dy.
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We can write Ï(t) := A+B: by (1.2.3), an application of the Fubini’s Theorem and
using once again the symmetry of ψ(x, y) we are allowed to set

A =− 2

N∑

µ,κ=1

∫

Rn

∫

Rn
muµ(x)muκ(y)∆2

xψ(x, y) dxdy

+
4p

p+ 1

N∑

µ,κ=1

βµµ

∫

Rn

∫

Rn
|uµ(x)|2p+2muκ(y)∆xψ(x, y) dxdy (1.2.12)

+
4p

p+ 1

N∑

µ,ν,κ=1µ6=ν
βµν

∫

Rn

∫

Rn
|uµ(x)|p+1|uν(x)|p+1muκ(y)∆xψ(x, y) dxdy,

notice that the second and third line of the (1.2.12) above are sum of terms coming
from the nonlinearity in the equation, while the r.h.s. of the first line consists of
sums of terms related to the linear part of the equation. We reshape the linear term
in the previous identity (1.2.12) as follows

− 2
N∑

µ,κ=1

∫

Rn

∫

Rn
muµ(t, x)muκ(t, y)∆2ψ(x, y) dxdy

=2
N∑

µ,κ=1

∫

Rn

∫

Rn
muµ(t, x)muκ(t, y)∂xi∂yi∆ψ(x, y) dxdy

=2
N∑

µ,κ=1

∫

Rn

∫

Rn
∂ximuµ(t, x)∂yimuκ(t, y)∆ψ(x, y) dxdy,

(1.2.13)

applying integration by parts (with no boundary terms) and using the property
∂xkψ = −∂ykψ. In conclusion, we get

A = 2

N∑

µ,κ=1

∫

Rn

∫

Rn
∆xψ(x, y)∇xmuµ(t, x) · ∇ymuκ(t, y) dxdy +N(p,ψ). (1.2.14)

Moreover by (1.2.2), (1.2.3) and the Fubini’s Theorem we introduce

B =4

N∑

µ,κ=1

∫

Rn

∫

Rn
∇uµ(x)D2

xψ(x, y)∇uµ(x)muκ(y) dxdy

+ 4
N∑

µ,κ=1

∫

Rn

∫

Rn
muµ(x)∇uκ(y)D2

yψ(x, y)∇uκ(y) dxdy

+ 8

N∑

µ,κ=1

∫

Rn

∫

Rn
juµ(x)D2

xyψ(x, y) · juκ(y) dxdy,

here we used, at least at this level, the symmetry of D2ψ to eliminate the real part
condition in the first two summands of the equality above. Let us focalize on B : it
is the sum of two terms, Bµ=κ, and Bµ 6=κ. We deal with each of them separately,
then we start with the summand with µ = κ that is
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Bµ=κ =
N∑

µ=1

Bµµ, (1.2.15)

where, for each µ = 1, ..., N the Bµµ term is defined by the chain of equalities

Bµµ = 4

∫

Rn

∫

Rn
muµ(x)∇yuµ(y)D2

yψ(x, y)∇yuµ(y) dxdy (1.2.16)

+ 4

∫

Rn

∫

Rn
muµ(y)∇xuµ(x)D2

xψ(x, y)∇xuµ(x) dxdy

+ 8

∫

Rn

∫

Rn
juµ(x)D2

xyψ(x, y) · juµ(y) dxdy

=4
d∑

j,k=1

∫

Rn

∫

Rn
|uµ(x)|2∂yjuµ(y)∂2

yjyk
φ(|x− y|)∂ykuµ(y) dxdy

+ 4
d∑

j,k=1

∫

Rn

∫

Rn
|uµ(y)|2∂xjuµ(x)∂2

xjxk
φ(|x− y|)∂xkuµ(x) dxdy

+ 8

d∑

j,k=1

∫

Rn

∫

Rn
=(uµ(x)∂xjuµ(x))∂2

xjyk
φ(|x− y|)=(uµ(y)∂ykuµ(y)) dxdy.

Since ∂xjψ = −∂yjψ, for all j = 1, . . . , n, one can check (after a rearrangement) that
the last identity of the (1.2.15) above is equal to

− 4

d∑

j,k=1

∫

Rn

∫

Rn
∂2
xjyk

φ(|x− y|)|uµ(x)|2<(∂yjuµ(y)∂ykuµ(y)) dxdy (1.2.17)

− 4

d∑

j,k=1

∫

Rn

∫

Rn
∂2
xjyk

φ(|x− y|)|uµ(y)|2<(∂xjuµ(x)∂xkuµ(x)) dxdy

+ 8

d∑

j,k=1

∫

Rn

∫

Rn
=(uµ(x)∂xjuµ(x))∂2

xjyk
φ(|x− y|)=(uµ(y)∂ykuµ(y)) dxdy,

and finally to

= −2
[ d∑

j,k=1

∫

Rn

∫

Rn
∂2
xjyk

φ(|x− y|)|uµ(x)|2(∂yjuµ(y)∂ykuµ(y) + ∂yjuµ(y)∂ykuµ(y)) dxdy

+

d∑

j,k=1

∫

Rn

∫

Rn
∂2
xjyk

φ(|x− y|)|uµ(y)|2(∂xjuµ(x)∂xkuµ(x) + ∂xjuµ(x)∂xkuµ(x)) dxdy

+
d∑

j,k=1

∫

Rn

∫

Rn
∂2
xjyk

φ(|x− y|)(uµ(x)∂xjuµ(x)− uµ(x)∂xjuµ(x))

· (uµ(y)∂ykuµ(y)− uµ(y)∂ykuµ(y)) dxdy
]
.
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If we set

Cµµj := uµ(t, x)∂yjuµ(t, y) + ∂xjuµ(t, x)uµ(t, y),

Dµµ
j := uµ(t, x)∂yjuµ(t, y)− ∂xjuµ(t, x)uµ(t, y),

then by gathering (1.2.15) and (1.2.17) we earn

Bµ=κ = 2
N∑

µ=1

d∑

j,k=1

∫
Rn
∫
Rn ∂

2
xjxk

φ(|x− y|)
[
Cµµj Cµµk +Dµµ

j Dµµ
k

]
dxdy. (1.2.18)

Take into account now the summand with µ 6= κ that is

Bµ 6=κ =
N∑

µ,κ=1
µ6=κ

Bµκ, (1.2.19)

with the Bµκ term given by

Bµκ =4

∫

Rn

∫

Rn
muµ(x)∇yuκ(y)D2

yψ(x, y)∇yuκ(y) dxdy

+ 4

∫

Rn

∫

Rn
muκ(y)∇xuµ(x)D2

xψ(x, y)∇xuµ(x) dxdy

− 8

∫

Rn

∫

Rn
juµ(x)D2

xψ(x, y) · juκ(y) dxdy

=4
d∑

j,k=1

∫

Rn

∫

Rn
|uµ(x)|2∂yjuκ(y)∂2

yjyk
φ(|x− y|)∂ykuκ(y) dxdy

+ 4
d∑

j,k=1

∫

Rn

∫

Rn
|uκ(y)|2∂xjuµ(x)∂2

xjxk
φ(|x− y|)∂xkuµ(x) dxdy

+ 8
d∑

j,k=1

∫

Rn

∫

Rn
=(uµ(x)∂xjuµ(x))∂2

xjyk
φ(|x− y|)=(uκ(y)∂ykuκ(y)) dxdy,

(1.2.20)

thus arguing as for the proof of (1.2.18), once one set

Eµκj := uµ(t, x)∂yjuκ(t, y) + ∂xjuµ(t, x)uκ(t, y),

Fµκj := uµ(t, x)∂yjuκ(t, y)− ∂xjuµ(t, x)uκ(t, y),

we arrive at the equality

Bµ 6=κ = 2

N∑

µ,κ=1
µ 6=κ

d∑

j,k=1

∫

Rn

∫

Rn
∂2
xjxk

φ(|x− y|)
[
Eµκj Eµκk + Fµκj Fµκk

]
dxdy. (1.2.21)

Therefore the identities (1.2.18), (1.2.21) and the fact that φ is a convex function
give B > 0. This argument implies, in combination with (1.2.11), (1.2.14), the proof
of (1.2.8).
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By using the identity (1.2.13) which appears in the proof of Lemma 1.2.2 we have
an equivalent way to the (1.2.8) useful when the quantity ∆2

xψ(x, y) is nonpositive.
This is contained in the following Corollary, whose easy proof we omit.

Corollary 1.2.3. Let be (uµ)Nµ=1 ∈ C(R, H1(Rn)N ), ψ = ψ(x, y) and N(p,ψ) as in
Lemma 1.2.2, then the following holds

Ï(t) > −2
N∑

µ,κ=1

∫

Rn

∫

Rn
muµ(x)muκ(y)∆2

xψ(x, y) dxdy +N(p,ψ). (1.2.22)

We remark that a regular function ψ : Rn → R such that ∆ψ > 0 and−∆(∆ψ) > 0
can not exist in Rn if n = 1, 2, hence in fact Corollary 1.2.3 will be useful only when
dealing with the 3D case.

As an immediate consequence of Lemma 1.2.2 and Corollary 1.2.3, we prove the
following results.

Proposition 1.2.4. Let n = 3, p ∈ R such that (1.1.2) holds, and let (uµ)Nµ=1 ∈
C(R, H1(R3)N ) be a global solution to (1.1.1). Then one has

N∑

µ=1

∫

R

∫

R3

|uµ(t, x)|4 dx dt <∞, (1.2.23)

N∑

µ=1

βµµ

∫

R

∫

R3

∫

R3

|uµ(t, x)|2p+2|uµ(t, y)|2
|x− y| dx dy dt <∞. (1.2.24)

Proof. Integrating (1.2.22) to time variable one obtains by (1.2.7)

2
N∑

µ,κ=1

[∫

R3

∫

R3

juµ(t, x) · ∇xψ(x, y)muκ(t, y) dxdy

]t=T

t=S

(1.2.25)

> −2

N∑

µ,κ=1

∫ T

S
muµ(t, x)muκ(t, y)∆2

xψ(x, y) dxdydt

+
4p

p+ 1

N∑

µ,κ=1

βµµ

∫ T

S

∫

R3

∫

R3

|uµ(t, x)|2p+2muκ(t, y)∆xψ(x, y) dxdydt

+
4p

p+ 1

N∑

µ,ν,κ=1
µ6=ν

βµν

∫ T

S

∫

R3

∫

R3

|uµ(t, x)|p+1|uν(t, x)|p+1muκ(t, y)∆xψ(x, y) dxdydt

Now choose ψ(x, y) = |x− y|. For the l.h.s of the (1.2.25) we have the immediate
bound

2
N∑

µ,κ=1

[∫

R3

∫

R3

juµ(t, x) · ∇xψ(x, y)muκ(t, y) dxdy

]t=T

t=S

(1.2.26)

6 C1




N∑

µ=1

‖uµ(T )‖H1
x

+

N∑

µ=1

‖uµ(S)‖H1
x




6 C2

N∑

µ=1

‖uµ,0‖H1
x
<∞,
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for some C1, C2 > 0 and any T, S ∈ R, since the H1
x-norm is preserved. We have

∆x|x− y| =
n− 1

|x− y| , ∆2
x|x− y| = −4πδx=y 6 0,

and hence

− 2

N∑

µ,κ=1

∫ T

S
muµ(t, x)muκ(t, y)∆2

xψ(x, y) dxdydt (1.2.27)

+
4p

p+ 1

(
N∑

µ,κ=1

βµµ

∫ T

S

∫

R3

∫

R3

|uµ(t, x)|2p+2muκ(t, y)∆xψ(x, y) dxdydt

+
N∑

µ,ν,κ=1
µ6=ν

βµν

∫ T

S

∫

R3

∫

R3

|uµ(t, x)|p+1|uν(t, x)|p+1muκ(t, y)∆xψ(x, y) dxdydt

)

> C
N∑

µ=1

(∫ T

S

∫

R3

|uµ(t, x)|4 dt dx+ βµµ

∫ T

S

∫

R3

∫

R3

|uµ(t, x)|2p+2|uµ(t, y)|2
|x− y| dx dy dt

)
,

for some C > 0, and any T, S ∈ R. The thesis follows by (1.2.25), (1.2.26), and
(1.2.27), letting T →∞, S → −∞.

Proposition 1.2.5. Let n = 1, 2, p > 0 as in (1.1.2), and let (uµ)Nµ=1 ∈ C(R, H1(Rn)N )
be a global solution to (1.1.1). Then

• for n = 1 we have

N∑

µ=1

βµµ

∫

R

∫

R
|uµ(t, x)|2p+4 dt dx <∞, (1.2.28)

• for n = 2 we have

N∑

µ=1

βµµ

∫

R

∫

R2

∫

R2

|uµ(t, x)|2p+2|uµ(t, y)|2
|x− y| dt dx dy <∞. (1.2.29)

Proof. The cases n = 1, 2 can be treated by a direct application of the inequality
(1.2.8). Pick up once again ψ(x, y) = |x− y|, then we have

∆xψ =

{
1
|x−y| if n = 2,

2δx=y if n = 1.
(1.2.30)

Arguing as in the proof of Proposition 1.2.4, we get in the case n = 1 that

∫

R

∫

R

∣∣∣
N∑

µ=1

∂xmuµ(t, x)
∣∣∣
2
dt dx+

N∑

µ=1

βµµ

∫

R

∫

R
|uµ(t, x)|2p+4 dt dx <∞, (1.2.31)

from which we infer the inequality (1.2.28).
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In the case n = 2, first one needs to recall the property (for more details see [41])

N∑

µ,κ=1

∫

R

∫

Rn

∫

Rn
∆xψ(x, y)∇xmuµ(t, x) · ∇ymuκ(t, y) dxdydt (1.2.32)

=

∫

R

∥∥∥
N∑

µ=1

(−∆)
1
4muµ(t, x)

∥∥∥
2

L2
x

dt.

Then we get the following

∫

R

∥∥∥
N∑

µ=1

(−∆)
1
4 |uµ(t, x)|2

∥∥∥
2

L2
x

dt

+
N∑

µ,κ=1

βµµ

∫

R

∫

R2

∫

R2

|uµ(t, x)|2p+2|uκ(t, y)|2
|x− y| dt dx dy <∞,

that yields the inequality (1.2.29).

Remark 1.2.6. We observe also that, for n = 2, an application of the Sobolev
embedding theorem implies, in similarity with the case n = 3, also the following
bound

N∑

µ=1

‖uµ(t, x)‖4L4(R,L8
x) <∞.

In fact this estimate can be used for proving scattering, as in [87, 71], but here we
will use the nonlinear term (1.2.29).

Remark 1.2.7. One could prove the interaction inequalities of the Proposition 1.2.5
by following the theory developed for a single NLS in the paper [14] and based on a
suitable choice of the function ψ(x, y), built case by case. To be more precise: it is
introduced for n = 1

ψ(x, y) = 2

∫ x−y
ε

−∞
e−t

2
dt with ε > 0, (1.2.33)

and then integration by parts are performed in combination with the limiting
argument ε→ 0; for n = 2 it is selected a even function ∆2

xψ satisfying the property

−∆2
xψ =

2π

a
− ha(|x− y|),

for some real number a > 0 and with

ha(|x− y|) =

{
1

|x−y|3 if |x− y| > a,

0 elesewhere,

then it is used a bilinear Morawetz inequality similar to (1.2.8). We elaborate our
own method which is easier to technicalities used above and well-suited also to treat
the case of system with more than two nonlinear coupled equations.
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1.3 Proof of Theorem 1.1.1

We split the proof of the main Theorem 1.1.1 in two steps. In the first one we
shall show, by transposing the method of [87], some decay properties of the solution
of the system (1.1.1). In the second one we present the proof of the scattering by
combining the argument of the first step with the theory estabilished in [13] and [41],
here applied to the case of the system of equations. In this section we will denote
w(t, x) = (uµ(t, x))Nµ=1.

We start this section observing that Theorem 3.3.9 and Remark 3.3.12 in [13],
in connection with the defocusing nature of the system, give a well-known result
concerning global well-posedness for (1.1.1) (see also [37]):

Proposition 1.3.1. Let 1 6 n 6 3 and p ∈ R such that (1.1.2) holds. Then for
all (uµ,0)Nµ=1 ∈ H1

x there exists a unique (uµ)Nµ=1 ∈ C(R,H1
x) solution to (1.1.1),

moreover

‖uµ(t)‖L2
x

= ‖uµ(0)‖L2
x

for all µ = 1, . . . , N, (1.3.1)

E(u1(t), . . . , uN (t)) = E(u1(0), . . . , uN (0)), (1.3.2)

with

E(u1, . . . , uN ) =

∫

Rn

N∑

µ=1

|∇uµ|2 dx+
N∑

µ,ν=1

βµν
|uµuν |p+1

p+ 1
dx.

Remark 1.3.2. The conservation laws (1.3.1) and (1.3.2) for the solution to (1.1.1)
yield also that

N∑

µ=1

‖uµ(t)‖H1
x
6

N∑

µ=1

‖uµ(0)‖H1
x
<∞. (1.3.3)

1.3.1 Decay of solutions to (1.1.1)

In this section we show some decay properties of the solution to (1.1.1), funda-
mental in the proof of scattering. We have the following.

Proposition 1.3.3. Let 1 6 n 6 3 and p ∈ R such that (1.1.2) holds. If w ∈ C(R,H1
x)

is a global solution to (1.1.1), then we have

lim
t→±∞

‖w(t)‖Lqx = 0, (1.3.4)

with 2 < q < 6, for n = 3 and with 2 < q < +∞, for n = 1, 2. In addition, if n = 1
one gets

lim
t→±∞

‖w(t)‖L∞x = 0. (1.3.5)

Proof. We treat only the case t→∞, the case t→ −∞ being analogous; we split
the proof in two part: we deal first with n = 3, and then n = 1, 2.
Case n = 3. Following the approach of [43] it is sufficient to prove (1.3.4) for a
suitable 2 < q < 6, since the thesis for the general case can be then obtained by the
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conservation of mass (1.3.1), the kinetic energy (1.3.3) and interpolation. In order
to do this we shall prove that

lim
t→±∞

‖w(t)‖
L

10
3
x

= 0. (1.3.6)

For this aim we argue as in [87] and we assume by the absurd that there exists {tk}
such that

lim
k→∞

tk =∞ and inf
k
‖w(tk, x)‖

L
10
3
x

= ε0 > 0. (1.3.7)

Next recall the following localized Gagliardo-Nirenberg inequality given in Section 1.4
(see also [56] and [57]):

‖ϕ‖
2n+4
n

L
2n+4
n

x

6 C

(
sup
x∈R3

‖ϕ‖L2(Qx)

) 4
n

‖ϕ‖2H1
x
, (1.3.8)

where Qx is the unit cube in R3 centered in x. By combining (1.3.7), (1.3.8) (where
we choose ϕ = w(tk, x)) with the bound ‖w(tk, x)‖H1

x
< +∞, we deduce that

∃xk ∈ Rn such that ‖w(tk, x)‖L2(Qxk ) = δ0 > 0. (1.3.9)

We claim that

∃t̄ > 0 such that ‖w(t, x)‖L2(Q̃xk ) > δ0/2, ∀t ∈ (tk, tn + t̄), (1.3.10)

where Q̃x denotes the cube in Rn of radius 2 centered in x. In order to prove (1.3.10)
we fix a cut–off function χ(x) ∈ C∞0 (Rn) such that χ(x) = 1 for |x| < 1 and χ(x) = 0
for |x| > 2. Then by using (1.2.2) where we choose φ(x) = χ(x− xn) we get

∣∣∣∣
d

dt

∫

Rn
χ(x− xk)|w(t, x)|2dx

∣∣∣∣ < C sup
t
‖w(t, x)‖2H1

x
.

Hence by (1.3.3) and the fundamental theorem of calculus we deduce

∣∣∣∣
∫

Rn
χ(x− xk)|w(s, x)|2dx−

∫

Rn
χ(x− xk)|w(t, x)|2dx

∣∣∣∣ 6 C0|t− s|, (1.3.11)

for some C0 > 0 independent of k. Hence if we choose t = tk we get the elementary
inequality

∫

Rn
χ(x− xk)|w(s, x)|2dx >

∫

Rn
χ(x− xk)|w(tk, x)|2dx− C0|tk − s|, (1.3.12)

which implies (by the compact support property of the function χ)
∫

Q̃xk

|w(s, x)|2dx >
∫

Qxk

|w(tk, x)|2dx− C0|tk − s|. (1.3.13)
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Hence (1.3.10) follows provided that we choose t̄ > 0 such that δ2
0 − C0t̄ > δ2

0/4.
The estimate (1.3.10) contradicts the Morawetz estimates (1.2.24). In fact, the lower
bounds (1.3.10) means that

N∑

µ=1

‖uµ(t)‖2
L2
x(Q̃xk )

> C(n)δ2
0 > 0, (1.3.14)

for any t ∈ (tk, tk + t̄) with t̄ as above, where we selected the intervals t ∈ (tk, tk + t̄)
disjoint, and whence, by Hölder inequality, there exists µ̄ ∈ {1, . . . , N} such that

‖uµ̄(t)‖p̄
Lp̄x(Q̃xk )

> C(n)
δ2

0

N
, (1.3.15)

for any p̄ > 2 and with t ∈ (tk, tk+ t̄) and t̄ as above. Thus we can write the following

min
µ=1,...,N

βµµ

N∑

µ=1

∫

R

∫

R3

∫

R3

|uµ(t, x)|2p+2|uµ(t, y)|2
|x− y| dx dy dt

> C
N∑

µ=1

∑

n

∫ tk+t̄

tk

∫

Rn

∫

Q̃xk×Q̃xk
|uµ(t, x)|2p+2|uµ(t, y)|2 dx dy dt

> C
∑

n

∫ tk+t̄

tk

δ4
0 dt =∞,

(1.3.16)

where in the last inequality we used (1.3.10) in combination with (1.3.14), (1.3.15)
and Fubini’s Theorem. This leads to the contradiction with (1.2.24).

Case n = 1, 2. We can argue as in the previous case just replacing the inequality
(1.3.8) by the following version

‖ϕ‖3L3
x
6 C

(
sup
x∈Rn

‖ϕ‖L2(Qx)

)
‖ϕ‖2H1

x
, (1.3.17)

(or alternatively by the (1.4.1)) displayed in Section 1.4, with the function ϕ defined
as above. Then proceeding as in the previous step we achieve, for n = 2, exactly the
same chain of inequalities as in (1.3.16) which is in contradiction with (1.2.29). For
n = 1 we instead arrive at

min
µ=1,...,N

βµµ

N∑

µ=1

∫

R

∫

R
|uµ(t, x)|2p+4 dt dx

> C

N∑

µ=1

∑

n

∫ tk+t̄

tk

∫

Q̃xk

|uµ(t, x)|2p+4 dt dx =∞,
(1.3.18)

but this contradicts the interaction estimate (1.2.28).
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Remark 1.3.4. As stated in the Introduction, we need to have the more stringent
lower bound max(1, 2

n) with respect to similar one earned in Theorem 0.1 in [87].
Indeed, if we select 0 < p < 1 the coupling terms

∑N
µ,ν=1 βµν |uν |p+1|uµ|p−1uµ with

µ 6= ν give rise to a kind of nonlinearity which could forbid the local well-posedness
result for the associated Cauchy problem (1.1.1) such as in Proposition 1.3.1. If one
replaces the nonlinear term in (1.1.1) with another model satisfying the assumptions
given in the Remark 3.3.12 in [13], then by repeating the argument of this section
it should be possible to eliminate the lower bound conditions given in (1.1.2) and
(1.1.3). But as of now we are unaware of such references.

1.3.2 Scattering for the NLS system (1.1.1).

This section is devoted to prove Theorem 1.1.1. The results are quite classic (see
[13], [43], Chapter 2 and references therein), anyway we present them in the more
general form of system framework. We recall from [52] the following.

Definition 1.3.5. An exponent pair (q, r) is Schrödinger-admissible if 2 6 q, r 6∞,
(q, r, n) 6= (2,∞, 2), and

2

q
+
n

r
=
n

2
. (1.3.19)

In order to prove Theorem 1.1.1 we need the following lemma.

Lemma 1.3.6. Assume p is as in (1.1.2), (1.1.3). Then, for any w ∈ C(R,H1
x)

global solution to (1.1.1), we have

w ∈ Lq(R,W1,r
x ), (1.3.20)

for every Schrödinger-admissible pair (q, r).

Proof. The proof is a transposition of the Theorem 7.7.3, in [13] and is similar to the
proof of the analogous Proposition 2.7.4 in Chapter 2. Let us consider the integral
operator associated to (1.1.1)

w(t+ T ) = eit∆xw0 +

∫ t

0
ei(t−τ)∆xg(u(T + τ), v(T + τ), p)dτ (1.3.21)

where t > T > 0 and

w(t) =



u1(t)
...

uN (t)


 , w0 =



u1,0
...

uN,0


 ,

g(w, p) =



g1(u1, . . . , uN , p)

...
gN (u1, . . . , uN , p)


 =




∑N
ν=1 β1ν |u1|p+1|u1|p−1u1

...∑N
ν=1 βNν |vν |p+1|u1|p−1u1


 .

The thesis is obtained by making an use of the classical inhomogeneous Strichartz
estimates (see once again [52]). We point out the details in handling the nonlinear
part in (1.3.21), that is the estimate of the following

N∑

µ=1

‖gµ(u1, . . . , uN , p)‖Lq′ ((T,t),W 1,r′
x )

, (1.3.22)
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for an appropriate (q, r) Schrödinger-admissible couple: we select (q, r) such that

(q, r) :=

(
4(p+ 1)

np
, 2p+ 2

)
. (1.3.23)

We consider for µ fixed the term

gµ(u1, . . . , uN , p) =
N∑

ν=1

βµν |uν |p+1|uµ|p−1uµ,

since the others can be handled in a similar way. The Hölder inequality combined
with Leibniz fractional rule gives

‖gµ(u1, . . . , uN , p)‖Lq′ ((T,t),W 1,r′
x )

6 C
∥∥

N∑

ν=1

βµν‖uµ‖W 1,r
x
‖uν |p+1|uµ|p−1‖

L
2p+2

2p
x

∥∥
Lq′ ((T,t))

6 C max
µ,ν=1,...,N

βµν
∥∥‖uµ‖W 1,r

x

N∑

ν=1

‖uν |p+1|uµ|p−1‖
L

2p+2
2p

x

∥∥
Lq′ ((T,t)).

(1.3.24)

From the following pointwise Young inequality (see for instance [46])

|uν |p+1|uµ|p−1 + |uµ|p+1|uν |p−1 6 C(p)
(
|uµ|2p + |uν |2p

)
,

and setting β = maxµ,ν=1,...,N βµν , we see that the last term of the inequality above
is not greater than

C̃(p, β)
∥∥‖u‖

W 1,r
x

N∑

ν=1

‖uν‖2p
L2p+2
x

∥∥
Lq((T,t))

.
∥∥∥

N∑

µ=1

‖uµ‖W 1,r
x
·
N∑

ν=1

‖uν‖2p
L2p+2
x

∥∥∥
Lq′ ((T,t))

.
∥∥∥

N∑

µ=1

‖uµ‖W 1,r
x
·
( N∑

ν=1

‖uν‖
2p+1− q

q′

L2p+2
x

‖uν‖
q
q′−1

L2p+2
x

)
‖Lq′ ((T,t))

.
∥∥∥

N∑

µ=1

‖uµ‖W 1,r
x
·
( N∑

ν=1

‖uν‖L2p+2
x

) q
q′−1
·
N∑

κ=1

‖uκ‖
2p+1− q

q′

L2p+2
x

∥∥∥
Lq
′
((T,t))

,

(1.3.25)

with all the constants involved in the inequalities above independent from t, T. Notice
that (2p + 1)q′ − q > 0 so the last term of the above chain of inequalities can be
bounded by

C̃(p, β)
∥∥∥
( N∑

κ=1

‖uκ‖W 1,r
x

) q
q′
( N∑

ν=1

‖uν‖L2p+2
x

)2p+1− q
q′
∥∥∥
Lq′ ((T,t))

, (1.3.26)

here we used without any distinction the dummy indices µ, ν and κ because defined
on the same set. Summing in µ the (1.3.26) above we get that the quantity in (1.3.22)
is bounded by

C sup
τ>T

( N∑

ν=1

‖uν(τ)‖
L2p+2
x

)2p+1− q
q′
( N∑

κ=1

‖uκ‖Lq((T,t)),W 1,r
x )

)q−1
, (1.3.27)
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with C > 0. The premises above, the equation (1.3.21) and the Proposition 1.3.3, in
connection with an use of the inhomogenehouse Strichartz estimates bring to

‖w‖
Lq((T,t),W1,r

x )
6 C‖w0‖H1

x
+ η(T )

(
‖w‖

Lq((T,t),W1,r
x )

)q−1
, (1.3.28)

where η(T )→ 0 as T →∞.
Thanks to the Lemma 7.7.4 in [13], for T large enough we have

‖w‖
Lq((T,t),W1,r

x )
6 C̄,

with the constant C̄ independent from t. In that way we get that w ∈ Lq((T,∞),W1,r
x ),

and one can use a similar argument in order to have w ∈ Lq((−∞,−T ),W1,r
x ). From

this fact we conclude immediately that w ∈ Lq(R,W1,r
x ).

Proof of Theorem 1.1.1. The proof of Theorem 1.1.1 is now a straightforward adap-
tation of Theorem 7.8.1 and Theorem 7.8.4 in [13]: we shortly prove it here for the
sake of completeness.
Asymptotic completeness: Let us write w(t) = e−it∆xw(t), we get

w(t) = w0 + i

∫ t

0
e−is∆xg(w, p)ds, (1.3.29)

moreover one has, for 0 < t < t1,

w(t)− w(t1) = i

∫ t

t1

e−is∆xg(w, p)ds. (1.3.30)

An application of classical Strichartz estimates yields

‖w(t)− w(t1)‖H1
x
. ‖eit∆x(w(t)− w(t1))‖H1

x

. ‖g(w, p)‖
Lq
′
((t,t1),W1,r

x )

(1.3.31)

where (q, r) is a Schrödinger-admissible pair as in (1.3.23). Following the proof of
Proposition 1.3.6 we achieve

lim
t,t1→∞

‖w(t)− w(t1)‖H1
x

= 0.

Thus we can say that there exist (u±1,0, . . . , u
±
N,0) ∈ H1(Rn)N such that exist

(u1(t), . . . , uN (t)) → (u±1,0, . . . , u
±
N,0) in H1(Rn)N as t → ±∞. Notice also that,

by Proposition 1.3.1, we have also the following properties verified

‖(u±1,0, . . . , u±N,0)‖L2
x

= ‖(u1,0, . . . , uN,0)‖L2
x
,

N∑

µ=1

∫

Rn
|∇u±µ,0|dx = E(u1,0, . . . , uN,0).

(1.3.32)

Existence of wave operators: Let us select a Schrödinger-admissible pair as in
(1.3.23) and introduce υ(t) = eit∆xw+

0 (the proof for w−0 (t) is analogous). Then by
the Strichartz estimates and Corollary 2.3.7 in [13] we get that, for T > 0,

H̃ (T ) = ‖υ(t)‖
Lq([T,∞],W1,r

x )
+ sup

t>T
‖υ(t)‖Lrx , (1.3.33)
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is a decreasing function w.r.t. the T variable and such that H̃ (T )→ 0 as T →∞.
As a consequence we are allowed to introduce the complete metric space Z ⊆
Lq([T,∞),W1,r

x ) defined as

Z =
{
w(t) : ‖w(t)‖

Lq((T,∞),W1,r
x )

+ sup
t>T
‖w(t)‖Lrx 6 2H̃ (T )

}
(1.3.34)

and equipped with the topology induced by ‖.‖Lq([T,∞),Lrx). Let be

I(w)(t) = −i
∫ ±∞

t
ei(t−τ)∆xg(u(τ), v(τ), p)dτ, (1.3.35)

with
I(w) ∈ C([T,∞),H1

x) ∩ Lq((T,∞),W1,r
x ).

(see [52] or the Corollary 2.3.6 in [13], easily generalizable to a system of equations).
Furthermore, by the inequality (see Lemma 1.3.6)

‖g(w, p)‖
Lq′ ((T,∞),W1,r

x )
6 C(H̃ (T ))2p+1

with w = (u, v) ∈ Z, in combination with the behavior of H̃ (T ) for T large enough
and the Sobolev embedding inequality we achieve the following estimate

‖w(t)‖
Lq((T,∞),W1,r

x )
+ sup

t>T
‖w(t)‖L∞((T,∞),Lrx) 6 H̃ (T ), (1.3.36)

for T large enough. By the estimate (1.3.33) and the (1.3.36) above we conclude
that the operator

K(w) = eit∆xw+
0 + I(w) (1.3.37)

is a contraction on Z with respect the norm ‖.‖
Lq([T,∞),W1,r

x )
. By applying a fixed

point argument we get that there exists w ∈ Z satisfying the equation (1.3.37). In
addition w ∈ C([T,∞),H1

x). By classical arguments one can show also that w is
a global solution to the equation (1.1.1) and then w(0) = w0 ∈ H1

x is well defined.
Furthermore the properties (1.1.5) is fulfilled. The proof of the remaining part
regarding the uniqueness reads as in Theorem 7.8.4 in [13], so we skip it.

1.4 A localized Gagliardo-Nirenberg inequality

The principal target of this section is to prove of the localized inequality (1.3.8)
used in the proof of Proposition 1.3.3 (see Section 1.3.1). Albeit it already appeared
in the literature (see for example [87], [56, 57] or [85] in the context of product
space Rn×M, with Mk any k-dimensional compact manifold), we recall it in a more
general form. We have

Proposition 1.4.1. Let be n > 1 and α ∈ N, then for all vector-valued functions
φ = (φ`)

α
`=1 ∈ H1(Rn)α one gets the following

‖φ‖
2n+4
n

L
2n+4
n (Rn)α

6 C

(
sup
x∈Rn

‖φ‖L2(Qx)α

) 4
n

‖φ‖2H1(Rn)α . (1.4.1)
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Proof. Consider an open covering of Rn given by a family of disjoint cubes {Qs}s∈N.
Let us look at the high dimensional case n > 3. For any component of φ =

(φ1, . . . , φα) one has that φ` ∈ L
2n
n−2 , ` = 1, . . . , α, then the Sobolev embedding and

an application of Hölder inequality bring to the chain of inequalities

α∑

`=1

∫

Qs

|φ`|
2n+4
n 6C

α∑

`=1

(∫

Qs

|φ`|2
) 2
n
(∫

Qs

|φ`|
2n
n−2

)n−2
n

6C
α∑

`=1

(∫

Qs

|φ`|2
) 2
n
(∫

Qs

|φ`|
2n
n−2

) 2(n−2)
2n

6C(α)

(
α∑

`=1

‖φ`‖L2(Qs)

) 4
n α∑

`=1

‖φ`‖2H1(Qs)
.

(1.4.2)

The estimates above can be rewritten as

‖φ‖
2n+4
n

L
2n+4
n (Qs)α

6 C
(
‖φ‖L2(Qs)α

) 4
n ‖φ‖2H1(Qs)α

, (1.4.3)

and hence summing over s we arrive at

‖φ‖
2n+4
n

L
2n+4
n (Rn)α

6C
(

sup
s∈N
‖φ‖L2(Qs)α

) 4
n ∑

s∈N
‖φ‖2H1(Qs)α

6C
(

sup
s∈N
‖φ‖L2(Qs)α

) 4
n

‖φ‖2H1(Rn)α .

(1.4.4)

We remark that the estimate above is translation invariant, hence the constants
are independent from s. Rhe estimate (1.4.1) follows from the above (1.4.4) in
combination with the fact {Qs}s∈N ⊂ {Qx}x∈Rn .

The remaining cases, n = 1, 2, can be handled in the same way as before with
minor changes. For n = 2 we need to replace the estimate (1.4.2) by the following

α∑

`=1

∫

Qs

|φ`|4 6 C

α∑

`=1

(∫

Qs

|φ`|2
)
‖φ`‖2H1(Qs)

6 C(α)

(
α∑

`=1

‖φ`‖L2(Qs)

)2 α∑

`=1

‖φ`‖2H1(Qs)
,

(1.4.5)

which can be carried out taking u = |φl|2 in the following Sobolev inequality

‖u‖L2(Qs)
. ‖u‖L1(Qs)

+ ‖∇u‖L1(Qs)
,

and by an use of Leibniz chain rule. Then one argues as in the proof for the higher
dimensions case. For the last case, that is n = 1, we use instead of (1.4.5) the
following

α∑

`=1

∫

Qs

|φ`|6 6 C
α∑

`=1

(∫

Qs

|φ`|2
)2

‖φ`‖2H1(Qs)

6 C

(
α∑

`=1

‖φ`‖L2(Qs)

)4 α∑

`=1

‖φ`‖2H1(Qs)
,

(1.4.6)
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which can be earned by using once again the inhomogeneous Sobolev embedding
W 1,1
x ⊂ L∞x and Leibniz chain rule. The proof is then concluded analogously.

Remark 1.4.2. Following the paper [87], we can also obtain a variant of the
inequality (1.4.1) in the cases n = 1, 2. The Sobolev embedding W 1,1

x ⊂ L2
x enables

us to write the easy localized estimate

α∑

`=1

∫

Qs

|φ`|3 6C

α∑

`=1

(∫

Qs

|φ`|2
) 1

2

‖|φ`|2‖W 1,1(Qs)

6C(α)

(
α∑

`=1

‖φ`‖L2(Qs)

)
α∑

`=1

‖φ`‖2H1(Qs)
,

(1.4.7)

this fact, arguing as in the proof of the Lemma 1.4.1 leads to the estimate

‖ϕ‖3L3(Rn)α 6 C

(
sup
x∈Rn

‖φ‖L2(Qx)α

)
‖φ‖2H1(Rn)α , (1.4.8)

that is the inequality (1.3.17).



Chapter 2

Scattering in the energy space for
the NLS with variable coefficients

We consider the NLS with variable coefficients in dimension n > 3

i∂tu− Lu+ f(u) = 0, Lv = ∇b · (a(x)∇bv)− c(x)v, ∇b = ∇+ ib(x),

on Rn or more generally on an exterior domain with Dirichlet boundary conditions,
for a gauge invariant, defocusing nonlinearity of power type f(u) ' |u|γ−1u. We
assume that L is a small, long range perturbation of ∆, plus a potential with a large
positive part. The first main result of the chapter is a bilinear smoothing (interaction
Morawetz) estimate for the solution.

As an application, under the conditional assumption that Strichartz estimates
are valid for the linear flow eitL, we prove global well posedness in the energy space
for subcritical powers γ < 1 + 4

n−2 , and scattering provided γ > 1 + 4
n . When the

domain is Rn, by extending the Strichartz estimates due to Tataru [84], we prove
that the conditional assumption is satisfied and deduce well posedness and scattering
in the energy space. The reference for the present Chapter is [10].

2.1 Introduction

We study the Cauchy problem in the energy space for the semilinear Schrödinger
equation

i∂tu− Lu+ f(u) = 0, u(0, x) = u0(x) (2.1.1)

on an exterior domain Ω = Rn \ ω with C1 boundary, in dimension n > 3, where ω
is compact and possibly empty. Here L is a second order elliptic operator defined on
Ω with Dirichlet boundary conditions, of the form

Lv = ∇b · (a(x)∇bv)− c(x)v, ∇b = ∇+ ib(x), (2.1.2)

where a(x) = [ajk(x)]nj,k=1, b(x) = (b1(x), . . . , bn(x)) and c(x) satisfy

a, b, c are real valued, ajk = akj and NI > a(x) > νI for some N > ν > 0.
(2.1.3)

The low dimensional cases n 6 2 require substantial modifications of our techniques
and will be the object of future work.

Our main results can be summarized as follows. Assume that

22
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(i) the principal part of L is a small, long range perturbation of ∆;

(ii) b, c have an almost critical decay, with b and c− := max{0,−c} small;

(iii) the boundary ∂Ω is starshaped with respect to the metric induced by a(x);

(iv) the nonlinearity f(u) ' |u|γ−1u is of power type, gauge invariant, defocusing,
with γ in the subcritical range 1 6 γ < 1 + 4

n−2 .

Then we prove:

1. a virial identity for (2.1.1), from which we deduce a smoothing and a bilinear
smoothing (interaction Morawetz) estimate for solutions of (2.1.1).

2. global well posedness and scattering in the energy space for the Cauchy problem
(2.1.1), under the black box assumption that Strichartz estimates are valid for
the linear flow eitL; scattering requires γ > 1 + 4

n .

3. in the case Ω = Rn, we extend the Strichartz estimates proved by Tataru
[84] to the case of large electric potentials; hence we can drop the black box
assumption and we obtain well posedness and scattering in the energy space
for (2.1.1).

Note that for exterior domains, Strichartz estimates are known but only locally
in time, see e.g. [60], [3] and the references therein. However, research on this topic
is advancing rapidly, thus in the general case Ω 6= Rn we decided to assume a priori
the validity of Strichartz estimates. In the case Ω = Rn sufficiently strong results are
already available and we use them to close the proof of scattering. On a related note
we mention the global smoothing estimates on the exterior of polygonal domains
proved in [3].

The theory of Strichartz estimates on Rn is extensive and many results are known.
We mention in particular [90], [89], [89], [75] [23] for the case of electric potentials,
[24] and [29] for magnetic potentials, and, for operators with fully variable coefficients,
[79], [74] and [84] (see also the refences therein). Note that large perturbations in
the second order terms require suitable nontrapping assumptions, which are implicit
here in the assumption that |a(x)− I| is sufficiently small.

Scattering theory is a important subject and the number of references is huge.
For a comprehensive review of the classical theory and an extensive bibliography
we refer to [13] (see also [43]). Smoothing estimates are also a classical subject,
originated in [50] and [63], [62]. The bilinear version of smoothing estimates, also
called interaction Morawetz estimates, was introduced as a tool in scattering theory
in [17], [83] and recently adapted to Schrödinger equations with an electromagnetic
potential in [18]. We mention that here we follow the simpler approach developed in
[87], [12].

We conclude the introduction with a detailed exposition of our results. Here and
in the rest of the chapter we make frequent use of the basic properties of Lorentz
spaces Lp,q, in particular precised Hölder, Young and Sobolev inequalities, for which
we refer to Section 2.9.
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In the following we denote by |a(x)| the operator norm of the matrix a(x), and
we use the notations

|a′| = ∑|α|=1 |∂αa(x)|, |a′′| = ∑|α|=2 |∂αa(x)|, |a′′′| = ∑|α|=3 |∂αa(x)|,

|b′| = ∑j,k |∂xjbk|, |c′| = ∑j |∂xjc|.

2.1.1 The operator L and its heat kernel etL

The results of this section are valid for all dimensions n > 3. Very mild conditions
on the coefficients of L are sufficient for selfadjointness: in Proposition 2.6.1 we prove
by standard arguments that if

b ∈ Ln,∞, c ∈ Ln
2
,∞, ‖c−‖Ln2 ,∞ < ε, (2.1.4)

with ε small enough (and a(x) ∈ L∞), then the operator L defined on C∞c (Ω)
extends in the sense of forms to a selfadjoint, nonpositive operator with domain
H1

0 (Ω) ∩H2(Ω). Throughout the chapter, this operator will be referred to as the
operator L with Dirichlet boundary conditions; note that in all our results the
assumptions are stronger than (2.1.4).

Under the additional assumption

b2 + |∇ · b| ∈ L2
loc, c ∈ Ln

2
,1, ‖c−‖Ln2 ,1 < ε

with ε small enough, we prove in Proposition 2.6.2 that the heat kernel of L satisfies
a gaussian upper estimate of the form

|etL(x, y)| 6 C ′t−
n
2 e−

|x−y|2
Ct , t > 0.

In Proposition 2.6.3, assuming further that

‖a− I‖L∞ + ‖|b|+ |a′|‖Ln,∞ + ‖b′‖
L
n
2 ,∞ < ε

for ε small enough, using the previous bound we deduce the equivalence

‖(−L)σv‖Lp ' ‖(−∆)σv‖Lp , 1 < p <
n

2σ
, 0 6 σ 6 1. (2.1.5)

2.1.2 Morawetz and interaction Morawetz estimates

From now on we restrict to the case when the operator L is a suitable long range
perturbation of ∆ on Ω; the precise conditions are the following.

Let n > 3 and assume that for some 0 < δ 6 1

|a′(x)|+ |x||a′′(x)|+ |x|2|a′′′(x)| 6 Ca〈x〉−1−δ, (2.1.6)

where 〈x〉 := (1 + |x|2)1/2. Moreover, b and the matrix db(x) := [∂jb` − ∂`bj ]nj,`=1

satisfy
b ∈ Ln,∞, |db(x)| 6 Cb

|x|2+δ+|x|2−δ . (2.1.7)

The potential c(x) satisfies
− C2

−
|x|2 6 c(x) 6 C2

+

|x|2 (2.1.8)
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(which implies c ∈ Ln
2
,∞) and is repulsive with respect to the metric a(x), meaning

that
a(x)x · ∇c(x) 6 Cc

|x|〈x〉1+δ . (2.1.9)

The nonlinearity f : C→ C is such that f(0) = 0 and, for some 1 6 γ < 1 + 4
n−2 ,

|f(z)− f(w)| 6 (|z|+ |w|)γ−1|z − w|, for all z, w ∈ C. (2.1.10)

We remark that in fact we can consider more general nonlinearities f such that
|f(z)− f(w)| 6 (1 + |z|γ−1 + |w|γ−1)|z − w|: for the sake of simplicity, we will just
assume (2.1.10), since the more general case can be easily obtained adapting our
proofs. We also assume that f is gauge invariant, that is to say

f(R) ⊆ R and f(eiθz) = eiθf(z) for all θ ∈ R, z ∈ C. (2.1.11)

Moreover, writing
F (z) :=

∫ |z|
0 f(s) ds, (2.1.12)

we assume that f is repulsive, i.e.,

f(z)z̄ − 2F (z) > 0 for all z ∈ C. (2.1.13)

Finally, concerning the domain Ω, we assume that ∂Ω is C1 and a(x)–starshaped,
meaning that at all points x ∈ ∂Ω the exterior normal ~ν to ∂Ω satisfies

a(x)x · ~ν(x) 6 0. (2.1.14)

In the following statement we use the Morrey-Campanato type norms defined by

‖v‖2
Ẋ

:= sup
R>0

1
R2

∫
Ω∩{|x|=R} |v|2dS, ‖v‖2

Ẏ
:= sup

R>0

1
R

∫
Ω∩{|x|6R} |v|2dx.

Moreover we use the notation L2
T = L2(0, T ) to denote integration in t on the interval

[0, T ], while LpTL
q = Lp(0, T ;Lq(Ω)) and LpLq = Lp(R;Lq(Ω)).

Theorem 2.1.1 (Smoothing). Let n > 4, L the operator in (2.1.2), (2.1.3) with
Dirichlet b.c. on the exterior domain Ω, and assume (2.1.6), (2.1.7), (2.1.9) and
(2.1.14). Let u ∈ C(R, H1

0 (Ω)) be a solution of Problem (2.1.1). Then, if N/ν − 1
and the constants Ca, Cb, C−, Cc are sufficiently small, u satisfies for all T > 0 the
estimate

‖u‖2
ẊxL2

T
+ ‖∇bu‖2

ẎxL2
T

+
∫ T

0

∫
Ω
f(u)u−2F (u)

|x| dxdt . ‖u(0)‖2
Ḣ

1
2

+ ‖u(T )‖2
Ḣ

1
2

(2.1.15)

with an implicit constant independent of T .

Theorem 2.1.1 actually holds even in the case n = 3, but we need a condition on
a(x) which essentially forces it to be diagonal, and this is of course too restrictive for
our purposes (see (2.4.2) below). Thus in the 3D case we modify our approach and
prove an estimate in terms of nonhomogeneous Morrey-Campanato norms

‖v‖2X := sup
R>0

1
〈R〉2

∫
Ω∩{|x|=R} |v|2dS, ‖v‖2Y := sup

R>1

1
R

∫
Ω∩{|x|6R} |v|2dx.
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We also need some slightly stronger assumptions on the coefficients: we require

|a(x)− I| 6 CI〈x〉−δ, CI < 1, (2.1.16)

moreover we assume

b ∈ L3,∞, |db(x)| 6 Cb
|x|2+δ+|x| . (2.1.17)

Then we have:

Theorem 2.1.2 (Smoothing, n = 3). Let L the operator in (2.1.2), (2.1.3) with
Dirichlet b.c. on the exterior domain Ω, and assume (2.1.6), (2.1.16) (2.1.17), (2.1.8),
(2.1.9), (2.1.11), (2.1.13), and (2.1.14). Let u ∈ C(R, H1

0 (Ω)) be a solution of Problem
(2.1.1). Then, if N/ν − 1 and the constants Ca, CI , Cb, C−, Cc are sufficiently small,
the solution u satisfies for all T > 0 the estimate

‖u‖2XxL2
T

+ ‖∇bu‖2YxL2
T

+
∫ T

0

∫
Ω
f(u)u−2F (u)

〈x〉 dxdt . ‖u(0)‖2
Ḣ

1
2

+ ‖u(T )‖2
Ḣ

1
2

(2.1.18)

with an implicit constant independent of T .

The previous results are a priori estimates on a global solution u, for which
conservation of energy might not hold; this is why we state estimates (2.1.15),(2.1.18)
on a finite time interval [0, T ] and we need the norm of u both at t = 0 and at
t = T at the right hand side. Note that it is possible to give explicit bounds on the
smallness assumption on the coefficients, see Remark 2.4.1.

Remark 2.1.3. The proofs of Theorems 2.1.1 and 2.1.2 have a substantial overlap
with the proof in [8] of resolvent estimates for the Helmholtz equation

Lu+ zu = f, z ∈ C \ R.

One can indeed deduce estimates for the linear Schrödinger equation from the
corresponding estimates for Helmholtz, via Kato’s theory of smoothing [51], but with
a loss in the sharpness of the estimates (see Corollary 1.3 in [8] for details; see also
[6] for earlier results in a simpler setting).

Remark 2.1.4. Note that in (2.1.15) and (2.1.18) the space-time norms are reversed
in (x, t), due to the method of proof. In the hypoteses of Theorem 2.1.1, thanks
to (2.1.15) and (2.2.7), (2.2.9), and in the hypoteses of Theorem 2.1.2, thanks to
(2.1.18) and (2.2.9), (2.2.12), we deduce the standard weighted L2 estimate

‖〈x〉−3/2−u‖2L2
TL

2
x
+‖〈x〉−1/2−∇bu‖2L2

TL
2
x
+
∫ T

0

∫
Ω
f(u)u−2F (u)

|x| dxdt . ‖u(0)‖2
Ḣ

1
2
+‖u(T )‖2

Ḣ
1
2
.

(2.1.19)
By (2.2.16) we can replace ∇b with ∇ at the left hand side, obtaining

‖〈x〉−3/2−u‖2L2
TL

2
x

+ ‖〈x〉−1/2−∇u‖2L2
TL

2
x
. ‖u(0)‖2

Ḣ
1
2

+ ‖u(T )‖2
Ḣ

1
2
. (2.1.20)

If the assumptions on b, c are slightly stronger so that the heat kernel etL satisfies
an upper gaussian bound, we can apply the techniques in [7] to obtain a further
estimate of weighted L2 tipe. In the next Corollary we assume Ω = Rn to keep the
proof simple but this would not be necessary.
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Corollary 2.1.5. Let n > 3, Ω = Rn, let L be as in Theorem 2.1.1 or as in Theorem
2.1.2, and assume that

b2 + |∇ · b| ∈ L2
loc, c ∈ Ln

2
,1, ‖c−‖Ln2 ,1 < ε.

Then for ε small enough the flow eitL satisfies the estimate

‖〈x〉−1−eitLu0‖L2
tL

2
x
. ‖u0‖L2 . (2.1.21)

The next results are bilinear smoothing (interaction Morawetz) estimates for
equation (2.1.1), which are the crucial tool in the proof of scattering. Note that the
assumptions are essentially the same as in Theorems 2.1.1, 2.1.2, and the constant
Cc′ may be large.

Theorem 2.1.6 (Bilinear smoothing, n > 4). Let n > 4 and let Ω, L be as in
Theorem 2.1.1. In addition, assume that

|x|2|∇c| 6 Cc′〈x〉−1−δ. (2.1.22)

Let u ∈ C(R, H1
0 (Ω)) be a solution of (2.1.1). Then, if the constants Ca, Cb, C−, Cc

and N/ν − 1 are small enough, u satisfies the estimate
∫ T

0

∫

Ω×Ω

|u(t, x)|2|u(t, y)|2
|x− y|3 dxdydt . ‖u(0)‖2L2

[
‖u(0)‖

Ḣ
1
2

+ ‖u(T )‖
Ḣ

1
2

]2
. (2.1.23)

Theorem 2.1.7 (Bilinear smoothing, n = 3). Let n = 3 and let Ω, L be as in
Theorem 2.1.2. In addition, assume (2.1.22). Let u ∈ C(R, H1

0 (Ω)) be a solution of
(2.1.1). Then, if the constants Ca, CI , Cb, C−, Cc and N/ν − 1 are small enough, u
satisfies the estimate

‖u‖4L4(0,T ;L4(Ω)) . ‖u(0)‖2L2

[
‖u(0)‖

Ḣ
1
2

+ ‖u(T )‖
Ḣ

1
2

]2
. (2.1.24)

2.1.3 Global existence and scattering

The proof of well posedness and scattering for (2.1.1) in the energy space relies in
an essential way on Strichartz estimates for the linear flow eitL. As mentioned above,
these are known in the case Ω = Rn under various assumptions on the coefficients,
while the results for exterior domains are far from complete. For this reason we
decided to state our main results by assuming the validity of Strichartz estimates
in a black box form, and then specialize them to some situations where Strichartz
estimates are already available. Recalling that an admissible (non endpoint) couple
is a couple of indices (p, q) with 2 < p 6 ∞ and 2/p + n/q = n/2, our black box
assumption has the following form:

Assumption (S). The Schrödinger flow eitL satisfies the Strichartz estimates

‖eitLu0‖Lp1Lq1 . ‖u0‖L2 , ‖
∫ t

0 e
i(t−s)LFds‖Lp1Lq1 . ‖F‖

Lp
′
2Lq
′
2

(2.1.25)

for all admissible couples (pj , qj), while the derivative of the flow ∇eitL satisfies

‖∇eitLu0‖Lp1Lq1 . ‖∇u0‖L2 , ‖∇
∫ t

0 e
i(t−s)LFds‖Lp1Lq1 . ‖∇F‖

Lp
′
2Lq
′
2

(2.1.26)
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for admissible couples (pj , qj) such that q1 < n.
Note that it is not trivial to deduce (2.1.26) from (2.1.25): indeed, for this step

one needs the equivalence of norms

‖(−L)
1
2 v‖Lq ' ‖∇v‖Lq

with q in the appropriate range. Under fairly general assumptions on L, we are able
to prove this equivalence for all 1 < q < n (see (2.1.5)), and this is the reason for
the restriction on q1 in (S).

Using Assumption (S) we can prove local well posedness in the energy space, and
global well posedness provided the nonlinearity is defocusing, i.e.,

F (r) =
∫ r

0 f(s)ds > 0 for s ∈ R (2.1.27)

(this is the content of Proposition 2.7.1 and Theorem 2.7.2):

Theorem 2.1.8. Let n > 3, let Ω = Rn \ ω be an exterior domain with compact
and possibly empty C1 boundary, let L be the selfadjoint operator with Dirichlet
b.c. defined by (2.1.2), (2.1.3), (2.1.4), and assume (S) holds.

(i) (Local existence in H1). If f ∈ C1(C,C) satisfies f(0) = 0 and |f(z)−f(w)| .
(|z|+ |w|)γ−1|z − w| for some 1 6 γ < 1 + 4

n−2 , then for all u0 ∈ H1
0 (Ω) there

exists T = T (‖u0‖H1) and a unique solution u ∈ C([−T, T ];H1
0 (Ω)).

(ii) (Global existence in H1). Assume in addition that b2 + |∇ · b| ∈ L2
loc, c ∈ L

n
2
,1,

‖a− I‖L∞ + ‖|b|+ |a′|‖Ln,∞ + ‖b′‖
L
n
2 ,∞ + ‖c−‖Ln2 ,1 < ε

for ε small enough, and that f(u) is gauge invariant (2.1.11) and defocusing
(2.1.27). Then for all initial data u0 ∈ H1

0 (Ω) problem (2.7.1) has a unique
global solution u ∈ C ∩ L∞(R;H1

0 (Ω)). The solution has constant energy for
all t ∈ R:

E(t) = 1
2

∫
Ω a(x)∇bu · ∇budx+ 1

2

∫
Ω c(x)|u|2dx+

∫
Ω F (u)dx ≡ E(0).

Combining the global existence result with the bilinear smoothing estimate in
Theorems 2.1.6 and 2.1.7, we obtain the main results of this chapter. Note that a
power nonlinearity f(u) = |u|γ−1u with 1 + 4

n < γ < 1 + 4
n−2 satisfies all conditions

of the following Theorems:

Theorem 2.1.9 (Scattering on Ω, under (S)). Let n > 3, Ω = Rn \ ω an exterior
domain with C1 compact and possibly empty boundary satisfying (2.1.14), L the
operator (2.1.2) with Dirichlet b.c. on Ω. Assume a, b, c satisfy, for some ε, C > 0,
δ ∈ (0, 1]

|x|a(x)x · ∇c < ε〈x〉−1−δ, |x||c|+ |x|2|c′| < C〈x〉−1−δ,

and in addition

‖a− I‖L∞ + |x|2c− + ‖c−‖Ln2 ,1 < ε, |x||b|+ |x|2|b′| < ε|x|δ〈x〉−2δ, if n > 4;

〈x〉δ‖a− I‖L∞ + 〈x〉2c− + ‖c−‖Ln2 ,1 < ε, |x||b|+ |x|〈x〉1+δ|b′| < ε, if n = 3.
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Finally |a′| + |x||a′′| + |x|2|a′′′| < ε〈x〉−1−δ, and f : C → C is gauge invariant
(2.1.11), repulsive (2.1.13), defocusing (2.1.27) and satisfies f(0) = 0, |f(z)−f(w)| .
(|z|+ |w|)γ−1|z −w| for some 1 + 4

n < γ < 1 + 4
n−2 . Then if (S) holds and ε is small

enough we have:
(i) (Existence of wave operators) For every u+ ∈ H1

0 (Ω) there exists a unique
u0 ∈ H1

0 (Ω) such that the global solution u(t) to (2.1.1) satisfies ‖e−itLu+ −
u(t)‖H1 → 0 as t→ +∞. An analogous result holds for t→ −∞.

(ii) (Asymptotic completeness) For every u0 ∈ H1
0 (Ω) there exists a unique u+ ∈

H1
0 (Ω) such that the global solution u(t) to (2.1.1) satisfies ‖e−itLu+−u(t)‖H1 →

0 as t→ +∞. An analogous result holds for t→ −∞.

When Ω = Rn, Strichartz estimates for eitL were proved by Tataru [84] in the
case L is a small, long range perturbations of ∆. In Theorems 2.8.1 - 2.8.2 we adapt
the result in [84] to our situation, and in particular, combining it with the smoothing
estimate (2.1.15), we extend Strichartz estimates to potentials c(x) with a large
positive part. In addition we deduce the necessary estimates also for the derivative
of the flow ∇eitL (Corollary 2.8.3). As a consequence, Assumption (S) is satisfied
and we obtain the final result of the chapter:

Theorem 2.1.10 (Scattering on Rn). Let n > 3, assume a, b, c satisfy c ∈ Lnloc and

|a− I|+ 〈x〉(|a′|+ |b|) + 〈x〉2(|a′′|+ |b′|) + 〈x〉3|a′′′| < ε〈x〉−δ,
|x|〈x〉a(x)x · ∇c < ε〈x〉−δ, ‖c−‖Ln2 ,1 < ε, |x||c|+ |x|2|c′| < C〈x〉−1−δ.

|x|2c− < ε, if n > 4, 〈x〉2c− < ε, if n = 3,

for some C > 0, δ ∈ (0, 1] and some ε small enough, and let L be the selfadjoint
operator defined by (2.1.2)-(2.1.3) on Rn. Finally, assume f : C → C is gauge
invariant (2.1.11), repulsive (2.1.13), defocusing (2.1.27) and satisfies f(0) = 0,
|f(z)− f(w)| . (|z|+ |w|)γ−1|z − w| for some 1 + 4

n < γ < 1 + 4
n−2 .

Then the conclusions (i), (ii) of Theorem 2.1.9 are valid.

2.2 Notations and elementary identities

Using the convention of implicit summation over repeated indices, we define the
operators

Abv := ∇b · (a(x)∇bv) = ∂bj (ajk(x)∂bkv), Av := ∇ · (a(x)∇v) = ∂j(ajk(x)∂kv)
(2.2.1)

so that L = Ab − c. The quadratic form associated with A is given by

a(w, z) := ajk(x)wkzj .

We shall use the notations

x̂ = x
|x| = (x̂1, . . . , x̂n), x̂j =

xj
|x| ,

â(x) = a`m(x)x̂`x̂m, a(x) = trace a(x) = amm(x).
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Since a(x) is positive definite, we have

0 6 â = ax̂ · x̂ 6 |ax̂| 6 a.

Indices after a semicolon refer to partial derivatives:

ajk;` := ∂`ajk, ajk;`m := ∂`∂majk, ajk;`mp := ∂`∂m∂pajk.

Notice the formulas
∂k(x̂`) = |x|−1[δk` − x̂kx̂`],

∂k(x̂`x̂m) = |x|−1[δk`x̂m + δkmx̂` − 2x̂kx̂`x̂m],

∂j∂k(x̂`x̂m) =
1

|x|2 [δk`δjm + δkmδj` + 8x̂j x̂kx̂`x̂m

− 2δk`x̂j x̂m − 2δkmx̂j x̂` − 2δjkx̂`x̂m − 2δj`x̂kx̂m − 2δjmx̂kx̂`]

which imply
ajka`mx̂j∂k(x̂`x̂m) = 2|x|−1[|ax̂|2 − â2],

and
ajka`m∂j∂k(x̂`x̂m) = 2

|x|2 [a`ma`m − 4(|ax̂|2 − â2)− aâ].

Using the previous identities, we see that for any radial function ψ(x) = ψ(|x|) we
can write

Aψ(x) = ∂`(a`mx̂mψ
′) = âψ′′ +

a− â
|x| ψ

′ + a`m;`x̂mψ
′ (2.2.2)

where ψ′ denotes the derivative of ψ(r) with respect to the radial variable.
We now give the definitions of the Morrey-Campanato type norms Ẋ, Ẏ ,X, Y

and recall some relations between them and usual weighted L2 norms.
For an open subset Ω ⊆ Rn, n > 2, we use the notations

Ω=R = Ω ∩ {x : |x| = R}, Ω6R = Ω ∩ {x : |x| 6 R}, Ω>R = Ω ∩ {x : |x| > R},

ΩR16|x|6R2
= Ω ∩ {x : R1 6 |x| 6 R2}.

The homogeneous and inhomogeneous norms Ẋ and X of a function v : Ω→ C are
defined as

‖v‖2
Ẋ

:= sup
R>0

1
R2

∫
Ω=R
|v|2dS, ‖v‖2X := sup

R>0

1
〈R〉2

∫
Ω=R
|v|2dS,

where dS is the surface measure on Ω=R and 〈R〉 =
√

1 +R2. We shall also need
proper Morrey-Campanato spaces, both in the homogeneous version Ẏ and in the
non homogenous version Y ; their norms are defined as

‖v‖2
Ẏ

:= sup
R>0

1
R

∫
Ω6R
|v|2dx, ‖v‖2Y := sup

R>0

1
〈R〉
∫

Ω6R
|v|2dx. (2.2.3)

The following equivalence is easy to prove:

‖v‖2Y 6 supR>1
1
R

∫
Ω6R
|v|2 6

√
2‖v‖2Y . (2.2.4)

The following Lemmas collect a few estimates to be used in the rest of the chapter,
which follow immediately from the definitions (proofs are straightforward, and full
details can be found in [8]).
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Lemma 2.2.1. For any v ∈ C∞(Rn),

‖|x|−1v‖Ẏ 6 ‖v‖Ẋ , ‖〈x〉−1v‖Y 6 ‖v‖X , (2.2.5)

sup
R>0

∫
Ω>R

Rn−1

|x|n+2 |v|2dx 6 1
n−1‖v‖2Ẋ , sup

R>1

∫
Ω>R

Rn−1

|x|n+2 |v|2dx 6 2
n−1‖v‖2X . (2.2.6)

Lemma 2.2.2. For any 0 < δ < 1 and v ∈ C∞(Rn),
∫

Ω
|v|2

|x|2〈x〉1+δ 6 2δ−1‖v‖2
Ẋ
, (2.2.7)

∫
Ω>1

|v|2
|x|3〈x〉δ 6

∫
Ω>1

|v|2
|x|3+δ 6 2δ−1‖v‖2X , (2.2.8)

∫
Ω
|v|2
〈x〉1+δ 6 8δ−1‖v‖2Y 6 8δ−1‖v‖2

Ẏ
. (2.2.9)

Lemma 2.2.3. For any R > 0, 0 < δ < 1 and v, w ∈ C∞(Rn),
∫

Ω61

|vw|
|x|2−δ +

∫
Ω>1

|vw|
|x|2+δ 6 9δ−1‖v‖Ẋ‖w‖Ẏ . (2.2.10)

In the following Lemma we prove some magnetic Hardy type inequalities, which
require n > 3, expressed in terms of the nonhomogeneous X,Y norms (compare
(2.2.11) with Theorem A.1 in [38]):

Lemma 2.2.4. Let n > 3 and assume b(x) = (b1(x), . . . , bn(x)) is continuous up to
the boundary of Ω with values in Rn. For any 0 < δ < 1, y ∈ Ω and v ∈ C∞c (Ω), we
have:

‖|x− y|−1v‖L2(Ω) 6 2
n−2‖∇bv‖L2(Ω), (2.2.11)

‖|x|−1v‖2Y 6 6‖∇bv‖2Y + 3‖v‖2X , (2.2.12)

∫
Ω61

|∇bv||v|
|x| dx+

∫
Ω>1

|∇bv||v|
|x|2+δ dx 6 9δ−1(‖∇bv‖2Y + ‖v‖2X), (2.2.13)

‖v‖X 6 4 supR>1R
−2
∫

Ω=R
|v|2dS + 13‖∇bv‖2Y . (2.2.14)

Proof. We give the complete proof of (2.2.11); the remaining inequalities are proved
in [8]. Integrating on Ω the identity

∇ ·
{

x−y
|x−y|2 |v|2

}
= <

[
2c(x)∇bf(x) x−y

|x−y|2
]

+ (n− 2) |c(x)|2
|x−y|2

and noticing that boundary term vanishes, we get

n−2
2

∫
Ω
|f(x)|2
|x−y|2 dx 6 <

∫
Ω

(x−y)f(x)

|x−y|2 ∇bf(x) dx 6
(∫

Ω
|f(x)|2
|x−y|2

) 1
2
(∫

Ω|∇bf(x)|2 dx
) 1

2
.

By a density argument, it is clear that the previous estimates are valid not only
for smooth functions but also for functions in D(L) = H1

0 (Ω) ∩H2(Ω).
We conclude this section with some additional properties of the magnetic norms.
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Lemma 2.2.5. Let n > 3. If b ∈ Ln,∞(Ω), the following equivalence holds:

‖∇bv‖L2(Ω) ' ‖∇v‖L2(Ω). (2.2.15)

Moreover, for s > 0 we have

‖〈x〉−s∇bv‖L2(Ω) + ‖〈x〉−s−1v‖L2(Ω) ' ‖〈x〉−s∇v‖L2(Ω) + ‖〈x〉−s−1v‖L2(Ω). (2.2.16)

Proof. By Hölder inequality and Sobolev embedding in Lorentz spaces, we can write

‖∇bv‖L2 6 ‖∇v‖L2 +‖bv‖L2 6 ‖∇v‖L2 +‖b‖Ln,∞‖v‖
L

2n
n−2 ,2

. (1 +‖b‖Ln,∞)‖∇v‖L2 .

Conversely, writing ∇ = ∇b − ib, we have

‖∇v‖L2 6 ‖∇bv‖L2 + ‖bv‖L2 . ‖∇bv‖L2 + ‖b‖Ln,∞‖v‖
L

2n
n−2 ,2

.

Recall now the pointwise diamagnetic inequality

|∇|v|| 6 |∇bv| (2.2.17)

which is true for b ∈ L2
loc. Thus, again by Sobolev-Lorentz embedding,

‖v‖
L

2n
n−2 ,2

. ‖∇|v|‖L2 6 ‖∇bv‖L2

and we obtain (2.2.15). Next we can write

‖〈x〉−s∇v‖L2 + ‖〈x〉−s−1v‖L2 ' ‖∇(〈x〉−sv)‖L2 + ‖〈x〉−s−1v‖L2

and
‖〈x〉−s∇bv‖L2 + ‖〈x〉−s−1v‖L2 ' ‖∇b(〈x〉−sv)‖L2 + ‖〈x〉−s−1v‖L2

which, together with (2.2.15), imply (2.2.16).

Lemma 2.2.6. Let n > 3 and consider the operator L = Ab−c with Dirichlet b.c. on
Ω, under assumptions (2.1.3), (2.1.6), (2.1.7), (2.1.9) and (2.1.14). If the constant
C− is sufficiently small, the operator L is selfadjoint and nonpositive. If in addition
b ∈ Ln,∞(Ω) then for all 0 6 s 6 1 we have the equivalence

‖(−L)
s
2 v‖L2(Ω) ' ‖v‖Ḣs(Ω). (2.2.18)

Proof. Selfadjointness and positivity are standard, and actually hold under less
restrictive assumptions on the coefficients (see Proposition 2.6.3 below for a more
general result). Next, (2.2.18) is trivial for s = 0, while for s = 1 we have

‖(−L)
1
2 v‖2L2 = (−Lv, v)L2(Ω) = a(∇bv,∇bv) +

∫
Ω c|v|2dx

which implies, using (2.2.15),

‖(−L)
1
2 v‖2L2 ' ‖∇bv‖2L2 +

∫
Ω c|v|2dx ' ‖∇v‖2L2 +

∫
Ω c|v|2dx.

By Hardy’s inequality we obtain the claim for s = 1, provided C− is sufficiently
small, and by complex interpolation we conclude the proof (recalling the complex
interpolation formula [D(Hσ0), D(Hσ1)]θ = D(Hσθ) with σθ = (1− θ)σ0 + θσ1 which
is valid for any selfadjoint operator H).
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2.3 Virial identity

In [8] a virial identity for the Helmholtz equation with variable coefficients was
obtained by adapting the Morawetz multiplier method. We show here how to
modify the technique in order to prove the analogous virial identity for the nonlinear
Schrödinger equation (2.1.1). To make sense of the formal manipulations, one needs
some additional smoothness (e.g., u ∈ H2(Ω) is enough), which can be obtained by
an approximation procedure similar to the proof of the conservation of energy in
Theorem 2.7.2 below; we omit the details. The identity is the following:

Proposition 2.3.1 (Virial Identity). Assume a, b, c, f(z) are as in Theorem 2.1.1,
let u be a solution of (2.1.1) and ψ : Rn → R an arbitrary weight. Then the following
identity holds:

∂t[=(a(∇ψ,∇bu)u)] =− 1
2A

2ψ|u|2 + <(α`m ∂bmu ∂
b
`u)

− a(∇ψ,∇c)|u|2

+ 2=(ajk∂
b
ku(∂jb` − ∂`bj)a`m∂mψ u)

+Aψ[f(u)ū− 2F (u)]

+ ∂j{−<Qj + 2F (u)ajk∂kψ + =[utūajk∂kψ]},

(2.3.1)

where

α`m = 2ajm∂j(a`k∂kψ)− ajk∂kψ∂ja`m, (2.3.2)

Qj = ajk∂
b
ku · [Ab, ψ]u− 1

2
ajk(∂kAψ)|u|2 − ajk∂kψ

[
c|u|2 + a(∇bu,∇bu)

]
. (2.3.3)

Proof. We multiply both sides of (2.1.1) by the multiplier

[Ab, ψ]ū = (Aψ)ū+ 2a(∇ψ,∇u)

and take real parts. We recall the following identity (which however can be checked
directly with some lengthy but elementary computations) from Proposition 2.1 of [8]:

<[(−Abu+ cu)[Ab, ψ]u] =− 1
2A

2ψ|u|2 + <(α`m ∂bmu ∂
b
`u)

− a(∇ψ,∇c)|u|2

+ 2=(ajk∂
b
ku(∂jb` − ∂`bj)a`m∂mψ u)

−< ∂jQj ,

(2.3.4)

where αlm are defined by (2.3.2) and Qj by (2.3.3). For the terms containing f(u)
we can write

<(f(u)[Ab, ψ]ū) = Aψ[f(u)ū− 2F (u)] +∇ · {2F (u)a∇ψ}. (2.3.5)

Indeed, by the assumptions on f , there exists a function g : [0,+∞)→ R such that
f(z) = g(|z|2)z. As a consequence,

∇F (u) = ∇
∫ |u|

0 f(s) ds = ∇
∫ |u|

0 g(s2)s ds =

=
1

2
∇
∫ |u|2

0 g(t) dt = <(g(|u|2)u∇ū) = <(f(u)∇ū) =

= <(f(u)∇bu),
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since <(f(u)ibū) = 0. We conclude that

<[f(u)[Aψū+ 2a(∇ψ,∇bu)]] =Aψf(u)ū+ 2∇ψta<(f(u)∇bu) =

=Aψf(u)ū+ 2∇ψta∇F (u) =

=Aψf(u)ū+ 2[a∇ψ] · ∇F (u) =

=Aψ[f(u)ū− 2F (u)] +∇ · {2F (u)a∇ψ},

and (2.3.5) is proved. Finally, for the terms containing iut we have the identity

<(i∂tu[Ab, ψ]ū) = ∂t[−=a(∇ψ,∇bu)u] +∇ · {=(utūa∇ψ)}. (2.3.6)

This can be proved directly as follows:

<[iut[Aψū+ 2a(∇ψ,∇bu)]] = −=[ut∇ · (a∇ψ)ū+ 2∇ψta∇uut − 2i∇ψtabūut] =

=−=[−∇utta∇ψū− ut∇u
t
a∇ψ + 2∇ψta∇uut − 2i∇ψtabūut +∇ · {utūa∇ψ}] =

=−=[∇utta∇ψu+∇uta∇ψut] + 2=[i∇ψta(bū)ut] +∇ · {=[utūa∇ψ]} =

=−=[∂t(∇uta∇ψu)] + =[i∂t(∇ψtabuu)] +∇ · {=[utūa∇ψ]} =

=−=[∂t(∇uta∇ψu)] + =[i∂t(∇ψtabuu)] +∇ · {=[utūa∇ψ]} =

=∂t[−=a(∇ψ,∇bu)u] +∇ · {=[utūa∇ψ]}.

Gathering (2.3.4), (2.3.5) and (2.3.6) we obtain (2.3.1).

2.4 Proof of Theorems 2.1.1, 2.1.2: the smoothing esti-
mate

Since the arguments for Theorems 2.1.1 and 2.1.2 largely overlap, we shall proceed
with both proofs in parallel. The proof consists in integrating the virial identity
(2.3.1) on Ω and estimating carefully all the terms. Note that some of the following
computations are similar to those of Section 4 in [8].

Remark 2.4.1. At several steps, we shall need to assume that the constants N/ν−1,
Ca, CI , Cc, Cb, C− are small enough. We can give explicit conditions on the smallness
required in Theorem 2.1.1 and in Theorem 2.1.2. In both the Theorems the smallness
of C− is only required in order to make L a selfadjoint, nonpositive operator. In
view of the magnetic Hardy inequality (2.2.11), it is sufficient to assume

C− 6 2
√
ν

n−2 . (2.4.1)

In Theorem 2.1.1 it is sufficient that

N
ν 6

√
n2+2n+15

6(n+2) for 3 6 n 6 25, N
ν < 7n−1

3(n+3) for n > 26 (2.4.2)

and that the following quantities are positive:

K0
2 ν

2 − 5N2Cb+12nCa(N+Ca)+Cc
δ > 0,

n−1
3n ν

2−5N2Cb+24NCa
δ > 0,

(
n− N

ν

)
− n

n−1νCa > 0,
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where
K0 := n−1

6 − n+3
2

N
ν + n > 0.

We remark that n−N/ν > 0 thanks to (2.4.2). On the other hand, the condition
K0 > 0 is equivalent to the second equation in (2.4.2) and is implied by the first
equation in (2.4.2) in the case n 6 26.

In Theorem 2.1.2 it is sufficient that the following quantities are positive:

(1−CI)2

78 − 8δ−1[Cc + 9CI + 41Ca(N + Ca)]− 9δ−1N2Cb > 0,

(1−CI)2

6 − 13δ−1[Cc + 38Ca(N + Ca)]− 9δ−1N2Cb > 0
(
n− N

ν

)
− n

n−1νCa > 0.

The proof is divided into several steps.

2.4.1 Choice of the weight ψ

Define
ψ1(r) =

∫ r
0 ψ
′
1(s)ds (2.4.3)

where

ψ′1(r) =

{
n−1
2n r, r 6 1

1
2 − 1

2nrn−1 , r > 1.

Then ψ is the radial function, depending on a scaling parameter R > 0,

ψ(|x|) ≡ ψR(|x|) := Rψ1

(
|x|
R

)
.

Here and in the following, with a slight abuse, we shall use the same letter ψ to
denote a function ψ(r) defined for r ∈ R+ and the radial function ψ(x) = ψ(|x|)
defined on Rn. We compute the first radial derivatives ψ(j)(r) = ( x

|x| · ∇)jψ(x) for
|x| > 0:

ψ′(x) =

{
n−1
2n ·

|x|
R , |x| 6 R

1
2 − Rn−1

2n|x|n−1 , |x| > R
(2.4.4)

which can be equivalently written as

ψ′(x) = |x|
2nR

[
n R
R∨|x| − ( R

R∨|x|)
n
]

and implies in particular
0 6 ψ′ 6 1

2 . (2.4.5)

Then we have

ψ′′(x) = n−1
2n · Rn−1

(R∨|x|)n = n−1
2n ·

{
1
R |x| 6 R
Rn−1

|x|n |x| > R,
(2.4.6)

ψ′′′(x) = −n−1
2

Rn−1

|x|n+11|x|>R (2.4.7)

ψIV (x) = n2−1
2 · Rn−1

|x|n+21|x|>R − n−1
2

1
R2 δ|x|=R. (2.4.8)
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ψ′′ − ψ′

|x| =

{
0 |x| 6 R

− 1
2|x|

(
1− Rn−1

|x|n−1

)
|x| > R.

(2.4.9)

Moreover the function (see (2.2.2))

Aψ = âψ′′ + a−â
|x| ψ

′ + a`m;`x̂mψ
′. (2.4.10)

is continuous and piecewise Lipschitz.

2.4.2 Estimate of the terms in |u|2

In this section we consider the terms

I|u|2 = −1

2
A2ψ|u|2 − a(∇ψ,∇c)|u|2. (2.4.11)

We compute the quantity A2ψ: after some long but elementary computations (see
[8]) we have

A2ψ(x) = S(x) +R(x) (2.4.12)

where

S(x) =â2ψIV + [2aâ− 6â2 + 4|ax̂|2]ψ
′′′
|x| +

+ [2a`ma`m + a2 − 6aâ+ 15â2 − 12|ax̂|2]
(
ψ′′

|x|2 −
ψ′

|x|3
) (2.4.13)

and

R(x) =âa`m;`x̂mψ
′′′ + (a− â)ajk;j x̂k

(
ψ′′
|x| −

ψ′

|x|2
)

+

+ [∂j(ajka`m;kx̂`x̂m) + ∂j(ajka`m)∂k(x̂`x̂m)]
(
ψ′′ − ψ′

|x|

)
+ (Aa) ψ

′
|x|+

+ 2ajka`m;kx̂`x̂mx̂j

(
ψ′′′ − ψ′′

|x|

)
+ 2a(∇a,∇ ψ′

|x|)+

+A(a`m;`x̂mψ
′).

The remainder R(x) can be estimated as follows: recalling that, by definition of ψ,
we have

|ψ′| 6 |x|
2(R∨|x|) , |ψ′′| 6 n−1

2n(R∨|x|) , |ψ′′′| 6 n−1
2|x|(R∨|x|)

and using assumption (2.1.6), we find that

|R(x)| 6 12nCa(N + Ca)

|x|〈x〉1+δ(R ∨ |x|) . (2.4.14)

Proof of Theorem 2.1.1

We prove that, assuming (2.1.9), (2.1.6), (2.1.3), (2.4.2), we have
∫

Ω

∫ T
0 I|u|2 dtdx >n−1

2 ν 1
R2

∫
Ω=R

â‖u‖L2
T
dS

−
[
n+3

2 N − nν
]

(n− 1)
∫

Ω>R
â R

n−1

|x|n+2 ‖u‖L2
T
dx

− (12nCa(N + Ca) + Cc)δ
−1‖u‖2

ẊxL2
T
.

(2.4.15)
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We focus on the main term S(x). With our choice of the weight ψ we have in the
region |x| 6 R

S(x) = −n−1
2 â2 1

R2 δ|x|=R (2.4.16)

while in the region |x| > R

S(x) =(n− 1)
[
n+3

2 â− a
]
â R

n−1

|x|n+2 − 2(n− 1)[|ax̂|2 − â2] R
n−1

|x|n+2

− [2a`ma`m + a2 − 6aâ+ 15â2 − 12|ax̂|2]
(
1− ( R|x|)

n−1
)

1
2|x|3 .

(2.4.17)

Note that a`ma`m is the square of the Hilbert-Schmidt norm of the matrix a(x). We
deduce from assumption (2.1.3)

nN > a > nν, N > |ax̂| > â > ν, a`ma`m > nν2,

so that
S(x) 6 −n−1

2 νâ 1
R2 δ|x|=R for |x| 6 R. (2.4.18)

On the other hand, we have

2|a(x)|2HS+a2−6a(x)â(x)+15â2(x)−12|a(x)x̂|2 > (2n+n2+15)ν2−6(n+2)N2 > 0
(2.4.19)

by (2.4.2) (note that the second condition in (2.4.2) implies the first one when
n > 26), thus we get

S(x) 6 (n− 1)
[
n+3

2 N − nν
]
â R

n−1

|x|n+2 for |x| > R. (2.4.20)

Now we can estimate from below the integral

−
∫

Ω

∫ T
0 A2ψ|u|2 dtdx = −

∫
ΩA

2ψ‖u(x)‖2L2
T
dx = I + II

where
I = −

∫
Ω S(x)‖u(x)‖2L2

T
dx, II = −

∫
ΩR(x)‖u(x)‖2L2

T
dx.

By (2.4.14) and (2.2.7) we have immediately for any R > 0

II > −24nδ−1Ca(N + Ca)‖u‖2ẊxL2
T

. (2.4.21)

Note that we must first integrate in time over [0, T ], then in space over Ω=R and
finally divide by R2 and take the sup in R > 0; this gives a reverse norm ẊxL

2
t in

the previous estimate. Concerning the S(x) term I, we have by (2.4.18), (2.4.20)

I > n−1
2 ν 1

R2

∫
Ω=R

â‖u‖2L2
T
dS −

[
n+3

2 N − nν
]

(n− 1)
∫

Ω>R
â R

n−1

|x|n+2 ‖u‖2L2
T
dx (2.4.22)

for all R > 0.
It remains to consider the second term in (2.4.11); we have

−a(∇ψ,∇c)|u|2 = −a(x̂,∇c)ψ′|u|2 > − Cc
|x|2〈x〉1+δψ

′|u|2 (2.4.23)

thanks to assumption (2.1.9). Since 0 < ψ′ < 1/2, by estimate (2.2.7) we obtain

−
∫

Ω

∫ T
0 a(∇ψ,∇c)|u|2 dtdx > −Ccδ−1‖u‖2

ẊxL2
T

(2.4.24)

Collecting (2.4.22), (2.4.21), and (2.4.24) we get (2.4.15).
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Proof of Theorem 2.1.2

We prove that, assuming (2.1.3), (2.1.6), (2.1.16), (2.1.9), we have for all R > 1

∫
Ω

∫ T
0 I|v|2 dtdx > (1− CI)

1

R2

∫

Ω=R

‖u‖2L2
T
dS

− 8δ−1[Cc + 9CI + 41Ca(N + Ca)]‖u‖2XL2
T

− 13δ−1[Cc + 36Ca(N + Ca)]‖∇bu‖2Y L2
T
.

(2.4.25)

Writing a(x) = I+q(x) i.e. q`m := a`m−δ`m we have, with the notations q̂ = q`mx̂`x̂m
and q = q``,

a`ma`m = δ`mδ`m + 2δ`mq`m + q`mq`m = 3 + 2q + q`mq`m

and also
â = 1 + q̂, a = 3 + q, |ax̂|2 = 1 + 2q̂ + |qx̂|2.

Note that |q| = |a(x)− I| 6 CI〈x〉−δ < 1 by assumption (2.1.16), which implies

|q| 6 3CI〈x〉−δ, |q̂| 6 CI〈x〉−δ, |qx̂| 6 CI〈x〉−δ

so that

2a`ma`m + a2 − 6aâ+ 15â2 − 12|ax̂|2 =4q − 12q̂ + 2q`mq`m + q2 − 6qq̂ + 15q̂2 − 12|qx̂|2

>4q − 12q̂ − 6qq̂ − 12|qx̂|2 > −46CI〈x〉−δ.

We have also 1− CI 6 â 6 1 + CI so that (n = 3)

−n−1
2 â2 6 −(1− CI)2,

(
n+3

2 â− a
)
â 6 6CI(1 + CI) < 12CI

Thus under the assumptions of Theorem 2.1.2 we obtain the estimates

S(x) 6 −(1− CI)2 1
R2 δ|x|=R for |x| 6 R (2.4.26)

and
S(x) 6 24CI

[
R2

|x|5 + 1
|x|3〈x〉δ

]
for |x| > R. (2.4.27)

Now we can estimate from below the integral

−
∫

Ω

∫ T
0 A2ψ|u|2 dtdx = −

∫
ΩA

2ψ‖u(x)‖2L2
T
dx = I + II

where
I = −

∫
Ω S(x)‖u(x)‖2L2

T
dx, II = −

∫
ΩR(x)‖u(x)‖2L2

T
dx.

Concerning the S(x) term I, using (2.2.6) and (2.2.8) in (2.4.26), (2.4.27), we
have for all R > 1

I > (1− CI)2 1

R2

∫

Ω=R

‖u‖2L2
T
dS − 72CIδ

−1‖u‖2XxL2
T
. (2.4.28)
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We estimate the now the II–term: for all R > 1, thanks to (2.4.14), we have

II >− 36Ca(N + Ca)

∫ T

0

∫

Ω
|x|−1〈x〉−1−δ(R ∨ |x|)−1|u(t, x)|2 dxdt

>− 36Ca(N + Ca)
∫ T

0

[∫
Ω61

+
∫

Ω>1

]
|x|−2〈x〉−1−δ|u(t, x)|2 dxdt

(2.4.29)

We observe that, thanks to (2.2.8), we have

∫ T
0

∫
Ω>1

|u|2
|x|2〈x〉1+δ

dxdt =
∫

Ω>1

‖u(x)‖
L2
T

|x|2〈x〉1+δ
6 2δ−1‖u‖XL2

T
. (2.4.30)

Moreover, thanks to (2.2.11) and (2.2.4), we estimate

∫ T
0

∫
Ω61

|u|2
|x|2〈x〉1+δ

dxdt 6
∫ T

0

∫
Ω61
|x|−2|u|2 dxdt 6 4

∫ T
0

∫
Ω61
|∇bu|2 dxdt

= 4‖∇bu‖2L2(Ω61)L2
T

(2.4.31)

Gathering (2.4.30) and (2.4.31), we have

∫ T
0

∫
Ω

|u|2
|x|2〈x〉1+δ

dxdt 6 2δ−1‖u‖2XL2
T

+ 4‖∇bu‖2L2(Ω61)L2
T
. (2.4.32)

We get immediately from (2.4.29) and (2.4.32) that

II > −324δ−1Ca(N + Ca)
[
‖u‖2XL2

T
+ ‖∇bu‖2L2(Ω61)L2

T

]
. (2.4.33)

We consider the second term in (2.4.11); thanks to (2.1.9) and (2.4.32) we have

−
∫ T

0

∫
Ω a(∇ψ,∇c)|u|2 dxdt >−

∫ T

0

∫

Ω

Cc
2

|u|2

|x|2〈x〉1+δ
dxdt

>− Ccδ−1‖u‖2XL2
T
− 2Cc‖∇bu‖2L2(Ω61)L2

T
. (2.4.34)

Recalling (2.4.33), (2.4.28) and (2.4.34) we finally get
∫

Ω

∫ T
0 I|u|2 dtdx > (1− CI)2 1

R2

∫
Ω=R
‖u‖2L2

T
dS

− (72CIδ
−1 + δ−1Cc)‖u‖2XL2

T
− 2Cc‖∇bu‖2L2(Ω61)L2

T

− 324δ−1Ca(N + Ca)
[
‖u‖2XL2

T
+ ‖∇bu‖2L2(Ω61)L2

T

]

whence, noticing that ‖w‖L2(Ω61) 6
√

2‖w‖Y , we have (2.4.25) for all R > 1.

2.4.3 Estimate of the terms in |∇bu|2

For such terms, using assumption (2.1.6), we shall prove for all R > 0 the estimate

∫
Ω αlm<(∂bl u∂

b
mu) dx > n−1

nR ν
2
∫

Ω6R
‖∇bu(x)‖2L2

T
dx− 24NCaδ

−1‖∇bu‖2
YxL2

T
,

(2.4.35)
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where αlm are the quantities defined in (2.3.2). The computations here are very
similar to those in Section 4 of [8]. We split the quantities α`m as

α`m(x) = s`m(x) + r`m(x)

where the remainder r`m gathers all terms containing some derivative of the ajk.
Since the weight ψ is radial, we have

s`m(x) = 2ajma`kx̂j x̂k

(
ψ′′ − ψ′

|x|

)
+ 2ajmaj`

ψ′
|x|

while
r`m(x) = [2ajma`k;j − ajka`m;j ]x̂kψ

′.

We estimate directly

|r`m(x)<(∂b`u∂
b
mu)| 6 3|a(x)||a′(x)||∇bu(x)|2

and by assumption (2.1.6) we obtain

|r`m(x)<(∂b`u∂
b
mu)| 6 3NCa〈x〉−1−δ|∇bu|2.

Integrating in t ∈ [0, T ] first and then in x ∈ Ω, we get
∫

Ω

∫ T
0 |r`m(x)<(∂b`u∂

b
mu)| dtdx 6 3NCa

∫
Ω〈x〉−1−δ ∫ T

0 |∇bu|2 dt dx
= 3NCa

∫
Ω〈x〉−1−δ‖∇bu(x)‖2L2

T
dx.

Thus, using (2.2.9), we obtain the estimate
∫

Ω

∫ T
0 |r`m<(∂b`u∂

b
mu)| dtdx 6 24NCaδ

−1‖∇bu‖2
YxL2

T
. (2.4.36)

Concerning the terms s`m, in the region |x| > R we have

s`m(x) = [ajmaj` − ajma`kx̂j x̂k] 1
|x| + Rn−1

|x|n ajma`kx̂j x̂k − ajmaj` R
n−1

n|x|n

so that, in the sense of positivity of matrices,

s`m(x) > [ajmaj` − ajma`kx̂j x̂k]n−1
n|x| > 0 for |x| > R

(indeed, one has ajmaj` > ajma`kx̂j x̂k as matrices); on the other hand, in the region
|x| 6 R we have

s`m(x) = ajmaj`
n−1
nR for |x| 6 R.

Thus, by the assumption a(x) > νI, one has for all x

s`m(x)<(∂b`u∂
b
mu) > n−1

nR ν
21|x|6R(x)|∇bu|2. (2.4.37)

Integrating (2.4.37) with respect to t ∈ [0, T ] and x ∈ Ω, and recalling (2.4.36), we
conclude the proof of (2.4.35).
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2.4.4 Estimate of the magnetic terms

We now consider the terms

Ib := 2=[ajk∂
b
ku(∂jb` − ∂`bj)a`m∂mψ u] = 2=

[
(db · ax̂) · (a∇bu)uψ′

]

where the identity holds for any radial ψ, while db is the matrix

db = [∂jb` − ∂`bj ]nj,`=1.

Proof of Theorem 2.1.1

We shall prove the estimate
∫

Ω

∫ T
0 |Ib| dx 6 5δ−1N2Cb(‖∇bu‖2ẎxL2

T

+ ‖u‖2
ẊxL2

T

). (2.4.38)

Indeed, since 0 6 ψ′ 6 1/2 and |a(x)| 6 N , by (2.1.7) we have

|Ib(x)| 6 2N2|db(x)| · |∇bu||u|ψ′ 6 N2 |∇bu||u|
|x|2+δ+|x|2−δ .

We integrate in t ∈ [0, T ], then in x ∈ Ω, and we use the Hölder inequality in time:

∫
Ω

∫ T
0 |Ib(x)| dtdx 6 N2

∫
Ω

∫ T
0

|∇bu||u|
|x|2+δ+|x|2−δ dtdx 6 N2

∫
Ω

‖∇bu‖
L2
T
‖u‖

L2
T

|x|2+δ+|x|2−δ dx

and by estimate (2.2.10) we obtain (2.4.38).

Proof of Theorem 2.1.2

In this case we prove the estimate
∫

Ω

∫ T
0 |Ib| dtdx 6 9δ−1N2Cb(‖∇bu‖2YxL2

T
+ ‖u‖2

XxL2
T

). (2.4.39)

The proof is completely analogous to the previous one, using (2.1.17) and (2.2.13).

2.4.5 Estimate of the terms containing f(u)

We prove here that there exists a γ0 > 0 such that

Aψ[f(u)ū− 2F (u)] > γ0

R ∨ |x| [f(u)ū− 2F (u)]. (2.4.40)

Thanks to (2.1.13), it is sufficient to check the pointwise inequality

Aψ(x) > γ0

R ∨ |x| .

Indeed, for |x| 6 R,

âψ′′ + a−â
|x| ψ

′ = n−1
2n

[
â
R + a−â

R

]
= n−1

2n
a
R

while for |x| > R

âψ′′ + a−â
|x| ψ

′ = â
|x|

n−1
2n

Rn−1

|x|n−1 + a−â
|x|

(
1
2 − 1

2n
Rn−1

|x|n−1

)
> a−â
|x|

n−1
2n .
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Moreover, by (2.1.6),

alm;lx̂mψ
′ > − Ca

〈x〉1+δ |ψ′| > −Ca
|x| |ψ′|.

Summing up we get

Aψ >
{
n−1
2nR (a− Ca) |x| 6 R
1

2|x|
[
n−1
n (a− â)− Ca

]
|x| > R,

> γ0

R ∨ |x| ,

for any γ0 > 0 such that

γ0 <

{
n−1
2n (a− Ca) |x| 6 R

1
2

[
n−1
n (a− â)− Ca

]
|x| > R,

(2.4.41)

which is possible provided Ca is so small that Ca < n−1
n (a(x)− â(x)) (see Remark

2.4.1).

2.4.6 Estimate of the boundary terms

We now prove that
∫

Ω
∂j{−<Qj + 2F (u)ajk∂kψ + =[utūajk∂kψ]} dx > 0. (2.4.42)

Indeed, proceeding exactly as in [8], we see that assumption (2.1.14) implies
∫

Ω ∂j<Qj dx 6 0.

Moreover, at any fixed t ∈ [0, T ] we have
∫

Ω
∇ · {2F (u)a∇ψ + =[utūa∇ψ]} = 0.

To see this, we integrate ∇ · {2F (u)a∇ψ + =[utūa∇ψ]} over the set Ω ∩ {|x| 6 R}
and let R → +∞: the integral over |x| = R tends to 0 since a∇ψ ∈ L∞(Ω) and
thanks to (2.1.10)

|F (u)| 6
∣∣∣
∫ |u|

0 f(s) ds
∣∣∣ . |u|γ+1 ∈ L1(Ω), (2.4.43)

(recall that u ∈ H1
0 (Ω)), while the integral over ∂Ω vanishes by the Diriclet boundary

condition since F (0) = 0.

2.4.7 Estimate of the derivative term

We finally estimate the term at the left hand side of (2.3.1). We need the following
Lemma:
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Lemma 2.4.2. Let v ∈ H1
0 (Ω) and ψ : Rn → R be such that ∇ψ and |x|Aψ are

bounded. Then there exist C = C(‖a‖L∞ , ‖∇ψ‖L∞ , ‖|x|Aψ‖L∞) > 0 such that
∣∣∣∣
∫

Ω
a(∇ψ,∇bv)v dx

∣∣∣∣ 6 C‖v‖2
Ḣ

1
2
,

Proof. Define for f, g ∈ C∞c (Ω)

T (f, g) :=
∫

Ω∇ψ(x) · a(x)∇bf(x)g(x) dx =
∫

Ω[a(x)∇ψ(x)] · ∇bf(x)g(x) dx.

We have trivially

|T (f, g)| 6
∫

Ω|[a(x)∇ψ(x)] · ∇bf(x)g(x)| dx 6 C‖∇bf‖L2(Ω)‖g‖L2(Ω)

with C = ‖a∇ψ‖L∞ . On the other hand, integration by parts gives

|T (f, g)| =
∣∣∣
∫
Rn [a(x)∇ψ(x)]∇bf(x)g(x) dx

∣∣∣ =

=
∣∣∣
∫
Rn [a(x)∇ψ(x)]∇bg(x)f(x) dx+

∫
Rn ∇ · [a(x)∇ψ(x)]g(x)f(x) dx+

−
∫
Rn ∇ · {[a(x)∇ψ(x)]g(x)f(x)} dx

∣∣∣.

Discarding the divergence term and using the boundedness of |x|Aψ we have, for
some C = C(‖a‖L∞ , ‖∇ψ‖L∞ , ‖|x|Aψ‖L∞) > 0,

|T (f, g)| 6 C
[
‖f‖L2(Ω)‖∇bg‖L2(Ω) + ‖f‖L2(Ω)‖|x|−1g‖L2(Ω)

]

which implies, using the magnetic Hardy inequality (2.2.11),

|T (f, g)| 6 C‖f‖L2(Ω)‖∇bg‖L2(Ω)

for a different C = C(‖a‖L∞ , ‖∇ψ‖L∞ , ‖|x|Aψ‖L∞) > 0. The claim then follows by
the equivalence ‖∇bv‖L2 ' ‖∇v‖L2 proved in Lemma 2.2.5, by complex interpolation
and by density.

Applying Lemma 2.4.2 we get

=
∫

Ω
a(∇ψ,∇bu)u dx 6

∣∣∣∣
∫

Ω
a(∇ψ,∇bu)u dx

∣∣∣∣ 6 C̃‖u‖2
Ḣ

1
2

(2.4.44)

for some C̃ depending on ‖a‖L∞ , ‖∇ψ‖L∞ , ‖|x|Aψ‖L∞ . Note that even if ψ depends
on R > 0, the constant C̃ does not, since by (2.4.5), (2.1.6),

‖a∇ψ‖L∞ 6 1
2‖a‖L∞ , ‖|x|Aψ‖L∞ 6 C(Ca, ‖a‖L∞).
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2.4.8 Conclusion of the proof

From (2.3.1), using (2.4.40), we have

∂t[=(a(∇ψ,∇bu)u)] >− 1
2A

2ψ|u|2 −<a(∇ψ,∇c)|u|2 + <(α`m ∂bmu ∂
b
`u)

+ 2=(ajk∂
b
ku(∂jb` − ∂`bj)a`m∂mψ u)

+ γ0[f(u)ū− 2F (u)](R ∨ |x|)−1

+ ∂j{−<Qj + 2F (u)ajk∂kψ + =[utūajk∂kψ]}.

Integrating with respect to t ∈ [0, T ] and then x ∈ Ω we obtain
∫

Ω

∫ T
0 ∂t=[a(∇ψ,∇bu)u] dtdx > (2.4.45)

−
∫

Ω

∫ T
0

[
1
2A

2ψ + <a(∇ψ,∇c)
]
|u|2 dtdx (2.4.46)

+
∫

Ω

∫ T
0 <

[
αlm∂

b
mu∂

b
l u
]
dtdx (2.4.47)

+ 2
∫

Ω

∫ T
0 =[ajk∂

b
ku(∂jbl − ∂lbj)alm∂mψū] dtdx (2.4.48)

+ γ0

∫
Ω

∫ T
0

f(u)ū−2F (u)
R∨|x| dtdx (2.4.49)

+
∫

Ω

∫ T
0 ∂j{−<Qj + 2F (u)ajk∂kψ + =[utūajk∂kψ]} dtdx (2.4.50)

We now use the estimates from the previous sections.
For the term (2.4.45), we use (2.4.44):

∫
Ω

∫ T
0 ∂t=[a(∇ψ,∇bu)u] dtdx

6
∫

Ω=a(∇ψ,∇bu(0))u(0) dx+
∫

Ω=a(∇ψ,∇bu(T ))u(T ) dx 6

6C
(
‖u(0)‖2

Ḣ
1
2

+ ‖u(T )‖2
Ḣ

1
2

)
,

where C depends on ‖a‖L∞ , ‖∇ψ‖∞, ‖|x|Aψ‖L∞ , but not on R > 0.
For (2.4.50) we swap the integrals, then using (2.4.42) we see that this term can

be discarded.

Proof of Theorem 2.1.1

We estimate (2.4.47) using (2.4.35) and recalling that ‖·‖Y 6 ‖·‖Ẏ , while (2.4.48)
is estimated using (2.4.38). Summing up, we have obtained

C
(
‖u(0)‖2

Ḣ
1
2

+ ‖u(T )‖2
Ḣ

1
2

)
>

1
2

(
n−1

2 ν 1
R2

∫
Ω=R

â‖u‖L2
T
dS −

[
n+3

2 N − nν
]

(n− 1)
∫

Ω>R
â R

n−1

|x|n+2 ‖u‖L2
T
dx
)

− (12nCa(N + Ca) + Cc)δ
−1‖u‖2

ẊxL2
T

+ n−1
nR ν

2
∫

Ω6R
‖∇bu(x)‖2L2

T
dx− 24NCaδ

−1‖∇bu‖2
ẎxL2

T

− 5δ−1N2Cb

(
‖∇bu‖2

ẎxL2
T

+ ‖u‖2
ẊxL2

T

)

+ γ0

∫
Ω

∫ T
0

f(u)ū−2F (u)
R∨|x| dtdx. (2.4.51)
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We now take the sup over R > 0 at the right hand side. Denote with Σ(R) all the
terms which depend on R:

Σ(R) :=1
2

(
n−1

2 ν 1
R2

∫
Ω=R

â‖u‖L2
T
dS
[
n+3

2 N − nν
]

(n− 1)
∫

Ω>R
â R

n−1

|x|n+2 ‖u‖L2
T
dx
)

+ n−1
nR ν

2
∫

Ω6R
‖∇bu(x)‖2L2

T
dx+ γ0

∫
Ω

∫ T
0

f(u)ū−2F (u)
R∨|x| dtdx.

We shall use the simple remark that if three nonnegative quantities f, g, h depend on
R, then

sup
R>0

[f(R) + g(R) + h(R)] > 1

3

(
sup
R>0

f(R) + sup
R>0

g(R) + sup
R>0

h(R)

)
. (2.4.52)

We now distinguish two cases.
First case: n+3

2 N > nν. Then by (2.2.6) we get

Σ(R) > Z(R)− 1
2

[
n+3

2 N − nν
]
‖â1/2u‖2

ẊxL2
T

,

where

Z(R) := n−1
4 ν 1

R2

∫
Ω=R

â‖u‖2L2
T
dS+n−1

nR ν
2
∫

Ω6R
‖∇bu(x)‖2L2

T
dx+γ0

∫
Ω

∫ T
0

f(u)ū−2F (u)
R∨|x| dtdx.

Thanks to (2.2.6), (2.4.52), and recalling that â > ν, we obtain

supR>0 Z(R) > n−1
12 ν

2‖u‖2
ẊxL2

T

+ n−1
3n ν

2‖∇bu‖2
ẎxL2

T
+ γ0

3

∫
Ω

∫ T
0

f(u(x))ū(x)−2F (u)
|x| dtdx

and consequently, again by â > ν,

supR>0 Σ(R) > K0
2 ν

2‖u‖2
ẊxL2

T

+ n−1
3n ν

2‖∇bu‖2
ẎxL2

T
+ γ0

3

∫
Ω

∫ T
0

f(u(x))ū(x)−2F (u)
|x| dtdx,

(2.4.53)
provided we define

K0 := n−1
6 − n+3

2
N
ν + n (2.4.54)

which is a strictly positive quantity provided we assume N/ν is small enough (like in
(2.4.2)).

Second case: n+3
2 N 6 nν. Then we have

Σ(R) > n−1
4 ν 1

R2

∫
Ω=R

â‖u‖2L2
T
dS+n−1

nR ν
2
∫

Ω6R
‖∇bu(x)‖2L2

T
dx+γ

∫
Ω

∫ T
0

f(u)ū−2F (u)
R∨|x| dtdx.

(2.4.55)
Thanks to (2.4.52), recalling that â > ν, and observing that in this case K0 6 n−1

6 ,
we obtain again (2.4.53).

By (2.4.51), (2.4.53) we conclude that

M1‖u‖2ẊxL2
T

+M2‖∇bu‖2ẎxL2
T

+M3

∫
Ω

∫ T
0

f(u(x))ū(x)−2F (u)
|x| dtdx 6 C

(
‖u(0)‖2

Ḣ
1
2
+‖u(T )‖2

Ḣ
1
2

)

(2.4.56)
for some C > 0, where γ0 is defined in (2.4.41) and

M1 := K0
2 ν

2 − 5N2Cb+12nCa(N+Ca)+Cc
δ ,

M2 := n−1
3n ν

2 − 5N2Cb+24NCa
δ , M3 := γ0

3 .

If the constants Ca, Cb and Cc are sufficiently small, these quantities are positive,
and the estimate (2.4.56) is effective.
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Proof of Theorem 2.1.2

We estimate (2.4.47) using (2.4.35) and (2.4.48) thanks to (2.4.39). Summing
up, we have obtained

C
(
‖u(0)‖2

Ḣ
1
2

+ ‖u(T )‖2
Ḣ

1
2

)
>

(1− CI)2 1

R2

∫

Ω=R

‖u‖2L2
T
dS (2.4.57)

− 8δ−1[Cc + 9CI + 41Ca(N + Ca)]‖u‖2XL2
T

(2.4.58)

− 13δ−1[Cc + 36Ca(N + Ca)]‖∇bu‖2Y L2
T

(2.4.59)

+ n−1
nR ν

2
∫

Ω6R
‖∇bu(x)‖2L2

T
dx− 24NCaδ

−1‖∇bu‖2
YxL2

T

− 9δ−1N2Cb(‖∇bu‖2YxL2
T

+ ‖u‖2
XxL2

T
)

+ γ0

∫
Ω

∫ T
0

f(u)ū−2F (u)
R∨|x| dtdx. (2.4.60)

We now take the sup over R > 1 at the right hand side. We denote with Σ(R) all
the terms which depend on R:

Σ(R) :=(1− CI)2 1
R2

∫
Ω=R
‖u‖2L2

T
dS + n−1

nR ν
2
∫

Ω6R
‖∇bu(x)‖2L2

T
dx

+ γ

∫

Ω

∫ T

0

f(u)ū− 2F (u)

R ∨ |x| dtdx

Thanks to (2.2.14), we have, for 0 < θ < 1,

(1− CI)2 sup
R>1

1

R2

∫

Ω=R

‖u‖2L2
T
dS > (1− θ)(1− CI)2 sup

R>1

1

R2

∫

Ω=R

‖u‖2L2
T
dS

+ θ(1− CI)2

(
1

4
‖u‖2XL2

T
− 13

4
‖∇bu‖2Y L2

T

)
.

(2.4.61)

Note also that we can take ν = 1−CI and N = 1 +CI by assumption (2.1.16), while
n = 3. We obtain

sup
R>1

n− 1

nR
ν2

∫

Ω6R
‖∇bu(x)‖2L2

T
dx > 2

3
(1− CI)2‖∇bu‖2Y L2

T
(2.4.62)

Finally

γ0 sup
R>1

∫

Ω

∫ T

0

f(u)ū− 2F (u)

R ∨ |x| dtdx > γ0

∫

Ω

∫ T

0

f(u)ū− 2F (u)

〈x〉 dtdx. (2.4.63)

We take θ := 2/13 (it is enough to choose θ such that 2/3 > (13θ)/4). Thanks to
(2.4.52), (2.4.61), (2.4.62), (2.4.63), we get

sup
R>1

Σ(R) >(1− CI)2

78
‖u‖2XL2

T
+

(1− CI)2

6
‖∇bu‖2Y L2

T

+
γ0

3

∫

Ω

∫ T

0

f(u)ū− 2F (u)

〈x〉 dtdx.

(2.4.64)
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By (2.4.60), (2.4.64) we conclude that

M1‖u‖2XxL2
T

+M2‖∇bu‖2YxL2
T

+M3

∫

Ω

∫ T

0

f(u(x))ū(x)− 2F (u)

〈x〉 dtdx

6 C
(
‖u(0)‖2

Ḣ
1
2

+ ‖u(T )‖2
Ḣ

1
2

) (2.4.65)

for some C > 0, where

M ′1 :=
(1− CI)2

78
− 8δ−1[Cc + 9CI + 41Ca(N + Ca)]− 9δ−1N2Cb,

M ′2 :=
(1− CI)2

6
− 13δ−1[Cc + 38Ca(N + Ca)]− 9δ−1N2Cb,

M3 =
γ0

3
,

and γ0 is defined in (2.4.41). If the constants Ca, Cb,Cc and CI are sufficiently small,
these quantities are positive and the estimate (2.4.65) is effective.

2.4.9 Proof of Corollary 2.1.5

Since u = eitLu0 satisfies equation (2.1.1) with the choice f ≡ 0, we see that u
satisfies the smoothing estimate (2.1.20). By complex interpolation, we deduce from
(2.1.20) the estimate

‖〈x〉−1−(−∆)
1
4u‖L2

TL
2 . ‖u0‖

Ḣ
1
2

+ ‖u(T )‖
Ḣ

1
2

for all T > 0. Proceeding exactly as in the proof of Corollary 1.4 in [7], from the
gaussian bound for etL in Proposition 2.6.2 we deduce the weighted estimate

‖w(x)(−L)
1
4 v‖L2 . ‖w(x)(−∆)

1
4 v‖L2

for any A2 weight w, and in particular for w(x) = 〈x〉−s for any s > 0. Thus we have

‖〈x〉−1−(−L)
1
4u‖L2

TL
2 . ‖〈x〉−1−(−∆)

1
4u‖L2

TL
2 . ‖u0‖

Ḣ
1
2

+ ‖u(T )‖
Ḣ

1
2

and commuting (−L)
1
4 with eitL, and recalling the equivalence (2.6.2), we obtain

‖〈x〉−1−u‖L2
TL

2 . ‖u0‖L2 + ‖u(T )‖L2 ' ‖u0‖L2

by the conservation of the L2 norm.

2.5 Proof of Theorems 2.1.6, 2.1.7: the bilinear smooth-
ing estimate

Since the arguments for Theorems 2.1.6 and 2.1.7 largely overlap, we shall again
proceed with both proofs in parallel.
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Let u be a solution of (2.1.1), and write identity (2.3.1) with a weight of the form
ψ = ψ(x− y), for x, y ∈ Ω. In the following formulas, to make notations lighter, we
shall write simply u(x), u(y) instead of u(t, x), u(t, y). We have

M(x, y) = −1
2A

2
xψ(x− y)|u(x)|2 + <(α`m(x) ∂

b(x)
xm u(x) ∂

b(x)
x` u(x))

−<a(x)(∇xψ(x− y),∇xc(x))|u(x)|2

+ 2=(ajk(x)∂b(x)
xk

u(x)(∂xjb(x)` − ∂x`b(x)j)a`m(x)∂xmψ(x− y) u(x))

+Axψ(x− y)[f(u(x))ū(x)− 2F (u(x))]

+ ∂xj{−<Qj(x) + 2F (u(x))ajk(x)∂xkψ(x− y) + =[ut(x)ū(x)ajk(x)∂xkψ(x− y)]}.

where M(x, y) is defined by

M(x, y) := ∂t{=(ax(∇xψ(x− y),∇b(x)
x u(x))u(x))}.

Note that in order to distinguish between the two groups of variables x and y, here
and in the following we used the notations

a(x)(z, w) = ajk(x)zjwk, ∂b(x)
xj = ∂xj+ibj(x), Ab(x)

x v = ∂b(x)
xj (ajk(x)∂b(x)

xk
v(x, y))

and similarly Ax, ∇b(x)
x ; we shall however stick to simpler notations whenever possible.

The starting point for the proof is the identity

∂t{=[a(x)(∇xψ(x− y),∇bu(x))u(x)]|u(y)|2} =

= M(x, y)|u(y)|2 + =[a(x)(∇ψ(x− y),∇bu(x))u(x)]∂t{|u(y)|2}.
(2.5.1)

Since u is a solution of (2.1.1) and c, f(u)ū are real valued, we have

∂t|u|2 =2<[utū] = 2<[ū(−iAbu+ icu+ if(u))] =

=2<[−iAbuū+ ic|u|2 + if(u)ū] = 2=[Abuū]

and using the identity

Abuū = −a(∇bu,∇bu) +∇ · {a∇buū},

by the reality of a(∇bu,∇bu) we have

∂t|u(y)|2 = 2=[Ab(y)u(y)u(y)] = 2∇y · {=[a(y)∇b(y)
y u(y)ū(y)]}.

Thus the last term in (2.5.1) can be manipulated as follows:

=[a(x)(∇ψ(x− y),∇bu(x))u(x)]∂t[|u(y)|2] =

=2=[a(x)(∇ψ(x− y),∇bu(x))u(x)]∇y · {=[a(y)∇b(y)u(y)ū(y)]} =

=2=[(a(x)∇bxu(x))tu(x)]D2ψ(x− y)=[(a(y)∇byu(y))u(y)]

+∇y · {2=[a(x)(∇ψ(x− y),∇bu(x))u(x)]=[a(y)∇b(y)u(y)ū(y)]}.

Moreover, we rewrite the quantities α`m in the form

α`m = 2(a(x)D2
xψ(x− y)a(x))`m + r`m
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where the first term is the `m entry of the matrix a ·D2ψ · a and

rlm = ∂kψy(2ajmalk;j − ajkalm;j). (2.5.2)

We choose different weights for the proofs of Theorem 2.1.6 and Theorem 2.1.7:
in the proof of Theorem 2.1.7 we set

ψ(x− y) := 〈x− y〉σ, (2.5.3)

for σ > 0, where we use the following notation:

〈x− y〉σ := (σ2 + |x− y|2)1/2,

while in the proof of Theorem 2.1.6 we take σ = 0 in (2.5.3), that is to say, we choose

ψ(x− y) := |x− y|,

Note that in the following, with a small abuse, we shall use the same notation for the
radial weight function ψ(x) and for ψ(r) = ψ(|x|). We gather here some identities
satisfied by ψ(r) = 〈r〉σ for σ > 0:

ψ′ =
r

〈r〉σ
, ψ′′ =

σ2

〈r〉3σ
, ψ′′′ = −3σ2 r

〈r〉5σ
, ψIV = 12

σ2

〈r〉5σ
− 15

σ4

〈r〉7σ
,

1

r2

(
ψ′′ − ψ′

r

)
= − 1

〈r〉3σ
, ψ′′′ − ψ′′

r
= −σ2

(
r

〈r〉5σ
+

1

〈r〉3σr

)
6 4σ2

〈r〉3σr
. (2.5.4)

Moreover, for σ > 0, we introduce the notation

̂(x− y)
σ

m :=
xm − ym
〈x− y〉σ

.

We have (see (2.4.10))

Ax〈x− y〉σ =a`m;`(x) ̂(x− y)
σ

m+

+
σ2

〈x− y〉σ
a`m(x) ̂(x− y)

σ

`
̂(x− y)

σ

m +
ā(x)− ̂(x− y)

σ

` a`m(x) ̂(x− y)
σ

m

〈x− y〉σ
which implies, since the last two terms are non negative,

Ax〈x− y〉σ > a`m;`(x) ̂(x− y)
σ

m > −|a′(x)| > − Ca
〈x〉1+δ

,

and, using assumption (2.1.13),

Ax〈x−y〉σ[f(u(x))u(x)−2F (u(x))]|u(y)|2 > − Ca
〈x〉1+δ

[f(u(x))u(x)−2F (u(x))]|u(y)|2.

Now we integrate (2.5.1) on Ω2 = Ωx × Ωy. The divergence terms in ∇x can be
neglected exactly as in the proof of Theorems 2.1.1 and 2.1.2, while the divergence
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terms in ∇y vanish on ∂Ωy and at infinity. Taking into account the previous
computations we obtain the inequality

2
∫

Ω2<[(a(x)∇bu(x))tD2ψ(x− y)(a(x)∇bu(x))]|u(y)|2dxdy+

+2
∫

Ω2 =[(a(x)∇bu(x))tu(x)]D2ψ(x− y)=[(a(y)∇bu(y))u(y)]dxdy+

−1
2

∫
Ω2 A

2ψ(x− y)|u(x)|2|u(y)|2dxdy 6
6 ∂t

∫
Ω2 =[a(x)(∇ψ(x− y),∇bu(x))u(x)]|u(y)|2dxdy +

∫
Ω2 R(x, y)|u(y)|2dxdy,

(2.5.5)

where

R(x, y) =− rlm(x)∂bmu(x)∂bl u(x)

+ <[a(x)(∇ψ(x− y),∇c(x))]|u(x)|2

− 2=[ajk(x)∂
b(x)
k u(x)(∂jb`(x)− ∂`bj(x))a`m(x)∂mψ(x− y) u(x)]

− Ca〈x〉−1−δ[f(u(x))u(x)− 2F (u(x))]|u(y)|2.

(2.5.6)

We remark that R(x, y) depends on y only through ψ. In the following sections we
integrate (2.5.5) in time on an interval [0, T ] and we estimate each term individually.

2.5.1 Positivity of quadratic terms in the derivative

The first two terms in (2.5.5) can be dropped from the inequality since their sum
is nonnegative. To check this fact, we rewrite them as the sum

∫
Ω2(a(x)∇bu(x))tD2ψ(x− y)(a(x)∇bu(x))|u(y)|2dxdy

+
∫

Ω2(a(y)∇bu(y))tD2ψ(x− y)(a(y)∇bu(y))|u(x)|2dxdy
+ 2

∫
Ω2 =[(a(x)∇bu(x))tu(x)]D2ψ(x− y)=[(a(y)∇bu(y))u(y)]dxdy

and then positivity follows from the the following algebraic lemma with the choice
T (x, y) = D2

xψ(x− y):

Lemma 2.5.1. Let T (x, y) be a real, symmetric, nonnegative matrix depending on
x, y ∈ Rn. Then the following quantity is nonnegative a.e.:

(a(x)∇bu(x))tT (x, y)(a(x)∇bu(x))|u(y)|2 + (a(y)∇bu(y))tT (x, y)(a(y)∇bu(y))|u(x)|2

+ 2=[(a(x)∇bu(x))tu(x)]T (x, y)=[(a(y)∇bu(y))u(y)] > 0.

Proof. Let Σ(x, y) be the quantity in the statement. Assume first T = diag(λ1, . . . , λn)
is diagonal at a point (x, y), with λj > 0. We have then

Σ(x, y) =
∑n

j=1 λj
{
|(a(x)∇bu(x))j |2|u(y)|2 + |(a(y)∇bu(y))j |2|u(x)|2

+ 2=[(a(x)∇bu(x))ju(x)]=[(a(y)∇bu(y))ju(y)]
}

>
∑n

j=1 λj
{
|(a(x)∇bu(x))j |2|u(y)|2 + |(a(y)∇bu(y))j |2|u(x)|2

− 2|(a(x)∇bu(x))j ||u(x)||(a(y)∇bu(y))j ||u(y)|
}
> 0.
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If T (x, y) is non diagonal, we can find an orthonormal matrix S = S(x, y) with real
entries such that T = StΛS, with Λ > 0 real and diagonal. This implies

Σ(x, y) =(Sa(x)∇bu(x))tΛ(Sa(x)∇bu(x))|u(y)|2

+ (Sa(y)∇bu(y))tΛ(Sa(y)∇bu(y))|u(x)|2

+ 2=[(Sa(x)∇bu(x))tu(x)]Λ=[(Sa(y)∇bu(y))u(y)],

and the claim follows from the previous step.

2.5.2 The ∂t term

We now consider the first term at the right hand side of (2.5.5), which is differ-
entiated in time. We need a Lemma:

Lemma 2.5.2. Let ψ(x − y) = 〈x − y〉σ, for σ > 0. Then the following estimate
holds: ∣∣∣∣

∫

Ω2

a(x)(∇ψ(x− y),∇bu(x))u(x)ϕ(y) dxdy

∣∣∣∣ . ‖ϕ‖L1‖u‖2
Ḣ

1
2
,

for an implicit constant independent on σ.

Proof. For f, g ∈ C∞c (Ω), set

T (f, g) :=
∫

Ω2 a(x)(∇ψ(x− y),∇bf(x))g(x)ϕ(y) dxdy.

We have immediately

|T (f, g)| 6 ‖a‖L∞‖ϕ‖L1‖∇bf‖L2‖g‖L2 . (2.5.7)

On the other hand, integrating by parts we get

|T (f, g)| 6
∣∣∣
∫

Ω2 a(x)(∇ψ(x− y),∇bg(x))f(x)ϕ(y)dxdy
∣∣∣

+
∣∣∣
∫

Ω2 ∂xma`m(x)∂x`ψ(x− y)f(x)g(x)ϕ(y) dxdy
∣∣∣

+
∣∣∣
∫

Ω2 a`m(x)∂x`xmψ(x− y)f(x)g(x)ϕ(y) dydx
∣∣∣ .

(2.5.8)

By assumption (2.1.6), we have

|
∫

Ω2 ∂xma`m(x)∂x`ψ(x− y)f(x)g(x)ϕ(y) dxdy| 6
6 Ca‖ϕ‖L1‖f‖L2

∥∥∥〈x〉−1−δg
∥∥∥
L2

. ‖ϕ‖L1‖f‖L2‖∇bg‖L2 ,
(2.5.9)

where in the last step we used (2.2.11). By direct computation

|
∫

Ω2 a`m(x)∂x`xmψ(x− y)f(x)g(x)ϕ(y)dydx|
6
∫
R2n |ā(x)− a(x)( ̂(x− y)

σ
, ̂(x− y)

σ
)| · 〈x− y〉−1

σ · |f(x)g(x)ϕ(y)|dxdy

6 Nn‖ϕ‖L1‖f‖L2 supy

(∫
Rn
|g(x)|2
|x−y|2 dx

) 1
2

. ‖ϕ‖L1‖f‖L2‖∇bg‖L2 ,

(2.5.10)
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again using (2.2.11) in the last inequality. By (2.5.9) and (2.5.10), we deduce from
(2.5.8)

|T (f, g)| . ‖ϕ‖L1‖f‖L2‖∇bg‖L2 .

Recalling now the equivalence (2.2.15), by complex interpolation beetwen this esti-
mate and (2.5.7) we obtain

|
∫
Rn a(x)(∇ψ(x− y),∇bf(x))g(x)ϕ(y) dxdy| . ‖ϕ‖L1‖f‖

Ḣ
1
2
‖g‖

Ḣ
1
2

and taking f = g = u we conclude the proof.

If we choose ϕ = |u|2 in the previous Lemma, we obtain
∣∣∣∣
∫ T

0
∂t

∫

Ω2

=[a(x)(∇ψ(x− y),∇bu(x))u(x)]|u(y)|2dxdy dt
∣∣∣∣

. ‖u(0)‖2L2

[
‖u(0)‖2

Ḣ
1
2

+ ‖u(T )‖2
Ḣ

1
2

]
,

(2.5.11)

since the L2-norm of the solution is constant in time.

2.5.3 The R(x, y) term

We now focus on the last term in (2.5.5). Our goal is to prove
∣∣∣∣
∫ T

0

∫

Ω2

R(x, y)|u(y)|2dxdy dt
∣∣∣∣ . ‖u(0)‖2L2

[
‖u(0)‖2

Ḣ
1
2

+ ‖u(T )‖2
Ḣ

1
2

]
. (2.5.12)

The quantity R(x, y), defined by (2.5.6), gives rise to four terms.
For the term containing r`m (see (2.5.2)) we notice that for all σ > 0 we have

|∇ψ| 6 1, hence both in the proof of Theorem 2.1.6 and Theorem 2.1.7 we have

|r`m(x)| 6 2N |a′(x)| 6 2NCa〈x〉−1−δ

using (2.1.6). This implies

|
∫ T

0

∫
Ω2 r`m(x)∂bmu(x)∂b`u(x)|u(y)|2dxdydt| . ‖u(0)‖2L2

∫
Rn〈x〉−1−δ‖∇bu(x)‖2L2

t
dx

by the conservation of the L2 norm. In the proof of Theorem 2.1.6, by estimate
(2.2.9) and (2.1.15) we obtain

|
∫ T

0

∫
Ω2 r`m(x)∂bmu(x)∂b`u(x)|u(y)|2dxdydt| . ‖u(0)‖2L2

[
‖u(0)‖2

Ḣ
1
2

+ ‖u(T )‖2
Ḣ

1
2

]
,

and in the proof of Theorem 2.1.7 we get the same result thanks to (2.2.9) and
(2.1.18).

We estimate differently the term containing c in the two proofs. In the proof of
Theorem 2.1.6, recalling assumption (2.1.22), we have

|
∫ T

0

∫
Ω2 a(x)(∇ψ(x− y),∇c(x))|u(x)|2|u(y)|2dxdydt|

. ‖u(0)‖L2

∫
Ω‖u(x)‖2L2

t
|x|−2〈x〉−1−δ dx . ‖u(0)‖2L2

x
‖u‖2

ẊL2
t
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using the inequality (2.2.7), and, thanks to (2.1.15),

|
∫ T

0

∫
Ω2 a(x)(∇ψ(x−y),∇c)|u(x)|2|u(y)|2dxdy dt| . ‖u(0)‖2L2

[
‖u(0)‖2

Ḣ
1
2

+ ‖u(T )‖2
Ḣ

1
2

]
.

In the proof of Theorem 2.1.7, recalling assumption (2.1.22) and thanks to (2.4.32),
we have

|
∫ T

0

∫
Ω2 a(x)(∇ψ(x− y),∇c(x))|u(x)|2|u(y)|2dxdydt|

. ‖u(0)‖L2

∫ T
0

∫
Ω |x|−2〈x〉−1−δ|u(x)|2 dx dt

. ‖u(0)‖L2

[
‖u‖2XL2

T
+ ‖∇bu‖2Y L2

T

]

. ‖u(0)‖L2

[
‖u(0)‖2

Ḣ
1
2

+ ‖u(T )‖2
Ḣ

1
2

]
.

(2.5.13)

We turn to the estimate of the term containing b(x). In the proof of Theorem
2.1.6, b satisfies (2.1.7), and we proceed exactly as in Section 2.4.4 above, and then
use (2.1.15). In the proof of Theorem 2.1.7, b satisfies (2.1.17) and we proceed exactly
as in Section 2.4.4 above, and then use (2.1.18). In both cases we get

∫ T
0

∫
Ω2 |Ib(x)||u(y)|2dxdy dt . ‖u(0)‖2L2

[
‖u(0)‖2

Ḣ
1
2

+ ‖u(T )‖2
Ḣ

1
2

]
.

For the term containing f(u) we write

Ca
∫ T

0 |
∫

Ω2〈x〉−1−δ[f(u(x))u(x)− 2F (u(x))]|u(y)|2dxdydt
. ‖u(0)‖L2

[
‖u(0)‖2

Ḣ
1
2

+ ‖u(T )‖2
Ḣ

1
2

]
,

by (2.1.15) in the proof of Theorem 2.1.6 and (2.1.18) in the proof of Theorem 2.1.7,
and this concludes the proof of (2.5.12).

2.5.4 The main term

Integrating in time the inequality (2.5.5) on [0, T ] and collecting estimates (2.5.11),
(2.5.12) and the results of Section 2.5.1, we have proved that

−
∫ T

0

∫

Ω2

A2
xψ(x− y)|u(x)|2|u(y)|2 dxdydt . ‖u(0)‖2L2

[
‖u(0)‖2

Ḣ
1
2

+ ‖u(T )‖2
Ḣ

1
2

]
.

(2.5.14)
We now compute explicitly the quantity A2

xψ: we have

A2
xψ(x− y) = S(x, y) + E(x, y)

where, using the notations

ã = ã(x, y) = a(x) ̂(x− y) · ̂(x− y), x̂ =
x

|x| ,

S(x, y) and E(x, y) are given by

S(x, y) =ã2ψIV (x− y) + [2a(x)ã− 6ã2 + 4|a(x) ̂(x− y)|2]ψ
′′′(x−y)
|x−y| +

+ [2a`m(x)a`m(x) + a2(x)− 6a(x)ã+ 15ã2 − 12|a(x) ̂(x− y)|2]×
×
(
ψ′′(x−y)
|x−y|2 −

ψ′(x−y)
|x−y|3

)

(2.5.15)
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and

E(x, y) =ãa`m;`(x) ̂(x− y)mψ
′′′(x− y) + (a(x)− ã)ajk;j(x) ̂(x− y)k

(
ψ′′(x−y)
|x−y| −

ψ′(x−y)
|x−y|2

)
+

+ [∂j(ajk(x)a`m;k(x) ̂(x− y)`
̂(x− y)m) + ∂j(ajk(x)a`m(x))∂k( ̂(x− y)`

̂(x− y)m)]×
×
(
ψ′′(x− y)− ψ′(x−y)

|x−y|

)

+ (Axa(x))ψ
′(x−y)
|x−y|

+ 2ajk(x)a`m;k(x) ̂(x− y)`
̂(x− y)m

̂(x− y)j

(
ψ′′′(x− y)− ψ′′(x−y)

|x−y|

)

+ 2a(x)(∇a(x),∇ψ′(x−y)
|x−y| ) +Ax(a`m;`(x) ̂(x− y)mψ

′(x− y)).

With long but elementary computations, for n > 3 and σ > 0 we have that

|E(x, y)| 6 5nCa(N+Ca)

[
1

〈x〉1+δ|x− y|〈x− y〉σ
+

1

〈x〉1+δ|x|〈x− y〉σ
+

1

〈x〉1+δ|x|2
]
,

whence ∫

Ω2

E(x, y)|u(x)|2|u(y)|2 dxdy . Ca[I + II + III]

with an implicit constant depending on N and n, where

I =

∫

Ω2

|u(x)|2|u(y)|2

〈x〉1+δ|x− y|2
dxdy, II =

∫

Ω2

|u(x)|2|u(y)|2
〈x〉1+δ|x||x− y| dxdy

and

III =

∫

Ω2

|u(x)|2|u(y)|2

〈x〉1+δ|x|2
dxdy.

We now extend u(t, x) as zero outside Ω, i.e. we define the function U(t, x) as

U(t, x) = u(t, x) for x ∈ Ω, U(t, x) = 0 for x 6∈ Ω.

Before proceeding further, we need the following Lemma:

Lemma 2.5.3. Let n > 3, δ ∈ (0, 1]. There exist η = η(n, δ) > 0 such that for all
f ∈ S

∥∥∥∥|D|
3−n

2
−1 f

〈·〉1+δ

∥∥∥∥
L2(Rn)

6 η‖|D| 3−n2 f‖L2(Rn),

∥∥∥∥∥|D|
3−n

2
−1 f

|·| 12 〈·〉 1
2

+δ

∥∥∥∥∥
L2(Rn)

6 η‖|D| 3−n2 f‖L2(Rn).

Proof. We prove the first inequality. By duality, it is equivalent to prove that
∥∥∥∥|D|

n−3
2

f

〈x〉1+δ

∥∥∥∥
L2(Rn)

. ‖|D|n−3
2

+1f‖L2(Rn). (2.5.16)
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If n = 3, (2.5.16) is a simple consequence of Hardy inequality (2.2.11), in the case
y = 0, b ≡ 0. If n > 4, by the Kato-Ponce inequality (see e.g. [45]) and Sobolev
embedding, we have

∥∥∥∥|D|
n−3

2
f

〈x〉1+δ

∥∥∥∥
L2(Rn)

. ‖|D|n−3
2 f‖

L
2n
n−2 (Rn)

‖〈x〉−1−δ‖Ln + ‖|D|n−3
2 〈x〉−1‖

L
2n
n−1
‖f‖L2n

. ‖|D|n−3
2

+1f‖L2

(2.5.17)

where the implicit constants clearly depend only on n and δ. The proof of the second
inequality is analogous.

Now, to estimate I we write

I =
∫
Rn
|U(x)|2
〈x〉1+δ

∫
Rn
|U(y)|2
|x−y|2 dydx '

∫
Rn
|U(x)|2
〈x〉1+δ |D|2−n|U(x)|2 dx

=
∫
Rn |D|

3−n
2
−1(〈x〉−1−δ|U(x)|2)|D| 3−n2 |U(x)|2 dx

6
∥∥∥∥∥|D|

3−n
2
−1 |U |2
〈x〉1+δ

∥∥∥∥∥
L2

‖|D| 3−n2 |U |2‖L2

and applying Lemma 2.5.3 we obtain

I 6 C(n, δ)‖|D| 3−n2 |U |2‖2L2 .

Next we split the integral II

II =

∫

R2n

|U(x)|2|U(y)|2
〈x〉1+δ|x||x− y|dxdy =

∫

A
+

∫

B

in the regions A = {(x, y) : 2|x| > |y|} and B = {(x, y) : 2|x| < |y|}. On A we have

∫

A

|U(x)|2|U(y)|2
〈x〉1+δ|x||x− y|dxdy .

∫

A

|U(x)|2|U(y)|2

〈x〉 1
2

+ δ
2 |x| 12 〈y〉 1

2
+ δ

2 |y| 12 |x− y|
dxdy

6
∫

R2n

|U(x)|2

〈x〉 1
2

+ δ
2 |x| 12

1

|x− y|
|U(y)|2

〈y〉 1
2

+ δ
2 |y| 12

dxdy

=

∫

Rn

|U(x)|2

〈x〉 1
2

+ δ
2 |x| 12

|D|1−n |U(x)|2

〈x〉 1
2

+ δ
2 |x| 12

dx

=

∥∥∥∥∥|D|
1−n

2
|U |2

|·| 12 〈·〉 1
2

+ δ
2

∥∥∥∥∥

2

L2(Rn)

6 C(n, δ)‖|D| 3−n2 |U |2‖2L2(Rn),

where in the last step we used Lemma 2.5.3. On the region B we have |x| . |x− y|,
hence ∫

B

|U(x)|2|U(y)|2
〈x〉1+δ|x||x− y|dxdy .

∫

B

|U(x)|2|U(y)|2

〈x〉1+δ|x|2
dxdy 6 III
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Summing up, we have proved the estimate

−
∫

Ω2 A
2
xψ(x− y)|u(x)|2|u(y)|2dxdy

& −
∫

Ω2

S(x, y) dxdy − III − C(n,N, δ)Ca‖|D|
3−n

2 |U |2‖2L2(Rn)

(2.5.18)

with an implicit constant depending on N,n only.

Proof of Theorem 2.1.6

In this case, the expression for S simplifies:

S(x, y) = −|x−y|−3
[
2alm(x)alm(x) + a2(x)− 6a(x)ã(x) + 15ã2 − 12|a(x) ̂(x− y)|2

]
.

Now recalling (2.4.19), we see that if N/ν − 1 is small enough we have

−S(x, y) > ε0|x− y|−3

for some strictly positive constant ε0. This implies

∫
Ω2 −S(x, y)|u(x)|2|u(y)|2dxdy > ε0

∫

Ω2

|u(x)|2|u(y)|2

|x− y|3
dxdy

= ε0‖|D|
3−n

2 |U |2‖2L2(Rn).

(2.5.19)

and, from (2.5.18), we get

−
∫

Ω2 A
2
xψ(x−y)|u(x)|2|u(y)|2dxdy & −III+(ε0−C(n,N, δ)Ca)‖|D|

3−n
2 |U |2‖2L2(Rn)

with an implicit constant depending on N,n only. If Ca is sufficiently small (with
respect to N,n, ν and δ), we obtain

& −III + ‖|D| 3−n2 |U |2‖2L2(Rn)

and integrating in time on [0, T ] and recalling (2.5.14), we arrive at the estimate

‖|D| 3−n2 |U |2‖2L2
TL

2
x
.
∫ T

0 IIIdt+ ‖u(0)‖2L2

[
‖u(0)‖2

Ḣ
1
2

+ ‖u(T )‖2
Ḣ

1
2

]
.

Note that by (2.2.7) we can write
∫ T

0 IIIdt 6 ‖u(0)‖2L2‖|x|−1〈x〉− 1
2
− δ

2u‖2
L2
xL

2
T
. ‖u(0)‖2L2‖u‖2ẊL2

T

and recalling (2.1.15) this gives
∫ T

0 IIIdt 6 ‖u‖2L2
x
‖u‖2

L2
T Ẋ

6 ‖u(0)‖2L2

[
‖u(0)‖2

Ḣ
1
2

+ ‖u(T )‖2
Ḣ

1
2

]
.

In conclusion we have

‖|D| 3−n2 |U |2‖2L2
TL

2
x
. ‖u(0)‖2L2

[
‖u(0)‖2

Ḣ
1
2

+ ‖u(T )‖2
Ḣ

1
2

]
.

Note that

‖|D| 3−n2 |U |2‖2L2
x

=
∫
Rn |D|

3−n
2 |U |2 · |D| 3−n2 |U |2dx =

∫
Rn |U |2 · |D|3−n|U |2dx

and this can be written, apart from a constant,

=
∫
R2n

|U(x)|2|U(y)|2
|x−y|3 dxdy =

∫
Ω2
|u(x)|2|u(y)|2
|x−y|3 dxdy

which concludes the proof of the Theorem.
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Proof of Theorem 2.1.7

We recall the following identities for a:

a = I + q, alm = δlm + qlm,

ā = 3 + q̄, almalm = 3 + 2q̄ + qlmqlm,

ã = 1 + q̃, |a ̂(x− y)|2 = 1 + 2q̃ + |q ̂(x− y)|2.

Starting from (2.5.15) and using formulas (2.5.4) and the previous identities, we
obtain

−S(x, y) >15
σ4

〈x− y〉7σ
+ 30q̃

σ4

〈x− y〉7σ
+ (2q̄ − 6q̃ + 2q̄q̃)

3σ2

〈x− y〉5σ
+
(

4q̄ − 12q̃ − 6q̄q̃ − 3q̃2 − 12|q ̂(x− y)|2
) 1

〈x− y〉3σ
.

Since we have by assumption

|q̄| 6 3CI〈x〉−δ, |q̃| 6 CI〈x〉−δ, |q ̂(x− y)| 6 CI〈x〉−δ.

this implies
−S(x, y) > 15σ4〈x− y〉−7

σ − 46CI〈x〉−δ〈x− y〉−3
σ . (2.5.20)

From (2.5.18) and (2.5.20) we have

−
∫

Ω2 A
2
xψ(x− y)|u(x)|2|u(y)|2dxdy

&
∫

Ω2

(
15

σ4

〈x− y〉7σ
− 46CI
〈x− y〉3σ

)
|u(x)|2|u(y)|2 dxdy

− III − C(n,N, δ)Ca‖u‖4L4

with an implicit constant depending on N,n only. We let σ → 0 and integrate in t
on [0, T ]: recalling (2.5.14), we get

(15−46CI−C(n,N, δ)Ca)‖u‖4L4
TL

4 . ‖u(0)‖2L2

[
‖u(0)‖2

Ḣ
1
2

+ ‖u(T )‖2
Ḣ

1
2

]
+
∫ T

0 III dt.

(2.5.21)
Note that by (2.4.32), (2.2.4), and (2.1.18) we have

∫ T
0 IIIdt 6 ‖u(0)‖2L2‖|x|−1〈x〉−(1+δ)/2u‖2L2

xL
2
T

6 ‖u(0)‖2L2δ
−1
[
‖u‖2XL2

T
+ ‖∇bu‖2Y L2

T

]

. ‖u(0)‖2L2

[
‖u(0)‖2

Ḣ
1
2

+ ‖u(T )‖2
Ḣ

1
2

]
.

(2.5.22)

If CI and Ca are small enough, we get immediately the claim from (2.5.21) and
(2.5.22).
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2.6 Gaussian bounds and applications

Let L be the operator (2.1.2), (2.1.3) defined on an open set Ω ⊆ Rn. For the
results in this section it is not necessary to assume any condition on Ω which may be
an arbitrary open set; we shall anyway assume ∂Ω ∈ C1 for the sake of simplicity.
First of all, we chack that L can be realized as a selfadjoint operator, with Dirichlet
b.c., under very weak assumptions on the coefficients:

Proposition 2.6.1. Let n > 3 and Ω ⊆ Rn an open set with C1 boundary. Consider
the operator L defined on C∞c (Ω) by (2.1.2), (2.1.3), under the assumptions

a ∈ L∞, b ∈ Ln,∞, c ∈ Ln
2
,∞, ‖c−‖Ln2 ,∞ < ε. (2.6.1)

Then, if ε sufficiently small, −L extends to a selfadjoint nonnegative operator in the
sense of forms, and D(−L) = H1

0 (Ω) ∩H2(Ω) is a form core. Moreover we have

(−Lv, v)L2 = ‖(−L)
1
2 v‖2L2 ' ‖∇v‖2L2 , ‖(−L)

1
4 v‖L2 ' ‖v‖

Ḣ
1
2
. (2.6.2)

Proof. We sketch the proof which is mostly standard, apart from the use of Lorentz
spaces. The form

q(v) = (−Lv, v)L2 =
∫

Ω a(∇bv,∇bv)dx+
∫

Ω c|v|2dx

is bounded on H1
0 (Ω): indeed, by Hölder and Sobolev inequalities in Lorentz spaces,

∫
Ω |c| · |v|2dx . ‖c‖

L
n
2 ,∞‖|v|2‖L n

n−2 ,1
. ‖c‖

L
n
2 ,∞‖v‖2

L
2n
n−2 ,2

. ‖c‖
L
n
2 ,∞‖∇v‖2L2

while by (2.2.15) we have ‖∇bv‖L2 ' ‖∇v‖L2 . Thus if ε is sufficiently small we
have q(v) ' ‖∇v‖L2 ; in particular q(v) is a symmetric, closed, nonnegative form on
H1

0 (Ω), and defines a selfadjoint operator with D(−L) = H2(Ω) ∩H1
0 (Ω) which is

also a core for q. The last property in (2.6.2) follows by complex interpolation, since
D((−L)s) for 0 6 s 6 1 is an interpolation family.

Under slightly stronger assumptions, we can see that the heat flow etL satisfies
an upper gaussian bound; this will be a crucial tool in the following. Compare with
[26] and [25] for similar results in the case a = I, Ω = Rn. Note that for a, b, c ∈ L∞
with c > 0 the bound is proved in Corollary 6.14 of [70]. The following result is
sufficient for our purposes, although the assumptions on the coefficients could be
further relaxed.

Proposition 2.6.2. Let n > 3. Assume the operator L is defined as in (2.1.2),
(2.1.3) on the open set Ω ⊆ Rn with C1 boundary, and that a, b, c satisfy

a ∈ L∞, b ∈ L4
loc ∩ Ln,∞, ∇ · b ∈ L2

loc, c ∈ Ln
2
,1, ‖c−‖Ln2 ,1 < ε. (2.6.3)

Then, if ε is sufficiently small, the heat kernel etL satisfies, for some C,C ′ > 0,

|etL(x, y)| 6 C ′t−
n
2 e−

|x−y|2
Ct , t > 0, x, y ∈ Ω. (2.6.4)
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Proof. We can apply Proposition 2.6.1 since the assumptions are stronger. When
b = c = 0, the gaussian bound follows directly from Corollary 6.14 in [69]; note that
in this case the kernel of etL is > 0.

Next, in order to handle the case b 6= 0, c = 0, we adapt the proof of Lemma 10
in [53]. Let φ ∈ C∞c (Ω) and write φδ =

√
|φ|2 + δ2 for δ > 0. It is easy to prove the

pointwise inequality (recall notations (2.2.1))

Aφδ > <( φφδA
bφ)

which implies, for all λ > 0,

(−A+ λ)φδ 6 <( φφδ (−Ab + λ)φ) + λ(φδ − |φ|
2

φδ
).

Proceeding as in [53], we obtain

|(−Ab + λ)−1f | 6 (−A+ λ)−1|f |
and iterating we have for all k > 0

|(−Ab + λ)−kf | 6 (−A+ λ)−k|f | (2.6.5)

since (−A+ λ)−1 is positivity preserving (see Remark 1 in [53]). Then we deduce

|etAbφ| 6 etA|φ|

via etAb = limk→∞(I − tAb/n)−n, and applying the last formula to a delta sequence
φ = φj made of nonnegative functions, we conclude that the gaussian bound (2.6.4)
is valid for etAb .

It remains to consider the case c 6= 0. To this end we apply the theory of [58].
Let U(t, s) be the propagator defined as U(t, s)f = e(t−s)Abf , for t > s > 0. By the
gaussian bound just proved we have that U(t, s) extends to a uniformly bounded
operator L1 → L1 and L∞ → L∞, moreover ‖U(t, s)‖L1→L∞ . |t − s|−n2 ; finally,
the adjoint propagator U∗(t, s) := (U(s, t))∗ for s > t > 0 coincides with U(s, t)
since Ab is selfadjoint, so that U∗ is strongly continuous on L1 (notice that this last
assumption is not actually necessary, as mentioned in the chapter). Then by applying
Theorem 3.10 from [58] we conclude that the gaussian bound, with possibly different
constants, is satisfied also by the perturbed propagator Uc = et(A

b−c), provided the
potential c is a Miyadera perturbation of both U and U∗ such that c− is Miyadera
small with constants (∞, γ), γ < 1. The verification of this last condition, in the
special case considered here, reduces to the following inequality, for all s > 0

I :=
∫ +∞
s ‖c(x)e(t−s)Abf‖L1dt 6 γ‖f‖L1 (2.6.6)

(we are using formula (2.5) in [58] with the choices α =∞, J = R+ and p = 1) and
the same inequality with γ < 1 for c−. The gaussian bound already proved for etAb

implies

I .
∫

Ω

∫
Ω |c(x)||f(y)|

∫ +∞
0 t−

n
2 e−

|x−y|2
Ct dtdydx . ‖f‖L1 supy∈Ω

∫
Ω

|c(x)|
|x−y|n−2dx

and by the Young inequality in Lorentz spaces we get

I . ‖c‖
L
n
2 ,1
‖f‖L1 ,

which concludes the proof (compare with the proof of Lemma 5.1 in [88]).
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Proposition 2.6.3. Let n > 3. Assume the operator L is defined as in (2.1.2),
(2.1.3) on the open set Ω ⊆ Rn with C1 boundary, and that a, b, c satisfy

b2+|∇·b| ∈ L2
loc, c ∈ Ln

2
,1, ‖a−I‖L∞+‖|b|+|a′|‖Ln,∞+‖b′‖

L
n
2 ,∞+‖c−‖Ln2 ,1 < ε.

(2.6.7)
If ε sufficiently small then for all 0 6 σ 6 1 we have

‖(−L)σv‖Lp ' ‖(−∆)σv‖Lp , 1 < p <
n

2σ
. (2.6.8)

Proof. The assumptions of the two previous Propositions are satisfied, thus −L is
selfadjoint, nonnegative, and the gaussian bound (2.6.4) is valid.

Consider first the case σ = 1. Write the operator L in the form

Lv =
∑

jk ajk∂j∂kv +
∑

j βj∂jv + γ0v − c+v

where

βk =
∑

j(∂jajk + 2iajkbk), γ0 =
∑

j,k i∂j(ajkbk)− a(b, b) + c−.

Then by Hölder and Sobolev inequalities in Lorentz spaces we have for 1 < p < n
2

‖Lv‖Lp 6 ‖a‖L∞‖D2v‖Lp+‖β‖Ln,∞‖Dv‖
L

np
n−p ,p+‖γ0−c+‖Ln2 ,∞‖v‖L np

n−2p ,p
. ‖∆v‖Lp .

To prove the converse inequality, we first represent the operator (−∆ + c+)−1 in the
form

(−∆ + c+)−1 = c(n)
∫ +∞

0 et(∆−c+)dt

and we apply the gaussian bound to obtain

|(−∆ + c+)−1| .
∫ +∞

0 e−
|x−y|2
Ct t−

n
2 dt . |x− y|2−n.

As a consequence, using the Hardy-Sobolev inequality we get

‖(−∆ + c+)−1v‖
L

np
n−2p

. ‖v‖Lp i.e. ‖v‖
L

np
n−2p

. ‖(−∆ + c+)v‖Lp

for all
1 < p < n

2 .

In particular this gives (since ‖c+‖Ln2 ,∞ . ‖c+‖Ln2 ,1)

‖∆v‖Lp 6 ‖(∆− c+)v‖Lp + ‖c+‖Ln2 ,∞‖v‖L np
n−2p

. ‖(∆− c+)v‖Lp , 1 < p < n
2 .

Adding and subtracting the remaining terms in L in the last term, we obtain

‖(∆− c+)v‖Lp 6 ‖Lv‖Lp + ‖∑(ajk − δjk)∂j∂kv‖Lp + ‖∑βk∂kv‖Lp + ‖γ0v‖Lp

and a last application of Hölder and Sobolev inequalities gives

‖∆v‖Lp . ‖(∆− c+)v‖Lp . ‖Lv‖Lp + ε‖∆v‖Lp.

If ε is sufficiently small we can subtract the last term from the left hand side, and
the proof of the case σ = 1 is concluded. The case σ = 0 is trivial, and the remaining
cases will be handled by Stein-Weiss complex interpolation.
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Indeed, consider the family of operators Tz = (−L)z(−∆)−z for 0 6 <z 6 1; our
first goal is to prove that Tz : Lp → Lp is bounded provided 1 < p < n/(2<z), which
implies the inequality . in (2.6.8). Note that the following arguments work with
trivial modifications also for −1 6 <z 6 0 and give then the converse inequality &.

Tz is obviously an analytic family of operators, and T iy for real y is bounded on
all Lp with 1 < p <∞, with a norm growing at most polynomially as |y| → ∞. This
property is well known for (−∆)iy, while for Liy it follows from the theory developed
in [28] (see also [7] for the case Ω = Rn), which requires the sole assumption that
L satisfies a gaussian bound like (2.6.4). A standard application of the Stein-Weiss
theorem then gives the claim.

To conclude this section we construct a family of regularizing operators which
will be needed later in the proof of H1 well posedness; what follows is an adaptation
of Section 1.5 in [13]. Assume that Ω and L satisfy the assumptions of the previous
Proposition. We define for 0 < ε 6 1 the operators

Jε := (I − εL)−1 ≡ ε−1R(−ε−1) (2.6.9)

where R(z) = (−L−z)−1 is the resolvent operator of −L. Then for every f ∈ H−1(Ω)
the function u = Jεf ∈ H1

0 (Ω) is well defined as the unique weak solution of the
elliptic equation

−Lu+ ε−1u = ε−1f.

Thus Jε : H−1(Ω)→ H1
0 (Ω) is a bounded operator, L : H1

0 (Ω)→ H−1(Ω) is bounded,
we have the equivalence ‖(I − L)v‖H−1(Ω) ' ‖v‖H1

0 (Ω) and the estimates

‖Jεv‖H1
0 (Ω) 6 Cε−1‖v‖H−1(Ω), ‖Jεv‖H2(Ω) 6 Cε−1‖v‖L2(Ω) (2.6.10)

by standard elliptic theory, with a C independent of ε. Further we have

‖Jεv‖H1
0 (Ω) 6 C‖v‖H1

0 (Ω), ‖Jεv‖L2(Ω) 6 C‖v‖L2(Ω), ‖Jεv‖H−1(Ω) 6 C‖v‖H−1(Ω)

(2.6.11)
and by complex interpolation

‖Jεv‖H1
0 (Ω) 6 Cε−

1
2 ‖v‖L2(Ω), ‖Jεv‖L2(Ω) 6 Cε−

1
2 ‖v‖H−1(Ω).

Then, using the identity Jε − I = Jε(I − I + εL) = εJεL, we deduce

‖(Jε − I)v‖H−1(Ω) 6 Cε‖Lv‖H−1(Ω) 6 C ′ε‖v‖H1
0 (Ω). (2.6.12)

Note that if v ∈ H−1(Ω) only, we can still approximate it with φ ∈ C∞c (Ω) to get

‖(Jε − I)v‖H−1(Ω) 6 C‖v − φ‖H−1(Ω) + Cε‖φ‖H1
0 (Ω)

and this implies

∀v ∈ H−1(Ω) Jεv → v in H−1(Ω) as ε→ 0. (2.6.13)

We also obtain

‖(Jε − I)v‖L2(Ω) 6 C‖(Jε − I)v‖
1
2

H1
0 (Ω)
‖(Jε − I)v‖

1
2

H−1(Ω)
6 C ′ε

1
2 ‖v‖H1

0 (Ω) (2.6.14)
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and an argument similar to the previous one gives

∀v ∈ L2(Ω) Jεv → v in L2(Ω) as ε→ 0. (2.6.15)

Finally, by the equivalence ‖(Jε − I)v‖H1
0 (Ω) ' ‖(Jε − I)(I − L)v‖H−1(Ω) we get

∀v ∈ H1
0 (Ω) Jεv → v in H1

0 (Ω) as ε→ 0. (2.6.16)

Concerning the convergence in Lp(Ω) we have:

Proposition 2.6.4. Let p ∈ [1,∞) and let Ω and L satisfy the assumptions of
Proposition 2.6.3. Then Jε extends to a bounded operator on Lp(Ω) and the following
estimate holds for 0 < ε 6 1

‖Jεv‖Lp(Ω) 6 C‖v‖Lp(Ω) (2.6.17)

with a constant depending on p but not of ε. Moreover, for 1 < p <∞ we have

∀v ∈ Lp(Ω) Jεv → v in Lp(Ω) as ε→ 0. (2.6.18)

Proof. Let φ : (0,∞)→ [0,∞) be a smooth nondecreasing function with φ(s), sφ′(s)
bounded. Starting from the identity

<(−Lv · φ(|v|)v) +∇ · {<(vφ(|v|)a∇bv)} =φ(|v|)a(∇bv,∇bv) +
φ′(|v|)
|v| |<(v · a∇bv)|2

+ cφ(|v|)|v|2,

and proceeding exactly as in the proof of Proposition 1.5.1 in [13], we obtain (2.6.17).
In order to prove (2.6.18), we can assume v ∈ C∞c (Ω) (as above). Then by the
interpolation inequality in Lp we can write for all 0 < θ < 1

‖(Jε − I)v‖
L

2
1−θ

6 ‖(Jε − I)v‖θL1‖(Jε − I)v‖1−θ
L2 6 C‖v‖θL1 · ‖(Jε − I)v‖θL2

where we used (2.6.17), and by (2.6.15) we conclude that Jεv → v in Lp(Ω) for all
p = 2

1−θ ∈ (1, 2). A similar argument gives the result for p ∈ (2,∞), and the case
p = 2 we already know.

2.7 Global existence and Scattering: proof of Theorem
2.1.9

Throughout this section Ω ⊆ Rn is an open set with C1 boundary, n > 3, while
L is the unbounded operator on L2(Ω) with Dirichlet boundary conditions under the
assumptions of Proposition 2.6.1. As explained in the Introduction, we shall work
under the black box Assumption (S) which ensures that the necessary Strichartz
estimates are available. Notice that we are restricting the range of admissible indices
at the left hand side for the derivative of the flow ∇eitL.

Our goal is to extend the usual local and global H1 theory to the NLS with
variable coefficients

iut − Lu+ f(u) = 0, u(0, x) = u0(x). (2.7.1)
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We shall sketch only the essential results which will be needed in the proof of
scattering, and not aim at the greatest possible generality. In the following we use
the notations

LpTL
q = Lp(0, T ;Lq(Ω)), CTH

1
0 = C([0, T ], H1

0 (Ω)).

Proposition 2.7.1 (Local existence in H1
0 (Ω)). Let n > 3 and assume (S) holds,

while f ∈ C1(C,C) satisfies

|f(z)| . |z|γ , |f(z)− f(w)| . (1 + |z|+ |w|)γ−1|z−w| for some 1 6 γ < 1 + 4
n−2 .

(2.7.2)
Then for all u0 ∈ H1

0 (Ω) there exists T = T (‖u0‖H1) and a unique solution u ∈
C([0, T ];H1

0 (Ω)).

Proof. The proof is standard; we sketch the main steps in order to check that the
restriction q1 < n imposed in (S) is harmless. We apply a fixed point argument to the
map Φ : v 7→ u defined as the solution of iut−Lu+f(v) = 0, u(0, x) = u0, working in
a suitable bounded subset of the space XT = C([0, T ];H1

0 (Ω))∩Lp(0, T ;W 1,q(Ω)) for
an appropriate choice of (p, q), endowed with the distance d(u, v) = ‖u−v‖CTL2∩LpTLq ;
note that bounded subsets of XT are complete with this distance.

In order to choose the indices we pick a real number k such that

n < 2kn < n+ 2, γ(n− 4) + 2 < 2kn < γ(n− 2) + 2. (2.7.3)

Note that for all n > 3 and all 1 < γ < n+2
n−2 the two intervals in (2.7.3) have a

nonempty intersection. Moreover, the couples (pj , qj) defined by

p1 = 4γ
2+γ(n−2)−2kn , q1 = γn

kn+γ−1 , p2 = 4
2kn−n , q2 = 1

1−k

are admissible and we can use the estimates in (S), provided q1 < n which will
be checked at the end. We choose then (p, q) = (p1, q1) in the definition of XT .
Applying Strichartz estimates on a time interval [0, T ] with T to be chosen, we have
for u = Φ(v)

‖∇u‖Lp1T Lq1 + ‖∇u‖L∞T L2 . ‖u0‖Ḣ1 + ‖∇f(v)‖
L
p′2
T Lq

′
2
.

By Hölder and Sobolev inequalities, using the assumptions on f , we have

‖∇f(v)‖
L
p′2
T Lq

′
2
.
∥∥∥∥‖v‖

γ−1

L
γn
kn−1
‖∇v‖Lq1

∥∥∥∥
L
p′2
T

. ‖∇v‖γ
L
γp′2
T Lq1

.

Now we note that the condition γ < n+2
n−2 is equivalent to γp′2 < p1, thus Hölder

inequality on [0, T ] gives

‖∇u‖Lp1T Lq1 + ‖∇u‖L∞T L2 . ‖u0‖Ḣ1 + T
1
p′2
− γ
p1 ‖∇v‖γ

L
p1
T Lq1

with a strictly positive power of T . An analogous computation gives

‖u‖Lp1T Lq1 + ‖u‖L∞T L2 . ‖u0‖L2 + T
1
p′2
− γ
p1

[
‖∇v‖γ

L
p1
T Lq1

+ ‖v‖γ
L
p1
T Lq1

]
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and summing up we have proved

‖Φ(v)‖XT . ‖u0‖H1 + T σ‖v‖γXT , σ = 1
p′2
− γ

p1
> 0.

Similar computations give

d(Φ(v1),Φ(v2)) . T σ(1 + ‖v1‖XT + ‖v2‖XT )γ−1‖v1 − v2‖Lp1T Lq1

and by a standard contraction argument on a suitable ball of XT we obtain the
existence of a fixed point i.e. a solution of (2.7.1) provided T is smaller than a
quantity T (‖u0‖H1) which depends only on the H1 norm of the initial data.

It remains to check the claim q1 < n. Since 2kn > n and γ < n+2
n−2 we have

q1 = 2γn
2kn+2γ−2 <

2γn
n+2γ−2 <

2n(n+2)
n2−2n+8

and the last fraction is 6 3 for all integers n > 5, while it is equal to 70/33 < 4 for
n = 4 and to 30/11 < 3 when n = 3.

To prove uniqueness, if u, v are two solutions in CTH1 for some T > 0, we can
write

‖u− v‖LpTLγ+1 . ‖f(u)− f(v)‖
Lp
′
T L

(γ+1)′ . ‖u− v‖LbTLγ+1‖|u|+ |v|‖γ−1

L
p0
T Lγ+1

where
p = 4

n
γ+1
γ−1 ,

1
p0

= 1
p − 1

2 ,
1
b = γ

2 −
γ
p + 1

2 .

(note that we are not using Strichartz estimates of ∇u), hence by Sobolev embedding

‖u− v‖LpTLγ+1 . (‖u‖Lp0T H1 + ‖v‖Lp0T H1)γ−1‖u− v‖LbTLγ+1

It is easy to check that b < p, thus we get

. T ε(‖u‖L∞T H1 + ‖v‖L∞T H1)‖u− v‖LpTLγ+1

for some ε > 0 and this implies u− v ≡ 0 if T is small enough.

Define the energy of a solution u ∈ C([0, T ];H1
0 (Ω)) as

E(t) = 1
2

∫
Ω a(∇bu,∇bu)dx+ 1

2

∫
Ω c(x)|u|2dx+

∫
Ω F (u)dx (2.7.4)

Theorem 2.7.2 (Global existence in H1). Let n > 3 and assume the coefficients of
L satisfy

b2+|∇·b| ∈ L2
loc, c ∈ Ln

2
,1, ‖a−I‖L∞+‖|b|+|a′|‖Ln,∞+‖b′‖

L
n
2 ,∞+‖c−‖Ln2 ,1 < ε.

(2.7.5)
Assume f(u) satisfies the conditions (2.7.2) of the previous result, and in addition it
is gauge invariant (2.1.11) with F (r) =

∫ r
0 f(s)ds > 0 for s ∈ R. Moreover, assume

condition (S) holds.
Then, if ε is sufficiently small, for all initial data u0 ∈ H1

0 (Ω) problem (2.7.1)
has a unique global solution u ∈ C ∩ L∞(R;H1

0 (Ω)). In addition the solution has
constant energy E(t) ≡ E(0) for all t ∈ R.
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Proof. Since the lifespan of the local solution only depends on the H1 norm of the
data, in order to prove the claim it is sufficient to prove that the energy E(t) of
the solution is conserved. Indeed, E(t) controls the H1 norm of u, and then global
existence follows from a standard continuation argument.

Let e(u) be the energy density

e(u)(t, x) = 1
2a(x)∇bu · ∇bu+ 1

2c(x)|u|2 + F (u)

so that E(t) =
∫

Ω e(u)dx. By gauge invariance and the definition of F we have

∂tF (u) = ∂t
∫ |u|

0 f(s)ds = <
(
f(|u|) u

|u| ūt
)

= <(f(u)ūt). If the function u satisfies
u(t) ∈ H2(Ω), we can write

∂te(u) +∇ · {<uta(x)∇bu} = <ut(iut − Lu+ f(u)) ≡ 0 (2.7.6)

and integrating on Ω, since ut|∂Ω = 0 by the Dirichlet boundary conditions, we
obtain that E(u)(t) ≡ E(u)(0) is constant in time.

Since we know only u(t) ∈ H1
0 (Ω), in order to use (2.7.6) we need a regularization

procedure; we use the operators Jε constructed at the end of Section 2.6. Thus we
define uε = Jεu and note that uε belongs to CTH2(Ω) and satisfies

i∂tuε − Luε + Jεf(u) = 0.

Using (2.7.6) we obtain, after an integration on [t1, t2]× Ω, with 0 6 t1 < t2 6 T ,
∫

Ω e(uε)|
t2
t1
dx = <

∫ t2
t1

∫
Ω ∂tuε · (f(uε)− Jεf(u))dxdt.

Substituting ∂tuε from the equation and using the Cauchy-Schwartz inequality and
the assumption ajk ∈ L∞ we get

∣∣∫
Ω e(uε)|

t2
t1
dx
∣∣ .

∫ t2
t1

[φε(t) + ψε(t) + χε(t)]dt (2.7.7)

where

φε =
∫

Ω |∇buε| · |∇b(f(uε)− Jεf(u))|dx, ψε(t) =
∫

Ω |Jεf(u)| · |f(uε)− Jεf(u)|dx.

χε(t) =
∫

Ω |c||uε| · |f(uε)− Jεf(u)|dx
Since uε → u in H1

0 and hence by Sobolev embedding in Lγ+1, we see that E(uε)→
E(u). Thus to conclude the proof it is sufficient to show that the right hand side
of (2.7.7) tends to 0 as ε→ 0, possibly through a subsequence; to this end we shall
apply dominated convergence on the interval [0, T ].

Consider first the case n > 4, so that γ + 1 < n. We prepare a few additional
inequalities:

‖∇uε‖Lγ+1 ' ‖(−L)
1
2Jεu‖Lγ+1 = ‖Jε(−L)

1
2u‖Lγ+1 . ‖(−L)

1
2u‖Lγ+1 ' ‖∇u‖Lγ+1

by the Lp boundedness of Jε and (2.6.8) for σ = 1/2. By Hölder and Sobolev
inequalities in Lorentz spaces, using b ∈ Ln,∞, we have also

‖buε‖Lγ+1 . ‖uε‖Lq,γ+1 . ‖∇uε‖Lγ+1 . ‖∇u‖Lγ+1 , 1
γ+1 = 1

n + 1
q
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and summing the two
‖∇buε‖Lγ+1 . ‖∇u‖Lγ+1 .

Thus we have

φε(t) . ‖∇u‖Lγ+1‖∇(f(uε)− Jεf(u)))‖
L
γ+1
γ

. ‖∇u‖2Lγ+1‖u‖γ−1
Lγ+1 =: φ(t).

Note that φ ∈ L1(0, T ) since
∫ T

0 φdt 6 ‖∇u‖2
L2
TL

γ+1‖u‖γ−1
L∞Lγ+1

and ∇u ∈ LpTL
γ+1 for some p > 2 by Strichartz estimates, while u ∈ CTH

1
0 ↪→

L∞T L
γ+1 by Sobolev embedding. For ψε we have easily

ψε(t) . ‖u‖2γL2γ =: ψ(t),

and by the interpolation and Sobolev inequalities

‖u‖2γ
L2γ 6 ‖u‖2γ−σ

Lγ+1 ‖u‖σ
L

n(γ+1)
n−(γ+1)

. ‖u‖2γ−σ
Lγ+1 ‖∇u‖σLγ+1 , σ = γ−1

γ+1n

so that ∫ T
0 ψdt . ‖u‖2γ−σ

L∞T L
γ+1‖∇u‖σLσTLγ+1

and again we obtain ψ ∈ L1(0, T ) since 0 < σ < 2 for 1 < γ < n+2
n−2 . As to χε,

recalling that |c| 12 ∈ Ln,∞, we can write

‖cuεJεf(u)‖L1 6 ‖|c| 12uε‖Lγ+1‖|c| 12Jεf(u)‖
L
γ+1
γ

. ‖∇u‖Lγ+1‖∇Jεf(u)‖
L
γ+1
γ

. φ(t)

proceeding as in the estimate of buε; the term cuεf(uε) is similar. Thus the sequences
φε, ψε, χε are dominated. Moreover, it is easy to check, using exactly the previous
estimates and properties (2.6.11), (2.6.16), (2.6.17) and (2.6.18), that for a.e. t ∈ [0, T ]
one has φε(t), ψε(t), χε(t)→ 0 as ε→ 0.

In the case n = 3, the quantity γ + 1 is in the range 2 6 γ + 1 < 6 and can be
larger than n. The previous computations work fine for 1 6 γ < 2; when 2 6 γ < 5
it is not difficult to modify the choice of indices so to use only the allowed Strichartz
norms. For the estimate of φε(t) we can write for 1

4 < ε < 1
2

φε(t) . ‖∇u‖2
L

3
1+ε
‖u‖γ−1

L
3(γ−1)
1−2ε

. ‖∇u‖2
L

3
1+ε
‖∇u‖γ−1

L
3(γ−1)
γ−2ε

=: φ(t)

by Hölder and Sobolev inequalitites, and hence
∫ T

0 φ(t)dt 6 ‖∇u‖2
L

4
1−2ε
T L

3
1+ε

‖∇u‖γ−1

L
2(γ−1)
1+2ε
T L

3(γ−1)
γ−2ε

.

Notice that the first factor is an (allowed) Strichartz norm, while the second factor
can be estimated by Hölder inequality in time with the Strichartz norm

‖∇u‖γ−1

L

4(γ−1)
γ−3+4ε
T L

3(γ−1)
γ−2ε

,

(which is allowed and meaningful for 1
4 < ε < 1

2) since the condition 4(γ−1)
γ−3+4ε >

2(γ−1)
1+2ε

is equivalent to γ < 5. The reamining estimates can be modified in a similar way;
we omit the details.
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The next Proposition is the crucial step in the proof of scattering. We follow the
simpler approach to scattering developed in [87] and [12]. We prefer this to the more
technical method of [83], which could also be used here.

Proposition 2.7.3. Let n > 3, and consider Problem (2.7.1) under the assumptions
of Theorem 2.1.6 if n > 4 or of Theorem 2.1.7 if n = 3. Then any solution
u ∈ C ∩ L∞(R;H1

0 (Ω)) satisfies

lim
t→±∞

‖u(t, ·)‖Lr = 0 for all 2 < r <
2n

n− 2
. (2.7.8)

Proof. We consider only the case t→ +∞; the proof in the case t→ −∞ is identical.
It is enough to prove (2.7.8) for r = 2 + 4

n , i.e.,

lim
t→+∞

‖u(t, ·)‖
L2+ 4

n
= 0. (2.7.9)

Since the H1 norm of u is bounded for t ∈ R, by Sobolev inequality we have

‖u(t, ·)‖
L

2n
n−2

+ ‖u(t, ·)‖L2 . ‖u(t, ·)‖Ḣ1 + ‖u(t, ·)‖L2 6 C (2.7.10)

with C independent of t, and interpolating with (2.7.9) we obtain the full claim
(2.7.8).

Assume by contradiction that there exist an ε0 > 0 and a sequence of times
tk ↑ +∞ such that for all k

‖u(tk, ·)‖
L2+ 4

n
> ε0. (2.7.11)

Denote with QR(x) the intersection with Ω of the cube of side R and center x (with
sides parallel to the axes). By interpolation in Lp spaces and Sobolev embedding, we
have for all v ∈ H1

0 (Ω) and x ∈ Ω

‖v‖2+ 4
n

L2+ 4
n (Q1(x))

6 ‖v‖2
L

2n
n−2 (Q1(x))

· ‖v‖
4
n

L2(Q1(x))
. ‖v‖2H1(Q1(x)) · ‖v‖

4
n

L2(Q1(x))

which implies, for all x ∈ Ω,

‖v‖2+ 4
n

L2+ 4
n (Q1(x))

. ‖v‖2H1(Q1(x)) · sup
y∈Ω
‖v‖

4
n

L2(Q1(y))
.

Choosing a sequence of centers x ∈ Ω such that the cubes Q1(x) cover Ω and are
almost disjoint, and summing over all cubes, we obtain the inequality (see also
Proposition 1.4.1 in Chapter 1)

‖v‖2+ 4
n

L2+ 4
n (Ω)

. ‖v‖2H1(Ω) · sup
x∈Ω
‖v‖

4
n

L2(Q1(x))
. (2.7.12)

Combining (2.7.12) with the energy bound (2.7.10) and recalling (2.7.11), we obtain
that there exists a sequence of points xk ∈ Ω such that

‖u(tk, ·)‖L2(Q1(xk)) > ε1 > 0.
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We claim that we can find t̄ > 0 such that

‖u(t, ·)‖L2(Q2(xk)) > ε1/2 for all t ∈ (tk, tk + t̄). (2.7.13)

Indeed, consider a cut-off function χ ∈ C∞c (Rn) such that χ(x) = 1 on the cube of
side 1 with center xk, and χ(x) = 0 outside the cube of side 2 with center xk. We
integrate the elementary identity

d
dt

[
χ(x)|u(t, x)|2

]
= 2χ(x)∇ · {=[a(x)∇bu(t, x)ū(t, x)]}

on Ω and we obtain, for all t ∈ R,
∣∣∣ ddt
∫

Ω χ(x)|u(t, x)|2 dx
∣∣∣ .

∣∣∫
Ω∇χ(x) · =[a(x)∇bu(t, x)ū(t, x)] dx

∣∣

. ‖u(t, ·)‖L2(Ω)‖∇bu(t, ·)‖L2(Ω)

6 ‖u(0, ·)‖L2(Ω) sup
t∈R
‖∇u(t, ·)‖L2(Ω) =: C < +∞,

(2.7.14)

where we used (2.2.15). This implies
∫
Q2(xk)|u(t, x)|2 dx >

∫
Q1(xk)|u(tk, x)|2 dx− C|t− tk|,

whence (2.7.13) follows provided that we choose t̄ > 0 such that ε21 − Ct̄ > ε21/4.
Note, by passing to a subsequence, we can assume the intervals (tk, tk + t) to be
disjoint.

If n > 4, we get

∫
R
∫

Ω×Ω
|u(t,x)|2|u(t,y)|2

|x−y|3 dxdydt &
∑

k

∫ tk+t
tk

∫
Q2(xk)×Q2(xk) |u(t, x)|2|u(t, y)|2dxdydt =∞.

but this is in contradiction with (2.1.23), since u ∈ L∞(R, H1
0 (Ω)), and this concludes

the proof in this case. On the other hand, if n = 3, from (2.7.13) we get that

‖u‖4L4((tk,tk+t̄)×Q2(xk)) > Cε41t̄,

which is in contradiction with (2.1.24).

By fairly standard arguments, property (2.7.8) implies that the Strichartz norms
of a global H1 solutions are bounded, and scattering follows. The only limitation
here is the requirement q1 < n in Assumption (S), which is effective only in dimension
n = 3, 4. We sketch the arguments for the sake of completeness:

Proposition 2.7.4. Let u ∈ C ∩ L∞(R;H1
0 (Ω)) be a solution to Problem (2.7.1)

under the assumptions of Theorem 2.1.6 if n > 4 and under the assumptions of
Theorem 2.1.7 if n = 3. Moreover, assume that (S) holds and that γ > 1 + 4

n . Then
for every admissible pair (p, q) we have u ∈ LpLq, and for every admissible pair (p, q)
with q < n we have ∇u ∈ LpLq.

Proof. We consider in detail the case n > 4, where γ + 1 < n. For the case n = 3 in
the range 2 6 γ < 6, the following arguments can be easily modified as in the last
part of the proof in Theorem 2.7.2. Note that we know that the Strichartz norms
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are finite on bounded time intervals, and we only need to prove an uniform bound as
the time interval invades R.

We use the notation LpT,tL
q := Lp(T, t;Lq(Ω)) for t > T . By Strichartz estimates

on the time interval [T, t] for the admissible couple (p, γ + 1) where p = 4
n
γ+1
γ−1 we

have

‖u‖LpT,tLγ+1 . ‖u(T )‖L2 + ‖f(u)‖
Lp
′
T,tL

(γ+1)′

. ‖u(T )‖L2 + ‖‖u‖γ
Lγ+1‖Lp′T,t

since |f(u)| . |u|γ and (γ + 1)′γ = γ + 1. The condition γ > 1 + 4
n is equivalent to

γ > p
p′ , thus we can continue the estimate as follows:

. ‖u(T )‖L2 + ‖u‖
γ− p

p′
L∞T,tL

γ+1‖‖u‖
p
p′
Lγ+1‖Lp′T,t

6 ‖u(T )‖L2 + ‖u‖
γ− p

p′
L∞T,∞L

γ+1‖u‖
p
p′

Lp
′
T,tL

γ+1
.

By Proposition 2.7.3 we know that o(T ) = ‖u‖L∞T,∞Lγ+1 → 0 as T →∞. Thus the

function φ(t) := ‖u‖LpT,tLγ+1 satisfies an inequality of the form φ(t) 6 C+o(T )φ(t)
p
p′ .

Taking T large enough, an easy continuity argument shows that φ(t) is bounded
for all t > T . This proves that u ∈ LpLγ+1. Now we notice that in the previous
computations we have also proved that f(u) ∈ Lp′L(γ+1)′ , and using again Strichartz
estimates we conclude that u ∈ LrLq for all admissible (r, q).

The estimate of ∇u is similar:

‖∇u‖LpT,tLγ+1 . ‖∇u(T )‖L2 + ‖∇f(u)‖
Lp
′
T,tL

(γ+1)′

. ‖∇u(T )‖L2 + ‖‖u‖γ−1
Lγ+1‖∇u‖Lγ+1‖

Lp
′
T,t

since |f ′(u)| . |u|γ−1, and as before, using Hölder inequality,

. ‖∇u(T )‖L2 + ‖u‖
γ− p

p′
L∞T,∞L

γ+1‖‖u‖
p
p′−1

Lγ+1‖∇u‖Lγ+1‖
Lp
′
T,t

. ‖∇u(T )‖L2 + ‖u‖
γ− p

p′
L∞T,∞L

γ+1‖u‖
p
p′−1

LpT,tL
γ+1‖∇u‖LpT,tLγ+1 .

By the bound already proved, this implies

‖∇u‖LpT,tLγ+1 . ‖∇u(T )‖L2 + o(T )‖∇u‖LpT,tLγ+1

and taking T large enough we obtain the claim.

We can now conclude the proof of Theorem 2.1.9. Part (i) is Theorem 2.7.2.
Scattering is an immediate consequence of the a priori bounds of the Strichartz
norms proved in Proposition 2.7.4. We briefly sketch the main steps of the proof
which are completely standard, in the case t→ +∞; the case t→ −∞ is identical.

To construct the wave operator (claim (ii) of the Theorem), given u+ ∈ H1
0 (Ω),

we consider the integral equation

u(t) := e−itLu+ + i

∫ ∞

t
e−i(t−s)f(u(s))ds (2.7.15)
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and we look for a solution defined on [T,∞), for T sufficiently large. Using Strichartz
estimates with the same choice of indices as in the proof of local existence, and
noticing that the Strichartz norms of e−itLu+ are arbitrarily small for T large, by
a fixed point approach we construct a solution u ∈ C ∩ L∞([T,+∞), H1

0 (Ω)) to
(2.7.15). This is also a solution to the Schrödinger equation in (2.7.1), and thanks to
the global existence result, u can be extended to a solution u ∈ C ∩ L∞(R, H1

0 (Ω))
defined for all t ∈ R. We can then choose u0 = u(0). Uniqueness follows by a similar
argument: if two solutions u1, u2 of (2.7.1), with possibly different data, have the
same asymptotic behaviour i.e. ‖u1(t)− u2(t)‖H1 → 0 as t→ +∞, then they both
solve (2.7.15), and the previous fixed point argument implies u1(t) = u2(t) for t large.
Then u1 ≡ u2 by global uniqueness.

To prove asymptotic completeness (claim (iii) of the Theorem), we fix a u0 ∈
H1

0 (Ω) and let u(t) be the corresponding global solution to Problem (2.7.1). Then
we define v(t) = eitLu(t) and note that

v(t) = u0 + i

∫ t

0
eisLf(u(s))ds.

Note that ‖eitLφ‖L2 = ‖φ‖L2 by the unitarity of eitL; moreover, since (−Lφ, φ)L2 '
‖φ‖2

Ḣ1 , we have ‖eitLφ‖2
Ḣ1 ' (−LeitLφ, eitLφ)L2 ' ‖φ‖Ḣ1 , and in conclusion we get

‖eitLφ‖H1 ' ‖φ‖H1 ∀φ ∈ H1
0 (Ω)

with constants uniform in t. Thus for 0 < τ < t we can write

‖v(t)− v(τ)‖H1 '
∥∥e−itL(v(t)− v(τ))

∥∥
H1 =

∥∥∥∥
∫ t

τ
e−i(t−s)Lf(u) ds

∥∥∥∥
L∞t H1

and by Strichartz estimates, Hölder inequality and interpolation, we get

‖v(t)− v(τ)‖H1 . ‖f(u)‖
Lp
′
τ,tW

1,(γ+1)′′

where p = 4
n
γ+1
γ−1 ; this choice is always possible in dimension n > 4; in dimension n = 3

for the range 2 6 γ < 6 one needs to modify the choice as in the proof of Theorem
2.7.2. By Proposition 2.7.4 we know that the Strichartz norms of u are bounded,
and by the same argument used in that proof we see that f(u) ∈ Lp′W 1,(γ+1)′ . As a
consequence, the right hand side of the previous inequality can be made arbitrarily
small provided t, τ are large enough. We deduce that v(t) converges in H1

0 (Ω) as
t→ +∞ to a limit u+, and finally

‖u(t)− e−itLu+‖H1 ' ‖v(t)− u+‖H1 → 0

as claimed.

2.8 Strichartz estimates

Throughout this section, Ω = Rn and L is the selfadjoint operator on L2(Rn)
defined in Proposition 2.6.1. We look for sufficient conditions on the coefficients
a, b, c in order to have Strichartz estimates on Rn for the flow eitL

‖eitLu0‖Lp1Lq1 . ‖u0‖L2 , (2.8.1)
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‖
∫ t

0 e
i(t−s)LFds‖Lp1Lq1 . ‖F‖

Lp
′
2Lq
′
2

(2.8.2)

and for the derivative of the flow ∇eitL

‖∇eitLu0‖Lp1Lq1 . ‖∇u0‖L2 , (2.8.3)

‖∇
∫ t

0 e
i(t−s)LFds‖Lp1Lq1 . ‖∇F‖

Lp
′
2Lq
′
2

(2.8.4)

for admissible couples of indices (pj , qj). Recall that admissible couples (p, q) satisfy
p ∈ [2,∞], q ∈ [2, 2n

n−2 ] with 2
p + n

q = n
2 and the endpoint is the couple (2, 2n

n−2).
We shall derive the estimates of the first kind by combining Tataru’s results in

[84] with our smoothing estimates. On the other hand, in order to deduce (2.8.3),
(2.8.4) we shall use the equivalence of Sobolev norms proved in Proposition 2.6.3.
The following result is a direct application of [84]:

Theorem 2.8.1. Let n > 3. Assume the coefficients a, b, c of L satisfy

|a− I|+ 〈x〉(|a′|+ |b|) + 〈x〉2(|a′′|+ |b′|+ |c|) 6 ε〈x〉−δ (2.8.5)

for some ε, δ > 0. If ε is sufficiently small, the flow eitL satisfies the Strichartz
estimates (2.8.1), (2.8.2) for all admissible couples (pj , qj), j = 1, 2, including the
endpoint.

Proof. We rewrite L as the sum of Au = ∇ · (a∇u) plus lower order terms

Lu = Au+ 2ia(∇u, b) + i∂j(ajkbk)u− a(b, b)u− c(x)u.

Define the norm

‖v‖Z = ‖v‖L∞(|x|61) +
∑

j>1

‖v‖L∞(2j−16|x|62j).

By Theorem 4 and Remarks 6 and 7 in [84], if a, b, c satisfy

‖〈x〉2|a′′(x)|‖Z + ‖〈x〉|a′(x)|‖Z + ‖|a(x)− I|‖Z 6 ε, (2.8.6)

‖〈x〉2∂m(ajkbk)‖Z + ‖〈x〉ajkbk‖Z 6 ε, (2.8.7)

‖〈x〉2[|∂j(ajkbk)|+ |a(b, b)|+ |c(x)|]‖Z 6 ε (2.8.8)

for ε small enough, then the linear flow eitL satisfies the full set of Strichartz
estimates (2.8.1), (2.8.2). It is immediate to check that condition (2.8.5) implies
(2.8.6)–(2.8.8).

Combining the previous Theorem with our smoothing estimate (Corollary 2.1.5)
we cover the case of repulsive electric potentials with a large positive part:
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Theorem 2.8.2. Let n > 3. Assume the coefficients a, b of L satisfy

|a− I|+ 〈x〉(|a′|+ |b|) + 〈x〉2(|a′′|+ |b′|) + 〈x〉3|a′′′| 6 ε〈x〉−δ (2.8.9)

while the potential c(x) satisfies

−ε〈x〉−2 6 c(x) 6 C2
+〈x〉−2, 〈x〉1+δc ∈ Ln (2.8.10)

and the repulsivity condition

a(x)x · ∇c(x) 6 ε|x|−1〈x〉−1−δ (2.8.11)

for some ε, δ, C+ > 0. If ε is sufficiently small, the flow eitL satisfies the homoge-
neous Strichartz estimates (2.8.1) for all admissible couples, and the inhomogeneous
estimates (2.8.2) for all couples with the exception of the endpoint-endpoint case.

Proof. By Theorem 2.8.1, Strichartz estimates are valid for the flow eitL0 with c = 0.
The complete flow u = eitLu0 satisfies the equation iut + L0u = cu, hence it can be
written

u = eitLu0 = eitL0u0 − i
∫ t

0 e
i(t−s)L0(cu)ds

so that, by the previous result,

‖u‖LpLq . ‖u0‖L2 + ‖cu‖
L2L

2n
n+2

for all admissible couples (p, q). By Hölder inequality we have

‖cu‖
L2L

2n
n+2

. ‖〈x〉1+δc‖Ln‖〈x〉−1−δu‖L2L2

and the homogeneous estimate will be proved if we can prove the estimate

‖〈x〉−1−δu‖L2L2 . ‖u0‖L2 . (2.8.12)

Indeed, the assumptions of Corollary 2.1.5 are satisfied by L; in particular, the
gaussian upper bound for the heat flow eitL is valid for general L∞ coefficients (see
Theorem 5.4 in [70] or [69]). Thus (2.8.12) follows from inequality (2.1.21) and we
obtain the full set of homogeneous Strichartz estimates for the flow eitL.

To prove inhomogeneous estimates it is sufficient to apply a standard TT ∗

argument combined with the Christ-Kiselev lemma, and this gives (2.8.2) with the
exception of the endpoint-endpoint case.

We conclude the section by proving the estimates for the flow ∇eitL, which are
now a straightforward consequence of the previous results. Note that the application
of Proposition 2.6.3 imposes an additional condition q1 < n, which is restrictive only
in dimensions n = 3 and 4.

Corollary 2.8.3. Let n > 3. Estimates (2.8.3), (2.8.4) hold for the flow ∇eitL, for
all admissible couples (pj , qj), j = 1, 2, provided q1 < n and the coefficients a, b, c of L
satisfy either assumption (2.8.5), or assumptions (2.8.9), (2.8.10), (2.8.11), provided
ε is small enough.
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Proof. In both cases we see that the assumptions of Proposition 2.6.3 are satisfied.
In particular, in the second case the smallness of the L

n
2
,1 norm of c− follows from

the fact that the Ln norm of 〈x〉1+δc is arbitrarily small outside a sufficiently large
ball, and inside the ball we have |c−| 6 ε by condition (2.8.10).

Now in the first case the assumptions of Theorem 2.8.1 are satisfied and we can
write

‖∇eitLu0‖Lp1Lq1 '‖(−L)
1
2 eitLu0‖Lp1Lq1 = ‖eitL(−L)

1
2u0‖Lp1Lq1

.‖(−L)
1
2u0‖L2 ' ‖∇u0‖L2

by a repeated application of (2.6.8) for σ = 1
2 . The proof of the remaining claims is

identical.

2.9 Definitions and basic results on Lorentz spaces

For the convenience of the reader, we recall here the definitions and the main
properties of the Lorentz spaces Lp,q, in view of the applications needed in the proof
of our results.

For any measurable function f : Rn → C and any s > 0 we define the upper-level
set Efs and the non-increasing rearrangement f∗ of f :

Efs := {x | |f(x)| > s},
f∗(t) := inf{s > 0: |Efs | 6 t}, t ∈ (0,+∞).

Moreover, we consider the average of f∗, defined by

f∗∗(t) :=
1

t

∫ t

0
f∗(r) dr.

The Lorentz spaces are hence defined as follows:

Definition 2.9.1. For any 1 6 p < ∞ and 1 6 q < ∞ we define the quasinorm
‖f‖Lp,q as follows:

‖f‖Lp,q =





[∫∞
0

(
t1/pf∗(t)

)q
dt/t

]1/q
, 1 6 q <∞,

supt>0 t
1/pf∗(t), q =∞.

(2.9.1)

When p 6= 1, if we replace f∗ with f∗∗ in the above definitions we obtain an equivalent
quasinorm that is in fact a norm (see [4], [9]). The Lorentz space Lp,q is defined by

Lp,q := {f : ‖f‖Lp,q <∞}.

Moreover we define
L1,1 := L1, L∞,∞ := L∞.

The spaces L∞,q for 1 6 q <∞ are usually left undefined (although L∞,1 is defined
in [9] as the closure of L∞ compactly supported functions in the L∞ norm).
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With the above definitions, one obtains immediately the elementary properties

Lp,p = Lp, 1 6 p 6∞;

Lp,q1 ⊆ p,q2 , 1 < p <∞, 1 6 q1 6 q2 6∞,

with continuous embedding. For 1 6 p 6 ∞, the spaces Lpw := Lp,∞ are usually
called weak Lebesgue spaces or Marcinkiewicz spaces.

It is remarkable that the Lorentz spaces can be obtained by an equivalent
construction using real interpolation:

Lp,q := (Lp0 , Lp1)θ,q,
1

p
=

1− θ
p0

+
θ

p1

provided
p0 < p1, p0 < q 6∞, 0 < θ < 1.

The Hölder, Young and Sobolev inequalities can be established in the framework
of the Lorentz spaces, where they turn out to be stronger than in the Lorentz spaces:
we collect them here in the followin Theorems, referring to [68] for the proofs.

Theorem 2.9.2 (Hölder inequality). Let f ∈ Lp1,q1, g ∈ Lp2,q2. The following
estimates hold:

• if p1, p2, p ∈ (1,∞), q1, q2, q ∈ [1,∞], then

‖fg‖Lp,q 6 C‖f‖Lp1,q1‖g‖Lp2,q2 , p−1 = p−1
1 + p−1

2 , q−1 6 q−1
1 + q−1

2 ;

• if p1, p2 ∈ (1,∞), q1, q2 ∈ [1,∞], then

‖fg‖L1 6 C‖f‖Lp1,q1‖g‖Lp2,q2 , 1 = p−1
1 + p−1

2 , 1 6 q−1
1 + q−1

2 .

We remark that the above statement does not cover the inequality

‖fg‖Lp,q 6 ‖f‖L∞‖g‖Lp,q ,

that clearly holds whenever Lp,q is defined.

Theorem 2.9.3 (Young inequality). Let f ∈ Lp1,q1, g ∈ Lp2,q2. The following
estimates hold:

• if p1, p2, p ∈ (1,∞), q1, q2, q ∈ [1,∞], then

‖f ∗ g‖Lp,q 6 C‖f‖Lp1,q1‖g‖Lp2,q2 , p−1 = p−1
1 + p−1

2 , q−1 6 q−1
1 + q−1

2 ;

• if p1, p2 ∈ (1,∞), q1, q2 ∈ [1,∞], then

‖f ∗ g‖L1 6 C‖f‖Lp1,q1‖g‖Lp2,q2 , 1 = p−1
1 + p−1

2 , 1 6 q−1
1 + q−1

2 .

As before, we remark that the above statement does not cover the inequality

‖f ∗ g‖Lp,q 6 ‖f‖L1‖g‖Lp,q ,

that can be shown to hold whenever Lp,q is defined by real interpolation.
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Theorem 2.9.4 (Gagliardo-Nirenberg-Sobolev inequality). Let 0 < s < n,
1 < q 6 r <∞ and f ∈ Ḣs,q. Then the following holds:

‖f‖Lr,q 6 C‖|D|sf‖Lq , with s− n

q
= −n

r
.

We conclude this survey showing some example of functions in Lorentz spaces.
We state an aternative and useful characterization of the Lorentz space norm, given
in the following Lemma from [82] (see also [52, Lemma 5.1]).

Lemma 2.9.5. Let f : Rn → C be a measurable function and let 1 < p, q < ∞.
Then f ∈ Lp,q if and only if there exist a sequence of sets (Ej)j∈Z and a sequence of
numbers a = (aj)j∈Z such that |Ej | = O(2j), a ∈ lq and the following estimate holds,
for some constant C > 0:

|f(x)| 6 C
∑

j∈Z
aj2
−j/pχEj (x).

With β > 0, denote
wβ(x) := |x|(|log|x||+ 1)β.

If β = 0, then it is easy to see from the definition that w−sβ ∈ Ln/s,∞ for any
s > 0. In the case β > 0, for any s > 0 and q ∈ [1,∞], we have w−sβ ∈ Ln/s,q,
provided β > 1/sq. We will use Lemma 2.9.5: for any j ∈ Z consider the ball
Bj := B2j/n = {x : |x| 6 2j/n} and the rings Ej := Bj+1 \ Bj ; it is clear that
|Ej | = Cn2j , where Cn depends only on the dimension n. Then, for all x ∈ Rn we
have the estimate

|w−sβ (x)| =
∑

j∈Z

1

|x|s(|log|x||+ 1)βs
χEj (x) 6 C

∑
j ∈ Z(|j| log 2+1)−βs2−js/nχEj (x).

We get immediately the claim, remarking that aj = (|j| log 2 + 1)−βs is in lq if and
only if β > 1/sq.



Chapter 3

Sharp Hardy uncertainty principle
and gaussian decay properties of
covariant Schrödinger evolutions

In this chapter we prove a sharp version of the Hardy uncertainty principle for
Schrödinger equations with external bounded electromagnetic potentials, based on
logarithmic convexity properties of Schrödinger evolutions. We provide, in addition,
an example of a real electromagnetic potential which produces the existence of
solutions with critical gaussian decay, at two distinct times. The results in the
present chapter are proved in [11]: since this chapter is somehow apart from the
previous ones, we prefer to keep the notations used in the paper and in the literature
on this topic even if they are slightly different from the ones used until now.

3.1 Introduction

This chapter is concerned with the sharpest possible gaussian decay, at two
distinct times, of solutions to Schrödinger equations of the type

∂tu = i(∆A + V )u, (3.1.1)

where u = u(x, t) : Rn × [0, 1]→ C, and

V = V (x, t) : Rn × [0, 1]→ C,
∆A := ∇2

A, ∇A := ∇− iA, A = A(x) : Rn → Rn.

The results in this chapter follow a program which has been developed in the magnetic
free case A ≡ 0, in the recent years, by Escauriaza, Kenig, Ponce, and Vega in the
sequel of papers [33, 31, 32, 34, 35], and with Cowling in [21]. One of the main
motivations is the connection with the Hardy uncertainty principle, which can be
stated as follows:

if f(x) = O
(
e−|x|

2/β2
)
and its Fourier transform f̂(ξ) = O

(
e−4|ξ|2/α2

)
, then

αβ < 4⇒ f ≡ 0

αβ = 4⇒ f is a constant multiple of e
− |x|

2

β2 .

76
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The solving formula for solutions to the free Schrödinger equation with initial datum
f in L2, namely

u(x, t) := eit∆f(x) = (2πit)−
n
2 ei

|x|2
4t F

(
ei
|·|2
4t f

)( x
2t

)
,

gives a hint of the following PDE’s-version of the Hardy uncertainty principle:
if u(x, 0) = O

(
e−|x|

2/β2
)
and u(x, T ) := eiT∆u(x, 0) = O

(
e−|x|

2/α2
)
, then

αβ < 4T ⇒ u ≡ 0

αβ = 4T ⇒ u(x, 0) is a constant multiple of e
−
(

1
β2 + i

4T

)
|x|2
.

The corresponding L2-versions of the previous results were proved in [77] and affirm
the following:

e|x|
2/β2

f ∈ L2, e4|ξ|2/α2
f̂ ∈ L2, αβ 6 4⇒ f ≡ 0

e|x|
2/β2

u(x, 0) ∈ L2, e|x|
2/α2

eiT∆u(x, 0) ∈ L2, αβ 6 4T ⇒ u ≡ 0.

We mention [5, 39, 80] as interesting surveys about this topic. In the sequel of
papers [21, 33, 31, 32, 34, 35], the authors investigated the validity of the previous
statements for zero-order perturbations of the Schrödinger equation of the form

∂tu = i(∆ + V (t, x))u. (3.1.2)

An interesting contribution of the above papers is that a purely real analytical
proof of the uncertainty principle is provided, based on the logarithmic convexity
properties of weighted L2-norms of solutions to (3.1.2). Namely, norms of the type
H(t) := ‖ea(t)|x+b(t)|2u(t)‖L2(Rn), where a(t) is a suitable bounded function, and b(t)
is a curve in Rn, are logarithmically convex in time. The interest of these results
relies on various motivations. First, since just real analytical techniques are involved,
rough potentials V ∈ L∞ can be considered, which are usually difficult to handle by
Fourier techniques. In addition, in [34] it is shown that a gaussian decay at times
0 and T of solutions to (3.1.2) is not only preserved, but also improved, in some
sense, for intermediate times, up to suitably move the center of the gaussian. A
consequence of Theorem 1 in [34] is the following: if V (t, x) ∈ L∞ is the sum of a
real-valued potential V1 and a sufficiently regular complex-valued potential V2, and
‖e|x|2/β2

u(0)‖L2 + ‖e|x|2/α2
u(T )‖L2 < +∞, with αβ < 4T , then u ≡ 0. Moreover,

the result is sharp in the class of complex potentials: indeed, Theorem 2 in [34]
provides an example of a (complex) potential V for which there exists a non-trivial
solution u 6= 0 with the above gaussian decay properties, with αβ = 4T .

The fact that the potential in [34] is complex-valued might have an appealing
connection with the examples by Meshkov and Cruz-Sampedro in [61, 22] about
unique continuation at infinity for stationary Schrödinger equations. In particular, an
interesting question is still open, concerning with the possibility or not of providing
analogous real-valued examples.

Our first result states the following: if one introduces a magnetic potential in
the hamiltonian, then real-valued examples in the spirit of Theorem 2 in [34] can be
found.
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Theorem 3.1.1. Let n = 3, k > 3/2, and define A = A(x, y, z, t) : R3+1 → R3 and
V = V (x, y, z, t) : R3+1 → R as follows:

A(x, y, z, t) =
2kt

1 + t2
· z

(x2 + y2)(1 + r2)

(
xz, yz,−x2 − y2

)
, (3.1.3)

V (x, y, z, t) =
k

1 + r2

(
2

1 + t2
+ 6− 4(1 + k)r2

1 + r2

)
− |A(x, y, z, t)|2 , (3.1.4)

where r2 := x2 + y2 + z2. Then the function

u = u(r, t) = (1 + it)2k−n
2 (1 + r2)−ke

− (1−it)
4(1+t2)

r2

(3.1.5)

is a solution to
i∂tu+ ∆Au = V u

satisfying
∥∥∥∥e

r2

8 u(−1)

∥∥∥∥
L2

+

∥∥∥∥e
r2

8 u(1)

∥∥∥∥
L2

<∞.

Remark 3.1.2. The choice of the time interval [−1, 1] instead of [0, T ] does not led
the generality of the result, since by scaling one can always reduce matters to this
case (see also Remark 3.1.5 below). Notice that both A and V are real-valued, and
this is (at our knowledge) a novelty. Observe moreover that A is time-dependent, and
singular all over the z-axis x = y = 0, with Coulomb-type singularity (x2 + y2)−

1
2 .

We finally remark that we are not able to generalize the above example to any
dimension n 6= 3, and it is unclear to us if this is an intrinsic obstruction or not. The
main idea relies in the expansion

∆A = ∆− 2iA · ∇ − idivA− |A|2.

Applying this operator to the function u in (3.1.5), one notice that the first order
term 2iA ·∇u vanishes, since u is radial and we choose the Crönstrom gauge A ·x ≡ 0;
on the other hand a purely imaginary, non null zero-order term idivA naturally
appears, being A real valued. We refer to section 3.2 below for the details of the
proof, which is a quite simple computation.

Theorem 3.1.1 motivates us to think to electromagnetic Schrödinger evolutions
as a natural setting for the study of Hardy uncertainty principles. We also need
to keep in mind the well known fact that the magnetic ground states (and hence
the corresponding standing waves) have gaussian decay (see [30] and the references
therein).

In the recent years, some results in the spirit of the Hardy principle appeared,
concerning with generic first-order perturbations of Schrödinger operators. Among
the others, Dong and Staubach in [27] proved that an uncertainty property holds,
under suitable assumptions on the lower order terms; nevertheless, a quantitative
knowledge of the critical constant in the gaussian weights seems to be difficult to
be found, due to the generality of the model. The paper [27] generalize a previous
result by Ionescu and Kenig in [47], in which unique continuation from the exterior
of a ball is proved, in the same setting.

We stress that an electromagnetic field is not any first-order perturbation of a
Schrödinger operator, since it has a peculiar intrinsic algebra which has to be taken
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into account. The feeling is that quantitative results could be obtained for such
operators, under geometric assumptions on the magnetic field. As an example, we
mention [2], where a non-sharp version of the Hardy uncertainty principle (with
αβ < 2T ) in presence of (possibly large) magnetic fields has been recently proved,
inspired to the techniques in [32]. The last result of this chapter improves the ones
in [2], covering the sharp range αβ < 4T . In order to settle the theorem, we need to
introduce a few notations.

In the sequel, we denote by A = (A1(x), . . . , An(x)) : Rn → Rn a real vector
field (magnetic potential). The magnetic field, denoted by B ∈ Mn×n(R) is the
antisymmetric gradient of A, namely

B = B(x) = DA(x)−DAt(x), Bjk(x) = Akj (x)−Ajk(x).

In dimension n = 3, B is identified with the vector field curlA, by the elementary
properties of antisymmetric matrices. Finally, in the following we will denote by ft
the time derivative ∂tf of any function f . We can now state the last result of this
chapter.

Theorem 3.1.3. Let n > 3, and let u ∈ C([0, 1];L2(Rn)) be a solution to

∂tu = i (∆A + V1(x) + V2(x, t))u (3.1.6)

in Rn × [0, 1], with A = (A1(x), . . . , An(x)) ∈ C
1,ε
loc(Rn;Rn), V1 = V1(x) : Rn → R,

V2 = V2(x, t) : Rn+1 → C. Moreover, denote by B = B(x) = DA − DAt, Bjk =

Akj −Ajk and assume that there exists a unit vector ξ ∈ Sn−1 such that

ξtB(x) ≡ 0. (3.1.7)

Finally, assume that

‖xtB‖2L∞ <∞ (3.1.8)
‖V1‖L∞ <∞ (3.1.9)

sup
t∈[0,1]

∥∥∥∥e
|·|2

(αt+β(1−t))2 V2(·, t)
∥∥∥∥
L∞

esupt∈[0,1]‖=V2(·,t)‖L∞ <∞ (3.1.10)

∥∥∥∥e
|·|2
β2 u(·, 0)

∥∥∥∥
L2

+

∥∥∥∥e
|·|2
α2 u(·, 1)

∥∥∥∥
L2

<∞, (3.1.11)

for some α, β > 0.
The following holds:

• if αβ < 4 then u ≡ 0.

• if αβ > 4 then

sup
t∈[0,1]

∥∥∥ea(t)|·|2u(t)
∥∥∥
L2(Rn)

+

∥∥∥∥
√
t(1− t)∇A(e

a(t)+
iȧ(t)
8a(t)

|·|2
u)

∥∥∥∥
L2(Rn×[0,1])

6 N

[∥∥∥∥e
|·|2
β2 u(0)

∥∥∥∥
L2(Rn)

+

∥∥∥∥e
|·|2
α2 u(1)

∥∥∥∥
L2(Rn)

]
,

(3.1.12)
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with
a(t) =

αβR

2(αt+ β(1− t))2 + 2R2(αt− β(1− t))2
,

where R is the smallest root of the equation

1

2αβ
=

R

4(1 +R2)
,

and N > 0 is a constant depending on α, β and ‖V ‖L∞(Rn×[0,1]), ‖xtB‖L∞(Rn).

Remark 3.1.4. Notice that, apart from the local regularity assumption A ∈ C
1,ε
loc(R

n),
which is the minimal request in order to justify an approximation argument in Lemma
3.3.3 below, all the hypotheses of the theorem are in terms of B and V , respecting
the gauge invariance of the result.

Remark 3.1.5. The choice of the time interval [0, 1] does not led the generality of
the results. Indeed, v ∈ C([0, T ], L2(Rn)) is solution to (3.1.1) in Rn × [0, T ] if and
only if u : [0, 1]→ C, u(x, t) = T

n
4 v(
√
Tx, T t) is solution to

∂tu = i(∆AT u+ VT (x, t)u), in [0, 1]× Rn,

where
AT (x, t) =

√
TA(
√
Tx, T t), VT (x) = TV (

√
Tx, T t).

Moreover, observe that

‖e
|x|2
β2 v(0)‖ = ‖e

|x|2
β′2 u(0)‖, ‖e

|x|2
α2 v(T )‖ = ‖e

|x|2
α′2 u(1)‖,

sup
t∈[0,T ]

‖e
T2|x|2

(αt+β(T−t))2 v(t)‖ = sup
t∈[0,1]

‖e
|x|2

(α′t+β′(1−t))2 u(t)‖.

with β′ = T−
1
2β, α′ = T−

1
2α.

Remark 3.1.6. The magnetic field in Theorem 3.1.3 does not depend on time,
differently from the example in Theorem 3.1.1. Nevertheless, it could be probably
possible to generalize the result to the case of time dependent magnetic fields, by
assuming the existence of the purely magnetic flow and the L2-preservation, but this
will not be an object of study in the present work.

Remark 3.1.7. Assumption (3.1.7) is fundamental in our strategy of proof, and
it does not allow to include the 2D-case in the statement of Theorem 3.1.3, due to
elementary properties of antisymmetric matrices. We mention [2] for some explicit
examples of magnetic fields satisfying (3.1.7). It is an interesting open question if
there exist examples of magnetic fields which do not satisfy (3.1.7), for which the
Hardy uncertainty holds with different quantitative constants or different exponential
decays. Observe that the example in (3.1.3) satisfies (3.1.7), with ξ = (0, 0, 1).
Indeed, an explicit computation shows that

B = curlA =
2kt

1 + t2
· 2z

(x2 + y2)(1 + r2)2
(−y, x, 0) .
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The strategy of the proof of Theorem 3.1.3 is the following:

1. first we reduce to the Crönstrom gauge x · A ≡ 0 (see Section 3.4.1), which
turns out to be a helpful choice;

2. by conformal (or Appell) transformation (see Lemma 3.4.3), we reduce to the
case α = β, and we perform a time scaling to reduce to the time interval [−1, 1]
(see Section 3.4.2);

3. we prove Theorem 3.1.3 in the case µ := α = β (see Section 3.4.3);

4. we translate the result in terms of the original solution, by inverting the
transformations at step 2, obtaining the final result (see the end of the proof).

The key ingredient is Lemma 3.3.3 below, which comes into play in the proof of
step 3. This is based on an iteration scheme, introduced in [34]: by successive
approximations, we can start an iterative improvement of the decay assumption
(3.1.11), by suitably moving the center of the gaussian weight. In the limit, this
argument leads to an optimal choice of the function a = a(t) : [−1, 1]→ R for which
the estimate

‖ea(t)|x|2u(x, t)‖L∞t ([−1,1])L2
x(Rn) 6 C(α, β, T, ‖V ‖L∞ , ‖xtB‖L∞) (3.1.13)

holds. The presence of a magnetic fields makes things quite more complicate, once
the iteration starts, as wee see in the sequel. The rest of the chapter is devoted to
the proofs of our main theorems.

3.2 Proof of Theorem 3.1.1

The proof of Theorem 3.1.1 is a straightforward computation. First, we expand
the magnetic Laplace operator and rewrite

(i∂t + ∆A)u = (i∂t + ∆)u− 2iA · ∇xu− i(divxA)u− |A|2u.

Now we compute

(i∂t + ∆)u =
1

1 + r2

(
2k

1 + it
+ 6k − 4k(k + 1)r2

1 + r2

)

=
1

1 + r2

(
− 2ikt

1 + t2
+

2k

1 + t2
+ 6k − 4k(k + 1)r2

1 + r2

)
,

where u is given by (3.1.5). Observe that, since u is radial and A · x ≡ 0 by the
definition (3.1.3), we have A · ∇xu ≡ 0. Finally, another direct computation gives

idivxA = − 2ikt

1 + t2
· 1

1 + r2
.

In conclusion,

(i∂t + ∆A)u =

[
k

1 + r2

(
2

1 + t2
+ 6− 4(k + 1)r2

1 + r2

)
− |A|2

]
u = V u,

by the definition (3.1.4), which completes the proof.
The rest of the chapter is devoted to the proof of Theorem 3.1.3.



Section 3.3. Some preliminary lemmata 82

3.3 Some preliminary lemmata

Let us fix some notations and recall some results from [34] and [2]. We denote

(f, g) :=

∫

Rn
fḡ dx, H(f) = ‖f‖2 := (f, f),

for f, g ∈ L2(Rn).

Lemma 3.3.1 ([34], Lemma 2). Let S be a symmetric operator, A a skew-symmetric
one, both allowed to depend on the time variable, and f a smooth enough function.
Moreover let γ : [c, d]→ (0,+∞) and ψ : [c, d]→ R be smooth functions. If

(γ Stf(t) + γ [S,A]f(t) + γ̇ Sf(t), f(t)) > −ψ(t)H(t), t ∈ [c, d] (3.3.1)

then, for all ε > 0,

H(t) + ε 6 e2T (t)+Mε(t)+2Nε(t)(H(c) + ε)θ(t)(H(d) + ε)1−θ(t), t ∈ [c, d]

where T and Mε verify

{
∂t(γ∂tT ) = −ψ, t ∈ [c, d]
T (c) = T (d) = 0,

{
∂t(γ∂tMε) = −γ ‖∂tf−Sf−Af‖

2

H+ε t ∈ [c, d]

Mε(c) = Mε(d) = 0,

Nε =

∫ d

c

∣∣∣∣<
((∂s − S−A)f(s), f(s))

H(s) + ε

∣∣∣∣ ds, θ(t) =

∫ d
t
ds
γ∫ d

c
ds
γ

.

Moreover

∂t(γ ∂tH − γ <(∂tf − Sf −Af, f)) + γ ‖∂tf − Sf −Af‖2

> 2(γ Stf + γ [S,A]f + γ̇ Sf, f).
(3.3.2)

For ϕ = ϕ(x, t) : Rn+1 → R, we can write

eϕ(x,t)(∂t − i∆A)e−ϕ(x,t) = ∂t − S−A

where

S = −i (∆xϕ+ 2∇xϕ · ∇A) + ϕt (3.3.3)

A = i
(
∆A + |∇xϕ|2

)
(3.3.4)

(see [2]). Observe that S and A are respectively a symmetric and a skew-symmetric
operator. Our first goal is to apply Lemma 3.3.1 with a suitable choice of S,A. In
order to do this, we need to obtain the lower bound (3.3.1) when S and A are given
by (3.3.3) and (3.3.4), respectively: this is done in the following lemma, analogous
to [34], Lemma 3.

Lemma 3.3.2. Let

ϕ(x, t) = a(t)|x+ b(t)|2,
a = a(t) : R→ R, b = b(t) = b(t)ξ : R→ Rn, ξ ∈ Sn−1,

(3.3.5)
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and S,A be defined as in (3.3.3) and (3.3.4). Assume that

x ·At(x) = 0,

b ·At(x) = 0,
(3.3.6)

for all x ∈ Rn and assume (3.1.7). Assume moreover

F (a, γ) =

(
ä+ 32a3 − 3ȧ2

2a
− a

2

(
ȧ

a
+
γ̇

γ

)2
)
γ > 0 in [c, d]. (3.3.7)

Then, for a smooth enough function f ,

((γSt+γ[S,A]+γ̇S)f, f) > −
((

γ2a2|b̈|2
F (a, γ)

+ 2γa‖xtB‖2L∞
)
f, f

)
, for all t ∈ [c, d].

(3.3.8)

Proof. The proof is analogous to the one of Lemma 3 in [34], with some additional
magnetic terms to be considered. Explicit computations (see Lemma 2.9 in [2]) give:

∫

Rn
Sff̄ dx =

∫

Rn

[
−i(2na|f |2 + 4a(x+ b) · ∇Aff̄)

]
dx

+

∫

Rn

[
ȧ|x+ b|2|f |2 + 2aḃ · (x+ b)|f |2

]
dx

∫

Rn
Aff̄ dx =

∫

Rn

[
(i∆Af + 4ia2|x+ b|2f)f̄

]
dx

∫

Rn
[S,A]ff̄ dx =

∫

Rn

[
8a|∇Af |2 + 32a3|x+ b|2|f |2

]
dx

−
∫

Rn

[
4=[f 2a(x+ b)tB∇Af ]

]
dx

+

∫

Rn

[
4=[f̄ ȧ(x+ b) · ∇Af + f̄aḃ · ∇Af ]

]
dx

∫

Rn
Stff̄ dx =

∫

Rn

[
2=[(2ȧ(x+ b) + 2aḃ) · ∇Af ]f̄

]
dx

+

∫

Rn

[
ä|x+ b|2 − 4a(x+ b) ·At

]
|f |2 dx

+

∫

Rn

[
4ȧḃ · (x+ b) + 2ab̈ · (x+ b) + 2a|ḃ|2

]
|f |2 dx.
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Summing up we get
∫

Rn
(γSt + γ[S,A] + γ̇S)ff̄ dx

=

∫

Rn
(äγ + 32a3γ + γ̇ȧ)|x+ b|2|f |2 dx

+

∫

Rn
[(4γȧḃ + 2γab̈ + 2γ̇aḃ) · (x+ b) + 2γa|ḃ|2]|f |2 dx

+

∫

Rn
8γa|∇Af |2 + 2<(−i∇Af) · (4γaḃf) dx

+

∫

Rn
2<(−i∇Af) · ((2γ̇a+ 4γȧ)(x+ b)f) dx

−
∫

Rn
4=(γf2a(x+ b)tB∇Af) dx

−
∫

Rn
4aγ (x+ b) ·At|f |2 dx.

The last term in the previous equation vanishes, because of (3.3.6). Completing the
squares in the previous equation we get

∫

Rn
(γSt + γ[S,A] + γ̇S)ff̄ dx

=

∫

Rn
8γa

∣∣∣∣∣−i∇Af +
ḃ

2
f +

(
ȧ

2a
+

γ̇

4γ

)
(x+ b)f

∣∣∣∣∣

2

dx

+

∫

Rn
F (a, γ)

∣∣∣∣∣x+ b +
aγb̈

F (a, γ)

∣∣∣∣∣

2

|f |2 dx− γ2a2|b̈|2
F (a, γ)

∫

Rn
|f |2 dx

− 8γa

∫

Rn
=(f(x+ b)tB∇Af) dx.

(3.3.9)

Thanks to hypotesis (3.1.7) and the fact that B is anti-symmetric we have

f(x+ b)tB∇Af = fxtB∇Af = fxtB

(
∇Af + i

ḃ

2
f + i

(
ȧ

2a
+

γ̇

4γ

)
(x+ b)f

)
,

for almost all x ∈ Rn, t ∈ [0, 1].
By use of the elementary inequality ab 6 δa2 + b2/4δ, with δ = 1/4, we can

finally estimate

8γa=
∫

Rn
f(x+ b)tB∇Af dx

= 8γa<
∫

Rn
fxtB

(
−i∇Af +

ḃ

2
f +

(
ȧ

2a
+

γ̇

4γ

)
(x+ b)f

)
dx

6 2γa‖xtB‖2L∞
∫

Rn
|f |2 dx

+ 8γa

∫

Rn

∣∣∣∣∣−i∇Af +
ḃ

2
f +

(
ȧ

2a
+

γ̇

4γ

)
(x+ b)f

∣∣∣∣∣

2

dx,
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which proves the result.

We now choose
γ := a−1,

hence

F (a) := F (a, γ) =
1

a

(
ä+ 32a3 − 3ȧ2

2a

)
.

The next result is the key ingredient in the proof of our main Theorem 3.1.3. Its
magnetic-free version B ≡ 0 has been proved in [34].

Lemma 3.3.3 (improved decay). Let u ∈ C([−1, 1], L2(Rn)) be a solution to

∂tu = i(∆Au+ V (x, t)u) in Rn × [−1, 1],

with V a bounded complex-valued potential and A ∈ C
1,ε
loc(Rn). Assume that, for some

µ > 0,
sup

t∈[−1,1]
‖eµ|x|2u(t)‖ < +∞, (3.3.10)

and, for a : [−1, 1]→ (0,+∞), smooth, even and such that ȧ 6 0, a(1) = µ, a > µ,
and F (a) > 0 in [−1, 1], we have

sup
t∈[−1,1]

‖e(a(t)−ε)|x|2u(t)‖ < +∞ for all ε > 0. (3.3.11)

Then, for b = b(t) = b(t)ξ : [−1, 1]→ Rn, smooth, such that b(−1) = b(1) = 0,

‖ea(t)|x+b(t)|2u(t)‖ 6 eT (t)+2‖V ‖L∞+
‖V ‖2L∞

4 sup
s∈[−1,1]

‖eµ|x|2u(s)‖, −1 6 t 6 1,

(3.3.12)
where T is defined by

{
∂t
(

1
a∂tT

)
= −

(
|b̈|2
F (a) + 2‖xtB‖2L∞

)
in [−1, 1]

T (−1) = T (1) = 0.

Moreover, there is Ca > 0 such that

‖
√

1− t2∇A(ea+ iȧ
8a
|x|2u)‖L2(Rn×[−1,1])

+ Ca‖
√

1− t2ea(t)|x|2∇Au‖L2(Rn×[−1,1])

6 e2‖V ‖L∞+
‖V ‖2L∞

4 sup
t∈[−1,1]

‖eµ|x|2u(t)‖.
(3.3.13)

Proof. Extend u to Rn+1 as u ≡ 0 when |t| > 1 and, for ε > 0, set

aε(t) := a(t)− ε, gε(x, t) = eaε(t)|x|
2

u(x, t), fε(x, t) = eaε(t)|x+b(t)|2u(x, t).

The function fε is in L∞([−1, 1], L2(Rn)) and satisfies

∂tfε − Sεfε −Aεfε = iV (x, t)fε
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in the sense of distribution, i.e.
∫

Rn
fε(−∂sζ − Sεζ + Aεζ) dyds = i

∫

Rn
V fεζ̄ dyds

for all ζ ∈ C∞0 (Rn × (−1, 1)), where Sε and Aε are defined as S and A are in (3.3.3),
(3.3.4) with aε in place of a. We denote here S

x,t
ε , Ax,t

ε and S
y,s
ε , Ay,s

ε the operators
acting on the variables x, t and y, s respectively.

Since all the previous results make sense for regular functions, the strategy is to
mollify the function fε, obtain results for the new regular function, and uniformly
control the errors. Let then θ ∈ C∞(Rn+1) be a standard mollifier supported in the
unit ball of Rn+1 and, for 0 < δ 6 1

4 set gε,δ = gε ∗ θδ, fε,δ = fε ∗ θδ, and

θx,tδ (y, s) = δ−n−1θ

(
x− y
δ

,
t− s
δ

)
.

The functions fε,δ and gε,δ are in C∞([−1, 1], S(Rn)).
By continuity, there exists εa > 0 such that

F (aε) >
F (a)

2
, in [−1, 1],

when 0 < ε 6 εa, and for such an ε > 0 it is possible to find δε > 0, with δε
approaching zero as ε tends to zero, such that

(
a(t)− ε

2

)
|x|2 6 µ|x|2,

(
a(t)− ε

2

)
|x+ b(t)|2 6 µ|x|2,

when x ∈ Rn, 1− δε 6 |t| 6 1. In the following we assume 0 < ε 6 εa and 0 < δ 6 δε.
We can apply Lemma 3.3.1 to fε,δ, withHε,δ(t) = ‖fε,δ(t)‖2, [c, d] = [−1 + δε, 1− δε],

γ = a−1
ε , S = Sε and A = Aε: it turns out that

Hε,δ(t) 6
(

sup
t∈[−1,1]

‖eµ|x|2u(t)‖+ ε

)2

e2Tε(t)+Mε,δ(t)+2Nε,δ(t) (3.3.14)

when |t| 6 1− δε, and where Tε, Mε,δ and Nε,δ are defined by
{
∂t(

1
aε
∂tTε) = − |b̈|2

F (aε)
− 2‖xtB‖2L∞ , t ∈ [−1 + δε, 1− δε]

T (−1 + δε) = T (1− δε) = 0
, (3.3.15)

{
∂t(

1
aε
∂tMε,δ) = − 1

aε

‖∂tfε,δ−Sεfε,δ−Aεfε,δ‖2
Hε,δ+ε

, t ∈ [−1 + δε, 1− δε]
Mε,δ(−1 + δε) = Mε,δ(1− δε) = 0

, (3.3.16)

Nε,δ =

∫ 1−δε

−1+δε

‖(∂s − Sε −Aε)fε,δ(s)‖√
Hε,δ(s) + ε

ds, (3.3.17)

In view to let δ → 0 in (3.3.14), (3.3.15), (3.3.16), (3.3.17), we compute

(∂tfε,δ − Sx,tε fε,δ −Ax,t
ε fε,δ)(x, t)

=

∫

Rn
fε(y, s)(−∂sθx,tδ (y, s)) dyds+

∫

Rn
(−Sx,tε −Ax,t

ε )fε(y, s)θ
x,t
δ (y, s) dyds

=

∫

Rn
fε(y, s)(−∂s − S

y,s
ε + A

y,s
ε )θx,tδ (y, s) dyds

+

∫

Rn
fε(y, s)(−Sx,tε −Ax,t

ε + S
y,s
ε −A

y,s
ε )θx,tδ (y, s) dyds.
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Expliciting the term in the previous relation, we get

(∂tfε,δ − Sx,tε fε,δ −Ax,t
ε fε,δ)(x, t)

=

∫

Rn
fε(y, s)(−∂s − S

y,s
ε + A

y,s
ε )θx,tδ (y, s) dyds

+

∫

Rn
fε(y, s)[(ȧε(s) + 4ia2

ε(s))|y + b(s)|2 − (ȧε(t) + 4ia2
ε(t))|x+ b(t)|2]θx,tδ (y, s) dyds

+

∫

Rn
fε(y, s)[2aε(s)ḃ(s) · (y + b(s))− 2aε(t)ḃ(t) · (x+ b(t))]θx,tδ (y, s) dyds

+ 4i

∫

Rn
fε(y, s)[aε(s)(y + b(s)) · ∇A,y + aε(t)(x+ b(t)) · ∇A,x]θx,tδ (y, s) dyds

+

∫

Rn
2infε(y, s)[aε(s) + aε(t)]θ

x,t
δ (y, s) dyds

− i
∫

Rn
fε(y, s)[∆A,x −∆A,y]θ

x,t
δ (y, s) dyds =: I + II + II + IV + V + V I.

(3.3.18)

Since ∇xθx,tδ (y, s) = −∇yθx,tδ (y, s), we have

IV =4i

∫

Rn
fε(y, s)[aε(s)(y + b(s))− aε(t)(x+ b(t))] · ∇yθx,tδ (y, s)] dyds

+ 4

∫

Rn
fε(y, s)[−aε(s)(y + b(s)) ·A(y) + aε(t)(x+ b(t)) ·A(x)]θx,tδ (y, s) dyds.

(3.3.19)

Moreover, recalling that

∆Af = ∇2
Af = ∆f − i(∇ ·A)f − 2iA · ∇f − |A|2f,

and ∆yθ
x,t
δ (y, s) = ∆xθ

x,t
δ (y, s), we obtain

V I =

∫

Rn
fε(y, s)

[
−(∇x ·A(x) +∇y ·A(y)) + 2(A(x)−A(y)) · ∇y

+i(|A(x)|2 − |A(y)|2)
]
θx,tδ (y, s) dyds

(3.3.20)

By (3.3.18), (3.3.19), (3.3.20) we can hence write

(∂tfε,δ−Sx,tε fε,δ−Ax,t
ε fε,δ)(x, t) = i(V fε)∗ θδ(x, t) +Aε,δ(x, t) +Bε,δ(x, t), (3.3.21)

where

Aε,δ(x, t)

=

∫

Rn
fε(y, s)[(ȧε(s) + 4ia2

ε(s))|y + b(s)|2 − (ȧε(t) + 4ia2
ε(t))|x+ b(t)|2]θx,tδ (y, s) dyds

+

∫

Rn
fε(y, s)[2aε(s)ḃ(s) · (y + b(s))− 2aε(t)ḃ(t) · (x+ b(t))]θx,tδ (y, s) dyds

+ 4

∫

Rn
fε(y, s)[aε(t)(x+ b(t)) ·A(x)− aε(s)(y + b(s)) ·A(y)]θx,tδ (y, s) dyds

+ i

∫

Rn
fε(y, s)[|A(x)|2 − |A(y)|2]θx,tδ (y, s) dyds,
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and

Bε,δ(x, t)

= 4i

∫

Rn
fε(y, s)[4i(aε(s)(y + b(s))− aε(t)(x+ b(t))) + 2(A(x)−A(y))] · ∇yθx,tδ (y, s)] dyds

+

∫

Rn
fε(y, s)[2in(aε(s) + aε(t))− (∇x ·A(x) +∇y ·A(y))]θx,tδ (y, s) dyds.

Since aε, b are smooth, and A ∈ C
1,ε
loc(R

n), there is a Na,b,A,ε > 0 such that

‖Aε,δ‖L2(Rn×[−1+δ,1−δ]) 6 δNa,b,A,ε sup
t∈[−1,1]

‖e(a(t)− ε
2

)|x|2u(t)‖, (3.3.22)

‖Bε,δ‖L2(Rn×[−1+δ,1−δ]) 6Na,b,A,ε sup
t∈[−1,1]

‖e(a(t)− ε
2

)|x|2u(t)‖. (3.3.23)

Moreover

sup
t∈[−1,1]

‖(V fε) ∗ θδ(t)‖ 6 ‖V ‖L∞(Rn×[−1,1]) sup
t∈[−1,1]

‖e(a(t)− ε
2

)|x|2u(t)‖. (3.3.24)

The function gε,δ verifies analogous relations, obtained setting b ≡ 0 in the previous
equations.

Since the fε,δ and gε,δ are now regular, (3.3.2) holds. Therefore,

∂t

(
1

aε
∂tHε,δ −

1

aε
<(∂tgε,δ − Sεgε,δ −Aεgε,δ, gε,δ)

)

+
1

aε
‖∂tgε,δ − Sεgε,δ −Aεgε,δ‖2

> 2

(
1

aε
Sεtgε,δ +

1

aε
[Sε,Aε]gε,δ −

ȧε
a2
ε

Sεgε,δ, gε,δ

)
.

(3.3.25)

Moreover, from (3.3.9) in Lemma 3.3.2, with γ = 1/aε and b ≡ 0, we get
∫

Rn

(
1

aε
Sεt +

1

aε
[Sε,Aε]−

ȧε
a2
ε

Sε

)
gε,δ ḡε,δ dx

=

∫

Rn
8

∣∣∣∣−i∇Agε,δ +

(
ȧε
4aε

)
xgε,δ

∣∣∣∣
2

dx+

∫

Rn
F (aε)|x|2|gε,δ|2 dx

− 8

∫

Rn
=(gε,δ x

tB∇Agε,δ) dx.

(3.3.26)

Since F (aε) > 0, there exists a constant C > 0 depending on a, such that we have

∫

Rn
8

∣∣∣∣−i∇Agε,δ +

(
ȧε
4aε

)
xgε,δ

∣∣∣∣
2

dx+

∫

Rn
F (aε)|x|2|gε,δ|2 dx

>
∫

Rn

∣∣∣∇A
(
e
iȧε
8aε
|x|2gε,δ

)∣∣∣
2
dx+ Ca

∫

Rn
|∇Agε,δ|2 + |x|2|gε,δ|2 dx.

(3.3.27)

Moreover there exists an arbitrarily small η > 0 such that

−8

∫

Rn
=(gε,δ x

tB∇Agε,δ) dx > −16

η
‖xtB‖2L∞

∫

Rn
|gε,δ|2 dx− η

∫

Rn
|∇Agε,δ|2 dx.

(3.3.28)
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By (3.3.25), (3.3.26), (3.3.27), (3.3.28), we get
∫

Rn

∣∣∣∇A
(
e
iȧε
8aε
|x|2gε,δ

)∣∣∣
2
dx+ C

∫

Rn
|∇Agε,δ|2 + |x|2|gε,δ|2 dx

6 ∂t

(
1

aε
∂tHε,δ −

1

aε
<(∂tgε,δ − Sεgε,δ −Aεgε,δ, gε,δ)

)

+
1

aε
‖∂tgε,δ − Sεgε,δ −Aεgε,δ‖2 +D‖xtB‖2L∞Hε,δ,

(3.3.29)

for some constants C,D > 0 depending on a. Multiplying the last inequality by
(1− δε)2 − t2, and integrating by part in time, we get

‖
√

(1− δε)2 − t2∇Agε,δ‖L2(Rn×[−1+δε,1−δε]) 6 Na,B,ε,

and analogously

‖
√

(1− δε)2 − t2∇Afε,δ‖L2(Rn×[−1+δε,1−δε]) 6 Na,b,B,ε,

thanks to (3.3.21), (3.3.22), and (3.3.23). Letting δ tend to zero, we find that

‖
√

(1− δε)2 − t2∇Afε‖L2(Rn×[−1+δε,1−δε]) 6 Na,b,B,ε,

which makes possibile to integrate in time by parts the first term in Bε,δ, obtaining

Bε,δ(x, t) =−
∫

Rn
∇yfε(y, s) · [4i(aε(s)(y + b(s))− aε(t)(x+ b(t)))]θx,tδ (y, s) dyds

−
∫

Rn
∇yfε(y, s) · [2(A(x)−A(y))]θx,tδ (y, s) dyds

+

∫

Rn
fε(y, s)[2in(aε(t)− aε(s)) + (∇y ·A(y)−∇x ·A(x))]θx,tδ (y, s) dyds.

This, together with the fact that A ∈ C
1,ε
loc(R

n), allows to get finally

‖Bε,δ‖L2(Rn,[−1+δε,1−δε]) 6 δNa,b,A,ε, (3.3.30)

when 0 < δ 6 δε, which improves (3.3.23).
Thanks to the above convergence results, we have that fε is in C∞((−1, 1), L2(Rn))

and that Hε,δ converges uniformly on compact sets of (−1, 1) to Hε(t) = ‖fε(t)‖2.
Letting δ and ε tend to zero, we get finally

‖ea(t)|x+b(t)|2u(t)‖2 6 sup
t∈[−1,1]

‖eµ|x|2u(t)‖e2T (t)+M(t)+4‖V ‖L∞

when |t| 6 1, with {
∂t
(

1
a∂tM

)
= − 1

a‖V ‖
2
L∞

M(−1) = M(1) = 0.

Notice that M is even, and

M(t) = ‖V ‖2L∞
∫ 1

t

∫ s

0

a(s)

a(τ)
dτds, in [0, 1],
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and, since a is monotone in [0, 1], we get the (3.3.12). Using again (3.3.27), analo-
gously we have

‖
√

(1− δε)2 − t2∇A(e
iȧε
8aε
|x|2gε,δ)‖L2(Rn×[−1+δε,1−δε])

+ Ca‖
√

(1− δε)2 − t2∇Agε,δ‖L2(Rn×[−1+δε,1−δε])

+ Ca‖
√

(1− δε)2 − t2xgε,δ‖L2(Rn×[−1+δε,1−δε])

6 Ce2‖V ‖L∞+
‖V ‖2L∞

4 sup
s∈[−1,1]

‖eµ|x|2u(s)‖+ δNa,ε,A,B,

for C = C(‖V ‖∞, ‖xtB‖∞). Letting δ and ε go to zero, we get (3.3.13) and we
conclude the proof.

3.4 Proof of Theorem 3.1.3

For convenience, we will denote by

MB := 2‖xtB‖2L∞ < +∞, (3.4.1)

MV := 2‖V ‖L∞ +
‖V ‖2

4
< +∞. (3.4.2)

The proof is divided into several steps.

3.4.1 Crönstrom gauge

The first step consists in reducing to the Crönostrom gauge

x ·A(x) = 0 for all x ∈ Rn,

by means of the following result.

Lemma 3.4.1. Let A = A(x) = (A1(x), . . . , An(x)) : Rn → Rn, for n > 2 and
denote by B = DA−DAt ∈Mn×n(R), Bjk = Akj −Ajk, and Ψ(x) := xtB(x) ∈ Rn.
Assume that the two vector quantities

∫ 1

0
A(sx) ds ∈ Rn,

∫ 1

0
Ψ(sx) ds ∈ Rn (3.4.3)

are finite, for almost every x ∈ Rn; moreover, define the (scalar) function

ϕ(x) := x ·
∫ 1

0
A(sx) ds ∈ R. (3.4.4)

Then, the following two identities hold:

Ã(x) := A(x)−∇ϕ(x) = −
∫ 1

0
Ψ(sx) ds (3.4.5)

xtDÃ(x) = −Ψ(x) +

∫ 1

0
Ψ(sx) ds. (3.4.6)
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Remark 3.4.2. Notice that

x · Ã(x) ≡ 0, x · xtDÃ(x) ≡ 0. (3.4.7)

From now on, we will hence assume, without loss of generality, that (3.4.7) are satisfied
by A. Observe moreover that assumption (3.1.7) in Theorem 3.1.3 is preserved by
the above gauge transformation, and we have in addition that A · ξ ≡ 0. We also
remark that

‖Ã‖2L∞ + ‖xtB‖2L∞ 6MB.

Finally notice that the first condition in (3.4.3) is guaranteed by the assumption
A ∈ C

1,ε
loc(R

n) in Theorem 3.1.3.
We mention [48] for the proof of the previous Lemma; see alternatively Lemma

2.2 in [2].

3.4.2 Appell Transformation

Following the strategy in [32, 34, 2], the second step is to reduce assumption
(3.1.11) to the case α = β, by pseudoconformal transformation (Appell transforma-
tion).

Lemma 3.4.3 ([2], Lemma 2.7). Let A = A(y, s) = (A1(y, s), . . . , An(y, s)) :
Rn+1 → Rn, V = V (y, s), F = F (y, s) : Rn → C, u = u(y, s) : Rn × [0, 1]→ C be a
solution to

∂su = i (∆Au+ V (y, s)u+ F (y, s)) , (3.4.8)

and define, for any α, β > 0, the function

ũ(x, t) :=

( √
αβ

α(1− t) + βt

)n
2

u

(
x
√
αβ

α(1− t) + βt
,

tβ

α(1− t) + βt

)
e

(α−β)|x|2
4i(α(1−t)+βt) .

(3.4.9)
Then ũ is a solution to

∂tũ = i

(
∆
Ã
ũ+

(α− β)Ã · x
(α(1− t) + βt)

ũ+ Ṽ (x, t)ũ+ F̃ (x, t)

)
, (3.4.10)

where

Ã(x, t) =

√
αβ

α(1− t) + βt
A

(
x
√
αβ

α(1− t) + βt
,

tβ

α(1− t) + βt

)
(3.4.11)

Ṽ (x, t) =
αβ

(α(1− t) + βt)2
V

(
x
√
αβ

α(1− t) + βt
,

tβ

α(1− t) + βt

)
(3.4.12)

F̃ (x, t) =

( √
αβ

α(1− t) + βt

)n
2

+2

F

(
x
√
αβ

α(1− t) + βt
,

tβ

α(1− t) + βt

)
e

(α−β)|x|2
4i(α(1−t)+βt) .

(3.4.13)

Remark 3.4.4. The term containing Ã · x vanishes (see Remark 3.4.2 above).
Moreover, assumptions (3.4.1) and (3.4.2) still hold for B̃ and Ṽ . We finally remark
that Ã is time-dependent. Nevertheless, notice that

x · Ãt(x) = 0, ξ · Ãt(x) = 0, (3.4.14)

for all x ∈ Rn, t ∈ [0, 1].
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By direct computations, we have
∥∥∥∥e
|·|2
αβ ũ(0)

∥∥∥∥
L2

=

∥∥∥∥e
|·|2
β2 u(0)

∥∥∥∥
L2

,

∥∥∥∥e
|·|2
αβ ũ(1)

∥∥∥∥
L2

=

∥∥∥∥e
|·|2
α2 u(1)

∥∥∥∥
L2

,

sup
t∈[0,1]

∥∥∥∥e
|·|2
αβ ũ(t)

∥∥∥∥
L2

= sup
t∈[0,1]

∥∥∥∥e
|·|2

(αt+β(1−t))2 u(t)

∥∥∥∥
L2

.

For convenience, we change the time interval in [−1, 1]: let v(x, t) = 2−
n
4 ũ
(
x√
2
, 1+t

2

)
.

The function v is a solution to

∂tv = i(∆Av + Vv), in Rn × [−1, 1],

with
A(x, t) =

1√
2
A

(
x√
2
,
1 + t

2

)
, V(x, t) =

1

2
V

(
x√
2
,
1 + t

2

)
.

The assumptions of Theorem 3.1.3 still hold (up to a change of the constants) and
moreover

∥∥∥∥e
|·|2
2αβ v(−1)

∥∥∥∥
L2

=

∥∥∥∥e
|·|2
αβ ũ(0)

∥∥∥∥
L2

=

∥∥∥∥e
|·|2
β2 u(0)

∥∥∥∥
L2

,

∥∥∥∥e
|·|2
2αβ v(1)

∥∥∥∥
L2

=

∥∥∥∥e
|·|2
αβ ũ(1)

∥∥∥∥
L2

=

∥∥∥∥e
|·|2
α2 u(1)

∥∥∥∥
L2

,

sup
t∈[−1,1]

∥∥∥∥e
|·|2
2αβ v(t)

∥∥∥∥
L2

= sup
t∈[0,1]

∥∥∥∥e
|·|2
αβ ũ(t)

∥∥∥∥
L2

= sup
t∈[0,1]

∥∥∥∥e
|·|2

(αt+β(1−t))2 u(t)

∥∥∥∥
L2

.

We set
µ :=

1

2αβ
. (3.4.15)

The basic ingredient of our proof is the following logarithmic convexity estimate:

sup
t∈[−1,1]

∥∥∥eµ|·|
2

v(t)
∥∥∥
L2(Rn)

= sup
t∈[0,1]

∥∥∥∥e
|·|2

(αt+β(1−t))2 u(t)

∥∥∥∥
L2(Rn)

(3.4.16)

6 C sup
t∈[0,1]

∥∥∥∥e
|·|2
β2 u(·, 0)

∥∥∥∥

β(1−t)
αt+β(1−t)

L2

∥∥∥∥e
|·|2
α2 u(·, 1)

∥∥∥∥
αt

αt+β(1−t)

L2

6 C

(∥∥∥∥e
|·|2
β2 u(·, 0)

∥∥∥∥
L2

+

∥∥∥∥e
|·|2
α2 u(·, 1)

∥∥∥∥
L2

)
< +∞,

with

C = C

(
α, β, ‖xtB‖L∞ , ‖V1‖L∞ , sup

t∈[0,1]

∥∥∥∥e
|·|2

(αt+β(1−t))2 V2(·, t)
∥∥∥∥
L∞

esupt∈[0,1]‖=V2(·,t)‖L∞
)
.

For the proof of (3.4.16) see Theorem 1.5 in [2]. From now on, we denote v, A and
V by u, A and V .

We follow the same strategy as in [34], which is based on an iteration scheme.
The argument here is a bit more delicate, due to the presence of additional terms
involving the magnetic field.
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3.4.3 Conclusion of the Proof

We now apply an iteration scheme which is completely analogous to the one
performed in [34]. The idea is to get the best possible choice for a(t) such that an
estimate like

‖ea(t)|x|2u(x, t)‖L∞t ([−1,1])L2
x(Rn) 6 C(α, β, T, ‖V ‖L∞ , ‖xtB‖L∞). (3.4.17)

holds. In order to do this, we will construct a as the limit of an appropriate sequence
aj(t), having in mind the improvement result of Lemma 3.3.3. At each step of the
procedure, assumptions (3.3.10) and (3.3.11) have to be checked. Also the curve
b(t) = b(t)ξ, with ξ ∈ Sn−1 as in (3.1.7) is naturally involved in the following
argument.

Iteration scheme

Let us first construct the iteration scheme. Assume that k even and smooth
functions aj : [−1, 1]→ (0,+∞) and Caj > 0, j = 1, . . . , k have been generated, such
that




µ ≡ a1 < a2 < · · · < ak in (−1, 1),

ȧj 6 0 in [0, 1], F (aj) > 0 in [−1, 1], aj(±1) = µ,

supt∈[−1,1]‖eaj(t)|·|
2

u(·, t)‖ 6 eMB

∫ 1
0 saj(s) dseMV supt∈[−1,1]‖eµ|·|

2

u(·, t)‖,

‖
√

1− t2∇A(e
aj+

iȧj
8aj
|x|2
u)‖L2(Rn×[−1,1]) + Caj‖

√
1− t2eaj(t)|x|2∇Au‖L2(Rn×[−1,1])

6 CeMV supt∈[−1,1]‖eµ|·|
2

u(·, t)‖,
(3.4.18)

where C = C(‖V ‖∞, ‖xtB‖∞) > 0, for all j = 1, . . . , k.
The construction is identical to the one in [34]; we repeat it here for the sake of

completeness. In order to simplify notations, set ck := a
− 1

2
k . Let bk : [−1, 1]→ R be

the solution to {
b̈k = −F (ak)

ak
= −2ck(16c−3

k − c̈k)
bk(±1) = 0.

(3.4.19)

Observe that bk is even and

bk(t) =

∫ 1

t

∫ s

0

F (ak(τ))

ak(τ)
dτds in [−1, 1]; (3.4.20)

moreover ḃk < 0 in (0, 1]. Apply now (3.3.12) in Lemma 3.3.3 with a = ak and
b = bkη, for η ∈ Rξ = {pξ | p ∈ R}: we get

‖eak(t)| ·+bk(t)η|2u(·, t)‖L2(Rn) 6 eTk(t)+MV sup
s∈[−1,1]

‖eµ|·|2u(·, s)‖L2(Rn), (3.4.21)

with
{
∂t
(

1
a∂tTk

)
= −

(
|b̈k|2|η|2
F (ak) +MB

)
= −

(
F (ak)|η|2

a2
k

+MB

)
in [−1, 1]

Tk(±1) = 0.
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Tk is even and, remembering that ak(s) 6 ak(τ) if τ 6 s,

Tk(t) =

∫ 1

t

∫ s

0

(
ak(s)

ak(τ)

F (ak(τ))|η|2
ak(τ)

+ ak(s)MB

)
dτds

6 |η|2
∫ 1

t

∫ s

0

F (ak(τ))

ak(τ)
dτds+MB

∫ 1

t
sak(s) ds

= bk(t)|η|2 +MB

∫ 1

t
sak(s) ds,

for t ∈ (−1, 1). Therefore the right hand side of (3.4.21) can be estimated as follows:
∫

Rn
e2ak(t)|x+bk(t)η|2 |u(t)|2 dx 6 ebk(t)|η|2eMB

∫ 1
t sak(s) dseMV sup

s∈[−1,1]
‖eµ|·|2u(·, s)‖.

Consequently we obtain
∫

Rn
e2ak(t)|x|2−2|η|2bk(t)(1−ak(t)bk(t))+4ak(t)bk(t)x·η|u(t)|2 dx

6 eMB

∫ 1
t sak(s) dseMV sup

s∈[−1,1]
‖eµ|·|2u(·, s)‖.

(3.4.22)

Notice that, since ak is continuous in [−1, 1], we can estimate

eMB

∫ 1
t sak(s) ds 6 Ck < +∞.

By (3.4.22), the check to be performed is concerned with the sign of 1−ak(0)bk(0).
If 1−ak(0)bk(0) 6 0 then by (3.4.22) u ≡ 0 and the scheme stops: indeed (3.4.22)

forces u(x, 0) = 0 for almost all x ∈ Rn, and u ≡ 0 in Rnx × [−1, 1]t thanks to the
uniqueness of the solution to (3.1.1).

If 1− ak(0)bk(0) > 0, then 1− ak(t)bk(t) > 0 for all t ∈ [−1, 1], because of the
monotonicity of ak and bk. In this case, we define the (k+ 1)−th functions ak+1 and
ck+1 as follows:

ak+1 =
ak

1− akbk
, ck+1 = a

− 1
2

k+1. (3.4.23)

We prove that the new defined ak+1 verifies the requests (3.4.18). Indeed it is easily
seen that ak+1 is even, ak+1(±) = µ, ak < ak+1 in (−1, 1), ȧk+1 6 0 in [0, 1]. The
proof that F (ak+1) > 0 in [−1, 1] deserves some comment: recall that

F (ak+1) = 2c−1
k+1(16c−3

k+1 − c̈k+1),

moreover, from (3.4.23),

ck+1 = (c2
k − bk)

1
2 ,

c̈k+1 = c−3
k+1

(
16− ḃ2k

4
+ ck ċk ḃk − ċ2

kbk − 16c−2
k bk

)
.

From (3.4.18) and (3.4.20), we get ċk ḃk 6 0 and 16bkc
−2
k + b2k > 0 in [−1, 1], hence

16c−3
k+1 − c̈k+1 > 0.
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Multiplying (3.4.22) by exp(−2εbk(t)|η|2), ε > 0 and integrating the correspond-
ing inequality on the line Rξ, with respect to η, we get

sup
t∈[−1,1]

‖eaεk+1(t)|·|2u(·, t)‖ 6 Ck(1 + ε−1)
n
4 eMV sup

s∈[−1,1]
‖eµ|·|2u(·, s)‖, (3.4.24)

with
aεk+1 =

(1 + ε)ak
1 + ε− akbk

.

Thanks to (3.4.24), we have

sup
t∈[−1,1]

‖e(ak+1(t)−ε)|·|2u(·, t)‖ < +∞, for all ε > 0, (3.4.25)

indeed

aεk+1 − ak+1 = − a2
kbk ε

(1− akbk)(1 + ε− akbk)
> −Ckε,

and (3.4.25) follows from the arbitrariness of ε in the definition of aεk+1. Thanks to
(3.4.25) and Lemma 3.3.3, we can conclude that (3.4.18) holds up to j = k + 1.

Application of the iteration scheme

Let us describe the first step of the iteration. We choose a1(t) ≡ µ, for all
t ∈ [−1, 1]: obviously (3.4.18) hold. We set b1 to be the solution to (3.4.19), that is

b1(t) = 16µ(1− t2), t ∈ [−1, 1].

We need the following preliminary result, already proved in [2], which will be useful
in the sequel.

Lemma 3.4.5 ([2], Theorem 1.1). In the hypoteses of Theorem 3.1.3, if αβ 6 2 then
u ≡ 0.

Proof. By direct computation, we see that the condition αβ 6 2, namely µ > 1
4 by

(3.4.15), is equivalent to 1− a1(0)b1(0) 6 0. Then u ≡ 0 by the above arguments
based on (3.4.22), and the proof is complete.

By means of the previous Lemma, we only need to consider the range αβ > 2,
i.e. µ < 1

4 .
We apply the above described iteration procedure. If there exists k ∈ N such

that 1− ak(0)bk(0) 6 0, then u ≡ 0 and the procedure stops. If for all k > 1 we have
1− ak(0)bk(0) > 0, the above described iteration produces an increasing sequence
(ak)k>1 of functions verifying (3.4.18). Set

a(t) := lim
k
ak(t), t ∈ [−1, 1].

We now need to distinguish two cases.
Case 1: limk ak(0) < +∞. In this case, from (3.4.18) we have

sup
t∈[−1,1]

‖ea(t)|·|2u(·, t)‖ 6 eMB

∫ 1
0 sa(s) dseMV sup

t∈[−1,1]
‖eµ|·|2u(·, t)‖. (3.4.26)
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‖
√

1− t2∇A(e(a+ iȧ
8a

)|x|2u)‖L2(Rn×[−1,1]) + Ca‖
√

1− t2e(a(t)−ε)|x|2∇Au‖L2(Rn×[−1,1])

6 C sup
s∈[−1,1]

‖eµ|x|2u(s)‖,

for some C = C(‖V ‖∞, ‖xtB‖∞) > 0.
Moreover, a can be determined as the solution to a suitable ordinary differential

equation (see [34] for details). One has

a(t) =
R

4(1 +R2t2)
,

where R > 0 is such that
µ =

R

4(1 +R2)
.

This forces µ 6 1
8 . Estimate (3.1.12) hence immediately follows after inverting the

changes in Section 3.4.2 (see below).
Case 2: limk ak(0) = +∞. In this case, if

∫ 1
0 sa(s) ds < +∞, then (3.4.18)

forces u ≡ 0. If otherwise
∫ 1

0 sa(s) ds = +∞, we need a more detailed analysis. For
all k > 1, let sk be the maximum point of sak(s) in [0, 1]: from (3.4.18) we have

∞ > e2‖V ‖L∞+
‖V ‖2

4 sup
t∈[−1,1]

‖eµ|·|2u(·, t)‖ >
∫

Rn
e2ak(0)|x|2−MB

∫ 1
0 sak(s) ds|u(x, 0)|2 dx

>
∫

Rn
e2ak(0)|x|2−MBskak(sk)|u(x, 0)|2 dx >

∫

Rn
e2ak(0)(|x|2−MB

sk
2 )|u(x, 0)|2 dx.

If there exists a subsequence (skh)h such that skh → 0, then the previous inequality
implies that u(0) ≡ 0 in Rn, i.e. u ≡ 0. If no subsequences of sk accumulate in 0,
take s̄ > 0 a limit point of (sk)k: the previous inequality implies that u(0) ≡ 0 in
the complementary of the ball centered in the origin of radius ((MB s̄)/2)1/2. As
a consequence, by (3.1.11), one can take β > 0 arbitrarily small: then, by Lemma
3.4.5, we conclude that u ≡ 0 in this case.

In conclusion, we summarize the above argument as follows: if µ > 1
8 , then

necessarily we are either in the case 2 or in the case in which the scheme stops in a
finite number of steps. In both cases, we proved that u ≡ 0; if µ 6 1

8 , one can prove
the logarithmic convexity estimates in (3.1.12), by the arguments described in the
case 1 above and the inversion of the changes of variables of Section 3.4.2. In detail,
we performed this change of variables:

(x, t) 7→ (y, s) =

( √
2αβx

α(1− t) + β(1 + t)
,

β(1 + t))

α(1− t) + β(1 + t)

)
,

whose inverse is

(y, s) 7→ (x, t) =

( √
2αβy

αs+ β(1− s) ,
αs− β(1− s)
αs+ β(1− s)

)
.

We call now u the solution of (3.1.1) and v the function obtained after the change of
variables (as we did in Section 3.4.2): the relation between the two functions is the
following.

v(x, t) =
( √

2αβ

α(1− t) + β(1 + t)

)n
2

e
(α−β)|x|2

4i(α(1−t)+β(1+t))u

( √
2αβx

α(1− t) + β(1 + t)
,

β(1 + t)

α(1− t) + β(1 + t)

)
.
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It is clear now that if αβ < 4 then u ≡ 0.
If αβ > 4, that is µ 6 1/8, than (3.4.26) reads now

sup
t∈[0,1]

‖eã(t)|·|2u(·, t)‖L2(Rn) 6 (1 +R2)
MB
8R eMV sup

t∈[−1,1]
‖eµ|·|2v(·, t)‖,

with
ã(t) =

αβR

2(αt+ β(1− t))2 + 2R2(αt− β(1− t))2
.

Analogously we get

‖
√

1− t2∇A(ea+ iȧ
8a
|x|2u)‖L2(Rn)×[−1,1]

+ Cε‖
√

1− t2e(a(t)−ε)|x|2∇Au‖L2(Rn×[−1,1]

6 eMV sup
t∈[−1,1]

‖eµ|x|2v(t)‖.

The proof of Theorem 3.1.3 is then completed.
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