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Introduction

The study of divisors is a very powerful tool to achieve the understanding of the geometry
of a projective variety X . From the second half of the past century, the sheaf-theoretic
approach brought into light the importance of ample line bundles and, consequently, ample
divisors; in the last decades, with the �owering of higher dimensional algebraic geometry,
a number of notions of positivity appeared. The general picture has been successfully
summarized in the book by Lazarsfeld [Laz04].
Once we focus on the numerical class of a divisor, where two divisors are said to be
numerically equivalent if they have the same intersection behaviour with respect to all
curves (we denote the intersection of a divisor D and a curve C with D · C ), we can
consider the real vector space: N1(X ) = (Pic(X )/ ≡)⊗ R.
In this space there are several convex cones, each one corresponding to a di�erent notion
of positivity.

De�nition. Let us consider D =
∑

ai Di ∈ DivR(X ), ai ∈ R, Di ∈ Div(X );
we say that:

1. D is ample if ai > 0 and Di is ample for all i , that is Di · γ > 0 for all
non-zero 1-cycle γ ∈ NE(X ) (that is the closure of the cone spanned by
e�ective 1-cycles);

2. D is big if ai > 0 and Di is big for all i , that is the Kodaira dimension
of Di is dim X .

The classes of ample divisors span the open convex cone Amp(X ) ⊂ N1(X ); its closure
is Nef(X ), the cone of nef divisors. Similarly, the classes of big divisors span the open
convex cone Big(X ) ⊂ N1(X ); its closure is Eff(X ), the cone of pseudoe�ective divisors,
the closure of the cone spanned by the classes of e�ective divisors.
Therefore we deal with two open convex cones and two closed convex cones; these cones
�t, via inclusions, in the following picture:

Amp(X ) �
� //

� _

��

Big(X )� _

��
Nef(X ) �

� // Eff(X ).

In this thesis we want to discuss some topics concerning the largest of these cones: the
pseudoe�ective cone.
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The �rst problem we deal with is treated in Part I: In�uence of the Segre Conjecture on
the Mori cone of blown-up surfaces (Chapters 2-3); we consider a speci�c kind of surfaces
and we want to describe the pseudoe�ective cone that, since we are working with two
dimensional varieties, does coincide with the Mori cone.

In particular, we study the in�uence of the generalization of a conjecture by Beniamino
Segre on the shape of the Mori cone NE(X ) of a projective surface X obtained as the
blow-up of a smooth surface at �nitely many points.

Strictly related to this problem is the behaviour of linear systems of curves; although it is
far to be fully understood, several conjectures can be stated in the hope of taming this
situation.

The most important conjecture we want to deal with in the �rst part of the thesis has been
stated in [Seg62] by Segre in the setting of linear systems on P2; the original statement
can be found in the footnote at page 35.

Afterwards equivalent formulations were given by several authors: Harbourne in [Har86],
Gimigliano in [Gim87] and Hirschowitz in [Hir89]; in literature these statements are known,
after their authors, as SHGH Conjectures.

The truth of these conjectures would solve a number of central problems in the study of
linear systems: for example, it would give a method to compute the dimension of planar
linear systems and would imply the celebrated Nagata Conjecture.

In his work [dF10], Tommaso de Fernex points out how these conjectures can be translated
in a more Mori-theoretic �avour.

Indeed, SHGH Conjectures on P2 do imply the so called (−1)-curve Conjecture on the
blow-up of P2 at r general points: this conjecture says that the only curves with nega-
tive self-intersection are (−1)-curves. From information on linear system on P2, we get
information on NE(Blr P2).

Moreover, De Volder and Laface in [DVL05] underline how Segre Conjecture can be easily
stated for any surface and they consider its generalization to the case of generic K 3
surfaces.

In light of these facts, we want to investigate how far we can go in the generalization of
the Segre Conjecture to any surface; moreover, we are interested, as we said before, in its
in�uence on the Mori cone of the blown-up surface.

In the second part, Weak Zariski decomposition on projectivized vector bundles (Chapters
4-5), we leave the world of conjectures on linear systems on surfaces and we focus on the
pseudoe�ective cone of a projectivized vector bundle.

The whole question began with Zariski and Fujita that, in [Zar62] and [Fuj79], proved the
existence of the Zariski decomposition in the two dimensional case: for any pseudoe�ective
R-divisor D on a smooth surface X , there exist P and N such that D = P + N, where
P is nef and N in an e�ective divisor that is 0 or such that the intersection matrix of its
components is negative de�nite, see Theorem 4.1.

In literature many attempts to generalize to higher dimension this kind of decomposition
for pseudoe�ective divisors can be found; some of the most relevant are the Fujita-
Zariski decomposition and the Cutkosky-Kawamata-Moriwaki-Zariski (CKM-Zariski for
short) decomposition; an account on these de�nitions can be found in [Bir09]. In both of
them the decomposition of a pseudoe�ective R-divisor as a sum of a nef and an e�ective
divisor is required together with an additional property.

A much weaker notion is the following (see De�nition 4.2):
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De�nition. We say that a pseudoe�ective divisor D ∈ DivR(X ) on a normal
variety X has a weak Zariski decomposition (WZD for short) if there exists
a projective birational morphism f : W → X form a normal variety W such
that

1. f ∗D = P + N, where P, N are R-divisors;
2. P is nef, N is e�ective.

In his paper [Bir09], Caucher Birkar proves the following result, highlighting the relation-
ships between this kind of decompositions and the theory of Minimal Models; we refer to
his work to further details.

Theorem (Birkar). If the Log Minimal Model Program for Q-factorial dlt
pairs in dimension d − 1 holds true and (X/Z , B) is a log-canonical pair of
dimension d , then the following are equivalent:

1. KX + B has a weak Zariski decomposition /Z ,

2. KX + B birationally has a CKM-Zariski decomposition/Z ,

3. KX + B birationally has a Fujita-Zariski decomposition/Z ,

4. (X/Z , B) has a log minimal model.

The question about the existence of a weak Zariski decomposition for every pseudoe�ective
divisor follows from a question posed by Nakayama in [Nak04, Problem, page 4]; in the
following we prove, in a number of meaningful situations, the existence of a weak Zariski
decomposition for the elements of Eff(X ), where X = P(E) is the projectivization of a
vector bundle E on a variety Z .
It is worth to say that the pseudoe�ective cone of a projectivized vector bundle on a curve
has been recently studied by Fulger in [Flg11]; we used some of his ideas to give our proof
of the existence of a weak Zariski decomposition in that situation.

We can now go through the structure of this thesis. At �rst we say that the whole work
is developed in the setting of complex numbers.

Basic concepts

In the �rst chapter, we introduce the notation and we recall basic notions about positivity
in algebraic geometry (see [Laz04]); we present several properties, with original proofs,
concerning cones associated to projective varieties paying special attention to the case of
a surface S and to the positive cone:

Pos(S) = {α ∈ N1(S) | α2 > 0,α · h > 0, h ample divisor}.

This cone will play a central role especially in the �rst part of the thesis.

Part I: In�uence of the Segre Conjecture on the Mori cone of blown-up surfaces

The second chapter, introducing the main problem of the �rst part, is dedicated to a
number of conjectures about linear systems and to the relations among them.
The goal of this chapter is the generalization to any surface of the conjecture by Beniamino
Segre concerning linear system on P2.
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Let us recall that a non empty linear system L on a surface X is said to be special
(respectively non special) if h1(X , L) 6= 0 (respectively h1(X , L) = 0), where L is the line
bundle associated to L.
After excluding some situations, in order to assure these de�nitions make sense, we state,
and we name it again after Segre, the following (see Conjecture 2.23).

Segre Conjecture. Let Y be a smooth projective surface such that Y is either
a K 3 or pg (Y ) = 0 or it is a non simple abelian surface and let X = Blr Y
be the blow-up of Y at r general points.

If L is a non empty, non exceptional and reduced linear system on X , then L
is non special.

The non speciality of a linear system L allows us to compute the dimension of L; in this
situation, indeed, it is the so-called expected dimension, e(L) = max{χ(L)− 1,−1}.
The Segre Conjecture would imply, in the setting of blown-up surfaces, the so called (see
[Har10]) Bounded Negativity Conjecture, saying that for any surface S , there exists an
integer νS such that C 2 > −νS for any curve C ⊂ S .
The boundedness of the negativity in�uences the shape of the Mori cone of a blown-up
surface; indeed if X = Blr Y , the BN Conjecture would give the decomposition:

NE(X ) = Pos(X ) +
∑

0>C 2>−νX

R(C ).

Moreover, the Segre Conjecture implies the boundedness form above of the arithmetic
genus of curves in a blown-up surface; we state therefore the following (see Conjecture
2.28).

List Conjecture. Let X = Blr Y be a blown-up surface; then there exist
νX ,πX ∈ N such that for every curve C ⊂ X with negative self-intersection,
C 2 > −νX , and pa(C ) 6 πX .

Theorem 3.13, central point of Chapter 3, is the main result of the �rst part; looking for
a decomposition of the Mori cone, we generalize a result by de Fernex (see [dF10]) on the
shape of NE(X ): if the Segre Conjecture holds true and the number of blown-up points
is large enough, then a non empty part of NE(X ) has to be circular.

Theorem. Let X = Blr Y be the blow up of Y at r general points and let L
be the pull-back of an ample divisor A on Y .

Let us assume the existence of ν,π ∈ N such that for any integral curve
C ⊂ X with negative self-intersection, we have

C 2 > −ν and pa(C ) 6 π.

If r is large enough (explicit bound depending on π, ν and A), then there
exists s ∈ R (explicit value, depending on A and ν) such that

NE(X )(K−sL)>0 = Pos(X )(K−sL)>0 .

In particular, this holds true if Segre Conjecture is veri�ed and r � 0.

This result is, in a certain sense, sharp: in order to have a circular part, that is a part
coinciding with Pos(X ), the number s can't be avoided. Indeed we prove (see Proposition
3.17 and Proposition 3.19) that in many meaningful situations, independently from any
conjecture,

Pos(X )KX
>0 ( NE(X )KX

>0 .
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Part II: Weak Zariski decomposition on projectivized vector bundles

Chapter 4 is dedicated to the presentation of the question we investigate in the second part
of the thesis: the existence of a weak Zariski decomposition for pseudoe�ective divisors
on a normal projective variety X .
After the reduction of this problem to the extremal ray of the pseudoe�ective cone, we
focus on the speci�c case of projectivized vector bundles recalling and proving a number
of useful properties.
Projectivized vector bundles are indeed an interesting class of varieties and they provide a
very manageable tool to produce examples and counterexamples, see for example [Laz04,
Example 1.5.1]. Thus, as �rst step in the direction of a general solution to the problem,
we ask the following question.

Question. If E is a vector bundle on a variety Z , does a weak Zariski decom-
position exist for every pseudoe�ective divisor on X = P(E)?

The results giving a positive answer to the question, contained in Chapter 5, can be
summarized in the following statement.

Theorem. Let E be a rank r vector bundle on a variety Z ; setting X = P(E),
there is a weak Zariski decomposition for every pseudoe�ective class in Eff(X )
in the following cases:

1. Z is a curve;

2. E is completely decomposable as direct sum of r line bundles on a variety
Z with Picar number ρ(Z ) = 1;

3. Z is a Fano variety with Picard number ρ(Z ) = 1, E is rank 2 vector
bundle that is either unstable or semistable and non stable;

4. E is a Schwarzenberger bundle on P2 (important class of stable rank 2
bundles on P2);

5. E is the rank 2 stable vector bundle on P3 associated, via the Hartshorne-
Serre correspondence, to the disjoint union of s > 2 lines in P3;

These results come form a collaboration with Luis Solá Conde and Roberto Muñoz.
The case of curves is treated in Section 5.1 (see Theorem 5.17); our proof is di�erent and
independent form the one, already known, by Nakayama and it is based on some ideas
of Fulger and the reduction of the problem to a vector bundle of smaller rank via the
Harder-Narasimhan �ltration of the bundle E . Moreover we give in Proposition 5.18 a
characterization of vector bunldes on a curve C such that a birational map f is required
in order to have a WZD for every pseudoe�ective class.
If E is fully decomposable, we prove in Proposition 5.24 that the e�ective cone is indeed
a closed convex cone; thus in particular we have what we call a direct weak Zariski
decomposition, that is a WZD without the birational map f .
In Section 5.3, using some results from [MOSC11], we prove that, in the situation of the
third point of the Theorem above, the e�ective cone is closed. Moreover, referring again
to [MOSC11], we point out that there are rank 2 vector bundles on P2 strictly related to
the Nagata Conjecture.
The others positive answers are a direct consequence of the following result (see Propo-
sition 5.36.
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Proposition. Let E be a rank 2 vector bundle on Z (the smallest twist with
sections) such that ρ(Z ) = 1; if for some a, b, a 6 0, a < b there exists a set
M =M(a, b) of smooth rational curves C ⊂ Z dominating Z such that for
every curve inM

E|C = OP1 (a)⊕OP1 (b),

then the e�ective cone of P(E) is closed. Moreover we can give, in terms of
C ∈M, a description of the two rays of Eff(P(E)).

In order to prove the fourth and the �fth points in the Theorem, it is enough to construct
the dominating set of curvesM and verify the splitting type of the vector bundle on the
curve C ∈M, see Proposition 5.42 and Fact 5.48.
It is worth to say that vector bundles in the �fth point of the Theorem are closely related
to instantons constructed by the physicists (see [Har78a, Example 2.2]) and they are called
t'Hooft bundles (see [BF01]).
Finally, in view of our general discussion, we recall that the e�ective cone is known to
be closed if X is a Mori dream space; since, by [Gon10], a toric vector bundle on a toric
variety is a Mori dream space, our question has a positive answer in also this situation.

Roma, June 2012

Fulvio Di Sciullo



Acknowledgments

My deep gratitude goes at �rst to my advisor Angelo Felice Lopez, for proposing me
the problems I deal with in this thesis and for its �rm support throughout this work; it
would not have been possible to accomplish this dissertation without his wise guidance,
his advice, his patience and his teachings of various kinds.
I would like to thank Luis Solá Conde and Roberto Muñoz for their kind hospitality
during my stay in Madrid; they made possible a meaningful experience, both for life and
Mathematics.
A special thank to some companions, namely Salvatore Cacciola, Lorenzo Di Biagio and
Simone Marchesi, for sharing with me a long part of my mathematical path through many
moments in di�erent places and situations.
I would like to express my sincere gratitude to all PhD students and people I met in Rome,
both in Sapienza and in Roma Tre.
Finally, a special mention goes to my cardinal friends Francesco, Federico and Marco, to
Maura and to my whole family.





Contents

Introduction i

Acknowledgments vii

1 Basic concepts 1

1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Conology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Cones on a surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 The positive cone of a surface . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Topological tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

I In�uence of the Segre Conjecture on the Mori cone of blown-
up surfaces 25

2 Conjectures on linear systems 27

2.1 Nagata Conjecture and the plane case . . . . . . . . . . . . . . . . . . . 27
2.2 Segre Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3 List Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4 Special cases of the Segre Problem . . . . . . . . . . . . . . . . . . . . . 39

3 The shape of the Mori cone 43

3.1 Negative part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Goal and warm-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4 Circular part and main result . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5 Strict inclusion conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 66

II Weak Zariski decomposition on projectivized vector bundles 71

4 The problem 73

4.1 Statement and reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 On projectivized vector bundles . . . . . . . . . . . . . . . . . . . . . . . 76



x Contents

5 Positive Answers 81
5.1 The case of curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Completely decomposable vector bundles . . . . . . . . . . . . . . . . . . 89
5.3 Rank 2 on Fano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4 Schwarzenberger bundles on the plane . . . . . . . . . . . . . . . . . . . 100
5.5 Stable rank 2 bundles on the projective space . . . . . . . . . . . . . . . 101
5.6 Further remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

List of �gures 105

Bibliography 109



Chapter 1

Basic concepts

The �rst chapter of this thesis is devoted to recall some de�nitions and some basic facts
about Mori theory. We refer, for positivity topics to the books by Lazarsfeld ([Laz04]);
for Mori Theory we refer to the book by Debarre ([Deb01]) and the book by Kollár and
Mori ([KM98]).
We will work over the �eld C of complex numbers.

1.1 Notation

De�nition 1.1. A scheme is a separated algebraic scheme of �nite type over C. A variety
is a reduced and irreducible scheme.

To �x the notation, we give the following de�nition.

De�nition 1.2. A Cartier divisor on a variety X is a global section of the sheaf K∗X/O∗X ;
we denote the group of Cartier divisors with

Div(X ) = Γ (X ,K∗X/O∗X ).

We denote the group of R-Cartier R-divisors with

DivR(X ) = Div(X )⊗ R.

If D, D ′ are two divisors on a variety X ; we denote by D ≡ D ′ the numerical equivalence
and by D ∼ D ′ the linear equivalence.

De�nition 1.3. If X is a normal projective variety of dimension n, we have

1. Num(X ) = Pic(X )/ ≡;

2. N1(X ) = Num(X )⊗ R;

3. N1(X ) = ({1-cycles}/ ≡)⊗ R;

4. ρ(X ) = dimR N1(X ) = dimR N1(X ), the Picard number of X .
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We will denote the intersection form between N1(X ) and N1(X ) with:

· : N1(X )× N1(X ) → R
(δ, γ) 7→ δ · γ.

(1.1)

As well known, this pairing is not degenerate and continuous.
If X is a projective variety and C is a curve, we will denote with [C ] its class in N1(X ).
Similarly if D ∈ DivR(X ), [D] will be its class in N1(X ).
In the spaces N1(X ) and N1(X ) it is useful to consider subsets generated by classes of
some particular divisors and curves.

De�nition 1.4. Let X be a normal projective variety. We de�ne in N1(X )

1. Nef(X ), the set spanned by classes of nef divisors;

2. Amp(X ), the set spanned by ample classes;

3. Big(X ), the set spanned by big classes;

4. Eff(X ), the set spanned by e�ective classes;

5. Eff(X ), the set spanned by pseudoe�ective classes.

De�nition 1.5. Let X be a normal projective variety, we de�ne in N1(X )

1. NE(X ), the set of classes in N1(X ) generated by the e�ective 1-cycles;

2. NE(X ), the closure of NE(X ) in N1(X ) with respect to the Euclidean topology;

We can introduce another subset of N1(X ); to this end we give the following.

De�nition 1.6. Let X be a projective variety with n = dim X .

1. We say that a curve C ⊂ X is a movable curve if C = C0 is a member of an
algebraic family {Ct}t∈S such that

⋃
t∈S Ct = X ; the set spanned by the classes of

movable curves in N1(X ) is denoted by ME(X ) and its closure by ME(X ).

2. A curve C ⊂ X is said to be a strongly movable curve if there exist a birational
map µ : X ′ → X together with ample classes α1, . . . ,αn−1 of X ′ such that

[C ] = µ∗(α1 · . . . · αn−1); (1.2)

the set spanned by classes of strongly movable curves is denoted by SME(X ) and
its closure with SME(X ).

Moreover, we have the following de�nition.

De�nition 1.7. If D ∈ DivR(X ), we de�ne:

D⊥ = {γ ∈ N1(X ) | [D] · γ = 0};
D>0 = {γ ∈ N1(X ) | [D] · γ > 0}.

We can likewise de�ne D60, D>0 and D<0. Similar de�nitions can be given for a curve
C and its class [C ] ∈ N1(X ).

We will denote with KX the canonical divisor of the variety X .
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1.2 Conology

Among the tools we have, the study of the sets introduced in De�nition 1.4 and De�nition
1.5 is undoubtedly one of the most powerful to achieve the understanding of projective
varieties. As we will soon see, these sets are indeed cones in the real vector spaces
N1(X ) and N1(X ); this section is dedicated to �x a number of useful properties of cones
contained in a real vector space of �nite dimension.

De�nition 1.8. Let V be a �nite dimensional R-vector space (or Q-vector space).

1. A subset C ⊂ V is a cone if C is closed under the positive scalar multiplication, that
is if x ∈ C then λx ∈ C for all λ ∈ R>0.

2. If C ⊂ V is a convex cone, the dimension of C, dim C, is the dimension of the
smallest vector subspace containing C.

3. A closed and convex subcone K ⊆ C is called extremal face of C if for all u, v ∈ C
such that u + v ∈ K, then u, v ∈ K. A 1-dimensional extremal face is called an
extremal ray.

4. If x ∈ V , the ray generated by x is

R(x) = {λx ∈ V , for all λ > 0}.

5. If X ⊂ V is a subset, we denote with 〈X 〉 the convex cone spanned by X :

〈X 〉 =

{∑

�nite

λi xi | λi > 0, xi ∈ X

}
.

De�nition 1.9. If C is a convex cone, we denote with ∂C the boundary of C.

Our goal is now to prove an useful fact allowing us to write elements in a cone as the
sum of extremal rays.

De�nition 1.10. Let Ci ⊂ Rt , i ∈ I be cones, then the convex hull of Ci is

〈Ci 〉◦i∈I =

{∑

�nite

aiγi | γi ∈ Ci , ai > 0,
∑

ai = 1

}
, (1.3)

and the sum of Ci is

∑

i∈I

Ci =

{∑

�nite

aiγi | γi ∈ Ci , ai > 0

}
. (1.4)

We have the following.

Fact 1.11. Let Ci , i ∈ I be closed convex cones in Rt , then

〈Ci 〉◦i∈I =
∑

i∈I

Ci
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Proof. We will prove the two inclusions; the (⊆) is obvious from the de�nitions. Therefore
we can focus on the second one. Let us take 0 6= x ∈∑ Ci ; then we have x =

∑
aiγi , ai >

0 and we can set A =
∑

ai > 0. Hence we can write

x =
∑ ai

A
Aγi ,

ai

A
> 0

but since Ci are cones, Aγi ∈ Ci ; moreover, since

∑ ai

A
=

∑
ai

A
= 1,

we get x ∈ 〈Ci 〉◦.

The former lemma allows us, speaking of cones, to confuse the concepts of sum and
convex hull.
Before going on, let us �x the notation for segments.

De�nition 1.12. If a, b ∈ Rt , then (a, b) is the open segment and [a, b] is the closed
segment joining a and b.

Let us recall that if C ⊂ Rt is a closed convex cone and F is an extremal face, then the
a�ne space generated by F is the smallest linear space containing F :

aff(F ) =

{∑

�nite

ai fi | ai ∈ R, fi ∈ F

}
.

It is immediate to see that if x ∈ aff(F ), then

x =
∑

ai>0

ai fi −
∑

ai<0

(−ai )fi ,

and thus we can write
x = f1 − f2, f1, f2 ∈ F .

Fact 1.13. Let C ⊂ Rt be a closed convex cone and let F be an extremal face of C; then

aff(F ) ∩ C = F . (1.5)

Proof. If y ∈ F , then immediately we get y ∈ aff(F )∩C and the �rst inclusion is proved.
In order to prove the other, let us consider y ∈ aff(F ) ∩ C; we have

y = f1 − f2 f1, f2 ∈ F .

hence f2 = y + f1, and, since f2 ∈ F , by extremality of the face F , we get y ∈ F .

To prove Fact 1.19, we need to introduce some notation; for further details we refer to
[Roc97, Section 18]. In particular, in the setting of convex sets C ⊂ Rt , we recall that the
relative interior ri(C ) is the interior of C in the aff(F ). Moreover, we have the following.

De�nition 1.14. Let C ⊂ Rt be a convex set; a face is a convex subset C ′ ⊂ C such
that if [x , y ] ⊂ C is a closed segment with a point of (x , y) in C ′, then x , y ∈ C ′.

We see at once that a face of a closed convex cone is indeed a subcone and we can show
that, moreover, it is an extremal face. At �rst we recall the following result (see [Roc97,
Theorem 18.1]).
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Theorem 1.15. Let C be a convex set, and let C ′ be a face of C . If D is a convex set
in C such that ri(D) ∩ C ′ 6= ∅, then D ⊂ C ′.

Corollary 1.16. If C ′ is a face of a convex set C , then C ′ = C ∩ cl(C ′). In particular if
C is closed, then C ′ is closed.

Coming to closed convex cones, we have the following.

Fact 1.17. Let K be a closed convex cone and let C ⊂ K be a face (hence a subcone),
then C is an extremal face of K .

Proof. The face C is closed by Corollary 1.16. Let us now take x , y ∈ K such that
x + y ∈ C ; since the midpoint of segment [x , y ] is (x + y)/2 ∈ C and C is a subcone,
then x + y ∈ C and, by de�nition of face, we get x , y ∈ C .

We have the following theorem (see [Roc97, Theorem 18.2]).

Theorem 1.18. If C is a non empty convex subset and then C is the disjoint union of
the relative interior of its faces.

We are now ready to give the description of the boundary of a closed convex cone in
terms of its extremal faces.

Fact 1.19. Let C be a closed convex cone of maximal dimension in Rt , then ∂C is the
union of its extremal faces:

∂C =
⋃

dim Fi<t

Fi ,

where Fi are extremal faces.

Proof. Let us consider x ∈ F , where F is an extremal face of dimension n < t; if x is not
in the boundary, then there exists a ball centred in x of ray ε:

B = Bε(x) ⊂ int(C).

Let us consider a point z /∈ F ; the line L joining x and z , by Fact 1.13, is such that
L ∩ F = {x} and it does intersect ∂B in two points α and β. In particular we have that
α,β /∈ F and that, since the segment [α,β] is a diameter, β − x = x − α. Thus we get
2x = α + β and

x =
1

2
α +

1

2
β.

Since α and β are outside F , this also applies to their own half; but x ∈ F and this gives
a contradiction with the extremality of F and hence F ⊂ ∂C.
To prove the reverse inclusion, we see, by Theorem 1.18, that

C =
⊔

ri(Fi ),

where Fi are faces and hence, by Fact 1.17, extremal faces. Now, by Fact 1.13, we have
that C itself is the only extremal face of dimension t and moreover ri(C) = int(C); hence
we can write

C = int(C) t
( ⊔

dim Fi<t

ri(Fi )

)
.

Thus we get:
∂C =

⊔

dim Fi<t

ri(Fi ) ⊆
⋃

dim Fi<t

Fi .
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Here it is a couple of other interesting easy facts concerning extremal faces and extremal
rays.

Fact 1.20. Let us assume Rt is endowed with a scalar product. Let C ⊂ Rt be a closed
convex cone not containing lines through the origin and let h = H⊥ be an hyperplane; if
F is an extremal face of C ∩ H>0 such that F \ {0} ⊂ H>0, then F is an extremal face
of C.

Proof. Let us consider x , y ∈ C \{0} such that x + y ∈ F ; we want to show that x , y ∈ F
(that is, F is an extremal face of C).
At �rst we claim that x +y ∈ H>0. Indeed x +y ∈ F ⊂ H>0 and if it were (x +y) ·H = 0,
since

F \ {0} ⊂ H>0,

we would have x + y = 0 and then x = −y . This is a contradiction since C, and hence
its subcone C ∩ H>0, does not contain lines passing by the origin.
Now, if x , y ∈ H>0, then they are in C ∩ H>0 and by extremality, both x , y lie in F and
we have �nished.
If x , y ∈ H<0, we immediately get a contradiction since (x + y) · H < 0.
Let us now suppose that x ∈ H<0; then we have y ∈ H>0 (we see that y can't be in
H⊥) and x + y ∈ H>0. If we consider the continuous function λ(t) = (x + ty) · H, then
λ(0) = x · H < 0 and λ(1) = (x + y) · H > 0; therefore there exists t0 such that

(x + t0y) · H = 0 and 0 < t0 < 1.

Writing
x + y = (x + t0y) + (1− t0)y ,

we see that, since (x +t0y) and (1−t0)y lie in C∩H>0, by extremality, x +t0y ∈ F ∩H⊥.
As before, this gives x + t0y = 0 and hence x = −t0y that is a contradiction since there
can't be lines through the origin. This last case, hence, does not occur and the proof is
concluded.

Fact 1.21. Let C be a closed convex cone and F be an extremal face of C; if R is an
extremal face of F , then it is an extremal face of C. In particular this applies to extremal
rays.

Proof. Let us consider α,β ∈ C with α + β ∈ R, we need to show that α,β ∈ R: since
α+ β ∈ R ⊆ F , by extremality of F in C, we get α,β ∈ F and, by extremality of R in F ,
we see that α,β ∈ R.

We have now the interesting Lemma (see [Kol96][Lemma II.4.10.4]) that allows us to
write the elements of our cones as positive linear combination of extremal rays.

Lemma 1.22. Let C ⊂ Rt be a closed convex cone of positive dimension which does not
contain a line through the origin, then C is the convex hull of its extremal rays.
More precisely, if x ∈ C then there exists s ∈ N, such that x ∈ ∑s

i=1 Ri , where Ri are
extremal rays of C.
In particular, if dim C > 2, a closed convex cone not containing lines through the origin is
the convex hull of its boundary.

Proof. We can assume that C ⊂ Rt is a closed convex cone of dimension t > 1. In light
of Fact 1.11, we want to prove that if x ∈ C, then there exist an s ∈ N and R1, . . . .Rs

extremal rays of C such that x ∈∑Ri .
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We proceed by induction on t. The case t = 1 is obvious since a 1-dimensional convex
cone has just one extremal ray. In the 2-dimensional case, the convex cone is spanned
by two extremal rays and x ∈ C can be written as linear combination with non negative
coe�cients of the generators of the rays.
Consider now dim C > 3. By Fact 1.19, we can write ∂C as union of extremal faces.
Thus if y ∈ ∂C , we can �x an extremal face y ∈ F of dimension n, for some n; since
F is a closed convex cone of dimension n < t, by induction, y belongs to the sum of q
extremal rays R ′′k of F . By Fact 1.21 we have that these R ′′k are indeed extremal rays of
C.
If x ∈ ∂C we have done; if x ∈ int(C), let us consider an hyperplane H passing through x
and the origin. The cone C ∩H is a closed convex cone of dimension t − 1; by induction
we have that

x ∈
s′∑

i=1

R ′i ,

where R ′i are extremal rays of C ∩ H as a cone in H ' Rt−1: we claim that R ′i must lie
in ∂C. Indeed, by contradiction, we could �x y ∈ R ′i with y ∈ int C and hence, in the
topological space H, we would have y ∈ int(C ∩ H), but this can't be since y lies in an
extremal ray of C ∩ H and hence in ∂(C ∩ H).
Hence R ′i ⊂ ∂C: for each R ′i we can �x a generator yi and since it lies in the boundary
then we can write

yi ∈
s′′∑

j=1

Ri j , j = 1, . . . , s ′.

Thus we have that

x ∈
s′,s′′∑

i ,j=1

Ri j ,

and we have written x as a positive linear combination of at most s = s ′s ′′ extremal
rays.

Cones on projective varieties

As pointed out before, in the following, we will consider essentially cones in the spaces
N1(X ) and N1(X ). We have that the intersection pairing allows us to de�ne a duality
between cones.

De�nition 1.23. Let C be a cone in N1(X ), the dual cone of C is

C∨ = {x ∈ N1(X ) | x · y > 0, for all y ∈ C}. (1.6)

We can similarly de�ne the dual of a cone in N1(X ).

We have the following useful lemma (see [Deb01, Lemma 6.7]); for simplicity's sake we
state if for N1(X ), but it is true whenever we have a non degenerated scalar product
de�ning a duality between real vector spaces.

Lemma 1.24. Let C ⊂ N1(X ) a closed convex cone.

1. C = C∨∨;

2. C contains no lines through the origin ⇐⇒ C∨ spans N1(X );
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3. The interior of C∨ is given by

{γ ∈ N1(X ) | γ · c > 0 for any c ∈ C \ {0}}.

De�nition 1.25. Let X be a normal projective variety and consider a cone C in N1(X )
(respectively in N1(X )) and a divisor (respectively a curve) D. We denote the D-positive
part of C the subcone

CD>0 = C ∩ D>0. (1.7)

Similarly we can de�ne CD>0 , CD60 , CD<0 and CD⊥

Since in the following a great importance will be given to extremal rays, we �x the notation
for rays.

De�nition 1.26. Let X be a normal projective variety and C ⊂ X is an integral curve
with class [C ] ∈ N1(X ), we will denote R(C ) the ray generated by the class [C ] in N1(X )
(see De�nition 1.8.4).

De�nition 1.27. Let X be a normal projective variety, R be a ray in N1(X ) and D a
divisor. We say that the ray R is D-positive (or D-negative) if D · γ > 0 (respectively
D · γ < 0) for all γ ∈ R.

In the beginning of this chapter we de�ned a number of subsets of N1(X ) and N1(X ); as
it is well-known, all of them are cones contained in a real vector space.
We have the following fact; see [Laz04] (for 1. 2. and 3.) and [BDPP04] (for 4.).

Fact 1.28. Let X be a normal projective variety, then

1. Nef(X ) is a closed convex cone in N1(X ) and it is the dual of the convex cone
NE(X );

2. Amp(X ) is an open convex cone in N1(X ) and it is the interior of Nef(X );

3. Big(X ), Eff(X ) and Eff(X ) are convex cones and it holds:

Big(X ) = int(Eff(X )) and Eff(X ) = cl(Big(X ));

4. ME(X ) is a closed convex cone and it coincides with SME(X ).

We see that amplitude can be interpreted via cones (see [Laz04]).

Theorem 1.29 (Kleiman's Criterion). Let X be a projective variety and D an R-divisor
on X ; then D is ample if and only if

NE(X ) \ {0} ⊂ D>0.

The starting result of the whole theory is doubtless the Cone Theorem, whose �rst for-
mulation was given in [Mor82] by Shigefumi Mori. This theorem gives a structure of the
KX -negative part of NE(X ).

Theorem 1.30 (Mori Cone Theorem). Let X be a smooth projective variety of dimension
n. Then there exists a countable set of curves Ci , i ∈ I with KX · Ci < 0, such that we
have the decomposition

NE(X ) = NE(X )KX
>0 +

∑

i∈I

R(Ci ). (1.8)

Moreover, we have that:
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1. this decomposition is minimal (in the sense that no smaller index set is su�cient to
generate the cone);

2. for any small ε > 0 and ample divisor H, there are just �nitely many extremal rays
in (KX + εH)<0;

3. the curves Ci are (possibly singular) reduced irreducible rational curves satisfying
the condition

−(n + 1) 6 KX · Ci 6 −1.

Corollary 1.31. The rays R(Ci ) given by the theorem are indeed extremal rays of NE(X ).

Proof. Let us consider R(Ci0 ) a ray as in the statement of Cone Theorem; we want to
show that it is an extremal ray. Consider γ, δ ∈ NE(X ) such that γ + δ ∈ R(Ci0 ). The
theorem gives the decomposition

γ = γ′ +
∑

ai [Ci ] and δ = δ′ +
∑

bi [Ci ], (1.9)

with γ′, δ′ ∈ KX
>0 and ai , bi > 0. Therefore we have

γ + δ = (γ′ + δ′) +
∑

(ai + bi )[Ci ],

but also γ + δ = α[Ci0 ] for some α > 0. We have hence that

γ′ + δ′ +
∑

i 6=i0

(ai + bi )[Ci ] = (α− ai0 − bi0 )[Ci0 ]. (1.10)

Now if (α− ai0 − bi0 ) 6= 0, intersecting with an ample divisor, we get (α− ai0 − bi0 ) > 0
and hence we would have

[Ci0 ] ∈ NE(X )KX
>0 +

∑

i 6=i0

R(Ci ),

and the index set I from the theorem wouldn't be minimal. Therefore it must be (α −
ai0 − bi0 ) = 0. Fix an ample class h; intersecting equation (1.10) with h we get

(γ′ + δ′) · h +
∑

i 6=i0

(ai + bi )[Ci ] · h = 0.

Since ai , bi , (ai + bi ) > 0 and h is an ample class, we must have γ′ · h = δ′ · h = 0 and
ai = bi = 0 for all i 6= i0; therefore we have that, since h is an ample class, Kleiman
Criterion (see Theorem 1.29) gives γ′ = δ′ = 0.
Thus decomposition (1.9) gives γ = ai0 [Ci0 ] and δ = bi0 [Ci0 ], hence R(Ci0 ) is an extremal
ray.

Theorem 1.32 (Contraction Theorem). Let X be a smooth projective variety, for each
extremal ray R in KX

<0 there is a contraction morphism contR : X → Z , that is a
morphism such that

1. contR (C ) = point for an irreducible curve C ⊂ X if and only if [C ] ∈ R;

2. (contR )∗OX = OZ .

We now show an interesting and easy consequence of the Cone Theorem.
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Fact 1.33. Let X be a projective smooth variety; each extremal KX -negative ray R is
spanned by the class of an integral curve.

Proof. Let γ be a generator of R (that is R = R(γ)). The Cone theorem gives the
decomposition

γ = α +
∑

ai [Ci ], α ∈ KX
>0, ai > 0

with Ci rational irreducible curve. Now, since R is an extremal ray, if α 6= 0, then there
exists a > 0 such that γ = aα; but then

0 > KX · γ = aα · KX > 0

and hence we must have α = 0. Again by extremality, we can conclude that there exists
bi > 0 such that γ = bi ai [Ci ]; therefore we get

[Ci ] =
1

ai bi
γ

and so [Ci ] generates R.

Since in the following we will be interested in the study of the pseudoe�ective cone, we
have to cite a very important result by Boucksom, Demailly, Paun and Peternell (see
[BDPP04]) relating Eff(X ) and the cone of movable curves.

Theorem 1.34 (BDPP). Let X be a projective variety; then

Eff(X )∨ = ME(X ). (1.11)

We can now see that Lemma 1.22 can be useful dealing with the Mori cone NE(X ): we
need to show that it does not contain lines through the origin.

Fact 1.35. The Mori cone NE(X ) of a projective variety does not contain lines through
the origin. Moreover it is spanned by its extremal rays.

Proof. We will prove that if γ and −γ lie in NE(X ), then γ = 0. Since NE(X ) is the dual
of Nef(X ), we have that γ · δ > 0 and −γ · δ > 0 for every γ ∈ Nef(X ); we immediately
get γ · δ = 0 for every nef class. In particular, if α is an ample class, then γ · α = 0 and
Kleiman's Criterion (Theorem 1.29) gives us γ = 0.
The last statement follows directly from Lemma 1.22.

In the pseudoe�ective case, we are able to give an analogous result.

Fact 1.36. The pseudoe�ective cone of a projective variety X does not contain lines
through the origin. Moreover it is spanned by its extremal rays.

Proof. We want to prove that for F ∈ DivR(X ), if F and −F are pseudoe�ective, then
F ≡ 0. We can easily perform the following reduction. Let us assume the fact is true
in the smooth case; if X is not smooth, let us consider the resolution of singularities
π : X̃ → X . We have that π∗F ∈ DivR(X̃ ) and, since we are assuming F and −F
pseudoe�ective, also π∗F and −π∗F will be pseudoe�ective. Now, X̃ is smooth and
therefore π∗F ≡ 0. To show that F ≡ 0, let us consider a curve C ⊂ X ; if C ′ ⊂ X̃ is a
curve mapped to C , by projection formula, F · C is proportional to π∗F · C ′ that is zero
because π∗F ≡ 0.
Thus we can assume X to be a smooth variety. We proceed by induction on n = dim X ;
if n = 2, then Eff(X ) = NE(X ) and, by Fact 1.35, we are done.
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By induction, let us suppose n > 3.
Let 0 6= δ ∈ Eff(X ) be a pseudoe�ective class and H an ample e�ective divisor on X ; by
Bertini Theorem we can suppose it is smooth. Writing

δ = lim
i

[Di ],

for e�ective divisors Di ∈ DivR(X ), we claim that δ|H ∈ Eff(H). Indeed we have that
δ|H = (limi [Di ])|H ; by linearity and hence by continuity, we get

δ|H = lim
i

[Di ]|H = lim
i

[Di |H ].

Thus we need to show that Di |H is an e�ective divisor on H for all i . Let us set:

Di =
∑

aj D
j
i , with D j

i prime divisor and aj > 0.

If D j
i 6= H, then the restriction to H is given by intersection and thus we get an e�ective

divisor; if D j
i = H, by ampleness H|H is still e�ective. Therefore we get Di |H as a sum of

e�ective divisors and δ|H as a limit of e�ective class.
We claim now that δ|H 6= 0, that is the restriction map N1(X )→ N1(H) is injective.
Since n > 3, the exponential sequence and Lefschetz Hyperplane Theorem (see [Laz04,
Theorem 3.1.17]) imply that

Pic(X ) ↪→ Pic(H)

is injective. Now, using a result by Kleiman, see [Laz04, 1.1.20], we can easily get an
injective map N1(X )Z ↪→ N1(H)Z that, tensoring with R, gives the required injection
N1(X ) ↪→ N1(H).
At this point, to prove that in Eff(X ) there are no lines passing by the origin, it is enough
to show that if 0 6= δ ∈ Eff(X ), then −δ /∈ Eff(X ).
If, by contradiction, −δ ∈ Eff(X ), arguing as before, we should have (−δ)|H ∈ Eff(H);
since (−δ)|H = −(δ|H ), we would have 0 6= δ|H ∈ Eff(H) and −δ|H ∈ Eff(H), that is a
contradiction because dim H = n − 1.

1.3 Cones on a surface

In this section we focus the two dimensional varieties; let us recall an useful lemma (see
[Deb01, Lemma 6.2]) concerning extremal rays and their generating curves in the case of
surfaces.

Lemma 1.37. Let S be a smooth projective surface. Then:

1. if C is an integral curve on S such that C 2 6 0, then [C ] ∈ ∂NE(S);

2. if C is an integral curve such that C 2 < 0, then [C ] spans an extremal ray;

3. if r spans an extremal ray of NE(S), then either r 2 6 0 or ρ(S) = 1;

4. if r spans an extremal ray R of NE(S) and r 2 < 0, then R is spanned by a class of
an irreducible curve.

In the case of surfaces, contractions of extremal KS -negative rays can be classi�ed. The
following result is an useful consequence of Cone Theorem in dimension 2.
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Proposition 1.38. Let S be a smooth surface and let R be a KS -negative extremal ray
of NE(S). Then the contraction morphism

contR : S → Z

exists and it is one of the following:

1. Z is a smooth surface and S = BlP Z for a closed point P; in this case ρ(Z ) =
ρ(S)− 1.

2. Z is a smooth curve, S is a minimal ruled surface over Z and ρ(S) = 2.

3. Z is a point, we have that ρ(S) = 1 and −KS is ample and in fact S ' P2.

Proof. See [KM98, Theorem 1.28].

In the case of a smooth projective surface S , the two vector spaces N1(S) and N1(S)
are indeed the same space; we eventually shall denote it with N(S). At �rst we recall a
well-known fact: if C and D are distinct curves in S , then we have

C · D > 0. (1.12)

In the case of surfaces it is possible to consider the self-intersection of curves. We are
mainly interested in the study of negative self-intersection curves. We have the following
lemma.

Lemma 1.39. Let C ⊂ S be an integral curve such that C 2 < 0 and let R = R(C ) be
the ray generated by [C ]; then in R there are no other integral curves.

Proof. If there were another integral curve C ′ (that is C ′ integral and distinct from C )
with [C ′] ∈ R, then there would exist b > 0 such that [C ′] = b[C ]; now:

C · C ′ = bC · C = bC 2 < 0,

but since C and C ′ are distinct curves, C · C ′ > 0, and we get a contradiction.

The integral curves with negative self-intersection can be described as follows.

De�nition 1.40 ((−n, p)-curves). Let C be an integral curve in a smooth surface S .

1. C is said to be a (−n, p)-curve if C 2 = −n and it has arithmetic genus pa(C ) = p;
in particular a (−n, 0)-curve is a (−n)-curve.

2. A ray R in NE(S) is said to be a (−n, p)-ray if R = R(C ) is generated by a
(−n, p)-curve C ⊂ S .

We point out that the former de�nition of (−n, p)-ray is consistent in view of Lemma
1.39.

1.4 The positive cone of a surface

As pointed out before, in the case of surfaces the cones of divisors and the cones of curves
can be compared and it is interesting to �nd these relationships. If S is a projective surface,
the most studied cones are undoubtedly the Mori cone NE(S) and the nef cone Nef(S),
but there is another interesting cone: the positive cone; in this section we put in evidence
some properties of this cone.
First of all, let us recall the following Lemma.
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Lemma 1.41. Let X be a normal projective variety; if b ∈ Big X e f ∈ Eff(X ), then
b + f ∈ Big(X ).

Proof. Proposition 2.2.22(ii) from [Laz04] gives the existence of two classes a ∈ Amp(X )
and e ∈ Eff(X ) such that b = a + e. Since Amp(X ) is an open cone, there exists a small
disc Dε(a) ⊂ Amp(X ). Let e′ ∈ Eff(X ) such that ‖f − e′‖ < ε. We have therefore that

b + f = a + (f − e′)︸ ︷︷ ︸
∈Amp(X )

+ e′ + e︸ ︷︷ ︸
∈Eff(X )

∈ Big(X ),

since a + (f − e′) ∈ Dε(a) is ample and e + e′ is e�ective.

De�nition 1.42 (Positive cone). Let S be a smooth projective surface and let h ∈
Amp(S). The open positive cone of S is

Pos(S) =
{

x ∈ N1(S) | x2 > 0, x · h > 0
}

. (1.13)

The positive cone of S is

Pos(S) =
{

x ∈ N1(S) | x2 > 0, x · h > 0
}

. (1.14)

We can immediately see that our notations make sense and indeed Pos(S) is the closure
of Pos(S). Since the intersection form is continuous, we have that Pos(S) is a closed
cone. Consider now x ∈ Pos(S) and m ∈ N, we have that x + 1

m h ∈ Pos(S). In fact

{(
x + 1

m h
)2

= x2 + 1
m2 h2 + 2

m x · h > 0(
x + 1

m h
)
· h = x · h + 1

m h2 > 0.

Since obviously x = limm→+∞
(
x + 1

m h
)
, we get that x is in the closure of Pos(S).

Let us recall that the space N(S) is a ρ-dimensional vector space that can be equipped
with the Euclidean topology; by Hodge Index Theorem (see [Har77, Theorem V.1.9]), the
intersection form is a bilinear form on N(S) with signature (1, ρ − 1) and the Sylvester
theorem assures us the existence of a basis {e1, . . . , eρ} such that

e1 = h√
h2

e1
2 = 1

ei
2 = −1 for i = 2, . . . , ρ

ei · ej = 0 for 1 6 i < j 6 ρ,

(1.15)

and we have therefore that the intersection matrix is diag(1,−1, . . . ,−1). We will use
this basis to write the elements x ∈ N(S) as x =

∑ρ
i=1 xi ei .

De�nition 1.43. If S is a smooth projective surface, the negative curve set is

Neg(S) = {[C ] | C ⊂ S integral curve such that C 2 < 0}, (1.16)

where [C ] is the class of C in N(S).

We want now to put in evidence some interesting properties of the positive cone Pos(S)
of a surface S .

Fact 1.44. With the choices of (1.15), the positive cones have the following equations

1. Pos(S) =
{

x ∈ N(S) | x1 > 0, x1
2 >

∑ρ
i=2 xi

2
}
;
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2. Pos(S) =
{

x ∈ N(S) | x1 > 0, x1
2 >

∑ρ
i=2 xi

2
}
.

Proof. If x =
∑ρ

i=1 xi ei , then we get

x · h = x ·
√

h2e1 =
√

h2x1 and x2 = x2
1 −

ρ∑

i=2

xi
2,

which gives immediately the �rst and the second claim of the fact.

Before going on, we recall the following consequence of Hodge Index Theorem.

Remark 1.45. Let x be a real class in N(S) and h ∈ Amp(S), then

x2h2 6 (x · h)2. (1.17)

Indeed Hodge index theorem assures that the (1.17) holds for integer classes. If we deal
with rational classes the inequality holds true since we can multiply for an appropriate
integer and we can reduce to the integer case. If, in the end, x , h are real classes than
the inequality holds true approximating x , h with rational classes and passing to the limit.

Fact 1.46. If x , y ∈ Pos(S), then x · y > 0; moreover if x 6= 0 and y ∈ Pos(S) or y 6= 0
and x ∈ Pos(S), we have that x · y > 0. In particular, the positive cone Pos(S) is a
convex cone.

Proof. We will see two di�erent proofs of this fact.
In the �rst we don't use coordinates; consider x , y ∈ Pos(S). From Hodge Index Theorem
we have that the intersection form is negative de�nite on h⊥; therefore if x · h = 0 we
must have x2 6 0; since by hypothesis x2 > 0, we have x = 0 and x ·y = 0 > 0 (similarly
if y · h = 0).
Let us suppose x · h > 0 and y · h > 0. Consider the vectors

v =

√
h2

x · h x − 1√
h2

h and w =

√
h2

y · h y − 1√
h2

h

We can see that v · h =
√

h2 − h2
√

h2
= 0 and similarly w · h = 0, we have therefore that

v , w ∈ h⊥. Since the form is negative de�nite on h⊥, if we de�ne v ∗ w = −v · w , we
get a scalar product on h⊥. In particular, the Cauchy-Schwartz inequality holds and give

− v · w = v ∗ w 6 |v ∗ w | 6 ‖v‖‖w‖, (1.18)

where ‖v‖ =
√

v ∗ v =
√−v · v and ‖w‖ =

√
w ∗ w =

√−w · w . Now we have that

− v · v = −
(√

h2

x · h x − 1√
h2

h

)
·
(√

h2

x · h x − 1√
h2

h

)
= 1− h2x2

(x · h)2
. (1.19)

Using equation (1.17) we easly see that since x2 > 0, then −v · v 6 1 and −v · v > 0.
Therefore we have 0 6 −v · v 6 1 and similarly 0 6 −w · w 6 1. Thus we get
‖v‖ 6 1, ‖w‖ 6 1 and equation (1.18) implies

− v · w 6 1. (1.20)

But we can compute

−v · w = −
(√

h2

x · h x − 1√
h2

h

)
·
(√

h2

y · h y − 1√
h2

h

)
= 1− h2

(x · h)(y · h)
x · y ,
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and equation (1.20) gives

1− h2

(x · h)(y · h)
x · y 6 1 (1.21)

that is
h2

(x · h)(y · h)
x · y > 0,

which gives x · y > 0. The �rst part has therefore been shown. However, if x · y = 0 then
there is equality in equation (1.21), and so in the (1.20). As a consequence we have that
‖v‖ = 1, ‖w‖ = 1 and the (1.19) implies that x2 = y 2 = 0. So if x 6= 0 and y ∈ Pos(S)
(or y 6= 0 and x ∈ Pos(S)) it follows that x · y > 0.
Before giving an other proof using coordinates, we have the following

Claim 1.47. For all (x2, . . . , xρ), (y2, . . . , yρ) ∈ Rρ−1, we have
√√√√

ρ∑

i=2

x2
i

√√√√
ρ∑

i=2

y 2
i >

ρ∑

i=2

xi yi . (1.22)

This inequality is immediately veri�ed if
∑ρ

i=2 xi yi 6 0, therefore we can suppose that∑ρ
i=2 xi yi > 0 and we have that (1.22) is equivalent to

(
ρ∑

i=2

x2
i

)(
ρ∑

i=2

y 2
i

)
>
(

ρ∑

i=2

xi yi

)2

. (1.23)

Now we have that
(

ρ∑

i=2

x2
i

)(
ρ∑

i=2

y 2
i

)
=

ρ∑

i=2

x2
i y 2

i +
∑

26i<j6ρ
x2

i y 2
j +

∑

26i<j6ρ
x2

j y 2
i

whereas instead (
ρ∑

i=2

xi yi

)2

=

ρ∑

i=2

x2
i y 2

i + 2
∑

26i<j6ρ
xi yi xj yj .

To show (1.23) it is enough to prove that
∑

26i<j6ρ
x2

i y 2
j +

∑

26i<j6ρ
x2

j y 2
i > 2

∑

26i<j6ρ
xi yi xj yj . (1.24)

To see it, it is su�cient to see that

0 6
∑

26i<j6ρ
(xi yj − xj yi )

2 =
∑

26i<j6ρ
(x2

i y 2
j + x2

j y 2
i − 2xi yi xj yj ) =

=
∑

26i<j6ρ
x2

i y 2
j +

∑

26i<j6ρ
x2

j y 2
i − 2

∑

26i<j6ρ
xi yi xj yj .

And this gives the (1.22).
Now let us prove Fact 1.46 using coordinates.
Consider x = x1e1 + . . . + xρeρ, and y = y1e1 + . . . + yρeρ; we have that x · y =
x1y1 −

∑ρ
i=2 xi yi . Since x1 > 0, y1 > 0 and x , y ∈ Pos(S), we have that

x1 >

√√√√
ρ∑

i=2

x2
i and y1 >

√√√√
ρ∑

i=2

y 2
i , (1.25)
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which, using (1.22), gives

x1y1 >

√√√√
ρ∑

i=2

x2
i

√√√√
ρ∑

i=2

y 2
i >

ρ∑

i=2

xi yi (1.26)

Therefore we have shown the �rst part of Fact 1.46. If x · y = 0 and x 6= 0, y 6= 0,
then there is equality in (1.26) and so also in (1.25). Then x2 = y 2 = 0. If x 6= 0 and
y ∈ Pos(S) (or y 6= 0 and x ∈ Pos(S)), it follows that x · y > 0 which concludes the
proof.

Fact 1.48. If x ∈ Pos(S), a > 0, y 2 > −a and y · h > 0, then we have the following
useful inequality:

x · y > (y · h −
√

(y · h)2 + ah)x · h
h2

. (1.27)

Proof. Since x ∈ Pos(S) and x1 > 0, we get

x1 >

√√√√
ρ∑

i=2

x2
i and

√
y 2

1 + a >

√√√√
ρ∑

i=2

y 2
i ; (1.28)

since y1 > 0, using also (1.28) and (1.22), we get

x · y = x1y1 −
ρ∑

i=2

xi yi > y1

√√√√
ρ∑

i=2

x2
i −

ρ∑

i=2

xi yi =

=

√√√√
ρ∑

i=2

x2
i

(√
y 2

1 + a−
√

y 2
1 + a + y1

)
−

ρ∑

i=2

xi yi >

>

√√√√
ρ∑

i=2

x2
i

√√√√
ρ∑

i=2

y 2
i −

ρ∑

i=2

xi yi +
(
y1 −

√
y 2

1 + a
)
√√√√

ρ∑

i=2

x2
i

>
(

y1 −
√

y 2
1 + a

)
x1.

(1.29)

It is now enough to see that

(
y1 −

√
y 2

1 + a

)
x1 =

(y · h −
√

(y · h)2 + ah2)x · h
h2

and the proof is concluded.

Fact 1.49. The de�nitions of Pos(S) and Pos(S) do not depend on the choice of the
ample class h.

Proof. It is an immediate application of Fact 1.46. If Pos(S) is de�ned using an other
ample class h′, we have to show that x ·h′ > 0 for all x ∈ Pos(S) (de�ned using h). Since
the ample cone Amp(S) ⊂ Pos(S), Fact 1.46 gives in a moment that x · h′ > 0.

Fact 1.50. For all y ∈ N(S), there exist x ∈ ∂Pos(S) and u ∈ R such that y = x + uh.
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Proof. Let y ∈ N(S) and consider

∆ = (y · h)2 − h2y 2. (1.30)

Hodge Index Theorem immediaely gives ∆ > 0; let t be the following solution of the
equation (y + T h)2 = 0:

t =
−y · h +

√
∆

h2
. (1.31)

By de�nition we have that (y + th)2 = 0 and since we get (y + th) · h =
√

∆ > 0, we
have y + th ∈ Pos(S). Setting u = −t and x = y + th, we conclude the proof.

Consider now an interesting property of the positive cone: it is self-dual.

Proposition 1.51. If S is a projective smooth surface, then

Pos(S) =
(
Pos(S)

)∨
. (1.32)

We will see three di�erent proofs of this fact.

First proof of Proposition 1.51. We can see that Fact 1.46 gives the inclusion

Pos(S) ⊆ Pos(S)∨.

Consider now y ∈ Pos(S)∨; since h ∈ Pos(S), we have that y · h > 0. Take ∆ as in
(1.30) and t as in (1.31); we know that y + th ∈ Pos(S) and therefore y · (y + th) > 0.

If ∆ = 0, then y 2 = (y ·h)2

h2 > 0 and therefore y ∈ Pos(S).
Suppose now ∆ > 0. We have

0 6 y · (y + th) = y 2 +
−(y · h)2 + y · h

√
∆

h2
=

=
y 2h2 − (y · h)2 + y · h

√
∆

h2
=
−∆ + y · h

√
∆

h2
,

and therefore
∆ 6 y · h

√
∆,

that is
∆ 6 (y · h)2,

so
(y · h)2 − h2y 2 6 (y · h)2,

which gives
h2y 2 > 0

that is
y 2 > 0.

Therefore we have that y ∈ Pos(S) and the proposition is proven.

Now we see an other proof using coordinates.
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Second proof of Proposition 1.51. As before, Fact 1.46 implies Pos(S) ⊆ Pos(S)∨. Let
now y ∈ Pos(S)∨. Since e1 ∈ Pos(S), we have 0 6 y · e1 = y1.
If y1 = 0, since for i ∈ {2, . . . , ρ}, e1 ± ei ∈ Pos(S) (easy computation), we have 0 6
y · (e1 ± ei ) = ∓yi , which gives yi = 0 for i ∈ {2, . . . , ρ}, and therefore y = 0 ∈ Pos(S).
If y1 6= 0, let v = ( y2

y1
, . . . ,

yρ
y1

) be a vector in Rρ−1. If v = 0 then yi = 0 for i ∈ {2, . . . , ρ},
which gives y 2 = y 2

1 > 0, that is y ∈ Pos(S).
If v 6= 0, de�ne x = y1e1 + 1

‖v‖ (y2e2 + . . . yρeρ). Now

x2 = y 2
1 −

1

‖v‖2

ρ∑

i=2

y 2
i = y 2

1

(
1− 1

‖v‖2

ρ∑

i=2

(
yi

y1

)2
)

= 0

which gives x ∈ Pos(S) and therefore

0 6 y · x = y 2
1 −

1

‖v‖

ρ∑

i=2

y 2
i

= y 2
1

(
1− 1

‖v‖

ρ∑

i=2

(
yi

y1

)2
)

= y 2
1 (1− ‖v‖).

Thus we have
‖v‖ 6 1

which gives
‖v‖2 6 1

that is
ρ∑

i=2

(
yi

y1

)2

6 1

which gives

y 2
1 >

ρ∑

i=2

y 2
i

and then y ∈ Pos(S).

We will now give a more intuitive and geometric proof of the Proposition. The following
Lemma will be useful to understand the visual idea behind the proof.

Lemma 1.52. Let γ be a class in N(S), with ρ(S) > 3, such that γ2 < 0, γ · h > 0 and
let us consider 0 6= α ∈ Pos(S); let L be the line joining α to γ, then

L ∩ Pos(S) = {α} ⇐⇒ α2 = α · γ = 0.

Proof. At �rst, we have that the line joining α to γ is L(α, γ) = {γt | t ∈ R}, where

γt = tγ + (1− t)α. (1.33)

We can hence compute:

γt
2 = (γ2 − 2α · γ + α2)t2 − 2(α2 − α · γ)t + α2;

γt · h = tγ · h + (1− t)α · h.
(1.34)

We can now prove the two implications.
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(⇐) The intersection L ∩ Pos(S) is given by γt such that γt
2 > 0 and γt · h > 0.

By hypothesis we have α2 = α ·γ = 0, thus from (1.34) we get γt
2 = γ2t2 and and

since γ2 < 0, then γ2
t > 0 if and only if t = 0 that gives γt = α and the intersection

is just the point α.

(⇒) Suppose that L ∩ Pos(S) = {α}; at �rst we claim that α2 = 0. Indeed, if it were
α2 > 0, then for t → 0+ we can �nd γt such that

{
γt · h > 0

γt
2 > 0.

(1.35)

This is true because
lim

t→0+
γt · h = α · h,

that is positive by Kleiman criterion and

lim
t→0+

γt
2 = α2 > 0.

Using equations (1.35), we immediately see that γt ∈ L ∩ Pos(S) and γt 6= α that
is a contradiction; therefore we have α2 = 0.

Let us suppose, by contradiction, that α · γ 6= 0. Consider 0 < t < 1; by de�nition
of γt we see that γt · h > 0. We claim that γt

2 < 0; if indeed γt
2 > 0, then

γt ∈ L ∩ Pos(S) and γt = α which is not our case.

Recalling that α2 = 0 we can calculate

γt
2 = t((γ2 − 2α · γ)t + 2α · γ) < 0; (1.36)

since t > 0, then (γ2 − 2α · γ)t + 2α · γ < 0 and passing to the limit for t → 0+,
we get that 2α · γ 6 0, but since α · γ 6= 0 we have α · γ < 0.

Consider now t → 0−; as before γt · h > 0 and γt
2 < 0; since now t < 0, equation

(1.36) gives α · γ > 0, we get a contradiction and the lemma is proven.

Remark 1.53. This Lemma essentially gives a visual way to �nd the orthogonal hyperplane
in N(S) corresponding to a class γ: if γ is outside Pos(S), γ⊥ is simply the hyperplane
passing through the intersection points of ∂Pos(S) with the tangent lines from γ.
Furthermore, if we consider rays in N(S) corresponding to curves with strictly negative
self-intersection approaching to ∂Pos(S), we see, passing to the limit, that the orthogonal
hyperplane corresponding to a ray in R ⊂ ∂Pos(S) is exactly the tangent hyperplane
containing R. As we will see in 1.54, if γ ∈ ∂Pos(S), then Pos(X ) ∩ γ⊥ = R(γ).

We now give the last proof of Proposition 1.51: we get a description of Pos(S) (or its
dual) in terms of hyperspaces corresponding to the rays in ∂Pos(S).

Proof of Proposition 1.51. We want to show that Pos(S) = Pos(S)∨; if R is a ray in
∂Pos(S), we will prove that

Pos(S) =
⋂

R⊆∂Pos(S)

R>0 = Pos(S)∨. (1.37)
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Let us prove the �rst equality. If α ∈ Pos(S), then Fact 1.46 gives that, in particular, for
any generator γ of any ray R ⊆ ∂Pos(S), α·γ > 0 and therefore we have that α ∈ ⋂R>0.
If α ∈ ⋂R>0 we have that for every generator γ of R, α ·γ > 0. Now Fact 1.50 gives the
decomposition α = x + uh, with x ∈ ∂Pos(S), u ∈ R and h the ample class. If x = 0 we
have that α = uh; if γ is a generator of R we have γ ·α > 0 that is uh · γ > 0 and since,
by Kleiman's criterion, h · γ > 0 we get u > 0, hence α ∈ Pos(S). If x 6= 0, x spans a
ray in ∂Pos(S). We can compute

0 6 α · x = x2 + uh · x = uh · x ,

since by Kleiman's criterion h · x > 0, we get, also in this situation, that u > 0. Now
compute again:

α · h = (x + uh) · h = x · h + uh2 > 0,

α2 = (x + uh) · α = α · x + uα · h > 0;

and we have therefore that α ∈ Pos(S).
Let us prove the second equality in (1.37). If α ∈ Pos(S)∨, we have that α · γ > 0 for all
γ ∈ Pos(S), in particular it is true for γ ∈ ∂Pos(S) and therefore α ∈ ⋂R>0.
If α ∈ ⋂R>0, we need to show that α · γ > 0 for all γ ∈ Pos(S); but this is true since we
have seen that α ∈ ⋂R>0 = Pos(S). Then α ∈ Pos(S) and α · γ > 0 for all γ ∈ Pos(S),
again by Fact 1.46.

We can now describe the behaviour of orthogonal hyperplanes corresponding to integral
curves with non negative self-intersection: we have the following lemma.

Lemma 1.54. Let S be a smooth projective surface and let 0 6= γ ∈ Pos(S).

1. If γ2 > 0, then γ⊥ ∩ Pos(S) = {0};

2. if γ2 = 0, then γ⊥ ∩ Pos(S) = R(γ).

Proof. In the case γ2 > 0, we have that γ ∈ Pos(S); let us suppose by contradiction that
there exists 0 6= x ∈ γ⊥ ∩Pos(S). Then by Fact 1.46, we have x · γ > 0, a contradiction,
since x ∈ γ⊥.
Let us suppose that γ2 = 0. We will show the two inclusions. If x ∈ R(γ), we have
x = aγ, for some a > 0; hence we get, for an ample class h,

x2 = a2γ2 = 0 > 0

x · h = aγ · h > 0

x · γ = aγ · γ = 0,

and therefore x ∈ γ⊥ ∩ Pos(S).
Let us now consider x such that x2 > 0, x · h > 0 and γ · x = 0; we claim that if γ2 = 0,
then x2 = 0. Indeed, if x2 > 0, then x ∈ Pos(S) and since γ 6= 0, by Fact 1.46, x · γ > 0
and it is not our case.
Now we have x2 = 0, γ2 = 0 and hence x , γ ∈ ∂Pos(S). We immediately see that for
the segment S joining x to γ, we have by convexity that S ⊂ Pos(S) and furthermore, it
lies in ∂Pos(S); indeed we have:

(tγ + (1− t)x)2 = 0 for all t ∈ [0, 1],
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Let us note that, since there exists a γ with γ2 = 0, then ρ(S) > 2. Now, the equations
of ∂Pos(S) are

x2
1 =

ρ∑

i=2

x2
i , x1 > 0,

hence we have that there can't be any segment supported outside one of the rays generated
by the elements of ∂Pos(S). Thus, since γ ∈ S , the segment S is contained in R(γ) and
x ∈ S ⊂ R(γ).

As pointed out before, it is interesting to �nd relationships between di�erent cones we
can de�ne on a surface S . The following proposition shows some inclusions.

Proposition 1.55. Let S be a smooth projective surface, then

1. Amp(S) ⊆ Pos(S) ⊆ Big(S);

2. Nef(S) ⊆ Pos(S) ⊆ NE(S).

Proof. It is obvious to see that Amp(S) ⊆ Pos(S), and therefore, passing to closed cones,
that Nef(S) ⊆ Pos(S).
Furthermore, if x ∈ Pos(S), then Fact 1.46 and inclusion Nef(S) ⊆ Pos(S) give that
x ·n > 0 for all n ∈ Nef(S), which gives x ∈ Nef(S)∨ = NE(S) (see [Laz04, Prop.1.4.28]).
This concludes the second part of the Proposition.
Consider now x ∈ Pos(S). For 0 < ε� 1 we have that x − εh ∈ Pos(S), in fact we can
compute:

(x − εh)2 = x2 + ε2h2 − 2εx · h > 0

(x − εh) · h = x · h − εh2 > 0.

Therefore, using the second part of the proposition, we get f := x−εh ∈ NE(S) = Eff(S);
then x = εh + f ∈ Big(S) by Lemma 1.41 and this concludes the proof.

Proposition 1.56. If S is a smooth projective surface, we have the following decompo-
sitions.

1. For any y ∈ NE(S), there exist p ∈ Nef(S) and n ∈ Eff(S) such that y = p + n
and p · n = 0.

2. We have

NE(S) = Pos(S) +
∑

[C ]∈Neg(S)

R(C ) = Nef(S) +
∑

[C ]∈Neg(S)

R(C ). (1.38)

Proof. To see the �rst statement, let us consider y ∈ NE(S); if y = [D], where D is a
real divisor on S , using [Laz04, Theorem 2.3.19] or [Bad01, Theorem 14.14], since the
proof of the cited results holds true also for R-divisors, we get that there is a Zariski
decomposition for D:

D = P + N, P ∈ Nef(S), N ∈ Eff(S),

the matrix of components of N is de�nite negative and P · Γ = 0 for every component Γ
of N.
If we now set p = [P], n = [N] we have that y = [D] = [P] + [N] = p + n with
p ∈ Nef(S), n ∈ Eff(S) and p · n = 0, that is the �rst part of Proposition 1.56.
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We now prove the other decomposition. We can see that Proposition 1.55 immediately
gives

NE(S) ⊇ Pos(S) +
∑

[C ]∈Neg(S)

R(C ) ⊇ Nef(S) +
∑

[C ]∈Neg(S)

R(C ). (1.39)

Viceversa if y ∈ NE(S), the �rst part of the proposition gives y = p + n as above. In
particular, since the matrix of the components of N is negative de�nite, for any component
Γ of N, we have Γ 2 < 0.
It follows that

n = [N] ∈
∑

[C ]∈Neg(S)

R(C ),

and, obviously
y = p + n ∈ Nef(S) +

∑

[C ]∈Neg(S)

R(C ).

This gives that

NE(S) ⊆ Nef(S) +
∑

[C ]∈Neg(S)

R(C ) ⊆ Pos(S) +
∑

[C ]∈Neg(S)

R(C ),

that concludes the proof.
We can also give a second simpler proof of the decomposition:

NE(S) = Pos(S) +
∑

[C ]∈Neg(S)

R(C ).

Let us take γ ∈ NE(S); then, by Lemma 1.22, there exist �nitely many classes γi gener-
ating an extremal ray of NE(S) such that we can write:

γ =
∑

aiγi , with ai > 0.

We have now the decomposition:

γ =
∑

γj
2>0

ajγj +
∑

γk
2<0

akγk , with aj > 0, ak > 0.

Now γj ∈ Pos(S) and by convexity (see Fact 1.46) we have that
∑
γj

2>0 ajγj ∈ Pos(S). If

γk
2 < 0, by Lemma 1.37 there exists an integral curve Ck such that γk = [Ck ], Ck

2 < 0
and hence Ck ∈ Neg(S).
The reverse inclusion is obvious since Pos(S) ⊂ NE(S), C is a curve and NE(S) is a
convex cone.

We spend some words on a method we can use to visualize the cone Nef(S) using Pos(S)
and the rays generated by curves in Neg(S). We a have seen that NE(S) is given by the
convex hull of Pos(S) and the rays generated by classes of curves [Ci ] ∈ Neg(S); we want
now to picture Nef(S) inside Pos(S).
Let us consider a curve Ci ∈ Neg(S) and the corresponding ray R = R(Ci ); Lemma 1.52
gives that R⊥ ∩ ∂Pos(S) is given exactly by the tangency points of lines joining R and
∂Pos(S). The nef cone has to lie in the R-non negative part of N(S) that is the opposite
part of Ci with respect to R⊥; we have therefore that each so called self-negative ray cuts
out a slice of Pos(S). Since Nef(S) ⊆ Pos(S), repeating this process for all curves in
Neg(S) we get that Nef(S) can be pictured as in Figure 1.1.
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R⊥Nef(S)R = R(Ci)

b

b

b

b

b
b

b

b

b

Figure 1.1: The Nef(S) and R = R(Ci ) ∈ Neg(S) in the case ρ(S) = 3

Remark 1.57. Some words about Figure 1.1; since we deal with cones C of the real ρ-
dimensional vector space N(S), it is natural to picture the slice of C given by an hyperplane
far from the origin. In particular, in our situation, we have �xed an orthonormal basis of
N(S) and we have seen that the positive cone has equations:

x1 > 0, x1
2 >

ρ∑

i=2

xi
2.

If we intersect Pos(S) with the hyperplane x1 = 1 we see that the section we get is circular.
In Figure 1.1 we are obviously supposing that ρ(S) = 3 in order to have a 2-dimensional
slice. For the sake of simplicity, we will usually draw pictures in the situation ρ(S) = 3.

1.5 Topological tricks

In this small section we state and prove a couple of easy lemmas of topological taste.

Lemma 1.58. Let C , D be closed subsets of a topological space V . Then a Leibniz
formula holds for the topological boundary:

∂(C ∩ D) = (∂C ∩ D) ∪ (C ∩ ∂D). (1.40)

Proof. Let us prove the two inclusions.

(⊆) If x ∈ ∂(C ∩D), since C , D are closed sets, we have x ∈ C ∩D. We want to show
at �rst that x ∈ ∂C or x ∈ ∂D; if, by contradiction, x /∈ ∂C neither x /∈ ∂D, we
would have that x ∈ int C and x ∈ int D and hence, there exist two neighbourhoods
Ux and Vx of x such that Ux ∩ C c = ∅ and Vx ∩ Dc = ∅.
Now, since x ∈ ∂(C ∩ D), we have that for every neighbourhood Ix of x , then
Ix ∩ (C ∩ D)c 6= ∅, that is

(Ix ∩ C c ) ∪ (Ix ∩ Dc ) 6= ∅; (1.41)

setting Ix = Ux ∩ Vx we �nd a neighbourhood of x contradicting (1.41).

Since x ∈ C ∩ D and x ∈ ∂C ∪ ∂D, we immediately get

x ∈ (∂C ∩ D) ∪ (C ∩ ∂D).
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(⊇) Let us now suppose that x ∈ ∂C ∩D; we have that for every neighbourhood Ux of
x , Ux ∩ C 6= ∅ and Ux ∩ C c 6= ∅; since x ∈ D we have

Ux ∩ (C ∩ D) 6= ∅. (1.42)

Consider now:

Ux ∩ (C ∩ D)c = Ux ∩ (C c ∪ Dc ) = (Ux ∩ C c ) ∪ (Ux ∩ Dc ) 6= ∅, (1.43)

since Ux ∩ C c 6= ∅.
From (1.42) and (1.43) we see that x ∈ ∂(C ∩ D) and the proof is concluded.

Lemma 1.59. Let C ⊆ T be a closed set of a topological space T and let H ⊂ T be a
topological subspace; then

∂H (C ∩ H) ⊆ ∂C ∩ H, (1.44)

where ∂H denote the topological boundary in the space H.

Proof. At �rst we note that if x ∈ H, then an open neighbourhood Ux ,H ⊆ H of x can
be obtained from an open Ux ⊂ T such that Ux ∩ H = Ux ,H .
If x ∈ ∂H (C ∩H), then x ∈ H. Let us prove that x ∈ ∂C ; by hypothesis we have that for
every Ux ,H :

∅ 6=Ux ,H ∩ (C ∩ H) = Ux ∩ C ∩ H and

∅ 6=Ux ,H ∩ (C ∩ H)c = Ux ∩ H ∩ (C c ∪ Hc ) = Ux ∩ H ∩ C c ;

in particular Ux ∩ C 6= ∅ and Ux ∩ C c 6= ∅ and hence x ∈ ∂C ∩ H.
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Chapter 2

Conjectures on linear systems

In the study of linear systems many questions remain still open; yet a number of con-
jectures can be stated to try to tame the behaviour of linear systems. This chapter is
dedicated to some of these conjectures and the relationships among them.
In particular, in the case of surfaces, we deal with linear systems with given multiplicities
at a �nite number of points; these conjectures, as we will see, can be reformulated in a
more Mori-theoretic �avour on the blow up of the surface at certain points.
This reformulation can be made following the spirit of equivalent conjectures of Segre,
Harbourne, Gimigliano and Hirschowitz (see [Seg62], [Har86], [Gim87] and [Hir89]); we
will expand this discussion in the following sections in order to get to the statement of
the so called Segre Conjecture.

2.1 Nagata Conjecture and the plane case

In this section we focus on the P2 case and we stress the relationship among some classical
conjectures and some interesting reformulations in terms of Mori theory. This relation has
been recently studied by several authors; we refer in particular to [dF10].
We want to consider linear systems of curves in P2 with assigned multiplicities at general
or very general points x1, . . . , xr ∈ P2.
Let us recall that a point of a variety is said to be general if it is chosen in the complement
of a closed subset and it is said to be very general if it is chosen in the complement of
the countable union of preassigned proper closed subsets.
Nagata Conjecture (see [Nag59] or [Laz04, Remark 5.1.14]) is certainly one of the most
renowned open problems in the study of planar linear system.

Conjecture 2.1 (Nagata Conjecture). Let x1, . . . , xr ∈ P2 be very general points; if
r > 10, then

deg(D) > 1√
r

r∑

i=1

multxi (D) (2.1)

for every e�ective divisor D in P2.
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A stronger bound is given in the following conjecture.

Conjecture 2.2 (see [dF10]). Let x1, . . . , xr ∈ P2 be very general points; if r > 10, then

deg(D)2 >
r∑

i=1

multxi (D)2, (2.2)

for every non rational integral curve D in P2.

Nagata Conjecture has been classically stated for the projective plane; we are interested
in some generalization of this kind of statements for X , a smooth projective surface Y
blown up at r general points. We want to study the relationship among the cone NE(X ),
the positive cone and the curves with negative self-intersection.
In [dF10], the author states some conjectures with Y = P2.
We can now ask ourselves some conjecture-like problems: the �rst of them is about the
positive cone Pos(X ) and KX -extremal rays.

Problem 2.3. Let Y be a smooth projective surface and consider X = Blr (Y ) the blow
up of Y at r very general points, then

NE(X ) = Pos(X ) +
∑

Ri , (2.3)

where the sum runs over all KX -negative extremal rays of NE(X ).

The second, instead, involves curves with negative self-intersection.

Problem 2.4 ((−1)-Curves Conjecture). Let X = Blr (Y ) be the blow up of a smooth
projective surface Y and let C ⊂ X be an integral curve such that C 2 < 0, then C is a
(−1)-curve.

Remark 2.5. We just point out that in the case of surfaces, Mori theory gives that if X is
a surface with ρ(X ) > 3, then the extremal rays of NE(X ) spanned by KX -negative curves
are precisely those spanned by (−1)-curves. Indeed, since ρ(X ) > 3, each KX -negative
ray (that can be contracted by Contraction Theorem) corresponds to a contraction of
type (1) in Proposition 1.38 and it comes from a blow up at a point and therefore it is
generated by a (−1)-curve. If viceversa, R is generated by a (−1)-curve C , an immediate
computation using adjunction formula shows that C · KX = −1 and R is a KX -negative
ray.
In light of Proposition 1.38, we have that this happens either if we blow at least 2 points
up, or if Y 6= P2 or Y is not a minimal ruled surface.

Remark 2.5 immediately gives that if either r > 2, or Y 6= P2 or Y is not minimal ruled,
the decomposition in Problem 2.3 is equivalent to decomposition

NE(X ) = Pos(X ) +
∑

C (−1)-curve

R(C ). (2.4)

We have the following fact.

Fact 2.6. Problem 2.3 and Problem 2.4 are equivalent.

Proof. Let us suppose Problem 2.3 and consider an integral curve C ⊂ X such that
C 2 < 0. Problem 2.3 implies that

[C ] = α +
s∑

i=1

ai [Ci ], (2.5)
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where α ∈ Pos(X ), ai > 0 and Ci is an irreducible curve in KX
<0 spanning an extremal

ray (see Fact 1.33). Since C 2 < 0, then by Lemma 1.37, [C ] spans an extremal ray R
and, by extremality, we have that α ∈ R and ai [Ci ] ∈ R for every i . So we have that
α = a[C ] for some a > 0 and therefore, since 0 6 α2 = a2C 2 and C 2 < 0, then a = 0
and α = 0. So we have [C ] =

∑
ai [Ci ], but again by extremality we have that there

exists a b > 0 such that b[C ] = a1[C1], and we have

a1 C1 · KX︸ ︷︷ ︸
<0

= bC · KX ,

which gives C · KX < 0. Since C 2 < 0 and C · KX < 0, adjunction formula immediately
gives 2pa(C )− 2 < 0. So we have pa(C ) = 0, C 2 = −1 and C · KX = −1, that is C is a
(−1)-curve.
We will see two di�erent proofs of the reverse implication.
First proof. Proposition 1.56 gives the decomposition:

NE(X ) = Pos(X ) +
∑

[C ]∈Neg(X )

R(C );

since [C ] ∈ Neg(X ), then C 2 < 0; Problem 2.4 gives that C is a (−1)-curve and in
particular, it spans a KX -negative ray.
Second proof. Since Pos(X ) ⊂ NE(X ), by convexity of NE(X ),

Pos(X ) +
∑

Ri ⊂ NE(X )

and we just need to prove the reverse inclusion. Consider γ ∈ NE(X ); we have by Lemma
1.22 that there exist �nitely many γi ∈ NE(X ) such that R(γi ) is an extremal ray and
there exist ai > 0 such that

γ =
∑

aiγi .

We can now write
γ =

∑

γi
2>0

aiγi +
∑

γi
2<0

aiγi .

Now the �rst summand is in Pos(X ); since R(γi ) is an extremal ray with a generator
such that γi

2 < 0, then by Lemma 1.37 we have that there exists an irreducible curve Ci

spanning R(γi ) such that Ci
2 < 0. Problem 2.4 assures us that Ci is a (−1)-curve that,

again by adjunction, is KX -negative.

Remark 2.7. We have seen that Problem 2.3 and Problem 2.4 are equivalent, but they
shall immediately be false if Y contains integral curves C with C 2 6 −2.
This fact is not so unusual and this is why we didn't use the term Conjecture in Problem
2.3 and 2.4.

It is interesting and useful to recall a step toward the proof of Problem 2.4 in the case of
Y = P2, see [dF05, Proposition 2.4].

Proposition 2.8 ([dF05]). If C is an integral rational curve on X with negative self-
intersection, then C is a (−1)-curve.

This proposition allows us to prove the following.

Proposition 2.9. In the case of Y = P2, Problem 2.3 is equivalent to Conjecture 2.2.
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Proof. Let D ⊂ P2 be an integral non rational curve; let D̃ be its strict transform in
X = Blr P2. We have that

D̃ ∼ dH̃ −
∑

mi Ei ,

where H̃ is the pull back of the hyperplane H ⊂ P2 and we set mi = multxi (D). We have
that D̃2 = d2 −∑m2

i and we want to prove that it is non negative.
If D̃2 < 0, Problem 2.4 would imply that D̃ is a (−1)-curve, hence rational, and we get
a contradiction. Therefore we have

d2 >
∑

m2
i .

To prove the other implication, consider a curve C such that C 2 < 0; if C is rational,
then it is a (−1)-curve by Proposition 2.8. If C it is not rational, then C is the strict
transform of a D ⊂ P2 with C = D̃. So in this case we have that

0 6 D̃2 = d2 −
∑

m2
i = C 2 < 0,

that is a contradiction, concluding the proof.

2.2 Segre Conjecture

In the previous section we have stated some conjectures on the blow up X of a smooth
projective surface Y at r very general points. In this section will study some conjectures
about the Mori cone NE(X ) and the curves on X with negative self-intersection. In
particular we do not want to limit ourselves to the projective plane, but we want to
consider a smooth projective surface Y as general as possible.
The background problem we deal with, in general very di�cult, is the computation of the
dimension of a linear system of given degree and with �xed multiplicities at certain points.
This will be our setting: we �x an ample divisor H ⊂ Y and we consider an integral
curve C ⊂ Y in the linear system |dH|, passing through r points x1, . . . , xr with given
multiplicities mi = multxi (C ). If we denote X = Blr (Y ) the blow up of Y at the r points,
we see immediatly that the strict transform C̃ of C is in the linear system on X

∣∣∣∣∣dH̃ −
r∑

i=1

mi Ei

∣∣∣∣∣ , (2.6)

where H̃ is the pull back of H and Ei are the exceptional divisors over xi .
This is the situation we want to investigate:

� Y smooth projective surface over the �eld of complex numbers;

� x1, . . . , xr general points on Y ;

� X = Blr (Y ) = Blx1,...,xr (Y ) the blow up of Y ;

� C an integral curve on X , |C | the reduced linear system associated to C and
L = OX (C ) the associated line bundle.

In order to generalize the de�nition of special linear system, as we will soon see, we need to
require that h2(X , L) = 0. In this situation, indeed, we can give the following de�nition.
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De�nition 2.10. Let L be a line bundle on a smooth projective surface X with h2(X , L) =
0; we call virtual dimension of the linear system L associated L the number

v(L) = χ(L)− 1,

and expected dimension the number

e(L) = max{v(L),−1}.

Remark 2.11. Usual de�nitions of virtual dimension are consistent with our de�nition in
the case of K 3 surfaces (see [DVL05]).
Indeed, let Y denote a generic K 3 surface, that is a K 3 such that Pic Y = 〈H〉 with
n = H2. Consider r points x1, . . . , xr in general position on Y , and denote mi the
multipliticy at point xi . Let L = Ln(d ; m1, . . . , mr ) be the linear system of curves in |dH|
passing through the r points with the given multiplicities.
Now we denote with L̃ the corresponding linear system in the blow up X = Blr (Y ) and
with L the associated line bundle on X .
In this situation the virtual dimension of the linear system L is classically de�ned by

v(L) =
d2n

2
+ 1−

r∑

i

mi (mi + 1)

2
. (2.7)

The following holds:

v(L) = χ(L)− 1. (2.8)

Indeed, by Riemann-Roch Theorem, we have

χ(L)− 1 = χ(OY ) +
1

2
L · (L− KX )− 1;

Now since intersection does not change, if we consider an integral curve C ∈ L, we get

χ(L)− 1 = 1− q + pg (Y ) +
1

2
C 2 − 1

2
C · KX − 1, (2.9)

Now, since Y is a K 3 surface, we have q = 0, pg (Y ) = 1 and KX ≡
∑

Ei ; the (2.9)
becomes

χ(L)− 1 = 1 +
1

2

(
nd2 −

∑
m2

i

)
− 1

2

(∑
mi

)

=
d2n

2
+ 1−

∑

i

mi (mi + 1)

2
= v(L).

We now have the following interesting result.

Proposition 2.12. Let L be a line bundle on a smooth projective surface X with associated
linear system L, such that h2(X , L) = 0, then

1. dim(L) > e(L);

2. dim(L) = e(L) if and only if h0(L)h1(L) = 0.
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Proof. To prove the �rst fact, recall that we have e(L) = max{v(L),−1}. In case
e(L) = v(L), we have in particular that e(L) = χ(L)− 1 and we can calculate

dim(L) = h0(X , L)− 1

= χ(L)− 1 + h1(X , L)− h2(X , L)︸ ︷︷ ︸
=0

> χ(X , L)− 1 = e(L).

(2.10)

In the case e(L) = −1 we immediately see that

dim(L) = h0(X , L)− 1 > −1 = e(L).

We want now to prove the second statement.

(⇐) In the case h0(L) = 0, we have that dim(L) = h0(L)− 1 = −1 and we claim that
also e(L) = −1; since e(L) = max{χ(L) − 1,−1}, if it was e(L) = χ(L) − 1, we
would have that

χ(L)− 1 = h0(L)− h1(L) + h2(L)− 1 = −h1(L)− 1 > −1,

hence h1(L) = 0 and therefore e(L) = −1.

In the case h1(L) = 0 we get

−1 6 dim(L) = h0(L)− 1 = χ(L) + h1(L)− h2(L)− 1 = χ(L)− 1,

which gives χ(L)− 1 > −1 and therefore e(L) = χ(L)− 1 = dim(L).

(⇒) In the case e(L) = −1 we have that −1 = e(L) = dim(L) = h0(L) − 1, which
gives h0(L) = 0 and in particular h0(L)h1(L) = 0. In the case e(L) = χ(L)− 1, we
have χ(L)− 1 = e(L) = dim(L) = h0(L)− 1 = χ(L) + h1(L)− 1; then h1(L) = 0
and in particular h0(L)h1(L) = 0.

De�nition 2.13. Let L be the line bundle associated to a linear system L on X with
h2(X , L) = 0, then we say that:

1. L is special (equivalently, L is special) if dim(L) > e(L);

2. L is non special (equivalently, L is non special) if dim(L) = e(L).

Question 2.14. Since we want to distinguish special from non special linear systems,
we gave all these de�nitions in the case h2(L) = 0; we would like to �nd out what kind
of surfaces realize this condition. Let L be a line bundle on X = Blr Y , L 6= OX with
associated linear system L 6= ∅, when does h2(L) = 0?

Remark 2.15. As will be clearer in the following, we want now to turn our gaze to surfaces
Y with pg (Y ) = 0 or KY ≡ 0. It interesting to point out that these two cases cover
a number of interesting surfaces; indeed, if pg (Y ) = 0 we get surfaces as the projective
plane, Enriques and bielliptic surfaces and a number of surfaces of general type; if else
KY ≡ 0 and pg (Y ) 6= 0, we have a fortiori that KY ∼ 0 and hence Y has to be an
Abelian or a K 3 surface. We will discuss many examples in Section 2.4.
In the following the surface Y will be one of the following:
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� a surface with pg (Y ) = 0;

� an abelian surface;

� a K 3 surface.

In the spirit of generalizing the Segre Conjecture, we will be mainly interested in non
exceptional linear systems.

De�nition 2.16. We say that a linear system L on a X = Blr Y is non exceptional if
there is a divisor in L such that its support is not contained in the exceptional locus of
X .

The following Lemma gives an answer to Question 2.14.

Lemma 2.17. Let Y be a smooth surface with either pg (Y ) = 0 or a K 3 or an abelian
surface; let us consider a line bundle L on X = Blr (Y ) with associated linear system
L 6= ∅. We have the following.

1. If L is not exceptional, then h2(X , L) = 0.

2. In the exceptional case, we have:

h2(X , L) =





0 if pg (Y ) = 0

0 if Y abelian or K 3 surface and L non reduced

1 if Y abelian or K 3 surface and L reduced.

3. If L is exceptional and reduced, then h2(X , L) = pg (Y ) and h2(X , L) = 1 if Y is
either a K 3 or an abelian surface.

Proof. In our situation we have that the line bundle L is associated to an e�ective divisor
on X and we can write L = OX (D), with

D = F +
∑

ai Ei , ai ∈ Z, ai > 0,

where F > 0 is a divisor without exceptional components.
By duality, we immediately get

h2(X , L) = h2(X ,OX (D)) = h0(OX (KX − D)) =

= h0(OX (ϕ∗KY +
∑

Ei − F −
∑

ai Ei )).
(2.11)

We can make a reduction to the reduced case: indeed we see at once that

M ′ := ϕ∗KY +
∑

Ei − F −
∑

ai Ei 6 ϕ∗KY +
∑

Ei − F −
∑

ai61

ai Ei =: M.

Now, since ai > 0, we have that

M = ϕ∗KY − F +
∑

j∈J

Ej , for some J = {j1, . . . , jk} ⊆ {1, . . . , r}.

Thus, since h0(OX (M ′)) 6 h0(OX (M)), if we show that h0(OX (M)) = 0, then we have
the vanishing also in the non reduced case.
We can use the following easy fact.
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Claim 2.18. Let E be an exceptional prime divisor and D a divisor; if D · E 6 0, then

h0(OX (D + E )) = h0(OX (D)).

Proof of the Claim. From the exact sequence

0→ OX (D)→ OX (D + E )→ OE ((D + E )|E )→ 0,

we get, since E ' P1 and D · E 6 0,

h0(OE ((D + E )|E )) = h0(OP1 (D · E − 1︸ ︷︷ ︸
60

)) = 0.

Thanks to Claim 2.18 we will be able to drop, one by one, all the exceptional components
Ej , j ∈ J in M. Thus we want to use Claim 2.18 with

D = ϕ∗KY − F − Ej1 − · · · − Eji and E = Eji+1

for 0 6 i 6 k − 1. Thus we get

(ϕ∗KY − F − Ej1 − · · · − Eji ) · Eji+1 = ϕ∗KY · Eji+1 − F · Eji+1 − 0 6 0,

since ϕ∗KY · Eji+1 k = 0 and F · Eji+1 > 0 because F has no exceptional components.
We can therefore apply the Claim 2.18 for all i = 0, . . . , k − 1 and we �nally get

h0(OX (M)) = h0(OX (ϕ∗KY − F ))

= h0(ϕ∗OX (ϕ∗KY − F ))

= h0(OY (KY )⊗ ϕ∗OX (−F )).

(2.12)

Let us now suppose L exceptional: in this situation F = 0.
We see that h0(OX (M)) = pg (Y ) and hence if pg (Y ) = 0 we have h2(X , L) = 0.
If otherwise Y is either a K 3 or an abelian surface, since KY ∼ 0, we get
h0(OX (M)) = 1 and hence h2(X , L) 6 1. In this situation we have

h2(L) = h0(OX (
∑

Ei −
∑

ai Ei ));

if L is reduced, then ai = 0, 1 and by Claim 2.18 we get h2(L) = h0(OX ) = 1.
If L is not reduced, then there exist some aj > 2; hence, again by Claim 2.18, we get

h2(L) = h0(OX (
∑

Ei −
∑

i :ai =1

Ei −
∑

j :aj>2

aj Ej ))

= h0(OX (
∑

i∈I⊆{1,...,r}
Ei −

∑

j :aj>2

aj Ej )) =

= h0(OX (−
∑

j :aj>2

aj Ej )) = 0.

In the non exceptional case we have F 6= 0. Let us consider at �rst the case pg (Y ) = 0.
We have the exact sequence

0→ OY (KY )⊗ ϕ∗OX (−F )→ OY (KY ),
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which, since h0(OY (KY )) = 0, gives h0(OY (KY )⊗ϕ∗OX (−F )) = 0 and hence h2(X , L) =
0.
In the case of abelian or K 3 surface, we have KY ∼ 0 and hence from the (2.12), since
F 6= 0 is e�ective, we get

h0(ϕ∗OX (−F )) = h0(OX (−F )) = 0,

concluding the proof.

Remark 2.19. In light of Question 2.14, we want to consider line bundles L with
h2(X , L) = 0. Now, Lemma 2.17 tells us that, in the case of surfaces with geometric
genus 0, K 3 or abelian, this always happens if L is a line bundles associated to non
exceptional linear systems L 6= ∅.
The exceptional case, since the dimension of the linear system is obviously zero, is not
interesting: henceforth, we will focus on non exceptional linear system.

The list of ingredients to state the Segre Conjecture is now ready and we are getting
closer to the goal of this section.
The original Segre Conjecture1, stated in the setting of planar linear system, can be easily
stated for any surface; in [DVL05], the authors state the Segre Conjecture for a generic
K 3 surface.

Conjecture 2.20 (see [DVL05]). Let Y be a generic K 3 surface and let L be a non
empty and reduced linear system on Y , then L is non special.

In the following, we are interested in the generalization of this conjecture to other surfaces.
As pointed out at the beginning of this section, the study of linear systems of divisors
on Y with multiplicities at certain points can be easily translated in the study of linear
systems on the blown up surface X .
We have seen that, in order to ensure that the de�nition of special linear system makes
sense, we have to ask h2(X , L) = 0 and Lemma 2.17 provides an answer.

Problem 2.21 (Segre Problem). Mimicking Conjecure 2.20, we can ask ourselves a sort
of Segre Problem for all surfaces as in Remark 2.15.

(?) Let X = Blr Y a blown up surface at r general points; let us suppose h2(X , L) = 0
for all line bundles L associated to a non exceptional and non empty linear system
L. If moreover L is reduced, then L is non special.

Remark 2.22. We called Problem the statement (?) because we will soon see in Section
2.4 that this can't be true for a number of surfaces.
To this end it may be worth to recall that an abelian variety is called simple if it does not
contain any non trivial abelian subvarieties. In the non simple case, we have, moreover,
that if C ⊂ Y is an elliptic curve contained in an abelian surface, then Y does contain
another curve C ′ such that Y is isogenous to C ×C ′ (see [BL04, PoincarÃ©'s complete
reducibility theorem]).

1From [Seg62]:

[. . .]Questi ed altri esempi consimili portano a fare ritenere probabile che

A�nchÃ© un sistema lineare completo Σ di curve piane, dotato di un numero �nito di punti
base assegnati in posizione generica ed avente dimensione virtuale d−1, sia sovrabbondante
(e quindi e�ettivo, cioÃ� di dimensione δ > 0) Ã� necessario (ma, come risulta da esempi,
non su�ciente) ch'esso possegga qualche componente �ssa multipla.
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We will soon see in Section 2.4 that a statement like (?) can't be true for non simple
abelian surfaces and some remarkable cases of surfaces Y with pg (Y ) = 0, like Enriques
or bielliptic surfaces.

We are now ready to state our formulation of Segre Conjecture.

Conjecture 2.23 (Segre Conjecture). Let Y be either a K 3 surface or a simple abelian
surface or a surface with pg (Y ) = 0 and let ϕ : X → Y be the blow up at x1, . . . , xr ,
general points of Y .

If L is a non exceptional, non empty and reduced linear system on X , then L is non
special.

2.3 List Conjecture

We want now to interpret Conjecture 2.23 in terms of integral curves on the surface X in
order to get some informations about NE(X ).
In particular we are interested in curves with negative self-intersection (see De�nition
1.40) and we would like to locate the rays generated by these curves.
What can we say about curves with negative self-intersection? There are some important
conjectures about these topics. In particular, we recall the following conjecture, stated by
its author in [Har10, Section 1].

De�nition 2.24. We say that a smooth surface S has bounded negativity if there exists
an integer νS such that C 2 > −νS for each integral curve C ⊂ S .

Conjecture 2.25 (Bounded Negativity Conjecture). Every smooth surface S in charac-
teristic 0 has bounded negativity.

Remark 2.26. It is known that the Bounded Negativity Conjecture is false in positive
characteristic: see, for example, [Har10, Remark I.2.2]; it may be worth to point out
that recent attempts (see [BHK+11]) by several authors to produce counterexamples in
characteristic 0 have not been successful: the bounded negativity conjecture remains still
open.

Nevertheless the conjecture holds true for a meaningful class of surfaces.

Fact 2.27. Bounded Negativity Conjecture holds true for smooth projective surfaces S
with −KS pseudoe�ective. In particular it holds for K 3 surfaces, Enriques surfaces and
abelian surfaces.

Proof. Our goal is the existence of a positive integer ν such that C 2 > −ν for all integral
curve C ⊂ S .
Let us consider an integral curve C with C 2 < 0. By adjunction we have

C 2 = 2pa(C )− 2− KS · C ;

hence if −KS · C > 0 we have C 2 > −2. If else −KS · C < 0, let us consider the Zariski
decomposition of the pseudoe�ective divisor −KS :

−KS = P + N,
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with P ∈ Nef(S) and N =
∑s

i=1 ai Ei an e�ective Q-divisor. We claim that there are just
�nitely many integral curves such that −KS · C < 0, indeed we have

−KS · C = P · C + N · C < 0,

and since we must have (
∑

ai Ei ) · C < 0, then C has to be one of the E1, . . . , Es .
Hence we �nally get

− ν = min{−2, E1
2, . . . , Es

2}. (2.13)

We have seen that negativity holds for certain surfaces, nevertheless it is not clear what
happens blowing up some points on those surfaces. This is the case we will focus on.
It seems interesting to state the following conjecture, a natural generalization of the
(−1)-Curve Conjecture (see Problem 2.4).

Conjecture 2.28 (List Conjecture). Let C ⊂ X = Blr Y be a non exceptional integral
curve such that C 2 < 0, then there exist a positive number ν = νX and a non negative
integer π = πX such that C is a (−n, p)-curve for some 1 6 n 6 ν and 0 6 p 6 π (that
is there is a list of possible (−n, p)-curves).

In the spirit of Fact 2.27, we have a similar result for the arithmetic genus of integral
curves with negative self-intersection.

Fact 2.29. Let S be a smooth projective surface with −KS pseudoe�ective. Then there
exists an integer π > 0 such that for every integral curve C with C 2 < 0, we have
pa(C ) 6 π, that is, the arithmetic genus is bounded from above.

Proof. Let us consider an integral curve C with C 2 < 0. By adjunction, we immediately
get

2pa(C ) = C 2 + C · KS + 2 < C · KS + 2,

and hence

pa(C ) <
1

2
C · KS + 1.

Therefore for any curve C with C · KS 6 0 we get pa(C ) < 1, that is pa(C ) = 0. If
C · KS > 0 that is −KS · C < 0, we have, as in the proof of Fact 2.27, that C must be
one of the components of the e�ective part N =

∑s
i=1 ai Ei in the Zariski decomposition

of the anticanonical divisor −KS .
Summarizing, we have that if C is an integral curve with negative self-intersection, then
pa(C ) 6 π for

π = max{0, pa(E1), . . . , pa(Es)}.

Immediately we get the following.

Proposition 2.30. Let X = Blr Y be a smooth projective surface with −KX pseudoef-
fective, then the List Conjecture (Conjecture 2.28) holds true.

Proof. See Fact 2.27 and Fact 2.29.
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Remark 2.31. In the proof of Fact 2.27 and of Fact 2.29, we used, as essential ingredient,
the Zariski decoposition. It is worth to point out that we did not use the whole power
of the Zariski decomposition: we just used the existence of the so called weak Zariski
decomposition:

− KS = P + N, with P ∈ Nef(S), N ∈ Eff(S). (2.14)

The weak Zariski decompostion will be one of the main topic of the second part of this
thesis; we refer in particular to the beginning of Chapter 4 for further details.

We can now see that it is possible, starting from a surface Y with −KY such that the
decomposition (2.14) holds (equivalently if −KY is pseudoe�ective), to produce a blown
up surface X = Blr Y satisfying the List Conjecture.
Let us take Y and consider its blow up ϕ : X → Y at r general points x1, . . . , xr . If
−KY = P + N as in the (2.14), since by generality the components of N do not pass
though the blown up points, we get

−KX = ϕ∗P −
r∑

i=1

Ei + ϕ∗N.

Remark 2.32. In view of Remark 2.31 and Proposition 2.30, to verify the List Conjecture,
it is enough to show that

ϕ∗P −
r∑

i=1

Ei ∈ Nef(X ). (2.15)

Thus the List Conjecture holds true if ϕ∗P is su�ciently positive and the number of
blown-up points is small.
This seems to be a very interesting fact in the spirit of our main result (see Theorem 3.13):
if we are able to �nd a smooth projective surface Y with a weak Zariski decomposition for
−KY with ϕ∗P su�ciently positive with respect to r , then our main result, independently
from any conjecture, is true on X = Blr Y .

Remark 2.33. In the particular case of Y = P2, if L is the class of a line, the decompo-
sition is −KY = 3L and hence, on X = Blr Y , we get −KX = 3ϕ∗L −∑r

i=1 Ei . As well
known, this is nef for r = 1, . . . , 9. In this situation Fact 2.27 and Fact 2.29 give for the
List Conjecture the bounds: ν = 2 and π = 0.

Remark 2.34. In the following we will be interested in the case the bounds ν and π
depend only on the surface Y ; in principle, indeed, ν and π may depend on the number
of points we want to blow up.

We can now see how Conjecture 2.23 implies Conjecture 2.28 and allows us to �nd explicit
bounds on the negativity and on the arithmetic genus depending only on the surface Y
we blow up.

Proposition 2.35. Let C ⊂ X = Blr Y be a non exceptional integral curve on a smooth
blown up surface X , such that C 2 < 0; let us suppose Conjecture 2.23 (or, more generally,
the Segre Problem).

1. It holds
− 1 > C 2 > pa(C )− χ(OY ) > −χ(OY ), (2.16)

and in particular χ(OY ) > 1;
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2. Conjecture 2.28 holds true with

ν = χ(OY ); π = χ(OY )− 1. (2.17)

Proof. Let us consider the linear system |C |, associated to C ⊂ X , non exceptional,
integral curve such that C 2 < 0; Conjecture 2.23 implies that the system is non special,
and since it is non empty, we get that

χ(OX (C )) > 1.

Riemann-Roch theorem gives

χ(OX ) +
1

2
C 2 − 1

2
C · KX = χ(OY ) +

1

2
C 2 − 1

2
C · KX > 1, (2.18)

since χ(OX ) = χ(OY ) is a birational invariant. Set χ = χ(OX ) and p = pa(C ). We get

C 2 − C · KX > 2− 2χ.

Adjunction formula gives C · KX = 2p − 2− C 2 and so we have

C 2 − 2p + 2 + C 2 > 2− 2χ ⇒ C 2 − p > −χ.

Recalling that C 2 6 −1 we get

− 1 > C 2 > p − χ > −χ, (2.19)

that is the (2.16). This condition allows us to �nd immediatly the bounds
{

C 2 > −χ(OY )

pa(C ) 6 χ(OY )− 1.
(2.20)

2.4 Special cases of the Segre Problem

In this section we will study the behaviour of the Segre Problem (see Remark 2.21) in
some special cases; in particular, using elliptic �brations, we will easily show that the Segre
Problem must have a negative answer if the blown-up surface Y is abelian, Enriques or
bielliptic.
At �rst, in the case of χ(OY ) 6 0, we have the following fact.

Fact 2.36. Let Y be a smooth projective surface with χ(OY ) 6 0 and either pg (Y ) = 0
or Y is an abelian surface; suppose that Conjecture 2.23 holds true for X , the blow up
of Y at r general points. If an integral curve C ⊂ X is such that C 2 < 0, then C is
exceptional.

Proof. From the (2.16), we see in particular that

−1 > C 2 > −χ(OY ).

If χ(OY ) 6 0, Conjecture 2.23 implies that there can't be non exceptional curves with
negative self-intersection.

We now focus on some special cases.
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Projective Plane

Let Y = P2 be the projective plane; since χ(OP2 ) = 1, in view of (2.17), Conjecture 2.28
is expected to hold with ν = 1 and π = 0.
Therefore we have that if C is an irreducible and reduced non exceptional curve such that
C 2 < 0, than C is a (−1)-curve; since exceptional curves are (−1)-curves, Conjecture
2.28 says that on the blow up of the plane at r general points, the only integral curves
with negative self-intersection are (−1)-curves.
Hence we recover the so-called (−1)-Curve Conjecture 2.4 (see [dF10, Conjecture 1.1]).

General type

Fact 2.36 shows that in view of Segre Problem, the interesting cases are essentially given
by surfaces Y with χ(OY ) > 1 and either pg (Y ) = 0 or K 3 or simple abelian surfaces.
This situation covers also the interesting class of surfaces of general type with pg (Y ) = 0;
this class is not empty in view of an important theorem from Castelnuovo (see [Bea96,
Theorem X.4]).

Theorem 2.37 (Castelnuovo). Let Y be a non-ruled surface; then χ(OY ) > 0. Moreover,
if Y is of general type, then χ(OY ) > 0.

These surfaces of general type could be an interesting class to study.

Surfaces with a �bration and easy counterexamples

We want now to see some easy counterexamples of the Segre Problem. We have the
following result.

Fact 2.38. Let Y be a surface with a base point free pencil V of curves of arithmetic
genus g ; if for the strict transform C̃ ⊂ X = Blr Y of a general curve in the pencil we
have

χ(OY ) 6= dim |C̃ |+ g + 1, (2.21)

then the Segre Problem has a negative answer for X = Blr Y .
In particular, in the pg (Y ) = 0 case, this holds true if g > 0 or q > 0, where g is the
genus of the curves in the pencil and q is the irregularity of Y .

Proof. The base point free pencil V determines a morphism ψV : Y → P1, whose �bres
are exactly the genus g curves of V. Thus for C ∈ V, we immediately get: C 2 = 0.
Let us focus on X = Blr Y and let us consider the general points x1, . . . , xr ; since we have
a �bration, there exists a �bre C = F1 passing through x1. By generality and by Bertini
theorem, we can suppose that C is a smooth curve and therefore

m1 = multx1 (C ) = 1

mi = multxi (C ) = 0 for i = 2, . . . , r .

Moreover, we can also see that the curve C is irreducible and hence integral; thus its
strict transform C̃ = ϕ∗C − E1 is an integral, smooth and non exceptional curve with
C̃ 2 = −1.
Let us suppose, by contradiction, that the Segre Problem holds true. For L = OX (C̃ ),
Segre Problem gives

dim(|L|) = max{χ(L)− 1,−1};
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since |L| 6= ∅, then
dim(|L|) = χ(L)− 1. (2.22)

By Riemann-Roch theorem and adjunction, we get

χ(L) = χ(OX ) +
1

2
(C̃ 2 − C̃ · KX )

= χ(OY ) + C̃ 2 − g + 1.

Now, by equation (2.22), we get

χ(OY ) = dim(|L|) + g + 1, (2.23)

a contradiction with our ad hoc hypothesis.
The former equation, since dim(|L|) > 0, gives the bound χ(OY ) > g + 1.
In the pg (Y ) = 0 case, since χ(OY ) = 1− q, this becomes g + q 6 0 and hence

q = g = 0.

Thus, whenever g > 0 or q > 0, the Segre Problem has a negative answer.

Let us recall that a surface Y has an elliptic �bration (see [BPV84]) if there exists a
proper connected morphism Y → C to an algebraic curve C such that the general �bre
is a smooth elliptic curve.
In the light of this, it is immediate to state the following fact.

Fact 2.39. Let Y be either an Enriques or a bielliptic surface, then the Segre Problem
for X = Blr Y has a negative answer.

Proof. It is well known that if Y is an Enriques or a bielliptic surface, then Y has an
elliptic �bration (see [BPV84]). Let us take the elliptic �bre C = F passing through the
�rst blowing-up point x1. We immediately see that C 2 = 0; by generality of the points,
we can suppose that:

m1 = 1; mi = 0, for i = 2, . . . , r .

If we denote by C̃ its strict transform, we get

C̃ = ϕ∗C − E1,

which gives C̃ 2 = −1. Now, since C̃ is a non exceptional curve with negative self-
intersection, if Segre Problem had a positive answer, Proposition 2.35 would give

−1 > C̃ 2 > 1− χ(OY ),

hence χ(OY ) > 2, that is a contradiction.

Fact 2.40. Let Y be a not simple abelian surface, then the Segre Problem for X = Blr Y
has a negative answer.

Proof. It is enough to prove that there is an elliptic curve passing through a general point
of Y , but since Y is abelian, if there is such a curve through x ∈ Y , then, by translation,
there is a curve through every point.
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Now Y is not simple, hence it is isogenous to C × C ′ and we can suppose that the �rst
general point to blow up x1 lies on the smooth elliptic curve C ⊂ Y .
By adjunction formula, since KY ≡ 0, we get C 2 = 0 and since C is smooth, by generality,
we have

m1 = 1; mi = 0, for i = 2, . . . , r .

Thus, mimicking the proof of Fact 2.39, we get the required contradiction with the Segre
Problem.



Chapter 3

The shape of the Mori cone

This chapter is dedicated to prove the main result (see Theorem 3.13) of the �rst part of
the thesis. We will see as the Segre Conjecture implies that a slice of the Mori cone of
the blow-up surface has to coincide with the positive cone.

3.1 Negative part

In this section we want to study the decomposition of Neg(X ), the set of negative self-
intersection curves (see De�nition 1.43), of a smooth projective surface X . In particular,
this decomposition allows us to study the structure of the Mori cone NE(X ).
As pointed out before, we are interested in integral curves C with negative self-intersection,
negativity bounded from below and arithmetic genus bounded from above (see Conjecture
2.28 and Remark 2.34).
We have the following fact.

Fact 3.1. Let X be a smooth projective surface and let L′ be a �nite, subset

L′ ⊂ ((−∞,−1] ∩ Z)× ([0, +∞) ∩ Z) ;

we say that the integral curve C ⊂ X is in the list L′ if (C 2, pa(C )) ∈ L′ and we denote

L =
{

[C ] | (C 2, pa(C )) ∈ L′
}
⊂ N(X ).

Then the following are equivalent:

1. for all integral curve C ⊂ X such that C 2 < 0 we have that [C ] ∈ L;

2. we have the decomposition

NE(X ) = Pos(X ) +
∑

[C ]∈L

R(C ). (3.1)
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Proof. To show that the �rst implies the second, it is enough to recall from Proposition
1.56 that we have the decomposition

NE(X ) = Pos(X ) +
∑

[C ]∈Neg(X )

R(C ). (3.2)

Now we claim that Neg(X ) = L; it is obvious that L ⊆ Neg(X ) and our hypothesis gives
the reverse inclusion. We have therefore that decomposition (3.2) is the same of equation
(3.1).
Our goal is now to prove the reverse implication. Consider an integral curve C such that
C 2 < 0; from (3.1) we get the decomposition:

[C ] = α +
∑

i∈I

bi [Ci ], (3.3)

where α ∈ Pos(X ), bi > 0 and [Ci ] ∈ L. Now, since C 2 < 0, by Lemma 1.37, [C ] spans
the extremal ray R(C ). By extremality we have that α ∈ R(C ) and so there exists a real
number a > 0 such that α = a[C ]. We immediately get

0 6 α2 = a2[C ]2 6 0,

that gives a2[C ]2 = 0 and so a = 0 and α = 0.
Again by extremality, we also have that [C ] ∈ R(Ci ) for all i ∈ I ; but since by Lemma
1.39 in such a ray there can't be two distinct integral curves, the decomposition (3.3) has
only a summand with bi0 = 1, C = Ci0 and in particular [C ] ∈ L.

Remark 3.2. Since we are considering blown-up surfaces at r points, we can't avoid
the exceptional curves E1, . . . , Er ⊂ X . In light of this, it is immediate to see that the
�rst claim in Proposition 3.1 is thus equivalent to Conjecture 2.28. In particular Segre
Conjecture (Conjecture 2.23) implies the decomposition given in (3.1).

K3 surfaces

The case of K 3 surfaces has been considered in [DVL05]; in this paper the authors state
the Segre Conjecture for a generic K 3 surface, that is Y is a K 3 and Pic(Y ) = Z[H], for
an ample divisor H on Y .
In this subsection we want to study in more details how Segre Conjecture forces the
structure of the negative part of NE(X ).
Let Y be a K 3 surface and X = Blr Y the blow up at r very general points; let us recall
that χ(OY ) = 2.
Let us suppose Conjecture 2.23 holds true; on one hand for non exceptional curves C ⊂ X ,
Proposition 2.35 gives the bounds

− 1 > C 2 > pa(C )− 2 > −2; (3.4)

on the other hand, if C ⊂ X is an exceptional integral curve, then it is smooth, rational
and C 2 = −1.
Now, since we are supposing Segre conjecture, the inequality (3.4) gives that the curves
with negative self-intersection has to be in the list

{(−1, 0), (−1, 1), (−2, 0), (−2, 1)} .

Our goal is now to re�ne this list of the peculiar case of K 3 surfaces.



3.1. Negative part 45

As pointed out before there always are the exceptional curves C that are (−1, 0)-curves.
We will call a curve like this a curve of kind I.
Suppose now that C is not exceptional, and consider the case C 2 = −2, we immediately
get from (3.4) that pa(C ) = 0 and C is a (−2, 0)-curve; from adjunction formula 2pa(C )−
2 = C 2 + C · KX , we get that C · KX = 0.
We see therefore that adjunction prevents the existence of (−2, 1)-curves.
Where does a curve like this come from? Since KX = E1 + · · ·+ Er , we have that

C · KX = C · E1 + · · ·+ C · Er = 0,

since C is not exceptional, then C · Ei must be non negative and therefore we have
C · Ei = 0 for all i . Let Γ = ϕ(C ) be the image in Y ; since C does not intersect the
exceptional divisors, C = Γ̃ = ϕ∗Γ . In particular, we have that Γ 2 = (ϕ∗Γ )2 = C 2 = −2
and, since KY = 0, pa(Γ ) = 0.
To summarize, if C is a (−2, 0)-curve on X , then C · KX = 0 and there exists a curve
Γ on Y that is a (−2, 0)-curve not passing through the blown-up points Pi . We will call
such a curve C a curve of kind II.
Suppose now that C is not exceptional and C 2 = −1, then (3.4) gives us two possible
values of pa(C ).
If C 2 = −1 and pa(C ) = 0, adjunction gives

2pa(C )− 2 = C 2 + C · KX ⇒ −2 = −1 + C · KX ⇒ C · KX = −1.

But this would give C ·E1 + · · ·+C ·Er = −1 that is impossible, since C is not exceptional
and C · Ei > 0 for all i .
Consider now C a (−1, 1)-curve; adjunction gives C · KX = 1 and we get

C · E1 + · · ·+ C · Er = 1.

This means that there exists an i such that C · Ei = 1 and C · Ej = 0 for all j 6= i . Let
Γ = ϕ(C ); we have ϕ∗Γ = Γ̃ + Ei = C + Ei , that gives C = Γ̃ = ϕ∗Γ − Ei . Let us
compute the self-intersection:

Γ 2 = (ϕ∗Γ )2 = (C + Ei )
2 = C 2 + 2C · Ei + Ei

2 = −1 + 2− 1 = 0,

and by adjunction we get pa(Γ ) = 1.
Summarizing, we have that if C is a (−1, 1)-curve on X , then C · KX = −1 and C = Γ̃ ,
where Γ is a (0, 1)-curve on Y passing through Pi for some i with multeplicity 1 and not
passing through the others blown up points. We will call C a curve of kind III.
To summarize once again, we have that the Segre Conjecture implies that the curves with
negative self-intersection on a blown up K 3 surface are of one of this kind:

kind I II III

(C 2, pa(C )) (-1,0) (-2,0) (-1,1)
C · KX -1 0 1
ϕ(C ) point Γ Γ

(Γ 2, pa(Γ )) (-2,0) (0,1)
multPi (Γ ) = 0 multPi = 1, multPj = 0

for all i for all j 6= i .

In the K 3 surface case, Proposition 3.1 gives the following fact.
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Fact 3.3. Let X = Blr Y be the blow up of a K 3 surface; if the Segre Conjecture holds
true, then the list in Proposition 3.1 is given by curves of kind I, II or III and we have the
decomposition:

NE(X ) = Pos(X ) +
∑

Ci of kind I

R(Ci ) +
∑

Cj of kind II

R(Cj ) +
∑

Ck of kind III

R(Ck ).

In the case of generic K 3, we have the following fact.

Fact 3.4. If Y is a generic K 3 surface; suppose Segre Conjecture holds for X = Blr Y ,
then if C is an irreducible curve such that C 2 < 0, then it is an exceptional (−1)-curve.

Proof. Since Y is generic, then Pic(Y ) = Z[h] and NE(Y ) = R(h) is simply the ray
generated by h. Therefore for every curve on Y we have C 2 > 0, hence on X there can't
be curves of kind II or III.

3.2 Goal and warm-up

In [dF10], the author shows that assuming Segre Conjecture, then the Mori cone of
the projective plane blown up at su�ciently many points is circular in some half space
depending on a certain divisor. In this section we generalize this result to any blown-up
surface X satisfying certain properties.
In view of the conjectures we stated and recalled in Chapter 2, it is reasonable to expect
the following.

Conjecture 3.5 (Circular part conjecture). Let X be the blow up of an smooth algebraic
surface at r (eventually large) general points. Then there exists an R-divisor D on X such
that

NE(X )D>0 = Pos(X )D>0 . (3.5)

We will show in Theorem 3.13 how, if r is su�ciently large, this conjecture can be derived
as a consequence of the List Conjecture (see Conjecture 2.28). In particular this is a
consequence of Segre Conjecture, hence Conjecture 3.5 would follow from Segre.
In order to assure all the de�nitions in the former sections make sense, we work with a
smooth projective surface Y with either pg (Y ) = 0 or Y a K 3 surface or an abelian
surface and let X = Blr Y be the blow up at the general points x1, . . . , xr .
In the spirit of generalizing [dF10], we want now to locate the (−n, p)-rays of X (see
De�nition 1.40). As well known, since we have negative self-intersection, these rays are
extremal rays of the Mori cone (see Lemma 1.37).
Let us consider an ample divisor A on Y and let L = ϕ∗A be the nef pullback to X .
We put in evidence some useful and immediate computations.

Fact 3.6. It holds:

1. KX = ϕ∗KY + E1 + · · ·+ Er ;

2. KX
2 = KY

2 − r ;

3. L2 = (ϕ∗A)2 = A2 > 0;

4. KX · L = (ϕ∗KY +
∑

Ei ) · L = A · KY .
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We will denote with K = KX the canonical divisor of X .
Let us recall that we have shown in Proposition 2.35 that if C is a non exceptional
(−n, p)-curve on X , Segre Conjecture implies the following bounds:

χ(OY ) > 1; n2 > −χ(OY ); p 6 χ(OY )− 1. (3.6)

We want to �nd conditions on the (eventually large) number r of points to blow up in
order to describe the Mori cone NE(X ) of the blown-up surface X in terms of the positive
cone Pos(X ).
In fact we have

NE(X ) = Pos(X ) +
∑

i

Ri , (3.7)

where the sum runs over all rays Ri = R(Ci ), for some integral curve Ci ⊂ X such that
C 2

i < 0. Here is our strategy to locate (−n, p)-rays:

1. �x a curve C generating a (−n, p)-ray;

2. �nd a s = s(n, p) ∈ R such that R(C ) ⊂ Pos(X ) + R(K − sL).

Performing our program we will �nd some conditions involving the number r of points to
obtain the existence of solutions in certain inequalities. Since we will pretend bounded
negativity and bounded arithmetic genus, in order to avoid accumulation phenomena, we
will have to impose just �nitely many inequalities.
Let us �rst prove the fact in the case of (−1, p)-curves.

Proposition 3.7 ((−1, p)-case). Let Y be an smooth projective surface and X = Blr Y
the blow up of Y at r general points. If R is a (−1, p)-ray generated by a curve C ,
supposing that

{
r > KY

2 + 1− (A·KY )2

A2

r > KY
2 + 1 + 4A2p2 − 4(A · KY )p if p > A·KY

2A2 ,
(3.8)

then there exists

s1 =
A · KY +

√
(A · KY )2 − A2KY

2 + A2r − A2

A2
, (3.9)

such that
R(C ) ⊂ Pos(X ) + R(K − s1L). (3.10)

Proof. As �rst step we want to �nd a positive solution for t of the equation

(tC − (K − sL))2 = 0, (3.11)

where C is the (−1, p)-curve generating R. To ensure the existence of solutions of (3.11)
we need ∆ > 0. From (3.11) we get:

t2C 2 − 2tC · (K − sL) + (K − sL)2 = 0,

and we have
∆

4
:= [C · (K − sL)]2 − C 2(K − sL)2;

since C is a (−1, p)-curve, by adjunction formula, we get

2p − 2 = C 2 + C · K ,
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that gives
C · K = 2p − 2 + 1 = 2p − 1.

So we would like to have

(2p − 1− sC · L)2 + (K − sL)2 > 0.

It is enough to require the existence of an s such that
{

(K − sL)2 = −1

(2p − 1− sC · L)2 > 1.
(3.12)

We have
(K − sL)2 = −1 ⇔ K 2 − 2sK · L + s2L2 = −1

⇔ s2L2 − 2s(K · L) + (K 2 + 1) = 0.

Using the computations in Fact 3.6, the equation becomes

A2s2 − 2sA · KY + K 2
Y − r + 1 = 0;

it has solutions if
∆1

4
:= (A · KY )2 − A2K 2

Y + A2r − A2 > 0,

that is if

r > KY
2 + 1− (A · KY )2

A2
.

Since in the following we will need the strict positivity of this discriminant, our �rst
numerical condition on the number of points to blow up is:

r > KY
2 + 1− (A · KY )2

A2
. (3.13)

In this situation we can take

s1 =
A · KY +

√
∆1/4

A2
; (3.14)

let us note as s1 does not depend on the speci�c curve C , but just, as will be clearer in
the next proposition, on the value of C 2.
Now we can �x s = s1 as in (3.14); we want to check also the second inequality in (3.12).
We immetiately see that it is enough that

2p − 1− sC · L 6 −1. (3.15)

Now, if C ·L = 0, then C is a curve contracted by X → Y and so is one of the exceptional
divisors Ei ; in particular we have p = 0 and so the inequality holds.
If else C · L > 0, the condition (3.15) is equivalent to

2p 6 sC · L ⇔ s > 2p

C · L ,

and since C · L > 1, it is enough that

s > 2p. (3.16)
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This is true when

s =
A · KY +

√
∆1/4

A2
> 2p,

which gives

A · KY +
√

∆1/4 > 2A2p,

that is √
∆1/4 > 2A2p − A · KY . (3.17)

If the right hand side is non positive, that is when p 6 A ·KY /2A2, the inequality (3.17)
holds and we have no other conditions to impose.
If otherwise p > A · KY /2A2, we get

∆1/4 > (2A2p − A · KY )2,

that gives

(A · KY )2 − A2K 2
Y + A2r − A2 > 4(A2)2p2 + (A · KY )2 − 4A2(A · KY )p;

thus we get:
r > KY

2 + 1 + 4A2p2 − 4(A · KY )p. (3.18)

Hence, we have the two conditions:
{

r > KY
2 + 1− (A·KY )2

A2

r > KY
2 + 1 + 4A2p2 − 4(A · KY )p if p > A·KY

2A2 .

In this situation, (3.12) holds true and we have solutions of (tC − (K − sL))2 = 0. This
last equation becomes

t2 + 2tC · (K − sL) + 1 = 0;

one of the two solutions is

t0 = −C · (K − sL) +
√

∆/4 = −(2p − 1− sC · L) +
√

∆/4. (3.19)

Thanks to the choice we did in (3.15) we have that t0 > 1 > 0 and so we get a positive
solution of (3.11).
Now we have that α = t0C−(K−sL) satis�es α2 = 0. In order to prove that α ∈ Pos(X ),
we need to check that α · h > 0 for some h ample.
In our situation, we have a �xed curve C ⊂ X and we have produced t0 > 1 depending
only on C ; we will consider a class h on X of the form

h = L−
∑

δi Ei , δi > 0;

it is well known that for small δi , h is ample. We will �x the δi after a formal computation;
it may be worth to recall that if we get α · h > 0 for an ample class h, then α · h′ > 0 for
any other ample class h′ (see Section 1.4).
A little remark: thanks to our condition, we have that

√
∆1/4 > 0. We can now proceed

to the formal computation of α · h:
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[t0C − (K − sL)] · [L−
∑

δi Ei ]

= t0C · L− t0C ·
∑

δi Ei − (K − sL) · L + (K − sL) · (
∑

δi Ei )

= t0C · L− t0

∑
δi Ei · C − K · L + sL2 + K ·

∑
δi Ei − L ·

∑
δi Ei

︸ ︷︷ ︸
=0

= t0C · L︸ ︷︷ ︸
>0

−t0

∑
δi Ei · C − KY · A + sA2 + (ϕ∗KY ) ·

∑
δi Ei

︸ ︷︷ ︸
=0

−
∑

δi

= t0C · L︸ ︷︷ ︸
>0

−t0

∑
δi Ei · C − KY · A +

(KY · A) +
√

∆1/4

A2
A2 −

∑
δi

= t0C · L︸ ︷︷ ︸
>0

−t0

∑
δi Ei · C +

√
∆1/4︸ ︷︷ ︸
>0

−
∑

δi .

(3.20)

Now, since t0C · L +
√

∆1/4 > 0 and Ei · C depends only on C , for any C , we can �x
small δi for which α · h > 0. From the remark we did before, this product is thus non
negative for any ample class.
We have hence that for positive t0, α = t0C − (K − sL) ∈ Pos(X ). Therefore t0C ∈
Pos(X ) + (K − sL) and so, since t0 is positive,

R(C ) ⊂ Pos(X ) + R(K − sL).

Our goal is now to prove of a similar fact in the general case of (−n, p)-curves.

Proposition 3.8 ((−n, p)-case). Let Y be an algebraic projective smooth surface and
X = Blr Y the blow up of Y at r general points. If R is an (−n, p)-ray, n > 2, generated
by a curve C , setting q = 2p + n − 1, and supposing that

{
r > KY

2 + 1
n −

(A·KY )2

A2

r > KY
2 + 1

n + A2q2 − 2(A · KY )q if q > A·KY

A2 ,
(3.21)

then there exists

sn =
A · KY +

√
(A · KY )2 − A2KY

2 + A2r − A2/n

A2
(3.22)

such that

R(C ) ⊂ Pos(X ) + R(K − snL). (3.23)

Proof. As before, we want to �nd a positive solution of the equation

(tC − (K − sL))2 = 0, (3.24)

where C is the (−n, p)-curve generating R. To ensure the existence of solutions of (3.24)
we need ∆ > 0. The (3.24) become

t2C 2 − 2tC · (K − sL) + (K − sL)2 = 0
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and we have
∆

4
:= [C · (K − sL)]2 − C 2(K − sL)2;

since C is a (−n, p)-curve, by adjunction formula, we get

2p − 2 = C 2 + C · K ⇒ C · K = 2p + n − 2.

So we would like
(2p + n − 2− sC · L)2 + n(K − sL)2 > 0.

To have this, it is enough require the existence of an s such that
{

(K − sL)2 = − 1
n

(2p + n − 2− sC · L)2 > 1.
(3.25)

We have

(K − sL)2 = −1

n
⇔ K 2 − 2sK · L + s2L2 = −1

n

⇔ s2L2 − 2s(K · L) +

(
K 2 +

1

n

)
= 0.

Using the computations in Fact 3.6, the equation becomes

A2s2 − 2sA · KY + K 2
Y − r +

1

n
= 0;

it has solutions if
∆n

4
:= (A · KY )2 − A2K 2

Y + A2r − A2

n
> 0;

and this is true if

r > KY
2 +

1

n
− (A · KY )2

A2
. (3.26)

We have hence found the �rst numerical condition on the number of points to blow up.
In this situation we can take

sn =
A · KY +

√
∆n/4

A2
, (3.27)

Now we �x s = sn as in (3.27) and we want to check also the second inequality in (3.25).
It is enough to see that

2p + n − 2− sC · L 6 −1. (3.28)

Now, we have that C · L > 1 since C can't be contracted, therefore (3.28) is equivalent
to

2p 6 sC · L− n + 1 ⇔ s > 2p + n − 1

C · L .

Since C · L > 1 it is enough that

s > 2p + n − 1. (3.29)

This is true when

s =
A · KY +

√
∆n/4

A2
> 2p + n − 1,
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that is when
A · KY +

√
∆n/4 > A2(2p + n − 1) that is

√
∆n/4 > A2(2p + n − 1)− A · KY .

If the right hand side is negative this is true and we have no other conditions; otherwise,
that is when

q := 2p + n − 1 > A · KY

A2
,

we get
∆n/4 > (A2q − A · KY )2

that is

A2r > A2K 2
Y +

1

n
A2 − (A · KY )2 + (A · KY )2 + (A2)2q2 − 2A2(A · KY )q,

which gives

r > KY
2 +

1

n
+ A2q2 − 2(A · KY )q. (3.30)

So the conditions (3.26) and (3.30) we found, give exactly the inequalities (3.21) in the
statement of the proposition.
In this situation we have solutions of (tC−(K−sL))2 = 0 and this last equation becomes:

nt2 + 2t(2p + n − 2− sC · L) +
1

n
= 0.

One of the solutions is

t0 =
−(2p + n − 2− sC · L) +

√
(2p + n − 2− sC · L)2 − 1

n
. (3.31)

Thanks to the choice we did in (3.28) we have that t0 > 1/n > 0 and so we have a
positive solution of (3.24).
Now we have that α = t0C−(K−sL) satis�es α2 = 0. In order to prove that α ∈ Pos(X ),
we need to check that α · h > 0 for some h ample.
As in the former proposition, we want to �x some small δi > 0 in order to have h =
L −∑ δi Ei an ample class such that α · h > 0 (and hence α · h′ > for any other ample
class h′).
We can formally compute α · h:

[t0C − (K − sL)] · [L−
∑

δi Ei ]

=t0C · L− t0C ·
∑

δi Ei − (K − sL) · L + (K − sL) · (
∑

δi Ei )

=t0C · L− t0

∑
δi Ei · C − K · L + sL2 + K ·

∑
δi Ei − L ·

∑
δi Ei

︸ ︷︷ ︸
=0

= t0C · L︸ ︷︷ ︸
>0

−t0

∑
δi Ei · C − KY · A + sA2 + (ϕ∗KY ) · (

∑
δi Ei )

︸ ︷︷ ︸
=0

−
∑

δi

= t0C · L︸ ︷︷ ︸
>0

−t0

∑
δi Ei · C − KY · A +

(KY · A) +
√

∆n/4

A2
A2 −

∑
δi

= t0C · L︸ ︷︷ ︸
>0

−t0

∑
δi Ei · C +

√
∆n/4︸ ︷︷ ︸
>0

−
∑

δi .

(3.32)
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Now, since toC · L +
√

∆n/4 > 0, we can �x some small δi s (eventually depending on C )
such that α · h is positive.
Again we have that for positive t0, α = t0C − (K − sL) ∈ Pos(X ). Therefore t0C ∈
Pos(X ) + (K − sL) and so,

R(C ) ⊂ Pos(X ) + R(K − sL).

Now, in view of what we pointed out at the beginning of this section, we will suppose
that List Conjecture holds true with bounds depending only on the surface Y and not on
the number of blown up points.
Therefore, in this situation, if C is an integral curve with negative self-intersection, then

− 1 > C 2 > −ν and 0 6 pa(C ) 6 π, (3.33)

for some non negative integers ν and π depending only on Y .
We want to satisfy the inequalities in (3.8) and (3.21) for every n = 1, . . . , ν and p =
0, . . . ,π; these inequalities are veri�ed if

r > KY
2 + 1− (A · KY )2

A2
, (3.34)

and, in the case q := 2π + ν − 1 > A·KY

A2 ,

r > KY
2 + 1 + A2(2π + ν − 1)2 − 2(A · KY )(2π + ν − 1). (3.35)

Now we see that we can simplify our conditions; we claim that (3.35) implies (3.34).
Indeed we have

(A2q − A · KY )2 > 0,

which easily gives

A2q2 − 2(A · KY )q > − (A · KY )2

A2
,

and hence the required implication.
Summarizing, we get

{
r > KY

2 + 1− (A·KY )2

A2 if q 6 A·KY

A2

r > KY
2 + 1 + A2q2 − 2(A · KY )q if q > A·KY

A2 .
(3.36)

If we can �x an r verifying all these inequalities, we have that

(−1, p) R(C ) ⊂ Pos(X ) + R(K − s1L)

(−2, p) R(C ) ⊂ Pos(X ) + R(K − s2L)

...
...

(−ν, p) R(C ) ⊂ Pos(X ) + R(K − sνL)

(3.37)

where

s1 =
(A · KY ) +

√
(A · KY )2 − A2K 2

Y + A2r − A2

A2

s2 =
(A · KY ) +

√
(A · KY )2 − A2K 2

Y + A2r − A2/2

A2

...

sν =
(A · KY ) +

√
(A · KY )2 − A2K 2

Y + A2r − A2/ν

A2
.

(3.38)
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It is obvious to point out that s1 is the smallest and sν is the largest:

s1 < s2 < · · · < sν .

This seems interesting because of the following fact:

Fact 3.9. In our situation, if s > t we have

(K − sL)⊥ ∩ L>0 ⊂ (K − tL)>0 ∩ L>0,

in particular, since L is nef, this is true intersecting with NE(X ) instead of L>0.

Proof. Let γ ∈ (K − sL)⊥ ∩ L>0, we get

γ · K − sγ · L = 0 ⇒ γ · K = sγ · L.

Now we have

γ · (K − tL) = γ · K − tγ · L = sγ · L− tγ · L = (s − t)γ · L > 0.

3.3 Pictures

In this section we want to study the general picture of our situation. We focus on the
vector space N(X ) of numerical classes of curves (and divisors). In particular we want to
describe how rays generated by curves with negative self-intersection behave with respect
to the positive cone Pos(X ). For the sake of semplicity, we will draw pictures supposing
ρ(X ) = 3.
In Section 1.4 we �xed a basis of {e1, . . . , eρ} of N(X ) with e1 parallel to an ample class
h; in this basis the positive cone has equations {x1 > 0, x1

2 >
∑ρ

i=2 xi
2}.

As usual, we want to picture a slice of the cones intersecting with a hyperplane away from
the origin. We �x the hyperplane Π = (x1 = 1).
Consider now a ray R ⊂ N(X ) generated by a class γ such that γ2 < 0; in this situation
we will say that R is a self-negative ray.
We will focus on X with ρ(X ) = 3.

Case I: R · h > 0 (convex hull type).
Let us suppose that R · h > 0; we have that R intersects the hyperplane Π in a point
(that we call again R) and thanks to Lemma 1.52 we have that we can �nd the locus R⊥

in Π by drawing the tangent lines joining the point R and Pos(X )∩Π. The convex cone
Pos(X ) + R can be drawn by considering in the hyperplane Π the convex hull of Pos(X )
and R; moreover, since γ2 < 0, then R ∈ R<0. The 3-dimensional picture is given in
Figure 3.1 .

Case II: R · h < 0 (shade type).
In this situation we have that the opposite ray (−R) intersects the hyperplane Π. We
have that, since R⊥ = (−R)⊥, the orthogonal hyperplane is obtained with the usual
construction applied to (−R) instead of R. We immediately have (−R) ∈ R>0 and we
can see that Pos(X ) + R intersects Π in the shade of Pos(X ) from −R, imagining −R
as source of light: see Figure 3.2.
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Π

R

R⊥

+ −

Pos(X ) + R

Figure 3.1: Pos(X ) + R, when R · h > 0

Π

R

−RPos(X ) + R

R⊥

+−

b

Figure 3.2: Pos(X ) + R, when R · h < 0



56 Chapter 3. The shape of the Mori cone

Case III: R · h = 0 (cylinder type).
In the case of R · h = 0, we will have that R⊥ passes through the origin of the circle
Pos(X ) ∩ Π, that is the point (1, 0, 0) ∈ N(X ).
In this situation the cone Pos(X ) + R is given in Π as the union of the circle Pos(X )∩Π
and the strip over the diameter in the direction of R: see Figure 3.3.

ΠPos(X ) + R

R

R⊥

− +

Figure 3.3: Pos(X ) + R, when R · h = 0

3.4 Circular part and main result

In the former sections we dealt with rays generated by K − sL, for some s ∈ R. Does this
rays intersect Π?

Fact 3.10. In our situation if the conditions (3.34) and (3.35) on the number of points
to blow up are veri�ed, is it possible to �nd an ample class in the form h = L−∑i δi Ei

for some su�ciently small coe�cients δi , such that (K − sL) · h < 0 for all s = sn as in
(3.38).

Proof. Let us compute.

(K − sL) · (L−
∑

i

δi Ei )

=(K − sL) · L− (K − sL) · (
∑

i

δi Ei )

=KY · A− sA2 −
∑

i

δi K · Ei + s
∑

i

δi L · Ei

=KY · A− sA2 −
∑

i

δi (ϕ
∗KY ) · Ei −

∑

i

δi (
∑

j

Ej ) · Ei

=KY · A− sA2 +
∑

i

δi

=KY · A−
KY · A +

√
∆n/4

A2
A2 +

∑

i

δi ;
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thus we get
−
√

∆n/4 +
∑

i

δi ,

that is negative since ∆n/4 > 0 and
∑

i δi is small.

We have therefore that the ray generated by (K − sL) does not intersect Π, but the ray
R(−(K − sL)) does and we are in the situation of Case II (Figure 3.2).
We are now getting closer to our main result; we need some preliminary results.

Fact 3.11. For all t 6= s ∈ R we have that
(
(K − sL)⊥ ∩ Pos(X )

)
∩
(
(K − tL)⊥ ∩ Pos(X )

)
= ∅.

Proof. Consider γ in the intersection, then

(K − sL) · γ = 0 = (K − tL) · γ,

that is (t − s)L · γ = 0, but since t 6= s this means L · γ = 0, but this is impossible since
L is nef and L⊥, by Lemma 1.54, lies outside Pos(X ).

We are now able to give the following proposition.

R(−(K − tL)) R(−(K − sL)) Pos(X )

(K − tL)⊥

(K − sL)⊥

+ −

+ −

Pos(X ) + R(−(K − sL))

b

b

b

b

b

b

Figure 3.4: The positive cone Pos(X ) and the behaviour of R(−(K − sL))

Proposition 3.12. If s > t, then

Pos(X ) + R(K − tL) ⊂ Pos(X ) + R(K − sL). (3.39)

In particular, if C is a (−n, p)-curve, for some 0 < n 6 ν and 0 6 p 6 π, then

R(C ) ⊂ Pos(X ) + R(K − sνL).
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Proof. Let us consider γ ∈ Pos(X ) + R(K − tL); then we can write

γ = α + a(K − tL), α ∈ Pos(X ), a > 0.

We have
γ = α + a(K − sL + sL− tL)

= α + a(s − t)L + a(K − sL) ∈ Pos(X ) + R(K − sL),

since s > t, L is nef and hence, by convexity, it lies in Pos(X ).
Recalling the results of Proposition 3.7 and Proposition 3.8, since s1 < s2 < · · · < sν , we
immediately get the second statement.

In the case of ρ(X ) = 3, the situation of Proposition 3.12 can be pictured as in Figure
3.4. In particular we see that as s = sn grows, the ray R(−(K − sL)) gets closer to the
boundary of Pos(X ).
We are now ready to state our main result. We prove that Conjecture 3.5 is true if the
List Conjecture is true with bounds depending only on Y and the number of points r is
su�ciently large. In particular this is true if the Segre Conjecture is true.

Theorem 3.13. Let ϕ : X → Y be the blow up at a set of r general points of a smooth
projective surface Y . Let A be an ample divisor on Y and L = ϕ∗A. Let us suppose that:

1. there exist two integer numbers ν = νX and π = πX such that the List Conjecture
(Conjecture 2.28) holds on X with bounds for (−n, p)-curves given by 1 6 n 6 ν
and 0 6 p 6 π; this is veri�ed, for example, if Segre Conjecture holds true on X
(see Proposition 2.35) or if −KX is pseudoe�ective (see Proposition 2.30).

2. the following inequalities, with q = 2π + ν − 1, hold:

{
r > KY

2 + 1− (A·KY )2

A2 if q 6 A·KY

A2

r > KY
2 + 1 + A2q2 − 2(A · KY )q if q > A·KY

A2 .
(3.40)

Then there exists s = sν ∈ R,

s =
(A · KY ) +

√
(A · KY )2 − A2KY

2 + A2r − A2/ν

A2
, (3.41)

such that
NE(X )(K−sL)>0 = Pos(X )(K−sL)>0 . (3.42)

That is, Conjecture 3.5 holds with D = K − sL.
In particular, conditions 1. and 2. are veri�ed, for r � 0, if the bounds ν, π depend only
on Y .

Proof. It is obvious to see that ρ(X ) > 2; since case ρ(X ) = 2 is trivial, we will suppose
henceforth that ρ(X ) > 3.
Let us consider an extremal ray R of NE(X ) spanned by the class of an integral curve C
with negative self-intersection. Since we are assuming the List Conjecture, we have that
C 2 > −ν, for some integer ν. By Proposition 3.12, we have that

R = R(C ) ⊂ Pos(X ) + R(K − sL),

where s = sν is the real number constructed in Proposition 3.7 or in Proposition 3.8.
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As pointed out before, sν is the largest of the s1, . . . , sν and the corresponding ray
R(−(K − sνL)) intersecting the hyperplane slice Π is the closest to the boundary of
Pos(X ) (see, in the case ρ(X ) = 3, Figure 3.4).
We want now to consider the nef cone of X ; we have seen that Nef(X ) can be obtained
(in the slice Π) by cutting out from Pos(X ) the spherical portion corresponding to the
curves with negative self-intersection (see Figure 1.1).
Since R = R(C ) is an extremal ray of NE(X ), it intersects the hyperplane slice Π and
therefore the locus R⊥ is obtained by drawing the tangent lines from R to Pos(X ) as in
Lemma 1.52. Let us consider

G = R⊥ ∩ Pos(X ).

Claim 3.14. G ⊆ (K − sL)60.

Proof of the Claim. Let us take γ ∈ G and 0 6= δ ∈ R; in particular γ · R = 0 and since
R ⊂ Pos(X ) + R(K − sL), we can write

δ = α + a(K − sL),

with α ∈ Pos(X ) and a > 0 (indeed if a = 0, then δ2 > 0 ). We can compute

0 = γ · δ = γ · α + aγ · (K − sL),

which gives
aγ · (K − sL) = −γ · α,

that is non positive, since γ,α ∈ Pos(X ) and by Fact 1.46 γ · α > 0.

The situation of Claim 3.14 is pictured (if ρ(X ) = 3) in the Figure 3.5: the fact that
R(C ) ⊂ Pos(X ) + R(K − sL) forces the facet G = R⊥ ∩ Pos(X ) to be contained in
(K − sL)60.

R(C )Pos(X )

(K − sL)⊥

R(−(K − sL))

−+

b

b

b
b

b

b

Figure 3.5: Proving Claim 3.14

Now a well-known theorem by Campana and Peternell gives a description of the shape of
∂ Nef(X ), see, for example [Laz04, Theorem 1.5.28]:

∂ Nef(X ) ⊆ ∂Pos(X ) ∪
(⋃

i

Hi

)
, (3.43)

where Hi are hyperplanes.
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These hyperplanes Hi are the orthogonal hyperplanes C⊥i corresponding to classes of
integral curves Ci with C 2

i < 0. Indeed, let us suppose by contradiction that C 2
i > 0.

Then [Ci ] ∈ Pos(X ) and we have two possible cases (see Lemma 1.54): if C 2
i = 0, then

[Ci ] ∈ ∂Pos(X ), thus we get C⊥i ∩ Pos(X ) = R(Ci ) and hence, since Nef(X ) ⊆ Pos(X ),
we do not add anything in equation (3.43); otherwise, if C 2

i > 0, then C⊥i ∩Pos(X ) = {0},
hence C⊥i ∩ ∂ Nef(X ) = {0} and again we do not have anything else to add.

Claim 3.15. ∂ Nef(X )(K−sL)>0 = ∂Pos(X )(K−sL)>0 .

Proof of the Claim. We will prove the two inclusions.

(⊆) By Claim 3.14 we have that if β ∈ ∂ Nef(X ) is supported on an hyperplane, then
β ∈ (K − sL)60; hence

∂ Nef(X ) ∩ (K − sL)>0 ⊆
(
∂Pos(X ) ∩ (K − sL)>0

)

(⊇) Let us take 0 6= α ∈ ∂Pos(X ) ∩ (K − sL)>0; we want to show that α is in the
boundary of Nef(X ).

It is enough to show that α ∈ Nef(X ): indeed in this situation, since 0 6= α ∈
∂Pos(X ), then α2 = 0, it can't lie in the interior of Nef(X ) and hence it is in the
boundary. Let us show that α ∈ Nef(X ).

Suppose by contradiction that α is not nef; then there exists a class of an integral
curve C such that α · C < 0.

It easy to see that C 2 < 0, indeed if it were C 2 > 0, since C · h > 0, then
C ∈ Pos(X ) and, by Fact 1.46, we would have α · C > 0 that is a contradiction.

Therefore we have C 2 < 0 (and hence it is a (−n, p)-curve for some n, p) and
α ∈ C60 ∩ Pos(X ).

Let us set G = C⊥ ∩ Pos(X ); as in Claim 3.14 we get G ⊆ (K − sL)60.

We have also that (K − sL) ·C < 0: this is a consequence of the construction of s,
see equation (3.15) and (3.28) in the proof of Proposition 3.7 and of Proposition
3.8: indeed, since s = sν > sn and C · L > 0, from (3.15) and (3.28) we get

(K − sL) · C = 2p + n − 2− sC · L 6 2p + n − 2− snC · L 6 −1 < 0.

Thus we get
G + R(C ) ⊂ (K − sL)60; (3.44)

indeed if x ∈ G + R(C ), then

x = g + b[C ], g ∈ G ; b > 0,

and
x · (K − sL) = g · (K − sL) + bC · (K − sL) 6 0.

We now claim the following:

C60 ∩ Pos(X ) ⊆ G + R(C ). (3.45)

To prove it, let us take 0 6= β ∈ C60 ∩Pos(X ); since we are dealing with cones, we
can suppose that

β · h = C · h, (3.46)



3.4. Circular part and main result 61

where h is an ample class we used to de�ne Pos(X ).

Indeed, if β · h 6= C · h, we can consider β′ = aβ, for some a > 0 in order to have
β′ · h = C · h; if we prove that aβ ∈ G + R(C ), then we have

β ∈ 1

a
(G + R(C )) = G + R(C ).

Now we have β ∈ C60; if β · C = 0, then β ∈ G ⊂ G + R(C ) and we are done.

If β · C < 0, we claim that
β · C − C 2 > 0. (3.47)

Indeed, since β ∈ Pos(X ), we have

0 6 β2 = β · (β − C + C ) = (β − C ) · β + β · C
= (β − C ) · (β − C + C ) + β · C
= (β − C )2 + (β − C ) · C + β · C ;

this gives
β · C − C 2 = (β − C ) · C > −β · C − (β − C )2.

We claim that this is positive since β · C < 0 and (β − C )2 < 0; to prove this last
inequality we see that if it were (β − C )2 > 0, then since β · h = C · h, we would
have (β−C ) ·h = 0 and hence β−C ∈ Pos(X ) and β = C , but this can't be since
β2 > 0 and C 2 < 0. Therefore the (3.47) is proved.

Let us consider the line L joining C and β:

L : tβ + (1− t)C , t ∈ R.

We look for the intersection of L and C⊥; we get:

0 = (tβ + (1− t)C ) · C = t(β · C − C 2) + C 2,

which produces

t =
−C 2

β · C − C 2
; (3.48)

we see that thanks to the (3.47), since C 2 < 0 and β · C < 0, we have t > 1. Let
γ ∈ C⊥ be the point in L corresponding to this t > 1. We claim that γ ∈ Pos(X );
indeed we have

0 = γ · C = tβ · C + (1− t)C 2 ⇒
(1− t)C 2 = −tβ · C ;

and therefore, since t > 1:

γ2 = t2β2 + (1− t)2C 2 + 2t(1− t)β · C
= t2β2 − t(1− t)β · C + 2t(1− t)β · C
= t2β2 + t(1− t)β · C > 0;

since β · h = C · h, we get

γ · h = tβ · h + (1− t)C · h
= tβ · h + β · h − tβ · h = β · h > 0.
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Therefore we have γ ∈ Pos(X ) ∩ C⊥ = G . This is our situation: if β ∈ C<0 ∩
Pos(X ), then we have

γ = tβ + (1− t)C , γ ∈ G , t > 1;

this gives

tβ = γ + (t − 1)C ⇒ β =
1

t
γ +

t − 1

t
C ∈ G + R(C ),

and this concludes the proof of the (3.45).

Now, since α ∈ C60 ∩ Pos(X ), using (3.45) and (3.44), we get

α ∈ C60 ∩ Pos(X ) ⊆ G + R(C ) ⊆ (K − sL)60,

but that is a contradiction since α ∈ (K − sL)>0.

Claim 3.16. Nef(X )(K−sL)>0 = Pos(X )(K−sL)>0 .

Proof of the Claim. We have, by Claim 3.15, that

∂ Nef(X ) ∩ (K − sL)>0 = ∂Pos(X ) ∩ (K − sL)>0. (3.49)

At �rst we show the following:

∂ Nef(X ) ∩ (K − sL)>0 = ∂Pos(X ) ∩ (K − sL)>0. (3.50)

Indeed, from equation (3.49), taking the closure, we get

cl(∂ Nef(X ) ∩ (K − sL)>0) = cl(∂Pos(X ) ∩ (K − sL)>0);

now, since int(∂Pos(X )) = ∅, by Lemma 1.58 (Leibniz formula for closed sets), we get

cl(∂Pos(X ) ∩ (K − sL)>0) =

int(∂Pos(X ) ∩ (K − sL)>0) ∪ ∂(∂Pos(X ) ∩ (K − sL)>0) =

∅ ∪ ∂(∂Pos(X ) ∩ (K − sL)>0) =

(∂Pos(X ) ∩ (K − sL)>0) ∪ (∂Pos(X ) ∩ (K − sL)⊥) =

∂Pos(X ) ∩ (K − sL)>0.

Now we have

∂Pos(X ) ∩ (K − sL)>0 = cl(∂ Nef(X ) ∩ (K − sL)>0) ⊆
cl(∂ Nef(X )) ∩ cl((K − sL)>0) = ∂ Nef(X ) ∩ (K − sL)>0.

Thus we have proved one of the two inclusions in (3.50), let us show the other.
Let us take x ∈ ∂ Nef(X ) ∩ (K − sL)>0. If it is in (K − sL)>0, then it is in ∂Pos(X ) by
Claim 3.15. Hence we can suppose x ∈ (K − sL)⊥ and, by contradiction, x ∈ Pos(X );
by the result of Campana and Peternell (see (3.43)), we have therefore that x ∈ C⊥ for
some C with C 2 < 0 and thus

x ∈ C⊥ ∩ (K − sL)⊥ ∩ Pos(X ).
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Two di�erent cases may arise. Let us suppose that C⊥ = (K−sL)⊥; since C and (K−sL)
do determine the same orthogonal hyperplane, they must be parallel, but since C · h > 0
and (K − sL) · h < 0, then there exists a > 0 such that aC = −(K − sL), which gives,
by (3.15) and (3.28),

0 < −(K − sL) · C = aC 2 < 0,

that is a contradiction and hence this case does not occur.
If C⊥ 6= (K − sL)⊥, since the origin and x lie in both of them, they are not parallel and
thus they intersects in a linear subspace of dimension ρ(X )− 2. Now, since

x ∈ C⊥ ∩ (K − sL)⊥ ∩ Pos(X ),

by dimension reasons, there will be an y ′ in C⊥ ∩ Pos(X ) ∩ (K − sL)>0. Indeed since
C⊥ 6= (K−sL)⊥ we can �x y ∈ C⊥∩Pos(X ) such that y /∈ (K−sL)⊥; if y ∈ (K−sL)>0

then we get a contradiction with Claim 3.14; if y ∈ (K − sL)<0, then if we consider the
point y ′ ∈ L(y , x):

y ′ = tx + (1− t)y with t = 1 + ε for 0 < ε� 1,

we get y ′ ∈ C⊥ ∩ Pos(X ) ∩ (K − sL)>0 that is a contradiction with Claim 3.14.
Thus we have the (3.50) and, by subtracting equation (3.49), we immediately see that

∂ Nef(X ) ∩ (K − sL)⊥ = ∂Pos(X ) ∩ (K − sL)⊥. (3.51)

Now we claim that

Nef(X ) ∩ (K − sL)⊥ = Pos(X ) ∩ (K − sL)⊥. (3.52)

One of the two inclusion is obvious. To prove the other, let us take x ∈ Pos(X )∩(K−sL)⊥;
if x ∈ ∂Pos(X ), then by equation (3.51), we are done; if otherwise x ∈ Pos(X ) ∩ (K −
sL)⊥ ⊂ (K − sL)⊥, by Lemma 1.22 it is in the convex hull of its boundary as a closed
cone in (K − sL)⊥ and we can write

x =
∑

γi , γi ∈ ∂(K−sL)⊥(Pos(X ) ∩ (K − sL)⊥) ⊆ ∂Pos(X ) ∩ (K − sL)⊥,

where the last inclusion is a consequence of Lemma 1.59.
Now equation (3.51) allows us to write

x =
∑

γi , γi ∈ ∂ Nef(X ) ∩ (K − sL)⊥,

then x ∈ Nef(X ) ∩ (K − sL)⊥ and equation (3.52) is proved.
In our situation we can use Lemma 1.58 and thus, from equations (3.50) and (3.52), we
get:

∂(Nef(X ) ∩ (K − sL)>0) = (∂ Nef(X ) ∩ (K − sL)>0) ∪ (Nef(X ) ∩ (K − sL)⊥)

= (∂Pos(X ) ∩ (K − sL)>0) ∪ (Pos(X ) ∩ (K − sL)⊥)

= ∂(Pos(X ) ∩ (K − sL)>0).

Since we have two closed and convex cones not containing lines with the same boundary,
again by Lemma 1.22, their convex hull is the same and the claim is proved.
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We are now getting closer to the conclusion: our goal is a sort of dual statement of Claim
3.16.
At �rst let us prove that

NE(X ) ∩ (K − sL)⊥ = Pos(X ) ∩ (K − sL)⊥. (3.53)

Since Pos(X ) ⊆ NE(X ), one of the two inclusion is obvious.
For the other inclusion, let us suppose, by contradiction that there exists γ ∈ NE(X ) ∩
(K − sL)⊥ with γ2 < 0.
If we consider the rays outgoing from γ and tangent to Pos(X ), we see that, since
(K − sL)2 < 0 (see the proof of Proposition 3.8), by Lemma 1.52 and Remark 1.53, there
are rays in both (K − sL)<0 and (K − sL)>0 side. If indeed they were all in the > 0 side
(or in the 6 0 side), then (K − sL)⊥ would be tangent to Pos(X ) and this is not the case.
Thus we can �x two tangent rays intersecting ∂Pos(X ) in α and β such that:

α,β ∈ γ⊥; α2 = β2 = 0; α ∈ (K − sL)>0; β ∈ (K − sL)<0. (3.54)

We point out that since α ∈ (K − sL)>0 and β ∈ (K − sL)<0, then α and β are not
proportional and thus the segment [α,β] can't be contained in ∂Pos(X ) and therefore
the open segment (α,β) does lie in Pos(X ) (see the proof of Fact 1.54).
If we intersect the segment (α,β) with (K − sL)⊥, we get

0 = (tα + (1− t)β) · (K − sL),

which gives

t̄ =
−β · (K − sL)

α · (K − sL)− β · (K − sL)
∈ (0, 1),

and t̄ produces y ∈ (α,β) with y ∈ Pos(X ). Since α,β ∈ γ⊥, we get at once:

y ∈ γ⊥ ∩ (K − sL)⊥ ∩ Pos(X ). (3.55)

Since y is in the interior of Pos(X ) and γ in the exterior, then immediately we �nd an
x ∈ (y , γ) such that x ∈ ∂Pos(X ), that is x2 = 0.
We immediately see that

x · (K − sL) = ty · (K − sL) + (1− t)γ · (K − sL) = 0,

and hence x ∈ Pos(X )(K−sL)>0 ; but if we compute

x · γ = ty · γ + (1− t)γ2 < 0,

we see that, since γ ∈ NE(X ), then x can't be a nef class and this is a contradiction with
Claim 3.16.
We want now to prove that:

NE(X )(K−sL)>0 = Pos(X )(K−sL)>0 .

Since Pos(X ) ⊆ NE(X ) we have that one of the two inclusions is obvious.
In order to prove the other, suppose, by contradiction, that there exists x ∈ NE(X ) ∩
(K − sL)>0 such that x /∈ Pos(X ).
We claim that it is possible to assume x = [C ] for some integral curve with C 2 < 0.
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Indeed, since x ∈ NE(X ) ∩ (K − sL)>0, we can write (see Lemma 1.22):

x =
s∑

i=1

γi , γi ∈ Ri ,

where Ri are extremal rays of NE(X ) ∩ (K − sL)>0.
We have, by Lemma 1.58, that

Ri ⊂ (∂NE(X ) ∩ (K − sL)>0) ∪ (NE(X ) ∩ (K − sL)⊥)

= (∂NE(X ) ∩ (K − sL)>0) ∪ (Pos(X ) ∩ (K − sL)⊥)
.

Now, since x2 < 0 there must exist at least one of the Ri ⊂ (∂NE(X )∩ (K − sL)>0) with
γ2

i < 0 (if it were γ2
i > 0 for all i , then x2 > 0).

In particular we have that this Ri is indeed an extremal ray of NE(X ), since if it was not,
then Ri should be in (NE(X ) ∩ (K − sL)⊥) and this can't be (see equation (3.53) and
Fact 1.20).
Thus we have that there exists an extremal ray Ri generated by γi with γ2

i < 0 and hence,
by Lemma 1.37, we can suppose that Ri is spanned by the class of an integral curve C .
Therefore we have:

C · (K − sL) > 0 and C 2 < 0. (3.56)

Now, as in Claim 3.14, setting G = C⊥ ∩ Pos(X ), we get

G ⊂ (K − sL)60.

We point out that G 6= ∅ set: see Remark 1.53.
Thus we can �x a γ ∈ G ; let us note that γ 6= C because γ2 > 0. Since γ · (K − sL) 6 0
and C · (K − sL) > 0, the segment joining C to γ does intersect (K − sL)⊥: the line

L(C , γ) : λ(t) = tγ + (1− t)C , t ∈ R,

intersects (K − sL)⊥ in λ̄ = λ(̄t) for some 0 < t̄ 6 1; we have, indeed t̄ > 0: if it were
t̄ = 0, then λ(0) = C and it would be a contradiction with (3.53).
We see that λ̄ · C 6 0, indeed

λ̄ · C = t̄ γ · C︸︷︷︸
=0

+ (1− t̄)C 2

︸ ︷︷ ︸
60

6 0.

Furthermore, we claim that this λ̄ ∈ Pos(X ); if indeed it were λ̄2 6 0, then

t̄γ = λ̄+ (̄t − 1)C ,

and hence
t̄2γ2 = λ̄2 + (̄t − 1)2C 2 + 2(̄t − 1)λ̄ · C 6 0,

but this is a contradiction since γ2 > 0 and t̄ 6= 0.
Let us set λε = λ(̄t − ε), for some 0 < ε� 1; we claim that λε ∈ (K − sL)>0, indeed:

λε · (K − sL) = [(̄t − ε)γ + (1− t̄ + ε)C ] · (K − sL)

= [̄tγ + (1− t̄)C ] · (K − sL) + (−εγ + εC ) · (K − sL)

= 0 + ε[C · (K − sL)− γ · (K − sL)] > 0.
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Now, since ε is small, we have that

λε ∈ Pos(X ) ∩ (K − sL)>0 = Nef(X ) ∩ (K − sL)>0;

in particular λε is nef; on the other side, we immediately get

C · λε = [(̄t − ε)γ + (1− t̄ + ε)C ] · C
= (̄t − ε) γ · C︸︷︷︸

=0

+ (1− t̄ + ε)︸ ︷︷ ︸
>0

C 2
︸︷︷︸
<0

< 0,

that is a contradiction. Hence the (K −sL)>0-part of the NE(X ) cone must coincide with
Pos(X )(K−sL)>0 and the theorem is proved.

3.5 Strict inclusion conditions

We have now seen that, assuming some conjectures, if a su�ciently large number of
points are blown up, then the Mori cone NE(X ) does coincide with the positive cone in
the (K − sL)>0 part. Our goal is now to show that, independently from any conjecture,
the restriction of the positive cone to K>0 can't coincide with the restriction of NE(X ).

Proposition 3.17. Let X = Blr Y be the blow up at r general points of a smooth
projective surface Y and A be an ample divisor. Let us suppose one of the following holds
true.

(A)





r 6 KY
2 + 1− (A·KY )2

A2

A · KY > 0

A2 < (A · KY )2;

(B)





r > KY
2 + 1− (A·KY )2

A2

r 6 KY
2 + 1

A · KY > 0

(C )

{
r > 0

KY
2 < 0;

(D)

{
r > KY

2 + 1

KY
2 > 0;

Then, for a �xed (−1)-curve C , there exists α ∈ Pos(X ) such that





α2 = 0

α · h > 0

α · C 6 0

α · K > 0.

(3.57)

Moreover, we get:
Pos(X )K>0 ( NE(X )K>0 . (3.58)

Proof. Let us �x on the blown-up surface X an exceptional curve C = Ei for some i ,
generating a (−1, 0)-ray R = R(C ).
At �rst we prove the last implication: if equations (3.57) hold true, then we have the
strict inclusion of (3.58). Let us set

γ = C + λα, λ� 1.

Since α ∈ Pos(X ) ⊆ NE(X ), then γ ∈ NE(X ); on the other side

γ2 = (C + λα)2 = C 2 + 2λC · α < 0,
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which gives γ /∈ Pos(X ). Now, since λ� 1 and α · K > 0, we also get

(C + λα) · K = −1 + λα · K > 0.

Hence γ ∈ NE(X )K>0 and γ /∈ Pos(X )K>0 .
We now look for an α of this kind:

α = tC − (K − sL), with t, s ∈ R, (3.59)

and show the existence of t, s in order to ful�ll conditions (3.57). First of all, we need

α2 = (tC − (K − sL))2 = 0. (3.60)

To ensure the existence of solutions for t of (3.60), we require

∆t := (C · (K − sL))2 + (K − sL)2 > 0, (3.61)

that, by adjunction and by Fact 3.6, becomes

s2A2 − 2sA · KY + KY
2 + 1− r > 0. (3.62)

We have now two di�erent cases according to the sign of the discriminant of the former
inequality:

∆s := (A · KY )2 − A2(KY
2 + 1− r). (3.63)

Thus we have

Case ∆s > 0:

{
r > KY

2 + 1− (A·KY )2

A2

s 6 A·KY−
√

∆s

A2 ∨ s > A·KY +
√

∆s

A2 .
(3.64)

Case ∆s < 0:

{
r < KY

2 + 1− (A·KY )2

A2

∀s ∈ R.
(3.65)

With this conditions on s, ∆t > 0 and, among the solutions of (3.60), we pick

t = 1 +
√

∆t . (3.66)

We now impose α · h > 0, for an ample class h = L −∑ δj Ej . An easy computation,
since 0 < δj � 1, shows that

α · h = [tEi − (K − sL)] · [L−
∑

δj Ej ] = tδi − A · KY + sA2 −
∑

δj > 0,

if and only if (sA2 − A · KY ) > 0, that is

s >
A · KY

A2
. (3.67)

Now, the case ∆s = 0 in (3.64) can be associated to equation (3.65) and these two
conditions, together with (3.67), become

{
r 6 KY

2 + 1− (A·KY )2

A2

s > A·KY

A2 ,
(3.68)
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and {
r > KY

2 + 1− (A·KY )2

A2

s > A·KY +
√

∆s

A2 .
(3.69)

We have now found conditions ensuring α ∈ Pos(X ); let us check that α · C 6 0.

α · C = tC 2 − (K − sL) · C = −t + 1,

that is not positive since we set t = 1 +
√

∆t > 1. To prove (3.57) it is left to deal with
α · K .

α · K = (tC − (K − sL)) · (ϕ∗KY +
∑

Ej )

= −t − KY
2 + r + sA · KY .

Hence the condition to impose is

r − KY
2 − 1 + sA · KY >

√
∆t . (3.70)

At the end, we get two di�erent systems of inequalities for s:





r 6 KY
2 + 1− (A·KY )2

A2

s > A·KY

A2

r − KY
2 − 1 + sA · KY >

√
∆t ,

(3.71)

and 



r > KY
2 + 1− (A·KY )2

A2

s > A·KY +
√

∆s

A2

r − KY
2 − 1 + sA · KY >

√
∆t .

(3.72)

The hypothesis in the statement of the proposition are exactly the conditions ensuring
the existence of solutions for s in (3.71) and (3.72).

Remark 3.18. To solve (3.71) and (3.72), we used the computational system Wolfram
Alpha (http://www.wolframalpha.com/). Setting





x = A · KY

y = A2

z = KY
2 + 1,

the solutions of (3.71) are given by the string:

Reduce[{r <= -(x^2/y) + z, r > 0, y > 0, s > x/y,

r + s x - z > Sqrt[-r - 2 s x + s^2 y + z]}, s]

and the solutions of (3.72) by

Reduce[{r > -(x^2/y) + z, r > 0, y > 0,

s >= (x + Sqrt[x^2 - y (-r + z)])/y,

r + s x - z > Sqrt[-r - 2 s x + s^2 y + z]}, s]

An easy re�nement of the computed solution gives the result.

We can now give a similar statement in the case of an interesting geometrical hypothesis.
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Proposition 3.19. Let X = Blr Y be the blow up at r > 2 general points of a projective
surface Y ; let us suppose that for an ample divisor A on Y the inequality

A · KY +
√

A2(r − 1) > 0 (3.73)

holds true. Then

Pos(X )K>0 ( NE(X )K>0 . (3.74)

In particular this is true if Y is a non uniruled surface.

Proof. In light of Proposition 3.17, we just have to show, for a �xed (−1)-curve, the
existence of an α such that the conditions (3.57) are satis�ed.
To ful�ll conditions (3.57), we can �x C = Er , the last exceptional curve on X , and we
can consider an ample divisor A on Y . We look for an α in the form

α = ϕ∗A +
r∑

i=1

ai Ei with ai ∈ R.

We impose α · C = 0, which gives ar = 0 and hence we can write

α = ϕ∗A +
r−1∑

i=1

ai Ei .

The α2 = 0 condition gives

α2 = A2 −
r−1∑

i=1

ai
2 = 0 ⇒ A2 =

r−1∑

i=1

ai
2. (3.75)

We see that in order to verify the last equation, we need r > 2.
Let us consider

ai = −
√

A2

r − 1
, for i = 1, . . . , r − 1; ar = 0.

We get:

α2 = A2 −
r−1∑

i=1

A2

r − 1
= A2 − (r − 1)

A2

r − 1
= 0.

To show that this α ∈ Pos(X ) we still have to show that α · h > 0 for an appropriate
ample class h: for some 0 < δi � 0 we can compute

α · h =

(
ϕ∗A−

r−1∑

i=1

√
A2

r − 1
Ei

)
·
(
ϕ∗A−

r∑

i=1

δi Ei

)

= A2 −
r−1∑

i=1

√
A2

r − 1
δi ,

that is positive for small δi , since A2 > 0.
Let us compute α · K :
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α · K =

(
ϕ∗A +

r−1∑

i=1

ai Ei

)
·
(
ϕ∗KY +

r∑

i=1

Ei

)

= ϕ∗A · ϕ∗KY −
r−1∑

i=1

ai

= A · KY −
r−1∑

i=1

(
−
√

A2

r − 1

)
,

(3.76)

that is positive from conditions (3.73).
In the non uniruled case, we have in particular that KY is a pseudoe�ective divisor, hence
A · KY > 0 and condition (3.73) is immediately satis�ed.

Remark 3.20. We have that in the case Y = P2, Proposition 3.17 and Proposition 3.19
give the same result. Thus if we blow up r > 10 points, then

Pos(X )K>0 ( NE(X )K>0

and we have recovered the same results of [dF10].
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Chapter 4

The problem

The problem we want to deal with in this part of the thesis is the existence of some kind
of Zariski decomposition for a smooth projective variety X ; as it is well-known, it is a
central problem in Algebraic Geometry, following [Bir09], we can say that it all began with
Zariski (see [Zar62]) and was then re�ned by Fujita (see [Fuj79]).

Theorem 4.1 (Zariski decomposition). Let D be a pseudoe�ective R-divisor on a smooth
surface X ; then there exist two R-divisors P and N, such that:

1. D = P + N;

2. P is nef and N is e�ective;

3. N = 0 or the intersection matrix of the components {Ci} of N is negative de�nite;

4. P · Ci = 0 for any i .

In literature we can �nd a number of attempts to generalize this kind of decomposition to
higher dimensional varieties, for example Fujita-Zariski decomposition and the so called
CKM-Zariski decomposition (after Cutkosty, Kawamata and Moriwaki).

4.1 Statement and reduction

Now, we want to deal with the weakest of this kind of decomposition; we refer to [Bir09]
for account of its relationship with the minimal model conjecture.

De�nition 4.2 (Weak Zariski decomposition). Let D ∈ DivR(X ) be an R-divisor on a
normal variety X ; we say that D has a weak Zariski decomposition (WZD) if there exists
a projective birational morphism f : W → X from a normal variety W , such that

1. f ∗D = P + N, where P, N are R-divisors;

2. P is nef and N is e�ective.
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Remark 4.3. We will see in Section 5.1 a concrete case where the birational map has
to be considered in order to ensure the existence of this decomposition. Since in many
meaningful situations this map is not required, we can also introduce a stronger form of
decomposition.

De�nition 4.4 (Direct Weak Zariski decomposition). In the same setting of De�nition
4.2, we say that D has a direct weak Zariski decomposition (DWZD) if it has a WZD
with f = id, that is, without the birational modi�cation.

The natural question to ask is thus the following.

Question 4.5. Let X be a normal variety. Does a (direct) weak Zariski decomposition
exist for every pseudoe�ective divisor?

It is worth to point out that the existence of such a decomposition for any pseudoe�ec-
tive divisor is strictly related to the existence of the decomposition for extremal rays of
Eff(X ) ⊂ N1(X ).

Fact 4.6. Question 4.5 has a positive answer if for every extremal ray Ri = R(Di ) of the
pseudoe�ective cone Eff(X ) there exists a birational map fi : Wi → X such that the class
of f ∗i Di is nef or e�ective.

Proof. By Fact 1.36 we have that the cone Eff(X ) does not contain lines through the
origin; thus it is the convex hull of its extremal rays. Thus for a �xed divisor D we can
�nd �nitely many pseudoe�ective classes [D1], . . . , [Ds ], generating extremal rays such
that [D] =

∑s
i=1[Di ].

Now we know by hypothesis that for each of these divisors Di there exists fi : Wi → X
with [f ∗i Di ] nef or e�ective; since the varieties Wi are all in the same birational class, we
can consider the common resolution W of all the maps Wi 99KWj :

W

uu �� �� ))
W1

f1

))

· · · Wi
//

fi

��

Wj

fj

��

· · · Ws

fs

uu
X

(4.1)

In W , since the pull-back of a nef or e�ective class is still a nef or e�ective class, we have
that the pull-back of each Di is a nef or an e�ective class.
Now, setting f : W → X , without loss of generality we can suppose, for some t ∈
{0, . . . , s}, that [f ∗Di ] is nef for i = 1, . . . , t and that [f ∗Di ] is e�ective for i = t +1, . . . , s
and thus we can write

f ∗D = f ∗
(∑

Di

)
=

t∑

i=1

f ∗Di +
s∑

i=t+1

f ∗Di , (4.2)

that gives a weak Zariski decomposition of D.

Remark 4.7. In the direct case we have that the existence of a direct weak Zariski
decomposition for any pseudoe�ective divisor in X is indeed equivalent to the e�ectiveness
or nefness of any generator of an extremal ray.

We have also the following characterization of Question 4.5.
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Fact 4.8. Question 4.5 has a positive answer if and only if there is a weak Zariski
decoposition for every extremal ray of the pseudoe�ective cone.

Proof. If there is a positive answer, then a WZD does exist in particular for extremal
rays. Viceversa, let us consider a pseudoe�ective divisor D whose class lies in Eff(X );
then, by Lemma 1.22 we can write D =

∑s
i=1 Di , where Di is a generator of an extremal

ray; by hypothesis we have that there exists a birational map such that f ∗i Di = Pi + Ni ,
for i = 1, . . . , s where Pi gives a nef class and Ni an e�ective class. Now considering a
common resolution f : W → X as in (4.1), we get

f ∗(D) =
s∑

i=1

f ∗(Di ) =
s∑

i=1

Pi +
s∑

i=1

Ni ,

that is a weak Zariski decomposition of D.

Thus we have reduced the problem in understanding the generators of extremal rays in
the pseudoe�ective cone Eff(X ).
We want now to introduce another important cone; as we will soon see it lies between
the nef and the pseudoe�ective cone.

De�nition 4.9. Let X be a smooth projective variety; the movable cone Mov(X ) ⊆
N1(X ) of movable divisors is the closed convex cone spanned by classes of divisors without
�xed component (that is such that the base locus has codimension at least 2).

An important decomposition can be produced for pseudoe�ective divisors in terms of
movable divisors; we refer to [Nak04, Chapter III] for further details. First of all we have
the following chain of inclusions.

Fact 4.10. Let X be a smooth projective variety, then we have the following inclusions:

Nef(X ) ⊆ Mov(X ) ⊆ Eff(X ). (4.3)

Nakayama proves that is it indeed possible to write a pseudoe�ective divisor as a sum of
an e�ective and a movable divisor.

Theorem 4.11. Let D be a pseudoe�ective R-divisor over a smooth projective variety
X , then there exists the so called σ-decomposition:

D = Pσ(D) + Nσ(D), (4.4)

where Pσ(D) lies in Mov(X ) and Nσ(D) is e�ective.

In this paper we try to give an answer to Question 4.5 in the particular case of projectivized
vector bundle.

Question 4.12. Let us consider a rank r > 2 vector bundle E on a smooth projective
variety Z and let

X = P(E)
π−→ Z

be the projectivized vector bundle over Z with the bundle map π.
Does a (D)WZD exists for any pseudoe�ective divisor on X?

Remark 4.13. The existence of a Zariski decomposition for projectivized vector bundles
on a curve has been already investigated by Nakayama; in particular in [Nak04, Section
IV.3], the author proves that every pseudoe�ective R-divisor on a projectivized vector
bundle on a non singular curve has a Zariski decomposition.
In the following, see Theorem 5.17, we will prove a weaker result using di�erent and
simpler techniques. In particular the proof we present is independent from the argument
of Nakayama and it is based on some ideas by Fulger, see [Flg11].
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4.2 On projectivized vector bundles

Let us �x the notations about projectivised vector bundles.

De�nition 4.14. If V is a vector space, then we de�ne

P(V ) := P(V ∗) = (V ∗ \ {0})/ ∼, (4.5)

where ∼ is the equivalence given by parallelism and P denotes the usual projectivization
of vector spaces.
If Z is a projective algebraic variety and E is a rank r > 2 vector bundle on Z , we de�ne
the projectivization of E as

P(E) := P(E∗). (4.6)

Remark 4.15. We want now to give a description of the projectivization of a vector
bundle E on Z ; an element x ∈ P(E) is given by a pair

x = (zx , [ϕx ]), (4.7)

where zx ∈ Z and [ϕx ] ∈ P(Ezx ) = P(E∗zx
) is the equivalence class of

ϕx ∈ E∗zx
\ {0}.

If we consider the one dimensional vector space generated by ϕx , we get

〈ϕx〉 ⊆ E∗zx

that, by duality, gives the surjection

Ezx → 〈ϕx〉∗ → 0. (4.8)

Thus a point of P(E) is essentially given by a point z ∈ Z and a line bundle quotient of
the �bre Ez of E at z .
Moreover we have the natural projection map:

π : P(E) −→ Z
x 7−→ zx .

(4.9)

Remark 4.16. The tautological line bundle on P(E) is the line bundle de�ned, on each
point x ∈ P(E), by

OP(E)(1)x := 〈ϕx〉∗. (4.10)

This line bundle de�nes the surjection

π∗E → OP(E)(1)→ 0; (4.11)

indeed for every point x ∈ P(E) we have

(π∗E)x → (OP(E)(1))x → 0,

that, since (π∗E)x = Eπ(x) and by (4.10), is equivalent to (4.8).

Fact 4.17 (Maps to P(E)). Let E be a vector bundle of rank r on a variety Z ; let Y be a
variety and let p : Y → Z be a map. Then there is a one to one correspondence between
line bundle quotients of the form

p∗E → L → 0, (4.12)

and maps f : Y → P(E) over Z . Under this correspondence L = f ∗OP(E)(1).
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Proof. As a �rst step, we want to build a line bundle quotient starting from the commu-
tative diagram

Y
f //

p
��

P(E)

π
}}

Z .

(4.13)

By equation (4.11), we get

p∗E = f ∗π∗E → f ∗OP(E)(1)→ 0; (4.14)

setting Lf := f ∗OP(E)(1) we get a line bundle on Y . Let us consider y ∈ Y , from the
former equation we get

Ep(y) = (p∗E)y → (Lf )y → 0,

that, by duality, gives the inclusion (Lf )∗y ⊆ E∗p(y). Since (Lf )∗y is a one dimensional vector
space, we can write

(Lf )∗y = 〈ϕf
y 〉. (4.15)

We claim that the map f is given by

f (y) = (p(y), [ϕf
y ]). (4.16)

Indeed, let us assume f (y) = (y , [ϕf (y)]); by equation (4.14) we get a surjection over Y

p∗E → Lf → 0,

that, for every y ∈ Y gives

Ep(y) = (p∗E)y → (Lf )y → 0.

By (4.10) and by its de�nition, we get that

(Lf )y = (f ∗OP(E)(1))y = (OP(E)(1))f (y) = 〈ϕf (y)〉∗,
Thus by (4.15) and duality we get

(Lf )y = 〈ϕf (y)〉∗ = 〈ϕf
y 〉∗

and therefore we have [ϕf
y ] = [ϕf (y)] and the (4.16) is proven.

We want now to construct the map starting from the line bundle quotient. Let us consider
the map p : Y → Z and the line bundle quotient on Y

p∗E → L → 0.

For every y ∈ Y we have
Ep(y) = (p∗E)y → Ly → 0;

thus, by duality we get (Ly )∗ ⊆ (Ep(y))
∗; since (Ly )∗ is one dimensional, we consider a

generator ϕy ∈ E∗p(y) \ {0} such that

(Ly )∗ = 〈ϕy 〉 (4.17)

and we set
f (y) := (p(y), [ϕy ]). (4.18)

Under this map we have, by (4.10) and by (4.17), that

(f ∗OP(E)(1))y = OP(E)(1)f (y) = 〈ϕy 〉∗ = Ly .

Therefore we get f ∗OP(E)(1) ' L.
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As an application of the former result, we prove the following well-known result concerning
quotient vector bundles.

Fact 4.18 (Restriction to quotient subbundles). Let E ,F be two vector bundles of rank
r > 1 and r ′ < r on a projective variety Z ; if there is a surjection E → F → 0, then:

1. P(F) ⊆ P(E);

2. OP(E)(1)|P(F) = OP(F)(1);

3. The �bre of P(E) restricted to P(F) is a �bre of P(F).

Proof. Let us set p : P(F) → Z and π : P(E) → Z ; since E → F is surjective and by
equation (4.11), we get

p∗E � p∗F → OP(F)(1)→ 0. (4.19)

Thus, setting L = OP(F)(1) we have a surjection

p∗E → L → 0; (4.20)

by Fact 4.17, we get a map f : P(F)→ P(E) such that f ∗OP(E)(1) = OP(F)(1).
In order to prove the �rst two statements of the Fact, it is enough to show that f is the
inclusion.
To this end, let us consider y = (p(y), [ϕy ]) ∈ P(F); by construction, see equation (4.16),
we have that

f (y) = (p(y), [ϕf
y ]),

where ϕf
y is a generator of L∗y ; considering equation (4.20) on y we get

Ep(y) → (OP(F)(1))y → 0,

that, by (4.10) becomes
Ep(y) → 〈ϕy 〉∗ → 0.

Thus we get
〈ϕy 〉 = L∗y = 〈ϕf

y 〉;

in particular [ϕy ] = [ϕf
y ] and we have proved that, since f takes (p(y), [ϕy ]) to itself, it

is the inclusion.
The third statement follows immediately by set theory and the de�nition of �bre.

We refer to [Har77] for the following well-known fact.

Fact 4.19. Let X = P(E)
π−→ Z be a projectivized vector bundle on a smooth variety Z .

1. More algebraically, P(E) can be described as

P(E) = ProjOZ

(⊕

m>0

SmE
)

.

2. We have that

Pic(X ) ' Pic(Z )× Z = {OX (a)⊗ π∗M | a ∈ Z, M ∈ Pic(Z )} (4.21)

and thus ρ(X ) = ρ(Z ) + 1.
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3. We have

π∗OX (a) =

{
SaE a > 0

0 a < 0.
(4.22)

4. If E ′ is a vector bundle on Z , then

P(E) ' P(E ′) ⇐⇒ E ′ ' E ⊗ L, for some L ∈ Pic(Z ); (4.23)

moreover, we have that

OP(E′)(1) ' OP(E)(1)⊗ π∗L, (4.24)

In view of what we proved in Fact 4.18, we have that in the particular case of a quotient
bundle of rank r − 1 (where r = rk E), the projectivized quotient bundle gives a divisor
inside P(E); let us compute the associated line bundle.
First of all, a short lemma.

Lemma 4.20. Let E be a vector bundle of rank r > 1 on a smooth projective variety Z ,
π : X = P(E) → Z . If M is a line bundle on X such that M|F ' OF for every �bre,
then

M' π∗(π∗M).

Proof. By Fact 4.19.2, we have thatM' OX (a)⊗ π∗G; restricting to F we get

M|F ' OF ' OX (a)|F ⊗ π∗G|F ,' OX (a)|F

and thus a = 0 andM ' π∗G. By projection formula we see that π∗M ' π∗π∗G ' G,
and thereforeM' π∗(π∗M).

We can now prof the following fact.

Fact 4.21. Let E be a rank r > 2 vector bundle on a smooth projective variety Z and let
F be a rank r − 1 quotient bundle with kernel L:

0→ L → E → F → 0. (4.25)

Then, setting X = P(E)
π−→ Z and Y = P(F), we have that

OX (Y ) ' OX (1)⊗ π∗(L∨). (4.26)

Proof. From the exact sequence

0→ OX (−Y )→ OX → OY → 0,

tensorizing by OX (1), we get

0→ OX (−Y )⊗OX (1)→ OX (1)→ OX (1)⊗OY → 0. (4.27)

We see that OX (1)⊗OY is just the restriction of OX (1) to P(F), that, by Fact 4.18, is
OY (1).

Claim 4.22. Pushing forward via π, we get the exact sequence

0→ π∗(OX (1)⊗OX (−Y ))→ E → F → 0. (4.28)
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Proof of the Claim. Since π on Y does coincide with the projection P(F) → Z , from
Remark 4.19 we immediately get the second and the third term. To show that the last
term is 0, we prove that

R1π∗(OX (1)⊗OX (−Y )) = 0.

Indeed, by a well-known fact (see [Har77, III. Ex 11.8]), it is enough to check that, for
any �bre F of π,

H1(F , (OX (1)⊗OX (−Y ))|F ) = 0.

To see that, we have that the restriction of the tautological bundle to a �bre gives the
class of an hyperplane in F = Pr−1; similarly OY (1)|F is the �bre of P(F)→ Z and hence
is a Pr−2 inside a Pr−1. Thus (OX (1) ⊗ OX (−Y ))|F ' OPr−1 and its �rst cohomology
vanishes.

Coming back to the proof of the Fact, we have that

L = ker(E → F) ' π∗(OX (1)⊗OX (−Y )).

Since (OX (1)⊗OX (−Y ))|F ' OF , by Lemma 4.20, we get

OX (1)⊗OX (−Y ) ' π∗L,

that is
OX (Y ) ' OX (1)⊗ π∗(L∨).
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Positive Answers

In this chapter we give a positive answer to Question 4.12 in a number of meaningful
situations.

5.1 The case of curves

In this section we deal with the case of projectivized vector bundles on a curve. As pointed
out before, our proof is independent from the work of Nakayama (see [Nak04]).
As a �rst step we focus on the computation of the pseudoe�ective cone Eff(X ), where

X = P(E)
π−→ C

is the projectivization of a rank r vector bundle E on a smooth projective curve C .
The achievement of this computation is due to the author of [Flg11]; we recall it here for
clarity's sake.
Since we are dealing with curves, by Fact 4.19 we have ρ(X ) = 2 and thus the shape of
cones in N1(X ) is easy to handle. To �x notations, we will denote with ξ = [OX (1)]≡
the numerical class of the tautological line bundle and with f = [F ]≡ the numerical class
of a �bre. We immediately get, again by Fact 4.19, that N1(X ) is a 2 dimensional real
vector space with bases {ξ, f }.
Studying cones associated to X , we are interested also in the space of curves; since
dim N1(X ) = 2, we must �x two numerically independent classes of 1-cycles. A natural
choice is:

σ := ξr−1 and L := [line on F ]≡.

We will show in the following that σ, L are numerically independent and hence they form
a basis of N1(X ).
We can easily compute the intersection form involving these numerical classes.

Fact 5.1 (Intersection form). Let X = P(E)
π−→ C be as before, then the intersection

form of N1(X ) is given by:

(1) f i · ξr−i = 0, 2 6 i 6 r ; (2) f · ξr−1 = 1; (3) ξr = deg E . (5.1)
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Proof. (1) Since f is the class of a �bre, two of them are disjoint and thus we get to the
conclusion.
(2) Let us compute:

f · ξr−1 = (ξ|F )r−1 = (OP r−1 (1))r−1 = 1.

(3) As well-known (see [Har77, Appendix A]) we have
r∑

i=0

(−1)iπ∗ci (E) · ξr−i = 0,

thus we get

ξr =
r∑

i=1

(−1)i+1π∗ci (E) · ξr−i = π∗c1(E) · ξr−1 = deg(E). (5.2)

We can easily show the following fact.

Fact 5.2 (Intersection pairing). The intersection pairing between N1(X ) and N1(X ) is
ruled by:

(1) ξ · σ = deg E (2) ξ · L = 1
(3) f · σ = 1 (4) f · L = 0.

(5.3)

Moreover we have

(5) ξr−2 · F = L (6) ξr−1−i · F i = 0, for i > 2. (5.4)

Proof. (1) Direct consequence of Fact 5.1. (2) ξ · L = ξ|F · L = OPr−1 (1) · L = 1. (3)
f · σ = f · ξr−1 = 1 by Fact 5.1. (4): f · L = 0 (change the �bre).
(5) Let us compute:

f · ξr−2 = (ξ|F )r−2 = (OPr−1 (1))r−2 = L.

(6) Whenever at least two �bres are intersected, we get 0.

In order to understand cones associated to X , we see at once the following.

Fact 5.3. Let X = P(E)→ C as above, then: (1) f ∈ ∂Eff(X ); (2) f ∈ ∂ Nef(X ).

Proof. First of all we see that f is an e�ective (and hence pseudoe�ective) class. Moreover
we claim that it can't lie in the interior of Eff(X ): indeed, since it is the pullback of a
point of C , we have that f ∈ Nef(X ), but since f r = 0, it is a nef and not big class.
Therefore f ∈ ∂Eff(X ) and, since it is not ample, f ∈ ∂ Nef(X ).

Let us now recall some important facts about semistability and about the Hader-
Narasimhan �ltration.

De�nition 5.4 (Slope and semistability). Let E be a vector bundle on the smooth pro-
jective curve C ; the slope of E is the number

µ(E) =
deg(E)

rk(E)
. (5.5)

We say that E is semistable if
µ(F) 6 µ(E) (5.6)

for every subbundle F ⊂ E of rkF > 1 and that E is stable if (5.6) is a strict inequality.
We say that E is unstable if it is not semistable.
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A very important tool in this matter is certainly the Harder-Narasimhan �ltration.

Proposition 5.5 (Harder-Narasimhan �ltration). If E is a rank r vector bundle on a
smooth projective curve C , then there exists a canonical de�ned �ltration:

0 = Ek ⊂ Ek−1 ⊂ · · · ⊂ E1 ⊂ E0 = E (5.7)

by subbundles such that each successive quotient Qi := Ei−1/Ei is semistable and such
that:

µ(Qk ) > · · · > µ(Q2) > µ(Q1). (5.8)

Notation 5.6. For the Harder-Narasimhan �ltration of a degree d and rank r vector
bundle E as in (5.7), we set

ri := rk(Qi ); di := deg(Qi ); µi := µ(Qi ). (5.9)

We have the following result (see [Laz04, Theorem 6.4.15]).

Theorem 5.7 (Hartshorne's theorem). A vector bundle E on a curve C is nef (resp.
ample) if and only if E and every quotient bundle of E has non negative (resp. strictly
positive) degree.

This allows to give a description of the nef cone of X

Proposition 5.8 (Miyaoka). If X = P(E) and µ1 = µ(Q1) is the slope of the �rst
quotient in Harder-Narasimhan �ltration, then

Nef(X ) = 〈ξ − µ1f , f 〉. (5.10)

Proof. It is essentially an application of Theorem 5.7. The proof uses the setting of Q-
twisted bundle (see [Laz04, Section 6.2]); for further details see [Flg11, Lemma 2.1].

The semistable case is completely worked out by the following result (see [Flg11, Lemma
2.2].

Fact 5.9. If E is a rank r semistable vector bundle on C with slope µ = µ(E), then

Eff(X ) = 〈ξ − µf , f 〉. (5.11)

Proof. In view of Fact 5.3, we can focus on the second ray of Eff(X ). Since in the
Harder-Narasimhan �ltration there is just an element, then µ1 = µ; moreover, by Fact
5.1, we can easily compute

(ξ − µf )r = ξr − rµξr−1f = deg E − r
deg E

r
= 0.

Now, by Proposition 5.8, ξ − µf is nef, but since its top self-intersection vanishes, then
it can't be big and thus it is in the boundary of Eff(X ) and therefore it is the generator
of the second ray.

Remark 5.10. In the semistable case, we have that µ = µ1 and thus we have just proved
that, in this situation,

Eff(X ) = Nef(X );

therefore, in view of Fact 4.6, Question 4.12 has a positive answer.
Moreover the author of [Flg11] proves (see Proposition 1.5) the following. A vector bundle

E is semistable if and only if Eff
i
(X ) = Nef i (X ) for any i ∈ {1, . . . , r −1}, where Eff

i
(X )

and Nef i (X ) are the cones of pseudoe�ective (resp. nef) cycles of dimension i .
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It may be worth to recall a more complete result relating semistability, nefness and pseu-
doe�ectiveness: see [Miy87, Theorem 3.1] and [BHR06, Theorem 2.3] for an account on
the proof.

Theorem 5.11. Let E be a vector bundle on a smooth projective curve C of rank r and
slope µ = µ(E), then, setting X = P(E) the following are equivalent.

1. E is semistable;

2. ξ − µf is nef;

3. Nef(X ) = 〈ξ − µf , f 〉;

4. NE(X ) = 〈(ξ − µf )r−1, (ξ − µf )r−2 · f 〉

5. every e�ective divisor in X is nef.

Let us now focus on the unstable case; since E is not stable, then the Harder-Narasimhan
�ltration is not trivial:

0→ E1 → E → Q1 → 0.

We have the following (see [Flg11, Proposition 1.3]).

Fact 5.12. Let E be an unstable rank r vector bundle on a curve; let us suppose that the
�rst quotient in Harder-Narasimhan �ltration is such that rk(Q1) = r − 1. Then

Eff(X ) = 〈[P(Q1)], f 〉. (5.12)

Proof. By Fact 4.21 we have that [P(Q1)] = ξ+ (d1−d)f and by Fact 4.18 it is e�ective
and thus pseudoe�ective. To check that it does lie in the boundary of Eff(X ), let us
consider the nef class ξ − µ1f and compute:

P(Q1) · (ξ − µ1f )r−1 = (ξ + (d1 − d)f ) · (ξ − µ1f )r−1

= (ξ + (d1 − d)f ) · (ξr−1 − µ1(r − 1)ξr−2 · f ) =

= ξr − µ1(r − 1)ξr−1 · f + (d1 − d)ξr−1 · f =

= d − d1

r − 1
(r − 1) + d1 − d = 0.

Therefore, by Lemma 1.24.3, [P(Q1)] can't be in the interior and thus it spans the second
extremal ray of Eff(X ).

Remark 5.13. By Fact 4.18 we have that P(Q1) ⊂ P(E) and it is thus e�ective. There-
fore, whenever the �rst quotient Q1 in the Harder-Narasimhan �ltration of an unstable
vector bundle of rank r has a rank r − 1, then Question 4.12 has a positive answer.

Now, we deal with an unstable vector bundle E such that its �rst Harder-Narasimhan
quotient has rank smaller than r − 1.
We refer again to [Flg11] for further details and generalization to lower dimensional cycles.
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Situation. Let us consider the short exact sequence

0→ E ′ → E → Q→ 0, (5.13)

where E is a rank r vector bundle and we may assume that its quotient Q is semistable
of rank s < r − 1 (so that rk(E ′) > 1) and slope µ′ = µ(Q); we need a construction
relating Eff(P(E)) and Eff(P(E ′)).
Although there is not a morphism from P(E) to P(E ′), we can consider the linear projection

p : P(E) \ P(Q)→ P(E ′).

Setting X = P(E) and Y = P(E ′), this projection can be seen as a rational map X 99K Y
that can be resolved by blowing P(Q) up and thus getting η : X̃ = BlP(Q) X → Y .
We have the following commutative diagram

X̃

B

��

η // P(E ′) = Y

ρ

��
X = P(E)

π //

p

99

C

(5.14)

We de�ne the following map

cone : Eff(P(E ′)) −→ N1(P(E))
[D] 7−→ [B∗η∗D].

(5.15)

This map is well de�ned, indeed B is birational and since η is �at, it follows that cone[D]
does not depend on D, but just on its numerical class, see [Flt98, Section 1.7] for further
details.
Moreover, it has a meaningful geometrical description: to the divisor D whose class lies
in Eff(P(E ′)), it is associated the class of p−1(D), that is the cone over D with center
P(Q).
As we report in the following, it turns out that the triple (X̃ , Y , η) can be described as a
projective bundle on Y with �bre Ps , see [Flg11, Proposition 2.4].

Lemma 5.14. With above notations we have the following.

1. There exists a locally free sheaf F on Y such that X̃ ' PY (F) and η : PY (F)→ Y
is its bundle map.

2. Let ξ′ be the class of OP(E′)(1), f ′ the class of a �bre of ρ, γ the class of OPY (F)(1)

and Ẽ the class of the exceptional divisor of B. Then we have:

γ = B∗ξ; η∗ξ′ = B∗ξ − Ẽ ; η∗f ′ = B∗f . (5.16)

3. We have that

Ẽ · B∗(ξ − µ′f )s = 0. (5.17)

4. Still denoting by Ẽ its support, if j : Ẽ → X̃ is the canonical inclusion, then

Ẽ · N1(X̃ ) = j∗N(Ẽ ) as subset of N1(X̃ ).
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Using this Lemma it is possible the prove that the cone map is indeed pseudeo�ective
(that is the image of the pseudoe�ective cone lies in the pseudoe�ective cone of the target
set) and, moreover, it provides an isomorphism between the two pseudoe�ective cones.
The following result is a special case of [Flg11, Lemma 2.7].

Fact 5.15. The map cone = B∗η∗|Eff(P(E′)) is indeed an isomorphism:

cone : Eff(P(E ′))
'−→ Eff(E).

Proof. Between the abstract groups N1(X ) and N1(Y ) there is a natural isomorphism

ϕ : aξ + bf 7−→ aξ′ + bf ′;

we will prove that this induces the isomorphism between the pseudoe�ective divisors.
Let us understand the geometric behaviour of ϕ. We can de�ne the unrestricted coning
construction U : N1(Y )→ N1(X ), setting

U(c) = B∗η
∗c .

We claim that U is pseudoe�ective; if c ∈ Eff(Y ), then η∗c is pseudoe�ective in the
blow-up and so it is its push forward.
We immediately have that U = ϕ−1; indeed, using (5.16):

U(aξ′ + bf ′) = B∗(a(B∗ξ − Ẽ )) + B∗(bB∗f ) =

= a(B∗B
∗ξ − B∗Ẽ ) + bB∗B

∗f = aξ + bf .

To conclude the proof, if we construct an inverse V of U that is also pseudoe�ective,
then we are done because we have V = ϕ and an isomorphism of the two pseudoe�ective
cones.
Setting δ = B∗(ξ − µ′f )s , we de�ne V : N1(X )→ N1(Y ) by

V (k) = η∗(δ · B∗k).

We claim that η∗δ = [Y ]; indeed, by the �rst equation of (5.16), we can compute:

η∗δ =
(
B∗(ξ − µ′f )s

)
= η∗

(
B∗(ξs − µ′ξs−1 · f )

)
=

= η∗
(
B∗(ξs)− µ′B∗(ξs−1 · f )

)
=

= η∗
(
(B∗ξ)s − µ′B∗(ξs−1 · f )

)
=

= η∗γ
s − µ′η∗(B∗(ξs−1 · f )).

Now we have that a classical result, see [Flt98, Proof of Propositon 3.1], gives that
η∗γs = [Y ]; to conclude the proof of what we claimed to be true, we need to show that the
second summand has to vanish. To this end, we see that the cycle ξs−1 ·f has codimension
s in P(E); more precisely, in each �bre f ' Pr−1, it is given by intersecting s − 1 times
an hyperplane class and thus, in each �bre, it is the class σ of Pr−1−s+1 = Pr−s ⊂ Pr−1.
Now, since by blowing up and pushing forward via η∗, the �bre f is sent to f ′ ' Pr−s−1, the
(r − s)-dimensional cycle B∗σ has to be mapped by η to something of smaller dimension.
Therefore, by de�nition of push forward, (see, for example, [Flt98, Section 1.4]), we see
that it vanishes.
We can now compute, by (5.16), (5.17) and projection formula, that

V (aξ + bf ) = η∗(B∗(aξ + bf ) · δ) = η∗([η∗(aξ′ + bf ′) + aẼ ] · δ) =

= (aξ′ + bf ′) · η∗δ = (aξ′ + bf ′) · [Y ] = aξ′ + bf ′.
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Thus V = U−1 = ϕ. Let us prove that V is pseudoe�ective: for an e�ective class k in
X , we have that B∗k = k̃ + xẼ for some number x . Now k̃ is the strict transform of k
and it is still e�ective; since δ · Ẽ = 0, we have that

V (k) = η∗(δ · (k̃ + xẼ )) = η∗(δ · k̃);

but now δ is given by intersecting nef classes, thus δ · k̃ is pseudoe�ective and so it is
η∗(δ · k̃).

Remark 5.16. We have proved that the cone map is pseudoe�ective; moreover, in view
of Question 4.12, we can say that it preserves e�ectiveness: if the second ray of Eff(P(E ′))
is e�ective so it is for the second ray of Eff(P(E)).

The answer in the curve case

We now come back to our goal: our main tool to give an answer to Question 4.12 will be
the Harder-Narasimhan �ltration.
As we said before, this would follow from what Nakayama proves in [Nak04].

Theorem 5.17. Let E be a rank r vector bundle on a smooth projective curve C , then
every pseudoe�ective divisor on X = P(E) has a weak Zariski decomposition.

Proof. In the semistable case we have, by Remark 5.10, that Eff(X ) = Nef(X ) and we
are done. So let us move to the unstable case; in this situation we have a non trivial
Harder-Narasimhan �ltration of E :

0 = Ek ⊂ Ek−1 ⊂ · · · ⊂ E1 ⊂ E .

If the �rst quotient Q1 has rank r − 1, then by Fact 5.12 we are done; otherwise Fact
5.15 provides the isomorphism

Eff(P(E)) ' Eff(P(E1))

and we can start the procedure; as we suggested in Remark 5.13, if at a certain point we
�nd a quotient Qj such that rk(Qj ) = rk(Ej−1)− 1, then

Eff(P(E)) ' Eff(P(E1)) ' · · · ' Eff(P(Ej−1)) = 〈[P(Qj )], fj〉. (5.18)

Thus in this situation, see Remark 5.16, the second ray of Eff(P(E)) is e�ective and
we have a weak Zariski decomposition; moreover, since we do not need a birational
transformation of X , we have a direct WZD.
If there exists such a Qj , then the vector bundle Ej in the Harder-Narasimhan �ltration
has to be a line bundle and this Ej is indeed the last bundle in the �ltration.
Thus we are reduced to consider the last step of the �ltration:

0 ⊂ Ek ⊂ Ek−1 ⊂ · · ·

with rk(Ek ) > 1. Now, since it is the last bundle in the �ltration, it has to be semistable.
Since Ek is semistable, then the nef cone does coincide with the pseudoe�ective cone and,
by the cone map, we have the following:

Eff(P(E)) ' Eff(P(E1)) ' · · · ' Eff(P(Ek )) = Nef(P(Ek )). (5.19)
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Since our situation, for some quotient Q, is:

0→ Ek → E → Q→ 0,

mimicking (5.14), we have the commutative diagram

X̃

B

��

η // P(Ek )

ρ

��

cone

||
P(E)

π // C .

(5.20)

Let us set, for a suitable pseudoe�ective class D,

Eff(P(E)) = 〈D, f 〉

and, for a nef class Dk ,
Eff(P(Ek )) = 〈Dk , fk〉.

Now, since f is an e�ective class, in view of Fact 4.8, we need to produce a weak Zariski
decomposition for D. However, it is worth to point out that for a class in the interior of
Eff(P(E)), since it is big, it is e�ective and thus we trivially have a direct weak Zariski
decomposition.
Focusing on D, we see that via the cone map we have

cone : Dk 7−→ B∗η
∗Dk = D.

We will show that the class of B∗(D) can be written as the sum of an e�ective and a nef
class, producing a weak Zariski decomposition.
To this end, confusing for a moment the divisor and its class, we have that by Fact 5.9,

Dk = ξk + bfk , for some b,

via the cone map we have
D = ξ + bf .

Now since Dk is nef, its pullback

η∗Dk = η∗ξk + bη∗fk

is nef, too. By (5.16) (Lemma 5.14), we can have:

B∗(D) = B∗(ξ + bf ) = (η∗ξk + Ẽ ) + bη∗fk

= η∗ξk + bη∗fk + Ẽ

= η∗Dk + Ẽ ,

that, since B is birational, gives a weak Zariski decomposition for D.

In the �nal part of the proof of Theorem 5.17, we used a birational transformation to
ensure the existence of weak Zariski decomposition; in the following we give a description
of the situation where this transformation can't be avoided.
We have the following result.
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Proposition 5.18. Let E be an unstable rank r vector bundle on a curve C and let F be
the last non-zero term in the Harder-Narasimhan �ltration of E .
A direct weak Zariski decomposition does not exist for every pseudoe�ective divisor on
X = P(E) if and only if rk(F) > 2 and Eff(P(F)) is not a closed cone.

Proof. Let us suppose that a direct weak Zariski decomposition does not exist; by the
proof of Theorem 5.17, we are reduced to this case:

0→ F → E → Q → 0,

where rk(F) > 2; we know that

Eff(P(E)) ' Eff(P(F)) = Nef(P(F)) (5.21)

and we can set
Eff(P(E)) = 〈D, f 〉; Nef(P(F)) = 〈D ′, f ′〉.

To prove the �rst implication, let us suppose, by contradiction, that Eff(P(F)) is closed;
now, by (5.21), we have that D ′ gives an e�ective class and therefore, since the cone
map sends e�ective classes to e�ective classes, D is e�ective and a direct weak Zariski
decomposition does exist.
Viceversa, we want to prove that if D ′ is not e�ective then D is neither nef nor e�ective
(and thus we need a birational transformation to make it nef). We see at once that
D can't be nef: indeed if it were nef, then we would have Eff(P(E)) = Nef(P(E)), but
this is not possible since E is unstable (see Theorem 5.11). We have also that D is not
e�ective; indeed we have that D = cone(D ′), but since the inverse of cone (see the proof
of Theorem 5.17) sends e�ective to e�ective, then also D ′ should be e�ective.

Example 5.19. Let us consider the semistable rank 2 vector bundle U on a curve C
of genus g > 2 of [Laz04, Example 1.5.1]; as it is well known, P(U) has a non closed
e�ective cone. Setting

E = U ⊕N ,

for a line bundle N with deg(N ) < 0, we have that the Harder-Narasimhan �ltration of
E is

0 ⊂ U ⊂ E .

By Proposition 5.18, a birational transformation of the threefold X = P(E) is required in
order to get a weak Zariski decomposition.

5.2 Completely decomposable vector bundles

In this section we prove that a direct weak Zariski decomposition always exists for a
pseudoe�ective divisor on X = P(E), where E is a completely decomposable rank r vector
bundle on a variety with Picard number one or on a curve.

The case of curves

As a �rst step we put in evidence what happens in the case of curves; this could be seen
as an application of results from the former section or, as we will see, it can be easily
directly shown.
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Fact 5.20. Let E be a completely decomposable rank r vector bundle on a smooth
projective curve C :

E = L1 ⊕ · · · ⊕ Lr , deg(Li ) = ai , a1 6 · · · 6 ar . (5.22)

Setting X = P(E)
π−→ C we have

Eff(X ) = 〈ξ − ar f , f 〉. (5.23)

Proof. We show the two inclusions. At �rst we have that f = [F ] is e�ective and
hence pseudoe�ective. To see that ξ − ar f ∈ Eff(X ), we see that, since degLr = ar ,
ξ − ar f ≡ ξ − π∗Lr ; if we show that ξ − π∗Lr has sections, then we are done. Let us
compute:

h0(X , ξ − π∗Lr ) = h0(C ,π∗(ξ − π∗Lr )) = h0(C , E ⊗ (Lr )∨) =

= h0(C , (L1 ⊕ · · · ⊕ Lr )⊗ (Lr )∨) =

= h0(C , (L1 ⊗ L∨r )⊕ · · · ⊕ OC ) > 0.

To prove the reverse inclusion, if xξ+yf ∈ Eff(X ), then, for the movable class L ∈ ME(X )
(the line on a �bre), (xξ + yF ) · L = x > 0.
Let us now consider an integer e�ective class: aξ + bf , with a, b ∈ Z, a > 0. We have
that [aξ + bf ] ∈ Eff(X ) and thus there exists an e�ective divisor E ≡ aξ + bf ; hence for
a suitableM∈ Pic(C ) we have E ∼ OX (a)⊗ π∗M. Therefore we get

0 < h0(X ,OX (a)⊗ π∗M) = h0(C , SaE ⊗M),

that easily gives
∑

j1 + · · ·+ jr = a
j1 > 0, . . . , jr > 0

h0(C ,Lj1
1 ⊗ · · · ⊗ Ljr

r ⊗M) 6= 0. (5.24)

Thus one of the summands must be non negative; we have that there exist

j1 > 0, . . . , jr > 0 such that
r∑

j=1

ji = a,
r∑

j=1

ji ai + b > 0.

Thus we get

b > −
r∑

i=1

ji ai > −aar . (5.25)

Now we need to pass from integer to real classes; setting V := 〈ξ−ar f , f 〉, we claim that
Eff(X ) = V (and thus, since V is closed, Eff(X ) = V ). We have seen that f and ξ− ar f
are e�ective and thus V ⊆ Eff(X ). Viceversa let E =

∑
ei [Ei ] ∈ Eff(X ) with Ei integral

divisors and ei ∈ R>0; then by (5.25), Ei ∈ Z>0[F ] + Z>0[ξ − ar F ] and thus E ∈ V .

After a direct proof, we can also prove Fact 5.20 as a consequence of Theorem 5.17.

Second proof of Fact 5.20. In order to use Theorem 5.17 we need to understand the
Harder-Narasimhan �ltration of E . Since it is decomposable, at each step the maximal
destabilizing subsheaf is obtained by elimination of all the summands of smallest degree.
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Putting together all summands of same degree, we can write

E = N1 ⊕ · · · ⊕ Ns ,

for some s 6 r , where




Nj =M⊕rj

j j = 1, . . . , s for someMj ∈ Pic(C )

degMj = bj a1 = b1 < · · · < bs = ar∑s
j=1 rj = r .

Thus the Harder-Narasimhan �ltration is:

0 ⊂ Nr ⊂ Nr−1 ⊕Nr ⊂ · · · ⊂ E . (5.26)

Therefore, setting

Ei = Ni+1 ⊕ · · · ⊕ Ns , for i = 0, . . . , s − 1,

we have that rk(Ei ) > 1 for i < s − 1; following the cone construction, we produce the
chain of isomorphisms

Eff(P(E)) ' Eff(P(N2 ⊕ · · · ⊕ Ns)) ' · · · ' Eff(P(Ns−1 ⊕Ns)), (5.27)

and we must distinguish two cases.
If rs = 1, we have the following sequence:

0→Ms → Ns−1 ⊕Ms → Ns−1 → 0;

by Fact 5.12, we get

Eff(P(Ns−1 ⊕Ns)) = 〈[P(Ns−1)], fs−1〉.

Now the result follows since deg(Ms) = bs = ar and, by Fact 4.21, we have

[P(Ns−1)] = ξs−1 − ar fs−1,

where ξs−1 and fs−1 are the suitable classes corresponding to the tautological line bundle
and to the �bre.
If else rs > 1, we have thatNs is semistable and, from (5.27), we get Eff(P(Ns−1⊕Ns)) =
Eff(P(Ns)); by Fact 5.9, the second ray of this cone is generated by

ξs − µ(Ns)fs = ξs −
degNs

rs
fs = ξs −

rsbs

rs
fs = ξs − ar fr ,

where ξs and fs are the suitable classes corresponding to the tautological line bundle and
to the �bre.

The cone of movable curves

Furthermore, in this decomposable situation it is easy to compute the movable cone
ME(X ) ⊂ N1(X ); this can be immediately worked out by Theorem 1.34: since Eff(X ) =
〈ξ − ar f , f 〉, it is enough to ask (see Fact 5.2):

{
(xσ + yL) · F = x > 0

(xσ + yL) · (ξ − ar f ) = x deg E − xar + y > 0,
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which gives

x > 0, y > −
(

r−1∑

i=1

ai

)
x .

Thus the movable cone is given by:

ME(X ) = 〈σ −
r−1∑

i=1

ai L, L〉. (5.28)

In view of De�nition 1.6, it may be worth to understand where the ray R(σ −∑r−1
i=1 ai L)

comes from: we want to explicitly �nd a birational map ϕ : X ′ → X and nef classes
δ1, . . . , δr−1 such that

σ −
r−1∑

i=1

ai L = ϕ∗(δ1 · . . . · δr−1) (5.29)

For a better understanding of the strategy, let us proceed by a sort of induction on the
rank. In the rank 2 case, we have that ME(X ) is generated by R(σ− a1L) = R(ξ− a1F )
that is nef and thus (5.29) is satis�ed with δ1 = ξ − a1f .
If r = 3 we immediately get (ξ − a1f ) · (ξ − a2f ) = σ − (a1 + a2)L and more generally,
by Fact 5.2 we can compute:

(ξ − a1f ) · (ξ − a2f ) · . . . · (ξ − ar−1f ) = σ −
r−1∑

i=1

ai L. (5.30)

But now we see that, since ai > a1, ξ − ai f is not nef for i > 2 and we do not have the
required classes. To �resolve� this lack of nefness, a suitable birational modi�cation will
be necessary; to this end it is worth to point out that ξ − ai f is an e�ective class and
thus |ξ − ai F | 6= ∅. With some abuse of notation, in this computation, we denote with ξ
the line bundle OX (1).
This is our strategy: at each step, to resolve the non nefness of ξ − ai f , we blow up the
base locus Bs(ξ − ai F ) and we will subtract the exceptional locus to the strict transform
of ξ − ai F .
Let us consider the rank 3 case. Let X1 := X and B2 := Bs(ξ − a2F ); we can consider

X2 = BlB2

µ2−→ X1,

with exceptional divisor E2. We have hence that

µ∗2(ξ − a2F )− E2 and µ∗2(ξ − a1F )

are nef classes and

(µ2)∗
(
µ∗2(ξ − a1f ) · (µ∗2(ξ − a2f )− E2)

)
=

=(ξ − a1f ) · (ξ − a2f ) = σ − (a1 + a2)L.

If r > 3, at each step, if we have

ϕk : Xk = BlBk
Xk−1

µk−→ Xk−1
ϕk−1−→ X1 = X ,

we set 



Bk+1 := Bs((ϕ−1
k )∗(ξ − ak+1f ))

Xk+1 := BlBk+1
Xk

µk+1−→ Xk

ϕk+1 := ϕk ◦ µk+1 : Xk+1 → X .
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Thus, setting ϕ = ϕr−1 we �nally get:

ϕ∗

(
[µ∗r−1 · · ·µ∗3µ∗2(ξ − a1f )] · [µ∗r−1 · · ·µ∗3

(
µ∗2(ξ − a2f )− E2

)
]·

· [µ∗r−1 · · ·µ∗4
(
µ∗3((ϕ−1

2 )∗(ξ − a3f ))− E2

)
] · · · · ·

· [µ∗r−1

(
(ϕ−1

r−2)∗(ξ − ar−1f )
)
− Er−1]

)
=

= (ξ − a1f ) · (ξ − a2f ) · . . . · (ξ − ar−1f ) = σ −
r−1∑

i=1

ai L.

(5.31)

Remark 5.21. We can run this sort of strategy whenever for a γ ∈ ME(X ) we have
γ = γ1 · . . . · γr−1 for some e�ective classes γi . At each step we blow up the base locus
of γi and we subtract the corresponding exceptional divisor to build a nef divisor.

Higher dimensional case

We can now focus on the higher dimensional case; more precisely, we are in the following
setting.

Notation 5.22. If Z is a smooth projective variety with Pic(Z ) = Z[HZ ], we consider a
rank r vector bundle on Z

E = L1 ⊕ L2 ⊕ · · · ⊕ Lr , (5.32)

where Li is a line bundle such that in Li ' OZ (ai HZ ).
We have that N1(P(E)) is a real two dimensional vector space generated by the class ξ
of the tautological line bundle OP(E)(1) and by the class of the pull-back of HZ .

First of all, we can prove a general fact about one of the extremal rays of the cones that
is a generalization of Fact 5.3.

Fact 5.23. Let Z be a smooth projective variety such that Pic(Z ) = Z[HZ ] for an ample
divisor HZ on Z ; let E be a rank r vector bundle on Z . Setting π : X = P(E)→ Z , then
H = π∗HZ spans an extremal ray of Eff(X ), Mov(X ) and Nef(X ).

Proof. Since HZ is ample we have that its pull-back is nef but not ample and thus it lies
in the boundary of Nef(X ). In order to see that H is in ∂Eff(X ), it is enough to show
that it is not big; but this is true since the top self intersection of H is 0. Concerning the
movable cone, since it lies between Nef(X ) and Eff(X ), then H spans an extremal ray of
Mov(X ) too.

We can now focus on the second ray.

Proposition 5.24. Let Z be a smooth projective variety with Pic(Z ) = Z[HZ ], where
HZ is an ample generator of the Picard group; let E be a completely decomposable rank
r vector bundle

E = L1 ⊕ · · · ⊕ Lr , Li ' OZ (ai HZ ), a1 6 · · · 6 ar . (5.33)

Then for X = P(E)
π−→ Z , setting H = π∗HZ , we have

Eff(X ) = Eff(X ) = 〈ξ − ar H, H〉. (5.34)
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Proof. One of the two rays, as we have seen in Fact 5.23, is generated by H. Let us
focus now on the second ray and let us suppose it is generated by D. If we consider a
very general movable curve C ⊂ Z (that is very general in the covering algebraic family,
see De�nition 1.6), we have the surjection of vector bundles

E → E|C → 0.

Thus we have Y := P(E|C ) ⊂ X and we want restrict a pseudoe�ective divisor D ∈ Eff(X )
to Y .

Claim 5.25. If D ∈ Eff(X ), then D|Y ∈ Eff(Y ).

To prove the claim we can consider at �rst the e�ective case. Without loss of generality,
we can suppose D a prime divisor; thus, if D|Y = D ∩P(E|C ) were not e�ective, then we
would have

P(E|C ) ⊆ D,

but, since C is very general and movable, this can't be. If D is pseudoe�ective we can
write D = limn Dn, with Dn e�ective classes; by linearity we have that the restriction is a
continuous function N1(X )→ N1(Y ), therefore

D|Y = ( lim
n→∞

Dn)|Y = lim
n→∞

(Dn|Y ),

and we have written D|Y as limit of e�ective classes. To be precise we should check that
Dn|Y is e�ective for every Dn, but this is the case. Indeed we have that C is movable and
thus Y = P(E|C ) covers X ; now, since Dn are countable many and C is general, we can
pick C such that

C *
⋃

n

Supp(Dn).

Claim 5.26. Let D = ξ+xH be the generator of the second ray of Eff(X ), then x > −ar

Indeed, we have
D|Y = ξ|Y + xH|Y = ξC + x deg(C )fC ,

where ξC and fC are the generators of the projectivized vector bundle E|C on the curve
C . Now, the restriction of vector bundle E to C is

E|C = L′1 ⊕ · · · ⊕ L′r , deg(L′i ) = ai deg(C ),

since D|Y is a pseudoe�ective divisor of P(E|C ), by Fact 5.20,

x deg(C ) > −ar deg(C ),

that gives Claim 5.26.
Thus we have seen that Eff(X ) ⊆ 〈ξ− ar H, H〉. To the reverse inclusion, we will see that
ξ − ar H is an e�ective class; indeed the exact sequence

0→ Lr → E → L1 ⊕ · · · ⊕ Lr−1 → 0,

provides the existence of the map O → E ⊗L∨r and thus of an element in H0(C , E ⊗L∨r ).
Now it happens that the numerical class of the line bundle OX (1) ⊗ π∗L∨r is exactly
ξ − ar H. Since

H0(X ,OX (1)⊗ π∗L∨r ) = H0(C , E ⊗ L∨r ) 6= 0,

we have that ξ − ar H ∈ Eff(X ) and the proof is concluded.
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Remark 5.27. In the case of completely decomposable vector bundles on varieties with
Picard number one, we have that the second ray of the pseudoe�ective cone is indeed
e�ective; we have thus proved the existence of a direct weak Zariski decomposition for
any pseudoe�ective class in Eff(X ).

5.3 Rank 2 on Fano

In this section we give an account of some results of [MOSC11] on projectivized rank 2
vector bundles on a Fano variety. For a Fano variety Z of Picard number one and a rank
2 vector bundle E on Z , we give a positive answer to Question 4.12 if E is unstable or if
it is semistable but not stable (that is if E is not strictly stable). Moreover, we see that in
this situation we do not need a birational transformation in order to ensure the existence
of a weak Zariski decomposition for any pseudoe�ective divisor on X = P(E).

Notation 5.28. We consider a smooth irreducible Fano variety Z with Picard number
one and we �x an ample generator HZ so that Pic(Z ) = Z[HZ ].
If E is a rank 2 vector bundle on Z , we set π : X = P(E)→ Z ; we have thus that N1(X )
is a two dimensional vector space generated by ξ = ξP(E), the class associated to the
tautological line bundle OX (1), and the class H of π∗HZ ;
With abuse of notation, we will denote with ξ the numerical class and the divisor associated
to OX (1); similarly H will denote the numerical class and the divisor associated to π∗HZ .
We can suppose that E is a normalized vector bundle so that its determinant is given by
det E = OZ (c1(E)HZ ), where c1(E) is its �rst Chern class and c1 = c1(E) = 0, 1 (see
Fact 4.19.4).

In the curve and decomposable cases worked out in previous sections, when dealing with
N1(X ), we considered the basis given by the tautological class and by the pull-back of
the generator of the base; in this setting, it turns out to be far more convenient the use
of the relative anticanonical class instead of the tautological class.
From the canonical bundle formula for projectivized vector bundles (see [BS95]):

KP(E) = − rk(E)ξ + π∗(KZ + det E), (5.35)

we immediately get the formula relating the relative anticanonical divisor with the base
{ξ, H} of N1(X ):

− Krel = 2ξ − c1H. (5.36)

This relation shows that with the basis {−Krel, H} of N1(X ), we take intrinsically account
of the degree of the vector bundle E : this is therefore a wise choice in order to simplify
computations and notations.
The stability properties of the rank two vector bundle we want to consider are successfully
detected by β, the smallest integer such that E(β) = E ⊗ OZ (βHZ ) has non-zero global
sections. We have indeed that for such a β, there is the injective map

0→ OZ (−βHZ )→ E ; (5.37)

since the slope of OZ (−βHZ ) is −β and the slope of E is c1/2, we have that E is

stable if β > − c1

2
semistable if β > − c1

2
semistable not stable if β = − c1

2
unstable if β < − c1

2 .

(5.38)



96 Chapter 5. Positive Answers

Now in order to investigate the answer to Question 4.12, since we are dealing with two
dimensional cones sharing one of the two extremal rays (see Fact 5.23), the shape of
these cones is essentially ruled by the slope of the second ray, since each ray di�erent
from R(H) is generated by −Krel + xH for a suitable x ∈ R, we can give the following
de�nition.

De�nition 5.29. Whenever we have a vector bundle on a variety of Picard number one,
with notation as above, we de�ne the slopes τ and ρ of Nef(X ) and Eff(X ) (see Fact
5.23) by setting:

Nef(X ) = 〈−Krel + τH, H〉
Eff(X ) = 〈−Krel + ρH, H〉

(5.39)

Remark 5.30. It is a direct consequence of Fact 4.10 that τ > ρ.

Let us now recall a list of useful results from [MOSC11, Section 3]; the pair (X , E) denotes
a rank 2 vector bundle E on a Fano variety Z and X = P(E).

Lemma 5.31. Let E be a vector bundle on Z as in Notation 5.28; if E is semistable, then
ρ > 0.

Let us recall the following lemma, see [MOSC11, Lemma 3.2]

Lemma 5.32. Let E be a vector bundle on Z as in Notation 5.28 and let M be a
dominating family of rational curves in Z of degree µ and Mt , t > 0 is its dominating
subscheme of curves with splitting type ((c1 + t)µ/2, (c1 − t)/µ/2).
If b < t, then every linear system of the form |k(−Krel +bH)| contains a �xed component
F , where F is the closure of the union of the strict transforms in P(E) of the curves in
Mt .

We have now that linear systems of a certain kind have to contain a �xed component
lying in the second pseudoe�ective ray (see [MOSC11, Proposition 3.5].

Proposition 5.33. Let E be a vector bundle on Z as in Notation 5.28; a non empty linear
system of the form

|k(−Krel + bH)|, with k, b ∈ Q, b < 0,

contains a �xed component F numerically proportional to −Krel + ρH.
Moreover, if E is unstable, then ρ = 2β + c1.

Proof. We can consider a covering family of rational curves and we can set F as in Lemma
5.32; since we are supposing b < 0, we have, again by Lemma 5.32, that F is a base
component of |k(−Krel + bH)|.
We have that whenever we are in this situation, either F or k(−Krel + bH)− F has to be
numerically proportional to −Krel + cH, for some c such that ρ 6 c 6 0. Indeed if we
write

k(−Krel + bH) = F + [k(−Krel + bH)− F ],

we have that the numerical class of one of the two summands has to lie in a ray under
the ray spanned by −Krel + bH; therefore, since it has still to be pseudoe�ective, its class
has to lie in R(−Krel + cH), for ρ 6 c 6 b < 0.
Now, if the class of F does not lie in R(−Krel+cH), then we can apply the same procedure
to |k(−Krel + bH)− F | that again will have F as base component. After a �nite number
of steps we get that

|k ′(−Krel + b′H)| = |k(−Krel + bH)− sF |
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does not contain F as base component; but since b′ is negative, this is a contradiction
with Lemma 5.32.
Thus we can assume that [F ] ∈ R(−K +cH). With the same procedure as before, we get
that every multiple sF of F has F in its base locus; in particular |sF | has dimension zero
and therefore F can't be big and its class has to lie in the second ray of the pseudoe�ective
cone that is, by de�nition, R(−Krel + ρH).
Let us focus on the second part. If E is unstable, then by (5.38) we have that 2β+c1 < 0;
thus, by what we saw before, the non empty linear system

|1/2(−Krel + (2β + c1)H)| = |1/2(2ξ − c1H + 2βH + c1H)| = |ξ + βH|

has a �xed component F ≡ j(−Krel+ρH). Since |ξ+βH| consists of irreducible unisecant
divisors, this can only happen when F ∈ |ξ + βH|. Hence

−Krel + (2β + c1)H ∈ R(−Krel + ρH),

that gives ρ = 2β + c1.

We are now ready to answer to Question 4.12.

Fact 5.34. If E is unstable, then the e�ective cone is closed; in particular, a direct weak
Zariski decomposition exists for every pseudoe�ective divisor of X = P(E).

Proof. Since, by Proposition 5.33 ρ = 2β + c1, we have that the second ray of the
pseudoe�ective cone is indeed generated by

−Krel + ρH = 2ξ − c1H + 2βH + c1H

that is proportional to ξ + βH; by de�nition of β, this is gives an e�ective class and the
Fact is proven.

Fact 5.35. If E is semistable but not stable, then the e�ective cone is closed; in particular,
a direct weak Zariski decomposition exists for every pseudoe�ective divisor of X = P(E).

Proof. Since E is semistable but not stable, by (5.38), we have that β = −c1/2; since
they are integers and c1 = 0 or c1 = 1, we get β = c1 = 0 that immediately gives
−Krel = 2ξ.
Now from equation (5.37) we see that h0(X ,OX (1)) = h0(Z , E) 6= 0; therefore ξ, and
thus −Krel is an e�ective class. This means that ρ 6 0, but since we are in the semistable
case, by Lemma 5.31, se get ρ = 0.
Thus the second ray of Eff(X ) is spanned by −Krel that, as we pointed out, is e�ective.

In order to try to work the stable case out, we have the following result; although we state
it in considerable generality, we will see in the following section how it can be concretely
used to give a positive answer to Question 4.12.
Let us recall that a normalized vector bundle E on a projective variety with Picard number
one, is the smallest twist with sections, that is h0(E) 6= 0 and h0(E(−1)) = 0.
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Proposition 5.36. Let E be a normalized rank 2 vector bundle on a projective variety Z
with Pic(Z ) = Z[HZ ]; let us suppose that, for two integers a, b with a < b and a 6 0,
there exists a setM =M(a, b) of smooth rational curves C ⊂ Z such that

1. the set spanned by C ∈M dominates Z ;

2. for any C ∈M, we have

E|C = OP1 (a)⊕OP1 (b).

Then the e�ective cone of P(E) is closed; in particular, a weak Zariski decomposition does
exist for every pseudoe�ective divisor on P(E).
Moreover if R2 is the second ray of Eff(P(E)), that is the ray di�erent from the ray
generated by H, the pullback of HZ (see Fact 5.23), we have two possibilities:

1. R2 is generated by ξ;

2. if C̃ , C ∈M(a, b), is the minimal section of the ruled surface YC := P(E|C ) ⊂ P(E),
we have that

Γ :=
⋃

C∈M
C̃

has one irreducible codimension one component that generates R2.

Proof. Let us consider the surjection E → E|C → 0; by Fact 4.18, we get:

YC := P(E|C ) ⊂ P(E), and ξ|YC
= ξ′,

where ξ′ is the class of the tautological divisor associated to P(OP1 (a)⊕OP1 (b)). Since

(OP1 (a)⊕OP1 (b))⊗OP1 (−b) = OP1 (a− b)⊕OP1 , (5.40)

we have that
ξ|YC

= ξ′ = C̃ + bf ; (5.41)

by (5.40) and since a < b, with the notation of [Har77, Section V.2], YC is the rational
ruled surface of invariant e = b − a.
Let us consider the pseudoe�ective cone of P(E); since E is normalized, ξ is e�ective and
we can assume

Eff(P(E)) = 〈H, ξ − δH〉, for some δ > 0. (5.42)

If δ = 0, we have that the second extremal ray is generated by ξ and we are done.
Thus let us assume that δ > 0 and let us consider

Γ =
⋃

C∈M
C̃ . (5.43)

Since Eff(P(E)) is spanned by the classes of prime e�ective divisors, we can assume that
for some k ∈ N and ε ∈ Q>0, there exists a prime e�ective divisor D such that

[D] = k(ξ − εH), (5.44)

with 0 < ε 6 δ and [D] lies in the region between R(ξ) and R(ξ − δH).
Let us focus for a moment on the restriction of D to YC ; we can consider a general
C ∈M and we can thus suppose that D|YC

is e�ective; moreover we have that

D|YC
≡ k(C̃ + (b − εt)f ), where t = C · HZ . (5.45)
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Since C̃ ⊂ YC and a 6 0, we see that:

D · C̃ = D|YC
· C̃ = k(a− b + b − εt) = k(a− εt) < 0; (5.46)

in particular we have that for every general C , C̃ ⊂ D; therefore we get Γ ⊆ D. Thus
we get dim Γ 6 dim D = dim Z ; but since there is a surjective map Γ → Z we get
dim Γ > dim Z , we have that dim Γ = dim D.
Hence we see that there are irreducible components of Γ of dimension dim D; since these
components are inside D, that is a prime divisor, we have that there is just one component,
say W , such that W = D.
Moreover we have seen that a prime divisor whose class is in the region 〈ξ, ξ − δH〉 (not
lying in R(ξ)) is forced to be W .
To conclude the proof, we show that

Eff(P(E)) = 〈H, ξ − δH〉 = 〈H, [W ]〉. (5.47)

Indeed one of the inclusions is obvious; to prove the other let us assume, by contradiction,
that there exists a divisor F ∈ Eff(P(E)) \ 〈H, [W ]〉; writing F =

∑
fi Fi , with fi > 0 and

Fi prime divisors, we have that there exists an i such that

[Fi ] ∈ Eff(P(E)) \ 〈H, [W ]〉 ⊆ Eff(P(E)) \ 〈H, ξ〉,

arguing as before, we must have Fi = W , that is a contradiction.

Corollary 5.37. In the situation of the Proposition 5.36, if Eff(P(E)) = 〈H, ξ〉 and a < 0,
then R(ξ) is generated by an irreducible component of the closure of the union of C̃ .

Proof. Since ξ is e�ective, there is an e�ective divisor D such that [D] = ξ. Restricting
it to YC , we get D|YC

≡ C̃ + bf ; since

D · C̃ = D|YC
· C̃ = a− b + b = a < 0,

we have that the union of C̃ ⊂ D. Arguing as before, an there is an irreducible component
generating the ray.

Corollary 5.38. In the situation of Proposition 5.36, if δ > 0 and W |YC
is irreducible,

then

Eff(P(E)) = 〈H, tξ − bH〉.

Proof. By the proposition, W ≡ k(ξ − εH), we have that

W |YC
≡ k(C̃ + (b − εt)f );

since it is irreducible and b − εt < b − a, by [Har77, Corollary V.2.18] we have that it
must be C̃ . Hence we get k = 1 and b − εt = 0, that gives

W ≡ ξ − b

t
H,

concluding the proof.
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5.4 Schwarzenberger bundles on the plane

In this section we focus on stable vector bundles in P2; in particular, as consequence of
Proposition 5.36, we will give a positive answer to Question 4.12 in some meaningful
situations.
We start considering an important set of stable rank 2 vector bundles on P2, the
Schwarzenberger bundles; we refer to [Val00] for further details. The author of [Sch61]
proved that any rank 2 vector bundle on P2 can be obtained from an invertible sheaf L
over a smooth surface S that is a double covering of P2 and, in particular, he focuses on
coverings rami�ed along a smooth conic.
Let us consider the following construction: let F ⊂ P2 × P2∨ be the incidence va-
riety between points and lines of P2 and let C ⊂ P2∨ be a smooth conic; setting
S := F ∩ (P2 × C ), we have the diagrams

F

p̄

��

q̄ // P2∨

P2

and S

p

��

q // C

P2

We can thus give the de�nition.

De�nition 5.39. Referring to the former construction, we say that a Schwarzenberger
vector bundle associated to the conic C is the rank 2 vector bundle on P2

En,C := (p∗q
∗OP1 (n)). (5.48)

Remark 5.40. Let us recall some useful facts about Schwarzenberger bundles:

1. for small degrees, we have

E0,C = OP2 ⊕OP2 (−1), E1,C = OP2 ⊕OP2 , E2,C = Ω∨P2 (−1);

2. we have: E−i ,C = Ei ,C (−i);

In view of our goal, the existence of the weak Zariski decomposition, since for small
values of n these bundles are decomposable, by Proposition 5.24 and Remark 5.40, we
can suppose that n > 2.
In order to use our Proposition 5.36 to answer to Question 4.12, we must �nd a set of
curves with constant splitting type; the following result provide what we need.

Fact 5.41. If C∨ ⊂ P2 is the conic dual to C , then for any tangent line L to C∨, we
have the splitting

En,C |L = OP1 (n − 1)⊕OP1 .

Proof. See the proof of [Val00, Remarque 1.3].

Therefore we can prove the following result.

Proposition 5.42. Let En,C be a Schwarzenberger bundle on P2, then the e�ective cone
of X = P(En,C ) is closed and thus there exists a direct weak Zariski decomposition for
every pseudoe�ective divisor.

Proof. The result follows from Proposition 5.36 where the dominating set M(a, b) =
M(0, n − 1) is given by lines tangent to the dual conic C∨.
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5.5 Stable rank 2 bundles on the projective space

Following [Har78b], we focus now on the case of a stable vector bundle E of rank 2 on
the projective space P3. Our main tool will be the well-known Hartshorne-Serre corre-
spondence.
Under this correspondence, to the pair (E , s), where E is a rank 2 vector bundle on P3 and
0 6= s ∈ H0(P3, E), is associated a locally complete intersection curve Y ⊂ P3 (see
[Har78b, Theorem 1.1]), where Y is the scheme of zeros of the section s.
In particular, we have the following exact sequence:

0→ det E∨ → E∨ → JY → 0, (5.49)

where JY is the ideal sheaf de�ning Y ⊂ P3.
It may be worth of interest to point out the following result, relating the numerical
invariants of Y and of E (see [Har78b, Proposition 2.1]).

Proposition 5.43. Let (E , s) be a pair, where E is a rank 2 vector bundle on P3 and
s ∈ H0(P3, E), corresponding to a curve Y of degree d and arithmetic genus pa, then:

d = c2(E); and 2pa − 2 = c2(E)(c1(E)− 4). (5.50)

Now, focusing on rank 2 stable vector bundles, we have the following characterization,
see [Har78b, Proposition 3.1].

Proposition 5.44. Let (E , s) be the pair consisting of a vector bundle on P3 and s ∈
H0(P3, E) corresponding to a curve Y ; E is stable (respectively semistable) if and only if

1. c1(E) > 0 (respectively c1(E) > 0);

2. Y is not contained in any surface of degree smaller or equal than 1
2 c1(E) (respectively

smaller than 1
2 c1(E)).

Thus is it easily possible to construct examples of stable vector bundles starting from
curves (eventually reducible) of P3.
Here we recall three examples exposed in [Har78b, Section 3]; the stability of the bundle
associated to the curve follows from Proposition 5.44.

Example 5.45 (r > 2 skew lines). Let us consider Y as the union of r disjoint lines in
P3 and E the associated rank 2 vector bundle. By (5.50), we easily get the invariants of
the bundle: c1 = c1(E) = 2 > 0 and c2 = c2(E) = r ; since, for r > 2, Y is not contained
in a plane, we have that E is stable.

Example 5.46 (r > 2 disjoint conics). Let Y ⊂ P3 be the union of r disjoint conics. We
hae that Y corresponds to a bundle E with c1 = 3 and c2 = 2r . If r > 2, the curve is not
contained in any plane and thus E is stable.

Example 5.47 (Plane cubic and elliptic curve). Let Y be the disjoint union of a non
singular plane cubic curve and a non singular elliptic space curve of degree r > 4. We
have that Y corresponds to a bundle with c1 = 4 and c2 = r + 3. The elliptic curve is
not contained in a plane and thus Y is not contained in any surface of degree 2 and E ,
again is stable.
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Let us consider a rank 2 stable vector bundle E associated to a curve Y ⊂ P3; by
Proposition 5.44 and the stability of E , we have c1(E) > 0; since det E∨ = OP3 (−c1),
E∨ = E(−c1), by tensoring equation (5.49), we get the exact sequence

0→ OP3 → E → JY (c1)→ 0. (5.51)

Since E has a section, this gives at once, in view of the pseudoe�ective cone of P(E), that
the tautological class ξ = ξP(E) is e�ective.
Let us consider the restriction of E to a degree t rational curve C meeting Y in exactly
e = #{Y ∩ C} points. By construction a section of E vanishes on Y , thus restricting
(5.51) to the curve C ' P1, we get

0→ OP1 (e)→ E|C → OP1 (−e + tc1)→ 0. (5.52)

In particular, if 2e − tc1 > −2, we get the splitting:

E|C = OP1 (e)⊕OP1 (−e + tc1). (5.53)

Indeed in order to get the splitting, it is enough to show the vanishing of the group
Ext1(OP1 (−e + tc1),OP1 (e)).
Now, since

Ext1(OP1 (−e + tc1),OP1 (e)) = H1(OP1 (2e − tc1)),

if −2e + tc1 − 2 < 0 we get the vanishing.
With this splitting, we can solve our problem in the case of Example 5.45.

Fact 5.48. Let E be the bundle over P3 associated to r > 2 disjoint lines in P3 as in
Example 5.45; then Eff(P(E)) is closed and thus a direct weak Zariski decomposition
exists for every pseudoe�ective divisor on P(E).
Moreover, if r > 3, then Nef(P(E)) 6= Eff(P(E)).

Proof. Let us consider the set of lines C meeting Y in e = 2 points; since c1(E) = 2,
from (5.53), we get the splitting E|C = OP1 (2)⊕OP1 .
Therefore, since the lines of Y are skew, we get a dominating set of lines M(0, 2) with
constant splitting type; the result follows from Proposition 5.36.
To prove the second statement, if C is a line meeting 3 lines of Y , the (5.52) becomes

0→ OP1 (3)→ E|C → OP1 (−1)→ 0,

giving E|C = OP1 (3)⊕OP1 (−1) that is not nef. Thus the tautological class ξ associated
to E can't be nef and the two cones are di�erent.

5.6 Further remarks

In this section we point out that, as it is well-known, Question 4.5 has a positive answer
in the general setting of Mori dream spaces. For clearness' sake we recall a couple of
gereral facts about the theory of MDS and we refer to [HK00] for further details.
Before the de�nition of Mori dream space, we recall an important class of birational
transformation appearing in this setting.

De�nition 5.49. A small Q-factorial modi�cation (SQM) of a normal variety X is a
birational map f : X 99K X ′ such that X ′ is a projective Q-factorial variety and f is an
isomorphism in codimension 1.
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Mov(X )Nef(X0)

Nef(X1)

Nef(Xs)

Nef(Xi )

Nef(Xj )

· · ·

· · ·

Figure 5.1: The decomposition of Mov(X ) in movable chambers

The most important examples of SQMs are undoubtedly �ips.
We point out that, since a SQM is an isomorphism in codimension 1, then it does not
a�ect the divisors and thus N1(X ) = N1(X ′).

De�nition 5.50 (Mori dream spaces). A normal variety X is said to be a Mori dream
space (MDS) if the following hold:

1. X is Q-factorial and Pic(X )Q = N1(X )Q;

2. the Nef(X ) cone is the convex hull of a �nite number of extremal rays spanned by
semiample line bundles;

3. there is a �nite collection of SQMs fi : X 99K Xi , i = 0, . . . , s such that each Xi

satis�es condition 2. and, setting X0 = X and f0 = id, we have the decomposition

Mov(X ) =
s⋃

i=0

f ∗i (Nef(Xi )). (5.54)

Remark 5.51. The decomposition of the movable cone given by equation (5.54) can
be pictured as in Figure 5.1. The subsets f ∗i (Nef(Xi )) are called movable chambers of
Mov(X ); since we are considering isomorphisms in codimension 1, it make sense to picture
the movable chambers in the same space.
Moreover it can be proved (see [HK00, Proposition 1.11]) that two adjacent chambers
are related by a �ip.

Remark 5.52. If can be shown, see [HK00, Proposition 1.11(2)], that the pseudoe�ective
cone of a Mori Dream Space is the convex hull of �nitely many e�ective divisors. In
particular, we have that the e�ective cone is closed and thus the answer to Question 4.12
is obviously positive.
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Remark 5.53. In view of our general discussion about projectivized variety, we have to
say that has been recently shown by González in [Gon10] that the projecivized of a rank
two toric vector bundle on a toric variety is indeed a Mori dream space.
Therefore we give a positive answer to Question 4.12 in the case of a toric variety with a
rank 2 toric bundle. Let us recall what a toric bundle is.
To this end we have to de�ne the geometric vector bundle associated to the vector bundle
E on Z ; it is the variety

V(E) := Spec
⊕

m>0

SmE∨. (5.55)

Now if Z is a toric variety, then we have the associated torus T and we say that a toric
vector bundle E on Z is a vector bundle E together with an action of the torus T on the
variety V(E), such that the projection ϕ : V → Z is equivariant and T acts linearly on
the �bres of ϕ.
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