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CHAPTER 1

Introduction: the phenomenon of Metastability in
literature

The slow motion of internal shock layer has been widely studied for a
large class of evolutive PDEs. Such phenomenon is known as metastability.
The qualitative features of the metastable dynamics are the follows: through
a transient process, a pattern of internal layers is formed from initial data
over a O(1) time interval. However, once this pattern is formed, the sub-
sequent motion of the internal layers is exponentially slow, converging to
their asymptotic limit. As a consequence, two different time scales emerge:
for short times, the solution are close to some non-stationary state; subse-
quently, they drifts towards the equilibrium solution with a speed rate that
is exponentially small.

In other words, the equation exhibits in finite time metastable shock
profiles (called interfaces) that persist during an exponentially (with respect
to a small parameter) long time period and that move with exponentially
slow speed. Such interfaces exhibit significant changes in size, shape and
location as time passes.

Many fundamental partial differential equations, concerning different ar-
eas, exhibit such behavior: among others we include viscous shock problems
(see [37], [38], [64], [69]), phase transition problems described by the Allen-
Cahn equation, with the fundamental contributions [12], [22], and Cahn-
Hilliard equation, studied in [1] and [63].

To name some of the most important ones

Viscous conservation law:

{
∂tu = ε2∂2

xu− ∂xf(u)

u(0, x) = u0(x),
(t, x) ∈ R+×I,

(1.1)

Allen−Cahn :

{
∂tu = ε2∂2

xu−W ′(u)

u(0, x) = u0(x)
(t, x) ∈ R+ × I (1.2)

Cahn−Hilliard :

{
∂tu = −∂2

x(ε2∂2
xu+W ′(u))

u(0, x) = u0(x)
(t, x) ∈ R+ × I,

(1.3)
where I denotes a bounded interval of the real line. All these equations are
complemented with appropriate boundary conditions.

In this Chapter we want to give an outline of some of these contributes.
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1. Slow motion of a patter of internal layers for the Allen-Cahn
and Cahn-Hilliard equations

We here begin by analizing the cases of the Allen-Cahn equation (1.2)
and the Cahn-Hilliard equation (1.3) as main examples since viscous shock
problems, one of the main topic of this thesis, will be extensively introduced
in the following.

For the Allen-Cahn equation we refer to [12], where the authors study
the slow evolution of patterns of internal layers for the reaction diffusion
equation

∂tu = ε2∂2
xu−W ′(u), x ∈ (0, 1), t > 0 (1.4)

complemented with Neumann boundary conditions

∂xu(0, t) = 0, ∂xu(1, t) = 0, (1.5)

Here the function W (u) is a smooth double well function such that W (±1) =
W ′(±1) = 0. Moreover, it is required that W (u) > 0 for −1 < u < 1.

It has been proved that, under appropriate conditions on W , any solu-
tion u(x, t) to (1.4) converges to ū(x) as t→ +∞, where ū(x) is a stationary
solution (see [24, 58]). Concerning the stable equilibrium solutions to (1.4),
it is known that they are constant in space, and minimize the energy func-
tional

I(u) =

∫ 1

0
(W (u) +

1

2
ε2∂xu

2) dx

so that, for large t, solutions will be approximately constant in space. How-
ever, for small ε, the time-dependent solution reach these asymptotic states
in a time interval that can be exponentially long. Hence the solution exhibits
a first short time transient phase, in which it develops a pattern of transition
layers, and an exponentially long time phase (proportional to ec/ε) in which
such configuration evolves extremely slow.

In order to give rigorous results on the existence of these metastable
states (i.e. configurations characterized by a pattern of internal layers that
persist for an extremely long time), the authors develop the following ap-
proach.

For fixed ε and N , given a configuration ξ = (ξ1, ..., ξN ) of N layer
positions, they consider a function uξ(x) which approximates a metastable
state with N transition layers. More precisely, uξ is well approximated by
translates of Φ and its reflection, where Φ is the unique solution to

ε2∂2
xΦ−W ′(Φ) = 0, Φ(0) = 0, Φ(x)→ ±1 as x→ ±∞ (1.6)

which have the property that the distance between layer locations is given by
a fixed l > 0. Hence, when x ∼ ξj , then uξ ∼ Φ(x−ξj) or uξ ∼ Φ(ξj−x), and
the layer positions are well separated and bounded away from the boundary
points. With such a construction, it follows that the quantity Fε[uξ] :=
ε2∂2

xu
ξ −W ′(uξ) is very small, and it is equal to zero if |x− ξj | ≥ ε for all j.

The admissible layer positions lie in a set Ωρ, where ξj − ξj−1 > ε/ρ, so

that the set of states uξ forms an N -dimensional manifold M = {uξ : ξ ∈
Ωρ}.

To study the dynamics of solutions located nearM, the authors linearize
around an element of the manifold, so that a solution u(x, t) belonging to a
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neighborhood of M is written as

u(x, t) = uξ(t)(x) + v(x, t)

By substituting into (1.4), they obtain equations for ξ(t) and v(x, t) that
show how the motion of the shock layers and the subsequent evolution of
the patterns are influenced by layer interactions. Moreover the authors show
that, up to a very small error, the dynamics near M is well described by
uξ(t).

Such results are also obtained by studying the linearized operator Lεξ,
arisen from the linearization around uξ. Indeed, if one considers the linear
operator L∗ obtained by linearizing F [u] around and exact solution Φ to
(1.6), the principal eigenvalue turns to be equal to zero. Since uξ is a well
approximation of Φ, the zero eigenvalue of L∗ translates into exactly N
small eigenvalues for the operator Lεξ. Thanks to these spectral results,
the authors obtain estimates for the perturbation v, and derive a system of
ordinary differential equations for ξi(t), i = 1.....N , whose study is rigorous
performed in [12, Section 3].

To describe the metastable dynamics for the Cahn-Hilliard equation
(1.3), we give a brief outline of [1], one of the fundamental contributes
in this specific area. In this paper, the authors describe the slowly dynamics
of the solutions to the Cahn-Hilliard equation

∂tu = ∂2
x(−ε2∂2

xu+W ′(u)), x ∈ (0, 1), t > 0 (1.7)

subject to the boundary conditions

∂xu = ∂3
xu = 0, at x = 0, 1.

The function W is a C4 function with exactly three critical points, α < γ <
β, with α, β local minima and γ a local maximum. Moreover

W ≥ 0, W (α) = W (β), W ′′(α), W ′′(β), −W ′′(γ) > 0

Since equation (1.7) possesses a Liapunov functional I(u), defined by

I(u) =

∫ 1

0

[
ε2

2
∂xu

2 +W (u)

]
dx

it is known that, when t → ∞, solutions stabilize to an equilibrium state
that is a local minimizer of I with a constrain on the total mass M , that is

∫ 1

0
u dx = M

Numerical results show that the initial datum quickly evolves into a layered
structure, which than slowly evolves at an exponentially long time scale,
followed again by a fast evolution at an O(1) time scale, to be followed by
a slow motion, etc.

In [1], the authors rigorous show that this behavior occurs for the Chan-
Hilliard equation, and the strategy used is the following:

- They construct a manifold M of stationary solutions.
- They study the spectrum of the linearized Cahn-Hilliard operator about

this manifold, showing that there exists an exponentially small positive
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eigenvalue of order e−1/ε, while the rest of the spectrum is bounded away
from zero uniformly with respect to ε.

More precisely, the manifoldM id defined as the set of translates uξ(x−
ξ) (restricted to [0, 1]), where u(x) is a two-layer equilibrium to (1.7) which
has mass M . In formula

M̄ = {uξ(x) = u(x− ξ) : −l + δ0 < ξ < l − δ0, x ∈ [0, 1]}
where l = (β−M)/2(β−α) is the asymptotic distance between a layer and
the boundary of the interval and δ0 is a fixed small positive number. With
these notations, the location of the layers are given by

x1 = `+ ξ, x2 = 1− `+ ξ

By linearizing around an element of the manifold, the authors prove that
M is an invariant manifold for (1.7), and that, for ε sufficiently small, the

dynamics nearM is described by the ordinary differential equation ξ̇ = b(ξ),
where

b(ξ) = O
(
e−

1
ε

)
, b(0) = 0

so that the speed of propagation of the layers is exponentially small in ε.
As already stressed before, this slow motion is the result of the presence

of a first small eigenvalue; in fact, in [1], it is proven that, if one consider the
eigenvalue problem for the linearized operator around uξ, then the linearized
operator Lεξ has exactly one simple positive eigenvalue

0 < λε1(ξ) = O(e−c/εε7)

while all the remaining eigenvalues are bounded away from zero uniformly
in ε, i.e.

λεk(ξ) ≤ −C < 0, k = 2, 3, ....

where C is independent on ε and ξ.

In both the contributes, the common aim is to determine equations for
the parameters that represent the location of the layers, considered as func-
tions of time; usually, such equations are determined by linearizing around
a manifold of approximate steady states, and by projecting. In fact, the
existence of, at least, one first small eigenvalue suggest that one needs to
solve the equation in a subspace in which the linearized operator doesn’t
vanish.

2. Metastability for viscous shock problems

In this section we mean to give an overview on the analysis of slow dy-
namics for evolutive parabolic partial differential equations, with particular
attention to the scalar conservation law

∂tu+ ∂xf(u) = ε ∂2
xu, (1.8)

with the space variable x belonging to a one-dimensional interval I = (a, b).
The parameter ε > 0 is considered as a strictly positive and small parameter.
Equation (1.8) is complemented with Dirichlet boundary conditions

u(a, t) = u− and u(b, t) = u+ (1.9)

for given data u± to be discussed in details.
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Equation (1.8) is considered as a (simplified) archetype of more com-
plicate systems of partial differential equations arising in different fields of
applied mathematics. Inspired by the equations of fluid-dynamics, the pa-
rameter ε is interpreted as a viscosity coefficient and the main problem is to
identify and quantify its rôle in the emergence and/or disappearance of the
phenomenon of metastability.

Formally, in the limit ε→ 0+, the parabolic equation (1.8) reduces to a
first-order quasi-linear equation of hyperbolic type

∂tu+ ∂xf(u) = 0, (1.10)

whose standard setting is given by the entropy formulation, hence possessing
possibly discontinuous solutions with speed of propagation s given by the
Rankine–Hugoniot relation

s[[u]] = [[f(u)]] (1.11)

(where [[·]] denotes the jump) together with appropriate entropy conditions.
In addition, the treatment of the boundary conditions (1.9) is much more
delicate with respect to the parabolic case, because of the eventual appear-
ance of boundary layers.

Concerning the function f(u), let us assume

f ′′(s) ≥ c0 > 0, f ′(u+) < 0 < f ′(u−), f(u+) = f(u−), (1.12)

for some positive constant c0. The last two assumptions guarantee that the
jump from the value u− to u+ is admissible and its speed of propagation,
dictated by (1.11), is zero. In this case, equation (1.10) possesses a one-
parameter family {U

hyp
(·; ξ)} of stationary solutions satisfying the boundary

conditions (1.9), given by

U
hyp

(x; ξ) := u−χ(a,ξ)
(x) + u+χ(ξ,b)

(x) (1.13)

where χI denotes the characteristic function of the set I. The dynamics
determined by initial-value problem for (1.10)-(1.9) is very simple: it is
possible to prove that every entropy solution converges in finite time to
an element of the family {U

hyp
(·; ξ)}. Hence, at the level ε = 0, there are

infinitely many stationary solutions, generating a “finite-time” attracting
manifold for the dynamics. Note that, at the hyperbolic level, there is no
way of distinguishing one element from any other in the family of steady
states {U

hyp
(·; ξ)} in term of stability properties.

For ε > 0, the situation is different. Apart from the well-known smooth-
ing effect, the presence of the Laplace operator at the right hand-side of
(1.8), together with the boundary conditions (1.9), has the effect of a dras-
tic reduction of the number of stationary solutions: from infinitely many
to a single stationary state (see [35]). Such solution, denoted here by
Ū ε

par
= Ū ε

par
(x), converges in the limit ε → 0+ to a specific element of

the family {U
hyp

(·; ξ)}. As an example, in the case of the Burgers equation,

f(s) = 1
2 s

2, a = −` and b = `, there holds

Ū ε
bur

(x) = −κ tanh
(κx

2 ε

)

where κ = κ(ε,±`, u±) is implicitly defined by imposing the boundary con-
ditions. In the limit ε→ 0+, the single steady state Ū ε

bur
converges pointwise
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to Ū
hyp

:= U
hyp

(· ; 0). Therefore, the element of the one-parameter family
{U

hyp
(·; ξ)} corresponding to ξ = 0 exhibits a form of structural stability

which is not shared with any other element of the same family.
Similar results are obtained for a class of general f(u) that verify hy-

potheses (1.12); in this case the stationary solution Ū ε
par

converges pointwise

to U
hyp

(·; ξ̄), for some ξ̄ ∈ I.
A deeper understanding of the problem can be gained by analyzing the

dynamical properties of (1.8) for initial data close to the equilibrium con-
figuration by means of the linearized equation at the state Ū ε

par

ut = Lε u := ε ut +
(
a(x)u

)
x

with a(x) := −f ′(Ū ε
par

(x)).

In [35] it shown that, in the case of Burgers flux f(s) = 1
2 s

2, the eigenvalues
of Lε, considered with homogeneous Dirichlet boundary conditions, are real
and negative. Moreover, for f(u+) = f(u−), there holds as ε→ 0

λε1 = O(e−1/ε) and λεk < −
c0

ε
< 0 ∀ k ≥ 2

for some c0 > 0 independent on ε. Negativity of the eigenvalues implies that
the steady state Ū ε

bur
is asymptotically stable with exponential rate; while

the precise distribution shows that the large time behavior is described by
term of the order eλ

ε
1 t and, as a consequence, the convergence is very slow,

when ε is small.
Such is the picture relative to the behavior determined by an initial data

close to the equilibrium solution Ū ε
bur

.
The next question concerns with the dynamics generated by initial data

still presenting a sharp transition from u− to u+, but that are localized far
from the position of the steady state Ū ε

bur
. Figure 4 represents the solution

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

 

 

t=0
t=0.5
t=1.5
t=0.5x104

t=5x104

t=106

Figure 1. The solution to (1.8) with f(u) = u2/2, ε = 0.07,
u± = ∓1 and initial datum u(x, 0) = u0(x) := 1

2x
2 − x− 1

2 .
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to the initial-value problem for (1.8) with boundary conditions (1.9) in the
interval I = (−1, 1), relative to the initial datum u(x, 0) = u0(x) := 1

2x
2 −

x− 1
2 .
Starting with a decreasing initial datum, a shock layer is formed in an

O(1)-timescale, so that the solution is approximately given by a translation
of the (unique) stationary solution of the problem. Once such a layer is
formed, it moves towards the location corresponding to the equilibrium so-
lution and this motion is exponentially slow. As a consequence, two different
time scales emerge: for short times, the solution becomes closer to a mono-
tone transition connecting the boundary data, close to a space-translation
of the single steady state; for long time, the profile slowly moves toward the
equilibrium configuration.

Main contributes. We mean to give a brief outline of some of the most
significant papers concerning the phenomenon of metastability for viscous
shock problems.

Among others, such problem has been examined in [64], [69] and in
[38], where different approaches have been considered. The former is based
either on projection method or on WKB expansions. We want to give a brief
outline of these results.

In [64] the authors consider the initial-boundary value problem




∂tu = ε∂2
xu− ∂xf(u), x ∈ (0, 1), t > 0

u(0, t) = u−, u(1, t) = u+ t > 0

u(x, 0) = u0(x)

(1.14)

where u− > 0 and u+ ≡ −u−, so that u± = ∓u∗ for some u∗ > 0. Here f(u)
is a convex function such that f ′(0) = 0, uf ′(u) > 0 and f(u∗) = f(−u∗).

The aim of this paper is to determine a description of the slow motion of
the internal layer in the vanishing viscosity limit ε→ 0; as usual, the idea is
to construct an approximation for the stationary solution in order to derive
an equation of motion for the shock layer location ξ(t).

In this contest, the authors use the method of matched asymptotic ex-
pansions (MMAE) to built an approximate stationary solution to (1.14).
More precisely, for ε→ 0, the leading order MMAE solution is given by

u ∼ us[ε−1(x− ξ)]
where ξ ∈ (0, 1) represents the location of the shock layer. With the change
of variable z = (x− ξ)/ε, the shock profile us turns to solve





u′s(z) = f(us(z))− f(u∗) z ∈ (−∞,+∞)
us(0) = 0
us(z) ∼ u∗ − a±e∓ν±z, z → ±∞

where the positive constants ν± and a±, describing the tail behavior of us,
are defined by

ν± = ∓f ′(∓u∗)

log
(a±
u∗

)
= ±ν±

∫ ∓u∗

0

[
1

f(η)− f(u∗)
± 1

ν±(η ± u∗)

]
dη
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Notice that the MMAE solutions satisfies exactly the equation, while the
boundary conditions are satisfy within exponentially small terms.

In order to determine an equation of motion for the location of the shock
layer, the authors utilize the projection method, based on the linearization
of (1.14) around the MMAE stationary solution us. More precisely, this
method is based on the fact that the linear operator associated with the
linearization around the shock profile has exactly one exponentially small
eigenvalue, so that the solution to the linearized problem must have no
component in the direction of the first eigenfunction.

More precisely, the authors look for a solution to (1.14) on the form
u(x, t) ∼ us(z) +w(x, t), where z = ε−1[x− ξ(t)]. Subsequently, they study
the spectrum of the linearized problem, showing that, asymptotically, the
principal eigenvalue of the linearized operator tends to zero as ε→ 0. Hence,
by setting an algebraic condition in order to remove the singular part of the
linearized operator, and by projection on the first component, one obtains
an approximate ODE for the motion of ξ(t). The main result is the following
(for more details see [64, Proposition 4a])

Proposition 1.1. For ε→ 0, the exponentially slow evolution of the shock
layer for (1.14) is described by u ∼ us[ε−1(x− ξ(t))], where ξ(t) satisfies the
ODE

dξ

dt
=

1

2u∗

[
Aa+ν+e

−ν+ε−1(1−ξ) −Ba−ν−e−ν−ε
−1ξ
]

where the constant A,B depend on ν± and on the boundary conditions.

A similar approach is used in [69] to study the metastable dynamics for
the generalized Burgers problem





∂tu = u− u∂xu+ ε∂2
xu, x ∈ (0, 1), t > 0

u(0, t) = u(1, t) = 0, t > 0

u(x, 0) = u0(x)

(1.15)

Such equation arise from the study of the dynamics of an upwardly propa-
gating flame-front in a vertical channel; precisely, the shape y = y(x, t) of
the flame front interface satisfies



∂ty =
1

2
∂xy

2 + ε∂2
xy −

∫ 1

0
y dx, x ∈ (0, 1), t > 0

∂xy(0, t) = ∂xy(1, t) = 0, t > 0

y(x, 0) = y0(x)

(1.16)

so that, by setting u(x, t) = −∂xy(x, t), one obtains equation (1.15).
By linearizing the equation around an MMAE equilibrium solution, it

turns out that the principal eigenvalue associated with such linearization
is exponentially small in ε, so that a metastable behavior for the time-
dependent problem occurs as a consequence of the size of the first eigenvalue.

This behavior of slow motion of internal layer is studied here by deriving
an asymptotic ordinary differential equation characterizing the slow motion
of the tip location of a parabolic-shaped interface, corresponding to the
location of the shock layer for the function u. In this contest, numerical
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computations suggest that a sufficient condition for the appearance of a
metastable behavior is that the initial datum satisfies

u0(x) < 0 for x ∈ (0, a), and u0(x) > 0 for x ∈ (a, 1)

for some a > 0. In this case, three different time scales emerge: a first
transient phase of O(1) where the parabolic-shaped flame-front interface
is formed; an exponentially long time phase where the tip of the parabolic
flame-front drifts towards one of the walls (i.e. x = 0 or, equivalently, x = 1);
finally, an O(1) phase where the flame-front collapses against the wall and
reach its equilibrium configuration. In terms of u(x, t), the first two phases
are pictured in Figure 2. The fact that the time interval corresponding to the
second phase is exponentially long with respect to ε, creates the illusion that
the flame-front has reached some final equilibrium. However, this second
phase is only a quasi-equilibrium that persists for an exponentially long
time interval.

Figure 2. The solution to (1.15) with f(u) = u2/2, ε = 0.07, and
initial datum u(x, 0) = x(1 − x)(x − 0.45). Notice that the zero
of u, which is the tip of the flame-front interface, moves slowly
towards the wall at x = 0.

With all of this in mind, let us briefly describe the methods used in [38],
where the authors specifically consider the initial boundary value problem




∂tu = ε∂2
xu+ u∂xu, x ∈ (0, 1), t > 0

u(±1, t) = ±1, t > 0

u(x, 0) = u0(x)

(1.17)

with

u0(x) =

{ −1, −1 ≤ x ≤ a
1, a < x ≤ 1

for some a ∈ (−1, 1) and for small ε.
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Here the shock layer location ξ(t) is defined as the value where the
solution is equal to zero, that is

u(ξ(t), t) ≡ 0

As usual, numerical computations show that the transition between the
boundary values−1 and 1 occurs through a shock layer located in ξ(t), whose
thickness is of O(ε). To obtain an asymptotic equation for the shock layer
location, an adapted version of the method of matched asymptotic expansion
is used. Hence, the author introduce the stretched spacial and time variables

η =
(x− ξ(t))

2ε
, s =

t

e1/ε

so that any solution u(η, s) to (1.17) satisfies




∂2
ηu+ 2u∂ηu = e−1/ε(4ε∂su− 2

dξ

dσ
∂ηu)

u

(±1− ξ(s)
2ε

, s

)
= ±1

u(0, s) = 0

(1.18)

Since u(η, s) = tanh η satisfies the limiting problem with ε = 0, the authors
look for a solution to (1.19) in the form

u(η, s) = tanh η + e−1/εu1(η, s) + ....

obtaining an initial value problem for ξ(s), that is

dξ

ds
= e−ξ/ε − eξ/ε, ξ(0) = ξ0

that corresponds to the equation for the shock layer location obtained in
[64].

The same techniques are used in [37], where the authors performe the
same study for a generalized problem on the form





∂tu = ε∂x(g(u)∂xu) + f(u)∂xu, x ∈ (0, 1), t > 0

u(±1, t) = ±1, t > 0

u(x, 0) = u0(x)

(1.19)

Also in this case, under opportune hypotheses on the function g, the authors
prove that, starting from an initial datum on the form

u0(x) =

{ −1, −1 ≤ x ≤ a
1, a < x ≤ 1

a single shock layer of thickness of O(ε) is formed, and its convergence to
the asymptotic limit is extremely slow.

The common aim of all these papers is to determine an expression and/or
an equation for the parameter ξ, considered as a function of time, describing
the movement of the transition from a generic point of the interval toward
the equilibrium location. In these contributes, the analysis is conducted
at a formal level and validated numerically by means of comparison with
significant computations.
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A rigorous analysis of the solution to the Burgers’ type equation




∂tu = ε∂2
xu+ ∂xf(u), x ∈ (−1, 1), t > 0

u(±1, t) = ±1, t > 0

u(x, 0) = u0(x)

(1.20)

has been performed in [18] (and generalized to the case of nonconvex flux
in [20]); here the flux function f satisfies

f ′(1) > 0, f ′(−1) < 0, f(±1) = 0 and f(s) < 0, ∀ |s| < 1

In order to study the existence of an exponentially slow internal shock the
authors, instead of deriving an equation of motion for the location of such
shock layer, obtain an asymptotic expression for its speed; the idea is to
approximate the solution to (1.20) with a traveling wave Φ(x− V (ξ) t) that
fits exactly the boundary conditions and satisfies Φ(ξ) = 0.

Since there no exist traveling waves on a finite interval, the authors
construct such solution by restricting a true traveling wave ψ(x− vt) of the
equation (1.20), defined on all R2, to a finite subdomain [−1, 1] × [t1, t2],
where the time interval [t1, t2] is chosen so that the unique zero of ψ(x− vt)
belongs to the open interval (−1, 1).

In particular it is shown that, for each ξ ∈ (−1, 1), a unique traveling
wave Φ(x−V (ξ) t), satisfing Φ(ξ) = 0 and Φ(±1) = ±1, exists. Furthermore,
the authors derive a precise estimate of its exponentially slow velocity V .
The approach is based on the use of such traveling wave to obtain upper and
lower estimates by the maximum principle, from which rigorous asymptotic
formulae for the slow velocity are obtained; precisely

V (ξ) = −α exp

(
−f ′(1)

1− ξ
ε

)
+ β exp

(
f ′(−1)

1 + ξ

ε

)
+O(R2

ε/ε)

where the constants α and β depends on f(±1), and

Rε := exp

(
−f ′(1)

1− ξ
ε

)
+ exp

(
f ′(−1)

1 + ξ

ε

)

Moreover, it is proven the the function ξ 7→ V (ξ) is a monotone function,
which is positive for ξ ∼ −1 and negative for ξ ∼ 1, meaning that the wave
moves to the right in the former case and to the left in the latter.

Furthermore, for the analytical study of the metastable dynamics, the
equation (1.20) is linearized around the approximate traveling wave and,
as usual, a study of the spectral proprieties of the linearized operator is
performed. Precisely, the authors show that the first eigenvalue is exponen-
tially small with respect to ε, and that there is a spectral gap between the
principal eigenvalue and the rest of the spectrum.

Such considerations show that the convergence to the asymptotically
stable state is exponentially slow in the limit ε→ 0.

The case of nonconvex flux, studied by the same authors in [20], is more
delicate: in this case, f has several zeros between u− and u+, so that several
internal transition layer may occur. Indeed, the authors suppose that the
flux function f has to satisfy the following hypothesis
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• f ∈ C∞(R) has a finite number of zeroes in the interval [−1, 1], but
at least two. Moreover, all zeroes are of finite order.

As a consequence, the structure of the stationary solution is the following:
there exists only one stationary solution that is monotone; it is characterized
by flat regions that correspond to the zeroes of f of higher order and by
transition layers connecting these areas, as depicted in Figure 3.

Figure 3. Equilibrium solution to (1.20) in the case of the non-
convex flux f(u) = − cos2 2πu, with boundary conditions u± = ±1.
This figure was produced by P.P.N. De Groen and G.E. Karadzhov
in [20]

In this paper the authors generalize the result obtained in [18], proving
that, taking the initial datum close to a traveling wave profile, the time
dependent solution moves in a small neighborhood of such profile with slow
speed for a long time interval (0, T ε). In particular

T ε = O(ε
− p
p−1 )

where p is the maximal order of zeroes of f , so that a metastable behavior
appears.

Viscous shock problems in unbounded domains. Slow motion for
the viscous Burgers equation in unbounded domains has been also considered
in literature.

The case of the whole real line has been examined in [32] (for subsequent
contributions in the same direction, see also [31]) with emphasis on the
generation of N−wave like structures and their evolution towards nonlinear
diffusion waves. Here the authors consider the following Cauchy problem{

∂tu = ε∂2
xu− u∂xu, x ∈ R, t > 0

u(x, 0) = u0(x), t > 0
(1.21)

The analysis is based on the use of self-similar variables, suggested by the in-
variance of the Burgers equation under the group of scaling transformations
(x, t, u) 7→ (cx, c2 t, u/c). This property suggests the change of variables

s = log t, η = x/
√
t, w(η, s) =

√
t u(x, t)

so that equation (1.21) becomes

∂sw = ε∂2
ηw +

1

2
∂η(ηw − w2) (1.22)
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The diffusion waves are, by definition, the equilibrium solutions to (1.22).

Figure 4. Numerical solution to (1.22), generated by the Go-
dunov scheme produced by Y.-J. Kim and A. Tzavaras in [32].

Also in this case, numerical computations (see Figure 4) show that the
evolution of the time-dependent solution can be divided into different stages
of different orders in time; starting, for example, from an oscillatory initial
datum w0, the authors show that there is a first transition in which the
solution develops the so called saw-tooth profile. In the subsequent stage, the
waves interact and eventually produce an approximative N−wave. These
first two stages are relatively quick, of order one in time, and here the
diffusion act weakly, so that the dynamics is essentially the same as the
unviscid equation

∂sw =
1

2
∂η(ηw − w2) (1.23)
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Once the latter stage is reached, it persists for an exponentially long time in-
terval; indeed, the N−waves are stationary solutions for (1.23), but, because
of the presence of a small diffusion, they are only approximate solutions for
(1.22). This consideration leads to the last stage of the evolution of the so-
lution: a very slow transition from an approximate N−wave to a a diffusion
wave, the steady state of (1.22).

Roughly speaking, the solution spend a very long time near the family
of approximate N−waves, before converging to the stable family of diffusive
waves. Such a slow evolution (of order e1/ε in time) is a manifestation of
the metastable behavior that occurs for the solutions to (1.21).

More recently, it has been shown in [10] that the slow motion for the vis-
cous Burgers equation on the whole real line is determined by the presence
of a one-dimensional center manifold of steady states for the equation in the
self-similar variable (corresponding to the diffusion waves) and a relative
family of one-dimensional global attractive invariant manifold (correspond-
ing to the diffusive N−waves). In a short-time scale of order O(| log ε|), the
solution approaches one of the attractive manifolds and remains close to it
in a long-time scale.

In [67], it is analyzed the case of the half-line (0,+∞) for the space
variable x, with constant initial and boundary data chosen so that speed
of the shock generated at x = 0 would be stationary for the hyperbolic
equation. The presence of the viscosity generates a motion of the transition
layer, which is precisely identified by means of the Lambert’s W function.
Later, the (slow) motion of a shock wave, with zero hyperbolic speed, for the
Burgers equation in the quarter plane has been considered in [47], where it
is shown that the location of the wave front is of order ln(1 + t); the same
result has been generalized in [61] in the case of general fluxes (for other
contributions to the same problem, we refer also to [49, 72]).

Conclusions. Summing up, apart for the formal expansions methods,
the rigorous approaches used in the literature are largely based on typical
scalar equations features. The first of these properties is the direct link
between the scalar Burgers equation and the heat equation given by the
Hopf–Cole transformation: u = −2ε φ−1∂xφ, and the consequent invari-
ance of equation (1.8) under the group of scaling transformations (x, t, u) 7→
(cx, c2 t, u/c). On the one hand, the presence of such a connection is an
evident advantage, since it permits to determine optimal descriptions for
the behavior under study (see [32, 47, 67]); on the other hand, to use such
exceptional property makes the approach very stiff and difficult to apply to
more general cases. A different “scalar hallmark” is the base of the approach
considered in [18], where the authors make wide use of maximum principle
and comparison arguments, taking benefit from the fact that the equation
is second-order parabolic.

In order to extend the results to more general settings and specifically
for systems of PDEs, it is useful to determine strategies and techniques that
are more flexible, paying, if necessary, the price of a less accurate descrip-
tion of the dynamics. A contribution in this direction has been given in [61],
where the location of the shock transition for a scalar conservation law in the
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quarter plane has been proved by means of weighted energy estimates, ex-
tending the result proved in [47], that used an explicit formula –determined
by means of the Hopf–Cole transformation– for the Green function of the
linearization at the shock profile of the Burgers equation.

3. Metastability for systems in higher space dimension

Metastable dynamics in a multispacial dimensional setting has been re-
cently established (see, for example, [2, 3, 65]), and, at the present day,
results relative to metastability in the case of systems appear to be rare.
One of the main difference between the study of slow motion of internal
layers in one-space dimension, and the problem of evolution of interfaces in
higher dimensions is that, usually, in the former case the dynamics of the
shock layer location is described by an ordinary differential equation, while
in the latter it turns out that the interface evolves according to a partial
differential equation.

To name some of these results, in [13] the author considers an interfacial
problem for a class of reaction diffusion systems of parabolic type, that is





∂tu = ε∆u+
1

ε
f(u, v), x ∈ Rn, t > 0

∂tv = ∆v + g(u, v), x ∈ Rn, t > 0

u(x, 0) = φ(x), v(x, 0) = ψ(x)

(1.24)

The nonlinear terms in the equation are on the form

f(u, v) = u(1− u)(u− a)− v, a ∈ (0, 1)

g(u, v) = u− γv, γ > 0

System (1.24) can be interpreted as a model for the propagation of chemical
waves in excitable media.

The assumptions on the smallness of the parameter ε and the bistable
property of the term f are crucial in term of the appearance of a phenomenon
of metastability; indeed, under these hypotheses, the evolution of internal
interfaces can be divided into two consecutive phases: the first one is a short
time period in which the interfaces are formed; the next one is a long time
interval, where one can observe the evolution of such interfaces.

The approach used is the following. For short time (i.e. t � 1), the
diffusion term ε∆ is neglected, and the dynamics of u is well approximate
by the following equation

∂tu =
1

ε
f(u, ψ), v ∼ ψ (1.25)

Going deeper in details, that author proves that, for short time, the
solution u to (1.25) approaches two different branches, so that the whole
space can be divided into two subdomains here named as ”the exited region”
Ω+(t) and ”the rest region” Ω−(t), divided by a thin interfacial layer region
Ω0(t) whose thickness is of order O(ε). Is these regions, the solution u is
given by u ≈ h+(v) and u ≈ h−(v) respectively, where

u = h+(v), u = h−(v)
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represent two branches of the nullocline {(u, v) : f(u, v) = 0} of the function
f .

To study the subsequent dynamics of the interfacial region Ω0(t), that
can move and deform as t evolves, the author uses a method of matched
asymptotic expansion to obtain a limiting equation that well approximate
equation (1.24) when ε→ 0: indeed, for large t, the diffusive term ε∆u can
no longer be neglected.

The hypotheses required are the following:

• The transition layer region Ω0(t) approaches a compact hypersur-
face Γ(t) ∈ Rn, called here interface.
• The solution u(·; t) has a jump discontinuity across Γ(t). In partic-

ular{
u = h+(t) on Ω+(t)

u = h−(t) on Ω−(t)
Rn\Γ(t) = Ω+(t) ∪ Ω−(t)

• Γ(t) changes smoothly in time.

Under such hypotheses, the author derives a partial differential equation for
the interface Γ(t), that shows how its motion depends on the main curvature
κ of the interface itself. More precisely, the interfacial tension ε(n−1)κ plays
a fundamental role in the stability/instability of Γ (for more details see [13,
Section 3]).

In [28], slow dynamics for a one-dimensional semi linear parabolic sys-
tem, known as the phase-field equations, is studied. The goal of this paper
is to show the existence of metastable solutions, i.e. solutions that preserve
a particular structure for a large finite time that tends to infinity as the
viscosity coefficient goes to zero. Slow dynamics analysis for systems of con-
servation laws have been considered in [26], basic model examples being the
Navier-Stokes equations of compressible viscous heat conductive fluid and
the Keyfitz-Kranzer system, arising in elasticity. The approach is based on
asymptotic expansions and consists in deriving appropriate limiting equa-
tions for the leading order terms, in the case of periodic data.

In [36], the problem of proving convergence to a stationary solution for
a system of conservation laws with viscosity is addressed, with an approach
based on a detailed analysis of the linearized operator at the steady state.

Precisely, the authors consider the following problem

∂tu+ ∂xf(u) = ε∂2
xu, x ∈ (−`, `), t ≥ 0 (1.26)

where u = u(x, t) is a vector function with n components, and f : Rn → Rn
is a given smooth function. The evolution in time of a solution to (1.26)
involves two different processes; the first one consists on the appearance of
an internal smooth shock layer. Diffusion acts weakly in this process, and
the dynamics is well modeled by the corresponding inviscid equations, so
that the position of the shock can be determined via the Rankine–Hugoniot
relation. Moreover, the amplitude of such interface is of order O(

√
ε). The

other process involves perturbations of the shock layer, as the adjustment in
shape and position of such interface. Here the diffusive effects are large, and
the time scale is of order O(1/ε), much faster compared to the first phase,
that is of O(1) in time.
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In order to study the stability of the shock profile under local perturba-
tions, (i.e. solutions starting from an initial datum close to some equilibrium
configuration) the authors focuses on the fast process by considering just the
space region near the shock layer. Hence, by eliminating the parameter ε
from the equation thanks to the standard scaling of space and time, the au-
thors analyze the stability of a steady state U(x) by describing the dynamics
of the solution of the initial boundary value problem





∂tu+ ∂xf(u) = ∂2
xu, x ∈ (−`, `), t ≥ 0

u(x, 0) = U(x) + y0(x), t ≥ 0

u(±`) = U(±`)
(1.27)

where, as stressed, the initial datum u0 is close to the equilibrium profile
U(x). The linearized problem around U(x) reads





∂tu+ ∂x(A(x)u) = ∂2
xu

u(x, 0) = y0(x)

u(±`) = 0

(1.28)

where A(x) = J(U(x)) and J = ∂f/∂u is the Jacobian of f . By considering
the corresponding eigenvalue problem

λϕ+ ∂x(A(x)ϕ) = ∂2
xϕ, |x| ≤ `, ϕ(±`) = 0 (1.29)

the authors prove the following Theorem (see [36, Theorem 1])

Theorem 1.2. For sufficiently large `, the eigenvalue problem (1.29) has
a first simple isolated eigenvalue λ1 with corresponding eigenfunction ϕ1,
satisfying

λ1 = O(e−γ(`−`0)), |ϕ1 − ∂xU(x)| ≤ Ce−γ`
where γ > 0 is independent of `, and `0 is a fixed, sufficiently large constant.
Further, there exists a constant δ > 0 independent on ` so that all the other
eigenvalues satisfy

Reλk ≤ −δ, k = 2, 3, .....

The Theorem implies that the approach to the steady profile is expo-
nentially slow but, because of the rescaling, the dependence of such slow
motion on ε doesn’t appear.

A recent contribution is the reference [7], where the authors consider the
Saint-Venant equations for shallow water and, precisely, the phenomenon of
formation of roll-waves. The approach merges together analytical techniques
and numerical results to present some intriguing properties relative to the
dynamics of solitary wave pulses.
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CHAPTER 2

Metastability for scalar conservation laws in a
bounded domain

1. Introduction

In this chapter we wish to investigate the phenomenon of slow motion
of internal shock layer for the initial-boundary value problem for a scalar
conservation law with viscosity with Dirichlet boundary condition in the
bounded interval I = (−`, `), that is





∂tu+ ∂xf(u) = ε ∂2
xu x ∈ I, t > 0

u(±`, t) = u± t > 0

u(x, 0) = u0(x) x ∈ I
(2.1)

for some ε, ` > 0, u± ∈ R and flux function f , chosen so that assumptions
(1.12) hold.

Our goal is to rigorous analyze the dynamics generated by initial data
that present a sharp transition from u− to u+, and localized far from the
position of the steady state Ū ε

par
, defined as the unique solution to

∂xf(Ū ε
par

) = ε ∂2
xŪ

ε
par
, Ū ε

par
(±`, t) = u±

As stressed in the previous chapter, starting from such an initial datum, a
shock layer is formed in an O(1)-timescale. Once such a layer is formed, it
moves towards the location corresponding to the equilibrium solution and
this motion is exponentially slow.

To describe the dynamics generated by such an initial configuration and
to determine a detailed description of the relation between the unviscous
and the low-viscosity behavior, our strategy is:

– to build up a one-parameter family of functions {U ε(·; ξ)} such that
U ε(·; ξ̄) = Ū ε

par
for some ξ̄, and with the additional property that U ε(·; ξ)→

U ε
hyp

(·; ξ) as ε→ 0, in an appropriate sense;

– to describe the dynamics of the viscous scalar conservation law in a
tubular neighborhood of the family {U ε(·; ξ)}.

The essence of this approach is to contribute to the definition of a flexible
language, hopefully relevant to more general contexts and, mainly, in the
case of systems. With this direction in mind, we follow an approach that it
is strictly related with the projection method considered in [12, 64] and we
go behind the philosophy tracked in the analysis of stability of viscous shock
waves by K.Zumbrun and co-authors (see [55, 56, 73]). Precisely, once a
set of reference states {U ε(·; ξ)} is chosen, we separate two distinct phases:
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– to determine spectral properties of the linearized operator at such
states;

– to show that appropriate assumptions on the structure of the eigenval-
ues of such operator together with a control on how far is the approximate
state from being an exact solution imply the presence of a metastable be-
havior.

The main advantage in such a separation stems from the fact that, in
principle, it should be possible to obtain numerical evidence of special spec-
tral structures in cases where analytical results appear to be not achievable.

With respect to the framework of shock waves stability analysis, there
are two main differences. First of all, we concentrate on the case of bounded
domains and, therefore, the spectrum of the linearized operator is discrete
and given by a divergent sequence of (real) values. Additionally, the ref-
erence states U ε generically are approximate solutions, in the sense that
they satisfy the steady state equation with an error that converges to zero
as ε → 0+. Hence the perturbations of such states satisfy at first order a
non-homogeneous linear equation, with forcing term, formally negligible as
ε→ 0+.

Our approach consists in approximating the evolution of the couple
(ξ, v), where ξ denotes the parameter for the approximate manifold and
represents the location of the shock layer, and v the perturbation of the
profile U ε, by a partial linearization, giving raise to a system which we call
quasi-linear system. This is obtained by linearizing with respect to v and
keeping the nonlinear dependence on ξ, in order to keep track of the non-
linear evolution along the approximate manifold. Our main contribution is
Theorem 2.2, stating that, assuming a number of assumptions relative to
the elements of the approximate manifold U ε and the linearized operator
at such states, and a coupling condition, linking the first eigenvalue of the
linearized operator with the nonlinear operator evaluated at U ε, the solu-
tion to the quasi-linearized system is described by the evolution of a reduced
system where the equation for ξ is decoupled from v and hence solvable by
means of the standard separation of variable method.

2. General framework

Let us consider the Cauchy problem for a general evolution equation

∂tu = Fε[u], u
∣∣
t=0

= u0 (2.2)

where Fε denote a nonlinear differential operator, depending singularly on
the parameter ε > 0, so that the formal limiting problem ∂tu = F0[u] is
of lower order. Typically, equation (2.2) is complemented with appropriate
boundary conditions, appearing in the definition of an appropriate Hilbert
space X such that a solution to (2.2) is a function u : [0,+∞)→ X.

Denoting by uε = uε(x, t) the solution of (2.2), we are interested in
describing the behavior of uε for small ε. The basic example we have in
mind is the initial-boundary value problem (2.1).

We assume to have a one-parameter family {U ε(·; ξ)} in X, parametrized
by ξ ∈ I, whose elements are approximate stationary solution to the prob-
lem, i.e. Fε[U ε(·; ξ)] → 0 as ε → 0. Precisely, we assume that the term
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Fε[U ε] belongs to the dual space of the continuous functions space C(I)
and there exists a family of smooth positive functions Ωε = Ωε(ξ), uniformly
convergent to zero as ε→ 0, such that, for any ξ ∈ I, there holds

|〈ψ(·),Fε[U ε(·, ξ)]〉| ≤ Ωε(ξ) |ψ|
L∞ ∀ψ ∈ C(I).

The family {U ε(x; ξ)}ξ∈I will be referred to as an approximate invariant man-
ifold with respect to the flow determined by (2.2) in the Hilbert space X.

The dependence of Ωε on ε plays a fundamental rôle, since it drives the
departure from the approximate invariant manifold. Roughly speaking, it
measures how far is an element of the approximate manifold from being an
exact stationary solution to the problem. In the specific case of a scalar
conservation law, such term is exponentially small, meaning that it behaves
as e−C/ε, with C > 0.

Let us stress that, differently to the construction in [38] and in [64],
where the approximate solutions satisfies exactly the equation and the bound-
ary condition to within exponentially small terms, here we assume the ele-
ments U ε to satisfy the boundary conditions exactly and the equation ap-
proximately.

Example 2.1. In the case of Burgers equation, i.e. f(s) = 1
2 s

2 and
u± := ∓u∗, for some u∗ > 0, we consider a function obtained by match-
ing two different steady states satisfying, respectively, the left and the right
boundary condition together with the request U(ξ) = 0; in formulas,

U ε(x; ξ) =

{
κ− tanh (κ−(ξ − x)/2ε) in (−`, ξ)
κ+ tanh (κ+(ξ − x)/2ε) in (ξ, `),

where κ± are chosen so that the boundary conditions are satisfied

κ± tanh
(κ±

2ε
(ξ ∓ `)

)
= u±. (2.3)

By direct substitution, denoting by δx=ξ the usual Dirac’s delta distribution
concentrated at x = ξ, we obtain the identity

Fε[U ε(·; ξ)] = [[∂xU
ε]]
x=ξ

δ
x=ξ

in the sense of distributions. In particular, U ε(·, ξ) is a stationary solution
if and only if ξ = 0. Going further, by differentiation, we have

[[∂xU
ε]]
x=ξ

=
1

2ε
(κ− − κ+)(κ− + κ+).

In order to determine the behavior of Ωε for small ε, we need an asymptotic
description of the values κ±. To this aim, let us set κ± := ∓u±(1 + h±),
so that, denoting by ∆± := ` ∓ ξ the distance from ξ to ±`. relation (2.3)
becomes

tanh

(
∓u±∆±

2ε
(1 + h±)

)
=

1

1 + h±
.

Therefore, the values h± are both positive and thus

tanh

(
∓u±∆±

2ε

)
≤ 1

1 + h±
.
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that gives the asymptotic representation

h± ≤
1

tanh(∓u±∆±/2ε)
− 1 =

2

e∓u±∆±/ε − 1
= 2 e±u±∆±/ε + l.o.t.,

where l.o.t. denotes lower order terms. Thus, we infer

[[∂xU
ε]]
x=ξ

=
u2
∗

2ε
(h− − h+)(2 + h− + h+) =

u2
∗
ε

(h− − h+) + l.o.t.

=
2u2
∗
ε

(e−u∗(`+ξ)/ε − e−u∗(`−ξ)/ε) + l.o.t. ∼ C ξ e−C/ε,

showing that the term [[∂xU
ε]]
x=ξ

is null at ξ = 0 and exponentially small

for ε→ 0+.

Once the one-parameter family {U ε(·; ξ)} is chosen, we write the solution
to the initial value problem (2.2) as

u(·, t) = U ε(·; ξ(t)) + v(·, t)
with ξ = ξ(t) ∈ I and v = v(·, t) ∈ X to be determined. Substituting, we
obtain

∂tv = Lεξv + Fε[U ε(·; ξ)]− ∂ξU ε(·; ξ)
dξ

dt
+Qε[v, ξ] (2.4)

where

Lεξv := dFε[U ε(·; ξ)] v
Qε[v, ξ] := Fε[U ε(·; ξ) + v]−Fε[U ε(·; ξ)]− dFε[U ε(·; ξ)] v.

Next, let us assume that, for any ξ, the linear operator Lεξ has an decreasing

sequence of real eigenvalues λεk = λεk(ξ) with λk → −∞ as k → +∞ with
corresponding right eigenfunctions φεk = φεk(·; ξ). Denoting by ψεk = ψεk(·; ξ)
the eigenfunctions of the corresponding adjoint operator Lε,∗ξ and setting

vk = vk(ξ; t) := 〈ψεk(·; ξ), v(·, t)〉,
we can use the degree of freedom we still have in the choice of the couple
(v, ξ) in such a way that component v1 is identically zero, that is

d

dt
〈ψε1(·; ξ(t)), v(·, t)〉 = 0 and 〈ψε1(·; ξ0), v0(·))〉 = 0.

Using equation (2.4), we infer

〈ψε1(ξ, ·),Lεξv + F [U ε(·; ξ)]− ∂ξU ε(·; ξ)
dξ

dt
+Qε[v, ξ]〉+ 〈∂ξψε1(ξ, ·)dξ

dt
, v〉 = 0

Since 〈ψε1,Lξv〉 = λ1〈ψε1, v〉, we obtain a scalar differential equation for the
variable ξ, describing the reduced dynamics along the approximate manifold,
that is

αε(ξ, v)
dξ

dt
= 〈ψε1(·; ξ),F [U ε(·; ξ)] +Qε[v, ξ]〉 (2.5)

where

αε0(ξ) := 〈ψε1(·; ξ), ∂ξU ε(·; ξ)〉 and αε(ξ, v) := αε0(ξ)− 〈∂ξψε1(·; ξ), v〉,
together with the condition on the initial datum ξ0

〈ψε1(·; ξ0), v0(·)〉 = 0
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To rewrite equation (2.5) in normal form in the regime of small v, we assume

|αε0(ξ)| = |〈ψε1(·; ξ), ∂ξU ε(·; ξ)〉| ≥ c0 > 0 ∀ ξ ∈ I.
for some c0 > 0. Such assumption gives a (weak) restriction on the choice
of the members of the family {U ε} asking for the manifold to be never
transversal to the first eigenfunction of the corresponding linearized opera-
tor. From now on, thanks to the previous hypothesis, we can renormalize
the eigefunction ψε1 so that

αε0(ξ) = 〈ψε1(·; ξ), ∂ξU ε(·; ξ)〉 = 1 ∀ ε > 0, ξ ∈ I.
Since we are interested in the regime v → 0, we expand 1/αε as

1

αε(ξ, v)
=

1

αε0(ξ)

(
1 +
〈∂ξψε1, v〉
αε0(ξ)

)
+ o(|v|) = 1 + 〈∂ξψε1, v〉+ o(|v|).

Inserting in (2.5), we end up with the nonlinear equation for ξ

dξ

dt
= θε(ξ)

(
1 + 〈∂ξψε1, v〉

)
+ ρε[ξ, v], (2.6)

where

θε(ξ) := 〈ψε1,F [U ε]〉 (2.7)

ρε[ξ, v] :=
1

αε(ξ, v)

(
〈ψε1,Qε〉+ 〈∂ξψε1, v〉2

)
. (2.8)

Using (3.23), the equation (2.4) for v can be rephrased as

∂tv = Hε(x; ξ) + (Lεξ +Mε
ξ)v +Rε[v, ξ] (2.9)

where

Hε(x; ξ) := Fε[U ε(x; ξ)]− ∂ξU ε(x; ξ) θε(ξ),

Mε
ξv := −∂ξU ε(·; ξ) θε(ξ) 〈∂ξψε1, v〉,

Rε[v, ξ] := Qε[v, ξ]− ∂ξU ε(·; ξ) ρε[ξ, v].

Let us stress that, by definition, there holds

〈ψε1(·; ξ), Hε(·; ξ)〉 = 0, (2.10)

so that Hε(·; ξ) is the projection of Fε[U ε(·; ξ)] onto the space orthogonal
to φε1(·; ξ).

To show how such formulas can be handled, at least formally, in concrete
situations, let us analyze problem (2.1), namely

Fε[u] = ε∂2
xu− ∂xf(u)

for ε > 0 and f satisfying assumptions (1.12). Retracing the definitions
introduced above and setting aε(x; ξ) := f ′(U ε(x; ξ)), we get the following
expressions

Lεξv := ε∂2
xv − ∂x

(
aε(·; ξ) v

)
Lε,∗ξ v := ε∂2

xv + aε(·; ξ) ∂xv
where the adjoint operator Lε,∗ξ has to be considered with Dirichlet boundary

conditions, and

Qε[v, ξ] := −∂xN ε[v, ξ] = −∂x
{
f(U ε(·; ξ) + v)− f(U ε(·; ξ))− f ′(U ε(·; ξ)) v

}
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where N ε = o(|v|), so that Qε = o(|v|, |∂xv|). Formally, for small ε and
small v, the dynamics of the parameter ξ is approximately given by

dξ

dt
= θε(ξ) + . . . ,

with θε given in (2.7). Next, we need to identify the functions ψε1 and ∂ξU
ε

in the limiting regime ε→ 0, at least approximately. For ε ∼ 0, the function
ψε1 is close to the eigenfunction of the operator L0,∗

ξ relative to the eigenvalue

λ = 0, with
a0(x; ξ) := u−χ(−`,ξ)(x) + u+χ(ξ,`)

(x)

Hence, we obtain the representation formula

ψε1(x) ∼ ψ0
1(x) :=

{
(1− eu+(`−ξ)/ε)(1− e−u−(`+x)/ε) x < ξ,

(1− e−u−(`+ξ)/ε)(1− eu+(`−x)/ε) x > ξ,

so that ψε1 ∼ 1, provided ξ is bounded away from the boundaries ±`. Addi-
tionally, with the approximation U ε(x; ξ) ∼ U

hyp
(x; ξ), defined in (1.13), we

infer
U ε(x; ξ + h)− U ε(x; ξ)

h
∼ −1

h
[[u]]χ

(ξ,ξ+h)
(x)

so that we expect ∂ξU
ε to converge to −[[u]] δξ as ε → 0 in the sense of

distributions, so that αε0(ξ) ∼ −[[u]]. Therefore, we deduce an (approximate)
expression for the function θε

θε(ξ) ∼ − 1

[[u]]
〈1,F [U ε]〉,

that, with the choice of U ε proposed in Example 2.1, reduces to

θε(ξ) ∼ 1

ε
u∗ (e−u∗(`+ξ)/ε − e−u∗(`−ξ)/ε), (2.11)

which coincides with the corresponding formula determined in [64].

3. Analysis of the quasi-linearized system

Next, let us go back to the system (3.23)–(2.9) for the couple (ξ, v) and
let us neglect the o(v) order terms:





dζ

dt
= θε(ζ)

(
1 + 〈∂ζψε1, w〉

)
,

∂tw = Hε(ζ) + (Lεζ +Mε
ζ)w

(2.12)

to be complemented with initial conditions

ζ(0) = ζ0 ∈ (−`, `) and w(x, 0) = w0(x) ∈ L2(I). (2.13)

From now on, we will refer to this system as the quasi-linearization of (3.23)–
(2.9). We are interested in describing the behavior of the solution to such
system in the regime of small ε.

Shortly, the quasi-linearized system is determined by an appropriate
combination of the term Fε[U ε], measuring how far is the function U ε from
being a stationary solution, and the linear operator Lξ, controlling at first
order how solutions to (2.2) depart from U ε when the latter is taken as
initial datum. To state our first result, we need to precise the assumption
on such terms.
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H1. The family {U ε(·, ξ)} is such that Fε[U ε] belongs to the dual space
of C(I) and there exists a family of smooth positive functions Ωε such that

|〈ψ(·),Fε[U ε(·, ξ)]〉| ≤ Ωε(ξ) |ψ|
L∞ ∀ψ ∈ C(I).

with Ωε converging to zero as ε→ 0, uniformly with respect to ξ.

H2. Let {· · · < λεk(ξ) < · · · < λε2(ξ) < λε1(ξ)} be the sequence of
eigenvalues of the linear operator Lεξ. Assume that for any ξ ∈ (−`, `) there
hold

λε1(ξ)− λε2(ξ) ≥ C, λε1(ξ) < 0 λεk(ξ) ≤ −C k2 with k ≥ 2.

for some constant C > 0 independent on k, ε and ξ.

H3. Given ξ ∈ I, let φεk(·; ξ) and ψεk(·; ξ) be a sequence of eigenfunction
for the operators Lεξ and Lε,∗ξ , respectively, normalized so that

〈ψε1(·; ξ), ∂ξU ε(·; ξ)〉 = 1 and 〈ψεj , φεk〉 =

{
1 if j = k,

0 if j 6= k,
(2.14)

Then we assume∑

j

〈∂ξψεk, φεj〉2 =
∑

j

〈ψεk, ∂ξφεj〉2 ≤ C ∀ k. (2.15)

for some constant C independent on the parameter ξ.

For later use, note that, by differentiation, there holds

〈∂ξψεj , φεk〉+ 〈ψεj , ∂ξφεk〉 = 0. (2.16)

Also, we use the notation Λεk := sup
ξ∈I

λεk(ξ).

Theorem 2.2. Let hypotheses H1-2-3 be satisfied. Additionally, assume
that

Ωε(ξ) ≤ C|λε1(ξ)|, ∀ ξ ∈ (−`, `) (2.17)

for some constant C > 0 independent on ε and ξ.
Then, denoted by (ζ, w) the solution to the initial-value problem (2.12)–

(2.13), for any ε sufficiently small, there exists a time T ε such that for any
t ≤ T ε the solution w can be represented as

w = z +R

where z is defined by

z(x, t) :=
∑

k≥2

wk(0) exp

(∫ t

0
λεk(ζ(σ)) dσ

)
φεk(x; ζ(t)),

and the remainder R satisfies the estimate

|R|
L2 ≤ C |Ωε|

L∞

{
exp

(∫ t

0
λε1(ζ(σ))dσ

)
|w0|L2 + 1

}
(2.18)

for some constant C > 0.
Moreover, for w0 sufficiently small in L2, the final time T ε can be chosen

of the order −C |Ωε|−1
L∞ ln |Ωε|

L∞ .

The conclusion of the proof of Theorem 2.2 is based on the following
version of a standard nonlinear iteration argument.
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Lemma 2.3. Let f = f(t), g = g(t) and h = h(s, t) be continuous functions
for t ∈ [0, T ] for some T > 0, such that

f(t) ≥ 0, g(t) > 0, g decreasing, h(s, t) ≥ 0.

Let y = y(t) be a non-negative function satisfying the estimate

y(t) ≤
∫ t

0

{
f(s) g(t) y2(s) + h(s, t)

}
ds

for any t ≤ T . Then, if, for any t ∈ [0, T ] there holds

sup
t∈[0,T ]

∫ t

0
g2(s) f(s) ds · sup

t∈[0,T ]
g−1(t)

∫ t

0
h(s, t) ds <

1

4
(2.19)

then

y(t) ≤ 2 sup
τ∈[0,t]

∫ τ

0
h(s, τ) ds

for any t ∈ [0, T ].

Proof of Lemma 2.3. The auxiliary function w(t) := g−1(t) y(t) en-
joyes the estimate

w(t) ≤
∫ t

0

{
α(s)w2(s) + β(s, t)

}
ds

where α(t) := f(t) g2(t) and β(s, t) = g−1(t)h(s, t). Set

N(t) := sup
τ∈[0,t]

w(τ).

Then, for any t ∈ [0, T ], there holds

w(t) ≤
(∫ t

0
α(s) ds

)
N2(T ) +

∫ t

0
β(s, t) ds

and, as a consequence, also

N(T ) ≤ AN2(T ) +B

where

A = A(T ) := sup
t∈[0,T ]

∫ t

0
α(s) ds, B = B(T ) := sup

t∈[0,T ]

∫ t

0
β(s, t) ds.

Since N(0) = 0, if 1− 4AB > 0, then

N <
1−
√

1− 4AB

2A
=

2B

1 +
√

1− 4AB
≤ 2B.

In term of y, if (2.19) holds, then

y(t) < 2 g(t) sup
t∈[0,T ]

g−1(t)

∫ t

0
h(s, t) ds.

The final estimate follows from the monotonicity of the function g. �

Lemma 2.3 gives the final step needed to prove the Theorem.
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Proof of Theorem 2.2. Setting

w(x, t) =
∑

j

wj(t)φ
ε
j(x, ζ(t)),

we obtain an infinite-dimensional differential system for the coefficients wj

dwk
dt

= λεk(ζ)wk + 〈ψεk, F 〉 (2.20)

where, omitting the dependencies for shortness,

F := Hε +
∑

j

wj

{
Mε

ζ φ
ε
j − ∂ξφεj

dζ

dt

}
= Hε − θε

∑

j

(
aj +

∑

`

bj`w`

)
wj .

and the coefficients aj , bjk are given by

aj := 〈∂ξψε1, φεj〉 ∂ξU ε + ∂ξφ
ε
j , bj` := 〈∂ξψε1, φε`〉 ∂ξφεj

Convergence of the series is guaranteed by assumption (2.15).
By (2.16), for the coefficients aj there hold

〈ψεk, aj〉 = 〈∂ξψε1, φεj〉
(
〈ψεk, ∂ξU ε〉 − 1

)
,

so that we can also take advantage from the relation 〈ψε1, aj〉 = 0 for any j.
Thanks to these relations, equation (2.20) for k = 1 simplifies to

dw1

dt
= λε1(ζ)w1 − θε(ζ)

∑

`,j

〈ψε1, bj`〉w`wj (2.21)

Now let us set

Ek(s, t) := exp

(∫ t

s
λεk(ζ(σ))dσ

)
.

Note that, for 0 ≤ s < t, there hold

Ek(s, t) =
Ek(0, t)

Ek(0, s)
and 0 ≤ Ek(s, t) ≤ eΛk(t−s).

From equalities (2.21) and (2.20), choosing w1(0) = 0, there follow

w1(t) = −
∫ t

0
θε(ζ)

∑

`,j

〈ψε1, bj`〉w`wj E1(s, t) ds

wk(t) = wk(0)Ek(0, t)

+

∫ t

0

{
〈ψεk, Hε〉 − θε(ζ)

∑

j

(
〈ψεk, aj〉+

∑

`

〈ψεk, bj`〉w`
)
wj

}
Ek(s, t) ds,

for k ≥ 2. Such expressions suggest to introduce the function

z(x, t) :=
∑

k≥2

wk(0)Ek(0, t)φ
ε
k(x; ζ(t)),

which satisfies the estimate |z|
L2 ≤ |w0|L2e

Λε2 t.
From the representation formulas for the coefficients wk, since

|θε(ζ)| ≤ C Ωε(ζ) and |〈ψεk, Hε〉| ≤ C Ωε(ζ) {1 + |〈ψεk, ∂ξU ε〉|}
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for some constant C > 0 depending on the L∞−norm of ψεk, there holds

|w − z|2
L2
≤ C

(∫ t

0
Ωε(ζ)

∑

j

|〈ψε1, ∂ξφεj〉| |wj |
∑

`

|〈∂ξψε1, φε`〉| |w`|E1(s, t) ds
)2

+ C
∑

k≥2

(∫ t

0
Ωε(ζ)

(
1 + |〈ψεk, ∂ξU ε〉|+ |〈ψεk, ∂ξU ε〉|

∑

j

|〈∂ξψε1, φεj〉||wj |

+
∑

j

|〈∂ξψεk, φεj〉||wj |+
∑

j

|〈ψεk, ∂ξφεj〉| |wj |
∑

`

|〈∂ξψε1, φε`〉| |w`|
)
Ek(s, t)

)2

≤ C
(∫ t

0
Ωε(ζ)|w|2

L2
E1(s, t) ds

)2
+ C

∑

k≥2

(∫ t

0
Ωε(ζ)

(
1 + |w|2

L2

)
Ek(s, t) ds

)2

Since
√
a+ b ≤ √a+

√
b, we infer

|w − z|
L2 ≤ C

∫ t

0
Ωε(ζ)|w|2

L2
E1(s, t) ds+ C

∑

k≥2

∫ t

0
Ωε(ζ)

(
1 + |w|2

L2

)
Ek(s, t) ds

≤ C
∫ t

0
Ωε(ζ)

{
|w|2

L2
E1(s, t) +

(
1 + |w|2

L2

) ∑

k≥2

Ek(s, t)
}
ds.

The assumption on the asymptotic behavior of the eigenvalues λk can now
be used to bound the series. Indeed, there holds

∑

k≥2

Ek(s, t) ≤ E2(s, t)
∑

k≥2

Ek(s, t)

E2(s, t)
≤ C (t− s)−1/2E2(s, t)

As a consequence, for unknown w such that |w|
L2 ≤M for some M > 0, we

infer

E1(t, 0)|w − z|
L2 ≤ C

∫ t

0
Ωε(ζ)

{
|w − z|2

L2
E1(s, 0)

+ |z|2
L2
E1(s, 0) + (t− s)−1/2E2(s, t)E1(t, 0)

}
ds

Let us set

N(t) := sup
s∈[0,t]

|w − z|
L2 E1(s, 0)

Then, since Λε2 ≤ Λε1, we obtain

E1(t, 0)|w − z|
L2 ≤ C

∫ t

0
Ωε(ζ)N2(s)E1(0, s) ds

+ C

∫ t

0
Ωε(ζ)

{
|w0|2

L2
e(2Λε2−Λε1)s + (t− s)−1/2E2(s, t)E1(t, 0)

}
ds

By assumption (2.17), λε1 ≤ −CΩε for some constant C > 0, hence
∫ t

0
Ωε(ζ)N2(s)E1(0, s) ds ≤

∫ t

0
Ωε(ζ)N2(s) exp

(
−C

∫ s

0
Ωε(ζ) dσ

)
ds

≤ N2(t)

{
1− exp

(
−C

∫ t

0
Ωε(ζ) dσ

)}
.
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Moreover, there holds
∫ t

0
e(2Λε2−Λε1)s ds ≤

∫ t

0
eΛε2s ds =

1

Λε2
(eΛε2s − 1) ≤ 1

|Λε2|∫ t

0
(t− s)−1/2E2(s, t) ds ≤

∫ t

0
(t− s)−1/2 eΛε2 (t−s) ds ≤ 1

|Λε2|1/2

so that, recalling that Λ2 is bounded away from 0,

E1(t, 0)|w − z|
L2 ≤ C

{
N2(t)

[
1− exp

(
−C

∫ t

0
Ωε(ζ) dσ

)]
+ C|Ωε|∞

(
|w0|2

L2
+ E1(t, 0)

)}

Next, we end up with the estimate

N(t) ≤ AN2(t) +B with





A := C

{
1− exp

(
−C

∫ t

0
Ωε(ζ) dσ

)}
,

B := C|Ωε|
L∞

(
|w0|2

L2
+ E1(t, 0)

)

Hence, as soon as

4AB = 4C2|Ωε|
L∞

(
|w0|2

L2
+ E1(t, 0)

)(
1− exp

(
−C

∫ t

0
Ωε(ζ) dσ

))
< 1

(2.22)
there holds

N(t) ≤ 2B

1 +
√

4AB
≤ 2B = C |Ωε|

L∞

(
|w0|2

L2
+ E1(t, 0)

)

that means, in term of the difference w − z,

|w − z|
L2 ≤ C |Ωε|

L∞

(
|w0|2

L2
E1(0, t) + 1

)

Condition (2.22) gives a constraint on the final time T ε. Since 1−e−C
∫ t
0 Ωε(ζ) dσ <

1, it is enough to ask

4C2 |Ωε|
L∞

(
|w0|2

L2
+ E1(t, 0)

)
< 1 (2.23)

to assure condition (2.22) is satisfied. Constraint (2.23) can be rewritten as

C exp

(
−
∫ t

0
Ωε(ζ) dσ

)
≤ exp

(
−
∫ t

0
λε1(ζ) dσ

)
= E1(t, 0) ≤ C

|Ωε|
L∞
−|w0|2

L2
,

so that we can choose T ε of the form

T ε :=
1

|Ωε|
L∞

ln

(
C

|Ωε|
L∞
− |w0|2

L2

)
∼ −C |Ωε|−1

L∞ ln |Ωε|
L∞

for w0 sufficiently small. �

As a consequence of the estimate (2.18), for |w|
L2 < M for some M > 0,

the function ζ satisfies

dζ

dt
= θε(ζ)

(
1 + r

)
with |r| ≤ C

(
|w0|L2 e

Λε2 t + |Ωε|
L∞
)
.

30



where the constant C depends also on M . In particular, if ε and |w0|L2 are

sufficiently small, the function ζ = ζ(t) has similar decay properties with
respect to the function η, solution to the reduced Cauchy problem

dη

dt
= θε(η), η(0) = ζ0.

This preludes to the following consequence of Theorem 2.2.

Corollary 2.4. Let hypotheses H1-2-3 and (2.17) be satisfied. Assume also

s θε(s) < 0 for any s ∈ I, s 6= 0 and θε′(ζ̄) < 0. (2.24)

Then, for ε and |w0|L2 sufficiently small, the estimate (2.18) holds globally

in time and the solution (ζ, w) converges to (ζ̄, 0) as t→ +∞.

Proof. Thanks to assumption H1, for ε and |w0|L2 sufficiently small,

estimate (2.18) holds. Hence, for any initial datum ζ0, the variable ζ = ζ(t)
solves an equation of the form

dζ

dt
= θε(ζ)(1 + r(t)) with |r(t)| ≤ C(|w0|L2e

Λε2t + |Ωε|
L∞ ).

Therefore, ζ(t) converges to ζ̄ as t→ +∞ and the convergence is exponen-
tial, in the sense that there exists βε < 0 such that

|ζ(t)− ζ̄| ≤ |ζ0|eβ
εt, βε ∼ θε′(ζ̄) (2.25)

for any t under consideration. Furthermore, from (2.20), we deduce

wk(t) = wk(0) exp

(∫ t

0
λεk dσ

)
+

∫ t

0
〈ψεk, F 〉(s) exp

(∫ t

s
λεk dσ

)
ds

Thus, by the Jensen’s inequality, we infer the estimate

|w|2
L2

(t) ≤ C
{
|w0|2

L2
e2Λε1 t +

∑

k

(∫ t

0
〈ψεk, F 〉(s) eΛε1(t−s) ds

)2
}

≤ C
{
|w0|2

L2
e2Λε1 t + t

∫ t

0
|F |2

L2
(s) e2Λε1(t−s) ds

}

Let νε > 0 be such that |F |
L2 (t) ≤ C e−νε t; then, if νε 6= |Λε1|, there holds

|w|2
L2

(t) ≤ C
{
|w0|2

L2
e2Λε1 t + t

(
e−2νε t + e2Λε1 t

)}

showing the exponential convergence to 0 of the component w. �
Estimate (2.25) shows the exponentially slow motion of the shock layer

for small ε. Precisely, the evolution of the location of the shock towards
the equilibrium position is much slower as ε becomes smaller, since βε → 0
as ε → 0. For example, when f(s) = s2/2, ζ̄ = 0 and θε′(0) ∼ e−1/ε (see
formula (2.11)).

Let us also stress that in the regime (ζ, w) ∼ (ζ̄, 0), a linearization at
the equilibrium solution U ε(x; ζ̄) would furnish a more detailed description
of the dynamics, since the source term due to the approximation at an
approximate steady state would not be present. In fact, the description given
by the quasi-linearization is meaningful in the regime far from equilibrium
and its aim is to describe the slow motion around a manifold of approximate
solutions.
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4. Spectral analysis for the diffusion-transport operator

Our concern in the present Section is to estabilish a precise description
on the location of the eigenvalues of the linearized operator, in order to show
that the general procedure developed in the previous Sections is indeed ap-
plicable in the case of a scalar conservation law. The problem of determining
the limiting structure of the spectrum of the type of second order differential
operators we deal with has been widely considered in the literature. Among
others, let us quote the approach, based on the use of Prüfer transform, used
in [12], in the context of metastability analysis for the Allen–Cahn equation.
Here, we prefer to follow the strategy implemented in [35], for the lineariza-
tion at the steady state of the Burgers equation. In what follows, we show
that the same kind of eigenvalues distribution holds in a much more general
situation, the main ingredient being the resemblance of the coefficient aε to
a step function a0, jumping from a positive to a negative value, as ε→ 0+.

Fixed ε > 0 and linearizing the scalar conservation law (2.1) at a
given a reference profile U ε = U ε(x; ξ), satisfying the boundary conditions
U ε(±`; ξ) = u±, we end up with the differential linear diffusion-transport
operator

Lεξu := ε ∂2
xu− ∂x(aε u) u(±`) = 0, (2.26)

where aε = aε(x; ξ) := f ′(U ε(x; ξ)). The aim of this Section is to describe
the structure of the spectrum σ(Lεξ) of the operator Lεξ for ε sufficiently
small.

Given the function aε, let us introduce the self-adjoint operator

Mε
ξv := ε2 ∂2

xv − bε v v(±`) = 0, (2.27)

where

bε :=

(
1

2
aε
)2

+
1

2
ε
daε

dx
. (2.28)

By omitting the dependencies from ξ for shortness, a straightforward calcu-
lation shows that if u is an eigenfunction of (2.26) relative to the eigenvalue
λ, then the function v(x) defined by

v(x) = exp

(
− 1

2ε

∫ x

x0

aε(y) dy

)
u(x)

(with x0 arbitrarily chosen) is an eigenfunction of the operator Mε
ξ relative

to the eigenvalue µ := ελ. Since Mε
ξ is self-adjoint, we can state that the

spectrum of the operator Lεξ is composed by real eigenvalues. Moreover, if

u is an eigenfunction of (2.26) relative to the first eigenvalue λε1, integrating
in (−`, `) the relation Lεξu = λu, we deduce the identity

0 =

∫ `

−`

(
Lεξ − λε1

)
u dx = ε

(
∂xu(`)− ∂xu(−`)

)
− λε1

∫ `

−`
u(x) dx

Assuming, without loss of generality, u to be strictly positive in (−`, `) and
normalized so that its integral in (−`, `) is equal to 1, we get

λε1 = ε
(
∂xu(`)− ∂xu(−`)

)
< 0
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Hence, for any choice of the function aε, there holds

σ(Lεξ) ⊂ (−∞, 0).

Our next aim is to show that under appropriate assumption on the behavior
of the family of functions aε as ε → 0+, it is possible to furnish a detailed
representation of the eigenvalue distributions for small ε. Specifically, we are
interested in coefficients aε behaving, in the limit ε→ 0+ as a step function
of the form

a0(x) :=

{
a− x ∈ (−`, ξ),
a+ x ∈ (ξ, `),

(2.29)

for some ξ ∈ (−`, `) and a+ < 0 < a−. We will show that, under appropriate
assumptions making precise in which sense aε “resemble” a0 for ε small, the
first eigenvalue λε1 turns to be “very close” to 0 for ε small, and all of the
others eigenavalues λεk, with k ≥ 2, are such that ελεk = O(1) as ε→ 0+.

Estimate from below for the first eigenvalue. We estimate the first
eigenvalue µε1 of the operator Mε

ξ by means of the inequality

|µε1| ≤
|Mε

ξ ψ|L2

|ψ|
L2

.

for smooth test function ψ such that ψ(±`) = 0. Let us consider as test
function ψε(x) := ψε0(x)−Kε(x), where

ψε0(x) := exp

(
1

2ε

∫ x

ξ
aε(y) dy

)
,

Kε(x) :=
1

2`

{
ψε0(−`)(`− x) + ψε0(`)(`+ x)

}
.

A direct calculation shows that Mε
ξψ := bεK and, assuming the family bε

to be uniformly bounded, we infer

|µε1| ≤
|bεKε|

L2

|ψε0 −Kε|
L2

≤ C
|Kε|

L2

|ψε0|L2 − |Kε|
L2

=
C

|Kε|−1
L2
|ψε0|L2 − 1

as soon as |ψε0|L2 > |Kε|
L2 .

The opposite case being similar, let us assume ψ0(−`) ≥ ψ0(`). From
the definition of Kε, it follows

|Kε|2
L2

=
2`

3

{
ψ2

0(`) + ψ0(`)ψ0(−`) + ψ2
0(−`)

}
≤ 2` ψ2

0(−`).

Therefore, we deduce

|Kε|−2

L2
|ψε0|2L2

≥ 2` ψ−2
0 (−`)

∫ `

−`
|ψε0(x)|2 dx = 2` Iε

where

Iε :=

∫ `

−`
exp

(
1

ε

∫ x

−`
aε(y) dy

)
dx
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Since aε converges to the step function a0 as ε → 0+, it is natural to ap-
proximate the latter integral in term of the corresponding one for a0:

Iε =

∫ `

−`
exp

(
1

ε

∫ x

−`
(aε − a0)(y) dy

)
exp

(
1

ε

∫ x

−`
a0(y) dy

)
dx ≥ e−|a

ε−a0|
L1 /ε I0.

Since, for ε small,

I0 =

∫ ξ

−`
ea−(x+`)/ε dx+ ea−(ξ+`)/ε

∫ `

ξ
ea+(x−ξ)/ε dx

= ε ea−(ξ+`)/ε
{ 1

a−

(
1− e−a−(ξ+`)/ε

)
− 1

a+

(
1− ea+(`−ξ)/ε)} ∼ [a]

a−a+
ε ea−(ξ+`)/ε.

the subsequent estimate holds

|Kε|−2

L2
|ψε0|2L2

≥ 2 ` e
−|aε−a0|

L1 /ε I0 ≥ C1 e
C2/ε.

whenever |aε − a0|
L1 ≤ c0ε for some c0 > 0. Thus, we deduce for the first

eigenvalue µε1 of the self-adjoint operator Mε
ξ the estimate |µε1| ≤ C1 e

C2/ε

for some positive constant C1, C2. As a consequence, since the spectrum
σ(Lεξ) coincides with ε−1σ(Mε

ξ), the next result holds.

Proposition 2.5. Let aε be a family of functions satisfying the assumption:
A0. there exists C > 0, indipendent on ε > 0, such that

|aε|
L∞ + ε

∣∣∣∣
daε

dx

∣∣∣∣
L∞
≤ C

If there exists ξ ∈ (−`, `), a+ < 0 < a− and C > 0 for which |aε−a0|
L1 ≤ Cε,

then there exist constants C, c > 0 such that −C e−c/ε ≤ λε1 < 0.

Let us stress that the request a+ < 0 < a− is essential, even if hided in
the proof. If this is not the case, the term Kε would not be small as ε→ 0+

and its L2 norm would not be bounded by the L2-norm of ψε0. In fact, the
statement in Proposition 2.5 may not hold when a± have the same sign, the
easiest example being the case aε ≡ a+ = a− > 0.

The next Example gives a heuristic estimate for the first eigenvalue λε1.

Example 2.6. Given −α < 0 < β and a± ∈ R, let us set I = (−α, β),
[a] := a+ − a− and

a(x) = a−χ(−α,0)(x) + a+χ(0,β)
(x).

Given λε > 0, let us look for function u ∈ C(I), such that

Lu := ε u′′ + (a(x)u)′ + λε u = 0, u(−α) = u(β) = 0

in the sense of distributions. Since a′ = [a] δ0, this amounts in finding two
functions u± such that

L±u := ε u′′± + a± u′± + λε u = 0, u−(−α) = u+(β) = 0

and the following transmission conditions are satisfied

u+(0)− u−(0) = 0 and ε
(
u′+(0)− u′−(0)

)
+ [a]u±(0) = 0.
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The characteristic polinomial of L± is p±(µ;λε) := ε µ2 + a± µ + λε, with
roots

µ±− :=
−a− ±∆−

2ε
, µ±+ :=

−a+ ±∆+

2ε
, where ∆± :=

√
(a±)2 − 4 ε λε.

Assume λε < (a±)2/4 ε. Choosing u± in the form

u−(x) = A−(eµ
+
−(α+x)−eµ−−(α+x)) and u+(x) = A+(e−µ

+
+(β−x)−e−µ−+(β−x)).

Setting θ±− := eµ
±
−α and θ±+ := e−µ

±
+β, there holds

u−(0) = A−(θ+
− − θ−−) u′−(0) = A−(µ+

−θ
+
− − µ−−θ−−)

u+(0) = A+(θ+
+ − θ−+) u′+(0) = A+(µ+

+θ
+
+ − µ−+θ−+).

Therefore, the transmission conditions take the form of a linear system in
A±





(θ+
+ − θ−+)A+ − (θ+

− − θ−−)A− = 0,
{(

2ε µ+
+ + [a]

)
θ+

+ −
(
2ε µ−+ + [a]

)
θ−+
}
A+

+
{(
−2ε µ+

− + [a]
)
θ+
− +

(
2ε µ−− − [a]

)
θ−−
}
A− = 0.

(2.30)

After some manipulation, the determinant D = D(λε, ε) of (2.30) can be
rewritten as

D = ([a] + [∆]) θ+
+θ

+
−−([a]− {∆}) θ−+θ+

−−([a] + {∆}) θ+
+θ
−
−+([a]− [∆]) θ−+θ

−
−,

where [∆] := ∆+ −∆− and {∆} := ∆+ + ∆−.

Since
√
κ2 − 4x = |κ| − 2|κ|−1 x+ o(x), for ελε → 0, there hold

ε ln(θ+
+θ

+
−) = |a−|α+

(
β

a+
+

α

a−

)
ελε + o(ελε),

ε ln(θ−+θ
+
−) = (a+ β + |a−|α)−

(
β

a+
+

α

|a−|

)
ελ+ o(ελ),

ε ln(θ+
+θ
−
−) =

(
β

a+
+

α

|a−|

)
ελε + o(ελε),

ε ln(θ−+θ
−
−) = a+β −

(
β

a+
+

α

a−

)
ελε + o(ελε)

{∆} =
√

(a+)2 − 4 ελε +
√

(a−)2 − 4 ελε = [a]

(
1 +

2 ελε

a+ a−

)
+ o(ελε)

[∆] =
√

(a+)2 − 4 ε λε −
√

(a−)2 − 4 ε λε = {a}
(

1− 2 ελε

a+a−

)
+ o(ελε)

Hence, we infer

D ∼ 2

(
a+e

|a−|α/ε +
ελε

a+ a−
e(a+ β+|a−|α)/ε − a−ea+β/ε

)
,

so that D ∼ 0 for

λε ∼ −a+ a−
ε [a]

(
a+e

−a+β/ε − a−e−|a−|α/ε
)
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For a± = ±u∗, α = `+ ξ and β = `− ξ, the above expression becomes

λε ∼ u2
∗

2ε

(
e−u∗(`−ξ)/ε + e−u∗(`+ξ)/ε

)
=
u2
∗
ε

cosh(u∗ξ/ε) e−u∗`/ε

to be compared with the expression for Ωε obtained in Example 2.1

Ωε ∼
∣∣∣∣
2u2
∗
ε

(e−u∗(`+ξ)/ε − e−u∗(`−ξ)/ε)
∣∣∣∣ =

4u2
∗
ε
| sinh(u∗ ξ/ε)| e−u∗`/ε

so that ∣∣∣∣
Ωε

λε

∣∣∣∣ ∼ 4| tanh(u∗ ξ/ε)| ≤ 4

Let us stress that this formula shows that hypothesis (2.17) is verified heuris-
tically for Burgers type equations.

Estimate from above for the second eigenvalue. Controlling the loca-
tion of the second (and subsequent) eigenvalue needs much more care and,
also, a number of additional assumption on the limiting behavior of the
function aε as ε → 0+. Precisely, we suppose aε ∈ C0([−`, `]) satisfies the
following hypotheses:

A1. the function aε is twice differentiable at any x 6= ξ and

daε

dx
,
d2aε

dx2
< 0 < aε in (−`, ξ), and aε,

daε

dx
< 0 <

d2aε

dx2
in (ξ, `),

A2. for any C > 0 there exists c0 > 0 such that, for any x satisfying
|x− ξ| ≥ c0ε, there holds

|aε − a0| ≤ C ε and ε

∣∣∣∣
daε

dx

∣∣∣∣ ≤ C;

A3. there exists the left/right first order derivatives of aε at ξ and

lim inf
ε→0+

ε

∣∣∣∣
daε

dx
(ξ±)

∣∣∣∣ > 0

As a consequence, the function bε + ελε satisfies a number of corresponding
properties, listed in the next statement.

Lemma 2.7. Let the family aε be such that hypotheses A1-2-3 are satisfied,
and let λε < 0 be such that

inf
ε>0

ελε > −1

4
α2

0
where α0 := min{|a−|, |a+|}. (2.31)

Then there exist ε0 > 0 such that, for ε < ε0, the functions bε + ελε, with bε

defined in (2.28), enjoy the following properties:
B1. the function bε+ελε is decreasing in (−`, ξ) and increasing in (ξ, `);
B2. there exist C, c > 0 such that, for any x with |x−ξ| ≥ c ε there holds

bε + ελε ≥ C > 0;
B3. there exist the left/right limits of bε + ελε at ξ and

β := lim sup
ε→0+

(
bε(ξ±) + ελε

)
< 0;
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Proof. Property B1. is an immediate consequence of assumption A1,
since

d

dx
(bε + ελε) =

1

4
aε
daε

dx
+

1

2
ε
d2aε

dx2
.

From A2, given C > 0, for x ≤ ξ − c0 ε, there holds

bε + ελε ≥ 1

4
(aε + a0)(aε − a0)− 1

2
ε

∣∣∣∣
daε

dx

∣∣∣∣+ ελε +
1

4
a2
−

≥ ελε +
1

4
α2

0
− 1

2

(
1 + |a0| ε+

1

2
C ε2

)
C

From such inequality, by choosing C > 0 sufficiently small, and combining
with an analogous estimate on (ξ + c ε, `), property B2. follows.

For what concerns B3, we observe that, since a(ξ) = 0 and λ ≤ 0, there
holds

lim sup
ε→0+

(
bε(ξ±) + ελε

)
≤ lim sup

ε→0+

1

2
ε
daε

dx
(ξ) = − lim inf

ε→0+
ε

∣∣∣∣
daε

dx
(ξ±)

∣∣∣∣ < 0,

thanks to A3. �

For later reference, we denote yε± the zeros of bε + ελε, with −` < yε− <
ξ < yε+ < `. Since property B2 holds, we deduce that |yε± − ξ| ≤ c0 ε.

Assume the assumption of Lemma 2.7 to hold, and let λε2 and µε2 = ε λε2
be the second eigenvalue of the operators Lεξ and Mε

ξ, respectively, with
corresponding eigenfunctions φε2 and ψε2. Such eigenfunctions are linked
together by the relation

ψε2(x) = A exp

(
− 1

2ε

∫ x

x∗
aε(y) dy

)
φε2(x) (2.32)

for some constants A and x∗. Since λε2 is the second eigenvalue, the func-
tions φε2 and ψε2 possess a single root located at some point xε0 ∈ (−`, `). The
sign properties of bε + µε2 described in Lemma 2.7 imply that xε0 ∈ (yε−, y

ε
+).

Then, φε2 and ψε2 restricted to the intervals (−`, xε0) and (xε0, `) are eigen-
functions relative to the first eigenvalue of the same operator considered in
the corresponding intervals and with Dirichlet boundary conditions.

From now on, we drop, for shortness, the dependence on ε of λ2, φ2, ψ2, x0,
we assume, without loss of generality, x0 ≥ ξ and we restrict our attention
to the interval J = (x0, `). Integrating on J , we deduce

λ2

∫ `

x0

φ2 dx = ε
(
∂xφ2(`)− ∂xφ2(x0)

)
< −ε ∂xφ2(x0)

having chosen φ2 positive in J . Assuming ψ2 to be given as in (2.32) with
A = 1 and x∗ = x0, and normalized so that maxψ2 = 1, from the latter
inequality we infer the inequality

|λ2| > ε I−1 ∂xψ2(x0), (2.33)

where

I :=

∫ `

x0

exp

(
1

2ε

∫ x

x0

aε(y) dy

)
dx
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Our next aim is to deduce an estimate from above on Iε and an estimate
from below for ∂xψ2(x0), in order to get a control on the size of the second
eigenvalue λ2.

From the definition of Iε, since x0 ≥ ξ, it follows

Iε ≤ e|a
ε−a0|

L1 /2ε
∫ `

x0

ea+(x−x0)/2ε dx =
2ε

|a+|
e
|aε−a0|

L1 /2ε
(
1− ea+(`−x0)/2ε

)

≤ 2ε

|a+|
e
|aε−a0|

L1 /2ε ≤ C ε

whenever |aε − a0|
L1 ≤ C ε. Thus, estimate (2.33) provisionally becomes

|λ2| > C
dψ2

dx
(x0) (2.34)

for some positive constant C, independent on ε.
Let xM be such that ψ2(xM ) = 1, minimum with such property. From

the assumption on bε + ε λ, it follows xM ∈ (x0, y+). Then there exists
xL ∈ (x0, xM ) such that

dψ2

dx
(xL) =

1

xM − x0
≥ 1

y+ − ξ
≥ 1

c0ε
.

Since the function ψ is concave in the interval (x0, y+), we deduce

dψ2

dx
(x0) ≥ dψ2

dx
(xL) ≥ 1

c0ε
.

Plugging into (2.34), we end up with

|λ2| ≥
C

ε
. (2.35)

for some C independent on ε.
As a consequence, we can state the next result relative to the second

eigenvalue λ2.

Proposition 2.8. Let aε be a family of functions sastisfying A1-2-3 then
there exists a constant C > 0 such that λε2 ≤ −C/ε for any ε sufficiently
small.

Spectral estimates. Collecting the results of Propositions 2.5 and 2.8 give
a complete description for the spectrum of operator Lε for small ε, under
assumptions A0-1-2-3 on the family of functions aε.

Corollary 2.9. Let aε be a family of functions satisfying the assumptions
A0-1-2-3 for some ξ ∈ (−`, `), a+ < 0 < a−. Then there exist constants
c, C1, C2 > 0 such that

λεk ≤ −C1/ε and − C2 e
−c/ε ≤ λε1 < 0.

for any k ≥ 2.

Hypotheses A0-1-2-3 are satisfied in the case of a family of function aε

that is a (small) perturbation of a function āε with the form

āε(x) = A−

(
x− ξ
ε

)
χ

(−L,ξ)(x) +A+

(
x− ξ
ε

)
χ

(ξ,L)
(x).
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for some decreasing smooth bounded functions A±, bounded together with
their first and second order derivatives, and such that A±(±∞) = a± and
A′±(±∞) = 0.

5. Appendix. The hyperbolic dynamics

In this Section, we concentrate on the dynamics of the scalar conserva-
tion law

∂tu+ ∂xf(u) = 0 (2.36)

with x ∈ (−`, `), together with boundary condition u(±`, t) = u±, and a
given initial datum u(x, 0) = u0(x). Our aim is to give a self-contained
proved of the finite-time stabilization of the solution under appropriate as-
sumption on the flux function f and on the boundary values u±. This kind
of properties has been showed for the first time in [46] in the case of the
Cauchy problem.

Theorem 2.10. Assume the function f to be uniformly convex, i.e. f ′′(s) ≥
c0 > 0 for some constant c0. If u−, u+ are such that u+ < 0 < u− and
f(u+) = f(u−), then, for any u0 ∈ BV(−`, `), the solution u to the initial
value problem (2.36), u(±`, t) = u±, u(x, 0) = u0(x) is such that for some
T > 0 and ξ ∈ [−`, `], there holds

u(·, T ) = U
hyp

(·; ξ) in (−`, `)
where U

hyp
(x; ξ) := u−χ(−`,ξ)(x) + u+χ(ξ,`)

(x).

To prove the statement, we use the theory of generalized characteris-
tics, introduced in [15]. The convexity assumption on the flux function f
guarantees that for any point (x, t) ∈ (−`, `) × (0,+∞) there exist a min-
imal, respectively maximal, backward characteristics, which are classical
characteristic curves, hence a straight lines with slope f ′(u(x − 0, t)), resp.
f ′(u(x+ 0, t)).

The boundary conditions are understood in the sense of Bardos–leRoux–
Nédélec [5], meaning that the trace of the solution at the boundary is re-
quested to take values in appropriate sets. To be precise, let u∗ ∈ (u+, u−)
be such that f ′(u∗) = 0 and set

Ru :=

{
w if ∃w 6= u s.t. f(w) = f(u),

u∗ if u = u∗,

Then, skipping the details (see [54]), the boundary conditions u(±`, t) = u±
translate into

u(−`+ 0, t) ∈ (−∞,Ru−)] ∪ {u−}, u(`− 0, t) ∈ {u+} ∪ [Ru+,+∞)

Since f(u+) = f(u−), there holds Ru± = u∓, and the condition can be
rewritten as

u(−`+ 0, t) ∈ (−∞, u+] ∪ {u−}, u(`− 0, t) ∈ {u+} ∪ [u−,+∞) (2.37)

In particular, characteristic curves entering in the domain from the left side
x = −` (respectively, from the right side x = `) possess speed f ′(u−) (resp.
speed f ′(u+)).

Now, we are ready to prove Theorem 2.10.
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Proof. Let u = u(x, t) be the solution to the initial-boundary value
problem under consideration with initial datum u0. For later use, we set

ζ−(t) := sup{x ∈ [−`, `] : u(y, t) = u− ∀ y ∈ (−`, x)} ∪ −`,
ζ+(t) := inf{x ∈ [−`, `] : u(y, t) = u+ ∀ y ∈ (x, `)} ∪ `.

In particular, ζ− ≤ ζ+. We are going to show that ζ−(T ) = ζ+(T ) for some
T > 0.

1. There exists T0 > 0 such that u(x, t) ∈ [u+, u−] for any x ∈ (−`, `).
Indeed, let u = u(x, t) be the solution to the Riemann problem for (2.36)

with initial datum

ū0(x) =

{
u− x < −`,
max{u−, supu0} x > −`,

Hence, the restriction of ū to (−`, `)×(0,∞) is a super-solution to the initial
boundary value problem under consideration and, by comparison principle
for entropy solution, we infer u(x, t) ≤ ū(x, t). Since ū(x, t) = u− for any
x < f ′(u−) t− `, there holds

u(x, t) ≤ u− for x ∈ (−`, `), t ≥ 2`/f ′(u−).

A similar estimate from below can be obtained by considering as subsolution
the restriction of u to (−`, `)× (0,∞), where u is the solution to (2.36) with
initial datum

ū0(x) =

{
min{u+, inf u0} x < `,

u+ x > `,

From now on, we assume that the solution u takes values in the interval
[u−, u+].

2. Assume that −` < ζ−(t) ≤ ζ+(t) < ` for any t; then there exists
T1 > 0 such that u(ζ−(t) + 0, t) < u− and u+ < u(ζ+(t) − 0, t) for any
t > T1.

If u is continuous at (ζ−(τ), τ) for some τ > 0, then u(ζ−(τ) + 0, t) =
u−. Therefore, the maximal backward characteristic from (ζ−(τ), τ) is the
straight line x = ζ−(τ) + f ′(u−)(t − τ). For τ > 2L/f ′(u−), such curve
intersects the boundary x = −` at some σ ∈ (0, τ). By continuity, all of the
maximal backward characteristics from (ξ, τ) with ξ > ζ−(t) and suffuciently
close to ζ−(τ) intersect the boundary x = −` at some time σ∗(ξ) smaller
than σ and close to it. Because of the boundary conditions, this may happen
if and only if u(ξ, τ) = u−. Hence, u(x, τ) = u− for x ∈ (ζ−(τ), ζ−(τ) + ε)
for some ε > 0, in contradiction with the definition of ζ−. Thus, continuity
of u at (ζ−(τ), τ) may happen only for τ ≤ 2L/f ′(u−). A similar assertion
holds for ζ+.

3. There exist T > 0 and ξ ∈ [−`, `] such that u(x, t) = U
hyp

(·; ξ) for any
t ≥ T .

Given θ > 0, let Tθ := 2`/θ be such that

uθ− := u(ζ−(Tθ) + 0, Tθ) < u− and u+ < uθ− := u(ζ+(Tθ)− 0, Tθ).

40



Let xθ− be the maximal backward characteristic from (ζ−(Tθ), Tθ), whose

equation is x = ζ−(Tθ) + f ′(uθ−)(t − Tθ). If xθ− hits the right boundary
x = ` at some positive time, the solution u coincides with U

hyp
(x; ζ−(Tθ)).

Otherwise, there holds ζ−(Tθ)− f ′(uθ−)Tθ < `, which gives

f ′(uθ−) >
ζ−(Tθ)− `

Tθ
≥ − 2`

Tθ
= −θ

Similarly, let xθ+ be the maximal backward characteristic from (ζ+(Tθ), Tθ),

whose equation is x = ζ+(Tθ) + f ′(uθ+)(t− Tθ). If xθ+ does not intersect the

left boundary x = −` at some positive time, there holds f ′(uθ+) < θ.

Hence, for any ε > 0, we can choose θ sufficiently large so that uθ− >

u∗ − ε and uθ+ < u∗ + ε. Thus, we have

dζ+

dt
− dζ−

dt
<
f(u+)− f(u∗ + ε)

u+ − u∗ − ε
− f(u−)− f(u∗ − ε)

u− − u∗ + ε

which is uniformly negative for ε sufficiently small. Hence, the curves ζ+

and ζ− intersect at some finite positive time T > 0.
�
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CHAPTER 3

Slow motion of internal shock layers for the
Jin-Xin system in one space dimension

1. Introduction

In this Chapter we investigate the slow motion of the shock layer for the
hyperbolic system with relaxation





∂tu+ ∂xv = 0

∂tv + a2∂xφ(u) =
1

ε
(f(u)− v), φ′(u) > 0

(3.1)

where the space variable x belongs to a one-dimensional interval I = (−`, `),
` > 0. System (3.1) is complemented with appropriate boundary conditions
and initial data for the couple (u, v), and it is a particular case of a class of
more general hyperbolic relaxation systems of the form

∂t

(
u

v

)
+ ∂x

(
f(u, v)

g(u, v)

)
=

(
0

ε−1q(u, v)

)

usually utilized to model a variety of non equilibrium processes in continuum
mechanics: for example, non-thermal equilibrium gas dynamics ([39], [59]) ,
traffic dynamics ([4], [40], [50]) , and multiphase flows ([6], [8], [60]). Here
ε is a parameter, usually small, determining relaxation time.

In the case of system (3.1), the parameter ε can be seen as a viscosity
coefficient ; we are interested in studying the behavior of the solution to (3.1)
in the limit of small ε, and we want to identify the role of this parameter in
the appearance and/or disappearance of phenomena of metastability.

The main example we have in mind is the initial-boundary value problem
for the quasilinear Jin-Xin system, with Dirichlet boundary conditions in the
bounded interval I = (−`, `), that is




∂tu+ ∂xv = 0 x ∈ I, t ≥ 0

∂tv + a2∂xu =
1

ε
(f(u)− v)

u(±`, t) = u± t ≥ 0

u(x, 0) = u0(x), v(x, 0) = v0(x) ≡ f(u0(x)) x ∈ I

(3.2)

for some ε, `, a > 0, u± ∈ R and flux function f that satisfies

f ′′(s) ≥ c0 > 0, f ′(u+) < 0 < f ′(u−), f(u+) = f(u−) (3.3)

We stress that, once the boundary conditions for the function u are chosen,
the boundary conditions for the function v are univocally determined. This
model was firstly introduced in [29] as a numerical scheme approximating
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solutions of the hyperbolic conservation law ∂tu+ ∂xf(u) = 0. System (3.2)
is strictly hyperbolic, with the spectrum σ(df, dg)t composed by two distinct
real eigenvalues ±a.

In the relaxation limit (ε → 0+), system (3.2) can be approximated to
leading order by {

∂tu+ ∂xv = 0

v = f(u)
(3.4)

that is

∂tu+ ∂xf(u) = 0 (3.5)

together with v = f(u), and complemented with boundary conditions

u(−`, t) = u− and u(`, t) = u+ (3.6)

For the study of stationary solutions to (3.5), we recall Cahpter 2, where we
construct a one-parameter family {U

hyp
(·; ξ)} of steady states, parametrized

by ξ that represents the location of the jump, and given by

U
hyp

(x; ξ) = u−χ(−`,ξ)(x) + u+χ(ξ,`)(x)

Once U
hyp

(·; ξ) is chosen, the class of stationary solutions (U
hyp
, V

hyp
) for the

system (3.4) is given by the relation V
hyp

= f(U
hyp

), so that

V
hyp

(x; ξ) = f(u−)χ(−`,ξ)(x) + f(u+)χ(ξ,`)(x)

Moreover, every entropy solution to the initial-boundary value problem
{
∂tu+ ∂xf(u) = 0, v = f(u)

u(±`, t) = u±

converges in finite time to an element of the family {U
hyp

(·; ξ), V
hyp

(·; ξ)}.
For ε > 0, the situation is very different. If we differentiate with respect

to x the second equation of (3.2), we obtain

∂tu = ε(a2∂2
xu− ∂2

t u)− ∂xf(u) (3.7)

Thus, stationary solutions to (3.2) solve

a2ε∂2
xu = ∂xf(u), ∂xv = 0 (3.8)

As an example, if we consider the case of Burgers flux, i.e. a = 1, f(u) = 1
2u

2,
we can explicitly write the stationary solution for the problem (3.8)-(3.6) as

Ū ε
bur

(x) = −k tanh

(
kx

2ε

)
, V̄ ε

bur
(x) = f(k) (3.9)

where k = k(ε, `, u±) is implicitly defined by imposing the boundary condi-
tions.

In the limit ε→ 0+, the single steady state (Ū ε
bur
, V̄ ε

bur
) converges point-

wise to (U
hyp

(·; 0), V
hyp

(·; 0)), while, for a class of general f(u) that verify

hypotheses (3.3), the stationary solution (Ū ε, V̄ ε) converges pointwise to
(U

hyp
(·; ξ̄), V

hyp
(·; ξ̄)), for some ξ̄ ∈ I.

Finally, the single steady state (Ū ε, V̄ ε) is asymptotically stable (for
more details see the spectral analysis performed in the following), i.e. start-
ing from an initial datum close to the equilibrium configuration, the time
dependent solution approaches the steady state for t→ +∞.
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Figure 1. Profiles of (u, v), solutions to (3.2), with f(u) = u2/2,
a =1 ε = 0.04 and u± = ∓1. The initial data is given by the couple
(u0(x), f(u0(x))), with u0(x) a decreasing function connecting u+
and u−. Profiles at times t = 0, 0.2, 10, 105, 0.5× 106.

Next question is what happens to the dynamics generated by an initial
datum localized far from the equilibrium solution (Ū ε

bur
, V̄ ε

bur
). Numerical

computations show that, starting, for example, with a decreasing initial
datum u0(x) (see Fig.1), because of the viscosity, a shock layer is formed
in a O(1) time scale. More precisely, the solution generated by such initial
datum still presents a smooth transition from u− to u+, but the shock is
located far away from zero, so that the solution is approximately given by
a translation of the (unique) stationary solution of the problem. Once the
shock layer is formed, it moves towards the equilibrium solution, and this
motion is exponentially slow. Thus we have a first transient phase where
the shock layer is formed, and an exponentially long time interval where the
shock layer approaches the equilibrium solution.

Concerning the function v, starting with the initial datum v0(x) =
f(u0(x)), we can observe that the position of the shock of u corresponds
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to the location the minimum value of the function v; so we have a first tran-
sient phase in which the profile of v stabilizes, and an exponentially slow
phase where the value of the minimum of such profile drifts towards the
value ξ that represents the location of the equilibrium solution for u.

Our aim is to describe the dynamics generated by an initial datum local-
ized far from the equilibrium solution and to determine a detailed description
of the low-viscosity behavior of the solutions.

To the best of our knowledge, the problem of the slow motion for the
hyperbolic-parabolic Jin-Xin system (3.1) has been never examined before.
However, system (3.2) can be reduced by differentiation to (3.7) together
with the equation ∂tu + ∂xv = 0, and, as stressed, the study of stationary
solutions to (3.7) is the same of that of the scalar conservation law

∂tu+ ∂xf(u) = ε∂2
xu (3.10)

together with the additional condition ∂xv = 0.
Motivated by the analogies among the study of our problem and some

results for the scalar conservation law (3.10), here we follow the same ap-
proach presented in Chapter 3 for the study of (2.1). Hence,

– we build-up a one parameter family of approximate steady states

{Wε(x; ξ)}ξ∈I = {U ε(·; ξ), V ε(·; ξ)}ξ∈I
such that (U ε(·; ξ̄), V ε(·, ξ̄)) := (Ū ε, V̄ ε) for some ξ̄, and with the additional
propriety that (U ε(·; ξ), V ε(·, ξ)) → (U

hyp
(·; ξ), V

hyp
(·; ξ)) as ε → 0 in an

appropriate sense. Moreover we require the error
(
Pε1 [Wε]

Pε2 [Wε]

)
:=




− ∂xV ε

−a2∂xU
ε +

1

ε
(f(U ε)− V ε)




to be small in ε in a sense to be specified.
– we describe the dynamics of the viscous system in a neighborhood

of the family {U ε(·; ξ), V ε(·; ξ)}.
Once a set of reference states {U ε(·; ξ), V ε(·; ξ)} is chosen, we determine

spectral proprieties of the linearized operator around (U ε, V ε) showing that,
under a control on how far is the approximate state from being an exact
stationary solution, a metastable behavior appears.

2. General Framework

Let us consider the Jin-Xin system




∂tu+ ∂xv = 0 x ∈ I, t ≥ 0

∂tv + a2∂xu =
1

ε
(f(u)− v)

u(±`, t) = u± t ≥ 0

u(x, 0) = u0(x), v(x, 0) = v0(x) ≡ f(u0(x)) x ∈ I

(3.11)

for some flux function f chosen so that assumptions (3.3) hold. System
(3.11) can be rewritten as

∂tZ = Fε[Z], Z
∣∣
t=0

= Z0 (3.12)
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where

Z =

(
u

v

)
Fε[Z] :=

(
Pε1 [Z]

Pε2 [Z]

)
=




− ∂xv

−a2∂xu+
1

ε
(f(u)− v)




We are interested in studying the behavior of the solution to (3.12) in the re-
laxation limit, i.e. ε→ 0. We assume that there exists a one-parameter fam-
ily of functions {U ε(·; ξ), V ε(·; ξ)}ξ∈I such that (U ε(·; ξ̄), V ε(·; ξ̄) = (Ū ε, V̄ ε)
for some ξ̄ ∈ I. When ξ 6= ξ̄, an element of this family can be seen as an ap-
proximate stationary solution to the problem, i.e. Fε[U ε(·; ξ), V ε(·; ξ)]→ 0
as ε→ 0 in an appropriate sense to be specified. Moreover, we require that,
in the relaxation limit, (U ε(·; ξ), V ε(·; ξ)) → (U

hyp
(·; ξ), V

hyp
(·, ξ)). We re-

mark that, once the one-parameter family of functions {U ε(·; ξ)} is chosen,
the couple {U ε(·; ξ), V ε(·; ξ)} is univocally determined by the relation

V ε = −a2ε∂xU
ε + f(U ε)

Example 3.1. In the case of Burgers flux, i.e. f(s) = 1
2s

2, a stationary
solution to (3.11) satisfies

ε∂xu =
u2

2
− C2

2
, v =

C2

2
(3.13)

with boundary conditions u(±`) = ∓u∗, for some u∗ > 0. As in Example 2.1,
an approximate solution U ε(x; ξ) to the first equation of (3.13) is obtained
by matching two different steady states satisfying, respectively, the left and
the right boundary conditions together with the request U ε|x=ξ = 0 . In
formula

U ε(x; ξ) =

{
k− tanh (k−(ξ − x)/2ε) in (−`, ξ)
k+ tanh (k+(ξ − x)/2ε) in (ξ, `)

(3.14)

where a = 1, and k± are chosen so that the boundary conditions are satisfied

k± tanh

(
k±
2ε

(ξ ∓ `)
)

= u± (3.15)

Moreover, by the condition v = C2

2 , we have

V ε(x; ξ) =

{
k2
−/2 in (−`, ξ)
k2

+/2 in (ξ, `)

3. The linearized Problem

As already stated before, in order to describe the dynamics generated
by an initial configuration localized far from the steady state (Ū ε, V̄ ε), we
assume to have a one-parameter family

Wε(x; ξ(t)) := (U ε(x; ξ(t)), V ε(x; ξ(t)))

parametrized by ξ ∈ I, such that the couple (U ε(x; ξ(t)), V ε(x; ξ(t))) is an
approximate stationary solution to (3.11), in the sense that it satisfies the
stationary equation up to an error that is small in ε. More precisely, we
assume that there exist two family of smooth positive functions Ωε

1 = Ωε
1(ξ)
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and Ωε
2 = Ωε

2(ξ), uniformly convergent to zero as ε → 0, such that, for any
ξ ∈ I, the following estimates holds

|〈ψ(·),Pε1 [Wε(·, ξ)]〉| ≤ Ωε
1(ξ)|ψ|

L∞ ∀ψ ∈ C(I)

|〈ψ(·),Pε2 [Wε(·, ξ)]〉| ≤ Ωε
2(ξ)|ψ|

L∞ ∀ψ ∈ C(I)
(3.16)

Once a one-parameter family {Wε(·; ξ)} satisfying (3.16) is chosen, we look
for a solution to (3.11) in the form

{
u(·, t) = U ε(·; ξ(t)) + u1(·, t)
v(·, t) = V ε(·; ξ(t)) + v1(·, t)

Thus we are trying to describe the dynamics in a neighborhood of the family
{U ε(·; ξ(t)), V ε(·; ξ(t))} using as coordinates the parameter ξ and a distance
vector Y = (u1, v1) , determined by the difference between the solution (u, v)
and an element of the approximate family. Substituting in (3.11), we obtain




∂tu
1 + ∂ξU

ε(·; ξ)dξ
dt

+ ∂xV
ε(·; ξ) + ∂xv

1 = 0

∂tv
1 + ∂ξV

ε(·; ξ)dξ
dt

+ a2(∂xU
ε(·; ξ) + ∂xu

1) =
1

ε

{
f(U ε(·; ξ) + u1)− V ε(·; ξ)− v1

}

Since f(U ε + u1) = f(U ε) + f ′(U ε)u1 + o((u1)2) , we get




∂tu
1 = −∂xv1 − ∂ξU ε(·; ξ)

dξ

dt
+ Pε1 [Wε(·; ξ)]

∂tv
1 = −a2∂xu

1 +
1

ε
(f ′(U ε(·, ξ))u1 − v1)− ∂ξV ε(·; ξ)dξ

dt
+ Pε2 [Wε(·, ξ)] +Qε[u1]

(3.17)

where 



Pε1 [Wε] := −∂xV ε

Pε2 [Wε] := −a2∂xU
ε +

1

ε
(f(U ε)− V ε)

Qε[u] := o(u)

Example 3.2. Let us recall the Example 3.1, where we construct an ap-
proximate stationary solution for the Jin-Xin system with f(u) = u2/2 and
a = 1. We compute in this specific case

Pε1 [Wε(·; ξ)] :=−∂xV ε(·; ξ), Pε2 [Wε(·; ξ)] :=−∂xU ε(·; ξ)+
1

ε

(
(U ε(·; ξ))2/2−V ε(·; ξ)

)

From the explicit formula for U ε(x; ξ) given in (3.14) we get

−∂xU ε(x; ξ) =





k2
−

2ε

[
1− tanh2

(
k−
2ε

(ξ − x)

)]
in (−`, ξ)

k2
+

2ε

[
1− tanh2

(
k+

2ε
(ξ − x)

)]
in (ξ, `)

so that, in this specific case, Pε2 [Wε] ≡ 0. On the other hand, −∂xV ε(x; ξ) =
ε∂2
xU

ε(x; ξ)− ∂xf(U ε(x; ξ)). By direct substitution, we obtain the identity

Pε1 [Wε(·, ξ)] = [[∂xU
ε]]x=ξδx=ξ
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in the sense of distributions. We also have

[[∂xU
ε]]x=ξ =

1

2ε
(k− − k+)(k− + k+)

In order to determine the behavior of Pε1 [Wε(·; ξ)] for small ε, we need
an asymptotic description of the values k±. To this aim, let us set k± :=
∓u±(1 + h±) and ∆± := `∓ ξ. Relation (3.15) becomes

tanh

(
∓u±∆±

2ε
(1 + h±)

)
=

1

1 + h±

Therefore, the values h± are both positive and then

tanh

(
∓u±∆±

2ε

)
≤ 1

1 + h±

that gives the asymptotic representation

h± ≤
1

tanh (∓u±∆±/2ε)
− 1 =

2

e∓u±∆±/ε − 1
= 2e±u±∆±/ε + l.o.t (3.18)

where l.o.t. denotes lower order terms. Finally

[[∂xU
ε]]x=ξ =

1

2ε
(k− − k+)(k− + k+) =

u2
∗
ε

(h− + h+) + l.o.t.

where u± = ∓u∗ for some u∗ > 0, so that we end up with

[[∂xU
ε]]x=ξ ≤

u2
∗
ε

(e−u∗(`+ξ)/ε − e−u∗(`−ξ)/ε) + l.o.t. (3.19)

showing that this term is exponentially small for ε → 0 and is null when
ξ = 0, that corresponds to the equilibrium location of the shock when f(u) =
u2/2.

In this case, if we neglect the lower order terms, we can write an asymp-
totic formula for Ωε

1, that is

Ωε
1(ξ) ∼ u2

∗
ε

(e−u∗(`+ξ)/ε − e−u∗(`−ξ)/ε) (3.20)

It follows that the hypothesis (3.16) is satisfied in the special case of f(u) =
u2/2.

We can also numerically compute the limit of the solution (U ε, V ε) for
ε→ 0+. Figure 2 explicitly shows how the profile of the stationary solution
depends on the value of ε. For fixed ξ, we observe that, as ε becomes
smaller, the transition between u− and u+ becomes more sharp, while v
tends to f(u∗)δx=ξ, according to the fact that, in the limit ε → 0+, the
solution (U ε(·; ξ), V ε(·; ξ)) converges to (U

hyp
(·; ξ), V

hyp
(·; ξ)).

Let us go back to the system (3.17). From now on, (u1, v1) = (u, v) and

Y =

(
u

v

)
, LεξY :=




− ∂xv

−a2∂xu+
1

ε
(f ′(U ε)u− v)



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Figure 2. Profile of the stationary solution (u, v) = (Uε, V ε)
when f(u) = u2/2. The steepening of the shock layer and the
convergence to a Delta function of v as ε becames smaller are

depicted.

Moreover, we introduce the following notation: if ψ, φ ∈ C, then 〈ψ, φ〉 :=∫
I ψ̄ φ, while if ψ = (ψ1, ψ2) and φ = (φ1, φ2), then 〈ψ,φ〉 := 〈ψ1, φ1〉 +
〈ψ2, φ2〉.

Let us assume that, for any ξ, the linear operator Lεξ has a sequence

of eigenvalues λεk = λεk(ξ) with corresponding (right) eigenfunctions φεk =
φεk(ξ, ·) (for more details see Section 3). Denoting by ψεk = ψεk(ξ, ·) the
eigenfunctions of the corresponding adjoint operator Lε∗ξ and setting Yk =

Yk(ξ; t) := 〈ψεk(·; ξ), Y (·, t)〉, we impose that the component Y1 = (u1, v1) is
identically zero. More precisely, since we will prove that the first eigenvalue
is real and tends to zero as ε → 0 , we need to solve the equation in a
subspace in which the operator doesn’t vanish. To this aim, we set an
algebraic condition ensuring orthogonality between ψε1 and Y , in order to
remove the singular part of the operator Lεξ. Thus, denoting by Y0 the initial
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datum of the perturbation, we have

d

dt
〈ψε1(·; ξ(t)), Y (·, t)〉 = 0 and 〈ψε1(·; ξ0), Y0(·)〉 = 0 (3.21)

so that

〈ψε1(·, ξ), ∂tY 〉+ 〈∂ξψε1(·, ξ)dξ
dt
, Y 〉 = 0

Since ψε1 = (ψu1 , ψ
v
1) is the first (left) eigenfunction, there holds Lε,∗ξ ψε1 =

λ̄ε1ψ
ε
1, that is



a2∂xψ

v
1+

1

ε
f ′(U ε(·; ξ))ψv1

∂xψ
u
1 −

1

ε
ψv1


 = λ̄ε1

(
ψu1

ψv1

)

Hence, from (3.21) we get

〈



∂ξψ

u
1

dξ

dt

∂ξψ
v
1

dξ

dt


,
(
u

v

)
〉+〈
(
ψu1

ψv1

)
,Lεξ
(
u

v

)
+




−∂ξU ε(·, ξ)
dξ

dt
+Pε1 [Wε]

−∂ξV ε(·, ξ)dξ
dt

+Qε[u]+Pε2 [Wε]


〉=0

Since 〈ψε1,LεξY 〉 = λ̄ε1〈ψε1, Y 〉 = 0, we have

〈∂ξψu1 (·, ξ)dξ
dt
, u〉+ 〈ψu1 (·; ξ),−∂ξU ε(·, ξ)

dξ

dt
+ Pε1 [Wε(·; ξ)]〉

+ 〈∂ξψv1(·; ξ)dξ
dt
, v〉+ 〈ψv1(·; ξ),−∂ξV ε(·, ξ)dξ

dt
+Qε[u] + Pε2 [Wε(·, ξ)]〉 = 0

and we end up with a scalar differential equation for the variable ξ, that is

dξ

dt
=
〈ψv1(·; ξ),Qε[u] + Pε2 [Wε(·, ξ)]〉+ 〈ψu1 (·, ξ),Pε1 [Wε(·; ξ)]〉

αε(ξ, u, v)
(3.22)

where

αε(ξ, u, v) =−〈∂ξψu1 (·, ξ), u〉−〈∂ξψv1(·; ξ), v〉+〈ψu1 (·; ξ), ∂ξU ε〉+〈ψv1(·; ξ), ∂ξV ε〉
Since we are interested in the regime Y ∼ 0, the equation (3.22) is approx-
imately solved for small Y . Thus the term 1/αε(ξ, u, v) is expanded for
u, v ∼ 0, yielding

1

αε(ξ, Y )
=

1

〈ψε1(·; ξ), ∂ξWε〉 +
1

〈ψε1(·; ξ), ∂ξWε〉2 〈∂ξψ
ε
1(·; ξ), Y 〉+R1

R1 =
1

〈ψε1(·; ξ), ∂ξWε〉 − 〈∂ξψε1(·; ξ), Y 〉−
1

〈ψε1(·; ξ), ∂ξWε〉−
〈∂ξψε1(·; ξ), Y 〉
〈ψε1(·; ξ), ∂ξWε〉2

=
〈∂ξψε1(·; ξ), Y 〉2[

〈ψε1(·; ξ), ∂ξWε〉 − 〈∂ξψε1, (·; ξ)Y 〉
]
〈ψε1(·; ξ), ∂ξWε〉2

where

〈ψε1(·; ξ), ∂ξWε〉 := 〈ψu1 (·; ξ), ∂ξU ε〉+ 〈ψv1(·; ξ), ∂ξV ε〉
Now, for sake of simplicity, let us call αε0(ξ) := 〈ψε1(·; ξ), ∂ξWε(·, ξ)〉. Thus
we end up with the nonlinear equation for ξ(t), which reads

dξ

dt
= θε(ξ)

(
1 +
〈∂ξψε1, Y 〉
αε0(ξ)

)
+ ρε[ξ, Y ], 〈ψε1(·; ξ0), Y0(·)〉 = 0 (3.23)
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where




θε(ξ) :=
〈ψε1,Fε[Wε]〉

αε0(ξ)

ρε[ξ, Y ] := θ1(ξ, Y )

(
1 +
〈∂ξψε1, Y 〉
αε0(ξ)

)
+ 〈ψε1,Fε[Wε] + Qε[Y ]〉R1

R1 :=
〈∂ξψε1(·; ξ), Y 〉2

[αε0(ξ)− 〈∂ξψε1(·; ξ), Y 〉](αε0(ξ))2

θ1(ξ, v) :=
〈ψε1,Qε[Y ]〉

αε0(ξ)

Qε[Y ] = (0,Qε[u])
(3.24)

Equation (3.23) has to be coupled with the equation for the perturbation
Y . To this end, (3.17) is rewritten in the form

∂tY = LεξY − ∂ξWε(·; ξ)dξ
dt

+ Fε[Wε] + Qε[Y ] (3.25)

Using (3.23), we end up with the following equation

∂tY = (Lεξ +Mε
ξ)Y +Hε(x; ξ) +Rε[Y, ξ] (3.26)

where

Mε
ξY =

1

αε0(ξ)

(
−∂ξU ε(·; ξ) θε(ξ) 〈∂ξψε1(·; ξ), Y 〉
−∂ξV ε(·; ξ) θε(ξ) 〈∂ξψε1(·; ξ), Y 〉

)

H(x; ξ) =

(
Pε1 [Wε(·; ξ)]− ∂ξU ε(·, ξ)θε(ξ)
Pε2 [Wε(·, ξ)]− ∂ξV ε(·, ξ)θε(ξ)

)

Rε[Y, ξ] =

(
−∂ξU ε(·; ξ) ρε[ξ, Y ]

Qε[u]

)

Hence we obtain the following coupled system for the shock layer location
ξ(t) and the perturbation Y





dξ

dt
= θε(ξ)

(
1 +
〈∂ξψε1, Y 〉
αε0(ξ)

)
+ ρε[ξ, Y ]

∂tY = (Lεξ +Mε
ξ)Y +Hε(x; ξ) +Rε[ξ, Y ]

(3.27)

Example 3.3. Let us consider the Jin-Xin system, for which one obtains



Pε1 [Wε] = −∂xV ε(·; ξ)

Pε2 [Wε] = −a2∂xU
ε(·; ξ) +

1

ε
(f(U ε(·; ξ))− V ε(·; ξ))

For what concerns the linear operator, setting aε(x; ξ) := f ′(U ε(·, ξ)), we
get the following expressions

LεξY :=




− ∂xv

−a2∂xu+
1

ε
(aε(·; ξ)u− v)


 , Lε,∗ξ Y :=



a2∂xv +

1

ε
aε(·; ξ)v

∂xu−
1

ε
v




complemented with Dirichlet boundary conditions.
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To obtain an asymptotic expression for the function θε(ξ), we need to
approximately compute the functions ψε1 and ∂ξW

ε. As usual, we refer to
the case f(u) = u2/2.

For ε ∼ 0, the function ψε1 is close to the eigenfunction of the operator

L0,∗
ξ relative to the eigenvalue λ = 0, with

a0(x; ξ) := u−χ(−`,ξ)(x) + u+χ(ξ,`)(x)

For example, in (−`, ξ) we have




a2∂xψ
0,v
1 +

u−
ε
ψ0,v

1 = 0

∂xψ
0,u
1 − 1

ε
ψ0,v

1 = 0

ψ0
1(−`) = 0, [[ψ0

1]]ξ = 0

That is ψ0,u
1 = A(1 − e−

u−
a2ε

(x+x0)) and ψ0,v
1 = ε∂xψ

0,u
1 . By imposing the

conditions on the boundary and on the jump, and by doing the same com-
putations in the interval (ξ, `) we obtain

ψu1 (x) ∼ ψ0,u
1 (x) =

{
(1− eu+(`−ξ)/a2ε)(1− e−u−(`+x)/a2ε) x < ξ

(1− e−u−(`+ξ)/a2ε)(1− eu+(`−x)/a2ε) x > ξ

ψv1(x) ∼ ψ0,v
1 (x) =





u−
a2

(1− eu+(`−ξ)/a2ε)e−u−(`+x)/a2ε x < ξ

− u+

a2
(1− e−u−(`+ξ)/a2ε)ee

u+(`−x)/a2ε
x > ξ

so that ψε1 = (ψu1 , ψ
v
1) ∼ (1, 0) for ε ∼ 0. Furthermore, with the approxima-

tion U ε(x; ξ) ∼ Uhyp(x; ξ) and V ε(x; ξ) ∼ Vhyp(x), we have

U ε(x; ξ + h)− U ε(x; ξ)

h
∼ −1

h
[[u]]χ

(ξ,ξ+h)
(x)

V ε(x; ξ + h)− V ε(x; ξ)

h
∼ −1

h
[[f(u)]]χ

(ξ,ξ+h)
(x)

so that ∂ξU
ε and ∂ξV

ε converge to −[[u]]δξ and −[[f(u)]]δξ respectively as
ε → 0 in the sense of distribution. Thus, since 〈ψε1, ∂ξWε〉 ∼ −[[u]], we
deduce an asymptotic expression for the function θε

θε(ξ) ∼ − 1

[[u]]
〈1,Pε1 [Wε]〉

With the choice of Wε = (U ε, V ε) proposed in Example 3.1, such expression
becomes

θε(ξ) ∼ u∗

ε
(e−u∗(l+ξ)/ε − e−u∗(l−ξ)/ε) (3.28)

4. Spectral analysis

In this Section we analyze the spectrum of the linearized operator Lεξ in
order to determine a precise description of the location of the eigenvalues.
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We recall the expression of the operator

LεξY :=




− ∂xv

−a2∂xu+
1

ε
(f ′(U ε)u− v)




so that the eigenvalue problem LεξΦ = λΦ reads




λϕ = −∂xψ

λψ = −a2∂xϕ+
1

ε
(f ′(U ε)ϕ− ψ)

(3.29)

complemented with Dirichlet boundary conditions. Hence, by differentiating
the second equation with respect to x, we obtain

εa2∂2
xϕ− ∂x(f ′(U ε)ϕ) = λ(1 + ελ)ϕ (3.30)

Thus we are interested in studying the eigenvalue problem for the differential
linear diffusion-transport operator

Lε,vscϕ := ε∂2
xϕ− ∂x(aεϕ), aε(x; ξ) := f ′(U ε(x; ξ)) (3.31)

In Chapter 2, Corollary 2.9, we have already proven that, under opportune
hypotheses on the behavior of the function aε(x; ξ) in the limit ε → 0, the
eigenvalues of Lε,vsc have the following distribution

−Ce−c/ε ≤ λvsc1 < 0 and λvsck ≤ −c0

ε
∀ k ≥ 2

From (3.30) we observe that λ is an eigenvalue of Lεξ if and only if

λvsc := λ(1 + ελ) is an eigenvalue for the operator Lε,vsc defined in (3.31).
Hence, if λ = λJXn is an eigenvalue of Lεξ, then there exists an eigenvalue
λvscn such that

ελJXn
2

+ λJXn = λvscn

so that

λJXn,± = − 1

2ε
± 1

2ε

√
1 + 4ελvscn (3.32)

Hence, if λvscn > − 1
4ε , then λJXn,± ∈ R. Moreover, since λvscn are negative for

all n ∈ N

λJXn,+ =
2λvscn

1 +
√

1 + 4ελvscn

< 0, λJXn,− =
−2λvscn√

1 + 4ελvscn − 1
< 0 (3.33)

Thanks to Corollary 2.9, we know that λvsc1 > − 1
4ε and λvsc1 ∼ e−C/ε as

ε→ 0. Thus, from (3.32) and (3.33), there exists a constant C ′ such that

−e−C′/ε ≤ λJX1,+ < 0 λJX1,− ≤ −
1

2ε

Moreover, if for some n > 1 there exist others λvscn such that λvscn > − 1
4ε ,

then they are of order 1/ε, so that

λJXn,± ≤ −C ′′/ε
On the other hand, if λvscn < − 1

4ε , then λJXn,± ∈ C. More precisely

λJXn,± = − 1

2ε
± i

2ε

√
|1 + 4ελvscn |
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Proposition 2.9 assures that there exists k ≥ 2 such that λvscn < − 1
4ε for all

n ≥ k, so that Re(λJXn,±) and Im(λJXn,±) are terms of order 1/ε. For example,
if k = 2 and we take into account λvsc2 < 0, the corresponding eigenvalues
for Lεξ verifies

Re(λJX2,±) = − 1

2ε
, Im(λJX2,±) = ± 1

2ε

√
|1 + 4ελvsc2 |

Moreover, for λJX3,±, since |λvsc3 | > |λvsc2 |, we have

Re(λJX3,±) = − 1

2ε
= Re(λJX2,±) |Im(λJX3,±)| = ± 1

2ε

√
|1 + 4ελvsc3 | > |Im(λJX2,±)|

Figure 3 shows the connection between the two spectra when k = 2, so that
only the first two eigenvalues belong to R.

Figure 3. The spectra of the operators Lεξ and Lε,vsc.

Hence, the following proposition holds

Proposition 3.4. Let aε be a family of functions satisfying assumptions
A0-1-2-3 for some ξ ∈ (`, `) and for some a+ < 0 < a−. Then the spectrum
of the linearized operator Lεξ can be decomposed as follow

1. λJX1,+ ∈ R and −e−C′/ε ≤ λJX1,+ < 0

2. λJX1,− ∈ R and λJX1,− ≤ −1/ε

3. There exists k ≥ 0 such that

λJXn,± ∈ R and λJXn,± ≤ −C ′′/ε, ∀ n = 2, ..., 1 + k

4. λJXn,± ∈ C for all n ≥ 2 + k and

Re(λJXn,±) = − 1

2ε
, Im(λJXn,±) ∼ ±C

ε
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Remark 3.1. In [35], Kreiss G. and Kreiss H. performed the spectral anal-
ysis for the operator

Lεu := ε∂xxu− ∂x(f ′(Ū ε(x))u)

arising from the linearization around the exact steady state Ū ε(x) of

∂tu = ε∂xxu− ∂xf(u)

proving that all the eigenvalues are real and negative. By using this result
and our spectral analysis, if we linearize the system (3.11) around the ex-
act stationary solution (Ū ε, V̄ ε), we can prove that the real part of all the
eigenvalues of the linearized operator is negative, so that the steady state
(Ū ε, V̄ ε) is asymptotically stable with exponential rate.

5. Asymptotic estimates for the first eigenvalue

In this Section we want to study the behavior in ε of the principal
eigenvalue of the operator Lεξ associated to the linearization of (3.11) around
an approximate stationary solution. Since usually the metastable behavior is
the result of the presence of a first small eigenvalue, our aim is to determine
an asymptotic expression for λJX1,+. We have already emphasized the fact

that λJX is an eigenvalue of the nonlinear Jin-Xin system if and only if
λvsc = λJX(1 + ελJX) is an eigenvalue for the following operator

Lε,vsc := ε∂2
xu− ∂x(f ′(U ε(x; ξ))u) (3.34)

where U ε(x; ξ(t)) is an approximate stationary solution for the scalar con-
servation law {

∂tu = ε∂2
xu− ∂xf(u)

u(±`, t) = ∓u∗, u(x, 0) = u0(x)
(3.35)

In particular

|λJX1,+| =
2|λvsc1 |

1 +
√

1 + 4ελvsc1

(3.36)

In Chapter 3, in the special case f(u) = u2/2, U ε(x; ξ(t)) is defined in (3.14).
We have also proven that , for ε ∼ 0

λvsc1 (ξ) ∼ −u
∗2

2ε

[
e−u

∗ε−1(`−ξ) + e−u
∗ε−1(`+ξ)

]

so that

|λJX1,+| ∼
u∗2
ε

[
e−u

∗ε−1(`−ξ) + e−u
∗ε−1(`+ξ)

]

1 +
√

1− 2u∗2
[
e−u∗ε−1(`−ξ) + e−u∗ε−1(`+ξ)

] (3.37)

This formula shows that the principal eigenvalue of the Jin-Xin system when
f(u) = u2/2 is exponentially small in ε.

In order to determine an asymptotic expression of the first eigenvalue of
the operator (3.34) for a general class of flux function f(u), we refer to the
paper of Reyna L.G. and Ward M.J., [64]; here the authors use the method
of matched asymptotic expansions (MMAE) to determine an approximate
stationary solution to (3.35).
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Miming their approach and computing the same calculations of [64],
with the appropriate changes due to the fact that the study of our equation
is performed in the interval (−`, `) instead of (0, 1), the leading order MMAE
solution for ε → 0+ is given by a function us(x; ξ) ∼ us[ε

−1(x − ξ)], where
ξ ∈ (−`, `) and the shock profile us(z) satisfies





u′s(z) = f [us(z)]− f(u∗), −∞ < z <∞
us(z) ∼ u∗ − a−eν−z, z → −∞
us(z) ∼ −u∗ + a+e

−ν+z, z → +∞
(3.38)

The positive constant ν± and a± describe the tail behavior of us(z) and are
defined by

ν± = ∓f ′(∓u∗)

log
(a±
u∗

)
= ±ν±

∫ ∓u∗

0

[
1

f(η)− f(u∗)
± 1

ν±(η ± u∗)

]
dη

In particular, when f(u) = u2/2, us(z) = −u∗ tanh(u∗z/2), according to
(3.9). Notice that the MMAE solutions satisfies exactly the equation, while
the boundary conditions are satisfy within exponentially small terms. In-
stead, the construction presented in Example 2.1 and followed here gives a
function U ε(x; ξ) that verifies exactly the boundary conditions and solves
approximately the stationary equation.

The eigenvalue problem associated to the linearization around us is given
by 




Lφ ≡ ε2∂xxφ− V [ε−1(x− ξ)]φ = λφ

φ(±`) = 0

V (z) =
1

4
(f ′[us(z)])2 +

1

2
f ′′[us(z)]u′s(z)

(3.39)

In [64] it is proven that the first eigenvalue of (3.39) has the following
asymptotic representation (for details see [64, Formula (2.14)])

λvsc1 (ξ) ∼ − 1

2u∗

[
a+ν

2
+e
−ν+ε−1(`−ξ) + a−ν2

−e
−ν−ε−1(`+ξ)

]
(3.40)

Finally, from (3.36), we get

|λJX1,+| ∼
1
u∗

[
a+ν

2
+e
−ν+ε−1(`−ξ) + a−ν2

−e
−ν−ε−1(`+ξ)

]

1 +
√

1− 2ε
u∗
[
a+ν2

+e
−ν+ε−1(`−ξ) + a−ν2

−e−ν−ε
−1(`+ξ)

] (3.41)

This formula shows that λJX1,+ is exponentially small as ε → 0. We remark

that, when f(u) = u2/2, a+ = a− = 2u∗ and ν+ = ν− = u∗, so that (3.41)
is the same as (3.37).

6. The behavior of the shock layer position

Let us consider the system (3.27) for the couple (ξ, Y ) and let us neglect
the o(Y ) terms 




dξ

dt
= θ(ξ)

(
1 +
〈∂ξψε1, Y 〉
αε0(ξ)

)

Yt = (Lεξ +Mε
ξ)Y +Hε(x; ξ)

(3.42)
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This system is obtained by linearizing with respect to Y and by keeping the
nonlinear dependence on ξ, in order to describe the slow motion of the shock
layer position far from the equilibrium location ξ̄.

We complement the so called quasi-linearized system (3.42) with
initial data

ξ(0) = ξ0 ∈ (−`, `) and Y (x, 0) = (u0(x), v0(x)), u0, v0 ∈ L2(−`, `)
(3.43)

The aim of this Section is to analyze the behavior of the solution to (3.42) in
the limit of small ε. Subsequently, we will prove a result that characterizes
the behavior of the shock layer location, proving how it moves towards the
unique stationary solution with exponentially small rate.

Before stating our result, let us recall the assumptions. Let the family
{Wε(·; ξ)} be such that there exists two families of smooth positive functions
Ωε

1 and Ωε
2 such that

|〈ψ(·),Pε1 [Wε(·, ξ)]〉| ≤ Ωε
1(ξ)|ψ|

L∞ ∀ψ ∈ C(I)

|〈ψ(·),Pε2 [Wε(·, ξ)]〉| ≤ Ωε
2(ξ)|ψ|

L∞ ∀ψ ∈ C(I)
(3.44)

We also assume that Wε is asymptotically a solution, i.e. we require that

lim
ε→0
|Ωε

1|L∞ = 0, lim
ε→0
|Ωε

2|L∞ = 0 (3.45)

uniformly with respect to ξ.
Example 3.2 show that (3.44) and (3.45) are verified in the case of the

quadratic flux f(u) = u2/2.
For what concern the linear operator Lεξ, we have already proven that

there exist two positive constants C1, C2 independent on ξ such that

λJX1,+(ξ)−Re[λJX2,±(ξ)] > C1, −e−C2/ε < λε1(ξ) < 0 ∀ ξ ∈ (−`, `) (3.46)

Additionally, we assume that there exists a constant C3 > 0 such that

Ωε
1(ξ) + Ωε

2(ξ) ≤ C3|λε1(ξ)|, ∀ ξ ∈ (−`, `) (3.47)

By comparing the asymptotic expression for λJX1,+ given in (3.37) with the one
for Ωε

1 and Ωε
2 obtained in Example 3.3, we can easily check that hypothesis

(3.47) is verified for the Jin-Xin system when f(u) = u2/2.
Finally, concerning the solution Z = (z, w)T to the linear problem ∂tZ =

LεξZ, we require that there exists ν > 0 such that for all ξ ∈ (−`, `), there

exist constants Cξ and C̄ such that

|(z, w)(t)|L2 ≤ Cξ|(z0, w0)|L2e−νt, Cξ ≤ C̄ ∀ξ ∈ (−`, `) (3.48)

Remark 3.2. The assumption that Cξ < C̄ for all ξ means that the estimate
(3.48) holds uniformly in ξ. Since ξ belongs to a bounded interval of the
real line, if we suppose that ξ 7→ Cξ(t) is a continuous function, then there

exists a maximum C̄ in [−`, `].

Estimates for the perturbation Y . Our first aim is to obtain an
estimate for the perturbation Y . We recall that

∂tY = (Lεξ +Mε
ξ)Y +Hε(x; ξ) (3.49)
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where

Mε
ξY = − 1

αε0(ξ)

(
∂ξU

ε(·; ξ) θε(ξ) 〈∂ξψε1(·; ξ), Y 〉
∂ξV

ε(·; ξ) θε(ξ) 〈∂ξψε1(·; ξ), Y 〉

)

Hε(x; ξ) =

(
Pε1 [Wε(·; ξ)]− ∂ξU ε(·, ξ)θε(ξ)
Pε2 [Wε(·, ξ)]− ∂ξV ε(·, ξ)θε(ξ)

)

In particular, Mε
ξ is a bounded operator, such that

‖Mε
ξ‖L(L2;R2) ≤ C|θε(ξ)| ≤ C(|Ωε

1|L∞ + |Ωε
2|L∞ ), ∀ξ ∈ (−`, `) (3.50)

while

|Hε|
L∞ ≤ C1|Ωε

1|L∞ + C2|Ωε
2|L∞ (3.51)

For the special case of f(u) = u2/2, bothMε
ξ and Hε are bounded by terms

that are exponentially small in ε, while, for a general class of flux functions
f(u) that verify (3.3), the hypotheses we required assure that all the terms
in the equations for the perturbation Y are small in ε.

Theorem 3.5. Let hypotheses (3.44)-(3.45)-(3.47)-(3.48) be satisfied. Then,
for ε sufficiently small, there exists a time T > 0 such that, for all t ≤ T
the solution Y to (3.49) is such that

|Y |
L2 (t) ≤ [C1|Ωε

1|L∞ + C2|Ωε
2|L∞ ]

(
1− e−µεt

)
+ e−µ

εt|Y0|L2

for some positive constants C1, C2 and

µε := sup
ξ
λJX1,+(ξ)− C(|Ωε

1|L∞ + |Ωε
2|L∞ ) > 0

Proof. Since the operator Lεξ +Mε
ξ is a linear operator that depends

on time, to obtain rigorous estimates on the solution Y , we need to use the
theory of stable families of generators, that is a generalization of the theory
of semigroups for evolution systems of the form ∂tu = Lu. We will use
some results of [62], which have been summarized in the Appendix A. More
precisely, we want to show that Lεξ +Mε

ξ is the infinitesimal generator of a

C0 semigroup Tξ(t, s).
To this aim, concerning the eigenvalues of the linear operator Lεξ, we

know that λJX1,+(ξ) is negative and behaves like e−1/ε for all ξ ∈ (−`, `), so

that Λε1 := supξ λ
JX
1,+(ξ) is such that −e−1/ε ≤ Λε1 < 0, and this estimate

is independent of t. Hence, by using Definition 3.7 and Remark 3.5 (See
Appendix A), we know that, for t ∈ [0, T ], Lεξ(t) is the infinitesimal generator

of a C0 semigroup Sξ(t)(s), s > 0. Furthermore, since (3.48) holds, we get

‖Sξ(t)(s)‖ ≤ C̄e−|Λ
ε
1|s

so that the family {Lεξ(t)}ξ(t)∈(−`,`) is stable with stability constants M = C̄

and ω = −|Λε1|. Furthermore, since

‖Mε
ξ‖L(L2;R2) ≤ C(|Ωε

1|L∞ + |Ωε
2|L∞ ), ∀ξ ∈ (−`, `)

Theorem 3.8 (see Appendix A) states that the family {Lεξ(t)+Mε
ξ(t)}ξ(t)∈(−`,`)

is stable with M = C̄ and ω = −|Λε1|+ C(|Ωε
1|L∞ + |Ωε

2|L∞ ) < 0.
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From Theorem 3.11 (in Appendix A), we can define Tξ(t, s) as the evo-
lution system of ∂tY = (Lεξ +Mε

ξ)Y , so that

Y (t) = Tξ(t, s)Y0 +

∫ t

s
Tξ(t, r)Hε(x; ξ(r))dr, 0 ≤ s ≤ t ≤ T (3.52)

Moreover, there holds

‖Tξ(t, s)‖ ≤ C̄e−µ
ε(t−s), µε := |Λε1| − C(|Ωε

1|L∞ + |Ωε
2|L∞ ) > 0

Finally, from the representation formula (3.52) with s = 0, it follows

|Y |
L2 (t) ≤ e−µεt|Y0|L2 + sup

ξ∈I
|Hε(ξ)|

∫ t

0
e−µ

ε(t−r) dr, 0 ≤ t ≤ T (3.53)

so that, by using (3.51), we end up with

|Y |
L2 (t) ≤ C̃ [|Ωε

1|L∞ + |Ωε
2|L∞ ]

(
e−µ

εt + 1
)

+ e−µ
εt|Y0|L2 (3.54)

�

Remark 3.3. In the special case of Burgers flux, µε is going to zero expo-
nentially as ε→ 0, since λε1 behaves like e−1/ε and from the explicit formula
of Ωε

1 and Ωε
2 in Example 3.2. In the general case, assumption (3.45) assures

that µε → 0 as ε→ 0.

Remark 3.4. To apply Theorem 3.11, we need to check that the domain
of Lεξ +Mε

ξ does not depend on time, and this is true since Lεξ +Mε
ξ de-

pends on time through the function U ε(x; ξ(t)), that does not appear in the
higher order terms of the operator. More precisely, the principal part of the
operator does not depend on ξ(t).

Slow motion of the shock layer. An immediate consequence of the
estimate (3.54) is that, for |Y |

L2 < M for some M > 0, the function ξ(t)
satisfies

dξ

dt
= θε(ξ)(1 + r(t)) with |r(t)| ≤ C1|Ωε

1|L∞ + C2|Ωε
2|L∞ + e−µ

εt|Y0|L2

More precisely, we can prove the following

Proposition 3.6. Let hypotheses (3.44), (3.45), (3.47) and (3.48) be satis-
fied. Assume also

s θε(s) < 0 for any s ∈ I, s 6= 0 and θε′(ξ̄) < 0 (3.55)

Then, for small ε and |Y0|L2 , the solution ξ converges to ξ̄ as t→ +∞.

Proof. Thanks to assumption (3.45), for ε and |Y0|L2 sufficiently small,
estimate (3.54) holds globally in time. Hence, for any initial datum ξ0, the
location of the shock layer satisfies

∫ ξ(t)

ξ0

dz

θε(z)
=

∫ t

0
(1 + r(s))ds (3.56)

where

|r(t)| ≤ C1|Ωε
1|L∞ + C2|Ωε

2|L∞ + e−µ
εt|Y0|L2
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More precisely, if ε and |Y0|L2 are sufficiently small, the dynamics of the
shock location ξ is well described by

dξ

dt
= θε(ξ) , θε(ξ) =

〈ψε1,F [Wε]〉
〈ψε1, ∂ξWε〉 (3.57)

Therefore ξ converges to ξ̄ as t → +∞, and the convergence is exponential
for any t under consideration, since, by means of the standard separation
of variable method, we obtain the following estimate for the shock layer
location

|ξ(t)− ξ̄| ≤ |ξ0|eβ
εt, βε ∼ θε′(ξ̄) (3.58)

where θε′(ξ̄)→ 0 as ε→ 0.
�

Formula (3.58) shows the slow motion of the shock layer for small ε. Pre-
cisely, the evolution of the collocation of the shock towards the equilibrium
position is much slower as ε becomes smaller.

For example, when f(u) = u2/2, ξ̄ = 0 and θε′(0) ∼ e−1/ε (see formula
(3.28)). We also emphasize that hypothesis (3.55) are verified in the case of
the Jin-Xin system with f(u) = u2/2.

The following table shows a numerical computation for the location of
the shock layer for different values of the parameter ε and f(u) = u2/2. The
initial datum for the function u is u0(x) = 1

2x
2−x− 1

2 . We can see that the

convergence to ξ̄ = 0 is much slower as ε becomes smaller.

The numerical location of the shock layer ξ(t) for different values of the parameter ε

TIME t ξ(t), ε = 0.1 ξ(t), ε = 0.07 ξ(t), ε = 0.055 ξ(t), ε = 0.04 ξ(t), ε = 0.02

0.2 −0.4008 −0.4020 −0.4029 −0.4040 −0.4059

1 −0.3314 −0.3345 −0.3360 −0.3374 −0.3389

10 −0.3070 −0.3263 −0.3304 −0.3320 −0.3326

103 −0.0103 −0.1600 −0.2562 −0.3181 −0.3325

104 −1.9725e−12 −0.0084 −0.1115 −0.2531 −0.3320

0.5 ∗ 106 −1.9725e−12 −2.2102e−11 −1.5057e−10 −0.0379 −0.3099

Figure 4 shows the dynamics of the shock layer (i.e the dynamics of
the solution u to (3.11)), obtained numerically. When ε = 0.1, the shock
layer location converges to zero very fast: as we can also see from the table,
when t = 103, the value of ξ(t) is already very close to zero. On the other
hand, when ε becomes smaller the shock layer location moves slower and it
approaches the equilibrium location only for very large t. Finally, Figure 5
shows the profile of the shock layer for the flux function f(u) = u4/4 that
still verifies hypothesis (3.3).

7. Appendix A

In this section, we briefly review some results on the theory of evolution
systems by A. Pazy [62, Chapter 5]. For more details and for the proofs of
the Theorems, see [62], Theorem 2.3, Theorem 3.1, Theorem 4.2.

Let X be a Banach space. For every 0 ≤ t ≤ T , let A(t) : D(A(t)) ⊂
X → X be a linear operator in X and let f(t) be an X valued function. Let
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Figure 4. Plots of the shock layer for different times and
different value of the parameter ε. Notice also the steepening
of the shock layer as ε goes to zero.

us consider the initial value problem

∂tu = A(t)u+ f(t), u(s) = u0 0 ≤ s ≤ t ≤ T (3.59)
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Figure 5. Profiles of the shock layer at different times with a
convex flux function f(u).

In the special case where A(t) = A is independent of t, the solution to (3.59)
can be represented via the formula of variations of constants

u(t) = T (t)u0 +

∫ t

0
T (t− s)f(s) ds

where T (t) is the C0 semigroup generated by A. In [62] it is shown that a
similar representation formula is true also when A(t) depends on time.

Definition 3.7. Let X a Banach space. A family {A(t)}t∈[0,T ] of infinitesi-
mal generators of C0 semigroups on X is called stable if there are constants
M ≥ 1 and ω (called the stability constants) such that

(ω,+∞) ⊂ ρ(A(t)), for t ∈ [0, T ]

and ∥∥∥Πk
j=1R(λ : A(tj))

∥∥∥ ≤M(λ− ω)−k,

for λ > ω and for every finite sequence 0 ≤ t1 ≤ t2, ...., tk ≤ T , k = 1, 2, .....

Remark 3.5. If for t ∈ [0, T ], A(t) is the infinitesimal generator of a C0

semigroup St(s), s ≥ 0 satisfying ‖St(s)‖ ≤ eωs, then the family {A(t)}t∈[0,T ]

is clearly stable with constants M = 1 and ω.
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The previous remark means that, if for every fixed t ∈ [0, T ] the operator
A(t) generates a C0 semigroup St(s), and we can find an estimate for ‖St(s)‖
that is independent of t, then the whole family {A(t)}t∈[0,T ] is stable in the
sense of Definition 3.7.

Theorem 3.8. Let {A(t)}t∈[0,T ] be a stable family of infinitesimal generators
with stability constants M and ω. Let B(t), 0 ≤ t ≤ T be a bounded linear
operators on X. If ‖B(t)‖ ≤ K for all t ≤ T , then {A(t) +B(t)} is a stable
family of infinitesimal generators with stability constants M and ω +MK.

In order to prove the existence of the the so called evolution system
U(t, s) for the initial value problem (3.59), let us introduce X and Y Banach
spaces with norms ‖ ‖X , ‖ ‖Y respectively. Moreover, let us assume that
Y is a dense subspace of X and that there exists a constant C such that
‖w‖X ≤ C‖w‖Y for all w ∈ Y .

Definition 3.9. Let A be the infinitesimal generator of a C0 semigroup
S(s), s ≥ 0, on X. Y is called A-admissible if it is an invariant subspace

of S(s), and the restriction S̃(s) of S(s) to Y is a C0 semigroup on Y .

Moreover, Ã, is the infinitesimal generator of the semigroup S̃(s) on Y , and
it is called the part of A in Y .

Next, let us fix t ∈ [0, T ], and let A(t) be the infinitesimal generator of
a C0 semigroup St(s) on X. The following assumptions are made

(H1) {A(t)}t∈[0,T ] is a stable family with stability constants M and ω.

(H2) Y is A(t)-admissible for t ∈ [0, T ] and the family {Ã(t)}t∈[0,T ] of

parts Ã(t) of A(t) in Y is a stable family in Y with stability constants M̃ ,
ω̃.

(H3) For t ∈ [0, T ], Y ⊂ D(A(t)), A(t) is a bounded operator from Y
into X and t→ A(t) in continuous in the B(X,Y ) norm.

Remark 3.6. The assumption that the family {A(t)}t∈[0,T ] satisfies (H2)
is not always easy to check. A sufficient condition for (H2) which can be
effectively checked in many applications states that (H2) holds if there is
a family {Q(t)} of isomorphism of Y onto X such that ‖Q(t)‖Y→X and
‖Q(t)−1‖Y→X are uniformly bounded and t→ Q(t) is of bounded variation
in the B(Y,X) norm.

Remark 3.7. Condition (H3) can be replaced by the weaker condition

(H3)’ For t ∈ [0, T ], Y ⊂ D(A(t)) and A(t) ∈ L1([0, T ];B(Y,X)).

Theorem 3.10. Let A(t), 0 ≤ t ≤ T be the infinitesimal generator of a
C0 semigroup St(s), s ≥ 0 on X. If the family {A(t)}t∈[0,T ] satisfies the
conditions (H1)-(H3), then there exists a unique evolution system U(t, s),
0 ≤ s ≤ t ≤ T , in X satisfying

‖U(t, s)‖ ≤Meω(t−s), for 0 ≤ s ≤ t ≤ T (3.60)

and such that the solution to (3.59) can be written as

u(t) = U(t, s)u0 +

∫ t

s
U(t, r)f(r) dr (3.61)
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for all 0 ≤ s ≤ t ≤ T .

One special case in which the conditions of Theorem 3.10 can be easily
checked is the one where the domain of the operator D(A(t)) ≡ D is inde-
pendent on t. In this case we can take D as the Banach space which we
denote by Y , and the following Theorem holds

Theorem 3.11. Let {A(t)}t∈[0,T ] be a stable family of infinitesimal gener-
ators of C0 semigroups on X. If D(A(t)) = D is independent on t and for
v ∈ D, A(t)v is continuously differentiable in X, then there exists a unique
evolution system U(t, s), 0 ≤ s ≤ t ≤ T , satisfying (3.60). Morevoer, if
f ∈ C1([s, T ], X), then, for every u0 ∈ X, the initial value problem (3.59)
has a unique solution given by (3.61).
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CHAPTER 4

Existence of stationary solutions for the viscous
shallow water system in a bounded interval

1. Introduction

The shallow water equations describe different situations in fluid dy-
namics by modeling the dynamics of a shallow compressible/incompressible
fluid; typically, they are used to describe vertically average flow in two or
three dimensions in terms of the horizontal velocity and depth variation.

The term shallow refers to the fact that, by assumption, the horizontal
length of the channel L is much greater than the height H, so that that
the quantity H/L can be interpreted as a small parameter. When the open
channel flow has a vertical scale that is small relatively to the horizontal
one, it is possible to derive simplified equations; this is the case of the Saint-
Venant system, that provides a one-dimensional model of free surface water
flow in a channel.

The first derivation of such system has been performed by Saint- Venant
[66] in 1971; the model consists in a hyperbolic system of two partial dif-
ferential equations with a structure that is the same of the system for isen-
tropic gas-dynamics in Eulerian coordinates in the case of a pressure with
a power-law form with exponent equal to 2. Since then, the simpler model
for shallow water is called Saint-Venant system. These equations are widely
used in practice and in literature being object of many thousands of pub-
lications devoted to the applications, the validations and to the analytical
and numerical study of the solutions.

Depending on assumptions and approximations, shallow water models
may also contain other terms and give raise to different type of partial
differential equations. Indeed, natural modifications of the model emerge
when additional physical effects are taken into account, like viscosity, friction
or Coriolis forces.

The original hydraulic model of Saint-Venant is written in the form of
two partial differential equations in one dimension

∂th+ ∂x(hw) = 0, ∂t(hw) + ∂x(hw2 + P (h)) = ε∂x(µ(h)∂xw) (4.1)

Here h(x, t), w(x, t) and P stand for the fluid depth, velocity and pressure
respectively. The viscosity coefficient µ(h) for simplicity is assumed to be
µ(h) = h and the parameter ε is the ratio ε = H

L where H and L are two
caracteristic lengths along the axis Oz and Ox respectively. As already
stressed, it is assumed that L� H (shallow water model) so that ε can be
considered small.

The Saint Venant equations can be derived from the hydrostatic ap-
proximation in the Navier Stokes system ( see, for example, J.F.Gerbeau
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and B.Perthame [23]), while the Saint Venant problem without viscosity
can be viewed as a special case of the compressible Euler system ( Lions,
Perthame, Tadmor [44, 45]). For more details, see also [51].

There are many literatures on mathematical studies on system (4.1),
which represents a class of reaction-convenction-diffusion system of the form

∂tU + ∂xF (U) = ∂x(B(U)(U)x)x

Global existence results and asymptotic stability of equilibrium states are
obtained from Kawashima’s theory of parabolic-hyperbolic systems in [30],
D. Bresch, B. Desjardins, G. Métivier in [11], P.L. Lions in [43] and W.
Wang in [70] for viscous model, and Dafermos (see [16]) for inviscid model.
K. Zumbrun, C. Mascia, P. Howard and F. Rousset (see, for example, [52,
56, 57]) have developed a general program for proving stability of shock
waves. They have been able to show that, for general classes of shock waves,
the spectral stability of linearized operator implies nonlinear stability. Most
of these results concern with free boundary conditions. Recently, initial-
boundary value problem with µ = hα, (α > 1/2) has been studied by Li, Li
and Xin [41].

In this Chapter we specifically consider the initial-boundary value prob-
lem for the hyperbolic-parabolic viscous shallow water system with a general
term of pressure P (u), that is





∂tu+ ∂xv = 0, x ∈ I, t ≥ 0

∂tv + ∂x

(
v2

u
+ P (u)

)
= ε∂x

(
u∂x

(v
u

))

u(±`, t) = u±, v(±`, t) = v± t ≥ 0

(4.2)

where the space variable x belongs to a one-dimensional interval I = (−`, `)
of the real line. As usual, t is the time variable, while the parameter ε� 1
represents the viscosity intensity. Equation (4.2) is also complemented with
initial datum for the couple (u, v). A primary prototype for the term of
pressure P (u) is given by the power law P (u) = κuγ , γ ∈ (1, 2).

When P (u) = 1
2gu

2, g > 0, system (4.2) is the usual Saint-Venant
system. In this special case, the constant ε is defined as the ratio between
the length and the hight of the channel. Moreover, with the change of
variables u(x, t) = h(x, t) and v(x, t) = h(x, t)w(x, t), we obtain system
(4.1).

Given an unsteady flow under steady boundary conditions, it is expected
that the flow will eventually tend towards a steady state. Hence, in what
follows, our concern is to prove the existence and uniqueness of a stationary
solution to (4.2).

The existence of stationary solutions for Saint-Venant’s type systems
has been considered for a long time in the literature. To name some of these
results, see [9], [21] and [52].

We point out anyway that these papers deal with the open channel case
(i.e. x ∈ R), in which the study of stationary solutions presents less difficul-
ties than the case of a bounded domain where boundary conditions play an
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important role: indeed, in this case, we have to handle with compatibility
conditions on the boundary values.

2. The unviscid problem

To begin with, let us consider system (4.2) in the small viscosity limit
(ε → 0+). Formally, the solutions to (4.2) converge to the solutions of the
hyperbolic system 




∂tu+ ∂xv = 0

∂tv + ∂x

(
v2

u
+ P (u)

)
= 0

(4.3)

whose standard setting is given by the entropy formulation. Hence we pri-
marily concentrate on the problem of determining the entropy jump condi-
tions for the hyperbolic system under consideration (see also [51]).

Such conditions are determined by the choice of a couple entropy/entropy
flux, that, in the present setting, are given by

E(u, v) :=
v2

2u
+ P (u), Q(u, v) :=

v3

2u2
+ 2P (u)

v

u

corresponding to the physical energy/energy flux of the system.
Given u± > 0, v± > 0 and c ∈ R, let (u−, v−) and (u+, v+) be an entropic

discontinuity of (4.3) with speed c, that is we assume that the function

(U, V )(x, t) :=

{
(u−, v−) for x < ct

(u+, v+) for x > ct

is a weak solution satisfying, in the sense of distributions, the entropy in-
equality

∂E
∂t

+
∂Q
∂x
≤ 0 (4.4)

The request of weak solution translates in the Rankine-Hugoniot condi-
tions [

u
(v
u
− c
)]

= 0,
[
v
(v
u
− c
)

+ P (u)
]

= 0 (4.5)

where [g] := g+− g− denotes the jump of the function g. Setting h := v
u − c,

equations (4.5) become

[uh] = 0, [vh+ P (u)] = 0 (4.6)

The entropy condition (4.4) reads as [Q − cE ] ≤ 0. Hence, plugging (4.6)
into (4.4), one obtains

[
1

2
uh3 + 2P (u)h

]
≤ 0 (4.7)

By using the first equation in (4.6), we obtain a system for the quantities
h2
±:

u2
+h

2
+ − u2

−h
2
− = 0, u+h

2
+ − u−h2

− = P (u−)− P (u+)

whose solutions are

h2
+ =

u−
u+

[P (u−)− P (u+)]

(u− − u+)
h2
− =

u+

u−

[P (u−)− P (u+)]

(u− − u+)
(4.8)
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When we look for stationary solutions to (4.3), i.e. c = 0, (4.8) translates
into a condition for the boundary values. Indeed, since h = v

u

v2
+ = u−u+

[P (u−)− P (u+)]

(u− − u+)
v2
− = u+u−

[P (u−)− P (u+)]

(u− − u+)
(4.9)

Example 4.1 (Power law). Let us consider system (4.3) with P (u) = κuγ ,
γ ∈ (1, 2). Stationary solutions to (4.3) solve

v = C1,
C2

1

u
+ κuγ = C2 (4.10)

where C1, C2 are positive integration constants. Since C1 is univocally de-
termined by the boundary conditions v(±`) = v± = C1, the equation for u
reads

κuγ+1 − C2u+ v̄2 = 0 (4.11)

where v̄ := v± = C1. Once u(±`) = u± are imposed, there exists a solution
to (4.11) that satisfies the boundary conditions if and only if there exists C∗2
such that both the equations above are satisfied

κuγ+1
− − C∗2u− + v̄2 = 0, κuγ+1

+ − C∗2u+ + v̄2 = 0

Hence

C∗2 = κuγ− +
v̄2

u−
= κuγ+ +

v̄2

u+

Thus we obtain

C∗2 = κuγ+ +
κu−(uγ+ − uγ−)

u+ − u−
(4.12)

and

v̄2(u+ − u−) = κu−u+(uγ+ − uγ−) (4.13)

Let us stress that equation (4.13) is exactly the condition (4.9) in the special
case P (u) = κuγ . Moreover, the entropy condition (4.7) becomes

[
v3

2u2
+ 2κuγ

v

u

]
≤ 0

In the special case of the scalar Saint-Venant , i.e. P (u) = 1
2gu

2, equation
(4.10) reads

v = v̄,
1

2
gu3 − C2u+ v̄2 = 0 (4.14)

where

v̄2 =
1

2
gu−u+(u+ + u−), C2 =

1

2
g(u2

+ + u+u− + u2
−) (4.15)

Moreover, only entropy solutions are admitted, so that, from (4.7)

v+

u+
(u+ − u−) ≥ 0

Since v+, u+ > 0, then u− < u+ so that the jump condition describes the
realistic phenomenon of the hydraulic jump consisting in an abrupt rise
of the fluid surface and a corresponding decrease of the velocity.
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Equation (4.14) admits a large class of entropy solutions satisfying the
boundary conditions, given by all that piecewise constants functions in the
form

(USV , VSV )(x) =

{
(u−, v̄) x ∈ (−`, x0)

(u+, v̄) x ∈ (x0, `)

where x0 is a point in the interval I = (−`, `) and u− < u+.

When the term of pressure P (u) is not specified, stationary solutions to
(4.3) satisfy

v = C1, P (u)u− C2u+ C2
1 = 0

together with the boundary conditions for the couple (u, v). Hence, since
C1 = v± := v̄, there exists a stationary solution to (4.3) in the form

(U, V )(x) =

{
(u−, v̄) x ∈ (−`, x0)

(u+, v̄) x ∈ (x0, `)

if and only if both (4.7) and (4.9) are satisfied.

3. Existence and uniqueness of a stationary solution for the
viscous system

For ε > 0, stationary solutions to (4.2) solve




∂xv = 0

∂x

(
v2

u
+ P (u)

)
= ε∂x

(
u∂x

(v
u

))

u(±`) = u±, v(±`) = v±

The previous system can be rewritten as




v = C1

C2
1

u
+ P (u) = −εv

u
∂xu+ C2

u(±`) = u±, v(±`) = v±

(4.16)

where C1, C2 are integration constants. The second equation of the system
reads

εC1∂xu = −P (u)u+ C2u− C2
1

In order to prove the existence of a solution to (4.16), we state a Lemma
that gives a description of the function

f(u) = −P (u)u+ C2u− C2
1

Lemma 4.2. Let f(u) = −P (u)u+ C2u− C2
1 , with P (u) such that

P (0) = 0, P (+∞) = +∞, P ′(u) > 0, P ′′(u) > 0 (4.17)

for all u ∈ R+. Then, for all C1, there exist at least a value C2 such that
there exist two positive solutions to the equation f(u) = 0.
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Proof. Since f(0) = −C2
1 and f(+∞) = −∞, we want to prove that

there exists a value u∗ such that

f(u∗) = max
R+

f, f(u∗) > 0

We have

f ′(u) = −P (u) + C2 − P ′(u)u, f ′′(u) = −2P ′(u)− P ′′(u)

Without loss of generality, we now suppose C2 > 0. Since f ′(0) = C2 > 0,
f ′(+∞) = −∞ and f ′′(u) < 0, there exists u∗ such that f ′(u∗) = 0. Now
we ask for f(u∗) > 0 and we get

f(u∗) = −P (u∗)u∗ + C2u
∗ − C2

1 = P ′(u∗)u∗2 − C2
1 > 0

so that we get a condition on the constant C2, that is

C1 <
√
P ′(u∗)u∗2 (4.18)

where u∗ = u∗(C2) since it solves f ′(u) = 0. �
Remark 4.1. Condition (4.18) assures that, for every choice of C1 > 0,
there exists a function φ := φ(C1) such that, for every C2 > φ(C1), there
exist two positive solutions to the equation f(u) = 0.

Let us go back to the study of solutions to (4.16). First of all, let us
notice that, once the boundary conditions are imposed, the solution v to
(4.16) is univocally determined by C1 = v̄, where v̄ = v±.

Concerning the equation for u , a positive connection between u− and
u+ ( i.e. a positive solution to εv̄∂xu = f(u) connecting u− and u+ ) exists
only if (u−, u+) ⊂ (u1, u2), where u1 and u2 are the positive zeros of f(u).

Thus we are interested in studying the behavior of f(u) as a function
of C2, trying to describe how the distance between u1 and u2 changes for
different values of the constant C2.

Lemma 4.3. Let P (u) such that (4.17) holds, let f(u) = −P (u)u+C2u−v̄2,
and let C2 be such that (4.18) holds, so that there exist two positive solutions
u1 < u2 to the equation f(u) = 0. Hence, given u± > 0, the set A defined
as

A := {C2 > 0 : u1 < u− < u+ < u2}
is such that A = [C̄2,+∞), for some C̄2 > 0.

Proof. Since u1 = u1(C2) and u2 = u2(C2), we want to show that
f(u,C2) is an increasing function as a function of C2. This implies that, if
there exists a value C2 such that

u1 < u− < u+ < u2

than, for all C ′2 > C2

u′1 < u− < u+ < u′2
where u′1 and u′2 are the positive zeros of f(u,C ′2). We have

f(u,C2)− f(u,C ′2) = (C2 − C ′2)u

so that, since u > 0, if C ′2 > C2, then f(u,C ′2) − f(u,C2) > 0. Thus, to
prove Lemma 4.3, we only need to prove that there exists at least a value
C̄2 such that u1 < u− < u+ < u2 holds.
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To estimate from above u1, we write the equation of the line through
the points u = (0,−v̄2) and u = (u∗, f(u∗)), that is

v = −v̄2 +
f(u∗) + v̄2

u∗
u

Since u∗ is such that P (u∗) = C2 − P ′(u∗)u∗ (i.e. f ′(u∗) = 0), we get

v = −v̄2 + P ′(u∗)u∗u

Hence u1 < ũ, where ũ is defined as

−v̄2 + P ′(u∗)u∗ũ = 0 ⇒ ũ =
v̄2

P ′(u∗)u∗

To understand the behavior of ũ for C2 → +∞ we want to compute limC2→+∞ u∗.
To this aim, let us define Φ(u) = P (u) + P ′(u)u. We have

Φ(0) = 0, Φ(u∗) = C2, Φ′(u) = 2P ′(u) + P ′′(u)u > 0, Φ(u) ≥ P (u)

Hence, since P (+∞) = +∞, Φ(+∞) = +∞. Moreover there exists Φ−1

such that
u∗ = Φ−1(C2)→ +∞ as C2 → +∞

that is
lim

C2→+∞
u∗ = +∞

Thus we have proved that

0 < u1 <
v̄2

P ′(u∗)u∗
→ 0 as C2 → +∞

so that u1 remains close to zero as C2 becomes bigger. Furthermore, we also
have

Φ(u∗) ≥ P ′(u∗)u∗ ≥ P ′(ū)u∗, ∃ ū
Since Φ(u∗)→ 0 as C2 → 0, we get

lim
C2→0

u∗ = 0

On the other hand we know that u2 > u∗, so that u2 → +∞ as C2 → +∞.
Hence, if we choose C̄2 large enough, then the amplitude of the interval

(u1, u2) is such that (u−, u+) ⊂ (u1, u2).
More precisely C̄2 has to be bigger than max{C∗2 , C∗∗2 }, where C∗2 and

C∗∗2 are such that either −P (u−)u−+C∗2u−− v̄ = 0 or −P (u+)u+ +C∗∗2 u+−
v̄ = 0, that is either u− or u+ solve f(u) = 0.

�
Now let us define the region Σ of admissible values C2, i.e. the set

of values C2 such that there exists two positive solution to the equation
f(u) = 0 and lemma 4.3 holds. Σ is determined, in the plane {C1, C2} by
the equations

C1 <
√
P ′(u∗)u∗2, C2 >

1

u−
C2

1 + P (u−), C2 >
1

u+
C2

1 + P (u+)

Proposition 4.4. Σ is the epigraph of an increasing function g : R→ R,
that is

Σ := epi(g) = {(C1, C2) : C1 ∈ R, C2 ∈ R, C2 ≥ g(x)} ⊂ R× R
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Proof. In the plane (C1, C2) the functions C2 = 1
u±
C2

1 + P (u±) define

two parabolas. Moreover, setting ϕ(C2) :=
√
P ′(u∗)u∗, we have

lim
C2→0

ϕ(C2) = 0, lim
C2→+∞

ϕ(C2) = +∞, ϕ′(C2) > 0

Thus the function C1 = ϕ(C2) is an increasing function in the plane (C1, C2).

Hence, dg
dC1

> 0 for all C1 > 0.

For example, if there no exists C̄1 such that either ϕ−1(C̄1) = 1
u−
C̄2

1 +

P (u−) or ϕ−1(C̄1) = 1
u+
C̄2

1 + P (u+), then

g(C1) =





1

u+
C2

1 + P (u+) in (0,C∗1)

1

u−
C2

1 + P (u−) in (C∗1,+∞)

(4.19)

where C∗1 is such that 1
u−

(C∗1 )2 + P (u−) = 1
u+

(C∗1 )2 + P (u+).

Otherwise, if there are intersections between ϕ−1(C1) and both C2 =
1
u±
C2

1 + P (u±), g will be piecewise defined depending on the values of such

intersections.

Figure 1. Plot of the region Σ of admissible values (C1, C2)
when there are no intersections between ϕ−1 and the two parabo-
las. Σ is plotted in the plane (C1, C2), but we stress on the fact
that the constant C1 is univocally determined once the boundary
values v± are imposed.

�

Let us go back to the problem of existence and uniqueness of a solution
to (4.16); we have to prove that, once the boundary conditions are imposed
, there always exists a 2`-connection u(x), i.e. a solution to

εv̄∂xu = −P (u)u+ C2u− v̄2

such that u(±`) = u±. Hence

2` = εv̄

∫ u+

u−

du

−P (u)u+ C2u− v̄2
:= F (C2) (4.20)
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Remark 4.2. When ` = +∞, the +∞-connection is the so called hete-
roclinic connection , i.e. a solution to the stationary problem for x ∈ R
tending to two fixed points for x→ −∞ and x→ +∞.

Concerning the function F (C2), we want to prove that there always
exists a value C∗2 such that F (C∗2 ) = 2`. We first notice that

F
∣∣
Γ

= +∞, Γ = ∂Σ

Next We can easily check that F (C2)→ 0 as C2 → +∞. Finally

dF

dC2
= −εv̄

∫ u+

u−

u

(−P (u)u+ C2u− v̄2)2
du < 0

since u, v̄ > 0. Hence, given ` > 0, there always exists C∗2 such that F (C∗2 ) =
2`. Now we can prove the following

Theorem 4.5. For any ` > 0, let us consider the following problem




∂tu+ ∂xv = 0

∂tv + ∂x

(
v2

u
+ P (u)

)
= ε∂x

(
u∂x

(v
u

))

v(±`) = v±, u(±`) = u±

(4.21)

where P (u) is such that (4.17) holds and v±, u± > 0 satisfies
• v+ = v− = v̄
• v̄2(u+ − u−) = u−u+(P (u+)− P (u−)).
• The entropy condition

[
v3

2u2
+ 2P (u)

v

u

]
≤ 0

Then there exists a unique stationary solution to (4.21).

Proof. Lemma 4.3 assures that, given u± > 0, there exists a set of
values C2 such that u1 < u− < u+ < u2, so that there exists a positive
connection u(x) satisfying the boundary conditions. Moreover, from the
study of the function F (C2), we have proved that, fixed C1 ≡ v̄ and ` > 0,

there exists a unique value C∗2 ∈
◦
Σ such that

εv̄

∫ u+

u−

du

−P (u)u+ C∗2u− v̄2
= 2`

Hence there exists a unique stationary solution (Ū , V̄ ) to (4.21), where V̄ =
C1 and Ū is a positive connection between u− and u+, of ”length” 2`.

�

The case of Power Law. Let us consider a term of pressure given by
P (u) = κuγ , γ > 1, that is such that (4.17) holds. The stationary problem
(4.16) reads 




v = C1

εC1∂xu = −κuγ+1 + C2u− C2
1

u(±`) = u±, v(±`) = v±

(4.22)
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and f(u) = −κuγ+1 + C2u− C2
1 . We have

f ′(u) = −κ(γ + 1)uγ + C2 = 0 ⇔ u∗ =

(
C2

κ(1 + γ)

) 1
γ

Following the idea of the proof of Lemma 4.2, the request f(u∗) > 0 trans-
lates into

C1 <

(
γ

(1 + γ)
1+ 1

γ

1

κ
1
γ

)1/2

· C
1
2

(1+ 1
γ

)

2 (4.23)

Let us stress that condition (4.23) is exactly (4.18) in the case P (u) = κuγ .
Furthermore, Lemma 4.3 is still verified and we have the following estimates
for the two positive solutions to f(u) = 0

u1 <
γ + 1

γ
· v̄

2

C2
, u2 >

(
1

κ(1 + γ)

) 1
γ

· C
1
γ

2

where In this case, the region Σ of admissible values (C1, C2), is determined
by the relation (4.23) together with C2 >

1
u±
C2

1 + uγ±, so that Proposition

4.4 is obviously still verified.
The Saint-Venant system. An interesting case in which we can explicitly

develop calculations is the Saint-Venant system, where the term of pressure
P (u) is given by the quadratic formula P (u) = 1

2gu
2, g > 0.

In this case stationary solutions solve

v = v̄, εv̄∂xu = −1

2
gu3 + C2u− v̄2

where, as usual, v̄ = v− = v+. The condition (4.23) for the existence of
two positive solution u1 and u2 reads C3

2 > 27/8gC4
1 . Let us stress that,

from the Cardano formula for the equations of third degree in the form
u3 + pu+ q = 0, we know that there exist three real solutions if and only if

q2

4
+
p3

27
< 0 ⇔ C3

2 >
27

8
gC4

1

Moreover, since f(0) = −v̄2 and C2 > 0, we can explicitly show that u0 <
0 < u1 < u2, where u0 is the third (negative) root of the equation f(u) = 0.

Figure 2 shows an explicit plot of f(u) for different choice of C2. We
can see how the first positive zero u1 remains close to zero while the value
of u2 becomes bigger as C2 → ∞. From Figure 2 we can also see that the
interval (u−, u+) is included or not inside (u1, u2), depending on the choice
of C2.

Figure 3-4 show the solution to the equation εv̄∂xu = f(u) for different
choices of the boundary values.

For the Saint-Venant problem, it is also possible to explicitly plot the re-
gion Σ, contained in the positive half-plane {C1 > 0, C2 > 0}. The equations
for Σ reads

C2 >
3

2
3
√
g C

4/3
1 , C2 >

1

u−
C2

1 +
1

2
gu2
−, C2 >

1

u+
C2

1 +
1

2
gu2

+
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Figure 2. Plot of f(u) = − 1
2gu

3 + C2u − v̄2 for fixed v̄ and
multiple choice of C2, together with u− = 5 and u+ = 25.

Figure 3. Plot of the solutions to εv̄∂xu = f(u). The first
choice for u− and u+ is such that u+ > u2. In the plane (x, u) we
can see that the solution starting from u(−`) = u− can not reach
u+, since u2 is an equilibrium solution for the equation. On the
other hand, if we choose u′−, u

′
+ such that (u′−, u

′
+) ⊂ (u0, u1), we

have a negative connection.

We want to know if there exists a value C̄1 such that 3
2

3
√
g C̄

4/3
1 =

C̄2
1

u±
+ 1

2gu
2
±.

To solve the equation, let us set ξ = C̄
1/3
1 , and let us study

F (ξ) =
1

u±
ξ6 − 3

2
3
√
g ξ4 +

1

2
gu2
±
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Figure 4. Plot of the solutions to εv̄∂xu = f(u). In this case
(u−, u+) ⊂ (u1, u2), so that there exists a positive connection be-
tween u− and u+. Moreover u1 and u2, being zeros of the function
f(u), are equilibrium solutions for the equation.

We have

F (0) > 0, F (+∞) = +∞, F ′(ξ) =
6ξ3

u±
(ξ2 − 3

√
g u±)

Thus F ′(ξ) = 0 if and only if ξ̄± = 6
√
g
√
u±. Moreover F (ξ̄±) = 0, so we

can define

C̄1,− :=
√
g u−3/2, C̄1,+ :=

√
g u+

3/2

as the unique solutions to the equations 3
2

3
√
g C

4/3
1 =

C2
1

u±
+ 1

2gu
2
±. Further-

more, if we define C∗1 such that

1

u−
C∗1

2 +
1

2
gu2
− =

1

u+
C∗1

2 +
1

2
gu2

+

we have C̄1,− < C∗1 < C1,+, so that ∂Σ := g(C1) is defined as

g(C1) =





1

u+
C2

1 +
1

2
gu2

+ in (0,C∗1)

1

u−
C2

1 +
1

2
gu2
− in (C∗1,+∞)

(4.24)

Figure 5 shows the region Σ when the boundary conditions are imposed.
We can explicitly see that Proposition 4.4 holds. The region Σ is plotted
in the plane (C1, C2), but we stress on the fact that the constant C1 is
univocally determined once the boundary values v± are imposed.
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4. The Power Law System with a General Viscosity

To complete this Chapter, let us consider the more general system




∂tu+ ∂xv = 0, x ∈ I, t ≥ 0

∂tvt + ∂x

(
v2

u
+ P (u)

)
= ε∂x

(
ν(u)∂x

(v
u

))

u(±`) = u±, v(±`) = v± t ≥ 0

(4.25)

where the space variable x belongs to the interval of the real line I = [−`, `].
The term of pressure P (u) still verifies

P (0) = 0, P (+∞) = +∞, P ′(s), P ′′(s) > 0 ∀s > 0 (4.26)

while the viscosity term is such that ν(u) > 0 for all u > 0.
We will show that, in this case as well, it is possible to prove the existence

and uniqueness of a stationary solution with the techniques of the previous
section. The stationary problem reads





∂xv = 0

∂x

(
v2

u
+ P (u)

)
= ε∂x

(
ν(u)∂x

(v
u

))

u(±`) = u±, v(±`) = v±

(4.27)

so that v = C1 ≡ v̄, and u has to satisfy

v̄ε
ν(u)

u
∂xu = −P (u)u+ C2u− v̄2 (4.28)

Let us define

Φ(u) =

∫ u

0

ν(s)

s
ds

Since ν > 0, then

Φ(u) > 0, Φ′(u) =
ν(u)

u
> 0, ∀u > 0
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where Φ′ means the derivative of Φ with respect to u. Thus, equation (4.28)
can be rewritten as

v̄ε∂xΦ(u) = −P (u)u+ C2u− v̄2

Now, let us define, as usual, f(u) = −P (u)u+C2u− v̄2; with the change of
variable w = Φ(u), and since Φ(u) is invertible, we have

εv̄∂xw = (f ◦ Φ−1)(w) ≡ g(w)

We want to study the function g(w) as a function of w. First of all all we
know that the function f is increasing for u ∈ [0, u∗) and decreasing for
u ∈ (u∗,+∞), where u∗, implicitly defined as

P (u∗) = C2 − P ′(u∗)u∗

is such that f ′(u∗) = 0. Moreover , if C2 is such that

f(u∗) > 0 ⇔ P ′(u∗)u∗2 > v̄2 (4.29)

then there exist two positive solution to the equation f(u) = 0. Given
ν(u) > 0, since Φ is defined only for u > 0 and since Φ(u) > 0, Φ′(u) > 0,
we have

Φ−1(w) > 0, (Φ−1)′(w) =
1

Φ′(u)
> 0

so that also Φ−1 is a positive increasing function. Now, let us consider
g(w) = (f ◦Φ−1)(w); we want to show that there still exist w1, w2 > 0 such
that g(w1) = g(w2) = 0. Since f(u1) = f(u2) = 0, w1 and w2 has to be such
that

Φ−1(w1) = u1, Φ−1(w2) = u2 (4.30)

Since Φ−1(0) = 0 and (Φ−1)′ > 0, then there exist and they are unique w1

and w2 such that (4.30) holds. Hence, g(w) has exactly two positive zero
for all the choices of ν(u) > 0. Furthermore

g′(w) = [f(Φ−1(w))]′ = f ′(Φ−1(w)) · (Φ−1)′(w)

so that the sign of g′ is univocally determined by the sign of f ′. Therefore,
if w∗ is such that Φ−1(w∗) = u∗, then

g′(w∗) = 0, g′(w) > 0 for w ∈ [0, w∗), g′(w) < 0 for w ∈ (w∗,+∞)

Example 4.6 (The Saint-Venant system). When P (u) = 1
2gu

2, the station-
ary equation (4.27) for u reads

v̄ε∂xΦ(u) = −1

2
gu3 + C2u− v̄2

where Φ(u) =
∫ u

0
ν(s)
s ds. Now, let us consider a simple case where ν(u) =

Cuα, α > 0, and let us plot the function g(w) = (f ◦ Φ−1)(w). We have

Φ(u) = C

∫ u

0
sα−1ds =

C

α
uα, Φ−1(w) =

(α
C
u
) 1
α

so that

g(w) = −1

2
g

(
C

α

) 3
α

w
3
α +

(
C

α

) 1
α

C2w
1
α − v̄2

Figure 5 shows the plot of g(w) for different choice of ν(u), compared
with the plot of f(w) (where ν(u) = u). More precisely, the red line and
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Figure 5. Plots of different g(w) with g = 1, C2 = 400 and
v̄2 = 1000. The red line plots g(w) = − 1

2w
6 + 400w2 − 1000, the

green line plots g(w) = − 1
2w

3/2 + 400
√
w − 1000, while the black

line plots f(w) = − 1
2w

3 − 400w − 1000.

the green line plot g(w) with ν(u) =
√
s

2 and ν(u) = 2s2 respectively. The
picture shows, as we have proved, that the monotonicity of the function is
preserved as well as the existence of two positive zeros.

5. Existence and uniqueness of a stationary solution

We are interested in studying the existence and uniqueness of the solu-
tion to the stationary problem (4.27). We have already shown that, once the
boundary conditions for the function v are imposed, problem (4.27) reads

{
v = v̄, v± = v̄

εv̄∂xw = g(w), w(±`) = Φ(u±)

where g(w) = (f ◦ Φ−1)(w), f(u) = −P (u)u+ C2u− v̄2.
We first notice that condition (4.29) for the existence of two positive

solution to the equation f(u) = 0, assures that also g(w) has two positive
zeros. Indeed

g′(w) = f ′(Φ−1(w)) · (Φ−1)′(w) =
f ′(Φ−1(w))

Φ′(w)

Thus g′(w) = 0 if and only if w = w∗, where w∗ is such that Φ−1(w∗) = u∗.
Furthermore, following the idea of lemma 4.2, we have

g(w∗) > 0 ⇔ f(Φ−1(w∗)) > 0 ⇔ f(u∗) > 0

so that we obtain (4.23). Moreover, a positive connection between Φ(u−)
and Φ(u+) ( i.e. a positive solution to εv̄∂xw = g(w) connectiong Φ(u−) and
Φ(u+) ) exists only if (Φ(u−),Φ(u+)) ⊂ (w1, w2), where w1 and w2 verifies
g(w1) = g(w2) = 0.

Lemma 4.7. Let P (u) such that (4.26) holds, let g(w) = (f ◦Φ−1)(w) where
f(u) = −P (u)u + C2u − v̄2, and let C2 be such that (4.29) holds, so that
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there exist two positive solutions w1 < w2 to the equation g(w) = 0. Thus,
given u± > 0, the set A defined as

A := {C2 > 0 : w1 < Φ(u−) < Φ(u+) < w2}
is such that A = [C̄2,+∞), C̄2 > 0.

Proof. Following the idea of the proof of Lemma 4.3, since g(w,C2) =
f(φ−1(w,C2)) and Φ−1(w) is an increasing function that does not depend
on C2, then g(w,C2) is an increasing function in the variable C2.

Thus we only need to prove that there exist a value C̄2 such that w1 <
Φ(u−) < Φ(u+) < w2 holds. We know that g(0) = −v̄2 < 0 and g′(w) > 0
for all w ∈ [0, w∗). Moreover

g(w∗) = f(Φ−1(w∗)) = f(u∗) > 0

so that w1 ∈ (0, w∗). Furthermore, we ask for

g

(
2v̄2

C2

)
= f

(
Φ−1

(
2v̄2

C2

))
> 0 (4.31)

so that w1 <
2v̄
C2

. Condition (4.31) can be rewritten as

f

(
Φ−1

(
2v̄2

C2

))
> f(u1) = 0

that is, since Φ−1(w1) = u1

f

(
Φ−1

(
2v̄2

C2

))
> f

(
Φ−1 (w1)

)

Since f and Φ−1 are increasing function in the interval [0, u∗) and [0, w∗)
respectively, we obtain a condition for the constant C2 that is 2v̄2/C2 > w1.
If this condition holds, then we have

0 < w1 <
2v̄2

C2

This formula shows that w1 → 0 as C2 → +∞. On the other hand we know
that u2 > u∗ where u∗ is such that f(u∗) = maxR f . Hence

Φ−1(w2) > Φ−1(w∗) ⇒ w2 > Φ(u∗)

Since u∗ → +∞ as C2 → +∞, and since Φ is an increasing and continuous
function, we know that Φ(u∗) → Φ(+∞) = +∞ as C2 → +∞. Hence
w2 → +∞ as C2 → +∞.

�

Remark 4.3. The region Σ of admissible values C2, i.e. the set of values
C2 such that there exists two positive solution to the equation g(w) = 0 and
Lemma 4.7 holds, is determined, in the plane {C1, C2}, by the equations

C2
1 < P ′(u∗)u∗2, g(Φ(u±)) > 0, C2 <

2C1
2

w1

Proposition 4.8. The region Σ of admissible values is the epigraph of an
increasing function g : R→ R.
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Proof. In the proof of Proposition 4.4, we have already seen that the
function ϕ(C2) =

√
P ′(u∗)u∗ is an increasing function. Moreover, the con-

dition g(Φ(u±)) > 0 is equivalent to

g(Φ(u±)) = (f ◦ Φ−1)(Φ(u±)) = f(u±) > 0

so that we obtain the usual conditions

C2 >
1

u−
C2

1 + P (u−), C2 >
1

u+
C2

1 + P (u+)

Finally, the function Ψ(C2) = 2C1
2

w1(C2) is such that

lim
C2→+∞

Ψ(C2) = +∞, Ψ′(C2) = −2C1
2

w2
1

w′1 > 0

since w1(C2) is a decreasing function. Thus the function g is an increasing
function, since it is obtained by matching increasing functions.

�

The final step is to investigate the existence of a 2`-connection, i.e. a
solution to εv̄∂xw = g(w) such that w(±`) = Φ(u±). Thus

2` = εv̄

∫ Φ(u+)

Φ(u−)

dw

(f ◦ Φ−1)(w)
:= G(C2)

We first noticed that G
∣∣
∂Σ

= +∞. From the study of G(C2), we can prove
that there always exists a value C∗2 such that G(C∗2 ) = 2`. Indeed, we can
easily see that

lim
C2→+∞

G(C2) = 0,
dG

dC2
< 0

for all C2 > 0.

Hence, Theorem 4.5 can be generalized to a Shallow Water’s type system
(4.25), with a viscosity term ν(u) > 0 for all u > 0.

6. Perspectives

The study of the existence of stationary solutions for a partial differential
equation is usually strictly related to the study of their asymptotic stability.
Indeed, it is expected that the time dependent solution will eventually tend
towards the steady state.

There is a broad range of techniques to investigate such kind of problem.
In our contest, the main difficulty stems from the fact that the problem
under consideration is an hyperbolic system, so that the spectrum of the
linearized operator around a steady state can be contained in the complex
plane. However, if one succeed in proving that the real part of the eigenvalues
is negative, this would be enough to prove the asymptotic stability of the
equilibrium solution.

To this aim, the idea should be to linearize the original system around
the steady state, and to perform a spectral analysis. The main problem is
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that, in this case, the stationary solution is not constant in space, so that
one has to deal with a system in the form

LY = λY, Y ∈ R2

where the linear operator L is a second order operator with variable coeffi-
cients

L = A(x)∂2
x +B(x)∂x + C(x)

Another possible way to deal with the problem is to try to find a Lia-
punov function for the original system. For example, system (4.2) admits a
mathematical entropy which is also a physical energy

E(u, v) =
v2

2u
+ P (u)

that satisfies the ”energy inequality”

∂t

(
v2

2u
+ P (u)

)
+ ∂x

(
v

u

(
v2

2u
+ 2P (u)− εv∂x

(v
u

)))
= −εu

[
∂x

(v
u

)]2

For example, in the Saint-Venant case, i.e. P (u) = 1
2gu

2, a candidate Lia-
punov function could be

Ē(u, v) =

∫ `

−`

{
(v − V̄ )2

2u
+

1

2
g(u− Ū)2

}

The next step is to prove that its time derivative along the solutions to (4.2)
is negative definite. The main difficulty here is to deal with the sign of the
solutions u, v and their derivatives at the boundary values.
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