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Abstract

The present thesis is devoted to the study both of strictly hyperbolic operators with low regularity
coeflicients and of the density-dependent incompressible Euler system.

On the one hand, we show a priori estimates for a second order strictly hyperbolic operator
whose highest order coefficients satisfy a log-Zygmund continuity condition in time and a log-
Lipschitz continuity condition with respect to space. Such an estimate involves a time increagsing
loss of derivatives. Nevertheless, this is enough to recover well-posedness for the associated Cauchy
problem in the space H* (for suitably smooth second order coefficients).

In a first time, we consider a complete operator in space dimension 1, whose first order
coefficients were assumed Holder continuous and that of order 0 only bounded. Then, we deal
with the general case of any space dimension, focusing on a homogeneous second order operator:
the step to higher dimension requires a really different approach.

On the other hand, we consider the density-dependent incompressible Euler system.

We show its well-posedness in endpoint Besov spaces embedded in the class of globally Lip-
schitz functions, producing also lower bounds for the lifespan of the solution in terms of initial
data only.

This having been done, we prove persistence of geometric structures, such as striated and
conormal regularity, for solutions to this system.

In contrast with the classical case of constant density, even in dimension 2 the vorticity is not
transported by the velocity field. Hence, a priori one can expect to get only local in time results.
For the same reason, we also have to dismiss the vortex patch structure.

Littlewood-Paley theory and paradifferential calculus allow us to handle these two different
problems. A new version of paradifferential calculus, depending on a paramter v > 1, is also
needed in dealing with hyperbolic operators with nonregular coeflicients.

The general framework is that of Besov spaces, which includes in particular Sobolev and Holder
sets. Intermediate classes of functions, of logaritmic type, come into play as well.

Keywords

Littlewood-Paley theory, paradifferential calculus with parameters, Besov spaces, strictly hyper-
bolic operator, log Zygmund continuity, log-Lipschitz continuity, loss of derivatives, logarithmic
Sobolev spaces, incompressible Euler system, variable density, lifespan, vortex patches, striated
and conormal regularity.






Résumé

Cette theése est consacrée & l'étude des opérateurs strictement hyperboliques & coefficients peu
réguliers, aussi bien qu’a I’étude du systéme d’Fuler incompressible & densité variable.

Dans la premiére partie, on montre des estimations a priori pour des opérateurs strictement
hyperboliques dont les coefficients d’ordre le plus grand satisfont une condition de continuité
log-Zygmund par rapport au temps et une condition de continuité log-Lipschitz par rapport a la
variable d’espace. Ces estimations comportent une perte de dérivées qui croit en temps. Toutefois,
elles sont suffisantes pour avoir encore le caractére bien posé du probléme de Cauchy associé dans
Pespace H* (pour des coefficients du deuxiéme ordre ayant assez de régularité).

Dans un premier temps, on considére un opérateur complet en dimension d’espace égale a 1,
dont les coefficients du premier ordre sont supposés holderiens et celui d’ordre 0 seulement borné.
Aprés, on traite le cas général en dimension d’espace quelconque, en se restreignant & un opérateur
de deuxiéme ordre homogéne: le passage & la dimension plus grande exige une approche vraiment
différente.

Dans la deuxiéme partie de la thése, on considére le systéme d’Euler incompressible a densité
variable.

On montre son caractére bien posé dans des espaces de Besov limites, qui s’injectent dans la
classe des fonctions globalement lipschitziennes, et on établit aussi des bornes inférieures pour le
temps de vie de la solution ne dépendant que des données initiales.

Cela fait, on prouve la persistance des structures géometriques, comme la régularité stratifiée
et conormale, pour les solutions de ce systéme.

A la différence du cas classique de densité constante, méme en dimension 2 le tourbillon n’est
pas transporté par le champ de vitesses. Donc, a priori on peut s’attendre a obtenir seulement
des résultats locaux en temps. Pour la méme raison, il faut aussi laisser tomber la structure des
poches de tourbillon.

La théorie de Littlewood-Paley et le calcul paradifférentiel nous permettent d’aborder ces deux
différents problémes. En plus, on a besoin aussi d’une nouvelle version du calcul paradifférentiel,
qui dépend d’'un paramétre v > 1, pour traiter les opérateurs & coefficients peu réguliers.

Le cadre fonctionnel adopté est celui des espaces de Besov, qui comprend en particulier les
ensembles de Sobolev et de Holder. Des classes intermédiaires de fonctions, de type logarithmique,
entrent, elles aussi, en jeu.

Mots clés

Théorie de Littlewood-Paley, calcul paradifférentiel avec paramétres, espaces de Besov, opérateur
strictement hyperbolique, continuité log-Zygmund, continuité log-Lipschitz, perte de dérivées,
espaces de Sobolev logarithmiques, systéme d’Euler incompressible, densité variable, temps de
vie, poches de tourbillon, régularité stratifiée et conormale.
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Introduction

The present thesis is devoted to the analysis of some kinds of partial differential equations arising
from the study of physical models. In particular, it developed into two different directions: the
study of strictly hyperbolic operators with low regularity coefficients and that of the density-
dependent incompressible Euler system.

On the one hand, we studied the Cauchy problem for a general wave operator, whose second
order coefficients were supposed to be non-Lipschitz. In contrast to the Lipschitz case, one can’t
expect to get well-posedness in any Sobolev space H® any more. Nevertheless, well-posedness in
the space H® still holds true, but with a finite loss of derivatives, which is proved to be, in a
certain sense, necessary.

A wide number of works are devoted to this topic under different hypothesis. The general idea
is to compensate the loss of regularity in time with suitable hypothesis with respect to the space
variable. So, the first situation to consider is when the coefficients depend only on time: in this
case, one can prove energy estimates with (in general) a constant loss of derivatives.

When coefficients depend also on z, instead, the loss is (in general) linearly increasing in time.
In particular this is also our case, in which we combined log-Zygmund and log-Lipschitz continuity
conditions: we imposed the coefficients to satisfy the former one in time and the latter one in
space, uniformly with respect to the other variable.

On the other hand, we considered the density-dependent incompressible Euler system, which
describes the dynamics of a non-homogeneous inviscid incompressible fluid.

The classical case, in which the density is supposed to be constant, was deeply studied. Main
research interests were questions such as well-posedness in Besov spaces embedded in the class
C%! of globally Lipschitz functions, continuation criteria and global in time existence, propagation
of geometric structures. Our purpose was to extend (or invalidate) previous results to the more
realistic situation of variable density. In particular, in a first time we investigated well-posedness
in endpoint Besov spaces, and then we considered propagation of striated and conormal regularity.

The main difference with respect to the classical system is that, this time, even in the two-
dimensional case, one can expect to get only local in time existence results. As a matter of fact,
the vorticity is no more transported by the flow associated to the velocity field (which was the
key to the proof of the global existence issue for homogeneous fluids), because of the presence of
a density term in its equation. The global in time existence issue is still an open problem.

The techniques we used to handle the two different problems were mostly based on Fourier
Analysis. In particular, an extensive use of Littlewood-Paley theory and of paradifferential calcu-
lus, as introduced by J.-M. Bony in the famous paper [8], was needed.

The main idea is to define a dyadic partition of unity in the phase space, thanks to suitable
smooth, compactly supported functions:

XE + > wi§) =1 VEeRY,

i>1
where x and ¢; (for all j) belong to C§° (Rév), with

supp x C {[¢] <2} and suppp; C {C12771 < |¢] < G20t}

xi



xii Introduction

Now, given a u € §', we can define! Agu := x(D)u and Aju := p;(D)u for all j > 1. We get,
in this way, the Littlewood-Paley decomposition of a tempered distribution w:

“+00
T g Aju in §.
=0

By Paley-Wiener theorem, each dyadic item Aju is a smooth function. Moreover, thanks to spec-
tral localization, integrability properties of A u are strictly linked with those of their derivatives
D*Aju (see lemma 1.2 below). These facts are fundamental and widely used in the analysis of
partial differential equations.

Using Littlewood-Paley decomposition, one can define what a Besov space is. For all s € R
and all (p,r) € [1,+00]?, the non-homogeneous Besov space B; . is defined as the set of tempered
distributions u for which the quantity

(1) lullps, = H(QJS ”AjuHLp)jeNHﬁ < too.
These functional spaces extend Sobolev and Holder classes: it turns out that H® = B3, for all
sc€Rand C¥ = BY, , for all w €]0, 1],

Properties of Besov spaces were deeply studied (see e.g. [2| and [51]) and they are now a
classical topic. Nevertheless, in paper [23]| the authors considered Sobolev spaces of logarithmic
type and gave a dyadic characterization of them. Inspired by this fact, we defined the class of
logarithmic Besov spaces, putting, in definition (1), the new weight 275(1 4 5)® (for some o € R)
instead of the single exponential term. We also proved that they enjoy properties analogous to
the classical Besov spaces.

Using Littlewood-Paley decomposition again, one can write the Bony’s decomposition (see
paper [8]) of the product of two tempered distributions:

(2) uv = Tyv + Tyu + R(u,v),

where we have defined the paraproduct and remainder operators respectively as

Ty = ZSj_luAjv and R(u,v) := Z Z AjuAgv.
J

J o |k=jl<1

These operators have nice continuity properties on the class of Besov spaces. Moreover, para-
product plays an important role also in nonlinear analysis (see for instance the paralinearization
theorem 1.33 below). We will make an extensive use of decomposition (2) throughout all this
manuscript. However, paraproduct is nothing else than an example of paradifferential operator,
associated to a function which depends only on the space variable x.

More in general, we can associate a paradifferential operator to every symbol a(z, &) which is
smooth with respect to &, only locally bounded in x and its ¢-derivatives satisfy particular growth
conditions (see e.g. [51]). First of all, fixed a suitable cut-off function v, one can smooth out a
with respect to z, defining a classical symbol o, (x, &) strictly related to it. Then one can define
the paradifferential operator associated to a, still denoted by T,, as the paradifferential operator
associated to this classical symbol, i.e. o4(x, D,). On the one hand, the whole construction is
independent of the cut-off function v, up to lower order terms. On the other hand, one can make
it depend on a parameter v > 1, as done in e.g. [50] and [52]|. This simple change came into play
in a crucial way in the study of strictly hyperbolic operators with low regularity coefficients (see
chapter 3), because it allows a more refined analysis.

After this brief overview about the theoretical tools we needed in our analysis, let us explain
better the two different guidelines of our research work.

'Throughout we agree that f(D) stands for the pseudo-differential operator u +— F~'(f Fu).
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Strictly hyperbolic operators with low-regularity coefficients

Consider a second order strictly hyperbolic operator L defined in a strip [0,T] x RY, for some
T > 0 and any dimension N > 1:

N
(3) Lu = 0fu — Y 0;(ai(t, ) Opu)

J,k=1

and assume that there exist two constants 0 < A9 < Ag such that

N
MlEP < > apt, ) §& < Aolél

J,k=1

for all (t,z) € [0,T] x RY and all ¢ € RY. The inequality on the left is the condition of strict
hyperbolicity, while that on the right is a boundedness requirement on the coefficients of our
operator.

It is well-known (see e.g. [42] or [53]) that, if coefficients aj), are Lipschitz continuous with
respect to t and only measurable and bounded in z, then the Cauchy problem for L is well-posed
in H' x L?. Hence, if a;, are C* and bounded with all their derivatives with respect to the space
variable, one can recover well-posedness in H*T! x H* for all s € R. Moreover, for all s € R one
gets (for a constant Cy depending only on s) the energy estimate

@) sup <||u<t,~>uHs+1 T o, -)HHS) <

0<t<T
T
< €. (10, s + 100+ [ e e ot
0

for all w € C([0, T]; H*TH(RN)) N ([0, T); H*(RY)) such that Lu € L'([0, T]; H*(RN)).

In particular, estimate (4) still holds for every u € C2([0, T]; H>®(RY)), and this implies that
the Cauchy problem for L is well-posed in H* with no loss of derivatives.

If the Lipschitz continuity (in time) hypothesis is not fulfilled, then (4) is no more true.
Nevertheless, one can still recover H* well-posedness, but this time with a loss of derivatives in
the energy estimate. This loss can not be avoided, as shown in paper [16]. As a matter of fact,
the authors proved there that, if the regularity of the coefficients is measured by a modulus of
continuity, then every modulus of continuity worse than the Lipschitz one always entails a loss of
derivatives.

The first case to consider is when the a;;’s depend only on time: so, by Fourier transform
one can pass to the phase space, in which the problem becomes an ordinary differential equation.
In paper [18], Colombini, De Giorgi and Spagnolo assumed a log-Lipschitz integral continuity
condition, while Tarama (see [56]) considered the more general class of (integral) log-Zygmund
functions. In both the previous hypothesis, one can get an energy estimate with a constant loss
of derivatives: there exists a constant & > 0 such that, for all s € R, the inequality

(5)  sup <Hu(tv')HHs+15 +”atu(tv')HH55> <

0<t<T
T
< ¢, (Hu<o, Wi + 100, e + [ e dt)
0

holds true for all u € C2([0, T]; H>®(RY)), for some constant Cs depending only on s. The original
idea of the work of Colombini, De Giorgi and Spagnolo was smoothing out coefficients using a
convolution kernel, and then linking the approximation parameter (say) € with the dual variable
&: they got, in this way, a different approximation in different zones of the phase space. The
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improvement of Tarama, instead, was obtained defining a new energy, which involves also first
derivatives of the smoothed coefficients, in such a way to compensate lower regularity.

The case of dependence both in time and in space variables was considered by Colombini
and Lerner in paper [22]: they assumed the aj;;’s to satisfy a pointwise isotropic log-Lipschitz
condition. They studied the related Cauchy problem, and they found an energy estimate with a
loss of derivatives increasing in time: for all s €]0,1/4], there exist positive constants 8 and Cj
and a time 7% €10, T] such that

© s (Bt o+ 100t o) <

0<t<T™*

T*
< Cs (HU(O»')HH—S‘H + 110:u(0, )l - +/0 [Lu(t, )| pr—s—spe dt)

for all u € C2([0, T); H*°(R")). Due to the dependence of the aj;’s on z, it was no more possi-
ble to perform a Fourier transform to pass in the phase space. To overcome this problem, they
took advantage of the Littlewood-Paley decomposition: they defined a localized energy for each
localized component A, u of the solution u, and then they performed a weighed summation over
v to define a total energy. Again, they smoothed out coefficients in time and they linked the ap-
proximation parameter to v, which exactly corresponds to get different approximation in different
regions of the phase space: recall that || ~ 2 on the spectrum of A,u. A quite hard work was
required to control the operator norm (over L?) of commutator terms [A,, a;x], coming from the
equation for the localized part Aju.

More recently (see paper [19]), Colombini and Del Santo imposed a pointwise log-Zygmund
condition with respect to time and a pointwise log-Lipschitz condition with respect to space,
uniforlmy with respect to the other variable. These hypothesis read in the following way: there
exists a constant Ko such that, for all 7 > 0 and all y € RV \ {0}, one has

1
(7) sup |a;i(t + 7,2) + aj(t — 7,2) — 2a,(t,x)] < Ko7 log (1 + 7_)
(t7$)
1
0 sup a1+ 9) — alt )] < Kool log (14 ).
t,x

Again, they decomposed the energy in localized parts, even if each of these items were defined
in a new way, following the original idea of Tarama to control the bad behaviour in time of the
coefficients. Moreover, the regularization of the coefficients by a convolution kernel was performed
with respect to both time and space. They obtained an energy estimate analogous to (6) (and so
a well-posedness issue in the space H* for coefficients a;; smooth enough with respect to x), but
only in the case of one space dimension, i.e. N = 1: it wasn’t so clear how to define a Tarama-like
energy (which was somehow necessary) in higher dimensions.

In a first time, in paper [21] in collaboration with Colombini, we extended the result of [19] to
the Cauchy problem (again in dimension N = 1) for a complete second order strictly hyperbolic
operator

Pu = 0?u — 0, (a(t,z) dyu) + bo(t,z) dpu + by(t,x) Opu + c(t, ) u,

where, in addition to hypothesis (7) and (8), we assumed also by and b; to belong to L*°([0, T]; C¥)
(for some w €]0,1[ ) and ¢ € L*>(]0,T] x R).

We came back to the main ideas of the work of Colombini and Del Santo. In particular, the energy
associated to u was defined in the same way, and we handled highest order terms as they did.
Again, we obtained an energy estimate of the same kind of (6): as one can expect, the presence of
lower order terms involves no substantial problems in getting it. Nevertheless, Holder regularity
of coefficients of first order terms comes into play in the analysis of commutator terms [A,, ;]
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(for j = 1, 2), and it entails a constraint on the Sobolev index s for which inequality (6) holds
true (see theorem 2.1).

Recently, in [20] with Colombini, Del Santo and Métivier, we considered operator (3) under
hypothesis (7) and (8) in any space dimension N > 1. Let us point out that we focused on a
homogeneous operator to make our computations not too complicated, but the same technique
actually works also for complete second order operators. We managed to get an energy estimate
analogous to (6) (this time for any s €]0, 1] ), which entails the well-posedness issue in H> (for
aji, of class C° in space).

To get the improvement, we resorted to a new energy: as already pointed out, Tarama’s energy
doesn’t admit a straightforward generalization in higher space dimension. So, we came back to the
original definition of Colombini and Del Santo again, but this time we replaced multiplication by
functions a(t, ) with low regularity modulus of continuity, by action of paradifferential operators
T, associated to them (as briefly explained above). Let us also point out that this construction
already involves a smoothing effect with respect to the space variables, so that it was enough to
perform a mollification of the coefficients only in time.

Nevertheless, positivity hypothesis on a (required for defining a strictly hyperbolic problem)
doesn’t translate, in general, to positivity of the corresponding operator, which is fundamental in
obtaining energy estimates. So, we had to take advantage of paradifferential calculus depending
on a parameter v > 1, as developed by Meétivier (see [50]) and by Métivier and Zumbrun (see
paper |52]). This tool allowed us to perform a more refined analysis: in particular, we could define
a paraproduct operator starting from high enough frequencies, so that it is a positive operator, if
the corresponding symbol is.

We had also to deal with a different class of Sobolev spaces, of logarithmic type, already considered
by Colombini and Métivier in [23]. This comes from the fact that the action of paradifferential
operators associated to log-Lipschitz (in x) and log-Zygmund (in ¢) symbols, such those we con-
sidered in our strictly hyperoblic problem, involves a logarithmic loss of regularity.

Density-dependent incompressible Euler system
The density-dependent incompressible Euler system

Op+u-Vp =0
(9) p(Owu +u-Vu) + VIL = pf
divue = 0

describes the evolution of a non-homogeneous incompressible fluid under the action of a body force
f = f(t,z) € RY. The function p(t,z) € Ry represents the density of the fluid, u(t,z) € RY
its velocity field and II(¢,z) € R its pressure. The term VII can be also seen as the Lagrangian
multiplier associated to the divergence-free constraint over the velocity.

We assume that the space variable 2 belongs to the whole RY | with N > 2.

The case in which the fluid is supposed to be homogeneous, i.e. p = p (strictly positive)
constant and the system reads

ou +u-Vu+ VII =0
(10)

divu = 0,

was deeply studied and there is a broad literature devoted to it.

In contrast, not so many work were devoted to the study of the non-homogeneous case. First
results for equations (9) in smooth bounded domains of R? or R? were obtained by Beirdo da
Veiga and Valli for Holder continuous initial data (see papers [5], [6] and [4]). The Sobolev spaces
framework was considered instead by Valli and Zajaczowski in [59], and by Itoh and Tani in [46]. In
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paper [45], Ttoh studied instead the evolution in the whole R? for initial data (Vpg,uo) € H?x H3,
and Danchin (see [27]) extended the results to any dimension N > 2 and to any Sobolev space
with high enough regularity index.

In the same paper [27], Danchin considered also the case of data in the endpoint Besov space
BQIIN/ ?. Before, Zhou (see [63]) had proved well-posedness for system (9) in spaces B;IN/ P for
any 1 < p < 400, but he had to assume the initial density pg to be a small perturbation of a
constant state.

Let us note that, in the case of the whole RY, the hypothesis on the adopted framework almost
always entailed a L? condition over the velocity field, and if not (as e.g. in the last mentioned
work of Zhou), additional smallness assumptions over the density term were required.

Let us also point out that all the well-posedness results stated for system (9) are only local in
time, even in the two-dimensional case. As a matter of fact, as already remarked, for N = 2 the
vorticity equation reads

1
(11) (Mu—ku-Vw—i—V()/\VHzO,

p
and so one can’t get conservation of Lebesgue norms, which was the key to the global in time
existence issue, due to the presence of the density term.

Recently (see paper [28]), Danchin was able to prove the well-posedness result for (9) in any
Besov space Bj ., with 1 < p < 400, embedded in the set C%! of the globally Lipschitz functions.
As a matter of fact, our system is essentially a coupling of two transport equations by the velocity
field u: so, no gain of smoothness may be expected during the time evolution, while preserving
regularity requires u to be at least locally Lipschitz with respect to the space variable. Hence,
Danchin proved that the functional framework suitable for (9) is the same as that for which
equations (10) are well-posed. Moreover, he obtained his results for any initial density state,
with no smallness, or closeness to a positive constant, requirements on it. However, he had to
assume the velocity field u to belong to L? to handle the pressure term. As a matter of fact,
in the non-constant density case VII satisfies an elliptic equation (in divergence form) with low
regularity coefficients,

(12) —div (aVII) = div F,

(here we set a := 1/p) and it can be solved independently of a only in the energy space L2. Let
us point out that the control on the L? (or in general LP) norm of VII was needed also to bound
its Besov norm.

Requiring the initial velocity ug € L?, however, is somehow restrictive: in the two-dimensional
case this condition implies the vorticity to have average 0 over R?, and this fact precludes us
from considering, for instance, vortex patches structures. Therefore, Danchin also proved well-
posedness (in any dimension N > 2) for data in the space B,, < C%!' with 2 < p < 4. So,
no finite energy hypothesis were formulated, even if the previous assumption allows us to recover
VII € L? again. In particular, this result applies (thanks to Biot-Savart law) to any suitably
smooth velocity field whose vorticity is compactly supported.

In the same paper, Danchin also proved a continuation criterion in the same spirit of the
well-known result by Beale, Kato and Majda (see the famous paper [3]). The condition to extend
solutions beyond T is

T
(1960l + 191001 5 )t < 0,

and, in the case s > 14 N/p, it is possible to replace Vu with the vorticity €.
Finally, Danchin also tackled the case of the spaces B, . < C%!, but requiring moreover

to belong to LP (for some 1 < p < +00) and pp to be close (in BS,, norm) to a constant state
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p. Under these additional assumptions, the equation for the pressure term can be rewritten (as
already done by Zhou in paper [63]) in the form

—aAIl = divF + div ((a —a)VII) ,

with @ := 1/p. So, using standard LP estimates for Laplace operator (which hold for all 1 < p <
+00) and the smallness hypothesis on the density, one can absorb last term of the right-hand side
of the previous equation.

In paper [29] in collaboration with Danchin, we focused on this last case: we managed to
extend the well-posedness result in BS, , without assuming any smallness condition on the initial
density. Let us point out that this framework is quite interesting, as it includes also the particular
case of Holder spaces of the type C1® and the endpoint Besov space Béovl, which is the largest
one embedded in C%!, and so the largest one in which one can expect to recover well-posedness
for system (9). Of course, we still had to assume ug to belong to the energy space L?, in order
to assure the existence of the solution VII to (12): we recall again that this equation can be
solved independetely of a only in L?2. Now, the improvement with respect to the previous result
was due to the different method used to handle the pressure term, which actually works for all
p € [1,400]. In particular, we separated VII into low and high frequencies, using Littlewood-
Paley decomposition. Low frequencies could be controlled by the Lebesgue norm; high frequencies,
instead, could be controlled in terms of AII, which satisfies the equation

1
—AIl = V(loga) - VII + — div(f+u-Vu) .
a

First term of the previous relation is of lower order: so, it can be absorbed interpolating between
the L? estimate and the higher regularity estimates for the Laplace operator. We were also able
to state a continuation criterion analogous to that of Danchin for the case B, , 1 < p < +o0.
Moreover, for the same reasons explained above, we considered also infinite energy data: in this
case, vorticity (which was a fundamental quantity in the constant density case) comes into play
by Biot-Savart law. We still assumed integrability properties for ug and its vorticity €2g, in order
to assure the pressure term to belong to L?, a requirement we could not bypass. Also under
these hypothesis, we got well-posedness for equations (9). In particular, this result applies (as in
the analogous case considered by Danchin) to any velocity field with suitably smooth compactly
supported vorticity.

As already pointed out before, all the results we got were local in time. Nevertheless, in our paper
we were able to give an estimate on the lifespan of the solutions. We first showed that in any space
dimension, if the initial velocity is of order e (with € small enough), then the existence time is at
least of order e~!. In this case, no restriction on the non-homogeneity are needed: the result is a
straightforward consequence of rescaling properties for equations (9). Next, taking advantage of
equality (11) and of more refined estimates for transport equation (established recently by Vishik
in [60] and then generalized by T. Hmidi and S. Keraani in [41]), we showed that the lifespan of
the solution tends to infinity if pp — 1 goes to 0. More precisely, if

lpo = 1lpr , = ¢ and lwollpo, , + lluollz = Uo

with € small enough, then the lifespan is at least of order UO_1 log(loge™1).

This having been done, in [35] we studied the problem of propagations of striated and conormal
regularity for solutions to (9), in any dimension N > 2. We considered the initial velocity up and
the initial vorticity o to be in some Lebesgue spaces, in order to guarantee, once again, VII € L.
We also supposed g to have regularity properties of geometric type. Moreover, we required the
initial density pg to be bounded with its gradient and to satisfy geometric assumptions analogous
to those for €y. Under these hypothesis, we proved existence (obviously, local in time) and
uniqueness of a solution to (9), and propagation of these geometric structures. Let us point out
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that no explicit Lipschitz continuity hypothesis over the velocity field were formulated. This
property follows from striated regularity for the vorticity, and it works as in the homogeneous
case. As a matter of fact, proving it relies only on Biot-Savart law, hence nothing changes with
respect to the classical instance: in particular, no further hypothesis on the density term were
needed. Let us point out that we also obtained propagation of geometric structures to the velocity
field and to the pressure term.

Moreover, in the same work, we gave an estimate from below for the lifespan of the solution in
terms of inital data only, in any dimension N > 2. Let us recall that, in the classical case of
constant density, it was given (up to a multiplicative constant) by

1€20lles,, -
Ty = | I0llzenr~ log | e+ 7"
10| Lanz=

(see paper [26]). For the non-homogeneous system, instead, we got that the lifespan is given by

T = (VO (190l (14 R0+ T))

where the exponent § > 1 came out in the estimates for the pressure term, the quantities Ry and
T'g are related to the geometric properties of the initial data and we defined

Qollce
V'(0) = lluollze + 1Q0ll Loz + 11Q0lles, = € 1Q0llzanz~ log | e+ M :
190l Lanzo

Hence, up to multiplication by a constant, T,, < Tg. Let us point out that we made the
logarithmic dependence disappear in estimating the Lipschitz norm of the velocity field, to simplify
our computations, but maybe this is a quite rough result.

Finally, in the physical case N = 2 or 3, we refined our result on conormal regularity: if the initial
hypersurface ¥ is also connected, then it defines a bounded domain Dy C RY of which it is the
boundary, and this property propagates in time (as the flow of the solution is a diffeomorphism).
By analogy with the structure of vortex patches, we wanted to investigate the dynamics into the
bounded domain. Obviously, even in dimension N = 2, even if the initial vorticity is a vortex
patch, we cannot expect to propagate this property, because of the presence of the density term in
equation (11). Nevertheless, we proved that, if initial density and vorticity are Holder continuous
inside the domain Dy (in addition to satisfy global hyposthesis in order to assure persistence of
conormal properties), than their regularity is preserved in time evolution. The main difficulty
was to prove that Hdélder continuity propagates also to the velocity field and the pressure term:
in last analysis, we had to prove these two quantities to be regular enough at the boundary of the
domain Dy transported by the flow. Now, the required smoothness was ensured by the previously
proved conormal regularity.

The thesis is structured in the following way.

In the first part, we will present the Fourier Analysis tools we needed in our study. We
will expound, in a quite complete way, the classical Littlewood-Paley theory. We will recall the
definition and the basic properties of the classical non-homogeneous Besov spaces, and we will
quote also some fundamental results on paradifferential calculus. For doing this, we will strictly
follow the presentation given in [2], and, as these results are classical, we will omit their proofs.

Then, we will pass to consider logarithmic Besov spaces, and we will show that previous
properties hold true (up to suitable slight modifications) also for this class. This time, we will
give here all the details.

In the last part of this chapter, we will explain also the main ideas of paradifferential calculus
depending on parameters, mainly following the presentation of [52], and we will quote some results
we will need in the sequel.
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Then, we will consider the problem of second order strictly hyperbolic operators with low
regularity coefficients.

In chapter 2 we will analyse the case of a complete operator in one space dimension. This
chapter contains the results proved in paper |21] in collaboration with Colombini.

In chapter 3, instead, we will present the issues got in [20] with Colombini, Del Santo and
Meétivier. We will extend previous result in any space dimension, but only for a homogeneous
operator, i.e. without lower order terms.

In each of these sections, we will introduce also some additional tools. In particular, we will
analyse properties of functions with low regularity modulus of continuity and of the corresponding
paradifferential operators.

Finally, the last part of the thesis is devoted to the study of the density-dependent incom-
pressible Euler equations. Chapter 4 is devoted to well-posedness issues in endpoint Besov spaces
embedded in the space of globally Lipschitz functions. We will provide also a continuation crite-
rion and a lower bound for the lifespan of the solutions. This chapter is based on paper [29] in
collaboration with Danchin.

Then, we will consider the problem of propagation of geometric structures for this system.
We will focus on striated and conormal regularity, and in propagation of Hélder continuity in the
iterior of a bounded domain of R? or R? (but still assuming global hypothesis, as briefly explained
above). This will be the matter of chapter 5, and it contains the results proved in paper [35].
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Introduction

Cette thése est consacrée a 'analyse de quelques modeéles d’équations différentielles a dérivées
partielles qui naissent de 1’étude des models physiques. En particulier, elle se développe dans
deux directions différentes: 1’étude des opérateurs hyperboliques & coefficients peu réguliers et
celle du systéme d’Euler incompressible & densité variable.

Dans la premiére partie, on a étudié le probléme de Cauchy pour un opérateur des ondes
général, dont les coefficients du deuxiéme ordre étaient supposés non-Lipschitz. Au contraire du
cas Lipschitz, on ne peut pas s’attendre & avoir encore le caractére bien posé dans n’importe quel
espace de Sobolev H?®. Toutefois, le caractére bien posé dans 'espace H est encore vrai, mais
avec une perte de dérivées, qui a été prouvée d’étre, dans un certain sense, nécessaire.

Beaucoup de travaux sont dédiés & ce sujet, sous de différentes hypothéses. L’idée générale est
celle de compenser la perte de régularité en temps avec des hypothéses convenables par rapport & la
variable d’espace. Donc,la premiére situation a cosindérer est quand les coefficients ne dépendent
que du temps: dans ce cas, on peut prouver des estimations de I’énergie avec (en général) une
perte constante de dérivées.

Par contre, quand les coefficients dépendent aussi de x, la perte est (en général) linéairement
croissante dans le temps. En particulier, c’est aussi notre cas, ol nous avons mélangé les conditions
log-Zygmund et log-Lipschitz: nous avons imposé que les coefficients satisfont la premiére en temps
et autre dans la variable d’espace, uniformément par rapport & 'autre variable.

Dans la deuxiéme partie de la thése, on a considéré le systéme d’Euler incompressible & densité
variable, qui décrit la dynamique d’un fluide non-visqueux, incompressible et non-homogéne.

Le cas classique, ou la densité est supposée constante, a été étudié a fond. Parmi les ques-
tions principales d’intérét, il y avait le caractére bien posé dans des espaces de Besov contenus
dans la classe C%! des fonctions globalement lipschitziennes, des critéres de prolongement et
I’existence globale en temps, la propagation des structures géométriques. Notre but était d’élargir
(ou d’invalider) les résultats précédents au cas, bien plus réaliste, de densité variable. En par-
ticulier, dans un premier temps on a examiné le caractére bien posé dans des espaces de Besov
limites, et aprés on a considéré la propagation de la régularité stratifiée et conormale.

La différence principale avec le systéme classique est que, cette fois, méme dans le cas de
dimension 2, on peut s’attendre seulement des résultats d’existence locale en temps. En fait, le
tourbillon n’est plus transporté par le flot associé au champs de vitesses (qui était la clé pour
la preuve de l'existence globale pour des fluides homogeénes), a cause de la présence d’un terme
dépendant de la densité dans son équation.

Les techniques utilisées pour traiter ces deux problémes différents étaient essentiellement
basées sur I’Analyse de Fourier. En particulier, ¢’était nécessaire un vaste emploi de la théorie
de Littlewood-Paley et du calcul paradifférentiel, comme présenté par J.-M. Bony dans le célébre
article [8].

L’idée principale est de définir une partition de I'unitée dyadique dans ’espace des phases,
grace & des fonctions convenablement réguliéres et & support compact:

XE) + D (6 =1 VEeRY,

i>1
ou x et ¢, (pour tout j) appartiennent a Cgo(RéV), avec
suppx C {|¢| < 2} et supp ¢; C {C’l 271 < ¢ < Oy 2j+1} .

Alors, donnée une u € &', on peut définir> Agu = x(D)u et Aju = ¢;(D)u pour tout j > 1.

*Dans tout le manuscrit on convient que f(D) est opérateur pseudodifférentiel u s F 1 (f Fu).
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De cette fagon, on a la décomposition de Littlewood-Paley dune distribution temperée u:
—+00
U = ZAju dans S'.
j=0

Grace au théoréeme de Paley-Wiener, chaque unité dyadique Aju est une fonction lisse. En plus,
grace a la localisation spectrale, les propriétés d’integrabilité de Aju sont strictement liées avec
celles de leurs dérivées DA u (voir aussi le lemme 1.2 en dessous). Ces faits sont fondamentals
et largement utilisés dans 'analyse des équations différentielles & dérivées partielles.

En utilisant la décomposition de Littlewood-Paley, on peut définir ce qu'un espace de Besov
est. Pour tout s € R and tout (p,r) € [1,+00]?, 'espace de Besov non-homogéne By, est défini
comme 'ensemble des distributions temperées u pour lesquelles la quantité

(13) HUHBZSW = H(zjs HAjuHLp)jeNHﬁ < 4o00.

Ces espaces fonctionels agrandissent les classes de Sobolev et de Holder: on a H® = B3, pour
tout s € R et C¥ = BY, , pour n’importe quel w €10, 1[.

Les propriétés des espaces de Besov ont été étudiées a fond (voir par exemple [2] et [51]) et ils
sont maintenant un sujet classique. De toute facon, dans Uarticle [23] les auteurs ont considéré
des espaces de Sobolev de type logarithmique et ils ont donné une leur caractérisation dyadique.
Inspiré par ce fait, nous avons défini la classe des espaces de Besov logarithmiques, en remplegant
le terme exponentiel par le nouveau poids 27°(1 4 j)* (pour quelque o € R). Nous avons aussi
prouvé qu’ils jouissent des propriétés analogues a celles des espaces de Besov classiques.

En utlisant encore la décomposition de Littlewood-Paley, on peut écrire la décomposition de
Bony (voir I'article [8]) d’un produit de deux distributions temperées:

(14) uv = Ty + Tyu + R(ua U)?

ou on a défini les opérateurs de paraproduit et de reste respectivement comme

Ty = ZSj,luAjv et R(u,v) = Z Z AjulAgv.
J

i lk—jl<t

Ces opérateurs ont d’agréables propriétés de continuité sur la classe des espaces de Besov. De
plus, le paraproduit joue un role important aussi dans l’analyse non-linéaire (voir par exemple le
théoréme de paraliéairisation 1.33 en dessous). Nous allons faire un large emploi de la décomposi-
tion (14)dans tout le manuscrit. Cependant, le paraproduit n’est qu’un seul exemple d’opérateur
paradifférentiel, associé & une fonction qui dépend seulement de la variable d’espace x.

Plus en général, on peut associer un opérateur paradifférentiel a tout symbol a(zx, &) lisse par
rapport & &, seulement localement borné en z et dont les dérivées en £ satisfont de particuliéres
conditions de croissance (voir par exemple [51]). Avant tout, ayant fixé une convenable fonction
de coupage 1, on peut régulariser a par rapport & la variable z: on obtient ainsi un symbole
classique o, (z, &) strictement relié & a. Aprés, on peut définir 'opérateur paradifférentiel associé
& a, indiqué par T,, comme 'opérateur pseudodifférentiel associé au symbol classique, c’est-a-
dire o4(z, D). D’un coté, la construction entiére est indépendante de la fonction de coupure 1, &
moin de termes d’ordre inférieur. De 'autre c6té, on peut faire la dépendre d’un paramétre v > 1,
comme fait dans [50] et [52] par exemple. Ce trés simple changement va entrer en jeu d’une fagon
essentielle dans 1’étude des opérateurs hyperboliques a coefficients peu réguliers (voir le chapitre
3), parce qu’il permet une analyse plus raffinée.

Apreés cette bréve présentation & I'égard des outils théoriques dont on aura besoin dans notre
analyse, on va expliquer plus en détail les deux différentes directions principales de notre travail
de recherche.
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Opérateurs strictement hyperboliques a coefficients peu réguliers

On considére un opérateur strictement hyperbolique du deuxiéme ordre L sur une bande [0, 7] x
R, pour quelque T > 0 et toute diménsion N > 1:

N
(15) Lu = d%u — Z 0 (a;k(t,x) Opu) ,
k=1

et on suppose qu’il y a deux constants 0 < Ag < Ag telles que

N
Ao €7 < Z aje(t,x) & & < Ao €]

jk=1

pour n’importe quel (¢,z) € [0,T] x RV et tout & € RY. L’inégalité & gauche est la condition de
stricte hyperbolicité, tandis que celle & droite dit que les coefficients de 'opérateur sont bornés.

C’est bien connu (voir par exemple [42] ou [53]) que, si les coefficients aj;, sont lipschitziens
par rapport & t et seulement mesurable et bornés en «, alors le probléme de Cauchy pour L a un
caractére bien posé dans I'espace H' x L?. Donc, si les ajr, sont C* et bornés avec toutes leurs
dérivées par rapport a la variable d’espace, on peut retrouver le caractére bien posé en Ht! x H*®
pour tout s € R. De plus, pour n’'importe quel s € R on obtient (pour une certaine constante C
dépendent seulement de s) 'estimation de I’énergie

m>sw0wmm$+mwmm)s

0<t<T
T
< Cs <HU(0, Wirrs+r + 110:u(0, )| s +/ [ Lu(t, ) || e dt>
0

pour toute u € C([0,T]; H**L(RN)) n CL([0, T); H¥(RY)) telle que Lu € L'([0, T); H*(RY)).

En particulier, I'estimation (16) est vraie pour toute u € C2([0, T]; H*(RY)), et ¢a implique
que le probleme de Cauchy pour L est bien posé dans H® avec aucune perte de dérivées.

Si ’hypothése de continuité Lipschitz (en temps) n’est pas satisfaite, alors (16) n’est plus vraie.
Cependant, on peut encore retrouver le caractére bien posé dans H, mais cette fois avec une
perte de dérivées dans I'estimation de I’énergie. Cette perte ne peut pas étre évitée, comme il est
prouvé dans l'article [16]. En fait, les auteurs y prouvent que, si la régularité des coefficients est
mesurée par un module de continuité, alors chaque module de continuité pire que le lipschitzien
comporte toujours une perte de dérivées.

Le premier cas & considérer est quand les aj; dépendent seulement du temps: alors, en utilisant
la transformée de Fourier, on peut passer a l’espace des phases, ou le probléme devient une
équation différentielle ordinaire. Dans I’article [18], Colombini, De Giorgi et Spagnolo ont supposé
une condition log-Lipschitz intégrale, tandis que Tarama (voir [56]) a considéré la classe plus
génerale des fonctions log-Zygmund (intégrales). Sous toutes les deux hypothéses, on obtient une
estimation de I'énergie avec une perte constante de dérivées: il y a une constante § > 0 telle que,
pour n’importe quel s € R, on a l'inégalité

(17)  sup <||u(ta')HHS+15 + [|Grult, ')||H55> <
0<t<T

T
s@(mmwmﬂ+mmmwm+/umwwmﬁ)
0

pour toute u € C2([0,T); H OO(RN )), pour une certaine constante Cs qui dépende seulement de
s. L’idée originelle de Colombini, De Giorgi et Spagnolo était de régulariser les coefficients en
utilisant un noyau de convolution, et aprés de relier le paramétre d’approximation e avec la
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variable duale &: ainsi, ils ont exécuté une différente approximation dans de différentes zones de
I’espace des phases. L’amélioration de Tarama, plutét, a été obtenue en définissant une nouvelle
énergie, qui concerne aussi les premiéres dérivées des coefficients lissés, de fagon de compenser la
pire régularité.

Le cas de dépendence en temps aussi bien qu’en espace a été considéré par Colombini et Lerner
dans Particle [22]: ils ont supposé que les aj;, satisfaisaient une condition log-Lipschitz ponctuelle
dans toutes les variables. Ils ont donc étudié le probléme de Cauchy connexe, et ils ont trouvé une
estimation de ’énergie avec une perte de dérivées qui croit en temps: pour chaque s €10,1/4], il
y a des constantes positives 5 et Cs et un temps 7% €]0, 7] tels que

(18)  sup (|u<t,->uHs+1m +||atu<t,->||Hsm) <
0<t<T*

T*
< Cs (\IU(Ow)HHsH + (1060, ) | - +/0 [ Lt )| py-s-se dt)

pour n’importe quelle u € C2([0,T]; H*(RY)). A cause de la dépendence des a;ji, de z, maintenant
ce n’était plus possible d’utiliser la transformée de Fourier pour passer & ’espace des phases. Pour
surmonter ce probléme, ils ont profité de la décomposition de Littlewood-Paley: ils ont défini une
énergie localisée pour chaque composante Ay u de la solution u, et aprés ils ont exécuté une somme
pesée sur v pour définir 'énergie totale. Encore une fois, ils ont régularisé les cofficients en temps
et ils ont lié le parameétre d’approximation avec v, fait qui correspond exactement a choisir une
différente approximation dans de différentes zones de 'espace des phases: il faut se rappeler que
|€| ~ 2¥ sur le spectre de Ay u. Un travail assez dur était exigé pour controler la norm (sur l'espace
L?) des opérateurs de commutation [A,, a;x] venant de Péquation pour la partie localisée A, u.

Plus récemment (voir l'article [19]) Colombini et Del Santo ont imposé une condition log-
Zygmund ponctuelle par rapport au temps et une log-Lipschitz ponctuelle par rapport a I’espace,
uniformément par rapport a l'autre variable. Ces hypthéses se traduisent de la fagon suivante: il
y a une constant Kq telle que, pour n’importe quel 7 > 0 et quel y € RN\ {0}, on a

1
(19) sup |a;i(t + 7,2) + aji(t — 7,2) — 2a,(t,x)] < Ko7 log (1 + >
(t2) T
1
(20) suplae(t -+ 9) — st < Koyl log (14 ).
t.x

Dans ce cas aussi, ils ont décomposé ’énergie dans des parties localisées, méme si chacune d’elles
était définie d'une nouvelle fagon, en suivant I’idée originelle de Tarama, pour controler le mauvais
comportement des coefficients par rapport au temps. De plus, la régularisation des coefficients
par un noyau de convolution était exécutée et en temps, et en espace. Ainsi, ils ont obtenu un
estimation de I’énergie analogue a (18) (et donc le caractére bien posé dans l'esapce H* pour des
cofficients a;j, assez réguliers par rapport a ), mais seulement dans le cas de dimension d’espace
N = 1: en fait, ce n’était pas clair du tout comment définir une énergie de type Tarama (qui
était, d’une certaine fagon, nécessaire) en dimension plus grande.

Dans un premier temps, dans Particle [21] en collaboration avec Colombini, on a élargi le résul-
tat de [19] au probléme de Cauchy (encore en dimension N = 1) pour un opérateur hyperbolique
du deuxiéme ordre complet

Pu = 9*u — 0, (a(t,x) Opu) + bo(t,x) dpu + by(t,x) Opu + c(t,x)u,
ot, en plus des othése e nous avons supposé aussi que by et by appartenaient a
1, plus des hypothése (19) et (20), pposé i que by et by appartenaient 3

L*>(]0,T];C*) (pour quelque w €]0,1[ ) et ¢ € L*>([0,T] x R).
Nous avons recouru aux idées principales du travail de Colombini et Del Santo. En particulier,
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I’énergie associée & u était définie de la méme facon, et on a traité les termes d’ordre le plus grand
comme eux. Encore, on a trouvé une estimation de l'énergie du méme type que (18): comme on
peut s’attendre, la présence des termes d’ordre inférieur n’entraine pas de problémes considérables
pour 'obtenir. Cependant, la régularité hélderienne des coefficients des termes du premier ordre
entre en jeu dans l'analyse des commutateurs [A,,b;] (pour j = 1, 2), et elle comporte une
contrainte sur I’exposant de Sobolev s pour lequel (18) est vrai (voir aussi le théoréme 2.1).
Derniérement, dans [20] avec Colombini, Del Santo et Métivier, on a considéré 'opérateur (15)
sous les hypothéses (19) and (20) dans n’importe quelle diménsion N > 1. On fait remarquer que
on s’est intéressé & un opérateur homogéne pour n’alourdir pas trop nos calculs, mais la méme
technique marche en fait pour un opérateur du deuxiéme ordre complet. Nous sommes arrivés a
trouver une estimation de 1’énergie analogue a (18) (cette fois pour tout s €]0,1[ ), et donc le
caractére bien posé dans H* (pour des ajj, de classe C;° dans Iespace).
Pour obtenir 'amélioration, nous sommes recourus a une nouvelle énergie: comme on vient de
remarquer, la définition de Tarama n’admet pas une généralisation directe en diménsion plus
grande. Donc, on a fait appel encore 4 la définition originelle de Colombini et Del Santo, mais en
remplacant la multiplication par des fonctions a(t, z) avec un module de continuité peu régulier
par 'action des opérateurs paradifférentiels Ty, & elles associés (comme on a briévement expliqué
en dessus). On veut remarquer aussi que cette construction comporte déja un effet de régulari-
sation dans la variable d’espace, de fagon que c¢’était suffisant d’exécuter la convolution avec un
noyau lisse seulement par rapport au temps.
Toutefois, 'hypothése de positivité sur a (exigée pour définir un probléme strictement hyper-
bolique) ne se traduit pas, en général, dans la positivité de 'opérateur correspondant, qui est
fondamentale dans les estimations de 1’énergie. Ainsi, nous avons di profiter du calcul parad-
ifféerentiel dépendant d'un parameétre v > 1, comme développé par Métivier (voir [50]) et par
Métivier et Zumbrun (voir I’article [52]). Cet outil nous permet d’exécuter une analyse plus fine:
en particulier, on peut définir un opérateur de paraproduit a partir des frequences assez grandes,
de facon qu’il soit un opérateur positif, si le symbole correspondant est positif.
On a dii aussi traiter avec de différentes classes d’espaces de Sobolev, de type logarithmique, déja
considérés par Colombini et Métivier dans [23]. Cela vient du fait que I’action des opérateurs
paradifférentiels associés aux symboles log-Lipschitz (en z) et log-Zygmund (en t), tels que ceux
qu’on considére dans notre probléme strictement hyperbolique, comporte une perte de régularité
logarithmique.

Systéme d’Euler incompressible & densité variable

Le systéme d’Euler incompressible & densité variable

Op +u-Vp =20
(21) p (O + u-Vu) + VII = p f
dive = 0

décrit ’évolution d’un fluide incompressible non-homogéne et non-visqueux sous ’action d’une
force externe f = f(t,r) € RY. La fonction p(t,z) € R, représente la densité du fluide, u(t,z) €
RY son champs de vitesses et II(t, ) € R sa pression. Le terme VII peut étre vu aussi comme le
multiplicateur de Lagrange associé & la contrainte de divergence nulle sur la vitesse.

On suppose que la variable d’espace = appartient a espace entier RV, avec N > 2.

Le cas ou le fluide est supposé homogene, c’est-a-dire p = p constante (strictement positive)
et le systéme devient

ou + u-Vu + VII =0
(22)

divu = 0,
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a été étudié a fond et il y a une vaste littérature a lui consacrée.

Au contraire, pas beaucoup de travaux ont été consacrés a I’étude du cas non-homogéne. De
premiers résultats pour les équations (21) dans des domaines lisses de R? ou R? ont été obtenus
par Beirdo da Veiga et Valli pour des données initiales holderiennes (voir les articles [5], [6] et
[4]). Le cadre des espaces de Sobolev était considéré plutot par Valli et Zajaczowski dans [59], et
par Itoh et Tani dans [46]. Dans Darticle [45], Itoh a étudié I’évolution dans R? entier, pour des
données initiales (Vpg,ug) € H? x H?, et Danchin (voir [27]) a agrandi les résultats & n’importe
quelle dimension N > 2 et & tout espace de Sobolev avec un exposant de régularité assez grand.

Dans le méme article [27], Danchin a considéré aussi le cas de données dans l'espaces de Besov
limite B;IN/ 2. Avant, Zhou (voir [63]) avait prouvé le caractére bien posé pour le systéme (21)
dans les espaces B;IN/ P pour tout 1 < p < +oo, mais en supposant aussi que la densité initiale
po était une petite perturbation d’un état constant.

Il faut noter que, dans le cas de RY entier, ’hypothése sur le cadre adopté implique presque
toujours une condition L? sur le champs de vitesses, et si ce n’est pas le cas (comme, par exemple,
dans le travail de Zhou qu’on vient de citer), des suppositions de petitesse sur la densité étaient
demandées.

Il faut aussi remarquer que tous les résultats sur le caractére bien posé énoncé pour le systéme
(21) sont seulement locaux en temps, méme dans le cas deux-dimensionnel. En fait, comme on a
déja dit, pour N = 2 I’équation du tourbillon devient

1
(23) &gw+u-Vw+V<p>/\VH:0,

donc on ne peut pas s’attendre la conservation des normes de Lebesgue, fait qui était la clé pour
le résultat d’existence globale en temps, & cause du terme de densité.

Récemment (voir l'article [28]), Danchin a prouvé le résultat sur le caractére bien posé du
systéme (21) dans tout espace de Besov B, ., avec 1 < p < 400, contenu dans I’ensemble cot
des fonctions globalement lipschitiziennes. En fait, notre systéme est essentiellement un couplage
de deux équations de transport par le champ de vitesses u: alors, aucun gain de régularité peut
étre attendu, tandis que, si on veut la préserver, il faut demander que u soit au moins locale-
ment lipschitzienne par rapport & la variable d’espace. Donc, Danchin a demontré que le cadre
fonctionnel convenable pour I’étude de (21) est le méme que pour les équations (22). De plus,
il est arrivé a obtenir son résultat pour n’importe quel état de densité initial, sans de conditions
addittionelles de petitesse. De toute fagon, il a dii supposé que le champ de vitesses u appartenait
a L? pour traiter le terme de pression. En fait, dans le cas de densité non constante, VII satisfait
une équation elliptique (en forme de divergence) a coefficients peu réguliers,

(24) —div (e VII) = div F

(ici on a posé a := 1/p), et elle peut étre résolue de fagon indépendente de a seulement dans
I'espace d’¢énergie L2. Le contrdle sur la norme L? (ou, en général, LP) de VII était nécessaire
aussi pour borner sa norme de Besov.

Toutefois, la condition uy € L? est, d’une certaine maniére, assez restrictive: dans le cas
deux-dimensionnel, elle implique que le tourbillon doit avoir moyenne nulle sur R?, et ce fait nous
empéche de considérer, par exemple, des structures de type poches de tourbillon. Donc, Danchin
a prouvé aussi le caractére bien posé (dans n’'importe quelle dimension N > 2) pour des données
dans des espaces B, , — C%! avec 2 < p < 4. Aucune hypothése d’énergie finite était formulée,
meéme si la condition précédente nous permet de retrouver encore VII € L2, En particulier, ce
résultat s’applique (grace a la loi de Biot-Savart) a tout champ de vitesses assez lisse dont le
tourbillon est & support compact.

Dans le méme travail, Danchin a prouvé aussi un critére de continuation dans le méme esprit
de celui, bien connu, de Bealo, Kato et Majda (voir l'article [3]). La condition qui permet de
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prolonger les solutions au-dela d’un certain temps T est

T
/0 <||vu<t)||m + ||VH(t)|]B;J1>dt < +o0,

et, dans le cas s > 14 N/p, c’est possible de remplacer Vu avec le tourbillon €.

Finalement, Danchin a attaqué aussi le cas des espaces BS, , < C%!, mais en demandant en
plus que ug appartenait & LP (pour quelques 1 < p < +00) et que pp était proche (dans la norme
Bgoyr) a un état constant p. Sous ces hypothéses supplémentaires, ’équation pour le terme de
pression peut s’écrire (comme déja fait dans 'article [63] de Zhou) dans la forme

—aAIl = divF + div ((a —a)VII) ,

avec @ := 1/p. Alors, en utilisant les estimations LP habituelles pour l'opérateur de Laplace (qui
sont valables pour tout 1 < p < +00) et 'hypothése de petitesse sur la densité, on peut absorber
le dernier terme du membre de droite de I’équation précédente.

Dans l'article [29] en collaboration avec Danchin, on s’est concentré sur ce dernier cas: on est
arrivé a élargir le résultat sur le caractere bien posé dans BZ, , sans supposer aucune condition de
petitesse sur la densité initiale. Il faut remarquer que ce cadre fonctionnel est assez intéressant,
car il comprend aussi les cas particuliers des espaces de Holder du type C1® et 'espaces de Besov
limite Béo,l’ qui est le plus grand contenu dans C%!, et donc le plus grand ot on peut s’attendre
a retrouver le caractére bien posé pour le systéme (21). Bien str, on a di supposer que ug était
dans L2, pour avoir I'existence d’une solution VII de (24). L’amélioration par rapport au résultat
précédent a été obtenue grace & une différente méthode utilisée pour traiter le terme de pression,
qui en fait marche pour n’importe quel p € [1,+oc]. En particulier, on a séparé VII dans les basses
et les hautes fréquences, en utilisant la décomposition de Littlewood-Paley. Les basses fréquences
pouvaient étre controlées par la norme de Lebesgue, tandis que les hautes étaient bornées par la

norme de AII qui satisfait ’équation
1
—AIl = V(loga) - VII + . div(f +u-Vu) .

Le premier terme de la rélation précédente est d’ordre inférieur, et donc il peut étre absorbé en
interpolant entre les estimations L? et celles, d’ordre plus grand, pour l'opérateur de Laplace.
Nous étions aussi capables de formuler un critére de prolongement analogue a celui de Danchin
pour le cas By ., 1 < p < +00. De plus, pour les mémes raisons qu’on a expliquées tout a I’heure,
on a considéré aussi des données ayant énergie infinie: dans ce cas, le tourbillon (qui était une
quantité fondamentale dans le cas de densité constante) est entré en jeu via la loi de Biot-Savart.
On a encore supposé des propriétés d’intégrabilité pour ug et son tourbillon €2y, afin d’assurer que
le terme de pression appartenait a L?, une condition qu’on n’est pas arrivée a éviter. Aussi sous ces
hypothéses, nous avons trouvé le caractére bien posé pour les équations (21). En particulier, ce
résultat s’applique (comme dans le cas analogue considéré par Danchin) & tout champ de vitesses
dont le tourbillon est assez lisse et & support compact.

Comme on a déja remarqué, tous les résultats obtenus étaient seulement locaux en temps. Cepen-
dant, on était aussi capable de donner une estimation pour le temps de vie des solutions. Dans un
premier moment, on a montré que, dans n’importe quelle dimension d’espace, si la vitesse initiale
est d’ordre £ (avec ¢ assez petit), alors le temps d’existence est au moins d’ordre e . Dans ce cas,
aucune limitation sur la non-homogénéité est demandée: le résultat est une conséquence directe
des propriétés de redimensionnement pour les équations (21). Apres, grace a 'égalité (23) et a
des estimations plus précises pour I'équation de transport (récemment établies par Vishik dans
|60] et généralisées par T. Hmidi et S. Keraani dans [41]), on a montré que le temps de vie de la
solution tend & l'infini si pg — 1 devient proche de 0. Plus exactement, si

leo — 1l , = ¢ et lwollgo | + lluollzz = Us
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avec € assez petit, alors le temps de vie est au moins d’ordre UO_1 log(loge™1).

Cela fait, dans [35] on a étudié le probléme de la propagation de la régularité stratifiée et
conormale pour les solutions de (21), dans toute dimension N > 2. On a supposé que la vitesse
initiale ug et son tourbillon g étaient dans quelques espaces de Lebesgue, afin d’assurer, encore
une fois, VII € L?. On a supposé aussi des propriétés de type géometrique pour Qg. De plus,
on a demandé que la densité initiale py était bornée avec son gradient et qu’elle satisfaisait des
conditions géomotriques analogues a celles pour €2y. Sous ces hypothéses, on est arrivé & prouver
Pexistence (bien str, localement en temps) et 'unicité des solutions de (21), et la persistance de
ces structures géometriques. Il faut remarquer qu’on n’a pas demandé expressément que le champ
de vitesses était lipschitizien. Cette propriété suit de la régularité stratifiée pour le tourbillon,
et elle est vraie comme dans le cas homogéne. En fait, sa preuve repose seulement sur la loi de
Biot-Savart, et donc rien ne change par rapport au cas classique: en particulier, aucune condition
en plus était demandée. Il faut dire aussi que les structures géometriques se propagent au champ
de vitesses et au terme de pression.

Dans le méme travail, on a donné une estimation du dessous pour le temps de vie de la solution
en termes seulement des données initiales, dans toute dimension N > 2. Dans le cas de densité
constante, il faut se rappeler qu’il était donné (4 moins de multiplication par des constantes) par

1920lles,, -
To = | |Q0]lranr> log | e+ ——"—
1920l Lanzo

(voir l'article [26]). Dans le cas non-homogeéne, au contraire, nous avons trouvé qu'il est borné
par

Ton = (V/(0) (14 [poll =)+ (1 4+ By + rg/?’))*l ,

ol exposant § > 1 vient des estimations pour le terme de pression, les quantités Ry et 'y sont
lides aux propriétés géometriques des données initiales et on a défini

Qollce
V'(0) = Jluollze + [1Q0llanze + 1Q0lles, = ¢ 1Q0llzanz~ log €+M :
1920l| Loz

Alors, a4 moins de multiplication par des constantes, T,,, < T. Nous voulons remarquer qu’on a
laissé tomber la dépendence logarithmique dans I'estimation de la norme Lipschitz du champ de
vitesses pour simplifier les calculs, mais peut-étre ce résultat est assez approximatif.

Finalement, dans les cas physiques N = 2 ou 3, on est arrivé & raffiner notre résultat sur la
régularité conormale: si I'hypersurface initiale 3g est aussi connéxe, alors elle définit un domaine
borné Dy C RY dont elle est le contour, et cette propriété se propage en temps (car le flot de la
solution est un diffeomorphisme). Par analogie avec la structure des poches de tourbillon, nous
voulions étudier la dynamique dans le domaine borné. Evidemment, méme en dimension N = 2,
méme si la donnée initiale est un poche de tourbillon, on ne peut pas s’attendre & conserver cette
propriété, a cause de la presence du terme de densité dans I’équation (23). Cependant, nous
avons prouvé que, si la densité et le tourbillon initials sont holderiens & l'intérieur du domaine Dy
(et ils satisfont des hypotheses globales pour garantir la persistance des propriétés conormales),
alors leur régularité est préservée dans I'évolution temporelle. La difficulté la plus grande était
de prouver que la continuité hélderienne se propageait aussi au champ de vitesses et au terme de
pression: enfin, on devait prouver que ces deux quantités étaient assez réguliéres a la frontiére du
domaine Dg transporté par le flot. Maintenant, ca était garanti par la régularité conormale qu’on
venait de prouver.
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La thése est structurée de la fagon suivante.

Dans la premiére partie, on va présenter les outils de I’Analyse de Fourier dont on aura besoin
dans notre étude. On donne un cadre assez général de la théorie classique de Littlewood-Paley.
On va rappeler la definition et les propriétés principales des espaces de Besov non-homogénes,
et on va citer aussi quelques résultats fondamentaux a I'égard du calcul paradifférentiel. Pour
faire ¢a, on va suivre fidélement la préséntation donnée dans [2|, et, comme ces résultats sont
classiques, on va omettre leurs preuves.

Aprés, on va considérer les espaces de Besov logarithmiques, et on va montrer que les propriétés
précédentes sont encore valables (4 moins des changements appropriés) aussi pour cette classe.
Cette fois, on va donner tous les détails des preuves.

Dans la derniére partie de ce chapitre, on va expliquer les idées principales du calcul parad-
ifféerentiel & paramétre, en suivant principalement la présentation de [52], et on va citer quelques
résultats dont on aura besoin dans la suite.

Apreés, on va considérer le probléme des opérateurs du deuxiéme ordre strictement hyper-
boliques & coefficients peu réguliers.

Dans le chapitre 2 on va analyser le cas d’un opérateur complet en dimension d’espace égale a
un. Ce chapitre contient les résultats prouvés dans l'article [21] en collaboration avec Colombini.

Dans le chapitre 3, plutot, on va présenter les résultats obtenus dans [20] avec Colombini, Del
Santo et Métivier. On élargit le précédent au cas de n’importe quelle dimension d’espace, mais
(pour simplifier les calculs) seulement pour un opérateur homogéne, c’est-a-dire sans les termes
d’ordre inférieur.

Dans chaqu’une de ces sections, on va introduire aussi quelques outils en plus que ceux qu’on
a présentés dans le chapitre 1. En particulier, on va analyser les propriétés des fonctions ayant
un module de continuité peu régulier et celles des opérateurs paradifférentiels correspodants.

Finalement, la derniére partie de la thése est dévouée a 'étude des équations d’Euler incom-
pressibles & densité variable. Le chapitre 4 est consacré & la preuve du caractére bien posé dans
des espaces de Besov limites, contenus dans ’espace des fonctions globalement lipschitziennes.
On va aussi donner un critére de prolongement et une borne du dessous pour le temps de vie des
solutions. Ce chapitre est basé sur l'article [29] en collaboration avec Danchin.

Apreés, on va considérer le probléme de la propagation des structures géometriques pour ce
systéme. On va se concentrer sur la régularité stratifiée et celle conormale, et sur la propagation
de la continuité hélderienne a Pintérieur d’un domaine borné de R? ou R? (comme expliqué avant).
Ceci est le sujet du chapitre 5, et il contient les résultats prouvés dans 'article [35].
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Chapter 1

Littlewood-Paley Theory

This chapter is devoted to the presentation of the main tools, mostly based on Fourier Analysis,
we will need in the study of some partial differential equations.

The basic idea is to split a tempered distribution into a sum of smooth functions, whose
Fourier transform is compactly supported in a ball or an annulus and which have, due to this
spectral localization, very nice properties. This will be explained in the first section.

Then, taking advantage of the previous decomposition, we will introduce the class of (non-
homogeneous) Besov spaces and we will recall its main properties.

Next section will be devoted to the classical paradifferential calculus. In particular, we will anal-
yse the product of two tempered distributions using the well-known paraproduct decomposition,
introduced first by J.-M. Bony in the paper [8]. Moreover, we will consider also composition of
Besov functions by a smooth one.

Unless otherwise specified, one can find the proof of all the results quoted up to now in chapter
2 of [2] (see also [51], chapter 4).

In section 1.4, instead we will introduce a new class of Besov spaces, in a certain sense of
logarithmic type. We will see that most of the classical results holds true also in this new setting.
As this part is not classical, we will give also the details of the proofs.

Finally, last section of this chapter is devoted to paradifferential calculus depending on a
parameter v > 1 and to more general classes of paradifferential operators. These topics have
been already introduced in paper [52], appendix B (see also [50]): we will essentially follow it in
our presentation. However, we will allow symbols to have also a logarithmic growth, and we will
analyse their action on the class of logarithmic Besov spaces, introduced before.

1.1 Littlewood-Paley decomposition

Let us define the so called Littlewood-Paley decomposition, based on a dyadic partition of unity
with respect to the Fourier variable.

So, fix a smooth radial function x supported in (say) the ball B(0,8/5), equal to 1 in a
neighborhood of B(0,5/4) and such that r — x(re) is nonincreasing over R for all unitary
vector e € RY. Moreover, set ¢ (£) = x (£) — x (2£): obviously, its support is contained in the
annulus C = {£ e RV | 5/8 < [¢] < 8/5}.

Now we quote some fundamental properties, which are easy to verify. First of all,

VEERY, X(O+ D 927 =1 and VEeRV\{0}, D o(277¢) =1.

Jj=1 JEZ
Moreover, if we define the annulus C = C + B(0,2/5), we have 20C N 28C = 0 for all |j — k| > 3,

3
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and we have also
|7 —k|>2 = suppyp (2_j ) N supp ¢ (2_k ) =10
j=>2 = suppyx N Supp<p(2_j ) =0.
For convenience, set g = F 'y and h = F1p. The dyadic blocks (A);cz are defined by!
Aji=0if j<-1, Ag:=x(D)=g*- and Aj:=¢27D)=2"Nh(27.)«- if j>0,
while the low frequency cut-off operator is defined as

Su—XZJHD ZAk—QJ DN g(2j71-)*- for j>1.
k<j—1

The above defined operators map LP into LP (for all p € [1,+o0]) continuously, with norms
independent of the indeces j and p. Moreover, formally we have the decomposition Id = > ) Ay,
which makes sense in &', as next result says.

Proposition 1.1. For any u € &', one has u = limj_, 1 Sju in S'.

For the sequel, it’s important to understand properties of spectrally localized functions?:
hence, the following two lemmas will be fundamental. The former one describes, by the so
called Bernstein’s inequalities, the way derivatives take effect on such a class of functions, while
the latter concerns the action of Fourier multipliers.

Lemma 1.2. Let 0 < r < R. A constant C exists so that, for any nonnegative integer k, any
couple (p,q) in [1,400]? with p < q and any function u € LP, we have, for all A > 0,

BN (35

1
supp@ C B(0,AR) = ||[VFullp« < C*1 )||u||Lp

supp@ C {€ e RV |[rA <[] < RA} = CF U0 ullze < [|[VFullpe < CHFENF |Jul|po .

Lemma 1.3. Let C be an annulus, m € R and o be a smooth function on RN\{0} such that, for
any o € NV there exists a constant C, for which

VEERY, 189 (€)] < Colgm o

Then, there exists a constant C, depending only on the Cy, for |a| < N +2, such that, for any
p € [1,+00], any XA > 0 and any function u € LP spectrally supported in AC, we have

lo(D)ullpy < CX™ |lullLe -

1.2 Non-homogeneous Besov spaces
Using the Littlewood-Paley decomposition, one can define what a Besov space B ,. is.

Definition 1.4. Let u be a tempered distribution, s a real number, and 1 < p,r < +o00. The
non-homogeneous Besov space B, is defined as the subset of tempered distributions w for which

HUHB;,T = H(st HAjuHLp)jeNHZT < +00.

! Throughout we agree that f(D) stands for the pseudo-differential operator u ~ F~!(f Fu).
2 Recall that the spectrum of a tempered distribution is the support of its Fourier transform
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From the above definition, it is easy to show that for all s € R, the Besov space Bj , coincides
with the non-homogeneous Sobolev space H®, while for all s € R}\N, the space B, . is actually
the Holder space C*® (see e.g. [51], chapter 4, for the proof of these two facts).

If s € N, instead, we set C; := B, ., to distinguish it from the space C* of the differentiable
functions with continuous partial derivatives up to the order s. Moreover, the strict inclusion
C; < C; holds, where Cj denotes the subset of C* functions bounded with all their derivatives
up to the order s.

If s < 0, we define the “negative Holder space” C* as the Besov space B, .

Finally, let us also point out that for any k£ € N and p € [1, 400], we have the following chain
of continuous embeddings:

By, < W"? < By

p,00
where W*P denotes the set of LP functions with derivatives up to order k in LP.

Besov spaces have many nice properties which will be recalled in a while. For the time being,
let us just mention that if the condition

N N
(1.1) s>1+ — or s=14— and r=1
p p

holds true, then By, is an algebra continuously embedded in the set C%! of bounded Lipschitz
functions, and that (by Bernstein’s inequalities) the gradient operator maps By, in B;;l.

First of all, let us show that definition 1.4 is independent of the choice of the cut-off functions
defining the Littlewood-Paley decomposition.

Lemma 1.5. Let C C RY be an annulus, s € R and (p,7) € [1,+00]?. Let (u)) jen be a sequence
of smooth functions such that

suppi; C 2/C and H(zjsHUjHLp)jeNHer < 400.
Then u := ZjeN uj belongs to By, and

lullBg, < Cs

(2j5 HujHLp)jeN

Bernstein’s inequalities immediately imply the following embedding result.

o

Proposition 1.6. The space B, . s continuously embedded in the space Bp2 . for all indices

satisfying 1 < p1 < po < 400 and

1 1 1 1
52<51—N<—> or 52251—N<—) and 1 < r; < ryg < +00.
b1 P2 p1 P2

The following statement is of great importance for proving existence results for partial differ-
ential equations in the Besov spaces framework.

Theorem 1.7. The set By, is a Banach space.

Moreover, it satisfies the Fatou property: if (uj)jeN is a bounded sequence of B, ,, then there exist

T

an element u € B?

o and a subsequence (uw(j))jeN such that

. - . 1 . < . . )
lim wuyy) = u in S and ullBs, < C?H{}f““wm‘

j—)+OO B[S),'r‘ )

Let us also quote a density result.

Lemma 1.8. Let r < +oo. For allu € By, we have

I — Sjullg, = 0.
im u = Sjullg,
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Proposition 1.9. Fiz p and r finite.
Then the space of test functions D(RN) is densely embedded in B;’T(]RN).

Remark 1.10. If r = 400, instead, the closure of D(RY) for the B; . norm is the subset of
tempered distributions u € &’ such that lim;_, e 275 |Ajul/L» = 0.

We introduce now the following notation:

e for any index ¢ € [1,+0o0], we denote with ¢’ its conjugate exponent, i.e. ¢ € [1,+o0] is
defined by the relation (1/q) + (1/¢') = 1;

e the symbol (-, -);» will indicate the scalar product in L?.
Let us recall also some duality properties of Besov spaces.

Proposition 1.11. For all s € R and (p,r) € [1,+00)?, the map
By, x By, — R

(u,qﬁ) — <u7¢> = Z (AjuaAMb)Lz

l7—k[<1
defines a continuous bilinear functional on the space BS . x B.®,. Moreover, for allu € S’
b,7 p,T ’

lullps, <C  sup  (u,9).
9ES.10ll - <1
p,T

S
NS

More generally, the space BI; , can be identified with the dual space of the completion of D
for the B, , norm.
Now let us consider the action of Fourier multipliers on non-homogeneous Besov spaces. First

of all, a definition is in order.

Definition 1.12. A smooth function f : RY — R is said to be a S™-multiplier if, for all
multi-index o € NV, there exists a constant C,, such that

VEERY,  [9°F(€)] < Cu (1+ )™,

Proposition 1.13. Let m € R and f be a S™-multiplier.
Then for all s € R and (p,r) € [1,+00]? the operator f(D) maps By, into By ™ continuously.

Next statement considers instead the case of homogeneous (away from the origin) multipliers:
it will be useful in part III.

Proposition 1.14. Let F : RN — R be a smooth function. Let us suppose also that F is
homogeneous of degree m € R away from a neighborhood of the origin: there ezists a real number
0 > 0 such that

VIl =0, VA>0,  F(A) = A" F(E).

Then for all (p,r) € [1,400]? and all s € R, the operator F(D) maps By, in B5,™.

Remark 1.15. Let P be the Leray projector over divergence free vector fields and Q :=1d —P.
Recall that, in Fourier variables, for all vector fields u we have

- &
€17

Therefore, both (Id — Ag)P and (Id — Ag)Q satisfy the assumptions of the above proposition
with m = 0, hence they are self-maps on B, , for any s € R and 1 < p,r < +o0.

Qu(¢) £ ().
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Now, let us state a characterization of Besov spaces with negative index of regularity in terms
of the low frequencies cut-off operators.

Proposition 1.16. There exists a constant C' for which the following result holds. Let s < 0,
(p,r) € [1,+00]? and u € S'.

Then u € BS, if and only if the sequence (275 ||S;ul|r»)

o € (". Moreover,

jeN
j— j 1
O g < H(QJSHSjuHLp)jENng <cC <1+|5|) lullB;, -

Finally, let us conclude this section with a fundamental interpolation result.

Theorem 1.17. There exists a constant C' such that, for any two real numbers s1 < s2, any
0 €10,1[ and any (p,r) € [1,+00)?, one has

[4 —0
lall gysa-ons <l Tullisd

¢ (1 1 0 1-0
s —0)s < - P s s .
lullgrsiones < = (5 g ) Tolly Tl

1.2.1 Time-dependent Besov spaces

Littlewood-Paley decomposition plays a fundamental role in the analysis of partial differential
equations in the Besov spaces framework.

The standard procedure lies in writing the equation for each localized part of the solution,
then estimating it in some space L2([0,T7]; LP) using classical results for smooth solutions and
finally performing a weighted ¢" summation.

In this way, however, one doesn’t get estimates in the space L?([0,77; B; ), because the time
integration comes before the summation. So, the following definition gains relevance.

Definition 1.18. Given a T > 0, s € R and (p,7) € [1,+0oc]?, we define the space INL%(BISM) as
the subset of tempered distributions u over ]0,7[ x RY such that

< +00.

il o) = || (2 Wsulzgaon) |
The previous definition was introduced first in paper [15] in the Sobolev spaces framework,
and then in [14] for the general Besov classe.
The relation between this space and the classical L.(B; ) := L°([0, T]; B; ) can be easily got

by Minkowski’s inequality: one has

( Mo

lellzg s ) > lulligs,) i o> 7.

IN
IN
<

lulle s,y if e

Paradifferential calculus results, such as (for instance) continuity of composition and of para-
product and remainder operators, hold true also for this class of Besov spaces. One has to pay
attention only to the time exponent g, which follows the rules of Holder inequality. For instance,
as we will see, we have

A

||UU||Z§(B;’T) <C (HUHL?(LOO) HUHZ?(B;’T) + HUHE?(B;H ||U||L§4(LO<>)) )

with 1/0 = 1/01 + 1/02

1/03 + 1/04.
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1.2.2 Homogeneous Besov spaces

For completeness, let us spend a few words on homogeneous Besov spaces. First of all, let us
define a subclass of the space S'(RY).

Definition 1.19. We define S,’L(RN) to be the space of tempered distributions w such that, for
all € D(RY), one has

1.2 lim || (AD)u|l;« = 0.
(12) im0 (AD)ul,
This requirement is actually a condition on low frequencies only: as a matter of fact, the

following proposition holds true.

Proposition 1.20. u € S if and only if there exists & € D(RY) which satisfies relation (1.2)
and moreover 6(0) # 0.

For instance, it’s easy to verify the following claims.

o Let u € &' if  is locally integrable near 0, then u € Sj.
In particular, one has the inclusion &(RY) C Sy (RY).

e Let u be a tempered distribution such that 6(D)u € LP, for some p € [1, 400 and some
function § € D with §(0) # 0. Then u € ;.

e Let P be a nonzero polynomial. Then P ¢ S}, but eltmp e S; for all n € RV\{0}.
In particular, Sj is not a closed subset of S’ for the weak-* topology.

Now, keeping in mind that ZjeZ % (z—jg) = 1 for all £ € RV\ {0}, we define, for all j € Z, the
homogeneous dyadic blocks

Aju = <p(2_jD)u = 9IN h(2j-) * U,

and the homogeneous low frequencies cut-off operators

Sju = Z Ak

k<j—1

So, formally, one can write Id = ZjeZ Aj.

Now, we are ready to define the homogeneous Besov space B]“;’,r.

Definition 1.21. Let s € R and (p,r) € [1,+00]?. The space B;T is defined as the subset of
distributions u € S;, such that

ull e = || (270 Au‘ ) < 4o00.
lulls;, H( Pl jezl|
The space B,; - endowed with || - [| 5, , is a normed space, but it is not complete, in general.
: s
Theorem 1.22. Let s € R and (p,r) € [1,+oc)? such that
N N
5§ < — or s=— and r=1.
p
Then the space B;T, endowed with the norm || - HB;H is complete.

Moreover, in the case s < N/p it satisfies also the Fatou’s property.
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Note that if the condition on indices in previous theorem is not verified, B;r is no longer a
Banach space: the problem lies in convergence for low frequencies. Let us spend a few words
about that.

We start from the remark that Ajf =0 for all j € Z if and only if f is a polynomial. As a
matter of fact, thanks to Fourier transform it’s quite easy to see that the condition Ajf =0 for
all j € Z is equivalent to require suppr {0}.

Now, as for all k € Z the identity Id = Sp + > ;5 A; holds (note that Sy is the non-
homogeneous low frequencies cut-off operator), we have

_ A ) . / . _ . /
f_ZAJf in S — Jim Spf =0 i 8.
JEZ
Next lemma explains us the meaning to give to condition on the right-hand side.

Lemma 1.23. For all tempered distribution f € S'(RN), there exist an integer n € N and a
Jamily of polynomials (Py(f))ncz » of degrees dj, < n, such that

k——o0

lim (Skf - Pk:(f)) =0

uniformly on all compact subsets of RN and in the S’ topology.

Therefore, the equality f = > Aj f means that

JEL.

lim (M Ajf = Pu(f) | =f in LE@®RY) nS'®RY).
k——o0 -
>k
See also [9] and the references therein for a more complete treatment of this construction.
However, previous arguments lead to another definition of the homogeneous Besov spaces, modulo
polynomials, in such a way to get a Banach space independentely of the regularity indices. It
turns out that the two definitions coincide in the case s < N/p or s = N/p and r = 1.

Let us finally remark that most of the results stated for the non-homogenous framework are
still true also in this case. Moreover, one can characterize homogeneous Besov spaces in terms of
the heat flow or of finite differences. We refer to [2] for the details of these and other properties
of spaces B;,r

1.3 Non-homogeneous paradifferential calculus

This section is devoted to the study of the action of some operators on non-homogeneous Besov
spaces. In particular, we are going to focus on the product of two tempered distributions and on
left and right composition of a smooth function with a Besov one. In section 1.5, instead, we will
introduce more general paradifferential operators.

For the proofs of all the results quoted here, we refer again to 2], chapter 2.

1.3.1 Bony’s paraproduct decomposition

Given two tempered distributions v and v, formally one has uv = ij AjuAgv. Now, due to
the spectral localization of cut-off operators, we can write the following Bony’s decomposition:

(1.3) uv = Tyv + Tyu + R(u,v),
where we have defined

Ty = ZSj,luAjv and R(u,v) = Z Z AjulAv.
J

J o |k=jl<t
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The above operator T is called “paraproduct”, whereas R is called “remainder”.
Sometimes we will also write

uv = Ty + Thu with Thu = ZSj+2v Aju.
J

Let us immediately note that the generic term S;_ju Ajv is spectrally supported in the dyadic
annulus 27C, , while Aju A is spectrally localized in a ball of radius proportional to 27.

Let us now recall some continuity properties of paraproduct and remainder operators on non-
homogeneous Besov spaces.

Theorem 1.24. (i) For any (s,p,r) € R x [1,4+00]? and t > 0, the paraproduct operator T
maps L™ x B . in By, and B3, x Bj . in By.' with 1/q := min{l, 1/ry + 1/r}.
Moreover, the following estimates hold true:

”TuUHB;T < CHUHLOOHVU”B;;l and ||TuUHB;;1t < CH“”B;’”HVUHBg;%'

(ii) For any (s1,p1,71) and (s2,p2,72) in Rx [1,00]? such that s1+s2 > 0,1/p:=1/p1+1/py < 1
and 1/r :=1/r1 4+ 1/ry < 1 the remainder operator R maps Bj! . x B2 . in Blt*, and

p1,71 p2,72
one has:
081+82+1 '
HR(u,v)HBE;SQ < m HUHB;},n HUHB;%Q if s1+s >0
IR(u,v)llgy . < CoF  lullger vllgs if s1+s2=0, r=1.

Remark 1.25. Actually, under the assumptions of the above proposition, one can prove more
accurate estimates for the paraproduct operator: for all £ € N,

k k
ITwollsg, < C llulle ]| V¥oll s and 1Tl gy < Clullpse, I9¥0] o

Let us also quote a lemma, which continuity properties for the remainder operator are based
on, and which will turn out to be useful in the applications.

Lemma 1.26. Let B be a ball of RN, s > 0 and (p,r) € [1,+00)?. Let (uj)jeN be a sequence of
smooth functions such that

suppi; C 2B and H(st HUJ'HL”);’QNHET < +o00.

Then u := ZjeN uj belongs to By, and

lullg;, < Cs H(gas”ujnm)jeN .
Combining the theorem 1.24 with Bony’s decomposition (1.3), we easily get the following
“tame estimate”

Corollary 1.27. Let a be a bounded function such that Va € Bf,;l for some s > 0 and (p,r) €
[1,4+00]%. Then for any b € By . N L> we have ab € B, , N L™ and there exists a constant C,
depending only on N, p and s, such that

b,r b,r

labllsg, < C(llalelbllzg, + bz~ Va5 )-

In applications, we will often have to handle compositions between a paraproduct operator and
a Fourier multiplier. We already know how each of them acts on the Besov class; now, we want
to focus on their commutator operator. Before doing this, however, let us quote a preliminary
result.
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Lemma 1.28. Let 6 € CL(RY) such that the function (1+|-|)8 € L.
Then there exists a constant C such that, for any Lipschitz function f and any uw € LP with
p € [1,400], for all A > 0 one has

[[0OT"D), f] ully < CATH IV llpee [lullze -

In particular, if we take § = ¢ and A = 27, this lemma may be interpreted as a gain of
one derivative by commutation between the localization operator A; and the multiplication by a
Lipschitz function. It will be interesting to compare this result with what we will get in chapter
2, where we will assume f to be non-Lipschitz (see lemma 2.3).

Now let us state commutator estimates between a paraproduct operator and a Fourier multi-
plier, as announced.

Lemma 1.29. Let m € R, R > 0 and f € C®°(RY) be a homogencous smooth function of degree
m out of the ball B(0, R).
Moreover, let 0 € [0,1[, s € R and (p,r) € [1, +o0]?.

Then, there exists a constant C (depending only on R, o and N ) such that

(1.4) [T, £(D)] ]

B;;m+o <C HquBgojolo HUHB;T )

In the limit case o = 1, the previous estimate is still true with [[Vul|p~ in the place of ||Vul[go-1 .

1.3.2 The paralinearization theorem

In this paragraph, we want to investigate the effect of composition by smooth functions on Besov
spaces. We will focus on left composition, while we refer to chapter 5 for some properties of right
composition. Let us state a first fundamental result (whose proof can be found e.g. in [2]) for the
general situation.

Theorem 1.30. Let f € C*®°(R) such that f(0) =0, s >0 and (p,r) € [1,+oc]?.

Ifue L>*NB,,, then so does f ou and moreover

<
£ oullgy, < C lullsy, -
for a constant C depending only on s, f' and ||ul|p.

We can state another result (see |28], section 2, for its proof), which is strictly related to the
previous one.

Proposition 1.31. Let I C R be an open interval and f: I — R be a smooth function.
Then, for all compact subset J C I, s > 0 and (p,r) € [1,+00)?, there exists a constant
C such that, for all functions u valued in J and with gradient Vu € B;;l, we have that also
V(fou)e B! and
IV (fou)llgss < C [ Vullyss -

In the case f € C;°(R), theorem 1.30 can be a little bit improved (see again [2| for te proof).

Theorem 1.32. Let f € C3°(R) such that f(0) =0, s > 0 and (p,r) € [1,4+00]%. Let us take a
u € By, such that Vu € Bgol’oo.

Then also fou € By, and there exists a constant C, depending only on s, f and ||[Vul[g_1_,
for which ’

Ifoulpy, < Cllullsg, -

If w is more regular, one can expect to get more informations on f o u. The paralinearization
theorem says that, up to a remainder term which turns out to be more regular than u, one can
write the composition f ow as a paraproduct involving f’ o u and u. See also chapter 2 of [2] for
more details.
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Theorem 1.33. Let s, o > 0, with o ¢ N. Let also p € [1,400], 1 <11 <19 < 400 and set
1/r := min{1l, 1/r; + 1/ra}. Finally, let f € C(R).

Then, for any function u € By . N B, there ezists a constant C, which depends only on f"
and ||u||pe, such that

< C lullpg

00,19

lullB;,,, -

[£ou - Tyl

Byie

1.4 Logarithmic Besov spaces

As pointed out at the beginning of section 1.2, classical Sobolev spaces can be characterized via
dyadic decomposition: for all s € R there exists a constant Cs > 0 such that

1 —+o00 +oo
(1.5) a2 Al < llulf < G Y2 Al
S =0 v=0

In other words, the H* norm of a tempered distribution u is equivalent to the ¢2 norm of the
sequence (2° [|Ayul12), oy Now, one may ask what we get if, in the sequence, we put weights dif-
ferent to the exponential term 2%. Before answering this question, we introduce some definitions.
For the details of the presentation, we refer also to [23], section 3.

Let us set II(D) := log(2 + |DJ), i.e. its symbol is 7(§) := log(2 + [¢]).

Definition 1.34. For all a € R, we define the space H*T1°8 a5 the space [I"*H*, i.e.
fe HtE = Tf € HY = &) (1+ ]§|2)8/2 F6) e L?.
From the definition, it’s obvious that the following inclusions hold for s; > s9, a1 > ay > 0O:
(16) H51+a110g N Hs1+oz2 log oy HSU oy [S17Q2 log N Hs1fallog oy H%2.

We have the following dyadic characterization of these spaces (see [51|, proposition 4.1.11).

Proposition 1.35. Let s, a € R. A tempered distribution u belongs to the space H¥T1%8 if and
only if:

(i) for all k >0, Agu € L2(RY);
(ii) set O := 285 (1 + k) || Agul| 2 for all k € N, the sequence (81,),, belongs to £2(N).
Moreover, ||ul|gstatos ~ [[(0%)4llp2-

Hence, this proposition generalizes property (1.5).

This new class of Sobolev spaces, which are in a certain sense of logarithmic type, will come
into play in analysis of strictly hyperbolic operators with low regularity coefficients. However,
inspired by their dyadic characterization, we want to define the more general class of “logarithmic
Besov spaces”.

Definition 1.36. Let s and « be real numbers, and 1 < p,r < +o00. The non-homogeneous
logarithmic Besov space Bﬁjﬁo‘ 108 i5 defined as the subset of tempered distributions u for which

lull gytaros = H(zjs(l +j)aHAju||Lp)jeNng < 400.

Now, we want to investigate some basic properties of this new class of functions. We will see
that most of the results stated in the classical case hold also for them. The proofs can be obtained
from the previous ones with little modifications; anyway, we want to give here the most of the
details.
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1.4.1 General properties

First of all, let us show that definition 1.36 is independent of the choice of the cut-off functions
defining the Littlewood-Paley decomposition.

Lemma 1.37. Let C C RY be a ring, (s,a) € R? and (p,r) € [1,+00]?. Let (u;)
of smooth functions such that

jeN be a sequence

suppi; C 2/C and H (275 (1 + ) HWHLP)jeNH < +00.

Lr

Then w:=) stelog ond

jen U belongs to By,

el groros < Coa || (27 (14 1) 1 10)

JEN||pr °

Proof. By spectral localization, we gather that there exists a ng € N such that Aju; = 0 for all
|k — j| > ng. Therefore

[Akullr < > Akusllee < C > Juglize
li—kl<no li—kl<no
From these relations it immediately follows that
(140 Al < €5 200 TR 1 .
li—kl<no
Now, as very often in the sequel, we use the fact that (14 k)/(1+7) < 1+ |k — j|. Hence,
25 (14 k)™ [|Agull e < C (0% 8),
where we have set (here Z4 denote the characteristic function of the set A)
O = 2" (1 +h)* T g (h)  and  3§; := 275 (1 + 5)* [|uy]| Lo -
Passing to the " norm and applying Young’s inequality for convolutions complete the proof. [

Logarithmic Besov spaces are intermediate classes of functions between the classical ones. As
a matter of facts, a chain of embeddings analogous to (1.6) still holds. Let us recall that, in the

classical case, a loss of regularity is needed to lower the summation index: B, < B;_f for all

€ > 0. It’s very easy to see that, in fact, only a logarithmic loss is required:

Bio = BS%% Va > 1.

p?oo
Therefore, proposition 1.6 admits the following generalization:

Proposition 1.38. The space Bii 1'% is continuously embedded in the space Bs2io?'°% when-

ever 1 < p; < p2 < 400 and one of the following conditions holds true:
e 55 < s1— N(1/p1 — 1/p2)
e s9 =5 — N{1/p1 — 1/p2) and a1 — ag > 1
® so =5 —N(1/p1 —1/p2), a2 < a; and 1 <1 < 1y < +00.
Let us now state a simple lemma, which turns out to be important in the sequel.

Lemma 1.39. Let 1 < r < +o0. For all u € B5;*'%, we have

jEI_POOHU — S]UHB;’J;alog =0.
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Proof. Let us take a u € Bf,j;alog, with r < 4+00. Obviously, we have that

li 2ks7‘ 1 T\ A - 0.
j;rfm; (1+E) | Agulle = 0
2]

Then, the thesis follows observing that v — S;u = Zkzj Agu. O

As one can expect, Fatou’s property holds true also for the new class of Besov spaces.

Theorem 1.40. Let (s,a) € R? and (p,r) € [1, +00]%.
s+alog

The set Bf;f;alog satisfies the Fatou property: if (uj)jeN s a bounded sequence in B, " °, then

there exist an element u € By y® ¢ and a subsequence (uw(j))jeN such that

1. 5y — ) ! d s+alo < 1 1 f ; s+alog -

i gy =i S and fulgee < Clminf g | o
Proof. By Bernstein inequalities, for all n € N, the sequence (A”uj>jeN is bounded in LP N
L. Therefore, Cantor’s diagonal process assures that there exist a subsequence (uw(j))j and a

sequence (uy),, of C* functions whose Fourier transform is supported in the ring 2"C, such that,
for all j € N and all f € S, one has

Jim (Anugg), f) = (@, f) - and il < Uminf | Avuy| g, -

Now, let us consider the sequence

((2”5 (1+n)* || Anuy() Hm)n )J,GN

it is obviously bounded in ¢ (because (u;); C Bst®1°% i bounded). Hence, there exists a
(cn),, € ¢" which (up to an extraction) it converges to in ¢" for the weak-* topology: for all
(0n),, C R4 such that 6,, # 0 only for a finite number of indices, one has

lim Z 2" (14 n)“ HA"uw(j)HLP Sy = Z Cn O, -

i
I eN neN

Moreover, we have that

[(cn)pllpr < limianuw(j)‘

st+alog -
Jj—+oo By

Passing to the limit, we get that the sequence (2" (14 n)®||uy,||),, € €. Therefore, lemma 1.37

guarantees that u == Y, € Bite1°¢ By spectral localization, we obtain also that there exists

a ng € N such that, for all n <ng and all f € S,
no no
O Anu, flsixs = (O Y. Awiin, flsxs.
m=n m=n ‘m7h|§1

Then, due to the definition of %y, we have

no no
o . . /
Z Ajpu = jEIJPoo Amu¢(j) in §&.
m=n m=n
We apply previous equality for n = 0. Moreover, lemma 1.39 implies (Id — Sk)uy ;) —k—s400 0
in B5t*'°% (or in Bs L if r = +00) uniformly with respect to j. From these facts we gather

k
uzlimEAuzlimu- in &
k—-+o0 0 m Jj—+oo w() ’

m=

and this completes the proof of the theorem. O
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Theorem 1.41. The set (B;f?alog, | - ||Bs+alog> is a Banach space.
D,T
Proof. Tt is quite easy to see that (B;,J,fa log | . ||Bs+alog> is a normed space. Let us show that
p,T
it is also complete.
So, take a Cauchy sequence (uy),cy C Bst®°¢  In particular, it is bounded: hence, by

theorem 1.40 there exist a u € Bir®'°® and a subsequence (Up(n)),, ey Which converges to u in

S’. Obviously, also (uw(n))neN is a Cauchy sequence: for any € > 0, there exists an index n. such
that, for all m > n > n., we have

Huiﬁ(m) - ull)(n)HB;:O;alog < €.

In particular, we infer that (w(m) — u¢(n))m is bounded in B5+*'°®. Then, thanks to the Fatou
property (note that this time it’s not necessary to pass to another extraction: the whole (ud)(m))m
converges to u in §’), we have

ltpmy = ull gyroros < O liminf [fugey =ty || grrare < Ce,
i.e. (uw(n))neN converges to u also in Bsfialog.
Now, the whole (uy), must have limit u in B;Ialog, because it is a Cauchy sequence in this
space. The theorem is proved. O

Let us quote a density result, analogous to proposition 1.9.

Proposition 1.42. Fiz p and r finite.
Then the space of test functions D(RN) is densely embedded in B;jfalog(RN).

Proof. Let us fix a ¢ > 0. By lemma 1.39, there exists a k > 0 such that

Hu - SkuHB;:&;(xlog < €.
Now, let us take a cut-off function 6 € D supported in the ball B(0,2), such that 0 < 0 < 1 and
equal to 1 on the ball B(0,1). For all R > 0, we define 0z(-) := 6(-/R).

If we set h = max{0, [s] + 2} (where [s] denotes the biggest integer smaller than or equal to
s), for all j > 1 Bernstein’s inequalities give us

27° (L4 )% |1A; (OrSku — Spu)ll, < C277 (14 5)*

Dh (HRSku — Sku)H
Lp
Therefore, taking the £ norm we gather
||HRSkU - SkUHB;talog < C (HDh (QRSku - Sku)HLP + HQRSkU - SkuHLp) .
Now, as p < 400, Leibniz rule and Lebesgue’s dominated convergence theorem ensure us that
||9RSku - Sku||Bs+alog < €
p,T

for some R > 0 big enough. As Siu € C*, this concludes the proof. O
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1.4.2 Duality, multipliers, interpolation

Let us now investigate duality properties of logarithmic Besov spaces. Also in this case, it’s not
hard to generalize the corresponding classical result.

Proposition 1.43. For all s, « € R and (p,7) € [1,+00]?, the map

B;—?i:alog % B];i;alog VR
(u, 9) — (w0) = Y (Aju, Avd)
li—k|<1

. - . 1 —s—al
defines a continuous bilinear functional on the space B;,J;a o8 Bp,ida °8,

Moreover, let us denote with SI;‘S’*O‘ the set of ¢ € S such that ||@| g—s-aoe
p/,T‘/

!
T

< 1. Then, for all

ue 8, one has
ullgee < C sup ().
¢eS "

Proof. For |j — k| <1, we have

aYes

j—k)s (1+])
[(Aju, Agg)| < (| Ajullrr | Akl 2979 (5 ke Wi

where we have defined
(h—j)s (L +K)*
(1+5)"
As done in the end of the proof to lemma 1.37, it’s easy to see that wy ; can be bounded in terms
of the difference |k — j| only; hence |wy ;| < C. Therefore, by Holder inequality we get

Wgj = 2

|(u, )| < C”U“Bgf;alog ||¢”Bp—/fr—/a10g'

< 1.

;) —

Now, let us call £7 the set of sequences (bj); such that b; = 0 for all j > n and H(bj)j ,
Then we have

o - YE] Y’ .
full g = 00 | (T ) 2* (1 4+ 9)% [ Agul10) e,

= sup sup ij 295 (1 4 5)* |Ajullre .
neN (bj)jez:[ j<n

By duality for Lebesgue spaces and density of S C L?', we know that for any fixed ¢ > 0, for all
J = 0 there exists a function ¢; € S, ||¢;]|;,» < 1, for which

2775 (14 4)~@
(1+[b]) (L +52)

18sullr < [ Ajula) (o) do + ¢
We have to notice that

| A @yde = F@ua)eg = [ oImamdndn:
n
so it’s enough to consider the frequencies of ¢; “caught” by operator A;:

[ A gyadr = [ Agu(e) (A4 A+ Ag) () da
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Let us now define A
d, = Zbﬂ 27% (1 +j)a Ajd)j .

Jj<n
It’s quite obvious that @, € S,7 " for all n, and (by lemma 1.37) that ||®p|;—soa1s < C
s o !

independentely of n. Then we have
H (I[Om](j) 27 (1+4) |’AJ'UHLP)]'ENH4T < {u, @) + €

for all n € N, from which we infer the result. O

Now we want to consider the action of Fourier multipliers on non-homogeneous logarithmic
Besov spaces. First of all, we have to give a more general definition of symbols.

Definition 1.44. A smooth function f : RY — R is said to be a S™H0e_multiplier if, for all
multi-index v € NV there exists a constant C,, such that

VEERY, 9V f(€) < G (1+[e)™ M log® (14 1¢)) -

Proposition 1.45. Let m,5 € R and f be a S™01°8 multiplier.

Then for all real numbers s and o and all (p,r) € [1,+0c)?, the operator f(D) maps B

into B]g;sr—m)-l-(a—é) log

s+alog
7"'
continuously.

Proof. According to lemma 1.37, it’s enough to prove that, for all j > 0,
27T (14 ) || £(D) Ajully < C27° (14 5)* 1Al -

Let us consider first low frequencies. Let us take a € D(RY) such that # = 1 in a neighbor-
hood of suppy: passing to the phase space, it’s easy to see that f(D)Aou = (0f)(D)Aou. As
F~Y0f) € L', Young’s inequality for convolutions gives us the desired estimate for j = 0.

Now, let us focus on high frequencies: for all j > 1 we can write

fD)Aju = Fj xu,  with  F; = FL(f(&)e(27%)) .

For all M € N, we have:

1+ 2™ Fi(z) = (271)]\, /RN et (Id — AE)M F(6) p(279¢) de
3
_ CBy_o-ihi 2 38 1(6) 07 p(2
) (2m~ &) de.
|ﬁ+WZ§2M (2m)™ RY o

In fact, the integration is not performed on the whole RY, but only on the support of ©(277+),
where we have

IN

Co (1+ JE)™ 1 10g3 (1 + [¢]) |1,
Cs. 21 (m=18D) (1 4 j) .

07 1(€) 0p(27¢)|

IN

Therefore, one gathers ‘
(L4 |2z)M [Fy(2)] < Car2™ (1+5)°,

which implies that, for M big enough, F; € LY (RY) and ||[Fj||;x < C2™ (1 +5)°. Young's
inequality for convolution leads to the thesis. O

Let us now state two simple interpolation inequalities.
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Theorem 1.46. Take real numbers s1 < s < sg and a1 < a < ag, and (p,r) € [1,+00]?. Let
0 €10,1[ be such that

s = 0s1 + (1—0)s9 and a=0oa; + (1—-0)as.

Then there exists a constant C, depending only on si, s2 and 6, such that the following
mequalities hold:

0 1-6
HUHB;":O‘ log S HUHB;}T-FCQ log ‘|U||B;,2r+a2 log
0 —0
||u||B;ﬁa10g S C |’u‘|B;};al log HquB;Qotanog .

Proof. The former estimate immediately follows from Hélder inequality.
Let us focus on the proof of the latter one. Keeping in mind the definition of Besov norms,
for all 7 > 0 we can write:

97 (1=0)(s2—s1) (1 +j)(170)(a27a1) HUHBSHMI%
P00

9—70(s2—s1) (1 _,'_j)fG(aszél) HUHB“‘?*“QIO%'
P

,00

20 (1+ 1) [Ajullze < {

Therefore, for all k£ € N we get
(L.7) HUHB;,‘EMOE < HUHB;};allog 22.7'(179)(32*31) (1 +j)(179)(a27a1) n
i<k
+ HUHB;?;% log Z 9—j0(s2—s1) (1 +j)79(a27a1) .
>k
ObViOllSly7 we have

. ) 27k9(52751)
22—]9(52—51) (1 +j)—0(a2—a1) < Z2—j9(82—81) _

>k >k

1 _ 270(52751) ’

while for all € > 0 we can write

2k(1—9)(32—81+6)
2(1—9)(82—81+€) -1 '

Z2j(l—9)(52—51) (1 +j)(1—9)(a2—a1) S Z2j(1—9)($2—81+5) —
J<k J<k

So, (1.7) becomes

2k(179)(32731+s) 27199(52731)
||u||B;ﬁa10g < ||U||B;};allog 2(1—9)(82—81+E) 1 + ||U|‘B;?ota2 log m .

Now, taking £ > 1 large enough such that

||u||B;?;a2 log

2(k—1)(32—51) <

2k(52—51)
= HUHB;};(xllog

and € = k2, for instance, completes the proof. O

Remark 1.47. Let us remark that a wider set of results of this kind can be easily proved,
slightly modifying the previous argument. For instance, one may allow the interpolation parameter
pertaining to « to be different from that pertaining to s.
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1.4.3 Paraproducts

Let us end this section generalizing theorem 1.24 to logarithmic Besov spaces framework. First
of all, let us state a characterization of logarithmic Besov spaces in terms of the low frequencies
cut-off operators.

Proposition 1.48. Let s < 0 and a € R, or s = 0 and a < —1. Let also (p,r) € [1,+00]?.
Finally, let u € 8’ given.
Then u € Bat®'°8 if and only if the sequence (275 (1 +4) HSjuHLp)jeN € (7. Moreover,

Cllulls;, < |/ @+ DNSsulles) jo,, < Cllulls;,

JeN H@r
for some constants C, C depending only on s and «.
Proof. From the definitions, we have A; = Sj11 —S;. So we can write:

20 (L+ )" 1Ajull, < 271+ 5)* (ISjull 1o + [1Sjull )

(1+4)°
(2+7)~

By Minowski’s inequality, we get the first part of the thesis.
On the other hand, using the definition of the operator S;, we have

< 2UFDS (24 ) (|Sull

270 + 27 (14 5)* ISjull 1 -

25 (L+ ) (1Sjull < 220+ Y 1 Awulp

k<j—1
rs (L+7)
< 20 ’f)s(iﬁs 1+ &) |Azul,,
< C(0+9);,

where we have argued as in proving lemma 1.37, setting
O == 2" (14 h)® and O = 28 (1 + k) || Apull,, -

By the made hypothesis on s and «, the sequence (6), € ¢'; hence, Young’s inequality for
convolution allows us to conclude. O

Let us now analyse the action of paraproduct operator.

Theorem 1.49. Let s and o € R; let alsot >0 and B € R, ort =0 and B < —1. Finally, let
(p,7,71,72) belong to [1,+o00]%.

The paraproduct operator T maps L°° x , and Bootffflog B;Jﬁf‘log m
Béf;t)+(a+5)log, with 1/q := min{1, 1/ry + 1/r2}. Moreover, the following estimates hold:

1 . 1
By i pyfe s

IN

||Tu’UHB;:talog CHUHLOO ||VU||BI(;’3T—1)+alog

A

HTuU”BSq—t)Jr(aJrﬁ) log > C Hu”Bo_oti_Qﬂ log “vv"B[()fal)+alog .

Proof. As already remarked before theorem 1.24, the generic term Sj_1u Ajv is spectrally sup-
ported in the ring 2/C. Hence, thanks to lemma 1.37, it’s enough to estimate its L” norm. Then,
applying proposition 1.48 gives us the thesis. O

Before going on, let us prove the analogous of lemma 1.26.
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Lemma 1.50. Let B be a ball of R, the couple (p,r) belong to [1,4+0c]?. Let s >0 and o € R,
or s =0 and a < —1. Let (u;) be a sequence of smooth functions such that

jeN
suppi; C 2B and (275 (1 + 5)° HujHLp)jeN er.
Then the function w := Z]EN u; belongs to the space B;j;alog. Moreover, there exists a

constant C, depending only on s and «, such that

lull s < € |2 Q4+ 3) Tuslz) jen -
Proof. We have to estimate ||Agullre < 37, | Aguj|ze.

From our hypothesis on the support of each u;, we infer that there exists an index ng € N
such that Apu; = 0 for all £ > j + ng. Therefore, arguing as already done in previous proofs,

o(k—i)s (L +K)*

2% (L+ k) |Apullr < ) (T + ) Nl o

j>k—no (1_F])a
< Y 2 R+ gl
j=k—no

So we can conclude thanks to Young’s inequality for convolutions (recall hypothesis over the
indices s and «). O

Now we are ready to prove continuity properties of the remainder operator.
Theorem 1.51. Let (s,t,a,3) € R* and (p1,p2,71,72) € [1,+00]* be such that

1 1 1 1 1 1
- = — — <1 and - = — 4+ — < 1.

p p1 p2 r 1 T2
(i) If s+t >0, ors+t=0 and a+ < —1, for any (u,v) € Bzfrﬁ‘llog X B;’,;’g?log we have

1R, 0) | pgsorasimos < Ol gggaee [0l e

(ii) If s+t =0, a+ B> —1 and r = 1, for any (u,v) € Bi =18 x BEP108 e have

IR ) pgezoris < C llul g 0l gz e
Proof. (i) We can write R(u,v) = >_; R;, where we have set

Rj = Y Ajulyv.

|h—jI<1

As already pointed out before theorem 1.24, each R; is spectrally localized on a ball of
radius proportional to 27. Hence, from lemma 1.50 and Hélder’s inequality we immediately
infer first estimate.

(ii) In the second case, lemma 1.50 doesn’t apply; nevertheless, we can control the norm of the
remainder term if the index of summation is +0o0. As a matter of facts, we use the following
inequality, which holds true for all £ > 0:

(1+ k)P AR, 0)lle < C D7 (L) 1Aull oy (1457 1850l 1,
j=k—no

where, for simplicity, instead of the full R;, we have considered only the term AjuAjv, the

other ones being similar to it.
O]
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1.5 Paradifferential calculus with parameters

Paraproduct operator is the simplest example of paradifferential operator. The aim of this section
is to introduce a more general paradifferential calculus (see e.g. [51], chapters 5 and 6). For
convenience, we allow it to depend on some parameter v > 1: this apparently harmless fact will
come into play in a crucial way in chapter 3.

Here we will give only the main definitions and the basic properties: we refer to paper [50]
and, in particular, to paper [52|, appendix B, for a complete and detailed presentation of this
topic. Moreover, in chapter 3 we will analyse in detail the action of paradifferential operators
associated to low regularity symbols on the class of logarithmic Sobolev spaces.

1.5.1 New classes of symbols

Fix a parameter v > 1 and take a cut-off function ¢ € C*°(RY x RY) which verifies the following
properties:

e there exist 0 < g1 < g9 < 1 such that

1 for |n] <ei(y+[£)

vme) = { 0 for |n]>es(y+IE])

e for all (B,a) € NV x NV there exists a constant Cg, such that
D5080(,)| < Caaly+ I

We will call such a function an “admissible cut-off”.
For example, if v = 1, one can take

+o0o
$(m,€) = Yo, &) =D xa-1(n) @r(§),
k=1

where y and ¢ are the localization (in phase space) functions associated to a Littlewood-Paley
decomposition: see e.g. ex. 5.1.5 of [51]. Similarly, if 4 > 1 it is possible to find a suitable integer
> 0 such that

+oo
(1.8) Pu(,6) = xum) xu(€) + D xe-1(n) or($)

k=p+1
is an admissible cut-off function.

Remark 1.52. Let us immediately point out that we can also define a dyadic decomposition
depending on the parameter . First of all, we set

A& = (2 + €)'

Then, taken the usual smooth function x associated to a Littlewood-Paley decomposition, we
define

xv(&7) = x(27VA7) ., S) = xu(Dav), A =S8, —5].
The usual properties of the support of the localization functions still hold, and for all fixed v > 1
and all tempered distributions u, we have

+o0o
u = E Al in S
v=0
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Moreover, we can introduce logarithmic Besov spaces using the new localization operators Sy, AJ.
For the details see section B.1 of [52]. What is important to retain is that, once we fix v > 1, the
previous construction is equivalent to the classical one, and one can still recover previous results.
For instance, if we define the space H:*1°8 as the set of tempered distributions for which

(1.9) ullsvares = / AP(&,7) log® (L 4+ + [€]) [a(§)* d¢ < +oo,
Y Ré\’

for every fixed v > 1 it coincides with H*T®1°¢  the respective norms are equivalent and the
characterization given by proposition 1.35 still holds true.

Let us come back to the cut-off function v introduced above. Thanks to it, we can define more
general paradifferential operators, associated to low regularity functions: let us explain how.
Define the function G¥ as the inverse Fourier transform of v with respect to the variable n:

GV(w,€) = (F ') (2,€).
The following properties hold true (see lemma 5.1.7 of [51] for the proof).
Lemma 1.53. For all (B8,a) € NV x NV,

A

(1.10) ‘ < Cha(y+ ‘€|)—\a|+|5\ :

LGV ()|

LY(RY)
1
|-

Thanks to G, we can smooth out a symbol ¢ in the x variable and then define the parad-
ifferential operator associated to a as the classical pseudodifferential operator associated to this
smooth function.

< O (y+ €)M 1og(1 + 4 + |é]).

(1.11)”; | log <2+
L1 (RY)

) PG ()

First of all, let us define the new calss of symbols we are dealing with, which actually includes
the space of Fourier multipliers S™1°1°¢2 introduced in definition 1.44. In what follows, we take
a subspace X of L*°. This is convenient for our analysis, but definitions and some other basic
properties actually make sense also for a general X C §'.

Definition 1.54. Let X C L be a Banach space, and m and § be two given real numbers.

(i) We denote with T™+91°8(x) the space of functions a(x, &,~) which are locally bounded over
RN x RN x [1,400[ and of class C* with respect to &, and which satisfy the following
property: for all @ € NV, there exists a C,, > 0 such that, for all (&, ),

(1.12) [0ga(- &), < Caly+1ED™ 1 log?(1+ v+ 1€]).-

In a quite natural way, we can equip I'™T91°8(X) with the seminorms

(113) allgnssy = sup sup ((r-+ €)1 log (147 + le) 0Fat- &) -
la|<k RY x[1,+00]

(ii) ©m+0los(X) is the space of symbols o € T™H918(X) for which there exists a 0 < € < 1
such that, for all (&,~), the spectrum of the function z — o(z,&,~) is contained in the ball

{Inl < e(v+ €D}

By spectral localization and Paley-Wiener theorem, a symbol o € X" H1°8(X) is smooth also

mHOlo8 ¥y (for p and o € R) of symbols o

in the z variable. So, we can define the subspaces Eu+glog

which verify (1.12) and also, for all § > 0,

(1.14) (

900¢0( 67|, < Coa (y + D™ HF loge(1 15 4 e
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Now, given a symbol a € T™19198(X), we can define

(1.15) oY (@,6,7) == (¥(Da ) a) (2.6,7) = (G¥(-8) * al-€7) (@)
Proposition 1.55. (i) For all m, § € R, the smoothing operator
R: a(z,€,7) = 0d(x,€,7)
is bounded from T™+0108(X) to Smtolog(x),
(i1) If a is also differentiable with respect to x, with V,a € X, then a — ¥ € r(m—D+dlog( ),

(#ii) In particular, if 11 and Y9 are two admissible cut-off functions, then the difference of the
two smoothed symbols, oi' — 032, belongs to the space E(m*1)+5log(é¥). Moreover, for all
k € N one has ‘

Remark 1.56. As we will see in a while, part (ii) of previous proposition says that the difference
between the original symbol and the classical one associated to it is more regular. Part (iii),
instead, infers that the whole construction is independent of the cut-off function fixed at the
beginning. Nevertheless, we have to require at least X C W1,

Repeating the same steps of the proof (see e.g. proposition B.7 of [52]), it’s easy to see that
it’s enough to consider symbols a which are L>(RY) and admitting a (even rough) modulus of
continuity. Also under this assumption there is a gain of regularity (obviously no more of order
1, as in proposition 1.55, but logarithmic, for instance), which will allows us to recover previous
properties. This will be always our case in chapter 3.

Y1 L2
Ua Ja

< Gk [IVaall s -

(m_1’57k)

1.5.2 General paradifferential operators

Asg already mentioned, we can now define the paradifferential operator associated to a using the
classical symbol corresponding to it:

116)  Tiule) = (X Do) (@) = G [ e Eal(e e ale) de.
3

For instance, if a = a(x) € L™ and if we take the cut-off function vy, then TY is actually
the usual paraproduct operator. If we take 1, as defined in (1.8), instead, we get a paraproduct
operator which starts from high enough frequencies, which will be indicated with T4 (see section
3.3 of [23]).

For convenience, we fix the regularity with respect to x: from now on, we will always work
with X = L®. Therefore, we will miss it out in the notation.

Sometimes, additional regularity in « will be required. Following the presentation of [52], we
will suppose a(z,&,v) to be WH* with respect to the first variable. However, we always have
to keep in mind remark 1.56. We refer to chapter 3 for the analysis of some particular classes of
symbols.

Let us now study the action of general paradifferential operators on the class of logarithmic
Besov spaces. First of all, a definition is in order.

Definition 1.57. We say that an operator P is of order m + Jlog if, for every (s,a) € R? and
every (p,7) € [1,400]?, P maps Bst*'® into B},f;m)*(a*‘” ¢ continuously.

The next fundamental result generalizes proposition B.9 of [52], which is stated for the Sobolev
clags. For simplicity, we temporarily drop out the dependence of symbols on « in the notations.



24 Chapter 1. Littlewood-Paley Theory

Lemma 1.58. For all o0 € X018 the corresponding operator o(-,D,) is of order m + 0 log.

Proof. Let us take a u € Bsr®'°8. We can write

o(-,Dy)u = Za(',Dx)Aju,

320

where each item o( -, D;)Aju is supported in a dyadic ring proportional to 27. As a matter of
fact, on the phase space we have

Felol DA (€) = oy [ (Feo) (€= .0 700 dC.
S

On the one hand, localization properties of Fpo implies (1 —¢€)|¢| —ey < [£] < (1+€)|¢| +€y. On
the other hand, we have || ~ 27, and this proves our claim.

Therefore, thanks to lemma 1.37, it’s enough to prove that there exists a constant C' > 0 for
which, for all j > 0,

27 (145070 o (-, Da)Ajull . < C2° (141 [ Agull -

For all 7 > 0 we can write:

oz, Do) Aju(z) = | Kj(z,x—y)u(y)dy,

N
Ry

where we have defined the kernel

1 - » 3 »
Ki(e,2) = gy [ ot e2 i d = 7 (ol ) 02 ) (2)
(2m) RY
Now, arguing as in proposition 1.45 completes the proof. ]

Lemma 1.58 immediately implies the following theorem, which describes the action of the new
class of paradifferential operators.

Theorem 1.59. Given a symbol a € T8 for any admissible cut-off function 1, the operator
TY is of order m + ¢ log.

As already remarked, the construction does not depends on the cut-off function 1) used at the
beginning. Next result says that main features of a paradifferential operator depend only on its
symbol, if it is regular enough.

Proposition 1.60. If ¥y and vy are two admissible cut-off functions and a € T™Tolog(Jy71,00)
then the difference T — TV s of order (m — 1) 4 d log.

Therefore, changing the cut-off function ¢ doesn’t change the paradifferential operator asso-
ciated to a, up to lower order terms. So, in what follows we will miss out the dependence of o,
and Ty on .

1.5.3 Symbolic calculus

Symbolic calculus still holds true also for general paradifferential operators. For convenience, we
restrict ourselves to logarithmic Sobolev spaces framework (i.e. H*T®lo8 = B;Ealog).

First of all, let us quote two fundamental results (as usual, see e.g. [52], appendix B, for their
proofs) about composition and adjoint operators.
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Theorem 1.61. Let a € T™H08(IW10) gnd b € THHelog (b)),

Then ab e T(mtm+(+e) log (T/71:2%) . Moreover, the difference T, o Ty, — Ty is an operator of
order (m + pu— 1)+ (5 + o) log.
If b is independent of x, then T, o Ty, = Ty

Theorem 1.62. Let a € Fm”log(Wl’oo). Let us denote with a* the compler conjugate of the
symbol a, and with (T,)* the adjoint operator (over L?) of T,.
Then the difference (T,)* — Ty~ 14s an operator of order (m — 1) + 4 log.

The two previous theorems obviously extend to matrix valued symbols and operators.
Let us now state an estimate, which immediately follows from theorem 1.62 and from theorem
B.19 of [52]. It will be of great importance in chapter 3.

Theorem 1.63. Let a € T2 +20108(1171o0) and suppose there exists a constant X > 0 such that,
for all (z,§), one has
Re a(x,&,7) > A (v + |¢])2m+2los

Then there exist a constant C' > 0 and an index k € N such that, for all u € H;nwlog, the
following estimate holds true:

A

2
(1.17) 5 lullfmses < Re (Tow,w) 2 + C [[VaallG p) ‘|U||i[§m—1>+alog~

The constant C is uniformly bounded for symbols varying in a bounded set.

Here, (-, - )2 denotes the scalar product in L2, which extends by duality to the coupling
Hs+a10g % Hfsfalog_
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Chapter 2

Non-Lipschitz coefficients: the
one-dimensional case

In this chapter we obtain an energy estimate for a complete strictly hyperbolic operator over
R; x R,, whose second order coefficient satisfies a log-Zygmund continuity condition in the ¢
variable, uniformly with respect to x, and a log-Lipschitz continuity condition in z, uniformly
with respect to t. Moreover, we will suppose the coefficients of the first order part to be Holder
continuous and the coefficient of the 0-th order term to be only bounded.

Such a energy estimate allows to get the well-posedness of the Cauchy problem in the space
H®° in the case the coefficients of the operator are smooth enough with respect to x.

In the next chapter, we will tackle the same problem, but in the more general case of several
space variables. The reason why we decided to separate these two instances is that they require
two really different approaches.

As explained below, in the one-dimensional case the Tarama’s energy (introduced in [56] for
coefficients depending only on time) admits a straightforward generalization. Combining it with
the main ideas of paper [22] by Colombini and Lerner is enough to get energy estimates (see also
paper [19], which deal with homogeneous operators).

Dealing with z € RN, N > 2, instead, requires to pass from multiplication by functions to
action by paradifferential operators associated to particular classes of symbols. So, the involved
techniques are quite different to the preivous ones, even if the leading ideas are the same. Obvi-
ously, the same machinery works also for N = 1. Nevertheless, we decided to present these two
cases separately: we think that, being simpler, the one-dimensional instance is a good introduction
to the problem, and that in this way technical difficulties are better pointed out.

2.1 Introduction

Let us consider the second order operator

N
(2.1) P =07 =) 0y(ai;(t)s,)

ij=1

and suppose that P is strictly hyperbolic with bounded coefficients, i.e. there exist two positive
real numbers \g < Ag such that

N
(2.2) NP < Y a0 &g < Aolel
i =1

for all t € R and all £ € RV,

29
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It is well-known (see e.g. [42| and [58]) that, if the coefficients a;; are Lipschitz-continuous,
then the following energy estimate holds for the operator P: for all s € R, there exists a constant
Cs > 0 such that

(2.3)  sup ([Ju(t,)[gs+r + [Oult,)llms) <
te[0,7

T
saowmmmwwmuwm+/umwwm@
0

for every function u € C%([0, T]; H*(RY)).
In particular, the previous energy estimate implies that the Cauchy problem for (2.1) is well-posed
in the space H*°, with no loss of derivatives.

On the contrary, if the coefficients a;; are not Lipschitz-continuous, then (2.3) is no more
true in general, as it is shown by an example given by Colombini, De Giorgi and Spagnolo in
paper [18]. Nevertheless, under suitable weaker regularity assumptions on the coefficients, one
can recover the H*-well-posedness again, but this time from an energy estimate which involves
a loss of derivatives.

A first result of this type was obtained in the quoted paper [18]. The authors supposed that
a constant C' > 0 exists such that, for all £ €]0, 71,

T—¢ 1
(2.4) / lagj(t +€) —ai(t)|dt < Celog <1 + 5> .
0

The Fourier trasform with respect to = of the equation, together with the new “approximate
energy technique” (i.e. the approximation of the coefficients is different in different zones of the
phase space), enabled them to obtain the following energy estimate: there exist strictly positive
constants K (independent of s) and C such that

(25)  sup (Jlult,)gst-x + [[Ocult, ) gs-x) <
te[0,7

T
samemwwwmuﬂm+Aummwm@

for all u € C2([0, T]; H>(R™)).

Considering again the case in which the coefficients of P depend only on the time variable, in
the recent paper [56] (see also [62]) Tarama weakened the regularity hypothesis further, supposing
a log-Zygmund type integral condition, i.e. that there exists a constant C' > 0 such that, for all
e €]0,7/2],

T—e 1
(2.6) / laij(t+¢) 4+ a;j(t —e) — 2a5(t)|dt < Celog (1 + 6) :
g

Nevertheless, he was still able to prove the well-posedness to the Cauchy problem for (2.1) in
the space H*: the improvement with respect to [18] was obtained introducing a new type of
approximate energy, which involves the second derivatives of the approximating coeflicients.

Much more difficulties arise if the operator P has coefficients depending both on the time
variable ¢ and on the space variables x. This case was considered by Colombini and Lerner in
paper [22]. They supposed a pointwise isotropic log-Lipschitz regularity condition, i.e. that there
exists C' > 0 such that, for all e €]0, 7],

1
(2.7) sup laij(y + 2) —aij(y)| < Celog (1 + > .
y,2€[0,T] xRN <

|z[=¢
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Because the coeflicients of the operator P depend also on the space variables, here the Littlewood-
Paley dyadic decomposition with respect to x takes the place of the Fourier trasform. Moreover
it turns out to be, together with the approximate energy technique, the key tool to obtain the
energy estimate: for all fixed 6 €]0,1/4], there exist 8, C' > 0 and T* €]0,T] such that

(2.8) sup ([Ju(t, )| g-o+1-pc + [[Opult, )| z-o-5:) <
te[0,7*]

T
<c (ru<o, Mag-oss + 1000 Mo + [ I1Pult, -o-s dt)
0

for all u € C%([0, T*]; H>*(RN)).
In this case, the loss of derivatives gets worse with the increasing of time.

In the recent paper [19], Colombini and Del Santo considered the case of one space variable
(i.e. N =1) and studied again the case of the coefficient a depending both on ¢ and z, but under
a special regularity condition: they mixed condition (2.6) together with (2.7). In particular, they
supposed a to be log-Zygmund continuous with respect to ¢, uniformly with respect to x, and
log-Lipschitz continuous with respect to x, uniformly with respect to t. The dyadic decomposition
technique and the Tarama’s approximate energy enabled them to obtain an estimate similar to
(2.8).

The reason why they focused on the special instance N = 1 is that the case of several space
variables needs some different and new ideas in the definition of the microlocal energy. In partic-
ular, to handle the problem one has to appeal to paradifferential calculus with parameters. We
refer to the next chapter for the complete treatement of the more general case.

In the present chapter, instead, we are considering the case of the non-homogeneous operator
(2.9) Lu = 92u — Oy(a(t,z)dpu) + bo(t, 2)0u + by(t, x)dpu + c(t, z)u

in dimension N = 1. Here we assume the coefficient a to satisfy the same regularity assumptions
as in [19] (see conditions (2.10) to (2.12) below). We will also suppose by, by € L>®(R¢;C¥(Ry))
for some w > 0, where we have set C¥ to be the space of w-Holder continuous functions, and ¢ to
be bounded on the whole R; x R,. We will apply the Littlewood-Paley decomposition and the
Tarama’s approximate energy again to obtain an energy estimate with a loss of derivatives that
depends on ¢, as in (2.8). As one can expect, the presence of lower order terms doesn’t change
the essence of the result.

One can find the estimate of the second order coefficient a in paper [19], however, for reader’s
convenience, we will give here all the details.

2.2 Main result
Let a : R?2 — R be a function such that, for positive constants \g < Ao,
(2.10) )\0 < (I(t, l‘) < Ao.

These inequalities mean that operator L, as we will define in (2.15), is strictly hyperbolic with
bounded coefficients. Let us assume also that a is log-Zygmund continuous with respect to ¢ and
log-Lipschitz continuous with respect to z, uniformly with respect to the other variable:

2.11 sup la(t+71,2) + a(t —7,x) — 2a(t,z)] < Cy7lo 1+1
(2.11) p|a( ) + af ) (t,z)| g (-
(t,z)

1
(2.12) sup la(t,x +y) — a(t,z)] < Coy log (y + 1) .
(t,z)
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Moreover, let

(2.13) bo, b1 € L™(Ry;C*(Ry)),

for some real number w > 0, and

(2.14) c € LRy xR,) .

Theorem 2.1. Let us consider, on the whole space R?, the complete second order operator
(2.15) Lu = 0*u — Oy(a(t,z)0pu) + bo(t,2)0pu + by(t,x)dpu + c(t, z)u,

whose coefficients a, by, b1 and c satisfy hypothesis (2.10)-(2.14).

Then, for all fized
1 w
0 0,min< =, ———
e} ’mm{z’1+log2H’

there exist f* > 0, T € R and C' > 0 such that

(2.16)  sup (|lu(t, )|l g1-o-s=e + [|Opult, )| g-o-p=) <
te[0,7)

T
<cC (||u<o,->||He+1 - (197u(0, ) 10 + /0 \Lu(t,»uHmdt)

for all u € C3([0, T); H®(R,)).

2.3 Proof

Let us tackle the proof of theorem 2.1. Following the main ideas of [19], we will smooth out the
coeflicient of the second order part both with respect to ¢ and z; in the same time, we will perform
a dyadic decomposition of the function u with respect to the space variable. Then we will link
the approximation parameter with the dual variable, in order to obtain different approximations
in different zones of the phase space.

2.3.1 Approximation of the coefficient a(¢, )

Let p € C3°(R) be an even function, supported on the interval [—1, 1], such that 0 < p < 1 and
[ p(s)ds = 1. Moreover, let us suppose also that |p'(s)] < 2.
For all 0 < e <1, we set p-(s) = (1/¢) p(s/e), and then we define

(2.17) as(t,x) = /RXR pe(t —s) pe(z —y)a(s,y)dsdy.

Let us state some properties of the approximate coeflicients.
Lemma 2.2. The following facts hold true for every e €10, 1].

1. For all (t,z) € R?, one has
(218) )\0 S CLE(t, .T) S Ao.

Moreover,

3 1
(2.19) sup |ae(t, z) —a(t,z)| < 3 Coe log <€ + 1) .
(t,x)
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2. For all 0 €]0,1], a constant C, > 0 (independent of €) exists such thal

(2.20) sup |Orac(t, )| < C, (Mg + Co)e” .
(t,)

3. Finally, the derivatives of a. satisfy:

1
(221) s et ) < Coll i o <5+1)
t,x
C 1 1
(2:22) suplofac(t. o) < Pl o (1 41)

(2.23) sup |0y 0zas(t, x)|
(t,)

IN

1 1
Collp'I * tog ( n 1) |
13 3

Proof. Inequalities in (2.18) immediately follow from the fact that |p| < 1.
Relation (2.19), instead, follows from (2.11), after one has observed that

ocltr) =altia) =5 [ 0.05) [ pela = )lalt+ s)+ alt = s.9) - 20(t.) dy s

where we have used the fact that p is an even function.
Moreover, one has

Oaclti) =5 [ 1) [ pelo = w)lalt+s,) + at = 5.9) = 2a(t.) dy ds.

from which one can deduce (2.22).

Inequalities (2.21) and (2.23) derive from (2.12) in a very similar way.

Finally, (2.10) and (2.11) imply that for all o €]0,1[, a constant ¢, > 0 exists such that, for
all 7 > 0, one has

(2.24) sup |a(t + 1,2) — a(t,x)| < c; (Ao + Co) 77 .
(t,z)

Starting from this relation, it’s easy to prove (2.20). O

2.3.2 Approximate and total energy

Let Tp > 0 and u € C%([0, Tp); H*(R,)). Let us perform a Littlewood-Paley decomposition of u
with respect to the space variable, setting ug(t,z) = x(Dy)u(t,z) and, for all v > 1, u,(t,x) =
©0u(Dg)u(t, ). So, each u, is an entire analytic function belonging to L2. Moreover, keep in mind
that H® = B3, for all s € R and so these spaces enjoy the general properties of Besov spaces
stated in chapter 1. In particular, let us recall that for all s € R there exists a constant Cs > 0
such that

1 +o0 +oo
(2:25) . 22 w172 < Jlullfe < Cs Y 2% w72
S =0 v=0

and that Bernstein’s inequalities hold:

(2.26) |0zuy|2 < C27||uy 2 forall v>0
(2.27) luvllzz < C277||0zuy |2 forall wv>1.
Moreover, let us quote a result on commutation between localization in phase space operators

and multiplication by a log-Lipschitz or a Hélder function (recall also lemma 1.29). Here we
denote with £(L?) the space of bounded linear operators from L? to L.
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Lemma 2.3. 1. There exist C > 0 and vy € N such that, for all a € L>®(R) satisfying, for all
y >0,

1
supla(z +y) — a@)| < Coy log (1+) ,
z€ER Yy

one has, for all v > 1y,

(2.28) A, a(@)] g2y < C(llallze + Co) 27" v

2. There exist C, > 0 (depending only on the fized Holder index w) and vy € N such that, for
all b € C¥(R) and all v > vy, one has

(2.29) 1120 5@ llez) < Co[blles 27

Proof. Former part of previous lemma is proved in [22]|. The latter one, instead, easily follows
observing that the kernel of operator [A,, b] is

r(z,y) = @(2"(z —y)) 2" (b(t, z) = b(t,y)) ,

and then applying the Schur’s criterion (see also lemma 2.6). O

Let us localize equation (2.15) applying operator A,: we gather that w, satisfies

(2.30)  (Lw), = 02u, — dy(a(t,z)dpu) — 0u([@n(Dy),aldpu) +
+  bo(t,x)0muy + [pu(Dy), bolOyu + bi(t, z)0puy, + [@u(Dy), b1]0zu +
+ c(t,x)uy + [pu(Dy), clu .

Now we introduce the approximate energy of u, (see [19] and [56]), setting

(2.31) eve(t) == /R <\/1675

This particular quantity will turn out to be suitable for our computations. On the one hand, it
is strictly related to the Sobolev norm of u (see also remark 2.4). On the other hand, its time
derivative will produce fundamental cancellations which allow us to get rid of the bad behaviour
of the coefficient a.

Now, taken 6 as in the hypothesis of theorem 2.1, we define the total energy of u:

2
+ Vaz [0y + yuy|2> dz .

—+o00
(2.32) B(t) = Y e Pwilig=2fe (1),

v=—1
where the index 8 > 0 will be fixed later on.

Remark 2.4. From (2.25) and Bernstein’s inequalities (2.26)-(2.27), it’s easy to see that there
exist two positive constants Cyp and Cj such that

o
=2
A

Co ([195u(0, ) o + (w0, ) pr1-0)
E(t) = Cylowu(t, ) g-o-se + llult, )l gr-o-s7t)

where we have set 3* = B(log2)~1.
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Before going on with computing the time derivative of e, ., let us note that, as L is a linear
operator with real valued coefficients, one has L(v + iw) = Lv + iLw. So, without loss of
generality, we can assume u to be real valued, too.

Moreover, for notation convenience, we define

B 0,\/az . [(O/a: 0;/az \?
Upe = Oy + 2\/@1;,, and R.f .—8t<2\/@>f <2\/@ f.

Now, let us we differentiate e, ., defined by (2.31), with respect to ¢, and we obtain
d 2 2
%eyvg(t) = /\/@ t2 Uy edr + /\/@Rgul, Uy edx +
+ /8“/@ |0y, | dz + /Quy Oru, dr +
+ /2\/@ Oz, 0:0:u, dx .

Now, we can put in the previous relation the value of d?u,, given by (2.30). Integrating by
parts and taking advantage of the spectral localisation of w,, we have

D2/ Opy/ac
/ 2 ax(aamuy) vyedr = /2\/CTCL8J;UV Vyedr — / 13 ‘a uV’2dw _
Vae ’ 7

Qe Qe

a
— 2—— Opuy, 0:0:u, dor —
/ V Qe ‘

— / a4 Oy (&f\/@) Oty Uy, do .
va: "\ e

Finally we obtain the complete expression for the time derivative of the approximate energy:

d 2 2
(2.33) deye(t) = /\/@( v vwda:—i-/\/aRguy Upe dr +

a 9 a
1-—— Uy 2 - = Uy Og v
+ /8“/615( aa) |0z uy, |“dx +/ <\/a5 %)6 Uy, Oy Osu, da +

+ / 8\/>a8uyvygdx—/\ﬁ <8f>8xuyuydx+

+ /2uu Oy, dx + / N (0x([pv(Dy), alOpu)) vy dx —
_ /\/%bo(t,x) gty Uy e dx — /\/2@ ([0 (Dz), boldsu) vye dr —
_ /\/2676 (t,2) Opuy vy e dr — /\/QCE([%(D,E),bl]axu) Vye dz —

_ /\/26750(75,95) Uy Vyedr — /\/2@ ([po(Da), cJur) vyc da .

2.3.3 Estimate for the approximate energy

We want to obtain an estimate for the time derivative of the energy (2.32); so, let us start to
control each term of (2.33).

Throughout the rest of the proof, we will denote with C, C’, C” and C constants depending
only on Ay, Ag, Cp, defined by conditions (2.10)-(2.12), and on the norms of by, b; and c in their
respective functional spaces. These constants are allowed to vary from line to line.
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Terms with a and a.

Thanks to relations (2.10), (2.20) with ¢ = 1/2, (2.22) and Bernstein’s inequalities, we deduce
that there exists C' > 0, depending only on \g, Ag and CY, such that, for all v > 0,

2 1 1 .
’/\/@ cUy Vyedr| < Celog<€+1> 27" e, (t) .

In the same way, from (2.10), (2.19) and (2.20), we have

‘/at\/a <1 - “) 10y |2 dz
Qe

for a constant C' depending again only on Ag, Ag and Cj.
Moreover, keeping in mind (2.10), (2.19) and Bernstein’s inequalities, we obtain

’/ ( >8u,,88tuydgc

< C log <i + 1) eve(t) ,

1
< Celog (5 + 1) |0zt 12 |0x0kuy || 2

IN

Now we can estimate Oyu, writing

1
Celog (5 + 1) 2" |0y || 12 || Opun | 12 -
at\/i 5t\/@u

2/ *'2w%

The former term is actually the energy (up to multiplication by a constant); the latter one can
be brought to it thanks to followig relations:

‘ 6“/@100
2 .,

Hence, we gather the bound

H@mhzs‘@w

3t\/@u
2a:

< Ce V227 |0,u || 2 -
L2

< CeY?|jugl|2  and VuZl,‘

(2.34) Jolie < € (1 + 71227 (e,0) "2

therefore, we finally arrive to

’/ ( >8u,,88tuydm

In a very similar way, from (2.21) one has
Oz\/
'/QQCGE a Oty Vyedx
Qg

while, from (2.20) with o =1/2, (2.21) and (2.23) we deduce

[ ()

Finally, arguing as done before, we have

‘/2u,, Oy, dx

< C(e2 4 1) log(l +1> evelt).

< Clog <i + 1> eve(t),

1 1
< C-=log ( + 1) 27 ey (t).
€ €

< Ce Y227V e, (t).
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Terms with by, b1 and c

Thanks to the hypothesis (2.13)-(2.14), one has that there exist suitable constants, depending
only on A\, Ag, Cp, on the norms of by and b; in the space L (Ry;C¥(R,)) and on that of ¢ in
L>(R; x R,), such that

2
}/ \/—CTE bo(t, ) Opuy vy ¢ dx

IN

Clldeun 2 lvvell 2

(C+C" 277 V2 e, (t);
2 1
4
‘/ \/@bl(t, ) Opuy Vy e dT C / Vag |0puy| Vo |vye| dx
1

2
c/ﬁaraxuyw + o=

2 1
Ry — t uz/d < C vl — YV d SCV t:
[t s < 0 [l e < Ce)

where we delt with ||Oyu, |12 as before.

IN

IN

loye|? dz < Ceyc(t);

IN

Now, we join the approximation parameter ¢ with the dual variable £, following the original
idea of Colombini, De Giorgi and Spagnolo in paper [18]. As |£]| ~ 2" on the support of 4, we set

e =27".

Therefore, from (2.33) and the previous inequalities, we obtain

d ~ 2
(2.35) %6142‘”@) < Cw+1)e,9-v + / = (Lu)y vy 9-v dz +

+ / 2 (0u([Ay, a)0yu)) vy v do —

ag—v

[ bl e -

ag—v

2
— / ([Ay,b1]0zu) v, 9-v dx —
ao—v

_/ 2 (A ) vy v de,

ag—v

for a suitable constant C , which depends only on Ag, Ag, Cy and on the norms of the coeflicients
of the operator L in their respective functional spaces.

2.3.4 Estimates for commutator terms

Now, we have to deal with commutator terms. As we will see, it’s useful to consider immediately
the sum over v > 0.

First of all, we report an elementary lemma (see also [19]), which we will use very often in
next computations.

Lemma 2.5. There ezist two continuous, decreasing functions ai, az :10,1[— 10, 400 such that
lims_,o+ a;(0) = +oo for j = 1,2 and such that, for all § €]0,1] and all n > 1, the following
imequalities hold:

n +oo
eéj j—1/2 < 041(5) eén n—1/2’ Z e—éjj1/2 < 042(5) e—én n1/2 )
j=1 j=n
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Following what done in [22] and [19], in the present subsection we will often use the next
result, sometimes referred in literature as “Schur’s Lemma”, see e.g. [43]. Here we quote a general
version, more suitable for our purposes, whose proof can be found in [57], paragraph 0.5.

Lemma 2.6. Let (X, u) be a measure space. Suppose that k(x,y) is a measurable function on
X x X such that

sup / k(@,y) du(x) < Ci and  sup / k(z,y)| duly) < C.
yeX JX rzeX JX

Then for all p € [1,400], the operator T', defined by

Tu(e) = [ KGo.g) ul) duty)
maps continuously LP(X, p) into itself. Moreover we have
1 1/p'
1Tl < &% G lluller,
where p' € [1,+00] is such that (1/p) + (1/p") = 1.

Before going on, we fix § > 0 and T €]0, Tp] such that

(2.36) BT = g log?2.

Remark 2.7. Notice that, thanks to the hypothesis of theorem 2.1, this condition implies

w—20
T < — .
AT < 2

Moreover, for all ¢ € [0,T], we have:

0 < %logQ < ﬁt+glog2 < flog2 < 1
0 < ( —%9)log2 < (1-0)log2 — pt < (1—-0)log2 < 1.

Finally, we set (with the same notations used in chapter 1)
Yy = Qu-1+Qu+ out1 (p-1=0).
As 9, =1 on the support of ¢,, we can write

Optty, = Apopu = V(AL 0u) = V,0,u, ,

where we have defined ¥, := 1,(D;). So, given a generic function f(¢,z), one has
(2'37) [Auaf]azu = [Allaf] Zaxuu = Z ([Auaf]\ll,u) a:cuu~
n=0 n>0

After these preliminary remarks, we can go on with commutators’ estimates.
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Term with [A,, d]

Due to Bernstein’s inequalities, we have

102 (v2-)

So, using (2.37) and the fact that a. is real-valued, one has

| < C2° (e,00(D)"?.

'/ 2 0,([ A alOyu) vy da

a2—V
cZu )0t 12 27 (eya-u ()

IN

IN

cZn a2y (e u(®)? 27 (ey0v(t)?

with the constant C' depending only on Ag, Ag and Cy. Hence,

Z e 2B H1)tg—2v6 / —— 0.([Ay, a]Opu) v, 9—vdz| <
¥>0 £/ A9—v ’
S C Z kup, (V + 1)1/26_5(V+1)t2_1/9 (6,/72—1/)1/2 (H + 1)1/26_5(#+1)t2_#0 (eu,g—u)l/Q B
v,

where we have set

(2.38) by = e WTmBt ==l oy (4 )72 (i 1)7H2 (A, alWpullr2

Observe that, if v — p| > 3, then ¢,9, =0, so [A,,a]¥, = Ay[a, ¥,]. Therefore, from lemma
2.3, in particular from (2.28), we deduce that

C27"(v+1) if lv—pl <2,

H [Auv CL(t, m)]‘IIMH,C(L2) <
CQ—W‘W{V»H}(maX{V?u} + 1) if ‘l/ - ,U,| >3,

where the constant C' depends only on Ag and Cjp.
Now our aim is to apply Schur’s lemma 2.6, so to estimate the quantity

(2.39) supz |kuu| + supz |kuul -
p v

To do this, we will use lemma 2.5 and the inequalities stated in remark 2.7.

1. Fix p < 2. We have

Z‘k”#‘ < etDBt out1)o (1) Ze (v+1)Bt 9—(v+1)0 (V—i—l)%
v>0 v

— Ce(,u-i-l)ﬁt 2(u+1) ('u + 1 Ze—(u+1)(ﬁt+910g2) (l/ + 1)%

14

< CeP2% ay(Bt +0log2) < 02%9a2(910g2).
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2. Now, take > 3 and consider first

pn—3 p—=3
Z 2 O (1)t 9—(u+1)(1-0) (u+ 1)% Z o~ (1)t 9(v+1)(1-0) (v + 1)75
v=0 v=0
n—3
< O entDBt 9= (ut1)(1-0) (1 + 1)% Z (V1) (=Bt+(1-0)log 2) (v41)~
v=0

< OBt o=t A=0) (1) 4 1)3 ay (=Bt + (1 — 0) log 2) -

(A 1=0)1og2)(1=2) (| _ 9y~
C23f ay <<1 — g&) log2> .

For the second part of the sum, one has

IN

N|=

D=

IN

+oo oo
Z ’kl/,u,’ < C 1Bt o(u+1)0 (u+ 1)71/2 Z e~ (1Bt 9—(v+1)0 (u + 1)1/2
v=p—2 v=p—2

< OB oY (1 4 1)V 200 (Bt 4 Glog 2) -
67(,8t+910g2)(,u71) (M _ 1)1/2

< (23¢ az(flog?2) .

3. Fix now v > 0; we have

v+2 v+2
Z |k5yu| < Ce—(y—f—l)ﬁt 2—(V+1)0 (l/ + 1)1/2 Z e(u-‘rl)ﬁt 2(u+1)0 ('u + 1)—1/2
pn=0

< OBl (4 V2 0 (Bt + log 2) -
 (Bt+010g2)(v43) (1), 4 3y=1/2

< ¢22¢ ap(flog?2).

For the second part of the series, the following inequality holds:

+oo
Z byl < CemWHDBEQ+DA=0) () Z DB 9 =(ut1)(1-6) (1) 4 1)}
pn=v+3 p=v+3

< CeWHDBo@ADN=0) (1, 4 1)73 (=Bt + (1 — 0) log 2) -

(B =0)Tog(+4) (, 4 43
C23% oy <<1 - ;9) logQ) .

In conclusion, there exists a positive function I7, with limy_,q+ IT(0) = 00, such that

supZ]kW] + SupZ\kW\ < CII6);
T v o

IN

then, by Schur’s lemma we gather

Z o~ 2B(w+1)t 9200

/ ([Ay, a]oyu) v, 9—v dx| <
v>0 v

+o00
< CIH0) Y (v+1)e2Dig=2be , (1),
v=0
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Terms with [A,, bg] and [A,, by ]

Now, let us consider commutator terms involving first order coefficients of operator L. The
analysis is essentially the same carried out in the previous paragraph, nevertheless we will give
here all the details.

Let us start with considering the term

2 1
Ay, bo(t, x)]| 0w, o—v dz| < 2|[[Ay, bo(t, )]0 —— |V, 0
[ = Bttt s ds| < 2ot | ]|
< 2[Ay, bo(t 2))0ull g2 (ey,0-+ ()2
Thanks to relation (2.37), we have
1A, bo(t, )0l = |[[Av,bo(t,2)] Y | Uy,
pn=0 L2
< DA bt Nl ) Ol 2 -
u=>0
On the one hand, estimate (2.34) with ¢ = 27" gives us
1/2
1Ovuullz < C (epan)’?.
on the other hand, from lemma 2.3 we get
c27 if [v—p|l <2

1[Av, bo(t, 2)| Wyl eze) <
¢ 2—maz{pviw if lv—p| >3

where C'is a constant depending only on ||bol| oo (r,; cv(R,))-
Therefore,

2
Ze—Qﬁt(u+1)2—2u9/ Ay, boldru v, 50 de| <
N

¥>0 ao—v

< Z o~ Btw+1) 9—1b (6%2%)1/2 o~ Bt(u+1) 9—pb (6M727M)1/2 Loy
v,;u>0

where we have defined
(2.40) Ly = e~V TIONIA L bo (8, @)Wl o2y -
As made before, we are going to estimate [, applying Schur’s lemma.

1. Let us fix p < 2. Then

Z |lVM| < C e(Bt1)Bt o(u+1)0 Z e~ (1Bt 9—(v+1)0 9—1w
v>0 v>0
< Ce3ﬂt 239 Ze—(u+l)(ﬁt+010g2) (l/ + 1)1/2
v>0
< CeP12% ay(Bt +0log2) < C 23° az(flog2) .
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2. Now, take > 3 and consider first

n—3 n—3
Sl < Centondge 3 vt gt
v=0 v=0

IN

C eH(Bt—(w=0)log2) (/) 9)
< C@,M(wfg)log2(u_2) < CM(w,¥0),

where M (w, ) is the maximum of the function z — €% (z — 2), with v = (w — g) log 2.
For the second part of the sum, we have instead

RS = 1/2
D7l < CelrtDBt gDl N m (ks g~ ()6 Q_W%
l/:,u—2 1/:'“_2 (V + 1) /

< C et g0 (1 1)712 0y (Bt 4 0log 2) -
e~ (=Bt 9—(p—1)0 (1 — 1)1/2

< 201082 o) (910g2) < 227 an(flog?).

3. Fix now v. Initially, we have

v+2 v+2 1/2
S [yl € ot g0 g 3 (et Greatos) (115 DY
u=0 v n=0 (,u—i— 1)1/2

< QeI gT () 1 3)12 0y (Bt + Blog 2) -
_ e(y+3)[3t 2(1/+3)0 (I/ + 3)—1/2
< (O e20H01082) o (9log2) < €230y (Alog?2).

Moreover, we have

+oo too
Z Ll C e vBtg—v0 Z o—H(—Bt+(w—0)log 2)
p=v+3 Pt

O e—VBt 910 (v + 3)71/2 az((w—0)log2 — pt) -
B 9= (w48)(w=0) (, 4 3)1/2

< Ce¥Ptgdlog-(rtdw <<w — 30) log 2)

< 0226042 <<w— ;0) log2> .

__ From all these inequalities, thanks to Schur’s lemma, one has that there exists a constant
M (w, ), depending only on ||bo || oo (r,;c«(Rr,)) and on the fixed parameter ¢, such that

/2
ul/2

IN

IN

Sup2|luu| + Supz‘luu‘ < CM((-‘%Q);
T v o

from this relation, we finally get

Ze—Qﬂt(u+1)2—2y9/ 2
N

Ao—
v>0 27

[Ay, bolOsu v, o-v d| <

+oo
< CMw,0)) (v+1)e 2PUHig=2e o (1)

v=0
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The term with the commutator [A,, b1 (¢, x)] is analogous. Arguing as before, we discover that

‘/ 2 [Ay, b1]0,u v, 9w d

A /(12—1/

1
<C Ay, b |V Y ag—v Oxu —— (v, 9-»
< ;}n[ N, 2oy | /az—s Bl 2 ﬁ< o) .
1/2 1/2
< O A b Wulleirz (evar) " (euan)'? .
n>0

Therefore, we get

Z 6_2/Bt(y+1) 2_21/9 / 2 [Ay; bl]amu Uy 2—v dx <
v>0 \/m |

<C Z Bv+1)t 910 (6142_”)1/2 o Blut1)t 9—pb (8%2_#)1/2 lf/W
v, >0

where we have set again

llyu = e~ (mmbig=(v=p)? 1A, bl]\IIuHE(L?) .

As by and b satisfy to the same hypothesis, the commutator [A,, b;] verifies the same inequalities
as [Ay, bol; so, if we repeat the same computations, we obtain

Zeme (v+1) 9210

Ay,bl]a Uy, 9-vdr| <
v>0 / v

+o00
< CM(w,0)> (v+1)e 20 Dig=20e o (1),
v=0

Term with [A,, ]

Finally, we have to deal with the commutator [A,, ¢(t, x)].
First of all, observe that there exist constants such that

1

< Cll[Av, cJul| 2

(v2-7)

Ay, c]Ozuv, 9-v dx

7=

LQ

< O A dWullee) Nl e (o (8)?
u>0

< 20 Y 1A dWull iz 277 100wl (erar (1)
©n>0

< 20 3 1A dllerz 27 (epan(8)? (e ()"
n>0

Thereby, we get the estimate

_2615 (v+1) 2—2V0 / ]axuv L dxl <
E ) 2=V =
\/7 V "

v>0

S 20 Z e*,@i(l/#»l) 271/9 (ey727u(t))1/2 675t(u+1) 2*#0 (6#727;& (t>)1/2 ml/'u ’
v,1u>0
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where we have defined, as usual,
My = e~ VT T 9T A | 21y

Now, the kernel of the operator [A,, c] is

~

hz,y) = ¥(2"(z —y)) 2" (c(t, y) — c(t, 2));
so, remembering that ¢ is bounded over R x R, from Schur’s lemma one gets
1[Av, g2y < C Vv >0,
where the constant C' depends only on ||c|| oo (r, xR,)-
Again, we are going to estimate the kernel m,,, to apply Schur’s lemma.

1. First, we take y < 2 and we have

Z |muu‘ < C et 1Bt 9(ut+1)8 9—p Z e~ (w1)Bt 9—(v+1)0
v>0 /=0

< (e3Pt Z e~ (w+1)(Bt+01og 2) (v+ 1)1/2
v>0

< CeP130 ay(Bt + 0log2) < C22%ay(0log2).

2. Now, we fix u > 3 and we consider the first part of the series:

w3 p=3 (v + 1)1/
S Il < OB (e (-0) 9o 37 m (D (110 g Y
T (v +1)1/2
v=0 v=0
n—3
< C er+1)Bt 9= (p+1)(1-0) (u— 2)1/2 Z e(r+1)((1-0)log 2—pt) (v + 1)71/2
v=0

< OB 9=t A=0) (1 — 2)1/2 4 (1 — @) log2 — Bt) -
e~ (BB 9(u=2)(1-6) (|, _ 9)=1/2

< CePtaY oy <<1 — §9> log2> < 02%9041 <(1— 20) log2> .

For the second part, one has:

+oo +o0o 1/2
S [l € C el g g §N (1)t g (41)0 (v+1)Y
4 S 4 (v+ 112
v=p—2 v=p—2
< O elntDBt olu+1)0 o—p as(Bt + 0log 2) e~ (u=1)Bt 9—(n—1)0
< C2%% ay(flog?) .
3. Now, we fix v > 0. Initially, we consider
v+2 v+2 1/2
Z ‘my ‘ < Ce—(u-ﬁ-l)ﬁt 2—(l/+1)9 Z e(/ﬁ—l)(ﬁt—‘rGIOg 2) 9K (:U’ + 1) /
pn=0 8 a n=0 (’u’—i_ 1)1/2

< Cen Wm0 () 3)12 0y (Bt + flog2) -
3B 9430 (), 4 3)-1/2

O 2(Bt+0log2) ap(flog2) < C 230 a1(0log2) .

IN
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The second part of the series, instead, can be treated as follow:

+o00 +o00 +1 %
S i € CenWHIBREANA-0 ST )8ty g D(1-0) g (pt 1)
pn=v+3 pu=v+3 (/‘L + 1)5
+oo
< e WHDBt9r+1)(1-6) (V+4)—§ Z o~ (p+1)((1-0) log 2—5t) (1 + 1)%
p=v+3
< Cef(qul)Bt 2(l/+1)(179) 052((1 _ 9) 10g2 - ﬁt) 6(V+4)/3’t 27(U+4)(179)
< C2%9a2 ((1 — 29) log2) .
Finally, we obtain:
Ze‘wt(”ﬂ) 2-2v0 /2 Ay, c]Ozuv, 9-vdr| <
v>0 ao—v
+oo
< CH(0) Y (v+1)e2PDig=20e (1),
v=0

where the function IT is the same used in the estimate of the term [A,, al.

2.3.5 End of the proof of theorem 2.1

Now we are able to complete the proof of theorem 2.1.
First of all, remembering the definition of the total energy given by (2.32), we gather that
there exists a constant C' > 0, depending only on 6, such that

+oo
2
75(y+1)t272u0 2 (L . . d < E(t 1/2 L o_@%s .
,,E:oe /\/@( u), Vy,2 x| < C(E(t)* || Lull g-o-p=t

Now, we put estimates just proved in paragraph 2.3.4 into relation (2.35). Therefore, if we set
ﬁ(w, 0) = max{M(w, 0),11(0)}, we have that, for suitable constants, depending only on Ag, Ao,
Coy and on the norms of the coefficients of operator L in their respective functional spaces, the
following inequality holds true for all ¢ € [0, T:

d = = —28(v+1)t 5—200
- < _ .,
SE() < (o+c (w,0) 25) ;:0: (v+1)e 2720 ¢, (1) +

£ O (EW) | Lull o

Now, let us fix § large enough, such that C' + C”ﬁ(w, 0) — 25 < 0. We can always do this, on
condition that we take 7" small enough: recall that, by (2.36), only the product 87" has been fixed
untill now. With this choice, we have

d

SB() < C" (B)M? | Lull-a-a:

and the conclusion of the theorem follows from Gronwall’s lemma, keeping in mind remark 2.4.






Chapter 3

Non-Lipschitz coefficients: the general
N-dimensional case

In this chapter we will keep studying the Cauchy problem for strictly hyperbolic operators with
low regularity coefficients. As in previous chapter, we will suppose the coefficients to be log-
Zygmund continuous in time and log-Lipschitz continuous in space, but we will tackle the case of
any space dimension N > 1. Again, we will find an energy estimate with a time-dependent loss of
derivatives, which allows to get the well-posedness issue in the space H* for the related Cauchy
problem (if the coefficients are smooth enough with respect to x).

Paradifferential calculus with parameters will be the main tool to handle the problem and get
the improvement with respect to the previous chapter. Let us note that, thanks to it, it will be
needed to perform a mollification of the coefficients only in the time variable.

Let us point out that here, for simplicity, we will focus only on a homogeneous second order
hyperbolic operator, but the same techniques work also for dealing with lower order terms.

3.1 Introduction

This chapter is devoted to the study of the Cauchy problem for a second order strictly hyperbolic
operator defined in a strip [0,7] x RY, for some 7' > 0 and N > 1. Consider a second order
operator of the form

N

(3.1) Lu = 0%u — Z 0 (ajk(t, x) Oku)
jk=1

and assume that L is strictly hyperbolic with bounded coefficients, i.e. there exist two constants
0 < Ao < Ag such that
N

Ao €7 < Z ajp(t, )& & < Ao ¢

]7k:1

for all (t,x) € [0,T] x RN and all £ € RY.

It is well-known (see e.g. [42] or [53|) that, if the coefficients a; are Lipschitz continuous
with respect to t and even only measurable in x, then the Cauchy problem for L is well-posed
in H'-L?. If the aji’s are Lipschitz continuous with respect to ¢ and Cp° (i.e. C* and bounded
with all their derivatives) with respect to the space variables, one can recover the well-posedness
in H5t1-H* for all s € R. Moreover, in the latter case, one gets, for all s € R and for a constant

47
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Cs depending only on it, the following energy estimate:

(32)  sup Qm@mew1+n@u@meQ <

0<t<T
T
sa@wmmw+MWMMw/nmwwm@
0

for all u € C([0, T); H¥*(RYN)) n C'([0, T); H*(RY)) such that Lu € L'([0,7]; H*(RY)). Let us
explicitly remark that previous inequality involves no loss of regularity for the function u: it holds
true for every u € C2([0,T]; H*¥(R")) and the Cauchy problem for L is well-posed in H* with
no loss of derivatives.

If the Lipschitz continuity (in time) hypothesis is not fulfilled, then (3.2) is no more true.
Nevertheless, one can still try to recover H-well-posedness, with a loss of derivatives in the
energy estimate.

The first case to consider is when the coefficients aj;, depend only on ¢:

N
Lu = d*u — Z ajr(t) 0;0ku .
k=1

In [18], Colombini, De Giorgi and Spagnolo assumed the coefficients to satisfy an integral log-
Lipschitz condition:

T—e
(3.3) / lajr(t+¢€) — aj(t)|dt < Celog <1 + i) ,
0
for some constant C' > 0 and all € €]0,7]. To get the energy estimate, they first smoothed out
coefficients using a mollifier kernel (p;). Then, by Fourier transform, they defined an approxi-
mated energy E.(&,t) in phase space, where the problem becomes a family of ordinary differential
equations. At that point, the key idea was to perform a different approximation of the coefficients
in different zones of the phase space: in particular, they set ¢ = [£|~!. Finally, they obtained an
energy estimate with a fived loss of derivatives: there exists a constant § > 0 such that, for all
s € R, the inequality

(34)  swp Qm@mewks+u@u@me%Q <

0<t<T
T
g@meMmﬂ+mmawm+/nmm»me
0

holds true for all u € C2([0,T]; H*(RY)), for some constant Cy depending only on s. Let us
remark that if the coefficients a;, are not Lipschitz continuous, then a loss of regularity cannot
be avoided, as shown by Cicognani and Colombini in [16]. Besides, in this paper the authors
prove that, if the regularity of the coefficients aj;, is measured by a modulus of continuity, any
intermediate modulus of continuity between the Lipschitz and the log-Lipschitz ones necessarily
entails a loss of regularity, which, however, can be made arbitrarily small.

Recently Tarama (see paper [56]) analysed the problem when coefficients satisfy an integral
log-Zygmund condition: there exists a constant C' > 0 such that, for all j, k and all € €]0,7T/2],
one has

T—e 1
(3.5) / lajp(t +e) + ajp(t —e) — 2a(t)|dt < Celog <1 + €> :
3

On the one hand, this assumption is somehow related to the pointwise condition (for a function
a € C3[0,T))) |la(t)| + [t (t)] + [t*a”(t)| < C, considered by Yamazaki in [62], and hence it is a
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requirement on the growth of the second derivative of a. On the other hand, it’s obvious that, if the
aji’s satisfy (3.3), then they satisfy also (3.5): so, a more general class of functions is considered.
Again, Fourier transform, smoothing out the cofficients and linking the approximation parameter
with the dual variable were fundamental tools in the analysis of Tarama. The improvement with
respect to paper [18], however, was obtained defining a new energy, which involved (by derivation
in time) second derivatives of the approximated coefficients. Finally, he got an estimate analogous
to (3.4), which implies, in particular, well-posedness in the space H°.

In paper [22], Colombini and Lerner considered instead the case in which coefficients ajy,
depend both on time and on space variables. In particular, they assumed an isotropic pointwise
log-Lipschitz condition, i.e. there exists a constant C' > 0 such that, for all ¢ = (7,¢) € R x RV,
one has .

swp Ja(z+€) — a2 < CI¢ log (1 n ) |

z=(t,x) ERxRN |<|

Once again, smoothing out coefficients with respect to the time variable is required; on the con-
trary, one cannot use the Fourier transform, due to the dependence of a;; on z. The authors
bypassed this problem appealing to the Littlewood-Paley decomposition and paradifferential cal-
culus. They defined an energy concerning each localized part A,u of the solution u, and then they
performed a weighed summation to put all these pieces together. Also in this case, they had to
consider a different approximation of the coefficients in different zones of the phase space, which
was obtained setting e = 27" (recall that 2" is the “size” of the frequencies in the v-th ring, see
chapter 1). In the end, they got the following statement: for all s €]0,1/4], there exist positive
constants 5 and Cy and a time T* €]0,T] such that

(3.6) sup <\U(75,')”Hs+1ﬂt +||atu<t,->||Hsm) <
0<t<T*

T*
< Cs (\Iu((),-)lms+1 + 110:u(0, )l g +/O [ L, )| pr=s-se dt)

for all u € C%([0, T]; H*(RY)). Let us point out that the bound on s was due to this reason: the
product by a log-Lipschitz function is well-defined in H*® if and only if |s| < 1. Note also that this
fact gives us a bound on the lifespan of the solution: the regularity index —s + 1 — 87 has to
be strictly positive, so one can expect only local in time existence of a solution. Moreover in the
case the coefficients aj;, are C;° in space, the authors proved inequality (3.6) for all s: so, they
still got well-posedness in H®°, but with a loss of derivatives increasing in time.

The case of a complete strictly hyperbolic second order operator,

N N
Lu= 3" 8y, (a5 dy) + 3 (b9 + 9y, (cjw) + du

(here we set y = (¢,z) € Ry x RY), was tackled by Colombini and Métivier in [23]. They assumed
the same isotropic log-Lipschitz condition of [22] on the coefficients of the second order part of
L, while b; and ¢; were supposed to be a-Hélder continuous (for some o €]1/2,1[) and d to be
only bounded. The authors considered questions such as local existence and uniqueness, and also
finite propagation speed for local solutions.

Recently, Colombini and Del Santo, in [19] (for a first approach to the problem see also [31],
where smoothness in space were required), came back to the Cauchy problem for the operator
(3.1), mixing up a Tarama-like hypothesis (concerning the dependence on the time variable) with
the one of Colombini and Lerner (with respect to x). More precisely, they assumed a pointwise
log-Zygmund condition in time and a pointwise log-Lipschitz condition in space, uniformly with
respect to the other variable (see conditions (3.9) and (3.10) below). However, they had to restrict
themselves to the case of space dimension N = 1: as a matter of fact, a Tarama-type energy was
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somehow necessary to compensate the bad behaviour of the coefficients with respect to t, but
it was not clear how to define it in higher space dimensions. Again, localizing energy by use of
Littlewood-Paley decomposition and linking approximation parameter and dual variable together
lead to an estimate analogous to (3.6).

The aim of the present chapter is to extend the result of Colombini and Del Santo to any
dimension N > 1. As just pointed out, the main difficulty was to define a suitable energy related
to the solution. So, the first step is to pass from functions a(¢,x) with low regularity modulus of
continuity, to more general symbols o,(¢, z, ) (obviously related to the initial function a) satisfying
the same hypothesis in ¢t and x, and then to consider paradifferential operators associated to these
symbols. Nevertheless, positivity hypothesis on a (required for defining a strictly hyperbolic
problem) does not translate, in general, to positivity of the corresponding operator, which is
fundamental in obtaining energy estimates. At this point, paradifferential calculus depending
on a parameter v > 1, as presented in chapter 1, comes into play and allows us to recover
positivity of the (new) paradifferential operator associated to a. Defining a localized energy
and an approximation of the coefficients depending on the dual variable are, once again, basic
ingredients in closing estimates. Hence, in the end we will get an inequality similar to (3.6), for
any s €10,1].

The chapter is organized as follows.

First of all, we will present the work hypothesis for our strictly hyperbolic problem, and we
will state our main results.

A complete treatement about functions with low regularity modulus of continuity follows.
In particular, we will focus on log-Zymgund and log-Lipschitz conditions: by a broad use of
paradifferential calculus, we will state properties of functions satisfying such hypothesis and of
the relative smoothed-in-time (by a convolution kernel) ones. Hence, we will pass to consider
more general symbols and the associated paradifferential operators, for which we will develop also
a symbolic calculus and we will state a fundamental positivity estimate. This section is deeply
based on the theory developed in chapter 1

This having been done, we will be then ready to tackle the proof of our main result: we will
go back to the main ideas of paper [19]. First of all, taking advantage of a convolution kernel,
we will smooth out the coefficients, but with respect to the time variable only. As a matter of
fact, low regularity in « will be compensated by considering paradifferential operators associated
to our coefficients. Then, we will decompose the solution u to the Cauchy problem for (3.1) into
dyadic blocks A, u, for which we will define an approximate localized energy e,: the dependence
on the approximation parameter € will be linked to the phase space localization, setting e = 27%.
The piece of energy e, will be of Tarama type, but this time multiplication by functions will be
replaced by action of paradifferential operators associated to them. A weighted summation of
these pieces will define the total energy E(t) associated to u. The rest of the proof is classical:
we will differentiate E with respect to time and, using Gronwall’s lemma, we will get a control
for it in terms of initial energy E(0) and external force Lu only.

3.2 Basic definitions and main result

This section is devoted to the presentation of our work setting and of our main result.
Let us consider the operator over [0, Tp] x R (for some Ty > 0 and N > 1)

N
(3.7) Lu = 0%u — Z i (aij(t, z) Oju) ,

ij=1

and let us suppose L to be strictly hyperbolic with bounded coefficients, i.e. there exist two
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positive constants 0 < A\g < Ag such that, for all (t,7) € R; x RY and all £ € RV, one has

N

(3.8) Mo €7 < Z aij(t,z) & &5 < Mo €.

ij=1

Moreover, let us suppose the coefficients to be log-Zygmund-continuous in the time variable t,
uniformly with respect to x, and log-Lipschitz-continuous in the space variables, uniformly with
respect to t. This hypothesis reads as follow: there exists a constant Ky such that, for all 7 > 0
and all y € RV \ {0}, one has

1
(3.9) sup |ai;j(t + 7,2) + aij(t — 7,2) — 2a;;(t,z)] < Ko7 log (1 + 7')
(t,z)
1
(3.10) sup laij (1,2 +y) — aig(60)] < Koyl log (1 + m) .
t,x

Now, let us state our main result, i.e. an energy estimate for the operator (3.7).

Theorem 3.1. Let us consider the operator L defined in (3.7), and let us suppose L to be strictly
hyperbolic with bounded coefficients, i.e. relation (3.8) holds true. Moreover, let us suppose that
the a;j’s satisfy also conditions (3.9) and (3.10).

Then, for all fized 0 €]0,1[, there exist some B* > 0, some time T > 0 and some constant
C > 0 such that the following estimate,

(3.11) sup (\u(t, ')”H76+175*t + ||8tu(t, ')HHGB*t) <

0<t<T

T
<C <IU(0’ We-o+1 + 110¢u(0, )l o +/ L, )| pr-o-s+e dt>,
0

holds true for all u € C?([0,T]; H*®(RY)).

So, it’s possible to control the Sobolev norms of solutions to (3.7) in terms of those of initial
data and of the external force only: the price to pay is a loss of derivatives, increasing (linearly)
in time.

3.3 Tools

The main tools we need to prove our statement all come from Fourier Analysis. We will broadly
make use of the methods developed in chapter 1: in particular, Littlewood-Paley decomposition,
logarithmic Sobolev spaces and paradifferential calculus depending on parameters.

In this section we use the just mentioned techniques to study functions having low regularity
modulus of continuity. In particular, we will focus on log-Zygmund and log-Lipschitz functions:
dyadic decomposition allows us to get some of their properties. Moreover, we will analyse also
the convolution of a log-Zygmund function by a smoothing kernel.

Finally, taking advantage of paradifferential calculus with parameters, we will consider general
symbols having such a low regularity in time and space variables. Under suitable hypothesis on
such a symbol, we will also get positivity estimates for the associated paradifferential operator.

3.3.1 On log-Lipschitz and log-Zygmund functions

Let us now give the rigorous definitions of the modulus of continuity of funtions we are dealing
with, and state some of their properties.
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Definition 3.2. A function f € L>(R") is said to be log-Lipschitz, and we write f € LL(RY),
if the quantity

|floL == sup sup |flz+y) — f(@)
zeRN 0<lyl<1 \ |y| log (1 n ﬁ)
We define [|f|[r = £l + [flzL-

Let us define also the space of log-Zygmund functions. We will give the general definition in
R even if one dimensional case will be the only relevant one for our purposes.

< 400.

Definition 3.3. A function g € L>°(R") is said to be log-Zygmund, and we write g € LZ(RY),
if the quantity

glog = sup sup | 9EFY F 9=y — 29()

< +400.
2€RN 0<|y|<1 ly| log (1 i L)

[yl
We define [|g|lz = |lgllz= + |9lrz-

Remark 3.4. Let us immediately point out that, by monotonicity of logarithmic function, we
can replace the factor log (1 + 1/|y|) in previous definitions with log (1 4+~ + 1/]y|), for all pa-
rameters v > 1. As paradifferential calculus with parameters will play a fundamental role in our
computations, it’s convenient to perform such a change, and so does also in hypothesis (3.9) and
(3.10) of section 3.2.

Let us give a characterization of the space LZ. Recall that the space of Zygmund functions is
actually BY, . following the same proof of this case (see e.g. [13]) one can prove next proposition.

Proposition 3.5. The space LZ(RY) coincides with the logarithmic Besov space Bég,é%g, i.e. the
space of tempered distributions u such that

(3.12) sup (2’€ (1+k)1 ||Aku||Loo) < +00.
k>0

Proof. (i) Let us first consider a u € Béo_,é%g and take z and y € RN, with |y| < 1. For all fixed

n € N we can write:

u(x +y) +ulx —y) —2u(z) = Z (Agu(z +y) + Agu(z — y) — 2Aku(x)) +
k<n

+ D (Apu(z +y) + Agu(z — y) — 28¢u()) .
k>n

First, we take advantage of the Taylor’s formula up to second order to handle the former
terms; then, we use property (3.12). Hence we get

(@ +y) +u(@—y) —2u(@)] < Cly* > (VA e + 4D 1Akl
k<n k>n
< P> 2"k+1) + > 27k +1)
k<n k>n
< C(n+1)(jyP2" +27).

Now, as |y| < 1, the choice n = 1 + [log, (1/|y])] (where with [p] we mean the greatest
positive integer less than or equal to ¢) completes the proof of the first part.
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(ii) Now, given a log-Zygmund function u, we want to estimate the L norm of its localized
part Agu.

Let us recall that applying the operator Ay is the same of the convolution with the inverse
Fourier transform of the function ¢(27%-), which we call h. Now, hg(z) = 2FNVh(2Fz),
where we set h = fgl(cp). As ¢ is an even function, so does h; moreover we have

/Mwmz/aﬂwwwzwmﬁﬂzu

Therefore, we can write:

Bpa(e) = 2971 [ 1) (ula + ) + e~ 9) — 2u(@)) dy.,

and noting that ¢ — o log (1 + v+ 1/p) is increasing over ]0,4o0[ completes the proof to
the second part of the proposition.
O

From definitions 3.2 and 3.3, it’s obvious that LL(RY) «— LZ(R"): proposition 3.3 of [22]
explains this property in terms of dyadic decomposition. We quote here its statement.

Proposition 3.6. There eists a constant C such that, for all a € LL(RY) and all integers k > 0,
we have

(3.13) 1Akall e < C(k+1)27% la]Lp -
Moreover, for all k € N we have

(3.14) la — Skall
(3.15) 1Skallcon

Ck+1)27%|al|zs

<
< Ck+1lalre.

Remark 3.7. Note that, again from proposition 3.3 of [22], property (3.15) is a characterization
of the space LL(RM).

Using dyadic characterization of the space LZ and following the same ideas as those of the
proof of proposition 3.5, we can prove the following property. This time we consider a log-Zygmund
function a depending only on the time variable ¢, which is enough for our purposes, but the same
reasoning holds true also in higher dimensions.

Lemma 3.8. For all a € LZ(R), there exists a constant C, depending only on the LZ norm of
a, such that, for all v > 1 and all 0 < |7| < 1 one has

1
(3.16) sup|a(t + 1) — a(t)] < C|7| log? <1+’y+> :
teR 7|
Proof. As done in proving proposition 3.5, for all n € N we can write
at+7) —a(t) = > (Apa(t+7) — Aga(t)) + > (Apa(t+7) — Aga(t))
k<n k>n

where, obviously, the localization in frequencies is performed in one dimension (with respect to
the time variable). For the former terms we use the mean value theorem, while for the latter ones
we use characterization (3.13); hence, we get

a(t+7)—a) < 3 HdAka

Tl + 2 [ Akal
Lee k>n

IN

C|n?|r| + ZQikk

k>n
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The series in the right-hand side of the previous inequality can be bounded, up to a multiplicative
constant, by 27"n; therefore

la(t +7) —a(t)] < Cn(njr| +27"),
and the choice n = 1+ [logy(1/|7|)] completes the proof. O

Now, given a log-Zygmund function a(t), we can regularize it by convolution. So, take an even
function p € C§°(R¢), 0 < p < 1, whose support is contained in the interval [—1,1] and such that
[ p(t)dt = 1. Define then the mollifier kernel

pelt) = p(t) veelo ).

3

We smooth out the function a setting, for all € €]0, 1],

(3.17) a:(t) == (pe * a) (t) = / pe(t — s)a(s)ds.

X

The following proposition holds true.

Proposition 3.9. Let a be a log-Zygmund function. For all v > 1, there exist constants C such
that

1
(3.18) lac(t) —a(t)] < CyllallLz € log <1 + v+ 5)
1
(3.19) |O0ac(t)] < Cyllallrz log2 (1 + v+ 5>
) 1 1
(3.20) |07a-(t)] < CyllallLz - log( 1+~ + N

Proof. For first and third inequalities, the proof is the same as in [19]. We have to pay attention
only to (3.19). As p' has null integral, the relation

Bra(t) = 12/S|S€p/ (f> (alt — s) — a(t)) ds

9 9

holds, and hence, taking advantage of (3.16), it implies
C 1
o <f)‘ |s| log? (1 +v+ ) ds.
€ s

|Orac(t)] <
€ |s|<e
Observing that the function v +— vlog?(1 + v + 1/v) is increasing in the interval [0,1], and so
does in [0, €], allows us to complete the proof. O

3.3.2 Low regularity symbols and calculus

For the analysis of our strictly hyperbolic problem, it’s important to pass from LZ;— LL, functions
to more general symbols in variables (¢, x,£) which have this same regularity in ¢ and x.

We want to investigate properties of such symbols and of the associated operators. For rea-
sons which will appear clear in the sequel, we will have to take advantage not of the classical
paradifferential calculus, but of the calculus with parameters. Therefore, we will allow also the
symbols to depend on a parameter y > 1.

So, let us take a symbol a(t,z,&,) of order m > 0, such that a is log-Zygmund in ¢t and
log-Lipschitz in z, uniformly with respect to the other variables. Then we smooth out a with
respect to time, as done in (3.17). As a matter of fact, paradifferential calculus already implies
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a regularization of symbols with respect to x, so that we don’t need to apply convolution also in
the space variable (as done, for instance, in chapter 2).

Next lemma provides us some estimates on classical symbols associated to a. (recall formula
(1.15)) and its time derivatives. For notation convenience, in what follows we drop out the
dependence of the construction on the admissible cut-off function v (recall also remark 1.56).

Lemma 3.10. The classical symbols associated to a. and its time derivatives satisfy:

0800 < Caly+ g™
00800, < Chaly+[E)™ M g (1+7+ [¢])
onal < Colr i 0149+ 1)
0008000, < Coa (11D 1 log (14 4 [g]) |
‘8?033% < Co(y+ gy log(l +7+ i) %
00805, < Cpa (v+16)" " log (1 4+ + 1)) 5 -

Proof. The first inequality is a quite easy computation.
For the second one, we have to observe that

[o6@—v0dr = [06G0d: = [ 7 nvmn€)dz = (w19, = 0.

So, we have
87;O'a€ - /aZG(y’ f) (aa(ta r—Yy, 57 ’Y) - aE(tv Z, 55 ’7)) dy )

and from this, remembering lemma 1.53, we get the final control.

The third estimate immediately follows from the hypothesis on a and from (3.19).

Moreover, in the case of space derivatives, we can take advantage once again of the fact that
0;G has null integral:

P / 0G(x — 1, €) Dyau(t, y, €, 7) dy

- [ 5/ <t‘3)(M&G(y@)(a(s,x—y,g,y)_a<s,x,§,y>)dy> i,

R, €2 €

Hence, the estimate follows from the log-Lipschitz continuity hypothesis and from inequality (1.11)
about G.

Now we handle the 0?a. term. The first estimate comes from (3.20), while for the second one
we argue as before:

002, = /@G(fv—y,é) Ofac(t,y, &) dy

1 n{t—s
= . 0;G(xz —y,§) 3 </Rg p (5) (a(s,y,&,7) — G(S,IE,S,V))LZS) dy
— E% o <t—8> ( 0;G(y, &) (a(s,x—yjfjfy)_a(s7x757,y))dy> ds,
R, £ RY

and the thesis follows again from log-Lipschitz continuity condition and from (1.11). O
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Note that first and second inequalities are fulfilled also by the symbol a (not smoothed with
respect to the time variable).

Now let us quote some basic facts on symbolic calculus, which follow from previous lemma
and the general theory developed in section 1.5 (recall in particular theorems 1.61 and 1.62).

Proposition 3.11. (i) Let a be a symbol of order m which is LL in the x variable. Then T,
s+alog into Hsferalog
~ )

maps H,

(11) Let us take two symbols a, b of order m and m’ respectively. Suppose that a, b are LL in the
x vartable. The composition of the associated operators can be approximated by the symbol
associated to the product a b, up to a remainder term:

TooTy =Ty + R.
The remainder operator R maps H‘fralog into Hi_m_mlﬂﬂo‘“)log (recall definition (1.9)).

(iii) Let a be a symbol of order m which is LL in the x variable. The adjoint (over L?) operator

of T, s, up to a remainder operator, Tg. The remainder operator maps H:;+alog into

Hs—m—i—l—i—(a—i—l) log
v .

Let us end this subsection stating a basic positivity estimate. In this situation, paradifferential
calculus with parameters comes into play.

Proposition 3.12. Let a(t,x,&,7) be a symbol of order 2m, which is log-Lipschitz continuous in
the x variable and such that

Re (alt,z,€,7)) > Ao (v + [€)*" .

Then, there exists a constant A1, depending only on |a|rr, and on Ao (so, not on 7y), such
that, for ~v large enough, one has

Re (T, )2 = Al
Proof. Going along the lines of the proof to theorem 1.63 (see [52]) and keeping in mind lemma
3.10, we arrive to the following estimate, analogous to (1.17):

Ao
) ||UH%{;” < Re (Ta%U)L? + C|’U\|Z<m—1>+(6+1)log>
Y

where the constant C' depends only on |a|rr,. Now, as

o 1og? 0t (14 + €))
lim 5 5 =0,
Yoo (2 +1£1%)

for v > 1 large enough we can absorb the last term of the right-hand side into the left-hand side
of the previous relation. O

Remark 3.13. Let us note the following fact, which comes again from theorem 1.63. If the
positive symbol a has low regularity in time and we smooth it by convolution with respect to
this variable, we obtain a family (a.). of positive symbols, with same constant Ag. Now, all the
paradifferential operators associated to these symbols will be positive operators, uniformly in &:
i.e. the constant A; of previous inequality can be choosen independently of €.

Let us observe that previous proposition generalizes corollary 3.12 of [23] (stated for the
paraproduct by a positive LL function) to the more general case of a paradifferential operator
with a strictly positive symbol of order m.

Finally, thanks to proposition 3.11 about the remainder operator for the adjoint, we have the
following corollary, which turns out to be fundamental in our energy estimates.
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Corollary 3.14. Let a be a positive symbol of order 1 and suppose that a is LL in the x variable.
Then there exists v > 1, depending only on the symbol a, such that

[Taull e ~ [Vl g2
for all uw € HY(RY).

Proof. Obviously, [|[Toull;2 < [[Vu|| 2, because a is of order 1.
In order to prove the opposite inequality, we use proposition 3.11 and we write

[Taullpz = (Ta) Tou, u) e = (To2u,u) + (Ru,u)

where R is a remainder operator with symbol equal to 0,0¢a, and so it has order m — 1 + log.
Hence, applying proposition 3.12 allows us to conclude the proof. O

3.4 Proof of the energy estimate for L

Finally, we are able to tackle the proof of theorem 3.1. We argue in a stadard way: first of all,
we define an energy associated to a solution of equation (3.7), and then we prove estimates on
its time derivative in terms of the energy itself. In the end, we will close the estimates thanks to
Gronwall’s lemma.

The key idea to the proof is to split the total energy into localized components e,, each one
of them associated to the dyadic block A,u, and then to put all these pieces together (see also
[22] and [19]). Let us see the proof into details.

3.4.1 Approximate and total energy

Let us first regularize coefficients a;; in the time variable by convolution, as done in (3.17): as
already pointed out, due to the use of paradifferential calculus, we don’t need to perform a
regularization of our coefficients also in space.

Then, inspired by Tarama’s energy (see [56]), let us define the 0-th order symbol

1/2
—-1/2

V) et ) &g

ihj

Oég(t,$,§) = (72 + ’5‘2)

We take ¢ = 27 (see also [22]| and [19]), and (for notation convenience) we will miss out the e.
Before going on, let us fix a real number v > 1, which will depend only on Ay and on the
sup; ; llaijl| L., such that (see corollary 3.14)

>\0

Ao
(3.21) 1T -1 /2 w2 > > — [V

lwllpz and (v

for all w € H*. Let us remark that the choice of « is equivalent to the choice of the parameter
@ in (1.8) and from now on, we will consider paraproducts starting from this p, according to
definition (1.8), even if we will omit it in the notations.

Consider in (3.7) a function u € C%([0,Tp); H*). We want to get energy estimate for u. We
rewrite the equation using paraproduct operators by the coefficients a;;:

82u_28 (a;j Oju) —|—Lu—28 Tawau —I—Eu,

where Lu = Lu + Zij 0; ((aij — Taij)aju). Let us apply operator A,: we get

(3.22) Ofuy = 0; (Ta,; Ojus) + Za (A, Tu,,] 95u) + (Lu),,

1,J



58 Chapter 3. Non-Lipschitz coefficients: N-D case

where u, = Ayu, (Lu), = A, (Lu) and [A,,T,,,] is the commutator between A, and the para-
multiplication by a;;.

Now, following again the original idea of Tarama in [56], but replacing product with symbols
by action of paradifferential operators, we set

vu(t,z) = T2 0w — Ty, 172y Uy
wy(t, .%') = Ta1/2(72+|§\2)1/2 Uy
2u(t,x) = uy.

These functions are relevant in our analysis, because on the one hand they are strictly related to
the Sobolev norms of d;u and u (see also inequalities (3.25) and (3.26) below), and on the other
hand the presence of the weights (depending on «) will produce fundamental cancellations in our
computations.

Now we can define the approximate energy associated to the v-th component of u (as already
done in [19]):

(3.23) ev(t) = o (®)lIz2 + llwn (D72 + Iz ®)z2 -

Remark 3.15. Let us note that, thanks to hypothesis (3.8) and our choice of the frequence
from which defining the paraproduct, we have that [jw, (t)||7s ~ [|Vu, |72 ~ 22 lluw |2,

Now, we fix a 6 €]0, 1], as required in hypothesis, and we take a 8 > 0 to be chosen later; we
can define the total energy associated to the solution u to be the quantity

(3.24) B(t) =) e 2P0ig=20e (1),
v>0
It’s not difficult to prove (see also inequality (3.28) below) that there exist constants Cy and
Cj, depending only on the fixed 6, for which one has:
(3.25) (BO)'? < Co(|0su(0)] -0 + [u(0)]| gr-o+1)
(3.26) (E@)'? > Chllosu)llgg-o-se + ()]l -1+ ,

where we have set 8* = 3 (log2) .

3.4.2 Time derivative of the approximate energy

We want to find an estimate on time derivative of the energy in order to get a control on it by
Gronwall’s lemma. Let us start analysing each term of (3.23).

2z, term

For the third term we have:

d

2 —||zv
(327 e

(t)”%g = 2Re (ul,, atuy)Lz .
Now, we have to control the term J;u,: using positivity of operator T 1,2, we have

(328) 0wl < C I Tmpdumlye < C (Il + || Ty, (orveyun

) < CO(e)?.

L2
So, we get the estimate:

d

3.29 —||2v
(3.29) e

Bl < Ceult).
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v, term

Straightforward computations show that

oy (t,x) = T, —1/202u, — Toz(a-1/2) Uy -

Therefore, putting relation (3.22) in the previous one, we easily get:

(3.30) d

dt

@l = —2Re (v, Toparmun) , +

L2
+2 ZRe (vl,, T,-1/20; (ij aj“l'))m +
,J

+2 Z Re (vl, yT-1/20; [Al,, Taij] 8ju)L2 +
,J

+2Re (vy, T,-1/2 <Lu>V)L2 )

Obviously, we have

(3.31)

’2Re (v,,, T, -1/2 (Eu) )
v/ L2

0| (3n)

I

L2

while from lemma 3.10 we immediately get

(3.32) ‘2 Re (v,,, TatQ(a—l/Z)’LLy)

IN

1\ 1
Clolus tog (1494 1) Ll

< Cw+1)ey,

L2

where we have used the fact that € = 27%. The other two terms of (3.30) will be treated later.

w, term

We now derive w, with respect to the time variable: thanks to a broad use of symbolic calculus,
we get the following sequence of equalities:

d

(3.33)- w72 =

dt

2Re (T@t(al/z)(.\/2+‘€|2)1/2u,j, w,,)L2 + 2Re (Ta1/2(72+‘§|2)1/28tu,,, w,,) 12
2Re (Ta(72+|§\2)1/2T—8t(a—1/2)uzz; wu>L2 + 2Re (Riuy, wy) g2 +
+2Re <Ta(72+|€‘2)1/2Ta—l/Qatuz/7 wu)L2 + 2Re (R2atul/7 wl/)L2

2Re (vl,, Ta(72+|§‘2)1/2wy>L2 + 2Re (v, , Rswy) 2 +

+2Re (Riuy, wy) 2 + 2Re (R20puy , wy) 2

2Re (v, Tyora Ty sjepy oty ) |, + 2Re (v, Raw,)p +
+2Re (vy, R3wy)2 + 2Re (Riuy , wy) 2 + 2Re (Ro20iuy , wy) ;2
2 T

+2Re (v, Ty-1/2R5u,) ;2 + 2Re (v, , Rywy )2 +

+2Re (v,, R3wy) 2 + 2Re (Riwy, wy) 2 + 2Re (R20iuy , wy) 2 -

2Re (vl,, Ta_1/2Ta2(72+‘5|2)u1,)

The important fact is that remainder terms are not bad and can be controlled in terms of
approximate energy. As a matter of facts, taking advantage of proposition 3.11 and lemma 3.10,
we get the following estimates.
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e Ry has principal symbol equal to ¢ (a(? + |§]2)1/2) D01 1?), s0

(3.34) |2Re (Riuy, wy)2| < C(v+1)e,

e The principal symbol of Ry is instead ¢ (a(v% + || )1/2) (= 1/2), so, remembering also
the control on ||Oyu,| 12, we have:

(3.35) 2Re (Rodyuy , wy) 2| < Cv (e)? w2z < C(v+1)e,

e Symbolic calculus tells us that the principal part of Rs is given by 9¢0, (a(v* + ]5\2)1/2),
therefore

(3.36) 2Re (v, , Rsw,) 2] < Cllvllzzvlwollze < C(v+1)e,

e Now, Ry has 0 (a‘l/z) Oz (oz3/2(72 + ]£|2)1/2) as principal symbol, so

(3.37) |2Re (v, Rawy) 2| < Clluyllpzvlwylz < C(v+1)e,

e Finally, Rs is given, at the higher order, by the product of symbols O (a3/2(72 + \5]2)1/2)
and 0, (a1/2(72 + ]§|2)1/2), and so we get

(3.38) 12Re (vy, Tp-1p0R5u) 2| < Cllogll22”vlwlle < Cv+1)e,

Principal part of the operator L

Now, thanks to previous computations, it’s natural to pair up the second term of (3.30) with the
first one of the last equality of (3.33). As a is a symbol of order 0, we have

2Re (v, Tpo12 3 0i (To,05un) | +2Re (vy, Tyo1oTazgy2pie2ytn) o] < Cllvullzz 1G]l 22
iv.j LQ

where we have set

(3:39) G = Tarepjepyur + Za wy Oun) = D Ty gyt + 05 (Tay, Ojun)
ij
We remark that
0; (Taij 8jul/) = Toa; djuy — Taij¢:6; U

where, with a little abuse of notations, we have written the derivative 0;a;; meaning that we are
taking the derivative of the classical symbol associated to a;;.
First of all, we have that

(3.40) ||T%,q,;0jun

i Qg

< 18w diaijllze 1SuDunlle + Y [V Sk-1aijll oo |26Vl 12
k>p+1

I

< Cp+1) <S}1P||az‘j||LLz) [Vuy |2 +
z?]

+ > (k+1) (SUPHGUHLM) |VAguy| L2

k>p+1, kv bJ

,L?]

< Culv+1) <Su.pHainLLw> (e)'?
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where p is the parameter fixed in (1.8) and we have also used (3.15). Next, we have to control
the term

Toy; e+ = Tageiestr = Tayyo—aiyeig; v + T

It’s easy to see that

1
HT(az'j,s—aij)EiﬁjuV 12 < Celog (1 + 5> 2" [[Vuy |2
and so, keeping in mind that e = 27",

<Oy (v+1)(e)?.

(3.41) HT(az‘j,e—az‘j)Eifj-i-’YQuV 12

Therefore, from (3.40) and (3.41) we finally get

(342) |2Re |0, Tpo1s2 Y 0i (Ta;05u) | +2Re (vy, Ty1/2Tozr2yg2)ti) 1| < Cv+ ey,
i?j L2

ij

where the constant C' depends on the log-Lipschitz norm of coefficients a;; of the operator L and
on the fixed parameters p and ~.

To sum up, from inequalities (3.29), (3.31), (3.32) and (3.42) and from estimates of remainder
terms (3.34)-(3.38), we can conclude that

Selt) £ G e + 0 (@) | (Tu) )

(343) —

+
L2

+ QZRQ (’U,,, Ta_1/2ai [A,,,Taij} 8ju)L2
2%

3.4.3 Commutator term

We want to estimate the quantity
Z Re (’Ul, s Ta_1/28i [Ay, Ta”} 8ju)L2
i?j

We start by remarking that

+oo
Ay, ToJw = [Ay, SpalSuw + Y [Ay, Sk-1a] Agw,
k=p+1

where p is fixed, as usual. In fact A, and Ay commute so that
Ay (SpaijSpw) = Spai(Sudyw) = Ay (SuaijSuw) — SpaiiAy(Suw),
and similarly
Ay (Sk—10ijAkw) — Sp—1a;Ap(Ayw) = Ay (Sk—10i;Akw) — Sp—1a:; A, (Agw).
Consequently, taking into account also that Sj and A commute with d;, we have
+00

0; ([Ay, Tu,, ] 95u) = 0i ([Ay, Suaiz] 05(Suw)) + 0; | Y [Ay, Seeraij] 05(Agu)
k=p+1
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Let’s consider first the term
0; ([Aua S,uaij] aj(suu)) .

Looking at the support of the Fourier transform of [A,, S,,ai;] 0j(S,u), we have that it is contained
in {|¢| < 2#"2} and moreover [A,, S,a;;] 9;(S,u) is identically 0 if v > p + 3. From Bernstein’s
inequality and theorem 35 of [17] we have that

19: ([Aw, Spaij] 9 (Suw))|l 2 < Cp (S}lpllazjllLLz> [Suullz2 s
27]

hence, putting all these facts together, we have

+o0
(3.44) ) e AN N "9 Re <vy, T\1/2 0 ([Av, S,ai)0;(Syu) >) <
v=0 ij L2
pt2 H
< Cy (SHPHainLLz> > e P2y s <Z Huh\m)
b v=0 h=0
pn+2
< Gy (sup flaijllpr, | ePUHT 2020 7 e A2 | 1o
iyj v=0
put2
S Ay
h=0
put2
< CM sup HainLLz eB(/H-?))T 2(u+2)9 Z e—2ﬁ(u+1)t 2_21/061/(75) )
i:j v=0
Next, let’s consider
—+o00
0; Z [Av, Sk-1aij] 9j(Agu)
k=p+1

Looking at the support of the Fourier transform, it is possible to see that
[Av, Sk—10i5] 9j(Agu)

is identically 0 if |k — v| > 3. Consequently the sum over k is reduced to at most 5 terms:
0i([Av, Sy—zaij] 0;(Ay—au)) + -+ 4+ 0i([Ay, Sys1a45] 0;(Ay42u)), each of them having the sup-
port of the Fourier transform contained in {|¢| < 2¥F!}. Let’s consider one of these terms,
e.g. 0i([Ay, Sy—1ai5] 0;(Ayu)), the computation for the other ones being similar. We have, from
Bernstein’s inequality,

10 ([Av, Sy-1aij] 05 (Avu)) | 2 < C 27 [[[Ay; Sy-rai5] 95 (Avu)]| 2 -
On the other hand, using theorem 35 of [17] again, we have:
I[Av; Sy-1045]0;(Avu)|[ 2 < CVSy-raijlp= [Avul L2,

where C' does not depend on v. Consequently, using also (3.15), we deduce

17]

10; ([Av, Sv—1aij] 0;(Apu))|| 2 < C27 (v +1) <SUP||aij||LLx) [Ayullpz .

From this last inequality and similar ones for the other terms, it is easy to obtain that

—+00
> Re vy, Tpy120i | > [Au, Sko1aij] 9;(Agu) <C <Sup“aij“LLz> (v+1)e,(t)
i k=p+1 12 Z’]
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and then

+00 t+oo

(3.45) | > e 20D =20 N "9 Re [, , Tpo120i | > [Av, Sk-1a4] 05(Agu)
v=0 ij k=p+1

IN

L2

+oo
<C (Sup ”aij”LLI> Z (y + 1) 6*2,3(1/4»1)15 2721/9 6,,(75) )

b v=0

Collecting the informations from (3.44) and (3.45), we obtain

+oo
(3.46) > e AN 2 N " Re (vy, Tp1/20i [Ay, Tayy ] Oju) 0| <
v=0 i

+00
< C3 Z (v +1)e 280Dt g=20 ¢ (7))
v=0

where C3 depends on y, sup; ; |laij||LL,, on 6 and on the product 37

3.4.4 Final estimate

From (3.43) and (3.46) we get

d =

LB (Cr + C3 — 28) Y (v +1)e 220 (1) 4
v=0

IN

+oo
10 Ze—2ﬁ(u+1)t 9200 (e,,(t))m H (fu(t))
v=0 v
+oo
(Cr + Cs — 28) Y (v +1)e2Pig20e (1) 4

v=0

L2

IN

+oo

+Cy Y e 22 (o, ()2 | N0, (@i — Tay)0u) |||+
v=0 &

vIl[2
—+o0
+Cy Y e 2B 920 (o (1) V2 | (Lu(t)), | o -
v=0

Now, applying Holder inequality for series implies
+0o0

Z 6_26(V+1)t 2—21/9 (6,/ (t))1/2 Z 0; ((aij — Taij )@u)
1,7

v=0

IN

vIlL2

+o0 1/2
< (Z(V + 1) e—Qﬂ(V—i-l)t 2—21/6 e,,(t)) .

v=0
2\ 1/2

+oo
' Z o 2B(r+1)t 9—200 (v + 1)*1 Z 0; ((aij - Taij)aju)
v=0 wd

vIlL2
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and, by definition, one has

9\ 1/2
+o0
S et 20 () )TN0, ((ay; — T, )05u) -
=0 ] vilL2

= Z 8, ((aij — Ta”.)(?ju)
i,

H—Qfﬁ*t—% log

From proposition 3.4 of [23] we have that

(3.47) > 0i ((aij — Tay;)05u) <C <SUPH%|LLm> ll 1t 2 10s 5
’i,j log

1 2¥)

H™ %2

with C' uniformly bounded for s in a compact set of ]0,1[. Consequently,

9 1/2
+oo
D ety 28 (- )T DT 0 ((agy — Ty, )0u) <
v=0 'L] v L2
<C (sup HainLLm> HUHH1797B*1§+%10g
i
. 1/2
<C (Z(V +1) e 2Bt g=20 eu(t)> ;
v=0
and finally
+oo
S e 280D =20 (o, ()2 ST 05 ((aij — Tayy)O5u) =
v=0 iv.j 1% L2
—+00
< O S (4 e g )
v=0

with C4 uniformly bounded for 5*t + 6 in a compact set of ]0,1[. So, if we take 5 > 0 and
T €]0, Tp] such that (recall that 5* = B(log2)~})

(3.48) B*T =6 < 1-0,

we have 0 < 0 < 0+ B*t < 0+ 06 < 1. Therefore we obtain

d t+oo
@E(t) < (Cy +C4Cy + C5— 25) Z (v+1) e 2B(v+1)t 9—2v0 e, (t) +
v=0
+oo »
+Cy Ze—Zﬁ(uH)t o—2v0 (e(1) / (Lu(t)) o -
v=0

Now, taking g large enough such that Cy + CyCy + C5 — 28 < 0, which corresponds to take
T > 0 small enough, we finally arrive to the estimate

%E(t) < Co (B@)'? | Lu(®) g-o-5m ;

applying Gronwall’s lemma and keeping in mind (3.25) and (3.26) give us estimate (3.11). O
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Remark 3.16. Let us point out that condition (3.48) gives us a condition on the lifespan T of
a solution to the Cauchy problem for (3.7). It depends on 6 €]0,1[ and on * > 0, hence on
constants C ... Cy4. Going after the guideline of the proof, one can see that, in the end, the time
T depends only on the index 6, on the parameter p defined by conditions (3.21), on the constants
Ao and Ag defined by (3.8) and on the quantities sup; ; [|ai;||Lz, and sup; ; lai;l L, -
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Chapter 4

The well-posedness issue in endpoint
Besov spaces

In the recent paper [28], Danchin proved well-posedness for the density-dependent incompressible
Euler system in Besov spaces By . embedded in the set of globally Lipschitz continuous functions,
for all p €]1, +o00].

In this chapter we will focus on the limit case B3, . for which condition (1.1) still holds. This
functional framework contains also the particular cases of Holder spaces C® and of the endpoint
Besov space Béo,l‘

In this setting and under non-vacuum assumption, we will establish the local well-posedness
and a continuation criterion in the spirit of that of Beale, Kato and Majda (see also [3]). Moreover,
in the last part of the chapter we will give lower bounds for the lifespan of a solution, pointing
out that, in dimension two, it tends to infinity when the initial density tends to be a constant.

4.1 Introduction and main results

This chapter is, in a certain sense, the continuation of the recent paper [28] by Danchin, devoted
to the density-dependent incompressible Fuler equations:

Op +u-Vp =0
(4.1) p (O 4+ u-Vu) + VII = pf
divu = 0.

Recall that the above equations describe the evolution of the density p = p(t,x) € R4 and of
the velocity field v = u(t,z) € RV of a non-homogeneous inviscid incompressible fluid. The time
dependent vector-field f stands for a given body force and the gradient of the pressure VII is the
Lagrangian multiplier associated to the divergence free constraint over the velocity. We assume
that the space variable x belongs to the whole RY with N > 2.

There is an important literature devoted to the standard incompressible Euler equations, that
is to the case where the initial density is a positive constant, an assumption which is preserved
during the evolution. In contrast, not so many works have been devoted to the study of (4.1) in
the nonconstant density case. In the situation where the equations are considered in a suitably
smooth bounded domain of R? or R?, the local well-posedness issue has been investigated by H.
Beirao da Veiga and A. Valli in [5], [6], [4] for data with high enough Hélder regularity. In [27]
Danchin proved well-posedness in H® with s > 1 4+ N/2 and studied the inviscid limit in this

N
. . 5 +1 .
framework. Data in the limit Besov space By’;  were also considered.

As for the standard incompressible Euler equations, any functional space embedded in the set
C%! of bounded globally Lipschitz functions is a candidate for the study of the well-posedness

69
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issue. This stems from the fact that system (4.1) is a coupling between transport equations.
Hence preserving the initial regularity requires the velocity field to be at least locally Lipschitz
with respect to the space variable. As a matter of fact, the classical Euler equations have been
shown to be well posed in any Besov space Bj, embedded in C%! (see [2], [13], [54], [63] and
the references therein), a property which holds if and only if indices s € R and (p,r) € [1, +o00]?
satisfy condition (1.1), which we recall here:

N
s>14+ — or s =1+ and r =1.

p

In [28], Danchin extended the results of the homogeneous case to (4.1) (see also [34] for a
similar study in the periodic framework). Under condition (1.1) with 1 < p < 400 he established
the local well-posedness for any data (pg,uo) in B, , such that pg is bounded away from zero.
However, he didn’t treat the limit case p = +o0o unless supposing the initial density to be a small
perturbation of a constant density state, a technical artifact due to the method he used to handle
the pressure term.

In fact, in contrast to the classical Fuler equations, computing the gradient of the pressure

involves an elliptic equation with nonconstant coefficients, namely
(4.2) div (aVII) = div F, with F:=f—-u-Vu and a:=1/p.

Getting appropriate a priori estimates given that we expect the function p to have exactly the
same regularity as VII is the main difficulty. In the L? framework and, more generally, in the
Sobolev framework H?, this may be achieved by means of a classical energy method. This is also
quite straightforward in the By . framework if a is a small perturbation of some positive constant
function @, as the above equation may be rewritten

aAll = divF + div ((@—a)VII) .

Now, if a — @ is small enough, then one may take advantage of regularity results for the
Laplace operator in order to “absorb” the last term.

If 1 < p < +o0 and a is bounded away from zero, then it turns out that combining energy
arguments similar to those of the H® case and a harmonic analysis lemma allows to handle the
elliptic equation (4.2). This is the approach Danchin used in [28], but it fails for the limit cases
p=1and p = +oo0.

In this chapter, we propose another method for proving a priori estimates for (4.2). In addition
to being simpler, this will enable us to treat all the cases p € [1,+oo] indistinctly whenever the
density is bounded away from zero. Our approach relies on the fact that the pressure II satisfies
(here we take f =0 to simplify)

(4.3) All = —pdiv (u-Vu) + V (logp) - VII.

Obviously, the last term is of lower order. In addition, the classical L? theory ensures that, if
there exists some positive constant m such that a(t,z) > m for all (¢,z) € [0,T] x RY, then

VI ey < - V)t )l ey for all ¢ €[0,7].
Therefore interpolating between the high regularity estimates for the Laplace operator and the

L? estimate allows to absorb the last term in the right-hand side of (4.3).

In the rest of the chapter, we focus on the case p = 400 as it is the only definitely new one
and as it covers both Hdélder spaces with exponent greater than 1 and the limit space Bio,l? which
is the largest one in which one may expect to get well-posedness.
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Before going further into the description of our results, let us introduce a few notation.

e Throughout the chapter, C stands for a harmless “constant” the meaning of which depends
on the context.

e If a = (a',a?) and b = (b',b?), then we denote a A b := a'b? — a?b.

e The vorticity © associated to a vector-field v over RY is the matrix valued function with
entries ‘ .
Qij = 8juz — &uj.
If N = 2 then the vorticity may be identified with the scalar function w := dyu? — dpu! and
if N = 3 with the vector field V X w.

e For all Banach space X and interval I of R, we denote by C(I; X) (resp. Cp(I; X)) the set of
continuous (resp. continuous bounded) functions on I with values in X. If X has predual
X*, then we denote by Cy(I; X) the set of bounded measurable functions f : I — X such
that for any ¢ € X*, the function ¢t — (f(t), ¢)xxx~+ is continuous over I.

e For p € [1,400], the notation LP(I; X) stands for the set of measurable functions on I with
values in X such that ¢ — || f(¢)||x belongs to LP(I). In the case I = [0,T] we alternately
use the notation L%.(X).

e We denote by L? (I;X) the set of those functions defined on I and valued in X which,

loc
restricted to any compact subset J of I, are in LP(J; X).
e Finally, for any real valued function a over RV, we denote
*

a, := inf a(z) and a® := sup a(x).

Let us now state our main well-posedness result in the case of a finite energy initial velocity
field.

Theorem 4.1. Let v be in [1,+00] and s € R satisfy s > 1 if r # 1 and s > 1 if r = 1.
Let po be a positive function in BS,, bounded away from 0, and ug be a divergence-free vector
field with coefficients in BS, . N L?. Finally, suppose that the external force f has coefficients in
LY([-To, To); BS, ) N C([=To, To; L?) for some positive time Tp.

Then there exists a time T €]0,To] such that system (4.1) with initial data (po,uo) has a
unique solution (p,u, VII) on [=T,T] x RN, with:

e pinC([-T,T]; BS,,) and bounded away from 0,
e uin C([-T,T); BS, ) NCY([-T,T|; L*) and
o VI in LY([-T,T}; BS, ) NC([-T,T]; L?).

If r = +oo then one has only weak continuity in time with values in the Besov space B3, .

In the above functional framework, one may state a continuation criterion for the solution to
(4.1) similar to that of theorem 2 of [28].

Theorem 4.2. Let (p,u, VII) be a solution to system (4.1) on [0, T*[xRYN, with the properties
described in theorem 4.1 for all’T < T™. Suppose also that we have

T*
(4.4) / (IVullze + 19T s ) dit < oo
i ,

If T* is finite, then (p,u, VII) can be continued beyond T* into a solution of (4.1) with the
same regularity. Moreover, if s > 1 then one may replace in (4.4) the term ||Vul||po with ||| L.
A similar result holds true also for negative times.
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From this result, as our assumption on (r,s) implies that ng% — ngl — L°°, we immedi-
ately get the following corollary.

Corollary 4.3. The lifespan of a solution in BS, . with s > 1 is the same as the lifespan in B;OJ.
In particular, condition (4.4) holds true with [[VII||go .

As pointed out in [28], hypothesis ug € L? is somewhat restrictive in dimension N = 2 as if, say,
the initial vorticity w is in L', then wy is forced to have average 0 over R?. In particular, assuming
ug € L?(R?) precludes our considering general data with compactly supported nonnegative initial
vorticity (e.g. vortex patches as in [13]; see also next chapter).

The following statement aims at considering initial data with infinite energy. For simplicity,
we suppose the external force to be 0.

Theorem 4.4. Let (s,r) be as in theorem 4.1. Let pg € B3, , be bounded away from 0 and
up € B, N w4,

Then there exist a positive time T and a unique solution (p,u, VII) on [T, T] x RN of system
(4.1) with external force f =0, satisfying the following properties:

e p € C([-T,TJ; BS, ) bounded away from 0,
o u € C([-T,T); B, , N W'?) and dpu € C([-T,T]; L?),
o VII € Ll([_TvTLBgo,r)mC([_Ta T]7L2)

s

As above, the continuity in time with values in BS, , is only weak if r = +o0.

Remark 4.5. Under the above hypothesis, a continuation criterion in the spirit of theorem 4.2
may be proved. The details are left to the reader.

Remark 4.6. Let us also point out that in dimension N > 2, any velocity field with suitably
smooth compactly supported vorticity is in W%, Furthermore, there is some freedom over the
W4 assumption (see remark 4.14 below).

On the one hand, the existence results we stated so far are local in time even in the two-
dimensional case. On the other hand, it is well known that the classical two-dimensional incom-
pressible Euler equations are globally well-posed, a result that goes back to the pioneering work
by V. Wolibner in |61] (see also [47], [40], [60] for global results in the case of less regular data). In
the homogeneous case, the global existence stems from the fact that the vorticity w is transported
by the flow associated to the solution: we have

Ow + u-Vw = 0.

In the non-homogeneous context, we have instead the following more complicated identity:
1

(4.5) athru'anLV()/\VH:O.
p

If the classical homogeneous case has been deeply studied, to our knowledge there is no
literature about the time of existence of solutions for the density-dependent incompressible Euler
system. In the last section of this paper, we establish lower bounds for the lifespan of a solution
to (4.1).

We first show that in any space dimension, if the initial velocity is of order € (& small enough),
without any restriction on the non-homogeneity, then the lifespan is at least of order e~! (see the
exact statement in theorem 4.15).

Next, taking advantage of equality (4.5) and of an estimate for the transport equation that
has been established recently by M. Vishik in [60] (and generalized by T. Hmidi and S. Keraani in



4.2. Tools 73

[41]), we show that the lifespan of the solution tends to infinity if po — 1 goes to 0. More precisely,
theorem 4.16 states that if

lpo=1l[py, =¢  and lwollgo, , + lluoll2 = Uo

with € small enough, then the lifespan is at least of order Ual log(loge™!).

The chapter is organized as follows. In the next section, we introduce the tools (in addition to
those presented in chapter 1) needed for proving our results: some classical results about transport
equations in the B; . framework and about elliptic equations in divergence form with non-constant
coefficients. Sections 4.3 and 4.4 are devoted to the proof of our local existence statements first
in the finite energy case and next if the initial velocity is in W1, Finally, in the last section we
state and prove results about the lifespan of a solution to our system, focusing on the particular
case of space dimension N = 2.

4.2 Tools

Our results concerning equations (4.1) rely strongly on a priori estimates in Besov spaces for the
transport equation

oia +v-Va = f
(T) {

Therefore we shall often use the following result, the proof of which may be found e.g. in chapter
3 of [2].

Proposition 4.7. Let 1 < r < 400 and 0 > 0 (0 > —1 if dive = 0). Let ag € B, ,,
f € LY[0,T); B, ) and v be a time dependent vector field in Cy([0,T] x RY) such that

Vo € LYN[0,T);L>) if o<1,

Vo € LY[0,T);BL}) if o>1, or o=r=1
Then equation (T') has a unique solution a in:

e the space C([0,T]; B, ,) if r < oo,

o the space ((pr<y C10,T); B ) ) NCu([0,T); B ) if 7 = +00.

Moreover, for all t € [0,T], we have

t
(4.6) e~V Oa(t)llpg,, < llaollsg,, +/0 VO f(1) By, dr

{ IVo(t)|[ e if o <1,
with V'(t) ==

va(t)”Bgo—} if o>1, or o=r=1.

If v=a then, for alloc >0 (0 > —1 if divv = 0), estimate (4.6) holds with V'(t) := ||Va(t)| pee-

Finally, we shall make an extensive use of energy estimates for the following elliptic equation:

(4.7) —div (aVII) = div F in RV,
where a = a(x) is a measurable bounded function satisfying

4.8 « = inf > 0.

(4.8) 0. = inf ao)

The following result based on Lax-Milgram’s theorem (see section 3 of [28] for the proof), will be
of great importance for us.
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Lemma 4.8. For all vector field F with coefficients in L?, there exists a tempered distribution I,
unique up to constant functions, such that VII € L? and equation (4.7) is satisfied. In addition,
we have

(4.9) ax [V 2 < | F| L2 -

4.3 Proof of the main well-posedness result

Obviously, one may extend the force term for any time so that it is not restrictive to assume that
To = +oo. Owing to time reversibility of system (4.1), we can consider the problem of evolution
for positive times only. For convenience we will assume r < +o00; for treating the case r = +00, it
is enough to replace the strong topology by the weak topology, whenever regularity up to index
s is involved.

We will not work on system (4.1) directly, but rather on

ota + u-Va =0
(4.10) ou + u-Vu + aVIIL = f
—div (aVII) = div (u- VPu — f),

where we have set a :=1/p.

The equivalence between (4.1) and (4.10) is given in the following statement (see again [28],
section 4 for its proof).

Lemma 4.9. Let u be a vector field with coefficients in C*([0,T] x RN) and such that Qu €
CY([0,T); L?). Suppose also that VII € C([0,T); L?). Finally, let p be a continuous function on
[0,T] x RN such that

(4.11) 0<pe <p<ph,

and define a :==1/p.
If div u(0,-) = 0 in RN, then (p,u, VII) is a solution to (4.1) if and only if (a,u, VII) is a
solution to (4.10).

This section unfolds as follows. First, we shall prove a priori estimates for suitably smooth
solutions of (4.1) or (4.10). They will be most helpful to get the existence. As a matter of fact,
the construction of solutions which will be proposed in the next subsection amounts to solving
inductively a sequence of linear equations. The estimates for those approximate solutions turn out
to be the same as those for the true solutions. In the last two subsections, we shall concentrate
on the proof of the uniqueness part of theorem 4.1 and of the continuation criterion stated in
theorem 4.2 (up to the endpoint case s = r = 1 which will be studied in the next section).

4.3.1 A priori estimates

Let (a,u, VII) be a smooth solution of system (4.10) with the properties described in the statement
of theorem 4.1. In this subsection, we show that on a suitably small time interval (the length of
which depends only on the norms of the data), the norm of (a,u, VII) may be bounded in terms
of the data.

Recall that, according to proposition 1.31, the quantities ||al/ps  and ||p||Bs, , are equivalent
under hypothesis (4.11). This fact will be used repeatedly in what follows. 7
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Estimates for the density and the velocity field

Let us assume for a while that divu = 0. Then (p, u, VII) satisfies system (4.1) and the following
energy equality holds true:

(4.12) [NZORIOl

2 t
y HVPOUOHiz + 2/ (/ pf-udx) dr .
L 0 \JrRN

Moreover, from the equation satisfied by the density, we have that p(¢t,x) = po (@/Jt_l(x)),
where 1) is the flow associated with wu; so, p satisfies (4.11). Hence, from relation (4.12), we obtain
the control of the L? norm of the velocity field: for all t € [0, Ty], we have, for some constant C
depending only on p, and p*,

t
(4.13) ()2 < o(nuoup - [ |f<¢>||deT).

Next, in the general case where divu need not be 0, applying proposition 4.7 yields the
following estimates:

A

t
(419) @l < laollpe,, exp (c / uuuBgo,rdr)
0

t
exp (C/ HUHB&,T d7> ' <H“OHB<§O,T +
0

t
—C [T s dt’
+ / o CJo lullsg, . dr (HfHBgo,r 4 HGHBSO,THVHHBSO,T> d’i‘) )

0

IN

(4.15) [lu(®)|lss.,

S

So.r» under our hypothesis, is an algebra.

where, in the last line, we have used the fact that B

Remark 4.10. Of course, as p and a verify the same equations, they satisfy the same estimates.

Estimates for the pressure term

Let us use the low frequency localization operator A_; to separate VII into low and high frequen-
cies. We get
IVI||s, , < [AVI|Bg, , + [|(Id = A1) VI||Bs, , .

Observe that (Id —A_1)VII may be computed from AII by means of a homogeneous multiplier
of degree —1 in the sense of proposition 1.14. Hence

(4.16) J(1d — ALV 5., < CAT g s

For the low frequencies term, however, the above inequality fails. Now, remembering the
definition of || - [| s, and the spectral properties of operator A_1, one has that

JALVIpy < ClIALVI~ < C VI ,

where we used also Bernstein’s inequality in writing last relation.
So putting together (4.16) and the above inequality, we finally obtain

(4.17) IV 5, < © (I9TIge + AT ot )
First of all, let us see how to control [|Al||gs—1. Recall the third equation of (4.10):

div (aVII) = F with F := div (f — u- VPu).
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Developing the left-hand side of this equation, we obtain
F
(4.18) AIl = —V(loga) - VII + —-
a

Let us consider the first term of the right-hand side of the previous equation.
If s > 1 then one may use that B:J} is an algebra and bound ||V(loga)|| zs-1 with ||[Val| gs—1

00,
according to proposition 1.31. So we get

[V(loga) - VI s+ < C|Vall ot [VIT] o s

N
1 . . . _5
18 an intermediate space between B %o and

B, ., standard interpolation inequalities (see theorem 1.17) ensure that

_N
Now, as L? < Boo2o (see proposition 1.6) and B3

(4.19) VI g < CIVHI%, VIS for some 6 €]0,1.

Plugging this relation in (4.17) and applying Young’s inequality, we finally obtain

F
(4.20) HVHHBSO,T < C <<1+ HVaH;s_1> VIl + HaH 1> ;
co,T Bg;r

where the exponent v depends only on the space dimension N and on s.

In the limit case s = r = 1, the space ngl is no more an algebra and we have to modify the
above argument: we use the Bony decomposition (1.3) to write

V(loga) - VII = Tyogq) VI + TynV(loga) + R(V(loga), VII).

To estimate first and second term, we can apply theorem 1.24 and proposition 1.31: we get

(4.21) 1T9(0ga) Vg, < C[[V(oga)| Lo [VII||po |
< ClVa|r=|VII|ig,
(4.22) [TonV(oga)lps , < CVI||z~[[V(loga)lpo_

< OV [Va] o |-

A gsimilar inequality is no more true for the remainder term, though. However, one may use
that VII is in fact more regular: it belongs to Bio/i for instance. Hence, using the embedding

Biﬁ — BgO’1 and theorem 1.24, we can write

|R(V(loga), VID)lg < C IV (oga)|= V1T /e,
< C Vel IVTI] 1.

Putting the above inequality together with (4.21) and (4.22), and using that B(o)o,l — L, we
conclude that
IV(oga) - V|| < ClValgg VL[| /o

Now, using interpolation between Besov spaces, as done for proving (4.19), we get for some
suitable 6 €]0, 1],

IV (loga) - VI gy | < C|Vallgy , [VTL° [VTI]S:

Hence || VII|| g1 still satisfies Inequality (4.20) for some convenient v > 0.



4.3.  Proof of the main well-posedness result 7

Next, let us bound the last term of (4.18). By virtue of Bony’s decomposition (1.3), we have
Fla = pF =T,F + Trp + R(p,F);
from theorem 1.24 we infer that:

o ITpFllper < Co* [ Fllger,
o Tepllpes < CIFlg_llollss, < CIFlgerlollay., .

o IR(p, F)lgss < IR, F)llse., < Cllolly IFlgss < Cllollzg, 1Fllgsr -

Now the problem is to bound the Besov norm of F' = div (f —u-Vu). It is clear that ||div f| gs—1

can be bounded by || f|Bs, ,. For the second term of F' we have to take advantage, once again, of
Bony’s decomposition (1.3) as follows:

div (u . VPu) = Zazuj 8j (’PU)Z = Z (Taiujajpui + Tajpuiﬁiuj + &R(uj,aqul)) ,
i,j (2]

where we have used also the fact that div Pu = 0. Now, for all ¢ and j we have:

TP g1 < C IVl [[VPul g
HTafpuiai“jHngi < ClIVPul=[[Vull gy

|0iR(u?, 0;,Pu)|| yor < || R(u, 0P|,
< Cllulls,, [VPullgs-1 -

Because, by embedding, |VPu| e~ < C HVPUHBQJ}’ we have
ldiv (- VPw)| s < C llullm, [VPull pect
In order to bound Pu, let us decompose it into low and high frequencies as follows:
Pu=A_1Pu+ (Id — A_;)Pu.

On the one hand, combining Bernstein’s inequality and the fact that P is an orthogonal projector
over L? yields
AL VPl < C o -

On the other hand, according to remark 1.15, one may write that

I(1d - A_)Pulpe, < Cllullss, -

co,r —

Therefore we get
(4.23) IVPullgs-1 < Cllullpy, ,ar2

from which it follows that
F

(4.24) ‘

< Clalss, (Iflse, + Nl ) -

B3o.r
It remains us to control |VII||;2. Keeping in mind lemma 4.8, from the third equation of

system (4.10) and inequality (4.23), we immediately get

ay || VI 2 1fllze + llu- VPul|
1fllz2 + llllz2 [VPul Lo

1fllze + C||U||QngnL2 :

VARRVANNVAN
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Putting all these inequalities together, we finally obtain

t
429 Vil < © (Il + [ Tl o dr)

(4.26) VI, < C((1+IVal] V1L gz +

fO(B;';i))
! 2
Flallzisn,) (11w + [ Il cusdr) )

Final estimate

First of all, let us fix 7" > 0 so small as to satisfy

T
(4.27) exp(C/ |ullBs, . dt) <2,
0 :

which is always possible because of the boundedness of u with respect to the time variable.

Then, setting
U®) = Ju®lzns, = lu@®lz +lu@ s,
t
0(t) = uolrms, + [ Il dr

and combining estimates (4.13), (4.14), (4.15), (4.25) and (4.26), we get
t

(4.28) Ut) < C <U0(t) + / U?(t) d7'> for all ¢ € [0,7],
0

where the constant C depends only on s, N, |laol|Bs,_ ,, ax and a*.
So, taking T small enough and changing once more the multiplying constant C' if needed, a
standard bootstrap argument allows to show that

U(t) < CUy(t) for all t € [0,T].

4.3.2 Existence of a solution to density-dependent Euler system

We proceed in two steps: first we construct inductively a sequence of smooth global approximate
solutions, defined as solutions of linear equations, and then we prove the convergence of this
sequence to a solution of the nonlinear system (4.10) with the required properties. Recall that
to simplify the presentation we have assumed Ty = 400 and that we focus on the evolution for
positive times only.

Construction of the sequence of approximate solutions

First, we smooth out the data (by convolution for instance) so as to get a sequence (ag, ug, f™)nen
such that ug € H*®, f* € C(Ry; H*), af and its derivatives at any order are bounded and

(4.29) a, < aj < a*,

with in addition

s
00,

e ajy —apin B
e ull = ugin L?N B

00,

o f"— finC(Ry; L) N LY (Ry; BS,).
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In order to construct a sequence of smooth approximate solutions, we argue by induction. We
first set a® = ag, ul = u8 and VII? = 0.

Now, suppose we have already built a smooth approximate solution (a”, u™, VII") over Ry xRY
with a” satisfying (4.11). In order to construct the (n+1)-th term of the sequence, we first define
a™*! to be the solution of the linear transport equation

9a™t + W Vet = 0

with initial datum a"'|;—g = al .

Given that u" is Lipschitz continuous in the space varaible (in fact, it belongs to BS, , by a
priori estimates), its flow ¥™ is smooth too. In particular, ¥ is, at every fixed time ¢, a C* diffeo-
morphism on the whole RV (see also proposition 3.10 of [2]). Hence a™*!(t,z) = al™! () ()
is smooth and satisfies (4.11). Furthermore, by virtue of proposition 4.7,

t
(4.30) la" ™ (®)llBy,, < llag™ sy, exp <C/ [w" | B, , dT) :
' ! 0

Note that the reciprocal function p"*! of a™*! satisfies p"*'(t,x) = pi*! ((1/1?)_1 (a:)), to-
gether with (4.11) and the equation

(4.31) op" Tt ™Vt = 0.

Hence it also fulfills inequality (4.30) up to a change of aj ™ in pj*t.

At this point, we define ©™*! as the unique smooth solution of the linear transport equation

w1 ntl

{ 8tun+1 + oy LVt = fnJrl e A VAN

Since the right-hand side belongs to Llloc(R+; L?), from classical results for transport equation
we get that "t € C(R; L?). Besides, as p" = (a™) ! for all n, if we differentiate ||y/p"H1u" 1|2,
with respect to time and use the equations for p"*! and «"*!, we obtain

ld H,/pn+1u7L+1‘

2dt

2 — } pn+1’un+1|2 divu de + pn+1un+1 . fn+1 dr — vII" - un+1 da.
L2 2

Observe that u™ and u"*! need not to be divergence free; nevertheless, applying Gronwall’s
lemma, it is easy to see that

t
anVrmmenol, < (|Vatws| ce [ ame o)) «
L2

1 t
X exp(z/ ||div u"|| e d7>.
0

Finally, we have to define the approximate pressure II"*!. We have already proved that a™*
satisfies the ellipticity condition (4.11); so we can consider the elliptic equation

1

div (an—i-l VHn+1) — div (fn—i-l _ un+1 . VPU”+1) .

As f**1 and w"t! are in C(Ry; H*), the classical theory for elliptic equations ensures that the
above equation has a unique solution VII"*! in C(R,; H*). In addition, going along the lines of
the proof of (4.25), we get

t
(4.33) VI |y oy < © <|f”+1||@<m) + /0 "y, Az df) :
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Of course, by embedding, we have VII"™! € C(R,; B3, ). Hence, arguing as for proving (4.26),
we gather

t
3DV gy ) < Ol s ) (rf”“nL%(Bgo,rw /0 |ru"“||2Bgo,mder)+

+C (1 + Ve VI s 2y-

?"(B&T})>

Note also that the norms of the approximate data that we use in (4.30), (4.32), (4.33) and
(4.34) may be bounded independently of n. Therefore, repeating the arguments leading to (4.28)
and to theorem 1 of [28], one may find some positive time 7', which may depend on ||pol Bs_,,
||“0‘|B&7T0L2 and || fllz1(jo,7);Bs, ,nr2) but is independent of n, such that 7

e (a")nen is bounded in L*°([0, TT; BS, ),
e (u")nen is bounded in L([0,T]; BE, . N L?),
o (VII")pen is bounded in L'([0,T); B, ) N L>([0,T]; L?).

Convergence of the sequence

Let us observe that the function a” : = a™ — af satisfies
oa" = —u"l.Va"
a"i= = 0.

Because u"~! € C([0,T]; L?) and Va™ € Cy([0,T] x RY), it immediately follows that a" €
CL([0,T); L?). Now we want to prove that the sequence (@",u", VII"),en, built in this way, is
a Cauchy sequence in C([0,T]; L?). So let us define for n € N and p € N*,

&Lg = a"P — ",
n . Tn+p ~n __ n n
&, = a""P —a" = dy — da,(0),
n __ n-+ n
dpp, = p"P —=p",
du, = uv P — "
ALy = I — 117,

ofy = e —
Let us emphasize that, by assumption and embedding, we have
(4.35) all = ap in C™, Wl —wug in L?, f"— f in C([0,T]; L?).
This will be the key to our proof of convergence.
Let us first focus on @". By construction, &;r belongs to C'([0, T]; L?) and satisfies the equation
Orda, = —y" Pl Via, — 5u$*1 -Va" —u™PL. Véay (0)
from which, taking the scalar product in L? with &", we obtain

1d

1 : n — n— n n n — n n
iﬁH&ZHZ = 2/(&;)2dlvu Ly — /(5up 1. Va cﬁpdx—/u tp 1-V5ap(0)<ﬁpdw.

So, keeping in mind that da, (0) = 0 and integrating with respect to the time variable one has
t
1y, _
130 Nl < [ (5w ), +

+[IVa™ | o léuy g2 + IU”“’_lIILzIIWaZ(O)IILw) dr .
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Equally easily, one can see that the following equality holds true:
PP (Bubuy + WP V) + VALY = P (afy — duph -Vt — b VI

taking the scalar product in L? with duy, integrating by parts and remembering equation (4.31)
at (n + p)-th step, we finally get

t
Ve @a )| | S/O e PN (Vs
t
A G e A e L
+H\//WVH“*1\ Vol + /o 0f | 2 ) dr
Vo | VA

From (4.36), Gronwall’s Lemma and (4.29), we thus get, for some constant C' depending only on
ax and a*,

dr
L2

L.+

L

t
[[(&, dup) ()] > < C<6Ag(t)H5UZ(0)HL2 +/0 A=A <\(Va",VU”)HLoo o~ .

DAL+ VI 5500+ 2l V) e + i ) ).
where we have set

t
AD(t) = /o (Hdivu"ﬂo*lHLm + H\//WVH”AHLOO) dr .

Of course, the uniform a priori estimates of the previous step allow us to control the exponential
term for all ¢ € [0,7T] by some constant Cr.

Next, we have to deal with the term Véﬂgfl. We notice that it satisfies the elliptic equation
—div (a" 'V ) = div (=da) VI — oL vPaS T — s VPP 4 g
Now we apply the following algebraic identity,

div (v - Vw) = div(w - Vv) + div (vdivw) — div (wdivo),

tov=u""1and w = 7361;;“1. Remembering that div P&u?il = 0, from the previous relation we
infer

div (a" 'V ) = div (P&Lgldiv u Tt — Poup~t - V-
n—1 n+p—1 n—1 n—1 n—1
—du,” - VPu el da,” VII 1P ofp ) .

Then, from lemma 4.8 and the fact that HPHE(L2;L2) = 1, one immediately has the following
inequality:
(4.3T)a. [|[VAL Y o < [Jdap ] o VI e + [|dap =1 (0) || oo IVIT™(| 12 + 16F5 I 12

+ oy | o (ldive | o + [V oo + [VPu 7] L)

Due to a priori estimates, we finally obtain, for all ¢ € [0,7],

(675, ) @) 2

IN

t
cr (oo + [ (60 +

VAL ROl + 107 122) )

IN

Ivan . < Or (I + 6] + 16 O~ + 145" 12)
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Therefore, plugging the second inequality in the first one, we find out that, for all ¢ € [0,7] and
all integers p > 1 and n > 1,

(4.38) || (8, 0y ) (1) | 2 < 6n+CT/O [(&p =" by )| o dr

where we have defined
4 1 1
o = r sup (I8 O)5z + [ (185 o + 1957 + 1555 O)lleos + 18550} ena) e ).
p=

Now, bearing (4.35) in mind, we have

lim &, = 0.
n—-+o0o

Hence, one may conclude that

lim sup sup ([|oa ()] > + [|oug (¢ = 0.
i, sup sup (163 (0) 2 + 60 (2 122)

In other words, (@"),en and (u™),en are Cauchy sequences in C([0, T; L?); therefore they converge
to some functions @, u € C([0,T]; L?). In the same token, it is clear that (VII™), .y converges to
some VII € C([0,T7]; L?).

Defining a := a + ag, it remains to show that a, v and VII are indeed solutions of the initial
system (4.10). We already know that a, v and VII € C([0,T); L?). In addition,

e thanks to the Fatou’s property for Besov spaces, as (a"),cy is bounded in L>°([0,T7; BS, ),
we obtain that a € L*>([0,T]; BS, ,) and satisfies (4.29);

oo,r
e in the same way, u € L>([0,T]; B3, ) because also (u"),cy is bounded in the same space;

e finally, VII € L'([0,T]; BS,,) because the sequence (VII"), . is bounded in the same
functional space.

By interpolation we get that the sequences converge strongly to the solutions in every interme-
diate space between C([0,T1; L?) and C([0,T]; B, ), which is enough to pass to the limit in the
equations satisfied by (a”,u", VII"). So, (a,u, VII) verifies system (4.10).

Finally, continuity properties of the solutions with respect to the time variable can be recovered
from the equations fulfilled by them, using proposition 4.7.

4.3.3 Uniqueness of the solution

Uniqueness of the solution to system (4.1) is a straightforward consequence of the following sta-
bility result, the proof of which can be found in [28], section 4.

Proposition 4.11. Let (p1,u1, VIL1) and (p2,u2, VII2) satisfy System (4.1) with external forces
f1 and fa, respectively. Suppose that p1 and py both satisfy (4.11). Assume also that:

e dp:=p2— p1 and Su = us — uy both belong to C*([0,T]; L?),
o 0f :=fo— f1 € C([O,T];[ﬂ),

e Vp1, Vuy and VII; belong to L'([0,T]; L™).
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Then for all t € [0,T] we have

t

=4O (lap(®)ll 2 + 1| (V/P20u) (Dl 2) < 160(0) | 2 + [|(v/P20u) (0)]] .2 +/ A (VP20 2 T

(&
0

where we have defined
VI

o [ (%1, 12

Proof of uniqueness in theorem 4.1. Let us suppose that there exist two solutions (p1,uy, VII;)
and (p2, ug, VIIz) to system (4.1) corresponding to the same data and satisfying the hypotheses of
theorem 4.1. Then, as one can easily verify, these solutions satisfy the assumptions of proposition
4.11. For instance, that dp € C*([0,T]; L?) is an immediate consequence of the fact that, for i =
1,2, the velocity field u; is in C([0, T]; L?) and Vp; is in C([0,T]; L*), so that d;p; € C([0,T]; L?).

So, proposition 4.11 implies that (py,u1, VII}) = (p2, ug, VIIy). O

>

4.4 The vorticity equation and applications

This section is devoted to the proof of the blow-up criterion and of theorem 4.4. Both results
rely on the vorticity equation associated to system (4.1). As done in section 4.3, we shall restrict
ourselves to the evolution for positive times and make the usual convention as regards time
continuity, if r < +o0.

4.4.1 On the vorticity

As in all this section the vorticity will play a fundamental role, let us spend some words about it.
Given a vector-field u, we set Vu its Jacobian matrix and !Vu the transposed matrix of Vu. We
define the vorticity associated to u by

Q= Vu — 'Vu.

Recall that, in dimension N = 2, Q can be identified with the scalar function w = Oyu® — dou?,
while for N = 3 with the vector-field w = V x w.

It is obvious that, for all ¢ € [1,+o0], if Vu € L%, then also € L%. Conversely, if u is
divergence-free, then for all 1 < i < N we have Au’ = Zé\;l 05, and so, formally,

N
Vui = -V (—A)il Z aj Qij .
j=1
As the symbol of the operator —8; (—A) ™' 9; is 0(€) = &€;/|€)?, the classical Calderon-Zygmund
theorem ensures that! for all ¢ €1, +oo[ if Q € L9, then Vu € LY and
(4.39) [VullLe < CNQLa.

The above relation also implies that

u=A_ju— (Id — A_l)(—A)il 28]91]
J
Hence combining Bernstein’s inequality and proposition 1.14, we gather that

(4.40) lullps, . < C(llullr + ”QHngi) for all p e [1,400].

co,r —

'this time the extreme values of ¢ are not included.
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From now on, let us assume that € is the vorticity associated to some solution (p,u, VII) of
(4.1), defined on [0, 7] x RY. From the velocity equation, we gather that {2 satisfies the following
transport-like equation:

(4.41) 8tQ+u-VQ+Q-Vu—i—tVu-Q—i—V(;)/\VH:F

where Fj; := ajfi — 0;f7 and, for two vector fields v and w, we have set v A w to be the skew-
symmetric matrix with components

vAw). = vwt — v'w .
ij

Using classical L? estimates for transport equations and taking advantage of Gronwall’s lemma,
from (4.41) we immediately get

t
(4.42)||2(t)||le < exp <2/ ”quLood7'>
0
t
(1900 + [ P (15 4
0

1
1%

) dT> .
La
Let us notice that, in the case of space dimension N = 2, equation (4.41) becomes

8tw+u-Vw+V<;>/\VH:F,

so that one obtains the same estimate as before, but without the exponential growth:

)dT.
L4

Therefore, the two-dimensional case is in a certain sense better. We shall take advantage of that
in section 4.5. As concerns the results of this section, the proof will not depend on the dimension.
So for the time being we assume that the dimension N is any integer greater than or equal to 2.

wwmsw@m+émmmﬂ

1
p

4.4.2 Proof of the continuation criterion

Now, we want to prove the continuation criterion for the solution to (4.1). As usual, we will
suppose condition (1.1) to be satisfied with p = +oc.
We proceed in two steps. The first one is given by the following lemma.

Lemma 4.12. Let (p,u, VII) be a solution of system (4.1) on [0, T*[xRY such that?
e ueC([0,T]; BS,) NCL([0,T"[; L2),
e p€C([0,T"[; BS,,) and satisfies (4.11).

Suppose also that condition (4.4) holds and that T* is finite. Then

sup (l[u(®)lmy oz + lo(®)lss,, ) < +oo
tel0, 7] ’

Proof of lemma 4.12. Tt is only a matter of repeating a priori estimates of the previous section,
but in a more accurate way. Note that a := 1/p satisfies the same hypothesis as p, so we will

2with the usual convention that continuity in time is weak if r = +oc.
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work without distinction with these two quantities, according to which is more convenient for us.
Hence, set ¢ = p or a: recall that it satisfies

0q +u-Vg=20.
Hence, applying operator A; yields
615qu +u- Vqu = [u -V, Aj}q,

whence, for all ¢t € [0, T*],
(1.3 281 < 2 sanliee + [ 2 V. Ayl
Now, lemma 2.100 in |2] ensures that
| @l V. a5allex), |, < CUIVulllallss., + [ 9allz= [ Vull g 1)-

Hence, performing an ¢" summation in (4.43), we get

t
(4.44) la®llBs,,, < llaollss,, + C/O (IVullze=llgll B, + Vallz<llulss, ) dr-

As regards to the velocity field, according to (4.13) we have

t
(4.45) Hu(t)HL2SC<Hu0|!L2 - \fHdeT>,

while, we use (4.40) with p = 2 to bound its Besov norm. So, the problem is now to control the
vorticity in BS]}. From equation (4.41) and proposition 4.7 (recall that divu = 0), we readily get

t t
(4.46) |90)] pes < exp(c / ||Vurerd7)(\|ﬂo\B;o;+ | Il pdr +
’ 0 ’ 0 ’
t
+/ (IVa A VI g1 + ]Q-Vu—i—tVu-QHBs1)dT>.
0 T oco,r

The following inequalities hold true:

(4.47) IVa A VIl < O(IVall VI oot + VI o [ Va1 ).

(4.48) 10 Vu+'Vu- Qg1 < OVl pe||Vull gs-1 -

In the case s > 1, they immediately come from theorem 1.24. We claim that they are still
true in the limit case s = r = 1: the proof relies on Bony’s decomposition (1.3) and algebraic
cancellations. Indeed, we observe that

o;a 8jH - 8]'& o1 = Taiaajl_[ - Tajaaiﬂ + Tajnaia — Tainaja—i-
+8iR(a —A_1a, ajH) — 8jR(a —A_1a, &H) + R(é?z-A_la, 8jH) + R(ﬁjA_la, &H)
Applying theorem 1.24 thus yields (4.47).

Next, we notice that, as divu = 0, then

(Q-Vu+tVu Q) = > (o — dutopu’),

]
k

- S (o) - s

k
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Therefore,

(Q-Vu+'Vu- Q)ij = Z (Taiukakuj - Tajukakui + Takujaiuk - Takuiajuk—i-
k

+8kR(uj — A_luj, &uk) — 8kR(u’ — A_lui, 8]uk) + R(A_lakuj, 8Zuk) + R(A_lﬁkui, @uk)) .

Hence theorem 1.24 again implies (4.48).

Plugging (4.47) and (4.48) in (4.46), using the energy inequality (4.45) and inequality (4.40)
with p = 2, we easily get

t
Ol e < Coxp(C [ IVullmdr) (ol oo + [ 16l azndr +
0

t
+ [ Vel 190y + 9T ) r)

Hence, denoting X (t) := [[a(t)||Bs,, + |lu(?)l|Bs, L2, adding up inequality (4.44) and using
Gronwall’s inequality, we end up with ’

t t
X0 < Cexp(C [ 190V, VMo ) (X0O)+ [ (17 o + [Vallm | 910 ) )

Now, the equation for Va and Gronwall’s inequality immediately ensure that

t
(4.49) IVa®llz~ < [Vaollz= exp ( | 1l df) ,
0

which implies, thanks to hypothesis (4.4), that Va is bounded in time with values in L. More-
over, by hypothesis VII € L1([0, T*[; B3;}) and Vu € LY([0, T*[; L>). At this point, keeping in

oo,r
mind the embedding B3J L <y L° previous inequality gives us the thesis of the lemma. O

The second result, which will enable us to complete the proof of theorem 4.2, reads in the
following way.

Lemma 4.13. Let (p,u, VII) be the solution of system (4.1) such that®

e p€C([0,T*[; BS,,) and (4.11);

o we (0,7 BL,) NCN([0, T L),

o VII € C((0,T*[; L?) N L'([0, T*[; BS. ).

Moreover, suppose that

Py R ——y

Then (p,u, VII) can be continued beyond the time T™ into a solution of (4.1) with the same

reqularity.

Proof of lemma 4.13. From the proof of theorem 4.1 we know that there exists a time ¢, depending
only on p*, N, s, [ullLe (55 nr2); [Vallpes (5s-1) and on the norm of the data, such that, for all
oo,T T* oo, T

T < T*, Euler system with data (p(T'),u(T), F(T +-)) has a unique solution until time &.
Now, taking for example T'= T* — ¢/2, we thus obtain a solution, which is (by uniqueness)
the continuation of the initial one, (p, u, VII), until time 7"+ ¢/2. O

3with the usual convention that continuity in time is weak if r = 4-o0.
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Let us complete the proof of theorem 4.2. The first part is a straightforward consequence
of these two lemmas. Indeed: lemma 4.12 ensures that HUHL;‘; (Bs. ,nr2) and [[Val| (Bisl) are
oo, T* oo, T

finite. As for the last claim (the Beale-Kato-Majda type continuation criterion), it is a classical
consequence of the well-known logarithmic interpolation inequality (see e.g. [2])

”QHB;,%
IVullee < C | lullrz + [z log [ e + 5= | | -
192]] £oe

4.4.3 Proof of theorem 4.4

We first prove a priori estimates, and then we will get from them existence and uniqueness of the
solution. In fact, it will turn out to be possible to apply theorem 4.1 after performing a suitable
cut-off on the initial velocity field and thus to work directly on system (4.1), without passing
through the equivalence with (4.10) or with a sequence of approximate linear systems.

A priori estimates

As in the previous section, remembering also remark 4.10, the following estimates hold true:
t
(450) [Vp@llper < [Vp0llper exp (c [l dT>
’ ’ 0
t
(4.51) Hu(t)Hng < exp (C’/ H“HBSO,T dT) X
0
O Il i
<(luolla, + [ &R g [T, a5,
0
Moreover, from the transport equation satisfied by the velocity field, we easily gather that

v

t
lu®) s < luoll s + /0 dr.

L4

Therefore, using interpolation in Lebesgue spaces and embedding (see proposition 1.6),

1 [t 1 1
(4.52) lu@®llpe < uollpe + P/o VI 7o [[VII]| }5 dT

A

C t
< Nluol[za + P/o IV ps_ 2 dT.

In order to bound the vorticity in L?*, one may use the fact that

1 1 1
—vpavI| < VpAVII,: < —— ||Vp|lpe | VII|| 1o
| = GEIeATIl < s Il [V,
c

< 3 IVellps-r VIl ps, A2
(p*)z Boor So,rN

From this and (4.42), we thus get

t
459 1900 < e ( [ 19ullpzar) (100l +

C

t T
= Jo IVull gs—1dr’
+ (p )2 /0 e 0 Boo,r va”B;o_,,ln ||VH||BSO,’V‘0L2 dT) .
*

Now, in order to close the estimates, we need to control the pressure term. Its Besov norm
can be bounded as in section 4.3, up to a change of ||u| ;2 into ||u||z4; indeed it is clear that
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in inequality (4.23) the L? norm of u may be replaced by any LP norm with p < +oc0. As a
consequence, combining the (modified) inequality (4.24) and (4.20) yields

t
(4.54) [IVI|| Ly (ps ) < C(<1 + ’VGHW?,(B;Q—;)) V|| g1 2y + ’PHLgO(Bgo,)/O ”u’%go’rmL‘ldT)'

In order to bound the L? norm of VII, we take the divergence of the second equation of system
(4.1). We obtain

~aiv (V1) = div (- V).

from which, applying elliptic estimates of lemma 4.8 and

(4.55) IVullps < C[1Q|z4,
we get
1
(4.56) o Ve < flu-Vullze < flufls Vullzs < Cllulps 190

Putting together inequalities (4.50), (4.51), (4.52), (4.55), (4.54), (4.53) and (4.56) enables us
to close the estimates on some nontrivial time interval [0,7] depending only on the norm of the
data. In effect, assuming that 7" has been chosen so that Inequality (4.27) is satisfied, we get from
the above inequalities

[w(®)llBs, . < 2\|U0||Bgo,,.+Co||VH||L,—}(ng)7
t
9Tne,y < Co [ (uluallss + lulfyg ope) dr
t
[[u(®)| e < !U0||L4+CO||VH!L}(B&,T)+CO/O l[wll zal[€2|pa d,
1922) ] 2 < 2[Qollza + Col V|| Lx(ps. )

where the constant Cy depends on s, py, p*, N and ||po||Bs, , -

Therefore, applying Gronwall Lemma and assuming that 7" has been chosen so that (in addition

to (4.27)) we have
T
/ lullyra dr < ¢
0

where ¢ is a small enough constant depending only on Cy, it is easy to close the estimates.

Remark 4.14. Exhibiting an L? estimate for VII even though u is not in L? is the key to the
proof. This has been obtained in (4.56). Note however that we have some freedom there: one may
rather assume that ug € LP and Vuy € L9, with p and ¢ in [2, +00] such that 1/p + 1/¢ > 1/2,
and get a statement similar to that of theorem 4.4 under these two assumptions. The details are
left to the reader.

Existence of a solution

We want to take advantage of the existence theory provided by theorem 4.1. However, under
the assumptions of theorem 4.4, the initial velocity does not belong to L2. To overcome this, we
shall introduce a sequence of truncated initial velocities. Then theorem 4.1 will enable us to solve
system (4.1) with these modified data and the previous part will provide uniform estimates in
the right functional spaces on a small enough (fixed) time interval. Finally, convergence will be
proved by an energy method similar to that we used for theorem 4.1.
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First step: construction of the sequence of approximate solutions

Take any ® € C5°(RY) with ® = 1 on a neighborhood of the origin, and set ®,,(z) = ®(z/n).
Then let us define uj := ®,ug for all n € N. Note that this ensures that uj — wo in the
distribution meaning.

Given that ug is continuous and compactly supported, it obviously belongs to L?. Of course, we
still have uj € Bg’wﬁWl"LﬂLQ, so we fall back into hypothesis of theorem 4.1. From it, we get the
existence of some time 7T}, and of a solution (p”, u", VII") to (4.1) with data (po, ug) such that p" €
C([0, ThJ; B, ), u € CH([0, T L)NC(0, ToJ; B, ,) and VII* € C([0, T]: LN LY([0, T,); B, ).
From (4.55), the vorticity equation and the velocity equation, it is easy to see that, in addition,
u™ € C([0, T, ]; Wh).

Finally, as the norm of ug in whin B3, may be bounded independently of n, the a priori
estimates that have been performed in the previous paragraph ensure that one may find some
positive lower bound T for T), such that (p",u", VII") satisfies estimates independent of n on
[0,7] in the desired functional spaces.

Second step: convergence of the sequence
As done in the previous section, we define p" = p™ — pg, and then

o= =
S = unJrl _ un’
arm = 1ttt — 1.

Resorting to the same type of computations as in the previous section (it is actually easier
as, now, divu" = 0 for all n), we can prove that (p",u",VII"), .y is a Cauchy sequence in
C([0,T7]; L?). Hence it converges to some (p,u, VII) which belongs to the same space.

Now, defining p := pg + p, bearing in mind the uniform estimates of the previous step and
using the Fatou property, we easily conclude that

o pe L>([0,T]; BS,,) and p. < p < p*;
o u e L>([0,T]; B, ) N L>([0, T]; Wht);
o VII € LY([0,T]; BS, ) N L*([0, T]; L?).

Finally, by interpolation we can pass to the limit in the equations at step n, so we get that
(p,u, VII) satisfies (4.1), while continuity in time follows from proposition 4.7. O

4.5 Remarks on the lifespan of the solution

In this section, we exhibit lower bounds for the lifespan of the solution to the density-dependent
incompressible Euler equations. We first establish that, like in the homogeneous case, in any
dimension, if the initial velocity is of order ¢ then the lifespan is at least of order e~1 even in the
fully nonhomogeneous case. Next we focus on the two-dimensional case: in the second part of this
section, we show that for small perturbations of a constant density state, the lifespan tends to be
very large. Therefore, for nonhomogeneous incompressible fluids too, the two-dimensional case is
somewhat nicer than the general situation.

4.5.1 The general case

Let pg, ug and f satisfy the assumptions of theorem 4.1 or 4.4. Denote

up(x) = eup(x) and flt,z) == &% f(et,x).
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It is clear that if we set

(ﬁ, u, Vﬁ) (t,z) = (p, cu, 62VH) (et, x),

then (7, @, VII) is a solution to (4.1) on [e 1 T}, e~ T*] with data (po, tio, f) if and only if (p, u, VII)
is a solution to (4.1) on [Ty, T*] with data (po, uo, f).

Hence, putting together the results of the previous section, we can conclude to the following
statement.

Theorem 4.15. Let (po,uo) satisfy the assumptions of theorem 4.1 or 4.4, and f = 0. There
exisls a positive time T* depending only on s, N, ps, |[polpL  and [[uollp1 =~ such that, for any
e > 0, the upper bound T of the mazimal interval of existence for the solution to (4.1) with initial

data (po, e ug) satisfies
TF > e T

A similar result holds for the lower bound of the maximal interval of existence.

4.5.2 The two-dimensional case

Recall that for the homogeneous equations, any solution corresponding to suitably smooth data
is global, a fact which relies on the conservation of the vorticity by the flow. Now, in our case,
the vorticity equation reads (if f = 0)

(457) Ow+u-Vw+VaAVII=0 with Va A VII := 01a 011 — 99a 0411

Owing to the new term involving the pressure and the nonhomogeneity, it is not clear at all that
global existence still holds. Nevertheless, we are going to prove that the lifespan may be very
large if the nonhomogeneity is small.

To simplify the presentation, we focus on the case where pg € B, ;(R?) and ug € Bl ;(R?)
(note that corollary 4.3 ensures that this is not restrictive) and assume, in addition, that ug €
L?(R?) (this lower order assumption may be somewhat relaxed too). We aim at proving the
following result.

Theorem 4.16. Under the above assumptions, there exists a constant c, depending only on p. and
p*, such that the lifespan of the solution to the two-dimensional density-dependent incompressible

Euler equations with initial data (po,ug) and no source term is bounded from below by

log<1 + c log

i)
HUOHLQOB;OJ HVGOHBgO’1 '

Proof. Let |T,, T*[ denote the maximal interval of existence of the solution (p, u, VII) correspond-
ing to (po,uo). To simplify the presentation, we focus on the evolution for positive times.

The key to the proof relies on the fact that in the two-dimensional case, the vorticity equation
satisfies (4.57). Now, it turns out that, as discovered by M. Vishik in [60] and by T. Hmidi and
S. Keraani in [41], the norms in Besov spaces with null regularity indezx of solutions to transport
equations satisfy better estimates, namely in our case

t t
Oy, < (el , + [ 1Van Tl ar) (14 [ 19ulu ar)
’ ’ 0 ’ 0

t
whereas, according to proposition 4.7, the last term has to be replaced with exp(/ IVl poo dT)
0

for nonzero regularity exponents.
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Therefore, using inequality (4.47), we get

t t
459 e, < C(leollse, + [ Vel 19050, ar) (14 [ 19l ar ).

Bearing in mind inequality (4.40) and the energy inequality for u, we thus get

(4.59) X(t) < C(Xo + /OtA(T) HVH(T)HB&J d7'> (1 + /OthT> ,
where we have defined
X (1) = [lu(t) 2, and A®) = [Va(®)lpo .
Bounding A is easy, given that
00;a +u-Voa=—0;u-Va for i=1,2.

Indeed, combining inequality (4.6) and paraproduct estimates ensures that

t
IVa(0lse,, < Vool exo(C [ IFulsy , ar).

Therefore,

(4.60) A(t) < Agexp <c /0 t XdT) .

Bounding the pressure term in BgQl is our next task. In fact, we shall rather bound its Béql
norm*. Recall that, according to inequality (4.20), there exists some exponent vy > 1 so that

wo) 9y, < (14 19algy ) 19T + pdiv o Tl )
Combining Bony’s decomposition with the fact that div (u - Vu) = Vu : Vu, we get
Jdiv (- V)l g, <l

From the definition of Béo,l and proposition 1.31, it is also clear that

ol < C (o + IVallgs, ) -

Finally, given that
—div (e VII) = div (u - Vu) ,

lemma 4.8 guarantees that
(4.62) ax [Vl L2 < lull g2 [Vl e -

So plugging the above inequalities in (4.61), one may conclude that
(4.63) VIl , < C (1 + A" X2,

for some constant C' depending only on a, and a*.

“We do not know how to take advantage of the fact that only the Bgo’l norm is needed.
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It is now time to insert inequalities (4.60) and (4.63) in (4.59); setting S = v + 1, we get
t t
(4.64) Xt <C <X0 + (AO+A§)/ O JT Xdr' 52 dT) <1+/ Xdr).
0 0

Let Ty denote the supremum of times ¢ € [0, 7*[ so that
to

(4.65) (AO n Aﬁ) / Clo Xdr' x2 4 < X
0

From (4.64) and Gronwall’s Lemma, we gather that
X(t) < 20 Xye2CtXo for all ¢ € [0, Tp[.

Note that this inequality implies that for all ¢ € [0,Ty[, we have

¢
/ eClo Xdr' x2 g < C'Xp <e4CtX° — 1) exp(C(eQCth — 1)) .
0

Therefore, using (4.65) and a bootstrap argument (based on the continuation theorems that we
proved in the previous sections), it is easy to show that T is greater than any time ¢ such that

(Ao—i—Ag) (€4CtXO — 1) exp(C(eZCtXO — 1)) <1.

Taking the logarithm and using that logy < y — 1 for y > 0, we see that the above inequality is
satisfied whenever

1 1

20t Xy

e <1+ — log<> .
2C A+ AP

This completes the proof of the lower bound for 7. O

Remark 4.17. If wy has more regularity (say wg € C" for some r €0, 1[), then one may first write
an estimate for ||w||r~ and next use the classical logarithmic inequality for bounding ||Vul|p~ in
terms of ||w||ze and [|w|lcr. The proof is longer, requires more regularity and, at the same time,
the lower bound for the lifespan does not improve.



Chapter 5

Propagation of geometric structures

In this chapter we obtain a result about propagation of geometric properties for solutions of non-
homogeneous incompressible Euler system in any dimension N > 2. In particular, we investigate
conservation of striated and conormal regularity, which is a natural way of generalising the 2-D
structure of vortex patches. The results we get are only local in time, even in the dimension
N = 2: in contrast with the homogeneous case, the global existence issue is still an open problem,
because the vorticity is not preserved during the time evolution. Moreover we will be able to
give an explicit lower bound for the lifespan of the solution, in terms of the norms of initial data
only. In the case of physical dimension N = 2 or 3, we will investigate also propagation of Hélder
regularity in the interior of a bounded domain.

5.1 Introduction

In this chapter we are interested in studying conservation of geometric properties for solutions of
the density-dependent incompressible Euler system

op+u-Vp =20
(5.1) p (O + u-Vu) + VII = 0
divu = 0,

which describes the evolution of a non-homogeneous inviscid fluid with no body force acting on
it, an assumption we will make throughout all this chapter to simplify the presentation. Here,
p(t,z) € Ry represents the density of the fluid, u(t,z) € RY its velocity field and TI(t,z) € R
its pressure. The term VII can be also seen as the Lagrangian multiplier associated to the
divergence-free constraint over the velocity.

We will always suppose that the variable  belongs to the whole space RV,

The problem of preserving geometric structures came out already in the homogeneous case,
for which p =1 and system (5.1) becomes

O + u-Vu + VII = 0
(E)

divu = 0,

in studying 2-dimensional vortex patches, that is to say the initial vorticity €2 is the characteristic
function of a bounded domain Dy. As we will explain below, in the case of higher dimension N > 3
this notion was generalized by the properties of striated and conormal regularity.

We recall here that the vorticity of the fluid is defined as the skew-symmetric matrix

(5.2) Q= Vu — 'Vu

93
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and in the homogenous case it satisfies the equation
XV +u-VQ+ Q-Vu+ 'Vu-Q =0.

In dimension N = 2 it can be identified with the scalar function w = 01u® — Gou', while for
N = 3 with the vector-field w = V x u. Let us recall also that in the bidimensional case this
quantity is transported by the velocity field: it fulfills

Ow + u-Vw = 0.

The notion of vortex patches was introduced in [47] and gained new interest after the survey
paper [49] of Majda. In the case N = 2 Yudovich’s theorem ensures the existence of a unique
global solution of the homogeneous Euler system, which preserves the geometric structure: the
vorticity remains the characteristic function of the evolution (by the flow associated to this solu-
tion) of the domain Dy. Vortex patches in bounded domains of R? were also studied by Depauw
(see [32]), while Dutrifoy in [33] focused on the case of domains in R3. Moreover, in [11] Chemin
proved that, if the initial domain has boundary dDq of class C'T¢ for some € > 0, then this
regularity is preserved during the evolution for small times; in [12] he also showed a global in time
persistence issue. In [24] Danchin considered instead the case in which initial data of the Euler
system are vortex patches with singular boundary: he proved that if 9Dg is regular apart from a
closed subset, then it remains regular for all times, apart from the closed subset transported by
the flow associated to the solution.

In the case N > 3 one can’t expect to have global results anymore, nor to preserve the initial
vortex patch structure, because of the presence of the stretching term in the vorticity equation.
Nevertheless, it’s possible to introduce the definition of striated regularity, which generalizes in a
quite natural way the previous one of vortex patch: it means that the vorticity is more regular
along some fixed directions, given by a nondegenerate family of vector-fields (see definition 5.1
below). This notion was introduced first by Bony in [7] in studying hyperbolic equations, and then
adapted by Alinhac (see [1]) and Chemin (see [10]) for nonlinear partial differential equations.

In [36], Gamblin and Saint-Raymond proved that striated regularity is preserved during the
evolution in any dimension N > 3, but, as already remarked, only locally in time (see also [55]).
They also obtained global results if initial data have other nice properties (e.g., if the initial
velocity is axisymmetric).

As Euler system is, in a certain sense, a limit case of the Navier-Stokes system as the viscosity of
the fluid goes to 0, it’s interesting to study if there is also “convergence” of the geometric properties
of the solutions. Recently Danchin proved results on striated regularity for the solutions of the
Navier-Stokes system

ou~+u-Vu —vAu + VII = 0
(NS,)

divu = 0,

in [25] for the 2-dimensional case, in [26] for the general one. Already in the former paper, he
had to dismiss the vortex patch structure “stricto sensu” due to the presence of the viscous term,
which comes out also in the vorticity equation and has a smoothing effect; however, he still got
global in time results. Moreover, in both his works he had to handle with spaces of type B};gg
(with p €]2, 400 and € €]2/p, 1]) due to technical reasons which come out with a viscous fluid.
Let us immediately clarify that these problems have been recently solved by Hmidi in [39] (see
also [2]), and this fact allows us to consider again the Holder spaces framework. In the above
mentioned works Danchin proved also a priori estimates for solutions of (NS, ) independent of the
viscosity v, therefore preservation of the geometric structures in passing from solutions of (NS),)
to solutions of (F) in the limit v — 0.

In this chapter we will come back to the inviscid case and we will study the non-homogeneous
incompressible Euler system (5.1). We want to investigate if preservation of geometric properties
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of initial data, such as striated and conormal regularity, still holds in this setting, as in the classical
(homogeneous) one. Let us note that in the 2-dimensional case the equation for the vorticity reads

1
8tw+u-Vw+V<p>/\VH: 0,

8o it’s not better than in higher dimension due to the presence of the density term, which doesn’t
allow us to get conservation of Lebesgue norms. This is also the reason why it’s not clear if
Yudovich’s theorem still holds true for non-homogeneous fluids: having wg € L? N L*°, combined
with suitable hypothesis on pp, doesn’t give rise to a local solution.

So, we will immediately focus on the general case N > 2. We will assume the initial velocity ug
and the initial vorticity g to be in some Lebesgue spaces, in order to assure the pressure term
to belong to L?, a requirement we could not bypass. As a matter of fact, VII satisfies an elliptic
equation with low regularity coefficient,

—div (e VII) = div F,

and it can be solved independently of a only in the energy space L?. Moreover, we will suppose £
to have regularity properties of geometric type. Obviously, we will require some natural but quite
general hypothesis also on the initial density pg of the fluid: we suppose pg to be strictly positive
and bounded with its gradient and that it satisfies geometric assumptions analogous to those for
Qo. Let us point out that proving the velocity field to be Lipschitz, which was the key part in
the homogeneous case, works as in this setting: it relies only on Biot-Savart law and it requires
no further hypothesis on the density term. Let us also remark that no smallness conditions over
the density are needed. Of course, we will get only local in time results. Moreover, we will see
that geometric structures propagate also to the velocity field and to the pressure term.

The present chapter is organized in the following way.

In the first part, we will recall basic facts about Euler system: some properties of the vorticity
and how to associate a flow to the velocity field. In this section we will also give the definition of
the geometric properties we are studying and we will state the main results we got about striated
and conormal regularity.

The mathematical techniques we need to prove our claims are mostly those introduced in
chapter 1, even if in the particular case of spaces C* = B .. Hence, we don’t recall them.
Nevertheless, we need to introduce the notion of paravector-field, as defined in [26]: it will play
a fundamental role in our analysis, because it is, in a certain sense, the principal part of the
derivation operator along a fixed vector-field. Moreover, we need also to analyse right composition
of a C® function with a smooth one. Section 5.3 is devoted to the presentation of these additional
tools.

This having been done, we will finally be able to tackle the proof of our result about striated
regularity. First of all, we will state a priori estimates for suitable smooth solutions of the Euler
system (5.1). Then from them we will get, in a quite classical way, the existence of a solution
with the required properties: we will construct a sequence of regular solutions of system (5.1)
with approximated data, and, using a compactness argument, we will show the convergence of
this sequence to a “real” solution. Proving preservation of the geometric structure requires instead
strong convergence in rough spaces of type C~% (for some a > 0). Uniqueness of the solution
will follow from a stability result for our equations. In the following section, we will also give an
estimate from below for the lifespan of the solution.

Finally, we will spend a few words about conormal regularity: proving its propagation from
the previous result is standard and can be done as in the homogenous setting. As a consequence,
inspired by what done in Huang’s paper [44], in the physical case of space dimension N = 2 or 3
we can improve our result: we will also show that, if the initial data are Holder continuous in the
interior of a suitably smooth bounded domain, the solution conserves this property during the
time evolution, i.e. it is still Hélder continuous in the interior of the domain transported by the
flow.
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5.2 Basic definitions and main results

Let (p,u,VII) be a solution of the density-dependent incompressible Euler system (5.1) over
[0, 7] x RN and let us denote the vorticity of the fluid by Q. As in the homogeneous case, it will
play a fundamental role throughout all this chapter, so let us spend a few words about it.

From the definition (5.2), it is obvious that, for all ¢ € [1,+oc], if Vu € LY, then also
Q € L9 Conversely, if u is a divergence-free vector-field, then for all 1 < 7 < N we have
At = YN, 9;Q;5, and so, formally,

N
(5.3) ut = = (=A)TY 050
j=1

This is the Biot-Savart law, and it says that a divergence free vector-field w is completely deter-
mined by its vorticity. From (5.3) we immediately get

N
(5.4) Vil = =V (-A)" ) 990
j=1

Now, as the symbol of the operator —8; (—A)™" 9 is o (&) = &&;/)€|?, the classical Calderon-
Zygmund theorem ensures that! for all ¢ €]1,4o0[, if Q € L7 then Vu € L7 and

2
(5.5) [Vellza < € L5 92

In dimension N = 2 the vorticity equation is simpler than in the general case due to the
absence of the stretching term. Nevertheless, as remarked above, the exterior product involving
density and pressure terms makes it impossible to get conservation of Lebesgue norms, which was
the basic point to get global existence for the classical system (E). So, we immediately focus on
the case N > 2 whatever, in which the vorticity equation reads

1
(5.6) E)tQJru-VQ+Q-Vu+tVu-Q+V<p)/\VH:0,

where, for two vector-fields v and w, we have set v A w to be the skew-symmetric matrix with
components o o
(v Aw),; = vw' — v'w.
Finally, recall that we can associate a flow ¥ to the velocity field u of the fluid: it is defined
by the relation

t
Y(t,x) = Yyy(z) = x + /0 u(T, - (x)) dr

for all (t,x) € [0,7] x RY and it is, for all fixed ¢ € [0, T, a diffeomorphism over RY | if Vu € L.
Let us remark that the flow is still well-defined (in a generalized sense) even if u is only log-
Lipschitz continuous, but it is no more a diffeomorphism (see e.g. chapter 3 of 2], or [13], for
more details).

Let us now introduce the geometric properties we are handling throughout this chapter. The
first notion we are interested in is the striated regularity, that is to say initial the data are more
regular along some given directions.

So, let us take a family X = (X));<,<,, of m vector-fields with components and divergence
of class C® for some fixed € €]0, 1[. We also suppose this family to be non-degenerate, i.e.

1

N—-1 N-1

I(X) == inf  sup | A Xa(x) > 0.
z€RN AeAT |

!This time the extreme values of ¢ are not included.
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Here A € A%;_; means that A = (Ay,...,An_1), with each \; € {1,...,m} and \; < A for i < j,
N-1
while the symbol A X, stands for the element of RY such that

N-1
VY eRY, ( A XA> Y = det (X - Ko Y)

For each vector-field of this family we put
[ Xalles = [[Xxlles + [ldiv Xxllee,

while we will use the symbol ||| - ||| in considering the supremum over all indices A € A* =

{1...m}.

Definition 5.1. Take a vector-field Y with components and divergence in C¢ and fix a n €
[e,1+ ). A function f € L™ is said to be of class C" along Y, and we write f € Cy, if
div (fY) e ¢t (]RN).

If X = (X)\);<)<,, is a non-degenerate family of vector-fields as above, we define

. 1 ~ ,
= (1 G ad ey = gy (Ml DXl + [ div (7 llen-r)

1<A<m

Remark 5.2. Our aim is to investigate Hdlder regularity of the derivation of f along the fixed
vector-field (say) Y, i.e. the quantity

N
Oyf =Y Y'Of.
i=1

If f is only bounded, however, this expression has no meaning: this is why we decided to focus on
div (fY), as done in the literature about this topic (see also [26], section 1). Lemma 5.14 below
will clarify the relation between these two quantities.

Now, let us take a vector-field X and define its time evolution X (¢):

(5.7) X(t,x) = Xy(z) = Oxy@m¥r (¥7 (7))

that is X (t) is the vector-field X transported by the flow associated to u. From this definition,
it immediately follows that [Ox , 0: +u - V]| =0, i.e. X(t) satisfies the following system:

(5:8) { (O +u-V)X = Oxu

X|t=0 — X[) .
We are now ready for stating our first result, on striated regularity.

Theorem 5.3. Fiz ¢ €10, 1] and take a non-degenerate family of vector-fields Xo = (Xo,5)
over RN | whose components and divergence are in C=.
Let the initial velocity field ug € LP, with p €]2,4+00], and its vorticity Qo € L N L1, with
q € [2,+o00[ such that 1/p + 1/q > 1/2. Let us suppose Qg € C%, .
Finally, let the initial density pg € W be such that 0 < p, < pg < p* and Vpg € C%,-

Then there exist a time T > 0 and a unique solution (p,u, VII) of system (5.1), such that:

1<A<m

e p € L™([0,T); W) N Cy([0,T] x RY), such that 0 < p, < p < p* at every time;
e u € C([0,T); LP)NL>([0,T];C%), with dyu € C([0,T); L?) and vorticity Q € C([0,T]; LI);

e VII € C([0,T]; L?), with V2II € L*([0,T]; L*°).
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Moreover, the family of vector-fields transported by the flow still remains, at every time, non-
degenerate and with components and divergence in C%, and striated regularity is preserved: at
every time t € [0,T], one has

o Vp(t) and Q(t) € Cxkw) -

o u(t) and VII(t) € Cyi;

uniformly on [0, T].

Another interesting notion, strictly related to the previous one, is that of conormal regularity.
First of all, we have to recall a definition (see again section 1 of [26]).

Definition 5.4. Let ¥ C RY be a compact hypersurface of class C'*¢. Let us denote by Ts
the set of all vector-fields X with components and divergence in C¢, which are tangent to X, i.e.
Ox H |», = 0 for all local equations H of ¥.

Given a n € [e,1 + ], we say that a function f € L belongs to the space Cg. if

VX € TS, feck, ie div(fX)ecnt.

Similarly to what happens for striated regularity, also conormal structure propagates during
the time evolution.

Theorem 5.5. Fiz ¢ €0, 1] and take a compact hypersurface Yo C RN of class C17°.
Let us suppose the initial velocity field ug € LP, with p €2, +00], and its vorticity Qp € L N LY,
with q € [2,+oo[ such that 1/p + 1/q > 1/2. Moreover, let us suppose Qo € C5, .
Finally, let the initial density pg € WH be such that 0 < p, < po < p* and Vpg € Cs,-

Then there exist a time T > 0 and a unique solution (p,u, VIL) of system (5.1), which verifies
the same properties of theorem 5.3.
Moreover, if we define

5(t) = ¢ (3o)

Y(t) is, at every time t € [0,T], a hypersurface of class C'+¢ of RN, and conormal reqularity is
preserved: at every time t € [0,T), one has

o Vp(t) and Q(t) € Co) -
o u(t) and VII(t) € Cgi
uniformly on [0, T].

5.3 More on paradifferential calculus

The proof to our results is essentially based on the Fourier Analysis methods presented in chapter
1. In this section we will introduce some additional tools we need. As we are interested in the
class of Holder spaces, we will focus only on this case.

First of all, let us quote a result (see [25] for the proof) pertaining to the right composition
of functions in Besov spaces, which will be of great importance in the sequel. For the sake of
completnees, let us also state what proposition 1.31 becomes in the particular case of Holder
continuous functions.

Proposition 5.6. (i) Let I be an open interval of R and F : I — R a smooth function.

Then for all compact subset J C I and all s > 0, there exists a constant C' such that, for all
function u valued in J and with gradient in C°~1, we have V(F ou) € C*~! and

IV(F ow)ers < C[[Vullers.
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(it) Let s >0 and m € N be such that m > s. Let u € C* and ¢ € CJ* such that the Jacobian of
™1 is bounded.

Then uot € C*. Moreover, if s €]0,1[ the following estimate holds:
[uotlles < C (1 +[IVlpeo) lulles -

Now, let us introduce the notion of paravector-field, which we will broadly use in our compu-
tations.

Definition 5.7. Let X be a vector-field with components in §’. We can formally define the
paravector-field operator T'x in the following way: for all u € &',

N
TXu = Z TXiaiu.
=1

The following result (see section 2 of |26] for the proof) says that the paravector-field operator
is, in a certain sense, the principal part of the derivation dx: the derivative along X is more
regular if and only if the “paraderivation” along X is.

Lemma 5.8. For all vector field X € C* and all u € Ct, we have:
e ift<1lands+t>1, then

_ C
S (1—t)(s+t—1)

H(?Xu — TXU||CS+t—1 ”X”CS ||V’U,Hct71 )

e ift<0,s<lands+t>0, then

[Txu — div (0 X)||psse—1 < iD= [ X lles [lullee ;
e ift<1ands+t>0, then
C ~
10xu — Txul|pere- [ Xles IVullge-1 -

S Gr00-0

Moreover, first and last inequalities are still true even in the case t = 1, provided that one replaces
[Vullco with ||Vu| L, while the second is still true even if t =0, with ||ul|L~ instead of ||u||co-

We will heavily use also the following statement about composition of paravector-field and
paraproduct operators (see the appendix in [26] for its proof).

Lemma 5.9. Fiz s €)0,1[. There ezist constants C, depending only on s, such that, for allt; <0
and ty € R,

ITx Tuvlles-1+n4, - < C([[X]les lullen [[0ller +

+lvllee 1 Txulles—1va + llullen 1 Txvlles-1+e2)

and this is still true in the case t; = 0 with ||u||L= instead of |luco.
Moreover, if s — 1+t +ty > 0, then we have also

ITx R(w, 0)llgs-1+01+0, - < C (| X]les [Jullen o]l +

+lvlle 1 Txulles—1va + llullen 1 Txvlles-14e2) -
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5.4 Propagation of striated regularity

Now we are ready to tackle the proof of theorem 5.3. We will carry out it in a standard way:
first of all we will prove a priori estimates for solutions of the non-homogeneous Euler equations.
Then, we will construct a sequence of regular approximated solutions. Finally, thanks to upper
bounds proved in the first part, we will get convergence of this sequence to a solution of our initial
system, with the required properties.

5.4.1 A priori estimates

First of all, we will prove a priori estimates for a smooth solution (p, u, VII) of system (5.1).

Estimates for density and velocity field

From first equation of (5.1), it follows that

pt,x) = po (¢ '(2))
so, as the flow 1 is a diffeomorphism over RV at all fixed time, we have that
(5.9) 0 <pe <p(t) <p.

Applying the operator 0; to the same equation, using classical LP estimates for the transport
equation and Gronwall’s lemma, we get

t
(5.10) Vo)l < [IVpollze exp <C/O IVl e~ dT) :

From the equation for the velocity, instead, we get, in a classical way,

IT
v— dr;

Lp

t
la(®) e < luollzr + /
0

so, using (5.9) and Holder inequalities, for a certain 6 €10, 1[, the following estimate holds:

c [ _
(5.11) lu@)llze < [luollzr + p/o IVIL)|% (VI 7= dr .

Remark 5.10. Let us observe that, as regularity of the pressure goes like that of the velocity
field, one can try to estimate directly the LP norm of the pressure term. Unfortunately, we can’t
solve its (elliptic) equation in this space without assuming a smallness condition on the density
or its gradient. So, we will prove that VII is in L? N L, which is actually stronger than previous
property and requires no further hypothesis on p.

Already from (5.10) it’s clear that we need an estimate for the L> norm of the gradient of the

velocity. As remarked before, we can’t expect to get it from the hypothesis () € L*°; the key will
be the further assumption, i.e. the hypothesis of more regularity of the vorticity along the fixed
directions given by the family Xj.
Here we quote also a fundamental lemma, whose proof can be found in [2] (chapter 7) for the
2-dimensional case, in [26] (section 3) and [36] (again section 3) for the general one. It is the main
point to get the velocity field to be Lipschitz and it turns out to be immediately useful in the
sequel.

Lemma 5.11. Fiz € €]0,1] and an integer m > N — 1, and take a non-degenerate family Y =
(Y\)1<r<m Of CZ vector-fields over RY such that also their divergences are in C°.
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Then, for all indices 1 < i,5 < N, there exist C° functions a;j, bfj)‘ (with 1 < k < N,
1 < X < m) such that, for all (x,£) € RN x RN, the following equality holds:

&& = aii (@) + DM a) (Ya(x) &) &
o

Moreover, the functions in the previous relation could be chosen such that

laijll e < 1

2N—2
m
C

pkA
Ylles T I(Y)

9N—-10
¥ lTes ™

Now, we can state the stationary estimate which says that the velocity field u is Lipschitz.
This can be done as in the classical case, because it’s based only on the Biot-Savart law, or better
on it’s gradient version (5.4).

Proposition 5.12. Fiz ¢ €]0,1[ and q €]1,4+00[; moreover, take a non-degenerate family Y =
(YA)IS)\Sm of C° wvector-fields over RN such that also their divergences are of class CF.

Then there exists a constant C, depending only on the space dimension N and on the number
of vector-fields m, such that, for all skew-symmetric matrices ) with coefficients in LI NC5,, the
corresponding divergence-free vector-field u, given by (5.3), satisfies

(5.12) Vul| ;e < C < 192|za + ! 19| oo 1 + [l
. 00 _— _— oo 10 e TE— .
Ullpee = g — 1 e T Ty RiE= o L e e

Estimates for the vorticity

Using the well-known L7 estimates for transport equation and taking advantage of Gronwall’s
lemma and Holder inequality in Lebesgue spaces, from (5.6) we obtain

t
(5D < Cexp( / HV“’Lde)X
0

1 L o -
x (uszoumw [ s o VI ar ).

for a certain v €10, 1].
Of course an analogue estimate holds true also for the L norm:

t
(5.14)  ||Qt)||lr> < Cexp (/ HVuHLoodT)x
0

1 t - ,
X (HQoHLm t o / e~ I IVulleo=dr 7o)l ||| dT) -
P 0

Remark 5.13. Let us fix the index p pertaining to u and let us call g the real number in [2, +00]
such that 1/p + 1/g = 1/2. From our hypothesis, it’s clear that ¢ < @; therefore, thanks to
Hoélder and Young inequalities, we have

1—
10z < 1907 19201=" < 120 Lanpoe -
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Estimates for the pressure term

Now, let us focus on the pressure term: taking the divergence of the second equation of system
(5.1), we discover that it solves the elliptic equation

(5.15) ~div (?) — div (u-Va) .

From this, remembering our hypothesis and remark 5.13, estimate (5.5) and lemma 4.8, the control
of the L? norm immediately follows:

1
(5.16) e VIl 2 < Clullze [l anLes -

Moreover, we have that VII belongs also to L™, and so, by interpolation, VII € L for all
b € [2,4+00]. As a matter of fact, now we are going to show a stronger claim, that is to say
VII € C}. Cutting in low and high frequencies, we have that

IVIler < [[A1VIT|ler + [[(Td — A1) VIT[ler < O (| VI|[L2 + [[AT]|co) -
Now, from (5.15) we get
(5.17) —AIl = V (logp) - VII + p div (u-Vu) .

From this last relation, from the fact that div (u - Vu) = Vu : Vu and the immersion L™ — C?,
we obtain

|ATly < AT < |V (logp) - VT o + [lp div (u- Vu) oc
< (1ol 9Tz + p* | Ful3) -

A

Now, C! < C7 — L™ for all n €]0,1[; taking for instance n = 1/2 and using interpolation
inequalities between Besov spaces, we thus have, for a certain 8 €10, 1],

1— 1—
VI < [VIlgre < CUVIT|E x0 (VI < C VI, | VTT) ;7
Thanks to Young’s inequality, from this relation and (5.16) one finally gets
(5.18) I¥Iler < € ((1+ 190l ) llullo 190 oz + " [Vl ) |

for some ¢ depending only on the space dimension N. So we have proved our claim, i.e. VII € C},
and so it belongs also to L.

Finally, we want to prove boundedness of second derivatives of the pressure term. This
property is a consequence of striated regularity for VII we will show in next section: for the
time being, let us admit this fact. So, passing in Fourier variables and using lemma 5.11, for all
1<4,7 <N we can write

&&T(E) = ay(x)|e*TI(E) + Zb )-€) & T0(E) .

Applying the inverse Fourier transform ]-'g 1 and passing to L™ norms, we get
V20| o < C (AT o0 + [0x VI o) -

Proposition 2.104 of [2] tells us that

¢ Ox V1| e
HaXVHHLoo < . Ha)(VHHCQ log (6 + HX‘C> )

10x VI|co
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Using Bony’s paraproduct decomposition to handle the norm in C? and noticing that the function
¢ +— Clog(e + k/C) is nondecreasing, we finally get

. 2
et + 0" IVul e +

Ox V| e
o1 log (e+~”><||c>>_
[ X llce [Vl

5.4.2 A priori estimates for striated regularity

(5.19) v, . < C(IVp!Loo IVIL

+ ([ Xlles [IVIT

After having established the “classical” estimates, let us now focus on the conservation of striated
regularity. The most important step lies in finding a priori estimates for the derivations along the
vector-field X. So, let us now state a lemma which explains the relation between the operators
Ox and div (- X) (see also remark 5.2).

Lemma 5.14. For every vector-field X with components and divergence in C%, and every function
f €C for some n €]0,1], we have

|div (f X) — Ox fllemmnteas < C [[X]lez | £llen -

Moreover, the previous inequality is still true in the limit case n = 0, with || f|| L instead of || f||co-

Proof. The thesis immediately follows from the identity div(fX) — dxf = fdivX and from
Bony’s paraproduct decomposition. O

So, it’s enough for us to focus on the operator Jx.

The evolution of the family of vector-fields

First of all, we want to prove that the family of vector-fields X (¢) = (Xx(t));<y<,,, Where each
X, (t) is defined by (5.7), still remains non-degenerate for all ¢, and that each X,(t) still has
components and divergence in C°. Throughout this paragraph we will denote by Y (¢) a generic
element of the family X (¢).

Applying the divergence operator to (5.8), an easy computation shows us that divY satisfies

(O +u-V)divy =0,
which immediately implies div Y (¢) € C¢ for all ¢ and
t
(5.20) |divY (t)]loe < C ||div Yo||ee exp <c/ |Vl zoe dT) .
0
Moreover, starting again from (5.8), we get (for the details, see proposition 4.1 of |26])
N-1 . N-1
(8t+uV) A Xy| = "Vu- A Xy,
from which it follows
N-1 N-1 t N-1
(W) o = (R ) o) - [ v (B G dr
0

This relation gives us

‘ <NA1 XA> (0, wtl(az»‘ < ’ <N/\ ' XA> ()

t
+ /0 IVa(t - )l

_|_

dr,

(NA 1 )g) (t - 7 ()
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and by Gronwall’s lemma one gets

' (NA_l XA> (t,z)

From this inequality we immediately gather that the family X (¢) still remains non-degenerate at
every time t:

e—¢ Jo IVull oo dr

> ' (NA‘ 1 XO,A) (Wi (@))

(5.21) I(X(t)) > I(Xo) exp <—c/0 V]| oo dT> .

Finally, again from the evolution equation (5.8), it’s clear that, to prove that Y(¢) is of class
C®, we need a control on the norm in this space of the term dyu. To get this, we use, as very
often in the sequel, the following decomposition:

oyu = Tyu + (5’y—Ty)u,

with (by lemma 5.8)
1@y = Ty) ulle: < C [[Yles [V oo -

Moreover, for all 1 < i < N thanks to (5.3) we can write
Tyu' = — Z (@c (—A) ™ Ty 0 — [&c (-a)™ 7TYJ'8J1 Qik) :
k?j

Obviously, from lemima 5.8 we have

O (—A) Y Tyi0Qu| < T Qllgemr < 10y Q-1 + CTIY fle= 19z

J Ce

while for the commutator term we use lemma 1.29, which gives us the following control:

| o (=)™ 105

. < CIYler e

So, in the end, from the hypothesis of striated regularity for the vorticity we get that also the
velocity field w is more regular along the fixed directions and

(5.22) 10y ulle: < € (lloyQlees + TV les [Vl -

Moreover, applying proposition 4.7 to (5.8) and using (5.22), (5.20) and Gronwall’s inequality
finally give us

- t . t . ,
(5.23) ||V (t)|cc < C exp <c/ | V|| oo dT> <|yyo\ce + / e~ o IVullee dr 115y Qo dT).
0 0

These estimates having being established, from now on for simplicity we will consider the case
of a single vector-field X (¢): the generalization to the case of a finite family is quite obvious, and
where the difference is substantial, we will suggest references for the details.

Striated regularity for the density

Now, we want to investigate propagation of striated regularity for the density. First of all, let us
state a stationary lemma.

Lemma 5.15. Let f be a function in C}.
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(i) If Oxf € C® and Vf € L™, then one has OxV f € C°~! and the following inequality holds:

(5.24) 10xV fllges < € (10x fller + TXTles (1l + 1V Fllz=) )

(ii) Conversely, if OxV f € C°71, then Oxf € C° and one has

(5.25) 10x flle= < € (TXllee (1fllex + IV fllzw) + 105V lges ) -

Proof. (i) Using the paravector-field operator (remember definition 5.7), we can write:
OxVf=0x —Tx)Vf+TxVf.
From lemma 5.8, we have that the first term of the previous equality is in C*~! and
(5.26) 1(0x = Tx) Viliges < ClIXles [V £llee
Now, we have to estimate the paravector-field term: note that
TYVf = V(Txf) + [Tx, V] f.

From hypothesis of the lemma, it’s obvious that V (Txf) € C°!. For the last term,
remembering that V and T'x are operators of order 1, we can use lemma 1.29 and get

(5.27) 175, V] fllee— < ClIXTle= [ fllex -

Putting together (5.26), (5.27) and the control for ||V (Tx f)||o-—1 gives us the first part of
the lemma.

(ii) For the second part, we write again
Oxf =Txf+ 0Ox—Tx)f.

By definition of the space C5, we know that V[ is bounded: so, second term can be easily
controlled in C® thanks to lemma 5.8. Now let us define the operator ¥ such that, in Fourier
variables, for all vector-fields v we have

o1 ~
Fa (P0) (§) = —1@5'0(5)-
So, noting that the paravector term involves only high frequencies of f, we can write

Txf =Tx <\I/ Vf) =VUTxVf + [Tx,\If] Vf.

Now, applying lemmas 5.8 and 1.29 completes the proof.
O

Remark 5.16. Let us note that, if f € L® (for some b € [1,+oc]) is such that Vf € L>, then
f ecC! (indeed f € C%') and (separating low and high frequencies)

[fller < C (I flles + IVFllze) -

Both u and p satisfy such an estimate, respectively with b = p and b = +oc.
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Thanks to lemma 5.15, we can equally deal with p or Vp: as the equation for p is very simple,
we choose to work with it. Keeping in mind that [X(¢), 0; +u - V] = 0, we have

O (Oxp) + u-V (0xp) =0,

from which (remember also (5.25)) it immediately follows that

(5.28) ||0x1)p(t)

_ t
- = € (Il (" + [9poll=) + [0, Tl exp (e [ 19l ar).
0
Therefore, one gets also

t
s < Coexp <c/ V]| oo dT> «
0

X ((p* + IVpollze) [[ Xolles + [[0x,Vpollge—1 +

t
+ / e o IVule=d 150 0. s dr) .
0

(5.29) ||0x (1) V(t)

Striated regularity for the pressure term

In this paragraph we want to show that geometric properties propagates also to the pressure term,
i.e. we want to prove dx VII € C¢.

Again, we use the decomposition dxVII = Tx (VII) + (0x — Tx) VIL

As usual, lemma 5.8 gives us

[(0x — Tx) VII|ee < C||X]lc=

VA, -

Now we use estimate (5.19), the fact that log(e + ¢) < e + ¢/? and Young’s inequality to isolate
the term [|0x VII||o.. As 2z <1+ 22, we have

12 IVIer < € (X s 9 + X1 VI )
and finally we can control |[(0x — Tx) VII||.. by the quantity

_ , -
e + [ Xlles IVullze + X[ [VIT

~ 1
(5:30)  C (lIpllwros X lles 91T er) + 5 19x V..

To deal with the paravector term, we keep in mind that VII = V (=A) "' (g1 + g2), where
we have set
g1 = —V (logp) - VII and g2 = pdiv(u-Vu).

So it’s enough to prove that both TxV (=A) ' g; and TxV (=A) ™! g3 belong to C=.
Let us consider first the term

(5.31) TxV (=2) " o = V(=2) " Txge + [Tx,V(-4) ] g2
From lemma 1.29 one immediately gets that
(5:52) |7, v 80 g2, < CliXler lgalley < € TXlles [Vl

while it’s obvious that
|v -2 T, < € ITxgalcs

Now we use Bony’s paraproduct decomposition and write

Txgs = TxTydiv (u-Vu) + TxTyiy (wvup + Tx R (p,div (u-Vu)) .
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From theorem 1.24 and the equality div (u - Vu) = Vu : Vu, it follows that

(5.33) HTXTdiV (wVu)P

and the same estimate holds true for the remainder term Tx R (p,div (u-Vu)). Lemma 5.9,
instead, provides a control for ||TxT,div (u - Vu)| -1 by (up to multiplication by a constant)

1 Xlles llp

where |Txpllc=—1 < C||X|l¢= [|pllcr by theorem 1.24. Now the problem is the control of the €=
norm of T'xdiv (u - Vu). Writing

< ClIXlles llplles Vullze |

<C HXHLOO HTdiv (u-Vu)P

C571 Ce

Vullfee + [|Vulliee [ Txplics-1 + llp

Cl Cl TXle (U : Vu)||csf1 y

Txdiv(u-Vu) = > 2TxTy,0;u’ + TxO;R(w/, du’)
i,J
= > 2TxudhTy,i05u' + 0TxnOpR(w, 0ju’) — Ty xOpR(w, 00l
05,k
by use of lemma 5.9 we can easily see that it’s bounded by

[ Xllee luller Vullzee + lluller [ TxVullee—s + [[Vulzee [ Txullee -

Hence, keeping in mind lemmas 5.8 and 5.15, we discover
ITxdiv (u- Fu)llges < C (X les luly + lxulle fluller )

and therefore

(5.34) ITxTydiv (u- Va)lles < € (IXles lolles Ilulids + lplles lulle: oxuler) -
Putting inequalities (5.32), (5.33) and (5.34) all together, we finally get
(6535 ||Txv (=8| < (IXe Il lulids + llelles lules 19xuller)

for some constant C which depends also on p* and p..
Before going on, let us state a simple lemma.

Lemma 5.17. Fiz a € €]0,1[ and an open interval I C R.
Let X be a C¢ vector-field with divergence in C%, and F : I — R be a smooth function.

Then for all compact set J C I and all p € W wvalued in J and such that Oxp € C%, one
has that Ox(F o p) € C° and OxV(F op) € C°~L. Moreover, the following estimates hold true:

10x(Fop)lle: < Cllpllwr~ [19xplc:
10xV(F o pllees < Clollwnee (19xplce + TX e lpllwns ) -

for a constant C' depending only on F' and on the fized subset J.

Proof. The first inequality is immediate, keeping in mind identity dx(F o p) = F'(p) dxp and
estimate
HF/(p> ce < C HFHHLoo(J) ||p||C5 < C HF/,HLOO(J) ||10||W17°° .

For the second one, we write:

OxV(Fop) = 0x (F'(p) Vp) = F'(p)0xVp + F"(p) dxp Vp.

Let us observe that the first term is well-defined in C5~!, and using decomposition in paraproducts
and remainder operators, we have

|7 () 0xVp||os < C |[F(0) [y 105 Vileoms -

Now, the conclusion immediately follows from lemma 5.15. O
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Let us come back to gi: using the same trick as in (5.31), it’s enough to estimate

ITxgilees and | [T,V (=2) Y g, -
Again, the control of the commutator term follows from lemma 1.29:
—1 i C Ing
(5.36) | v o < CTXle lorller < = TXler IV pllee [ 9Ty

For the other term, we use again Bony’s paraproduct decomposition:
Txg1 = TxTvqogp) VI + TxTonV(log p) + Tx R(V(logp), VII).
Thanks to theorem 1.24 we immediately find

(5.37) HTXTV(logp)VH < ClX|les [IVpllzee || VIT

ce—1 cly

and the same control holds true also for the remainder. Moreover, a direct application of lemma
5.9 implies

(538) || Tx T (10g ) VI

et < C ([Xlles IVpllz= [VTle; + [[VTTey I Tx V(1o p)lle--1 )

Now, from lemmas 5.8 and 5.17 we easily get
ITxV (0g )= < € (10xplles Ipllwros + 1 Xles ol ) -
Putting this last relation into (5.38) and keeping in mind inequalities (5.36) and (5.37), we find

o).

(5:39)  ||TxV (=8) i < € (Ioxplies ol [VTlley + X e 1ol (V11

where, as before, C' may depend also on p* and p,.
Therefore, putting (5.30), (5.35) and (5.39) together, we finally get

(5.40)[|0x VII| o= < C(llplwmo 10xpllc- IVIT Xle=llplfree +

cr + |IVII

cl

X N2V + llpllwre [ Xllee lullg; + llolics lulle: ||8XU”CE>'

Striated regularity for the vorticity

Let us now establish a control on the regularity of Q along the vector-fields (X /\)1§ A<m- Applying
the operator dx to (5.6), we obtain the evolution equation for dx:

(5.41) 8, (0xQ) + u-V (9xQ) = Iy (/)12 VpAVH) — Ox (- Vu) — x (‘Vu-Q) .

Second and third terms of the right-hand side of (5.41) can be treated taking advantage once
again of the following decomposition:

Ox (- Vu 4+ 'Vu-Q) = 0x — Tx) (- Vu + 'Vu-Q) + Tx (Q-Vu + 'Vu-Q) .
Lemma 5.8 says that the operator 0y — Tx maps C¥ in C5~! continuously: as L>® < C?, one has

[(0x — Tx) (@ Vu + 'Vu- Q) < CllIXllez 190l IVl < ClIX e [VullZe -

ce—1
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To handle the paravector term, we proceed in the following way. First of all, we note that, as
divu = 0, we can write

(Q -Vu + 'Vu - Q)ij = Zk: (&'uk opu? — ajuk 8kui> = Zk: (&c (uj &uk) — O <u’ 8juk)) )

So, we have to estimate the C5~! norm of terms of the type TxTv,Vu and TxVR(u, Vu). Using
the same trick as in (5.31) for the remainder terms and applying lemmas 5.9 and 1.29 give us the
control of T'x (Q -Vu + 'Vu - Q) in C°~! by the quantity
2
[ Xlles (lullze + [IVullz=)™ + (lullze + [Vullze) [Tx Vullee—s + [[Vul e [Txulle- -

So, from lemmas 5.8 and 5.15 it easily follows

(542)  ||0x (2 Vu + 'Vu- Q)

< c(uxuceumupﬂwumz+
T 0xulles (e + Wuum).

Now, let us analyse the first term of (5.41). It can be written as the sum of three items:

1 2 1 1
Ox <p2 VoA VH> = - 7 (Oxp) (VpAVII) + e (0xVp) ANVII + 7 Vp A (0xVII) .
So, let us consider each one separately and prove that it belongs to the space C*71.
Obviously, from previous estimates we have that first and third terms are actually in L*,
which is embedded in C*~!, and satisfy

1 C
]3<axp> @ornv| < —Cjoxples Vol VI
p e (p+)
1 C
Lopnoxv| < —C 19l [ox VI
p ce-1 (p+)

Now, let us find a C°~! control for the second term. Note that it is well-defined, due to the
fact that both p and VII are in C! (the product of a C° function, o < 0, with a L> one is not
even well-defined). With a little abuse of notation (in the end, we have to deal with the sum of
products of components of the two vector-fields), we write

(0xVp)VIL = Tig,vp,) VI + Ton (0xVp) + R(9xVp, VII) ;
remembering theorem 1.24 and the embeddings C} < L™ — C?, we get

10xVp) AVI|eemr < C [[0xVpllee-r IVTles -

In the same way, as Hl/pQHC1 < Hl/p2HW1,oo, we get

< O (1e 150l

1
— (8va) A VII <
? =1 (pa)?

l

So, using also lemma 5.15, we finally obtain, for a constant C depending also on p, and p*,

) 10 Vpllees [VTTes -

*

1 ~
6543) Jox (53 Vo vn)| < o (Xl Il 19T + 190l 10V +

Ca—l
+ Pl 19xVplleer IVTTcy )
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Therefore, from equation (5.41), classical estimates for transport equation in Hélder spaces
and inequalities (5.42) and (5.43), we obtain

t
(5.44) 10xQ(t)||pe-r < Cexp <c/ | V|| oo d7—> x
0
¢, /
(1o lers + [ e HITIe=d ) ar ),
0

where we have defined

(5.45) Y(t) = ([ XleellulZoe + l0xulles [ull zoce + 1|Vl Lo |0x VIT]l¢: +
HXlles .00 IVTllex + llplwoe VIey [10x Vollge-s -

5.4.3 Final estimates

First of all, thanks to Young’s inequality and estimates (4.56) and (5.18), for all n € [0,1] we
have

1- *
(5.46) VI, VT < 9T ener < C (14 19005 ) lull ool ans + *| Vel )

So, setting
L(t) == Jlu@®llzr + [12)]|zanze~

putting (5.10) and (5.46) into (5.11), (5.13) and (5.14), for all fixed 7' > 0 we obtain, in the time
interval [0, 7], an inequality of the form

L(t) < C exp <c/0tuvu|ymdr> <L(0) + /0t||vuyiw dr + /Ot L2(7) dT> ,

with constants C, ¢ depending only on N, &, p, and p*. Now, if we define
t

(5.47) T := sup {t >0 ’/ (e_ Jo LT (1) 4 ||Vu(T)||%oo> dr < 2L(O)} ,
0

from previous inequality and Gronwall’s lemma and applying a standard bootstrap procedure, we
manage to estimate the norms of the solution on [0,7] in terms of initial data only:

L(t) < CL(0)  and lo@)llwr0e < Clipollwree .

From this, keeping in mind (5.46) and (5.47), we also have
19T e ueynpiery < € (1 + IVpoliG ) 22(0)

Now, let us focus on estimates about striated regularity. First of all, from (5.21) we get that
the family X (¢) remains non-degenerate: I(X(t)) > C I(Xo).

Now, for notation convenience, let us come back to the case of only one vector-field, which
we keep to call X, and set S(t) := ||0xQ(t) ce—1- Let us note that the constants C' which will
occur in our estimates depend on the functional norms of the initial data, but also on the time 7.

From (5.23) and (5.22) we find
- t
¢ (Ixolle: + [ stryar)
0

C (S(t) + IX(®)lles V@)l )

11X (2)]lc:

IN

IN
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while (5.28) and (5.29) give us

10xplle: < C and  ||dx 4y Vp(t)

s < 0(1 + /OtS(T)dT).

Before going on, let us notice the following fact, which is a direct consequence of the integral
condition in (5.47): for m =1, 2 we have

(5.48) /0 t ( /0 TS(T')dT’> IVu(r)|P dr < C /0 t S(r)dr .

We will repeatedly use it in what follows.

Now, let us focus on dx VII: for convenience, we want to estimate its L}(C®) norm, starting
from the bound (5.40) and the ones we have just found.
First of all, we have

IN

t
/0 lollwiee 10xple- VT dr < C

t _ ~ t
/0 IV s TX Nl o3 dr < 19T ey X ey < c(1+ / sde).

Exactly in the same way, using also Jensen’s inequality, we get

t__
/O 1X 8|V

while, keeping in mind the definition of the £P°° norm (see remark 5.16) and inequality (5.48),
we easily find

t
X|Foeeey < 0(1+/0 S3(7) dT> ,

crdr < C[[VI| g1y

t _ t
/0 ol IX e ul2pe dr < € <1+ /0 S(r) dr)
t t t
/ lolvp1.00 || 0] 2poe ||8XUHCE dr < C<1~I—/ S(T)dT+/ IVl zoe S(T)dT).
0 0 0
Therefore, in the end we get
t t
10X VI 3 0oy < c<1 + / (1 + [Vl 1)S(r) dr + / $3(r) dT).
0 0

Finally, let us handle the term S(t): from (5.44), we see that we have to control the L} norm
of ¢, defined by (5.45). First of all, we have

t__ t t
[ Xl dr, [ e loxule- dr < ¢ (14 [ syar)
0 0 0

we have just analysed the same items multiplied by ||p|y1,0c, which we controlled by a constant.
Moreover, one immediately find

t
|19l 09T dr < € 10x Mgy

while the term ﬂXHcsHpH%VLOO |[VII||: already occurred in considering dx VII, and so it can be
absorbed in the previous inequality. Finally, we have

t t
/0 el [IVIL gy 10x Vpllger dr < 0(1+ /0 smdf).
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Putting all these inequalitites together, in the end we find the control for S(t) on [0,7:
t t
s < ¢ (50 + [0+ Ivulm)sinr + [ smar).
0 0
Now, suppose that T' was chosen so small that, in addition to (5.47), for all ¢t € [0, T one has also
t
(5.49) / S3(r)dr < 25(0).
0

Then Gronwall’s lemma allows us to get the bound

[0xn2(t))]

cem1 < CS(0) vVt el0,T],
for a constant C' depending only on T, N, p, q, €, ps and p* and on the norms of initial data in
the relative functional spaces.

Let us note that this inequality allows us to recover a uniform bound, on [0,T], for ||Vul| e
and ||VII||c1, which we previously controlled only in Lf.

Remark 5.18. The lifespan T of the solution is essentially determined by conditions (5.47) and
(5.49). In section 4.5 we will establish an explicit lower bound for 7" in terms of the norms of
initial data only and we will compare it with the classical result in the case of constant density.

5.4.4 Proof of the existence of a solution

After establishing a priori estimates, we want to give the proof of the existence of a solution for
system (5.1) under our assumptions.

We will get it in a classical way: first of all, we will construct a sequence of approximate
solutions to our problem, for which a priori estimates of the previous section hold uniformly, and
then we will show the convergence of such a sequence to a solution of (5.1).

Now, we will work only for positive times, but it goes without saying that the same argument
holds true also for negative times evolution.

Construction of a sequence of approximate solutions

For each n € N, let us define ujj := S,up; obviously uj € L?, and an easy computation shows
that it belongs also to the space By, for all o € R and all r € [1,+00]. Let us notice that
Ny By, C Cp°, so in particular we have that ug € LP N B3, ., for some fixed s > 1 and r € [1, +-o]
such that B3, , < coL.

Keeping in mind that [S,, V] = 0, we have that Qf = 5,00 € L9N Bgo_}; in particular, from
(5.5) we get Vugj € L.

Now let us take an even radial function 6 € C§°(R™), supported in the unitary ball, such that
0<6<1and [pn0(z)ds =1, and set 0, (x) = n” §(nz) for all n € N. We define pf := 6, * po:
it belongs to BS, , and it satisfies the bounds 0 < p. < pij < p*.

Moreover, by properties of localisation operators S, and of 6,,, we also have:

o pf — poin W and [|Vpgllre < ¢[|Vpol rec;
e ul — ug in the space LP and |[uf||zr < c||uolLr;
e Of — Qo in L? and [|QF{|e < ¢[|Qollze, [[QG][ze < || Qol|oe.

So, for each n, theorem 3 and remark 4 of [29] give us a unique solution of (5.1) such that:

(i) p" € C([0,T7]; B, ), with 0 < p, < p" < p*;
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(ii) u™ € C([0,T"]; LP N BS, ), with Q" € C([0,T"]; L7 N B, });
(iii) vII™ € C([0,T™]; L*) N L' ([0, T"; B, ).

For such a solution, a priori estimates of the previous section hold at every step n. Moreover,
remembering previous properties about approximated initial data and that the function y —

ylog (e + 5) is nondecreasing, we can find a control independent of n € N. So, we can find a

positive time T < T™ for all n € N, such that in [0, 7] approximate solutions are all defined for
every n and satisfy uniform bounds.

Convergence of the sequence of approximate solutions

To prove convergence of the obtained sequence, we appeal to a compactness argument. Actually,
we weren’t able to apply the classical method used for the homogeneous case, i.e. proving estimates
in rough spaces as C~“ (a > 0): we couldn’t solve the elliptic equation for the pressure term in
this framework.

We know that (p"),cy C L®([0,T]; W), (u™),cny C© L®([0,T]; LP) and (VII"), oy C
L>(]0,T); L?) and, thanks to a priori estimates, all these sequences are bounded in the respective
functional spaces.

Due to the reflexivity of L? and LP and seeing L™ as the dual of L', we obtain the existence
of functions p, u and VII such that (up to a subsequence)

e p" = pin the space L ([0, T]; W),
o v’ — win L*([0,T]; LP) and
e VII" — VII in L>(]0,T]; L?).

Nevertheless, we are not able to prove that (p,u, VII) is indeed a solution of system (5.1):
passing to the limit in nonlinear terms requires strong convergence in (even rough) suitable func-
tional spaces. So let us argue in a different way and establish strong convergence properties, which
will be useful also to prove preservation of striated regularity.

First of all, let us recall that, by construction, uf — ug in L” and Qf — Qg in L?, and (pg),,
is bounded in W%, So, for a > 0 big enough (for instance, take o« = max {N/p, N/q}), we have
that (pg),,, (ug),,, (£3),, are all bounded in the space C~¢.

n’

Remark 5.19. It goes without saying that the sequences (ug),, and (£27),, still converge in C~¢;
moreover, also pi — pg in this space. Remember that py belongs to the space C}, which coincides
(see [13] for the proof) with the Zygmund class, i.e. the set of bounded functions f for which
there exists a constant Z; such that

[fz+y) + fle—y) = 2F@)] < Zf |yl
for all z, y € RV. So, using the symmetry of 6, we can write

(@)~ poa) = 30 [ 6w) (i) + o~ ) — 2 pula) d

from this identity we get that pj — po in L°°, and hence also in C™%.
Now, let us consider the equation for p™:
Op" = —u"-Vp".

From a priori estimates we get that (u"), is bounded in L°°([0,T];C}) and (Vp™),, is bounded
in the space L*([0,T]; L*); so, from the properties of paraproduct and remainder operators,
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one has that the sequence (9;p"),, is bounded in L*°([0,T];C~®). Therefore (p™), is bounded in
C%1(]0,T);C~%), and in particular uniformly equicontinuous in the time variable.

Now, up to multiply by a ¢ € D(RY) (recall theorem 2.94 of [2]) and extract a subse-
quence, Ascoli-Arzeld theorem and Cantor diagonal process ensure us that p” — p in the space
C((0,75:C2).

Exactly in the same way, one can show that (p"),, is bounded in Cy([0, 7] xR¥) and it converges
to p in this space.

Finally, remember that p € L°([0,T]; W1>), by compacteness of bounded sets of this
space for the weak-* topology. Therefore, by interpolation one can recover convergence also
in L>([0,T];CL-™) for all n > 0.

loc

We repeat the same argument for the velocity field. For all n, we have
ou™ = —u" - Vu' — o VI,

where we have set a” := (p")”'. Let us notice that, as pg, ag := (po) ' satisfy the same
hypothesis and a”, p" satisfy the same equations, they enjoy also the same properties.
Keeping this fact in mind, let us consider each term separately.

e Thanks to what we have just said, (a"), is a bounded sequence in Cy([0,7] x RY) N
L>([0,T);CL). Moreover, from a priori estimates, we see that also (VII")  is bounded

in the space L*°([0,T];C}). Therefore, it follows that the sequence (a™ VII"), is bounded
in L>°([0,T];C).

e In the same way, as (u"),, C L>([0,T7];C;) and (Vu™), C L>([0,T]; L) are both bounded
sequences, one has that the sequence (u" - Vu™), is bounded in L*([0,T7;C~%).

Therefore, exactly as done for the density, we get that (u™), is bounded in C%([0,T];C™%), so
uniformly equicontinuous in the time variable. This fact implies that u™ — w in C([0,T7;C;,<).
Finally, thanks to uniform bounds and Fatou’s property of Besov spaces, we have that u €

L>([0,T);CL) and, by interpolation, that u™ — w in C([O,T];Cl_") for all n > 0.

loc

So, thanks to strong convergence properties, if we test the equations on a € C1([0,T7; S(RM))
(here we have set S to be the Schwartz class), we can pass to the limit and get that (p, u, VII) is
indeed a solution to the Euler system (5.1).

Before going on with the striated regularity, let us establish continuity properties of the solu-
tions with respect to the time variable.
First of all, from

op = —u-Vp,

as u € C([0,T7; L*°) (from the properties of convergence stated before) and Vp € L*°([0,T]; L>),
we obtain that p € C%1([0, T]; L°°), and the same holds for a := p~ L.

Remember that v € L*([0,7];LP), Vu and a € L*([0,T]; L*>). Moreover, as VII €
L>([0,T); L?) N L*°([0,T]; L*°), it belongs also to L°°([0,T]; LP). So, from the equation

O = —u-Vu — aVIIL,

we get that du € L>([0,T]; LP), which implies u € C%1([0, T]; LP).

In the same way, from (5.6) we get that Q € C([0,T]; L?), and therefore the same holds true
also for Vu.

Now, using elliptic equation (5.15) and keeping in mind the properties just proved for p and
a, one can see that VII € C([0,T]; L?). So, coming back to the previous equation, we discover
that also dyu belongs to the same space.
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Final checking about striated regularity

It remains us to prove that also properties of striated regularity are preserved in passing to the
limit. For doing this, we will follow the outline of the proof in |25].

1. Convergence of the flow

Let 1™ and 1 be the flows associated respectively to u" and wu; for all fixed ¢ € D(RY), by
definition we have:

o) (V" (t,2) = o(t,2))| < /0¢($)(un(ﬂ¢”(ﬂ$))—U(T,LZ)(W)))IdT

< /0 o(z) (u" — ) (r, " (7, 2)| +
T @7, 47 (. 2)) — (@) (r, (7, 7)) | dr
< /0 IV o (@) (8" — ) (7 2)| dr +

t
4 /0 lou™ — gull e dr .

So, from convergence properties stated in previous part, we have that ¢ — 1 in the space
L>([0,T]; Id + LjS.). Moreover, it’s easy to see that

t
I94 (0) e < C exp ( [ vt dr) ,

which tells us that the sequence (¢™), is bounded in L°°([0,T]; Id + C%!). Hence, finally
we discover that ™ — 1 also in the spaces L*([0,T]; Id + len) for all n > 0.

loc
2. Regularity of Ox,v¢
First of all, let us notice that, by definition,
8X0(1)¢n(t7x) = Xﬁ(q/)n(qu)) )

applying proposition 5.6, we get
(5.50) 10x0¥¢ llee = I1X¢" 0 Pt llee < e IVl e 1K e

which implies that (Ox,v™),, is bounded in the space L*°(]0,77;C?). Now we note that, for
every fixed ¢ € D(RY), we have

Sanown - (Paxodj = aXo(W/Jn - 901/}) - (8X090) (qpn _1/)) )

the second term is compactly supported, hence it converges in L*> because of what we have
already proved. So let us focus on the first one and consider the difference

Ox, (") = Ox, (1) = div (Xo ® p(¥" —9)) — p(¥" — ) div Xy ;

decomposing both terms in paraproduct and remainder and remembering hypothesis over
Xp, it’s easy to see that

10x, (99™) = Oxo (P ®)llgemr < ¢ 0™ — @ llee [ Xollee -

Therefore, from what we have just proved, dx,¢" — Ox,¥ in LOO([O,T};CZ‘EOZI); moreover,

by Fatou’s property, one gets that dx,¢ € L*([0,T];C?) and it verifies estimate (5.50). So,

by interpolation, convergence occurs also in L*°([0,T; C;, ") for all n > 0.
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3. Regularity of X

Remembering the definitions

Xi(z) = (Oxo@)?) (t, 0y (2))
divX, = divXgou; ",

from proposition 5.6 it immediately follows that X; and div X; both belong to C*. Moreover,
the same proposition implies that X™ — X in the space L>([0,T1;C;,.") for all > 0, and
the same holds for the divergence. In particular, we have convergence also in L>([0, T'; L;.),

which finally tells us that X; remains non-degenerate for all t € [0, 7], i.e. I(X;) > ¢ I(Xp).

4. Striated regularity for the density and the vorticity

Let us first prove that regularity of the density with respect to the vector field X; is preserved
during the time evolution. To simplify the presentation, we will omit the localisation by
Y E D(RN ): formally, we should repeat the same reasoning applied to prove regularity of
O0x,%. So, let us consider

Oxnp" — Oxp = div (p" (X" — X)) — p"div(X"—X) + div ((p" — p) X) — (p" —p) divX

and prove the convergence in LOO([O,T];CZZE). Using Bony’s paraproduct decomposition,
it’s not difficult to see that first and third terms can be bounded by ||p" ||z [| X" — X ||~ +
lp™ — pllLe || X || oo, while second and last terms can be controlled by ||p"| e ||div (X™ —
X)|lgerz + ||p™ = pllzoo ||div X || e /2, for instance. So, from the convergence properties stated
for (p"),, and (X™),, we get that dx»p™ — Oxp in the space LOO([O,T];C;);), as claimed.
Moreover, from a priori bounds and Fatou’s property of Besov spaces, we have that Oxp €
L>([0,T];C%) and so, by interpolation, convergence occurs also in L>([0,T];C;. ") for all
n > 0.

Now we consider the vorticity term (again, we omit the multiplication by a D(R™) function):

OxnQ" — 0xQ = div(X"-X)@Q") — Q"div(X" - X) +

+div (X ®@(Q"-Q)) — (Q"—-Q)divX.
From the convergence properties of (u™),,, we get that Q" — Qin L>°([0,77;C,,)) for all n >
0, so for instance also for n = /2. From this, using again paraproduct decomposition as done
before, one can prove that dx»Q" — 9xQin L*([0,T]; Cl;i_sm). Therefore, as usual from a
priori estimates and Fatou’s property of Besov spaces, we have that dxQ € L> ([0, T];C*71),
and moreover convergence remains true (by interpolation) in spaces L*°([0,T7; Cfo_cl_”) for
all n > 0.

So, all the properties linked to striated regularity are now verified, and this concludes the
proof of the existence part of theorem 5.3.

5.4.5 Uniqueness

Let us spend a few words on proof of uniqueness: it is an immediate consequence of the following
stability result.

Proposition 5.20. Let (pl,ul,Vﬂl) and (pQ,UQ,VHQ) be solutions of system (5.1) with
0 < pe <p'yp® < p.

Let us suppose that §p := p' — p* € C([0,T); L?) and that $u = u' —u? € C}([0,T]; L?).
Finally, assume that Vp?, Vul, Vu? and VII? all belong to L'([0,T]; L*°).
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Then, for all t € [0,T], we have the following estimate:
16p(t)I 2 + I6u(®)llze < Ce"@ ([5p(0) 12 + [16u(0)]]12) |

where we have defined
t
I(t) = /0 (IVo2ll e + 1V | oo + (V]| oo + (VI ) i
Proof. From 0;6p + u'-Vép = — du - Vp?, we immediately get

t
16p()[L2 < 1[6p(0)]] 12 +/0 6wl [|VP?[| e d7.

Moreover, the equation for du reads as follows:

2
Ohou + u' - Vou = —du- Vu® — V(SlH + %507
p ptp

where we have set 6II = II' — II?. So, from standard LP estimates for transport equations, one
infers that

t
[6u(®)llz2 < [|lou(0)] 2 +C/O (loull 2 [ Ve[| oo + IVOTT g2 + [[VIE[| o [16p1l 2) d7 -

Now, in order to get bounds for VIII, we analyse its equation:

1I 112
—div <V51 ) = div (—Vl 5 0p + ut - Vou + 6u-Vu2)
p p-p

H2
= div <— % §p + ou- (Vul + VuQ)) ,
plp
where, to get the second equality, we have used the algebraic identity
div (v - Vw) = div (w - Vv) + div (v divw) — div (w divv).
So, from lemma 4.8 we obtain
VoIl 2 < O ([[VIP| Lo 10pll2 + [1dullzz ([Vul|| o + [[VU?] 1))

and Gronwall’s inequality completes the proof of the proposition. O

Now, let us prove uniqueness: let (pl,ul,VHI) and (,oz,uz,VHz) satisfy system (5.1) with
same initial data (pg,ug), under hypothesis of theorem 5.3.

As 6u(0) = 0 and u € C([0,T); LP), Vu € C([0, T]; L9), one easily gets that su € C*([0,T]; L?).
Moreover, from this fact, observing that also dp(0) = 0, the equation for dp tells us that dp €
C([0,T]; L?). Hence proposition 5.20 can be applied and uniqueness immediately follows.

5.5 On the lifespan of the solution

The aim of this section is to establish, in the most accurate way, an explicit lower bound for the
lifespan of the solution of system (4.1) in terms of initial data only.
For notation convenience, let us define

Ly := |luoller + 10l oz and  Ag = [|Vpo]r .



118 Chapter 5. Propagation of geometric structures

Theorem 5.21. Under the hypothesis of theorem 5.3, the lifespan T of a solution to system (4.1)
with initial data (po,uo) is bounded from below, up to multiplication by a constant (depending only
on the space dimension N, €, p, q, p« and p*), by the quantity

I20lles. \\
mm{Lo, HQOHC;O} X <L0 log <e—|— LOXO>>

2 ~
(14 Lo+ I90lleg, ) (1+43%) (1+11XolIig +19x Vool )

(5.51)

)

where § > 1 is the exponent which occurs in (5.18).

Proof. Our starting point is subsection 5.4.3. With the same notations, let us also define the
following quantities:

Ot) == L(t) log (e+ igg) ) :—/0 V()| e dr

A(t) = IVp(0) |+ T(t) = [X(B)llc, R(E) = || Volt)

ce—1

It’s only matter of repeating previous computations in a more accurate way.
Let us notice that, from inequality (5.12), for all time ¢ one has

(5.52) L(t), U'(t) = [Vu(t) |~ < CO) :

we will make a broad use of these facts.
Now, let us define the time T := sup{t > 0|U(t) < log2}. Then, on [0,71] we have (from
(5.9) and (5.10))

A(t) < CAg and  p()llwree < Cllpollwree

and so, keeping in mind (5.11), (5.13), (5.14) and (5.46), we get also

(5.53) L) < C <L(0) + (1 + Ag+1) /Ot 02(r) d7->

VI < € (14 457) ©2(0).

IN

In addition, (5.21) implies I(X(¢)) > CI(Xy), while from (5.23) and (5.22) it follows

¢
() < c<r0+ / S(T)dT) and  [axu(t)]e- < C(S() + D).
0
Finally, (5.28) and (5.29) together entail
HaXpHCe < C ((1 + Ao)ro + R())

t
‘|8va||cgf1 < C<(1—|—A0)F0+R0—|—/ S(’T)dT) .
0

From the inequalities we’ve just established, the control of the striated norm of VII immedi-
ately follows.

Let us proceed carefully, as done in subsection 5.4.3. After some simply (even if rough)
manipulations, we get (up to multiplication by constant terms)

Ipllwss [0xpllee IVTer < (14 A572) (To + Ro) ©3(2)

t
IVl X e ol < (14452 (To+ [ S(oar) 6200,

i
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Now, thanks to (a + b)? < C(a® + b%) and Jensen’s inequality we infer
X & VITey < <r0 + /Ot 53(7)dr) (1+45) ©%(1).
Finally, the fact that ||u(t)||zr. < ©(t) implies
lollro<TX el < 1+ 40) (To+ [ tsmdr) 621
b~ lullen 1oxulle: < 1+ A0 0(6) (50 + (1o + [ s()ar) 00
< (1 A1 + o) (510)+ 0)) 00 + 1+ A4)e%(0) [ S(rdr

Let us define
My = (1+ AF%) (1+ T8 + Ro);

as [ S <1+ [S3 in the end we get

(5.54) |0x ) VIL(#)]| .. < C Mo <62(t) (1 + /Ot 53(7)d7> + @(t)S(t)).

Now let us focus on the striated norm of the vorticity, estimated in (5.44). Analysing each
term which occurs in the definition (5.45) of T, we see that first, second and fourth items can
be bounded by H@X(t)VH(t) and the third one is controlled as in (5.54), up to replace My by

My := (1 + Ag)Mj. Finally,

ce’

[ollwree [VIfler 10x Vpllge-1 <

< (1+ Ag) (1+Ag) 02(t) <(1+A0)F0+Ro+/ S(r d7>
< (14+45%7) (14T + Ro) ©? <1+/s dT).

So, putting all these inequalitites together, we discover that, in [0, 77],

Sit) < C (50 + Mo /Ot (@2(7) <1 +/OT 53(T,)d7',> +@(T)S(7-)>dr> :

and, in the end, by use of Gronwall’s lemma this implies

: __ t T
S(t) < Cecdo O (S0+MO / 0% (r) <1+ / 53(7')617’) dT>.
0 0

Define T5 as the supremum of the times ¢ > 0 for which both the relations

. t __ t T
My / ©%(1)dr < 2Ly and M, / 02(r) <1+ / 53(7’)d7’> dr < 28,
0 0 0

are fulfilled. Note that, by Cauchy-Schwarz inequality, this implies in particular f O(r)dr < C-:
so, thanks to (5.52), we can suppose Ty < T7. Hence, keeping in mind (5.53), in [0, TQ] one has

S(t) < C1 5, L(t) < CaLg and o(t) < C30q,

because the function (A, o) — Alog(e + o/A) is increasing both in A and o.
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Let us put these bounds in the integral conditions defining T5: we discover that T5 is greater
than or equal to every time ¢ for which

(5.55) hert < 2o L dhert s hersih < 200
| e PO+ M0N0y = Gy
Therefore, if we define
min{ Lo, So } _
(5.56) T =K 0,',

Mo (14 Lo+ Sp)?

where K > 0 is a constant, then both the inequalities in (5.55) are verified, for some suitable
value of K. Hence, T' < T5, and the theorem is now proved. O

Remark 5.22. Let us notice that, in the classical case (constant density), the lifespan of a
solution was controlled from below by

1920lleg,, !
T, == C | |0]lrosnr= log [ e + ——2—
1920l Lanre

(see also [26]). We have just proved that in our case the lifespan is given by (5.51), instead. The
two lower bounds are quite similar, even if in our case also the initial density comes into play,
and there are some additional items, basically due to the more complicate analysis of the pressure
term.

Remark 5.23. Note also that, in the two dimensional case, the stretching term in the vorticity
equation disappears. This fact translates, at the level of a priori estimates, into the absence of
the first two items in the right-hand side of (5.45). Nevertheless, as we have seen, the analysis of
VII produces terms of this kind: for this reason, in dimension N = 2 we weren’t able to improve
the lower bound (5.51).

5.6 Holder continuous vortex patches

First of all, let us prove conservation of conormal regularity.

Given a compact hypersurface ¥ C RY of class C'T¢, we can always find, in a canonical way,
a family X of m = N(N + 1)/2 vector-fields such that the inclusion C§ C C% holds for all
n € [g,1 + ¢]. For completeness, let us recall the result (see proposition 5.1 of [26]), which turns
out to be important in the sequel.

Proposition 5.24. Let ¥ be a compact hypersurface of class C1 1.
Then there exists a non-degenerate family of m = N(N +1)/2 vector-fields X C T§ such that
Ce c CL for alln € [e,1+¢].

Hence, thanks to theorem 5.3 we propagate striated regularity with respect to this family.
Finally, in a classical way, from this fact one can recover conormal properties of the solution, and
so get the thesis of theorem 5.5 (see e.g. [36], sections 5 and 6, and [26], section 5, for the details).

Actually, in the case of space dimension N = 2, 3 (finally, the only relevant ones from the
physical point of view) one can improve the statement of theorem 5.5. To avoid traps coming
from differential geometry, let us clarify our work setting.

In considering a submanifold ¥ C R of dimension k and of class C'*¢ (for some £ > 0), we
mean that Y is a manifold of dimension k endowed with the differential structure inherited from
its inclusion in R, and the transition maps are of class C'*=.

In particular, for all z € ¥ there is an open ball B C RY containing x, and a C'* local
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parametrization ¢ : R¥ — B N Y with inverse of class C!*¢. This is equivalent to require lo-
cal equations H : B — R¥ of class C'*¢ such that Hpns =0.

Let us explicitly point out that, when we speak about generic submanifolds, we always mean
submanifolds without boundary, while, in the other case, we have clearly to specify the property
“with boundary”.

Given a local parametrization ¢ on U := XN B, its differential ¢, : TR* — TU = TS induces,
in each point € R¥, a linear isomorphism between the tangent spaces, Pz - T,RF — Ty(z) 2
Moreover, the dependence of this map on the point & € R* is of class C°: in coordinates, ¢, is
given by the Jacobian matrix V.

Finally, we say that a function f defined on ¥ is (locally) of class C* (for @ > 0) if the
composition f o : RF — R is a-Hélder continuous for any local parametrization ¢.

Before stating our claim, some preliminary results are in order. Let us start with a very simple
lemma.

Lemma 5.25. Let f € L¥(RYN) such that its gradient is a-Hoélder continuous for some o > 0.
Then f € C*H(RY).

Proof. 1t’s obvious using dyadic characterization of Hélder spaces and Bernstein’s inequalities. [

Now, by analogy, one may ask if this property still holds true for a function defined on
a submanifold, with Hoélder continuous tangential derivatives. In fact, with some additional
hypothesis on the submanifold, one can prove that also in this case there is a gain of regularity.

Proposition 5.26. Let ¥ C RY be a submanifold of dimension k and of class C'T¢, for some
e > 0. Moreover, let us suppose ¥ to be compact.
Let us consider a function f : ¥ — R, bounded on ¥ and such that Ox f € C*(X) for all vector-fields
X of class C¢ tangent to 3.

Then f € C*T(%).

Proof. Let us fix a coordinate set U := BN Y (for some open ball B C RY) with its C'* local
parametrization ¢ : R¥ — U, and let us define g := fop : R¥ = R.

Obviously, g € L®(R¥), because f € L>®°(RY).

Moreover, for all 1 < i < k let us set ¢.(0;) = X;: then, X; is obviously of class C*. Hence
we have 0;g(x) = X;(f)(¢(x)), i.e. 0;g in a point x is the derivation X; applied to the function
f, and evaluated in the point ¢(x). In our notations, we get 0;g = (9x, f) o ¢.

Therefore, from our hypothesis it follows that Vg € C%, and so, by lemma 5.25, g € C1+¢(RF).

In conclusion, we have proved that f composed with any local parametrization ¢ is of class C1*¢
on R¥. Therefore f € C1¢(X), and, as ¥ is compact, we can bound its Holder norm globally. [

Remark 5.27. Let us note that the operator dx depends linearly on the vector-field X. Hence,
in the hypothesis of previous lemma it’s enough to assume that one can find, locally on X, a
family {X7,...,X)} of linearly independent vector-fields of class C* such that Jx, f € C5(X) for
all 1 <i<k.

Corollary 5.28. Let ¥ C RY be a compact hypersurface of class C'¢, and let f € CL(RY).
If f € C5™, then fis € C1TE(X).

Proof. By proposition 5.24 and non-degeneracy condition, we can find, locally on 3, N —1 linearly
independent vector-fileds X ... Xy_1, defined on the whole RY and of class C%, which are tangent
to ¥ and such that div (f X;) € C(RY) forall 1 <i < N — 1.

Moreover, also the divergence of these vector-fields is e-Ho6lder continuous; therefore, using
once again Bony’s paraproduct decomposition, we gather that

Ox,f = div(fX;) — fdivX; € CC(RY) VI1<i<N-1I,
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and hence this regularity is preserved if we restrict Ox, f only to 3.
So, proposition 5.26 and remark 5.27 both imply that fiz, € C1T¢(%). O

Now, let us come back to the situation of theorem 5.5. Moreover, let us suppose that the
hypersurface ¥y is also connected: then it separates the whole space RY into two connected
components, the first one bounded and the other one unbounded, and whose boundary is exactly
3. In dimension 2, this is nothing but the Jordan curve theorem, while in the general case N > 3
it’s a consequence of the Alexander duality theorem (see e.g. [38], theorem 3.44). For the sake
of completeness, we will quote the exact statement and its proof, actually due to A. Lerario, in
section 5.7.

So, let us set Dy to be the bounded domain of RN whose boundary is 9Dy = ¥ and let us
define D(t) = 91(Dp). As the flow 9 is a diffeomorphism for every fixed time ¢, we have that
0D(t) = X(t) and also the complementary region is transported by i: D(t)¢ = (D).

Let us denote by x4 the characteristic function of a set A.

Theorem 5.29. Under hypothesis of theorem 5.5, suppose also that the initial data can be de-
composed in the following way:

po(x) = py(x) xpo(2) + pi(z) xpg(w)  and  Qo(z) = (@) xp,(x) + Qf(z) xpg(2)

with pb € C¢(Dy) and Q) € C5(Dy).
Then, the previous decomposition still holds for the solution at every time t € [0,T]:

(5.57) p(t,z) = p'(t,x) xpu (@) + p°(t, =) Xprr)e (z)
(5.58) Qt,z) = Q(t,2) xpw (@) + Q(t x) Xpuye () -

Moreover, Hélder continuity in the interior of the domain D(t) is preserved, uniformly on [0,T)]:
at every time t, we have

pi(t) € CE(D()  and Qi) € C3(D(L)).

In addition, regularity on D(t) propagates also for the velocity field and the pressure term: u(t)
and VII(t) both belong to C1+<(D(t)).

Proof. First of all, let us recall that, by theorem 5.5, on [0,7] we have
T

(5.59) / IVu(t)] e dt < C.
0

Thanks to the first equation of (5.1), relation (5.57) obviously holds, with
Pt ) = py° (v (@) -

So, we immediately get that p'(t) belongs to the space C1*¢(D(t)). Let us observe also that a
decomposition analogous to (5.57) holds also for @ = 1/p, and its components a® have the same
properties of the corresponding ones of p.

Now let us handle the vorticity term. We can always decompose the solution in a component
localized on D(t) and the other one supported on the complementary set, defining

At @) = Ut,x) xp (@), Q(t2) = Qt,2) Xper)e(2),

and therefore obtain relation (5.58). By virtue of this fact, equation (5.6) restricted on the domain
D(t) reads as follows:

O + u- VY = — (- Vu + 'Vu- Q' + Va' A VD),
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which gives us the estimate (keep in mind also (5.59))

12 @)

t
o +/ (]| Vu+ "Vu -
0

e < (o ot [va A

» d7> |

We claim that the first term under the integral can be controlled in C¢. As a matter of facts, by
(5.3) we know that the velocity field satisfies the elliptic equation

N
— Ak =" 0,0,
j=1

in D(t), with the boundary condition (by theorem 5.5 and corollary 5.28) wjgp() € C1*e(0D(t)).
So (see theorem 8.33 of [37]) we have that u € C1*¢(D(t)) and the following inequality holds:

lullers=owy < € (lu®llz=(p@y + l[wonm lere@ppy + 12w ) -

Let us note that, as pointed out in [37], a priori the constant C' depends on D(t) through the C'*¢
norms of its local parametrizations, so finally on exp (f(f ||VuHLood7'). However relation (5.59)

allows us to control it uniformy on [0,77]. Therefore, in D(t) one gets the following inequality:

|97 Vu+ 'Vu -

ce(D@)) = C<”VUHL°° 19 - (pgeyy + 19202 HUHCHE(D(t)))»

which proves our claim.
Finally, let us handle the pressure term. From what we have proved, Va® is in C%; so

|Va' A VIT

<C HVai

e VI

ce CL(RN) -

However, we want to prove that an improvement of regularity in the interior of D(t) occurs also
for VII. In fact, keeping in mind (5.17), II satisfies the elliptic equation

— ATl = V(logp') - VII + p' Vu : Vu

in the bounded domain D(t). Now, from what we have proved, the right-hand side obviously be-
longs to C*(D(t)). Moreover, by theorem 5.5 and corollary 5.28, we have VIIjyp«) € C1(9D(t)):
in particular, as ¥(t) is compact, II|5p) is continuous and bounded. Finally, as D(t) is of class
Cl*¢, it satisfies the exterior cone condition (see [30], page 340). So, theorem 6.13 of [37] ap-
plies: from it, we gather II(t) € C**¢(D(t)). Therefore, VII(t) () € C'T#(D(t)) and its norm is
bounded by

HVH|8D(t)HC1+s(aD(t)) + Hvai Ce(D(t)) “VH|’Ci(RN) + HpiHcHs(D(t)) Hvu”gE(D(t)) :

Putting all these inequalities together and applying Gronwall’s lemma, we finally get a control
for the C° norm of Q¢ in the interior of D(t), and this completes the proof of the theorem. O

5.7 Complements from Algebraic Topology

Here we want to prove the following theorem, which we used in last section of the present chapter.
For the technical definitions, notions and results, we refer to [38].

Theorem 5.30. For any dimension N > 2, let ¥ C RN be a compact, connected hypersurface
without boundary.

Then RN\Y has two connected components (say) B and U, one bounded and the other one
unbounded, whose boundary is just .
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The previous result implies in particular that X is orientable (see theorem 5.31).
Let us note that, if we already assumed this (redundant) hypothesis in theorem 5.30, then the
proof would be easier (see e.g. [48]).

The proof we quote here is actually due to A. Lerario.

Proof. With standard notations, for a submanifold M C RY and an abelian group G, we denote
with _ ~
Hi(M;G) and H"(M; @)

the k-th reduced homology and cohomology groups of M with coefficients in G.

Let us compactify RV by adding the point at infinity: in this way, we reconduct ourselves to
work with the N-dimensional sphere SV = RY U {co}.
Obviously, R¥\ ¥ and S\ ¥ have the same number of connected components.

By Alexander duality theorem (see theorem 3.44 of [38]) with coefficients in Zs, we have

H(SN\2:Z9) ~ HNFY(3:Z) VYV Ek>0.
In particular, this is true for £ = 0:
Ho(SN\%;Z2) ~ HN (5 2s).

Now, as ¥ is compact, connected and without boundary, theorem 3.26 of [38] applies, and
gives us B
HN"YZ) ~ Zy

(independentely whether X is orientable or not). In particular, also Ho(S™N\¥;Zs) is isomorphic
to the same group, and this implies that the homology group (not reduced!)

(5.60) Ho(SN\3:Z9) ~ Ho(SN\:Z2) & Zs

has rank equal to 2. But the rank of Hy(M; G) is always the number of the connected components
of M. Hence, S\ ¥ has two connected components, A and B.
Let us suppose that co € A; then

SM\x> = AUB — RM\Y = (A\{cc}) U B.

Now, as N > 2, U := A\ {oo} is still connected.
Hence, U and B are the two connected components of RV \ .
Moreover, it’s easy to see (for instance, by stereographic projection with respect to the point o)
that U is unbounded, while B is bounded.
Finally, obviously 0B = oU = . O

As already pointed out, theorem 5.30 entails the following fundamental result. Even if it lies
outside of the topics of the present manuscript, we decided to quote it to give a more complete
and detailed picture of the framework we adopted in section 5.6.

Again, the proof is due to A. Lerario.

Theorem 5.31. Let ¥ C RN (for some N > 2) be a compact, connected hypersurface without
boundary.
Then X 1s orientable.

Proof. The starting point is relation (5.60) in the previous proof. Actually, it holds true for any
submanifold M and any abelian group G:

(5.61) Ho(M;G) ~ Hy(M;G) & G.
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Moreover, it is always true that Ho(M; Q) is isomorphic to the direct product of n copies of G,
where n is the number of connected components of M:

(5.62) Ho(M;G) ~ GO

(see [38] for the proof of these facts).
In the previous proof, we established that the rank of Ho(S™V\X;Zy) is 2. Then, by (5.62) we
have that it is still 2 if we consider the homology with coefficients in Z:

rk(Ho(SV\X;Z)) = 2.
Therefore, keeping in mind (5.61) and the Alexander duality theorem, we gather
Ho(SM\%;2) ~ 7 =  HYY(%:Z) ~ Z.

Now, by theorem 3.26 of [38], this last condition is equivalent to the fact that 3 is orientable. [
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