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Introduction

In this thesis we consider the problem of the classification of real ternary cubics,
that is, plane cubic curves with real coefficients, with respect to an arithmetical
invariant, the rank, and we give the decomposition of each real ternary cubic
form.
We prove a theorem that characterizes the reducible cubic which factors as a
product of imaginary conic and a real line with respect to rank and this is a new
result in the theory of real plane cubic curves.
We have shown that there are two cases where the rank over the real number is
five, while over the complex there is only one case of plane cubic with rank five
(see[29]).
More generally, we consider a vector space V of dimension 3 over R and the
action of the group SL(V), that is a change of variables, on the space of cubic
forms S3(V∨) = R[x, y, z]3.
This problem is a special case of a more general framework of the so called
Waring problem and arises also from the tensor decomposition that is an active
area of research in mathematics and its applications.
In particular, the research of rank of symmetric tensors and problems related to
the decomposition of them, is relevant in many applications as Electrical Engi-
neering (in the sub sector of Antenna Array Processing), in Statistic (cumulant
tensors, [30]), in Algebraic Statistics, in Computer Science, in Data Analysis.
For application concernig blind identification see ([14]). For all these applica-
tions see also the book of J. M. Landsberg ([28]).
We find that the maximal rank over the reals of ternary cubics is five in two
cases, namely when the cubic form factors as a real conic and an external line
and when a cubic factors as a conic and a tangent line.
Actually, it is known a classification of plane cubics with respect to rank only
over C (see [29]).
In their paper (see [29]), Landsberg and Teitler obtained normal forms for sym-
metric tensors (homogeneous polynomials) of border rank up to five and they
showed that the maximal rank of plane cubics over C is five in only one case,
namely when the cubic factors as a conic and a tangent line.

v
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This work is based also on the classification of the binary cubic forms over R
with respect to rank given by P. Comon and G. Ottaviani in their paper (see[13]),
where they were able also to compute the typical ranks for symmetric tensors
in P(SdR2) for d ≤ 5 with respect to Veronese variety νd(P1).
The real decomposition theory is not so well developed as its complex counter-
part; one of the reason is that, over the real numbers, there can be more than one
generic rank.
A typical rank of f ∈ S3(V∨) = R[x, y, z]3 is, following Comon and Ottaviani
([13]), any rank that occurs on an open subset of R[x, y, z]3 with the euclidean
topology.
The binary complex tensor decomposition is well known from J. J. Sylvester who
gave an algorithm to find a decomposition. Over the real numbers only recently,
Comon and Ottaviani conjectured a list of all typical ranks and G. Blekherman
was able to find all typical ranks for binary real forms and to prove the conjecture
(see [6]).
In this thesis we have found the following table in which there are all the SL(3,R)-
orbits of real ternary forms and we compute their rank and border rank:
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The numbers in the last column are the ranks of the 9× 9 matrix (see Section
(10.1)).



Chapter 1

Tensor Decomposition

1.1 Symmetric Tensor Decomposition

Let V be a complex vector space of dimension n+1 and V∨ be its dual vector
space, that is the vector space of linear forms on V.
We denote by P(V) the projectivization of V, that is, the set of 1-dimensional
subspaces of V.
For example if V = Cn+1 is a standard complex vector space then Pn=P(Cn+1)
is a standard complex projective space.
A point of Pn is defined by (n+1) homogeneous coordinates (x0, x1, .., xn), with xi

complex numbers, which are not all equal to 0 and are considered up to a scalar
multiple.
Consider a symmetric tensor [a j0 , ..., a jn] of order d and dimension n+1 (we can
think to a tensor as a multi-way array, a generalization of a matrix). We associate
to this tensor a homogeneous polynomial f ∈ Sd(V) of degree d in n+1 variables

f (x) =
∑

j0+ j1+..+ jn=d

(
d

j0 . . . jn

)
a j0 j1.., jnx j0

0 x j1
1 . . . x

jn
n .

It is customary to scale the coefficients a j0 j1.., jn by the multinomial coefficients

(
d

j0 . . . jn

)
=

d!
j0! j1! · · · jn!

.

With this notation, an element f ∈ S3(V), with dim V=3, can be represented as

f (x, y, z) = a300x3+3a210x2y+3a201x2z+3a120xy2+6a111xyz+3a102xz2+a030y3+3a021y2z+3a012yz2+a003z3

1



2 CHAPTER 1. TENSOR DECOMPOSITION

Decomposing a symmetric tensor means to find a representation of f as a sum
of d-powers of linear forms, that is,

f (x) =

r∑

i=1

λi(α0
i x0 + α1

i x1 + · · · + αn
i xn)d

with λi , 0 and r the smallest possible.
A naive approach is based on a method of counting constants (a so called direct
approach used in the XIX century based on elimination theory) (see for example
[20]).
We have to consider a polynomial system of

(n+d
d

)
equations in r(n+1) unknowns

(the coefficients of the linear forms) and to resolve it.
But this method has a disadvantage: it introduces r! redundant solutions be-
cause the system is an over-constrained system due to the permutations of the
summands.
As we will see a more efficient approach is based on (one of) Sylvester theorem
and on the classical concept of apolarity.
For setting the problem in a general context we review some facts about tensors.

1.2 Multilinear algebra and tensor products

The tensor product of two vector spaces V and W over a field K is a vector space
denoted by V ⊗W endowed with a bilinear map

V ×W → V ⊗W, v × w 7→ v ⊗ w

which is universal that is for any bilinear map β : V ×W → U, where U is a
vector space there is a unique linear map from the tensor product V ⊗W to U
that takes v ⊗ w to β(v,w).
The universal property determines the tensor product up to isomorphism.
If vi and w j are bases for V and W, the elements vi ⊗ w j constitute a basis for
V ⊗W. The construction is functorial, that is linear maps from V to V′ and from
W to W′ determine a linear map from V ⊗W to V′ ⊗W′.

V ×W V ⊗W

U
j
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The construction of tensor product is commutative, distributive and associative
that is we have the proprieties:

1. V ⊗W � W ⊗ V

2. (V1 ⊕ V2) ⊗W � (V1 ⊗W) ⊕ (V2 ⊗W)

3. (U ⊗ V) ⊗W � U ⊗ (V ⊗W) � U ⊗ V ⊗W

There is a different definition of tensor product.
V ⊗W is the vector space of the linear maps V∨ →W, that is

V ⊗W = Hom(V∨,W).

The space V∨ ⊗W can be thought as the vector space of all linear maps from V
to W,

V∨ ⊗W = Hom(V,W)

but also as the vector space of linear maps from W∨ to V∨ or as the dual vector
space to V ⊗W∨ or as the space of all bilinear maps V ×W∨ → K.
The general linear group

GL(V) × GL(W)

acts naturally over V ⊗W. If (g, h) ∈ GL(V) × GL(W) then

(g, h)(v ⊗ w) = (gv) ⊗ (hw)

for all (v,w) ∈ V ⊗W.
The rank of f ∈ V ⊗W is the dimension of Im( f ).
The linear maps f of rank ≤ r are defined by minors of size r + 1.
If we set

Dr = { f ∈ Hom(V∨,W)|rk( f ) ≤ r}
then

Proposition 1.1. Let V,W be vector spaces over K, with dimV=n+1, dimW=m+1.
The singular locus of Dr is Dr−1 so Dr \Dr−1 is a smooth variety and the codimension of
Dr is

(n + 1 − r)(m + 1 − r).

Proof. Following [34], Dr \ Dr−1 is an orbit under the action of GL(V) ⊗ GL(W)
and under a choise of a basis of V and W, a representant of this orbit is given by
the block matrix (

Ir 0
0 0

)

where Ir is the identity matrix of size r. �
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If we choose basis and represent an element f ∈ V∨⊗W by a matrix X = ( fi, j)
the first action is multiplication by a column vector, the second action is a mul-
tiplication by a row vector, the third by taking

∑
i, j fi, jg j,k, where (g j,k) denotes a

dimW×dimV matrix and the fourth is defined by (v, β) 7→ fi, jviβ j.
In general, given k vector spaces V1, ..,Vk and a multilinear function

f : V1 × V2 × ... × Vk → K

the vector space of such multilinear functions is denoted by V∨1 ⊗V∨2 .. ⊗V∨k and
is called tensor product of V∨1 , ..,V

∨
k .

Elements T ∈ V∨1 ⊗ · · · ⊗ V∨k are called tensors, the integer k is called order of T
and the sequence of natural numbers (dimV1, .., dimVk) is called the dimension
of T.
When V1 = V2 = ... = Vk = V, we use the standard notation V⊗k := V ⊗ ... ⊗ V,
and by convention V⊗0 is the ground field.
We give the definition of rank and border rank first in case of bilinear maps and
homogeneous polynomials and then in case of tensors.

Definition 1.2. For any bilinear map T : A × B → C, one can represent it as a
sum

T(a, b) =

r∑

i=1

αi(a)βi(b)ci

∀a ∈ A,∀b ∈ B where αi ∈ A∨,βi ∈ B∨, ci ∈ C the minimal number r over all such
representation is called the rank of T and denoted R(t) or rk(T).

We note that we can identify the space of symmetric tensors with the space
of homogeneous polynomials.
More precisely, if τ is a tensor of dimension n and order d, that is an element of
the tensor space

Cn ⊗ ... ⊗ Cn

then the homogeneous polynomial

p(xi1 , .., xik) =

n∑

i1,..,ik=1

τi1i2..ikxi1xi2 ..xik

can be associated 1-1 with τ.
The vector space of symmetric tensors Sd(V), with dim V=n+1, has dimension

dim Sd(V) =

(
n + d

d

)
.
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1.3 Rank and border rank of a tensor

We take α1 ∈ V∨1 , .., α
k ∈ V∨k and we define a tensor α1 ⊗ ...⊗ αk in V∨1 ⊗V∨2 ...⊗V∨k

by the formula:

α1 ⊗ · · · ⊗ αk(v1, ..., vk) = α1(v1) · · ·αk(vk). (1.1)

We say that a tensor has rank one if it may be written as in the formula (1.1).
We note that the property for a tensor to have rank one is independent of any
choices of basis.
The definition of the rank of a tensor T ∈ V1 ⊗ V2 ⊗ ... ⊗ Vk is:

Definition 1.3. The rank of a tensor T ∈ V1 ⊗V2 ⊗ ...⊗Vk, denoted by R(T) is the
minimum natural number r such that

T =

r∑

i=1

vi,1 ⊗ · · · ⊗ vi,k

with each vi, j are indecomponible.

Remark The rank of f ∈ Hom(V∨,W) = V ⊗W is the same than the rank
defined in Definition (1.3).
The rank of a tensor is unchanged if one makes changes of bases in the Vi.
We can say that the rank of a tensor is a measure of its complexity;moreover
the rank of a tensor is not continuous, that is, the limit of a sequence of rank r
tensors need not have rank r.
Therefore, (see [29]), we give the following definition of border rank of a tensor

T ∈ V1 ⊗ V2 ⊗ ... ⊗ Vk.

Definition 1.4. A tensor T has border rank r if it is a limit of tensors of rank r but
it is not a limit of tensors of rank s for any s < r.
We denote with R(T) the border rank of a tensor T.

Example 1.5. Let ai,b j,ck be basis of vector spaces A,B,C.
The tensor:
T = a1 ⊗ b1 ⊗ c1 + a1 ⊗ b2 ⊗ c1 has rank 1, because T can be written in the form:
T = a1 ⊗ (b1 + b2) ⊗ c1.
The rank of S = a1 ⊗ b1 ⊗ c1 + a2 ⊗ b2 ⊗ c1 is R(S) = 2.
It’s obvious that for all tensors T ∈ V1 ⊗ · · · ⊗ Vk,

R(T) ≤
∏

j

(dimV j).
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The border rank of the tensor T:

a1 ⊗ b1 ⊗ c1 + a1 ⊗ b1 ⊗ c2 + a1 ⊗ b2 ⊗ c1 + a1 ⊗ b1 ⊗ c1

is R(T)=2, but R(T)=3.
To see that R(T)=3 it is sufficient to write the tensor in the form:

T = a1 ⊗ b1 ⊗ (c1 + c2) + a1 ⊗ b2 ⊗ c1 + a2 ⊗ b1 ⊗ c1,

while to see that R(T)=2 is sufficient to write the tensor as the limit of T(ε) for
ε→ 0, where

T(ε) =
1
ε

[(ε − 1)a1 ⊗ b1 ⊗ c1 + (a1 + εa2) ⊗ (b1 + εb2) ⊗ (c1 + εc2)]

1.4 Symmetric and skew-symmetric tensors

The symmetric powers SymdV, also denoted by SdV, come with a universal
symmetric multilinear map

V × V... × V = V⊗d → SymdV, v1 × ... × vd 7→ v1...vd.

The symmetric powers can be constructed as the quotient space of V⊗d by the
subspace generated by
v1 ⊗ ... ⊗ vd − vσ(1) ⊗ ... ⊗ vσ(d), where σ ∈ S is an element of the symmetric group.
If ei is a basis for V, then

{
ei1 · ei2 · ... · eid : i1 ≤ i2 ≤ ... ≤ id

}

is a basis of SymdV. So this space can be regarded as the space of homogeneous
polynomials of degree d in the variable ei.
In particular, S2V is a subspace of V⊗2 defined by:

S2V :=
{
vi ⊗ v j + v j ⊗ vi

}
=

{
T ∈ V⊗2|σ(T) = T,∀σ

}

The exterior powers ΛdV of a vector space V, can be defined in the following
way:
define a map πΛ : V⊗k → V⊗k such that

v1 ⊗ · · · ⊗ vk 7→ v1 ∧ · · · ∧ vk :=
1
k!

∑

σ∈Sk
(sgn(σ))vσ(1) ⊗ · · · ⊗ vσ(k)

where sgn(σ) = ±1 denotes the sign of the permutation σ.
The image of this map is denoted by ΛkV and is called the space of alternating
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k-tensors.
In particular, Λ2V denotes the space of skew-symmetric 2-tensors and is a sub-
space of V⊗2 given by:

Λ2V :=
{
vi ⊗ v j − v j ⊗ vi

}
=

{
T ∈ V⊗2|σ(T) = −T

}

Strictly related to the rank of bilinear map is the symmetric border rank of
homogeneous polynomials.

Definition 1.6. Let F be a homogeneous polynomial of degree d in n variables, the
symmetric rank of F, denoted by RS(F) is the smallest r such that F is expressible
as the sum of r d-powers of linear forms.

Definition 1.7. The symmetric border rank of a homogeneous polynomial F,
RS(F) is the smallest r such that there exists a sequence of polynomials Fε each
of rank r, such that F is the limit of these polynomials as ε→ 0.

We recall the following definition:

Definition 1.8. A tensor τi1i2..ik is called symmetric if

τiσ(1)....iσ(k) = τi1....ik

for all permutation σ ∈ Sk.

For example, the three tensor τi jk belonging to the tensor space
C ⊗ C ⊗ C = C⊗3 is symmetric if

τi jk = τik j = τ jik = τ jki = τki j = τkji

for all i, j, k ∈ 1, ..,n.
We write Tk(Cn):=Cn ⊗ · · Cn, with k copies of Cn, for the space of k-dimensional
tensors over Cn.
The symmetric group Sk acts on Tk(Cn) as follows.
For any σ ∈ Sk and for any tensor in Tk(Cn),

σ(xi1 ⊗ xi2 · · ⊗ xik) := xiσ(1) ⊗ · · ⊗xiσ(k)

and extend this linearly to all of Tk(Cn).
With this notation we can, more generally, give the following definition of sym-
metric tensor.
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Definition 1.9. A k-tensor T is symmetric if

σ(T) = T

for all permutations σ ∈ Sk.

If we let S:Tk(Cn)→ Tk(Cn) be the linear operator given by

S :=
1
k!

∑

σ∈S
σ.

Then we have the following characterization of a symmetric tensor T ∈ Tk(Cn).
A tensor T is symmetric if and only if S(T) = T, or, if and only if it is an
eigenvector of the linear operator S with eigenvalue 1.
In fact, if T is symmetric then we have

S(T) =
1
k!

∑

σ∈S
σ(T) =

1
k!

∑

σ∈S
T = T (1.2)

and conversely, if S(T) = T, then

σ(T) = σ(S(T)) = S(T) = T

for all σ ∈ S and so T is a symmetric tensor.

1.5 Polarization

Consider the vector space Sd(V∨) that is the space of symmetric d-linear forms
on V. Let u0,u1, · · · un be a basis of V and let x0, x1, · · · xn be s dual basis in V∨.
This space is the space of homogeneous polynomials of degree d on V.This iden-
tification may be done by the process called polarization.The polarization of a
form F ∈ Sd(V∨) is the unique symmetric multilinear function F̃(x, y, ..., z) on V⊗d

such that

F(x) = F̃(x, ..., x).

By fixing the first k variable a, c, · · · c in F̃, and making equal the other ones, we
obtain the k-th mixed polar of F with respect to the points a, b, · · · c

Pa,b,···c(F)(x) = F̃(a, b, · · · c, x, · · · , x).
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The first polar of F with respect to the point Y=y0u0 + · · · ynun ∈ V is

PY(F) =
1
n

n∑

i=0

yi
∂F
∂xi
.

For example if Q is a quadratic homogeneous polynomial on V, the bilinear
form associated, Q̄, is given by

Q̄(x, y) =
1
2

[Q(x + y) −Q(x) −Q(y)]

In coordinate-free term the polarization of a quadric Q ∈ S2(V∨) is the bilinear
form bQassociated to it:

bQ ∈ Sym2(V)

given by the above formula.
If F is a cubic form, F ∈ S3(V∨), with x, y, z coordinates on V, its first polar PY(F)
with respect to a point Y is a quadratic form, and its second mixed polar form
PY,Z(F) is a linear form. Its total polarization is given by the formula ([28])

F̄(x, y, z) =
1
6

[F(x + y + z) − F(x + y) − F(x + z) − F(y + z) + F(x) + F(y) + F(z)].

For general multilinear form, for example for a k-linear form, the polarization
formula is

Q̄(x1, x2, ..., xk) =
1
k!

∑

I⊂[k]

(−1)k−|I|Q



∑

i∈I
xi




where [k] = {1, ..., k}.
For example the total polarization of the cubic polynomial of two variables

F(s, t) = s2t

is, with s = (s1, s2, s3) and t = (t1, t2, t3)

P̄ =
1
3

(s1s2t3 + s1s3t2 + s2s3t1)

because we have:
P̄((s1, t1), (s2, t2), (s3, t3)) =
= 1

6 (P(s1 + s2 + s3, t1 + t2 + t3) − P(s1 + s2, t1 + t2) − P(s1 + s3, t1 + t3)
− P(s2 + s3, t2 + t3) + P(s1, t1) + P(s2, t2) + P(s3, t3)).



10 CHAPTER 1. TENSOR DECOMPOSITION

1.6 Typical real rank

For the real binary forms we have the following definition of typical rank ([13]):

Definition 1.10. A rank r is typical if the locus

S(d, r) =
{

f ∈ Symd(R2)|rk( f ) = r
}

has non empty interior with the euclidean topology.

An equivalent definition of typical rank (cfr.[19]) for the tensor product

V1 ⊗ V2 ⊗ · · · ⊗ Vk

is

Definition 1.11. The linear space V1 ⊗ V2 ⊗ · · · ⊗ Vk has typical rank r if r is the
smallest integer m such that the set of elements v ∈ V1 ⊗ V2 ⊗ · · · ⊗ Vk of rank at
most m is a dense set in the Euclidean topology.

Over C, for every degree d, there is a unique value of r such that

S(d, r) =
{

f ∈ Symd(C2)|rk( f ) = r
}

is dense and this is called “generic rank” over C.
It is known that the smallest typical rank over R is equal to the generic rank
over C.
Roughly speaking, a property is “generic ” if it is true almost everywhere and
is “typical” if it is true on a non-zero volume set.
The difference is that there can be several typical ranks of a tensor but only one
generic rank.
It was conjectured by Comon and Ottaviani [13] and proved by G. Blekherman
[6] that overR binary forms of degree d take all integer values between bd

2 +1c ≤
r ≤ d.
In general the rank depends on the ground field, and there is a difference between
real and complex rank as the following example

2x3 − 6xy2 = (x + iy)3 + (x − iy)3 = (
3√
4x)3 − (x + y)3 − (x − y)3

shows.
In the above example,

rkC(2x3 − 6xy2) = 2
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while
rkR(2x3 − 6xy2) = 3.

If the field is R the set
Sr = { f |rk( f ) = r}

is a semi algebraic set and its interior is non empty for just finitely many values
of r.

Definition 1.12. A real semi algebraic set in Rn is the zero set of m polynomials
p1, .., pm ∈ R[x].

The generic rank of F, grk(F), that depends on the degree d and on the num-
ber n of variables is not known in general, that is there is no general expression
that gives the exact value of grk(F).
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Chapter 2

Sylvester’s penthaedral theorem

2.1 Cubic form in four variables

Consider f ∈ Sd(V∨), a form of degree d in n+1 variables, (n-ary d-ic quantic
in the old English literature) where V denote a vector space over a field K of
dimension n+1, and V∨ denote the dual vector space of V, V∨=Hom(V,K). The
problem concerning the representation of f as a sum of d-power of linear forms
can be reduced to the research of the canonical form of a conic or a quadric; a
basically generalization of this theory is the discovery of the Pentahedral Theo-
rem of a cubic surface made in 1851 by J.J. Sylvester.
He was able to show that a form cutting out a smooth cubic surface in P3 can be
written as a sum of five cubes of linear forms and moreover these linear forms
are unique up to reordering and multiplication by a cube root of unity.
The proof of the Pentahedral theorem, according to I. Dolgachev, was given ten
years later by A. Clebsch in 1861.
We observe overall that the equation of a cubic surfaces S ⊂ P3 have 20 co-
efficients because 1,3,6,10 are respectively the coefficients of the monomials of
degree 0,1,2,3, so that it depends on 19 essential quantities.
Let α0, α1, α2, α3, α4 be five generic planes of P3 and let

αi = ai0x0 + ai1x1 + ai2x2 + ai3x3 = 0, i = 0, 1, ..4

be their equations.
The equation

F(x0, x1, x2, x3) = λ0α
3
0 + λ1α

3
1 + λ2α

3
2 + λ3α

3
3 + λ4α

3
4 = 0 (2.1)

represents a cubic surface whose 5 planes α give the Sylvester penthaedron: the
above equation contain the 19 parameters.
We can, with a change of variables, take the equations of the five planes as

13
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1. x0 = 0

2. x1 = 0

3. x2 = 0

4. x3 = 0

5. x0 + x1 + x2 + x3 = 0

so that the equation of the cubic surface become the canonic equation:

F(x0, x1, x2, x3) = λ0 x3
0 + λ1 x3

1 + λ2 x3
2 + λ3 x3

3 + λ4 (x0 + x1 + x2 + x3)3. (2.2)

Theorem 2.1. The equation of a generic smooth cubic surface S ⊂ P3 can be written in
one and only one way by equating to zero the sum of five cubes, or more precisely,
given f ∈ S3C4 a general cubic form in four variables, there is a unique decomposition

f =

4∑

i=0

λil3
i ,

where li ,i=0,..4, are five linear forms four by four linearly independent such that

4∑

i=0

li = 0

and λi,i=0,..,4, are five non zero constants determined up a factor.

Proof. We sketch a proof of the Sylvester’s theorem (see [8] or also [2]). Let S be
a smooth cubic surface of equation

f =

4∑

i=0

λil3
i = 0,

where li are like in the hypothesis of the theorem.
The Hessian surface He(S) of S is a quartic surface with ten double points
Q1, . . .Q10(these are the

(5
3

)
= 10 intersections of any three among the five planes

li) and passes simply through the ten lines
{
li = l j = 0

}
, with 0 ≤ i < j ≤ 4.

A geometric consideration shows that for each Qi there are only three lines
≤ Qi,Qk ≥ k , i that belong to the Hessian surface.
So there is a pentahedron having its verticies in the double points of He(S) and
its edges lying on He(s) and each faces are the five planes li.
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This pentahedron is uniquely determined by the cubic surface because, if there
exists another representation of S of the form

5∑

i=1

ξim3
i ,

computing the Hessian of S we find that the plane li = 0 are the same as mi = 0,
up a permutation of indices; so the pentahedron is uniquely determinate by the
cubic surface.
By the linear independence of li, we have that λi = ξi up to factor.
A dimension count conclude the proof of Sylvester theorem in the smooth
case. �

In modern notation we can enunciate the Sylvester Theorem 2.1 in the form:

Theorem 2.2. Let f ∈ S3C4. Then R( f ) = 5, that is, there exists a unique decomposition
of f in linear forms,

f = l3
1 + l3

2 + l3
3 + l3

4 + l3
5,

where the 10 vertices points of the 5 planes (li = 0) coincide with the 10 points such that
rk{Px( f ) ≤ 2}.
Proof. Assuming that

f =

5∑

i=1

λil3
i

and let
Pi jk = {li = l j = lk = 0}

be a point of P3 on which three of the linear forms li vanish simultaneously.
The number of these points are

(5
3

)
.

Consider the polar form

PPi jk( f )(x) = f (Pi jk, x, x).

This is sum of just two squares hence it is a quadric of rank 2.
In fact we have

PPi jk(l
3
5) = 3l2

5PPi jk(l5) = 3l2
5l5(Pi jk).

Consider the subvariety X2 ∈ P9 parametrizing the quadrics of rank 2. A quadric
of rank 2 is the union of two plane and dimX2 = 6.
To find the degree of X2 we have to intersect with a 3-plane, that is intersection
of 6 hyperplanes.
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So the degree of X2 is the number of quadrics of rank two passing through
six general points of P3. Then these quadrics are 1

2

(6
3

)
, so degX2 = 10, then the

intersection of the linear space

P3 ' {Px f |x ∈ P3(C4)} ⊂ P(S3C4) ' P9

with the variety
X2 = { f | rk( f ) ≤ 2}

is given by 10 points.
But they are just obtained by li = l j = lk = 0 hence there are no other points. �

Corollary 2.3. Every cubic surface F admits a (possibly degenerate) s-polyedron with
s ≤ 5.

Proof. See [18]. �



Chapter 3

Apolarity

3.1 Quadratic forms

When the degree d is 2, that is when Q ∈ S2(V∨), it is known from linear algebra
that a ”generic” quadratic non degenerate form Q on a complex vector space of
dimension n + 1 can be decomposed as a sum of n + 1 squares of linear forms
(on the real numbers can be minus sign also)

Q =

n+1∑

i=1

l2
i

that is,
Q = l2

1 + · · · + l2
n+1

and since a homogeneous polynomial of degree 2 correspond to a symmetric
matrix, the minimum numbers of summands in the decomposition as a sum of
squares is the rank of the symmetric matrix.
We have the theorem:

Theorem 3.1. If f ∈ S2(V) with V vector space of dimension n+1 over k and char(k), 2
then rk(f)=n+1.

Proof. We recall that every quadratic form f ∈ S2(V) can be associated to a
symmetric square matrix of dimension n+1 and that every symmetric matrix
can be diagonalized. The only invariant is the rank of the matrix, that is the
number of non zero diagonal entries. Thus, after the diagonalization of the
associated matrix, we see that every quadratic form is a sum of s ≤ n + 1 squares
of linear forms and the quadratic forms which are the sum of ≤ n + 1 squares of
linear forms are the symmetric matrices of rank ≤ n.
But a symmetric matrix has rank s ≤ n if and only if all minors of size (s+1)×(s+1)

17
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vanish.
Then the entries of the matrix must satisfy equations in the entries and this
equations define a proper closed subset of S2(V). �

For example:

x2 + 8xy + 9y2 = (x + 4y)2 − 7y2

can be written as

x2 + 8xy + 9y2 = (x, y)
(
1 4
4 9

) (
x
y

)

and this matrix has rank 2.
In particular, we have a theorem of classification for quadratic forms over the
complex numbers C:

Theorem 3.2. Let A be a symmetric matrix n× n on the complex field and let SL(n) be
the special linear group that acts on P(S2V), V is a vector space over C, dimV = n and
the action is definite as follow:
g.A = tgAg, where g belongs to the group and A is a matrix n × n.
Then there exist g such that

tgAg =




1
. . . 0

1

0 0




(3.1)

and the 1’s are the diagonal elements of a matrix r × r and r = rank A.

The real counterpart of this theorem is the so called Sylvester’s Law of Inertia
that has several expression in the mathematical literature and can be stated in
the following form:

Theorem 3.3. If a real quadratic form of rank r is reduced by two real linear transfor-
mations (non-singular) to the forms

r∑

i=1

cix
′2
i , (3.2)
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r∑

i=1

kix
′′2
i (3.3)

respectively, then the number of positive c’s in 3.2 is equal to the number of positive k’s
in 3.3.

We can thus associate with every real quadratic form a couple of integers
(p,q), namely, the number of positive and negative coefficients respectively
which we get when we reduce the form by any real non-singular linear trans-
formation to the form (1).
These two numbers are arithmetical invariants of the quadratic form with re-
spect to real linear transformation, since
two real quadratic forms which can be transformed into one another by means
of such transformation can be reduced to the
same expression of form (1).
The number p is sometimes called the “index of inertia” of the form.
The two numbers p and q and the arithmetical invariant r are not independent
because we have the relation

p + q = r.

One of the two invariants p and q is therefore superfluous, is more convenient
to use neither p nor q but their difference

s = p − q

which is called the “signature” of the quadratic form.

Definition 3.4. The signature of a real quadratic form is the difference between
the number of positive and the number of negative coefficients which we obtain
when we reduce the form by any real non-singular linear transformation to the
form (1).

From this two equations, we see that p and q may be expressed in terms of
the rank and signature of the form by the formulas:

p =
r + s

2
, q =

r − s
2
.

Thus we have the theorem over R:
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Theorem 3.5. A real quadratic form of rank r and signature s can be reduced by a real
non-singular transformation to the
normal form

x2
1 + ... + x2

p − x2
p+1 − ... − x2

r

where p= r+s
2 .

Example 3.6. Consider the quadratic form in R3 with coordinates (x1, x2, x3):

Q = x1x2 + x2x3 + x3x1.

We put

y1 =
x1 + x2

2
, y2 =

x1 − x2

2
to get

Q = y2
1 − y2

2 + x3(2x1).

We complete the square to obtain:

Q = (y1 + x3)2 − y2
1 − x2

3

so that if we substitute

z1 = y1 + x3, z2 = y2, y3 = x3

we obtain

p = 1, q = 2.

3.2 Apolarity

The concept of apolarity is an old one and belong to classical invariant theory.
It was first developed by German mathematicians (principally Aronhold, Cleb-
sch, Reye but also by the British mathematicians A. Cayley, G. Salmon) that
studied how homogeneous polynomials of degree p and in q variables could be
represented as sums of pth powers of linear forms.
The problem was to find canonical forms for quantics (in the old English liter-
ature see for example ([20]). A quantic is a form that in symbolic notation (for
n-binary forms) may be written as

(a1x1 + a2x2)n = an
1xn

1 + nan−1
1 a2xn−1

1 x2 + · · · + an
2xn

2
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and that may be written symbolically as

(a1x1 + a2x2)n = an
x

where ax is an abbreviation for a1x1 + a2x2. For a ternary form the symbolic
notation is

an
x = (a1x1 + a2x2 + a3x3)n = an

1xn
1 + nan−1

1 a2xn−1
1 x2 + · · · + n!

i! j!k!
ai

1a j
2ak

3xi
1x j

2xk
3 + . . .

where i + j + k = n and ax is written as an abbreviation for a1x1 + a2x2 + a3x3.

3.3 Symbolic calculus

Briefly, the symbolic calculus is a useful notation to represent concomitants(both
invariants and covariants). Formally, we write a ternary cubic like

F = ax3 = (a1x1 + a2x2 + a3x3)3.

That is to say, after expansion, 3!
i1!i2!i3!a

i1
1 ai2

2 ai3
3 stands for the appropriate coefficient

ar in the expression
F = a0x3

1 + a2x2
1x2 + · · · a9x3

3.

The symbol (αβγ) stands for the determinant
∣∣∣∣∣∣∣∣

α1 α2 α3

β1 β2 β3

γ1 γ2 γ3

∣∣∣∣∣∣∣∣

For instant, in this symbolic notation, the Hessian is written

(αβγ)2αxβxγx.

For the expression of other concomitans in symbolic notation see ([32]) or ([24]).
The apolarity can be summarized as follows:
let K any field of characteristic zero, consider the polynomial ring R = K[x, y]
graded by degree and the dual ring of differential operators
D =K

[
∂x, ∂y

]
that acts on R by differentiation.

We have the pairing

Rd ⊗Dk → Rd−k
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so the homogeneous differential operators of degree k acts on homogeneous
polynomials of degree d to give homogeneous polynomial of degree d − k.
If we have a 1-form, that is a homogeneous polynomial l ∈ R1 given by l = ax+by
its orthogonal operator l⊥ ∈ D1, l⊥ = b∂x − a∂y is such that l⊥(l) = 0 is apolar to l.
The most important remark that goes back to the XIXth century is that the form
of degree d that is sum of r linear powers is annihilated by the operator given
by the product of r apolar operators.
We can say that apolarity is an extension of the canonical bilinear pairing be-
tween a vector space V and its dual V∨ given by :

V × V∨ → K

such that < v, l >= l(v), that is the evalutation of l on v, to a canonical pairing

SdV × SsV∨ → Ss−dV∨

definite by

(Φ,F) 7−→ PΦ(F)

for each s > d, so that Φ and F are called apolar if

PΦ(F) = 0

where PΦ(F) ∈ Sd−s(V∨) is called the apolar of F with respect to Φ. When dimV=2,
the apolarity for two polynomials f ∈ Sd and g ∈ Sd can be seen in this way:
if f = (a0x0 + a1x1)d and g = (b0x0 + b1x1)d then the contraction f · g is

< f , g >= (a0b1 − a1b0)d.

We can extend by linearity this contraction to any couple of polynomials f and
g so we have the formula for apolarity of two binary forms as:

d∑

k=0

(−1)i

(
d
k

)
akbd−k (3.4)

where
(d

k

)
ak and

(d
k

)
bk are the coefficients of f and g respectively.

Apolarity can also be seen as the natural pairing between differential operators
and polynomials.
If we choose a basis of the vector space V the symmetric algebra Sym(V∨) �
K[x, y, z] and Sym(V) � K[∂x, ∂y, ∂z], where x, y, z are the indeterminate and
∂x := ∂

∂x ,∂y := ∂
∂y , ∂z := ∂

∂z .

In particular given a point P = (xP, yP, zP) ∈ P2, the corresponding linear form

∆P := xP∂x + yP∂y + zP∂z
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is called the polarization operator that give the first polar of a point with respect
to a form.
More precisely, the polarization operator defines a linear map

∆P : Sd(V∨)→ Sd−1V∨

given by

∆P(F) = xP∂x(F) + yP∂y(F) + zP∂z(F)

that sends a form F ∈ Sd(V∨) of degree d to a form ∆P(F) of degree d-1.
In the case of degree 2 this is the well known notion of collinearity that gives an
isomorphism between the projective plane and its dual.
This notion give rise to the concept of coniugate points and conjugate lines.
We say that two points are conjugate with respect to a conic if each of them
belongs to the polar line of the other and two lines are conjugate with respect to
a conic if each contains the pole of the other. We have two propositions that can
be considered the dual of each other (see [34]).

Proposition 3.7. Let li homogeneous polynomials of degree 1 be distinct for i = 1, .., r.
Any f ∈ SdV defines a map

A( f )r,d−r : Symr(V∨)→ Symd−r(V∨).

There are ci numbers of K such that

f =

r∑

i=0

ci(li)d

if and only if
(l⊥1 ◦ · · · ◦ l⊥r ) f = 0.

Proof. The implication⇒ is easy because

l⊥(ld) = 0.

The other is a dimensional calculation because both spaces have dimension r. �

This proposition is now known as Sylvester’s theorem, because the differ-
ential operators that annihilated the form f allow to decompose f as a sum of
d-powers. We have a dual formulation of this proposition.
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Proposition 3.8. Let li as in the above proposition. Let e < d − r. There are numbers ci

such that

f =

r∑

i=0

ci(li)d

if and only if
ImA( f )e,d−e ⊆< (l⊥1 ◦ · · · ◦ lr)d−e >

Proof. Consider the map

A( f )r,d−r : Symr(V∨)→ Symd−r(V)

We have from the proposition 3.7 that f is a sum of distinct d-powers if and only
if

(l⊥1 ◦ · · · ◦ l⊥r ) f ∈ kerA( f )r,d−r.

�

If we observe that the transpose of

A( f )r,d−r

is
A( f )d−r,r

we have equalities
(ImA( f )r,d−r)⊥ = kerA( f )d−r,r

and
< (l⊥1 ◦ · · · ◦ l⊥r ◦ Sd−e−r >=< ((l1)d−e, . . . , (lr)d−e >⊥ .

For the last one the equality holds because both spaces have the same dimension.

3.4 Apolarity map and Catalecticant matrix

Following [17] a homogeneous form Φ ∈ Sk(V) is apolar to a homogeneous form
F ∈ Sd(V∨) if Φ belong to the kernel of following map:

apk
F : Sk(V)→ Sd−k(V∨)

given by
Φ 7−→ PΦ(F)

This map is called the apolarity map. The kernel of the apolarity map is the
linear space (denoted by APk in [18]) of apolars to F of class k.
We can give the following definition:
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Definition 3.9. A homogeneous form Φ ∈ Sk(V) is called apolar to a homoge-
neous form F ∈ Sd(V∨) if PΦF = 0.

The expected dimension of this linear space (denoted by APk) in [18]) is N(k)-
N(d-k), where N(k) = dimSk(V∨) hence F admits a nonzero apolar of class k if
N(k) > N(d − k) that is k > n

2 .
If we have the equality k = n

2 the two spaces have the same dimension so this
kernel is different from zero only if the determinant of the catalecticant matrix
of F is zero.
On the other hand, if k ≤ n

2 , then APk(F) = {0} .
Example 3.10. Consider a vector space V, dimV = 3 and Q ∈ Sym2(V∨) a homo-
geneous quadratic form on V∨ given by Q(u0,u1,u2) =

∑2
i, j=0 ai juiu j with (ai j) the

matrix representing the quadratic form Q.
We have:

∂(Q)
∂u0

= 2a00u0 + 2a01u1 + 2a02u2 (3.5)

∂(Q)
∂u1

= 2a01u0 + 2a11u1 + 2a12u2 (3.6)

∂(Q)
∂u2

= 2a02u0 + 2a12u1 + 2a22u2 (3.7)

If we consider φ ∈ S1(V) given by φ(t0, t1, t2) = a0t0 + a1t1 + a2t2.
So Dφ(Q) = a0

∂
∂u0

+ a1
∂
∂u1

+ a2
∂
∂u2

(Q)
The apolar map

ap1
Q(φ) =

2∑

i=0

∂(Q)
∂ui

(φ)ui.

Definition 3.11. (cfr. [27]) The matrix Cat(F) of the above linear map apk
F with

respect to two basis of monomials of SkV and Sd−k(V∨) is called the k-th catalec-
ticant matrix of the homogeneous form F and if n = 2k the determinant of this
matrix is the catalecticant (J.J. Sylvester)of F.
The polynomial function given by this determinant, that is, the map

S2k(V∨)→ C

given by
F 7→ det(Cat((F))

is an invariant with respect to the action of the group SL(V) and is called catalec-
ticant invariant.
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3.5 Catalecticant invariant at work

The research of a canonical form for the binary cubic based on apolarity and
Sylvester’s Theorem allow to decompose a generic symmetric polynomial of
degree 3 in two variables as a sum of two cubes:
the catalecticant matrix associated to

f = 4x3 + 9x2y + 18xy2 + 17y3

is

C f =

[
4 3 6
3 6 17

]

Now KerC f is spanned by 


3
−10

3




which decomposes in

3∂2
x − 10∂x∂y + 3∂2

y = (∂x − 3∂y)(3∂x − ∂y)

so we obtain the decomposition

c1(3x + y)3 + c2(x + 3y)3

and solving the linear system we have

c1 =
5
8

c2 =
1
8

and the decomposition

4x3 + 9x2y + 18xy2 + 17y3 =
5
8

(x + 3y)3 +
1
8

(3x + y)3.

3.6 Solution of the cubic equation

Dehomogenizing the above form, consider the cubic equation

4x3 + 9x2 + 18x + 17 = 0.

We have seen that this equation is equivalent to

5(x + 3)3 + (3x + 1)3 = 0
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or
(

3√
5x + 3

3√
5)3 + (3x + 1)3 = 0

that is ( 3√5x + 3 3√5
3x + 1

)3

= −1

so that, ( 3√5x + 3 3√5
−3x − 1

)3

= 1

and finally,
3√
5x + 3

3√
5 = (−3x − 1)ωi

for i=0,1,2 with ωi = exp2πi
3 , which give us the three solutions of the cubic

equation.

3.7 Binary quintic as a sum of three powers

We give a numerical example of the theorem as in [35].
Let

f (x, y) = 3x5 − 20x3y3 + 10xy4

a binary quintic. We can write it in the form

f (x, y) =

(
5
0

)
· 3x5 +

(
5
1

)
· 0x4y +

(
5
2

)
· (−2)x3y2+ (3.8)

(
5
3

)
· x2y3 +

(
5
4

)
· 2xy4 +

(
5
5

)
· 0y5 (3.9)

Consider the matrix




3 0 −2 0
0 −2 0 2
−2 0 2 0


 (3.10)

The linear system



7 1 0 −1
1 0 −1 2
0 −1 2 0


 ·




b0

b1

b2

b3




=



0
0
0


 (3.11)
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has∞1 solutions, that is the vector (b0, b1, b2, b3) = t(0, 1, 0, 1)
and

h(x, y) = y(x + iy)(x − iy)

so there exist three numbers ξk ∈ C such that

f (x, y) = ξ1x5 + ξ2(x + iy)5 + ξ3(x − iy)5

Now,

f (x, y) = 3x5 − 20x3y3 + 10xy4 = ξ1x5 + ξ2(x + iy)5 + ξ3(x − iy)5

and from this equation we may check that ξ1 = ξ2 = ξ3 = 1. So

3x5 − 20x3y3 + 10xy4 = x5 + (x + iy)5 + (x − iy)5

and
rkC( f ) = 3.

3.8 The theorem of Comas-Seiguer

The decomposition of a tensor in two variables overC has been well understood
by Sylvester and solved by Comas and Seiguer in ([11]).They gave the following
theorem

Theorem 3.12 (Comas-Seiguer). Consider vd(P1) ⊂ Pd.
Let r ≤ bd+1

2 c. Then

σ(vd(P1)) = {[φ} : R(φ) ≤ r} ∪ {[φ] : R(φ) > d − r + 2}
that says that if the border rank of φ ∈ SdC2 is r, then there are only two

possibility:

• the rank is r

• the rank is d-r+2

but in this case the are no normal forms in general.
In terms of symmetric polynomials, the theorem 3.12 may be stated as:

Theorem 3.13. Let φ ∈ S2C2 then the maximum possible rk(φ) is bd+1
2 c.

If rk(φ) = r, then either rk(φ) = r or rk(φ) = d − r + 1.



3.9. LANDSBEG-TEITLER TABLE 29

When the symmetric rank is r, ther decomposition is unique except when d
is even and r = d

2 .
In the binary case we can say when a form can be decomposed as a sum of r
powers and this decomposition works with a simple algorithm but a property
of this decomposition is that in some cases the number of the powers must be
grater than in generic case;
for instance the cubic x2y have rank three insted of two or one because it cannot
write in less than a sum of three cubics:

x2y =
1
6

[(x + y)3 + (−x + y)3 − 2y3].

3.9 Landsbeg-Teitler table

The research of a generalization of the decomposition of binary forms to the
decomposition of Sd(V) is the so called Waring problem or also “the canonical
form problem for homogeneous forms”.
This problem was solved by Alexander and Hirschowitz (see paragraph 6.3).
Landsberg and Teitler (cfr.[29]) give the explicit list of normal forms for plane
cubic curves and their ranks and border ranks and they show how one can use
singularities of auxiliary geometric objects (like the Hessian of a cubic ternary
form) to determine the rank of a cubic polynomial in three complex variables.
The following theorem and the following table is in [29].

Theorem 3.14. The possible ranks and border ranks of plane cubic curves are described
in the following table:

Description normal form rk rk Hessian
triple line x3 1 1
three concurrent line xy(x + y) 2 2
double line + line x2y 3 2
conic + secant line x(x2 + yz) 4 4 conic + secant line
conic + tangent line y(x2 + yz) 5 3 triple line
irriducible y2z − x3 − z3 3 3 triangle
irriducible y2z − x3 − xz2 4 4 smooth
cusp y2z − x3 4 3 double line +line
irriducible y2z − x3 − axz2 − bxz3 4 4 irred. cubic, smooth for general a,b
triangle xyz 4 4 triangle

Table 3.1: Ranks and border ranks of plane cubic curves on C
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The proof of 3.14 given in [12] relies on a computation of equations for the
secant variety σk(ν3(PV)) for 2 ≤ k ≤ 3, with V vector space of dimension 3,
which determines all the border ranks in the table.
The case of a conic plus tangent line y(x2 + yz), where the rank is 5, is the case of
maximum rank.

Proof. (see[29])
Upper bounds for the ranks in the table above are given by computing an
expression for the sums of cubes.
For example, to show that rk(xyz) ≤ 4, we observe that

xyz =
1

24

(
(x + y + z)3 + (x − y − z)3 − (x − y + z)3 − (x + y − z)3

)

Now consider the case of rank 5.
Let f = x2y + y2z = y(x2 + yz). The Hessian of f is given by y3 = 0, so the Hessian
is a triple line.
Since it is not a triangle, rk(y(x2 + yz)) ≥ 4,but in this case the rank is 5: suppose

f = y(x2 + yz) = l3
1 + l3

2 + l3
3 + l3

4

with [li] distinct points in PV,with [li] not all collinear.
Therefore there is a unique 2-dimensional linear space of conics through these
four points. These quadratic forms are in the kernel of the map

φ1,2 : S1C3∨ → S2C3

In the plane P2 � PKerφ1,2,

H := PKerφ1,2 ∩ σ2(ν2(PV))

is a triple line and the pencil of conics vanishing at each li is also a line L. Now
or H = L or H , L. In the first case, we have that L contains the point Pkerφ1,2 ∩
ν2(PV) ' ∑

1(φ) where
∑

1(φ) is the set of singular points of
∑

0(φ)=Zeros(φ) and
this is impossible because < f >= V, so L is disjoint from ν2(PV).
Therefore H , L. But in this case L contains exactly one reducible conic, that
corresponds to a the point of H ∩ L.This is impossible because a pencil of conics
through 4 points contains at least three irreducible conics. Thus rk( f ) = 5. �



Chapter 4

Classification of binary and ternary
complex cubic forms

4.1 Group action

In general we work with a vector space and a group that acts on V:
the action is given by the map

G × V → V

such that (g, v) 7→ g · v for all g ∈ G and v ∈ V
with the property:

1. g(v1 + v2) = gv1 + gv2

2. g(λv) = λ(gv)

3. g1(g2) = (g1g2)v

4. 1 · v = v

The orbit of a vector v ∈ V is the set

Ov =
{
v
′ ∈ V : v

′
= g · v, g ∈ G

}
.

We will always read the action of the group G on the projective space PV to
have a better geometrical wiew of the situation.Moreover, we work in projective

31
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space over the real or complex numbers although the problems are posed on R
or on C.
In this work we consider expecially the group SL(3) over R and C because we
want to compute the ranks and border rank and typical ranks for real cubics
with respect to the Veronese variety v3(P2).
The group SL(n) is the “special linear group“, that is the group of n × n matrix
with determinant equal to 1.
We are interested to the orbits of cubic forms with respect to SL(2) and SL(3). We
note that the dimension of SL(n) is n2 − 1 so the dimension of SL(2) and SL(3) is
3 and 8 rispectively.
Let’s see some examples:

G = SL(2,C)
In this case, the group G acts in standard way onP1 = P(V), with V vector space
of dimension 2 on the complex numbers. If we represent G as a 2× 2 matrix (gi j)

g =

(
g11 g12

g21 g22

)
(4.1)

the standard action is:
(
x
y

)
7→ g

(
x′

y′

)

This is nothing else that the group of projectivity on the line. The action is
transitive so we have only one orbit.
Let’s see another example:
Let S2V the 2-power of V, dimVC=2, that is the set of homogeneous polynomials
of degree 2 in x, y.
We can set

S2V = {Ax2 + 2Bxy + Cy2}
so we can interpret (A,B,C) as homogeneous coordinate on P(S2V) and

Ax2 + 2Bxy + Cy2 = (xy)
(
A B
B C

) (
x
y

)
.

With the linear substitution:
{

x = g11x′ + g12y′

y = g21x′ + g22y′

we have

A(g11x′ + g12y′)2 + 2B(g11x′ + g12y′)(g21x′ + g22y′) + C(g21x′ + g22y′)2.
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If we denote by A′,B′,C′ the new coefficients we may write:

gt

(
A B
B C

)
g =

(
A′ B′

B′ C′

)

so we have the equation

(AC − B2)(detg)2 = (A′C′ − B′2). (4.2)

This equation shows that the hypersurface

AC − B2 = 0

is defined in projective setting.
If

AC − B2 = 0

the polynomial
Ax2 + 2Bxy + Cy2

is a perfect square so it correspond to a double point on the projective line.

Definition 4.1. We say that AC−B2 is invariant of weight 2 for the group action.

The orbits of SL(2) over P(S2V) = S2(P1) are AC − B2 = 0 (a conic) and
P2 − {AC − B2} the complementary set of{AC − B2 = 0}.
The action on the coefficients is

g(A,B; C) = (A′,B′,C′)

given by

(A′,B′,C′) = (A,B,C)




g11 g11g12 g2
12

2g11g21 (g11g22 + g12g21) 2g12g22

g2
21 g21g22 g2

12




This matrix is the second symmetric power of g, S2g.

Definition 4.2. An invariant of a form F is a polynomial Φ of the coefficients
a0, a1, .., an of the form that changes only by a factor (sometimes called modulus)
equal to the certain power of the determinant of the linear transformation on
coefficients, that is, in formula

Φ(a
′
0, . . . , a

′
n) = (detg)pΦ(a0, . . . , an)

is invariant of weight p for the form F.
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The classical example is the discriminant of a polynomial of degree 2, that is
ac − b2 if the polynomial is ax2 + 2bxy + cy2.

Definition 4.3. A covariant Ψ of a given form is a polynomial of coefficients
a0, .., an and the variables x, y that change only by a factor equal to a power
of the determinant δ of a linear transformation if one replace the coefficients
a0, a1, .., an of the given form by the corresponding coefficients a′0, a

′
1, .., a

′
n of the

linearly transformed form and, at the same time, replaces the variables x, y by
the linearly transformed variables x′, y′.
The defining equation of the covariant is

Ψ(a′0, ..., a
′
n, x
′, y′) = δpΨ(a0, ..., an, x, y)

and p is the weight of the covariant.

4.2 Complex binary cubic forms

Let V be a complex vector space such that dimV=2.
The group SL(2) acts on P(S3V) = P3 with the action on x and y. If V is a vector
space of dimension 2 and SdV is the symmetric d-power of V the action of SL(V)
on SdV is given by

v1 ⊗ v2 ⊗ v3....... 7→ (gv1) ⊗ (gv2) ⊗ (gv3)......... (4.3)

where g ∈ SL(2).
We identify SdV, the symmetric d-power of V, with the set of homogeneous
polynomials of degree d in two variables, that is

SdV = {A0xd + A1xd−1y + ..... + Adyd}.
The action of g ∈ SL(2) is made on the coefficients of polynomials so we can
think of the action of the group on d-uple of points in P1 with the identification

Pd = P(SdV) = Sd(P1),

the d-uple of points in the projective.
The action of this group on P3 = P(S3V) fix the rational normal cubic in the
following sense: let P(S3) the set of element of type

F = {Ax3 + 3Bx2y + 3Cxy2 + Dy3}
homogeneous polynomials of degree 3, where (A,B,C,D) are homogeneous
projective coordinates in P3.
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The geometric interpretation of the equation F = 0 is the following: this equation
determines three points over a straight line;they can be all different or some of
these may coincide.
If the points so defined are all different, then we can apply a linear transformation
that vanish for x=0,y=0,x=y, so we have(cfr.[25])

F = kxy(x − y), k = 3α , 0 (4.4)

With a further linear transformation x← 3
√
αx,y← 3

√
αy

the form becomes the canonical form

F = 3xy(x − y).

In this case we transform this form in any other binary cubic form that deter-
mines three different points on a line and we can take as canonical form the
following:

F = x3 + y3.

If two points are the same and the third is different we can choose a form that
vanish for x=0 double and for y=0.
The form becomes

F = 3αx2y

and a further transformation given by

x→ x, αy→ y

gives the canonical form
F = 3x2y

At the end, if a binary form determines three coincident points over a line, that
is, if the form is a power, we can reduce it to

F = x3

In summary, there are 3 orbits for the action of the group SL(2) on P3 = P(S3V):
the orbit of dimension 1 that correspond to the polynomial x3 and is therefore
of rank 1;
this orbit correspond to one root of multiplicity 3 and geometrically represent
the twisted cubic in P3.
The orbit of dimension 2 that correspond to a double point plus a point and is
the tangent variety of degree 4 to the twisted cubic.
Every point of that variety is the limit of two points of the secant to the cubic so
is of the type 3x2y.



36CHAPTER 4. CLASS. OF BINARY AND TERNARY COMPLEX CUBIC FORMS

In this case every point on the tangent to the cubic correspond to a polynomial
of the form Ax3 + Bx2y = x2(Ax + B) that is a polynomial with one double root.
So all points on the tangent variety to the twisted cubic correspond to polyno-
mials with a double root.
The orbit of dimension 3 that correspond to a polynomial with 3 real distinct
roots and in this case the form has rank three.
The degree of the tangent variety, Tan(C), to the twisted cubic, is 4 because the
discriminant of the twisted cubic, that is the resultant of F and its derivative F′,
is a homogeneous polynomial of degree 4 in the variable A,B,C,D and is:

∆ = 4AC3 + A2D2 − 6ABCD − 3B2C2 + 4B3D

and this is an invariant (see [38]) of 4th degree and weight 6 that is

4A′C′3+A′2D′2−6A′B′C′D′−3B′2C′2+4B′3D′ = (detg)6(4AC3+A2D2−6ABCD−3B2C2+4B3D

This invariant can be find in this way:
the Hessian of the cubic form

Ax3 + 3Bx2y + 3Cxy2 + Dy3

is
(Ax + By)(Cx + Dy) − (Bx + Cy)2

that is
(AC − B2)x2 − (AD − BC)xy + (BD − C2)y2.

The discriminant of this quadratic form is an invariant of the cubic form;if we
compute this discriminant we find

∆ = A2D2 + 4AC3 + 4DB3 − 3B2C2 − 6ABCD.

The cubic can be represented with the matrix
[

A B C
B C D

]
(4.5)

that has kernel

( 
B C
C D

 ,−


A C
B D

 ,


A B
B C


)

and we have

∆ =


A C
B D


2

− 4


B C
C D




A B
B C

 .
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We can see this fact in another way:
the discriminant of the cubic polynomial is the Sylvester resultant of F and F′,
that is ∆=R(F,F′) so we have

R(F,F′) =
1
A




A 3B 3C D 0
0 A 3B 3C D

3A 6B 3C 0 0
0 3A 6B 3C 0
0 0 3A 6B 3C




(4.6)

The determinant of this 5× 5 matrix is a polynomial of four degree and we have

∆ = A2D2 + 4AC3 + 4B3D − 3B2C2 − 6ABCD

and this is an invariant of weight (order) 6.

4.3 Sylvester’s Resultant of two binary forms

The theory of elimination is an old theory developed by geometers of the XVIII
and XIX century.
In substance the problem is to find conditions such that two or more polynomi-
als have a common root.
The approach of Sylvester gave rise to the classical concept of resultants. The
generalization of this concept to several polynomials give rise to multi polyno-
mial resultant.
Given two polynomials f,g ∈ K[x] of degree m and n respectively:

f (x) = a0xm + · · · + am, a0 , 0,

g(x) = b0xn + · · · + bn, b0 , 0,

the resultant of f and g, Res( f , g), is the determinant of the (m+n)× (m+n) matrix

Res( f , g) =




a0 b0

a1 a0 b1 b0

a2 a1
. . . b2 b1

. . .
... a2

. . . a0
... b2

. . . b0

am
...

. . . a1 bn
...

. . . b1

am a2 bn b2
. . .

...
. . .

...
am bn






38CHAPTER 4. CLASS. OF BINARY AND TERNARY COMPLEX CUBIC FORMS

We mention some basic property of resultants (see [22]).
Product formula.
If am , 0 and bm , 0 then

R( f , g) = an
mbm

n

∏

i, j

(xi − y j)

where xi and y j are roots of f and g respectively.
Res(f,g) is an integer polynomial in the coefficients of f and g.
Vanishing of the resultant.
For two concrete binary forms F and G (the homogenization of the polynomials
f and g), the vanishing of R(F,G) is equivalent to the fact that F and G gave a
common root other than (0,0).
Finding the common root.
Res(f,g)=0 if and only if f and g have a non constant common factor.
If, for given f and g, we have R( f , g) = 0 but at least one first partial derivative
of R at ( f , g) is not zero, then f and g have a unique common root α possibly
α = ∞ and it can be found from the proportions:

(1 : α : α2 : · · · : αm) =

(
∂R
∂a0

( f , g) :
∂R
∂a1

( f , g) : · · · : ∂R
∂am

( f , g)
)
,

(1 : α : α2 : · · · : αn) =

(
∂R
∂b0

( f , g) :
∂R
∂b1

( f , g) : · · · : ∂R
∂bn

( f , g)
)
.

Symmetry.
R( f , g) = (−1)mnR(g, f )

Quasi-homogeneity.
The polynomial R( f , g) is homogeneous of degree n in the ai and of degree m in
the b j.It has the following property:

R(λ0a0, · · · , λmam, λ
0b0, · · · , λnbn) = λmnR(a0, · · · , am, b0, · · · , bn).

There are polynomials A(x),B(x) with integer coefficients such that Af+Bg=Res(f,g).
Examples.
For two linear polynomials

R(a0 + a1x, b0 + b1x) = a0b1 − a1b0

For two quadratic polynomials

R(a0+a1x+a2x2, b0+b1x+b2x2) = a2
0b2

2+a0a2b2
1−a0a1b1b2+a2

1b0b2−a1a2b0b1+a2
2b2

0−2a0a2b0b2.

If we interpret (x1, x2) as homogeneous coordinates, the equations of two binary
forms
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1. F(x1, x2) = a0xn
1 + a1xn−1

1 x2 + .. + anxn
2

2. G(x1, x2) = b0xm
1 + b1xm−1

1 x2 + .. + bmxm
2

represent sets of n and m points on P1 respectively.
The points given by the equation F = 0 are the points at which the linear factors
of F vanish, and the points where G = 0 are the points at which the linear factors
of G vanish.
Since two binary forms vanish at the same point when, and only when, these
forms are proportional, it follows that the loci of the two equations have a point
in common when, F and G have a common factor other than a constant.
Hence, by the theory of elimination, we have that a necessary and sufficient
condition that the two loci F = 0 and G = 0 have a point in common is that the
resultant R(F,G) of the binary forms F and G vanish.
Let ∆(F) be the discriminant of the binary cubicF = a0x3 + 3a1x2y + 3a2xy2 + a3y3

defined as the Sylvester’s resultant R of Fx and Fy, that is R(∂Fx, ∂Fy) = ∆(F).
The discriminant vanishes exactly when the two partial derivative Fx and Fy

have a noncostant common factor. For the binary cubic above we have

1. F = a0x3 + 3a1x2y + 3a2xy2 + a3y3

2. F′ = 3a0x2 + 6a1x2y + 3a2y2

then the resultant R(F,F′) is 4.6:

R(F,F′) =
1
a0




a0 3a1 3a2 a3 0
0 a0 3a1 3a2 a3

3a0 6a1 3a2 0 0
0 3a0 6a1 3a2 0
0 0 3a0 6a1 3a2




The determinant of this 5 × 5 matrix is a polynomial of degree 5 that is:

∆ = 4a0a3
2 + a2

0a2
3 − 6a0a1a2a3 − 3a2

1a2
2 + 4a3

1a3

and it is an invariant of index 6. In fact, we have:

4a
′
0a
′3
2 +a

′2
0 a

′2
3 −6a

′
0a
′
1a
′
2a
′
3−3a

′2
1 a

′2
2 +4a

′3
1 a

′
3 = (detg)6(4a0a3

2+a2
0a2

3−6a0a1a2a3−3a2
1a2

2+4a3
1a3)

where g ∈ SL(2,C).
In general the discriminant of a binary form
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f (x, y) =

d∑

i=0

ai

(
d
i

)
xd−iyi

is
∆ = a2(d−1)

0

∏

i< j

(αi − α j)2

where αi are the roots of the polynomial f dehomogeneized.
Vanishing of the discriminant
For a binary form F(x, y) of degree n, the equation ∆(F) = 0 means that F is
divisible by a square of a linear form and for a polynomial f (x) of degree≤ n, the
vanishing of ∆( f ) means that f satisfies at least one of the following conditions:

1. f has a double root;

2. deg( f ) ≤ n − 2.
The second condition means that the double root is at infinity.

Relation with Resultants
We have

∆( f ) =
1
an

R( f , f
′
).

Examples
Discriminant of a quadratic polynomial

∆(a + bx + cx2) = 4ac − b2.

Discriminant of a cubic polynomial

∆(a + bx + cx2 + dx3) = 27a2d2 + 4ac3 + 4b3d − b2c2 − 18abcd.

In summary we have the following table of SL(2)-orbits of binary cubic over C.

Description normal form ∆
C3 x3

Tan(C3) \ C3 x2y 0
P3 \ Tan(C3) x3 + y3 , 0

Table 4.1: rank over C
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4.4 Classification of complex cubic ternary forms

The equation of a complex cubic plane curve has the form

φ(x1, x2, x3) = 0

where φ is a homogeneous polynomial of degree 3. If we order this equation
with respect to x3, we have

u0x3
3 + u1x2

3 + u2x3 + u3 = 0 (4.7)

where ui, i = 0, 1, 2, 3 is a binary form of degree i in the variables x1, x2. We let:

• u0 = a333,

• u1 = 3 [a133x1 + a233x2]

• u2 = 3
[
a113x2

1 + a123x1x2 + a233x2

]
,

• u3 = a111x3
1 + 3a112x2

1x2 + 3a122x1x2
2 + a222x3

2

where the ai jk are complex numbers.
We choose the triangle of reference to be A1A2A3 where A3 = (0, 0, 1) = P is a
simple point of a curve and for the side x1 = 0 of the triangle the tangent line in
P to the cubic curve. The equation (4.8) has to have solution in the vertex (0, 0, 1)
so

u0 = a333

and the equation of the tangent line in this point is u1 = 0. This equation is to
be coincident with the line of equation x1 = 0, we have a233 = 0. With this choise
the equation (4.8) become:

3a133x1x2
3 + u2x3 + u3 = 0

that is

3a133x1x2
3 +3

[
a113x2

1 + a123x1x2 + a233x2

]
x3 +a111x3

1 +3a112x2
1x2 +3a122x1x2

2 +a222x3
2 = 0.

The point P = A3 will be a flex point if a223 = 0, so the equation of the cubic curve
will be

φ(x1, x2, x3) = 3a133x1x2
3+3

[
a113x2

1 + 2a123x1x2

]
x3+a111x3

1+3a112x2
1x2+3a122x1x2

2+a222x3
3 = 0.

If we compute the second derivative φi j in the point P, we have

φ11 = 6a133, φ12 = 6a123, φ13 = 6a133, φ22 = 0, φ23 = 0, φ33 = 0
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so the equation of the polar conic with respect to the point P = A3 is:

x1 [a113x1 + 2a123x2 + 2a133x3] = 0 (4.8)

that is
∂φ

∂x3
= 0. (4.9)

This polar conic is degenerate in the tangent line x1 = 0 and in the line

a113x1 + 2a123x2 + 2a133x3 = 0 (4.10)

This line is the ”harmonic polar line“of the flex P.
Now if we choose the line (equation 4.10) as the side x3 = 0 of the reference
triangle we particolarize the coefficients and we have

a113 = a123 = 0

and finally the equation of the cubic curve has the form

φ = 3a133x1x2
3 +

[
a111x3

1 + 3a112x2
1x2 + 3a122x1x2

2 + a222x3
3

]
= 0 (4.11)

So we can state the proposition

Proposition 4.4. The equation of the general plane cubic curve without multiple points
(so of genus 1) is, with an appropriate refence system, of the form

x1x2
3 + ψ(x1, x2) = 0

with ψ a binary cubic form.

Landsberg and Titler proposed the following table (Table 4.2) for the classi-
fication of cubic plane curves over the complex numbers (cfr. [29]):
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Description normal form Hessian
triple line x3

three concurrent line xy(x + y)
double line + line x2y
conic + secant line x(x2 + yz) conic + secant line
conic + tangent line y(x2 + yz) triple line
irriducible y2z − x3 − z3 triangle
irriducible y2z − x3 − xz2 smooth
cusp y2z − x3 double line +line
irriducible y2z − x3 − axz2 − bxz3 irred. cubic, smooth for general a,b
triangle xyz triangle

Table 4.2: Classification of plane cubic curves on C

4.5 Canonical forms

The problem of the research of canonical forms is, roughly, the following: how
much a tensor be simplified under the action of the general linear group GL(n)?
The point is the lack of uniqueness of canonical form and the following simple
example makes evident the problem:
consider the case of a n-ary quadratic form, f , that is f ∈ Sym2V∨ where dimV =
n.
As we have seen, a classical result of linear algebra states that such form can be
written as a sum of squares of linear forms, namely

f = x2
1 + ... + x2

n.

Moreover, if the dimension n is even, say n = 2 j, then one can show that a
quadratic form can also be generically written as

f = x1x2 + ... + xn−1xn

after the action of GL(n) .
A fundamental concept that play a role in the research of canonical form is the
notion of apolarity that was build by several mathematicians of the ninenteen
century.

4.6 Example

A generic ternary quartic F ∈ K[x0, x1, x2]4, with K algebrically closed, can be
written in the canonical form F = Q1Q2 + Q2

3 and also F = Q2
1 + Q2

2 + Q2
3 where



44CHAPTER 4. CLASS. OF BINARY AND TERNARY COMPLEX CUBIC FORMS

Qi ∈ K[x0, x1, x2]2.
The general normal form in the case of ternary cubics is (see [38], [43])

F = U3 + V3 + W3 + 6λUVW

where U,V,W are linear forms in three variables and λ is a suitable constant.
This is the famous Hesse form of the smooth plane cubic.
The canonical forms of the general quaternary cubic ([42], [43])are:

Theorem 4.5. 1. X3
1 + X3

2 + X3
3 + X3

4 + X3
5 (Sylvester penthaedral Theorem)

2. X3
1 + X3

2 + X3
3 + X3

4 + L1C1

3. X3
1 + X3

2 + X3
3 + L1C1 + L2C2

4. X3
1 + X3

2 + L1C1 + L2C2 + L3C3

5. X3
1 + L1C1 + L2C2 + L3C3 + L4C4

6. L1C1 + L2C2 + L3C3 + L4C4 + L5C5

and
L1L2L3 + L′1L′2L′3

where Ci and Li are respectively quaternary quadrics and quaternary linear forms.

A generic binary form of even degree 2 j = p with p ≥ 4 can be written in the
form Lp

1 + ...+ Lp
j + c ·L2

1L2
2 · · · L2

j where Li are binary linear form and c is a suitable
constant.

4.7 Veronese variety

The polar s-polyhedron can be seen geometrically if we introduce the Veronese
variety.

Definition 4.6. For any n,d the Veronese map of degree d is the map

νd : Pn → P(n+d
d )−1 ' PN(d)

that send
[X0, ...,Xn] 7→ [Xd

0,X
d−1
0 X1, ...Xd

n]

where XI ranges over all monomials of degree d in n+1 variables X0, ...Xn.
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This embedding can also be characterized by:

νd : (Pn)∨ → P(Sd)

[l]→ [ld]

Then we think to the Veronese variety as the variety that parametrizes d-th
powers of linear forms. With this position, let νn be the Veronese map that sends
a hyperplane l to the hypersurface ln

that is

νn(α0x0 + .. + αnxn) =
∑(

n
i

)
αixi

where i is a multi index,i = (i1, .., ir). So we can interpret F as a point in the pro-
jective space PSn(V∨) and each zero locus {ln

i } as a point in the Veronese variety
νn(Pr)∨.
Then the hyperplane form a s-polar polyhedron of F if and only if F lies on the
secant (s − 1)-plane of the Veronese containing the points ln

i .

Example 4.7. The Veronese surface is the image of the map

ν2 : P2 → P5

defined by
ν2 : [X0,X1,X2] 7→ [X2

0,X
2
1,X

2
2,X0X1,X0X2,X1X2]

We are interested to ν3(P2), namely to the cubic Veronese in P9 given by

ν3 : [X0,X1,X2] :7−→ [X3
0,X

2
0X1, ...,X3

2]

because we compute the rank with respect to this variety.
The Veronese surface inP5 is an example of determinantal variety because it can
be written as the locus of points [Z0, ..,Z5] such that the matrix




Z0 Z3 Z4

Z3 Z1 Z5

Z4 Z5 Z2




has rank 1.
Conversely, any 3x3 symmetric matrix of rank one corresponds to a quadratic
form which is the square of a linear form.
This example can be generalized: consider S = K[y0, y1, .., yn] and also the space
Sd, an affine space over K of dimension

(n+d
d

)
and a basis given by the monomials

of degree d in S.
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Remark The elements of rank one in SdV are the homogeneous polynomials
F such that F = ld, with l linear form.
They form an irreducible algebraic variety, which is a cone over the projective
variety νd(Pn).



Chapter 5

Rank and border rank of real binary
forms

5.1 Real Binary Cubic forms and typical real rank

The paper of Comon-Ottaviani [13] shows that there are two typical ranks for
real cubic polynomials, namely 2 and 3, and the difference depends on the num-
ber of real roots, more precisely

Theorem 5.1 (Comon-Ottaviani). (cfr.[13])
Let f be a real cubic polynomial without multiple roots.
Then

• rk( f ) = 3 if and only if ∆( f ) > 0, or equivalently, if and only if f has 3 real roots

• rk( f ) = 2 if and only if ∆( f ) < 0, or equivalently, if and only if f has 1 real root.

Comon and Ottaviani determined typical rank of a general real binary form
of degree 4 and 5; more precisely they showed in the case of real binary quartic
that if f ∈ S4(R2) and f has distinct real roots then

• if f has four real roots then rk( f ) = 4

• if f has zero or two real roots then rk( f ) = 3

and if f ∈ S5(R2) with distinct roots

47
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• if f has five real roots then rk( f ) = 5

• if f has one or three real roots then rk( f ) = 3 or rk( f ) = 4 depends on the
sign of an invariant I12 of quintic binary forms.

5.2 Table of SL(2)-orbits of real binary cubics

Consider the catalecticant of the cubic form
(
A B C
B C D

)
(5.1)

and the discriminant ∆ is


A C
B D


2

− 4


B C
C D




A B
B C

 .

Over the real the discriminant ∆ can be positive or negative corresponding
to one real root and two imaginary coniugate roots and to three real distinct
roots respectively. The table over R is the following:

Description normal form rk rk catalec ∆
C3 x3 1 1
Tan(C3) \ C3 x2y 3 2 0
P3 \ Tan(C3) x3 + y3 2 2 > 0
P3 \ Tan(C3) x(x2 − y2) 3 2 < 0

Table 5.1: rank over R

Moreover there is a theorem that asserts that the discriminant of every binary
form is a closed hypersurface that is a locus of all polynomial with one double
root.

We give the proof after the following section that recall some facts about
classical resultant of polynomials. For example, rk(x3 − 3xy2) = 3 on the reals
because x3 − 3xy2 has three real roots. On the contrary, rk(x3 + 3xy2) = 2 on the
reals because x3 +3xy2 has one real root. G.Blekherman proved ([6]) a conjecture
of Comon and Ottaviani that typical real Waring ranks of binary forms of degree
d take all integer values betwen

⌊
d + 2

2

⌋
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and d.
That is the set of binary forms of real rank exactly r

SRd,r = { f ∈ Symd(R2|rk( f ) = r}
has a non empty interior if and only if

⌊
d + 2

2

⌋
≤ r ≤ d

In the complement of the hypersurface ∆ = 0, the polynomial has distinct roots.
Proof of the theorem (5.1):
The proof is based on apolarity between the graduate polynomial ring

R = R[x, y] = ⊕d>0Symd(R2) = ⊕d>0Rd

and the dual graduate ring of differential operators

D = R[∂x, ∂y] = ⊕k>0Dk.

There is an action of D on R that acts with the rules of differentiations.
The operator Dk takes elements of Rd to elements of Rd−k.
The space of operators of degree k which annihilate a given homogeneous poly-
nomial f of degree d is the kernel of the linear map

A f : Dk → Rd−k

In basis we have that the matrix of A f is the ”catalecticant“ (this name was given
by Sylvester) of size (d − k + 1) × (k + 1)

A f =




a0 a1 a2 ... ak

a1 a2 a3 ... ak+1

. ... ... ...

. ... ... ...
ad−k ... ... .. ad




(5.2)

So the differential operators of degree 2 that annihilate f are in the kernel of the
matrix (

a0 a1 a2

a1 a2 a3

)
(5.3)

The kernel of this matrix has a quadratic equation and its discriminant is −∆( f );
so the operators have two real roots if ∆( f ) < 0 then the rank-2 complex decom-
position is actually real.
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We observe also that a real cubic of real rank 2 can have only one real root
because the equation

l3
1 + l3

2 = 0

splits to the three linear factors

l1 − l2, l1 − εl2, l1 − ε2l2

where ε is a cubic root of unity.
If, on the other hand, ∆( f ) > 0, the quadratic equation has no real roots and the
theorem follows from the theorem

Theorem 5.2. (cfr.[13])
Let f be a real binary form of degree d with d real distinct roots.Then

rkR f = d.

Proof. The proof is by induction on d.
Let d ≥ 3 and assume that
rkR f ≤ d − 1.Then we have

f =

d−1∑

i=1

ld
i

with li linear form. We may assume that ld−1 does not divide f .
Consider the rational function

F(x, y) =
f (x, y)

ld−1(x, y)

Under the real linear transformation φ given by x′ = x, y′ = ld−1, we obtain a
rational function G given by

G(x′, y′) =
f (φ−1(x′, y′)

y′d

so the polynomial G(x′, 1) =
∑d−2

i=1 mi(x′)d + 1,where mi is a linear form, has d
distinct roots since by hypothesis f have d real roots.
The derivative with respect to x′

d
dx′

G(x′, 1) =

d−2∑

i=1

d ·mi(x′)d−1 · d
dx′

mi(x′)

has d − 1 distinct real roots. But the above derivative has rank less than equal
d − 2 since the derivative of the linear forms mi is constant.This is in contrast
with the inductive assumption. So rkR( f ) must exceeded d − 1. �
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5.3 Sylvester’s theorem

One of the first and most important contribute to the solution of Waring’s prob-
lem for forms was given by J.J. Sylvester in the middle of XIX century when he
studied the problem of decompose a symmetric tensor of order d and dimension
2 ( a polynomial homogeneous of degree d in two variables or a binary form) as
a sum of d-th powers of linear forms.
Moreover, Sylvester was able to prove that a generic binary form of odd degree
can be unique decomposed into a sum of powers and he gave also an algorithm
to perform this.
The result of Sylvester can be expressed as:
let f ∈ Symd(C2) a generic homogeneous polynomial of degree d=2k-1 in two
variables, then f may be written as a sum of k terms of d-th powers of linear
forms.
But this is true only for a generic polynomial; for example, the degree 3 polyno-
mial x2y cannot be decomposed as the sum of two cubes.
In fact we have:

x2y =
1
6

((
x + y

)3 − (
x − y

)3 − 2y3
)

so we can say that x2y has rank 3 but has border rank 2 because it is the limit as
ε→ 0 of polynomials that are sums of two cubes, namely

lim
ε → 0

(
x + εy

)3 − x3

ε

More specifically, the theorem of Sylvester is:

Theorem 5.3 (Sylvester 1851). (see [35]) Let

f (x, y) =

d∑

j=0

(
d
j

)
a jxd− jy j

a binary form of degree d, f ∈ Sd(K) and let

h(x, y) =

r∑

k=0

bkxr−kyk =

r∏

j=1

(−β jx + α jy)

a product of distinct linear factors.
There exist r (real) numbers ξk such that
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f (x, y) =

r∑

k=1

ξk(αkx + βky)d

if and only if



a0 a1 ... ar

a1 a2 ... ar+1

. .. ... .

. .. .. .
ad−r ad−r+1 .. ad



·




b0

b1

.

.
br




=




0
0
.
.
0




(5.4)

that is, if and only if,

r∑

t=0

al+tbt = 0

with l = 0, ..., d − r.

Proof: the proof is based on apolarity, a method of classical invariant theory,
that was developed by J. J. Sylvester, A. Clebsch,E. Lasker, H. W. Richmond,
Wakeford and others.
We sketch the proof of the theorem in the specific case of a general binary quintic,
this is the first non trivial case of Sylvester’theorem.
Let’s see the general binary quintic and let’s write it as

f (x, y) = a0x5 + 5a1x4y + 10a2x3y2 + 10a3x2y3 + 5a4xy4 + a5y5.

We have to find the kernel (b0, b1, b2, b3) of the matrix


a0 a1 a2 a3

a1 a2 a3 a4

a2 a3 a4 a5


 (5.5)

The coefficients bi, i = 0, 1, 2, 3 are given by the four maximal minors of the
matrix, the first is obtained deleting
the first column and so on.
Now, to to check if b0x3 + b1x2y + b2xy2 + b3y3 has three real roots we consider the
discriminant δ of the cubic generator of the kernel, that is the invariant of degree
12, I12, called ”apple invariant“ in [13]. We refer to this work for the explicit
expression of the degree 12 invariant I12.
If the field K is the real field R, the coefficients ξk of the theorem of Sylvester
can be only {1,−1}.



Chapter 6

Generalities on symmetric rank over
C

6.1 Secant variety and rank

We recall now some basic definition.
Let X ⊂ Pn be an irreducible variety and consider a rational map that sends the
pair (p, q) to the line pq, namely

σ : X × X − ∆ d G(1,n)

where G(1,n) denote the variety of the 1-dimensional linear subspaces of Pn

called the Grassmannian of lines in Pn.
This map is defined in the complement of the diagonal ∆ ⊂ X × X.
It is called the secant line map and the closure of its image is the variety of secant lines
to X denoted by σ(X).
In general, if p1, ..., pk ∈ X are k points in general position of an irreducible variety
X we can define the map

σk : X × .. × X d G(k − 1,n)

that sends p1, ..., pk in 〈p1, .., pk〉.
For example σ2(C) = P3, where C ∈ P3 is the twisted cubic.
Indeed, let P a generic point not on C, then there exist a unique line l that passes
for P and is secant to C.If such line will not exists then we have a contradic-
tion because then the genus of C, the projection of C from P in P2, is 3 while
the twisted cubic has genus g = 0 and if there exist two secant lines to C and
containing P the plane containing this two lines would have more than 4 inter-
section with C, an absurd because deg(C) = 3 and C is not contained in a plane.
It is convenient to give a more general definition of secant variety in order to

53
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understand better the concepts of rank and border rank.
Let X a irreducible projective variety, X ⊂ PV, V = Cn, we give the following

Definition 6.1. The r-th secant variety σr(X) is

σr(X) =


⋃

x1,..,xr∈X
P〈x1, .., xr〉



where < x1, .., xr >⊂ V denotes the span of the points x1, .., xr and over line
denotes the Zariski closure.
We get a filtration

X = σ1(X) ⊂ σ2(X) ⊂ ...
We give the following definition of X-rank, RX(p) and X-border rank, RX(p) of
p ∈ PV:

Definition 6.2.
RX(p) := min{ r | p ∈ σ0

r (X)}
RX(p) := min{ r |∈ σr(X)}

where σ0
r (X) is

σ0
r (X) =


⋃

x1,..,xr∈X
P〈x1, .., xr〉



and xi are all distinct.
If the variety X is the Veronese variety, νd(PV), then the r-secant variety rep-
resents the Zariski closure of the set of homogeneous polynomials that can be
written as a sum of r d-th powers.
Then we have a characterization of polynomials in term of secant variety, that is

Definition 6.3. If φ is a polynomial of degree d,

rk(φ) = Rνd(PV)([φ]) rk(φ) = Rνd(PV)([φ])

With these notations we can say that a symmetric tensor (homogeneous
polynomial) φ ∈ SdV has rank s if and only if

[φ] ∈ σ0
s (νd(PV))

and
[φ] < σ0

s−1(νd(PV)).
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Definition 6.4. φ has border rank s if [φ] ∈ σs(νd(PV) \ σs−1(νd(PV)).

Then the border rank of a symmetric tensor φ is the smallest s such that
[φ] ∈ σs(νd(PV)) and then R(φ) > R(φ). It is useful to give the following inter-
pretation of the rank and border rank to have a better geometric wiew of the
questions that follow.
Consider the νd, the Veronese map

νd : P(V∗)→ P(SdV∗)

given by
[l] 7→ [ld].

The r-secant variety
σr(vd(PV))

of the Veronese variety can be wiewed as the Zariski closure of the set of projec-
tivizations of homogeneous polynomials of degree d in n+1 variables that are
expressible as the sum of r d-powers of linear forms.
In this setting, the Waring’s problem for polynomials can be stated as:
What is the smallest positive integer r such that

σs(vd(PV)) = PSd(V∨)?

So the problem is to find the dimension of σr(vd(PV)) for every r.
In the following, we will need the definition:

Definition 6.5. A polar s-polyhedron of F ∈ SdV∨ is a set of s hyperplane
H1,H2, ..,Hs such that there exist non zero numbers λ1, ..λs satisfying

F = λ1ld
1 + ... + λsld

s

where Hi are given by {li = 0} and the powers ld
i are linearly independent in

Sd(V∨).

The name polar s-polyhedron in the space or polar s-side in the plane comes
from the theory of conics, that is if

C = l2 + m2 + n2

is a smooth conic and l,m,n are three coplanar distinct lines then the triangle
4 = l + m + n formed by the three lines is a polar 3-sides of the conic and the
triangle 4 is self-polar with respect to the conic, that is each side is the polar of
its opposite vertex.
A quadratic form F such that rk(F)=k admits a polar k-polyhedron, because of
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the diagonalization process.
Let us consider the polar s-sides of plane cubic curve. If F has a polar 1-side, it
is a triple line.
If F has a polar 2-sides, it is the union of three concurrent lines.
Assume that F has a polar triangle {L,M,N}. Then if L ∩M ∩N , 0, then after a
change of variables we can assume L = x,M = y,N = −x − y hence

F = x3 + y3 − (x + y)3

is the union of three non concurrent lines, so they are linearly independent
forms, forcing F to be projectively equivalent to the Fermat cubic(see [18]).

6.2 Bounds for Rank

We are interested in upper and lower bounds of rank of polynomials.
If X is a variety made of N+1 points, X ⊂ PN, the rank of any point with respect
to X is bounded by N + 1. We give the proof of following theorem [29]:

Theorem 6.6. Let X be an irreducible projective variety , dimX = n, X 1 H, with H
hyperplane. Then

RX(p) ≤ N + 1 − n

Proof. The proof is based on induction on the dimension of X. Let p a point such
that p < X, because if p ∈ X then RX(p) = 1 and 1 ≤ N + 1 − n. If dimX=1, let
M a general hyperplane through p. By a theorem of Bertini, we know that M
intersect X transversally.
We prove that M is spanned by X ∩M. If it is not so, let M′ be any other hyper-
plane containing M ∩ X and let M and M′ be defined by linear forms L and L′

respectively.
Then L′

L defines a meromorphic function on X with no poles, since every zero of
L is also zero of L′.
So this function is a holomorphic function on X then is constant because X is
projective.
Then M = M′ and M is spanned by X ∩M.
By taking a basis for M of points of M ∩ X, we have

RX(p) ≤ RM∩X(p) ≤ dim M + 1

where dim M + 1 = N + 1 − n since n = dim X = 1 and the hyperplane M has
dimension N − 1.
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If dim X 
 1, M∩X spans M again by Bertini Theorem, and it is irreducible (see
Griffiths-Harris).
We have that dim M ∩ X = n − 1 and dim M = N − 1.
The theorem follows because by induction RM∩X(p) ≤ (N−1)+1−(n−1) = N+1−n
and since M ∩ X ⊂ X we have

RX(p) ≤ RM∩X(p) ≤ N + 1 − n.

�

Corollary 6.7. Given φ ∈ SdCn+1

R(φ) ≤
(
n + d

d

)
− n + 1

This inequality is sharp for n = 1. So, for φ ∈ S3C2

R(φ) ≤
(
4
3

)
− 2 + 1 = 3

while, for φ ∈ S3C3

R(φ) ≤
(
5
3

)
− 3 + 1 = 8.

With respect to lower bounds for rank, Landsberg and Tietler in the paper [29]
found the following inequality for R(φ):

Theorem 6.8. Let φ ∈ SdCn, with span(φ)=Cn. Let 1 ≤ s ≤ d. Then

R(φ) ≥ rankφs,d−s + dim
∑

s

(φ) + 1

Here
∑

s(φ) are the zero’s of φwith multiplicity ≥ s + 1 and φs,d−s is the linear
map given by the polarization

φs,d−s : SsCn∨ → Sd−sCn

Corollary 6.9. If φ ∈ SdW∨ such that ≤ φ ≥= W and R(φ) = n = dim W, we have
that the singular points of Zeros(φ) is ∅. Indeed, we can represent φ as a sum of n
d-powers as

φ = ηd
1 + ... + ηd

n

so that ≤ η1, .., ηn ≥=≤ φ ≥= W, so that ηi are a base for W.
Then

∑
1, the singular locus of Zeros(φ) is the common zero locus of the derivative ηd−1

i
in PW, which is empty.
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Corollary 6.10. Let φ ∈ SdW, with span(φ)=W.
Then

1. if φ is reducible, then R(φ) ≥ 2n − 2

2. if φ has a repeated factor, then R(φ) ≥ 2n − 1.

Proof. From the hypothesis ≤ φ ≥= W we have that the kernel of the polynomial
ker φ1,d−1 = 0 so that rankφ1,d−1 = dim W = n(this means geometrically that
Zeros(φ) is not a cone over a variety in a sub- space of lower dimension).
If φ splits in two smaller factors, namely φ = χ · ψ, the set of singular points of
Zeros(φ) contains the intersection of χ = 0 and ψ = 0 which has codimension 2
in Pn−1. Then for the theorem 7.3 we obtain

R(φ) ≥ n + (n − 3) + 1 = 2n − 2

If, on the other hand, the polynomial φ has a repeated factor, namely φ =
ψ2 · (rest), then

∑
1(φ) ⊃ { ψ = 0} , which has codimension 1 in Pn−1. Then

R(φ) ≥ n + (n − 2) + 1 = 2n − 1

�

6.3 The Alexander-Hirschowitz theorem

We recall that the Waring rank wrk(F), for F ∈ SdV∨, with dimV=n+1, is the
smallest natural number r such that

F = ld
1 + ... + ld

r

for linear forms l1, .., lr.
As we have seen the naive way (a direct approach) to compute the Waring rank
is by counting constants. Consider the map

(V∨)r → C(d+n
n )

given by

(l1, ..., lr) 7→
r∑

i=1

ld
i
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If dim(V∨)r ≥ dimC(d+n
n ), that is r(n + 1) ≥ (d+n

n

)
one expect that this map is surjec-

tive so that wrk(F)≤ r for general F.
The expected generic Waring rank (symmetric tensor rank) is




(d+n
n

)

n + 1




and the expected dimension of

σ(νd(PV)

is

min
((

n + d
n

)
− 1, r(n + 1) − 1

)

Alexander and Hirschowitz showed that the varieties σr(vd(PV)) are all of the
expected dimension with few list of exception (see the following paragraph 6.4);
thus they solved the problem of the computation of border rank of a generic
polynomial of degree d in n+1 variable over C.

Theorem 6.11 (Alexander-Hirshowitz). Let d > 3. Then σr(vd(PV)) is defective if
and only if
i) d=3, n=4 and r=7
ii) d=4 and (n,r)=(2,5),(3,9),(4,14)

We can give an equivalent formulation of the Alexander-Hirschowitz theo-
rem for polynomial in the following way:

Corollary 6.12. The general form f ∈ Sd(V), dimV=n+1, is a sum of

s =

⌈
1

n + 1

(
n + d

n

)⌉

powers of linear forms, unless
d=2,where s=n+1 instead of dn+2

2 e,
d=4 and n=2,3,4, where s=6,10,15 instead of s=5,9,14,
d=3 and n=4 where s=8 instead of s=7.

This theorem is difficult to prove and there are simplifications of the proof in
a paper of [4].
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6.4 Clebsch’s theorem

The exception of degree 4 in 3 variables was known for a long time and is the core
of a Memoir of Clebsch [10]. In 1860, A. Clebsch wrote a paper “Über Curven
vierten Ordnung” (“Over curves of fourth order”) in which he considered the
representation of a form of fourth degree in three variables,

f ∈ S4C3,

as a sum of five 4-th powers of linear forms and in order to resolve this problem
he thought a quartic f as a “quadric of quadrics”
and gave an example of defective varieties because he showed that σ5(v4(P2))
that is contained in P(S4(V3)) = P14 has not the expected dimension.
He represented a quartic f as 6x6 Hankel matrix (Catalecticant) C f whose entries
are the fifteen coefficients of f with respect to basis (x2, 2xy, 2xz, y2, 2yz, z2).
That is, given f
f = a00x4 +4a10x3y+4a01x3z+6a20x2y2 +12a11x2yz+6a02x2z2 +4a30xy3 +12a21xy2z+
12a12xyz2 + 4a03xz3 + a40y4 + 4a31y3z + 6a22y2z2 + 4a13yz3 + a04z4 = Xt · C f · X
where C f is given by




a00 a10 a01 a20 a11 a02

a10 a20 a11 a30 a21 a12

a01 a11 a02 a21 a12 a03

a20 a30 a21 a40 a31 a22

a11 a21 a12 a31 a22 a13

a02 a12 a03 a22 a13 a04




(6.1)

is it possible to decompose f like
∑5

i=1 li, where li are linear forms?
The expected dimension of such f would be : 3 × 5 − 1 = 14, where 3 is the
number of variables, 5 is the number of forms and 1 because in the projective
all is up to a constant. But this is not so. In fact Clebsch found a condition to
represent such forms namely the vanishing of a 6x6 determinant of a Henkel
matrix C f made of the coefficients of the quartic. We observe that if f = l4 the
matrix C f has rank 1, so if f =

∑5
i=1 l4

i we have

rk(C f ) = rk
∑

Cl4i
≤

∑
rkCl4i

= 5,

so the five-secant variety of the Veronese v4(P2) is contained in the degree 6
hypersurfaces detC f = 0.
We can state the theorem of Clebsch of 1860 in the following form:
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Theorem 6.13 (Clebsch). ([10]) Let D1,D2, ..,D6 the differential operators of the sec-
ond order
D1 = ∂2

∂x2 , ......D6 = ∂2

∂z2 .
Then the quartic f has border rank ≤5 and it can be decomposed like a sum of five
4-powers of linear forms if and only if the matrix
with constant coefficients (DiD j f ) has determinant equal to zero (this determinant is the
so called catalecticant invariant) iff does exist a apolar conic with respect to that quartic.

With the words of Clebsch:
“Die Kurven also, deren Gleichungen durch funf Biquadrate darstellbar sind,
bilden eine specielle klasse, welche dadurch charactererisirt ist, dass ihre Invari-
ante A verschwindet.”
“The quartic curves, that can be represented as a sum of five fouth-powers of
linear forms belong to a special set and are characterized by taking to 0 the A
invariant”. The invariant A is the determinant of the matrix (10).
We can give the following modern geometric interpretation:
the map

P2 → V ⊂ P14

sends the homogeneous coordinates (x, y, z) to the Veronese variety of homoge-
neous polynomials of degree four that are of the form l4

i with li linear and that
is contained in P14, the hyperspace of all polynomials of degree four.
The secant variety σ1 is given by the sums of two 4-powers that is

σ1(V) =

φ =

2∑

i=1

φ4
i


The secant variety σ2 is the set of the quartics of the form

σ2(V) =

φ =

3∑

i=1

φ4
i

 .

The variety that is spanned by the 5-uple, is the hypersurfaces of degree 6 given
by the catalecticant equal to zero.
In term of polar n-sides we can restate the Clebsch theorem in the following form:

Theorem 6.14 (Clebsch-1861). If a plane quartic curve of equation F4(x, y, z) = 0 has
a polar 5-sides then

det(∂i∂ jF4)1≤i≤ j≤6 = 0

In particular, there aren’t general plane quartic curves with polar 5-sides.
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The polar 6-sides of quartic curves were intensively studied by G. Scorza at
the end of the nintheen century with a memory [39].
Let K be a field of characteristic 0 and let SdKn the space of homogeneous
polynomials of degree d in n variables. We give here a definition of rank R(φ)
of a polynomial φ of SdKn like

R(φ) = min{r ∈ Z/φ =

r∑

i=1

ld
i , li ∈ Kn}.

We define the border rank R(φ) of a polynomial φ in such way:
R(φ) is the smallest r such thatφ is in the Zariski closure of the set of polynomials
of rank r in SdKn.
For example if we have a binary form f (x, y) like

f (x, y) =

d∑

i=0

(
d
i

)
aixd−iyi

of degree d over K the rank of f is the minimum r ∈ Z such that exist a decom-
position

f (x, y) =

r∑

j=1

c j(l j)d

where l j are linear forms in x, y and c j ∈ K. If K = R the coefficient c j can be 1 or
−1 because we always put it in (l j)d.

6.5 Hessian of the cubic f=0

Let f be a nonsingular cubic in the projective plane P2(k), where k is an al-
gebraically closed field such that ch(k) , 3, defined by a homogeneous cubic
equation f (x, y, z) = 0.
To find degenerate polar conic of f , let us write the equation of the polar conic
PY( f ) with respect to the point Y like:

PY( f ) =

(∑
xi
∂ f
∂yi

)2
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where the symbolic square means the we have taken the polar of the polar. This
polar conic is a pair of lines if the discriminat

H =

∣∣∣∣∣∣∣∣∣∣∣∣

∂2 f
∂y2

1

∂2 f
∂y1 y2

∂2 f
∂y1 y3

∂2 f
∂y2 y1

∂2 f
∂y2

2

∂2 f
∂y2 y3

∂2 f
∂y3 y1

∂2 f
∂y3 y2

∂2 f
∂y2

3

∣∣∣∣∣∣∣∣∣∣∣∣

is zero. So there are infinitely many points Y such that the polar conics degener-
ate in two lines and the locus of such points is given by the above equation that
is a cubic curve called the Hessian of f .

Definition 6.15. The Hessian curve H(F) of a plane cubic curve F = 0 is the plane
cubic curve defined by the equation H(F) = 0, where H(F) is the determinant of
the matrix of the second partial derivatives of F.
The inflection points of F = 0 are the nine points in F ∩H(F).

The Hessian of a cubic polynomial F is a covariant of F:
let’s start with F = Ax3 + 3Bx2y + 3Cxy2 + Dy3:
the Hessian of F is

H(F) = 36
∣∣∣∣∣
Ax + By Bx + Cy
Bx + Cy Cx + Dy

∣∣∣∣∣
that is,

x2(AC − B2) + 2xy(
AD − BC

2
) + y2(BD − C2)

and this is a polynomial in x, y,A,B,C,D.
In general we have

Proposition 6.16. The hessian of a binary form F is a covariant of weight 2 of the form
F (precisely a covariant of weight -2)

Proof. Let F be a binary form. Then we can write F as:

F = xFx + yFy

by Euler’s theorem, that is,

F = x(xFxx + yFxy) + y(xFyx + yFyy)

because Fx and Fy are homogeneous polynomial too.
Then

F = x2Fxx + 2xyFxy + y2Fyy = XHXt = X
′
H
′
Xt′



64 CHAPTER 6. GENERALITIES ON SYMMETRIC RANK OVER C

where H is the Hessian matrix and ’ denote the change of coefficients.
Then we obtain

(detg)2(Fx′x′Fy′ y′ − F2
x′ y′ ) = FxxFyy − F2

xy.

so the Hessian H(F) is a covariant of weight -2. �

If we consider the discriminant of the Hessian H of the form

ϕ = a0x3 + 3a1x2y + 3a2xy2 + a3y3

∣∣∣∣∣
a0a2 − a2

1 a0a3 − a1a2

a0a3 − a1a2 a1a3 − a2
2

∣∣∣∣∣ =

∣∣∣∣∣
h11 h12

h12 h22

∣∣∣∣∣
this will be an invariant of the form ϕ of weight 6 because the tensor hi jhkl has
weight 4.
Four times the value of this invariant is called the discriminant of the cubic
binary form ϕ; it is denote by the symbol D and is given by:

D = 4(a0a2 − a2
1)(a1a3 − a2

2) − (a0a3 − a1a2)2 = 3a2
1a2

2 + 6a0a1a2a3 − 4a0a3
2 − 4a3

1a3 − a2
0a2

3

Another covariant of the cubic binary form ϕ is the Jacobian Q of the form itself
and of twice its Hessian H.
The expression of the covariant Q is:
Q = (a2

0a3 − 3a0a1a2 + 2a3
1)x3 + 3(a0a1a3 + a2

1a2 − 2a0a2
2)x2y +

+ 3(−a0a2a3 − a1a2
2 + 2a2

1a3)xy2 + (−a0a2
3 + 3a1a2a3 − 2a3

2)y3

In degree 2 the complete system of forms of a binary quadratic form is given
by the form itself and the discriminant of the form.
In degree 3, S3K2, the complete system of invariants and covariants is generate
by the binary form f , its discriminant D, its Hessian H and Q the jacobian of f
and 2H. We have a relation (a “syzygy” )found by A.Cayley:

4H3 + D f 2 + Q2 = 0

This syzygy has a key role in the solution of the cubic equation.

6.6 Cubic equation

Let f = 0 a cubic equation, f = a0x3
1 + 3a1x2

1x2 + ... We have two cases depending
on D.
If D , 0, from the syzygy of Cayley, we can write:

H3 =
1
4

(
√

D f −Q)(
√

D f + Q).
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We prove that in this case the two factors haven’t a common factor.If this were
the case, then both f and Q will have a linear factor and this is no possible by
the covariant propriety of f ,Q,H,D.
Thus, if, in this case, we set H = l ·m, with l , m , then we obtain

• 1
2 (
√

D f −Q) = l3

• 1
2 (
√

D f + Q) = m3

so that
f =

1√
D

(l + m)(l + εm)(l + ε2m)

with ε =
3√1, ε , 1.

If D = 0, H , 0.We have
Q2 = −4H3

and suppose that f = x2
2 ·linear part. This is possible with a suitable linear

transformation.
Then the coefficients a0, a1 are zero.In this case H contains the factor x2

2 too, so
we can take the square root of H to obtain the double factor of f .
Now it is possible to compute the third factor by division and this is different
from the double one because otherwise the hessian H have to be zero.
The third and last case is when D = 0 and H = 0 identically.Then Q = 0 also.
In this case f is a third power of a linear form, f = l3 with l linear form, and we
can solve the equation taking the third root of f .
So we get three cases:

• D , 0 3 distinct roots

• D = 0, H , 0 1 double root

• D = 0, H = 0 1 triple root.
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Chapter 7

Classification of real ternary cubics

7.1 Classification of real ternary cubics

If the characteristic of the field K is , 2 or 3 (for example K = R) a non singular
cubic admits a Weierstrass canonical form (first canonical form) given by

y2 = x3 + ax2 + bx + c (7.1)

or,in projective coordinates, after a change of variable that make zero the term
in x2,

y2z = x3 + αx + β. (7.2)

We follow [9] for the classification of real plane cubics:
Let F(x, y) = 0 be a real cubic plane curve, that is a cubic curve with real
coefficients.
The cubic F has 9 flexes, the points of intersection of F = 0 and He(F) = 0 the
Hessian of F so almost one is necessary real and this happened also if F has a
node, and in this case it has 3 real flexes or if F has a cusp, and in this case it has
1 flex.
So the harmonic polar l and the inflexion tangent ,t that is the tangent line
through the flex, are real too. This mean that there is a real projectivity that
sends the flex in the infinity point of the axis y,
the line l on the axis x, and the line t on the infinity line of the projective plane
P2.
The transformated of the cubic has equation

y2 = ax3 + bx2 + cx + d (7.3)

because this curve must be symmetric with respect to x axis (invariant for the
harmonic homology having the center in the point at infinity of Y∞ axis and
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with axis the improper line y = 0).
Now with the projectivity

y =
1
a

Y x =
1
a

X

the equation of the cubic result

Y2 = X3 + a1X2 + a2X + a3. (7.4)

We can now replace x and y with X and Y to obtain

y2 = x3 + a1x2 + a2x + a3.

If α,β,γ are the three roots of the cubic polynomial of the canonical form we have

y2 = (x − α)(x − β)(x − γ). (7.5)

There are five cases which correspond to five different forms of the cubic F:

1. α,β,γ, real and different each other; for example α < β < γ and the cubic
will be

y2 = x(x − 4)(x − 8)

(see picture of “parabola campaniformis cum ovali“)

2. α,β,γ real with the first two equal, for example α = β < γ and the cubic
will be

y2 = x2(x − 4)

(see picture of “parabola punctata“)
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3. α,β,γ real with the second two equal, as α < β = γ and the cubic will be

y2 = x(x − 2)2

4. all the roots real and equal with α = β = γ, like the cubic

y2 = x3

5. only one real root, for example the cubic

y2 = x(x − i)(x − i) = x3 + x,

(see picture “parabola campaniforme semplice“) where i is the quadratic
root of -1.
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x

y

Figure 7.1: Cusp

x

y

Figure 7.2: node
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Now let S and T be the two relative invariant of degree four and sex respectively
of a given plane cubic.
From the general expressions of S and T(cfr.[38] or [16]), we have that if the
curve is given by the equation

ax3 + 3bx2 + 3cx + d + 3ey2 = 0 (7.6)

the relative invariant are

S = e2(b2 − ac); T = 4e3(2b3 + a2d − 3abc)

and if R is the discriminant (called -∆ in [41])

R = 64S3 − T2 (7.7)

we will have
R = 16e6[4(b2 − ac)3 − (2b3 + a2d − 3abc)2] (7.8)

so that

R = −16e6a2∆ (7.9)

where

∆ = a2d2 − 3b2c2 + 4b3d + 4ac3 − 6abcd (7.10)

is the discriminant of the equation

ax3 + 3bx2 + 3cx + d = 0. (7.11)

Now, the last equation 7.11 has 3 real distinct roots or 1 real and two imaginary
if ∆ is negative or positive respectively; thus if R > 0 the cubic is a “parabola
campaniformis cum ovali” and if R < 0 is a “parabola campaniformis simple”
(or “parabola campaniformis pura”) If ∆ = 0 (and so R = 0 too) we can write 7.6
as

a(x +
b
a

+

3√T
ae

)(x +
b
a
−

3√T
2ae

)2 + 3ey2 = 0 (7.12)

or if we set

x′ = x +
b
a

+

3√T
ae

(7.13)

we obtain

a2x′(x′ − 3 3√T
2ae

)2 + 3aey2 = 0 (7.14)
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The real part of the cubic is in x′ > 0 or in x′ < 0 if ae < 0 or ae > 0 respectively;
so the double point

x′ =
3 3√T
2ae

, y = 0 (7.15)

is on the same side of the curve or on the opposite side if T is negative or positive.
Thus 7.6 represents a nodal cubic if R = 0 and T < 0 and represent a “parabola
punctata “if R = 0 and T > 0.
If R = 0, T = 0 (so that S = 0 too) the first member of 7.11 is a perfect cube and
7.6 represent a cusp.
The three quantity R,S,T are projective invariant, so if we apply a projectivity to
a cubic curve, these three numbers don’t change the sign.
Hence, for a generic plane cubic curve,

1. if the discriminant 7.7 is positive, the curve has two different pieces (two
connected components).
One of this component has three real flexes and the other component has no
singular points and can be proiected in an “oval”, that is a closed smooth
curve.

2. if the discriminant 7.7 is negative, the cubic curve has only one connected
component with three real flexes.

3. if the discriminant 7.7 is 0, so that S = 0 too, the curve has only one
connected component and has one double point, and this double point is a
node, an isolated point or a cusp if the other basic invariant T is negative,
positive or 0.

7.2 Real Cubics

If the equation of cubic C has real coefficients the equation of nine degree that
define the flexes of C has always a real root (because nine is odd), so it is always
possible to riduce C to the form

y2 = k(x3 − px + q)

with a real trasformation.
Now, to reduce the factor k to one, we have to change

y→
√

k · y



7.2. REAL CUBICS 73

and this is a real transformation if k > 0; instead if k < 0 we can change

x→ −x

so we have
y2 = k(−x3 + px + q) = −k(x3 − px − q)

so that we have already the normal form.
From this normal form it’s possible to understand the form of C:
indeed, if

ϕ(x) = x3 − px + q

has 3 real roots a, b, c with a < b < c and this happened if and only if ∆ < 0.
In this case

ϕ(x) = (x − a)(x − b)(x − c)

and
y =

√
ϕ(x)

is real only for

a 5 (x) 5 (b)

and for

x > c.

With regard to this we have two real component (“rami“) of C: a closed compo-
nent homeomorphic to S1 called even component because every line cut S1 in
two or in zero points and an open component called odd component because
every line cut this component in one or three points. The first component has
no flex while the second has two symmetric flex respect to the x axis and the flex
at infinity, so the cubic has 3 real flex.
All of this is based on the theorem:

Theorem 7.1. (called Mac-Laurin Theorem in [21], see also [3])
The line that contain two flexes of a cubic curve contain also a third flex.

For the proof of this theorem see [3].
This curve is called “parabola campaniformis cum ovali” by Newton.
If ϕ(x) has only one real root x = a and the other two complex coniugate, so that
∆ > 0 we have

ϕ(x) = (x − a)ψ(x)



74 CHAPTER 7. CLASSIFICATION OF REAL TERNARY CUBICS

where ψ is a polynomial of degree two never 0 for example

ψ > 0

and we have

y =
√
ϕ(x) =

√
x − a

√
ψ(x) (7.16)

and this is real for x ≥ (a) so the cubic is formed by only one component on
which there are two real flexes plus the flex at infinity.
This curve is called by Newton “parabola pura campaniformis”
Now we consider the irriducible cubics with a double point (node or cusp).
In this case ∆ = 0 so the equation

ϕ = 0

has one double root a = b and another different real root c so that

ϕ(x) = (x − a)2 · (x − c)

and then computing the product

(x − a)2 · (x − c) = x3 − (2a + c)x2 + (2ac + a2)x − a2c

we can put
c = −2a

so that the quadratic term is zero. So we obtain

y =
√
ϕ(x) = (x − a) · √x − c = (x − a) ·

√
x + 2a

so the cubic has only one component that exist if x ≥ −2a.
There is a double point for x = a and this is a node with two real tangent if

a > 0

or an isolated point if

a < 0.

These two case were called by Newton “parabola nodata“ and “parabola punc-
tata”.

Theorem 7.2. The cubic with a node has only one flex (at infinity).
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Proof. (cfr.[21]) Let C be a cubic with a double point O. If it has two real flexes
A,B, it has three flexes A,B,C, all on a line a.
Then exist two harmonic homology that send C to C and change AB and AC, so
the product of this two transformation change ciclically A,B,C. �

On the othe end the “parabola punctata“ has three flexes, two real (symmet-
ric) and one at infinity.
So we can say that the classification of ternary cubic forms is the following:
let

T :=
{

f (X,Y,Z) ∈ S3C[X,Y,Z]
}

T is the complex vector space of dimension 10 of ternary cubic forms.
On this vector spaces acts the group SL(3) with linear change of variables.
Throught the classification of the orbits in T we associate to each form f his zero
locus in the projective space P2:

V( f ) B
{(

x, y, z
) ∈ P2| f (x, y, z) = 0

}

7.3 Classification of reducible cubic plane curves

We describe the classification of these plane curves with respect to projective
equivalence.

1. f is the product of 3 linear factors l1 = l2 = l3: that is f = X3 the picture is a
triple line.

2. f is the product of 3 linear factors l1, l2, l3 with l2 = l3: that is f = X2Y and
a picture is a double line plus a line.

3. f is the product of 3 concorrent lines: that is f = XY(X + Y) and a picture
is three lines that go through a point.

4. f is the product of 3 distint linear factors l1, l2, l3 :that is f = XYZ and a
pictures is a triangle.

5. f has an irriducible factor of degree 2, so V( f ) is composed of a conic Q
and a line l.
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6. if ](Q ∩ l) = 1 then f = (X2 − YZ)X.

7. if ](Q ∩ g) = 2 then f = (X2 − YZ)X
in the first case the line l is tangent to Q and in the second one l is secant
to Q.

8. f is irriducible, so V( f ) is a irriducible cubic C ⊂ P2.

9. f is irreducible but singular C has one cusp: f=Y2Z − X3.

10. f is irreducible but singular C has one double point f=Y2Z − X3 − X2Z.

11. C is smooth f = Y2Z − X3 − aX2Z − bXZ2 − cZ3 with a,b,c ∈ C.



Chapter 8

Historical note

8.1 Waring’s problem

The problem of computing the rank of a homogeneous form is an old one and
is strictly connected to the Waring problem in number theory.
E. Waring, in 1770, in his book “Meditationes Algebraicae“[44], stated a problem
that we can reformulate as:

Waring′s problem

Given positive integers d,h may we write any positive integer as a sum of h
non-negative d-powers?
The least number of d-th powers, g:=g(d), needed to represent every sufficiently
large positive integer is the analog of the rank for forms that we define later.
Waring stated without proof the following (see for example [26]):
a) every positive integer is the sum of (at most) 4 positive squares;
b) every positive integer is a sum of (at most) 9 positive cubes;
c) every positive integer is a sum of (at most) 19 biquadrates; and so on...
Perhaps Waring believed that for every natural number j ≥ 2, there is a number
n( j) such that every positive integer n can be written in the following way:

n = a j
1 + ... + a j

n( j)

where ai ≥ 0.
If such n( j) exists, we call g( j) such minimum.
With the above notations, Waring’s statements are the following claims:

1. g(3)=9

2. g(4)=19

77
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3. g(j) exists.

(In this settings the famous Lagrange’s theorem says that g(2) = 4. Note that
this theorem is sharp because there are integers like 7 which cannot be written
as a sum of three squares).
We have for example,

31 = 52 + 22 + 12 + 12

87 = 72 + 52 + 32 + 22

The Waring’s problem was solved affirmatively by David Hilbert in 1909.

Theorem 8.1 ((Hilbert-1909). g( j) exists for every j ≥ 2.

Now we know that g(3) = 9 and g(4) = 19 but the determination of g( j) for
every j is not yet understood.
The problem above is called “Little Waring problem” by([23]).
G. Hardy and other number theorists observed that although g(3)=9 only 23 and
239 requires 9 cubes in their sum decomposition that is

1. 23 = 23 + 23 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 2 × 23 + 7 × 13

2. 239 = 53 + 3 × 33 + 4 × 23 + 1 = 2 × 43 + 4 × 33 + 3 × 13

and only 15 other numbers (8042 for example) requires 8 cubes.
Hardy and Wright in their book “Introduction to number theory”([26]) gave the
following definition:

Definition 8.2. let G( j) be the last number such that all sufficiently large integers
are the sum of ≤ G( j) j-th powers of integers.

From this follow that G( j) ≤ g( j), and G(3) ≤ 7. It is not known if G(3) ≤ 7,but
it is know that G(4) ≤ 16.
It can happen that G( j) = g( j), for example when j = 2 it was stated by Gauss
that every natural number n ≡ 7( mod 8) is a sum of 4 (and not 3) squares, that
is G(2) = g(2) = 4.
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8.2 Newton’s classification of cubics

Newton, in his “Enumeratio linearum tertii ordinis” first published in 1704 as an
appendix to his “Optics” was able to apply the methods of analytical geometry
to an exhaustive classification of cubic curves in the same spirit to that conics
were divided into three species.
The first appendix to the optics was the essay on cubics while the second was
“De Quadratura Curvarum”.
The Treaty is divided into seven sections in which he explains what is the order
of a curve, what is the genus and gives some example of curves of degree one,
two and three.
The third section is the most important for us, because here Newton shows that
the equation of a cubic can be always be written in one of four canonical forms,
namely:

1. i) xy2 + ey = ax3 + bx2 + cx + d

2. ii) xy = ax3 + bx2 + cx + d

3. iii) y2 = ax3 + bx2 + cx + d

4. iv) y = ax3 + bx2 + cx + d

In this section Newton describes his nomenclature for each curve and divides
the four canonical forms into seven classes that are subdivided into fourteen
genera which contain seventy-two species although the degenerate forms of a
conic plus a straight line and three straight lines are not considered. Newton
missed six species according to his classification scheme which allows affine
coordinate changes. There are 78 species of cubics (cfr. for example[36]). The
classification of Newton is respect to the asymptotic behavior of cubics;this
approach is natural because the behavior at infinity shows well the shape of the
curve. For example the “folium of Descartes”

x3 + y3 − 3xy = 0

has as asymptote the line

x + y + 1 = 0
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Decartes.png

and this simplifies the representation of the curve.
Newton had the idea of regarding an asymptote of a curve as a line to which the
curve is tangent at infinity.
This idea works very well for algebraic curves, since such curves extend in a
simple fashion to a space that contain points at infinity.
So the search of asymptotes leads in a natural way from R2 to the projective
plane P2.
Regarding the cubics as lying in the projective plane and enlarging the coordi-
nate change from the affine to the projective one, the Newton’s classification can
be simplified to 5 different species.
The first canonical form was divided into four great classes, so we have the “Re-
dundant Hyperbolas”, the “Defective Hyperbolas or Elliptic Hyperbolas”, the
“Parabolic Hyperbolas” and the “Hyperbolisms of conics ” which correspond
respectively to a > 0 to a <0, to a = 0 and to a = 0 and b = 0.
The second canonical form was called “The Trident”, the third “Diverging Cubic
Parabolas or Neilian Parabolas”( in memory of of W. Neil, the first mathemati-
cian who succeed to rectifying a curve) and the fourth “The Cubic Parabolas”
( sometimes called Wallisian Parabola in memory of John Wallis, professor of
mathematics at Oxford).
While in the section four Newton enumerated all the possible species of cubics,
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in the section five he made a remarkable discovery, that every cubic curve may
be regarded as the shadow of one of the five diverging parabolas cast by a lu-
minous point on a plane properly situated.
No proof of this very remarkable proposition is given by Newton and the earli-
est mathematician who gave a proof of it was Nicole (communication to French
Academy on 1/12/1731).
On 12/12/1731 Clairaut gave another proof that is contained in his paper “Sur
les courbes que l’on forme en coupant une surface courbe qualconque par un
plan de position” (Memoires de l’Academie des Sciences 1731).
Let us see how Newton arrives to the distinction of four canonical forms; he
considers the diametral conic with respect to a point “at infinity“ of the cubic.
That is, if we take as a ccordinate reference a line to this point of equation x = 0,
then the equation of a cubic is of the following form:

y2(ax + b) + y(cx2 + dx + e) − ( f x3 + gx2 + hx + i) = 0 (8.1)

The locus of middle points of chords parallel to Y axis is the conic

2axy + 2by + cx2 + dx + e = 0 (8.2)

that is a hyperbolic curve with an asymptot parallel to the vertical axis that is
also asymptot for the cubic.
The diametral equilateral hyperbola has equation xy = k, so the correspondent
coordinate transformation take

b = c = d = 0. (8.3)

So we have, if a , 0, the equation of the cubic:

I) xy2 + ey = f x3 + gx2 + hx + i. (8.4)

When a = 0 the diametral conic become a parabola, and two points “at infinity”
are the same but the third are different until c = 0, so if we take this point as
infinity point we have again the type I) of the cubic.
On the other hand, if a = 0 and c = 0 (so in this case the cubic has the flex tangent
to the line at infinity), the diametral conic factorize like the line

2cy + dx + e = 0 (8.5)

plus the infinity line.
We can now take this line like the x axis and if b = 1 and d = e = 0 we have

II) y2 = f x3 + gx2 + hx + i (8.6)
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or if b = e = 0 and d = 1 we have

III) xy = f x3 + gx2 + hx + i (8.7)

and if b = d = 0 and e = 1 we have

IV) y = f x3 + gx2 + hx + i. (8.8)

8.3 The Hesse equation

The Hesse canonical form of a plane cubic curve, called the second canonical
form in [40], after the first canonical form of Weierstass, is

f = x3 + y3 + z3 + 6mxyz = 0.

The condition of nonsingularity is

1 + 8m3 , 0 (8.9)

The three partial derivatives of 1
3 f , are

x2 + 2myz, y2 + 2mxz, z2 + 2mxy (8.10)

so the Hessian He( f ) of the curve has the following equation:

He( f ) =

∣∣∣∣∣∣∣∣

x mz my
mz y mx
my mx z

∣∣∣∣∣∣∣∣
=(1 + 2m3)xyz −m2(x3 + y3 + z3).

In particular, the member of the Hesse pencil corrisponding to the parameter
m , 0 is equal to

x3 + y3 + z3 − 1 + 2m2

m2 xyz = 0

or if m = 0 the Hessian is equal to

xyz = 0.

We have the

Proposition 8.3. Any smooth plane cubic C3 is projectively equivalent to one of the
Hesse pencil (Hesse canonical form):

x3 + y3 + z3 + λxyz = 0
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Proof. We sketch the proof [see Weber Lehrbuch der Algebra II].Let C3 be a non-
singular cubic. Take three inflexion tangents for C3 and let it be x = 0,y = 0 and
ax + by + cz = 0. Then the equation of C3 is given by:

xy(ax + by + cz) + dz3 = 0

Let c = 0 so that ab , 0 otherwise the curve would be singular.
Recall now that a binary cubic with no repeated roots can be reduced, with a lin-
ear change of variables, to the sum of two cubes, so that xy(ax+by) = x3 + y3;then
the equation of c3 is of the form

x3 + y3 + dz3 = 0.

After scaling z we get a Hesse equation.
If we assume c , 0, c = 3,and ω3 = 1, a primitive third root of unity, we define
new variables u and v by

ax + z = ωu + ω2v

by + z = ω2u + ωv.

Then

abxy(ax + by + z) + dz3 = (ωu + ω2v − z)(ω2u + ωv − z)(−u − v + z) + dz3

= −u3 − v3 + (d + 1)z3 − 3uvz = 0.

For the nonsingularity d , −1, so after scaling z we get the Hesse equation for
C3:

x3 + y3 + z3 + λxyz = 0.

�

8.4 Polar Polygons

A general ternary cubic form does not admit polar triangles because for any
three general points in P2 there exists a reducible cubic that is singular at these
points, that is the cubic made of three lines.
The cubic form has a polar triangle only when the invariant S = 0, that is only
when the cubic is equianharmonic.

Proposition 8.4. A plane cubic C has a polar triangle only in two cases:

• C is a Fermat cubic
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• C is the union of three distinct concurrent lines.

Proof. Assume C =
{
l3
1 + l3

2 + l3
3 = 0

}
. Let l3

1 not proportional to l3
2. Then with a

coordinate change we can we can write C as C =
{
x3 + y3 + l3}.If the line l doesn’t

depend on z, the cubic C is the union of three concurrent lines. If, on the other
hand, the line l depends on z we can assume that l = z and we get the Fermat
cubic. �

For a Fermat cubic its polar triangle is unique and the sises of this triangle
are the first polar of the cubic which are double lines.
By counting constants, we have that a general cubic admit a polar quadrangle. A
polar quadrangle l1, l2, l3, l4 is called nondegenerate if the dual of li i=1,2,3,4, are
4 points no three of which are collinear. A polar quadrangle is nondegenerate if
and only if the linear system of conics in the projective space through the points
[li] is an irreducible pencil of conics.
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Geometry of plane cubics

9.1 Plane Cubics

In this section we recall some facts on the geometry of plane cubics.
Ternary cubic forms, in Cayley’s symbolic notation (a)(x, y, z),

(a)(x, y, z) = a300x3 + 3a210x2y + 3a201x2z + 3a120xy2

+ 6a111xyz + 3a102xz2 + a030y3 + 3a021y2z + 3a012yz2 + a003z3

or equivalently, plane cubic curves, depends on nine essential parameter, so
they live in the vector space

V2,3 = 〈x3, y3, z3, x2y, y2z, z2x, xy2, yz2, zx2, xyz〉.
As an affine space V2,3 � A10 and it has coordinate ring

k[V2,3] = k[a300, a030, a003, a210, a021, a102, a120, a012, a201, a111].

A classical result of Aronhold (cfr.[1]) is that the ring of invariant k[V2,3]SL(3) is
generated by two algebraically independent invariants S and T of degree four
and six respectively.
They are called the invariant of plane cubics.
The invariant S is the well known invariant of ternary cubics of degree 4, and
is the classical Aronhold invariant (cfr.[41] ,[25] or [16]) and is defined as (in
symbolic notation):

S = (αβγ)(αβδ)(αγδ)(βγδ).

The sestic invariant T of plane cubics is defined as:

T = (αβγ)(αβδ)(βγε)(αγζ)(δεζ)2.

85
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The discriminant ∆ of a cubic form in three variables is a linear combination of
S3 and T2 and

∆ = 0

is the closure of the locus of nodal cubic curves and the complete intersection

S = 0 T = 0

is the locus of cuspidal ones.
To compute explicitly S T of a cubic C, we need of the (second) canonical form
of the cubic, the Hesse form:

x3 + y3 + z3 + 6λxyz = 0.

Then
S = λ − λ4, T = 1 − 20λ3 − 8λ6, ∆ = (1 + 8λ3)3. (9.1)

The SL(3)-invariance of S and T means that they have geometric meaning(see
[37] or [31]).
In particular, S = 0 means that the Hessian H( f ) of a cubic plane curve f factories
as three lines the invariant S vanishes on a smooth cubic if and only if this curve
is projectively isomorphic to the Fermat cubic (called anharmonic cubic).
The geometric meanings of the invariant T is that the Hessian of the Hessian of
the plane cubic curve f is the same cubic up to a scalar, so

H(H( f ) = f

if and only if T = 0. In general a plane curve Cn of order n is represented by an
equation f (x, y, z) = 0, in which f is a polynomial of degree n, homogeneous in
x,y,z. Since the number of terms in the polynomial f is 1

2 (n + 1)(n + 2) =
(n+2

2

)
,

the curve depends on the ratios of that number of coefficients and therefore it
depends effectively on the values of 1

2n(n + 3) parameters.
Since to make Cn pass through a given point we impose a linear condition on
the coefficients of the curve, it follows that there exists a Cn through 1

2n(n + 3)
given points.
We say that a curve of order n has 1

2n(n + 3) degrees of freedom. If a cubic is
irreducible it has at most one double point, because if a cubic would have two
double points the line that go through them has four intersection with the cubic
for the Bezout’s theorem so it belong to the cubic.
This facts can be deduced from the following theorem that is a simple conse-
quence of Bezout’s theorem (9.2):
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Theorem 9.1. [3] If Cn is a irreducible plane curve of degree n then it has at most:

(n − 1)(n − 2)
2

double points.

Proof. Suppose that a plane irriducible curve Cn has

(n − 1)(n − 2)
2

+ 1

double points and let us take n-3 simple points Pi on it. We get

(n − 1)(n − 2)
2

+ 1 + (n − 3) =
1
2

(n − 2)(n + 1) = N(n − 2).

Then there is at least a Cn−2 going through the double points of Cn and the Pi.
The common points of Cn and Cn−2 given by the double points and by Pi are at
least

2
(1
2

(n − 1)(n − 2) + 1
)

+ (n − 3) = n(n − 2) + 1.

Then, for the Bezout’s theorem, the two curves must have a common component
and this is not possible because Cn is irreducible. �

Theorem 9.2. [3] Two plane algebraic curves of degree m,n without common compo-
nents, have mn common points each of which is counted with respectively multeplicity.

If the double point is a cusp, it is an ordinary cusp.
We recall that a double point P is a cusp if the two tangent lines in P are the same
line l and the multiplicity intersection of the line with the curve in P is three.
We have the following theorem that describe the behavior of flexes:

Theorem 9.3. Let P a non-singular point of a plane cubic curve C. Then P is a flex if
and only if the polar conic of P with respect to C splits in two lines: one is the tangent
line of C in P, the other does not contains P. The flexes are exactly the simple points of
C that belong to the Hessian curve.

An important theorem of the theory of plane cubic curves is:

Theorem 9.4. Each cubic passing through eight of the nine points common to two
coplanar cubics contains the ninth too.
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(cfr. [21]or [3]) An immediate consequence of this theorem is:

Corollary 9.5. The line that contains two flexes of a cubic intersect the cubic in a third
flex.

Proof. Let L,M be two flexes of the cubic C and let r be the line through them and
through a third point N so that N = C ∩ r. Consider the pencil of cubics given
by the curve C and the line r counted three times.
Then the nine base points of the pencil are L,M,N counted three times, so the
cubic given by the three tangent of C in L,M,N contains eight of the nine base
points of the pencil. So for the previous theorem it must contain the ninth too:so
N is the third flex.

�

From the Plücker’s formulas (cfr. for example[3])

ρ = 3n(n − 2) − 6d − 8k

and
ν = n(n − 1) − 2d − 3k

where ρ,ν,n,d,k, are respectively the number of flexes, the class of the curve (i.e.
the number of tangent lines from a generic point of the plane), the degree, the
number of nodes, the number of cusp, we have three possibility for cubic plane
curves:

1. plane cubics without double point so with 9 flexes and class 6

2. plane cubics with a double point with distinct tangent so with 3 flexes and
class 3

3. plane cubics with a cusp so with 1 flex and class 3.

We want to look at the action of PGL(3) on the space of cubic polynomials on P2

up to scalars.
There are a number of orbits of PGL(3) corresponding to reducible cubics:
triple lines (symmetric tensors of the form v⊗3)that form a single orbit
double lines e line (that correspond to symmetric tensors of the form v⊗2 · w
they also form a single orbit
there are two orbits corresponding to union of three lines because there are 3
concurrent lines and 3 that form a triangle
(from a tensor point of wiew the first one is of the form u · v · w with u, v, w
pairwise independent and spanning a plane in the vector space V and the other
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of the form u · v · w with u,v,w linearly independent.
There are two orbits that correspond to cubics that are union of a conic and a
line, one where the line is secant the conic and one where the line is tangent to
the conic.
After, there are the irreducible cubics, the singular one consisting in the cusp
and the node. These form two more orbits.
At the end we have the smooth cubics.
They have the following equation (first canonic form or Weierstrass form):

Y2Z = X · (X − Z) · (X − λZ)

and two such curves are projectively equivalent if and only if the J invariant
coincide. The J invariant is given by

J :=
4(λ2 − λ + 1)3

(λ + 1)2(λ − 2)2(2λ − 1)2 (9.2)

where λ is the double ratio of the four tangent lines through a point on it.
If J = 0 the plane cubic curve is called equihanarmonic and if J = ∞ it is called
harmonic.

9.2 J-invariant

Let us see how to compute the absolute invariant 9.2 of a cubic when the equation
of the cubic is in normal form.
We recall that by Salmon’s theorem ([21]), the cross-ratio of the four tangents,
which may be drawn to a plane cubic from a point on it, is constant.
A certain function of this cross-ratio which is rational in the coefficients of the
cubic (smooth) is the only absolute projective invariant of the curve and is called
J-invariant.
If α is one of the values of the cross-ratio, the J-invariant is

J =
4(α2 − α + 1)3

(α + 1)2(1 − 2α)2(2 − α)2 . (9.3)

This absolute invariant is called also the modulus of the cubic and it does not
depend on the order in which the four tangents are considered.
Let F(x,y)=0 the equation of a cubic C without double points. With a projective
transformation we can take a flex of C to be the point at infinity of the y axis and
the relative harmonic polar is the line {y = 0}.
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Then the intersection of C with lines perpendicular to x axis will be two sym-
metric points so y2 will be a rational function of x namely

y2 =
ϕ(x)
ψ(x)

so the equation of the cubic will be

y2ψ(x) = ϕ(x)

whereψ is a polynomial of the first degree andψ is a polynomial of third degree.
We can put ψ(x)=x − α so for x = α we have y = ∞ and the line x = α is the
tangent line in the flex.
Then we have

y2(x − α) = x3 + bx2 + cx + d.

But because ϕ(x) = 0 is the tangent variety of degree 4 of the 4 tangents at the
cubic C from the infinity point and because the tangent variety is invariant we
have

J =
S3

T2 =
4i3

j2 . (9.4)

where S and T are the Aronhold’s invariants of the cubic and i and j are the
integer invariants of degree 2 and 3 respectively of the polynomialϕ when ϕ is
considered of degree 4 with the leading coefficient equal to zero.
Then we have that

S = ρ2i

and

T = ρ3 j
2
.

With a new change of coordinates

x→ x − b
3
,

the equation of the cubic becomes

y2 = k(x3 − px + q)

and with the change of variable

y→
√

ky
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the equation will be in normal form

y2 = x3 − px + q. (9.5)

We get from the notion of double ratio that i = 0 means that the group of 4
points on a projective line is equianharmonic and j = 0 means that this group is
harmonic. In this cade i = 3p and j = 27q.
If we choose ρ = 1 we have

S = 3p T =
27
2

q

then the discriminant of C is

D = S3 − T2 = 27
(
p3 − 27

4
q2

)

and also

J =
S3

T2 =
27p3 · 4
272q2 =

4
27

p3

q2 .

We have the theorem :

Theorem 9.6 ([1]). The cubic form in three variables f (x, y, z) such that S = 0 (equi-
hanarmonic) or p = 0 in the normal form is representable as a sum of three cubes, that
is for a convenient choise of the unit point:

f (x, y, z) = x3 + y3 + z3.

Proof. (We follow [21]). From the normal form 9.5

f = x3 − y2z + qz3

then it is sufficient to write the binary form −y2z + z3 like a sum of two cubes:

z3 − zy2 =
1
2

(x − y√
3

)3 +
1
2

(x +
y√
3

)3.

�

The equation
x3 + y3 + z3 = 0

say that
H(x3 + y3 + z3) = 216xyz

that is the Hessian of a anharmonic plane cubic is a triangle. On the other hand
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Theorem 9.7. The plane cubic (harmonic) for which T = 0 has the property that it is
the hessian of its hessian.

Proof. In this case,the plane cubic curve has equation

y2 = x3 − px

so the hessian of the ternary cubic form f = x3 − y2z − pxz2 is

H(x, y, z) = 24px2z − 24xy2 + 8p2z3

and by computing the hessian of H we obtain

H(H( f )) = f

up to a numerical factor. �

9.3 Aronhold’s invariants

Aronhold’s invariants of plane cubics, S and T, are introduced by Aronhold in
1849 in a foundamental work over the homogeneus functions of third order in
three variables ([1]) and can be written using the symbolic notation as:

S = (abc)(abd)(acd)(bcd)

and
T = (abc)(abd)(ace)(bc f )(de f )2

where the plane cubic is given by the symbolic notation by

a3
x = b3

x = c3
x = d3

x = e3
x = f 3

x .

The Aronhold’s invariant S is a degree four invariant of plane cubic S ∈ S4(S3C3)
and is the polynomial of minimum degree vanishing on the locus of cubics
projectively isomorphic to the Fermat cubic.
Its equals the following polynomial with 25 terms (cfr.[18] or [41] or [37])

S(F) = abcj−(bcde+ca f g+abhi)− j(agi+bhe+cd f )+(a f i2+ahg2+bdh2+bie2+cgd2+ce f 2)− j4

+2 j2( f h + id + eg) − 3 j(dgh + e f i) − ( f 2h2 + i2d2 + e2g2) + (ideg + eg f h + f hid)

where the equation of F is in the form:

F(x0, x1, x2) = ax3
0+bx3

1+cx3
2+3dx2

0x1+3ex2
0x2+3 f x0x2

1+3gx2
1x2+3hx0x2

2+3ix1x2
2+6 jx0x1x2

We have the
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Proposition 9.8. Let F be a plane cubic curve.
Then the following condition are equivalent[18]:

1. S(F)=0;

2. F is a Fermat cubic, or a cuspidal one, or a cone or the union of a conic and a
tangent line;

3. exist a point a such that Pa(F) = l2 that is one of the polar conic of F is a double
line;

4. F admits a(possibly degenerate) polar s-polygon with s ≤ 3.

We sketch the proof that is given in [18].

Proof. If Pa(F) = l2 then there are two cases:l(a) , 0 and l(a) = 0. If l(a) , 0, that is
a < Pa(F) and assuming a = (1, 0, 0) and l = x0 then

Pa(F) =
1
3
∂F
∂x0

= x2
0

Then: ∫
Pa(F)dx0 =

∫
x2

0dx0

that is,
F − x3

0 = G(x1, x2)

with G(x1, x2) a binary cubic in x1, x2.
Then we may assume that only the following cases occur:

G(x1, x2) = x3
1 + x3

2, G(x1, x2) = x2
1x2, G(x1, x2) = x3

1, G(x1, x2) = 0.

It follows

F = x3
1 + x3

2 + x3
3, F = x2

1x2 + x3
0, F = x3

0 + x3
1, F = x3

0

If l(a) = 0, we can always assume a = (1, 0, 0), l = x1.Therefore

Pa(F) =
1
3
∂F
∂x0

= x2
1

We integrate this equation to obtain
∫

Pa(F)dx0 =
1
3

∫
∂F
∂x0

=

∫
x2

1dx0
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so
F(x0, x1, x2) = 3x0x2

1 + G(x1, x2)

with G(x1, x2) binary cubic form or 0.The point (1, 0, 0) is a double point with the
tangent cone equal to x2

1.Then F is either a cusp or the union of a smooth conic
and its tangent line or a cone with a double irreducible component. �

Definition 9.9. A non singular cubic curve of equation F = 0 such that S(F) = 0
is called equianharmonic cubic.

The reason is that an irreducible, non singular cubic curve can be reduced to
the Weierstrass form:

y2z = x3 − px − q

and we have, up to factor,

S = 3p, T =
27
2

q.

By evaluating the invariant S on this curve we obtain S(F) = 0 if and only if
p = 0.
But the nonsingularity of the cubic means that it is an elliptic curve so the
projection

π : C→ P1

from a point P∈ C is a double cover of P1 branched at four points ρ1, ρ2, ρ3,∞.
This follows, for example, by the well know Hurwitz formula:

] branchpoints = 2n + 2g − 2

where n is the degree of the map (n=2), g is the genere of a curve (g=1).
So in this case the number of branch points is 4.
Now the cross ratio of these 4 points is independent (up to order of the 4 points)
of the line and also is independent from the projection point P on the cubic
curve.
The cross ratio is in the equianharmonic case

R =
(ρ1 − ρ2)(ρ3 −∞)
ρ1 −∞)(ρ3 − ρ2)

=
(ρ1 − ρ2)
(ρ3 − ρ2)

= ρ,

where ρ is a cubic root of -1,ρ , −1.
This 4-uple is classically called equianharmonic.
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9.4 Pfaffian of a skew transformation

Let E be a vector space of dimension n = 2m and define a linear map

W : E ⊗ E∨ → Λ2E

by

W(φ) =
∑

ν

eν ∧ φ(eν)

for all φ ∈ End(E), where ev is a basis of E. Suppose now that φ is a skew trans-
formation of E. Since W(φ) ∈ Λ2(E), it follows that

W(φ)m ∈ Λn(E) ' K.
Since dim(Λn(E))=1, there exist a scalar P f (φ), called the Pfaffian of the skew
transformation φ, such that

1
2m W(φ)m = P f (φ)e,

where e is the unique unit vector in ΛnE which represent the orientation.
By definition, Pf depends only on a choice of volume form and is invariant under
the action of SL(E).
A well-know property of the Pfaffian is the following:

P f (φ)2 = det (φ). (9.6)

As direct consequence of the above formula we obtain that the determinant of a
skew matrix of even order is the square of a polynomial in its entries.In fact, if
αi j is the given matrix define the skew transformation φ by

φ(ei) =
∑

j

αi je j

where ei is an orthonormal basis of E.Then we have that

W(φ) =
∑

i, j

αi jei ∧ e j.

Now

W(φ)m =
1

m!

∑

σ

ασ(1)σ(2) · · ·ασ(n−1)σ(n)eσ(1) · · · eσ(n)
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=
1

m!
e
∑

σ

εσασ(1)σ(2) · · ·ασ(n−1)σ(n)

2m

m!
e

∑

τ(2 j−1)<τ(2 j)

ετατ(1)τ(2) · · ·ατ(n−1)τ(n)

Now the formula (53) yields

det (αi j) =




1
m!

∑

τ

ετατ(1)τ(2) · · ·ατ(n−1)τ(n)




2

For example if A = (αi j) is a 4x4 skew matrix,

det A = [α12α34 − α13α24 + α14α23]2 .

9.5 Aronhold invariant revisited

The Aronhold invariant is the degree four equation of the secant variety σ3(S3C3)
and can be interpreted as a pfaffian (see [33]).
Let dimV=3 and let e0, e1, e2 be a basis of V and e1 ∧ e2 ∧ e3 a base of Λ3V = K3.
Then consider the space of endomorphisms End(V).
We have

End(K3,K3) = K3∨ ⊗ K3 = K ⊕ ad(V)

with ad(V) the subspace of End(V) corresponding to traceless endomorphisms.
Fix ω ∈ S3(V).
Then map the tensor product

K3∨ ⊗ K3 → Λ2K3 ⊗ K3, M ∈ End(K3) 7→ (v 7→ (M(w) ∧ w ∧ v)w

Put φ ∈ S3V with
φ = φ000x3

0 + φ111x3
1 + φ222x3

2 + 3φ001x2
0x1 + φ011x0x2

1 + 3φ002x2
0x2 +

3φ022x0x2
2 + 3φ112x2

1x2 + 3φ122x1x2
2 + 6φ012x0x1x2.

Then the matrix 9x9 of this map is given by:
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


0 0 0 φ002 φ012 φ022 −φ001 −φ011 −φ012

0 0 0 φ012 φ112 φ122 −φ011 −φ111 −φ112

0 0 0 φ022 φ112 φ222 −φ012 −φ112 −φ122

−φ002 −φ012 −φ022 0 0 0 φ000 φ001 φ002

−φ012 −φ112 −φ122 0 0 0 φ001 φ011 φ012

−φ022 −φ112 −φ222 0 0 0 φ001 φ011 φ022

φ001 φ011 φ012 −φ000 −φ001 −φ002 0 0 0
φ011 φ111 φ112 −φ001 −φ011 −φ012 0 0 0
φ012 φ112 φ122 −φ001 −φ011 −φ022 0 0 0




where this matrix 9x9 has the structure:



0 φ2 −φ1

−φ2 0 φ0

φ1 −φ0 0


 (9.7)

and φi, i = 0, 1, 2 denotes the Hessian of the derivative ∂φ
∂xi

.
All the principal Pfaffians of size 8 coincide, up to scalar factor, with the Aronhold
invariant(cfr. [33]).
This result is used to prove the theorem 10.8 that is the theorem about the rank
five of the reducible cubic given by an immaginary conic plus a line.
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Chapter 10

Rank and border rank of real ternary
forms

10.1 Rank of ternary cubics

Let f(x,y,z) a ternary cubic form in S3R3 where S3R3 is the subspace of symmetric
tensors of order 3 and dimension 3.
We compute the typical ranks of φ ∈ P(S3R3) with respect to cubic Veronese
surface ν3(P2).
In this case the generic typical rank is four (see for example [12]), but first we
recall some facts from the complex case.
For any φ ∈ S3C3 there is the contraction morphism that can be thought as

Aφ : Ad(C3)→ Ad(C3)

which is defined for φ = v3 as

Av3(M)(w) = (M(v) ∧ v ∧ w)v

where M ∈ End(C3) and then extended by linearity to a general φ.
Here Ad(C3) is the subspace of End(C3) with zero trace.

Theorem 10.1. [33] For every φ ∈ S3(V), let

Aφ : Ad(C3)→ Ad(C3)

be the SL(V)-invariant contraction operator. Then Aφ is skew-symmetric and the pfaffian
P f (Aφ) is the equation of σ3(ν3(P2), i.e. it is the Aronhold invariant.

For the proof of the theorem is useful a lemma ([33]):

99
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Lemma 1. [33] Let φ = v3 with v ∈ V, with dimV=3. Then rk(Aφ) = 2.
In particular

Im(Aφ) = {M ∈ AdV|ImM ⊂< v >}
Ker(Aφ) = {M ∈ AdV|v is an eigenvetor o f M}.

Proof. The statement follows by the equality:

Aφ(M)(v) = 6(M(w) ∧ w ∧ v)w.

�

For the proof of the theorem 10.1, considerφ belonging to the 3-secant variety
of the Veronese variety, that is the Zariski closure of the variety of polynomials
which are sum of the powers of three linear forms, so that

φ = φ1 + φ2 + φ3

Then, from the Lemma 1 it follows that

rkAφ ≤ rkA∑3
i=1
φi = rk

3∑

i=1

Aφi ≤
3∑

i=1

rkAφi = 2 × 3 = 6.

So the pfaffian of Aφ vanish on the 3-secant variety. So the Aronhold invariant
is the degree 4 equation of σ3(X), that is the SL(3) orbit of the Fermat cubic
x3 + y3 + z3.
The vanishing of Aronhold invariant gives necessary and sufficient condition to
write a ternary cubic form as sum of three cubes.

Corollary 10.2. If R(φ) ≤ r, then R(Aφ) ≤ 2r.

Proof. Let φn ∈ S3(R3) be a sequence such that R(φn = r) and such that

lim
n→+∞φn = φ.

We have
lim

n→+∞A(φn) = A(φ)

and with the same argument as above, we conclude that

rk(A(φ)) ≤ 2r.

�
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Remark L. Cremona in the nineteen century (cfr.[21]) gave a proof of the the-
orem that exist two orbits that may characterized by the sign of the discriminant
∆,

∆ = S3 − T2.

In fact if we write the cubic in the normal form

y2 = x3 − px + q

where
S = 3p,T =

27
2

q,∆ =
4
27

(4p3 − 27q2).

Then we have that for ∆ > 0 the cubic x3 − px + q has only one real root, while
for ∆ < 0 it has three real roots (called “casus irriducibilis” for the cubic).
Then the cubic with positive discriminant have “one connected component“
and the cubic with negative discriminant have “two connected components”.

10.2 Complex De Paolis algorithm

Definition 10.3. (cfr.[15])
Let Cn := an

x = 0 and Γm := um
α = 0 be the (symbolic) equations of two curves of

order n and class m respectively with m < n.
The curve Γm is apolar with respect to the curve Cn when its polar Pn−m is
indeterminate, that is when, in symbolic notation, am

α an−m
x = 0.

For example, if m = 1, we have n− 1 polar lines of a point with respect to the
Cn.
If Γm is apolar with respect to Cn, the coefficients of um

α must satisfy N(n−m) + 1
linear homogeneous equations with

N(n) =

(
n + 2

2

)
− 1 =

n(n + 3)
2

,

and this is possible if and only if

N(m) ≥ N(n −m) + 1

that is,

2m(n + 3) ≥ (n + 1)(n + 2).

If 2m(n + 3) ≥ (n + 1)(n + 2), there is a linear system ∞N(m)−N(m−n)−1 of Γm apolar
with respect to Cn.
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Let C3 a general cubic curve definite by a ternary form F ∈ S3K3, that is

F = a300x3+3a210x2y+3a201x2z+3a120xy2+6a111xyz+3a102xz2+a030y3+3a021y2z+3a012yz2+a003z3

Let us write F in the form:

F =
∑

i, j,k

(i, j, k)3hi jkxix jxk

where hi jk is symmetric in the i, j, k, and (i, j, k)3 takes the value 1 if all indices are
equal, 3 if two indices are equal and 6 if all indices are distinct.Then
the first polar Pa(F) is the polar conic

Pa(F) =
∑

hi jkaix jxk

the second polar is the linear form

Pa,b(F) =
∑

hi jkaib jxk

and the third polar is the trilinear symmetric form (total polarization)

Pa,b,c(F) =
∑

hi jkaib jck.

We have the following theorem that characterize the cubics that are cone.

Theorem 10.4. Let F a cubic plane curve such that its Hessian is the whole plane. Then
F is the union of three lines (non necessary all distinct), that is, F is a cone.F depends
essentially on only two variables.

This is also equivalent to the theorem:

Theorem 10.5. F is the union of three concurrent lines if and only if exist (c0, c1, c2) ,
(0, 0, 0) such that

c0
∂F
∂x

+ c1
∂F
∂y

+ c3
∂F
∂z

= 0

that is, (
c0
∂
∂x

+ c1
∂
∂y

+ c2
∂
∂z

)
(F) = 0

if and only if the 3 × 6 catalecticant matrix


a0 a1 a2 a3 a4 a5

a1 a2 a3 a4 a5 a6

a2 a3 a4 a5 a6 a7




has rank ≤ 2.[7]
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Let Q be a polar quadric of X = V( f ) with respect to a point a ∈ Pn.
The symmetric matrix relative to the relative quadratic form defining Q is the
Hessian matrix of second derivative of F evaluated at the point a:

He( f ) =
( ∂2 f
∂xi∂x j

)
i, j=0,···n, (10.1)

The hypersurface

He(X) = V(det He(F)), (10.2)

is the locus of the points a ∈ Pn such that the polar quadric Pad−2(X) is singular.
It is the Hessian hypersurface of X.

Proposition 10.6. (cfr. [17]) The hypersurface He(X) is the locus of singular points of
the first polar of X.

Proof. Let x ∈ He(X) and y ∈ Sing(Pad−2(X)). For the symmmetry of the differen-
tition we have:

Dy(Dxd−2( f ) = Dxd−2(Dy( f )) = 0. (10.3)

But degDy( f ) = d − 1, so

Tx(Py(X)) = Pn,

whereTx(X) is the embedded tangent space of a projective subvariety X ⊂ Pn at
the point x so the point x is a singular point of Py(X).
On the other hand, if x ∈ Sing(Py(X)) for y ∈ Pn, then Dxd−2(Dy( f )) = 0, hence
Dy(Dxd−2( f )) = 0, so the point y is a singular point of the polar quadric with
respect to x.Hence x ∈ He(X). �

Let’s return to De Paolis algorithm.
To construct a harmonic quadrilateral with respect to C, a general cubic defined
by F ∈ S3C3, it sufficient to take one of its lines, l0, and let P1,P2,P.3 the three
points in which the Hessian curve H intersect the line l0.
Let Q1,Q2,Q3 the singular corrispondent points of the conic PPiC.
Then the three lines will be li :=< Pi,P j >, i , j.
Sketch of the proof: assume that F =

∑3
i=0 l3

i and P1 = l0 ∩ l1, so the polar conic
PP1C has equation l2

2 + l2
3 = 0 and it is singular on the point Q1 = l2 ∩ l3, in

particular this point belongs to He(C).
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10.3 Real De Paolis algorithm

De Paolis’s algorithm is an usefull method to find a decomposition of a plane
cubic curve as a sum of at most 4 cubes when the first cube is given.
Let C3 a real cubic curve defined by a cubic polynomial F ∈ S3R3.
We know that a general line l0 in the real projective plane P2 meets the Hessian
curve in three distinct real point.
In fact we have the classic theorem:

Theorem 10.7. A nonsingular real cubic has exactly three real inflection points. These
points are collinear.

There are so defined three real lines li of the complex algorithm that are real,
such that

F =

3∑

i=0

l3
i

Proof: The singular point of a real singular conic is always real.
The algoritm is (see [4]):
INPUT F a irriducible real plane cubic
l0 a line such that l0 ∩He(F) consist of three distinct points.
The line l0 joining three real flexes for example.
COMPUTE l0 ∩He(F) = {P1,P2,P3}.
COMPUTE Qi the singular points of the polar conic PPi(F) for i=1,2.
COMPUTE l1 =< P1,Q2 >, l2 =< P2,Q1 >, l3 =< P3,Q1 >.
SOLVE the linear system F =

∑3
i=0 cil3

i .
OUTPUT lines l1, l2, l3 and numbers ci ∈ R, i=0,1,2,3, such that F =

∑3
i=0 cil3

i .
From this algorithm we deduce that for real plane cubics there is only one typical
rank which is 4.

10.4 Example

We apply De Paolis algorithm to the Hesse pencil :

Fλ = x3 + y3 + z3 + 6λxyz.

with the condition of non singularity 1 + 8λ2 , 0.
The Hessian of this pencil is again of this form, that is a curve of the pencil: we
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have the equation

H(Fλ) = x3 + y3 + z3 − 1 + 2λ2

λ2 xyz = 0

and we can choose three real collinear flexes as P1 = (0, 1,−1),P2 = (1, 0,−1),P3 =
(1,−1, 0).
This flexes belong to the line

l0 = x + y + z = 0.

Compute the equation of the polar conics PPi(Fλ) for i=1,2,3:

PP1(Fλ) = 3y2 + 6λxz − 3z2 − 6λxy = 0

PP2(Fλ) = 3x2 + 6λyz − 3z2 − 6λxy = 0

PP3(Fλ) = 3x2 + 6λyz − 3y2 − 6λxz = 0

so we get three singular points

Q1 = (1, 1, λ)

Q2 = (λ, 1, λ)

Q3 = (λ, λ, 1)

and the decomposition

Fλ = c0(x+y+z)3+c1((1+λ)x−λy−λz)3+c2(λx−(1+λ)y+λz)3+c3(−λx−λy+(1+λ)z)3.

Solving the linear system

Fλ =

3∑

i=0

cil3
i

we get the value of the coefficients ci.
We assume

c1 = c2 = c3.

Equating the coefficients of the terms containing x3 we get:

1 = c0 + c1(−λ3 + 3λ2 + 3λ + 1).

So we obtain a linear system in the unknown c0, c1

{
c0 + 3(λ + 1)λ2c1 = λ

c0 + (λ3 + 3λ2 + 3λ + 1)c1 = 1
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then the solution of this system give:

c0 =
λ(1 − λ3)

λ − 1)(−4λ2 − 4λ − 1

and
c1 =

1
(2λ + 1)2 .

For example, we apply De Paolis algorithm to decompose the plane cubic curve:

x3 + y3 + z3 + 12xyz = 0.

In this case we have λ = 2 and we get the decomposition

x3+y3+z3+12xyz =
14
25

(x+y+z)3+
1
25

(3x−2y−2z)3+(−2x+3y−2z)3+(−2x−2y+3z)3.

In the following we look for rank and border rank for all ternary real cubics.

10.5 Imaginary conic plus line

In this case the cubic is F = (x2 + y2 + z2)x and the Hessian is H(F) = (9x2 −
y2 − 3z2)(8x). The singular points of the polar conics are Q1 = (0, 1, 1) and
Q2 = (0, 1,−1) with respect to P1 = (0, 1,−1), P2 = (0,−1, 1),P3 = (0, 1, 1).
The polar conic are:

PP1(F) = 2xy − 2xz = 0

PP2(F) = −2xy + 2xz = 0

PP3(F) = 2xy + 2xz = 0

We can write

(x2 + y2 + z2)x = xz2 + x(x2 + y2) =
1
6

[
(z + x)3 − (z − x)3

]
− 1

3
x3 + ξ(x, y)

where ξ(x, y) = x(x2 + y2) and

rk(ξ(x, y)) = 2

because this binary cubic has one real root ([13]).
So

rk(F) = 4

and a decomposition of f is

F =
1
6

[
(z + x)3 − (z − x)3

]
+

1
2

[
1

3
√

2
(
√

2x − y)3 − 1

3
√

2
(−
√

2x − y)3

]
.
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10.6 Real conic plus secant line

In this case the cubic is F = (x2+y2−z2)y and the Hessian is H(F) = 8y(x2−3y2−z2).
The singular points P1 = (1, 0, 0),P2 = (0, 0, 1),P3 = (1, 0, 1) corrispond to the
points Q1 = (0, 0, 1),Q2 = (1, 0, 0), Q3 = (1, 0, 1) because the polar conics are

PP1(F) = 2xy = 0

PP2(F) = −2xz = 0

PP3(F) = 2y(x − z) = 0

that is
Fx − Fz = 2y(x − z)

With a substitution
x + z = x′ x − z = z′ y = y′

we have
(x′z′ + y′2)y′

and we have the decomposition

y(y2 + xz) =
1

96
((4y + x + z)3 + (4y − x − z)3 − 2(2y + x − z)3 − 2(2y − x + z)3)

so
rk(x2 + y2 − z2)y = 4.

10.7 Real conic plus external line

In this case the cubic is
F = (x2 + y2 − z2)z

and the Hessian of F is

H(F) = −8z(x2 + y2 + 3z2),

that is the Hessian cubic curve H(F) = 0 is a imaginary conic plus a line.
We can write

F = x2z + z(y2 − z2) = x2z + ϕ(y, z).

Now

x2z =
1
6

[
(x + z)3 − (x − z)3

]
− 1

3
z3
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so
x2z + z(y2 − z2) =

1
6

[
(x + z)3 − (x − z)3

]
− 4

3
z3 + zy2

and ϕ(y, z) = − 4
3z3 + zy2.

But ϕ(y, z) is a binary cubic form with three real roots because

zy2 − 4
3

z3 = z(y − 2√
3

z)(y +
2√
3

z)

and then
rk[ϕ(y, z)] = 3.

On the other hand
y2z =

1
6

[(y + z)3 − (y − z)3 − 2z3]

so
zy2 − 4

3
z3 =

1
6

[(y + z)3 − (y − z)3] − 1
3

z3 − 4
3

z3

that is
zy2 − 4

3
z3 =

1
6

(y + z)3 − 1
6

(y − z)3 − 5
3

z3

and finally

F =
1
6

[
(x + z)3 − (x − z)3

]
+

1
6

(y + z)3 − 1
6

(y − z)3 − 5
3

z3

so
rk(F) = 5.

We have to prove that the rank of the above cubic can not be 5.

Theorem 10.8. The rank of the reducible cubic given by a real conic plus an external
line is five,so

rk(x2 + y2 − z2)z = 5.

Proof. Let
F = (x2 + y2 − z2)z = l3

1 + l3
2 + l3

3 + l3
4

be a conic C = {x2 + y2 − z2 = 0} plus a line L = {z = 0} that is suppose

rk(x2 + y2 − z2)z = 4.

Let Q = l1 ∩ l2. Then, up to scalar multiples,

PQ(F) = l2
3 + l2

4
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which is necessarly singular.
Here PQ(F) is the polar conic of F with respect to Q. Then the point Q ∈ H(F) and
Q ∈ L, for the particular form of the Hessian, which is

H(F) = −8z(x2 + y2 + 3z2).

Moreover, for the same argument, all the intersections li ∩ l j ∈ L and there are
two possibilities: 1) the line L is one of the li with i = 1, 2, 3, 4 then

F − λL3

is a Fermat cubic curve for some λ
or
2) the four lines are concurrent in Q̃ ∈ L such that PQ̃(F) ≡ 0.
The second case is not possible because we would have that H(F) = 0.
The first case also is not possible because

S(F − λL3) = 0

is an equation of degree four in λ without real roots. Indeed, computing the
Pfaffian of size 8 of the matrix 9x9 given by 9.7, which coincide, up to scale, with
the classical Aronhold invariant, (see section 9.3) we get that the generator of
the ideal of Groebner basis depends only by d. �

10.8 Nodal cubic

Every plane cubic curve with a real node is projectively equivalent to the cubic

F = x3 + y3 − xyz = 0.

This is a famous cubic curve called “Folium of Decartes“.
It has a double point in (0, 0, 1) and there has a node with tangents x = 0 and
y = 0 In this case

Fx = 3x2 − 3yz

Fy = 3y2 − 3xz

Fz = −3xy

Let
αFx + βFy + γFz = 0
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be the equation of the polar conic with respect to the point (α, β, γ). This is a
reducible conic if

A =




3α −γ
2

−β
2−γ2 β −α2

−β2 −α2 0




We deduce that det A=0 if (α, β, γ) = (1,−1, 0). So the pencil is

3x2 − 3yz − 3y2 + 3xz

that factorize as
3
[
(x + y + z)(x − y)

]
.

So we can write

Fx − Fy = 3
[
(x + y + z)(x − y)

]
= 3

[1
4

(2x + z)2 − (2y + z)2
]

because of the identity

ab =
(a + b)2

4
− (a − b)2

4
So we have, integrating with respect to x and y,

F =
1
8

[
(2x + z)3 + (2y − z)3

]
+

(
f unction o f two variables

)
.

To find this function let us write the equality

x3 + y3− 3xyz =
1
8

[
(2x + z)3 + (2y + z)3

]
− z

[3
2

x2 +
3
4

xz +
1
4

z2 +
3
2

y2 +
3
4

yz + 3xy
]
.

The last addend can be written:

−z
4

[
6x2 + 3xz + z2 + 6y2 + 3yz + 12xy

]

or
3
2

x2z +
3
4

xz2 +
1
4

z3 +
3
2

y2z +
3
4

yz2 + 3xyz.

Let g be this cubic form; it depends on two essential variable, namely z and
h = x + y.
If we make the catalecticant of this cubic form, a matrix 3x6, applying a result
of E.Carlini(see [7]), we get

Cg =




0 0 3 0 3 3
4

0 0 3 0 3 3
4

3
2 3 3

2
3
2

3
2

3
4



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and this matrix has rank 2, so the cubic g depends on two essential variables.
We have

g(z, x + y) = g(z, h) = z
[
z2

4
+

3
4

zh +
3
2

h2

]

and the discriminant of the polynomial of degree 2 into the square parentesis

z2 + 3zh + 6h2

is
∆ = 9 − 6 · 4<0

so that this quadratic polynomial has rank 2 and the cubic nodal form has rank
4.
At the end,

g(z, h) = 2
[
1 − √5

4
z + h

]3

− 2
[
1 +
√

5
4

z − h
]3

and

x3+y3−xyz =
1
8

[
(2x + z)3 + (2y + z)3

]
+2

[
1 − √5

4
z + (x + y)

]3

−2
[
1 +
√

5
4

z − (x + y)
]3

.

SO
rk(F) = 4.

10.9 Cubic with a double complex point

Let
f = y2z − x3 + x2z

be the so called “parabola punctata” with a double point in the origin with two
complex tangent lines x2 + y2 = 0 = (x + iy)(x − iy) = 0.
We have

fx = −3x2 + 2xz

fy = 2yz

fz = x2 + y2.

If we consider
α fx + β fy + γ fz
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and we take the determinant A of this pencil of conics

A =



−3αγ 0 α

0 γ β
α β 0




we obtain

det A = −α2γ − β2γ + 3αβ2

so that a singular point of the Hessian is (0, 0, 1).
Now the pencil of conics reduce to

fx = x(2z − 3x) =
1
4

((−2x + 2z)2 − (4x − 2z)2)

so

f =
1
4

(
−1

2
(−2x + 2z)3

3

)
− 1

4

(
(4x − 2z)3

3

)
+ φ(y, z)

with
φ(y, z) = y2z +

1
6

z3 = z(y2 +
1
6

z2)

so that φ is a binary cubic with only one real root and for a result of [C.O.] has
rank 2. We have

φ(y, z) =
1
12

(√
2y + z

)3 − 1
12

(√
2y − z

)3

so

f =
1
4

(−1
2

(−2x + 2z)2

3
− 1

4
(4x − 2z)3

3
) +

1
12

(√
2y + z

)3 − 1
12

(√
2y − z

)3

and finally
rk(y2z − x3 + x2z) = 4.

10.10 Conic plus tangent line

Let’s see the case of the conic plus tangent line where the rank is 5.

(x2 + yz)(y − z) = x2(y − z) + yz(y − z)

We have
3y2z − 3yz2 = (z − y)3 + y3 − z3
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that is y2z − yz2 is a sum of three cubes. On the other hand

3x2(y − z) =
1
2

((x + y − z)3 − (x − y + z)3 − 2(y − z)3)

so

(x2+yz)(y−z) = x2(y−z)+yz(y−z) =
1
2

((x+y−z)3−(x−y+z)3−2(y−z)3)+
1
3

((z−y)3+y3−z3)

but
1
3

(z − y)3 − (y − z)3 = −4
3

(y − z)3

so the cubic is a sum of 5 cubes and we have the decomposition

(x2 + yz)(y − z) =
1
2
(
x + y − z

)3 − 1
2
(
x − y + z

)3 − 4
3
(
y − z

)3
+ y3 − z3.

10.11 Hesse pencil

Proposition 10.9. Let F be a non-singular plane cubic whose equation is not isomorphic
to the equation of a Fermat cubic curve x3+y3+z3 = 0.Then its Hessian is non-singular.

Proof. From the Hesse canonical form of F we have

F = x3 + y3 + z4 + 6λxyz.

The cubic is non-singular if and only if 8λ3 + 1 , 0. Computing the Hessian of F
we find

H(F) = (x3 + y3 + z3) − 1 + 2λ3

λ2 xyz = 0

which is always non-singular unless λ4 = λ because in this case the S invariant
is equal to 0. �

Now assume F is a cubic plane curve irriducible but singular.
If the curve is a nodal cubic curve computing the Hessian we find a nodal cubic
curve and if the curve is a cusp the Hessian is the union of a line l1 and a double
line l2

2.
The line l1 joins the cuspidal point with the unique non-singular inflexion point,
while the line l2 is the tangent in the cusp. The polar conic of the cuspidal cubic
with respect to the cusp is l2

2 and the polar conic with respect to the point of
intersection of the inflectional tangent with l2 is l2

1 ([5]).
Let C a curve of degree 3, we have that all the conics that are apolar with respect
to C and that are tangent to a generic line are tangent to other 3 so they form an
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harmonic quadrilateral.
On the other and, there aren’t harmonic trilater (triangle) with respect to a
general cubic.
In fact, if there were one such triangle each vertex with a generic point of the
opposit edge should be a couple apolar with respect to C, that is a couple of
points that are corresponding on the Hessian of C and this fact forces He(C) to
factor into three lines.
But this happens only when the invariant S (the Aronhold invariant) vanish and
this happen when the cubic C is equianharmonic.
So we can say that it does exist one harmonic trilater (and only one) with respect
to a cubic curve when the curve is equianharmonic;
in this case its hessian curve is formed by the three lines of the trilateral.
If so, each of its vertex with a point of the opposit side would be an apolar couple
with respect to the cubic then a couple of points on the Hessian curve of the
given cubic so this Hessian should be composed of the three sides of the trilater
so the condition is that the invariant S=0 and this happened when the cubic is
equianharmonic.

10.12 Classification of real plane cubics with respect
to rk and brk

The classification of the real cubics with respect to linear projective transforma-
tions is

1. the triple line x3 where the rank is 1

2. three concurrent lines x(x2 + y2),1 real + 2 coniugates,where rk = rk = 2

3. three real concurrent lines x(x2 − y2) , where rk = rk = 3

4. double line + line x2y where rk = 3 but rk = 2

5. the Fermat cubic x3 + y3 + z3 where rk = rk = 3

6. immaginary conic + line (x2 + y2 + z2)x where rk = rk = 4
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7. real conic + external line (x2 + y2 − z2)z where rk = 5 and rk = 4

8. real conic + secant line (x2 + y2 − z2)y where rk = rk = 4

9. real conic + tangent line (x2 + y2 − z2)(y − z) where rk = 5 and rk = 3

10. irriducible with 3 real roots y2z − x3 − xz2 where rk = rk = 4

11. irriducible with 1 real root y2z − x3 + xz2 where rk = rk = 4

12. cusp y2z − x3 where rk = 4 and rk = 3

13. nodal cubic y2z − x3 − x2 where rk = rk = 4

14. cubica punctata y2z − x3 + x2z where rk = rk = 4

15. triangle xyz where rk = rk = 4

Decomposition of real conic plus secant line:

y(x2 + y2 − z2) =
1

96

[
(4x + 2y)3 + (4y − 2x)3 − 2(2y − 2z)3 − 2(2y − 2z)3

]
.

Decomposition of cusp:

y2z − x3 =
1
6

[
(y + z)3 + (y − z)3 − 2z3

]
− x3

Decomposition of triangle:

xyz = − 1
24

[
(x − y + z)3 − (x + y + z)3 + (x + y − z)3 + (−x + y + z)3

]
.

We observe that if we start with a imaginary conic plus line

f = x(x2 + y2 + z2)
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the Hessian is,up to factor,

H( f ) = x(−3x2 + y2 + z2)

that is a real conic plus external line and if we take the Hessian of the Hessian

H(H( f ) = H(x(−3x2 + y2 + z2))

we obtain, up to factor,
x(9x2 + y2 + z2)

that is an imaginary conic +line.
This process is an involution and at the i-th step we have, up to a numerical factor,

H(H...H( f )) = ((−3)ix2 + y2 + z2)x.

This explain why the real conic plus external line is really a new case of rank 5
in the classification of real ternary cubics. In the following table there are the
values of the invariants S and T and the discriminant ∆ for each normal form.

Description normal form S T ∆ rk(9x9)
triple line x3 0 0 0 2
three concurrent line x(x2 + y2) 0 0 0 4
three concurrent line x(x2 − y2) 0 0 0 4
double line + line x2y 0 0 0 4
Fermat x3 + y3 + z3 0 ≥ 0 6
imaginary conic+ line (x2 + y2 + z2)x ≥ 0 ≥ 0 8
real conic + external line (x2 + y2 − z2)z ≥ 0 ≥ 0 8
real conic +secant line (x2 + y2 − z2)y ≥ 0 0 8
real conic +tangent line (x2 + y2 − z2)(y − z) ≥ 0 0 6
irriducible 2 connected comp. y2z − x3 + xz2 ≥ 0 ≥ 0 8
irriducible 1 connected comp. y2z − x3 − xz2 ≤ 0 ≤ 0 8
cusp y2z − x3 0 0 0 6
nodal cubic y2z − x3 − x2z ≥ 0 ≤ 0 0 8
cubica puntata y2z − x3 + x2z ≥ 0 ≥ 0 8
triangle xyz ≥ 0 ≤ 0 0 8

Table 10.1: Aronhold Invariants S,T and ∆ of cubic plane curves on R
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