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Chapter 1

General presentation:

scaling limits in Kinetic Theory

1.1 Introduction

The purpose of Kinetic Theory is to describe systems made of a large number of components,

which we will suppose in the sequel to be identical particles. The di�culty in the mathematical

study of these systems relies in the huge number of particles; however the key point in kinetic

theory is that we are not interested in the detailed analysis of the motion of each particle,

but in the collective behavior of the system. Kinetic Theory studies methods to simplify the

model in order to obtain a reduced picture preserving all the interesting physical informations

of the many particle system. These methodologies make use of the limiting procedure from

microscopic description of a many particle system based on the fundamental laws of mechanics

(classical or quantum) to a kinetic picture.

To handle this problem, the idea is to use the statistical description of the many particle

system (for example a gas or a plasma) given by a distribution function f in the particle

phase space; more precisely the kinetic model associated to a given system in R3 is obtained

by means of the evolution equation of a nonnegative function f(t, x, v) defined on R+⇥R3⇥R3.

The variables t, x and v represent respectively time, position and velocity. The time evolution

of f is a priori described by the Liouville equation and its analysis should retain all the features

observed at a macroscopic level. This is possible thanks to the claim that starting from a

system at time t = 0, it is possible to recover its evolution using the law of classical and

quantum mechanics. In this thesis we will focus only on the classical dynamics. The idea

relies on the assumption that qualitative changes in the laws of mechanics are not necessary

to understand the reason why the collective behavior of the system seems to contradict them

(here we refer to the famous irreversibility paradox1). This controversial problem was largely

1Here we refer to the Loschmidt’s paradox, which we briefly report here for sake of completeness. Let us

consider the evolution of a gas in the time interval [0, T ] and imagine that at time T we are able to reverse all
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studied in the last two centuries. We will emphasize this concept in the following, in particular

underlining that the choice of initial data is a crucial point since in it the main probabilistic

tool is hidden and it justifies somehow the apparent deviations (and contradiction) from

classical dynamics.

We observe that at a fixed time t, the measure f(t, x, v) dx dv represents the probability

distribution of particles. At this point the common sense suggests that in a bounded subset

of the physical space the integral of f is finite (see for instance [L-75]), so that the minimal

assumption on the density function is that f(t, ·, ·) 2 L1
loc(R3; L1(R3)) for all t 2 R+. Here

we are assuming that the system is made of so many particles that it can be represented as a

continuum and this is the reason why the distribution function stands for an approximation

of the true density on a macroscopic scale as well as it constitutes a lack of information in

the knowledge of the true positions of particles.

If the collisions between particles in a gas were negligible, each particle would represent a

closed subsystem and the time evolution of the distribution function would be

df

dt
= 0 , (1.1.1)

where d/dt stands for the material derivative, i.e.

@tf + v · rxf = 0 ,

if there are no external forces. This is the case of free motion.

If a force appears (namely F = �rx�, where � is the internal interaction potential), then

the evolution equation (1.1.1) becomes

@tf + v · rxf + F · rvf = 0 . (1.1.2)

This is the case of the Vlasov equation, representing a collision-less plasma, where the force

F is self induced, depending on the interaction potential and on the solution itself:

F (t, x) = (�rx� ⇤ ⇢)(t, x)

being ⇢(t, x) =
R

dv f(t, x, v) the spatial density.

If we take into account the collisions, the Liouville equation (1.1.1) changes. It is natural to

introduce an operator Q(f, f), called the collision integral, describing the speed of variation

of the distribution function after collisions, so that

@tf + v · rxf = Q(f, f) . (1.1.3)

Equation (1.1.3) is a prototype of what is generally called kinetic equation.

velocities of the particles composing the gas. From a microscopic point of view we should be able to recover

the same evolution backwards in time and to reach the initial configuration, but from a macroscopic point of

view it is not so because of the entropy dissipation (see [CIP] or [V-02]).
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The basic equation of kinetic theory is the celebrated Boltzmann equation (or kinetic equation

for dilute gases):

@tf + v · rxf =

Z
dw

Z

S2
�

d⌫B(v � w;!)[f(x, v0)f(x, w0) � f(x, v)f(x, w)] (1.1.4)

with B(v � w;!) a suitable function of the relative velocities (v � w) and !, the unit vector

bisecting the angle between the incoming and the outgoing relative velocities. It is a non-

linear integro-di↵erential equation, describing the time evolution of the density of a dilute

(monoatomic) gas. It was the first kinetic equation in the history of statistical mechanics

and it was established by L. Boltzmann in 1872 ([B]). Equation (1.1.4) has been largely

investigated because of its interest both for fundamental theory and practical applications.

The remarkable fact is that, in the attempt to conciliate the Newton laws with the second

principle of thermodynamics, Boltzmann was able to construct an equation expressing mass,

momentum and energy conservations, but also the trend to thermal equilibrium. In partic-

ular, if f is a solution to the Boltzmann equation (1.1.4), the following conservations laws

hold:

d

dt

Z

R3

dx

Z

R3

dv f(t, x, v) = 0 , conservation of the total mass;

d

dt

Z

R3

dx

Z

R3

dv vi f(t, x, v) = 0 , i = 1, 2, 3 conservation of the total momentum;

d

dt

Z

R3

dx

Z

R3

dv
|v|2
2

f(t, x, v) = 0 conservation of the total energy.

(1.1.5)

Equations (1.1.5) are easily checked by using the explicit form of the collision operator and

standard manipulations.

Moreover, we introduce the H–functional, which represents the entropy of the system (with

the opposite sign with respect to the physical entropy):

H(f(t, ·, ·)) =

Z

R3

dx

Z

R3

dv f(t, x, v) log (f(t, x, v)) . (1.1.6)

Boltzmann observed that, if f is a solution to (1.1.4), the time derivative of the H–functional

is non increasing, indeed

dH

dt
(f(t, ·, ·)) =

Z
dx

Z
dv Q(f, f) log f =

= �1

4

Z
dx

Z
dv

Z
dw

Z

S2
�

d⌫B(v � w,!)⇥

⇥ (f(t, x0, v0)f(t, x0, w0) � f(t, x, v)f(t, x, w)) log
f(t, x0, v0)f(t, x0, w0)
f(t, x, v)f(t, x, w)

 0 ,

(1.1.7)

where in the last line we used that the function (x, v) 7�!
⇣
(x � y) log x

y

⌘
is non negative.
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Inequality (1.1.7) is the celebrated Boltzmann’s H–Theorem, which states that the entropy in

non increasing in time.

In Chapter 2 we will report the paper [PSS], in which we discuss the problem related to

the derivation of the Boltzmann equation from a N -particle system, in the spirit of the well

known paper by Lanford ([L-75], for a system of hard–spheres, and [K-75]). Here we propose

a rigorous derivation in the case in which the interaction is given by a smooth short range

positive potential. More precisely, in [PSS] we show that, considering a classical system

of point particles interacting by means of a short range potential and performing the low–

density limit (or Boltzmann–Grad limit: see Section 1.3), the system behaves, for short times,

as predicted by the associated Boltzmann equation.

When a long range interaction appears, it is not clear whether the Boltzmann equation is

a suitable model. In particular, in the case of Coulomb interactions, the collision integral

becomes divergent at large distances among particles and equation (1.1.4) makes no sense.

For this reason, L. D. Landau in 1936 ([L-36]) proposed the following kinetic equation, called

the Landau equation:

@tf + v · rxf =

Z
dwrv [a(v � w) (rv �rw) f(v)f(w)] , (1.1.8)

being a(v � w) a matrix of the form

a(v � w) =
A

|v � w|
(|v � w|2Id � (v � w) ⌦ (v � w))

|v � w|2 , (1.1.9)

where A > 0 is a suitable constant.

The Landau equation (1.1.8) retains conservation laws (1.1.5) and, choosing the H-functional

as in (1.1.6), an equivalent H-Theorem holds:

dH

dt
(f(t, ·, ·)) =

= �1

2

Z
dx

Z
dv

Z
dw a(v � w) f(t, x, v) f(t, x, w)

����
rvf(t, x, v)

f(t, x, v)
� rwf(t, x, w)

f(t, x, w)

����
2

 0 .

(1.1.10)

This equation is largely used in plasma physics and the mathematical theory is at the very

beginning. Indeed very little is known about the well-posedness problem and the derivation

from particle system. In Chapter 3 we will propose an attempt to derive the Landau equation

from a system of particles interacting by means of a smooth short range potential, reporting

the paper [BPS], in which we perform the weak–coupling limit (see Sections 1.3 and 1.4) to

pass from microscopic to macroscopic dynamics. The result is very preliminary, since we are

able to give only a rigorous consistency proof.

Since the mathematical problem linked to the derivation of the Landau equation from a

deterministic particle system seems to be very di�cult to handle, in Chapter 4 we will present

a result concerning the derivation of the Landau equation from a stochastic model, which plays
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the same role of the Kac model [K] for the Boltzmann equation. After a brief introduction, in

Sections 4.2 and 4.3, we review the well known result obtained by Kac in 1956 and explain how

it is possible to obtain the Landau collision operator from the Boltzmann integral, performing

the grazing collision limit, exactly as Landau did in 1936. In Section 4.4 we report the paper

[MPS] where a Kac model for the Landau equation is obtained.

Finally, Chapter 5 is devoted to the study of the Vlasov–Poisson equation, which is the

usual name for equation (1.1.2) when the interaction potential is Coulomb. By analogy with

the previous Chapters, in Section 5.2 we recall that the sailing limit in which the Vlasov

equation is expected to hold is the mean–field limit. In particular, we are not interested

in the derivation problem, but we focus on the Cauchy problem for the three–dimensional

repulsive Vlasov–Poisson system in presence of a point charge (also called the plasma–charge

model). In Section 5.3 we report the work in progress [DMS], in which - using the well known

results [LP] and [MMP] - we give an existence result for a quite large class of initial data.

The remaining of the present Chapter is devoted to introduce the mathematical objects and

some important notions (for instance propagation of chaos) we will use in the following.

1.2 Newton equations

We consider a system of N particles in the whole space R3, interacting by means of a

two–body potential �. A state of the N–particle system is denoted by zN = (qN ,vN ) =

(q1, . . . , qN , v1, . . . , vN ) 2 R3N ⇥ R3N , where qi and vi are respectively the position and the

velocity of particle i, for i = 1, . . . , N .

It is reasonable from a physical point of view to assume that particles in the phase space

R3N ⇥ R3N are identical; this means that we consider the configuration zN belonging to the

quotient space

S := (R3 ⇥ R3)N/SN ,

where SN is the permutation group.

Assuming that the mass of the identical particles is equal to one for sake of simplicity, the

N–particle Hamiltonian is

HN (qN ,vN ) =
NX

i=1

v2
i

2
+ U(qN ) , (1.2.1)

where the first term in the r.h.s. of eq.n (1.2.1) is the total kinetic energy of the N -particle

system and the second term describes the interaction among particles by means of a potential

energy which is the sum of all the two–body interactions:

U(qN ) =

NX

i=1

NX

j=1
j 6=i

�(qi � qj) .
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Thanks to the identical nature of particles, the Hamiltonian (1.2.1) is symmetric with respect

to any permutation of particles, i.e.

H(qN ,vN ) = H(�(qN ),�(vN )) , 8(qN ,vN ) 2 (R3N ⇥ R3N ) (1.2.2)

where � 2 SN is a given permutation of N elements. It follows that it is enough to choose

(qN ,vN ) in the quotient space S.

Moreover, we observe that the Hamiltonian does not depend explicitly on the time variable,

so that the hamiltonian system is conservative.

Fixed an initial configuration (qN ,vN ) 2 S, the time evolution of the N–particle system

associated to eq.n (1.2.1) is given by the Newton equations, i.e. the dynamics is governed by

the following system of ordinary di↵erential equations

8
>><
>>:

q̇i(⌧) = vi(⌧) ,

v̇i(⌧) =
PN

j=1
j 6=i

F (qi(⌧) � qj(⌧)) , i = 1, . . . , N
(1.2.3)

where F (qi(⌧) � qj(⌧)) is the force acting on particle i due to particle j at time ⌧ ; more

precisely F (qi � qj) = �r�(qi � qj). If we assume that the potential is twice di↵erentiable

and bounded with bounded derivatives, i.e. � 2 C2
b (R3), there exists a unique flow S⌧ , solution

to (1.2.3).

Since we are interested in a statistical description of the system when the number of particles

becomes huge, we consider on the phase space (R3N ⇥ R3N ) the N–particle probability dis-

tribution fN
0 (qN ,vN )dqNvN at time zero. In particular the probability density fN

0 has the

following properties:

(i) fN
0 (qN ,vN ) � 0, for all (qN ,vN ) 2 (R3 ⇥ R3);

(ii)
R

R3N dqN

R
R3N dvNfN

0 (qN ,vN ) = 1;

(iii) fN
0 (qN ,vN ) is symmetric in the exchange of particles.

Properties (i) and (ii) are just the definition of probability density, while (iii) is a consequence

of (1.2.2).

Thanks to the Liouville Theorem, the Hamiltonian flow S⌧ (qN ,vN ) associated to (1.2.3) is

such that

fN (⌧,qN ,vN ) = fN
0 (S�⌧ (qN ,vN )) . (1.2.4)

This ensures that, if fN
0 is a N–particle probability density, its evolution at time ⌧ > 0 is a

probability density too, which preserves the symmetry property (iii).

Let us denote by fN (⌧) = fN (⌧,qN ,vN ) the time evolution of the probability density; it is

obtained by solving the Cauchy problem associated to the Liouville equation

@⌧f
N (⌧) + vN · rqN fN (⌧) = rqN U · rvN fN (⌧) (1.2.5)

10



with initial datum fN
0 . In eq.n (1.2.5) we used the short notations vN ·rqN and rqN U ·rvN

to indicate respectively
PN

i=1 vi · rqi and
PN

i=1 rqiU · rvi .

We observe that eq.n (1.2.5) follows easily by the Liouville Theorem (1.2.4) and eq.ns (1.2.3).

Indeed let ' 2 C1
c (R3N ⇥R3N ) be a test function, smooth and complactly supported. On the

one side

d

d⌧

Z
dqN dvN fN

0 (S�⌧ (qN ,vN ))'(xN ,vN ) =

= �
Z

dqN dvN

⇥
q̇N · rqN fN (⌧) + v̇N · rvN fN (⌧)

⇤
'(xN ,vN ) =

= �
Z

dqN dvN

⇥
vN · rqN fN (⌧) + rqN U · rvN fN (⌧)

⇤
'(xN ,vN ) ;

on the other side, by (1.2.4),

d

d⌧

Z
dqN dvN fN (t,qN ,vN )'(xN ,vN ) =

Z
dqN dvN @⌧f

N (⌧,qN ,vN )'(xN ,vN ) .

The natural starting problem is to understand whenever the flow S⌧ (qN ,vN ) associated to

(1.2.3) exists and if it is unique. It is well known by classical theory of ordinary di↵erential

equations that the existence and uniqueness of the flow associated to (1.2.3) is strictly linked

to the regularity of the interaction potential; for instance we know that if � 2 C2
b (R3), for all

initial states of the system (qN ,vN ) 2 (R3N ⇥ R3N ) there exists a unique flow S⌧ (qN ,vN )

associated to (1.2.3), i.e. the dynamics is well defined everywhere.

1.3 Low density and weak–coupling limits

We are interested in a situation in which the number of particles N is very large, so it

is natural to investigate the limit N ! 1. A natural way to do this is to pass from a

microscopic description to a macroscopic one, by means of a scaling limit.

In the present Section we will describe two types of scaling limits: the low–density and the

weak–coupling limits.

We consider the N–particle system introduced in Section 1.2, obeying to the usual Newton

eq.ns (1.2.3), and a small scale parameter " > 0 which expresses the ratio between the macro

and the micro unites.

If we are interested in the description of a rarefied gas, it is convenient to rescale eq.ns (1.2.3)

in terms of macroscopic variables

t = "⌧, xi = "qi, 8 i = 1, . . . , N

whenever the physical variables of interest are varying on such scales and are almost constant

on the microscopic scale.
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The dynamics is described by the rescaled equations
8
>><
>>:

ẋi(t) = vi(t) ,

v̇i(t) = 1
"

PN
j=1
j 6=i

F
⇣

xi(t)�xj(t)
"

⌘
, i = 1, . . . , N

(1.3.1)

We notice that in order to have a kinetic picture for a rarefied gas, a tagged particle (say

particle i) must undergo a finite number of collisions in a macroscopic unit time. As a

consequence, the density N"3 must vanish, i.e. N"3 ! 0. More precisely, it should behave

as O("2); indeed, assuming the interaction length of the potential � to be one (i.e. �(r) = 0

if r � 1), we consider the tube spanned by particle i and such a number is finite. In other

words, the limit situation in which the gas is rarefied, but the number of collisions that each

particle undergoes per unit time is not negligible is well described by

N �! 1 , " �! 0 , (1.3.2)

with the constraint

N"2 = ��1 (1.3.3)

where � > 0 is the mean–free path. The scaling (1.3.2)–(1.3.3) takes into account the low–

density of the gas and for this reason it is called low–density limit.

As a consequence of the scaling, the probability that two tagged particles (say particle i and

particle j) collide is negligible since it is of order O("2). In fact, if we assume that particles

are balls with diameters ", the probability of the event {the couple (i, j) collides} is of order

of the surface of the ball, i.e. O("2). However the probability that a given particle performs

a collision with any one of the remaining N � 1 particles is not negligible, indeed it is N"2,

that is O(1) thanks to (1.3.3).

As we shall see in the next Section by heuristic arguments and in Chapter 2 in detail, the

low–density limit is the scaling in which the Boltzmann equation (1.1.4) is expected to hold.

We remark that in the case of hard–spheres, namely for a N–particle system of elastic and non

overlapping balls, the low–density limit is completely equivalent to the well known Boltzmann–

Grad limit, so called by the names of physicists that stated heuristically and rigorously the

scaling (1.3.3).

Although the Boltzmann equation is expected to be a good description for the time evolution

of the probability density of a rarefied gas, a natural question is whether it is possible to

obtain a kinetic picture for a dense gas.

If we consider a situation in which the number of particles is very large and the interaction

quite moderate, we can perform the so–called weak–coupling limit. We deal with the usual

N–particle system introduced at the beginning of the present Section, whose dynamics is

described by (1.2.3). As already done in the case of a low–density regime, we introduce a

small scale parameter " > 0 and we rescale (1.2.3) in terms of the macroscopic variables

t = "⌧, xi = "qi, 8 i = 1, . . . , N .
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Moreover we rescale the potential

�(·) �! p
"�(·) ,

expressing the weakness of the interaction. The rescaled system is

8
>><
>>:

ẋi(t) = vi(t) ,

v̇i(t) = � 1p
"

PN
j=1
j 6=i

r�
⇣

xi(t)�xj(t)
"

⌘
, i = 1, . . . , N

(1.3.4)

where we used that the inter particle force is conservative since F = �r�.

To take into account the high density of the gas, we assume that N"3 is of order one, i.e.

N"3 = ��1 > 0. In this contest, the probability that two given particles interact vanishes in

the limit "! 0 because of the weakness of the interaction. Indeed two particles can interact,

but the collision has a small e↵ect and the probability vanishes in the limit.

As we shall see in the next Section by heuristic arguments and rigorously in Chapter 3, the

kinetic equation that is expected in the weak–coupling limit is the Landau equation (1.1.8).

1.4 From particle systems to kinetic equations: heuristic deriva-

tion

Both the Newton and the Liouville equations are di�cult to deal with in the regime of N

large. For this reason, in 1946 the physicists Bogolyubov, Born, Green, Kirkwood and Yvon

introduced a reduced description of the N–particle system based on the asymptotic study -in

a sense that we do not precise here2- of the j–particle marginal probability density. More

precisely, they introduced the j–particle marginals

8
><
>:

fN
j (⌧,qj ,vj) =

R
dqj+1dqj+2 . . . dqN

R
dvj+1dvj+2 . . . dvNfN (t,qN ,vN ) , j = 1, . . . , N

fN
j (⌧,qj ,vj) = 0 , j > N

(1.4.1)

where fN is the N–particle joint probability density. In particular, (1.4.1) expresses the

probability density of a group of j particles arbitrarily chosen among the N particles at time

⌧ . We observe that fN
N (⌧,qN ,vN ) = fN (⌧,qN ,vN ).

In order to obtain an equation for the j–particle marginal fN
j (⌧,qj ,vj), we integrate the Liou-

ville equation (3.3.4) with respect to the N � j remaining variables zN
j = qj+1, qj+2, . . . , qN ,

vj+1, vj+2, . . . , vN (in the following, we will use the notation qN
j = qj+1qj+2 . . . qN and

2When the number of particles becomes huge, the asymptotic we are looking at depends on the phenomena

we want to describe. For a rarefied gas, it will be the low–density limit; for a dense gas, the weak–coupling

limit, as mentioned in Section 1.3.
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vN
j = vj+1vj+2 . . . vN for sake of brevity) and we obtain

@

@⌧
fN

j = Ljf
N
j + (N � j)Cj+1f

N
j+1 , j = 1, . . . , N (1.4.2)

where Lj is the Liouville operator reduced to a j–particle subsystem and

Cj+1f
N
j+1(⌧,qj ,vj) =

jX

i=1

Z
dqj+1dvj+1rqi�(qi � qj+1) · rvif

N
j+1(⌧,qj ,vj) , (1.4.3)

for j < N and CN+1 = 0. Indeed

Z
dqN

j dvN
j

✓
@

@⌧
+ vN · rqN

◆
fN (⌧,qN ,vN ) =

 
@

@⌧
+

jX

i=1

vi · rqi

!
fN

j (⌧,qj ,vj) , (1.4.4)

Z
dqN

j dvN
j rqN U · rvN fN =

NX

i=1

Z
dqN

j dvN
j rqiU · rvif

N =

=

NX

i=1

NX

k=1
k 6=i

Z
dqN

j dvN
j rqi�(qi � qk) · rvif

N =

=

jX

i=1

NX

k=1
k 6=i

Z
dqN

j dvN
j rqi�(qi � qk) · rvif

N+

+
NX

i=j+1

NX

k=1
k 6=i

Z
dqN

j dvN
j rqi�(qi � qk) · rvif

N .

(1.4.5)

The last term in the above equation vanishes because of the integration; the first term could

be written as follows:

jX

i=1

NX

k=1
k 6=i

Z
dqN

j dvN
j rqi�(qi � qk) · rvif

N =

=

jX

i=1

jX

k=1
k 6=i

Z
dqN

j dvN
j rqi�(qi � qk) · rvif

N +

jX

i=1

NX

k=j+1

Z
dqN

j dvN
j rqi�(qi � qk) · rvif

N =

=

jX

i=1

NX

k=1
k 6=i

Z
dqN

j dvN
j rqi�(qi � qk) · rvif

N
j +

+

jX

i=1

(N � j)

Z
dqj+1dvj+1rqi�(qi � qj+1) · rvif

N
j+1 ,

(1.4.6)

where we used the symmetry (in the exchange of particles) of the probability density to obtain

a sum of (N � j) equal contributions.
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The meaning of the hierarchy (1.4.2) is the following: the time evolution of the j–particle

probability density fN
j is linked to the j–particle Liouville operator, which represents the

interaction of the first j particles among themselves, and to the Cj+1 operator, which depends

on the interaction of the first j particles with the remaining N � j particles.

We observe that when j = N we recover exactly the Liouville equation.

The hierarchy (1.4.2) is called BBGKY (Bogolyubov, Born, Green, Kirkwood and Yvon)

because of the names of the physicists who introduced it.

In the present Section we will use the BBGKY hierarchy to pass heuristically from the Hamil-

tonian N–particle system described in Section 1.2 to an appropriate kinetic equation by means

of opportune scaling limits defined in Section 1.3.

To simplify the model, we consider a system of N identical particles of radius " in the whole

space and we suppose that the interactions among particles are elastic collisions, so that they

cannot overlap and they change instantaneously their velocity according to the energy and

momentum conservations. More precisely, if two particles (say particle i and particle j) collide

with velocities vi and vj respectively, the pre–collisional velocities are

(
v0i = vi � ⌫[⌫ · (vi � vj)] ,

v0j = vj + ⌫[⌫ · (vi � vj)] ;
(1.4.7)

and ⌫ is the unit vector indicating the direction of the line linking the two particles. The

dynamics is driven in the following way: a tagged particle moves freely up to the first time

in which it performs an elastic collision and changes velocity instantaneously according to

(1.4.7). The procedure goes on iteratively. We notice that triple collisions are negligible

because they are unlikely.

Boltzmann heuristic argument is the following: consider a test particle and denote by f the

probability density associated to it; the evolution equation of the tagged particle we have

considered is
@

@t
f + v · rf = Coll (1.4.8)

where Coll denotes the e↵ect that collisions produce on the variation of the probability density

f . We observe that the operator Coll should consist of two parts, a gain part denoted by

G and a loss part L, due to the fact that they give respectively a positive or a negative

contribution to the variation of f because of the collisions.

In particular, Ldxdvdt is the probability that the particle disappears from the cell dxdv of the

phase space because of a collision in the time interval (t, t+dt) and Gdxdvdt is the probability

that the particle appears in the same cell in the same time interval.

Boltzmann’s argument is based on the following considerations: we focus on a tagged particle

(x1, v1) in the phase space and we consider the sphere of centre x1 and radius "; a point on

the surface is determined by x1 +"⌫, where ⌫ 2 S2, being S2 the unit sphere in R3 centered in

x1. Let (x2, v2) be another particle in the phase space; we look at the cylinder with base area

"2d⌫ and height |(v2 � v1)|dt along the direction (v2 � v1) and we see that the contribution of
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particle 2 to the loss term L depends on the sign of the scalar product between the relative

velocity (v2 � v1) and ⌫: if (v2 � v1) · ⌫  0, then particle 2 can collide with particle 1 in the

time interval dt so that it can contribute to L; if not, particle 2 do not contribute. These

contributions are equivalent to the probability of finding a particle in the cylinder knowing

the presence of particle 1 in x1, i.e.

f2(x1, x1 + "⌫, v1, v2)| (v2 � v1) · ⌫| "2 d⌫ dv2 dt .

If we integrate in the v2 and ⌫ variables, the total contribution given to the loss term L by

each single particle is

"2
Z

dv2

Z

S2
�

d⌫f2(x1, x1 + "⌫, v1, v2)|(v2 � v1) · ⌫|

where S2
� = {⌫ 2 S2 | (v2 � v1) · ⌫ < 0}. As a consequence, taking into account that particles

are identical, the total contribution to the loss term is

L = (N � 1)"2
Z

dv2

Z

S2
�

d⌫f2(x1, x1 + "⌫, v1, v2)|(v2 � v1) · ⌫| . (1.4.9)

In the same way, the contribution to the gain term is

G = (N � 1)"2
Z

dv2

Z

S2
+

d⌫f2(x1, x1 + "⌫, v1, v2)|(v2 � v1) · ⌫| , (1.4.10)

where S2
+ = {⌫ 2 S2 | (v2 � v1) · ⌫ > 0}.

Therefore the collision operator is the sum of the two contributions:

Coll = (N � 1)"2
Z

dv2

Z
d⌫f2(x1, x1 + "⌫, v1, v2)|(v2 � v1) · ⌫| . (1.4.11)

We notice that (1.4.8) is not a closed equation; indeed the knowledge of the two–particle

probability density is necessary to solve the equation and to find the one–particle probability

density; in the same manner the knowledge of f2 depends on f3 and so on. In order to find a

solution to (1.4.8) it is indispensable to get a closed equation; to this end a key role is played

by the Boltzmann’s main assumption: the “Stosszahlansatz”. Boltzmann’s idea is that, if the

gas is rarefied, two given particles are uncorrelated , i.e.

f2(x1, x2, v1, v2) = f(x1, v1)f(x2, v2) . (1.4.12)

At a first glance eq.n (1.4.12) seems to be false: it means that the positions and velocities

of the particles are chosen randomly and independently, according to a profile f . This can

be done in general only at time zero, since correlations are created as soon as a collision

happens. Indeed, even if we assume (1.4.12) to be true at time zero, if the test particle

(x1, v1) collides with particle (x2, v2), (1.4.12) cannot hold after the collision (since time

creates correlations). However, thanks to the low density of the gas, assumption (1.4.12) is
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not completely unreasonable; in fact it should be true in some limit and the point is to find

the right scaling. To this end, we observe that if N"2 = O(1) and f2 is smooth, the gain term

is order O(1). We notice also that the probability that two tagged particles collide is O("2)

and that

f2(x1, x1 + "⌫, v1, v2) = f2(x1, x1 + "⌫, v01, v
0
2) , (1.4.13)

where v01 and v02 are the pre–collisional velocities, according to (1.4.7). This suggests that

assumption (1.4.12) makes sense and, performing the change of variables ⌫ ! �⌫ in the gain

term, the collision operator appears as

Coll = (N � 1)"2
Z

dv2

Z

S2
�

d⌫(v1 � v2) · ⌫[f(x1, v
0
1)f(x1 � "⌫, v02) � f(x1, v1)f(x1 + "⌫, v2)] .

(1.4.14)

Heuristically, if f is smooth enough, in the low–density limit (see Section 1.3) the resulting

equation is exactly the one obtained by Boltzmann:

@f

@t
+ v · rxf =

Z
dv2

Z

S2
�

d⌫ (v1 � v2) · ⌫[f(x1, v
0
1)f(x1, v

0
2) � f(x1, v1)f(x1, v2)] . (1.4.15)

It is important to underline that eq.n (1.4.15) is not equivalent to the Hamiltonian dynamics

from which it is derived. In fact it has a statistical nature and we stress that it is not time–

reversal, thanks to H-Theorem. In particular, eq.n (1.4.12) (called propagation of chaos in a

more general situation) implies an asymmetry in the time variable; indeed if pre–collisional

velocities are uncorrelated, post–collisional velocities have to be correlated, creating an asym-

metry between past and future. The key point is that the microscopic dynamics is reversible

while the macroscopic one is irreversible, also if at a first glance it seems that we have used

only deterministic tools3.

The heuristic argument presented in this Section can be extended to a more general class

of two–body potential, obtaining in the limit the classical formulation of the Boltzmann

equation:
@f

@t
+ v · rxf = Q(f, f) , (1.4.16)

where

Q(f, f) =

Z
dv2

Z

S2
�

d⌫B(v1 � v2;!)[f(x1, v
0
1)f(x1, v

0
2) � f(x1, v1)f(x1, v2)] (1.4.17)

with B(v1 � v2;!) a suitable function of the relative velocities and !.

Of course, if we want to derive rigorously (1.4.16) from the hamiltonian dynamics, we have to

take into account that the interaction time is not anymore a time instant if we do not consider

the hard–sphere model and that the expression of the pre–collisional velocities in terms of

3Indeed the probabilistic meaning is hidden in the particular choice of the initial datum according to the

so–called propagation of chaos at time zero.
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the post–collisional ones is a priori a complicated function of the relative velocities and the

impact parameters. We refer to Chapter 2 and its Appendix for a detailed explanation of the

problem.

Starting from eq.n (1.4.2), it is possible to perform a di↵erent scaling limit to obtain, at least

formally, the Landau equation that describes the time evolution of the probability density of

a plasma, in which the density is high.

In particular, we are interested in a situation in which the number of particles N is very large

and the interaction strength quite moderate. The system has a unitary density so that we

assume N = "�3. In addition we look for a reduced or macroscopic description of the system.

Namely if q and ⌧ refer to the system seen in a microscopic scale, we rescale eq.n (1.2.3) in

terms of the macroscopic variables

x = "q t = "⌧ (1.4.18)

whenever the physical variables of interest are varying on such scales and are almost constant

on the microscopic scale. Remembering that we want to describe weakly interacting systems,

we perform the weak–coupling limit (see Section 1.3) rescaling the potential according to:

� ! p
"�, (1.4.19)

so that system (1.2.3), in terms of the (x, t) variables, becomes:

8
>><
>>:

d
dtxi = vi

d
dtvi = � 1p

"

P
j=1...N :

j 6=i
r�(

xi�xj

" ) = 1p
"

P
j=1...N :

j 6=i
F (

xi�xj

" ) .
(1.4.20)

A statistical description of the above system passes through the introduction of a probability

distribution on the phase space of the system. Let fN = fN (t,xN ,vN ) be, as usual, a

symmetric (in the exchange of variables) probability density. Then from eq.n (1.4.20) we

obtain the following Liouville equation

(@t +
NX

i=1

vi · rxi)f
N
N (t,xN ,vN ) =

1p
"

�
T "

NfN
N

�
(t,xN ,vN ). (1.4.21)

Here we have introduced the operator

(T "
NfN

N

�
(t,xN ,vN ) =

X

0<k<`N

(T "
k,`f

N
N

�
(t,xN ,vN ), (1.4.22)

with

T "
k,`f

N
N = r�(

xk � x`

"
) · (rvk

�rv`)f
N
N . (1.4.23)

To investigate the limit " ! 0 it is convenient to introduce the BBGKY hierarchy for the j-

particle distributions fN
j (xj ,vj), for j = 1. . . . , N � 1, defined in (1.4.1). Such a hierarchy
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is obtained by means of a partial integration of the Liouville equation (1.4.21) and standard

manipulations. The result is (for 1  j  N):

(@t +

jX

k=1

vk · rxk
)fN

j =
1p
"
T "

j fN
j +

N � jp
"

C"
j+1f

N
j+1 (1.4.24)

for 1  j  N . The operator C"
j+1 is defined as:

C"
j+1 =

jX

k=1

C"
k,j+1 , (1.4.25)

and

C"
k,j+1fj+1(x1 . . . xj ; v1 . . . vj) = (1.4.26)

�
Z

dxj+1

Z
dvj+1F

✓
xk � xj+1

"

◆
· rvk

fj+1(x1, x2, . . . , xj+1; v1, . . . , vj+1).

C"
k,j+1 describes the interaction of particle k, belonging to the j-particle subsystem, with a

particle outside the subsystem, conventionally denoted by the number j + 1 (this numbering

uses the fact that all the particles are identical). We finally fix the initial value {f0
j }N

j=1 of

the solution {fN
j (t)}N

j=1 assuming that {f0
j }N

j=1 is factorized, that is, for all j = 1, . . . N

f0
j = f⌦j

0 , (1.4.27)

where f0 is a given one-particle distribution function. This means that the state of any pair of

particles is statistically uncorrelated at time zero. Of course such a statistical independence is

destroyed at time t > 0 because dynamics creates correlations and eq.n (1.4.24) shows that the

time evolution of fN
1 is determined by the knowledge of fN

2 which turns out to be dependent

on fN
3 and so on. However, since the interaction between two given particles is going to

vanish in the limit "! 0, we can hope that such statistical independence is recovered in the

same limit4. Therefore we expect that when "! 0 the one-particle distribution function fN
1

converges to the solution of a suitable nonlinear kinetic equation f , which we are going to

investigate. If we expand fN
j (t) as a perturbation of the free flow S(t) defined as

(S(t)fj)(xj ,vj) = fj(xj � vjt,vj), (1.4.28)

we find

fN
j (t) =S(t)f0

j +
N � jp

"

Z t

0
S(t � t1)C

"
j+1f

N
j+1(t1)dt1+ (1.4.29)

1p
"

Z t

0
S(t � t1)T

"
j fN

j (t1)dt1.

4Observe that the physical meaning of propagation of chaos in the weak–coupling contest is di↵erent from

that arising in the low–density contest. In the weak–coupling regime two particles interact but the e↵ect of

the collision is small, while in the low–density case the e↵ect of a collision between two given particles is large,

but unlikely.
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We now try to keep information on the limit behavior of fN
j (t). Assuming for the moment

that the time evolved j-particle distributions fN
j (t) are smooth (in the sense that the first

and second derivatives are uniformly bounded in "), then

C"
j+1f

N
j+1(xj ;vj ; t1) = (1.4.30)

� "3
jX

k=1

Z
dr

Z
dvj+1F (r) · rvk

fj+1(xj , xk � "r;vj , vj+1, t1).

Because of the identity Z
drF (r) = 0, (1.4.31)

we find that

C"
j+1f

N
j+1(xj ;vj ; t1) = O("4) (1.4.32)

provided that D2
vf

N
j+1 is uniformly bounded. Since

N � jp
"

= O("�
7
2 )

we see that the second term in the right hand side of (1.4.29) does not give any contribution

in the limit. Moreover

Z t

0
S(t � t1)T

"
j fN

j (t1)dt1 = (1.4.33)

X

i 6=k

Z t

0
dt1F

✓
(xi � xk) � (vi � vk)(t � t1)

"

◆
f̃N

j (xj ,vj ; t1)

where f̃N
j is a smooth function. We note that the time integral in (1.4.33) is O(") because

F 6= 0 only for times in an interval of length O("). Therefore fN
j cannot be smooth since we

expect a nontrivial limit (for a detailed discussion on this topic we refer to Chapter 3).

Therefore the heuristic idea is to write down the series expansion of the solution, for instance

for the one–particle marginal:

fN
1 (t) =

+1X

n=0

X

�(n)

↵(�(n))

Z t

0
dt1

Z t1

0
dt2 . . .

Z tn

0
[S(t � t1)O1S(t1 � t2) . . . OnS(tn)]f0

n ;

where the operator Oj expresses the creation of a new particle (Cj) or a recollision between

two particles (Tj), �(n) is a sequence of indices {(ri, li)}n
i=1 which represents the particles

involved in the interaction at time ti and such that ri < li, n � 1 is the number of created

particles, and the term ↵(�(n)) is a combinatorial factor. We are not able to analyze the

whole series, but we can find, at least formally, an agreement between the particle system

and the Landau equation up to the first order in time. We refer to Chapter 3 for a rigorous

argument and a detailed discussion.
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This thesis contains the following papers: the preprint [PSS] written in collaboration with

M. Pulvirenti and S. Simonella, which is presented in Chapter 2; the published paper [BPS]

written in collaboration with A.V. Bobylev and M. Pulvirenti, presented in Chapter 3; the

published paper [MPS] written in collaboration with E. Miot and M. Pulvirenti, presented in

Chapter 4, Sections 4.4–4.6; the draft work [DMS] written in collaboration with L. Desvillettes

and E. Miot, presented in Chapter 5, Sections 5.3–5.4.
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Chapter 2

Low–density limit

In the present Chapter we present [PSS].

2.1 On the validity of the Boltzmann equation for short range

potentials

ABSTRACT. We consider a classical system of point particles interacting by means of a short

range potential. We prove that, in the low–density (Boltzmann–Grad) limit, the system

behaves, for short times, as predicted by the associated Boltzmann equation. This is a

revisitation and an extension of the thesis of King [10] (appeared after the well known result

of Lanford [11] for hard spheres) and of a recent paper by Gallagher et al [6]. Our analysis

applies to any stable and smooth potential. In the case of repulsive potentials (with no

attractive parts), we estimate explicitly the rate of convergence.

KEYWORDS. Kinetic Theory, scaling limit, BBGKY hierarchy, Boltzmann equation.

2.2 Introduction

In a well known paper in 1975, O. Lanford presented the first mathematical proof of the

validity of the Boltzmann equation for a system of hard spheres, for a su�ciently small time.

The starting point was the series expansion describing the time evolution of the statistical

states of a hard–sphere system. This series is the solution of a hierarchy of equations formally

established by C. Cercignani in 1972 [2], following previous ideas due to H. Grad [7].

The main idea of Lanford is to compare such a series expansion with the one arising from

the solution of the Boltzmann equation, claiming the term by term convergence in the so

called Boltzmann–Grad limit (BG limit in the sequel). The restriction to short times is due

to the fact that the two series have been proven to converge absolutely only for a small time
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interval. Actually it was remarked in [18] that the Lanford’s approach is a Cauchy-Kowalevski

kind of argument.

In [11], although all the main ideas, as well as the strategy of the proof, were clearly

discussed, the details were missing. The complete proof was presented later on in [10], [14],

[17], [16] and [3].

We mention also that the ideas of Lanford can be applied to derive the Boltzmann equation

globally in time, in the special case of an expanding cloud of a rare gas in the vacuum [8, 9].

Shortly after the appearance of the Lanford’s paper, F. King in his unpublished thesis

[10] approached the same validity problem for a particle system interacting by means of a

positive, smooth and short range potential. In this case the basic starting point was not

the usual BBGKY hierarchy, but a variant of that due to H. Grad [7] (we shall call it the

“Grad hierarchy” in the sequel) making the system more similar to a hard–sphere one. More

precisely, in [7] only the first equation of this hierarchy was discussed, while the full hierarchy

was introduced and derived in [10].

The Boltzmann equation obtained by King was written in unusual form. Namely, calling

f = f(x, v, t) the distribution function,

(@t + v · rx)f(x, v, t) =

Z

R3

dv1

Z

S2
+

d⌫ (v � v1) · ⌫
n

f(x, v01, t)f(x, v0, t) � f(x, v1, t)f(x, v, t)
o

(2.2.1)

where S2
+ = {⌫ 2 S2| (v � v1) · ⌫ � 0}, S2 is the unit sphere in R3, (v, v1) is a pair of

velocities in incoming collision configuration –see also [1]– and (v0, v01) is the corresponding

pair of outgoing velocities defined by
8
<
:

v0 = v � ![! · (v � v1)]

v01 = v1 + ![! · (v � v1)]
. (2.2.2)

Here ! = !(⌫, V ) is the unit vector bisecting the angle between the incoming relative velocity

V = v1 � v and the outgoing relative velocity V 0 = v01 � v0 as specified in the figure below.

A more handable and usual form for the Boltzmann equation is obtained by expressing

everything in terms of !, namely

(@t + v · rx)f(x, v, t) =

Z

R3

dv1

Z

S2

d! B(!, V )
n

f(x, v01, t)f(x, v0, t) � f(x, v1, t)f(x, v, t)
o

(2.2.3)

where (2⇡ sin⇥)B(!, V )/|V | is the cross–section of the potential under consideration.

After many years, the argument has been recently reconsidered by I. Gallagher et al in a

long and self–contained paper [6] pointing out some important facts, surprisingly not discussed

in the previous literature. In particular, the term by term convergence is not innocent because

B is, in general, not bounded and even not defined as a single–valued function. For instance,

for smooth positive and bounded potentials (considered by King himself), ⌫ ! ! is not

globally invertible and B is unbounded. Therefore the di�culty is that one has to exclude
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V

0 1

Figure 2.1: The two–body scattering. We denote by ⇢ the impact parameter expressed in

microscopic unities (⇢ 2 [�1, 1]) and by � = �(⇢, |V |) the scattering angle (� 2 (�⇡,⇡], � > 0

in the figure), while ⇥ is the angle given by the relation � = ⇡�2⇥. We call scattering vector

the function ! = !(⌫, V ).

concentration of measure on certain small sets in the phase space leading to an evolution

much di↵erent from a typical Boltzmann behavior. These “bad” events are: (i) the long

time two–body scattering; (ii) the recollisions, i.e. the presence of a given pair of particles

undergoing two or more collisions. The latter is the main obstacle in proving that the particle

system behaves as predicted by the Boltzmann equation.

In [6] the authors prove the validity of the Boltzmann equation under the hypotheses

that the potential is well behaving in this sense, namely that the cross–section exists as a

single valued and su�ciently regular function. In the present paper we show that, under

very general assumptions on the potential, the Boltzmann equation can indeed be derived

in the form (2.2.1). We review the results in [10], completing some parts of the proof and

curing some inconsistencies. Once the Boltzmann equation has been derived in the form

(2.2.1), the passage to the form (2.2.3) is a matter of analysis of the two–body problem. If

the cross–section is not a single valued function, the function B appearing in (2.2.3) can be

still expressed as a sum of the contributions arising from each monotonicity branch.

The approach discussed in [6] makes explicit use of the cross–section as a tool for the

control of recollisions. In the present paper the term by term convergence (which is the most

delicate point in the proof of our main results) is treated in a di↵erent way from the ones

in [6] and [10]: see Section 2.8.1 for a presentation of the problem, and Sections 2.8.2, 2.8.3

for a quick abstract and an explicit constructive proof respectively. In our method a very

useful tool is a tree expansion describing the time evolution of correlation functions. This is

presented in Section 2.7. In Section 2.3 we introduce the mechanical system of particles under

examination and make some preliminary remark about it, while in Section 2.4, along the lines
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of [10], we derive the Grad hierarchy, that is the starting point of our study. In Section 2.5

we fix the hypotheses on the initial data and state our main results. In Section 2.6 we present

the uniform short time estimates on the series expansion for the evolution of marginals. The

results in Sections 2.4 and 2.6 are well known by [10] and [6]: we discuss them here briefly

for the sake of completeness. Finally, in the Appendix we give su�cient conditions on the

interaction for having a bounded or a single valued cross–section.

One advantage of the methods developed in this paper is that they allow for an explicit

estimate of the error in the convergence to Boltzmann equation, as soon as one has explicit

estimates of the interaction time of the two–body process in the space of the scattering

parameters. Moreover, convergence is established in a strong sense, that is uniformly outside

a precise pathological null–measure subset of the phase space.

The analysis of sections 2.3–2.8 can be applied to any smooth and repulsive potential,

enlarging the class of interactions considered in [6]. If the potential has also an attractive

part, there is also an additional di�culty due to long time scattering phenomena and presence

of trapping orbits in the two–body process. For the sake of clearness we treat these cases

separately in Section 2.9, where we explain how the proof can be adapted to extend the

convergence result, assuming stability of the interaction.

2.3 The hamiltonian system

We consider a system of N identical classical point particles of unit mass, moving in the

whole space and interacting by means of a two–body, short range potential �. We denote by

(q1, v1, · · · , qN , vN ) a state of the system, where qi and vi indicate the position and the velocity

of the particle i, and qi(⌧) the position of particle i at time ⌧. The N�particle Hamiltonian

is

H =
1

2

NX

i=1

v2
i +

1

2

NX

i,j=1
i 6=j

�(qi � qj) . (2.3.1)

The dynamical flow is obtained by solving the Newton equations

d2qi

d⌧2
(⌧) =

X

j 6=i

F (qi(⌧) � qj(⌧)) (2.3.2)

where F (qi�qj) = Fi,j = �r�(qi�qj) is the force due to the particle j, acting on the particle

i. We will assume � to be smooth enough in order to have existence and uniqueness of the

solution to (2.3.2) for any initial datum such that qi 6= qj (see Hypothesis 1 at the end of this

section, and Section 2.9).

Consider now a small parameter " indicating the ratio between the macro and the micro

unities. We pass to macroscopic variables defining

x = "q; t = "⌧ . (2.3.3)
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In these variables the equations of motion become

d2xi

dt2
(t) =

1

"

X

j 6=i

F

✓
xi(t) � xj(t)

"

◆
. (2.3.4)

In order to have a kinetic picture, a tagged particle, say particle 1, must deliver a finite

number of collisions in a macroscopic unit time. As a consequence, the density N"3 must

vanish. More precisely N should be O("�2). Indeed, assuming the characteristic interaction

length of the potential � to be one in microscopic variables, namely �(q) = 0 if |q| > 1,

consider the tube spanned by particle 1 in the (macro) time 1:
n

x | inf
0t1

|x � x1(t)|  "
o

. (2.3.5)

The number of particles in the tube is the number of particles potentially interacting with

particle 1 in a macroscopic unit time. Hence, if N = O("�2), such a number is expected to

be finite. Therefore the scaling we will consider is

N ! 1, "! 0, N"2 = l�1 > 0, (2.3.6)

for a system of N particles obeying to (2.3.4), where l > 0 will be proportional to the mean

free path and will be fixed to one for notational simplicity.

The scaling (2.3.6) is usually called low–density limit and it is equivalent to the BG limit

originally introduced for the hard–sphere system, [7]. If we want to picture the dynamics in

macroscopic variables, we can say that a triple collision - namely a situation in which three

or more particles are simultaneously interacting - will be very unlikely. Moreover a two–body

collision - namely a scattering process involving only two particles - will take place on a scale

of time of O("), but since the force is O("�1) it will produce a finite e↵ect. In other words

the expected dynamics is qualitatively similar to that of the hard–sphere systems.

2.3.1 Statistical description

We want to describe our system from a statistical viewpoint. We will use bold letters for

vectors of variables, for instance

zj = (z1, · · · , zj), zj,n = (zj+1, · · · , zj+n), zi = (xi, vi) (2.3.7)

will be the notation for the state of particles 1, · · · , j and j +1, · · · , j +n respectively, having

position and velocity (xi, vi). As usual we introduce the phase space

MN =
n
zN 2 R6N

��� |xi � xk| > 0, i, k = 1 · · · j, k 6= i
o

. (2.3.8)

Consider a probability distribution with density WN , which is initially (and hence at any

positive time) symmetric in the exchange of the particles. Its time evolution is described by

the Liouville equation, which reads as

(@t + LN )WN = 0 , (2.3.9)
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where the Liouville operator LN is

LN = L0
N + LI

N (2.3.10)

with:

L0
N =

NX

i=1

vi · rxi ,

LI
N =

1

"

NX

i,j=1
i 6=j

Fi,j · rvi (2.3.11)

and Fi,j = �r�
⇣

xi�xj

"

⌘
.

Remark. For simplicity we shall assume in this subsection, as well as in Section 2.4 below,

that WN is a smooth (say C1) function of its variables over all MN ⇥ R+, with vi · rxiW
N ,

Fi,j ·rviW
N 2 L1(MN ). The assumption is used to write the Liouville equation as a partial

di↵erential equation and to perform partial integrations. This is not really needed to state

our results: we will weaken the regularity hypothesis later on by using a density argument

(see Proposition 1 and the discussion before it).

We introduce the marginals gN
j (zj , t) of the time evolved measure WN (zN , t), defined by

gN
j (zj , t) =

Z
dzj,N�jW

N (zj , zj,N�j , t) , (2.3.12)

which denote the probability distributions of the first j particles (or of any other fixed group

of j particles). Clearly gN
N = WN .

From (2.3.9) and (2.3.12) it follows that the family {gN
j }N

j=1 satisfies the well known

BBGKY hierarchy ([7]):

 
@t +

jX

i=1

vi · rxi

!
gN
j +

1

"

jX

i,k=1
i 6=k

F

✓
xi � xk

"

◆
· rvig

N
j

= �N � j

"

jX

i=1

Z
dxj+1

Z
dvj+1F

✓
xi � xj+1

"

◆
· rvig

N
j+1 . (2.3.13)

Notice that, for a fixed j, the interaction term in the left hand side of Eq. (2.3.13) is, in

a sense, negligible because the collisions among a tagged group of particles are unlikely (the

potential is indeed vanishing as soon as " is smaller than |xi � xk|). Moreover the integral in

the right hand side is O("3). The right hand side, which is due to the interaction between the

group of the first j particles with the rest of the system, is O(1) whenever N = O("�2), which

is exactly the reason why we perform the low–density scaling. However, instead of using the

above hierarchy, not very well suited for such a scaling, we will introduce, in Section 2.4,

another set of equations.

28



2.3.2 The two–body scattering

Let us discuss here the scattering process between two particles, which will play a crucial role

in what follows. We turn back to microscopic unities in this subsection.

Let q1, v1, q2, v2 be positions and velocities of two particles which are performing a collision.

It is well known that this two–body problem can be reduced to a central–motion problem

setting the origin in the center of mass:

q1 + q2

2
= 0, q = q1 � q2 . (2.3.14)

Then the evolution is given by
d2q

d⌧2
(⌧) = 2F (q(⌧)) . (2.3.15)

The above equation of motion is“almost”explicitly solvable. In particular, fixed the relative

velocity V = v1 �v2 (hence fixed a value of the energy in the center of mass), one can restrict

his attention to the control of the scattering function ! = !(⌫); since the scattering takes

place in a plane, this amounts to control the function ⇥ = ⇥(⇢) : see Fig. 2.1 in Section 2.2.

The classical integral formula expressing ⇥ in terms of the modulus of the incoming relative

velocity |V |, the potential � and the impact parameter ⇢ will be written in the Appendix (see

Eq. (2.10.1)). That formula is not so easy to use in order to get useful informations. So it

will not be employed in the present section.

In what follows it will be rather crucial to have an estimate on the scattering time ⌧⇤,

namely the measure of the time interval for which |q(⌧)| < 1. To this purpose, we need to

state our precise assumptions on the potential.

Hypothesis 1. The two–body potential � = �(q), q 2 R3\{0} is radial, with support |q| < 1

and not increasing in |q|. We assume C2 regularity of � outside the origin.

The smoothness assumption is needed to ensure existence and uniqueness of the flow

evolution for the system of N particles, while the monotonicity is introduced to allow a

simple control on the scattering time ⌧⇤. We defer more general cases to Section 2.9.

Consider the central motion given by Eq. (2.3.15) with the initial conditions describing

the two particles just before the interaction, namely q(0) = ⌫ 2 S2, q̇(0) = V and |V | > 0,

V · ⌫  0. Denote

L = |⌫ ^ V | = |⇢V | (2.3.16)

the magnitude of angular momentum, being ⇢ the impact parameter (Fig. 2.1). A rather

general estimate on ⌧⇤ is the following:

Lemma 1. Under Hypothesis 1 it is

⌧⇤ 
A

L
(2.3.17)

for some A > 0.
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Proof. From the conservation laws one derives the well known formula expressing ⌧⇤ as a

function of V and L :

⌧⇤ =
p

2

Z 1

r⇤
dr

1
⇣
⇢
2 � L2

2r2 � �(r)
⌘1/2

, (2.3.18)

where r⇤ is the minimum distance from the origin, r⇤ = min⌧2[0,⌧⇤] |q(⌧)|, related to V and L

by
⇢

2
=

L2

2r2⇤
+ �(r⇤) . (2.3.19)

The e↵ective potential, i.e. the potential of the reduced one–dimensional motion (which is

the evolution of the radial coordinate in the center of mass), is the L�dependent function

�eff (r) =
L2

2r2
+ �(r) � L2

2
, r 2 [0, 1] . (2.3.20)

We can write

⌧⇤ =
p

2

Z 1

r⇤
dr

1

(�eff (r⇤) � �eff (r))1/2


p

2
⇣
min[0,1](��0

eff )
⌘ 1

2

Z 1

r⇤
dr

1p
r � r⇤

. (2.3.21)

Denote improperly �0 the derivative with respect to r of the function �||q|=r. Since �0  0

and

�0
eff (r) = �0(r) � L2

r3
, (2.3.22)

the result follows easily.

The estimate in Lemma 1 tells us that ⌧⇤ = O((⇢V )�1). This has the advantage to be

general and su�cient to our purposes. Clearly the bound can be improved in many cases.

Singularities in the scattering occur whenever the collision is central (⇢ = 0) and the energy

corresponds exactly to a point of vanishing force (⇢/2 = �(r),�0(r) = 0). This kind of

singularities does not exist if the potential is unbounded at the origin and strictly repulsive:

for instance for potentials diverging at the origin with a power law, formula (2.3.17) can be

easily replaced by ⌧⇤ = O(V �1). From (2.3.21) it can be noticed also that the singularity for

low energies may appear only if � goes to zero smoothly (C1) in r = 1.

We conclude by introducing a map which encodes all the properties of the two–body

interaction. The scattering operator I is defined over
n

(⌫, V ) 2 S2 ⇥ R3 \ {0} s.t. V · ⌫  0
o

(2.3.23)

by:

I(⌫, V ) = (⌫ 0, V 0)8
<
:

V 0 = V � 2!(! · V )

⌫ 0 = �⌫ + 2!(! · ⌫)
(2.3.24)

30



where ! = !(⌫, V ) is the scattering vector, see Fig. 2.1. It follows that V · ⌫ = �V 0 · ⌫ 0. In

particular, V 0 · ⌫ 0 � 0, i.e. I sends incoming to outgoing configurations.

The following property of I will be used in the validation of Boltzmann equation.

Lemma 2. I is an invertible transformation that preserves Lebesgue measure.

Proof. Of course, being the dynamics reversible, !(⌫ 0, V 0) = !(⌫, V ) (see Fig. 2.1) and

I�1 is defined in the same way as I.

To see that I is measure preserving, we fix cartesian coordinates on the plane where the

scattering occurs, and call � the angle formed by V and the first axis (with � growing when

V rotates counterclockwise), ↵ the angle formed by V and ⌫ and such that sin↵ is the impact

parameter ⇢ (with the convention ↵ 2 [⇡/2, (3⇡)/2], see Fig. 2.1). Restricting to the plane of

the scattering, we have the parametrization V = (|V | cos�, |V | sin�), ⌫ = ↵. In the variables

|V |,�,↵ the action of I is simply described by:

V 0 = (|V 0| cos�0, |V 0| sin�0) , ⌫ 0 = ↵0 ,

where 8
>>><
>>>:

|V 0| = |V |
↵0 = ⇡ � ↵

�0 = �� �(sin↵, |V |)
. (2.3.25)

Note that ↵0 2 [�⇡/2,⇡/2]. The first equation is conservation of energy, the second conserva-

tion of angular momentum, and the third holds by definition of scattering angle (Fig.2.1). In

the Appendix it will be noted that � is a di↵erentiable function of its arguments. Moreover,

the determinant of the jacobian of the transformation (2.3.25) has modulus one, independently

of the form of �. This concludes the proof.

2.4 The Grad hierarchy

In this section we derive a hierarchy of equations for a family of quantities which are very close

to the marginals introduced in the previous Section 2.3.1. This allows to put the dynamical

problem in a form somehow similar to the one arising in considering hard–sphere systems and

more suitable for the study of the low–density limit.

We define the reduced marginals

fN
j (zj , t) =

Z

S(xj)N�j

dzj,N�jW
N (zj , zj,N�j , t) , (2.4.1)

where

S(xj) =
n

z = (x, v) 2 R6
��� |x � xk| > " for all k = 1, · · · , j

o
. (2.4.2)

It is clear that the functions fN
j , for any j, are asymptotically equivalent (uniformly on

compact sets in Mj in the BG limit) to the usual marginals.
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Consider now a configuration zN = (zj , zj,N�j) such that

|x` � xk| > " (2.4.3)

for all ` = 1, · · · , j and k = j+1, · · · , N. Since the range of the interaction is ", the interaction

between the group of the first j particles and the rest of the system is vanishing. Therefore

the Liouville equation (2.3.9) on such configurations becomes:

@tW
N + L0

NWN + LI
jW

N + LI
j,NWN = 0 , (2.4.4)

where LI
j,N is defined as in (2.3.11) with the sums running from j + 1 to N.

As already said in the Remark at page 28, we make at the moment the regularity as-

sumptions needed to justify Eq. (2.4.4) and all the steps in the following derivation (see the

mentioned Remark).

Integrating Eq. (2.4.4) with respect to dzj,N�j over S(xj)
N�j we obtain:

�
@t + LI

j

�
fN

j (zj , t) = �
NX

i=j+1

Z

S(xj)N�j

dzj,N�jvi · rxiW
N (zN , t)

�
jX

i=1

Z

S(xj)N�j

dzj,N�jvi · rxiW
N (zN , t) , (2.4.5)

where we used that Z

R3(N�j)

dvj,N�jLI
j,NWN = 0 . (2.4.6)

The first sum is handled by the divergence theorem yielding

�
NX

i=j+1

Z

S(xj)
dzj+1 · · ·

Z

@S(xj)
d�(xi)dvi · · ·

Z

S(xj)
dzN (vi · ⌫i)W

N , (2.4.7)

where ⌫i is the outward normal to S(xj) and d�(xi)dvi is the surface measure. Note that

if zk 2 @S(xj), there exists an index k 2 {1, · · · , j} such that |xk � xi| = ". Moreover, if

zj 2 Mj , there is only one such an index for almost all xi with respect to the surface measure

d�(xi). Hence @S(xj), as regards the x-dependence, is the disjoint union of pieces of spherical

surfaces. We call such pieces �k(xj), that is

@S(xj) =

j[

k=1

�k(xj) ⇥ R3 (2.4.8)

where

�k(xj) ⇢ {x | |x � xi| = "} . (2.4.9)

We set ⌫k,i = xk�xi

|xk�xi| . Using the symmetry of WN we have N � j identical integrals, for which

(2.4.7) becomes:

� (N � j)

jX

k=1

Z

�k(xj)
d�(xj+1)

Z

R3

dvj+1(vj+1 · ⌫k,j+1)

Z

S(xj)N�j�1

dzj+1,N�j�1W
N . (2.4.10)
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The integration domain of the last integral in (2.4.10) is not S(xj+1)
N�j�1, as it would

be necessary to recover fN
j+1 and close the equation. We could reduce this integration to

S(xj+1)
N�j�1, and this would produce a small error in the BG limit. Nevertheless, we

want to establish an exact and closed equation, for which we need a further work. Let

ı̇ = {i1, · · · , im} be a subset of ordered indices of {j +2, · · · , N}, with i1 < i2 < · · · < im. We

put zı̇ = {zi1 , · · · , zim}, and introduce the set

�ı̇(xj+1) :=
n
zı̇ ⇢ S(xj)

m such that, for each ` = 1, · · · , m, min
k2ı̇[{j+1}

k 6=i`

|xk � xi` |  "
o

.

(2.4.11)

A generic configuration in S(xj)
N�j�1 di↵ers from S(xj+1)

N�j�1 because some particle,

say particle i1, could overlap with particle j + 1, this meaning that |xi1 � xj+1|  ". If this is

the case, we consider the maximal cluster of overlapping particles with indices ı̇. Definition

(2.4.11) gives the subset of such cluster–configurations. The other particles are far apart the

group with indices 1, · · · , j, j + 1, ı̇, therefore each of them is in S(xj+1,xı̇). Then, we can

decompose the integration domain S(xj)
N�j�1 in (2.4.10) as a union of disjoint sets to obtain

�(N � j)

jX

k=1

N�j�1X

m=0

X

ı̇:|ı̇|=m

Z

�k(xj)
d�(xj+1)

Z

R3

dvj+1(vj+1 · ⌫k,j+1)

·
Z

�ı̇(xj+1)
dzı̇f

N
j+1+m(zj+1, zı̇) , (2.4.12)

where we denoted |ı̇| the cardinality of ı̇ and we used (2.4.1), as well as the symmetry of WN ,

to integrate out the not–clusterized variables. All the terms in the
P

ı̇ are identical so that

the result can be written

�
jX

k=1

N�j�1X

m=0

(N � j)(N � j � 1) · · · (N � j � m)

Z

�k(xj)
d�(xj+1)

·
Z

R3

dvj+1(vj+1 · ⌫k,j+1)

Z

�m(xj+1)

dzj+1,m

m!
fN

j+1+m(zj+1+m) , (2.4.13)

where

�m(xj+1) :=
n
zj+1,m ⇢ S(xj)

m such that, for each ` = j + 2, · · · , j + 1 + m,

min
i2{j+1,··· ,j+1+m}

i 6=`

|xi � x`|  "
o

. (2.4.14)

The second sum in Eq. (2.4.5) is

�
jX

i=1

Z

S(xj)N�j

dzj,N�jvi · rxiW
N (zN , t) = �

jX

i=1

vi · rxif
N
j (zj , t)

+(N � j)

jX

i=1

Z

�i(xj)
d�(xj+1)

Z

R3

dvj+1(vi · ⌫i,j+1)

Z

S(xj)N�j�1

dzj+1,N�j�1W
N (zN , t) .

(2.4.15)
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Repeating the same step we did before to go from (2.4.10) to (2.4.13), we readily arrive to

the following hierarchy of equations (which we call Grad hierarchy):

(@t + Lj) fN
j =

N�j�1X

m=0

A"
j+1+mfN

j+1+m, 1  j  N , (2.4.16)

where the operator Lj = L"
j depends also on " through its interacting part (2.3.11), and

A"
j+1+mfN

j+1+m(zj , t) = (N � j)(N � j � 1) · · · (N � j � m)

·
jX

i=1

"2
Z

S2

d⌫ {min`=1,··· ,j,` 6=i |xi+⌫"�x`|>"}(⌫)
Z

R3

dvj+1(vj+1 � vi) · ⌫

·
Z

�m(xj+1)

dzj+1,m

m!
fN

j+1+m(zj , xi + ⌫", vj+1, zj+1,mt) , (2.4.17)

with xj+1 = xi+⌫" in the argument of �m. We indicate with {·}(·) the characteristic function

of the set defined by the condition in the curly brackets.

In particular it is

A"
j+1f

N
j+1(zj , t)

= "2(N � j)

jX

i=1

Z

S2⇥R3

d⌫dvj+1 {min`=1,··· ,j;` 6=i |xi+⌫"�x`|>"}(⌫)

·(vj+1 � vi) · ⌫fN
j+1(zj , xi + ⌫", vj+1, t) ,

= "2(N � j)C"
j+1f

N
j+1(zj , t) , (2.4.18)

where (2.4.18) defines C"
j+1, which is the same collision operator appearing in the hard–sphere

case, see [11]. Actually it is clear that, in the BG limit, this term is the only O(1) term in

the sum in the right hand side of (2.4.16). Indeed, for m > 0 and fixed j, the size of A"
j+1+m

will be

O(Nm+1"2"3m) , (2.4.19)

the "3m coming from the successive integrations in the domain �m(xj+1). This means that

we are in a situation quite similar to that of the hard–sphere system [11], and we can hope

to derive the Boltzmann equation in a similar manner.

2.4.1 Series solution

Consider the dynamical flow obtained by solving the Newton equations (2.3.4) for a system

of j particles:
d2xi

dt2
(t) =

1

"

X

k 6=i

F

✓
xi(t) � xk(t)

"

◆
, (2.4.20)

where i and k run now from 1 to j. Denote by T"j(t)zj the solution of this system of equations

with initial datum zj . The action of this flow on the functions is given by the interacting flow
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operator S"
j (t), defined as

S"
j (t)g(zj) = g(T"j(�t)zj) . (2.4.21)

We may represent the solution of Eq (2.4.16) by means of a perturbative expansion, that

is just the iteration of the Duhamel formula:

fN
j (t) =

N�jX

n=0

X

m1,··· ,mn�0:
j+n+

Pn
i=1 miN

Z t

0
dt1

Z t1

0
dt2 · · ·

Z tn�1

0
dtn (2.4.22)

·S"
j (t � t1)A"

j+1+m1
S"

j+1+m1
(t1 � t2) · · · A"

j+n+
Pn

i=1 mi
S"

j+n+
Pn

i=1 mi
(tn)fN

j+n+
Pn

i=1 mi
(0) ,

where fN
j (t) = fN

j (·, t), and fN
j (0) are the reduced marginals of the initial probability distri-

bution. This expansion will be our main tool.

We derived Eq. (2.4.22) assuming su�cient smoothness of the initial distribution (see

Remark on page 28). However, by using a density approximation, (2.4.22) can be proven to

hold for a general class of initial measures. The argument can be found in [17] page 281, or

[15] page 18 for cases of hard–sphere dynamics, and it can be applied also to general smooth

potentials. We list the main steps in what follows. A di↵erent approach based on a weak

formulation may be found in [6].

Consider the collection of integration variables in the right hand side of (2.4.22), which

we call � = (t1, · · · , tn, ⌫1, · · · , ⌫n, vj+1, · · · , vj+n, zj+n,
P

i mi
), see also (2.4.17). The reduced

marginal in the integrand takes a form fN
j+n+

Pn
i=1 mi

(yj+n+
Pn

i=1 mi
(zj ,�), 0), with zj 2 Mj

and � in the integration domain. For the understanding of the detailed structure of the

map, (zj ,�) ! yj+n+
Pn

i=1 mi
, we defer to the discussion in Section 2.7 of this paper. Now,

let us write the expansion in (2.4.22) for a generic measurable probability density WN . To

have a nice control on the integration over large velocities, we shall assume the exponential

decrease fN
j  cje��

Pj
i=1 v2

i for some c,� > 0. Since y is a Borel map (as follows directly

from measurability of the partial mappings (zj , t) ! T"j(t)zj), the expansion makes sense for

the reduced marginals of WN , and the integrals therein are absolutely convergent.

To recover identity (2.4.22), we use that there exists a sequence of smooth densities

WN,� which evolve according to (2.4.22), satisfy the exponential bound, and approximate

WN : lim
�!0

WN,� = WN a.e. on MN . Since the densities evolve according to WN (zN , t) =

WN (T"N (�t)zN ) (and same equation for WN,�), we also have lim
�!0

WN,�(t) = WN (t) a.e. on

MN and, consequently, lim
�!0

fN,�
j (t) = fN

j (t) a.e. on Mj . We are left with the problem of

taking the limit of the right hand side of (2.4.22). Using the measure preserving property of

the flows T"j(t), it can be shown that y is not singular, in the sense that y�1 maps null sets

in Mj+n+
Pn

i=1 mi
to null sets of values of (zj ,�) in its domain. This fact, together with the

gaussian estimate, allows to apply dominated convergence, thus concluding the proof.

Summarizing, we have the following
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Proposition 1. Let WN be the density of a probability distribution on MN with reduced

marginals fN
j . Suppose that WN is Borel measurable, symmetric in the particle labels and

such that fN
j  cje��

Pj
i=1 v2

i for some c,� > 0. Then the evolved measure at time t > 0 has

reduced marginals fN
j (t) given by Eq. (2.4.22), for almost all points in Mj .

Remark. It is important to observe that definitions of the operators A"
j and C"

j (respectively

(2.4.17) and (2.4.18)) involve a trace problem, so that they are well posed if they act over

functions which are at least continuous over a.a. points of the spheres of center xi and radius

" (see definition (2.4.17)). Nevertheless, this is not relevant to our purposes, since we will

work only with operators of the form
R

dsA"
jS"

j (s). These last are indeed well defined over

functions fN
j satisfying the hypotheses of Proposition 1, by virtue of the nonsingularity of

the map yj .

For future convenience, let us conclude this subsection by giving some more definition.

The subseries associated to the dominant term of (2.4.22) (that with all mi = 0) defines a

new sequence of functions which we call {f̃N
j }N

j=1 :

f̃N
j (t) =

N�jX

n=0

↵"
n(j)

Z t

0
dt1

Z t1

0
dt2 · · ·

Z tn�1

0
dtn (2.4.23)

·S"
j (t � t1)C"

j+1S"
j+1(t1 � t2) · · · C"

j+nS"
j+n(tn)fN

j+n(0) ,

↵"
n(j) := "2n(N � j)(N � j � 1) · · · (N � j � n + 1) , (2.4.24)

where we used definition (2.4.18). Notice that the in the BG limit ↵"
n(j) = O(1).

Finally, it will be convenient to decompose the collision operator C"
j+1 in the following

form:

C"
j+1 =

jX

k=1

C"
k,j+1

C"
k,j+1 = C",+

k,j+1 � C",�
k,j+1

C",+
k,j+1f

N
j+1(zj , t) =

Z

S2
�⇥R3

d⌫dvj+1 {min`=1,··· ,j;` 6=k |xk+⌫"�x`|>"}(⌫)

·|(vk � vj+1) · ⌫|fN
j+1(zj , xk + ⌫", vj+1, t)

C",�
k,j+1f

N
j+1(zj , t) =

Z

S2
+⇥R3

d⌫dvj+1 {min`=1,··· ,j;` 6=k |xk+⌫"�x`|>"}(⌫)

·|(vk � vj+1) · ⌫|fN
j+1(zj , xk + ⌫", vj+1, t) (2.4.25)

where

S2
+ = {⌫ | (vk � vj+1) · ⌫ � 0} ,

S2
� = {⌫ | (vk � vj+1) · ⌫  0} . (2.4.26)
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2.4.2 The Boltzmann hierarchy

In this subsection we treat the solution to the Boltzmann equation (2.2.1) as we did in Section

2.4.1 for the interacting system of particles and compare heuristically the results.

Let f be a solution to Eq. (2.2.1). Consider the products

fj(zj , t) = f(t)⌦j(zj) = f(z1, t)f(z2, t) · · · f(zj , t) . (2.4.27)

It is easy to show that the fj solve the hierarchy of equations

�
@t + L0

j

�
fj = Cj+1fj+1, 1  j < 1 , (2.4.28)

where

Cj+1 =

jX

k=1

Ck,j+1 (2.4.29)

Ck,j+1 = C+
k,j+1 � C�

k,j+1

C+
k,j+1fj+1(zj , t) =

Z

S2
+⇥R3

d⌫dvj+1(vk � vj+1) · ⌫fj+1(z1, · · · , xk, v
0
k, · · · , zj , xj+1, v

0
j+1, t)

C�
k,j+1fj+1(zj , t) =

Z

S2
+⇥R3

d⌫dvj+1(vk � vj+1) · ⌫fj+1(z1, · · · , xk, vk, · · · , zj , xj+1, vj+1, t)

and 8
<
:

v0k = vj+1 � ![! · (vk � vj+1)]

v0j+1 = v1 + ![! · (vk � vj+1)]
, (2.4.30)

! = !(⌫, vj+1 � vk) being the scattering vector (see Fig. 2.1).

The infinite hierarchy of equations (2.4.28) (which does not express nothing else than

the Boltzmann equation) is called the Boltzmann hierarchy. Proceeding as before, we may

represent its solution by the perturbative expansion around the free flow:

fj(t) =
X

n�0

Z t

0
dt1

Z t1

0
dt2 · · ·

Z tn�1

0
dtn

·Sj(t � t1)Cj+1Sj+1(t1 � t2) · · · Cj+nSj+n(tn)fj+n(0) , (2.4.31)

where now Sj(t) is the free flow operator, defined as

Sj(t)g(zj) = g(x1 � v1t, v1, · · · , xj � vjt, vj) . (2.4.32)

Note that:

- Eq. (2.4.22) is an identity which expresses fN
j (well defined by means of the N–particle

flow) in terms of a finite sum of operators acting on the initial sequence fN
j (0);

- f̃N
j , Eq. (2.4.23), is just a technical definition;

- Eq. (2.4.31) is a serieswhose convergence must be proven.
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As for the hard–sphere case [11], it is possible to show that such a series is indeed convergent

for a short time. We will do this in Section 2.6.

Recalling the discussion at the end of Section 2.4 and the fact that LI
j equals zero for

" small, we shall guess that (2.4.28) is what one gets just letting " go to zero in the Grad

hierarchy (2.4.16). To do so, assume for simplicity that fN
j+1 is continuous. Then, we may

try to rewrite the action of C",+
k,j+1 over fN

j+1 in such a way that the function is evaluated in

incoming collision states. Call t⇤ = "⌧⇤ the time of interaction of particles k and j + 1. Since

the scattering process is, in macroscopic variables, almost instantaneous, we assume that the

other particles do not interact in the same time interval. By the continuity of the flow it will

be

T"j+1(�t⇤)(zj , xk + ⌫", vj+1) ⇡ (z1, · · · , xk, v
0
k, · · · , zj , xj+1, v

0
j+1) , (2.4.33)

hence

C",+
k,j+1f

N
j+1(zj , t) (2.4.34)

⇡
Z

S2
�⇥R3

d⌫dvj+1|(vk � vj+1) · ⌫|fN
j+1(z1, · · · , xk, v

0
k, · · · , zj , xj+1, v

0
j+1, t)

=

Z

S2
+⇥R3

d⌫dvj+1(vk � vj+1) · ⌫fN
j+1(z1, · · · , xk, v

0
k, · · · , zj , xj+1, v

0
j+1, t) ,

where in the second step we simply changed ⌫ ! �⌫.
We stress that this heuristic discussion is somehow dangerous. In fact, the required

continuity property of fN
j+1, even when true for any fixed N, is lost in the limit. This is

why we work with integral formulas instead of partial di↵erential equations. The rigorous

version of the above (standard) argument, which will be presented in Section 2.8, resorts to

the convergence of (2.4.31) to (2.4.22), and requires only continuity of the limiting initial data

fj(0).

2.5 Assumptions and results

We establish here the hypotheses under which we will work. Beyond Hypothesis 1 on the

interaction potential stated in Section 2.3.2, we assume

Hypothesis 2. The initial condition for the Boltzmann equation is a continuous probability

density f0 over R6, satisfying the bound

sup
x,v

e
�
2
⇢f0(x, v) < +1 (2.5.1)

for some � > 0.
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Moreover, indicating by H(zj) the j�particle Hamiltonian written in macroscopic vari-

ables,

H(zj) =
1

2

jX

i=1

v2
i +

1

2

jX

i,j=1
i 6=k

�

✓
xi � xk

"

◆
, (2.5.2)

we have

Hypothesis 3. The initial probability density on MN is a Borel function WN
0 symmetric in

the particle labels. Its reduced marginals fN
0,j , j = 1, · · · , N satisfy the bound

fN
0,j(zj)e

�H(zj)  e↵j (2.5.3)

for some ↵ > 0.

By Proposition 1, the fN
0,j are good initial data for the evolutions (2.4.22) and (2.4.23).

Note also that Hypothesis 3 implies that we are fixing correlations even at time zero. Indeed,

if the interaction potential diverges at the origin, fN
0,j(zj) ! 0 exponentially whenever xk ! xi

for k 6= i. Therefore, initial product states are excluded. This situation is similar to that

of hard–sphere systems, in which an overlapping of any pair of particles is not allowed.

Even when the potential is bounded, but positive at the origin (which is the case of stable

interactions), product states are forbidden by Hypothesis 3. In fact, near the diagonal (xk =

xi) the factor e�H(zj) can grow exponentially with j2.

Our last hypothesis is

Hypothesis 4. The family fN
0,j converges to f0,j := f⌦j

0 as N ! 1, uniformly on compact

sets in Mj .

We are now ready to state our first result. Let fN
j (t) be the reduced marginals at time t,

evolved according to Eq. (2.4.22) and let fj(t) be defined as in (2.4.27) and (2.4.31) (which

will be proven to be an absolutely convergent series in Section 2.6). Define also the subset of

particles that cannot collide pointwise under the free evolution:

⌦j =
n
zj 2 Mj s.t. inf

s2R
|xi � xk � (vi � vk)s| > 0

o
. (2.5.4)

Theorem 1. Under the Hypotheses 1–4, there exists t0 > 0 such that, for 0 < t < t0 and

j > 0,

lim
"!0

N"2=1

fN
j (t) = fj(t) (2.5.5)

uniformly on compact sets in ⌦j .

Theorem 1 is formulated and proven in the same spirit of [11] and [10]. As we shall

see in Section 2.8.2, the proof, based on geometrical arguments, is abstract and does not

give informations on the rate of convergence. However, the result can be improved under
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quantitative assumptions on the rate of convergence and the continuity of the initial data, as

explained in what follows.

Define

Mj(�) =
n
zj 2 R6j

��� |xi � xk| > �, i, k = 1 · · · j, k 6= i
o

(2.5.6)

for � > 0. We assume

Hypothesis 5. For some C 0 > 0,

sup
zj2Mj(")

��f0,j(zj) � fN
0,j(zj)

��  (C 0)j" . (2.5.7)

Then we have the following:

Theorem 2. Assume the Hypotheses 1�5, and assume that f0 is Lipschitz continuous. Then,

for all zj 2 ⌦j , j > 0 and t su�ciently small, there exists a positive "0 = "0(zj) such that, for

" < "0 and N"2 = 1

|fN
j (zj , t) � fj(zj , t)|  Cj"

1
10 , (2.5.8)

where C > 0 is a suitable constant.

Observe that Hypotheses 4, 5 are a natural notion of convergence compatible with conti-

nuity of f0 and estimate (2.5.3) (which prevents convergence on the diagonals xi = xk). To

clarify this point, we construct some explicit example in the next subsection.

2.5.1 An example of initial datum

In the following we present a sequence of reduced marginals satisfying Hypotheses 3–5. Set

WN
0 (zN ) =

1

ZN
f⌦N
0 (zN )

Y

1i<kN

{|xi�xk|>"}(zN ) , (2.5.9)

where

ZN =

Z

R6N

dzNf⌦N
0 (zN )

Y

1i<kN

{|xi�xk|>"}(zN ) (2.5.10)

is the partition function and f0 is some density satisfying Hypothesis 2. The reduced marginals

are

fN
0,j(zj) =

FN (zj)

ZN
f⌦j
0 (zj)

Y

1i<kj

{|xi�xk|>"}(zj) (2.5.11)

with

FN (zj) =

Z

R6(N�j)

dzj,Nf
⌦(N�j)
0 (zj,N )

0
@

jY

i=1

NY

k=j+1

{|xi�xk|>"}(zN )

1
A

·

0
@ Y

j+1i<kN

{|xi�xk|>"}(zj,N )

1
A . (2.5.12)
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Let us estimate FN (zj)Z�1
N . First observe that, for some C0 > 0,

ZN�j(1 � C0N"3)j  ZN  ZN�j . (2.5.13)

The upper bound is obvious consequence of the normalization of f0. As regards the lower

bound, note that

ZN =

Z

R6(N�1)

dzN�1f
⌦(N�1)
0 (zN�1)

Y

1i<kN�1

{|xi�xk|>"}(zN�1)

·
Z

R6

dzNf0(zN )

N�1Y

i=1

{|xi�xN |>"}(zN )

=

Z

R6(N�1)

dzN�1f
⌦(N�1)
0 (zN�1)

Y

1i<kN�1

{|xi�xk|>"}(zN�1)

·
Z

R6

dzNf0(zN )

 
1 �

N�1X

i=1

{|xi�xN |"}(zN )

!

� ZN�1(1 � C0(N � 1)"3) , (2.5.14)

for instance taking C0 = (4⇡/3)kf0k1. Eq. (2.5.13) follows by iteration. We can also show

that

ZN�j

✓
1 � j

C0N"3

1 � C0N"3

◆
 FN (zj)  ZN�j . (2.5.15)

The upper bound is immediate, while the lower bound follows from

FN (zj) �
Z

R6(N�j)

dzj,Nf
⌦(N�j)
0 (zj,N )

0
@1 �

jX

i=1

NX

k=j+1

{|xi�xk|"}(zN )

1
A

·

0
@ Y

j+1i<kN

{|xi�xk|>"}(zj,N )

1
A

� ZN�j � j(N � j)C0"
3ZN�j�1 ,

� ZN�j

✓
1 � jNC0"

3 ZN�j�1

ZN�j

◆
, (2.5.16)

noticing that (2.5.13) implies ZN�j�1Z�1
N�j  (1�C0N"3)�1. If N"2 = 1 and N is su�ciently

large, Equations (2.5.13) and (2.5.15) give in turn the bounds

1 � 2C0j" 
FN (zj)

ZN
 1

(1 � C0")j
(2.5.17)

and, in particular,
FN (zj)

ZN
�!

N!1
1 (2.5.18)

uniformly in zj 2 Mj .
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Now it is easy to check that, for N su�ciently large, the Hypotheses 3–5 are verified.

Hypothesis 3 follows from Hypothesis 2. Hypothesis 5 (hence 4) follows from the estimates

in (2.5.17)

In definition (2.5.9) for the initial density we could also replace the product of characteristic

functions with e
��

P
i<k �

⇣
xi�xk

"

⌘
, see [6]. This defines a sequence of states which are, in a

sense, the maximally uncorrelated states for which the Hypotheses are satisfied.

Finally, other families of initial data exhibiting a slower rate of convergence (and implying

possibly a slower convergence in Theorem 2) can be easily constructed, for instance enlarging

the cut–o↵ in (2.5.9). If in formula (2.5.9) " is replaced by "� with � 2 (2/3, 1], then,

proceeding as before, we obtain

sup
zj2Mj("�)

��f0,j(zj) � fN
0,j(zj)

��  (C 0)j"�2+3� . (2.5.19)

2.5.2 General strategy of the proof

The proof follows the main ideas of [11], adapted to the present context. The validity argument

is based on a comparison among the series for the N�particle system (2.4.22), and the

Boltzmann series (2.4.31).

- First, we prove that both the expansions are absolutely convergent series, for su�ciently

short times and uniformly in " : see Section 2.6. As a consequence of the estimates in Section

2.6, it follows also that (2.4.22) and (2.4.23) are asymptotically equivalent in the BG limit.

- Then, it remains to prove the term by term convergence of (2.4.23) to (2.4.31). To do this,

it is necessary a preliminary detailed analysis of the generic term. This is presented in Sections

2.7 and 2.7.1 for the series (2.4.23), and in Section 2.7.2 for the Boltzmann series (2.4.31).

The structure of the generic term is described with the help of a convenient representation

of formulas in terms of tree graphs. It turns out that any given term can be expressed as an

integral over a set of special backwards–in–time trajectories of clusters of particles.

- The proof of the term by term convergence is carried out in Section 2.8, using in a crucial

way the picture introduced in the previous section 2.7. The issues arising from the convergence

will be first discussed in Section 2.8.1, while the abstract not quantitative proof leading to

Theorem 1 and the explicit estimates leading to Theorem 2 will be presented respectively in

Sections 2.8.2 and 2.8.3.

2.6 Short time estimates

The aim of this section is to prove that, for times t smaller than a certain t0, the expansion

for fN
j (t), Eq. (2.4.22), can be bounded uniformly in ". The Boltzmann series solution Eq.

(2.4.31) turns out to be an absolutely convergent series for the same values of t. Moreover,

the di↵erence between fN
j (t) and f̃N

j (t) (defined by (2.4.23)) is negligible in the limit. These
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results are easily established by assuming the bounds on the initial data in Hypothesis 2 and

3. Here we will follow [10] (see also [6, 17, 16, 3]).

To begin with, we notice that our assumptions on the initial data make natural the

introduction of the norms:

kgjk� = sup
zj

e�H(zj)|gj(zj)| , gj : Mj ! R , � > 0 ,

kgk�,↵ = sup
j�1

e�↵jkgjk� , g = {gj}1j=1 , ↵ > 0 . (2.6.1)

By the energy conservation

kS"(t)gk�,↵ = kgk�,↵ , (2.6.2)

for all � and ↵ for which the right hand side makes sense.

The crucial estimate is the following:

Lemma 3. Let gN
j : Mj ! R be a sequence of continuous1 functions with gN

j = 0 for j > N

and satisfying the estimate of Hypothesis 3. Set A"gN =
nP

m�0 A"
j+1+mgN

j+1+m

o1

j=1
. Then,

for �0 < � and ↵0 > ↵ there exists a pure constant C̄ > 0 such that, for " small enough,

kA"gNk�0,↵0  C̄

 
1p

(� � �0)(↵0 � ↵)
+

1

↵0 � ↵

!
kgNk�,↵ . (2.6.3)

Proof. From definition (2.4.17) we find

e�
0H(zj)|A"

j+1+mgN
j+1+m(zj)|  (N � j � 1) · · · (N � j � m)

jX

i=1

4⇡kgN
j+1+mk�

·
Z

dvj+1(|vi| + |vj+1|)e�(���0)H(zj)e�
�
2
v2

j+1

·
Z

�m(xj+1)

dzj+1,m

m!
e�

�
2

Pj+1+m
i=j+2 ⇢i . (2.6.4)

Here we used that "2(N � j)  1 and the positivity of the interaction (Hypothesis 1), for

which H(zj+1+m) = H(zj)+H(zj,1+m) � H(zj)+ 1
2

Pj+1+m
i=j+1 ⇢i. The last integral in the right

hand side is bounded by ✓
2⇡

�

◆ 3
2
m ✓

4⇡

3

◆m

"3m , (2.6.5)

so that (2.6.4) is smaller than

kgN
j+1+mk�(C�")

m
jX

i=1

Z
dvj+1(|vi| + |vj+1|)e�

���0
2

Pj
i=1 ⇢ie�

�
2
v2

j+1 , (2.6.6)

1The continuity here is required only for simplicity of notation, since it assures well posedness of the

operator action: see the Remark after Proposition 1. If that is not true, the lemma must be reformulated forR t

0
ds sn�1

(n�1)!
A"S"(s) (that is what we really need to control for the proof of Proposition 2 below). This can be

done in an obvious way using Eq. (2.6.2) and adding a factor tn/n! in the right hand side of the estimate.
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where we used again positivity of the interaction, and C� is a suitable constant. The Cauchy–

Schwarz inequality implies

jX

i=1

(|vi| + |vj+1|) 

vuutj

jX

i=1

⇢i + j|vj+1|, (2.6.7)

which inserted into (2.6.6) leads to

kA"
j+1+mgN

j+1+mk�0  (C 0
�")

mkgN
j+1+mk�

✓ p
jp

� � �0
+ j

◆
. (2.6.8)

Summing over m and taking the supremum over j with weight e�↵0j we readily get (2.6.3)

for " smaller than a constant depending only on �,↵.

Let us apply Lemma 3, together with (2.6.2), to the right hand side of (2.4.22). We

proceed by iteration. For a given n > 0, we partition the intervals [�/2,�] and [↵, 2↵] in n

intervals of the same length �
2n and ↵

n , and then apply the above results n times. The outcome

is

kfN (t)k�/2,2↵ 
X

n�0

Z t

0
dt1

Z t1

0
dt2 · · ·

Z tn�1

0
dtn(C�,↵n)nkfN

0 k�,↵

=
X

n�0

tn

n!
(C�,↵n)nkfN

0 k�,↵

 kfN
0 k�,↵

X

n�0

(tC 0
�,↵)n , (2.6.9)

for suitable constants C�,↵, C 0
�,↵, having used Stirling formula in the last step. Hence we

obtained a geometric series which converges for t su�ciently small (and the radius of conver-

gence is explicitly computable in terms of the other constants). Now the same argument can

be applied in a straightforward way to the series (2.4.23) and (2.4.31). Thus, we have proven

the first statement of:

Proposition 2. In the Hypotheses 2 and 3, we have absolute convergence of the series

(2.4.22), (2.4.23) (uniformly in the BG limit for " small enough) and (2.4.31), for all t <

t0 = t0(�,↵). Moreover, for some C 00 > 0, if " is small enough,

kfN (t) � f̃N (t)k�/2,2↵  C 00" . (2.6.10)

Proof. We just need to prove Eq. (2.6.10). Set C"gN =
n
"2(N � j)C"

j+1g
N
j+1

o1

j=1
. With

the notations of Lemma 3 and proceeding in the same way, we observe that

k(A" � C")gNk�0,↵0  sup
j�1

e�↵0j
X

m�1

kA"
j+1+mgN

j+1+mk�0

 sup
j�1

e�↵0j
X

m�1

(C 0
�")

mkgN
j+1+mk�

✓ p
jp

� � �0
+ j

◆

 C 00
�,↵"

 
1p

(� � �0)(↵0 � ↵)
+

1

↵0 � ↵

!
kgNk�,↵ (2.6.11)
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for suitable C 00
�,↵ > 0, having used (2.6.8) in the first inequality, and " su�ciently small in the

second. Therefore, proceeding as in (2.6.9),

kfN (t) � f̃N (t)k�/2,2↵ 
X

n�0

tn

n!

nX

k=1

✓
n

k

◆
"k(C�,↵n)nkfN

0 k�,↵

 "kfN
0 k�,↵

X

n�0

(t2C 0
�,↵)n , (2.6.12)

which gives the result with C 00 depending on �,↵ and on the initial datum.

2.7 The tree expansion

In the proof of Theorems 1 and 2 it is convenient to represent each term of the expansions

(2.4.23) and (2.4.31) as more explicit integrals of the initial data, fN
0,j and f0,j respectively.

As we will see in the present section, it is natural to express such terms by means of binary

trees which help us to visualize the various contributions.

Consider first Eq. (2.4.23) which, reminding Eq. (2.4.25), we rewrite as

f̃N
j (t) =

N�jX

n=0

↵"
n(j)

X

�n

X

kn

⇤
(�1)|�n|

Z t

0
dt1

Z t1

0
dt2 · · ·

Z tn�1

0
dtn

·S"
j (t � t1)C",�1

k1,j+1S"
j+1(t1 � t2) · · · C",�n

kn,j+nS"
j+n(tn)fN

0,j+n , (2.7.1)

where

�n = (�1, · · · ,�n), �i = ± , |�n| =

nX

i=1

�i1 ,

X

kn

⇤
=

jX

k1=1

j+1X

k2=1

· · ·
j+n�1X

kn=1

. (2.7.2)

We introduce the n�collision, j�particle tree graph, denoted �(j, n), as the collection of

integers k1, · · · , kn that are present in the sum (2.7.2), i.e.

k1 2 Ij , k2 2 Ij+1, · · · , kn 2 Ij+n , with Is = {1, 2, · · · , s}, (2.7.3)

so that we shall write X

kn

⇤
=

X

�(j,n)

. (2.7.4)

Note that the number of terms in the sum is j(j + 1) · · · (j + n � 1). The name tree graph is

justified by the fact that it has a natural graphical representation. This is best explained by

an example: see Figure 2.2 which corresponds to �(2, 5) given by 1, 2, 1, 3, 2.

Given a tree graph �(j, n), and fixed a value of �n and of all the integration variables

in the expansion (2.7.2) (times, unit vectors, velocities), we can associate to it a special
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Figure 2.2: Tree graph �(2, 5) = 1, 2, 1, 3, 2. We have also drawn a time arrow in order to

associate times to the nodes of the trees: at time ti the line j + i is“created”. Lines 1 and 2

exist for all times; they are called“root lines”.

("�dependent) trajectory of particles, which we call interacting backwards flow (IBF in the

following), since it will be naturally defined by going back in time. The rules for the construc-

tion of this evolution will be explained in the next section. The notation for a configuration

of particles in the IBF will make use of Greek alphabet:

⇣"(s) , (2.7.5)

where s 2 [0, t] is the time and there is no label specifying the number of particles. If

s 2 (tr+1, tr) (with the convention t0 = t, tn+1 = 0) we have j + r particles:

⇣"(s) = (⇣"1(s), · · · , ⇣"j+r(s)) 2 Mj+r for s 2 (tr+1, tr) , (2.7.6)

with

⇣"i (s) = (⇠"i (s), ⌘
"
i (s)) , (2.7.7)

the positions and velocities of all the particles being respectively

⇠"(s) = (⇠"1(s), · · · , ⇠"j+r(s)) ,

⌘"(s) = (⌘"1(s), . . . , ⌘
"
j+r(s)) . (2.7.8)

The reason to introduce these trajectories is that we want a more explicit expression of

each term of the expansion (2.7.1): our purpose is to write Eq. (2.7.1) as

f̃N
j (zj , t) =

N�jX

n=0

↵"
n(j)

X

�(j,n)

X

�n

(�1)|�n|T "
�n

(zj , t) , (2.7.9)
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where

T "
�n

(zj , t) =

Z
d⇤(tn,⌫n,vj,n)

nY

i=1

B"(⌫i; vj+i � ⌘"ki
(ti))f

N
0,j+n(⇣"(0)) , (2.7.10)

d⇤ is the measure on Rn ⇥ S2n ⇥ R3n given by

d⇤(tn,⌫n,vj,n) = {t1>t2···>tn}dt1 . . . dtnd⌫1 . . . d⌫ndvj+1 . . . dvj+n , (2.7.11)

and we use use the short notation

B"(⌫i; vj+i � ⌘"ki
(ti)) = |⌫i · (vj+i � ⌘"ki

(ti))| {�i⌫i·(vj+i�⌘"ki
(ti))�0} {|⇠"j+i(ti)�⇠"k(ti)|>" 8k 6=ki} .

(2.7.12)

In other words, in the generic term T "
�n

(zj , t), the initial datum fN
0,j+n is integrated, with the

suitable weight, over all the possible time–zero states of the IBF associated to �(j, n),�n.

2.7.1 The interacting backwards flow (IBF)

Let us construct ⇣"(s) for a fixed collection of variables �(j, n),�n, zj , tn,⌫n,vj,n, with

t ⌘ t0 > t1 > t2 > · · · > tn > tn+1 ⌘ 0 , (2.7.13)

and ⌫n satisfying a furhter constraints that will be specified below. The j root lines of the

tree graph are associated to the first j particles, with states ⇣"1 , · · · , ⇣"j . Each branch j + `

(` = 1, · · · , n) represents a new particle with the same label, and state ⇣"j+`. This new particle

appears, going backwards in time, at time t` in a collision state with a previous particle

(branch) k` 2 {1, · · · j + `�1}, with either incoming or outgoing velocity according to �` = �
or �` = + respectively.

More precisely, in the time interval (tr, tr�1) particles 1, · · · , j + r � 1 flow according to

the usual dynamics T"j+r�1. This defines ⇣"j+r�1(s) starting from ⇣"j+r�1(tr�1). At time tr the

particle j + r is“created”by particle kr in the position

⇠"j+r(tr) = ⇠"kr
(tr) + ⌫r" (2.7.14)

and with velocity vj+r. This defines ⇣"(tr) = (⇣"1(tr), · · · , ⇣"j+r(tr)). After that, the evolution in

(tr+1, tr) is contructed applying to this configuration the dynamics T"j+r (with negative times).

The characteristic function in the collision operator (2.4.25) (or the second characteristic

function in (2.7.12)), is a constraint on ⌫r implying that no third particle is closer than " to

the pair kr, j + r at the time tr.

We have two cases. If �r = �, then it must be ⌫r · (vj+r � ⌘"kr
(tr))  0. In this case the

velocities are incoming and no scattering occurs: after tr the pair of particles move backwards

freely with velocities ⌘(tr) and vj+r. If �r = +, we require ⌫r · (vj+r � ⌘"kr
(tr)) � 0 : the pair
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Figure 2.3: At time tr, particle j + r is created by particle kr, either in incoming (�r = �) or

in outgoing (�r = +) collision configuration. Particle kr is called progenitor of particle j + r.

is post–collisional. Then the presence of the interaction in the flow T"j+r forces the pair to

perform a (backwards) scattering. The two situations are illustrated in Fig. 2.3.

Remark. It is very important to note that between two creation times tr, tr+1 any pair

of particles among the j + r, di↵erent from the couple (kr, j + r), can possibly interact by

reaching (or having from the beginning) a distance smaller than ". These interactions are

called recollisions, because involve particles that have already interacted at some creation

time (in the future) with another particle of the IBF. In our language, recollisions are the

“interactions di↵erent from creations”. Though recollisions are expected to be unlikely, we

will have to analyze them with special care, since they are the main responsible of the di↵erent

behavior of the particle dynamics from the Boltzmann evolution.

2.7.2 The Boltzmann backwards flow (BBF)

The discussion of the two previous sections can be repeated, with minor changes, for the

case of Boltzmann series (2.4.31). The interacting backwards flow is now substituted by the

Boltzmann backwards flow (BBF)

⇣(s) , (2.7.15)

for which we use the same notations of (2.7.5)–(2.7.8) with the superscript " omitted. The

BBF is introduced exactly as the IBF, see Section 2.7.1, except for the following di↵erences:

- the interacting dynamics T" is replaced by simple free dynamics;

- in the right hand side of (2.7.14) the second term is missing, i.e. the created particle appears
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at the same position of its progenitor;

- there is no constraint on ⌫r other than the one implied by the value of �r;

- if �r = +, to determine the state of particles in (tr+1, tr), before applying free evolution we

have to change velocities according to (⌘kr(t
+
r ), vj+r) ! (⌘kr(t

�
r ), ⌘j+r(t

�
r )), where ! denotes

the scattering rule depicted in (2.2.2) and Figure 2.1. Here ⌘kr(t
+
r ) indicates the limit from

the future, and ⌘kr(t
�
r ) the limit from the past.

Eq. (2.4.31) can then be rewritten:

fj(zj , t) =

1X

n=0

X

�(j,n)

X

�n

(�1)|�n|T�n(zj , t) , (2.7.16)

where

T�n(zj , t) =

Z
d⇤(tn,⌫n,vj,n)

nY

i=1

B(⌫i; vj+i � ⌘ki
(t+i ))f0,j+n(⇣(0)) , (2.7.17)

and

B(⌫i; vj+i � ⌘ki
(t+i )) = |⌫i · (vj+i � ⌘ki

(t+i ))| {�i⌫i·(vj+i�⌘ki
(t+i ))�0} . (2.7.18)

2.7.3 A measure preserving map

In the proof of the term by term convergence it will be essential the use of a change of vari-

ables allowing to transform the integrals over outgoing variables into integrals over incoming

variables. We introduce such operation in the following. Throughout this subsection �(j, n)

and 1  r  n will be fixed.

Remark. An important point concerning the Boltzmann backwards flow defined in the

previous section is that, in a given interval (tr+1, tr), the velocities ⌘i(s) = ⌘i(t
�
r ), besides

being constant, depend only on the velocities of particles in the future of the BBF, and on

the vectors of impact ⌫1, · · · , ⌫r, but not on the interaction times t1, · · · , tr. In other words,

they are functions of the only ⌫r,vj+r.

Now fix vj 2 R3j , and define the transformation I(r) = I(r)
vj ,�(j,n) :

I(r) : S2r ⇥ R3r �! S2r ⇥ R3r

I(r)(⌫r,vj,r) = (⌫ 0
r,V

0
r) (2.7.19)

where

8
><
>:

⌫ 0i = �⌫i + 2!i(!i · ⌫i) for ⌫i · (vj+i � ⌘ki
(t�i�1)) > 0

⌫ 0i = ⌫i for ⌫i · (vj+i � ⌘ki
(t�i�1))  0

V 0
i = ⌘j+i(t

�
i ) � ⌘ki

(t�i )

. (2.7.20)

Here 1  i  r and !i = !(⌫i, vj+i � ⌘ki
(t�i�1)).
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Lemma 4. The transformation I(r) is a one–to–one, measure preserving map.

Proof. We prove it first for I(1). This is the composition of the two transformations:

(⌫1, vj+1) �! (⌫1, V1)

V1 = vj+1 � vk1 (2.7.21)

and

(⌫1, V1) �! (⌫ 01, V
0
1) = I�1(⌫1, V1) , (2.7.22)

where I�1 is the inverse scattering operator defined in Section 2.3.2 (in the case V1 = 0, just

replace I�1 with the identity). The first is a simple translation. Therefore the result follows

applying Lemma 2.

The proof is completed by induction on r, noticing that I(r)(⌫r,vj,r) = (⌫ 0
r,V

0
r) is given

by 8
>>><
>>>:

(⌫ 0
r�1,V

0
r�1) = I(r�1)

vj (⌫r�1,vj,r�1)

Vr = vj+r � ⌘kr(t
�
r�1)

(⌫ 0r, V
0
r ) = I�1(⌫r, Vr)

, (2.7.23)

where ⌘kr(t
�
r�1) is a function of ⌫r�1,vj,r�1 by the Remark at the beginning of this subsection.

2.8 Proof of results

According to the strategy of Lanford, once proven the uniform convergence of the two series

(2.4.22) and (2.4.31) for short times, we shall conclude the validity results, namely the con-

vergence of fN
j (t) to fj(t), just proving the term by term convergence. Actually, by virtue of

Proposition 2 in Section 2.6, it is enough to prove the term by term convergence of the series

(2.4.23) to (2.4.31).

In Section 2.7 we have rephrased such expansions respectively in (2.7.9) and (2.7.16), i.e.

sums over binary tree graphs of integrals over the (interacting or Boltzmann) backwards flows

associated to the graph. Hence we must show convergence of the generic integral of this kind,

T "
�n

(zj , t), to its analogue in the Boltzmann series, T�n(zj , t). The present section is devoted

to this problem.

We stress once again the importance of the formulation of Grad (introduced in Section 2.4)

which has been our starting point. In the language of Section 2.7 we could say that the terms

in (2.4.22) that are absent in (2.4.23) collect all the interacting backwards flows in which two

or more particles are created at some time ti (graphically, three or more lines emerge from a

node of the tree). The use of reduced marginals has allowed to identify all these negligible

terms and to isolate them from the contributions of order one, namely ↵"
n(j)T "

�n
(zj , t). Now
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looking at (2.7.10), we see that these last object resembles very much the generic term in the

series solution of the BBGKY hierarchy for hard spheres. Nevertheless, as we will explain in

the next subsection, in the case of smooth interactions one has to be more careful in studying

the behavior of T "
�n

(zj , t) for " small.

2.8.1 The convergence problem: preliminary considerations

Let us focus on T "
�n

(zj , t) and T�n(zj , t). The integrand functions depend on the variables

tn,⌫n,vj,n completely through the trajectories of the IBF and the BBF respectively. In

particular, the initial data fN
0,j+n and f0,j+n are integrated over the time–zero configurations

of the flows. Since fN
0,j+n converges to f0,j+n by hypothesis, we must focus on the trajectories

and prove that the IBF converges to the BBF for all values of tn,⌫n,vj,n outside a set that

gives a negligible contribution to the integrals.

Staring at the definition of ⇣"(s) and ⇣(s) (see Sections 2.7.1 and 2.7.2), we realize that a

great di↵erence between them is generally caused by one of the following events:

1. a particle (say j + i) created in the IBF interacts for a very long time (i.e. larger than

O(")) with its progenitor;

2. a couple of particles (i, h) of the IBF undergoes a recollision, i.e. an interaction di↵erent

from a creation (see the remark on page 48);

3. a particle has a very large velocity, so that small di↵erences between the two flows

become large in a time of order 1.

Item 1, which is obviously absent in the case of hard spheres, is controlled by cuto�ng

the variables (⌫i, vj+i) that lead to the singular scattering, and showing that they give a small

contribution to the integrals. Here the main technical issue is an estimate of the time of

interaction, such as that of Lemma 1 (or its generalizations in the non fully repulsive cases:

see Section 2.9). Similarly, item 3 is controlled by cuto�ng the energy of the system, i.e. the

large values of |vj,n|. Item 2 is the most delicate in the framework of generic smooth potentials.

It requires to demonstrate that the contribution of recolliding trajectories is negligible in the

limit "! 0.

To motivate our strategy in controlling the recollisions, we start by the heuristic analysis

of one of the simplest non–trivial cases, namely that in Figure 2.4. At time t particles 1 and 2

are in the final configuration z2 = (x1, v1, x2, v2) 2 M2. We assume that they flow backwards

freely up to time t1, when particle 3 appears with velocity v3 at distance "⌫1 from particle 1,

in outgoing (�1 = +) collision configuration. After the scattering between the couple (1, 3),

particle 1 collides with particle 2. This is a collision which is not a creation, i.e. what we

called a recollision. We shall imagine that Y = ⇠"2(t1)� ⇠"1(t1) is order 1 while " is very small.

We neglect the time of scattering between the pair (1, 3) and approximate with Y the relative

distance between particles 1 and 2 just before the scattering between 1 and 3.
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Figure 2.4: On the left, a simple case: �(j, n) = �(2, 1) = 1. The plus sign on the node

recalls that �1 = +. We want to estimate the contributions to the corresponding formula

T "
+(z2, t), coming from the recolliding trajectories of the IBF. An example of such a trajectory

is symbolically represented in the figure on the right.
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Call ⌘�1 the velocity of free motion of particle 1 between time t1 and the time of the

recollision. Then, the recollision implies a geometrical relation between W = v2 � ⌘�1 and Y.

They must be chosen in such a way that there exists s 2 (0, t1) for which |⇠"2(s) � ⇠"1(s)| = ",

that is implied by W lying in the cone C(Y ) with vertex 0, axis the direction of Y and tangent

to the ball of center �Y and radius "; see Figure 2.5. Moreover, by the laws of scattering

0

−Y

W

Figure 2.5: The recolllision–cone C(Y ).

(2.2.2) and (2.3.24), it is easy to see that ⌘�1 belongs to the spherical surface of the ball

centered in v1+v3
2 of diameter |V |

2 , where V = v3 � v1. In fact, at fixed V and v1 (hence at

fixed total momentum), ⌘�1 moves over that sphere essentially as the scattering vector ! (see

Figure 2.1). In conclusion, ⌘�1 must belong to the intersection A of the cone v2 � C(Y ) and

the spherical surface described above. Clearly, at a given |V |, the surface measure of A is

O("2) once assumed Y = O(1) and " << 1.

Now we want to estimate
Z

|v3|R
dv3

Z

⌫1·(v3�v1)�0
d⌫1⌫1 · (v3 � v1) {⌘�1 2A} , (2.8.1)

where the cuto↵ on v3 has been added here to obtain an integral over a compact set. By the

above discussion, it follows that a rather natural way to proceed is to express the integral in

terms of an integration with respect to V and !, so that we get

Z
dV̂

Z 2R

0
d|V ||V |2

Z
d!B(!, V ) {⌘�1 2A} (2.8.2)

where V̂ is the versor of V, we assumed also |v1|  R, and B is the function resulting from the

change of variables (see also Eq. (2.2.3)). If B were bounded (as in the case of hard spheres)

we would easily conclude that such a contribution is O("2). Unfortunately, this is not true

in many physically interesting cases, since B could not exist as a single valued function and,

even in each monotonicity branch of the scattering map ⇢ ! ⇥(⇢), it could diverge as the

map becomes flat (see the Appendix). So a more refined estimate of (2.8.2) is needed, which

is rather complicated since it depends strongly on details of the potential.
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We propose a di↵erent method avoiding the use of the scattering cross–section (i.e. of the

function B). This is based on two main ideas:

- We work as much as possible on the Boltzmann flow, rather than on the interacting

flow. Of course the BBF is much simpler since interactions (= creations) are instantaneous.

Moreover, by the property of the Remark on page 49, various parametrizations of the BBF

can be found, di↵erent from the usual in terms of tn,⌫n,vj,n. In particular, the trajectories

of the BBF can be conveniently parametrized by incoming collision variables, see for instance

the map introduced in Section 2.7.3. For these reasons, we find convenient to estimate the

events in which some couple of particles of the BBF get closer than a certain distance (say on

a scale slightly larger than "). Indeed in the complement of this set the Boltzmann trajectories

are close to the particle trajectories, as soon as the scattering time is small and the energy is

not too large (which will be assured by additional cuto↵s).

- To estimate the above set of events, we use as much as possible the integration over time

variables. From Figure 2.4 one can guess that, in general, a small (O(")) interval of values of

t1 will be compatible with the recollision condition.

Of course this last assert is not always true and we will show in the following section that

it fails for special configurations of relative velocities (see the Remark on page 59). Exploiting

the global structure of the BBF, we will prove that such configurations are either excluded

by the condition on the“initial datum”zj 2 ⌦j , or they correspond to small set of values of

relative velocities of incoming collisions, which will be estimated using the map of Section

2.7.3.

2.8.2 Proof of Theorem 1

By the result in Proposition 2 of Section 2.6 and the reformulations of Section 2.7, the proof

of Theorem 1 reduces to the proof of convergence of the generic term of the expansion, i.e.

Proposition 3. Under the Hypotheses 1–4, for all �(j, n),�n and all (zj , t) 2 ⌦j ⇥ R+,

lim
"!0

T "
�n

(zj , t) = T�n(zj , t) . (2.8.3)

The aim is to apply dominated convergence, showing that the trajectories of the IBF

converge almost everywhere to those of the BBF. As said above, we first need to“cut”pieces

of phase space which correspond to trajectories of the IBF possibly showing recollisions,

long time two–body interactions, or high energies, and prove that they give a negligible

contribution in the limit. Outside this properly defined set of“bad events”, we will be able

to estimate explicitly the distance between the interacting trajectories and the Boltzmann

trajectories.

In all this section and in the following we will keep fixed zj 2 ⌦j and t > 0. Moreover,

times tn will be always supposed to be ordered (see (2.7.13)), and the ⌫n to satisfy the

constraint implied by �n : Eq. (2.7.18). In the present section we also fix �(j, n) and �n.

54



We start focusing on the BBF ⇣(s) and giving a new definition. Consider particle i and

look at the graph of �(j, n). A polygonal path Pi is uniquely defined if we walk on the tree

by going forward in time, starting from the time–zero endpoint of line i and going up to the

root–point at time t. See for instance Figure 2.6. To Pi we may naturally associate a one–

0−

i

i

i

i

t −

t −

t −

t

t −

1

3

4

2

1 23 5 4 76 8i

Figure 2.6: Path Pi in the tree �(2, 6), with i = 8. The state of the particle associated to it

via the BBF is called“virtual trajectory”.

particle piecewise–free trajectory, built up with pieces of trajectories of (di↵erent) particles of

the BBF. More precisely, fixed a BBF with parameters (tn,⌫n,vj,n), denote ti1 , · · · , tini
the

(decreasing) subsequence of t1, · · · , tn of the times corresponding to the nodes met by following

the path Pi (ni being the number of such nodes, with the convention i0 = 0, ti0 = t): see

the figure. We call virtual trajectory associated to particle i in the BBF, and indicate it by

⇣i(s) = (⇠i(s), ⌘i(s)) 2 R6 with s 2 [0, t], the one–particle trajectory given by:

⇣i(s) =

8
<
:
⇣i(s) for s 2 [0, tini

)

⇣kir
(s) for s 2 [tir , tir�1), 0 < r  ni

. (2.8.4)

Observe that, during the time of existence of particle i in the BBF, ⇣i(s) = ⇣i(s).

Now consider a couple of particles (i, h) and compare their virtual trajectories. Call-

ing“root”of Pi the root line of the tree to which Pi belongs, we have two possibilities: either

the roots of Pi and Ph coincide (i.e. i and h belong to the same single tree), or not. In the

second case, there exists (uniquely) a node of the tree where Pi and Ph merge. For any given

couple (i, h) we introduce the subsequence of t1, · · · , tn :

t � t0 > t1 > t2 > · · · > tnih > tnih+1 ⌘ 0 , (2.8.5)

defined as follows. Time t0 is equal to t if Pi and Ph have coinciding roots; otherwise, it is

equal to the time (strictly smaller than t) of the node where Pi and Ph merge. The sequence
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t1, · · · , tnih is given by the ordered union of the times ti1 , · · · , tini
and th1 , · · · , thnh

that belong

to the interval (0, t0). Here nih is the number of such times, and tnih+1 has been put equal to

zero by convention. See also Figure 2.7.

We are ready to define a part of the“bad set”to be cuto↵ed. Let be � > 0. The set of

��overlaps, N (�) ⇢ ⇥Rn ⇥ S2n ⇥ R3n, is

N (�) =
n
tn,⌫n,vj,n

��� min
i<h

min
s2[0,t1]

|⇠i(s) � ⇠h(s)|  �
o

, (2.8.6)

where t1 depends on the couple (i, h) under consideration. Notice that this set is completely

defined via the BBF. Clearly, it depends also on zj , t.

In the following, � must be thought as a function of " that goes to zero as " ! 0, with

� > ". Then, the first step in the proof is to show that the restriction of the integrals contained

in T "
�n

(zj , t) to the set N (�) is arbitrarily small with ". To do so, consider the set of point–

recollisions N ⌘ N (0),

N =
n
tn,⌫n,vj,n

��� min
i<h

min
s2[0,t1]

|⇠i(s) � ⇠h(s)| = 0
o

. (2.8.7)

Obviously it is

lim
�!0

N (�) = N . (2.8.8)

We will now show that the set N has d⇤�measure zero. Precisely, we will show that the

condition in (2.8.7) implies a certain number of relations between the integration variables

that can be satisfied at most for a d⇤�null set of values.

If we are in N , then for some couple (i, h) there exists

t⇤ = max{s 2 [0, t1] s.t. |⇠i(s) � ⇠h(s)| = 0} . (2.8.9)

A possible situation is pictured in Figure 2.7. It will be t⇤ 2 [tl+1, tl) for some l 2 {0, · · · , nih}.

l is the total number of interactions in the virtual trajectories of i and h between the time of

recollision and t0. For q = 0, · · · , l, we define:

Y q = ⇠h(tq) � ⇠i(tq) ,

⌘i
q ⌘ ⌘i(s) , ⌘h

q ⌘ ⌘h(s) for s 2 (tq+1, tq) ,

W q = ⌘h
q � ⌘i

q . (2.8.10)

We indicate f 2 {0, 1, · · · , n} the index such that

t0 = tf . (2.8.11)

Notice that either t0 = t (f = 0) and Y 0 6= 0 (by zj 2 ⌦j) or t0 < t (f > 0) and Y 0 = 0

(because t0 is the time of the node where Pi and Ph merge).
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Figure 2.7: A symbolical drawing of virtual trajectories of two particles i, h in the BBF

showing a ��overlap. Relative distances and velocities are indicated as defined in (2.8.10).

In case A the two particles belong to di↵erent trees, while in case B they belong to the same.
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If l = 0, it cannot be t0 = t because zj 2 ⌦j . On the other hand if l = 0 and t0 < t, it

must necessarily be 8
<
:

Y 0 = 0

W 0 = 0
. (2.8.12)

By conservation of energy, this corresponds to only one possible value of the velocity of the

particle created at time t0 = tf , namely vj+f must be equal to ⌘kf
(t+f ) (which is obviously

independent on vj+f ). Observe also that if W l = 0, then by definition (2.8.9) it must be

t⇤ = t1, hence l = 0. Therefore we may assume in what follows W 0 6= 0 and, consequently,

l � 1 and W l 6= 0.

The recollision condition is verified only if mins |Y l � W ls| = 0, which in turn implies

Y l ^ Ŵ l = 0, where Ŵ l = W l

|W l| . Since

Y l = Y 0 �
l�1X

q=0

W q(tq � tq+1) � W l(tl � t⇤) , (2.8.13)

we have

0 = Y 0 ^ Ŵ l �
l�1X

q=0

(W q ^ Ŵ l)(tq � tq+1)

= (Y 0 � W 0t0) ^ Ŵ l �
lX

q=1

[(W q � W q�1) ^ Ŵ l)]tq . (2.8.14)

But, by the Remark on page 49, all the vectors involved in this relation do not depend on the

times. Hence as soon as [(W q �W q�1) ^ Ŵ l)] 6= 0 for some q, there exists at most one value

of the time tq satisfying the condition.

Otherwise, it will be

Ŵ l ^ W q = 0 q = 0, 1, · · · , l , (2.8.15)

i.e. all relative velocities are (if not null) collinear. In particular, Eq. (2.8.14) implies

Y 0 ^ Ŵ l = 0 . (2.8.16)

As said above we have two cases, which we treat separately.

• Case Y 0 6= 0, t0 = t.

Both Y 0 and W 0 are collinear with Ŵ l. Therefore

Y 0 ^ W 0 = 0 , (2.8.17)

which is excluded by zj 2 ⌦j .
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• Case Y 0 = 0, t0 < t.

If all relative velocities W q are coincident, then no point–recollision is possible since

W 0 6= 0. Finally assume that U := W q � W q�1 6= 0 for some q 2 {1, · · · , l} and put

Û = U
|U | . We have Û ^ Ŵ l = 0, which, together with W 0 ^ Ŵ l = 0, implies

Û ^ W 0 = 0 . (2.8.18)

Let tq = tf 0 , where f 0 > f (recall (2.8.11)). Then if (⌫ 0
n,V0

n) = I(n)(⌫n,vj,n), we have

W0 = V 0
f and U = ±[⌘kf 0 (t

+
f 0)�⌘kf 0 (t

�
f 0)] or U = ±[⌘kf 0 (t

+
f 0)�⌘j+f 0(t�f 0)]; see Figure 2.8.

From the rules of scattering it follows that the vector U depends only on (⌫ 0f 0 , V 0
f 0)2.

Then Eq. (2.8.18) defines a subset of codimension two in the space of (⌫ 0
n,V0

n). By

Lemma 4 of Section 2.7.3, this subset has d⇤�measure zero.

+

−

f ’t
j + f ’v

Figure 2.8: Detail of the virtual trajectories of Figure 2.7–Case B, for times close to tq = tf 0 .

In the example �f 0 = +. The di↵erence of relative velocities is U = W q � W q�1 = ⌘+ � ⌘�

(here f 0 belongs to Pi; if f 0 belongs to Ph then U = ⌘� � ⌘+), where ⌘+ = ⌘kf 0 (t
+
f 0) and

⌘� can be equal to ⌘j+f 0(t�f 0) or ⌘kf 0 (t
�
f 0), depending on the structure of Pi. The variables

describing the scattering are (⌫f 0 , vj+f 0), or alternatively (⌫ 0f 0 , V 0
f 0).

Remark. The condition“|Ŵ l ^ W q| small for all q”(see (2.8.15) or its extension in the

following section) means that the relative velocities of the two virtual trajectories leading to

the recollision are either small or nearly collinear to each other (and clearly in this situation

we may not use any time variable to show that recollisions are rare). In particular, this is the

case of a sequence of central and grazing collisions in the virtual trajectories, for which the

relative velocities can remain unchanged (recall that the scattering cross–section may possibly

have concentrations on such collisions! see the Appendix). On the other hand, in this case the

virtual trajectories would be analogous to a free flow, for which the recollisions can be easily

controlled. More generally, the pathological condition on |Ŵ l ^ W q| implies that the flow

of the relative distance between the two virtual trajectories has globally a simple structure.

In the above proof (and in the one in the following section) we have exploited this to show

2It can be U = ±!(! · V 0
f 0) or U = ±[V 0

f 0 � !(! · V 0
f 0)] where ! = !(⌫0

f 0 , V 0
f 0) is the scattering vector.
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that, in presence of such a condition, the recollision is either an impossible (case Y 6= 0) or a

negligible (case Y = 0) event.

So far we have proven that N is null. From the convergence of N (�) it follows that the

integral of any finite measure restricted to the set goes to zero with �. But, in our Hypothesis

3, d⇤ (
Q

B") fN
0,j+n is uniformly bounded by a finite measure for " small. For instance, using

conservation of energy, we can estimate it with

d⇤

0
@2

vuut
j+nX

i=1

v2
i

1
A

n

e�
�
2

Pj+n
i=1 v2

i kfN
0,j+nk� , (2.8.19)

where we used that the initial energy is purely kinetic if " is small enough (having fixed xj

outside the diagonals). Hence we have what we asserted before Eq. (2.8.7), that is we have

proven

lim
"!0

Z
d⇤(tn,⌫n,vj,n)

nY

i=1

B"(⌫i; vj+i � ⌘"ki
(ti)) N (�)f

N
0,j+n(⇣"(0)) = 0 (2.8.20)

for all zj 2 ⌦j and all t > 0.

Besides N (�), we still have to cure some additional subsets of the integration region.

Putting

"
1 = {�

2

Pj+n
i=1 v2

i <| log "|} ,

"
2 =

nY

r=1
{|(vj+r�⌘"kr

(tr))^⌫r|>"
1
3 } , (2.8.21)

a simple estimate as the one in (2.8.19) is su�cient to show that

lim
"!0

Z
d⇤(tn,⌫n,vj,n)

nY

i=1

B"(⌫i; vj+i � ⌘"ki
(ti))(1 � N (�))(1 � "

1
"
2)f

N
0,j+n(⇣"(0)) = 0 .

(2.8.22)

Thus, to obtain the final result we are left with the proof of

lim
"!0

Z
d⇤(tn,⌫n,vj,n)

nY

i=1

B"(⌫i; vj+i � ⌘"ki
(ti))(1 � N (�))

"
1

"
2f

N
0,j+n(⇣"(0)) = T�n(zj , t) .

(2.8.23)

Notice that up to now we did not use any property of the interacting flow but the conservation

of energy. Now we have to examine more in detail the structure of the IBF and to compare it

with the Boltzmann flow. Since we are restricting to the complement of N (�) and to the sets

in (2.8.21), we are actually in a favorable situation in proving that the distance between the

two flows is small. Indeed, as we will show in the following lemma, the IBF has no recollisions

and its di↵erences with the BBF are only due to the scattering time, which is absent in the

Boltzmann flow, and to the "�delocalization of the created particles (also absent in the BBF).
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Choose

� = "
2
3 (log ")2 (2.8.24)

Then we have:

Lemma 5. If (tn,⌫n,vj,n) is outside N (�) and inside the sets of (2.8.21), then for " su�-

ciently small and all i = 1, · · · , j + n

max
s2[0,t]

|⇠i(s) � ⇠"i (s)|  D"
2
3 | log "| 3

2 (2.8.25)

for some D > 0. In particular, the IBF does not admit recollisions. Moreover, ⌘"kr
(tr) =

⌘kr(t
+
r ) for all r = 1, · · · , n and ⌘"i (0) = ⌘i(0).

Proof of Lemma 5. The proof is based on a simple continuity argument. We proceed by

induction on r proving that, for some D0 > 0,

|⇠i(s) � ⇠"i (s)|  D0r"
2
3 | log "| 1

2 , s 2 (tr+1, tr) (2.8.26)

for i = 1, · · · , j + r, from which (2.8.25) follows taking n smaller then a costant times | log "|.
A byproduct will be that if particle i  j + r� 1, at time tr, has yet completed the (possible)

scattering with its progenitor (or its last son) in the IBF, then necessarily ⌘"i (tr) = ⌘i(tr)

(from which the last assertion of the lemma follows, because the parameters are taken outside

N (�)).

For r = 0 the statement is trivial. Indeed, since we are outside N (�) with � > " and the

states at time t of the BBF and the IBF are coinciding then, for s 2 (t1, t), ⇣i(s) = ⇣"i (s).

Let now s 2 (tr+1, tr) for r > 0 and i = 1, · · · , j +r. We consider the case (being the other

cases easier) in which particle i in the IBF is interacting at time tr with another particle h.

For " small and by inductive hypothesis, this can be true only if the two particles coincide

with the couple (kr, j + r), or if they are a couple progenitor–son, (k0
r, j + r0) with r0 < r, that

has not finished the two–body scattering. Also, note that no other particle can be at distance

 �/2 from i and h at time tr (for " small and n = O(| log "|)).
Call s⇤ 2 (tr+1, tr) the last (first backwards) recollision time of particle i or h in the IBF,

that is |⇠"h0(s) � ⇠"i (s)| > " for all h0 6= h, i and all s 2 (s⇤, tr), and same equation with i

replaced by h. Then, for the same values of s, particles i and h behave as they were isolated,

and we have that |⇠"i (s) � ⇠i(s)| is equal to the same function evaluated in max(s, tr � t),

where t is the time of the two–body scattering (in fact, once the backward scattering finishes,

it must be ⌘"i (s) = ⌘i(s)). Hence, taking into account Lemma 1 and the cuto↵s (2.8.21), we

have

|⇠"i (s) � ⇠i(s)|  |⇠"i (tr) � ⇠i(tr)| + 2
p

2/�| log "|t
 D0(r � 1)"

2
3 | log "| 1

2 + 2
p

2/�| log "|A" 2
3 , (2.8.27)
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which implies (2.8.26) with D0 = 2
p

2/�A, for s 2 (s⇤, tr). The same holds of course for

particle h.

In particular (taking " small so that n is O(| log "|)) we have that |⇠"i (s) � ⇠i(s)|  �
4 up

to the first recollision time. Since we are outside N (�), for all h0 6= h, i

|⇠"h0(s) � ⇠"i (s)| � |⇠h0(s) � ⇠i(s)| � |⇠"h0(s) � ⇠h0(s)| � |⇠"i (s) � ⇠i(s)|

> � � �

4
� �

4
=
�

2
(2.8.28)

up to the first recollision time of i, h, h0, and the same equation holds for particle h. But

�/2 > ". Therefore, by continuity of the flow, |⇠"h0(s) � ⇠"i (s)| > �
2 and |⇠"h0(s) � ⇠"h(s)| > �

2 for

all times s 2 (tr+1, tr), and Eq. (2.8.26) holds in the full interval.

To conclude the proof of Proposition 3, the above result can be also used to replace the

initial datum fN
0,j+n with f0,j+n in T "

�n
(zj , t), that is to show that

lim
"!0

Z
d⇤(tn,⌫n,vj,n)

nY

i=1

B"(⌫i; vj+i � ⌘"ki
(ti))

��fN
0,j+n(⇣"(0)) � f0,j+n(⇣"(0))

�� = 0 .

(2.8.29)

Indeed, we may write the left hand side as

lim
"!0

Z
d⇤(tn,⌫n,vj,n)

nY

i=1

B"(⌫i; vj+i � ⌘"ki
(ti))(1 � {mini<h |⇠"i (0)�⇠"h(0)|�0})

· {Pj+n
i=1 v2

i <E} {|(vj+r�⌘"kr
(tr))^⌫r|>l}

��fN
0,j+n(⇣"(0)) � f0,j+n(⇣"(0))

��+ C�0 + CE,l ,

(2.8.30)

where �0, E, l are positive constants (independent of ") and C�0 , CE,l are the remainder terms

containing

{mini<h |⇠"i (0)�⇠"h(0)|�0} {Pj+n
i=1 v2

i <E} {|(vj+r�⌘"kr
(tr))^⌫r|>l} (2.8.31)

and

(1 � {Pj+n
i=1 v2

i <E} {|(vj+r�⌘"kr
(tr))^⌫r|>l}) (2.8.32)

respectively. In this way the configurations ⇣"(0) in the integral are restricted to a compact

subset of Mj+n, hence the first term in (2.8.30) is null by Hypothesis 4. As a consequence of

Lemma 5, the set {mini<h |⇠"i (0)� ⇠"h(0)|  �0} is contained in N (2�0) for " small. Therefore,

the fact that N has measure zero (together with Hypotheses 2, 3) implies that C�0 can be

made arbitrarily small by taking �0 small. Since also CE,l is arbitrarily small with E large

and l small, (2.8.29) follows.

Using this last result, the estimate (2.8.19) (with fN
0,j+n replaced by f0,j+n), dominated

convergence and Lemma 5, Eq. (2.8.23) follows.
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2.8.3 Proof of Theorem 2

In this section we go through the steps of the abstract proof discussed above and estimate

explicitly all the error terms arising in the limiting procedure, under the additional Hypothesis

5. A further care is needed in these estimates in order to obtain an error that is summable

in n. In fact, the simple bound (2.8.19) is prohibited in this context, since it would give an

estimate of the n�th term proportional to n!.

In this section for simplicity of notation we will call C all pure positive constants depending

only on � and ↵.

We start again noticing that we may focus on the expressions (2.7.9) and (2.7.16) and

estimate their di↵erence

|f̃N
j (zj , t) � fj(zj , t)| . (2.8.33)

Indeed, by Proposition 2, the error due to this approximation is

E1 = |fN
j � f̃N

j |  Cj" . (2.8.34)

We are left with

|f̃N
j (t) � fj(t)| 

X

n�0

X

�(j,n)

X

�n

(�1)|�n||T "
�n

� T�n | + Cn"2 . (2.8.35)

where the term "2 is an error due to the fact that |↵"
n(j) � 1| is easily estimated by Cj"2.

In the estimate of the di↵erence between the interacting and the Boltzmann flow, see

Lemma 5, we required n = O(| log "|). This means that we will need a cuto↵ on the“dimension”

of trees. We shall in fact reduce to the estimate of

D00| log "|X

n=0

X

�(j,n)

X

�n

(�1)|�n||T "
�n

� T�n | . (2.8.36)

The error generated by this cuto↵ is bounded by the remainder of a geometric series appearing

in formula (2.6.9), therefore it is bounded by Cj" if we choose D00 = | log(tC 0
�,↵)|�1.

As already said in the previous sections, the crucial estimate in the evaluation of the error

rate is the one coming from the set N (�). With the notations introduced above, we have:

Lemma 6. For all zj 2 ⌦j

Z
d⇤(tn,⌫n,vj,n) N (�)f

N
0,j+n(⇣"(0))  �3/10n Cj+n tn�1

(n � 1)!
. (2.8.37)

If we are in N (�), particle i and h are recolliding before tr. Let t̄ the time of the first

interaction after tr of the particle h or i, say h for instance. More precisely this means that

at time t̄ h is created by kh or is creating a new particle k. Then consider the trajectory of

h or kh respectively, according the two cases from t̄ up to the subsequent interaction (which

of course can involve particle i). Then we iterate the procedure up to a time t0. t0 = t if h
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and i belong to di↵erent trees. Otherwise t0 is the maximal time up to which h and i have

di↵erent progenitors. Figure 2.7 describes the two cases.

We denote by (⇠h(s), ⌘h(s)) and (⇠i(s), ⌘i(s)) the two paths constructed in this way, by

t1 . . . t` the interaction times and by

Wk = ⌘h(s) � ⌘i(s) for s 2 (tk, tk+1) (2.8.38)

the relative velocities in each time interval. Note that ⇠h(s) (as well as (⇠i(s)) is not necessarily

a real trajectory performed by a particle but a collection of pieces of branches of a tree. Finally

we set

Y0 = ⇠h(t0) � ⇠i(t0). (2.8.39)

Note that Y0 vanishes in case 2.

A �-recollision event in the time interval (tr+1, tr) with tr  t` is implied by the condition

inf
0st`

������
Y0 �

`�1X

q=0

Wq(t
q � tq+1) � W`s

������
 �. (2.8.40)

Minimizing over s we get
������
(Y0 �

`�1X

q=0

Wq(t
q � tq+1)) ^ Ŵ`

������
 �. (2.8.41)

Here and after we use the notation Û = U
|U | for any vector U . We can write condition (2.8.41)

more conveniently in the equivalent form
������
[Y0 � W0t

0 �
`�1X

q=0

(Wq � Wq+1)t
q+1] ^ Ŵ`

������
 �. (2.8.42)

Then there are two possibilities which we treat separately:

���(Wq⇤ � Wq⇤+1) ^ Ŵ`

��� > �� for some q⇤, q⇤ = 0 . . . `� 1 (2.8.43)

and ���(Wq � Wq+1) ^ Ŵ`

���  �� for all q = 0 . . . `� 1. (2.8.44)

� 2 (0, 1) will be chosen later on.

Case I

Case (2.8.43) can be handled easily, proceeding as in the proof of Theorem 1: we fix all

the parameters t1 . . . tn, vj+1 . . . vj+n, ⌫1 . . . ⌫n but tq⇤ and perform the time integration with

respect to this variable. We use the following obvious estimate

(|B|>��)

Z +1

0
dtq⇤ (|A+Btq⇤ |�)  (|B|>��)

�

|B|  �1�� (2.8.45)
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when

B = (Wq⇤ � Wq⇤+1) ^ Ŵ` (2.8.46)

and

A = Y0 � W0t
0 �

X

q=0...`�1
q 6=q⇤

(Wq � Wq+1)t
q+1 ^ W` . (2.8.47)

Integrating on the rest of the variables and summing on all possible q⇤ we conclude that

the contribution due to the event (2.8.43) can be bounded by

E1 = �1�� n e↵j (Ct)n�1

(n � 1)!
. (2.8.48)

Case II.a

To analyze the case (2.8.44) we assume initially that |Y0| > 0 and show that, if � = �(Y0) is

su�ciently small, case (2.8.44) cannot be realized. Indeed from (2.8.44) we have

���W0 ^ Ŵ`

��� 
`�1X

q=0

���(Wq � Wq+1) ^ Ŵ`

���  n�� , (2.8.49)

from which ���Ŵ0 ^ Ŵ`

���  n��

|W0|
(2.8.50)

Note that |W0| > 0 since |Y0 ^ W0| > 0 because we are dealing with a fixed configuration

zj 2 ⌦j .

On the other hand by using (2.8.41) and (2.8.44) we have
���(Y0 � W0t

0) ^ Ŵ`

��� 
������
(Y0 � W0t

0 �
`�1X

q=0

(Wq � Wq+1)t
q+1) ^ Ŵ`

������
+ n��t 

� + t n �� (2.8.51)

Combining (2.8.51) and (2.8.50) we obtain
���Y0 ^ Ŵ0

��� 
���(Y0 � W0t

0) ^ Ŵ`

���+
���Ŵ0 ^ Ŵ`

���  C n �� . (2.8.52)

The above condition cannot be realized, for � su�ciently small, because
���Y0 ^ Ŵ0

��� > 0 and

|W0| > 0.

Case II.b

As regards the case Y0 = 0, namely when i and h have a common progenitor, we consider

separately the two cases:

|Wq � Wq+1|  �� for all q = 0 . . . `� 1 (2.8.53)
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and

|Wq⇤ � Wq⇤+1| > �⌫ for some q⇤, q⇤ = 0 . . . `� 1 . (2.8.54)

Case II.b.1

In case (2.8.53), we consider the distance of the two trajectories up to a time s 2 (0, t`) in

which they arrive at distance �:

� =
���W0(t

0 � t1) . . . W`(t
` � s)

���
������
W0t

0 �
`�1X

q=0

(Wq � Wq�1)t
q+1 + W`s

������
. (2.8.55)

Therefore

t0|W0|  |W`|s +

`�1X

q=0

|Wq � Wq�1|tq+1

 |W`|s + t n�⌫ + �. (2.8.56)

On the other hand

W` =
`�1X

q=0

(Wq � Wq�1) � W0 , (2.8.57)

from which

|W`|  n�⌫ + |W0| . (2.8.58)

Combining (2.8.56) and (2.8.58) we obtain

|W0| 
C n �⌫

t0 � t`
. (2.8.59)

Case II.b.1.]

Considering times for which t0 � t` > �3/4⌫ , we can perform the integration on W0 which can

be considered as an independent variable (thanks to the map Ir
vj

defined in Section 2.7.3) in

the integration domain

|W0|  C n �⌫/4 . (2.8.60)

Finally we integrate on the rest of the variables and the resulting error is

E2 = �3/4⌫n3e↵j (Ct)n

n!
. (2.8.61)

Case II.b.1.[

When t0 � t`  �3/4⌫ we integrate in dt` to obtain the the error

E3 = C�3/4⌫e↵j (Ct)n�1

(n � 1)!
. (2.8.62)
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Case II.b.2

It remains to consider case (2.8.54).

Case II.b.2.]

By (2.8.50) and (2.8.54) we have

���Ŵ0 ^ ( ˆWq⇤ � Wq⇤�1)
���


���Ŵ0 ^ Ŵ`

���+
���Ŵ` ^ ( ˆWq⇤ � Wq⇤�1)

���

 n ��

|W0|t0
+

��

|Wq⇤ � Wq⇤�1|

 n ��

t0|W0|
+ ���⌫

 C

✓
1 +

1

|W0|

◆
n ���⌫ , (2.8.63)

where in the last step we have assumed that t0 � �⌫ .

Case II.b.2.[

Otherwise we integrate on dt0 to get an error bounded by

C�⌫e↵j (Ct)n�1

(n � 1)!
, (2.8.64)

which we include in (2.8.62). We now analyze the vector Wq⇤ � Wq⇤�1. Observe that there

is an interaction at tq⇤ of one of the two branches, say that of particle h. Denote by k the

ancestor of h responsible of this scattering and denote by ⌘+
k and ⌘�k its incoming and outgoing

velocities respectively. Finally let r the index of the particle interacting with k at time tq⇤

(see Figure 2.8). Let s be the particle of the branch of particle i which is not scattering at

tq⇤ . Then

Wq⇤ � Wq⇤�1 = ⌘+
k � ⌘s + ⌘s � ⌘�k = ⌘+

k � ⌘�k = �!(V · !) (2.8.65)

where V = ⌘�k �⌘�r is the relative velocity before the scattering and ! is the scattering vector.

Reminding that, by using the proper map I(r)
vj , we can assume all the relative velocities before

the collisions as independent variables, we integrate in dW0 under condition (2.8.63). The

error we produce is

E4 = C���⌫ n e↵j (Ct)n

n!
. (2.8.66)

Optimizing on � and ⌫ we finally obtain the estimate in Lemma 6.

To prove Theorem 2, first of all we get rid of (
Q

i Bi) once for ever, performing the

following decomposition: fix a parameter �, to be chosen later, and consider separately the

two situations {Qn
i=1 Bi  "��} and {Qn

i=1 Bi > "��}. We focus on the second case, being

the first one simpler. Therefore we need to estimate the following quantity
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X

n�0

X

k1...kn

X

�n

Z
d⇤(tn,⌫n,vj,n) (

nY

i=1

B"
i )

2 fN
0,j+n(⇣"(0)) . (2.8.67)

By using of energy conservation on every collision we have

(

nY

i=1

B"
i )

2  2n
X

k1...kn

nY

i=1

(v2
ki

+ v2
j+i)  2n

nY

i=1

(

j+nX

i=1

v2
i + (j + n)v2

j+i) .

Moreover, by Hypothesis 3:

fN
0,j+n(⇣"(0)  e↵(j+n)e��

Pj+n
i=1 v2

i .

Therefore

(2.8.67) 
X

n�0

Cne↵(j+n)

Z
d⇤(tn,⌫n,vj,n)

nY

i=1

�
e�

�
4n

Pj+n
i=1 v2

i e�
�
4
v2

j+i [

j+nX

i=1

v2
i +(j+n)v2

j+i]
�
e�

�
2

Pj+n
i=1 v2

i .

(2.8.68)

Now observe that
j+nX

i=1

v2
i e

� �
4n

Pj+n
i=1 v2

i  Cn

so that

(2.8.67) 
X

n�0

Cne↵(j+n)(j + n)n

Z
d⇤e�

�
2

Pj+n
i=1 v2

i . (2.8.69)

Since
(j + n)n

n!
 Cn(1 +

j

n
)n  Cnej

we have

(2.8.67)  e(↵+1)je�
�
2

Pj
i=1 v2

i

X

n�0

C(↵,�)nn!

Z
d⇤e�

�
2

Pj+n
i=j+1 v2

i . (2.8.70)

Taking advantage by the time ordering in the integral d⇤ we can conclude that

(2.8.67)  e(↵+1)je�
�
2

Pj
i=1 v2

i

X

n�0

(tC(↵,�))n (2.8.71)

which is converging for t small. Hence we denote by

E2 = C "�

the error due to (
Q

i Bi) large. We remember that all the constants C hereafter will depend

on j.

Now we have to compute the remaining term, when (
Q

i Bi) is small:

"��
X

n�0

X

k1...kn

X

�n

(�1)�n

Z
d⇤(tn,⌫n,vj,n) |fN

0,j+n(⇣"(0)) � f0,j+n(⇣(0))| . (2.8.72)
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As explained in the previous sections, the recollisions are the principal problem in the evalu-

ation of the error; hence we split the above equation into two terms, integrating in a domain

in which recollisions occur and in its complement. Coherently with the notation used in the

previous subsection, we fix � and we get

(2.8.72)  "��
X

n�0

X

k1...kn

X

�n

(�1)�n(

Z
d⇤(tn,⌫n,vj,n) N (�)(|fN

0,j+n(⇣"(0))| + |f0,j+n(⇣(0))|)+

+

Z
d⇤(tn,⌫n,vj,n) (1 � N (�))|fN

0,j+n(⇣"(0)) � f0,j+n(⇣(0))|) =

= I1 + I2 .

(2.8.73)

Thanks to Lemma 6, the term I1, the one in which recollisions occur, produces an error

E3 = C �
3
10 "��.

The term I2 is outside the ricollision set, but there are other errors to be taken into

account: that due to large velocities and that due to small angular momenta. Using definitions

stated in Eq. (2.8.21), I2 can be bounded by

 "��
X

n�0

X

k1...kn

X

�n

[

Z
d⇤(tn,⌫n,vj,n) (1 � N (�))

"
1

"
2 |fN

0,j+n(⇣"(0)) � f0,j+n(⇣(0))|+

+

Z
d⇤(tn,⌫n,vj,n) (1 � N (�)) (1 � "

1) (|fN
0,j+n(⇣"(0))| + |f0,j+n(⇣(0))|)+

+

Z
d⇤(tn,⌫n,vj,n) (1 � N (�)) (1 � "

2) (|fN
0,j+n(⇣"(0))| + |f0,j+n(⇣(0))|)] =

= J1 + J2 + J3 .

(2.8.74)

The error due to large velocities is

E4 = C"1�� ,

indeed, using Hypothesis 3,

J2  "��
X

n�0

n! 2n

Z
d⇤(tn,⌫n,vj,n)(1 � N (�))(1 � "

1)e
��0 Pj+n

k=1 v2
ke�(���0)

Pj+n
k=1 v2

k e↵j 

 "1��
X

n�0

2n (Ct)n

n!
 C"1�� ,

(2.8.75)

where C depends on ↵, � � �0 and j.
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The term J3 produces a volume error due to small angular momenta: denoting by Ac the

complement of a set A,

J3  "��
X

n�0

X

k1...kn

X

�n

Z

{Qn
r=0 |(⌘"kr

(tr)�vj+r)^⌫r|>"µ}c

d⇤(tn,⌫n,vj,n)(1 � N (�))e��
P

i=1j+nv2
i e↵j 

"2µ��
X

n�0

(Ct)n ,

(2.8.76)

which converges for t small enough. Hence

E5 = C "2µ�� .

We are left with the J1 term, in which we take into account the error due to the initial

datum and the "-dislocations.

J1  "��
X

n�0

X

k1...kn

X

�n

[

Z
d⇤(tn,⌫n,vj,n) (1 � N (�))

"
1

"
2 |fN

0,j+n(⇣"(0)) � f0,j+n(⇣"(0))|+

+

Z
d⇤(tn,⌫n,vj,n) (1 � N (�))

"
1

"
2 |f0,j+n(⇣"(0)) � f0,j+n(⇣(0))] =

=Y1 + Y2 .

(2.8.77)

In the second term we use Lemma 5 taking into account the "-dislocation:

Y2  "��
X

n�0

(Ct)n"1�µ| log "| 1
2 ; , (2.8.78)

convergent for t small. Therefore,

E6 = C"1�µ��| log "| 1
2 .

The first term is linked to error on the initial datum. We observe that if we are outside

an "-recollision set (that is true if " is smaller then �, for instance � = "1/4), we can apply

Hypothesis 5. Therefore, the error due to the initial datum is composed of two parts:

Y1  "��
X

n�0

X

k1...kn

X

�n

[

Z
d⇤(tn,⌫n,vj,n) (1 � N (�))

"
1

"
2 A |fN

0,j+n(⇣"(0)) � f0,j+n(⇣"(0))|+

+

Z
d⇤(tn,⌫n,vj,n) (1 � N (�))

"
1

"
2 (1 � A) (|fN

0,j+n(⇣"(0))| + |f0,j+n(⇣"(0))|)] .

(2.8.79)

The first part gives a contribution "1��, just appling Hypothesis 5 provided that � > ". In the

second term we perform an integration in the time variable tn, using the fact that tn < "1�µ��,
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thanks to the cut o↵ "
2 on small angular momenta. In this step we also used the cut-o↵ on

energies "
1 to obtain a converging integral.

Summarizing, the error due to the initial datum is

E7 = C"1�� + C"1�µ�� .

A worst rate of convergence of the initial data (see for instance eq.n (2.5.19)) would produce

a larger error in the first term of E7.

Finally, let � = "� , with � < 1; the total error is given by the sum of each contribution:

ETOT = C"2 + C"+ C"� + C"
3
10

��� + C"1�� + Ce2µ�� + C"1�µ��(| log "| 1
2 � 1) .

We observe that the important contributions are given by the errors due to �-recollisions,

small angular momenta and "-dislocations, as expected. Optimizing on �, µ and � (we

choose µ < 1/4, � < 3/4 and � = "1/10), we find

|fN
j � fj |  C"

1
10 . (2.8.80)

2.9 Stable potentials

In this section we show how the techniques used in proving Theorem 1 can be extended to a

fairly larger class of potentials, including those with a moderate attractive part.

The potentials � we are going to consider in the present section, satisfy the following

conditions

Hypotheses on �

Consider � radial and short-range namely �(r) = 0 for r > 1.

We further assume:

1) � 2 C2((0, 1)) (possibly diverging at the origin).

2) There exists r1 and r0 for which

�(r) > 0 for r < r1,�(r)  0 for r > r1

for some r1 2 (0, 1]

3) �0 vanishes only in r0 > r1

4) � is decreasing in (0, r0)

5) � is stable.

Roughly speaking � is a sort of cuto↵ed Lennard-Jones potential.

We remind (see e.g. Ruelle) that a stable interaction fulfills the following condition

U(x1 . . . xj) =
X

i<k

�(|xi � xk|) � �Bj (2.9.1)
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for some constant B > 0 .

We also remark that condition (2.9.1) ensures the existence of the Partition Function and

hence the existence of an equilibrium measure.

In trying to extend the proof of Theorem 1 to the present situation, we need first to control

the scattering time, in absence of the repulsivity assumption which is not verified anymore.

We recall the classical formula yielfing the interaction time for the two-body problem:

⌧ =
2

V

Z 1

⇢⇤

drq
1 � 2�(r)

⇢ � ⇢2

r2

(2.9.2)

where V is the modulus of the relative velocity before the collision, ⇢ is the impact parameter

and ⇢⇤, the minimal distance from the origin reached during the scattering process, solves

1 � ⇢2

⇢2⇤
� 2

�(⇢⇤)
⇢

= 0

Setting L = ⇢V the modulus of the angular momentum, we can establish the following

Proposition

Given ⌘ > 0 there exists a set B(⌘) in R+ ⇥ R+ such that

Z 1

0
dL

Z 1

0
dV e��⇢1B(⌘) ! 0 (2.9.3)

as ⌘ ! 0, and for (L, V ) /2 B(⌘),

⌧ < C(⌘)

where C(⌘) may possibly diverge as ⌘ ! 0.

Proof

We find convenient to consider two scattering problems. The first due to the potential

�1(r) = �(r) � �(r0), for r < r0,�(r) = 0 for r > r0

and the second associated to the potential

�2(r) = �(r), for r > r0,�(r) = �(r0) for r < r0.

Denoting by ⌧1 and ⌧2 the scattering times of the two problems respectively, it is clear that

⌧  ⌧1 + ⌧2.

As regards ⌧1 we observe that, as far as L > ⌘, the e↵ective potential �1 + L2

2r2 , has no

critical points. Therefore ⌧1 is bounded and it may diverge only for V ! 0. This may happen

when � is bounded at the origin.

Therefore, denoting by B1(⌘) the set

{(L, V )||V | < ⌘ or L < ⌘},
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in the complement of B1(⌘) we have the bound

⌧1 < C(⌘).

The analysis of the second problem, leads us to consider the e↵ective potential

�2 +
L2

2r2
.

According to the values of the angular momentum L it may or may not have two critical

points. In the second case we proceed as before. In the first case we denote by y the critical

point corresponding to a local maximum of the e↵ective potential.

We have

�0
2(y) � L2

y3
= 0.

Moreover the values of the pairs (L, V ) corresponding to the divergence of ⌧2 satisfy

1

2
⇢+

L2

2
= �2(y) +

L2

2y2
.

After a trivial computation we can write the parametric equation of the curve C of the singular

points in the (L, V ) plane

8
<
:

1

2
⇢ = �2(y) � 1

2
�2(y)y3 +

1

2
�0

2(y)y

L = �2(y)y3.
(2.9.4)

Denoting by B((L, V ); ⌘) the disk of center (L, V ) and radius ⌘, we introduce the tube

T =
[

(L,V )2C
B((L, V ); ⌘) (2.9.5)

Due to the smoothness of �2 such curve C has finite length so that,

|T |  C⌘

where |A| denotes the Lebesgue measure of the st A.

Clearly, outside the tube T we have

⌧2 < C(⌘).

In conclusion the Proposition is proven by setting

B(⌘) = B1(⌘) [ T . (2.9.6)

We are now in position to establish and prove the main result of the present section.
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Theorem 3. Under the Hypothesis on � listed above and Hypotheses 1–4, there exists t0 > 0

such that, for 0 < t < t0 and j > 0,

lim
"!0

N"2=1

fN
j (t) = fj(t) (2.9.7)

uniformly on compact sets in ⌦j .

Proof

We just mention where the previous proof of Theorem 1 requires modifications and how

to do them.

The proof consists into two parts, namely the short time estimate and the term by term

convergence.

As regards the short time bound, by virtue of the stability property, it is natural to modify

the definition of the Hamiltoniam by setting

HB(zj) = H(zj) + jB � 0. (2.9.8)

Consequently we introduce the norms (5.1) replacing H by HB.

Next we deduce estimate (5.3) by observing that

HB(zj+1+m) � HB(zj) +
1

2

j+1+mX

i=j+1

v2
i .

We now pass to analyze the term by term convergence. Everything is going on as in

Section 2.8.2 when dealing with positive potentials up to Lemma 5. Here we compare the

IBF with the BBF.

On the basis of the above Proposition, we restrict the d⇤ integration over the set of

parameters ⌫j+1 . . . ⌫j+n, vj+1 . . . vj+n such that

|vki
� vj+i| � ⌘, |⇢i| � ⌘ (2.9.9)

where

|⇢i| =

s
1 �

⇥
⌫i · vki

� vj+i

|vki
� vj+i|

⇤2

Clearly the contribution of the integral in d⇤ over the complement of the set (2.9.9) is

O(⌘).

Proceeding as in Section 7.2 we get an estimate similar to the one in Lemma 5, namely

|⇠j(s) � ⇠"j (s)|  C(⌘)"↵

where C(⌘) is possibly diverging as ⌘ ! 0 and ↵ > 0.

As a consequence

lim sup
"!0

|T "
�n

(zj , t) � T�n(zj , t)|  O(⌘)

Due to the arbitrarity of ⌘, we conclude the proof.
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2.10 Appendix (on the cross–section for the Boltzmann equa-

tion)

After having derived the Boltzmann equation in the form (2.2.1) , the question whether it

is possible to pass to the more usual form (2.2.3) arises naturally. To do this we have to

study the scattering map ⌫ ! !(⌫) verifying its invertibility and compute the Jacobian of

the transformation to obtain the di↵erential cross section.

We use, in this section, the usual notational abuse for which �(x) = �(|x|), namely we

use the same symbol to denote the potential as a function defined for x 2 Rd or x 2 R+,

namely its gradient is equally written as x
|x|�

0(|x|).
The hypotheses on � are those established in Section 2, possibly allowing discontinuity of

the first derivative at |x| = 1.

In considering the (planar) scattering process, after having reduced the two-body problem

to a single central motion, we denote by ⇢ the impact parameter (it is 0  ⇢  1) while the

scattering angle (that is the angle between the ingoing and the outgoing relative velocities)

is ⇡ � 2⇥,⇥ 2 [0,⇡/2], and the energy in the laboratory V 2/2 > 0 (See Figure 2.1).

The usual definition is

⇥(⇢) = arcsin ⇢+ ⇢

Z 1

⇢⇤
dr

1

r2

q
1 � 2�(r)

V 2 � ⇢2

r2

, (2.10.1)

where ⇢⇤ is the minimum distance defined by

1 � 2�(⇢⇤)
V 2

� ⇢2

⇢2⇤
= 0 . (2.10.2)

The limiting values are ⇥(0) = 0 and ⇥(1) = ⇡/2. While the first term in the right hand side

of (2.10.1) is an increasing function of ⇢, the second term is clearly non monotonic (since ⇥

goes smoothly from 0 to 0 when ⇢ ! 0 or ⇢ ! 1 and hence ⇢⇤ ! 1 ). Following [4] we set

y = ⇢/r, and perform the change of variables

2�(⇢y )

V 2
+ y2 = sin2 ' , (2.10.3)

to get

⇥(⇢) = arcsin ⇢+

Z ⇡/2

arcsin ⇢
d'

sin'

y � ⇢�0( ⇢
y
)

V 2y2

. (2.10.4)

The advantage of this formula is that the integrand is not singular in the integration region,

and we can easily compute the derivative with respect to ⇢.
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A straightforward calculation leads to

d⇥

d⇢
=

1p
1 � ⇢2

0
@1 � 1

1 � �0(1�)
V 2⇢2

1
A (2.10.5)

+

Z ⇡/2

arcsin ⇢
d'

sin'
⇣
y � ⇢

V 2y2�0(⇢y )
⌘3

h ⇢

V 2y2
�00

✓
⇢

y

◆
+

2

V 2y
�0
✓
⇢

y

◆
+

⇢

V 4y4

✓
�0
✓
⇢

y

◆◆2 i

for 0 < ⇢ < 1, where �0(1�) indicates the limit of the derivative as |x| ! 1 from below.

Note that in formula (2.10.5) we are also considering the case in which � can have a

discontinuity of the first derivative in ⇢ = 1 as it is the case of an inverse power law potential

restricted at the unitary interval, treated in [4].

However, for the case of a smooth potentials considered in the present paper, the first

term in the right hand side of Eq. (2.10.5) is absent.

The following considerations can be deduced from Eq. (2.10.5).

1) The ratio ⇢/y ! g(') as ⇢ ! 0, where g is a strictly positive and decreasing function

of ' which form depends on � and V 2. Then the extremal values of our derivative are:

d⇥

d⇢
�!
⇢!0

(1 � ��0(1�),0) +

Z ⇡/2

0
d'

g(') sin'
⇣

g(')
V 2 |�0(g('))|

⌘3

(�0(g(')))2

V 4
2 (0, +1] ;

d⇥

d⇢
�!
⇢!1

(
+1, �0(1�) 6= 0

0, �0(1) = 0
. (2.10.6)

2) The monotonicity property d⇥
d⇢ > 0 translates in a quite complicated condition on the

potential �. A convenient su�cient condition is given by the following assertion:

In the considered class of potentials, if for all x with |x| 2 (0, 1)

|x|�00(|x|) + 2�0(|x|) � 0 , (2.10.7)

then d⇥
d⇢ > 0 for all ⇢ 2 (0, 1), V 2 > 0.

Condition (2.10.7) can be easily checked for a large subset of potentials. For instance any

potential of the form �(x) =
⇣

1
|x|k � 1

⌘
�|x|<1, k � 1, satisfies the condition, hence has strictly

monotonic map. Cases which are smooth in |x| = 1 can be constructed from the previous by

using a smooth junction: for instance3

�(x) =

8
>><
>>:

e�
1
�

⇣
(1��)k+1

�2k
1

|x|k + 1 � 1��
�2k

⌘
0 < |x| < 1 � �

e
� 1

1�|x| 1 � �  |x| < 1 ,

0 |x| � 1

(2.10.8)

where k � 1 and 0 < � < 1/3 (see Fig. 2.9).

3Observe that this is a function C1(Rd) with a jump in the second derivative for |x| = 1��. The parameters

k and � can be arranged in order to eliminate this discontinuity (e.g. � = 1/10, k = 71). Nevertheless, all

our discussions are still valid if in the initial assumptions on the potential we require that �00 is just piecewise

continuous and bounded outside any ball centered in the origin.

76



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

⇢

⇥
(⇢

)

E0=9
k=20
δ=0.1

Figure 2.9: Map ⇥(⇢) for the potential given by Eq. (2.10.8), with � = 0.1, k = 20 and V 2 = 9.

3) The monotonicity property d⇥
d⇢ > 0 is in general not true when condition (2.10.7) is

violated. We give two di↵erent examples.

• Formula (2.10.5) already indicates that the sign of the second derivative of � is relevant

when we ask about monotonicity of the map. In fact, examples of non monotonic

mappings can be constructed when �00 is not always positive, for instance by taking �

very close to the characteristic function of |x| < 1. If we consider the function

�(x) = �" tan

✓✓
arctan

1

"
+
⇡

2

◆
|x| � ⇡

2

◆
+ 1 , (2.10.9)

numerical simulations show that the map ⇥(⇢) is non monotonic for " << 1 as shown

in Fig. 2.10.

• Even when �00 is nonnegative, the mapping can be non monotonic if Eq. (2.10.7) fails,

an example being

�(x) =

8
><
>:

�k+2

k|x|k + � � �2(1 + 1
k ) 0 < |x| < �

�(1 � |x|) �  |x| < 1 ,

0 |x| � 1

(2.10.10)
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Figure 2.10: Map ⇥(⇢) for the potential given by Eq. (2.10.9), with " = 0.1 and V 2 = 3.

We checked numerically the non monotonicity of ⇥(⇢) in the case � = 0.1, k = 4 : see

Fig. 2.11. Another example similar to the previous one but with continuous derivative

in |x| = 1 can be constructed again by using a smooth junction.

4) If �0(1) = 0 (i.e. the force is smooth) and ⇥(⇢) is monotonic, we still have by (2.10.6)

that the cross–section is unbounded for ⇥ near to ⇡/2 (⇢ = 1), that is

||⇢ @⇢
@⇥

||1 = +1 . (2.10.11)

In conclusion we can assert that the Boltzmann equation in the form (2.2.3) with a single–

valued B can be deduced for smooth (outside 0), decreasing potentials, satisfying both con-

ditions

|x|�0(|x|) + A�(|x|) � 0 , (2.10.12)

|x|�00(|x|) + 2�0(|x|) � 0 . (2.10.13)
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Figure 2.11: Map ⇥(⇢) for the potential given by Eq. (2.10.10), with � = 0.1, k = 4 and V 2 = 0.5.
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Chapter 3

Weak–coupling limit

In the present Chapter we present the paper [BPS].

3.1 From particle systems to the Landau equation: a consis-

tency result

Abstract.

We consider a system of N classical particles, interacting via a smooth, short-range potential,

in a weak-coupling regime. This means that N tends to infinity when the interaction is

suitably rescaled. The j-particle marginals, which obey to the usual BBGKY hierarchy, are

decomposed into two contributions: one small but strongly oscillating, the other hopefully

smooth. Eliminating the first, we arrive to establish the dynamical problem in term of a

new hierarchy (for the smooth part) involving a memory term. We show that the first order

correction to the free flow converges, as N ! 1, to the corresponding term associated to the

Landau equation. We also show the related propagation of chaos.

3.2 Introduction

Lev Landau in 1936 proposed a kinetic equation, usually called Fokker-Planck-Landau equa-

tion (simply Landau equation in the sequel) which is a di↵usion with friction in velocity,

suitable to describe the behavior of a weakly interacting gas, in particular a Coulomb gas in

a regime where the grazing collisions are dominant.

Roughly speaking the Landau’s argument was to take the Boltzmann equation with

Coulomb cross-section and (cutting-o↵ short and long distances) apply the Taylor expansion

to the collision operator. The result is a degenerate elliptic operator acting on the velocity

space (see [18] and the original publication of Landau [17]). The full Taylor expansion of the

Boltzmann collision integral for arbitrary intermolecular forces was studied in [6] and a formal
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generalization of Landau collision integral to arbitrary scattering cross-section was proposed

there. A more precise asymptotics in the Coulomb case was also studied in [8].

The Landau equation for the one particle distribution f(x, v, t), where x 2 R3, v 2 R3

and t 2 R+ denote position, velocity and time respectively, reads as

(@t + v · rx)f = QL(f, f) (3.2.1)

with the collision operator QL given by:

QL(f, f)(v) =

Z
dv1rv [a(v � v1) (rv �rv1) f(v)f(v1)] . (3.2.2)

Here x plays the role of a parameter and hence its dependence is omitted. Moreover the

matrix a(w) has the form

a(w) =
A

|w|
(|w|2Id � w ⌦ w)

|w|2 , (3.2.3)

where A > 0 is a suitable constant.

Note that the Landau equation possesses all the properties known for the Boltzmann

equation, namely the mass, momentum and energy conservation and the H-theorem. Actually

the homogeneous Landau equation can be rigorously derived in the grazing collision limit of

the homogeneous Boltzmann equation by a suitable rescaling of the cross-section.

In particular, in [1] the authors show that, under suitable assumptions on the cross–

section, the di↵usion Landau equation (3.2.1) can indeed be derived. The di↵usion operator

is the form (3.2.2) but with a matrix a replaced by

↵(|w|)(|w|2Id � w ⌦ w)

|w|2 ,

with ↵ a smooth function. Next in [13] and [23] steps forward were performed to arrive to

cover the case ↵(|w|) ⇡ 1
|w|⌫ for small |w|, with ⌫ < 1.

The case of the matrix (3.2.3) was treated in [24]. It is worth to underline that the

initial value problem for the homogeneous Landau equation is strongly simplified for the case

↵(|w|) ⇡ 1
|w|⌫ , with ⌫ < 1 (see [3] and [4]), while for the matrix (3.2.3) we have a weak existence

theorem obtained by compactness arguments based on the entropy production control [24].

Moreover, for the inhomogeneous case, we have existence and uniqueness of strong solutions

for data su�ciently close to a Maxwellian [14]. This is the only existence and uniqueness

result we are aware.

A natural question is to see whether the Landau equation can be directly derived, under a

suitable scaling limit, from a particle system as it is the case of the Boltzmann equation. In fact

one can see ([2], see also [22] and [21]), at a formal level, that the Landau equation is expected

to be valid for a weakly interacting dense gas. The precise statement and scaling (called weak-

coupling limit) will be presented and discussed in the next Section. The formal analysis gives
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indeed the Landau equation (3.2.1) with matrix (3.2.3). The two-body interaction potential

� is assumed smooth, spherically symmetric, and the constant A is given by:

A =
1

8⇡

Z +1

0
dr r3�̂(r)2, (3.2.4)

where �̂(|k|) =
R

dx�(|x|)e�ik·x.

Note that we find the Landau equation with matrix (3.2.3), which is not related to the

Coulomb potential, but arises even though the potential is smooth and short-range. This fact

was first established by N.N. Bogolyubov in 1946 [20].

In the present paper we want to start the rigorous analysis of the weak-coupling limit

for an Hamiltonian particle system. Our result is very preliminary. We first decompose the

j-particle marginals into two terms, one hopefully smooth and the other strongly oscillating,

but small. Eliminating this last term from the equations (with a procedure similar to that

proposed by Zwanzig [26]) we find an equation with memory, which we can handled up to the

first order in time. We show that this contribution agrees with the corresponding one arising

from the Landau equation. Roughly speaking we present a rigorous derivation of the Landau

equation at time zero.

It is well known that the situation for the Boltzmann equation is better, namely we are

able to derive such a kinetic equation for a short time [16] (see also [7] for additional comments

and results) in the low-density (or Boltmann-Grad) limit.

Note that the linear case, namely a single particle in a random potential under the weak-

coupling limit, is well understood, see [11] and references quoted therein.

Our analysis deals with the nonlinear problem but our techniques could apply as well to the

linear case. We think that, while we can easily obtain the same consistency result presented

here, it seems very di�cult to go further. In [11] and related references, it is crucial the use of

probabilistic tools which seems more e�cient compared with the hierarchical approaches. In

contrast it is very di�cult to implement the ideas working for the linear case to the present

problem.

Finally we want to mention that the same problem of characterizing the weak-coupling

limit of particle systems, arises also in a quantum mechanical context. In this case the

quantity which we are interested in is the Wigner transform [25] which is a way to describe a

quantum state as a function in the classical phase space. In contrast with the classical case,

we expect that the Wigner transform approaches, in the weak-coupling limit, the solution of

a suitable Boltzmann equation, with a corrections due to the statistics, whenever taken in

explicit consideration. We quote [15], [3], [12], [4], [5] for the few results in this direction and

[19] and references quoted therein, for the Boltzmann description of wave dynamics in the

weak-coupling limit.
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3.3 Weak-coupling limit for classical systems

We consider a classical system of N identical particles of unit mass in the whole space.

Positions and velocities are denoted by the vectors QN = {q1 . . . qN} and VN = {v1 . . . vN}
respectively. The particles interact via a spherically symmetric, smooth potential of finite

range � : R3 ! R, namely �(x) = 0 if |x| > r for some positive r. In the following we assume

units for which r = 1.

The Newton equations read as:

d

d⌧
qi = vi

d

d⌧
vi =

X

j=1...N :
j 6=i

F (qi � qj). (3.3.1)

Here F = �r� denotes the interparticle (conservative) force, and ⌧ is the time.

Let " > r be a small parameter denoting the ratio between the macroscopic and micro-

scopic space-time unities.

We are interested in a situation where the number of particles N is very large and the

interaction strength quite moderate. The system has a unitary density so that we assume

N = "�3. In addition we look for a reduced or macroscopic description of the system. Namely

if q and ⌧ refer to the system seen in a microscopic scale, we rescale eq.n (3.3.1) in terms of

the macroscopic variables

x = "q t = "⌧

whenever the physical variables of interest are varying on such scales and are almost constant

on the microscopic scales.

Remembering that we want to describe weakly interacting systems, we also rescale the

potential according to:

�! p
"�, (3.3.2)

so that system (3.3.1), in terms of the (x, t) variables, becomes:

d

dt
xi = vi

d

dt
vi = � 1p

"

X

j=1...N :
j 6=i

r�(
xi � xj

"
) =

1p
"

X

j=1...N :
j 6=i

F (
xi � xj

"
). (3.3.3)

Note that the velocities are automatically unscaled.

A statistical description of the above system passes through the introduction of a probabil-

ity distribution on the phase space of the system. Let WN = WN (XN , VN ) be a symmetric (in

the exchange of variables) probability distribution. Here (XN , VN ) denote the set of positions

and velocities:

XN = {x1 . . . xN} VN = {v1 . . . vN}, xi 2 R3, vi 2 R3.

Then from eq.ns (3.3.3) we obtain the following Liouville equation

(@t +

NX

i=1

vi · rxi)W
N (XN , VN ) =

1p
"

�
T "

NWN
�
(XN , VN ). (3.3.4)
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Here we have introduced the operator

(T "
NWN

�
(XN , VN ) =

X

0<k<`N

(T "
k,`W

N
�
(XN , VN ), (3.3.5)

with

T "
k,`W

N = r�(
xk � x`

"
) · (rvk

�rv`)W
N . (3.3.6)

To investigate the limit " ! 0 it is convenient to introduce the BBKGY hierarchy for the j-

particle distributions defined as

fN
j (Xj , Vj) =

Z
dxj+1 . . .

Z
dxN

Z
dvj+1 . . .

Z
dvN (3.3.7)

WN (Xj , xj+1 . . . xN ; Vj , vj+1 . . . vN )

for j = 1. . . . , N �1. Obviously we set fN
N = WN . Note that BBGKY stands for Bogolyubov,

Born, Green, Kirkwood and Yvon, the names of physicists who introduced independently this

system of equations (see e.g. [2]).

Such a hierarchy is obtained by means of a partial integration of the Liouville equation

(3.3.4) and standard manipulations. The result is (for 1  j  N):

(@t +

jX

k=1

vk · rxk
)fN

j =
1p
"
T "

j fN
j +

N � jp
"

C"
j+1f

N
j+1 (3.3.8)

for 1  j  N .

We set

fN
j = 0, for j > N, and fN

N = WN .

The operator C"
j+1 is defined as:

C"
j+1 =

jX

k=1

C"
k,j+1 , (3.3.9)

and

C"
k,j+1fj+1(x1 . . . xj ; v1 . . . vj) = (3.3.10)

�
Z

dxj+1

Z
dvj+1F

✓
xk � xj+1

"

◆
· rvk

fj+1(x1, x2, . . . , xj+1; v1, . . . , vj+1).

C"
k,j+1 describes the interaction of particle k, belonging to the j-particle subsystem, with a

particle outside the subsystem, conventionally denoted by the number j + 1 (this numbering

uses the fact that all the particles are identical).

We finally fix the initial value {f0
j }N

j=1 of the solution {fN
j (t)}N

j=1 assuming that {f0
j }N

j=1

is factorized, that is, for all j = 1, . . . N

f0
j = f⌦j

0 , (3.3.11)
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where f0 is a given one-particle distribution function. This means that the state of any pair of

particles is statistically uncorrelated at time zero. Of course such a statistical independence is

destroyed at time t > 0 because dynamics creates correlations and eq.n (3.3.8) shows that the

time evolution of fN
1 is determined by the knowledge of fN

2 which turns out to be dependent

on fN
3 and so on. However, since the interaction between two given particles is going to

vanish in the limit "! 0, we can hope that such statistical independence is recovered in the

same limit. Therefore we expect that when " ! 0 the one-particle distribution function fN
1

converges to the solution of a suitable nonlinear kinetic equation f , which we are going to

investigate.

If we expand fN
j (t) as a perturbation of the free flow S(t) defined as

(S(t)fj)(Xj , Vj) = fj(Xj � Vjt, Vj), (3.3.12)

we find

fN
j (t) =S(t)f0

j +
N � jp

"

Z t

0
S(t � t1)C

"
j+1f

N
j+1(t1)dt1+ (3.3.13)

1p
"

Z t

0
S(t � t1)T

"
j fN

j (t1)dt1.

We now try to keep information on the limit behavior of fN
j (t). Assuming for the moment

that the time evolved j-particle distributions fN
j (t) are smooth (in the sense that the first

and second derivatives are uniformly bounded in "), then

C"
j+1f

N
j+1(Xj ; Vj ; t1) = (3.3.14)

� "3
jX

k=1

Z
dr

Z
dvj+1F (r) · rvk

fj+1(Xj , xk � "r; Vj , vj+1, t1).

Because of the identity Z
drF (r) = 0, (3.3.15)

we find that

C"
j+1f

N
j+1(Xj ; Vj ; t1) = O("4) (3.3.16)

provided that D2
vf

N
j+1 is uniformly bounded. Since

N � jp
"

= O("�
7
2 )

we see that the second term in the right hand side of (3.3.13) does not give any contribution

in the limit.

Moreover
Z t

0
S(t � t1)T

"
j fN

j (t1)dt1 = (3.3.17)

X

i 6=k

Z t

0
dt1F

✓
(xi � xk) � (vi � vk)(t � t1)

"

◆
f̃(Xj , Vj ; t1)

88



where f̃ is a smooth function. We note that the time integral in (3.3.17) is O(") because

F 6= 0 only for times in an interval of length O("). Therefore fN
j cannot be smooth since we

expect a nontrivial limit.

In order to look for a (nontrivial) kinetic equation, we can conjecture that

fN
j = gN

j + �N
j (3.3.18)

where gN
j is the main part of fN

j and is smooth, while �N
j is small, but strongly oscillating.

We operate this decomposition according to the following equations which define gN
j and �N

j :

(@t +

jX

k=1

vk · rxk
)gN

j =
N � jp

"
C"

j+1g
N
j+1 +

N � jp
"

C"
j+1�

N
j+1 (3.3.19)

(@t +

jX

k=1

vk · rxk
)�N

j =
1p
"
T "

j �
N
j +

1p
"
T "

j gN
j , (3.3.20)

with initial data

gN
j (Xj , Vj , 0) = f0

j (Xj , Vj), �N
j (Xj , Vj) = 0. (3.3.21)

Note that �N
1 = 0 since T "

1 = 0.

The remarkable fact of this decomposition is that � can be eliminated. Indeed, let

(Xj(t), Vj(t)) = ({x1(t) . . . xj(t), v1(t) . . . vj(t)})

be the solution of the j-particle flow (in macro variables)

d

dt
xi = vi

d

dt
vi = � 1p

"

X

k=1...j:
k 6=i

r�
✓

xi � xk

"

◆
, (3.3.22)

with initial datum (Xj , Vj) = ({x1 . . . xj , v1 . . . vj}). Denote by Uj(t) the operator

Uj(t)f(Xj , Vj) = exp{t(�
X

i

vi · rxi +
1p
"
Tj)}f(Xj , Vj) = f(Xj(�t), Vj(�t)), (3.3.23)

then eq.n (3.3.20) can be solved:

�N
j (t) =

Z t

0
dsUj(s)

1p
"
Tjg

N
j (t � s). (3.3.24)

Explicitly

�N
j (Xj , Vj , t) = � 1p

"

Z t

0
ds

X

1i<kj

F

✓
xi(�s) � xk(�s)

"

◆
·[(rvi�rvk

)gN
j ](Xj(�s), Vj(�s); t�s).

(3.3.25)

Inserting (3.3.24) in (3.3.19) we finally arrive to a closed hierarchy for {gN
j }N

j=1. Obviously

we pay the price of a memory term given by the time integral in (3.3.24) or in (3.3.25).
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We write the hierarchy in integral form. Then

gN
j (t) =S(t)f0

j +
N � jp

"

Z t

0
S(t � ⌧)C"

j+1g
N
j+1(⌧)d⌧ (3.3.26)

+
N � jp

"

Z t

0
S(t � ⌧)C"

j+1�
N
j+1(⌧)d⌧

=S(t)f0
j +

N � jp
"

Z t

0
S(t � ⌧)C"

j+1g
N
j+1(⌧)d⌧

+
N � j

"

Z t

0
d⌧

Z ⌧

0
d�S(t � ⌧)C"

j+1Uj+1(⌧ � �)Tj+1g
N
j+1(�).

Remark 1. Why do we expect that �N
j strongly oscillates? Let us try to control the first

derivatives of h(Xj , Vj , t) = Uj(t)h0(Xj , Vj) = h0(Xj(�t), Vj(�t)) for a given smooth function

h0. Then

@h(Xj , Vj , t)

@x↵
i

=
X

k,�

 
@h0

@x�
k

(Xj(�t), Vj(�t))
@x�

k(�t)

@x↵
i

+
@h0

@v�k
(Xj(�t), Vj(�t))

@v�k (�t)

@x↵
i

!

and analogous formula for @h(t)
@v↵

i
. Here we are using Greek indices for the components of xi

and vi. To estimate quantities like
@x�

k (�t)

@x↵
i

,
@x�

k (�t)

@v↵
i

,
@v�

k (�t)

@x↵
i

,
@v�

k (�t)

@v↵
i

we use eq.n (3.3.22) and

find (changing �t ! t)

d

dt

@x�
k(t)

@x↵
i

=
@v�k (t)

@x↵
i

, (3.3.27)

d

dt

@v�k (t)

@x↵
i

=
1

"3/2

X

r=1...j:
r 6=k

@F �

@x�
k

(
xk(t) � xr(t)

"
)

✓
@x�

k(t)

@x↵
i

� @x�
r (t)

@x↵
i

◆
. (3.3.28)

Integrating eq.ns (3.3.27) and (3.3.28) in time, we arrive, by using the Gronwall lemma,

to �����
@v�k (t)

@x↵
i

�����  C exp

✓
C⌧c

"3/2

◆

where ⌧c is the scattering time, namely the time interval for which |xk(t)� xr(t)|  " . Now,

even though ⌧c = O(") (neglecting small relative velocities), it seems di�cult to get something

better than a bound like exp( Cp
"
).

In conclusion we expect that the first derivatives of h(t) are O(exp( 1p
"
)). Looking at eq.n

(3.3.24) we expect for � the same behavior. In contrast, the action of the operator Cj is

regularizing (althoug we are not able to prove this) so that we expect g to be smooth.
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On the other hand �N
j is also expected to be small, in some sense. Indeed by taking the

scalar product of (3.3.24) by a smooth function u, we find

|(u, �N
j (t))|  1p

"

Z t

0
dskUj(�s)ukL1kT "

j gN
j (t � s)kL1

 "5/2 j(j � 1)

2
kukL1

Z t

0
ds

Z
dx1

Z
dx3 . . .

Z
dVj

Z
dr|F (r)|

|(rv1 �rv2)g
N
j (x1, x1 + "r, x3 . . . , Vj ; t � s)|.

Therefore this term is vanishing provided that gN is su�ciently smooth (uniformly in ").

A rigorous analysis of the limit N ! 1, " = N�(1/3) seems to be very di�cult. We

expect that, in this limit, both fN
j (t) and gN

j (t) would converge to f(t)⌦j , where f solves the

Landau equation stated in Introduction. We cannot prove it, but a first step in this direction

is made in the following Sections.

3.4 Consistency

We consider eq.n (3.3.26) written in symbolic form as

gj = S(t)f0
j + Aj+1gj+1, (3.4.1)

where all upper indices N are omitted for brevity. To solve these equations one can use the

obvious iterative scheme

g0
j = S(t)f0

j , g
(n+1)
j = S(t)f0

j + Aj+1g
(n)
j+1, n = 0, 1, . . .

Our goal in this section is to prove that the equation for g
(1)
1 (t) = g̃N

1 (t) is consistent with

the Landau equation. Thus we replace (3.3.26) by its first approximation:

g̃N
j (t) =S(t)f0

j +
N � jp

"

Z t

0
S(t � ⌧)C"

j+1S(⌧)f0
j+1d⌧ (3.4.2)

+
N � jp

"

Z t

0
S(t � ⌧)C"

j+1�̃
N
j+1(⌧)d⌧

=S(t)f0
j +

N � jp
"

Z t

0
S(t � ⌧)C"

j+1S(⌧)gN
j+1d⌧ (3.4.3)

+
N � j

"

Z t

0
d⌧

Z ⌧

0
d�S(t � ⌧)C"

j+1Uj+1(⌧ � �)Tj+1S(�)f0
j+1.

Here we set

�̃N
j (Xj , Vj , ⌧) =

1p
"

Z ⌧

0
d�Uj(⌧ � �)TjS(�)f0

j+1 (3.4.4)

= � 1p
"

Z t

0
ds

X

1i<kj

F (
xi(�s) � xk(�s)

"
)· (3.4.5)

· [(rvi �rvk
)S(⌧ � s)f0

j ](Xj(�s), Vj(�s)).

We note that �̃N
j can be explicitly computed.
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Lemma 1. We have

�̃N
j (Xj , Vj , t) = (Uj(t)f

0
j � S(t)f0

j )(Xj , Vj)

= f0
j (Xj(�t), Vj(�t)) � f0

j (Xj � Vjt, Vj) . (3.4.6)

Proof. Let L0 = �P
i vi · rxi be the free flow generator.

Then we compute

Uj(t)f
0
j � S(t)f0

j =

Z t

0
ds

d

ds
[Uj(s)S(t � s)]f0

j (3.4.7)

=

Z t

0
ds[Uj(s)(L0 +

1p
"
Tj)S(t � s)]f0

j

�
Z t

0
ds[Uj(s)L0S(t � s)]f0

j

=�̃N
j (t).

For convenience of the reader we make explicit eq.n (3.4.2) in the case j = 1

g̃N
1 (t) =S(t)f0 +

N � 1p
"

Z t

0
S(t � ⌧)C"

2S(⌧)f0
2 d⌧ (3.4.8)

+
N � 1p

"

Z t

0
S(t � ⌧)C"

2 �̃
N
2 (⌧)d⌧

where, by Lemma 1,

�̃N
2 (x1, v1, x2, v2, ⌧) = � 1p

"

Z ⌧

0
dsF (

x1(�s) � x2(�s)

"
)· (3.4.9)

· [(rv1 �rv2)S(⌧ � s)f0
2 ](X2(�s), V2(�s))

=
⇥
f0
2 (X2(�⌧), V2(�⌧)) � f0

2 (X2 � V2⌧, V2)
⇤
.

The first result of the present paper is summarized in the following Theorem.

Theorem 4. Suppose f0 2 C3
0 (R3 ⇥ R3) be the initial probability density satisfying:

|Drf0(x, v)|  Ce�b|v|2 for r = 0, 1, 2 (3.4.10)

where Dr is any derivative of order r and b > 0. Assuming also that � 2 C2(R3) and �(x) = 0

if |x| > 1. If (3.3.11) holds for j = 1, 2, then

lim
"!0

g̃N
1 (t) = S(t)f0 +

Z t

0
d⌧S(t � ⌧)QL(S(⌧)f0, S(⌧)f0), (3.4.11)

lim
"!0

�̃N
1 (t) = 0, (3.4.12)

where N"3 = 1 and the above limits are considered in D0.
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Proof. Let u 2 D(R3 ⇥ R3) be a test function. From now on we will denote by (hj , kj) =R
dXj

R
dVj hj(Xj , Vj)kj(Xj , Vj) the inner product. Then

(u, g̃N
1 (t)) = (u, S(t)f0) +

N � 1p
"

Z t

0
(u, S(t � ⌧)C"

2S(⌧)f0
2 )d⌧1 +

Z t

0
T"(⌧)d⌧, (3.4.13)

where

T"(⌧) = � N � 1p
"

Z
dx1

Z
dx2

Z
dv1

Z
dv2(rv1S(⌧ � t)u(x1, v1))· (3.4.14)

· F

✓
x1 � x2

"

◆
�̃N

2 (x1, x2, v1, v2, ⌧).

We have already seen that the second term in the right hand side of (3.4.13) is vanishing.

Therefore we have to evaluate the last term, namely
R t
0 d⌧T"(⌧). We split the term T"(⌧) into

two terms

T" = T 
" + T >

" (3.4.15)

where

T"(⌧)
> = � N � 1p

"

Z
dx1

Z
dx2

Z
dv1

Z

|w|>a"1/4

dv2(rv1S(⌧ � t)u(x1, v1))· (3.4.16)

· F

✓
x1 � x2

"

◆
�̃N

2 (x1, x2, v1, v2, ⌧)

where w = v1�v2 is the relative velocity and a is a number to be fixed later on. T 
" is defined

accordingly.

The reason of this decomposition will be clear later on. For the moment we show that T 
" is

negligible.

Lemma 2.

T 
" = O("1/4) . (3.4.17)

Proof. By Lemma 1 we have that �̃N
2 is uniformly bounded. Moreover by the change of

variables

x2 = x1 � "r

we get

|T 
" | C(N � 1)"3

1p
"

Z
dx1

Z
dv1|rv1S(⌧ � t)u(x1, v1)|

Z
dr|F (r)|

Z

|w|a"1/4

dw (3.4.18)

C"1/4.
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To evaluate T >
" we use (3.4.9) to write it as

T >
" (⌧) =(N � 1)"3

Z
dx1

Z
dr

Z
dv1

Z

|w|>a"1/4

dv2 (3.4.19)

1

"

Z ⌧

0
dsF↵(r)F�

✓
x1(�s) � x2(�s)

"

◆
[h"(x1, x2, v1, v2, ⌧, s)]↵,� ,

where x2 = x1 � "r and h" is the matrix

(h")↵,� = �(rv1S(⌧ � t)u(x1, v1))↵[(rv1 �rv2)S(⌧ � s)f0
2 ]�(X2(�s), V2(�s)), ↵,� = 1, 2, 3.

The summation over repeated Greek indices is assumed here and below.

Here the flow X2(t) = (x1(t), x2(t)) has initial conditions (x1, x1 � "r). Scaling times we also

find

T >
" (⌧) =(N � 1)"3

Z
dx1

Z
dr

Z
dv1

Z

|w|>a"1/4

dv2 (3.4.20)

Z ⌧/"

0
dsF↵(r)F�

✓
x1(�"s) � x2(�"s)

"

◆
[h"(x1, x2, v1, v2, ⌧, "s)]↵,� .

Let us introduce the function h which is the formal limit of h", namely

h↵,�(x1, v1, v2, ⌧) = �R↵(x1, v1, ⌧)[(rv1 �rv2)S(⌧)f0
2 (x1, x1, v1, v2)]� , (3.4.21)

where

R(x1, v1, ⌧) = rv1S(⌧ � t)u(x1, v1). (3.4.22)

We split T >
" into two terms

T >
" = T >

1 + T >
2

where

T >
1 (⌧) = (N � 1)"3

Z
dx1

Z
dr

Z
dv1

Z

|w|>a"1/4

dv2

Z ⌧
"

0
dsF↵(r)F�

✓
x1(�"s) � x2(�"s)

"

◆
h↵,�(x1, v1, v2, ⌧)

(3.4.23)

and

T >
2 (⌧) = (N � 1)"3

Z
dx1

Z
dr

Z
dv1

Z

|w|>a"1/4

dv2

Z ⌧
"

0
dsF↵(r)F�

✓
x1(�"s) � x2(�"s)

"

◆
(h" � h)↵,� .

(3.4.24)

We shall show that T >
2 (⌧) is vanishing while T >

1 (⌧) has the right behavior. In the evaluation

of T >
1 (⌧) we note that h does not depend on s so that we have to evaluate the integral

Z ⌧
"

0
dsF

✓
x1(�"s) � x2(�"s)

"

◆
=

1

"

Z ⌧

0
dsF

✓
x1(�s) � x2(�s)

"

◆
. (3.4.25)

Indeed the integral (3.4.25) can be bounded when the interaction time of the two-particle

system is O(") and this is true only if the relative velocity is not too small (see Lemma 3

below). This explains why we did the decomposition (3.4.15).
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Lemma 3. Setting w = v1 � v2, suppose that

|w| > a"1/4 (3.4.26)

where a = 4
p
kFkL1. Then, defining for any real number s

�" = {s||x1(s) � x2(s)| < "}, (3.4.27)

we have

meas(�") 
4"

|w| . (3.4.28)

Moreover, for i = 1, 2:

|vi("s) � vi|  C

p
"

|w| . (3.4.29)

Proof. Assuming first that s > 0, we pass in the coordinate system around the center of mass

(at the origin) and denote by ⇠(t) = x1(t)�x2(t). Let w = v1�v2 be the relative velocity and

wx its horizontal component. We assume that at time zero the particles are in the interaction

disk (more precisely, they enter in the interaction disk at time s = 0) and fix the axis in such

a way that w is horizontal and its x- component is positive, namely wx = |w|. Let t̄ be the

first time for which

wx(t)  |w|
2

.

By the equation of motion

wx(t) = |w| +

Z t

0

2p
"
Fx

✓
⇠(s)

"

◆
(3.4.30)

we infer
|w|
2

� |w| � 2p
"
kFkL1 t̄

from which

t̄ �
p
"|w|

4kFkL1
. (3.4.31)

In the time interval [0, t̄] we have wx � |w|
2 and the horizontal displacement is (under assump-

tion (3.4.26)) larger than
|w|
2

t̄ � 2", (3.4.32)

since the diameter 2" is a maximal path inside the sphere, independent of the initial point.

This implies that, when |⇠(t)| < ", then |w(t)| > |w(0)|/2 and hence

meas(�") 
4"

|w| . (3.4.33)

Moreover

v1("s) = v1 +

Z "s

0

1p
"
F

✓
x1(�) � x2(�)

"

◆
d� (3.4.34)
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from which

|v1("s) � v1|  C

p
"

|w| . (3.4.35)

The case s < 0 reduces to the case s > 0 by changing the initial velocities to vi(0) = �vi for

i = 1, 2. This completes the proof.

Note that

x1(�"s) � x2(�"s)
"

= r � ws +
1

"

Z �"s

0
d�[(v1(�) � v1) � (v2(�) � v2)] (3.4.36)

thus, by Lemma 3, ����
x1(�"s) � x2(�"s)

"
� (r � ws)

����  Cs

p
"

|w| . (3.4.37)

The integral (3.4.23) reads

T >
1 (⌧) = (N � 1)"3

Z
dx1

Z
dr

Z
dv1

Z

|w|>a"1/4

dv2 (3.4.38)

Z ⌧
"

0
dsF↵(r)F�(r � ws)h↵,�(x1, v1, v2, ⌧) + E

where the error term E is given by

E = (N � 1)"3
Z

dx1

Z
dr

Z
dv1

Z

|w|>a"1/4

dv2 (3.4.39)

Z ⌧
"

0
dsF↵(r)


F�

✓
x1(�"s) � x2(�"s)

"

◆
� F�(r � ws)

�
h↵,�(x1, v1, v2, ⌧)

It is clear from the proof of Lemma 3 that |x1(�"s)�x2(�"s)| � " if s � 4/|w| (see (3.4.32)).

On the other hand, |r � ws| � 1 if s � 2/|w|, provided |r|  1. Hence,

|E| C
p
"

Z
dx1

Z
dv1

Z

|w|>a"1/4

dv2
1

|w|

Z 4
|w|

0
sds|h(x1, v1, v2, ⌧)| (3.4.40)

C
p
"

Z
dx1

Z
dv1

Z

|w|>a"1/4

dv2
1

|w|3 |h(x1, v1, v2, ⌧)|

C
p
"| log "|.

In the last step we estimated

|h(x1, v1, v2, ⌧) C|f0(x1 � v2⌧, v2)(rv1 � ⌧rx1)f0(x1 � v1⌧, v1)| (3.4.41)

+ |f0(x1 � v1⌧, v1)(rv2 � ⌧rx2)f0(x1 � v2⌧, v2)|
Ce�b(|v1|2+|v2|2).

Lemma 4. For all w 6= 0,

lim
"!0

Z
dr

Z +⌧/"

0
dsF↵(r)F�(r � ws) =

1

2
lim
"!0

Z
dr

Z +⌧/"

�⌧/"
dsF↵(r)F�(r � ws) = a(w)↵,�

(3.4.42)
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where

a(w)↵,� =
A

|w|(�↵,� � w↵w�

|w|2 ) (3.4.43)

and

A =
1

8⇡

Z 1

0
d⇢⇢3�̂2(⇢), (3.4.44)

with �̂(|k|) =
R

R3 �(r)e�ik·r.

Proof. The first identity in (3.4.42) is due to the symmetry F (r) = F (�r). Then we compute

the left hand side of (3.4.42) taking the Fourier transform and passing in spherical coordinates.

The result is

A

Z

S2

dk̂�(k̂ · w)k̂ ⌦ k̂ = a(w). (3.4.45)

Finally by the use of the dominated convergence theorem we can establish

lim
"!0

Z
d⌧T >

1 (⌧) =

Z t

0
d⌧S(t � ⌧)QL(S(⌧)f0, S(⌧)f0) (3.4.46)

in D0. To conclude the proof it remains to show that

lim
"!0

Z t

0
d⌧T >

2 (⌧) = 0. (3.4.47)

We first evaluate

(h" � h)↵,�(x1, r, v1, v2, ⌧, "s) = R↵(x1, v1, ⌧)

{[(rv1 �rv2)S(⌧ � "s)f0
2 ](X2(�"s), V2(�"s)) � (rv1 �rv2)S(⌧)f0

2 (x1, x1, v1, v2)]}� .

(3.4.48)

Note that

rvS(⌧)f(x, v) = S(⌧)(rv � ⌧rx)f(x, v).

Omitting irrelevant variables we observe that

(h" � h)↵,� = R↵(��(�"s) � ��(0))

where �(�) = [(rv1 �rv2)S(⌧ + �)f0
2 ](X2(�), V2(�)).

Hence

|h" � h|  |R|
Z 0

�"s
d�|�̇(�)|.

It is easy to see that �̇(�) is a linear combination of various second derivatives of f0
2 , multiplied

by ẇ(�) = 2p
"
F
⇣

x1(�)�x2(�)
"

⌘
, plus two terms proportional to first derivatives with respect to

x. All the derivatives are computed at the point [X2(�)� (⌧ + �)V2(�), V2(�)]. Hence, under

the assumptions of Theorem 1, we obtain

|h" � h|  C|R| 1p
"

Z "s

0
d� exp{�b(|v1(��)|2 + |v2(��)|2)}.
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Since |x1(�"s) � x2(�"s)| � " if s � 4/|w|, the integral over ds in (3.4.24) can be estimated

by
�����

Z ⌧/"

0
dsF�

✓
x1(�"s) � x2(�"s)

"

◆
(h" � h)↵,�

����� 
C|R|p
"

Z 4/|w|

0
ds

Z "s

0
d� (�)

 C|R|p"
|w|

Z 4/|w|

0
d� ("�) ,

(3.4.49)

where  (�) = exp{�b(|v1(��)|2 + |v2(��)|2)}.

Then by energy conservation

|v1(t)|2 + |v2(t)|2 + 2
p
"�

✓
x1(t) � x2(t)

"

◆
= const

and therefore

 ("s)  A2 exp{�b(|v1|2 + |v2|2 � 4
p
"k�k1)}.

Hence, we obtain the following estimate of the integral (3.4.24):

|T >
2 (⌧)|  C

p
"

Z
dx1

Z
dr

Z
dV2 |v1 � v2|�2|R(x1, v1, ⌧)| |F (r)| exp{�b(|v1|2 + |v2|2)},

where R(x1, v1, ⌧) is given in (3.4.22). It is clear that R(x1, v1, ⌧) = 0 if |x1| > R1, where R1

depends only on ⌧ . Therefore

|T >
2 (⌧)|  C

p
"

Z
dv1

Z
dv2|v1 � v2|�2 exp{�b(|v1|2 + |v2|2)} = C1

p
".

By Lemma 1 we also conclude that (3.4.12) holds and this completes the proof of Theorem

1.

3.5 Propagation of chaos

In this section we extend the result obtained in Theorem 1 to the j-marginal distribution,

showing the propagation of chaos (at first order in time). More precisely we have

Theorem 5. Under hypotheses of Theorem 1, if (3.3.11) holds for all j, then

lim
"!0

g̃N
j (t, x1, v1, . . . , xj , vj) =

jY

i=1

S(t)f0(xi, vi)+

+

jX

i=1

jY

k=1
k 6=i

S(t)f0(xk, vk)

Z t

0
d⌧S(t � ⌧)QL(S(⌧)f0, S(⌧)f0)(xi, vi),

(3.5.1)

lim
"!0

�̃N
j (t, x1, v1, . . . , xj , vj) = 0 (3.5.2)

in D0.
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Remark 2. The reason why we call eq.n (3.5.1) propagation of chaos is that the r.h.s of

(3.5.1) corresponds to the first order in time of
Qj

i=1 lim"!0 g̃N
1 (xi, vi, t).

Proof. Let u 2 D(R3j ⇥ R3j) be a test function and let us consider

(u, g̃N
j (t)) = (u, S(t)f0

j ) +
N � jp

"

Z t

0
(u, S(t � ⌧)C"

j+1S(⌧)f0
j+1)d⌧

+
N � jp

"

Z t

0
(u, S(t � ⌧)C"

j+1�̃
N
j+1(⌧))d⌧.

(3.5.3)

Of course the second term in (3.5.3) is of order O(
p
"), hence we focus on the third term.

Then, defining Ri(Xj , Vj , ⌧) := rviS(⌧ � t)u(Xj , Vj), such a term is

T =
N � jp

"

Z t

0
(u, S(t � ⌧)C"

j+1(⌧)�̃
N
j+1)d⌧

= �N � jp
"

jX

i=1

Z t

0
d⌧

Z
dXj+1

Z
dVj+1 Ri(Xj , Vj , ⌧) · F (

xi � xj+1

"
)�̃N

j+1(⌧)

= �N � j

"

jX

i=1

Z t

0
d⌧

Z
dXj+1

Z
dVj+1

Z ⌧

0
dsRi(Xj , Vj , ⌧)

j+1X

k,l=1
k<l

F

✓
xi � xj+1

"

◆

{F

✓
xk(�s) � xl(�s)

"

◆
· [(rvk

�rvl
)S(⌧ � s)f0

j+1](Xj+1(�s), Vj+1(�s))}.

(3.5.4)

We shall see that the leading term in the sum appearing in the r.h.s. of (3.5.4) is that

with k = i, l = j + 1, the other ones being vanishing. This is the content of the following

Lemma 5. Let ' = '(Xj+1, Vj+1, ⌧, s) � 0 be a measurable function, compactly supported in

Xj+1 and such that

'  e�b|Vj+1|2 .

Then, if (k, l) 6= (i, j + 1), for all i, k, l, we have

N � j

"

Z ⌧

0
ds

Z
dXj+1

Z
dVj+1'|F

✓
xi � xj+1

"

◆
||F

✓
xk(�s) � xl(�s)

"

◆
|  Cj" . (3.5.5)

Proof. We are integrating on the final coordinates (Xj+1, Vj+1) = (Xj+1(0), Vj+1(0)) of the

flow (Xj+1(�), Vj+1(�)) defined for negative times � 2 [�⌧, 0]. We find convenient to reverse

the velocities Vj+1 ! �Vj+1 and look at positive times s 2 [0, ⌧ ].

First of all we perform the usual change of variables xj+1 = xi � "r and gain "3. Next

we introduce the following partition of the phase space: setting C0 = {(k, l), k < l|(k, l) 6=
(i, j + 1)} we define

A0(k, l) = {(Xj+1, Vj+1)| |xk � xl| < 2", (k, l) 2 C0} (3.5.6)

and

A0 =
[

(k,l)2C0

A0(k, l). (3.5.7)
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Furthermore, denoting by s(k, l) 2 [0, ⌧ ] the first instant for which

|xk(s) � xl(s)| < " (3.5.8)

namely the pair of particles k and l starts to interact at time s(k, l) (if they do not interact

we set s(k, l) = ⌧) we define:

Ak,l = {(Xj+1, Vj+1) /2 A0|s(k, l) = min
(r,m)2C0

s(r, m) < ⌧}. (3.5.9)

In other words if (Xj+1, Vj+1) 2 Ak,l the pair of particles (k, l) 2 C0 is the first interacting

pair (excluded the pair (i, j + 1) which starts to interact at time 0) in the time interval (0, ⌧ ].

Note that we are interested to integrate over the set

A0 [
[

(k,l)2C0

Ak,l. (3.5.10)

In facts in the complement of the set (3.5.10), (3.5.5) vanishes because

|F
✓

xk(s) � xl(s)

"

◆
| = 0.

To estimate the contribution due to Ak,l we first assume that k 6= i, l 6= j + 1, i.

Note that the motion of the pair of particles with indices (k, l) is free in [0, s(k, l)]. Then

setting xk � xl = y and vk � vl = w we have

inf
s2[0,⌧ ]

|y � ws|  ". (3.5.11)

The minimizing s is s0 = w·y
|w|2 so that condition (3.5.11) yields

|y � w
w · y

|w|2 |  ". (3.5.12)

This means that the projection of y on the orthogonal plane to w is in the disk smaller than

". Therefore

N � j

"

Z

A(k,l)
dXj+1dVj+1 ' |F

✓
xi � xj+1

"

◆
||F

✓
xk(�s) � xl(�s)

"

◆
|  Cj" . (3.5.13)

Now we consider the cases k = i, l = i or l = j + 1. For the sake of clearness we consider

k = i, the other cases being completely analogous.

There are two possibilities: either s(i, l) > s̃, where s̃ is the last interaction time for the

pair (i, j + 1), namely

|xi(s) � xj+1(s)| > "

for s > s̃, or s(i, l)  s̃.

In the first case we can repeat the above argument setting y = xi(s̃) � xl(s̃) and w =

vi(s̃) � vl(s̃).
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In the second one observe that the center of mass x̄ =
xi+xj+1

2 is moving freely with velocity

v̄ =
vi+vj+1

2 (because the pair (i, j + 1) is an isolated system at least up to a time s̄ = s(i, l)).

Condition

|xi(s̄) � xl(s̄)| = "

implies

|xl(s̄) � x̄(s̄)|  |xi(s̄) � xl(s̄)| + |xi(s̄) � x̄(s̄)|  3

2
" . (3.5.14)

Therefore we can integrate under the condition (3.5.14) to get

N � j

"

Z

A(i,l)
dXj+1dVj+1 ' |F

✓
xi � xj+1

"

◆
||F

✓
xk(�s) � xl(�s)

"

◆
|  Cj" . (3.5.15)

Clearly we also have that

N � j

"

Z

A0

dXj+1dVj+1 ' |F
✓

xi � xj+1

"

◆
||F

✓
xk(�s) � xl(�s)

"

◆
|  Cj"2 . (3.5.16)

Thus we conclude the proof.

Finally we handle the leading term. Setting

Tl = � N � j

"

jX

i=1

Z t

0
d⌧

Z
dXj+1

Z
dVj+1

Z ⌧

0
dsRi(Xj , Vj , ⌧)F

✓
xi � xj+1

"

◆

⇢
F

✓
xi(�s) � xj+1(�s)

"

◆
· [(rvk

�rvl
)S(⌧ � s)f0

j+1](Xj+1(�s), Vj+1(�s))

�
,

(3.5.17)

we have

Lemma 6. The term with repeated indices is of order one. More precisely,

lim
"!0

Tl =

0
BB@

jX

i=1

jY

k=1
k 6=i

S(t)f0(xk, vk)

Z t

0
d⌧S(t � ⌧)QL(S(⌧)f0, S(⌧)f0)(xi, vi), u

1
CCA . (3.5.18)

Proof. At this point the proof is rather obvious and we only sketch it. We first reduce the

integration domain in the definition of Tl for moderately large relative velocity, i.e. |vi�vj+1| >

a"1/4, being the contribution of the complementary set negligible as we have seen in Section

3. Looking at

T>
l = � N � j

"

jX

i=1

Z t

0
d⌧

Z
dXj+1

Z

|vi�vj+1|>a"1/4

dVj+1

Z ⌧

0
dsRi(Xj , Vj , ⌧)·

F

✓
xi � xj+1

"

◆⇢
F

✓
xi(�s) � xj+1(�s)

"

◆
· [(rvk

�rvl
)S(⌧ � s)f0

j+1](Xj+1, Vj+1)

�
,

(3.5.19)
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we could apply the same argument as in Section 3 to get the result, if the motion of the pair

of particles i and j+1 would be independent of the others. However we have seen in the proof

of Lemma 5 that the contribution of the event in which the particle k 6= i, j +1 interacts with

particle i or particle j + 1 is indeed negligible. Hence (3.5.18) follows easily.

Finally, again by Lemma 1, we obtain (3.5.2).
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Chapter 4

Grazing collision limit

In Sections 4.4–4.6 of the present Chapter we present [MPS].

4.1 Introduction

The Landau equation appears for the first time in 1936 in a paper by L.D. Landau. In

[L-36] he derived the Landau collision operator starting from the Boltzmann collision integral,

performing the so–called grazing collision limit (see Section 4.3 for details). The purpose

of this Chapter is to adapt the grazing collision procedure by Landau -relying on physical

considerations- to the toy model proposed by M. Kac in the 50s. Indeed, we have seen in

Chapter 3 that a rigorous derivation of the Landau equation from a deterministic microscopic

dynamics seems to be very di�cult. We propose to start from a stochastic dynamics, as in

the case of the Kac model for the homogeneous Boltzmann equation. In order to do that,

we introduce a N-particle system which approaches, in the mean–field limit, the solutions of

the Landau equation with Coulomb singularity. This model plays the same role as the Kac

model for the homogeneous Boltzmann equation.

The plan of the Chapter is the following: in Section 4.2 we briefly review the model proposed

by Kac in [K] for the homogeneous Boltzmann equation; an attempt to clarify the physical

meaning of the grazing collision limit and the idea of the derivation of the Landau collision

operator from the Boltzmann one is presented in Section 4.3; the remaining Sections are

devoted to the study of the Kac’s model for the Landau equation (we report exactly [MPS]).

In particular the model we obtain by performing the grazing collision limit starting from the

Kac model and the statement of the main result are presented in Section 4.4; Subsection 4.6.1

is addicted to some preliminary estimates used in the proof of Theorem 6 presented in Section

4.6, using compactness arguments inspired by [V-98].
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4.2 Kac model

In 1954 M. Kac [K], in the attempt of clarifying some aspects of the transition from particle

systems to the Boltzmann equation, introduced a toy model which has been successively

investigated.

He started from the Boltzmann equation for hard spheres of diameter ", performing elastic

collisions; in this simple case, the Boltzmann equation can be written as follows:

@f

@t
(t, x, v)+v · rxf(t, x, v) =

"2

2

Z
dv1

Z
dn|(v1 � v) · ⌫|

{f(t, x, v + (v1 � v) · ⌫ ⌫)f(t, x, v1 � (v1 � v) · ⌫ ⌫) � f(t, x, v)f(t, x, v1)} ,

(4.2.1)

where f denotes the probability density of a gas in a region ⇤ and ⌫ is a unit vector. Since

there are no external forces, Kac assumed the probability density to be of the following form:

f(t, x, v) =
N

|⇤|f(t, v) , (4.2.2)

where N is the total number of particles of the gas confined in the region ⇤, whose volume is

denoted by |⇤|; this means that the probability density is factorized in a term which involves

the spatial properties (in fact the ratio between the number of particles and the volume of

the region in which they are contained is essentially the definition of the spatial density) and

a function which represents the velocity density. It is easy to see by substituting (4.2.2) in

(4.2.1) that f(t, v) is a solution to the reduced homogenous Boltzmann equation1

@f

@t
(t, v) =

"2

2

N

|⇤|

Z
dv1

Z
d⌫|(v1 � v) · ⌫|

{f(t, v + (v1 � v) · ⌫ ⌫)f(t, v1 � (v1 � v) · ⌫ ⌫) � f(t, v)f(t, v1)} ,

(4.2.3)

describing the time evolution of the velocity density with uniform spatial density.

Kac’s idea was to look at the reduced equation (4.2.3) to give a new probabilistic formulation

of the problem.

Roughly speaking the Kac’s model consists in a system of N particles with associated velocities

vN = (v1, . . . , vN ) 2 R3N , whose dynamics is the following stochastic process: at a random

time chosen accordingly to a Poisson process, pick a pair of particles, say i and j, and perform

the transition

vi, vj 7�! v0i, v
0
j

preserving total momentum and energy. More precisely, in the case of hard spheres, v0i and

v0j are given by the usual laws of elastic collisions:
(

v0i = vi + (vj � vi) · ⌫ ⌫ ,

v0j = vj � (vj � vi) · ⌫ ⌫ .
(4.2.4)

1We observe that if the system we want to consider is not the hard–sphere one, we have to replace the

factor "2

2
|(v1 � v · ⌫)| by a function depending on the interaction (see the discussion in Chapter 2 for details).
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The probability of such a “collision” event is assumed to be a function of the modulus of the

relative velocities of the two particles involved in the collision and of the angle between their

relative velocity and the unit vector ⌫. In the case of hard spheres, this probability has the

following structure:

Ki,j =
"2

2

|(vj � vi) · ⌫| � (vj � vi) · ⌫
|⇤| d⌫ dt . (4.2.5)

It is interesting to observe that Kac chose the above expression for the transition probability

because it is equivalent to the “Stosszahlansatz” originally formulated by Boltzmann in 1872.

Indeed, in [K] is stated that the Boltzmann’s hypothesis of chaos is the following: let us

consider two particles, say particle i and particle j, whose velocities are vi and vj , then the

number of collisions in the interval time dt between particle i and particle j which take place

when the line joining the centers of the two particles are in the direction ⌫ is

f(vi)f(vj)
"2

2
{|(vj � vi) · ⌫| � (vj � vi) · ⌫} d⌫ dt , (4.2.6)

where f is the average number of particles. If such a collision takes place, the velocity vector

changes according to the usual scattering laws, preserving momentum and energy in each

collision.

The master equation for this model is just the Kolmogorov equation associated to the Markov

process we are considering. Indeed let fN (0,vN ) be the symmetric (in the exchange of

variables) N-joint probability density at time zero; its evolution is given by

@fN

@t
(t,vN ) =

X

1i<jN

Z
d⌫ Ki,j(⌫){fN (t, v1, . . . , v

0
i, . . . , v

0
j , . . . , vN ) � fN (t, v1, . . . , vN )} .

(4.2.7)

Further simplifications of the model 2 lead to the well–known Kac model.

More precisely, if fN = fN (vN , t) is a symmetric probability distribution describing a statis-

tical state of the system, the time evolution is given by the following master equation

@tf
N = LNfN (4.2.8)

where

LNfN =
1

2N

X

i 6=j

Z
dv0i dv0j K(vi, vj |v0i, v0j)�(vi + vj � v0i � v0j)�(v

2
i + v2

j � v02i � v02j )

{fN (v1, . . . , v
0
i, . . . , v

0
j , . . . , vN ) � fN (v1, . . . , vN )},

(4.2.9)

and K is a suitable kernel.

Introducing the exchanged momentum p = v0i � vi = vj � v0j in the collision process and

assuming that

K(vi, vj |v0i, v0j) = w(p) (4.2.10)

2The simplifications made by Kac are the loss of the conservation of momentum and the simplification of

the expression of the kernel.
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for some smooth and radially symmetric w, we readily arrive to

LNfN =
1

2N

X

i 6=j

Z
dp w(p)�

�
p2 � p · (vi � vj)

�

{fN (v1, . . . , vi + p, . . . , vj � p, . . . , vN ) � fN (v1, . . . , vN )}.

(4.2.11)

In [K] it was shown that the first marginal of fN converges, in the limit N ! 1, to the solution

to the (homogeneous) Boltzmann equation if the initial datum is chaotic, i. e. if fN (0) = f⌦N
0

for some probability distribution f0. Moreover, the j-particle marginal converges to the j-fold

product of such solution, i.e. propagation of chaos holds (see (4.5.15) below).3

4.3 Grazing collision limit: from Boltzmann to Landau

If we are interested in the study of the probability density of a rarefied gas, the Boltzmann

equation is the right model to look at. On the other hand, if the gas is dense, the inter-

actions among particles are of Coulomb type so that singularities appear and the integrals

become divergent when distances among particles are large, so that the Boltzmann collision

operator makes no sense. To study these phenomena, in 1936 Landau [TH], starting from

the Boltzmann collision operator, derived a new kinetic equation for the time evolution of

the probability density of a dense charged plasma, exploiting the fact that, in this physical

context, only the grazing collisions (p ⇡ 0) are relevant. In this Section we shall reproduce

Landau’s approach and point out some relevant features associated to the Landau equation.

First of all, Landau started from physical observations, pointing out that the right forces

acting in a plasma are of Coulomb nature, so that a variation of the particle motion is possible

at large distances too. If we use the Boltzmann collision operator, Coulomb forces would

produce divergences in the integrals for large distances among particles that are colliding.

This fact points out a first key feature in the description of the evolution of the density

function of a plasma: collisions such that distances among the colliding particles are large are

essential.

We notice that the relevance of large distances is linked to the fundamental role played by little

variations of the momentum; indeed at large distances the particles change their trajectories

if the variation of momentum is small4; more precisely, particles at large distances could only

3Theorem ( Kac - 1954 )Let fN (0) be a sequence of probability density functions having the “Boltzmann

property”

lim
N!1

fN
j (vj , 0) =

jY

k=1

lim
N!1

fN
1 (vk, 0) .

Then fN (t), solutions to (4.5.1), also have the “Boltzmann property”:

lim
N!1

fN
j (vj , t) =

jY

k=1

lim
N!1

fN
1 (vk, t) .

4The smallness in the variation of momentum can be considered as a di↵usion in velocity.
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scatter through small angles and small change of velocity, so that collisions in which velocities

are slightly changed are important.

Landau’s approach (see also [P]) is the following: let us consider the Boltzmann collision

integral in the equivalent form

Q(f, f) =

Z
dv1

Z
dv0

Z
dv01K(v, v1|v0, v01){f(v0)f(v01) � f(v)f(v1)} , (4.3.1)

where v0 and v01 are obtained according to (4.2.4) and K(v, v1|v0, v01) is a function of velocity

variables before and after the collision and it takes into account the conservation of momentum

and energy; more precisely

K(v, v1|v0, v01) = w(p)�(v + v1 � v0 � v01)�(v
2 + v2

1 � (v0)2 � (v01)
2) , (4.3.2)

where p is the transferred momentum, i.e. p = v0 � v = v1 � v01.

In order to express the smallness of the transferred momentum, we consider a small scale

parameter " > 0 and we rescale the function w in such a way that the grazing collisions are

relevant in the limit of " small:

w(p) �! 1

"3
w
⇣p

"

⌘
.

To take into account the high density of the plasma, we also rescale the mean–free path:

1

�
�! 1

"�
,

and for simplicity we take � = 1.

The rescaled collision integral is

Q"(f, f) =
1

"4

Z
dv1

Z
dp w

⇣p

"

⌘
�(p2 + (v � v1) · p){f(v0)f(v01) � f(v)f(v1)} . (4.3.3)

Performing the change of variable p/" = p̃, the expression of the collision integral becomes

Q"(f, f) =
1

"4

Z
dv1

Z
" dp̃ w(p̃)�(p̃2"2 + (v � v1) · p̃"){f(v0)f(v01) � f(v)f(v1)}

=
1

"2

Z
dv1

Z
dp̃ w(p̃)�(p̃2"+ (v � v1) · p̃){f(v0)f(v01) � f(v)f(v1)} .

We observe that for every x, y 2 R3

�(x, y) =
1

2⇡

Z +1

�1
ds eisx·y . (4.3.4)

Hence we use (4.3.4) to rewrite (4.3.3) as

Q"(f, f) =
1

"2

Z
dv1

Z
dp̃ w(p̃)

1

2⇡

Z +1

�1
ds eis("p̃2+(v�v1)·p̃){f(v0)f(v01) � f(v)f(v1)} ;

by (4.2.4), we notice that v + "p̃ = v0 and v1 � "p̃ = v01, so that (4.3.3) is equal to

1

"2

Z
dv1

Z
dp̃ w(p̃)

1

2⇡

Z +1

�1
ds eis("p̃2+(v�v1)·p̃){f(v + "p̃)f(v1 � "p̃) � f(v)f(v1)} ;
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and by standard manipulations we obtain

1

"2

Z
dv1

Z
dp̃ w(p̃)

Z 1

0
d�

1

2⇡

Z +1

�1
ds eis("p̃2+(v�v1)·p̃)"p̃ · (rv �rv1)f(v + "p̃)f(v1 � "p̃) .

We underline that we assumed w(·) to be an even function, depending only on |p|.
To investigate the behavior of the rescaled collision integral in the limit " ! 0, we consider

the weak formulation of the problem. Let ' be a test function and let us denote by (· , ·) the

inner product in L2, as usual; then

(Q"(f, f),') =
1

2⇡"

Z
dv

Z
dv1

Z
dp̃ w(p̃)

Z 1

0
d�

Z +1

�1
dseis(p̃2("�2"�)+(v�v1)·p̃)'(v � "�p̃)⇥

⇥ p̃ · (rv �rv1)f(v)f(v1) .

We expand the above expression in power of ":

(Q"(f, f),') =
1

2⇡"

Z
dv

Z
dv1

Z
dp̃ w(p̃)

Z 1

0
d�

Z +1

�1
dseis(v�v1)·p̃){'(v) + "p̃ · rv'(v)}⇥

⇥ p̃ · (rv �rv1)f(v)f(v1)+

+
1

2⇡

Z
dv

Z
dv1

Z
dp̃ w(p̃)

Z +1

�1
eis(v�v1)p̃'(v)isp̃2

Z 1

0
d�(1 � 2�)⇥

⇥ p̃ · (rv �rv1)f(v)f(v1) + O(") =

=I1 + I2 + O(") .

Using the fact the w(·) is an even function, I1 vanishes; moreover the imaginary part of I1

is also zero because the integral in d� vanishes; then the collision integral is equal to the real

part of I2 plus O("):

(Q"(f, f),') =
1

2⇡

Z
dv

Z
dv1

Z
dp̃ w(p̃)

Z 1

�1
dseis(v�v1)·p̃p̃ · rv'(v)⇥

⇥ p̃ · (rv �rv1)f(v)f(v1) + O(") .

Formally, we yield to

lim
"!0

(Q"(f, f),') = (QL(f, f),') , (4.3.5)

where QL is the Landau collision operator5:

QL(f, f)(t, v) =

Z
dv1rv · a(v � v1)(rv �rv1)f(t, v)f(t, v1) , (4.3.6)

with a(·) the matrix

a(v � v1) =

Z
dp̃ w(p̃)�((v � v1) · p̃)p̃ip̃j . (4.3.7)

5We observe that the Landau collision operator is expressed in divergence form, coherently with the footnote

number 4 of the present Chapter.
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We observe that (4.3.7) can be written in polar coordinates as

ai j(v � v1) =
1

|v � v1|

Z
dp̃ |p̃| w(p̃)�

✓
(v � v1)

|v � v1|
· p̃

|p̃|

◆
p̃i

|p̃|
p̃j

|p̃| =

=
A

|v � v1|

Z
dp̂�

✓
(v � v1)

|v � v1|
· p̂

◆
p̂ip̂j ,

where p̂ = p̃/|p̃| and

A =

Z +1

0
dr r3w(r) . (4.3.8)

This implies that, for every y 2 R3, the matrix a(y) is composed by elements

ai j(y) =
A

|y|

✓
�i j �

yiyj

|y|2
◆

, 8 i, j = 1, 2, 3 .

We notice that the nature of the interaction expressed by the function w(·) is lost in the limit,

appearing only in the constant A, as it is clear by (4.3.8).

From now on the main purpose of the present Chapter is to introduce the analogous of the

Kac model for the Landau equation with Coulomb interaction (4.3.6).

In the following Sections we report the paper [MPS].

4.4 A Kac model for the Landau equation

Abstract. We introduce a N -particle system which approaches, in the mean-field limit, the

solutions of the Landau equation with Coulomb singularity. This model plays the same role as

the Kac’s model for the homogeneous Boltzmann equation. We use compactness arguments

following [11].

4.5 Introduction

In 1954 M. Kac [6], in the attempt of clarifying some aspects of the transition from particle

systems to the Boltzmann equation, introduced a toy model which has been successively

investigated. See for instance [9] and references quoted therein.

Roughly speaking the Kac’s model consists in a N -particle system. The particles have

no position but only velocities denoted by VN = (v1, . . . , vN ) 2 R3N . The dynamics is the

following stochastic process. At a random time, pick a pair of particles, say i and j, and

perform the transition

vi, vj ! v0i, v
0
j

preserving total momentum and energy.
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More precisely, if WN = WN (VN , t) is a symmetric probability distribution describing a

statistical state of the system, the time evolution is given by the following master equation

@tW
N = LNWN (4.5.1)

where

LNWN =
1

2N

X

i 6=j

Z
dv0i dv0j K(vi, vj |v0i, v0j)�(vi + vj � v0i � v0j)�(v

2
i + v2

j � v02i � v02j )

{WN (v1, . . . , v
0
i, . . . , v

0
j , . . . , vN ) � WN (v1, . . . , vN )},

(4.5.2)

and K is a suitable kernel.

Introducing the exchanged momentum p = v0i � vi = vj � v0j in the collision process and

assuming that

K(vi, vj |v0i, v0j) = w(p) (4.5.3)

for some smooth and radially symmetric w, we readily arrive to

LNWN =
1

2N

X

i 6=j

Z
dp w(p)�

�
p2 � p · (vi � vj)

�

{WN (v1, . . . , vi + p, . . . , vj � p, . . . , vN ) � WN (v1, . . . , vN )}.

(4.5.4)

In [6] it was shown that the first marginal of WN converges, in the limit N ! 1, to the

solution to the (homogeneous) Boltzmann equation if the initial datum is chaotic, i. e. if

WN (0) = f⌦N
0 for some probability distribution f0. Moreover, the j-particle marginal con-

verge to the j-fold product of such solution, i.e., propagation of chaos holds (see (4.5.15)

below).

The main purpose of the present paper is to introduce an analogous model for the Landau

equation with Coulomb interaction. A straightforward way to derive this model is to perform

the so-called grazing collision limit on eq.n (4.5.1) as we shall do in a moment. In fact in 1936

Landau [8], starting from the Boltzmann collision operator, derived a new kinetic equation

for the time evolution of a dense charged plasma, exploiting the fact that, in this physical

context, only the grazing collisions (p ⇡ 0) are relevant. According to such a prescription, we

introduce " > 0 a small parameter and scale the kernel of LN in eq.n (4.5.4) as

w(p) ! 1

"3
w
⇣p

"

⌘

so that

L"
NWN =

1

2N"4

X

i 6=j

Z
dp w

⇣p

"

⌘
�
�
p2 � p · (vi � vj)

�

{WN (v1, . . . , vi + p, . . . , vj � p, . . . , vN ) � WN (v1, . . . , vN )}.

(4.5.5)

Note that we inserted another factor 1/" in front of the collision operator, to take into account

the large density of the plasma.
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Now, for fixed N , we perform the limit " ! 0. By a straightforward formal computation

(change of variables and Taylor expansion), we readily detect the limiting generator which is

the following di↵usion operator:

L̃N = divVN
(B · rVN

). (4.5.6)

Here

B : R3N ! R3N⇥3N

is a matrix defined in the following way. For VN = (v1, . . . , vN ) 2 R3N ,

8
>><
>>:

Bi,j(VN ) = �a(vi � vj)

N
if i 6= j,

Bi,i(VN ) =
1

N

X

j

a(vi � vj),

where the 3 ⇥ 3 matrix a is given by

a(w) =
1

|w|(I � ŵ ⌦ ŵ) =
1

|w|P (w), w 2 R3, and ŵ =
w

|w| , (4.5.7)

with P (w) the orthogonal projection on the plane orthogonal to w.

Unfortunately the elliptic operator L̃N has two main disadvantages. First it is not uni-

formly elliptic (see Lemma 7 below), second it is not smooth due to the divergence for

|vi � vj | ⇡ 0.

As a matter of fact, since we want a handier N-particle model to start with, we slightly

modify L̃N to obtain a smooth and non-degenerate operator. More precisely, we define

LN = divVN
(BNrVN

) (4.5.8)

where BN is obtained by making the matrix B smooth and bounded from below:

8
>><
>>:

BN
i,j(VN ) = �aN (vi � vj)

N
if i 6= j,

BN
i,i(VN ) =

1

N

X

j

aN (vi � vj) +
1

N
.

(4.5.9)

Here the 3 ⇥ 3 matrix aN is obtained by replacing 1
|w| by �̄ 1

N
(|w|) 1

|w| in (4.5.7), defining

� 1
N

2 C1(R+), � 1
N

(r) = 1 if r <
1

N
, � 1

N
(r) = 0 if r >

2

N
, (4.5.10)

and �̄N = (1 � �N ). Now the evolution equation assumes the form

@tW
N = divVN

(BNrVN
WN ) (4.5.11)

and the well-known theory of linear parabolic equations assures the existence of a unique

classical solution for L1 initial data.
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To simplify the notations we define

1

|w|N
:= �̄ 1

N
(|w|) 1

|w|

so that aN (w) = 1
|w|N P (w).

In the limit N ! 1, the number of variables in the definition of WN diverges, hence we

will actually prefer to look at the asymptotic behavior of the marginal distributions

fN
j (v1, . . . , vj , t) =

Z
dvj+1 . . . dvN WN (v1, . . . , vN , t), j = 1, . . . , N.

Note that fN
N = WN and the j-th marginal distribution is a function of j variables. Moreover,

using (4.5.11) we can express the evolution of each fN
j in terms of fN

j+1. Straightforward

computations lead to the following system of equations, called the N -particle hierarchy

@tf
N
j = LN

j fN
j +

N � j

N
CN

j+1f
N
j+1, j = 1, . . . , N � 1 (4.5.12)

where LN
j and CN

j+1 are operators defined by:

LN
j fN

j =
1

N

jX

k 6=l
k,l=1

rvk
·
⇥
aN

k,l · (rvk
fN

j �rvl
fN

j )
⇤
+

1

N

jX

k=1

�vk
fN

j ,

CN
j+1f

N
j+1 =

jX

k=1

rvk
·
Z

dvj+1 aN
k,j+1 ·

�
rvk

fN
j+1 �rvj+1f

N
j+1

�
.

(4.5.13)

In particular we have LN
N = LN .

Since Cj = O(1), while LN
j fN

j = O( j
N ), the formal limit of (4.5.12) as N ! 1 yields an

infinite system of equations called Landau hierarchy

@tfj = Cj+1fj+1, j = 1, . . . , +1, (4.5.14)

where the operators Cj+1 write

Cj+1g =

jX

k=1

rvk
·
Z

dvj+1 ak,j+1 ·
�
rvk

g �rvj+1g
�
.

Due to the structure of the collision operator Cj+1, we realize that special solutions to

eq.n (4.5.14) are given by factorized states

fj(v1 . . . vj , t) =

jY

i=1

f(vi, t) = f(t)⌦j (4.5.15)

where the one particle distribution f(t) solves the Landau equation

@tf = Q(f, f), (4.5.16)
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with

Q(f, f)(v) =

Z

R3

dw a(v � w) · (f(w)rf(v) � f(v)rf(w)). (4.5.17)

It should be mentioned that, conversely, if f is a solution to eq.n (4.5.16), then the products

fj = f⌦j solve the hierarchy (4.5.14).

Following the general paradigm of the kinetic theory, we expect that propagation of chaos

holds, namely that (4.5.15) holds for all time provided that the initial state is chaotic, i.e.

(4.5.15) is initially verified.

Actually, we are not able to show propagation of chaos. We will be able to prove only the

(weak) convergence fN
j (t) ! fj(t) (for suitable subsequences), being fj(t) a weak solution of

the Landau hierarchy (4.5.14), without knowing whether fj(t) factorizes even though it does

at time zero. The reason is that we have a poor control on the limiting hierarchy as well as on

the Landau equation (4.5.16). In fact, we will obtain a solution to eq.n (4.5.14) by adapting,

to the present N -particle context, a strategy, based on compactness arguments, introduced

by C. Villani [11] for the Landau equation. As a matter of fact we do not have uniqueness,

which is a necessary condition to get propagation of chaos. Indeed, assume that f(t) and g(t)

are two weak solutions to eq.n (4.5.16), with the same initial datum f0. It follows that

fj(t) = �f(t)⌦j + (1 � �)g(t)⌦j , � 2 (0, 1)

solves the Landau hierarchy with the chaotic initial datum f⌦j
0 , but does not factorize.

Before stating our main result, we make some assumptions on the initial a.c. measures

WN (0):

1. WN (0) � 0;

2. WN (0) is symmetric in the variables v1, . . . , vN ;

3. The following uniform bounds hold
Z

dVN WN (0) = 1,

1

N

Z
dVN WN (0) log(WN (0))  C,

1

N

Z
dVN WN (0)|VN |2  C.

These properties still hold true at positive times. Actually
Z

dVN WN (t)|VN |2 =

Z
dVN WN (0)|VN |2 +

C

N
t

expresses the energy dissipation and follows easily by an integration by parts in eq.n (4.5.11).

Moreover Z
dVN WN (t) log(WN (t)) 

Z
dVN WN (0) log(WN (0))
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expresses the entropy dissipation and will be discussed in the next section.

We now explain what is the sense we give to eq.n (4.5.14). The main di�culty related to

the Landau equation is due to the divergence of the matrix a(w) when |w| is small. Indeed if

fj+1 (some weak limit of fN
j+1) is only in L1(R3(j+1)), the integral

Z
fj+1(v1, . . . , vj+1)

1

|vi � vj+1|

makes no sense; therefore Cj+1fj+1 is not defined in general. Thus, as we did before in (4.5.10)

to regularize the operator L̃N , we introduce a small parameter � > 0 and the cut-o↵ function

�� � 0, not increasing and such that

�� 2 C1(R+), ��(r) = 1 if r < �, ��(r) = 0 if r > 2�. (4.5.18)

Then we define C�
j+1 replacing a(w) in definition (4.5.13) by a(w)(1���(|w|), thus remov-

ing the singularity. Clearly, if ' 2 C2
c then

R
'C�

j+1fj+1 makes sense for any fj+1 2 M(j+1),

where M(k), k � 0, denotes the space of probability measures on R3k equipped with the topol-

ogy given by the weak convergence of probability measures.

Our result can be stated as follows

Theorem 6. There exists a subsequence Nk ! 1 such that, for all j, there exists fj 2
L1([0, T ]; L1) \ C0([0, T ]; M(j)), with finite mass, energy and entropy, such that

fNk
j ! fj when k ! 1,

where the convergence holds in the sense of weak convergence of probability measures. For

any t > 0 and for any test function ' 2 C2
c (R3j), the limit

lim
�!0

Z t

0
ds

Z
dv1 . . . dvj '(v1, . . . , vj)C

�
j+1fj+1(v1, . . . , vj , s), j = 1, . . . , +1

exists, and we have

Z
'fj(t) �

Z
'fj(0) =

Z t

0
ds

Z
'Cj+1fj+1(s), j = 1, . . . ,1.

Remark 3. Following [11], as we shall see in the proof of Theorem 6 we have more regularity

on fj (see (4.6.15)). This allows us to give a direct sense to Cj+1 without using a cut-o↵

function.

We conclude this section with some additional remarks.

Another kind of Landau equations can also be considered replacing the matrix a by

a↵(w) =
1

|w|↵ (I � ŵ ⌦ ŵ),

with ↵ < 1. In case of ↵ < 0 a unique smooth solution can be constructed (see [3], [4]).

It would be interesting to consider a N -particle di↵usion process with generator given by
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(4.5.17), in which a is replaced by a↵. Of course now we expect a much better control on the

limit N ! 1 and, in particular, the propagation of chaos.

The Landau equation can also be obtained as a grazing collision limit from the homoge-

neous Boltzmann equation, for a su�ciently small ↵ (see [1], [5], [3] and [4]). The case ↵ = 1

has been considered in [11].

In this paper we focus our attention on the Coulomb divergence ↵ = 1, which we think is

the most physically relevant case. Indeed the Landau equation for ↵ = 1 is believed to hold

in the so called weak-coupling limit, for Hamiltonian particle systems interacting by means

of a smooth, short-range potential. See [2] and [10] for a formal derivation. Unfortunately up

to now no rigorous result is known, even for short times.

4.6 Proof of Theorem 6

4.6.1 Preliminaries

In this section, we collect some preliminary properties satisfied by the N marginal distribu-

tions fN
j , j = 1, . . . , N . In all this section N is fixed. We start by introducing some

Notations. In the following, we will write

Vj = (v1, . . . , vj), VN
j = (vj+1, . . . , vN ), j = 1, . . . , N,

so that

fN
j = fN

j (Vj , t) =

Z
dV N

j WN (Vj , V
N
j , t).

Moreover,

ai,j = ai,j(VN ) = a(vi � vj), Pi,j = P (vi � vj), i, j = 1, . . . , N.

00·00 will denote the usual scalar product on R3, R3j or R3N . For VN , ⇠ 2 R3N ,

B(VN ) · ⇠ =

0
BBBBBB@

B1(VN ) · ⇠
·
·
·

BN (VN ) · ⇠

1
CCCCCCA

where Bk(VN ) 2 R3N is the k-th line of B(VN ).

On the other hand, for 1  k  N we will denote by

rvk
· ⇠ =

3X

i=1

@vi
k
⇠i,

where ⇠ = (⇠1, ⇠2, ⇠3) and vk = (v1
k, v

2
k, v

3
k).
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Finally, for every fixed j such that 1  j  N , for 1  k, m  j we denote by

V k,m
j = (v1, . . . , vk�1, vm, vk+1, . . . , vm�1, vk, vm+1, . . . , vj)

the vector obtained by exchanging the components vk and vm.

We start with an elementary property on the matrix B.

Lemma 7. B is positive semi-definite, i. e. for all ⇠

(B · ⇠) · ⇠ � 0.

More precisely, we have

(B · ⇠) · ⇠ =
1

N

NX

i,j=1

|Pi,j · (⇠i � ⇠j)|2
|vi � vj |

, where ⇠ = (⇠i)1iN .

Proof. Fix ⇠ 2 R3N , setting conventionally ai,i = 0 for all i we get

(B · ⇠) · ⇠ =

NX

i=1

0
@� 1

N

X

j 6=i

ai,j · ⇠j +
1

N

X

j

ai,j · ⇠i

1
A · ⇠i

=
1

N

NX

i,j=1

Pi,j · (⇠i � ⇠j)

|vi � vj |
· ⇠i.

Exchanging i and j in the sum we get, using that Pi,j is a projector :

(B · ⇠) · ⇠ =
1

N

NX

i,j=1

Pi,j · (⇠i � ⇠j)

|vi � vj |
· (⇠i � ⇠j)

=
1

N

NX

i,j=1

|Pi,j · (⇠i � ⇠j)|2
|vi � vj |

� 0.

Lemma 8. Let WN (t) be the solution to eq.n (4.5.11). Then for any convex function � 2
C2(R+; R),

R
dVN �(WN ) is decreasing in time; more precisely, we have

d

dt

Z
dVN �(WN (t)) = �

Z
dVN �00(WN (t))rVN

WN · (BN · rV N WN )  0. (4.6.1)

Proof. Look at

@tW
N = LNWN .

Let us consider a convex function �, then

d

dt

Z
�(WN ) =

Z
dVN �0(WN ) divVN

(BN · rVN
WN )

= �
Z

dVN �00(WN )rVN
WN · (BN · rVN

WN ).

(4.6.2)

Taking into account the convexity of � and using Lemma 7 the r.h.s. of (4.6.2) is non positive

and the statement of the Lemma holds.
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In particular, we will use Lemma 8 with �(x) = x log(x). We denote by

S(WN (t)) =
1

N

Z
dVN WN (t) log(WN (t)) (4.6.3)

the entropy per particle. In view of Lemma 8, S(WN (t)) is decreasing in time

d

dt
S(WN (t)) = � 1

N

Z
dVN

1

WN
rVN

WN · (BN · rVN
WN )  0 (4.6.4)

since �00(x) = 1/x � 0. In what follows we will use the explicit formula for the entropy

production:

� d

dt
S(WN (t)) =

1

N2

NX

k,l=1

Z
dVN

|Pk,l ·
⇥
rvk

WN �rvl
WN

⇤
|2

WN |vk � vl|N

+
1

N2

Z
dVN

1

WN
|rVN

WN |2.
(4.6.5)

Remark 4. Although the entropy S(WN (t)) decreases,

S(fN
j (t)) ⌘ 1

j

Z
fj(t) log(fj(t))

is not decreasing in general. However by subadditivity of the entropy we know (see e.g. [7])

that

S(fN
j (t))  S(WN (t)) (4.6.6)

so that

S(fN
j (t))  C (4.6.7)

since we have S(WN (0))  C.

Remark 5. In case of factorization, i. e. fj = f⌦j, we have the equality

S(fj) = S(f). (4.6.8)

Eq.n (4.6.5) provides a useful estimate given by the following

Corollary 1. Let 0  s1  s2. Then

NX

k,l=1

Z s2

s1

ds

Z
dVN

|Pk,l ·
⇥
rvk

WN �rvl
WN

⇤
|2

WN |vk � vl|N
 CN2.

Remark 6. Due to the symmetry of WN , all terms of the above sum are equal and hence

each term is bounded uniformly in N , namely for all 1  k, l  N

Z
ds

Z
dVN

|Pk,l ·
⇥
rvk

WN �rvl
WN

⇤
|2

WN |vk � vl|N
 C. (4.6.9)
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4.6.2 Basic estimates

Proposition 1. Let 1  j  N � 1 and ' 2 C2
c (R3j , R) be a test function. Let 0  s1  s2.

Then Z s2

s1

ds

����
Z

dVj LN
j fN

j (Vj)'(Vj)

���� 
C(')j2

N
|s1 � s2|1/2

and Z s2

s1

ds

����
Z

dVj CN
j+1 fN

j+1(Vj)'(Vj)

����  C(')j|s1 � s2|1/2,

where C(') depends only on ' and on the initial data, but not on N .

Proof. We begin by estimating CN
j+1. Recall (4.5.13). By integrating by parts, we have

Z
dVj CN

j+1 fN
j+1(Vj)'(Vj)

= �
jX

k=1

Z
dVj dV N

j aN (vk � vj+1) · (rvk
WN �rvj+1W

N )(Vj , V
N
j ) · rvk

'(Vj)

=
1

2

jX

k=1

Z
dVN aN (vk � vj+1) · (rvk

WN �rvj+1W
N )(VN )·

(rvk
'(Vj) �rvk

'(V k,j+1
j )),

where

V k,j+i
j = (v1, . . . , vk�1, vj+1, vk+1, . . . , vj)

and we exchanged variables vk and vj+1 in the second line and used the symmetry of WN .

Therefore
Z s2

s1

ds
���
Z

dVj CN
j+1 fN

j+1(Vj)'(Vj)
���

 1

2

Z s2

s1

ds

jX

k=1

Z
dVN

p
WN

p
WN

|rvk
'(Vj) �rvk

'(V k,j+1
j )|

p
|vk � vj+1|N

|Pk,j+1 · (rvk
WN �rvj+1W

N )(VN )|p
|vk � vj+1|N

;

(by using the Cauchy-Schwarz inequality)

 1

2

jX

k=1

 Z s2

s1

ds

Z
dVN WN (VN )

|rvk
'(Vj) �rvk

'(V k,j+1
j )|2

|vk � vj+1|N

!1/2

·

 Z s2

s1

ds

Z
dVN

|Pk,j+1(rvk
WN (VN ) �rvj+1W

N (VN ))|2
WN (VN )|vk � vj+1|N

!1/2

.

By virtue of mean-value Theorem applied to rvk
' and (4.6.9) we get the bound on CN

j+1:

Z s2

s1

ds

Z
CN

j+1f
N
j+1'(Vj) dVj  j C(')|s1 � s2|1/2. (4.6.10)
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By performing exactly the same computations we are led to

Z s2

s1

ds
���
Z

dVj LN
j fN

j (Vj)'(Vj)
���

 C(')

N

jX

k 6=l
k,l=1

 Z s2

s1

ds

Z
dVN

|Pk,l ·
⇥
rvk

WN (VN ) �rvl
WN (VN )

⇤
|2

WN |vk � vl|N

!1/2

 C(')j2

N
|s1 � s2|1/2.

The proof is now complete.

4.6.3 Convergence

In this subsection, we establish the weak compactness for the fN
j by making use of the uniform

estimates established in the previous subsection.

Proposition 2. Let fN
j satisfy the hierarchy (4.5.12). There exists a subsequence Nk ! +1

such that for any fixed j, there exists fj = fj(Vj , t) 2 C([0, T ]; M(j)), with finite energy and

entropy, such that fNk
j converges to fj weakly in the sense of measures, locally uniformly in

time.

Proof. We fix j. For ' 2 Cc(R3j), we set

t 7! gN
' (t) =

Z
dVj fN

j (Vj , t)'(Vj).

We obtain a uniformly bounded sequence of functions on R+. Moreover, when ' 2 C2
c (R3j),

by virtue of the proof of Proposition 1 the function gN
' is uniformly equicontinuous. Hence,

by Ascoli’s theorem and density of C2
c (R3j) in Cc(R3j), there exists a subsequence Nk such

that for all ' 2 Cc(R3j), gNk
' converges locally uniformly in time to some function g'(t). Now,

for each fixed t, the map

' 7! g'(t)

is a positive linear form on Cc(R3j). Thus the Riesz representation theorem ensures the

existence of a measure dfj(t) such that g'(t) =
R
'dfj(t). On the other hand, (fN

j )(t) has

uniformly bounded entropy and energy; therefore it is weakly relatively compact in L1. This

shows that in fact dfj(t) = fj(t) dVj is an absolutely continuous probability measure and has

finite entropy and energy. This concludes the proof of the proposition.
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4.6.4 End of the proof

We are now in position to complete the proof of Theorem 6. We fix j � 0. For any g 2
C2

c (R3(j+1)) we set

C�
j+1g(Vj) =

jX

k=1

rvk
·
Z

[(1 � ��)a](vk � vj+1) · (rvk
g �rvj+1g)(Vj , vj+1) dvj+1,

C
�
j+1g(Vj) =

jX

k=1

rvk
·
Z

[��a](vk � vj+1) · (rvk
g �rvj+1g)(Vj , vj+1) dvj+1,

so that

Cj+1(g) = C�
j+1(g) + C

�
j+1(g). (4.6.11)

The analogous decomposition holds for CN
j+1:

CN
j+1 = CN,�

j+1 + C̄N,�
j+1

where aN replaces a in (4.6.11). Note that CN,�
j+1 = C�

j+1 whenever N is su�ciently large.

We will show that for all t � 0 and for all test function ' in C2
c we have

Z t

0
ds

Z
dVj CN,�

j+1f
N
j+1'

=

Z t

0
ds

Z
dVj C�

j+1f
N
j+1' �!

Z t

0
ds

Z
dVj C�

j+1fj+1'

(4.6.12)

when N ! 1 and

sup
N�j

����
Z t

0
ds

Z
dVj C

N,�
j+1f

N
j+1'

����  C(')�1/2. (4.6.13)

First, (4.6.12) follows by the convergence established in Proposition 2 and by two integra-

tions by parts.

As regards (4.6.13), we need a symmetrized form as in the proof of Proposition 1. Mim-

icking the computations of Proposition 1 we find
����
Z t

0
ds

Z
dVj C

N,�
j+1f

N
j+1'

���� =

����
Z t

0
ds

Z
dVj C

�
j+1f

N
j+1'

����

 C

jX

k=1

 Z t

0
ds

Z
dVN

|Pk,j+1 · (rvk
WN �rvj+1W

N )|2
WN |vk � vj+1|N

!1/2

 Z t

0
ds

Z
dVN �2

�(|vk � vj+1|)
|rvk

'(Vj) �rvk
'(V k,j+1

j )|2
|vk � vj+1|

WN

!1/2

.

Applying once more inequality (4.6.9), the first term in the right-hand side is bounded. Next,

we observe that in view of the support properties of ��, the mean-value theorem yields

�2
�(|vk � vj+1|)|rvk

'(Vj) �rvk
'(V k,j+1

j )|2  C�|vk � vj+1|.
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Finally we obtain ����
Z t

0
ds

Z
dVj C

�
j+1f

N
j+1'

����  C�1/2,

and (4.6.13) follows. Hence the proof of Theorem 6 is complete.

We conclude this section with some comments concerning additional regularity for the

marginal fN
j . In fact, the control on the production of the total entropy (see Corollary 1)

yields a uniform control on the gradients of fN
j . More precisely, we have for all 1  k, l  j

Z
ds

Z
dVj

|Pk,l ·
⇣
rvk

fN
j �rvl

fN
j

⌘
|2

fN
j |vk � vl|N

 C. (4.6.14)

Indeed, we have

Z
ds

Z
dVj

|Pk,l ·
⇣
rvk

fN
j �rvl

fN
j

⌘
|2

fN
j |vk � vl|N

=

Z
ds

Z
dVj

1

fN
j |vk � vl|N

����
Z

Pk,l ·
�
rvk

WN �rvl
WN

�
dV N

j

����
2

=

Z
ds

Z
dVj

fN
j

|vk � vl|N

�����

Z
Pk,l ·

�
rvk

WN �rvl
WN

� 1

WN

WN

fN
j

dV N
j

�����

2


Z

ds

Z
dVN

fN
j

|vk � vl|N

Z
|Pk,l ·

�
rvk

WN �rvl
WN

�
|2 1

(WN )2
WN

fN
j

=

Z
ds

Z
dVN

|Pk,l ·
�
rvk

WN �rvl
WN

�
|2

WN |vk � vl|N
,

where we have applied Jensen’s inequality in the last inequality. The conclusion follows from

(4.6.9).

In particular, (4.6.14) implies that

Pk,l

|vk � vl|N
· (rvk

q
fN

j �rvl

q
fN

j )

is bounded in L2(R+ ⇥ R3j); hence, following the same arguments as in [11] we can conclude

that
Pk,l

|vk � vl|
· (rvk

p
fj �rvl

p
fj) 2 L2(R+ ⇥ R3j), (4.6.15)

so that one can use the symmetrized form already used in the proof of Proposition 1 to define

Cj+1fj+1 as in [11]:
Z

ds

Z
dVj Cj+1fj+1'

= �1

2

jX

k=1

Z
ds

Z
dVj ak,j+1 ·

�
rvk

fj+1 �rvj+1fj+1

�
·
⇣
rvk

'(Vj) �rvk
'(V k,j+1

j )
⌘

.
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Chapter 5

Mean–Field limit: the

Vlasov–Poisson system

Sections 5.3–5.4 of the present Chapter are extracted from [DMS].

5.1 Introduction

Both from mathematical and physical point of view, one of most important feature to analyze

is the evolution of the density function f in presence of Coulomb interaction between charged

particles. The basic model describing this phenomenum is given by the Vlasov–Poisson equa-

tion 8
>>>><
>>>>:

@tf + v · rxf + E · rvf = 0

E(t, x) =
R

R3
x�y

|x�y|3 ⇢(t, y) dy ,

⇢(t, x) =
R

R3 f(t, x, v) dv ,

(5.1.1)

where f(t, x, v) � 0 is defined on the phase space (x, v) 2 R3 ⇥R3 and it denotes a density of

electric particles, called a plasma, subjected to a self-induced electric force field E(t, x).

It is a good model to describe a plasma on a short time scale1 (see [Bal] or [LL]); on the other

hand, if we want to study it in a long time interval, we have to take into account collisions

among particles, so that it is natural to replace the r.h.s. of (5.1.1) by the Boltzmann

collision operator. As already observed in Chapter 4, the problem is that the Boltzmann

collision operation does not make sense when the interaction between particles is of Coulomb

type; indeed -even for very regular density functions- the collision integral is infinite. This

justifies the passage to the Landau eq.n, as pointed out in Section 4.3.

Among the many problems linked to the Vlasov–Poisson equation, we list the existence,

uniqueness and regularity of the solution; the derivation of (5.1.1) from particle systems2; the

1Indeed, it does not take into account the collisions among particles.
2See Section 5.2 for an idea of the proof when the interaction potential is smooth, namely in the case of
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understanding of the celebrated Landau damping ([L-36], [CM] and [MV]). In what follows

we are interested in the well–posedness problem for the Vlasov–Poisson equation and for

a slightly di↵erent model: the plasma–charge model (see eq.ns (5.3.1) in Section 5.3). We

mention that the Cauchy problem for the Vlasov-Poisson system (5.3.1) has been object of

a large variety of works in the last decades (we refer to Section 5.3.1 for references in this

respect).

The Chapter is organized as follows. In the next Section we give an idea of derivation problem

for a smooth, compactly supported potential, pointed out the relevance of the mean–field limit.

Section 5.3 is devoted to the proof of Theorem 7. The general procedure, which follows the

lines of [LP], consists in deriving a priori estimates for the moments of a sequence of smooth

solutions to (5.3.1)–(5.3.3) obtained by regularizing the initial density in order to obtain a

global solution by compactness arguments.

In Subsection 5.3.3 we gather some basic facts and a priori estimates for the modified Vlasov-

Poisson system (5.3.1). We also derive some first estimates for the energy moments. In

Subsection 5.3.4 we introduce a notion of almost-free flow, which enables to express the

solution of (5.3.1) by means of Duhamel’s formula with a suitable source term. Then, in

Subsection 5.3.5 we establish intermediate a priori estimates for the moments, which as a

byproduct ensure that the moments are uniformly bounded for small times. These estimates

are exploited to show that the moments are uniformly bounded for all times in Subsection

5.3.6. They provide a global solution satisfying the assumptions of Theorem 7 by standard

compactness arguments. An appendix is also devoted to the proof of technical estimates on

the almost-free flow.

5.2 From particle system to the Vlasov equation:

heuristic derivation

We consider N interacting particles in the whole space as in Section 1.2, whose dynamics is

described by the Newton equations (1.2.3). Since we are interested in a mean–field description

of the system, we rescale the system in order to obtain a weak and long range interaction on

the same scale of time; this means that we perform the following scaling:

�(xi � xj) �!
1

N
�(xi � xj) . (5.2.1)

the Vlasov equation, i.e. 8
>>>><
>>>>:

@tf + v · rxf + E · rvf = 0

E(t, x) =
R

R3 r�(x � y)⇢(t, y) dy ,

⇢(t, x) =
R

R3 f(t, x, v) dv ,

(5.1.2)

where � 2 C2
b (R3). In the case of the Vlasov–Poisson system, the problem is completely open.
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The variables are (xN ,vN ) 2 R3N ⇥ R3N and they describe positions and velocities of the

N particles interacting by means of a weak potential of order O
�

1
N

�
, following the Newton

equations (1.2.3). We fix the initial configuration (xN ,vN ) 2 (R3N ⇥ R3N ), where (xi, vi) 2
(R3 ⇥ R3) is a point in the one–particle phase space; the corresponding Hamiltonian is given

by

H(xN ,vN ) =

NX

i=1

|vi|2
2

+
1

N

NX

i=1

NX

j=1
j 6=i

�(xi � xj) . (5.2.2)

The factor 1
N in front of the interaction potential is the expression of the mean–field character

of the Hamiltonian, since it guaranties that, in the limit of N large, both kinetic and potential

energy are of the same magnitude order. Indeed the total kinetic energy is given by a sum

of N terms and the total potential energy is a sum of N(N�1)
2 terms, so that the factor 1

N in

front of the potential energy in (5.2.2) is such that, when the number of particles becomes

huge, the kinetic and the potential energy are of order O(N). We observe that, in the limit

N ! +1, thanks to the mean–field scaling, all particles are interacting with each other so

that the interaction is long range, but weak.

The aim of this Section is to derive, at least heuristically in the limit of N large, the Vlasov

equation, starting from the above N–particle system. To this end, we introduce M(R3⇥R3),

the space of measures on the one–particle phase space. To simplify the notation we denote

by zN the points in the N–particle phase space, i.e. zN = (xN ,vN ) 2 (R3N ⇥ R3N ) with

zi = (xi, vi) 2 R3. On M(R3 ⇥ R3) we define the empirical measure associated to the N–

particle configuration zN by

µN (z; zN ) =
1

N

NX

i=1

�(z � zi), 8z 2 (R3 ⇥ R3) (5.2.3)

where �(·) is the Dirac measure on (R3 ⇥ R3). We observe that µN is a probability measure

on (R3⇥R3), i.e. µN 2 P(R3⇥R3), which is an infinite dimensional space on the one–particle

phase space, depending on the configuration zN in the N–particle phase space. More precisely,

to each configuration zN , we can associate the empirical measure µN (z; zN ) which counts the

number of particles in the phase space. In the sequel, we will write µN (z) instead of µN (z; zN ),

omitting the dependence on zN when not misleading. We notice that knowing the time

evolution µN
t (z; zN ) is equivalent to determine the trajectory of each particle. Since we are

interested in a statistical description, we assume that there exists a probability distribution fN
0

on the N–particle phase space such that the initial configuration zN is distributed according

to the factorized measure fN
0 (zN ) = fN

0 (xN ,vN ); in other words the probability density can

be written as follows:

fN
0 (xN ,vN ) =

NY

i=1

f0(xi, vi) = f⌦N
0 , (5.2.4)

where f0 is a regular function on the one–particle phase space. Let µN
0 be the empirical
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measure associated to zN , we define µN
t = µN

t (z; zN ) the empirical measure associated to the

time evolution of the configuration zN described by the rescaled Newton equations
8
>><
>>:

ẋi(t) = vi(t) ,

v̇i(t) = � 1
N

PN
j=1
j 6=i

rxi�(xi(t) � xj(t)) , i = 1, . . . , N
(5.2.5)

with initial datum zN .

We denote by C1
c (R3) the space of test function with compact support. We notice that if

the interaction potential is regular, namely � 2 C2
b (R3), for all ' 2 C1

c the following relation

holds:

(', µN
t ) =

Z

R3

dzµN
t (z; zN (t))'(z) =

=
1

N

NX

i=1

'(zi(t)) .

(5.2.6)

Thanks to the regularity hypothesis on the potential, we can compute the time derivative of

(5.2.6) using the Newton equations (5.2.5)

d

dt
(', µN

t ) =
1

N

NX

i=1

d

dt
'(zi(t)) =

=
1

N

NX

i=1

ẋi · rxi'(xi(t), vi(t)) +
1

N

NX

i=1

v̇i · rvi'(xi(t), vi(t)) =

=
1

N

NX

i=1

vi · rxi'(xi(t), vi(t)) �
1

N2

NX

i=1

NX

j=1
j 6=i

rxi�(xi(t) � xj(t)) · rvi'(xi(t), vi(t)) =

= (v · rx', µN
t ) � ((rx� ⇤ µN

t ) · rv', µN
t ) .

(5.2.7)

Now we write explicitly the second term in the r.h.s. of (5.2.7):

(r� ⇤ µN
t )(x) =

Z
dy

Z
dwrx�(x � y)

0
@ 1

N

NX

j=1

�(y � xj(t))�(w � vj(t))

1
A =

=
1

N

NX

j=1

Z
dyrx�(x � y)�(y � xj(t)) =

=
1

N

NX

j=1

rx�(x � xj(t)) .

(5.2.8)

This means that µN
t is a solution (in the sense of measures) to the weak formulation of the

Vlasov equation

@tµ
N
t + v · rxµN

t = (rx� ⇤ µN
t ) · µN

t (5.2.9)
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with initial datum µN
0 .

The Strong Law of Large Numbers ensures us that, if the initial datum verifies condition

(5.2.4), then

µN
0 �! f0 (5.2.10)

in the limit N ! 1. The above limit holds in the weak–topology.

If we assume that µN
t is a weak solution to the Vlasov equation and that the interaction

potential is regular enough (i.e. � 2 C2
b (R3)), then we can use the Dobrushin stability result

(see [D-79]), stating that if µ1
t and µ2

t are two solutions of the Vlasov equation with initial

data µ1
0 and µ2

0 respectively, and if � 2 C2
b (R3), there exists a constant C, depending only on

the potential, such that

W(µ1
t , µ

2
t )  eCtW(µ1

0, µ
2
0) , (5.2.11)

where W is the standard Wasserstein distance.

Using (5.2.11), we can prove that, in the weak topology,

µN
t �! f(t) (5.2.12)

in the limit N ! 1, where f(t) is the strong solution to the Vlasov equation with initial

condition f0.

If the potential is not C2
b (R3) very little is known about the rigorous derivation of the Vlasov

equation. In particular the case of Coulomb potential, i.e. the derivation of the Valsov–

Poisson system from particles, is completely open. However, some progresses have been done

in this direction by Hurray and Jabin [HJ], who solved the problem when the gradient of the

interaction potential is given by r�(x) ⇠ 1
|x|↵ , with ↵ strictly less then one.

In the following Sections we report a work in progress with L. Desvillettes and E. Miot,

[DMS].

5.3 An existence result for the 3d repulsive plasma–charge

model

5.3.1 Introduction

The purpose of this paper is to study the following three dimensional Vlasov-Poisson system

8
>>>>>>>><
>>>>>>>>:

@tf + v · rxf + (E + F ) · rvf = 0

E(t, x) =
R

R3
x�y

|x�y|3 ⇢(t, y) dy,

⇢(t, x) =
R

R3 f(t, x, v) dv,

F (t, x) = x�⇠(t)
|x�⇠(t)|3 .

(5.3.1)
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Here f(t, x, v) � 0 is defined on the phase space (x, v) 2 R3 ⇥ R3 and it denotes a density of

electric particles, called a plasma, subjected to a self-induced electric force field E(t, x). The

plasma interacts with a point charge, located at ⇠(t) with velocity ⌘(t), which induces the

singular electric field F (t, x). The evolution of the charge is itself given by

8
<
:
⇠̇(t) = ⌘(t),

⌘̇(t) = E(t, ⇠(t)).
(5.3.2)

The initial conditions associated to (5.3.1)-(5.3.2) are

(⇠(0), ⌘(0)) = (⇠0, ⌘0), f(0, x, v) = f0(x, v). (5.3.3)

The main result of this Section may be formulated as follows:

Theorem 7. Let f0 2 L1 \ L1(R3 ⇥ R3) be nonnegative, let (⇠0, ⌘0) 2 R3 ⇥ R3, be such that

(i) M0 =
RR

R3⇥R3 f0(x, v) dx dv < 1;

(ii) There exists m0 > 6 such that for all m < m0

ZZ

R3⇥R3

✓
|v|2 +

1

|x � ⇠0|

◆m/2

f0(x, v) dx dv < +1.

Then there exists a global weak solution (f, ⇠) to the system (5.3.1)–(5.3.3), with f 2 C(R+, L1\
L1(R3 ⇥ R3) � w⇤) and ⇠ 2 C2(R+).

Moreover, for all t 2 R+ and for all m < min(m0, 7),

ZZ

R3⇥R3

✓
|v|2 +

1

|x � ⇠(t)|

◆m/2

f(t, x, v) dx dv < +1.

Remark 7. In fact one is able to obtain a polynomial in time growth on the moments (see

later): ZZ

R3⇥R3

✓
|v|2 +

1

|x � ⇠(t)|

◆m/2

f(t, x, v) dx dv  C(m, t) < +1,

where C(m, t) is polynomial in t.

The Cauchy problem for the Vlasov-Poisson system (5.3.1), with or without point charge, has

been the object of a large variety of works in the last decades. For the purely Vlasov-Poisson

system without charge, namely F = 0, global existence and uniqueness of classical solutions

where obtained by Ukai and Okabe [9] in two dimensions. The three dimensional case is more

delicate and requires more care. Global weak solutions with finite energy were first built by

Arsenev [2] but uniqueness is not known to hold in that class.
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Then, global existence and, in some cases, uniqueness, of more regular solutions where estab-

lished separately by Lions and Perthame [7] and by Pfa↵elmoser [11] by means of di↵erent

techniques. In both works the main issue consists in controlling the large plasma velocities

for all time in order to propagate regularity properties of the solution.

In [7], this is achieved by constructing weak solutions with finite velocity moments of order

higher than three, ZZ
|v|mf(t, x, v) dx dv < 1, m > 3,

which, by Sobolev embeddings, implies further bounds on the spatial density and on the

electric field. In particular, if the solution admits finite moments of order m > 6 then the

electric field is uniformly bounded and uniqueness holds under some additional regularity

assumptions on the initial density. On the other hand, the theory of Di Perna and Lions [4]

ensures that such solutions are transported by characteristics which are defined in a weak

sense. In contrast with the eulerian approach of [7], the strategy of [11] relies on a careful

analysis of the characteristics to control the growth of the velocity support and thereby obtain

global existence and uniqueness of classical compactly supported solutions, which moreover

propagate the regularity of the initial condition.

We refer to the further improvements and developments by Schae↵er [13], Wollman [14],

Gasser, Jabin and Perthame [5] and Loeper [8]. Finally, Pallard [10] recently combined

eulerian and lagrangian points of view to establish existence of solutions propagating velocity

moments larger than two.

The study of the modified Vlasov-Poisson system with macroscopic point charges was initiated

more recently by Caprino and Marchioro [3]. In two dimensions, they proved global existence

and uniqueness of solutions à la Pfa↵elmoser. This was then extended to the three-dimensional

case by Marchioro, Miot and Pulvirenti [12]. The results of [3] and [12] hold for initial plasma

densities that do not overlap the charge. Thanks to the repulsive nature of the plasma-charge

interaction, this property remains true at later times so that the field induced by the charge

is bounded on the support of the density and the velocities of the plasma particles do not

blow up. The analysis of [3] and [12] exploit the notion of energy, defined in this context by

h(t, x, v) =
|v � ⌘(t)|2

2
+

1

|x � ⇠(t)| .

It turns out that the variation of the energy along the plasma characteristics is controlled by

the electric field, exactly as that of the velocity in the absence of charge. On the other hand,

the energy controls both the velocity and the distance to the charge. This makes it possible

to adapt Pfa↵elmoser’s arguments by replacing the notion of largest velocity of the plasma

particles by that of the largest energy supsupp(f(t)) h, which by assumption is initially finite.

Unfortunately, when the plasma density overlaps the charge, the energy is not bounded and

this method fails. In order to treat densities with unbounded energy, which is the purpose

of the present paper, we adapt the PDE point of view from [7], and we show existence of a
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solution propagating the energy moments (see Definition 1 hereafter). In particular, since the

energy moments control the velocity moments, we recover all additional regularity properties

on the electric field which have been established in [7]. We emphasize that Theorem 7 allows

for initial densities that do not necessarily vanish in a neighborhood of the charge but that

have to decay close to it in some sense; unfortunately it does not include the ”generic” densities

that are constant close to the charge.

On the other hand, we mention that our techniques do not enable to obtain uniqueness

because of the singularity of F in the neighborhood of the charge. Finally, we believe that

the limitation m0 < 7 (appearing in the proof of Proposition 14) is purely technical. We also

hope to extend Theorem 7 to the case of several point charges being all positively charged,

as is the case in [3] and [12].

Another situation that could also be addressed is the one where the charge is kept fixed (for

example at the origin). Then the analog of Theorem 7 can be obtained without the condition

(i) and the condition m0 > 6 can be replaced by m0 > 3. In this latter case the electric field

is not uniformly bounded, and we are not able to prove the existence of characteristics along

which the density is constant. We do not provide the details here.

Thanks to the estimates proved in Theorem 7, it will turn out that, as in [7], one can define

a notion of flow lines along which the density is constant. More precisely, there exists a map

(t, x, v) 2 R+⇥R3\{⇠0}⇥R3 7! (x(t, x, v), v(t, x, v) 2 R3⇥R3 such that f(t) = (x(t), v(t))#f0

for all t 2 R+, and such that

(i) For all (x, v) 2 R3 \ {⇠0} ⇥ R3, t 7! (x(t, x, v), v(t, x, v) 2 C1(R+) is a solution of

8
<
:

ẋ(t, x, v) = v(t, x, v),

v̇(t, x, v) = E(t, x(t, x, v)) + x(t,x,v)�⇠(t)
|x(t,x,v)�⇠(t)|3 , (x, v)(0, x, v) = (x, v).

(5.3.4)

(ii) For all t 2 R+, the map (x, v) 7! (x(t, x, v), v(t, x, v) preserves the Lebesgue measure on

R3 ⇥ R3.

Since the solution constructed in Theorem 7 has bounded moments of order higher than 6,

the field E belongs to L1
loc(R+, C0,↵(R3)) for some 0 < ↵ < 1 (see Corollary 2 in [7]). It is

actually also continuous in time. Therefore given such a field E, for all (⇠0, ⌘0) and for all

(x 6= ⇠0, v) the corresponding ODE (5.3.2) and (5.3.4) have at least one solution, which is

C1 in time, as long as there are no collisions between the plasma trajectories and the charge.

We shall see that the repulsive nature of the interaction between the plasma and the charge

prevents collisions in finite time to occur, so that the flow (x, v) is globally defined.

We stress that, since E is only Hölder continuous, uniqueness of the solution to (5.3.4) (or

(5.3.3)) does not hold a priori for all initial condition (x, v) (or (⇠0, ⌘0)). However we mention

that, according to the previous works by Hauray [6] and, e.g., Ambrosio and Crippa ([1],

Theorem 19), such flow (x, v) indeed corresponds to the notion of generalized flow à la Di

136



Perna and Lions and is unique among the maps on R+ ⇥ R3 ⇥ R3 satisfying (i) and the

non-concentration property (ii). The remainder of this Section is organized as follows. The

next section is devoted to the proof of Theorem 7. The general procedure, which follows the

lines of [7], consists in deriving a priori estimates for the moments for a sequence of smooth

solutions to (5.3.1)–(5.3.3) obtained by regularizing the initial density in order to obtain a

global solution by compactness arguments.

In Subsection 5.3.3 we gather some basic facts and a priori estimates for the modified

Vlasov-Poisson system (5.3.1). We also derive some first estimates for the energy moments.

In Subsection 5.3.4 we introduce a notion of almost-free flow, which enables to express the

solution of (5.3.1) by means of Duhamel’s formula with a suitable source term. Then, in

Subsection 5.3.5 we establish intermediate a priori estimates for the moments, which as a

byproduct ensure that the moments are uniformly bounded for small times. These estimates

are exploited to show that the moments are uniformly bounded for all times in Subsection

5.3.6. They eventually provide a global solution satisfying the assumptions of Theorem 7. An

appendix is also devoted to the proof of technical estimates on the almost-free flow.

5.3.2 Some useful interpolation estimates

Before studying the dynamics of the Vlasov-Poisson system, we recall a collection of well-

known interpolation inequalities that we shall apply later to the solutions of (5.3.1)–(5.3.3).

All of them may be found in [7].

Proposition 3. Let f = f(x, v) � 0. Let b > a � 0. Then for all x 2 R3

Z

R3

|v|af(x, v) dv  Ckfk
3+a
3+b

L1

✓Z
|v|bf(x, v) dv

◆ 3+a
3+b

(5.3.5)

with C a numerical constant. In particular, setting ⇢(x) =
R

R3 f(x, v) dv we have

k⇢k
L

b+3
3

 Ckfk
3

3+b

L1

✓Z Z
|v|b f(x, v) dx dv

◆ 3
3+b

. (5.3.6)

Proof. For all R � 0
Z

|v|af(x, v) dv  Ra�b

Z
|v|b f(x, v) dv + CR3+akfk1, (5.3.7)

and the estimate (5.3.5) is obtained by optimizing R > 0, cf. also the proof of estimate (14)

in [7]. Setting a = 0 we obtain (5.3.6).

Proposition 4. Let f � 0 be in L1(R3 ⇥ R3), such that ⇢(x) =
R

R3 f(x, v) dv 2 Ls(R3) (for

some s 2 [1,1]) and E = ⇢ ⇤ (x 7! x/|x|3). Then for s 2]1, 3[,

kEk
L

3s
3�s

 C k⇢kLs , (5.3.8)

and for s > 3,

kEkL1  Ck⇢kLs . (5.3.9)
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Proof. The inequalities are direct consequences of Sobolev inequalities and the fact that E =

4⇡rx�
�1
x ⇢.

5.3.3 Some first estimates on the growth of the moments

We now turn to the study of the system (5.3.1)–(5.3.3). In the remainder of this article, we

fix T > 0.

In the sequel, we call classical solution any solution (f, ⇠) of (5.3.1)–(5.3.3) on [0, T ], with

initial condition (f0, ⇠0, ⌘0) satisfying the assumptions in Theorem 7, such that moreover

f0 is C1, compactly supported, and vanishes in a neighborhood of ⇠0, which satisfies f 2
C1

c ([0, T ] ⇥ R3 ⇥ R3), ⇠ 2 C2([0, T ]), and such f is transported by the classical flow (x, v)

of (5.3.4). The existence (and uniqueness) of classical solutions corresponding to such initial

data is ensured by [12]. Our purpose is to establish relevant a priori estimates for (f, ⇠) on

[0, T ], which will eventually lead to the existence of a solution to (5.3.1)–(5.3.3) by standard

compactness arguments. As already mentioned, such a priori estimates concern the moments

of order m < m0, which are defined in Definition 1 below.

We start with a few basic properties of the Vlasov-Poisson system.

Proposition 5. Let (f, ⇠) be a classical, compactly supported solution of (5.3.1)-(5.3.3) on

[0, T ].

Then, the norms

kf(t)kLp(R3⇥R3), 1  p  1,

and the energy

H(t) =
1

2

ZZ

R3⇥R3

|v|2f(t, x, v) dv dx +
1

2
|⌘(t)|2 +

1

2

ZZ

R3⇥R3

⇢(t, x) ⇢(t, y)

|x � y| dxdy +

Z

R3

⇢(t, x)

|x � ⇠(t)| dx

are conserved in time. In particular, the mass

M(t) =

ZZ

R3⇥R3

f(t, x, v) dx dv

is conserved in time.

Proof. The conservation of the Lp norms is an immediate consequence of the fact that f is

transported by a Lebesgue measure-preserving flow.
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We only detail the computation of the energy conservation estimate:

d

dt

⇢ZZ
f

|v|2
2

dx dv +
1

2
|⌘|2 +

1

2

ZZ
⇢(x) ⇢(y)

|x � y| dx dy +

Z
⇢(x)

|x � ⇠| dx

�

=

Z Z
v · (E + F ) f dvdx + ⌘ · E(⇠)

�
ZZ rx ·

R
v f dv

|x � y| ⇢(y) dxdy �
Z rx ·

R
v f dv

|x � ⇠| dx

�
Z
⇢(x) ⌘ · ⇠ � x

|⇠ � x|3 dx

= 0.

For the initial data (f0, (⇠0, ⌘0)) considered in the setting of Theorem 7, the energy is initially

finite; indeed Proposition 3 yields ⇢0 2 L1 \ L5/3 therefore
RR

⇢(x)⇢(y)/|x � y| dx dy is finite

by Hölder estimates; on the other hand the other terms are clearly finite by assumption (ii).

So we immediately get the

Proposition 6. Under the same assumptions on (f, ⇠) as in proposition 5, we have

sup
t2[0,T ]

|⌘(t)| 
p

2H(0) (5.3.10)

and

sup
t2[0,T ]

|⇠(t)|  |⇠0| +
p

2H(0) T. (5.3.11)

We may assume that R0 = |⇠0| +
p

2H(0) > 2.

Proof. The first inequality is a consequence of the conservation of the energy. The second

one comes out of the integration w.r.t. time of the first one.

Another well-known consequence of the conservation of the energy is the following

Proposition 7. Under the same assumptions on (f, ⇠) as in Proposition 5, we have

sup
t2[0,T ]

k⇢(t)kL5/3  C,

and for all 3
2 < r  15

4 ,

sup
t2[0,T ]

kE(t)kLr  C,

with C a constant depending only on H(0) and kf0k1 and r.

Proof. The first estimate is a consequence of (5.3.6) with b = 2 and the fact that the moment

of order 2 is controlled by the energy. The second estimate is deduced from the first one and

(5.3.8), using the fact that ⇢ 2 L1([0, T ], L1 \ L5/3(R3)).
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We now give our definition of energy moments.

Definition 1. We define the energy function

h(t, x, v) =
|v � ⌘(t)|2

2
+

1

|x � ⇠(t)| + K, (5.3.12)

where K � 1 is a constant su�ciently large with respect to H(0) (for example K = H(0)+1).

In view of Proposition 6 one can choose K in such a way that

|v|  3
p

h(t, x, v) 8(t, x, v) 2 [0, T ] ⇥ R3 ⇥ R3.

Then, we set, for k 2 R+,

H̃k(t) =

ZZ

R3⇥R3

h(t, x, v)k/2f(t, x, v)dx dv (5.3.13)

and

Hk(t) = sup
s2[0,t]

H̃k(s) = sup
s2[0,t]

ZZ

R3⇥R3

h(s, x, v)k/2f(s, x, v)dx dv. (5.3.14)

A first basic observation is that the energy moments Hk control the velocity moments Mk

defined in [7], namely

Mk(t) = sup
s2[0,t]

ZZ

R3⇥R3

|v|kf(s, x, v)dx dv  3kHk(t). (5.3.15)

Notation. In all the following, the notation C will refer to a constant depending

only on the quantities H(0), M0, kf0k1, ⇠0, Hm(0), for m < m0, and T . Note that in the

assumptions of Theorem 7 these quantities are finite (in the process of approximation leading

to the existence, they will be bounded with respect to the regularization parameter).

Lemma 9. Let (f, ⇠) be a classical, compactly supported solution of (5.3.1)-(5.3.3) on [0, T ].

We have for all t 2 [0, T ] and for k 2 R+

d

dt
H̃k(t)  C

⇣
kE(t)kLk+3 + |E(t, ⇠(t))|

⌘
Hk(t)

k+2
k+3 (5.3.16)

and therefore,

Hk(t)  C

(
Hk(0) +

✓Z t

0

n
kE(s)kLk+3 + |E(s, ⇠(s))|

o
ds

◆k+3
)

. (5.3.17)

Proof. Since f 2 C1
c ([0, T ] ⇥ R3 ⇥ R3) is a classical solution of (5.3.1), we may compute

d

dt
H̃k(t) =

k

2

Z
hk/2�1f

�
@th + v · rxh + (E + F ) · rvh

 
(t, x, v) dx dv

=
k

2

Z
hk/2�1f

�
(v � ⌘(t)) ·

�
E(t, x) � E(t⇠(t))

� 
dx dv.
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We remark that the choice of the energy function h enabled to get rid of the singular field in

the second equality.

Therefore

d

dt
H̃k(t)  C

Z
|E(t, x)|h(k�1)/2f(t, x, v) dx dv + |E(t, ⇠)|

Z
h(k�1)/2f(t, x, v) dx dv. (5.3.18)

In order to bound the first term of the right-hand side in (5.3.18) we use interpolation ar-

guments from [7] that we recall here for sake of clarity. First, we have thanks to Hölder

inequality
Z

|E(t, x)|h(k�1)/2f(t, x, v) dx dv  CkE(t)kLk+3

����
Z

h(k�1)/2f(t, ·, v) dv

����
L

k+3
k+2

.

Next, we have for x 2 R3 and for R > 0,
Z

h(k�1)/2f(t, x, v) dv =

Z

h1/2R
h(k�1)/2f(t, x, v) dv +

Z

h1/2�R
h(k�1)/2f(t, x, v) dv

 Rk�1

Z

|v|CR
f(t, x, v) dv + R�1

Z

h1/2�R
hk/2f(t, x, v) dv

 Ckf(t)kL1Rk+2 + R�1

Z
hk/2f(t, x, v) dv.

We have used the fact that |v|  Ch1/2 in the second inequality. Now, optimizing w.r.t. R,

and using that kf(t)kL1 = kf0kL1 we find

Z
h(k�1)/2f(t, x, v) dv  C

✓Z
hk/2f(t, x, v) dv

◆(k+2)/(k+3)

.

So finally, integrating in x, we obtain
����
Z

h(k�1)/2f(t, ·, v) dv

����
L

k+3
k+2

 CHk(t)
(k+2)/(k+3),

and we are led to
Z Z

|E(t, x)|h(k�1)/2f(t, x, v) dx dv  CkE(t)kLk+3 Hk(t)
(k+2)/(k+3). (5.3.19)

We next estimate the second term in (5.3.18). Applying again Hölder inequality yields

Z Z
h(k�1)/2 f(t, x, v) dx dv 

✓Z Z
f(t, x, v) dx dv

◆1/k ✓Z Z
hk/2 f(t, x, v) dx dv

◆(k�1)/k

so that, since M(t) = M0,
Z Z

h(k�1)/2f(t, x, v) dx dv  CHk(t)
(k�1)/k.

Since (k � 1)/k  (k + 2)/(k + 3) and Hk(t) � 1, it follows that

|E(t, ⇠)|
Z

h(k�1)/2f(t, x, v) dx dv  C|E(t, ⇠)|Hk(t)
(k+2)/(k+3). (5.3.20)

Gathering estimates (5.3.19) and (5.3.20) we are led to the conclusion of Lemma 9.
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In order to exploit Lemma 9, we now need to control the electric fields |E(⇠)| and kEkLk+3 .

Applying estimate (5.3.30) in Proposition 10 we readily get |E(⇠)|  CH
3/(k+3)
k if k > 6, but

this inequality is too rough to provide an estimate for Hk(t) by means of the estimates in

Lemma 9. In fact, when M0 < 1 one can improve the previous estimate on the electric field

computed at the point charge by the following virial-type argument.

Proposition 8. Under the assumptions on (f, ⇠) as in Proposition 5, we have
Z t

0
|E(s, ⇠(s))| ds  C.

Remark 8. This is the only point of the proof of Theorem 7 in which we use the assumption

(i).

Proof. Let (x(s), v(s)) = (x(s, x, v), v(s, x, v)) be a plasma trajectory on [0, T ]. Using the

system of ODE (5.3.2) and (5.3.4), we compute

d2

ds2
|x(s) � ⇠(s)| =

|v(s) � ⌘(s)|2
|v(s) � ⇠(s)| +

1

|x(s) � ⇠(s)|2

+

�
x(s) � ⇠(s)

�
·
�
E(s, x(s)) � E(s, ⇠(s))

�

|x(s) � ⇠(s)| � [(x(s) � ⇠(s)) · (v(s) � ⌘(s))]2

|x(s) � ⇠(s)|3 .

Therefore
1

|x(s) � ⇠(s)|2  d2

ds2
|x(s) � ⇠(s)| + |E(s, x(s))| + |E(s, ⇠(s))|. (5.3.21)

On the other hand, since f is transported by the measure-preserving flow (x, v), we have by

changing variable

|E(s, ⇠(s))| 
ZZ

f(s, x, v)

|x � ⇠(s)|2 dx dv =

ZZ
f0(x, v)

|x(s, x, v) � ⇠(s)|2 dx dv.

Therefore inserting (5.3.21) we get
Z t

0
|E(s, ⇠(s))| ds 

ZZ
f0(x, v)

✓Z t

0

d2

ds2
|x(s) � ⇠(s)| ds

◆
dx dv

+

Z t

0

✓ZZ
f0(x, v)|E(s, x(s, x, v))| dx dv

◆
ds + M0

Z t

0
|E(s, ⇠(s))| ds.

(5.3.22)

For the first term in the right-hand side of (5.3.22), we have

ZZ
f0(x, v)

✓Z t

0

d2

ds2
|x(s) � ⇠(s)| ds

◆
dx dv =

ZZ
f0(x, v)


d

ds
|x � ⇠|

�s=t

s=0

dx dv


ZZ

f0(x, v)

✓��� d

ds
|x � ⇠|

���(t) +
��� d

ds
|x � ⇠|

���(0)

◆
dx dv

 2 sup
t2[0,T ]

ZZ
f0(x, v)|v(t, x, v) � ⌘(t)| dx dv

= 2 sup
t2[0,T ]

ZZ
f(t, x, v)|v � ⌘(t)| dx dv.
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Hence, by Hölder’s inequality, we obtain

ZZ
f0(x, v)

✓Z t

0

d2

ds2
|X(s) � ⇠(s)| ds

◆
dx dv  C sup

t2[0,T ]
M(t)1/2H(t)1/2  C.

We turn to the second term in (5.3.22). We have by changing variable backwards

Z t

0

✓ZZ
f0(x, v)|E(s, X(s, x, v))| dx dv

◆
ds =

Z t

0

✓ZZ
f(s, x, v)|E(s, x)| dx dv

◆
ds

=

Z t

0

✓Z
⇢(s, x)|E(s, x)| dx

◆
ds

 C

Z t

0
k⇢(s)kL5/3kE(s)kL5/2 ds  C.

We used Proposition 7 in the last inequality.

Therefore coming back to (5.3.22), we find

Z t

0
|E(s, ⇠(s))| ds  C + M0

Z t

0
|E(s, ⇠(s))| ds.

The conclusion of Proposition 8 follows from the assumption (i) on M0.

5.3.4 The modified flow and the Duhamel formula

Let (f, ⇠) be a classical, compactly supported solution of (5.3.1)-(5.3.3) on [0, T ]. We decom-

pose the electric field and the force field into two parts:

E = Eint + Eext, F = Fint + Fext,

where

Eint =

✓
x 7! �R(x)

x

|x|3
◆
⇤ ⇢, Fint(t, x) = F (t, x)�R(x � ⇠(t)),

�R being a smooth cuto↵ function such that �R(x) = 1 on B(0, R), �R(x) = 0 on B(0, 2R)c

and 0 < �R(x) < 1 on R3, and where R > 1 is large and will be determined later in terms of

H(0), M0, kf0k1, ⇠0, Hm(0), for m < m0, and T .

We have

kEextkL1 + krEextkL1 + kD2EextkL1  k⇢0kL1

R2
(5.3.23)

and

kFextkL1 + krFextkL1 + kD2FextkL1  1

R2
. (5.3.24)

As in [7] we write the Vlasov equation using the internal part of E and F as a source term:

@tf + v · rxf + (Eext + Fext) · rvf = �(Eint + Fint) · rvf. (5.3.25)

The reason why we do not consider the free transport (namely we do not consider the full

field as a source term) will appear Subsection 5.3.6.
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Next, we fix t > 0 and we define the flow map (x, v) 7! (X, V )(x, v) such that

(
Ẋ(s) = �V (s), X(0) = x,

V̇ (s) = �(Eext + Fext)(t � s, X(s)), V (0) = v, 0  s  t.
(5.3.26)

This is the backward flow, not to be merged with the inverse flow of (x, v). It preserves the

Lebesgue’s measure on R3 ⇥R3. Note that if the external field vanished we would obtain the

free flow X(s, x, v) = x � vs, V (s, x, v) = v, and if we considered the total field in (5.3.26)

we would obtain the inverse of (x, v). We shall sometimes write (X(s), V (s)) instead of

(X(s, x, v), V (s, x, v)).

Using the invertibility properties of the flow listed in the appendix one can establish the

analog of Proposition 3:

Proposition 9. Let (f, ⇠) be a classical, compactly supported solution of (5.3.1)-(5.3.3) on

[0, T ]. Let 0  s, ⌧  T . Let b > a � 0. Then

Z

R3

|v|af(⌧, X(s, x, v), V (s, x, v)) dv  Ckf0k
3+a
3+b

L1

✓Z
|v|bf(⌧, X(s, x, v), V (s, x, v)) dv

◆ 3+a
3+b

.

(5.3.27)

In particular, setting ⇢̃(x) =
R

R3 f(⌧, X(s, x, v), V (s, x, v) dv we have

k⇢̃k
L

b+3
3

 Ckf0k
3

3+b

L1

✓
1 +

Z Z
|v|b f(⌧, x, v) dx dv

◆ 3
3+b

(5.3.28)

with C a numerical constant depending on T .

Proof. For the first inequality this is exactly the same proof as for Proposition 3, estimate

(5.3.5). The second inequality is obtained thanks to the bound |V (s, x, v) � v|  CT (see

(5.4.12)), and using the fact that (X(s), V (s)) preserves Lebesgue’s measure. Recall also that

kf(⌧)kL1 = kf0kL1 .

A consequence of Propositions 4 and 9 is

Proposition 10. Let (f, ⇠) be a classical, compactly supported solution of (5.3.1)-(5.3.3) on

[0, T ]. Let 0  s, ⌧  T . Let ⇢̃(x) =
R

R3 f(⌧, X(s, x, v), V (s, x, v) dv and Ẽ = ⇢̃⇤ (x 7! x/|x|3).
If m 2]3, 6[ we have

kẼk
L

3(m+3)
6�m

 C

✓
1 +

ZZ
|v|mf(⌧, x, v) dx dv

◆ 3
m+3

 CHm(⌧)
3

m+3 , (5.3.29)

and if m > 6,

kẼkL1  C

✓
1 +

ZZ
|v|mf(⌧, x, v) dx dv

◆ 3
m+3

 CHm(⌧)
3

m+3 (5.3.30)

where C > 0 is a numerical constant which depends on kfkL1 and T .
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Proof. We apply (5.3.8) and (5.3.9) with s = (m+3)/3, and conclude thanks to (5.3.28).

Using Duhamel formula we can express the solution of (5.3.25) as follows:

f(t, x, v) = f0(X(t, x, v), V (t, x, v)) +

Z t

0

�
rv · [(Eint + Fint) f ]

�
(t � s, X(s, x, v), V (s, x, v)) ds.

(5.3.31)

Proposition 11. Under the assumptions on (f, ⇠) as in Proposition 5, we have for m � 3

kE(t)kLm+3  C + C

����
Z t

0
s

Z

R3

(Eint + Fint)f(t � s, X(s), V (s)) dv ds

����
Lm+3

. (5.3.32)

Proof. By (5.3.31) we have

⇢(t, x) =

Z

R3

f0(X(t), V (t)) dv +

Z t

0

Z �
rv · [(Eint + Fint) f ]

�
(t � s, X(s), V (s)) dv ds

= ⇢1(t, x) + ⇢2(t, x).

(5.3.33)

Let us set E1 = ⇢1 ⇤ x/|x|3. By Proposition 10 we have by interpolation, since 3(m + 3)/(6�
m) � m + 3 and since Hm(0) is finite,

kE1km+3  C.

For the term ⇢2 and the corresponding field E2 we have to work more and use the appendix

(properties of the flow).

Next sections are devoted to the control of the right-hand of (5.3.32).

5.3.5 Intermediate small time estimates for the moments

The purpose of this paragraph is to establish uniform estimates for the moments on [0, T ].

Proposition 12. Under the assumptions on (f, ⇠) as in Proposition 5, let t 2 [0, min(1, T )]

and let m � 3.

Let 0 < � < 1. We introduce k defined by k + 3 = (m + 3)(1 + �) (note that k > m), and we

define � by � = �
1+(�+1)(m+3) 2]0, 1[.

Then we have
����
Z t

0
s

Z

R3

[(Eint + Fint)f ](t � s, X(s), V (s)) dv ds

����
Lm+3

 C(�, m) t� Hk(t)
1

m+3 .

Remark 9. Taking � small in Proposition 12, we realize that k > m may be chosen as

close as we want to m, therefore the estimate kE(t)kLm+3  CHm(t)1/(m+3), which in view

of Lemma 9 would be enough to obtain an estimate on Hm(t), is close to be achieved.
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Proof. By Proposition 7, the field Eint belongs to L1([0, T ], Lr1(R3)) for all 3/2 < r1  15/4.

Since this is the electric field produced by the bounded density f , we can use the estimates

of [7] as a blackbox : more precisely by estimates (31)-(32) and (28’)-(40) of [7] we get for all

3/2 < r1  15/4

����
Z t

0
s

Z

R3

(Eintf)(t � s, X(s), V (s)) dv ds

����
Lm+3

 C(r1, m) t
2� 3

r1 Mk1(t)
1

m+3 ,

where k1 > m is defined by k1 + 3 = (m + 3)(3 � 3/r1), which by (5.3.15) yields

����
Z t

0
s

Z

R3

(Eintf)(t � s, X(s), V (s)) dv ds

����
Lm+3

 C(r1, m) t
2� 3

r1 Hk1(t)
1

m+3 . (5.3.34)

We then introduce

I(x) =

Z t

0
s

Z

R3

(Fintf)(t � s, X(s), V (s)) dv ds.

In the following we will write ⇠ instead of ⇠(t � s) when not misleading.

Step 1. Local estimate for I

We recall that by Proposition 6 there exists R0 � 4 such that supt2[0,T ] |⇠(t)|  R0. We set

B = B(0, 3R). We take R > R0.

Let 0 < " < 2/(m + 3) be a small parameter and let us pick 3/(2 + ") < r2 < 3/2. By Hölder

inequality we get

kIkLm+3(B)

=

����
Z t

0
s1+"

Z |Fint|(t � s, X(s))

|X(s) � x|"
✓ |X(s) � x|

s

◆"

f(t � s, X(s), V (s)) dv ds

����
Lm+3(B)

 kf0k
1� 1

r02
L1

������

Z t

0
s1+"

✓Z |Fint|r2(t � s, X(s))

|X(s) � x|"r2
dv

◆ 1
r2

 Z ✓ |X(s) � x|
s

◆"r02
f(t � s, X(s), V (s))dv

! 1
r02

ds

������
Lm+3(B)

For all fixed x 2 B and 0  s  T we perform the change of variable

y = x � X(s, x, v).

Then by (5.4.11) |y|  s(|v| + 1) if R large enough (depending on T ). Moreover we have

Z |Fint|r2(t � s, X(s))

|X(s) � x|"r2
dv =

Z |Fint|r2(t � s, x � y)

|y|"r2
det(rvX(s))|�1 dy

and, according to the estimates in the Appendix (see (5.4.9)) we have |det(rvX(s))|�1 
C/s3.
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So we obtain

kIkLm+3(B)

 C

�����

Z t

0
s
1� 3

r2
+"

✓Z |Fint|r2(t � s, x � y)

|y|"r2
dy

◆ 1
r2

✓Z
(1 + |v|"r02)f(t � s, X(s), V (s)) dv

◆ 1
r02

ds

�����
Lm+3(B)

 C

Z t

0
s
1� 3

r2
+"
nZ

|x|3R

 Z

|x�⇠�y|R

dy

|y|"r2 |x � ⇠ � y|2r2

!m+3
r2

✓Z
(1 + |v|"r02)f(t � s, X(s), V (s)) dv

◆ (m+3)

r02
dx
o 1

m+3
ds

= C

Z t

0
s
1� 3

r2
+"

8
<
:

Z

|x|3R
|x � ⇠|(

3
r2

�2�")(m+3)
✓Z

(1 + |v|"r02)f(t � s, X(s), V (s)) dv

◆ (m+3)

r02
dx

9
=
;

1
m+3

ds.

We now set

r2 =
3

2 + "/2

and we define

p =
2

" (m + 3)
.

Note that p > 1 and
3

2 + 1
m+3

< r2 <
3

2
. (5.3.35)

Moreover

�(
3

r2
� 2 � ")(m + 3)p =

"

2
(m + 3)p = 1 < 3.

Applying Hölder’s inequality, we obtain

kIkLm+3(B)

 C

Z t

0
s�1+ "

2

 Z

|x|3R
|x � ⇠|� "

2
(m+3)p dx

! 1
(m+3)p

⇥

⇥

0
@
Z

|x|3R

✓Z
(1 + |v|"r02)f(t � s, X(s), V (s)) dv

◆ (m+3)

r02
p0

dx

1
A

1
(m+3)p0

ds

 Ct
"
2 sup
⌧,s2[0,t]

8
<
:

Z ✓Z
(1 + |v|"r02)f(⌧, X(s), V (s)) dv

◆ (m+3)

r02
p0

dx

9
=
;

1
(m+3)p0

.

We now focus on the right-hand side

sup
⌧,s2[0,t]

8
<
:

Z ✓Z
(1 + |v|"r02)f(⌧, X(s), V (s)) dv

◆ (m+3)

r02
p0

dx

9
=
;

1
(m+3)p0

. (5.3.36)
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Let us introduce k2 such that
✓

3 + "r02
3 + k2

◆✓
m + 3

r02
p0
◆

= 1

and apply (5.3.27) and (5.3.28) with this choice and a = "r02, b = k2. Note that b > a since

(m + 3)

r02
p0 > 1 () (m + 3)(1/3 � "/6) > 1 � " (m + 3)/2 () 1/3 > 1/(m + 3) � "/3,

which holds as soon as m > 0 (remember that m > 3 in this proposition).

We obtain

sup
⌧,s2[0,t]

8
<
:

Z ✓Z
|v|"r02f(⌧, X(s), V (s)) dv

◆ (m+3)

r02
p0

dx

9
=
;

1
(m+3)p0



 C sup
⌧,s2[0,t]

✓ZZ
|v|k2f(⌧, X(s), V (s)) dx dv

◆ 1
(m+3)p0

.

Similarly, we introduce k0
2 such that

✓
3

3 + k0
2

◆✓
m + 3

r02
p0
◆

= 1

and apply (5.3.27) and (5.3.28) with this choice and a = 0, b = k0
2 > a. Since k0

2 < k2 we

obtain

sup
⌧,s2[0,t]

8
<
:

Z ✓Z
f(⌧, X(s), V (s)) dv

◆ (m+3)

r02
p0

dx

9
=
;

1
(m+3)p0



 C sup
⌧,s2[0,t]

✓ZZ
|v|k0

2f(⌧, X(s), V (s)) dx dv

◆ 1
(m+3)p0



 C sup
⌧,s2[0,t]

✓ZZ
(1 + |v|k2)f(⌧, X(s), V (s)) dx dv

◆ 1
(m+3)p0



 C + C sup
⌧,s2[0,t]

✓ZZ
|v|k2f(⌧, X(s), V (s)) dx dv

◆ 1
(m+3)p0

.

Finally, we obtain

kIkLm+3(B)  Ct
"
2 Hk2(t)

1
(m+3)p0 .

Since p0 � 1, making explicit the dependence of the constants, we get for any r2 satisfying

the condition (5.3.35)

kIkLm+3(B)  C(r2, m) t
3
r2

�2
Hk2(t)

1
m+3 , (5.3.37)

where k2 > m satisfies

3 + k2 = (3 + m)
3
r2

� 1

1 � (m + 3)
⇣

3
r2

� 2
⌘ = (3 + m)

1 + "/2

1 � (m + 3) "/2
. (5.3.38)
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Step 2. Estimate for I at infinity

In this step we estimate the norm of I on the exterior of B = B(0, 3R). Observe that when

|x| � 3R and when |x� ⇠(t� s)� y|  R we have |y| � |x|� |⇠(t� s)|�R � 3R�R0 �R �
R0 � 1 > 1 (remember that R0 > 2). We use again the parameters 0 < " < 2/(m + 3) and

r2 = 3/(2 + "/2). By similar computations we find

kIkLm+3(Bc)

 C
���
Z t

0
s
1� 3

r2
+"

 Z

|x�⇠�y|R

dy

|y|"r2 |x � ⇠ � y|2r2

! 1
r2

⇥

⇥
✓Z

(1 + |v|"r02)f(t � s, X(s), V (s)) dv

◆ 1
r02
���

Lm+3(Bc)
ds

 C

Z t

0
s
1� 3

r2
+"
nZ  Z

|x�⇠�y|R

dy

|x � ⇠ � y|2r2

!m+3
r2

⇥

⇥
✓Z

dv (1 + |v|"r02)f(t � s, X(s), V (s))

◆ (m+3)

r02
dx
o 1

m+3
ds

 C

Z t

0
s
1� 3

r2
+"
nZ ✓Z

(1 + |v|"r02)f(t � s, X(s), V (s)) dv

◆ (m+3)

r02
dx
o 1

m+3
ds.

We now introduce k3 such that
✓

3 + "r02
3 + k3

◆✓
m + 3

r02

◆
= 1.

Note that k3 > " r02 as soon as m + 3 > r02, which is always true if (like in our case) m � 3

(remember that " < 2
m+3 so that r0  3

1� 1
m+3

). It follows from (5.3.27) with a = " r02 and

b = k3 that

kIkLm+3(Bc)  Ct
3
r2

�2
Hk3(t)

1
m+3 .

Since k3 < k2, we have Hk3  CHk2 . Finally, making explicit the dependence of the constant:

kIkLm+3(Bc)  C(r2, m) t
3
r2

�2
Hk2(t)

1
m+3 , (5.3.39)

with k2 = (3+m) (3/r2�1)
1�(m+3)(3/r2�2) � 3, for all r2 2] 3

2+ 1
m+3

, 3/2[.

Step 3: end of the proof of Proposition 12

Gathering the estimates (5.3.37) and (5.3.39) we find
����
Z t

0
s

Z

R3

(Fintf)(t � s, X(s), V (s)) dv ds

����
Lm+3

 C(r2, m)t
3
r2

�2
Hk2(t)

1
m+3 , (5.3.40)

hence
����
Z t

0
s

Z

R3

(Eint + Fint)f(t � s, X(s), V (s)) dv ds

����
Lm+3

 C(r1, m) t
2� 3

r1 Hk1(t)
1

m+3

+ C(r2, m) t
3
r2

�2
Hk2(t)

1
m+3 .

(5.3.41)
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We recall that r1 2]3/2, 15/4] and r2 2] 3
2+1/(m+3) , 3/2[ can be taken as close as necessary

to 3/2, and that k1, k2 > m are defined by k1 + 3 = (m + 3)(3 � 3/r1) and by k2 + 3 =

(m + 3)( 3
r2

� 1)/(1 � (m + 3) (3/r2 � 2)) (see (5.3.38)).

We next choose r1 and r2 so that k1 = k2 in the following way. We consider a (small)

parameter 0 < � < 1. We define r1 so that

2 � 3

r1
= �.

Note that 3/2 < r1 < 3  15/4 by choice of �.

We next define r2 so that
3

r2
� 2 =

�

1 + (m + 3)(� + 1)
,

which implies that k2 = k1. Then the condition (5.3.35) on r2 is satisfied. Then k + 3 =

(m + 3)(1 + �), and using that t  1, (5.3.41) rewrites

����
Z t

0
s

Z

R3

(Eint + Fint)f(t � s, X(s), V (s)) dv ds

����
Lm+3

 C(�, m)
⇣
t� + t

�
1+(m+3)(�+1)

⌘
Hk(t)

1
m+3

 C(�, m) t
�

1+(m+3)(�+1) Hk(t)
1

m+3

 C(�, m) t� Hk(t)
1

m+3 .

The conclusion follows.

Proposition 13 (Intermediate small time estimates). Let (f, ⇠) be a classical, compactly

supported solution of (5.3.1)-(5.3.3) on [0, T ]. For t  inf(1, T ) and 3 < m < m0, the

following estimate holds:

kE(t)km+3  C + C

����
Z t

0
s

Z

R3

(Eint + Fint)f(t � s, X(s), V (s)) dv ds

����
Lm+3

 C + Ct� + Ct1+�+�Hm(t)
3(k+3)

(m+3)2 .

(5.3.42)

Here � is any number in ]0, 1[ if m � 6, and any number in ]0, 1[ such that �  (m�3)/(6�m)

if m < 6. The parameter k > m is defined by k + 3 = (m + 3)(1 + �), and � = �
1+(m+3)(�+1) .

Remark 10. Here we only need that m0 > 3.

Remark 11. We stress that the constants depend on k, or equivalently, on � (in fact some

of them blow up when k ! m).

Proof. Thanks to Propositions 11 and 12, we obtain

kE(t)kLm+3  C+C

����
Z t

0
s

Z

R3

(Eint + Fint)f(t � s, X(s), V (s)) dv ds

����
Lm+3

 C+Ct� Hk(t)
1

m+3 ,

(5.3.43)

with k > m such that k + 3 = (m + 3)(1 + �) and � = �
1+(m+3)(�+1) , and for all 0 < � < 1.
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On the other hand, we infer from Lemma 9 and from Proposition 8 that

Hk(t)
1

m+3  C

 
Hk(0)

1
m+3 + t

k+3
m+3 sup

s2[0,t]
kE(s)k

k+3
m+3

Lk+3 + 1

!
.

Therefore, if k < m0, we get

Hk(t)
1

m+3  C

 
1 + t

k+3
m+3 sup

s2[0,t]
kE(s)k

k+3
m+3

Lk+3

!
. (5.3.44)

Next, by Proposition 10, we have kE(s)kL3(m+3)/(6�m)  CHm(s)
3

m+3 if m < 6, and kE(s)kL1 
CHm(s)

3
m+3 if m > 6. On the other hand, since m > 3, one can choose � su�ciently small in

terms of m such that (when m < 6) k + 3  3(m + 3)/(6 � m), namely

�  m � 3

6 � m
. (5.3.45)

By interpolation, this yields

kE(s)kLk+3  CHm(s)
3

3+m . (5.3.46)

Therefore, we infer from (5.3.43), (5.3.44) and (5.3.46), that

kE(t)km+3  C + C

����
Z t

0
s ds

Z

R3

(Eint + Fint)f(t � s, X(s), V (s)) dv

����
Lm+3

 C + Ct� + Ct1+�+�Hm(t)
3(k+3)

(m+3)2 .

(5.3.47)

This completes the proof of Proposition 13.

5.3.6 Bound on the moments

This paragraph is devoted to the proof of the propagation of the moments, formulated in the

following

Proposition 14. Let (f, ⇠) be a classical, compactly supported solution of (5.3.1)-(5.3.3) on

[0, T ]. Then we have for all m 2]16/3, min(m0, 7)[

Hm(T )  C.

The constant C depends only on the quantities H(0), M0, kf0k1, ⇠0, Hm(0), for m < m0,

and T .

Proof. Let t 2 [0, T ]. In view of Lemma 9 and Proposition 11 it is enough to control the

quantity
���
R t
0 s

R
R3 |Eint + Fint|f(t � s, X(s), V (s)) dv ds

���
Lm+3

in terms of H
1/(m+3)
m . Unfor-

tunately, the bound obtained in Proposition 13 does not allow to conclude, since it provides

an exponent 3(k + 3)/(m + 3)2, which is much too large. In order to bypass this di�culty,

we shall use, as in [7], two kinds of estimates: for small times we will use the estimate of
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Proposition 13; note indeed that the right-hand side is small when t is small. On the other

hand for large times we will perform other estimates.

More precisely, let 0 < t0 < inf(1, T ) su�ciently small, to be determined later on. Let

↵ 2]0, 1/4[.

First case: t 2 [t0, T ].

We have
����
Z t

t0

s

Z
(Fintf)(t � s, X(s), V (s)) dv ds

����
Lm+3


�����

Z t

t0

s

⇢Z
|Fint|3/2�↵(t � s, X(s)) dv

� 2
3�2↵

⇢Z
f

3�2↵
1�2↵ (t � s, X(s), V (s)) dv

� 1�2↵
3�2↵

ds

�����
Lm+3

 C

Z t

t0

s

⇢Z
�R(y)

1

|y|3�2↵

dy

s3

� 2
3�2↵

ds sup
⌧,⌧ 02[0,t]

����
Z

f
3�2↵
1�2↵ (⌧, X(⌧ 0), V (⌧ 0)) dv

����
1�2↵
3�2↵

L
(m+3) 1�2↵

3�2↵

 Ckf0k
2

3�2↵

L1

Z t

t0

s1� 6
3�2↵ ds sup

⌧,⌧ 02[0,t]

����
Z

f(⌧, X(⌧ 0), V (⌧ 0)) dv

����
1�2↵
3�2↵

L
(m+3) 1�2↵

3�2↵

.

We now use (5.3.27) with a = 0 and b such that b+3
3 = (m + 3) 1�2↵

3�2↵ . Note that b > 0 since

↵ 2]0, 1/4[ and m > 2.

We obtain
����
Z t

t0

s

Z
(Fintf)(t � s, X(s), V (s)) dv ds

����
Lm+3

 C t
� 4↵

3�2↵

0 Hm�↵ (2m+4)

1� 2
3 ↵

(t)
1

m+3 .

We now apply the interpolation inequality

H�(t)  H2(t)
m��
m�2 Hm(t)

��2
m�2 , � 2 [2, m], (5.3.48)

with the choice � = m�↵ (2m+4)

1� 2
3
↵

. Note that � 2 [2, m] since m � 16/3 and ↵ < 1/4. Since

supt2[0,T ] H2(t)  C thanks to the conservation of energy, this yields
����
Z t

t0

s

Z
(Fintf)(t � s, X(s), V (s)) dv ds

����
Lm+3

 C t
� 4↵

3�2↵

0 Hm(t)
1

m+3
� 4↵

(3�2↵)(m�2) . (5.3.49)

We emphasize that the constant above depends on ↵ and R.

We obtain an analogous estimate for the internal part of the electric field. Since ⇢ belongs

to L1([0, T ], L5/3(R3)) the internal part Eint is bounded in L1([0, T ], L3/2�↵(R3)) for all

0  ↵ < 1/4. So by exactly the same computations as before we get
����
Z t

t0

s

Z
(Eintf)(t � s, X(s), V (s)) dv ds

����
Lm+3


Z t

t0

s
1� 6

(3�2↵) sup
⌧,⌧ 02[0,t]

 
kEint(⌧)k3/2�↵

����
Z

f(⌧, X(⌧ 0), V (⌧ 0)) dv

����
( 1�2↵

3�2↵)

L
(m+3)( 1�2↵

3�2↵)
kf0k2/(3�2↵)

L1

!

 C t
� 4↵

3�2↵

0 Hm(t)
1

m+3
� 4↵

(3�2↵)(m�2) .

(5.3.50)
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Combining (5.3.49) and (5.3.50), we are led to (for all ↵ 2]0, 1/4[ and m 2]16/3, min(m0, 7)[),

����
Z t

t0

s

Z
(Eint + Fint)f(t � s, X(s), V (s)) dv ds

����
Lm+3

 C t
� 4↵

3�2↵

0 Hm(t)
1

m+3
� 4↵

(3�2↵)(m�2) .

(5.3.51)

Second case: t 2 [0, t0].

By Proposition 13, we have

����
Z t

0
s

Z
(Eint + Fint)f(t � s, X(s), V (s)) dv ds

����
Lm+3

 C (1 + t� + t1+�+�Hm(t)
3(k+3)

(m+3)2 ),

(5.3.52)

where k + 3 = (m + 3)(1 + �) and where � = �
1+(m+3)(�+1) , with any � 2]0, 1[ such that

�  m�3
6�m if m > 6.

Remembering that t0  1, we deduce from (5.3.51), (5.3.52) and Proposition 11 that for any

t 2 [0, T ],

kE(t)kLm+3  C + C t�0 + Ct1+�+�
0 Hm(t)

3(k+3)

(m+3)2 + C t
� 4↵

3�2↵

0 Hm(t)
1

m+3
� 4↵

(3�2↵)(m�2) .

Invoking again Lemma 9 and using that Hm(t) � 1 and t0  1 we therefore obtain

d

dt
H̃m(t)

 C
�
kE(t)kLm+3 + |E(t, ⇠(t))|

�
Hm(t)

m+2
m+3

 C

✓
1 + t�0H

� 1
m+3

m + t1+�+�
0 Hm(t)

3(k+3)

(m+3)2
� 1

m+3 + t
� 4↵

3�2↵

0 Hm(t)
� 4↵

(3�2↵)(m�2) +

+ |E(t, ⇠(t))|Hm(t)�
1

m+3

◆
Hm(t).

(5.3.53)

We then specify our choice for t0: we set (for example)

t1+�+�
0 = Hm(t)

� 3(k+3)�(m+3)

(m+3)2

hence

t0 = Hm(t)
� 3(k+3)�(m+3)

(1+�+�)(m+3)2 . (5.3.54)

It follows that

t
� 4↵

3�2↵

0 Hm(t)
� 4↵

(3�2↵)(m�2) = Hm(t)
4↵

3�2↵

⇣
3(k+3)�(m+3)

(1+�+�)(m+3)2
� 1

m�2

⌘

= Hm(t)e(m),

where we denote by e(m) the term appearing in the exponent above,

e(m) =
4↵

3 � 2↵

✓
3(k + 3) � (m + 3)

(1 + � + �)(m + 3)3
� 1

m � 2

◆
=

4↵

3 � 2↵

✓
2 + 3�

(1 + � + �)(m + 3)
� 1

m � 2

◆
.

153



We recall that � > 0 is a parameter that can be chosen as small as wanted such that the

condition (5.3.45) is satisfied, and that � = �/(1 + (� + 1)(m + 3)).

We now use the assumption m < 7. Then

2

m + 3
� 1

m � 2
< 0,

and we can choose � > 0 su�ciently small, so that e(m)  0, and we obtain

Hm(t)e(m)  1.

Coming back to (5.3.53), we infer that for all t 2 [0, T ],

d

dt
H̃m  C

⇣
1 + |E(t, ⇠)| H� 1

m+3
m

⌘
Hm(t).

By a Gronwall argument using Proposition 8, we conclude the proof of Proposition 14.

5.4 Appendix (estimates for the almost-free flow)

We can write the implicit solution of (5.3.25) as follows:

f(t, x, v) =

Z t

0
�[(Eint + Fint)rvf ](t � s, X(s, x, v), V (s, x, v)) ds

+f0(X(t, x, v), V (t, x, v)).

(5.4.1)

Computing (for any smooth function g)

rx{x 7! g(t � s, X(s, x, v), V (s, x, v))} = rxX(s, x, v)rxg(t � s, X(s, x, v), V (s, x, v))

+ rxV (s, x, v)rvg(t � s, X(s, x, v), V (s, x, v)) ,

rv{v 7! g(t � s, X(s, x, v), V (s, x, v))} = rvX(s, x, v)rxg(t � s, X(s, x, v), V (s, x, v))

+ rvV (s, x, v)rvg(t � s, X(s, x, v), V (s, x, v)) ,

so that (provided that rxX is invertible and that rvV � (rvX) (rxX)�1(rxV ) is also

invertible)

rvg(t � s, X(s, x, v), V (s, x, v)) =

=[rvV � (rvX) (rxX)�1(rxV )]�1

(rv{v 7! g(t � s, X(s, x, v), V (s, x, v))}
� (rvX) (rxX)�1rx{x 7! g(t � s, X(s, x, v), V (s, x, v))})

= divv{v 7! [rvV � (rvX) (rxX)�1(rxV )]�1g(t � s, X(s, x, v), V (s, x, v))}
� divx{x 7! [rvV � (rvX) (rxX)�1(rxV )]�1(rvX) (rxX)�1g(t � s, X(s, x, v), V (s, x, v))}

� g(t � s, X(s, x, v), V (s, x, v))

⇢
divv([rvV � (rvX) (rxX)�1(rxV )]�1)

� divx([rvV � (rvX) (rxX)�1(rxV )]�1(rvX) (rxX)�1)

�
.
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Then

⇢(t, x) = rx ·
Z Z

[rvV � (rvX) (rxX)�1(rxV )]�1(rvX) (rxX)�1 (5.4.2)

[(Eint + Fint) f ](t � s, X(�s, x, v), V (�s, x, v)) dvds

+

Z Z ⇢
rv([rvV � (rvX) (rxX)�1(rxV )]�1)

�rx([rvV � (rvX) (rxX)�1(rxV )]�1(rvX) (rxX)�1)

�

[(Eint + Fint) f ](t � s, X(�s, x, v), V (�s, x, v)) dvds.

We now observe that

d

ds
{rvX(s)} = rvV (s), rvX(0) = 0,

d

ds
{rvV (s)} =

✓
@Eext

@x
+
@Fext

@x

◆
(s, X(s))rvX(s), rvV (0) = Id,

so that, recalling (5.3.23), (5.3.24) and using Gronwall’s lemma:

||rvX||L1([0,T ]⇥R3⇥R3), ||rvX||L1([0,T ]⇥R3⇥R3)  CT . (5.4.3)

The same argument used for x-derivatives ensures that

||rxX||L1([0,T ]⇥R3⇥R3), ||rxV ||L1([0,T ]⇥R3⇥R3)  CT . (5.4.4)

Then, using (5.4.3), (5.4.4) and (5.3.23), (5.3.24), for any t 2 [0, T ],

|rxV (t)| = |
Z t

0
(
@Eext

@x
+
@Fext

@x
)(s, X(s))rxX(s) ds|  CT

R2
t, (5.4.5)

|rvV (t) � Id| = |
Z t

0
(
@Eext

@x
+
@Fext

@x
)(s, X(s))rvX(s) ds|  CT

R2
t, (5.4.6)

|rxX(t) � Id| = |
Z t

0

Z s

0
(
@Eext

@x
+
@Fext

@x
)(�, X(�))rxX(�) d� ds|  CT

R2
t2, (5.4.7)

|rvX(t) � t Id| = |
Z t

0

Z s

0
(
@Eext

@x
+
@Fext

@x
)(�, X(�))rvX(�) d� ds|  CT

R2
t2. (5.4.8)

This means that

rvX(s) = �s (Id + P (s)), kP (s)kL1  Cs/R2,

and it follows that

|det(rvX(s))|�1 = s�3|det(Id + P (s))|�1,
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with |det(Id + P (s))| � 1/2 if R is su�ciently large, so that

|det(rvX(s))|�1  Cs�3. (5.4.9)

For a given T > 0 and all R > 0 large enough, we deduce from (5.4.5) – (5.4.8) that rxX

is indeed invertible, and so is rvV � (rvX) (rxX)�1(rxV ). As a consequence, eq. (5.4.2)

holds, and (for s 2 [0, T ])

||[rvV (s, ·, ·) � (rvX)(s, ·, ·) (rxX)�1(s, ·, ·)(rxV )(s, ·, ·)]�1(rvX)(s, ·, ·)(rxX)�1(s, ·, ·)
(5.4.10)

�s Id||L1(R3⇥R3) 
CT

R2
s2,

||(x, v) 7! X(s) � (x + v s)||L1(R3⇥R3) 
CT

R2
s2, (5.4.11)

||(x, v) 7! V (s) � v||L1(R3⇥R3) 
CT

R2
s2. (5.4.12)

Finally, writing the di↵erential system satisfied by the second derivatives w.r.t. x, v of X, V

and using Gronwall’s lemma, it is possible to show that for any such second derivative D2,

||D2X||L1([0,T ]⇥R3⇥R3), ||D2V ||L1([0,T ]⇥R3⇥R3)  CT ,

and, as a consequence, for any given T > 0 and R > 0 large enough

||rv([rvV � (rvX) (rxX)�1(rxV )]�1) (5.4.13)

�rx([rvV � (rvX) (rxX)�1(rxV )]�1(rvX) (rxX)�1)||L1([0,T ]⇥R3⇥R3)  CT .
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