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Introduction

In this thesis we address initial-boundary value problems (IBVPs) for the
forward-backward quasi-linear parabolic equation

ut = ∆ϕ(u) , (1)

where the nonlinear function ϕ is assumed to be nonmonotonic. It is well
known that such problems are well-posed if the function ϕ is monotonically
increasing (e.g., see [LSU]). However, if ϕ is a nonmonotonic function, equa-
tion (1) is well-posed forward in time in regions where ϕ′(u) > 0, whereas
it is ill-posed where ϕ′(u) < 0 (such regions are commonly referred to as
stable, respectively unstable phases). We also study initial-boundary value
problems for the related forward-backward equation

ut = ∇ · [ϕ(∇u)] . (2)

Mainly two classes of nonlinearities ϕ have been considered in the liter-
ature:
(i) cubic-like ϕ, namely

(AS1)





ϕ→∞ as s→∞,
ϕ′(s) > 0 if s < b and s > c,
ϕ′(s) < 0 if b < s < c,
ϕ′′(b) 6= 0, ϕ′′(c) 6= 0,
ϕ(c) < ϕ(b) ;

(ii) ϕ of Perona-Malik type, namely

(AS2)





ϕ(s) > 0 if s > 0, ϕ(s) = −ϕ(−s),
ϕ(s)→ 0 as s→∞,
ϕ′(s) > 0 if 0 ≤ s < 1, ϕ′(s) < 0 if s > 1 .

Forward-backward problems with nonlinearities ϕ of either type arise in
many applications of physical and biological interest, as discussed in the
following section.
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Motivations

It is well known that equation (1) under assumption (AS1) arises in the
theory of phase transitions, the unknown u representing the phase field [BS].
In this case the half-lines (−∞, b) and (c,∞) correspond to stable phases
and the interval (b, c) to an unstable phase, and equation (1) describes the
dynamics of transition between different phases.

Equation (1) with assumption (AS2) arises, in particular,
(i) when constructing the master equation of continuous-time and discrete-
space random walk to describe a continuum model for movements of biolog-
ical organisms [HPO];
(ii) in the diffusion approximation to a discrete model for aggregating pop-
ulations [Pa].

In case (i) a typical choice of ϕ is

ϕ(u) =
u

k + u2
, or ϕ(u) = u exp (−u) (k > 0) ,

whereas in case (ii) a typical choice is

ϕ(u) = u exp (−u) .

A major motivation for equation (2) comes from the context of image
processing, where the celebrated Perona-Malik edge enhancement model was
introduced in 1990 (see [PM]). The anisotropic diffusion or Perona-Malik
diffusion is a technique aiming at reducing image noise without removing
some important contents of image, typically edges or lines. This leads to
the Perona-Malik equation

wt = ∇ · [σ(|∇w|)∇w] ,

where typically

σ(s) =
1

1 + s2
or σ(s) = exp (−s) .

Observe that in the one-dimensional case the above equation reads

wt = [ϕ(wx)]x . (3)

Formally, differentiating (3) with respect to x and setting u := wx we obtain
equation (1) in one space dimension, namely

ut = [ϕ(u)]xx , (4)

where ϕ(s) = sσ(s) satisfies assumption (AS2).

Equation (3) independently arises as a mathematical model for heat and
mass transfer in a stably stratified turbulent shear flow [BBDPU], or as a
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mathematical model for the formation of layers of constant temperature or
salinity in the ocean [BBDU]. In fact, the temperature w ≥ 0 satisfies the
equation

wt = [kwx]x ,

where the effective temperature (or mass diffusivity) k only depends on
the temperature gradient and decreases very quickly. Hence a reasonable
analytical form is again

k = σ(wx) :=
A

B + w2
x

(A,B > 0) .

Finally, observe that equation (3) can be regarded as the formal L2-
gradient system associated with a nonconvex energy density ψ in one space
dimension (in this case ϕ = ψ′); for instance, ψ(s) = log(1 + s2) holds for
the Perona-Malik equation, or the double well potential ψ(s) = (1− s2)2 for
a cubic nonlinearity. Thus the dynamics described by equation (3) in one
space dimension is relevant to various settings, where nonconvex functionals
arise (e.g., see [BFG, Mü] for motivations in nonlinear elasticity).

How to regularize?

It has been already observed that the lack of forward parabolicity in equation
(1) (under either assumption (AS1)-(AS2)) gives rise to ill-posed problems.
Therefore, both development of singularities and lack of regularity can be
expected whenever the initial data u0 take values in the unstable phase.

In fact, the existence of solutions to the Neumann IBVP for equation
(3) has been proven if the derivative of the initial data function w0 takes
values in the stable phase [KK], whereas for large values of |w′0| no global C1-
solution exists ([G, K]). This shows that even local existence of solutions
(in some suitable functional space) to the initial-boundary value problem
for equations (1) or (2) is a nontrivial problem (in this connection, see the
numerical experiments in [BFG, FGP, SSW, BNPT]; let us also mention
that the existence of solutions to the Neumann IBVP for equation (1) has
been proven, if u0 takes values in the stable phase [HPO]).

Concerning uniqueness of the forward-backward problems, the situation
is even more complicated. In [Hö] the Neumann IBVP for (2) is shown to
have infinitely many weak L2-solutions, if ϕ is a nonmonotonic piecewise
linear function satisfying the condition sϕ(s) ≥ Cs2 for some constant C >
0. In [Zh], the existence of infinitely many weak W 1,∞-solutions for equation
(3) under assumption (AS2) was proven.

Since IBVPs for equations (1), (2) are in general ill-posed, it is natural
to investigate suitable regularizations (often suggested by modelling consid-
erations) which make them well-posed. Therefore, a general strategy is first
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to study the regularized problem, then to study its vanishing viscosity limit
as some ”small” regularizing parameter ε > 0 tends to zero. The underly-
ing, widely accepted idea is that limiting points of the family of solutions of
the regularized problem give rise to suitably defined solutions of the original
ill-posed problem. Formally, this amounts to add some higher order terms
to equation (1) or (2), thus obtaining

ut = ∆ϕ(u) + εF(u) ,

respectively
ut = ∇ · [ϕ(∇u)] + εF(u) ,

where F is a physically meaningful higher order differential operator.

Mainly two classes of additional terms εF(u) have been used in the
literature (ε > 0 being a small parameter):

(i) ε∆[ψ(u)]t, with ψ′ > 0, leading to third-order pseudo-parabolic equations
[BBDU, BST1, BST2, EP, MTT, NP, Pl1, Pl2, Pl3, S, STe, ST1, ST2, ST3].
If ψ(u) = u, this regularization is called Sobolev regularization:

ut = ∆[ϕ(u) + εut] ; (5)

(ii) −ε∆2u, leading to fourth-order Cahn-Hilliard type equations (see [BFG,
Sl, Pl4] and references therein):

ut = ∆[ϕ(u)− ε∆u] . (6)

Equation (6) was introduced by Cahn and Hilliard [C, CH] with ϕ satisfy-
ing assumption (AS1) for continuum models of spinoidal decomposition; it
also arises when describing isothermal phase separation of binary mixture
(see [NP]). As shown in [EZ], the Neumann IBVP for equation (6) under
assumption (AS1) has a unique global solution (see the following section sub
(γ) and Chapter 3 for analogous results under assumption (AS2)). On the
other hand, both Dirichlet and Neumann IBVPs for

ut = ∇ · [ϕ(∇u)]− ε∆2u , (7)

with ϕ satisfying suitable growth assumptions, were studied by Slemrod [Sl]
(see [BFG] in the case of assumption (AS2)). By the theory of Young mea-
sures (e.g., see [V1, V2]) it was proven that some subsequence of the family
of approximating solutions to the above regularized problems converges in a
suitable topology to a Young measure-valued solution of the corresponding
ill-posed IBVP for equation (2). Under different growth assumptions on ϕ,
the properties of the limiting Young measure have been investigated in [Pl4].

The above Sobolev equation (5) was widely investigated in the literature;
the term ε∆ut can be interpreted by taking viscous relaxation effects into
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account (see [NP, BFJ]). The Neumann IBVP for equation (5) was studied
in [NP] under assumption (AS1) and in [Pa] under assumption (AS2). In
both cases the global existence and uniqueness of a solution uε are proven to
hold in L∞(QT ) (QT := Ω× (0, T )) for any ε > 0. Moreover, these solutions
satisfy a class of viscous entropy inequalities, this term being suggested by
a formal analogy with the entropy inequalities for viscous conservation laws
(see [E2, MTT1, Se]). It is well-known that such entropy inequalities carry
over to weak solutions of the Cauchy problem for the first order hyperbolic
conservation laws in the vanishing viscosity limit ε → 0 (e.g., see [Se]).
Therefore, it is natural to wonder whether in the limit ε → 0 it is possible
to prove existence and uniqueness of suitably defined weak entropy solutions
for the original equation (1) or (2).

An exhaustive answer to the above question was given by Plotnikov (see
[Pl1]) for the case of a cubic-like ϕ. It turns out that the family {uε} of
solutions to the Neumann IBVP for equation (5) is uniformly bounded in
the L∞-norm, and the limiting points (u, v) of the families {uε}, {ϕ(uε)}
satisfy in the weak sense the limiting equation

ut = ∆v in D′(QT ) (8)

with initial datum u0 ∈ L∞(Ω) and Neumann boundary conditions. If we
had v = ϕ(u), equation (8) would give a weak solution of the Neumann
IBVP for equation (1). However, no such conclusion can be drawn, due to
the nonmonotonic character of ϕ.

In this connection, Plotnikov showed that the couple (u, v) is a measure-
valued solution in the sense of Young measures to equation (1) (see [Pl1]).
With respect to the results in [Sl] for the Cahn-Hilliard regularization, a
major issue here is the study of the family {τ ε} of Young measures associated
to the approximate solution uε, and the characterization of the disintegration
τ(x,t) of Young measure τ obtained as the narrow limit of such measures
were given (see [E1, GMS, V1, V2]). More precisely, it is proven that the
disintegration τ(x,t) is an atomic measure given by the superposition of three
Dirac masses concentrated on the branches s0, s1, s2 of the equation v =
ϕ(u). Hence the solution u has the following representation:

u =

2∑

i=0

λisi(v) , (9)

for some positive coefficients λi ∈ L∞(QT ) such that
2∑
i=0

λi = 1 (see [E2,

GMS, V1, V2]). Equality (9) can be explained by saying that the function u
takes the fraction λi of its value at (x, t) on the branch si(v) of the graph of
ϕ. Then the coefficients λi can be regarded as phase fractions, and u itself
as a superposition of different phases.
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In addition, the couple (u, v) satisfies a class of suitable limiting entropy
inequalities. Therefore, the above limiting is said to be a weak entropy
Young measure-valued solution of the IBVP associated to equation (1). Let
us mention that the long-time behaviour of weak entropy measure-valued
solutions (u, v) was addressed in [ST1].

Using similar ideas, the IBVP for equation (1) under assumption (AS2)
was investigated in [S]. Let uε be the solution of the Neumann IBVP for
the regularized equation (5) in any cylinder QT with u0 ∈ L∞(Ω), u0 ≥ 0.
The main difference with respect to [Pl1] is that only a uniform bound of
the family {uε} in the L1-norm, instead of the L∞-norm as in [Pl1], can
be proven in this case (by taking advantage of positivity and conservation
of mass). Accordingly, the limiting point ū of some subsequence {uεk} of
the family {uε} belongs the space of positive Radon measures M+(QT ).
By the idea of biting convergence and the general properties of the narrow
convergence for Young measures (e.g., see [GMS, V1, V2]),

(i) the representation
ū = u+ µ

is proven, where µ ∈M+(QT ) and u ∈ L1(QT ), u ≥ 0;

(ii) it is shown that u is a superposition of the stable branch s1 and the
unstable branch s2 associated to the graph of ϕ - namely, the following
analogue of equality (9) holds:

u =

{
λs1(v) + (1− λ)s2(v) if v > 0

0 if v = 0

for some λ ∈ L∞(QT ) such that 0 ≤ λ ≤ 1; here v ≥ 0 is the limit of the
family {ϕ(uεk)} in the weak∗ topology of L∞(QT ). Accordingly, in this case
the analogue of the limiting equation (8) as εk → 0 is proven to be

(u+ µ)t = ∆v in D′(QT ) .

Finally, let us mention the pseudo-parabolic regularization
εF(u) = ε∆[ψ(u)]t. In [BBDU] the regularized equation

zt = [ϕ(zx)]x + ε[ψ(zx)]xt , (10)

with ϕ satisfying assumption (AS2) and ψ(s) → γ as s → ∞, has been
proposed by taking time delay effects into account. The well-posedness of
the Neumann IBVP in any cylinder QT for the above degenerate pseudo-
parabolic approximation of equation (3) has been studied in [BBDU]. The
main feature of the solution zε ∈ BV (QT ) is the possibility of formation of
discontinuities in finite time, even for smooth initial data. Moreover, at any
fixed point x0 the discontinuity jump zε(x+

0 ) − zε(x−0 ) is nondecreasing in
time.
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If N = 1, by the usual transformation u := zx (see equations (3)-(4)),
formally differentiating equation (10) with respect to x we obtain the de-
generate pseudo-parabolic regularization of equation (4):

ut = [ϕ(u)]xx + ε[ψ(u)]xxt . (11)

Existence and uniqueness of a suitably defined positive solution of the Dirich-
let IBVP for equation (11) has been proven in a space of Radon measures
under assumption (AS2) (see [ST2]), whereas the vanishing viscosity limit
as ε→ 0 of such a solution has been addressed in [ST3].

Outline of results

Within the above general framework, the present thesis addresses three main
points, as outlined below. Each point corresponds to a submitted paper
[BuST1, BuST2, BuTo].

(α) In Chapter 1 we address the initial-boundary value problem

(P )





ut = ∇ · [ϕ(∇u)] in QT := Ω× (0, T )
u = 0 in ∂Ω× (0, T )
u = u0 in Ω× {0} .

Here Ω ⊆ RN is a bounded domain with smooth boundary ∂Ω if N ≥ 2,
T ∈ (0,∞] and the dot ” · ” denotes the scalar product in RN .

If N = 1, about the function ϕ : R → R which appears in problem (P )
we shall assume the following:

(A1)

{
for any R > 0 there exists LR > 0 such that

|ϕ(ξ1)− ϕ(ξ2)| ≤ LR |ξ1 − ξ2| for any ξ1, ξ2 ∈ BR ,

where BR denotes the ball centered at 0 of radius R in RN ;

(A2)

{
there exist ξ0 > 0, p ∈ (1,∞) and C1 > 0 such that

C1|ξ|p−1 ≤ |ϕ(ξ)| for any |ξ| > ξ0 ;

(A3) ϕ(ξ)ξ ≥ 0 for any ξ ∈ R .

If N ≥ 2, concerning the map ϕ : RN → RN , ϕ ≡ (ϕ1, . . . , ϕN ), the following
assumptions will be made:

(H1)

{
there exists L > 0 such that

|ϕ(ξ1)− ϕ(ξ2)| ≤ L |ξ1 − ξ2| for any ξ1, ξ2 ∈ RN ;
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(H2)

{
there exist ξ0 > 0, p ∈ (1, 2] and C0 > 0 such that

|ϕ(ξ)| ≤ C0

(
1 + |ξ|p−1

)
for any |ξ| > ξ0 ;

(H3) there exists Φ ∈ C1(RN ) such that ϕ = ∇Φ ;

(H4)

{
there exist ξ0 > 0, q ∈ (1, 2] and C1, C2 > 0 such that

C1|ξ|q ≤ Φ(ξ) for any |ξ| > ξ0 ;

(H5) ϕ(ξ) · ξ ≥ 0 for any ξ ∈ RN .

Observe that for N ≥ 2 we assume global Lipschitz continuity of ϕ,
instead of local Lipschitz continuity as in the case N = 1; this implies the
stronger restriction p ∈ (1, 2] (instead of p ∈ (1,∞) as for N = 1) on the
allowed values of p. Observe also that by (H2)-(H4) there holds

C1|ξ|q ≤ Φ(ξ) ≤ C3|ξ|p for any |ξ| > ξ0 ,

for some constant C3 > 0. This implies the compatibility condition q ≤ p
(the choice q = p is always made). Concerning the initial data function u0,

• if N = 1, we assume u0 ∈ W 1,∞
0 (Ω) (by abuse of notation, we set

hereafter W 1,∞
0 (Ω) := C0(Ω̄) ∩W 1,∞(Ω));

• if N ≥ 2, we assume u0 ∈W 1,p
0 (Ω) (p ∈ (1, 2]).

We study problem (P ) by using the Sobolev regularization. Namely, we
consider for any ε > 0 the initial-boundary value problem

(Pε)





ut = ∇ · [ϕ(∇u)] + ε∆ut in QT
u = 0 in ∂Ω× (0, T )
u = u0 in Ω× {0} .

The well-posedness of problem (Pε) is established by Theorem 1.3.1. Then
we study the ”vanishing viscosity limit” as ε → 0 of the family {uε} of
solutions of the approximating problems (Pε). In doing so, we make use of
the following estimates (see Propositions 1.3.2−1.3.3):

‖uε‖L∞(R+;W 1,∞
0 (Ω))

+ ‖uεt‖L2(Q∞) +
√
ε ‖uεxt‖L2(Q∞) ≤ C ‖u0‖W 1,∞

0 (Ω)

if N = 1, and

‖uε‖L∞(R+;W 1,p
0 (Ω))

+ ‖uεt‖L2(Q∞) +
√
ε ‖∇uεt‖L2(Q∞) ≤ C ‖u0‖W 1,p

0 (Ω)

if N ≥ 2 (p ∈ (1, 2]). The existence of a Young measure solution of the
original problem (P ) (see Definition 1.3.1) is stated in Theorem 1.3.6. Since
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the flux ϕ need not satisfy any monotonicity condition, this notion of solution
is appropriate for problem (P ). In fact, solutions of this kind of problem (P )
were constructed in [D] by a discretization technique, and in [Sl] by taking
the limit as ε → 0 (in a suitable sense) of solutions to the corresponding
problem for the Cahn-Hilliard equation (7). The asymptotic behaviour for
large time of such solutions was also investigated in [D, Sl]. However, the
assumptions on the growth rate of ϕ made in [D, Sl] are more restrictive
than (A2) and (H2),(H4) (in fact, they correspond to q = p = 2 in [D], and
to p ∈ [2, 3) or q = p = 2 in [Sl].)

With respect to the above papers, one advantage of using the Sobolev
regularization is that it allows us to characterize in the case N = 1 the
limiting Young measure τ mentioned in Definition 1.3.1, proving that its
disintegration is a linear combination of Dirac measures with support on
the branches of the graph of ϕ (see Theorem 1.3.7):

τx,t =
n∑

l=0

cl(x, t)σ(· − sl(w(x, t))) +
n∑

k=0

dk(x, t)σ(· − tk(w(x, t))) . (12)

In the above equality σ denotes the Dirac measure and w is the limiting func-
tion of a sequence {wεk} ≡ {uεx}, {uε} denoting the solution of the regular-
ized problem (Pε) with N = 1, which is shown to converge in L2(R+;H1(Ω)).
The main ingredients of the proof of (12) are equality (1.5.57) in Proposi-
tion 1.5.3 and assumption (C), concerning the linear independence of the
branches of the graph of ϕ. Recall that a similar characterization was first
proven in [Pl1] for the particular case of a cubic ϕ, and in [S] for ϕ of
Perona-Malik type.

We also study the asymptotic behaviour as t → ∞ of Young measure
solutions of (P ), using compactness and ω-limit set techniques as in [D, Sl].
To this purpose, a major issue is proving the tightness of the sequence {τn}
of time translates of the limiting Young measure τ (see Lemma 1.6.2).

(β) In Chapter 2 we study the viscous Cahn-Hilliard equation, written in
the form

(1− β)ut = ∆[ϕ(u)− α∆u+ βut] (α, β > 0) , (13)

with both Neumann and Dirichlet boundary conditions. Equation (13) has
been derived by several authors using different physical considerations (in
particular, see [G, JF, N]). It is worth mentioning the wide literature con-
cerning both the relationship between the viscous Cahn-Hilliard equation
and phase field models, and generalized versions of the equation suggested
in [G] (e.g., see [R] and references therein).

Formally, when β = 0 equation (13) gives the Cahn-Hilliard equation,

ut = ∆[ϕ(u)− α∆u] , (14)
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whereas for β = 1 it reduces to the Allen-Cahn equation,

ut = α∆u− ϕ(u) . (15)

It is natural to wonder whether the above formal arguments can be given
a sound analytical meaning, proving that the singular limit of solutions
of equation (13) (complemented with suitable initial and boundary condi-
tions), as either β → 0+ or β → 1−, obtains a solution (of the corresponding
problem) for equation (14), respectively (15). If so, equation (14) can be
regarded as a limiting case of a more complete physical model, thus motivat-
ing the use of regularization (ii) of the previous section. Observe that also
the Sobolev regularization (see (i) of the previous section) can be regarded
as the formal limit of (13) as α→ 0+.

In the light of the above considerations, we first investigate the singular
limits as β → 0+ or β → 1− (for fixed α > 0) of solutions to the initial-
boundary value problem

(PD)





(1− β)ut = ∆[ϕ(u)− α∆u+ βut] in Ω× (0, T ) =: Q

u = ∆u = 0 on ∂Ω× (0, T )

u = u0 in Ω× {0} ,

where α ∈ (0,∞), β ∈ (0, 1), Ω ⊂ RN is a bounded domain with smooth
boundary ∂Ω if N ≥ 2, T > 0 and the initial data u0 ∈ H1

0 (Ω). Concerning
the function ϕ : R→ R, the following assumptions are used:

(H0) ϕ ∈W 1,∞
loc (R) , ϕ(u)u ≥ 0 for any u ∈ R ;

(H1) there exists K > 0 such that

|ϕ′(u)| ≤ K(1 + |u|q−1)

for some q ∈ (1,∞) if N = 1, 2, or q ∈
(
1, N+2

N−2

]
if N ≥ 3.

Observe that by assumption (H0) the function ϕ is locally Lipschitz con-
tinuous and there holds ϕ(0) = 0. As expected, we prove convergence in a
suitable sense to solutions of the problem for the Cahn-Hilliard equation:

(CH)





ut = ∆[ϕ(u)− α∆u] in Q

u = ∆u = 0 on ∂Ω× (0, T )

u = u0 in Ω× {0} ,

as β → 0+, or respectively of the problem for the Allen-Cahn equation:

(AC)





ut = α∆u− ϕ(u) in Q

u = 0 on ∂Ω× (0, T )

u = u0 in Ω× {0} ,
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as β → 1− (see Theorems 2.2.4-2.2.5).

Further, we study the limit of solutions of problem (PD) as α→ 0+ (for
fixed β ∈ (0, 1)), proving convergence to solutions of the problem for the
Sobolev equation:

(S)





(1− β)ut = ∆[ϕ(u) + βut] in Q

u = 0 on ∂Ω× (0, T )

u = u0 in Ω× {0}

under the following additional assumptions on the function ϕ (see Theorem
2.2.6):

(H2) ϕ ∈ Lip(R), ϕ(u)u ≥ 0 ,

(H3) there exists s0 > 0 such that ϕ′(u) > 0 if |u| ≥ s0 .

Finally, we study the limit of solutions of problem (CH) as α → 0+,
proving the existence of a triple (u, v, µ) - where u, v are functions and µ is
a finite Radon measure on Q - which satisfies the weak limiting equality

∫∫

Q
uζt dxdt+

∫ T

0
< µ(·, t), ζt(·, t) >Ω dt =

∫ ∫

Q
∇v·∇ζ dxdt−

∫

Ω
u0(x)ζ(x, 0) dx

for every ζ ∈ C1([0, T ];C1
c (Ω)) such that ζ(·, T ) = 0 in Ω (see Theorem

2.2.7). We cannot maintain that this triple is in some sense a solution of
the limiting problem





ut = ∆ϕ(u) in Q

u = ∆u = 0 on ∂Ω× (0, T )

u = u0 in Ω× {0} ,

since the relation between v and the function ϕ(u), even in the sense of
Young measures, is unclear.

This point was addressed in [Pl4], taking advantage of the cubic-like
growth of ϕ at infinity, which gives rise to better estimates of the family
{uα} of solutions of (CH); at the same time, this growth prevented the
appearance of a Radon measure in the solution. Instead in the present
case, if the antiderivative of ϕ grows linearly at infinity (see Chapter 2,
assumption (H4)) we only have L1-estimates of the family {uα}, which are
compatible with the need of a Radon measure to describe solutions of the
problem (in this connection, see [BBDU, PST, S, ST3]). Similar and more
enhanced phenomena can be expected, if ϕ either has a sublinear growth, or
vanishes at infinity, pointing out this behaviour as a major feature for the
understanding of the problem.
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Our approach is based on a detailed analysis of solutions of problem
(PD), which relies on an approximation method already used in similar cases
[BBDU, BST1, BST2, PST, S, ST2, ST3]. More precisely,

(i) we approximate the initial data u0 ∈ H1
0 (Ω) by a sequence {u0n} ⊆

C∞0 (Ω) such that u0n → u0 in H1
0 (Ω), and ‖u0n‖H1

0 (Ω) ≤ ‖u0‖H1
0 (Ω);

(ii) we also approximate the nonlinearity ϕ by the following sequence of
functions {ϕn},

ϕn(u) :=





ϕ(u) if |u| ≤ n
ϕ(n) +K(u− n) if u > n

ϕ(−n) +K(u+ n) if u < −n
(u ∈ R) ,

where n ∈ N and K > 0 is the constant in assumption (H1). It is easily
seen that for every n ∈ N the function ϕn satisfies assumption (H2), and
ϕn(u) → ϕ(u) for any u ∈ R as n → ∞. By standard semigroup theory,
there exists a unique solution un of the approximating problem obtained
from problem (PD) replacing ϕ by ϕn and u0 by u0n (see Theorem 2.2.1).
A priori estimates of the sequence {un} allow us to obtain an existence
result for problem (PD), which improves on the available results for the
viscous Cahn-Hilliard equation ([CD, ES]) (see Theorem 2.2.2). Moreover,
the estimates needed to study the singular limits are obtained in a natural
way in Theorems 2.2.2 and 2.2.3.

Finally, analogous results are proven for the companion Neumann IBVP
with u0 ∈ H1(Ω) (see Theorems 2.6.3, 2.6.4, 2.6.5 and 2.6.6). The novel
features with respect to the Dirichlet IBVP are:
(a) when β → 1− we prove convergence to solutions of the nonlocal Allen-
Cahn equation (already investigated in [RS]):





ut = α∆u− ϕ(u) +
1

|Ω|
∫

Ω ϕ(u)dx in QT

∂u

∂n
= 0 on ∂Ω× (0, T )

u = u0 in Ω× {0} ;

(b) by taking advantage of the conservation of mass
∫

Ω
u(x, t)dx =

∫

Ω
u0(x)dx for any t ≥ 0 ,

the assumptions on the behaviour at infinity of the function ϕ can be weak-
ened (see Chapter 2, assumption (H5)).

(γ) In the last chapter we study the problem

(PT )





ut = ∆[ϕ(u)− ε∆u] in QT := Ω× (0, T )

∂u

∂ν
=
∂∆u

∂ν
= 0 on ∂Ω× (0, T )

u = u0 in Ω× {0},

12



where T > 0, Ω ⊆ RN is a bounded domain with smooth boundary ∂Ω,
and ∂

∂ν denotes the outer normal derivative at ∂Ω. We are interested in
nonlinearities ϕ of the following types:

ϕ(u) =
u

1 + u2
, ϕ(u) = u exp (−u) .

Concerning the function ϕ ∈ C3(R) and the initial data function u0, the
following assumptions are used:

(A1) ϕ′ ∈ L∞(R) ;

(A2) ϕ′′ ∈ L∞(R) ;

(A3) ϕ′′′ ∈ L∞(R) ;

(A4) sϕ(s) ≥ 0 for any s ∈ R ,

and the initial data

u0 ∈ H2
E(Ω) :=

{
u ∈ H2(Ω)

∣∣∣ ∂u
∂ν

= 0

}
.

Our motivation for the present study is investigating the Cahn-Hilliard
regularization (see the previous subsection sub (ii)) for forward-backward
equations, whose nonlinearity ϕ grows at most linearly at infinity (see as-
sumption (A1)). This is meant as a preliminary step before addressing the
singular limit of the problem as ε → 0. Specifically, we prove the existence
and uniqueness of global solutions in a suitable function space under the
assumption N ≤ 5 (see Theorem 3.2.2). We also study, using the same
approach as in [Z], the asymptotic behaviour as t → ∞ of solutions of the
problem

(P∞)





ut = ∆[ϕ(u)− ε∆u] in Q∞ := Ω× (0,∞)

∂u

∂ν
=
∂∆u

∂ν
= 0 on ∂Ω× (0,∞)

u = u0 in Ω× {0} .

(in particular, see Theorem 3.2.6). In doing so, we take advantage of con-
servation of mass (see Proposition 3.2.3).

Motivated by the asymptotical stability results, for N = 1 we study ex-
istence and multiplicity of monotonic equilibrium solutions of (P∞) when
ϕ(u) = u

1+u2
. By standard energy methods, this problem leads to investi-

gating monotonicity properties of the functions

L(σ, b) :=

√
ε

2
√

2

∫ u2(σ,b)

u1(σ,b)

ds√
W(s, σ)− b

,
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M(σ, b) :=

√
ε

2
√

2

∫ u2(σ,b)

u1(σ,b)

sds√
W(s, σ)− b

,

where u1 < u2 are solutions of the equation

log(1 + u2)

2
− σu− b = 0 ,

and

W(u, σ) :=
log(1 + u2)

2
− σu ;

here the parameters (b, σ) take values in a suitable subset of R2 (the so-called
admissible region). At variance from the cases of a polynomial ϕ (see [CGS,
NPe, Z]), a complete analytical investigation reveals to be cumbersome,
thus recourse to numerical methods has been expedient (see Chapter 3 for
a discussion of the numerical results).
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Chapter 1

Sobolev regularization of a
class of forward-backward
parabolic equations

1.1 Introduction

In this paper we consider the initial-boundary value problem

(P )





ut = ∇ · [ϕ(∇u)] in QT := Ω× (0, T )
u = 0 in ∂Ω× (0, T )
u = u0 in Ω× {0} .

Here Ω ⊆ RN is a bounded domain with smooth boundary ∂Ω if N ≥ 2,
T ∈ (0,∞] and the dot ” · ” denotes the scalar product in RN .

If N = 1, on the function ϕ : R → R which appears in problem (P ) we
shall assume the following:

(A1)

{
for any R > 0 there exists LR > 0 such that

|ϕ(ξ1)− ϕ(ξ2)| ≤ LR |ξ1 − ξ2| for any ξ1, ξ2 ∈ BR ,

where BR denotes the ball of radius R in RN ;

(A2)

{
there exist ξ0 > 0, p ∈ (1,∞) and C1 > 0 such that

C1|ξ|p−1 ≤ |ϕ(ξ)| for any |ξ| > ξ0 ;

(A3) ϕ(ξ)ξ ≥ 0 for any ξ ∈ R .

If N ≥ 2, concerning the map ϕ : RN → RN , ϕ ≡ (ϕ1, . . . , ϕN ), the following
assumptions will be made:

(H1)

{
there exists L > 0 such that

|ϕ(ξ1)− ϕ(ξ2)| ≤ L |ξ1 − ξ2| for any ξ1, ξ2 ∈ RN ;
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(H2)

{
there exist ξ0 > 0, p ∈ (1, 2] and C0 > 0 such that

|ϕ(ξ)| ≤ C0

(
1 + |ξ|p−1

)
for any |ξ| > ξ0 ;

(H3) there exists Φ ∈ C1(RN ) such that ϕ = ∇Φ .

(H4)

{
there exist ξ0 > 0, q ∈ (1, 2] and C1 > 0 such that

C1|ξ|q ≤ Φ(ξ) for any |ξ| > ξ0 ;

(H5) ϕ(ξ) · ξ ≥ 0 for any ξ ∈ RN .

Observe that for N ≥ 2 we assume global Lipschitz continuity of ϕ,
instead of local Lipschitz continuity as in the case N = 1; this implies the
stronger restriction p ∈ (1, 2] (instead of p ∈ (1,∞) as for N = 1) on the
allowed values of p. Observe also that by (H2)-(H4) there holds

C1|ξ|q ≤ Φ(ξ) ≤ C3|ξ|p for any |ξ| > ξ0 , (1.1.1)

for some constant C3 > 0. This implies the compatibility condition q ≤ p.
In the following we always choose q = p (in this connection, see Remark
1.3.1 below). Concerning the initial data function u0,

• if N = 1, we assume u0 ∈ W 1,∞
0 (Ω) (by abuse of notation, we set

hereafter W 1,∞
0 (Ω) := C0(Ω̄) ∩W 1,∞(Ω));

• if N ≥ 2, we assume u0 ∈W 1,p
0 (Ω) (p ∈ (1, 2]).

Problem (P ) was studied in [D, Sl] under assumptions on the growth
rate of ϕ which are more restrictive than (A2) and (H2),(H4); in fact, they
correspond to p ∈ [2, 3), q = 2 in [Sl], and to the quadratic case p = q = 2
in [D].

When the potential Φ is not convex the partial differential equation in
problem (P ) is a forward-backward parabolic equation, thus problem (P ) is
ill-posed. A well-known case is the Perona-Malik equation

ut = ∇ ·
( ∇u

1 + |∇u|2
)
, (1.1.2)

which is parabolic if |∇u| < 1 and backward parabolic if |∇u| > 1. Observe
that, if N = 1, setting w = ux equation (1.1.2) is formally related to the
equation

wt =

(
w

1 + w2

)

xx

. (1.1.3)

Equations like (1.1.2) and (1.1.3) arise in a variety of applications, such as
edge detection in image processing [PM], aggregation models in population
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dynamics [Pa], and stratified turbulent shear flow [BBDU]. In fact, our
motivation for the present study comes from the need to relax the growth
conditions on the potential Φ to address important cases like (1.1.2) (how-
ever, observe that the present results do not cover this case, whose potential
has logarithmic growth).

A natural approach to treat ill-posed problems is to introduce some
regularization, often suggested by physical considerations, which gives rise
to well-posed problems. Mainly two classes of regularizing terms have been
used in the literature (ε > 0 being a small parameter):
(i) −ε∆2u, leading to fourth-order Cahn-Hilliard type equations;

(ii) ε∆[ψ(u)]t, with ψ′ > 0, leading to third-order pseudo-parabolic equa-
tions. If ψ(u) = u, this regularization is called Sobolev regularization.

Both regularizations have been investigated for the forward-backward parabolic
equation

ut = ∆[f(u)] (1.1.4)

with f nonmonotonic, leading respectively to the Cahn-Hilliard equation

ut = ∆[f(u)]− ε∆2u (1.1.5)

(e.g., see [BFG, BBMN] and references therein), or to the pseudo-parabolic
equation

ut = ∆[f(u)] + ε∆[ψ(u)]t (1.1.6)

(see [BBDU, BST, EP, NP, Pl1, Pl2, Pl3, STe, ST1, ST2] and references
therein). If ψ(u) = u, equation (1.1.6) has been proposed by several authors
as a variant of (1.1.5) which includes viscous effects; in fact, both (1.1.5) and
(1.1.6) formally are particular cases of the so-called viscous Cahn-Hilliard
equation (see [BFJ, BS, G, N, NP]).

As ε → 0+, solutions of either equation (1.1.5), (1.1.6) are expected to
converge to some suitably defined solution of (1.1.4). However, in agreement
with the nonuniqueness results for forward-backward parabolic equations
proven in [Hö, Z], different regularization procedures need not lead to the
same solution of (1.1.4), nor to solutions having the same properties (e.g.,
the asymptotic behaviour for large time). In fact, as pointed out in [NP], for
a cubic nonlinearity f even when ε > 0 the above regularizations give rise to
different dynamics of solutions. Let us also mention that, apart from specific
cases, uniqueness is unknown even for solutions of the limiting equation
obtained by the same procedure (e.g., by the Sobolev regularization; see
[MTT, Pl1]).

The ”vanishing viscosity limit” as ε → 0+ of solutions of the Dirichlet
initial-boundary value problem for equation (1.1.6) with ψ(u) = u,





ut = ∆[f(u)] + ε∆ut in QT
f(u) + εut = 0 in ∂Ω× (0, T )
u = u0 in Ω× {0}

(1.1.7)
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with a cubic f was studied in the seminal paper [Pl1], proving the existence
of a Young measure solution of the same problem for equation (1.1.4). In
fact, let {uε}, {vε} denote the families of solutions uε of the regularized
problem, respectively of the associated chemical potential

vε := f(uε) + εuεt .

It was shown in [Pl1] that, for some vanishing sequence {εk}, the sequence
{τ εk} of Young measures associated to the sequence {uεk} converges in the
narrow topology over Q× R to a Young measure τ (see Section 3.2), whose
disintegration ν(x,t) is a superposition of three Dirac masses concentrated
on the branches s0, s1, s2 of the graph of f . More precisely, there exist
λi ∈ L∞(Q) (i = 0, 1, 2), 0 ≤ λi ≤ 1,

∑2
i=0 λi = 1, such that

ν(x,t) =

2∑

i=0

λi(x, t)δ
(
· −si(v(x, t))

)
(1.1.8)

for almost every (x, t) ∈ Q, where v ∈ L∞(Q) is the weak* limit of the
sequence {vεk} in L∞(Q).

With respect to the Cahn-Hilliard regularization, a major advantage of
the Sobolev regularization is to give rise to a class of inequalities, called
entropy inequalities by analogy with the case of viscous conservation laws,
that are satisfied by a solution of (1.1.7) for any ε > 0 [NP]. Also the Young
measure solution obtained by the above limiting process as ε→ 0+ satisfies
a suitable limiting entropy inequality. Relying on this property, a number
of qualitative results has been proven for Young measure solutions obtained
by Sobolev regularization, which has no counterpart in the approach based
on the Cahn-Hilliard regularization procedure. In particular, when studying
solutions that describe the transition between stable phases, as proposed in
[EP], admissibility conditions follow from the entropy inequality, which can
be viewed as prescriptions to select admissible jumps between the stable
branches of f (see [Pl1]). Relying on these admissibility conditions, also
solutions which exhibit hysteresis, or including unstable phases, have been
constructed [GT, MTT, Te].

In view of the above results, in this paper we study problem (P ) using
the Sobolev regularization. Namely, first we address for any ε > 0 the
initial-boundary value problem

(Pε)





ut = ∇ · [ϕ(∇u)] + ε∆ut in QT
u = 0 in ∂Ω× (0, T )
u = u0 in Ω× {0} .

Then we study the limit as ε → 0+ of the family {uε} of solutions of the
approximating problems (Pε), proving the existence of a Young measure so-
lution of the original problem (P ) (see Definition 1.3.1). We also study the
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asymptotic behaviour as t → ∞ of such solution, using compactness and
ω-limit set techniques; in doing so, a major point is the proof of tightness of
sequences {τn} of time translates of the limiting Young measure τ (see Sec-
tion 3.2 and Lemma 1.6.2). Finally, if N = 1 we extend the characterization
(1.1.8) to the limiting Young measure τ mentioned in Definition 1.3.1, for
any ϕ satisfying assumptions (A1)-(A3). By the change of unknown w = ux
the same result holds for the problem





wt = [ϕ(w)]xx in QT
wx = 0 in ∂Ω× (0, T )
w = w0 := u′0 in Ω× {0} .

Similar results concerning existence of a Young measure solution and its
asymptotic behaviour were proven in [Sl] (yet nothing was proven about its
disintegration), both for problem (P ) and for the companion problem with
Neumann boundary conditions, by studying the limit as ε→ 0+ in a suitable
topology of solutions to the corresponding problems for the Cahn-Hilliard
type equation

ut = ∇ · [ϕ(∇u)]− ε∆2u (ε > 0) . (1.1.9)

As already mentioned, in [Sl] the growth assumptions on ϕ are stronger than
ours. Existence of classical solutions to the approximating problems is only
discussed by semigroup methods if N = 1, supposing that both ϕ and u0

are sufficiently smooth, and assumed to hold if N ≥ 2.
The approach in [Sl] is the same as in the present paper, in that problem

(P ) is approximated by a family of regularized problems, whose solutions
are used to extract a Young measure solution of the original problem. How-
ever, in agreement with the above remarks concerning the dependence of the
limiting solution on the adopted regularization procedure, the very concept
of Young measure solution for a specific problem clearly depends on the pro-
cedure of regularization, which necessarily affects the generating sequence
of the limiting Young measure. We stress this point in the existence state-
ment of Theorem 1.3.6, where the approximating family used to construct
the solution is explicitly mentioned. As stated thereafter, e.g. in Theorems
1.3.7 and 1.3.9, all the subsequent qualitative properties we prove refer to
this specific solution. There is no reason to expect that the present results
concerning existence and asymptotic behaviour of solutions coincide with,
or can be derived from those proven in [Sl].

Similar remarks hold true for the study of problem (P ) carried out in
[D] (see also [KP]). Also the treatment in [D] involves Young measures, but
the spirit of the approach, which does not rely on a regularization proce-
dure suggested by physical considerations, is different form the present one.
In fact, the approximation procedure used in [D] combines the explicit time
discretization method for evolution equations with variational methods used
to address the problem obtained at each time step, as outlined in [KP, Theo-
rem 6.1]. At variance from the present paper, in [D] the gradient function ϕ
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is continuous and linear, u0 ∈ H1
0 (Ω) and the first equation in (P ) is satisfied

in H−1(QT ). Moreover, it is worth observing that: (i) the Young measure
solution exhibited in [D] is a solution of the same problem with the potential
Φ replaced by its convexification Φ∗∗; (ii) the support of the disintegration
of the relative Young measure is contained in the set where Φ = Φ∗∗; (iii)
the asymptotic behaviour for large time of this solution could be addressed
by applying to the equation with the convexified potential standard methods
for quasilinear parabolic equations. As a whole, the approach used in [D]
seems too limited, with respect to the Sobolev regularization procedure, to
describe several important qualitative properties of solutions (see the above
discussion concerning equation (1.1.4)).

The paper is organized as follows. In Section 3.2 we describe the mathe-
matical framework, and in Section 1.3 we state our main results, concerning
existence and asymptotic behaviour as t → ∞ of Young measure solutions
of problem (P ) (see Subsections 1.3.1 and 1.3.3), as well as the characteri-
zation of the limiting Young measure τ when N = 1 (see Subsection 1.3.2).
Proofs of the main results are to be found in Sections 1.4, 1.5 and 1.6.

1.2 Mathematical framework

We shall denote by Cc(RN ) the space of continuous real functions with
compact support in RN , and by BC(RN ) that of bounded continuous real
functions on RN endowed with the supremum norm ‖ · ‖C(RN ). We also set

C0(RN ) := {f ∈ BC(RN ) | f(x)→ 0 as |x| → ∞} .

We shall denote by M(RN ) the Banach space of finite Radon measures
on RN , endowed with the norm

‖µ‖M(RN ) := |µ|(RN ) for any µ ∈M(RN ) .

By M+(RN ) we denote the cone of positive finite Radon measures, and
by P(RN ) the convex set of probability measures on RN :

‖τ‖M(RN ) = τ(RN ) = 1 for any τ ∈ P(RN ) .

Clearly, P(RN ) ⊂M+(RN ) ⊂M(RN ).
The duality map 〈·, ·〉RN between the spaceM(RN ) and Cc(RN ), namely

〈µ, ρ〉RN :=

∫

RN
ρ dµ

can be extended to functions ρ ∈ C0(RN ). By abuse of notation, the above
equality will be used to define the quantity 〈µ, ρ〉RN for any µ ∈ M(RN )
and every µ-integrable function ρ.
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Similar notations will be used for the function space BC(QT × RN )
and for the space M(QT × RN ) of finite Radon measures on QT × RN
(T ∈ (0,∞]). We shall also denote by LN+1 ≡ LN+1(QT ) the σ-algebra of
Lebesgue measurable subsets E ⊆ QT , by λN+1 the Lebesgue measure on
QT and by BN the σ-algebra of Borel subsets of RN ; for simplicity we set
|QT | ≡ λN+1(QT ), |Ω | ≡ λN (Ω). Integration with respect to the Lebesgue
measure on QT will be denoted by the usual symbol dxdt ≡ dλN+1. By
Y(QT ;RN ) we denote the set of Young measures on QT × RN , which are
defined as follows (e.g., see [V1]).

Definition 1.2.1. By a Young measure on QT ×RN (T ∈ (0,∞]) we mean
any positive Radon measure τ on the measurable space (QT×RN ,LN+1×BN )
such that

τ(E × RN ) = λN+1(E) for any E ∈ LN+1 . (1.2.1)

If f : QT → RN is Lebesgue measurable, the Young measure associated to f
is the measure τ ∈ Y(QT ;RN ) such that

τ(E × F ) = λN+1(E ∩ f−1(F )) for any E ∈ LN+1, F ∈ BN . (1.2.2)

Remark 1.2.1. In view of (2.5.2), if τ is the Young measure associated to
a Lebesgue measurable function f : QT → RN , for any τ -integrable function
ψ : QT × RN → R̄ there holds

∫

QT×RN
ψ dτ =

∫∫

QT

ψ(x, t, f(x, t)) dxdt . (1.2.3)

Let us recall the following result (e.g., see [GMS]).

Proposition 1.2.1. Let τ ∈ Y(QT ;RN ). Then for almost every (x, t) ∈ QT
there exists a measure τ(x,t) ∈ P(RN ), such that for any ψ ∈ BC(QT ×RN ):
(i) the map

(x, t) →
〈
τ(x,t), ψ(x, t, ·)

〉
RN =

∫

RN
ψ(x, t, ξ) dτ(x,t)(ξ)

is Lebesgue measurable;
(ii) there holds

〈τ, ψ〉QT×RN :=

∫

QT×RN
ψ dτ =

∫∫

QT

〈
τ(x,t), ψ(x, t, ·)

〉
RN dxdt (1.2.4)

=

∫∫

QT

dxdt

∫

RN
ψ(x, t, ξ) dτ(x,t)(ξ) .

We shall identify any τ ∈ Y(QT × RN ) with the associated family
{τ(x,t) | (x, t) ∈ QT }, which is called the disintegration of τ .
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Remark 1.2.2. If τ is the Young measure associated to a Lebesgue mea-
surable function f : QT → RN , equalities (1.2.3)-(2.5.3) imply

ψ(x, t, f(x, t)) =
〈
τ(x,t), ψ(x, t, ·)

〉
RN =

∫

RN
ψ(x, t, ξ) dτ(x,t)(ξ) (1.2.5)

for almost every (x, t) ∈ QT ; here ψ ∈ BC(QT × RN ) and {τ(x,t)} is the
disintegration of τ . In fact, in this case

τ(x,t) = δf(x,t) for almost every (x, t) ∈ QT ,

where δP denotes the Dirac mass concentrated in P ∈ RN .

The set Y(QT ;RN ) will be endowed with the following topology. Let
ψ : QT × RN → R be a Carathéodory integrand, namely





(i) ψ measurable, ψ(x, t, ·) ∈ BC(RN ) for a.e. (x, t) ∈ QT ;

(ii)

∫∫

QT

‖ψ(x, t, ·)‖C(RN ) dxdt <∞ .

Then we have the following definition.

Definition 1.2.2. Let τn, τ ∈ Y(QT ;RN ) (n ∈ N, T ∈ (0,∞]). We say
that τn → τ narrowly in QT × RN , if

∫

QT×RN
ψ dτn →

∫

QT×RN
ψ dτ (1.2.6)

for any Carathéodory integrand ψ.

Definition 1.2.3. For any T ∈ (0,∞] we denote by L∞(QT ;M(RN )) the
space of finite Radon measures µ ∈M(QT×RN ) which satisfy the following:
for almost every (x, t) ∈ QT there exists a measure µ(x,t) ∈ M(RN ), such
that
(i) for any Carathéodory integrand ψ the map

(x, t) →
〈
µ(x,t), ψ(x, t, ·)

〉
RN =

∫

RN
ψ(x, t, ξ) dµ(x,t)(ξ)

is Lebesgue measurable, and

〈µ, ψ〉QT×RN :=

∫

QT×RN
ψ dµ =

∫∫

QT

〈
µ(x,t), ψ(x, t, ·)

〉
RN dxdt (1.2.7)

=

∫∫

QT

dxdt

∫

RN
ψ(x, t, ξ) dµ(x,t)(ξ) ;

(ii) there holds
ess sup(x,t)∈QT ‖µ(x,t)‖M(RN ) <∞ .
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As already said for Young measures, we shall identify any µ ∈M(QT ×
RN ) with the associated family {µ(x,t) | (x, t) ∈ QT }. Observe that

L∞(QT ;M(RN )) is a Banach space with norm

‖µ‖∞ := ess sup(x,t)∈QT ‖µ(x,t)‖M(RN ) .

Similar definitions and remarks hold for the space L∞(Ω;M(RN )).

In view of Proposition 2.5.1 and Definition 1.2.3, we have the following
result (see [V1, Theorem 2].

Theorem 1.2.2. The set Y(QT ;RN ) is homeomorphic to a closed sub-
set of L∞(QT ;P(RN )). Therefore, every sequence {τn} of Young mea-
sures contains a subsequence {τnk} which converges in the weak* topology
of L∞(QT ;M(RN )), namely

∫

QT×RN
ψ dτnk →

∫

QT×RN
ψ dτ (1.2.8)

for any Carathéodory integrand ψ such that ψ(x, t, ·) ∈ C0(RN ) for almost
every (x, t) ∈ QT .

In Definition 1.2.3 we used the fact that L1(QT ;C0(RN )) can be identified
with the set of Carathéodory integrands ψ such that ψ(x, t, ·) ∈ C0(RN ) for
almost every (x, t) ∈ QT (see [V1, Lemma A3]).

Definition 1.2.4. A subset T ⊆ Y(QT ;RN ) is said to be tight, if for any
σ > 0 there exists a compact subset Kσ ⊂ RN such that

τ(QT × (RN \Kσ)) < σ for any τ ∈ T . (1.2.9)

A sequence {fn} of Lebesgue measurable functions from QT to RN is
said to be tight, if the the sequence of the associated Young measures is tight
- namely, if for any ε > 0 there exists a compact subset Kε ⊂ RN such that

λN+1(f−1
n ({RN \Kε)) < ε for any n ∈ N . (1.2.10)

For every ξ ≡ (ξ1, . . . , ξd) ∈ Rd (d ≥ 1) set |ξ| :=
√∑d

i=1 ξ
2
i .

Definition 1.2.5. A subset U ⊆ L1(QT ;Rd) (d ≥ 1) is said to be uniformly
integrable if:

(i) there exists M > 0 such that

‖f‖L1(QT ;Rd) :=

∫∫

QT

|f(x, t)| dxdt ≤M for any f ∈ U ;

(ii) for any ε > 0 there exists δ > 0 such that for any f ∈ U

E ∈ LN+1 , λN+1(E) < δ Rightarrow
∫∫

E
|f(x, t)| dxdt < ε .
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Let us mention the following result (see [V1, Proposition 10 and Theorem
11]).

Theorem 1.2.3. (i) A subset T ⊆ Y(QT ;RN ) is tight if and only if it is
relatively compact in the narrow topology of Y(QT ;RN ).

(ii) The narrow topology on a tight subset T ⊆ Y(QT ;RN ) coincides with
the weak* topology mentioned in Theorem 1.2.2.

By Theorem 1.2.3, every sequence {τk} of Young measures contained
in a tight subset T ⊆ Y(QT ;RN ) contains a subsequence {τkn} which con-
verges in the narrow topology of Y(QT ;RN ). On the other hand, it is easily
seen that the subset of Young measures associated to a bounded subset of
L1(QT ;RN ) is tight (see [V1, Proposition 8]). Then we have the following
result.

Proposition 1.2.4. Let {fn} be a bounded sequence in L1(QT ;RN ), and
{τn} the sequence of associated Young measures. Then there exist subse-
quences {fk} ≡ {fnk} ⊆ {fn},

{
τk
}
≡ {τnk} ⊆ {τn} and a Young measure

τ on QT × RN such that τk → τ narrowly.

Observe that the limiting measure τ ∈ Y(QT ;RN ) mentioned in the
above proposition need not be associated to any measurable function from
QT to RN (see [V1, Theorem 20]). However, under the stronger assumption
of uniform integrability we have the following result, which is a consequence
of the more general Prokhorov’s Theorem (see [V1, Section 4].

Theorem 1.2.5. Let {fn} be a bounded sequence in L1(QT ;RN ), and {τn}
the sequence of associated Young measures. Then:
(i) there exist subsequences {fk} ≡ {fnk} ⊆ {fn},

{
τk
}
≡ {τnk} ⊆ {τn} and

a Young measure τ on QT × RN such that τk → τ narrowly in QT × RN ;
(ii) for any ρ ∈ C(RN ) such that the sequence {ρ ◦ fn} ⊆ L1(QT ) ≡
L1(QT ;R) is uniformly integrable, there holds

ρ ◦ fk ≡ ρ ◦ fnk ⇀ ρ∗ in L1(QT ) , (1.2.11)

where

ρ∗(x, t) :=
〈
τ(x,t), ρ

〉
RN =

∫

RN
ρ(ξ) dτ(x,t)(ξ) for a.e. (x, t) ∈ QT

(1.2.12)
and {τ(x,t)} is the disintegration of τ .

Remark 1.2.3. If the sequence {fn} ⊆ L1(QT ;RN ) is uniformly integrable,
and ρi(ξ) := ξi denotes the i-th projection in RN (i = 1, . . . , N), from
Theorem 2.5.2-(ii) with ρ = ρi we have

fk ⇀ f∗ in L1(QT ;RN ) , (1.2.13)
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where f∗ ≡ (f∗1 , . . . , f
∗
N ),

f∗i (x, t) :=

∫

RN
ξi dτ(x,t)(ξ) for a.e. (x, t) ∈ QT (i = 1, . . . , N) (1.2.14)

is the barycenter of the disintegration τ(x,t).

1.3 Main results

1.3.1 Existence

In what follows we will prove the existence of Young measure solutions of
problem (P ) in the sense of the following definition.

Definition 1.3.1. Let either N = 1, u0 ∈ W 1,∞
0 (Ω), or N ≥ 2, u0 ∈

W 1,p
0 (Ω) (p ∈ (1, 2]). By a Young measure solution of problem (P ) in QT

we mean a couple (u, τ) such that:

(i) u ∈ L∞(R+;W 1,∞
0 (Ω)) ∩ C([0,∞);L2(Ω)) if N = 1, or

u ∈ L∞(R+;W 1,p
0 (Ω)) ∩ C([0,∞);Lp(Ω)) (p ∈ (1, 2]) if N ≥ 2;

(ii) ut ∈ L2(QT ), τ ∈ Y(QT ;RN ) ;

(iii) for almost every (x, t) ∈ QT there holds

∇u(x, t) =
〈
τ(x,t), id

〉
RN =

∫

RN
ξ dτ(x,t)(ξ) , (1.3.15)

where id(ξ) := ξ (ξ ∈ RN ) and τ(x,t) ∈ P(RN ) denotes the disintegration of
τ ;

(iv) for any ζ ∈ C1([0, T );C1
c (Ω)) and t ∈ (0, T )

∫ t

0

∫

Ω

[
u ζs − ϕ∗ · ∇ζ

]
(x, s)dxds = (1.3.16)

=

∫

Ω
u(x, t)ζ(x, t) dx−

∫

Ω
u0(x) ζ(x, 0) dx ,

where ϕ∗ ≡ (ϕ∗1, . . . , ϕ
∗
N ),

ϕ∗i (x, t) :=
〈
τ(x,t), ϕi

〉
RN =

∫

RN
ϕi(ξ) dτ(x,t)(ξ) (i = 1, . . . , N) (1.3.17)

for almost every (x, t) ∈ QT .
A Young measure solution of problem (P ) in Q∞ is said to be global.

Remark 1.3.1. In the following, when N ≥ 2, we often assume that the
initial data function u0 belongs to W 1,p

0 (Ω) (p ∈ (1, 2]) and assumptions
(H2)-(H4) are satisfied (in particular, see Proposition 1.3.3, Theorem 1.3.6
and Theorem 1.3.9). Clearly, this means that (H2)-(H4) are assumed to
hold with some fixed p = q ∈ (1, 2]), and that u0 ∈ W 1,p

0 (Ω) with the same
p.
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As a particular case of Definition 1.3.1, we have the following

Definition 1.3.2. By a Young measure equilibrium solution of problem (P )
we mean a couple (ū, τ̄) ∈W 1,p

0 (Ω)× Y(Ω;RN ), such that

∇ū(x) =

∫

RN
ξ dτ̄x(ξ) (1.3.18)

for almost every x ∈ Ω, and
∫

Ω

[
ϕ̄ · ∇ρ

]
(x) dx = 0 (1.3.19)

for any ρ ∈ C1
c (Ω). Here ϕ̄ ≡ (ϕ̄1, . . . , ϕ̄N ),

ϕ̄i(x) := 〈τ̄x, ϕi〉RN =

∫

RN
ϕi(ξ) dτ̄x(ξ) (i = 1, . . . , N) (1.3.20)

for almost every x ∈ Ω, and τ̄x ∈ P(RN ) denotes the disintegration of τ̄ .

Consider the problem (Pε) introduced above (see Section 2.1). If N = 1,
setting

v := ux , w := ϕ(v) + εvt , (1.3.21)

problem (Pε) reads





ut = wx in QT
u = 0 in ∂Ω× (0, T )
u = u0 in Ω× {0} .

(1.3.22)

Definition 1.3.3. Let N = 1, and let u0 ∈ W 1,∞
0 (Ω). By a solution of

problem (Pε) in QT we mean any function uε ∈ C1([0, T );W 1,∞
0 (Ω)), with

wε ∈ C([0, T );W 2,∞(Ω) ∩ C(Ω̄)), wεx ∈ C([0, T );W 1,∞
0 (Ω)), which satisfies

(Pε) in classical sense.

Definition 1.3.4. Let N ≥ 2, and let u0 ∈ H1
0 (Ω). By a solution of problem

(Pε) in QT we mean any function uε ∈ C1([0, T );H1
0 (Ω)) such that uε(·, 0) =

u0ε, and
∫

Ω
uεt(x, t)ρ(x) dx+

∫

Ω
ϕ(∇uε)(x, t)·∇ρ(x) dx+ε

∫

Ω
∇uεt(x, t)·∇ρ(x) dx = 0

(1.3.23)
for any t ∈ (0, T ) and any ρ ∈ H1

0 (Ω).

Definition 1.3.5. Let N ≥ 1. A solution of problem (Pε) in Q∞ is said to
be global, if it is a solution in QT for any T ∈ (0,∞).

Theorem 1.3.1. Let either N = 1, u0 ∈ W 1,∞
0 (Ω) and assumptions (A1)-

(A3) be satisfied, or let N ≥ 2, u0 ∈ H1
0 (Ω) and (H1) hold. Then for any

ε > 0 there exists a unique global solution uε of problem (Pε).
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The following a priori estimates will play an important role to study the
vanishing viscosity limit of the solution uε as ε→ 0. Let us first address the
case N = 1.

Proposition 1.3.2. Let N = 1, u0 ∈W 1,∞
0 (Ω) and assumptions (A1)-(A3)

be satisfied. Let uε be the solution of problem (Pε) given by Theorem 1.3.1.
Then there exists C > 0 such that for any ε > 0

‖uε‖L∞(R+;W 1,∞
0 (Ω))

+ ‖uεt‖L2(Q∞) +
√
ε ‖uεxt‖L2(Q∞) ≤ C ‖u0‖W 1,∞

0 (Ω)
.

(1.3.24)

To prove analogous estimates when N ≥ 2, for any fixed u0 ∈ W 1,p
0 (Ω),

with p ∈ (1, 2], consider a family {u0ε} ⊆ H1
0 (Ω) (ε > 0) such that

‖u0ε‖W 1,p
0 (Ω)

≤ ‖u0‖W 1,p
0 (Ω)

, u0ε → u0 in W 1,p
0 (Ω) . (1.3.25)

Proposition 1.3.3. Let N ≥ 2, u0 ∈W 1,p
0 (Ω) (p ∈ (1, 2]) and assumptions

(H1)-(H4) be satisfied. Let uε be the solution of problem (Pε) with Cauchy
data u0ε ∈ H1

0 (Ω) as in (1.3.25), which is given by Theorem 1.3.1. Then
there exists C > 0 such that for any ε > 0

‖uε‖L∞(R+;W 1,p
0 (Ω))

+ ‖uεt‖L2(Q∞) +
√
ε ‖∇uεt‖L2(Q∞) ≤ C ‖u0‖W 1,p

0 (Ω)
.

(1.3.26)

Remark 1.3.2. Observe that by estimates (1.3.24) and (1.3.26) the family
of solutions {uε} is contained in a bounded subset of L∞(R+;W 1,∞

0 (Ω)) if

N = 1, respectively of L∞(R+;W 1,p
0 (Ω)) if N ≥ 2. In addition, if N ≥ 2 and

p ∈ (1, 2], by estimate (1.3.26) for every T ∈ (0,∞) there exists a constant
C̄T > 0 such that

‖uε‖W 1,p(QT ) ≤ C̄T ‖u0‖W 1,p
0 (Ω)

(1.3.27)

for any ε > 0. Similarly, if N = 1 by estimate (1.3.24) we have

‖uε‖H1(QT ) ≤ C̄T ‖u0‖W 1,∞
0 (Ω)

(1.3.28)

for any ε > 0.

If N ≥ 2, as a consequence of estimate (1.3.26) we have the following

Proposition 1.3.4. Let N ≥ 2, u0 ∈W 1,p
0 (Ω) (p ∈ (1, 2]) and assumptions

(H1)-(H4) be satisfied. Let uε be the solution of problem (Pε) with Cauchy
data u0ε ∈ H1

0 (Ω) as in (1.3.25), which is given by Theorem 1.3.1. Then
there exist a sequence {uεk} ⊆ {uε} and u ∈ L∞(R+;W 1,p

0 (Ω))∩W 1,p(QT )∩
C([0,∞);Lp(Ω)), with ut ∈ L2(Q∞), such that:

uεk → u in C([0, T );Lp(Ω)) (1.3.29)
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for any T ∈ (0,∞);

uεk ⇀ u in Lr((0, T );W 1,p
0 (Ω)) (1.3.30)

for any T ∈ (0,∞) and every r ∈ [1,∞);

uεk ⇀ u in W 1,p(QT ) (1.3.31)

for any T ∈ (0,∞);
uεkt ⇀ ut in L2(Q∞) ; (1.3.32)

εk∇uεkt → 0 in L2(Q∞) . (1.3.33)

Similarly, if N = 1 by estimate (1.3.24) we have the following

Proposition 1.3.5. Let N = 1, u0 ∈W 1,∞
0 (Ω) and assumptions (A1)-(A3)

be satisfied. Let uε be the solution of problem (Pε) given by Theorem 1.3.1.
Then there exist a sequence {uεk} ⊆ {uε} and u ∈ L∞(R+;W 1,∞

0 (Ω)) ∩
H1(QT ) ∩ C([0,∞);L2(Ω)), with ut ∈ L2(Q∞), such that:

uεk → u in C([0, T );L2(Ω)) (1.3.34)

for any T ∈ (0,∞);

uεk ⇀ u in Lr((0, T );W 1,p
0 (Ω)) (1.3.35)

for any T ∈ (0,∞) and every r ∈ [1,∞), p ∈ (1,∞);

uεk ⇀ u in H1(QT ) (1.3.36)

for any T ∈ (0,∞);

uεkx
∗
⇀ ux in L∞(Q∞) ; (1.3.37)

uεkt ⇀ ut in L2(Q∞) ; (1.3.38)

ε uεkxt → 0 in L2(Q∞) . (1.3.39)

Remark 1.3.3. Let the assumptions of Proposition 1.3.5 hold if N = 1, or
let u0 ∈ H1

0 (Ω), and let assumptions (H2)-(H4) with p = q = 2 and assump-
tion (H5) be satisfied if N ≥ 2 (thus in particular Proposition 1.3.4 holds
with p = 2). Let u be the limiting function mentioned in Propositions 1.3.4
and 1.3.5. Let us show for further reference that under these assumptions
the map t→ ‖u(·, t)‖2L2(Ω) is nonincreasing on R+.

In fact, since the global solution uε of problem (Pε) satisfies uε(·, t) ∈
H1

0 (Ω) for every t ∈ R+, from (Pε) we get easily

d

dt

(
‖uε(·, t)‖2L2(Ω) + ε ‖∇uε(·, t)‖2L2(Ω)

)
= (1.3.40)

−2

∫

Ω
[ϕ(∇uε) · ∇uε] (x, t) dx ≤ 0
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by assumption (H5). This implies that

‖uε(·, t+τ)‖2L2(Ω) +ε ‖∇uε(·, t+τ)‖2L2(Ω) ≤ ‖uε(·, t)‖2L2(Ω) +ε ‖∇uε(·, t)‖2L2(Ω)

for every t ∈ R+, τ > 0 and ε > 0. Setting ε = εk in the above inequality,
where {uεk} ⊆ {uε} is the subsequence mentioned in Propositions 1.3.4 and
1.3.5, and letting εk → 0 we obtain

‖u(·, t+ τ)‖2L2(Ω) ≤ ‖u(·, t)‖2L2(Ω)

for every t ∈ R+ and τ > 0; here we use the convergence in (1.3.29) and
estimate (1.3.26) with p = 2 if N ≥ 2, respectively the convergence in
(1.3.34) and estimate (1.3.24) if N = 1. Hence the claim follows.

Consider the sequence {uεk} of solutions of problems (Pεk) mentioned in
Propositions 1.3.4-1.3.5. By inequalities (1.3.24) and (1.3.26) the sequence
{∇uεk} is bounded in Lp(QT ;RN ) for any T ∈ (0,∞), with p ∈ (1, 2] if
N ≥ 2, or for any p ∈ (1,∞) if N = 1. Plainly, this implies that both
{∇uεk} and {ϕ(∇uεk)} are uniformly integrable. Let {τ εk} ⊆ Y(QT ;RN )
be the sequence of Young measures associated to {∇uεk}. Then by Theorem
2.5.2-(i) there exist subsequences of {∇uεk} and {τ εk}, denoted for simplicity
by the same notations, and a Young measure τ on QT×RN such that τk → τ
narrowly. Moreover,

ϕ(∇uεk) ⇀ ϕ∗ in L1(QT ;RN ) , (1.3.41)

where ϕ∗ is defined by (1.3.17) (with τ(x,t) denoting the disintegration of
τ). Relying on these facts we shall prove that the couple (u, τ), where u
is the limiting function given by Propositions 1.3.4-1.3.5, is a global Young
measure solution of problem (P ). This gives the following existence result.

Theorem 1.3.6. Let either N = 1, u0 ∈ W 1,∞
0 (Ω) and assumptions (A1)-

(A3) be satisfied, or let N ≥ 2, u0 ∈ W 1,p
0 (Ω) (p ∈ (1, 2]) and (H1)-(H4)

hold. Then there exists a global Young measure solution (u, τ) of problem
(P ), which is the limit of a subsequence {uεk} of the family {uε} of solutions
to the approximating problems (Pε). Moreover,
(i) if N = 1, u ∈ L∞(R+;W 1,∞

0 (Ω)) ∩H1(QT ) ∩ C([0,∞);L2(Ω));

(ii) if N ≥ 2, u ∈ L∞(R+;W 1,p
0 (Ω)) ∩W 1,p(QT ) ∩ C([0,∞);Lp(Ω)) (p ∈

(1, 2]);
(iii) τ ∈ Y(Q∞;RN ).

1.3.2 Characterization of the limiting Young measure

Concerning the results stated in this subsection, we assume that the function
ϕ changes monotonicity character a finite number of times, say 2n (n ∈ N;
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observe that this number is even by assumptions (A2)-(A3)). Hence there
holds

R =

(
n⋃

l=0

Il

) ⋃ (
n⋃

m=1

Îm

)
,

where

I0 := (−∞, b1] , Il := (al, bl+1] (l = 1, . . . , n− 1) , In := (an,∞) ,

Îm := (bm, am] (m = 1, . . . , n)

and bl is a local maximum point, al a local minimum point of the graph
of ϕ. Set Jl := ϕ(Il), Ĵm := ϕ(Îm) (l = 0, . . . , n; m = 1, . . . , n); since ϕ
is increasing on each interval Il and decreasing on each interval Îm, there
holds

J0 := (−∞, ϕ(b1)] , Jl := (ϕ(al), ϕ(bl+1)] (l = 1, . . . , n− 1) ,

Jn := (ϕ(an),∞) , Ĵm := (ϕ(am), ϕ(bm)] (m = 1, . . . , n) .

Now define n+ 1 increasing functions sl : Jl → Il setting

(sl ◦ ϕ)(ξ) = ξ for any ξ ∈ Il ,
(ϕ ◦ sl)(λ) = λ for any λ ∈ Jl (l = 0, . . . , n) , (1.3.42)

and n decreasing functions tm : Ĵm → Îm such that

(tm ◦ ϕ)(ξ) = ξ for any ξ ∈ Îm ,
(ϕ ◦ tm)(λ) = λ for any λ ∈ Ĵm (m = 1, . . . , n) , (1.3.43)

Following [Pl1], we shall make use of the following assumption:

(C)

{
The functions s′0, . . . , s

′
n, t
′
1, . . . , t

′
n are

linearly independent on any open subset of R .

Let N = 1, u0 ∈ W 1,∞
0 (Ω) and assumptions (A1)-(A3) be satisfied. Let

uε be the solution of problem (Pε) given by Theorem 1.3.1; set

vε := uεx : , wε := ϕ(vε) + εvεt (1.3.44)

as in (1.3.21). Since uεt = wεx, estimate (1.3.24) also reads

‖vε‖L∞(Q∞) + ‖wεx‖L2(Q∞) +
√
ε ‖vεt‖L2(Q∞) ≤ C ‖u0‖W 1,∞

0 (Ω)
. (1.3.45)

Plainly, this implies that there exists C > 0 (only depending on ‖u0‖W 1,∞
0 (Ω)

)

such that for any ε > 0 small enough

‖ϕ(vε)‖L∞(Q∞) ≤ C , (1.3.46)
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‖wε‖L2(R+;H1(Ω)) ≤ C . (1.3.47)

In fact, by assumption (A1) and inequality (1.3.45) there exists C1 > 0 (only
depending on ‖u0‖W 1,∞

0 (Ω)
) such that for any ε > 0

‖ϕ(vε)‖L∞(Q∞) ≤ C1 .

Then by the above inequality, the definition of wε (see (1.3.44)) and inequal-
ity (1.3.45) there holds

‖wε‖L2(Q∞) ≤ C1 +
√
εC ‖u0‖W 1,∞

0 (Ω)
.

From the above inequality and inequality (1.3.45) we obtain (1.3.46)-(1.3.47)
for some constant C ≥ C1.

In view of inequality (1.3.47), there exist a sequence {wεk} ⊆ {wε} and
w ∈ L2(R+;H1(Ω)) such that

wεk ⇀ w in L2(R+;H1(Ω)) . (1.3.48)

Without loss of generality, we can assume that the convergence results of
Proposition 1.3.5 hold with the same sequence of indices {εk}. In particular,
there holds (see (1.3.37))

vεk
∗
⇀ v in L∞(Q∞) (1.3.49)

with v := ux, u ∈ L∞(R+;W 1,∞
0 (Ω)) being the limiting function mentioned

in Proposition 1.3.5.

Now we can state the following result.

Theorem 1.3.7. Let N = 1, u0 ∈ W 1,∞
0 (Ω) and assumptions (A1)-(A3)

be satisfied, and let (u, τ) be any global Young measure solution of prob-
lem (P ) given by Theorem 1.3.6. Then for almost every (x, t) ∈ Q∞ the
disintegration τ(x,t) of the limiting Young measure τ satisfies the equality

τ(x,t) =
n∑

l=0

cl(x, t) δ
(
· − sl

(
w(x, t)

))
+

n∑

m=1

dm(x, t) δ
(
· − tm

(
w(x, t)

))
,

(1.3.50)
where w ∈ L2(R+;H1(Ω)) ∩ L∞(QT ) (T ∈ (0,∞)) is the limiting function
in (1.3.48).
The coefficients cl, dm in (1.3.50) are functions in L∞(Q∞), such that for
almost every (x, t) ∈ Q∞:

(i) 0 ≤ cl(x, t) ≤ 1, 0 ≤ dm(x, t) ≤ 1 (l = 0, . . . , n; m = 1, . . . , n);

(ii)
∑n

l=0 cl(x, t) +
∑n

m=1 dm(x, t) = 1 ;

(iii) c0(x, t) = 1 if w(x, t) ≤ A := min{ϕ(a1), . . . , ϕ(an)}, cn(x, t) = 1 if
w(x, t) ≥ B := max{ϕ(b1), . . . , ϕ(bn)} .
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Remark 1.3.4. Under the assumptions of Theorem 1.3.7, from equalities
(1.3.15) and (1.3.50) we obtain

ux(x, t) =

n∑

l=0

cl(x, t) sl
(
w(x, t)

)
+

n∑

m=1

dm(x, t) tm
(
w(x, t)

)

for almost every (x, t) ∈ Q∞.

To prove Theorem 1.3.7 we need a similar result, concerning the limiting
points of the family {ϕ(vε)}. Since this family is uniformly bounded in
L∞(Q∞) (see (1.3.46)), we can consider the associated family {θε} of Young
measures. By Proposition 1.2.4 there exist a sequence {θεk} and a Young
measure θ over Q∞ × R, such that for any T ∈ (0,∞)

θεk → θ narrowly in QT × R . (1.3.51)

As before, there is no loss of generality if we assume that the convergence
results of Proposition 1.3.5 hold with the same sequence of indices {εk}.

Let θ(x,t) denote the disintegration of the Young measure θ. Then we
have the following result.

Theorem 1.3.8. Let the assumptions of Theorem 1.3.7 hold. Let θ(x,t)

be the disintegration of the limiting Young measure θ over Q∞ × R which
appears in (1.3.51), and let w ∈ L2(R+;H1(Ω)) ∩ L∞(QT ) be the limiting
function in (1.3.48). Then for almost every (x, t) ∈ Q∞

θ(x,t) = δ(· − w(x, t)) . (1.3.52)

1.3.3 Asymptotic behaviour

Since the Young measure solution (u, τ) of problem (P ) given by Theorem
1.3.6 is global, it is natural to investigate its asymptotic behaviour as t→∞.
Set for almost every (x, t) ∈ QT and every diverging sequence {tn} ⊂ R+:

un(x, t) := u(x, t+ tn) , τn(x,t) := τ(x,t+tn) , (1.3.53)

where τ(x,t) denotes the disintegration of τ . Denote also X ≡ W 1,p
0 (Ω),

where p ∈ (1,∞) if N = 1, or p ∈ (1, 2] if N ≥ 2. Then we can state the
following definition.

Definition 1.3.6. Let (u, τ) be a global Young measure solution of problem
(P ). A couple (ũ, τ̃), with ũ ∈ L∞(R+;X) ∩ C([0,∞);Lp(Ω)) (where p = 2
if N = 1 and p ∈ (1, 2] if N ≥ 2), and τ̃ ∈ Y(Q∞;RN ) is called an ω-limit
point of the solution (u, τ), if

(i) there exists a diverging sequence {tn} ⊂ R+ such that
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(a) un ⇀ ũ in Lr((0, T );X) for any T ∈ (0,∞) and every r ∈ [1,∞),

(b) τn → τ̃ narrowly in QT × RN for any T ∈ (0,∞);

(ii) (ũ, τ̃) is a global Young measure solution of problem (P ) with initial
data function ũ(·, 0).

The set of the ω-limit points of (u, τ) is called the ω-limit set of (u, τ).

The following result will be proven.

Theorem 1.3.9. Let either N = 1, u0 ∈ W 1,∞
0 (Ω) and assumptions (A1)-

(A3) be satisfied, or let N ≥ 2, u0 ∈ W 1,p
0 (Ω) (p ∈ (1, 2]) and (H1)-(H5)

hold. Let (u, τ) ∈ L∞(R+;X) × Y(Q∞;RN ) be any global Young measure
solution of problem (P ), whose existence is ensured by Theorem 1.3.6. Then:

(i) the ω-limit set of (u, τ) is nonempty;

(ii) if u0 ∈ H1
0 (Ω), for every ω-limit point (ũ, τ̃) there holds

supp τ̃(x,t) ⊆ S :=
{
ξ ∈ RN

∣∣ϕ(ξ)·ξ = 0
}

for almost every (x, t) ∈ Q∞ ,
(1.3.54)

where τ̃(x,t) ∈ P(RN ) denotes the disintegrations of τ̃ .

Set
S0 :=

{
ξ ∈ RN

∣∣ϕi(ξ) = 0 , i = 1, . . . , N
}
. (1.3.55)

Clearly, there holds S0 ⊆ S (see (1.3.54)). If the reverse inclusion holds, we
have the following result.

Theorem 1.3.10. Let the assumptions of Theorem 1.3.9 be satisfied. Sup-
pose that S = S0 , the sets S, S0 being defined in (1.3.54) and (1.3.55).
Then every ω-limit point (ũ, τ̃) of (u, τ) is a Young measure equilibrium
solution of problem (P ).

Remark 1.3.5. Let u0 ∈ H1
0 (Ω) and the assumptions of Theorem 1.3.10 be

satisfied. As in [Sl], let us mention the following facts.
(i) If S0 ⊆ K := [a1, c1]× · · · × [aN , cN ], then by (1.3.18) and (1.3.54)

∇ũ(x) =

∫

K
ξ dτ̃x(ξ) ,

whence

ai ≤
∂ũ

∂xi
≤ ci a.e. in Ω (i = 1, . . . , N) .

(ii) If S0 ⊆ RN+ , then by (i) above

∂ũ

∂xi
≥ 0 a.e. in Ω (i = 1, . . . , N) .
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Similarly, S0 ⊆ RN− :=
(
(−∞, 0]

)N
, there holds

∂ũ

∂xi
≤ 0 a.e. in Ω (i = 1, . . . , N) .

By a standard argument, since ũ ∈ H1
0 (Ω), it follows in both cases that

∇ũ = 0, thus ũ = 0 a.e. in Ω. Therefore in this cases the ω-limit set of (u, τ)
is {(0, δ0)}, δ0 denoting the Dirac measure concentrated at the origin.

1.4 Existence

Let us first prove Theorem 1.3.1 when N = 1. This requires some prelimi-
nary steps, the first one being the following local existence and uniqueness
result.

Lemma 1.4.1. Let N = 1, u0 ∈W 1,∞
0 (Ω) and assumption (A1) be satisfied.

Then for any ε > 0 there exists Tε > 0 such that problem (1.3.22) has a
unique solution uε in QTε.

Proof. Consider the problem




vt = wxx in QT
wx = 0 in ∂Ω× (0, T )
v = v0 := u′0 in Ω× {0} ,

(1.4.1)

where w := ϕ(v) + εvt (see (1.3.21)). Then for any ε > 0 there exist Tε > 0
and a unique function vε ∈ C1([0, T );L∞(Ω)), with wε ∈ C([0, T );W 2,∞(Ω)∩
C(Ω̄)), wεxx ∈ C([0, T );L∞(Ω)), which satisfies (1.4.1) in QTε in classical
sense (see [NP, Theorem 2.1]). Suppose Ω ≡ (a, b) for simplicity; defining

uε(x, t) :=

∫ x

a
vε(y, t) dy ((x, t) ∈ Ω× [0, Tε))

the conclusion easily follows. �
To proceed we need a priori estimates of the local solution uε of (1.3.22)

given by Lemma 1.4.1. Following [NP], set for any g ∈ C1(R), g′ ≥ 0:

G(v) :=

∫ v

0
g(ϕ(s)) ds+ k (k ∈ R) . (1.4.2)

In QTε we have:

[G(uεx)]t = g(ϕ(uεx))uεxt = g(wε)wεxx + [g(ϕ(uεx))− g(wε)]wεxx =

=[g(wε)wεx]x−g′(wε)|wεx|2+[g(ϕ(uεx))− g(wε)]
wε − ϕ(uεx)

ε︸ ︷︷ ︸
≤0

.

(1.4.3)
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Then integrating in Ω we obtain:

d

dt

∫

Ω
G(uεx(x, t)) dx ≤ 0 in (0, Tε) . (1.4.4)

The above inequality is crucial to prove the existence of positively in-
variant regions for problem (1.3.22). This is the content of the following
proposition (see [NP, Proposition 2.7]).

Proposition 1.4.2. Let

ϕ(v1) ≤ ϕ(v) ≤ ϕ(v2) for any v ∈ [v1, v2] , (1.4.5)

and let u′0(x) ∈ [v1, v2] for any x ∈ Ω. Then uεx(x, t) ∈ [v1, v2] for any
(x, t) ∈ QTε.

Let us now prove Theorem 1.3.1 in the case N = 1.

Proposition 1.4.3. Let N = 1, u0 ∈W 1,∞
0 (Ω) and assumptions (A1)-(A3)

be satisfied. Then for any ε > 0 there exists a unique global solution uε of
problem (Pε).

Proof. By assumptions (A2)-(A3) there holds ϕ(v) → ±∞ as v → ±∞,
hence there exists C > ||u′0||∞ such that inequality (1.4.5) holds with [v1, v2] =
[−C,C]. Then by Proposition 1.4.2 there holds

‖uε(·, t)‖W 1,∞
0 (Ω)

≤ C for any t ∈ (0, Tε) . (1.4.6)

Hence by Lemma 1.4.1 and standard prolongation arguments the conclusion
follows. �
Proof of Proposition 1.3.2. Choosing g(z) = z in (1.4.3) gives:

[G(uεx)]t = wεwεxx −
|wε − ϕ(uεx)|2

ε
= wεwεxx − ε|uεxt|2 ,

(see (1.3.21)), whence plainly:

∫∫

Q∞
{|wεx|2 + ε|uεxt|2}dxdt ≤

∫

Ω
G(u0) dx . (1.4.7)

On the other hand, since the solution is global, from (1.4.6) we obtain the
a priori estimate

‖uε‖L∞(R+;W 1,∞
0 (Ω))

≤ C . (1.4.8)

Then from (1.4.7)-(1.4.8) the result follows. �
Let us now address the proof of Theorem 1.3.1 for N ≥ 2. Denote by

(I − ε∆)−1 (ε > 0) the operator

(I − ε∆)−1 : H−1(Ω)→ H1
0 (Ω) , (I − ε∆)−1z := v for any z ∈ H−1(Ω) ,
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where v ∈ H1
0 (Ω) is the unique solution of the elliptic problem

{
−ε∆v + v = z in Ω
v = 0 in ∂Ω

(1.4.9)

for any z ∈ H−1(Ω).

Proposition 1.4.4. Let assumption (H1) hold. Then the operator

L : H1
0 (Ω)→ H1

0 (Ω) , L(u) := (I − ε∆)−1∇ · [ϕ(∇u)] (u ∈ H1
0 (Ω))

(1.4.10)
is Lipschitz continuous.

Proof. Since by assumption ϕ : RN → RN is Lipschitz continuous, there
holds

|ϕ(∇u)| ≤ L |∇u|+ |ϕ(0)| in Ω

for any u ∈ H1
0 (Ω), where L > 0 is the Lipschitz constant in (H1), thus

ϕ(∇u) ∈ [L2(Ω)]N . Hence ∇ · [ϕ(∇w)] ∈ H−1(Ω), thus the elliptic problem

{
−ε∆v + v = ∇ · [ϕ(∇u)] in Ω
v = 0 in ∂Ω

admits a unique solution v ∈ H1
0 (Ω), and there holds v = L(u).

Now set v1 := L(u1), v2 := L(u2) for any u1, u2 ∈ H1
0 (Ω). Then the

difference v1 − v2 satisfies

{
−ε∆(v1 − v2) + (v1 − v2) = ∇ · [ϕ(∇u1)− ϕ(∇u2)] in Ω
v1 − v2 = 0 in ∂Ω

(1.4.11)

in H−1(Ω). Using v1− v2 ∈ H1
0 (Ω) as test function, from (1.4.11) we obtain

ε

∫

Ω
|∇(v1 − v2)|2dx+

∫

Ω
(v1 − v2)2dx =

=

∫

Ω
[ϕ(∇u1)− ϕ(∇u2)] · ∇(v1 − v2) ≤

≤ L

∫

Ω
|∇(u1 − u2)| |∇(v1 − v2)| dx ≤

≤ L

(∫

Ω
|∇(u1 − u2)|2dx

)1/2(∫

Ω
|∇(v1 − v2)|2dx

)1/2

,

whence
‖v1 − v2‖H1

0 (Ω) ≤ ε−1L ‖u1 − u2‖H1
0 (Ω). (1.4.12)

This completes the proof. �
Now we can complete the proof of Theorem 1.3.1.
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Proof of Theorem 1.3.1. If N = 1, the result follows by Proposition 1.4.3.
If N ≥ 2, by Proposition 1.4.4, for any u0 ∈ H1

0 (Ω) and ε > 0 there exists a
unique solution uε ∈ C1([0,∞);H1

0 (Ω)) of the abstract Cauchy problem

{
ut = L(u) in R+ ,
u(0) = u0 .

(1.4.13)

Therefore, uε satisfies problem (Pε) in QT (for any T ∈ (0,∞)) in the sense
of C1([0, T );H−1(Ω)), whence equality (1.3.23) follows for any t ∈ (0, T )
and any ρ ∈ H1

0 (Ω). Since T ∈ (0,∞) is arbitrary, uε is a global solution.
Hence the conclusion follows. �
Proof of Proposition 1.3.3. If ‖u0‖W 1,p

0 (Ω)
= 0, there holds u0 = 0 in Ω,

thus the unique solution of problem (Pε) is the trivial one. Therefore, in
this case inequality (1.3.26) is trivially satisfied. Let us address the case
‖u0‖W 1,p

0 (Ω)
> 0.

Since uεt(·, t) ∈ H1
0 (Ω) for any t ∈ R+, we can choose ρ = uεt(·, t) in

(1.3.23). Then, integrating over (0, t), by assumption (H3) we obtain

∫ t

0

∫

Ω
u2
εt(x, s) dxds =

= −
∫ t

0

(
d

ds

∫

Ω
[Φ(∇uε)] (x, s) dx

)
ds − ε

∫ t

0

∫

Ω
|∇uεt|2(x, s) dxds ,

whence for any t > 0,

∫

Ω
[Φ(∇uε)] (x, t) dx +

∫ t

0

∫

Ω

{
u2
εt + ε|∇uεt|2

}
(x, s) dxds =(1.4.14)

=

∫

Ω
[Φ(∇u0ε)] (x) dx .

On the other hand, by the first inequality in (1.1.1) and the following
remark there holds

C1

∫

Ω
|∇uε|p(x, t) dx = (1.4.15)

= C1

∫

{|∇uε|>ξ0}
|∇uε|p(x, t) dx+ C1

∫

{|∇uε|≤ξ0}
|∇uε|p(x, t) dx ≤

≤
∫

{|∇uε|>ξ0}
[Φ(∇uε)] (x, t) dx+ C1ξ

p
0 |Ω| =

=

∫

Ω
[Φ(∇uε)] (x, t) dx−

∫

{|∇uε|≤ξ0}
[Φ(∇uε)] (x, t) dx+ C1ξ

p
0 |Ω| .
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Then by equality (1.4.14) we have

C1

∫

Ω
|∇uε|p(x, t) dx+

∫ t

0

∫

Ω

{
u2
εt + ε|∇uεt|2

}
(x, s) dxds ≤ (1.4.16)

≤
∫

Ω
[Φ(∇u0ε)] (x) dx−

∫

{|∇uε|≤ξ0}
[Φ(∇uε)] (x, t) dx+ C1ξ

p
0 |Ω| ≤

≤
∫

Ω
[Φ(∇u0ε)] (x) dx + K1

with some constant K1 > 0, only depending on ξ0 and |Ω| (here use of the
continuity of Φ has been made).

Arguing as for (1.4.15), by the second inequality in (1.1.1) and the in-
equality in (1.3.25) we get

∫

Ω
[Φ(∇u0ε)] (x) dx = (1.4.17)

=

∫

{|∇u0ε|>ξ0}
[Φ(∇u0ε)] (x) dx+

∫

{|∇u0ε|≤ξ0}
[Φ(∇u0ε)] (x) dx ≤

≤ C3

∫

{|∇u0ε|>ξ0}
|∇u0ε|p(x) dx+

∫

{|∇u0ε|≤ξ0}
[Φ(∇u0ε)] (x) dx ≤

≤ C3

∫

Ω
|∇u0|p(x) dx + K2

with some constant K2 > 0, only depending on ξ0. Since u → ‖|∇u|‖Lp(Ω)

is an equivalent norm on W 1,p
0 (Ω), from (1.4.16)-(1.4.17) we obtain for some

constant K3 > 0

‖uε‖p
L∞(R+;W 1,p

0 (Ω))
+ ‖uεt‖2L2(Q∞) + ε ‖∇uεt‖2L2(Q∞) ≤ (1.4.18)

≤ 1

min{1, C1K3}

(
C3‖u0‖p

W 1,p
0 (Ω)

+ K1 + K2

)
=: C4‖u0‖p

W 1,p
0 (Ω)

+ C5 ,

whence

‖uε‖L∞(R+;W 1,p
0 (Ω))

+ ‖uεt‖L2(Q∞) + ε ‖∇uεt‖L2(Q∞) ≤ C4‖u0‖p
W 1,p

0 (Ω)
+ C5 + 3 .

Then defining

C := C4‖u0‖p−1

W 1,p
0 (Ω)

+
C5 + 3

‖u0‖W 1,p
0 (Ω)

we obtain inequality (1.3.26). This completes the proof. �
Proof of Proposition 1.3.4. Concerning (1.3.29), observe that by inequality
(1.3.27) the family {uε} is bounded in W 1,p(QT ), hence there exists a se-
quence {uεk} ⊆ {uε} (possibly depending on T ∈ (0,∞)) which strongly
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converges in Lp(QT ). Let us show that {uεk} is a Cauchy sequence in
C([0, T ];Lp(Ω)) for any T ∈ (0,∞).

In fact, for any t ∈ [0, T ] there holds
∫

Ω
|uεk − uεm |p(x, t) dx−

∫

Ω
|u0εk − u0εm |p(x) dx ≤ (1.4.19)

≤ p
∫ t

0

∫

Ω

[
|uεk − uεm |p−1 |uεkt − uεmt|

]
(x, s) dxds ≤

≤ p
(∫ t

0

∫

Ω
|uεk − uεm |pdxds

)1− 1
p
(∫ t

0

∫

Ω
|uεkt − uεmt|pdxds

) 1
p

≤

≤ p |QT |
2−p
2p ‖uεk − uεm‖p−1

Lp(QT )‖uεkt − uεmt‖L2(QT ) ,

since p ∈ (1, 2]. Then by inequality (1.3.26) there holds

‖uεk − uεm‖C([0,T ];Lp(Ω)) ≤ K‖uεk − uεm‖
1− 1

p

Lp(QT ) +

+ ‖u0εk − u0εm‖Lp(Ω) , (1.4.20)

where
K := 2Cp |QT |

2−p
2p ‖u0‖W 1,p

0 (Ω)
.

Then by (1.3.25) and (1.4.20) the claim follows. Hence by a diagonal ar-
gument there exist a sequence {uεk} ⊆ {uε} and u ∈ C([0,∞);Lp(Ω)) such
that (1.3.29) holds for any T ∈ (0,∞).

Concerning the convergence in (1.3.30), observe that by (1.3.26) there
holds

‖uεk‖Lr((0,T );W 1,p
0 (Ω))

≤ C T 1
r ‖u0‖W 1,p

0 (Ω)
(1.4.21)

for any T ∈ (0,∞) and every r ∈ [1,∞). Hence by a diagonal argument
there exist a subsequence of {uεk}, denoted again by {uεk} for simplicity, and
a function u : R+ → W 1,p

0 (Ω) such that (1.3.30) holds for any T ∈ (0,∞)

and every r ∈ [1,∞). To prove that u ∈ L∞(R+;W 1,p
0 (Ω)), observe that by

(1.3.26)

‖uεk(·, t)‖
W 1,p

0 (Ω)
≤ C ‖u0‖W 1,p

0 (Ω)
for any t ∈ R+ . (1.4.22)

Then there exist a subsequence of {uεk(·, t)} (possibly depending on t), de-
noted again by {uεk(·, t)} for simplicity, and a function ft ∈ W 1,p

0 (Ω) such
that

uεk(·, t) ⇀ ft in W 1,p
0 (Ω) , (1.4.23)

thus by inequality (1.4.22) and the lower semicontinuity of the norm

‖ft|W 1,p
0 (Ω)

≤ C ‖u0‖W 1,p
0 (Ω)

for any t ∈ R+ . (1.4.24)

On the other hand, by (1.3.29) and (1.4.23) there holds ft = u(·, t). There-
fore by (1.4.24) we obtain that u ∈ L∞(R+;W 1,p

0 (Ω)), as asserted.
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The convergences in (1.3.32)-(1.3.33) follow immediately from (1.3.26),
since both sequences {uεkt} and {√εk∇uεkt} belong to a bounded subset of
L2(Q∞). This completes the proof. �
Proof of Proposition 1.3.5. The proof of (1.3.34) is the same of (1.3.29),
using inequality (1.3.28) instead of (1.3.27). Concerning (1.3.35), by (1.3.24)
there holds

‖uεk‖Lr((0,T );W 1,p
0 (Ω))

≤ C T 1
r |Ω |

1
p ‖u0‖W 1,∞

0 (Ω)
(1.4.25)

for any T ∈ (0,∞) and every r ∈ [1,∞), p ∈ (1,∞). Hence by a diagonal
argument there exist a subsequence of {uεk}, denoted again by {uεk}, and
a function u : R+ → W 1,p

0 (Ω) such that (1.3.35) holds. To prove that u ∈
L∞(R+;W 1,∞

0 (Ω))∩C([0,∞);L2(Ω)) we argue as in the proof of Proposition
1.3.4. As for (1.3.37), suffice it to observe that inequality (1.3.24) implies

‖uεx‖L∞(Q∞) ≤ C‖u0‖W 1,∞
0 (Ω)

. (1.4.26)

The proof of (1.3.38)-(1.3.39) is the same of (1.3.32)-(1.3.33), thus the result
follows. �
Proof of Theorem 1.3.6. Let us first assume N ≥ 2. Consider the sequence
{uεk} and the function u mentioned in Proposition 1.3.4, and the weak
formulation of problem (Pεk), namely

∫ t

0

∫

Ω
[uεk ζs − ϕ(∇uεk) · ∇ζ − εk∇uεks · ∇ζ] (x, s) dxds =(1.4.27)

=

∫

Ω
uεk(x, t)ζ(x, t) dx−

∫

Ω
u0εk(x) ζ(x, 0) dx

for any t > 0 and ζ ∈ C1([0,∞);C1
c (Ω)). By (1.3.29), as εk → 0 we get

∫ t

0

∫

Ω
uεk(x, s)ζs(x, s) dxds→

∫ t

0

∫

Ω
u(x, s)ζs(x, s) dxds , (1.4.28)

∫

Ω
uεk(x, t)ζ(x, t) dx→

∫

Ω
u(x, t)ζ(x, t) dx , (1.4.29)

whereas by (1.3.33) and (1.3.25) we have

εk

∫ t

0

∫

Ω
∇uεks · ∇ζ dxds→ 0 , (1.4.30)

respectively ∫

Ω
u0εk(x)ζ(x, 0) dx→

∫

Ω
u0(x)ζ(x, 0) dx . (1.4.31)

Let us show that the sequence {∇uεk} is uniformly integrable; then the
same holds for the sequence {ϕ(∇uεk)}, since by assumption (H1)

|ϕ(∇uεk)| ≤ L |∇uεk |+ |ϕ(0)| .
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In fact, by inequality (1.3.26) the sequence {|∇uεk |} is uniformly bounded
in the Lebesgue space Lp(QT ) with p ∈ (1, 2], thus in L1(QT ) for any T ∈
(0,∞). Moreover, by (1.3.26) for any Borel set E ⊆ QT we have

∫∫

E
|∇uεk |(x, t) dxdt ≤

(∫∫

E
|∇uεk |p(x, t) dxdt

) 1
p

|E|1−
1
p

≤ C ‖u0‖W 1,p
0 (Ω)

T
1
p |E|1−

1
p , (1.4.32)

whence the claim immediately follows.
Then by Theorem 2.5.2-(i) and a standard diagonal argument there ex-

ist a subsequence of {∇uεk}, denoted again by {∇uεk} for simplicity, with
associated Young measures {τ εk}, and a measure τ ∈ M(Q∞ × RN ), with
τ ∈ Y(QT ;RN ) for any T ∈ (0,∞), such that τ εk → τ narrowly in QT ×RN .
Moreover, we can make use of Theorem 2.5.2-(ii) in QT × RN for any
T ∈ (0,∞), choosing both ρ = ϕ and ρ = ρi, where ρi(ξ) := ξi (i = 1, . . . , N ;
see Remark 1.2.3). The first choice gives (1.3.41) with ϕ∗ defined by (1.3.17),
τ(x,t) denoting the disintegration of τ . Then letting εk → 0 in (1.4.27), by
(1.4.28)-(1.4.31) and (1.3.41) we obtain equality (1.3.16). By the second
choice ρ = ρi we have that

(
∇uεk

)
i
⇀
〈
τ(x,t), ρi

〉
RN =

∫

RN
ξi dτ(x,t)(ξ) in L1(QT ) (i = 1, . . . , N) ,

which together with the convergence in (1.3.35) implies equality (1.3.15).
Therefore, the couple (u, τ) is a Young measure solution of problem

(P ) in QT . It follows from Proposition 1.3.4 that u ∈ L∞(R+;W 1,p
0 (Ω)) ∩

C([0,∞);Lp(Ω)). To prove that τ ∈ Y(Q∞;RN ) observe that, since τ ∈
Y(QT ;RN ) for any T ∈ (0,∞), by elementary properties of measures we
have

λN+1(E) = lim
k→∞

λN+1(E ∩Qk) =

= lim
k→∞

τ((E ∩Qk)× RN ) = τ(E × RN )

for any Lebesgue measurable set E ⊆ Q∞, whence the claim follows.
Since (u, τ) is a Young measure solution of problem (P ) in QT for any

T ∈ (0,∞), it is a global solution; hence the result follows in the case N ≥ 2.
The proof when N = 1 is the same, using inequality (1.3.24) and Proposition
1.3.5 instead of (1.3.26) and Proposition 1.3.4, respectively. This completes
the proof. �

Remark 1.4.1. The argument used in the proof of Theorem 1.3.6 allows
us to show that, if N ≥ 2 and assumption (H2) is satisfied, every function
ϕ∗i defined by (1.3.17) (i = 1, . . . , N) belongs to Lr(QT ) for any T ∈ (0,∞)
and r = p

p−1 , with p ∈ (1, 2] (clearly if N = 1 we have ϕ∗ ∈ L∞(Q∞) by the
uniform estimate (1.3.24)).
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In fact, let T ∈ (0,∞) be fixed. By (H2) there exists M > 0 such that

|ϕ∗i |(x, t) ≤M
∫

RN

(
1 + |ξ|p−1

)
dτ(x,t)(ξ) (i = 1, . . . , N) (1.4.33)

for almost every (x, t) ∈ QT . Then by (1.4.33) and Jensen inequality there
holds

|ϕ∗i |r ≤ M̄
∫

RN
(1 + |ξ|p) dτ(x,t)(ξ) (i = 1, . . . , N) , (1.4.34)

with some constant M̄ > 0.
On the other hand, let {uεm} be the sequence mentioned in Proposition

1.3.4. For every j ∈ N, let ηj ∈ C∞c (R) be any function such that 0 ≤ ηj ≤ 1
in R, ηj(s) = 0 if |s| ≥ j.

Arguing as in the proof of Theorem 1.3.6 (see (1.4.32)), it is easily seen
that for every j ∈ N the the sequence {ηj(|∇uεm |) |∇uεm |p} is uniformly
bounded in QT , hence uniformly integrable. Then by Theorem 2.5.2-(ii)
there exists a subsequence {ηj(|∇uεk |) |∇uεk |p} such that

ηj(|∇uεk |)|∇uεk |p ⇀ f∗j in L1(QT ) , (1.4.35)

where

f∗j (x, t) :=

∫

RN
ηj(|ξ|) |ξ|p dτ(x,t)(ξ) for a.e. (x, t) ∈ QT . (1.4.36)

In particular, we have

∫∫

QT

dxdt

∫

RN
(1 + ηj(|ξ|) |ξ|p) dτ(x,t)(ξ) = (1.4.37)

= lim
k→∞

∫∫

QT

(1 + ηj(|∇uεk |) |∇uεk |p) dxdt ≤

≤ lim
k→∞

∫∫

QT

(1 + |∇uεk |p) dxdt ≤ C,

where the constant C > 0 is independent of j (see (1.3.26)). Since in the
limit as j →∞ there holds

ηj(|ξ|) |ξ|p → |ξ|p

for every ξ ∈ RN , from (1.4.34), (1.4.37) and the Fatou Lemma the claim
follows.
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1.5 Characterization of the limiting Young mea-
sure

Let χIl and χÎm be the characteristic functions of the intervals Il, respec-

tively Îm (l = 0, . . . , n; m = 1, . . . , n) introduced in Subsection 1.3.2; observe
that

n∑

l=0

χIl +

n∑

m=1

χÎm = 1 on R . (1.5.38)

For any f ∈ C(R) and almost every (x, t) ∈ QT (T ∈ (0,∞)) set

〈
σ

(l)
(x,t), f

〉
R

=

∫

R
f(λ) dσ

(l)
(x,t)(λ) :=

:=

∫

R
(f ◦ ϕ)(ξ)χIl(ξ) dτ(x,t)(ξ) (l = 0, . . . , n) ; (1.5.39)

〈
σ̂

(m)
(x,t), f

〉
R

=

∫

R
f(λ) dσ̂

(m)
(x,t)(λ) :=

:=

∫

R
(f ◦ ϕ)(ξ)χÎm(ξ) dτ(x,t)(ξ) (m = 1, . . . , n) ; (1.5.40)

σ(x,t) :=
n∑

l=0

σ
(l)
(x,t) +

n∑

m=1

σ̂
(m)
(x,t) . (1.5.41)

Since τ(x,t) ∈ P(R), from (1.5.38) and (1.5.39)-(1.5.41) with f ≡ 1 we obtain

that σ(x,t) ∈ P(R), too. Clearly, for almost every (x, t) ∈ QT all σ
(l)
(x,t) and

σ̂
(m)
(x,t), thus σ(x,t) are positive Radon measures on R, with compact support

since supp τ(x,t) is compact. It is also easily seen that the definitions (1.5.39)-
(1.5.40) imply

supp σ
(l)
(x,t) ⊆ Jl , supp σ̂

(m)
(x,t) ⊆ Ĵm (l = 0, . . . , n; m = 1, . . . , n)

(1.5.42)
for almost every (x, t) ∈ QT . In fact, for every f, g ∈ C(R) such that

supp f ∩Jl = ∅ and supp g∩ Ĵm = ∅, from (1.5.39) we obtain
〈
σ

(l)
(x,t), f

〉
= 0

and
〈
σ̂

(m)
(x,t), g

〉
= 0, whence the claim follows.

Recalling (1.3.42)-(1.3.43), from (1.5.38) and (1.5.39)-(1.5.40) we also
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have

〈
τ(x,t), f

〉
R =

∫

R
f(ξ) dτ(x,t)(ξ) = (1.5.43)

=
n∑

l=0

∫

R
(f ◦ sl ◦ ϕ)(ξ)χIl(ξ) dτ(x,t)(ξ) +

+
n∑

m=1

∫

R
(f ◦ tm ◦ ϕ)(ξ)χÎm(ξ) dτ(x,t)(ξ) =

=
n∑

l=0

∫

R
(f ◦ sl)(λ) dσ

(l)
(x,t)(λ) +

n∑

m=1

∫

R
(f ◦ tm)(λ) dσ̂

(m)
(x,t)(λ) =

=
n∑

l=0

〈
σ

(l)
(x,t), f ◦ sl

〉
R

+
n∑

m=1

〈
σ̂

(m)
(x,t), f ◦ tm

〉
R
.

Remark 1.5.1. It is easily seen that the probability measure σ(x,t) defined in
(1.5.41) coincides with the disintegration θ(x,t) of the limiting Young measure
θ in (1.3.51). In fact, for any h ∈ C(R) the family {(h ◦ ϕ)(uεx)} is uniformly
bounded in L∞(Q∞), hence uniformly integrable in L1(QT ) for every T ∈
(0,∞). Then by Theorem 2.5.2-(ii)

(h ◦ ϕ)(uεkx) ⇀

∫

R
h(λ) dθ(x,t)(λ) in L1(QT ) (1.5.44)

along some subsequence {uεkx}. On the other hand, by the same token we
also have

(h ◦ ϕ)(uεkx) ⇀

∫

R
(h ◦ ϕ)(ξ) dτ(x,t)(ξ) in L1(QT ) ; (1.5.45)

moreover, by (1.3.42), (1.3.43), (1.5.41) and (1.5.43) there holds

∫

R
(h ◦ ϕ)(ξ) dτ(x,t)(ξ) = (1.5.46)

=
n∑

l=0

∫

R
(h ◦ ϕ ◦ sl ◦ ϕ)(ξ)χIl(ξ) dτ(x,t)(ξ) +

+
n∑

m=1

∫

R
(h ◦ ϕ ◦ tm ◦ ϕ)(ξ)χÎm(ξ) dτ(x,t)(ξ) =

=
n∑

l=0

∫

R
h(λ) dσ

(l)
(x,t)(λ) +

n∑

m=1

∫

R
h(λ) dσ̂

(m)
(x,t)(λ) =

=

∫

R
h(λ) dσ(x,t)(λ) .

By (1.5.44), (1.5.46) and the arbitrariness of h the claim follows.
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As a particular case of (1.3.17), set

ϕ∗(x, t) :=

∫

R
ϕ(ξ) dτ(x,t) ((x, t) ∈ Q∞) . (1.5.47)

Then we have the following

Proposition 1.5.1. Let the assumptions of Theorem 1.3.7 be satisfied.
Then for almost every (x, t) ∈ Q∞ the measure σ(x,t) defined in (1.5.41)
is the Dirac measure concentrated at some point λ0(x, t) ∈ R.

Using the above proposition we can prove Theorem 1.3.8.

Proof of Theorem 1.3.8. By Proposition 1.5.1 there holds

λ0(x, t) =

∫

R
λ dσ(x,t)(λ) =

∫

R
ϕ(ξ) dτ(x,t)(ξ) = ϕ∗(x, t) .

Then by Remark 1.5.1 we have

θ(x,t) = δ(· − ϕ∗(x, t))

for almost every (x, t) ∈ Q∞, with ϕ∗ defined in (1.5.47). Therefore equality
(1.3.52) will follow, if we prove that ϕ∗ = w almost everywhere in Q∞.

To this purpose, observe that by inequality (1.3.45) for any T ∈ (0,∞)
there holds

‖ϕ(uεkx)− wεk‖L2(QT ) = εk ‖uεkxt‖L2(QT ) → 0 as k →∞ . (1.5.48)

By (1.3.48) and (1.5.48) we obtain ϕ∗ = w almost everywhere in QT for any
T ∈ (0,∞). This proves the result. �

Let us now prove Theorem 1.3.7.

Proof of Theorem 1.3.7. Let {εk} be a sequence of indices such that the
convergence results in Proposition 1.3.5 and (1.3.48) hold true. Set for any
k ∈ N

Q
(k)
l := {(x, t) ∈ Q∞ | uεkx(x, t) ∈ Il} (l = 0, . . . , n) , (1.5.49)

Q(k)
m :=

{
(x, t) ∈ Q∞ | uεkx(x, t) ∈ Îm

}
(m = 1, . . . , n) ,

and denote by χ
Q

(k)
l

, χ
Q

(k)
m

the characteristic functions of these sets. Then

for any f ∈ C(R) the equality

f (uεkx) =
n∑

l=0

χ
Q

(k)
l

f (sl (ϕ(uεkx))) +
n∑

m=1

χ
Q

(k)
m
f (tm (ϕ(uεkx))) (1.5.50)

holds almost everywhere in Q∞.
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For any fixed l and m the sequences
{
χ
Q

(k)
l

}
,
{
χ
Q

(k)
m

}
are uniformly

bounded in L∞(Q∞). Hence there exist two subsequences (denoted again{
χ
Q

(k)
l

}
,
{
χ
Q

(k)
m

}
for simplicity) and two functions cl ∈ L∞(Q∞), dm ∈

L∞(Q∞) such that

χ
Q

(k)
l

∗
⇀ cl , χ

Q
(k)
m

∗
⇀ dm in L∞(QT ) (1.5.51)

for any T ∈ (0,∞). It is easily seen that the functions cl, dm (l = 0, . . . , n; m =
1, . . . , n) have the properties asserted in the statement.

We shall prove that:

lim
k→∞

χ
Q

(k)
l

f (sl (ϕ(uεkx))) = cl f (sl(w)) (l = 0, . . . , n) , (1.5.52)

lim
k→∞

χ
Q

(k)
m
f (tm (ϕ(uεkx))) = dm f (tm(w)) (m = 1, . . . , n)

weakly* in L∞(Q∞). On the other hand, since the family {uεx} is uniformly
integrable, by Theorem 2.5.2-(ii) we have

lim
k→∞

f (uεkx) = f∗ in L1(QT )

for any T ∈ (0,∞), where

f∗(x, t) =

∫

R
f(ξ) dτ(x,t)(ξ) for a.e. (x, t) ∈ QT

for almost every (x, t) ∈ QT . Therefore, letting k →∞ in (1.5.50) and using
(1.5.52) we obtain the equality

∫

R
f(ξ) dτ(x,t)(ξ) =

n∑

l=0

cl f (sl(w)) +
n∑

m=1

dm f (tm(w))

almost everywhere in QT , whence the characterization (1.3.50) follows by
the arbitrariness of f .

Now let us prove the first equality in (1.5.52). Observe that for any
T ∈ (0,∞) and any ζ ∈ L1(QT )

∫∫

QT

[
χ
Q

(k)
l

f (sl (ϕ(uεkx)))− cl f (sl(w))
]
ζ dxdt = (1.5.53)

=

∫∫

QT

[
χ
Q

(k)
l

− cl
]
f (sl (w)) ζ dxdt +

+

∫∫

QT

χ
Q

(k)
l

[
f (sl (ϕ(uεkx)))− f (sl (w))

]
ζ dxdt .

Since w ∈ L∞(QT ) for any T ∈ (0,∞) and f ◦ sl is continuous, the first
integral in the right-hand side of the above equality goes to zero as k →∞
by (1.5.51).
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Concerning the second observe that, since by Theorem 1.3.8 the disinte-
gration θ(x,t) is the Dirac mass concentrated at the point {w(x, t)}, possibly
extracting a subsequence (denoted again {uεkx} for simplicity) there holds

ϕ (uεkx)→ w almost everywhere in Q .

(see [V1, Theorem 9]). By the Dominated Convergence Theorem, this im-
plies that also the second integral vanishes as k →∞, thus the first equality
in (1.5.52) follows. The proof of the other is similar, thus it is omitted. This
completes the proof. �

It remains to prove Proposition 1.5.1. To this purpose, we generalize
to the present situation the proof given in [Pl1] for a cubic ϕ. Consider
the orthonormal basis of L2(Ω) given by the eigenfunctions ηi ∈ H1(Ω) of
the operator −∆ with homogeneous Neumann conditions. Let

{
µi
}

be the
corresponding sequence of eigenvalues. For any ε > 0 let Pε, Qε : L2(Ω) →
H1(Ω), Pε +Qε = I, be the projection operators defined as follows:

Pεf :=
∑

εµi≤1

fiηi , Qεf :=
∑

εµi>1

fiηi , fi :=

∫

Ω
f ηi dx (f ∈ L2(Ω)) .

(1.5.54)
The proof of the following result is the same of [Pl1, Lemma 2.1], thus we
omit it.

Lemma 1.5.2. There exists C > 0 such that for any ε > 0

‖Pε ϕ(vε)‖L2((0,T );H1
0 (Ω)) + ε−1/2‖Qεϕ(vε)‖L2(QT ) ≤ C . (1.5.55)

Let a0 ∈ I0 be the unique point such that ϕ(a0) = A, where A :=
min{ϕ(a1), . . . , ϕ(an)} (see Subsection 1.3.2). Set

G(z) :=

∫ z

a0

(g ◦ ϕ)(r)dr (z ∈ R) . (1.5.56)

Then we have the following result, whose proof is the same of [ST2, Propo-
sition 3.3]); we give it for convenience of the reader.

Proposition 1.5.3. Let τ(x,t) be the disintegration of the limiting Young
measure τ , and let G be the function (1.5.56) with g ∈ C1

c (R). Let f ∈ C1(R)
such that ‖f‖L∞(R) + ‖f ′‖L∞(R) ≤ C for some constant C > 0. Then

〈
τ(x,t), (f ◦ ϕ)G

〉
R =

〈
τ(x,t), f ◦ ϕ

〉
R

〈
τ(x,t), G

〉
R . (1.5.57)

Proof. Set F := f ◦ ϕ. Let T ∈ (0,∞) be fixed, and let {vεk} be the
converging sequence in (1.3.49). Under the present assumptions the se-
quences {F (vεk)} and {G(vεk)}, thus {F (vεk)G(vεk)} are uniformly bounded
in L∞(QT ) (see (1.3.45)). Therefore, by Theorem 2.5.2-(ii)

F (vεk)G(vεk)
∗
⇀
〈
τ(x,t), F G

〉
R in L∞(QT )
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(see (2.5.5)-(2.5.6)). Then the conclusion follows, if we prove that

F (vεk)G(vεk)
∗
⇀ F∗G∗ in L∞(QT ) , (1.5.58)

where
F∗(x, t) :=

〈
τ(x,t), F

〉
R , G∗(x, t) :=

〈
τ(x,t), G

〉
R

are the weak* limits in L∞(QT ) of the sequences {F (vεk)} and {G(vεk)},
respectively.

To this purpose, set F εk := f(Pεk ϕ(vεk)), where Pεk is the projection
operator defined in (1.5.54) with ε = εk. Recalling that by assumption
‖f ′‖L∞(R) <∞, we have

‖F εk − F (vεk)‖L2(QT ) = ‖f(Pεk ϕ(vεk))− f(ϕ(vεk))‖L2(QT )(1.5.59)

≤ ‖f ′‖L∞(R) ‖Qεkϕ(vεk)‖L2(QT ) .

By (1.5.55) the right-hand side of the above inequality goes to zero as k →
∞. Then we obtain

‖ [F εk − F (vεk)]G(vεk)‖L2(QT ) → 0 as k →∞ .

Hence to prove (1.5.58) it suffices to show that for any ζ ∈ C1
c (QT )

∫∫

QT

F εkG(vεk) ζ dxdt→
∫∫

QT

F∗G∗ζ dxdt . (1.5.60)

Set Ω ≡ (a, b), and

Γεk(x, t) :=

∫ x

a
G(vεk)(z, t)dz for almost every (x, t) ∈ QT . (1.5.61)

Then we have
∫∫

QT

F εkG(vεk) ζ dxdt = −
∫∫

QT

(F εkζ)xΓεkdxdt . (1.5.62)

Since ‖f ′‖L∞(R) <∞, by inequality (1.5.55) there exists C̄ > 0 such that

‖F εkx ‖L2(QT ) ≤ ‖f ′‖L∞(R)‖[Pεk [ϕ(vεk)]]x‖L2(QT ) ≤ C̄ .

By estimate (1.3.45) the sequence {F εk} is uniformly bounded in L∞(QT ),
thus in L2(QT ); hence by the above inequality it is also uniformly bounded
in L2((0, T );H1(Ω)). Then there exists F̄ ∈ L2((0, T );H1(Ω)) such that

F εk ⇀ F̄ in L2((0, T );H1(Ω)) .

By (1.5.59) this implies that

F (vεk) ⇀ F̄ in L2(QT ) ,
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whence F∗ = F̄ in QT . Therefore F∗ ∈ L2((0, T );H1(Ω)) and

(F εk ζ)x ⇀ (F∗ ζ)x in L2(QT ) . (1.5.63)

On the other hand, since G(vεk)
∗
⇀ G∗ in L∞(QT ), for almost every

(x, t) ∈ QT we have

Γεk(x, t)→ Γ∗(x, t) :=

∫ x

a
G∗(z, t) dz . (1.5.64)

Since the family {Γεk} is uniformly bounded in L∞(QT ), the above conver-
gence implies that

Γεk → Γ∗ in L2(QT ). (1.5.65)

By (1.5.63) and (1.5.65), the right-hand side of equality (1.5.62) converges
to

−
∫∫

QT

(F∗ζ)xΓ∗dxdt =

∫∫

QT

F∗G∗ζ dxdt

(see (1.5.64)). This proves (1.5.60), thus the conclusion follows. �
Denote by e1 ≤ . . . e2n the set of the local extrema ϕ(al), ϕ(bl) (l =

1, . . . , n) of the graph of ϕ; hence e1 = A, e2n = B and

R = (−∞, A]
⋃ (

2n−1⋃

k=1

[ek, ek+1]

) ⋃
[B,∞) .

Let E ≡ Ek denote any interval [ek, ek+1] (k = 1, . . . , 2n− 1). Observe that
for every l = 0, . . . , n there holds either E ⋂ Jl = ∅ , or E ⋂ Jl = E , and
similarly for E ∩ Ĵm (m = 1, . . . , n). Therefore, there exist p + 1 intervals
Jli and p intervals Ĵmj (p = 1, . . . , n; li ∈ {0, . . . , p}; mj ∈ {1, . . . , p}) such
that

E ⊆
(
p+1⋂

i=1

Jli

) ⋂



p⋂

j=1

Ĵmj


 . (1.5.66)

We shall suppose without loss of generality that li−1 ≤ li for any i =
1, . . . , p+ 1, and mj−1 ≤ mj for any j = 1, . . . , p.

Relying on Proposition 1.5.3 we can prove the following lemma, where

we set σ ≡ σ(x,t) , σ(l) ≡ σ(l)
(x,t) , σ̂(m) ≡ σ̂(m)

(x,t) for simplicity.

Lemma 1.5.4. (i) Let E ≡ Ek denote any interval [ek, ek+1] (k = 1, . . . , 2n−
1), and let K ⊆ E be any compact subset such that σ(K) > 0. Then for
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almost every λ ∈ E
p+1∑

i=1

Di(λ)

(
σ(li)(K)

σ(K)
− σ(li)(E)

)
+

+

p∑

j=1

Dj+1(λ)

(
σ̂(mj)(K)

σ(K)
− σ̂(mj)(E)

)
=

=

p+1∑

i=1

s′li(λ)

(
ρ(li)(λ)− ρ

(li)
K (λ)

σ(K)

)
+

+

p∑

j=1

t′mj (λ)

(
ρ̂(mj)(λ)− ρ̂

(mj)
K (λ)

σ(K)

)
(1.5.67)

where

D1(λ) := 0 , Di(λ) :=
i−1∑

k=1

(
s′lk − t

′
mk

)
(λ) (i = 2, . . . , p+ 1) , (1.5.68)

ρ(li)(λ) := σ(li)([λ, ϕ(bli+1)]) , ρ̂(mj)(λ) := σ̂(mj)([λ, ϕ(bmj )]) , (1.5.69)

ρ
(li)
K (λ) := σ(li)([λ, ϕ(bli+1)] ∩K) , ρ̂

(mj)
K (λ) := σ̂(mj)([λ, ϕ(bmj )] ∩K) .

(1.5.70)
(ii) Let K ⊆ (−∞, A] (where A := min{ϕ(a1), . . . , ϕ(an)}) be any compact
subset such that σ(K) > 0. Then for almost every λ ∈ (−∞, A]

σ(0)((−∞, λ]) =
σ(0)((−∞, λ] ∩K)

σ(K)
. (1.5.71)

Similarly, let K ⊆ [B,∞) (where B := max{ϕ(b1), . . . , ϕ(bn)}) be any com-
pact subset such that σ(K) > 0. Then for almost every λ ∈ [B,∞)

σ(n)([λ,∞)) =
σ(n)([λ,∞) ∩K)

σ(K)
. (1.5.72)

Proof. (i) Since K ⊆ E is compact, there exists a sequence {fh} ⊂ Cc(E),
fh ≥ 0, fh = 1 on K, such that as h→∞

fh(λ)→ χK(λ) for any λ ∈ E ,
where χK denotes the characteristic function of K. Set Fh := fh ◦ ϕ, and
consider the function G defined in (1.5.56) with g ∈ C1

c (E). By equalities
(1.5.43) and (1.5.57) we obtain easily

n∑

l=0

〈
σ(l), fh(G ◦ sl)

〉
R

+
n∑

m=1

〈
σ̂(m), fh(G ◦ tm)

〉
R

=

= 〈σ, fh〉R

{
n∑

l=0

〈
σ(l), (G ◦ sl)

〉
R

+

n∑

m=1

〈
σ̂(m), (G ◦ tm)

〉
R

}
,
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whence, letting h→∞:

n∑

l=0

∫

R
(G ◦ sl)(λ) dσ(l)(λ) +

n∑

m=1

∫

R
(G ◦ tm)(λ) dσ̂(m)(λ) = (1.5.73)

=
1

σ(K)

{
n∑

l=0

∫

K
(G ◦ sl)(λ) dσ(l)(λ) +

n∑

m=1

∫

K
(G ◦ tm)(λ) dσ̂(m)(λ)

}
.

Choosing g ∈ C1
c (E), by (1.5.41), (1.5.42) and the definition of G it is ap-

parent that only the intervals Jli and Ĵmj (i = 1, . . . , p+1; j = 1, . . . , p ; p =
1, . . . , n) in the right-hand side of (1.5.66) contribute to the sums in equality
(1.5.73), which thus reads

p+1∑

i=1

∫

E
(G ◦ sli)(λ) dσ(li)(λ) +

p∑

j=1

∫

E
(G ◦ tmj )(λ) dσ̂(mj)(λ) = (1.5.74)

=
1

σ(K)

{
p+1∑

i=1

∫

K
(G ◦ sli)(λ) dσ(li)(λ) +

p∑

j=1

∫

K
(G ◦ tmj )(λ) dσ̂(mj)(λ)

}

(here (1.5.66) has been used). Now observe that for every λ ∈ E

(G ◦ sl1)(λ) =

∫ sl1 (λ)

al1

g(ϕ(r)) dr =

∫ λ

ϕ(al1 )
g(ζ)s′l1(ζ) dζ , (1.5.75)

whereas for every i = 2, . . . , p+ 1 and λ ∈ E

(G ◦ sli)(λ) = (1.5.76)

=
i−1∑

k=1

{∫

Ilk

g(ϕ(r)) dr +

∫

Îmk

g(ϕ(r)) dr

}
+

∫ sli (λ)

ali

g(ϕ(r)) dr =

=
i−1∑

k=1

{∫

Jlk

g(ζ)s′lk(ζ) dζ −
∫

Ĵmk

g(ζ)t′mk(ζ) dζ

}
+

∫ λ

ϕ(ali )
g(ζ)s′li(ζ) dζ =

=

∫

E
g(ζ)Di(ζ) dζ +

∫ λ

ϕ(ali )
g(ζ)s′li(ζ) dζ ,

with Di defined by (1.5.68). Since D1(ζ) := 0 by definition, equalities
(1.5.75), (1.5.76) take the form

(G◦sli)(λ) =

∫

E
g(ζ)Di(ζ) dζ+

∫ λ

ϕ(ali )
g(ζ)s′li(ζ) dζ for every i = 1, . . . , p+1 .

(1.5.77)
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Similarly, for every j = 1, . . . , p and λ ∈ E

(G ◦ tmj )(λ) = (1.5.78)

=

j∑

k=1

{∫

Ilk

g(ϕ(r)) dr +

∫

Îmk

g(ϕ(r)) dr

}
−
∫ amj

tmj (λ)
g(ϕ(r)) dr =

=

j∑

k=1

{∫

Jlk

g(ζ)s′lk(ζ) dζ −
∫

Ĵmk

g(ζ)t′mk(ζ) dζ

}
+

∫ λ

ϕ(amj )
g(ζ)t′mj (ζ) dζ =

=

∫

E
g(ζ)Dj+1(ζ) dζ +

∫ λ

ϕ(amj )
g(ζ)t′mj (ζ) dζ .

By (1.5.78), (1.5.77) the sum in the left-hand side of equation (1.5.74)
plainly becomes

p+1∑

i=1

∫

E
(G ◦ sli)(λ) dσ(li)(λ) +

p∑

j=1

∫

E
(G ◦ tmj )(λ) dσ̂(mj)(λ)

=

p+1∑

i=1

∫

E
dσ(li)(λ)

{∫

E
g(ζ)Di(ζ) dζ +

∫ λ

ϕ(ali )
g(ζ)s′li(ζ) dζ

}
+

+

p∑

j=1

∫

E
dσ̂(mj)(λ)

{∫

E
g(ζ)Dj+1(ζ) dζ +

∫ λ

ϕ(amj )
g(ζ)t′mj (ζ) dζ

}
=

=

∫

E
dζ g(ζ)

{
p+1∑

i=1

[
Di(ζ)σ(li)(E) + s′li(ζ) ρ(li)(ζ)

]
+

+

p∑

j=1

[
Dj+1(ζ)σ̂(mj)(E) + t′mj (ζ) ρ̂(mj)(ζ)

]}
, (1.5.79)

with ρ(li), ρ̂(mj) defined by (1.5.69). Similarly, the sum in the right-hand
side of equation (1.5.74) reads

p+1∑

i=1

∫

K
(G ◦ sli)(λ) dσ(li)(λ) +

p∑

j=1

∫

K
(G ◦ tmj )(λ) dσ̂(mj)(λ) =

=

∫

E
dζ g(ζ)

{
p+1∑

i=1

[
Di(ζ)σ(li)(K) + s′li(ζ) ρ

(li)
K (ζ)

]
+

+

p∑

j=1

[
Dj+1(ζ)σ̂(mj)(K) + t′mj (ζ) ρ̂

(mj)
K (ζ)

]}
, (1.5.80)

with ρ
(li)
K , ρ̂

(mj)
K defined by (1.5.70). Since g is arbitrary, from (1.5.74),

(1.5.79) and (1.5.80) we obtain (1.5.67). This proves claim (i).
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Concerning (ii), observe that when K ⊆ (−∞, A] and g ∈ C1
c ((−∞, A])

equality (1.5.73) reads simply

∫ A

−∞
dσ(0)(λ)

∫ λ

A
g(ζ)s′0(ζ) dζ =

1

σ(K)

∫

K
dσ(0)(λ)

∫ λ

A
g(ζ)s′0(ζ) dζ .

Similarly, when K ⊆ [B,∞) and g ∈ C1
c ([B,∞)) equality (1.5.73) becomes

∫ ∞

B
dσ(n)(λ)

∫ λ

B
g(ζ)s′0(ζ) dζ =

1

σ(K)

∫

K
dσ(n)(λ)

∫ λ

B
g(ζ)s′0(ζ) dζ .

Interchanging the order of integration as in the proof of (1.5.79) and (1.5.80)
we obtain equalities (1.5.71)-(1.5.72). This completes the proof. �

Now we can prove Proposition 1.5.1.

Proof of Proposition 1.5.1. Let E ≡ Ek be any interval [ek, ek+1] ⊆ [A,B]
(k = 1, . . . , 2n− 1), and suppose that suppσ|E 6= ∅. Set

λ0 := min {λ ∈ suppσ|E}

(as before, for simplicity we write σ ≡ σ(x,t), λ0 ≡ λ0(x, t) and so on). Let
us prove that that suppσ|E = {λ0}.

If λ0 = ek+1, the conclusion follows. Otherwise, consider the compact
K = [λ0, λ0 + δ] with δ > 0 so small that K ⊆ E . Then σ(K) > 0 and

ρ
(li)
K (λ) = ρ̂

(mj)
K (λ) = 0 for any λ ∈ (λ0 + δ, ek+1]

(i = 1, . . . , p+ 1, j = 1, . . . , p; see (1.5.70)). Hence

p+1∑

i=1

s′li(λ) ρ
(li)
K (λ) +

p∑

j=1

t′mj (λ) ρ̂
(mj)
K (λ) = 0 (1.5.81)

for any λ ∈ (λ0 + δ, ek+1], and equality (1.5.67) reads

p+1∑

i=2

Di(λ)

(
σ(li)(K)

σ(K)
− σ(li)(E)

)
+

p∑

j=1

Dj+1(λ)

(
σ̂(mj)(K)

σ(K)
− σ̂(mj)(E)

)
=

=

p+1∑

i=1

s′li(λ) ρ(li)(λ) +

p∑

j=1

t′mj (λ) ρ̂(mj)(λ) (1.5.82)

with K = [λ0, λ0+δ], for almost every λ ∈ (λ0+δ, ek+1]. By the arbitrariness
of δ, there exists a sequence {δk} such that δk → 0 as k →∞ and

lim
k→∞

σ(li)([λ0, λ0 + δk])

σ([λ0, λ0 + δk])
=: Lli
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lim
k→∞

σ̂(mj)([λ0, λ0 + δk])

σ̂([λ0, λ0 + δk])
=: L̂mj

for some Lli , L̂mj ≤ 1. Then from (1.5.82) we get

p+1∑

i=2

Di(λ)Ni +

p∑

j=1

Dj+1(λ) N̂j = (1.5.83)

=

p+1∑

i=1

s′li(λ) ρ(li)(λ) +

p∑

j=1

t′mj (λ) ρ̂(mj)(λ) ,

for almost every λ ∈ (λ0, ek+1], where

Ni := Lli − σ(li)(E) , N̂j := L̂mj − σ̂(mj)(E) . (1.5.84)

Now consider any compact K ⊆ [λ0, ek+1). Then there exists an interval
(λ∗, ek+1) such that K ∩ (λ∗, ek+1) = ∅. For any λ ∈ (λ∗, ek+1) equality
(1.5.81) holds with this choice of K. Therefore, using (1.5.67) again, we
obtain that equality (1.5.82) holds for almost every λ ∈ (λ∗, ek+1). Since
(λ∗, ek+1) ⊆ (λ0, ek+1], from equalities (1.5.82) and (1.5.83) we obtain

p+1∑

i=2

αiDi(λ) +

p∑

j=1

βj Dj+1(λ) = 0 (1.5.85)

for almost every λ ∈ (λ∗, ek+1), where

αi :=
σ(li)(K)

σ(K)
− Lli , , βj :=

σ̂(mj)(K)

σ(K)
− L̂mj . (1.5.86)

Recalling definition (1.5.68), equality (1.5.85) plainly reads

p+1∑

i=2

αi

i−1∑

k=1

(
s′lk − t

′
mk

)
+

p∑

j=1

βj

j∑

k=1

(
s′lk − t

′
mk

)
= (1.5.87)

=

p∑

k=1




p+1∑

i=k+1

αi +

p∑

j=k

βj


(s′lk − t

′
mk

)
= 0

almost everywhere in λ ∈ (λ∗, ek+1). Then by the continuity of s′lk , t
′
mk

and
condition (C) we obtain

p+1∑

i=k+1

αi +

p∑

j=k

βj = 0 for every k = 1, . . . , p ,

namely
α2 + β1 = · · · = αp+1 + βp = 0 , (1.5.88)
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for any compact K ⊆ [λ0, ek+1). Replacing the above equalities in the left-
hand side of (1.5.83), by equalities (1.5.84) and (1.5.86) we get

p+1∑

i=2

Di(λ)Ni +

p∑

j=1

Dj+1(λ) N̂j =

p+1∑

i=2

Di(λ)
(
Ni + N̂i−1

)
=

=

p+1∑

i=2

Di(λ)

(
σ(li)(K)

σ(K)
− σ(li)(E) +

σ̂(mi−1)(K)

σ(K)
− σ̂(mi−1)(E)− αi − βi−1

)
=

=

p+1∑

i=2

Di(λ)

(
σ(li)(K)

σ(K)
− σ(li)(E) +

σ̂(mi−1)(K)

σ(K)
− σ̂(mi−1)(E)

)
,

namely the left-hand side of (1.5.82). Therefore, equality (1.5.82) holds for
almost every λ ∈ (λ0, ek+1] and any compact K ⊆ [λ0, ek+1). In turn, by
equality (1.5.67) this implies that equality (1.5.81) holds for the same λ and
K.

Now consider any closed interval K = [γ, δ] ⊆ (λ0, ek+1). If λ ∈ (λ0, γ),
there holds [λ, ϕ(bli+1)] ∩ K = [λ, ek+1] ∩ K = K and [λ, ϕ(bmj )] ∩ K =
[λ, ek+1] ∩K = K. Therefore,

ρ(li)(λ) := σ(li)(K) , ρ̂(mj)(λ) := σ̂(mj)(K) (i = 2, . . . , p+1; j = 1, . . . , p) ,

whence by equality (1.5.81)

p+1∑

i=1

s′li(λ)σ(li)(K) +

p∑

j=1

t′mj (λ) σ̂(mj)(K) = 0 (1.5.89)

for any λ ∈ (λ0, γ). By condition (C), the above equality implies σ(li)(K) =
σ̂(mj)(K) = 0 for every i = 2, . . . , p + 1, j = 1, . . . , p. Since λ0 < γ <
δ < ek+1 and γ, δ are arbitrary, the measures σ(li) and σ̂(mj), thus σ|E are
concentrated on the set {ek+1} ∪ {λ0}.

To conclude the argument, let us prove that suppσ|E = {λ0}. Suppose
by contradiction that {ek+1} ∈ suppσ|E . Choosing K = {ek+1} in equality
(1.5.67) gives for almost every λ ∈ (λ0, ek+1)

ρ
(li)
K (λ) = σ(li)([λ, ek+1] ∩ {ek+1}) = σ(li)({ek+1}) = σ(li)(K) ,

ρ(li)(λ) := σ(li)([λ, ek+1]) = σ(li)([λ, ek+1)∪{ek+1}) = σ(li)({ek+1}) = σ(li)(K) ,

since

σ(li)([λ, ek+1)) = lim
n→∞

σ(li)

([
λ, ek+1 −

1

n

])
= 0 .

Similarly,

ρ̂(mj)(λ) = ρ̂
(mj)
K (λ) = σ̂(mj)(K) (λ ∈ (λ0, ek+1)) .
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Then from equality (1.5.67) we obtain for almost every λ ∈ (λ0, ek+1)

p+1∑

i=1

Di(λ)

(
σ(li)(K)

σ(K)
− σ(li)(E)

)
+

p∑

j=1

Dj+1(λ)

(
σ̂(mj)(K)

σ(K)
− σ̂(mj)(E)

)
=

=

p+1∑

i=1

s′li(λ)

(
σ(li)(K)− σ(li)(K)

σ(K)

)
+

p∑

j=1

t′mj (λ)

(
σ̂(mj)(K)− σ̂(mj)(K)

σ(K)

)
.

Recalling definition (1.5.68), from the above equality we get for almost every
λ ∈ E

p∑

k=1

s′lk(λ)

[
p+1∑

i=k+1

(
σ(li)(K)

σ(K)
− σ(li)(E)

)
+

p∑

j=k

(
σ̂(mj)(K)

σ(K)
− σ̂(mj)(E)

)
+

+

(
σ(lk)(K)

σ(K)
− σ(lk)(K)

)]
+ s′lp+1

(λ)

(
σ(lp+1)(K)

σ(K)
− σ(lp+1)(K)

)
=

=

p∑

k=1

t′mk(λ)

[
p+1∑

i=k+1

(
σ(li)(K)

σ(K)
− σ(li)(E)

)
+

p∑

j=k

(
σ̂(mj)(K)

σ(K)
− σ̂(mj)(E)

)
+

+

(
σ̂(mk)(K)− σ̂(mk)(K)

σ(K)

)]
.

By condition (C), from the above equality we obtain

p+1∑

i=k+1

(
σ(li)(K)

σ(K)
− σ(li)(E)

)
+

p∑

j=k

(
σ̂(mj)(K)

σ(K)
− σ̂(mj)(E)

)
+

+

(
1

σ(K)
− 1

)
σ(lk)(K) = 0 , (1.5.90)

p+1∑

i=k+1

(
σ(li)(K)

σ(K)
− σ(li)(E)

)
+

p∑

j=k

(
σ̂(mj)(K)

σ(K)
− σ̂(mj)(E)

)
+

+

(
1− 1

σ(K)

)
σ̂(mk)(K) = 0 (1.5.91)

for any k = 1, . . . , p, and
(

1

σ(K)
− 1

)
σ(lp+1)(K) = 0 . (1.5.92)

From equalities (1.5.90)-(1.5.91) we obtain

(
1

σ(K)
− 1

)[
σ(lk)(K) + σ̂(mk)(K)

]
= 0 for any k = 1, . . . , p . (1.5.93)
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Adding equalities (1.5.93) over k = 1, . . . , p and (1.5.92), and recalling
that

σ(K) =

p+1∑

k=1

σ(lk)(K) +

p∑

k=1

σ̂(mk)(K) ,

we obtain that
(

1

σ(K)
− 1

)
σ(K) = 1− σ(K) = 0 ⇒ σ(K) = σ({ek+1}) = 1 .

However, this contradicts the fact that σ ∈ P(R), since it implies

σ({ek+1} ∪ {λ0}) = σ({ek+1}) + σ({λ0}) = 1 + σ({λ0}) > 1

(recall that {λ0} ∈ suppσ|E by definition of λ0). The contradiction proves
that σ|E is concentrated on {λ0}.

The above arguments can be readily adapted to the much simpler situa-
tion concerning the restrictions σ|(−∞,A] and σ|[B,∞). In fact, suppose that
suppσ|(−∞,A] 6= ∅; set

λ1 := max
{
λ ∈ suppσ|(−∞,A]

}
.

Consider for any δ > 0 the compact K = [λ1 − δ, λ1]. Then σ(K) > 0 and

σ(0)((−∞, λ] ∩K) = 0 for any λ ∈ (−∞, λ1 − δ] .

By equality (1.5.71) and the arbitrariness of δ we obtain that σ(0)((−∞, λ1),
thus suppσ|(−∞,A] = {λ1}. It is similarly seen that suppσ|[B,∞) consists at
most of one point.

The above considerations show that the support of the measure σ consists
of at most 2n + 1 points {qk} (k = 0, . . . , 2n), such that q0 ∈ (−∞, A],
qk ∈ [ek, ek+1] (k = 1, . . . , 2n−1) and qn ∈ [B,∞). Arguing for each interval
[qk, qk+1] (k = 0, . . . , 2n− 1) as we did before for the intervals [ek, ek+1], we
can prove that σ({qk}) = 1 for each k = 0, . . . , 2n. However, since σ ∈ P(R),
this implies that suppσ consists of one point. This completes the proof. �

1.6 Asymptotic behaviour

To prove Theorem 1.3.9 we need some preliminary results. Recall that by
X we denote the space W 1,p

0 (Ω) with p ∈ (1,∞) if N = 1, or p ∈ (1, 2] if
N ≥ 2.
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Lemma 1.6.1. Let the assumptions of Theorem 1.3.9 be satisfied, and let
(u, τ) ∈ L∞(R+;X) × Y(Q∞;RN ) be any global Young measure solution
of problem (P ) given by Theorem 1.3.6. Let un(·, t) := u(·, t + tn) be the
sequence defined in (1.3.53) for almost every t ∈ R+ and every diverging
sequence {tn} ⊂ R+.
Then there exist a subsequence of {un}, denoted again by {un} for simplicity,
and ũ ∈ L∞(R+;X) ∩W 1,p(QT ) ∩ C([0,∞);Lp(Ω)) (p ∈ (1, 2]) with ũt ∈
L2(Q∞), such that:

un → ũ in C([0, T );Lp(Ω)) (p ∈ (1, 2]) (1.6.1)

for any T ∈ (0,∞);

un ⇀ ũ in H1(QT ) if N = 1 , un ⇀ ũ in W 1,p(QT ) if N ≥ 2 (1.6.2)

for any T ∈ (0,∞);
un ⇀ ũ in Lr((0, T );X) (1.6.3)

for any T ∈ (0,∞) and every r ∈ [1,∞);

un
∗
⇀ ũ in L∞((0, T );X) (1.6.4)

for any T ∈ (0,∞);

∇un ∗
⇀ ∇ũ in L∞((0, T );Lp(Ω)) (p ∈ (1, 2]) (1.6.5)

for any T ∈ (0,∞);
unt ⇀ ũt in L2(Q∞) . (1.6.6)

Proof. Recall that u ∈ L∞(R+;X) and ut ∈ L2(Q∞); moreover, for any
T ∈ (0,∞) u ∈ W 1,p(QT ) ∩ C([0,∞);Lp(Ω)) (p ∈ (1, 2]; see Propositions
1.3.4, 1.3.5 and Theorem 1.3.6).

Clearly, for any n ∈ N there holds

‖un‖L∞(R+;X) + ‖unt‖L2(Q∞) ≤ ‖u‖L∞(R+;X) + ‖ut‖L2(Q∞) , (1.6.7)

‖un‖H1(QT ) ≤ ‖u‖H1(QT ) if N = 1 , (1.6.8)

‖un‖W 1,p(QT ) ≤ ‖u‖W 1,p(QT ) if N ≥ 2 (p ∈ (1, 2]) (1.6.9)

for any T ∈ (0,∞). Arguing as in the proof of Proposition 1.3.4, the con-
vergence in (1.6.1) follows from inequalities (1.6.9) and (1.6.8), which also
imply (1.6.2), whereas the convergences in (1.6.3)-(1.6.6) follow from in-
equality (1.6.7). This proves the result. �
Lemma 1.6.2. Let the assumptions of Theorem 1.3.9 be satisfied, and let
(u, τ) ∈ L∞(R+;X) × Y(Q∞;RN ) be any global Young measure solution
of problem (P ) given by Theorem 1.3.6. Let {τn} ⊆ Y(Q∞;RN ) be the
sequence of Young measures, whose disintegration is defined in (1.3.53) for
almost every t ∈ R+ and every diverging sequence {tn} ⊂ R+. Then {τn} is
tight in Y(QT ;RN ) for any T ∈ (0,∞).
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Proof. Let T ∈ (0,∞) be fixed, and let {uεm} be the sequence mentioned
in Propositions 1.3.4 and 1.3.5. Then, by estimates (1.3.24), (1.3.26) and
Theorem 2.5.2-(ii), for every q ∈ (1, p) (where p ∈ (1,∞) if N = 1, or
p ∈ (1, 2] if N ≥ 2) there exists C > 0 such that

∫∫

QT

dxdt

∫

RN
|ξ|q dτ(x,t+tn)(ξ) =

∫∫

Qn,T

dxdt

∫

RN
|ξ|q dτ(x,t)(ξ) =

= lim
k→∞

∫∫

Qn,T

|∇uεk |q dxdt ≤ C (1.6.10)

for every n ∈ N, where Qn,T := Ω× (tn, tn + T ).
Now set for every j ∈ N

Kj :=
{
ξ ∈ RN

∣∣ |ξ| ≤ j
}
.

Let us consider any function fj ∈ C(R+), 0 ≤ fj ≤ 1, such that

fj(s) =

{
0 if 0 ≤ s ≤ j − 1 ,
1 if s ≥ j .

Then we have

jq τn(QT × (RN \Kj)) ≤
∫∫

Qn,T

dxdt

∫

RN
fj(|ξ|) |ξ|q dτ(x,t)(ξ) ≤ C ,

whence
τn(QT × (RN \Kj)) ≤ Cj−q for every j, n ∈ N ;

here the constant C is independent of n. For every σ > 0 we can choose

j >
(
C
σ

) 1
q , thus the conclusion follows. �

Lemma 1.6.3. Let the assumptions of Theorem 1.3.9 be satisfied, and let
(u, τ) ∈ L∞(R+;X) × Y(Q∞;RN ) be any global Young measure solution
of problem (P ) given by Theorem 1.3.6. Let {τn} ⊆ Y(Q∞;RN ) be the
sequence of Young measures whose disintegration is defined in (1.3.53) for
almost every t ∈ R+ and every diverging sequence {tn} ⊂ R+.

Then there exist a subsequence of {τn}, denoted again by {τn} for sim-
plicity, and τ̃ ∈ Y(Q∞;RN ) such that τn → τ̃ narrowly in QT ×RN for any
T ∈ (0,∞).

Proof. Follows from Lemma 1.6.2 and Theorem 1.2.3 by a diagonal argu-
ment. �

To prove Theorem 1.3.9 we need another technical lemma, which corre-
sponds to [Sl, Lemma 5.5]. A more direct proof is given here for convenience
of the reader.
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Lemma 1.6.4. Let the assumptions of Theorem 1.3.9 be satisfied, and let
(u, τ) ∈ L∞(R+;X) × Y(Q∞;RN ) be any global Young measure solution
of problem (P ) given by Theorem 1.3.6. Let {τn} ⊆ Y(Q∞;RN ) be the
sequence of Young measures whose disintegration is defined in (1.3.53) for
almost every t ∈ R+ and every diverging sequence {tn} ⊂ R+.
Let {fj} ⊆ C(R+) any sequence of functions such that





fj ≡ 1 in [0, j) ,
0 ≤ fj ≤ 1 in [j, j + 1) ,
fj ≡ 0 in [j + 1,∞) ,

(1.6.11)

and let {uεk} denote the converging sequence mentioned in Propositions 1.3.4
and 1.3.5. Let ρ ∈ C(RN ) satisfy

|ρ(ξ)| ≤M (1 + |ξ|γ) for any |ξ| > ξ0 , (1.6.12)

for some M > 0 and any γ > 0 if N = 1, or any γ ∈ (0, p) if N ≥ 2.
Then for every T ∈ (0,∞) the map (x, t) →

∫
RN ρ(ξ) dτ(x,t)(ξ) belongs to

L1(QT ), and for any ζ ∈ L∞(QT ) there holds

lim
j→∞

∫∫

QT

dxdt ζ(x, t)

∫

RN
fj(|ξ|)ρ(ξ) dτn(x,t)(ξ) = (1.6.13)

=

∫∫

QT

dxdt ζ(x, t)

∫

RN
ρ(ξ) dτn(x,t)(ξ) (n ∈ N)

uniformly with respect to n.

Proof. Fix any T ∈ (0,∞). The fact that the map (x, t)→
∫
RN ρ(ξ) dτ(x,t)(ξ)

belongs to L1(QT ) follows from assumption (1.6.12) arguing as in Remark
1.4.1. Set gj := 1− fj , thus 0 ≤ gj ≤ 1 in R+ and gj ≡ 0 in [0, j) for every
j ∈ N. For any ζ ∈ L∞(QT ) and j, n ∈ N there holds

∣∣∣∣
∫∫

QT

dxdt ζ(x, t)

∫

RN
gj(|ξ|)ρ(ξ) dτn(x,t)(ξ)

∣∣∣∣ ≤ (1.6.14)

≤ ‖ζ‖L∞(QT )

∫∫

Qn,T

dxdt

∫

RN
gj(|ξ|) |ρ(ξ)| dτ(x,t)(ξ) .

By inequality (1.6.12), arguing as in the proof of Lemma 1.6.2 we see that
for every j ∈ N the sequence {gj(|∇uεk |)|ρ(∇uεk)|} is uniformly integrable in
L1(Qn,T ). Then by Theorem 2.5.2-(ii) there exists a subsequence (possibly
depending on n), denoted again {gj(|∇uεk |)|ρ(∇uεk)|} for simplicity, such
that

∫∫

Qn,T

dxdt

∫

RN
gj(|ξ|) |ρ(ξ)| dτ(x,t)(ξ) = (1.6.15)

= lim
k→∞

∫∫

Qn,T

[gj(|∇uεk |)|ρ(∇uεk)|] (x, t) dxdt (j ∈ N) .
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From (1.6.14)-(1.6.15) we get for any ζ ∈ L∞(QT ) and j, n ∈ N
∣∣∣∣
∫∫

QT

dxdt ζ(x, t)

∫

RN
gj(|ξ|)ρ(ξ) dτn(x,t)(ξ)

∣∣∣∣ ≤ (1.6.16)

≤ ‖ζ‖L∞(QT ) sup
k∈N

∫∫

Qn,T

[gj(|∇uεk |)|ρ(∇uεk)|] (x, t) dxdt .

Using inequality (1.6.12), for any fixed j, k, n ∈ N and since γ < p we
get

∫∫

Qn,T

[gj(|∇uεk |)|ρ(∇uεk)|] (x, t) dxdt = (1.6.17)

=

∫∫

Ej,k,n

[gj(|∇uεk |)|ρ(∇uεk)|] (x, t) dxdt ≤

≤ M0

∫∫

Ej,k,n

|∇uεk |γ(x, t) dxdt ≤

≤ M0

(∫∫

Ej,k,n

|∇uεk |p(x, t) dxdt
) γ

p

|Ej,k,n|1−
γ
p

for some M0 > 0, where

Ej,k,n :=
{

(x, t) ∈ Qn,T
∣∣ |∇uεk |(x, t) ≥ j

}
.

On the other hand, by Tchebychev inequality we have

|Ej,k,n| ≤
(∫∫

Ej,k,n

|∇uεk |p(x, t) dxdt
)
j−p ,

which together with inequality (1.6.17) gives

∫∫

Qn,T

[gj(|∇uεk |)|ρ(∇uεk)|] (x, t) dxdt ≤ (1.6.18)

≤ M0

(∫∫

Ej,k,n

|∇uεk |p(x, t) dxdt
)
j−(p−γ) ≤

≤ M0T sup
t∈R+

(∫

Ω
|∇uεk |p(x, t) dx

)
j−(p−γ) ≤ KM0T j

−(p−γ) ,

for some K > 0 depending on the initial data u0 (see inequalities (1.4.6)
if N = 1, and (1.4.18) if N ≥ 2). Then from inequalities (1.6.14) and
(1.6.16)-(1.6.18) the conclusion follows. �

Now we can prove Theorem 1.3.9.

Proof of Theorem 1.3.9. Let (ũ, τ̃) be the couple whose components are
mentioned in Lemmata 1.6.1 and 1.6.3. It follows by these lemmata that
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requirement (i) of Definition 1.3.6 is satisfied by (ũ, τ̃). Then the first state-
ment of the theorem will follow, if we prove that (ũ, τ̃) also satisfies equalities
(1.3.15) and (1.3.16) (with Cauchy data ũ(·, 0)) of Definition 1.3.1.

Let us first show that (ũ, τ̃) satisfies equality (1.3.15), namely that

∇ũ(x, t) =

∫

RN
ξ dτ̃(x,t)(ξ) for almost every (x, t) ∈ QT , (1.6.19)

where τ̃(x,t) ∈ P(RN ) denotes the disintegration of τ̃ . Recalling definitions
(1.3.53), from equality (1.3.15) we get

∇un(x, t) =

∫

RN
ξ dτn(x,t)(ξ) (1.6.20)

for almost every (x, t) ∈ QT and any n ∈ N. By the convergence in (1.6.3),
for any ζ ∈ L∞(QT ) there holds

lim
n→∞

∫∫

QT

∇un(x, t)ζ(x, t) dxdt =

=

∫∫

QT

∇ũ(x, t)ζ(x, t) dxdt . (1.6.21)

On the other hand, let {fj} ⊆ C(R+) (j ∈ N) satisfy (1.6.11). By Lemma
1.6.4 the limit

lim
j→∞

∫∫

QT

dxdt ζ(x, t)

∫

RN
fj(|ξ|)ξ dτn(x,t)(ξ) = (1.6.22)

=

∫∫

QT

dxdt ζ(x, t)

∫

RN
ξ dτn(x,t)(ξ) (n ∈ N)

exists uniformly with respect to n ∈ N (observe that choosing ρ(ξ) = ξ
satisfies the growth rate condition (1.6.12)). Hence, using equality (2.2.55),
Lemma 1.6.2 and Theorem 1.2.3, we obtain for any ζ ∈ L∞(QT )

lim
n→∞

∫∫

QT

dxdt ζ(x, t)

∫

RN
ξ dτn(x,t)(ξ) = (1.6.23)

= lim
n→∞

lim
j→∞

∫∫

QT

dxdt ζ(x, t)

∫

RN
fj(|ξ|) ξ dτn(x,t)(ξ) =

= lim
j→∞

lim
n→∞

∫∫

QT

dxdt ζ(x, t)

∫

RN
fj(|ξ|) ξ dτn(x,t)(ξ) =

= lim
j→∞

∫∫

QT

dxdt ζ(x, t)

∫

RN
fj(|ξ|) ξ dτ̃(x,t)(ξ) =

=

∫∫

QT

dxdt ζ(x, t)

∫

RN
ξ dτ̃(x,t)(ξ)

along some subsequence of {τn}, still denoted by {τn} for simplicity; the last-
mentioned equality follows by the Dominated Convergence Theorem since

62



τ̃(x,t) ∈ P(RN ). By the arbitrariness of ζ, from equalities (1.6.21)-(1.6.23)
we obtain (1.6.19).

It is similarly seen that (ũ, τ̃) satisfies equality (1.3.16) with initial data
ũ(·, 0), namely that for any ζ ∈ C1([0, T );C1

c (Ω)) and t ∈ (0, T ), where
T ∈ (0,∞) is arbitrary, there holds

∫ t

0

∫

Ω

[
ũ(x, s) ζs(x, s)−

N∑

i=1

∫

RN
ϕi(ξ) dτ̃(x,s)(ξ) ζxi(x, s)

]
dxds =

=

∫

Ω
ũ(x, t)ζ(x, t) dx−

∫

Ω
ũ(x, 0) ζ(x, 0) dx . (1.6.24)

In fact, let ζ ∈ C1([0, T );C1
c (Ω)). By abuse of notation, denote by ζ also

any extension ζ ∈ C1((−∞, T );C1
c (Ω)), thus for any sequence {tn} ⊆ R+

and (x, t) ∈ QT the translate ζn(x, t) := ζ(x, t− tn) is well defined and there
holds ζn ∈ C1([0, T );C1

c (Ω)). Then from (1.3.16) we get

∫ t+tn

tn

∫

Ω

[
u(x, s) ζs(x, s− tn)−

−
N∑

i=1

(∫

RN
ϕi(ξ) dτ(x,s)(ξ)

)
ζxi(x, s− tn)

]
dxds =

=

∫

Ω
u(x, t+ tn)ζ(x, t) dx−

∫

Ω
u(x, tn) ζ(x, 0) dx

for every sequence {tn} ⊆ R+, t ∈ (0, T ) and T ∈ (0,∞) such that 0 <
tn < t+ tn < T . By the change of variables s→ s+ tn, recalling definition
(1.3.53) the above equality reads

∫ t

0

∫

Ω

[
un(x, s) ζs(x, s)−

N∑

i=1

(∫

RN
ϕi(ξ) dτ

n
(x,s)(ξ)

)
ζxi(x, s)

]
dxds =

=

∫

Ω
un(x, t)ζ(x, t) dx−

∫

Ω
un(x, 0) ζ(x, 0) dx . (1.6.25)

By the convergence in (1.6.1) and (1.6.3) we have

lim
n→∞

∫ t

0

∫

Ω
un(x, s) ζs(x, s) dxds =

∫ t

0

∫

Ω
ũ(x, s) ζs(x, s) dxds , (1.6.26)

lim
n→∞

∫

Ω
un(x, t)ζ(x, t) dx =

∫

Ω
ũ(x, t)ζ(x, t) dx , (1.6.27)

lim
n→∞

∫

Ω
un(x, 0) ζ(x, 0) dx =

∫

Ω
ũ(x, 0) ζ(x, 0) dx . (1.6.28)
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Therefore, letting n→∞ in equality (1.6.25) gives (1.6.24), if we prove that
for every i = 1, . . . , N

lim
n→∞

∫ t

0

∫

Ω
dxds ζxi(x, s)

(∫

RN
ϕi(ξ) dτ

n
(x,s)(ξ)

)
= (1.6.29)

=

∫ t

0

∫

Ω
dxds ζxi(x, s)

∫

RN
ϕi(ξ) dτ̃(x,s)(ξ) .

As before, let {fj} ⊆ C(R+) satisfy (1.6.11). By Lemma 1.6.4 the limit

lim
j→∞

∫ t

0

∫

Ω
dxds ζxi(x, s)

∫

RN
fj(|ξ|)ϕi(ξ) dτn(x,s)(ξ) = (1.6.30)

=

∫ t

0

∫

Ω
dxds ζxi(x, s)

(∫

RN
ϕi(ξ) dτ

n
(x,s)(ξ)

)
(n ∈ N)

exists uniformly with respect to n ∈ N (observe that the choice ρ = ϕi is
admissible by Remark 1.4.1). Therefore, using the Dominated Convergence
Theorem we get

lim
n→∞

∫ t

0

∫

Ω
dxds ζxi(x, s)

(∫

RN
ϕi(ξ) dτ

n
(x,s)(ξ)

)
= (1.6.31)

= lim
n→∞

lim
j→∞

∫ t

0

∫

Ω
dxds ζxi(x, s)

∫

RN
fj(|ξ|)ϕi(ξ) dτn(x,s)(ξ) =

= lim
j→∞

lim
n→∞

∫ t

0

∫

Ω
dxds ζxi(x, s)

∫

RN
fj(|ξ|)ϕi(ξ) dτn(x,s)(ξ) =

= lim
j→∞

∫ t

0

∫

Ω
dxds ζxi(x, s)

∫

RN
fj(|ξ|)ϕi(ξ) dτ̃(x,s)(ξ) =

=

∫ t

0

∫

Ω
dxds ζxi(x, s)

∫

RN
ϕi(ξ) dτ̃(x,s)(ξ)

(along some subsequence of {τn}, still denoted by {τn}) for every i =
1, . . . , N , t ∈ (0, T ) and any T ∈ (0,∞). This proves equality (1.6.29), which
together with (1.6.26)-(1.6.28) gives equality (1.6.24). This completes the
proof of statement (i).

To prove (ii), fix any function f ∈ C0(R+) such that f(s) = 1 if |s| ≤ 1,
0 < f(s) < 1 for every s ∈ R+, and f(s)→ 0 fast enough to ensure that the
function h : RN → R+, h(ξ) := f(|ξ|)ϕ(ξ) · ξ belongs to C0(RN ). Clearly,

S =
{
ξ ∈ RN

∣∣h(ξ) = 0
}

;

hence the conclusion will follow, if we prove that

∫∫

QT

dxdt

∫

RN
h(ξ) dτ̃(x,t)(ξ) = 0 (1.6.32)
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(here use of assumption (H5) has been made).
To this purpose, observe that by Theorem 1.2.2
∫∫

QT

dxdt

∫

RN
h(ξ) dτ̃(x,t)(ξ) = lim

n→∞

∫∫

QT

dxdt

∫

RN
h(ξ) dτn(x,t)(ξ) .

(1.6.33)
for some subsequence of {τn}, still denoted by {τn}, since h ∈ C0(RN ).
Moreover, since h is bounded in RN , the sequence {h(∇uεk)} is uniformly
integrable in QT for every T ∈ (0,∞), thus by Theorem 2.5.2-(ii)
∫∫

QT

dxdt

∫

RN
h(ξ) dτn(x,t)(ξ) = lim

k→∞

∫∫

Qn,T

h(∇uεk)(x, t) dxdt (1.6.34)

for every n ∈ N. Then by (1.6.33)-(1.6.34)
∫∫

QT

dxdt

∫

RN
h(ξ) dτ̃(x,t)(ξ) = lim

n→∞
lim
k→∞

∫∫

Qn,T

h(∇uεk)(x, t) dxdt .

(1.6.35)
From inequality (1.3.40) written with ε = εk we have

0 ≤
∫∫

Qn,T

h(∇uεk)(x, t) dxdt ≤
∫∫

Qn,T

[ϕ(∇uεk) · ∇uεk ] (x, t) dxdt =

= −1

2

[(
‖uεk(·, T + tn)‖2L2(Ω) − ‖uεk(·, tn)‖2L2(Ω)

)
+

+ εk
(
‖∇uεk(·, T + tn)‖2L2(Ω) − ‖∇uεk(·, tn)‖2L2(Ω)

)]
.

Letting k →∞ in the above inequality and using the convergence in (1.3.29)
and estimate (1.3.26) with p = 2 if N ≥ 2, respectively the convergence in
(1.3.34) and estimate (1.3.24) if N = 1 (see Remark 1.3.3), by equality
(1.6.34) we obtain

0 ≤
∫∫

QT

dxdt

∫

RN
h(ξ) dτn(x,t)(ξ) ≤ −

1

2

(
‖u(·, T + tn)‖2L2(Ω) − ‖u(·, tn)‖2L2(Ω)

)

for every n ∈ N. As n → ∞ in the above inequality, by Remark 1.3.3 and
(1.6.33) we obtain (1.6.32). This completes the proof. �

Finally let us prove Theorem 1.3.10.

Proof of Theorem 1.3.10. By Theorem 1.3.9-(ii) and the assumption S ⊆ S0

there holds supp τ̃(x,t) ⊆ S0, thus
∫

RN
ϕi(ξ) dτ(x,t)(ξ) = 0 (i = 1, . . . , N)

for almost every (x, t) ∈ QT . Hence for any ρ ∈ C1
c (Ω) equality (1.3.19)

holds, and from equality (1.6.24) we get
∫

Ω
ũ(x, t)ρ(x)dx =

∫

Ω
ũ(x, 0)ρ(x)dx

for every t ∈ R+. Therefore ũ does not depend on t, and by equality (1.3.15)
the same holds for τ̃ . Then the conclusion follows. �
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Chapter 2

Passage to the limit over
small parameters in the
viscous Cahn-Hilliard
equation

2.1 Introduction

Forward-backward parabolic equations arise in a variety of applications, such
as edge detection in image processing [PM], aggregation models in popula-
tion dynamics [Pa], and stratified turbulent shear flow [BBDPU]. A well-
known equation of this type is the Perona-Malik equation,

wt = div

( ∇w
1 + |∇w|2

)
, (2.1.1)

which is parabolic if |∇w| < 1 and backward parabolic if |∇w| > 1. Simi-
larly, the equation

ut = ∆

(
u

1 + u2

)
(2.1.2)

is parabolic if |u| < 1 and backward parabolic if |u| > 1. Observe that in one
space dimension the above equations are formally related setting u = wx.

Clearly, forward-backward parabolic equations lead to ill-posed prob-
lems. Often a higher order term is added to the right-hand side to regularize
the equation. Two main classes of additional terms are encountered in the
mathematical literature, which, e.g. in case of equation (2.1.2), reduce to:

(i) ε∆[ψ(u)]t, with ψ′ > 0, leading to third order pseudo-parabolic equations
(ε > 0 being a small parameter; for example, see [BBDU, EP, MTT, NP,
Pl1, Pl2, S, ST2, ST3]);
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(ii) −ε∆2u, leading to fourth-order Cahn-Hilliard type equations (for exam-
ple, see [BBMN, BFG, Pl3, Sl] and references therein).

Remarkably, when ψ(u) = u either of the above regularizations can be
regarded as a particular case of the viscous Cahn-Hilliard equation,

νut = ∆[ϕ(u)− α∆u+ βut] (α, β, ν > 0) , (2.1.3)

choosing either α = ε or β = ε; here ϕ(u) = u
1+u2

for equation (2.1.2),
whereas in general it denotes a non-monotonic function.

Equation (2.1.3) has been derived by several authors using different phys-
ical considerations (in particular, see [G, JF, N]). It is worth mentioning the
wide literature concerning both the relationship between the viscous Cahn-
Hilliard equation and phase field models, and generalized versions of the
equation suggested in [G] (e.g., see [R] and references therein).

Formally, when ν = 1, β = 0 it gives the Cahn-Hilliard equation,

ut = ∆[ϕ(u)− α∆u] , (2.1.4)

whereas for ν = 0, β = 1 it reduces to the Allen-Cahn equation,

ut = α∆u− ϕ(u) . (2.1.5)

This suggests the choice ν = 1− β (β ∈ (0, 1)), as we do hereafter.
It is natural to ask whether the above formal arguments can be given a

sound analytical meaning, proving that the singular limit of solutions of the
equation

(1− β)ut = ∆[ϕ(u)− α∆u+ βut]

(complemented with suitable initial and boundary conditions), as either
β → 0+ or β → 1−, obtains a solution (of the corresponding problem)
for equation (2.1.4), respectively (2.1.5). If so, this motivates the use of the
above regularizations (i)-(ii), which can be regarded as limiting cases of a
more complete physical model.

A related, widely investigated problem is to let the regularizing param-
eter ε in (i)-(ii) to zero, seeking a proper definition of the original ill-posed
problem by a ”vanishing viscosity” method. Although quite a few results
have been obtained in this direction for the pseudoparabolic regularization
(i) (in particular, see [Pl1, Pl2, S, ST3]), less is known for the Cahn-Hilliard
regularization (ii) [Pl4].

In the light of the above considerations, in this paper we investigate the
singular limits as β → 0+ or β → 1− (for fixed α > 0) of solutions to the
initial-boundary value problem

(P )





(1− β)ut = ∆[ϕ(u)− α∆u+ βut] in Ω× (0, T ) =: Q

u = ∆u = 0 on ∂Ω× (0, T )

u = u0 in Ω× {0} ,
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where α ∈ (0,∞), β ∈ (0, 1), Ω ⊂ RN is a bounded domain with smooth
boundary ∂Ω if N ≥ 2, and T > 0. As expected, we prove convergence in a
suitable sense to solutions of the problem for the Cahn-Hilliard equation:

(CH)





ut = ∆[ϕ(u)− α∆u] in Q

u = ∆u = 0 on ∂Ω× (0, T )

u = u0 in Ω× {0} ,

as β → 0+, or respectively of the problem for the Allen-Cahn equation:

(AC)





ut = α∆u− ϕ(u) in Q

u = 0 on ∂Ω× (0, T )

u = u0 in Ω× {0} ,

as β → 1− (see Theorems 2.2.4-2.2.5). Concerning the function ϕ : R→ R,
the following assumptions are used:

(H0) ϕ ∈W 1,∞
loc (R) , ϕ(u)u ≥ 0 for any u ∈ R ;

(H1) there exists K > 0 such that

|ϕ′(u)| ≤ K(1 + |u|q−1) (2.1.6)

for some q ∈ (1,∞) if N = 1, 2, or q ∈
(
1, N+2

N−2

]
if N ≥ 3.

Observe that by assumption (H0) the function ϕ is locally Lipschitz contin-
uous and there holds ϕ(0) = 0.

Further, we study the limit of solutions of problem (P ) as α → 0+ (for
fixed β ∈ (0, 1)), proving convergence to solutions of the problem for the
Sobolev equation:

(S)





(1− β)ut = ∆[ϕ(u) + βut] in Q

u = 0 on ∂Ω× (0, T )

u = u0 in Ω× {0}

under additional assumptions on the function ϕ (see assumptions (H2)-(H3)
and Theorem 2.2.6).

Finally, we study the limit of solutions of problem (CH) as α → 0+,
proving the existence of a triple (u, v, µ) - where u, v are functions and µ is
a finite Radon measure on Q - which satisfies a weak limiting equality (see
Theorem 2.2.7, in particular equality (2.2.60)). We cannot maintain that
this triple is in some sense a solution of the limiting problem





ut = ∆ϕ(u) in Q

u = ∆u = 0 on ∂Ω× (0, T )

u = u0 in Ω× {0} ,
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since the relation between v and the function ϕ(u), even in the sense of Young
measures, is unclear. This point was addressed in [Pl4], taking advantage
of the cubic-like growth of ϕ at infinity, which gives rise to better estimates
of the family {uα} of solutions of (CH); at the same time, this growth
prevented the appearance of a Radon measure in the solution. Instead in
the present case, if ϕ grows linearly at infinity (see assumption (H4)), we only
have L1-estimates of the family {uα}, which are compatible with the need
of a Radon measure to describe solutions of the problem (in this connection,
see [BBDU, PST, S, ST3]). Similar and more enhanced phenomena can be
expected, if ϕ either has a sublinear growth, or vanishes at infinity, pointing
out this behaviour as a major feature for the understanding of the problem.

Our approach is based on a detailed analysis of solutions of problem
(P ), which relies on an approximation method already used in similar cases
[BBDU, BST1, BST2, PST, S, ST2, ST3]. Beside lending in a natural way
the estimates needed to study the singular limits, it allows to improve in
several ways on the available existence results for the viscous Cahn-Hilliard
equation ([CD, ES]; see Theorem 2.2.2).

Our main results are presented in Section 2.2, and their proofs are given
in Sections 2.3-2.5. Similar results for the case of homogeneous Neumann
boundary conditions are discussed in Section 2.6. Let us point out two of
their novel features with respect to the situation outlined for the Dirichlet
case:
(i) as it can be expected, when β → 1− we prove convergence to solutions
of a nonlocal Allen-Cahn equation investigated in [RS];
(ii) taking advantage of the conservation of mass, weaker assumptions on
the behaviour at infinity of the function ϕ can be made (see assumption
(H5)).

2.2 Mathematical framework and results

2.2.1 Well-posedness and a priori estimates.

Let us state the following definition.

Definition 2.2.1. Let α ∈ (0,∞), β ∈ (0, 1), and let u0 ∈ H2(Ω) ∩
H1

0 (Ω). By a strict solution of problem (P ) we mean any function u ∈
C([0, T ];H2(Ω)∩H1

0 (Ω))∩C1([0, T ];L2(Ω)) such that ϕ(u) ∈ C([0, T ];L2(Ω)),
and {

ut = ∆v in Q
u = u0 in Ω× {0} (2.2.1)

in strong sense. Here v ∈ C([0, T ];H2(Ω) ∩H1
0 (Ω)) and for every t ∈ [0, T ]
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the function v(·, t) is the unique solution of the elliptic problem

{
−β∆v(·, t) + (1− β)v(·, t) = ϕ(u)(·, t)− α∆u(·, t) in Ω
v(·, t) = 0 on ∂Ω .

(2.2.2)

The function v is called chemical potential.

A first well-posedness result for problem (P ), if assumptions (H0)-(H1)
are replaced by the stronger condition

(H2) ϕ ∈ Lip (R) , ϕ(u)u ≥ 0 for any u ∈ R ,

is the content of the following theorem.

Theorem 2.2.1. Let α ∈ (0,∞), β ∈ (0, 1), and let ϕ satisfy assumption
(H2). Then for every u0 ∈ H2(Ω) ∩ H1

0 (Ω) there exists a unique strict
solution of problem (P ).

Let us now address well-posedness when ϕ satisfies assumptions (H0)-
(H1), and the Cauchy data function u0 belongs to H1

0 (Ω). In this case
solutions of problem (P ) are meant in the following sense.

Definition 2.2.2. Let α ∈ (0,∞), β ∈ (0, 1), and let u0 ∈ H1
0 (Ω). By a

solution of problem (P ) we mean any function u ∈ C([0, T ];H1
0 (Ω)) such

that:

(i) ut ∈ L2(Q), ϕ(u) ∈ L2(Q), ∆u ∈ L2(Q);

(ii) problems (2.2.1) and (2.2.2) are satisfied in strong sense, with v ∈
L∞((0, T );H1

0 (Ω)) ∩ L2((0, T );H2(Ω)).

For every u0 ∈ H1
0 (Ω), let {u0n} ⊆ C∞c (Ω) be any sequence such that

‖u0n‖H1
0 (Ω) ≤ ‖u0‖H1

0 (Ω) , (2.2.3)

u0n → u0 in H1
0 (Ω) . (2.2.4)

For any n ∈ N set

ϕn(u) :=





ϕ(u) if |u| ≤ n ,
ϕ(n) +K(u− n) if u > n ,

ϕ(−n) +K(u+ n) if u < −n ,
(2.2.5)

where K > 0 is the constant in assumption (H1). It is immediately seen
that ϕn(u)u ≥ 0 for any u ∈ R, and

ϕn(u)→ ϕ(u) for any u ∈ R (2.2.6)

as n→∞. Moreover, for every n ∈ N there holds ϕn ∈ Lip (R), since

|ϕ′n(u)| ≤ K
{(

1 + |u|q−1
)
χ{|u|≤n}(u) + χ{|u|>n}(u)

}
, (2.2.7)
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thus in particular

|ϕ′n(u)| ≤ K
(
1 + nq−1

)
for every n ∈ N (u ∈ R) . (2.2.8)

Observe that inequality (2.2.7) also implies the estimate:

|ϕ′n(u)| ≤ K
(
1 + |u|q−1

)
for every u ∈ R (n ∈ N) . (2.2.9)

Remark 2.2.1. By inequality (2.2.9) there exists K1 > 0 such that

|ϕn(u)| ≤ K1 (1 + |u|q) for every u ∈ R (n ∈ N) , (2.2.10)

0 ≤ Φn(u) ≤ K1

(
1 + |u|q+1

)
for every u ∈ R , (2.2.11)

where

Φn(u) :=

∫ u

0
ϕn(z) dz (u ∈ R, n ∈ N) (2.2.12)

(observe that Φn(u) ≥ 0 for any u ∈ R, since ϕn(u)u ≥ 0). Clearly, analo-
gous inequalities hold for ϕ and for its antiderivative

Φ(u) :=

∫ u

0
ϕ(z) dz (u ∈ R) . (2.2.13)

Moreover, as n→∞ there holds

Φn(u)→ Φ(u) for any u ∈ R . (2.2.14)

Similar considerations hold true for the following functions:

ψ(u) :=

∫ u

0
|z|q−1dz , (2.2.15)

Ψ(u) :=

∫ u

0
ψ(z) dz (u ∈ R) . (2.2.16)

Observe that by inequality (2.2.9) there exists K̃ > 0 such that

|ϕn(u)| ≤ K̃ |ψ(u)| for every u ∈ R (n ∈ N) . (2.2.17)

Consider the family of approximating problems

(Pn)





(1− β)unt = ∆[ϕn(un)− α∆un + βunt] in Q
un = ∆un = 0 on ∂Ω× (0, T )
un = u0n in Ω× {0} ,

with u0n and ϕn defined as above. Observe that problem (Pn) can be recast
in the form {

unt = ∆vn in Q
un = u0n in Ω× {0} (2.2.18)
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where for every t ∈ [0, T ] the function vn(·, t) solves the elliptic problem

{
−β∆vn(·, t) + (1− β)vn(·, t) = ϕn(un)(·, t)− α∆un(·, t) in Ω
vn(·, t) = 0 on ∂Ω .

(2.2.19)
By the above remarks (in particular, see inequality (2.2.8)), every function
ϕn satisfies assumption (H2), whereas u0n belongs to H2(Ω)∩H1

0 (Ω). Then
by Theorem 2.2.1 for every n ∈ N there exists a unique strict solution un
of problem (Pn). By studying the limiting points of the sequence {un} we
shall prove the following result.

Theorem 2.2.2. Let α ∈ (0,∞), β ∈ (0, 1), and let ϕ satisfy assumptions
(H0)-(H1). Then for every u0 ∈ H1

0 (Ω) there exists a solution of problem
(P ). If ϕ satisfies assumption (H2), the solution is unique.
Moreover, for every ᾱ > 0 there exists M > 0 (only depending on the norm
‖u0‖H1

0 (Ω)) such that for any α ∈ (0, ᾱ) and β ∈ (0, 1)

‖Φ(u)‖L∞((0,T );L1(Ω)) ≤M , (2.2.20)

where the function Φ is defined in (2.2.13);

√
α ‖u‖L∞((0,T );H1

0 (Ω)) ≤M ; (2.2.21)

√
β ‖ut‖L2(Q) ≤M ; (2.2.22)

√
α ‖ϕ(u)‖L2(Q) ≤M ; (2.2.23)

α
3
2 ‖∆u‖L2(Q) ≤M ; (2.2.24)

√
1− β ‖v‖L2((0,T );H1

0 (Ω)) ≤M ; (2.2.25)
√
αβ ‖v‖L∞((0,T );H1

0 (Ω)) ≤M ; (2.2.26)
√
β(1− β) ‖v‖L2((0,T );H2(Ω)) ≤M . (2.2.27)

Further estimates of the solution given by Theorem 2.2.2 are the content
of the following theorem.

Theorem 2.2.3. Let α ∈ (0,∞), β ∈ (0, 1) and u0 ∈ H1
0 (Ω). Let ϕ satisfy

either assumption (H2), or assumptions (H0), (H1) and the following one:

(H3) there exists u0 > 0 such that ϕ′(u) > 0 if |u| ≥ u0 .

Let u be the solution of problem (P ) given by Theorem 2.2.2. Then for every
α ∈ (0,∞) and β ∈ (0, 1)

‖u‖L∞((0,T );L2(Ω)) ≤ ‖u0‖H1
0 (Ω)

√
1 + e

2LT
β

1− β ; (2.2.28)
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‖u‖L∞((0,T );H1
0 (Ω)) ≤ ‖u0‖H1

0 (Ω)

√√√√2
(

1 + e
2LT
β

)

β
; (2.2.29)

‖∆u‖L2(Q) ≤ ‖u0‖H1
0 (Ω)

√
1 + e

2LT
β

α
. (2.2.30)

Moreover, for every ᾱ > 0 and β ∈ (0, 1) there exists M̄ > 0 (only depending
on the norm ‖u0‖H1

0 (Ω) and on β, and diverging as β → 0+, β → 1−) such

that for any α ∈ (0, ᾱ) and n ∈ N

‖ϕ(u)‖L2(Q) ≤ M̄ . (2.2.31)

Remark 2.2.2. In connection with the above theorem, observe that:
(i) if (H2) is satisfied, there exists L > 0 such that |ϕ′n(u)| ≤ L for any
n ∈ N and u ∈ R;
(ii) if (H3) is satisfied, there holds ϕ′n(u) > 0 for any n ∈ N, n > u0 and
u ∈ R, |u| ≥ u0.

2.2.2 Asymptotical limits

The limit β → 0+ (for fixed α > 0).

As β → 0+, inequalities (2.2.22) and (2.2.26)-(2.2.31) get lost. Accordingly,
solutions of problem (CH) for the Cahn-Hilliard equation are meant in the
following sense.

Definition 2.2.3. Let α ∈ (0,∞) and u0 ∈ H1
0 (Ω). By a solution of problem

(CH) we mean any function u ∈ L∞((0, T );H1
0 (Ω)) such that:

(i) ϕ(u) ∈ L2(Q), ∆u ∈ L2(Q), and v := ϕ(u)− α∆u ∈ L2((0, T );H1
0 (Ω));

(ii) there holds
∫∫

Q
u ζt dxdt+

∫∫

Q
[ϕ(u)− α∆u] ∆ζ dxdt = −

∫

Ω
u0(x)ζ(x, 0) dx (2.2.32)

for every ζ ∈ C1([0, T ];C2
c (Ω)) such that ζ(·, T ) = 0 in Ω.

Theorem 2.2.4. Let u0 ∈ H1
0 (Ω), and let ϕ satisfy assumptions (H0)-(H1).

Let uα,β be the solution of problem (P ) given by Theorem 2.2.2 (α ∈ (0,∞),
β ∈ (0, 1)). Then for every α ∈ (0,∞) there exist uα ∈ L∞((0, T );H1

0 (Ω)),
vα ∈ L2((0, T );H1

0 (Ω)) and two subsequences {uα,βk} ⊆ {uα,β}, {vα,βk} ⊆
{vα,β} such that

(i) ϕ(uα) ∈ L2(Q), ∆uα ∈ L2(Q);

(ii) as βk → 0+ there holds

uα,βk
∗
⇀ uα in L∞((0, T );H1

0 (Ω)) , (2.2.33)
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uα,βk → uα almost everywhere in Q , (2.2.34)

ϕ(uα,βk) ⇀ ϕ(uα) in L2(Q) , (2.2.35)

∆uα,βk ⇀ ∆uα in L2(Q) ; (2.2.36)

vα,βk ⇀ vα in L2((0, T );H1
0 (Ω)) ; (2.2.37)

(iii) the function uα is a solution of problem (CH);

(iv) the function uα satisfies inequalities (2.2.20)-(2.2.21) and (2.2.23)-(2.2.24),
whereas vα satisfies the a priori estimate

‖vα‖L2((0,T );H1
0 (Ω)) ≤M (2.2.38)

with some constant M > 0 only depending on the norm ‖u0‖H1
0 (Ω).

The limit β → 1− (for fixed α > 0).

As β → 1−, inequalities (2.2.25), (2.2.27)-(2.2.28) and (2.2.31) are lost.
Solutions of the initial-boundary value problem (AC) are defined as follows.

Definition 2.2.4. Let α ∈ (0,∞), and let u0 ∈ H1
0 (Ω). By a solution of

problem (AC) we mean any function u ∈ L∞((0, T );H1
0 (Ω))∩C([0, T ];L2(Ω))

such that:

(i) ut ∈ L2(Q), ϕ(u) ∈ L2(Q), ∆u ∈ L2(Q);

(ii) problem (AC) is satisfied in strong sense.

Theorem 2.2.5. Let u0 ∈ H1
0 (Ω), and let ϕ satisfy assumptions (H0)-

(H1). Let uα,β be the solution of problem (P ) given by Theorem 2.2.2 (α ∈
(0,∞), β ∈ (0, 1)). Then for every α ∈ (0,∞) there exist a function uα ∈
L∞((0, T );H1

0 (Ω)) ∩ C([0, T ];L2(Ω)) and a subsequence {uα,βk} ⊆ {uα,β}
such that

(i) uαt ∈ L2(Q), ϕ(uα) ∈ L2(Q), ∆uα ∈ L2(Q);

(ii) as βk → 1− there holds

uα,βk
∗
⇀ uα in L∞((0, T );H1

0 (Ω)) , (2.2.39)

uα,βk → uα almost everywhere in Q , (2.2.40)

(uα,βk)t ⇀ uαt in L2(Q) , (2.2.41)

ϕ(uα,βk) ⇀ ϕ(uα) in L2(Q) , (2.2.42)

∆uα,βk ⇀ ∆uα in L2(Q) ; (2.2.43)

(iii) the function uα is a solution of problem (AC);

(iv) the function uα satisfies inequalities (2.2.20)-(2.2.21), (2.2.23)-(2.2.24),
and the a priori estimate

‖uαt‖L2(Q) ≤M (2.2.44)
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with some constant M > 0 only depending on the norm ‖u0‖H1
0 (Ω).

Moreover, if ϕ satisfies either assumption (H2), or assumptions (H0), (H1)
and (H3), then uα satisfies the a priori estimates

‖uα‖L∞((0,T );H1
0 (Ω)) ≤

√
2 ‖u0‖H1

0 (Ω)

(
1 + e2LT

) 1
2 ; (2.2.45)

√
α ‖∆uα‖L2(Q) ≤ ‖u0‖H1

0 (Ω)

(
1 + e2LT

) 1
2 (α ∈ (0,∞)) . (2.2.46)

The limit α→ 0+ (for fixed β ∈ (0, 1)).

In this case inequalities (2.2.21), (2.2.23)-(2.2.24), (2.2.26) and (2.2.30) are
lost. Solutions of problem (S) are meant in the following sense.

Definition 2.2.5. Let β ∈ (0, 1), and let u0 ∈ H1
0 (Ω). By a solution of

problem (S) we mean any function u ∈ L∞((0, T );H1
0 (Ω))∩C([0, T ];L2(Ω))

such that:

(i) ut ∈ L2(Q), ϕ(u) ∈ L2(Q);

(ii) problem (2.2.1) is satisfied in strong sense with v := 1
1−β [ϕ(u) + βut] ∈

L2((0, T );H1
0 (Ω) ∩H2(Ω)).

Theorem 2.2.6. Let u0 ∈ H1
0 (Ω), and let ϕ satisfy either assumption (H2),

or assumptions (H0), (H1) and (H3). Let uα,β be the solution of problem
(P ) given by Theorem 2.2.2 (α ∈ (0,∞), β ∈ (0, 1)). Then for every β ∈
(0, 1) there exist functions uβ ∈ L∞((0, T );H1

0 (Ω)) ∩ C([0, T ];L2(Ω)), vβ ∈
L2((0, T );H1

0 (Ω) ∩H2(Ω)) and a subsequence {uαk,β} ⊆ {uα,β} such that

(i) uβt ∈ L2(Q), ϕ(uβ) ∈ L2(Q);

(ii) as αk → 0+ there holds

uαk,β
∗
⇀ uβ in L∞((0, T );H1

0 (Ω)) , (2.2.47)

uαk,β → uβ almost everywhere in Q , (2.2.48)

(uαk,β)t ⇀ uβt in L2(Q) , (2.2.49)

ϕ(uαk,β) ⇀ ϕ(uβ) in L2(Q) , (2.2.50)

vαk,β ⇀ vβ in L2((0, T );H1
0 (Ω)) , (2.2.51)

∆vαk,β ⇀ ∆vβ in L2(Q) ; (2.2.52)

(iii) the function uβ is a solution of problem (S) with vβ = 1
1−β [ϕ(uβ) + βuβt];

(iv) the function uβ satisfies inequalities (2.2.20), (2.2.22), (2.2.27)-(2.2.29)
and (2.2.31), whereas vβ satisfies inequality (2.2.25).

75



2.2.3 Letting α→ 0+ in problem (CH).

In this case the solution uα of problem (CH) given by Theorem 2.2.4 satisfies
inequalities (2.2.20)-(2.2.21) and (2.2.23)-(2.2.24), whereas vα := ϕ(uα) −
α∆uα satisfies inequality (2.2.38) (see Theorem 2.2.4-(iv)). As α → 0+,
inequalities (2.2.21), (2.2.23) and (2.2.24) get lost, thus the only a priori
estimate of the family {uα} (uniform with respect to α) is given by inequality
(2.2.20). As a consequence, different situations will expectedly arise in the
limit as α → 0+, depending on the behaviour at infinity of the function Φ.
This makes the following assumption expedient to study the above limit:

(H4) there exists k > 0 such that

k |u|r ≤ Φ(u) (2.2.53)

for some r ∈ [1,∞) if N = 1, 2, or r ∈
[
1, 2N

N−2

]
if N ≥ 3.

Observe that the above conditions on the exponent r follow from as-
sumption (H1) and the compatibilty condition r ≤ q + 1 (see (H1), (H4)).

Let us recall for further purposes some results concerning Radon mea-
sures on the set Q. ByM(Ω) we denote the space of finite Radon measures
on Ω, and byM+(Ω) the cone of positive (finite) Radon measures on Ω. We
denote by 〈·, ·〉Ω the duality map betweenM(Ω) and the space Cc(Ω) of con-
tinuous functions with compact support. For µ ∈ M(Ω) and ρ ∈ L1(Ω, µ)
we set, by abuse of notation,

〈µ, ρ〉Ω :=

∫

Ω
ρ(x) dµ(x) and ‖µ‖M(Ω) := |µ|(Ω) . (2.2.54)

Similar notations will be used for the space of finite Radon measures on Q.
We denote by L∞((0, T );M(Ω)) the set of finite Radon measures u ∈

M(Q) which satisfy the following: for almost every t ∈ (0, T ) there exists a
measure u(·, t) ∈M(Ω), such that
(i) for every ζ ∈ C(Q) the map t → 〈u(·, t), ζ(·, t)〉Ω is Lebesgue measurable,
and

〈u, ζ〉Q =

∫ T

0
〈u(·, t), ζ(·, t)〉Ω dt ; (2.2.55)

(ii) there holds
ess supt∈(0,T )‖u(·, t)‖M(Ω) <∞ .

The definition of the positive cone L∞((0, T );M+(Ω)) should now be obvi-
ous.

Let us also recall the following definition.

Definition 2.2.6. A subset U ⊆ L1(Q) is said to be uniformly integrable if:
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(i) there exists M > 0 such that

‖f‖L1(Q) :=

∫∫

Q
|f(x, t)| dxdt ≤M for any f ∈ U ;

(ii) for any ε > 0 there exists δ > 0 such that for any f ∈ U and any
Lebesgue measurable set E ⊆ Q

|E| < δ ⇒
∫∫

E
|f(x, t)| dxdt < ε .

Then we can state the following result.

Theorem 2.2.7. Let u0 ∈ H1
0 (Ω), and let ϕ satisfy assumptions (H0),

(H1) and (H4). Let uα be the solution of problem (CH) given by The-
orem 2.2.4 (α ∈ (0,∞)). Then there exist u ∈ L∞((0, T );Lr(Ω)), µ ∈
L∞((0, T );M(Ω)) and
v ∈ L2((0, T );H1

0 (Ω)) with the following properties:

(i) there exist two subsequences {uαk} ⊆ {uα}, {vαk} ⊆ {vα} and a decreas-
ing sequence of measurable sets Ek ⊆ Q of Lebesgue measure |Ek| → 0, such
that the sequence

{
uαkχQ\Ek

}
is uniformly integrable, and as αk → 0+ there

holds
uαkχQ\Ek ⇀ u in Lr(Q) , (2.2.56)

uαkχEk
∗
⇀ µ in M(Q) , (2.2.57)

ϕ(uαk) ⇀ v in D(Q) , (2.2.58)

vαk ⇀ v in L2((0, T );H1
0 (Ω)) ; (2.2.59)

(ii) there holds

∫∫

Q
uζt dxdt+

∫ T

0
< µ(·, t), ζt(·, t) >Ω dt =

∫∫

Q
∇v·∇ζ dxdt−

∫

Ω
u0(x)ζ(x, 0) dx

(2.2.60)
for every ζ ∈ C1([0, T ];C1

c (Ω)) such that ζ(·, T ) = 0 in Ω .

Moreover, the measure µ is equal to 0 if assumption (H4) is satisfied with
r > 1. In this case Ek = ∅ for every k ∈ N, the convergence in (2.2.56)
reads

uαk ⇀ u in Lr(Q) , (2.2.61)

and (2.2.57) is trivially satisfied.
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2.3 Well-posedness : Proofs

Theorem 2.2.1 is easily proven by standard methods of the theory of abstract
evolution equations, if problem (P ) is rephrased as a Cauchy problem in the
Banach space X = L2(Ω) - an approach already used in [CD, ES]. To this
purpose, denote by [I − ε∆]−1 (ε > 0) the operator

[I − ε∆]−1 : L2(Ω)→ H2(Ω) ∩H1
0 (Ω) , [I − ε∆]−1z := w (z ∈ L2(Ω)) ,

where w ∈ H2(Ω) ∩H1
0 (Ω) is the unique solution of the elliptic problem

{
−ε∆w + w = z in Ω
w = 0 in ∂Ω

(2.3.1)

for any z ∈ L2(Ω). Observe that the operatorial identity

∆[(1− β)I − β∆]−1 =
1

β

{
(1− β)[(1− β)I − β∆]−1 − I

}
, (2.3.2)

where

[(1− β)I − β∆]−1 :=
1

1− β

[
I − β

1− β ∆

]−1

,

holds in the strong sense in L2(Ω). Then consider the operator A ≡ Aαβ :
D(A) ⊂ L2(Ω)→ L2(Ω) defined as follows:

{
D(A) := H2(Ω) ∩H1

0 (Ω)

Au := −α∆[(1− β)I − β∆]−1∆u (u ∈ D(A)) .
(2.3.3)

Also observe that, if ϕ satisfies assumption (H2), there holds

‖ϕ(u)‖L2(Ω) ≤ ‖ϕ′‖L∞(R)‖u‖L2(Ω)

for every u ∈ L2(Ω). Hence the nonlinear operator F ≡ Fβ : L2(Ω) →
L2(Ω),

F(u) := ∆[(1− β)I − β∆]−1ϕ(u) (u ∈ L2(Ω)) (2.3.4)

is well defined.

From the first equation of problem (P ) we plainly obtain

(1−β)ut−β∆ut =
1

β

{
β∆(ϕ(u)−α∆u)−(1−β)(ϕ(u)−α∆u)

}
+

(1− β)

β

[
ϕ(u)−α∆u

]
,

whence by (2.3.2)

ut = − 1

β

[
ϕ(u)− α∆u

]
+

(1− β)

β

[
(1− β)I − β∆

]−1
(ϕ(u)− α∆u) =

= ∆[(1− β)I − β∆]−1(ϕ(u)− α∆u) . (2.3.5)
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Then problem (P ) reads

{
ut = Au+ F(u) (t > 0)

u(0) = u0 ∈ X .
(2.3.6)

To prove existence and uniqueness of solutions to (2.3.6), we need some
properties of the operators A and F .

Proposition 2.3.1. For every α ∈ (0,∞), β ∈ (0, 1) the linear operator
A ≡ Aαβ defined in (2.3.3) is self-adjoint.

Proof. (i) Firstly, let us show that A is symmetric. For every u ∈ H2(Ω) ∩
H1

0 (Ω) we have
Au = −α∆gu , (2.3.7)

where gu ∈ H2(Ω) ∩H1
0 (Ω) is the unique solution of the elliptic problem

{
−β∆gu + (1− β)gu = ∆u in Ω
gu = 0 on ∂Ω .

(2.3.8)

For every u, v ∈ D(A) there holds

(Au, v)L2(Ω) − (u,Av)L2(Ω) = −α(1− β)

β

∫

Ω
(guv − gvu) dx .

Hence the claim will follow, if we show that
∫

Ω
(guv − gvu) dx = 0 . (2.3.9)

To this purpose, let hu, hv ∈ H4(Ω) ∩H1
0 (Ω) be the unique solutions of the

problems {
−β∆hu + (1− β)hu = u in Ω
hu = 0 on ∂Ω ,

(2.3.10)

and {
−β∆hv + (1− β)hv = v in Ω,
hv = 0 on ∂Ω,

(2.3.11)

respectively; here u ∈ H2(Ω)∩H1
0 (Ω). In particular, there holds ∆hu, ∆hv ∈

H1
0 (Ω), hence from (2.3.8)-(2.3.11) by uniqueness we have ∆hu = gu and

∆hv = gv. Then we obtain

guv = −β∆hv gu + (1− β)hvgu = −βgvgu + (1− β)hv∆hu ,

gvu = −β∆hu gv + (1− β)hugv = −βgugv + (1− β)hu∆hv ,

whence
∫

Ω
(guv − gvu) dx = (1− β)

∫

Ω
[hv∆hu − hu∆hv] dx = 0 .
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Then the claim follows.

(ii) It is easily seen that the operator A is m-dissipative. In fact, for every
u ∈ D(A), we have

(Au, u)L2(Ω) = −α
∫

Ω
u∆gu dx , (2.3.12)

with gu ∈ H2(Ω) ∩H1
0 (Ω) as in (2.3.8). Since there holds

(Au, u)L2(Ω) = −α
∫

Ω
u∆gu dx = −α

∫

Ω
gu∆u dx =

= αβ

∫

Ω
gu∆gu dx− α(1− β)

∫

Ω
g2
u dx =

= −αβ
∫

Ω
|∇gu|2 dx− α(1− β)

∫

Ω
g2
u dx ≤ 0 ,

the claim follows.

(iii) Next, let us prove that for every f ∈ L2(Ω) there exists a unique
u ∈ D(A) such that

u−Au = f . (2.3.13)

In this connection, observe that

u−Au = u+ α
[

[−β∆ + (1− β)I]−1(∆2u)
]
,

thus equation (2.3.13) can be written as

α∆2u = −β∆(f − u) + (1− β)[f − u].

Therefore, it suffices to prove that for every f ∈ L2(Ω) there exists a unique
solution u ∈ D(A) of the problem

α∆2u− β∆u+ (1− β)u = −β∆f + (1− β)f , (2.3.14)

where by solution of (2.3.14) we mean any u ∈ D(A) such that for every
ξ ∈ D(A)

α

∫

Ω
∆u∆ξ dx+β

∫

Ω
∇u∇ξ dx+(1−β)

∫

Ω
uξ dx = −β

∫

Ω
f∆ξ dx+(1−β)

∫

Ω
fξ dx .

To this purpose, consider the bilinear form a : D(A)×D(A)→ R defined
by setting

a(u, v) := α

∫

Ω
∆u∆v dx+ β

∫

Ω
∇u · ∇v dx+ (1− β)

∫

Ω
uv dx

for every u, v ∈ D(A). Then there exist C > 0 such that

|a(u, v)| ≤ α‖∆u‖L2(Ω)‖∆v‖L2(Ω) + β‖∇u‖L2(Ω)‖∇v‖L2(Ω) +

+ (1− β)‖u‖L2(Ω)‖v‖L2(Ω) ≤ C‖u‖H2(Ω)‖v‖H2(Ω) ,
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a(u, u) = α

∫

Ω
|∆u|2 dx+ β

∫

Ω
|∇u|2dx+

+(1− β)

∫

Ω
u2 dx ≥ C‖u‖2H2(Ω)

for every u, v ∈ D(A). By the above inequalities and the Lax-Milgram
Theorem well-posedness of (2.3.14) easily follows. This completes the proof.

Proposition 2.3.2. Let ϕ satisfy assumption (H2). Then for every β ∈
(0, 1) the nonlinear operator F ≡ Fβ defined in (2.3.4) is Lipschitz contin-
uous.

Proof. By equality (2.3.4) and the very definition of the operator F

‖F(u)−F(v)‖L2(Ω) ≤ C‖ϕ(u)− ϕ(v)‖L2(Ω) ≤ C‖ϕ′‖L∞(R)‖u− v‖L2(Ω)

(2.3.15)
for every u, v ∈ L2(Ω). Hence the claim follows.

Proof of Theorem 2.2.1. The result follows from Propositions 2.3.1-2.3.2 by
standard results of semigroup theory (e.g., see [LLMP, Proposition 6.1.2]).
�

To prove Theorem 2.2.2 we need some a priori estimates of solutions of
the approximating problems (Pn). To this purpose the following lemma is
expedient.

Lemma 2.3.3. Let α ∈ (0,∞), β ∈ (0, 1), u0 ∈ H1
0 (Ω), and let ϕ satisfy

assumptions (H0)-(H1). Let {un} be the sequence of solutions to problems
(Pn) given by Theorem 2.2.1, with {u0n} satisfying (2.2.3)-(2.2.4). Then for
every t ∈ (0, T ] there holds

∫

Ω
Φn(un)(x, t) dx+

α

2

∫

Ω
|∇un|2(x, t) dx + (2.3.16)

+β

∫ t

0

∫

Ω
u2
nt dxds+ (1− β)

∫ t

0

∫

Ω
|∇vn|2 dxds =

=

∫

Ω
Φn(u0n)(x) dx+

α

2

∫

Ω
|∇u0n|2 dx ,

where Φn is the function defined in (2.2.12).

Proof. Multiplying the first equation of (2.2.18) by

vn =
1

1− β
[
ϕ(un)− α∆un + βunt

]
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and integrating over Ω× (0, t) we obtain

∫

Ω
Φn(un)(x, t) dx− α

∫ t

0

∫

Ω
∆un unt dxds + (2.3.17)

+β

∫ t

0

∫

Ω
u2
ntdxds+ (1− β)

∫ t

0

∫

Ω
|∇vn|2dxds =

=

∫

Ω
Φn(u0n) dx .

Since un ∈ C([0, T ];H2(Ω)∩H1
0 (Ω)) and unt ∈ C([0, T ];L2(Ω)), by standard

approximation arguments there holds

∫ t

0

∫

Ω
∆un unt dxds =

1

2

∫

Ω
|∇u0n|2 dx−

1

2

∫

Ω
|∇un|2(x, t) dx. (2.3.18)

From (2.3.17)-(2.3.18) equality (2.3.16) follows.

Further a priori estimates of the sequence {un} are given by the following
lemma.

Lemma 2.3.4. Let α ∈ (0,∞), β ∈ (0, 1) and u0 ∈ H1
0 (Ω). Let ϕ satisfy

either assumption (H2), or assumptions (H0), (H1) and (H3). Let {un}
be the sequence of solutions to problems (Pn) given by Theorem 2.2.1, with
{u0n} satisfying (2.2.3)-(2.2.4). Then there exists L > 0 such that for every
t ∈ (0, T ]

(1− β)

∫

Ω
u2
n(x, t) dx +

β

2

∫

Ω
|∇un|2(x, t) dx + (2.3.19)

+α

∫ t

0

∫

Ω
(∆un)2 dxds ≤ ‖u0‖2H1

0 (Ω)

(
1 + e

2LT
β

)
.

Proof. Multiplying the first equation of (Pn) by un, integrating over Ω×(0, t)
and using (2.3.18) we obtain

(1− β)

∫

Ω
u2
n(x, t) dx+

β

2

∫

Ω
|∇un|2(x, t) dx+ α

∫ t

0

∫

Ω
(∆un)2 dxds

= −
∫ t

0

∫

Ω
ϕ′n(un)|∇un|2 dxds+ (1− β)

∫

Ω
u2

0n dx+
β

2

∫

Ω
|∇u0n|2 dx .

(2.3.20)

If assumption (H2) is satisfied, there exists L > 0 such that

∣∣∣∣
∫ t

0

∫

Ω
ϕ′n(un)|∇un|2 dxds

∣∣∣∣ ≤ L
∫ t

0

∫

Ω
|∇un|2 dxds
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for any n ∈ N (see Remark 2.2.2-(i)). On the other hand, if assumption
(H3) is satisfied, for any n ∈ N, n > u0 there holds

−
∫ t

0

∫

Ω
ϕ′n(un)|∇un|2 dxds ≤ −

∫ t

0

∫

{|un|≤u0}
ϕ′(un)|∇un|2 dxds ≤

≤ L

∫ t

0

∫

Ω
|∇un|2 dxds

with some constant L > 0, since ϕ ∈ W 1,∞
loc (R) by assumption (H0) (see

Remark 2.2.2-(ii)). In either case from equality (2.3.20) we get

(1− β)

∫

Ω
u2
n(x, t) dx+

β

2

∫

Ω
|∇un|2(x, t) dx+ α

∫ t

0

∫

Ω
(∆un)2 dxds ≤

≤ ‖u0‖2H1
0 (Ω) + L

∫ t

0

∫

Ω
|∇un|2 dxds ; (2.3.21)

here use of inequality (2.2.3) has been made. Then by the Gronwall Lemma
from (2.3.21) we obtain

β

2

∫

Ω
|∇un|2(x, t) dx ≤ ‖u0‖2H1

0 (Ω)e
2Lt
β

for every t ∈ (0, T ]. Integrating the above inequality on (0, T ] we plainly
obtain

L

∫ t

0

∫

Ω
|∇un|2 dxds ≤ ‖u0‖2H1

0 (Ω)e
2LT
β ,

which upon substitution in (2.3.21) gives inequality (2.3.19). Then the result
follows.

Proposition 2.3.5. Let the assumptions of Lemma 2.3.3 be satisfied. Then
for every ᾱ > 0 there exists M > 0 (only depending on the norm ‖u0‖H1

0 (Ω))

such that for any α ∈ (0, ᾱ), β ∈ (0, 1) and n ∈ N

‖Φn(un)‖L∞((0,T );L1(Ω)) ≤M ; (2.3.22)

√
α ‖un‖L∞((0,T );H1

0 (Ω)) ≤M ; (2.3.23)

√
β ‖unt‖L2(Q) ≤M ; (2.3.24)

√
1− β ‖vn‖L2((0,T );H1

0 (Ω)) ≤M ; (2.3.25)

√
β(1− β) ‖vn‖L2((0,T );H2(Ω)) ≤M . (2.3.26)
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Proof. By inequality (2.2.11) and assumption (H1) we have

0 ≤
∫

Ω
Φn(u0n) dx ≤ K1

(
2|Ω|+

∫

Ω
|u0n|q+1dx

)
≤

≤





K1

(
2|Ω|+

∫
Ω |u0n|

2N
N−2dx

)
if N ≥ 3 ,

K1|Ω|
(

1 + ‖u0n‖q+1
L∞(Ω)

)
if N = 1, 2 .

By the above estimate, inequality (2.2.3) and Sobolev embedding results
there exists C > 0 (only depending on the norm ‖u0‖H1

0 (Ω)) such that for
every n ∈ N

∫

Ω
Φn(u0n)(x) dx+

α

2

∫

Ω
|∇u0n|2 dx ≤ C +

α

2
‖u0‖2H1

0 (Ω) .

Then, recalling that Φn(un) ≥ 0, from equality (2.3.16) we obtain estimates
(2.3.22)-(2.3.25). Inequality (2.3.26) follows from (2.3.24)-(2.3.25), since
unt = ∆vn (see (2.2.18)).

Proposition 2.3.6. Let the assumptions of Lemma 2.3.3 be satisfied. Then
for every ᾱ > 0 there exists M > 0 (only depending on the norm ‖u0‖H1

0 (Ω))

such that for any α ∈ (0, ᾱ), β ∈ (0, 1) and n ∈ N
√
α ‖ϕn(un)‖L2(Q) ≤M ; (2.3.27)

α
3
2 ‖∆un‖L2(Q) ≤M ; (2.3.28)

√
αβ ‖vn‖L∞((0,T );H1

0 (Ω)) ≤M . (2.3.29)

Proof. Observe that by (2.2.18)-(2.2.19) there holds

α∆un = ϕn(un) + βunt − (1− β)vn in Q , (2.3.30)

whence by inequalities (2.3.24)-(2.3.25)

α‖∆un‖L2(Q) ≤ ‖ϕn(un)‖L2(Q) + β‖unt‖L2(Q) + (1− β)‖vn‖L2(Q) ≤
≤M + ‖ϕn(un)‖L2(Q) . (2.3.31)

Therefore inequality (2.3.27), together with (2.3.24)-(2.3.25), implies (2.3.28).
To prove (2.3.27), let us distinguish two cases:

(i) either N = 1, 2 and q ∈ (1,∞), or N ≥ 3 and q ∈
(

1, N
N−2

]
;

(ii) N ≥ 3 and q ∈
(

N
N−2 ,

N+2
N−2

]
.
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(i) By inequality (2.2.10), for every t ∈ (0, T ] we have

‖ϕn(un)(·, t)‖L2(Ω) =

(∫

Ω
|ϕn(un)|2(x, t) dx

) 1
2

≤

≤ 2K1

(
2|Ω|+

∫

Ω
|un|2q(x, t)dx

)
≤

≤





2K1

(
2|Ω|+

∫
Ω |un|

2N
N−2 (x, t) dx

)
if N ≥ 3 and q ∈

(
1, N

N−2

]
,

2K1|Ω|
(

1 + ‖un(·, t)‖2qL∞(Ω)

)
if N = 1, 2 and q ∈ (1,∞) .

By the above estimate, inequality (2.3.23) and Sobolev embedding results
we obtain (2.3.27) in the present case.

(ii) In this case by Sobolev embedding there holds un(·, t) ∈ L 2N
N−4 (Ω) and

|∇un(·, t)| ∈ L
2N
N−2 (Ω) for every t ∈ (0, T ], since un ∈ C([0, T ];H1

0 (Ω) ∩
H2(Ω)). Then by Remark 2.2.1 (in particular, see (2.2.10) and (2.2.15))
there holds

‖ψ(un)(·, t)‖L2(Ω) =

(∫

Ω
|ψ(un)|2(x, t) dx

) 1
2

≤ 2K1

(
2|Ω|+

∫

Ω
|un|2q(x, t)dx

)
≤

≤ 2K1

(
2|Ω|+

∫

Ω
|un|

2(N+2)
N−2 (x, t) dx

)
<∞ ,

since L
2N
N−4 (Ω) ↪→ L

2(N+2)
N−2 (Ω). Similarly,

‖
[
ψ′(un)|∇un|2

]
(·, t)‖L1(Ω) =

∫

Ω

[
ψ′(un)|∇un|2

]
(x, t) dx ≤

≤
(∫

Ω
|ψ′(un)|N2 (x, t) dx

) 2
N
(∫

Ω
|∇un|

2N
N−2 (x, t) dx

)N−2
N

=

=

(∫

Ω
|un|

N
2

(q−1)(x, t) dx

) 2
N
(∫

Ω
|∇un|

2N
N−2 (x, t) dx

)N−2
N

≤

≤ C
(∫

Ω
|un|

2N
N−2 (x, t) dx

) 2
N
(∫

Ω
|∇un|

2N
N−2 (x, t) dx

)N−2
N

<∞

for some C > 0.
By the above remarks, multiplying equality (2.3.30) by ψ(un) and inte-

grating over Q plainly gives
∫∫

Q
|ϕn(un)ψ(un)| dxdt+ α

∫∫

Q

[
ψ′(un)|∇un|2

]
(x, t) dx =

≤ β

∫

Ω
Ψ(u0n) dx+ (1− β)

∫∫

Q
vnψ(un) dxdt , (2.3.32)
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where Ψ is the function defined in (2.2.16) and the inequality

ϕn(u)ψ(u) =
[ϕn(u)u][ψ(u)u]

u2
≥ 0 (u 6= 0)

has been used.
Concerning the right-hand side of (2.3.32), by Hölder inequality we have

∫∫

Q
|vnψ(un)| dxdt ≤ ‖vn‖

L
2N
N−2 (Q)

‖ψ(un)‖
L

2N
N+2 (Q)

. (2.3.33)

Let us show that for some constant M > 0 there holds

√
α ‖ψ(un)‖

L∞((0,T );L
2N
N+2 (Ω))

≤M . (2.3.34)

In fact, by Remark 2.2.1 there exists K2 > 0 such that for every t ∈ (0, T ]

‖ψ(un)(·, t)‖
L

2N
N+2 (Ω)

≤ K2

(
2|Ω|+

∫

Ω
|un|

2qN
N+2 (x, t)dx

)N+2
2N

≤

≤ K2

(
2|Ω|+

∫

Ω
|un|

2N
N−2 (x, t)dx

)N+2
2N

,

since by assumption q ≤ N+2
N−2 . Then by the above estimate, inequality

(2.3.23) and Sobolev embedding we obtain (2.3.34). Further, from inequal-
ities (2.3.25) and (2.3.33)- (2.3.34) by Sobolev embedding we obtain

√
α(1− β)

∫∫

Q
|vnψ(un)| dxdt ≤M (2.3.35)

with some constant M > 0.
On the other hand, since |Ψ(un)| ≤ K1(1+|un|

2N
N−2 ), by inequality (2.2.3)

and Sobolev embedding results there exists M > 0 (only depending on the
norm ‖u0‖H1

0 (Ω)) such that for every n ∈ N
∫

Ω
Ψ(u0n)(x) dx ≤M . (2.3.36)

Then from (2.3.32), (2.3.35) and (2.3.36) we easily obtain

α

∫∫

Q
|ϕn(un)ψ(un)| dxdt ≤M

for some constant M > 0, whence by inequality (2.2.17) the estimate (2.3.27)
follows also in this case. This completes the proof of (2.3.27).
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To prove inequality (2.3.29), for any t ∈ (0, T ] let us multiply the elliptic
equation (2.2.19) by vn(·, t) and integrate over Ω. Using Hölder inequality
as in (2.3.33), by Sobolev embedding we have

β

∫

Ω
|∇vn(x, t)|2 dx+ (1− β)

∫

Ω
v2
n(x, t) dx = (2.3.37)

=

∫

Ω
[vnϕn(un)](x, t) dx+ α

∫

Ω

[
∇vn · ∇un

]
(x, t) dx ≤

≤
(∫

Ω
|ϕn(un)(x, t)| 2N

N+2dx

)N+2
2N
(∫

Ω
|vn(x, t)| 2N

N−2dx

)N−2
2N

+

+α

(∫

Ω
|∇un(x, t)|2dx

) 1
2
(∫

Ω
|∇vn(x, t)|2dx

) 1
2

.

Using inequality (2.2.10) and arguing as in the proof of (2.3.34), it is proven
that for some constant M > 0

√
α ‖ϕn(un)‖

L∞((0,T );L
2N
N+2 (Ω))

≤M . (2.3.38)

Then by Sobolev embedding results from inequalities (2.3.23) and (2.3.37)-
(2.3.38) we obtain for every t ∈ (0, T ]

β

∫

Ω
|∇vn(x, t)|2 dx+ (1− β)

∫

Ω
v2
n(x, t) dx ≤ M√

α

(∫

Ω
|∇vn(x, t)|2dx

) 1
2

for some constant M > 0, whence inequality (2.3.29) immediately follows.
This completes the proof.

Since the assumptions of Lemma 2.3.4 imply those of Lemma 2.3.3, we
have the following result.

Proposition 2.3.7. Let the assumptions of Lemma 2.3.4 be satisfied. Then
for every β ∈ (0, 1) and n ∈ N

‖un‖L∞((0,T );L2(Ω)) ≤ ‖u0‖H1
0 (Ω)

√
1 + e

2LT
β

1− β ; (2.3.39)

‖un‖L∞((0,T );H1
0 (Ω)) ≤ ‖u0‖H1

0 (Ω)

√√√√2
(

1 + e
2LT
β

)

β
; (2.3.40)

‖∆un‖L2(Q) ≤ ‖u0‖H1
0 (Ω)

√
1 + e

2LT
β

α
(α ∈ (0,∞)) . (2.3.41)

Moreover, for every ᾱ > 0 and β ∈ (0, 1) there exists M̄ > 0 (only depending
on the norm ‖u0‖H1

0 (Ω) and on β, and diverging as β → 0+, β → 1−) such

that for any α ∈ (0, ᾱ) and n ∈ N

‖ϕn(un)‖L2(Q) ≤ M̄ . (2.3.42)
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Proof. Estimates (2.3.39), (2.3.40) and (2.3.41) follow directly from inequal-
ity (2.3.19). Concerning (2.3.42), from the first equality in (2.2.19) and
inequalities (2.3.26), (2.3.41) we plainly obtain

‖ϕn(un)‖L2(Q) ≤ α ‖∆un‖L2(Q) + β ‖∆vn‖L2(Q) + (1− β) ‖vn‖L2(Q) ≤

≤ ‖u0‖H1
0 (Ω)

√
ᾱ
(

1 + e
2LT
β

)
+M

(√
β

1− β +
√

1− β
)
.

Then the claim follows.

Proposition 2.3.8. Let the assumptions of Lemma 2.3.3 be satisfied. Then
there exist u ∈ L∞((0, T );H1

0 (Ω))∩C([0, T ];L2(Ω)), v ∈ L∞((0, T );H1
0 (Ω))∩

L2((0, T );H2(Ω)) and subsequences {unk}, {vnk} such that

(i) ut ∈ L2(Q), ϕ(u) ∈ L2(Q), ∆u ∈ L2(Q);

(ii) there holds

unk
∗
⇀ u in L∞((0, T );H1

0 (Ω)) , (2.3.43)

unk → u almost everywhere in Q , (2.3.44)

unkt ⇀ ut in L2(Q) , (2.3.45)

ϕnk(unk)→ ϕ(u) almost everywhere in Q , (2.3.46)

ϕnk(unk) ⇀ ϕ(u) in L2(Q) , (2.3.47)

Φnk(unk)→ Φ(u) almost everywhere in Q , (2.3.48)

∆unk ⇀ ∆u in L2(Q) , (2.3.49)

vnk
∗
⇀ v in L∞((0, T );H1

0 (Ω)) , (2.3.50)

vnk ⇀ v in L2((0, T );H2(Ω)) . (2.3.51)

Proof. The convergence claims in (2.3.43)-(2.3.44) and in (2.3.50)-(2.3.51)
follow from the a priori estimates (2.3.23), respectively (2.3.29) and (2.3.26).
Concerning (2.3.45), by estimate (2.3.24) there exists w ∈ L2(Q) such that
(possibly extracting a subsequence, denoted again {unkt} for simplicity)

unkt ⇀ w in L2(Q) ,

thus in particular

∫∫

Q
unktζ dxdt = −

∫∫

Q
unkζt dxdt→

∫∫

Q
w ζ dxdt

for every ζ ∈ C1
c (Q). Since

∫∫

Q
unkζt dxdt→

∫∫

Q
u ζt dxdt
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by (2.3.43), there holds w = ut ∈ L2(Q), thus the first claim in (i) and
(2.3.45) follow. The third claim in (i) and (2.3.49) are similarly proven
using estimate (2.3.28).

It is easily seen that the convergence in (2.3.46) (respectively in (2.3.48))
follows from that in (2.3.44) by using (2.2.6) and (2.2.9) (respectively (2.2.14)
and (2.2.10)). Let us now address (2.3.47). By inequality (2.3.27) there ex-
ists z ∈ L2(Q) such that (possibly extracting a subsequence, denoted again
{ϕnk(unk)} for simplicity)

ϕnk(unk) ⇀ z in L2(Q) . (2.3.52)

Inequality (2.3.27) also implies that the sequence {ϕn(un)} is uniformly
integrable in L1(Q). In fact,

‖ϕn(un)‖L1(Q) ≤
√
|Q| ‖ϕn(un)‖L2(Q) ≤M

√
|Q| for any n ∈ N ,

and for any measurable subset E ⊆ Q with Lebesgue measure |E| < δ
∫∫

E
|ϕn(un)| dxdt ≤M

√
|δ| for any n ∈ N .

Then by the Prokhorov’s Theorem and the convergence in (2.3.46) (e.g.,
see [V2, Proposition 1]) we obtain that (possibly extracting a subsequence,
denoted again {ϕnk(unk)} for simplicity)

ϕnk(unk) ⇀ ϕ(u) in L1(Q) . (2.3.53)

Comparing (2.3.52) with (2.3.53) shows that z = ϕ(u) ∈ L2(Q), thus the
second claim in (i) and (2.3.47) follow.

Finally, let us show that u ∈ C([0, T ];L2(Ω)). By estimate (2.3.24), for
each t1, t2 ∈ [0, T ] and n ∈ N there holds

∫

Ω
|un(x, t2)− un(x, t1)|2dx =

∫

Ω

∣∣∣∣
∫ t2

t1

unt(x, t) dt

∣∣∣∣
2

dx ≤

≤ |t1 − t2|
∫ t2

t1

∫

Ω
u2
nt(x, t) dxdt ≤

M

β
|t1 − t2| .

By inequality (2.3.23) and the above estimate the sequence {un} is equi-
bounded and equicontinuous in C([0, T ];L2(Ω)). Then by the Ascoli-Arzelà
Theorem there exists a subsequence {unk} such that

unk → u in C([0, T ];L2(Ω)) , (2.3.54)

whence the claim follows. This completes the proof.

The following result follows from Proposition 2.3.8 (in particular, see
(2.3.43), (2.3.46)) by a standard localization argument; we leave the proof
to the reader.
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Proposition 2.3.9. Let the assumptions of Proposition 2.3.8 be satisfied.
Let u, v be the functions and {unk}, {vnk} the subsequences given by Propo-
sition 2.3.8. Then for almost every t ∈ (0, T )

unk(·, t) ⇀ u(·, t) in H1
0 (Ω) , (2.3.55)

ϕnk(unk)(·, t) ⇀ ϕ(u)(·, t) in L
2N
N+2 (Ω) , (2.3.56)

vnk(·, t) ⇀ v(·, t) in H1
0 (Ω) . (2.3.57)

Now we can prove Theorem 2.2.2.

Proof of Theorem 2.2.2. As already proven, the functions u, v considered in
Proposition 2.3.8 have the regularity properties stated in Definition 2.2.2.
Letting nk → ∞ in the weak formulation of problems (2.2.18), (2.2.19)
(written with n = nk) and using the convergence results of Propositions
2.3.8-2.3.9 shows that problems (2.2.1) and (2.2.2) are satisfied (in L2(Q),
respectively in L2(Ω) for almost every t ∈ (0, T )).

Let us prove that u ∈ C([0, T ];H1
0 (Ω)). Since u ∈ C([0, T ];L2(Ω)) ∩

L∞((0, T );H1
0 (Ω)) and ut, ϕ(u), ∆u ∈ L2(Q), multiplying the first equation

in (2.2.1) by

v =
1

1− β [ϕ(u)− α∆u+ βut]

and arguing as in the proof of Lemma 2.3.3 we get

(1− β)

∫

Ω
Φ(u)(x, t2) dx+

α(1− β)

2

∫

Ω
|∇u|2(x, t2) dx+

+β(1− β)

∫ t2

t1

∫

Ω
u2
t dxds+

∫ t2

t1

∫

Ω
|∇v|2 dxds (2.3.58)

= (1− β)

∫

Ω
Φ(u)(x, t1) dx+

α(1− β)

2

∫

Ω
|∇u|2(x, t1) dx

for every 0 ≤ t1 < t2 ≤ T (since u ∈ C([0, T ];L2(Ω)) ∩ L∞((0, T );H1
0 (Ω)) it

is not restrictive to assume that u(·, t) ∈ H1
0 (Ω) for every t ∈ [0, T ]).

Next, choosing in the above equality (2.3.58) t2 = tn, where tn → t+1
(the case t1 = tn, with tn → t−2 being analogous), there holds

α(1− β)

2
lim
n→∞

∫

Ω
|∇un|2(x, tn) dx =

= − lim
n→∞

{
β(1− β)

∫ tn

t1

∫

Ω
(u2
t + |∇v|2)dxdt

}
+

+ (1− β) lim
n→∞

{∫

Ω
Φ(u)(x, t1)dx−

∫

Ω
Φ(u)(x, tn) dx

}
+

+
α(1− β)

2

∫

Ω
|∇u|2(x, t1) dx.
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Here we have
u(·, tn) ⇀ u(·, t1) in H1

0 (Ω) , (2.3.59)

lim
n→∞

{
β(1− β)

∫ tn

t1

∫

Ω
(u2
t + |∇v|2)dxdt

}
= 0. (2.3.60)

lim
n→∞

∣∣∣∣
∫

Ω
Φ(u)(x, t1)dx−

∫

Ω
Φ(u)(x, tn) dx

∣∣∣∣ = (2.3.61)

= lim
n→∞

∣∣∣∣
∫ tn

t1

∫

Ω
ϕ(u)ut dxdt

∣∣∣∣ = 0

since ϕ(u)ut ∈ L1(Q). By (2.3.60)–(2.3.61) there holds

lim
n→∞

∫

Ω
|∇u|2(x, tn)dx =

∫

Ω
|∇u|2(x, t1)dx,

whence u(·, tn)→ u(·, t1) in H1
0 (Ω) (see also (2.3.59)).

Therefore, the function u is a solution of problem (P ), and the a priori
estimates (2.2.21)-(2.2.27) follow from the analogous inequalities (2.3.23)-
(2.3.29) by the lower semicontinuity of the norm. Concerning (2.2.20), by
estimate (2.3.22), the convergence in (2.3.48) and the Fatou Lemma there
holds

0 ≤
∫

Ω
Φ(u)(x, t) dx ≤ lim inf

nk→∞

∫

Ω
Φnk(unk)(x, t) dx ≤M

for almost every t ∈ (0, T ). Then inequality (2.2.20) follows.

It remains to prove uniqueness. To this purpose, let (u1, v1) and (u2, v2)
be two solutions of problem (P ). Then the differences u1−u2, v1−v2 satisfy
the problems

{
(u1 − u2)t = ∆(v1 − v2) in Q
u1 − u2 = 0 in Ω× {0} , (2.3.62)





−β[∆(v1 − v2)](·, t) + (1− β)(v1 − v2)(·, t) =

= (ϕ(u1)− ϕ(u2))(·, t)− α[∆(u1 − u2)](·, t) in Ω

(v1 − v2)(·, t) = 0 on ∂Ω .

(2.3.63)

Multiplying the first equation of (2.3.62) by the function

ψ(x, t) := −
∫ τ

t
(v1 − v2)(x, s) ds ,

for any fixed τ ∈ (0, T ), and integrating over Qτ := Ω× (0, τ) we obtain
∫∫

Qτ

(u1 − u2)(v1 − v2) dxdt =

= −
∫∫

Qτ

[∇(v2 − v2)](x, t)

(∫ τ

t
[∇(v2 − v2)](x, s) ds

)
dxdt =

= −1

2

∫

Ω

∣∣∣∣
∫ τ

0
[∇(v2 − v2)](x, s) ds

∣∣∣∣
2

dx ≤ 0,
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whence ∫∫

Qτ

(u1 − u2)(v1 − v2) dxdt ≤ 0 . (2.3.64)

On the other hand, multiplying the first equation of (2.3.63) by the
difference (u1 − u2)(·, t) and integrating over Qτ gives

(1− β)

∫∫

Qτ

(u1 − u2)(v1 − v2) dxdt =

∫∫

Qτ

[ϕ(u1)− ϕ(u2)] [u1 − u2] dxdt+

+α

∫∫

Qτ

|∇(u1 − u2)|2 dxdt+
β

2

∫

Ω
(u1 − u2)2(x, τ) dx ,

whence by inequality (2.3.64) and assumption (H2)

β

2

∫

Ω
(u1 − u2)2(x, τ) dx ≤ C

∫∫

Qτ

(u1 − u2)2 dxdt

with some constant C > 0. By the above estimate and the Gronwall Lemma
uniqueness follows. This completes the proof. �
Proof of Theorem 2.2.3. Estimates (2.2.28)-(2.2.31) follow from the analo-
gous inequalities (2.3.39)-(2.3.42) by the lower semicontinuity of the norm,
in view of the convergence in (2.3.43) and (2.3.47)-(2.3.49). �

2.4 Asymptotic limits : Proofs

Let us first prove Theorem 2.2.4.

Proof of Theorem 2.2.4. The a priori estimates (2.2.21) and (2.2.25) ensure
the existence of limiting functions uα ∈ L∞((0, T );H1

0 (Ω)), vα ∈ L2((0, T );H1
0 (Ω))

such that both the convergences in (2.2.33) and (2.2.37) holds. Moreover,
by (2.2.21), (2.2.25) and the first equation in (2.2.1), it can be easily seen
that for every ρ ∈ H1

0 (Ω) the sequence

F ρk (t) =

∫

Ω
uα,βk(x, t)ρ(x) dx

is uniformly bounded – hence weakly relatively compact – in the Sobolev
space H1((0, T )). By such consideration and (2.2.33), it follows that for
almost every t ∈ (0, T ) there holds

F ρk (t)→
∫

Ω
uα(x, t)ρ(x) dx. (2.4.1)

Thus, by (2.2.33) and (2.4.1) we obtain

uα,βk(·, t) ⇀ uα(·, t) in H1
0 (Ω) (2.4.2)
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for almost every t ∈ (0, T ). Finally, by (2.4.2), (2.2.33) and the Dominated
Convergence Theorem, (2.2.34) follows.

The convergences in (2.2.35)-(2.2.37) and claim (i) follow from (2.2.23)-
(2.2.25) arguing as in the proof of Proposition 2.3.6.

To prove claim (iii) let us consider the weak formulation of problems
(2.2.1)-(2.2.2) written with u = uα,β and v = vα,β, namely

∫∫

Q
uα,βζt dxdt+

∫∫

Q
vα,β∆ζ dxdt = −

∫

Ω
u0(x)ζ(x, 0) dx , (2.4.3)

β

∫∫

Q
∇vα,β·∇ζ dxdt+(1−β)

∫∫

Q
vα,βζ dxdt =

∫∫

Q
[ϕ(uα,β)−α∆uα,β] ζ dxdt

(2.4.4)
for every ζ ∈ C1([0, T ];C2

c (Ω)) such that ζ(., T ) = 0 in Ω. Then letting
βk → 0+ in equalities (2.4.3)-(2.4.4) written with β = βk and using (2.2.35)-
(2.2.37) we obtain

∫∫

Q
uαζt dxdt+

∫∫

Q
vα∆ζ dxdt = −

∫

Ω
u0(x)ζ(x, 0) dx ,

∫∫

Q
vαζ dxdt =

∫∫

Q
[ϕ(uα)− α∆uα] ζ dxdt

for every ζ as above, whence equality (2.2.32) and claim (iii) follow. Fi-
nally, the statements in claim (iv) concerning inequalities (2.2.21), (2.2.23)-
(2.2.24) and (2.2.38) follow from the analogous estimates (2.2.21), (2.2.23)-
(2.2.25) and (2.2.38) for u = uα,β and v = vα,β, by the convergence in
(2.2.33), (2.2.35)-(2.2.37) and the lower semicontinuity of the norm. On the
other hand, the statement concerning inequality (2.2.20) follows from the
same inequality for u = uα,β by the convergence in (2.2.34) and the Fatou
Lemma, as in the proof of Theorem 2.2.2. Then the conclusion follows. �
Proof of Theorem 2.2.5. We only prove claim (iii), the proof of the others
following by the same arguments used in the proof of Theorem 2.2.4. Con-
sider the weak formulation of problems (2.2.1)-(2.2.2) written with u = uα,β
and v = vα,β, namely

∫∫

Q
(uα,β)t ζ dxdt = −

∫∫

Q
∇vα,β · ∇ζ dxdt (2.4.5)

β

∫∫

Q
∇vα,β·∇ζ dxdt+(1−β)

∫∫

Q
vα,βζ dxdt =

∫∫

Q
[ϕ(uα,β)−α∆uα,β] ζ dxdt

(2.4.6)
for every ζ ∈ C([0, T ];C2(Ω̄)) such that ζ(., t) = 0 on ∂Ω for every t ∈ [0, T ].
By inequality (2.2.26) there exist a function vα ∈ L∞((0, T );H1

0 (Ω)) and a
subsequence {vα,βk} ⊆ {vα,β} such that

vα,βk
∗
⇀ vα in L∞((0, T );H1

0 (Ω))
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as βk → 1−. Then letting βk → 1− in equalities (2.4.5)-(2.4.6) written with
β = βk we obtain

∫∫

Q
uαt ζ dxdt = −

∫∫

Q
∇vα · ∇ζ dxdt ,=

= −
∫∫

Q
[ϕ(uα)− α∆uα] ζ dxdt

for every ζ as above. Using inequality (2.2.44) and arguing as in the proof
of Proposition 2.3.8 , it is easily seen that uα ∈ C([0, T ];L2(Ω)). Then the
result follows. �
Proof of Theorem 2.2.6. The convergence claims in (2.2.47)-(2.2.48) follow
from the a priori estimates (2.2.22) and (2.2.29), those in (2.2.49)-(2.2.50)
follow from (2.2.22) and (2.2.31), respectively, and those in (2.2.51)-(2.2.52)
follow from (2.2.25) and (2.2.27).

To prove claim (iii), consider the following weak formulation of problems
(2.2.1)-(2.2.2):

∫∫

Q
(uα,β)t ζ dxdt =

∫∫

Q
∆vα,βζ dxdt , (2.4.7)

−β
∫∫

Q
∆vα,β ζ dxdt+ (1− β)

∫∫

Q
vα,β ζ dxdt = (2.4.8)

=

∫∫

Q
ϕ(uα,β) ζ dxdt− α

∫∫

Q
uα,β ∆ζ dxdt

for every ζ ∈ C([0, T ];C2
c (Ω)). Letting αk → 0+ in (2.4.8) written with

α = αk and using (2.4.7), by the arbitrariness of ζ we obtain the equalities

∫∫

Q
(uβ)t ζ dxdt =

∫∫

Q
∆vβζ dxdt , (2.4.9)

−β
∫∫

Q
∆vβ ζ dxdt+ (1− β)

∫∫

Q
vβ ζ dxdt =

∫∫

Q
ϕ(uβ) ζ dxdt . (2.4.10)

By the arbitrariness of ζ, from (2.4.10) we obtain

vβ =
1

1− β [ϕ(uβ) + βuβt] ,

which upon substitution in (2.4.9) shows that problem (S) is satisfied in
strong sense. The proof of claim (iv) is analogous to those given for Theo-
rems 2.2.4-2.2.5, hence the result follows. �
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2.5 Letting α→ 0+ in problem (CH): Proofs

To prove Theorem 2.2.7 we need some definitions and results concerning
Young measures on Q× R (e.g., see [GMS, V2] and references therein).

Definition 2.5.1. By a Young measure on Q × R we mean any positive
Radon measure τ such that

τ(E × R) = |E| (2.5.1)

for any Lebesgue measurable set E ⊆ Q. The set of Young measures on
Q× R will be denoted by Y(Q;R).
If f : Q→ R is Lebesgue measurable, the Young measure associated to f is
the measure τ ∈ Y(Q;R) such that

τ(E × F ) = |E ∩ f−1(F )| (2.5.2)

for any Lebesgue measurable set E ⊆ Q and any Borel set F ⊆ R.

Proposition 2.5.1. Let τ ∈ Y(Q;R). Then for almost every (x, t) ∈ Q
there exists a measure τ(x,t) ∈ P∞(R), such that for any function ψ : Q ×
R→ R bounded and continuous:
(i) the map

(x, t) →
〈
τ(x,t), ψ(x, t, ·)

〉
R =

∫

R
ψ(x, t, ξ) dτ(x,t)(ξ)

is Lebesgue measurable;
(ii) there holds

〈τ, ψ〉Q×R :=

∫

Q×R
ψ dτ =

∫∫

Q

〈
τ(x,t), ψ(x, t, ·)

〉
R dxdt (2.5.3)

=

∫∫

Q
dxdt

∫

R
ψ(x, t, ξ) dτ(x,t)(ξ) .

Therefore, every τ ∈ Y(Q × R) can be identified with the associated
family {τ(x,t) | (x, t) ∈ Q}, which is called the disintegration of τ .

Definition 2.5.2. Let {τn} ⊆ Y(Q;R), τ ∈ Y(Q;R) (n ∈ N). We say that
τn → τ narrowly in Q× R, if

∫

Q×R
ψ dτn →

∫

Q×R
ψ dτ (2.5.4)

for any function ψ : Q×R→ R bounded and measurable, such that ψ(x, t, ·)
is continuous for almost every (x, t) ∈ Q.

The following result, concerning bounded sequences of functions in L1(Q),
will be used.
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Theorem 2.5.2. Let {fn} be a bounded sequence in L1(Q), and {τn} the
sequence of associated Young measures. Then:
(i) there exist subsequences {fk} ≡ {fnk} ⊆ {fn},

{
τk
}
≡ {τnk} ⊆ {τn}

and a Young measure τ on Q× R such that τk → τ narrowly in Q× R;
(ii) for any ρ ∈ C(R) such that the sequence {ρ ◦ fn} ⊆ L1(Q) is uniformly
integrable, there holds

ρ ◦ fk ≡ ρ ◦ fnk ⇀ ρ∗ in L1(Q) , (2.5.5)

where

ρ∗(x, t) :=
〈
τ(x,t), ρ

〉
R =

∫

R
ρ(ξ) dτ(x,t)(ξ) for a.e. (x, t) ∈ Q (2.5.6)

and {τ(x,t)} is the disintegration of τ .

If a sequence {fn} is bounded in L1(Q) but not uniformly integrable, we
can extract from it a uniformly integrable subsequence ”by removing sets
of small measure”. This is the content of the following theorem (e.g., see
[GMS]).

Theorem 2.5.3. (Biting Lemma) Let {fn} be a bounded sequence in L1(Q).
Then there exist a subsequence {fk} ≡ {fnk} ⊆ {fn} and a decreasing se-
quence of measurable sets Ek ⊆ Q of Lebesgue measure |Ek| → 0, such that
the sequence

{
fkχQ\Ek

}
is uniformly integrable.

Some consequences of the Biting Lemma are discussed in the following.

Remark 2.5.1. Let {fk} be the subsequence considered in Theorem 2.5.3,
and let

{
τk
}

be the associated sequence of Young measures. Let τ denote
the narrow limit of the sequence

{
τk
}

, which exists by Theorem 2.5.2-(i)
(possibly extracting a subsequence, still denoted

{
τk
}

for simplicity), and let
{Ek} be the sequence of measurable sets considered in Theorem 2.5.3. Since
the sequence

{
fkχQ\Ek

}
is uniformly integrable, by Theorem 2.5.2-(ii) there

holds

fkχQ\Ek ⇀ u :=

∫

[0,∞)
ξ dτ(ξ) in L1(Q) . (2.5.7)

The function u ∈ L1(Q) in (2.2.56) is called the barycenter of the disintegra-
tion {τ(x,t)} of τ . Besides, since the sequence {fkχEk} is bounded in L1(Q),
there exists a measure µ ∈M(Q) such that

fkχEk
∗
⇀ (1− β) in M(Q) . (2.5.8)

We can now proceed to prove Theorem 2.2.7. Let us first mention the
following result.
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Proposition 2.5.4. Let u0 ∈ H1
0 (Ω), and let ϕ satisfy assumptions (H0),

(H1) and (H4). Let uα be the solution of problem (CH) given by Theorem
2.2.4 (α ∈ (0,∞)). Then there exists M > 0 (only depending on the norm
‖u0‖H1

0 (Ω)) such that for any α ∈ (0, ᾱ) and r as in (H4)

‖uα‖L∞((0,T );Lr(Ω)) ≤M . (2.5.9)

Proof. Follows immediately from inequality (2.2.20) and assumption (H4).

We can now prove Theorem 2.2.7.

Proof of Theorem 2.2.7. The claims concerning the function v ∈ L2((0, T );H1
0 (Ω)),

the subsequence {vαk} ⊆ {vα} and the convergence in (2.2.59) follow from
inequality (2.2.44).

On the other hand, by inequality (2.5.9) the family {uα} is bounded in
L1(Q), thus the Biting Lemma and its consequences described in Remark
2.5.1 can be used. In particular, there exist a subsequence {uαk} ⊆ {uα},
and a decreasing sequence of measurable sets Ek ⊆ Q of Lebesgue measure
|Ek| → 0, such that the convergence in (2.5.7)-(2.5.8) holds with fk = uαk .
Moreover, arguing as in [ST2], it is easily seen that u ∈ L∞((0, T );L1(Ω))
and µ ∈ L∞((0, T );M(Ω)).

To prove claim (ii) and the convergence in (2.2.58), recalling that vα :=
ϕ(uα) − α∆uα belongs to L2((0, T );H1

0 (Ω)), by standard approximation
arguments from equality (2.2.32) we get

∫∫

Q
uαζt dxdt =

∫∫

Q
∇vα · ∇ζ dxdt−

∫

Ω
u0(x)ζ(x, 0) dx (2.5.10)

for every ζ ∈ C1([0, T ];C1
c (Ω)) such that ζ(·, T ) = 0 in Ω , and

∫∫

Q
vαζ dxdt =

∫∫

Q
ϕ(uα)ζ dxdt− α

∫∫

Q
uα ∆ζ dxdt (2.5.11)

for every ζ ∈ C1([0, T ];C2
c (Ω) such that ζ(., T ) = 0 in Ω. Observe that

∫∫

Q
uαkζt dxdt =

∫∫

Q
uαkχEkζt dxdt+

∫∫

Q
uαkχQ\Ekζt dxdt .

Then letting αk → 0+ in equality (2.5.10) written with α = αk and using
the convergence in (2.5.7)-(2.5.8) we obtain equality (2.2.60). On the other
hand, letting αk → 0+ in equality (2.5.11) written with α = αk, by the
convergence in (2.2.59) we obtain that in (2.2.58).

Finally, if assumption (H4) holds with r > 1, by inequality (2.5.9) the
family {uα} is uniformly integrable in L1(Q). Then by Theorem 2.5.2-(ii)
the convergence in (2.2.61) and the remaining claims follow. This completes
the proof. �
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2.6 Neumann boundary conditions

Consider the companion problem of (P ) with homogeneous Neumann bound-
ary conditions:

(NP )





(1− β)ut = ∆[ϕ(u)− α∆u+ βut] in Q

∂u

∂n
=
∂∆u

∂n
= 0 on ∂Ω× (0, T )

u = u0 in Ω× {0} .

Set

H2
E(Ω) :=

{
u ∈ H2(Ω)

∣∣ ∂u
∂n

= 0

}

By abuse of notation, hereafter we denote by [I−ε∆]−1 (ε > 0) the operator

[I − ε∆]−1 : L2(Ω)→ H2
E(Ω) , [I − ε∆]−1z := w (z ∈ L2(Ω)) ,

where w ∈ H2
E(Ω) is the unique solution of the elliptic problem




−ε∆w + w = z in Ω

∂w

∂n
= 0 in ∂Ω

(2.6.1)

for any z ∈ L2(Ω). Accordingly, by A ≡ Aαβ : D(A) ⊂ L2(Ω) → L2(Ω) we
denote the following operator:

{
D(A) := H2

E(Ω)

Au := −α∆[(1− β)I − β∆]−1∆u (u ∈ D(A)) .
(2.6.2)

By the methods used in Section 2.3 we have a first existence result con-
cerning solutions of problem (NP ), which is the analogue of Theorem 2.2.1.

Theorem 2.6.1. Let α ∈ (0,∞), β ∈ (0, 1), and let ϕ satisfy assumption
(H2). Then for every u0 ∈ H2

E(Ω) there exists a unique function u such
that:

(i) u ∈ C([0, T ];H2
E(Ω)) ∩ C1([0, T ];L2(Ω)), and ϕ(u) ∈ C([0, T ];L2(Ω));

(ii) u satisfies in strong sense problem (2.2.1), where v ∈ C([0, T ];H2
E(Ω))

and for every t ∈ [0, T ] the function v(·, t) is the unique solution of the
elliptic problem




−β∆v(·, t) + (1− β)v(·, t) = ϕ(u)(·, t)− α∆u(·, t) in Ω

∂v(·, t)
∂n

= 0 on ∂Ω .
(2.6.3)
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A more general well-posedness result for problem (NP ), analogous to
Theorem 2.2.2, is obtained as before considering the family of approximating
problems

(NPn)





(1− β)unt = ∆[ϕn(un)− α∆un + βunt] in Q

∂un
∂n

=
∂∆un
∂n

= 0 on ∂Ω× (0, T )

un = u0n in Ω× {0} .

Here ϕn is defined as above (see (2.2.5)), and for every u0 ∈ H1(Ω) {u0n} ⊆
H2
E(Ω) is any sequence such that

‖u0n‖H1(Ω) ≤ ‖u0‖H1(Ω) , (2.6.4)

u0n → u0 in H1(Ω) . (2.6.5)

Observe that by mass conservation, for every t ∈ (0, T ] and n ∈ N
∫

Ω
un(x, t) dx =

∫

Ω
u0n(x) dx . (2.6.6)

Concerning solutions of the approximating problems (NPn) we have the
following estimates, which are the counterpart of those of Proposition 2.3.6.

Proposition 2.6.2. Let α ∈ (0,∞), β ∈ (0, 1), u0 ∈ H1(Ω), and let ϕ sat-
isfy assumptions (H0)-(H1). Let {un} be the sequence of solutions to prob-
lems (NPn) given by Theorem 2.6.1, with {u0n} satisfying (2.6.4)-(2.6.5).
Then for every ᾱ > 0 there exists M > 0 (only depending on the norm
‖u0‖H1(Ω)) such that for any α ∈ (0, ᾱ), β ∈ (0, 1) and n ∈ N

‖Φn(un)‖L∞((0,T );L1(Ω)) ≤M ; (2.6.7)

√
α ‖un‖L∞((0,T );L2(Ω)) ≤M ; (2.6.8)

√
α ‖|∇un|‖L∞((0,T );L2(Ω)) ≤M ; (2.6.9)
√
β ‖unt‖L2(Q) ≤M ; (2.6.10)

√
α ‖ϕn(un)‖L2(Q) ≤M ; (2.6.11)

√
α3β ‖∆un‖L2(Q) ≤M ; (2.6.12)

√
αβ (1− β) ‖vn‖L2(Q) ≤M ; (2.6.13)
√

1− β ‖|∇vn|‖L2(Q) ≤M ; (2.6.14)
√
β ‖∆vn‖L2(Q) ≤M . (2.6.15)
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Proof. It is easily checked that equality (2.3.16) holds under the present
assumption, hence inequalities (2.6.7), (2.6.9)-(2.6.10) and (2.6.14) follow.
The proof of inequality (2.6.11) is the same of (2.3.27), using (2.6.9) and
(2.6.14) instead of (2.3.23) and (2.3.25), respectively. Inequality (2.6.15)
follows from (2.6.10) by the equality unt = ∆vn.

Concerning (2.6.8), observe that by the Poincaré inequality and mass
conservation (see (2.6.6)) there exists C > 0 such that

‖un(·, t)‖2L2(Ω) ≤ C

[
‖|∇un|(·, t)‖2L2(Ω) +

(∫

Ω
un(x, t) dx

)2
]

=

= C

[
‖|∇un|(·, t)‖2L2(Ω) +

(∫

Ω
u0n(x) dx

)2
]

for every t ∈ (0, T ). Then by inequalities (2.6.4) and (2.6.9) we have

‖un(·, t)‖2L2(Ω) ≤ C
(
M

α
+ |Ω| ‖u0‖2H1(Ω)

)

for every t ∈ (0, T ), whence (2.6.8) follows.
From the first equality in (2.3.37) (which follows from equality (2.2.2) as

for Dirichlet boundary conditions) by Sobolev embedding and inequalities
(2.6.9), (2.6.11) we have

β ‖|∇vn|(·, t)‖2L2(Ω) + (1− β) ‖vn(·, t)‖2L2(Ω) ≤
≤ ‖vn(·, t)‖L2(Ω) ‖ϕn(un)‖L2(Ω) + α ‖|∇vn|(·, t)‖L2(Ω) ‖|∇un|(·, t)‖L2(Ω) ≤

≤ 1− β
2
‖vn(·, t)‖2L2(Ω) +

1

2(1− β)
‖ϕn(un)‖2L2(Ω) +

+
β

2
‖|∇vn|(·, t)‖2L2(Ω) +

α2

2β
‖|∇un|(·, t)‖2L2(Ω) ,

namely

β ‖|∇vn|(·, t)‖2L2(Ω) + (1− β) ‖vn(·, t)‖2L2(Ω) ≤

≤ 1

1− β ‖ϕn(un)‖2L2(Ω) +
α2

β
‖|∇un|(·, t)‖2L2(Ω) .

Integrating the above inequality on (0, T ) and using inequalities (2.6.9),
(2.6.11) we obtain

β ‖|∇vn|‖2L2(Q) + (1− β) ‖vn‖2L2(Q) ≤ M2

(
1

α(1− β)
+
α

β

)
,

whence inequality (2.6.13) follows. Finally, from equality (2.3.30), using
(2.6.10), (2.6.11) and (2.6.13), we obtain (2.6.12). This completes the proof.
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Arguing as in Section 2.3, from the above estimates we obtain the fol-
lowing analogue of Theorem 2.2.2.

Theorem 2.6.3. Let α ∈ (0,∞), β ∈ (0, 1), and let ϕ satisfy assumptions
(H0)-(H1). Then for every u0 ∈ H1(Ω) there exists a solution of problem
(NP ), which is meant in the following sense:

(i) u ∈ L2((0, T );H2
E(Ω)) ∩ C([0, T ];H1(Ω)), ut ∈ L2(Q), ϕ(u) ∈ L2(Q);

(ii) problems (2.2.1) and (2.6.3) are satisfied in strong sense, with v ∈
L2((0, T );H2

E(Ω)).
For every t ∈ (0, T ] there holds

∫

Ω
u(x, t) dx =

∫

Ω
u0(x) dx , (2.6.16)

and, if ϕ satisfies assumption (H2), the solution is unique.
Moreover, for every ᾱ > 0 there exists M > 0 (only depending on the norm
‖u0‖H1(Ω)) such that for any α ∈ (0, ᾱ) and β ∈ (0, 1)

‖Φ(u)‖L∞((0,T );L1(Ω)) ≤M , (2.6.17)

the function Φ being defined in (2.2.13);

√
α ‖u‖L∞((0,T );H1(Ω)) ≤M ; (2.6.18)

√
β ‖ut‖L2(Q) ≤M ; (2.6.19)

√
α ‖ϕ(u)‖L2(Q) ≤M ; (2.6.20)

√
α3β ‖∆u‖L2(Q) ≤M ; (2.6.21)

√
αβ (1− β) ‖v‖L2(Q)) ≤M ; (2.6.22)
√

1− β ‖|∇v|‖L2(Q) ≤M ; (2.6.23)
√
β ‖∆v‖L2(Q) ≤M . (2.6.24)

Remark 2.6.1. If ϕ satisfies either assumption (H2), or assumptions (H0),
(H1) and (H3), the counterparts of Lemma 2.3.4, Proposition 2.3.7 and The-
orem 2.2.3 are easily proven; we leave their formulation to the reader. Sim-
ilarly, we shall not discuss in the present case results analogous to Theorem
2.2.6, concerning the limit α→ 0+.

The following theorem shows that as α → 0+ the solution of problem
(NP ) obtained above gives a solution of the Neumann initial-boundary value
problem for the Cahn-Hilliard equation:

(NCH)





ut = ∆[ϕ(u)− α∆u] in Q

∂u

∂n
=
∂∆u

∂n
= 0 on ∂Ω× (0, T )

u = u0 in Ω× {0} .
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The proof (which makes use of estimates (2.6.18), (2.6.20), (2.6.22) and
(2.6.23)) is similar to that of Theorem 2.2.4, thus is omitted.

Theorem 2.6.4. Let u0 ∈ H1(Ω), and let ϕ satisfy assumptions (H0)-
(H1). Let uα,β be the solution of problem (NP ) given by Theorem 2.6.3
(α ∈ (0,∞), β ∈ (0, 1)). Then for every α ∈ (0,∞) there exist uα ∈
L∞((0, T );H1(Ω)) with ϕ(uα) ∈ L2(Q), vα ∈ L2((0, T );H1(Ω)) and two
subsequences {uα,βk} ⊆ {uα,β}, {vα,βk} ⊆ {vα,β} such that

(i) as βk → 0+ there holds

uα,βk
∗
⇀ uα in L∞((0, T );H1(Ω)) , (2.6.25)

uα,βk → uα almost everywhere in Q , (2.6.26)

ϕ(uα,βk) ⇀ ϕ(uα) in L2(Q) , (2.6.27)

vα,βk ⇀ vα in L2((0, T );H1(Ω)) ; (2.6.28)

(ii) the function uα is a solution of problem (NCH), in the sense that

∫∫

Q
uα ζt dxdt−

∫∫

Q
∇vα · ∇ζ dxdt = −

∫

Ω
u0(x)ζ(x, 0) dx ,

∫∫

Q
vαζ dxdt =

∫∫

Q
ϕ(uα) ζ dxdt+ α

∫∫

Q
∇uα · ∇ζ dxdt

for every ζ ∈ C1(Q̄) such that ζ(., T ) = 0 in Ω;

(iii) the function uα satisfies equality (2.6.16) for almost every t ∈ (0, T )
and inequalities (2.6.17), (2.6.18), (2.6.20), whereas vα satisfies the a priori
estimate

‖|∇vα|‖L2(Q) ≤M (2.6.29)

with some constant M > 0 only depending on the norm ‖u0‖H1(Ω).

When β → 1−, in the present case we obtain solutions of the problem

(NRD)





ut = α∆u− ϕ(u) +
1

|Ω|

∫

Ω
ϕ(u) dx in QT

∂u

∂n
= 0 on ∂Ω× (0, T )

u = u0 in Ω× {0}

(the presence of the nonlocal term in the right-hand side of the first equa-
tion stemming from Neumann boundary condition; see (AC)). This is the
content of the following theorem.
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Theorem 2.6.5. Let u0 ∈ H1(Ω), and let ϕ satisfy assumptions (H0)-(H1).
Let uα,β be the solution of problem (NP ) given by Theorem 2.6.3 (α ∈
(0,∞), β ∈ (0, 1)). Then for every α ∈ (0,∞) there exist a function uα ∈
L∞((0, T );H1(Ω)) ∩ C([0, T ];L2(Ω)) and a subsequence {uα,βk} ⊆ {uα,β}
such that

(i) uαt ∈ L2(Q), ϕ(uα) ∈ L2(Q), ∆uα ∈ L2(Q);

(ii) as βk → 1− there holds

uα,βk
∗
⇀ uα in L∞((0, T );H1(Ω)) , (2.6.30)

uα,βk → uα almost everywhere in Q , (2.6.31)

(uα,βk)t ⇀ uαt in L2(Q) , (2.6.32)

ϕ(uα,βk) ⇀ ϕ(uα) in L2(Q) , (2.6.33)

∆uα,βk ⇀ ∆uα in L2(Q) , (2.6.34)

(iii) the function uα is a solution of problem (NRD), in the sense that

∫

Q

(∫

Ω
ϕ(uα)(x′, t) dx′

)
ζ(x, t) dxdt+

∫

Ω
u0(x)ζ(x, 0) dx =

=

∫∫

Q
ϕ(uα) ζ dxdt+ α

∫∫

Q
∇uα · ∇ζ dxdt+

∫∫

Q
uα ζt dxdt

for every ζ ∈ C1(Q̄) such that ζ(., T ) = 0 in Ω;

(iv) the function uα satisfies equality (2.6.16), inequalities (2.6.17), (2.6.18),
(2.6.20) and the a priori estimates

‖uαt‖L2(Q) ≤M ,
√
α3 ‖∆u‖L2(Q) ≤M (2.6.35)

with some constant M > 0 only depending on the norm ‖u0‖H1(Ω).

Proof. We only prove claim (iii). Setting zα,β := (1−β)vα,β, by inequalities
(2.6.22)-(2.6.23) we have

√
αβ ‖zα,β‖L2(Q)) ≤M , ‖|∇zα,β|‖L2(Q) ≤M

√
1− β .

Then for every α ∈ (0,∞) there exist a function zα ∈ L2((0, T );H1(Ω)) and
a subsequence {zα,βk} ⊆ {zα,β} such that

zα,βk ⇀ zα in L2(Q) , ∇zα,βk → 0 almost everywhere in Q . (2.6.36)

Therefore zα is a function of t alone, and zα ∈ L2(0, T ).
Now observe that the first equation in (2.6.3) reads

z(t) = ϕ(u)(·, t)− α∆u(·, t) + βut(·, t) in Ω (t ∈ (0, T )) ,
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whence plainly

∫∫

Q
zα,β ζ dxdt =

∫∫

Q
ϕ(uα,β) ζ dxdt +

+ α

∫∫

Q
∇uα,β · ∇ζ dxdt+ β

∫∫

Q
(uα,β)t ζ dxdt

for every ζ ∈ C1(Q̄). Writing the above equality with β = βk and letting
βk → 1−, by (2.6.30), (2.6.32), (2.6.33) and (2.6.36) we obtain

∫ T

0
zα(t)

∫

Ω
ζ dxdt =

∫∫

Q
ϕ(uα) ζ dxdt + (2.6.37)

+ α

∫∫

Q
∇uα · ∇ζ dxdt+

∫∫

Q
uαt ζ dxdt

for every ζ ∈ C1(Q̄). Choosing ζ = h ∈ Cc((0, T )) in (2.6.37), by con-
servation of mass (see (2.6.16)) and standard approximation arguments we
get

|Ω| zα(t) =

∫

Ω
ϕ(uα)(x, t) dx (2.6.38)

for every t ∈ (0, T ). From equalities (2.6.37)-(2.6.38) the conclusion follows.

Finally, let us discuss the limit α → 0+ of problem (NCH). Up to
obvious changes, the analogue of Theorem 2.2.7 holds true; we leave its
formulation to the reader. Remarkably, thanks to the conservation of mass
(see equality (2.6.16) and Theorem 2.6.4-(iii)), the same holds under the
weaker assumption

(H5) there exists k > 0 such that

k u± ≤ Φ(u) for any u ∈ R , (2.6.39)

where r± := max{±r, 0} (r ∈ R), and either sign holds in the above inequal-
ity.. In fact, the following holds.

Theorem 2.6.6. Let u0 ∈ H1(Ω), and let ϕ satisfy assumptions (H0),
(H1) and (H5). Let uα be the solution of problem (NCH) given by The-
orem 2.6.4 (α ∈ (0,∞)). Then there exist u ∈ L∞((0, T );L1(Ω)), µ ∈
L∞((0, T );M+(Ω)) and
v ∈ L2((0, T );H1(Ω)) with the following properties:

(i) there exist two subsequences {uαk} ⊆ {uα}, {vαk} ⊆ {vα} and a decreas-
ing sequence of measurable sets Ek ⊆ Q of Lebesgue measure |Ek| → 0, such
that the sequence

{
uαkχQ\Ek

}
is uniformly integrable, and as αk → 0+ the

convergence in (2.2.56)-(2.2.58) holds true;
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(ii) as αk → 0+ there holds

vαk ⇀ v in L2((0, T );H1(Ω)) ; (2.6.40)

(iii) equality (2.2.60) is satisfied.

Proof. By the considerations in Section 2.5, it suffices to prove that the
family {uα} is bounded in L1(Q). To this purpose, observe that for almost
every t ∈ (0, T )

∫

Ω
|uα(x, t)| dx = ±

∫

Ω
uα(x, t) dx+ 2

∫

Ω
u∓α (x, t) dx =

= ±
∫

Ω
u0(x) dx+ 2

∫

Ω
u∓α (x, t) dx ≤

≤
√
|Ω|‖u0‖H1(Ω) + 2

∫

Ω
Φ(uα)(x, t) dx ≤ M ;

here use of equality (2.6.16) and inequality (2.6.17) has been made. Then
the conclusion follows.
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Chapter 3

On the Cahn-Hilliard
regularization of
forward-backward parabolic
equations

3.1 Introduction

In this paper we study the problem

(PT )





ut = ∆[ϕ(u)− ε∆u] in QT := Ω× (0, T )

∂u

∂ν
=
∂∆u

∂ν
= 0 on ∂Ω× (0, T )

u = u0 in Ω× {0},

where T > 0, Ω ⊆ RN is a bounded domain with smooth boundary ∂Ω,
and ∂

∂ν denotes the outer normal derivative at ∂Ω. We are interested in
nonlinearities ϕ of the following type:

ϕ(u) =
u

1 + u2
, ϕ(u) = u exp (−u) . (3.1.1)

Precise assumptions concerning the function ϕ (and the initial data function
u0) are made below (see Section 3.2).

Our motivation comes from the Perona-Malik equation [PM] in one space
dimension

zt = [ϕ(zx)]x , (3.1.2)

where ϕ is as in (3.1.1), which also appears in a mathematical model for
the formation of layers of constant temperature or salinity in the ocean (see
[BBDU]). The relationship with problem (PT ), with ϕ as in (3.1.1), is easily
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seen: differentiating equation (3.1.2) formally with respect to x and setting
u := zx gives the equation

ut = [ϕ(u)]xx . (3.1.3)

The first equation in problem (PT ) is a specific regularisation, called of
Cahn-Hilliard type, of equation (3.1.3). In fact, the Perona-Malik equation
is a well-known example of forward-backward parabolic equation, which is
ill-posed forward in time.

Beside in image processing [PM] and in modelling of stratified turbulent
shear flow [BBDU], forward-backward equations arise in many applications,
e.g., in aggregation models of population dynamics [Pa]. To regularize these
equations, first a higher order term depending on a small parameter ε > 0 is
added to the right-hand side (on the strength of different physical and bio-
logical considerations, e.g., see [BFJ, BS, G]), then the ”vanishing viscosity
limit” as ε → 0 is investigated. In carrying out this program, mainly two
classes of additional terms have been used in the literature:
(i) ε∆[ψ(u)]t, with ψ′ > 0, leading to third order pseudo-parabolic equations
[BBDU, BST1, BST2, EP, MTT, NP, Pl1, Pl2, Pl3, S, STe, ST1, ST2, ST3].
If ψ(u) = u, this regularization is called Sobolev regularization;
(ii) −ε∆2u, leading to fourth-order Cahn-Hilliard type equations (see [BFG,
Pl4, Sl] and references therein). This kind of regularization has been less
addressed, possibly since studying its singular limit as ε→ 0 appears to be
more difficult than for the regularization mentioned in (i).

Cahn-Hilliard type equations have been widely investigated in the con-
text of the theory of phase transitions (in particular, see [EZ, Z]). In this
case the non-linearity ϕ suggested by modelling is cubic, i.e., ϕ(u) = u3−u.
Existence of suitably defined global solutions was proven in [EZ], and their
asymptotic behaviour for large time was studied in [Z], under the assump-
tion N ≤ 3 on the space dimension. The singular limit as ε→ 0 was studied
in [Pl4], taking advantage of the fourth order growth at infinity of the asso-
ciated free energy Φ. Unfortunately, the approach in [Pl4] does not apply
when ϕ is as in (3.1.1), due to the very slow (only logarithmic) growth at
infinity of the associated potential.

In the light of the above remarks, our motivation for the present study
is investigating the regularization mentioned in (ii) for forward-backward
equations, whose nonlinearity ϕ grows at most linearly at infinity (see as-
sumption (A1). This is meant as a preliminary step before addressing the
singular limit of the problem as ε→ 0. Specifically, we prove existence and
uniqueness of global solutions in a suitable function space under the assump-
tion N ≤ 5 (see Theorem 3.2.2). We also study, using the same approach as
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in [Z], the asymptotic behaviour as t→∞ of solutions of the problem

(P∞)





ut = ∆[ϕ(u)− ε∆u] in Q∞ := Ω× (0,∞)

∂u

∂ν
=
∂∆u

∂ν
= 0 on ∂Ω× (0,∞)

u = u0 in Ω× {0} .

(in particular, see Theorem 3.2.6). In doing so, we take advantage of con-
servation of mass: for any solution u of problem (P∞)

1

|Ω|

∫

Ω
u(x, t)dx = M ,

where

M :=
1

|Ω|

∫

Ω
u0dx (3.1.4)

(see Proposition 3.2.3). Finally, in the case N = 1 we address existence and
multiplicity of equilibrium solutions of (P∞) when ϕ(u) = u

1+u2
. At variance

from the cases of a polynomial ϕ (see [CGS, NPe, Z]), a complete analytical
investigation reveals to be cumbersome, thus recourse to numerical methods
has been expedient.

The paper is organized as follows. In Section 3.2 we describe the math-
ematical framework and state our main results. Proofs are to be found in
Sections 3.3, 3.4. Equilibrium solutions of (P∞) in one space dimension are
studied in Section 3.5.

3.2 Mathematical framework

3.2.1 Preliminaries

The following function spaces will be used in the sequel:

H2
E(Ω) :=

{
u ∈ H2(Ω)

∣∣∣ ∂u
∂ν

= 0

}
,

H2
E∗(Ω) :=

{
u ∈ H2

E(Ω)
∣∣∣
∫

Ω
udx = 0

}
,

H4
E(Ω) :=

{
u ∈ H4(Ω)

∣∣∣ ∂u
∂ν

=
∂∆u

∂ν
= 0

}
,

H4
E∗(Ω) :=

{
u ∈ H4

E(Ω)
∣∣∣
∫

Ω
udx = 0

}
,

H4,1(QT ) :=
{
u ∈ L2(0, T ;H4(Ω)) |ut ∈ L2(QT )

}
.
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We always suppose that ϕ ∈ C3(R), ϕ(0) = 0; moreover, the following
assumptions concerning ϕ will be used:

(A1) ϕ′ ∈ L∞(R) ;

(A2) ϕ′′ ∈ L∞(R) ;

(A3) ϕ′′′ ∈ L∞(R) ;

(A4) sϕ(s) ≥ 0 for any s ∈ R .

The following proposition (e.g., see [Ze, Proposition 23.23]) will be used
to prove existence results.

Proposition 3.2.1. Let V be a separable reflexive Banach space with dual
space V ′, and let H be a separable Hilbert space such that:
(i) V ⊂ H ⊂ V ′;
(ii) V is continuously embedded into H and dense in H.
Then for any p ∈ (1,∞) the space

Z :=
{
u |u ∈ Lp((0, T );V ), ut ∈ Lq((0, T );V ′)

}
,

where 1
p + 1

q = 1, is continuously embedded into C([0, T ];H).

3.2.2 Existence

Let us state the following definition.

Definition 3.2.1. Let u0 ∈ H2
E(Ω). By a solution of problem (PT ) we

mean any function u = u(x, t), u ∈ C
(
[0, T ];H2

E(Ω)
)
∩H4,1(QT ) such that

ϕ(u) ∈ C
(
[0, T ];H2

E(Ω)
)
, u(·, 0) = u0, and

∫∫

QT

utη dxdt = −
∫∫

QT

∇ [ϕ(u)− ε∆u] · ∇η dxdt (3.2.5)

for any η ∈ L2((0, T ), H1(Ω)) (the central dot ”·” denoting the scalar product
in RN ).

Theorem 3.2.2. Let assumptions (A1)-(A2) be satisfied. Let u0 ∈ H2
E(Ω),

and let N ≤ 5. Then for every T > 0 there exists a unique solution of
problem (PT ).

Choosing η ≡ 1 in equality (3.2.5) immediately gives the following result.
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Proposition 3.2.3. Let the assumptions of Theorem 3.2.2 be satisfied, and
let u be the solution of problem (PT ) given by the same theorem. Then for
every t ∈ (0, T ) ∫

Ω
u(x, t)dx =

∫

Ω
u0dx . (3.2.6)

By Theorem 3.2.2 and Proposition 3.2.3 we have the following result.

Corollary 3.2.4. Let assumptions (A1)-(A2) be satisfied. Let u0 ∈ H2
E∗(Ω),

and let N ≤ 5. Then for every T > 0 there exists a unique solution of
problem (PT ), which belongs to C

(
[0, T ];H2

E∗(Ω)
)
.

3.2.3 Asymptotic behaviour

Let us first state the following definitions.

Definition 3.2.2. Let u0 ∈ H2
E(Ω). By a global solution of problem (P∞)

we mean any function u ∈ C
(
[0,∞);H2

E(Ω)
)
∩ H4,1(Q∞), with ϕ(u) ∈

C
(
[0,∞);H2

E(Ω)
)
, which is a solution of problem (PT ) for every T > 0.

Definition 3.2.3. Let u0 ∈ H2
E(Ω). Let u be the global solution of problem

(P∞) given by Theorem 3.2.2. By the ω−limit set of the solution u we mean
the set

ω(u0) := {ū | ∃{tn} ⊆ (0,∞) such that u(x, tn)→ ū in H2
E(Ω)}. (3.2.7)

Definition 3.2.4. By an equilibrium solution of problem (P∞) we mean
any function w ∈ H4

E(Ω), with ϕ(w) ∈ H2
E(Ω), which satisfies in the strong

sense the equality
∆[ϕ(w)− ε∆w] = 0 in Ω . (3.2.8)

Remark 3.2.1. It is immediately seen that there is one-to-one correspon-
dence between equilibrium solutions of problem (P∞) and functions w ∈
H2
E(Ω), with ϕ(w) ∈ H2

E(Ω), which satisfy in the strong sense the equality

ε∆w = ϕ(w) + σ in Ω (3.2.9)

with some constant σ ∈ R.

By Theorem 3.2.2 and a standard prolongation argument, for every u0 ∈
H2
E(Ω) there exists a unique global solution of problem (P∞). Let us study

the asymptotic behaviour of this solution as t→∞.
To this purpose, Proposition 3.2.6 suggests the change of unknown z :=

u −M , where M denotes the mass defined in (3.1.4). Then u = z + M
and z(·, t) ∈ H2

E∗(Ω) for every t ∈ (0,∞). Therefore, it is not restrictive
to study problem (P∞) with initial data u0 ∈ H2

E∗(Ω) (clearly, this implies
u(·, t) ∈ H2

E∗(Ω) for every t ∈ (0,∞)). In doing so, the advantage is that we
can obtain uniform estimates of the solution on the whole half-line (0,∞).
In fact, the following proposition will be proven.
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Proposition 3.2.5. Let u0 ∈ H4
E∗(Ω), let assumptions (A1)-(A4) be satis-

fied, and let N ≤ 5. Let u be the unique global solution of problem (P∞)
given by Theorem 3.2.2. Then for every t ∈ (0,∞)

||u(·, t)||H3(Ω) ≤ C∗2 . (3.2.10)

Then we have the following result.

Theorem 3.2.6. Let u0 ∈ H4
E∗(Ω), let assumptions (A1)-(A4) be satisfied,

and let N ≤ 5. Then:
(i) the ω-limit set ω(u0) is nonempty;
(ii) the function t→ F (u)(t), where

F (u)(t) :=

∫

Ω

{
Φ(u)(x, t) +

ε

2
|∇u(x, t)|2

}
dx , Φ(u) :=

∫ u

0
ϕ(s)ds

(3.2.11)
for any u ∈ C

(
[0,∞);H1(Ω)

)
, is nonicreasing;

(iii) every point of ω(u0) is an equilibrium solution of problem (P∞).

Claim (i) of the above theorem, whose proof is omitted, is an obvious
consequence of Proposition 3.2.5, whereas claims (i)-(ii) follow by standard
arguments (e.g., see [H]). We leave the details to the reader.

Finally, observe that problem (P∞) and its solution depends parametri-
cally on ε. The following proposition shows that for ε sufficiently large the
solution decays to zero as t→∞.

Proposition 3.2.7. Let u0 ∈ H4
E∗(Ω), let assumptions (A1)-(A4) be satis-

fied, and let N ≤ 5. Let u be the unique global solution of problem (P∞)
given by Theorem 3.2.2. Then there exists ε0 > 0 such that for any ε > ε0

‖u(·, t)‖H1(Ω) → 0 as t→∞ .

In agreement with Proposition 3.2.7, it can be proven that every non-
trivial equilibrium solution of problem (P∞) is trivial if ε is large enough.
On the other hand, by similar methods it can be proven that problem (P∞)
admits nontrivial equilibrium solutions, if ε is sufficiently small and the mass
M sufficiently large. The proof of these statements is analogous to those of
[Z, Lemma 3.2 and Theorem 3.3]. The latter statement is in agreement with
the considerations of Section 3.4 (based on numerical evidence), if N = 1
and ϕ(s) = s

1+s2
.
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3.3 Proof of existence results

This section is devoted to the proof of Theorem 3.2.2. Set

v := ϕ(u)− ε∆u . (3.3.12)

Then problem (PT ) can be rewritten in the equivalent form





ut = ∆v in QT
∂u

∂ν
=
∂v

∂ν
= 0 on ∂Ω× (0, T )

u = u0 in Ω× {0} .
(3.3.13)

According to Definition 3.2.2, we seek a couple of functions u ∈ C
(
[0, T ];H2

E(Ω)
)
∩

H4,1(QT ), v ∈ C
(
[0, T ];H2

E(Ω)
)

satisfying problem (3.3.13), in the sense
that u(·, 0) = u0 and

∫∫

QT

utη dxdt = −
∫∫

QT

∇v · ∇η dxdt (3.3.14)

for any η ∈ L2((0, T ), H1(Ω)). This will be achieved using the Faedo-
Galerkin method.

Let ψk (k ∈ N) denote the eigenfunctions of the Laplace operator with
Neumann boundary conditions




−∆ψk = λkψk in Ω

∂ψk
∂ν

= 0 on ∂Ω ,
(3.3.15)

which combined with the constant function Φ0 ≡ 1 form an orthogonal basis
of H2

E(Ω). Since by assumption the boundary ∂Ω is smooth, the functions
ψk are smooth and there holds

∂∆ψk
∂ν

= 0 on ∂Ω (k ∈ N ∪ {0}) . (3.3.16)

Thus they are a suitable choice for the Faedo-Galerkin method.

In view of the above remarks, we consider approximate solutions of
(3.3.13) of the form

um :=
m∑

j=0

wjmψj , vm := ϕ(um)− ε∆um (m ∈ N ∪ {0}) , (3.3.17)

with coefficients wjm = wjm(t) (t ∈ (0, T ) to be determined. Since

∂um
∂ν

=

m∑

j=0

wjm
∂ψj
∂ν
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and
∂vm
∂ν

=

m∑

j=0

wjm

[
ϕ′(um)

∂ψj
∂ν
− ε ∂∆ψj

∂ν

]
,

by (3.3.15)-(3.3.16) there holds

∂um(·, t)
∂ν

=
∂vm(·, t)
∂ν

= 0 on ∂Ω (3.3.18)

for every m ∈ N ∪ {0}. Clearly,

umt =
m∑

j=0

w′jm(t)ψj , ∆um = −
m∑

j=0

λjwjmψj , ∆2um =
m∑

j=0

λ2
jwjmψj .

(3.3.19)
Denoting by (·, ·)L2(Ω) the scalar product in L2(Ω),

(f, g)L2(Ω) :=

∫

Ω
fgdx for any f, g ∈ L2(Ω) ,

by (3.3.19) we have
(umt, ψk)L2(Ω) = w′km(t) ,

(∆vm, ψk)L2(Ω) = (vm,∆ψk)L2(Ω) = −λk (vm, ψk)L2(Ω)

= −λk
{

(ϕ(um), ψk)L2(Ω) − ε (∆um, ψk)L2(Ω)

}

= −ελ2
kwkm(t)− λk (ϕ(um), ψk)L2(Ω) (k = 0, 1, ...,m) .

According to the Faedo-Galerkin method, we require that the equalities

(umt, ψk)L2(Ω) = (∆vm, ψk)L2(Ω)

be satisfied for each m ∈ N ∪ {0} and k = 0, 1, ...,m. This gives the system
of ordinary differential equations

{
w′km = −ελ2

kwkm − λk (ϕ(um), ψk)L2(Ω) in (0, T )

wkm(0) = αkm
(3.3.20)

for the coefficients w0m, w1m, ...wmm. Here

αkm := (u0m, ψk)L2(Ω) ,

with 



u0m :=
m∑
j=0

αjmψj , u0m → u0 in H2
E(Ω) ,

‖u0m‖H2(Ω) ≤ ‖u0‖H2(Ω) .

(3.3.21)
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For every m ∈ N ∪ {0} and k = 0, since λ0 = 0 the unique solution
of system (3.3.21) is w0m(t) = w0m(0) = α0m (observe that the nonlinear
term (ϕ(um), ψk)L2(Ω) is locally Lipschitz continuous with respect to wkm by
assumption (A1)). On the other hand, for for every m ∈ N and k = 1, ...,m
there exists Tm > 0 such that system (3.3.20) has a unique solution in
the maximal interval (0, Tm). In view of the a priori estimates below, this
solution is global - namely, it exists in (0, T ) for every m ∈ N.

Lemma 3.3.1. Let u0 ∈ H2
E(Ω), and let assumption (A1) be satisfied. Let

um be defined by (3.3.17) with coefficients wkm satisfying system (3.3.20)-
(3.3.21) in the maximal interval (0, Tm). Then there exists C1 > 0 (only
depending on ε, T and the norm ‖u0‖H2(Ω)) such that for every t ∈ (0, Tm)

||um(·, t)||2L2(Ω) +

∫ t

0
‖∆um(·, s)‖2L2(Ω)ds ≤ C1 , (3.3.22)

‖|∇um(·, t)|‖2L2(Ω) +

∫ t

0
‖|∇∆um(·, s)|‖2L2(Ω)ds ≤ C1 . (3.3.23)

Proof. By (3.3.17) and (3.3.19) we have

‖um(·, t)‖2L2(Ω) =
m∑

j=0

|wjm|2 , ‖∆um(·, t)‖2L2(Ω) =
m∑

j=0

λ2
j |wjm|2 . (3.3.24)

Multiplying the first equation of (3.3.20) by wkm and summing over k =
0, ...,m plainly we obtain

1

2

d

dt
‖um(·, t)‖2L2(Ω) = −ε ‖∆um(·, t)‖2L2(Ω) + (ϕ(um),∆um)L2(Ω) (3.3.25)

= −ε ‖∆um(·, t)‖2L2(Ω) −
∫

Ω
ϕ′(um)|∇um(x, t)|2dx

≤ −ε ‖∆um(·, t)‖2L2(Ω) + C

∫

Ω
|∇um(x, t)|2dx

= −ε ‖∆um(·, t)‖2L2(Ω) − C
∫

Ω
um(x, t)∆um(x, t)dx

≤ − ε
2
‖∆um(·, t)‖2L2(Ω) +

C2

2ε
||um(·, t)||2L2(Ω)

with some constant C > 0; here use of assumption (A1) and equality (3.3.18)
has been made. By Gronwall’s inequality and (3.3.21), from (3.3.25) we get

||um(·, t)||2L2(Ω) ≤ ||u0||2H2(Ω)e
C2T/ε (t ∈ (0, Tm)) . (3.3.26)

Integrating inequality (3.3.25) on (0, Tm) and using (3.3.26) gives inequality
(3.3.22).
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To prove (3.3.23) observe preliminarily that

‖|∇um(·, t)|‖2L2(Ω) = − (∆um, um)L2(Ω) =
m∑

j=0

λj |wjm|2,

‖|∇∆um(·, s)|‖2L2(Ω) = −
(
∆um,∆

2um
)
L2(Ω)

=

m∑

j=0

λ3
j |wjm|2

(see (3.3.16), (3.3.18) and (3.3.19)). Then multiplying the first equation of
(3.3.20) by λkwkm and summing over k = 0, ...,m, we get

1

2

d

dt
‖|∇um(·, t)|‖2L2(Ω) = −ε ‖|∇∆um(·, t)|‖2L2(Ω) −

(
ϕ(um),∆2um

)
L2(Ω)

= −ε ‖|∇∆um(·, t)|‖2L2(Ω) +

∫

Ω
ϕ′(um)∇um(x, t) · ∇∆um(x, t)dx

≤ −ε‖|∇∆um(·, t)|‖2L2(Ω) + C

∫

Ω
|∇um(x, t)||∇∆um(x, t)|dx

≤ − ε
2
‖|∇∆um(·, t)|‖2L2(Ω) +

C2

2ε

∫

Ω
|∇um(x, t)|2dx

with some constant C > 0; here use of assumption (A1) and equality (3.3.16)
has been made. Using Gronwall’s inequality and and arguing as for (3.3.25),
from the above inequality we obtain (3.3.23). This completes the proof. �

Under the stronger assumptions of Theorem 3.2.2 we can improve on
the estimates of the above lemma. To this purpose, following [EZ] we shall
make use of the Nirenberg inequality:

||Djv||Lp(Ω) ≤ K1||Dmv||aLr(Ω)||v||1−aLq(Ω) +K2||v||Lq(Ω) (3.3.27)

where D ≡ ∂
∂xk

(k = 1, . . . , N), K1,K2 > 0 and

1

p
=

j

N
+ a

(
1

r
− m

N

)
+

1− a
q

, (3.3.28)

with j ∈ N ∪ {0}, m ∈ N, j ≤ m, a ∈ [ jm , 1] and p, q, r ∈ (1,∞) (e.g., see
[A]).

Lemma 3.3.2. Let u0 ∈ H2
E(Ω), let assumptions (A1)-(A2) be satisfied, and

let N ≤ 5. Let um be defined by (3.3.17) with coefficients wkm satisfying
system (3.3.20)-(3.3.21) in the maximal interval (0, Tm). Then there exists
C2 > 0 (only depending on ε, T and the norm ‖u0‖H2(Ω)) such that for every
t ∈ (0, Tm)

||∆um(·, t)||2L2(Ω) + ε

∫ t

0
‖∆2um(·, s)‖2L2(Ω)ds ≤ C2 . (3.3.29)
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Proof. Multiplying the first equation of (3.3.20) by λ2
kwkm and summing

over k = 0, ...,m, we get

1

2

d

dt
‖∆um(·, t)‖2L2(Ω) = −ε ‖∆2um(·, t)‖2L2(Ω)+

(
∆ϕ(um)(·, t),∆2um(·, t)

)
L2(Ω)

(3.3.30)
(see (3.3.19)). Set ∆[ϕ(um)] ≡ ∆ϕ(um)(·, t), ∆2um ≡ ∆2um(·, t) for sim-
plicity. Since

∆[ϕ(um)] = ϕ′(um)∆um + ϕ′′(um)|∇um|2 ,

using assumptions (A1)-(A2) plainly we have

∣∣∣
(
∆ϕ(um),∆2um

)
L2(Ω)

∣∣∣ ≤ ‖∆ϕ(um)‖L2(Ω)

∥∥∆2um
∥∥
L2(Ω)

(3.3.31)

≤ C
∥∥∆2um

∥∥
L2(Ω)

{
‖|∇um|‖2L4(Ω) + ‖∆um‖L2(Ω)

}
.

To estimate the term ‖|∇um|‖2L4(Ω) in the right-hand side of (3.3.31), we
use the Nirenberg inequality (3.3.27) with v = |∇um|, j = 0,m = 3, a =
N/12, p = 4, q = r = 2. Then we obtain

‖|∇um|‖L4(Ω) ≤ K̃1||∆2um||aL2(Ω)|| |∇um| ||1−aL2(Ω)
+K2|| |∇um| ||L2(Ω)

(3.3.32)
for some K̃1 > 0. Since by assumption 2a = N/6 ≤ 5/6, by inequalities
(3.3.23) and (3.3.32) there exist M1 > 0,M2 > 0 such that for every t ∈
(0, Tm)

‖|∇um|(·, t)‖2L4(Ω) ≤M1||∆2um(·, t)||
5
6

L2(Ω)
+M2 . (3.3.33)

Similarly, the term ‖∆um‖L2(Ω) in the right-hand side of (3.3.31) can be
estimated using the Nirenberg inequality with v = |∇um|, j = 1,m = 3, a =
1/3, p = q = r = 2. This gives

‖∆um‖L2(Ω) ≤ K̄1||∆2um||
1
3

L2(Ω)
|| |∇um| ||

2
3

L2(Ω)
+K2|| |∇um| ||L2(Ω) (3.3.34)

for some K̄1 > 0. Hence by inequalities (3.3.23) and (3.3.33) there exist
N1 > 0, N2 > 0 such that for every t ∈ (0, Tm)

‖∆um(·, t)‖L2(Ω) ≤ N1||∆2um(·, t)||
1
3

L2(Ω)
+N2 . (3.3.35)

By equality (3.3.30) and inequalities (3.3.31), (3.3.33) and (3.3.35), it is
easily seen that there exists M > 0 (depending on ε) such that

1

2

d

dt
‖∆um(·, t)‖2L2(Ω) +

ε

2
‖∆2um(·, t)‖2L2(Ω) ≤M
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for every t ∈ (0, Tm), whence inequality (3.3.29) immediately follows. This
completes the proof. �

Now we can prove Theorem 3.2.2.

Proof of Theorem 3.2.2. Let {um}, {vm} be the sequences defined in (3.3.17),
with coefficients wjm satisfying system (3.3.20). Observe preliminarily that
by estimate (3.3.22) there holds Tm = T for every m ∈ N, thus esti-
mates (3.3.22), (3.3.23) and (3.3.29) hold for every t ∈ (0, T ) and m ∈
N. As a consequence, the sequence {um} belongs to a bounded subset of
L2((0, T );H4(Ω)). Then there exist a subsequence {uk} ≡ {umk} ⊆ {um}
and a function u ∈ L2((0, T );H4(Ω)) such that

uk ⇀ u in L2((0, T );H4(Ω)) . (3.3.36)

Moreover, by estimates (3.3.22)-(3.3.23), it is not restrictive to assume that

uk → u almost everywhere in QT . (3.3.37)

By the assumed properties of ϕ, there holds ϕ(u) ∈ L2
(
(0, T );H2(Ω)

)
. Let

us prove that u is a solution of problem (PT ).
For every k ∈ N and any η ∈ L2(0, T ;H1(Ω)) there holds

∫∫

QT

uktη dxdt = −
∫∫

QT

∇ [ϕ(uk)] · ∇η dxdt− ε
∫∫

QT

∆2ukη dxdt

= −
∫∫

QT

ϕ′(uk)∇uk · ∇η dxdt− ε
∫∫

QT

∆2ukη dxdt . (3.3.38)

As k →∞, using the convergence in (3.3.36)-(3.3.37) and assumption (A1),
by the Dominated Convergence Theorem we easily get

∫∫

QT

ϕ′(uk)∇uk · ∇η dxdt →
∫∫

QT

ϕ′(u)∇u · ∇η dxdt ,

whereas by (3.3.36)
∫∫

QT

∆2ukη dxdt →
∫∫

QT

∆2u η dxdt

for any η as above. By the above convergence results, letting k → ∞ in
equality (3.3.38) for any η ∈ C∞0 (QT ) we have

∫∫

QT

uktη dxdt = −
∫∫

QT

ukηt dxdt → −
∫∫

QT

uηt dxdt

= −
∫∫

QT

{
∆ [ϕ(u)]− ε∆2u

}
η dxdt .

By the regularity of u, it follows that the distributional derivative ut belongs
to L2(QT ), thus u ∈ H4,1(QT ). Moreover, equality (3.3.14) holds for any
η ∈ L2(0, T ;H1(Ω)).
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Further observe that, in view of estimate (3.3.23), it is not restrictive to
assume that

uk → u in L2((0, T );H2(Ω)) . (3.3.39)

Since {uk} ⊆ L2((0, T );H2
E(Ω)), from (3.3.39) we obtain that u ∈ L2((0, T );H2

E(Ω)).
Observe that H4(Ω) ∩H2

E(Ω) endowed with the norm ‖ · ‖H4(Ω) is a closed
subspace of H4(Ω) hence is a reflexive Banach space. Therefore, applying
Proposition 3.2.1 with p = 2, V = H4(Ω) ∩ H2

E(Ω) and H = H2
E(Ω) we

obtain that u ∈ C
(
[0, T ];H2

E(Ω)
)
, thus ϕ(u) ∈ C

(
[0, T ];H2

E(Ω)
)
.

Finally, observe that by (3.3.38) and subsequent remarks there holds

ukt → ut in L2(QT ) , (3.3.40)

thus by Sobolev embedding

uk → u in C
(
[0, T ];L2(Ω)

)
.

In particular,
uk(·, 0) = u0k → u(·, 0) in L2(Ω) ,

whence u(·, 0) = u0 by (3.3.21).

It remains to prove uniqueness. By a standard argument, let u, v be
solutions of problem (PT ). Then we have

(u− v)t + ε∆2(u− v) = ∆[ϕ(u)− ϕ(v)] .

Multiplying by u− v and integrating over Ω yields

1

2

d

dt
‖(u− v)(·, t)‖2L2(Ω) + ε ‖∆(u− v)(·, t)‖2L2(Ω)

=

∫

Ω
[(ϕ(u)− ϕ(v)) ∆(u− v)] (x, t)dx

≤ C

∫

Ω
[|u− v| |∆(u− v)|] (x, t)dx

≤ ε

2
‖∆(u− v)(·, t)‖2L2(Ω) +

C2

2ε
‖(u− v)(·, t)‖2L2(Ω)

(here use of assumption (A1) has been made).Then we have

d

dt
‖(u− v)(·, t)‖2L2(Ω) + ε‖∆(u− v)(·, t)‖2L2(Ω) ≤

C2

ε
‖(u− v)(·, t)‖2L2(Ω) ,

whence by Gronwall’s inequality the equality u = v immediately follows.
This completes the proof. �

Remark 3.3.1. Let 〈·, ·〉 denote the duality map between the spaces (H1(Ω))′

and H1(Ω). It is worth observing that, under the weaker assumptions of
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Lemma 3.3.1, for any u0 ∈ H2
E(Ω) a solution of problem (PT ) exists in the

following weaker sense:

(i) u ∈ C
(
[0, T ];H2

E(Ω)
)
∩L2((0, T );H3(Ω)), u(·, 0) = u0, ϕ(u) ∈ C

(
[0, T ];H2

E(Ω)
)

and ut ∈ L2((0, T ); (H1(Ω))′);

(ii) there holds

∫ T

0
〈ut, η〉dt = −

∫∫

QT

∇ [ϕ(u)− ε∆u] · ∇η dxdt (3.3.41)

for every η ∈ L2((0, T );H1(Ω))
In fact, by estimates (3.3.22)-(3.3.23) there exist a subsequence {uk} ≡

{umk} ⊆ {um} and a function u ∈ L2((0, T );H3(Ω)) such that the conver-
gence in (3.3.37) and (3.3.39) holds, and moreover

uk ⇀ u in L2
(
(0, T );H3(Ω)

)
. (3.3.42)

Then applying Proposition 3.2.1 with p = 2, V = H3(Ω) ∩H2
E(Ω) and H =

H2
E(Ω) we obtain that u ∈ C

(
[0, T ];H2

E(Ω)
)
, thus ϕ(u) ∈ C

(
[0, T ];H2

E(Ω)
)
.

Further observe that for any ξ ∈ H1(Ω) and t ∈ [0, T ] there holds

〈umt(·, t), ξ〉 = (umt(·, t), ξ)L2(Ω)

= (∆vm, ξ)L2(Ω) = − (∇vm,∇ξ)L2(Ω)

= −
(
[ϕ′(um)∇um − ε∇∆um](·, t),∇ξ

)
L2(Ω)

,

whence

‖umt(·, t)‖(H1(Ω))′ ≤
∥∥[ϕ′(um)∇um − ε∇∆um](·, t)

∥∥
L2(Ω)

for any t ∈ [0, T ]. By estimate (3.3.23) and assumption (A1) this plainly
gives ∫ T

0
‖umt(·, t)‖2(H1(Ω))′ ≤ 2C1

(
C2 + ε2

)

for every m ∈ N, proving that the sequence {umt} belongs to a bounded
subset of L2((0, T ); (H1(Ω))′). Then it is not restrictive to assume that

ukt ⇀ ut in L2((0, T ); (H1(Ω))′) . (3.3.43)

By the above remarks, letting k →∞ in the equality
∫∫

QT

uktη dxdt = −
∫∫

QT

∇ [ϕ(uk)− ε∆uk] · ∇η dxdt

(which holds for any k ∈ N and η ∈ L2((0, T );H1(Ω))) we obtain (3.3.41).
Arguing as in the proof of Theorem 3.2.2, the equality u(x, 0) = u0(x) is
easily proven. Hence the claim follows.
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We conclude this section by proving for further reference the following
analogue of Lemma 3.3.2.

Lemma 3.3.3. Let u0 ∈ H4
E(Ω), let assumptions (A1)-(A3) be satisfied, and

let N ≤ 5. Let um be defined by (3.3.17) with coefficients wkm satisfying
system (3.3.20) in the maximal interval (0, Tm), with initial data αkm such
that 




u0m :=
m∑
j=0

αjmψj , u0m → u0 in H4
E(Ω) ,

‖u0m‖H4(Ω) ≤ ‖u0‖H4(Ω) .

(3.3.44)

Then there exists C3 > 0 (only depending on ε, T and the norm ‖u0‖H4(Ω))
such that for every t ∈ (0, Tm)

|| |∇∆um(·, t)| ||2L2(Ω) + ε

∫ t

0
‖ |∇∆2um(·, s)| ‖2L2(Ω)ds ≤ C3 . (3.3.45)

Proof. Multiplying the first equation of (3.3.20) by λ3
kwkm and summing

over k = 0, ...,m, we get

1

2

d

dt
‖ |∇∆um(·, t)| ‖2L2(Ω) (3.3.46)

= −ε ‖ |∇∆2um(·, t)| ‖2L2(Ω) −
(
∇[∆ϕ(um)](·, t),∇[∆2um](·, t)

)
L2(Ω)

≤ − ε
2
‖ |∇∆2um(·, t)| ‖2L2(Ω) +

1

2ε
‖ |∇[∆ϕ(um)](·, t)| ‖2L2(Ω) ;

here use of the equalities

m∑

j=0

λ3
k |wkm|2 = || |∇∆um(·, t)| ||2L2(Ω) ,

m∑

k=0

λ5
k |wkm|2 = ‖ |∇∆2um(·, t)| ‖2L2(Ω) ,

m∑

k=0

λ4
kwkm (ϕ(um), ψk)L2(Ω) =

(
∇[∆ϕ(um)](·, t),∇[∆2um](·, t)

)
L2(Ω)

has been made (see (3.3.19)). Set ∇[∆ϕ(um)] ≡ ∇[∆ϕ(um)](·, t) for sim-
plicity. Since

∇[∆ϕ(um)] = ∇[ϕ′(um)∆um + ϕ′′(um)|∇um|2]

= ϕ′(um)∇∆um + ϕ′′′(um)∇um|∇um|2

+ ϕ′′(um)


∇um +

N∑

j=1

∂um
∂xj

∂∇um
∂xj


 ,
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using assumptions (A1)-(A3) and estimates (3.3.22), (3.3.23) and (3.3.29)
plainly we have

‖ |∇[∆ϕ(um)]| ‖L2(Ω) ≤ C̄1

{
|| |∇∆um| ||L2(Ω) + || |∇um| ||3L6(Ω)

}
+ C̄2

(3.3.47)

with some C̄1, C̄2 > 0. To estimate the term ‖|∇um|‖3L6(Ω) in the right-
hand side of (3.3.47), we use the Nirenberg inequality (3.3.27) with v = um,
j = 1,m = 5, p = 6,= 2. As for q, by estimate (3.3.29) and Sobolev
embedding we can choose any q ∈ (1,∞) if N ≤ 3, respectively q ∈ (1, 2N

N−4)
if N = 4, 5. If N ≤ 3 equality (3.3.28) is satisfied with

a = a(q,N) :=
1

3

(6−N)q + 6N

(10−N)q + 2N
<

1

3
,

respectively with a = N−3
9 ≤ 2

9 if N = 4, 5. Then we obtain

‖|∇um|‖L6(Ω) ≤ K̃1|| |∇∆2um| ||aL2(Ω)|| |∇um| ||1−aLq(Ω) +K2|| |∇um| ||Lq(Ω)

(3.3.48)
for some K̃1 > 0. Then by estimate (3.3.29) there exist P1 > 0, P2 > 0 such
that for every t ∈ (0, Tm)

‖|∇um|(·, t)‖3L6(Ω) ≤ P1|| |∇∆2um| ||3aL2(Ω) + P2 , (3.3.49)

with 3a < 1.
Similarly, the term || |∇∆um| ||L2(Ω) in the right-hand side of (3.3.47)

can be estimated using the Nirenberg inequality with v = ∆um, j = 1,m =
3, a = 1/3, p = q = r = 2. This gives

|| |∇∆um| ||L2(Ω) ≤ K̃1|| |∇∆2um| ||
1
3

L2(Ω)
||∆um||

2
3

L2(Ω)
+K2||∆um||L2(Ω)

(3.3.50)
for some K̃1 > 0. Hence by estimate (3.3.29) there exist Q1 > 0, Q2 > 0
such that for every t ∈ (0, Tm)

|| |∇∆um(·, t)| ||L2(Ω) ≤ Q1|| |∇∆2um(·, t)| ||
1
3

L2(Ω)
+Q2 . (3.3.51)

By the last inequality in (3.3.46) and inequalities (3.3.47), (3.3.49) and
(3.3.51), it is easily seen that there exists M̃ > 0 (depending on ε) such
that

1

2

d

dt
‖ |∇∆um(·, t)| ‖2L2(Ω) +

ε

2
‖ |∇∆2um(·, t)| ‖2L2(Ω) ≤ M̃

for every t ∈ (0, Tm), whence inequality (3.3.45) follows. This completes the
proof. �
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3.4 Asymptotic behaviour: Proofs

Let u0 ∈ H2
E∗(Ω). In this case the approximating sequence in (3.3.21) be-

comes 



u0m :=
m∑
j=1

αjmψj , u0m → u0 in H2
E(Ω) ,

‖u0m‖H2(Ω) ≤ ‖u0‖H2(Ω) (m ∈ N) ,

(3.4.52)

thus ∫

Ω
u0m dx = 0 for any m ∈ N .

Accordingly, in the proof of Theorem 3.2.2 now we have

um :=

m∑

k=1

wkmψk (3.4.53)

with coefficients wkm (k = 1, ...,m) determined by system (3.3.20). Hence
there holds ∫

Ω
um(x, t) dx =

m∑

k=1

wkm(t)

∫

Ω
ψk dx = 0 (3.4.54)

for any m ∈ N and t ∈ (0, Tm).
Since um(·, t) ∈ H2

E∗(Ω), it is easily seen that estimates analogous to
those of Lemmata 3.3.1, 3.3.2 and 3.3.3 hold with constants independent of
T . In fact, the following holds.

Lemma 3.4.1. Let u0 ∈ H2
E∗(Ω), and let assumptions (A1) and (A4) be

satisfied. Let um be defined by (3.4.53) with coefficients wkm satisfying sys-
tem (3.3.20), (3.4.52) in the maximal interval (0, Tm). Then there exists
C∗1 > 0 (only depending on ε and the norm ‖u0‖H2(Ω)) such that for every
t ∈ (0, Tm)

||um(·, t)||H1(Ω) ≤ C∗1 . (3.4.55)

Lemma 3.4.2. Let u0 ∈ H4
E∗(Ω), let assumptions (A1)-(A4) be satisfied,

and let N ≤ 5. Let um be defined by (3.4.53) with coefficients wkm satisfying
system (3.3.20), (3.4.52) in the maximal interval (0, Tm). Then there exists
C∗2 > 0 (only depending on ε and the norm ‖u0‖H4(Ω)) such that for every
t ∈ (0, Tm)

||um(·, t)||H3(Ω) ≤ C∗2 . (3.4.56)

The proof of Lemma 3.4.2 is similar to that of Lemmata 3.3.2 and 3.3.3,
using estimate (3.4.55) instead of (3.3.22)-(3.3.23). We leave the details to
the reader.
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Proof of Lemma 3.4.1. Let F be the functional defined in (3.2.11). Using
(3.3.20) plainly gives

d

dt
[F (um)] (t) =

∫

Ω
[ϕ(um)(x, t)− ε∆um(x, t)]umt(x, t) dx

=

∫

Ω
vm(x, t)umt(x, t) dx = −

m∑

k=1

λk|(vm(·, t), ψk)L2(Ω)|2 ≤ 0 .

This yields F (um)(t) ≤ F (um)(0), namely

∫

Ω

{
Φ(um)(x, t) +

ε

2
|∇um(x, t)|2

}
dx ≤

∫

Ω

{
Φ(u0m) +

ε

2
|∇u0m|2

}
dx

≤ (M + ε)‖u0‖H2(Ω)

with some constant M > 0, for any t ∈ (0, Tm); here use of assumption (A1)
has been made. Since by assumption (A5) there holds Φ(u) ≥ 0 for any
u ∈ R, from the above equality we get

|| |∇um(·, t)| ||L2(Ω) ≤
2(M + ε)

ε
‖u0‖H2(Ω) ,

whence (3.4.55) follows by Poincaré’s inequality. This proves the result. �
Now we can prove Proposition 3.2.5.

Proof of Proposition 3.2.5. Let {uk} be the subsequence considered in the
proof of Theorem 3.2.2. By estimate (3.3.45) and a diagonal argument, there
exists a subsequence {ul} ≡ {ukl} ⊆ {uk} such that

ul → u in L2((0, T );H3(Ω)) .

Plainly, this gives

∫ T

0

∣∣ ||ul(·, t)||H3(Ω) − ||u(·, t)||H3(Ω)

∣∣ dt

≤
∫ T

0
||ul(·, t)− u(·, t)||H3(Ω) dt

≤
√
T

(∫ T

0
||ul(·, t)− u(·, t)||2H3(Ω) dt

) 1
2

→ 0

as l → ∞. Hence there exists a subsequence, denoted again by {ul} for
simplicity, such that

||ul(·, t)||H3(Ω) → ||u(·, t)||H3(Ω) for almost every t ∈ (0, T ) .

By inequality (3.4.56), this yields inequality (3.2.10) for any t ∈ (0, T ). Then
by the arbitrariness of T ∈ (0,∞) the conclusion follows. �
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Proof of Theorem 3.2.7. Multiplying the first equation of (P∞) by u and
integrating over Ω we get

1

2

d

dt
‖ |∇u(·, t)| ‖2L2(Ω) + ε ‖∇∆u(·, t)‖2L2(Ω) = −

∫

Ω
ϕ′(u)∇u(x, t)∇∆u(x, t)dx

≤ ε

2
‖∇∆u(·, t)‖2L2(Ω) +

1

2ε

∫

Ω
(ϕ′(u))2|∇u(x, t)|2dx , (3.4.57)

whence by assumption (A1)

d

dt
‖ |∇u(·, t)| ‖2L2(Ω) + ε ‖∇∆u(·, t)‖2L2(Ω) ≤

C2

ε
‖ |∇u(·, t)| ‖2L2(Ω)

for some C > 0. Since ∂u
∂ν = 0 on ∂Ω, by Poincaré’s inequality there holds

‖ |∇u(·, t)| ‖2L2(Ω) ≤ C0‖∆u(·, t)‖2L2(Ω)

= −C0

∫

Ω
∇u(x, t) · ∇∆u(x, t)dx

≤ 1

2
‖ |∇u(·, t)| ‖2L2(Ω) +

C2
0

2
‖ |∇∆u(·, t)| ‖2L2(Ω) ,

namely

‖ |∇u(·, t)| ‖2L2(Ω) ≤ C2
0‖ |∇∆u(·, t)| ‖2L2(Ω) (3.4.58)

for some C0 > 0. By inequalities (3.4.57)-(3.4.58) we have

d

dt
‖ |∇u(·, t)| ‖2L2(Ω) +

(
ε

C2
0

− C2

ε

)
‖ |∇u(·, t)| ‖2L2(Ω) ≤ 0 ,

whence
lim
t→∞
‖ |∇u(·, t)| ‖L2(Ω) = 0

if ε > ε0 := C0C. Since u(·, t) ∈ H2
E∗(Ω) for any t ∈ (0,∞), by Poincaré’s

inequality the above equality implies

lim
t→∞
‖u(·, t)‖L2(Ω) = 0 .

Then the conclusion follows. �

3.5 Stationary problem in one space dimension

In this section we address existence and multiplicity of solutions of the prob-
lem 




[ϕ(u)− εu′′]′′ = 0 in (−L,L)

u′(−L) = u′(L) = u′′′(−L) = u′′′(L) = 0

1

2M

∫

Ω
u(x)dx = L ,

(3.5.59)
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where the primes denote differentiation and M is the mass defined by (3.1.4).
Integrating twice the first equation of (3.5.59) we obtain (in agreement with
Remark 3.2.1) the equivalent second order problem

(E)





εu′′ = ϕ(u)− σ in (−L,L)

u′(−L) = u′(L) = 0

1

2M

∫

Ω
u(x)dx = L ,

where σ ∈ R is a constant to be chosen. The above problem with ϕ(u) =
u3 − u (and ε = 1) was investigated in [Z, NPe]. As motivated in the
Introduction, we are interested in obtaining similar results choosing

ϕ(u) =
u

1 + u2
. (3.5.60)

Specifically, we address the existence of simple solutions, i.e., solutions which
are strictly monotone and bounded.

Let u = u(x) be a solution of problem (E). Multiplying the first equation
of problem (E) by u′ and integrating we obtain

ε

2
[u′(x)]2 =W(u(x), σ)− b , (3.5.61)

where

W(u, σ) :=
log(1 + u2)

2
− σu

and b is another constant of integration.
Due to the boundary conditions, we must have

W(u(±L), σ)− b = 0 . (3.5.62)

If u is a simple solution, there holds u(−L) 6= u(L). Therefore, the equation
W(u, σ)−b = 0 must have at least two roots u1 < u2 such thatW(u, σ)−b >
0 for u1 < u < u2 (see (3.5.61)). If ϕ is of the form (3.5.60) and σ > 0, it is
easily seen that this implies

W(α, σ) < b <W(β, σ) ,

where α and β are local extremum points of W - namely, solve the equation

Wu(u, σ) = u− σ(1 + u2) = 0 .

Clearly, the above situation gives the condition σ < 1
2 ; if this is the case,

there holds

α ≡ α(σ) =
1−
√

1− 4σ2

2σ
, β ≡ β(σ) =

1 +
√

1− 4σ2

2σ
.
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Similar considerations hold for σ < 0, yielding the condition σ > −1
2 . We

conclude that the above strategy to determine simple solutions of problem
(E) requires that the parameters (σ, b) belong to the following admissible
region (see Figure 3.1)

Σ :=

{
(σ, b)

∣∣∣σ ∈
(
−1

2
, 0

)
∪
(

0,
1

2

)
, W(α, σ) < b <W(β, σ)

}
. (3.5.63)
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Figure 3.1: Admissible region.

Now let (σ, b) ∈ Σ, and let u be a simple solution of problem (E); suppose
u′ > 0 without loss of generality. Then equality (3.5.61) gives

u′(x) =

√
2

ε

√
W(u(x), σ)− b ,

whence by integration

2L =

∫ L

−L
dx =

√
ε

2

∫ u2(σ,b)

u1(σ,b)

ds√
W(s, σ)− b

=: 2L(σ, b) . (3.5.64)

(see (3.5.62)). By the same token, the third equation of problem (E) gives

2LM =

∫ L

−L
u(x)dx =

√
ε

2

∫ u2(σ,b)

u1(σ,b)

sds√
W(s, σ)− b

=: 2M(σ, b). (3.5.65)

Therefore, proving the existence of a simple solution of problem (E) amounts
to finding a pair (σ, b) ∈ Σ such that

{
L(σ, b) = L
M(σ, b) = LM .

(3.5.66)
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Investigating existence and multiplicity of solutions of system (3.5.66)
requires information about the monotonicity properties of the functions L
and M. Unfortunately, at variance from the cases of ϕ of polynomial type
dealt with in [CGS, NPe, Z], for the present choice of ϕ a complete analytical
investigation of this point could not be carried out (similar difficulties are
encountered if ϕ(u) = u exp (−u); see (3.1.1)). Therefore, the investigation
has been pursued by a numerical method, whose main steps are described
as follows in the case σ ∈ (0, 1

2) (similarly it is possible to obtain the case
with σ ∈ (−1

2 , 0)):

Step 1 We fix the step size ∆σ = 0.001 and ∆b = 0.005 and we construct
the vector σ ∈ (0, 1

2) with grid step ∆σ. In this way we have 499 nodes
for σ.

Step 2 For each σ we calculate W(α, σ) and W(β, σ) in order to construct
the matrix of the values for b.

Step 3 For each value of σ and each value of b inside the admissible region
visible in Fig. 3.1, we calculate the two roots u1(σ, b) and u2(σ, b) by
using the bisection method.

Step 4 By a recursive adaptive Simpson quadrature method, we numeri-
cally evaluate the integral defined between the two roots calculated
in the previous step in order to calculate the functions L(σ, b) and
M(σ, b) defined in (3.5.64) and (3.5.65), respectively.

Step 5 We calculate the partial derivative of the functions L(σ, b) and
M(σ, b) with respect to σ and b by replacing the derivatives with
their incremental ratios, that is by using the centered finite differences
method.

We can arrive to our conclusion by using Figures 3.2, 3.3 and 3.4. In or-
der to obtain a more clear vision, just some level curves are represented.
The computations were done on a computer Mac OS X version 10.6.8 with
processor 2.66 GHz Intel Core 2 Duo, RAM 4 GB.

On the strength of numerical evidence, the following conclusions can be
drawn.

Statement 1 (Monotonicity properties of L and M). For any (σ, b) ∈ Σ
there holds

∂L
∂b
,
∂L
∂σ

,
∂M
∂b

,
∂M
∂σ
≤ 0.

Consider the level curves

CL := {(σ, b) ∈ Σ|L(σ, b) = L} , DM := {(σ, b) ∈ Σ|M(σ, b) = LM} .

Statement 2 (Monotonicity properties of the curves CL, DM). For any
L > 0, both curves CL and DM are decreasing in the admissible region Σ.
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Statement 3 (Intersections of the curves CL, DM) For any L > 0 large
enough, there exist some M > 0 such that problem (E) has a simple solution.
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Figure 3.2: Level curves of L(σ, b).
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Figure 3.3: Level curves of M(σ, b).

  b  

   
si

gm
a 

 

 

0 1 2 3 4 5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

50

100

150

200

250

300

350

400

450

500

550

600

Figure 3.4: Level curves of L(σ, b) and M(σ, b).
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[Hö] K. Höllig, Existence of infinitely many solutions for a forward
backward heat equation, Trans. Amer. Math. Soc. 278 (1983),
299–316.

[HPO] D. Horstmann, K. J. Painter & H. G. Othmer, Aggregation under
local reinforcement, from lattice to continuum, European J. Appl.
Math. 15 (2004), 545–576.
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