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1. Introduction

1.1. Context and General background

The numerical solution of optimal control problems is a crucial issue for many industrial
applications such as aerospace engineering, chemical processing, power systems, and
resource economics. In some cases the original problem comes from a different setting,
e.g. when one has to fit a given set of data or has to solve a shape optimization problem
(see for instance [7]), but has been reformulated in terms of a control problems for an
appropriate dynamic and cost functional. The typical goal is to compute an optimal
trajectory for the controlled system and the optimal control corresponding to it. A
classical finite horizon optimal control problem can be described as follow:

inf
u∈U

Jx,t(u(·)) :=

∫ t

0
L(y(s), u(s), s)e−λs ds+ g(y(t))

subject to ẏ(s) = f(y(s), u(s), s), y(0) = x. (1.1)

Here, y is the state trajectory, x the initial condition, u denotes the control, U is the
control space and λ the discount factor. The pair (y, u) satisfy the system (1.1).
In the framework of open-loop controls the classical solution is a pair (y∗, u∗) where
u∗ minimizes the cost functional Jx,t(u(·)) and y∗ is the corresponding trajectory to
the optimal control. One way to obtain the optimal pair is based on the Pontryagin’s
Maximum Principle (see [78]) which leads to the solution of a two-point boundary value
problem for the coupled state/adjoint system. The numerical solution can be obtained
via a shooting method (see [73] for details). Despite its simplicity and mathematical ele-
gance, this approach is not always satisfactory because the initialization of the shooting
method can be a difficult task, mainly for the adjoint variables. Moreover, this approach
is typically based on necessary conditions for optimality and produces only open-loop
controls.
Another way to solve optimal control problems which involves open-loop controls is called
direct method. It consists in discretizing directly the optimal control problem, leading to
nonlinear optimization problem, which can be solved by various numerical algorithms as
shown in the book by Kelley [61] and by Gerdts [44].

An alternative way to solve optimal control problems was introduced by Bellman [18]
which leads to deal with the value function v(x, t) defined as the infimum of the cost
functional Jx,t(u(·)) :

v(x, t) := inf
u∈U

Jx,t(u(·)).

It is well known that the Bellman’s Dynamic Programming (DP) produces optimal con-
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trol in feedback form so it looks more appealing in terms of online implementations and
robustness. However, the synthesis of feedback controls requires the previous knowledge
of the value function and this is the major bottleneck for the application of DP. In fact
the value of optimal control problems are known to be only Lipschitz continuous even
when the data are regular and the characterization of the value function is obtained
in terms of a first order nonlinear Hamilton-Jacobi-Bellman (HJB) partial differential
equation:

−∂v(x, t)

∂t
− λv(x, t) + max

u∈U
{−f(x, u) ·Dv(x, t)− L(x, u, t)} = 0.

In the last thirty years, the DP approach has been pursued for all the classical control
problems in the framework of viscosity solution introduced by Crandall and Lions in the
80’s (see [15] for a comprehensive illustration of this approach). Viscosity solution allows
us to characterize the value function as the unique solution of HJB equation [16].
Due to the analitycal complexity of the solution of HJB, several approximation schemes
have been proposed for this class of equations, ranging from finite differences [30] to
semi-Lagrangian [27, 37, 39] and finite volume methods [62]. These algorithms compute
the solution on the iteration of the value space looking for a fixed point of the equation.
They converge to the value function but their convergence is slow (see [38] for error
estimates on Semi-Lagrangian schemes).
We must recall that algorithms based on the iteration in the space of controls (or poli-
cies) for the solution of HJB equations have a rather long history, starting more or
less at the same time of dynamic programming. The Policy Iteration (PI) method, also
known as Howard’s algorithm [57], has been investigated by Kalaba [59] and Pollatschek
and Avi-Itzhak [77] who proved that it corresponds to the Newton method applied to
the functional equation of dynamic programming. Later, Puterman and Brumelle [79]
have given sufficient conditions for the rate of convergence to be either superlinear or
quadratic. More recent contributions on the policy iteration method can be found in
Santos and Rust [90] and Bokanowski et al. [21]. Results on its numerical implementa-
tion and diverse hybrid algorithms related to the proposed scheme have been reported
in Capuzzo-Dolcetta and Falcone [26], González and Sagastizábal [48], and Grüne [50].

Finally, we should mention that an acceleration method based on the the set of sub-
solutions has been studied in Falcone [37]. More in general, dealing with domain de-
composition methods for Hamilton-Jacobi-Bellman equations, we should also mention
approaches based on domain decomposition algorithms as in Falcone et al. [42] and more
recently by Cacace et al. [24], on geometric considerations as in Botkin, et al. [23], and
those focusing on the localization of numerical schemes which leads to Fast Marching
Methods. This approach has shown to be very effective for level-set equations related to
front propagation problems (see e.g. the book by Sethian [92]), i.e. eikonal type equa-
tions. At every iteration, the scheme is applied only on a subset of nodes (localization)
which are the nodes close to the front, the so-called narrow band. The remaining part
of the grid is divided into two parts: the accepted region, where the solution has been
already computed, and the far region where the solution will be computed little by little
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in the following iterations. At every iteration, one node is accepted and moved from the
narrow band to the accepted region; the narrow band is then updated adding the first
neighbors of that node (which before where in the far region). For eikonal type equations
these methods converge in finite number of iterations to the correct viscosity solution
and have a very low complexity (typically O(N ln(N)) where N is the cardinality of the
grid). More recently several efforts have been made to extend these methods to more
complex problems where the front propagation is anisotropic [93] and/or to more general
Hamilton-Jacobi equations as in [11]. However, their implementation is rather delicate
and their convergence to the correct viscosity solution for general Hamilton-Jacobi equa-
tions is still an open problem; we refer to [25] for a an extensive discussion and several
examples of these limitations.
However, these methods suffer the so-called curse of the dimensionality, namely, the fact
that the dimension of the partial differential equation characterizing the value function
increases as the dimension of the state space does, constitutes a major computational
challenge towards a practical implementation of numerical algorithms for optimal control
design based on viscosity solutions of HJB equations.

In recent years, new tools have been developed to deal with optimal control problems
in high dimension (see for instance the book by Lions [71] or by Hinze et al. [54]). In
particular, new techniques emerged to reduce the number of dimensions in the description
of the dynamical system or, more in general, of the solution of the problem that one is
trying to optimize. These methods are generally called reduced-order methods and include
for example the Proper Orthogonal Decomposition (POD, see [56, 95, 100]) method, the
reduced basis approximation (see [76]) and Balance Truncation method ([12]). POD is
also known as Princial Component Analysis for data analysis (see [70]) or Karhunen-
Loeve transform in discrete signal processing (see [72]).
The general idea for all these methods is that, when the solutions are sufficiently regular,
one can represent them via Galerkin expansion so that the number of variables involved
in this discretization will be strongly reduced. In some particular cases, as for the heat
equation, even 5 basis functions will suffice to have a rather accurate POD representation
of the solution (see e.g. [1] and, more in general, [64]). Having this in mind, it is reasonable
to start thinking to follow a different approach based on DP and HJB equations. In this
new approach we will first develop a basis functions representation of the solution along
a reference trajectory and then use this basis to set-up a control problem in the new
space of coordinates. The corresponding HJB equation will just need 3-5 variables to
represent the state of the system. Moreover, by this method one can obtain optimal
control in feedback form looking at the gradient of the value function.
As far as we know, the first tentative to obtain feedback control with POD is due to
Atwell and King in [13] where they control heat equation with a quadratic cost functional.
This problem leads to an ordinary differential Riccati’s equation whose solution provides
the optimal control in feedback form. Then, we should mention that a first tentative to
couple POD and HJB equations was made by Kunisch and Xie in [68, 69] where the
dynamics was given by a diffusion dominated equations. They have presented a third
order TVD Runge Kutta scheme to approximate an evolutive HJB equation for the
control of viscous Burger equation solving the problem with 4 POD basis functions. The
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viscous term allows to keep the system parabolic and to work with a low number of
POD basis functions. Then, in the paper by Kunisch, Volkwein and Xie [67] one can
see this feedback control approach applied to the viscous Burgers equation with a semi-
lagrangian scheme for the infinite horizon problem. Since they implemented a parallel
code for HJB they were able to solve the problem up to 10 basis functions.

As we said, in many control problems it is desired to design a stabilizing feedback
control but often the closed-loop solution can not be found analytically, even for the
unconstrained case since it involves the solution of the corresponding HJB equations. One
approach to circumvent this problem is the repeated solution of an open-loop optimal
control problem for a given state. The first part of the resulting open-loop input signal is
implemented and the whole process is repeated. Control approaches using this strategy
are referred to as Model Predictive Control (MPC), Moving Horizon Control or Receding
Horizon Control (for more informations, the interested reader can see the books [52, 82]).
In general one distinguishes between linear and Nonlinear Model Predictive Control
(NMPC). Linear MPC refers to a family of MPC schems in which linear models are
used to predict the system dynamics and considers linear constraints on the states and
inputs. Note that even if the system is linear, the closed loop dynamics are nonlinear
due to the presence of the constraints. NMPC refers to MPC schemes that are based on
nonlinear models and/or consider a non quadratic cost-functional and general nonlinear
constraints. Although linear MPC has become an increasingly popular control technique
used in industry, in many applications linear models are not sufficient to describe the
process dynamics adquately and nonlinear models must be applied. This inadequacy of
linear models is one of the motivations for the increasing interest in nonlinear MPC
(please refer to [35, 9] for an introduction to NMPC).
The prediction horizon has a crucial role in Model Predictive Control, for instance the
Quasi Infinite horizon NMPC allows a efficient formulation of NMPC while guaranteeing
stability and the performances of the closed-loop as shown in [8, 36] under appropriate
assumptions.
Since the computational complexity of MPC schemes grows rapidly with the length of the
optimization horizon, esimates for minimal stabilizing horizons are of particular inter-
est to ensure stability. Stability and suboptimality analysis for NMPC schemes without
stabilizing constraints is presented in Chapter 6 of the book by Grüne and Panneck
([52]) where they proved conditions to get asymptotic stability with minimal horizon.
Note that the stabilization of the problem and the computation of the minimal horizon
involve the (Relaxed) Dynamic Programming Principle (see also [51, 75]). This approach
allows estimates of the horizon based on controllability properties of the system.
Since several optimization problems are performed in the context of MPC it is reasonable
to couple the problem with POD. As far as we know, the unique approach of coupling
MPC with POD is due to Ghiglieri and Ulbrich in [45].
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1.2. Contributions

Chapter 2 is an overview of several model reduction methods used in the solution
of optimal control problems with PDE constraints. We present in particular Proper
Orthogonal Decomposition (POD) which will turn out to be our key tool of this thesis.
Then, we briefly introduce Balance Truncation method and Reduced Basis approach
making a short comparison between the methods.

We illustrate a new accelerated algorithm which can produce an accurate approxi-
mation of the value function with a reduced CPU time compared to the classical DP
methods. The proposed scheme can be used in a large variety of problems connected to
static HJB equations, such as infinite horizon optimal control, minimum time control.
Our new method couples two techniques: the value iteration method (VI) and the policy
iteration method (PI) for the solution of Bellman equations. The first is known to be
slow but convergent for any initial guess, whereas the second is known to be fast when
it converges (but if not initialized correctly, convergence might be as slow as for the
value iteration). The approach that we consider relates to multigrid methods (we refer
to Santos [89] for a brief introduction to the subject in this context), as the coupling that
we introduce features an unidirectional, two-level mesh. However, as far as we know, the
efficient coupling between the two methods has not been investigated as we have done
here in Chapter 3.

The thesis deals also with the approximation of a finite horizon optimal control prob-
lem for an evolutive linear and nonlinear partial differential equation, e.g. the advection–
diffusion equation. Although the coupling between HJB and POD already exists in
([68, 67]), our contribution involves a new adaptive POD basis representation of the
solution applied to a Dynamic Programming scheme for the evolutive Hamilton-Jacobi
equation characterizing the value function.
Due to the curse of dimensionality, we need to restrict the dimension to a rather low
number of basis functions (typically 4 or 5) and this limitation naturally affects the
accuracy of the POD approximation. The difficulty clearly appears when dealing with
advection–diffusion problems where with few basis functions the POD method does
not have enough informations to follow correctly the solution. It is worth to note that
one could also adopt a strategy based on a-posteriori error estimators as in the linear
quadratic case presented by Tröltzsch and Volkwein [98] (see also the recent develop-
ments presented in [60]).
We circumvent this problem updating our POD basis functions during the evolution and
splitting the original problem into subproblems. Every sub-problem is set in an interval
Ik = [Tk, Tk+1] where we recompute the POD basis. Behind the adaptive method and
the choice of the Tk there are two important a-posteriori estimators: the first is related to
the computation of the POD basis functions whereas the second takes into account the
residual of the dynamics. The approach described in Chapter 4 is clearly different from
the more classical approach based on the solution of the system of necessary conditions
obtained by the Pontryagin maximum principle. The main advantage here is that we
naturally obtain optimal controls in feedback form but the price we pay is related to the
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well know curse of dimensionality of Dynamic Programming. Note that in this approach,
in every time interval we will first develop a POD representation of the solution along
a reference trajectory and then use this basis to set-up a control problem in the new
space of coordinates. Then, in the POD space the state of the system will just need 3-5
variables to be represented in a rather accurate way, these variables will appear in the
corresponding evolutive Hamilton-Jacobi equation.

Then, we present the analysis of the stability of NMPC algorithm without terminal
constraints applied to a semilinear parabolic equation with advection term. A minimal
finite horizon is determined to guarantee stabilization of the system. A similar approach
for the wave equation is presented in [10]. The main difference here we have added
an advection term in the state equation and control constraints which influences the
conditions for the stability of the problem.
Note that the computation of the minimal horizon involves a relaxed form of the dynamic
programming principle where we need to compute a parameter α. We give some condition
in order to obtain α.
Since the minimal horizon can be large, the numerical approximation is very expensive.
Our contribution is to apply POD model reduction to reduce the computational cost by
computing suboptimal solutions. Therefore, we have investigated the asymptotic stability
of the surrogate model giving conditions on the coefficient α in the POD model. New
conditions on the parameter are clearly influenced by the computation of the POD basis
functions. Thus, we provide a study of this influence of α subject to the number of
POD basis function chosen. Asymptotic stability for reduced order models is presented
in Chapter 5.

1.3. Organization

The Manuscript is divided into 6 chapters.

• Chapter 2 recalls Proper Orthogonal Decomposition in Section 2.1, Balance Trun-
cation method in Section 2.2 and finally the Reduce Basis approach in Section 2.3.

• Chapter 3 is organized as follows. In Section 3.1, we introduce some basic notions
for optimal control synthesis by the dynamic programming principle and its numer-
ical solution via a value and policy iteration schemes. Section 3.2 contains the core
of the proposed accelerated method and discuss practical implementation details.
In Section 3.3 we propose a theoretical estimate for our accelerated algorithm.
Finally, Section 3.4 shows our numerical results on a number of different exam-
ples concerning infinite horizon optimal control, minimum time control, and some
further extensions towards the optimal control of partial differential equations.

• Chapter 4 studies the possibility to solve optimal control problems of partial
differential equations by HJB equations. In order to work with HJB equation we
have to perform a model reduction method, e.g. POD and an adaptive-method to
be sure to have a very low dimensional model. The chapter is organized as follows.
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In Section 4.1 we will deal with optimal control problem by means of POD and
HJB equation. In Section 4.2 we will show an estimate of the approximation of the
value function with a POD surrogate model. In Section 4.3 we present the adaptive
POD method, and finally, in Section 4.4 the numerical tests.

• Chapter 5 focuses on the asysmptotic stability of an infinite horizon optimal
control problem via Model Predictive Control (MPC). The problem is formulated
in Section 5.1. Then we explain MPC algorithm and how to compute the prediction
horizon which ensures the stability of the method in Section 5.2. In Section 5.3 we
study the corresponding finite horizon problem and we apply POD model reduction
to the problem. Section 5.3.3 is devoted to the main results of the chapter: to carry
out conditions for asympotic stability of the reduced model. Finally we give several
numerical tests in Section 5.4

• Chapter 6 provides conclusions, future directions and perspectives.

Appendix A contains some well-known results on the convergence of the Newton’s
Method and recalls a result on the continuous dependence of the data of ordinary dif-
ferential equations.

1.3.1. Original material for this thesis.

Let us briefly mention the original contributions which are behind this thesis.
Chapter 3 is based on the submitted paper [4] to SIAM J. of Scientific Computing. The
accepted Proceeding [3] shortly summarizes the topic. The most recent paper [5], sub-
mitted to ENUMATH 2013, tests the algorithm for differential games.
Chapter 4 is based on the paper [1] published in K. Kunisch, K. Bredies, C. Clason,
G. von Winckel, (eds) Control and Optimization with PDE Constraints, and the IFAC
CPDE conference article [2] which has to appear.
Chapter 5 is based on the paper [6] submitted to Advances in Computational Mathe-
matics.



2. Overview of results for model reduction
methods

The aim of this chapter is to present an overview of some model reduction techniques
applied to dynamical or parametrized systems in order to reduce significantly the com-
plexity of the problem. In particular, we discuss the Proper Orthogonal Decomposition
(POD) which will turn out to be our key ingredient in this thesis.

2.1. Proper Orthogonal Decomposition

In this section we explain the Proper Orthogonal Decomposition method. More details
can be found, for instance, in the book by Holmes et al. [56] or in the lecture notes by
Volkwein [100].

2.1.1. Singular Values Decomposition

In this section we briefly recall the main notions about the Singular Value Decomposition
(SVD) of a matrix since it is strictly linked to the POD method as we will see in the
next section. We refer to [20, 47] for further details on SVD.

Definition 2.1 (Singular values and vectors) Let Y ∈ Rm×n be a matrix of rank
d ≤ n with m > n. Let Ψ := {ψi}mi=1 ⊂ Rm and V := {vi}ni=1 ⊂ Rn be the set of
orthonormal vectors such that:

Y vi = σiψi and Y Tψi = σivi for i = 1, . . . , d. (2.1)

Then, σ1, . . . , σd are called singular values, and the vectors ψ ∈ Ψ, v ∈ V are called: right
and left singular vectors respectively.

Theorem 2.1 (Existence of SVD) Let Y = [y1, . . . , yn] be a given matrix with real
value m × n of rank d ≤ min{m,n}. Then, there exists a singular value decompo-
sition of Y , with real numbers σ1 ≥ σ2 ≥ . . . ≥ σd > 0 and orthogonal matrices
Ψ = [ψ1, . . . , ψm] ∈ Rm×m and V = [v1, . . . , vn] ∈ Rn×n such that:

Y = ΨΣV T , Σ =

(
D 0
0 0

)
∈ Rm×n, (2.2)

where D is the diagonal matrix with singular values.
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The following Lemma provides a uniqueness result for SVD.

Lemma 2.1 For any matrix Y ∈ Rm×n the singular values are uniquely defined. The
singular vectors correspondent to the singular values greater than zero of multiplicity one
are unique up to a change of the sign.

Remark 2.1 SVD may be interpreted as a generalization of eigenvalues problem. If we
insert the first equation in (2.1) into the second and vice-versa, we see the right singular
vectors {ψi}di=1 are eigenvectors of Y Y T with eigenvalues λi = σ2

i and the left singular
vectors {vi}di=1 are eigenvectors of Y TY with eigenvalues λi = σ2

i , then the following
equalities hold:

Y Y Tψi = σ2
i ψi, and Y TY vi = σ2

i vi, for i = 1, . . . , d

and for i > d we have Y Y Tψi = 0 = Y TY vi.

Another important result for SVD is about the optimal approximation in the Frobenius
norm:

Theorem 2.2 Let Y ∈ Rm×n be a matrix of rank d ≤ n, with m ≥ n, Let Y = ΨΣV T

be the SVD with singular values σ1, . . . , σn. We define Y ` of rank `, such that σ`+1 =
σ`+2 = . . . = σn = 0.
Then, Y ` is the best approximation with respect to the Frobenius-norm of Y among the
matrices of rank `:

∣∣∣
∣∣∣Y − Y `

∣∣∣
∣∣∣
F

= min
rank(B)=`

||Y −B||F =

√√√√
(

d∑

i=`+1

σ2
i

)
.

This result holds even with the 2-norm, but Y ` is not uniquely determined.

A useful algorithm to compute the SVD was introduced by Golub and Kahan in the 60s
(see [47]).

2.1.2. Proper Orthongonal Decomposition for the uncontrolled dynamics

Let us consider a system of ordinary differential equations:





ẏ(t) = Ay(t) + f(t, y(t)), t ∈ (0, T ]

y(0) = y0,
(2.3)

where y0 ∈ Rm is a given initial data, A ∈ Rm×m a given matrix, f : [0, T ]× Rm → Rm
a continuous function in both arguments and locally Lipschitz-type with respect to the
second variable. It is well–known that under these assumptions there exists an unique
classical solution y ∈ C1(0;T ;Rm) ∩ C([0, T ];Rm) to (2.3). The solution is given by:

y(t) = etAy0 +

∫ t

0
e(t−s)Af(s, y(s)) ds.
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We build an equispaced grid on time ∆t. Let t0 := 0 < t1 < t2 < . . . < tn ≤ T with
tj = j∆t, j = 0, . . . , n. Let us suppose to know the exact solution of (2.3) on the time
grid points tj , j ∈ {1, . . . , n}. Our aim is to determine a POD basis of rank ` < n to
describe the set:

yj = y(tj) = etjAy0 +

∫ tj

0
e(tj−s)Af(s, y(s)) ds j ∈ {1, . . . , n},

solving the following minimization problem:

min
ψ1,...,ψ`∈Rm

n∑

j=1

αj

∥∥∥∥∥yj −
∑̀

i=1

〈yj , ψi〉ψi
∥∥∥∥∥

2

, (2.4)

where the coefficients αj are non-negative and yj are the so called snapshots, e.g. the
solution of (2.3) at a given time tj . At the end of this section we will give more details
about the αj . The norm, here and in the sequel of the chapter, can be interpreted as the
standard Euclidean norm.
Solving (2.4) we look for an orthonormal basis {ψ}`i=1 which minimizes the distance
between the sequence yj with respect to its projection onto this unknown basis. Moreover,
it is rather useful to look for ` � min{m,n} in order to reduce the dimension of the
problem considered.
The solution of (2.4) is given by the following theorem where it shows the influence of
the SVD in the POD method:

Theorem 2.3 Let Y = [y1, . . . , yn] ∈ Rm×n be a given snapshots matrix of rank d ≤
min{m,n}. Further, let Y = ΨΣV T be the Singular Value Decomposition of Y, where
Ψ = [ψ1, . . . , ψm] ∈ Rm×m, V = [v1, . . . , vn] ∈ Rn×n are orthogonal matrices, and the
matrix Σ ∈ Rm×n has the form given in (2.2). Then, for any ` ∈ {1, . . . , d} the solution

min
ψ1,...,ψ`∈Rm

n∑

j=1

αj

∥∥∥∥∥yj −
∑̀

i=1

〈yj , ψi〉ψi
∥∥∥∥∥

2

s.t. 〈ψi, ψk〉 = δik for 1 ≤ i, k ≤ ` (2.5)

is given by the right singular vectors {ψi}`i=1, that is, the first ` columns of Ψ.

Motivated by the previous theorem we give the following definition:

Definition 2.2 Assume that ` ∈ {1, . . . , d}, the vectors {ψi} for i = 1, . . . , ` are called
POD basis of rank `.

A practical way to obtain the POD basis functions of rank ` is to compute the eigenvalues
and eigenvectors, namely, if n < m the POD basis will be the eigenvectors v1, . . . , v` ∈ Rn
of the n× n

Y Y T vi = λivi for i = 1, . . . , `

and then setting

ψi =
1√
λi
Y vi. (2.6)
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If the dimension of the matrix is m < n, we can compute directly the POD basis, solving
m×m eigenvalues problem: Y Y Tψi = λiψi. However, it is well-known the computation
of the SVD of a matrix Y is more stable than the computation of the eigenvalues of
Y Y T as explained in [47] and the references therein. For this reason in this thesis, we
will always deal with the computation of singular values decomposition.
To concretely apply the POD method, the choice of the parameter ` has a crucial role.
There are no a priori estimates which guarantee to build a coherent reduced model, but
one can focus on heuristic considerations, introduced by Sirovich [95], as to have the
following ratio close to one:

E(`) =

∑̀
i=1

λi

d∑
i=1

λi

. (2.7)

This indicator is motivated by the fact that:

n∑

j=1

αj

∥∥∥∥∥yj −
∑̀

i=1

〈yj , ψi〉ψi
∥∥∥∥∥

2

=

d∑

i=`+1

σ2
i

which tells us the importance of the POD basis functions we neglect, although this error
is strictly related to the computation of the snapshots.

Let us discuss the non-negative weigths {αj}nj=1 in (2.4). For this purpose we introduce
a continuous version of the POD method. Let y : [0, T ]→ Rm be the unique solution of
(2.3). Since we are interesing in finding a POD basis of rank ` which describes all the
trajectories y(t), we look for the following continuous minimization problem:

min
ψ̂1,...,ψ̂`∈Rm

∫ T

0

∥∥∥∥∥y(t)−
∑̀

i=1

〈y(t), ψ̂i〉ψ̂i
∥∥∥∥∥

2

dt s.t. 〈ψ̂i, ψ̂j〉 = δij , 1 ≤ i, j ≤ `. (2.8)

Note that the following idea can be applied even in a discrete framework. We can solve
(2.8) working with the Lagrange multipliers. If ` = 1 we have the following problem:

min
ψ̂∈Rm

∫ T

0

∥∥∥y(t)− 〈y(t), ψ̂〉ψ̂
∥∥∥

2
dt s.t. ||ψ̂|| = 1, (2.9)

where we suppose that {ψ̂i}mi=2 are chosen such that {ψ̂, ψ̂2, . . . , ψ̂m} is an orthonormal
base Rm with respect to the standard inner product. Then it holds:

y(t) = 〈y(t), ψ̂〉ψ̂ +
m∑

i=2

〈y(t), ψ̂i〉ψ̂i ∀t ∈ [0, T ].
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Thus,

∫ T

0

∥∥∥y(t)− 〈y(t), ψ̂〉ψ̂
∥∥∥

2
dt =

∫ T

0

∥∥∥∥∥
m∑

i=2

〈y(t), ψ̂i〉ψ̂i
∥∥∥∥∥ dt =

m∑

i=2

∫ T

0
|〈y(t), ψ̂i〉| dt,

we conclude that (2.9) is equivalent to:

max
û∈Rm

∫ T

0
|〈y(t), ψ̂〉|2 dt s.t. ||ψ̂|| = 1. (2.10)

The Lagrangian functional: L : Rm × R→ R associated to (2.10) is given by

L(ψ, λ) =

∫ T

0
|〈y(t), ψ〉|2 dt+ λ(1− ||ψ||2) per (ψ, λ) ∈ Rm × R.

The first order optimality conditions are:

∇L(ψ, λ) := 0 in Rm × R.

We compute the partial derivative of L with respect to ψ:

∇ψL(ψ, λ) = 2

(∫ T

0
〈y(t), ψ〉y(t)− λψ

)
≡ 0 in Rm

which provides ∫ T

0
〈y(t), ψ〉y(t) dt = λψ in Rm. (2.11)

Therefore we define the following operator R : Rm → Rm as follow:

Rψ =

∫ T

0
〈y(t), ψ〉y(t) dt with ψ ∈ Rm (2.12)

Lemma 2.2 The operator R is linear and bounded. Furthermore,

1. R is non-negative:
〈Rψ,ψ〉 ≥ 0 ∀ψ ∈ Rm

2. R is self-adjoint (or symmetric):

〈Rψ, ψ̂〉 = 〈ψ,Rψ̂〉 for each ψ, ψ̂ ∈ Rm

Thanks to the operator R we can write (2.11) as the eigenvalue problem:

Rψ = λψ in Rm.
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It follows from Lemma 2.2 that the eigenvectors {ψi}mi=1 of R with associated eigenvalues
{λi}mi=1 hold for:

Rψi = λiψi per 1 ≤ i ≤ m, λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0. (2.13)

We remark that

∫ T

0
|〈y(t), ψi〉|2 dt =

∫ T

0
〈〈y(t), ψi〉y(t), ψi〉 dt = 〈Rψi, ψi〉 = λi||ψi||2 = λi

for i ∈ {1, . . . ,m} such that ψ1 solves (2.9). The continuous version of Theorem 2.3 is
given by the following theorem:

Theorem 2.4 Let y ∈ C([0, T ];Rm) be the unique solution of (2.3). Then, the POD
basis of rank `, computed solving (2.8), is given by the eigenvectors {ψi}`i=1 of R corre-
sponding to the greater eigenvalues λ1 ≥ . . . ≥ λ`.

Let us introduce the linear and bounded operator Y : L2(0, T )→ Rm:

Yv =

∫ T

0
v(t)y(t) dt v ∈ L2(0, T ).

The adjoint operator Y∗ : Rm → L2(0, T ) such that:

〈Y∗ψ, v〉L2(0,T ) = 〈ψ,Yv〉 ∀(ψ, v) ∈ Rm × L2(0, T ),

is defined as follows

(Y∗ψ)(t) = 〈ψ, y(t)〉 u ∈ Rm; almost every t ∈ [0, T ].

Thus,

YY∗ψ =

∫ T

0
〈ψ, y(t)〉y(t) dt =

∫ T

0
〈y(t), u〉y(t) dt = Ru

for every ψ ∈ Rm, moreover YY∗ = R. On the other hand the operator

Kv(t) := (Y∗Yv) (t) =

〈∫ T

0
v(s)y(s) ds, y(t)

〉
=

∫ T

0
〈y(s), y(t)〉v(s) ds,

for every v ∈ L2(0, T ) and almost every t ∈ [0, T ]. Then, K = Y∗Y. One may prove that
K is linear, bounded, non-negative and self-adjoint and compact (see [100]). As in the
discrete case, the POD basis functions may be computed solving:

Kvi = λivi for i ≤ i ≤ `, λ1 ≥ . . . ≥ λ` ≥ 0,

∫ T

0
vi(t)vj(t) dt = δij
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and setting as in (2.6)

ψi =
1√
λi
Yvi =

1√
λi

∫ T

0
vi(t)y(t) dt i = 1, . . . , `.

Let us go back to the discrete version, we can define the discrete version of R :

Y DY Tψ =
n∑

j=1

αj〈yj , ψ〉yj := Rnψ,

where D is the diagonal matrix with αj .
Note that the operator Rn : Rm → Rm is linear and bounded. Moreover,

〈Rnψ,ψ〉 =

〈
n∑

j=1

αj〈yj , ψ〈yj , ψ
〉

=

n∑

j=1

αj |〈yj , ψ〉|2 ≥ 0,

which ensures the non-negativity of Rn. Finally,

〈Rnψ, ψ̂〉 =

〈
n∑

j=1

αj〈yj , ψ〉yj , ψ̂
〉

=

n∑

j=1

αj〈yj , u〉〈yj , ψ̂〉

=

〈
n∑

j=1

αj〈yj , ûyj〉, ψ
〉

= 〈Rnψ̂, ψ〉 = 〈ψ,Rnψ̂〉,

for every ψ, ψ̂ ∈ Rm, Rn is self-adjoint. Therefore, Rn has the same properties of R. To
summarize we have:

Rnψni = λni ψ
n
i λn1 ≥ . . . ≥ λn` ≥ . . . λnd(n) > λnd(n)+1 = . . . = λnm = 0, (2.14)

Rψi = λiψi λ1 ≥ . . . ≥ λ` ≥ . . . λd > λd+1 = . . . = λm = 0. (2.15)

where d(n) is the rank of the discrete problem, therefore we observe that

∫ T

0
||y(t)||2 dt =

d∑

i=1

λi =
m∑

i=1

λi. (2.16)

Indeed,

Rψi =

∫ T

0
〈y(t), ψi〉y(t) dt ∀i ∈ {1, . . . ,m}.

If we consider the inner product with ψi, the vector has unitary norm and summing over
i we achieve the following:

d∑

i=1

∫ T

0
|〈y(t), ψi〉|2 dt =

d∑

i=1

〈Rψi, ψi〉 =
d∑

i=1

λi =
m∑

i=1

λi.
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If we write y(t) ∈ Rm in terms of {ψi}mi=1 we will have

y(t) =

m∑

i=1

〈y(t), ψi〉ψi,

hence we get again (2.16):

∫ T

0
||y(t)||2 dt =

m∑

i=1

∫ T

0
|〈y(t), ψi〉|2 dt =

m∑

i=1

λi.

In the same way, we have

n∑

j=1

αj ||y(tj)||2 =

d(n)∑

i=1

λni ∀n ∈ N. (2.17)

Let y ∈ C([0, T ];Rm), to ensure convergence:

n∑

j=1

αj ||y(tj)||2 →
∫ T

0
||y(t)||2 dt when ∆t→ 0 (2.18)

we must properly chose the parameters αj . For instance, we can take the trapezoidal
rule:

α1 =
∆t

2
, αj = ∆t per 2 ≤ j ≤ n− 1, αn =

∆t

2
. (2.19)

Then, the following convergence theorem holds:

Theorem 2.5 Let us assume that y ∈ C1([0, T ];Rm) is the unique solution of (2.3).
Let {(ψni , λni )}mi=1 and {(ψi, λi)}mi=1 be the eigenvalues-eigenfunction of (2.14) e (2.15).
Suppose that ` ∈ {1, . . . ,m} is given such that

lim
n→+∞

m∑

i=1

λni =
m∑

i=1

λi. (2.20)

and
m∑

i=`+1

λi 6= 0,
m∑

i=`+1

|〈y0, ψi〉|2 6= 0.

Then,
lim

n→+∞
||Rn −R||L(Rm) = 0. (2.21)

This implies:

lim
n→+∞

|λni − λi| = lim
n→+∞

||ψni − ψi|| = 0, for 1 ≤ i ≤ `,
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lim
n→+∞

m∑

i=`+1

(λni − λi) = 0 and lim
n→+∞

m∑

i=`+1

|〈y0, ψ
n
i 〉|2 =

m∑

i=`+1

|〈y0, ψi〉|2.

It is interesting to observe that the coefficients αj are determined in order to approximate,
for instance with a trapezoidal rule, the integral (2.18).

2.1.3. Reduced Order Modelling via POD

In the previous section, we have introduced the computation in Rm of the POD basis
functions of rank ` and discussed some applications to problems with initial conditions.
Once the POD basis is computed, one may obtain a reduced order model for the problem
(2.3). The focus of this section is to introduce this important application.
Assume that we know the POD basis functions {ψj}`j=1 of rank ` ∈ {1, . . . ,m} in Rm,
we make the following ansatz:

y`(t) =
∑̀

j=1

y`j(t)ψj =
∑̀

j=1

〈y`(t), ψj〉ψj , ∀t ∈ [0, T ] (2.22)

where the Fourier coefficients y`j(t), 1 ≤ j ≤ ` are functions from [0, T ] to R.
Since

y(t) =

m∑

j=1

〈y(t), ψj〉ψj ∀t ∈ [0, T ],

y`(t) will turn out to be an approximation for y(t) with ` < m. Inserting (2.22) in (2.3)
we have: 




∑̀
j=1

ẏ`j(t)ψj =
∑̀
j=1

yj(t)Aψj + f(t, y`(t)), t ∈ (0, T ]

∑̀
j=1

y`j(0)ψj = y0.

(2.23)

Note that now (2.23) is a problem in Rm for the coefficients y`j(t), 1 ≤ j ≤ ` and
t ∈ [0, T ]. Moreover, we assume that (2.23) holds after the projection into the subspace
of dimension ` :

V ` = span{ψ1, . . . , ψ`}. (2.24)

From the first equation in (2.23) and 〈ψi, ψj〉 = δij we deduce that

ẏ`i (t) =
∑̀

j=1

y`j(t)〈Aψj , ψi〉+ 〈f(t, y`(t)), ψi〉 (2.25)

for 1 ≤ i ≤ ` and t ∈ (0, T ]. Let us introduce compact notations for (2.25): the matrix

A` = (a`ij) ∈ R`×` con a`ij = 〈Aψi, ψj〉, (2.26)
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the vectors:

y` =




y`1
...
y``


 : [0, T ]→ R` (2.27)

and the non-linear function F = (F1, . . . , F`)
T : [0, T ]× R` → R`:

Fi(t, y) :=

〈
f


t,

∑̀

j=1

yjψj


 , ψi

〉
for t ∈ [0, T ] y = (y1, . . . y`) ∈ R`. (2.28)

Then, (2.25) may be written as:





ẏ`(t) = A`y`(t) + F (t, y`(t))

y`(0) = y`0

(2.29)

where

y`0 =



〈y0, ψ1〉

...
〈y0, ψ`〉


 ∈ R`. (2.30)

The system (2.29) is approximating following a Galerkin projection where the basis
functions are computed by the POD method for (2.3). If the dimension of the system is
`� m we get an impressive reduction.

2.1.4. Discrete Empirical Interpolation Method

The Reduced Model introduced in (2.29) is a nonlinear system where the problem with
the POD–Galerkin approach is the complexity of the evaluation of the non-linearity. To
illustrate this problem we have a look at the non-linearity F (t, y`) in (2.28). Setting
Ψ` = [Ψ1, . . . ,Ψ`] ∈ Rm×` we can write

F (t, y`(t)) = ΨT f(t,Ψy`(t)) = 〈f(t, y(t)),Ψ〉.

This can be interpreted in the way that the variable y`(t) ∈ R` is first expanded to a
vector Ψy`(t) ∈ Rm then the non-linearity f(t,Ψy`(t)) is evaluated and, at the end, we
go back to the reduced-order model. This is computationally expensive since it implies
the evaluation of the nonlinear term in the full dimensional model and therefore the
reduced model is not independent of the full dimension m.
To avoid this computationally expensive evaluation the Discrete Empirical Interpolation
Method (DEIM) was introduced. It is based on a POD approach combined with a greedy
algorithm (see [29] for more details on DEIM and Section 2.3.2 for the presentation of
the Greedy method). We define

b(t) = f(t,Ψy`(t)) ∈ Rm for t ∈ [0, T ].
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The function b(t) is approximated by a Galerkin ansatz utilizing P linearly independent
functions Φ1, . . . ,ΦP ∈ Rm, i.e.

b(t) ≈
P∑

k=1

Φkck(t) = Φc(t) (2.31)

with c(t) = [c1(t), . . . , cP(t)]T ∈ RP and Φ = [Φ1, . . . ,ΦP ] ∈ Rm×P . Hence we can write
the approximation of F (t, ·) as

F (t, y`(t)) = ΨT f(t,Ψy`(t)) = ΨT b(t) ≈ ΨTΦc(t).

The question which arises is how to compute the matrix Φ and the vector c(t). Let
I ∈ RP , be an index vector and B ∈ Rm×P be a given matrix. Then by BI we denote
the submatrix consisting of the rows of B corresponding to the indices in I.
Let us assume we have computed Φ and I by an algorithm, then we proceed as follows.
For simplicity we introduce here the matrix P = (eI1 , . . . , eIP ) ∈ Rm×P , where eIi =
(0, . . . , 0, 1, 0, . . . , 0)T ∈ Rm is a vector with all zeros and at the Ii−th row a one. Note
that ΦI = P TΦ holds. To evaluate the approximated non-linearity we need c(t). Since
we know Φ and the index vector I we can compute

c(t) = (P TΦ)−1P T b(t) = (P TΦ)−1P T f(t,Ψy`(t)) for t ∈ [0, T ].

Suppose that the matrix P can be moved into the non-linearity. Then we obtain

P T f(t,Ψy`(t)) = (f(t,Ψy`(t)))I = f(t, P TΨy`(t)).

Let us now have a look at the computational expenses. The matrices

P TΨ ∈ RP×`, (P TΦ)−1 ∈ RP×P and ΨTΦ ∈ R`×P

can be precomputed. All the precomputed quantities are independent from the full di-
mension m. Additionally, during the iterations the nonlinearity has only to be evaluated
at the P interpolation points since P TΨy`(t) ∈ RP . Typically the dimension P is much
smaller than the full dimension. This allows the reduced-order model to be completely
independent of the full dimension.
The DEIM algorithm generates the basis using the POD approach which is applied to
the snapshots of the nonlinearity b(t) = f(t, y(t)) to compute Φ. The selection of the
interpolation points I is based on a greedy algorithm. The idea is to select spatial points
to limit the growth of an error bound which is the residual. The indices are constructed
inductively from the input data (see Algorithm 1). We have to mention that DEIM
is built upon the Empirical Interpolation Method which aims to deal with nonlinear
terms in reduced model (see [17]). The two methods are the same, DEIM is the tensorial
matricial version of EIM.
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Algorithm 1: The discrete empirical interpolation method (DEIM)

Data: P and matrix F = [f(t1, y(t1), . . . , f(tn, y(tn))] ∈ Rm×n;

1. Compute POD basis Φ = [Φ1, . . . ,ΦP ] for F.
2. idx← arg maxj=1,...,m |(Φ1)j |;
3. U = [Φ1] and ~i
4. for i = 2 to P do

5. u← Φi;
6. Solve U~i = idx;
7. r ← u− Uc;
8. idx← arg maxj=1,...,m |(r){j})|;
9. U ← [U, u] and ~i← [~i, idx];

end

10. return Φ and ~i.

2.2. Balance Truncation

Another important tool, among model reduction methods, is the so-called Balance Trun-
cation which helps to reduce the complexity of linear time-invariant system. Please refer
to [12, 46] for an extensive presentation of the method and to [31] for infinite dimensional
linear systems.
Let us consider the following linear time-invariant (LTI) system:

{
ẋ(t) = Ax(t) +Bu(t), x(0) = x0 for t ∈ (0,+∞)
y(t) = Cx(t)

(2.32)

where x(t) ∈ Rn is called the system state, x0 ∈ Rn is the initial condition of the system,
u(t) ∈ Rm is said to be the system input, or control in the sequel, and y(t) ∈ Rq is called
the system output. The matrices A,B,C are assumed to have appropriate sizes.
Let us define observability and controllability for a linear time-invariant system. Then,
we provide conditions to determine if the system (2.32) is controllable and observable
(please refer to [31, 101]).

Definition 2.3 The system (2.32), or the pair (A,B), is called controllable if for any
x0 ∈ Rn and final state xT ∈ Rn, there exists an input u(t) such that the solution of
(2.32) satisfies x(T ) = xT .

Let us define the controllability Gramian Wc(t) and the observability Gramian W◦(t) :

Wc(t) =

∫ t

0
esABBT esA

T
ds W◦(t) =

∫ t

0
esACTCesA

T
ds.

Controllability can be verified as explained in the following theorem.

Theorem 2.6 The following statements are equivalent:
1. The system (2.32) is controllable;
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2. The controllability Gramian Wc(t) is positive definite for every t > 0 :
3. The controllability matrix C has full rank:

C = [BABA2B . . . Am−1B] ∈ Rn×nm

Definition 2.4 The uncontrolled system, e.g. u ≡ 0, is called stable, if the real part of
the eigenvalues of A are negative. A matrix with this property is said to be stable.

Definition 2.5 The system is stabilizable if there exists a state-feedback u(t) = −Kx(t)
such that the matrix A−BK is stable.

Theorem 2.7 The system (2.32) is stabilizable if and only if the matrix [A − λI B] ∈
Rn×(n+m) has full row rank for all λ ∈ C with a negative real part.

Definition 2.6 The system (2.32), or the pair (A,C), is called observable if for any
t1 ∈ (0, T ], the initial condition x0 ∈ Rn can be determined from the time history of the
input u(t) and the output y(t) in the interval [0, t1] ⊂ [0, T ].

Now, we give some conditions to check the observability of the system.

Theorem 2.8 The following statements are equivalent:
1. The system is observable;
2. The observability gramian W◦(t) is positive definite for every t > 0;
3. The observability matrix O has full rank.

O = [C CACA2 . . . CAm−1] ∈ Rnq×n

We set for infinite horizon problem:

W◦ :=

∫ ∞

0
esA

T
CTCesA ds and Wc :=

∫ ∞

0
esABBT esA

T
ds

It is proved that Wc and W◦ can be determined numerically by solving the algebraic
Lyapunov equations:

AWc +WcA
T +BBT = 0 (2.33)

ATW◦ +W◦A+ CTC = 0 (2.34)

The matrix WcWo has nonegative eigenvalues, and the square roots of these eigen-
values define the Hankel singular values of system (2.32). The Hankel singular values
characterize the importance of the state variables. States of the balanced system corre-
sponding to the small Hankel singular values can be neglected. Thus, the general idea of
balance truncation method is to transform the system (2.32) into a balanced form and to
truncate the states that correspond to the small Hankel singular values. In practice, bal-
ancing and truncation can be combined by projecting system (2.32) onto the dominant
subspaces of the matrix WcWo.
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Instead of (2.32) we only consider the system for the first ` ∈ {1, . . . , n} components
of z : {

ż`(t) = A`z`(t) +B`u(t), z`(0) = z`0 for t ∈ (0,+∞)
y`(t) = C`z`(t)

(2.35)

as explained in Algorithm 2 One disadvantage of this method is that Lyapunov equa-

Algorithm 2: Balance Truncation method (BT).

Require: A,B,C,Wc,Wo.
1: Compute the Cholesky factorizazion of the Gramians Wc = LcL

T
c and Wo = LoL

T
o .

2: Compute Hankel Singular values by SVD:

LTc Lo = (U1, U2)

(
Σ1 0
0 Σ2

)
(V1, V2)T ,

where Σ1 = diag(σ1, . . . , σ`).
3: Compute the reduce system (2.35) with

A` =WTAT , B` =WTB, C` = CT ,

where W = LoV1Σ
−1/2
1 , T = LcU1Σ

−1/2
1 .

tions, such as (2.33) and (2.34), have to be solved. These matrices equations have to be
thought in Rn×n. However, recent results on low rank approximations to the solutions of
matrix equation (see [19] and the reference therein) make the balanced truncation model
reduction approach attractive for large-scale problems. On the other hand, it is known
that balance truncation preserve the structure and the properties of the full dimensional
system (see [84]). This very interesting property does not hold in the POD method.
One big advantage of balanced truncation is that a-priori error bounds are known thanks
to the Hankel singular values. Unfortunately, we do not have a-priori error bounds
working with POD since the method is strictly related to the information we have
from the system, e.g. snapshots. These bounds are formulated for the transfer func-
tion G(s) := C(sI − A)−1B ∈ Rq×m of the system (2.32) and the reduced transfer
function G`(s) := C`(sI −A`)−1B` ∈ Rq×m, of (2.35). Then we have

‖G−G`‖H∞ := max
{
‖(G−G`)u‖L2(0,∞;Rq) : ‖u‖L2(0,∞;Rm) = 1

}
> σ`+1.

and

‖G−G`‖ < 2
n∑

i=`+1

σi.

Thanks to this error bounds we know a-priori the error we get in balance truncation, on
the other hand this reduction method is rather restrictive to the class of problem which
solves (2.32).
Finally one can see a comparison result between POD and BT methods in Section 4.4.3.
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We solved an optimal control problem for heat equation with a quadratic cost functional
(see Figure 4.4).

2.3. Reduced Basis Method for Parametrized Problems

Reduced Basis (RB) method is another important tool in the class of model reduction
techiniques. The Reduced Basis approach computes efficiently numerical solutions for
parametrized problems where it is desired to solve the same problem with different
parameter configurations. This method is built upon a classical discretization method.
The interested reader can find in [76] and the references therein more informations. In
this section we keep the standard notations of RB theory, e.g. N is the dimension of the
discrete model, and N is the dimension of the reduced problem.

2.3.1. Reduced Basis Method

In order to introduce the method we deal with an elliptic equation with arbitrary bound-
ary conditions, considering D ⊂ Rp, p ≥ 1 as the parameter space and Ω ∈ Rd as a
domain. The functional space Xe is such that H1

0 (Ω) ⊂ Xe ⊂ H1(Ω), with H1(Ω) the
Sobolev Space (please refer to [34] for more details on partial differential equations)
defined as:

H1(Ω) :=
{
f ∈ L2(Ω) : Dαf ∈ L2(Ω), α ≤ 1

}

where f is a measurable function, Dαf denotes the weak αth− partial derivative of f,
and

L2(Ω) :=

{
f : Ω→ R,

∫

Ω
f(x)2 dx <∞

}
, H1

0 (Ω) :=
{
f ∈ H1(Ω) : f ≡ 0 a.e. on ∂Ω

}
.

We introduce ∀µ ∈ D a bilinear and coercive for a(·, ·;µ) and a linear and continuous
functional f(·). Then, we consider the following model problem:

{
For µ ∈ D find ue ∈ Xe s.t
a(ue, v;µ) = f(v), ∀v ∈ Xe.

(2.36)

The crucial hypothesis is that the bilinear form a can be expressed with an affine linear
decomposition:

a(w, v;µ) =

Q∑

q=1

Θq(µ)aq(w, v) (2.37)

such that for Θq : R → R for q = 1, . . . , Q is depending on µ and aq : Xe ×Xe → R is
parameter independent. This hypothesis on a(·, ·;µ) allows us to improve the computa-
tional efficiency in the evaluation of a(u, v;µ): the components aq(u, v) can be computed
once and then stored in the so called offline stage of the method. In other words we
assume that the problem is affinely dependent on the parameter µ.
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We introduce an high dimensional classic discretization in our model problem such that
the space XN ⊂ Xe and the problem is reformulated as

{
For µ ∈ D find uN ∈ XN s.t.
a(uN , v;µ) = f(v), ∀v ∈ XN . (2.38)

We introduce a sample set of parameters SN = {µ1, . . . , µN} ⊂ D to which we associate
the reduced basis space, defined as WNN = span{uN (µn), 1 ≤ n ≤ N}.
To have a system from (2.38) which is computationally stable we can use a Gram-
Schmidt orthonormalization (see [47]) procedure for the snapshots uN (µn), 1 ≤ n ≤ N,
with respect to the scalar product 〈·, ·〉X to obtain ψNn as basis functions, so that

XNN = span{ψNn s.t. 1 ≤ n ≤ N}. (2.39)

Consider that the orthonormalization keeps the linear independence of the basis in fact:

span{uNn s.t. 1 ≤ n ≤ N} = span{ψNn s.t. 1 ≤ n ≤ N}.

Note that usually one chooses N � N in order to reduce the complexity of the problem.
As in the POD case (2.24), the reduced space is generated by orthogonal basis functions.
The selection of the parameters is typically performed by the Greedy’s algorithm (see
[86] and more recently [58]).
By a Galerkin projection we can solve the reduced basis problem defined as

{
For µ ∈ D find uNN ∈ XNN s.t.
a(uNN , v;µ) = f(v) ∀v ∈ XNN

(2.40)

Similar to (2.22), we can rewrite uNN as

uNN =

N∑

m=1

uNNm
ψNm . (2.41)

where ψNm is the reduced basis.
Posing v = ψNn , 1 ≤ n ≤ N in (2.38) we get for every µ ∈ D the numerical linear system:

N∑

m=1

a(ψNm , ψ
N
n ;µ)uNNm

(µ) = f(ψNn ) 1 ≤ n ≤ N (2.42)

which by (2.37) can be written as

N∑

m=1




Q∑

q=1

Θq(µ)a(ψNm , ψ
N
n )


uNNm

(µ) = f(ψNn ) 1 ≤ n ≤ N. (2.43)

Here the basis ψN are independent by the parameter µ therefore the quantities f(ψNn ), 1 ≤
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n ≤ N and aq(ψNm , ψ
N
n ), 1 ≤ n ≤ N, 1 ≤ q ≤ Q can be precomputed and stored to decou-

ple the offline computational part from the online one which depends on the parameters.
We note the dimension of the system is very small and the online computation for finding
every solution of the problem is inexpensive.

2.3.2. Error bound for RB Method.

The main ingredient of the RB method is the error bound which allows either to select
efficiently the parameter set either to give a prediction of the accuracy of the method.
The error bound takes advantage from the online/ offline stage since it is fast and reliable.
We introduce the a posteriori error bounds. We reconsider the high dimensional discrete
problem (2.38) and the Galerkin projection to get the reduced problem (2.40). We define
e(µ) ≡ uN (µ)− uNN (µ) ∈ XN . Thanks to the linearity of a(·, ·;µ) we have

a(e(µ), v;µ) = a(uN (µ), v;µ)− a(uNN (µ), v;µ)

= f(v)− a(uNN (µ), v;µ) ∀v ∈ XN .

We denote
r(v;µ) := f(v)− a(uNN (µ), v;µ), (2.44)

to get the equation of the residual

a(e(µ), v;µ) = r(v;µ).

Here r(v;µ) ∈ XN ′ , and thanks to Riesz representation theorem we can write r(v;µ) as

r(v;µ) = 〈ê(µ), v)X ∀v ∈ XN ,

in fact we have ‖r(·;µ)‖(XN )′ ≡ r(v;µ)
‖v‖X = ‖ê(µ)‖X . By the coercivity of the bilinear form

a(u, v;µ) we define the following error bound:

∆N (µ) =
‖ê(µ)‖√
αNLB(µ)

where αNLB is the coercivity lower bound of the bilinear form and may be computed with
a Successive Constraint Method (SCM) algorithm (see [76, 74])).
In order to build the space WNN we start considering S1 = {µ1}. Then we look for

µN = arg max
µ∈D

∆N−1(µ).

The reduced basis method has been developed for parametrized elliptic PDEs [76] and
successfully applied to Stokes [85] and Navier-Stokes equations. This method has been
used for time-dependent problems such as in [49].



3. An efficient Policy Iteration Algorithms
for Dynamic Programming Equations

We present an accelerated algorithm for the solution of static Hamilton-Jacobi-Bellman
equations related to optimal control problems. Our scheme is based on a classic policy
iteration procedure, which is known to have superlinear convergence in many relevant
cases provided the initial guess is sufficiently close to the solution. In many cases, this
limitation degenerates into a behavior similar to a value iteration method, with an in-
creased computations time. The new scheme circumvents this problem by combining the
advantages of both algorithms with an efficient coupling. The method starts with a value
iteration phase and then switches to a policy iteration procedure when a certain error
threshold is reached. A delicate point is to determine this threshold in order to avoid
cumbersome computation with the value iteration and, at the same time, to be reason-
ably sure that the policy iteration method will finally converge to the optimal solution.
We analyze the methods and efficient coupling in a number of examples in dimension
two, three and four illustrating their properties. The original elements of this chapter
are presented in [4].

3.1. Dynamic programming in optimal control and the basic
solution algorithms

In this section we will summarize the basic results for the two methods as they will
constitute the building blocks for our new algorithm. The essential features will be briefly
sketched, and more details can be found in the original papers and in some monographs,
e.g. in the classical books by Bellman [18], Howard [57] and for a more recent setting in
framework of the viscosity solutions in [26], [15] and [38].
Let us first present the method for the classical infinite horizon problem. Let the dynamics
be given by

{
ẏ(t) = f(y(t), u(t)), t ≥ 0
y(0) = x

(3.1)

where y ∈ Rd, u ∈ Rm and u ∈ U ≡ {u : [0,+∞) → U, measurable}. If f is Lipschitz
continuous with respect to the state variable and continuous with respect to (y, u), the
classical assumptions for the existence and uniqueness result for the Cauchy problem
(3.1) are satisfied. To be more precise, the Carathéodory theorem (see [43] or [15]) implies
that for any given control u(·) ∈ U , there exists a unique trajectory y(·;u) satisfying
(3.1) almost everywhere. Changing the control policy the trajectory will change and we
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will have a family of infinitely many solutions of the controlled system (3.1) parametrized
with respect to u.
Let us introduce the cost functional J : U → R which will be used to select the “optimal
trajectory”. For infinite horizon problem the functional is

Jx(u(·)) =

∫ ∞

0
L(y(s), u(s))e−λsds , (3.2)

where L is Lipschitz continuous in both arguments and λ > 0 is a given parameter. The
function L represents the running cost and λ > 0 is the discount factor which allows to
compare the costs at different times rescaling the costs at time 0. From the technical
point of view, the presence of the discount factor guarantees that the integral is finite
whenever L is bounded, i.e. ||L||∞ ≤ML. Let us define the value function of the problem
as

v(x) = inf
u(·)∈U

Jx(u(·)) . (3.3)

It is well known that passing to the limit in the Dynamic Programming Principle one
can obtain a characterization of the value function in terms of the following first order
non-linear Bellman equation

λv(x) + max
u∈U
{−f(x, u) ·Dv(x)− L(x, u)} = 0, for x ∈ Rd . (3.4)

Several approximation schemes on a fixed grid G have been proposed for (3.4). Here we
will use a semi-Lagrangian approximation based on a Discrete Time Dynamic Program-
ming Principle. This leads to

v∆t(x) = min
u∈U
{e−λ∆tv∆t (x+ ∆tf (x, u)) + ∆tL (x, u)} , (3.5)

where v∆t(x) converges to v(x) when ∆t→ 0. A natural way to solve (3.5) is to write it
in fixed point form (see [38] for more details) as in the following algorithm:

Algorithm 3: Value Iteration for infinite horizon optimal control (VI)

Data: Mesh G, ∆t, initial guess V 0, tolerance ε.

while ||V k+1 − V k|| ≥ ε do
forall the xi ∈ G do

V k+1
i = min

u∈U
{e−λ∆tI

[
V k
]

(xi + ∆tf (xi, u)) + ∆tL (xi, u)} (3.6)

end
k = k + 1

end

Here V k
i represents the values at a node xi of the grid at the k-th iteration and I is

an interpolation operator acting on the values of the grid; without loss of generality,
throughout this chapter we will assume that the numerical grid G is a regular equidis-
tant array of points with mesh spacing denoted by ∆x, and we consider a multilinear
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interpolation operator. Extensions to nonuniform grids and high-order interpolants can
be performed in a straightforward manner.
Algorithm 3 is referred in the literature as the value iteration method because, starting
from an initial guess V 0, it modifies the values on the grid according to the nonlinear
rule (3.6). It is well-known that the convergence of the value iteration can be very slow,
since the contraction constant e−λ∆t is close to 1 when ∆t is close to 0. This means
that a higher accuracy will also require more iterations. Then, there is a need for an
acceleration technique in order to cut the link between accuracy and complexity of the
value iteration.

For sake of clarity, the above framework has been presented for the infinite horizon
optimal control problem. However, similar ideas can be extended to other classical con-
trol problems with small changes. Let us mention how to deal with the minimum time
problem which we will use in the final section on numerical tests.
In the minimum time problem one has to drive the controlled dynamical system (3.1)
from its initial state to a given target T . Let us assume that the target is a compact
subset of Rd with non empty interior and piecewise smooth boundary. The major dif-
ficulty dealing with this problem is that the time of arrival to the target starting from
the point x

t(x, u(·)) :=

{
inf
u∈U
{t ∈ R+ : y(t, u(·)) ∈ T } if y(t, u(t)) ∈ T for some t,

+∞ otherwise,
(3.7)

can be infinite at some points. As a consequence, the minimum time function defined as

T (x) = inf
u∈U

t(x, u(·)) (3.8)

is not defined everywhere if some controllability assumptions are not introduced. In
general, this is a free boundary problem where one has to determine at the same time,
the couple (T,Ω), i.e. the minimum time function and its domain. Nevertheless, by
applying the Dynamic Programming Principle and the so-called Kruzkhov transform

v(x) ≡
{

1− exp(−T (x)) for T (x) < +∞
1 for T (x) = +∞ (3.9)

the minimum time problem is characterized in terms of the unique viscosity solution of
the BVP {

v(x) + sup
u∈U
{−f(x, u) ·Dv(x)} = 1 in R\T
v(x) = 0 on ∂T ,

(3.10)

where R stands for the set of point in the state space where the time of arrival is finite.
Then, the application of the semi-Lagrangian method presented for the infinite horizon
optimal control problem together with a value iteration procedure leads to following
iterative scheme:

The numerical implementation is closed with the boundary conditions v(x) = 0 at ∂T
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Algorithm 4: Value Iteration for minimum time optimal control (VI)

Data: Mesh G, ∆t, initial guess V 0, tolerance ε.

while ||V k+1 − V k|| ≥ ε do
forall the xi ∈ G do

V k+1
i = min

u∈U
{e−∆tI

[
V k
]

(xi + ∆tf (xi, u)) + 1− e−∆t} (3.11)

end
k = k + 1

end

(and inside the target as well), and with v(x) = 1 at other points outside the com-
putational domain (we refer the reader to [14] for more details on the approximation
of minimum time problems). Next chapter will focus on finite horizon optimal control
problems. Therefore, we will introduce an evolutive HJB and a value-iteration scheme
for the approximation of that equation.

3.1.1. Two acceleration techniques

We will briefly describe two effective acceleration methods based on different ideas and
resulting in a monotone convergence.

Policy iteration

The first acceleration technique is the approximation in the policy space (or policy itera-
tion), and is based on a linearization of the Bellman equation. First, an initial guess for
the control for every point in the state space is chosen. Once the control has been fixed,
the Bellman equation becomes linear (no search for the minimum in the control space
is performed), and it is solved as an advection equation. Then, an updated policy is
computed and a new iteration starts. Let us sketch the procedure for the scheme related
to the infinite horizon problem.
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Algorithm 5: Policy Iteration for infinite horizon optimal control (PI)

Data: Mesh G, ∆t, initial guess V 0 and u0, tolerance ε.
while ||V k+1 − V k|| ≥ ε do

Policy evaluation step:

forall the xi ∈ G do

V k+1
i = ∆tL

(
xi, u

k
i

)
+ e−λ∆tI

[
V k
] (
xi + ∆tf

(
xi, u

k
i

))
(3.12)

end
Policy improvement step:

forall the xi ∈ G do

uk+1
i = arg min

u

{
∆tL(xi, u) + e−λ∆tI

[
V k
]

(xi + ∆tf(xi, u))
}

(3.13)

end
k = k + 1

end

Note that the solution of (3.12) can be obtained either by a linear system (assuming
a linear interpolation operator) or as the limit

V k = lim
m→+∞

V k,m , (3.14)

of the linear time-marching scheme

V k,m+1
i = ∆tL

(
xi, u

k
i

)
+ e−λ∆tI

[
V k,m

] (
xi + ∆tf

(
xi, u

k
i

))
. (3.15)

Although this scheme is still iterative, the lack of a minimization phase makes it faster
than the original value iteration.
The sequence {V k} turns out to be monotone decreasing at every node of the grid. In
fact, by construction,

V k
i = ∆tL

(
xi, u

k
i

)
+ e−λ∆tI

[
V k
] (
xi + ∆tf

(
xi, u

k
i

))
≥

≥ min
u

{
∆tL(xi, u) + e−λ∆tI

[
V k
]

(xi + ∆tf(xi, u))
}

=

= ∆tL
(
xi, u

k+1
i

)
+ e−λ∆tI

[
V k
] (
xi + ∆tf

(
xi, u

k+1
i

))
=

= V k+1
i

At a theoretical level, policy iteration can be shown to be equivalent to a Newton method,
and therefore, under appropriate assumptions, it converges with quadratic speed. On the
other hand, convergence is local and this may represent a drawback with respect to value
iterations.
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Iteration in the set of subsolutions

A different monotone acceleration technique can be constructed upon the idea of fol-
lowing the direction provided by the value iteration up to the boundary of the set of
(numerical) subsolutions. This idea is justified by the property of the value function of
being the maximal subsolution of the dynamic programming equation (We address to
[38] for further details on the algorithm).
Consider the fixed point iteration associated to the infinite horizon problem, written in
short as

V (k+1) = S(∆t, V (k)).

Since the operator S is a contraction mapping, we have convergence starting from any
initial guess V (0). Moreover, if the initial guess is in the set of subsolutions Σ for the
discrete problem, i.e., if

V (0) ∈ Σ := {W : W ≤ S(∆t,W )},

then convergence is monotone. In fact, by the monotonicity of S,

V (k) ≤ S(∆t, V (k)) = V (k+1).

The set of subsolutions Σ can be proved to be a closed convex set with a maximal element,
which coincides with the fixed point V . Then, we can use the operator S to obtain a
search direction (along which the components of the numerical solution increase), until
we reach the boundary of Σ.

Algorithm 6: Accelerated Monotone Value Iteration (AMVI)

Data: Mesh G with n nodes, ∆t, initial guess W 0 ∈ Σ, tolerance ε.

while ||W k+1 −W k|| ≥ ε do

W k+1/2 = S(∆t,W k)
dk = W k+1/2 −W k

W k+1 =max
µ
{W k + µdk} such that W k + µdk ∈ Σ

k = k + 1
end

In this case, the accelerated sequence W k converges monotonically and for any initial
guess. However, the application of this acceleration technique is limited by the assump-
tions we made. In some cases it can be difficult to find an initial condition for the
sequence. Another limitation is the fact that the set of subsolutions is not always convex
as in the infinite horizon problem so the rate of acceleration decreases fast (as in the
minimum time problem).



3.2 An accelerated policy iteration algorithm with smart initialization 33

3.2. An accelerated policy iteration algorithm with smart
initialization

In this section we present an accelerated iterative algorithm which is constructed upon
the building blocks previously introduced. We aim to an efficient formulation exploiting
the main computational features of both value and policy iteration algorithms. As it
has been stated in [79], there exists a theoretical equivalence between both algorithms,
which guarantees a rather wide convergence framework. However, from a computational
perspective, there are significant differences between both implementations. A first key
factor can be observed in Figure 3.1, which shows, for a two-dimensional minimum time
problem (more details on the test can be found in Section 3.4), the typical situation
arising with the evolution of the error measured with respect to the optimal solution,
when comparing value and policy iteration algorithms. To achieve a similar error level,
policy iteration requires considerable fewer iterations than the value iteration scheme,
as quadratic convergent behavior is reached faster for any number of nodes in the state-
space grid. Despite the observed computational evidence, a second issue is observed when
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Figure 3.1.: Error evolution in a 2D problem: value iteration (left) and policy iteration
(right).

examining the policy iteration algorithm in more detail. That is, as shown in Figure 3.2,
the sensitivity of the method with respect to the choice of the initial guess of the control
field. It can be seen that different initial admissible control fields can lead to radically
different convergent behaviors. While some guesses will produce quadratic convergence
from the beginning of the iterative procedure, others can lead to an underperformant
value iteration-like evolution of the error. This latter is computationally costly, because
it translates into a non-monotone evolution of the subiteration count of the solution of
equation (3.12).
A final relevant remark goes back to Figure 3.1, where it can be observed that for coarse
meshes, the value iteration algorithm generates a fast error decay up to a higher global
error. Combining the fast error decay with the fact that value iteration algorithms are
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Figure 3.2.: Left: error evolution in a PI algorithm for different initial guesses. Right:
evolution of the subiteration count in PI for different guesses.

rather insensitive to the choice of the initial guess for the value function (see [89] for a
detailed error quantification), are crucial points for the construction of our accelerated
algorithm. The accelerated policy iteration algorithm is based on a robust initialization
of the policy iteration procedure via a coarse value iteration which will yield to a good
guess of the initial control field.

Algorithm 7: Accelerated Policy Iteration (API)

Data: Coarse mesh Gc and ∆tc, fine mesh Gf and ∆tf , initial coarse guess V 0
c ,

initial control u0, coarse-mesh tolerance εc, fine-mesh tolerance εf .
begin

Coarse-mesh value iteration step: perform Algorithm 3
Input: Gc, ∆tc, V

0
c , εc

Output: V ∗c
forall the xi ∈ Gf do

V 0
f (xi) = I1[V ∗c ](xi)

U0
f (xi) = arg min

u∈U
{e−λ∆tI1[V 0

f ](xi + f(xi, u)) + ∆tL (xi, u)}

end
Fine-mesh policy iteration step: perform Algorithm 5
Input: Gf , ∆tf , V 0

f , U0
f , εf

Output: V ∗f
end

3.2.1. Practical details concerning the computational implementation of the
algorithm

The above presented accelerated algorithm can lead to a considerably improved perfor-
mance when compared to value iteration and naively initialized policy iteration algo-
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rithms. However, it naturally contains trade-offs that need to be carefully handled in
order to obtain a correct behavior. The extensive numerical tests performed in Section
3.4 suggest the following guidelines:

Coarse and fine meshes. The main trade-off of the accelerated algorithm is related to
this point. For a good behavior of the PI part of the algorithm, a good initialization is
required, but this should be obtained without deteriorating the overall performance. Too
coarse VI will lead to poor initialization, while fine VI will increase the CPU time. We
recall that for this chapter we assume regular equidistant meshes with mesh parameter
∆x. If we denote by ∆xc and by ∆xf the mesh parameters associated to the coarse
and fine grids respectively, numerical findings illustrated in Figure 3.3 suggest that for
minimum time problems and infinite horizon optimal control, a good balance is achieved
with ∆xc = 2∆xf . In the case of minimum time problem, additionally, it is important
that the coarse mesh is able to accurately represent the target. Van Der Pol example
has a different behavior, but it is important to observe that, although the choice of the
stepsize is suboptimal, it is still close to the optimal ratio.

Figure 3.3.: Ratios ∆xc/∆xf and CPU time for different control problems. A good over-
all balance can be observed in most cases by considering ∆xc = 2∆xf .

Accuracy. Both VI and PI algorithms require a stopping criteria for convergence. Fol-
lowing [90], the stopping criteria is given by

||V k+1 − V k|| ≤ C∆x2 ,

which relates the error to the resolution of the state-space mesh. The constant C is set
to C = 1

5 for the fine mesh, and for values ranging from 1 to 10 in the coarse mesh, as
we do not strive for additional accuracy that usually will not improve the initial guess
of the control field. However, different options have been extensively discussed in the
literature, as in [91] for instance, where the stopping criteria is related to a variability
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threshold on the control space.

Policy evaluation. In every main cycle of the policy iteration algorithm, provided the
interpolation operator is linear, as it is in our case, a solution of the linear system (3.12)
is required. This can be performed in several ways, specially given the sparsity of the
system. For sake of simplicity and in order to make numerical comparisons with the VI
scheme, we use a fixed point iteration, i.e., the policy evaluation is implemented as

V k,j+1
i = ∆tL

(
xi, u

k
i

)
+ e−λ∆tI

[
V k,j

] (
xi + ∆tf

(
xi, u

k
i

))
(3.16)

with initial guess V k,0 = V k−1,∞. We use the same stopping criteria as for the global
iteration.
Minimization. Although counterexamples can be constructed in order to show that
it is not possible to establish error bounds of the PI algorithm independently of the
number of controls [90], the algorithm does not change its performance when the control
set is increased, and therefore the argmin computation required for the policy update
can be performed by discretizing the set of controls and evaluating all the possible arrival
points. Otherwise, minimizers can be computed via Brent’s algorithm, as in [27].
A remark on parallelism. Although the numerical tests that we present were per-
formed in a serial code, we note that the accelerated algorithm allows an easy parallel
implementation. Whenever an iterative procedure is performed over the value function,
parallelism can be implemented via a domain decomposition of the state space as in
[42, 24]. If a control space discretization is also performed, the policy update (3.13) can
also be parallelized with respect of the set of controls.
Error estimates. The Policy Iteration scheme may be considered as a Newton-like
algorithm (as explained in [79]) which is shown to have local quadratic convergence,
as shown in [90]. A delicate point is the initialization of the algorithm. The idea is to
compute the value function V ∆ in a coarse mesh computed via the VI scheme where the
stepsize is ∆. Then we pass to a finer mesh ∆/2, and by linear interpolation we obtain
V ∆/2. The grid is built as x = (. . . , xi−1, xi−1/2, xi, xi+1/2, xi+1, . . .) such that xi−xi−1 =

∆ and xi − xi−1/2 = ∆/2. Therefore, V
k,∆/2
i = V k,∆

i and V
k,∆/2
i+1/2 = (V k,∆

i + V k,∆
i+1 )/2,

where V k,∆
i ≈ V (xi). In this way, we can guarantee to have the same accuracy of the

coarse grid. In fact, if we suppose that ‖V k+1,∆ − V k,∆‖ ≤ ε, then

‖V k+1,∆/2
i+1/2 − V k,∆/2

i+1/2 ‖ =
1

2

∥∥∥
(
V k+1,∆
i+1 − V k,∆

i+1

)
+
(
V k+1,∆
i − V k,∆

i

)∥∥∥

and by triangular inequality, the value function holds the desired tolerance ε. The controls
are simply obtained computing the argmin of V k+1,∆/2. Hence, we suppose that we are
in the neighborhood of the solution V ∗.
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3.3. An error estimate for API

Let us try to obtain a theoretical estimate for the error related to the API algorithm.
Since the method is based on the coupling of a VI approximation with a PI approx-
imation, we need to couple the general error estimate for VI [38] and the local error
estimates for the Newton method. The crucial point is to decide when to switch from
one method to the other. First of all, let us note that we can rewrite relation (3.5) with
compact notations:

V = T (V ),

where the map T : RM → RM is defined componentwise as

(T (V ))i ≡ min
u∈U

[e−λ∆tΛ(u)V + ∆tL(u)]i,

where Vi = v(xi), Li(u) = L(xi, u), and Λ(u) ∈ RM×M matrix and we have:

v(xi + ∆tf(xi, u)) =
M∑

j=1

λij(u)v(xj), i = 1, . . . ,M,

where λij(u) are the coefficients of the convex combination representing the point xi +
∆tf(xi, u).
The following theorem gives an estimate of the error of the value function, in the Value
Iteration algorithm (proof and other details can be found in [38]):

Theorem 3.1 Let V and V∆t be the solutions of (3.4) and (3.5). Assume that:

f : Rd × U → Rd and L : Rd × U → R are continuous,

‖f(x, u)− f(y, u)‖ ≤ Kf‖x− y‖ for any u ∈ U and ‖f‖∞ ≤Mf ,

‖L(x, u)− L(y, u)‖ ≤ KL‖x− y‖ for any u ∈ U and ‖L‖∞ ≤ML,

where ML,Mf ,KL > 0, λ > Kf . Moreover, if we assume xi + ∆tf(xi, u) ∈ G, the
following inequality holds:

‖V − V∆t‖∞ ≤ C(∆t)1/2 +
Kf

λ(λ−Kf )

∆x

∆t
. (3.17)

Note that ‖V (y)− V∆t(y)‖∞ := max
y∈G
|V (y)− V∆t(y)|. Since T is a contraction mapping

in RM , the sequence for a given initial condition V 0

V n
∆t = T (V n−1

∆t ), n = 1, 2, . . .

will converge to V ∗ for any initial condition V 0
∆t ∈ Rd. Moreover, under the assumptions

of Theorem 3.1 we have the following relation between the current iteration V n
∆t and the
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initial condition V 0
∆t :

‖V n
∆t − V ∗∆t‖∞ ≤ (e−nλ∆t)‖V 0

∆t − V ∗∆t‖∞. (3.18)

The Policy Iteration scheme may be considered as a Newton-like algorithm (as ex-
plained in [79]) which is shown to have quadratic convergence in the following theorem
proved by Santos and Rust in [90].

Theorem 3.2 Assume V ∗ is the fixed point of the discretized Bellman equation (3.5).
Assume that V∆t(xi, u) is concave in xi. Let {V n

i }n≥1 be a sequence of functions generated
by (3.12) and (3.13). Moreover if the initial guess is close to the solution V ∗, we have:

‖V n+1
∆t − V ∗∆t‖ ≤ C

λ

∆t2(1− λ)
‖V n

∆t − V ∗‖2.

Combining Theorem 3.1 and Theorem 3.2 we get an estimate for our accelerated Policy
Iteration algorithm. For simplicity we drop the subscript ∆t.
We call V n

API the current iteration of the accelerated scheme, V 0
V I is the initial condition

and we suppose that the VI method converges to V ∗V I . Suppose we need γ iterations to
get the desidered convergence in the VI method. Then, we have:

‖V n
API − V ∗‖ ≤ eγλ∆t‖V 0

V I − V ∗V I‖+

(
C

λ

∆t2(1− λ)

)n−γ
‖V ∗V I − V ∗‖2. (3.19)

Since we are working with a Newton-like method, the choice of the initial condition
has a crucial role. Therefore we need to check the hypothesis given in Appendix A in
order to guarantee convergence. Note that we can rewrite the problem in the following
form:

F (V ) := 0 ⇐⇒ V satisfies (3.5).

Hence, F (V ) := V −T (V ) and we can easily write it as a Newton method, if we assume
all the next computations make sense, we get:

JF (V n)(V n+1 − V n) = −F (V n),

where the Jacobian of F(V) is JF (V ) := I − T ′(V ), and I is the identity matrix.
Let us fix the residual rn and the error en at the n−th iteration:

rn ≡ V n − T (V n) = V n − V n−1 en ≡ ‖V n − V ∗‖∞.

Then, we fix η > 0 such that:

‖rn‖ ≤ η ⇐⇒ ‖V ∗V I − V ∗‖ ≤ ρ.

An explicit expression for ρ is given in (A.5). Then it is required:

‖F ′(V ∗V I)−1F (V ∗V I)‖ ≤ α,
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which is guarenteed since V ∗V I is the solution coming from the value iteration scheme
which is known to be convergent for any initial condition. If finally we assume that the
following inequality holds,

‖F ′(V ∗V I)−1(F ′(y)− F ′(x)‖ ≤ ω̄‖y − x‖,

we have proved the theorem given below

Theorem 3.3 Assume all the assumptions in Theorem 3.1, Theorem 3.2 and Theorem
A.1 hold. If the initial conditions of the Policy Iteration is V ∗V I , we get the following
estimate for API:

‖V n
API − V ∗‖infty ≤ eγλ∆t‖V 0

V I − V ∗V I‖infty +

(
C

λ

∆t(1− λ)

)n−γ
‖V ∗V I − V ∗‖infty2.

(3.20)

3.4. Numerical tests

This section presents a comprehensive set of tests assessing the performance of the
proposed accelerated algorithm. We compare the results with solutions given by the
classical value iteration algorithm, policy iteration, and the accelerated monotone value
iteration method. In a first part we develop tests related to infinite horizon optimal
control, to then switch to the study of minimum time problems. We conclude with an
extension to applications related to optimal control of partial differential equations. We
focus on grid resolution, size of the discretized control space, performance in presence of
linear/nonlinear dynamics, targets, and state space dimension. All the numerical simu-
lations reported in this chapter have been made on a MacBook Pro with 1 CPU Intel
Core i5 2.3 Ghz and 8GB RAM.

Infinite horizon optimal control problems

3.4.1. Test 1: A non-smooth 1D value function

We first consider a one-dimensional optimal control problem appearing in [15, Appendix
A]. Using a similar notation as in Section 3.1, we set the computational domain Ω =
]− 1 , 1[, the control space U = [−1 , 1], the discount factor λ = 1, the system dynamics
f(x, u) = u(1−|x|), and the cost function L(x, a) = 3(1−|x|). The exact optimal solution
for this problem is

v(x) =

{
3
2(x+ 1) for x < 0 ,

3
2(1− x) elsewhere ,

which has a kink at x = 0. We implement every proposed algorithm, and results con-
cerning CPU time and number of iterations are shown in Table 3.3; for different mesh
configurations, we set ∆t = .8∆x and we discretize the control space into a set of 20
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equidistant points. The notation VI(2∆x) in Table 3.3 stands for the computation of
the soluzion with a VI method considering a coarse grid of 2∆x. Then it is applied the
PI method with a stepsize ∆x(PI(∆x) in the table). In this test case, as expected, we
observe that the VI algorithm is always the slowest option, with iteration count depend-
ing on the number of mesh nodes; this feature is also observed for the PI algorithm,
although the number of iterations and CPU time are considerably smaller. On the other
hand, the AMVI scheme has an iteration count independent of the degrees of freedom of
the system, with an almost fixed CPU time, as the time spent on fixed point iterations
is negligible compared to the search of the optimal update direction. In this particular
example, the exact boundary conditions of the problem are known (v(x) = 0 at ∂Ω) and
it is possible to construct monotone iterations by starting from the initial guess v(x) = 0.
Finally, the API algorithm exhibits comparable CPU times as AMVI, performing always
better than VI and PI. We note that the choice of the mesh ratio between the coarse and
fine meshes can be suboptimal, as the time spent on the VI coarse pre-processing rep-
resents an important part of the overall CPU time. More details on the error evolution
throughout the iterations can be observed in Figure 3.4; note that the error evolution is
measured with respect to the exact solution and not with respect to the next iteration.
From this latter figure it can be seen that precomputation of an optimal solution over a
coarse mesh leads to faster PI convergence.

# nodes ∆x VI PI AMVI VI(2∆x) PI(∆x) API

41 0.5 1.92 (101) 0.56 (10) 0.86 (3) 0.11 (6) 0.12 (2) 0.23 (8)

81 2.5E-2 4.36 (229) 1.24 (18) 0.87 (3) 0.44 (3) 0.21 (2) 0.65 (5)

161 1.25E-2 9.82 (512) 2.64 (34) 0.88 (3) 1.37 (73) 0.38 (2) 1.75 (75)

321 6.25E-3 21.91 (1135) 5.77 (65) 0.89 (3) 3.79 (200) 0.73 (2) 4.52 (202)

Table 3.3.: Test 1 (1D non-smooth value function): CPU time (iterations) for different
algorithms.

3.4.2. Test 2: Van Der Pol oscillator

In a next step we consider two-dimensional, nonlinear system dynamics given by the
Van der Pol oscillator:

f(x, y, u) =

(
y

(1− x2)y − x+ u

)
.

Remaining system parameters are set:

Ω =]− 2 , 2[2 , U = [−1 , 1] , λ = 1 , ∆t = 0.3∆x , g(x, y, u) = x2 + y2 ,
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Figure 3.4.: Test 1 (1D non-smooth value function): error evolution for two meshes.

and the control space is discretized into 32 equidistant points. We perform a similar
numerical study as in the previous example, and results are shown in Table 3.5. For
computations requiring an exact solution, we consider as a reference a fine grid simulation
with ∆x = 0.00625 as in Figure 3.5.

OPTIMAL CONTROL PROBLEM FOR VAN DER POL EQUATION
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Figure 3.5.: Test 2: Contour plot of the value function for the Van Der Pol oscillator
problem.

We set a constant boundary value v(x) = 3.5 at ∂Ω, which can be interpreted as a
penalization on the state. If accurate solutions near the boundary are required, a natural
choice in our setting would be to perform simulations over an enlarged domain and then
restrict the numerical results to a subset of interest. From this test we observe a serious
limitation on the AMVI algorithm. The number of iterations now depends on the number
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of nodes, and even though the number of iterations is still lower than in the VI algorithm,
the CPU time increases as for every iteration a search procedure is required. As it is not
possible to find monotone update directions, the AMVI algorithm becomes a VI method
plus an expensive search procedure. This lack of possible monotone update can be due to
several factors: the nonlinear dynamics, the existence of trajectories exiting the compu-
tational domain, and a sensitivity to the artificial boundary condition. We report having
performed similar tests for the linear double integrator problem (ẍ = u) with similar
results, therefore we conjecture that in this case, the underperformance of the AMVI
scheme is due to poor boundary resolution and its use by optimal trajectories. Unfortu-
nately, this is a recurrent problem in the context of optimal control. This situation does
not constitute a problem for the API algorithm, where a substantial speedup is seen in
both coarse and fine meshes. Note that compared to PI, the accelerated scheme has a
number of iterations on its second part which is independent of the mesh parameters as
we are in a close neighborhood of the optimal solution.

# nodes ∆x VI PI AMVI VI(2∆x) PI(∆x) API

812 5E-2 39.6 (529) 5.35 (8) 1.42E2 (3) 1.86 (207) 1.47 (4) 3.33 (211)

1612 2.5E-2 3.22E2 (1267) 34.5 (11) 1.01E3 (563) 10.7(165) 6.87 (4) 17.5 (169)

3212 1.25E-2 3.36E4 (2892) 3.36E2 (14) 1.55E4 (2247) 88.9 (451) 47.7 (4) 1.36E2 (455)

Table 3.5.: Test 2 (Van der Pol oscillator): CPU time (iterations) for different algorithms.

3.4.3. Test 3: Dubin’s Car

Having tested some basic features of the proposed schemes, we proceed with our numer-
ical study of the API method by considering a three-dimensional nonlinear dynamical
system given by

f(x, y, z, u) =




cos(z)
sin(z)
u


 ,

corresponding to a simplified version of the so-called Dubin’s car, a model extensively
used in the context of reachable sets and differential games. System parameters are set:

Ω =]− 2 , 2[2 , U = [−1 , 1] , λ = 1 , ∆t = 0.2∆x , L(x, y, z, u) = x2 + y2 ,

and the control space is discretized into 11 equidistant points; the boundary value is set
to v(x) = 3 in ∂Ω and reference solution is taken with ∆x = 0.0125. Different isosurfaces
for this optimal control problem can be seen in Figure 3.6, and CPU times for different
meshes are shown in Table 3.6. This case is an example in which the mesh ratio between
coarse and fine meshes is well-balanced, and the time spent in pre-processing via VI is
not relevant in the overall API CPU time, despite leading to a considerable speedup
of a factor 8 with an order of 106 grid points. In the last line of Table 3.6, the VI
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algorithm was stopped after 4 hours of simulation without achieving convergence, which
is illustrative of the fact that acceleration techniques in such problems are not only
desirable but necessary in order to obtain results with acceptable levels of accuracy.
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Figure 3.6.: Test 3: Dubin’s car value function isosurfaces and error evolution (bottom
right).

Minimum time problems

3.4.4. Tests 4 and 5: Minimum time problems in 2D

The next two cases are based on a two-dimensional Eikonal equation. For both problems,
common seetings are given by

f(x, y, u) =

(
cos(u)
sin(u)

)
, U = [−π, π] , ∆t = 0.8∆x .

What differentiates the problems is the domain and target definitions; Test 4 considers
a domain Ω =] − 1, 1[2 and a target T = (0, 0), while for Test 5, Ω =] − 2, 2[2 and
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# nodes ∆x VI PI VI(2∆x) PI(∆x) API

413 0.1 50.6 (192) 12.2 (12) 0.84 (8) 8.52 (3) 9.36 (11)

813 5E-2 1.19E3 (471) 3.28E2 (18) 8.98 (39) 1.39E2 (9) 1.48E2 (48)

1613 2.5E-2 ≥ 1.44E4 9.93E3 (12) 3.02E2 (30) 2.92E3 (10) 2.62E3 (40)

Table 3.6.: Test 3 (Dubin’s car): CPU time (iterations) for different algorithms

T = {x ∈ R2 : ||x||2 ≤ 1}. Reference solutions are considered to be the distance
function to the respective targets, which is an accurate approximation provided that the
number of possible control directions is large enough. Contour plots of the approximated
optimal value functions for both problems are shown in Figure 3.7. For Test 4, with a
discretization of the control space into set of 64 equidistant points, CPU time results are
presented in Table 3.7; it can be seen that API provides a speedup of a factor 8 with
respect to VI over fine meshes despite the large set of discrete control points. For sake
of completeness, we include Figure 3.8, which illustrates, for both problems, the way
in which the API idea acts: pre-processing of the initial guess of PI leads to proximity
to a “quadratic convergence neighborhood”; fast error decay that coarse mesh VI has
in comparison with the fine mesh VI is clearly noticeable. For Test 4, Table 3.7 shows
experimental convergence rates achieved by the fully discrete scheme, in both L1 and
L∞ norms, which are in accordance with theoretically expected rate of 1/2 (see [22]).
Test 5 features an enlarged target, and differences in terms of CPU times are presented
in Table 3.7 where, for a discrete set of 72 equidistant controls, the speedup is reduced to
a factor 4. In general, from a mesh node, larger or more complicated targets represent a
difficulty in terms of the choice of the minimizing control, which translates into a larger
number of iterations. In this case, the CPU time spent in the pre-processing is significant
to the overall CPU time, but increasing this ratio in order to reduce its share will lead
to an underperfomant PI part of the algorithm.
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Figure 3.7.: Value function contours for 2D Eikonal equations: Test 4 (left) and Test 5
(right).
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# nodes ∆x VI PI VI(2∆x) PI(∆x) API

412 5E-2 3.16 (37) 1.89 (12) 0.39 (5) 0.38 (2) 0.77 (7)

812 2.5E-2 8.23 (69) 4.43 (19) 0.80 (12) 0.53 (2) 1.33 (14)

1612 1.25E-2 39.2 (133) 12.6 (13) 2.55 (31) 2.11 (3) 4.66 (34)

Table 3.7.: Test 4 (2D Eikonal): CPU time (iterations) for different algorithms.

# nodes ∆x L1 − error rate L∞ − error rate

412 5E-2 2.1E-2 0.60 8.9E-3 0.61

812 2.5E-2 1.4E-2 0.64 5.8E-3 0.64

1612 1.25E-2 8.5E-3 0.68 3.7E-3 0.75

3212 6.25E-3 5.3E-3 2.2E-3

Table 3.7.: Test 4 (2D Eikonal): Rate of convergence for the API scheme with 64 controls.

3.4.5. Tests 6 and 7: Minimum time problems in 3D

We develop a three-dimensional extension of the previously presented examples. System
dynamics and common parameters are given by

f(x, y, z, (u1, u2)) =




sin(u1) cos(u2)
sin(u1) sin(u2)

cos(u1)


 , U = [−π, π]× [0 , π] , ∆t = 0.8∆x .

As in the two-dimensional study, we perform different tests by changing the domain
and the target. For Test 6 we set Ω =] − 1, 1[3 and T = (0, 0, 0), while for Test 7,
Ω =]− 6, 6[ and T is the union of two unit spheres centered at (−1, 0, 0) and (1, 0, 0). In
both cases, the set of controls is discretized into 16 × 8 points. Reachable sets for Test
7 are shown in Figure 3.9, and CPU times for both tests can be found in Tables 3.8
and 3.9. We observe similar results as in the 2D tests, with up to 10× acceleration for a
simple target, and 4× with more complicated targets. Note that in the second case, the
speedup is similar to the natural performance that would be achieved by a PI algorithm.
This is due to a weaker influence of the coarse VI iteration, which is sensitive to poor
resolution of a complex target.

In Table 3.8 and Table 3.9, θ and ϕ represent the number of angles we consider in the
discretization of the control space (the unit ball in R3 with spherical coordinates).
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# nodes ∆x VI PI VI(2∆x) PI(∆x) API

642 6.35E-2 4.02 (36) 1.42 (9) 0.84 (10) 0.53 (4) 1.37 (14)

1282 3.15E-2 16.9 (70) 6.25 (14) 2.80 (25) 1.66 (2) 4.46 (27)

2562 1.57E-2 1.09E2 (135) 38.7 (16) 15.8 (62) 11.7 (8) 27.5 (70)

5122 7.8E-3 9.80E2 (262) 3.98E2(168) 1.07E2 (126) 1.09E2 (12) 2.16E2 (138)

Table 3.7.: Test 5 (2D Eikonal): CPU time (iterations) for different algorithms with 72
controls.
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Figure 3.8.: Error evolution in 2D Eikonal equations: Test 4 (left) and Test 5:(right).

3.4.6. Test 8: Minimum time problem in 4D

We conclude our series of tests in minimum time problems by considering a four-
dimensional problem with a relatively reduced control space. In the previous examples
we have studied the performance of our scheme in cases where the set of discrete controls
was fairly large, while in several applications, it is also often the case that the set of ad-
missible discrete controls is limited and attention is directed towards the dimensionality
of the state space. The following problem tries to mimic such setting. System dynamics

# nodes ∆x VI PI VI(2∆x) PI(∆x) API

413 0.05 4.83E2 (44) 1.22E3 (10) 4.61 (5) 1.19E2 (3) 1.23E2 (8)

813 0.025 7.67E3 (84) 1.47E3 (13) 24.3 (12) 3.88E2 (3) 4.12E2 (15)

Table 3.8.: Test 6 (3D Eikonal): CPU time (iterations) for different algorithms with
θ = 16, ϕ = 8 controls.
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Figure 3.9.: Test 7 (3D Eikonal): different value function isosurfaces and error evolution
(bottom right).

are given by

f(x, y, z, w, (u1, u2, u3, u4)) =




u1

u2

u3

u4


 ,

the domain is Ω =] − 1, 1[4, the target is T = ∂Ω, ∆t = 0.8∆x and U is the set of 8
directions pointing to the facets of the four-dimensional hypercube. Figure 3.10 shows
different reachable sets and CPU times are presented in Table 3.10. In the finest mesh
a speedup of 8× is observed, which is consistent with the previous results on simple
targets. Thus, the performance of the presented algorithm is not sensitive neither to the
number of discrete controls nor to the dimension of the state space, whereas it is affected
by the complexity of the target.

3.4.7. Application to optimal control problems of PDEs

Having developed a comprehensive set of numerical tests concerning the solution of op-
timal control problems via static HJB equations, which assessed the performance of
the proposed API algorithm, we present an application where the existence of acceler-
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# nodes ∆x VI PI VI(2∆x) PI(∆x) API

613 0.2 2.67E2 (25) 1.22E2 (9) 1.44 (11) 68.0 (3) 69.1 (14)

1213 0.1 4.52E3 (52) 1.28E3 (11) 25.15E1 (12) 9.96E2 (3) 1.01E3 (15)

Table 3.9.: Test 7 (3D Eikonal): CPU time (iterations) for different algorithms with
θ = 16, ϕ = 8.

Figure 3.10.: Test 8 (4D minimum time): different value function isosurfaces with x4 = 0.

ated solution techniques for high-dimensional problems is particularly relevant, namely,
the optimal control of systems governed by partial differential equations. From an ab-
stract perspective, optimal control problems where the dynamics are given by evolutive
partial differential equations correspond to systems where the state lies in an infinite-
dimensional Hilbert space (see [97]). Nevertheless, in terms of practical applications,
different discretization arguments can be used to deal with this fact, and (sub)optimal
control synthesis can be achieved through finite-dimensional, large-scale approximations
of the system. At this step, the resulting large-scale version will scale according to a finite
element mesh parameter, and excepting for the linear-quadratic case and some closely
related versions, it would be still computationally unfeasible for modern architectures
(for instance, for a 100 elements discretization of a 1D PDE, the resulting optimal con-
trol would be characterized as the solution of a HJB equation in R100). Therefore, a
standard remedy in optimal control and estimation is the application of model order
reduction techniques, which, upon a large-scale version of the system, recover its most
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# nodes ∆x VI PI VI(2∆x) PI(∆x) API

214 0.1 13.6 (15) 16.2 (11) 0.30 (4) 2.79 (2) 3.09

414 5E-2 4.79E2 (29) 6.30E2 (21) 10.2 (12) 48.3 (2) 58.5

Table 3.10.: Test 8 (4D minimum time): CPU time (iterations) for different algorithms.

relevant dynamical features in a low-order approximation of prescribed size such as
Proper Orthogonal Decomposition. In this context, surprisingly good control synthesis
can be achieved with a reduced number of states (for complex nonlinear dynamics and
control configurations an increased number of reduced states may be required). Previous
attempts in this direction dates back to [67, 68] and more recently to [1, 2]. We present an
example where we embedded our accelerated algorithm inside the described framework.
We address the reader to Chapter 4 for major details on the application of the POD
method to the HJB equation. Even if we focus on evolutive HJBs equation it will be
straightforward to see how it could work for infinite horizon problems. Note that, in this
example, model reduction method is only applied in order to make the problem feasible
for the Dynamic Programming approach. The acceleration is due to the proposed API
scheme. Let us consider a minimum time problem for the linear heat equation:





yt(x, t) = cyxx(x, t) + y0(x)u(t) ,
y(0, t) = y(1, t) = 0 ,
y(x, 0) = y0(x) ,

(3.21)

where x ∈ [0, 1], t ∈ [0, T ] , c = 1/80 and u(t) : [0, T ] → {−1, 0, 1}. After performing
a finite difference discretization of the uncontrolled system, we perform a Galerkin pro-
jection with basis function computed with a Proper Orthogonal Decomposition (POD)
method, leading to a reduced order model (we refer to Chapter 2 and the references
inside for an introduction to this topic). In general, model reduction techniques do have
either a priori or a posteriori error estimates which allow to prescribe a certain number
of reduced states yielding a desired level of accuracy. For this simple case, we consider
the first 3 reduced states, which for a one-dimensional heat transfer process with one
external source provides a reasonable description of the input-output behavior of the
system. The system is reduced to:

d

dt



x1

x2

x3


 =



−0.123 −0.008 −0.001
−0.008 −1.148 −0.321
−0.001 −0.321 −3.671





x1

x2

x3


+



−5.770
−0.174
−0.022


u(t). (3.22)

Once the reduced model has been obtained, we solve the minimum time problem with
target T = (0, 0, 0). Figure 3.11 shows contour plots of the value function in the re-
duced space, while in Figure 3.12 a comparison of the performance of the minimum time
controller with respect to the uncontrolled solution and to a classical linear-quadratic
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controller is presented. CPU times are included in Table 3.12; a speedup of 4× can be
observed, the acceleration would become more relevant as soon as more refined meshes
and complex control configurations are considered.
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Figure 3.11.: Minimum time control of the heat equation: contour plots of different cuts
across the reduced value function. Left: x3 = 0. Right: x2 = 0.

# nodes ∆x VI PI VI(2∆x) PI(∆x) API

213 0.1 1.87 (76) 0.91 (11) 0.32 (27) 0.59 (8) 0.98

413 5E-2 27.8 (178) 12.4 (15) 1.65 (76) 6.34 (10) 7.99

813 2.5E-2 6.13E2 (394) 2.68E2 (15) 27.7 (178) 1.45E2 (9) 1.72E2

Table 3.12.: Minimum time control of the heat equation: CPU time (iterations) for dif-
ferent algorithms.
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Figure 3.12.: Optimal control of the heat equation. Top left: uncontrolled output of the
system. Top right: classical controlled output via linear-quadratic control.
Bottom left: controlled output via proposed procedure of model reduction
+ minimum time HJB controller. Bottom right: cross section of the different
outputs.



4. POD approximation for controlled
dynamical systems and Dynamic
Programming

In this chapter we present an algorithm for the approximation of a finite horizon optimal
control problem for evolutive linear and semi–linear PDEs. The method is based on
the coupling between an adaptive POD representation of the solution and a Dynamic
Programming approximation scheme for the corresponding evolutive Hamilton-Jacobi
equation characterizing the value function of the control problem for the reduced system.
We discuss several features regarding the adaptivity of the method, the role of error
estimate indicators to choose a time subdivision of the problem and the computation
of the basis functions. Some test problems are presented to illustrate the method. This
topic has already presented in [1, 2].

4.1. An optimal control problem

We will present this approach for the finite horizon control problem. Consider the con-
trolled system {

ẏ(s) = f(y(s), u(s), s), s ∈ (t, T ]
y(t) = x ∈ Rn, (4.1)

we will denote by y : [t, T ] → Rn the solution, by u the control u : [t, T ] → Rm,
f : Rn × Rm → Rn, s ∈ (t, T ] and by

U = {u : [t, T ]→ U}

the set of admissible controls where U ⊂ Rm is a compact set. Whenever we want to
emphasize the depence of the solution from the control u we will write y(t;u). Assume
that there exists a unique solution trajectory for (4.1), provided the controls are measura-
ble (a precise statement can be found in [15]). The system (4.1) can be also interpreted
as a semidiscrete problem with finite difference schemes. For the finite horizon optimal
control problem the cost functional will be given by

min
u∈U

Jx,t(u) :=

∫ T

t
L(y(s, u), u(s), s)e−λs ds+ g(y(T )) (4.2)

where L : Rn × Rm → R is the running cost and λ ≥ 0 is the discount factor.
The goal is to find a state-feedback control law u(t) = µ(y(t), t), in terms of the state
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equation y(t), where µ is the feedback map. To derive optimality conditions we use the
well-known dynamic programming principle due to Bellman (see [15]). We first define
the value function:

v(x, t) := inf
u∈U

Jx,t(u). (4.3)

Note that in finite horizon problems, the value function v(x, t) is even a function of time.

Proposition 4.1 (DPP) For all x ∈ Rnand 0 ≤ τ ≤ t then:

v(x, t) = min
u∈U

{∫ τ

t
L(y(s), u(s), s)e−λs ds+ v(y, t− τ)

}
. (4.4)

Due to (4.4) we can derive the Hamilton-Jacobi-Bellman equations (HJB):

− ∂v

∂t
(y, t)− λv(y, t) = min

u∈U
{L(y, u, t) +∇v(y, t) · f(y, u, t)} . (4.5)

This is an evolutive nonlinear partial differential equation of the first order which is hard
to solve analitically although a general theory of weak solutions is available [15]. Rather
we can numerically solve it by means of finite difference or semi-Lagrangian schemes
(see the book [40] for a comprehensive analysis of approximation schemes for Hamilton-
Jacobi equations). For a semi-Lagrangian discretization one starts by a discrete version
of HJB by discretizing the underlined control problem and then project the semi-discrete
scheme on a grid obtaining the fully discrete scheme;





vn+1
i = min

u∈U
[∆t L(xi, u, n∆t) + I[vn](xi + ∆t f(xi, u, tn))]

v0
i = g(xi),

with xi = i∆x, tn = n∆t, vni := v(xi, tn) and I[·] is an interpolation operator which is
necessary to compute the value of vn at the point xi + ∆t f(xi, u, tn) (in general, this
point will not be a node of the grid). The interested reader will find in [41] a detailed
presentation of the scheme and a priori error estimates for its numerical approximation.
Note that, we also need to compute the minimum in order to get the value vn+1

i . Since vn

is not a smooth function, we compute the minimum by means of a minimization method
which does not use derivatives (this can be done by the Brent’s algorithm as in [27]).
As we have already told the HJB allows to compute the optimal feedback via the value
function, but there are two major difficulties: the solution of an HJB equation are in
general non-smooth and the approximation in high dimension is not feasible.
As briefly introduced in Section 3.4.7 we will explain how to manage the curse of dimen-
sionality by means of the POD method. Let us focus on the following infinte-dimensional
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abstract problem:





d

ds
〈y(s), ϕ〉H + a(y(s), ϕ) = 〈B(u(s)), ϕ〉V ′,V ∀ϕ ∈ V

y(t) = y0 ∈ H,
(4.6)

where B : U → V ′ is a linear and continuous operator. We assume that a space of
admissible controls Uad is given in such a way that for each u ∈ Uad and y0 ∈ H there
exists a unique solution y of (4.6). V and H are two Hilbert spaces, with 〈·, ·〉H we denote
the scalar product in H; a : V × V → R is symmetric coercive and bilinear. Then, we
introduce the cost functional of the finite horizon problem

Jy0,t(u) :=

∫ T

t
L(y(s), u(s), s)e−λs ds+ g(y(T )),

where L : V × U × [t, T ]→ R. The optimal control problem is

min
u∈Uad

Jy0,t(u) (4.7)

subject to the constraint: y ∈W (t, T )× U solves (4.6),

where W (t, T ) is the standard Sobolev space:

W (t, T ) = {ϕ ∈ L2(t, T ;V ), ϕt ∈ L2(t, T ;V ′)}.

The model reduction approach for an optimal control problem (4.7) is based on the
Galerkin approximation of the dynamics with some information on the controlled dy-
namics (snapshots). To compute a POD solution for (4.7) we make the following ansatz

y`(·, s) =
∑̀

i=1

wi(s)ψi(·). (4.8)

where {ψ}`i=1 is the POD basis functions computed as explained in Chapter 2.
Let us suppose we have an initial guess for the control u, the computation of the POD
basis functions can be summarized by the following three steps:

1. compute the solution y at given times sj , the y(sj ;u) are called snapshots;

2. collect the snapshots into a matrix Y and compute the singular value decomposition
of Y = ΨΣV T ;

3. the first ` columns of Ψ will be the POD basis of rank `.

As explained in Section 2.1.2 a good indicator of the accuracy of our POD approximation
is given by (2.7). We introduce mass and stiffness matrix:

M = (mij) ∈ R`×` with mij = 〈ψj , ψi〉H ,
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S = (sij) ∈ R`×` with sij = a(ψj , ψi),

and the control map b : U → R` is defined by:

u→ b(u) = (b(u)i) ∈ R` with b(u)i = 〈Bu,ψi〉H .

The coefficients of the initial condition y`0 ∈ R` are determined by (w0)i = 〈y0, ψi〉X , 1 ≤
i ≤ `, and the solution of the reduced dynamic problem is denoted by w`(s) ∈ R`. Then,
the Galerkin approximation is given by

min J `
w`

0,t
(u) (4.9)

with u ∈ Uad and w solves the following equation:





ẇ`(s) = F (w`(s), u(s), s) s > t,

w`(t) = w`0.
(4.10)

The cost functional is defined:

J `
w`

0,t
(u) =

∫ T

t
L(w`(s), u(s), s)e−λs ds+ g(w`(T )),

with w` and y` linked though (4.8) and the nonlinear map F : R`×U → R` is given by:

F (w`(s), u(s), s) = M−1(−Sw`(s) + b(u(s))).

The value function v`, defined for the state w0 ∈ R`, is given by

v`(w`0, t) = inf
u∈Uad

J `
w`

0,t
(u),

and w` solves (4.10) with the control u and initial condition w0.

We give an idea how we have computed the intervals for reduced HJB. HJBs are defined
in Rn, but we have restricted our numerically domain Υh which is a bounded subset of
Rn. This is justified since y+∆tF (y, u) ∈ Υh for each y ∈ Υh and u ∈ Uad. We can chose
Υh = [a1, b1] × [a2, b2] × . . . [a`, b`] with a1 ≥ a2 ≥ . . . ≥ a`. How should we compute
these intervals [ai, bi]?
Ideally the intervals should be chosen so that the dynamics contains all the components of
the controlled trajectory. Moreover, they should be encapsulated because we expect that
their importance should decrease monotonically with their index and that our interval
lengths decrease quickly.
Let us suppose to discretize the space control with a finite number of elements U =
{u1, . . . , uM} where U is symmetric, to be more precise if ū ∈ U ⇒ −ū ∈ U.
Hence, if y`(s) =

∑̀
i=1
〈y(s), ψi〉ψi =

∑`
i=1wi(s)ψi, as a consequence, the coefficients

wi(s) ∈ [ai, bi]. We consider the trajectories solution y(s, uj) such that the control is
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constant u(s) ≡ uj for each tj , j = 1, . . . ,M. Then, we have

y`(s, uj) =
∑̀

i=1

〈y(s, uj), ψi〉ψi.

We write y`(s, uj) to stress the dependence on the constant control uj . Each trajectory

y`(s, uj) has some coefficients w
(j)
i (t) for i = 1, . . . , `, j = 1, . . . ,M. The coefficients

w
(j)
i (s) := 〈y(s, uj), ψi〉 will belong to intervals of the type [w

(j)
i ,w

(j)
i ] where we chose

ai, bi such that:

ai ≡ min{w(1)
i , . . . ,w

(M)
i }, i = 1, . . . , `,

bi ≡ max{w(1)
i , . . . ,w

(M)
i }, i = 1, . . . , `.

Then, we have a method to compute the intervals and we turn our attention to the
numerical solution of an optimal control problem for evolutive equation, as we will see
in the following section.

4.2. An error estimate for the coupled HJB and POD

This section is devoted to estimate the error of the approximation of the value function
which is computed coupling HJB and POD methods. The result is valid for an infinite
horizon problem. Although we have presented the method for a finite horizon problem,
one can think to obtain the same strategies when the time t is going to infinity getting
a steady HJB equation as (3.4).
Let us suppose the assumptions of Theorem 3.1 hold. Then, our goal is to estimate
‖V `

∆t − V ‖, where V `
∆t is obtained from the reduced model. Applying the triangular

inequality, we obtain:

‖V `
∆t − V ‖∞ ≤ ‖V − V∆t‖∞ + ‖V∆t − V `

∆t‖∞, (4.11)

where the term ‖V − V∆t‖∞ is known from (3.17). Let us recall that V∆t solves (3.5)
whereas:

V `
∆t(x

`) = min
u∈U

{
e−λ∆tV `

∆t(x
` + ∆tf `(x`, u)) + ∆tL`(x`, u)

}

for vertices x` ∈ R` such that Ψx ∈ Ω, f `(x`, u) := ΨT f(Ψy`, u) and L`(x`, u) :=
ΨTL(Ψy`, u).

Thus, for a given optimal control u∗, we get the following inequalities from standard
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triangular inequality:

‖V∆t(x)− V `
∆t(Ψ

Tx)‖∞ =
∥∥∥e−λ∆t

(
V∆t(x+ ∆tf(x, u∗))− V `

∆t(x+ ∆tf(ΨΨTx, u∗))
)

+

+ ∆t
(
L(x, u∗)− L(ΨΨTx, u∗)

)∥∥

≤ e−λ∆t
∥∥∥
(
V∆t(x+ ∆tf(x, u∗))− V `

∆t(x+ ∆tf(ΨΨTx, u∗))
)∥∥∥+

+ ∆t
∥∥L(x, u∗)− L(ΨΨTx, u∗)

∥∥ . (4.12)

The maximum has to be thought with respect to x ∈ Rn. As already explained the
computation of V∆t (x+ ∆tf(x, u∗)) needs an interpolation operator since x+∆tf(x, u∗)
may not be a point of the grid.
Let us we briefly recall the stability property of Polynomial Interpolation. Consider a

set of function values
{
f̃(xi)

}
which is a perturbation of the data f(xi) relative to the

nodes xi, with i = 0, . . . , n in an interval [a, b].
Denoting by In[f̃ ] the interpolating polynomial on the set of values f̃(xi) we have:

∥∥∥In[f(x)]− In[f̃(x)]
∥∥∥
∞
≤ Λn(x)

∥∥∥f(x)− f̃(x)
∥∥∥
∞
. (4.13)

where Λn(x) denotes the Lebesgue’s constant. From (4.12), applying (4.13) and the
triangular inequality we have:

∥∥∥V∆t (x+ ∆tf(x, u∗))− V `
∆t

(
x+ ∆tf(ΨΨTx, u∗)

)∥∥∥ ≤
Λn
(
‖x−ΨΨTx‖+ ∆t‖f(x, u∗)− f(ΨΨTx, u∗)‖

)
,

then for the function L we have:

‖L(x, u∗)− L(ΨΨTx, u∗)‖ ≤ KL‖x−ΨΨTx‖.

Furthemore if we assume that Theorem A.2 hold with:

‖x−ΨΨTx‖ ≤ δ` ‖f(x, u)− f(ΨΨTx, u)‖ ≤ ε`,

we have proved the following theorem:

Theorem 4.1 Assume the assumptions of Theorem 3.1 in Chapter 3 and Theorem A.2
holds. Then

‖V `
∆t − V ‖∞ ≤ C(∆t)1/2 +

Kf

λ(λ−Kf )

∆x

∆t
+ δ`(e−λ∆tΛn + ∆tKL) + ∆tΛnε

`

.

In Appendix A.2 we present a Theorem on the perturbation of ordinary differential
equations. Let us make a couple of remarks:

Remark 4.1 1. Theorem A.2 is rather useful in Model Order Reduction, since one
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may think y = ΨΨTx and g as the perturbed dynamics coming from the POD, e.g.
g(t, y) = 	T f(t,Ψy), where ΨΨT is the projection operator.

2. One can always take ε`, δ` small according to the computation of the snapthots.
This is something easy to verify once the POD basis is computed. Moreover, it is
guarenteed when ` → +∞ that f ≡ g. This helps us because if we increase the
number of basis functions `, we will get the desided tolerance (ε`, δ`).

4.3. Adapting POD approximation

In this section we present an adaptive method to compute POD basis functions. As we
have explained, our final goal is to obtain the optimal feedback law by means of HJB
equations, so we have a big constraint on the number of variables.
We will see that, for a parabolic equation, one can try to solve the problem with only
three/four POD basis functions; they are sufficient to describe the solution in a rather
accurate way. In fact the singular values decay rapidly and it is easier to work with a
really low dimensional problem (see Section 4.4.1 and 4.4.2).
On the contrary, hyperbolic equations do not have this property for their singular values
and they will require a rather large set of POD basis functions to get accurate results,
since there is a high variability during the evolution. Note that we can not follow the
approach suggested in [81] because we can not add more basis functions when it turns to
be necessary due to the constraint already mentioned. Then, it is quite natural to split
the problem into subproblems having different POD basis functions. The crucial point
is to decide the splitting in order to have the same number of basis functions in each
subdomain with a guaranteed accuracy in the approximation.
Let us first give an illustrative example for the parabolic case, considering a 1D advection-
diffusion equation:

{
ys(x, s)− εyxx(x, s) + cyx(x, s) + f(y(x, s)) = 0
y(x, 0) = y0(x),

(4.14)

with x ∈ [a, b], s ∈ [0, T ], ε, c ∈ R.
We use a finite difference approximation for this equation based on an explicit Euler
method in time combined with the standard centered approximation of the second order
term and with an up-wind correction for the advection term. The snapshots will be
taken from the sequence generated by the finite difference method. The final time is
T = 5, the nonlinear term is f ≡ 0, moreover a = −1, b = 4. The initial condition is
y0(x) = 5x− 5x2, when 0 ≤ x ≤ 1, 0 otherwise.
For ε = 0.05 and c = 1 with only 3 POD basis functions, the approximation fails
(see Figure 4.1). Note that in this case the advection is dominating the diffusion, a low
number of POD basis functions will not suffice to get an accurate approximation (Figure
4.1 top-right). However, the adaptive method which only uses 3 POD basis functions
will give accurate results (Figure 4.1 bottom-right).
The idea which is behind the adaptive method is the following: we do not consider all
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Figure 4.1.: Equation (4.14): solved with finite difference (top-left); POD-Galerkin ap-
proximation with 3 POD basis functions (top-right); solved via POD-
Galerkin approximation with 5 POD basis functions (bottom-left); Adapting
3 POD basis functions (bottom-right).
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the snapshots together in the whole interval [0, T ] but we group them. To this end we
prefer to split [0, T ], in sub-intervals

[0, T ] = ∪K−1
k=0 [Tk, Tk+1]

where K is a-priori unknown, T0 = 0, TK = T and Tk = ti for some i. In this way, choos-
ing properly the length of the k−th interval [Tk, Tk+1], we consider only the snapshots
falling in that sub-interval, by construction, we are sure to have enough snapshots in
every sub-interval to compute POD basis functions. Then, we have enough informations
in every sub-interval and we can apply the standard routines (explained in Section 2.1.2)
to get a “time local” POD basis.
Now let us explain how to divide our time interval [0, T ]. We will choose a parameter
to check the accuracy of the POD approximation and define a threshold. Above that
threshold we lose in accuracy so it is necessary to compute new POD basis functions.
A good parameter to check the accuracy is E(`) (see (2.7)). The method to define the
splitting of [0, T ] and the size of every sub-interval works as follows. We start computing
the SVD of the matrix Y that gives us informations about our dynamics in the whole
time interval. Then, we check the relative accuracy E(`) of the POD basis functions re-
lated to the snapthots of the interval we are considering. If that evaluation is not below
the desired accuracy we split the snapshots into two subintervals and we compute again
E(`), after having updated the POD basis functions. We iterate until for certain tk that
indicator is above the tolerance we set T1 = tk and we divide the interval in two parts,
[0, T1) and (T1, T ]. Now we just consider the snapshots related to the solution up to
the time T1. Then we iterate this idea until the indicator is below the threshold. When
the first interval is found, we restart the procedure in the interval [T1, T ] and we stop
when we reach the final time T . Note that the extrema of every interval coincide by
construction with one of our discrete times ti = i∆t so that the global solution is easily
obtained linking all the sub-problems which always have a snapshot as initial condition.
A low value for the threshold will also guarantee that we will not have big jumps passing
from one sub-interval to the next. Once we know we got accurate POD basis functions
we compute the solution of the problem in each sub-intervals. Moreover, in each interval
[Tk, Tk+1] we check the residual of the solution previously computed. For every s ∈ [0, T ],
let us define the residual of the solution with respect to equation (4.16) without control:

R(s) = ‖ys(x, s)− εyxx(x, s) + cyx(x, s) + f(y(x, s))‖. (4.15)

In our test we have always adopted the L1([0, T ]) norm. We have to choose a threshold
for the residual. If R is below this value we can go on and solve the problem in the
interval we are taking into account, otherwise we should divide again the interval. For
instance, by bisection, we obtain two new intervals. We consider the snapshots falling
in each interval to update the POD basis functions. After having updated the basis
functions we can compute the optimal solution in each subdomain. Note that we are
already working in a sub-interval selected according to E(`), so we do not need to check
again that indicator but only to update the POD basis functions.
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This idea can be applied also when we have a controlled dynamic (see (4.16)). First of
all we have to decide how to collect the snapshots, since the control u(t) is completely
unknown. One can make a guess and use the dynamics and the functional corresponding
to that guess, by these informations we can compute the POD basis. Once the POD
basis is obtained we will get the optimal feedback law after having solved a reduced
HJB equation as we already explained. Let us summarize the adaptive method in the
following step-by-step Algorithm 8.

Algorithm 8: Adaptive POD algorithm (Ad-POD)

1: collect the snapshots in [0,T]
2: divide [0, T ] according to E(`)
3: for i = 0 toK − 1 do
4: apply SVD to get the POD basis in each sub-interval [Ti, Ti+1]
5: discretize the space of controls
6: project the dynamics onto the (reduced) POD space
7: select the intervals for the POD reduced variables
8: solve the corresponding HJB in the reduced space for the interval [Ti, Ti+1]
9: check the norm of the residual of the solution in [Ti, Ti+1].

10: if R(s) < εR then
11: goto Step 17
12: else
13: Split again the interval into two sub-problem
14: Solve the corresponding HJB in the reduced space
15: goto Step 17 for both sub-problems.
16: end if
17: go back to the full domain space
18: end for

4.4. Numerical tests

In this section we present some numerical tests for the controlled heat equation and
for the advection-diffusion equation with a non-linear source term and a quadratic cost
functional. Consider the following advection-diffusion equation:

{
ys(x, s)− εyxx(x, s) + cyx(x, s) + f(y(x, s)) = u(s)
y(x, 0) = y0(x), y(a, t) = α, y(b, t) = β.

(4.16)

with x ∈ [a, b], s ∈ [0, T ], ε ∈ R+ and α, β, c ∈ R.
Note that changing the parameters c and ε we can obtain the heat equation (c = 0) and
the advection equation (ε = 0). In our tests the nonlinear term will be either f(z) ≡ 0
or f(z) = σ z

1+z where σ ∈ R. The functional to be minimized is:

Jy0,t(u(·)) =

∫ T

0
||y(x, s)− ŷ(x, s)||2 + γ||u(s)||2 ds, (4.17)
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i.e. we want to stay close to a reference trajectory ŷ while minimizing the norm of u.
Note that we dropped the discount factor setting λ = 0. Typically in our test prob-
lems ŷ is obtained by applying a particular control û to the dynamics. The numeri-
cal simulations reported in this chapter have been made on a server SUPERMICRO
8045C-3RB with 2 cpu Intel Xeon Quad-Core 2.4 Ghz and 32 GB RAM under SLURM
(https://computing.llnl.gov/linux/slurm/).

4.4.1. Test 1: Heat equation with smooth initial data

We compute the snapshots with a centered/forward Euler scheme with space step ∆x =
0.02, and time step ∆t = 0.012, ε = 1/60, c = 0, R = 0.01 and T = 5. The initial
condition is y0(x) = 5x − 5x2, f ≡ 0 and ŷ(x, s) = 0. In Figure 4.2 we compare four
different approximations concerning the heat equation: (a) is the solution for û(t) = 0, (b)
is its approximation via POD (non adaptive), (c) is the direct LQR solution computed by
MATLAB without POD and, finally, the approximate optimal solution obtained coupling
POD and HJB. The approximate value function is computed for ∆t = 0.1 and ∆x = 0.1
whereas the optimal trajectory as been obtained with ∆t = 0.01. Test 1 and even Test
2 have been solved in about half an hour of CPU time.
Note that in this example the approximated solution is rather accurate because the
regularity of the solution is high due to the diffusion term. Since in the limit the solution
tends to the average value the choice of the snapshots will not affect too much the
solution, i.e. even with a rough choice of the snapshots will give us a good approximation,
therefore we have not applied the adaptive technique. The difference between Figure 4.2
(bottom-left) and Figure 4.2 (bottom-right) is due to the fact that the control space
is continuous for Figure 4.2 (bottom-left) and discrete for Figure 4.2 (bottom-right)
where the small oscillations are due to the low accuracy in the computation of the value
function.

4.4.2. Test 2: Heat equation with non-smooth intial data

In this section we change the initial condition with a function which is only Lipschitz
continuos: y0(x) = 1 − |x|. According to Test 1, we consider the same parameters. (see
Figure 4.3). Riccati’s equation has been solved by a MATLAB LQR routine. Thus, we
have used the solution given by this routine as the correct solution in order to compare
the errors in L1 and L2 norm between the reduced Riccati’s equation and our approach
based on the reduced HJB equation. Since we do not have any information, the snapshots
are computed for û = 0. This is only a guess, but in the parabolic case it fits well due
to the diffusion term.

As in Test 1, the choice of the snapshots does not effect strongly the approximation due
to the asymptotic behavior of the solution and the adaptive method was not applied at
all. The presence of a Lipschitz continuous initial condition has almost no influence on
the global error (see Table 4.3).
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Figure 4.2.: Test 1:Heat Equation without control (top-left); Heat Equation without con-
trol and 3 POD basis functions (top-right); Controlled solution with LQR-
MATLAB (bottom-left); Approximate solution with POD (3 basis functions)
and HJB (bottom-right).

L1 L2

yLQR(·, T )− yPOD+LQR(·, T ) 0.0221 0.0172
yLQR(·, T )− yPOD+HJB(·, T ) 0.0204 0.0171

Table 4.3.: Test 2: L1 and L2 errors at time T for the optimal approximate solution.
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Figure 4.3.: Test 2: exact solution for û = 0 (top-left); Exact solution for û = 0 POD
(3 basis functions) (top-right); Approximate optimal solution for LQR-
MATLAB (bottom-left); Approximate solution with POD (3 basis func-
tions)and HJB (bottom-right).
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4.4.3. Test 3: Balance Truncation and POD for the control of heat equation

This test compares the solution of the LQR problem introduced in Section 4.4.1 obtained
with the full model and two reduction techniques as POD and BT (see Figure 4.4). The

initial condition in (4.14) is y0(x) = 2 sin(πx), c = 0, ε =
1

100
. The horizon is T = 3

and the desired state is ŷ(x, t) ≡ 0. Moreover we took f ≡ 0, α = 0 = β, γ = 10−10. In
this case the control in (4.16) is multiplied by an indicator functions equal to one when
x = 0.24, 0.49, 0.74 and zero elsewhere. As we can see from Figure 4.4 balance truncation
is much similar of the reference controlled solution. We have to say that the snapthots
in the POD case are computed taking u ≡ 0. The error between the BT approximation
and the reference solution is 0.03 whereas in the POD case is 0.05. At the bottom of
Figure 4.4 we can see the basis functions obtained with POD and with BT method.

4.4.4. Test 4: Advection-Diffusion equation

The advection-diffusion equation needs a different method. We can not use the same ŷ
we had in the parabolic case, mainly because in Riccati’s equation the control is free
and is not bounded, on the contrary when we solve an HJB we have to discretize the
space of controls. We modified the problem in order to deal with bang-bang controls. We
get ŷ in (4.17) just plugging in the control û ≡ 0. We have considered the control space
corresponding only to three values in [−1, 1], then U = {−1, 0, 1}. We first have tried to
get a controlled solution, without any adaptive method and, as expected, we obtained
a bad approximation (see Figure 4.5). From Figure 4.5 it is clear that POD with four
basis functions is not able to catch the behavior of the dynamics, so we have applied our
adaptive method.
We have considered: T = 3,∆x = 0.1,∆t = 0.008, a = −1, b = 4, R = 0.01 and
f ≡ 0. According to our algorithm, the time interval [0, 3] was divided into [0, 0.744] ∪
[0.744, 1.496]∪ [1.496, 3]. As we can see our last interval is bigger than the others, this is
due to the diffusion term (see Figure 4.6). The L2−error is 0.0761, and the computation of
the optimal solution via HJB has required about six hours of CPU time. In Figure 4.5 we
compare the exact solution with the numerical solution based on a POD representation.
Note that, in this case, the choice of only 4 basis functions for the whole interval [0, T ]
gives a very poor result due to the presence of the advection term. Looking at Figure
4.6 one can see the improvement of our adaptive technique which takes always 4 basis
functions in each sub-interval.
In order to check the quality of our approximation we have computed the numerical
residual, defined as:

R(s) = ‖ys(x, s)− εyxx(x, s) + cyx(x, s)− u(s)‖.

The residual for the solution of the control problem computed without our adaptive
technique is 1.1, whereas the residual for the adaptive method is 2 · 10−2. As expected
from the pictures, there is a big difference between these two values.
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Figure 4.4.: Test 3: Heat Equation without control (top-left); LQR solution (top-right);
Controlled solution with BT (middle-left); Controlled Solution with POD
(2 basis functions) (middle-right); Balance Truncations basis functions
(bottom-left); POD Basis functions (bottom-right).
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Figure 4.5.: Test 4: Solution ŷ on the left, approximate solution on the right with POD
(4 basis functions).

Figure 4.6.: Test 4: Solution for û ≡ 0 (left), approximate optimal solution (right).
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4.4.5. Test 5: Advection-Diffusion equation

In this test we take a different ŷ, namely the solution of (4.16) corresponding to the
control

û(t) =




−1 0 ≤ t < 1
0 1 ≤ t < 2
1 2 ≤ t ≤ 3.

We want to emphasize we can obtain nice results when the space of controls has few
elements. The parameters were the same used in Test 4. The L2−error is 0.09, and the
time was the same we had in Test 4. In Figure 4.7 we can see our approximation. In

Figure 4.7.: Test 5: Solution for û (left), approximate optimal solution (right).

Figure 4.7 one can see that the adaptive technique can also deal with discontinuous
controls.
In this test, the residual for the solution of the control problem without our adaptive
technique is 2, whereas the residual for the adaptive method is 3 · 10−2. Again, the
residual shows the higher accuracy of the adaptive routine.

4.4.6. Test 6: A nonlinear heat equation

We compute the snapshots with a centered/forward Euler scheme with space step ∆x =
0.05, and time step ∆t = 0.0125, f(z) = σ z

1+z , ε = 1/10, c = 0, γ = 0.01, a = 0, b =
1, σ = 10 and T = 1. The initial condition is y0(x) = 0, α = 1, β = 1. ∆t and ∆x are
chosen according to the CFL condition for parabolic problems (see [80]). One may avoid
this restriction performing an implicit scheme. In Figure 4.8 we compare three different
approximations concerning the nonlinear heat equation: the first one is the solution for
û(t) = 0, the second one is its approximation via POD (non adaptive), and the last one
approximate optimal solution obtained coupling POD and HJB. The approximate value
function is computed for ∆t = 0.1 ∆x = 0.1 whereas the optimal trajectory as been
obtained with ∆t = 0.0125.
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Figure 4.8.: TEST 6: Snapshots (top), POD approximation (bottom-left), controlled so-
lution (bottom-right).

As we can see in Figure 4.8 we are able to reproduce the behavior of the reference solution
either with only POD method either coupling POD method and dynamic programming.
The function ŷ(x, s) is the solution of (4.16) plugging the control chosen before. We
have considered the control space corresponding only to three values in [−1, 1], then
U = {−1, 0, 1}. The control space is not bang-bang, in fact the control 0 will turn out
to be the optimal solution. Note that in this example the approximate solution is rather
accurate because the regularity of the solution is high due to the fact that the diffusion
term is dominating. The nonlinear term do not force us to increase the number of POD
basis functions or, in our case, to deal with an adaptive method. The error computed
with `1−norm is 1.14 · e− 04 while the max norm is 0.1272. With this tests we want to
emphasize the quality of the POD method when there are not any advection terms in
the equation, even for nonlinear equations. Indeed the adaptive method was not applied.
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Figure 4.9.: Test 7: Snapshots (top-left), POD approximation without adaptive method
(top-right), POD approximation with adaptive method (bottom-left), con-
trolled approximation with adaptive method (bottom-right)

4.4.7. Test 7: A nonlinear advection-diffusion equation

The advection-diffusion equation needs a different approach. We get ŷ in (4.16) just
plugging in the control û ≡ 0. We have considered the same control space we had in
Test 6. We first have tried to get a controlled solution, without any adaptive method
and, as expected, we obtained a bad approximation (see Figure 4.9). This is why we
have to apply an adaptive method, if we do not get good POD basis functions it will
not be possible to have a accurate approximation for the controlled equation. We have
considered: T = 3,∆x = 0.05,∆t = 0.025, a = −3, b = 1, α = 0, β = 1, σ = 2, y0(x) = 0,
γ = 0.01 and f(x) = σ x

1+x . According to our method, the time interval [0, 3] was divided
into six sub-intervals. In Figure 4.9 we compare the exact solution with the numerical
solution based on a POD representation. Note that, in this case, the choice of only 4
basis functions for the whole interval [0, T ] gives a very poor result due to the presence of
the advection term. Looking at Figure 4.9 one can see the improvement of the adaptive
technique which takes always 4 basis functions in each sub-interval.
We can see that our adaptive method is able to follow the right direction of the solution.
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The approximate solution is not smooth but this is normal since we are changing the
basis function several times. In order to check the quality of our approximation we have
computed the numerical residual and the error in `1−norm and `∞−norm. As we can see
in Table 4.9 there is a big difference if we consider the adaptive method or not, expecially
when we deal with `1−norm. Table 4.9 presents errors and residuals corresponding to

POD Ad-POD Ad-POD+HJB

`1 error 1.338 0.303 0.5016
`∞ error 1.1801 0.92 0.8723
`1 residual 1.33 0.29 0.29

Table 4.9.: TEST 7: Errors and residuals for different approximations.

different approximations: POD solution (second column), adaptive POD method (third
column) and controlled solution computed by the adaptive method (fourth column).
As we can see, there is a big difference when we compute the `1− error in the case of
the adaptive or the non-adaptive method. We can significatly decrease, split in half,
the error. Of course, in the simulation which involves the dynamic approach there are
other errors due to the numerical approximation of HJB equations. The `∞− norm is
meaningless since it computes only the max error in all the interval and it may happen,
for instance, to have a big gap somewhere due to the adaptive method or to the coarse
control discrete space we deal with.



5. Asymptotic Stability of POD based
Model Predictive Control for a
semilinear parabolic PDE

Nonlinear model predictive control (NMPC) is a method to approximately synthesize
time infinite horizon optimal feedback laws from the iterative solution of finite horizon
optimal control problems.We analyze the stability of NMPC without terminal constraints
applied to a semilinear parabolic equation with advection term. A minimal finite hori-
zon is determined to guarantee the stabilization of the system. Furthermore, we will
deal with constrained optimal control problems. Since the minimal horizon can be large,
the numerical approximation is very expensive. Therefore, POD model reduction is ap-
plied to substantially reduce the computational cost by computing suboptimal solutions.
Numerical examples will illustrate the efficiency of the method.

5.1. Formulation of the control system

Let Ω = (0, 1) ⊂ R be the spatial domain. For the initial time t◦ ∈ R+
0 = {s ∈ R | s ≥ 0}

we define the space–time cylinder Q = Ω × (t◦,∞). By H = L2(Ω) we denote the
Lebesgue space of (equivalence classes of) functions which are (Lebesgue) measurable
and square integrable. We endow H by the standard inner product – denoted by 〈· , ·〉H
– and the associated induced norm ‖ϕ‖H = 〈ϕ,ϕ〉1/2H . Furthermore, V = H1

0 (Ω) ⊂ H
stands for the Sobolev space

V =

{
ϕ ∈ H

∣∣∣ϕ admits a weak derivative ϕ′ ∈ H and ϕ(0) = ϕ(1) = 0

}
.

Recall that both H and V are Hilbert spaces. In V we use the inner product

〈ϕ, φ〉V =

∫

Ω
ϕ′(x)φ′(x) dx, for ϕ, φ ∈ V,

and set ‖ϕ‖V = 〈ϕ,ϕ〉1/2V for ϕ ∈ V . For more details on Lebesgue and Sobolev spaces
we refer the reader to [34], for instance. When the time t is fixed for a given function
ϕ : Q→ R, the expression ϕ(t) stands for a function ϕ(· , t) considered as a function in
Ω only.

We consider the following control system governed by the following semilinear parabolic
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partial differential equation: y = y(x, t) solves the initial boundary value problem

yt − θyxx + yx + ρ(y3 − y) = u in Q, (5.1a)

y(0, ·) = y(1, ·) = 0 in (t◦,∞), (5.1b)

y(t◦) = y◦ in Ω. (5.1c)

In (5.1a) it is assumed that the control u = u(x, t) belongs to the set of admissible
control inputs

Uad(t◦) =
{
u ∈ L2(t◦,∞;H)

∣∣u ∈ Uad almost everywhere (a.e.) (x, t) ∈ Q
}
,

where U(t◦) = L2(t◦,∞;H) and Uad = {u ∈ R |ua ≤ u ≤ ub} and ua, ub are given
constants with ua ≤ 0 ≤ ub. The parameters θ and ρ satisfy

(θ, ρ) ∈ Dad =
{

(θ̃, ρ̃) ∈ R2
∣∣ θa ≤ θ̃ and ρa ≤ ρ̃

}

with positive constants θa and ρa. Further, in (5.1c) the initial condition y◦ = y◦(x) is
supposed to belong to H.

A solution to (5.1) is interpreted in the weak sense as follows: for given (t◦, y◦) ∈ R+
0 ×H

and u ∈ Uad(t◦) we call y a weak solution to (5.1) for fixed (θ, ρ) ∈ Dad if y(t) ∈ V ,
yt(t) ∈ V ′ holds a.e. t ≥ t◦ and y satisfies y(t◦) = y◦ in H as well as

d

dt
〈y(t), ϕ〉H +

∫

Ω
θyx(t)ϕ′ +

(
yx(t) + ρ(y3(t)− y(t))

)
ϕdx =

∫

Ω
u(t)ϕdx (5.2)

for all ϕ ∈ V and a.e. t > t◦. The following result is proved in [28], for instance.

Proposition 5.1 For given (t◦, y◦) ∈ R+
0 × H and u ∈ Uad(t◦) there exists a unique

weak solution y = y[u,t◦,y◦] to (5.1) for every (θ, ρ) ∈ Dad.

Let (t◦, y◦) ∈ R+
0 ×H be given. Due to Proposition 5.1 we define the quadratic cost

functional:

Jy◦,t◦(u) :=
1

2

∫ ∞

t◦
‖y[u,t◦,y◦](t)− ŷ‖2Hdt+

λ

2

∫ ∞

t◦
‖u(t)‖2H dt (5.3)

for all u ∈ L2(Q) ⊃ Uad(t◦), where y[u,t◦,y◦] denotes the unique weak solution to (5.1).
We suppose that ŷ = ŷ(x) is a given desired state in H (e.g., the equilibrium ŷ = 0) and
that λ > 0 denotes a fixed weighting parameter. Then we consider the nonlinear infinite
horizon optimal control problem

min Jy◦,t◦(u) subject to u ∈ Uad(t◦). (5.4)

Existence results for this optimal control problem can be found in [10]. Suppose that the
trajectory y is measured at discrete time instances

tn = t◦ + n∆t, n ∈ N
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where the time step ∆t > 0 stands for the time step between two measurements. Thus,
we want to select a control u ∈ Uad(t) such that the associated trajectory y[u,t◦,y◦] follows
a given desired state ŷ as good as possible. This problem is called a tracking problem,
and, if ŷ = 0 holds, a stabilization problem.

Since our goal is to be able to react to the current deviation of the state y at time
t = tn from the given reference value ŷ, we would like to have the control in feedback
form, i.e., we want to determine a mapping µ : H → Uad(t◦) with u(t) = µ(y(tn)) for
t ∈ [tn, tn+1].

5.2. Nonlinear model predictive control

We present a nonlinear model predictive control (NMPC) approach to compute a map-
ping µ which allows a representation of the control in feedback form. This strategy is
also known as receding horizon control (RHC) method. For more details we refer the
reader to the monographs [52, 82], for instance.

5.2.1. The NMPC method

In this subsection we will introduce the NMPC algorithm. For that purpose we write the
weak form of our control system (5.1) as a parametrized nonlinear dynamical system.
Let us introduce the θ-dependent linear operator A which maps the space V into its
dual space V ′ as follows:

Aϕ = −θϕxx + ϕx ∈ V ′ for ϕ ∈ V and θ ≥ θa.

Moreover, let f(·) be a mapping from V into V ′ given by

f(ϕ) = ρ(ϕ3 − ϕ) ∈ V ′ for ϕ ∈ V and ρ ≥ ρa.

Setting F(ϕ, v) = Aϕ+ f(ϕ)− v for ϕ ∈ V , v ∈ H and (θ, ρ) ∈ Dad we can express (5.2)
as the nonlinear dynamical system

y′(t) = F(y(t), u(t)) ∈ V ′ for all t > t◦, y(t◦) = y◦ in H, (5.5)

for given (t◦, y◦) ∈ R+
0 × H. The cost functional has been already introduced in (5.3).

Summarizing, we want to solve the following infinite horizon minimization problem

min Jy◦,t◦(u) =

∫ ∞

t◦
L
(
y[u,t◦,y◦](t), u(t)

)
dt subject to u ∈ Uad(t◦), (5.6)

where we have defined the running quadratic cost

L(ϕ, v) =
1

2

(
‖ϕ− ŷ‖2H + λ ‖v‖2H

)
for ϕ, v ∈ H. (5.7)
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If we have determined a state feedback µ for (5.6), the control u(t) = µ(y(tn)), n ∈ N0,
allows a closed loop representation for t ∈ [t◦,∞). Then, for a given initial condition
y0 ∈ H we set t◦ = 0, y◦ = y0 in (5.5) and insert µ to obtain the closed-loop form

y′(t) = F(y(t), µ(y(t))) in V ′ for t ∈ (t◦,∞),

y(t◦) = y◦ in H.
(5.8)

Although an infinite horizon problem may be very hard to solve due to the dimen-
sionality of the problem, it guarantees the stabilization of the problem. This is a very
important issue for optimal control problems. In an NMPC algorithm a state feedback
law is computed for (5.6) by solving a sequence of finite time horizon problems.

To formulate the NMPC algorithm we introduce the finite horizon quadratic cost
functional as follows: for (t◦, y◦) ∈ R+

0 ×H and u ∈ UNad(t◦) we set

JNy◦,t◦(u) =

∫ tN◦

t◦
L
(
y[u,t◦,y◦](t), u(t)

)
dt,

where N is a natural number, tN◦ = t◦ + N∆t is the final time and N∆t denotes the
length of the time horizon for the chosen time step ∆t > 0. Further, we introduce the
Hilbert space UN (t◦) = L2(t◦, tN◦ ;H) and the set of admissible controls

UNad(t◦) =
{
u ∈ UN (t◦)

∣∣u(x, t) ∈ Uad a.e. (x, t) ∈ QN
}

with QN = Ω× (t◦, tN◦ ) ⊂ Q. In Algorithm 9 the method is presented.
In each iteration over n we store the optimal control on the first time interval [tn, tn+1]

Algorithm 9: Nonlinear MPC algorithm (NMPC)

Require: time step ∆t > 0, finite control horizon N ∈ N, weighting param. λ > 0.
1: for n = 0, 1, 2, . . . do
2: Measure the state y(tn) ∈ H of the system at tn = n∆t.
3: Set t◦ = tn = n∆t, y◦ = y(tn) and compute a global solution to

min ĴN (u; t◦, y◦) subject to u ∈ UNad(t◦). (5.9)

We denote the obtained optimal control by ūN .
4: Define the NMPC feedback value µN (y(t)) = ūN (t), t ∈ (t◦, t◦ + ∆t] and use

this control to compute the associated state y = y[µN (·),t◦,y◦] by solving (5.5)
on [t◦, t◦ + ∆t].

5: end for

and the associated optimal trajectory of the sampling time. Then, we initialize a new
finite horizon optimal control problem whose initial condition is given by the optimal
trajectory ȳ(t) = y[µN (·),t◦,y◦](t) at t = t◦+ ∆t using the optimal control µN (y(t)) = ū(t)
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for t ∈ (t◦, t◦ + ∆t]. We iterate this process. Of course, the larger the horizon is, the
better approximation one can have, but we would like to have the minimal horizon which
can guarantee stability (see [8]). Note that (5.9) is an open loop problem on a finite time
horizon [t◦, t◦ +N∆t] which will be studied in Section 5.3.

5.2.2. Dynamic programming principle and asymptotic stability

We, briefly, recall the essential theoretical results from DPP and stability analysis. The
value function v is defined as follows for an infinite horizon optimal control problem:

v(t◦, y◦) := inf
u∈Uad(t◦)

Jy◦,t◦(u) for (t◦, y◦) ∈ R+
0 ×H.

Let N ∈ N be chosen. Due to the dynamic programming principle (DPP) the value
function v satisfies for any k ∈ {1, . . . , N}, with tk◦ = tk + k∆t :

v(t◦, y◦) = inf
u∈Uk

ad(t◦)

{∫ t◦+k∆t

t◦
L
(
y[u,t◦,y◦](t), u(t)

)
dt+ v

(
y[u,t◦,y◦](t◦ + k∆t)

)}
,

which holds under very general conditions on the data; see, e.g., [15] for more details.
The value function for the finite horizon problem (5.9) is of the following form:

vN (t◦, y◦) = inf
u∈UN

ad(t◦)
JNy◦,t◦(u) for (t◦, y◦) ∈ R+

0 ×H.

The value function vN satisfies the DPP for the finite horizon problem for t◦ + k∆t,
0 < k < N :

vN (t◦, y◦)

= inf
u∈Uk

ad(t◦)

{∫ t◦+k∆t

t◦
L
(
y[u,t◦,y◦](t), u(t)

)
dt+ vN

(
y[u,t◦,y◦](t◦ + k∆t)

)}
.

Nonlinear stability properties can be expressed by comparison functions; see, e.g., [52,
Definition 2.13].

Definition 5.1 We define the following classes of comparison functions:

K =
{
β : R+

0 → R+
0

∣∣β is continuous, strictly increasing and β(0) = 0
}
,

K∞ =
{
β : R+

0 → R+
0

∣∣β ∈ K, β is unbounded
}
,

L =
{
β : R+

0 → R+
0

∣∣β is continuous, strictly decreasing, lim
t→∞

β(t) = 0
}
,

KL =
{
β : R+

0 × R+
0 → R+

0

∣∣β is continuous, β(· , t) ∈ K, β(r, ·) ∈ L
}
.

Using a comparison function β ∈ KL we introduce the concept of asymptotic stability;
see, e.g. [52, Definition 2.14].



5.2 Nonlinear model predictive control 77

Definition 5.2 Let Let y[µ(·),t◦,y◦] be the solution to (5.8) and y∗ ∈ H be an equilibrium
for (5.8), i.e., we have y∗ = F(y∗, µ(y∗)). Then, y∗ is said to be locally asymptotically
stable if there exists a constant η > 0 and a function β ∈ KL such that the inequality

‖y[µ(·),t◦,y◦](t)− y∗‖H ≤ β
(
‖y◦ − y∗‖H , t) (5.10)

holds for all y◦ ∈ H satisfying ‖y◦ − y∗‖H < η and all t ≥ t◦.
Let us recall the main result about asymptotic stability via DPP; see [51].

Proposition 5.2 Let N ∈ N be chosen and the feedback mapping µN be computed by
Algorithm 9. Assume that there exists an αN ∈ (0, 1] such that for all (t◦, y◦) ∈ R+

0 ×H
the relaxed dynamic programming principle

vN (t◦, y◦) ≥ vN
(
t◦ + ∆t, y[µN (y◦),t◦,y◦](t◦ + ∆t)

)
+ αNL

(
y◦, µN (y◦))

)
(5.11)

holds. Furthermore, we have for all (t◦, y◦) ∈ R+
0 ×H:

αNv(t◦, y◦) ≤ αNJNy◦,t◦(µN (y◦)) ≤ vN (t◦, y◦) ≤ v(t◦, y◦), (5.12)

where y[µN (·),t◦,y◦] solves the closed-loop dynamics (5.8) with µ = µN . If, in addition,
there exists an equilibrium y∗ ∈ H and α1, α2 ∈ K∞ satisfying

L∗(y◦) = min
u∈Uad

L(y◦, u) ≥ α1

(
‖y◦ − y∗‖H

)
, (5.13a)

α2

(
‖y◦ − y∗‖H

)
≥ vN (t◦, y◦) (5.13b)

hold for all (t◦, y◦) ∈ R+
0 ×H, then y∗ is a globally asymptotically stable equilibrium for

(5.8) with the feedback map µ = µN and value function vN .

Remark 5.1 1) Our running cost L defined in (5.7) satisfies condition (5.13a) for
the choice ŷ = y∗. Further, (5.13b) follows from the finite horizon quadratic cost
functional ĴN , the definition of the value function vN and our a-priori analysis
presented in Lemma 5.1 below. Therefore, we only have to check the relaxed DPP
(5.11).

2) It is proved in [51] that lim
N→∞

αN = 1. Hence, we would like to find αN close to one

to have the best approximation of v in terms of vN . On the other hand, a large N
implies that the numerical solution of (5.9) is much more involved.

In order to estimate αN in the relaxed DPP we require the exponential controllability
property for the system.

Definition 5.3 System (5.5) is called exponentially controllable with respect to the run-
ning cost L if for each (t◦, y◦) ∈ R+

0 ×H there exists two real constants C > 0, σ ∈ [0, 1)
and an admissible control u ∈ Uad(t◦) such that:

L(y[u,t◦,y◦](t), u(t)) ≤ Cσt−t◦L∗(y◦) a.e. t ≥ t◦. (5.14)
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Lemma 5.1 Let (t◦, y◦) ∈ R+
0 ×H and u = 0. Then, the solution to (5.5) satisfies the

a-priori estimate
‖y(t)‖H ≤ e−γ(t−t◦) ‖y◦‖H a.e. t ≥ t◦ (5.15)

with γ = γ(θ, ρ) = θ/CV − ρ.

Proof. Recall that V is continuously (even compactly) embedded into H. Due to the
Poincaré inequality [34] there exists a constant CV > 0 such that

‖ϕ‖H ≤ CV ‖ϕ‖V for all ϕ ∈ V. (5.16)

Using (5.16), choosing u(t) = 0 and ϕ = y(t) in (5.2) we obtain

d

dt
‖y(t)‖2H +

2θ

CV
‖y(t)‖2H ≤ 2ρ ‖y(t)‖2H a.e. t ≥ t◦

which implies
d

dt
‖y(t)‖2H ≤ 2

(
ρ− θ

CV

)
‖y(t)‖2H a.e. t ≥ t◦.

Thus, by Gronwall’s inequality we derive (5.15) with γ = θ/CV − ρ.

Remark 5.2 For θ > ρCV we have γ > 0. Then, (5.15) implies that ‖y(t)‖H < ‖y◦‖H
for any t > t◦. Moreover, it is easy to check that the origin y◦ = 0 is unstable for γ < 0.

Let us choose ŷ = 0. Suppose that we have a particular class of state feedback controls
of the form u(x, t) = −Ky(x, t) with a positive constant K; see [10]. This assumption
helps us to derive the exponential controllability in terms of the running cost L and to
compute a minimal finite time prediction horizon N∆t ensuring asymptotic stability. In
this case, (5.15) has to be modified. Using similar arguments as in the proof of Lemma 5.1
we find for a given K > 0 that the state y = y[−Ky,t◦,y◦] satisfies

‖y(t)‖H ≤ e−γ(K)(t−t◦) ‖y◦‖H a.e. t ≥ t◦ (5.17)

with γ(K) = θ/CV + K − ρ. Thus, if K > ρ − θ/CV holds, ‖y(t)‖H tends to zero for
t → ∞. Combining (5.17) with the desired exponential controllability (5.14) and using
ŷ = 0 we obtain for all t ≥ t◦ (see [10]):

L(y(t), u(t)) =
1

2

(
‖y(t)‖2H + λ ‖u(t)‖2H

)
=

1

2
(1 + λK2) ‖y(t)‖2H

≤ 1

2
C(K)e−2γ(K)(t−t◦) ‖y◦‖2H = C(K)σ(K)t−t◦ L∗(y◦)

(5.18)

a.e. t ≥ t◦ and for every (t◦, y◦) ∈ R+
0 ×H, where

C(K) = (1 + λK2), σ(K) = e−2γ(K), γ(K) = θ/CV +K − ρ. (5.19)

In the following theorem we provide an explicit formula for the scalar αN in (5.11). A
complete discussion is given in [51].



5.2 Nonlinear model predictive control 79

K y◦ < 0 y◦ > 0

y◦ < 0 K < ub/|y◦| no constraints

y◦ > 0 K < min
{
ua/y◦, ub/|y◦|

}
K < |ua|/y◦

Table 5.0.: Constraints for the feedback factor K in u(x, t) = −Ky(x, t) considering the
bilateral control constraints (5.21) and the initial condition (5.22).

Theorem 5.1 Assume that the system (5.5) and L statisfy the controllability condition
(5.14). Let the finite prediction horizon N∆t be given with N ∈ N and ∆t > 0. Then the
parameter αN depends on K and it is given by the explicit formula:

αN = 1− (ηN − 1)
∏N
i=2(ηi − 1)

∏N
i=2 ηi −

∏N
i=2(ηi − 1)

(5.20)

where ηi(K) = C(1− σi)/(1− σ) and the constants C = C(K), σ = σ(K) are given by
Definition 5.3.

Remark 5.3 Theorem 5.1 suggests how we can compute the minimal horizon N which
ensures asympotic stability. Due to we maximize

1− (ηN (K)− 1)
∏N
i=2(ηi(K)− 1)

∏N
i=2 ηi(K)−∏N

i=2(ηi(K)− 1)
, ηi(K) = (1 + λK2)

1− e−2i(θ/CV +K−ρ)

1− e−2(θ/CV +K−ρ)

with respect to K > max(0, ρ − θ/CV ) and N ∈ N in order to get αN > 0. Further,
we suppose that u ∈ UN (t◦) holds. Hence, we have to guarantee the bilateral control
constraints

ua ≤ −Ky(x, t) ≤ ub a.e. (x, t) ∈ QN , (5.21)

where ua ≤ 0 ≤ ub holds. Under these assumptions, the computation of K and N has to
take into account the influence of the control constraints. Since we determine K in such
a way that γ(K) = θ/CV +K − ρ > 0 is satisfied, we derive from (5.17) that

‖y(t)‖H ≤ ‖y◦‖H a.e. t ≥ t◦.

Let us suppose that we have a bounded initial condition such that y◦ 6= 0 and ‖y(t)‖C(Ω) ≤
‖y◦‖C(Ω) a.e. t ≥ t◦. Then, we define

y◦ = min
x∈Ω

y◦(x), y◦ = max
x∈Ω

y◦(x). (5.22)

Then, K has to satisfy K > max(0, ρ− θ/CV ) and the restrictions shown in Table 5.0.
Summarizing, K has always an upper bound due to the constraints ua, ub and a lower
bound due to the stabilization related to γ(K) > 0.
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5.3. The finite horizon problem

In this section we discuss (5.9), which has to be solved at each level of Algorithm 9.

5.3.1. The open loop problem

Recall that we have introduced the final time tN◦ = t◦ + N∆t and the control space
UN (t◦) = L2(t◦, tN◦ ;H). The space YN (t◦) = W (t◦, tN◦ ) is given by

W (t◦, tN◦ ) =
{
ϕ ∈ L2(t◦, tN◦ ;V )

∣∣ϕt ∈ L2(t◦, tN◦ ;V ′)
}
,

which is a Hilbert space endowed with the common inner product [32, pp. 472-479].
We define the Hilbert space XN (t◦) = YN (t◦) × UN (t◦) endowed with the standard
product topology. Moreover, we introduce the Hilbert space ZN (t◦) = ZN1 (t◦)×H with
ZN1 (t◦) = L2(t◦, tN◦ ;V ) and the nonlinear operator e = (e1, e2) : XN (t◦)→ ZN (t◦)′ by

〈e1(x), ϕ〉ZN
1 (t◦)′,ZN

1 (t◦) =

∫ tN◦

t◦
〈yt(t), ϕ(t)〉V ′,V dt

+

∫ tN◦

t◦

∫

Ω
θyx(t)ϕ(x) +

(
yx(t) + ρ

(
y(t)3 − y(t)

)
− u(t)

)
ϕ(t) dxdt,

〈e2(x), φ〉H = 〈y(t◦)− y◦, φ〉H

for x = (y, u) ∈ XN (t◦), (ϕ, φ) ∈ ZN (t◦), where we identify the dual ZN (t◦)′ of ZN (t◦)
with L2(t◦, tN◦ ;V ′)×H and 〈· , ·〉ZN

1 (t◦)′,ZN
1 (t◦) denotes the dual pairing between ZN1 (t◦)′

and ZN1 (t◦). Then, for given u ∈ UN (t◦) the weak formulation for (5.2) can be expressed
as the operator equation e(x) = 0 in ZN (t◦)′. Further, we can write (5.9) as a constrained
infinite dimensional minimization problem

min J(x) =

∫ tN◦

t◦
L(y(t), u(t)) dt s.t. x ∈ FNad(t◦) (5.23)

with the feasible set

FNad(t◦) =
{
x = (y, u) ∈ XN (t◦)

∣∣ e(x) = 0 in ZN (t◦)′ and u ∈ UNad(t◦)
}
.

For given fixed control u ∈ UNad(t◦) we consider the state equation e(y, u) = 0 ∈ ZN (t◦)′,
i.e., y satisfies

d

dt
〈y(t), ϕ〉H +

∫

Ω
θyx(t)ϕ′ +

(
yx(t) + ρ(y(t)3 − y(t))

)
ϕdx

=

∫

Ω
u(t)ϕdx f.f.a. t ∈ (t◦, tN◦ ],

〈y(t◦), ϕ〉H = 〈y◦, ϕ〉H

(5.24)

for all ϕ ∈ V . The following result is proved in [96, Theorem 5.5].



5.3 The finite horizon problem 81

Proposition 5.3 For given (t◦, y◦) ∈ R+
0 ×H and u ∈ UNad(t◦) there exists a unique weak

solution y ∈ YN (t◦) to (5.24) for every (θ, ρ) ∈ Dad. If, in addition, y◦ is essentially
bounded in Ω, i.e., y◦ ∈ L∞(Ω) holds, we have y ∈ L∞(QN ) satisfying

‖y‖YN (t◦) + ‖y‖L∞(QN ) ≤ C
(
‖u‖UN (t◦) + ‖y◦‖L∞(Ω)

)
(5.25)

for a C > 0, which is independent of u and y◦.

Adopting (5.25) it can be shown that (5.23) possesses at least one (local) optimal
solution which we denote by x̄N = (ȳN , ūN ) ∈ FNad(t◦); see [96, Chapter 5]. For the
numerical computation of x̄N we turn to first-order necessary optimality conditions for
(5.23). To ensure the existence of a unique Lagrange multiplier we investigate the surjec-
tivity of the linearization e′(x̄N ) : XN (t◦) → ZN (t◦)′ of the operator e at a given point
x̄N = (ȳN , ūN ) ∈ XN (t◦). Note that the Fréchet derivative e′(x̄N ) = (e′1(x̄N ), e′2(x̄N )) of
e at x̄N is given by

〈e′1(x̄N )x, ϕ〉ZN
1 (t◦)′,ZN

1 (t◦) =

∫ tN◦

t◦
〈yt(t), ϕ(t)〉V ′,V dt

+

∫ tN◦

t◦

∫

Ω
θyx(t)ϕ(x) +

(
yx(t) + ρ

(
3ȳN (t)2 − 1

)
y(t)− u(t)

)
ϕ(t) dxdt,

〈e′2(x̄N )x, φ〉H = 〈y(t◦), φ〉H

for x = (y, u) ∈ XN (t◦), (ϕ, φ) ∈ ZN (t◦). Now, the operator e′(x̄N ) is surjective if and
only if for an arbitrary F = (F1, F2) ∈ ZN (t◦)′ there exists a pair x = (y, u) ∈ XN (t◦)
satisfying e′(x̄N ) = F in ZN (t◦)′ which is equivalent with the fact that there exists an
u ∈ UN (t◦) and an y ∈ YN (t◦) solving the linear parabolic problem

yt − θyxx + yx + ρ(3ȳ2 − 1)y = F1 in ZN1 (t◦)′, y(t◦) = F2 in H. (5.26)

Using standard arguments [32] it follows that there exists for any u ∈ UN (t◦) a unique
y ∈ YN (t◦) solving (5.26). Thus, e′(x̄N ) is a surjective operator and the local solution
x̄N to (5.23) can be characterized by first-order optimality conditions. We introduce the
Lagrangian by

L(x, p, p◦) = J(x) + 〈e(x), (p, p◦)〉ZN (t◦)′,ZN (t◦)

for x ∈ XN (t◦) and (p, p◦) ∈ ZN (t◦). Then, there exists a unique associated Lagrange
multiplier pair (p̄N , p̄◦) to (5.23) satisfying the optimality system

∇yL(x̄N , p̄N , p̄N◦ )y = 0 ∀y ∈ YN (t◦) (adjoint equation)

∇uL(x̄N , p̄N , p̄N◦ )(u− ūN ) ≥ 0 ∀u ∈ UNad(t◦) (variational inequality),

〈e(x̄N ), (p, p◦)〉ZN (t◦)′,ZN (t◦) = 0 ∀(p̄, p̄0) ∈ ZN (t◦) (state equation).
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It follows from variational arguments that the strong formulation for the adjoint equation
is of the form

−p̄Nt − θp̄Nxx − p̄Nx − ρ
(
1− 3(ȳN )2

)
p̄N = ŷ − ȳN in QN ,

p̄N (0, ·) = p̄N (1, ·) = 0 in (t◦, tN◦ ),

p̄N (tN◦ ) = 0 in Ω.

(5.27)

Moreover, we have p̄N◦ = p̄N (t◦). The variational inequality has the form

∫ tN◦

t◦

∫

Ω
(λūN − p̄N )(u− ūN ) dxdt ≥ 0 for all u ∈ UNad(t◦). (5.28)

Using the techniques as in [99, Proposition 2.12] one can proof that second-order
sufficient optimality conditions can be ensured provided the residuum ‖ȳN− ŷ‖L2(t◦,tN◦ ;H)

is sufficiently small.

5.3.2. POD reduced order model for open-loop problem

To solve (5.23) we apply a reduced-order discretization based on proper orthogonal
decomposition (POD); see [53]. In this subsection we briefly recall the POD method,
present an a-priori error estimate for the POD solution to the state equation e(x) = 0 ∈
ZN (t◦)′ and formulate the POD Galerkin approach for (5.23).

The POD method for dynamical systems

By X we denote either the function space H or V . Then, for ℘ ∈ N let the so-called
snapshots or trajectories yk(t) ∈ X are given a.e. t ∈ [t◦, tN◦ ] and for 1 ≤ k ≤ ℘. At
least one of the trajectories yk is assumed to be nonzero. Then we introduce the linear
subspace

V = span
{
yk(t) | t ∈ [t◦, tN◦ ] a.e. and 1 ≤ k ≤ ℘

}
⊂ X (5.29)

with dimension d ≥ 1. We call the set V snapshot subspace. The method of POD consists
in choosing a complete orthonormal basis in X such that for every ` ≤ d the mean square
error between yk(t) and their corresponding `-th partial Fourier sum is minimized on
average: 




min

℘∑

k=1

∫ tN◦

t◦

∥∥∥yk(t)−
∑̀

i=1

〈yk(t), ψi〉X ψi
∥∥∥

2

X
dt

s.t. {ψi}`i=1 ⊂ X and 〈ψi, ψj〉X = δij , 1 ≤ i, j ≤ `,
(5.30)

where the symbol δij denotes the Kronecker symbol satisfying δii = 1 and δij = 0
for i 6= j. An optimal solution {ψ̄i}`i=1 to (5.30) is called a POD basis of rank `. The
solution to (5.30) is given by the next theorem. For its proof we refer the reader to [53,
Theorem 2.13].
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Theorem 5.2 Let X be a separable real Hilbert space and yk1 , . . . , y
k
n ∈ X are given

snapshots for 1 ≤ k ≤ ℘. Define the linear operator R : X → X as follows:

Rψ =

℘∑

k=1

∫ tN◦

t◦
〈ψ, yk(t)〉X yk(t) dt for ψ ∈ X. (5.31)

Then, R is a compact, nonnegative and symmetric operator. Suppose that {λ̄i}i∈N and
{ψ̄i}i∈N denote the nonnegative eigenvalues and associated orthonormal eigenfunctions
of R satisfying

Rψ̄i = λ̄iψ̄i, λ̄1 ≥ . . . ≥ λ̄d > λ̄d+1 = . . . = 0, λ̄i → 0 as i→∞. (5.32)

Then, for every ` ≤ d the first ` eigenfunctions {ψ̄i}`i=1 solve (5.30). Moreover, the value
of the cost evaluated at the optimal solution {ψ̄i}`i=1 satisfies

E(`) =

℘∑

k=1

∫ tN◦

t◦

∥∥∥yk(t)−
∑̀

i=1

〈yk(t), ψ̄i〉X ψ̄i
∥∥∥

2

X
dt =

d∑

i=`+1

λ̄i. (5.33)

The Galerkin POD scheme for the state equation

Suppose that (t◦, y◦) ∈ R+
0 ×H and tN◦ = t◦+N∆t with prediction horizon N∆t > 0. For

given fixed control u ∈ UNad(t◦) we consider the state equation e(y, u) = 0 ∈ ZN (t◦)′, i.e.,
y satisfies (5.24). Let us turn to a POD discretization of (5.24). To keep the notation
simple we apply only a spatial discretization with POD basis functions, but no time
integration by, e.g., the implicit Euler method. Therefore, we use the continuous version
of the POD method introduced in Section 5.3.2. In this section we distinguish two choices
for X: X = H and X = V . We choose the snapshots y1 = y and y2 = yt, i.e., we set
℘ = 2. By Proposition 5.3 the snapshots yk, k = 1, . . . , ℘, belong to L2(0, T ;V ). In
fact, due to Riesz Representation theorem, there exists a linear isomorphism from V ′

to V such that we can assert yt ∈ L2(0, T, V ). According to (5.32) let us introduce the
following notations:

RV ψ =

℘∑

k=1

∫ tN◦

t◦
〈ψ, yk(t)〉V yk(t) dt for ψ ∈ V,

RHψ =

℘∑

k=1

∫ tN◦

t◦
〈ψ, yk(t)〉H yk(t) dt for ψ ∈ H.

To distinguish the two choices for the Hilbert space X we denote by the sequence
{(λVi , ψVi )}i∈N ⊂ R+

0 × V the eigenvalue value decomposition for X = V , i.e., we have

RV ψVi = λVi ψ
V
i for all i ∈ N.
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Furthermore, let {(λHi , ψHi )}i∈N ⊂ R+
0 ×H in satisfy

RHψHi = λHi ψ
H
i for all i ∈ N.

Then, d = dimRV (V ) = dimRH(H) ≤ ∞; see [94]. The next result – also taken from
[94] – ensures that the POD basis {ψHi }`i=1 of rank ` build a subset of the test space V .

Lemma 5.2 Suppose that the snapshots yk ∈ L2(0, T ;V ), k = 1, . . . , ℘. Then, we have
ψHi ∈ V for i = 1, . . . , d.

Let us define the two POD subspaces

V ` = span
{
ψV1 , . . . , ψ

V
`

}
⊂ V, H` = span

{
ψH1 , . . . , ψ

H
`

}
⊂ V ⊂ H,

where H` ⊂ V follows from Lemma 5.2. Moreover, we introduce the orthogonal projec-
tion operators P`H : V → H` ⊂ V and P` : V → V ` ⊂ V as follows:

v` = P`Hϕ for any ϕ ∈ V iff v` solves min
w`∈H`

‖ϕ− w`‖V ,

v` = P`V ϕ for any ϕ ∈ V iff v` solves min
w`∈V `

‖ϕ− w`‖V .
(5.34)

It follows from the first-order optimality conditions for (5.34) that v` = P`Hϕ satisfies

〈v`, ψHi 〉V = 〈ϕ,ψHi 〉V , 1 ≤ i ≤ `. (5.35)

Writing v` ∈ H` in the form v` =
∑`

j=1 v`jψ
H
j we derive from (5.35) that the vector

v` = (v`1, . . . , v
`
`)
> ∈ R` satisfies the linear system

∑̀

j=1

〈ψHj , ψHi 〉V v`j = 〈ϕ,ψHi 〉V , 1 ≤ i ≤ `.

For the operator P`V we have the explicit representation

P`V ϕ =
∑̀

i=1

〈ϕ,ψVi 〉V ψVi for ϕ ∈ V.

Moreover, we introduce the orthogonal projection operator P` : V → V ` by

P`V ϕ =
∑̀

i=1

〈ϕ,ψVi 〉V ψVi for ϕ ∈ V. (5.36)

Further, we conclude from (5.33) that

℘∑

k=1

∫ T

0
‖yk(t)− P`V yk(t)‖

2

V dt =

d∑

i=`+1

λVi . (5.37)
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The projection operator of P`V yt is well-defined, since yt ∈ L2(0, T, V ) thanks to Riesz’s
theorem.
Next we review an essential result from [94, Theorem 6.2], which is essential in our a-
priori error analysis for the choice X = H. Recall that H` ⊂ V holds. Consequently,
‖ψHi − P`HψHi ‖V is well-defined for 1 ≤ i ≤ `.

Theorem 5.3 Suppose that yk ∈ L2(0, T ;V ) for 1 ≤ k ≤ ℘. Then,

℘∑

k=1

∫ T

0
‖yk(t)− P`Hyk(t)‖

2

V dt =

d∑

i=`+1

λHi ‖ψHi − P`HψHi ‖
2

V .

Moreover, P`Hyk converges to yk in L2(0, T ;V ) as ` tends to ∞ for each k ∈ {1, . . . , ℘}.

Let us define the linear space X` ⊂ V as

X` = span
{
ψ1, . . . , ψ`

}
,

where ψi = ψVi in case of X = V and ψi = ψHi in case of X = H. Hence, X` = V ` and
X` = H` for X = V and X = H, respectively. Now, a POD Galerkin scheme for (5.24)
is given as follows: find y`(t) ∈ X` a.e. t ∈ [t◦, tN◦ ] satisfying

d

dt
〈y`(t), ψ〉H +

∫

Ω
θy`x(t)ψ′ +

(
y`x(t) + ρ(y`(t)3 − y`(t))

)
ψ dx

=

∫

Ω
u(t)ψ dx f.f.a. t ∈ (t◦, tN◦ ],

〈y`(t◦), ψ〉H = 〈y◦, ψ〉H

(5.38)

for all ψ ∈ X`. It follows by similar arguments as in the proof of Proposition 5.3 that
there exists a unique solution to (5.38). If y◦ ∈ L∞(QN ) holds, y` satisfies the a-priori
estimate

‖y`‖YN (t◦) + ‖y`‖L∞(QN ) ≤ C
(
‖y◦‖L∞(Ω) + ‖u‖UN (t◦)

)
. (5.39)

where the constant C > 0 is independent of ` and y◦. Let P` denote P`V in case of X = V
and P`H in case of X = H. To derive an error estimate for ‖y − y`‖YN (t◦) we make use
of the decomposition

y(t)− y`(t) = y(t)− P`y(t) + P`y(t)− y`(t) = %`(t) + ϑ`(t) a.e. t ∈ [t◦, tN◦ ]
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with %`(t) = y(t) − P`y(t) ∈ (X`)⊥ and ϑ`(t) = P`y(t) − y`(t) ∈ X`. From (5.37) and
Theorem 5.3 it follows that

‖%`‖2YN (t◦) =

∫ tN◦

t◦
‖y(t)− P`y(t)(t)‖2V + ‖yt(t)− P`yt(t)‖

2

V dt

=





d∑

i=`+1

λVi for X = V,

d∑

i=`+1

λHi ‖ψHi − P`HψHi ‖
2

V for X = H.

(5.40)

Next we estimate ϑ`(t). We infer from (5.24) and (5.38) that

〈ϑ`t(t), ψ〉V ′,V + 〈θϑ`(t), ψ〉V
= 〈ρ(y(t)− y`(t)), ψ〉H + 〈ρ(y(t)3 − y`(t)3), ψ〉H + 〈P`yt(t)− yt(t), ψ〉V ′,V

for all ψ ∈ X` and a.e. t ∈ [t◦, tN◦ ]. For s ∈ [0, 1] we define the function ξ`(s) =
y` + s(y − y`). Then it follows from (5.25) and (5.39) that

‖ξ`(s)‖L∞(QN ) ≤ s ‖y‖L∞(QN ) + (1− s) ‖y`‖L∞(QN ) ≤ C1 for all s ∈ [0, 1]

with a constant C1 > 0 dependent on y◦, ua and ub, but independent of y, y` and `. By
the mean value theorem we obtain

〈y(t)3 − y`(t)3, ψ〉H =

〈
1

4

∫ 1

0
ξ`(s; t)4

(
y(t)− y`(t)

)
ds, ψ

〉

H

≤ C2 ‖y(t)− y`(t)‖H‖ψ‖H for all ψ ∈ H

with C2 = C4
1/4. We choose ψ = ϑ`(t) ∈ X` and set C3 = ρ(1 + C2). Then, we derive

from Poincaré’s inequality (5.16) and Young’s inequality

d

dt
‖ϑ`(t)‖2H + θa ‖ϑ`(t)‖

2

V ≤ 2C3

(
CV ‖%`(t)‖V ‖ϑ`(t)‖H + ‖ϑ`(t)‖2H

)

+
1

θa
‖P`yt(t)− yt(t)‖

2

V ′

≤ C4

(
‖%`(t)‖2V + (‖%`t(t)‖

2

V ′ + ‖ϑ`(t)‖
2

H

)
,

(5.41)



5.3 The finite horizon problem 87

where we have put C4 = max(C3C
2
V , 2C3, 1/θa). By Gronwall’s inequality we have

‖ϑ`(t)‖2H ≤ C5 ·





‖ϑ`(t◦)‖
2

H +
d∑

i=`+1

λVi for X = V,

‖ϑ`(t◦)‖
2

H +

d∑

i=`+1

λHi ‖ψHi − P`HψHi ‖
2

V for X = H

(5.42)

with C5 = eC4(tN◦ −t◦) max(1, C4). Furthermore, (5.41) implies that

‖ϑ`‖2L2(t◦,tN◦ ;V ) ≤
1

θa
‖ϑ`(t◦)‖

2

H +
C4

θa

(
‖%`‖W (t◦,tN◦ ) + ‖ϑ`‖2L2(t◦,tN◦ ;H)

)

≤ C6 ·





‖ϑ`(t◦)‖
2

H +
d∑

i=`+1

λVi for X = V,

‖ϑ`(t◦)‖
2

H +
d∑

i=`+1

λHi ‖ψHi − P`HψHi ‖
2

V for X = H

(5.43)

with C6 = max(1, C4, C4C5(tN◦ − t◦))/θa. From estimates (5.42), (5.43), from

y(t)3 − y`(t) =
(
%`(t) + ϑ`(t)

)(
y(t)2 + y(t)y`(t) + y`(t)2

)
a.e. t ∈ [t◦, tN◦ ]

and from the embedding inequalities [34]

‖ϕ‖L∞(Ω) ≤ C∞ ‖ϕ‖V for all ϕ ∈ V,
‖ϕ‖L∞(t◦,tN◦ ;H) ≤ CW ‖ϕ‖W (t◦,tN◦ ) for all ϕ ∈W (t◦, tN◦ )

for two constants C∞, CW > 0 we infer that

‖ϑ`‖L2(t◦,tN◦ ;V ′) = sup
‖ϕ‖

L2(t◦,tN◦ ;V )
=1

∫ tN◦

t◦
〈ϑ`(t), ϕ(t)〉V ′,V dt

≤ sup
‖ϕ‖

L2(t◦,tN◦ ;V )
=1

∫ tN◦

t◦
〈ρ(y(t)− y`(t)), ϕ(t)〉H + 〈ρ(y(t)3 − y`(t)3), ϕ(t)〉H dt

+ sup
‖ϕ‖

L2(t◦,tN◦ ;V )
=1

∫ tN◦

t◦
〈P`yt(t)− yt(t), ϕ(t)〉V ′,V − 〈θϑ`(t), ϕ(t)〉V dt

≤ ρCV
(
‖%`‖L2(t◦,tN◦ ;H) + ‖ϑ`‖L2(t◦,tN◦ ;H)

)
+ θ ‖ϑ`‖L2(t◦,tN◦ ;V )

+ C7

(
‖%`‖L∞(t◦,tN◦ ;H) + ‖ϑ`‖L∞(t◦,tN◦ ;H)

)
+ ‖%`t‖L2(t◦,tN◦ ;V ′)
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where C7 > 0 satisfies C∞ ‖y2 + yy` + (y`)2‖L2(t◦,tN◦ ;H) ≤ C7. Hence, there is a constant
C8 > 0 depending on θ, ρ, CW , C5, C6, C7 such that

‖ϑ`‖2L2(t◦,tf ;V ′)

≤ C8 ·





‖ϑ`(t◦)‖
2

H +
d∑

i=`+1

λVi for X = V,

‖ϑ`(t◦)‖
2

H +
d∑

i=`+1

λHi ‖ψHi − P`HψHi ‖
2

V for X = H.

(5.44)

Form (5.42), (5.43) and (5.44) we infer the next result, which motivates the use of a
POD approximation for our state equation (5.24).

Theorem 5.4 Suppose that (t◦, y◦) ∈ R+
0 × L∞(Ω), tN◦ = t◦ + N∆ with prediction

horizon N∆t > 0. Further, let u ∈ UNad(t◦) be a fixed control input. By y and y` we
denote the unique solution to (5.24) and (5.38), respectively, where the POD basis of
rank ` is computed by choosing ℘ = 2, y1 = y and y2 = yt. Then,

‖y − y`‖2YN (t◦) ≤ C ·





‖ϑ`(t◦)‖
2

H +
d∑

i=`+1

λVi for X = V,

‖ϑ`(t◦)‖
2

H +

d∑

i=`+1

λHi ‖ψHi − P`HψHi ‖
2

V for X = H

for a C > 0 which is independent of `. In particular, lim`→∞ ‖y − y`‖YN (t◦) = 0.

The Galerkin POD scheme for the optimality system

Suppose that we have computed a POD basis {ψi}`i=1 of rank ` by choosing X = H
or X = V . Suppose that for u ∈ UNad(t◦) the function y` is the POD Galerkin solution
to (5.38). Then the POD Galerkin scheme for the adjoint equation (5.27) is given as
follows: find p` ∈ X` = span {ψ1, . . . , ψ`} a.e. t ∈ [t◦, tN◦ ] satisfying

− d

dt
〈p`(t), ψ〉H +

∫

Ω
θp`x(t)ψ′ −

(
p`x(t) + ρ(1− 3y`(t)2)

)
p`(t)ψ dx

=

∫

Ω

(
ŷ − y`(t)

)
ψ dx = 0 f.f.a. t ∈ [t◦, tN◦ ),

〈p`(tN◦ ), ψ〉H

(5.45)

for all ψ ∈ X`. A-priori error estimates for the POD solution p` to (5.45) can be derived
by variational arguments; compare [87] and [53, Theorem 4.15]. If p` is computed, we
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can derive a POD approximation for the variational inequality (5.28):

∫ tN◦

t◦

∫

Ω
(λu− p`)(ũ− u) dxdt ≥ 0 for all ũ ∈ UNad(t◦). (5.46)

Summarizing, a POD suboptimal solution x̄N,` = (ȳN,`, ūN,`) ∈ XNad(t◦) to (5.9) satisfies
together with the associated Lagrange multiplier p̄N,` ∈ YN1 (t◦) the coupled system
(5.38), (5.45) and (5.46). The POD approximation of the finite horizon quadratic cost
functional (5.23) reads

ĴN,`(u; t◦, y◦) =

∫ tN◦

t◦
L
(
y`[u,t◦,y◦](t), u(t)

)
dt,

where y`[u,t◦,y◦] is the solution to (5.38). In Algorithm 10 we set up the POD discretization

for Algorithm 9. Due to our POD reduced-order approach an optimal solution to (5.47)

Algorithm 10: (POD-NMPC algorithm)

Require: time step ∆t > 0, finite control horizon N ∈ N, weighting param. λ > 0,
POD tolerance τpod > 0.

1: Compute a POD basis {ψi}`i=1 satisfying (5.33) with E(`) ≤ τpod.
2: for n = 0, 1, 2, . . . do
3: Measure the state y(tn) ∈ V of the system at tn = n∆t.
4: Set t◦ = tn = n∆t, y◦ = y(tn) and compute a global solution to

min ĴN,`(u`; t◦, y`◦) s.t. u` ∈ UNad(t◦). (5.47)

We denote the obtained optimal control by ūN,`.
5: Define the NMPC feedback value µN,`(y(t)) = ūN,`(t) and use this control to

compute the associated state y = y[µN,`(·),t◦,y◦] by solving (5.5) on [t◦, t◦ + ∆t].
6: end for

can be computed much faster than the one to (5.9). In the next subsection we address
the question, how the suboptimality of the control influences the asymptotic stability.

5.3.3. Asymptotic stability for the POD-MPC algorithm

In this subsection we present the main results of the chapter. We give sufficient conditions
that Algorithm 10 gives a stabilizing feedback control.

As in Section 5.2.2 we choose ŷ = y∗ = 0. Let y[ūN,`,t◦,y◦](t) denote the solution to

(5.5) with the control law u = ūN,`; compare step 5 of Algorithm 10. By y` we denote
the solution to (5.38) with the admissible control u = −Ky`. Then,

‖y`(t)‖2H ≤ σ(K)t−t◦ ‖y◦‖2H a.e. t ≥ t◦ (5.48)



5.3 The finite horizon problem 90

with the same constants C(K) and σ(K) as in (5.19). Note that 5.48 holds for the
uncontrolled problem. Since u = −Ky` ∈ UNad(t◦) is an admissible control for (5.47) and
x̄N,` = (ȳN,`, ūN,`) is a global solution to (5.47), we derive from (5.48)

L
(
ȳN,`(t), ūN,`(t)

)
≤ L

(
y`(t),−Ky`(t)

)
=
C(K)

2
‖y`(t)‖2H . (5.49)

Using the Cauchy-Schwarz inequality we get

L
(
y[ūN,`,t◦,y◦](t), ū

N,`(t)
)

≤ 1

2
‖y[ūN,`,t◦,y◦](t)− ȳN,`(t)‖

2

H
+ L

(
ȳN,`(t), ūN,`(t)

)

+ ‖y[ūN,`,t◦,y◦](t)− ȳN,`(t)‖H‖ȳ
N,`(t)‖H .

(5.50)

Further, it follows from L(ȳN,`(t), ūN,`(t)
)
≤ L

(
y`,−Ky`(t)), λ > 0 and C(K) > 1 that

‖ȳN,`(t)‖2H < ‖ȳN,`(t)‖2H + λ ‖ūN,`‖2H ≤ C(K) ‖y`(t)‖2H < ‖y`(t)‖2H .

Therefore, we have ‖ȳN,`(t)‖H/‖y`(t)‖H < 1. Hence, we conclude from (5.49), (5.50) and
(5.48) that the exponential controllability condition (5.14) holds:

L
(
y[ūN,`,t◦,y◦](t), ū

N,`(t)
)
≤ 1

2

(
C(K) + 2Err(t; `) + Err(t; `)2

)
‖y`(t)‖2H

≤ 1

2
C`(K)σ(K)t−t◦ ‖y◦‖2H = C`(K)σ(K)t−t◦ L∗(y◦)

with the error term

Err(t; `) =
‖y[ūN,`,t◦,y◦](t)− ȳN,`(t)‖H

‖ȳN,`(t)‖H
and the constant

C`(K) = C(K) + Err(t; `) +
1

2
Err(t; `)2 ≥ C(K). (5.51)

Note that Err(t; `) can be evaluated easily, since ȳN,` and y[ūN,`,t◦,y◦] are known from

Algorithm 10, steps 4 and 5, respectively. Thus, the constant C`(K) takes into account
the approximation made by the POD reduced-order model. In the following theorem
we provide an explicit formula for the scalar αN,` which appears in the relaxed DPP.
The notation αN,` intends to stress that we are working with POD surrogate model. We
summarize our result in the following theorem.

Theorem 5.5 Let the constant C` be given by (5.51) and N∆t denote the finite predic-
tion horizon with N ∈ N and ∆t > 0. Then the parameter αN,` is given by the explicit
formula:

αN,`(K) = 1−
(
η`N (K)− 1

)∏N
i=2

(
η`i (K)− 1

)
∏N
i=2 η

`
i (K)−∏N

i=2

(
η`i (K)− 1

) (5.52)



5.4 Numerical Tests 91

with η`i (K) = C`(K)(1− σi(K))/(1− σ(K)) and σ(K) as in (5.19).

Theorem 5.5 informs we can compute the constant αN,` ≈ αN basicly in the same
way of the full-model, replacing the constants C, η with C`, η`, respectively, taking into
account the POD reduced-order modelling. To obtain the minimal horizon which ensures
the asymptotic stability of the POD-NMPC scheme we maximize (5.52) according to the
constraints αN,` > 0, K > max(0, ρ− θ/CV ) and to the constraints in Table 5.0.

In Algorithm 10 we present the POD-MPC scheme. First step consists in computing
the snapshots and the POD basis functions in order to build the reduced model. Then,
we can compute the minimal prediction horizon N which ensures asymptotic stability
for the surrogate model. After this set up, which is somehow different from Algorithm 9
we can perform the standard NMPC algorithm in the reduced space which acts faster,
since the dimension of the problem is lower.

5.4. Numerical Tests

This section presents a comprehensive set of tests in order to show the performance of
our proposed algorithm. We compare the results with solution given by the standard
MPC scheme and the POD-MPC.
All the numerical simulations reported in this section have been made on a MacBook
Pro with 1 CPU Intel Core i5 2.3 Ghz and 8GB RAM.

5.4.1. The finite difference approximation for the state equation

For N ∈ N we introduce an equidistant spatial grid in Ω by xi = ih, i = 0, . . . ,N , with
the step size ∆x = 1/(N+1). At x◦ = 0 and xN+1 = 1 the solution y is known due to the
boundary conditions (5.1). Thus, we only compute approximations yhi (t) for y(xi, t) with
1 ≤ i ≤ N and t ∈ [t◦, tf ]. We define the vector yh(t) = (yh1 (t), . . . , yhN (t))> ∈ RN of the
unknowns. Analogously, we define uh = (uh1 , . . . , u

h
N )> ∈ RN , where uhi approximates

u(xi, ·) for 1 ≤ i ≤ N . Adopting a classical second-order finite difference scheme we
derive the following dynamical system

ẏh(t) = A(θ)yh(t) + F (yh(t); ρ) + u(t) for t ∈ (t◦, tf ], (5.53a)

yh(t◦) = yh◦ , (5.53b)

where the matrix A(θ) ∈ RN×N is given by

A(θ) =
θ

h2




−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2




+
1

2h




0 −1
1 0 −1

. . .
. . .

. . .

1 0 −1
1 0



,
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the parameter dependent, nonlinear function F (· ; ρ) : RN → RN is defined as

F (z; ρ) = ρ




z3
1 − z1

...
z3
N − zN


 , z = (z1, . . . , zN ) ∈ RN ,

and yh◦ = (y◦(x1), . . . , y◦(xN )> ∈ RN . Note that A(θ) is the discrete version of the
operatorA introduced in Section 5.2 and tf is not infinte due to computation restrictions.

In Figure 5.1 the solution to (5.53) is plotted if the time integration is done by using
the implicit Euler method. As we see from Figure 5.1, the uncontrolled solution does not
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Figure 5.1.: FD state y for y◦ = 0.1 sgn(x − 0.3) (left plot) and y◦ = 0.2 sinπx (right
plot) with u = 0, (θ, ρ) = (0.1, 11) and N = 99.

tend to zero for t→∞, indeed it stabilezes at one.

5.4.2. POD-MPC experiments

In our numerical examples we choose ŷ ≡ 0, i.e., we force the state to be close to zero,
and λ = 0.01 in (5.3). A finite horizon open loop strategy without terminal constraints
does not give the desired trajectory stabilized in the zero-equilibrium (see Figure 5.2),
it does not hold our stability request.

This section is devoted to the performance of our POD–MPC scheme presented in
Algorithm 10 of Section 5.3.3. In our tests, the snapshots are computed taking the
uncontrolled system, e.g. u ≡ 0, in (5.1) and the corresponding adjoint equation (5.27).
Several hints for the computation of the snapshots in the context of MPC are given
in [45]. The nonlinear term is reduced following the Discrete Empirical Interpolation
Method (DEIM) (see Section 2.1.4).
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Figure 5.2.: Open-loop Solution y for y◦ = 0.1 sgn(x − 0.3), (θ, ρ) = (0.1, 11), N = 99,
tf = 2 (left plot) and y◦ = 0.2 sinπx, (θ, ρ) = (0.1, 11), N = 99, tf = 2
(right plot).

5.4.3. Test 1: Unconstrained case with smooth initial data

The first test is a simple example concerning the unconstrained optimal control problem
where the parameters are given in Table 5.2.

T ∆t ∆x θ ρ y0(x) ua ub N K

0.5 0.01 0.01 1 11 0.2 sin(πx) −∞ ∞ 10 2.46

Table 5.2.: Test 1: Setting for the optimal control problem, minimal stabilizing horizon
N and feedback constant K.

According to the computation of αN in (5.20) related to the Relaxed Dynamic Pro-
gramming Principle, the minimal horizon that guarantess asymptotic stability is N = 10
as shown in [10]. Even in the POD-NMPC scheme the asymptotic stability is achieved
for N = 10, provided that Err(t; `) ≤ 10−3 for all t ≥ t◦. In Figure 5.3 we show the
controlled state trajectory computed by Algorithm 9 taking N = 3, N = 6 and N = 10.

At the top of Figure 5.3 we show the approximation taking in the MPC algorithm the
prediction horizon N = 3 and N = 6. As we can see, we do not get a stabilizing feed-
back for N = 3, whereas N = 10 leads to a state trajectory which tends to zero for
t → ∞. Note that we plot the solution only on the time interval [0, 0.5] in order to
have a zoom of the solution. Further, in Figure 5.3 the solution related to u = −Ky
is presented. As we can see, the NMPC control stabilized to the origin very soon while
the control law u = −Ky requires a larger time horizon. This is due to the fact we are
controlling the equation with a very restrictive class of controls but, on the other hand, it
is still guaranteed the stabilization by the theory the asymptotic stability. In Table 5.3
we present the error in L2(t◦, T ;H)-norm considering the solution coming from the
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Figure 5.3.: Test 1: NMPC state with N = 3 and N = 6 (top), with N = 10 and with
u = −Ky (bottom).
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Algorithm 9 as the truth solution (yFD in the Table). The examples are computed with
Err(t, `) ≤ 10−3. The CPU time for the full-model turns out to be 49 seconds, in the

Ĵ time K ‖yFD − y‖L2(t◦,T ;H)

Solution with u = −Ky 0.0025 2.46 0.0145
Alg. 9 0.0015 49s
Alg. 10 (` = 13, `DEIM = 15) 0.0016 8s 0.0047
Alg. 10 (` = 3, `DEIM = 2) 0.0016 6s 0.0058

Table 5.3.: Test 1: Evaluation of the cost functional, CPU time, suboptimal solution.

POD-suboptimal approximation with only three POD and two DEIM basis functions
requires 6 seconds. We can easily observe an impressive speed up of a factor eight.
Moreover, the evaluation of the cost functional in the full model and the POD model
provides very close values. The CPU time of the suboptimal solution is not comparable
since in other simulations we have not taken into account the time needed to compute
the minimal horizon N. The evaluation of the cost functional emphasizes we can take
the suboptimal model as an upper bound.

5.4.4. Test 2: Constrained case with smooth initial data

In this example, in contrast to Test 1, we choose ua = −0.3 and ub = 0. As expected,
the minimal horizon N increases compared to Test 1 (see Table 5.3). As one can see

T ∆t ∆x θ ρ y0(x) ua ub N K

0.5 0.01 0.01 1 11 0.2 sin(πx) −0.3 0 14 1.50

Table 5.3.: Test 2: Setting for the optimal control problem, minimal stabilizing horizon
N and feedback constant K.

from Figure 5.4 the NMPC state with N = 14 tends faster to zero than the state with
u = −Ky.

The solution coming from the POD model is in the middle of Figure 5.4. Note that
E(` = 3) = 0.99, E(` = 13) = 1, and Err(t; `) ≤ 10−3 for any ` and t ≥ t◦. Indeed, Table
5.4 presents the evaluation of the cost functionals for the proposed algorithms and the
CPU time which shows that the speed up by the reduced order approach is about 16.
Note that K in Test 2 is smaller compared to Test 1 due to the constraint of the control
space. Further, the error is presented in Table 5.4.

To study the influence of Err(t; `) we present in Figure 5.5, on the left, how the optimal
prediction horizon N changes according to different tolerance. The blue line corresponds
to the optimal prediction horizon in Test 1, and the red one to Test 2. It turns out
that, until Err(t; `) ≤ 10−3, we can work exactly with the same horizon N we had in
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Figure 5.4.: Test 2: NMPC state with N = 14 and corresponding optimal control (top),
POD-MPC solution with N = 10 and optimal control (middle), suboptimal
solution with u = −Ky (bottom).
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Ĵ time K ‖yFD − y‖L2(t◦,T ;H)

Solution with u = −Ky 0.0035 1.50 0.0089
Alg. 9 0.0027 65s
Alg. 10 (` = 13, `DEIM = 15) 0.0032 5s 0.0054
Alg. 10 (` = 3, `DEIM = 2) 0.0033 4s 0.0055

Table 5.4.: Test 2: Evaluation of the cost functional, CPU times, suboptimal solution.
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Figure 5.5.: Test 2: Optimal horizon N and αN,` according to different Err(t; `) = 10−3,
Influence of the relative error t 7→ Err(t; `) = 10−3 for ` = 3.

the full model. In the middle plot of Figure 5.5 there is a zoom of the function α with
different values of Err(t; `). The plot on the right side of Figure 5.5 shows the relative
error Err(t; `) for 0 ≤ t ≤ 0.5 with ` = 3.

One of the big advantages of feedback control is the stabilization under perturbation
of the system. The perturbation of the initial condition is a typical example which comes
from many applications in fact, often the measurements may not be correct. For a given
noise distribution δ = δ(x) we consider a perturbation the following form:

y0(x) =
(
1 + δ(x)

)
y◦(x) for x ∈ Ω.

The study of the asympotic stability does not change: we can compute the minimal
prediction horizon as before. As we can see in Figure 5.6 the POD-NMPC algorithm is
able to stabilize with a noise of |δ(x)| ≤ 30%.

5.4.5. Test 3: Constrained case with smooth initial data

Now we decrease the diffusion term and, as a consequence, the prediction horizon N
increases; see Table 5.6 and middle plot of Figure 5.6. Even if the prediction horizon
is very large, the proposed Algorithm 10 accelerates the approximation of the problem.
Note that, in our example, the diffusion term is still relevant such that we can work with
only 2 POD basis functions. The CPU time in the full model is 84 seconds, whereas



5.4 Numerical Tests 98

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5
0

0.05

0.1

0.15

0.2

0.25

OPTIMAL SOLUTION, N=14 noise=0.3

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

POD OPTIMAL CONTROL, N=14 noise=0.3

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5
0

0.05

0.1

0.15

0.2

0.25

OPTIMAL SOLUTION, N=14 noise=0.1

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0.3

0.4

0.5
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

POD OPTIMAL CONTROL, N=14 noise=0.1

Figure 5.6.: Test 5: POD optimal solution with ` = 3, `DEIM = 2. Noise=30% (top),
10% (bottom).

T ∆t ∆x θ ρ y0(x) ua ub N K

0.5 0.01 0.01 1/
√

2 10 0.2 sin(πx) −1 0 30 5

Table 5.6.: Test 3: Setting for the optimal control problem.
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with a low-rank model, such as ` = 2 we obtained the solution in five seconds and
an impressive speed up factor of 16. Even with a more accurate POD model we have
a very good speed up factor of nine. The evaluation of the cost functional is given in
Table 5.6. In Figure 5.7, we present the optimal solution with N = 30 and the optimal

Ĵ time K ‖yFD − y‖L2(t◦,T ;H)

Suboptimal solution (u = −Ky) 0.0021 5 0.0208
Algorithm 9 0.0016 84s
Algorithm 10 (` = 16, `DEIM = 16) 0.0017 9s 0.0092
Algorithm 10 (` = 2, `DEIM = 3) 0.0018 5s 0.0093

Table 5.6.: Test 3: Evaluation of the cost functional and CPU time.

control beetwen [−1, 0]. As expected the control −1 is acting mostly at the begining,
then the optimal control is decreasing close to 0. At the bottom of Figure 5.7 we put
the suboptimal solution coming from the POD model reduction and the corresponding
control with 16 POD basis functions and 16 DEIM basis elements. The error between
the NMPC state and the POD-MPC state is less than 0.01.

5.4.6. Test 4: Constrained case with non-smooth initial data

In the last test we focus on a different initial condition and different control constraints.
The parameters are presented in Table 5.7. The minimal horizon N which ensures asymp-

T ∆t ∆x θ ρ y0(x) ua ub N K

0.5 0.01 0.01 1/2 5 sgn(x− 0.3) -1 1 43 9.99

Table 5.7.: Test 4: Setting for the optimal control problem.

totic stability is N = 43. Table 5.7 emphazises again the performance of the POD-NMPC
method with an acceleration 12 times faster of the full model. The evaluation of the

Ĵ time K ‖yFD − y‖L2(t◦,T ;H)

Solution with u = −Ky 4.7e-4 9.99 0.006
Alg. 9 4.1e-4 50s
Alg. 10 (` = 17, `DEIM = 19) 4.4e-4 12s 0.0034
Alg. 10 (` = 3, `DEIM = 4) 4.4e-4 4s 0.0035

Table 5.7.: Test 4: Cost functional, CPU time and suboptimal solution.
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cost functional gives the same order in all the simulation we provide. In Figure 5.8 we
present the NMPC state for N = 43 (left plot), the POD-NMPC state with N = 43,
` = 3, `DEIM = 4 (middle plot) and the increase of the optimal horizon N according to
the perturbation Err(t; `). In Figure 5.8 on the left the optimal solution, on the right side
we show the optimal horizon N increase according to the perturbation Err(t; `). Figure

Figure 5.8.: Test 4: Optimal solution with MPC and prediction horizon N = 40 (left).
Optimal horizon with different Err(t; `) (right).

5.9 shows the POD approximation with 3 POD basis functions and 4 DEIM basis. The
error between the MPC approximation and the POD-MPC is 0.0192.
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Figure 5.9.: Test 4: POD optimal solution and control with ` = 3, `DEIM = 4.

The error between the NMPC state and the POD-MPC state is 0.0035 when E(` =
3) = 0.99, whereas for E(` = 17) = 1 the error is 0.0034.



6. Conclusions and future directions

This thesis has demonstrated the crucial importance of Dynamic Programming Principle
and POD model order reduction for optimal control problems with PDE constraints.

VI-PI approximation scheme
In this thesis we have presented an accelerated algorithm for the solution of static HJB
equations arising in different optimal control problems. The proposed method considers
a pre-processing value iteration procedure over a coarse mesh with relaxed stopping cri-
teria, which is used to generate a good initial guess for a policy iteration algorithm. This
leads to accelerated numerical convergence with respect to the successive approximation
method, with a speedup ranging in average from 4× to 8×. We have assessed the per-
formance of the new scheme via an extensive set of numerical tests focusing on infinite
horizon and minimum time problems, providing numerical evidence of the reliability of
the method in tests with increasing complexity. We have also included an application
related to optimal control of partial differential equations, which is an area where diffi-
culties related to the high dimension of the discretized problem naturally arise. Positive
aspects of the proposed scheme are its wide applicability spectrum (in general for static
HJB), and its insensitivity with respect to the complexity of the discretized control set.
Nonetheless, for some non-trivial targets, special care is needed in order to ensure that
the coarse pre-processing step will actually lead to an improved behavior of the pol-
icy iteration scheme. Certainly, several directions of research remain open. The aim of
Chapter 3 was to present the numerical scheme and provide a numerical assessment of
its potential. Future work should focus on tuning the algorithm in order to achieve an
optimal performance; for instance, in order to make a fair comparison with the value
iteration algorithm, the policy iteration step was also performed via a successive ap-
proximation scheme, whereas better results could be obtained by using a more efficient
solver. Other possible improvements would be related to multigrid methods, high-order
schemes and domain decomposition techniques. An area of application that remains un-
explored is the case of differential games, where Hamilton-Jacobi-Isaacs equations need
to be solved. Results presented in [21] indicate that the extension is far from being trivial
since a convergence framework is not easily guaranteed and the policy iteration scheme
requires some modifications.

POD and HJB coupling
We have also proposed a computational approach for the control of linear and semilinear
partial differential equations based on the coupling between a POD-Galerkin method and
the Dynamic Programming approach. The examples show that even with a low num-
ber of POD basis functions we can compute a rather accurate solution by means of an
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adaptive technique. This is still an essential requirement when dealing with the Dynamic
Programming approach, which suffers from the curse-of-dimensionality although recent
developments in the methods used for HJB equations will allow to increase this bound in
the next future (for example by applying patchy techniques). The method requires the
use of an accuracy indicator for the POD approximation and of the residual to control
the global error. So the time interval is splitted into a union of sub-intervals where the
POD basis functions will not change. The adaptive technique is not very expensive with
respect to the global solution of the control problem. Although at present this technique
has been implemented just for 1-dimensional problems, the results seem to indicate that
this could be a reasonable approach also for 2-dimensional problems and we will try to
proceed in this direction. Then we want to extend this approach to multidimentional
problems trying to overcome the actual limits on the number of POD basis functions.

MPC methods
Finally, we have proposed a new numerical method for optimal control problems which
tries to stabilize a one dimensional semilinear parabolic equation by means of Model
Predictive Control. We presented asymptotic stability conditions where the control space
is bounded for a suboptimal problem coming from a particular class of feedback controls.
Since the CPU time of the full dimensional algorithm may increase with the dimension
of the prediction horizon, we have presented a deep study of the suboptimal model
which comes from POD model reduction. We have given an a-priori error estimate for
the computation of the prediction horizon of the suboptimal model. Therefore, the new
reduced model approach turns out to be very efficient with respect to the full dimensional
problem. Although the algorithm is applied to a one dimensional problem, the theory
is rather general and applied to more dimensioanl equations, not only with POD model
reduction but any method. Another important issue is due to the computation of the
snapshots, one could adopt different strategies to obtain the surrogate model. Then,
it would be very interesting to investigate the stability property of MPC algorithm,
computing step by step a less accurate control. Another interesting direction is to extend
the technique to more general problems and increase the state dimensions.



A. Appendix

In this Appendix we recall a convergence result concerning Newton’s method and a
theorem on the perturbation of Ordinary Differential Equation.

A.1. Newton’s theorem

Here, we show a convergence result for Newton’s method. More details can be found in
[33]. Assume we have to solve a nonlinear operator equation

F (x) = 0,

wherein F : D ⊂ X → Y for Banach spaces X,Y. Let F be at least once continuously
differentiable. Suppose we have a starting guess x0 of the unknown solutions x∗ at hand.
Then the succesive linearization leads to the general Newton method

F ′(xk)∆xk = −F (xk), xk+1 = xk + ∆xk, k = 0, 1, . . . (A.1)

In the following theorem we provide some conditions to ensure the convergence of the
method for a given intial guess x0.

Theorem A.1 Let F : D → Y be a continuously Fréchet differentiable mapping with
D ⊂ X open and convex. For a starting point x0 ∈ D let F ′(x0) be invertibile. Assume
that

‖F ′(x0)−1F (x0)‖ ≤ α (A.2)

‖F ′(x0)−1(F ′(y)− F ′(x))‖ ≤ ω̄‖y − x‖ x, y ∈ D (A.4)

h0 := αω̄ ≤ 1

2
(A.5)

B(x0, ρ) ⊂ D ρ :=
1−
√

1− 2h0

ω̄
(A.6)

Then te sequence {xk} obtained from the ordinary Newton iteration is well-defined,
remains in B(x0, ρ), and converges to some x∗ with F (x∗) = 0. For h0 <

1
2 , the conver-

gence is quadratic.

A.2. Continuous dependence on data

Let us recall the main results for ODEs concerning continuous dependence on parameter:
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Theorem A.2 Consider the pair of differential equations

ẋ = f(t, x) ẏ = g(t, y)

x(t0) = x0 y(t0) = y0

where f and g are assumed to be continuous in some domain Ω ⊂ [0, T ] × Rn, and for
all (t, x) ∈ Ω

‖f(t, x)− g(t, x)‖ ≤ ε
and

‖x0 − y0‖ ≤ δ
for some ε, δ > 0 small. Furthermore, assume that f satisfies the Lipschitz condition

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖.

Then, there exists an interval (m,M) such that

‖x(t)− y(t)‖ ≤
(
δ +

ε

L

)
eL|t−t0| − ε

L
(A.6)

for all t ∈ (m,M).
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[96] F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods
and applications, Graduate Studies in Mathematics, 112, American Mathematical
Society, 2010.
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