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Introduction

The �rst appearence of (quantum) W-algebras as mathematical objects is related to the conformal
�eld theory. The main problem of the conformal �eld theory is a description of �elds having conformal
symmetry. Only in dimension D = 2, the group of conformal di�eomorphisms is rich enough to give rise
to a meaningful theory.

After the fundamental paper by Belavin, Polyakov and Zamolodchikov [4] it was realized by Zamolod-
chikov [24] that extended symmetries in two dimensional conformal �eld theory in general do not give
rise to (super)algebras with linear de�ning relations. He constructed the so-called W3-algebra, which
is an extension of the Virasoro algebra obtained adding one primary �eld of weight 3. Later, this con-
struction was generalized by Fateev and Lukyanov [14] to construct which are known as Wn-algebras.
Roughly speaking, these algebras are non-linear extensions of the Virasoro algebra obtained by adding
primary �elds. An exhaustive reference about extended symmetries can be found in [5].

The key point in the construction of the algebras Wn by Fateev and Lukyanov was the relation
between W-algebras and integrable systems. By a work of Gervais [18], the Virasoro algebra was found
hidden in the second Poisson structure of the Korteweg-de Vries (KdV) equation, which is the so-called
Virasoro-Magri structure. Magri [21] �rst revealed the bi-Hamiltonian nature of the KdV equation.
Fateev and Lukyanov identi�ed Zamolodchikov's W3 algebra with the so-called second Poisson structure
of the equations of n-th KdV type, for n = 3 (the KdV equation corresponds to n = 2). These Poisson
structures are known as Gelfand-Dickey algebras, after pioneristic works on the subject by them (one can
have a look to [10] for a review of these works and a lot of material on the argument) and are obtained as
Poisson algebras of local functionals on the algebra of di�erential operators. After quantizing the n = 3
structure, Fateev and Lukyanov found the same commutator formulas of Zamolodchikov W3 algebra.
This observation enabled them to construct all the Wn, since the second Poisson structure of the n-th
KdV type equation were known for any n. At the classical level, Gelfand-Dickey algebras are the �rst
examples of classical W-algebras.

After, the second Poisson structure of Gelfand-Dickey type was considered in a more general setup,
namely, in a similar fashion, it can be de�ned a Poisson structure on the space of local functionals on the
larger algebra of pseudodi�erential operators. The corresponding Poisson structures are related to the
Kadomtsev-Petviashvili (KP) equation and the n-th KdV equations can be obtained with a reduction
procedure from the KP hierarchy of equations. A quick reference is given by the lecture notes [9].

The fact that W-algebras have in general non-linear de�ning relations puts them outside of the scope
of the Lie algebra theory. However, they are intimately related to Lie algebras via the Drinfeld-Sokolov
Hamiltonian reduction [12]. Given a Lie algebra g and its principal nilpotent, this reduction allows us to
construct a classical W-algebra. Furthermore, this procedure also emphasizes again the fact that these
structures are related to certain hierarchies of partial di�erential equations. Moreover, they proved that
Gelfand-Dickey algebras correspond to the Drinfeld-Sokolov Hamiltonian reduction performed for the
Lie algebra of n by n traceless matrices sln.

In this work we will be interested in the classical aspect of the theory, rather than the quantum one.
So, from now on, we can skip the adjective classical. We have seen that W-algebras appear in at least
three interrelated contexts. In particular, for which concerns integrable systems, there is also another
Poisson structure for the equations of n-th KdV type (or for the KP equation in general). In this case
we say that we have a bi-Hamiltonian structure and as pointed out in [21] this is one of the main tool
to prove integrability for such equations.

Recently, Barakat, De Sole and Kac [3] established a deep relation between Poisson vertex algebras
and Hamiltonian equations and proved that Poisson vertex algebras provide a very convenient framework
to study (both classical and quantum) Hamiltonian systems.

The aim of this thesis is to develop the theory of classical W-algebras in the Poisson vertex algebras
language. This leads to a better understanding of the Hamiltonian structure underlying W-algebras and
to a generalization of results, both in Gelfand-Dickey and Drinfeld-Sokolov approach to integrability of
Hamiltonian eqautions.
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In the �rst chapter, we review the basic notions and foundations of the theory of Poisson vertex
algebras aimed to the study of Hamiltonian equations as laid down in [3].

The second chapter is about Drinfeld-Sokolov Hamiltonian reduction. The orginal construction given
in [12] involved a semisimple Lie algebra g and its principal nilpotent element f . After reviewing the
Drinfeld-Sokolov Hamiltonian reduction, we will de�ne it in a purely Poisosn vertex algebra language.
This will enable us to perform such reduction for any nilpotent element of g. After showing that our
construction is equivalent to the original one, we will construct, in the case of the classical Lie algebra
Bn, Cn and Dn, the corresponding W-algebras as quotients of particular Poisson vertex subalgebras of
the W-algebra corresponding to gln.

The third chapter is devoted to the analysis of the Gelfand-Dickey algebras approach to W-algebras,
although we radically change point of view. Instead of considering a pseudodi�erential operator and
then de�ning the Poisson structure on the algebra of local functionals on it, we attach to any di�erential
algebra a particular pseudodi�erential operator, which we call "general" and prove that in this case the
Adler map [1] gives rise to a Hamiltonian operator, using the generating series of its matrix entries.
The use of the λ-bracket language surprisingly simpli�es the proof if compared to the usual one [10].
This allows us to think about the Adler map as a map from pseudodi�erential operator to λ-bracket
structures. When the λ-bracket corresponding under this map to a pseudodi�erential operator de�nes
a Poisson vertex algebra structure then the Adler map gives rise to a Hamiltonian structure. We will
give an example of an operator in which this does not happen and one in which it happens. In the
�rst case we can still modify the Ader map and get a Hamiltonian structure. In the Drinfeld-Sokolov
Hamiltonian reduction, this structure corresponds to the Hamiltonian reduction of sln and its principal
nilpotent element. In the other case we will be able to recover and to give a very simple proof of a famous
theorem of Kupershmidt and Wilspon [20].

The fourth section is devoted to establish the well known fact that Gelfand-Dickey algebras are
W-algebras corresponding to some special cases of Drinfeld-Sokolov Hamiltonian reduction. Namely, we
will prove that the Poisson vertex algebras we construct using Drinfeld-Sokolov approach, in the case of
the Lie algebra gln (respectively sln) and its principal nilpotent element, is isomorphic to the Poisson
vertex algebra we got, using Gelfand-Dickey approach, in the case of a general di�erential operator of
order n (respectively the same di�erential operator with missing ∂n−1 term).

In the last chapter we will be interested in �nding integrable systems attached to W-algebras and
proving their integrability. First, we will consider the homogeneous case, namely we will �nd integrable
hierarchies for a�ne Poisson vertex algebras (see Example 1.6 for the de�nition). Then we will generalize
the results of [12], about integrable systems attached to W-algebras via Drinfeld-Sokolov Hamiltonian
reduction, to a larger class of nilpotent elements.
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CHAPTER 1

Poisson vertex algebras and Hamiltonian equations

In this chapter we review the connection between Poisson vertex algebras and the theory of Hamil-
tonian equations as laid down in [3]. It will be shown that Poisson vertex algebras provide a very
convenient framework for systems of Hamiltonian equations associated to a Hamiltonian operator. As
the main application we explain how to establish integrability of such partial di�erential equations using
the so called Lenard scheme.

1.1. Algebras of di�erential functions and Poisson vertex algebras

By a di�erential algebra we shall mean a unital commutative associative algebra R over C with a
derivation ∂, that is a C-linear map from R to itself such that, for a, b ∈ R

∂(ab) = ∂(a)b+ a∂(b).

In particular ∂1 = 0.
One of the most important examples we are interested in is the algebra of di�erential polynomials in

one independent variable x and l dependent variables ui (l may also be in�nite)

Rl[x] = C[x, u
(n)
i | i ∈ {1, . . . , l} = I, n ∈ Z+],

where the derivation ∂ is de�ned by ∂(u
(n)
i ) = u

(n+1)
i and ∂x = 1. One can also consider the algebra of

translation invariant di�erential polynomials in l variables ui

Rl = C[u
(n)
i | i ∈ {1, . . . , l} = I, n ∈ Z+],

where ∂(u
(n)
i ) = u

(n+1)
i .

De�nition 1.1. An algebra of di�erential functions V in one independent variable x and a set of
dependent variables {ui}i∈I is a di�erential algebra with a derivation ∂ endowed with linear maps
∂

∂u
(n)
i

: V −→ V, for all i ∈ I and n ∈ Z+, which are commuting derivations of the product in V such

that, given f ∈ V, ∂f

∂u
(n)
i

= 0 for all but �nitely many i ∈ I and n ∈ Z+ and the following commutation

relations hold
[

∂

∂u
(n)
i

, ∂

]
=

∂

∂u
(n−1)
i

, (1.1)

where the RHS is considered to be zero if n = 0.

We call C = ker(∂) ⊂ V the subalgebra of constant functions and denote by F ⊂ V the subalgebra of
quasiconstant functions, de�ned by

F = {f ∈ V | ∂f

∂u
(n)
i

= 0∀i ∈ I, n ∈ Z+}.

One says that f ∈ V has di�erential order n in the variable ui if
∂f

∂u
(n)
i

6= 0 and ∂f

∂u
(m)
i

= 0 for all m > n.

It follows by (1.1) that C ⊂ F. Indeed, suppose that f ∈ C has order n ∈ Z+ in some variable ui, then

0 =

[
∂

∂u
(n+1)
i

, ∂

]
f = ∂f

∂u
(n)
i

which contracdicts our hypothesis. Furthermore, clearly, ∂F ⊂ F.

The di�erential algebras Rl[x] and Rl are examples of algebras of di�erential functions. Other
examples can be constructed starting from Rl[x] or Rl by taking a localization by some multiplicative
subset S, or an algebraic extension obtained by adding solutions of some polynomial equations, or a
di�erential extension obtained by adding solutions of some di�erential equations.
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In all these examples, but more generally in any algebra of di�erential functions which is an extension
of Rl[x], the action of the derivation ∂ : V −→ V, which extends the usual derivation in Rl[x], is given by

∂ =
∂

∂x
+

∑

i∈I,n∈Z+

u
(n+1)
i

∂

∂u
(n)
i

, (1.2)

which implies that F∩ ∂V = ∂F. Indeed, if f ∈ V has di�erential order n ∈ Z+ in some variable ui, then
∂f has di�erential order n+ 1, hence, it does not lie in F.

The commutation relations (1.1) imply the following lemma ([3, Lemma 1.2]).

Lemma 1.2. Let Di(z) =
∑
n∈Z+

zn ∂

∂u
(n)
i

. Then for every h(λ) =
∑N
m=0 hmλ

m ∈ C[λ] ⊗ V and f ∈ V

the following identity holds

Di(z)(h(∂)f) = Di(z)(h(∂))f + h(z + ∂)(Di(z)f),

where Di(z)(h(∂)) is the di�erential operator obtained by applying Di(z) to the coe�cients of h(∂).

Proof. Multiplying by zn and summing over n ∈ Z+ both sides of (1.1) we get Di(z) ◦ ∂ =
(z + ∂)Di(z). It follows that

Di(z) ◦ ∂n = (z + ∂)nDi(z),

for every n ∈ Z+. Thus, if h(λ) = hnλ
n, this implies that

Di(z) ◦ h(∂) = Di(z) ◦ hn∂n = Di(z)(hn) ◦ ∂n + hnDi(z) ◦ ∂n = Di(z)(hn) ◦ ∂n + hn(z + ∂)nDi(z) =

= Di(z)(h(∂)) + h(z + ∂)Di(z).

By linearity the general case follows. �

We denote by V⊕l ⊂ Vl the subspace of all F = (Fi)i∈I with �nitely many non-zero entries (l may
also be in�nite) and introduce a pairing Vl × V⊕l −→ V

/
∂V

(P, F ) −→
∫
PF, (1.3)

where
∫
denotes the canonical map V −→ V

/
∂V. The pairing (1.3) is non-degenerate [3, Proposition

1.3], namely
∫
PF = 0 for every F ∈ V⊕l if and only if P = 0.

Let us de�ne the operator of variational derivative δ
δu : V −→ V⊕l by δf

δu =
(
δf
δui

)
i∈I
∈ V⊕l, where

δf

δui
=
∑

n∈Z+

(−∂)n
∂f

∂u
(n)
i

.

By (1.1), it follows immediately that δ
δui
· ∂ = 0, for each i ∈ I, then ∂V ⊂ ker δ

δu .

We let Vect(V) be the space of all vector �elds of V, which is a Lie subalgebra of Der(V), the Lie
algebra of all derivations of V. An element X ∈ Vect(V) is of the form

X = h
∂

∂x
+

∑

i∈I,n∈Z+

hi,n
∂

∂u
(n)
i

, h, hi,n ∈ V. (1.4)

By (1.2), ∂ is an element of Vect(V) and we denote by Vect∂(V) the centralizer of ∂ in Vect(V),

namely Vect∂(V) = Vect(V) ∩ Der∂(V). Elements X ∈ Vect∂(V) are called evolutionary vector �elds.

For X ∈ Vect∂(V) we have X(u
(n)
i ) = X(∂nui) = ∂nX(ui), so that, by (1.4) and

[
∂
∂x , ∂

]
= 0, X is

completely determined by its values X(ui) = Pi, i ∈ I. Thus, we have a vector space isomorphism

Vl ∼= Vect∂(V) given by

Vl 3 P = (Pi)i∈I −→ XP =
∑

i∈I,n∈Z+

(∂nPi)
∂

∂u
(n)
i

∈ Vect∂(V). (1.5)

The l-tuple P is called the characteristic of the vector �eld XP .
The Fréchet derivative Df of f ∈ V is de�ned as the following di�erential operator from Vl to V:

Df (∂)P = XP (f) =
∑

i∈I,n∈Z+

∂f

∂u
(n)
i

∂nPi.

We note that Df (∂)P is just the �rst-order di�erential of the function f(u), indeed f(u+ εP ) = f(u) +
εDf (∂)P + o(ε2).
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More generally, for any collection F = (fα)α∈A, where A is an index set, the corresponding Fréchet

derivative is the linear map DF (∂) : Vl −→ VA given by

(DF (∂)P )α = Dfα(∂)P = XP (fα), α ∈ A.

Its adjoint map with respect to the pairing (1.3) is the linear map D∗F (∂) : V⊕A −→ V⊕l de�ned by

(D∗F (∂)G)i =
∑

α∈A,n∈Z+

(−∂)n

(
∂Fα

∂u
(n)
i

Gα

)
, i ∈ I.

We have the following formula for the commutator of evolutionary vector �elds in terms of the
Fréchet derivatives:

[XP , XQ] = XDQ(∂)P−DP (∂)Q.

Elements of the form δf
δu ∈ V⊕l are called exact. An element F ∈ V⊕l is called closed if its Fréchet

derivative is a self-adjoint di�erential operator, that is DF (∂) = D∗F (∂). It is well-known and not hard
to check, applying Lemma 1.2 twice, that any exact element in V⊕l is closed, namely D δf

δu
(∂) = D∗δf

δu

(∂)

for every
∫
f ∈ V

/
∂V.

The main ingredient in the de�nition of Poisson vertex algebras is the notion of λ-bracket that we
are going to de�ne.

De�nition 1.3. Let V be a C[∂]-module. A λ-bracket on V is a C-linear map

{·λ·} : V⊗ V −→ C[λ]⊗ V

f ⊗ g −→ {fλg},
which is sesquilinear, that is, for f, g ∈ V

{∂fλg} = −λ{fλg}, {fλ∂g} = (λ+ ∂){fλg}. (1.6)

If, moreover, V is a commutative associative unital di�erential algebra with a derivation ∂, a λ-bracket
on V is de�ned to obey for any f, g, h ∈ V, in addition, the left Leibniz rule

{fλgh} = {fλg}h+ {fλh}g, (1.7)

and the right Leibniz rule

{fgλh} = {fλ+∂h}→g + {gλ+∂h}→f. (1.8)

We note that the sesquilinearity property (1.6) means that ∂ is a derivation for the λ-bracket. We
should also explain the meaning of the arrow in (1.8). Usually, one writes

{fλg} =
∑

n∈Z+

λn

n!
(f(n)g).

The C-bilinear products f(n)g are called n-th products on V and we note that f(n)g = 0 for n su�ciently
large. In (1.8) and furhter on, the arrow means where λ+ ∂ should be moved. For example

{fλ+∂h}→g =
∑

n∈Z+

(f(n)g)
(λ+ ∂)n

n!
g.

We say that the λ-bracket is commutative (respectively skew-commutative) if

{gλf} = ←{f−λ−∂g} (respectively = −←{f−λ−∂g}). (1.9)

We remark that in this case the direction of the arrow tells us that

←{f−λ−∂g} =
∑

n∈Z+

(−λ− ∂)n

n!
(f(n)g).

From this point we assume the convention that in case there is no arrow, it is assumed to be to the left.
For f, g, h ∈ V, the following identity

{fλ{gµh}} = {{fλg}λ+µh}+ {gµ{fλh}} (1.10)

is called Jacobi identity for the λ-bracket.

De�nition 1.4. A C[∂]-module V endowed with a λ-bracket which satis�es skew-commutativity (1.9)
and Jacobi identity (1.10) is called Lie conformal algebra [19]. If, moreover, V is a di�erential algebra,
then V is called Poisson vertex algebra [3].
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Next theorem explains how to extend an arbitrary "non-linear" λ-bracket on a set of variables {ui}i∈I
with value in some algebra V of di�erential functions to a Poisson vertex algebra structure on V.

Theorem 1.5 ([3, Theorem 1.15]). Let V be an algebra of di�erential functions, which is an extension

of the algebra of di�erential polynomials Rl[x] = C[x, u
(n)
i | i ∈ I, n ∈ Z+]. For each pair i, j ∈ I, choose

{uiλuj} ∈ C[λ]⊗ V.

(a) Formula

{fλg} =
∑

i,j∈I
m,n∈Z+

∂g

∂u
(n)
j

(λ+ ∂)n{uiλ+∂uj}→(−λ− ∂)m
∂f

∂u
(m)
i

(1.11)

de�nes a λ-bracket on V, which extends the given λ-brackets on the generators ui, i ∈ I.
(b) The λ-bracket (1.11) on V satis�es the commutativity (respectively skew-commutativity) condi-

tion (1.9), provided that the same holds on generators:

{uiλuj} = ←{uj−λ−∂ui} (respectively = −←{uj−λ−∂ui}), (1.12)

for all i, j ∈ I.
(c) Assuming that the skew-commutativity condition (1.12) holds, the λ-bracket (1.11) satis�es the

Jacobi identity (1.10), thus making V a Poisson vertex algebra, provided that the Jacobi identity
holds on any triple of generators

{uiλ{ujµuk}} = {{uiλuj}λ+µuk}+ {ujµ{uiλuk}},

for all i, j, k ∈ I.

This theorem allows us to make some examples of Poisson vertex algebras.

Example 1.6. Let g be a Lie algebra with a symmetric invariant bilinear form (· | ·) and let s be an
element of g. Let {ui}i∈I be a basis of g. The a�ne Poisson vertex algebra associated to the triple

(g, (· | ·), s) is the di�erential algebra R = C[u
(n)
i | i ∈ I, n ∈ Z+] togheter with the following λ-bracket,

de�ned for a, b ∈ g by

{aλb} = [a, b] + (s | [a, b]) + λ(a | b) (1.13)

and extended to the whole R by formula (1.11).

We point out that in the RHS of (1.13) any of the three summands, or more generally, any linear
combination of them, endows R with a Poisson vertex algebra structure.

Example 1.7. When g = Cu is the 1-dimensional abelian Lie algebra, if we assume the bilinear form
normalized by the condition (u | u) = 1, then, for any s ∈ g, the a�ne Poisson vertex algebra associated
to the triple (Cu, (· | ·), s) is the di�erential algebra R = C[u, u′, u′′, . . .] togheter with the following
λ-bracket:

{uλu} = λ1 (1.14)

(one usually drops 1). This is known as Gardner-Fadeev-Zakharov (GFZ) λ-bracket.

More generally, one can replace λ in the RHS of (1.14) by any odd polynomial p(λ) ∈ C[λ] and
still get a Poisson vertex algebra structure on R. Indeed, the bracket in (1.14) is skew-commutative and
sastis�es the Jacobi identity for the triple u, u, u, since each triple commutator in the Jacobi identity is
zero.

Example 1.8. The Virasoro-Magri Poisson vertex algebra on R = C[u, u′, u′′, . . .], with central charge
c ∈ C, is de�ned by

{uλu} = (∂ + 2λ)u+ λ3c. (1.15)

It is easily seen that the bracket (1.15) is skew-commutative and it satis�es the Jacobi identity for the
triple u, u, u.

The following theorem further generalizes the results from Theorem 1.5, as it allows us to consider
not only extensions of Rl[x], but also quotients of such extensions by ideals.
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Theorem 1.9 ([3, Theorem 1.21]). Let V be an algebra of di�erential functions, which is an extension

of the algebra of di�erential polynomials Rl[x] = C[x, u
(n)
i | i ∈ I, n ∈ Z+]. For each pair i, j ∈ I, let

{uiλuj} ∈ C[λ] ⊗ V and consider the induced λ-bracket on V de�ned by formula (1.11). Suppose that
J ⊂ V is a subspace such that ∂J ⊂ J, JV ⊂ J, {VλJ} ⊂ C[λ] ⊗ J, {JλV} ⊂ C[λ] ⊗ J and consider the
quotient space V

/
J with the induced action of ∂, the induced commutative associative product and the

induced λ-bracket.

(a) The λ-bracket on the quotient space V
/
J satis�es the commutativity (respectively skew-commutativity)

condition (1.9), provided that

{uiλuj} ∓←{uj−λ−∂ui} ∈ C[λ]⊗ J, (1.16)

for all i, j ∈ I.
(b) Furthermore, assuming that the skew-commutativity condition (1.16) holds, the λ-bracket on

V
/
J satis�es the Jacobi identity (1.10), thus making V

/
J a Poisson vertex algebra, provided that

{uiλ{ujµuk}} − {ujµ{uiλuk}} − {{uiλuj}λ+µuk} ∈ C[λ]⊗ J,

for all i, j, k ∈ I.
This theorem will be needed to prove that classical W-algebras are Poisson vertex algebras.

Example 1.10. Let A be a Lie conformal algebra with a central element K such that ∂K = 0. Then
Vk(A) = S(A)

/
(K − k1), k ∈ C, carries the usual structure of a unital commutative associative di�erential

algebra endowed with the λ-bracket, extending that from A by the left and right Leibniz rules, making
it a Poisson vertex algebra. This generalization of Examples 1.6, 1.7, 1.8 may be viewed as a Poisson
vertex algebras analogue of the Lie-Kirillov-Kostant Poisson algebra S(g) associated to a Lie algebra g.

1.2. Hamiltonian operators and Hamiltonian equations

Theorem 1.5(a) says that, in order to de�ne a λ-bracket on an algebra of di�erential functions V

exending Rl[x] = C[x, u
(n)
i | i ∈ I, n ∈ Z+] one only needs to de�ne for any pair i, j ∈ I the λ-bracket

{uiλuj} = Hji(λ) ∈ C[λ]⊗ V. (1.17)

In particular, λ-brackets on V are in one-to-one correspondence with l× l-matrices H(λ) = (Hij(λ))i,j∈I ,

with Hij(λ) =
∑N
n=0Hij;nλ

n ∈ V[λ], or, equivalently, with the corresponding l×l-matrix valued di�eren-
tial operators H(∂) = (Hij(∂))i,j∈I : V⊕l −→ Vl. We denote by {·λ·}H the λ-bracket on V corresponding

to the operator H(∂) via equation (1.17).
We recall that the formal adjoint of H(∂) is the l × l-matrix valued di�erential operator H∗(∂) =(

H∗ij(∂)
)
i,j∈I , where H

∗
ij(∂) =

∑N
n=0(−∂)n ◦Hji;n.

The next proposition relates Poisson vertex algebra structures with a special class of matrix valued
di�erential operators.

Proposition 1.11 ([3, Proposition 1.16]). Let H(∂) = (Hij(∂))i,j∈I be an l× l-matrix valued di�erential
operator.

(a) The λ-bracket {·λ·}H satis�es the (skew-)commutativity condition (1.9) if and only if the dif-
ferential operator H(∂) is self(skew-)adjoint, that is H(∂) = ±H∗(∂).

(b) If H(∂) is skew-adjoint, the following conditions are equivalent:
(i) the λ-bracket {·λ·}H de�nes a Poisson vertex algebra structure on V,
(ii) the following identity holds for every i, j, k ∈ I:

∑

h∈I,n∈Z+

(
∂Hkj(µ)

∂u
(n)
h

(λ+ ∂)nHhi(λ)− ∂Hki(λ)

∂u
(n)
h

(µ+ ∂)nHhj(µ)

)
=

=
∑

h∈I,n∈Z+

Hkh(λ+ µ+ ∂)(−λ− µ− ∂)n
∂Hji(λ)

∂u
(n)
h

,

(iii) the following identity holds for every F,G ∈ V⊕l:

H(∂)DG(∂)H(∂)F +H(∂)D∗H(∂)F (∂)G−H(∂)DF (∂)H(∂)G+

+H(∂)D∗F (∂)H(∂)G = DH(∂)GH(∂)F −DH(∂)F (∂)H(∂)G.

De�nition 1.12. A matrix valued di�erential operator H(∂) = (Hij(∂))i,j∈I , which is skew-adjoint

and satis�es one of the three equivalent condition (i)-(iii) of Proposition 1.11(b), is called Hamiltonian
operator.
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It follows from Proposition 1.11 that Poisson vertex algebra structures on V are in one-to-one corre-
spondence with Hamiltonian operators.

Example 1.13 (cf. Example 1.6). Let g be a Lie algebra with a non-degenerate symmetric invariant
bilinear form (· | ·). Let {ui}i∈I be a basis of g and {ui}i∈I its dual basis with respect to (· | ·) and
[ui, uj ] =

∑
k c

k
ijuk. Take s ∈ g, then s =

∑
k(s | uk)uk. The λ-bracket (1.13) on generators reads as

{uiλuj} =
∑

k∈I
ckij (uk + (s | uk)) + (ui | uj)λ.

The corresponding Hamiltonian operator is H(∂) = (Hij(∂))i,j∈I , where

Hij(∂) = −
∑

k∈I
ckij (uk + (s | uk)) + (ui | uj)∂.

Example 1.14 (cf. Example 1.7 and Example 1.8). The Hamiltonian operator corresponding to the GFZ
λ-bracket (1.14) is H(∂) = ∂, while to the Virasoro-Magri λ-bracket (1.15) corresponds the Hamiltonian
operator H(∂) = u′ + 2u∂ + c∂3.

The relation between Poisson vertex algebras and systems of Hamiltonian equations associated to a
Hamiltonian operator is based on the following result.

Proposition 1.15 ([3, Proposition 1.24]). Let V be a C[∂]-module endowed with a λ-bracket {·λ·} :
V⊗ V −→ C[λ]⊗ V and consider the bracket on V obtained by setting λ = 0, that is, for f, g ∈ V

{f, g} = {fλg}|λ=0 . (1.18)

(a) The bracket (1.18) induces a well de�ned bracket on the quotient space V
/
∂V.

(b) If V is a Lie conformal algebra, then the λ-bracket (1.18) induces a structure of a Lie algebra
on V

/
∂V and a structure of left V

/
∂V-module on V.

(c) If V is a Poisson vertex algebra, then the corresponding Lie algebra V
/
∂V acts on V via (1.18)

by derivations of the commutative associative product on V, commuting with the derivation ∂
and this de�nes a Lie algebra homomorphism from V

/
∂V to the Lie algebra of derivations of V.

Proposition 1.15 motivates the next de�nition.

De�nition 1.16 ([3, De�nition 1.25]).

(a) Elements of V
/
∂V are called local functionals. Given f ∈ V, its image in V

/
∂V is denoted by∫

f .

(b) Given a local functional
∫
h ∈ V

/
∂V, the corresponding Hamiltonian equation is

du

dt
= {hλu}|λ=0 = {

∫
h, u} (1.19)

and {
∫
h, ·} is the corresponding Hamiltonian vector �eld.

(c) A local functional
∫
f ∈ V

/
∂V is called an integral of motion of equation (1.19) if df

dt = 0
mod ∂V, or, equivalently, if

{
∫
h,
∫
f} = 0.

(d) The local functionals
∫
hn, n ∈ Z+ are in involution if {

∫
hm,

∫
hn} = 0 for all m,n ∈ Z+. The

corresponding hierarchy of Hamiltonian equations is

du

dtn
= {hnλu}|λ=0 = {

∫
hn, u}, n ∈ Z+.

In particular, all
∫
hn's are integrals of motion of each equation of the hierarchy.

From now on we restrict to the case in which the Poisson vertex algebra V is an algebra of di�erential
functions in the variables {ui}i∈I . In this case, we have already seen that the λ-bracket {·λ·}H is uniquely
de�ned by the corresponding Hamiltonian operator H(∂) = (Hij(∂))i,j∈I and extended to a λ-bracket

on V by formula (1.11). In this case the Hamiltonian vector �eld {
∫
h, ·} is equal to the evolutionary

vector �eld XH(∂) δhδu
and the Hamiltonian equation has the form

du

dt
= H(∂)

δh

δu
,
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where δh
δu =

(
δh
δui

)
i∈I
∈ V⊕l is the variational derivative of h. Moreover, the corresponding Lie algebra

structure of V
/
∂V is given by

{
∫
f,
∫
g} =

∫
δg

δu

(
H(∂)

δf

δu

)
=
∑

i,j∈I

∫
δg

δuj
Hji(∂)

δf

δui
. (1.20)

Remark 1.17. Since
∫
h −→ XH(∂) δhδu

is a Lie algebra homomorphism, local functionals in involution

correspond to commuting evolutionary vector �elds. If a sequence
∫
hn ∈ V

/
∂V is such that δhn

δu ∈ V⊕l

span an in�nite dimensional subspace and dim kerH(∂) < ∞, then the vector �elds XH(∂) δhnδu
span an

in�nite dimensional space as well.

De�nition 1.18. The Hamiltonian equation (1.19) is called integrable if there exists an in�nite sequence
of local functionals

∫
hn, including

∫
h, which span an in�nite dimensional abelian subspace in the Lie

algebra V
/
∂V, with Lie bracket de�ned by (1.18), and such that the evolutionary vector �elds XH(∂) δhnδu

span an in�nite dimensional space (they commute by Remark 1.17).

1.3. Compatible Poisson vertex algebra structures and integrability of Hamiltonian

equations

De�nition 1.19. Several λ-brackets {·λ·}n, n = 1, 2, . . . , N , on a di�erential algebra V are called

compatible if any C-linear combination of them, {·λ·} =
∑N
n=1{·λ·}n, makes it a Poisson vertex algebra.

If V is an algebra of di�erential functions and Hn(∂), n = 1, 2, . . . , N are the Hamiltonian operators,
de�ned by (1.17), corresponding to the λ-brackets, we say that they are compatible as well. A bi-
Hamiltonian pair (H,K) is a pair of compatible Hamiltonian operators H(∂),K(∂).

Example 1.20. (cf. Examples 1.7, 1.8 and 1.14)Let R = C[u, u′, u′′, . . .]. The λ-brackets

{uλu}1 = (∂ + 2λ)u, {uλu}2 = λ, {uλu}3 = λ3,

are compatible. The corresponding compatible Hamiltonian operators are

H1(∂) = u′ + 2u∂, H2(∂) = ∂, H3(∂) = ∂3.

Example 1.21. (cf. Examples 1.6 and 1.13) Let g be a Lie algebra with a nondegenerate symmetric

bilinear form (· | ·), let {ui}i∈I be an orthonormal basis of g and let [ui, uj ] =
∑
k c

k
ijuk. Let R = C[u

(n)
i |

i ∈ I, n ∈ Z+], then the following λ-brackets on R are compatible:

{uiλuj}′ =
∑

k

ckijuk, {uiλuj}′′ = δi,jλ, {uiλuj} = ckij , k ∈ I.

The corresponding compatible Hamiltonian operators, H ′, H ′′ and Hk, k ∈ I, are given by

H ′ij(∂) = −
∑

k∈I
ckijuk, H ′′ij(∂) = δij∂, Hk

ij = ckij .

De�nition 1.22. Let V be an algebra of di�erential functions and let H(∂) = (Hij(∂))i,j∈I and K(∂) =

(Kij(∂))i,j∈I be any two di�erential operators on V⊕l. An (H,K)-sequence is a collection {Fn}0≤n≤N ⊂
V⊕l such that

H(∂)Fn = K(∂)Fn+1, 0 ≤ n ≤ N − 1. (1.21)

If N =∞, we say that {Fn}n∈Z+
is an in�nite (H,K)-sequence.

Equation (1.21) for an in�nite (H,K)-sequence can be rewritten using the generating series F (z) =∑
n∈Z+

Fnz
−n as follows:

(H(∂)− zK(∂))F (z) = −zK(∂)F0. (1.22)

Note that in the special case in which Fn = δhn
δu , for some

∫
hn ∈ V

/
∂V, equation (1.21) can be

written in terms of the λ-brackets associated to the operators H(∂) and K(∂) (see (1.17)):

{hnλui}H |λ=0 = {hn+1λui}K |λ=0 , (1.23)

for any i ∈ I.
Lemma 1.23. Suppose that the operators H(∂) and K(∂), acting on V⊕l, are skew-adjoint. Then, any
(H,K)-sequence {Fn}0≤n≤N satis�es the orthogonality relations

∫
Fm ·H(∂)Fn =

∫
Fm ·K(∂)Fn = 0, 0 ≤ m,n ≤ N. (1.24)
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Proof. Without loss of generality, we can assume m ≤ n and prove (1.24) by induction on n−m.
If m = n, (1.24) clearly holds, since both H(∂) and K(∂) are skewadjoint operators. Let us assume
m− n > 0, by (1.21) and inductive assumption we have

∫
Fm ·K(∂)Fn =

∫
Fm ·H(∂)Fn−1 = 0,

and similarly, since H(∂) is skew-adjoint,
∫
Fm ·H(∂)Fn = −

∫
Fn ·H(∂)Fm = −

∫
Fn ·K(∂)Fm+1 = 0.

�
We have a way to construct an in�nite hierarchy of Hamiltonian equations, du

dtn
= {

∫
hn, u}H , and

the associated in�nite sequence of integrals of motion
∫
hn, n ∈ Z+. In order to do this, we have to

solve two problems. First, given a bi-Hamiltonian pair (H,K), acting on V⊕l, we need to �nd an in�nite
(H,K)-sequence {Fn}n∈Z+

. Second, we need to prove that Fn, n ∈ Z+ is an exact element, namely,

Fn = δhn
δu , for some local functional

∫
hn ∈ V

/
∂V and we want to �nd an explicit formula for it. By

Lemma 1.23, the corresponding local functionals
∫
hn are pairwise in involution with respect to both Lie

brackets associated to both Hamiltonian operators H(∂) and K(∂):

{
∫
hm,

∫
hn}H = {

∫
hm,

∫
hn}K = 0, for all m,n ∈ Z+. (1.25)

12



CHAPTER 2

Classical W-algebras via Drinfeld-Sokolov Hamiltonian reduction

In the seminal paper [12] a hierarchy of integrable Hamiltonian equations is attached to semisimple
Lie algebras. This construction, called classical Drinfeld-Sokolov Hamiltonian reduction, is obtained
starting from any principal nilpotent element in the Lie algebra. The algebraic structure arising from
this Hamiltonian reduction is nowadays known as classical W-algebra. Later, classical W-algebras were
constructed starting from any nilpotent element. In this chapter, we review the classical Drinfeld-
Sokolov Hamiltonian reduction extending it to the case of an arbitrary nilpotent element and give an
interpretation in the language of Poisson vertex algebras (cf. Chapter 1). Then we realize classical
W-algebras corresponding to Lie algebras of type Bn, Cn and Dn as quotients of some Poisson vertex
subalgebras of the classical W-algebra attached to gln.

2.1. Review of classical Drinfeld-Sokolov Hamiltonian reduction

Let g be a reductive �nite dimensional Lie algebra with a nondegenerate symmetric invariant bilinear
form (· | ·) and f ∈ g a nilpotent element. By Jacobson-Morozov theorem [6, Theorem 3.3.1], it is possible
to embed f in an sl2-triple {f, h = 2x, e} ⊂ g. Then we can write

g =
⊕

i∈ 1
2Z

gi (2.1)

for its adx-decomposition. It follows that f ∈ g−1, h ∈ g0 and e ∈ g1.
We consider the following subalgebras of g:

m+ =
⊕

i≥1

gi ⊂ n+ =
⊕

i≥ 1
2

gi ⊂ b+ =
⊕

i∈Z+

gi ⊂ B+ =
⊕

i≥− 1
2

gi. (2.2)

Let C∞(S1, g) be the space of functions from S1 = {z ∈ C | |z| = 1} with values in g. This space inherits
a Lie algebra structure from g and the bilinear form of g extends to a bilinear form on C∞(S1, g), which
we still denote (· | ·). Moreover, set ∂ = d

dx the total derivative of functions, then ∂ naturally acts

on C∞(S1, g). This allow us to consider the semidirect product Lie algebra C∂ n C∞(S1, g), where
[∂, u] = u′, for any u ∈ C∞(S1, g).

Let L ∈ C∂ n C∞(S1,B+) be a �rst order di�erential operator of the form

L = ∂ + q + Λ(z), (2.3)

where q ∈ C∞(S1,B+) and Λ(z) = f + zs, with z ∈ C and s ∈ ker ad n+. Clearly ∂Λ(z) = 0.
We de�ne a gauge transformation to be a transformation of the type

L̃ = eadS(L ),

where S ∈ C∞(S1, n+). From the fact that [n+,B+] ⊆ b+, [n+, s] = 0 and [n+, f ] ⊆ B+ it follows that

L̃ = ∂ + q̃ + Λ(z), where q̃ = eadS(L)− ∂ − Λ(z) ∈ C∞(S1,B+). Then L and L̃ have the same form.

We call them gauge equivalent operators and usually write L
S∼ L̃ .

Now, let R be the ring of di�erential polynomials in q that are invariants for gauge transformations.
The expression p is a di�erential polynomial in q, where p and q are functions in some vector spaces V
and W , means that for some, thus any, choice of bases in V and W , the coordinates of p are di�erential
polynomials in the coordinates of q. Hence, a di�erential polynomial p belongs to R if and only if

p(q) = p(q̃), for any L
S∼ L̃ . We emphasize that q̃ = q̃(q).

For any i > 0 the operator ad f acts from gi to gi−1 injectively (since the grading (2.1) is given by the
sl2 triple in which f is embedded; such a grading is called good [13]). When it is not surjective, we can
choose a vector subspace Vi ⊂ gi such that gi = Vi⊕ [f, gi+1]. We set V = ⊕iVi. Since B+ = V ⊕ [f, n+]
and ad f : n+ −→ B+ is injective, it follows that dimV = dimB+ − dim n+. By representation theory
of sl2, it follows that we can choose, for example, V = ker ad e.

The next proposition is a slight generalization of [12, Proposition 6.1].
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Proposition 2.1. For any operator L of the form (2.3) there exists a unique S ∈ C∞(S1, n+) such

that L
S∼ L can = ∂ + qcan + Λ(z), where qcan ∈ C∞(S1, V ). The elements S and qcan are di�erential

polynomials in q.

Proof. Since [S, s] = 0, we are left to show that we can �nd S and qcan such that

∂ + qcan + f = eadS(∂ + q + f). (2.4)

Let us write q =
∑
i≥− 1

2
qi, q

can =
∑
i≥− 1

2
qcani and S =

∑
i≥ 1

2
Si, where qi, q

can
i and Si are in C

∞(S1, gi).

Equating coe�cients lying in gi in the relation (2.4) we should have qcan− 1
2

+ [f, S1] = q− 1
2
and, for i ∈ Z+,

qcani + [f, Si+1] =−
∑

k∈Z+

∑

h1+···+hk+1=i

h1,...,hk+1≥ 1
2

1

(k + 1)!
[Sh1 , [Sh2 , [. . . , [Shk , S

′
hk+1

]] . . .]]

+
∑

k∈Z+

∑

h0+···+hk=i
h0≥− 1

2 ,h1,...,hk≥ 1
2

1

k!
[Sh1

, [Sh2
, [. . . , [Shk , qh0

]] . . .]]

+
∑

k∈Z+

∑

h1+···+hk+1=i+1

h1,...,hk+1≥ 1
2

1

(k + 1)!
[Sh1

, [Sh2
, [. . . , [Shk+1

, f ]] . . .]].

(2.5)

Since ad f is injective, qcan− 1
2

and S1 are uniquely determined. Then we can �nd uniquely qcani and Si+1

when the previous ones have already been determined. �

Corollary 2.2. The choice of the space V provides a di�erential basis for the di�erential algebra R.

Thus, if u1, . . . , ur are the coordinates of q
can in V , R = C[u

(m)
i | i ∈ {1, . . . , r},m ∈ Z+].

Proof. It su�ces to show that if L
S∼ L1 and L1

T∼ L2, then L
U∼ L2. This implies that if

L
S∼ L̃ , then L can = L̃ can. Thus, for a gauge invariant polynomial p, p(q) = p(q̃) = p(qcan). We have

L2 = eadT (L1) = eadT eadS(L ). By Campbell-Haussdor� formula [23] there exists U ∈ C∞(S1, n+)
such that eadT eadS = eadU proving the assertion. �

For any u, v ∈ C∞(S1, g) we de�ne

(u, v) =

∫

S1

(u | v). (2.6)

This bilinear form is still invariant and integration by parts gives

(u, v′) = −(u′, v). (2.7)

We introduce the Hamiltonian structure on the set of equivalence classes of operators L , which we
denote M(g). Namely,

M(g) =
{
L = ∂ + q + Λ(z) | q ∈ C∞(S1,B+)

}/
S∼ .

The set of functionals on M(g) is

F(g) =
{
l(q) =

∫
S1p(q) | p ∈ R

}
.

If l ∈ F(g) and q ∈ C∞(S1,B+), then by gradq l we denote any element of C∞(S1, g) satisying the
relation

d

dε
l(q + εh)

∣∣∣∣
ε=0

= (gradq l, h) (2.8)

for any h ∈ C∞(S1,B+). Since the orthonormal complement to B+ is m+, then gradq l is de�ned up to

the addition of elements of C∞(S1,m+).
We de�ne the following Poisson bracket on F(g): if ϕ, ψ ∈ F(g) and q ∈ C∞(S1,B+), then

{ϕ,ψ}DSz (q) = (gradq ϕ, [gradq ψ,L ]). (2.9)

We can also write {·, ·}DSz = {·, ·}DS0 − z{·, ·}DS∞ , where

{ϕ,ψ}DS0 (q) = (gradq ϕ, [gradq ψ, ∂ + q + f ]),

{ϕ,ψ}DS∞ (q) = −(gradq ϕ, [gradq ψ, s]).

It can be veri�ed that:
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a) de�nition is well posed, that is, it does not depend on the choice of the gradient;
b) gauge invariance of ϕ and ψ implies gauge invariance of {ϕ,ψ}DSz ;
c) the brackets {·, ·}DS0 and {·, ·}DS∞ are skewsymmetric, coordinated and verify the Jacoby identity.

Veri�cation of Jacobi identity in c) involves a long computation that can be avoid using Poisson
vertex algebras theory, then we will prove it later. Now we prove a) and b).

For a) we have to verify for any θ ∈ C∞(S1,m+) the following equalities

(gradq ϕ, [θ,L ]) = 0; (2.10)

(θ, [gradq ϕ,L ]) = 0. (2.11)

By invariance of the scalar product and (2.7) it follows that (2.10) implies (2.11). Since [m+, s] = 0, we
are left to show that

(gradq ϕ, [θ, ∂ + q + f ]) = 0.

This equality follows from the gauge invariance of ϕ. Indeed, take S(ε) = εθ and de�ne

L (ε) = eadS(ε)(L ) = ∂ + q(ε) + Λ(z) = L + ε[θ,L ] + o(ε2).

Then q(ε) = q + ε[θ,L ] + o(ε2) = q + ε[θ, ∂ + q + f ] + o(ε2). By gauge invariance it follows that

0 =
dϕ(q)

dε

∣∣∣∣
ε=0

=
dϕ(q(ε))

dε

∣∣∣∣
ε=0

= (gradq ϕ, [θ, ∂ + q + f ]).

To prove b) it su�ces to show that if L
S∼ L̃ , then

eadS(gradq ϕ) = gradq̃ ϕ, (2.12)

where gradq̃ ϕ = gradq ϕ
∣∣
q=q̃

. In fact, it will follow that

{ϕ,ψ}DSz (q̃) =
(
eadS(gradq ϕ),

[
eadS(gradq ψ), L̃

])
=
(
eadS(gradq ϕ), eadS

[
gradq ψ,L

])
=

= (gradq ϕ, [gradq ψ,L ]) = {ϕ,ψ}DSz (q).

To prove (2.12) we note that, if L̃ = eadS(L ), then q̃ + εh = q̃ + εh̃ = q̃ + εeadS(h), from which we
derive, using gauge invariance, the equality

(gradq ϕ, h) =
dϕ(q + εh)

dε

∣∣∣∣
ε=0

=
dϕ(q̃ + εh)

dε

∣∣∣∣∣
ε=0

=
dϕ(q̃ + εeadS(h))

dε

∣∣∣∣
ε=0

=

=
(
gradq̃ ϕ, e

adS(h)
)

=
(
e− adS(gradq̃ ϕ), h

)
.

2.2. Classical W-algebras in the Poisson vertex algebra theory

Let g, f and (· | ·) be as in Section 2.1. Let {e, h = 2x, f} ⊂ g be a sl2-triple associated to f , then
we have the adx-decompositon (2.1). We keep the notation as in (2.2).

Let V(g) = S(C[∂]⊗ g) be the symmetric algebra over C[∂]⊗ g. We use the notation a(i) = ∂i ⊗ a,
a ∈ g to indicate monomials of C[∂]⊗ g.

Given z ∈ C and s ∈ g we give V(g) the structure of Poisson vertex algebra (cf. Example 1.6)
de�ning for a, b ∈ g

{aλb}z = [a, b] + (a | b)λ+ z(s | [a, b]) (2.13)

and extending the λ-bracket to V(g) by Theorem 1.5. We denote this Poisson vertex algebra by Vz(g, s)
and note that for z = 0 there is no dependence on s, hence we will denote it V0(g).

We let J̃(g, f) ⊂ V(g) be the di�erential ideal generated by the elements of the form m − (f | m)
with m ∈ m+, namely

J̃(g, f) = 〈m− (f | m) | m ∈ m+〉V(g).

This is not a Poisson vertex algebra ideal since we can choose a ∈ g such that [a,m] 6∈ m+ for some

m ∈ m+. Then {aλm}z 6∈ J̃(g, f)[λ].
Let us de�ne

W̃z(g, f, s) =
{
p ∈ Vz(g, s)

∣∣∣{aλp}z ∈ J̃(g, f)[λ] ∀a ∈ n+

}
.

As before, for z = 0 there is no dependence on s and we denote the corresponding space W̃0(g, f).

Lemma 2.3. The following statements hold:

a) if p ∈ W̃z(g, f, s) and q ∈ J̃(g, f), then {pλq}z, {qλp}z ∈ J̃(g, f)[λ];
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b) W̃z(g, f, s) ⊂ Vz(g, s) is a Poisson vertex subalgebra;

c) if s ∈ ker ad n+, then J̃(g, f) ⊂ W̃z(g, f, s).

Proof. To prove a) we note that any element of J̃(g, f) is a �nite sum of elements of the form
r∂i(m− (f | m)), with r ∈ V(g) and i ∈ Z+. Then we get

{pλq}z =
∑
{pλr∂i(m− (f | m))}z =

=
∑
{pλr}z∂i(m− (f | m)) +

∑
r(λ+ ∂)i{pλm}z ∈ J̃(g, f)[λ],

since p ∈ W̃z(g, f, s) and m ∈ m+ ⊂ n+. From the fact that J̃(g, f) is a di�erential ideal, using skew-

commutativity we get also {qλp}z ∈ J̃(g, f)[λ].

For b), �rst we prove that W̃z(g, f, s) ⊂ V(g) is a di�erential subalgebra. Indeed, if p, q ∈ W̃z(g, f, s)
and a ∈ n+, we have

{aλpq}z = p{aλq}z + q{aλp}z ∈ J̃(g, f)[λ]

and

{aλ∂p}z = (λ+ ∂){aλp}z ∈ J̃(g, f)[λ],

so that pq and ∂p lie in W̃z(g, f, s).

Next, we show that W̃z(g, f, s) is closed for the λ-bracket. Let a ∈ n+ and p, q ∈ W̃z(g, f, s). By
the Jacobi identity

{aλ{pµq}z}z = {pµ{aλq}z}z + {{aλp}zλ+µq}z.
By a) both terms in the right hand side lie in J̃(g, f)[λ, µ]. Hence {pλq}z ∈ W̃z(g, f, s)[λ].

Finally, let us prove c). By repeated use of left and right Leibniz rule we can reduce to show that

elements of the form m− (f | m), with m ∈ m+, lie in W̃z(g, f, s). Take a ∈ n+, then

{aλm− (f | m)}z = {aλm}z = [a,m] ∈ J̃(g, f)[λ].

Indeed, [a,m] ∈⊕j>1 gj , then (f | [a,m]) = 0. Hence, m− (f | m) ∈ W̃z(g, f, s). �

If s ∈ ker ad n+, by the above lemma, J̃(g, f) ⊂ W̃z(g, f, s) is a Poisson vertex algebra ideal and, by
Theorem 1.9, the quotient has an iduced Poisson vertex algebra structure. Thus, we give the following:

De�nition 2.4. The classical W-algebra associated to the triple (g, f, s) is

Wz(g, f, s) = W̃z(g, f, s)
/̃
J(g, f).

Remark 2.5. In [17] is proved that Wz(g, f, s) depends only on the nilpotent orbit of f and not on the
sl2-triple we choose.

2.2.1. Equivalence with the classical Drinfeld-Sokolov Hamiltonian reduction. We want
to show that the Lie algebra structure on the quotient space Wz(g, f, s)

/
∂Wz(g, f, s) with Lie bracket

de�ned by (1.18) is exactly the same structure obtained by the classical Drinfeld-Sokolov Hamiltonian
reduction performed in Section 2.1. For our purpose we substitute the loop algebra C∞(S1, g) with the Lie
algebra g⊗V(g). The Lie algebra structure on g⊗V(g) is de�ned by [a⊗g, b⊗h] = [a, b]⊗gh ∈ g⊗V(g),
for any monomials a ⊗ g, b ⊗ h ∈ g ⊗ V(g) and extended by linearity to the whole g ⊗ V(g). As for
C∞(S1, g), we can extend the bilinear form of g to a bilinear form on g ⊗ V(g), which we still denote
(· | ·) by (a ⊗ g | b ⊗ h) = (a | b)gh ∈ V(g), for any monomials a ⊗ g, b ⊗ h ∈ g ⊗ V(g). This bilinear
form is still nondegenerate invariant and symmetric. Moreover, let ∂ be the derivation V(g), we de�ne
an action of the abelian Lie algebra C∂ on g⊗ V(g) by

∂.(a⊗ g) = a⊗ ∂g, (2.14)

for any monomial a ⊗ g ∈ g ⊗ V(g). Clearly, ∂ acts as a derivation of g ⊗ V(g). Indeed, since it is a
derivation of V(g), we have

∂.[a⊗ g, b⊗ h] = ∂.([a, b]⊗ gh) = [a, b]⊗ ∂(gh) = [a, b]⊗ (∂g)h+ [a, b]⊗ g(∂h) =

= [a⊗ ∂g, b⊗ h] + [a⊗ g, b⊗ ∂h] = [∂.(a⊗ g), b⊗ h] + [a⊗ g, ∂.(b⊗ h)],

for any a⊗g, b⊗h ∈ g⊗V(g). Thus we can de�ne the semidirect product Lie algebra C∂ng⊗V(g), where
the commutator of ∂ against elements of g⊗V(g) is given by (2.14), namely [∂, a⊗g] = ∂.(a⊗g) = a⊗∂g,
for any monomial a⊗ g ∈ g⊗ V(g).
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We set I = {1, 2, . . . , h + 2m = dim g} and we �x a basis {Qi | i ∈ I, } of g and its dual basis{
Qi | i ∈ I

}
with respect to the form (· | ·), in the following way

Qi = Qi, i = 1, . . . , r basis of g0 = h;

Qi = Qm+i, i = r + 1, . . . , r + d basis of g− 1
2
;

Qi = Qm+i, i = r + d+ 1, . . . , r +m basis of g≤−1;

Qi = Qi−m, i = r +m+ 1, . . . , r +m+ d basis of g 1
2
;

Qi = Qi−m, i = r +m+ d+ 1, . . . , r + 2m basis of g≥1.

Then V(g) ∼= C[Q
(n)
i | i ∈ I, n ∈ Z+]. We also set Ī = {1, . . . , r +m+ d} and

B− =
⊕

i≤ 1
2

gi.

We want to understand how gauge transformations act on the di�erential algebra V(g). We consider
the operator

L = ∂ +Q+ zs⊗ 1 ∈ C∂ n g⊗ V(g), (2.15)

where Q =
∑
i∈I Q

i ⊗Qi ∈ g⊗ V(g), z ∈ C and s ∈ ker ad n+.
Given S ∈ n+ ⊗ V(g), a gauge transformation, as de�ned in Section 2.1, is a trasformation of the

form

L̃ = eadS(L).

Let us set S(ε) = εa⊗ p ∈ (n+ ⊗ V(g))[[ε]], then gauge transformations read as

L(ε) = eadS(ε)(L) = L + ε[a⊗ p,L] + o(ε2) ∈ (C∂ n g⊗ V(g))[[ε]]. (2.16)

We write L(ε) = ∂+Q(ε) + zs⊗ 1, where Q(ε) = Q+ ε[a⊗ r,L] + o(ε2) ∈ (g⊗V(g))[[ε]]. Then we state
the following result.

Lemma 2.6. If p ∈ V(g), then

d

dε
p(Q(ε))

∣∣∣∣
ε=0

= −{a∂p}z→r

for all a ∈ n+ and r ∈ V(g).

Proof. By Taylor formula we get

p(Q(ε)) = p(Q) + ε
∑

i∈I,n∈Z+

∂p(Q)

∂Q
(n)
i

∂n([a⊗ r,L] | Qi ⊗ 1) + o(ε2).

Hence,

d

dε
p(Q(ε))

∣∣∣∣
ε=0

=
∑

i∈I,n∈Z+

∂p(Q)

∂Q
(n)
i

∂n([a⊗ r,L] | Qi ⊗ 1) + o(ε2).

On the other hand, using (1.11), we have

{a∂p}→r =
∑

i∈I,n∈Z+

∂p(Q)

∂Q
(n)
i

∂n{a∂Qi}→r =
∑

i∈I,n∈Z+

∂p(Q)

∂Q
(n)
i

∂n (([a,Qi] + (a | Qi)∂)r) .

The proof is �nished if we prove that

−([a,Qi] + (a | Qi)∂)r = ([a⊗ r,L] | Qi ⊗ 1),

which follows easily from the computation of the right hand side. Indeed, we have

([a⊗ r,L] | Qi ⊗ 1) = (−a⊗ ∂r +
∑

i∈I
[a,Qi]Qir | Qi ⊗ 1) = −(a | Qi)∂r +

∑

i∈I
([a,Qi] | Qi)Qir =

= −(a | Qi)∂r −
∑

i∈I
([a,Qi] | Qi)Qir = −(a | Qi)∂r − [a,Qi]r.

�
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Let π− : g −→→ B− be the projection map, then we de�ne a di�erential algebra homomorphism
π : V(g)−→→ V(B−), de�ning π(a(n)) = ∂n(π−(a)) + δn0(a | f), for any a ∈ g and n ∈ Z+ and then we
extend to the whole di�erential algebra V(g). It is easy to check that

kerπ = 〈m− (m | f) | m ∈ m+〉V(g).

In the notation of Section 2.2, kerπ = J̃(g, f). If i ∈ I, let us denote π(Qi) = qi ∈ B−, then we identify

V(B−) = C[q
(n)
i | i ∈ I, n ∈ Z+] and rewrite π : C[Q

(n)
i | i ∈ I, n ∈ Z+]−→→ C[q

(n)
i | i ∈ Ī , n ∈ Z+], where

π(Q
(n)
i ) = ∂n(π−(Qi)) + δn0(Qi | f) and

π−(Qi) =

{
qi if i ∈ Ī ,
0 if i 6∈ Ī .

We de�ne the map 1⊗π : C∂ng⊗V(g) −→ C∂ng⊗V(g), setting (1⊗π)(∂) = ∂ and (1⊗π)(a⊗g) =
a⊗π(g), for any a⊗g ∈ g⊗V(g). We note that π(Q) = q+f⊗1, where q =

∑
i∈Ī Q

i⊗qi ∈ B+⊗V(B−).
Hence, if L is an operator of the form (2.15), then

L = (1⊗ π)(L) = ∂ + q + Λ(z)⊗ 1

is an operator of the type de�ned in (2.3). Moreover, applying 1⊗ π to L̃, gauge transformations read

L̃ = (1⊗ π)
(
eadS(L)

)
= ead((1⊗π)(S))((1⊗ π)(L)) = ead((1⊗π)(S))(L ),

where (1 ⊗ π)(S) ∈ n+ ⊗ V(B−) as in Section 2.1. If we consider S(ε) = εa ⊗ r ∈ n+ ⊗ V(g), applying
1⊗ π to (2.16), we get q(ε) = q + ε[a⊗ π(r)] + o(ε2).

Recall that, by de�nition of gauge invariance, we can state that p(q) ∈ R if and only if d
dεp(q(ε))

∣∣
ε=0

=

0. Let p ∈ Wz(g, f, s) and let p̃ be a lift in W̃z(g, f, s), that is, {aλp̃}z ∈ J̃(g, f)[λ], for any a ∈ n+. In

particular, {a∂ p̃}z ∈ J̃[g, f ][∂]. Thus, {a∂ p̃}→r ∈ J̃(g, f) for any r ∈ V(g), since J̃(g, f) is a di�erential
ideal. By Lemma (2.6), it follows that

π

(
dp̃(Q(ε))

dε

∣∣∣∣
ε=0

)
= 0.

Since π commutes with the derivation with respect to ε, we also have

π

(
dp̃(Q(ε))

dε

∣∣∣∣
ε=0

)
=
dπ (p̃(Q(ε)))

dε

∣∣∣∣
ε=0

=
dp(q(ε))

dε

∣∣∣∣
ε=0

.

Hence, p ∈ R. By Lemma 2.6, it follows also that if p ∈ R, then p ∈ Wz(g, f, s). Thus, as di�erential
algebras R ∼= Wz(g, f, s).

By construction, for any f, g ∈Wz(g, f, s), the induced λ-bracket, which we denote {·λ·}Λ(z), is given
by

{fλg}Λ(z) = π({f̃λg̃}z),
for any f̃ , g̃ ∈ W̃z(g, f, s) liftings of f and g. Since π|V(B−) = 1 and Wz(g, f, s) ⊂ V(B−), we can choose

f and g as their liftings. Hence, by (1.11),

π({fλg}z) =
∑

i,j∈I
n,m∈Z+

∂g

∂q
(n)
j

(λ+ ∂)n{qiλ+∂qj}Λ(z)→(−λ− ∂)m
∂f

∂u
(m)
i

, (2.17)

where, for any a, b ∈ B−,

{aλb}Λ(z) = π({aλb}z) = π([a, b]) + (a | b)λ+ z(s | [a, b]) = π−([a, b]) + (a | b)λ+ (Λ(z) | [a, b]). (2.18)

By Proposition 1.15 the quotient Wz(g, f, s)
/
∂Wz(g, f, s) is a Lie algebra with Lie bracket

{
∫
p,
∫
r}Λ(z) =

∫
{pλr}Λ(z)

∣∣
λ=0

,

for any
∫
p,
∫
r ∈Wz(g, f, s)

/
∂Wz(g, f, s). We want to show that this Lie bracket coincides with the Lie

bracket {·, ·}DSz de�ned in Section 2.1 for R
/
∂R.

We consider the following identi�cations

V(B−)⊕I
∼−→ B− ⊗ V(B−)

F = (Fi)i∈I −→ F =
∑

i∈I
Qi ⊗ Fi (2.19)

18



and

V(B−)I
∼−→ B+ ⊗ V(B−)

P = (Pi)i∈I −→ P =
∑

i∈I
Qi ⊗ Pi. (2.20)

As we did in (2.6), we de�ne, using the bilinear form on g⊗ V(g),

(a⊗ g, b⊗ h) =

∫
(a⊗ g | b⊗ h) =

∫
(a | b)gh,

for any a ⊗ g, b ⊗ h ∈ g ⊗ V(g). Using integration by parts and (5.2), we have (∂.(a ⊗ g), b ⊗ h) =
−(a⊗ g, ∂.(b⊗ h)). By identi�cations (2.19) and (2.20), we note that

(F , P ) =

∫
(F | P ) =

∫ ∑

i,j∈I
(Qi | Qj)FiPj =

∫ ∑

i∈I
FiPi,

which coincides with (1.3), namely B− ⊗ V(B−) and B+ ⊗ V(B) are duals with respect to (·, ·). Thus,
if p ∈ V(B−), then, using (5.4), its variational derivative is identi�ed with

δp

δq
=

n∑

i∈I
Qi ⊗

δp

δqi
∈ B− ⊗ V(B−).

In the sequel, we denote it simply by δp
δq .

We note that the de�nition of the variational derivative is nothing other than the de�nition of gradq
in (2.8). Indeed, take h ∈ B+ ⊗ V(B−), say

h =
∑

i∈Ī
Qi ⊗ hi.

For l =
∫
p ∈Wz(g, f, s)

/
∂Wz(g, f, s), we have

d

dε
l(q + εh)

∣∣∣∣
ε=0

=
d

dε
l(. . . , qi + εhi, . . .)

∣∣∣∣
ε=0

=
d

dε

∫ 
f(q) + ε

∑

i∈Ī,n∈Z+

∂f

∂q
(n)
i

∂nhi + o(ε2)

)∣∣∣∣∣∣
ε=0

=

=

∫ ∑

i∈Ī,n∈Z+

(−∂)n
∂f

∂q
(n)
i

hi =

∫ ∑

i∈Ī

δf

δqi
hi =

(
δf

δq
, h

)
.

We are now ready to prove that

{
∫
p,
∫
r}DSz = {

∫
p,
∫
r}Λ(z) (2.21)

for any
∫
p,
∫
r ∈Wz(g, f, s)

/
∂Wz(g, f, s). We recall that the left hand side of (2.21), given by (2.9), is

{
∫
p,
∫
r}DSz =

(
δp

δq
,

[
δr

δq
,L

])
=

(
δp

δq
,

[
δr

δq
, ∂ + q + Λ(z)

])
.

To compute the left hand side, we split it into three terms. We get
(
δp

δq
,

[
δr

δq
, ∂

])
=
∑

i,j∈I

(
Qj ⊗

δp

δqj
,

[
Qi ⊗

δr

δqi
, ∂

])
= −

∫ ∑

i,j∈I

δp

δqj
(Qj | Qi)∂

δr

δqi
=

=

∫ ∑

i,j∈I

δr

δqi
(Qj | Qi)∂

δp

δqj
;

(2.22)

(
δp

δq
,

[
δr

δq
, q

])
=
∑

i,j,k∈I

(
Qj ⊗

δp

δqj
,

[
Qi ⊗

δr

δqi
, Qk ⊗ qk

])
=

∫ ∑

i,j,k∈I
(Qj | [Qi, Qk])qk

δp

δqj

δr

δqi
=

=

∫ ∑

i,j∈I

δr

δqi
π−([Qj , Qi])

δp

δqj
,

(2.23)
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where in the last equality, by invariance of the bilinear form, it follows that
∑
k∈I(Qj | [Qi, Q

k])qk =
π−([Qj , Qi]). Finally,

(
δp

δq
,

[
δr

δq
,Λ(z)⊗ 1

])
=
∑

i,j∈I

(
Qj ⊗

δp

δqj
,

[
Qi ⊗

δr

δqi
,Λ(z)⊗ 1

])
=

=

∫ ∑

i,j∈I
(Qj | [Qi,Λ(z)])

δp

δqj

δr

δqi
=

∫ ∑

i,j∈I

δr

δqi
([Qj , Qi] | Λ(z))

δp

δqj
,

(2.24)

where again, in the last equality we used invariance of the bilinear form. Summing (2.22), (2.23) and
(2.24), we get

{
∫
p,
∫
r}DSz =

∫ ∑

i,j∈Ī

δr

δqi
(π−([Qj , Qi]) + (Qj | Qi)∂ + (Λ(z) | [Qj , Qi]))

δp

δqj
=

=

∫ ∑

i,j∈Ī

δr

δqi
{qj∂qi}Λ(z)→

δp

δqj
=
∫
{pλr}Λ(z)

∣∣
λ=0

,

which follows from (1.11) and (2.18) computed on generators qi of V(B−) = C[q
(n)
i | i ∈ I, n ∈ Z+]. In

particular, thanks to Proposition 1.15, we have proved that the Lie bracket {·, ·}DSz is skew-commutative
and satis�es Jacobi identity, thus proving that {·, ·}DS0 and {·, ·}DS∞ are coordinated.

2.3. Explicit construction of Wz(g, f, s), where g is of type Bn, Cn

Let σ : gln −→ gln be a linear map such that

σ(AB) = −σ(B)σ(A) and σ2(A) = A (2.25)

for all A, B ∈ gln.
Consider the following subspaces of gln:

o± = {A ∈ gln | σ(A) = ±A} .
Proposition 2.7. We have

i) [oε, oε′ ] ⊂ oεε′ , for all ε, ε
′ ∈ {±};

ii) if A ∈ o+ and B ∈ o−, then tr(AB) = 0.

Proof. Let A, B ∈ gln such that σ(A) = εA and σ(B) = ε′B, with ε, ε′ ∈ {±}. We have, by (2.25),

σ[A,B] = −σ(B)σ(A) + σ(A)σ(B) = εε′[A,B].

This proves i). For ii), note that tr(σ(AB)) = − tr(I(AB)αI) = − tr(AB), by invariance of the trace by
antitranspositions and cyclic permutations. On the other hand, if A ∈ o+ and B ∈ 0−, then σ(AB) =
−σ(B)σ(A) = BA so that tr(σ(AB)) = tr(AB). It follows that tr(AB) = 0. �

Let Vz(gln, s) be as in Section 2.2 where in (2.13) as nondegenerate invariant symmetric bilinear
form we take the trace of matrices. From the above proposition we get the following easy result.

Corollary 2.8. {oελoε′}z ⊂ oεε′+δεε′Cλ+Cz. Moreover, if s ∈ o+, then {oελoε′}z ⊂ oεε′+δεε′(Cλ+Cz).

Proof. It can be checked directly from the de�nition of the λ-bracket given in (2.13) using Propo-
sition 2.7. �

We have a vector space decomposition

gln = o+ ⊕ o− (2.26)

and we can consider the projection map

ρ : gln−→→ o+
∼= gln

/
o−.

The decomposition (2.26) extends to the following decomposition of di�erential algebras

V(gln) = V(o+)⊕ 〈o−〉, (2.27)

where 〈0−〉 ⊂ V(gln) is the di�erential ideal generated by o− ⊂ gln. Hence, we get a homomorphism of
di�erential algebras, which we also denote by ρ

ρ : V(gln)−→→ V(o+) ∼= V(gln)
/
〈o−〉.

20



Remark 2.9. This map is not a Poisson vertex algebras homomorphism from Vz(gln, s) to Vz′(o+, s
′).

Indeed, we have
ρ({1glnλ

1gln}z) = ρ(nλ) = nλ,

while {ρ(1gln)
λ
ρ(1gln)}z = 0, since 1gln ∈ o−.

We also extend σ to a homomorphism of di�erential algebras, which again denote by σ : V(gln) −→
V(gln) and we let

V(gln)σ = {p ∈ V(gln) | σ(p) = p} .
Proposition 2.10. If s ∈ o+, then V(gln)σ ⊂ Vz(gln, s) is a Poisson vertex subalgebra which we will
denote Vz(gln, s)

σ. In particular V0(gln)σ ⊂ V0(gln) is a Poisson vertex subalgebra.

Proof. Since, by de�nition, σ is a homomorphism of di�erential algebras, V(gln)σ ⊂ V(gln) is a
di�erential subalgebra. Now, given an element p ∈ V(gln) we can decompose it according to (2.27) as
p = p+ + p−, where p+ ∈ V(o+) and p− ∈ 〈o−〉. Clearly σ(p+) = p+ and p− is a �nite sum of elements
of the type

rs
(m1)
1 · · · s(mh)

h ,

with h ≥ 1, mi ∈ Z+, r ∈ V(o+) and si ∈ o−. If s ∈ o− and m ∈ Z+, then σ(s(m)) = −s(m). Thus, if
p ∈ V(gln)σ, we have σ(p−) = p−. Hence, each summand in p− has an even number of si's.

We should prove that {pλq}z ∈ V(gln)σ[λ] for any p and q ∈ V(gln)σ. We have

{pλq}z = {p+ + p−λq+ + q−}z =

= {p+λq+}z + {p−λq+}z + {p+λq−}z + {p−λq−}z.
Since Vz(o+, s) is a Poisson vertex algebra, it follows that {p+λq+}z ∈ Vz(o+, s)[λ] ⊂ V(gln)σ[λ], hence
it is σ-invariant. It remains to prove that the other summands are σ-invariant. By linearity of the
λ-bracket we can reduce to consider

p− = Ps
(m1)
1 · · · s(m2h)

2h and q− = Qs̄
(l1)
1 · · · s̄(l2j)

2j , (2.28)

where P,Q ∈ V(o+), si, s̄i ∈ s and mi, li ∈ Z+. Moreover, by (1.6), (1.8), (1.7) and the σ-invariance of
elements in V(o), we can reduce to assume p+ = r and q+ = t, with r, t ∈ o+. We have

{p+λq−}z = {rλQs̄(l1)
1 · · · s̄(l2j)

2j }z =

= s̄
(l1)
1 · · · s̄(l2j)

2j {rλQ}z +

2j∑

i=1

Qs̄
(l1)
1

i
ˇ· · · s̄(l2j)

2j (λ+ ∂)li{rλs̄i}z.
(2.29)

Clearly {rλQ}z ∈ V(o+)[λ]. By Corollary 2.8, since by assumption s ∈ o, we have {rλs̄i}z ∈ o−. Thus,
in the second term of (2.29) there are an even number of factors from o−. Hence, also {p+λq−}z is
σ-invariant. Using skew-commutativity of the λ-bracket we get that also elements of the type {p−λq+}z
are σ-invariant. Let us consider now the last term. Again, by the above observations, we let p− and q−
as in (2.28). Moreover, by (1.6), (1.8) and (1.7), it is enough to consider the case P , Q ∈ o+. We have

{p−λq−}z = {Ps(m1)
1 · · · s(m2h)

2h λ
Qs̄

(l1)
1 · · · s̄(l2j)

2j }z =

= s̄
(l1)
1 · · · s̄(l2j)

2j {Pλ+∂Q}zs(m1)
1 · · · s(m2h)

2h +

+

2h∑

α=1

s̄
(l1)
1 · · · s̄(l2j)

2j {sαλ+∂Q}z(−λ− ∂)mαPs
(m1)
1

α
ˇ· · · s(m2h)

2h +

+

2j∑

β=1

Qs̄
(l1)
1

β

ˇ· · · s̄(l2j)
2j (λ+ ∂){Pλ+∂ s̄β}z→s

(m1)
1 · · · s(m2h)

2h +

+

2h∑

α=1

2j∑

β=1

Qs̄
(l1)
1

β

ˇ· · · s̄(l2j)
2j (λ+ ∂)lβ{sαλ+∂ s̄β}z→(−λ− ∂)mαPs

(m1)
1

α
ˇ· · · s(m2h)

2h .

By Corollary 2.8, {Pλ+∂Q}z and {sαλ+∂ s̄β}z are σ-invariant, while {sαλ+∂Q}z and {Pλ+∂ s̄β}z lie in
o−, since s ∈ o+. Hence, the corresponding terms in the sum are σ-invariant because there are an even
number of factors from o−. �

Proposition 2.11. If s ∈ o+, then the homomorphism of di�erential algebras ρ : V(gln) −→ V(o+),
restricted to V(gln)σ is a homomorphism of Poisson vertex algebras ρ : Vz(gln, s)

σ −→ Vz(o+, s). In
particular, ρ : V0(gln)σ −→ V0(o+) is a homomorphism of Poisson vertex algebras.
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Proof. We note that the λ-bracket on Vz(o+, s) is, by hyphotesis, the restriction of the λ-bracket
on Vz(gln, s). Moreover, by Proposition 2.10, Vz(gln, s)

σ ⊂ Vz(gln, s) is a Poisson vertex subalgebra.
Take p, q ∈ Vz(gln, s)

σ. According to decomposition (2.27), we can write p = p+ + p− and q = q+ + q−
and ρ(p) = p+, ρ(q) = q+. We have

ρ({pλq}z) = ρ({p+ + p−λq+ + q−}z) =

= ρ({p+λq+}z) + ρ({p+λq−}z) + ρ({p−λq+}z) + ρ({p−λq−}z) =

= {p+λq+}z,
since {p+λq+}z ∈ V(o+)[λ], while the other terms are in 〈o−〉[λ], because p− and q− are �nite sums of
terms eache of which has at least two factors in o−. Hence, by (1.8) and (1.7), they all belong to 〈o−〉[λ].
On the other hand we clearly have {ρ(p)λρ(q)}z = {p+λq+}z. �

In particular the map ρ is surjective and it follows that

Vz(o+, s) ∼= Vz(gln, s)
σ/

(〈o−〉 ∩ Vz(gln, s)
σ).

Let f ∈ gln be a nilpotent element and {e, h = 2x, f} ⊂ gln a sl2-triple. We write

gln =
⊕

j∈ 1
2Z

(gln)j

for its adx-decomposition. In the notation of Section 2.2 we have

m+ =
⊕

j≥1

(gln)j , n+ =
⊕

j≥ 1
2

(gln)j , b+ =
⊕

j∈Z+

(gln)j ,

with inclusions m+ ⊂ n+ ⊂ b+.
Suppose that e, h and f are �xed by σ. Hence, f , considered as an element of o+, can be embedded

in the same sl2-triple. This means that we have the following decomposition for o+:

o+ =
⊕

j∈ 1
2Z

(o+)j ,

where (o+)j = (gln)j ∩ o+. We set m+(o±) = m+ ∩ o±, n+(o±) = n+ ∩ o± and b+(o±) = b+ ∩ o±. Then
we have m+ = m+(o+)⊕m+(o−), n+ = n+(o+)⊕ n+(o−) and b+ = b+(o+)⊕ b+(o−).

Lemma 2.12. We have J̃(o+, f) = J̃(gln, f) ∩ V(o+). In particular, ρ(J̃(gln, f)) = J̃(o+, f).

Proof. The inclusion J̃(o+, f) ⊂ J̃(gln, f) ∩ V(o+) is obvious. Let us prove the other inclusion.
Take an element ∑

pi∂
i(m− (f | m)) ∈ J̃(gln, f),

where pi ∈ V(gln) and m ∈ m+. By hyphotesis, this element also belongs to V(o+), then
∑

pi∂
i(m− (f | m)) = ρ

(∑
pi∂

i(m− (f | m))
)

=

=
∑

ρ(pi)∂
i(ρ(m)− (f | m)).

(2.30)

We can write m = m+ + m−, where m+ ∈ o+ and m− ∈ o−. By Proposition 2.7, it follows that
(f | m) = (f | n+). Then (2.30) becomes

∑
pi∂

i(m− (f | m)) =
∑

ρ(pi)∂
i(m+ − (f | m+)).

This means that m ∈ m+(o+) and pi ∈ V(o+). Hence
∑
pi∂

i(m− (f | m)) ∈ J̃(o+, f). �
Then we have the following result:

Corollary 2.13. We get the decomposition

J̃(gln, f) = J̃(o+, f)⊕
(
J̃(gln, f) ∩ 〈o−〉

)
.

Proof. Take an element
∑
pi∂

i(n − (f | n)) ∈ J̃(gln, f). We can write pi = p+
i + p−i , where

p+
i ∈ V(o+), p−i ∈ 〈o−〉, and n = n+ + n−, where n+ ∈ o+, n− ∈ o−. Then∑

pi∂
i(n− (f | n)) =

∑
p+
i ∂

i(n+ + (f | n+)) +
∑

p−i ∂
i(n+ − (f | n+)) +

∑
pi∂

in−.

The �rst summand belongs to J̃(o+), while the others belong to 〈o−〉. �

Lemma 2.14. If s ∈ o+, then ρ(W̃z(gln, f, s)) ⊂ W̃z(o+, f, s). In particular, ρ(W̃0(gln, f)) ⊂ W̃0(o+, f).
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Proof. Take p ∈ W̃z(gln, f, s), then, as an element of V(gln) = V(o+)⊕〈o−〉, it has a decomposition

p = p+ + p−. By de�nition of W̃z(gln, f, s), for a ∈ n+, we have

{aλp}z ∈ J̃(gln, f)[λ] =
(
J̃(o+, f)⊕

(
J̃(gln, f) ∩ 〈o−〉

))
[λ].

Suppose now a ∈ n+(o+), then
{aλp}z = {aλp+}z + {aλp−}z.

Clearly {aλp+}z ∈ Vz(o+, s)[λ]. Furthermore, we have {aλp−}z ∈ 〈o−〉[λ]. Indeed, p− is a �nite

sum of elements of the form ps
(m1)
1 · · · s(mk)

k and by Corollary 2.8, {o+λo−}z ⊂ o−. Hence, we have

{aλp+}z ∈ J̃(o+, f)[λ] and {aλp−}z ∈
(
J̃(gln, f) ∩ 〈o−〉

)
[λ]. Then {aλρ(p)}z = {aλp+}z ∈ J̃(o+, f),

proving that ρ(p) ∈ W̃z(o+, f, s). �

Unless otherwise stated we assume s ∈ o+. Clearly, all the following results hold when we consider
the λ-bracket obatained setting z = 0.

Lemmas 2.12 and 2.14 show that ρ induces a di�erential map, that we again denote by ρ,

ρ : Wz(gln, f, s) −→Wz(o+, f, s).

This is not a Poisson vertex algebra homomorphism for the same reason explained in Remark 2.9.

Consider W̃z(gln, f, s)
σ = W̃z(gln, f, s)∩V(gln)σ and J̃(gln, f)σ = J̃(gln, f)∩V(gln)σ. Then ρ induces

a homomorphism of di�erential algebras

ρ : Wz(gln, f, s)
σ −→Wz(o+, f, s),

where

Wz(gln, f, s)
σ = W̃z(gln, f, s)

σ/̃
J(gln, f)σ.

Proposition 2.15. The map ρ : Wz(gln, f, s)
σ −→Wz(o+, f, s) is surjective.

Proof. Let us set for brevity g = gln. We �x a basis of g and its dual with respect to the trace
form in the following way:

· Qi = Qi, i = 1, . . . , h, basis of g0;

· Qn2−h
2 +i = Qi, i = h+ 1, . . . , h+ d, basis of g− 1

2
;

· Qn2−h
2 +i = Qi, i = h+ d+ 1, . . . , n

2+h
2 , basis of m−;

· Qi−n
2−h
2 = Qi, i = n2+h

2 + 1, . . . , n
2+h
2 + d, basis of g 1

2
;

· Qi−n
2−h
2 = Qi, i = n2+h

2 + d+ 1, . . . , n2, basis of m+,

where lower indeces stand for elements of the basis and upper indeces for elements of the dual basis.
Since g = o+⊕o−, we can write {1, 2, . . . , n2} = I ∪J , where #I = dim o+ and #J = dim o− and choose
the basis in such a way that the set {Qi | i ∈ I} is a basis of o+ and {Qi | i ∈ J} is a basis of o−. We set

B+ =
⊕

j≥− 1
2

gj and B− =
⊕

j≤ 1
2

gj .

Then B± = B±(o+) ⊕B±(o−), where B±(o±) = B± ∩ o±. We also set I− = {1, 2, . . . , n2+h
2 + d} ∩ I

and J− = {1, 2, . . . , n2+h
2 + d} ∩ J .

With this choice of the basis we identify V(B−) with the di�erential algebra C[q
(m)
i | i = 1, . . . , n

2+h
2 +

d, m ∈ Z+] and V(B−(o+)) ⊂ V(B−) with the di�erential subalgebra C[q
(m)
i | i ∈ I+, m ∈ Z+] via the

identi�cation Qi → qi.
We want to consider the following elements

q =

n2+h
2 +d∑

i=1

Qi ⊗ qi ∈ B+ ⊗B− ⊂ B+ ⊗ V(B−),

q+ =
∑

i∈I+
Qi ⊗ qi ∈ B+(o+)⊗B−(o+) ⊂ B+(o+)⊗ V(B−(o+)).

By an abuse of notation we let ρ = ρ ⊗ ρ : B+ ⊗ V(B−) −→ B+(o+) ⊗ V(B−(o+)). It is clear that
ρ(q) = q+. Moreover we can write

q = q+ + q−, (2.31)

where q− ∈ B+(o−)⊗B−(o−) ⊂ B+(o−)⊗ 〈B−(o−)〉V(B−).
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As already said, by properties of good gradings [13], ad f : gi −→ gi−1 is injective for i ≥ 1
2 .

Moreover, ad f : (o±)i −→ (o±)i−1 is injective for i ≥ 1
2 . Then, for each i ≥ − 1

2 we can �nd subspaces

V ±i ⊂ (o±)i such that

(o±)i = V ±i ⊕ [f, (o±)i+1]. (2.32)

If we set V = V + ⊕ V −, where V ± = ⊕i≥− 1
2
V ±i , then B+ = V ⊕ [f, n+].

According to Proposition 2.1, we can �nd S ∈ n+⊗V(B−) such that the operator L = ∂+q+f⊗1
S∼

L can = ∂+ qcan+f ⊗1, where qcan ∈ V ⊗V(B−), and T ∈ n+(o+)⊗V(B−(o+)) such that the operator

L+ = ∂ + q+ + f ⊗ 1
T∼ L can

+ = ∂ + qcan+ + f ⊗ 1, where qcan+ ∈ V + ⊗ V(B−(o+)).
We set γ = dimV and γ+ = dimV +. If e1, . . . , eγ+ is a basis of V +, then we can complete it to a

basis e1, . . . , eγ of V . Letting

qcan =

γ∑

i=0

ei ⊗ vi, vi ∈ V(B−),

qcan+ =

γ+∑

i=0

ei ⊗ ui, ui ∈ V(B−(o+)),

by Corollary 2.2, we have the following di�erential algebras isomorphisms

Wz(g, f, s) ∼= C[v
(m)
i | i = 1, . . . , γ, m ∈ Z+],

Wz(o+, f, s) ∼= C[u
(m)
i | i = 1, . . . , γ+, m ∈ Z+].

Hence, to prove surjectiveness of ρ : Wz(g, f, s)
σ −→Wz(o+, f, s) it su�ces to show that σ(vi) = vi

and ρ(vi) = ui for i = 1, . . . , γ+, or, equivalently

σ(vi) = vi, i = 1, . . . , γ+ and ρ(qcan) = qcan+ . (2.33)

By abuse of notation, let us set ρ = 1⊗ ρ. To prove the second identity in (2.33) it su�ces to show that

ρ(L can) = ead ρ(S)(L+). (2.34)

Indeed, since ρ(qcan) ∈ V +⊗V(B−(o+)) and ρ(S) ∈ n+(o+)⊗V(B−(o+)) and since by Proposition 2.1,
T and qcan+ are uniquely determined, it follows by (2.34) that T = ρ(S) and ρ(qcan) = qcan+ .

We set s = {a ∈ 〈B−(o−)〉V(B−) | σ(a) = −a}. First, let us show that S = S+ + S−, with
S+ ∈ n+(o+)⊗ V(B−)σ and S− ∈ n+(o−)⊗ s and ui are σ-invariant polynomials for i = 1, . . . , γ+. Let
us consider the recursion given by (2.5). At the �rst step we have to solve

qcan− 1
2

+ [f, S 1
2
] = q− 1

2
.

By (2.31), we can write q− 1
2

= q+
− 1

2

+ q−− 1
2

, where q+
− 1

2

∈ (o+)− 1
2
⊗ o+ and q−− 1

2

∈ (o−)− 1
2
⊗ o−. We

also write S 1
2

= S+
1
2

+ S−1
2

, where S+
1
2

∈ (o+) 1
2
⊗ V(B−) and S−1

2

∈ (o−) 1
2
⊗ V(B−). Similarly, we write

qcan− 1
2

= qcan,+− 1
2

+ qcan,−− 1
2

, where qcan,+− 1
2

∈ V +
− 1

2

⊗V(B−) and qcan,−1
2

∈ V −− 1
2

⊗V(B−). Then we have to solve

the system {
qcan,+− 1

2

+ [f, S+
1
2

] = q+
− 1

2

∈ (o+)− 1
2
⊗ o+

qcan,−− 1
2

+ [f, S−1
2

] = q−− 1
2

∈ (o−)− 1
2
⊗ o−.

Using decomposition (2.32) we �nd that qcan,+− 1
2

∈ V +
− 1

2

⊗ o+ and S±1
2

∈ (o±) 1
2
⊗ o±.

Assume by induction that we found S1, . . . , Si such that each Sk = S+
k + S−k , where S

+
k ∈ (o+)k ⊗

V(B−)σ and S−k ∈ (o−)k⊗ s. Let A be the right hand side of (2.5) and write it has A = A+ +A−, where
A± ∈ (o±)i ⊗ V(B−). Looking at (2.5), we see that A+ is obtained when in the commutators there are
an even number of elements in n+(o−) or all of them are in n+(o+), then A+ ∈ (o+)i⊗V(B−)σ. On the
other hand A− is obtained when in the commutators there are an odd number of elements in n−(o−).
Thus A− ∈ (o−)i ⊗ s. Reasoning as in the �rst step of the induction we can �nd Si+1 = S+

i+1 + S−i+1,

where S+
i+1 ∈ (o+)i+1 ⊗V(B−)σ and S−i+1 ∈ (o−)i+1 ⊗ s and qcan,+i ∈ (o+)i ⊗V(B−)σ. It follows that S

has the desired decomposition and that vi is σ-invariant for i = 1, . . . , γ+.
Finally, we prove (2.34). We have

ρ(L can) = (ρ⊗ ρ)(eadS(L )) = (ρ⊗ 1)(eadS+(L+)) = ead ρ(S)(L+).

�
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Moreover, W̃z(gln, f, s)
σ ⊂ W̃z(gln, f, s) is a Poisson vertex subalgebra and J̃(gln, f)σ ⊂ W̃z(gln, f)σ

is a Poisson vertex algebra ideal. Hence, Wz(gln, f, s)
σ is a Poisson vertex algebra.

Proposition 2.16. The map ρ : Wz(gln, f, s)
σ−→→ Wz(o+, f, s) is a Poisson vertex algebra homomor-

phism.

Proof. First, by Proposition 2.11, ρ : Vz(gln, s)
σ −→ Vz(o+, s) is a homomorphism of Poisson

vertex algebras. Moreover, by Lemma 2.3 W̃z(o+, f, s) ⊂ Vz(o+, s) is a Poisson vertex subalgebra.

By the same lemma and the fact that W̃z(gln, f, s)
σ is intersection of Poisson vertex algebras, also

W̃z(gln, f, s)
σ ⊂ Vz(gln, s)

σ is a Poisson vertex algebra. Then ρ : W̃z(gln, f, s)
σ −→ W̃z(o+, f) is a

Poisson vertex algebra homomorphism. Furthermore, J̃(gln, f) ⊂ W̃z(gln, f, z)
σ is a Poisson vertex

algebra ideal, since it is intersection of a Poisson vertex algebra ideal and a Poisson vertex subalgebra.

By Lemma 2.12 ρ(J̃(gln, f)σ) ⊂ J̃(o+, f), then we have an induced map of Poisson vertex algebras
ρ : Wz(gln, f, s)

σ →Wz(o+, f, s). �
Corollary 2.17. We have the following isomorphism of Poisson vertex algebras

Wz(o+, f, s) ∼= Wz(gln, f, s)
σ/

ker ρ.

In the next two paragraphs we assume σ : gln −→ gln to be the linear map de�ned by

σ(A) = −IAαI, (2.35)

where

I =

n∑

k=1

(−1)k+1Ekk =




1
−1

. . .

(−1)n+1




and Aα is the transposition with respect to the antidiagonal, namely if A = (aij)
n
i,j=1, then Aα =

(an+1−j,n+1−i)
n
i,j=1.

One easily checks that

(AB)α = BαAα (2.36)

for all A, B ∈ gln, and

Iα = I. (2.37)

Moreover, it immediately follows from (2.36) and (2.37) that the conditions de�ned in (2.25) are satis�ed
by this map.

2.3.1. Bn. In gl2n+1 we consider the principal nilpotent element

f =

2n∑

k=1

Ek+1,k =




0 0
1 0 0

1 0 0
. . .

. . .
. . .

1 0 0
1 0



.

We can embed it in the following sl2-triple:

h = 2x =

2n+1∑

k=1

2(n+ 1− k)Ekk =




2n 0
0 2n− 2 0

0 2n− 4 0
. . .

. . .
. . .

0 2− 2n 0
0 −2n



,

e =

2n∑

k=1

k(2n+ 1− k)Ek,k+1 =




0 2n
0 0 2(2n− 1)

0 0 3(2n− 2)
. . .

. . .
. . .

0 0 2n
0 0



.
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With respect to adx we have the following decomposition for gl2n+1:

gl2n+1 = n− ⊕ h⊕ n+,

where

n− =
⊕

1≤j<i≤2n+1

CEij , h =

2n+1⊕

k=1

CEkk and n+ =
⊕

1≤i<j≤2n+1

CEij .

In particular we have no eigenspaces relative to half integers eigenvalues, then m+ = n+ (in the notation
of Section 2.2). It is easily checked that

ker ad n+ = CE1,2n+1.

Since ker ad n+ is a 1-dimensional space, we can �x s = E1,2n+1 and let vary z ∈ C. Then we denote
Vz(gl2n+1) = Vz(gl2n+1, s).

The Lie algebra of type Bn is

o2n+1 = {A ∈ gl2n+1 | σ(A) = A}.

We note that e, h and f are �xed by σ. Hence, f , considered as an element of o2n+1, can be
embedded in the same sl2-triple. This means that we have the following decomposition for o2n+1:

o2n+1 = n−(o2n+1)⊕ h(o2n+1)⊕ n+(o2n+1),

where

n−(o2n+1) = n− ∩ o2n+1, h(o2n+1) = h ∩ o2n+1 and n+(o2n+1) = n+ ∩ o2n+1.

It can be easily checked that

ker ad n+(o2n+1) = C(E1,2n + E2,2n+1)

and, as in the previous case, we can �x s′ = E1,2n+E2,2n+1 in the de�nition of the λ-bracket for V(o2n+1)
and let vary z′ ∈ C. We denote Vz′(o2n+1) = Vz′(o2n+1, s

′).
By Proposition 2.11, we get a Poisson vertex algebra homomorphism

ρ : V0(gl2n+1)σ−→→ V0(o2n+1).

Moreover, by Propositions 2.16 we have a Poisson vertex algebra homomorphism

ρ : W0(gl2n+1, f)σ −→W0(o2n+1, f)

and by Corollary 2.17

W0(o2n+1, f) ∼= W0(gl2n+1, f)σ
/
ker ρ.

Remark 2.18. We have W0(o2n+1, f) 6⊂ W0(gl2n+1, f). For example, for n = 1, p = E2,1 + E3,2 +(
E1,1−E3,3

2

)2

+ (E1,1 − E3,3)′ ∈ W0(o3, f), but p 6∈ W(gl3, f). However, as expected by the above

proposition, we can see that r = E2,1 + E3,2 − E2,2(E1,1 + E3,3)− E1,1E3,3 + (E1,1 − E3,3)′ ∈W(gl3, f)
is such that ρ(r) = p.

2.3.2. Cn. This is similar to the previous case. The Lie algebra of type Cn is de�ned as

sp2n = {A ∈ gl2n | σ(A) = A} .

Let us consider the following principal nilpotent element of gl2n:

f =

2n−1∑

k=1

Ek+1,k =




0 0
1 0 0

1 0 0
. . .

. . .
. . .

1 0 0
1 0



.
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We can embed f in the following sl2 triple:

h = 2x =

2n∑

k=1

(2n+ 1− 2k)Ekk =




2n− 1 0
0 2n− 3 0

0 2n− 5 0
. . .

. . .
. . .

0 3− 2n 0
0 1− 2n



,

e =

2n−1∑

k=1

k(2n− k)Ek,k+1 =




0 2n− 1
0 0 2(2n− 2)

0 0 3(2n− 3)
. . .

. . .
. . .

0 0 2n− 1
0 0



.

With respect to adx we have the following decomposition for gl2n:

gl2n = n− ⊕ h⊕ n+,

where

n− =
⊕

1≤j<i≤2n

CEij , h =

2n⊕

k=1

CEkk and n+ =
⊕

1≤i<j≤2n

CEij .

Also in this case there are no eigenspaces relative to half integers eigenvalues, thenm+ = n+, and ker ad n+

is the 1-dimensional space generated by the matrix E1,2n. As in the case of Bn, we can �x s = E1,2n

and let vary z ∈ C. We denote Vz(gl2n) = Vz(gl2n, s). Moreover, we set W̃z(gl2n, f) = W̃z(gl2n, f, s)
and Wz(gl2n, f) = Wz(gl2n, f, s).

Again, e, h and f are σ-invariant. Then the sl2-triple for f ∈ gl2n is also an sl2-triple if we consider
f as an element of sp2n. Thus we have the following decomposition for sp2n:

sp2n = n−(sp2n)⊕ h(sp2n)⊕ n+(sp2n),

where

n−(sp2n) = n+ ∩ sp2n, h(sp2n) = h ∩ sp2n and n+(sp2n) = n+ ∩ sp2n.

In this case we have ker ad n+(sp2n) = CE1,2n = ker ad n+. We can choose the same s as for gl2n and let

vary z′ ∈ C. We denote Vz′(sp2n) = Vz′(sp2n, s). Moreover, we set W̃z′(sp2n, f) = W̃z′(sp2n, f, s) and
Wz′(sp2n, f) = Wz′(sp2n, f, s).

By Proposition 2.10, we have that Vz(gl2n)σ ⊂ Vz(gl2n) is a Poisson vertex subalgebra and the map

ρ : Vz(gl2n)σ−→→ Vz(sp2n)

is a Poisson vertex algebra homomorphism.
Moreover, by Proposition 2.16, we have a Poisson vertex algebra homomorphism

ρ : Wz(gl2n, f)σ −→Wz(sp2n, f)

and by Corollary 2.17 we have

Wz(sp2n, f, s)
∼= Wz(gl2n, f, s)

σ/
ker ρ.

2.3.3. Dn. Let σ : gl2n −→ gl2n be the linear map de�ned by

σ(A) = −IAαI, (2.38)

where

I =

n∑

k=1

(−1)k+1(Ek k + E2n+1−k,2n+1−k)

and Aα is the transposition with respect to the antidiagonal. Since Iα = I and σ satis�es (2.36), then
σ veri�es the conditions de�ned in (2.25). As in the previous cases it can be veri�ed that σ(AB) =
−σ(B)σ(A) for A,B ∈ gl2n and σ2 = 1gl2n , since I = Iα and I2 = 1gl2n . The Lie algebra of type Dn is
de�ned as

o2n = {A ∈ gl2n | σ(A) = A} .
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Let us consider the following nilpotent element of gl2n:

f =
1

2
(En+1,n−1 + En+1,n−1) +

n−1∑

k=1

(Ekk + E2n+1−k,2n+1−k) =

=




0 0
1 0 0

. . .
. . .

. . .

1 0 0
1
2 0 0 0

1
2 1 0 0

. . .
. . .

. . .

1 0 0
1 0




.

We can embed f in the following sl2-triple:

h = 2x =

n−1∑

k=1

2(n− k)(Ekk − E2n+1−k,2n+1−k) =

=




2n− 2 0
0 2n− 4 0

0 2n− 6 0
. . .

. . .
. . .

0 4− 2n 0
0 2− 2n



,

e =???

With respect to adx we have the following decomposition for gl2n:

gl2n = n− ⊕ h⊕ n+,

where

n− =
⊕

1≤j<i≤2n
(i,j)6=(n+1,n)

CEij , n+ =
⊕

1≤i<j≤2n
(i,j)6=(n,n+1)

CEij and

h =

(
2n⊕

k=1

CEkk

)
⊕ CEn+1,n ⊕ CEn,n+1.

It follows that ker ad n+ = CE1,2n. Thus we can choose s = E1,2n and let vary z ∈ C. We set
Vz(gl2n) = Vz(gl2n, s).

We note that e, h and f are �xed by σ. Moreover f is principal nilpotent in o2n. We can choose the
same sl2-triple and get the following adx-decomposition for o2n:

o2n = n−(o2n)⊕ h(o2n)⊕ n+(o2n),

where

n−(o2n) = n− ∩ o2n, h(o2n) = h ∩ o2n and n+(o2n) = n+ ∩ o2n.

We see that

ker ad n+(o2n) = C(E1,2n−1 + E2,2n),

and we choose s′ = E1,2n−1 + E2,2n and set Vz′(o2n) = Vz′(o2n, s
′).

By Proposition 2.11 we get a Poisson vertex algebra homomorphism

ρ : V0(gl2n)σ−→→ V(o2n).

Moreover, by Proposition 2.16, we have also a Poisson vertex algebra homomorphism

ρ : W0(gl2n, f)σ −→W(o2n, f)

and by Corollary 2.17 it follows that

W0(o2n, f) ∼= W0(gl2n, f)σ
/
ker ρ.
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2.3.4. Following the examples we made so far, we can apply Corollary 2.17 to any classical Lie
algebra of type Bn, Cn and Dn and any nilpotent element.

Indeed, let us consider the case of the classical Lie algebra Bn. We have seen that it is realized as
the Lie algebra of �xed point of the linear map σ de�ned by (2.35), namely

o2n+1 = {A ∈ gl2n+1 | σ(A) = A}.
Let Wz(o2n+1, f, s) be the classical W-algebra associated to f ∈ o2n+1 and s ∈ ker ad n+(o2n+1) as we
did in Section 2.2. Since o2n+1 is a Lie subalgebra of gl2n+1, f is also a nilpotent element of gl2n+1 and
we may consider W0(gl2n+1, f). Let ρ be the surjective Poisson vertex algebra homomorphism de�ned
in (2.16), then, by Corollary 2.17 we get the following general result.

Theorem 2.19. We have the following isomorphism of Poisson vertex algebras

W0(o2n+1, f) ∼= W0(gl2n+1, f)σ
/
ker ρ.

If, moreover, ker ad n+ ∩ ker ad n+(o2n+1) 6= (0), then

Wz(o2n+1, f, s) ∼= Wz(gl2n+1, f, s)
σ/

ker ρ,

for any s ∈ ker ad n+ ∩ ker ad n+(o2n+1).

The same considerations apply to the classical Lie algebra of type Cn and Dn. We have seen that
Cn, respectively Dn is realized as the Lie algebra of the �xed point of the linear map σ de�ned by (2.35),
respectively (2.38), namely

sp2n = {A ∈ gl2n | σ(A) = A} (respectively o2n = {A ∈ gl2n | σ(A) = A}).
Let us denote by g a classical Lie algebra of type Cn or Dn and let f ∈ g be a nilpotent element. Let
Wz(g, f, s) be the classical W-algebra associated to f ∈ g and s ∈ ker ad n+(g) as we did in Section 2.2.
Since g is a Lie subalgebra of gl2n, f is also a nilpotent element of gl2n and we may consider W0(gl2n, f).
Let ρ be the surjective Poisson vertex algebra homomorphism de�ned in (2.16), then, by Corollary 2.17
we get the following general result.

Theorem 2.20. We have the following isomorphism of Poisson vertex algebras

W0(g, f) ∼= W0(gl2n, f)σ
/
ker ρ.

If, moreover, ker ad n+ ∩ ker ad n+(g) 6= (0), then

Wz(gf, s) ∼= Wz(gl2n, f, s)
σ/

ker ρ,

for any s ∈ ker ad n+ ∩ ker ad n+(g).
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CHAPTER 3

Gelfand-Dickey algebras

3.1. The algebra of formal pseudodi�erential operators

We recall here some basic facts about the theory of formal pseudodi�erential operators (see [2] or[10]
for an extended treatment). Let A be a di�erential algebra with a derivation ∂. We consider the algebra
A((∂−1)) of formal pseudodi�erentials operators with coe�cients in A. The formal "integration" symbol
∂−1 obeys the following algebraic rules: ∂−1∂ = ∂∂−1 = 1 and, for a ∈ A,

∂−1 ◦ a =
∑

k∈Z+

(−1)ka(k)∂−1+k. (3.1)

Rule (3.1) is motivated by integration by parts formula. Indeed, formally, for any f ∈ A, we have

(∂−1 ◦ a)f = ∂−1(af) =

∫
af =

∫
a∂(∂−1f) = a∂−1f −

∫
a′∂−1f = a∂−1f − a′∂−2f +

∫
a′′∂−2f

and so on. This allows us to extend Leibniz rule for any integer power of the derivation symbol ∂, namely

∂n ◦ a =
∑

k∈Z+

(
n

k

)
a(k)∂n−k (3.2)

for any n ∈ Z, where as usual,
(
n
k

)
= (−1)k

(
k−n−1

k

)
if n < 0.

It can easily be veri�ed that multiplication given by (3.2) is well de�ned, since after reshu�ing with
(3.2) only a �nite number of terms appear in front of ∂i for any i ∈ Z, avoiding any convergence problem,
and is associative, thus making the space of formal pseudodi�erential operators an associative algebra
with unity.

We can write P ∈ A((∂−1)) as

P =
∑

k≤N
pk∂

k,

with pk ∈ A and N ∈ Z. The greatest N such that pN 6= 0 is called order of P and we dentote it by
ord(P ). We will use the notation A(((∂−1))n = {P ∈ P | ord(P ) ≤ n} ⊂ A((∂−1)).

Using (3.2) one can also bring all the derivatives to the left, that is

P =
∑

k≤N
pk∂

k =
∑

k≤N
∂k ◦ p̃k.

The algebra of formal pseudodi�erential operators has a natural anti-homomorphism, which we
denote by ∗, called formal adjoint, de�ned by f∗ = f , for f ∈ A, and ∂∗ = −∂. Thus

P ∗ =
∑

k≤N
(−∂)k ◦ pk.

We have the direct sum decomposition (as vector spaces) A((∂−1)) = A[∂] ⊕ A[[∂−1]]∂−1, where
A[∂] is the subalgebra of di�erential operators and A[[∂−1]]∂−1 is the subalgebra of pseudodi�erential
symbols (also called integral operators or Volterra operators).

Given P ∈ A((∂−1)), we decompose P = P+ + P−, where P+ (respectively P−) is its component in
A[∂] (respectively A[[∂−1]]∂−1). We also de�ne its residue to be

Res∂ P = p−1 (= coe�cient of ∂−1).

Using the residue we can de�ne a pairing 〈· | ·〉 : A((∂−1))×A((∂−1)) −→ A
/
∂A by

〈X | Y 〉 =

∫
Res∂(X ◦ Y ), (3.3)

for any X,Y ∈ A((∂−1)). It is an easy computation to prove that 〈X | Y 〉 = 〈Y | X〉, thus Res∂ [X,Y ] ∈
∂A, where, as usual, we denote [X,Y ] = X ◦ Y − Y ◦X. Using this pairing, we can think A[[∂−1]]∂−1

as the dual of A[∂].
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We denote C[∂, ∂−1] ◦A ⊂ A((∂−1)) the space of all pseudodi�erential operators of the form
∑

k∈Z
∂k ◦ Pk,

where all but �nitely many elements Pk are zero. Under the pairing given by (3.3), the dual space to
C[∂, ∂−1] ◦A is A[[∂, ∂−1]].

Proposition 3.1. Let P be a monic pseudodi�erential operator of order N , then there exists exactly one

monic pseudodi�erential operator M of order one, such that MN = P . We denote M = P
1
N .

Proof. Let P =
∑
k≤N pk∂

k and M =
∑
k≤1mk∂

k, where pN = m1 = 1, be two such pseudo-

di�erential operators. Equating the coe�cients of powers of ∂ in the expression P = MN , we get the
recursion {

pN−1 = Nm0

pN−k = Nm1−k + fk(m0, . . . ,m2−k), k ≥ 2

where fk is a di�erential polynomial in the variables m0, . . . ,m2−k. Thus, we get m0 = pN−1
N and, for

k ≥ 2, we obtain the expression of m1−k as a di�erential polynomial in the coe�cients of P by induc-
tion. Indeed, if we know m0, . . . ,m2−k, for k ≥ 2, then fk+1(m0, . . . ,m1−k) = gk+1(pN−1, . . . , pN−k),
obtaining m−k = 1

N (pN−k − gk+1(pN−1, . . . , pN−k)). Each value of m1−k is uniquely determined. �

3.2. Poisson vertex algebra structures attached to a general pseudodi�erential operator

Let A be a di�erential algebra with a derivation ∂. We consider the following identi�cations

C[∂, ∂−1] ◦A ∼←→ A⊕Z
∑

k∈Z
∂k ◦ Fk ←→ (Fk)k∈Z,

(3.4)

where we emphasize that the sum on the left is �nite, namely all but �nitely many Fk are zero, and

A[[∂, ∂−1]]
∼←→ AZ

P =
∑

k∈Z
P−k−1∂

k ←→ (Pk)k∈Z,
(3.5)

that is Pk = (Res∂(P∂k)), for k ∈ Z. Let P ∈ V[[∂, ∂−1]] and F ∈ C[∂, ∂−1] ◦A, an explicit computation
of (3.3) gives

〈P | F 〉 =

∫
Res∂

∑

k,l

P−k−1∂
k+lFl =

∫ ∑

k

PkFk. (3.6)

We note that, using identi�cations (3.4) and (3.5), the pairing (3.6) coincides with (1.3).
Given L ∈ A((∂−1)), we de�ne the map A(L) : C[∂, ∂−1] ◦A −→ V[[∂, ∂−1]] by

A(L)(F ) = L(FL)+ − (LF )+L, (3.7)

for any F ∈ C[∂, ∂−1] ◦A. This map was �rst introduced by Adler (see [1]).
From now on, unless otherwise stated, we assume that L is a �xed pseudodi�erential operator of order

ord(L) = N ∈ Z. In this case we have A(L)(F ) ∈ A((∂−1))N−1. Indeed, A
(L)(F ) = −L(FL)−+(LF )−L,

and the product of an operator of order N with an operator of order less than or equal to −1 has
order at most N − 1. Moreover, if F ∈ ∂−N−1C[∂−1] ◦ A ⊂ A((∂−1))−N−1, then A(L)(F ) = 0, since
(FL)+ = (LF )+ = 0. In conclusion, A(L) induces a map

A(L) :
(
C[∂, ∂−1] ◦A

)/(
∂−N−1C[∂−1] ◦A

) −→ A((∂−1))N−1.

We set I−N = I = {k ∈ Z | k ≥ −N}. Identi�cations (3.4) and (3.5) induce natural identi�cations
(
C[∂, ∂−1] ◦A

)/(
∂−N−1C[∂−1] ◦A

) ∼−→ A⊕I (3.8)

and

A((∂−1))N−1
∼−→ AI . (3.9)
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Thus we get a matrix H(L)(∂) ∈ MatI×I(A[∂]) by the following commutative diagram

(
C[∂, ∂−1] ◦A

)/(
∂−N−1C[∂−1] ◦A

) A(L)
//

OO
o

��

A((∂−1))N−1OO

o
��

A⊕I
H(L)(∂) // AI .

In the sequel, if a(z) ∈ A((z−1)), we denote a(z + α) = eα∂z (z) its power expansion in the domain
|z| > |α| (see (A.5)). Namely, for any n ∈ Z, we have

(z + α)n =
∑

k∈Z+

(
n

k

)
αkzn−k.

In the case we have a meromorphic function in two variables z, w, say f , we denote izf the expansion
when |z| is big, namely, the expansion in negative powers of z. For example, if f = (z − w − α)n, for
n ∈ Z, we have

iz(z − w − α)n =
∑

k∈Z+

(
k − n− 1

k

)
(w + α)kzn−k,

Similarly, iwf will denote the expansion in negative powers of w. We can compute explicity the matrix
di�erential operator H(L)(∂) in terms of generating series. This is given by the following:

Lemma 3.2. Let H(L)(∂)(z, w) =
∑
i,j∈I H

(L)
ij (∂)z−i−1w−j−1 be the generating series for the di�erential

operators H
(L)
ij (∂). Then

H(L)(∂)(z, w) = L(z + ∂)iw(w − z − ∂)−1L∗(∂ − w)− L(w)iw(w − z − ∂)−1L(z). (3.10)

Proof. First we note that we can assumeH(L)(∂) ∈ MatZ×Z(A[∂]) simply extending it to an in�nite
matrix in both directions adding in�nite rows and coloumns of zeroes. It corresponds to consider the
following commutative diagram

C[∂, ∂−1]⊗A
A(L)

//
OO
o

��

A[[∂, ∂−1]]
OO
o

��
A⊕Z

H(L)(∂) // AZ.

Using (3.4) and (3.5), for F = (Fk) ∈ A⊕Z, we have (H(L)(∂)(F ))i = Res∂
(
A(L)

(∑
k ∂

k ◦ Fk
)
∂i
)
, i ∈ Z,

from which we get

H
(L)
ij (∂)(f) = Res∂

(
A(L)

(
∂j ◦ f

)
∂i
)
,

for all f ∈ A and i, j ∈ Z.
To complete the proof, it su�ces to perform a straightforward computation. For any f ∈ A, we have

H(L)(∂)(z, w)f =
∑

i,j∈Z
H

(L)
ij (∂)(f)z−i−1w−j−1 =

∑

i,j∈Z
Res∂

(
A(L)

(
∂j ◦ f

)
∂i
)
z−i−1w−j−1 =

=
∑

i,j∈Z
Res∂

((
L(∂)(∂j ◦ fL(∂))+ − (L(∂)∂j ◦ f)+L(∂)

)
∂i
)
z−i−1w−j−1.

We can write the above expression in terms of the formal δ-function de�ned in (A.3):

H(L)(∂)(z, w)f = Res∂ ((L(∂)(δ(w − ∂) ◦ fL(∂))+ − (L(∂)δ(w − ∂) ◦ f)+L(∂)) δ(z − ∂)) .

By Lemma A.1, we have

(δ(w − ∂) ◦ fL(∂))+ = δ(w − ∂)+ ◦ (L∗(∂ − w)f) = iw(w − ∂)−1 ◦ (L∗(∂ − w)f) .

Similarly,

(L(∂)δ(w − ∂) ◦ f)+ = L(w)δ(w − ∂)+ ◦ f = L(w)iw(w − ∂)−1 ◦ f.
Thus we get

H(L)(∂)(z, w) = Res∂
((
L(∂)iw(w − ∂)−1 ◦ (L∗(∂ − w)f)− L(w)iw(w − ∂)−1 ◦ fL(∂)

)
δ(z − ∂)

)
.

Applying again Lemma A.1 to δ(z− ∂), the above expression is equivalent to (3.10), proving the lemma.
�
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Let V be an algebra of di�erential functions in in�nitely many variables ui, i ∈ I. Consider the
monic pseudodi�erential operator

L(N) = L = ∂N + u−N∂
N−1 + u−N+1∂

−N−2 + . . . =
∑

i≤N
u−i−1∂

i ∈ V((∂−1)), (3.11)

where u−N−1 = 1. We shall refer to L as the pseudodi�erential operator of general type associated to V.

Theorem 3.3. The operator H(L)(∂) is a Hamiltonian operator, namely, the associated λ-bracket de�nes
a Poisson vertex algebra structure on V.

Proof. We set L(z) =
∑
i≥−N−1 uiz

−i−1 be the symbol of the operator L(∂). By (1.17) and Lemma
3.2

{L(z)λL(w)} = H(L)(λ)(w, z) =

= L(w + λ+ ∂)iz(z − w − λ− ∂)−1L∗(λ− z)− L(z)iz(z − w − λ− ∂)−1L(w)
(3.12)

de�nes a λ-bracket among any pairs of generators of V. Indeed, expanding the left hand side and using
the fact that z and w are central elements, we get

{L(z)λL(w)} =
∑

i,j∈I
{uiλuj}z−i−1w−j−1,

that is the generating series of the λ-bracket on any pair of generators of V.
We claim that this λ-bracket satis�es skew-commutativity and Jacobi identity, thus proving the

theorem according to De�nition 1.12.
For the skew-commutativity case, we should prove that {L(z)λL(w)} = −←{L(w)−λ−∂L(z)}. We

have

−←{L(w)−λ−zL(z)} = L(w + λ+ ∂)iw(z − w − λ− ∂)−1L∗(λ− ∂)

− L(z)iw(z − w − λ− ∂)−1L(w).
(3.13)

By (3.12) and (3.13), skew-commutativity condition is equivalent to prove the following identity

L(w + λ+ ∂)δ(z − w − λ− ∂)L∗(λ− z) = L(z)δ(z − w − λ− ∂)L(w),

which follows easily applying twice part 4) of Lemma (A.1) to the left hand side.
We are left to prove Jacobi identity. For generating series it reads as (see (1.10))

{L(z)λ{L(w)µL(t)}} − {L(w)µ{L(z)λL(t)}} − {{L(z)λL(w)}
λ+µ

L(t)} = 0. (3.14)

Using (3.12), Leibniz rule and sesquilinearity, by a straightforward computation we get:

{L(z)λ{L(w)µL(t)}} =

= L(t+ λ+ µ+ ∂)iz(z − t− λ− µ− ∂)−1L∗(λ− z)iw(w − t− µ− ∂)−1L∗(µ− ∂) (3.15a)

− L(z)iz(z − t− λ− µ− ∂)−1L(t+ µ+ ∂)iw(w − t− µ− ∂)−1L∗(µ− w) (3.15b)

+ L(t+ λ+ µ+ ∂)iw(w − t− λ− µ− ∂)−1L∗(λ− z)iz(z − w + µ+ ∂)−1L∗(µ− w) (3.15c)

− L(t+ λ+ µ+ ∂)iw(w − t− λ− µ− ∂)−1L∗(λ+ µ+ ∂ − w)iz(z − w + µ+ ∂)L(z) (3.15d)

+ L(z)
(
iz(z − w − λ− ∂)−1L(w)

)
iw(w − t− µ− ∂)−1L(t) (3.15e)

−
(
iw(w − t− µ− ∂)−1L(t)

)
L(w + λ+ ∂)iz(z − w − λ− ∂)−1L∗(λ− z) (3.15f)

+ L(w)iw(w − t− λ− µ− ∂)−1L(z)iz(z − t− λ− ∂)−1L(t) (3.15g)

− L(w)iw(w − t− λ− µ− ∂)−1L(t+ λ+ ∂)iz(z − t− λ− ∂)−1L∗(λ− z); (3.15h)
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− {L(w)µ{L(z)λL(t)}} =

= −L(t+ λ+ µ+ ∂)iw(w − t− λ− µ− ∂)−1L∗(µ− w)iz(z − t− λ− ∂)−1L∗(λ− z) (3.16a)

+ L(w)iw(w − t− λ− µ− ∂)−1L(t+ λ+ ∂)iz(z − t− λ− ∂)−1L∗(λ− z) (3.16b)

− L(t+ λ+ µ+ ∂)iz(z − t− λ− µ− ∂)−1L∗(µ− w)iw(w − z + λ+ ∂)−1L∗(λ− z) (3.16c)

+ L(t+ λ+ µ+ ∂)iz(z − t− λ− µ− ∂)−1L∗(λ+ µ+ ∂ − z)iw(w − z + λ+ ∂)−1L(w) (3.16d)

− L(w)
(
iw(w − z − µ− ∂)−1L(z)

)
iz(z − t− λ− ∂)−1L(t) (3.16e)

+
(
iz(z − t− λ− ∂)−1L(t)

)
L(z + µ+ ∂)iw(w − z − µ− ∂)−1L∗(µ− w) (3.16f)

− L(z)iz(z − t− λ− µ− ∂)−1L(w)iw(w − t− µ− ∂)−1L(t) (3.16g)

+ L(z)iz(z − t− λ− µ− ∂)−1L(t+ µ+ ∂)iw(w − t− µ− ∂)−1L∗(µ− w); (3.16h)

− {{L(z)λL(w)}
λ+µ

L(t)} =

= −L(t+ λ+ µ+ ∂)
(
iw(w − t− µ− ∂)−1L∗(µ− w)

)
iz(z − w − λ− ∂)−1L∗(λ− z) (3.17a)

+
(
iw(w − t− µ− ∂)−1L(t)

)
L(w + λ+ ∂)iz(z − w − λ− ∂)−1L∗(λ− z)− (3.17b)

− L(t+ λ+ µ+ ∂)
(
iz(z − t− λ− ∂)−1L∗(λ− z)

)
iz(z − w + µ+ ∂)−1L∗(µ− w)+ (3.17c)

+
(
iz(z − t− λ− ∂)−1L(t)

)
L(z + µ+ ∂)iz(z − w + µ+ ∂)−1L∗(µ− w) (3.17d)

+ L(t+ λ+ µ+ ∂)iz(z − t− λ− µ− ∂)−1L∗(λ+ µ+ ∂ − z)iz(z − w − λ− ∂)−1L(w)− (3.17e)

− L(z)iz(z − t− λ− µ− ∂)−1L(t)iz(z − w − λ− ∂)−1L(w) (3.17f)

+ L(t+ λ+ µ+ ∂)iw(w − t− λ− µ− ∂)−1L∗(λ+ µ+ ∂ − w)iz(z − w + µ+ ∂)−1L(z) (3.17g)

− L(w)iw(w − t− λ− µ− ∂)−1L(t)iz(z − w + µ+ ∂)−1L(z), (3.17h)

where derivatives act on each term on the right. If some terms are inside parenthesis, this means that
the derivatives appearing act only inside the parenthesis, that is, if a(∂) =

∑
n an∂

n ∈ V((∂−1)), then

(a(∂)b)c =
∑
n anb

(n)c, for any b, c ∈ V.
We note that (3.15b)+(3.16h)=0, (3.15d)+(3.17g)=0, (3.15f)+(3.17b)=0 and(3.15h)+(3.16b)=0,

then this terms disappear in the sum in (3.14). To conclude the proof it remains to prove that

(3.15a) + (3.15c) + (3.15e) + (3.15g) + (3.16a) + (3.16c) + (3.16d) + (3.16e) + (3.16f)+

+ (3.16g) + (3.17a) + (3.17c) + (3.17d) + (3.17e) + (3.17f) + (3.17h) = 0.
(3.18)

We claim that (3.15e)+ (3.16g)+ (3.17f) = 0. Indeed, we set α = z−w−λ−∂ and β = w− t−µ−∂,
where we assume that derivative in α acts only on L(w) while derivative in β acts only on L(t). Then
we can write

(3.15e) + (3.16g) + (3.17f) = L(z)
(
izα
−1iwβ

−1 − iz(α+ β)−1
(
iwα

−1 + izβ
−1
))
L(w)L(t).

Using the fact that

iwα
−1 + izβ

−1 = (α+ β)izα
−1iwβ

−1, (3.19)

our claim is proved. Similarly, we write (3.17c) + (3.15c) + (3.16a) as

L(t+ λ+ µ+ ∂)
(
izα
−1izβ

−1 − iw(α+ β)−1
(
izα
−1 + izβ

−1
))
L∗(µ− w)L∗(λ− z),

where α = w− z−µ−∂ (respectively β = z− t−λ−∂) acts only on L∗(µ−w) (respectively L∗(λ− z)).
Equality (3.19) shows that (3.17c) + (3.15c) + (3.16a) = 0.
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Next, by (A.3) we rewrite

(3.17h) = +L(w)iw(w − t− λ− µ− ∂)−1L(t)iw(w − z − µ− ∂)−1L(z) (3.20)

− L(w)iw(w − t− λ− µ− ∂)−1L(t)δ(w − z − µ− ∂)L(z); (3.21)

(3.16c) = L(t+ λ+ µ+ ∂)iz(z − t− λ− µ− ∂)−1L∗(µ− w)iz(z − w − λ− ∂)−1L∗(λ− z) (3.22)

− L(t+ λ+ µ+ ∂)iz(z − t− λ− µ− ∂)−1L∗(µ− w)δ(z − w − λ− ∂)L∗(λ− z); (3.23)

(3.16f) + (3.17d) = −
(
iz(z − t− λ− ∂)−1L(t)

)
L(z + µ+ ∂)δ(w − z − µ− ∂)L∗(µ− w); (3.24)

(3.16d) + (3.17e) =

= −L(t+ λ+ µ+ ∂)iz(z − t− λ− µ− ∂)−1L∗(λ+ µ+ ∂ − z)δ(z − w − λ− ∂)L(w). (3.25)

Then we get

(3.16e) + (3.20) + (3.15g) = L(w)
(
−iwα−1izβ

−1 + iw(α+ β)−1
(
iwα

−1 + izβ
−1
))
L(z)L(t),

where α = w − z − µ− ∂ acts only on L(z) and β = z − t− λ− ∂ acts only on L(t) and

(3.17a) + (3.15a) + (3.20) =

L(t+ λ+ µ+ ∂)
(
−iwα−1izβ

−1 + iz(α+ β)−1
(
iwα

−1 + izβ
−1
))
L∗(λ− z)L∗(µ− w),

where α = w − t− µ− ∂ acts only on L∗(µ− w) and β = z − w − λ− ∂ acts only on L∗(λ− z). Using
(3.19), it follows that both terms are zero. Hence, by (3.18), we are left to prove that

(3.21) + (3.24) + (3.23) + (3.25) = 0.

We claim that (3.21) + (3.24) = 0. Indeed, using Lemma A.1 we get

(3.24) =
(
iz(z − t− λ− ∂)−1L(t)

)
L(w)δ(w − z − µ− ∂)L(z) =

= L(w)iw(w − t− λ− µ− ∂)−1L(t)δ(w − z − µ− ∂)L(z) = −(3.21).
Applying again Lemma A.1, a similar computation shows that (3.23) + (3.25) = 0 thus concluding the
proof. �

We denote this Poisson vertex algebra V(N,∞). We give an application of Theorem 3.3 that we are
going to use in Chapter 5 to derive integrable hierarchies attached to the Poisson vertex algebra V(N,∞).
Let us assume ord(L) = N ∈ Z+ and write, for c ∈ C, H(L−c)(∂) = H(0)(∂)− cH(∞)(∂), after expanding
(3.7).

Corollary 3.4. For any c ∈ C, the operators H(L−c)(∂) are Hamiltonian operators, namely, they de�ne

a bi-Hamiltonian structure (H(0), H(∞)) on V.

Proof. Since ord(L − c) = N ∈ Z+, identi�cations (3.8) and (3.9) still hold. Thus, by (1.17) and
Lemma 3.2

{L(z)λL(w)}c = H(L−c)(λ)(w, z) = H(0)(λ)(w, z) + cH(∞)(λ)(w, z) = {L(z)λL(w)}0 + c{L(z)λL(w)}∞,
where L(z) =

∑
i≥−N−1 uiz

−i−1 de�nes a λ-bracket among any pairs of generators of V. Theorem 3.3

shows that {·λ·}c satis�es skew-commutativity and Jacobi identity, thus proving that brackets {·λ·}0
and {·λ·}∞ de�ne two compatible Poisson vertex structures on V, namely, the pair (H(0), H(∞)) is a
bi-Hamiltonian pair. �

We denote this bi-Poisson vertex algebra V
(N,∞)
c . In literature, H(∞) is usually called �rst Gelfand-

Dickey structure, while H(0) is called second Gelfand-Dickey structure.

3.3. Reduction to the case u−N = 0

It would be interesting to understand if, more generally, any pseudodi�erential operators L ∈
V((∂−1)) de�nes a Poisson vertex algebra structure on V. Namely, let V be an algebra of di�erential
functions in some variables vi, i ∈ J an index set, and let L ∈ V((∂−1))N be a monic pseudodi�erential
operator. We can de�ne a map ϕ : V(N,∞) −→ V given by comparing coe�cients of the general pseu-
dodi�erential operator L(N) (see (3.11)) and coe�cients of L. If this map is surjective and its kernel is
a Poisson vertex algebra ideal, then V inherits a Poisson vertex algebra structure. Unfortunately this is
not the case in general.

Indeed, let us assume V ⊂ V(N,∞) to be the subalgebra of di�erential functions in the variable ui for
i ≥ −N + 1 and set

L = ∂N + u−N+1∂
N−2 + . . . ∈ V(N,∞)((∂−1))N .
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Comparing L(N) and L gives the following map ϕ : V(N,∞) −→ V, de�ned on generators of V(N,∞) by

ϕ(u−N ) = 0 and ϕ(ui) = ui, for i ≥ −N + 1.

Namely, ϕ is the projection map on the variable u−N , hence it is surjective and kerϕ = 〈u−N 〉V(N,∞) is
the di�erential ideal in V(N,∞) generated by the variable u−N . By an explicit computation of (3.12) we
have {u−Nλu−N} = Nλ, from which follows that kerϕ is not a Poisson vertex algebra ideal in V(N,∞).

Hence, V does not inherit any Poisson vertex algebra structure from V(N,∞). Anyway, in this case we can
slightly modify the de�nition of the map A(L) in (3.7) and give another Poisson vertex algebra structure
on V(N,∞) such that kerϕ is a Poisson vertex algebra ideal for this new structure.

Let A be a di�erential algebra with a derivation ∂ and consider the identi�cations (3.4) and (3.5).
Given L ∈ A((∂−1)) and d ∈ C, we de�ne a map A(L,d) : C[∂, ∂−1] ◦A −→ A((∂−1)) by

A(L,d)(F ) = A(L)(F )− d[L, ∂−1(Res∂ [L,F ])]. (3.26)

We already noticed that Res∂ [L,F ] ∈ ∂A, then it makes sense to consider its antiderivative, that we
denote by ∂−1(Res∂ [L,X]). This antiderivative is de�ned up to the sum of a constant element a ∈ A,
but this choice is irrelevant in our de�nition since [L, a] = 0. Thus, we can assume a = 0.

If ord(L) = N ∈ Z+, then A(L,d)(F ) ∈ V((∂−1))N−1. Indeed, we already know that A(L)(F ) ∈
V((∂−1))N−1 and, moreover, the commutator of a function with L has order N − 1. Moreover, if
F ∈ ∂−N−1C[∂−1] ◦A, then A(L,d) = 0, since ord[L,F ] ≤ −2, thus this term has no residue. This means
that, A(L,d) induces a map

A(L,d) : (C[∂, ∂−1] ◦A)
/
(∂−N−1C[∂−1] ◦A) −→ A((∂−1))N−1.

We recall that we set I−N = I = {k ∈ Z | k ≥ −N}, then, using identi�cations (3.8) and (3.9), we
de�ne H(L,d)(∂) ∈ MatI×I(A[∂]) by

(C[∂, ∂−1] ◦A)
/
(∂−N−1C[∂−1] ◦A)

A(L,d)
//

OO
o

��

A((∂−1))N−1OO

o
��

A⊕I
H(L,d)(∂) // AI .

Lemma 3.5. Let H(L,d)(∂)(z, w) =
∑
i,j∈I H

(L,d)
ij (∂)z−i−1w−j−1 be the generating series for the di�er-

ential operators H
(L,d)
ij (∂). Then

H(L,d)(∂)(z, w) = H(L)(∂)(z, w) + d (L(z + ∂)− L(z)) ∂−1 (L∗(∂ − w)− L(w)) . (3.27)

Proof. As we did in the proof of Lemma 3.2 we can consider the following commutative diagram

C[∂, ∂−1] ◦AA(L,d)
//

OO
o

��

A[[∂, ∂−1]]
OO
o

��
A⊕Z

H(L,d)(∂) // AZ.

Using (3.4) and (3.5), for F = (Fk) ∈ A⊕Z, we have
(
H(L,d)(∂)(F )

)
i

= Res∂
(
A(L,d)

(∑
k ∂

k ◦ f
)
∂i
)
,

i ∈ Z, from which follows that

H
(L,d)
ij (∂)(f) = H

(L)
ij (∂)− dRes∂

([
L, ∂−1

(
Res∂

[
L, ∂j ◦ f

])]
∂i
)

for all f ∈ A and i, j ∈ Z.
To complete the proof we need only to compute the generating series for the coe�cient of d, since

we already computed H
(L)
ij in Lemma 3.2. We have, for any f ∈ A, after multiplying for z−i−1w−j−1

and summing over all i, j ∈ Z, that this term is given by

− Res∂
([
L(∂), ∂−1(Res∂ [L(∂), δ(w − ∂) ◦ f ])

]
δ(z − ∂)

)
=

= −Res∂
([
L(∂), ∂−1 Res∂ (L(∂)δ(w − ∂) ◦ f − δ(w − ∂) ◦ fL(∂))

]
δ(z − ∂)

)
. (3.28)

By Lemma A.1, we have Res∂ (L(∂)δ(w, ∂) ◦ f − δ(w, ∂) ◦ fL(∂)) = (L(w)− L∗(∂ − w)) f , thus obtain-
ing,

(3.28) = Res∂
((
L(∂)∂−1 (L(w)− L∗(∂ − w)) f − ∂−1 (L(w)− L∗(∂ − w)) fL(∂)

)
δ(z − ∂)

)
.

Applying again Lemma (A.1) to δ(z − ∂) the above expression in equivalent to the coe�cient of d in
(3.27), proving the Lemma. �
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Let V be an algebra of di�erential functions in in�nitely many variables ui, i ∈ I and L be the
general pseudodi�erential operator we associate to it. We write H(L,d)(∂) = H(L)(∂) + dH(d)(∂).

Theorem 3.6. The operators H(L,d)(∂) are Hamiltonian operators, namely, the pair (H(L)(∂), H(d))
de�nes a bi-Hamiltonian structure on V.

Proof. We set L(z) =
∑
i≥−N−1 uiz

−i−1 be the symbol of the pseudodi�erential operator L(∂).

By (1.17) and Lemma 3.5

{L(z)λL(w)} = H(L,d)(λ)(w, z) =

= H(L)(λ)(z, w) + d (L(w + λ+ ∂)− L(w)) (λ+ ∂)−1 (L∗(λ− z)− L(z)) (3.29)

de�nes a λ-bracket among any pair of generators of V as already discussed in the proof of Theorem
3.3. We write the bracket in (3.5) as {·λ·} = {·λ·}L + d{·λ·}d, where {·λ·}L (rspectively {·λ·}d) is the
λ-bracket corresponding to H(L) (respectively H(0,d)). Since skew-commutativity of the bracket {·λ·}d
is evident and we proved that {·λ·}L is skew-commutative in Theorem 3.3, the whole bracket (3.5) is
skew-commutative. To conclude the proof, we are left to show that it satis�es Jacobi identity.

First we prove that {·λ·}d satis�es Jacobi identity (3.14). We use the following notation

{L(z)λL(w)}d = p(λ, ∂z, ∂w) (L(z), L(w)) , (3.30)

where p(λ, ∂z, ∂w) =
(
e(λ+∂)∂w − 1

)
(λ + ∂)−1

(
e(−λ−∂)∂z − 1

)
∈ V[[λ, ∂, ∂z, ∂w]] and we assume the

convention that ∂ acts on the �rst component. Using (3.29), Leibniz rule and sesquilinearity we get

{L(z)λ{L(w)µL(t)}d}d = p(λ+ µ, ∂w, ∂t)
(
p(λ, ∂z, ∂w)

(
L(z), L(w)

)
, L(t)

)
+ (3.31a)

+ p(µ, ∂w, ∂t)
(
L(w), p(λ, ∂z, ∂t)

(
L(z), L(t)

))
; (3.31b)

{L(w)µ{L(z)λL(t)}d}d = p(λ+ µ, ∂z, ∂t)
(
p(µ, ∂w, ∂z)

(
L(w), L(z)

)
, L(t)

)
+ (3.32a)

+ p(λ, ∂z, ∂t)
(
L(z), p(µ, ∂w, ∂t)

(
L(w), L(t)

))
; (3.32b)

{{L(z)λL(w)}dλ+µ
L(t)}d = p(λ+ µ, ∂z, ∂t)

(
p(−µ, ∂z, ∂w)

(
L(z), L(w)

)
, L(t)

)
+ (3.33a)

+ p(λ+ µ, ∂w, ∂t)
(
p(λ, ∂z, ∂w)

(
L(z), L(w)

)
, L(t)

)
. (3.33b)

Since p(−µ, ∂z, ∂w)(L(z), L(w)) = −p(µ, ∂w, ∂z)(L(w), L(z)), (3.32a) and (3.33a) cancel out in (3.14).
Furthermore, expanding (3.30), we get

p(λ, ∂z, ∂t)
(
L(z), p(µ, ∂w, ∂t)

(
L(w), L(t)

))
=

= p(λ, ∂z, ∂t)
(
L(z), (L(t+ µ+ ∂)− L(w)) (µ+ ∂)−1 (L∗(µ− w)− L(w))

)
=

= (L(t+ λ+ µ+ ∂) + L(t))
(
(λ+ ∂)−1 (L∗(λ− z)− L(z))

)
(µ+ ∂)−1 (L∗(µ− w)− L(w))−

−
(
(λ+ ∂)−1 (L∗(λ− z)− L(z))

)
L(t+ µ+ ∂)(µ+ ∂)−1 (L∗(µ− w)− L(w))−

−
(
(µ+ ∂)−1 (L∗(µ− w)− L(w))

)
L(t+ λ+ ∂)(λ+ ∂)−1 (L∗(λ− z)− L(z)) =

= p(µ, ∂w, ∂t)
(
L(w), (L(t+ λ+ ∂)− L(t)) (λ+ ∂)−1 (L∗(λ− z)− L(z))

)
=

= p(µ, ∂w, ∂t)
(
L(w), p(λ, ∂z, ∂t)

(
L(z), L(t)

))
.

Hence, also (3.31b) and (3.32b) cancel out in Jacobi identity. It remains to note that (3.31a) and (3.33b)
coincide, thus proving Jacobi identity for {·λ·}d.

Expanding (3.14) and using the fact that both {·λ·}L and {·λ·}d satisfy Jacobi identity, to conclude
the proof we are left to prove that

{L(z)λ{L(w)µL(t)}L}d + {L(z)λ{L(w)µL(t)}d}L − {L(w)µ{L(z)λL(t)}L}d−
− {L(w)µ{L(z)λL(t)}d}L − {{L(z)λL(w)}Lλ+µ

L(t)}d − {{L(z)λL(w)}dλ+µ
L(t)}L = 0.

(3.34)
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Using (3.29), Leibniz rule and sesquilinearity, we get

{L(z)λ{L(w)µL(t)}L}d =

= p(λ, ∂z, ∂t)
(
L(z), L(t+ λ+ ∂)

)
iw(w − t− µ− ∂)−1L∗(µ− w)+ (3.35a)

+ L(t+ λ+ µ+ ∂)iw(w − t− λ− µ− ∂)−1e(−λ−µ−∂)∂wp(λ, ∂z, ∂w)
(
L(z), L(w)

)
− (3.35b)

− p(λ, ∂z, ∂w)
(
L(z), L(w)

)
iw(w − t− µ− ∂)−1L(t)− (3.35c)

− L(w)iw(w − t− λ− µ− ∂)−1p(λ, ∂z, ∂t)
(
L(z), L(t)

)
; (3.35d)

{L(z)λ{L(w)µL(t)}d}L =

= p(µ, ∂w, ∂t)
(
L(w), L(t+ λ+ ∂)iz(z − t− λ− ∂)−1L∗(λ− z)

)
− (3.35e)

− L(z)p(µ, ∂w, ∂t)
(
L(w), iz(z − t− λ− ∂)−1L(t)

)
+ (3.35f)

+ p(λ+ µ+ ∂, ∂w, ∂t)→
(
L(w + λ+ ∂)iz(z − w − λ− ∂)−1, L(t)

)
L∗(λ− z)− (3.35g)

− p(λ+ µ+ ∂, ∂w, ∂t)→
(
iz(z − w − λ− ∂)−1L(w), L(t)

)
L(z), (3.35h)

where the arrow means that ∂ is acting on the right. Furthermore, we have

{L(w)µ{L(z)λL(t)}L}d =

= p(µ, ∂w, ∂t)
(
L(w), L(t+ λ+ ∂)

)
iz(z − t− λ− ∂)−1L∗(λ− z)+ (3.36a)

+ L(t+ λ+ µ+ ∂)iz(z − t− λ− µ− ∂)−1e(−λ−µ−∂)∂wp(µ, ∂w, ∂z)
(
L(w), L(z)

)
− (3.36b)

− p(µ+ ∂, ∂w, ∂z)
(
L(w), L(z)

)
iz(z − t− λ− ∂)−1L(t)− (3.36c)

− L(z)iz(z − t− λ− µ− ∂)−1p(µ, ∂w, ∂t)
(
L(w), L(t)

)
; (3.36d)

{L(w)µ{L(z)λL(t)}d} =

= p(λ, ∂z, ∂t)
(
L(z), L(t+ µ+ ∂)iw(w − t− µ− ∂)−1

)
L∗(µ− w)− (3.36e)

− L(w)p(λ, ∂z, ∂t)
(
L(z), iw(w − t− µ− ∂)−1L(t)

)
+ (3.36f)

+ p(λ+ µ+ ∂, ∂z, ∂t)→
(
L(z + µ+ ∂), iw(w − z − µ− ∂)−1L(t)

)
L(µ− w)− (3.36g)

− p(λ+ µ+ ∂, ∂z, ∂t)→
(
iw(w − z − µ− ∂)−1L(z), L(t)

)
L(w); (3.36h)

{{L(z)λL(w)}
λ+µ

L(t)}d =

= p(λ+ µ+ ∂, ∂w, ∂t)→
(
L(w + λ+ ∂), L(t)

)
iz(z − w − λ− ∂)−1L∗(λ− z)+ (3.37a)

+ p(λ+ µ+ ∂, ∂z, ∂t)→
(
L(z + µ+ ∂), L(t)

)
iz(z − w + µ+ ∂)−1L∗(µ− w)− (3.37b)

− p(λ+ µ+ ∂, ∂z, ∂t)→
(
L(z), L(t)

)
iz(z − w − λ− ∂)−1L(w)− (3.37c)

− p(λ+ µ+ ∂, ∂w, ∂t)→
(
L(w), L(t)

)
iz, (z − w + µ+ ∂)−1L(z); (3.37d)

{{L(z)λL(w)}dλ+µ
L(t)} =

= L(t+ λ+ µ+ ∂)p(−µ, ∂z, ∂w)
(
iz(z − t− λ− µ− ∂)−1L∗(λ+ µ+ ∂ − z), L(w)

)
− (3.37e)

− L(t)p(−µ, ∂z, ∂w)
(
L(z)iz(z − t− λ− µ− ∂)−1, L(w)

)
+ (3.37f)

+ L(t+ λ+ µ+ ∂)p(λ, ∂z, ∂w)
(
L(z),←e

(−λ−µ−∂)∂w iw(w − t)L(w)
)
− (3.37g)

− L(t)p(λ, ∂z, ∂w)
(
L(z), iw(w − t− λ− µ− ∂)−1L(w)

)
L(t); (3.37h)

where the left arrow, means that ∂ acts on the left, namely on the coe�cients of L(t) and L(z)
We claim that

(3.35a) + (3.35b) = (3.36e) + (3.37g).

Indeed, using the expansion of (3.30) we get

LHS = L(t+ λ+ µ+ ∂)
(
(λ+ ∂)−1 (L∗(λ− z)− L(z))

)
iw(w − t− µ− ∂)−1L∗(µ− w)−

−
(
(λ+ ∂)−1 (L∗(λ− z)− L(z))

)
L(t+ µ+ ∂)iw(w − t− µ− ∂)−1L∗(µ− w)+

+ L(t+ λ+ µ+ ∂)iw(w − t− λ− µ− ∂)−1L∗(µ− w)(λ+ ∂)−1 (L∗(λ− z)− L(z))−
− L(t+ λ+ µ+ ∂)iw(w − t− λ− µ− ∂)−1L∗(λ+ µ+ ∂ − w)(λ+ ∂)−1 (L∗(λ− z)− L(z)) .
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On the other hand we have

RHS = +L(t+ λ+ µ+ ∂)iw(w − t− λ− µ− ∂)−1L∗(µ− w)(λ+ ∂)−1 (L∗(λ− z)− L(z))−
−
(
(λ+ ∂)−1 (L∗(λ− z)− L(z))

)
L(t+ µ+ ∂)iw(w − t− µ− ∂)−1L∗(µ− w)+

+ L(t+ λ+ µ+ ∂)
(
(λ+ ∂)−1 (L∗(λ− z)− L(z))

)
iw(w − t− µ− ∂)−1L∗(µ− w)−

− L(t+ λ+ µ+ ∂)iw(w − t− λ− µ− ∂)−1L∗(λ+ µ+ ∂ − w)(λ+ ∂)−1 (L∗(λ− z)− L(z)) .

In the same way it can be proved that (3.35c) + (3.35d) = (3.36f) + (3.37h). Indeed, we have

LHS = −
(
L(w + λ+ ∂)(λ+ ∂)−1 (L∗(λ− z)− L(z))

)
iw(w − t− µ− ∂)−1L(t)+

+ L(w)
(
(λ+ ∂)−1 (L∗(λ− z)− L(z))

)
iw(w − t− µ− ∂)L(t)−

− L(w)iw(w − t− λ− µ− ∂)−1L(t+ λ+ ∂)(λ+ ∂)−1 (L∗(λ− z)− L(z)) +

+ L(w)iw(w − t− λ− µ− ∂)−1L(t)(λ+ ∂)−1 (L∗(λ− z)− L(z)) ,

While, on the other hand we have

RHS = −L(w)iw(w − t− λ− µ− ∂)−1L(t+ λ+ ∂)(λ+ ∂)−1 (L∗(λ− z)− L(z)) +

+ L(w)
(
(λ+ ∂)−1 (L∗(λ− z)− L(z))

)
iw(w − t− µ− ∂)L(t)−

−
(
L(w + λ+ ∂)(λ+ ∂)−1 (L∗(λ− z)− L(z))

)
iw(w − t− µ− ∂)−1L(t)+

+ L(w)iw(w − t− λ− µ− ∂)−1L(t)(λ+ ∂)−1 (L∗(λ− z)− L(z)) .

Interchanging z and w and λ and µ in the last computations and using the fact that p(−µ −
∂, ∂z, ∂w) = −p(µ+∂, ∂w, ∂z), it follows that (3.35e) = (3.36a)+(3.36b)+(3.37e) and (3.35f) = (3.36c)+
(3.36d) + (3.37f)

Next, we compute (3.35g)− (3.36g)− (3.37a)− (3.37b). We have, using the expansion of (3.30),

(3.35g) =

= (L(t+ λ+ µ+ ∂)− L(t)) (λ+ µ+ ∂)−1
(
iw(z − w + µ+ ∂)−1L∗(µ− w)

)
L∗(λ− z)−

− (L(t+ λ+ µ+ ∂)− L(t)) (λ+ µ+ ∂)−1L(w + λ+ ∂)iz(z − w − λ− ∂)−1L∗(λ− z).

On the other hand, using the same expansion, we get

(3.37a) =

= (L(t+ λ+ µ+ ∂)− L(t)) (λ+ µ+ ∂)−1L∗(µ− w)iz(z − w − λ− ∂)−1L∗(λ− z)− (3.38)

− (L(t+ λ+ µ+ ∂)− L(t)) (λ+ µ+ ∂)−1L(w + λ+ ∂)iz(z − w − λ− ∂)−1L∗(λ− z) (3.39)

and

(3.37b) =

= (L(t+ λ+ µ+ ∂)− L(t)) (λ+ µ+ ∂)−1L∗(λ− z)iz(z − w + µ+ ∂)−1L∗(µ− w)− (3.40)

− (L(t+ λ+ µ+ ∂)− L(t)) (λ+ µ+ ∂)−1L(z + µ+ ∂)iz(z − w + µ+ ∂)L∗(µ− w). (3.41)

Thus, we get (3.37g)− (3.39)− (3.40) = 0. Moreover, expanding (3.36g), using the de�nition of (3.30),
we get

= (L(t+ λ+ µ+ ∂)− L(t)) (λ+ µ+ ∂)−1 (iw(w − z + λ+ ∂)L∗(λ− z))L∗(µ− w)− (3.42)

− (L(t+ λ+ µ+ ∂)− L(t)) (λ+ µ+ ∂)−1L(z + µ+ ∂)iw(w − z − µ− ∂)−1L∗(µ− w). (3.43)

Hence, we obtain, using the de�nition of the formal δ-function in −(3.36g)− (3.38) and −(3.43)− (3.41),

(3.35g)− (3.36g)− (3.37a)− (3.37b) =

= − (L(t+ λ+ µ+ ∂)− L(t)) (λ+ µ+ ∂)−1L∗(µ− w)δ(z, w + λ+ ∂)L∗(λ− z)+
+ (L(t+ λ+ µ+ ∂)− L(t)) (λ+ µ+ ∂)−1L(z + µ+ ∂)δ(w, z + µ+ ∂)L∗(µ− w).

(3.44)
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We can use a similar procedure to compute (3.35h) − (3.36h) − (3.37c) − (3.37d). Expanding, we
have

(3.35h) = − (L(t+ λ+ µ+ ∂)− L(t)) (λ+ µ+ ∂)−1L∗(λ+ µ+ ∂ − w)iz(z − w + µ+ ∂)L(z)+ (3.45)

+ (L(t+ λ+ µ+ ∂)− L(t)) (λ+ µ+ ∂)−1L(z)iz(z − w − λ− ∂)−1L(w); (3.46)

(3.37c) = (L(t+ λ+ µ+ ∂)− L(t)) (λ+ µ+ ∂)−1L(z)iz(z − w − λ− ∂)−1L(w); (3.47)

− (L(t+ λ+ µ+ ∂)− L(t)) (λ+ µ+ ∂)−1L∗(λ+ µ+ ∂ − z)iz(z − w − λ− ∂)−1L(w) (3.48)

(3.37d) = (L(t+ λ+ µ+ ∂)− L(t)) (λ+ µ+ ∂)−1L(w)iz(z − w + µ+ ∂)−1L(z), (3.49)

− (L(t+ λ+ µ+ ∂)− L(t)) (λ+ µ+ ∂)−1L∗(λ+ µ+ ∂ − w)iz(z − w + µ+ ∂)−1L(z) (3.50)

then (3.35h)− (3.47)− (3.50) = 0. Moreover,

(3.36h) = (L(t+ λ+ µ+ ∂)− L(t)) (λ+ µ+ ∂)−1L(w)iw(w − z − µ− ∂)−1L(z)− (3.51)

− (L(t+ λ+ µ+ ∂)− L(t)) (λ+ µ+ ∂)−1L∗(λ+ µ+ ∂ − z)iw(w − z + λ+ ∂)−1L(w), (3.52)

then, using the formal δ-function in −(3.52)− (3.48) and (3.51)− (3.49), we obtain

(3.35h)− (3.36h)− (3.37c)− (3.37d) =

= (L(t+ λ+ µ+ ∂)− L(t)) (λ+ µ+ ∂)−1L∗(λ+ µ+ ∂ − z)δ(z, w + λ+ ∂)L(w)+

− (L(t+ λ+ µ+ ∂)− L(t)) (λ+ µ+ ∂)−1L(w)δ(w, z + µ+ ∂)L(z).

(3.53)

Using the properties of the formal delta-function (Lemma A.1) it follows easily that the terms (3.44)
and (3.53) cancel out, thus proving that identity (3.34) holds. �

We denote this Poisson vertex algebra V
(N,∞)
d . Let us assume ord(L) = N ∈ Z+ and write, for any

c ∈ C, H(L−c,d)(∂) = H(0)(∂)− cH(∞)(∂) + dH(d)(∂), after expanding (3.26).

Corollary 3.7. The operators H(L−c,d) are Hamiltonian operators, namely, they de�ne a tri-Hamiltonian
structure (H(0), H(∞), H(d)) on V.

Proof. Apply the same argument of the proof of Corollary 3.4. �

We denote this tri-Poisson vertex algebra V
(N,∞)
c,d .

Let us come back to the general pseudodi�erential operator case and set J = 〈u−N 〉V to be the
di�erential ideal in V generated by the di�erential variable u−N .

Proposition 3.8. J is a Poisson vertex algebra ideal in V
(N,∞)
1
N

.

Proof. We have

A(L, 1
N )(F ) = L(FL)+ − (LF )+L−

1

N
[L, ∂−1(Res∂ [L,F ])] =

= (LF )−L− L(FL)− −
1

N
[L, ∂−1(Res∂ [L,F ])] =

= (LF )−∂
N − ∂N (FL)− −

1

N
[∂N , ∂−1(Res∂ [L,F ])] + o(∂N−2) =

= [L,F ]−∂
N − Res∂ [L,F ]∂N−1 + o(∂N−2),

from which we derive that the coe�cient of ∂N−1 vanishes, hence A(L, 1
N )(F ) ∈ A((∂−1))N−2. It follows

that H
(L, 1

N )

−N,j = 0 for all j ≥ −N . By (1.17), it means that {ujλu−N} = 0 for all j ≥ −N . By

skew-commutativity and Jacobi identity we see that u−N is central in V
(N,∞)
1
N

. �

We get that V̂(N,∞) ∼= V
(N,∞)
1
N

/
J has an induced structure of Poisson vertex algebra. For N ∈ Z+, the

same proof of Proposition 3.8 holds in the case of the bi-Poisson vertex algebra V
(N,∞)

c, 1
N

, just replacing L

by L− c. Thus, V̂(N,∞)
c

∼= V
(N,∞)

c, 1
N

/
J has an induced structure of bi-Poisson vertex algebra.
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3.4. Poisson vertex algebra structure attached to a general di�erential operator:

Gelfand-Dickey algebras

Now we want to derive a Poisson vertex algebra structure from a monic di�erential operator of order
N ∈ Z. Let A be a di�erential algebbra with a derivation ∂ and use identi�cations (3.4) and (3.5) to
consider the map A(L), de�ned in (3.7), for L ∈ A((∂−1)).

Let us assume L ∈ A[∂], with ord(L) = N ∈ Z. If F ∈ C[∂, ∂−1] ⊗ A, then A(L)(F ) = L(FL)+ −
(LF )+L ∈ A[∂]. On the other hand, we know that A(L)(F ) ∈ A((∂−1))N−1. Thus, A

(L) ∈ A[∂]N−1 =
A[∂] ∩ A((∂−1))N−1. Moreover, if F ∈ C[∂] ◦ A, then (FL)+ = FL and (LF )+ = LF , showing that
A(L)(F ) = 0. On the other hand, we showed that A(L)(F ) = 0, for F ∈ ∂−N−1C[∂−1] ◦ A. This means
that A(L) induces a map

A(L) : (C[∂−1] ◦A)
/
(∂−N−1C[∂−1] ◦A) −→ A[∂]N−1.

Using identi�cations (3.8) and (3.9), we de�ne H(L)(∂) ∈ MatN×N (A[∂]) by

(C[∂−1] ◦A)
/
(∂−N−1C[∂−1] ◦A)

A(L)
//

OO
o

��

A[∂]N−1OO

o
��

A⊕N
H(L)(∂) // AN .

Remark 3.9. The same proof of Lemma 3.2 applies in this case, then the expresion of H(L)(∂)(z, w) is
the same we got in Lemma 3.2. The only di�erence is that in this case we get an element in A[∂][z, w],
instead of a Laurent series in z−1 and w−1.

Let V be an algebra of di�erential functions in the variables ui, i ∈ {−N, . . . ,−1}. We de�ne

L
(N)
+ = L = ∂N + u−N∂

N−1 + u−N+1∂
N−2 + . . .+ u−1 =

N∑

k=0

u−k−1∂
k ∈ V[∂]

to be the di�erential operator of general type associated to V.

Theorem 3.10. The operator H(L)(∂) is an Hamiltonian operator, namely, it de�nes a Poisson vertex
algebra structures on V.

Proof. After setting L(z) =
∑−1
i=−N uiz

−i−1 for the symbol of the operator L(∂), using (1.17) and
Remark 3.9, we get

{L(z)λL(w)} = L(w)(w + λ+ ∂)iz(z − w − λ− ∂)−1L∗(λ− z)− L(z)iz(z − w − λ− ∂)−1(w). (3.54)

The formal proof of Theorem 3.3 holds when L(z) is a Laurent series in z−1, so it works also for
L(z) ∈ V[z]. �

We denote the Poisson vertex algebra structure we got WN . We want to give another description of
WN . Namely, we want to realize this algebra as a quotient of the Poisson vertex algebra V(N,∞). We set

J+ = 〈ui | i ∈ Z+〉V(N,∞) .

As di�erential algebras, we have WN
∼= V(N,∞)/

J+.

Proposition 3.11. J+ is a Poisson vertex algebra ideal in V(N,∞).

Proof. Let us consider the setup of Lemma 3.2 (now we are considering L = L(N) a general

pseudodi�erential operator) and compute the generating series for the operators H
(L)
ij , for i ∈ Z+ and

j ∈ Z. Using the de�nition of the formal δ-function and Lemma A.1 to perform a computation silmilar
to that one in the proof of Lemma 3.2, we get

∑

i∈Z+,j∈Z
H

(L)
ij (∂)(f)z−i−1w−j−1 =

∑

i∈Z+,j∈Z
Res∂

(
A(L)(∂j ◦ f)∂i

)
z−i−1w−j−1

=
∑

i∈Z+,j∈Z
Res∂

((
L(∂)(∂j ◦ fL(∂))+ − (L(∂)∂j ◦ f)+L(∂)

)
∂i
)
z−i−1w−j−1 =

= Res∂
(
(L(∂)(δ(w, ∂) ◦ fL(∂))+ − (L(∂)δ(w, ∂) ◦ f)+L(∂)) iz(z − ∂)−1

)
=

= Res∂
((
L−(∂)iw(w − ∂)−1 ◦ (L∗(∂ − w)f)− L(w)iw(w − ∂)−1 ◦ f)+L−(∂)

)
iz(z − ∂)−1

)
,
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where in the last equality the appeareance of L−(∂)) is due to the fact that both iz(z − ∂)−1 and
iw(w − ∂)−1 have only non negative powers of ∂, thus L+(∂) does not contribute to the residue. We

note that L−(∂) ∈ J+((∂−1)), then
∑
i∈Z+,j∈ZH

(L)
ij z−i−1ww−j−1 ∈ J+[∂][[z−1]]((w−1)). Using (1.17),

we get {ujλui} ∈ J+[λ], for all i ∈ Z+ and j ∈ Z. By skew-commutativity and Leibniz rule it follows

that {V(N,∞)
λJ+}, {J+λV

(N,∞))} ⊂ J+[λ], thus concluding the proof. �

We obtain that the quotient space WN
∼= V(N,∞)/

J+ has an induced structure of Poisson vertex

algebra. The induced λ-bracket on the quotient is given by Lemma 3.2 after imposing L−(∂) = 0, thus
coincides with the λ-bracket de�ned by the operator H(L)(∂) when L is a general di�erential operator.

When ord(L) = N ∈ Z+, Theorem 3.10 and Proposition 3.11 also apply in the case of the operator
L− c, for c ∈ C (see Corollary 3.4). We denote by WN,c the bi-Poisson vertex algebra structure we get

from the operators H(L−c).

De�nition 3.12. The bi-Poisson vertex algebra WN,c is called Gelfand-Dickey algebra.

Sometimes this algebra is also re�ered as Gelfand-Dickey algebra of glN type. Indeed, in next
chapter, it will be proved that this Poisson vertex algebra is isomorphic to Wz(glN , f, s), where f ∈ glN
is principal nilpotent.

We want to apply similar considerations to A(L,d), when L ∈ A[∂]. As usual, we let N = ord(L) ∈ Z.
It can be easily show that A(L,d) : (C[∂−1] ◦A)

/
(∂−N−1C[∂−1] ◦A) −→ A[∂]N−1. Using identi�cations

(3.4) and (3.5), we get H(L,d) ∈ Mat(N)×(N) V[∂] by

(C[∂−1] ◦A)
/
(∂−N−1C[∂−1] ◦A)

A(L,d)
//

OO
o

��

A[∂]N−1OO

o
��

A⊕N
H(L,d)(∂) // AN .

Remark 3.13. The same proof of Lemma 3.5 applies in this case, then the expression of H(L,d)(∂)(z, w)
is the same we got in Lemma 3.5. The only di�erence is that in this case we get an element in A[∂][z, w],
instead of a Laurent series in z−1 and w−1.

Let V be an algebra of di�erential functions in the variables ui, i ∈ {−N, . . . ,−1} and let L be the
general di�erential operator we attach to V.

Theorem 3.14. The operators H(L,d)(∂) are Hamiltonian operators, namely, they de�ne a bi-Hamiltonian
structure (H(0), H(d)) on V.

Proof. We can apply the same considerations we made in the proof of Theorem 3.10 to our case,
showing that the formal proof of Theorem 3.6 still works in this case. �

We denote the bi-Poisson vertex algebra we got by WN,d. By Proposition 3.8 we get that J =
〈u−N 〉V is a Poisson vertex algebra ideal for WN, 1

N
. We denote the quotient Poisson vertex algebra

ŴN
∼= WN, 1

N

/
J. Moreover, when N = ord(L) ∈ Z+, Theorem 3.14 applies to the operator H(L−c,d),

for c ∈ C. We denote the tri-Poisson vertex algebra we get by WN,c,d in particular we denote by

ŴN,c
∼= WN,c, 1

N

/
J. The fact that this quotient is a Poisson vertex algebra can be easily deduced from

Proposition 3.8.

The Poisson vertex algebra ŴN,c is is also an algebra of Gelfand-Dickey type, sometimes called
Gelfand-Dickey algebra of slN type. In the next chapter it will be shown that it is isomorphic to
Wz(slN , f, s), where f ∈ slN is principal nilpotent.

We want to realize WN,d as a quotient of the Poisson vertex algebra V
(N,∞)
d . As di�erential algebras,

WN
∼= V

(N,∞)
d

/
J+.

Proposition 3.15. J+ is a Poisson vertex algebra ideal in V
(N,∞)
d .

Proof. By Proposition 3.11 we know that J+ is a Poisson vertex algebra ideal for {·λ·}L. We need
to prove that it is also a Poisson vertex algebra ideal for {·λ·}d. We take the generating series for the
corresponding Hamiltonian operator, for i ∈ Z−+ and j ∈ Z, and get, using the de�niton and properties
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(Lemma A.1) of the formal δ-function

Res∂
([
L(∂), ∂−1(Res∂ [L(∂), δ(w, ∂) ◦ f ])

]
iz(z − ∂)−1

)
=

= Res∂
([
L(∂), ∂−1 (L(w)− L∗(∂ − w)) f

]
iz(z − ∂)−1

)
=

= Res∂
([
L−(∂), ∂−1 (L(w)− L∗(∂ − w)) f

]
iz(z − ∂)−1

)
,

where we used the fact that L+(∂) does not contribute to the residue, since iz(z − ∂)−1 has only non-
negative powers of ∂. Using (1.17) and the fact that L−(∂) ∈ J+[[∂−1]], it follows that {ujλui}d ∈ J+[λ],

for all i ∈ Z+ and j ∈ Z. Using Leibniz rule it can be shown that {V(N,∞)
d λ

J+}d ⊂ J+[λ]. By skew-

commutativity, also {J+λV
(N,∞)
d }d ⊂ J+[λ], thus concluding the proof. �

We obtain that the quotient space WN,d
∼= V

(N,∞)
d

/
〈J, J+〉 has an induced structure of bi-Poisson

vertex algebra. The induced λ-bracket on the quotient is given by Lemma 3.5 after imposing L−(∂) = 0,
thus coincides with the λ-bracket de�ned by the operator H(L,d)(∂) when L is a general di�erential

operator. Furthermore, by Proposition 3.8, ŴN,c
∼= V

(N,∞)

c, 1
N

/
〈J, J+〉 has an induced structure of bi-Poisson

vertex algebra.

3.5. Some examples

The Poisson vertex algebras ŴN have been some of the �rst explicit realizations of classical W-
algebras. We perform some computations of the λ-bracket on the generators.

spiegare meglio la relazione con le $\c W$-algebre...qua o nell'introduzione

3.5.1. N = 2: Virasoro-Magri and Gardner-Fadeev-Zakharov Poisson vertex algebras.

Let us consider the case N = 2. Performing an explicit computation of H(L−c, 1
N ). We get

{u−1λu−1}c = −(∂ + 2λ)u−1 −
1

2
λ3 + c(2λ).

If we set u = −u−1 and rescale c then u is the di�erential generator of a Gardner-Fadeev-Zakharov

Poisson vertex algebra with respect to the Hamiltonian structure H(L, 1
N ), while it generates a Virasoro-

Magri Poisson vertex algebra of central charge − 1
2 with respect to the Hamiltonian structure H(∞) (see

Examples 1.7 and 1.8).

3.5.2. ŴN is a Poisson vertex algebra of conformal �eld theory type. We get these values

of the λ-bracket on the generators of ŴN :

{u−N+1λu−N+1}0 = −(∂ + 2λ)u−N+1 −
(
N

3

)
λ3, (3.55)

{u−N+1λui}0 = − (∂ + (N + i+ 1)λ) + o(λ2), (3.56)

for −N + 2 ≤ i ≤ −1. If we set L = −u−N+1, by (3.55), this element spans a Virasoro-Magri Poisson

vertex subalgebra in ŴN of central charge
(
N
3

)
. Moreover, according to (3.56), for 3 ≤ k ≤ N , u−N−1−k

is a quasiprimary �eld of conformal weight k with respect to L. In [11] it is shown how to construct
w3, . . . , wN such that wk is a primary �eld of conformal weight k with respect to L and the di�erential
algebra generated by L,w3, . . . , wN is the same di�erential algebra generated by ui, for −N+1 ≤ i ≤ −1.

Hence, ŴN is a Poisson vertex algebra of conformal �eld theory type.

aggiungere la definizione di algebra di vertice di Poisson ti tipo conforme nel primo

capitolo o qua?

3.6. The Kupershmidt-Wilson theorem and the Miura map

In this section we want to give another proof of the following theorem due to Kupershmidt and
Wilson [20], that we restate according to our formalism.

Theorem 3.16 (Kupershmidt-Wilson Theorem). Let VN be an algebra of di�erential functions in the
variables vi, i ∈ {1, . . . , N} and make VN a Poisson vertex algebra de�ning {viλvj} = δijλ (see Example
1.7). Let V be an algebra of di�erential functions in the variables ui, i ∈ I = {−N, . . . ,−1}, L be the
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general di�erential operator attached to V and WN be the Poisson vertex algebra structure on V obtained
by H(L). We set

L =

N∑

k=0

u−k−1∂
k = (∂ + vN )(∂ + vN−1) · · · (∂ + v1). (3.57)

Comparing coe�cients of powers of ∂ in (3.57) gives a di�erential algebra inclusion

ϕ : WN ↪−→ VN . (3.58)

This map is a Poisson vertex algebra homomorphism.

The map ϕ is called Miura map (or Miura transformation [22]). It allows us to express each di�er-
ential variable ui as a di�erential polynomial in VN . The original proof given in [20] is very involved
and uses circulant matrices. A shorter proof can be found in [8].

We need the following result.

Lemma 3.17. Let VA (respectively VB) be an algebra of di�erential functions in the variables ai,
i ≥ −N (respectively bi, i ≥ −M). Using the generating series a(z) =

∑
i≥−N aiz

−i−1 and b(z) =∑
i≥−M biz

−i−1, we de�ne a λ-bracket, {·λ·}⊗ : VA ⊗ VB −→ (VA ⊗ VB)[λ] in the following way:

· {a(z)λa(w)}⊗ = {a(z)λa(w)}L + d{a(z)λa(w)}d;
· {b(z)λb(w)}⊗ = {b(z)λb(w)}L + d{b(z)λb(w)}d;
· {a(z)λb(w)}⊗ = d{a(z)λb(w)}d.

This λ-bracket de�nes a structure of Poisson vertex algebra on VA ⊗ VB which we denote by V
(N,∞)
d ⊗

V
(M,∞)
d with abuse of notation.

Proof. The λ-bracket we de�ned is clearly skew-commutative, since both λ-brackets {·λ·}L and
{·λλ}d are. ByTheorem 1.5 we are left to prove that Jacobi identity holds on any triple of generators of
VA⊗VB . We will do it on generatong series (see (3.14)). For the triples a(z), a(w), a(t) and b(z), b(w), b(t)
Jacobi identity holds by Theorems 3.3 and 3.6. For the remaining triples, after expanding Jacobi identity,
we can use the same computations of Theorem 3.6. After substituting in those computations the Laurent
series L(z), L(w) and L(t) with our triple, the same formal proof still works. �

Next, we start proving the following result.

Proposition 3.18. Let VA, VB and V
(N,∞)
d ⊗V(M,∞)

d as in the previous lemma. Denote by A (respectively
B) the pseudodi�erential operator of general type associated to VA (respectively VB). Let V be an algebra
of di�erential functions in the variables ui, with i ≥ −N−M , L be the general pseudodi�erential operator

attached to it and let V
(N+M,∞)
d be the Poisson vertex algebra structure de�ned by H(L,d). We set

L =
∑

k≤N+M

u−k−1∂
k = AB. (3.59)

Comparing coe�cients of powers of ∂ in (3.59) gives an inclusion of di�erential algebras

ϕ : V
(N+M,∞)
d ↪−→ V

(N,∞)
d ⊗ V

(M,∞)
d .

This map is a Poisson vertex algebra homomorphism.

Proof. We start computing ϕ(ui) for i ≥ −N −M . We have

AB =
∑

h≤N,k≤M
a−h−1∂

h ◦ b−k−1∂
k =

∑

h≤N,k≤M
α∈Z+

(
h

α

)
a−h−1b

(α)
−k−1∂

h+k−α =

=
∑

i≥−N−M−1




∑

h≤N
0≤α≤M+h+i+1

(
h

α

)
a−h−1b

(α)
h+i−α


 ∂−i−1,

from which we get, for i ≥ −N −M ,

ϕ(ui) =
∑

h≤N
0≤α≤M+h+i+1

(
h

α

)
a−h−1b

(α)
h+i−α. (3.60)
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Let L(z) =
∑
i≥−N−M−1 uiz

−i−1 be the symbol of the operator L(∂) and similarly for a(z) and b(z).

Using (3.60) we get the following equality

ϕ(L(z)) =
∑

i≥−N−M−1

ϕ(ui)z
−i−1 =

∑

i≥−N−M−1




∑

h≤N
0≤α≤M+h+i+1

(
h

α

)
a−h−1b

(α)
h+i−α


 z−i−1 =

=
∑

p≥−N−1
q≥−M−1
α∈Z+

(−p− 1

α

)
apz
−p−1−αb(α)

q z−q−1 =
∑

p≥−N−1
q≥−M−1

ap(z + ∂)−p−1bqz
−q−1 =

= a(z + ∂)b(z).

(3.61)

To conclude the proof, it su�ces to show that ϕ ({L(z)λL(w)}) = {ϕ(L(z))λϕ(L(w))}⊗. The proof
of this fact is straightforward. We have

{ϕ(L(z))λϕ(L(w))}⊗ = {a(z + ∂)b(z)λa(w + ∂)b(w)}⊗ =

= a(w + λ+ ∂)b(z)iz(z − w − λ− ∂)−1b(w)a∗(λ− z)−
− ϕ(L(z))iz(z − w − λ− ∂)−1ϕ(L(w))+

+ d (a(w + λ+ ∂)b(w)− ϕ(L(w))) (λ+ ∂)−1 (a∗(λ− z)− a(z + ∂)) b(z)+

+ d (a(w + λ+ ∂)b(w)− ϕ(L(w))) (λ+ ∂)−1 (b∗(λ+ ∂ − z)− b(z)) a∗(λ− z)+
+ d (ϕ(L(w + λ+ ∂))− a(w + λ+ ∂)b(w)) (λ+ ∂)−1 (a∗(λ− z)− a(z + ∂)) b(z)+

+ ϕ(L(w + λ+ ∂))iz(z − w − λ− ∂)−1ϕ(L∗(λ− z))−
− a(w + λ+ ∂)b(z)iz(z − w − λ− ∂)b(w)a∗(λ− z)+
+ d (ϕ(L(w + λ+ ∂))− a(w + λ+ ∂)b(w)) (λ+ ∂)−1 (b∗(λ+ ∂ − z)− b(z)) a∗(λ− z) =

= ϕ(L(w + λ+ ∂))iz(z − w − λ− ∂)−1ϕ(L∗(λ− z))− ϕ(L(z))iz(z − w − λ− ∂)−1ϕ(L(w))+

+ dϕ (L(w + λ+ ∂)− L(w)) (λ+ ∂)−1ϕ (L∗(λ− z)− L(z)) = ϕ ({L(z)λL(w)}) ,

where in the last but one equality we used the identity

ϕ(L∗(λ− z)− L(z)) = (a∗(λ− z)− a(z + ∂)) b(z) + (b∗(λ+ ∂ − z)− b(z)) a∗(λ− z).

�

Remark 3.19. We emphasize that, by repeated application, the proof of Proposition 3.18 extends to
the case of a multiple factorization L = L1L2 · · ·Lk, where ord(Li) = ni and ordL =

∑
ni.

Corollary 3.20. The same holds in the case of A and B general di�erential operators, that is, there is
a Poisson vertex algebra inclusion

WN+M,d ↪−→WN,d ⊗WM,d.

Proof. The same formal proof of Theorem 3.18 applies in this case. �

Remark 3.21. We want to give another proof of this corollary. By Proposition 3.15 we have WN+M,d
∼=

V
(N+M,∞)
d

/
J+. Furthermore, it follows easily by de�nition that WN,d ⊗WM,d

∼= V
(N,∞)
d ⊗ V

(M,∞)
d

/
J++,

where J++ = 〈ai, bj | i, j ∈ Z+〉V(N,∞)
d ⊗V(M,∞)

d

.

We have the following diagram of Poisson vertex algebra homomorphisms

V
(N+M,∞)
d

� � ϕ //

π1

����

V
(N,∞)
d ⊗ V

(M,∞)
d

π2

����
WN+M,d

// WN,d ⊗WM,d
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where kerπ1 = J+ and kerπ2 = J++. We have a Poisson vertex algebra homomorphism WN+M,d −→
WN,d ⊗WM,d if kerπ1 ⊂ kerϕ ◦ π2. This is the case. Indeed, if i ∈ Z+,

ϕ(ui) =
∑

h≤N
0≤α≤M+h+i+1

(
h

α

)
a−h−1b

(α)
h+i−α =

=
∑

h≤−1
0≤α≤M+h+i+1

(
h

α

)
a−h−1b

(α)
h+i−α +

∑

0≤h≤N
0≤α≤M+h+i+1

(
h

α

)
a−h−1b

(α)
h+i−α =

=
∑

h≤−1
0≤α≤M+h+i+1

(
h

α

)
a−h−1b

(α)
h+i−α +

∑

0≤h,α≤N

(
h

α

)
a−h−1b

(α)
h+i−α,

where in the second series we used the fact that M + h+ i+ 1 ≥ N , if 0 ≤ h ≤ N and that the binomial
coe�cient vanishes if α ≥ N . Thus, in the �rst sum indeces of variables ai are non-negative, while in the
second sum indeces of variables bi are non-negative, proving that ϕ(ui) ∈ J++. Since ui are di�erential

generators for V
(N+M,∞)
d we have also kerπ1 ⊃ kerϕ ◦ π2. Hence, the induced map is injective.

Corollary 3.22 (Theorem 3.16). The Kupershmidt-Wilson Theorem holds.

Proof. Remark 3.19 also applies to Corollary 3.20. Now, considering the structure obtained setting
d = 0, it su�ces to note that, if Li = ∂ + vi, the H

(L) Hamiltonian structure is given by {viλvi} = λ,
while {viλvj} = 0, for i 6= j, since d = 0. �

For the sake of completeness we should mention some facts about the Miura map and the Kupershmidt-
Wilson Theorem. In the literature, the aim of this theorem was to prove that the matrix di�erential
operator H(L)(∂) attached to a general di�erential operator L is Hamiltonian. Indeed, it is a known fact
that the operator H(Li)(∂) = ∂ is Hamiltonian and this is also true for the operator H(L1···LN )(∂) = ∂1N .
Kupershmidt-Wilson Theorem shows that WN is a closed subspace with respect to the λ-bracket induced
by H(L1···LN ). Hence it is a Poisson vertex subalgebra, that is Jacobi identity holds on any triple of dif-
ferential generators of WN . This gives an easy proof of Theorem 3.10 for H(L). However, we can not
apply the same argument in the case of a general pseudodi�erential operator, since we do not know such
a nice factorization as in the di�erential case (see (3.57)).

We can give some applications of Proposition 3.18

Corollary 3.23. Let us assume we are in the same setup of Proposition 3.18. If A and B are such that
the coe�cient of ∂N+M−1 in L vanishes, then we have a Poisson vertex algebra inclusion

V̂(N+M,∞) ↪−→ V
(N,∞)
d ⊗ V

(M,∞)
d

/
I,

where I = 〈a−N−1 + b−M−1〉VA⊗VB and d = 1
N+M .

Proof. By Proposition 3.18 we have the following Poisson vertex algebra homomorphism

ϕ : V
(N+M,∞)
d ↪−→ V

(N,∞)
d ⊗ V

(M,∞)
d .

For d = 1
N+M , by Proposition 3.8, V̂(N+M,∞) ∼= V

(N+M,∞)
d

/
J, where J = 〈u−N−M−1〉V(N+M,∞) . Further-

more, it is easy to prove (similar argument of proof of Proposition 3.8) that I is a Poisson vertex algebras
ideal. Since ϕ(u−N−M−1) = a−N−1 + b−M−1, we got an induced Poisson vertex algebra homomorphism

V̂(N+M,∞) ↪−→ V
(N,∞)
d ⊗ V

(M,∞)
d

/
I.

�

This proposition holds also in the case of A and B di�erential operators. Furthermore we can prove

the following result, a version of the Kupershmidt-Wilson Theorem for ŴN .

Corollary 3.24. Let VN be an algebra of di�erential functions in the variables vi, i ∈ {1, . . . , N} and
make VN a Poisson vertex algebra de�ning {viλvj} =

(
δij − 1

N

)
λ. We set

L =

N∑

k=0

u−k−1∂
k = (∂ + vN )(∂ + vN−1) · · · (∂ + v1). (3.62)

Let V to be an algebra of di�erential functions in these variables, L to be the general di�erential operator
attached to V and WN,d to be the Poisson vertex algebra structure on V obtained by H(L,d). If we assume
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∑N
i=1 vi = 0, then VN

/
I, where I = 〈∑ vi〉VN , is a Poisson vertex algebra and comparing coe�cients of

(3.62) gives a map

ϕ : ŴN ↪−→ VN
/
I. (3.63)

This map is a Poisson vertex algebra homomorphism.

Proof. By iterating Corollary 3.6 in the case of di�erential operators, we get a Poisson vertex
algebra homomorphism

WN , d ↪−→ VN , (3.64)

noting that, by an explicit computation of H(Li,d), where Li = ∂ + vi, gives {viλvj}⊗ = (δij − d)λ.
When d = 1

N , it follows immediatly that
∑
i vi is central for this λ-bracket, then I is a Poisson vertex

algebra ideal. Moreover, when d = 1
N , ŴN = WN,d

/
J, where J = 〈u−N 〉WN,d

is a Poisson vertex algebra
ideal. Since the image of u−N under (3.64) is

∑
i vi, we got the desired induced map (3.63). �

48



CHAPTER 4

Isomorphisms between classical W-algebras and Gelfand-Dickey

algebras

We will prove that the classical W-algebra Wz(gln, f, s), where f is a principal nilpotent element is
isomorphic to the Gelfand-Dickey algebra attached to a general di�erential operator of order n, which
we denoted by Wn, while the classical W-algebra Wz(sln, f, s), where, f is a principal nilpotent element

too, is isomorphic to Ŵn.

4.1. From �rst order matrix di�erential operators to n-th order pseudodi�erential

operators

We want to de�ne a map which assigns to gauge equivalent operators of the form (2.3) an operator
of the form (3.11). This map is due to [12]. The basic suggestion is that a linear di�erential equation of
order n is equivalent to a system of n �rst order di�erential equations.

Let us consider a general setting. Let B be a noncommutative ring with identity and F ∈ Mat(n,B)
of the following form

F =

(
α β
A γ

)
(4.1)

where A ∈ Mat(n − 1,B) is invertible, α ∈ Bn−1, γt ∈ Bn−1 and β ∈ B. Let denote by N the set of
upper triangular matrices in Mat(n,B) with ones on the diagonal.

Lemma 4.1. There exist S1, S2 ∈ N such that

Φ = S1FS2 =

(
0 ∆(F )

Ã 0

)
.

Moreover ∆(F ) does not depend on S1 and S2.

Proof. Since the matrixA is invertible there exist (x1, . . . , xn−1) ∈ Bn−1 such that (x1, . . . , xn−1)A =
α and (y1, . . . , yn−1) ∈ Bn−1 such that A(y1, . . . , yn−1)t = γ. Let Eij , 1 ≤ i, j ≤ n, denote the elementary
matrices of order n, then

(1n − x1E12 − . . .− xn−1E1n)A(1n − y1E2n − . . .− yn−1Enn) =

(
0 β − αA−1γ
A 0

)
.

Now suppose Φ1 = S1FS2 and Φ2 = S̃1FS̃2, then F = S−1
1 Φ1S

−1
2 = S̃−1

1 Φ2S̃
−1
2 . Therefore we are left

to show that if S1Φ1 = Φ2S2, with Si ∈ N , i = 1, 2, then ∆(Φ1) = ∆(Φ2). This is straightforward. We
have

S1Φ1 =




1 ∗ . . . ∗
0 1 . . . ∗
...

...
. . .

...
0 0 . . . 1




(
0 ∆(Φ1)
A1 0

)
=

(
∗ ∆(Φ1)
∗ 0

)

and

Φ2S2 =

(
0 ∆(Φ2)
A2 0

)



1 ∗ . . . ∗
0 1 . . . ∗
...

...
. . .

...
0 0 . . . 1


 =

(
0 ∆(Φ2)
∗ ∗

)
.

�
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Lemma 4.2. Let W be a left module over B, if

F




u1

u2

...
un


 =




v
0
...
0


 , (4.2)

where ui, v ∈W , then ∆(F )un = v.

Proof. Multiplying relation (4.2) by S1 on the left we get

S1F




u1

u2

...
un


 = S1




v
0
...
0


 =




v
0
...
0


 .

But we have also

S1F




u1

u2

...
un


 = S1FS2S

−1
2




u1

u2

...
un


 = Φ




u1 + . . .
u2 + . . .

...
un


 =

(
0 ∆(Φ)
A 0

)



u1 + . . .
u2 + . . .

...
un


 .

Then ∆(F )un = v. �

Suppose now there is an antiautomorphism ∗ : B −→ B such that (x∗)∗ = x, for any x ∈ B. For all
A = (aij) ∈ Mat(n,B) we de�ne AT = (aTij), where

aTij = a∗n−j+1n−i+1.

It is easy to verify that (A1A2)T = AT2 A
T
1 for any A1, A2 ∈ Mat(n,B).

Lemma 4.3. ∆(FT ) = ∆(F )∗.

Proof. Since Φ = S1FS2, then ΦT = ST2 F
TST1 . It follows that ∆(FT ) = ΦT1n = Φ∗1n = ∆(F )∗. �

Now we come back to the situation we are interested in. In our case B = V(gln)[∂, z], W =
V(gln)((z−1))n and ∗ is the formal adjoint, namely, ∂∗ = −∂ and p∗ = p, for any p ∈ V(gln)[z]. We want

to consider Λ(z) = f + zs =
∑n−1
k=1 Ek+1,k + zE1,n in (2.3). Furthermore, in (2.3), we have

q =
∑

1≤j≤i≤n
Eji ⊗ qij , (4.3)

where we assume qij to be the di�erential variables corresponding to Eij in V(gln).
We introduce the structure of B-module on W by means of the operator L as follows: if P =∑
pi∂

i ∈ V(gln)[∂, z] and η ∈ V(gln)((z−1))n, then

P · η =
∑

piL
i(η).

The axioms for a module are satis�ed, since [L , p] = p′, for p ∈ V(gln). We emphasize that ∂ · η =
L (η) 6= η′. In particular we can consider L as a matrix with coe�cients in B. If we set L0 = L − zs,
clearly L0 does not depend on z and is of the form (3.15f). We denote the elements of the standard
basis of W as a module over V(gln)((z−1)) by e1, . . . , en and recall that ψ = e1.

Proposition 4.4. Let L be an operator of the form (3.11) such that L · ψ = zψ, then L = −∆(L0)∗.

Proof. Since Λ(z)T = Λ(z), then L T = −∂ + qT + Λ(z). Moreover

L (ei) = qi1e1 + . . .+ qiiei + ei+1, i 6= n

L (en) = qn1e1 + . . .+ qnnen.
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Then we get

L T




en
en−1

...
e1


 = −




L (en)
L (en−1)

...
L (e1)


+ qT




en
en−1

...
e1


+




ze1

en
...
e2


 =

= − ((e1, . . . , en)q)
T −




ze1

en
...
e2


+ qT




en
en−1

...
e1


+




ze1

en
...
e2


 = 0,

since

((e1, . . . , en)q)
T

= qT




en
en−1

...
e1


 .

This means that

L T
0




en
en−1

...
e1


 = −




ze1

0
...
0


 .

By Lemma 4.2 it follows that −∆(L T
0 )ψ = zψ. Then L = −∆(L T

0 ) = −∆(L0)∗, by Lemma 4.3. �

Thus, we got the desired map L −→ L = −∆(L0)∗. By Lemma (4.1), under this map, to gauge
equivalent operators L corresponds the same operator L. Moreover, on the set of gauge equivalence
classes of operators L this map is bijective. Indeed, it is easy to see that we can choose

V =

n⊕

i=1

CEi,n

in Proposition 2.1. Then

qcan =

n∑

i=1

Ei,n ⊗ vi, vi ∈ V(b−).

Suppose now, L =
∑n
k=0 uk∂

k, with un = 1, then it easy to see, from relation L = −∆(L can
0 ), that

the coe�cients of the operator L can be expressed in terms of the coe�cients of the matrix qcan by the
formula ui = −vi+1, for i = 0, . . . , n− 1.

4.2. Wz(gln, f, s)
∼= Wn for f principal nilpotent

If we rename

qcan = −
n∑

i=1

Ei,n ⊗ u−i,

then we have the assignment

L can −→ L =

n∑

k=0

u−k−1∂
k,

with u−n−1 = 1 and ui = ui(q), for i ∈ I = {−n, . . . ,−1}. By Corollary 2.2, it follows that, as di�erential
algebras,

Wz(gln, f, s) = C[u
(m)
i | i ∈ I,m ∈ Z+] = Wn.

By gauge invariance, {ui(q)λuj(q)}z = {ui(q)λuj(q)}z|q=qcan = {uiλuj}z. If we prove that

{uiλuj}z = {uiλuj}c,
then W(gln, f, s)

∼= Wn as Poisson vertex algebras. In order to do that we should set z = c, but we keep
both in the notation to distinghuish the two structures.
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First, explicity computing the coe�cients of (3.54), we get, for all −n ≤ i, j ≤ −1,

{uiλuj}c =
∑

k,α,β∈Z+

i+k≤α≤n+i−k
j+k+1≤β≤n+j+k+1

(−1)β
(
i

α

)(
j + k

β

)
uj+k−β(λ+ ∂)α+βui−k−α−1−

−
∑

0≤α k≤n+i
j+k+1≤α≤n+j+k+1

(
k

α

)
ui−k−1(λ+ ∂)αuj+k−α+

(4.4a)

+ c

n+i+j+1∑

k=0

((
j

k

)
(−λ)k −

(
i

k

)
(λ+ ∂)k

)
ui+j−k. (4.4b)

Now we proceed computing {uiλuj}z. By formula (1.11), recalling the de�nition of q given in (4.3),
we hfave,for −n ≤ i, j ≤ −1,

{uiλuj}z =
∑

1≤l≤k≤n
1≤t≤s≤n
m,p∈Z+

∂uj

∂q
(p)
st

∣∣∣∣∣
q=qcan

(λ+ ∂)p {qklλ+∂qst}z→
∣∣
q=qcan

(−λ− ∂)m
∂ui

∂q
(m)
kl

∣∣∣∣∣
q=qcan

, (4.5)

where

{qklλqst}z|q=qcan = −δlsδknu−t + δtkδsnu−l + δlsδktλ+ z (δlsδknδ1t − δktδsnδ1l) , (4.6)

for all 1 ≤ l ≤ k ≤ n and 1 ≤ t ≤ s ≤ n. Our �rst goal will be to compute the partial derivatives of the
uk's and specialize them in the case q = qcan. We can write

ui = Res(L∂i),

for −n ≤ i ≤ −1. Then

∂ui

∂q
(m)
kl

=
∂

∂q
(m)
kl

Res
(
L∂i

)
= Res

(
∂

∂q
(m)
kl

(
L∂i

)
)
.

By Proposition 4.4, we can write

L = −∆(L)∗ = −
(
β − αA−1γ

)∗
= γ∗ (A∗)−1

α∗ − β∗.

Let us denote
(
γ∗ (A∗)−1

α∗ − β∗
)

(∂) = γ∗ (A∗)−1
α∗ − β∗, to remember it is a di�erential operator.

Thus we have

∂ui

∂q
(m)
kl

= Res

(
∂(γ∗(A∗)−1α∗ − β∗)

∂q
(m)
kl

(∂)∂i

)
.

We want to use Lemma 1.2 to perform the computation of the partial derivatives inside the residue. We
get, for any f ∈ V(gln),

∑

m∈Z+

zm
∂

∂q
(m)
kl

((
γ∗(A∗)−1α∗ − β∗

)
(∂)f

)
=
∑

m∈Z+

zm
∂(γ∗(A∗)−1α∗ − β∗)

∂q
(m)
kl

(∂)f+

+
(
γ∗(A∗)−1α∗ − β∗

)
(z + ∂)

∑

m∈Z+

zm
∂f

∂q
(m)
kl

.
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If we apply several times Lemma 1.2 to the left hand side we get, for any f ∈ V(gln),

∑

m∈Z+

zm
∂

∂q
(m)
kl

((
γ∗(A∗)−1α∗ − β∗

)
(∂)f

)
=
∑

m∈Z+

zm

[
∂γ∗

∂q
(m)
kl

(∂)
((

(A∗)−1α∗
)

(∂)f
)
− ∂β∗

∂q
(m)
kl

(∂)f

+γ∗(z + ∂)
∂

∂q
(m)
kl

((
(A∗)−1α∗

)
(∂)f

)
− β∗(z + ∂)

∂f

∂q
(m)
kl

]
=

=
∑

m∈Z+

zm

[
∂γ∗

∂q
(m)
kl

(∂)
((

(A∗)−1α∗
)

(∂)f
)
− ∂β∗

∂q
(m)
kl

(∂)f − β∗(z + ∂)
∂f

∂q
(m)
kl

+

+γ∗(z + ∂)
∂(A∗)−1

∂q
(m)
kl

(∂) (α∗(∂)f) + γ∗(A∗)−1(z + ∂)
∂

∂q
(m)
kl

(α∗(∂)f)

]
=

=
∑

m∈Z+

zm

[
∂γ∗

∂q
(m)
kl

(∂)
((

(A∗)−1α∗
)

(∂)f
)

+ γ∗(z + ∂)
∂(A∗)−1

∂q
(m)
kl

(∂) (α∗(∂)f) +

+γ∗(A∗)−1(z + ∂)
∂α∗

∂q
(m)
kl

(∂)f +
(
γ∗(A∗)−1α∗ − β∗

)
(z + ∂)

∂f

∂q
(m)
kl

− ∂β∗

∂q
(m)
kl

(∂)f

]
.

Equating and using the fact that these formulas hold for any f ∈ V(gln), it follows that

∑

m∈Z+

zm
∂(γ∗(A∗)−1α∗ − β∗)

∂q
(m)
kl

(∂) =
∑

m∈Z+

zm

[
∂γ∗

∂q
(m)
kl

(∂)
(
(A∗)−1α∗

)
(∂) + γ∗(z + ∂)

∂(A∗)−1

∂q
(m)
kl

(∂)α∗(∂)+

+γ∗(A∗)−1(z + ∂)
∂α∗

∂q
(m)
kl

(∂)− ∂β∗

∂q
(m)
kl

(∂)

]
.

(4.7)

Let us denote by vi the vector of order n− 1 with 1 at the i-th position and 0 elsewhere. Since

α = α(∂) = v1 ⊗ ∂ +

n−1∑

i=1

vi ⊗ qi1,

β = β(∂) = qn1,

γ = γ(∂) = vtn−1 ⊗ ∂ +

n−1∑

i=1

vti ⊗ qni+1,

A = A(∂) =

n−1∑

i=1

Eii ⊗ 1 +

n−2∑

i=1

Eii+1 ⊗ ∂ +
∑

1≤j<i≤n−1

Eji ⊗ qij+1

it follows that

α∗ = α∗(∂) = −vt1 ⊗ ∂ +

n−1∑

i=1

vti ⊗ qi1,

β∗ = β∗(∂) = qn1,

γ∗ = γ∗(∂) = −vn−1 ⊗ ∂ +

n−1∑

i=1

vi ⊗ qni+1,

A∗ = A∗(∂) =

n−1∑

i=1

Eii ⊗ 1−
n−2∑

i=1

Ei+1i ⊗ ∂ +
∑

1≤j<i≤n−1

Eij ⊗ qij+1.
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Then applying partial derivatives we get

∂α∗

∂q
(m)
kl

(∂) = δm0δk 6=nδl1v
t
k ⊗ 1

∂β∗

∂q
(m)
kl

(∂) = δm0δknδl1

∂γ∗

∂q
(m)
kl

(∂) = δm0δknδl 6=1vl−1 ⊗ 1

∂A∗

∂q
(m)
kl

(∂) = δm0δk 6=1,nδl 6=1,nEkl−1 ⊗ 1.

(4.8)

We are not interested in formula (4.7) itself, but in specializing it when q = qcan, namely we have to sub-
stitute qij = −δinu−j , for all 1 ≤ j ≤ iw ≤ n. In that case the corresponding operators α∗can, β

∗
can, γ

∗
can

and (A∗can)
−1

are

α∗can(∂) = −vt1 ⊗ ∂
β∗can(∂) = −u−1

γ∗can(∂) = −
(
vn−1 ⊗ ∂ +

n−1∑

i=1

vi ⊗ u−i−1

)

(A∗can)
−1

(∂) =
∑

1≤j≤i≤n−1

Eij ⊗ ∂i−j .

(4.9)

Thus we want to compute

∑

m∈Z+

zm
∂(γ∗(A∗)−1α∗ − β∗)

∂q
(m)
kl

(∂)

∣∣∣∣∣
q=qcan

=
∑

m∈Z+

zm

[
∂γ∗

∂q
(m)
kl

(∂)
(
(A∗can)−1α∗can

)
(∂)+

+γ∗can(z + ∂)
∂(A∗)−1

∂q
(m)
kl

(∂)α∗can(∂) + γ∗can(A∗can)−1(z + ∂)
∂α∗

∂q
(m)
kl

(∂)− ∂β∗

∂q
(m)
kl

(∂)

]
.

Let us compute these terms separately. We have

∂γ∗

∂q
(m)
kl

(∂)
(

(A∗can)
−1
α∗can

)
(∂) = −δm0δknδl 6=1

∑

1≤j≤i≤n−1

vl−1Eijv
t
1∂
i−j+1 = −δm0δknδl 6=1∂

l−1. (4.10)

For the second term we need to derive a useful formula to compute the partial derivatives of (A∗)−1(∂).
We start considering the trivial relation

∑

m∈Z+

zm
∂

∂u
(m)
i

(
A−1(∂)A(∂)f

)
=
∑

m∈Z+

zm
∂f

∂u
(m)
i

,

for f ∈ V(gln). Applying Lemma 1.2 twice to the left hand side we get, for any f ∈ V(gln),

∑

m∈Z+

zm
∂

∂u
(m)
i

(
A−1(∂)A(∂)f

)
=
∑

m∈Z+

zm
∂A−1

∂u
(m)
i

(∂) (A(∂)f) +A−1(z + ∂)
∑

m∈Z+

zm
∂

∂u
(m)
i

(A(∂)f) =

=
∑

m∈Z+

zm
∂A−1

∂u
(m)
i

(∂) (A(∂)f) +A−1(z + ∂)
∑

m∈Z+

zm
∂A

∂u
(m)
i

(∂)f +
∑

m∈Z+

zm
∂f

∂u
(m)
i

.

Hence, we have obtained the identity

∑

m∈Z+

zm
∂A−1

∂u
(m)
i

(∂) = −A−1(z + ∂)
∑

m∈Z+

∂A

∂u
(m)
i

(∂)A−1(∂). (4.11)
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We can continue the computation and get

γ∗can(z + ∂)
∂(A∗)−1

∂q
(m)
kl

(∂)α∗can(∂) = −
(
γ∗can (A∗can)

−1
)

(z + ∂)
∂A∗

∂q
(m)
kl

(
(A∗can)

−1
α∗can

)
(∂) =

= −δm0δk 6=1,nδl 6=1,n

∑

1≤i≤n−1
1≤h≤j≤n
1≤m≤p≤n

viEjhEkl−1Epmv
t
1u−i−1(z + ∂)j−h∂p−m+1−

− δm0δk 6=1,nδl 6=1,n

∑

1≤h≤j≤n
1≤m≤p≤n

vn−1EjhEkl−1Epmv
t
1u−i−1(z + ∂)j−h+1∂p−m+1 =

= −δm0δk 6=1,nδl 6=1,n

n−1∑

i=k

u−i−1(z + ∂)i−k∂l−1 − δm0δk 6=1,nδl 6=1,n(z + ∂)n−k∂l−1 =

= −δm0δk 6=1,nδl 6=1,n

n∑

i=k

u−i−1(z + ∂)i−k∂l−1,

(4.12)

where we have used formula (4.11) and the fact that u−n−1 = 1. The remaining term to compute is

γ∗can(A∗can)−1(z + ∂)
∂α∗

∂q
(m)
kl

(∂) = −δm0δk 6=nδl1
∑

1≤i≤n−1
1≤h≤j≤n−1

viEjhv
j
ku−i−1(z + ∂)j−h−

− δm0δk 6=nδl1
∑

1≤h≤j≤n−1

vn−1Ejhv
j
k(z + ∂)j−h+1 =

= −δm0δk 6=nδl1

n−1∑

i=k

u−i−1(z + ∂)i−k − δm0δk 6=nδl1(z + ∂)n−k =

= −δm0δk 6=nδl1

n∑

i=k

u−i−1(z + ∂)i−k.

(4.13)

By formulas (4.8), (4.10), (4.12) and (4.13) we get

∑

m∈Z+

zm
∂(γ∗(A∗)−1α∗ − β∗)

∂q
(m)
kl

(∂)

∣∣∣∣∣
q=qcan

=

= −δknδl 6=1∂
l−1 − δk 6=1,nδl 6=1,n

n∑

i=k

u−i−1(z + ∂)i−k∂l−1 − δk 6=nδl1
n∑

i=k

u−i−1(z + ∂)i−k − δknδl1 =

= − (δknδl 6=1 + δk 6=1,nδl 6=1,n + δk 6=nδl1 + δknδl1)

n∑

i=k

u−i−1(z + ∂)i−k∂l−1.

Since 1 ≤ l ≤ k ≤ n, only one term in the parenthesis survives for each pair (k, l), so we can forget about
those conditions on the indeces and write

∑

m∈Z+

zm
∂(γ∗(A∗)−1α∗ − β∗)

∂q
(m)
kl

(∂)

∣∣∣∣∣
q=qcan

= −
n∑

i=k

u−i−1(z + ∂)i−k∂l−1 = −
n−k∑

i=0

u−i−k−1(z + ∂)i∂l−1 =

= −
n−k∑

i=0

i∑

m=0

(
i

m

)
u−i−k−1∂

i+l−m−1zm = −
n−k∑

m=0

(
n−k∑

i=m

(
i

m

)
u−i−k−1∂

i+l−m−1

)
zm.

It follows that

∂(γ∗(A∗)−1α∗ − β∗)
∂q

(m)
kl

(∂) = −
n−k∑

i=m

(
i

m

)
u−i−k−1∂

i+l−m−1 =

= −
n−k−m∑

i=0

(
m+ i

m

)
u−i−m−k−1∂

i+l−1.

(4.14)
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Thanks to formula (4.14) we get

∂ui

∂q
(m)
kl

∣∣∣∣∣
q=qcan

= −Res

(
n−k−m∑

α=0

(
m+ α

m

)
u−α−m−k−1∂

α+l+i−1

)
=

= −δk+m−n≤l+i≤0

(
m− i− l

m

)
ui+l−m−k−1,

where, for 1 ≤ l ≤ k ≤ n, −n ≤ i ≤ −1 and m ∈ Z+, we set

δk+m−n≤l+i≤0 =

{
1, if k +m− n ≤ l + i ≤ 0,
0, otherwise,

The condition imposed by δ guarantees the contribution of the residue and the fact that uk = 0 for
k < −n. Now we can substitute in (4.5), using also (4.6) and perform the computation of the λ-bracket
in (4.5). We start computing the ∞-λ-bracket. It is

{uiλuj}∞ =
∑

1≤l≤k≤n
1≤t≤s≤n
m,p∈Z+

∂uj

∂q
(p)
st

∣∣∣∣∣
q=qcan

(λ+ ∂)p (δlsδknδ1t − δktδsnδ1l) (−λ− ∂)m
∂ui

∂q
(m)
kl

∣∣∣∣∣
q=qcan

=

=
∑

1≤l≤k≤n
1≤t≤s≤n

k+m−n≤l+i≤0
s+p−n≤t+j≤0

m,p∈Z+

(
m− l − i

m

)(
p− t− j

p

)
ut+j−p−s−1(λ+ ∂)pδlsδknδ1t(−λ− ∂)mul+i−m−k−1−

−
∑

1≤l≤k≤n
1≤t≤s≤n

k+m−n≤l+i≤0
s+p−n≤t+j≤0

m,p∈Z+

(
m− l − i

m

)(
p− t− j

p

)
ut+j−p−s−1(λ+ ∂)pδktδsnδ1l(−λ− ∂)mul+i−m−k−1 =

=

n+i+j+1∑

p=0

(
p− j − 1

p

)
ui+j−pλ

p −
n+i+j+1∑

m=0

(
m− i− 1

m

)
(−λ− ∂)mui+j−m =

=

n+i+j+1∑

l=0

((
j

l

)
ui+j−l(−λ)l −

(
i

l

)
(λ+ ∂)lui+j−l

)
.

This is the same expression of (4.4b). It remains to prove equality of the 0-λ-brackets. We split formula
(4.5) relative to the 0-λ-bracket into three terms. For the �rst we have

−
∑

1≤l≤k≤n
1≤t≤s≤n
m,p∈Z+

∂uj

∂q
(p)
st

∣∣∣∣∣
q=qcan

(λ+ ∂)p (δlsδknu−t) (−λ− ∂)m
∂ui

∂q
(m)
kl

∣∣∣∣∣
q=qcan

=

= −
∑

1≤l≤k≤n
1≤t≤s≤n

k+m−n≤l+i≤0
s+p−n≤t+j≤0

m,p∈Z+

(
m− l − i

m

)(
p− t− j

p

)
ut+j−p−s−1(λ+ ∂)pδlsδknu−t(−λ− ∂)mul+i−m−k−1 =

= −
∑

1≤t≤−i
p−i−n≤t+j

p∈Z+

(
p− t− j

p

)
ut+i+j−p−1(λ+ ∂)pu−t = −

∑

0≤α≤k≤n+i
k+j+1≤α≤k+j−i

(
k

α

)
ui−k−1(λ+ ∂)αuk+j−α.
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While for the second

∑

1≤l≤k≤n
1≤t≤s≤n
m,p∈Z+

∂uj

∂q
(p)
st

∣∣∣∣∣
q=qcan

(λ+ ∂)p (δtkδsnu−l) (−λ− ∂)m
∂ui

∂q
(m)
kl

∣∣∣∣∣
q=qcan

=

=
∑

1≤l≤k≤n
1≤t≤s≤n

k+m−n≤l+i≤0
s+p−n≤t+j≤0

m,p∈Z+

(
m− l − i

m

)(
p− t− j

p

)
ut+j−p−s−1(λ+ ∂)pδtkδsnu−l(−λ− ∂)mul+i−m−k−1 =

=
∑

1≤l≤−j
p−j−n≤l+i
m∈Z+

(
m− l − i

m

)
ul(−λ− ∂)mul+i+j−m−1 =

∑

0≤α≤k≤n+j
k+i+1≤α≤k+i−j

(
k

α

)
uk+i−α(−λ− ∂)αuj−k−1.

Finally, for the last term we have

∑

1≤l≤k≤n
1≤t≤s≤n
m,p∈Z+

∂uj

∂q
(p)
st

∣∣∣∣∣
q=qcan

(λ+ ∂)p (δlsδkt) (λ+ ∂)(−λ− ∂)m
∂ui

∂q
(m)
kl

∣∣∣∣∣
q=qcan

=

=
∑

1≤l≤k≤n
1≤t≤s≤n

k+m−n≤l+i≤0
s+p−n≤t+j≤0

m,p∈Z+

(
m− l − i

m

)(
p− t− j

p

)
ut+j−p−s−1(λ+ ∂)pδlsδkt(λ+ ∂)(−λ− ∂)mul+i−m−k−1 =

=
∑

1≤k≤min(−i,−j)
0≤m≤n+i
0≤p≤n+j

(−1)m
(
m− k − i

m

)(
p− k − j

p

)
uj−p−1(λ+ ∂)m+p+1ui−m−1.

Hence, we have obtained

{uiλuj}0 =
∑

0≤α≤k≤n+j
k+i+1≤α≤k+i−j

(
k

α

)
uk+i−α(−λ− ∂)αuj−k−1

−
∑

0≤α≤k≤n+i
k+j+1≤α≤k+j−i

(
k

α

)
ui−k−1(λ+ ∂)αuk+j−α+

+
∑

1≤k≤min(−i,−j)
0≤m≤n+i
0≤p≤n+j

(−1)m
(
m− k − i

m

)(
p− k − j

p

)
uj−p−1(λ+ ∂)m+p+1ui−m−1.

(4.15)

It is not so evident that this expression is eqivalent to (4.4a). Let us write (4.4a) as {uiλuj}c0 = A1−A2

and (4.15) as {uiλuj}z0 = B1 − B2 + B3 (the c and z index is to distinguish between 0-bracket of
Gelfand-Dickey algebras or of classical W-algebras obtained via classical Drinfeld-Sokolov Hamiltonian
reduction). We want to prove that

A1 −A2 = B1 −B2 +B3 (4.16)
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We can rewrite

A2 = B2 +
∑

0≤α≤k≤n+i
k+j−i+1≤α

(
k

α

)
ui−k−1(λ+ ∂)αuk+j−α =

= B2 +
∑

0≤m+p+1≤p+i−j
0≤m≤n+i
j≤p≤n+j

(
p+ i− j
m+ p+ 1

)
uj−p−1(λ+ ∂)m+p+1ui−m−1 =

= B2 +
∑

0≤m+p+1≤p+i−j
0≤m≤n+i
0≤p≤n+j

(
p+ i− j
m+ p+ 1

)
uj−p−1(λ+ ∂)m+p+1ui−m−1+

+
∑

0≤m+p+1≤p+i−j
0≤m≤n+i
j≤p≤−1

(
p+ i− j
m+ p+ 1

)
uj−p−1(λ+ ∂)m+p+1ui−m−1 = B2 +A′2 +A′′2 .

To prove equality (4.16) is then equivalent to prove the identity

B3 = A1 −A′2 −A′′2 −B1. (4.17)

It is convenient also to rewrite

B1 =
∑

0≤α≤k≤n+j
k+i+1≤α≤k+i−j

(
k

α

)
uk+i−α(−λ− ∂)αuj−k−1 =

=
∑

0≤m+p+1≤m+j−i
i≤m≤n+i
j≤p≤−1

(
m+ j − i
m+ p+ 1

)
uj−p−1(−λ− ∂)m+p+1ui−m−1 =

=
∑

0≤m+p+1≤m+j−i
i≤m≤n+i
j≤p≤−1

(
p+ i− j
m+ p+ 1

)
uj−p−1(λ+ ∂)m+p+1ui−m−1

and

A1 =
∑

k,α,β∈Z+

i−k≤α≤n+i−k
j+k+1≤β≤n+j+k+1

(−1)β
(
i

α

)(
j + k

β

)
uj+k−β(λ+ ∂)α+βui−k−α−1 =

=
∑

0≤k≤m≤n+i
j≤p≤n+j

(−1)k+p+1

(
i

m− k

)(
j + k

k + p+ 1

)
uj−p−1(λ+ ∂)m+p+1ui−m−1 =

=
∑

0≤k≤m≤n+i
j≤p≤−1

(
i

k

)(
p− j

m+ p+ 1− k

)
uj−p−1(λ+ ∂)m+p+1ui−m−1+

+
∑

0≤k≤m≤n+i
0≤p≤n+j

(
i

k

)(
p− j

m+ p+ 1− k

)
uj−p−1(λ+ ∂)m+p+1ui−m−1.
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Let us denote c(m, p) = uj−p−1(λ+ ∂)m+p+1ui−m−1 ad rewrite equation (4.17)as

∑

1≤k≤min(−i,−j)
0≤m≤n+i
0≤p≤n+j

(−1)m
(
m− k − i

m

)(
p− k − j

p

)
c(m, p) =

∑

0≤k≤m≤n+i
0≤p≤n+j

(
i

k

)(
p− j

m+ p+ 1− k

)
c(m, p)+

+
∑

0≤k≤m≤n+i
j≤p≤−1

(
i

k

)(
p− j

m+ p+ 1− k

)
c(m, p)−

∑

0≤m+p+1≤p+i−j
0≤m≤n+i
0≤p≤n+j

(
p+ i− j
m+ p+ 1

)
c(m, p)

+
∑

0≤m+p+1≤p+i−j
0≤m≤n+i
j≤p≤−1

(
p+ i− j
m+ p+ 1

)
c(m, p)−

∑

0≤m+p+1≤m+j−i
i≤m≤n+i
j≤p≤−1

(
p+ i− j
m+ p+ 1

)
c(m, p).

Then the proof is �nished if we prove the following two identities

min(−i,−j)∑

k=1

(−1)m
(
m− k − i

m

)(
p− k − j

p

)
=

=
∑

0≤k≤m

(
i

k

)(
p− j

m+ p+ 1− k

)
− δ0≤m+p+1≤p+i−j

(
p+ i− j
m+ p+ 1

) (4.18)

for 0 ≤ m ≤ n+ i, 0 ≤ p ≤ n+ j and

∑

0≤k≤m

(
i

k

)(
p− j

m+ p+ 1− k

)
= (δ0≤m+p+1≤p+i−j + δ0≤m+p+1≤m+j−i)

(
p+ i− j
m+ p+ 1

)
(4.19)

for 0 ≤ m ≤ n+ i, j ≤ p ≤ −1.
We note that the left hand side of (4.19) becomes

m+p+1∑

k=0

(
i

k

)(
p− j

m+ p+ 1− k

)
=

(
p+ i− j
m+ p+ 1

)
,

since the binomial coe�cient makes sense for k ≤ m + p + 1 and p + 1 ≤ 0, thus m + p + 1 ≤ m, and
we have used Lemma B.1. Then identity (4.19) is proved because in the right hand side the existence
conditions de�ned by δ are not contemporary satis�ed. Indeed, if p + i − j ∈ Z+, it follows that
m+ p+ 1 ≥ m+ j − i+ 1.

Let us prove now identity (4.18). Let a = min(−i,−j), we can rewrite (4.19) in this way

a∑

k=1

(
k + i− 1

m

)(
p− k − j

p

)
=

m∑

α=0

(
i

α

)(
p− j

p+m+ 1− α

)
− δm≤i−j−1

(
p+ i− j
m+ p+ 1

)
.

By Lemma B.2, the right hand side becomes

m∑

α=0

(
i

α

)(
p− j

p+m+ 1− α

)
− δm≤i−j−1

(
p+ i− j
m+ p+ 1

)
=

=

m∑

α=0

l∑

k=m+1−α

(
i

α

)(
k − 1

m− α

)(
p− j − k

p

)
+

m∑

α=0

m−α∑

h=0

(
l

h

)(
i

α

)(
p− j − l

m+ p+ 1− α− h

)
−

− δm≤i−j−1

(
p+ i− j
m+ p+ 1

)
=

l∑

k=1

(
m∑

α=0

(
i

α

)(
k − 1

m− α

))(
p− j − k

p

)
+

+
∑

0≤α≤t≤m

(
i

α

)(
l

t− α

)(
p− j − l

m+ p+ 1− t

)
− δm≤i−j−1

(
p+ i− j
m+ p+ 1

)
=

=

l∑

k=1

(
k + i− 1

m

)(
p+ j − k

p

)
+

m∑

t=0

(
i+ l

t

)(
p− j − l

m+ p+ 1− t

)
− δm≤i−j−1

(
p+ i− j
m+ p+ 1

)
.

If we choose l = a, then we are left to prove that

m∑

t=0

(
i+ a

t

)(
p− j − a

m+ p+ 1− t

)
= δm≤i−j−1

(
p+ i− j
m+ p+ 1

)
.
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If a = −j, then the right hand side is zero, while for the left hand side we have

m∑

t=0

(
i− j
t

)(
p

m+ p+ 1− t

)
= 0,

since m+ 1− t > 0 for all 0 ≤ t ≤ m, so the second binomial coe�cient in the product is zero. If a = −i
the right hand side is

m∑

t=0

(
0

t

)(
p+ i− j

m+ p+ 1− t

)
=

(
p+ i− j
m+ p+ 1

)

if and only if m ≤ i− j − 1, thus proving the identity and completing the proof.

4.3. Wz(sln, f, s) ∼= Ŵn for f principal nilpotent

Let sln = {a ∈ gln | tr(a) = 0} be the Lie algebra of traceless matrices and consider f =
∑n−1
i=1 Ei+1i

its principal nilpotent element. We �x the following basis of sln:

qii = Eii −
1

n
1n, 1 ≤ i ≤ n− 1,

qij = Eij , 1 ≤ i 6= j ≤ n.
(4.20)

The dual basis with respect to the trace form is

qii = Eii − Enn, 1 ≤ i ≤ n− 1,

qij = Eji, 1 ≤ i 6= j ≤ n.
(4.21)

This gives us the de�nition of q in (2.3). We �x s = E1n, then the λ-bracket (2.13) on the basis elements
is

{qklλqst}z = δlsqkt − δtkqsl + δlsδktλ− δklδst
λ

n
+ z(δlsδknδ1t − δktδsnδ1l), (4.22)

for all (k, l), (s, t) ∈ S = {(i, j) | 1 ≤ i, j ≤ n, (i, j) 6= (n, n)}.
As we did in the previous section we can choose V =

⊕n−1
i=1 CEin in Proposition 2.1 and, if we set

qcan = −
n−1∑

i=1

Ein ⊗ u−i,

then we have the assignment Lcan −→ L =
∑n
k=0 u−k−1∂

k, where u−n−1 = 1, u−n = 0 and ui = ui(q),
for i ∈ I = {−n+ 1, . . . ,−1}. By Corollary 2.2, it follows that, as di�erential algebras,

Wz(sln, f, s) = C[u
(m)
i | i ∈ I,m ∈ Z+] = Ŵn.

By gauge invariance, {ui(q)λuj(q)}z = {ui(q)λuj(q)}z|q=qcan = {uiλuj}z. We want to prove that

{uiλuj}z = {uiλuj}ĉ.
Expliting computing the coe�cients of the generating series for {·λ·}ĉ we get

{uiλuj}ĉ = {uiλuj}′c +
1

n

∑

1≤α≤n+i+1
1≤β≤n+j+1

(−1)β
(
i

α

)(
j

β

)
uj−β(λ+ ∂)α+β+1ui−α (4.23)

where {·λ·}′c has the same expression of (4.4) with the condition u−n = 0.
By formula (1.11), recalling that

q =
∑

(i,j)∈S−
qij ⊗ qij ,

where S− = S ∩ {(i, j) | 1 ≤ j ≤ i ≤ n}, we have

{uiλuj}z =
∑

(k,l),(s,t)∈S−
m.p∈Z+

∂uj

∂q
(p)
st

∣∣∣∣∣
q=qcan

(λ+ ∂)p {qklλ+∂qst}→
∣∣
q=qcan

(−λ− ∂)m
∂ui

∂q
(m)
kl

∣∣∣∣∣
q=qcan

, (4.24)

where {qklλqst}z is de�ned in (4.22).
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As done in the previous section we have to compute the partial derivatives of the uk's and specialize
them in the case q = qcan. In this case we have

α = α(∂) = v1 ⊗ ∂ +

n−1∑

i=1

vi ⊗ qi1,

β = β(∂) = qn1,

γ = γ(∂) = vtn−1 ⊗ ∂ −
n−1∑

i=1

vtn−1 ⊗ qii +

n−2∑

i=1

vti ⊗ qni+1,

A = A(∂) =

n−1∑

i=1

Eii ⊗ 1 +

n−2∑

i=1

Eii+1 ⊗ ∂ +
∑

1≤j<i≤n−1

Eji ⊗ qij+1

it follows that

α∗ = α∗(∂) = −vt1 ⊗ ∂ +

n−1∑

i=1

vti ⊗ qi1,

β∗ = β∗(∂) = qn1,

γ∗ = γ∗(∂) = −vn−1 ⊗ ∂ −
n−1∑

i=1

vn−1 ⊗ qii +

n−2∑

i=1

vi ⊗ qni+1,

A∗ = A∗(∂) =

n−1∑

i=1

Eii ⊗ 1−
n−2∑

i=1

Ei+1i ⊗ ∂ +
∑

1≤j<i≤n−1

Eij ⊗ qij+1.

Furthermore, since qcanij = −δinδj 6=nu−j , we have

α∗can(∂) = −vt1 ⊗ ∂
β∗can(∂) = −u−1

γ∗can(∂) = −
(
vn−1 ⊗ ∂ +

n−2∑

i=1

vi ⊗ u−i−1

)

(A∗can)
−1

(∂) =
∑

1≤j≤i≤n−1

Eij ⊗ ∂i−j .

(4.25)

Now, we compute the partial derivatives. They are

∂α∗

∂q
(m)
kl

(∂) = δm0δk 6=nδl1v
t
k ⊗ 1

∂β∗

∂q
(m)
kl

(∂) = δm0δknδl1

∂γ∗

∂q
(m)
kl

(∂) = −δm0δklvn−1 ⊗ 1 + δm0δknδl 6=1,nvl−1 ⊗ 1

∂A∗

∂q
(m)
kl

(∂) = δm0δk 6=1,nδl 6=1,nEkl−1 ⊗ 1.

(4.26)

It is a straightforward computation, using the same strategy of the previous section, to derive

∂γ∗

∂q
(m)
kl

(∂)
(

(A∗can)
−1
α∗can

)
(∂) = δm0δkl∂

n−1 − δm0δknδl 6=1,n,

γ∗can(z + ∂)
∂(A∗)−1

∂q
(m)
kl

(∂)α∗can(∂) = −δm0δk 6=1,nδl 6=1,n

n∑

i=k

u−1−1(z + ∂)i−k∂l−1,

γ∗can(A∗can)−1(z + ∂)
∂α∗

∂q
(m)
kl

(∂) = −δm0δl1δk 6=n

n∑

i=k

u−i−1(z + ∂)i−k,
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where we should remember u−n = 0 and u−n−1 = 1. Using these identities we get

∂(γ∗(A∗)−1α∗ − β∗)
∂q

(m)
kl

(∂)

∣∣∣∣∣
q=qcan

= δm0δkl∂
n−1 −

n−k∑

i=m

(
i

m

)
u−i−k−1∂

i+l−m−1 =

= δm0δkl∂
n−1 −

n−k−m∑

i=0

(
m+ i

m

)
u−i−m−k−1∂

i+l−1.

(4.27)

By (4.27), for i ∈ I, we have
∂ui

∂q
(m)
kl

∣∣∣∣∣
q=qcan

= Res

(
δm0δkl∂

n+i−1 −
n−k−m∑

α=0

(
m+ α

m

)
u−α−m−k−1∂

α+l+i−1

)
=

= −δk+m−n≤l+i≤0

(
m− i− l

m

)
ui+l−m−k−1.

We should put this expression in (4.24). Looking at (4.22) it follows that we get exactly the same expres-
sion of (4.4) under the condition u−n = 0, which we denoted {·λ·}′c, plus another term corresponding to
1
n{·λ·}n that we are going to compute. It is

− 1

n

∑

1≤h≤n−1
1≤r≤n−1
m,p∈Z+

h+p−n≤h+i≤0
r+m−n≤r+j≤0

(
p− h− i

p

)(
m− r − j

m

)
uj−m−1(λ+ ∂)m+1(−λ− ∂)pui−p−1 =

= − 1

n

∑

1≤h≤−i
1≤r≤−j

0≤m≤n+j
0≤p≤n+i

(−1)p
(
p− h− i

p

)(
m− r − j

m

)
uj−m−1(λ+ ∂)m+p+1ui−p−1.

(4.28)

If we use Lemma B.2 with j = 0 we obtain

l∑

h=1

(
p− h− i

p

)
+

(
p+ i− l
p+ 1

)
=

(
p− i
p+ 1

)
,

for all l ≥ 1. We can choose l = −i and get

−i∑

h=1

(
p− h− i

p

)
=

(
p− i
p+ 1

)
= (−1)p+1

(
i

p+ 1

)
.

In a similar way we get

−j∑

h=1

(
m− r − j

m

)
=

(
m− j
m+ 1

)
= (−1)m+1

(
j

m+ 1

)
.

Hence, after rescaling p and m, we obtain

(4.28) =
1

n

∑

1≤m≤n+j+1
1≤p≤n+i+1

(−1)m
(
i

p

)(
j

m

)
uj−m(λ+ ∂)m+p−1ui−p,

which coincide with the other term appearing in (4.23), thus proving the desired equality.
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CHAPTER 5

Integrable hierarchies for classical W-algebras

5.1. The homogeneuos case: integrable hierarchies for a�ne Poisson vertex algebras

Let us consider Vz(g, s) to be the a�ne Poisson vertex algebra associated to the triple (g, (· | ·), s)
(see Example 1.6 and Section 2.2), where g is a reductive �nite dimensional Lie algebra, (· | ·) is a
non-degenerate symmetric invariant bilinear form on it and s ∈ g. We remind that the λ-bracket on
Vz(g, s) is de�ned by (2.13), namely, for a, b ∈ g, it is

{aλb}z = [a, b] + (a | b)λ+ z(s | [a, b])
and we extend it to a λ-bracket on Vz(g, s) using (1.11).

Let {ui}i∈I ⊂ g, where I = {1, 2, . . . , n = dim g}, be a basis of g, then, as di�erential algebras

Vz(g, s) = C[u
(m)
i | i ∈ I,m ∈ Z+]. We write the λ-bracket on Vz(g, s) as {·λ·}z = {·λ·}H−z{·λ·}K , where

H(∂), respectively K(∂), is the Hamiltonian operator corresponding to {uiλuj}H = [ui, uj ] + (ui | uj)λ,
respectively {uiλuj}K = −(s | [ui, uj ]), by (1.17). Hence,

Hij(∂) = [uj , ui] + (ui | uj)∂ and Kij(∂) = −(s | [uj , ui]), (5.1)

for all i, j ∈ I.
We endow the space g⊗Vz(g, s) a Lie algebra structure de�ning [a⊗f, b⊗g] = [a, b]⊗fg ∈ g⊗Vz(g, s),

for any a, b ∈ g and f, g ∈ Vz(g, s). Moreover, we can extend the bilinear form on g to a bilinear form
on g⊗ Vz(g, s), that we still denote (· | ·), by (a⊗ f | b⊗ g) = (a | b)fg ∈ Vz(g, s), for any a, b ∈ g and
f, g ∈ Vz(g, s). Also the extended bilinear form is non-degenerate symmetric and invariant.

Let ∂ be the derivation of Vz(g, s), we de�ne an action of the abelian Lie algebra C∂ on g⊗Vz(g, s)
by

∂.(a⊗ f) = a⊗ ∂f, (5.2)

for any a ∈ g and f ∈ Vz(g, s). Clearly, ∂ acts as a derivation of g ⊗ Vz(g, s). Indeed, since it is a
derivation of Vz(g, s), we have

∂.[a⊗ f, b⊗ g] = ∂.([a, b]⊗ fg) = [a, b]⊗ ∂(fg) = [a, b]⊗ (∂f)g + [a, b]⊗ f(∂g) =

= [a⊗ ∂f, b⊗ g] + [a⊗ f, b⊗ ∂g] = [∂.(a⊗ f), b⊗ g] + [a⊗ f, ∂.(b⊗ g)],

for any a, b ∈ g and f, g ∈ Vz(g, s). Thus we can de�ne the semidirect product Lie algebra C∂ n (g ⊗
Vz(g, s)), where the commutator of ∂ against elements of g⊗ Vz(g, s) is de�ned by

[∂, a⊗ f ] = ∂.(a⊗ f) = a⊗ ∂f,
for any a ∈ g and f ∈ Vz(g, s). We set g̃ = (C∂ n g⊗ Vz(g, s))((z

−1)).
Given U(z) ∈ z−1(g ⊗ Vz(g, s))[[z

−1]], the map eadU(z) : g̃ −→ g̃ is a Lie algebra automorphism.
Indeed, it is a well de�ned map since it does not increase the order of powers of z and, moreover, using
the fact that the adjoint action is a derivation, we have, for A(z), B(z) ∈ g̃,

(adU(z))k([A(z), B(z)]) =

k∑

i=0

(
k

i

)[
(adU(z))i(A(z)), (adU(z))k−i(B(z))

]
, (5.3)

then we get

eadU(z)([A(z), B(z)]) =
∑

k∈Z+

(adU(z))k

k!
([A(z), B(z)]) =

=
∑

k∈Z+

k∑

i=0

1

i!(k − i)!
[
(adU(z))i(A(z)), (adU(z))k−i(B(z))

]
=

=
∑

k,i∈Z+

[
(adU(z))i

i!
(A(z)),

(adU(z))k

k!
(B(z))

]
=
[
eadU(z)(A(z)), eadU(z)(B(z))

]
,
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for any A(z), B(z) ∈ g̃, thus proving that eadU(z) is a Lie algebra homomorphism. Clearly, its inverse
is given by e− adU(z). By Campbell-Hausdor� formula [23], it follows that automorphisms of this type
form a group.

Let {ui}i∈I ⊂ g be the dual basis with respect to the bilinear form (· | ·). We consider the following
identi�cations

Vz(g, s)
⊕I ∼−→ g⊗ Vz(g, s)

F = (Fi)i∈I −→ F =
∑

i∈I
ui ⊗ Fi (5.4)

and

Vz(g, s)
I ∼−→ g⊗ Vz(g, s)

P = (Pi)i∈I −→ P =
∑

i∈I
ui ⊗ Pi. (5.5)

We can de�ne a pairing (·, ·) : g ⊗ Vz(g, s) × g ⊗ Vz(g, s) −→ Vz(g, s)
/
∂Vz(g, s), using the bilinear form

on g⊗ Vz(g, s), by

(a⊗ f, b⊗ g) =

∫
(a⊗ f | b⊗ g) =

∫
(a | b)fg,

for any a, b ∈ g and f, g ∈ Vz(g, s). Using integration by parts and (5.2), we have (∂.(a ⊗ f), b ⊗ g) =
−(a⊗ f, ∂.(b⊗ g)). By identi�cations (5.4) and (5.5), we note that

(F , P ) =

∫
(F | P ) =

∫ ∑

i,j∈I
(ui | uj)FiPj =

∫ ∑

i∈I
FiPi, (5.6)

which coincides with (1.3). Thus, if f ∈ Vz(g, s), then, using (5.4), its variational derivative is identi�ed
with

δf

δu
=

n∑

i=1

ui ⊗
δf

δui
∈ g⊗ Vz(g, s).

In the sequel, when it is clear from the contest, we will denote this element simply by δf
δu .

We set u =
∑
i∈I u

i ⊗ ui ∈ g⊗ Vz(g, s) and de�ne

L(z) = ∂ + u+ zs⊗ 1 ∈ g̃.

Proposition 5.1. If F = (Fi)i∈I ∈ Vz(g, s)
⊕I , then

(H(∂)− zK(∂))F = [L(z), F ].

Proof. By (5.5), we have

(H(∂)− zK(∂))F =
∑

i∈I
ui ⊗ ((H(∂)− zK(∂))F )i .

On the other hand, given an element A ∈ g ⊗ Vz(g, s) we can write it uniquely as A =
∑
i∈I u

i ⊗ (A |
ui ⊗ 1). Indeed, since {ui}i∈I is a basis of g, we can write A =

∑
i∈I u

i ⊗ ci, with ci ∈ Vz(g, s). Then

(A | ui ⊗ 1) =
∑
j∈I(u

j ⊗ cj | ui ⊗ 1) =
∑
j∈I(u

j | ui)cj = ci. It follows that the proposition is proved if
we show that

((H(∂)− zK(∂))F )i = ([L(z), F ] | ui ⊗ 1) . (5.7)

Using (5.1), the left hand side of (5.7) is

((H(∂)− zK(∂))F )i =
∑

j∈I
(Hij(∂)− zKij(∂))Fj =

∑

j∈I

(
(ui | uj)F ′j + [uj , ui]Fj + z(s | [uj , ui])Fj

)
.

On the other hand we have

[L(z), F ] =
∑

j∈I
[∂ + u+ zs⊗ 1, uj ⊗ Fj ] =

∑

j∈I

(
uj ⊗ F ′j +

∑

k∈I
[uk, uj ]⊗ ukFj + z[s, uj ]⊗ Fj

)
.

Taking the scalar product of this term with ui ⊗ 1 gives the right hand side of (5.7). We get

([L(z), F ] | ui ⊗ 1) =
∑

j∈I

(
(uj | ui)F ′j +

∑

k∈I
([uk, uj ] | ui)ukFj + z([s, uj ] | ui)Fj

)
.
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Using the invariance of the bilinear form we have
∑
k∈I([u

k, uj ] | ui)uk =
∑
k∈I(u

k | [uj , ui])uk = [uj , ui]
and ([s, uj ] | ui) = (s | [uj , ui]) and by symmetry, (ui | uj) = (uj | ui), proving that left hand side and
right hand side of (5.7) are equal. �

Let us assume s ∈ g be a semisimple element with nontrivial adjoint action and denote by h = ker ad s.
Then,

g = h⊕ im ad s. (5.8)

Moreover, im ad s = h⊥. Indeed, by invariance of the bilinear form, im ad s ⊂ h⊥. On the other hand,
if b ∈ g is such that (a | b) = 0 for all a ∈ h and we write b = bh + b′, with b′ ∈ im ad s, then, since
im ad s ⊂ h⊥, we have (a | bh) = 0. This forces bh = 0, since the bilinear form is non-degenerate and
proves the equality.

According to the discussion in Section 1.3, to �nd an integrable hierarchy of equations du
dtk

=

{
∫
fk, u}H and the associated in�nite sequence of integrals of motions

∫
fk, k ∈ Z+, we need to �nd an

in�nite (H,K)-sequence {Fn}n∈Z+
⊂ Vz(g, s)

⊗I and prove that each Fn is exact. This means that we

need to solve two problems. First, we need to �nd F (z) ∈ Vz(g, s)
⊗I [[z−1]] such that (1.22) holds. Then,

we need to �nd
∫
f(z) ∈

(
Vz(g, s)

/
∂Vz(g, s)

)
[[z−1]] such that F (z) = δf(z)

δu .

By identi�cations (5.4), (5.5) and Proposition 5.1, the �rst problem is equivalent to �nd F (z) ∈
(g⊗ Vz(g, s)) [[z−1]] such that [L(z), F (z)] = 0 and [s⊗1, F0] = 0, namely F0 ∈ h⊗Vz(g, s). The explicit
descripition of all series commuting with L(z) is given by the following proposition due to Drinfeld and
Sokolov ([12, Proposition 4.1]).

Proposition 5.2. There exists a formal series U(z) ∈ z−1 (g⊗ Vz(g, s)) [[z−1]] such that

L0(z) = eadU(z)(L(z)) = ∂ + zs⊗ 1 + h(z), (5.9)

with h(z) ∈ (h⊗ Vz(g, s)) [[z−1]]. The automorphism eadU(z) is de�ned uniquely up to multiplication on

the left by automorphisms of the form eadS(z), where S(z) ∈ z−1 (h⊗ Vz(g, s)) [[z−1]] and it is possible
to choose U(z) uniquely if we require U(z) ∈ z−1

(
h⊥ ⊗ Vz(g, s)

)
[[z−1]].

Proof. Writing U(z) =
∑
i≥1 Uiz

−i, with Ui ∈ g⊗Vz(g, s), and equating coe�cients of z−i in both

sides of (5.9), we �nd that hi+[s⊗1, Ui+1] can be expressed in terms of U1, U2, . . . , Ui and h0, h1, . . . , hi−1.
For example, equating the costant term in (5.9) gives the relation h0 + [s ⊗ 1, U1] = u, while, equating
the coe�cients of z−1, gives the relation h1 + [s ⊗ 1, U2] = −U ′1 + [U1, u] + 1

2 [U1, [U1, s ⊗ 1]] and so on.
Let say hi + [s ⊗ 1, Ui+1] = A ∈ g ⊗ Vz(g, s), where, as already pointed out, we explicitly know A. By
(5.8), we can write in a unique way A = Ah + Ah⊥ , where Ah ∈ h ⊗ Vz(g, s) and Ah⊥ ∈ h⊥ ⊗ Vz(g, s).

Hence, we get hi = Ah and Ui+1 = (ad(s ⊗ 1))−1(Ah⊥). Since the restriction of ad s to h⊥ is an

isomorphism, we can determime uniquely Ui+1 ∈ h⊥ ⊗ Vz(g, s). Therefore, we can uniquely determine
h(z) ∈ (h⊗ Vz(g, s))[[z

−1]] and U(z) ∈ z−1(h⊥ ⊗ Vz(g, s))[[z
−1]].

Let Ũ(z) ∈ z−1(g ⊗ Vz(g, s))[[z
−1]] be such that ead Ũ(z)(L(z)) = L̃0(z), where L̃0(z) is of the

same type of (5.9), namely, L̃0(z) = ∂ + zs ⊗ 1 + h̃(z), with h̃(z) ∈ (h ⊗ Vz(g, s))[[z
−1]]. Since these

automorphisms form a group, there exists S(z) ∈ z−1(g ⊗ Vz(g, s))[[z
−1]] such taht ead Ũ(z)e− adU(z) =

eadS(z). Equating coe�cients of powers of z−i in the expression eadS(z)(L0(z)) = L̃0(z), we have that

S(z) ∈ (h ⊗ Vz(g, s))[[z
−1]], since both coe�cients of L0(z) and L̃0(z) lie in (h ⊗ Vz(g, s))[[z

−1]] and
[s⊗ 1, h⊥] ⊂ h⊥. �

Let a ∈ Z(h) = {a ∈ h | [a, b] = 0, for all b ∈ h} (note that Z(h) 6= (0), since s ∈ Z(h)), but a /∈ Z(g),
and set F (z) = e− adU(z)(a⊗ 1), where U(z) is the same as in Proposition 5.9. F (z) does not depend on

the choice of U(z). Indeed, by Proposition 5.2, if we choose another series Ũ(z) such that (5.9) holds,

then F̃ (z) = e− ad Ũ(z)(a⊗ 1) = e− adU(z)e− adS(z)(a⊗ 1) = eadU(z)(a⊗ 1) = F (z), since a ∈ Z(h).
Since e− adU(z) is an automorphism for g̃ and a ⊗ 1 commutes with L0(z), we get, as desired,

[L(z), F (z)] = e− adU(z) ([L0(z), a⊗ 1]) = 0. Moreover, F0 = a⊗ 1 ∈ h⊗ Vz(g, s).

Finally, we set
∫
f(z) =

∫
(a⊗ 1 | h(z)) ∈

(
V(g)

/
∂Vz(g, s)

)
[[z−1]].

Proposition 5.3. We have

δf(z)

δu
= e− adU(z)(a⊗ 1) = F (z). (5.10)
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Proof. We recall that, by (5.4),

δf(z)

δu
=
∑

i∈I
ui ⊗

δf(z)

δui
∈ (g⊗ Vz(g, s))[[z

−1]],

where δf(z)
δui

=
∑
m∈Z+

(−∂)m ∂f(z)

∂u
(m)
i

, for all i ∈ I. We start computing the partial derivatives. First we

note that we can extend in a natural way the partial derivatives ∂

∂u
(m)
i

of Vz(g, s) to linear maps, which

by abuse of notation we denote in the same way, ∂

∂u
(m)
i

: g⊗ Vz(g, s) −→ g⊗ Vz(g, s) by

∂

∂u
(m)
i

(a⊗ f) = a⊗ ∂f

∂u
(m)
i

,

for all a ∈ g, f ∈ Vz(g, s) and i ∈ I, m ∈ Z+. These linear maps are still derivations. Furthermore, we
can extend them to the whole g̃, de�ning ∂

∂u
(m)
i

(∂) = 0.

We have, for all i ∈ I and m ∈ Z+,

∂f(z)

∂u
(m)
i

=
∂

∂u
(m)
i

(a⊗ 1 | h(z)) =

(
a⊗ 1

∣∣∣∣∣
∂h(z)

∂u
(m)
i

)
,

since partial derivatives act as derivations of the bilinear form (indeed they act only on the right term
in the tensor product g⊗ Vz(g, s)). By (5.9), we can write h(z) = eadU(z)(L(z))− ∂ − zs⊗ 1. Hence,

∂h(z)

∂u
(m)
i

=
∂eadU(z)(L(z))

∂u
(m)
i

=
∂

∂u
(m)
i


∑

k∈Z+

(adU(z))k

k!
(L(z))


 =

=
∂L(z)

∂u
(m)
i

+
∂

∂u
(m)
i


∑

k≥1

(adU(z))k

k!
(L(z))


 .

(5.11)

We note that

∂L(z)

∂u
(m)
i

=
∂u

∂u
(m)
i

=
∑

j∈I

∂

∂u
(m)
i

(uj ⊗ uj) =
∑

j∈I
uj ⊗ ∂uj

∂u
(m)
i

= δm0u
i ⊗ 1. (5.12)

Furthermore, let us write L(z) = ∂ +A(z), where A(z) = u+ zs⊗ 1, then we can write

∂

∂u
(m)
i


∑

k≥1

(adU(z))k

k!
(L(z))


 =

∂

∂u
(m)
i


∑

k≥1

(adU(z))k

k!
(∂)


+

∂

∂u
(m)
i


∑

k≥1

(adU(z))k

k!
(A(z))


 .

Since partial derivatives act only on the right of the tensor product g⊗ Vz(g, s), they are derivations of
the Lie bracket on g⊗ Vz(g, s). Hence,

∂

∂u
(m)
i


∑

k≥1

(adU(z))k

k!
(A(z))


 =

∑

k≥1

k−1∑

i=0

1

k!
(adU(z))i

∂ adU(z)

∂u
(m)
i

(adU(z))k−i−1(L(z))

+
∑

k≥1

(adU(z))k

k!

(
∂A(z)

∂u
(m)
i

)
=

=
∑

k≥1

k−1∑

i=0

1

k!
(adU(z))i

∂ adU(z)

∂u
(m)
i

(adU(z))k−i−1(L(z)) +
∑

k≥1

(adU(z))k

k!
(δm,0u

i ⊗ 1), (5.13)

where ∂A(z)

∂u
(m)
i

= δm0u
i ⊗ 1 by (5.12).

We claim that

∂

∂u
(m)
i

(adU(z))k(∂) =

k−1∑

i=0

(adU(z))i
∂ adU(z)

∂u
(m)
i

(adU(z))k−i−1(∂)− (adU(z))k−1

(
∂U(z)

∂u
(m−1)
i

)
, (5.14)

for any k ≥ 1. We prove formula (5.14) by induction on k. For k = 1, using (1.1), we have

∂

∂u
(m)
i

[U(z), ∂] = − ∂

∂u
(m)
i

(∂U(z)) = −∂
(
∂U(z)

∂u
(m)
i

)
− ∂U(z)

∂u
(m−1)
i

= ad

(
∂U(z)

∂u
(m)
i

)
− ∂U(z)

∂u
(m−1)
i

.
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Let us assume that (5.14) holds for k > 1 and prove it for k + 1. We have, using the fact that partial
derivatives are derivations for the Lie bracket in g⊗ Vz(g, s) and inductive assumption,

∂

∂u
(m)
i

(adU(z))k+1(∂) =
∂

∂u
(m)
i

[U(z), adU(z)k(∂)] =

[
∂U(z)

∂u
(m)
i

, (adU(z))k(∂)

]

+

[
U(z),

∂

∂u
(m)
i

(adU(z))k(∂)

]
= ad

∂U(z)

∂u
(m)
i

(adU(z))k(∂)

+ adU(z)

k−1∑

i=0

(adU(z))i
∂ adU(z)

∂u
(m)
i

(adU(z))k−i−1(∂)− (adU(z))k

(
∂U(z)

∂u
(m−1)
i

)
=

k∑

i=0

(adU(z))i
∂ adU(z)

∂u
(m)
i

(adU(z))k−i(∂)− (adU(z))k

(
∂U(z)

∂u
(m−1)
i

)
.

We can substitute (5.13) and (5.14) in (5.12) and get

∂h(z)

∂u
(m)
i

=
∑

k≥1

k−1∑

i=0

1

k!
(adU(z))i ad

∂U(z)

∂u
(m)
i

(adU(z))k−i−1(L(z))−
∑

k∈Z+

(adU(z))k

(k + 1)!

(
∂U(z)

∂u
(m−1)
i

)

+ δm0e
adU(z)(ui ⊗ 1).

We set

Ai,m(z) =
∑

k∈Z+

(adU(z))k

(k + 1)!

(
∂U(z)

∂u
(m)
i

)
,

for any i ∈ I and m ∈ Z+, then we can rewrite

∂h(z)

∂u
(m)
i

= [Ai,m(z), L0(z)] + δm0e
adU(z)(ui ⊗ 1)−Ai,m−1(z). (5.15)

Indeed,

∑

0≤i≤k

1

(k + 1)!
(adU(z))i

(
ad

∂U(z)

∂u
(m)
i

)
(adU(z))k−i(L(z)) =

=
∑

h,i∈Z+

1

(h+ i+ 1)!
(adU(z))i

(
ad

∂U(z)

∂u
(m)
i

)
(adU(z))h(L(z)) =

=
∑

h,i∈Z+

1

(h+ i+ 1)!
(adU(z))

[
∂U(z)

∂u
(m)
i

, (adU(z))h(L(z))

]
.

Using (5.3), we rewrite the above expression as

∑

h∈Z+

0≤k≤i

(
i

k

)
1

(h+ i+ 1)!

[
(adU(z))k

(
∂U(z)

∂u
(m)
i

)
, (adU(z))h+i−k(L(z))

]
=

=
∑

k,l∈Z+

l+k∑

i=k

(
i

k

)
1(

k+l+1
k+1

)
[

(adU(z))k

(k + 1)!

(
∂U(z)

∂u
(m)
i

)
,

(adU(z))l

l!

]
= [Ai,m(z), L0(z)],

where, in the last equality, we used Lemma B.3 to show that
∑l+k
i=k

(
i
k

)
=
(
k+l+1
k+1

)
.

By (5.15), for all i ∈ I, we get
δf(z)

δu
=
∑

m∈Z+

(−∂)m
(
a⊗ 1

∣∣∣[Ai,m(z), L0(z)] + δm0e
adU(z)(ui ⊗ 1)−Ai,m−1(z)

)

By invariance of the bilinear form

(a⊗ 1 | [Ai,m(z), L0(z)]) = ([zs⊗ 1 + h(z), a⊗ 1] | Ai,m) + (a⊗ 1 | [Ai,m, ∂]) = −(a⊗ 1 | ∂Ai,m),

since a ∈ Z(h). Finally, it follows that

δf(z)

δui
=
(
a⊗ 1

∣∣∣eadU(z)(ui ⊗ 1)
)

+
∑

m∈Z+

(−∂)m(a⊗ 1 | ∂Ai,m −Ai,m−1) =
(
e− adU(z)(a⊗ 1)

∣∣∣ui ⊗ 1
)
,
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where in the last equality we used the invariance of the bilinear from to bring the exponential of the
adjoint action on the left. Hence,

δf(z)

δu
=
∑

i∈I
ui ⊗

(
e− adU(z)(a⊗ 1)

∣∣∣ui ⊗ 1
)

= e− adU(z)(a⊗ 1).

�

Remark 5.4. Since F (z) does not depend on the choice of U(z), then δf(z)
δu does not depend on the choice

of U(z) too. This means that, if f̃(z) = (a⊗1 | h̃(z)), where h̃(z) is determined by ead Ũ(z)(L(z)) = L̃0(z)

(see Proposition 5.2), then f(z) and f̃(z) di�er by a total derivative. In particular, if h is abelian,

this is the case, for example, when s ∈ g is regular semisimple, then, by Proposition 5.2, ead Ũ(z) =

eadS(z)eadU(z), where S(z) ∈ z−1(h⊗Vz(g, s))[[z−1]], and eadS(z)(L0(z)) = L̃(z), from which follows that

h(z) − h̃(z) = ∂S(z) (we always have h0 = h̃0 by the recursion we derived in the proof of Proposition
5.2). We recall that a regular element s in a Lie algebra g is an element whose centralizer gs = {a ∈ g |
[a, s] = 0} has minimal dimension among all centralizers of elements of g. If g is reductive and s ∈ g is
regular, then dim gs = rank g.

We set deg u
(n)
i = n + 1, for all i ∈ I and n ∈ Z+. It is clear from the recurrence we got in the

proof of Proposition 5.2 that degUk = k, for k ≥ 1, and deg hk = k + 1, for k ∈ Z+, if we require
U(z) ∈ z−1(h⊥ ⊗ Vz(g, s)). It follows, by Remark 5.4, that fk, for k ∈ Z+ are linearly indipendent
modulo total derivatives, that is,

∫
fk are linearly independent for all k ∈ Z+.

5.1.1. The N-waves equation. Let us assume g = glN and we consider as symmetric invariant
non-degenerate bilinear form the trace form. Let {Eij}Ni,j=1 ⊂ glN be the set of elementary matrices (they

form a basis of glN ) and write {uij}Ni,j=1 ⊂ Vz(glN , s) when we think at them as di�erential variables of
Vz(glN , s). Thus

u =

N∑

i,j=1

Eji ⊗ uij

since {Eji}Ni,j=1 is the dual basis with respect to the trace form.
We take s ∈ glN to be a regular semisimple element, namely, s is a diagonal matrix, say s =

diag(s1, . . . , sN ), with si 6= sj for all 1 ≤ i, j ≤ N . Then h = ker ad s = DiagN is the Lie subalgebra of
diagonal matrices in glN , while h⊥ = im ad h is the subspace of o�-diagonal matrices in glN .

Let U ∈ glN , we denote by LU , respectively RU , the operation of multiplication on the left, re-
spectively on the right, by U . Clearly, given U ∈ glN ⊗ Vz(g, s), we can extend LU and RU to

the space glN ⊗ Vz(g, s) componentwise and, then, to g̃lN . An easy computation shows that, for

U(z) ∈ z−1(glN ⊗ Vz(g, s))[[z
−1]] and a ∈ g̃lN , we have

eadU(z)(a) =
∑

k∈Z+

(adU(z))k(a)

k!
=
∑

k∈Z+

(LU(z) −RU(z))
k(a)

k!
=
∑

k∈Z+

0≤l≤k

(−1)k−l
LlU(z)R

k−l
U(z)(a)

l!(k − l)! =

=
∑

k,l∈Z+

(−1)l
U(z)kaU(z)l

k!l!
= eU(z)ae−U(z),

(5.16)

since LU(z) and RU(z) commute. Thus, we can set T (z) = eadU(z) = 1N+
∑
i≥1 Tiz

−1 and, by Proposition

5.2, the relation L0(z)T (z) = T (z)L(z), allows to determine T (z) and h(z) by the recursion

{
h0 + [s⊗ 1, T1] = u,

hn + [s⊗ 1, Tn+1] = Tnu− ∂Tn −
∑n−1
k=0 hkTn−k, n > 0,
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from which follows that we can uniquely determine h(z) ∈ (h ⊗ Vz(g, s))[[z
−1]] and T (z) ∈ (h⊥ ⊗

Vz(g, s))[[z
−1]]. The �rst terms in the recursion are given by

h0 = uh =

N∑

k=1

Ekk ⊗ ukk, T1 = (ad(s⊗ 1))−1(uh⊥) =
∑

1≤i 6=j≤N
Eij ⊗

uji
sij

,

h1 = (T1u)h =

N∑

k=1

Ekk ⊗




N∑

i=1
i 6=k

uikuki
sik


 , T2 = (ad(s⊗ 1))−1

(
(T1u− ∂T1 − h0T1)h⊥

)
=

=
∑

1≤i6=j≤N
Eij ⊗


−

u′ji
s2
ij

+

N∑

k=1
k 6=i

ujkuki
sijsik


 ,

h2 = (T2u)h =

N∑

k=1

Ekk ⊗


−

N∑

h=1
h 6=k

u′hkukh
s2
hk

+

N∑

h,l=1
h,l 6=i

ulhuhiuil
silsih


 ,

where sij = si − sj . Since h is abelian, we can take a = diag(a1, . . . , aN ) ∈ h, with a 6= c1N , for all
c ∈ C. By (5.16), we have F (z) = T (z)−1(a⊗ 1)T (z) = F0 + F1z

−1 + F2z
−1 + . . ., where

F0 = a⊗ 1

F1 = [a⊗ 1, T1] = [a⊗ 1, (ad(s⊗ 1))−1(uh⊥)] = p

F2 = [a⊗ 1, T2]− T1p

with p ∈ glN⊗Vz(glN , s) de�ned by pij =
aij
sij
uji o� the diagonal, where aij = ai−aj , for all 1 ≤ i, j ≤ N ,

and its diagonal entries are zero.
The �rst equations of the hierarchy are given by

duh⊥

dt0
= [u, a⊗ 1],

duh⊥

dt1
= p′ + [u, p], . . .

We note that in the case in which a = s, this last equation reduces to
du

h⊥
dt1

= u′h⊥ .

The explicit formulas of the �rst integrals of motion is given by
∫
f(z) =

∫
(a ⊗ 1 | h(z)) =

∫
(f0 +

f1z
−1 + f2z

−1 + . . .), where

∫
f0 =

∫
(a⊗ 1 | h0) =

∫ N∑

i=1

aiuii,

∫
f1 =

∫
(a⊗ 1 | h1) =

∫ N∑

i,j=1
i 6=j

ai
sij
uijuji,

∫
f2 =

∫
(a⊗ 1 | h2) =

∫ N∑

k=1


−

N∑

h=1
h6=k

ak
s2
hk

u′hkukh +

N∑

h,l=1
h,l 6=i

ak
silsih

ulhuhiuil




5.2. Integrable hierarchies arising from the classical Drinfeld-Sokolov Hamiltonian

reduction

Let us brie�y recall some basic facts and notations about the construction of classical W-algebras we
gave in Section 2.2. Let us assume g to be a reductive �nite dimensional Lie algebra with a symmetric
invariant bilinear form (· | ·). Let f ∈ g be a nilpotent element, by Jacobson-Morozov theorem we can
�nd a sl2-triple {e, h = 2x, f} ⊂ g and write

g =
⊕

j∈ 1
2Z

gj (5.17)

for the adx- eigenspaces decomposition of g. We set

m+ = g≥1 ⊂ n+ = g≥ 1
2
⊂ b+ = g≥0 ⊂ B+ = g≥− 1

2
and B− = g≤ 1

2
.

Then f ∈ g−1, h ∈ g0 = h and e ∈ g1.
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Let us assume s ∈ ker ad n+, we endow the space V(g) = S(C[∂]⊗ g) the structure of Poisson vertex
algebra de�ning, for a, b ∈ g,

{aλb}z = [a, b] + (a | b)λ+ z(s | [a, b]),
and extending the λ-bracket to V(g) by (1.11). We denoted this Poisson vertex algebra by Vz(g, s).

We set J̃(g, f) = 〈m − (f | m) | m ∈ m+〉V(g) and W̃z(g, f, s) = {p ∈ Vz(g, s) | {aλp}z ∈
J̃(g, λ)[λ]∀a ∈ n+} and de�ned the classical W-algebra associated to the triple (g, f, s) to be quotient
Poisson vertex algebra

Wz(g, f, s) = W̃z(g, f, s)
/̃
J(g, f).

In Section 2.2 is proved that the quotient is well de�ned and has a induced structure of Poisson vertex
algebra.

Let us �x a basis of g and its dual basis with respect to (· | ·) in the following way

· Qi = Qi, i = 1, . . . , r, basis of h;
· Qm+i = Qi, i = r + 1, . . . , r + d, basis of g− 1

2
;

· Qm+i = Qi, i = r + d+ 1, . . . , r +m, basis of g≤−1;
· Qi−m = Qi, i = r +m+ 1, . . . , r +m+ d, basis of g 1

2
;

· Qi−m = Qi, i = r +m+ d+ 1, . . . , r + 2m, basis of g≥1,

where lower indeces stand for elements of the basis and upper indeces for elements of the dual basis.
We denote V = V(B−) and set I = {1, 2, . . . , r + 2m}, I = {1, 2, . . . , r + m + d} and qi = π−(Qi), for
i ∈ I, when we think at these basis elements as di�erential generators of V. As di�erential algebras

V ∼= Vz(g, s)
/̃
J(g, f). Moreover, V = C[q

(n)
i | i ∈ I, n ∈ Z+]. By construction, Wz(g, f, s) ⊂ V, and the

formula for the induced λ-bracket on elements of Wz(g, f, s) is given by (2.17), that we recall. For any
f, g ∈Wz(g, f, s) we have

{fλg}Λ(z) =
∑

i,j∈I
n,m∈Z+

∂g

∂q
(n)
j

(λ+ ∂)n{qiλ+∂qj}Λ(z)→(−λ− ∂)m
∂f

∂u
(m)
i

,

where, for any a, b ∈ B−,

{aλb}Λ(z) = π−([a, b]) + (a | b)λ+ (Λ(z) | [a, b]).
We write the λ-bracket on V as {·λ·}Λ(z) = {·λ·}H−{·λ·}K , where H(∂), respectively K(∂), is the matrix
valued di�erential operator corresponding to {qiλqj}H = π−([Qi, Qj ]) + (Qi | Qj)λ + (f | [Qi, Qj ]),
respectively {qiλqj}K = −(s | [Qi, Qj ]), by (1.17). Hence,

Hij(∂) = π−([Qj , Qi]) + (Qi | Qj)∂ + (f | [Qj , Qi]) and Kij(∂) = −(s | [Qj , Qi]), (5.18)

for all i, j ∈ I.
As we did in Section 5.1 we endow the space g ⊗ V a Lie algebra structure and extend the bilinear

form of g to a non-degenerate symmetric invariant bilinear form on g ⊗ V which we still denote (· | ·).
Furthermore, given ∂ the derivation of V we de�ne the semidirect product Lie algebra C∂ n (g ⊗ V),
where the commutator of ∂ against elements of g ⊗ V is de�ned by [∂, a ⊗ f ] = ∂.(a ⊗ f) = a ⊗ ∂f ,
for any a ∈ g and f ∈ V. We set g̃ = (C∂ n g ⊗ V)((z−1)). As already pointed out in Section 5.1,
given U(z) ∈ z−1(g ⊗ Vz(g, s))[[z

−1]], the map eadU(z) : g̃ −→ g̃ is a Lie algebra automorphism and
automorphisms of this type form a group.

We consider the following identi�cations

V⊕I
∼−→ g⊗ V

F = (Fi)i∈I −→ F =
∑

i∈I
Qi ⊗ Fi (5.19)

and

VI
∼−→ g⊗ V

P = (Pi)i∈I −→ P =
∑

i∈I
Qi ⊗ Pi. (5.20)

In Section 5.1 we de�ned a pairing (·, ·) : g⊗V×g⊗V −→ V
/
∂V, using the bilinear form on g⊗V. Using

(5.19) we can identify V⊕I with B−⊗V and, using (5.20), we can identify VI with B+⊗V. These spaces
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are duals with respect to the pairing (·, ·). Thus, if f ∈ V, we can identify its variational derivative with
the following element of B− ⊗ V,

δf

δq
=
∑

i∈I
Qi ⊗

δf

δqi
.

We set q =
∑
i∈I Q

i ⊗ qi ∈ B+ ⊗ V and de�ne

L(z) = ∂ + q + Λ(z)⊗ 1 ∈ g̃.

Proposition 5.5. If F = (Fi)i∈I ∈ V⊕I , then

(H(∂)− zK(∂))F = (π+ ⊗ 1)([L(z), F ]),

where π+ : g−→→ B+ is the projection map from g to B+, and π+ ⊗ 1 : g⊗ V −→ B+ ⊗ V.

Proof. Since I ⊂ I, and H(∂)− zK(∂) ∈ MatI×I(V[∂]), by (5.20), we have

(H(∂)− zK(∂))F =
∑

i∈I
Qi ⊗ ((H(∂)− zK(∂))F )i .

On the other hand, given an element A ∈ g⊗V we can write it uniquely as A =
∑
i∈I Q

i ⊗ (A | Qi ⊗ 1),

from which follows that (π ⊗ 1)(A) =
∑
i∈I Q

i ⊗ (A | Qi ⊗ 1). Then, we are left to show that

((H(∂)− zK(∂))F )i = ([L(z), F ] | Qi ⊗ 1) , (5.21)

for all i ∈ I. Using (5.18), the left hand side of (5.21) is

((H(∂)− zK(∂))F )i =
∑

j∈I
(Hij(∂)− zKij(∂))Fj =

=
∑

j∈I

(
(Qi | Qj)F ′j + π−([Qj , Qi])Fj + (Λ(z) | [Qj , Qi])Fj

)
.

On the other hand we have

[L(z), F ] =
∑

j∈I
[∂ + q + Λ(z)⊗ 1, Qj ⊗ Fj ] =

∑

j∈I

(
Qj ⊗ F ′j +

∑

k∈I
[Qk, Qj ]⊗ qkFj + [Λ(z), Qj ]⊗ Fj

)
.

Taking the scalar product of this term with Qi ⊗ 1 gives the right hand side of (5.21). We get

([L(z), F ] | Qi ⊗ 1) =
∑

j∈I

(
(Qj | Qi)F ′j +

∑

k∈I
([Qk, Qj ] | Qi)qkFj + ([Λ(z), Qj ] | Qi)Fj

)
.

Using the invariance of the bilinear form we have
∑
k∈I([Q

k, Qj ] | Qi)qk =
∑
k∈I(Q

k | [Qj , Qi])qk =
π−([Qj , Qi]) and ([Λ(z), Qj ] | Qi) = (Λ(z) | [Qj , Qi]) and by symmetry, (Qi | Qj) = (Qj | Qi), proving
that left hand side and right hand side of (5.21) are equal. �

Let us set ĝ = g((z−1)). Let d1 = z d
dz be a degree operator, then d1 de�nes a gradation of ĝ with

respect to powers of z and we denote ĝk = gzk, for k ∈ Z, the homogeneous component of degree k. We
also denote ĝ+ = g[z]. We de�ne a nondegenerate symmetric invariant bilinear form on ĝ in the following
way. First, for any a(z) =

∑
i aiz

i, b(z) =
∑
i biz

i ∈ ĝ, we set

(a(z) | b(z)) =
∑

i,j

(ai | bj)zi+j ∈ C((z−1)). (5.22)

The nondegenerate symmetric invariant bilinear form on ĝ is obtained taking the costant term of (5.22),
namely, we set

〈a(z) | b(z)〉 = Resz(a(z) | b(z))z−1, (5.23)

for all a(z), b(z) ∈ ĝ. It is clear from de�nition that this bilinear form is coordinated with the gradation
de�ned by d1.

We assume Λ(z) ∈ ĝ to be a semisimple element. Then

ĝ = H⊕ im ad Λ(z). (5.24)

The same argument used in Section 5.1 shows that H⊥ = im ad Λ(z) with respect to the bilinear form
de�ned in (5.23).

We �x also another gradation on ĝ by the condition that Λ(z) is a homogeneous element of degree
−1. Namely, let us denote m = deg(s), the degree of s with respect to the adx-decomposition of g and
consider the gradation of ĝ de�ned by the degree operator d2 = (−m−1)z d

dz +adx. We shall write ĝj for
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the component of degree j with respect to this gradation. If n ∈ Z+, let us write n = (m+1)h+a, where
0 ≤ a ≤ m+ 1

2 , h ∈ Z+, then ĝn = gaz
−h⊕g−m−1+az

−h−1, where lower indeces, which denotes the adx-

decomposition of g (5.17), are in
1
2Z
/
mZ. Using the same notation, we have ĝ−n = g−azh⊕gm+1−azh+1.

Hence, since the bilinear form (· | ·) on g is coordinated with the gradation (5.17) and the bilinear form
(5.23) is coordinated with the gradation in powers of z, it follows that (5.23) is also coordinated with
the gradation of ĝ given by the degree operator d2. We denote ĝ− = ⊕j≤ 1

2
ĝj = B− ⊕ zg[z] ⊂ ĝ+.

We want to �nd a sequence fn, n ∈ Z+, such that (1.23) holds, that is, we want that

{fnλa}H |λ=0 = {fn+1λa}K |λ=0 ,

for any a ∈Wz(g, f, s). By de�nition of induced λ-braclet, this is equivalent to

π
(
{f̃nλã}H̃

∣∣∣
λ=0

)
= π

(
{f̃n+1λã}K̃

∣∣∣
λ=0

)
,

for any f̃n, f̃n+1, ã ∈ W̃z(g, f, s) lifts of fn, fn+1 and a, and by H̃ and K̃ we denote the a�ne Poisson
vertex algebra λ-brackets (which we called H and K in the previous section). In particular, by (1.20),
this is equivalent to show that

π

(∫
δã

δq
H̃(∂)

δf̃n
δq

)
=

∫
δa

δq
H(∂)

δfn
δq

=

∫
δa

δq
K(∂)

δfn+1

δq
= π

(∫
δã

δq
K̃(∂)

δf̃n+1

δq

)
, (5.25)

since, as already said in Section 2.2.1, we may choose fn, fn+1 and a as their liftings. Furthermore,
(5.25), can be stated as

∫
XH(∂) δfnδq

(a) =

∫
X
K(∂)

δfn+1
δq

(a), (5.26)

for any a ∈ Wz(g, f, s). Thus, our goal will be to �nd a sequence fn ∈ Wz(g, f, s), n ∈ Z+, such that
(5.26) holds.

Similarly to what we did in the previous section, we start �nding an explicit description of ZL(z) =
{F (z) ∈ ĝ⊗V | [L(z), F (z)] = 0}. The answer is essentially given by the following result of Drinfeld and
Sokolov [12, Proposition 6.2]wich we generalize to our situation. We �x the following notation: given
a subspace V ⊂ ĝ, for all i ∈ Z, we denote V i = V ∩ ĝi, respectively Vi = V ∩ ĝi, the homogeneous
component of V of degree i with respect to the grading de�ned by d1, respectively d2.

Proposition 5.6. There exists a formal series U(z) ∈ ĝ>0 ⊗ V such that

L0(z) = eadU(z)(L(z)) = ∂ + Λ(z)⊗ 1 + h(z), (5.27)

with h(z) ∈ H≥− 1
2
⊗V. The automorphism eadU(z) is de�ned uniquely up to multiplication on the left by

automorphisms of the form eadS(z), where S(z) ∈ H>0 ⊗ V and it is possible to choose U(z) uniquely if
we require U(z) ∈ H⊥<0 ⊗ V.

Proof. Writing U(z) =
∑
i≥ 1

2
Ui, with Ui ∈ ĝi⊗V, h(z) =

∑
i≥− 1

2
, where hi ∈ Hi⊗V and equating

terms which lie in the component of degree i in both sides of (5.27), we �nd that hi + [Λ(z) ⊗ 1, Ui+1]
can be expressed in terms of U 1

2
, U1, . . . , Ui+ 1

2
and h− 1

2
, h0, . . . , hi− 1

2
. Let us say hi + [Λ(z)⊗ 1, Ui+1] =

A ∈ ĝi ⊗ V, where, as already pointed out, we explicitly know A. By (5.24), we can write in a unique
way A = AH + AH⊥ , where AH ∈ H ⊗ V and AH⊥ ∈ H⊥ ⊗ V. Hence, we get hi = AH and Ui+1 =
(ad(Λ(z) ⊗ 1))−1(AH⊥). Since the restriction of ad Λ(z) to H⊥ is an isomorphism, we can determime
uniquely Ui+1 ∈ H⊥ ⊗ V. Therefore, we can uniquely determine h(z) ∈ H≥− 1

2
⊗ V and U(z) ∈ H⊥<0 ⊗ V.

Let Ũ(z) ∈ ĝ<0 ⊗ V be such that ead Ũ(z)(L(z)) = L̃0(z), where L̃0(z) is of the same type of (5.27),

namely, L̃0(z) = ∂ + Λ(z)⊗ 1 + h̃(z), with h̃(z) ∈ H≥− 1
2
⊗ V. Since these automorphisms form a group,

there exists S(z) ∈ ĝ>0 ⊗ V such taht ead Ũ(z)e− adU(z) = eadS(z). Equating terms with degree i in the

expression eadS(z)(L0(z)) = L̃0(z), we have that S(z) ∈ (H>0 ⊗ V, since both coe�cients of L0(z) and

L̃0(z) lie in (H≥− 1
2
⊗ V and [Λ(z)⊗ 1,H⊥] ⊂ H⊥. �

Let U(z) ∈ ĝ>0 ⊗ V be de�ned by the previous proposition. Then we have the following corollary.

Corollary 5.7. ZL = e− adU(z)(Z(H)⊗ 1) and does not depend on the choice of U(z).

Proof. By Proposition 5.6 it su�ces to show ZL0(z) = Z(H)⊗1 ⊂ V((z−1)). Clearly, by de�nition of
L0(z), given by (5.27), it follows that Z(H)⊗1 ⊂ ZL0(z). On the other hand, let us assume M(z) ∈ ĝ⊗V

and write M(z) =
∑
i≥mMi, with Mi ∈ ĝi and m ∈ Z. Equating to zero the component of degree m− 1

in [M(z), L0(z)], we get [Mm,Λ(z)] = 0. Thus Mm ∈ Z(H)⊗ V. While, equating to zero the component
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of degree m − 1
2 , we get [Mm+ 1

2
,Λ(z)] = 0, then Mm+ 1

2
∈ Z(H) ⊗ V, fromwhich follows that equating

to zero the component of degree m we get the equality M ′m = [Mm+1,Λ(z)]. The left hand side of this
equality belongs to Z(H)⊗V, while the right hand side belongs to H⊥ ⊗V, which forces M ′m = 0. Then,
we proceed applying analogous considerations to M(z)−Mm. The independence from the arbitrariness
of the choice of U(z) is clear since, by Proposition5.6, eadU(z) is de�ned up to multiplication on the left
by automorphism of the form eadS(z), where S(z) ∈ H⊗ V. �

We de�ne the following map ϕ : Z(H) ⊗ 1 −→ ZL(z), by ϕ(a(z) ⊗ 1) = e− adU(z)(a(z) ⊗ 1). By
Corollary 5.7, this map is well de�ned. Indeed, it does not depend on the choice of U(z). We want to
use this map to de�ne some evolutionary vector �elds on V. We need the following properties.

Lemma 5.8. Let F (z) ∈ ĝ⊗ V and write F (z) = F (z)+ + F (z)−, respectively F (z) = F (z)+ + F (z)−,
where F (z)+ ∈ ĝ+ ⊗ V, respectively F (z)− ∈ ĝ− ⊗ V, and F (z)− = F (z)− F (z)+, respectively F (z)+ =
F (z)− F (z)−. Then, F (z)+ − F (z)− ∈ n+ ⊗ V. Moreover, If F (z) ∈ ZL(z), then

i) [L(z), F (z)+], [L(z), F (z)−] ∈ B+ ⊗ V;
ii) [L(z), F (z)] = −[s⊗ 1,Resz F (z)].

Proof. The �rst assertion follows from the fact that ĝ+ = g[z], while ĝ− = B− ⊕ zg[z]. Let
us assume F (z) ∈ ZL(z), then [L(z), F (z)−] = −[L(z), F (z)+]. The left hand side of this equality

belongs to g[z] ⊗ V, while the right hand side belongs to ĝ≥− 1
2
⊗ V = (B+ ⊕ z−1g[[z−1]]) ⊗ V. Hence,

[L(z), F (z)−] ∈ B+ ⊗ V = g[z]⊗ V ∩ (B+ ⊕ z−1g[[z−1]])⊗ V. Since F (z)+ − F (z)− ∈ n+ ⊗ V, we have

[L(z), F (z)+]− [L(z), F (z)−] = [L(z), F (z)+ − F (z)−] = [∂ + q +⊗1, F (z)+ − F (z)−] ∈ B+ ⊗ V.

Then [L(z), F (z)+] ∈ B+⊗V, which proves i). To prove ii) we simply note that the left hand side of the
equality [L(z), F (z)+] = −[L(z), F (z)−] is a polynomial in z, while the left hand side is a power series
in z−1 whose constant term is given by [s⊗ 1,Resz F (z)]. �

Let a(z) ∈ Z(H), but a(z) /∈ Z(ĝ), by Lemma 5.8, [L(z), ϕ(a(z))+], [L(z), ϕ(a(z))−] ∈ B+ ⊗ V and,
by identi�cations (5.20) and (1.5), they de�ne vector �elds on V, wich we denote X[ϕ(u(z))+,L(z)] and
X[ϕ(u(z))−,L(z)].

Proposition 5.9. We have X[L(z),ϕ(a(z)⊗1)+](Wz(g, f, s)) ⊂Wz(g, f, s) and X[L(z),ϕ(a(z)⊗1)−](Wz(g, f, s)) ⊂
Wz(g, f, s). Moreover,

X[L(z),ϕ(a(z)⊗1)+]

∣∣
(Wz(g,f,s))

= X[L(z),ϕ(a(z)⊗1)−]

∣∣
(Wz(g,f,s))

. (5.28)

Proof. The proof of this proposition heavily use the de�nition of Wz(g, f, s) in terms of gauge
invariant polynomials we gave in Section 2.1.

Let p(q) ∈Wz(g, f, s). First we prove that(
X[L(z),ϕ(a(z)⊗1)+](p)

)
(q) =

(
X[L(z),ϕ(a(z)⊗1)+](p)

)
(qcan). (5.29)

This means that X[L(z),ϕ(a(z)⊗1)+](Wz(g, f, s)) ⊂ Wz(g, f, s). In order to do this we need the following

result. Let P (q) ∈ B+ ⊗ V, if P (q̃) = eadS(P (q)) for any q̃
S∼ q, then XP (q)(Wz(g, f, s)) ⊂ Wz(g, f, s).

Indeed, we have

p(q) + t(XP (p))(q) + o(t2) = p(q + tP ) = p(q̃ + tP ) = p(q̃ + teadSP (q)) = p(q̃ + tP (q̃)) =

= p(q̃) + t(XP (p))(q̃) + o(t2),

from which follows, since p(q) = p(q̃), that (XP (p))(q) = (XP (p))(q̃). Hence, we are left to show that, if

q
S∼ q̃, then

[L̃(z), ϕ̃(a(z)⊗ 1)+] = eadS [L(z), ϕ(a(z)⊗ 1)+].

Furthermore, since eadS is a Lie algebra automorphism, we reduce to show that ϕ̃(a(z) ⊗ 1)+ =

eadS(ϕ(a(z)⊗ 1)+). Using the fact that L̃(z) = eadS(L(z), we get

L̃0(z) = ead Ũ(z)(L̃(z)) = ead Ũ(z)eadS(L(z)).

By Proposition 5.6, ead Ũ(z)eadS = eadT (z)eadU(z), with T (z) ∈ H>0 ⊗ V. Hence,

ϕ̃(a(z)⊗ 1)+ =
(
e− ad Ũ(z)(a(z)⊗ 1)

)+

=
(
eadSe− adU(z)(a(z)⊗ 1)

)+

= eadSϕ(a(z)⊗ 1)+,

where we can bring eadS outside the parenthesis since it does not contain any powers of z. This proves
(5.29).
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Next, we want to prove that, if p ∈Wz(g, f, s), then

X[L(z),ϕ(a(z)⊗1)+](p) = X[L(z),ϕ(a(z)⊗1)+](p). (5.30)

This will conclude the proof. Let us set

g(q) = X[L(z),ϕ(a(z)⊗1)+](p)−X[L(z),ϕ(a(z)⊗1)+](p) = X[L(z),ϕ(a(z)⊗1)+−ϕ(a(z)⊗1)−](p)

and S = t(ϕ(a(z) ⊗ 1)+ − ϕ(a(z) ⊗ 1)−). By Lemma 5.8, S ∈ n+ ⊗ V. Moreover, q
S∼ q(t), where

q(t) = q + t[L(z), ϕ(a(z) ⊗ 1)+ − ϕ(a(z) ⊗ 1)−] + o(t2), and, by Taylor expansion, p(q(t)) = p(q) +
tX[L(z),ϕ(a(z)⊗1)+−ϕ(a(z)⊗1)−] + o(t2). It follows that

g =
dp(q(t))

dt

∣∣∣∣
t=0

=
dp(q)

dt

∣∣∣∣
t=0

= 0,

where p(q(t)) = p(q), since p is a gauge invariant polynomial. �

We set f = 〈a(z) | h(z)〉 ∈ V, where h(z) is de�ned by Proposition 5.6. Since the bilinear form
(5.23) is coordinated with the gradation de�ned by d2, then f = 0, if u(z) ∈ Z(H)≥1. Thus without loss
of generality we may assume a(z) ∈ Z(H)≤ 1

2
⊗ 1 = (Z(H) ∩ (B− ⊕ zg[z]))⊗ 1.

Proposition 5.10.

δf

δq
= (π− ⊗ 1)

(
ϕ(a(z)⊗ 1)0

)
,

where the upper index 0 denotes the constant term in the expansion in powers of z.

Proof. We recall that, by (5.19),

δf

δq
=
∑

i∈I
Qi ⊗

δf

δqi
∈ B− ⊗ V,

where δf(z)
δqi

=
∑
m∈Z+

(−∂)m ∂f

∂q
(m)
i

, for all i ∈ I. We start computing the partial derivatives. As we did

in the proof of Proposition 5.3, we have, for all i ∈ I and m ∈ Z+,

∂f

∂q
(m)
i

=
∂

∂q
(m)
i

(a(z)⊗ 1 | h(z))0 =


a(z)⊗ 1

∣∣∣∣∣
∂h(z)

∂u
(m)
i

)0

,

since partial derivatives act as derivations of the bilinear form. By (5.27), we can write h(z) =
eadU(z)(L(z))− ∂ − Λ(z)⊗ 1. Hence,

∂h(z)

∂q
(m)
i

=
∂eadU(z)(L(z))

∂q
(m)
i

=
∂

∂q
(m)
i


∑

k∈Z+

(adU(z))k

k!
(L(z))


 =

=
∂L(z)

∂q
(m)
i

+
∂

∂q
(m)
i


∑

k≥1

(adU(z))k

k!
(L(z))


 ,

(5.31)

where

∂L(z)

∂q
(m)
i

=
∂q

∂q
(m)
i

=
∑

j∈I

∂

∂q
(m)
i

(Qj ⊗ qj) =
∑

j∈I
Qj ⊗ ∂qj

∂q
(m)
i

= δm0Q
i ⊗ 1 (5.32)

and the remaining term in (5.31) is given by

[Ai,m(z), L0(z)]−Ai,m−1(z), (5.33)

where Ai,m(z) =
∑
k∈Z+

(adU(z))k

(k+1)!

(
∂U(z)

∂q
(m)
i

)
(the same computation we made in the proof of Proposition

5.3). Putting terms (5.32) and (5.33) in (5.31), we get

δf

δq
=
∑

m∈Z+

(−∂)m
(
a⊗ 1

∣∣∣[Ai,m(z), L0(z)] + δm0e
adU(z)(Qi ⊗ 1)−Ai,m−1(z)

)

By invariance of the bilinear form

(a(z)⊗1 | [Ai,m(z), L0(z)])0 = ([Λ(z)⊗1+h(z), a(z)⊗1] | Ai,m)+(a(z)⊗1 | [Ai,m, ∂]) = −(a⊗1 | ∂Ai,m),
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since a(z) ∈ Z(H). Finally, it follows that

δf

δqi
=
(
a(z)⊗ 1

∣∣∣eadU(z)(Qi ⊗ 1)
)

+
∑

m∈Z+

(−∂)m(a(z)⊗ 1 | ∂Ai,m −Ai,m−1) =

=
(
e− adU(z)(a(z)⊗ 1)

∣∣∣Qi ⊗ 1
)
,

for all i ∈ I, where in the last equality we used the invariance of the bilinear from to bring the exponential
of the adjoint action on the left. Hence,

δf

δq
=
∑

i∈I
Qi ⊗

(
e− adU(z)(a(z)⊗ 1)

∣∣∣Qi ⊗ 1
)0

= (π− ⊗ 1)

((
e− adU(z)(a(z)⊗ 1)

)0
)

=

= (π− ⊗ 1)
(
ϕ(a(z)⊗ 1)0

)
.

�
Remark 5.11. Since the map ϕ does not depend on the choice of U(z), then δf

δq does not depend

on the choice of U(z) too. This means that, if f̃ = (a(z) ⊗ 1 | h̃(z)), where h̃(z) is determined by

ead Ũ(z)(L(z)) = L̃0(z) (see Proposition 5.6), then f and f̃ di�er by a total derivative. In particular,

since n+ ⊂ ĝ>0, if we consider L̃(z) = eadS(L(z)) = Lcan(z) (see Proposition 2.1), then f is a gauge
invariant polynomial up to total derivatives. This means that, if we de�ne f(q) = f(qcan), then, by
de�nition, f is a gauge invariant polynomial, namely f ∈ Wz(g, f, s), and it di�ers from f by a total
derivative. Hence, without loss of generality, we may assume f ∈Wz(g, f, s).

We set deg q
(n)
i = n+1, for all i ∈ I and n ∈ Z+. It is clear from the recurrence we got in the proof of

Proposition 5.6 that, if we denote Uk ∈ ĝk the homogeneous part of U(z) of degree k, then degUk = 2k,
for k ≥ 1, and deg hk = 2(k + 1), for k ≥ − 1

2 , where hk ∈ Z(H)k is the component of h(z) of degree k, if

we require U(z) ∈ (H>0)⊥ ⊗V. It follows, by Remark 5.11, that hk, for k ≥ − 1
2 are linearly indipendent

modulo total derivatives, that is,
∫
hk are linearly independent for all k ≥ − 1

2 .
Let us consider the following in�nite sequence in V. We set f0 = f and fn = 〈a(z)zn ⊗ 1 | h(z)〉, for

any n ≥ 1. By Proposition 5.10, it follows that

δfn
δq

= (π− ⊗ 1)(ϕ(a(z)zn ⊗ 1)0) = ϕ(a(z)zn ⊗ 1)0
−,

since ĝ0 ∩ ĝ− = g ∩ (B− ⊕ zg[z]) = B−. Using (2.11), it follows that (π+ ⊗ 1)[L(z), ϕ(a(z)zn ⊗
1)−] = [L(z), ϕ(a(z)zn ⊗ 1)−] ∈ B+ ⊗ V. Since this bracket does not depend on z and both L(z) and
ϕ(a(z)zn ⊗ 1)− contain only nonnegative powers of z, we may put z = 0 inside the bracket and get

[∂ + q + f ⊗ 1, ϕ(a(z)zn ⊗ 1)0
−] = (π+ ⊗ 1)

[
∂ + q + f ⊗ 1, δfnδq

]
. By Proposition 5.9, we get

X[L(z),ϕ(a(z)zn⊗1)−] = XH(∂) δfnδq
.

Moreover, by Proposition 5.10, it follows that

δfn+1

δq
= (π− ⊗ 1) (Resz ϕ(a(z)zn ⊗ 1)) .

Since s ∈ ker ad n+ and using Proposition 5.8 and (2.11), we get

(π+ ⊗ 1)[L(z), ϕ(a(z)zn ⊗ 1)+] = −[s,Resz ϕ(a(z)zn ⊗ 1)] = −
[
s,
δfn+1

δq

]
.

It follows, by Proposition 5.10, that

X[L(z),ϕ(a(z)zn⊗1)+] = X
K(∂)

δfn+1
δq

.

Hence, by Proposition 5.9, for any n ∈ Z+, we have

XH(∂) δfnδq

∣∣∣
Wz(g,f,s)

= X
K(∂)

δfn+1
δq

∣∣∣∣
Wz(g,f,s)

,

as required in (5.26).
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APPENDIX A

Remarks on formal calculus

Given a C-vector space U, one usually has:

· U[z] the space of polynomials with coe�cients in U;
· U[z, z−1] the space of Laurent polynomials with coe�cients in U;
· U[[z]] the space of power series with coe�cients in U;
· U((z)) the space of Laurent series with coe�cients in U;
· U[[z, z−1]] the space of in�nite series in both directions with coe�cients in U.

If U is an algebra, then U[[z, z−1]] is a module over C[z, z−1], while the remaining are all algebras.
A U-valued formal distribution in a variable z is a linear function on C[z, z−1] with values in U. The

space C[z, z−1] is usually referred as the space of thest functions. It can be proved that the space of
U-valued formal distribution is canonically identi�ed with U[[z, z−1]], that is it consists of series of the
form ∑

n∈Z
unz

n,

where un ∈ U.
The same is true for many variables. For example, for two variables z1 and z2, a U-valued formal

distribution is a series of the type

a(z1, z2) =
∑

n1,n2∈Z
an1,n2

zn1
1 zn2

2 .

Thus we call formal distribution in the indeterminates z1, z2, . . . , zm with values in U a formal
expression

a(z1, z2, . . . , zm) =
∑

n1,...,nm∈Z
an1,...,nmz

n1
1 zn2

2 . . . znmm

where an1,...,nm ∈ U. As already said, U[[z1, z
−1
1 , . . . , zm, z

−1
m ]] is not an algebra, thus products of two

formal distributions is not always de�ned. However, if a(z1, . . . , zm) ∈ U[[z1, z
−1
1 , . . . , zm, z

−1
m ]] and

b(w1, . . . , wr) ∈ U[[w1, w
−1
1 , . . . , wr, w

−1
r ]], then the product a(z1, . . . , zm)b(w1, . . . wr) is a well de�ned

formal distribution in the variables z1, . . . , zm, w1, . . . , wr.
Given a U-valued formal distribution a(z) =

∑
n∈Z anz

n, its residue is the linear function de�ned by

Resz a(z) = a−1.

The basic property of the residue is that Resz ∂za(z) = 0, that gives the usual integration by parts
formula

Resz ∂za(z)b(z) = −Resz a(z)∂zb(z).

Consider the algebras

Az,w = C[z, z−1, w, w−1][[
w

z
]] and Aw,z = C[z, z−1, w, w−1][[

z

w
]].

Clearly Az,w,Aw,z ⊂ C[[z, z−1, w, w−1]]. Moreover, let us denote by R the algebra of meromorphic
functions with pole only in z = 0, w = 0 and |z| = |w|. Then we have the following homomorphisms of
algebras:

iz,w : R −→ Az,w

f −→ expansion in the domain |z| > |w|,

iw,z : R −→ Aw,z

f −→ expansion in the domain |w| > |z|.
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The expansions of the function (z − w)−1 are of great interest:

iz,w(z − w)−1 = expansion of
1

z
· 1

1− w
z

= z−1
∑

n∈Z+

(w
z

)n
∈ Uz,w; (A.1)

iw,z(z − w)−1 = −expansion of
1

w
· 1

1− z
w

= −w−1
∑

n∈Z+

( z
w

)n
∈ Uw,z. (A.2)

We de�ne the formal δ-function as the element of U[[z, z−1, w, w−1]] given by

δ(z − w) = iz,w(z − w)−1 − iw,z(z − w)−1. (A.3)

Using (A.1) and (A.2) we can rewrite

δ(z − w) =
∑

n∈Z

wn

zn+1
=
∑

n∈Z

zn

wn+1
.

For any k ∈ Z+, we also have

iz,w(z − w)k =
∑

n∈Z+

(
n− k − 1

n

)
wnzk−n and iw,z(z − w)k = (−1)k

∑

n∈Z+

(
n− k − 1

n

)
znwk−n,

from which follows an important formula for the derivatives of the δ-function:

1

k!
∂kwδ(z − w) =

∑

n∈Z

(
n

k

)
wn−kz−n−1 = iz,w

1

(z − w)k+1
− iw,z

1

(z − w)k+1
. (A.4)

Indeed, we can write, for k ∈ Z+,

iz,w(z − w)−k−1 =
∑

n∈Z+

(
n+ k

k

)
wkz−k−1−n =

∑

n∈Z+

(
n

j

)
wn−kz−n−1

and

iw,z(z − w)−k−1 = (−1)k+1
∑

n∈Z+

(
n+ k

k

)
znw−k−1−n = −

∑

n≤−1

(
n

j

)
z−n−1wn−j .

Let a(z) be a formal distribution, then we have

ew∂za(z) =
∑

n∈Z,k∈Z+

anw
k ∂

k
z

k!
zn =

∑

n∈Z,k∈Z+

(
n

k

)
anw

kzn−k = iz,wa(z + w) (A.5)

where we de�ne iz,wa(z + w) =
∑
n∈Z aniz,w(z + w)n. In the same way we have that ez∂wa(w) =

iw,za(z + w).

Proposition A.1. The formal δ-function has the following properties:

1) δ(z − w) = δ(w − z);
2) ∂zδ(z − w) = −∂wδ(z − w);
3)

(z − w)m
1

n!
∂nwδ(z − w) =

{ 1
(n−m)!∂

n−m
w δ(z − w) if m ≤ n,

0 if m > n;

4) if a(z) ∈ U[[z, z−1]], then

a(z)δ(z − w) = a(w)δ(z − w) and Resz a(z)δ(z − w) = a(w);

5) eλ(z−w)∂nwδ(z − w) = (λ+ ∂w)nδ(z, w).

Proof. 1), 2) and 3) follow easily from (A.4). By 3) for m = n = 0 we know that zδ(z, w) =
wδ(z, w), then znδ(z, w) = wnδ(z, w). By linearity it follows that a(z)δ(z, w) = a(w)δ(z, w). If we now
take the residue in this last relation, we get

Resz a(z)δ(z, w) = a(w) Resz δ(z, w) = a(w),

proving 4).
Finally, we prove 5). Let us note that eλ(z−w)∂we

−λ(z−w) = λ+∂w. Indeed, take any function f(w),
then

eλ(z−w)∂we
−λ(z−w)f(w) = eλ(z−w)(λe−λ(z−w)f(w) + e−λ(z−w)∂wf(w))

= (λ+ ∂w)f(w).
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Then
eλ(z−w)∂nwe

−λ(z−w) = (λ+ ∂w)n.

Apply now to δ(z, w), then we get

eλ(z−w)∂nwe
−λ(z−w)δ(z, w) = eλ(z−w)∂nwδ(z − w) = (λ+ ∂w)nδ(z − w),

since by 4), we know that e−λ(z−w)δ(z − w) = e−λ(w−w)δ(z − w) = δ(z − w). �
If we take a(z) = δ(z − x) ∈ U[[z, z−1, x, x−1]], then, by part 4), we get the identity

δ(z − x)δ(z − w) = δ(w − x)δ(z − w), (A.6)

that holds in U[[z, z−1, w, w−1, x, x−1]].
In particular, from the proof of Proposition A.1, it follows that

Resz ϕ(z)δ(z − w) = ϕ(w)

for any test function ϕ(z) ∈ C[z, z−1]. This analogy with the Dirac δ-function in distribution theory
clari�es why δ(z − w) is called formal δ-function.
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APPENDIX B

Identities involving binomial coe�cients

In this appendix we recall and prove the well known identities involving binomial coe�cients that
we have used throughout this thesis.

We recall that binomial coe�cient is extended to negative integers n by
(
n
k

)
= (−1)k

(
k−n−1

k

)
, for all

k ∈ Z+. Thus, if n ∈ Z, by Taylor formula, we have

(1 + x)n =
∑

k∈Z+

(
n

k

)
xk,

from which follows that (
n

k

)
= Resx

(1 + x)n

xk+1
, (B.1)

for any n ∈ Z and k ∈ Z+.

Lemma B.1 (Vandermonde's identity). For all n,m ∈ Z and k ∈ Z+,

k∑

i=0

(
m

i

)(
n−m
k − i

)
=

(
n

k

)
.

Proof. By (B.1) we get
(
n

k

)
= Resx

(1 + x)n

xk+1
= Resx

(1 + x)m(1 + x)n−m

xk+1
=

= Resx


 ∑

i,j∈Z+

(
m

i

)(
n−m
j

)
xi+j−k−1


 =

k∑

i=0

(
n

i

)(
n−m
k − i

)
,

where in the last equality, in order to get the residue of the expression, we have to pick j = k−i ∈ Z+. �

Lemma B.2. For all 0 ≤ j ≤ k ≤ l,
l∑

i=j+1

(
n− i

k − j − 1

)(
i− 1

j

)
+

j∑

i=0

(
l

i

)(
n− l
k − i

)
=

(
n

k

)
.

Proof. The well known recurrence(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
(B.2)

de�nes uniquely the binomial coe�cients. Namely, assume n, k ∈ Z+, we may de�ne the binomial
coe�cient cnk ∈ Z+ as the solution of the recurrence

cnk = cn−1
k + cn−1

k−1 (B.3)

with initial condition c00 = 1 (we assume cn−1 = 0, for all n ∈ Z+). Indeed, this is a linear recurson in n,
then the space of solution is one-dimensional and, since binomial coe�cients satisfy (B.3), which is the
same as (B.2) and verify the initial condition, they are the unique solution. After, we can extend the
de�nition to negative integers values of n as already recalled.

Let us set

ckn =

l∑

i=j+1

(
n− i

k − j − 1

)(
i− 1

j

)
+

j∑

i=0

(
l

i

)(
n− l
k − i

)
.

Clearly, c00 = 1, since in this case the �rst sum does not give any contribution and the only term which
contributes in the second sum is the one corresponding to the value i = 0. Hence, the lemma is proved
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if we show that ckn satisfy recurrence (B.3). We have

cn−1
k =

l∑

i=j+1

(
n− i− 1

k − j − 1

)(
i− 1

j

)
+

j∑

i=0

(
l

i

)(
n− l − 1

k − i

)

and

cn−1
k−1 =

l∑

i=j+1

(
n− i− 1

k − j − 2

)(
i− 1

j

)
+

j∑

i=0

(
l

i

)(
n− l − 1

k − i− 1

)
.

Finally we get

cn−1
k + cn−1

k−1 =

l∑

i=j+1

((
n− i− 1

k − j − 1

)
+

(
n− i− 1

k − j − 2

))(
i− 1

j

)
+

j∑

i=0

(
l

i

)((
n− l − 1

k − i

)
+

(
n− l − 1

k − i− 1

))
.

Using (B.2) to sum terms inside parenthesis, we have that ckn satisfy recurrence (B.3). �
Lemma B.3. For all 0 ≤ k ≤ n,

n∑

i=k

(
i

k

)
=

(
n+ 1

k + 1

)
.

Proof. By (B.1) and the linearity of the residue, we get

n∑

i=k

(
i

k

)
=

n−k∑

i=0

(
i+ k

k

)
=

n−k∑

i=0

Resx
(1 + x)i+k

xk+1
= Resx

(1 + x)k

xk+1

(
n−k∑

i=0

(1 + x)i

)
=

= Resx
(1 + x)k

xk+1
· (1 + x)n+1−k − 1

x
= Resx

(1 + x)n+1

xk+2
=

(
n+ 1

k + 1

)
,

where we used the fact that Resx
(1+x)k

xk+2 = 0, since (1+x)k

xk+2 has order −2. �
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APPENDIX C

Virasoro �eld in classical W-algebras

As stated in the Introduction, in the conformal �eld theory setup, W-algebras appeared as non-linear
extension of the Virasoro algebra by primary �elds. We want to make this de�nition rigourous in the
context of Poisson vertex algebras.

In the quantum case, there is a well-known notion of vertex algebra of conformal �eld theory type.
Thus, a Poisson vertex algebra of conformal �eld theory type is the quasiclassical limit of such vertex
algebras (for the quasiclassical limit de�nition see [7]). We will give more explicit de�nitions.

De�nition C.1. Let V be a Poisson vertex algebra which contains the Virasoro Poisson vertex algebra
(see Example 1.8) as a Poisson vertex subalgebra, namely, there exists L ∈ V such that

{LλL} = (∂ + 2λ)L+ cλ3,

with c ∈ C. Then, we give the following de�nitions:

i) a ∈ V is called quasi-primary �eld if {Lλa} = (∂ + ∆aλ)a+ o(λ2);
ii) a ∈ V is called primary �eld if {Lλa} = (∂ + ∆aλ)a.

∆a is called conformal weight of a.

Once we know the notion of primary �eld, we can give the de�nition of Poisson vertex algebras of
conformal �eld theory type.

De�nition C.2. Let V be an algebra of di�erential functions in the variables L,W1, . . . ,Wl−1, endowed
with a λ-bracket satisfying the axioms of Poisson vertex algebra. We say that V is a Poisson vertex
algebra of conformal �eld theory type if

i) {LλL} = (∂ + 2λ)L+ cλ3, with c ∈ C;
ii) {LλWi} = (∂ + ∆jλ)Wj , j = 1, . . . , l − 1.

This de�nition says that a Poisson vertex algebra of conformal �eld theory type is a Poisson vertex
algebra generated, as di�erential algebra, by a Virasoro �eld and some primary �elds.

Classical W-algebras are example of Poisson vertex algebras of conformal �eld theory type. We want
to write explicitly the Virasoro �eld in the case of the Drinfeld-Sokolov Hamiltonian reduction. In this
case the primary �elds are obtained choosing V = ker ad e in Proposition 2.1 (a proof is given in [15]
and [16]).

Let g be a reductive Lie algebra with a nondegenerate invariant bilinear form (· | ·) and let us
consider the Poisson vertex algebra V(g) = V0(g) with λ- bracket given by (2.13), setting z = 0, which
we denote {·λ·}. Let {ui}i∈I , I = {1, . . . , n = dim g}, be a basis of g and {ui}i∈I be the dual basis with
respect to (· | ·).
Lemma C.3. L = 1

2

∑
i u

iui ∈ V(g) spans a centerless Virasoro Poisson subalgebra in V(g).

Proof. We have to prove that
{LλL} = (∂ + 2λ)L.

Let us assume a ∈ g, then, by Leibniz rule (1.7), we have

{aλL} =
1

2

∑

i∈I
{aλuiui} =

1

2

∑

i∈I

(
{aλui}ui + {aλui}ui

)
=

=
1

2

∑

i∈I

(
[a, ui]ui + (a | ui)uiλ+ [a, ui]u

i + (a | ui)uiλ
)
.

�
Since any element b ∈ g can be written as b =

∑
i(b | ui)ui =

∑
i(b | ui)ui, we have, using invariance

and symmetry of the bilinear form
∑

i∈I
[a, ui]ui =

∑

i,j∈I
([a, ui] | uj)ujui = −

∑

i,j∈I
([a, uj ] | ui)uiuj = −

∑

i∈I
[a, ui]u

i.
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Hence, we get
{aλL} = aλ,

and, by skew-commutativity (1.9), {Lλa} = (∂ + λ)a. Finally, we have

{LλL} =
1

2

∑

i∈I
{Lλuiui} =

1

2

∑

i∈I

(
{Lλui}ui + {Lλui}ui

)
=

1

2

∑

i∈I

(
ui(∂ + λ)ui + ui(∂ + λ)ui

)
=

= (∂ + 2λ)L.

In the proof we have also proved that a ∈ g is a primary �eld of conformal weight 1.
Let f ∈ g be a nilpotent element and {f, h = 2x, e} ⊂ g be an sl2 triple. We de�ne L(x) = L+ x′.

Lemma C.4. L(x) spans a Virasoro Poisson subalgebra of central charge c = −(x | x).

Proof. We have to show that

{L(x)
λL

(x)} = (∂ + 2λ)L(x) − (x | x)λ3.

Using the results from previous lemma and sesquilinearity (1.6), we get

{L(x)
λL

(x)} = {LλL}+ {Lλx′}+ {x′λL}+ {x′λx′} =

= {LλL}+ (λ+ ∂){Lλx} − λ{xλL} − λ(λ+ ∂){xλx} =

= (∂ + 2λ)L+ (λ+ ∂)2x− xλ2 − (x | x)λ3 = (∂ + 2λ)L(x) − (x | x)λ3.

�
Corollary C.5. L(x) ∈ W̃(g, f).

Proof. We have to show that {L(x)
λa} ∈ J̃(g, f)[λ], for all a ∈ n+. If a ∈ g, then we have

{L(x)
λx} = {Lλa} − λ{xλa} = (λ+ ∂)a− [x, a]− (x | a)λ2 = a′ + (a− [x, a])λ− (x | a)λ2.

Hence, if a ∈ n+, then

{L(x)
λa} = a′ − (a− [x, a])λ.

In particular, if a ∈ g1, then {L(x)
λa} = a′ ∈ J̃(g, f)[λ], otherwhise {L(x)

λa} ∈ J̃(g, f)[λ], since (a−[x, a] |
f) = 0. �

It follows that the element π(L(x)) is a Virasoro �eld in W(g, f).
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