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Introduction

Geometric variational evolutions, in particular curvature-based motions, may be
studied using an implicit-time scheme proposed by Almgren, Taylor and Wang [3].
Following the formal consideration that curvature can be seen as the variation of
the perimeter, they defined a time-discrete trajectory Eτk , where τ is a time step,
Eτ0 is an initial set and Eτk is a minimizer of

min
{
P (E) + 1

τ

∫

E4Eτ
k−1

dist(x, ∂Eτk−1) dx
}
, (1)

where P is the Euclidean perimeter and dist(·, ∂F ) is the Euclidean distance from
the boundary of F . We can read (1) as follows: the set Eτk “contracts” by minimizing
the perimeter subject to a penalization of its “distance” from Eτk−1. After defining
Eτ (t) = Eτbt/τc for all t ≥ 0, a suitable limit as τ → 0 of these time-discrete
trajectories gives motion by mean curvature (Sections 3.1 and 3.2). Note that this
scheme can be framed in the setting of minimizing movements (Section 2.1), after the
identification of a set E with its characteristic function u = χE and by considering
perimeter type energies (see Chapter 3).

The same scheme can be repeated taking P the crystalline perimeter

Pα(E) = α

∫

∂∗E
‖ν‖1 dH1, α > 0 (2)

to obtain motion by crystalline curvature in dimension two, as described by Almgren
and Taylor [2].

In the case of initial datum a coordinate rectangle of side lengths L0
1 and L0

2, the
evolution by crystalline curvature is a rectangle with the same centre and sides of
lengths L1(t), L2(t) governed by the system of ordinary differential equations





L̇1(t) = − 4α
L2(t)

L̇2(t) = − 4α
L1(t)

(3)

with L1(0) = L0
1 and L2(0) = L0

2 (see Section 3.3). This means that each side of the
rectangle moves inwards with velocity equal to twice its crystalline curvature (i.e.,
the inverse of its length), so that the other side contracts with twice this velocity.

In a recent paper, Braides, Gelli and Novaga [14] (see Chapter 4 for a detailed
presentation of this paper) used the Almgren, Taylor and Wang scheme coupled
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with a homogenization procedure, by introducing a further parameter ε, interpreted
as a space-scale, and considering Eτ,ε0 initial data, Eτ,εk as a minimizer of

min
{
Pαε (E) + 1

τ

∫

E4Eτ,ε
k−1

dε∞(x, ∂Eτ,εk−1) dx
}
, (4)

with the constraint Eτ,ε0 , E ∈ Dε, Dε being the class of finite unions of ε-squares.
The Pαε are discrete “ferromagnetic-type” energies, defined on subsets E ⊂ εZ2

by
Pαε (E) = αε#{(i, j) ∈ Z2 × Z2 : εi ∈ E, εj 6∈ E, |i− j| = 1}, (5)

which Γ-converge to the crystalline perimeter Pα (see e.g., Alicandro, Braides and
Cicalese [1]). The terminology used for these discrete energies is motivated as follows.
We consider the simplest lattice energy, that is, depending on a discrete variable
u = {ui} indexed by the nodes i of the standard lattice εZ2, given by

Pαε (u) = 1
4α

∑

|i−j|=ε
ε(ui − uj)2, (6)

where ui takes only the two values +1 and −1 (spin systems). Note that its density
only differs by constants from the usual ferromagnetic energy density −uiuj . After
identifying a function u with the set E obtained as the union of all closed unit
squares with centers i such that ui = 1, the energy Pαε can be rewritten (with a
slight abuse of notation) as a perimeter functional

Pαε (u) = Pαε (E) = αH1(∂E), (7)

and hence can be interpreted as an interfacial energy.
The discrete distance dε∞ in (4) is defined, for E ∈ Dε, as

dε∞(x, ∂E) = d∞(i, ∂E) + ε

2 , if x ∈ Qε(i) = i+ ε[−1/2, 1/2]2, (8)

where d∞(x,A) = min{‖x− y‖∞ : y ∈ A}.
The scheme (4) is applied at fixed τ with ε = ε(τ), so that the discrete trajectories

Eτ,εk depend on the interaction between the two scales, and hence also their limits.
This problem can be cast in the general framework of minimizing movements along
a Γ-converging sequence (Chapter 2, Section 2.3). If ε<< τ , then the limit motion is
the crystalline flow (3), while if τ << ε, then Eτ,εk ≡ E

τ,ε
0 and the motion is “pinned”

(i.e., it coincides identically with the initial limit set). This observation highlights the
existence of a critical ε-τ regime (namely, τ ∼ ε) which captures the most interesting
features of the motion connected to these energies. Hence, we assume τ = γε for
γ > 0 and denote Eεk = Eτ,εk .

Let Eτ,ε0 be a coordinate rectangle in Dε. If Eεk−1 is a coordinate rectangle, then
also Eεk defined by minimization of energy (4) is a coordinate rectangle contained
in Eεk−1 and containing the center of Eεk−1. The main steps of the proof are the
following:

• each connected component of Eεk is a coordinate rectangle contained in Eεk−1,
by considering the smallest rectangle containing its intersection with Eεk−1
(‘rectangularization’);
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• actually, there is only one connected component, since each connected compo-
nent can be translated in direction of the center of Eεk−1 without increasing
its energy;

• Eεk contains the center of Eεk−1, otherwise we can construct a competitor which
contradicts the connectedness of Eεk.

The resulting limit evolution is still a rectangle. In case of a unique evolution,
the side lengths L1(t), L2(t) of this rectangle are governed by a system of ‘degenerate’
ordinary differential equations





L̇1(t) = −2
γ

⌊ 2αγ
L2(t)

⌋

L̇2(t) = −2
γ

⌊ 2αγ
L1(t)

⌋ (9)

for almost every t, with initial conditions L1(0) = L0
1 and L2(0) = L0

2.
Note some new features with respect to the crystalline motion (3), as follows.

(a) Degenerate equations. The motion is described by a system of degenerate ordinary
differential equations (9), whose right-hand sides are discontinuous. In fact, the
discrete motion is obtained by overcoming some energy barriers in a ‘quantized’
manner. Moreover, we may read in the equations the effect of the Γ-limit energy
(through the crystalline form of the evolution and the coefficient α) and of the
interplay between the time and space scales (through the scaling γ).
(b) A pinning threshold. If both the initial side-lengths are above the pinning
threshold L̃ = 2αγ, then the right-hand sides of equations (9) are zero and the
motion is pinned. This threshold is obtained by computing the values for which a
side of length L may not move inwards of ε by decreasing the energy in (4). The
corresponding variation of the energy is given by

− 2αε+ 1
γ
Lε, (10)

which is positive if and only if L ≥ L̃ = 2αγ.
(c) Inhomogeneity of the motion. The limit motion (9) cannot be obtained following
the Almgren-Taylor-Wang approach for any perimeter functional. It can be regarded
as a non-homogeneous crystalline motion, with a velocity depending on a function of
the curvature: if the curvature κ of a side is identified with the inverse of its length,
then the law for the velocity v of that side is

v = f(κ)κ,

where f(κ) = 1
γ b2αγκc 1

κ . Note that f is always less or equal than 2, the coefficient
in the continuous case, which shows how an additional discreteness effect is to slow
down the crystalline motion.

Scope of the first part of this thesis is to show that the Γ-limit of the discrete
energies Pαε is not sufficient to completely describe at the critical regime the effective
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limit motion, which is also affected by microscopic geometric properties not detected
in the limit. The main result is described in Chapter 5 (which forms the content
of a joint work with A. Braides [19]). We introduce a further inhomogeneity in the
perimeters Pαε by considering, for any subset E ⊂ εZ2,

Pα,βε (E) = 1
2ε
∑
{cij : (i, j) ∈ Z2 × Z2, εi ∈ E, εj 6∈ E, |i− j| = 1},

(we use the notation ∑{xa : a ∈ A} = ∑
a∈A xa), where the coefficients cij equal

α > 0 except for some well-separated periodic square inclusions of size Nβ where
cij = β > α (high-contrast medium). The periodicity cell is pictured in Fig. 1. These

Nβ Nα

Figure 1. Periodicity cell. Continuous lines represent β-bonds, dashed lines α-bonds.

inclusions are not energetically favorable and can be neglected in the computation
of the Γ-limit, which is still the crystalline perimeter Pα as in (2), with the same
coefficient α (Remark 5.2.1). For this, we note that Pα,βε ≥ Pαε (from which we
deduce the lower bound Γ- lim inf

ε→0
Pα,βε ≥ Pα) and that recovery sequences for the

Γ-limit of Pα,βε can be constructed at a scale Nαβε, Nαβ := Nα +Nβ , thus ‘avoiding’
the β-connections.

We restrict our analysis to the case of initial data coordinate rectangles at the
critical regime τ = γε (which also in this case is the most interesting), and we apply
the Almgren, Taylor and Wang approach as in (4) to the energies

Fα,βε,τ (E,F ) = Pα,βε (E) + 1
τ

∫

E4F
dε∞(x, ∂F ) dx. (11)

More precisely, given an initial set Eε0 ∈ Dε which is a coordinate rectangle, we
define recursively a sequence Eε,τk in Dε by requiring the following:

(i) Eε,τ0 = Eε0;

(ii) Eε,τk+1 is a minimizer of the functional Fα,βε,τ (·, Eε,τk ).

The discrete flat flow associated to functionals Fα,βε,τ is thus defined by

Eε,τ (t) = Eε,τbt/τc, t ≥ 0. (12)

Assuming that the initial data Eε0 tend, in the Hausdorff sense (see Section 1.2), to
a coordinate rectangle E0, we are interested in identifying the motion described by
any converging subsequence of Eε,τ (t) as ε, τ → 0.
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The presence of the inclusions is felt in the minimization procedure since they
may influence the choice of Eτ,εk . In fact, we show that the evolute of a coordinate
rectangle by minimization of the energy is an α-type coordinate rectangle, that is, a
rectangle whose sides intersect only α-bonds, thus avoiding the inclusions. Contrary
to the case treated in Chapter 4, it is not simple to show that the minimizers
are actually rectangles: this is a technical point contained in Proposition 5.3.5.
In particular, rectangularization and translation of a connected component may
increase the perimeter term Pα,βε in the energy, so that they cannot be performed in
a periodic environment.

Here we just give a brief overview of the proof. The evolute F is connected (Step 1)
and, if not α-type, it is an α-type rectangle Rα with some protrusions intersecting
β-bonds, as in Fig. 2 (Step 2). The optimal profile of a protrusion (Step 3) on a single
β-square, if non-empty, is horizontal; we can substitute protrusions on consecutive
β-squares with a single horizontal protrusion, and also join different protrusions by
translations toward one of the corner β-squares, if energetically convenient. At this
point, we are in one of the two situations pictured in Fig. 3. We can remove all
the β-connections inside the border β-squares (Step 4), so that the evolute is the
union of an α-type rectangle R an possibly one to four rectangles R̃i intersecting
the corner β-squares of side length at most Nαβε (Fig. 4). These small rectangles
are actually not there (Step 5), so that, finally, F is an α-type rectangle.

Rα

F

R̃α

Eτ,ε0

Figure 2. α-rectangularization.

F

F

Figure 3. Profiles of the upper side of candidate minimal F .

As shown by Braides, Gelli and Novaga (see Section 4.4), the motion of each
side of Eεk = Eε,τk can be studied separately, since the constraint of being an α-type
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R

R̃i

Figure 4. The set obtained in Step 4.

rectangle does not influence the argument therein, which consists in remarking
that the bulk term due to the small corner rectangles in Fig. 5 is negligible. As a
consequence, we can describe the motion in terms of the length of the sides of Eεk.

asymptotically negligible sets

Eεk+1Eεk

Figure 5. Picture of Eεk+1 inside Eεk.

A

B

Figure 6. Motion is possible if the side can move at least by (Nβ + 1)ε.

We first compute the new pinning threshold (Section 5.3.1). By the condition
that Eεk be an α-type rectangle, we have to impose that it is not energetically
favorable for a side to move inwards by (Nβ + 1)ε (see Fig. 6). We then write the
variation of the energy functional Fα,βε,τ from configuration A to configuration B in
Fig. 6, regarding a side of length L. If we impose it to be positive, we obtain the
pinning threshold

L := 4αγ
Nβ + 2 . (13)

Note that this threshold depends on Nβ and not on the value β > α and that, if
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Eεk+1
Eεk

xk
xk+1

Figure 7. Reduction to a one-dimensional problem.

Nβ = 0 (or, otherwise, α = β), we recover the previous threshold L̃ = 2αγ.
As remarked above, up to an error vanishing as ε→ 0, the motion of each side is

independent of the other ones. As a consequence, its description can be reduced to
a one-dimensional problem, where the unknown represents, e.g., the location of the
left hand vertical side of Eεk. Let xk represents the projection of this side of Eεk on
the horizontal axis, as in Fig. 7. The location of xk+1 depends on a minimization
argument involving xk and the length Lk of the corresponding side of Eεk. However,
this latter dependence is locally constant, except for a discrete set of values of γ/Lk.
This singular set depends on Nβ (not on β) and it is given by

SNβ = 1
2α

(
Z ∪

(1
2 + Z

))
(14)

(see Section 5.3.2, Definition 5.3.6).
We examine the iterated minimizing scheme for γ/Lk = γ/L ∈ (0,+∞) \ SNβ

fixed, which reads {
xLk+1 = xLk +Nk, k ≥ 0
xL0 = x0 (15)

with x0 ∈ {0, 1, . . . , Nαβ − 1} and Nk ∈ N the minimizer of

min
{
−2αN + 1

γ

N(N + 1)
2 L : N ∈ N, [xLk +N ]Nαβ ∈ ZNα

}
, (16)

ZNα = {[0]Nαβ , . . . , [Nα−1]Nαβ}, which is unique by the requirement that γ/L 6∈ SNβ .
Note that the function to be minimized on the integers in (16) represents the variation
of the energy Fα,βε,τ corresponding to the removal of N ε-stripes, and the constraint
is due to the fact that, as showed before, the side may stay only on α-connections.

After at most Nα steps, {xLk }k≥0 is periodic modulo Nαβ (Proposition 5.3.7),
that is, there exist integers k ≤ Nα,M ≤ Nα and n ≥ 1 such that

xLk+M = xLk + nNαβ for all k ≥ k. (17)

Moreover, the quotient n/M depends only on γ/L; in particular, it does not depend
on the starting point x0.

We can define the velocity of a side as a mean velocity averaging on a period;
that is,

v = nNαβε

Mτ
. (18)
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In (18) the velocity is the ratio between the minimal (periodic) displacement of
the side and the product of the time-scale τ and the number of steps necessary to
describe the minimal period, each of which considered as a 1-time step.

Correspondingly, we define the effective velocity function f : (0,+∞) \ SNβ −→
[0,+∞) by setting

f(Y ) = nNαβ

M
, (19)

with M and n in (17) defined by L and γ such that Y = γ/L. By Proposition 5.3.7,
this is a good definition. The function f is non-decreasing and piecewise-constant,
independent of β but depends on Nβ and f(Y ) = 0 if Y < γ/L, L the pinning
threshold (see Remark 5.3.10 for the proof of these and other properties of f).

It may be not easily described for generic Nα and Nβ . We compute it, by means
of algebraic formulas, in the simpler cases Nβ = 1 and Nβ = 2, with varying Nα

(Section 5.4). These are prototypes for the cases Nβ odd and Nβ even, respectively.
In particular, if Nα = Nβ = 1, then the velocity function is given by

f(γ/L) = 2
⌊
αγ

L
+ 1

4

⌋
, (20)

1
2

3
4

1 3
2

7
4

2 5
2

11
4

3 7
2

15
4

4 9
2

19
4

5 11
2

23
4

−1

1

Y

f − f̃

Figure 8. Difference between inhomogeneous-homogeneous velocity function (α = γ = 1).

while if Nα = 1 and Nβ = 2, then it is given by

f(γ/L) = 3
⌊2

3
αγ

L
+ 1

3

⌋
. (21)

1
2

1 3
2

2 5
2

3 7
2

4 9
2

5 11
2

6 13
2

7

−1

1

Y

f − f̃

Figure 9. Difference between inhomogeneous-homogeneous velocity function (α = γ = 1).
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In Fig. 8 and Fig. 9 we compare (20) and (21), respectively, with the velocity
function of the homogeneous case f̃(γ/L) = b2αγ/Lc, showing that the inhomo-
geneities in the lattice may accelerate or decelerate the motion.

The limit motion (Theorem 5.3.13) can still be represented through a system of
degenerate ordinary differential equations of the form





L̇1(t) = −2
γ
f

(
γ

L2(t)

)

L̇2(t) = −2
γ
f

(
γ

L1(t)

) (22)

for almost every t, with initial conditions L1(0) = L0
1 and L2(0) = L0

2, where f is
given by (19).

We also extend these results to more general initial sets (see Remark 5.3.14), in
particular polyrectangles (Section 4.5).

In Chapter 6 (which forms the content of the paper by myself [44]), we give
another example of the fact that the microstructure can affect the limit evolution
without changing the Γ-limit. To this end, we perform a multi-scale analysis by
introducing a contrast parameter δε and considering a low-contrast medium, that is
a periodic mixture of two homogeneous materials whose propagating properties are
close to each other. One of them can be considered as a fixed background medium
(described by α-connections) and the other as a small (vanishing) perturbation from
that one, that is with β = βε = β(ε) and βε − α = δε → 0 as ε→ 0. With the same
notation as in Chapter 5, we restrict ourselves to the case Nα = Nβ = 1; despite of
its simplicity, the choice of this particular geometry will suffice to show new features
of the motion. The main result is the existence of a threshold value of the contrast
parameter below which we have a new homogenized effective velocity, which takes
into account the propagation velocities in both the connections α and β; above this
threshold, instead, it is independent of the value of β and the motion is obtained by
considering only the α-connections.

A heuristic computation suggests that the correct scaling for δε is

βε − α = δε = δε

for some constant δ > 0.
As before, we assume that τ = γε and restrict the description of the motion to

the case of initial data coordinate rectangles. The evolute of a coordinate rectangle
by minimization of the energy is again a coordinate rectangle (Proposition 6.3.1). We
show that there exists a threshold δ̃ = 1

2γ such that if δ < δ̃ (subcritical regime) then
the evolute rectangles may have some β-type side (that is, a side intersecting only
β-connections), while if δ ≥ δ̃ (supercritical regime) the β-connections are avoided
as in the case β > α (Proposition 6.3.4). Note that this result gives information
also for more general choices of the vanishing rate of δε: if δε <<ε, we reduce to the
subcritical case, while if δε >>ε, we are in the supercritical case.

The limit motion can still be described through a system of degenerate ordinary
differential equations as in (22) with a new effective velocity function fδ depending
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on δ, given by

fδ(Y ) =





0 if Y <
Cδ,γ + 1

2α ,

2k if Y ∈
(2k − Cδ,γ

2α ,
2k + 1 + Cδ,γ

2α

)
,

2k + 1 if Y ∈
(2k + 1 + Cδ,γ

2α ,
2k + 2− Cδ,γ

2α

)
, k ≥ 0,

where Cδ,γ = min{δγ, 1/2}. Note that we recover the velocity function of the
homogeneous case f̃ computing fδ for δ = 0 (see Section 6.3.3). If we choose
δ = 1/2γ (actually, for any δ ≥ 1/2γ), we recover the velocity function f (20) which
corresponds to the high-contrast case.

Contrary to the high-contrast case (14), the singular set (Definition 6.3.2) now
depends also on β through δ and it is given by

Sδ = 1
2α [(2Z + 1 + δγ) ∪ (2Z− δγ)] . (23)

We have a new effective pinning threshold (Section 6.3.2) given by

Lδ = max
{ 2αγ
δγ + 1 ,

4
3αγ

}
.

(see Fig. 10).

1
2γ

2αγ

4
3αγ

δ

Lδ

Figure 10. Effective pinning threshold (represented by the continuous line).

The same problem as before is treated also in the case of non-uniform inclusions
distributed into periodic uniform layers (Section 6.4).

In the second part of the thesis (Chapter 7), which contains the results of joint
works with A. Braides [20, 21], we consider the opposite problem of (1): defining
a motion when starting from the same discrete schemes for sets which “expand”
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by maximizing the perimeter subject to a penalization of their distance from the
previous set. Formally, this involves considering problems of the form

min
{
−P (E) + 1

τ

∫

E4Eτ
k−1

dist(x, ∂Eτk−1) dx
}
, (24)

which can be seen as a “backward” version of the previous ones (see Section 2.6)
if the index k is considered as parameterizing negative time. Unfortunately, this
problem is ill-posed, giving the trivial infimum −∞ at the first step (Remark 7.1.1).

Following a suggestion by J.W. Cahn, we consider a discrete approximation of P
in the crystalline case, and use it to define a backward crystalline-curvature motion
with prescribed extinction point (or, equivalently, nucleation of the motion defined
for positive times). To this end, we introduce a suitable scaling of the energies which
can be interpreted as a time-scaling of the discrete trajectories (Section 2.5).

In Section 7.2 we treat a simple example. We introduce a new parameter λ > 0,
consider initial data Eτ,ε,λ0 = Qε = εQ = ε

[
−1

2 ,
1
2

]2
(which, in the discrete setting,

all correspond to the singleton {0}), and define iteratively Eτ,ε,λk ∈ Dε as a minimizer
of

min
{
− 1
λ
Pε(E) + 1

τ

∫

E4Eτ,ε,λ
k−1

dε∞(x, ∂Eτ,ε,λk−1 ) dx
}
, (25)

where Pε(E) = H1(∂E) (i.e., the discrete energy (5) computed for α = 1), and dε∞
is defined by (8).

Contrary to the forward case, in which crystalline motion has been described
only in dimension two, due to its simpler form the limit can be described in all
dimensions d ≥ 2 (the definitions of Pε and dε∞ are modified accordingly).

We first determine the correct scaling for λ and τ in terms of ε in order to have
a non-trivial limit. To this end, we note that the minimal variation of the energy
in (25) from the set Eτ,ε,λk−1 corresponds to the addition of an ε-cube with no side in
common with Eτ,ε,λk−1 . The variation is

− 2d
λ
εd−1 + 1

τ
Kεd+1 (26)

with 0 6= K ∈ N. This quantity may be negative if and only if

1 ≤ 2dτ
λε2 . (27)

The relative scaling of ε, τ and λ must be such that this condition be satisfied. We
treat the case

τ/ε = γ ∈ (0,+∞), λε = α ∈ (0,+∞), (28)

so that (27) corresponds to
1
2d ≤

γ

α
. (29)

First note that if (29) is not satisfied, then every competing set E in the definition
of Eτ,ε,λ1 gives a strictly larger value than the set Eτ,ε,λ0 ; hence, each discrete trajectory
is trivial, and so is their limit: E(t) = {0}.
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Eτ,ε,λ0 Eτ,ε,λ1 Eτ,ε,λ2

Figure 11. Some steps of the discrete evolution in dimension two.

Suppose now that (29) is satisfied. We then prove that Eτ,ε,λk is a (even)
checkerboard structure containing εQ (see Fig. 11); i.e., it is the union of cubes
ε(i+Q) with i ∈ Zd and ‖i‖1 = |i1|+ · · ·+ |id| even (for short, we say that i is even).
Moreover,

{i ∈ Zd : εi ∈ Eτ,ε,λk } =
{
i ∈ Zd even , ‖i‖∞ ≤

⌊2dγ
α

⌋
k
}
. (30)

The statement above can be proved inductively by showing that

{i ∈ Zd : εi ∈ Eτ,ε,λk } =
{
i ∈ Zd even , d∞

(
i,

1
ε
Eτ,ε,λk−1

)
≤
⌊2dγ
α

⌋}
. (31)

If we define Eτ (t) = Eτ,ε,λbt/τc, then, for all fixed t, the Kuratowski limit of the
family Eτ (t) as τ → 0 is a cube of centre 0 and side length 2

⌊
2dγ
α

⌋
t. Moreover,

if 2dγ
α 6∈ N, then the motion is given by a family of expanding cubes whose sides

move with constant velocity b2dγ
α

⌋
. If 2dγ

α ∈ N, then we obtain that the sets E are
contained in the cubes moving with velocity 2dγ

α , and contain the cubes moving with
velocity 2dγ

α −1, but need not be cubes themselves. This is due to the non-uniqueness
of the minimal sets in (25).

The problem can be set for different distances dϕ (induced by a norm ϕ) in place
of the ∞-distance we used before (Section 7.4), under the same assumptions (28) on
τ, λ and in dimension d = 2. In this case, the nucleation threshold (Section 7.4.1)
depends on the norm ϕ and can be estimated as

γ

α
≥ 1

4 min
{
ϕ−1,1, ϕ1,1, 2 min{ϕ1,0, ϕ0,1}+ min{ϕ0,1, ϕ1,0, ϕ1,1, ϕ−1,1}

}
, (32)

where ϕx,y := ϕ(x, y). Note that, if ϕ = ‖ · ‖∞ and d = 2, we recover (29).
In this general framework, hovewer, it is not trivial to show that the minimizers

are checkerboard (actually, we assume this fact as a technical hypothesis). Moreover,
we might not have that the minimal sets Eεk = Eτ,ε,λk correspond to the same
checkerboard structure (even or odd); in particular, we might have that they ‘oscillate’
between even or odd checkerboards. This may happen only for a finite number of
indices k; eventually, they stabilize and after some k correspond to the same parity
(Proposition 7.4.4).

In order to define a non-trivial limit motion, we consider a suitable ‘convexification’
of the minimal sets. More precisely, if Ik,ε ⊆ εZ2 is the set of the centers of the
ε-squares contained in Eεk, we define F εk = conv(Ik,ε), conv(I) being the smallest
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convex polygon containing I. We then have two cases (Theorem 7.4.7):
(i) if the nucleus Eε1 (Definition 7.4.2) corresponds to the even checkerboard (see
Fig. 12 for an example), then F εk and F ε1 are homothetic with center 0, for all k ≥ 1
(Remark 7.4.6). In this case, if we define Fε(t) = F εbt/τc, t ≥ 0, then for all fixed t
the Kuratowsky limit of the family Fε(t) as ε→ 0 is a polygon F (t) given by

F (t) = 1
γ
tF1, (33)

where F1 = 1
εF

ε
1 and γ = τ/ε.

Eε0

Eε1

Figure 12. An example of nucleus Eε1 .

(ii) if Eε1 corresponds to the odd checkerboard, then Eεk oscillates between odd and
even checkerboards, and after k = k(α, γ) steps it stabilizes on the same checkerboard.
If we define Gε(t) = Gεbt/τc, where Gεk = conv(Ik,ε) (here we change notation to
make a comparison with the case (i)), then for all fixed t the Kuratowsky limit of
the family Gε(t) as ε→ 0 is a polygon G(t) satisfying the inclusion

G(t) ⊆ F (t), (34)

where F (t) is given by (33). Hence, the limit motion in (ii) is slower than (i).
In Section 7.5.2, we give an example where the limit set is of dimension d− 1;

more precisely, in dimension two, a linearly growing segment. For this, we consider
the (sufficiently) asymmetric norm

ϕ(i) =
√

33
8 (i21 + i22)− 31

4 i1i2, i ∈ εZ2. (35)

We assume also that √
2

8 ≤
γ

α
<

1
8

√
33
2 . (36)

In this case,

Ik,ε = {i ∈ εZ2 : i ∈ Eεk} =
{
i ∈ εZ2 even, ϕ(i) < 4γ

α
εk
}

=
{
i ∈ εZ2 even, |i1| = |i2| = 0, . . . , k

} (37)
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Eε0 Eε1 Eε2

Figure 13. Some steps of the evolution.

and, for all fixed t, the Kuratowsky limit of the family Fε(t) = F εbt/τc = conv(Ibt/τc,ε)
as ε→ 0 is a segment F (t) such that F (0) = {0} and whose length L(t) satisfies

L(t) = 1
γ

2
√

2t (38)

for almost every t ≥ 0.

In view of the possible definition of variational motion in a random media (that
is, with randomly distributed inclusions) motivated by finding at least an estimate
for the pinning threshold, the Appendix A contains the results of the paper [45] by
myself about the homogenization of the energies associated to a spin system with
randomly distributed unbounded coefficients. The model problem that we have in
mind is that of a crystalline two-dimensional solid subject to fracture. We suppose
that the relevant scale is that of the surface fracture energy, so we may neglect the
elastic energy of the lattice (this can be taken separately into account as in the
paper by Braides and Piatnitski [16]). In this case, depending on the applied forces
or boundary displacement of the sample, a fracture may appear, separating two
regions where the displacement is constant. In the Griffith theory of Fracture (see
Griffith [32]), the energy necessary for the creation of a crack is proportional to its
area; in a discrete setting this is translated in the number of atomic bonds that
are broken. In our model, at the atomistic level, there is a random distribution of
‘strong’ unbreakable bonds and ‘weak’ (ferromagnetic) breakable bonds. This model
translates into a rigid spin problem, where the two values of the spin parametrize the
two regions of constant displacement of the crystal. We note that in this problem the
random distribution of rigid or weak bonds is considered as fixed and as characteristic
of the crystalline material, so that we are interested in almost sure properties of the
overall energies when the measure of the sample is large with respect to the atomic
distance. The way we will describe the overall behavior of this system is by scaling
the domain lattice by a small parameter ε and introducing the corresponding scaled
energies, and then compute the variational limit (Γ-limit) of such energies, which is
defined on the continuum and it can be considered as an effective energy.

The microscopic energy under examination can be written as
∑

ij

σωij(1− uiuj), (39)

where ui ∈ {±1} is a spin variable indexed on the lattice Z2, the sum runs on
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nearest-neighbors (i.e. |i− j| = 1) in a given portion Ω ∩ Z2 of Z2, the coefficients
σωij depend on the realization ω of an independent and identically distributed (i.i.d.)
random variable and

σωij =
{

+∞ with probability p

1 with probability 1− p,

with p ∈ [0, 1] fixed and the convention +∞ · 0 = 0.
In order to describe the behavior as the size of Ω diverges we introduce a scaled

problem, in which, on the contrary, Ω is kept fixed, but scaled energies are defined
as follows. A small parameter ε > 0 is introduced, the lattice is scaled accordingly
to εZ2, and the energies (39) are scaled (after multiplying by 2) to

Eωε (u) :=
∑

ij

εσωij(ui − uj)2. (40)

After this scaling, the sum is taken on nearest neighbors in Ω ∩ εZ2.
The coarse graining of these energies corresponds to a general approach in the

theory of Γ-convergence for lattice system where the discrete functions u = {ui} are
identified with their piecewise-constant extensions, and the scaled lattice energies
with energies on the continuum whose asymptotic behavior is described by taking
L1-limits in the u variable and applying a mesoscopic homogenization process to
the energies. A general theory for interfacial energies by Ambrosio and Braides [5]
suggests the identification of limit energies with functionals of the form

∫

Ω∩∂{u=1}
ϕ(x, ν) dH1,

with ν the normal to ∂{u = 1}.
Our analysis will be carried out by using results from Percolation theory. Perco-

lation is a model for random media (see Grimmett [33] and Kesten [37]). We are
interested in bond percolation on the square lattice Z2: we view Z2 as a graph with
edges between neighboring vertices, and all edges are, independently of each other,
chosen to be ‘strong’ with probability p and ‘weak’ with probability 1− p. A weak
path is a sequence of consecutive weak edges, a weak cluster is a maximal connected
component of the collection of weak edges. Percolation exhibits a phase transition:
there exists a critical value of probability pc, the percolation threshold, such that if
p < pc then with probability one there exist a unique infinite weak cluster, while if
p > pc then all the weak clusters are finite almost surely. For bond percolation on
Z2, the percolation threshold is given by pc = 1

2 .
Actually, the structure of the Γ-limit of the energies (40) depends on probability

through the percolation threshold (Section A.4). Above the percolation threshold,
the Γ-limit is +∞ on the functions not identically equal to 1 or -1: this means
that the solid almost surely is rigid and there is no fracture. Below the percolation
threshold, instead, the coarse graining leads first to showing that indeed we may
define a limit magnetization u taking values in {±1}. This u is obtained as a L1-limit
on the scaled infinite weak cluster, thus neglecting the values ui on nodes i isolated
from that cluster. The surface tension is obtained by optimizing the almost sure
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contribution of the interfaces, and showing that it can be expressed as a first-passage
percolation problem, so that the limit is of the form

∫

Ω∩∂{u=1}
λp(ν) dH1. (41)

In this case, a crack in the crystal may appear following a minimal path on the
infinite weak cluster and the microscopical pattern of the lattice (this fact justifies
the anisotropy of the fracture energy (41)). The value λp(ν) (Proposition A.3.7)
is defined through the asymptotic behavior of the chemical distance (that is, the
distance on the infinite weak cluster, Definition A.3.3) between a pair of points
aligned with ν. Note that the Γ-liminf inequality is obtained by a blow-up argument;
we perform a construction based on the Channel property (Theorem A.3.2) which
allows to modify the test sets in order to get a ‘weak’ boundary, thus avoiding bonds
with infinite energy. This is useful also for the construction of a recovery sequence.

In Section A.5 we show that the homogenization of rigid spin systems is actually
a limit case of the elliptic random homogenization of spin systems (see Braides and
Piatnitski [17]); that is, the behavior of a rigid spin system is approximated by that
of an elliptic spin system with one of the interaction coefficients very large. The
proof of this new “continuity” property of the surface tension (Proposition A.5.5)
essentially relies on a percolation result (Lemma A.5.1).
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Chapter 1

Preliminaries

In this chapter we fix some notation and collect some preliminary results which will
be useful in the sequel.

1.1 Γ-convergence
In this section we recall some basic definitions and properties of Γ-convergence. We
refer to Braides [10] and Dal Maso [25] for more details on the computation and the
topological properties of the Γ-limits.

Let X be a separable metric space and Fε, F functionals defined on X.

Definition 1.1.1. We say that F is the Γ-limit of the sequence (Fε) if it satisfies
the following conditions:

(i) (lower bound) for all u ∈ X,

F (u) ≤ lim inf
ε→0

Fε(uε) for all uε → u;

(ii) (upper bound) for all u ∈ X, there exists uε → u such that

F (u) ≥ lim sup
ε→0

Fε(uε);

in this case, we write

F (u) = Γ- lim
ε→0

Fε(u).

Remark 1.1.2 (alternate upper bound inequalities). If F is a lower bound
then requiring that (ii) holds is equivalent to any of the following:

• (recovery sequence) there exists uε → u such that F (u) = lim
ε→0

Fε(uε);

• (approximate limsup inequality) for all η > 0 there exists uε → u such that
F (u) + η ≥ lim sup

ε→0
Fε(uε).
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From the definition it follows an important property of Γ-convergence, that is
the stability under continuous perturbations.
Proposition 1.1.3 (stability under continuous perturbations). Let Fε Γ-
converge to F and Gε converge continuously to G (i.e., Gε(uε)→ G(u) if uε → u);
then Fε +Gε Γ-converge to F +G.

It is useful to define the lower and upper Γ-limits, so that the existence of a
Γ-limit can be viewed as their equality.
Definition 1.1.4 (lower and upper Γ-limits). We define

Γ- lim inf
ε→0

Fε(u) = inf{lim inf
ε→0

Fε(uε) : uε → u} (1.1)

Γ- lim sup
ε→0

Fε(u) = inf{lim sup
ε→0

Fε(uε) : uε → u}. (1.2)

Remark 1.1.5. The Γ-limit exists at a point u if and only if

Γ- lim inf
ε→0

Fε(u) = Γ- lim sup
ε→0

Fε(u).

Then (i) of Definition 1.1.1 also reads F (u) ≤ Γ- lim inf
ε→0

Fε(u) and (ii) reads
F (u) ≥ Γ- lim sup

ε→0
Fε(u).

The fundamental property of Γ-convergence is expressed by the following theorem.
Theorem 1.1.6 (Fundamental Theorem of Γ-convergence). Let (Fε) satisfy
the ‘mild coerciveness’ property, i.e., there exists a precompact sequence (uε) with
Fε(uε) = inf Fε + o(1), and Γ-converge to F . Then
(i) F admits minimum, and minF = lim

ε→0
inf Fε;

(ii) if (uεk) is a minimizing sequence for some subsequence Fεk (i.e., is such that
Fεk(uεk ) = inf Fε + o(1)) which converges to some ū, then its limit point is a
minimizer for F .

1.2 Convergence of sets
(i) Kuratowski convergence. For the definition of Kuratowski convergence, we
refer to Kuratowski [38].
Definition 1.2.1 (Kuratowski convergence). A sequence of sets Eε is said to
converge in the sense of Kuratowski or K-converge to a set E, written E = K- lim

ε→0
Eε,

if
Ls
ε→0

Eε ⊂ E ⊂ Li
ε→0

Eε (1.3)

where
Li
ε→0

Eε = {x ∈ R2 : x = lim
ε→0

xε, xε ∈ Eε} (1.4)

is the liminf and

Ls
ε→0

Eε = {x ∈ R2 : x = lim
j→∞

xεj , xεj ∈ Eεj , εj ↘ 0}. (1.5)

is the limsup.
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(ii) Hausdorff convergence. The Hausdorff distance between two sets A and B,
denoted by dH(A,B), is defined as

dH(A,B) = max{sup{dist(x,B)|x ∈ A}, sup{dist(x,A)|x ∈ B}}

unless both A and B are empty, in which case dH(A,B) = 0.

Definition 1.2.2 (Hausdorff convergence). A sequence {Eε} of closed subsets
of R2 is said to Hausdorff converge to a closed set E if lim

ε→0
dH(Eε, E) = 0.

Note that, on the class of closed subsets, the Hausdorff convergence implies the
Kuratowski convergence.

1.3 Functions of bounded variation and sets of finite
perimeter

For the general theory of functions of bounded variation and sets of finite perimeter
we refer to Ambrosio, Fusco and Pallara [6], Braides [9]; we recall some definitions
and results (here in dimension d = 2) necessary in the sequel.

Let Ω be an open subset of R2. We say that u ∈ L1(Ω) is a function of bounded
variation if its distributional first derivatives Diu, i = 1, 2 are Radon measures
with finite total variation in Ω. We denote this space by BV (Ω) and we write
u ∈ BV (Ω; {±1}) when the function u is of bounded variation in Ω and takes only
the values -1 and +1.

Let u : Ω −→ R be a Borel function. We say that z ∈ R is the approximate limit
of u at x if for every ε > 0

lim
ρ→0+

ρ−2L2({y ∈ Bρ(x) ∩ Ω : |u(y)− z| > ε}) = 0,

where we denote by L2(E) the 2-dimensional Lebesgue measure of E. We define
the jump set S(u) of function u as the subset of Ω where the approximate limit
of u does not exist. It turns out that S(u) is a Borel set and L2(S(u)) = 0. If
u ∈ BV (Ω), then S(u) is countably 1-rectifiable; that is, S(u) = N ∪ (⋃i∈NKi),
where H1(N) = 0, H1(N) is the 1-dimensional Hausdorff measure of N and (Ki) is
a sequence of compact sets, each contained in a C1 hypersurface Γi. A normal unit
vector νu to S(u) exists H1-almost everywhere on S(u), in the sense that, if S(u) is
represented as above, then νu(x) is normal to Γi for H1-almost everywhere x ∈ Ki.

Let E be a Borel subset of R2. The essential boundary ∂∗E of E is defined as

∂∗E =
{
x ∈ R2 : lim sup

ρ→0

L2(Bρ(x) ∩ E)
ρ2 > 0, lim sup

ρ→0

L2(Bρ(x)\E)
ρ2 > 0

}
.

The set E is of finite perimeter in Ω if the characteristic function χE is in BV (Ω).
The total variation |DχE |(Ω) is the perimeter of E in Ω, denoted by P (E; Ω) (simply
P (E) if Ω = R2). For H1-almost every x ∈ ∂∗E, the limit
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νE(x) = lim
ρ→0

DχE(Bρ(x))
|DχE |(Bρ(x))

exists and belongs to S1 = {|x| = 1}; the vector νE is the generalized inner normal
to ∂∗E. The set of points x ∈ supp(DχE)∩Ω where this property holds is called the
reduced boundary of E. For any x in the reduced boundary of E, the sets (E − x)/ρ
locally converge in measure as ρ → 0 to the half-space orthogonal to νE(x) and
containing νE(x). The measure DχE can be represented as

DχE = νEH1 ∂∗E.

In particular, for every set E of finite perimeter in Ω, P (E; Ω) = H1(∂∗E ∩ Ω).
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Chapter 2

Minimizing movements along a
sequence of functionals

The main results of this thesis rely on the definition and the properties of minimizing
movements along a sequence of functionals. In order to provide the necessary
introductory preparation, we will follow Braides [11], Chapters 7-8 and 10, for
definitions, examples and the proofs of the theorems contained in this chapter.

2.1 Minimizing movements: definition and basic prop-
erties

We introduce a notion of energy-based motion which generalizes an implicit-time
scheme for the approximation of solutions of gradient flows to general (also non
differentiable) energies. We use the terminology ofminimizing movements, introduced
by De Giorgi (see [26]) and revisited by Ambrosio [4], even though we will not follow
the precise notation used in the literature.

Definition 2.1.1 (minimizing movements). Let X be a separable Hilbert space
and let F : X → [0,+∞] be coercive and lower-semicontinuous. Given u0 ∈ X and
τ > 0 we define recursively uk, k ≥ 1, as a minimizer of the problem

min
{
F (v) + 1

2τ ‖v − uk−1‖2
}
, (2.1)

and the piecewise-constant trajectory uτ : [0,+∞)→ X given by

uτ (t) = ubt/τc. (2.2)

A minimizing movement for F from u0 is any limit of a subsequence uτj uniform on
compact sets of [0,+∞).

Note that we are not focusing on the general topological assumptions on function
spaces and convergences. In this definition we have taken F ≥ 0 and X Hilbert
space for simplicity. More in general, we can take X a metric space and the power
of the distance in place of the squared norm. In addition, the topology on X with
respect to which F is lower semicontinuous can be weaker than the one of the related
distance (see Ambrosio, Gigli and Savaré [7] for a more general theory).
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Remark 2.1.2. A heuristic explanation of the definition above is given when F is
smooth. In this case, with the due notation, a minimizer for (2.1) solves the equation

uk − uk−1
τ

= −∇F (uk); (2.3)

i.e., uτ solves the equation

uτ (t)− uτ (t− τ)
τ

= −∇F (uτ (t)). (2.4)

If we can pass to the limit in this equation, as uτ → u, then we obtain

∂u

∂t
= −∇F (u). (2.5)

This is easily shown to hold if X = Rn and F ∈ C2(Rn). In this case, by taking
any ϕ ∈ C∞0 ((0, T );Rn) we have

−
∫ T

0
〈∇F (uτ (t)), ϕ〉dt =

∫ T

0

〈
uτ (t)− uτ (t− τ)

τ
, ϕ

〉
dt

= −
∫ T

0

〈
uτ (t), ϕ(t)− ϕ(t+ τ)

τ

〉
dt,

from which, passing to the limit
∫ T

0
〈∇F (u), ϕ〉 dt =

∫ T

0
〈u, ϕ′〉 dt;

i.e., (2.5) is satisfied in the sense of distributions, and hence in the classical sense.

Definition 2.1.3 (local minimizer). A function u0 is said to be a local minimizer
of F if there exists δ > 0 such that

F (u0) ≤ F (u) if ‖u− u0‖ < δ.

Remark 2.1.4 (stationary solutions). Let u0 be a local minimizer for F , then
the only minimizing movement for F from u0 is the constant function u(t) = u0.

Indeed, if u0 is a minimizer for F on the set of v such that ‖v− u0‖ ≤ δ, then by
the positiveness of F it is the only minimizer of F (v) + 1

2τ ‖v−u0‖2 for τ < δ2/F (u0)
if F (u0) > 0 (for any τ if F (u0) = 0). So that uk = u0 for all k for these τ .

Proposition 2.1.5 (existence of minimizing movements). For all F and u0
as in Definition 2.1.1 there exists a minimizing movement u ∈ C1/2([0,+∞);X).

Proof. By the coerciveness and lower-semicontinuity of F we obtain that uk are
well-defined for all k. Moreover, since

F (uk) + 1
2τ ‖uk − uk−1‖2 ≤ F (uk−1),

we have F (uk) ≤ F (k−1) and

‖uk − uk−1‖2 ≤ 2τ(F (uk−1)− F (uk)),
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so that for t > s

‖uτ (t)− uτ (s)‖ ≤
bt/τc∑

k=bs/τc+1
‖uk − uk−1‖

≤
√
bt/τc − bs/τc

√√√√√
bt/τc∑

k=bs/τc+1
‖uk − uk−1‖2

≤
√
bt/τc − bs/τc

√√√√√2τ
bt/τc∑

k=bs/τc+1
(F (uk−1)− F (uk))

≤
√
bt/τc − bs/τc

√
2τ(F (ubs/τc)− F (ubt/τc))

≤
√

2F (u0)
√
τ(bt/τc − bs/τc)

≤
√

2F (u0)
√
t− s+ τ .

This shows that the functions uτ are almost equicontinuous and equibounded
in C([0,+∞);X). Hence, up to a subsequence, they converge uniformly. Moreover,
passing to the limit as τ → 0 we obtain

‖u(t)− u(s)‖ ≤
√

2F (u0)
√
|t− s|

so that u ∈ C1/2([0,+∞);X).

2.2 Minimizing movements along a sequence
As remarked in Section 2.1, the definition of minimizing movement is usually given
for a single functional F . Now we will introduce a parameter ε (often interpreted
as a space-scale) and give a notion of minimizing movement along a sequence of
functionals {Fε}ε>0, which will depend in general on the interaction between the
time scale τ and the parameter ε in the energies.

Definition 2.2.1 (minimizing movements along a sequence). Let X be a sep-
arable Hilbert space, let Fε : X → [0,+∞] be equicoercive and lower-semicontinuous,
uε0 → u0 with

Fε(uε0) ≤ C < +∞, (2.6)
and let τε > 0 converge to 0 as ε→ 0. With fixed ε > 0, we define uεk recursively as
a minimizer for the problem

min
{
Fε(v) + 1

2τ ‖v − u
ε
k−1‖2

}
, (2.7)

and the piecewise-constant trajectory uε : [0,+∞)→ X given by

uε(t) = uεbt/τεc. (2.8)

A minimizing movement for Fε from uε0 is any limit of a subsequence uεj uniform
on compact sets of [0,+∞).
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After remarking that the Hölder continuity estimates in Proposition 2.1.5 only
depend on the bound on Fε(uε0), with the same proof we can show the following
result.

Proposition 2.2.2 (existence of minimizing movements). For every Fε and
uε0 as above, there exist minimizing movements for Fε from uε0 in C1/2([0,+∞);X).

Remark 2.2.3. The limit minimizing movement may depend on the choice of the
mutual behavior of ε and τ . For example, we consider the functions

Fε(x) =





−x if x ≤ 0
0 if 0 ≤ x ≤ ε
ε− x if x ≥ ε,

which converge uniformly to F (x) = −x. Let x0 be a fixed initial datum.
If x0 > 0, then for ε < x0 we have xεk = xεk−1 + τ for all k ≥ 0.
If x0 ≤ 0, then we have xεk = xεk−1 + τ if xεk−1 ≤ −τ . If 0 ≥ xεk−1 > −τ , then
xεk − xεk−1 is obtained by minimizing the function

f(y) =





−y + 1
2τ y

2 if 0 ≤ y ≤ −xεk−1

xεk−1 + 1
2τ y

2 if − xεk−1 ≤ y ≤ −xεk−1 + ε

ε− y + 1
2τ y

2 if y ≥ −xεk−1,

whose minimizer is always y = τ + xεk−1 if ε − xεk−1 > τ . In this case, xεk = 0. If,
otherwise, ε − xεk−1 ≤ τ , the other possible minimizer is y = τ . We then have to
compare the values

f(−xεk−1) = xεk−1 + 1
2τ (xεk−1)2, f(τ) = ε− 1

2τ.

We have three cases:

(a) ε − 1
2τ > 0. In this case, we have xεk = 0 (and this holds for all subsequent

steps);

(b) ε − 1
2τ < 0. In this case, we either have f(τ) < f(xεk−1), in which case

xεk = xεk−1 + τ (and this then holds for all subsequent steps); otherwise xεk = 0
and xεk+1 = xεk + τ (and this holds for all subsequent steps);

(c) ε− 1
2τ = 0. If xεk−1 < 0 then xεk = 0 (otherwise we already have xεk−1 = 0).

Then, since we have the two solutions y = 0 and y = τ , we have xεj = 0 for k ≤ j ≤ k0
for some k0 ∈ N ∪ {+∞} and xεj = xεj−1 + τ for j > k0.

We can summarize the possible minimizing movements with initial datum x0 ≤ 0
as follows:
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(i) If τ < 2ε, then the unique minimizing movement is x(t) = min{x0 + t, 0};

(ii) If τ > 2ε, then the unique minimizing movement is x(t) = x0 + t;

(iii) If τ = 2ε, then we have the family of minimizing movements (parametrized by
x1 ≤ x0) x(t) = max{min{x0 + t, 0}, x1 + t}.

For x0 > 0 we always have the only minimizing movement x(t) = x0 + t.

2.3 Commutability along ‘fast-converging’ sequences
We now show that, by suitably choosing the ε-τ regimes, the minimizing movement
along the sequence Fε from uε converges to a minimizing movement for the limit
F from u0 (‘fast-converging ε’), while for other choices (‘fast-converging τ ’) the
minimizing movement converges to a limit of minimizing movements for Fε as ε→ 0.
As an heuristic remark, we can say that minimizing movements for all other regimes
are ‘trapped’ between these two extrema.

Theorem 2.3.1 (“extreme” asymptotic behaviours). Let Fε be a equi-coercive
sequence of non-negative lower-semicontinuous functionals on a Hilbert space X
Γ-converging to F , let uε → u0. Then
(i) there exists a choice of ε = ε(τ) such that every minimizing movement along Fε,
with time-step τ and initial data uε, is a minimizing movement for F from u0 on
[0, T ] for all T ;
(ii) there exists a choice of τ = τ(ε) such that every minimizing movement along
Fε, with time-step τ and initial data uε, is the limit of a sequence of minimizing
movements for Fε (for ε fixed) from uε on [0, T ] for all T .

Proof. (i) We first note that, if vε → v0, then the solutions of

min
{
Fε(u) + 1

2τ ‖u− vε‖
2
}

(2.9)

converge, as ε→ 0, to solutions of

min
{
F (u) + 1

2τ ‖u− v0‖2
}

(2.10)

since we have a continuously converging perturbation of a Γ-converging sequence
(see Proposition 1.1.3 and Theorem 1.1.6).

Let uε → u0 and τ > 0 be fixed. We consider the sequence {uτ,εk } defined by
iterated minimization of Fε with initial point uε, as in (2.9). Since uε → u0, up to
subsequences we have uτ,ε1 → uτ,01 , which minimizes

min
{
F (u) + 1

2τ ‖u− u0‖2
}
. (2.11)

The points uτ,ε2 converge to uτ,02 . Since they minimize

min
{
Fε(u) + 1

2τ ‖u− u
τ,ε
1 ‖2

}
(2.12)
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and uτ,ε1 → uτ,01 , their limit is a minimizer of

min
{
F (u) + 1

2τ ‖u− u
τ,0
1 ‖2

}
. (2.13)

This operation can be repeated iteratively, obtaining (upon subsequences) uτ,εk → uτ,0k
and {uτ,0k } iteratively minimizes F with initial point u0. Since, up to subsequences,
the trajectories {uτ,0k } converge to a minimizing movement for F with initial datum
u0, the thesis follows by a diagonal argument.

(ii) For fixed ε, the piecewise-constant functions uε,τ (t) = uε,τbt/τc converge uni-
formly to a minimizing movement uε for Fε with initial datum uε. By compactness,
these uε converge uniformly to some function u as ε→ 0. Again, we conclude by a
diagonal argument.

2.4 Homogenization of minimizing movements
We now examine minimizing movements along oscillating sequences (with many
local minima), treating two model cases in the real line. These examples seem to be
interesting in view of Chapters 4-6 about homogenization of geometric minimizing
movements.

Example 2.4.1 (minimizing movements for piecewise-constant energies).
We apply the minimizing-movement scheme (2.7)-(2.8) to the functions

Fε(x) = −
⌊
x

ε

⌋
ε (2.14)

converging to F (x) = −x. This is a prototype of a function with many local
minimizers (actually, in this case all points are local minimizers) converging to a
function with few local minimizers (actually, none).

Note that, with fixed ε, for any initial datum x0 the minimizing movement for
Fε is trivial: u(t) = x0, since all points are local minimizers (see Remark 2.1.4).
Conversely, the corresponding minimizing movement for the limit is u(t) = x0 + t.

We now fix an initial datum x0, the space-scale ε and the time-scale τ , and
examine the successive-minimization scheme from x0. Note that it is not restrictive
to suppose that 0 ≤ x0 < 1, up to a translation in εZ.

The first minimization giving x1 is

min
{
Fε(x) + 1

2τ (x− x0)2
}

; (2.15)

note that the function to minimize equals −x+ 1
2τ (x− x0)2 if x ∈ εZ.

Apart some singular cases that we deal separately below, we have two possibilities:

(i) If τε <
1
2 , then the motion is trivial. The value 1/2 is the ‘pinning threshold’.

Indeed, after setting x0 = sε with 0 ≤ s < 1, we have two sub-cases:
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(a) the minimizer x1 belongs to [0, ε). This occurs exactly if
Fε(x) + 1

2τ (ε− x0)2 > 0; i.e.,

τ <
(s− 1)2ε

2 . (2.16)

In this case, the only minimizer is the initial datum x0. This implies that
we have xk = x0 for all k.

(b) we have that x1 = ε. This implies that, up to a translation, we are in the
case x0 = 0 with s = 0, and (2.16) holds since τ < ε

2 . Hence, xk = x1 for
all k ≥ 1;

(ii) If τε >
1
2 , then for ε small the minimum is taken on εZ. So that again we may

suppose that x0 = 0.

Note that we are leaving out for the time being the case when x0 = 0 and τ
ε = 1

2 .
In that case we have a double choice for the minimizer; such situations will be
examined separately.

If x0 = 0 then x1 is computed by solving

min
{
Fε(x) + 1

2τ x
2 : x ∈ εZ

}
, (2.17)

and is characterized by
x1 −

1
2ε ≤ τ ≤ x1 + 1

2ε. (2.18)

We then have
x1 =

⌊
τ

ε
+ 1

2

⌋
ε if τ

ε
+ 1

2 6∈ Z (2.19)

(note again that we have two solutions for τ
ε + 1

2 ∈ Z, which also includes the
case τ

ε = 1
2 already set aside, and we examine those cases separately). The same

computation is repeated at each k giving

xk − xk−1
τ

=
⌊
τ

ε
+ 1

2

⌋
ε

τ
. (2.20)

We can now choose τ and ε tending to 0 simultaneously and pass to the limit.
The behaviour of the limit minimizing movements is governed by the quantity

w = lim
ε→0

τ

ε
, (2.21)

which we may suppose exists, up to subsequences. If w+ 1
2 6∈ Z then the minimizing

movement along Fε from x0 is uniquely defined by

u(t) = x0 + vt, with v =
⌊
w + 1

2

⌋ 1
w
, (2.22)

so that the whole sequence converges if the limit in (2.21) exists. Note that

• (pinning) we have v = 0 when τ
ε <

1
2 for ε small. In particular, this holds for

τ << ε (i.e., for w = 0);
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• (limit motion for slow times) if ε<< τ then the motion coincides with the
gradient flow of the limit, with velocity 1;

• (discontinuous dependence of the velocity) the velocity is a discontinu-
ous function of w at points of 1

2 + Z. Note, moreover, that it may be actually
greater than the limit velocity 1;

• (non-uniqueness at w ∈ 1
2 + Z) in these exceptional cases we may have

either of the two velocities 1+ 1
2w or 1− 1

2w in the cases ε
τ + 1

2 > w or ε
τ + 1

2 < w
for all ε small, respectively, but we may also have any u(t) with

1− 1
2w ≤ u

′(t) ≤ 1 + 1
2w

if we have precisely ε
τ + 1

2 = w for all ε small, since in this case, at every time
step, we may choose any of the two minimizers giving the extremal velocities,
and then obtain any such u′ as a weak limit of piecewise-constant functions
taking only those two values. Note therefore that in this case the limit is not
determined only by w, and in particular it may depend on the subsequence
even if the limit (2.21) exists.

Example 2.4.2 (a heterogeneous case). We now examine a variation of the
previous example obtained by introducing a heterogeneity parameter 1 ≤ λ ≤ 2 and
defining

F λ(x) =





−2
⌊
x

2

⌋
if 2

⌊
x

2

⌋
≤ x < 2

⌊
x

2

⌋
+ λ

−2
⌊
x

2

⌋
if 2

⌊
x

2

⌋
+ λ ≤ x < 2

⌊
x

2

⌋
+ 1.

(2.23)

Note that if λ = 1 we are in the previous situation.
We apply the minimizing-movement scheme to the functions

Fε(x) = F λε (x) = εF λ
(
x

ε

)
.

Arguing as above, we can reduce to the two cases

(a) xk ∈ 2εZ, or (b) xk ∈ 2εZ + ελ. (2.24)

Taking into account that xk+1 is determined as the point in 2εZ ∪ (2εZ + ελ)
closer to τ (as above, we only consider the cases when we have a unique solution
to the minimum problems in the iterated procedure), we can characterize it as follows.

In case (a) we have the two sub cases:
(a1) if we have

2n < τ

ε
− λ

2 < 2n+ 1

for some n ∈ N then
xk+1 = xk + (2n+ λ)ε.
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In particular, xk+1 ∈ 2εZ + ελ;
(a2) if we have

2n− 1 < τ

ε
− λ

2 < 2n

for some n ∈ N then
xk+1 = xk + 2nε.

In particular, xk+1 ∈ 2εZ. Note that xk+1 = xk (pinning) if τ
ε
<
λ

2 .

In case (b) we have the two sub cases:
(b1) if we have

2n < τ

ε
+ λ

2 < 2n+ 1

for some n ∈ N then
xk+1 = xk + 2nε.

In particular, xk+1 ∈ 2εZ + ελ. Note that xk+1 = xk (pinning) if τ
ε
< 1− λ

2 , which
is implied by the pinning condition in (a2);
(b2) if we have

2n− 1 < τ

ε
+ λ

2 < 2n

for some n ∈ N then
xk+1 = xk + 2nε− ελ.

In particular, xk+1 ∈ 2εZ.

Eventually, we have the two cases:
(1) when ∣∣∣∣

τ

ε
− 2n

∣∣∣∣ <
λ

2
for some n ∈ N then, after possibly one iteration, we are either in the case (a2) or
(b1). Hence, either xk ∈ 2εZ or xk ∈ 2εZ + ελ for all k. The velocity in this case is
then

xk+1 − xk
τ

= 2nε
τ

;

(2) ∣∣∣∣
τ

ε
− (2n+ 1)

∣∣∣∣ < 1− λ

2
for some n ∈ N then we are alternately in case (a1) or (b2). In this case we have an
averaged velocity: the speed of the orbit {xk} oscillates between two values with an
average speed given by

xk+2 − xk
2τ = 2nε+ λε

2τ + 2(n+ 1)ε− λε
2τ = 2(n+ 1) ε

τ
.

This is an additional feature with respect to the previous example.
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Summarizing, if we define w as in (2.21) then (taking into account only the cases
with a unique limit) the minimizing movement along the sequence Fε with initial
datum x0 is given by x(t) = x0 + vt with v = 1

wf(w), and f is given by

f(w) =





2n if |w − 2n| ≤ λ

2 , n ∈ N

2n+ 1 if |w − (2n+ 1)| < 1− λ

2 , n ∈ N.

Note that the pinning threshold is now λ/2. We can compare this minimizing
movement with the one given in (2.22): for 2n + 1/2 < w < 2n + λ/2 the new
minimizing movement is slower, while for 2n + 2 − λ/2 < w < 2n + 2 − 1/2 it is
faster.

2.5 A scaling of the energies is a time-scaling
In this and the next section, we give some preliminary remarks useful for the
definition of a backward (i.e., reversed time) motion in Chapter 7.

We introduce a new parameter λ > 0 and follow the iterative minimizing scheme
from an initial datum u0 by considering uk, k ≥ 1 defined recursively as a minimizer
of

min
{ 1
λ
Fε(v) + 1

2τ ‖v − uk−1‖2
}
, (2.25)

and setting uτ (t) = uτ,λ(t) = ubt/τc. Equivalently, we may view this as applying the
minimizing-movement scheme to

min
{
Fε(v) + λ

2τ ‖v − uk−1‖2
}
. (2.26)

We may compare this scheme with the one for unscaled energies, where uk are
defined as minimizers of minimizing-movement scheme with time scale η = τ/λ.
This other scheme gives a function uη which is a discrete function on a lattice of
lattice step η. Then we have

uτ (t) = ubt/τc = ubt/ληc = uη
(
t

λ

)
.

Hence, the scaling of the energies Fε by λ corresponds to a scaling of time in the
minimizing-movement scheme.

2.6 Negative scaling and discrete approximation: back-
ward motions

In a finite-dimensional setting, a condition that ensures the possibility of defining a
minimizing movement for a functional F is that

u→ F (u) + 1
2τ |u− ū|

2 (2.27)
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be lower semicontinuous and coercive for all ū and for τ sufficiently small. This is
not in contrast with requiring that also

u→ −F (u) + 1
2τ |u− ū|

2 (2.28)

satisfy the same conditions; for example if F is continuous and of quadratic growth.
This can be seen as a further extension of the time-scaling argument in Section 2.5,
with λ = −1. If the iterative scheme (2.27) gives a solution for the gradient flow,

{
u′(t) = ∇F (u(t)) for t ≥ 0
u(0) = u0.

a minimizing movement v for the second scheme produces a solution v(t) = u(−t)
to the backward problem

{
v′(t) = −∇F (v(t)) for t ≤ 0
v(0) = u0.

In an infinite-dimensional setting the two requirements of being able to define
both the minimizing movement (2.27) and (2.28) greatly limits the choice of F ,
and rules out all interesting cases. A possible approach to the definition of a
backward minimizing movement is then to introduce a finite-dimensional or discrete
approximation Fε to F , for which we can define a minimizing movement along −Fε.
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Chapter 3

Geometric minimizing
movements

In view of the results about the motion of discrete interfaces contained in the next
chapters, we now examine some minimizing movements describing the motion of
sets: the geometric minimizing movements. Such a motion can be framed in the
setting of the previous chapter after identification of a set E with its characteristic
function u = χE . The energies we are going to consider are of perimeter type; i.e.,
with

F (E) = H1(∂E) (3.1)

as a prototype in the notation of the previous chapter. Here we follow Braides [11],
Chapter 9.

3.1 Motion by mean curvature
The prototype of a geometric motion is motion by mean curvature; i.e., a family of
sets E(t) whose boundary moves in the normal direction with velocity proportional
to its curvature (inwards in convex regions and outwards in concave regions). In the
simplest case of initial datum a ball in R2, E(0) = E0 = BR0(0), the motion is given
by concentric balls with radii satisfying





Ṙ(t) = − c

R(t)

R(0) = R0;

(3.2)

i.e., R(t) =
√
R2

0 − 2ct, valid until the extinction time T = R2
0/2c, when the radius

vanishes.
A heuristic argument suggests that the variation of the perimeter be linked to

the notion of curvature; hence, we expect to be able to obtain motion by mean
curvature as a minimizing movement for the perimeter functional. We will see that,
in order to obtain geometric motions as minimizing movements, we will have to
modify the procedure described in the previous chapter.
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Example 3.1.1 (pinning for the perimeter motion). We apply the minimizing-
movement procedure to the perimeter functional (3.1) with initial datum E0 = BR0(0)
in R2. With fixed τ , since

∫

R2
|χA − χB|2 dx = |A4B|,

the minimization to determine E1 is

min
{
H1(∂E) + 1

2τ |E4E0|
}
. (3.3)

We note that we can restrict our analysis to sets E contained in E0, since
otherwise taking E ∩E0 as test sets in their place would decrease both terms in the
minimization. Once this is observed, we also note that, given E ⊂ E0, if BR(x) ⊂ E0
has the same measure as E then, by the isoperimetric inequality, it decreases the
perimeter part of the energy (strictly, if E itself is not a ball) while keeping the
second term fixed. Hence, we can limit our analysis to balls BR(x) ⊂ E0, for which
the energy depends only on R. The incremental problem is then given by

min
{

2πR+ π

2τ (R2
0 −R2) : 0 ≤ R ≤ R0

}
, (3.4)

whose minimizer is either R = 0 (with value π
2τR

2
0) or R = R0 (with value 2πR0),

since in (3.4) we are minimizing a concave function of R. For τ small the minimizer
is then R0. This means that the motion is trivial: Ek = E0 for all k, and hence also
the resulting minimizing movement is trivial.

3.2 A variational approach to curvature-driven motion
In order to obtain motion by curvature, Almgren, Taylor and Wang [3] have intro-
duced a variation of the implicit-scheme described above, where the term |E4Ek|
is substituted by an integral term which favours variations which are ‘uniformly
distant’ to the boundary of Ek. The problem defining Ek is then

min
{
H1(∂E) + 1

τ

∫

E4Ek−1
dist(x, ∂Ek−1) dx

}
, (3.5)

where dist(·, A) denotes the euclidean distance from the set A. Note that the integral
term can be interpreted as an L2-distance between the boundaries of the sets.

We will check the convergence of this scheme to the mean-curvature motion for
E0 = BR0 in R2.

In this case, we note that if Ek−1 is a ball centered in 0 then we have

• Ek is contained in Ek−1. To check this, note that, given a test set E, considering
E ∩ Ek−1 as a test set in its place decreases the energy in (3.5), strictly if
E\Ek−1 6= ∅;

• Ek is convex with baricenter in 0. For this, note first that each connected
component of Ek is convex. Otherwise, considering the convex envelopes
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decreases the energy (strictly, if one of the connected components is not
convex). Then note that if 0 is not the baricenter of a connected component
of Ek, then a small translation towards 0 strictly decreases the energy (this
follows by computing the derivative of the volume term along the translation).
In particular, we only have one (convex) connected component.

From these properties we can conclude that Ek is indeed a ball centered in 0.
Were it not so, there would be a line through 0 such that the boundary of Ek does
not intersect perpendicularly this line. By a reflection argument we then obtain
a non-convex set Ẽk with total energy not greater than the one of Ek (note that
the line considered subdivides Ek into two subsets with equal total energy). Its
convexification would then strictly decrease the energy. This shows that each Ek is
of the form

Ek = BRk = BRk(0).

We can now compute the equation satisfied by Rk, by minimizing (after passing
to polar coordinates)

min
{

2πR+ 2π
τ

∫ Rk−1

R
(Rk−1 − ρ)ρ dρ

}
, (3.6)

which gives
Rk −Rk−1

τ
= − 1

Rk
. (3.7)

Passing to the limit gives the desired mean curvature equation (3.2).

3.3 Motion by crystalline curvature
We now consider the functional

F (E) =
∫

∂∗E
‖ν‖1 dH1, (3.8)

defined on all sets of finite perimeter (ν denotes the normal to ∂∗E), which is called
crystalline perimeter. A minimizing movement for F is called a flat flow.

The incremental problems for the minimizing-movement scheme for F in (3.8)
are of the form

min
{
F (E) + 1

τ

∫

E4Ek−1
dist∞(x, ∂Ek−1) dx

}
, (3.9)

where, for technical reasons, we consider the ∞-distance

dist∞(x,B) = inf {‖x− y‖∞ : y ∈ B} .

We only consider the case when the initial datum E0 is a rectangle, and we show
that the flat flow is the motion by crystalline curvature (see Almgren and Taylor
[2], Taylor [47]). We can prove that if Ek−1 is a rectangle, then we can limit the
computation in (3.9) to



20 3. Geometric minimizing movements

∆L1
2

∆L2
2

Figure 3.1. Incremental crystalline minimization.

• E contained in Ek−1, otherwise E ∩ Ek−1 strictly decreases the energy;

• E with each connected component a rectangle, otherwise taking the least
rectangle containing a given component would decrease the energy, strictly if
E is not a rectangle;

• E connected and with the same center as E0, since translating the center
towards 0 decreases the energy.

Hence, we may suppose that

Ek =
[
−Lk,12 ,

Lk,1
2

]
×
[
−Lk,22 ,

Lk,2
2

]

for all k. In order to iteratively determine Lk,j , we have to minimize the energy

min
{

2(Lk,1 + ∆L1) + 2(Lk,2 + ∆L2) + 1
τ

∫

E4Ek−1
dist∞(x, ∂Ek−1) dx

}
. (3.10)

For τ small, the integral term in (3.10) can be substituted by

2
[
Lk,1

4 (∆L2)2 + Lk,2
4 (∆L1)2

]
.

This argument amounts to noticing that the contribution of the small rectangles at
the corners highlighted in Fig. 3.1 is negligible as τ → 0. The optimal decrements
∆Lj are then determined by the conditions





1 + Lk,2
4τ ∆L1 = 0

1 + Lk,1
4τ ∆L2 = 0.

(3.11)

Hence, we have the difference equations

∆L1
τ

= − 4
Lk,2

,
∆L2
τ

= − 4
Lk,1

, (3.12)
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which finally gives the system of differential equations for the limit rectangles, with
edges of length L1(t) and L2(t), respectively, solving





L̇1(t) = − 4
L2(t)

L̇2(t) = − 4
L1(t) .

(3.13)

From a geometrical point of view, this means that each edge of the rectangle
moves inwards with velocity inversely proportional to its length; more precisely,
equal to twice the inverse of its length (so that the other edge contracts with twice
this velocity). Hence, the inverse of the length of an edge plays the role of the
curvature in this context, the crystalline curvature.

Note that by (3.13) all rectangles are homothetic, since d

dt

L1
L2

= 0, and with area
satisfying

d

dt
L1L2 = −8,

so that L1(t)L2(t) = L0,1L0,2 − 8t, which gives the extinction time t = L0,1L0,2/8.
In the case of an initial datum a square of side length L0, the sets are squares whose
side length at time t is given by L(t) =

√
L2

0 − 8t, in analogy with the evolution of
balls by mean curvature flow (Section 3.1).
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Chapter 4

Motion of discrete interfaces in
homogeneous media

In this chapter we present the results contained in the paper by Braides, Gelli and
Novaga [14], where the Almgren-Taylor-Wang approach of Section 3.2 has been used
coupled to a homogenization procedure to study the variational motion of discrete
interfaces driven by ferromagnetic interactions.

4.1 Lattice energies as interfacial energies
We consider the simplest lattice energy, that is, depending on a discrete variable
u = {ui} indexed by the nodes i of the standard lattice Z2, given by

P (u) = 1
4
∑

|i−j|=1
(ui − uj)2, (4.1)

where ui takes only the two values +1 and −1 (spin systems). Note that its density
only differs by constants from the usual ferromagnetic energy density −uiuj . After
identifying a function u with the set E obtained as the union of all closed unit
squares with centers i such that ui = 1, the energy P can be rewritten as a perimeter
functional

P (E) = H1(∂E), (4.2)
and hence can be interpreted as an interfacial energy.

We are interested in energy-driven motions deriving from this type of functional,
but since no motion by gradient flow is directly possible in the discrete environment
(as all u are isolated points), we perform an analysis in a discrete-to-continuous
framework, where we scale the lattice and the energy P by introducing a small
parameter ε.
As a result, we have the scaled energies

Pε(u) = 1
4
∑

|i−j|=ε
ε(ui − uj)2, (4.3)

where u : εZ2 → {±1}. This functional may again be identified with the perimeter

Pε(E) = H1(∂E), (4.4)
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with the constraint that E be the union of squares of side length ε.
In the associated Almgren, Taylor and Wang scheme, the perimeters and the

distances depend on a small parameter ε, and consequently, after introducing a time
scale τ , the time-discrete motions are the Eτ,εk , k ≥ 1 defined iteratively by

Eτ,εk is a minimizer of min
{
Pε(E) + 1

τ
Dε(E,Eτ,εk−1)

}
, (4.5)

Dε being a suitable distance between sets (see Section 4.3). The time-continuous
limit E(t) of {Eτ,εk } then may depend how mutually ε and τ tend to 0, and this
problem can be cast in the general framework of minimizing movements along a
Γ-converging sequence (see Chapter 2, Section 2.2). In particular, the limit motion
will be pinned if τ << ε suitably fast (in a sense, we can pass to the limit in τ first
and then apply the Almgren-Taylor-Wang approach). On the contrary, if ε<< τ
fast enough then the limit E will be the evolution related to the limit P , which is
the crystalline perimeter (4.10) (again, in a sense, in this case we can pass to the
limit in ε first). Hence, the critical regime τ ∼ ε is more interesting and captures
the main features of the motion. The relevant case for the description of the motion
is that of initial data coordinate rectangles, since the motion of more general sets
can be reduced to the study of this one.

Overview of the chapter. In Section 4.2 we define the discrete ‘ferromagnetic-
type’ energies that we will consider. In Section 4.3 we define the discrete distance
term in the energy and formulate the minimization scheme, showing that the limit
motion depends on the ε-τ regime chosen. Section 4.4 contains the description of
the convergence of the discrete scheme, at the critical regime, in the case of initial
data coordinate rectangles. The evolute of a coordinate rectangle by minimization of
the energy is a coordinate rectangle, and the velocity of each side is quantized and
uniquely determined, up to a discrete set of side-lengths (Theorem 4.4.1). In case of
uniqueness, the limit motion (Theorem 4.4.2) is described by a system of degenerate
differential equations, whose right hand sides are discontinuous functions of the
curvature. A comparison with the crystalline motion is contained in Remark 4.4.3,
showing new features due to discreteness of the problem. In Section 4.5 we recall the
extension of the previous results to the case of initial data coordinate polyrectangles,
which is the first step to treat the case of more general initial sets.

4.2 Homogeneous ferromagnetic energies on discrete
sets

We recall in details the definition of the energies (4.3), given in a more general
framework with respect to Braides, Gelli and Novaga [14].

Let α > 0 (α = 1 in [14]). With fixed space mesh ε > 0, for a set of indices
I ⊂ εZ2 we consider the energy

Pαε (I) = αε#{(i, j) ∈ εZ2 × εZ2 : i ∈ I, j 6∈ I, |i− j| = ε}. (4.6)
In order to study the continuous limit as ε→ 0 of these energies, it will be convenient
to identify each subset of εZ2 with a measurable subset of R2 (namely, unions of ε-
squares), in such a way that equi-boundedness of the energies implies pre-compactness
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of such sets in the sense of sets of finite perimeter. This identification is as follows:
we denote by Q = [−1/2, 1/2]2 the closed coordinate unit square of center 0; if ε > 0
and i ∈ εZ2, we denote by Qε(i) = i + εQ the closed coordinate square with side
length ε and centered in i. To a set of indices I ⊂ εZ2, we associate the set

EI =
⋃

i∈I
Qε(i). (4.7)

The space of admissible sets related to indices in the two-dimensional square lattice
is then defined by

Dε :=
{
E ⊆ R2 : E = EI for some I ⊆ εZ2

}
. (4.8)

We note that the value of the energy Pαε (I) is the same as the perimeter (up to
multiply it by α) of the corresponding set EI ∈ Dε, so that it can be thought as a
discrete perimeter of I.

We denote, with a slight abuse of notation,

Pαε (EI) = Pαε (I) = αH1(∂EI). (4.9)

The latter equality shows that sequences of sets Eε with supε Pαε (Eε) < +∞ are
pre-compact with respect to the local L1-convergence in R2 of their characteristic
functions, and their limits are sets of finite perimeter in R2. The continuum limit of
these energies is the crystalline perimeter (see Alicandro, Braides and Cicalese [1])

Pα(E) = α

∫

∂E
‖ν‖1 dH1, (4.10)

where ν is the normal to ∂E and ‖ν‖1 = ‖(ν1, ν2)‖1 = |ν1|+ |ν2|.

4.3 A discrete-in-time minimization scheme
Now we define explicitly the distance term Dε in (4.5).

For I ⊂ εZ2, we define the discrete `∞-distance from ∂I as

dε∞(i, ∂I) =
{

inf{‖i− j‖∞ : j ∈ I} if i 6∈ I
inf{‖i− j‖∞ : j ∈ εZ2\I} if i ∈ I,

where ‖z‖∞ = max{|z1|, |z2|}. Note that we have

dε∞(i, ∂I) = d∞(i, ∂EI) + ε

2 ,

where d∞ denotes the usual `∞-distance. This distance can be extended to all
R2\∂EI by setting

dε∞(x, ∂I) = dε∞(i, ∂I) if x ∈ Qε(i).

In the following we will directly work with E ∈ Dε, so that the distance can be
equivalently defined by
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dε∞(x, ∂E) = d∞(i, ∂E) + ε

2 , if x ∈ Qε(i).

Note that this is well defined as a measurable function, since its definition is unique
outside the union of the boundaries of the squares Qε (that are a negligible set).

We now fix a time step τ > 0 and introduce a discrete motion with underlying
time step τ obtained by successive minimization. At each time step we will minimize
an energy Fαε,τ : Dε ×Dε → R defined as

Fαε,τ (E,F ) = Pαε (E) + 1
τ

∫

E4F
dε∞(x, ∂F ) dx. (4.11)

Note that the integral can be indeed rewritten as a sum on the set of indices
εZ2 ∩ (E4F ). More precisely, if I = E ∩ εZ2,J = F ∩ εZ2, then

Fαε,τ (I,J ) = Pαε (I) + 1
τ

∑

i∈I4J
ε2dε∞(i, ∂J )

= Pαε (I) + 1
τ


 ∑

i∈I\J
ε2d∞(i,J ) +

∑

i∈J\I
ε2d∞(i, εZ2\J )


 .

Given an initial set E0
ε , we define recursively a sequence Ekε,τ in Dε by requiring

the following:

(i) E0
ε,τ = E0

ε ;

(ii) Ek+1
ε,τ is a minimizer of the functional Fαε,τ (·, Ekε,τ ).

The discrete flat flow associated to functionals Fαε,τ is thus defined by

Eε,τ (t) = Ebt/τcε,τ , t ≥ 0. (4.12)

Assuming that the initial data E0
ε tend, in the Hausdorff sense (see Section 1.2), to

a sufficiently regular set E0, we are interested in identifying the motion described by
any converging subsequence of Eε,τ (t) as ε, τ → 0.

As remarked in Section 4.1, the interaction between the two discretization
parameters, in time and space, plays a relevant role in such a limiting process. More
precisely, the limit motion depends strongly on their relative decrease rate to 0.

We have the following ‘extreme’ asymptotic behaviors:
(a)(crystalline motion) if ε<< τ , then we may first let ε→ 0, so that Pαε (E) can be
directly replaced by the limit anisotropic perimeter Pα(E) and 1

τ

∫
E4F d

ε
∞(x, ∂F ) dx

by 1
τ

∫
E4F d∞(x, ∂F ) dx. As a consequence, the approximated flat motions tend to

the solution of the continuous ones studied by Almgren and Taylor [2], that is, the
crystalline motion;
(b)(pinning) if ε >> τ , then there is no motion (i.e., ‘pinning’) and Ekε,τ ≡ E0

ε .
Indeed, for any F 6= E0

ε and for τ small enough we have

1
τ

∫

E0
ε4F

dε∞(x, ∂F ) dx ≥ c ε
τ
> Pαε (E0

ε ).
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In this case, the limit motion is the constant state E0.
An heuristic computation suggests that the meaningful regime is the intermediate

case τ ∼ ε. We will describe the study of this case, the behaviour in the other
regimes being immediately deduced (by scaling) from this analysis.

4.4 Motion of a rectangle
We treat the case of initial data E0

ε that are coordinate rectangles; that is, rectangles
with sides parallel to the coordinate directions, of lengths L0

1,ε, L
0
2,ε, respectively.

We assume that
τ = γε for some γ ∈ (0,+∞),

(note that γ here plays the role of α in [14]) and, correspondingly, we omit the
dependence on τ in the notation of

Ekε = Ekε,τ (= Ekε,γε).

We note that the results remain true also in the more general case

lim
ε→0+

τ

ε
= γ.

The following characterization of any limit motion holds.

Theorem 4.4.1 (quantization of the limit velocity). For all ε > 0, let E0
ε ∈ Dε

be a coordinate rectangle with sides S1,ε, . . . , S4,ε. Assume also that

lim
ε→0

dH(E0
ε , E0) = 0

for some fixed coordinate rectangle E0. Then, up to a subsequence, the piecewise-
constant motion Eε(t) defined by (4.12) converges as ε→ 0 locally in time to E(t),
where E(t) is a coordinate rectangle with sides Si(t), and such that E(0) = E0. Any
Si moves inward with velocity vi(t) solving the following differential inclusions

vi(t)





= 1
γ

⌊ 2αγ
Li(t)

⌋
if 2αγ
Li(t)

6∈ N

∈
[1
γ

( 2αγ
Li(t)

− 1
)
,

1
γ

2αγ
Li(t)

]
if 2αγ
Li(t)

∈ N

(4.13)

where Li(t) := |Si(t)| denotes the length of the side Si(t), until the extinction time
when Li(t) = 0.

Proof. For the complete proof, see Theorem 1 in [14]. Here we just give a sketch
of it, highlighting the main steps; this will be useful in the sequel for a comparison
with the inhomogeneous case (see Proposition 5.3.5). The first remark is that, for
ε fixed, coordinate rectangles evolve into sets of the same type. This is checked
recursively, by showing that if Ekε is a coordinate rectangle and F is a minimizer for
the minimum problem for Fαε,τ (·, Ekε ), then F is a coordinate rectangle. In order to
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prove the assertion, let F = F1 ∪ F2 ∪ · · · ∪ Fm,m ≥ 1 be the decomposition of F
into its connected components. Then the main steps of this geometric part of the
proof are the following:

Step 1: Rectangularization. Each Fi is a coordinate rectangle contained
in Ekε ; in fact, if we replace each Fi with the rectangularization of Fi ∩ Ekε , i.e.,
the minimum coordinate rectangle containing Fi ∩ Ekε , its energy decreases since
its perimeter is not greater than that of Fi and the symmetric difference with Ekε
decreases as well.

Step 2: Connectedness of F . Actually, there is only one connected component;
in fact, each connected component Fi can be translated in direction of the center of
Ekε without increasing its energy.

Step 3: F contains the center of Ekε . We can argue by contradiction, and by
assuming that F does not contain the center of Ekε , we can construct a competitor
which contradicts the connectedness of F .

The second part of the proof deals with the explicit computation of the minimizer
E1
ε (and then of Ekε , by iterating this procedure). We set Li,ε := |Si,ε| and let εNi

be the distance of the side Si,ε from Si. We can write the functional Fαε,τ (F,Ekε ) in
terms of the integer distances N1, . . . , N4 from the relative sides, and we get that
N1,ε, . . . , N4,ε are minimizers of the function

f(N1, . . . , N4) = −2αε
4∑

i=1
Ni + ε

γ

4∑

i=1

Ni∑

k=1
kLi,ε −

ε2

γ
eε

= ε
4∑

i=1

(
−2αNi + 1

γ

Ni(Ni + 1)
2 Li,ε

)
− ε2

γ
eε,

(4.14)

where 0 ≤ eε ≤ C max(N1, . . . , N4)3. In the computation above we have subdivided
the rectangle between Si,ε and Si in Ni stripes indexed by k, for each of which the
discrete distance is kε; the last term is due to the contribution of the bulk term close
to the corners of the rectangle F , where two neighboring rectangles between Si,ε and
Si intersect, and is negligible as ε→ 0 (see Fig. 4.1). The minimizer N1,ε, . . . , N4,ε

Figure 4.1. Computation of the time-step minimization (original picture from [14]).

are identified by the inequalities

f(. . . , Ni,ε, . . . ) ≤ f(. . . , Ni,ε ± 1, . . . ).
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A direct computation shows that Ni,ε is equal to b2αγ/Li,εc, except for the singular
case in which 2αγ/Li,ε lies in a small neighborhood of the integers, infinitesimal
as ε→ 0. In this case, there exists a threshold, varying with ε, for which both an
integer N and the subsequent are minimizers.
Therefore, the side Si,ε moves inward of a distanceNi,εε, with the valueNi,ε estimated
in terms of the quantity 2αγ/Li,ε as above.

The following theorem characterizes the limit evolutions in case of uniqueness.

Theorem 4.4.2 (unique limit motions). Let Eε, E0 be as in the statement of
Theorem 4.4.1. Assume in addition that the lengths L0

1, L
0
2 of the sides of the initial

set E0 satisfy one of the three following conditions (we assume that L0
1 ≤ L0

2):

(a) L0
1, L

0
2 > 2αγ (total pinning);

(b) L0
1 < 2αγ and L0

2 ≤ 2αγ (vanishing in finite time);

(c) L0
1 < 2αγ and 2αγ/L0

1 6∈ N, and L0
2 > 2αγ (partial pinning);

then Eε(t) converges locally in time to E(t) as ε → 0, where E(t) is the unique
rectangle with sides of lengths L1(t) and L2(t) which solve the following system of
ordinary differential equations





L̇1(t) = −2
γ

⌊ 2αγ
L2(t)

⌋

L̇2(t) = −2
γ

⌊ 2αγ
L1(t)

⌋ (4.15)

for almost every t, with initial conditions L1(0) = L0
1 and L2(0) = L0

2.

Proof. See Theorem 2 in [14]. Note that in (a) ‘total pinning’ means E(t) ≡ E0,
that is, L̇1 = L̇2 ≡ 0. Under the assumption (c), we have ‘partial pinning’, that is
the side whose initial length is L0

2 > 2αγ stays pinned until it reaches the critical
length L2 = 2αγ, due to the motion of the other one.

Remark 4.4.3 (new features with respect to the crystalline motion). Here
we highlight the main differences between the limit motion described by Theorem 4.4.2
and the crystalline motion, whose equations are given by (3.13) in Section 3.3.
(i) ‘Degenerate equations’. The motion defined in Theorem 4.4.2 is described
by a system of degenerate ordinary differential equations (4.15), whose right-hand
sides are discontinuous. In fact, the discrete motion is obtained by overcoming some
energy barriers in a ‘quantized’ manner. Moreover, we may read in the equations
the effect of the Γ-limit energy (through the crystalline form of the evolution and
the coefficient α) and of the interplay between the time and space scales (through
the scaling γ).
(ii) A pinning threshold. In the hypothesis (a) of Theorem 4.4.2 we have pinning
for large rectangles: if both the initial side-lengths are above the pinning threshold
L̃ = 2αγ, then the right-hand sides of equations (4.15) are zero and the motion is
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pinned. This threshold is obtained by computing the values for which a side of length
L may not move inwards of ε by decreasing the energy Fαε,τ . The corresponding
variation of the energy is given by

− 2αε+ 1
γ
Lε, (4.16)

which is positive if and only if

L ≥ L̃ = 2αγ. (4.17)

(iii) Inhomogeneity of the motion. The limit motion (4.15) cannot be obtained
following the Almgren-Taylor-Wang approach for any perimeter functional. It can
be regarded as a non-homogeneous crystalline motion, with a velocity depending on
a function of the curvature: if the curvature κ of a side is identified with the inverse
of its length, then the law for the velocity v of that side is

v = f(κ)κ,

where f(κ) = 1
γ b2αγκc 1

κ . Note that f is always less or equal than 2, the coefficient
in the continuous case, which shows how an additional discreteness effect is to slow
down the crystalline motion.

4.5 Motion of a polyrectangle
In this section we recall the extension of the results, obtained previously for coordinate
rectangles, to the case in which the limit initial set is a polyrectangle ([14], Section 3.2).

δi = +1 δi = 0 δi = −1

Si

Si Si

Figure 4.2. Sides of a polyrectangle with different curvature signs.

We first give the definition of polyrectangle and we assign a curvature sign on
each side.

Definition 4.5.1. A set E is a coordinate polyrectangle if ∂E is locally a Lipschitz
graph, and consists of a finite union of segments (sides), which are parallel to one of
the coordinate axes. For any polyrectangle E we assign to each side Si an integer
number δi (the sign of the curvature of Si) as follows (see Fig. 4.2): δi = 1 (resp.
δi = −1) if there exists r > 0 such that E ∩ (Si +Br) (resp. (R2\E) ∩ (Si +Br)) is
a convex set, we set δi = 0 if none of the two conditions holds.
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Hence, locally convex sides move inwards, locally concave sides move outwards
while the other ones stay pinned. The characterization of any limit motion is the
following.

Theorem 4.5.2 (Motion of polyrectangles). Let E0 be a connected polyrectangle
with sides S1, S2, . . . , SN . For all ε > 0, let E0

ε ∈ Dε be connected polyrectangles
with sides S1,ε, S2,ε, . . . , SN,ε, such that

lim
ε→0

dH(E0
ε , E0) = 0.

Then there exists T > 0 such that, up to a subsequence, Eε(t) converges as ε→ 0,
in the Hausdorff topology and locally uniformly on [0, T ), to a polyrectangle E(t)
with E(0) = E0. Moreover, the sides Si of E(t), 1 ≤ i ≤ N , move with velocity vi(t)
solving the following differential inclusions

vi(t)





= δi
γ

⌊ 2αγ
Li(t)

⌋
if 2αγ
Li(t)

6∈ N

∈
[
δi
γ

( 2αγ
Li(t)

− 1
)
,
δi
γ

2αγ
Li(t)

]
if 2αγ
Li(t)

∈ N

(4.18)

where Li(t) := |Si(t)|. As a consequence, if we further assume that 2αγ/L0
i 6∈ N for

all 1 ≤ i ≤ N , the lengths Li(t) solve the following system of differential equations

L̇i(t) = −
(
δi−1
γ

⌊ 2αγ
Li−1(t)

⌋
+ δi+1

γ

⌊ 2αγ
Li+1(t)

⌋)
. (4.19)

Proof. See Theorem 3 in [14].

The time T > 0 can be chosen as the first time for which lim
t→T

Li(t) = 0, for some
i ∈ {1, . . . , N}.

As a final remark, we note that in [14] more effects due to discreteness are
described (partial pinning, non-uniqueness, pinning after initial motion, etc.) which
are related to the evolution of more general initial data (e.g., a rhombus, crystalline
convex sets, etc.).
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Chapter 5

Motion of discrete interfaces in
‘high-contrast’ periodic media

In this chapter we present the results contained in a joint work with A. Braides [19]
about the motion of discrete interfaces in high-contrast periodic media; that is,
media with periodic inclusions which are not energetically favourable, and hence are
avoided by the interface.

5.1 Motivation and survey of the main results
In the spirit of the previous chapter (in particular, Remark 4.4.3), our aim is to
show that a periodic microstructure can affect the limit evolution, without changing
the Γ-limit. Hence, the Γ-limit is not sufficient to completely characterize the
limit evolution at the critical regime. To this end, we will introduce a further
inhomogeneity in the perimeters Pαε by considering, for any subset E ⊂ εZ2,

Pα,βε (E) = 1
2ε
∑
{cij : (i, j) ∈ Z2 × Z2, εi ∈ E, εj 6∈ E, |i− j| = 1},

(we use the notation ∑{xa : a ∈ A} = ∑
a∈A xa) where the coefficients cij equal

α > 0 except for some well-separated periodic square inclusions where cij = β > α
(high-contrast medium). These inclusions are not energetically favorable and they
can be neglected in the computation of the Γ-limit, which is still the perimeter Pα
(4.10), with the same coefficient α (see Remark 5.2.1). They can be considered as
“obstacles” that can be bypassed when computing minimizers of Pα,βε ; however their
presence is felt in the minimizing-movement procedure (4.5) since they may influence
the choice of Eτ,εk through the interplay between the distance and perimeter terms.
As a result, the motion can be either decelerated or accelerated with respect to the
homogeneous case (Chapter 4).

As already remarked in the previous chapter, the relevant case for the description
of the motion is that of initial data coordinate rectangles, since all other cases can
be reduced to the study of this one. We will then restrict our analysis to that case,
in the critical regime τ = γε. This (apparently) simple situation already contains all
the relevant features of the evolution and highlights the differences with respect to
the motion in a homogeneous medium. We will show that the limit motion can still
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be described through a system of degenerate ordinary differential equations of the
form





L̇1(t) = −2
γ
f

(
γ

L2(t)

)

L̇2(t) = −2
γ
f

(
γ

L1(t)

)

with f a locally constant function on compact subsets of (0,+∞) which depends on
α, the period and size Nβ of the inclusions but not on γ (neither on the value β).

The effective velocity f is obtained by a homogenization formula which optimizes
the motion of the sides of the rectangle; it results in an oscillation around a linear
motion with velocity 1

γ f(γ/L) (which is locally constant, as noted above). Note
that, in the case of no inclusions, the system is of the same form with f(Y ) = b2αY c
(equation (4.15)). The dependence on the inclusions gives a new pinning threshold

L = 4γα
2 +Nβ

depending on the size of the inclusion Nβ . The reason for this new pinning threshold
is that, in order that a side may move, it need to be able to overcome a barrier of
Nβ inclusions. Note that, if the initial data have side lengths L < L < L̃, L̃ the
pinning threshold (4.17), then we may have a microscopic motion which stops after
a finite number of time steps, and is not eventually detected in the limit. It should
be remarked that the presence of the inclusions may indeed accelerate the motion,
so that f(Y ) > b2αY c for some Y .

Overview of the chapter. In Section 5.2 we define all the energies we will consider.
Section 5.3 contains the proof of the convergence of the discrete scheme in the case of
a rectangular initial set. Contrary to the proof of Theorem 4.4.1, it is not trivial to
show that the minimizers of this scheme are actually rectangles. This is a technical
result contained in Proposition 5.3.5. Section 5.3.1 contains the computation of the
new pinning threshold, showing that it depends on the percentage Nβ of defects
in the lattice. Section 5.3.2 deals with the new definition of the effective velocity
of a side by means of a homogenization formula resulting from a one-dimensional
‘oscillation-optimization’ problem. This velocity can be expressed uniquely (up
possibly to a discrete set of values) as a function the ratio of γ and the side length
(Definition 5.3.8). The description of the homogenized limit motion is contained in
Section 5.3.3. In the last two sections we compute explicitly the velocity function by
means of algebraic formulas in some simple cases, showing a nontrivial comparison
with the case with no inclusions.

5.2 Inhomogeneous ferromagnetic energies on discrete
sets

The energies we consider are interfacial energies defined in an inhomogeneous
environment as follows: let 0 < α < β < +∞, Nα, Nβ ≥ 1 and set Nαβ = Nα +Nβ.
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We consider the Nαβ-periodic coefficients cij indexed on nearest-neighbours of Z2

(i.e., i, j ∈ Z2 with |i− j| = 1) defined for i, j such that

0 ≤ i1 + j1
2 ,

i2 + j2
2 < Nαβ

by

cij =




β if 0 ≤ i1 + j1

2 ,
i2 + j2

2 ≤ Nβ

α otherwise.
(5.1)

These coefficients label the bonds between points in Z2, so that they describe a
matrix of α-bonds with Nαβ-periodic inclusions of β-bonds grouped in squares of
side-length Nβ. The periodicity cell is pictured in Fig. 5.1.

Nβ Nα

Figure 5.1. Periodicity cell. Continuous lines represent β-bonds, dashed lines α-bonds.

Correspondingly, to these coefficients we associate the energy defined on subsets
I of Z2 by

Pα,β(I) =
∑{

cij : |i− j| = 1, i ∈ I, j ∈ Z2 \ I
}
. (5.2)

Here we use the notation ∑{xa : a ∈ A} = ∑
a∈A xa. In order to examine the overall

properties of Pα,β , we introduce the family of scaled energies defined on subsets I of
εZ2 by

Pα,βε (I) =
∑{

ε ci/ε j/ε : |i− j| = ε, i ∈ I, j ∈ εZ2 \ I
}

; (5.3)

i.e., Pα,βε (I) = εPα,β(1
εI). To study the continuous limit as ε→ 0 of these energies,

it will be convenient to identify each subset I of εZ2 with a measurable subset EI
of R2 as in Section 4.2, that is, EI = ⋃

i∈I ε(i + Q). The class of finite unions of
ε-squares still will be denoted by Dε.

As an easy remark, we note that

Pα,βε (EI) ≥ εα#
{

(i, j) : |i− j| = ε, i ∈ I, j ∈ εZ2 \ I
}

= αH1(∂EI), (5.4)

which shows that sequences of sets Eε with supε Pα,βε (Eε) < +∞ are pre-compact
with respect to the local L1-convergence in R2 of their characteristic function and
their limits are sets of finite perimeter in R2. Hence, this defines a meaningful
convergence with respect to which compute the Γ-limit of Pα,βε as ε→ 0.

In our case the presence of the β-inclusions does not influence the form of the
Γ-limit, which is still the crystalline perimeter Pα (4.10), as in the following remark.
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Remark 5.2.1 (Γ-convergence of inhomogeneous perimeter energies). The
energies Pα,βε defined by (5.3) Γ-converge, as ε → 0, to the anisotropic cristalline
perimeter functional

Pα(E) = α

∫

∂∗E
‖ν‖1 dH1.

This limit is independent of Nα, Nβ, and equals the one obtained when β = α.
The lower bound for the Γ-limit is immediately obtained from the case α = β in

[1] after remarking that Pα,βε ≥ Pα,αε = Pαε . In order to verify the upper bound, it
suffices to note that recovery sequences for the Γ-limit of Pα,βε can be constructed at
a scale Nαβε, thus ‘avoiding’ the β-connections. To this end, define

Q
Nαβ
ε =

⋃{
Qε(i) : i ∈ εZ2, 0 ≤ ‖i‖∞ < εNαβ

}
.

This is a square of side length Nαβ ε whose boundary intersects only α-bonds. We
consider PNαβε the restriction of Pα,βε to the class

DNαβε =
{
E ⊆ R2 : E is a finite union of εZ2-translations of QNαβε

}
.

Note that we have Pα,βε (E) = Pα,αε (E) for E ∈ DNαβε , and that sets in DNαβε differ
from sets in DεNαβ by a fixed translation of order ε. Hence, we have (see Chapter 1
for details on the properties of Γ-upper limits)

Γ- lim sup
ε→0

Pα,βε (E) ≤ Γ- lim sup
ε→0

PNαβε (E) = Γ- lim
ε→0

Pα,βNαβε(E),

and the latter is again equal to Pα(E). This inequality just states that we can take
sets in DNαβε , which are small translations of a recovery sequence for Pα,βNαβε(E), as a
recovery sequence for Pα,βε (E).

5.3 Motion of a rectangle
We consider the same discrete-in-time scheme as in Section 4.3, and at each time
step we will minimize an energy Fα,βε,τ : Dε ×Dε → R defined as

Fα,βε,τ (E,F ) = Pα,βε (E) + 1
τ

∫

E4F
dε∞(x, ∂F ) dx. (5.5)

As before, the relevant case is when ε and τ are of the same order and the initial
data are coordinate rectangles E0

ε , which will be the content of this section. We
assume that τ = γε and use the same notation for Ekε as before.

Due to the lack of uniqueness of minimizers in the discrete minimization scheme
described in Section 4.3, a standard comparison principle cannot hold. We recall a
weak comparison principle for our motion in the discrete case (see Proposition 1 in
Braides, Gelli and Novaga [14] for the proof).

Proposition 5.3.1 (Discrete weak comparison principle). Let ε > 0 and let
Rε, Kε ∈ Dε be such that Rε ⊆ Kε and Rε is a coordinate rectangle. Let Kk

ε be
a motion from Kε constructed by successive minimizations. Then Rkε ⊆ Kk

ε for
all k ≥ 1, where Rkε is a motion from Rε constructed by successively choosing a
minimizer of Fαε,τ (·, Rk−1

ε ) having smallest measure.
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Remark 5.3.2. The set R2\Kk
ε is the k-step evolution of the complementary R2\Kk

ε

of Kε. As a consequence, if we have Rε ⊆ R2\Kk
ε , from Proposition 5.3.1 it follows

that

Rkε ⊆ R2\Kk
ε , for all k ≥ 1.

Definition 5.3.3 (α-type rectangle). A coordinate rectangle whose sides intersect
only α-bonds will be called an α-type rectangle.

Remark 5.3.4. As a trivial remark, we note that the minimizers of Fα,αε,τ , charac-
terized in the proof of Theorem 4.4.1, are coordinate α-type rectangles.

The first result is that coordinate rectangles evolve into α-type rectangles, hence
avoiding β-bonds. Note that we cannot perform the same proof as in Theorem 4.4.1,
because rectangularization and translation towards the origin of a connected compo-
nent may increase the perimeter term of the energy in a inhomogeneous environment.
However, the proof of the connectedness is the same as in the case of a polyrectangle
(see Theorem 3 in [14]), this argument being independent of the microstructure.

Proposition 5.3.5. If E0
ε ∈ Dε is a coordinate rectangle and F is a minimizer for

the minimum problem for Fα,βε,τ (·, Ekε ), k ≥ 0, then for all δ > 0 F is a coordinate
α-type rectangle as long as the sides of Ekε are larger than δ and ε is small enough.

Proof. Step 1: connectedness of F . We want to prove that each Ekε is connected.
It will suffice to show this for F = E1

ε . We first need an estimate on the area of the
“small components” of E1

ε ; this estimate will be obtained by using the comparison
principle in Proposition 5.3.1.

Let ` > 0 be the maximum number such that for each point x ∈ E0
ε there exists

y ∈ R2 such that x ∈ (y +Q`) ⊆ E0
ε , where Q` = [−`/2, `/2]× [−`/2, `/2], and the

same property holds for x 6∈ E0
ε . If E0

ε = [−L1/2, L1/2] × [−L2/2, L2/2], we can
choose ` = min{L1, L2}. By applying Proposition 5.3.1 and Remark 5.3.2 to the
union of squares contained in E0

ε , and to those outside E0
ε , respectively, and taking

into account that a side of length ` shrinks by
⌊

2αγ
`

⌋
ε in absence of defects (see

(4.13)), it follows that

dH(∂E1
ε , ∂E

0
ε ) ≤

(2αγ
`

+ 1
)
ε.

In this way, it is not possible to have a configuration as in Fig. 5.2, with two large
components for E1

ε .
Assume by contradiction that E1

ε is not connected. In this case we should have
only one large component as in Fig. 5.3. We consider the decomposition

E1
ε = E1

0,ε ∪
N⋃

i=1
E1
i,ε,

with E1
0,ε the component containing all the points of E1

ε having distance more than
C ′ε from ∂E0

ε for a suitable constant C ′ < 2αγ/`+ 1.
Therefore for a suitable constant C ′′ we have

dε∞(x, ∂E0
ε ) ≤ C ′′ε for all x ∈ E1

i,ε and i ≥ 1.
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E1
ε E0

ε

Figure 5.2. Test set with E1
ε with two large components.

E1
0,ε

E1
i,ε

E0
ε

Figure 5.3. Small components of E1
ε .

By using the isoperimetric inequality, for ε small enough we infer
1
τ

∫

E1
i,ε

dε∞(x, ∂E0
ε ) dx ≤ (C ′′/γ)|E1

i,ε| < Ciso
√
|E1

i,ε| ≤ Pα,αε (E1
i,ε) ≤ Pα,βε (E1

i,ε),

with Ciso being the constant of the isoperimetric inequality. Thus, we get a contradic-
tion since we can decrease strictly the energy by eliminating the small components
of E1

ε and considering the set E′ = E1
0,ε as a competitor.

Step 2: α-rectangularization. Consider the maximal α-type rectangle Rα
with each side intersecting F . We call the set F ′ = F ∪Rα the α-rectangularization
of F . This set is either an α-type rectangle (and in this case we conclude) or it has
some protrusions intersecting β-bonds (Fig. 5.4). In both cases Pα,βε (F ′) ≤ Pα,βε (F ),

Rα

F

R̃α

E0
ε

Figure 5.4. α-rectangularization.

and the symmetric difference with E0
ε decreases. To justify this, note that the α-

rectangularization reduces (or leaves unchanged) Pα,αε and it reduces the symmetric
difference.
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As a consequence of this observation, we also deduce an a priori estimate on
the maximal distance between ∂E0

ε and ∂E1
ε . By the argument above, F contains

an α-type rectangle Rα and is strictly contained in an α-type rectangle R̃α whose
sides have a distance from the corresponding sides of Rα of not more than (Nβ + 1)ε.
We only check the a priori estimate in the simplifying hypothesis that E0

ε is of
α-type and that E0

ε and Rα are both concentric squares, so that we can express this
estimate in terms of the length L of the sides of E0

ε and the distance between ∂E0
ε

and ∂Rα, which can be expressed as εN . Note that we have

αH1(∂E0
ε ) ≥ Fα,βε,τ (E1

ε , E
0
ε ) ≥ αH1(∂Rα) + 1

τ

∫

E0
ε\R̃α

dε∞(x, ∂E0
ε ) dx,

which translates into

4αL ≥ 4α(L− 2εN) + 2L
γ
ε(N −Nβ)2 +O(ε2),

and gives (for ε sufficiently small)

N ≤ c1
L

+ c2Nβ =: c(L). (5.6)

The same type of estimate holds in the general case taking L the minimal length of
sides of E0

ε .
Step 3: profile of protrusions on β-squares. Now we want to describe the

form of the optimal profiles of the boundary of F intersecting β-squares.
As noted above, F contains an α-type rectangle Rα = [εm1, εM1]× [εm2, εM2]

and is contained in the α-type rectangle

R̃α = [ε(m1 −Nβ), ε(M1 +Nβ)]× [ε(m2 −Nβ), ε(M2 +Nβ)]

whose side exceed the ones of Rα by at most 2εNβ. We will describe separately
the possible profile of F close to each side of Rα; e.g., in the rectangle [ε(m1 −
Nβ), ε(M1 +Nβ)]× [εM2, ε(M2 +Nβ)] (i.e., close to the upper horizontal side of Rα).
We first consider the possible behavior of the boundary of F at a single β-square Q.

Q

F F

Γ

Figure 5.5. Envelope of ∂F when intersecting opposite sides.

We suppose that such Q is not one of the two extremal squares, for which a slightly
different analysis holds. First, if a portion Γ of ∂F intersects Q in exactly two points
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on opposite vertical sides, then we may consider in place of F the union of F and
all the ε-squares with centers (x, y) in Q ∩ εZ2 and

y ≤ max{z2 : z ∈ Γ}.

The new set, pictured in Fig. 5.5, has both lower perimeter and less symmetric
difference with E0

ε . If a portion Γ intersects Q in exactly two points on the same

F F

Figure 5.6. Removal of ∂F when intersecting one side.

side (horizontal or vertical) or adjacent sides, then we may remove all the ε-squares
with centers in the portion of Q ∩ F with boundary Γ. The two cases are pictured
in Fig. 5.6 and Fig. 5.7, respectively. This operation decreases the perimeter of at

F F

Figure 5.7. Removal of ∂F when intersecting two adjacent sides.

least ε(β − α) while at most increases the bulk term by 1
τ ε

3N2
βc(L) (c(L) given by

(5.6)). The total change in the energy is thus

− ε(β − α) + 1
γ
ε2N2

βc(L) , (5.7)

which is negative if ε is small enough. As a consequence, then either F ∩Q = ∅ or
∂F ∩Q is a horizontal segment.

The same type of analysis applies to the extremal squares, for which we deduce
instead that F ∩Q is a rectangle with one vertex coinciding with a vertex of R̃α.

We now consider the interaction of consecutive β-squares. Let Q1, . . . , QK be
a maximal array of consecutive β-squares with F ∩ Qk 6= ∅ for k = 1, . . . ,K and
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such that Q1 is not a corner square. If we substitute F with F ∪ R, where R is
the maximal rectangle of ε-squares containing all F ∩Qk and not intersecting other
β-squares, then the corresponding energy has a not larger perimeter part, and a bulk
part which is strictly lower if F ∪R 6= F . This substitution is pictured in Fig. 5.8.
If the subsequent β-squares QK+1 . . . , QK+K′ are a maximal array which do not

R

Qi

F

F

Figure 5.8. Envelope of ∂F in consecutive squares.

intersect F then we may further substitute F ∪R with (F \R)∪ (R+ εNαβK
′(1, 0)),

where we translate R until it meets another portion of F (if any). This translation
is pictured in Fig. 5.9. Note that if it does meet another portion of F , then the

R

F

F

Figure 5.9. Translation argument to join protrusions.

change in energy is at most

− 2εα+ 1
γ
ε2NβNαc(L) , (5.8)

which is negative if ε is small enough. In this case, at this point we may iterate this
analysis since we now have a larger array of consecutive β-squares intersecting F .
Note, moreover, that the same argument can be repeated shifting the rectangle R to
the left instead than to the right, if energetically convenient. As a conclusion, we
obtain that F may only either intersect one array of consecutive β-squares, or two
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such arrays if they contain the two corner β-squares; i.e., we have one of the two
situations pictured in Fig. 5.10.

F

F

Figure 5.10. Profiles of candidate minimal F .

Step 4: all β-connections can be removed except those at the four
corners. At this point, we are in the situations pictured in Fig. 5.10. If we are as
in the upper figure, then by removing all ε-squares external to Rα the variation of
the energy is less or equal than

−(β − α)(Nβ + 1)Nε+ c(L)(N + 1)NαβNβ

γ
ε2,

where N is the number of modified β-squares. For ε small this variation is negative,
showing that F does not contain any protrusion.

If we are as in the lower figure, then we may remove all β-connections inside the
border β-squares, except those in the two periodicity squares at the corners as in
Fig. 5.11; in this case, the variation of the energy functional is less or equal than

F

Figure 5.11. Removing β-connections except in the two β-squares at the corners.

−(β − α)(Nβ + 1)Nε+ c(L)NNαβNβ

γ
ε2,

where N is the number of modified cells. For ε small this variation is negative,
showing that the profile in Fig. 5.11 is energetically convenient. We can repeat this



5.3 Motion of a rectangle 43

procedure for each side, and finally we obtain that F is the union of a coordinate
α-type rectangle R and possibly one to four rectangles R̃i, i = 1, . . . , 4 of side lengths
at most Nαβε such that the intersection of R̃i with each corner β-square is a rectangle
(see Fig. 5.12)

R

R̃i

Figure 5.12. The set obtained in Step 4.

Step 5: conclusion. It remains to prove that the rectangles R̃i in the previous
step are actually not there. This is immediately checked by comparing such an F
with Rα: if R̃i 6= ∅ then by removing it the energy changes at most by

−2βε+ 1
γ
c(L)ε2N2

αβ,

which is negative for small ε.
We finally note that all the estimates above can be iterated and hold uniformly

as long as the sides of Ekε are larger than δ, since they depend only on c(δ).

The proposition above shows that we may restrict our analysis to α-type rect-
angles; indeed, for fixed ε this assumption is not restrictive until the sides of the
rectangles are larger than a constant, which vanishes as ε→ 0. As a consequence,
once we suppose the convergence of the initial data, up to subsequences, the discrete
motions Eε,τ (t) converge, as ε → 0, to a limit E(t) such that E is a rectangle for
all t, up to its extinction time. Note, moreover, that it is not restrictive to suppose
that also the initial data are α-type rectangles, up to substituting E0

ε with E1
ε .

As shown in Section 4.4, the motion of each side of Ekε can be studied separately,
since the constraint of being an α-type rectangle does not influence the argument
therein, which consists in remarking that the bulk term due to the small corner
rectangles in Fig. 5.13 is negligible. As a consequence, we can describe the motion
in terms of the length of the sides of Ekε . This will be done in the following sections.
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asymptotically negligible sets

Ek+1
εEkε

Figure 5.13. Picture of Ek+1
ε inside Ekε .

5.3.1 A new pinning threshold
We first examine the case when the limit motion is trivial; i.e., all Ek = Ekε are the
same after a finite number of steps. This will be done by computing the pinning
threshold; i.e., the critical value of the side length L above which it is energetically
not favorable for a side to move. We recall that, in the case α = β, this threshold is
(see (4.16))

L̃ = 2αγ.
In our case, by the condition that Ek be an α-type rectangle, we have to impose

that it is not energetically favorable for a side to move inwards by (Nβ + 1)ε
(see Fig. 5.14). We then write the variation of the energy functional Fα,βε,τ from

A

B

Figure 5.14. Motion is possible if the side can move at least by (Nβ + 1)ε.

configuration A to configuration B in Fig. 5.14, regarding a side of length L. If we
impose it to be positive, we have

−2(Nβ + 1)αε+ 1
τ

Nβ+1∑

k=1
(kε)Lε = (Nβ + 1)ε

[
−2α+ L

2γ (Nβ + 2)
]
≥ 0

and we obtain the pinning threshold

L := 4γα
Nβ + 2 . (5.9)

Note that this threshold depends on Nβ and not on the value β > α. Moreover,
L ≤ L̃ and if Nβ = 0 (or, otherwise, α = β), we recover the previous threshold L̃.
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5.3.2 Definition of the effective velocity

As remarked above, up to an error vanishing as ε→ 0, the motion of each side is
independent of the other ones. As a consequence, its description can be reduced to
a one-dimensional problem, where the unknown represents, e.g., the location of the
left-hand vertical side of Ek. Let xk represents the projection of this side of Ek on

Ek+1
Ek

xk
xk+1

Figure 5.15. Reduction to a one-dimensional problem.

the horizontal axis, as in Fig. 5.15. The location of xk+1 depends on a minimization
argument involving xk and the length Lk of the corresponding side of Ek. However,
we will see that this latter dependence is locally constant, except for a discrete set of
values of Lk. Indeed, for all Y > 0 (which in our case will be of the form Y = γ/Lk)
consider the minimum problems

min
{
−2αN + N(N + 1)

2Y : N ∈ N, [x+N ]Nαβ ∈ ZNα
}
, (5.10)

for x ∈ {0, . . . , Nαβ}, where [z]Nαβ denotes the congruence class of z modulo Nαβ

and
ZNα =

{
[0]Nαβ , . . . , [Nα − 1]Nαβ

}
.

Then the set of Y > 0 for which (5.10) does not have a unique solution is discrete.
To check this it suffices to remark that the function to minimize

−4αXY +X(X + 1)

is a parabola with vertex in
X = 2αY − 1

2 .

The minimizers N are points with [x+N ]Nαβ ∈ ZNα of minimal distance from the
vertex X. These are not unique in some cases: first if the vertex X is equidistant
from two consecutive points in ZNα ; i.e., if

2αY − 1
2 ∈

1
2 + Z,

or, equivalently,
Y ∈ 1

2αZ. (5.11)
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The second case is when we have two points in ZNα of minimal distance from X
which are not consecutive. In this case the distance between these points is Nβ + 1,
so that we have

2αY − 1
2 ∈ Nβ + 1

2 + Z,

or, equivalenly,
Y ∈ 1

2α

(
Nβ

2 + Z
)
.

If Nβ is even then this condition is equivalent to (5.11), while if Nβ is odd then we
have

Y ∈ 1
4α + 1

2αZ. (5.12)

Definition 5.3.6 (singular set). We define the (possibly) singular set SNβ for
problems (5.10) as

SNβ = 1
2α

(
Z ∪

(1
2 + Z

))
.

We will examine the iterated minimizing scheme for γ/Lk = γ/L ∈ (0,+∞)\SNβ
fixed, which reads {

xLk+1 = xLk +Nk, k ≥ 0
xL0 = x0 (5.13)

with x0 ∈ {0, 1, . . . , Nαβ − 1} and Nk ∈ N the minimizer of

min
{
−2αN + 1

γ

N(N + 1)
2 L : N ∈ N, [xLk +N ]Nαβ ∈ ZNα

}
, (5.14)

which is unique by the requirement that γ/L 6∈ SNβ .
After at most Nα steps, {xLk }k≥0 is periodic modulo Nαβ, as expressed by the

following proposition.

Proposition 5.3.7. There exist integers k ≤ Nα,M ≤ Nα and n ≥ 1 such that

xLk+M = xLk + nNαβ for all k ≥ k. (5.15)

Moreover, the quotient n/M depends only on γ/L.

Proof. First remark that, if xLk is defined recursively by (5.13), we have

[xLk ]Nαβ ∈ ZNα for all k ≥ 1.

Since #ZNα = Nα, there exist integers 0 ≤ j ≤ Nα and l > j, with l − j ≤ Nα,
such that

[xLj ]Nαβ = [xLl ]Nαβ . (5.16)

Let l be the minimal such l. Define k = j, M = l − j and n =
xLl − xLj
Nαβ

to obtain

(5.15).
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It remains to show the last statement of the theorem. It suffices to show that the
quotient n/M is independent of x0. We start by proving a monotonicity property of
the orbits defined in (5.13) with respect to the initial datum: if {xk} and {x′k} are
orbits obtained as above, we have

if x0 ≤ x′0, then xk ≤ x′k, for all k ≥ 1. (5.17)

This can be seen iteratively from (5.10), since the problems with x = xk−1 and
x = x′k−1 consist in a constrained minimization of a parabola and its translation
by x′k−1 − xk−1, and, as previously remarked, the minimizer in (5.10) is the closest
point to the vertex of the parabola with [x+N ]Nαβ ∈ ZNα .

Consider the orbits with initial data x0, x′0 and x0 +Nαβ , and let n(x) and M(x)
denote the indices above with initial datum x ∈ {x0, x′0, x0 +Nαβ}. Since the orbit
with initial datum x0 +Nαβ is the translation by Nαβ of the one with initial datum
x0, we have n(x0 +Nαβ) = n(x0) and M(x0 +Nαβ) = M(x0). Taking into account
the ordering of the initial conditions

x0 ≤ x′0 ≤ x0 +Nαβ,

by (5.15) for k0 sufficiently large and taking k = k0 + TM(x0)M(x′0) with T ∈ N,
from xk ≤ x′k ≤ xk +Nαβ we get

xk0 + Tn(x0)M(x′0)NαβNαβ ≤ x′k0 + Tn(x′0)M(x0)Nαβ

≤ xk0 + Tn(x0)M(x′0)Nαβ +Nαβ.

In order that this inequality hold for all T ≥ 1 we must have

n(x0)M(x′0) = n(x′0)M(x0),

which is the desired equality.

Definition 5.3.8 (effective velocity function). We define the effective velocity
function f : (0,+∞) \ SNβ −→ [0,+∞) by setting

f(Y ) = nNαβ

M
, (5.18)

withM and n in (5.15) defined by L and γ such that Y = γ/L. By Proposition 5.3.7,
this is a good definition.

Remark 5.3.9. The terminology for formula (5.18) is motivated by the fact that
we can define the velocity of a side as a mean velocity averaging on a period; that is,

v = nNαβε

Mτ
. (5.19)

In (5.19) the velocity is the ratio between the minimal (periodic) displacement of
the side and the product of the time-scale τ and the number of steps necessary to
describe the minimal period, each of which considered as a 1-time step.

Remark 5.3.10 (properties of the velocity function f). The velocity function
f has the following properties:
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(a) f is constant on each interval contained in its domain;

(b) f(Y ) = 0 if

Y < Y := Nβ + 2
4α ;

in particular
lim
γ→0+

1
γ
f

(
γ

L

)
= 0 .

Note that (0, Y ) ∩ SNβ 6= ∅;

(c) f(Y ) is a rational value;

(d) f is non decreasing;

(e) we have

lim
γ→+∞

1
γ
f

(
γ

L

)
= 2α

L
.

(f) f(Y ) is independent of β but depends on Nβ.

(a) holds since on each component of (0,+∞)\SNβ the minimum problems (5.10) have
a unique solution independent of Y , so that the values n and M in Proposition 5.3.7
are independent of Y . Note, however, that f(Y ) may be equal on neighboring
components since the corresponding n and M may be equal even without uniqueness
in (5.15);
(b) holds since we have Y = γ/L, where L is the pinning threshold (5.9), and the
computation of the pinning threshold is equivalent to the requirement that the orbit
be constant after a finite number of steps;
(c) is immediate from the formula for f(Y );
(d) is again a consequence of the fact that (5.10) are minimum problems related to
a parabola with vertex in 2αY − 1

2 and the latter is an increasing function of Y ;
(e) using the same argument as in (d) above, we deduce in particular that

∣∣∣Nk − 2αY + 1
2
∣∣∣ ≤ Nβ,

which for Y = γ/L implies that

2α
L
− 2Nβ + 1

2γ ≤
1
γ
f

(
γ

L

)
≤ 2α

L
+ 2Nβ + 1

2γ ,

and the desired equality letting γ → +∞;
(f) is an immediate consequence of the definition of f(Y ).

Remark 5.3.11 (singular cases). Let γ/L ∈ SNβ , and let {xLk } be defined by
(5.13) with Nk chosen to be a minimizer of (5.14), which may be not unique. Then
arguing by monotonicity as in (d) above, we have xL+

k ≤ xLk ≤ xL
−

k , where L± are
any two values with L− < L < L+ and γ/L± belonging to the two intervals of
(0,+∞) \ SNβ with one endpoint equal to L, and {xL±k } have the same initial data.
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5.3.3 Description of the homogenized limit motion.
The following characterization of any limit motion holds.

Theorem 5.3.12. For all ε > 0, let E0
ε ∈ Dε be a coordinate rectangle with sides

S0
1,ε, . . . , S

0
4,ε. Assume also that

lim
ε→0+

dH(E0
ε , E0) = 0

for some fixed coordinate rectangle E0. Let γ > 0 be fixed and let Eε(t) = Eε,γε(t)
be the piecewise-constant motion with initial datum E0

ε defined as in (4.12). Then,
up to a subsequence, Eε(t) converges as ε→ 0 to E(t), where E(t) is a coordinate
rectangle with sides Si(t), i = 1, . . . , 4 and such that E(0) = E0. Each Si moves
inward with velocity vi(t) satisfying

vi(t) ∈
[

1
γ
f

(
γ

Li(t)

)−
,

1
γ
f

(
γ

Li(t)

)+
]
, (5.20)

where f is given by Definition 5.18, Li(t) := H1(Si(t)) denotes the length of the side
Si(t), until the extinction time when Li(t) = 0, and f(Y )−, f(Y )+ are the lower and
upper limits of the effective-velocity function at Y ∈ (0,+∞).

Proof. We will apply the results of the previous sections with τ = γε. Let Sε,i(t) be
the sides of Eε(t), and let Lki,ε = H1(Sε,i(kτ)); i.e., Lki,ε is the length of the i-th side
of Ekε in the notation of the previous sections. If ∆Skε,i = dH(Sε,i(γεk), Sε,i(γε(k+1))
denotes the distance from corresponding sides of Ekε , then note that

Lk+1
i,ε − Lki,ε = −(∆Skε,i−1 + ∆Skε,i+1

)

(where the indices i rotate cyclically). By (5.6) we have

∆Skε,i
τ
≤ c1
Lki,ε

+ c2.

This implies that if we define Li,ε(t) as the affine interpolation in [kτ, (k + 1)τ ] of
the values Lki,ε, then Li,ε(t) is a decreasing continuous function of t and the sequence
is uniformly Lipschitz continuous on all intervals [0, T ] such that Li,ε(T ) ≥ c > 0.
Hence, it converges (up to a subsequence), as ε→ 0, to a function Li(t), which is
also decreasing. It follows that Eε(t) converges as ε→ 0, up to a subsequence and
in the Hausdorff sense, to a limit rectangle E(t), for all t ≥ 0.

It remains to justify formula (5.20) for the velocity vi of the side Si(t). Let
[t−, t+] and L±i be such that γ/L±i ∈ (0,+∞) \ SNβ and

L−i < Li(t) < L+
i for t−≤ t ≤ t+.

Then the corresponding Li,ε(t) satisfy the same inequalities for ε small enough. By
Remarks 5.3.11 and 5.3.9 we then have

1
γ
f
( γ

L+

)
≤ vi(t) ≤

1
γ
f
( γ

L−

)
for t−≤ t ≤ t+

By optimizing in L±, and recalling that f is not decreasing, we obtain (5.20).
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Theorem 5.3.13 (unique limit motions). Let Eε, E be as in the statement of
Theorem 5.3.12. Assume in addition that the lengths L0

1, L
0
2 of the sides of the initial

set E0 satisfy one of the following conditions (we assume that L0
1 ≤ L0

2):

(a) L0
1, L

0
2 >

4αγ
Nβ + 2 (total pinning);

(b) L0
1 <

4αγ
Nβ + 2 and L0

2 ≤
4αγ

Nβ + 2 (vanishing in finite time);

then Eε(t) converges locally in time to E(t) as ε → 0, where E(t) is the unique
rectangle with sides of lengths L1(t) and L2(t) which solve the following system of
ordinary differential equations





L̇1(t) = −2
γ
f

(
γ

L2(t)

)

L̇2(t) = −2
γ
f

(
γ

L1(t)

) (5.21)

for almost every t, with initial conditions L1(0) = L0
1 and L2(0) = L0

2, where f is
given by Definition 5.18.

Proof. In case (a) the statement follows by Theorem 5.3.12 noticing that we have
v1(t) = v2(t) = 0 for all t ≥ 0, which is equivalent to L̇1 = L̇2 = 0.

In case (b) the lengths of Li are strictly decreasing until the extinction time.
This implies that the set of t such that f(γ/Li(t))− 6= f(γ/Li(t))+ is negligible, and
(5.21) follows since L̇i = −2vi+1.

Remark 5.3.14 (general evolutions). More general initial data can be consid-
ered. Since their treatment follow from Theorem 5.3.12 as in Braides, Gelli and
Novaga [14], we do not include the details. We only recall that:

• all velocities vi satisfying (5.20) can be obtained, with a proper choice of the
initial data E0

ε ;

• if we take initial data E0 coordinate polyrectangles (see Section 4.5) then the
motion can be characterized with the same velocities, with the convention that
convex sides move inwards, concave sides move outwards, other sides remain pinned
(according to Definition 4.5.1 and subsequent remark);

• more general initial data E0 can be dealt with once we remark that, at level
ε, the assumption that E0

ε is a polyrectangle is always satisfied.

5.4 Computation of the velocity function
The velocity function in Definition 5.18 may be not easily described for generic Nα

and Nβ . In this section we compute it, by means of algebraic formulas, in the simpler
cases Nβ = 1 and Nβ = 2, with varying Nα. These are prototypes for the cases Nβ
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odd and Nβ even, respectively. We also give two easy examples for Nα fixed and
equal to 1, and we compare the new velocity function with the homogeneous case
showing that the inhomogeneities in the lattice may accelerate or decelerate the
motion. We can assume, without loss of generality, that γ = 1.

5.4.1 The case Nβ = 1.

Let Y > Y = 3
4α . We assume also that Y is not in the singular set; i.e.,

Y 6∈
{
k + j(Nα + 1)

2α , k = 1, . . . , Nα − 1, j ≥ 0
}
∪
{
Nα + (2j + 1)(Nα + 1)

4α , j ≥ 0
}
.

As shown by Proposition 5.3.7, the minimal period is independent of the starting
point of the orbits, so there is no restriction to assume that x0 = 0 in (5.13)-(5.14).
We divide the analysis in three cases (a), (b) and (c) below.

(a) If Y ∈
(
k + j(Nα + 1)

2α ,
k + 1 + j(Nα + 1)

2α

)
, k = 1, 2, . . . , Nα − 1, j ≥ 0, then

we denote the minimizer of problem (5.14) in the homogeneous case Nβ = 0 by
N = k + j(Nα + 1). The velocity function f(Y ) will be characterized by algebraic
relations between N and Nα. We have two sub-cases:

(a1) N and Nα + 1 are coprime. In this case, by iterating the scheme (5.13),
after at most Nα steps the side encounters a defect, that is

[nN ]Nα+1 = [Nα]Nα+1

for some 1 ≤ n ≤ Nα. In this case, we denote by n̄ ≥ 0 the minimal solution of the
congruence equation

nN ≡ Nα mod (Nα + 1), n ≥ 1, (5.22)

and k̄ ≥ 0 is given by
k̄ = n̄N −Nα

Nα + 1 .

If Y ∈
(
k + j(Nα + 1)

2α ,
2k + 2j(Nα + 1) + 1

4α

)
, then the location of the side at step

n is at Nα − 1 + k̄(Nα + 1) (which is equal to −2 modulo Nα + 1).
This computation shows that we can limit our analysis to periodic orbits modulo

Nα + 1 with initial datum equal to −2 (or, equivalently, Nα− 1). The period of such
orbits is obtained as follows. We solve the congruence equation

nN ≡ 1 mod Nα + 1, (5.23)

for n ≥ 1 and denote by nmin the minimal positive solution of equation (5.23); that
is, the minimal positive integer in the class

[
Nϕ(Nα+1)−1

]
mod Nα + 1

.
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The function ϕ(n) is the Euler’s totient function and it counts the integers m such
that 1 ≤ m < n and m has no common divisors with n. If we define

kmin = nminN − 1
Nα + 1 ,

then we have that

f(Y ) = kmin(Nα + 1)
kmin(Nα + 1) + 1

b2αY c

=
(

kmin(Nα + 1)
kmin(Nα + 1) + 1

)
b2αY c

=


 1

1 + 1
kmin(Nα+1)


 b2αY c.

(5.24)

Note that f(Y ) < b2αY c, so that the velocity of the side reduces (deceleration) with
respect to the homogeneous case.

Suppose now that Y ∈
(2k + 2j(Nα + 1) + 1

4α ,
k + 1 + j(Nα + 1)

2α

)
, then the

location of the side at step n is Nα + 1 + k̄(Nα + 1), which is equal to 0 modulo
Nα + 1. We have that

f(Y ) =
(

(k̄ + 1)(Nα + 1)
(k̄ + 1)(Nα + 1)− 1

)
b2αY c =


 1

1− 1
(k̄+1)(Nα+1)


 b2αY c. (5.25)

Note that f(Y ) > b2αY c, so the velocity of the side increases (acceleration) with
respect to the homogeneous case.

(a2) N and Nα + 1 are not coprime. In this case the side does not meet any
β-bond and the velocity function has the same value as in the homogeneous case, i.e.

f(Y ) = b2αY c.

(b) If Y ∈
(
Nα + j(Nα + 1)

2α ,
Nα + (2j + 1)(Nα + 1)

4α

)
, then we argue as in (a1).

(c) If Y ∈
(
Nα + (2j + 1)(Nα + 1)

4α ,
1 + (j + 1)(Nα + 1)

2α

)
, then

f(Y ) = Nα + 1 + j(Nα + 1).

Note that f(Y ) > b2αY c if Y ∈
(
Nα + (2j + 1)(Nα + 1)

4α ,
(j + 1)(Nα + 1)

2α

)
, while

f(Y ) = b2αY c if Y ∈
((j + 1)(Nα + 1)

2α ,
1 + (j + 1)(Nα + 1)

2α

)
.

Example 5.4.1 (the case Nα = Nβ = 1). In this case the velocity function is
given by

f(Y ) =





0 if Y <
3

4α,

2k if Y ∈
(4k − 1

4α ,
4k + 3

4α

)
, k ≥ 1;
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Figure 5.16. Difference between inhomogeneous-homogeneous velocity function (α = 1).

i.e.,
f(Y ) = 2

⌊
αY + 1

4

⌋
.

We compare it with the homogeneous case in Fig. 5.16; here it is pictured the
difference between f(Y ) and f̃(Y ) = b2αY c, with α = 1.

5.4.2 The case Nβ = 2

We now study the case Nβ = 2. Let Y > Y = 1
α

and we assume also that Y is not
in the singular set, i.e.,

Y 6∈
{
k + j(Nα + 2)

2α , k = 1, . . . , Nα − 1, j ≥ 0
}
∪
{
Nα + 1 + j(Nα + 2)

2α , j ≥ 0
}
.

(a) If Y ∈
(
k + j(Nα + 2)

2α ,
k + 1 + j(Nα + 2)

2α

)
, k = 1, 2, . . . , Nα − 2, j ≥ 0, then

N = k + j(Nα + 2) and we have two sub-cases:

(a1) N and Nα + 2 are coprime. We compute k̄ = min(k1, k2) ≥ 0, where k1
is the minimal positive solution of the congruence equation

kN ≡ Nα mod Nα + 2,

and k2 is the minimal positive solution of the congruence equation

kN ≡ Nα + 1 mod Nα + 2;

that is k1 is the minimal positive integer in the class
[
NαN

ϕ(Nα+2)−1
]

mod Nα + 2
and

k2 is the minimal positive integer in the class
[
(Nα + 1)Nϕ(Nα+2)−1

]
mod Nα + 2

.

If k̄ = k1, then

f(Y ) =
(

k1(Nα + 2)
k1(Nα + 2) + 1

)
b2αY c =


 1

1 + 1
k1(Nα+2)


 b2αY c, (5.26)
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and f(Y ) < b2αY c.

If k̄ = k2, then

f(Y ) =
(

k2(Nα + 2)
k2(Nα + 2)− 1

)
b2αY c =


 1

1− 1
k2(Nα+2)


 b2αY c, (5.27)

and f(Y ) > b2αY c.

(a2) N and Nα + 2 are not coprime. In this case

f(Y ) = b2αY c
as in the homogeneous case.

(b) If Y ∈
(
Nα + 1 + j(Nα + 2)

2α ,
(j + 1)(Nα + 2) + 1

2α

)
, j ≥ 0, then

f(Y ) = (j + 1)(Nα + 2).

Note that, in this case, if Y ∈
(
Nα + 1 + j(Nα + 2)

2α ,
(j + 1)(Nα + 2)

2α

)
then f(Y ) >

b2αY c, while if Y ∈
((j + 1)(Nα + 2)

2α ,
(j + 1)(Nα + 2) + 1

2α

)
then f(Y ) = b2αY c.

(c) If Y ∈
(
Nα − 1 + j(Nα + 2)

2α ,
Nα + 1 + j(Nα + 2)

2α

)
, j ≥ 0, then we could reason

as in the case (a).

1
2

1 3
2

2 5
2

3 7
2

4 9
2

5 11
2

6 13
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−1

1

Y

f − f̃

Figure 5.17. Difference between inhomogeneous-homogeneous velocity function (α = 1).

Example 5.4.2 (the case Nα = 1, Nβ = 2). The velocity function is given by

f(Y ) =





0 if Y <
1
α
,

3k if Y ∈
(3k − 1

2α ,
3k + 2

2α

)
, k ≥ 1;

i.e.,
f(Y ) = 3

⌊2
3αY + 1

3

⌋
.

The comparison with the homogeneous case is pictured in Fig. 5.17.
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Chapter 6

Motion of discrete interfaces in
‘low-contrast’ periodic media

In this chapter, we present the results contained in the paper by myself [44] about
motion in “low-contrast” periodic media, that is described by α connections with
periodic inclusions β such that β − α→ 0 as ε→ 0.

6.1 Motivation and results

Here we give another example of the fact that the microstructure can affect the
limit evolution without changing the Γ-limit, along the lines of Chapter 5. To this
end, we perform a multi-scale analysis by introducing a contrast parameter δε and
considering a low-contrast medium, that is a periodic mixture of two homogeneous
materials whose propagating properties are close to each other. One of them can
be considered as a fixed background medium (described by α-connections) and the
other as a small (vanishing) perturbation from that one, that is with β = βε = β(ε)
and βε − α = δε → 0 as ε → 0. With the same notation as in Chapter 5, we
restrict ourselves to the case Nα = Nβ = 1; despite of its simplicity, the choice
of this particular geometry will suffice to show new features of the motion. The
main result is the existence of a threshold value of the contrast parameter below
which we have a new homogenized effective velocity, which takes into account the
propagation velocities in both the connections α and β; above this threshold, instead,
it is independent of the value of β and the motion is obtained by considering only
the α-connections.

First of all, we determine the correct scaling for δε to have that a straight interface
may stay on β-connections. To this end, we consider a coordinate α-type rectangle
(Definition 5.3.3), we write the variation of the energy Fα,βεε,τ (given by (5.5) with
β = βε) associated to the displacement by ε of the upper horizontal side of length L
(see Fig. 6.1) and we impose it to be zero. We have that

−2αε+ (βε − α)L+ cL

γ
ε = −2αε+ δεL+ cL

γ
ε = 0,
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L

Figure 6.1. Displacement of a side from α-connections to β-connections.

where c = c(L) is a constant depending on L (see (5.6)), from which we deduce that

δε =
(2α
L
− c

γ

)
ε = O(ε) as ε→ 0.

This heuristic computation suggests that the correct scaling is

βε − α = δε = δε

for some constant δ > 0.
As in Section 5.3, we will assume that τ = γε and we will restrict the description

of the motion to the case of initial data coordinate rectangles. The evolute of a coor-
dinate rectangle by minimization of the energy is again a coordinate rectangle. We
will show that there exists a threshold δ̃ = 1

2γ such that if δ < δ̃ (subcritical regime)
then the evolute rectangles may have some β-type side (that is, a side intersecting
only β-connections), while if δ ≥ δ̃ (supercritical regime) the β-connections are
avoided as in the case β > α. Note that this result gives information also for more
general choices of the vanishing rate of δε: if δε <<ε, we reduce to the subcritical
case, while if δε >>ε, we are in the supercritical case. The limit motion can still
be described through a system of degenerate ordinary differential equations as in
(5.21) with a new effective velocity function f depending on δ. We also have a new
effective pinning threshold given by

Lδ = max
{ 2αγ
δγ + 1 ,

4
3αγ

}
.

Overview of the chapter. In Section 6.2 we define the new energies that we will
consider. Section 6.3 contains the description of the convergence of the discrete
scheme in the case of a rectangular initial set. We show that the minimizers of
this scheme are rectangles also in the low-contrast framework. Section 6.3.1 deals
with the definition of the effective velocity of a side by means of a homogenization
formula, as in Section 5.3.2. This velocity can be expressed uniquely (up possibly to
a discrete set of values) as a function of the ratio of γ and the side length, and of δ
(Definition 6.3.6). Section 6.3.2 contains the computation of the effective pinning
threshold, showing that it is affected by microstructure because it also depends on
the parameter δ (for δ ‘small’). In Section 6.3.3 we compute explicitly the velocity
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function, showing a comparison with the homogeneous case α = β (Chapter 4) and
the high-contrast case β > α (Chapter 5). The description of the homogenized limit
motion is contained in Section 6.3.4. Section 6.4 deals with the case of non-uniform
inclusions distributed into periodic uniform layers.

6.2 Inhomogeneous ‘low-contrast’ ferromagnetic ener-
gies

The energies we consider are interfacial energies defined in an inhomogeneous low-
contrast environment as follows. Let α, δ > 0 and we fix ε > 0. We consider
2ε-periodic coefficients cεij indexed on nearest-neighbors of εZ2 (i.e., i, j ∈ εZ2 with
|i− j| = ε) defined for i, j such that

0 ≤ i1 + j1
2 ,

i2 + j2
2 < 2ε

by

cεij =




βε = α+ δε, if 0 ≤ i1 + j1

2 ,
i2 + j2

2 ≤ ε
α otherwise.

(6.1)

These coefficients label the bonds between points in εZ2, so that they describe a
matrix of α-bonds with 2ε-periodic inclusions of β-bonds grouped in squares of side
length ε. The periodicity cell is pictured in Fig. 6.2. As before, the continuous lines
represent β-bonds while the dashed lines the α ones.

βε α

ε

Figure 6.2. The periodicity cell.

Correspondingly, to coefficients (6.1) we associate the energy defined on subsets
I of εZ2 by

Pα,βεε (I) =
∑{

εcεij : |i− j| = ε, i ∈ I, j ∈ εZ2\I
}
, (6.2)

with the same notation as in Section 5.2. We perform the same identification on
unions of ε-squares (i.e., the class Dε defined in Section 4.2) and we remark that
energies Pα,βεε Γ-converge, as ε→ 0, to the anisotropic cristalline perimeter functional
Pα (4.10). For this, we note that, for any E ∈ Dε, Pα,βεε (E) = Pα,αε (E) + Cε2 for
some C > 0 and that Pα,αε Γ-converges, as ε→ 0, to Pα (see Proposition 1.1.3).
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6.3 Motion of a rectangle
We apply the same discrete-in-time minimization scheme as in Section 4.3 to energies
Fα,βεε,τ , defined as in (5.5) with Pα,βεε in place of Pα,βε , with τ = γε and E0

ε ∈ Dε a
coordinate rectangle.

The result is that coordinate rectangles evolve into coordinate rectangles. This
will be more precise in the following. In fact, we will show that if δ < 1

2γ then the
evolute rectangles may have some β-type side, while if δ ≥ 1

2γ they have only α-type
sides.

Proposition 6.3.1. If E0
ε ∈ Dε is a coordinate rectangle and F is a minimizer for

the minimum problem for Fα,βεε,τ (·, Ekε ), k ≥ 0, then for all η > 0 F is a coordinate
rectangle as long as the sides of Ekε are larger than η and ε is small enough.

Proof. It will suffice to show it for F = E1
ε . We subdivide the proof into steps.

Step 1: connectedness of F and α-rectangularization. Some steps of the
proof easily follow from Proposition 5.3.5. In particular, the fact that F is a connected
set and that it is energetically convenient to replace F by its α-rectangularization, i.e.
F ′ = F ∪Rα, Rα being the maximal α-type rectangle with each side intersecting F .
This set is either an α-type rectangle (and in this case we conclude) or it has some
protrusions intersecting β-bonds. Moreover, we have that dH(∂E1

ε , ∂E
0
ε ) ≤ c(L)ε,

where c(L) is a constant depending on the length L of the smaller side of E0
ε (as

remarked in (5.6)).
Step 2: optimal profiles of protrusions on β-squares. Now we describe

the form of the optimal profiles of the boundary of F intersecting β-squares. As
noted in the proof of Proposition 5.3.5, F contains an α-type rectangle Rα =
[εm1, εM1]× [εm2, εM2] and is contained in the α-type rectangle

R̃α = [ε(m1 − 1), ε(M1 + 1)]× [ε(m2 − 1), ε(M2 + 1)],

whose sides exceed the ones of Rα by at most 2ε. We will analyze separately the
possible profiles of F close to each side of Rα; e.g., in the rectangle [ε(m1−1), ε(M1 +
1)]× [εM2, ε(M2 + 1)] (i.e., close to the upper horizontal side of Rα). Our aim is to
show that the optimal profile is straight. We first consider the possible behavior of

Γ

F F

Figure 6.3. Removal of an ε-square for δ ‘large’.

the boundary of F at a single β-square Q, assuming that Q is not one of the two
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extremal squares. We claim that either F ∩Q = ∅ or ∂F ∩Q is a horizontal segment.
In fact, if a portion Γ of ∂F intersects two adjacent sides of Q as in Fig. 6.3, then
we may remove the ε-square whose center is in Q ∩ F .

In this case, the variation of energy is

− 2(βε − α)ε+ 1
γ
c(L)ε2 =

(
−2δ + 1

γ
c(L)

)
ε2, (6.3)

which is negative, for ε small, if and only if δ > c(L)/2γ.

Γ

F F

Figure 6.4. Addition of an ε-square for δ ‘small’.

If we add an ε-square as in Fig. 6.4, instead, the variation of the energy is simply

− 1
γ
c(L)ε2, (6.4)

which is negative for ε small. We note that the variation in (6.3) is less than the
one in (6.4) if and only if δ > c(L)/γ.

The same analysis applies to the extremal squares, for which we deduce that
F ∩Q, if non-empty, is a rectangle with one vertex coinciding with a vertex of Rα.
We now consider the interaction of consecutive β-squares. Let Q1, . . . , QK a

R̃α

F

Figure 6.5. Interaction of consecutive β-squares.

maximal array of consecutive β-squares with F ∩Qk 6= ∅ for k = 1, . . . ,K and such
that Q1 is not a corner square. If the subsequent β-squares QK+1, . . . , QK+K′ are a
maximal array which do not intersect F , and QK+K′+1, . . . , QK+K′+K′′ are another
maximal array with F ∩ Qk 6= ∅ for k = K + K ′, . . . ,K + K ′ + 1 and such that
QK+K′+K′′ is not a corner square (see Fig. 6.5), then we may replace F by F ∪R
(see Fig. 6.6), where R is the rectangle given by the union of the ε-squares centered
at the vertices of the β-squares QK+1, . . . , QK+K′ .
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R̃α

R

F

Figure 6.6. The new profile after replacing F by F ∪R.

This operation leaves unchanged the Pα,βεε and reduces the symmetric difference.
We can repeat this procedure for any tern of such arrays. At this point, if we replace
F by F ∪ [εm1, εM1]× [εM2, ε(M2 +1)], this strictly reduces Pα,βεε and the symmetric
difference (see Fig. 6.7).

R̃α

F

Figure 6.7. The new profile after replacing F by F ∪ [εm1, εM1]× [εM2, ε(M2 + 1)].

Note that, if the intersection of F and the left (resp., right) corner square is not
empty, then we can consider as a competitor F ∪ [ε(m1− 1), εM1]× [εM2, ε(M2 + 1)]
(resp., F ∪ [εm1, ε(M1 + 1)]× [εM2, ε(M2 + 1)]); if F has non empty intersection with
both the corner squares, then we consider F ∪[ε(m1−1), ε(M1+1)]×[εM2, ε(M2+1)].
If there exists only one maximal array Q1, . . . , QK and the intersection of F and

R̃α

F

Figure 6.8. The case of a single maximal array of intersecting β-squares.

both the corner squares is empty (see Fig. 6.8), then we may remove all the ε-squares
centered at vertices of Q1, . . . , QK and the variation of energy is

− 2αε+ 2K(βε − α)ε+ 1
γ

2c(L)Kε2 = −2αε− 2Kδε2 + 1
γ

2c(L)Kε2, (6.5)

which is negative for ε small.
Another possibility is that F has a β-type side, that is the intersection of ∂F

with the β-squares is a horizontal segment, as in Fig. 6.10.
Step 3: conclusion. We can repeat this procedure for each side, and finally, by

α-rectangularization, we obtain that either F is an α-type rectangle or it has some
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R̃α

F

Figure 6.9. The profile after removing all the ε-squares.

R̃α

F

Figure 6.10. F has a β-side.

β-type side. However, F is a coordinate rectangle. We note that all the estimates
above can be iterated and hold uniformly as long as the sides of Ekε are larger than
η, since they depend only on c(η).

6.3.1 Definition of the effective velocity

As remarked in Section 5.3.2, up to an error vanishing as ε → 0, the motion of
each side is independent of the other ones. As a consequence, its description can be
reduced to a one-dimensional problem.

Let xk represents the projection on the horizontal axis of the left-hand vertical
side of Ek = Ekε , whose length is Lk. For all Y = γ/Lk > 0 consider the minimum
problems

min {g(N) : N ∈ N} (6.6)

where

g(N) =





−2αN + N(N + 1)
2Y , [N ]2 = [0]2,

−2αN + δγ

Y
+ N(N + 1)

2Y , [N ]2 = [1]2,

(6.7)

and [z]2 denotes the congruence class of z modulo 2. Then, also in this case, the set
of Y > 0 for which (6.6) does not have a unique solution is discrete. To check this it
suffices to remark that the function to minimize is represented (up to multiplying
by 2Y ) by two parabolas

−4αY X +X(X + 1) and − 4αY X +X(X + 1) + 2δγ
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with vertex in

X = 2αY − 1
2 .

The minimizers in (6.6) are not unique in the case that

g(N − 1) = g(N) and g(N) = g(N + 1), (6.8)

that is for Y = N + δγ

2α and Y = N + 1− δγ
2α if [N ]2 = [1]2, while for Y = N − δγ

2α
and Y = N + 1 + δγ

2α if [N ]2 = [0]2.

Definition 6.3.2 (singular set). We define the singular set Sδ for problems (6.6)
as

Sδ = 1
2α [(2Z + 1 + δγ) ∪ (2Z− δγ)] . (6.9)

Remark 6.3.3. Note that, contrary to the high-contrast case β > α, the singular
set now depends on the particular value of β through δ.

The main result is the following.

Proposition 6.3.4. Let Y ∈ (0,+∞)\Sδ. Then the minimum problem (6.6) may
admit a solution Ñ such that [Ñ ]2 = [1]2 if and only if δ < δ̃ := 1/2γ. Otherwise, it
is [N ]2 = [0]2 for any solution N .

Proof. Let N be such that [N ]2 = [1]2. Then N is the minimum in (6.6) if and only
if





N − 1
2 < 2αY − 1

2 < N + 1
2 ,

g(N) < g(N − 1)

g(N) < g(N + 1)

(6.10)

that is,




N

2α < Y <
N + 1

2α

Y >
N + δγ

2α

Y <
N + 1− δγ

2α .

We note that it is
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N + δγ

2α <
N + 1− δγ

2α ,

so that the system (6.10) has solutions, if and only if

δ < δ̃ := 1
2γ . (6.11)

In this case, the minimum is N − 1 if and only if

N − 3
2 − δγ < 2αY − 1

2 < N − 1
2 + δγ,

that is,

N − 1− δγ
2α < Y <

N + δγ

2α .

If δ ≥ 1/2γ, then by (6.11) it follows that the discrete minimum is always even.

We will examine the iterated minimizing scheme for γ/Lk = γ/L ∈ (0,+∞)\Sδ
fixed, which reads

{
xLk+1 = xLk +Nk, k ≥ 0
xL0 = x0 (6.12)

with x0 ∈ {0, 1} and Nk ∈ N the minimizer of

min





−2αN + 1
γ

N(N + 1)
2 L, if [N ]2 = [0]2,

−2αN + δL+ 1
γ

N(N + 1)
2 L, if [N ]2 = [1]2,

(6.13)

which is unique up to the requirement that γ/L 6∈ Sδ.

Now we prove that, after at most two steps, {xLk }k≥0 is periodic modulo 2, as
expressed by the following proposition.

Proposition 6.3.5. There exist integers k̄,M ≤ 2 and n ≥ 1 such that

xLk+M = xLk + 2n for all k ≥ k̄. (6.14)

Moreover the quotient n/M depends only on γ/L. In particular, if δ ≥ 1/2γ then
k̄ = M = 1.

Proof. By Proposition 6.3.4, the latter part of the statement is a straightforward
consequence of Proposition 5.3.7 with Nα = Nβ = 1, so we restrict ourselves to the
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case δ < 1/2γ.
First remark that, if xLk is defined recursively by (6.12), we have

[xLk ]2 ∈ Z2 for all k ≥ 1.

Since #Z2 = 2, there exist integers 0 ≤ j ≤ 2 and l > j, with l − j ≤ 2, such that

[xLj ]2 = [xLl ]2. (6.15)

Let l be the minimal such l. Define k = j, M = l − j and n =
xLl − xLj

2 to obtain
(6.14).

Now we show that the quotient n/M is independent of x0. For this, we use
a monotonicity property of the orbits defined in (6.12) with respect to the initial
datum: if {xk} and {x′k} are orbits obtained as above, we have

if x0 ≤ x′0, then xk ≤ x′k, for all k ≥ 1. (6.16)

Consider the orbits with initial data x0, x′0 and x0 + 2, and let n(x) and M(x)
denote the indices above with initial datum x ∈ {x0, x′0, x0 + 2}. Since the orbit
with initial datum x0 + 2 is the translation by 2 of the one with initial datum x0, we
have n(x0 + 2) = n(x0) and M(x0 + 2) = M(x0). Taking into account the ordering
of the initial conditions

x0 ≤ x′0 ≤ x0 + 2,

by (6.14) for k0 sufficiently large and taking k = k0 + TM(x0)M(x′0) with T ∈ N,
from xk ≤ x′k ≤ xk + 2 we get

xk0 + 4Tn(x0)M(x′0) ≤ x′k0 + 2Tn(x′0)M(x0)
≤ xk0 + 2Tn(x0)M(x′0) + 2.

In order that this inequality hold for all T ≥ 1 we must have

n(x0)M(x′0) = n(x′0)M(x0),

which is the desired equality.

Definition 6.3.6 (effective velocity function). We define the effective velocity
function fδ : (0,+∞) \ Sδ −→ [0,+∞) by setting

fδ(Y ) = 2n
M
, (6.17)

with M and n in (6.14) defined by L and γ such that Y = γ/L. By Proposition
6.3.5, this is a good definition.

We recall some properties of the velocity function (for the proof we refer to
Remark 5.3.10).
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Remark 6.3.7 (properties of the velocity function fδ). The velocity function
fδ has the following properties:

(a) fδ is constant on each interval contained in its domain;

(b) fδ(Y ) = 0 if

Y < Y := min
{ 3

4α,
δγ + 1

2α

}
;

in particular
lim
γ→0+

1
γ
fδ

(
γ

L

)
= 0

(see Section 6.3.2);

(c) fδ(Y ) is an integer value;

(d) fδ is non decreasing;

(e) we have
lim

γ→+∞
1
γ
fδ

(
γ

L

)
= 2α

L
.

(f) fδ(Y ) depends on βε through δ.

6.3.2 The effective pinning threshold
If 0 ≤ δ < δ̃, to compute the pinning threshold we have to impose that it is not
energetically favorable to move inward a side by ε. We then write the variation of
the energy functional Fα,βεε,τ from configuration A to configuration B in Fig. 6.11,
regarding a side of length L.

A

B

Figure 6.11. If δ < δ̃, the motion is possible if the side can move at least by ε.

If we impose it to be positive, we have

−2αε+ L(βε − α) + 1
τ
Lε2 = ε

[
−2α+ L

(
δ + 1

γ

)]
≥ 0

and we obtain the pinning threshold

Lδ := 2αγ
δγ + 1 . (6.18)
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Note that if δ = 0 (i.e., βε = α), then we recover the threshold

L̃ = 2αγ.

If δ ≥ δ̃, instead, by the condition that Ek be an α-type rectangle, we have
to impose that it is not energetically favorable to move inward a side by 2ε (see
Fig. 6.12). As shown in Section 5.3.1, in this way we obtain the pinning threshold

A

B

Figure 6.12. If δ ≥ δ̃ the motion is possible if the side can move at least by 2ε.

L
δ̃

= 4
3αγ.

Hence, the effective pinning threshold (see Fig. 6.13) is given by

Lδ = max
{ 2αγ
δγ + 1 ,

4
3αγ

}
. (6.19)

1
2γ

2αγ

4
3αγ

δ

Lδ

Figure 6.13. Effective pinning threshold (represented by the continuous line).

6.3.3 Computation of the velocity function
In this section we compute explicitly the velocity function assuming, without loss of
generality, that γ = 1. We restrict ourselves to the case δ < 1/2, because if δ ≥ 1/2
the velocity function is given by (see Section 5.4.1)
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f(Y ) = 2
⌊
αY + 1

4

⌋
. (6.20)

We denote by N the minimum of the problem (6.13) and subdivide the computation
into different cases:

(a) xn is even and Y ∈
(2k + 1 + δ

2α ,
2k + 2− δ

2α

)
for some k ≥ 0; in this case

N = 2k+1 and xn+1 = xn+N is odd. The next point is xn+2 = xn+1+N = xn+2N ,
which is even, so that the sequence {xn} oscillates between α and βε. In this case,

fδ(Y ) = xn+2 − xn
2 = 2N

2 = 2k + 1 = b2αY c;

(b) xn is odd and Y ∈
(2k + 1 + δ

2α ,
2k + 2− δ

2α

)
for some k ≥ 0; in this case

xn+1 = xn +N is even and xn+2 = xn + 2N , is odd, so that as before

fδ(Y ) = 2k + 1 = b2αY c;

(c) xn is even and Y ∈
(2k − δ

2α ,
2k + 1 + δ

2α

)
for some k ≥ 0; in this case N = 2k

and xn+1 = xn +N is even. Therefore the sequence {xn} consists of only α-bonds
and in this case the velocity function is given by

fδ(Y ) = xn+1 − xn = N = 2k;

(d) xn is odd and Y ∈
(2k − δ

2α ,
2k + 1 + δ

2α

)
for some k ≥ 0; in this case xn+1 =

xn +N is also odd. Therefore the sequence {xn} consists of only β-bonds and in
this case the velocity function is given again by

fδ(Y ) = xn+1 − xn = N = 2k.

Note that, collecting all the cases, we can write the velocity function as

fδ(Y ) =





0 if Y <
δ + 1
2α ,

2k if Y ∈
(2k − δ

2α ,
2k + 1 + δ

2α

)
, k ≥ 0

2k + 1 if Y ∈
(2k + 1 + δ

2α ,
2k + 2− δ

2α

)
.

(6.21)

It can be rewritten equivalently as
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fδ(Y ) =





b2αY c+ 1 if Y ∈
(2k − δ

2α ,
2k
2α

)
,

b2αY c if Y ∈
( 2k

2α,
2k + 1

2α

)
,

b2αY c − 1 if Y ∈
(2k + 1

2α ,
2k + 1 + δ

2α

)
,

b2αY c if Y ∈
(2k + 1 + δ

2α ,
2k + 2− δ

2α

)
.

Therefore we notice accelerating and decelerating effects (due to the microstructure
through δ) with respect to the velocity function f̃ obtained in the homogeneous case,
that is

f̃(Y ) =





0 if Y <
1

2α,

b2αY c if Y ∈
(
k

2α,
k + 1

2α

)
, k ≥ 1.

Moreover, we recover f̃ computing fδ for δ = 0. If we choose δ = 1/2, we recover
the velocity function f (6.20) which corresponds to the high-contrast case.

We conclude this section by writing the general formula of the velocity function
fδ, valid for any δ and γ:

fδ(Y ) =





0 if Y <
Cδ,γ + 1

2α ,

2k if Y ∈
(2k − Cδ,γ

2α ,
2k + 1 + Cδ,γ

2α

)
,

2k + 1 if Y ∈
(2k + 1 + Cδ,γ

2α ,
2k + 2− Cδ,γ

2α

)
, k ≥ 0.

where Cδ,γ = min{δγ, 1/2}.

6.3.4 Description of the homogenized limit motion

The following characterization of any limit motion holds (see Theorem 5.3.12).

Theorem 6.3.8. For all ε > 0, let E0
ε ∈ Dε be a coordinate rectangle with sides

S0
1,ε, . . . , S

0
4,ε. Assume also that

lim
ε→0+

dH(E0
ε , E0) = 0
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for some fixed coordinate rectangle E0. Let γ > 0 be fixed and let Eε(t) = Eε,γε(t)
be the piecewise-constant motion with initial datum E0

ε defined as in (4.12). Then,
up to a subsequence, Eε(t) converges as ε→ 0 to E(t), where E(t) is a coordinate
rectangle with sides Si(t) and such that E(0) = E0. Each Si moves inward with
velocity vi(t) satisfying

vi(t) ∈
[

1
γ
fδ

(
γ

Li(t)

)−
,

1
γ
fδ

(
γ

Li(t)

)+
]
, (6.22)

where fδ is given by Definition 6.3.6, Li(t) := H1(Si(t)) denotes the length of the
side Si(t), until the extinction time when Li(t) = 0, and fδ(Y )−, fδ(Y )+ are the
lower and upper limits of the effective-velocity function at Y ∈ (0,+∞).

In case of a unique evolution, the limit motion is described as follows (see
Theorem 5.3.13).

Theorem 6.3.9 (unique limit motions). Let Eε, E be as in the statement of
Theorem 6.3.8. Assume in addition that the lengths L0

1, L
0
2 of the sides of the initial

set E0 satisfy one of the following conditions (we assume that L0
1 ≤ L0

2):

(a) L0
1, L

0
2 > Lδ = max

{ 2αγ
δγ + 1 ,

4
3αγ

}
(total pinning);

(b) L0
1 < Lδ and L0

2 ≤ Lδ (vanishing in finite time);

then Eε(t) converges locally in time to E(t) as ε → 0, where E(t) is the unique
rectangle with sides of lengths L1(t) and L2(t) which solve the following system of
ordinary differential equations





L̇1(t) = −2
γ
fδ

(
γ

L2(t)

)

L̇2(t) = −2
γ
fδ

(
γ

L1(t)

) (6.23)

for almost every t, with initial conditions L1(0) = L0
1 and L2(0) = L0

2.

6.4 The periodic case with K contrast parameters
In this section we study the same problem as before in a more general situation.
We consider a medium with inclusions distributed into periodic uniform layers as
follows.

Let ε > 0 be fixed and δ1, δ2, . . . , δK ,K ∈ N be positive. We consider 2Kε-
periodic coefficients cεij indexed on nearest-neighbors of εZ2 defined for i, j such
that

0 ≤ i1 + j1
2 ,

i2 + j2
2 < 2Kε
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δ1

δ2

2Kε

Figure 6.14. The periodicity cell for K = 2.

by

cεij =





α+ δrε, if i1 + j1
2 ,

i2 + j2
2 =

(
2r − 1

2

)
ε, r = 1, . . . ,K

α, otherwise.

(6.24)

In Fig. 6.14 the periodicity cell is pictured in the case K = 2. Here the red lines
represent the bonds with parameter δ1, the blue ones the bonds with parameter δ2
and the dashed lines the α-bonds.

Correspondingly, to these coefficients we associate the energy Pα,βεε (I) defined
on subsets I of εZ2 as in (6.2). We consider the same discrete-in-time minimization
scheme for the energy Fα,βεε,τ with τ = γε as in Section 4.3 and we restrict our analysis
to rectangular evolutions as in Section 6.3. We will see that the minimization problem
and the velocity function depend on the choice of δr, r = 1, . . . ,K, in particular on
their relative position with respect to δ̃ defined by equation (6.11).

We will treat only the cases

δ̃ ≤ δr for some r ∈ {1, . . . ,K} (6.25)

and
0 ≤ δr < δ̃, ∀r = 1, . . . ,K, (6.26)

because if δ̃ ≤ δr for all r then we are in the high-contrast case already described in
Chapter 5.

6.4.1 The pinning threshold
For the computation of the pinning threshold we refer to Section 6.3.2.

If assumption (6.25) holds, then after a finite number of steps the side is pinned
if it cannot move inward by 2ε. In this case, the pinning threshold is given by
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L
δ̃

= 4
3αγ.

If (6.26) holds, instead, after a finite number of steps the side is pinned if it
cannot move inward by ε. In particular, the pinning threshold now depends on
δr̄ = max

1≤r≤K
{δr} and it is given by

Lδr̄ = 2αγ
δr̄γ + 1 .

Hence, in the general case, the pinning threshold is given by

min{Lδr̄ , Lδ̃}. (6.27)

6.4.2 The effective velocity function
We use the same notation as in Section 6.3.1. For all Y = γ/Lk > 0 we consider the
minimum problems

min {g(N) : N ∈ N} (6.28)

where

g(N) =





−2αN + N(N + 1)
2Y , if [N ]2K ∈ {[0]2K , [2]2K , . . . , [2K − 2]2K},

−2αN + δrγ

Y
+ N(N + 1)

2Y , if [N ]2K = [2r − 1]2K , r = 1, . . . ,K.
(6.29)

Then the set of Y > 0 for which (6.28) does not have a unique solution is discrete.
For this we remark that the function to minimize is represented by K + 1 parabolas

−4αY X +X(X + 1) and − 4αY X +X(X + 1) + 2δrγ r = 1, . . . ,K

with vertex in
X = 2αY − 1

2 .

As a consequence of (6.9) we have that the minimizers in (6.28) are not unique in
the case that

Y ∈ Sδr := 1
2α
[
(z + min{δrγ, 1/2}) ∪ (z + 1−min{δrγ, 1/2})

]
(6.30)

with z ∈ Z such that [z]2K = [2r − 1]2K , r = 1, . . . ,K.

Definition 6.4.1. We define the singular set Sδ1,...,δK for problems (6.28) as

Sδ1,...,δK =
K⋃

r=1
Sδr (6.31)

where Sδr is defined by (6.30).
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We now examine the iterated minimizing scheme for γ/L ∈ (0,+∞)\Sδ1,...,δK
fixed, which reads {

xLk+1 = xLk +Nk, k ≥ 0
xL0 = x0 (6.32)

with x0 ∈ {0, 1, 2, . . . , 2K − 1} and Nk ∈ N the minimizer of

min





−2αN + 1
γ

N(N + 1)
2 L, if [N ]2K ∈ {[0]2K , [2]2K , . . . , [2K − 2]2K},

−2αN + δrL+ 1
γ

N(N + 1)
2 L, if [N ]2K = [2r − 1]2K , r = 1, . . . ,K,

(6.33)
which is unique up to the requirement that γ/L 6∈ Sδ1,...,δK . With an analogous
argument as in the proof of Proposition 6.3.5 we can prove that, after at most 2K
steps, {xLk }k≥0 is periodic modulo 2K. Hence, we can define the effective velocity
function f as in Definition 6.3.6.

6.4.3 Computation of the velocity function
In this section we give the expression of the velocity function without proof, because
it follows by analogous computations as in Section 6.3.3. For simplicity of notation,
we put

δ̄r,γ = min{δrγ, 1/2}, r = 1, . . . ,K.

For any γ, δ1, . . . , δK , the velocity function f = fδ1,...,δK is given by

fδ1,...,δK (Y ) =





0, if Y < min
{ 3

4αγ ,
δr̄γ + 1

2αγ

}
,

2Kk, if Y ∈
(

2Kk − δ̄K,γ
2α ,

2Kk + 1 + δ̄1,γ
2α

)
,

2Kk + 1, if Y ∈
(

2Kk + 1 + δ̄1,γ
2α ,

2Kk + 2− δ̄1,γ
2α

)
,

2Kk + 2, if Y ∈
(

2Kk + 2− δ̄1,γ
2α ,

2Kk + 3 + δ̄2,γ
2α

)
,

...
...

...

2Kk + 2K − 1, if Y ∈
(

2K(k + 1)− 1 + δ̄K,γ
2α ,

2K(k + 1)− δ̄K,γ
2α

)
,

with k ≥ 0.
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Chapter 7

Nucleation and backward
motion of discrete interfaces

In this chapter we present the results contained in joint works with A. Braides [20, 21].
We consider a variation on the minimizing-movement scheme (4.5) motivated by some
time-scaling argument. We use a discrete approximation of the motion by crystalline
curvature to define an evolution of sets from a single point (nucleation) following a
criterion of “maximization” of the perimeter, formally giving a backward version of
the motion by crystalline curvature. This evolution depends on the approximation
chosen.

7.1 The crystalline case: motivation
We consider the problem of defining a motion for sets which “expand” by maximizing
the perimeter subject to a penalization of their distance from the previous set.
Formally, this involves considering problems of the form

min
{
−P (E) + 1

τ

∫

E4Eτ
k−1

dist(x, ∂Eτk−1) dx
}
, (7.1)

which can be seen as a “backward” version of the previous ones (as remarked in
Section 2.6) if the index k is considered as parameterizing negative time. Unfortu-
nately, this problem is ill-posed, giving the trivial infimum −∞ at the first step (see
Remark 7.1.1). Following a suggestion by J.W. Cahn, we then consider a discrete
approximation of P in the crystalline case, and use it to define a backward crystalline-
curvature motion with prescribed extinction point (or, equivalently, nucleation of
the motion defined for positive times).

We consider λ > 0 and initial data Eτ,ε,λ0 = Qε = εQ = ε
[
−1

2 ,
1
2

]d
(which,

in the discrete setting, all correspond to the singleton {0}), and define iteratively
Eτ,ε,λk ∈ Dε (Dε as in (4.8)) as a minimizer of

min
{
− 1
λ
Pε(E) + 1

τ

∫

E4Eτ,ε,λ
k−1

dε(x, ∂Eτ,ε,λk−1 ) dx
}
, (7.2)

where Pε(E) = Hd−1(∂E) and dε is a discrete distance (see Section 7.3).
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Remark 7.1.1. Note that taking in (7.2) the crystalline perimeter (4.10) in place
of Pε and dε = dε∞ in dimension two would immediately give the value −∞ in the
minimum problem; e.g., by considering sets of the form

Ej = {(ρ, θ) : ρ ≤ 3ε+ sin(jθ)},
which contain Eτ,ε,λ0 , are contained in B4ε(0) and have a perimeter larger than 4jε
(see Fig. 7.1).

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

Figure 7.1. The set Ej for ε = 1 and j = 500.

Note also the new parameter λ in (7.2), which does not change the nature of
the problems and whose introduction can be interpreted as a time-scaling of the
trajectories with λ = 1 (see Section 2.5). We will study this problem for different
choices of dε and in dimension d = 2 (the case d ≥ 2 is in progress).

Overview of the chapter. In Section 7.2 we give a first simple example, treating
the problem in the case of the `∞-distance dε∞. We show that each evolute by
minimization of the energy is a even checkerboard structure containing the initial
set εQ. The proof relies heavily on the structure of the `∞-distance, for which all
sublevel sets are cubes. The limit motion is a family of expanding cubes with constant
velocity (see Theorem 7.2.1). In Section 7.3 we describe the necessary mathematical
setting to treat the problem for a general distance dϕ, induced by a norm ϕ. This
will be done in Section 7.4 and we will assume, as a technical hypothesis, that the
minimal sets are checkerboard (this is not trivial as before, and it is a conjecture for
the moment). In this case, we might not have that the minimal sets correspond to
the same checkerboard structure (even or odd); in particular, we might have that
they oscillate between even or odd checkerboard. However, this may happen only for
a finite number of steps; eventually, they stabilize and correspond to the same parity
(Proposition 7.4.4). Section 7.5 contains some examples of nucleation; in particular,
in Section 7.5.2, we show an example where, for a sufficiently asymmetric distance,
the limit set is a linearly growing segment.

7.2 A simple example: the `∞-distance
The results of this section form the content of the joint work with A. Braides [21].
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We consider the case that dε be the∞-distance dε∞ already defined in Section 4.3,
adapted in any dimension d ≥ 2, so that the integral term

∫
E4F d

ε
∞(x, ∂F ) dx in the

energy (7.2) for any E,F ∈ Dε is given by
∑

i∈Zd∩ 1
ε
E

εd+1d∞
(
i,Zd ∩ 1

ε
F
)

+
∑

i∈Zd∩ 1
ε

(F\E)
εd+1d∞

(
i,Zd \ 1

ε
F
)
,

d∞(i, I) = min{‖i− i′‖∞ : i′ ∈ I} , I ⊂ Zd.

We first determine the correct scaling for λ and τ in terms of ε in order to have
a non-trivial limit. To this end, we note that the minimal variation of the energy in
(7.2) from the set Eτ,ε,λk−1 corresponds to the addition of an ε-square with no side in
common with Eτ,ε,λk−1 (see Fig. 7.2). The variation is

Qε

Figure 7.2. Example of configuration giving the minimal variation of the energy (d = 2).

− 2d
λ
εd−1 + 1

τ
Kεd+1 (7.3)

with 0 6= K ∈ N. This quantity may be negative if and only if

1 ≤ 2dτ
λε2 . (7.4)

The relative scaling of ε, τ and λ must be such that this condition be satisfied. We
treat the case

τ/ε = γ ∈ (0,+∞), λε = α ∈ (0,+∞), (7.5)
so that (7.4) corresponds to

1
2d ≤

γ

α
. (7.6)

We can now describe the behaviour of the minimizing-movement scheme in (7.2).

Theorem 7.2.1 (nucleation). Let τ, ε and λ satisfy condition (7.5); correspond-
ingly, let Eτ (t) = Eτ,ε,λbt/τc, with E

τ,ε,λ
k given by (7.2) with initial data Eτ,ε,λ0 = εQ,

and let
2dγ
α
6∈ N (7.7)

be satisfied. Then, for all fixed t, the Kuratowsky limit of the family Eτ (t) as τ → 0
is a cube of centre 0 and side length 2

⌊2dγ
α

⌋
t. In particular:
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Eτ,ε,λ0 Eτ,ε,λ1 Eτ,ε,λ2

Figure 7.3. Some steps of the discrete evolution in dimension two.

(a) (pinning threshold) if (7.6) is not satisfied, then the motion is trivial:
E(t) = {0};

(b) (linear expansion) if (7.6) and (7.7) are satisfied, then the motion is given
by a family of expanding cubes whose sides move with constant velocity b2dγ

α

⌋
.

Remark 7.2.2 (singular cases). If 2dγ
α ∈ N, then we obtain that the sets E are

contained in the cubes moving with velocity 2dγ
α , and contain the cubes moving with

velocity 2dγ
α −1, but need not be cubes themselves. This is due to the non-uniqueness

of the minimal sets in (7.2).

Proof. First note that if (7.6) is not satisfied, then every competing set E in the
definition of Eτ,ε,λ1 gives a strictly larger value than the set Eτ,ε,λ0 ; hence, each
discrete trajectory is trivial, and so is their limit.

Suppose now that (7.6) is satisfied. We then prove that Eτ,ε,λk is a (even)
checkerboard structure containing εQ; i.e., it is the union of cubes ε(i + Q) with
i ∈ Zd and ‖i‖1 = |i1|+ · · ·+ |id| even (for short, we say that i is even). Moreover,

{i ∈ Zd : εi ∈ Eτ,ε,λk } =
{
i ∈ Zd even , ‖i‖∞ ≤

⌊2dγ
α

⌋
k
}
. (7.8)

The statement above can be proved inductively by showing that

{i ∈ Zd : εi ∈ Eτ,ε,λk } =
{
i ∈ Zd even , d∞

(
i,

1
ε
Eτ,ε,λk−1

)
≤
⌊2dγ
α

⌋}
. (7.9)

To this end, it suffices to note that the contribution of the energy of a competitor
E corresponding to points i with d∞

(
i, Eτ,ε,λk−1

)
= j for 1 ≤ j ≤ 2dγ/α is minimal

when no two such points have a nearest-neighbour in E, while if j > 2dγ/α it is
minimal if E contains no such point. This shows that Eτ,ε,λk \ Eτ,ε,λk−1 corresponds
to a checkerboard structure. Since the contribution of even and odd checkerboard
structure outside Eτ,ε,λk−1 is equal, and the even checkerboard structure allows to leave
Eτ,ε,λk−1 unchanged, we get the thesis.
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7.3 Setting of the problem
Here we give the necessary preliminaries to formulate the problem for a generic
distance dϕ, induced by a norm ϕ, in dimension d = 2 (see e.g. Rockafellar [42] and
Schneider [43]).

We consider the partition of the standard lattice Z2 into sub-lattices given by

Z2 = Z2
e ∪ Z2

o, (7.10)

where Z2
e = {i ∈ Z2 : |i1|+ |i2| is even} and Z2

o = {i ∈ Z2 : |i1|+ |i2| is odd}.

We give some definitions for lattice sets, i.e., finite subsets of Z2, which will be
useful in the sequel.

Definition 7.3.1 (convex hull). Given a lattice set I ⊆ Z2, the convex hull of I
is the smallest convex polygon P containing I. We write

P = conv(I).

Definition 7.3.2. Let I ⊆ Z2. We say that

(a) I is checkerboard convex if either (a1) I = conv(I)∩Z2
e or (a2) I = conv(I)∩ Z2

o;

(b) I is origin symmetric if for any i ∈ I, also −i ∈ I.

I is admissible if it is nonempty, checkerboard convex and origin symmetric.

Definition 7.3.3 (discrete Minkowski sum). Let I,J ⊆ Z2. The Minkowski
sum of I and J is defined as

I + J = {i+ j : i ∈ I, j ∈ J }, (7.11)

where (i+ j)1 = i1 + j1, (i+ j)2 = i2 + j2.

Note that, by Def. 7.3.3, it follows that I + {0} = I and I + ∅ = ∅.

Definition 7.3.4 (m-dilation). Let I ⊆ Z2 and m > 0. The set

mI = {mi = (mi1,mi2) : i ∈ I} (7.12)

is called the m-dilation (or m-dilate) of I.
Definition 7.3.5. If I is a non-empty lattice set and m ≥ 1, we define by induction
from Def. 7.3.3 the set

I[m] := I + I + · · ·+ I︸ ︷︷ ︸
m−times

. (7.13)

We now recall a property of commutability of Minkowski sum and the operation
of taking the convex hull.



78 7. Nucleation and backward motion of discrete interfaces

Proposition 7.3.6. If I,J ⊆ Z2, then

conv(I + J ) = conv(I) + conv(J ). (7.14)

Lemma 7.3.7. Let I,J be admissible subsets of Z2. Then also I + J , defined by
(7.11), is admissible.

Proof. Trivially, I + J is origin symmetric. We have three cases.

(i) I,J ⊆ Z2
e. In this case, I + J ⊆ Z2

e and

I + J = (conv(I) ∩ Z2
e) + (conv(J ) ∩ Z2

e) = (conv(I) + conv(J )) ∩ Z2
e

= (conv(I + J )) ∩ Z2
e.

(7.15)

(ii) I,J ⊆ Z2
o. Also in this case I + J ⊆ Z2

e and

I + J = (conv(I + J )) ∩ Z2
e. (7.16)

(iii) I ⊆ Z2
e,J ⊆ Z2

o. In this case I + J ⊆ Z2
o and arguing as before we have

I + J = (conv(I + J )) ∩ Z2
o. (7.17)

Let ε > 0 be fixed and we consider subsets I ⊂ εZ2. With a slight abuse of
notation, we say that I is admissible if 1

εI is admissible in the sense of Def. 7.3.2.
To each I we associate a subset EI of R2 defined (see Section 4.2) as the union of
all ε-squares centered at i ∈ I. We say that I is the set of centers of EI .

We define the classes

Aεe =
{
E ∈ Dε : E = EI for some admissible I ⊆ εZ2

e

}
, (7.18)

and analogously the class Aεo by requiring that I ⊆ εZ2
o.

For any distance dϕ on R2 (induced by a norm ϕ) and I ⊂ εZ2, we define the
discrete distance from ∂I as

dεϕ(i, ∂I) =
{

inf{dϕ(i, j) : j ∈ I} if i 6∈ I
inf{dϕ(i, j) : j ∈ εZ2\I} if i ∈ I.

(7.19)

After the identification of I with EI as before, we define

dεϕ(i, ∂EI) = dεϕ(i, ∂I).

The distance can be extended to all R2\∂EI by setting

dεϕ(x, ∂I) = dεϕ(i, ∂I) if x ∈ Qε(i).
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We note that if EI = Qε(0), then

dεϕ(x, ∂I) = ϕε(x) = ϕε(i) if x ∈ Qε(i),

where

ϕε(i) =
{
ϕ(i) if i 6= 0
inf{ϕ(j) : j ∈ εZ2\{0}} if i = 0.

(7.20)

7.4 The general case
For any ε, τ, λ > 0 we consider the energy Fε,τ,λ : Dε ×Dε → R defined as

Fε,τ,λ(E,F ) = − 1
λ
Pε(E) + 1

τ

∫

E4F
dεϕ(x, ∂F ) dx, (7.21)

where Pε(E) = H1(∂E), which coincides with the energy Pαε (4.6) computed for
α = 1. As before, we choose τ = γε and λε = α, so that (7.21) can be rewritten as

Fε,γ,α(E,F ) = −Pε(E) + α

γε2

∫

E4F
dεϕ(x, ∂F ) dx. (7.22)

Given the initial set Eε0 = Qε, we define recursively a sequence Eε,γ,αk in Dε by
requiring the following:

(i) Eε,γ,α0 = Eε0;

(ii) Eε,γ,αk+1 is a minimizer of the functional Fε,α,γ(·, Eε,γ,αk ).

The discrete flat flow associated to functionals Fε,γ,α is thus defined by

Eε,γ,α(t) = Eε,γ,αbt/τc, t ≥ 0. (7.23)

To simplify the notation, we omit the dependence on γ, α in Eε,γ,αk , which will
be denoted simply by Eεk.

We assume, as a technical hypothesis, the conjecture that each step of the discrete
motion Eεk is a checkerboard convex and origin symmetric union of ε-squares.

Fundamental assumption. Let Eε0 = Qε. If F is a minimizer for the minimum
problem for Fε,γ,α(·, Eεk−1), k ≥ 1, then either F ∈ Aεe or F ∈ Aεo.

7.4.1 The nucleation threshold
We first determine conditions on α, γ in order to have a non-trivial motion. The
nucleation threshold is defined as the minimum value of γ

α above which it is ener-
getically convenient to nucleate; that is, to have that Eε1 6= Eε0. To compute it, we
write the variations of the energy (7.22) to obtain, starting from Eε0, each of the four
minimal configurations pictured in Fig. 7.4 and Fig. 7.5, and impose them to be
negative. In order to simplify the notation, we put ϕεx,y := ϕε(x, y). Configuration A
and Configuration B are the minimal (not Eε0) subsets in Aεe, i.e., the union of Eε0
and the two ε-squares centered at i ∈ εZ2

e and whose discrete distances from ∂Eε0 are
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Configuration A Configuration B
Figure 7.4. Minimal configurations in Aεe.

Configuration C Configuration D
Figure 7.5. Minimal configurations in Aεo.

minimal, that is ϕε−ε,ε and ϕεε,ε, respectively. Configuration C and Configuration D,
instead, are the minimal subsets in Aεo, i.e., the union of the two ε-squares centered
at i ∈ εZ2

o whose discrete distances from ∂Eε0 are ϕε0,ε and ϕεε,0, respectively.
The variation of the energy to obtain Configuration A is given by

− 8ε+ 2α
γ
ϕε−ε,ε, (7.24)

which is negative if and only if γα ≥
ϕε−1,1

4 . An analogous computation shows that the
variation of the energy to obtain Configuration B is negative if and only if γ

α ≥
ϕε1,1

4 .
In the case of Configuration C, instead, the variation of the energy is

− 4ε+ α

γ
(2ϕε0,ε + min{ϕε0,ε, ϕεε,0, ϕεε,ε, ϕε−ε,ε}), (7.25)

which is negative if and only if γ
α ≥ 1

4 [2ϕε0,1 + min{ϕε0,1, ϕε1,0, ϕε1,1, ϕε−1,1}]; the same
computation for Configuration D gives γ

α ≥ 1
4 [2ϕε1,0 + min{ϕε0,1, ϕε1,0, ϕε1,1, ϕε−1,1}].

Hence, the nucleation threshold depends on the norm ϕε and can be estimated as

γ

α
≥ 1

4 min
{
ϕε−1,1, ϕ

ε
1,1, 2 min{ϕε1,0, ϕε0,1}+ min{ϕε0,1, ϕε1,0, ϕε1,1, ϕε−1,1}

}
. (7.26)

Remark 7.4.1. Note that if dεϕ = dε∞, then (7.26) reduces to (7.6) computed for
d = 2.
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7.4.2 Discrete nucleation
In this section, we study the discrete nucleation from the point 0 ∈ εZ2 (the set Qε),
with fixed ε. By Fundamental assumption, it follows that in order to determine the
first step of the evolution Eε1, we have to compare the minimizers of Fε,γ,α(·, Eε0)
among Aεe and Aεo, that is the subsets of Aεe and Aεo, respectively, given by the union
of all the ε-squares Qε(i) whose centers satisfy ϕε(i) < 4γ

α ε.
More precisely, if we consider

I1,ε =
{
i ∈ εZ2

e : ϕε(i) < 4γ
α
ε

}
, (7.27)

then Fε,γ,α(EI1,ε , Eε0) = min
E∈Aεe

Fε,γ,α(E,Eε0), while if

Ĩ1,ε =
{
i ∈ εZ2

o : ϕε(i) < 4γ
α
ε

}
, (7.28)

then Fε,γ,α(EĨ1,ε , E
ε
0) = min

E∈Aεo
Fε,γ,α(E,Eε0).

Definition 7.4.2 (nucleus). We define the nucleus Eε1 as follows:

(i) Eε1 = EI1,ε if Fε,γ,α(EI1,ε , Eε0) < Fε,γ,α(EĨ1,ε , E
ε
0);

(ii) Eε1 = EĨ1,ε if Fε,γ,α(EĨ1,ε , E
ε
0) < Fε,γ,α(EI1,ε , Eε0).

Eε0

Eε1

Figure 7.6. An example of nucleus Eε1 .

Remark 7.4.3. If Fε,γ,α(EI1,ε , Eε0) = Fε,γ,α(EĨ1,ε , E
ε
0), then we have a double

choice for Eε1. To simplify the problem, we discard this case and assume from now
on that Eε1 is unique.

Proposition 7.4.4 (discrete nucleation). Assume that (7.26) holds, let ε > 0 be
fixed and Eε0 = Qε. Then the discrete evolution by minimization of the energy (7.22)
is the set Eεk = EIk,ε, k ≥ 2, where Ik,ε ⊆ εZ2 is defined as follows:

(i) if Eε1 = EI1,ε, then Ik,ε = I1,ε[k], and I1,ε is given by (7.27);
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(ii) if Eε1 = EĨ1,ε, then there exists k = k(γ/α) ≥ 0 such that Ik,ε = Ĩ1,ε[k] for all
0 ≤ k ≤ k, where Ĩ1,ε is given by (7.28), while Ik,ε = Ik,ε + I1,ε[k − k] for all
k > k, with I1,ε again given by (7.27).

Remark 7.4.5. In case (i), Eεk ∈ Aεe,∀k ≥ 1 and Eεk−1 ⊆ Eεk. In case (ii), instead,
an analogous property holds only definitely, because Eεk oscillates between Aεo and
Aεe for all 1 ≤ k ≤ k, while for k > k it stabilizes on the same class Aεo or Aεe.

Proof. (i) The set Eεk, k ≥ 2 is the union of Eεk−1 and all the ε-squares whose centers
i ∈ εZ2

e are such that
dεϕ(i, ∂Eεk−1) < 4γ

α
ε. (7.29)

Equivalently, if we define iteratively

Ik,ε = Ik−1,ε + I1,ε, k ≥ 2, (7.30)

with I1,ε given by (7.27), then
Eεk = EIk,ε . (7.31)

In fact,

sup{dεϕ(i, j) : i ∈ Ik,ε, j ∈ Ik−1,ε} ≤ sup{ϕε(i) : i ∈ I1,ε} <
4γ
α
ε.

By Lemma 7.3.7 it follows that Ik,ε is admissible and satisfies (a1) of Defini-
tion 7.3.2; this implies that Eεk ∈ Aεe. Note also that, by definition (7.30) and
since 0 ∈ Ik−1,ε,∀k ≥ 1, we have that Ik−1,ε ⊆ Ik,ε so that Eεk−1 ⊆ Eεk,∀k ≥ 1.

(ii) If k is odd, the set Eεk, k ≥ 2 is the union of all ε-squares whose centers i ∈ εZ2
o

are such that dεϕ(i, ∂Eεk−1) < 4γ
α ε, while if k is even, Eεk has the same properties as

before with i ∈ εZ2
e. Equivalently, we can define

Ik,ε = Ik−1,ε + Ĩ1,ε, (7.32)

with I1,ε := Ĩ1,ε given by (7.28). As before, we have

Eεk = EIk,ε . (7.33)

We note that Eεk−1 6⊆ Eεk and, if k is even, Eεk−1 ∈ Aεo, Eεk ∈ Aεe, while if k is odd,
Eεk−1 ∈ Aεe, Eεk ∈ Aεo.

However, the procedure defined by (7.32) can be iterated only for a finite number
of steps, depending on γ

α . In fact, the variation of the energy Fε,γ,α to pass from
Eεk−1 to Eεk is bounded from below by

− 4(|Ik,ε| − |Ik−1,ε|) + α

γ

[
min{ϕε1,0, ϕε0,1, ϕε−1,1, ϕ

ε
1,1}(|Ik−1,ε|+ |Ik,ε|)

]
, (7.34)

which is strictly positive for k sufficiently large, being Ik−1,ε 6⊆ Ik,ε, |Ik−1,ε| ≤ |Ik,ε|
and α/γ fixed.
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Let k be the smallest such k. For any k > k, Eεk is the union of Eεk−1 and all the
ε-squares whose centers i ∈ εZ2

o if k is odd, i ∈ εZ2
e if k is even and

dεϕ(i, ∂Eεk−1) < 4γ
α
ε. (7.35)

As before, this is equivalent to define

Ik,ε = Ik−1,ε + I1,ε, ∀k > k, (7.36)

where I1,ε now is given by (7.27), and Eεk = EIk,ε . Note that Eεk−1 ⊆ Eεk,∀k ≥ k

and Eεk ∈ Aεo if k is odd, Eεk ∈ Aεe if k is even.

Remark 7.4.6 (homothety of convex hulls). Let Pk,ε be the convex hull of Ik,ε
defined iteratively at (i) of Proposition 7.4.4. Then, for all k ≥ 1, Pk,ε and P1,ε are
homothetic with center 0.

For this, it will suffice to prove that Pk,ε is the k-dilate of P1,ε, that is

Pk,ε = kP1,ε, for all k ≥ 1. (7.37)

Clearly, (7.37) is true for k = 1. Let k ≥ 2 and assume that

Pk−1,ε = (k − 1)P1,ε. (7.38)

By Definition (7.30) and Proposition 7.3.6 it follows that

Pk,ε = conv(Ik,ε) = conv(Ik−1,ε + I1,ε) = conv(Ik−1,ε) + conv(I1,ε)
= Pk−1,ε + P1,ε.

(7.39)

Therefore, by (7.38) and again by Proposition 7.3.6 we finally obtain that

Pk,ε = (k − 1)P1,ε + P1,ε = kP1,ε. (7.40)

In case (ii) of Proposition 7.4.4, instead, if Qk,ε = conv(Ik,ε), where Ik,ε is defined
by (7.36), we have

Qk,ε = Qk,ε + (k − k)P1,ε, for all k ≥ k. (7.41)

However, by boundedness of Qk,ε, there exists k̃ ≥ k such that Qk,ε ⊆ k̃P1,ε, from
which we deduce that

Qk,ε ⊆ (k + k̃ − k)P1,ε, for all k ≥ k. (7.42)

7.4.3 The limit motion

The following characterization of the limit motion holds.
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Theorem 7.4.7 (limit motion). Let α, γ be as in (7.5) and such that (7.26) be
satisfied. Then we have two cases:
(a) let Eεk = EIk,ε be as in (i) of Proposition 7.4.4 and F εk = Pk,ε = conv(Ik,ε),
Fε(t) = Pbt/τc,ε, t ≥ 0. Then, for all fixed t, the Kuratowsky limit of the family Fε(t)
as ε→ 0 is a polygon F (t) given by

F (t) = 1
γ
tF1 (7.43)

where F1 = 1
εconv(I1,ε), I1,ε defined by (7.27).

(b) let Eεk = EIk,ε be as in (ii) of Proposition 7.4.4 and Gεk = Qk,ε = conv(Ik,ε),
Gε(t) = Qbt/τc,ε, t ≥ 0. Then, for all fixed t, the Kuratowsky limit of the family
Gε(t) as ε→ 0 is a polygon G(t) satisfying the inclusion

G(t) ⊆ F (t), (7.44)

where F (t) is the motion defined by (7.43).

Proof. (a) By Remark 7.4.6, we have

F εk = kεF1. (7.45)

We define
Fε(t) = F εbt/γεc =

⌊
t

γε

⌋
εF1, (7.46)

which converges in the Kuratowski sense, as ε→ 0, to F (t) = 1
γ tF1.

(b) Again by Remark 7.4.6, we have

Gε(t) = Gεbt/τc ⊆
(⌊

t

γε

⌋
+ k̃ − k

)
εF1, (7.47)

from which passing to the limit as ε→ 0 in the Kuratowski sense we deduce that

G(t) ⊆ F (t). (7.48)

Remark 7.4.8. As a trivial remark, we note that the motion in case (b) of Proposi-
tion 7.4.7 is slower than the motion obtained in case (a).

7.5 Some examples of nucleation

In this section we give some examples of nucleation for particular choices of the
discrete distance dεϕ. More precisely, we characterize explicitly the discrete and the
limit motion showing their dependence on the chosen metric.
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7.5.1 The `1-distance
We consider dεϕ(x, y) = dε1(x, y) defined as in (7.19) with dϕ(x, y) = ‖x− y‖1.
Remark 7.5.1 (pinning threshold). The minimal configuration is pictured in
Fig. 7.8. The corresponding variation of the energy with respect to the initial set
Qε is given by

−12ε+ 5α
γ
ε,

which is negative if and only if
5
12 ≤

γ

α
. (7.49)

We assume that (7.49) is verified and that 4γ
α 6∈ N, otherwise we do not have

uniqueness in the choice of the minimizers. To simplify the notation, we put
Nα,γ =

⌊
4γ
α

⌋
. We then have two cases.

(a) if Nα,γ is even, then Eε1 ∈ Aεe. In this case, I1,ε is given by

I1,ε =
{
i ∈ εZ2

e : ‖i‖1 ≤ Nα,γε
}
, (7.50)

and for k ≥ 1,
Ik,ε = I1,ε[k] =

{
i ∈ εZ2

e : ‖i‖1 ≤ Nα,γkε
}
. (7.51)

Eε1

Figure 7.7. The set Eε1 for 1
2 <

γ
α <

3
4 .

(b) if Nα,γ is odd, then Eε1 ∈ Aεo. The set of its centers is given by

I1,ε =
{
i ∈ εZ2

o : ‖i‖1 ≤ Nα,γε
}
. (7.52)

A direct computation shows that

Ik,ε = I1,ε[k] =
{{
i ∈ εZ2

e : ‖i‖1 ≤ Nα,γkε
}

if k is even
{
i ∈ εZ2

o : ‖i‖1 ≤ Nα,γkε
}

if k is odd.
(7.53)

Now we compute explicitly the variation of the energy to pass from Eεk to Eεk+1, k
odd.
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Eε1

Figure 7.8. The set Eε1 for 5
12 <

γ
α <

1
2 .

Note that

|Ik,ε| =
∑
{4j : j = 1, . . . , Nα,γk, j odd} = N2

α,γk
2 + 2Nα,γk + 1, (7.54)

while

|Ik+1,ε| =
∑
{4j : j = 2, . . . , Nα,γ(k + 1), j even} = N2

α,γ(k + 1)2 + 2Nα,γ(k + 1).
(7.55)

The variation of the perimeter term is then

− 4(|Ik+1,ε| − |Ik,ε|) = −4[(2k + 1)N2
α,γ + 2Nα,γ − 1], (7.56)

while the variation of the bulk term is
α

γ

(
|Ik,ε|+N2

α,γk
2 +

(
N3
α,γ + 2N2

α,γ +Nα,γ

)
k + 2

3N
3
α,γ + 2N2

α,γ + 4
3Nα,γ + 2

)
,

(7.57)
that is,

α

γ

(
2N2

α,γk
2 +

(
N3
α,γ + 2N2

α,γ + 3Nα,γ

)
k + 2

3N
3
α,γ + 2N2

α,γ + 4
3Nα,γ + 3

)
. (7.58)

The total balance, given by adding (7.56) and (7.58), is then positive for k large.
The limit motion is characterized as follows (see Theorem 7.4.7).

Theorem 7.5.2. Let Fε(t) be defined as in (a) of Theorem 7.4.7. Then, for all fixed
t, the Kuratowsky limit of the family Fε(t) as ε→ 0 is a rhombus F (t) of centre 0
and side length 1

γ

√
2
⌊4γ
α

⌋
t.

7.5.2 An example of asymmetric distance
We now give an example where the limit set is of dimension d− 1; more precisely,
a linearly growing segment. For this, we assume that d = 2 and consider the
(sufficiently) asymmetric norm

ϕε(i) =
√

33
8 (i21 + i22)− 31

4 i1i2, i ∈ εZ2. (7.59)



7.5 Some examples of nucleation 87

We note that ϕε(ε, ε) =
√

2
2 ε <

√
33
8 ε = ϕε(ε, 0) = ϕε(0, ε) and we assume that
√

2
8 ≤

γ

α
<

1
8

√
33
2 . (7.60)

In this case,

I1,ε =
{
i ∈ εZ2 : ϕε(i) < 4γ

α
ε

}
= {(−ε,−ε), (0, 0), (ε, ε)},

and
Ik,ε = I1,ε[k] = {(jε, jε) : j = 0,±1, . . . ,±k}, k ≥ 1. (7.61)

We define Fε(t) = conv(Ibt/γεc,ε), where Eεk = EIk,ε . In Fig. 7.9 some steps of
the discrete evolution are represented.

Eε0 Eε1 Eε2

Figure 7.9. Some steps of the evolution.

The following limit evolution holds.

Proposition 7.5.3 (limit motion). Let α, γ > 0 be such that (7.60) is satisfied.
Then, for all fixed t, the Kuratowsky limit of the family Fε(t) as ε→ 0 is a segment
F (t) such that F (0) = {0} and whose length L(t) satisfies

L(t) = 1
γ

2
√

2t (7.62)

for almost every t ≥ 0.

Proof. We define Lεk = H1(conv(Ik,ε)). We have that

Lεk+1 = Lεk + 2
√

2ε, (7.63)

with initial condition Lε0 = 0. If we define Lε(t) as the linear interpolation in
[kτ, (k + 1)τ ] of the values Lεk, that is

Lε(t) =
Lεk+1 − Lεk

τ
(t− (k + 1)τ) + Lεk+1 = 2

√
2 ε
τ

(t− (k + 1)τ) + Lεk+1, (7.64)

then Lε(t) is an increasing continuos function of t and the sequence is uniformly
Lipschitz on all intervals [T,+∞) such that Lε(T ) ≥ c > 0. Hence, it converges,
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up to a subsequence, as ε→ 0 to an increasing function L(t). It follows that Fε(t)
converges, as ε→ 0, in the Kuratowski sense to a limit segment F (t).

To justify (7.62), we define Lε(t) = Lεbt/γεc, which converges locally uniformly to
L(t) as ε→ 0. We have that

Lε(t) = Lεbt/γεc =
⌊
t

γε

⌋
2
√

2ε,

from which we obtain (7.62) passing to the limit as ε→ 0.
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Appendix A

Variational problems with
percolation: rigid spin systems

In view of the possible definition of variational motion in random media (i.e., with
randomly distributed inclusions) motivated by finding at least an estimate for the
pinning threshold, we describe the results contained in the paper by myself [45]
about random homogenization of energies associated to spin systems with unbounded
interaction coefficients, by using percolation techniques.

A.1 The model problem and the percolation approach
In the context of Variational theories in Materials Science it is often necessary to
model media with fine microstructure and to describe their properties via averaged
effective energies. This is the main goal of Homogenization theory (see e.g. Braides
and Defranceschi [13], Chechkin, Piatnitski and Shamaev [23]). In some cases periodic
microstructure is not sufficient, so that random media have to be considered.

The model problem that we have in mind is that of a crystalline two-dimensional
solid subject to fracture. We suppose that the relevant scale is that of the surface
(fracture) energy so we may neglect the elastic energy of the lattice (this can be taken
separately into account as in the paper by Braides and Piatnitski [16]). In this case,
depending on the applied forces or boundary displacement of the sample, a fracture
may appear, separating two regions where the displacement is constant. In the
Griffith theory of Fracture (see Griffith [32]), the energy necessary for the creation
of a crack is proportional to its area; in a discrete setting this is translated in the
number of atomic bonds that are broken. In our model, at the atomistic level, there
is a random distribution of ‘strong’ unbreakable bonds and ‘weak’ (ferromagnetic)
breakable bonds. This model translates into a rigid spin problem, where the two
values of the spin parametrize the two regions of constant displacement of the crystal.
We note that in this problem the random distribution of rigid or weak bonds is
considered as fixed and as characteristic of the crystalline material, so that we are
interested in almost sure properties of the overall energies when the measure of the
sample is large with respect to the atomic distance.

The way we will describe the overall behavior of this system is by scaling the
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domain lattice by a small parameter ε and introducing the corresponding scaled
energies, and then compute the variational limit (Γ-limit) of such energies, which is
defined on the continuum and it can be considered as an effective energy.

The microscopic energy under examination can be written as
∑

ij

σωij(1− uiuj), (A.1)

where ui ∈ {±1} is a spin variable indexed on the lattice Z2, the sum runs on
nearest-neighbors (i.e. |i− j| = 1) in a given portion Ω ∩ Z2 of Z2, the coefficients
σωij depend on the realization ω of an independent and identically distributed (i.i.d.)
random variable and

σωij =
{

+∞ with probability p

1 with probability 1− p,

with p ∈ [0, 1] fixed and the convention +∞ · 0 = 0. In place of (A.1) we could
consider the energies

−
∑

ij

σωijuiuj , (A.2)

but in this case, just to avoid ambiguities in the sum, σωij = +∞ forces ui = uj and
this gives a constraint for the problem.

In recent papers, Braides and Piatnitski [17, 18] treated the cases of elliptic
random spin energies, that is with equi-bounded strictly positive random coefficients,
and of dilute spin energies, with random coefficients given by

σ̃ωij =
{

1 with probability p

0 with probability 1− p.
In order to describe the behavior as the size of Ω diverges we introduce a scaled

problem, as is customary in the passage from lattice systems to continuous variational
problems, in which, on the contrary, Ω is kept fixed, but scaled energies are defined
as follows. A small parameter ε > 0 is introduced, the lattice is scaled accordingly
to εZ2, and the energies (A.1) are scaled (after multiplying by 2) to

Eωε (u) :=
∑

ij

εσωij(ui − uj)2. (A.3)

Note that uniform states (which are pointwise minimizers of the “integrand”) have
zero energy; moreover, the “surface scaling” ε is driven by the knowledge that for
p = 0 (i.e., for ferromagnetic interactions) the Γ-limit with that scaling is not trivial
(as shown e.g. by Alicandro, Braides and Cicalese [1]). After this scaling, the sum is
taken on nearest neighbors in Ω∩ εZ2, and the normalization allows also to consider
Ω = R2 (in this case the domain of the energy is composed of all u which are constant
outside a bounded set).

The coarse graining of these energies corresponds to a general approach in the
theory of Γ-convergence for lattice system where the discrete functions u = {ui} are
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identified with their piecewise-constant extensions, and the scaled lattice energies
with energies on the continuum whose asymptotic behavior is described by taking
L1-limits in the u variable and applying a mesoscopic homogenization process to
the energies. A general theory for interfacial energies by Ambrosio and Braides [5]
suggests the identification of limit energies with functionals of the form

∫

Ω∩∂{u=1}
ϕ(x, ν) dH1,

with ν the normal to ∂{u = 1}.
Our analysis will be carried out by using results from Percolation theory. Perco-

lation is a model for random media (see Grimmett [33] and Kesten [37]). We are
interested in bond percolation on the square lattice Z2: we view Z2 as a graph with
edges between neighboring vertices, and all edges are, independently of each other,
chosen to be ‘strong’ with probability p and ‘weak’ with probability 1− p. A weak
path is a sequence of consecutive weak edges, a weak cluster is a maximal connected
component of the collection of weak edges. Percolation exhibits a phase transition:
there exists a critical value of probability pc, the percolation threshold, such that if
p < pc then with probability one there exists a unique infinite weak cluster, while if
p > pc then all the weak clusters are finite almost surely. For bond percolation on
Z2, the percolation threshold is given by pc = 1

2 .
Actually, the structure of the Γ-limit of the energies (A.3) depends on probability

through the percolation threshold. Above the percolation threshold the Γ-limit is
+∞ on the functions not identically equal to 1 or -1. Below the percolation threshold,
instead, the coarse graining leads first to showing that indeed we may define a limit
magnetization u taking values in {±1}. This u is obtained as a L1-limit on the scaled
infinite weak cluster, thus neglecting the values ui on nodes i isolated from that
cluster. The surface tension is obtained by optimizing the almost sure contribution
of the interfaces, and showing that it can be expressed as a first-passage percolation
problem, so that the limit is of the form

∫

Ω∩∂{u=1}
λp(ν) dH1. (A.4)

The Γ-lim inf inequality is obtained by a blow-up argument. We perform a construc-
tion based on the Channel property (Theorem A.3.2) which allows to modify the
test sets in order to get a ‘weak’ boundary, avoiding bonds with infinite energy. This
is useful also for the construction of a recovery sequence.

This type of variational percolation results can be linked to the paper by Braides
and Piatnitski [16] where discrete fracture of a membrane is studied and linked
to large deviations for the chemical distance in supercritical Bernoulli percolation.
The value λp(ν) is defined through the asymptotic behavior of the chemical dis-
tance (that is, the distance on the infinite weak cluster) between a pair of points
aligned with ν. The general framework for first-passage percolation and chemical
distance can be found in Grimmett and Kesten [34], Kesten [35]. The result of
this paper is that in the subcritical case, a crack in the crystal may appear fol-
lowing a minimal path on the infinite weak cluster and the microscopical pattern
of the lattice (this fact justifies the anisotropy of the fracture energy (A.4)). In
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the supercritical case, instead, the solid almost surely is rigid and there is no fracture.

Overview of the chapter. In Section A.2 we fix notation and present the setting
of the problem, describing the energies that we will consider. Section A.3 contains
some results from percolation theory necessary for the computations. Section A.4
contains the proof of the main result: in the subcritical regime (that is, for p < pc),
the energies Γ-converge to a deterministic anisotropic perimeter whose density is
obtained by means of an asymptotic first-passage percolation formula related to the
chemical distance on the lattice; in the supercritical regime (that is, for p > pc),
the Γ-limit is identically +∞ on the functions u not identically equal to 1 or -1. In
Section A.5 we show that the homogenization of rigid spin systems is actually a limit
case of the elliptic random homogenization of spin systems; that is, the behavior of
a rigid spin system is approximated by that of an elliptic spin system with one of
the interaction coefficients very large. The proof of this new “continuity” property
of the surface tension (Proposition A.5.5) essentially relies on a percolation result
(Lemma A.5.1).

A.2 Notation and setting of the problem
If A is a measurable subset of R2, we denote its 2-dimensional Lebesgue measure
indifferently by L2(A) or |A|. Hk denotes the k-dimensional Hausdorff measure.
Bρ(x) is the open ball of center x and radius ρ and S1 is the boundary of B1(0). If
ν ∈ S1, Qνρ(x) is the square centered at x, of side length ρ and one side orthogonal
to ν, that is

Qνρ(x) = {y ∈ R2 : |〈y − x, ν〉| ≤ ρ/2, |〈y − x, ν⊥〉| ≤ ρ/2},

where ν⊥ = (−ν2, ν1) denotes the clockwise rotation by π/2 of ν.

We use the notation for bond-percolation problems as in Braides and Piatnit-
ski [16], Section 2.4. In this percolation model, we assign the label “strong” or “weak”
to a bond with probability p and 1− p, respectively, the choice being independent
on distinct bonds.

Denote by Ẑ2 the dual grid of Z2, that is the set of the middle points of the
segments [i, j], i, j ∈ Z2, |i− j| = 1, of the standard integer grid Z2. The notation
i(ẑ), j(ẑ) is used for the endpoints of the segment containing ẑ. We may identify
each point ẑ ∈ Ẑ2 with the corresponding closed segment [i(ẑ), j(ẑ)], so that points
in Ẑ2 are identified with bonds in Z2.

Let (Σ,F ,P) be a probability space, and let {ξẑ, ẑ ∈ Ẑ2} be a family of indepen-
dent identically distributed random variables such that

ξẑ =
{

1 (“strong”) with probability p

0 (“weak”) with probability 1− p,

and p ∈ [0, 1] is fixed. Let ω ∈ Σ be a realization of this i.i.d. random variable in Z2

and introduce the coefficients
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σωẑ =
{

+∞ if ξẑ(ω) = 1
1 otherwise.

We write σωẑ = σωij , after identifying each ẑ with a pair of nearest-neighbors in Z2.
For each ω we consider the energies

Eωε (u) = 1
8
∑

i,j∈Ωε
εσωij(ui − uj)2, (with the convention ∞ · 0 = 0) (A.5)

defined on u : Ωε → {±1}, where we use the notation Ωε = 1
εΩ ∩ Z2 and Ω is an

open subset of R2 with Lipschitz boundary. The factor 8 is a normalization factor
due to the fact that each bond is accounted twice and (ui − uj)2 ∈ {0, 4}.

Each function u : Ωε → {±1} is identified with the piecewise-constant function
(which, with a slight abuse of notation, we also denote by u) such that u(x) = ui on
each coordinate square of center εi and side length ε contained in Ω and 1 otherwise,
no matter what this value is. In this way all u can be considered as functions in
L1(Ω), and more precisely in BV (Ω; {±1}).

The case p = 0 corresponds to a ferromagnetic spin system, which can be
described approximately as ε→ 0 by the anisotropic perimeter energy (see [1])

F0(u) =
∫

∂∗{u=1}∩Ω
‖νu‖1 dH1

defined on u ∈ BV (Ω; {±1}), where ∂∗{u = 1} denotes the measure-theoretical
reduced boundary of the set of finite perimeter {u = 1}, νu its inner normal (see
Section 1.3) and ‖ · ‖1 the `1-norm defined by ‖x‖1 = |x1|+ |x2|, x = (x1, x2).

In this passage from discrete to continuous we identify each function u : Ωε →
{±1} with the set A = ⋃{εi+εQ : i ∈ Ωε : ui = 1} or the function u ∈ BV (Ω; {±1})
given by u = 2χA−1, where Q =

[
−1

2 ,
1
2

)
×
[
−1

2 ,
1
2

)
denotes the coordinate semi-open

unit square in R2 centered at 0.

A.3 Some results from percolation theory
We recall some results from percolation theory (see e.g., Braides and Piatnitski [16],
and Grimmett [33], Kesten [37] for general references on percolation theory).

We introduce a terminology for weak points, that is those points ẑ ∈ Ẑ2 such
that ξẑ = 0. Keeping in mind the identification of ẑ with [i(ẑ), j(ẑ)] stated in the
previous section, we denote the corresponding bond also by ẑ, and we refer to ẑ as a
weak bond or point, indifferently. We say that two weak points ẑ and ẑ′ are adjacent
if the corresponding two segments have an endpoint in common. A sequence of weak
bonds γ = {ẑ1, . . . , ẑk} is said to be a weak path if any two consecutive points of this
sequence are adjacent. In what follows we identify a weak path with the subset of
R2 composed of the union of the corresponding segments; the length of the weak
path γ is the number of its connections, and we denote it by |γ|. A subset A of
Ẑ2 of weak points is said to be connected if for every two points ẑ′, ẑ′′ of A there
exists a weak path as above such that ∀j ∈ {1, 2, . . . , k}, ẑj ∈ A, ẑ1 = ẑ′, ẑk = ẑ′′. A
maximum connected component of adjacent weak points is called a weak cluster.
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A first result deals with the existence of infinite weak clusters and it shows that
there is a critical probability (pc = 1

2 in two dimensions for the square lattice) which
separates two different behaviors of the bond-percolation system.

Theorem A.3.1 (percolation threshold). For any p > pc = 1/2 (supercriti-
cal regime) all the weak clusters are almost surely finite, while for any p < 1/2
(subcritical regime) with probability one there is exactly one infinite weak cluster
Wω.

From now on we will refer toWω simply as the weak cluster. Let ν = (ν1, ν2) ∈ S1

and 0 < δ < 1. We denote by T δν the rectangle

T δν = {x ∈ R2 : |〈x, ν〉| ≤ δ/2, 0 ≤ 〈x, ν⊥〉 ≤ 1}.

A path joining the smaller sides of the rectangle will be called a channel (or left-right
crossing). A weak path with this property will be called a weak channel. The
following result gives a lower bound on the number of weak channels almost surely
crossing sufficiently large rectangles (or squares) in the subcritical regime.

Theorem A.3.2 (Channel property). Let p < 1/2, ω denote a realization and
M > 0. Then there exist constants c(p) > 0 and c1(p) > 0 such that almost surely
for any δ, 0 < δ ≤ 1 there is a number N0 = N0(ω, δ) such that for all N > N0 and
for any T δν and |x0| ≤M the rectangle N(T δν + x0) contains at least c(p)Nδ disjoint
weak channels which connect the smaller sides of the rectangle. Moreover, the length
of each such a channel does not exceed c1(p)N .

A realization ω ∈ Σ is said to be typical if the statement of the Theorem A.3.2
holds for such an ω. Now we introduce some terminology also for strong bonds,
that is those points ẑ ∈ Ẑ2 such that ξẑ = 1. We consider the shifted lattice
Zb = Z2 +

(
1
2 ,

1
2

)
and notice that the set of middle points of its bonds coincides

with Ẑ2. Thus, to each point ẑ ∈ Ẑ2 we can associate the corresponding bond in
Zb. If ẑ is identified with the corresponding segment with endpoints in Zb, then we
may define the notion of adjacent points as for weak bonds. The notions of strong
channel and strong cluster are modified accordingly. For p > 1/2 there is almost
surely a unique infinite strong cluster and the channel property stated above holds
for the strong channels as well.

To simplify the notation, from now on we will denote by x (in place of x̂) a
generic point in Ẑ2. If p < 1/2 and two points x, y ∈ Ẑ2 belong to the weak cluster,
then by definition of cluster there is at least a path γ in the cluster joining x and
y. To describe the metric properties of the weak cluster we introduce a random
distance.

Definition A.3.3 (chemical distance). Let x, y ∈ Ẑ2 and ω be a realization of the
random variable. The chemical distance Dω(x, y) between x and y in the realization
ω is defined as

Dω(x, y) = min
γ
|γ|, (A.6)

where |γ| is the length of the path γ and the minimum is taken on the set of paths
joining x and y and that are weak in the realization ω.
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Remark A.3.4. The chemical distance is defined only if x and y are in the same
cluster; otherwise, by convention, Dω(x, y) = +∞.

When it is finite, the random distance Dω(x, y) is thus the minimal number of
weak bonds needed to link x and y in the realization ω (also x and y are taken into
account), and is thus not smaller than ‖x− y‖1. When p < 1

2 , Dω(0, x) on the weak
cluster can be seen as a travel time between 0 and x in a first-passage percolation
model (see Garet and Marchand [30], Kesten [36]), where the passage times of
the edges are independent identically distributed random variables with common
distribution pδ+∞ + (1− p)δ1. The following Lemma deals with the existence of an
asymptotic time constant in a given direction.

Lemma A.3.5. Assume that 0 ∈ Wω. For any τ ∈ R2 the following limit exists
almost surely and does not depend on ω

λp(τ) = lim
m→+∞

0←→bmτc

1
m
Dω(0, bmτc), (A.7)

where bmτc = (bmτc1, bmτc2), bmτck = bmτkc is the integer part of the k-th
component of mτ and 0←→ bmτc means that 0 and bmτc are linked by a path in
the weak cluster. Moreover, λp defines a norm on R2.

Proof. See Garet and Marchand [29], Corollary 3.3.

The same asymptotic result holds for sequences of points in the weak cluster
‘asymptotically aligned’ with τ , that is xm, ym such that ym − xm = mτ + o(m) as
m → ∞. The proof of this fact relies essentially on the following large deviation
result for the chemical distance (see Garet and Marchand [30]):

Theorem A.3.6. Let p < 1/2 and λp be the norm on R2 given by Lemma A.3.5.
Then

∀ε > 0, lim sup
m→+∞

log P[0←→ bmτc, Dω(0, bmτc)/λp(τ) /∈ (1− ε, 1 + ε)]
m

< 0.

(A.8)

Proposition A.3.7. Let (xm), (ym) be two sequences of points in Ẑ2 contained in
the weak cluster such that

sup
m

{ |xm|
m

+ |ym|
m

}
≤ C < +∞ and ym − xm = mτ + o(m), (A.9)

where τ ∈ R2, C is a positive constant and o(m)/m → 0 as m → +∞. Then the
following limit exists almost surely and does not depend on ω

λp(τ) = lim
m→+∞

1
m
Dω(xm, ym). (A.10)
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Proof. We denote by λ̃p(τ) the right hand side of equation (A.10). We prove (A.10)
in the case that ym = bmx+mτc and xm = bmxc, x 6= 0. The stationarity of the
i.i.d. Bernoulli process ensures that the probability law of Dω(bmxc, bmx+ mτc)
is the same of Dω(0, bmτc).

Therefore, by (A.8) we have that

∀ε > 0, lim sup
m→+∞

log P
[
bmxc ←→ bmx+mτc, Dω(bmxc,bmx+mτc)

λp(τ) /∈ (1− ε, 1 + ε)
]

m
< 0.

By Borel-Cantelli Lemma we obtain that ∀ε > 0,

lim sup
m→+∞

bmxc←→bmx+mτc

1
m
Dω(bmxc, bmx+mτc) ∈ [(1− ε)λp(τ), (1 + ε)λp(τ)]

P-almost surely, that is,

lim
m→+∞

bmxc←→bmx+mτc

1
m
Dω(bmxc, bmx+mτc) = λp(τ)

P-almost surely. By a compactness argument, we have that λ̃p(τ) ≤ λp(τ). Indeed,
if xm, ym are as in (A.9), then there exist a subsequence mj → +∞ and x̃, ỹ such
that

xmj
mj
→ x̃,

ymj
mj
→ ỹ, with ỹ = x̃+ τ . Therefore, in the computation of the limit

in (A.10) we can choose xm = bmx̃c and ym = bmx̃+mτc.
Now, if we consider two points xm, ym on the weak cluster satisfying (A.9), we

can find x such that xm and bmxc, ym and bmx+mτc almost surely are linked by
weak paths whose length is at most o(m). Hence,

Dω(bmxc, bmx+mτc) ≤ Dω(xm, ym) + o(m)

and from this it follows that λp(τ) ≤ λ̃p(τ).

Remark A.3.8. If ν ∈ R2 is a unit vector and τ = ν⊥, then by symmetry λp(ν) =
λp(τ).

A.4 The rigid percolation theorem
We first remark that the energies Eωε defined by (A.5) are equi-coercive with respect
to the strong L1-convergence. The proof is immediate as in the elliptic case, while
for dilute spin energies this result requires a more difficult argument (see Braides
and Piatnitski [18], Section 3.1).

Lemma A.4.1 (equi-coerciveness of Eωε ). Let Ω be a bounded Lipschitz open
set. For any ω in a set Σ̃ ⊆ Σ with P(Σ̃) = 1, if (uεk) is a sequence such that
supk Eωεk(uεk) < +∞, then there exists a function u ∈ BV (Ω; {±1}) and a subse-
quence, still denoted by (uεk), such that uεk → u in L1(Ω).
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Proof. Equi-boundedness of the energies forces the coefficients σωij to be equal to 1
almost surely if (uεk)i 6= (uεk)j , so that the equi-coerciveness follows from that of
ferromagnetic energies (see e.g. Braides and Piatnitski [17], Section 2).

The main result is the following.

Theorem A.4.2 (Rigid percolation theorem). Let Ω be a bounded Lipschitz
open set and Eωε be the energies defined by (A.5). Then we have two regimes:

(a) If p < 1/2 (subcritical regime), then P-almost surely there exists the Γ-limit of
Eωε with respect to the L1(Ω)-convergence on BV (Ω; {±1}), it is deterministic,
and is given by

Fp(u) =
∫

Ω∩∂∗{u=1}
λp(ν) dH1, (A.11)

for u ∈ BV (Ω; {±1}). In (A.11) λp is defined by (A.7), (A.10) and ν is the
unit normal vector at ∂∗{u = 1}.

(b) If p > 1/2 (supercritical regime), then P-almost surely there exists the Γ-limit
of Eωε and it coincides with F (u) ≡ +∞ on the whole L1(Ω) except for u
constant identically ±1.

Proof. (a) We begin with the proof of the lower bound (liminf inequality), and fix
a typical realization ω and a family uε → u in L1(Ω) with u ∈ BV (Ω; {±1}) such
that lim inf

ε→0
Eωε (uε) <∞. We can assume, up to a subsequence, that such a liminf is

actually a limit.
For all ε we consider the set in the dual lattice εẐ2 of εZ2 defined by

Sε =
{
εk : k = i+ j

2 , i, j ∈ Ωε, |i− j| = 1, uε(εi) = 1, uε(εj) = −1
}

and the measure
µε =

∑

εk∈Sε
εσωk δεk.

Note that Eωε (uε) = µε(Ω), so that the family of measures {µε} is equi-bounded.
Hence, up to further subsequences, we can assume that µε ⇀∗ µ, where µ is a finite
measure.

Let A = {u = 1} and Aε = {uε = 1}. With fixed h ∈ N, we consider the
collection Qh of squares Qνρ(x) such that the following conditions are satisfied:

(i) x ∈ ∂∗A and ν = ν(x);

(ii)
∣∣∣(Qνρ(x) ∩A)4Πν(x)

∣∣∣ ≤ 1
hρ

2, where Πν(x) = {y ∈ R2 : 〈y − x, ν〉 ≥ 0};

(iii)
∣∣∣∣∣
µ(Qνρ(x))

ρ
− dµ

dH1 ∂∗A
(x)
∣∣∣∣∣ ≤

1
h
;
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(iv)
∣∣∣∣∣
1
ρ

∫

Qνρ(x)∩∂∗A
λp(ν(y)) dH1(y)− λp(ν(x))

∣∣∣∣∣ ≤
1
h
;

(v) µ(Qνρ(x)) = µ(Qνρ(x)).

For fixed x ∈ ∂∗A and for ρ small enough (ii) is satisfied by definition of reduced
boundary (see Section 1.3), (iii) follows from the Besicovitch Derivation Theorem
provided that

dµ

dH1 ∂∗A
(x) < +∞;

(iv) holds by the same reason (x is a Lebesgue point of λp), and (v) is satisfied for
almost all ρ > 0 since µ is a finite measure (and so µ(∂Qνρ(x)) = 0).

We deduce that Qh is a fine covering of the set

∂∗Aµ =
{
x ∈ ∂∗A : dµ

dH1 ∂∗A
(x) < +∞

}
,

so that (by Morse’s lemma, see Morse [40]) there exists a countable family of disjoint
closed squares {Qνjρj (xj)} still covering ∂∗Aµ. Note that

H1(∂∗A\∂∗Aµ) = 0

because of the existence of the derivative of the measure µ with respect to H1 ∂∗A.
We now fix one of such squares Qνρ(x). We would like to use the sets 1

εAε as
test sets to estimate from below the part of µ concentrated on ∂∗A. Since these sets
could not have correct boundary data, we modify them on the boundary. As in the
case of spin energies with bounded coefficients (see Braides and Piatnitski [17, 18]),
we could truncate the sets with the hyperplane ∂Πν = {〈y − x, ν〉 = 0}, but it may
have infinite energy (possibly containing some strong bond), so we approximate it
with a weak path γω.

We subdivide the construction of test sets into steps.
Step 1: Construction of the weak path γω. Let 0 < δ ≤ 1. We cover the set
∂Πν(x) ∩Qνρ(x) by considering the points

xj = x+ jρδν⊥, |j| = 0, 1, . . . ,
⌊ 1

2δ

⌋
+ 1, (A.12)

and the rectangles Rj centered at xj , with side-lengths ρδ and 2ρδ and the small sides
parallel to ν. The rectangles Rj and Rj+1 have in common a square of side-length
ρδ and we denote it by Qjρδ. From the channel property (Theorem A.3.2) for ε
small enough we can find a weak channel γj (the highest) in Rj and a weak channel
γj+1 (the lowest) in Rj+1 whose length is at most 2c1(p)ρδ/ε. Applying the same
property to Qjρδ we can find a weak channel γj,⊥ connecting the two opposite sides of
Qjρδ orthogonal to ν, whose length is at most c2(p)ρδ/ε. The union γj ∪ γj,⊥ ∪ γj+1

contains a weak path γ̃j,j+1 connecting the smaller sides of the rectangle Rj ∪Rj+1
(see Fig. A.1).
We can repeat this construction for Rj+1, Rj+2 and Qj+1

ρδ choosing γj+1, the highest
weak channel γj+2 in Rj+2 and γj+1,⊥ in Qj+1

ρδ to define the weak path γ̃j+1,j+2. If
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ν

γj

γj+1

γj,⊥

∂Πν(x)
xj xj+1

Figure A.1. Construction of γ̃j,j+1.

we repeat iteratively this procedure for any couple of rectangles Rj , Rj+1, j as in
(A.12), the desired γω will be obtained by gluing all the paths γ̃j,j+1.
Step 2: Estimates. Note that γω disconnects Qνρ(x) and we denote by Q+

ω the
connected component of Qνρ(x) containing Qνρ(x) ∩ {〈y − x, ν〉 ≥ ρδ/2}. We have
that ∣∣∣(Qνρ(x) ∩Πν(x))4Q+

ω )
∣∣∣ ≤ ρ2δ. (A.13)

By (ii) and (A.13), choosing ε small enough and using the fact that |Aε4A| → 0,
we obtain

∣∣∣(Qνρ(x) ∩Aε)4Q+
ω

∣∣∣ ≤
∣∣∣(Qνρ(x) ∩A)4Πν(x)

∣∣∣+
∣∣∣Qνρ(x) ∩ (Aε4A)

∣∣∣+

+
∣∣∣(Qνρ(x) ∩Πν(x))4Q+

ω )
∣∣∣ ≤ ρ2

(2
h

+ δ

)
.

(A.14)

For simplicity of notation we can assume that x = 0 and ν = e2. With fixed η < 1/2,
from (A.14) it follows that

A :=
∣∣∣∣
(
(Qνρ(x) ∩Aε)4Q+

ω

)
∩
{
y : ρη2 ≤ dist(y, ∂Qνρ(x)) ≤ ρη

}∣∣∣∣ ≤ ρ2
(2
h

+ δ

)
.

(A.15)

Step 3: Construction of an optimal weak circuit. We subdivide the annulus
between the two concentric squares (with side-lengths ρ(1− η) and ρ(1− 2η) respec-
tively) in four rectangles Ri(i = 1, . . . , 4) with side-lengths ρ(1− η) and ρη/2 (they
have in common, two by two, a little square of side-length ρη/2). From the channel
property (Theorem A.3.2), for ε small enough in each of these rectangles we can
find at least c(p)ρη/2ε disjoint weak channels Ki connecting the smaller sides of the
rectangle, and with length at most c1(p)ρ(1− η)/ε. Since A ≥∑Ki(|Ki| ∩ A), from
the mean value theorem in each rectangle Ri there exists a weak channel K̃i such
that

|K̃i ∩ A| ≤
A

#(Ki)
≤ ρ2(2/h+ δ)

4c(p)ρη/2ε = ρε

2c(p)η

(2
h

+ δ

)
.

Therefore, considering the weak circuit K contained in
4⋃

i=1
K̃i, we have that

H1
((

(Qνρ(x) ∩Aε)4Q+
ω

)
∩K

)
≤ 2ρε
c(p)η

(2
h

+ δ

)
. (A.16)
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∂Aε

∂A
γω

ρ

∂Πνν

ρη
2

K̃i

Qνρ

Figure A.2. Construction of a test set.

Step 4: Definition of the test sets. Now we define the subset A1
ε ⊂ Qνρ(x) as

(see Fig. A.2)

A1
ε =

{
Aε, in the set containing 0 and whose boundary is K
Q+
ω , otherwise.

(A.17)

Note that

H1
(
(∂A1

ε\∂Aε) ∩Qνρ(x)
)
≤ 2ρε
c(p)η

(2
h

+ δ

)
+ c̃(p)ρδ/2ε. (A.18)

We can find points xε, yε ∈ Ẑ2 such that εxε, εyε ∈ ∂A1
ε and |εxε + ρ

2e1| ≤ 2ε, |εyε −
ρ
2e1| ≤ 2ε, and a weak path Kε in 1

ε (∂A1
ε ∩Qνρ(x)) ∩ Ẑ2 connecting xε at yε. By the

estimate (A.18) we have

µε(Qνρ(x)) ≥ ε|Kε| −
(

2ρε2

c(p)η

(2
h

+ δ

)
+ c̃(p)ρδ/2

)

≥ εDω(xε, yε)−
(

2ρε2

c(p)η

(2
h

+ δ

)
+ c̃(p)ρδ/2

)
.

Since |(yε − xε) − ρ
εe1| ≤ 4, choosing m = ρ/ε in the definition of λp (equation

(A.10)) and for fixed η, δ and h we obtain

lim inf
ε→0

µε(Qνρ(x)) ≥ ρλp(e1)− c̃(p)ρδ/2 = ρλp(e2)− c̃(p)ρδ/2 = ρλp(ν)− c̃(p)ρδ/2.

By the (iv) above we then have

lim inf
ε→0

µε(Qνρ(x)) ≥
∫

Qνρ(x)∩∂∗A
λp(ν(y)) dH1(y)−

(
ρ

h
+ c̃(p)ρ

2δ

2

)
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and finally

lim inf
ε→0

µε(Ω) ≥
∑

j

lim inf
ε→0

µε(Q
νj
ρj (xj) ∩ ∂∗A)

≥
∑

j

∫

Q
νj
ρj

(xj)∩∂∗A
λp(ν(y)) dH1(y)− C

(
ρ

h
+ c̃(p)ρ

2δ

2

)

=
∫

Ω∩∂∗A
λp(ν(y)) dH1(y)− C

(
ρ

h
+ c̃(p)ρ

2δ

2

)
;

the lim inf inequality then follows by the arbitrariness of ρ, δ and h.

The construction of a recovery sequence giving the upper bound (limsup inequal-
ity) can be performed just for polyhedral sets, since they are dense in energy in the
class of sets of finite perimeter. We only give the construction when the set is of the
form Πν(x) ∩ Ω since it is easily generalized to each face of a polyhedral boundary.
We can localize the construction to the faces of a polyhedral set because the limit
energy does not concentrate at its corners: this follows by the chosen scaling.
It is no restriction to suppose that Πν(x) = Πν(0) =: Πν , that ν is a rational direction
(that is, there exists a positive real number S such that Sν ∈ Z2), and that

H1(∂Ω ∩ ∂Πν) = 0, (A.19)

since also with these restrictions we obtain a dense class of sets. We will compute
the Γ-limsup for u = 2χΠν − 1.

Let M > 0 be large enough so that Ω ⊂⊂ QνM (0), we set τ = ν⊥ and we fix
η > 0 such that η < M/2. There exists a path γε in the weak cluster of the dual
lattice Ẑ2 contained in the stripe {x : |〈x, ν〉| ≤ η/ε} and with the two endpoints
lying at distance at most 2ε from the two sides {x : |〈x, τ〉| = ±M/2}. The existence
of γε can be proved with the same construction performed for γω in the proof of the
Γ-lim inf inequality. After identifying γε with a curve in R2, for ε small enough it
disconnects 1

εΩ. We can therefore consider Ω+
ε , the maximal connected component

1
εΩ\γε containing Ω ∪ {〈x, ν〉 ≥ η/ε}, and define

uηε(εi) =
{

1 if i ∈ Z2 ∩ Ω+
ε

−1 otherwise.

Note that
Eωε (uηε) ≤ ε|γε| ≤ λp(τ)H1(∂Πν ∩ Ω) +O(η).

By a diagonal argument, for any fixed η > 0 we can construct a subsequence (still
denoted by uηε) converging in L1(Ω) as ε→ 0 to uη, where uη is a function such that
‖uη − u‖L1(Ω) → 0 as η → 0. We have

lim sup
ε→0+

Eωε (uηε) ≤ λp(τ)H1(∂Πν ∩ Ω) +O(η), ∀η > 0,

and letting η → 0 we obtain

Γ- lim sup
ε→0+

Eωε (u) ≤ λp(τ)H1(∂Πν ∩ Ω) = λp(ν)H1(∂Πν ∩ Ω).
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Eventually, we obtain the desired inequality recalling thatH1(∂Πν∩Ω̄) = H1(∂Πν∩Ω)
by (A.19).

(b) It will suffice to show that E′(u) := Γ- lim inf
ε→0

Eωε (u) = +∞ if u 6= −1 or u 6= 1
identically. We reason by contradiction and assume that there exists a non-constant
function u ∈ BV (Ω; {±1}) such that E′(u) < +∞. Fixed a point x ∈ S(u) and
a square Qνρ(x) of side-length ρ > 0 sufficiently large, by channel property (see
Theorem A.3.2 and subsequent remarks) almost surely there exists (at least) a strong
channel connecting two opposite sides of the square. Therefore, if uε is a sequence
converging to u, there must be at least one pair i, j of nearest neighbors in the
strong cluster such that (uε)i 6= (uε)j so that Eωε (uε) = +∞. This implies that
E′(u) = +∞.

A.5 A continuity result
The number λp(ν) defined by equation (A.10) describes the average distance on the
weak cluster in the direction ν (and, by Remark A.3.8, also in the orthogonal direc-
tion). Its value cannot be decreased by using ‘small portions’ of strong connections,
as expressed by the following result.

Lemma A.5.1. Let η > 0 be fixed. Then there are δ ∈ (0, 1) and ρ > 0 such that
almost surely there exists N0 such that for all N ≥ N0 and all channels of length
L connecting the two shorter sides of NT δν and with L < (λp(ν) − η)N we have
#(strong links) ≥ ρ(η)N .

The proof of this technical Lemma is contained in Braides and Piatnitski [16]
and it is used to prove that, in the subcritical case, the overall behavior of a discrete
membrane with randomly distributed defects is characterized by a fracture type
energy, and the surface interaction is described by the asymptotical chemical distance
λp.

We would like to exploit Lemma A.5.1 to prove that an elliptic random spin
system with coefficients 1 and β > 0, in the limit as β goes to +∞ (i.e. for β very
large), has the same behavior of a rigid system (that is, with β = +∞). More
precisely, if ϕp(β, ν) is the surface tension coming from the elliptic problem, then

lim
β→+∞

ϕp(β, ν) = λp(ν) = ϕp(+∞, ν).

The expression λp(ν) = ϕp(+∞, ν) means that λp is the surface tension computed
for β = +∞. Such a continuity result seems to be interesting, because in general it
does not hold outside this random setting, as shown by the following simple example.

Example A.5.2. Consider the energies

F βε (u) =
∑

ij

εcβij(ui − uj)2, (A.20)

where
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cβij =
{
β if i1 = j1 = 0
1 otherwise.

(A.21)

It is well known from the theory of homogenization of elliptic spin systems that
there exists the Γ-limit

Γ- lim
ε→0

F βε (u) = F β(u) =
∫

Ω∩∂∗{u=1}
ϕβ(ν) dH1 =

∫

Ω∩∂∗{u=1}
‖ν‖1 dH1; (A.22)

note that the sequences {cβij} and {ϕβ} (and consequently {F β}) are (trivially)
increasing in β and we can put c∞ij = sup

β>0
cβij , ϕ̃ = sup

β>0
ϕβ and

F̃ (u) = sup
β>0

F β(u) =
∫

Ω∩∂∗{u=1}
ϕ̃(ν) dH1 =

∫

Ω∩∂∗{u=1}
‖ν‖1 dH1.

Now if we consider the energies

F∞ε (u) =
∑

ij

εc∞ij (ui − uj)2, (A.23)

where

c∞ij =
{

+∞ if i1 = j1 = 0
1 otherwise.

(A.24)

(with the usual convention +∞ · 0 = 0) then we have that

F∞(u) = Γ- lim
ε→0

F∞ε (u) =
∫

Ω∩∂∗{u=1}∩{x1>0}
‖ν‖1 dH1+

∫

Ω∩∂∗{u=1}∩{x1<0}
‖ν‖1 dH1.

Therefore, F̃ (u) 6= F∞(u).

We recall the main results about homogenization of random spin systems (see
Braides and Piatnitski [17]). Given a probability space (Σ,F ,P), we consider an
ergodic stationary discrete random process σωẑ , ẑ ∈ Ẑ2.
We are going to compute the Γ-limit of the energies

Eωε (u) :=
∑

ij

εσωij(ui − uj)2

(with the usual identification σωij = σωẑ ). For any x, y ∈ Z2 and ω ∈ Σ we define

ψω(x, y) = min
{

K∑

n=1
σωinin−1 : i0 = x, iK = y,K ∈ N

}
, (A.25)

where the minimum is taken over all paths joining x and y. The following statement
holds (we can compare it with Lemma A.3.5).
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Proposition A.5.3. For any τ ∈ R2 the following limit exists P-almost surely and
does not depend on ω

ψ0(τ) = lim
m

1
m
ψω(0, bmτc), (A.26)

where bmτck = bmτkc is the integer part of the k-th component of mτ .
For any x ∈ R2 and τ ∈ R2 the limit relation

lim
m→+∞

1
m
ψω(bmxc, bmx+mτc) = ψ0(τ) (A.27)

holds P-almost surely.

At this point we can recall the main convergence theorem.

Theorem A.5.4 (elliptic random homogenization). Let σωij satisfy the hypoth-
esis of ellipticity 0 < α ≤ σωij ≤ β < +∞ for all i, j. Then the Γ- lim

ε→0
Eωε exists

P-almost surely, is deterministic and is given by

Fω(u) =
∫

Ω∩∂∗{u=1}
ϕp(ν) dH1. (A.28)

where
ϕp(ν) = ψ0(ν⊥). (A.29)

A particular case of the preceding random problem is obtained by considering
the i.i.d. Bernoulli bond-percolation model with coefficients

σωẑ =
{
β > 0 with probability p

1 with probability 1− p.
(A.30)

With this choice of coefficients we find that the function ϕp of Theorem A.5.4 now
depends also on β, ϕp = ϕp,β. We will prove that the case of rigid spin is the limit
as β → +∞ of the problem defined by coefficients (A.30), in the sense expressed by
the following theorem.

Theorem A.5.5 (continuity). Let ϕp,β be defined by Theorem A.5.4 when the
coefficients σωẑ are given by (A.30), and λp be defined by Proposition A.3.7. Then,
for all ν ∈ R2, we have two cases:

(i) If p < 1/2, then lim
β→+∞

ϕp,β(ν) = λp(ν);

(ii) If p > 1/2, then lim
β→+∞

ϕp,β(ν) = +∞.

Proof. (i) Let p < 1/2. First remark that, with fixed ν ∈ R2 and for all β > 0, we
have

ϕp,β(ν) ≤ λp(ν),
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because the minimum in the definition of λp (see equation (A.3.5)) is taken in a
smaller set of paths.
Therefore, λp being independent of β,

lim
β→+∞

ϕp,β(ν) ≤ λp(ν).

Now suppose that there exists η > 0 such that lim
β→+∞

ϕp,β(ν) ≤ λp(ν)− η; we would
like to show that this assumption leads to a contradiction.
First of all, ϕp,β being increasing in β, we have that

ϕp,β(ν) ≤ λp(ν)− η, ∀β > 0. (A.31)

With fixed β, by (A.27) there exists n̄ ∈ N almost surely such that, for all n ≥ n̄

ψω(bnxc, bnx+ nτc) ≤ (λp(ν)− η′)n, (A.32)

where τ = ν⊥, η′ is a constant and x ∈ R2. Suppose that ψω(bnxc, bnx + nτc) =
K∑

m=1
σ̃ωimim−1 with i0 = bnxc, iK = bnx+ nτc and let γ be the corresponding path.

By means of Lemma A.5.1, we can find δ ∈ (0, 1), a constant C = C(η′) > 0 such
that if n′ ≥ n is such that the channel γ connects the shorter sides of n′T δν , then
from the fact that

|γ| ≤
K∑

m=1
σ̃ωimim−1 ≤ (λp(ν)− η′)n′, (A.33)

it follows that
#(strong links in γ) ≥ Cn′. (A.34)

Now

βCn′ ≤
K∑

m=0
σ̃ωimim−1 ≤ (λp(ν)− η′)n′, (A.35)

and letting β → +∞ we obtain a contradiction.
(ii) If p > 1/2, we can reason as in Theorem A.4.2(b), because the percentage of β
is fixed by channel property. In particular, for large m, the paths linking bmxc and
bmx+mτc in equations (A.25), (A.26) and (A.27) contain at least a β-bond.
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