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Introduction

Quantum spin chains have been introduced originally as a simple 1-D quantum model for
(anti-)ferromagnetism in a paper by Bethe [7]. The author introduced the model of nearest
neighborhood Heisenberg interaction in one dimension, and found the spectrum of the
Hamiltonian, by using the (later on celebrated) Bethe method. Some years later Hùnthel
in [14] found also the ground state energy for this model. As it is very clearly explained
in the seminal paper by Lieb, Mattis and Schultz [18], the interest in such models cannot
be limited to Bethe and Hùnthel results for several reasons: for example it is not clear how
to extent the argument to higher dimensions; more generally, the structure of the model is
more rich as it seems, and need further investigation, both in equilibrium, both out from
equilibrium.
And indeed the method used for diagonalization in [18], i.e. the spin-fermion mapping,
has revealed a crucial feature, for the study of all the models of spin chains, but also for
investigating the relation between quantum spin chains and two dimensional classical spin
models, as pointed out by the same authors in [26] (for an exhaustive account see also [10]).
This has given a bridge between one dimensional quantum systems and two dimensional
classical ones, in the sense that they can be treated with the same technique: the study of
two dimensional spin systems as a problem of many fermions [19] is still one of the more
interesting questions in mathematical physics and statistical mechanics [20].
In this sense, it has been introduced the definition of integrable spin chain, as a chain
that can be mapped in a free fermion model. In this case the mathematical formalism
simplifies crucially, as we will see, but we have to stress that the physical content, from
the ferromagnetic point of view, remains very interesting. These models, despite idealized,
are very rich, and presents all the features one could aspect from a quantum many body
system. In our work we will deal only with this kind of systems.
As simple prototypes of many body quantum systems, in the ’70, besides the investigation
of their equilibrium properties, an interest was paid also for the dynamics. On this topic,
as well as the author knows, up to now there are only results about integrable chains.
Particular attention have been paid to the non ergodic behavior exhibited by such models
[16]. It has been shown very clearly by the work of Mazur [21], Girardeau [11], Barouch
and McCoy and Dresden [6] , that the magnetization as a global obsevable is in fact non
ergodic (in further papers Barouch and McCoy extended their results also to correlation
functions).
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4 INTRODUCTION

The extension to local observables was done in the study of impurity models. Both Tjon
[27], and Abraham, Barouch, Gallavotti and Martin-Löf [1, 2, 3] have found the same kind
of behavior for the XX model with an impurity.
So, definitely, this unusual behavior of such systems could be discouraging, since, as
Lebowitz pointed out in [16] discussing just these topics: almost all physical systems are
essentially ergodic. This should mean that integrable quantum spin chains are not physical
systems, that is they are not well posed models of statistical mechanics. This is at least a
controversial idea. It is a certain fact that spin chains, as one dimensional models of mag-
netic alloys, are very intuitive models, and so common sense would say that they model
physical situations. After all, the picture about the dynamics of non integrable chains is
rather unclear, so we cannot say if the problem lies just in the integrability of such models.
This remains an open question.
It is important to point out that, from a spin chain perspective, we are not dealing with
an open quantum system: it is rather a closed system of many particles. On the other
hand one could change point of view, and choose to look to a subsystem of the chain;
this one remains coupled to the rest, and can be seen as non isolated system. A simple
configuration in this sense has been studied by Ho and Araki [12] and by Platini [23] for
the XX chain, and Aschbacher and Pillet for the XY chain [4]. They simply divide the chain
in several parts, put different temperature on each one, and look for the time evolution: this
models a spin system between reservoirs. An analogue point of view will be adopted also
in the Chapter 2 of this work; so we have to make a precision: the environment in this
configuration is tamed, in the sense that one can follow its dynamics time by time exactly.
This is a sophistication that has origin in the decomposition of a closed system in more
open subsystems. On one hand this is a choice that seems physically very natural (one
divides the universe in the laboratory plus the rest of the universe); on the other hand a
reservoir in which in principle one can easily look inside sounds a little artificial, and one
of the main characteristics of the environments, that is putting noise inside the system,
seems to be lost by an excessive simplification: mutual exchange of energy in a simple
closed system. This is not precisely the case, for example, of the spin-boson model, in
which one has at least look for the correct coupling between the two systems [17]. So,
even if mathematically everything works fine, at least for integrable chains, the physical
interpretation of such results is often incomplete and unsatisfactory. We have the feeling
that, when studying mathematically the non equilibrium properties arising in such models,
trying to develop new instruments in order to get more and more control on the system,
one should even take care in interpreting the results.
These considerations have origin also at the light of the different approaches to the dynam-
ics of open quantum systems, often developed in the opposite perspective, i.e. figuring the
reservoir as a pure source of noise. In this case, however, losing the control on the whole
system is simple. This approach has been adopted for open spin chains like systems in a
recent work by Horstmann, Cirac and Giedke [13].
Nowadays the attention to spin chains is devoted mostly to the quantum information point
of view: as a large number of two level systems in mutual interaction, they are in fact
a simple model of quantum dots. One of the main problem is the storage and transfer
of information (a state) form a point to the other of a given finite chain, that is a cogent
problem in quantum information. The literature on the argument is very wide, and we are
completely unable to give a full account, neither a significant abstract. But it is worthwhile
to notice that in the past years quantum spin chains have been implemented experimentally
by quantum simulation [24, 9, 5]. Taking apart the debate about quantum simulation be
real physics or not, the interesting datum is that we can reproduce in a laboratory a non
ergodic system. This point of view open questions and offers other perspectives.
The plan of the work is the following:
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The Chapter 1 is introductory. The models of spin chains are presented, and a little deep-
ened where it needs. Particular attention has been paid for the configuration in which we
have an integrable chain with an external field in the transversal direction. This is as to say
that the amplitude of the transversal direction of the spin operator is small, so two body
interaction can be neglected, but not one body interactions (i.e. external fields).
So we face the equilibrium properties of the XX chain in presence of an inhomogeneous
transverse field. We deal with XX chain for the only reason that it is mathematically
simpler, but it preserves all the interesting characteristics of the non rotation invariant XY
chain (when there is the field). Our results are often easy to generalize to the XY case, the
difficulties being only technical.
The spectrum of the XX chain in presence of impurities is then determined. This calcula-
tion has been done in [2] for a single impurity, and we have presented and extended that
result to the case of arbitrary number of impurities. Of course, as discussed in [16], the
crucial point is that the spectrum is made in thermodynamic limit by an isolated eigen-
value plus a continuous interval, but at finite size it is discrete: so there is no decay of
correlations.
Then we have been concerned on the problem of dynamics. We have shown that the dy-
namics is given by a one-parameter semigroup of rotation in the Heisenberg picture, for
a generic quadratic Fermi Hamiltonian, and we have found the ODE of the semigroup.
Then we develop the theory of the state and observables for such systems. Our results
are very similar to the achievements of Narnhofer in [22], who studied the problem for a
more algebraic point of view. The relation will be further discussed, but it is obvious that
a modern perspective on the same subject naturally brings something new about it. So we
have developed the theory for integrable spin chains in transverse field, having in mind the
non equilibrium configuration of Ho-Araki and Aschbacher-Pillet, and the one treated in
the sequent chapter.
In Chapter 2, as a direct application of the theory previously developed, we have dealt with
the problem of the forced oscillation of a spin, coupled with an heat bath, namely, the rest
of the chain. This is a well known problem in physics, namely the magnetic resonances
absorption problem, largely studied in the ’40, ’50. Here we have the competition of two
effects: the oscillation of the spin and the coupling with the rest of the chain. Our approach
will be to look at the first one as a perturbation of the second one, and then to treat the
problem perturbatively. This is a standard approach.
We solve the equation for the system proposed in Chapter 1, and then we calculate the
magnetization. We get information in this way on the structure of resonances.
The conclusion we get is that the coupling with the bath behaves actually as an effective
external hight field along the longitudinal direction. The temperature plays the only role to
spread the resonance peaks, in full agreement to the theory of Kubo and Tomita [15].
In this work, as general reference of quantum mechanics the textbook [8] has been used,
while for statistical mechanics the classical reference is [25], but also [10].
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CHAPTER 1

Preliminaries on Quantum Spin Chains

This is an introductory chapter on quantum spin chains. The main models are introduced,
pointing out the crucial characteristic of being integrable or not. Furthermore, the analogy
with Fermi one dimensional systems by the Jordan-Wigner transformation is deepened.
This last will be used to calculate the spectrum of some selected models, namely the XY
chain, or the XX chain in a transverse non homogeneous magnetic field. The case with
a single impurity was dealt in [2], while its generalization to many impurities as well as
we know is new. These are some of the few examples of many body quantum systems
for which the exact form of the spectrum is known. In the final two sections a theory for
the dynamics of general Hamiltonian of Fermi operators is derived, together with some
concrete application to spin chain in a transverse field. There are presented (for the first
time, at least in this form) equations encoding the dynamics of the chain.

1. The Models

In this work we will treat quantum spin systems, ruled by nearest neighborhood two body
ferromagnetic interaction on Z. The most complete Hamiltonian for describing such a
class of systems is

HN =−
N∗

∑
j=1

(Jx
j S

x
jS

x
j+1 + Jy

j S
y
jS

y
j+1 + Jz

jS
z
jS

z
j+1)+1-body interactions. (1.1)

Let us explain everything step by step. Here Jx
j , Jy

j and Jz
j for each site j are real positive

numbers, and Sx, Sy, and Sz the spin operators, defined in terms of Pauli matrices as as
Si =

1
2 σi, i = x,y,z, where

σ x =

(
0 1
1 0

)
, σ y =

(
0 −i
i 0

)
σ z =

(
1 0
0 −1

)
.

The boundary conditions are defined by the value of N∗: e.g. if N∗ = N−1 we are dealing
with open (or free) boundary conditions at extrema, while if N∗ = N we are intending that
N +1 = N, so periodic boundary conditions.
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8 1. PRELIMINARIES ON QUANTUM SPIN CHAINS

The Hilbert space this operators act on is a tensor product of one spin Hilbert spaces H j,

each spanned by the vectors spin up and spin down
∣∣∣σ±j

〉
:

H =
N∗⊗

j=1

H j.

This resulting space is usually known as Fock space.
The above Hamiltonian is rather general, and almost anything is known about the model
with inhomogenei couplings along all three directions. Actually, even in the homogeneous
case the model is very hard. Anyway, save when specified, we will generally deal with
model with homogenei couplings:

HXY Z
N =−

N∗

∑
j=1

(JxSx
jS

x
j+1 + JySy

jS
y
j+1 + JzSz

jS
z
j+1)+1-body interactions. (1.2)

For different values of Jx, Jy, Jz we get different models of interest. We will treat the simpler
case in which one of them, say Jz, is vanishing. In this case we get the XX Hamiltonian if
Jx = Jz = J

HXX
N = −J

N∗

∑
j=1

(Sx
jS

x
j+1 +Sy

jS
y
j+1)+1-body interactions

= −J
4

N∗

∑
j=1

(σ x
j σ x

j+1 +σ y
j σ y

j+1)+1-body interactions. (1.3)

This is the simplest model of quantum spin chain: it has both translational1 and rotational
symmetry, at least in the bulk Hamiltonian, i.e. the two body interaction part. Despite
these features, the model can be made rather not trivial by adding a suitable one body
interaction term in the Hamiltonian. We introduce here transverse fields, i.e. one body
interaction along the transverse direction (in this case, the z direction). We notice that an
homogeneous transverse field like

Hh
N =−h

N

∑
j=1

σ z
j

(h be a constant) does not affect very much the structure of the chain. This is easily seen
by noticing that

[HXX ,Hh] = 0

and so we can diagonalize together the two operators: this means that no new physics arises
by the presence of the homogeneous transverse term. What is really interesting is adding
an inhomogeneous transverse field of the form

Hi
N =−

N

∑
j=1

h jσ z
j ,

with generic h j depending by the site. In this case we have

[HXX ,Hi] = 2i
N

∑
j
(h j+1−h j)(σ y

j σ x
j+1−σ x

j σ y
j+1).

Therefore this is the simplest non trivial quantum spin chain.

1The translational symmetry depends (mildly) on boundary conditions: for example if we have periodic
boundary conditions it is exact, while for open boundaries is recovered only when N→ ∞.
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Another interesting model is obtained by putting Jx = J(1 + γ), Jy = J(1− γ), Jz = 0,
γ ∈ [0,1]. In this way it results defined the XY chain:

HXY
N = −J

N∗

∑
j=1

((1+ γ)Sx
jS

x
j+1 +(1− γ)Sy

jS
y
j+1)+1-body interactions

= −J
4

N∗

∑
j=1

((1+ γ)σ x
j σ x

j+1 +(1− γ)σ y
j σ y

j+1)+1-body interactions. (1.4)

In this case the rotational symmetry is broken, and the model is more complicate. For the
XY chain, the first not trivial one body interaction one can introduce is the homogeneous
field, since it does not commute with the Hamiltonian

[HXY ,Hh] = 4iγ
N

∑
j
(σ x

j σ y
j+1 +σ x

j+1σ y
j ).

From a dynamical perspective, this means that in the XX model the magnetization is always
a conserved quantity by the quantum dynamics, but in the XY model this is not the case.
This is easy to understand from the point of view of the symmetry of the system, since the
magnetization can be view as the generator of a total SU(2) rotation around the z-axis, that
is a symmetry for the XX chain and not for the XY one.
In a certain sense, γ is a measure of the degree of rotational symmetry breaking: for γ = 0
we get the rotational invariant XX model, and for γ = 1 we get the Ising chain, that is a
completely unbalanced model.
If all Jx, Jy, Jz are non zero, we have the XY Z model. The properties of this model are
dramatically different with respect to the other two, and a rigorous approach is extremely
hard even at equilibrium. The reason of that will be clarified partially in the next section.
Anyway we will not deal with XYZ chains in this work.

2. The Fermionic Picture

It turns out that there is a close relationship between spin systems and fermions in one
dimension. We have to perform a Jordan Wigner transformation [14] in order to transform
the spin operators in fermionic operators2. We put

{
c j = 1

2 (σ
x
j − iσ y

j )
⊗ j−1

k=1(−σ z
k )

c†
j = 1

2 (σ
x
j + iσ y

j )
⊗ j−1

k=1(−σ z
k ),

and their inverses 



σ x
j = (c†

j + c j)
⊗ j−1

k=1(−σ z
k )

σ y
j = −i(c†

j − c j)
⊗ j−1

k=1(−σ z
k )

σ z
j = 2c†

jc j− I.
It is easily seen that the c operators satisfies fermionic anti-commutation relations:

{c j,ck} = 0;

{c†
j ,ck} = δ jk.

The morphism of algebras naturally induces a morphism of Fock spaces: we have that each
c j (c†

j ) acts on a two level Hilbert space H ′
j as an annihilation (creation) operator, spanned

by the vectors |0〉 j (hole) and |1〉 j (particle), as usually in the theory of Fermi systems.

2It is suggestive to think at the Jordan Wigner transformation as the quantum analog of the classical trans-
formation for spin variable from ±1 values to {0,1}
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So the morphism is H →H ′ ≡⊗N∗
j=1 H ′

j , but of course not between the single Hilbert
spaces (spin and fermion). This is a peculiar feature of quantum mechanics.
However, in what follows it results more convenient to think at fermion operators as anti
commuting numbers (a-numbers) than an algebra of anti commuting operators acting on
H ′. In this way, as will be soon clear, the Hamiltonians of spin chain can be seen as
(quadratic in our cases) forms of a-numbers (that is particularly useful in diagonalization).
Therefore, up to a constant term, the Hamiltonian of the XYZ model is the same of the
following Hamiltonian for a one dimensional Fermi gas:

HN = −
N∗

∑
j=1

Sxy(c
†
jc j+1− c jc

†
j+1)−Axy

N∗

∑
j=1

(c†
jc

†
j+1− c jc j+1)

− Jz

N∗

∑
j=1

c†
jc jc

†
j+1c j+1 + chemical potential, (1.5)

where Sxy =
Jx+Jy

2 and Axy =
Jx−Jy

2 . This is a very complicate object, since it describes
a Fermi gas with particles interacting each others, where the interaction is given by the
quartic term in the Fermi operators in the Hamiltonian.
We also notice that the one body interaction, i.e. the transverse field, is nothing but the
chemical potential for the Fermi gas, since it fixes the number of modes for every j σ z

j =
2n j− I. Thus the magnetization becomes the total number of fermions

1+mN

2
=

N

∑
j=1

σ z
j =

N

∑
j=1

n j. (1.6)

It is interesting to notice that in the XY Z model a chemical potential with strength propor-
tional to Jz arises without any transverse field in the original spin model. For example, if
we choose periodic boundary conditions, we get just the additional term

Jz

N

∑
j=1

n j

that can be easily eliminated by a suitable counter-term in the spin Hamiltonian

−Jz

2

N

∑
j=1

σ z
j .

In this case the model has been exactly solved in [6].
Anyway, as previously said, we shall limit ourself to study the free fermion theory, in which
one has Jz = 0. In particular, in the units in which Jx = 1 and Jy = γ we get the fermionic
analog of the XY chain in a transverse constant field:

2HN(γ,h) =−
N

∑
j=1

(c†
jc j+1− c jc

†
j+1)− γ

N

∑
j=1

(c†
jc

†
j+1− c jc j+1)−2

N

∑
j=1

h jc
†
jc j. (1.7)

This last will be the starting point of all our consideration during the whole work.

3. Diagonalization of the XY Hamiltonian

The first step for investigating the properties of this model is to recall the procedure of
diagonalization developed in [15] (see also [5]). Hereafter will use mainly the fermions.
Let us perform a Fourier transform on the Fermi operators:

{
aq = 1√

N ∑N
j=1 eiq jc j

a†
q = 1√

N ∑ j e−iq jc†
j

(1.8)
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where q =−π, ...,π , with the inverses
{

c j = 1√
N ∑q e−iq jaq

c†
j = 1√

N ∑q eiq ja†
q

(1.9)

In terms of these new operator the Hamiltonian becomes (up to the irrelevant addendum
∑q eiq = 1)

2HN(γ,h) = −∑
q
(2cosq+2h)a†

qaq + e−iqa†
qa†
−q− eiqaqa−q

= −∑
q

[
(cosq+h)(a†

qaq +a†
−qa−q)− iγ sinq(a†

qa†
−q +aqa−q)

]

= −∑
q

Hq(γ,h), (1.10)

bearing in mind that

∑
q

g(q)αqα−q =
1
2 ∑

q
(g(q)−g(−q))αqα−q

∑
q

g(q)αqβq =
1
2 ∑

q
g(q)αqβq +g(−q)α−qβ−q

αqβq =
1
2
[αq,βq]+

δqpδαβ †

2
, (1.11)

for every couple of a-numbers {αq,βp} = δqp (the last line will be useful in the next
considerations).
We notice that all the Hq acts in independent subspaces, that is

2Hq = I⊗ ...⊗
[
(cosq+h)(a†

qaq +a†
−qa−q)− iγ sinq(a†

qa†
−q +aqa−q)

]
⊗ ...⊗ I

and so we always have [Hp,Hq] = 0 ∀p,q. This last simply means that we can diagonalize
all the modes independently, thus we can operate fixing q. Each Hq is a quadratic form in
the creation and annihilation operators. In order to render it more symmetric, we will write
(up to a constant term cosq+h)

4Hq =
1
2

(
(cosq+h)([a†

q,aq]+ [a†
−q,a−q])− iγ sinq([a†

q,a
†
−q]+ [aq,a−q])

)
,

or in matrix form

4Hq =
(

a†
q aq a†

−q a−q

)



Γ1 0 0 −iΓ2
0 −Γ1 −iΓ2 0
0 iΓ2 Γ1 0

iΓ2 0 0 −Γ1







aq
a†

q
a−q

a†
−q


 (1.12)

with Γ1 = cosq+ h and Γ2 = γ sinq. This form can be easily diagonalized obtaining the
eigenvalues for the energy of the system:

E2
q = (cosq+h)2 + γ2 sin2 q. (1.13)

This formula gives us informations on the phase diagram of the system. For γ = 0 we
recover the XX model: it exhibits a transition for h = 1, since for h > 1 it presents a
spectral gap (the lowest eigenvalue is greater than zero) and instead for h < 1 the spectrum
is a continuum interval. For γ 6= 0 h = 1 is always a singular point, since, ∀γ , we always
have continuous spectrum; as well as h 6= 1 one again has a spectral gap.
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The Bogoliubov-Valatin transformation [8][21] W that diagonalizes the matrix can be di-
rectly verified be the tensor product of (SU(2)×SU(2)) rotations around the y-axis [15][2]:

W =
π⊗

q=−π
Wq,

Wq =

(
Icosφq −σ y sinφq

σ y sinφq Icosφq

)
, (1.14)

that is as to say that the Hamiltonian is diagonal in the new operators

bq = aq cosφq + ia†
−q sinφq

b†
q = a†

q cosφq− ia−q sinφq, (1.15)

with cos2φq = (cosq+h)/Eq, sinφq =−γ sinq/Eq. Sometimes it can be useful to get rid
of imaginary unit and make everything real. Let us introduce the unitary matrix

T =

(
ei π

4 0
0 e−i π

4

)
,

with σ yT = T †σ y, and T †σ yT = (T †)2σ y =−iσ zσ y =−σ x, and define3

W̃q =

(
Icosφq −T †σ yT sinφq

T †σ yT sinφq Icosφq

)
,

as the transformation that diagonalizes our bilinear form with phase adjustment. Thus for
the new operator so obtained we have

b̃q = aq cosφq +a†
−q sinφq

b̃†
q = a†

q cosφq +a−q sinφq, (1.16)

Anyway the Hamiltonian in the new variables becomes

−∑
q

Hq = −∑
q

1
4

(
Eq[b†

q,bq]+Eq[b
†
−q,b−q]

)

= −1
2 ∑

q

(
Eqb†

qbq +Eqb†
−qb−q

)

= −∑
q

Eqb†
qbq. (1.17)

In the same way it is
−∑

q
Hq =−∑

q
Eqb̃†

qb̃q.

It turns useful to explicitly write down the transformation that diagonalized our initial
Fermi Hamiltonian in c,c†; denoting by b≡ (bq,b†

q) and c≡ (c j,c
†
j) one has

b =U†cU

where U =W ◦FT is the composition of a Fourier Transform and our B-V Transformation.
Thus the relations defining U (or, better, its matrix element Uq j) are





bq = 1√
N ∑N

j=1 eiq j
(

cosφqc j + isinφqc†
j

)

b†
q = 1√

N ∑N
j=1 e−iq j

(
cosφqc†

j − isinφqc j

)
,

(1.18)

3It seems to the author more important to write the B-V transform in this form in order to stress its clear
rotational nature. Of course, for SU(2) rotations, phase shift, even if meaningless from a physical point of view,
can change the transformation.
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with the obvious (more useful) inverses:
{

c j = 1√
N ∑q e−iq j cosφqbq + ieiq j sinφqb†

q,

c†
j = 1√

N ∑q eiq j cosφqb†
q− ie−iq j sinφqbq.

(1.19)

4. Diagonalization in Presence of an Inhomogenous Field

Now we concern of generalizing the previous procedure in the case where the external field
is no longer constant. This breaks the translational symmetry, removing the degeneracy
of the eigenvalues for q→−q. The obvious consequence is the occurrence of new non
conserved observables, and makes more difficult the diagonalization of the Hamiltonian.
We will start, for sake of simplicity, with the simpler case of the XX chain, where the field
is acting only in one site, say k. This has been done for the first time in [2] (see also [1]).
Hereafter we will refer to this as the XX impurity model.
The Hamiltonian of the model is

HN =
N−1

∑
j=1

(
σ x

j σ x
j+1 +σ y

j σ y
j+1

)
+hσ z

k , (1.20)

that reads, in terms of fermionic operators, as formula (1.7) with open boundaries, γ = 0
and h j = hδ jk, i.e.

2HN =−
N−1

∑
j=1

(c†
jc j+1− c jc

†
j+1)−hc†

kck. (1.21)

Also here we shall perform a Fourier transform of the fermionic operators like (1.8), in
order to get

HN =−∑
q

[
cosq(a†

qaq +a†
−qa−q)

]
− h

N ∑
q,p

ei(q−p)ka†
qap. (1.22)

As a consequence of translational symmetry breaking, we have that the last expression can
be no longer written as a tensor product of operators acting in independent subspaces for
each q. We need further manipulations. Following [2], we have to solve the following
secular equation in order to diagonalize the Hamiltonian:

∑
p,q

Uqα(cosqδqp +
h
N

ei(q−p)k)U†
pβ = Eα δαβ .

It is easily seen that, for elementary properties of unitary matrices, this equation is equiva-
lent to

(Eα − cosq)Uqα =
h
N ∑

p
e−i(q−p)kUpα , (1.23)

in the sense that a matrix with entries satisfying the last equation diagonalizes the Hamil-
tonian (and viceversa). A first class of eigenvalue are given by Eα : Eα = cosqα , i.e. the
unperturbed eigenvalues. In this case we find the transformation according to the relation

∑
p

eipmUpα = 0,

meaning that each eigenvector has to be orthogonal to the mode m. If we expand

Upα =
1
N ∑

k
ck(qα)eikp +dk(qα)e−ikp,

since the condition of unitarity is

∑
k

c∗k(qα)ck(qα)+d∗k (qβ )dk(qβ ) = δαβ
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and the condition of orthogonality cm(qα) = −d−m(qα), we can simply choose ck(qα) =

−eiqα (k−m)/
√

2 and dk(qα) = eiqα (k+m)/
√

2, such that:

Up,α =
1√
2N

N

∑
k

(
−eik(q+qα )e−iqα m + e−ik(q−qα )eiqα m

)
, (1.24)

or
Up,α =

1√
2
(δqqα e−iqα m−δ−qqα eiqα m). (1.25)

We notice that
Uq,α ≡Uq,qα =Uq,−qα ,

meaning that to the eigenvalue Eα = cosqα corresponds only one eigenvector, that is to
say that we are considering only the qα ≥ 0; therefore there are only N/2 solution of this
kind (since the perturbation breaks the translation invariance removing the degeneracies).
The transformations giving the new operators are then (bα = bqα )

bα =
1√
2

(
eiqα maqα − e−iqα ma−qα

)
(1.26)

b†
α =

1√
2

(
e−iqα ma†

qα − eiqα ma†
−qα

)
, (1.27)

together with their inverses

aq = sign(q)e−i|q|mb|q| (1.28)

a†
q = sign(q)ei|q|mb†

|q|. (1.29)

In order to recover the other N/2 eigenvalues and eigenvectors, we have to come back to
(1.23). If Eα 6= cosqα we have, with a little manipulation

∑
q

eiqmUqα =
h
N ∑

q

1
Eα − cosq ∑

p
eipmUpα

i.e. the eigenvalues are given (even in thermodynamic limit) by the zeros of the function

FN(E) = 1− h
N ∑

q

1
Eα − cosq

.
N→∞

(1.30)

Then we look for a transformation unitary matrix of the form

Upα =
1
N

N

∑
k=1

ck,α e−ipk,

that in (1.23) brings to

Uqα =
h
N

e−iqmcmα

Eα − cosq
,

with cmα be determined by the normalization condition to

|cmα |−2 =

(
h
N

)2

∑
q

1
(Eα − cosq)2 .

Definitely one has

Uqα =
1

Nα

e−iqm

Eα − cosq
, (1.31)

where Nα = |cmα |h/N. Thus we can give the formulas for the other N/2 operators

bα = ∑
q

1
Nα

e−iqm

Eα − cosq
aq (1.32)

b†
α = ∑

q

1
Nα

eiqm

Eα − cosq
a†

q, (1.33)
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and the inverses

aq = ∑
α

1
Nα

eiqm

Eα − cosq
bα (1.34)

a†
q = ∑

α

1
Nα

e−iqm

Eα − cosq
b†

α . (1.35)

Often it results useful to write down (1.34) and (1.35) in a different form, basically using
the residues theorem4:

aq =
1

2πi

∮
d logFN(E)

1
Nα

eiqm

Eα − cosq
bE (1.36)

a†
q =

1
2πi

∮
d logFN(E)

1
Nα

e−iqm

Eα − cosq
b†

E . (1.37)

Thus we have that, at fixed N, the spectrum of the XX chain with a single impurity is
point-wise and it is given in the thermodynamic limit by all the zeros and the poles of the
function

F(E) = 1− h
π ∑

q

1
E− cosq

.

Now we can take the thermodynamic limit: we have that the unperturbed eigenvalues fill
the interval [−1,1], and since for |E|> 15

FN(E)−→F(E) = 1− h
π

∫ π

−π
dq

dq
E− cosq

= 1− hsign(E)√
E2−1

,

we obtain another isolated energy level at E = sign(h)
√

1+h2. Therefore we can resume
our result in the following

THEOREM 1. The spectrum of the XX chain with a single impurity at every finite N
is point wise, and it is given by all the zeros and the poles of the function FN(E); in the
thermodynamic limit instead it becomes an interval plus an isolated value, namely the set
[−1,1]∪{sign(h)

√
1+h2}. This represents as well the set of all zeros and poles of the

limiting function F(E).

We notice that the set of eigenvalues can be characterized as the set of all the singularities
(the entire interval [−1,1] in this case) and zeros (only one in this case) of F(E), as it is at
fixed N.
The structure of this theorem permits to be generalized to the case of completely inhomo-
geneous transverse field.
We can split the field as h+ h j, where h is the mean value and h j, such that ∑ j h j = 0;
they can be interpreted as frozen fluctuation of the transverse field around its mean value,
in order to maintain the impurity point of view.
The Hamiltonian of the XX chain in an inhomogeneous transverse field is

HN =
N−1

∑
j=1

(
σ x

j σ x
j+1 +σ y

j σ y
j+1

)
+

N

∑
j=1

(h j +h)σ z
j , (1.38)

or, in terms of fermionic operators (see formula (1.7))

2HN =−
N−1

∑
j=1

(c†
jc j+1− c jc

†
j+1)−2

N

∑
j=1

(h j +h)c†
jc j. (1.39)

By taking the lattice Fourier Transform we get

HN =−∑
q

[
(cosq+h)(a†

qaq +a†
−qa−q)

]
− 1

N ∑
k

∑
q,p

hkei(q−p)ka†
qap. (1.40)

4It can be easily checked that F ′(E) = N (E) has no poles.
5This is the form that condition Eα 6= cosqα assumes when N→ ∞.
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We can follow the same strategy used in the simpler case of only one impurity. At first we
write the secular equation:

∑
p,q

Uqα((cosq+h)δqp +
1
N ∑

k
hkei(q−p)k)U†

pβ = Eα δαβ .

or equivalently the equations for the eigenvectors

(Eα − cosq)Uqα =
1
N ∑

p,k
hke−i(q−p)kUpα . (1.41)

Again we can look for eigenvalues of the form Eα = cosqα , with eigenvectors given by
the condition

1
N ∑

p,k
hke−i(q−p)kUpα = 0.

It is easy to imagine that we can generalize the procedure adopted before in the completely
inhomogeneous case. Thus we have to sum over all the sites the transformation (1.25),
with a suitable normalization, obtaining

Up,α =
1√
2h2

N

∑
m=1

hm(δqqα e−iqα m−δ−qqα eiqα m). (1.42)

with h2 = ∑k h2
k . Again we have

Uq,α ≡Uq,qα =−Uq,−qα ,

thus the same eigenvector is associated to the eigenvalues corresponding to ±qα , and we
can choose all the qα positive as well. Therefore we have found N/2 eigenvectors and
eigenvalues, and the new operators are given by

bα =
1√
2N ∑

m

(
e−iqα maqα − eiqα ma†

−qα

)
(1.43)

b†
α =

1√
2N ∑

m

(
eiqα ma†

qα − e−iqα ma†
−qα

)
,

with the inverses

aq = sign(q)∑
m

ei|q|mb|q| (1.44)

a†
q = sign(q)∑

m
e−i|q|mb†

|q|.

Starting by (1.41) we can recover the form of the other N/2 eigenvalues and eigenvectors.
Remembering that ck,α is the k-th Fourier coefficient of Uqα , i.e.

Uqα =
1
N ∑

k
ckα e−ipk,

we have

Uqα =
1
N ∑p,k hke−i(q−p)kUpα

Eα − (cosq+h)
,

and so, multiplying by h̃(q) (where ·̃q is the Fourier transform on the lattice calculated in
q) and summing over q we get

∑
q

Uqα h̃(q) =
1

N2 ∑
q

∑
j
∑
k

eiq(k− j)h jck,α

=
1
N ∑

k
hkck,α

= ∑
q

h̃(q)
Eα − (cosq+h)

(
1
N ∑

k
hkck,α e−iqk

)
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The main idea here is that, in analogy with the previous case, ∑k hkckα is a counter of the
number of impurities in our system. We notice that, as in the single impurity case, the sum
has to be pursued on the sites containing impurities: this means that ckα = 0 if hk = 0. This
is reflected also in the normalization conditions of the eigenvectors:

|ckα |2 =
(

N
hk

)2

N 2
α if hk 6= 0,

and

Uqα =
1

Nα
∑

k:hk 6=0

e−iqk

Eα − (cosq+h)
. (1.45)

So we can take ck = 1/hk if hk 6= 0, zero otherwise, we can define dk = 0,1, as the impurity
indicator at the site k, and

1
N ∑

k
hkckα =

1
N ∑

k
dk = dN ∈ [0,1] (density of impurities)

1
N ∑

k
e−iqkhkckα =

1
N ∑

k
dke−iqk = d̃−q.

At this point, we can rewrite (1.45) as

dN = ∑
q

h̃(q)d̃∗(q)
Eα − (cosq+h)

(1.46)

and define

FN(Eα)≡ 1− 1
dN

∑
q

h̃(q)d̃∗(q)
Eα − (cosq+h)

, (1.47)

the other N/2 eigenvectors are given by the zeros of FN(E). So in analogy with the single
impurity system, we have that at fixed N the spectrum is given by the set of zeros and poles
of FN(E) and we can write the transformations formulas:

aq = ∑
k:hk 6=0

1
2πi

∮
d logFN(E)

1
Nα(E,h)

eiqk

Eα − (cosq+h)
bE (1.48)

a†
q = ∑

k:hk 6=0

1
2πi

∮
d logFN(E)

1
Nα(E,h)

e−iqk

Eα − (cosq+h)
b†

E . (1.49)

For a given sequence of distribution of impurities, provided the existence of a limit distri-
bution for N→ ∞ with density d, we can state the following

THEOREM 2. The spectrum of the XX chain with an arbitrary number of impurities is
given in the thermodynamic limit by the set of zeros and the poles of the function F(E) ≡
limN FN(E). At finite size N, it is given by a discrete set, while in the thermodynamic limit
it becomes a continuous interval plus isolated points.

It is easily seen that in the case of a single impurity, hk = hδ jk, the equations (1.47), (1.42)
and (1.45) reduce to (1.30), (1.25), (1.31).
When we have an inhomogeneous field non vanishing in each site, we see by our formula
that the fluctuations automatically compensate each other, and only the mean value deter-
mines the spectrum: if d j = 1 always, we have that FN(E) = 0 only if E± =±1+h, that is
the lifting of the spectrum one has in presence of a constant magnetic field.
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5. Time Evolution I: Generalities

Let us consider a system ruled by a time dependent Hamiltonian Ht . We will concern
about the dynamics of certain quadratic Hamiltonian in fermionic operators that reads in
the Fourier space as

H(t) = ∑
qp

αqp(t)a†
qap +βqp(t)a†

qa†
p +β ∗qp(t)aqap,

with, for t ′ 6= t ′′,

[H(t ′),H(t ′′)] 6= 0.

Indeed, as previously noticed, in the models of our interest we have that the Hamiltonian
has two non commutative parts: the bulk part does not commute with the transverse field.
This leads to non trivial dynamics, as well known in quantum mechanics [10].
Initially, at t = t0, we can image that the system is at equilibrium, with Hamiltonian H0
(and [H0,H(t)] 6= 0). Given a generic observable f , its mean will be given by

〈 f 〉0 =
Tr(ρ0 f )

Trρ0
,

where ρ0 = e−βH0 . Thus we want to evolve the state, i.e. the density matrix ρt , via quantum
dynamics. This is done by the Quantum Liouville Equation:

idtρt = [Ht ,ρt ],

that leads to

ρt = T
(

ei
∫ t

0 Ht′ρ0e−i
∫ t

0 Ht′
)
.

where T as usual indicates the time ordered product. The time dependent expectation value
of an observable is thus given by

〈 f 〉t =
Tr(ρt f )

Trρt
.

The Quantum Liouville Equation is generally very difficult to solve, even in our simple
class of systems. We must adopt a divers (but of course equivalent) point of view.
In the Heisenberg picture, the time evolution is given by

aq(t) = T
(

ei
∫ t
t0

dt ′H(t ′)aqe−i
∫ t
t0

dt ′H(t ′)
)

; (1.50)

we will show that the solution of this equation is given by the flux along the trajectories of
the 1-parameter semigroup of B-V transformation given by

aq(t) = ∑
p

Aqp(t)ap +Bqp(t)a†
p, (1.51)

with Aqp(t0) = δqp and Bqp(t0) = 0. We know that (1.50) solves the Ehrenfest equation

idtaq(t) = [aq,H(t)],

and so we look for a solution satisfying

idtaq(t) = ∑
p

iȦqp(t)ap + iḂqp(t)a†
p. (1.52)
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In order to compare the last two formulas, we have to evaluate the commutator in the
Ehrenfest equation. This is easily done, noticing that

[
ap,a

†
q′ap′

]
= δq′pa′p

[
ap,a

†
q′a

†
p′

]
= δq′pa†

p′ −δpp′a
†
q′[

ap,aq′ap′
]

= 0
[
a†

p,a
†
q′ap′

]
= −δpp′a

†
q′[

a†
p,a

†
q′a

†
p′

]
= 0

[
a†

p,aq′ap′
]

= δpp′aq′ −δpq′ap′ .

Hence we have

idtaq(t) = ∑
q′p′

ap′
(

Aqq′(t)αq′p′(t)+Bqq′(t)(β ∗q′p′(t)−β ∗p′q′(t))
)

+ ∑
q′p′

a†
p′
(
−Bqq′(t)αq′p′(t)+Aqq′(t)(βq′p′(t)−βp′q′(t))

)

and comparing the last formula with (1.52), we get

iȦqp(t) = ∑
q′

Aqq′(t)αq′p(t)+Bqq′(t)(β ∗q′p(t)−β ∗pq′(t)) (1.53)

iḂqp(t) = ∑
q′
−Bqq′(t)αq′p(t)+Aqq′(t)(βq′p(t)−βpq′(t)). (1.54)

So equations (1.53) and (1.54) represent the evolution equations for the 1-parameter semi-
group of B-V transformations that gives quantum dynamics. Of course, all the information
for temporal dependance of observables (and thus, the state) is encoded in these equations.
Indeed we have that a generic observable f (·, t) has to be of the following form [19]:

f (S, t) = ∑
V⊆S

f (V, t)
1

N|V | ∑
q j ,p j , j∈V

: ∏
j∈V

ηq j ξq j : e∑ j i(p j−q j) j +h.c.

where S is the support of the chain in Z, :: denotes the Wick product [22] for the operators

ηq = a†
q +a−q

ξq = a†
−q−aq.

Since the Hamiltonian is quadratic, the thermal average is evaluated by using the Wick
theorem [22]:

〈 f (S, t)〉 = ∑
V⊆S

f (V, t)
1

N|V | ∑
q j ,p j , j∈V

〈
: ∏

j∈V
ηq j ξq j :

〉
e∑ j i(p j−q j) j +h.c.

= ∑
V⊆S

f (V, t)
1

N|V | ∑
q j ,p j , j∈V

e∑ j i(p j−q j) j ∑
all pairings ΠV

(−1)π ′ ∏
(h,k)∈ΠV

〈
: ηqhξqk :

〉
+h.c.

where π ′ gives the parity of a given pairing ΠV of the set {q j, p j : j ∈ V}. In principle
the unknown are just the functions f (V, t). We can solve that problem by switching to the
Heisenberg picture, and computing

〈 f (S,0)〉t = ∑
V⊆S

f (V,0)
1

N|V | ∑
q j ,p j , j∈V

e∑ j i(p j−q j) j ∑
all pairings ΠV

(−1)π ′ ∏
(h,k)∈ΠV

〈
: ηqh(t)ξqk(t) :

〉
+h.c.
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bearing in mind that now

ηq(t) = ∑
p

(
A∗qp(t)+B−q,p(t)

)
a†

p +
(
B∗qp(t)+A−q,p(t)

)
ap

ξq(t) = ∑
p

(
A∗−q,p(t)−Bq,p(t)

)
a†

p +
(
B∗−q,p(t)−Aq,p(t)

)
ap,

and that the averages with respect to the initial density matrix ρ0 are

〈
a†

qap
〉

=
δqp

1+ eβωp
〈
a†

qa†
p
〉

= 0
〈
aqap

〉
= 0,

where ωp are the proper frequencies (or, equivalently in our units, the energies) of the
system at initial time. We have that for a given pair q̄, p̄ the only contributing term is

σq̄p̄(β , t) = ∑
q′

A∗q̄q′(t)B
∗
−p̄q′(t)−B−q̄q′(t)Ap̄q′(t)+B∗−q̄q′(t)B−p̄q′(t)−A∗q̄q′(t)A p̄q′(t)

1+ eβ cosq′ .

(1.55)
Therefore the time dependence of the state of the system is all in that formula. We have

〈 f (S,0)〉t = ∑
V∈S

f (V,0)
1

N|V | ∑
q j ,p j , j∈V

e∑ j i(p j−q j) j ∑
all pairings ΠV

(−1)π ′ ∏
(h,k)∈ΠV

σq̄ p̄(β , t)+h.c.

= ∑
V∈S

f (V,0)Σ(V,β , t)

with

Σ(V,β , t) =
1

N|V | ∑
q j ,p j , j∈V

e∑ j i(p j−q j) j ∑
all pairings ΠV

(−1)π ′ ∏
(h,k)∈ΠV

σq̄p̄(β , t)+h.c.

(1.56)
is indeed, at least formally, the state of the system6.
Of course, since Heisenberg and Schrödinger pictures are equivalent, it is 〈 f 〉t = 〈 f (t)〉.
So, at least in principle, the problem of evaluating the quantum dynamics for free fermions,
i.e. quadratic form Hamiltonians, i.e. one dimensional integrable spin systems, far or close
to equilibrium, is reduced to solve the coupled equations (1.53) and (1.54).

6. Time Evolution II: Spin Chains in a Transverse Field

Let us now check how the formalism developed in the last section works when a transverse
field is applied. We will proceed again by steps: at first we will analyze the XX model
(with impurities), and then the XY model; as previously seen, the main difference between
the two is the need of a B-V transformation in the second one.
In the XX impurity Hamiltonian we have, in the language of the previous section, that:

αqp = (cosq+h)δqp +hq−p(t)

βqp = 0,

where we let vary with time the magnetic field acting on the impurities, while the coupling
remains constant.

6We notice that as well as N remains finite, our derivation is exact. The problems could arise when N→ ∞,
when one should prove that the measures σ and Σ approach to a meaningful limit. This will be done for specific
cases.
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Since the term βqp vanishes, we have that equations (1.53) and (1.54) decouple (they are
in fact the same equation), and the dynamics of the system is simply described only by
Aqp(t). As will be clearer in the study of the XY model, this is connected to the lack of
necessity of performing a B-V transformation in the XX chain. Hence the equation we are
interested in is

iȦqp(t) = Aqp(cos p+h)+∑
q′

Aqq′(t)hq′−p(t). (1.57)

Now it results convenient to define the quantity

Xk
q (t) = ∑

q′
Aqq′(t)e

−ik(q′−q)

associated to the k-th impurity. In such a way equation (1.57) becomes

iȦqp(t) = Aqp(cos p+h)+
1
N ∑

k
hk(t)Xk

q (t)e
−ik(q−p), (1.58)

and can be solved formally by Duhamel principle in an interval [t0, t]:

Aqp(t) = e−i(cos p+h)(t−t0)δqp−
i
N ∑

k
e−i(q−p)k

∫ t

t0
dt ′e−i(cos p+h)(t−t ′)hk(t ′)Xk

q (t
′).

Now let us call ωp = (cos p+h) the proper frequencies of the system. By direct calculation
we get a self consistent recursive equation for the source term:

Xk
q (t) = e−iωq(t−t0)− i

N ∑
j

∫ t

t0
dt ′
(

∑
p

ei(q−p)(k− j)e−i(cos p+h)(t−t ′)

)
h j(t ′)X j

q (t
′). (1.59)

Passing to the limit N→ ∞ requires a little care. In primis we have that Xp(t)→ X(p, t) ∈
[−π,π]× [0,+∞). Then for sake of clearness we are going to distinguish the case of single
impurity from the others. In this case we have the evolution equation given by

X(q, t) = e−iωq(t−t0)− i
∫ t

t0
dt ′e−ih(t−t ′)J0(t− t ′)h(t ′)X(q, t ′). (1.60)

since
1
N ∑

p
e−i(cos p+h)(t−t ′) −→

N→∞
e−ih(t−t ′)J0(t− t ′).

Equation (1.60) is simply generalized in the case of finitely many impurities at finite dis-
tance, and reads as

Xk(q, t) = e−iωq(t−t0)− i∑
j

eiq(k− j)
∫ t

t0
dt ′e−ih(t−t ′)J j−k(t− t ′)h j(t ′)X j(q, t ′), (1.61)

and for infinitely many, with a suitable sequence of distributions with a well definite density
in the thermodinamic limit, defined X(k, p, t) : Z× [−π,π]× [0,+∞)→ C, it is

X(k,q, t) = e−iωq(t−t0)−2πi∑
j∈Z

∗eiq(k− j)
∫ t

t0
dt ′e−ih(t−t ′)J j−k(t− t ′)h j(t ′)X( j,q, t ′), (1.62)

since ∫ π

−π
d pe−ip(k− j)e−i(cos p+h)(t−t ′) = 2πe−ih(t−t ′)J j−k(t− t ′).

With ∑∗ we have indicated a suitable measure on Z defined as follows: we have seen that
hk = dkhk where dk is the indicator of the impurity at k-th site. Thus for a given sequence
f N
k → fk defined in invading subsets of Z (supports of the chain), say SN , one has [11]

1
N ∑

k∈SN

hk f N
k = ∑

k∈SN

dk

N
hk f N

k = ∑
k∈SN

∗hk f N
k −→N→∞ ∑

k∈Z

∗hk fk,
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and it is easily seen that

(min
k

hk)(min
k

fk)≤ ∑
k∈Z

∗hk fk ≤ (max
k

hk)(max
k

fk).

When we have finitely many impurities at a distance growing with N we get another inter-
esting equation. In order to fix the ideas we will analyze the case with only two impurities.
Thus equation (1.59) reads

X1
q (t) = e−iωq(t−t0)− i

N

∫ t

t0
dt ′
(

∑
p

e−i(cos p+h)(t−t ′)

)
h1(t ′)X1

q (t
′)

− i
N

∫ t

t0
dt ′
(

∑
p

ei(q−p)`e−i(cos p+h)(t−t ′)

)
h2(t ′)X2

q (t
′)

X2
q (t) = e−iωq(t−t0)− i

N

∫ t

t0
dt ′
(

∑
p

e−i(cos p+h)(t−t ′)

)
h1(t ′)X1

q (t
′)

− i
N

∫ t

t0
dt ′
(

∑
p

e−i(q−p)`e−i(cos p+h)(t−t ′)

)
h2(t ′)X2

q (t
′)

where ` : 0 < limN `/N < ∞ is the growing distance between the two impurities. Since
` ∝ N, we can choose it such that ei`q = 1. This renders very simple the limiting form of
the previous equations for N→ ∞:

X1
q (t) = e−iωq(t−t0)− i

∫ t

t0
dt ′J0(t− t ′)h1(t ′)X1

q (t
′)

− i
N

∫ t

t0
dt ′J0(t− t ′)h2(t ′)X2

q (t
′)

X2
q (t) = e−iωq(t−t0)− i

N

∫ t

t0
dt ′J0(t− t ′)h1(t ′)X1

q (t
′)

− i
N

∫ t

t0
dt ′J0(t− t ′)h2(t ′)X2

q (t
′)

so X1
q (t) = X2

q (t) = Xq(t), i.e. the impurities feel each other in a very weak way, and the
perturbation acts as a mean field:

Xq(t) = e−iωq(t−t0)− i
∫ t

t0
dt ′J0(t− t ′)

(
h1(t ′)+h2(t ′)

)
Xq(t ′). (1.63)

The generalization to an arbitrary (finite) number of far impurities is straightforward.
Let us analyze now the more involved case of XY model with impurities. We have:

αqp = (cosq+h)δqp +hq−p(t)

βqp = −iγ sinqδp,−q.

Therefore the evolution equation for the dynamics reads

iȦqp(t) = Aqp(t)(cos p+h)+ iγ sin pBq,−p(t)+∑
q′

Aqq′(t)hq′−p(t)

iḂqp(t) = −Bqp(t)(cos p+h)−2iγ sin pAq,−p(t)−∑
q′

Bqq′(t)hq′−p(t).

It is convenient to analyze in primis the unperturbed system (h = 0): once we have reduced
the system in diagonal form, the analysis is identical to the one of the XX model. That is
done with the same B-V transformation used before. It is more handsome to arrange it in
the vectorial form

i ˙Aqp(t) = ΓpAqp(t0)
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with

Aqp =




Aq,p
Bq,p

Aq,−p
Bq,−p




and

Γp =




(cos p+h) 0 0 −iγ sin p
0 −(cos p+h) −iγ sin p 0
0 iγ sin p (cos p+h) 0

iγ sin p 0 0 −(cos p+h)


 .

We have already diagonalized that matrix in section 3, with the unitary matrix (1.14). Thus
the system reads in eigenvariables (we remind: E2

p be given by (1.13)) as

i ˙A ′
qp(t) =




Ep 0 0 0
0 −Ep 0 0
0 0 Ep 0
0 0 0 −Ep


A ′

qp(t0)

solved by

A′qp = e−iEp(t−t0)A′qp(t0)

B′qp = eiEp(t−t0)B′qp(t0),

where we again make the choice of equilibrium initial conditions

A′qp(t0) = δqp cosφq

B′qp(t0) = −iδq,−p sinφq.

In the original variables the solution instead is

Aqp(t) = δqp

(
cos(Ep(t− t0))− i

cos p+h
Ep

sin(Ep(t− t0))
)

Bqp(t) = −γ
sin p
Ep

δq,−p sin(Ep(t− t0)).

When a perturbative transverse field is added, we can define as before the variables:

Xk
q (t) = ∑

q′
Aqq′(t)e

−ik(q′−q)

V k
q (t) = ∑

q′
Bqq′(t)e

−ik(q′+q),

in such a way the evolution equation are

iȦqp(t) = Aqp(t)(cos p+h)+ iγ sin pBq,−p(t)+
1
N ∑

k
hk(t)Xk

q (t)e
−ik(q−p)

iḂqp(t) = −Bqp(t)(cos p+h)−2iγ sin pAq,−p(t)−
1
N ∑

k
hk(t)V k

q (t)e
−ik(q−p).

Since the relations linking A,B with X ,V are linear, we have

X ′kq (t) = ∑
q′

A′qq′(t)e
−ik(q′−q)

V ′kq (t) = ∑
q′

B′qq′(t)e
−ik(q′+q),
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and also the following equations for the eigen-variables

iȦ′qp(t) = EpA′qp(t)+
1
N ∑

k
hk(t)X ′kq (t)e−ik(q−p) (1.64)

iḂqp(t) = −EpB′qp(t)−
1
N ∑

k
hk(t)V ′kq (t)e−ik(q−p). (1.65)

now decoupled, and formally identical to (1.58). Thus they have a formal solution by
Duhamel principle:

A′qp(t) = e−iEp(t−t0)δqp cosφq−
i
N ∑

k
e−i(q−p)k

∫ t

t0
dt ′e−iEp(t−t ′)hk(t ′)X ′kq (t ′) (1.66)

B′qp(t) = −ie−iEp(t−t0)δq,−p sinφq +
i
N ∑

k
e−i(q+p)k

∫ t

t0
dt ′e−iEp(t−t ′)hk(t ′)V ′kq (t ′).(1.67)

As in the previous case (here ωp = Ep), there are a closed equations for X ′kq ,V ′kq :

X ′kq (t) = e−iωq(t−t0) cosφq−
i
N ∑

j

∫ t

t0
dt ′
(

∑
p

ei(q−p)(k− j)e−iωp(t−t ′)

)
h j(t ′)X ′ jq (t ′) (1.68)

and

V ′kq (t) =−ie−iωq(t−t0)+
i
N ∑

j

∫ t

t0
dt ′
(

∑
p

ei(q+p)(k− j)e−iωp(t−t ′)

)
h j(t ′)V ′ jq (t ′). (1.69)

These equations, although formally identical to the one we got for the XX model, are
technically more involved, essentially because of

lim
N

1
N ∑

p
ei(q±p)(k− j)e−iEp(t−t ′) =

1
2π

∫ π

−π
d pei(q±p)(k− j)e−iEp(t−t ′)

due to the non linear dependance of Ep on cos p, is not a known function. Thus for the
XY chain we have a very clear theoretical picture for the dynamics, but we cannot have
in general a satisfactory analytical formulation. For this reason we will call the XX chain
solvable, and later on we will focus mainly on that model. Recalling the content of the
previous section, the main object to calculate in order to obtain the time dependent state
(at least formally) is

σt(q, p) =− 1
π

∫ π

0
dq′

A∗(q,q′, t)A(p,q′, t)
1+ eβ cos p′ .

Of course, the state is in fact uniquely defined by the Xq(t). Indeed once one has computed
their exact form, it is always possible to calculate explicitly Aqp, by

Aqp(t) = e−i(cos p+h)(t−t0)δqp− ie−i(q−p)k
∫ t

t0
dt ′e−i(cos p+h)(t−t ′)hk(t ′)Xq(t ′).

for one impurity and

Aqp(t) = e−i(cos p+h)(t−t0)δqp− i∑
k∈Z

∗e−i(q−p)k
∫ t

t0
dt ′e−i(cos p+h)(t−t ′)hk(t ′)Xk

q (t
′).

for many impurities. An analogous derivation is possible for the XY model, via equations
(1.66) and (1.67).
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7. Notes

The seminal paper on quantum spin chain is certainly the one by Lieb, Mattis and Schultz
[15], in which they compute the free energy and correlation function for the XY model and
Heisenberg-Ising model by using the fermionic picture and the diagonalization procedure
here exposed in Section 3. The fermion technique has revealed a very power tool (and so
largely used) for investigating this model: as two remarkable examples, some years later
Pfeuty [18] studied the quantum Ising model in a transverse magnetic field, and Abraham,
Baruch, Gallavotti and Martin-Löf approached the XY model in a transverse magnetic field
with a single impurity, finding a representation formula for the spectrum of the Hamiltonian
[1][2]. Actually in this work the last two papers have been particularly inspiring, as can be
easily checked by comparison.
Although we will no use it in our work, it is worthwhile to notice that, besides the fermionic
picture, there is also a bosonic picture for quantum spin systems, and largely used in gen-
eral spin waves theory. The mapping is done between spin systems and interacting bosons.
The first approach was in a paper by Holstein and Primakoff [13], who originally purposed
an exact transformation, mapping the Hamiltonian of a 3d quantum spin system in a boson
interaction, with the quadratic term corresponding to linear Bloch theory, and the (large)
higher order term describing the low-frequency spin waves; then Dyson [9] found another
not one to one transformation, more suitable for the understanding of the spin waves theory.
Now both are largely used as a powerful instrument in the study of quant spin systems, and
this bridge is definitely at the base of the fermion-boson correspondence, i.e. a mapping
between a Clifford and a Heisenberg algebra, widely studied by mathematicians.
Even though the language used is slightly different, the content of section 5 has an over-
lap with the papers [16][17]. I have been unaware about those works for long time: I am
indebted with Sergio Simonella who provided to me a copy of [16], and with Heide Narn-
hofer, who, more or less at the same time, was very kind to explain to me the content of
both the papers, and shipped them to me from Wien.
Quadratic Hamiltonians of Fermi operators are one of the rare cases in which one can
exactly recover the evolution equations for a many bodies quantum system. From the
non–equilibrium perspective, one can look at the (actual) dynamics of the system and the
reservoirs at the same time.
The claimed similarity between two works at more than forty years of distance generates
the need for a comment. The problem was dealt and fully solved in the work of Narnhofer,
by using a C∗-algebra dynamics approach. If the interaction vanishes exponentially at
infinity, it is proven that the time evolution is asymptotically abelian (for the even sub-
algebra). In order to prove that, the ODEs for the evolution semi-group are derived and
solved in [16]. Furthermore, in [17] is shown that, if the initial state is fully described
by the two point function (quasifree) the same holds for the asymptotic state given by the
dynamics; moreover, the dynamics conserves the KMS property of the state.
The approach here presented brings to the same results (fortunately), but from a differ-
ent perspective, essentially for two reasons: the dynamics is clearly interpreted with a
1-parameter semi-group of rotations (B-V transformation) on the super-algebra of Fermi
operators; the theory is completed with formula (1.55) for the state of the system, in which,
by using the Wick theorem, we use the hypothesis of integrability of the system. It is
worthwhile to stress that in principle the approach works also in the case of non quadratic
Hamiltonians, but in this case Wick theorem can no longer be applied, and the formula
for a generic observables is not given by an analytic expression (but can be calculated
perturbatively [7]).
The idea that the dynamics of quantum systems can be represented as a 1-parameter semi-
group of B-V transformation is quite natural, and even more for fermionic systems: in
this case B-V transformation are SU(2) rotation. It has been exploited in other papers
[12][4], with different techniques, and not in the full generality of integrable models. It is
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remarkable that the same idea is central also in recent developments of the (mathematical)
theory of boson condensates, yielding new important results in the field [20].
It may appear too ambitious the derivation of the explicit equation (1.55) for the state of
these systems, although the question is very natural from a non equilibrium statistical me-
chanics perspective; in fact both in the existing literature [5][3] both in what follows, what
has been done is only calculating some meaningful observables, like the magnetizations
or the correlation functions. But the exact calculation of the state is possible, since it has
been done with different techniques for example for the XY chain [12][4], so it represents
a future challenge.
However, a direct general formulation of the dynamics of the dynamics of integrable spin
chains with transverse field was actually lacking in literature.
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CHAPTER 2

Impurity Oscillations in the XX Chain

In this chapter we will face a classical problem in quantum physics: the magnetic reso-
nances absorption. We will use the formalism of quantum spin chains previously exposed
and developed. The classical non equilibrium setting of a single spin, coupled both with a
heath bath and with an oscillating transverse field finds a natural mapping in the context of
the XX model. This is slightly different to the standard situation, in which the single spin
is coupled to two orthogonal fields, one oscillating, the other being fixed. The main idea
is that in fact we can interpret the results in this model in analogy to the known achieve-
ments about usual resonances absorption. This is as to say that the environment actually
behaves as an effective longitudinal field. As well as we know, this is a new perspective
in approaching to the topic. Indeed, the theory of linear response apart, all the results here
exposed are new.

1. A Spin in an Oscillating Field

The problem of a spin in a periodic magnetic field is a classic topic in quantum mechanics,
being the quantum counterpart of the classical motion of a magnetic moment. This section
is a short self contained introduction on the subject, with the will to give emphasis to the
aspects that will be deepened in the rest of the chapter.
The goal is to know the motion of a spin coupled with a constant magnetic field, say ~B0 ≡
(B0,0,0), and with another magnetic field orthogonal to the other, periodically varying in
time B1(t). The Hamiltonian reads as1

H =−~S · (~B0 +~B1(t)) =−H0−H1(t). (2.1)

One could look at H1(t) as a time dependent perturbation of H0. This is particularly inter-
esting because the perturbation does not commute with the unperturbed Hamiltonian, due
to the orthogonality of ~B0,~B1(t), yielding a non trivial dynamics.
We will start with a quantum analysis, even tough the problem is treated in the same way
of the classical one. Actually, for a generic Hamiltonian H = ~S · ~B(t) we have that the

1We will use natural units, with h̄= 1, and also the gyromagnetic ratio will be set to +1. This choice implies
of course ~m =~S.

27
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Ehrenfest equation

i
d
dt
~S = [~S,H]

becomes

i
d
dt
~Si = −∑

j
[Si,S j]B j(t)

= −∑
j

iεi jkSkB j(t),

that is equivalent to
d
dt
~S =~S×~B(t),

and since the field is classical, this last equation implies the corresponding one for the
mean values

d
dt

〈
~S
〉
=
〈
~S
〉
×~B(t). (2.2)

Equation (2.2) is nothing but the classical equation of motion for a magnetic moment in a
magnetic field:

d
dt
〈m〉= ~m×~B(t). (2.3)

This reveals the semiclassical nature of the problem: we have a quantum object, namely a
spin, interacting with a classical field.
So we can approach the problem in a classical way, by using the rotating coordinates
system technique [17]. To fix the ideas, let us assume constant magnetic field ~B(t) = ~B. Of
course if we have a field initially aligned with the magnetic moment nothing happens: this
is an equilibrium position. So we will suppose that ~B and ~m are separated by a nonzero
angle θ . If we change the frame of coordinates, choosing a rotating one with angular
frequency ω , we have that the magnetic moment ~m is related to the one in the rotating
frame ~m′ by

d
dt
~m =

d
dt
~m′−~m′×~ω

hence
d
dt
~m′ = ~m′×

(
~B+~ω

)
≡ ~m′×~Be. (2.4)

We have defined the effective field ~Be = ~B+ ~ω such that the equation of motion in the
rotating frame is formally identical to the one in the laboratory. We see in particular that if
we choose a ~ω =−~B, then ~Be = 0 and the magnetic moment is a fixed vector. This means
that in the laboratory frame it precesses around ~B with angular velocity ω , that is usually
called the Larmor frequency of the spin, at the fixed angle θ 2. It is worthwhile to stress
that ω is the energy gap between the eigenstates of the quantum system.
Now we want to decompose ~B ≡ ~B0 +~B1, with ~B0 ⊥ ~B1, and we want to adopt a frame
rotating with velocity ω around ~B0. So in the laboratory frame we will see a constant
fixed magnetic field, ~B0, and a rotating one around ~B0 with frequency ω , namely ~B1. For
example we can have ~B0 ≡ (B0,0,0) and ~B1 ≡ (0,B1 sinωt,B1 cosωt). In this case the
quantum Hamiltonian is just (2.1).
We have three parameters to take into account: the Larmor frequency of the unperturbed
system ω0, the rotating frequency ω and the Larmor frequency of the perturbation ~ω1 =
−~B1. Since we see the rotating field as a perturbation, we will consider |ω1| (|~B1|) small

2Obviously the magnitude of ~m is a constant of motion. From (2.4) we get

d
dt

m2 = 2~m · d
dt

~m = 2~m ·~m′×~Be = 0
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with respect to |ω0| (|~B0|). The effective field is expressed is terms of these three parame-
ters as

|~Be|=
√
(ω−ω0)2 +ω2

1 .

So if we regard at the motion in the rotating frame, we have a precession of the moment
around the effective field ~Be with a Larmor frequency ωe =−|~Be|. Therefore, in the labo-
ratory frame the total motion will be a composition of this precession and a rotation with
angular frequency ω around ~B0. This rotation maintains fixed the angle α between ~B0 and
~Be, given by

sinα =
ω1

|ωe|
, cosα =

ω0−ω
|ωe|

,

and also the angle β between ~m and ~Be given by

cosβ =
~m ·~Be

|~m||~Be|
,

but the angle θ between ~B0 and ~m is time depending, independently on the initial data. For
instance, if initially ~m ‖ ~B0, as in the previous equilibrium configuration, we have

cosθ(t) = cos2 α + sin2 α cosωet.

!Be
!B0

!B1

!S

ωe

θ

!Be
!B0

!B1

!S

ωe

ω

ω

)

α

)θ

a b

FIGURE 1. a) Precession of the spin around the effective field (in bor-
deaux) given by the sum of ~B0 and ~B1 (both in violet); b) Precession of
the spin around the effective field rotating with frequency ω . The mo-
tion results clearly the composition of two rotation, with angular velocity
respectively ωe and ω .

So θ(t) remains small as long as ω << ω0; when |ω −ω0| ' |ω1| the direction of the
magnetic moment does deviate appreciably from the direction of ~B0 and when ω = ω0,
~m ⊥ ~B0. Then it returns small when ω >> ω0. Huge deviation from the equilibrium
position of the unperturbed problem occurs in a certain range of frequencies: precisely
for ω in the nearby of the energy gap of the unperturbed system ω0. This is a resonance
phenomenon.

So far we have been dealing only with a circular polarized field (rotating field). One can
ask what happen with a linearly polarized one, i.e. and oscillating field. The simple but
important observation is that such a field can be seen as a sum of two vectors rotating
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around the same axes, but in opposite sense, of equal magnitude3. In this case it is known
that the resonance is shifted; this is due to the effect of the antirotating field: if ω ' ω0
then −ω is far away the resonance, and the antirotating field can be approximated as a
constant field very close to ~B0, so affecting the resonance condition.
This was noticed for the first time by Bloch and Siegert, who calculated the shift perturba-
tively in [7], finding the resonance for

ω = |~B0|
(

1+
|~B1|2
|~B0|2

)
, (2.5)

at the first order of the perturbative expansion. However the calculation is lengthy and a
bit involved, and we remand to the original paper the interested reader. The same shift has
been found also some years later by Autler and Townes in the context of Stark effect [4].
Later on, Winter discovered resonances for such a problem also for higher harmonics of
the field frequency [22]. Moreover, if the field is purely transverse, the even multiple of ω
are immaterial: we get higher order resonances near ω = ω0/(2p+1), p a positive integer,
and precisely in

ω = |~B0|
(

1+
2p+1

p(p+1)
|~B1|2
|~B0|2

)
, p≥ 1, (2.6)

besides the one found by Bloch and Siegert. The probability of finding each of these

resonances is decreasing with
(
|~B1|
|~B0|

)2p+1
. These last results are really not surprising from

a quantum mechanical point of view: they are just the semiclassical analogue of the multi-
photon absorption processes described by quantum field theory.

Our treatment of the motion of an isolated spin is completed. Finally we will briefly review
the phenomenological Bloch theory for spin in contact with an heat bath [6].
The idea is very simple: when relaxation processes occurs, the solution for the magnetiza-
tion is the isolated one plus transient correction. The main assumptions are the following:

i) A strong field in the longitudinal direction ~B0 is the main term contributing to
the Hamiltonian;

ii) The only terms in the Hamiltonian that can affect the spin orientation are the
external fields;

iii) The system approaches to the equilibrium value for the longitudinal magnetiza-
tion under the effect of the thermal perturbation: ~m∞ = χ~B0

4;

iv) The longitudinal and transversal components of the magnetization approaches
exponentially fast to the equilibrium values, with different relaxation times Tl
and Tt ;

So the Bloch equation reads as

d
dt
~m = ~m×~B− (~ml−~m∞)

Tl
− ~mt

Tt
. (2.7)

3A field varying in time as cosωt can be decomposed into two rotating field, varying as e±iωt

2 .
4χ is the magnetic susceptivity tensor.
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The main feature of this equation is that many properties of the isolated equation are inher-
ited; in particular the distribution of resonances. On the other hand it is rather unsatisfac-
tory that Bloch theory fails to be true when assumption i) not satisfied, i.e. for |~B0| ' |~B1|5.
Nevertheless one may modify assumption iii), requiring that relaxation occurs toward a
function with the same periodicity of the transverse field

~m∞(t) = χ(~B0 +~B1(t)).

Under this condition, also assumption iv) changes, since one can also assume Tl = Tt ≡ T ,
and write the modified Bloch equation as

d
dt
~m = ~m×~B− ~m−χ~B

T
. (2.8)

2. The Microscopic Model

In the context of spin chains, the microscopic model we choose in order to approach to the
problem of magnetic resonances is the XX chain with a single impurity. As studied in the
last chapter, in this model we have homogenei couplings between spin, only along the x and
y axis, and a transverse magnetic field of component ~B ≡ (0,0,hcos(ωt)), acting only on
a selected spin (say the kth one). So we can interpret the systems as a single spin coupled
with a classical oscillating field, and also with a one dimensional heat bath, made by all the
other spin of the chain. We can write the Hamiltonian accordingly to this decomposition,
as

H = HS +HB +HI ,

where

HS = −~B ·~Sk =−hcosωtSz
k

HB = −J
k−2

∑
j=1

(Sx
jS

x
j+1 +Sy

jS
y
j+1)− J

N−1

∑
j=k+1

(Sx
jS

x
j+1 +Sy

jS
y
j+1)

HI = −J′Sx
k(S

x
k−1 +Sx

k+1)− J′Sy
k(S

y
k−1 +Sy

k+1).

In what follows, we will prefer to set J = J′ = g. Of course this is not the most general
situation it can occur, since the two interaction could act at a different magnitude scale.
This is however a mathematical simplification, supported by physical motivation: indeed
the choice of the parameters of major physical interest is when the two interaction are of
comparable size J ' J′6; in this regime one can always renormalize the interaction in order
to render it uniform on the whole chain. This is finally equivalent to the choice J = J′.
In the previous chapter we have seen that the spectrum for such a system is made by a
continuous set of eigenvalues in [− g

2 ,
g
2 ], plus an isolated one Eh = sign(h) g

2

√
1+h2. This

means that the energy gap is about ∆E ' gh.
In order to study the dynamics of such a system, we will adopt the formalism developed
in Chapter 1, and in particular our starting point will be formula (1.60). Once we have set
ωp =

g
2 cos p, we can rewrite (1.60) for our oscillating field

Xp(t, t0) = e−iωp(t−t0)− ih
∫ t

t0
dt ′J0

(g
2
(t− t ′)

)
cosω(t ′)Xp(t ′) (2.9)

5In this regime the Bloch-Siegert shift is non negligible.
6It is easy to figure out that when this is not the case, the system behaves as a tensor product of two sub

systems: the environment and a magnetic moment under an oscillating field, with m = 1
2 when J′ << J, and

m = 3
2 when J << J′. In this last case we have that the two adjacent spin will follow in the oscillation the kth

one, forming a system of three spin, plus small correction.
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with
Xp(t0) = 1.

In what follows, it results convenient to adopt the alternative unknown

Y (p, t, t0)≡ eigωp(t−t0)Xp(t),

and it is easy to check that we have the following equation for Y (p, t):

Y (p, t, t0) = 1− ih
∫ t

t0
dt ′J0

(g
2
(t− t ′)

)
eiωp(t−t ′) cosω(t ′)Y (p, t ′),

Y (p, t0, t0) = 1. (2.10)

Once computed the form of Y (p, t, t0), we can easily recover the transverse magnetization.
Following [3] we have

〈m(t)〉 =
1
N ∑

q,p
eik(q−p) 〈a†

q(t)ap(t)
〉

=
1
N ∑

q,p
eik(q−p) ∑

q′,p′
A∗qq′(t)App′(t)

〈
a†

q′ap′
〉

=
1
N ∑

q′
∑
q,p

eik(q−p)
A∗qq′(t)Apq′(t)

1+ eβ cosq′ , (2.11)

and noticing that
|X ′q|2 = ∑

qp
eik(q−p)A∗qq′(t)Apq′(t),

we get

1+m(t) =
2
π

∫ π

−π

d p
1+ eβωp

|Xp(t)|2 =
2
π

∫ π

−π

d p
1+ eβωp

|Y (p, t)|2. (2.12)

Therefore, in according with the theory developed in the first chapter, the strategy is clear:
at first, by equation (2.10) we will calculate the auxiliary function Yp, then by integrating
its square module we will recover the value of the magnetization.
Now we make a fundamental observation: one could expect to find a solution for the
magnetization such that it recovers the Bloch equation for a spin in a heat bath. This is in
general a very reasonable idea. On the other hand, a crucial assumption in the derivation of
the equations by Bloch is the thermalization of the system to an equilibrium state [6]; but,
as was shown very clearly firstly by Mazur [15], the XY chain is not an ergodic system7:
so the Bloch theory cannot be applied, at least tout court8. This singular behavior has been
confirmed by several other theoretical and numerical studies, e.g. [12][5][21][3], for for
the total magnetization and for the single spin one. So we have to adopt a different picture
in order to understand the phenomenology described by our model.
Since the perturbation is time dependent, we will have a time dependent behavior for ob-
servables also after a long time. However, it is always possible to separate the asymptotic
solution to the finite time corrections, such that we will not be concerned about transient
effects. This can be done by a suitable limit t0→−∞ in equation (2.10).
For every fixed T > t− t0 > 0 we can write equation (2.10) as

Y (p, t, t0) = 1− ih
∫ T

0
dτJ0

(g
2

τ
)

eiωpτ cosω(t− τ)Y (p, t− τ)

+ ih
∫ +∞

T
dτJ0

(g
2

τ
)

eiωpτ cosω(t− τ)Y (p, t− τ),

7Even tough the proof of Mazur is only for XY chain, there is evidence that it should work for integrable
spin chains.

8This is not in contradiction with the achievements of Narnhofer (see Notes at the end of the previous
chapter). Indeed, the fact that dynamics conserves the KMS condition does not mean that it maps the initial state
in the asymptotic one, and in fact Mazur has shown that it is false.
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with the elementary change of variables τ = t− t ′. We define

Y T (a, t) ≡ 1− ih
∫ T

0
dτJ0

(g
2

τ
)

eiωpτ cosω(t− τ)Y (p, t− τ) (2.13)

RT (p, t, t0) ≡ ih
∫ T

t−t0
dτJ0

(g
2

τ
)

eiωpτ cosω(t− τ)Y (p, t− τ), (2.14)

such that we have
Y (p, t, t0) = Y T (a, t)+RT (p, t, t0). (2.15)

Now we want to show that this equation is meaningful also in the limit T → ∞, and in this
limit R∞(p, t, t0) is a vanishing function for t0→−∞, i.e. limt0→−∞ limT→∞ RT (p, t, t0) = 0.
In this way we can study the asymptotic form of the equation:

Y a(p, t) = 1− ih
∫ +∞

0
dτJ0

(g
2

τ
)

eiωpτ cosω(t− τ)Y a(p, t− τ). (2.16)

As a common procedure in physics, one can write a solution as a series in the perturbation
magnitude

Y (p, t, t0) = ∑
k≥0

hkYk(p, t, t0), (2.17)

and this series is convergent if for example one has the estimate Yk(p, t, t0) ≤ Ck, where
C is a finite constant eventually depending on the additional parameters of the theory, i.e.
ω,g.

PROPOSITION 1. Whereas |Yk(p, t, t0)| ≤C(ω,g, t0)k, it is |RT (p, t, t0)| ' O
(

1√
t−t0

)

uniformly in T .

The rest of this section will be devoted to the proof of the proposition, that is rather tech-
nical, and can be eventually skipped by the reader. As a comment on the proof, we notice
that the structure of resonances, that will be exposed in the next sections, is a little hidden
in this proof, although it is obviously of crucial importance in our problem. Morally this
is translated in the fact that, rather than writing down the coupled recursive equations re-
spectively for Y T (a, t) and RT (p, t, t0), and then using the solution for Y T (a, t) (see section
4) in order to estimate the correction given by RT (p, t, t0), we have preferred to use a mea-
sure theory argument for giving a global estimate, under the strong hypothesis of bounded
moments. This last in fact will be verified a posteriori, once the solution for the asymptotic
equation will be written. Such a shortcut has be taken in order to avoid an even longer
proof of an obvious fact (the transient part of the solution vanishes after a long time). On
the other hand, it is unsatisfactory that in this proof explicitly only the first resonance ap-
pears, namely ω = |ωp± g

2 |: it will be however revisited at the light of the results achieved
below.

PROOF. In primis we write

RT (p, t, t0) = ∑
k≥0

hkRk(p, t, t0)

with

RT
0 (p, t, t0) = 0,

RT
k (p, t, t0) = i

∫ T

t−t0
dτJ0

(g
2

τ
)

eiωpτ cos(ω(t− τ))Y a
k−1(p, t− τ) (2.18)

The strategy we want to follow will at first prove that

0 < |RT
1 |<

D(ω,g)√
t− t0

. (2.19)
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for a certain function constant in (t, t0), D(ω,g), bounded in its arguments. So, noticing
that, since Y0(p, t, t0) = 1

RT
1 (p, t, t0) =−i

∫ T

t−t0
dτJ0

(g
2

τ
)

eiωpτ cos(ω(t− τ)), (2.20)

we can regard to this oscillatory integral as the measure of the interval [t − t0,T ] by the
signed measure dτJ0

( g
2 τ
)

eiωpτ cos(ω(t − τ)), absolutely continuous with respect to the
Lebesgue measure. Of course this measure is well defined on each interval, because of
(2.19) and because it can be easily decomposed in a positive and a negative non singular
part [18]. So it follows that9

|RT
k |< |RT

1 ||Yk−1(p, t, t0)|<C(ω,g)k D(ω,g)√
t− t0

, (2.21)

and then

|RT (p, t, t0)| ≤
D(ω,g)√

t− t0
∑
k≥0

hkC(ω,g)k. (2.22)

So whereas the expansion for the Y converges, namely for h < C(ω,g)−1, we have that
|RT (p, t, t0)| ' O

(
1√

t−t0

)
, and the proposition is proven.

In order to prove (2.19), we notice that the integral is performed over positive values of τ:
this allows us to replace J0

( g
2 τ
)

with its asymptotic expansion [13]. When z is large we
have

Ja
0 (z) = ∑

j≥0
J j

0(z) (2.23)

where

J j
0(z) =

(−1)[ j/2]

2 j
√

π
Γ( j+1/2)

j!Γ(− j+1/2)

(
cosz+(−1) j sinz

z j+1/2

)
. (2.24)

Therefore, since t > t0, we can insert (2.23) in (2.20), obtaining

RT
1 (p, t, t0) = −i∑

j

∫ T

t−t0
dτJ j

0(τ)e
iωpτ cos(ω(t− τ))

=
−ieiωt

4 ∑
j≥0

(−1)[ j/2]

2 j
√

π
Γ( j+1/2)

j!Γ(− j+1/2)
(1− i(−1) j)IT

j (ωp +
g
2
−ω, t− t0)

+
−ie−iωt

4 ∑
j≥0

(−1)[ j/2]

2 j
√

π
Γ( j+1/2)

j!Γ(− j+1/2)
(1− i(−1) j)IT

j (ωp +
g
2
+ω, t− t0)

+
−ieiωt

4 ∑
j≥0

(−1)[ j/2]

2 j
√

π
Γ( j+1/2)

j!Γ(− j+1/2)
(1+ i(−1) j)IT

j (ωp−
g
2
−ω, t− t0)

+
−ie−iωt

4 ∑
j≥0

(−1)[ j/2]

2 j
√

π
Γ( j+1/2)

j!Γ(− j+1/2)
(1+ i(−1) j)IT

j (ωp−
g
2
+ω, t− t0),

where we have defined

IT
j (Ω, t− t0)≡

∫ T

t−t0
dτ

eiτΩ

τ j+ 1
2
. (2.25)

What is left is just to evaluate these integrals. It is convenient to discuss imprimis the case
j ≥ 1, where one can use the summability of the denominator (we recall that we are far
away from the origin):

|IT
j (Ω, t− t0)| ≤

∫ +∞

t−t0
dτ

1

τ j+ 1
2
=

2
2 j−1

1

(t− t0) j− 1
2
, j ≥ 1. (2.26)

9It is as to say 〈x〉 ≤ 〈|x|〉.
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For the j = 0 term the things are slightly different, since we the integral is divergent for
Ω = 0. However, since the condition Ω = 0 is translated in our case to ω = |ωp±g|, this is
automatically excluded by the hypothesis of boundedness of |Y1|10. So for Ω 6= 0 we have

|IT
0 (Ω, t− t0)| ≤

1√
t− t0

∣∣∣∣
∫ +T

t−t0
dτeiτΩ

∣∣∣∣≤
2

Ω
√

t− t0
. (2.27)

Once we are allowed to take the limit T → ∞ we can explicitly perform this integral,
obtaining precisely

I0(Ω, t− t0) =

√
π

2Ω
(1+ i)−

√
2π
Ω

(
C(
√

Ω(t− t0))+ iS(
√

Ω(t− t0))
)

(2.28)

where C(x) and S(x) are the Fresnel integrals. Recollecting all these estimates, and sum-
ming over j, we easily get the upper bound of (2.19).
The lower bound is equivalent to the condition

∣∣∣∣
∫ T

t−t0
dτJ0

(g
2

τ
)

sinωpτ cosωτ
∣∣∣∣
2

> 0

∣∣∣∣
∫ T

t−t0
dτJ0

(g
2

τ
)

cosωpτ cosωτ
∣∣∣∣
2

> 0.

We notice that, fixed t0,T , for every t ∈]t0,T + t0[ these two integrals can never vanish at
the same time for every ωp 6= 0. If p = ±π

2 , or p = ±π , we have that respectively only
the first (second) one survives: it is zero for a countable set of values of t ∈]t0,T + t0[, and
finite as long as T < ∞. This is enough to ensure (2.21) a.e. in t.

�

3. Linear Response Theory

As a first step, we want to find the linear response of the magnetization to the oscillating
field. This will be of the form

mLR(t) = h(χr(ω)cosωt +χi(ω)sinωt), (2.29)
where χr, χi are respectively the real and imaginary magnetic susceptivity tensor, in the
linear approximation supposed to be a scalar [1].
We will focus hereafter only on the asymptotic behavior. With a glance to our equation, it
is clear that we need to calculate the auxiliary function Y a(p, t) only at the first order in h.
Indeed

|Y a(p, t)|= 1+2hℜ(Y a
1 (p, t))+O

(
h2) .

and so, since we have of course
1
π

∫ π

−π

d p
1+ eβωp

= 1,

the linear response for the magnetization reads as

mLR(t) =
4h
π

∫ π

−π

d p
1+ eβωp

ℜ(Y a
1 (p, t)).

Therefore we have to calculate explicitly Y a
1 (p, t). It is useful to recall the following for-

mula [13]:

f (Ω)≡
∫ +∞

0
dτJ0

(g
2

τ
)

eiΩτ =
χ(|Ω| ≤ g

2 )+ iχ(|Ω| ≥ g
2 )√

|Ω2−
( g

2

)2 |
. (2.30)

10This is related to the distribution of the resonances, that will be discussed in the next sections.
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that will be crucially used in many calculations hereafter. So we have

Y a
1 (p, t) =

−i
2

∫ +∞

0
dτJ0

(g
2

τ
)

eiωpτ cosω(t− τ)

=
−i
2

(
eiωt

∫ +∞

0
dτJ0

(g
2

τ
)

ei(ωp−ω)τ + e−iωt
∫ +∞

0
dτJ0

(g
2

τ
)

ei(ωp+ω)τ
)

=
−i
2
(
eiωt f (ωp−ω)+ e−iωt f (ωp +ω)

)
. (2.31)

where, according to (2.30), it is

f (ωp−ω) ≡ χ
(
ωp > ω− g

2

)
+ iχ

(
ωp < ω− g

2

)
√∣∣∣
( g

2

)2− (ωp−ω)2
∣∣∣

, (2.32)

f (ωp +ω) ≡ χ
(
ωp <

g
2 −ω

)
+ iχ

(
ωp >

g
2 −ω

)
√∣∣∣
( g

2

)2− (ωp +ω)2
∣∣∣

. (2.33)

The form of Y a
1 (p, t) is such that it is divergent for ω = ωp± g

2
11. So, for every p ∈

[−π,π], we have divergences for different values of ω . This is anyhow immaterial, since
the Y a(p, t) is only an auxiliary function. This point will be better discussed in the next
section.
Now we can write the real part of Y a

1 (p, t) as

ℜ(Y a
1 (p, t)) = ℑ [ f (ωp−ω)+ f (ωp +ω)]cosωt +ℜ [ f (ωp−ω)− f (ωp +ω)]sinωt,

and so the linear response of the transverse magnetization has the form (2.29) with

χr(ω) =
4
π

∫ π

−π

d p
1+ eβωp

ℑ( f (ωp−ω)+ f (ωp +ω)), (2.34)

χi(ω) =
4
π

∫ π

−π

d p
1+ eβωp

ℜ( f (ωp−ω)− f (ωp +ω)) . (2.35)

It is worthwhile to notice that χr(ω,g) is an even function of ω , while χi(ω) is odd: the
linear response, as expected, is an even function of ω (or of t), as it is the oscillating
external field.
Now we will proceed to an exact calculation of these two integrals. At first we notice that,
since the integrating functions depend on p only through ωp ∝ cos p, we can replace

∫ π

−π
→ 2

∫ π

0
;

then we can write the integral in dωp:

∫ π

0
d p→

∫ g
2

− g
2

dωp√( g
2

)2−ω2
p

.

11We see that we can distinguish two cases: if ω > g then ωp < |ω − g/2| ∀p (and so we never have
ωp > |ω−g/2|) and

Y a
1 (p, t) =

1
2


 eiωt
√

(ωp−ω)2−
( g

2

)2
+

e−iωt
√

(ωp +ω)2−
( g

2

)2


 ;

otherwise for ω < g we have to keep all the terms.
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Thus we have for example for χr(ω)

χr(ω) =
8
π

∫ g
2

− g
2

dωp

1+ eβωp

1√( g
2

)2−ω2
p

χ
(
ωp < ω− g

2

)
√∣∣∣
( g

2

)2− (ω−ωp)2
∣∣∣

+
8
π

∫ g
2

− g
2

dωp

1+ eβωp

1√( g
2

)2−ω2
p

χ
(
ωp >

g
2 −ω

)
√∣∣∣
( g

2

)2− (ω +ωp)2
∣∣∣

=
8
π

∫ ω− g
2

− g
2

dωp√( g
2

)2−ω2
p

1√∣∣∣
( g

2

)2− (ω−ωp)2
∣∣∣
, (2.36)

where we have sent ωp→−ωp in the second addendum, noticing that
1

1+ eβωp
+

1
1+ e−βωp

= 1.

It is worthwhile to stress that χr(ω) does not depend on β ; moreover, it is divergent for
ω = g. In this limit indeed the integral is taken in

[
− g

2 ,ω−
g
2

]
→
[
− g

2 ,
g
2

]
, and, once we

have decomposed
√(g

2

)2
−ω2

p

√∣∣∣∣
(g

2

)2
− (ω−ωp)2

∣∣∣∣=
√∣∣∣g

2
−ωp

∣∣∣
√∣∣∣g

2
+ωp

∣∣∣
√∣∣∣ω +

g
2
−ωp

∣∣∣
√∣∣∣ω− g

2
−ωp

∣∣∣,

it is clear that when ω → g we get in the integral a denominator
1√
| g2 −ωp|

1√
|ω− g

2 −ωp|
→ 1

g
2 −ωp

,

and so a logarithmic divergence arises for ω → g. There is also an explicit expression in
terms of special functions [13], due to the independence on the temperature:

χr(ω) =

{
g

πω K
(

ω
g

)
for ω < g

ω
gπ K

( g
ω
)

for ω > g,
(2.37)

where K(·) is the complete elliptic integral of first kind. It is also important to note that
χr(ω) is regular for ω → 012.
In the same way we get for χi(ω)

χi(ω) =
8
π

∫ g
2

− g
2

dωp

1+ eβωp

1√( g
2

)2−ω2
p

χ
(
ωp > ω− g

2

)
√∣∣∣
( g

2

)2− (ω−ωp)2
∣∣∣

+
8
π

∫ g
2

− g
2

dωp

1+ eβωp

1√( g
2

)2−ω2
p

χ
(
ωp <

g
2 −ω

)
√∣∣∣
( g

2

)2− (ω +ωp)2
∣∣∣

=
8
π

∫ g
2

ω− g
2

dωp√( g
2

)2−ω2
p

tanh
(

βωp
2

)

√∣∣∣
( g

2

)2− (ω−ωp)2
∣∣∣
, (2.38)

since
1

1+ eβωp
− 1

1+ e−βωp
= tanh

(
βωp

2

)
.

12It has

lim
ε→0

∫ −1+ε

−1

dy√
1+ y

1√
ε−1− y

= π.
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We notice that this term is always finite, and presents a jump in ω = g: for ω < g, since
tanh(·) ≤ 1 uniformly (so the bound is uniform in β ) it is always dominated by its zero
temperature value, that is (see [13] 3.147 4 pg 242)

χi(ω)≤ 8
π

∫ g
2

ω− g
2

dωp√( g
2

)2−ω2
p

1√∣∣∣
( g

2

)2− (ω−ωp)2
∣∣∣
=

8
π

K



√

1− ω2

g2




that is always a bounded function for ω < g (in particular, for ω → g−, K(0) = π/2);
instead for ω > g it is easily seen that it vanishes. This means that for high frequencies the
linear response exhibits only a cosine oscillation.

4. Magnetic Resonances I

In this section we develop the general theory of equations (2.16).
Indeed, as already stressed many times, the first goal of our approach would be to write
down, at least formally, a solution for the Y a(p, t) and then compute the observables. As
we will see it is not trivial to show that the formal solution we are going to try is in fact
a regular solution of (2.16), and in general it is not true. The reason is that Y a(p, t) is
not really expected to be a function, but rather a distribution, and in principle (integrable)
singularities are allowed to appear, since we will always evaluate it under an integral over
p.
However, it is instructive to perform also a second order calculation of Y a(p, t), in order
to better understand the structure of the formal solution we are going to present. The key
instrument is the recursive form of (2.16). We remind we want to write a solution like

Y a(p, t) = ∑
k≥0

hkY a
k (p, t)

with

Y a
0 (p, t) = 1

Y a
k (p, t) = 1− ih

∫ +∞

0
dτJ0

(g
2

τ
)

eiωpτ cos(ω(t− τ))Y a
k−1(p, t− τ). (2.39)

Bearing in mind the form of the first order solution (2.31), for the second order we have to
evaluate the integral

Y a
2 (p, t)=

(−i)2

2

∫ +∞

0
dτJ0

(g
2

τ
)

eiωpτ cosω(t−τ)
(

eiω(t−τ) f (ωp−ω)+ e−iω(t−τ) f (ωp +ω)
)
,

that is easily done simply by writing cosω(t− τ) = (eiω(t−τ)+ e−iω(t−τ))/2 and then by
using (2.30)13. We see that we have a constant term, and oscillations with frequencies
±2ω . Namely:

Y a
2 (p, t) =

(−i
2

)2( f (ωp +ω)+ f (ωp−ω)

g|sin p| (2.40)

+ ei2ωt f (ωp−ω) f (ωp−2ω)+ e−i2ωt f (ωp +ω) f (ωp +2ω)
)
,

where

f (ωp) =
2

g|sin p| .

Let us spend some word about the coefficients. We can distinguish now three cases:

13It is suggestive that this is exactly the decomposition of a polarized field into two opposite rotating fields
discussed in Section 1.
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(1) ω > g;

(2) g
2 < ω < g;

(3) 0 < ω < g
2 .

We see that for ω > g the solution is simpler. In this case again we have no restriction on
the p, and we get

Y a
2 (p, t) =

(−i
2

)2 [

 i√

(ω +ωp)2−
( g

2

)2
+

i√
(ω−ωp)2−

( g
2

)2


 1

g|sin p|

− ei2ωt
√(

ωp−ω)2−
( g

2

)2
∣∣∣
√

(ωp−2ω)2−
( g

2

)2
(2.41)

− e−i2ωt
√(

ωp +ω)2−
( g

2

)2
∣∣∣
√

(ωp +2ω)2−
( g

2

)2

]
,

and the only divergence we have is ω = g and ωp =± g
2 .

For g/2 < ω < g we have only the constrain arising from the first order calculation, since
ω−g/2 < 2ω− g

2 , so we do not see the divergence coming from
√

(ωp±2ω)2−1 (apart
the case ω = g

2 , ωp =± g
2 ), but only ωp =±1,±|ω− g

2 |.
Lastly, for 0 < ω < g

2 we can evaluate the coefficient of e±iωt . It is

f (ωp−ω) f (ωp−2ω) =
χ
(
ωp < ω− g

2

)
−χ(ωp > 2ω− g

2 )+ iχ(ω− g
2 < ωp < 2ω− g

2 )√∣∣(ωp−ω)2− g
2

∣∣
√
|(ωp−2ω)2−

( g
2

)2 |

f (ωp +ω) f (ωp +2ω) =
−χ
(
ωp >

g
2 −ω

)
+χ(ωp >

g
2 −2ω)+ iχ( g

2 −2ω < ωp <
g
2 −ω)

√∣∣(ωp +ω)2− g
2

∣∣
√
|(ωp +2ω)2−

( g
2

)2 |
;

here we have divergences in ωp =± g
2 ,±|ω−

g
2 |,±|2ω− g

2 |.
Of course the same can be repeated to the other orders. The task is pursued as follows: by
using (2.30) in (2.39), we have that we must calculate only integrals of the form

∫ +∞

0
dτJ0

(g
2

τ
)

eiωpτ cosω(t− τ)eikω(t−τ) =
eiω(1+k)t

2
f (ωp−ω(1+ k))

+
e−iω(1−k)t

2
f (ωp +ω(1− k))(2.42)

for integer k. So we will expect Y a
k (p, t) be a superposition of harmonics of the frequency

ω up to the k-th one, with some coefficients. In particular, the distribution of the harmonics
is the following: for a natural number k ≥ 0, that will label the order of the expansion in
powers of ε , we define recursively the set

I0 ≡ {0},
Ik ≡ {h ∈ Z : h = i−1 or h = i+1 with i ∈ Ik−1}, (2.43)

such that I1 = {−1,1}, I2 = {−2,0,2}, et cetera. We have that to the order k, the harmonics
appearing in Y a

k (p, t) are exactly given by hω with h ∈ Ik. We also define for a given z ∈ Z
the subset of Ik:

Īk(z)≡ {h ∈ Ik : h+1 = z or h−1 = z}.
Of course it is |Īk(z)| = 2 if z 6= ±k, |Īk(z)| = 1 otherwise. A sequence of k+ 1 numbers
(h0, ...,hk), h j ∈ I j, 0≤ j ≤ k is a path of length k if h j−1 ∈ Ī j−1(h j) for 1≤ j ≤ k (see fig.
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3), meaning that h j = h j−1±1. We denote the set of all paths of length k as Pk, and write

Y a
k (p, t) =

(−i
2

)k

∑
h∈Ik

eihωt ∑
(h0,...,hk=h)∈Pk

k

∏
j=1

f (ωp−h jω). (2.44)

Now we have to discuss the coefficients. It easily seen that we can have several cases, as
we choose ω . In all of them a singularity arises every time we have a term containing h = 0
for ωp =± g

2 . If ω > g, we have that again only one singularity arises when ωp =± g
2 for

ω → g. For ω < g for every k we have to divide the set (−g/2,g/2) (where ωp runs) in at
most 2k+ 1 intervals, each internal extremum ±| jω − g

2 |, j = 1, ..,k be a singularity. Of
course it is possible that not all of these points fall in (−g/2,g/2), so we have to distinguish
several cases: ω > g, g/2 < ω < g, g/3 < ω < g/2, ..., g/ j < ω < g/( j−1), j = 1, ...,k.
So, already at this stage, we see clearly the disposition of resonances: up to the order k, we
have resonant frequencies ω = g/ j, j = 1, ...,k, each having an effect of size h j, according
to the theory of Winter [22].

g
g

2
g

4
g

3
g

50
g

6
· · ·

FIGURE 2. Disposition of resonances on the real line.

All that may appear a little muddled: for sake of clearness we will rewrite everything with
an equivalent graphical language, namely the trees formalism. This is a very well known
method, used in many field of theoretical and mathematical physics. We will adopt the
approach developed in [10][11].
Since our problem is linear, we will deal with linear trees, or chains. Given k points, k ∈N,
we define a chain of order k as an ordered collection of k nodes (v). We will denote it with
δk, and we can represent drawing the nodes, in according to their order, from left to right,
and linking them with straight lines (`). An additional line entering the first node can be
added: we will name it the root. To each chain we can assign the following functions:





σv = ±1 node function;
µ` ≡ ∑v≺` σv the moment carried by a line;
f (µ`,ωp) ≡ f (ωp−µ`ω) line propagator;

the notation v ≺ ` usually means all the nodes v on the right of the line `. Thus we can
define a value function for a given chain

Val(δ ) = ∏̀
∈δ

f (µ`,ωp). (2.45)

We will denote by ∆k the set of all chains of order k, for each positive integer k (of course
|∆k|= 2k). Moreover, a chain with k nodes has k lines: k−1 internal lines and the root. The
moment carried by the root is the total moment of the chain, and we will denote it simply
by µ . It is very easy to check that, at order k, µ takes values in Ik. So it is convenient to
define ∆k,µ as the set of chains of order k with total moment µ , such that we can definitely
write

Y a
k (p, t) =

(−i
2

)k

∑
µ∈Ik

eiµωt ∑
δ∈∆k,µ

Val(δ ),

and

Y a(p, t) = ∑
k≥0

(−ih
2

)k

∑
µ∈Ik

eiµωt ∑
δ∈∆k,µ

Val(δ ). (2.46)
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∗

3 1 − 1 − 3

2 0 − 2

1 − 1

4 2 0 − 2 − 4

f(1, ωp)f(0, ωp)f(−1, ωp)f(0, ωp)

f(−1, ωp)f(−2, ωp)f(−3, ωp)f(−2, ωp)

FIGURE 3. Two examples of path defining the value function. Each row
of the triangle represents a set Ik, k = 1,2,3,4 from above.

It is useful to point out also the form of the complex conjugate14

Y ∗a(p, t) = ∑
k≥0

(
ih
2

)k

∑
µ∈Ik

e−iµωt ∑
δ∈∆k,µ

Val∗(δ ). (2.47)

−1 −1 −1

−1−2 0 1
1

FIGURE 4. An example of chain δ ∈ ∆4,−2 with four nodes and total
momentum −2. On each node there is a dichotomic variable, and under
each line there is the momentum it carries. The value function for this
chain is f (1,ωp) f (0,ωp) f (−1,ωp) f (−2,ωp).

It is worthwhile to stress that Val∗ = ∏ f ∗ is related with Val by meaningful symmetries,
as specified in the following

PROPOSITION 2. For each value of ω > 0 we have

(1) f (µ,ωp) = f (−µ,−ωp);

(2) f ∗(µ,ωp) = f (µ,ωp)sµ(ωp).

with sµ(ωp) = sign
( g

2 −|µ|ω + sign(µ)ωp
)
.

Before the proof let us notice some consequences of our results: in primis we have that for
f (−µ,ωp) = f (µ,−ωp), so switching from a chain to the conjugate one is like sending
ωp→−ωp; then we have

f ∗(−µ,ωp) = f ∗(µ,−ωp) = f (µ,−ωp)sµ(−ωp) = f (−µ,ωp)s−µ(ωp);

furthermore, since the functions f turns out to be either real or purely imaginary, we get
immediately the following

COROLLARY 1. Fixed an ω ∈ Bn we have that for all µ : |µ| ≥ n+ 1, f (µ,ωp) is
purely imaginary.

Now we can proceed with the

14It may appear strange the minus sign in the oscillatory exponential in the r.h.t. of this equation, since both
µ and −µ are in Ik . This convention anyhow renders more clear the rest of the exposition.
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PROOF. We write

f (µ,ωp) =





1√ g
2−(ωp−µω)2 if |ωp−µω|< g

2
1√

(ωp−µω)2− g
2

if |ωp−µω|> g
2 .

It is evident that changing the sign of both µ and ωp the form of f does not change. So (1)
is proven. Moreover, let us fix µ = |µ|, ωp, and we notice that for

ωp > − g
2 + |µ|ω f is real

ωp < − g
2 + |µ|ω f is imaginary.

On the other hand, for µ =−|µ|we can repeat the same replacing µ→−µ and ωp→−ωp:

(−ωp) > − g
2 + |µ|ω f is real

(−ωp) < − g
2 + |µ|ω f is imaginary.

Definitely we get

f (µ,ωp) = f ∗(µ,ωp) if sign(µ)ωp +
g
2 −|µ|ω > 0

f (µ,ωp) =− f ∗(µ,ωp) if sign(µ)ωp +
g
2 −|µ|ω < 0,

so

f (µ,ωp) = sign(sign(µ)ωp +
g
2
−|µ|ω) f ∗(µ,ωp),

and (2) is proven. �

Of course at this stage the series defining Y a(p, t) is purely formal, since both the finite-
ness of each order, both the total convergence have not been proven. As we have just
noticed, these are in general properties that, in principle, even a meaningful solution of
(2.16) has not to satisfy. Actually two different aspects occur: the first is that finiteness of
the moments is not necessary, being essentially Y a(p, t) a distribution: one can relax this
requirement simply asking that it has integrable moments; but also this last is too strong
(and it turns actually to be false), because of the effect of the cancellations occurring in the
combination of Y a(p, t) and Y ∗a(p, t) in the computation of observables, as we will see for
the transverse magnetization.
As a clear example of that, let us treat a case in which one can control the series (2.46),
point-wise in p, but the estimate on Y a(p, t) (that, even though not proven to be optimal,
is quite natural) is not enough in order to prove an analogue results for the transverse
magnetization.
When we choose a frequency ω far away the resonance, obviously the propagator simpli-
fies a lot, and we can easily deal with the series. This means that we can focus our attention
on the intervals Bn ≡ ( g

n+1 ,
g
n ), n ∈ Z+ (see fig. 2)15.

PROPOSITION 3. Fixed ω ∈ Bn for a given integer n≥ 0, there is a costant dependig
on the parameters of the theory Cn(ω,g), and a function of p Dn(p), such that the series
(2.46) is absolutely convergent for all but a finite countable set of values of p ∈ [−π,π]
and 0 < h <

√
Dn(p)Cn(ω,g), and it defines the unique solution of equation (2.16).

PROOF. Let us fix ω ∈ Bn. We have that each function f (µ,ωp) has divergences for

ωp =
(
µω± g

2

)
or ω = g

2

( 2ωp
g ±1

µ

)
. This latter implies that, since ω > g

n+1 , it must

be µ < 1+cos p
2 (n+ 1) < (n+ 1), i.e. all the divergences at the left of Bn are protected.

Therefore if ω ∈ Bn divergences may occur in f (µ,ωp) for µ ≤ n.

15To n = 0 it corresponds the open set (g,+∞).
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We can estimate all the (possibly) divergent propagators with the highest one: this will be
determined by p. Indeed the denominator appearig in f (µ,ωp)

1√∣∣∣
( g

2

)2− (ωp−nω)2
∣∣∣

is divergent for

cos2 p =

(
2ωµ

g
±1
)2

.

Now for µ ≥ 0, we have that 2ωµ
g + 1 ≥ 1, so the above relation is never satisfied, unless

µ = 0; in the same way it is for µ ≤ 0 2ωµ
g + 1 < −1 unless µ = 0. So we can discard

these two cases, since they are of course included also in the opposite choice of signs. In
order to fix the ideas let us take µ > 0. We have that 2ωµ

g −1 is in general in [−1,1], since
ωµ ≤ g. So there is a p such that

cos2 p =

(
2ωµ

g
−1
)2

,

and the last relation selects two specific values of µp (correspondingo to the minus and plus
solution)

µ ′p =
g
ω

cos2 p
2

µ ′′p =
g
ω

sin2 p
2
.

For a given p ∈ [−π,π], the functions f (±µ ′p,ωp) and f (±µ ′′p ,ωp) are singular. But we
notice that

µ ′p +µ ′′p =
g
ω

and, since ω ∈Bn, g
ω cannot be an integer number: thus only one of µ ′p and µ ′′p is an integer;

we will name this number simply µp. But µp can assume the values {0,1, ...,n}: hence, in
order to assure the boundedness of the propagators, we have to invert the previous relation,
by excluding a countable set of values of p:

p+µ =±2arccos

√
|µ|ω

g
or p−µ =±2arcsin

√
|µ|ω

g
, |µ|= 0,1, ...,n.

So we have that, for a fixed p, divergences arises only in f (±µp,ωp). They exhibit a
behavior like

1√∣∣∣
( g

2

)2− (ωp−µω)2
∣∣∣
=

1
g
2

√∣∣(cos p+µ − cos p)(cos p−µ − cos p)
∣∣
.

It is handsome to define the following function of p:

D−1
n (p)≡ sup

0≤µ≤n

1√∣∣∣
( g

2

)2− (ωp−µω)2
∣∣∣
.

Let us say that at order k, we have at most k
2 terms like this last16. The other k

2 terms
are given by propagators of other momenta. We notice that the maximum among them
is reached for propagator bringing n+ 1 or n+ 2: at fixed order k only one among these

16For k ≤ n it is easily seen that we have only diverging temrs, while for k > n lines bringing propagators
with other momenta appears; however, p by p, only one among them will be dominant, namely Dn(p).
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momenta is allowed, since if n+ 1 ∈ Ik then n+ 2 ∈ Ik+1, and Ik ∩ Ik+1 = /0. Thus for the
other lines we use the estimate

1√∣∣∣
( g

2

)2− (ωp− (n+1)ω)2
∣∣∣
≤ 1√∣∣∣

( g
2

)2−
( g

2 − (n+1)ω
)2
∣∣∣

and we set

C−1
n (ω,g)≡max




1√∣∣∣
( g

2

)2−
( g

2 − (n+1)ω
)2
∣∣∣
,

1√∣∣∣
( g

2

)2−
( g

2 − (n+2)ω
)2
∣∣∣


 .

Definitely, the value function can be bounded by

Val(δk)≤
(

1
Dn(p)Cn(ω,g)

) k
2
.

So

|Y a(p, t,ω)| ≤ ∑
k≥0

(
h√

Dn(p)Cn(ω,g)

)k

=
1

1− h√
Dn(p)Cn(ω)

,

that is well defined of course only if

0 < h <
√

Dn(p)Cn(ω,g).

that is

0 < h2 < 2
ω
g

Dn(p)min
[
(n+1)2

(
g

n+1
−ω

)
,(n+2)2

(
ω− g

n+2

)]
. (2.48)

�

In order to extend the same task to the magnetization, we need a different approach, essen-
tially for the following reason: if we write

m = ∑
k≥1

hk ∑
k1+k2=k

2
π

∫ π

0
d pY ∗k1

Yk2

and we use the rough estimates

|Yk| ≤
(

1
Dn(p)Cn(ω,g)

) k
2
,

we get

|m| ≤ 2
π ∑

k≥1

(
h√

Cn(ω,g)

)k ∫ π

0

d p
Dn(p)k/2 (2.49)

where the integral is in general divergent for every ω . This approach is therefore too naif:
cancellations occur in order to eliminate all that terms that have divergences.
Anyway from condition (2.48) we have an important information: uniformly in p, by the
bound Dn(p)≤ 1, the perturbative scheme breaks down for

ω =
g

n+1

(
1+
(

h
g

)2
)
+O

(
h
g

)3

.

For n = 0 we recover exactly the Bloch-Siegert relation (2.5). For higher harmonics we
have a results similar to the one by Winter (2.6), but we see that the form of the shift is
different and we have not yet excluded the even harmonics. This aspects are linked each
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other, and definitely they are related to the rough estimate of the line propagator via the
definition of Cn(ω,g), that can be improved in order to get a better control. However it
is important to stress once again that the achievements of Winter have been obtained by
studying a particular observable, i.e. the transverse magnetization: we will try to recover
them in what follows.

5. Notes

As general textbook references on magnetic resonances it has been used [1][20].
The theory of the motion of an isolated spin has been reviewed also by Bloch, in the
paper where he derives the Bloch equations [6]. The rotating coordinate method has been
introduced (a least in a systematic way) by Rabi, Schwinger and Ramsey [17], and then
generalized in a geometric interpretation for every oscillating two state system (maser)
by Feynman, Vernon and Hellwarth [9]. The difference occurring between oscillating
and rotating fields is subtle, and not deepened by all the authors addressing this kind of
problem, even after the paper by Bloch and Siegert [7]. A clear study can be found in the
work of Autler and Townes [4]: they insert in a more clear picture (namely, Floquet theory)
the results by Bloch and Siegert, and studying them in the context of Stark effect (the
perturbation is a electric field) rather than Zeeman effect (the perturbation is a magnetic
field). The key work for our purpose is instead the thesis of Winter [22], in which he
find and discuss the new effects given by oscillating fields, in particular the occurrence of
resonances for higher harmonics of the frequency. His theory has been reinterpreted in a
more general framework, again by using Floquet theory, by Shirley [19].
The theory of Bloch equation was firstly presented in [6], and it is widely treated also
in [1][20]. An almost contemporary and even fundamental works on the absorption of
magnetic resonances are [16] and [8]: in these paper the authors present both a theoretical
and experimental approaches.
The problem of validity of Bloch equation for quantum spin chains has obtained a very
little attention in the literature. Tjon in [21] discussed it in a model very close to the one
here exposed, namely the XX chain with an impurity on the border. Tjon conclusion is that
the Bloch theory is not valid for describing the model.
On the other hand, more or less at the same time, some results were achieved indicating
that the magnetization in quantum spin chain is in general a non ergodic observable. Mazur
[15], formulated a general criterion in order to determine the non ergodic behaviour of an
observable X in a classical physical system. Mazur condition is espressed in terms of an
inequality for the autocorrelation function of a given observable

R(X) = lim
T→∞

1
T

∫ T

0
dt 〈X(0)X(t)〉 ,

and a quantity Q(X) that is a certain modified mean value of X with respct to a given
ensemble depending on the structure of the model. If

R(X)< Q(X),

X is not ergodic. Then this result has been applied to the total magnetization of the quantum
XY model, finding that it satisfies this condition, i.e. violates ergodicity. Anyway the
extension to the quantum regime is not very deepened in the beautiful paper of Mazur, as
it has been also noticed in [5]. A rigorous derivation of Mazur inequality in the quantum
case is still lacking in literature. On the other hand, other works on XY chain confirmed
Mazur’s achievement for the total magnetization, for instance [12][5].
An attempt to extend these results to local observables was done by Tjon [21] and Abra-
ham, Barouch, Gallavotti and Martin-Löf [2][3]. They both studied (with different ap-
proaches) the magnetization of an impurity of the XX chain, finding that it does not ap-
proach to its equilibrium value at infinite time. In particular our microscopic model for
magnetic resonance absorption, by using the XX impurity chain, was firstly studied in [3].
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In this paper the authors introduced the scheme we have adopted, finding the form of the
magnetization for divers kind of time dependence of the external field. In the last part
they analyzed the case of a cosine oscillating field and calculated the linear response of the
system for high temperature, perturbatively in the strength of the field. A resonance phe-
nomenon is observed, via the lack of analyticity of the linear response for a certain value
of the frequency (in the paper it is ω = 2, corresponding to ω = g in our notations).
A strong conceptual analogy exists with the famous work by Kubo and Tomita [14] in
which the authors analyzed the analogue problem of magnetic resonances absorption for
one spin coupled with a strong ferromagnetic hamiltonian and a small oscillating field,
the two terms being non commuting. In this context they presented the general method
of relaxation tensor in order to calculate the linear response for the magnetization. It is
worthwhile to observe that, while in the problem faced by Kubo and Tomita the arising
of resonances is a natural phenomenon, in the XX impurity problem studied in [3] the
interpretation of the divergences as magnetic resonances is not direct. In this sense the work
by Abraham, Barouch, Gallavotti and Martin-Löf, by finding and analyzing the resonance
in the linear response, suggests for the first time a bridge between the two models.
All the other results discussed in this chapter are new, and they have been obtained in
collaboration with Livia Corsi.
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