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CHAPTER 1

Introduction: the phenomenon of Metastability in
literature

The slow motion of internal shock layer has been widely studied for a
large class of evolutive PDEs. Such phenomenon is known as metastability.
The qualitative features of the metastable dynamics are the follows: through
a transient process, a pattern of internal layers is formed from initial data
over a O(1) time interval. However, once this pattern is formed, the sub-
sequent motion of the internal layers is exponentially slow, converging to
their asymptotic limit. As a consequence, two different time scales emerge:
for short times, the solution are close to some non-stationary state; subse-
quently, they drifts towards the equilibrium solution with a speed rate that
is exponentially small.

In other words, the equation exhibits in finite time metastable shock
profiles (called interfaces) that persist during an exponentially (with respect
to a small parameter) long time period and that move with exponentially
slow speed. Such interfaces exhibit significant changes in size, shape and
location as time passes.

Many fundamental partial differential equations, concerning different ar-
eas, exhibit such behavior: among others we include viscous shock problems
(see [37], [38], [64], [69]), phase transition problems described by the Allen-
Cahn equation, with the fundamental contributions [12], [22], and Cahn-
Hilliard equation, studied in [1] and [63].

To name some of the most important ones

Ou = e202u — O, f (u)

w(0,z) = uo(a), (t,2) € R,

Viscous conservation law: {

(1.1)

Ou = 20%u — W' (u)

u(0,z) = uo(z) () eRT x T (1.2)

Allen — Cahn : {

O = —0%(202u + W' (u))

u(0, ) = uo(x) (t.z) €RT x I,

Cahn — Hilliard : {

(1.3)
where I denotes a bounded interval of the real line. All these equations are
complemented with appropriate boundary conditions.

In this Chapter we want to give an outline of some of these contributes.
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1. Slow motion of a patter of internal layers for the Allen-Cahn
and Cahn-Hilliard equations

We here begin by analizing the cases of the Allen-Cahn equation (1.2)
and the Cahn-Hilliard equation (1.3) as main examples since viscous shock
problems, one of the main topic of this thesis, will be extensively introduced
in the following.

For the Allen-Cahn equation we refer to [12], where the authors study
the slow evolution of patterns of internal layers for the reaction diffusion
equation

o = e*0%u —W'(u), x€(0,1), t>0 (1.4)
complemented with Neumann boundary conditions
0,u(0,t) =0, Oyu(l,t) =0, (1.5)

Here the function W (u) is a smooth double well function such that W (+1) =
W'(£1) = 0. Moreover, it is required that W (u) > 0 for —1 < u < 1.

It has been proved that, under appropriate conditions on W, any solu-
tion u(x,t) to (1.4) converges to u(x) as t — +oo, where u(z) is a stationary
solution (see [24, 58]). Concerning the stable equilibrium solutions to (1.4),
it is known that they are constant in space, and minimize the energy func-
tional

1
I(u) = /0 (W (u) + %82896112) dx

so that, for large t, solutions will be approximately constant in space. How-
ever, for small ¢, the time-dependent solution reach these asymptotic states
in a time interval that can be exponentially long. Hence the solution exhibits
a first short time transient phase, in which it develops a pattern of transition
layers, and an exponentially long time phase (proportional to e/¢) in which
such configuration evolves extremely slow.

In order to give rigorous results on the existence of these metastable
states (i.e. configurations characterized by a pattern of internal layers that
persist for an extremely long time), the authors develop the following ap-
proach.

For fixed ¢ and N, given a configuration & = (&1,..., n) of N layer
positions, they consider a function ué(x) which approximates a metastable
state with N transition layers. More precisely, u¢ is well approximated by
translates of ® and its reflection, where ® is the unique solution to

2020 —W'(®) =0, ®(0)=0, &(x)— =+l as = — +oo (1.6)

which have the property that the distance between layer locations is given by
a fixed [ > 0. Hence, when z ~ &;, then u® ~ ®(z—¢&;) or u® ~ ®(&;—x), and
the layer positions are well separated and bounded away from the boundary
points. With such a construction, it follows that the quantity F¢[ué] :=
£202ut — W'(uf) is very small, and it is equal to zero if |z — &;| > € for all j.

The admissible layer positions lie in a set §2,, where {; —&;_1 > ¢/p, so
that the set of states u® forms an N-dimensional manifold M = {u¢ : ¢ €
Q,}.

To study the dynamics of solutions located near M, the authors linearize
around an element of the manifold, so that a solution u(z,t) belonging to a
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neighborhood of M is written as
u(z, t) = vt () + v(z, t)

By substituting into (1.4), they obtain equations for £(¢) and v(x,t) that
show how the motion of the shock layers and the subsequent evolution of
the patterns are influenced by layer interactions. Moreover the authors show
that, up to a very small error, the dynamics near M is well described by
£()
us\,
Such results are also obtained by studying the linearized operator LZ,

arisen from the linearization around «é. Indeed, if one considers the linear
operator L, obtained by linearizing F|u| around and exact solution ® to
(1.6), the principal eigenvalue turns to be equal to zero. Since u¢ is a well
approximation of ®, the zero eigenvalue of L, translates into exactly N
small eigenvalues for the operator EE. Thanks to these spectral results,
the authors obtain estimates for the perturbation v, and derive a system of
ordinary differential equations for &;(t), i« = 1.....N, whose study is rigorous
performed in [12, Section 3].

To describe the metastable dynamics for the Cahn-Hilliard equation
(1.3), we give a brief outline of [1], one of the fundamental contributes
in this specific area. In this paper, the authors describe the slowly dynamics
of the solutions to the Cahn-Hilliard equation

O = 0*(—20%u +W'(u)), =€ (0,1), t>0 (1.7)
subject to the boundary conditions
Opu=0u=0, at z=0,1.

The function W is a C* function with exactly three critical points, o < v <
B, with «, # local minima and v a local maximum. Moreover

W >0, W(a)=W(g), W'a), W'B), -W"(y)>0

Since equation (1.7) possesses a Liapunov functional I(u), defined by

Hmzéﬁi&ﬁ+wm}m

it is known that, when ¢ — oo, solutions stabilize to an equilibrium state
that is a local minimizer of I with a constrain on the total mass M, that is

1
/ udr =M
0

Numerical results show that the initial datum quickly evolves into a layered
structure, which than slowly evolves at an exponentially long time scale,
followed again by a fast evolution at an O(1) time scale, to be followed by
a slow motion, etc.

In [1], the authors rigorous show that this behavior occurs for the Chan-
Hilliard equation, and the strategy used is the following:

- They construct a manifold M of stationary solutions.

- They study the spectrum of the linearized Cahn-Hilliard operator about
this manifold, showing that there exists an exponentially small positive
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eigenvalue of order e~1/¢, while the rest of the spectrum is bounded away
from zero uniformly with respect to €.

More precisely, the manifold M id defined as the set of translates ué(x —
€) (restricted to [0, 1]), where u(x) is a two-layer equilibrium to (1.7) which
has mass M. In formula

M={uf(z)=ulx—&) : =1+ <& <l—0dy,x 0,1}

where | = (8 — M)/2(f — «) is the asymptotic distance between a layer and
the boundary of the interval and Jg is a fixed small positive number. With
these notations, the location of the layers are given by

ry=0+¢E wxo=1—0+¢

By linearizing around an element of the manifold, the authors prove that
M is an invariant manifold for (1.7), and that, for e sufficiently small, the
dynamics near M is described by the ordinary differential equation £ = b(§),
where

b(E) =0 (), b(0)=0
so that the speed of propagation of the layers is exponentially small in €.
As already stressed before, this slow motion is the result of the presence
of a first small eigenvalue; in fact, in [1], it is proven that, if one consider the

eigenvalue problem for the linearized operator around «¢, then the linearized
operator EZ has exactly one simple positive eigenvalue

0 < A{() = O(e™%e")

while all the remaining eigenvalues are bounded away from zero uniformly
in €, i.e.
A6 < -C <0, k=23,...

where C' is independent on ¢ and £.

In both the contributes, the common aim is to determine equations for
the parameters that represent the location of the layers, considered as func-
tions of time; usually, such equations are determined by linearizing around
a manifold of approximate steady states, and by projecting. In fact, the
existence of, at least, one first small eigenvalue suggest that one needs to
solve the equation in a subspace in which the linearized operator doesn’t
vanish.

2. Metastability for viscous shock problems

In this section we mean to give an overview on the analysis of slow dy-
namics for evolutive parabolic partial differential equations, with particular
attention to the scalar conservation law

Opu + Oy f (u) = € D2u, (1.8)

with the space variable x belonging to a one-dimensional interval I = (a,b).
The parameter € > 0 is considered as a strictly positive and small parameter.
Equation (1.8) is complemented with Dirichlet boundary conditions

u(a,t) = u_ and u(b,t) = uy (1.9)
for given data u* to be discussed in details.
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Equation (1.8) is considered as a (simplified) archetype of more com-
plicate systems of partial differential equations arising in different fields of
applied mathematics. Inspired by the equations of fluid-dynamics, the pa-
rameter ¢ is interpreted as a viscosity coefficient and the main problem is to
identify and quantify its role in the emergence and/or disappearance of the
phenomenon of metastability.

Formally, in the limit € — 0", the parabolic equation (1.8) reduces to a
first-order quasi-linear equation of hyperbolic type

Opu+ 0 f (u) =0, (1.10)

whose standard setting is given by the entropy formulation, hence possessing
possibly discontinuous solutions with speed of propagation s given by the
Rankine—Hugoniot relation

s[ul = [f ()] (1.11)
(where [-] denotes the jump) together with appropriate entropy conditions.
In addition, the treatment of the boundary conditions (1.9) is much more
delicate with respect to the parabolic case, because of the eventual appear-
ance of boundary layers.

Concerning the function f(u), let us assume

Pz e>0,  flu) <0< fu),  fluy)=fu),  (112)
for some positive constant ¢yg. The last two assumptions guarantee that the
jump from the value u_ to w4 is admissible and its speed of propagation,
dictated by (1.11), is zero. In this case, equation (1.10) possesses a one-
parameter family {U, (-;€)} of stationary solutions satisfying the boundary
conditions (1.9), given by

Uhyp (z;6) == U—X(a,e) (z) + U4-X (¢,0) (z) (1.13)

where x, denotes the characteristic function of the set I. The dynamics
determined by initial-value problem for (1.10)-(1.9) is very simple: it is
possible to prove that every entropy solution converges in finite time to
an element of the family {U, (-;§)}. Hence, at the level € = 0, there are
infinitely many stationary solutions, generating a “finite-time” attracting
manifold for the dynamics. Note that, at the hyperbolic level, there is no
way of distinguishing one element from any other in the family of steady
states {U, . (-;§)} in term of stability properties.

For € > 0, the situation is different. Apart from the well-known smooth-
ing effect, the presence of the Laplace operator at the right hand-side of
(1.8), together with the boundary conditions (1.9), has the effect of a dras-
tic reduction of the number of stationary solutions: from infinitely many
to a single stationary state (see [35]). Such solution, denoted here by
U;r =U ;r (x), converges in the limit ¢ — 01 to a specific element of

the family {U,  (-;€)}. As an example, in the case of the Burgers equation,
f(s) = 3s% a=—C and b = ¢, there holds

- KX
U (x) = —k tanh (—)
bur( ) 2 €
where k = r(g, +¢, u) is implicitly defined by imposing the boundary con-
ditions. In the limit ¢ — 0T, the single steady state Ug = converges pointwise
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to U,,, = U,,,(-;0). Therefore, the element of the one-parameter family
{U,,,(:€)} corresponding to § = 0 exhibits a form of structural stability
which is not shared with any other element of the same family.

Similar results are obtained for a class of general f(u) that verify hy-
potheses (1.12); in this case the stationary solution U;r converges pointwise
to Uhyp(-;f_), for some & € I.

A deeper understanding of the problem can be gained by analyzing the
dynamical properties of (1.8) for initial data close to the equilibrium con-
figuration by means of the linearized equation at the state U o

up = Lou = ceus + (a(x)u), with  a(x) := _f/(U;r (x)).

In [35] it shown that, in the case of Burgers flux f(s) = % s2, the eigenvalues
of L., considered with homogeneous Dirichlet boundary conditions, are real
and negative. Moreover, for f(uy) = f(u_), there holds as ¢ — 0

X =O(e V%) and >\2<—%0<0 V> 2

for some ¢y > 0 independent on €. Negativity of the eigenvalues implies that
the steady state Ug:ur is asymptotically stable with exponential rate; while
the precise distribution shows that the large time behavior is described by
term of the order e}t and, as a consequence, the convergence is very slow,
when ¢ is small.

Such is the picture relative to the behavior determined by an initial data
close to the equilibrium solution Ulfur'

The next question concerns with the dynamics generated by initial data
still presenting a sharp transition from u~ to ™', but that are localized far
from the position of the steady state Utfur. Figure 4 represents the solution

— =0
- - - t=05
I = i
----- t=0.5x10*
— t=5x10* i

=108

2 I ! ! !
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

FIGURE 1. The solution to (1.8) with f(u) = u?/2, ¢ = 0.07,
u+ = F1 and initial datum u(z,0) = ug(z) := 32° — 2 — 3.
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to the initial-value problem for (1.8) with boundary conditions (1.9) in the

interval I = (—1,1), relative to the initial datum u(z,0) = ug(z) = 12% —

xr— L

SQtarting with a decreasing initial datum, a shock layer is formed in an
O(1)-timescale, so that the solution is approximately given by a translation
of the (unique) stationary solution of the problem. Once such a layer is
formed, it moves towards the location corresponding to the equilibrium so-
lution and this motion is exponentially slow. As a consequence, two different
time scales emerge: for short times, the solution becomes closer to a mono-
tone transition connecting the boundary data, close to a space-translation
of the single steady state; for long time, the profile slowly moves toward the
equilibrium configuration.

Main contributes. We mean to give a brief outline of some of the most
significant papers concerning the phenomenon of metastability for viscous
shock problems.

Among others, such problem has been examined in [64], [69] and in
[38], where different approaches have been considered. The former is based
either on projection method or on WKB expansions. We want to give a brief
outline of these results.

In [64] the authors consider the initial-boundary value problem

Opu = €0?u — O, f (u), z€(0,1), t>0
uw(0,t) =u_, u(l,t) =uy t>0 (1.14)
u(z,0) = up(x)
where u_ > 0 and uy = —u_, so that uy = Fu* for some u* > 0. Here f(u)
is a convex function such that f/(0) =0, uf’(u) > 0 and f(u*) = f(—u*).
The aim of this paper is to determine a description of the slow motion of
the internal layer in the vanishing viscosity limit € — 0; as usual, the idea is
to construct an approximation for the stationary solution in order to derive
an equation of motion for the shock layer location £(t).
In this contest, the authors use the method of matched asymptotic ex-

pansions (MMAE) to built an approximate stationary solution to (1.14).
More precisely, for e — 0, the leading order MMAE solution is given by

u~ ugle ™z~ €)]

where £ € (0, 1) represents the location of the shock layer. With the change
of variable z = (x — &) /¢, the shock profile us turns to solve

ug(z) = f(us(z)) — f(u*) 2 € (=00, +00)
us(0) =0

us(z) ~u* —agreT** 2z — 00

where the positive constants v+ and a4, describing the tail behavior of us,
are defined by

ve = Ff'(Fu’)

a Fu* 1 1
o (Uf):iyi/o [f(n)f(U*)iVi(niU*) @
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Notice that the MMAE solutions satisfies exactly the equation, while the
boundary conditions are satisfy within exponentially small terms.

In order to determine an equation of motion for the location of the shock
layer, the authors utilize the projection method, based on the linearization
of (1.14) around the MMAE stationary solution us. More precisely, this
method is based on the fact that the linear operator associated with the
linearization around the shock profile has exactly one exponentially small
eigenvalue, so that the solution to the linearized problem must have no
component in the direction of the first eigenfunction.

More precisely, the authors look for a solution to (1.14) on the form
u(z,t) ~ ug(z) + w(w,t), where z = e~z — £(t)]. Subsequently, they study
the spectrum of the linearized problem, showing that, asymptotically, the
principal eigenvalue of the linearized operator tends to zero as ¢ — 0. Hence,
by setting an algebraic condition in order to remove the singular part of the
linearized operator, and by projection on the first component, one obtains
an approximate ODE for the motion of {(¢). The main result is the following
(for more details see [64, Proposition 4al)

Proposition 1.1. For ¢ — 0, the exponentially slow evolution of the shock
layer for (1.14) is described by u ~ usle ™' (x —&(t))], where £(t) satisfies the
ODE

dg 1

dt — 2u*
where the constant A, B depend on v+ and on the boundary conditions.

[Aa+y+e*”+€_l(1*£) — Ba_y_e*”‘g_lé}

A similar approach is used in [69] to study the metastable dynamics for
the generalized Burgers problem

Oru = u — udyu + £02u, xe(0,1), t>0
u(0,t) = u(1,t) =0, t>0 (1.15)
u(z,0) = uo(x)
Such equation arise from the study of the dynamics of an upwardly propa-

gating flame-front in a vertical channel; precisely, the shape y = y(x,t) of
the flame front interface satisfies

1 1
8ty:2xy2+58£y—/yda:, z e (0,1), t>0
0

0,1/(0,1) = Dyy(1,1) = 0, t>o (116)
y(x,0) = yo(x)
so that, by setting u(z,t) = —0,y(z,t), one obtains equation (1.15).

By linearizing the equation around an MMAE equilibrium solution, it
turns out that the principal eigenvalue associated with such linearization
is exponentially small in &, so that a metastable behavior for the time-
dependent problem occurs as a consequence of the size of the first eigenvalue.

This behavior of slow motion of internal layer is studied here by deriving
an asymptotic ordinary differential equation characterizing the slow motion
of the tip location of a parabolic-shaped interface, corresponding to the
location of the shock layer for the function u. In this contest, numerical
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computations suggest that a sufficient condition for the appearance of a
metastable behavior is that the initial datum satisfies

uo(z) <0 for z € (0,a), and  wup(z) >0 for z€(a,l)

for some a > 0. In this case, three different time scales emerge: a first
transient phase of O(1) where the parabolic-shaped flame-front interface
is formed; an exponentially long time phase where the tip of the parabolic
flame-front drifts towards one of the walls (i.e. = 0 or, equivalently, x = 1);
finally, an O(1) phase where the flame-front collapses against the wall and
reach its equilibrium configuration. In terms of u(x,t), the first two phases
are pictured in Figure 2. The fact that the time interval corresponding to the
second phase is exponentially long with respect to €, creates the illusion that
the flame-front has reached some final equilibrium. However, this second
phase is only a quasi-equilibrium that persists for an exponentially long
time interval.

0.6

o ) /T
goar
g e |
e
o g
-0.2 / al
\K ok —

04\ t=0
t=15
t=3.5

t=4.1259x10°

0.8 L L L L L I I 1 I
0

FIGURE 2. The solution to (1.15) with f(u) = u?/2, e = 0.07, and
initial datum wu(z,0) = (1 — z)(x — 0.45). Notice that the zero
of u, which is the tip of the flame-front interface, moves slowly
towards the wall at x = 0.

With all of this in mind, let us briefly describe the methods used in [38],
where the authors specifically consider the initial boundary value problem
Ou = e02u +udyu, x € (0,1), t>0
u(£l,t) = £1, t>0 (1.17)
u(z,0) = uo(x)

with
-1, —-1<z<a
uo() = 1, a<z<l1
for some a € (—1,1) and for small ¢.
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Here the shock layer location &£(t) is defined as the value where the
solution is equal to zero, that is

u(&(t),t) =0

As usual, numerical computations show that the transition between the
boundary values —1 and 1 occurs through a shock layer located in £(t), whose
thickness is of O(e). To obtain an asymptotic equation for the shock layer
location, an adapted version of the method of matched asymptotic expansion
is used. Hence, the author introduce the stretched spacial and time variables

o)t
2 el/e
so that any solution u(n, s) to (1.17) satisfies

dg

ﬁgu + 2udyu = eV (4edgu — 2%8,711)

u (il;{f(s) 5> _ 41 (1.18)
w(0,8) = 0

Since u(7n, s) = tanhn satisfies the limiting problem with ¢ = 0, the authors
look for a solution to (1.19) in the form

u(n,s) = tanhn + e Youi(n,s) + ...

obtaining an initial value problem for £(s), that is

A€ _ ¢/ _ g/e
—_— = —_ 5 0 =
s ¢ e £(0) =&
that corresponds to the equation for the shock layer location obtained in
[64].

The same techniques are used in [37], where the authors performe the
same study for a generalized problem on the form

Opu = €05(g(u)0zu) + f(u)0zu, zxe€(0,1), t>0
w(E1,t) = +1, t>0  (1.19)
u(z,0) = up(z)

Also in this case, under opportune hypotheses on the function g, the authors
prove that, starting from an initial datum on the form

-1, —-1<z<a
uo(x) = 1, a<zx<1

a single shock layer of thickness of O(¢) is formed, and its convergence to
the asymptotic limit is extremely slow.

The common aim of all these papers is to determine an expression and /or
an equation for the parameter &, considered as a function of time, describing
the movement of the transition from a generic point of the interval toward
the equilibrium location. In these contributes, the analysis is conducted
at a formal level and validated numerically by means of comparison with
significant computations.
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A rigorous analysis of the solution to the Burgers’ type equation

Oy = €0%u + 0, f (u), xe(—-1,1), t>0
u(#1,t) = +1, t>0 (1.20)
U(ZL‘,O) = UO(x)

has been performed in [18] (and generalized to the case of nonconvex flux
n [20]); here the flux function f satisfies

f(1)>0, f(-1)<0, f(£1)=0 and f(s) <0, V|s| <1

In order to study the existence of an exponentially slow internal shock the
authors, instead of deriving an equation of motion for the location of such
shock layer, obtain an asymptotic expression for its speed; the idea is to
approximate the solution to (1.20) with a traveling wave ®(z — V' (£) t) that
fits exactly the boundary conditions and satisfies (&) = 0.

Since there no exist traveling waves on a finite interval, the authors
construct such solution by restricting a true traveling wave 1(z — vt) of the
equation (1.20), defined on all R?, to a finite subdomain [—1,1] x [t1,t2],
where the time interval [t1, t2] is chosen so that the unique zero of ¥ (x — vt)
belongs to the open interval (—1,1).

In particular it is shown that, for each £ € (—1,1), a unique traveling
wave ®(x—V (€) ), satisfing (§) = 0 and ®(£1) = +1, exists. Furthermore,
the authors derive a precise estimate of its exponentially slow velocity V.
The approach is based on the use of such traveling wave to obtain upper and
lower estimates by the maximum principle, from which rigorous asymptotic
formulae for the slow velocity are obtained; precisely

Ve = —aex (-1 ) +sew (101 Loy

where the constants o and 8 depends on f(+1), and

Reoi=ow (/018 veo (01

e

Moreover, it is proven the the function £ — V(£) is a monotone function,
which is positive for £ ~ —1 and negative for £ ~ 1, meaning that the wave
moves to the right in the former case and to the left in the latter.

Furthermore, for the analytical study of the metastable dynamics, the
equation (1.20) is linearized around the approximate traveling wave and,
as usual, a study of the spectral proprieties of the linearized operator is
performed. Precisely, the authors show that the first eigenvalue is exponen-
tially small with respect to €, and that there is a spectral gap between the
principal eigenvalue and the rest of the spectrum.

Such considerations show that the convergence to the asymptotically
stable state is exponentially slow in the limit € — 0.

The case of nonconvex flux, studied by the same authors in [20], is more
delicate: in this case, f has several zeros between u_ and u., so that several
internal transition layer may occur. Indeed, the authors suppose that the
flux function f has to satisfy the following hypothesis
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e f € C*(R) has a finite number of zeroes in the interval [—1, 1], but
at least two. Moreover, all zeroes are of finite order.
As a consequence, the structure of the stationary solution is the following:
there exists only one stationary solution that is monotone; it is characterized
by flat regions that correspond to the zeroes of f of higher order and by
transition layers connecting these areas, as depicted in Figure 3.

1 —
<
A > . r____ -
0 <:> J
= | < [
T o) _J
1 //—) _[
-1 0 - -0.5 0 0.5 1
< F(u) X cremei>

F1GURE 3. Equilibrium solution to (1.20) in the case of the non-

convex flux f(u) = — cos? 2mu, with boundary conditions uq = +1.
This figure was produced by P.P.N. De Groen and G.E. Karadzhov
in [20]

In this paper the authors generalize the result obtained in [18], proving
that, taking the initial datum close to a traveling wave profile, the time
dependent solution moves in a small neighborhood of such profile with slow
speed for a long time interval (0,7¢). In particular

T = O(e 7 1)

where p is the maximal order of zeroes of f, so that a metastable behavior
appears.

Viscous shock problems in unbounded domains. Slow motion for
the viscous Burgers equation in unbounded domains has been also considered
in literature.

The case of the whole real line has been examined in [32] (for subsequent
contributions in the same direction, see also [31]) with emphasis on the
generation of N —wave like structures and their evolution towards nonlinear
diffusion waves. Here the authors consider the following Cauchy problem

Oyu = eagu — uOzu, reR, t>0 (1.21)
u(z,0) = up(z), t>0 '
The analysis is based on the use of self-similar variables, suggested by the in-
variance of the Burgers equation under the group of scaling transformations
(x,t,u) — (cz,c®t,u/c). This property suggests the change of variables

s=logt, n=a/Vt, w(n,s)=Vtu(z,t)
so that equation (1.21) becomes
1
Osw = Eagw + 58,7(7711) —w?) (1.22)
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The diffusion waves are, by definition, the equilibrium solutions to (1.22).

Initial data Solution at § = 1
7 T T T T T 3.5 T T T T T T !
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1 051 q
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9L 1k 4
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3 2.
ol | .
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1
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FIGURE 4. Numerical solution to (1.22), generated by the Go-
dunov scheme produced by Y.-J. Kim and A. Tzavaras in [32].

Also in this case, numerical computations (see Figure 4) show that the
evolution of the time-dependent solution can be divided into different stages
of different orders in time; starting, for example, from an oscillatory initial
datum wg, the authors show that there is a first transition in which the
solution develops the so called saw-tooth profile. In the subsequent stage, the
waves interact and eventually produce an approximative N—wave. These
first two stages are relatively quick, of order one in time, and here the
diffusion act weakly, so that the dynamics is essentially the same as the
unviscid equation

Dy = %877(1711) —w?) (1.23)
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Once the latter stage is reached, it persists for an exponentially long time in-
terval; indeed, the N —waves are stationary solutions for (1.23), but, because
of the presence of a small diffusion, they are only approximate solutions for
(1.22). This consideration leads to the last stage of the evolution of the so-
lution: a very slow transition from an approximate N —wave to a a diffusion
wave, the steady state of (1.22).

Roughly speaking, the solution spend a very long time near the family
of approximate N —waves, before converging to the stable family of diffusive
waves. Such a slow evolution (of order e/¢ in time) is a manifestation of
the metastable behavior that occurs for the solutions to (1.21).

More recently, it has been shown in [10] that the slow motion for the vis-
cous Burgers equation on the whole real line is determined by the presence
of a one-dimensional center manifold of steady states for the equation in the
self-similar variable (corresponding to the diffusion waves) and a relative
family of one-dimensional global attractive invariant manifold (correspond-
ing to the diffusive N—waves). In a short-time scale of order O(|loge|), the
solution approaches one of the attractive manifolds and remains close to it
in a long-time scale.

In [67], it is analyzed the case of the half-line (0,+o00) for the space
variable x, with constant initial and boundary data chosen so that speed
of the shock generated at x = 0 would be stationary for the hyperbolic
equation. The presence of the viscosity generates a motion of the transition
layer, which is precisely identified by means of the Lambert’s W function.
Later, the (slow) motion of a shock wave, with zero hyperbolic speed, for the
Burgers equation in the quarter plane has been considered in [47], where it
is shown that the location of the wave front is of order In(1 + ¢); the same
result has been generalized in [61] in the case of general fluxes (for other
contributions to the same problem, we refer also to [49, 72]).

Conclusions. Summing up, apart for the formal expansions methods,
the rigorous approaches used in the literature are largely based on typical
scalar equations features. The first of these properties is the direct link
between the scalar Burgers equation and the heat equation given by the
Hopf-Cole transformation: u = —2e ¢ '0,¢, and the consequent invari-
ance of equation (1.8) under the group of scaling transformations (z, ¢, u) —
(cx,c®t,u/c). On the one hand, the presence of such a connection is an
evident advantage, since it permits to determine optimal descriptions for
the behavior under study (see [32, 47, 67]); on the other hand, to use such
exceptional property makes the approach very stiff and difficult to apply to
more general cases. A different “scalar hallmark” is the base of the approach
considered in [18], where the authors make wide use of maximum principle
and comparison arguments, taking benefit from the fact that the equation
is second-order parabolic.

In order to extend the results to more general settings and specifically
for systems of PDEs, it is useful to determine strategies and techniques that
are more flexible, paying, if necessary, the price of a less accurate descrip-
tion of the dynamics. A contribution in this direction has been given in [61],
where the location of the shock transition for a scalar conservation law in the
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quarter plane has been proved by means of weighted energy estimates, ex-
tending the result proved in [47], that used an explicit formula —determined
by means of the Hopf—Cole transformation— for the Green function of the
linearization at the shock profile of the Burgers equation.

3. Metastability for systems in higher space dimension

Metastable dynamics in a multispacial dimensional setting has been re-
cently established (see, for example, [2, 3, 65]), and, at the present day,
results relative to metastability in the case of systems appear to be rare.
One of the main difference between the study of slow motion of internal
layers in one-space dimension, and the problem of evolution of interfaces in
higher dimensions is that, usually, in the former case the dynamics of the
shock layer location is described by an ordinary differential equation, while
in the latter it turns out that the interface evolves according to a partial
differential equation.

To name some of these results, in [13] the author considers an interfacial
problem for a class of reaction diffusion systems of parabolic type, that is

atu:sAquéf(u,v), reR"t>0
v = Av + g(u,v), zeR"t>0 (1.24)
u(z,0) = ¢(x), v(x,0)=v(z)
The nonlinear terms in the equation are on the form
fu,v) =u(l —u)(u—a)—v, a€c(0,1)
g(u,v) =u—~yv, >0

System (1.24) can be interpreted as a model for the propagation of chemical
waves in excitable media.

The assumptions on the smallness of the parameter € and the bistable
property of the term f are crucial in term of the appearance of a phenomenon
of metastability; indeed, under these hypotheses, the evolution of internal
interfaces can be divided into two consecutive phases: the first one is a short
time period in which the interfaces are formed; the next one is a long time
interval, where one can observe the evolution of such interfaces.

The approach used is the following. For short time (i.e. ¢ < 1), the
diffusion term A is neglected, and the dynamics of u is well approximate
by the following equation

Dy = éf(u,z/;), v~ (1.25)

Going deeper in details, that author proves that, for short time, the
solution u to (1.25) approaches two different branches, so that the whole
space can be divided into two subdomains here named as "the exited region”
Q4 (t) and "the rest region” Q_(t), divided by a thin interfacial layer region
Qo(t) whose thickness is of order O(g). Is these regions, the solution wu is
given by u ~ hy(v) and u ~ h_(v) respectively, where

u=hi(v), u=h_(v)
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represent two branches of the nullocline {(u, v) : f(u,v) = 0} of the function
f.

To study the subsequent dynamics of the interfacial region Qg(t), that
can move and deform as ¢ evolves, the author uses a method of matched
asymptotic expansion to obtain a limiting equation that well approximate
equation (1.24) when ¢ — 0: indeed, for large ¢, the diffusive term eAu can
no longer be neglected.

The hypotheses required are the following:

e The transition layer region y(t) approaches a compact hypersur-
face I'(t) € R", called here interface.

e The solution u(+;¢) has a jump discontinuity across I'(¢). In partic-
ular

u=nhy(t) on Q4(t) . B
{u = hj(t) on QJ_r(t) R™ND(1) = Q4.(t) UQ_(1)

e I'(t) changes smoothly in time.

Under such hypotheses, the author derives a partial differential equation for
the interface I'(t), that shows how its motion depends on the main curvature
k of the interface itself. More precisely, the interfacial tension e(n—1)x plays
a fundamental role in the stability /instability of I (for more details see [13,
Section 3]).

In [28], slow dynamics for a one-dimensional semi linear parabolic sys-
tem, known as the phase-field equations, is studied. The goal of this paper
is to show the existence of metastable solutions, i.e. solutions that preserve
a particular structure for a large finite time that tends to infinity as the
viscosity coefficient goes to zero. Slow dynamics analysis for systems of con-
servation laws have been considered in [26], basic model examples being the
Navier-Stokes equations of compressible viscous heat conductive fluid and
the Keyfitz-Kranzer system, arising in elasticity. The approach is based on
asymptotic expansions and consists in deriving appropriate limiting equa-
tions for the leading order terms, in the case of periodic data.

In [36], the problem of proving convergence to a stationary solution for
a system of conservation laws with viscosity is addressed, with an approach
based on a detailed analysis of the linearized operator at the steady state.

Precisely, the authors consider the following problem

O+ 0pf(u) = €d?u, x € (=L,L), t>0 (1.26)

where u = u(z,t) is a vector function with n components, and f : R® — R"
is a given smooth function. The evolution in time of a solution to (1.26)
involves two different processes; the first one consists on the appearance of
an internal smooth shock layer. Diffusion acts weakly in this process, and
the dynamics is well modeled by the corresponding inviscid equations, so
that the position of the shock can be determined via the Rankine-Hugoniot
relation. Moreover, the amplitude of such interface is of order O(y/€). The
other process involves perturbations of the shock layer, as the adjustment in
shape and position of such interface. Here the diffusive effects are large, and
the time scale is of order O(1/e), much faster compared to the first phase,
that is of O(1) in time.
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In order to study the stability of the shock profile under local perturba-
tions, (i.e. solutions starting from an initial datum close to some equilibrium
configuration) the authors focuses on the fast process by considering just the
space region near the shock layer. Hence, by eliminating the parameter ¢
from the equation thanks to the standard scaling of space and time, the au-
thors analyze the stability of a steady state U(x) by describing the dynamics
of the solution of the initial boundary value problem

Oru + 0, f (u) = d2u, re(=£40), t>0
u(z,0) = U(x) + yo(z), t>0 (1.27)
u(£l) = U(L0)
where, as stressed, the initial datum wug is close to the equilibrium profile
U(z). The linearized problem around U (x) reads
Opu + 0 (A(x)u) = 8%u
u(z,0) = yo(a) (1.28)
u(+l) =0
where A(z) = J(U(x)) and J = 0f/0u is the Jacobian of f. By considering
the corresponding eigenvalue problem
Mo+ 0n(A(2)g) = D2, [al <L, p(£0) = 0 (1.29)
the authors prove the following Theorem (see [36, Theorem 1])

Theorem 1.2. For sufficiently large £, the eigenvalue problem (1.29) has
a first simple isolated eigenvalue A1 with corresponding eigenfunction o1,
satisfying
M =00, g~ 0,U(a)| < Ce
where v > 0 is independent of £, and ¥y is a fixed, sufficiently large constant.
Further, there exists a constant § > 0 independent on £ so that all the other
eigenvalues satisfy
ReAp, < -0, k=23, ...

The Theorem implies that the approach to the steady profile is expo-
nentially slow but, because of the rescaling, the dependence of such slow
motion on € doesn’t appear.

A recent contribution is the reference [7], where the authors consider the
Saint-Venant equations for shallow water and, precisely, the phenomenon of
formation of roll-waves. The approach merges together analytical techniques
and numerical results to present some intriguing properties relative to the
dynamics of solitary wave pulses.
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CHAPTER 2

Metastability for scalar conservation laws in a
bounded domain

1. Introduction

In this chapter we wish to investigate the phenomenon of slow motion
of internal shock layer for the initial-boundary value problem for a scalar
conservation law with viscosity with Dirichlet boundary condition in the
bounded interval I = (—¢, /), that is

Opu+ Oy f(u) = £ d%u zel, t>0
u(£l,t) = ug t>0 (2.1)
u(z,0) = up(x) zel

for some £,¢ > 0, u+ € R and flux function f, chosen so that assumptions
(1.12) hold.

Our goal is to rigorous analyze the dynamics generated by initial data
that present a sharp transition from «~ to u™, and localized far from the
position of the steady state U;r, defined as the unique solution to

O f(US,) =20, UZ (0,t) = us
As stressed in the previous chapter, starting from such an initial datum, a
shock layer is formed in an O(1)-timescale. Once such a layer is formed, it
moves towards the location corresponding to the equilibrium solution and
this motion is exponentially slow.

To describe the dynamics generated by such an initial configuration and
to determine a detailed description of the relation between the unviscous
and the low-viscosity behavior, our strategy is:

— to build up a one-parameter family of functions {U®(+;€)} such that
Us(€) = Usar for some &, and with the additional property that U(-; &) —

¢ (:;€) as € — 0, in an appropriate sense;

hyp
— to describe the dynamics of the viscous scalar conservation law in a

tubular neighborhood of the family {U®(-;¢)}.

The essence of this approach is to contribute to the definition of a flexible
language, hopefully relevant to more general contexts and, mainly, in the
case of systems. With this direction in mind, we follow an approach that it
is strictly related with the projection method considered in [12, 64] and we
go behind the philosophy tracked in the analysis of stability of viscous shock
waves by K.Zumbrun and co-authors (see [55, 56, 73]). Precisely, once a
set of reference states {U¢(+;€)} is chosen, we separate two distinct phases:
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— to determine spectral properties of the linearized operator at such
states;

— to show that appropriate assumptions on the structure of the eigenval-
ues of such operator together with a control on how far is the approximate
state from being an exact solution imply the presence of a metastable be-
havior.

The main advantage in such a separation stems from the fact that, in
principle, it should be possible to obtain numerical evidence of special spec-
tral structures in cases where analytical results appear to be not achievable.

With respect to the framework of shock waves stability analysis, there
are two main differences. First of all, we concentrate on the case of bounded
domains and, therefore, the spectrum of the linearized operator is discrete
and given by a divergent sequence of (real) values. Additionally, the ref-
erence states U® generically are approximate solutions, in the sense that
they satisfy the steady state equation with an error that converges to zero
as € — 07. Hence the perturbations of such states satisfy at first order a
non-homogeneous linear equation, with forcing term, formally negligible as
e—0T.

Our approach consists in approximating the evolution of the couple
(&,v), where £ denotes the parameter for the approximate manifold and
represents the location of the shock layer, and v the perturbation of the
profile U, by a partial linearization, giving raise to a system which we call
quasi-linear system. This is obtained by linearizing with respect to v and
keeping the nonlinear dependence on &, in order to keep track of the non-
linear evolution along the approximate manifold. Our main contribution is
Theorem 2.2, stating that, assuming a number of assumptions relative to
the elements of the approximate manifold U® and the linearized operator
at such states, and a coupling condition, linking the first eigenvalue of the
linearized operator with the nonlinear operator evaluated at U€, the solu-
tion to the quasi-linearized system is described by the evolution of a reduced
system where the equation for £ is decoupled from v and hence solvable by
means of the standard separation of variable method.

2. General framework

Let us consider the Cauchy problem for a general evolution equation
Opu = F=lul, u |t=0 = ug (2.2)

where F¢ denote a nonlinear differential operator, depending singularly on
the parameter ¢ > 0, so that the formal limiting problem dyu = F°[u] is
of lower order. Typically, equation (2.2) is complemented with appropriate
boundary conditions, appearing in the definition of an appropriate Hilbert
space X such that a solution to (2.2) is a function u : [0, +00) — X.

Denoting by u® = wu®(x,t) the solution of (2.2), we are interested in
describing the behavior of u® for small e. The basic example we have in
mind is the initial-boundary value problem (2.1).

We assume to have a one-parameter family {U¢(+;€)} in X, parametrized
by & € I, whose elements are approximate stationary solution to the prob-
lem, i.e. Fe[U%(;;€)] — 0 as e — 0. Precisely, we assume that the term
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Fe[U®] belongs to the dual space of the continuous functions space C(I)
and there exists a family of smooth positive functions Q¢ = Q¢(¢), uniformly
convergent to zero as € — 0, such that, for any £ € I, there holds

(), FEUS (S ODI < () [¥]00 - Vb € C(T).

The family {U®(x; &) }ecr will be referred to as an approximate invariant man-
ifold with respect to the flow determined by (2.2) in the Hilbert space X.

The dependence of 2 on ¢ plays a fundamental role, since it drives the
departure from the approximate invariant manifold. Roughly speaking, it
measures how far is an element of the approximate manifold from being an
exact stationary solution to the problem. In the specific case of a scalar
conservation law, such term is exponentially small, meaning that it behaves
as e~ ¢/¢, with C' > 0.

Let us stress that, differently to the construction in [38] and in [64],
where the approximate solutions satisfies exactly the equation and the bound-
ary condition to within exponentially small terms, here we assume the ele-
ments U® to satisfy the boundary conditions exactly and the equation ap-
proximately.

Example 2.1. In the case of Burgers equation, ie. f(s) = 552 and
ut = Fu,, for some u, > 0, we consider a function obtained by match-
ing two different steady states satisfying, respectively, the left and the right

boundary condition together with the request U (&) = 0; in formulas,

U (2:6) = { k_ tanh (k—(§ — x)/2¢) in (=4,

k4 tanh (k4 (§ — ) /2¢) in (§9),
where k4 are chosen so that the boundary conditions are satisfied
K+ tanh (;—i(f F E)) = Ug. (2.3)
€

By direct substitution, denoting by d,—¢ the usual Dirac’s delta distribution
concentrated at x = £, we obtain the identity

FAUE(9) = [0:.U°], -0,

in the sense of distributions. In particular, U%(-,§) is a stationary solution
if and only if £ = 0. Going further, by differentiation, we have

[0.U7], e = 5 (v — )+ 1),

In order to determine the behavior of )¢ for small €, we need an asymptotic
description of the values ky. To this aim, let us set xky = Fus(l + hy),
so that, denoting by Ay := ¢ F £ the distance from & to £/¢. relation (2.3)
becomes

ur Ay

o 1+ hi '
Therefore, the values h+ are both positive and thus
[TRANE < 1 '

2e 1+ hst
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that gives the asymptotic representation
1 2

hy < —1= = 2eTuEBE/e ot
== tanh(Fur Ay /2¢) eFutdi/e 1 ¢ L
where [.0.t. denotes lower order terms. Thus, we infer
u? u?
[0:U°],_ = 2—;(h, —hy)2+h_+hy) = ?*(h, —hy)+lot.
22

. (emw(HO/e _gmul=8/ey ot ~ Cee™ O,

showing that the term [0,U ‘E]]I:E is null at ¢ = 0 and exponentially small
for e — 0F.

Once the one-parameter family {U#(+; £)} is chosen, we write the solution
to the initial value problem (2.2) as

u(-,t) = U(;€(t)) +v(- 1)
with € = £(t) € I and v = v(+,t) € X to be determined. Substituting, we
obtain
d§

O = Lo+ FU (39 - 0U°(:) 2+ Conel  (24)

where
v = dFE V()] v
Q°[v, €] := FEUS(5€) + 0] = FEU(5.6)] = dF[U° (5 6)]w.
Next, let us assume that, for any &, the linear operator 52 has an decreasing
sequence of real eigenvalues A\; = A7 (§) with A, — —o0 as k — +oo with
corresponding right eigenfunctions ¢} = ¢7.(-;€). Denoting by ¥f = ¥g(+;§)
the eigenfunctions of the corresponding adjoint operator EZ’* and setting
v = vk(§5 1) := (Y (5 €), (-, 1)),

we can use the degree of freedom we still have in the choice of the couple
(v,€) in such a way that component vy is identically zero, that is

d
i), v(,t) =0 and  (¥5(5),vo(-))) = 0.
Using equation (2.4), we infer
dg dg

(W1(&, ), Lev + FIU(56)] = OUS(5€) 0 + Q[v, €]) + (0evi(€, ) o

Since (Y, Lev) = A9, v), we obtain a scalar differential equation for the
variable &, describing the reduced dynamics along the approximate manifold,
that is

dg

a®(&v) o = Wil5€), FIU ()] + v, €]) (2.5)

v) =0

where

ap(§) == (Wi(5€),0:U°(5€)) and  a(&,v) := ap(§) — (91 (-5 €),v),

together with the condition on the initial datum &,

(Wi(:5€0),v0(-)) =0
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To rewrite equation (2.5) in normal form in the regime of small v, we assume

a5 (&) = [(1(5:€),0:U°(5€) 20 >0 VEel

for some ¢y > 0. Such assumption gives a (weak) restriction on the choice
of the members of the family {U°} asking for the manifold to be never
transversal to the first eigenfunction of the corresponding linearized opera-
tor. From now on, thanks to the previous hypothesis, we can renormalize
the eigefunction 9 so that

ap(§) = (¥i(58),0:U°(5€)) =1 Ve>0,8el

Since we are interested in the regime v — 0, we expand 1/a° as

S B AN T ) B
€ 0)  ag® (1+ G >+ (lol) = 1+ (0evs, v) + ofJu).

Inserting in (2.5), we end up with the nonlinear equation for &

% — g © (1 + (@, ) + 716 0], (26)
where
0%(§) == (¥§, F[U"]) (2.7)
o1 0] = aeéjv)(wa Q°) + (065, v)?). (2.8)
Using (3.23), the equation (2.4) for v can be rephrased as
O = H*(x;8) + (Lg + Mg)v + R°[v, ] (2.9)
where

H(x;€) := FE[US(@; €)] — 0U" (2;€) 6°(8),
Mev = —0cU(+5€) 0°(€) (Oe¥i, v),
Re[v, €] := Q°[v, ] — 09U (+5€) p7[€, v].
Let us stress that, by definition, there holds
(1(+€), H*(5€)) =0, (2.10)
so that He(-;€) is the projection of F°[U¢(-;£)] onto the space orthogonal
to ¢1(+; ).

To show how such formulas can be handled, at least formally, in concrete
situations, let us analyze problem (2.1), namely

Felu] = €02u — 0, f (u)

for ¢ > 0 and f satisfying assumptions (1.12). Retracing the definitions
introduced above and setting a®(x; &) = f/(U¢(x;€)), we get the following
expressions

Liv = £0%v — 0, (ae(-; €) v) EZ’*U 1= 020 + a®(+;€) Opv

where the adjoint operator L'z’* has to be considered with Dirichlet boundary
conditions, and

O%[0,€] == ~0uN[0,€] = ~0u{ F(U*(5€) +v) = FU°(56)) = F'(U°(56)) v}
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where N¢ = o(Jv]), so that Q° = o(|v|, |0,v|). Formally, for small ¢ and
small v, the dynamics of the parameter £ is approximately given by

d§ -

pri &)+ ...,
with 6% given in (2.7). Next, we need to identify the functions ¢{ and 0:U*
in the limiting regime ¢ — 0, at least approximately. For ¢ ~ 0, the function

1 is close to the eigenfunction of the operator L'g’* relative to the eigenvalue
A =0, with
ao(x; §) = U—X(_r,6) (z) + U+ X (e ) (z)

Hence, we obtain the representation formula

(1 _ eu+(l—§)/e)(1 _ e—u,(f—i-a:)/s) r < ‘57

e 0 —
Yi(z) ~ ¢i(x) = { (1- efu—(e+£)/5)(1 B ew—(f*x)/f?) x> &,

so that 9] ~ 1, provided ¢ is bounded away from the boundaries +¢. Addi-
tionally, with the approximation U®(z;§) ~ U, (&), defined in (1.13), we
mfer Ue(z;€ 4+ h) — Us(x;€) 1

’ A =~ 1 [ud X e e ()
so that we expect 0:U° to converge to —[u]d¢ as ¢ — 0 in the sense of
distributions, so that a§(§) ~ —[u]. Therefore, we deduce an (approximate)
expression for the function 6°

0°(€) ~ —[[i]] (1, FlUe),

that, with the choice of U® proposed in Example 2.1, reduces to
6° (&) ~ lu* (7w (tH8)/e _ pmunll=0)/e) (2.11)
€
which coincides with the corresponding formula determined in [64].

3. Analysis of the quasi-linearized system

Next, let us go back to the system (3.23)—(2.9) for the couple (£,v) and
let us neglect the o(v) order terms:
dC 13 13
% O+ (05 w).
Opw = H*(¢) + (£¢ + Mgw

to be complemented with initial conditions
¢(0)=¢o e (2,10 and  w(x,0) = wo(x) € L*(I). (2.13)

From now on, we will refer to this system as the quasi-linearization of (3.23)-
(2.9). We are interested in describing the behavior of the solution to such
system in the regime of small &.

Shortly, the quasi-linearized system is determined by an appropriate
combination of the term F¢[U¢], measuring how far is the function U¢ from
being a stationary solution, and the linear operator L¢, controlling at first
order how solutions to (2.2) depart from U® when the latter is taken as
initial datum. To state our first result, we need to precise the assumption
on such terms.

(2.12)
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H1. The family {U®(-,£)} is such that F¢[U¢] belongs to the dual space
of C(I) and there exists a family of smooth positive functions Q° such that

[(C), FAUSGOD <€) [¢]ee VY € C().

with ¢ converging to zero as € — 0, uniformly with respect to &.

H2. Let {--- < A(§) < -+ < A5(&) < Aj(§)} be the sequence of
eigenvalues of the linear operator £z. Assume that for any { € (—¢, () there
hold

NE-X0@) >0, X <0 ()< -Ck* withk>2.
for some constant C' > 0 independent on k, ¢ and &.

H3. Given § € I, let ¢7.(-;€) and ¢;.(-; &) be a sequence of eigenfunction
for the operators ﬁg and EZ’*, respectively, normalized so that

1 if j =k,
g(.- €(.- = € £y —
WIEOOU G =1l Whal={y L, @)
Then we assume
D (0t ¢5)° =D (W, 0:05)° < C k. (2.15)
J J
for some constant C' independent on the parameter &.
For later use, note that, by differentiation, there holds
(05, o) + (45, Oedf) = 0. (2.16)
Also, we use the notation Aj := sup A (£).
el
Theorem 2.2. Let hypotheses H1-2-3 be satisfied. Additionally, assume
that
Q) < CIAQI,  VEe(=40) (2.17)

for some constant C' > 0 independent on € and €.

Then, denoted by ({,w) the solution to the initial-value problem (2.12)—
(2.13), for any € sufficiently small, there exists a time T¢ such that for any
t < T¢ the solution w can be represented as

w=z+R
where z is defined by
¢
(.t) = S w0 exp ([ 260 do ) i(aic(0),
k>2 0

and the remainder R satisfies the estimate

By <010 fon ([ NN )l 41} (219

for some constant C' > 0.
Moreover, for wq sufficiently small in L?, the final time T¢ can be chosen
of the order —C'|Q°|7 L In |QF

[oc -

The conclusion of the proof of Theorem 2.2 is based on the following
version of a standard nonlinear iteration argument.
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Lemma 2.3. Let f = f(t),g = g(t) and h = h(s,t) be continuous functions
fort €10, T] for some T >0, such that

f(t) >0, g(t)>0, g decreasing, h(s,t)>0.

Let y = y(t) be a non-negative function satisfying the estimate

/{f s)+h(s,t)} ds

for any t <T. Then, if, for any t € [0,T] there holds
t t
1
sup / g*(s) f(s)ds - sup g '(t) / h(s,t)ds < — (2.19)
t€[0,T] te[0,T] 0 4
then

y(t) <2 sup / h(s,T)ds
T€[0,¢] JO

for any t €0, T].

PROOF OF LEMMA 2.3. The auxiliary function w(t) := g~ *(¢) y(t) en-
joyes the estimate

/{a (s)+ B(s, 1)} ds

where «a(t) := f(t) g?(t) and B(s,t) = g~ 1(t) h(s,t). Set

N(t) :== sup w(7).
T€[0,t]

Then, for any t € [0,T], there holds

w(t) < </0ta(5) d5> N2(T)+/0tﬁ(s,t) ds

and, as a consequence, also

N(T) < AN*(T)+B

where
t t
A=A(T):= sup / a(s)ds, B = B(T) := sup / B(s,t)ds.
tef0,7] /0 tefo0,1] /0
Since N(0) =0, if 1 — 4AB > 0, then
N<1—\/1—4AB: 2B < 9B.
24 1++1—-4AB

In term of y, if (2.19) holds, then

y(t) < 2g(t) sup g_l(t)/o h(s,t) ds.

te[0,7

The final estimate follows from the monotonicity of the function g. O

Lemma 2.3 gives the final step needed to prove the Theorem.
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PROOF OF THEOREM 2.2. Setting
t) =Y wi(t) &5z (1),
J

we obtain an infinite-dimensional differential system for the coefficients w;

dwk

SOk — N (Q)wn + (R F) (220)

where, omitting the dependencies for shortness,
dg
Fim H Y uy {ME65 =065 2 b = H =053 (a4 3 bjewe )y
J J l
and the coefficients a;, b;, are given by

aj = (0], ¢5) 0eUT + 05, bju = (041, 97) Oc b5

Convergence of the series is guaranteed by assumption (2.15).
By (2.16), for the coefficients a; there hold

so that we can also take advantage from the relation (¥f,a;) = 0 for any j.

Thanks to these relations, equation (2.20) for k£ = 1 simplifies to

dwy

o = M(Qun—07(Q) D (Wi, bje) wew; (221)

€7j

Now let us set
¢
Butont) = oxp ([ Ni(c(onan).
Note that, for 0 < s < ¢, there hold

Ee(0,1)
E(0,s)

From equalities (2.21) and (2.20), choosing w(0) = 0, there follow

Ep(s,t) = and 0 < Ej(s,t) < eMr=9),

wi(t) = —/0 0°(C) > (W5, bje) we wy Ey(s,t) ds

L,j
wk(t) = wk.(O) Ek((), t)

[ {n ) = 3 () + S b e B ) s
J l

for k > 2. Such expressions suggest to introduce the function

Zwk ) Ei(0,1) ¢, (23 (1)),
k>2

which satisfies the estimate || , < [wol, ehst,

From the representation formulas for the coefficients wy, since

7Ol < CQ(Q)  and [y, HY)| < COQ(O {1 + [(¥, 0:U) |}
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for some constant C' > 0 depending on the L®—norm of 1}, there holds

¢ 2
w—22, < / Q(Q) D 1k, Dedi gl D 10w, 67)] fwel B (s, ) ds )
J Y

”’Z(/ () (1+ 605, eU=)| + 1405, 0cU=) | S 110, 65) o]

k>2 J

2
IR MR I MCTIEDRR)

<C</ Q5 (¢ )|w‘2 E; (s, t)ds) +CZ / Q5 (¢ —|—|w\i2)Ek(s,t)ds)2

k>2

Since va + b < \/a—i- Vb, we infer

w—2z| ,<C QE w2 Eq(s,t)ds+C QE —|—w2 Ei(s,t)ds
L2 L2

k>2
<C/ Q°(¢ |w| Eq(s,t) + (1—}—|w|2 ZEkst}ds
k>2

The assumption on the asymptotic behavior of the eigenvalues \; can now
be used to bound the series. Indeed, there holds

EkSt _1/2
ZEkst ) < Es(s,t) ZEgst C(t—s) Es(s,t)
k>2 k>2

As a consequence, for unknown w such that |w| , < M for some M > 0, we
infer

t
Ey(t,0)[w— 2|, < C /0 O (Oflw — 212, Bi(5,0)
|21, Ba(s,0) + (t = )72 Ba(s, ) Br(£,0) } ds
Let us set

N(t) :== sup |w—z| , Ei(s,0)
s€[0,t]

Then, since A5 < Aj, we obtain
t
Bu(t0)fuw 2,0 < C [ 9(QN(s) Ex(0,5) ds
0
t
+c/ 0% (Q){ fuol2, €PN AD* 4 (1 — )72 Ba(s, 1)1 (1,0) }ds
0

By assumption (2.17), A\ < —CQF¢ for some constant C' > 0, hence

U (ON ) Er(0.9) ds < [ QN (s) exp (0 [ () de) ds
0

0 0

< NQ(t){l ~exp <_0/0t Q°(0) da> }
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Moreover, there holds

t t
1
(285-45)s g </ A5 gs = (M5 _ 1) <
e S S (& S & >~
/ | =g I

t t
1
—1/2 —1/2 A§ (t—s
R e A N

so that, recalling that Ag is bounded away from 0,
t

Bt O~ 2,0 = {320 1= e (-0 [ 07( a0 )| + 17l (juol, + Br(e) )
0

Next, we end up with the estimate

A=C {1 — exp <C/tQ€(C) dU) } )
N(t) < AN*(t)+ B with 0
B = C|0°], (Juol?, + B1(1,0))

Hence, as soon as

4AB = 4C?|F), . (\wo\; + Byt 0)) (1 —exp (—C/Ot Q5 (C) da>) <1

(2.22)
there holds

2B )
< — < — &
N(t) < == < 2B =C0 oo (w0l + Er(2,0))

that means, in term of the difference w — z,
2
w2, < €10 (o, B1(0.6) +1)

Condition (2.22) gives a constraint on the final time 7°. Since 1—e~¢ Jo Q) do
1, it is enough to ask

4C2 |07, (|w0|i2 + El(t,0)> <1 (2.23)
to assure condition (2.22) is satisfied. Constraint (2.23) can be rewritten as

t t C
C exp (-/0 Q°(¢) da> < exp (—/0 A7 (€) da) = FE4(t,0) < |Q€‘Lw—|w0|i2,

so that we can choose T° of the form

1 C _
T“‘mmwQOuw‘Wﬁﬁ”‘cmmimmwm

for wy sufficiently small. O

As a consequence of the estimate (2.18), for |w| , < M for some M > 0,
the function ( satisfies

dc _

dt—Hs(C)(Hr) with || < C(|wol , €' + (97, ).
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where the constant C' depends also on M. In particular, if € and |wo|,, are
sufficiently small, the function ¢ = ((¢) has similar decay properties with
respect to the function 7, solution to the reduced Cauchy problem

dn

7 0% (n), 1n(0) = Co.

This preludes to the following consequence of Theorem 2.2.
Corollary 2.4. Let hypotheses H1-2-3 and (2.17) be satisfied. Assume also
s0°(s) <0 foranysel, s#0 and 6<'(¢) < 0. (2.24)
Then, for e and |wo|,, sufficiently small, the estimate (2.18) holds globally
in time and the solution ({,w) converges to (¢,0) as t — +oo.
PrROOF. Thanks to assumption H1, for € and |wyl , sufficiently small,

estimate (2.18) holds. Hence, for any initial datum (p, the variable ¢ = ((¢)
solves an equation of the form

B Q) with (0] < Ofluwol,, e +107],0).

Therefore, ((t) converges to ¢ as t — +o0o and the convergence is exponen-
tial, in the sense that there exists 8¢ < 0 such that

€)= ¢| < [Gole™, B~ 65 (C) (2.25)

for any ¢ under consideration. Furthermore, from (2.20), we deduce

we(t) = wi(0) exp (/Ot X da> + /Ot<¢,§,F>(s) exp (/t X da> ds

Thus, by the Jensen’s inequality, we infer the estimate

t 2
|w\i2<t>§c{rwo!i2 eZAMZ( / <wz,F><s>eA?<”>ds> }
3 0

t
<C {\w0|i2 Mt 4t /0 |F\i2 (s) e2Mi(t=9) ds}
Let v > 0 be such that |[F] ,(t) < C eVt then, if ¥ # |A§], there holds
2 2 2AS —2vF 2A8
wf, () < O {fuol?, 2450 41 (7 4 241) )
showing the exponential convergence to 0 of the component w. (]

Estimate (2.25) shows the exponentially slow motion of the shock layer
for small €. Precisely, the evolution of the location of the shock towards
the equilibrium position is much slower as € becomes smaller, since 5 — 0
as € — 0. For example, when f(s) = s2/2, { = 0 and 6°/(0) ~ e~ /¢ (sce
formula (2.11)).

Let us also stress that in the regime ({,w) ~ ({,0), a linearization at
the equilibrium solution U¢(z; () would furnish a more detailed description
of the dynamics, since the source term due to the approximation at an
approximate steady state would not be present. In fact, the description given
by the quasi-linearization is meaningful in the regime far from equilibrium
and its aim is to describe the slow motion around a manifold of approximate
solutions.
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4. Spectral analysis for the diffusion-transport operator

Our concern in the present Section is to estabilish a precise description
on the location of the eigenvalues of the linearized operator, in order to show
that the general procedure developed in the previous Sections is indeed ap-
plicable in the case of a scalar conservation law. The problem of determining
the limiting structure of the spectrum of the type of second order differential
operators we deal with has been widely considered in the literature. Among
others, let us quote the approach, based on the use of Priifer transform, used
in [12], in the context of metastability analysis for the Allen-Cahn equation.
Here, we prefer to follow the strategy implemented in [35], for the lineariza-
tion at the steady state of the Burgers equation. In what follows, we show
that the same kind of eigenvalues distribution holds in a much more general
situation, the main ingredient being the resemblance of the coefficient a® to
a step function a°, jumping from a positive to a negative value, as ¢ — 0%.

Fixed ¢ > 0 and linearizing the scalar conservation law (2.1) at a
given a reference profile U¢ = U¢(z;§), satisfying the boundary conditions
Us(+4;€) = ug, we end up with the differential linear diffusion-transport
operator

Liu = £ 0%u — 9y (af u) u(+Ll) =0, (2.26)
where a® = a®(x;&) := f'(U%(x;&)). The aim of this Section is to describe
the structure of the spectrum O'(EZ) of the operator £2 for ¢ sufficiently

small.
Given the function a®, let us introduce the self-adjoint operator

Mgv = e2 0% — b v v(£l) =0, (2.27)
where
1 2 1 da®
SN - :
b.—<2a> +2€dx' (2.28)

By omitting the dependencies from & for shortness, a straightforward calcu-
lation shows that if u is an eigenfunction of (2.26) relative to the eigenvalue
A, then the function v(x) defined by

o(z) = exp (—21 / o () dy) u(z)

(with z( arbitrarily chosen) is an eigenfunction of the operator M relative
to the eigenvalue p := e\. Since /\/lz is self-adjoint, we can state that the
spectrum of the operator EZ is composed by real eigenvalues. Moreover, if
u is an eigenfunction of (2.26) relative to the first eigenvalue Ay, integrating
in (—¢,¢) the relation Lzu = Au, we deduce the identity
l l
0= /E(Ez = X)udz = e (9u(l) — dyu(—€)) — A /ﬁu(:{:) dx

Assuming, without loss of generality, u to be strictly positive in (—¢,¢) and
normalized so that its integral in (—/,¢) is equal to 1, we get

A =€ (0u(l) — Opu(—0)) <0
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Hence, for any choice of the function a®, there holds
o(Lg) C (—00,0).

Our next aim is to show that under appropriate assumption on the behavior
of the family of functions a® as € — 07T, it is possible to furnish a detailed
representation of the eigenvalue distributions for small €. Specifically, we are
interested in coefficients a® behaving, in the limit ¢ — 07 as a step function

of the form
a— x € (=£§),
a(z) = ( ) (2.29)
a+ HAS (676)7
for some & € (—¢, /) and a4 < 0 < a_. We will show that, under appropriate
assumptions making precise in which sense a° “resemble” a° for € small, the

first eigenvalue A] turns to be “very close” to 0 for ¢ small, and all of the
others eigenavalues A5, with k > 2, are such that eX; = O(1) as ¢ — 07,

Estimate from below for the first eigenvalue. We estimate the first
eigenvalue pj of the operator MZ by means of the inequality

Mz,

il € =2

H1
[¥],5

for smooth test function v such that ¢)(+¢) = 0. Let us consider as test
function ¢°(z) := ¢§(z) — K¢(z), where

1 x
sita) = 5 [ aa).
€ Je
1
K= (2) = 5 {5 (=00 — @) + ¥5(O( + 2) }.
A direct calculation shows that Mgw := b° K and, assuming the family ¢
to be uniformly bounded, we infer
|bEK6|L2 |K8|L2 — C
‘wS_K6’L2 o ’wg’LQ - ‘Ka‘LQ |K€|;21’1/}8|L2 _1
as soon as [¢§] , > [K*[ ,.

The opposite case being similar, let us assume 1o(—¢) > ¥o(¢). From
the definition of K¢, it follows

il <

K, = 2L00300) + volOo(—) + (1)} < 24 (1),

Therefore, we deduce

l
K| 21052, > 2005 (~0) / (@) do =21

l 1 x
Ir ::/ exp </ a®(y) dy> dz
.y g J_y
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0

Since a® converges to the step function a” as ¢ — 07, it is natural to ap-
0

proximate the latter integral in term of the corresponding one for a”:

¢ 1 [* 1 /7 —la®—a
F:/ exp<a / <af—a0><y>dy>exp<e/ a“@)ay) dz > 71911 /e o,
—0 —/ —0

Since, for & small,

4
70 _ / ¢ o) dz + o (E+0/e / @6/ g
iy ¢

_ Eea_(§+€)/€{i(1 _ efa_(§+€)/€) _ i

a— a4

the subsequent estimate holds
—|a€ —a0
‘KE|;22’,(/}8‘i2 Z2£6 la®—a ‘LI/EIOZC&(?CQ/E.

whenever |a® — aO\Ll < ¢pe for some ¢y > 0. Thus, we deduce for the first
eigenvalue i of the self-adjoint operator Mg the estimate lugl < Ch eC2/e
for some positive constant C7,C5. As a consequence, since the spectrum

o(Lg) coincides with E_IO'(MZ), the next result holds.

Proposition 2.5. Let a® be a family of functions satisfying the assumption:
AO. there exists C > 0, indipendent on € > 0, such that

da®

dx

<C

Lo

0% oo €

If there exists § € (—0,4), ar <0 < a_ and C > 0 for which \a‘e—a0|L1 < Ck¢,
then there exist constants C,c > 0 such that —C e~cle < A < 0.

Let us stress that the request ay < 0 < a_ is essential, even if hided in
the proof. If this is not the case, the term K¢ would not be small as ¢ — 07
and its L? norm would not be bounded by the L?-norm of Yg. In fact, the
statement in Proposition 2.5 may not hold when a1+ have the same sign, the
easiest example being the case a®* = a4y =a—_ > 0.

The next Example gives a heuristic estimate for the first eigenvalue Af.

Example 2.6. Given —a < 0 <  and ay € R, let us set [ = (—a, ),
[a] :==ay —a_ and

a(z) = =X (_a0) (x) + a+X 0.5, (x).
Given A¢ > 0, let us look for function u € C(I), such that
Lu:=ecu” + (a(z)u) + X u=0, u(—a) =u(f) =0

in the sense of distributions. Since a’ = [a] dp, this amounts in finding two
functions u® such that

Liu:=cu| +aru/ + I u=0, u_(—a) =uy(B)=0
and the following transmission conditions are satisfied
ur(0) —u_(0)=0 and e (v (0) — u’_(0)) + [a] u+(0) = 0.
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The characteristic polinomial of L4 is pL(u; A°) 1= e pu? + ax p + \°, with

roots
+ —a_ j: A_ + —CL+ j: A+

ur = —, py o= B where Ay = +/(a+)? —4e )e.

2e
Assume \° < (a+)%/4e. Choosing us in the form

u_(z) = A,(e“t(o‘+m)—e”:(°‘+x)) and  wuy(z) = A+(e_“1(6_5”)—6_“jr(ﬂ_m)).

Setting 0% := eh2% and ij = e*’&/j, there holds
u_(0) = A_(6F —67) u (0) = A_(ut0t — u=67)
uy(0) = AL (07 —07) ulp (0) = AL (ul 07 — pui67).

Therefore, the transmission conditions take the form of a linear system in

Ag
(0F —00)AL — (07 —02)A_ =

0,
{2217 + [a)) 0F — (22 17 + [a]) 07 } Ay (2.30)

+ {(—26 pt +[a]) 65 + (26 pZ — [a]) 9:}A_ =0.

After some manipulation, the determinant D = D(A®,¢) of (2.30) can be

rewritten as

D = (la] + [A]) 0107 —([a] — {A}) 0567 —([a] + {A}) 010~ +([a] - [A]) 056

where [A] := AL — A_ and {A} = AL +A_.
Since V2 — 4z = |k| — 2|k|~L @ + o(z), for eA® — 0, there hold

5 + f) X"+ 0(eX®),

eln(070%) = Ja_|a + <a
+ —

W870%) = (a5t la-le) — (2 4 (2 enofen)
ay  la_|
-\ _ B o € €
eln(016-) = <a+ + |a_|> eX® +o0(eX®),
eln(6760-) =aq B — ((Z + ;i) AT + 0(eX%)
(A} = V(@) —dex + /(@ ) —dex = [d] (1 + jjg_) + o(ex?)

A] = V(ay)? —4e X — (a2 — 422 = {a} <1 - %AE) HelEd)

Hence, we infer

D~2 <a+ela—la/€ 4 A a Btlacta)/e _ a_€a+ﬁ/s> 7

CL+ a_
so that D ~ 0 for

AE ~ _a-l—[a]— (a+e—a+,8/a o a_€—|a7‘oc/€>
gla
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For ay = tu,, a =€+ € and B = £ — &, the above expression becomes

u? u?
2e €
to be compared with the expression for 2° obtained in Example 2.1
2 2
QF ~ %(e—u*(ﬂé)/e —emu-(t=9/ey| = ﬂ| sinh(u, £ /)| et/
€ €
so that

£

A€

~ 4] tanh(u. &/e)| < 4

Let us stress that this formula shows that hypothesis (2.17) is verified heuris-
tically for Burgers type equations.

Estimate from above for the second eigenvalue. Controlling the loca-
tion of the second (and subsequent) eigenvalue needs much more care and,
also, a number of additional assumption on the limiting behavior of the
function af as ¢ — 0. Precisely, we suppose a® € C°([—/,/]) satisfies the
following hypotheses:
Al. the function af is twice differentiable at any x # £ and
da® d?a® da® d?a?

<0<a® in(=4%), and aE’E<O<W in (§,9),

A2. for any C' > 0 there exists ¢, > 0 such that, for any x satisfying
|z — &| > ¢,¢&, there holds

daf
dx

A3. there exists the left/right first order derivatives of a® at & and

laf —a®| < Ce and € <C;

liminf e >0

e—0t

da®
X (ex)

As a consequence, the function b° 4 €\ satisfies a number of corresponding
properties, listed in the next statement.

Lemma 2.7. Let the family a® be such that hypotheses Al-2-3 are satisfied,
and let A\* < 0 be such that

;gga)\e > —i ag where «a, :=min{|a_|, |ay|}. (2.31)
Then there exist €, > 0 such that, for e < ¢, the functions b° 4+ c\®, with b°
defined in (2.28), enjoy the following properties:

B1. the function b* +¢e\® is decreasing in (—£,&) and increasing in (€§,£);

B2. there exist C,c > 0 such that, for any x with |x—&| > ce there holds
b +eX>C > 0;

B3. there exist the left/right limits of b° 4+ e\® at & and

B := limsup (b°(££) + eX°) < 0;

e—0t
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PROOF. Property Bl. is an immediate consequence of assumption Al,
since
d 1 _da® 1 d%a
= () A) = = gf — - ]
dCL'( +eX) 4? dm+2€dx2
From A2, given C' > 0, for z < £ — ¢, €, there holds

1 1 &
b+ eX > —(a® +a)(a® —a®) — Z¢ (fla
x

—4 2
0 L
1+]a|€+§C€ C

1
+ e + Zaz_

1 1
> )\E - 2 -
> EAT + 4a0 5
From such inequality, by choosing C' > 0 sufficiently small, and combining
with an analogous estimate on (£ + ce, ¢), property B2. follows.

For what concerns B3, we observe that, since a(§) = 0 and A < 0, there
holds

£

1 d
limsup(b°({+) +eX°) < limsup - e i(§) = —liminf ¢
e—=0T e—=0t 2 dx e—0+

thanks to A3. O

da®
dx(fi)‘ <0,

For later reference, we denote y the zeros of b° 4+ eA®, with —¢ < ¢ <
£ < y% < (. Since property B2 holds, we deduce that [y5. — &| < ¢, €.

Assume the assumption of Lemma 2.7 to hold, and let A5 and u§ = € A§
be the second eigenvalue of the operators EE and Mz, respectively, with
corresponding eigenfunctions ¢5 and 1)5. Such eigenfunctions are linked
together by the relation

o) = Aexp (g [ o) dy) 6500 (2.32)

for some constants A and z.. Since A§ is the second eigenvalue, the func-
tions ¢5 and 15 possess a single root located at some point zj € (—¢,¢). The
sign properties of b° + u5 described in Lemma 2.7 imply that zf € (y=,y7).
Then, ¢5 and 95 restricted to the intervals (—¢,z§) and (z(,¥) are eigen-
functions relative to the first eigenvalue of the same operator considered in
the corresponding intervals and with Dirichlet boundary conditions.

From now on, we drop, for shortness, the dependence on € of Ao, ¢a, 102, xg,
we assume, without loss of generality, g > £ and we restrict our attention
to the interval J = (x¢, (). Integrating on J, we deduce

¢
A2 / p2dx = £ (0,¢2(0) — Oup2(w0)) < —€ Dnpa(w0)

having chosen ¢9 positive in J. Assuming 1y to be given as in (2.32) with
A =1 and z, = zg, and normalized so that maxo = 1, from the latter
inequality we infer the inequality

Ao| > e 17" Butfa (), (2.33)

0 1 T .
.—/xoexp <2€/xoa (y)dy> dx
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Our next aim is to deduce an estimate from above on I. and an estimate
from below for 9,12(x0), in order to get a control on the size of the second
eigenvalue As.

From the definition of I, since x¢ > &, it follows

I < e‘as_aO‘Ll/Qg /f pan (e—20) /25 g _ & e|ae_a0|L1/2e(1 _ e‘”(e_“)/%)
o |a+|
< 2 plac=a’l,, /2
= lay|
whenever |a® — aD|L1 < Ce. Thus, estimate (2.33) provisionally becomes
Dol > C %(azo) (2.34)
for some positive constant C, independent on €.
Let xps be such that ¥9(xps) = 1, minimum with such property. From
the assumption on b° + ¢ A, it follows xp; € (x0,y+). Then there exists
xr € (zo,zpr) such that

d 1 1 1
W2 (0p) = > >
dx Ty — T Yy — & CE

Since the function 1 is concave in the interval (zg,y4 ), we deduce

dya dipa 1
T2z > 222 >
dz (w0) 2 dx (r2) 2 CoE

Plugging into (2.34), we end up with

<(Ce¢

| > <. (2.35)

for some C' independent on &.
As a consequence, we can state the next result relative to the second
eigenvalue As.

Proposition 2.8. Let a® be a family of functions sastisfying A1-2-3 then
there exists a constant C > 0 such that X5 < —C/e for any e sufficiently
small.

Spectral estimates. Collecting the results of Propositions 2.5 and 2.8 give
a complete description for the spectrum of operator L£° for small ¢, under
assumptions A0-1-2-3 on the family of functions a®.

Corollary 2.9. Let a® be a family of functions satisfying the assumptions
A0-1-2-3 for some § € (—{,¢), ar < 0 < a—. Then there exist constants
¢,C1,Cy > 0 such that

X< —Ci/e  and  —Che /F <A <0.
for any k > 2.

Hypotheses A0-1-2-3 are satisfied in the case of a family of function a®
that is a (small) perturbation of a function a® with the form

@) =4 (T2 xug@ + A (P55 v @)
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for some decreasing smooth bounded functions Ay, bounded together with
their first and second order derivatives, and such that Ay (+o0) = ay and
Al (+00) = 0.

5. Appendix. The hyperbolic dynamics

In this Section, we concentrate on the dynamics of the scalar conserva-
tion law
Ou+ Oy f(u) =0 (2.36)

with € (—/, /), together with boundary condition u(+¢,t) = uy, and a
given initial datum u(x,0) = up(z). Our aim is to give a self-contained
proved of the finite-time stabilization of the solution under appropriate as-
sumption on the flux function f and on the boundary values u4. This kind
of properties has been showed for the first time in [46] in the case of the
Cauchy problem.

Theorem 2.10. Assume the function f to be uniformly convez, i.e. f"(s) >
co > 0 for some constant co. If u_,uy are such that uy < 0 < u_ and
flug) = f(u-), then, for any ug € BV(—L,{), the solution u to the initial
value problem (2.36), u(+l,t) = ux, u(z,0) = ug(z) is such that for some
T >0 and & € [—£, ], there holds

u(-,\T)=0,, (&  in (=40

— Y hyp
where Uhyp(x; €)= U—X(_g¢) (z) + U+ X (e0) (x).

To prove the statement, we use the theory of generalized characteris-
tics, introduced in [15]. The convexity assumption on the flux function f
guarantees that for any point (z,t) € (—¢,¢) x (0,400) there exist a min-
imal, respectively maximal, backward characteristics, which are classical
characteristic curves, hence a straight lines with slope f’(u(z — 0,t)), resp.
f(u(x +0,1)).

The boundary conditions are understood in the sense of Bardos—leRoux—
Nédélec [5], meaning that the trace of the solution at the boundary is re-
quested to take values in appropriate sets. To be precise, let u, € (uy,u_)
be such that f’(u.) =0 and set

S {w 1£ Elw_yé ust. f(w) = f(u),

Then, skipping the details (see [54]), the boundary conditions u(4¢,t) = uy
translate into

u(—é +0, t) € (—OO, RU,)] U {U,}, u(f -0, t) € {U+} U [Ru+a +OO)
Since f(u4) = f(u—), there holds Rus = ug, and the condition can be
rewritten as

u(—0+0,t) € (—oo, uq] U {u_}, u(l —0,t) € {uy} Uu_,+o0) (2.37)

In particular, characteristic curves entering in the domain from the left side
x = —{ (respectively, from the right side 2 = £) possess speed f'(u_) (resp.

speed f'(uy)).
Now, we are ready to prove Theorem 2.10.
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PROOF. Let u = u(x,t) be the solution to the initial-boundary value
problem under consideration with initial datum wug. For later use, we set

C—(t) :=sup{z € [-4,4] : u(y,t) =u_ Vye (-l x)}U—L,
C+(t) :=inf{x € [—-4,0] : u(y,t) =uy VyéeE (z,0)}UL.

In particular, (_ < (4. We are going to show that (_(T") = (4 (T') for some
T>0.

1. There exists To > 0 such that u(z,t) € [uy,u_] for any x € (—¢,1).

Indeed, let w = u(x,t) be the solution to the Riemann problem for (2.36)
with initial datum

- U_ x < =4,
to(w) = { max{u_,sup ug} x> —4,

Hence, the restriction of @ to (—¢,¢) x (0, 00) is a super-solution to the initial
boundary value problem under consideration and, by comparison principle
for entropy solution, we infer u(z,t) < u(x,t). Since u(z,t) = u_ for any
x < f'(u_)t — £, there holds

u(z,t) <wu_ forx € (—=£,0), t > 20/ f (u_).

A similar estimate from below can be obtained by considering as subsolution
the restriction of u to (—¢,¢) x (0, 00), where u is the solution to (2.36) with
initial datum
min{u,, inf ug} x <U,
ug(x) = {
Ut x>/,

From now on, we assume that the solution u takes values in the interval
['LL_, u+] :

2. Assume that —¢ < (_(t) < (4+(t) < £ for any t; then there exists
T1 > 0 such that u(¢_(t) + 0,t) < u_ and uy < u(C4(t) — 0,t) for any
t>1T.

If w is continuous at ((_(7),7) for some 7 > 0, then u((_(7) 4+ 0,t) =
u_. Therefore, the maximal backward characteristic from ((_(7),7) is the
straight line © = (_(7) + f'(u=)(t — 7). For 7 > 2L/ f'(u_), such curve
intersects the boundary x = —¢ at some o € (0, 7). By continuity, all of the
maximal backward characteristics from (€, 7) with £ > (_(¢) and suffuciently
close to (_(7) intersect the boundary z = —¢ at some time o,(§) smaller
than ¢ and close to it. Because of the boundary conditions, this may happen
if and only if u(¢,7) = u_. Hence, u(x,7) = u_ for x € ((_(7),{—(7) +¢)
for some € > 0, in contradiction with the definition of (_. Thus, continuity
of u at ((_(7),7) may happen only for 7 < 2L/f'(u—). A similar assertion
holds for (.

3. There exist T > 0 and & € [—L, ] such that u(z,t) = U, (;§) for any
t>T.

Given 6 > 0, let Ty := 2¢/0 be such that
u? = u(C_(Ty) +0,Ty) < u_ and wy < ul = u(C (Th) — 0,Ty).
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Let 2% be the maximal backward characteristic from ((_(Tp),Tp), whose
equation is = (_(Ty) + f'(u?)(t — Ty). If 2% hits the right boundary
x = { at some positive time, the solution u coincides with U, (z;(-(Tp)).
Otherwise, there holds ¢_(Ty) — f'(u? )Ty < ¢, which gives

f’(uﬂ) - C_(Ty) — ¢ 20

Ty = Ty -t
Similarly, let 2% be the maximal backward characteristic from (¢4 (7p), Tp),
whose equation is @ = (4 (Tp) + f'(uf.)(t — Tp). If 2% does not intersect the
left boundary z = —¢ at some positive time, there holds f/(uf ) < 6.
Hence, for any € > 0, we can choose 6 sufficiently large so that v/ >
uy — € and uﬂ < uy + &. Thus, we have

dCy _dC _ flus) = flus+2)  flus) = Sl —2)

dt dt Uy — Uyx — € U — Uy + €

which is uniformly negative for ¢ sufficiently small. Hence, the curves (
and (_ intersect at some finite positive time 7" > 0.
O
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CHAPTER 3

Slow motion of internal shock layers for the
Jin-Xin system in one space dimension

1. Introduction

In this Chapter we investigate the slow motion of the shock layer for the
hyperbolic system with relaxation

O+ 0 =0

8151] + a23x¢(u) = é(f(u) _ ’U), ¢/(U) =0 (31)

where the space variable x belongs to a one-dimensional interval I = (—¢,¢),
¢ > 0. System (3.1) is complemented with appropriate boundary conditions
and initial data for the couple (u,v), and it is a particular case of a class of
more general hyperbolic relaxation systems of the form

(1) () = ()

usually utilized to model a variety of non equilibrium processes in continuum
mechanics: for example, non-thermal equilibrium gas dynamics ([39], [59]) ,
traffic dynamics ([4], [40], [50]) , and multiphase flows ([6], [8], [60]). Here
€ is a parameter, usually small, determining relaxation time.

In the case of system (3.1), the parameter £ can be seen as a viscosity
coefficient; we are interested in studying the behavior of the solution to (3.1)
in the limit of small £, and we want to identify the role of this parameter in
the appearance and/or disappearance of phenomena of metastability.

The main example we have in mind is the initial-boundary value problem
for the quasilinear Jin-Xin system, with Dirichlet boundary conditions in the
bounded interval I = (—/¢,¢), that is

O+ 0,v =0 rel, t>0

O + a’0pu = %(f(u) — ) (3.2)
u(£l,t) = ug t>0

u(z,0) = up(z), v(x,0)=1vo(x)= f(uo(x)) zel

for some €,¢,a > 0, u+ € R and flux function f that satisfies

f(s) = eo>0, flug) <0< fi(us), flup)=fluo)  (33)

We stress that, once the boundary conditions for the function w are chosen,
the boundary conditions for the function v are univocally determined. This
model was firstly introduced in [29] as a numerical scheme approximating
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solutions of the hyperbolic conservation law dqu+ 0, f (u) = 0. System (3.2)
is strictly hyperbolic, with the spectrum o (df, dg)t composed by two distinct
real eigenvalues +a.

In the relaxation limit (¢ — 0T), system (3.2) can be approximated to
leading order by

v=f(u) ’
that is
Ou+ Oy f(u) =0 (3.5)
together with v = f(u), and complemented with boundary conditions
u(—L4,t) =u_ and wu(l,t) =uy (3.6)

For the study of stationary solutions to (3.5), we recall Cahpter 2, where we
construct a one-parameter family {U, (:;§)} of steady states, parametrized
by £ that represents the location of the jump, and given by

Upo (73 §) = u—X(—p,6) (%) + utX(e,0)(7)
Once U, (+;&) is chosen, the class of stationary solutions (U, ,V,, ) for the

system (3.4) is given by the relation V, = f(U,. ), so that

hyp hyp
Vi (236) = f(u-)x(—r,6)(®) + f(us)x (e, ()
Moreover, every entropy solution to the initial-boundary value problem
Ou+ 0pf(u) =0, v=f(u)
{ u(£l,t) = ug

converges in finite time to an element of the family {U, (), V, ,(:;€)}

hyp

For € > 0, the situation is very different. If we differentiate with respect
to = the second equation of (3.2), we obtain

Ou = e(a?0?u — 0?u) — 0, f (u) (3.7)

Thus, stationary solutions to (3.2) solve
a?cd?u = 0, f(u), v =0 (3.8)
As an example, if we consider the case of Burgers flux, i.e. a = 1, f(u) = %uz,
we can explicitly write the stationary solution for the problem (3.8)-(3.6) as
U (x) = —k tanh <§:>, VE (x) = f(k) (3.9)

where k = k(e,¢,uy) is implicitly defined by imposing the boundary condi-
tions.

In the limit ¢ — 0%, the single steady state (U , V< ) converges point-
wise to (U, (1;0),V,,(-0)), while, for a class of general f(u) that verify
hypotheses (3.3), the stationary solution (U, V¢) converges pointwise to
(Uyyp (56), Vi (55€)), for some & € 1.

Finally, the single steady state (U®,V¢) is asymptotically stable (for
more details see the spectral analysis performed in the following), i.e. start-
ing from an initial datum close to the equilibrium configuration, the time
dependent solution approaches the steady state for ¢ — +oc.
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FIGURE 1. Profiles of (u,v), solutions to (3.2), with f(u) = u?/2,
a=1¢ =0.04 and uyx = F1. The initial data is given by the couple
(uo(z), f(uo(x))), with ug(z) a decreasing function connecting u
and u_. Profiles at times ¢ = 0, 0.2, 10, 10°, 0.5 x 106.

Next question is what happens to the dynamics generated by an initial
datum localized far from the equilibrium solution (U¢ , Ve ). Numerical
computations show that, starting, for example, with a decreasing initial
datum ug(z) (see Fig.1), because of the viscosity, a shock layer is formed
in a O(1) time scale. More precisely, the solution generated by such initial
datum still presents a smooth transition from u_ to u4, but the shock is
located far away from zero, so that the solution is approximately given by
a translation of the (unique) stationary solution of the problem. Once the
shock layer is formed, it moves towards the equilibrium solution, and this
motion is exponentially slow. Thus we have a first transient phase where
the shock layer is formed, and an exponentially long time interval where the
shock layer approaches the equilibrium solution.

Concerning the function v, starting with the initial datum vo(z) =
f(up(x)), we can observe that the position of the shock of u corresponds
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to the location the minimum value of the function v; so we have a first tran-
sient phase in which the profile of v stabilizes, and an exponentially slow
phase where the value of the minimum of such profile drifts towards the
value £ that represents the location of the equilibrium solution for wu.

Our aim is to describe the dynamics generated by an initial datum local-
ized far from the equilibrium solution and to determine a detailed description
of the low-viscosity behavior of the solutions.

To the best of our knowledge, the problem of the slow motion for the
hyperbolic-parabolic Jin-Xin system (3.1) has been never examined before.
However, system (3.2) can be reduced by differentiation to (3.7) together
with the equation du + 0,v = 0, and, as stressed, the study of stationary
solutions to (3.7) is the same of that of the scalar conservation law

O+ 0, f (u) = e0?u (3.10)

together with the additional condition d,v = 0.

Motivated by the analogies among the study of our problem and some
results for the scalar conservation law (3.10), here we follow the same ap-
proach presented in Chapter 3 for the study of (2.1). Hence,

— we build-up a one parameter family of approximate steady states

{Wo(z;8) }eer = {U(5), V(5 8) beer
such that (U®(;€),VE(+,€)) := (U?, V) for some £, and with the additional
propriety that (U°(;§),Ve(,§)) — (U, (:€), Vi, (:€)) as € — 0 in an

hyp
appropriate sense. Moreover we require the error

€
PiW?] — oV
= 1
P5 (W] —a?0,U° + ~(f(U7) = Vo)
to be small in € in a sense to be specified.
— we describe the dynamics of the viscous system in a neighborhood
of the family {U=(+;&),Ve(:;€)}.

Once a set of reference states {U®(-; ), VE(+;€)} is chosen, we determine
spectral proprieties of the linearized operator around (U€, V¢) showing that,
under a control on how far is the approximate state from being an exact
stationary solution, a metastable behavior appears.

2. General Framework

Let us consider the Jin-Xin system

ou+ 0zv =10 zel, t>0

Oy + 20, = %(f(u) ) )
u(£l,t) = ug t>0

U(ZE,O) = Uo(l’), ’U($,0) = UO(m) = f(’LLo(.Z‘)) rel

for some flux function f chosen so that assumptions (3.3) hold. System
(3.11) can be rewritten as

Oz =Fl2), Z|,_,=% (3.12)

45



= = = 1
v P512) =\ ~aau+ L(rw) - v)

We are interested in studying the behavior of the solution to (3.12) in the re-
laxation limit, i.e. € — 0. We assume that there exists a one-parameter fam-
ily of functions {U*(+;€), V=(;€) }eer such that (U%(-;€), Ve(-;€) = (U5, VF)
for some £ € I. When £ # &, an element of this family can be seen as an ap-
proximate stationary solution to the problem, i.e. FE[U®(+;€),VE(+;€)] — 0
as € — 0 in an appropriate sense to be specified. Moreover, we require that,
in the relaxation limit, (U*(;£),V®(:;€)) — (U,,, (), Vi, (). We re-
mark that, once the one-parameter family of functions {U¢(+; &)} is chosen,
the couple {U®(-;£),Ve(:;&)} is univocally determined by the relation

Ve = —a%e0,U° + f(U?)

52, a stationary

Example 3.1. In the case of Burgers flux, i.e. f(s) = %

solution to (3.11) satisfies

u? 2 C?
T T
with boundary conditions u(+¢) = Fu*, for some u* > 0. Asin Example 2.1,
an approximate solution U®(x; &) to the first equation of (3.13) is obtained
by matching two different steady states satisfying, respectively, the left and

the right boundary conditions together with the request U¢|,—¢ = 0 . In
formula

e0,u = v (3.13)

by tanh (K (€ — 2)/2¢) in (€,0) (314

where a = 1, and k4 are chosen so that the boundary conditions are satisfied

U (@ ) = {k_ tanh (k_(€ — x)/2¢) in (—¢,€)

k4 tanh (Zj(f T E)) = u4 (3.15)

2
%, we have

k2 in (—¢,

Moreover, by the condition v =

k3/2 in (€,0)

3. The linearized Problem

As already stated before, in order to describe the dynamics generated
by an initial configuration localized far from the steady state (U¢,V¢), we
assume to have a one-parameter family

W (2;8(1)) := (U (2 £(2)), VE(;(2)))

parametrized by £ € I, such that the couple (U®(z;£(t)), VE(z;£(¢))) is an
approximate stationary solution to (3.11), in the sense that it satisfies the
stationary equation up to an error that is small in €. More precisely, we
assume that there exist two family of smooth positive functions Q5 = Q5(&)
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and Q5 = Q5(¢), uniformly convergent to zero as ¢ — 0, such that, for any
& € 1, the following estimates holds

[ (), PEIIWE( D] < QY] Vi € CI)
[((), Pa[WE (-, D] < QY] e Vi € CI)

Once a one-parameter family {W*¢(+; &)} satisfying (3.16) is chosen, we look
for a solution to (3.11) in the form

{ u(,t) = US(5€(t)) +u' (1)

(3.16)

U('7t) = VE('; f(t)) + vl<'7t)

Thus we are trying to describe the dynamics in a neighborhood of the family
{Ue(5€(t)), VE(+;€(t))} using as coordinates the parameter ¢ and a distance
vector Y = (ul,v!) | determined by the difference between the solution (u, v)
and an element of the approximate family. Substituting in (3.11), we obtain

Ol + U (- g)% O VE(56) + Dt =0
0! + 0V (56) e + F(O.U7(5 ) + 0’ = T {J(U°(:) +u') — V(56) — ')
Since f(U® +ul) = f(U®) + f/(U%)u! 4+ o((u!)?) , we get
Ol = ~0,0" — QU7(56) o + PEIWE(:)]

€ (3.17)

o' = a0’ +_(f/(U%( )t — ') — BV (1)

+ P [We (-, §)] + ©[u]

where
Pi W] := -9, V*®

P5[We| := —a?0,U° + %(f(UE) —Ve)
Q°u| := o(u)

Example 3.2. Let us recall the Example 3.1, where we construct an ap-
proximate stationary solution for the Jin-Xin system with f(u) = u?/2 and
a = 1. We compute in this specific case

1
PHW(5)i==0:V(58), PEW (5 Q= =0uU% () += ((U%(5))°/2=V7(59))
From the explicit formula for U¢(x; &) given in (3.14) we get

k2

5= [1 — tanh? (Z;(& — fv)ﬂ in (=£,¢)
2

k
2—: [1 — tanh? (2:(5 - x))} in (§,0)
so that, in this specific case, P5[W?] = 0. On the other hand, —0,V¢(z;§) =
e02U* (x5 &) — O, f(US(w;€)). By direct substitution, we obtain the identity

Pf [WE(H f)] = [[arUaﬂx=§5x=€
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in the sense of distributions. We also have
- 1
[[axU ]]xzé = %(k— - k-l—)(k— + k+)

In order to determine the behavior of Pj[W?®(;¢)] for small e, we need
an asymptotic description of the values k4. To this aim, let us set k4 :=
Fus(l+ hy) and Ay := £ F . Relation (3.15) becomes

u+ At 1
tanh 1+h =
a (ZF 2e (1+ i)> 1+ ha
Therefore, the values hi are both positive and then
TRAN < 1
2e — 1+ hst

tanh (:F

that gives the asymptotic representation

1 2
hy < —-1l=—
* = tanh (Fur Ay /2e) eFuxdz/e 1

= 2etUEAE/F Lot (3.18)

where l.o.t. denotes lower order terms. Finally

1 2
[0:UTomg = o (ke = i) (ke 4 k) = %(h_ +hy) + Lot
where u4 = Fu* for some u* > 0, so that we end up with
2
[0:U o < %(6_“*(“5)/5 —emu=9/2) Lot (3.19)

showing that this term is exponentially small for ¢ — 0 and is null when
¢ = 0, that corresponds to the equilibrium location of the shock when f(u) =
u?/2.

In this case, if we neglect the lower order terms, we can write an asymp-
totic formula for €f, that is

2
O () ~ LE (e w4 /2 pmus(l=0)/2) (3.20)
€
It follows that the hypothesis (3.16) is satisfied in the special case of f(u) =
u?/2.

We can also numerically compute the limit of the solution (U, V¢) for
e — 0T. Figure 2 explicitly shows how the profile of the stationary solution
depends on the value of €. For fixed £, we observe that, as € becomes
smaller, the transition between uw_ and wu; becomes more sharp, while v
tends to f(u*)dy—¢, according to the fact that, in the limit ¢ — 0T, the
solution (U®(+;£), VE(+;€)) converges to (U, (+;€), V,,, (::§)).

Let us go back to the system (3.17). From now on, (u!,v!) = (u,v) and
— O,v

Y= (v> ’ LeY = —aQOxu—I—é(f'(Ua)u — )

48



1 _ T T
€=0.005
05 — — —¢=0.025
£=0.045
— = ¢=0.065
0 .
-0.5-
-1¢ ! ! T I I I I
-1 -0.8 -0.6 0 0.2 0.4 0.6 0.8
v
T
0.55 -
05 S _
~\— /7
0.45 ¢=0.005
sl ~ — — =002
€=0.045
0.35 - — =~ ¢=0.065
03
0.25 -
0.2 ! ! ! ! ! ! ! ! !
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

FIGURE 2. Profile of the stationary solution (u,v) = (U, V¢)
when f(u) = u?/2. The steepening of the shock layer and the
convergence to a Delta function of v as € becames smaller are
depicted.

Moreover, we introduce the following notation: if ¢, ¢ € C, then (¢, ¢) :=
Jr ¥ ¢, while if ¢ = (¢1,92) and ¢ = (¢1,d2), then (P, ) = (Y1, 1) +
<T/}25 ¢2>

Let us assume that, for any &, the linear operator EZ has a sequence
of eigenvalues \; = A\j(§) with corresponding (right) eigenfunctions ¢j, =
¢5.(&,+) (for more details see Section 3). Denoting by 95 = ¥i(§,-) the
eigenfunctions of the corresponding adjoint operator [,Z* and setting Y, =
Yi(&5t) = (5.5 €),Y (1)), we impose that the component Y] = (u1,v1) is
identically zero. More precisely, since we will prove that the first eigenvalue
is real and tends to zero as € — 0 , we need to solve the equation in a
subspace in which the operator doesn’t vanish. To this aim, we set an
algebraic condition ensuring orthogonality between 1§ and Y, in order to
remove the singular part of the operator Eg. Thus, denoting by Yy the initial
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datum of the perturbation, we have

L WiGEN), YD) =0 and ([W5(:6). () =0 (3:21)
so that p
W0, 0¥) + {05 (, ) 5 V) =0

Since ¥§ = (¢}, ¢7) is the first (left) eigenfunction, there holds EZ’*zp‘i =

A§ap5, that is
PO+ FUGOW) _ ru
1 =M (W’)
0z} — g"iﬁ) '

Hence, from (3.21) we get

d d
oeut ” U (1) S 4 PEWY]
ot ()=o)l s =
Oevi ' —OVE( €) Q7 [u] + PR [WF]
Since <¢1, L3Y) = Aj(5,Y) = 0, we have

d d
(Ot ) % ) + (w18, 0V (. &)

dt
d d
FOIO T o) + W0, -0V (.6
and we end up with a scalar differential equation for the variable &, that is
dg (W7 (58), Qu] + P5[WE(, OI) + (Wi (5 ), PIIWE(: I
dt as (&, u,v)

where

o (& u,v) =07 (+ §), u)—(0cy (-5 €), V) +(P1' (5 €), OcU" )+ (W1 (5 €), 0 VF)
Since we are interested in the regime Y ~ 0, the equation (3.22) is approx-
imately solved for small Y. Thus the term 1/a°({,u,v) is expanded for
u,v ~ 0, yielding
1 1 . 1
as(§Y)  (§1(58),0:We)  (Pi(5€), 0 WF)?
1 1 (0cpi(+5€),Y)

+PIW (59

+ Qu] + P3[W(;,§)]) = 0

(3.22)

(0cp1(5€),Y) + R

Rl:<wi<~;5>7agwa>—<6g¢1<,£>, V) (5(5€),06W)  (4i(5€), 0:W*)?
_ (0695 (:). V)
[(Y5(5€), W) — (0eai, (5 E)Y) [ (P (5 €), 0 W*)2
where

(P1(5€), 06 W=) == (1 (5 €), 0cU) + (1 (5€), 0 VF)
Now, for sake of simplicity, let us call af(§) := (¥7(;&), 0:¢W*(-,§)). Thus
we end up with the nonlinear equation for £(¢), which reads

g (O, V)
dt:“@(” G >

+o76Y] (@i(58) Yo() =0 (3.23)
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where
(¥1, FF[W7))

PO=

iyl y) (14 B ¢ i W+ @
ao(f)
Ry = (O (56),Y)?
= Tr (0 = e (50, V(@@
s o))
el(gvv) T 048(5)

Q°[Y] = (0, Q7[u])

(3.24)
Equation (3.23) has to be coupled with the equation for the perturbation
Y. To this end, (3.17) is rewritten in the form

DY =LY —OW (1) 4 FIW QY] (3.29)
Using (3.23), we end up with the following equation
HY = (L& + MY + H*(z;§) + RE[Y, €] (3.26)
where
ey L[ FOUOF(© (Bewi(:).Y)
0@ \ —0VE(6) 0°(6) (0w (1), Y)
H:6) = PiW(5 )] = 0:U(+, £)6°(€)
’ P3[W (- )] = 0V (-, £)6°(€)
—0:US(+6) p°l€,Y
REY.€] = ( e <Q€Eup] 3 ])

Hence we obtain the following coupled system for the shock layer location
&(t) and the perturbation Y

{ oo (10 28R ey

oY = (Lg+ MY + H(z;6) + RE[E, Y]

(3.27)

Example 3.3. Let us consider the Jin-Xin system, for which one obtains
Pi[We] = =0, V=(:5¢)
1
P5[We] = —a®0,U°(:;¢) + C(FUR(:€)) = VE(59))

For what concerns the linear operator, setting a®(z;&) := f/(U%(-,€)), we
get the following expressions
1
— Oyv a?0,v + ~a*(&v
LEY = 5 1, . , LYY = °l
—a 8xu+g(a (:8u—v) Oyt — v

complemented with Dirichlet boundary conditions.
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To obtain an asymptotic expression for the function 6°(¢), we need to
approximately compute the functions 9] and d¢W*®. As usual, we refer to
the case f(u) = u?/2.

For ¢ ~ 0, the function ] is close to the eigenfunction of the operator
Eg’* relative to the eigenvalue A\ = 0, with

a®(z;€) == u_x(—r6)(®) + usx(e.0) (2)
For example, in (—¢, &) we have
0" + U =0
00"~ Tyt =0
PI(-0) =0, [$i]¢=0
That is " = A(1 — 6_%(9”’”0)) and " = £0,9)". By imposing the

conditions on the boundary and on the jump, and by doing the same com-
putations in the interval (§,¢) we obtain

P(x) ~ P (z) = (1—eurlt=9/aey (1 — emu-(Hm/atey g < ¢
' e B L T R GO TS

u%(l o eu+(ff§)/a28)€fu_(@Jr:p)/azs T < €
Yy (z) ~ P (@) =4 ¢

= (1- e_u*(Z+§)/a2€)ee“+“*1)/a2a o> ¢

so that ¢ = (¢¥¥,¢7) ~ (1,0) for € ~ 0. Furthermore, with the approxima-
tion U®(x; &) ~ Upyp(x;€) and VE(x;§) ~ Viyp(x), we have

Us(z;§+ h) — Us(x;€) 1

. ~ —E[[“]]X@,&h) ()
Ve(x; h) — Ve (x; 1
@EN = VAR ()l ony (@)

so that 0:U® and 0¢V*® converge to —[u]d¢ and —[f(u)]d¢ respectively as
e — 0 in the sense of distribution. Thus, since (¥7,0:W?) ~ —[u], we
deduce an asymptotic expression for the function 6¢

1
0% (&) ~ —— (1, P{[W*
(€) ~ ~ g (LRI
With the choice of W® = (U¢, V) proposed in Example 3.1, such expression
becomes

96(5) ~ u?*(efu*(l+£)/€ - efu*(lfﬁ)/s) (328)

4. Spectral analysis

In this Section we analyze the spectrum of the linearized operator EZ in
order to determine a precise description of the location of the eigenvalues.
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We recall the expression of the operator

— Oyv
LZY =
¢ fa281u+é(f'(U5)u —0)

so that the eigenvalue problem CZ(ID = AP reads
/\90 = =0
1
M = —a*up + —(F(U")¢ = )

complemented with Dirichlet boundary conditions. Hence, by differentiating
the second equation with respect to z, we obtain

ea’ P — 0u(f'(U%)p) = M1+ ey (3.30)

Thus we are interested in studying the eigenvalue problem for the differential
linear diffusion-transport operator

LECp =02 — Dy(aCp), af(z;€) := f(U(x:€)) (3.31)

In Chapter 2, Corollary 2.9, we have already proven that, under opportune
hypotheses on the behavior of the function a®(x;¢) in the limit ¢ — 0, the
eigenvalues of £57%¢ have the following distribution

(3.29)

—CeF <A <0 and A< L VE>2
13

From (3.30) we observe that A\ is an eigenvalue of Lz if and only if
A€ = A(1 + e]) is an eigenvalue for the operator £5"*¢ defined in (3.31).
Hence, if A = /¥ is an eigenvalue of Ez, then there exists an eigenvalue
Ap%¢ such that

2
D

so that
)\n 1 =—= i \/ 1 4 4elyse (3.32)
Hence, if \}%¢ > —-=, then )\J € ]R Moreover since A\}°¢ are negative for
alln e N
IxX 2AUSC X _2)\’080

= X = n <0 (3.33)

A <
T Tt e T /T deave— 1

Thanks to Corollary 2.9, we know that A}*¢ > —2L and \}*¢ ~ e7¢/¢ as

1
¢ — 0. Thus, from (3.32) and (3.33), there exists a constant C’ such that
—C/s<)\JX<0 )\JX<_i
T 2e

Moreover, if for some n > 1 there exist others A\}*¢ such that \}*¢ > _E’
then they are of order 1/¢, so that

/\J)i < C”/E
On the other hand, if A\%%¢ < —-L then \/X 7 € C. More precisely
1

AX :—711\/ 1+ denuse
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Proposition 2.9 assures that there exists £ > 2 such that \}* < —ﬁ for all
n >k, so that Re(\;]%) and Im();%) are terms of order 1/e. For example,
if £ = 2 and we take into account \5°¢ < 0, the corresponding eigenvalues
for Lg verifies

1 1
Re()\QJ,)ﬁ(:) = 50 Im()\é]i(t) = i% 11+ 48)\12’SC|

Moreover, for AJ%, since [A5%¢| > |A5%¢|, we have

1 1
Re(MX) = —5- = Re(MY)  [ImOGE)] = £-/11 + dexge] > [Im()

Figure 3 shows the connection between the two spectra when k& = 2, so that
only the first two eigenvalues belong to R.

oy c o) c
I
JX 1
A3
1
)\JX :
X 2,+% X vsc “yVSC vsc vsc
AT AR A Y
T
X!
Ao
I
I
I
A
|
I
I

FIGURE 3. The spectra of the operators L and L&v%¢.

Hence, the following proposition holds

Proposition 3.4. Let a® be a family of functions satisfying assumptions
A0-1-2-3 for some & € (¢,0) and for some ay < 0 < a—. Then the spectrum
of the linearized operator ﬁg can be decomposed as follow

1. MY eR and —e 9/ <AX <0
2. )\f’)f €R and )\1‘]’)_( < -—1/e
3. There exists k > 0 such that
MLER and ME<-C"/e, Vn=2,.1+k
4. /\iﬁe(CforalanQ—i-k and
1 C
RO =~ Im(Y) ~ =€
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Remark 3.1. In [35], Kreiss G. and Kreiss H. performed the spectral anal-
ysis for the operator

Lo = e0ppu — O (f (U (2))u)
arising from the linearization around the exact steady state U¢(z) of
Opu = €0yt — Oy f (w)

proving that all the eigenvalues are real and negative. By using this result
and our spectral analysis, if we linearize the system (3.11) around the ex-
act stationary solution (U%,V¢), we can prove that the real part of all the
eigenvalues of the linearized operator is negative, so that the steady state
(U¢,V?) is asymptotically stable with exponential rate.

5. Asymptotic estimates for the first eigenvalue

In this Section we want to study the behavior in e of the principal
eigenvalue of the operator L associated to the linearization of (3.11) around
an approximate stationary solution. Since usually the metastable behavior is
the result of the presence of a first small eigenvalue, our aim is to determine
an asymptotic expression for )\{{f We have already emphasized the fact
that A/X is an eigenvalue of the nonlinear Jin-Xin system if and only if
AU = AX(1 4+ eA/X) is an eigenvalue for the following operator

L35 = edPu — O, (f (US(z;€))u) (3.34)

where U¢(z;£(t)) is an approximate stationary solution for the scalar con-
servation law

{ Oy = €d%u — O f (u) (3.35)
u(£l,t) = Fu*, u(z,0) = wup(x)
In particular

g 556

A =
S TN
In Chapter 3, in the special case f(u) = u?/2, U(x;£(t)) is defined in (3.14).
We have also proven that , for e ~ 0

*2
vsc u —u*e 10— —y*e~!
APe(€) ~ — {e =9 4 ¢ (ug)}

so that
ur? [e—u*e*(Z—o + e—u*s*(ﬂs)}

)

ML~ (3.37)

L (/1= 202 [emwe () 4 e (E40)]

This formula shows that the principal eigenvalue of the Jin-Xin system when
f(u) = u?/2 is exponentially small in e.

In order to determine an asymptotic expression of the first eigenvalue of
the operator (3.34) for a general class of flux function f(u), we refer to the
paper of Reyna L.G. and Ward M.J., [64]; here the authors use the method
of matched asymptotic expansions (MMAE) to determine an approximate
stationary solution to (3.35).
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Miming their approach and computing the same calculations of [64],
with the appropriate changes due to the fact that the study of our equation
is performed in the interval (—¢, ¢) instead of (0, 1), the leading order MMAE
solution for ¢ — 07 is given by a function ugs(x; &) ~ usle ™! (2 — £)], where
¢ € (—4,¢) and the shock profile us(z) satisfies

wy(z) = flus(z)] — f(u*), —o0<z< o0
us(z) ~u* —a_e” %, z— —o0 (3.38)
us(z) ~ —u* +aye "z — 400

The positive constant v4 and a1 describe the tail behavior of us(z) and are
defined by

ve = Ff (Fu)

a Fu 1 1
g (55 i”PA [f@)—f@”)iViWiﬂﬁ)(m

In particular, when f(u) = u?/2, us(z) = —u*tanh(u*z/2), according to
(3.9). Notice that the MMAE solutions satisfies exactly the equation, while
the boundary conditions are satisfy within exponentially small terms. In-
stead, the construction presented in Example 2.1 and followed here gives a
function U¢(x;¢&) that verifies exactly the boundary conditions and solves
approximately the stationary equation.

The eigenvalue problem associated to the linearization around uy is given
by

Lo = %0000 — Ve Ha — )] = A\

¢(£f) =0 (3.39)
1 1

V(D) = (@) + 5 ()l (2)

In [64] it is proven that the first eigenvalue of (3.39) has the following
asymptotic representation (for details see [64, Formula (2.14)])

1 _ _
AVSE(E) ~ ~5u [a+uie_”+5 N8 4 g 2 ev-e (€+§)} (3.40)
Finally, from (3.36), we get
1

w [“Wi@_”*a =8 g p2emve (€+£)]
A

(3.41)

1_}_\/1_7 a+1/2€_”+5 1(e— & 1a_ v2e—v-e 1(€+§)]

This formula shows that )\17 " is exponentially small as ¢ — 0. We remark
that, when f(u) = v?/2, ay = a_ = 2u* and vy = v_ = u*, so that (3.41)
is the same as (3.37).

6. The behavior of the shock layer position

Let us consider the system (3.27) for the couple (£,Y) and let us neglect
the o(Y') terms

% _ <8£¢§>Y>
ﬁ‘9@<“+ %@))
Y, = (L5 + ME)Y + HE(x;€)
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This system is obtained by linearizing with respect to Y and by keeping the
nonlinear dependence on &, in order to describe the slow motion of the shock
layer position far from the equilibrium location &.

We complement the so called quasi-linearized system (3.42) with
initial data

£(0) =& € (—£,0) and Y(z,0) = (ug(z),vo(x)), wuo,vo € L*(—1,0)
(3.43)
The aim of this Section is to analyze the behavior of the solution to (3.42) in
the limit of small €. Subsequently, we will prove a result that characterizes
the behavior of the shock layer location, proving how it moves towards the
unique stationary solution with exponentially small rate.
Before stating our result, let us recall the assumptions. Let the family
{W?=(-;€)} be such that there exists two families of smooth positive functions
f and Q5 such that

[ (), PIWE( QD] < Qi) Vib € C(T)
(b (-), Pa[WE(, D] < ()¢l e Vib € C(I)
We also assume that W*¢ is asymptotically a solution, i.e. we require that

lim [0, =0, Tim 5], =0 (3.45)

(3.44)

uniformly with respect to &.

Example 3.2 show that (3.44) and (3.45) are verified in the case of the
quadratic flux f(u) = u?/2.

For what concern the linear operator EE, we have already proven that
there exist two positive constants C7, Cy independent on £ such that

M) ~ ReDZE©) > Cr, —em@/F <Xi(§) <0 VEe (~£,6) (3.46)
Additionally, we assume that there exists a constant C3 > 0 such that
Q1(8) + Q3(8) < C|A1(9)], VEe (—4,0) (3.47)

By comparing the asymptotic expression for )\{)f_ given in (3.37) with the one
for ©2f and Q5 obtained in Example 3.3, we can easily check that hypothesis
(3.47) is verified for the Jin-Xin system when f(u) = u?/2.

Finally, concerning the solution Z = (z,w)” to the linear problem 0;Z =
L7, we require that there exists v > 0 such that for all § € (—¢,¢), there

exist constants C¢ and C such that
[(z,w) ()| 12 < Cel(z0,wo)| 26", Ce < C VE € (—4,0) (3.48)

Remark 3.2. The assumption that C¢ < C for all £ means that the estimate
(3.48) holds uniformly in £. Since £ belongs to a bounded interval of the
real line, if we suppose that £ — Cg¢(;) is a continuous function, then there
exists a maximum C' in [/, /].

Estimates for the perturbation Y. Our first aim is to obtain an
estimate for the perturbation Y. We recall that

oY = (Lg+ MY + He(z;§) (3.49)
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where
e 1 [OUR(5€)0°(8) (Oe9pi(5€), Y)
MY =% (agvm €)0°(€) (s (€ >Y>>
oo [ PIIWES ] = 0:U (-, €)6°(8)
H(“)‘(Ps[wwn—ag‘/% o (f))
In particular, MZ is a bounded operator, such that

IMellzzzme) < ClO7()] < O] o0 +[05],0), VEE (=40 (3.50)

while
|H€|L°° < Cl|QE|LO<> +02|Q |L°° (3'51)

For the special case of f(u) = u?/2, both Mg and HF are bounded by terms
that are exponentially small in ¢, while, for a general class of flux functions
f(u) that verify (3.3), the hypotheses we required assure that all the terms
in the equations for the perturbation Y are small in €.

Theorem 3.5. Let hypotheses (3.44)-(3.45)-(3.47)-(3.48) be satisfied. Then,
for € sufficiently small, there exists a time T > 0 such that, for all t < T
the solution Y to (3.49) is such that

V], (1) < [C1UQ ] o + Caf Qo] (1= e7#7) + €7 [Yo 2
for some positive constants Cp, Cy and

pe :ZSng{, 1) = C19]] e + [95],00) > 0

PROOF. Since the operator EZ + MZ is a linear operator that depends
on time, to obtain rigorous estimates on the solution Y, we need to use the
theory of stable families of generators, that is a generalization of the theory
of semigroups for evolution systems of the form du = Lu. We will use
some results of [62], which have been summarized in the Appendix A. More
precisely, we want to show that £g + Mg is the infinitesimal generator of a
Co semigroup T¢(t, s).

To this aim, concerning the eigenvalues of the linear operator L, we
know that )\‘{)i(f) is negative and behaves like e~ /¢ for all £ € (—£, /), so
that A := sup, )\‘{i(é) is such that —e™'/¢ < A < 0, and this estimate
is independent of ¢. Hence, by using Definition 3.7 and Remark 3.5 (See
Appendix A), we know that, for ¢t € [0, 77, ‘CZ(t) is the infinitesimal generator

of a Gy semigroup Sg(4)(s), s > 0. Furthermore, since (3.48) holds, we get
ISey ()] < Ce 1l
so that the family {EZ( t)}E(t)E(—M) is stable with stability constants M = C

and w = —|Aj|. Furthermore, since
HMZHL(LQ;H@) < C(‘QﬂLw + ‘Qg‘LOO)7 V¢ € (_676)
Theorem 3.8 (see Appendix A) states that the family {L6 5 } €(t)e(—0,0)

is stable with M = C and w = —|A5| + C(|9Q5], - + 925 ]Loo) < 0
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From Theorem 3.11 (in Appendix A), we can define 7¢(t, s) as the evo-
lution system of 0,Y = (L + Mg)Y, so that

Y (t) = Te(t,s)Yo + /tﬂ(t,r)Ha(m;f(r))dr, 0<s<t<T (3.52)

Moreover, there holds
I Te(t,8)| < Ce ) = |A]| = CI9] oo + |95],0) > 0

Finally, from the representation formula (3.52) with s = 0, it follows
t
V1,20 < Wl sup O] [ 0 an 0<e<T (35
gel 0

so that, by using (3.51), we end up with
V],2(8) < ClIQ oo + 195] 0] (€770 4+ 1) 4+ 7#7|Yp| 12 (3.54)
O

Remark 3.3. In the special case of Burgers flux, y° is going to zero expo-
nentially as e — 0, since A\] behaves like e~/ and from the explicit formula
of f and QF in Example 3.2. In the general case, assumption (3.45) assures
that u* — 0 as e — 0.

Remark 3.4. To apply Theorem 3.11, we need to check that the domain
of EE + ME does not depend on time, and this is true since L’g + Mg de-
pends on time through the function U¢(z;&(t)), that does not appear in the
higher order terms of the operator. More precisely, the principal part of the
operator does not depend on &(t).

Slow motion of the shock layer. An immediate consequence of the
estimate (3.54) is that, for [Y| , < M for some M > 0, the function §(t)
satisfies

g
o=
More precisely, we can prove the following

() (L +r(t) with [r(t)] < C1lOf] o + Col Q5] o + €Yol L2

Proposition 3.6. Let hypotheses (3.44), (3.45), (3.47) and (3.48) be satis-
fied. Assume also

s0°(s) <0 forany se€l, s#0 and 0<'(€) < 0 (3.55)
Then, for small € and ’Y()’Lm the solution & converges to & as t — 400.

PRrOOF. Thanks to assumption (3.45), for ¢ and |Yp|2 sufficiently small,
estimate (3.54) holds globally in time. Hence, for any initial datum &, the
location of the shock layer satisfies

SORN t
/50 o = /0 (14 r(s))ds (3.56)
where

()] < 1|9 o + Col Qo0 + e |Y0 2
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More precisely, if ¢ and \Y0|L2 are sufficiently small, the dynamics of the
shock location ¢ is well described by

df_ I3 I3 —
GO, -

(p1, F[WF])
(1, 0: W*)
Therefore & converges to & as t — +oo, and the convergence is exponential
for any ¢ under consideration, since, by means of the standard separation

of variable method, we obtain the following estimate for the shock layer
location

(3.57)

€(8) = €] < l&ole™, 8=~ 07(§) (3.58)
where 6°/(€) — 0 as € — 0.
U

Formula (3.58) shows the slow motion of the shock layer for small €. Pre-
cisely, the evolution of the collocation of the shock towards the equilibrium
position is much slower as € becomes smaller.

For example, when f(u) = u?/2, € = 0 and 6°'(0) ~ e~'/¢ (see formula
(3.28)). We also emphasize that hypothesis (3.55) are verified in the case of
the Jin-Xin system with f(u) = u?/2.

The following table shows a numerical computation for the location of
the shock layer for different values of the parameter € and f(u) = u?/2. The
initial datum for the function u is ug(z) = 322 — 2 — 1. We can see that the
convergence to & = 0 is much slower as € becomes smaller.

The numerical location of the shock layer £(¢) for different values of the parameter €

TIME ¢t | £(t), e =0.1 [ £(t), e =0.07 [ £(t), e = 0.055 [ £(t), € = 0.04 [ £(£), e = 0.02

0.2 —0.4008 —0.4020 —0.4029 —0.4040 —0.4059

1 —0.3314 —0.3345 —0.3360 —0.3374 —0.3389

10 —0.3070 —0.3263 —0.3304 —0.3320 —0.3326
10° —0.0103 —0.1600 —0.2562 —0.3181 —0.3325
10% —1.9725¢ 12 —0.0084 —0.1115 —0.2531 —0.3320
0.5%10% | —1.9725¢" 12 | —2.2102¢~ ™ | —1.5057e~ 1 —0.0379 —0.3099

Figure 4 shows the dynamics of the shock layer (i.e the dynamics of
the solution u to (3.11)), obtained numerically. When ¢ = 0.1, the shock
layer location converges to zero very fast: as we can also see from the table,
when ¢t = 103, the value of £(¢) is already very close to zero. On the other
hand, when € becomes smaller the shock layer location moves slower and it
approaches the equilibrium location only for very large ¢t. Finally, Figure 5
shows the profile of the shock layer for the flux function f(u) = u*/4 that
still verifies hypothesis (3.3).

7. Appendix A

In this section, we briefly review some results on the theory of evolution
systems by A. Pazy [62, Chapter 5|. For more details and for the proofs of
the Theorems, see [62], Theorem 2.3, Theorem 3.1, Theorem 4.2.

Let X be a Banach space. For every 0 <t < T, let A(t) : D(A(t)) C
X — X be a linear operator in X and let f(¢) be an X valued function. Let
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FIGURE 4. Plots of the shock layer for different times and
different value of the parameter €. Notice also the steepening
of the shock layer as & goes to zero.

us consider the initial value problem

Ou=At)u+ f(t), wu(s)=uo 0<s<t<T (3.59)
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FIGURE 5. Profiles of the shock layer at different times with a
convex flux function f(u).

In the special case where A(t) = A is independent of ¢, the solution to (3.59)
can be represented via the formula of variations of constants

u(t) =T (t)up + /0 T(t—s)f(s) ds

where T'(t) is the C semigroup generated by A. In [62] it is shown that a
similar representation formula is true also when A(t) depends on time.

Definition 3.7. Let X a Banach space. A family {A()}.cjo,r) of infinitesi-
mal generators of Cjy semigroups on X is called stable if there are constants
M > 1 and w (called the stability constants) such that

(w,+00) C p(A(t)), for te|0,T]
and
[ ROV )| < M- )7,
for A > w and for every finite sequence 0 < t; <to,....tx <T, k=1,2,.....

Remark 3.5. If for ¢t € [0,7], A(t) is the infinitesimal generator of a Cj
semigroup Sy(s), s > 0 satisfying ||S¢(s)|| < e*?, then the family { A(Z) },(0,7
is clearly stable with constants M =1 and w.
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The previous remark means that, if for every fixed ¢ € [0, 7] the operator
A(t) generates a Cy semigroup S;(s), and we can find an estimate for ||.S¢(s)||
that is independent of ¢, then the whole family {A(t)},c[o,7] is stable in the
sense of Definition 3.7.

Theorem 3.8. Let { A(t) }cjo, be a stable family of infinitesimal generators
with stability constants M and w. Let B(t), 0 <t < T be a bounded linear
operators on X. If ||B(t)|| < K for allt < T, then {A(t)+ B(t)} is a stable
family of infinitesimal generators with stability constants M and w + M K.

In order to prove the existence of the the so called evolution system
U (t, s) for the initial value problem (3.59), let us introduce X and Y Banach
spaces with norms || ||x, || ||y respectively. Moreover, let us assume that
Y is a dense subspace of X and that there exists a constant C' such that
|lw||x < Cllw|ly for all w € Y.

Definition 3.9. Let A be the infinitesimal generator of a Cjy semigroup
S(s), s >0, on X. Y is called A-admissible if it is an invariant subspace
of S(s), and the restriction S(s) of S(s) to Y is a Cp semigroup on Y.
Moreover, A, is the infinitesimal generator of the semigroup S(s) on Y, and
it is called the part of A inY.

Next, let us fix ¢t € [0,T7], and let A(t) be the infinitesimal generator of
a Cp semigroup S¢(s) on X. The following assumptions are made

(H1) {A(#)}¢epo,r) is a stable family with stability constants M and w.
(H2) Y is A(t)-admissible for ¢ € [0, 7] and the family {A(t)}cp0.7) of

parts A(t) of A(t) in Y is a stable family in Y with stability constants M,
w.

(H3) For t € [0,T], Y C D(A(t)), A(t) is a bounded operator from Y
into X and ¢ — A(t) in continuous in the B(X,Y’) norm.

Remark 3.6. The assumption that the family {A(t)};cjo,m satisfies (H2)
is not always easy to check. A sufficient condition for (H2) which can be
effectively checked in many applications states that (H2) holds if there is
a family {Q(¢)} of isomorphism of Y onto X such that |Q(¢)||y—x and
Q) ||y x are uniformly bounded and t — Q(¢) is of bounded variation
in the B(Y, X) norm.

Remark 3.7. Condition (H3) can be replaced by the weaker condition
(H3) For t € [0,T], Y € D(A(t)) and A(t) € L*([0,T); B(Y, X)).

Theorem 3.10. Let A(t), 0 < t < T be the infinitesimal generator of a

Co semigroup Si(s), s > 0 on X. If the family {A(t)}ejo,r) satisfies the

conditions (H1)-(H3), then there exists a unique evolution system U (t,s),
0<s<t<T,in X satisfying

U, s)| < Me“"™), for 0<s<t<T (3.60)
and such that the solution to (3.59) can be written as
t
u(t) = U(t, s)ug +/ U(t,r)f(r) dr (3.61)
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forall0<s<t<T.

One special case in which the conditions of Theorem 3.10 can be easily
checked is the one where the domain of the operator D(A(t)) = D is inde-
pendent on ¢. In this case we can take D as the Banach space which we
denote by Y, and the following Theorem holds

Theorem 3.11. Let {A(t)}yecpo,1) be a stable family of infinitesimal gener-
ators of Cy semigroups on X. If D(A(t)) = D 1is independent on t and for
v € D, A(t)v is continuously differentiable in X, then there exists a unique
evolution system U(t,s), 0 < s < t < T, satisfying (3.60). Morevoer, if
f € CY([s,T),X), then, for every ugp € X, the initial value problem (3.59)
has a unique solution given by (3.61).
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CHAPTER 4

Existence of stationary solutions for the viscous
shallow water system in a bounded interval

1. Introduction

The shallow water equations describe different situations in fluid dy-
namics by modeling the dynamics of a shallow compressible/incompressible
fluid; typically, they are used to describe vertically average flow in two or
three dimensions in terms of the horizontal velocity and depth variation.

The term shallow refers to the fact that, by assumption, the horizontal
length of the channel L is much greater than the height H, so that that
the quantity H/L can be interpreted as a small parameter. When the open
channel flow has a vertical scale that is small relatively to the horizontal
one, it is possible to derive simplified equations; this is the case of the Saint-
Venant system, that provides a one-dimensional model of free surface water
flow in a channel.

The first derivation of such system has been performed by Saint- Venant
[66] in 1971; the model consists in a hyperbolic system of two partial dif-
ferential equations with a structure that is the same of the system for isen-
tropic gas-dynamics in Eulerian coordinates in the case of a pressure with
a power-law form with exponent equal to 2. Since then, the simpler model
for shallow water is called Saint-Venant system. These equations are widely
used in practice and in literature being object of many thousands of pub-
lications devoted to the applications, the validations and to the analytical
and numerical study of the solutions.

Depending on assumptions and approximations, shallow water models
may also contain other terms and give raise to different type of partial
differential equations. Indeed, natural modifications of the model emerge
when additional physical effects are taken into account, like viscosity, friction
or Coriolis forces.

The original hydraulic model of Saint-Venant is written in the form of
two partial differential equations in one dimension

Oh + Oy(hw) = 0,  dy(hw) + dy(hw? + P(h)) = edp(u(h)dpw)  (4.1)

Here h(x,t), w(z,t) and P stand for the fluid depth, velocity and pressure
respectively. The viscosity coefficient p(h) for simplicity is assumed to be
w(h) = h and the parameter ¢ is the ratio ¢ = % where H and L are two
caracteristic lengths along the axis Oz and Ox respectively. As already
stressed, it is assumed that L > H (shallow water model) so that ¢ can be
considered small.

The Saint Venant equations can be derived from the hydrostatic ap-

proximation in the Navier Stokes system ( see, for example, J.F.Gerbeau
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and B.Perthame [23]), while the Saint Venant problem without viscosity
can be viewed as a special case of the compressible Euler system ( Lions,
Perthame, Tadmor [44, 45]). For more details, see also [51].

There are many literatures on mathematical studies on system (4.1),
which represents a class of reaction-convenction-diffusion system of the form

Global existence results and asymptotic stability of equilibrium states are
obtained from Kawashima’s theory of parabolic-hyperbolic systems in [30],
D. Bresch, B. Desjardins, G. Métivier in [11], P.L. Lions in [43] and W.
Wang in [70] for viscous model, and Dafermos (see [16]) for inviscid model.
K. Zumbrun, C. Mascia, P. Howard and F. Rousset (see, for example, [52,
56, 57]) have developed a general program for proving stability of shock
waves. They have been able to show that, for general classes of shock waves,
the spectral stability of linearized operator implies nonlinear stability. Most
of these results concern with free boundary conditions. Recently, initial-
boundary value problem with p = h®, (aw > 1/2) has been studied by Li, Li
and Xin [41].

In this Chapter we specifically consider the initial-boundary value prob-
lem for the hyperbolic-parabolic viscous shallow water system with a general
term of pressure P(u), that is

Owu + Oyv = 0, zel, t>0

v? v
O + 0, (u + P(u)> = 20, (u@x (a)) (4.2)
u(£l,t) =ug, v(Elt)=vs t>0

where the space variable x belongs to a one-dimensional interval I = (—¢,¢)
of the real line. As usual, t is the time variable, while the parameter ¢ < 1
represents the viscosity intensity. Equation (4.2) is also complemented with
initial datum for the couple (u,v). A primary prototype for the term of
pressure P(u) is given by the power law P(u) = rku?, v € (1,2).

When P(u) = %guz, g > 0, system (4.2) is the usual Saint-Venant
system. In this special case, the constant ¢ is defined as the ratio between
the length and the hight of the channel. Moreover, with the change of
variables u(x,t) = h(x,t) and v(z,t) = h(z,t)w(z,t), we obtain system
(4.1).

Given an unsteady flow under steady boundary conditions, it is expected
that the flow will eventually tend towards a steady state. Hence, in what
follows, our concern is to prove the existence and uniqueness of a stationary
solution to (4.2).

The existence of stationary solutions for Saint-Venant’s type systems
has been considered for a long time in the literature. To name some of these
results, see [9], [21] and [52].

We point out anyway that these papers deal with the open channel case
(i.e. z € R), in which the study of stationary solutions presents less difficul-
ties than the case of a bounded domain where boundary conditions play an
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important role: indeed, in this case, we have to handle with compatibility
conditions on the boundary values.

2. The unviscid problem

To begin with, let us consider system (4.2) in the small viscosity limit
(¢ — 07). Formally, the solutions to (4.2) converge to the solutions of the
hyperbolic system
O+ 0, =0

O + 0 <15 + p(u)> -0 (4.3)

whose standard setting is given by the entropy formulation. Hence we pri-
marily concentrate on the problem of determining the entropy jump condi-
tions for the hyperbolic system under consideration (see also [51]).

Such conditions are determined by the choice of a couple entropy /entropy
flux, that, in the present setting, are given by

P P v
E(u,v) = 7 + P(u), Q(u,v) := 202 + 2P(u);
corresponding to the physical energy /energy flux of the system.
Givenuy > 0,vy > 0and ¢ € R, let (u—,v_) and (u4, v+ ) be an entropic
discontinuity of (4.3) with speed ¢, that is we assume that the function

(u—,v_) forx <ct
(U, V)(z,t) :=
(ut,vy) for x > ct
is a weak solution satisfying, in the sense of distributions, the entropy in-
equality
o 09
— 4+ —=<0 4.4
ot + or — (44)

The request of weak solution translates in the Rankine-Hugoniot condi-

tions [u (E - c)] o, {,U (3 _ C) n p(u)} —0 (4.5)

u u
where [g] := g4 —g— denotes the jump of the function g. Setting h:= ? —c,
equations (4.5) become

[uh] = 0, [vh + P(u)] =0 (4.6)

The entropy condition (4.4) reads as [Q — ¢£] < 0. Hence, plugging (4.6)
into (4.4), one obtains

BuhS + 2P(u)h] <0 (4.7)

By using the first equation in (4.6), we obtain a system for the quantities
h3.:
uthi —u?h® =0, uih? —u_h® =Plu_)— P(us)

whose solutions are

u_ [P(u_) — Pluy)

h e y2 _ e [Pu) = Plus)

v (- —us) w o (u—uy)
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When we look for stationary solutions to (4.3), i.e. ¢ = 0, (4.8) translates

into a condition for the boundary values. Indeed, since h =
Plu_)—-P Plu_)—P
2 = u_u+[ (o) = Plup)] 5 u+u_[ (u_) = P(uy)] (4.9)
(u— —uq) (u— —uq)

Example 4.1 (Power law). Let us consider system (4.3) with P(u) = ku?,
v € (1,2). Stationary solutions to (4.3) solve

2
v=Cj, ﬁ—f—mﬂ:C’g (4.10)
u

where C, (> are positive integration constants. Since (] is univocally de-
termined by the boundary conditions v(+f) = vy = C1, the equation for u
reads

k)T — Cyu+ 5% =0 (4.11)

where 0 := vy = Cy. Once u(+f) = uy are imposed, there exists a solution
to (4.11) that satisfies the boundary conditions if and only if there exists C5
such that both the equations above are satisfied

1 _ 1 _
rul - Cu_ + 92 =0, /{urr —Ciuy +79°=0

Hence
=9 —2
] 0]
C5 =kul + — =rul + —
u— U+
Thus we obtain

ku—(ul —ul)

Ci=krul + ——— =7 4.12
2 = Kuj + w — (4.12)

and
o (uy —u_) = ku_us (ul —ul) (4.13)

Let us stress that equation (4.13) is exactly the condition (4.9) in the special
case P(u) = ku”. Moreover, the entropy condition (4.7) becomes

3
v v
[zuz + 2“"%] =0

In the special case of the scalar Saint-Venant , i.e. P(u) = % gu?, equation
(4.10) reads

1
v =7, 5gu?’ — Cou+ 92 =0 (4.14)
where
52 1 L 2
vt = 59U7U+(U+ + u-), Cy = §g(u+ +uju_ +ul) (4.15)

Moreover, only entropy solutions are admitted, so that, from (4.7)

v

—(uy —u_) >0

U4
Since vy, uy > 0, then u_ < uy so that the jump condition describes the
realistic phenomenon of the hydraulic jump consisting in an abrupt rise

of the fluid surface and a corresponding decrease of the velocity.

68



Equation (4.14) admits a large class of entropy solutions satisfying the
boundary conditions, given by all that piecewise constants functions in the
form

() we (L)
Uy, , V.., )(x)=
(o Vo)) { () € ()

where x( is a point in the interval [ = (—¢,¢) and u_ < u.

When the term of pressure P(u) is not specified, stationary solutions to
(4.3) satisfy

v=Cj, Pu)u — Cou+C? =0

together with the boundary conditions for the couple (u,v). Hence, since
C1 = vy := 0, there exists a stationary solution to (4.3) in the form

(U_,’l_)) x € (_67 iL‘())
uv =
U@ {m,m v € (20,0)
if and only if both (4.7) and (4.9) are satisfied.

3. Existence and uniqueness of a stationary solution for the
viscous system

For £ > 0, stationary solutions to (4.2) solve

O,v =0

v? v
By (u + P(u)> — 20, (u@x <E))
u(£l) =ug, v(£l) =v4
The previous system can be rewritten as
v=C_C4
(’;12 + P(u) = —e%axu + Oy (4.16)
u(£l) =ug, ov(£l) =vy

where C1, Cy are integration constants. The second equation of the system
reads

eC10,u = —P(u)u + Cou — 012

In order to prove the existence of a solution to (4.16), we state a Lemma
that gives a description of the function

f(u) = —P(u)u + Cou — C
Lemma 4.2. Let f(u) = —P(u)u + Cou — C%, with P(u) such that
P(0)=0, P(+00)=+o0, P'(u)>0, P'(u)>0 (4.17)

for all w € RT. Then, for all Cy, there exist at least a value Co such that
there exist two positive solutions to the equation f(u) = 0.
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PROOF. Since f(0) = —C? and f(+00) = —o0, we want to prove that
there exists a value u* such that

fu') =maxf,  f(u) >0
We have
Fw) = ~P(u) + o — Pluyu,  f'(u) = —2P'(u) — P"(u)
Without loss of generality, we now suppose Cy > 0. Since f'(0) = Cy > 0,
f'(+00) = —oo and f”(u) < 0, there exists u* such that f'(u*) = 0. Now
we ask for f(u*) > 0 and we get
f(u*) = =P(u*)u* + Cou* — C? = P'(u")u** = C? > 0

so that we get a condition on the constant Cy, that is

Cy < \/ P! (u*)u*? (4.18)

where u* = u*(C2) since it solves f/(u) = 0. O

Remark 4.1. Condition (4.18) assures that, for every choice of C; > 0,
there exists a function ¢ := ¢(C1) such that, for every Cy > ¢(C1), there
exist two positive solutions to the equation f(u) = 0.

Let us go back to the study of solutions to (4.16). First of all, let us
notice that, once the boundary conditions are imposed, the solution v to
(4.16) is univocally determined by C; = v, where v = v4.

Concerning the equation for w , a positive connection between u_ and
uy (i.e. a positive solution to evdyu = f(u) connecting u_ and uy ) exists
only if (u—,u4) C (u1,u2), where u; and ug are the positive zeros of f(u).

Thus we are interested in studying the behavior of f(u) as a function
of (s, trying to describe how the distance between u; and us changes for
different values of the constant Cs.

Lemma 4.3. Let P(u) such that (4.17) holds, let f(u) = —P(u)u+Cou—7v?,
and let Cy be such that (4.18) holds, so that there exist two positive solutions
up < ug to the equation f(u) = 0. Hence, given uy > 0, the set A defined
as

A:={Cy>0:u <u_ <uy <usg}
is such that A = [Cq,+00), for some Cy > 0.

PROOF. Since u; = u1(C2) and ug = uz(C2), we want to show that
f(u,Cs) is an increasing function as a function of Cy. This implies that, if
there exists a value Cy such that

U < Uu— < uyp <ug
than, for all C} > Cs
) <u- < ug < ub
where u] and u5 are the positive zeros of f(u,C5). We have

so that, since u > 0, if C4 > Cy, then f(u,C%) — f(u,C2) > 0. Thus, to
prove Lemma 4.3, we only need to prove that there exists at least a value
Cs such that u; < u— < uy < ug holds.
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To estimate from above uy, we write the equation of the line through
the points u = (0, —v2) and u = (u*, f(u*)), that is

) + 7
u*
Since u* is such that P(u*) = Co — P'(u*)u* (i.e. f'(u*)=0), we get
v=—0>+ P (u*)uu

V= —

Hence u; < @, where @ is defined as
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To understand the behavior of  for Cy — 400 we want to compute lime, 400 u*.
To this aim, let us define ®(u) = P(u) + P'(u)u. We have

®(0) =0, ®(u*)=Cy @ (u)=2P"(u)+ P"(u)u>0, ®(u)> P(u)

Hence, since P(4+00) = 400, ®(+00) = +00. Moreover there exists &1
such that

— 2+ P ua=0 = a=

*

ut =& HCy) = +oo as Cy — +00
that is

lim " =400
Co—+o0

Thus we have proved that

=2
Pl(u*)u*
so that u; remains close to zero as Cy becomes bigger. Furthermore, we also
have

O<u < —0 as Cy — +0

O(u*) > P(u*)u* > P'(u)u®, Fu
Since ®(u*) — 0 as Cy — 0, we get
lim v* =0
Co—0
On the other hand we know that ug > u*, so that us — +oo as Cy — +o00.

Hence, if we choose Cs large enough, then the amplitude of the interval
(u1,u2) is such that (u_,uy) C (u1,uz2).

More precisely Co has to be bigger than max{C5,C5*}, where Cj and
C5* are such that either —P(u_)u_+Cju_—v =0 or —P(ut)us +C5*uy —
v = 0, that is either u_ or uy solve f(u) = 0.

O

Now let us define the region 3 of admissible values Co, i.e. the set
of values Cs such that there exists two positive solution to the equation
f(u) = 0 and lemma 4.3 holds. ¥ is determined, in the plane {Cj,C2} by

the equations

1 1
Cy < \/P'(u*)u*?, Cy> 17_012 +Pu_), Coy> EC% + P(uy)

Proposition 4.4. ¥ is the epigraph of an increasing function g : R — R,
that is

Y :=epi(g) ={(C1,0y): C1 e R,Co e R,Cy > g(x)} CR xR
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PROOF. In the plane (Cy,Cs) the functions Cy = iC’% + P(u4) define
two parabolas. Moreover, setting ¢(C2) := /P’ (u*)u*, we have

dim o(C2) =0, lim o(Cy)=+oo, ¢(C2)>0
Thus the function C7 = ¢(C9) is an increasing function in the plane (C1, C3).
Hence, 2= > 0 for all Cy > 0,

For example, if there no exists Cy such that either ¢~ 1(Cy) = 2C7 +

P(u_) or o= 1(C4) = i@% + P(u4), then

1
u—c% + P(uy) in (0,C})
gC)=q (4.19)
U—Cf + P(u_) in (C},+00)
where Cf is such that -1 (C5)? + P(u_) = i(C’i‘)Q + P(uy).
Otherwise, if there are intersections between ¢ ~!(Cy) and both Cy =
in + P(ux), g will be piecewise defined depending on the values of such
intersections.

%4 a

FIGURE 1. Plot of the region ¥ of admissible values (C1,C3)
when there are no intersections between ¢! and the two parabo-
las. ¥ is plotted in the plane (Cy,Cy), but we stress on the fact
that the constant C; is univocally determined once the boundary
values vy are imposed.

O

Let us go back to the problem of existence and uniqueness of a solution
to (4.16); we have to prove that, once the boundary conditions are imposed
, there always exists a 2¢-connection u(z), i.e. a solution to

£00,u = —P(u)u + Cou — 0*
such that u(+¢) = us. Hence

2 = b /u+ du = F(Cs) (4.20)
) “Pwu+t Cou—2 '
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Remark 4.2. When ¢ = +o00, the +oco-connection is the so called hete-
roclinic connection , i.e. a solution to the stationary problem for z € R
tending to two fixed points for z — —oc0 and & — 400.

Concerning the function F(C3), we want to prove that there always
exists a value Cj such that F/(C3) = 2¢. We first notice that

F ‘r = +o00, I'=0%
Next We can easily check that F/(C2) — 0 as Cy — +o00. Finally

aF 5/u+ Y du <0
— = —€0 u
dCs w. (—P(u)u+ Cou — 02)?

since u, v > 0. Hence, given ¢ > 0, there always exists Cj such that F'(C3) =
2¢. Now we can prove the following

Theorem 4.5. For any £ > 0, let us consider the following problem
Ou+ 0 =0

0o + 0, (f + P(u)> = 20, (u@x (%)) (4.21)
v(£l) = vy, u(£l) =ug

where P(u) is such that (4.17) holds and vy, us+ > 0 satisfies
® Vy =V = v
o 0*(ut —u-) = u_uy(P(uy) — Plu-)).
e The entropy condition
3

v v
— +2P(u)—| <0
[M + (u)u] <

Then there exists a unique stationary solution to (4.21).

PROOF. Lemma 4.3 assures that, given ui > 0, there exists a set of
values Cs such that w1 < u— < ug < ug, so that there exists a positive
connection u(x) satisfying the boundary conditions. Moreover, from the
study of the function F(C5), we have proved that, fixed C; = v and £ > 0,

o
there exists a unique value C5 € 3 such that

U+ du o0
=Y /u —Pu)u+ Ciju—1v2

Hence there exists a unique stationary solution (U, V) to (4.21), where V =
C1 and U is a positive connection between u_ and uy, of "length” 2¢.

O

The case of Power Law. Let us consider a term of pressure given by
P(u) = ku?, v > 1, that is such that (4.17) holds. The stationary problem
(4.16) reads

v=C_C1
eC0,u = —ku' T 4+ Cou — 012 (4.22)
u(£l) =ug, ov(£l) =vg
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and f(u) = —ku’™ + Cou — C%. We have

fllu)=—k(y+1Du"+Co=0 & u*= _G g

N 7 2 S\ k(1+7)

Following the idea of the proof of Lemma 4.2, the request f(u*) > 0 trans-
lates into

1/2
cr < (“1 Neraasl (4.23)
(L+7) "7 Ko

Let us stress that condition (4.23) is exactly (4.18) in the case P(u) = ru”.
Furthermore, Lemma 4.3 is still verified and we have the following estimates
for the two positive solutions to f(u) =0

v+1 o° 1 v 2
U < ——-—, ug>|——-—| -C;
' v Gy ("9(1+’Y) 2

where In this case, the region X of admissible values (C, Cs), is determined
by the relation (4.23) together with Co > ﬁCf + ul, so that Proposition
4.4 is obviously still verified.

The Saint-Venant system. An interesting case in which we can explicitly
develop calculations is the Saint-Venant system, where the term of pressure
P(u) is given by the quadratic formula P(u) = $gu?, g > 0.

In this case stationary solutions solve

1
V=10, €eU0yu= —§gu3 + Chu — 02

where, as usual, v = v_ = v;. The condition (4.23) for the existence of
two positive solution u1 and ug reads C3 > 27/8gCf. Let us stress that,
from the Cardano formula for the equations of third degree in the form
u® + pu+ g = 0, we know that there exist three real solutions if and only if

2 3 7

2
<0 & c§>§gc;*

Moreover, since f(0) = —v2 and Cs > 0, we can explicitly show that ug <
0 < uy < ug, where ug is the third (negative) root of the equation f(u) = 0.

Figure 2 shows an explicit plot of f(u) for different choice of Cy. We
can see how the first positive zero u; remains close to zero while the value
of uy becomes bigger as Co — oco. From Figure 2 we can also see that the
interval (u_,u4) is included or not inside (uj,u2), depending on the choice
of 02.

Figure 3-4 show the solution to the equation evd,u = f(u) for different
choices of the boundary values.

For the Saint-Venant problem, it is also possible to explicitly plot the re-
gion X, contained in the positive half-plane {C; > 0,C5 > 0}. The equations
for X reads

Cy > §€/§ ci® cy > ic% i, o> icf + 1gui
2 U_ 2 U 2
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A

1000

f(u) = —0.5u® + 400u — ©*

—4000

FIGURE 2. Plot of f(u) = —3gu® + Cou — v? for fixed ¥ and
multiple choice of Cs, together with u_ =5 and uy = 25.

FIGURE 3. Plot of the solutions to evd,u = f(u). The first
choice for u_ and w4 is such that uy > ug. In the plane (z,u) we
can see that the solution starting from u(—¢) = u_ can not reach
U4, since ug is an equilibrium solution for the equation. On the
other hand, if we choose u’_, v/, such that (v’ ,u/ ) C (ug,u1), we
have a negative connection.

We want to know if there exists a value C such that %{*/ﬁ C’f/g =t %gui

To solve the equation, let us set & = C_'ll / 3, and let us study

1l g 3., 1 9
F(f)—if 5\/55 +§9ui
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FIGURE 4. Plot of the solutions to evd,u = f(u). In this case
(u—,uy) C (u1,usz), so that there exists a positive connection be-
tween u_ and uy. Moreover uy and ug, being zeros of the function
f(u), are equilibrium solutions for the equation.

We have

_ 68

F(0) >0, F(+00)=+0c0, F'(€) w

(6% — /g us)

Thus F’(£) = 0 if and only if £ = /g \/ux. Moreover F(é4) =0, so we
can define

C_(L_ = \/§ ’U,_3/2, élj_i'_ = \/g U+3/2

2
as the unique solutions to the equations %\3/57 C’f /3 = % + % gu?.. Further-

more, if we define C] such that

| N
u—_Cl +§gu_:a(§’1 —i—iguJr

we have C_'l,_ < Cf < Oy 4, so that 9% := g(C1) is defined as

1 2 1 2 : *
EC’l + J9u3 in (0,C7)

—C% + §gu3 in (C},+00)

Figure 5 shows the region ¥ when the boundary conditions are imposed.
We can explicitly see that Proposition 4.4 holds. The region ¥ is plotted
in the plane (Cp,C5), but we stress on the fact that the constant Cy is
univocally determined once the boundary values vy are imposed.
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4. The Power Law System with a General Viscosity

To complete this Chapter, let us consider the more general system

Oyu + Opv = 0, rzel,t>0
v? v
Byt + O, <u n P(u)) — 20, (V(u)&r (a)) (4.25)
u(£l) =ug, v(El) =vy t>0
where the space variable z belongs to the interval of the real line I = [/, /].
The term of pressure P(u) still verifies
P(0) =0, P(+00)=+o00, P'(s),P"(s)>0 Vs>0 (4.26)

while the viscosity term is such that v(u) > 0 for all u > 0.

We will show that, in this case as well, it is possible to prove the existence
and uniqueness of a stationary solution with the techniques of the previous
section. The stationary problem reads

0,0 =0

O <1;2 + P(u)) =¢ed, <V(u)8g3 (%)) (4.27)
u(£l) =ug, v(£l) =vyg

so that v = C1 = v, and u has to satisfy

ESV(U) Oy = —P(u)u + Cou — v° (4.28)
u
Let us define
O(u) = / ﬂds
0 S
Since v > 0, then
d(u) >0, @&(u)= 1/(uu) >0, Yu>0



where &' means the derivative of ® with respect to u. Thus, equation (4.28)
can be rewritten as
00, ®(u) = —P(u)u + Cou — 92
Now, let us define, as usual, f(u) = —P(u)u + Cou — v%; with the change of
variable w = ®(u), and since ®(u) is invertible, we have
00w = (f o ® 1) (w) = g(w)

We want to study the function g(w) as a function of w. First of all all we
know that the function f is increasing for u € [0,u*) and decreasing for
u € (u*,+00), where u*, implicitly defined as

P(u*) = Cy — P'(u*)u*
is such that f/(u*) = 0. Moreover , if Cy is such that
fw) >0 < Pu)u*? >0 (4.29)

then there exist two positive solution to the equation f(u) = 0. Given
v(u) > 0, since ® is defined only for u > 0 and since ®(u) > 0, '(u) > 0,
we have

1
= ¥
so that also ®~! is a positive increasing function. Now, let us consider
g(w) = (f o @ 1) (w); we want to show that there still exist wy,ws > 0 such
that g(w;) = g(w2) = 0. Since f(u1) = f(u2) = 0, wy and ws has to be such
that

d(w) >0, (@71 (w) >0

<I>_1(w1) = Uui, (I)_l('(UQ) = Uy (430)
Since ®1(0) = 0 and (®~!)’ > 0, then there exist and they are unique w;

and wy such that (4.30) holds. Hence, g(w) has exactly two positive zero
for all the choices of v(u) > 0. Furthermore

g'(w) = [f(@ " (w)) = (@ (w)) - (@7) (w)
so that the sign of ¢’ is univocally determined by the sign of f’. Therefore,
if w* is such that ®~!(w*) = u*, then

gd(w*)=0, ¢(w)>0forwel0,w), ¢'(w)<0forwe (w +0)

Example 4.6 (The Saint-Venant system). When P(u) = 3gu?, the station-

ary equation (4.27) for u reads
1
020, P(u) = —§gu3 + Cou — 2

where ®(u) = [; @ds. Now, let us consider a simple case where v(u) =
Cu®, a > 0, and let us plot the function g(w) = (f o ®~1)(w). We have

O(u) = C’/Ou s ds = guo‘, N (w) = (au)

3 1
1 o >
g(w) =—=g <C) wa + <C> Cowa — 72
« «

Q=

so that

2

Figure 5 shows the plot of g(w) for different choice of v(u), compared
with the plot of f(w) (where v(u) = w). More precisely, the red line and
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FIGURE 5. Plots of different g(w) with ¢ = 1, Co = 400 and
92 = 1000. The red line plots g(w) = —Fw® 4+ 400w? — 1000, the
green line plots g(w) = —%w3/2 + 4004/w — 1000, while the black
line plots f(w) = —fw? — 400w — 1000.

the green line plot g(w) with v(u) = é and v(u) = 2s? respectively. The
picture shows, as we have proved, that the monotonicity of the function is

preserved as well as the existence of two positive zeros.

5. Existence and uniqueness of a stationary solution

We are interested in studying the existence and uniqueness of the solu-
tion to the stationary problem (4.27). We have already shown that, once the
boundary conditions for the function v are imposed, problem (4.27) reads

V=0, V+ =7
{sv&rw =g(w), w(£l)=P(us)
where g(w) = (f o @ 1) (w), f(u) = —P(u)u + Cou — v
We first notice that condition (4.29) for the existence of two positive

solution to the equation f(u) = 0, assures that also g(w) has two positive
zeros. Indeed

P@ w)

o' (w)
Thus ¢'(w) = 0 if and only if w = w*, where w* is such that ®~!(w*) = u*.
Furthermore, following the idea of lemma 4.2, we have

gw*) >0 & f(@ (w")) >0 < f(u*) >0

so that we obtain (4.23). Moreover, a positive connection between ®(u_)
and ®(uy) (i.e. a positive solution to ev0;w = g(w) connectiong ®(u_) and
®(uy) ) exists only if (P(u_), P(us)) C (wi,ws2), where wy and wey verifies
g(w1) = g(wz) = 0.

Lemma 4.7. Let P(u) such that (4.26) holds, let g(w) = (fo®~1)(w) where
f(u) = —P(u)u + Cou — 2, and let Cy be such that (4.29) holds, so that
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there exist two positive solutions wi < wsy to the equation g(w) = 0. Thus,
gwen uy > 0, the set A defined as

A:={Cy>0:w; < P(u_) < P(ug) < wa}
is such that A = [Cy,+a), Cz > 0.

PRrOOF. Following the idea of the proof of Lemma 4.3, since g(w,Cy) =
f(¢~ (w,Cy)) and &~ (w) is an increasing function that does not depend
on Cy, then g(w, C2) is an increasing function in the variable Cs.

Thus we only need to prove that there exist a value Cy such that wy <
®(u_) < ®(uy) < wy holds. We know that g(0) = —v? < 0 and ¢'(w) > 0
for all w € [0, w*). Moreover

g(w*) = f(@~H(w*)) = f(u") >0

so that wy € (0,w*). Furthermore, we ask for

g (201_’22) =f <<1>—1 <2Cf>> >0 (4.31)

so that wy < é—z Condition (4.31) can be rewritten as

(o ()

that is, since @1 (w1) = uy

f <<1>—1 (iﬁ’j)) > f (27 (w1))

Since f and ®~! are increasing function in the interval [0,u*) and [0, w*)
respectively, we obtain a condition for the constant Cy that is 202 /Co > wi.
If this condition holds, then we have
0< < 20°
w bl
1 s
This formula shows that w; — 0 as Cy — +00. On the other hand we know
that ug > u* where u* is such that f(u*) = maxg f. Hence

O Hwy) > Hw*) =  wy > d(u¥)

Since u* — +o00 as Cy — 400, and since ® is an increasing and continuous
function, we know that ®(u*) — ®(+o00) = 400 as Oy — +o0o. Hence
wo — +00 as Oy — 400.

O

Remark 4.3. The region 3 of admissible values C5, i.e. the set of values
(5 such that there exists two positive solution to the equation g(w) = 0 and
Lemma 4.7 holds, is determined, in the plane {C7, C2}, by the equations
20,

w1

C? < Pl(u ', g(®(us)) >0, Co<

Proposition 4.8. The region ¥ of admissible values is the epigraph of an
increasing function g : R — R.
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PROOF. In the proof of Proposition 4.4, we have already seen that the
function ¢(C2) = /P'(u*)u* is an increasing function. Moreover, the con-
dition g(®(u+)) > 0 is equivalent to

9(®(ux)) = (f o @) (P(usx)) = f(us) >0

so that we obtain the usual conditions

Cy > LC% + P(u_), Cy> iC% + P(uy)
U— Uy

Finally, the function ¥(Cs) = wQIC(E; is such that

2C
Co—+00 ’LUI
since w1 (C?) is a decreasing function. Thus the function ¢ is an increasing

function, since it is obtained by matching increasing functions.
O

The final step is to investigate the existence of a 2¢-connection, i.e. a
solution to evd,w = g(w) such that w(+£f) = ®(uy). Thus

P(uy) dw
! =cv - =
2=ev [pm_) Foo iw) o)

We first noticed that G’ s = T00. From the study of G(C2), we can prove
that there always exists a value C5 such that G(C5) = 2¢. Indeed, we can
easily see that

im G(Cy) =0, ¢ g

Cy—+oo TCYQ
for all Cy > 0.

Hence, Theorem 4.5 can be generalized to a Shallow Water’s type system
(4.25), with a viscosity term v(u) > 0 for all u > 0.

6. Perspectives

The study of the existence of stationary solutions for a partial differential
equation is usually strictly related to the study of their asymptotic stability.
Indeed, it is expected that the time dependent solution will eventually tend
towards the steady state.

There is a broad range of techniques to investigate such kind of problem.
In our contest, the main difficulty stems from the fact that the problem
under consideration is an hyperbolic system, so that the spectrum of the
linearized operator around a steady state can be contained in the complex
plane. However, if one succeed in proving that the real part of the eigenvalues
is negative, this would be enough to prove the asymptotic stability of the
equilibrium solution.

To this aim, the idea should be to linearize the original system around
the steady state, and to perform a spectral analysis. The main problem is
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that, in this case, the stationary solution is not constant in space, so that
one has to deal with a system in the form

LY =)Y, Y e R?

where the linear operator £ is a second order operator with variable coeffi-
cients

L= A(2)0% + B(x)9, + C(x)

Another possible way to deal with the problem is to try to find a Lia-
punov function for the original system. For example, system (4.2) admits a
mathematical entropy which is also a physical energy

2
v

E(u,v) = o0

+ P(u)

that satisfies the ”energy inequality”

(i) o (3 (-2, (2))) = ()

For example, in the Saint-Venant case, i.e. P(u) = %qu, a candidate Lia-

punov function could be
_ ¢ (v=V)? 1 —
& = 4 gu—U)?
o= [ {U5E 4 Jetw- 02

The next step is to prove that its time derivative along the solutions to (4.2)
is negative definite. The main difficulty here is to deal with the sign of the
solutions w, v and their derivatives at the boundary values.
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