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Introduction

Thin structures are three-dimensional bodies whose thickness in one direction is much
smaller than the other dimensions (such as a membrane, a plate, or a shell), or whose cross-
section is much smaller than the length (as a string or a rod). The subject of this thesis is
the rigorous deduction of lower dimensional models for thin structures in the framework of

nonlinear elasticity and of plasticity.

The rigorous derivation of lower dimensional theories for thin structures is a classical
question in mechanics. Indeed, both from an analytical and a numerical point of view, one-
or two-dimensional models can be handled in an easier way than their three-dimensional
counterparts. In the classical approach, lower dimensional models are typically deduced
arguing by formal asymptotic expansions of the three-dimensional theories in terms of the
thickness parameters or by assuming a priori kinematical restrictions on the structure of the
admissible deformations (see e.g. [12, 13, 46] for an overview of the classical results). Hence,
the range of validity of these limit theories is often unclear.

The first rigorous results have been obtained in the framework of linearized elasticity
([5, 8]). However, since thin elastic bodies can easily undergo large rotations, even under
small loads, this linearized theories have only limited applications.

In the early 90’s a rigorous approach to dimension reduction problems has emerged in
the stationary framework and in the context of nonlinear elasticity [2, 40, 41]. This approach
is based on I'-convergence: a variational convergence which guarantees, roughly speaking,
convergence of minimizers (and of minima) of the three-dimensional energies to minimizers
(and minima) of the reduced models. For the definition and properties of I'-convergence we
refer to the monograph [14].

The T" convergence method consists in proving two inequalities: a liminf inequality, which
provides a lower bound for the limit functional, together with some compactness properties
for sequences with equibounded energies, and a limsup inequality, based on the construction
of a recovery sequence, which guarantees that the lower bound is indeed optimal. In our
framework, to prove compactness of deformations with equibounded energies, two key tools
are Korn inequalities and their nonlinear counterpart, i.e. the rigidity estimate proved by
Friesecke, James and Miiller in [33] (see Section 1.2).

The seminal paper [33] has paved the way for the identification, through the I'-convergence
method, of hierarchies of limit models for plates [33, 34], rods [53, 54, 57, 58], and shells
[32, 42, 43]. The different limit models in the hierarchy correspond to different scaling of the

elastic energy, which, in turn, are determined by the scaling of the applied loads in terms of



the thickness parameters. In particular, high scalings of the applied forces lead at the limit
to linearized models. In this regime it is shown that deformations converge to the identity
deformation. To obtain a nontrivial limit model therefore, one is led to introduce some
linearized quantities associated to the deformations, to study their asymptotic behaviour,
and to express the I'-limit energy in terms of their limits.

In the last years, the I'-convergence approach has gained attention also in dimension
reduction problems arising in the evolutionary framework: in nonlinear elasticity [1], crack
propagation [6, 31], linearized elastoplasticity with hardening [44, 45], and delamination
problems [51]. In the previous setting, we mention in particular an abstract criterion of evo-
lutionary I'-convergence for rate-independent systems by Mielke, Roubi¢ek and Stefanelli
[50].

In this thesis we focus on the derivation, by I'-convergence, of linearized lower dimen-
sional models for thin structures in the frameworks of nonlinear elasticity, perfect plasticity,
and finite plasticity with hardening. The thesis consists of two parts. The first part con-
cerns nonlinearly elastic thin-walled beams in a stationary framework. In the second part

we consider thin plastic plates in a quasistatic evolutionary setting.

Thin-walled beams are slender, three-dimensional structural elements, whose length is
much larger than the diameter of the cross-section, which, in turn, is much larger than the
thickness of the cross-section. This kind of beams are commonly used in mechanical engi-
neering, since they combine good resistance properties with a reasonably low weight. From
a mathematical point of view, these thin structures are of interest because their behaviour
is determined by the interplay of two different thickness parameters: the diameter and the
thickness of the cross-section.

In the framework of nonlinear elasticity, an analysis of lower dimensional models for
thin-walled beams has been performed in the recent papers [29, 30], under the assumption
of a rectangular cross-section. In Chapter 2, instead, we analyse the case where the cross-
section of the beam is a thin tubular neighbourhood of a smooth curve. More precisely, let
v :[0,1] — R3, y(s) = y2(s)ea + 73(s)es, be a smooth and simple planar curve, whose
curvature is not identically equal to zero, and let n(s) denote the normal vector to the curve
at the point y(s). We consider an elastic beam of reference configuration

11
Qp = {:clel + hy(s) + dptn(s) : x1 € (0,L),s € (0,1),t € (f 3 5)},
where L is the length of the beam and h, §;, are positive parameters. To model a thin-walled

beam, we assume

h—0 and %—)0 (as h — 0).

In other words, the diameter of the cross-section is of order h and is assumed to be much
larger than the cross-sectional thickness dy, .

To any deformation u € W2(Q,; R?) of the beam, we associate the elastic energy (per
unit cross-section) defined as

EM(u) = o o, W(Vu(z))dz,

2



Introduction

where the energy density W satisfies the usual assumptions of nonlinear elasticity (see
Section 2.2). We are interested in understanding the behaviour, as h — 0, of sequences of
deformations (u") satisfying

EhuM) < Cé, (0.0.1)
where (e) is a given sequence of positive numbers. Estimate (0.0.1) is satisfied, for instance,

by global minimizers of the total energy

1
EM(u) — m/gz u- fhda

when the applied body force f" : ), — R3 is of a suitable order of magnitude with respect
to €5 (see [29, 30]). The asymptotic behaviour of (u”), as h — 0, can be characterized by
identifying the I'-limit of the sequence of functionals (6;28}‘). Here we focus on the case

where the sequence (€;,) is infinitesimal and satisfies

. €n
}lg% Pl L€ [0,+00). (0.0.2)

In analogy with the results of [30], these scalings are expected to correspond at the limit to
partially or fully linearized models.

Assuming €, = 0(dn), as h — 0, we first show (Theorem 2.5.2) that any sequence
(u") satisfying (0.0.1) converges, up to a rigid motion, to the identity deformation on the

mid-fiber of the rod; more precisely, defining

Q:z(O,L)X@’l)X(_%’%)

and considering a change of variables ¢ : Q@ — Q,, given by
wh('xlv S, t) =xe1 + h’Y(S) + 6htn(5)
for every (z1,s,t) € , we have that, up to rigid motions,
h

Y= ul o = zieq

strongly in W12(Q;R3).
As we already mentioned, to express the limiting functional, we introduce and study the
compactness properties of some linearized quantities associated with the scaled deformations

y". We consider the tangential derivative of the tangential displacement
h 1 h
g"(1,8,1) == —Oi(yr' — a1)
h

for a.e. (x1,s,t) € Q, and the twist function
h o [? h h
w'(x1,8) := / Os(y" — ") - ndt
héh _%

for a.e. (z1,s) € (0,L) x (0,1). In Theorem 2.5.2, under assumption (0.0.2), we prove that

g" =g  weakly in L*(Q),
wh — w  strongly in L?((0, L) x (0,1)),

3



for some g € L?((0,L) x (0,1)) and w € WH2(0,L). Moreover, the sequence of bending
h

moments (%8511) ) converges in the following sense:
1
Easwh — b weakly in W™12((0, L) x (0,1))

for some b € L?((0,L) x (0,1)) (see Proposition 2.5.3). In Theorem 2.6.2 we show that
the limit quantities w, g,b must satisfy some compatibility conditions that depend on the
relative order of magnitude between J;, and h. More precisely, assuming the existence of
the limit

three main regimes can be identified:

® p=+00,
o 1€ (0,400),
o 1 =0.

Heuristically, we expect that in the regime p = 0 (i.e. when &, is much smaller than h3),
the thin-walled beam behaves like a shell whose thickness is converging to zero, whereas for
8, much bigger than h3 its asymptotic description is closer to the one of a thin beam.

In the first regime p = 400, one has that ¢ is the tangential derivative of the first
component of a Bernoulli-Navier displacement in curvilinear coordinates, that is, there exists
v € WH2((0,L) x (0,1); R?) such that

Ow-er=g, Osv-7=0, Odv-e1+dv-7=0 on(0,L)x(0,1),

where 7(s) denotes the tangent vector to the curve v at the point v(s). The structure of
the cross-sectional components of v depends on the existence and the value of the limit

. Op
A= Jim o3

Indeed, if A\ = +oco, there exist «, 3 € W12(0, L) such that
v(z1,8) - ea =a(r1) and wv(z1,s)-es = [(x1)

for every (x1,s) € (0,L) x (0,1). If A € (0,400), one can show that the twist function w
belongs to W?22(0, L) and the cross-sectional components of v depend on w in the following
way:

v(@1,8) e = afz1) — g w(a1)ys(s)  and  w(z,s) ez = Blar) + 5 w(z)y2(s)

for every (x1,5s) € (0,L) x (0,1) and for some o, 3 € W2(0, L). Finally, if A = 0, the twist

function w is affine, while the cross-sectional components of v satisfy
v(z1,8) ea =a(z1) —6(z1)y3(s) and wv(xy,s)- ez = B(x1) + 0(z1)y2(s)

for every (x1,s) € (0,L) x (0,1) and for some «, 3,6 € WH2(0,L). In other words, in
the regime p = +00, the structure of g is essentially one-dimensional. As for the bending
moment b, it simply belongs to L?((0, L) x (0,1)).

4
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In the regime p = 0 we still have that g is the tangential derivative of the first component
of a Bernoulli-Navier displacement in curvilinear coordinates, but only in an approximate
sense (see the definition of the class G in Section 2.4). Moreover, the bending moment b is

associated with an infinitesimal isometry of the cylindrical surface
{z1e1 +(s) 121 € (0,L),s € (0,1)},

in the sense that there exists ¢ € L2((0,L) x (0,1);R?), with ds¢ € L?((0, L) x (0,1); R3),
such that

Op-e1 =0, 0s¢0-7=0, 0Os¢p-e1+¢p-7=0 on(0,L)x(0,1)

and

0s(0s¢-m)=>b on (0,L) x (0,1).

The equalities are intended in the sense of distributions; some higher regularity for ¢ can
be proved (see Remark 2.4.6). In other words, in this regime the limit kinematic description
of the thin-walled beam is intrinsically two-dimensional.

In the intermediate regime p € (0,+00), the limit quantities g and b are no more
mutually independent but they must satisfy the following constraint: there exists ¢ €
L2((0,L) x (0,1); R?), with ds¢ € L*((0,L) x (0,1); R3), such that

Op-e1=png, 0s¢-7=0, Os¢-e1+h¢-7=0 on (0,L)x(0,1)

and
0s(0s¢-m)=b on (0,L) x (0,1).

Finally, the twist function w is affine for p € [0, +00).

The T'-limit functional is expressed in terms of the limit quantities w, g, b and, according
to the values of A and p, is finite only on the class A, ,, of triples (w, g,b) with the structure
described above. In Theorems 2.6.3 and 2.7.1 we prove that for (w, g,b) € A, the I'-limit

is given by the functional

1 L 1 1 L 1
Toplgiw,b) = = / / Quan(s, 1w, b) dsda; + — / / Eg? dsda,
24 0 0 2 0 0

where Qqn is a positive definite quadratic form and [E is a positive constant, for which
explicit formulas are provided (see (2.6.43) and (2.6.44)).

The dependence of the I'-limits on the rate of convergence of the thickness parameter
6p with respect to the cross-section diameter h is an effect of the nontrivial geometry of
the cross-section. Indeed, in the case of a rectangular cross-section this phenomenon is not
observed for the scalings (0.0.2) and is conjectured to arise only for scalings e, such that
82 < e, < 0y (see [29, 30]).

Another difference with respect to [30] is that, in general, one can not rely on a three-
dimensional Korn inequality on {2 to guarantee compactness of the sequence of cross-

sectional displacements. However, one can use a rescaled two-dimensional Korn inequality in

5



curvilinear coordinates (Theorem 2.3.2) to implicitly determine the cross-sectional displace-

ments in the limit models through the characterization of ¢ (see the proof of Theorem 2.6.2).

The proofs of compactness and of the liminf inequality rely both on the rigidity estimate
(Theorem 1.2.1) and on the rescaled two-dimensional Korn inequality. The key ingredients
in the construction of the recovery sequences are some approximation results for triples
in the classes Ay, in terms of smooth functions (see Section 2.4). In the regime p =0
the approximation result is proved under the additional assumption that the set where the
curvature of ~ vanishes is the union of a finite number of intervals and isolated points.
Therefore, for ;1 = 0 the I'-convergence result is valid only under this additional restriction.

The second part of the thesis concerns the rigorous justification of quasistatic evolution
models for thin elasto-plastic plates. We consider a thin plate of reference configuration

where € > 0 is the thickness parameter and w is a domain in R? with a C? boundary.
We assume that dw can be partitioned into the union of two disjoint sets v4 and 7, and
their common boundary, and we prescribe a time-dependent boundary datum on a subset
I'c := 4 x (=5, 5) of the lateral surface.

In Chapter 3 we consider the linear framework of perfect plasticity, for which existence
of three-dimensional quasistatic evolutions is guaranteed by [15, 59]. In Chapters 4 and 5

we discuss the more difficult case of finite plasticity.

The quasistatic evolution problem in linearized perfect plasticity can be formulated as
follows. Assume that the elastic behaviour of the plate is linear and isotropic and its plastic
response is governed by the Prandtl-Reuss flow rule without hardening. Let u®(t) denote
the displacement field at time ¢ and let Fu®(t) denote the infinitesimal strain tensor at t,
that is, the symmetric part of Duc(t). Let o°(t) be the stress tensor at t and let e°(t)
and p°(t) (a deviatoric symmetric matrix) be the elastic and plastic strain tensors at t. Let
we(t) be the time-dependent boundary condition prescribed on I'.. Assume also that for
simplicity there are no applied loads. The classical formulation of the quasistatic evolution
problem on a time interval [0, 7] consists in finding u®(t), e(¢), p*(t), and o°(t) such that

the following conditions are satisfied for every t € [0,T]:
(cfl) kinematic admissibility: Fuf(t) = e*(t) + p°(¢) in Q. and u®(t) = we(¢t) on I'¢;
(cf2) constitutive law: o¢(t) = Ce®(t) in ., where C is the elasticity tensor;

(cf3) equilibrium: dive®(t) =0 in Q. and o°(t)veq, = 0 on 0. \ I'c, where vpq, is the
outer unit normal to 9. ;

(cfd) stress constraint: o%(t) € K, where o5, is the deviatoric part of ¢¢ and K is a
given convex and compact subset of deviatoric 3x3 matrices, representing the set of

admissible stresses;
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(cf5) flow rule: p(t) =0 if 0%,(¢) € int K, while p°(¢) belongs to the normal cone to K at
o5 (t) if 05(t) € OK.

The first existence result of a quasistatic evolution in perfect plasticity has been proved
in [59] by means of viscoplastic approximations. More recently, in [15] the problem has
been reformulated within the framework of the variational theory for rate-independent pro-
cesses, developed in [47]. This variational formulation reads as follows: to find a triple
(uf(t), e (t),p?(t)) such that for every t € [0,T] we have

(gsl) global stability: (u®(t),ec(t),p°(t)) satisfies Eus(t) = e°(t)+p°(t) in Q., u®(t) = we(¢)

on ', and minimizes
[ erigaes [ G- @)

among all kinematically admissible triples (v, f,q), where H is the support function
of K,ie., H(p):=sup{o:p: o€ K};

(gs2) energy balance:

é/ﬂs Ces(t):€*(t) dx+/0t /Q H(p°(s)) dads
= %/QE Ce®(0):€°(0) da:+/0t /Q Ce®(s) : B (s) duds.

The existence of a quasistatic evolution according to the previous formulation and the extent
to which this is equivalent to the original formulation is the main focus of [15].

Our purpose is to characterize the limiting behaviour of a sequence of solutions (u®(t), e (¢), p(¢)),
as € — 0. We observe that the abstract theory of evolutionary I'-convergence for rate-
independent systems developed in [50] cannot be directly applied here. Indeed, it consists in
studying separately the I'-limit of the stored-energy functionals and that of the dissipation
distances and in coupling them through the construction of a joint recovery sequence. This
technique has been applied, e.g., in [44, 45], where the presence of hardening gives rise to a
stored-energy functional that is coercive in the L? norm both with respect to e and p. This
approach is not suited to our case, since the elastic energy is coercive only with respect to
the elastic strain e, while the plastic strain p can be controlled only through the dissipation.
For this reason, to identify the correct limiting energy we study the I'-convergence of the

total energy functional, given by the sum of the stored energy with the dissipation distance.

We first focus on the static case, that is, we consider a boundary displacement w®

independent of time, we introduce the functional
E(u,e,p) := %/ Ce:edx +/ H(p)dzx (0.0.3)
Q. Q.

defined on the class A (w®, Q) of all triples (u,e,p) satisfying Eu = e +p in . and

u =w® on I'y, and we study its limit, as € — 0, in the sense of I'-convergence.

7



As pointed out in [15], because of the linear growth of H , the functional &, is not coercive
in any Sobolev norm. The natural setting for a weak formulation is the space BD(.) of
functions with bounded deformation for the displacement u and the space M (Q.UT; M?bxg)
of trace-free M3*3-valued bounded Borel measures on ). UT. for the plastic strain p
(see Section 1.4 for an overview on the basic properties of BD functions). This is also
natural from a mechanical point of view, because in absence of hardening it is well known
that displacements may develop jump discontinuities along so-called slip surfaces, on which
plastic strain concentrates.

In particular, the functional

/ HG) i

has to be interpreted according to the theory of convex functions of measures, developed in

[35, 60] (see also Section 3.2), as
dp
/QEUFE d|p|

where dp/d|p| is the Radon-Nicodym derivative of p with respect to its total variation [p|.
Moreover, the boundary condition is relaxed by requiring that

p= (0" —u)Ovga.H> onTy, (0.0.4)

where ® denotes the symmetric tensor product. The mechanical interpretation of (0.0.4) is
that u may not attain the boundary condition: in this case a plastic slip is developed along
T'., whose amount is proportional to the difference between the prescribed boundary value
and the actual value.

For simplicity we assume that the prescribed boundary datum w® is a displacement of
Kirchhoff-Love type of Sobolev regularity (see (3.2.6)). As observed in Remark 3.4.3, more
general boundary conditions can also be considered.

Setting T'y := 74 % (—%, %), we show that the T'-limit of & (rescaled to the domain
Q= w x (-3, %) independent of ¢) is finite only on the class Ay (w) of triples (u, e, p)
such that u € BD(Q), e € L2(Q;M3X3), p € Mp(QUT 4, M22%3), and

sym sym
FEu=e+p inQQ, p=(w—u)®vgaH?> on Ty, (0.0.5)
€;3 = 0 in Q, pPi3 = 0 inQU Fd, 1= 1, 27 3, (006)

where vyq is the outer unit normal to 9€2. On this class the I'-limit is given by the

functional
J(u,e,p) := %/ Cre:edx + H.(p) (0.0.7)
Q

where

dp
H, = / H.|—)d

and the tensor C, and the function H, are defined through pointwise minimization formulas
(see (3.4.1), (3.4.5), and (3.4.7)).
Conditions (0.0.5)—(0.0.6) imply that u is a Kirchhoff-Love displacement in BD(2), that

is, ug belongs to the space BH (w) of functions with bounded Hessian (see Section 1.4) and

8
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there exists @ € BD(w) such that
u(z) = (1 (') — 2301u3(x’), U2 (2') — w302uz(x’),us(a’)) for ae. v = (', x3) € .

Moreover,
Fw)as = (EQ)ag — 230%5us  for o, B =1,2.
B B af3

We note that the averaged tangential displacement @ may exhibit jump discontinuities,
while, because of the embedding of BH(w) into C(w), the normal displacement wg is
continuous, but its gradient may have jump discontinuities. Moreover, the second equality in
(0.0.5), together with the second condition in (0.0.6), implies that ug satisfies the boundary
condition ugz = w3 on 4. In particular, in the limit model slip surfaces are vertical surfaces
whose projection on w is the union of the jump set of @ and the jump set of Vus.

We also remark that conditions (0.0.5)—(0.0.6) do not imply that e and p are affine with
respect to the x3 variable. Therefore, in contrast with the case of linearized elasticity [5, §],
the limit functional J cannot be in general expressed in terms of two-dimensional quantities
only. A precise characterization of conditions (0.0.5)—(0.0.6) in terms of the moments of e

and p is given in Proposition 3.3.5.

We then introduce time and study the convergence of quasistatic evolutions. We prescribe
on I'. a boundary datum w®(t) of Kirchhoff-Love type and we consider a sequence of initial
data (u§,ef,p§), that is compact in a suitable sense. We show (Theorem 3.5.4) that, if
for every € > 0 the triple (u®(t),e®(t),p°(t)) is a quasistatic evolution in the sense of
(gs1)—(qgs2) for the boundary datum w®(t) and the initial datum (u§, ef,p§), then, up to a
suitable scaling, (u®(t),ec(t),p(t)) converges, as ¢ — 0, to a limit triple (u(t),e(t),p(t))
that satisfies:

(gsl), reduced global stability: for every t € [0,T] (u(t),e(t),p(t)) € Axr(w(t)) and mini-

mizes

! / Cof: fdz+Holg — p(t))
Q

among all triples (v, f,q) in Agp(w(t));

(gs2), reduced energy balance: for every t € [0,T]
t t
%/Q(Cre(t):e(t) dx—!—/o H.(p(s))ds = %/Q(Cre(O):e(O) dx—|—/0 /Q(CTe(s) : Bi(s) dxds.

We call a triple satisfying (gsl),—(qs2), a reduced quasistatic evolution.

The proof of Theorem 3.5.4 mainly relies on the I'-convergence result in the static case.
Even if the abstract theory of [50] cannot be directly applied, we follow the general scheme
proposed in that paper. In particular, the role of the so-called joint recovery sequence is
played in our case by the recovery sequence constructed at fixed time.

In the last part of the Chapter 3 we discuss some properties of reduced quasistatic
evolutions. We show three equivalent formulations in rate form (Theorem 3.6.13). In all of
them the global stability condition is replaced by a system of two equilibrium conditions, one

for the stretching component of the stress and the other for the bending component. These

9



two components are coupled in the energy balance, which is rephrased in the three different
formulations in terms of a maximal dissipation principle, of a flow rule in a weak form, and
of a variational inequality for the stress (analogous to the formulation considered in [59]
in the case of three-dimensional perfect plasticity), respectively. To prove these results we
define a suitable notion of duality between stresses and plastic strains in the footsteps of
[37] and [22].

In the last subsection of Chapter 3 we focus on two examples, where a reduced quasistatic
evolution can be characterized in terms of two-dimensional quantities only. In particular,
(Proposition 3.6.16) we show that, if the set K is symmetric with respect to the origin
and the boundary datum and the initial data are properly chosen, our notion of reduced

quasistatic evolution coincides with that studied in [9, 24, 25].

In Chapters 4 and 5 we turn our attention to a model in finite plasticity. We consider a
plate of reference configuration . and assume that the deformations n € W12(Q_;R3) of

the plate fulfill the multiplicative decomposition
Vn(x) = Fa(x)Fp(z) for ae. z € Q.

where F.; € L?(Q.;M3%3) represents the elastic strain, F,; € L*(Qe; SL(3)) is the plastic
strain and SL(3) := {F € M3*3 : det F = 1}. To guarantee coercivity in the plastic
strain variable, we suppose to be in a hardening regime. More precisely, the stored energy

associated to a deformation n and to its elastic and plastic strains is expressed as

E(n, = / We(Vn(z)F, L) dm+/ Whara(Fpi(x)) dx
/ Wei(Fer( d:H—/ Whard(Fpi(x)) dx

where W,; is a nonlinear frame-indifferent elastic energy density and Wjrq, which is
finite only on a compact subset of SL(3) having the identity as an interior point, de-
scribes hardening. The plastic dissipation is expressed by means of a dissipation distance
D : M3 x M3*3 — [0, +00], which is given via a positively 1-homogeneous potential Hp,
and represents the minimum amount of energy that is dissipated when the system moves
from a plastic configuration to another (see Section 4.2).

The existence of a quasistatic evolution in this nonlinear setting is a quite delicate is-
sue, and it has only recently been solved in [48] by adding to the stored-energy functional
some further regularizing terms in the plastic component. We shall not add these further
terms here, we rather show, in the last section, that our convergence result can be extended
to sequences of approximate discrete-time quasistatic evolutions, whose existence is always

guaranteed (see Theorem 5.5.2).

In Chapter 4, as in the case of linearized perfect plasticity, we first consider the static
problem and we study the asymptotic behaviour of sequences of pairs (7, szl) whose total

energy per unit thickness satisfies

1
6(c‘f(n ) 8"‘1/ D(F;°, ,fl)da:) < Cce*? (0.0.8)
QE

10



Introduction

where o > 3 is a positive parameter and (F=°) C L?(Q.;SL(3)) is a given sequence
representing preexistent plastic strains. It was proved in [34] that in the absence of plastic
deformation (that is, when F= = F},; = Id) these energy scalings lead to the Von Kdrmédn
plate theory for & = 3 and to the linear plate theory for o > 3. The scaling of the dissipation
energy is motivated by its linear growth (see (4.2.20)). In analogy with the results of [34] in
the framework of nonlinear elasticity, we expect these scalings to correspond to partially or
fully linearized plastic models.

On T'. we prescribe a boundary datum

/ a—1, 0./

o) = (1) (ot )~ W) (00.9)
for x = (2/,ex3) € Q., where u® € W1>°(w;R?) and v € W?°°(w). This structure of the
boundary conditions is compatible with that of the minimal energy configurations in the
absence of plastic deformations (see Remark 4.2.5).

We first show that, given any sequence of pairs (n°, F;;) satisfying (0.0.8) and the bound-
ary conditions
n°=¢ H-ae onvax(—5,5), (0.0.10)

as € — 0, the deformations n° converge to the identity deformation on the mid-section of
the plate, and the plastic strains F7, tend to the identity matrix. More precisely, defining

Q:=wx (—31,1) and ¢°(2) := (2/,ex3) for every (2/,z3) € , and assuming
Frop® = Id+ > 'p°
with
p=0 = p°  weakly in L?(Q;M3*3), (0.0.11)

we show that
!

Yy =0 o)t — ( IO ) strongly in Wh2(Q; R?)
and
P = F5 01 — Id strongly in L*(Q;M**?).

To express the limit functional, we introduce and study the compactness properties of some

linearized quantities associated with the scaled deformations and plastic strains: the in-plane

uf(z') = gal_l /_% (( Z?g ) —x’) drs

1
2

displacements

for a.e. ' € w, the out-of-plane displacements

[N

£ 1 1>
v (2) = e / ) y5(z) dzxs,
-3
for a.e. ' € w, and the linearized plastic strains
_ P(x)—1d

pg(x) : ca—1

11



for a.e. = € 2. We prove (Theorem 4.3.3) that, under assumptions (0.0.8), (0.0.10) and
(0.0.11) the sequence of triples (u®,v®, p°) converges in a suitable sense to a triple (u,v,p) €
W2(w; R?) x W22 (w) x L2(Q2;M3*3), such that tr p =0, and

u=u", v=10", Vo=Ve' Hlae. onn~y.
Moreover, we show that the I'-limit functional can be expressed in terms of the limit quan-
tities u, v, and p, and is given by

To(u,v,p) = / Q2 (symV'u+ £2V'v @ V'o — 23(V')?0 — p/) dz + / B(p) dx
Q Q

+ AH@—ﬁm% (0.0.12)

where L, =0 for « > 3 and L, =1 for o = 3 (see Theorems 4.3.3, 4.4.1 and 4.5.1). In
the previous formulas, V' denotes the gradient with respect to z’, p’ is the 2 X 2 minor
given by the first two rows and columns of the map p, and Q2 and B are positive definite
quadratic forms on M2*2 and M3*3 | respectively, for which an explicit characterization is
provided (see Sections 3.4 and 4.3).

The constant L, in the limit problem encodes the main differences between the cases o >
3 and a = 3. Indeed, for o = 3, the limit energy contains the nonlinear term V'v ® V'v,
which accounts for the stretching due to the out-of-plane displacement. For a > 3 the
limit problem is completely linearized and, in the absence of hardening, coincides with the
functional (0.0.7) identified starting from three-dimensional linearized elasto-plasticity under
the assumption that D?W,;(Id) = C (where C is the tensor in (0.0.3)). However, we point
out that the role of the hardening term in the present formulation is fundamental to deduce
compactness of the three-dimensional evolutions (see Step 1, Proof of Theorem 5.3.9).

We also remark that in the absence of plastic dissipation (p° =p = 0) the two I'-limits
reduce to the functionals deduced in [34] in the context of nonlinear elasticity. As in the case
of linearized elasto-plasticity though, also in this context the limit functional 7, cannot be,
in general, expressed in terms of two-dimensional quantities only because the limit plastic
strain p depends nontrivially on the x3 variable (see Section 4.5).

The setting of the problem and some proof arguments are very close to those of [52],
where it is shown that three-dimensional linearized plasticity can be obtained as I'-limit of
three-dimensional finite plasticity. The proof of the compactness and the liminf inequality
rely on the rigidity estimate (Theorem 1.2.1). This theorem can be applied owing to the
presence of the hardening term, which provides one with a uniform bound on the L*° norm
of the scaled plastic strains P°. The construction of the recovery sequence is obtained by
combining some results of [34, Sections 6.1 and 6.2] about dimension reduction in nonlinear

elasticity and [52, Lemma 3.6].

In Chapter 5 we finally assume that u® and v° (and hence ¢¢) are time-dependent maps,
and we study the convergence of quasistatic evolutions associated to ¢°, assuming a priori
their existence. To deal with the nonlinear structure of the energy, we follow the approach
of [28]: we assume ¢°(t) to be a C! diffeomorphism on R?® and we write deformations
n € WhH2(Q;R3) as

no = ¢°(t) oz,

12
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where z € WH2(Q;R?) satisfies the boundary condition
z(z) = °(2) = (2/,ex3) H®-ae onvygx (—1,3).

To any plastic strain F,, € L?(2.; SL(3)) we associate a scaled plastic strain P € L*(Q; SL(3))
defined as
P = Fyoy*

and we rewrite the stored energy as

£

Fe(t, 2z, P) = /QWel(Vdf(t,z(x))Vsz(m)) dx—}—/QWhard(P(x))dx = lg(n,Fpl),

where V.z:= (V'z[1832).

In this setting, according to the variational theory for rate-independent processes de-
veloped in [47], a quasistatic evolution for the boundary datum ¢° is a function ¢ —
(2(t), P(t)) € WH2(Q;R3) x L?(Q; SL(3)) such that for every t € [0,T] the following two
conditions are satisfied:

(gs) global stability: there holds
2(t) =v¢° H?>-ae onygx(—3,3)
and (z(t), P(t)) minimizes
Fo(t, 7 P) 4o / D(P(t), P)dx,
Q
among all (%, P) € WY2(Q;R3) x L3(Q; SL(3)) such that Z = ¢° H? - ae. on
11y,
Yd X ( - §) 3
(eb) energy balance:
Fe(t, 2(t), P(t)) + €7 D(P;0,1)
t
= (0,200, PO) 427 [ [ B () (V6 (s,2(6)) (V) (s, 5() i .
0 Ja
In the previous formula, D(P;0,t) is the plastic dissipation in the interval [0,¢] (see Section
5.3), E°(t) is the stress tensor, defined as

s DWa (V6 (1, 2() Ve2(0)(P) ™ () (V6 1, 2(0) Vo2() (P) ' (1)

EE(t) =

and a > 3 is the same exponent as in the expression of the boundary datum.

The main result of Chapter 5 is the characterization of the asymptotic behaviour of
(2¢(t), P%(t)), as € — 0. More precisely, in Theorem 5.3.9 (and Corollaries 5.4.2 and 5.4.3)
we show that, given a sequence of initial data (z§, P§) which is compact in a suitable sense,
if t — (2°(¢), P(t)) is a quasistatic evolution for the boundary datum ¢° (according to
(gs)—(eb)), satisfying 2°(0) = z§ and P°(0) = F§, then defining the in-plane displacement

ut(t) == Eal_1 /1 (( zegzzig;; ) fm’> dxs,

2

iy

[u}
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the out-of-plane displacement

1
1 3
ve(t) = el d5(t, 2°(t)) das
-3
and the scaled linearized plastic strain
R Pe(t) — Id
()= —— o

for every ¢ € [0,T] we have
p°(t) — p(t) strongly in L*(Q;M3*3),
where p(t) € L?(Q; M3*3) with tr p(t) = 0 a.e. in Q. If a > 3 there holds

u®(t) — u(t) strongly in Wh?2(w; R?), (0.0.13)
v (t) = v(t) strongly in Wh?(w), (0.0.14)

for every t € [0,T], where u(t) € WH2?(w;R?) and v(t) € W?2(w). If a = 3, the con-
vergence of the in-plane and out-of-plane displacements holds only on a t-dependent sub-
sequence. Moreover, ¢ — (u(t),v(t),p(t)) is a solution of the reduced quasistatic evolution
problem associated to the functionals 7, defined in (0.0.12).

The proof of this results follows along the general lines of [50]. A major difficulty in the
proof of the reduced energy balance is related to the compactness of the stress tensors F°(t).
In fact, due to the physical growth assumptions on W,;, weak L? compactness of E¢(t) is
in general not guaranteed. However, the sequence of stress tensors satisfies the following
properties: there exists a sequence of sets O, (t), which converges in measure to 2, such that
on O(t) the stresses E(t) are weakly compact in L?, while in the complement of O.(t)
their contribution is negligible in the L' norm. This mixed-type convergence is enough to
pass to the limit in the three-dimensional energy balance. This argument of proof is similar
to that used in [55] by Mora and Scardia, to prove convergence of critical points for thin
plates under physical growth conditions for the energy density.

A further difficulty arises because of the physical growth conditions on W;: the global
stability (gs) does not secure that 2°(¢) fulfills the usual Euler-Lagrange equations. This
is crucial to identify the limit stress tensor. This issue is overcome by proving that z°(t)
satisfies the analogue of an alternative first order condition introduced by Ball in [6, Theorem
2.4] in the context of nonlinear elasticity (see Section 1.3), and by adapting some techniques
in [55].

Finally, to obtain the reduced global stability condition, we need an approximation result
for triples (u,v,p) € WH2(w; R?) x W22(w) x L?(Q; M>*3) such that

u=0 v=0 Vwv=0 H!'-ae onn~y (0.0.15)
in terms of smooth triples. This is achieved arguing as in the linearized elasto-plastic setting

(Section 3.3), under additional regularity assumptions on dw and on 74 (see Lemma 5.2.1).

The results of Chapter 2 will appear in [18]. The results of Chapter 3 have been obtained
in collaboration with Maria Giovanna Mora, and will appear in [21]. The content of Chapter
4 corresponds to the article [19] and that of Chapter 5 to the article [20].
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Chapter 1

Preliminary results

In this chapter we collect some notation and preliminary results that will be useful in
the sequel.

The first three sections contain some results related to dimension reduction problems in
the framework of elasticity: in Section 1.1 we collect some statements of the Korn inequalities
and we recall a lemma due to J.L. Lions that will be crucial in Chapter 2. In Section 1.2 we
recall the rigidity estimate proved by Friesecke, James and Miiller in [33], whereas Section
1.3 concerns an alternative first order stationarity condition proved by Ball in [7], which is
compatible with physical growth conditions for the elastic energy density.

Section 1.4 is a collection of the main properties of functions of bounded deformation
and of bounded Hessian, which will play a key role in Chapter 3, whereas the last section
concerns to two slightly refined versions of the classical Helly theorem that we will use in
Chapter 5.

Notation
Throughout the thesis we shall denote the canonical basis of R® by {ej,es,e3}. The k-th
component of a vector v will be denoted by vy . For every v,w € R™, we shall denote their

scalar product by v-w. We endow the space M"*™ of n x n matrices with the euclidean

|M|:=\/Tr(MTM)= | > m?
i,j=1,---,n

and denote by the colon : the associated scalar product. We shall adopt the classical notation

norm

to indicate the following subsets of M™*":
M = {F e M"*" : det F > 0},
MeXt = {F e M"*": F = FT},

sym
M = {F e M : F = —F"},
M = {F e My} : tr F =0},

SO(n) .= {F e M*" : FTF = Id}.

For every j € N, we will denote by Cg(A; R™) and C§5°(A;R™) respectively the standard

spaces of C7 and C™ functions with compact support in A.
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1.1 Korn inequalities

1.1 Korn inequalities

Korn inequalities are an essential tool to establish coerciveness of differential operators in
the framework of linear elasticity. Indeed these inequalities allow to bound the WP norm
of a map with the LP norms of the symmetric part of its gradient and of the map itself.

The classical statement of Korn inequalities on bounded Lipschitz domains reads as

follows.

Proposition 1.1.1 (Korn inequalities). Let U be a bounded Lipschitz domain in R™, n > 2,
and let 1 < p < +oo. Consider the space

EP(U) :={ue LP(U;R") : symVu € LP(U; M"*™)}.
Then EP(U) = WP (U;R"),

lullwre@rny < Cp(U)(lull o rny + lsym Vull Lo panxny)
and

min{|lu — Az — bllwrrrny : A€M beR"} < Cp(U)|lsymVu| Lo mnxny .

skew?

If ' C OU has positive H" ™1 measure then
llullwrr@rey < Cp(U;T)|lsym Vul| o aimxny  for all w such that uw = 0 H"! - ae onT.
Proof. See [34, Proposition 1]. O

For a survey on Korn inequalities on bounded domains we refer to [36]. Some Korn
inequalities can be proved also for general surfaces, by introducing a formulation with curvi-
linear coordinates. A crucial result in this framework is the following lemma, due to J.L.

Lions.

Lemma 1.1.2 (Lemma of J.L. Lions). Let U be a bounded, connected, open set in R™ with
Lipschitz boundary and let v be a distribution on U. If v € W=12(U) and d;v € W—12(U)
fori=1,--- n, then ve L*(U).

By combining Lemma 1.1.2 and the closed graph theorem we obtain in particular the
following result, that we will use in Chapter 2 to prove a rescaled Korn inequality and to

characterize the class of limit displacements and bending moments.

Corollary 1.1.3. Let U be a bounded, connected, open set in R™ with Lipschitz boundary
and let (v™) be a sequence of distributions in W~12(U). If there exists a map v € L?(U)
such that

v = v strongly in WH2(U),
Vo — Vo  strongly in W12(U; R™),

then
v = v strongly in L*(U).

An overview on standard Korn inequalities in curvilinear coordinates as well as a detailed
bibliography on Lions Lemma can be found in [13, Sections 2.6 and 2.7] and [13, Section
1.7], respectively.
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1. Preliminary results

1.2 The rigidity estimate

A tool that will be crucial to establish compactness of deformations with equibounded
elastic energies is the following rigidity estimate, due to Friesecke, James, and Miiller [33,
Theorem 3.1].

Theorem 1.2.1. Let U be a bounded Lipschitz domain in R™, n > 2. Then there exists
a constant C(U) with the following properties: for every v € WLY2(U;R"™) there is an
associated rotation R € SO(n) such that

Vo = Rlp2m) < C(U)|dist(Vv, SO(n))]| 2.

Remark 1.2.2. The constant C(U) in Theorem 1.2.1 is invariant by translations and
dilations of U and is uniform for families of sets which are uniform bi-Lipschitz images of a

cube.
The previous theorem implies, in particular, the following result.

Corollary 1.2.3 (Liouville Theorem). Let U be a bounded Lipschitz domain in R™, n > 2.
Let v € WY2(U,R") be such that Vv(z) € SO(3) for a.e. = € U. Then, there exists
R € SO(3) such that Vv = R, that is v is a rigid motion.

1.3 Ball’s first order stationarity condition

In this section we recall a first order stationarity condition proved by Ball in [7, Theorem
2.4] in the framework of nonlinear elasticity. A modified version of (1.3.1) will be essential

in Chapter 5 to identify the limit stress tensor.

Theorem 1.3.1. Let W : M3*3 — [0, +00] be a map satisfying the following assumptions:
o W(F) =400 for every F € M3*3 W(F) — 400 as det F — 0T,
o Wis Cl on Mixg’,
e There exists a constant k such that |[DW (F)FT| < k(W (F)+1) for every F € M3*?.

Let U C R? be a bounded open set with Lipschitz boundary OU = 0U; UOU; U N, where
OU, and OUs are disjoint and open in the relative topology of OU, and N has null H?>
measure. Let @ € HY?(OU,R3) and let f € L*(U,R3). Let w € WY2(U,R3) be a local

minimum of the functional

F(w) ::/ W(Vw)dz—/ [ wdz
U U
satisfying the boundary condition
w=w H?-ae ondU,

namely, assume there exists € > 0 such that F(w) < F(v) for every v € WhH2(U,R?)
satisfying

v — wllw2@wrs) <€

v=w H?- ae ondU.
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1.4 Functions of bounded deformation and bounded Hessian

Then:
/DW(Vw)(Vw)T:ng(w)dz:/ [ o(w)dz (1.3.1)
U U

for every ¢ € CH(R3,R3) N WH(R3 R?) such that pow =0 H? - a.e. on OU.

We omit the proof of this result, which can be found in [7, Proof of Theorem 2.4]. We
only remark that the main idea of the proof is to perform external variations of the form

wr(2) :=w(z) + To(w(2)),

where 7 € R is a small parameter, which is supposed to be tending to zero, and ¢ €
C1(R3,R3) N W (R3 R3).

1.4 Functions of bounded deformation and bounded Hes-
sian

In this section we recall some notions from measure theory and from the theory of
functions with bounded deformation and with bounded Hessian.

Measures. Given a Borel set B C RY and a finite dimensional Hilbert space X, M;(B; X)
denotes the space of all bounded Borel measures on B with values in X, endowed with the
norm ||plag, := |u|(B), where |u| € My(B;R) is the variation of the measure p. For every
€ My(B; X) we consider the Lebesgue decomposition p = p®+ p®, where pu® is absolutely
continuous with respect to the Lebesgue measure £V and p® is singular with respect to
LN If u® = 0, we always identify p with its density with respect to £~ , which is a function
in LY(B; X).

If the relative topology of B is locally compact, by Riesz representation Theorem the
space My(B; X) can be identified with the dual of Cy(B;X), which is the space of all
continuous functions ¢ : B — X such that the set {|¢| > ¢} is compact for every § > 0.
The weak* topology on M (B; X) is defined using this duality.

Convex functions of measures. For every pu € My(B;X) let du/d|u| be the Radon-
Nicodym derivative of p with respect to its variation |p|. Let Hp : X — [0,+00) be a

convex and positively one-homogeneous function such that
rol¢] < Ho(§) < Rol¢| for every € € X,

where rg and Ry are two constants, with 0 < rg < Ry. According to the theory of convex

functions of measures, developed in [35], we introduce the nonnegative Radon measure
Ho(u) € My(B) defined by

Ho(1)(A) == /A Ho(%) dlu

for every Borel set A C B. We also consider the functional Ho : My(B; X) — [0, +00)
defined by

Ho(p) := Ho(p)(B) = /BH0<$) d|pl
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1. Preliminary results

for every p € My(B; X). One can prove that Hy(u) coincides with the measure studied in
[60, Chapter II, Section 4]. Hence,

Ho(p) = Sup{/ w:du e Cy(B; X), p(x) € Ko for every x € B}, (1.4.1)
B

where Ky := 0H((0) is the subdifferential of Hy at 0. Moreover, Hq is lower semicontinuous
on My(B;X) with respect to weak* convergence.

Functions with bounded deformation. Let U be an open set of RV . The space BD(U)

of functions with bounded deformation is the space of all functions u € L'(U;RY) whose

s )

symmetric gradient Eu := sym Du (in the sense of distributions) belongs to My (U; M
It is easy to see that BD(U) is a Banach space endowed with the norm

lullzy + [ Eullag, -

We say that a sequence (u¥) converges to u weakly™ in BD(U) if u¥ — u weakly in
LY(U;RY) and Eu* — Eu weakly* in My (U; ML %N). Every bounded sequence in BD(U)
has a weakly™* converging subsequence. If U is bounded and has Lipschitz boundary, BD(U)
can be embedded into LN/(N=1(T7; RY) and every function v € BD(U) has a trace, still
denoted by u, which belongs to L'(0U;R™). Moreover, if T' is a nonempty open subset of

OU , there exists a constant C' > 0, depending on U and I', such that
lullzr ) < Cllullprry + CllEul|a, - (1.4.2)

(see [60, Chapter II, Proposition 2.4 and Remark 2.5]). For the general properties of the
space BD(U) we refer to [60].

Functions with bounded Hessian. Let U be an open set of RY. The space BH(U)
of functions with bounded Hessian is the space of all functions u € W1(U) whose Hessian
D?u belongs to My(U; MY XN). It is easy to see that BH(U) is a Banach space endowed
with the norm

lullr + [Vull s + |1 D?ull

If U has the cone property, then BH(U) coincides with the space of functions in L'(U)
whose Hessian belongs to M,(U ;Mé\;an ). If U is bounded and has Lipschitz boundary,
BH(U) can be embedded into WHN/(N=1({J) . If, in addition, the boundary of U is C?,
then BH(U) is embedded into C(U), which is the space of all continuous functions on U .
Moreover, if U is bounded and has a C? boundary, for every function v € BH(U) one can
define the traces of u and of Vu, still denoted by u and Vu; they satisfy u € WH1(9U),
Vu € LY(oU;RYN), and % = Vu-7 in L}(QU), where 7 is any tangent vector to OU . For

the general properties of the space BH (U) we refer to [23].

1.5 Helly Theorem

We conclude this chapter of preliminary results by recalling two generalizations of the

classical Helly Theorem for real valued functions with uniformly bounded variation.
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1.5 Helly Theorem

Let X be the dual of a separable Banach space. Given f:[0,7] - X and a,b € [0,T)
with @ < b , denote the total variation of f on [a,b] by

N
V(f;a,b) = sup{ZHf(t,») Cfti)|xa=to<t <--<ty=b Ne N}. (1.5.1)
=1

The first result of this section is a lemma proved by Dal Maso, DeSimone and Mora in
[15, Lemma 7.2], which generalizes the classical Helly Theorem, as well as its extension to
reflexive separable Banach spaces (see, e.g., [10, Chapter 1, Theorem 3.5]). We shall use this
lemma in Chapter 5 to prove the existence of a quasistatic evolution for our reduced model.

Lemma 1.5.1. Let f : [0,7] — X be a sequence of functions such that fi(0) and
V(f%;0,T) are bounded uniformly with respect to k. Then there exist a subsequence, still
denoted fi,, and a function f : [0,T] — X with bounded variation on [0,T], such that
fe() = f(t) weakly* for every t € [0,T).

In Chapter 5 we shall refer also to a different generalization of Helly Theorem proved by
Mielke, Roubi¢ek and Stefanelli in [50, Theorem A.1]. To state this result we first introduce
some notations.

Let Z be a Hausdorff topological space. Assume that (Dy)renuf+oc} i @ sequence of
maps Dy : Z X Z — [0,400] such that

(A1) Di(z,2) =0 forevery keN, z€ Z,
and Dg(z1,23) < Di(z1, 22) + Di(22,23) for every k € N, 21,290,253 € Z;

(A.2) For all sequentially compact K C Z we have:
if 2z, € K and min{Deo(2k, 2), Doo (2, 2z) } — 0, then z; — z;

(A.3) If zx — z and 2, — Z then Doo(z,2) < liminfy 4o Di(2k, 2k)-

For every function z: [0,7] — Z, for every k € NU {400} and s,t € [0,T] with s < ¢, set
N
Dissy(z;[s,t]) := sup { ZDk(z(tj,l),z(tj)), s=to<t1 <--- <ty <t,Ne N}.
i=1

We are now in a position to state [50, Theorem A.1].

Theorem 1.5.2. Assume that the sequence (Dy) satisfies conditions (A.1)-(A.3). Let K
be a sequentially compact subset of Z and z, : [0,T] = Z, k € N be a sequence satisfying
(A.4) (i) zx(t) € K for everyt € [0,T] and k € N (23) supyen Dissg(zk;[0,T]) < +o0.

Then there exist a subsequence (zy,)ien and limit functions z : [0,T] = Z and ¢ : [0,T] —

[0, 4+00] with the following properties:

o(t) = l ligl Dissy, (21,5 10,t])  for every t € [0,T],
—+00
z, (t) = z(t)  for every t € [0,T],
Dissoo(z;[s,1]) < (t) —d(s) for every s,t € [0,T] with s < t.
The previous theorem will be essential in Chapter 5 to prove convergence of time-

dependent plastic strains in the framework of finite plasticity.
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Chapter 2

Thin-walled beams in nonlinear

elasticity

2.1 Overview of the chapter

A thin-walled beam is a three-dimensional body, whose length is much larger than the
diameter of the cross-section, which, in turn, is much larger than the thickness of the cross-
section. This kind of beams are commonly used in mechanical engineering, since they

combine good resistance properties with a reasonably low weight.

In this chapter we consider a nonlinearly elastic thin-walled beam whose cross-section is
a thin tubular neighbourhood of a smooth curve. Denoting by h and §j,, respectively, the
diameter and the thickness of the cross-section, we analyse the case where the scaling factor
of the elastic energy is of order €2, with €,/67 — ¢ € [0,+00), and we rigorously deduce,
by I'-convergence techniques, different lower dimensional linearized models, according to
the relative order of magnitude between the cross-section diameter and the cross-section

thickness.

The chapter is organized as follows. In Section 2.2 we describe the setting of the prob-
lem. In Section 2.3 we prove a technical lemma and a rescaled Korn inequality in curvilinear
coordinates. In Section 2.4 we discuss some approximation results for displacements and
bending moments. Section 2.5 is devoted to the proof of the compactness results, while
Section 2.6 to the liminf inequality. Finally, in Section 2.7 we construct the corresponding

recovery sequernces.

Notation. Throughout this chapter if « : (0, L) — R™ is a function of the x; variable,
we shall denote its derivative, when it exists, by «’, while if «: (0,1) — R™ is a function

of the s variable, we shall denote its derivative by .
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2.2 Setting of the problem

2.2 Setting of the problem
Let (h), (6n) be two sequences of positive numbers such that h — 0 and
lim — =0. (2.2.1)
We shall consider a thin-walled elastic beam, whose reference configuration is the set
Qp :={z1e1 + hy(s) + dptn(s) 121 € (0,L), s € (0,1), t € (— 5,4},

where v : [0,1] — R3, ~(s) = (0,72(s),73(s)) is a simple, planar curve of class C®
parametrized by arclength and n(s) is the normal vector to the curve 7 at the point ~(s).

We first introduce some notation. We shall denote by 7(s) := %(s) the tangent vector to ~y

0
n(s) = ( —T73(s) )
72(s)
for every s € [0,1]. The orthonormal frame associated to the curve v is encoded by the

map Ry : [0,1] — SO(3) given by

Ry(s) == (el ‘T(S) ‘n(s))

at the point ~(s), so that

for every s € [0,1]. Let k(s):=7(s)-n(s) be the curvature of v at the point v(s). We
shall assume that k is not identically equal to zero. Finally, let N,T :[0,1] — R be the
functions defined by N(s) := y(s) - n(s) and T'(s) := 7(s) - 7(s) for every s € [0,1].

It will be useful to consider also the following quantities: the two-dimensional vectors

7(s) = ( ma(e) ). 7)== ( —al®) )

73(8) To(8)

and the 2 x 2 rotation



2. Thin-walled beams in nonlinear elasticity

for every s € [0, 1].

We define the elastic energy (per unit cross-section) associated with every deformation
u € WH2(Qp; R3) as

EM(u) = —

= e o W(Vu(x))dz, (2.2.2)

where the stored-energy density W : M3*3 — [0, +00] satisfies the usual assumptions in

nonlinear elasticity, namely:

(H1) W is continuous;

(H2) W(RF)=W(F) for every R € SO(3), F € M?*3 (frame indifference);
(H3) W =0 on SO(3);

(H4) 3C > 0 such that W (F) > C dist?(F, SO(3)) for every F € M3*3;

(H5) W is of class C? in a neighbourhood of SO(3).

2.2.1 Change of variables and formulation of the problem

As usual in problems of dimension reduction, we scale the deformations and the corre-
sponding energy to a fixed domain. We set € := (0,L) x (0,1) x (=%, 1) and we define the

272
maps " : Q — Q, as
wh(xl, s,t) :=x1e1 + hy(s) + optn(s),

for every (z1,s,t) € 2. We notice in particular that there exists hg > 0 such that )"
is a bijection for every h € (0,ho). To every deformation u € W2(Q,;R3) we associate
a scaled deformation y € WH2(Q;R?), given by y := uoy”. The elastic energy can be
rewritten in terms of the scaled deformations as

et = gt = [ (P

ﬁwvme@dm@ﬁ7 (2.2.3)
o \Uh

where ) )
v ::@ %——fa‘fa)
h,6nY 1Y h— onth sY o tY
We observe that
Vs, = Ro.
Moreover, denoting by
8= (0,1) x (~5,3)
the scaled cross-section, since k is a bounded function, by (2.2.1) we have

h — dntk

1 2.24
L (2:2.4)
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2.3 Preliminary lemmas

uniformly in S. In particular, for ~ small enough it follows that h — §,tk > 0 for every
s€[0,1] and t € [-1,3].

Throughout this chapter we shall consider sequences of scaled deformations (y”) in
WL2(Q; R3) satisfying

/ (L}W)W(VhﬁhthOT) dxidsdt < Ce, (2.2.5)
Q

where (€,) is a given sequence of positive numbers. We shall mainly focus on the case where

(€n) is infinitesimal of order larger or equal than (67), that is, we shall assume that

. €h .
3 lim 7= (€ [0,+00). (2.2.6)

2.3 Preliminary lemmas

In this section we collect two results which will be useful to prove a liminf inequality for the
rescaled energies defined in (2.2.3). A first crucial result in the proof of the liminf inequality
is a modified version of the Korn inequality in curvilinear coordinates (see Section 1.1).

We first fix some notation. We recall that S = (0,1) x (—3%,1). For any € > 0 and
v e WH2(S;R?) we set

1
etk v

Vo= ( %5}1}) (2.3.1)

and we consider the subspace
M, = {v € WhH2(S;R?) : sym(ﬁevﬁg) = 0}.

. < 57 . . . . .
We remark that the expression sym(V .vR, ) represents the linearized strain associated with

the displacement v o (¥€)~1, where
(s, t) :=7(s) + etn(s) (2.3.2)
for every (s,t) € S. Since M, is closed in W12(S;R?), the orthogonal projection
I, : WH2(S;R?) — M,
is well defined. We also introduce the set
My = {@ e WL2(S;R?) : Qv =0, dyv -7 = 0, Os(dyv - T1) = 0}7 (2.3.3)
which will play a key role in the proof of the Korn inequality.
The following characterization of the spaces M, and My can be given.
Lemma 2.3.1. Let v € My. Then there exist ay,as,az € R such that
o(s.t) = (2 )+ ( —73(8) ) (2.3.4)
Qs Y2(s)

for every (s,t) € S.
Let v € M.. Then there exist aq,as, a3 € R such that

v(s,t) = ( 2 ) + al( —3(5) ) — etayT(s) (2.3.5)

Qas Y2(s)
for every (s,t) € S.
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2. Thin-walled beams in nonlinear elasticity

Proof. Tt is immediate to see that, if v € My, then 0;v = én for some constant § € R, from
which (2.3.4) follows.

If v € M, then vo (1p°)~! is an infinitesimal rigid displacement, that is, there exist
aq, a, a3 € R such that

(vo (@5)—1)(3;2,333) = ( ZZ ) +a1< ;23 )
for every (wa,z3) € ¥¢(S). This implies (2.3.5). O

We are now in a position to state and prove a rescaled Korn inequality in curvilinear
coordinates.

Theorem 2.3.2 (Korn inequality). There ezist two constants €g >0 and C > 0 such that
for every € € (0,€0), v € WH2(S;R2), there holds

C = =T
o = Te(@llwr sz < < lsym(VeoRy )z s, (2.3.6)

Remark 2.3.3. An analogous dependance of Korn constant on the thickness of a thin
structure has been proved, e.g. in [38, Proposition 4.1], in the case of a thin plate with

rapidly varying thickness.
Proof of Theorem 2.3.2. By contradiction, assume there exist a sequence (e;) and a se-
quence of maps (v/) C W12(S;R?) such that e; — 0 and

4 , j .
[v = e, (V) [wr2(sim2) > = llsym(Ve; v Bo )l 2 (smex2), (2.3.7)
J

for every j € N. Up to normalizations, we can assume that
v/ — I0, (v)) || w2 (s.r2) = 1. (2.3.8)

We set ¢/ :=v7 — 11, (v7). By definition ¢/ € W'2(S;R?), ¢’ is orthogonal to M., in
the sense of W12, and

- J— €5
[sym(Ve; ¢’ By )|l L2(sim2x2) < 7] (2.3.9)

for every j. By the normalization hypothesis (2.3.8), we have [|¢7||y1.2(s,r2y) = 1 for every
j. Hence, there exists ¢ € W12(S;R?) such that, up to subsequences, ¢/ — ¢ weakly in
Wh2(S;R?).

Let now u € M. We claim that there exists a sequence (u/) such that u/ € M, for
every j € N and v/ — u strongly in W2(S;R?). Indeed, by Lemma 2.3.1, the map u has

u=( o )ra( )
6%} Y2

for some a1, ag, a3 € R. Therefore, the maps u’ given by

the following structure:

w = u — glag T

25



2.3 Preliminary lemmas

have the required properties. Since (¢7, u?)y1,2 = 0 for any j € N, passing to the limit we
deduce
(¢, uypr2 =0 for every u € My, (2.3.10)

that is ¢ is orthogonal to My in the sense of W2,

To deduce a contradiction we shall prove that the convergence of (¢7) is actually strong
in W12(S;R?) and ¢ € M.
To this purpose, we first remark that by (2.3.9) there holds

— T= — T = =T = Ce;
sy (o' ¥, aqsarees) = R (sm(Te, R W Roll sy < - (2311)
for every j € N. This implies, in particular, that

s’ T =0, 0y -7T—0, and iamj =0 (2.3.12)

€j

strongly in L?(S). To show the strong convergence of ¢/ in W12(S;R?), it remains to
prove that ds¢’ - — 0,¢ -7 strongly in L?(S). By Lemma 1.1.2 and Corollary 1.1.3, it is

enough to prove that
ds¢’ -7 — Dy -M  strongly in W H3(S)
and
V(0s¢7 1) = V(56 -7) strongly in WH2(S;R?),

Convergence of (9s¢7 - 1) in W=12(S) is a direct consequence of the strong convergence of
(¢7) in L?(S;R?), whereas strong convergence of (9,05¢’ - ) in W~12(S;R?) follows by
the identity

0:0s¢7 -7 = 05(0s” - W) + kO’ - T

and by property (2.3.12). To prove convergence of (9s(0s¢’ -7)) we notice that, by (2.3.11),

1 N N . C
ZHBt(Sym(Ro Ve, o) u)llw-1205) < 7 (2.3.13)
J

for every j € N, and
dy(sym(Ro" Vo, ¢")12) — 0 strongly in W~12(S).
Furthermore,

8tas¢j T k(as¢j '?)
€j(1 — €jtk‘) (1 — Gjtk‘)2

1 T .
;&(S}fm(RoTvsj(ﬁj)ll) =
J

B 23‘9(Sym(R0T§sj¢j)12) ko -m
o 1-— Gjtk 1— Ejtk Ej
1 as¢j ‘n k(as¢J i ?)
1- ejtkas(1 - ejtk‘> - (1 —e;th)?

By combining (2.3.12) and (2.3.13), we obtain
0s(0s¢’ - ) — 0 strongly in W~ 52(9). (2.3.14)
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2. Thin-walled beams in nonlinear elasticity

By collecting the previous remarks we deduce
¢ — ¢ strongly in Wh2(S;R?).

Now, on the one hand ||¢)jHW1,2(S;R2) =1 for any j € N, hence [|¢|lw1.2(g;r2) = 1. On the
other hand by combining (2.3.10), (2.3.12) and (2.3.14) we deduce that ¢ both belong to
M, and is orthogonal to My. Hence ¢ must be identically equal to zero. This leads to a
contradiction and completes the proof of the lemma. O

Denote by w the set
w:=(0,L) x (0,1).

We conclude this section by proving a technical lemma.
Lemma 2.3.4. Let (o) Cc W=22(0,L), i =1,2,3, and let f € W=22(w) be such that
AN + ol +alims — f weakly in W3 (w), (2.3.15)
as h — 0. Then, there exist a; € W=22(0,L), i = 1,2,3, such that for every i
ol = a; weakly in W=%2(0, L),

as h — 0, and
f = OllN + QT + (373. (2316)

If, in addition, there erists g € L?(w) such that f = O.g, then o; € L*(0,L) for every
1=1,2,3. If f=0, then a; =0 for every i =1,2,3.

Proof. To simplify the notation, throughout the proof we shall use the symbol (-, -) to
denote the duality pairing between W~22(w) and Wy (w).

We recall that every o € W~22(0,L) can be identified with an element of the space
W=22(w) by setting

1
(@, §) = /0 (@ 805, V(0.0 w2 0,1 45 (2.3.17)

for every 0 € C§°(w), and extending it by density to VVO2 2(w). Moreover, for every a €
W=22(0,L) and 8 € C2(0,1), we can define the product af as

1
(af, &) = (a, BI) :/0 (a, 0(s, ')>W*2v2(O,L),W02‘2(O,L)B(S) ds

for every § € C5°(w).
Consider now the maps ¢ € W02’2(0, L) and ¥ € C'({H(O7 1), with j € N. We claim that

(o', pdip) = 0. (2.3.18)
Indeed, let (') C C§°(0, L) be such that ¢! — ¢ strongly in W22(0, L). Then,
(af, p0ly) = lim (af, ¢'0ly).
l—+o0
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2.3 Preliminary lemmas

On the other hand,

1
<a?7 Sol6§¢> = /O 88<a?7 <lplag_lz/}>l/]/—2,2(07[])"/‘/02»2(0)1/) ds = O

for every | € N. Therefore, we deduce claim (2.3.18).
By (2.3.15), for every ¢ € W02"2(0, L) and ¢ € C’g+2(0, 1), there holds

(QIN, @0Ip) + Y (almi, pdl) = (f, 0IY).

i=2,3

Claim (2.3.18) yields
(VKT + abkrs — alikry, 0071y — (f, 0dIeh). (2.3.19)
Hence, choosing j = 1, we obtain
(aTkT + askrs — a5k, o) — (f, 0ds1)) (2.3.20)

for every ¢ € W3*(0,L) and ¢ € C3(0,1).
Let now ¢ € Wo*(0,L) and ¢ € CJ72(0,1). Taking ©87¢ as test function in (2.3.20)
and applying again (2.3.18), we deduce

(—a?(/.cT + k4 E*N) — aé‘(im‘;; + k*1) + aé‘(im‘z — k13), 097 M) = (f, 0TIy,
which in turn gives
(—a?(kT +k+Kk*N) — ag(kTg + k%) + ag(km — k%73), @) — (f, p021), (2.3.21)

for every o € W22(0,L) and v € C§(0,1).

Consider a map ¢ € C§°(0,1). By regularity of the curve v, the map k¢ belongs to
C4(0,1). Therefore, for every ¢ € Wi*(0, L) we can choose k¢ as test function in (2.3.21)
and we obtain

(—af (KT + K + k°N) — o (kkTs + k7o) + af (kkma — k>73), 0¢) = (f, ¢02 (ko).
On the other hand, by (2.3.15) there holds

(@IN+ > alni, ok*¢) — (f, ok’¢),
1=2,3

whereas (2.3.20) yields
(VKT + alkrs — abkry, 9ke) = (f, ¢0u(ke)).
By collecting the previous remark we deduce
(al, ok?¢) = —(f, p(02(kd) + k*¢ + 05(k9))) (2.3.22)

for every ¢ € W22(0,L) and ¢ € C5°(0,1).
Let now ¢ € C§°(0,1) be such that

1
/ Eods =1
0
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2. Thin-walled beams in nonlinear elasticity

(such ¢ exists because k is not identically equal to zero in (0,1)). Convergence (2.3.22)

implies that

ol — a; weakly in W~22(0, L), (2.3.23)

where
(a1, ©)w—22(0,0),w220,) = (S5 Q(02(kd) + k° ¢ + 04 (kd))) (2.3.24)
for every ¢ € Wg?(0,L). By definition (2.3.17) it is immediate to see that, identifying

o',y with elements of W~22(w), we also have

ol = weakly in W™22(w). (2.3.25)

Let again ¢ € WOQ’Q(O7 L) and ¢ € C§°(0,1). Taking pkre¢ and ¢13¢ as test functions
respectively in (2.3.15) and (2.3.20) we deduce

(N + aly7y + ol s, okTa) — (f, PkT2) (2.3.26)

and
(kT + abkrs — alikro, ©30) — (f, ©s(30)). (2.3.27)

By summing (2.3.26) and (2.3.27) and using (2.3.25), we obtain
(a5, kop) = (f, p(kTad + 05(739))) — {1, pk30)

for every ¢ € W3*(0,L) and ¢ € C5°(0,1).
Choosing g/b\ such that fol k(Eds = 1 and arguing as in the proof of (2.3.23), we deduce

alf — ay weakly in W~22(0, L), (2.3.28)
where
(a2, @) w-2200.0).w220.0) = (f, p(kT2d + 05(739))) — (o1, Phyad) (2.3.29)

for every ¢ € W3*(0,L).

Similarly, one can prove that
aff — ag weakly in W~22(0, L) (2.3.30)
where
(a3, ©)w-22(0,0),w220,L) = (> (k36 — 04(120))) + (01, Pk 120) (2.3.31)

for every ¢ € W22(0,L).

By combining (2.3.15), (2.3.25), (2.3.28), and (2.3.30), we obtain the representation
(2.3.16).

If f=0sg,with g € L?(w), then by (2.3.24) there holds

L 1
<O[1, <‘0>W’2’2(0,L),W02’2(0,L) = / / gaé(af(k¢) + k3¢ + 85(k¢))§0d8dxl,
0 0

for every ¢ € W*(0, L). This implies that oy € L2(0, L). Similarly equalities (2.3.29) and
(2.3.31) yield as, a3 € L2(0,L).
Finally, if f = 0, by properties (2.3.24), (2.3.29) and (2.3.31) it follows immediately that

a; =0 for every i. O
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2.4 Limit classes of displacements and bending moments

and approximation results

In this section we introduce some classes of displacements and bending moments, that will
play a key role in the characterization of the limit models, and we discuss their properties
and their approximation by means of smooth functions.

We begin by introducing the limit class of the tangential derivatives of the tangential

displacements

G:= {g € L*(w) : 3(v%) C C°(@; R?) such that 9,0 + 010 -7 = 0,

0sv° -7 =0 for every e > 0 and g = lin% 811};}, (2.4.1)
€E—>

where the limit is intended with respect to the strong convergence in L?(w). In other words,

if for every v € W'?(w;R?) we consider the symmetric gradient e(v) € L?(w; M252) of v,
defined by
1 .
e(v) =1 , v 2(Osv1 + 01w -7) , (2.4.2)
5(0sv1 + 01v - 7) 0sv - T

a function g € L?(w) belongs to G if and only if there exists a sequence (v¢) C C®(w;R?)

such that
() = oy 0 R g 0
0 0 0 0

2x2) as € — 0.

sym

The following characterization of the class G can be proved.

strongly in L?(w; M

Lemma 2.4.1. Let g € L?(w) and assume there exists a sequence (v¢) C WH2(w;R3) such

that
¢ 9 0 )
- 243
ew) = (9 o (2.4.3)
weakly in L?(w; MZ%2) as € = 0. Then g € G.
Proof. Condition (2.4.3) can be rewritten as
0105 — g weakly in L*(w), (2.4.4)
Dsv§ 4+ O1v° - 7 — 0 weakly in L*(w), (2.4.5)
dsv® -7 — 0 weakly in L?(w). (2.4.6)

Moreover, by Mazur Lemma, we may assume that the convergence in (2.4.4), (2.4.5) and
(2.4.6) is strong in L?(w).
For every ¢, let u¢ € Wh?(w), with 0fu¢ € L?(w), be such that d;u¢ = v{. By (2.4.5)

and Poincaré inequality
L L
Dstt 4 v - 7 —][ 0t day —][ ve - Tder =0 (24.7)
0 0
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2. Thin-walled beams in nonlinear elasticity

strongly in L?(w). Let now v¢ € W12(w) be such that dsv¢ = v¢ - 7. Setting

L L
u€ = —][ u¢ dxq —][ vedxq,
0 0
then u¢ € Wh?(w), 0?u € L?(w) and (2.4.7) yields
Dsu® +v° -7 — 0 strongly in L?(w). (2.4.8)
Finally, by (2.4.4) there holds
Otu — g strongly in L*(w). (2.4.9)

We want to approximate u® and v¢ by smooth functions in such a way that (2.4.9) holds
and the quantities in (2.4.6) and (2.4.8) are equal to zero for every e > 0. To this purpose,
we first extend u® and v¢ to the set

ws = (=6,L+ ) x (0,1),
with 0 <4 < é For every €, we define
ve(z1,s) in w,

(w1, 8) == { 6v°(—x1,8) — 8v(—2x1, 8) + 3v(—3x1, 8) in (—4,0) x (0,1),
6v¢(2L — x1,s) — 8v°(3L — 2x1, ) + 3v°(4L — 3x1,s) in (L,L+0) x (0,1)

and

ut(xy, s) in w,
u(21,8) = 6u(—z1,8) — 8u(—2z1,s) + 3u(—3x1, s) in (—6,0) x (0,1),
6u(2L — x1,8) — 8u (3L — 221, s) + 3u(4L — 3x1,s) in (L,L+ ) x (0,1).

Clearly, 0 and ¢ are extensions of v¢ and u€, respectively, to ws. Moreover, we have
€ € Wh?(ws) with 824° € L*(ws), and ©¢ € W1?(ws). Finally, by (2.4.6) and (2.4.8) we
deduce

05 -7 — 0, and 0,4°+0°-7 — 0 strongly in L*(ws). (2.4.10)
Furthermore, defining

g(z1, 9) in w,
g =1 6g(—m1,5) — 329(—2x1, 8) + 27g(—3x1, 5) in (—4,0) x (0,1),
69(2L — x1,8) — 329(3L — 2x1,s) + 27g(4L — 3x1,s) in (L,L+6) x (0,1)

there holds § € L?(ws), § = g a.e. in w, and
0¥ — ¢ strongly in L*(ws). (2.4.11)
We set 0f := 0¢-n and 0 := 0 - 7. For every ¢, let 75 € C°°(ws) be such that
175 — 0f [[w1.2(ws) < Ce. (2.4.12)
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2.4 Limit classes of displacements and bending moments and approximation results

Let now o< € C®(ws) be the solution of
05U = kv;  in wy, (2.4.13)

S

satisfying fol vé (21, s)ds € C°(—6, L + §), with

/01 (21, $)ds — /01 0S(21,8)ds — 0 strongly in L*(—d, L + ).
By (2.4.13) we deduce
105 (@5 = 0| 2 (ws) < IR(OF = 0D L2 (ws) + [1KOF = Bs5 [ L2 (o) -
Hence, owing to (2.4.10) and (2.4.12),
105 (@ = 09)[[L2(ws) = 0, (2.4.14)

and by Poincaré inequality
195 — 951l £2(ws) — 0. (2.4.15)

Finally, let u® € C%(w;) be such that
0t +75 =0 in ws, (2.4.16)

with fol u(x1,s)ds € C°(—=4, L+ J) and

/01 uf(xq,s)ds — /01 @(x1,8)ds — 0 strongly in L?(—=6, L + 6).
By (2.4.16) there holds
105 (@ = i) [ L2 (ws) < 10510 + D5l L2(wg) + 195 = Vsl L2(ws) -
Therefore, by (2.4.10) and (2.4.15), we deduce
Os(u® —0) — 0 strongly in L?(ws),
which in turn, by Poincaré inequality, yields
€ — 4 — 0 strongly in L?(ws). (2.4.17)

To guarantee convergence of the second derivative in the x; variable of the sequence
(u®), we regularize both (u®) and (v¢) by mollification in the z; variable. To this purpose,
we consider a map p € C§°(—=A, A) with 0 < A < §, and we define

for a.e. (z1,s) € w and for every ¢ > 0. The regularized maps satisfy (v5) C C*(w),
(0¢) C C3(w), and (uf) C C%(w). Moreover, by (2.4.13) and (2.4.16), there holds
0s0; = kv; and 0,u°+0; =0 inw.

S
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2. Thin-walled beams in nonlinear elasticity

Finally, (2.4.17) yields
OR(@ — (5, 8) # p)) = (@(,5) — (-, 5)) * " = 0
strongly in L?(w) as € — 0. On the other hand, by (2.4.11) we have
OF(u(-,8) % p) = O (-, 8) % p — g(-8) % p
strongly in L?(w) as € — 0; hence we deduce
07U — g(-,8) % p

strongly in L?(w) as € — 0.
The conclusion of the lemma follows now by considering a sequence of convolution kernels

in the z; variable, and by applying a diagonal argument. O

Remark 2.4.2. An equivalent characterization of the class G is the following:

G= {g € L2 (w) : I(u) C CO(@), (2°) € C4(@) such that

D2uf = kz° for every € > 0 and g = lir% 31u6}, (2.4.18)
e—

where the limit is intended with respect to the strong convergence in L?(w).

Indeed, let G’ be the class defined in the right-hand side of (2.4.18). If g € G, setting
u® =v§ and z¢ = —01v° - n for every e > 0, it is easy to check that g € G’.
Viceversa, if g € G’, it is enough to define

vé(x1,8) = u(x1, 8)e; — /I1 (Osu(&, 8)T(s) + 2°(&, s)n(s))dE

0

for every (z1,s) € w and for every e > 0. The conclusion follows then by Lemma 2.4.1.

By (2.4.18) it follows in particular that if g € G, then there exist (u°) C C®(w) and
(z°) € C*(@) such that 9,u° = kz° and 94 — g strongly in L%(w). Indeed, let (u®) and
(2%) be the sequences in (2.4.18), and for every ¢ let @° € C®(w) be such that 9;4° = u°.
Then

or (2 + /O Y es) d€) = 0.
Hence, setting
= [ de
we have 25 € C*(w) and there exists ¢ € C?([0,1]) such that
D% + k7 = §.
The thesis follows now by taking u® := a¢ — ¢.

Remark 2.4.3. The class G is always nonempty as it contains all g € L?(w) which are

affine with respect to s. Indeed, assume there exist ag,a; € L?(0, L) such that
g(z1,8) = ap(z1) + say(x1)
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2.4 Limit classes of displacements and bending moments and approximation results

for a.e. (71,5) € w and let @; € W12(0, L) be a map satisfying @’ = a;, i = 0,1. Then,
there exists (@) C C*°([0, L]) such that a¢ — @; strongly in W12(0,L) as e - 0, i =0,1.

K]
Hence, setting

ut(z1, s) == ag(zr1) + saj(xy)

for every (z1,s) € w and z¢ =0 for every € > 0, the claim follows by Remark 2.4.2.
We also remark that if g € L?(w) and there exist a; € L?(0,L), i = 1,2, 3, such that

859 = O[lN + oo + 3T3, (2419)

then g € G. Indeed, by (2.4.19) there exists «y € L?(0, L) such that

g= 041/ N(§)dE + aoya + azys + ay.
0

Let @; € WH2(0, L) be such that &) = «; for i =1,2,3. Then, setting

v a / N(E)dE + Qyyo + dyys + s
0

and

z = —a1 T — Qia73 + Q372
we have u € W12(w), dlu € L?(w) for i = 2,---,6, and z € W12(w), with 9%z € L?(w) for
i=2,---,5 and 0%u = kz. For every i = 1,--- ,4 consider a sequence (af) € C°°([0, L])
such that af — @; strongly in W12(0,L), as € — 0. By defining

S
ui=af [ N(©de +apre +afa +af,
0

and

z2¢ = —aiT — o573 + a5,

there holds
O1ut — g strongly in L*(w),
O2uf = kz¢ for every e > 0,
and both sequences (u€) and (z¢) have the required regularity.
Remark 2.4.4. The structure of the class G depends on the behaviour of the curvature &
of the curve ~.

For instance, if k vanishes only at a finite number of points, then G = L?(w). Indeed,
let

O:p0<p1<"'<pm:1

be such that k(s) # 0 for every s € (p;,pis1), i = 0,--- ,m—1. For any function g € L*(w)
there exists a sequence (¢¢) C C§°((0, L) x Uggl(pi,pi+1)) such that ¢g¢ — g strongly in
L?(w). By choosing

W (ar, s) = /O g (e. s)de
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2. Thin-walled beams in nonlinear elasticity

for every s € (0,1), then (u) C C*°(w) and for every € > 0 there exists A° > 0 such that
20 < _7Omin 1(pi+1 =)

and 9%u =0 in

(0,L) x . U ((pispi + X) U (Pig1 — A% pig1))-

By setting

8§u5 . m—1 € €
e A m (O,L) X U’L:O (Pi + A% pig1 — A )u

0 otherwise

we deduce immediately by Remark 2.4.2 that g € G.
Assume instead that the sign of k has the following behaviour: there exists a finite
number of points

O=po<p1 < <pn=1

such that, for every ¢ = 0,---,m — 1, there holds k(s) > 0 for every s € (p;,pit1), Or
k(s) < 0 for every s € (p;,pi+1), or k(s) =0 for every s € (p;, pi+1). In other words,

{s€0,1]: k(s) =0} = | [pi-1.m] U [ J {p:}-
i€l i€l
with I; C {1,--- ,m}, I, C {0,--- ,m} disjoint. Then
G:= {g € L*(w) : g is affine in the s variable in (0, L) x U (pi,piﬂ)}, (2.4.20)

i€l

In particular, if £ =0 on [0, 1], then G is the set of all functions g € L?(w) that are affine
in the s variable.

To prove (2.4.20), assume for simplicity that m = 2 and {s € [0,1] : k(s) = 0} = [p1,p2].
Denoting by G’ the class in the right hand side of (2.4.20), the inclusion G C G’ follows by
Remark 2.4.2. Viceversa, let g be affine in the s variable in (0,L) x (p1,p2). Then, there
exist a,b € L?(0,L) such that

g(x1,8) = a(xy) + sb(x1)

for a.e. (z1,5) € (0,L) X (p1,p2). Let now 0 < < £ and let e > 0. We define

(Z(.’El)+8b(l'1) in (O,L) X (pl _63p2+6)7

ge(‘rla 8) = P
g(x1,8) otherwise in w,

and arguing as in the proof of Lemma 2.4.1, we extend ¢° to the set
w® := (=6,L +6) x (=6,1+9).

It is easy to see that g — g strongly in L?(w®) and 92¢° = 0 in the sense of distributions
in the set (=4, L+ ) x (p1 — €, p2 + €) for every € > 0.
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2.4 Limit classes of displacements and bending moments and approximation results

Fix €, let 0 < A < min{$, 3} and let p € C§°((—A, \)?). By setting g° := g¢ % p, we
obtain g¢ € C°°(w) and 92§ =0 in (0,L) X (p1 — A, p2 + A). Define now

z1
wons) = [ g€ sl
0
Then, u¢ € C®(w) and 9?u¢ =0 in (0,L) x (p1 — A, p2 + A). Hence, setting

0 i (0,L)x (1~ Apa+N)

8%us .
—=—  otherwise,

the claim follows by Remark 2.4.2, considering a sequence of convolution kernels and applying
a diagonal argument.

An easy adaptation of the previous argument leads to the proof of (2.4.20) in the general
case.

From here to the end of the section we shall assume that

. On . O
Hilllg%) 7z = A and 3}1136 75 = H- (2.4.21)

For every 0 < p < 400, we introduce the class
Cu = {(g,b) € L*(w) x L*(w) : Jv € L*(w; R?) such that
v € L*(w;R?), O5v -7 =0, 95(sv-n) = b and v -7 + pdsg = 0}, (2.4.22)

where the last two equalities hold in the sense of distributions.
For p =0 we define
Co =G x B, (2.4.23)

where
B = {b € L*(w) : Fv € L*(w;R?) such that
v € L*(w,R?), Ogv -7 =0, 05(0sv -n) = b and v - 1 = O}, (2.4.24)
and again the last two equalities hold in the sense of distributions.

Remark 2.4.5. Let b € B and let v be as in (2.4.24). Then the tangential component v -7
belongs to W32%(w). Indeed, since ds(9sv -n) = b and dsv € L?(w;R?), we deduce that
9?(v-n) € L*(w). Since Osv-7 = 0, we have d5(v-7) = k(v-n) and then d?(v-7),d3(v-7) €
L?(w). By the last condition in (2.4.24), there holds

oh(v-7) e W L2(w), 0(v-7)€ L*(w)

and
D501 (v-T) = 0105(v- 1) € W2 (w).

Therefore, by Lemma 1.1.2, we obtain 9 (v -7) € L?(w). Arguing analogously, by Lemma
1.1.2 we deduce that 9;05(v- 1) € L*(w), therefore v -7 € W?2(w) and 93(v-7) € L?(w).
Applying again Lemma 1.1.2, it is straightforward to see that v-7 € W32(w). No regularity
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2. Thin-walled beams in nonlinear elasticity

conditions can be deduced for the derivatives with respect to x; of the normal component
of v.

In the case where u # 0, if (g,b) € C, and v is as in (2.4.22), then the regularity of
v -7 and v -n with respect to s is the same as in the previous case. It is still true that

O1(v-7) € L?(w) but in general one cannot guarantee that v -7 € W22(w).

Remark 2.4.6. A function b € L?(w) belongs to B if and only if there exists a map
¢ € L*(w;R3), with

¢-T€W3’2(w), ¢-616W1’2(w) and &(qﬁ-n),@f(gb-n)ELQ(W)7

such that
e(¢) =0 (2.4.25)

and

0s(9s¢p - m) = b. (2.4.26)

In other words, ¢ is an infinitesimal isometry of the cylindrical surface
Y= {xlel +v(s): 21 € (0,L),s € (0,1)}

satisfying (2.4.26).
We first observe that the regularity of ¢ is sufficient to guarantee that e(¢), defined as
in (2.4.2), belongs to L?(w;MZ2x2). Moreover, if b € L?(w) and v is as in (2.4.24), then

there exists v; € WH?(w) such that

81’01 = 07

Osv1 = —O01v - T.

The map ¢ := vie; + v satisfies (2.4.25) and (2.4.26). The converse statement is trivial.

Similarly, a pair (g,b) € L?(w)x L?(w) belongs to C,, if and only if there exists a function
¢ € L?(w;R3) with ¢ -7 € Wl2(w), 02(¢p-7),03(¢p - 7) € L*(w), ¢-e1 € WH2(w) and
(¢ -n),02(¢p - n) € L*(w), such that

)= (")

and

0s(0s¢p - n) =b.

Remark 2.4.7. As in the case of the class G introduced in (2.4.1), the structure of B and
C,, depends on the behaviour of the curvature k of .

For instance, if £ =0 on [0,1], then B = L?*(w). Indeed, condition (2.4.25) implies in
this case that there exist some «, 3, € R such that

d(x1,5) = (as+ Per + (—axy + )T + ¢e(x1, $)n

for a.e. (x1,s) € w, while condition (2.4.26) reads as 92¢; = b. Hence B = L*(w). Similarly,
it can be deduced that C, = {g € L*(w) : g is affine in s} x L*(w).
If, instead, k(s) # 0 for every s € [0,1], then B = {b € L?(w) : b is affine in z1}.

37



2.4 Limit classes of displacements and bending moments and approximation results

We conclude this section by proving some approximation results. The first result concerns

the class C,, in the case p # 0.

Lemma 2.4.8. Let (g,b) € C,, with pn# 0. Then, there exists a sequence (¢€) C C°(w; R3)

such that
ey ( O1e7 O g 0
e((b)i( ‘ o)%(o 0) (2.4.27)
strongly in Lz(W;MS-;n%) and

strongly in L*(w).

Remark 2.4.9. By Lemma 2.4.8 it follows, in particular, that if (g,b) € C, and pu # 0,
then g € G.

Proof of Lemma 2.4.8. Without loss of generality we may assume that gy = 1. By the
definition of C, and by Remark 2.4.6 there exists ¢ € L?(w;R?) with ¢ -7 € W12(w),
2(p-7), 02(p-7) € L* (W), ¢-e1 € WH2(w) and 9s(¢ - n),0%(¢ - n) € L*(w), such that

e(9) = ( g g ) (2.4.29)

and 0,5(0s¢ - n) = b. By (2.4.29) it follows that
01 T+ 0s¢-e1 =0. (2.4.30)

Hence, there exists u € W12(w), with d1u € W12(w) such that diu = ¢ - e; and the
equality
¢p-T+ou=0 (2.4.31)

holds in the sense of L?(w). Indeed, by (2.4.30), if w € W12(w) satisfies 017 = ¢ - ey, there
exists ¢ € WH2(0,1) such that
@7+ 0su= .
Defining u :=u — ¢, then u has the required properties.
We set
v= (¢ -7)T+ (¢ -n)n.
For the sake of simplicity, we divide the proof into two steps.

Step 1.
We claim that we can always reduce to the case where

ueWr(w), wvsi=v-7€ W (w), and wv;:=v-n€ WH?*(w),

with diu, vy, ivg, dig € L?(w) for every i € N.
Indeed, let 0 < § < % Arguing as in the proof of Lemma 2.4.1 we extend u and v to
the set
ws == (—=d,L+6) x (0,1)
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2. Thin-walled beams in nonlinear elasticity

in such a way that, denoting by v and w the extended maps and setting
G=0% and b=0,(8,0-n)

in ws, then g and b are respectively extensions of g and b to ws. Moreover, there
holds w € W12(ws) with d1u € Wh?(ws), v, € Wh2(ws) with 0205, 0305 € L?*(ws) and
Ut, Oy, 020, € L?(ws). Finally, by (2.4.29) and (2.4.31), the pair (, ) solves

0, 0-7T=0 and v-7+0u=0 a.e. in ws.

We now mollify the functions u,v, g, and b with respect to the xq variable. Let 0 < e <

0, consider a sequence (p¢) C C°(—e¢,€) of convolution kernels and set

uc(zq, s) :== (ul-, s) * p)(x1),

vg(w1,8) := (Vs(+, 8) % p) (1),

U (21, 8) := vs( ,8) * p°) (1),
(

8
=
%)

=
©»
< —
—~
B}
/\
©»
~
*
hS
™
~—
—
8
=
~

g°(x
for a.e. (x1,s8) € w and for every e. By defining ©° := 057 + ¥in, the pair (u,v¢) solves
Ru =3, 0,0°-7=0, 0°-7+0u°=0 and 9,00 -n)=0b° (2.4.32)
a.e. in w for every €. Moreover b* — b in L2(w) and §¢ — § in L2(w). Now,
@) c W32 (w) and (vF) C W??(w)

with (910¢), (8i0§) C L?(w) for every i € N. Therefore, by (2.4.32) we deduce that (9,u¢) C W32 (w).
s (0iuf) C L?*(w) for every i € N, it follows that (u€) C W*2(w) and the proof of the

claim is completed.

Step 2.

Assume now that u € W*2(w),

vei=v-T €W (W) and v i=wv-n € WH(w),

with diu, divy, Oivs, dig € L*(w) for every i € N. Since v, € W22(w), there exists a
sequence (v§) C C°(w) such that

vf — vy strongly in W22(w). (2.4.33)

Let v¢ € C5(w) be the solution of
0svs = kg (2.4.34)

in w, with fo (x1,s)ds € C>([0, L]) for every € > 0 and
1 1
/ vi(xy, s)ds — / vs(1,8)ds strongly in W2(0, L). (2.4.35)
0 0
By Poincaré inequality, (2.4.29) and (2.4.34) we deduce
1
€ _ < € _ € _
ot = vl < O] [ s =vaas], |+ 1t = vz

39



2.4 Limit classes of displacements and bending moments and approximation results

and hence, by (2.4.33)—(2.4.35)
vE — v, and 0,05 — O.v, strongly in L?(w). (2.4.36)

Let u¢ € C5(w) be the solution of
Osu® +vi =0 (2.4.37)

in w, with [ u(z1,s)ds € C([0, L)),
1 1
/ u(x1,8)ds — / u(z1,s)ds strongly in W*2(0, L). (2.4.38)
0 0
By Poincaré inequality, (2.4.29), (2.4.31) and (2.4.37), there holds

10705 (u® — u)l| L2y = 1107 (S = vs)llL2(w)

<o| [ otz -

oy F IR = 0llzae ).

The right-hand side of the previous inequality converges to zero due to (2.4.33) and (2.4.35).
Hence, by (2.4.38) and Poincaré inequality

Ofu — 0fu =g strongly in L*(w). (2.4.39)

By defining
¢° 1= O1ue; + ¢,

property (2.4.27) follows by (2.4.34), (2.4.37) and (2.4.39). Moreover
Ds(850° - n) = O2vf + kv + kdsu.

Therefore, (2.4.28) follows by (2.4.33) and (2.4.36), and the proof of the lemma is completed.
O

The next lemma, under a suitable additional condition on the sign of the curvature,

provides us with an approximation result for the elements of the class B introduced in
(2.4.24).

Lemma 2.4.10. Assume there exists a finite number of points
O=po<p1 < <pm=1

such that, for every i = 0,--- ,m — 1, there holds k(s) > 0 for every s € (pi,pi+1), or
k(s) < 0 for every s € (p;,pit1) or k(s) =0 for every s € (pi,pi+1). Let b € B. Then,
there exists a sequence (¢) C C°(w;R3) such that

e(¢) =0 for everye >0 (2.4.40)

and
95(059° - n) = b (2.4.41)

strongly in L*(w) as € — 0.
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Proof. By definition of B there exists v € L?(w;R?), with dsv € L?(w;R?), such that

0sv-7=0, (2.4.42)
0s(0sv - n) =D, (2.4.43)
Ofv-1=0. (2.4.44)

Arguing as in Step 1 of the proof of Lemma 2.4.8, we may extend both v and b to the
set ws 1= (=0, L +0) x (0,1) for 0 < § < £. By Remark 2.4.6 up to a regularization in the

x1 variable, we may assume that
v = vn € W3 (W), wvs:i=v1 € W3 (w) and  Oivg, divg, ib € L (w) for every i € N.
Moreover, by (2.4.44) there exist ag, a1 € W32(0,1) such that

vs(x1, 8) = ao(s) + z1a1(s), (2.4.45)

for a.e. (r1,$) Ew.

Let Z := {s € [0,1] : k(s) = 0}. By assumption, Z is the union of a finite number of
intervals with a finite number of isolated points. For simplicity, we divide the proof into
three steps. We first consider the case where Z is a finite union of points. In the second
step, we assume Z to be a finite union of closed intervals and in the third step we study the
general case.

Step 1.
Assume that Z = J,.;{p:} for some I C {0,---,m}. By (2.4.42) and (2.4.44), there holds

kdiv; =0

a.e. in w, which in turn implies
vy =0 (2.4.46)

a.e. in w. Hence, by (2.4.42), (2.4.45), and (2.4.46), there exist Sy, 51 € W22(0,1) such
that
ve(x1,8) = Bo(s) + x151(s) and &, (s) = k(s)Bi(s), i=0,1, (2.4.47)

a.e. in w. In particular, there exist two sequences (5§), (55) C C*°([0,1]) such that
B — Bi (2.4.48)
strongly in W22(0,1), for i = 0,1. Let af € C°([0,1]) be the solution of
&S = kS in (0,1) (2.4.49)

such that fol afds = fol a; ds for every €, for i = 0,1. By Poincaré inequality and (2.4.49),
we deduce
llog — il 20,1y < CIEBE = Bi)llz2(0.1)>
hence (2.4.48) implies
af — «a; strongly in WH2(0,1), i=0,1. (2.4.50)
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Taking ¢5 € C°([0,1]) to be a solution of
5 = —af (2.4.51)
for every e and setting
¢ = ¢ler + (g + x109)7 + (65 + 1 57)n,

we have ¢¢ € C°(w,R3), property (2.4.40) holds owing to (2.4.49) and (2.4.51), while
convergence (2.4.41) is a straightforward consequence of (2.4.43), (2.4.45), (2.4.47), (2.4.48)
and (2.4.50).

Step 2.

Assume that Z = [p1,1], with 0 < p; < 1. By (2.4.42) and (2.4.44), there holds

d3v; =0 in (0,L) x (0,p1).
Arguing as in the proof of Lemma 2.4.1, we define
w® = (=6,L +6) x (6,1 +9)

and we extend v; to the set w® for a suitable § > 0 in such a way that v, € W2?(w?) and
8121),5 = 0 in (—6,L + (5) X (—5,])1).
We slightly modify the map v; close to the point p; so that it remains affine with respect

to x1 in a neighbourhood of this point. More precisely, for € < g, we set

[N

vi(z1,8) = ve(x1,8 —€) inw?2.
It is easy to see that (v§) C W22 (w%), moreover
vf = vy, 00§ — Oyv;  and 92vf — 02, strongly in L2(w%)

and
9vf =0 in (— g,L+g) x (=&, p1 + €).

To conclude, we regularize the sequence (v§) by mollification. Let 0 < A < e and let
p € C((—\, \)?). Defining 0§ := v§ * p, we have 1§ € C°°(w) and

Oivf =0 in (0,L) x (0,p1). (2.4.52)

By considering a sequence of convolution kernels and applying a diagonal argument we may
also assume that

= vy, 0s0F — Ov;  and 920 — 9%v;  strongly in L?(w). (2.4.53)
By (2.4.52), for every e we may choose a map v¢ € C°(w) such that
1 1
00 = kvf, 0%vS=0 and / vids = / vsds in w.
0 0
The conclusion of the lemma follows now arguing as in Step 1.
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2. Thin-walled beams in nonlinear elasticity

The same argument applies to the case where Z = [0, p1], with 0 < p; < 1, by choosing
vi(x1,8) == ve(z1,8+€) in w?
and by arguing as in the previous case.

Finally, assume that

Z = [p1,p2] U [p3, 1]

with 0 < p;1 < p2 < p3 < 1. Let ¢ € C(R) be such that 0 < p(s) <1 for every s € R,
p(s) =1 forall s € [pa —n,p2+n] and ¢(s) =0 for s < p; +n or s > ps —n for some
1 > 0 such that

n < min{p,, 255, B25P2 ] — ps}

The argument shown at the beginning of this step applies now choosing
vy (21,8) := (1 — @(s))ve(x1,8 — €) + p(s)ve(z1,s+€) in w?

for € small enough.

The case where Z is a finite union of disjoint intervals is a simple adaptation of the
previous cases.
Step 3.
Consider now the general case and assume there exist Iy C {1,---,m}, I C {0,---,m}
disjoint such that

Z = U [pi—1,p:] U U{Pz}

i€l i€l

Then 6?v; = 0 a.e. in (0,L)\ (Uieh [pi_l,pi]) and the thesis follows arguing as in Step
2. O

2.5 Compactness results

In this section we deduce some compactness properties for sequences of deformations (yh)
satisfying the uniform energy estimate (2.2.5).

Assumption (H4) on W provides us with a control on the L? norm of the distance of
the rescaled gradients from SO(3). Applying Theorem 1.2.1 on a scale of order dy,, we can
construct a sequence of approximating rotations (R"), whose L? distance from the rescaled
gradients is still of order €. Because of the different scaling of the cross-section diameter
and the cross-section thickness, the approximating rotations turn out to depend both on
the mid-fiber coordinate x; and on the arc-length coordinate s. Moreover, the derivatives
of (R") in the two variables have a different order of decay, as h — 0.

More precisely, the following result holds true.

Theorem 2.5.1. Assume that §~ — 0. Let (y") be a sequence of deformations in W12 (2;R?)
satisfying (2.2.5). Then, there exists a sequence of constant rotations (P") and a sequence
(RM) € C>(w; M3*3) with the following properties: setting Y" := (P")Ty" — ¢l where (")
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2.5 Compactness results

is any sequence of constants in R3, for every h > 0 there holds

IV, Y"RE — R™|| 12 (quuzxsy < Cen, (2.5.1)
/ (vh,gthROT — (Vs Y"RT )T) dxydsdt = 0, (2.5.2)
Q
R"(21,5) € SO(3) for every (x1,s) €@, (2.5.3)
IR" = Id|| 12 ooy < cgi, (2.5.4)
h
€
||81RhHL2(w;M3><3) < Ci, (2.5.5)
he
||83RhHL2(w;M3><3) < CTh (2.5.6)
h
Proof. By (2.2.5) and (H4), the sequence (y" o (y")~!) satisfies
/ dist*(V(y" o (v")71), SO(3))dz < Chdpes. (2.5.7)
Qp

Let us consider the sets

Al = {x1e1 + hy(s) + dptn(s) 1 a1 € (TTL, L:}})L),

se (S e (-4}

where I "

= {E}’ o = [E} and i = (i1, is),
with 43 =0,---,9, — 1, and i3 =0,--- ,kp, — 1. By Theorem 1.2.1 and Remark 1.2.2 there
exist a sequence of constant rotations (Q),) C SO(3) and a constant C independent of h

and 4 satisfying
/ V("o ("))~ QuPdr < C | dist*(V(y" o (")), SO(3))d. (2.5.8)
4, Al
To see that C' does not depend on h, we first notice that each set Aﬁl has the same rigidity
constant of the set E}L that is obtained by a uniform dilation of A% of factor i. Defining
¢i 1 (0,1)3 — Al as

Gh(wr,s,t) = (Vteil o (fas) 4 (¢ Ly (Bats)),

we conclude that the sets g;L are images of the unitary cube through a family of uniformly
bi-Lipschitz transformations. Therefore by Remark 1.2.2 the constant C' is the same for
every ¢ and for every h.

Let Q" : w — SO(3) be the piecewise constant map given by

k' kp

o) e T L DDy it
Q"(z1,s) :=Q, for (xl,s)€<nh, o )x( )7

where i1 = 0,---,n, — 1 and i3 = 0,--- ,k, — 1. By summing (2.5.8) over ¢, changing
variables and using (2.2.4) and (2.5.7), we deduce that

/ \Vis,y" Ry — Q"Pdz < C / dist*(Vs5,y" RE, SO(3))dz. < Cél. (2.5.9)
Q Q
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2. Thin-walled beams in nonlinear elasticity

Consider now the sets

B} = {xlel + hy(s) 4 dptn(s) : z1 € ((i1 — 1)7]%7 (i1 + 2)77%),
s € ((7’2 - 1)ﬁ,(7’2 +2)ﬁ)v te (_ %7 %)}v

for iy =1,--- ;g — 2, and io = 1,--- , k, — 2, and for every h > 0. Applying the rigidity
estimate to the sets Bi we obtain that for every (i1,i2) there exists a map Qi C SO(3)
satisfying

J

Let now ji be an integer in the set {ix — 1,ix,ix + 1}, kK = 1,2 and let j = (j1,72). As
Al C Bj, there holds

V("o (")) = Qi lPde < C [ dist?(V(y" o (")), SO(3))da.
.

i
h h

CUIQELE) -G <2 [ QB E) - Vo) e 2510

b2 [ Vo)) - Qifde < € [ dis(V(" o (v) ), S0(3)de2511)
B

B

}il
Hence, by (2.5.7) we deduce

L3(A)|Q" (BN 21y — @ (UL, 2| < Chayel, (2.5.12)

N kn

for every i1 =1,---mpp, —2,and io =1,---kp — 2.
We first extend the map Q" to the strip R x (0,1) by setting

Qh(ov S) if ((El, 5) € (—OO, 0) X (07 1);

h r1,8) =
O ) Q"(L,s) if (x1,s) € (L,+00) x (0,1),

and then to the whole R? by

Q"(v1,8) =

(2.5.13)

for every (z1,s) € w, for |¢| < nih and || < é Moreover, since Q" is piecewise constant,
(2.5.12) implies

h Ak 2
/() (s sy |9 01+ €002 = @ an s
< Q/ dist?(V(y" o (¥")71),S0(3)), (2.5.14)
for every i1 =1,--- ,np — 2, and ig =1,--- [k — 2.
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Let now w’ CC w. For h small enough, there holds

L L 1 1
vy (il
TIh T
Hence, by (2.5.7) and (2.5.14), as every = € £, belongs to at most nine sets of the form

B} , summing over the indices iy, we deduce

Q" (21 +&,5+ X)) — Q"(x1,8)[*dw1ds < Cél, (2.5.15)
UJI
for |£] < 4y, and |A] < %’j.
To obtain a sequence of smooth rotations, we regularize (Q") by means of convolution
kernels. Let n € C§°(0,1), n >0, fol n(s)ds = 1. We define

" (& N) = %n(;)n(gj)

for every & € (0,0p) and X € (0, %), and we notice that, for A small enough, supp ¢" is
contained into a ball whose radius is smaller than the distance between w’ and the boundary
of w.

Setting Q" := Q" x ©", by Holder inequality and (2.5.15) we obtain

T

|@h(x1,s) — Q"(x1,8)|?dx1ds < Cé3,

w

which in turn implies

1Q" — Q|2 (uanexs) < Cen (2.5.16)
for the constant C' does not depend on the choice of w’. Analogously we deduce the estimate
101 Q" (| L2 (wipaesy < C’(%Z (2.5.17)
and
10.G" sy < O (25.18)
Finally, let U be a neighbourhood of SO(3) where the projection
II:U — S0(3)

is well defined and regular. By (2.5.13), there holds

1Q"(x1,8) — Q"(x1,5)|* < ||50h\|22((0’5h)x(0’%)) (ZL}?;‘ < C’}g%'z’, (2.5.19)

for every (x1,s) € w. Since g—: — 0, then @h € U for h small enough and, thus, its
projection on SO(3)

R" =11(Q")
is well defined. It is immediate to see that, for every h > 0, the map R" satisfies (2.5.3).
Furthermore, by (2.5.17) and (2.5.18) and by the regularity of II, properties(2.5.5) and
(2.5.6) hold true. By definition of R",

IR" = Q"I 2 asxs) < Q" = Q" [l 12(asxs) (2:5.20)
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2. Thin-walled beams in nonlinear elasticity

therefore (2.5.1) follows by (2.5.9) and (2.5.16).

By Poincaré inequality, given
R := 4 R“dxds,
properties (2.5.5) and (2.5.6) yield

~n  =h ~ ~ €
||Rh - R ||L2(w;M3><3) < C(||81RhHL2(w;M3><3) + HasRhHLz(w;Mg,xe,))—F < Ci

This implies that dist(ﬁh, SO(3)) < C§+. Hence, there exists a sequence of constant rota-
tions (S") € SO(3) such that |§h - Sh| < C'§:, which in turn implies

€h

5 (2.5.21)

R — S™|| 12 (s sy < C

We define R := (S")TR" and j" = (S")Ty". By the properties of the sequence (R") and
by (2.5.21), R" satisfies (2.5.1) and (2.5.3)(2.5.6).

To construct a sequence of rotations satisfying also (2.5.2), we argue as in [29, Lemma

3.1] and we introduce the matrices
Fh= ][ Vs, 9" Ra daydsdt.
Q

We notice that

€n
on’
as RP satisfies (2.5.1) and (2.5.4). It turns out that det F > 0 for h small enough, therefore
by polar decomposition theorem, for every h there exist P* € SO(3) and U" € Mg’;ﬁl such
that

|F" — I1d| < ][ Vs, 9" Ry — Id|dx dsdt < C (2.5.22)
Q

Fh — phrrh

and
|U" — Id] = dist(F",SO(3)) < |F" — Id]. (2.5.23)

The symmetry of U”, together with (2.5.22) and (2.5.23), yields

|Ph — Id| < |P" — U"| + |U" — Id| < C|F" — Id] < cgi (2.5.24)
h

for every h > 0. Defining R" := (P")TR" and Y" := (P™")T§", then (2.5.1), (2.5.3), (2.5.5)

and (2.5.6) follow immediately. Moreover,
IR = Idll 2y < IR = B3y + |1 B = Id] 120y < CIP" = Id 20 + | B = Id 12(0))-

Hence, (2.5.4) holds due to (2.5.24) and from the fact that R" satisfies (2.5.4). Finally, by
symmetry of U", for every h > 0 we obtain

/ (Vo Y'"RY — (Vi6, Y"RD)T) dardsdt = £3(Q)(PMTF" — (FM)TP")
Q
= LoU"-o"H" =o,
which concludes the proof of (2.5.2) and of the proposition. O
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From now on we shall refer to the sequence of deformations (Y*) introduced in Theorem

2.5.1, where the constants ¢ are chosen in such a way to satisfy
/ (Yh — ") daydsdt = 0. (2.5.25)
Q

We introduce the tangential derivative of the tangential displacement, associated with Y,

given by
" (z1,5,t) == fal( — M, (2.5.26)

for a.e. (x1,s,t) € Q, and the (averaged) twist function, associated with Y given by

wh(z1,s) : hGh/ Ds( M) - ndt, (2.5.27)

for a.e. (z1,s) € w.

We are now in a position to prove the first compactness result.

Theorem 2.5.2. Assume that E—Z — 0. Let (y") be a sequence of deformations in W12(€; R3)
satisfying (2.2.5). Let (R") and (Y") be the sequences introduced in Theorem 2.5.1, with
(c?) such that (2.5.25) holds. Then,

Y™ — x1e; strongly in WH2(Q; R3). (2.5.28)

Let (g") and (w") be the sequences defined in (2.5.26) and (2.5.27). Then, there evist
g € L*(Q) and w € W12(0, L) such that, up to subsequences,

w' —w  strongly in L*(w), (2.5.29)
Al = 5—h(Rh —Id) —~ A weakly in W (w; M>*3), (2.5.30)
€n
5h (Vh s, Y'REY —Id) — A strongly in L?(S; M3*3), (2.5.31)
5}% h A? 2 3%3
— sym(R" — Id) — - strongly in L*(w; M>*?), (2.5.32)
€h
where
A(Il) = w(zl)(eg X er —ex® 63) (2533)

for a.e. x1 € (0,L), and if (2.2.6) holds
g" =g weakly in L*(Q). (2.5.34)

Moreover, (Y") satisfies

2
€
||sym(Vh,5thR0T — Id)HLz(Q;Mmz) < C’(eh + é) (2.5.35)

Finally, there exists b € L*(w) such that, setting

0 w'(z1)713(8)  —w'(x1)72(8)
Blar.s) = ( @) 0 b1, 5) ) (2.5.36)
w'(x1)72(8) b(x1, ) 0
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2. Thin-walled beams in nonlinear elasticity

for a.e. (z1,s) € w, up to subsequences there holds

:—hasRh — B weakly in L?(w;M3*3). (2.5.37)
€n

Proof. By properties (2.5.4), (2.5.5) and (2.5.6), the sequence (A") is uniformly bounded in
W12 (w; M3*3) . Therefore, there exists A € W12 (w; M3*3) such that, up to subsequences,
(2.5.30) holds. Since

||85Ah||L2(W;M3><3) <Ch

by (2.5.6), we deduce that A = A(z1).
By the Sobolev embedding theorems, convergence of (A") is actually strong in L4(w; M3*3)
for every ¢ € [1,+00). Hence, the equality

Ah TAh
sym Al = (AT AT (2.5.38)
On 2
yields (2.5.32) and implies that A(z1) € M3 for a.e. z1 € (0,L).

By (2.5.1) and by strong convergence of (A") in L?, we obtain (2.5.31). In particular,
YY" e and 9,Y" 9,Y" -0 strongly in L?(Q;R?).
Now (2.5.28) follows owing to (2.5.25) and Poincaré inequality. Moreover,
[sym(V,5,Y " RE —1d)|| 12 msxsy < [lsym(Vi,s, Y " RE —R")|| 12 (e xsy +||sym(R"—1d)|| 12 (e xs).-

Hence, (2.5.35) holds due to (2.5.1) and (2.5.32).

By (2.5.6), there exists a map B € L?(w; M?>*3) satisfying (2.5.37). Differentiating the
identity

(RMTRM = Id,
we obtain
(0sRMT(RM — Id) + (R" — Id)T9,R" = —2sym O, R".

Thus, by (2.5.30) and (2.5.37), we deduce that B is skew-symmetric.

We claim that

Be; = A'T. (2.5.39)
Indeed, let ¢ € W, ?(€;R3). Then
On h ok
<masal(y — "), §0>W71,2><W01,2 =
—/ %(Vh,gth — RhRo)61 - Osp dxydsdt —|—/ }f—:hag]i’hel ~dryidsdt. (2.5.40)
Q Q

The first term in (2.5.40) is infinitesimal due to (2.5.1), whereas (2.5.37) yields

1)
/ —hGSRhel - pdridsdt — / Bey - pdxydsdt.
Q h€h Q
On the other hand, we have
on

<h—€hasal(yh — "), O -raxwre =

Op(h — otk
7/ %(thyh — Ro)es - Orpdrrdsdt,
Q €h
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which in turn gives

On

(0501 (Y™ — "), ©)yporz oy — / A'T - pdrydsdt. (2.5.41)
heh 0 Q

owing to (2.2.4) and (2.5.31). By combining (2.5.40) and (2.5.41), we obtain (2.5.39).
Since B is skew-symmetric, the following equality holds true

0= Bii(z1,8) = Ajp(w1)72(s) + Alz(21)73(s),

for a.e. x1 € (0,L) and s € (0,1). This last condition, together with the assumption that
k is not identically zero, implies
Ay = Ay =0. (2.5.42)

On the other hand, by (2.5.2) and (2.5.31) we deduce that

L
/ A(Qfﬁdﬂh =0.
0

Hence,
Ajg = A5 =0. (2.5.43)

To conclude the proof of the Theorem, we consider the sequences (¢”) and (w”). To

prove (2.5.34), we notice that

1
g" = —(@¥ - Rl + (Bl - 1), (2.5.44)
€n

Since we are assuming that (2.2.6) holds, it follows from (2.5.1) and (2.5.32) that the sequence
(¢") is uniformly bounded in L2(Q). Therefore, there exists g € L?(Q2) such that (2.5.34)
holds up to subsequences.
As for the twist function w”, by (2.2.4) and (2.5.31) we deduce
O

o Ds(Yh — "y — At strongly in L*(Q;R?),
€n

which in turn yields (2.5.29). In particular, by (2.5.43) and by skew-symmetry of A there
holds w = Azs, hence w € W12(0, L) and the proof of (2.5.33) is complete. Finally, by
(2.5.39) we deduce the representation (2.5.36). O

In the next proposition, under stronger assumptions on the order of decay of €, with
respect to the cross-sectional thickness dj, we show further compactness properties of the

twist functions w”.

Proposition 2.5.3. Under the same assumptions of Theorem 2.5.2, let w" and b be the
functions introduced in (2.5.27) and (2.5.36). If 33 — 0, there holds

1
Eﬁswh — b weakly in W% (w). (2.5.45)

h

Proof. Assume that heélh — 0. By definition of the functions w", we deduce

1 }
— O = 5—’%98/ (Vis,Y" — R"Ro)es - n(h — outk) dt+5—has((Rh—Id)T-n). (2.5.46)
h W, ") hen,
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2. Thin-walled beams in nonlinear elasticity

By (2.2.4) and (2.5.1), the first term in the right-hand side of (2.5.46) converges to zero

strongly in W~12(w). The second term can be further decomposed as

On

On On
heh

)
h Idyr-n) = hor.
0s((R d)T - n) her OsR n -+ her

(R"n-n— Rhr - 7)k.

Hence, (2.5.45) follows by combining (2.5.32), (2.5.36) and (2.5.37). O

2.6 Characterization of the limit strain and liminf in-
equality

In this section we shall prove a liminf inequality for the rescaled energies E%J b defined in
h
(2.2.3). To this purpose we introduce the strains:

Gh .= %((Rh)TV;N;thROT — Id), (2.6.1)
where (R") and (Y") are the sequences introduced in Theorem 2.5.1, and we prove their
convergence to a limit strain G. In Theorem 2.6.2 we deduce a characterization of G,
together with some further properties of the limit functions g, w, and b introduced in
(2.5.34), (2.5.29), and (2.5.36).

We first prove a characterization of ¢.

Proposition 2.6.1. Under the same assumptions of Theorem 2.5.2, let (2.2.6) be satisfied.
Let g be the function introduced in (2.5.34) and let G be the class defined in (2.4.1). Then
geaqg.

Proof. Let (Y") be as in Theorem 2.5.2. For every h > 0 let

1 1
1 2 h [2
ol = o/ (Ylh —x1)er dt + ;/ ((Yzh — ;L)eg + (Y3h — 1/)?)6;;) dt.

1
2 2

By definition, v* € W2(w;R3) for every h > 0; moreover by (2.2.6) and (2.5.35), there
holds

< Ch?,

B H h(h — optk)
L2(Q)

H%ﬁS(Yh - 'T’ 2@

(Vh75thRg — Id)T . T‘

€h

which implies
o™ -7 — 0 strongly in L*(w).

Similarly, by (2.5.35) we deduce
c’)sv? + 00" T =0 strongly in L2(w).
By (2.5.26) and (2.5.34) we also have
Ol — g weakly in L*(w).
The thesis follows now by Lemma 2.4.1. O
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We are now in a position to state the first theorem of this section. For every matrix

M € M3*3 we use the notation Mg, to denote the matrix
Mtan = (61 ‘T)T(Mel |MT)

Theorem 2.6.2. Let the assumptions of Theorem 2.5.2 be satisfied. Assume in addition
(2.2.6). Let (Y") and (R") be as in Theorem 2.5.2 and let G" be defined as in (2.6.1).
Then there exists G € L?(Q; M3*3) such that, up to subsequences,

G =~ G weakly in L?(Q;M>*3). (2.6.2)

Let g, w,b be the maps introduced in (2.5.34), (2.5.29), and (2.5.36). Then

/
Gian(71,5,t) = —t ,0 w(@) + Gian(21,5,0) (2.6.3)
w'(z1) bz, s)
for a.e. (x1,s,t) € Q and
(Gtan)ll = Gll =g (264)

a.e. in €.

If in addition (2.4.21) holds, then:
a) if u= +oo, there exist ay,as, a3 € L?(0,L) such that

0sg = a1 N + aomo + a373; (2.6.5)

b) if A =+o00, then (2.6.5) holds with a; = 0;

¢) if 0 <A< +oo, then w € W22(0,L) and (2.6.5) holds with oy = w";

d) if A\=0, then w" = 0;

e) if 0 < pu < +oo, then (g,b) € C,,, where C, is the class defined in (2.4.22)-(2.4.23).

Proof. By (2.5.1), the sequence (G") is uniformly bounded in L?(Q; M?3*3); therefore there
exists G € L?(Q;M?*3) such that (2.6.2) holds. By (2.6.2), and since R" converges to the
identity boundedly in measure by (2.5.4), we deduce

O (R"G"Rye;) — 0,Ge;  weakly in W—12(Q; R?).

On the other hand, by (2.5.31) there holds

1 1
O (R"G"Rye,) = = 0(Vins, Y" — R'Ry)ey = — (01 YM)
h h
On o (0N O, OY" ,
= e e _ A
€n 81( 5h ) 5h81( 5h n) - "
strongly in W~12(Q). Hence,
G(x1,s,t)er = tA' (z1)n(s) + G(x1,5,0)e; (2.6.6)

for a.e. (z1,s,t) € Q.
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2. Thin-walled beams in nonlinear elasticity

To characterize Gt we observe that

h ~h 1 h h 1 aS(Yh — wh)
= _— Y — — -~ @@ 7
8,5(R G Roeg) n EMVM,L R Ro)eg n 8t( h—5ht/€ )
1 b (at(yh - wh)) LBk Yl
en h— optk s o, en(h — 5htk‘) h — otk
1 6h
= T (05(Vhs,Y" = R'"Ro)es + k(V5,Y" — R"Ro)es)
+ ; 7h — 5htk (8SR )n

The first term on the right hand side of the previous equality is converging to zero strongly
in W=12(Q;R3) due to (2.5.1), therefore by (2.2.4) and (2.5.37) we deduce

O(R"G"Ryes) — Bn weakly in W~12(Q; R?).
On the other hand, (2.6.2) yields
at(RhGhRoeg) — 0;GT  weakly in W™12(Q; R?).
Hence
G(zx1,s,t)7(s) = tB(x1, s)n(s) + G(x1,s,0)7(s) (2.6.7)
for a.e. (z1,s,t) € Q. By combining (2.5.33), (2.5.36), (2.6.6) and (2.6.7), we obtain (2.6.3).

By (2.5.32) and (2.6.1), there holds

1 .
;al(ylh — M) = G171 = (Gran)11  weakly in L*(9). (2.6.8)
13
Therefore (2.6.4) follows owing to (2.5.26) and (2.5.34).
Assume now that (2.4.21) holds true. To prove properties a)—e), we first claim that
(h — ptk)

€h

F(YM — My .7 = —0,9 weakly in W~12(Q). (2.6.9)

Indeed, by (2.5.35) we deduce the following estimate

H h — Sptk (85}(:/_1}:5;;2?) + oy (YR — M 7)‘
h — otk

€h

€n L2(Q)

< 2” sym(Vy 5, Y"RE — Id)‘

€n
< Ch(l 7)7
L2(Q;M3%3) - + 5}%
where the quantity in the last inequality converges to zero by (2.2.6). Thus, (2.6.9) follows
by (2.6.8) and (2.6.4).

We introduce the maps " € W12(Q; R?), given by

- ol hoy Y — b
o ::( 2 ): 7( 2 ) (2.6.10)
U3 €n \ Y3' =3
for every h > 0. By (2.2.4) and (2.6.9), we have
O - T — —0,g weakly in W~12(0Q). (2.6.11)
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2.6 Characterization of the limit strain and liminf inequality

Let Vs, be the operator introduced in (2.3.1), with € replaced by % . By straightforward

computatigns and by (2.5.35), we obtain

<Ch*  (2.6.12)
L2(Q;M3%3)

Jsym(V s,

—T h?
7Ry )| 12 (uazxe) < aHsym(vmthOT . Id)‘

for every h > 0. Applying the Korn inequality proved in (2.3.6) and using the notation of

Theorem 2.3.2, we deduce

N _ h - T
||’Uh — H‘;Th(vh)||W1=2(S;R2) < C’aﬂsym(v 5p ’UhRO )||L2(S;M2X2)7 (2613)

h

for a.e. x1 € (0,L). Integrating (2.6.13) with respect to z;, by (2.6.12) it follows that

3
[o" —Ts, (0")]| L2 :m2) < C%, (2.6.14)
h h
h3
10:(@" — s, (0"l 2(2m2) < C5 (2.6.15)
h3
10: (2" — H%(ﬁh))HL?(Q;RZ) < Ca- (2.6.16)

By Lemma 2.3.1, for every h > 0 there exist o, af, a8 € L?(0, L) such that IIs, (7") has
h

the following structure:

5 - 5
Mo, @) = (%2 )+al(( ) = Stalr, (2.6.17)
h a3 Y2 h
Moreover, by (2.5.27) there holds
& [2
2T o mdt = wh (2.6.18)
h? ~1

for every h > 0 and for a.e. (x1,s) € w. On the other hand, by (2.6.17)

1

: 5
OulLs, (7) - mdt = hi;a? (2.6.19)

on
/.

2

for every h > 0 and for a.e. (z1,s) € w. Therefore, by estimate (2.6.15), we obtain

o — 2y < O (2:6.20)
On on
which in turn, by (2.5.29) implies
5h h— . 2
%talT — 0 strongly in L*(Q). (2.6.21)
We first consider the case where = +00. By (2.6.11) and (2.6.14), we have
(s, (T")) -7 — —0,g weakly in W~22(Q). (2.6.22)

h

Hence, by (2.6.17), (2.6.21) and by Lemma 2.3.4 there exist oy, aq,a3 € L*(0,L) such that
(2.6.5) holds true and the proof of a) is completed.
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2. Thin-walled beams in nonlinear elasticity

The proof of b) follows immediately once we notice that if A = +oo, then by (2.6.20),
a1 = 0.
Consider now the case where 0 < A < +00. By (2.6.11) and (2.6.14), there holds

5h

81( (@) -7 — —\0,g weakly in W~22(Q) (2.6.23)

Sp
h

for every 0 < A < +o00. By (2.6.17), (2.6.21) and by Lemma 2.3.4, there exist (1, 2,83 €
L?(0, L) such that

5
h—’;(a?)” — B weakly in W~22(0,L),i=1,2,3 (2.6.24)

and
ADsg = B1N + Ba72 + B373. (2.6.25)

Now, if 0 < A < +o00, by (2.6.20) and (2.6.24) we obtain #; = w” and w € W*2(0,L).
This proves c¢). To prove d) we observe that if A =0, by (2.6.25) and by Lemma 2.3.4 we
have 81 = 82 = 83 = 0, hence w"” = 0.

Consider now the case where 0 < 4 < +00. Defining

6h =0 —Hé,( ),

by (2.6.14)—(2.6.16) there exists ¥ € L?(€;R?) with 90, 9,0 € L*(Q;R?) such that, up to

subsequences
v, 00" — 9,0, 0" — 0,0, weakly in L*(Q;R?). (2.6.26)

Since

sym(Vs, 9" Ry ) = sym(Vs, v" Ry ), (2.6.27)
h h
for every h > 0, by combining (2.6.12) with (2.6.26), we deduce
0,v-7=0, and 0, v=0. (2.6.28)

By (2.5.45) and (2.6.18), it follows that
b 2
ﬁas/ 0" - mdt — b weakly in W12 (w). (2.6.29)
1
-2

On the other hand, by (2.6.19), we have

/ 8,5" - mdt) 5’;35(/1 (07" — BT, (7)) - 7 dt) = %a([ 6sﬁh.ﬁdt>.
’ (2.6.30)

Nl=

Therefore, (2.6.26) and (2.6.29) yield
0 (05U - ) =D, (2.6.31)
whenever 0 < g < +o00. By (2.6.11), (2.6.14) and (2.6.26) we obtain that
8%(1'[%(6”)) T —0,g— 0.7 weakly in W22(Q).

55



2.6 Characterization of the limit strain and liminf inequality

By Lemma 2.3.4, by (2.6.17) and (2.6.21) there exist aj,as,a3 € W=22(0, L) such that
0sg = —aaTo — a3 + a1 N — 8%@? (2632)

For i =1,2,3, let now @; € L*(0,L) be such that (a;)” = a; and let

0
v = /.L( ,\ 622 ~ -3 )
+ +
(o) a( )
By (2.6.28), (2.6.31), and (2.6.32) we deduce
Osv-7=0, 0s5(0sv-n)=>b, and 5‘%1}-7—%#339:07

where the last two equalities hold in the sense of distributions. Therefore, in particular,

(g9,0) €C,.
Finally, we study the case where u = 0. For every h > 0, we define

o On
o= h—};vh. (2.6.33)
By (2.6.12), there holds
— =T 1)
lsym(V s, 7" Ro )22 < cﬁh. (2.6.34)

By (2.6.14)-(2.6.16) there exists v € L?(;R?), with 0,0, 9;0 € L?(£;R?), such that, up to

subsequences,
=T, 00" = 0,0, 9" — 9 v, weakly in L*(Q;R?). (2.6.35)
By (2.6.29), (2.6.30) and (2.6.34), ¥ satisfies
0,v-T=0, 0wv=0 and 95(9s0-7m) =b. (2.6.36)
Moreover, by (2.6.11) and by (2.6.35) we deduce that

0% (s

Sh
h

@") -7 — —020-7 weakly in W~22(Q). (2.6.37)
Hence, by (2.6.21) and Lemma 2.3.4, there exist oy, as, a3 € W=22(0, L) such that
812’177: —Q2Ty — (X3T3 +O¢1N. (2638)

Let now ay,da, a3 € L?(0, L) be such that a; = (@1)”, ag = (a2)” and a3 = (a3)”. By

defining

properties (2.6.36) and (2.6.38) yield
dsv-7=0, 0s0v-n)=>b and Fv-T7=0,

where the last two equalities hold in the sense of distributions. By Proposition 2.6.1, the

proof of the theorem is complete. O
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2. Thin-walled beams in nonlinear elasticity

We are now in a position to deduce a lower bound for the rescaled energies E;QJ h To
this purpose, from here to the end of the paper we shall assume that (2.4.21) holds and we

introduce the classes A, defined as follows. We set
Aso oo = {(w,g,b) € WH?(0,L) x L*(w) x L*(w) :
959 = asTy + agTs, with oy € L*(0,L), i =2,3}. (2.6.39)
For A € (0,400) we define
Ay oo = {(w,g,b) € W**(0,L) x L*(w) x L*(w) :
0sg = *w"N + asmy + a3, with o; € L*(0,L), i = 2,3}, (2.6.40)
and for A =0
Ag oo := {(w, g,b) € W??(0,L) x L*(w) x L*(w) : w" =0 and
0sg = oy N + T + az73, with a; € L*(0,L), 3= 1,2, 3}. (2.6.41)
Finally, for u € [0, 4+00), let
Aoy = {(w,g,b) € W>*(0,L) x C, : w” = 0}. (2.6.42)
A key role will be played by the quadratic form of linearized elasticity
Q: M*>3 — [0, +00)

defined by
Q(F) := D*W(Id)F : F for every F' € M?*3,

The limiting functionals will involve the constant

E:= mi b 2.6.43
aglelﬁﬁ(ella\ ) ( )

and the quadratic form Qg : [0,1] x R? — [0, +00) defined by

0 a 01
Qtan(s,a,b) = 2151@@<R0(S)< a b oo >R5(5)> (2.6.44)

01 02 03

for any s € [0,1] and for any (a,b) € R?. It is well known that, owing to (H2)—(H5), Q is a

positive semi-definite quadratic form and is positive definite on symmetric matrices. Hence,

E > 0 and Qan(s,a,b) is strictly positive for every s € [0, 1] and every (a,b) # (0,0) .
We consider the functionals Jy , : W12(0,L) x L?(w) x L?(w) — [0, +00], defined as

1 [k ot 1 (k1
Iap(w,g,b) = ﬂ/0 /0 Qtan(s,w',b) dsdx1+§/0 /0 Eg? dsdx; (2.6.45)

for (w,g,b) € A, and Jx ,(w, g,b) = 400 otherwise, where Q:q, and E are the quadratic
form and the constant given by (2.6.44) and (2.6.43), respectively.
With these definitions at hand the following liminf inequality for the scaled energy func-

tionals can be proved.
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2.6 Characterization of the limit strain and liminf inequality

Theorem 2.6.3. Assume that (2.2.6) and (2.4.21) hold. Let Ay, be the classes defined
in (2.6.39)—(2.6.42) and let (y") C WL2(Q;R®) be a sequence of deformations satisfying
(2.2.5). Then, there exist rotations P" € SO(3) and constants c" € R such that, setting
Y = (P")Tyh —ch and defining g" and w" as in (2.5.26) and (2.5.27), up to subsequences

there holds
g" — g weakly in L?(2),

wh — w in L*(w), (2.6.46)
FO,w" — b weakly in W12 (w),

where (w, g,b) € Ay . Moreover,

1
liminf — 7"(Y") > Ty . (w, 9,b), (2.6.47)

h—0 €h
where Jx,,, 1is the functional defined in (2.6.45).

Proof. The convergence properties (2.6.46) follow by Theorem 2.5.2 and Proposition 2.5.3.
Moreover, Proposition 2.6.1 and Theorem 2.6.2 guarantee that

(wvg7 b) € AA,H'

The proof of the lower bound (2.6.47) is an adaptation of [33, Proof of Corollary 2]. We
sketch some details for convenience of the reader.
Let G" be defined as in (2.6.1). We introduce the functions

1ok 1
1 1f|G|<ﬁ

0 otherwise.

X" (x) =

It is easy to see that " — 1 in measure and x"G" — G weakly in L?(Q; M?*3). By frame

indifference of W,

hyh 1
liminfj (2 ) = liminf—Q/ W (Vis,Y"RY) daidsdt
h—0 € h—=0 €3, Jao )
1
h—0 €, Jo
1
> liminf—z/ X"W(Id+ e,G") dxydsdt. (2.6.48)
h—0 €, Jo

Owing to assumptions (H2), (H3), and (H5), a Taylor expansion of W around the identity
yields:
1
W(Id+ F) = SQ(F) +n(F).

for every F € M?*3 | where 7‘71(71;2) — 0 as |F| — 0. Setting

then £(t) — 0 as t — 0 and
2
oW (Id + e,G") > Xh%hQ(Gh) — xner&(en|GM) |G
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2. Thin-walled beams in nonlinear elasticity

Thus, we can continue the chain of inequalities in (2.6.48) as

VA ED! . 1 h By by b2
> — — ' ' .
llhmiglf 2 > hgﬁgf{Q/QQ(XhG ) dzqdsdt /Qth(e |IG"|G"| d:vldsdt}

(2.6.49)

By the assumptions on W, @ is a positive semi-definite quadratic form, hence the first term
in (2.6.49) is lower semicontinuous with respect to the weak convergence in L?. By definition
of the sequence of functions (x;) and by the uniform boundedness of ||G" | 12qmzx3), the

second term in (2.6.49) can be bounded as

1
3 | X GHDIGH davdsit < Ce(an)
Q

and therefore converges to zero as h — 0. By collecting the previous remarks, it follows
that
h
lim inf
h—0

h) 1
> 7/ Q(G) dxdsdt.
2 Jo
We can decompose G as

Gz(G—/é

1
2

Gdt)—i— %Gdt,

[N

where by the characterizations (2.6.3) and (2.6.4)

(G—/det)mn:—t( U(j, ' / Gudt=g.

Therefore, by developing the quadratic form and using (2.6.43) and (2.6.44), we obtain

/Q(G)dﬂcldsdt = /Q(G—/ Gdt dacldsdt+/ / / Gdt dsdxy
Q Q _

1 Lo

*/ / Qtan(s,w',b) d8d$1+/ / Eg¢? dsdx,.

2Jo Jo o Jo

This last inequality concludes the proof of the theorem. O

v

2.7 Construction of the recovery sequence

In this section we shall prove that the lower bound obtained in Theorem 2.6.3 is optimal by
exhibiting a recovery sequence. The structure of such an optimal sequence varies according
to the values of A and pu.

Theorem 2.7.1. Assume (2.2.6) and (2.4.21). Let Ay, be the classes defined in (2.6.39)-
(2.6.42). Then, if p > 0, for every (w,g,b) € Ay, there exists a sequence of deformations
(y") € WE2(;R3) such that, defining g" and w" as in (2.5.26) and (2.5.27), there holds

y" = z1e1 strongly in WH2(Q;R?), (2.7.1)
g" — g strongly in L*(Q), (2.7.2)
w — w strongly in L?(w), (2.7.3)
dswh

- (w). (2.7.4)
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2.7 Construction of the recovery sequence

Moreover,

. 1
lim sup —QJh(yh) < I u(w,u, b), (2.7.5)
h—0 €}

where Jx,, is the functional defined in (2.6.45).
The same conclusion holds if u = 0, assuming in addition the hypotheses of Lemma
2.4.10.

Proof. For the sake of simplicity, we divide the proof into five steps. In the first step we
consider the case where A = +o0o. Then we show how the recovery sequence must be
modified for different values of A and pu.

Step 1: A =pu=+o0.

Let (w,g,b) € Aso,00- We can assume that w € C*([0,L]), b € C°°(w), and there exist
a; € C=([0,L]), i = 2,3,4, such that

g = ayye + azys + ajy.

The general case follows by approximation and standard arguments in I'-convergence.
Let 0; € C°(W), i = 1,2,3, be such that

0 w’ g1
Qtan (s, w', ) :Q<Ro< w b oy >ROT> (2.7.6)

g1 09 O3

for every (z1,s) € w, and let H € C(w; M3%3), H = (hi;), be defined as

sym
0 0 g1
H::R0< 0 0 o9 >R§.
01 02 03
For every h > 0 we introduce the functions o € C%(Q;R?) given by
20
h 5 (t2 1 ) ) !
o' i=¢€ - = — .
hOh B 24 02T2 — 0373
20’27’3 + 0372

It is easy to see that
sym(Vy 5, 0" RE) = entH + o(ep). (2.7.7)

Let also F € M?*3 be the matrix defined by
E= Q(€1 ®er + F), (278)

where E is the quantity introduced in (2.6.43).
Finally, let v € C%(@;R?), v = (v, v3) be a solution to

0sv-7T=0inw, (2.7.9)
8, (8811 : ﬁ) —binw (2.7.10)

and let @% be the map introduced in (2.3.2), with € = %.
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2. Thin-walled beams in nonlinear elasticity

We consider the sequence

0
o= ¢h+€h( 3:2 )'1/1?614-6}1@261—6}?( Q2
3
as
+ ehF( ( Ty + Z /’yZ &)d¢ +(5ht< Zaé’%)n)
i=2,3 i=2,3
0
+ ;—Zw (h( _VZ?, ) —5m> - ’;—hw (5htT h/ N(e dg)
— theh<85v~ﬁ>7'+ h;;h( 2 )

e
h
- 0o —252111 2(hry 4 6ptn).

We briefly comment on the structure of ™ : the terms in the first line are related to conditions
(2.7.1) and (2.7.2), the second line is a corrective term to obtain the optimal constant E,
the terms in the third and the fourth line are introduced to satisfy respectively conditions
(2.7.3) and (2.7.4), and the last line contains a further corrective term.

We first prove that " satisfies (2.7.1)—(2.7.4). By (2.2.6) we have

17" — z1e1llwr2@ps) < Ch,
which in turn implies (2.7.1). Condition (2.7.2) holds since
~h h2ep w [°
03! — 1) = eng + " [ N(OdE +ofen) (27.11)
0
and A = 4o00. By the equality
/ 0s( -ndt =w + hosv -7+ o(h),
heh
and by (2.7.10), we deduce (2.7.3) and (2.7.4).

To prove convergence of the energies, we first compute the rescaled gradient of the
deformations. By (2.7.9) and (2.7.10), we obtain

Viad" = Ro+enger ®er+engF (0]7[n)
0 CVIQTQ + 0/3’7'3 Cké’]'g — O/Q’Tg
€n
+ — ! 0 0
16 )
3

0 0

hGh

€
— ept(w'tw'e; +b7|0) + (iw + 5,

— 0, - n) (O|n| — T)

, 0 N -T ,

€ €

+ (shhw’< —v3 0 0 ) — Vhs,o" — ﬁuﬁ (0|7|n) + o(en).
¥ 0 0 "
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2.7 Construction of the recovery sequence

We point out that the two terms

0
h2 S h2
( 6hw”/ N(f)d{“)q ®e; and ch Oive | ®ep

0103

are infinitesimal of order larger than €, since we are assuming A = +o00. Therefore both
terms can be included in the error term o(ep).

The previous equality in turn gives:

0 Qo (O3
€
Vh,éhﬂhRg = Id+€h9(el®€1+F)+}};< —as 0 O )
—Q3 0 0
L 0 0 O
— eht(w'T‘w’el—i—bﬂO)RoT—i—(;:w—i—;:5sv~n)<0 0 —1)
) / 01 0
heh,073_72 hTeizooo
+ I 0 0 — Vhs,0 RO—WU) 01 0
v 0 0 h 00 1
+ o(en).

The identity (Id+ F)T(Id+ F) = Id + 2symF + FTF yields
(ViR (Vi " RE) = Id + 26, M + o(ep,),
where M is given by

0 w 0
M::g(61®61—|—symF)—t<R0<w’ b 0>Rg+H>,
0 0 O

owing to (2.7.7). Hence, by frame-indifference,

W(Vis, ' Rg) = W(\/(Vh,éhﬁhRoT)T(Vh,a;ﬁhRoTD =W (Id+ enM + ofen)).

Since M is bounded in L, it follows that there exists h such that if h < h, then Id +
enM + o(er,) belongs to the neighbourhood of SO(3) where W is C2, therefore a Taylor

expansion around the identity gives:

1 . 1 s
W (Vs BE) — JQ(M) pointuise.
and L
LW (Vi 5B < O(MP +1),
h
for some constant C'. By the dominated convergence theorem and by (2.7.6) and (2.7.8) we
deduce
h (75h 1
lim < (Qy ) 7/ Q(M) dz,dsdt
h—0 €5 2 Jo

1 L 1 1 L 1
a1 / / Qtan(sa ’U}/, b) dexl + = / / ]Egz de.’I,'l7
24 Jo Jo 2 /o Jo
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2. Thin-walled beams in nonlinear elasticity

which concludes the proof of (2.7.5) in the case where A\ = +o0.

Step 2: 0 < A< +o00 and p = +o0.

Let (w,g,b) € Ay oo. We can assume that w € C*([0,L]), b € C*°(w), and there exist
a; € C*(0,L), i =2,3,4, such that

1 S
g= qu/ N(&)dE + avs + afyys + o -
0

Let v be defined as in (2.7.9)—(2.7.10) and let u € C®(w) be such that dsu + v -7 =0 in
w.
We consider the sequence

S gﬂ’iih hw ”/ /N dn d§+5htw”(/osN(g)dg)n)

h;:jh (u — %talv n) e1,

which is obtained adding to the sequence (7") introduced in Step 1 two corrective terms.
The first corrective term is due to the different structure of g, while the second one is needed

to cancel the contribution to the energy of the quantity

0
hZe
5 h( 01v2 > ® ey,
g 8103
which is now of order ¢;,. We observe that the term

h2€h

/N d§61®61

is now included in the expression of g.
The proof of (2.7.1)—(2.7.4) is analogous to the one in Step 1. To prove convergence of
the energies, we argue as in Step 1 and we deduce

}IL% 6}% 24/ / Qran (s, w' ,b)dsdxy + = / / Eg dsdx.

A standard approximation argument leads then to the conclusion.

Step 3: A=0 and py = +o0.

Let (w,g,b) € Ap,co. Then w is affine. Moreover, we can assume that b € C* (@), and
there exist a;; € C*°([0,L]), i =1,---,4, such that

S
g= 0/1’/ N(&)dE + aya + affys + o .
0

Let v and u be defined as in the previous step. We consider the sequence:

0
s enont € enont
Yyt = :’y\h—keho/l/ N(&)dtey — %Ol&T&l + ;Lloz1< -3 ) - hhiz}ho
0

ehF / /N dn +6hta /N d£

h(;bh (u — %talv n)el,

+

+
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2.7 Construction of the recovery sequence

where (7") is the sequence introduced in Step 1.

We observe that the previous sequence is obtained by a slight modification of the recovery
sequence introduced in Step 2, due to the fact that, since A = 0, the contribution of w” to
the energy is zero and the role of w” in the structure of ¢ is now played by «f .

Arguing as in the previous steps, it is straightforward to prove (2.7.1)—(2.7.4). The same
computations of Step 1 yield also convergence of the energies and the conclusion follows by
approximation.

Step 4: A=0 and 0 < p < 4+00.
Let (w,g,b) € Ap,,. Then w is affine. Moreover, by Lemma 2.4.8 we can reduce to the case
where g € C*(w), b € C3(w), and there exists ¢ € C°(w;R?) such that

01 =g, 0s¢p-7=0, O0sp1+010-7=0, and 0s(9s¢ -n)="o.

We define
h o, PPen °
g o= Ut T et G F (b [ g(an,€T(€)dE + ontgn)
h 0
h 0 h2 s
e —twr+ Lw| —vs —eh(thw'T——w’/ N(§)d§)el
on o Jo

72

0
2
—  thep(0sd - n)T + hen ( o

> — h2eptdrd - ney
on
®s3

- ol - e—awz(h’y + dptn),
267
where the terms in the first line are related to conditions (2.7.1) and (2.7.2) and to the
optimal constant E, whereas the second and the third lines are related to conditions (2.7.3)
and (2.7.4) and to the quadratic form Qyqy, -
Arguing as in the previous steps it is straightforward to prove that conditions (2.7.1)—
(2.7.4) are satisfied and that

h(,h 1 L 1 1 L 1
lim J (2y ) = —/ / Qtan(s,w',b) dsdxy + f/ / Eg¢? dsdx,.
24 Jo Jo 2Jo Jo

h—0 €n

Step 5: A=pu=0.
Assume that there exists a finite number of points

O=po<p1 < <pp=1

such that for every i = 0,---,m — 1 there holds k(s) > 0 for every s € (p;,pit+1), Or
k(s) <0 for every s € (p;,pi+1) or k(s) =0 for every s € (p;, pit1)-

Let (w,g,b) € Ap,o. Then w is affine. Moreover, by Remark 2.4.2, we can reduce to
the case where g € C3(w) and there exist two maps u € C°(@) and z € C*(@) such that
O2u = g and 9?u = kz. By Lemma 2.4.10 we can also assume that b € C3(@) and there
exists ¢ € C°(w;R3) such that

01 =0, 0s¢-7=0, O0s¢1+01¢d-7T=0 and 95(9s¢ -n)="o.
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2. Thin-walled beams in nonlinear elasticity

We define:

19 € €nd
ho._ ok h h hOR
Yo=Yt tep (31u + %talz)el — ﬁ(asur +2zn) + ?t(ﬁsuk + 0s2)T

+ ehF(h /OS gTdé + 5htgn)

0 9 s
+ | —twr + ﬁw -3 — e (thw’T — h—w’/ Ndf)el
5h 5h 0

V2

0
h2e h3e
—  thep(0s¢p - n)T + 5 h ( 9 ) — h2eptdrd - neq + Th¢161
h h
b3
2
— o' — Lw?(hy + dutn),
205
where the first line contains now some corrective terms to compensate the contribution given
by Osu, and the terms in the other lines play the same role as in the previous steps.
Arguing as in the previous steps, it is immediate to prove (2.7.1)—(2.7.4). The same

computations of Step 1 yield also (2.7.5). Hence, the proof of the theorem is completed. [
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Chapter 3

A quasistatic evolution model

for perfectly plastic thin plates

3.1 Overview of the chapter

The subject of this chapter is the rigorous derivation of a quasistatic evolution model for
a three-dimensional plate of small thickness, whose elastic behaviour is linear and isotropic
and whose plastic response is governed by the Prandtl-Reuss flow rule without harden-
ing. As the thickness of the plate tends to zero, we prove via I'-convergence techniques that
solutions to the three-dimensional quasistatic evolution problem of Prandtl-Reuss elastoplas-
ticity converge to a quasistatic evolution of a suitable reduced model. In this limiting model
the admissible displacements are of Kirchhoff-Love type and the stretching and bending
components of the stress are coupled through a plastic flow rule. Some equivalent formula-
tions of the limiting problem in rate form are derived, together with some two-dimensional
characterizations for suitable choices of the data.

The chapter is organised as follows: in Section 3.2 we recall some preliminary results and
describe the formulation of the problem. In Section 3.3 we discuss the properties of Kirchhoff-
Love admissible triples and prove some approximation results. Section 3.4 is devoted to the
I'-convergence result in the stationary case, while Section 3.5 concerns the convergence of
quasistatic evolutions. Finally, in Section 3.6 we show some equivalent formulations of the

reduced quasistatic evolution problem and discuss some examples.

3.2 Preliminaries and setting of the problem

3.2.1 Formulation of the problem

Throughout the chapter w is a bounded and connected open set of R? with a C?
boundary. We suppose that the boundary Ow is partitioned into two disjoint open subsets

Yi, Yn and their common boundary 0|swys = 0|gwVn (topological notions refer here to
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3.2 Preliminaries and setting of the problem

the relative topology of dw). We assume that v4 # @ and that 9|gunys = {P1, P2}, where
Py, P, are two points in Ow.

The reference configuration of the plate is given by the set

where ¢ > 0. We denote by I'. the Dirichlet part of the boundary, given by I'. := ~v4 X

(=5,5), and by vpq, the outer unit normal to 952, .

The elasticity tensor. Let C be the elasticity tensor, considered as a symmetric positive
definite linear operator C : M273 — M323 and let Q : M3X3 — [0, +00) be the quadratic

sym sym sym

form associated with C, given by

Q&) := 1CE: ¢ for every £ € M3 (3.2.1)

sym*

It follows that there exist two constants r¢ and R, with 0 < r¢ < Rc, such that
relé)? < Q(€) < Relé|* for every & € Mi’;ﬁ (3.2.2)
These inequalities imply

|C¢| < 2Rc|¢|  for every & € M2X3 (3.2.3)

sym*

3x3

sym With zero

The dissipation potential. Let M%X3 be the space of all matrices in M
trace. Let K be a closed convex set of M3DX3 such that there exist two constants rx and
Ry, with 0 < rg < Rk, such that

{eeMP?: ¢ <rx} C K C{¢eM5?: [¢] < Rk}

The boundary of K is interpreted as the yield surface. The plastic dissipation potential is
given by the support function H : M3DX3 — [0,400) of K, defined as

H(§) :=supo:¢&.
oceK

It follows that H is a convex and positively one-homogeneous function such that
ril€| < H(E) < Rgl€]  for every &€ € M2, (3.2.4)
In particular, H satisfies the triangle inequality

H(E+¢) < H(E) + H(C) for every &,¢ € My (3.2.5)

Admissible triples and energy. On I'. we prescribe a boundary datum w® € W12(Q.; R3)

of the following form:

w®(z) := (01(2") — 201ws(2"), wa(2) — 2 dows(2'), %U)g(Z/)) for a.e. 2z = (2, 2z3) € Q.,
(3.2.6)
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3. A quasistatic evolution model for perfectly plastic thin plates

where w, € W'2(w), a = 1,2, and wz € W?2(w). The set of admissible displacements
and strains for the boundary datum w® is denoted by A(£.,w®) and is defined as the class
of all triples (v, f,q) € BD(Qe) x L?(Qu; M32%3) x My (Qe; M33) satisfying

sym

Fv=f+gq in €,
q = (w® —v) ®vpg.H?> on T,
where ® stands for the symmetrized tensor product and H? is the two-dimensional Haus-
dorff measure. The function v represents the displacement of the plate, while f and ¢ are

called the elastic and plastic strain, respectively.
For every admissible triple (v, f,q) € A(Q,w®) we define the associated energy as

(v, . q) / Q(f dz+/QEUF£H(dd |)d| al- (3.2.7)

The first term represents the elastic energy, while the second term accounts for plastic

dissipation.

3.2.2 The rescaled problem

As usual in dimension reduction problems, it is convenient to perform a change of variable
in such a way to rewrite the system on a fixed domain independent of . To this purpose,

we set

QZZUJX(—%,%), Lg:= ’de(_%a%)a = ’an(_%a%)v
and we denote by vgq the outer unit normal to 9€2. We consider the change of variable
e : 0 = Q. given by

Ve () := (2/,ex3) for every x = (2/,23) € Q

and the linear operator A, : M2X3 — M3%3 given by

sym sym

& &2 i&s
Ali=| &n & Léas for every & € M.
161 L& s

To any triple (v, f,q) € A(Qe,w®) we associate a triple (u,e,p) € BD(2) x L*(Q; M3x%) x
My(QUT g; M2x3) defined as follows:

wi= (0o, vp 0 cv300),  e=A-'foye,  pi= 1AW (g).

Here the measure % (q) € My(Q U Ty; M3?) is the pull-back measure of ¢, satisfying
/ ©:dyT(q) :/ potidg for every p € Co(QUT q; ML),
Qury, Q.UT,
According to this change of variable we have

E(v, f,q) = eQ(Ace) + eH(Acp),

69



3.3 The class of Kirchhoff-Love admissible triples

where m
L L eP
Q(A.e) .f/QQ(AEe(x))dx, H(Aop) == /QUFdH(d|AEp|)d|Asp|.

We also introduce the scaled Dirichlet boundary datum w € W12(Q;R3), given by
w(x) = (w1 (x') — x301w3(x"), Wa () — 2302w3(z’), w3 (x')) for every z € Q.

From the definition of the class A(f,w®) it immediately follows that the scaled triple

(u,e,p) satisfies the equalities

Eu=e+p inQ, (3.2.8)
p=(w—u) ®vgaH? on [y, (3.2.9)
pii+po+ Epsz =0 inQUT,. (3.2.10)

We are thus led to introduce the class A.(w) of all triples (u, e, p) € BD(Q)x L?(€; M2X3) x
My(QUT;; M3%3) satisfying (3.2.8)—(3.2.10), and to define the functional

J:(u,e,p) = Q(Ace) + H(Acp) (3.2.11)

for every (u,e,p) € A-(w). In the following we shall study the asymptotic behaviour of the

minimizers of J. and of the quasistatic evolution associated with J., as ¢ — 0.

3.3 The class of Kirchhoff-Love admissible triples

In this section we introduce the class of Kirchhoff-Love admissible triples, which will be
the domain of the minimum problem describing the asymptotic behaviour of minimizers of
J-, as € — 0, and the space where the limiting quasistatic evolution takes place. We prove
some approximation results, which will be crucial in the proofs of both convergence results.
To this purpose we first define the set of Kirchhoff-Love displacements as

KL(Q):={ue BD(): (Eu)iz=0 fori=1,2,3}.

Remark 3.3.1. Note that v € KL(Q) if and only if ug € BH(w) and there exists @ €
BD(w) such that

Uy = Uo — T30,u3, «a=1,2.
In particular, if v € KL(Q), then (Eu)os = (Fl)as — xgagﬁu?, for a,8 = 1,2. 1If, in
addition, u € W1P(Q;R3), then 4 € WHP(w;R?) and uz € W2P(w). We call u,us the

Kirchhoff-Love components of .

For every w € WH2(Q;R3) N KL(Q) we define the class A (w) of Kirchhoff-Love
admissible triples for the boundary datum w as the set of all triples (u,e,p) € KL(Q2) x
L2(Q;M2X3) x M (QUT 43 M22%3) satisfying

sym sym

FEu=e+p inQ, p=(w—u)®vgaH?> on Ty,
ei3=0 inQ, p3=0 inQUILy i=1,2,3.
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3. A quasistatic evolution model for perfectly plastic thin plates

Remark 3.3.2. The space

{EEM3X3 : &z =0fori=1,23}

sym

2X2

is canonically isomorphic to M. Therefore, in the following, given a triple (u,e,p) €
2x2

sym

Axr(w) we will usually identify e with a function in L?(Q;M
in Mb(Q UTly; M2x2 ) .

sym

) and p with a measure

We notice that the set A (w) is always nonempty as it contains the triple (w, Ew,0).
We also point out that if (u,e,p) € Axr(w), then in general one cannot conclude that e
and p are affine in the x3 variable. However, some conditions on the structure of e and p
can be deduced. To this purpose, we introduce the following definitions.

Definition 3.3.3. Let f € L2(Q;M3X2). We denote by f.fe L?(w; M2%3) and by

sym sym
fi e LX(Q;M2x3) the following orthogonal components (in the sense of L?(Q;MZ2x3))
of f:

1
2

fla') = fla x3)des,  fa') = 12/ z3f(a, x3) des

_1
2

N|=

3
for a.e. 2’ € w, and
fi(@) = f(z) - f(2') — w3 f(a’)
for a.e. € Q. The component f is called the zero-th order moment of f, while f is called
the first order moment of f.

Definition 3.3.4. Let ¢ € M,(QUT; ngx,‘:;) The zero-th order moment of g is the measure
q € My(wU~yg; M323) defined by

sym
/ p:dq = / p:dq
wUv4 QUly

for every ¢ € Co(w U ya; M2x3), while the first order moment of ¢ is the measure § €

My (w Uryg; M3X3) defined by

sym

/ <p:dc]::12/ T3p:dg
wUvyq QUT 4

for every ¢ € Co(w U vg; M222). We also define g1 € My(QUT4; M23) as the measure
given by

qL=q¢-q®L - gLl
where the symbol ® denotes the usual product of measures.

With these definitions at hand one can easily prove the following characterization of the
class Axr ().

Proposition 3.3.5. Let w € WH2(Q;R3)NKL(Q) and (u,e,p) € KL(Q) x L?(Q; M323) x

sym

Mb(QUI‘d;ME;i) with e;3 =0 in Q and p;3 =0 in QUL for i =1,2,3. Let w € BD(w),
u3 € BH(w), and w € W'2(w;R?), ws € W?2(w) be the Kirchhoff-Love components
of u and w, respectively. Finally, let &,é € L*(w;M3:3), e, € L*(QM23), p,p €
My(w Uyg; M3X3), and p1 € My(Q U Tg; M3X3) be the moments of e and p, according

sym sym

to Definitions 3.8.83 and 8.3.4. Then (u,e,p) € Axr(Q) if and only if the following three
conditions are satisfied:
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3.3 The class of Kirchhoff-Love admissible triples

(i) Ei=é¢+p in w and p= (0 —u) © vgu,H' on v4;
(ii) D?*uz = —(é+p) in w, uz =ws on g, and p = (Vuz — Vws) ® vg, H' on ya;
(iii) pL = —ey in Q and p; =0 on Ty,
2%2

where we have identified €,é with functions in Lz(w;Msym) and p,p with measures in

My(w U~a; M252) . Here vg, denotes the outer unit normal to dw and H' is the one-

dimensional Hausdorff measure.

We now prove some approximation results for Kirchhoff-Love admissible triples. We first

need a technical lemma.
Lemma 3.3.6. Let pu € My(@ x (—3%,5);M22) be such that
p=aQL + @zl + py,
where fi, i € My(@;MZ2<2) with |a|(0w) = |a|(0w) = 0 and py € L*(QM252).  Let

(ps) C C(R?) be a sequence of mollifiers, with supp ps C Bs(0). Then

lim (/|p5*um3|dx’> dxs = |p|(R),

6—0 J_1
2

where we have set iy, = [i + x3fi+ po (-, x3) € My(w; M22) for L' -a.e. x5 € (-3 1).
Proof. We first observe that, from the assumption pi € L*(€;M2x2) it follows that

pt = pt w3t 4,
pt o= pFeL -+ @l
Since i + z3i* belongs to L>®((—3, 5); My(@; M2x2)), by [4, Corollary 2.29] we have
| = | + | S L
where Q%L denotes the generalized product of measures (see, e.g., [4, Definition 2.27]). The

equalities above imply that

H©Q) = /Q 10 (@) de + 2°](9)

|

3 3
= [ [ @)+ w4 )l do'dan + [ 1+ i) dos

_1
2

[STENS

= [ @ dos

Nl=

We now extend p,, to 0 outside @, so that the convolutions ps * ., are well defined
on R%. By Fubini-Tonelli Theorem and the assumption |ji|(0w) = |fi](0w) = 0 we obtain

/ |P§ * ;Uf:m| da’ = _/ ‘ /]Rz pé(x, - yl) Aty (y/) dx’
[ [ opsta =) ) < ()
72
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3. A quasistatic evolution model for perfectly plastic thin plates

for L'-a.e. x5 € (—%, %) By integrating with respect to x3 we deduce
1 1
2 ’ 2
L ([ sl aar)des < [yl dos =l
2 w -2

On the other hand, we have that ps * fig, — fie, weakly* in My(w;MZ252) for L'-a.e.
11

T3 € (—5, 5). Hence, by lower semicontinuity

by () < it | (s 0|
h §—0 w

for L'-a.e. x5 € (f%, %) Integration with respect to x3 and Fatou’s Lemma yield the
thesis. O

The next lemma allows one to approximate in energy any Kirchhoff-Love admissible
triple by means of triples (u®, e, p®) € Ak () with u® smooth. The proof of this result is
based on an adaptation of [23, Proposition 1.4].

Lemma 3.3.7. Let w € WY2(Q;R3) N KL(Q) and let (u,e,p) € Axr(w). Then, there

exists a sequence of triples (u®,e®,p%) € Ak (w) such that
u® € C°(Q;R?) nWHH(Q; R?)

and the following properties hold:

u® —u  weakly* in BD(Q), (3.3.1)
e — e strongly in L*(Q; M35, (3.3.2)
p° —p weakly* in My(QUT g M2x3), (3.3.3)

(3.3.4)

12" Wl a2, = [pll 2, - 3.3.4

Proof. Step 1. We first show that any triple (u,e,p) € Agkr(w) can be approximated
in the sense of (3.3.1)—(3.3.4) by a sequence of triples (u®,e,p®) € Axr(w) with u® €
C>(;R3) N BD(RQ).

Let w € WH2(Q;R3) N KL(Q) and let (u,e,p) € Axr(w). By Proposition 3.3.5 the
Kirchhoff-Love components @ € BD(w) and ug € BH(w) of u satisfy

Fi=¢é+pinw, p=(0—1u)0 ve,H' on g,
D?ug = —(é+p)inw, uz=wsonvys, p=(Vuz—Vws)Ovg,H" on g,

2x2

where €,é have been identified with functions in L?(w; M) and p,p with measures in

My(w U~g; M2X2) . Moreover,

sym
pL=—e, in, p; =0onTly
Fix € > 0. Let r > 0 be such that the set

wo == {2’ €w: dist(z’,0w) > 1}

T

satisfies
1P| (w \ wo) + [pl(w \ wo) <e. (3.3.5)
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3.3 The class of Kirchhoff-Love admissible triples

We set

wj = {2’ €w: dist(z’,0w) > j%} for every j € N,

Aji=wjpi \wj— forj =2, Ay :i=ws.

Let {p;} be a C° partition of unity for w subordinate to the covering {A;}, that is,
p; € C(A;), 0<p; <1 forevery j € N, and

Zcpj =1 inw. (3.3.6)
j=1

Let (ps) be a sequence of convolution kernels with ps € C§°(Bs(0)) for every 6 > 0. For
every j € N we choose d; such that

{2/ e w: dist(a’,supp ¢;) < 6;} CC Aj, (3.3.7)

1(pjus) * ps; — pyusllwrz + [[(@;@) * ps;, — sz < €277, (3.3.8)

1(ps€) * ps, — wjéllre + (05€) * ps, — wjéllz < 277, (3.3.9)

[(usD%p;) * ps; — usD?*@;l 12 + [|(Vus © Vi;) * ps; — Vuz © Vi 12 < €279(3.3.10)

[(a® V;) % ps, —u©® V|2 < e277. (3.3.11)

Moreover, we extend the function pje; to 0 outside A; x (—1, 1) and consider the convo-

lution
(ies) s s, (a)i= [ on, (& =)oy )entsf o) dy

defined for every x € Q. Since p;p = p;p @ LY + p;p @ x3L! — pje  , by Lemma 3.3.6 we
can assume J; to be so small that

[(pjer) * ps; — el < €277, (3.3.12)
’ / |(0iB) * ps; + 23(;D) * ps; — (wjer) = ps, | dz — |;p|(Q)] < 277, (3.3.13)
Q

Finally, we define

) )
E * P85 u : E ijui?o * P85 ufx = ﬂ(i - x3aozu§ (Oé = 17 2)7
Jj=1 Jj=1

€ =€ +x36° + e,

where
Z e) * ps, + (O V;) * ps, |
j=1
o0 o0
= [(€) * ps, — (usD>p;) * ps, — 2(Vuz © Vep;) * ps, : Z pjeL) * ps;,
Jj=1 j=1
and

NE

[(p;D) * ps, + x3(0;D) * ps, — (pjeL) * ps,] inQ,
P =9 =1

w—u) © vaoH? on I'y.

—~ <
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3. A quasistatic evolution model for perfectly plastic thin plates

It is easy to see that 4 € C*°(w;R?) N BD(w), u§ € C®(w) N W2 (w), hence u® €
C>(;R?) N BD(Q2). Moreover,

Buf =é +p° and D?u§=—(6°+p°) inQ (3.3.14)
for every €. Arguing as in [23, Proof of Proposition 1.4], one can also show that u§ = ug,
Vu§ = Vus, and 4° = 4 on dw. By Proposition 3.3.5 this implies that (u®,e®,p®) €

.AKL(U)).
v (3.3.6) and (3.3.8) we deduce that

u® — u strongly in L?*(Q;R?), (3.3.15)

while by (3.3.9)—(3.3.12) we obtain (3.3.2).
To prove (3.3.3) it is enough to show that

PP —=p and p°—p weakly* in (Cp(w ngxn%)) , (3.3.16)
where Cy(w; M2x2) is the space of all bounded functions in C(w;MZy?). Indeed, if (3.3.16)
holds, for every ¢ € Co(Q2UT'g; MZx?) we have

/ gb:dpsz/(;@:dps—l—%/(ﬁ:d@—/(Z)L:ei_dx—k é: ((w—u) ®vsg) dH?,
QuTy w w Q T4

where ¢, ngS, ¢, are defined according to Definition 3.3.3. Convergence (3.3.3) follows now
by (3.3.2) and (3.3.16).

We prove (3.3.16) for the sequence (p°), the same argument applies to (p¢). By (3.3.2),
(3.3.14), and (3.3.15) it is enough to check that

limsup [[p°[| a1, (w) < 12 2 w)- (3.3.17)
e—0

Now, let ¢ € C®(w;M2)2) with [|¢|lc < 1. Denoting by gs, the function ps, (') =

sym

ps,(—2') for every 2’ € R? and for every j, we have

< ‘i /w ¢(x’):( /w @i (y)ps; (2’ —y’)dﬁ(y’)) dx’
= ‘;/%¢*05 dp’
<

Z/cpjlqﬁ*pa IdlpH/cpl\cb*ﬁalldlﬁl
j=2

< [Pl(w \ wo) + [Pl (w).

Hence, (3.3.17) follows from (3.3.5). Therefore, we deduce (3.3.16), which in turn yields
(3.3.3). Combining (3.3.2), (3.3.3), and (3.3.15), we also have (3.3.1).
It remains to prove (3.3.4). We first note that

Ip% M2z, = 1p°|(€) + |pl(Ta)

< Z/ﬂ [(@iD) * ps; + x3(0;D) * ps; — (pjen) * ps; | dx + |p|(Ta)

IN

Z |0pl(2) + |pl(Ta) + ¢,
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3.3 The class of Kirchhoff-Love admissible triples

by (3.3.13). Therefore,

lims(t)lp 0% |lae, < E le;pl(Q) + |pl(Ta)
e— ;
]:1

> [ erla!) dpla) + bl(Ta) =l

Since by (3.3.3) and by lower semicontinuity we have
< Tim .
IPllaz, < lim inf |[p*[[ar,

the proof of (3.3.4) and of Step 1 is complete.

Step 2. To conclude the proof of the lemma we shall prove that any triple (u, e, p) € Ak, (w)
with u € C*(Q;R?*) N BD(f2) can be approximated in the sense of (3.3.1)~(3.3.4) by a
sequence of triples (uf,e®,p?) € Ak (w) with u® € C®(Q;R?) N WH(Q;R3).

Let (u,e,p) € Axr(w) with u € C°(Q;R3) N BD(R). The Kirchhoff-Love components
of u satisfy 4 € C*°(w;R?) N BD(w) and uz € C*°(w) N W21 (w). By [60, Chapter I,
Proposition 1.3] and the regularity of dw we can construct a sequence (u€) C C*(w;R?)
such that

u® —u strongly in L'(w;R?) and FEua® — Eu strongly in L'(w;M2X2).  (3.3.18)

sym

This implies, in particular, that @ — u strongly in L'(I'g;R?). The sequence of triples
(u®, e, p°) defined by

uf, i=1u;, —x30quz (@ =1,2), u5:=uz, € :=e,
and
Eu® — e —x3D%us  in 9,
pei=
(w—u) ®vgaH? on Ty,
satisfies all the required properties. O

Remark 3.3.8. We observe that by (3.3.15) and (3.3.18) and the continuous embedding of

BD(w) into L?(w;R?) the approximating sequence (uf,e®, p°) in Lemma 3.3.7 satisfies also
u — @ strongly in L?(w;R?). (3.3.19)

Moreover, the construction of (uf,e®,p®) can be modified in such a way to satisfy also the

following convergence properties:

|Ea® || — || Ed||a,, (3.3.20)
I1D*u]| 2 — | D%us]| s, (3.3.21)
uz = ug in C(w). (3.3.22)

Indeed, let us denote by p®, p* and p°, p° the absolutely continuous parts and the singular

parts of p and p, respectively. In Step 1 we can choose d; in such a way to satisfy also the
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3. A quasistatic evolution model for perfectly plastic thin plates

following estimates:

1(@8%) * ps, — @0t + 1(0;0%) * ps; — D%l 1 < €277 (3.3.23)
1(250°) * ps; Il = Nl g, | + [[1(058%) * ps, e — llip®llag, | < €279, (3.3.24)
[(pjuz) * ps; — pjuslLe < €277, (3.3.25)

where we used the continuous embedding of BH (w) into C(@). By (3.3.25) we immediately
deduce (3.3.22). By (3.3.23) we have that

o0

(jp®) * ps, — p* strongly in L (w; M2X2),

sym

Jj=1

while by (3.3.24) we obtain that

o0 o0
1S (055%) * 5, || 11 < an s, +s—2/ prdip*| + € = [p°|(w) + .
2 2,

These two facts, together with (3.3.2), yield
i sup || B[z < fle+p%|zr + |p71(w) = [1Ew] ar,-
e—

The opposite inequality follows from (3.3.1) by lower semicontinuity. A similar argument
applies to (3.3.21). Finally, it is easy to see that (3.3.20)—(3.3.22) are preserved in the
construction of Step 2, since the approximation result for % entails strong convergence of
(Euf) in LY(w;M2X2).

sym

We now prove an approximation result for Kirchhoff-Love admissible triples in terms of
smooth triples. We denote by C2°(w U 'yn,Minn%) the set of smooth maps whose support
is a compact subset of w U ~,. Morever, we introduce the set LZ_ .(€;MZ2x?) of all p €

L?(Q; M2X2) satisfying the following two conditions:

sym
(i) 823%17 € L*(;M2;2) for every k,j €e NU{0}, o, =1,2;
(ii) there exists U CC w U, such that p=0 a.e. on w\U x (—3,3).
Note that if p € L2, .(;MZ2x2), then p(-, z3) € C2°(w U yn; M222) for ae. 23 € (—3,3)-

Theorem 3.3.9. Let w € WH23(Q,R3) N KL(Q) and let (u,e,p) € Axr(w). Then, there

exists a sequence of triples

(u, €%, p°) € (W2 (4 R?) x LA (Q;M2)3) x L2, (5 M2X3)) N Ak (w)

such that
u® = u  weakly* in BD(Q), (3.3.26)
e — e strongly in L*(Q; M253), (3.3.27)
p° —p weakly* in My(QUTg; Mi’;,i) (3.3.28)
Ip° N2 = [Pl g, - (3.3.29)
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3.3 The class of Kirchhoff-Love admissible triples

Remark 3.3.10. By Reshetnyak continuity Theorem (see, e.g., [4, Theorem 2.39]), conver-
gences (3.3.28)—(3.3.29) guarantee that Ho(p®) — Ho(p) for every function Hy : M22X2 —

sym

[0,4+00) convex and positively one-homogeneous.

Proof of Theorem 8.3.9. Up to translating u by w, it is enough to prove the theorem for w =
0. Moreover, by Lemma 3.3.7 and by the metrizability of the weak* topology on bounded
subsets of M,(Q UTg; M3X3) we can reduce to the case where u € W11(Q;R3) N KL(2)

sym
and there exists ¢ € L'(Q;M2x3) such that
p=q InQ, p=-uduvgaH?> only. (3.3.30)

According to Remark 3.3.2, we identify e and p with a function in L?(Q;M2X2) and a

sym

measure in M;,(Q UTq; MZ25?%), respectively, and we perform the decomposition of Propo-

sition 3.3.5. By Remark 3.3.1 we have that 4 € W11 (w;R?) and uz € W21 (w), while by
(3.3.30) there exist ¢, ¢ € L'(w;M2X2) such that

sym
p=q inw, p=-uOvegH onng (3.3.31)

and

p=q inw, p=-—VusO®rvg,H' onyg. (3.3.32)

Note also that uz3 =0 on ~4.

For the sake of simplicity we split the proof into two steps.

Step 1. We claim that we can always reduce to the case where there exists an open set
J C Ow such that 7,4 is compactly contained in J and us = 0 on J (topological notions
refer here to the relative topology of dw).

To prove the claim, it is enough to show that the triple (u,e,p) can be approximated
in the sense of (3.3.26)-(3.3.29) by a sequence of triples (u®,e?,p?) in A (w) satisfying
the following property: for every & > 0 there exists an open set J% C Jw such that v, is
compactly contained in J° and u$ =0 on J°.

To this purpose, let {U;};=1,.. ., be a finite covering of dw such that for every ¢, up to
a C? change of coordinates, Ow N U; is the graph of a C? map and w N Uj; is the related
subgraph. We also require the covering to be such that for a« = 1,2 there exists an open
neighbourhood Up, of the point P, satisfying

P,€Up, CU,fora=1,2 and Up, NUs = @ for a # 3.

We recall that by assumption 9|swya = {P1, P2}. Finally, let Uy C R? be an open set,
compactly contained in w, such that {U;};=o,... » is a finite covering of @, and let {¢;}i=o,...n
be a subordinate partition of unity, ¢; € C(U;), 0 < ¢; <1 for i =0,...,n, and

Y pi=1 inw. (3.3.33)

The approximating sequence will be constructed by modifying u in the sets U; and Uy and
keeping it unchanged in the other sets. More precisely, using the C? regularity, we shall
straighten the boundary of w in U; and Us, and shift the function u along the tangential

direction in such a way to have the boundary condition satisfied on a set larger than ~g.
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3. A quasistatic evolution model for perfectly plastic thin plates

We first consider the set U;. By our choice of the covering there exist a map ¢ €
C?(Uy;R?) and arectangle Ry := (a,b)x(c,d) such that ¢(U;) = Ry and ¢~ € C?(Ry;Uy);

moreover, there exists h € C?(a,b) such that
S(UL N Ow) = {(s,h(s)) : s € (a,0)}, G(U1NW):={(s.t) € Ry : t <h(s)}.
We can assume that for a suitable s; € (a,b)
¢(Ur Nva) = {(s,h(s)) : s € (s1,0)}.

Let V7 be an open set in R? such that suppy; C V; CC U;. For § small enough we
define ©° : ¢(V1) — Ry as

¢6(s,t) =(s+4,t—h(s)+h(s+9))

and ¢5 V1= U as
¢° :=¢ " o500

It is easy to see that for § small enough
P(Vinw) CUiNw, ¢ (Vi\@)C Ui \w,

and
#° (Vi Ndw) C Uy N dw.

Moreover, setting K7 := supp 1, we have that
16° —idllc2(rry — 0, [[(6°) ™" —id[|c2(xy) — 0, (3.3.34)

as 6 — 0.

We consider the functions %' := ¢ (@ o ¢°) and ug’l = ¢1(uz o ¢%), which are well
defined on Vi Nw and are extended to zero outside the support of ¢;. By construction
>l € Whi(w;R?), ug’l € W2(w), and

ud' =0 on J, (3.3.35)
where J%' := (U Nv4) U (¢°) "1 (U1 N7q). Moreover, by (3.3.34) we obtain

>t — 1 strongly in W (w; R?), (3.3.36)
ug’l — pruz  strongly in W2 (w). (3.3.37)

Straightforward computations yield the equalities

Ewt = (u0¢°) ® Ve + ¢1sym((Duo ¢°)D¢?), (3.3.38)
D2t = (uzo0¢®)D*p1 + 2V © ((D¢°)T (Vs 0 ¢°))
+@1 Y (Oauz o ¢®) D¢, + ¢1(D¢’)" (D*uz 0 ¢°)De®.  (3.3.39)
a=1,2
It is therefore natural to introduce the functions &', 6! € L?(w;M2X2), defined as
el = (20¢’) © Vo1 +pisym((€0¢’)Dg’),
e¥t = —(ugo¢®)D%*p; — 2V ® (D) (Vus 0 ¢?))
— @1 Y (Oauz 0 ¢°) D¢, + 1 (Dg")" (¢ 0 ¢°) D¢’
a=1,2
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3.3 The class of Kirchhoff-Love admissible triples

and the functions ¢>!,¢>! € L'(w;M2%2), defined as

sym
7' = pisym((70¢°)De’) + prsym([(Da — Ea) o ¢°]D¢’),
(26,1 = SDI(D(ZS(S)T((} o ¢6)D¢6

By (3.3.38) and (3.3.39) there holds

Eudt = &%t ¢ (j‘s’l in w, DQUg’l = f(é‘s Ly q5 1) in w.

By (3.3.34), (3.3.36), and (3.3.37) we deduce the following convergence properties:

e 5 O Vo + e strongly in L?(w; Mg;ﬁl)
b —ugD?*p; — 2V, ©® Vus + p1é  strongly in Lg(w Miyxn%b)
3! — 1§ strongly in L*(w; M2X2),

sym

"= ¢1G strongly in L' (w;MZx2).

An analogous construction in the set Us provides us with two triples

(52,692, °) € W1 (@i R?) x L3(w; M22) x L (w; ME2),
85,2 R
(ug®,e2,¢%%) € W (w) x L?(w; M2x2) x L' (w; M2x2),
such that
Fi*? =2 +¢? inw, Dzug’2 = —(é‘s’2 + 65’2) in w,

and the following convergence properties hold:

a™? — pou  strongly in W (w; R?),
ung — @ouz  strongly in W (w),
2500 Vg +p2e strongly in L*(w; MZ;2),
7% — —uzD?py — 2Vpy © Vug + @2é  strongly in L2 (w; M2)2),
3>? = poq strongly in L*(w; Mﬁgﬁi)
2 2 strongly in Lt (w M2><2)

sym
Moreover, the following boundary condition is satisfied:

uy? =0 on J2,

where J%2 is an open subset of dw strictly containing Us N 4.
To complete the construction of the approximating sequence we set

7]6 = ﬂ6’1 —|—ﬂ5’2 + Z @iﬂa ug T us +u3 + Z piusg,
i#£1,2 i#£1,2
and
ul =00 — x30,ul (a=1,2).

It is immediate to see that u® € Wh(Q;R3) N K L(f); moreover, by (3.3.35) and (3.3.52)

we have

uy =0 on J°
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3. A quasistatic evolution model for perfectly plastic thin plates

where J® := J%' U J%2 U~y is an open subset of dw and satisfies 74 CC J°. By (3.3.33),
(3.3.36), (3.3.37), (3.3.46), and (3.3.47) we also have

u’ — u  strongly in WH(Q;R?). (3.3.53)

By the continuity of the trace operator the previous convergence entails

u® — u  strongly in L*(9Q; R?). (3.3.54)
Finally, we introduce the functions e® € L?(€;M2x2) and ¢° € L*(;MZ2x2), defined as

e = &M1& fag(e® + %) + (o1 + pa)es

+ Z (pie + 1 O Vi — x3uzD?*p; — 223V © Vug),

i#1,2
5 . =61 52 25,1 | 55,2
¢ = PP+ + 7))~ (pr e + D wig,
i#1,2

and the measure p® € My (QUT4;M2%2), defined as

sym
P’ i=¢ inQ, p’:=—-u OvsgaH? onTly.

Clearly, (u%,e%,p?) € Agr(w). Moreover, by (3.3.41)(3.3.44) and (3.3.48)(3.3.51) we
obtain

e’ — e strongly in LZ(Q;Migi), (3.3.55)
¢° — q strongly in LY (s M252). (3.3.56)

From (3.3.54) and (3.3.56) it follows immediately that

p° —p  weakly* in My(Q U g; M2X2)

sym

and

1° Iz, = lIpllaz,.-

Step 2. By Step 1 we can assume that there exists an open set J C Ow such that vy is
compactly contained in J and uz =0 on J.

Let us consider a finite covering {Q;}i=1,...m of dw made of open squares centered at
points on Ow, with a face orthogonal to some vector n; € S' and such that, for every
i=1,...,m, the set Q; Nw is a C? subgraph in the direction n;. We also require that for
some mg € {1,...,m}

mo
vecc | JQinowcc g
i=1
and

dist(Qi,vq4) > 0 for every i =mgo+1,...,m.

Let also Q9 be an open set compactly contained in w such that the collection of open

sets {Qi}i=o,...m is a finite covering of wW. We consider a subordinate partition of unity
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3.3 The class of Kirchhoff-Love admissible triples

,,,,,

w.
Denoting by ©Q the set

Q=u|J(Qix(-3.3),
=1

we extend the triple (u,e,p) to Q by setting

() : —u ® vooH? QN oY,
uw:=0 inQ\Q, e:=0 inQ\Q, p:= u © Voo f)n

The extended maps satisfy

ue BDQ)NKL(Q), ee L2(Q;M3X2), pe My(Q;M323)

sym sym

and

Fu=e+p in Q.

Note, in particular, that since uz = 0 and vgg = (va,,0) on aQn J9, we have that p;3 =0

in Q for i =1,2,3. Thus, we can as usual identify e with a function in L2(€; M2x2) and

sSym
2x2)
sym/ *

p with a measure in M (€; M
For every i = 1,...,mg we introduce the outward translations
Tic(') =" +aon; for z’ € R?,
while for ¢ = mg + 1,...,m we consider the inward translations

Tie(z') =2 —awmn; forz’ € R?,

where (a.) is a sequence converging to 0, as ¢ — 0. We define

m

=) (i) 0 Tic + oy (3.3.57)
=1

& = ) (pif)oTic+poet » (Vi ©u)oTic + Vipo O 1, (3.3.58)
=1 =1
m

o= Y TI(eip) + e, (3.3.59)
=1

where Ti7#€ (¢ip) denotes the pull-back measure of ;p. Notice that (a®, e, p°) is well defined
in an open neighbourhood w. of w, that is, 4° € BD(w.), & € L*(we;M2X2), p° €
My(we; M252), and

Eu® =e® +p° in w,.
Moreover, by construction there exists an open set U, C R? such that v; CC U. and
u® =0, e€ =0, and p* =0 in U,. Finally, we can choose a. — 0 in such a way that

Tz‘i(%ﬁ)(ﬁwin) =0 fori=mg+1,...,m,

so that
|p°|(0w) =0 for every e. (3.3.60)
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3. A quasistatic evolution model for perfectly plastic thin plates

Let now (ps) C C°(R?) be a sequence of convolution kernels. For § < a. we consider

the functions

€,0 £,0

=" xps, P70 =P % ps.

Clearly, we have @%° € C*(w;R?) and &, 5%° € C*®(w;M2X2), and

sym

u™’ = u *x ps, €

Eu®® =&’ 4 p°° inw.
Moreover, for § small enough there holds

7% =0 on~v; and &% p%° € C(wUnr,; M2X2). (3.3.61)

sym

We apply a similar construction to the normal component of v and to the first moments
of e and p. We first introduce

m

€ e
Uz = Z(%‘Us) O Tie + Pous,
=1
m

e = Z(gpié) 0 Tie+ o€ — 2 Z(Vgpi ©Vug) ot . —2Vpy © Vug

i=1 =1
m

- Z(DQ%US) o7 — D*pous,
i=1

P o= D T (ead) + pob,

i=1
and we then define for § < a.

€,0

e ~E,0
Uz = uz * p5, €

=& xps, P70 =P * ps.
As before, we can modify the choice of a. — 0 in such a way that
|p€](Ow) = 0. (3.3.62)

Moreover, for & small enough we have that u§’ € C> (@), é59,p"0 € C°(w U T M252),

and u5® =0 on 74, Vus® =0 on 4. Finally, there holds
D*ui® = —(6° + ™) inw.

Analogously, we define

m

e ._ €0 . ¢
eq = E (pie1) o Tie + poel, e)” = e * ps,
=1

where, with an abuse of notation, the composition (p;e)) o 7; . stands for the function
(pier) oTie(x) = i(Tie(2')) e (Tie(2'), x3) for ae. z €Q,

and the convolution is intended with respect to the variable 2’ € R2. It is immediate to see
that e7° € LZ, (;M2X2). We now set

sym
us® = s — .’1336au§’6 (a=1,2),
_ 5 8
e? = &0 4 a3t 40,
_ . 8
pe,é = pa,6+x3pe,6 _ei )
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3.3 The class of Kirchhoff-Love admissible triples

By construction we have

(w5, p™%) € (WHA(QR?) x L2, (M2 x L2, (4 MZ2)) N Agcr (w).

sym sym

It is convenient to introduce also the measure p® € M(2 U Ty; Mi;ﬁ), defined as

PFi=p @ L P @l — e

Lemma 3.3.6, together with equalities (3.3.60) and (3.3.62), guarantees that we can choose
d = d(e) small enough, so that

Has,&(s) — || < e, ”u?é(ff) - u§||W1>2 <e,
_ _ A - )
|62 — &l <&, 5O — e <, (€77 — € 2@ <,
P2 |22 ) — [p1(Q)] < e (3.3.63)

From the convergence properties above we deduce (3.3.26)—(3.3.28). To conclude the proof
of the theorem it remains to prove (3.3.29). By (3.3.63) we have

lim sup [|p=°() 21 (@) < limsup [p©](£2).
e—0 e—=0

On the other hand, since p has been extended to zero on the set U (Q; \ @) x (=1, 1),

while for ¢ = mg 4+ 1,...,m the map 7; . is an inward translations, we have

lim sup |p®|(Q2)
e—0

m 1
< lpop|(2) + lim sup > / : |77 (0iD + w30 + ieL (-, x3)) | (w U ya) das
=0 im1 s
m 1 ’
2 —_ ~
< wopl(2) + Z/ ) i (P + 23p + eL (-, 23))|(w U va) das
i=1""3
= Slenl@ur) =Y [ idpl= ol
i=0 i=0 Y QUlq
This, together with (3.3.28), completes the proof of (3.3.29) and of the theorem. O

Remark 3.3.11. Arguing as in Remark 3.3.8, one can modify the construction of the
sequence (uf,e®, p¢) in Theorem 3.3.9 in such a way that the convergence properties (3.3.19)—
(3.3.22) are also satisfied. In particular, (3.3.22) is preserved, since the approximation

argument for us involves only local translations and convolutions.

Remark 3.3.12. We point out that the approximation result provided by Lemma 3.3.7 is
crucial in Step 1 of the proof of Theorem 3.3.9. Indeed, it is not in general true that, if
v € BD(w) and ¥ : U — w is a smooth bijection with smooth inverse, the composition vo¥
belongs to BD(U). Lemma 3.3.7 allows us to assume @ € W' (w;R?) and this regularity
guarantees that o ¢° € W1 (V;;R?), hence, in particular, @o ¢? € BD(V}).
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3. A quasistatic evolution model for perfectly plastic thin plates

3.4 TI'-convergence of the static functionals

In this section we study the I'-convergence of the rescaled energies (J:), as € — 0. We
first introduce the limit functional.
Let A :M2%2 — M3X3 be the operator given by

sym sym

gll 612 )\1(5)
Af:=| &a  &a A& | forevery £ e MZ)2, (3.4.1)
A(€) A28 As(§)

where for every & € MZ2X2 the triple (A1(€),\2(€),A3(€)) is the unique solution to the

sym
minimum problem

S &2 M
;\qugll% Q 12 &2 A2
A1 A A3

We observe that the triple (A1(£), A2(£),A3(£)) can be characterized as the unique solution
of the linear system

0 0 G
CAt: [0 0 =0 (3.4.2)
CENCINE

for every (1,(2,(3 € R. This implies that A is a linear map.
Let Q, : M2X2 — [0, +00) be the quadratic form given by

sym
Q- () := Q(AE) for every € € Miyx,i (3.4.3)

By (3.2.2) it satisfies the estimates
relé]? < Q.(€) < Relé]*  for every € € M2X2 (3.4.4)

sym*

We also consider the linear operator C, : M2X2 — M3*3 defined as

sym sym
C,& == CA¢  for every € € M?;ﬁl (3.4.5)
By (3.4.2) we have
Cr&:¢=CAE:¢ =CAL: A" for every £ € M2)2, ¢ € M2X3 (3.4.6)
where (" € Miyx,% satisfies C(’;B = Cap for «, 8 =1,2. This implies that
&1 &2 O
Qr(€) =3C&: [ &2 &2 0  forevery £ € M2
0 0 O

We introduce the functional Q,. : L?(Q;M22) — [0, +00), defined as

sym

Q.(f) := /QQT(f(z)) dz for every f € L%Q;Mi;ﬁl).

It describes the limiting elastic energy of a configuration of the plate whose elastic strain is

given by f.
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We define H, : M22 — [0, +00) as

sym

§11 &2 A1
H.(§) = /\H;\inRH €12 & Ao for every £ € ngxn% (3.4.7)
1,A2€
At A —(&un +&e2)
It turns out that H, is convex, positively one-homogeneous, and satisfies
ricl€| < Hp(€) < VBRklE|  for every £ € M2 (3.4.8)
For every p € My(QUT 4 M2x2) we define
dp
He (e ::/ HT(—)d,u. 3.4.9
U= foor, ) (349
With the previous notation, we introduce the functional J : Axr(w) — [0, 4+00], defined
as
J (u,e,p) := Qr(e) + H(p) (3.4.10)
for every (u,e,p) € Axr(w), where we identify e with a function in L*(Q;M2x2) and p

2X2

with a measure in M (€2; M5 %), according to Remark 3.3.2. We are now in a position to

state the main result of the section.

Theorem 3.4.1. Let J. and J be the functionals defined in (3.2.11) and (3.4.10). Let
w e W R3) N KL(Q) and for every &€ > 0 let (ue,ec,pe) € Ac(w) be a minimizer of
J-. Then there exist a subsequence (not relabelled) and a triple (u,e,p) € Axr(w) such

that
u® —u  weakly* in BD(Q), (3.4.11)
e — e strongly in L*(Q; M2)3), (3.4.12)
A.ef — Ae  strongly in L* (S MZ’;;’L), (3.4.13)
p° = p weakly® in My(QU Fd;Miyxsib), (3.4.14)
H(Ap®) — Hi(p)- (3.4.15)
Moreover, (u,e,p) is a minimizer of J and
Ehi% Je(te, ec,pe) = T (u, €,p). (3.4.16)

Remark 3.4.2. The existence of a minimizer for J. is guaranteed by [15, Theorem 3.3].

Remark 3.4.3. More general boundary conditions can be considered in Theorem 3.4.1.
For instance, the thesis continues to hold if for every € > 0 (ue,ec,p:) is a minimizer of
J- in the class A.(w®) and w® € WH2(Q;R3) is such that w® — w strongly in L?({2;R?)
with w € WH2(Q;R?) N KL(Q) and A.Ew® — [ strongly in L*(;M2x3) for some f €
LAQMED).

The proof of Theorem 3.4.1 is in the spirit of I'-convergence. We first prove a compactness
result and a liminf inequality for sequences of triples with equibounded energies.
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3. A quasistatic evolution model for perfectly plastic thin plates

Theorem 3.4.4. Let w € WH2(Q;R3) N KL(Q) and let (ue,ec,p:) € A-(w) be such that
Te(ue,ec,pe) < C  for every e > 0, (3.4.17)

where C is a constant independent of €. Then, there exist € € L*(;M2x3) and p €
My(QQU Fd;M?jDX?’) such that, up to subsequences,

Acec — & weakly in L?(Q;M2%), (3.4.18)
Acpe — P weakly™ in My(Q U Tg; M), (3.4.19)

Moreover, there exists (u,e,p) € Axr(w), with eng = €ap and pag = Dag for o, =1,2,

such that, up to subsequences,

ue = u  weakly* in BD(Q), (3.4.20)
e. — e weakly in Lz(Q;Mi’;ﬁ;), (3.4.21)
pe = p weakly® in My(QU Fd;ngXTi), (3.4.22)
and
J(u,e,p) < lim iglfjg(ua, €e, Pe)- (3.4.23)
e—

Proof. By the energy estimate (3.4.17) and by (3.2.2) we deduce the bounds
lleellze < ||Aceellrz < C for every e. (3.4.24)

Hence, there exist é,e € L*(;M32x3) such that (3.4.18) and (3.4.21) hold up to subse-
quences, with e,g = €qg for o, =1,2 and e;3 =0 for i = 1,2,3. By the lower semicon-
tinuity of @ with respect to weak convergence in L?(2;M2X2) and by the definition of Q,

sym

we also deduce
Q.(e) < Q(e) < limiélf Q(Ace.). (3.4.25)
E—r

By (3.4.17) and (3.2.4) we obtain analogously
[pelln, < l1Acpellar, < C. (3.4.26)

Therefore, there exist p € My(QUT 3 M%®) and p € My(QUTy; M2X3) such that (3.4.19)

sym

and (3.4.22) hold up to subsequences, with png = Pap for o, = 1,2 and p;3 = 0 for
i =1,2,3. By the lower semicontinuity of H with respect to weak* convergence in M,(Q U
Tg; M%%) and by the definition of H,, we have

Hr(p) <H(P) < lilrgélfH(Aapg), (3.4.27)

which, together with (3.4.25), gives (3.4.23).
Since (ue, e, pe) € A-(w), for every e there holds

FEu. =e.+p. inQ, (3.4.28)

and
Pe = (W —1u:)® vooM? onTy. (3.4.29)
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3.4 T'-convergence of the static functionals

By (3.4.24), (3.4.26), and (3.4.28), the sequence (Eu.) is bounded in M(Q;M2x3). By
(3.4.26) and (3.4.29), the traces of (u.) are uniformly bounded in L!(T'y;R?®). Hence, by
(1.4.2) the sequence (u.) is bounded in BD(Q2) and (3.4.20) holds up to subsequences.
Moreover, it is immediate to see that Eu = e+ p in 2, hence v € KL(Q).

To conclude the proof, it remains to check that p = (w — u) ® vpoH? on I'y. To this
purpose we argue as in [15, Lemma 2.1]. Since ~, is an open subset of dw, there exists an
open set A C R? such that 74 = ANdw. We set U := (wU A) x (—3, %) and we extend

the triples (ue, e, pe) to the set U in the following way:

ue in €, f e in €, pe in QUTy,
Ve 1= e 1= Qe =
: w  in U\ Q, Ew inU\Q, ) 0 otherwise.

The symmetric part of the gradient of v. satisfies

Fu, in Q,
Ev. = { (w—u.) ®vgaH? on Ty,
Ew in U\ Q.

Therefore, by (3.4.20), up to subsequences, v. — v weakly* in BD(U), where

FEu in Q,
u in €,
V= and Ev= ¢ (w—u)®vgoH? on Ty, (3.4.30)
w inU\Q, _
Ew in U\ Q.

Analogously, up to subsequences, f. — f weakly in L?(U; Mi;,;“;) and, since the restrictions

to QU of functions in Co(U; MZx3) belong to Co(Q U g; M23), there holds ¢. — ¢
weakly* in My (U; M3X2), where

sym

e in Q, p in QUTy,
f= and ¢q:=
Ew inU\Q, 0 otherwise.
Since Fv. = f. +¢q. in U for every e, we deduce that Ev = f 4 ¢q in U. The thesis follows
now from (3.4.30). O

In the next theorem we show that the lower bound established in Theorem 3.4.4 is

optimal by exhibiting a recovery sequence.

Theorem 3.4.5. Let w € WH2(Q;R3) N KL(Q) and let (u,e,p) € Axr(w). Then, there

exists a sequence of triples (ue, e, pe) € A:(w) such that

u® —u  weakly® in BD(Q), (3.4.31)
e* — e strongly in L*(Q; M‘zyxi), (3.4.32)
p° —p weakly* in My(QUTq; M2x%), (3.4.33)
Ace® — Ae  strongly in L*(Q; M2)3), (3.4.34)
H(Ap®) = He(p), (3.4.35)
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3. A quasistatic evolution model for perfectly plastic thin plates

and
lim J.(u®, e, p%) = T (u,e,p). (3.4.36)
e—0

Proof. By Theorem 3.3.9, Remark 3.3.10, and the metrizability of the weak* topology on

bounded subsets of M;(QUT'4;M2%) we can reduce to the case where

(u,e,p) € (WLQ(Q;R3) x L2(Q; M3%3) x L;)C(Q;M“?’)) N Ak (w).

sym sym

In particular, u =w on I'y and p =0 #H?-a.e. on I'y.
Let now ¢1, ¢2, ¢3 € L*(2) be such that

el ez @1
Ae=len exn ¢

b1 P2 3

Since p € L*(€;M3)?%), by the measurable selection lemma (see, e.g., [26]) and by (3.2.4)
and (3.4.8) there exist 11, 7m2,73 € L?(Q2) such that

P11 P12 m
He(p)=H| pi2 p22 72 . (3.4.37)
m o n2 —(p11 +p22)

We argue as in [44, Proposition 4.1] and we approximate the maps ¢; and 7; by means of
elliptic regularizations. For every ¢ we define ¢; € Wol’z(Q), 1 =1,2,3, as the solution of

the elliptic boundary value problem

—eAPS + ¢ = ¢; in
95 =0 on 02,

and 7, € Wol’z(Q), a =1,2, as the solution of

—eAnS, + 15, =na in Q,
ng =0 on ONQ.

The standard theory of elliptic equations gives

¢S — ¢ strongly in L?(Q), (3.4.38)
N5, — na strongly in L?(9), (3.4.39)

as € — 0, and
IVgSl|e < Ce™%, ||V lle < Ce™. (3.4.40)

We also introduce the function f¢ € L?(w; Mi’yxn?;), defined componentwise as

frale) =2 [ (003 5) 4 0@ s (@ =12, fila) =0,

x3
fia(2) = E/ (0295 (', 5) 4 Oonfi (', 5) + 0105 (2', 5) + Oz (2, 5)) ds,
0

&_2

23(1’./) = E A ) (8a¢§(xl7 S) - 304]911(53/7 8) - 3041722(35/7 S)) ds (a = 17 2)
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3.4 T'-convergence of the static functionals

for a.e. o' € w.

We are now in a position to define the recovery sequence. Let

z3
W= et [ @G ) ds (a=12),
0
z3
W = ug e / (65(a', 8) — pa (&, 5) — poa(’, 5)) ds,
0
and
0 0 e¢ 0 0 en
e:=e+| 0 0 e¢s | +f°5 pP=p+1| O 0 ens
ep] €95 52¢§ Ny ens —52(2?11 + p22)

Since u = w on Tq, p € L2 (EM2X3), and ¢f, 05 € Wy2(9), we have that u. = w

sym

on T'y. Tt is also easy to check that (ue,ec,p:) € Ac(w). From (3.4.38) and (3.4.39) it
follows that u® — u strongly in L?(€;R?). By (3.4.38) and (3.4.40) we deduce (3.4.32) and
(3.4.34), while by (3.4.39) we obtain

p° —p strongly in L?(€;M3X3),

sym
hence (3.4.33) and (3.4.31) follow. Finally, by (3.4.37) we have (3.4.35), which, together
with (3.4.34), implies the convergence of the energies. O

We are now in a position to prove Theorem 3.4.1.

Proof of Theorem 3.4.1. Since (w, Ew,0) € A.(w) for every € > 0, by minimality we have
that

J=(u, €%,p°) < Je(w, Ew,0) < Re||Bwl[Z:,
where the last inequality follows from (3.2.2) and the fact that w € KL(2). By Theo-
rem 3.4.4 we deduce that there exists (u,e,p) € Axr(Q) such that, up to subsequences,
u® = u  weakly* in BD(Q),
e — e weakly in L?(Q;M323),

sym
p° —p weakly* in My(QUT 4 M23),
and
J(u,e,p) < liminf J. (u®, €%, p°). (3.4.41)
e—0

Let now (v, f,q) € Agr(Q2). By Theorem 3.4.5 there exists a sequence of triples
(v¢, f%,¢°) € A.(w) such that

T, f.0) = lim (v, f%,°) = limsup J. (u°, ¢, p°), (3.4.42)
E—r

e—0

where the last inequality follows from the minimality of (u., e, p.). Combining (3.4.42) with
(3.4.41), we deduce that (u,e,p) is a minimizer of J and by choosing (v, f,q) = (u,e,p) in
(3.4.42) we obtain (3.4.16).
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3. A quasistatic evolution model for perfectly plastic thin plates

It remains to prove (3.4.12), (3.4.13), and (3.4.15). By the lower semicontinuity of

Q and H with respect to weak convergence in L?(€;M2X3) and weak* convergence in
1Y g g

sym
My(QUTg; M2x2), respectively, and by the definition of Q, and H, we have
9,(e) < lim i(glf O(Acef), H,(p) < lim iélf H(Ap®). (3.4.43)
e— e—

Combining (3.4.16) and (3.4.43) yields
lim Q(Ace®) = Qp(e),  lim H(Ap®) = Hr(p),
e—0 e—0

so that (3.4.15) is proved. On the other hand, we remark that by (3.4.6)

O(Acef —Ae) = Q(A.e®) + 9O, (e) /(CA@ Acef dx

Q(Aze®) + Q,(e / CAe:e® dx (3.4.44)

Therefore, passing to the limit in (3.4.44) and applying again (3.4.6), we obtain
lim Q(Ace® — Ae) =0,
e—0

so that (3.4.13) follows now from (3.2.2). Finally, convergence (3.4.12) is an immediate
consequence of (3.4.13). O

3.5 Convergence of quasistatic evolutions

In this section we focus on the quasistatic evolution problems associated with the func-
tionals J. and J, introduced in the previous section. To this purpose, for every ¢ € [0, T
we prescribe a boundary datum w(t) € WH2(Q; R3) N K L(Q2) and assume the map t — w(t)
to be absolutely continuous from [0,7] into W12(Q;R3).

Let s1,82 € [0,T], s1 < s3. For every function ¢ — u(t) of bounded variation from
[0, 7] into M;(QUTy; M543, we define the dissipation of ¢+ u(t) in [s1, s2] as

D(u; 81, 82) := sup { ZH(M(t]‘) —p(tj—1)): s1=to<t1 <--- <ty =59, n€E N}.
j=1
Analogously, for every function ¢ — u(t) of bounded variation from [0, 7] into M,(22U

Dg; M25%) we define the reduced dissipation of t — pu(t) in [s1, so] as

D, (5 51, 52) := sup { ZH’“(M(ti) —p(tjo1)): si=to<t;1 <--- <t =59, NE N}
j=1
for every s1,$2 € [0,T], s1 < s2.

Definition 3.5.1. Let € > 0. An e-quasistatic evolution for the boundary datum w(t) is a
function t — (uf(t),e*(t),p°(t)) from [0,T] into BD(2) x L2(Q; M323) x M(QUT g; M2x3)

sym sym

that satisfies the following conditions:
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3.5 Convergence of quasistatic evolutions

(gsl) for every t € [0,T] we have (u°(t),e*(t),p°(t)) € A:(w(t)) and
O(Aec(1)) < Q(Aef) + Hlheg — Aup™ (1)) (35.1)
for every (v, f,q) € Ac(w(t));

(gs2) the function ¢ +— p°(t) from [0, 7] into My(Q2UTq; M2x3) has bounded variation and
for every ¢ € [0,T]

Q(Azef(t)) + D(Aep®;0,t) = Q(Acef(0)) +/0 /Q(CAseE(s) cEw(s)dxds.  (3.5.2)

Definition 3.5.2. A reduced quasistatic evolution for the boundary datum w(t) is a function
t = (u(t),e(t),p(t)) from [0, T] into BD(2) x L*(Q; M2x3 ) x My (QUI q; M2x3 ) that satisfies
the following conditions:

(gsl), for every ¢ € [0,T] we have (u(t),e(t),p(t)) € Axr(w(t)) and
Qr(e(t)) < Qn(f) + Hrlg — p(t)) (3.5.3)

for every (v, f,q) € Axr(w(t));

(qs2), the function ¢ — p(t) from [0,7] into My(QUT 4; M2x3) has bounded variation and
for every ¢ € [0,T]

9, (e(t)) + Dr(p; 0,t) = 9, (e(0)) —1—/0 /Q(Cre(s) 1 E(s) dzds. (3.5.4)

Remark 3.5.3. Since the functions ¢ — p°(t) and ¢ — p(t) from [0,7] into M,(Q2 U
Fd;Migﬂi) have bounded variation, they are bounded and the set of their discontinuity
points (in the strong topology) is at most countable. By Lemma 3.5.9 below the same
properties hold for the functions ¢+ e°(¢) and ¢ — e(t) from [0,7T] into L*(€;M3x2), and
for the functions ¢ — u®(¢) and ¢ — u(t) from [0,7] into BD(Q). Therefore, t — e*(t)
and t — e(t) belong to L>([0,T]; L*(;M2x3)), while ¢ — u(t) and ¢ — u(t) belong to
L>([0,T]; BD(R)). As t— Eu(t) belongs to L'([0,T]; L*(€;M23)), the integrals on the
right-hand side of (3.5.2) and (3.5.4) are well defined.

We are now in a position to state the main result of the chapter.

Theorem 3.5.4. Let t — w(t) be absolutely continuous from [0,T] into WH2(Q;R3) N
KL(Q). Assume there exists a sequence of triples (uf, e5,p5) € A-(w(0)) such that

Q(Aeeg) < Q(Aaf) + H(qu - Asp(EJ) (3.5.5)
for every (v, f,q) € A (w(0)) and every € >0, and

Acel — &y strongly in LQ(Q;MEJ;’L), (3.5.6)
[AepGllag, < C (3.5.7)
for some &y € L*(Q; Mg;,i) and some constant C' > 0 independent of €. For every € > 0 let

t— (us(t),e5(t),p°(t)) be an e-quasistatic evolution for the boundary datum w(t) such that
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3. A quasistatic evolution model for perfectly plastic thin plates

us(0)

=uf, e(0) = ef, and p*(0) = p§. Then, there exists a reduced quasistatic evolution
t = (u(t),e(t),p(t)) for the boundary datum w(t) such that, up to subsequences,

ut(t) = u(t) weakly* in BD(Q), (3.5.8)
e*(t) — e(t) strongly in L*(Q;M353), (3.5.9)
Ace®(t) — Ae(t)  strongly in L*(;M253), (3.5.10)
p°(t) — p(t)  weakly* in My(QUTy; I\\/Hg’;,i) (3.5.11)

for every t € [0,T], where A is the operator introduced in (3.4.1). Moreover, the functions
t— u(t), t — e(t), and t — p(t) are absolutely continuous from [0,T] into BD(),
L2(Q;M223), and My(Q U Tg; M2X2), respectively.

sym sym

Remark 3.5.5. From [15, Theorem 4.5] it follows that for every triple (u§,ef,p§) €
A (w(0)) satisfying (3.5.5) there exists an e-quasistatic evolution ¢ — (u¢(t),e®(t), p°(¢))
such that «(0) = uf, €°(0) = ef, and p*(0) = p§. Moreover, by [15, Theorem 5.2] the
functions ¢ — u®(t), ¢t — e*(t), and t — p=(t) are absolutely continuous from [0,7] into
BD(Q), L?(Q;M2X3), and M,(QUTy; M3%3) | respectively, and for a.e. t € [0,T] we have

sym sym
A @le < Cull i), (35.12)
Ap" (D), < Col|[Ba(#)]| 2, (3.5.13)

where C7 and C3 are positive constants depending on Rk, rc, Re, supyep 7 [[Ace”(t)]| L2,
and supyco 77 [[Aep®(t) || a1, - We notice that these results are proven in [15] under the assump-
tion of a reference configuration of class C?, but, as observed in [27], Lipschitz regularity is

enough in the absence of external loads.

Remark 3.5.6. The set of admissibile initial data for Theorem 3.5.4 is nonempty. Indeed,
for every € > 0 let (u§, ef, p§) € A:(w(0)) be a minimizer of the functional J. on A, (w(0)),
that is,

Q(Acef) + H(Apy) < QA f) +H(Aq)

for every (v, f,q) € A:(w(0)). Since by (3.2.5)
H(Aeq) < H(Aeq — Acpg) + H(Acpp),

we deduce that (u,ef, p§) satisfies (3.5.5) for every € > 0. Moreover, by Theorem 3.4.1
we infer the existence of a triple (ug, €0, po) € Axr(w(0)) such that (3.5.6) is satisfied with
€p = Aeg and

lim H(A=pg) = Hr(po)-

This last convergence implies (3.5.7) by (3.2.4).

Remark 3.5.7. Theorem 3.5.4 ensures, in particular, the existence of an absolutely contin-
uous reduced quasistatic evolution for every initial datum (uo,eg,po) € Axr(w(0)) that is
approximable in the sense of (3.5.8)—(3.5.11) by a sequence of triples (u§, 5, p5) € A-(w(0))
satisfying (3.5.5). Note that, again by Theorem 3.5.4, every such datum satisfies

Q,(e0) < Qi (f) +Hr(g — po) (3.5.14)
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3.5 Convergence of quasistatic evolutions

for every (v, f,q) € Axr(w(0)).

We mention here that existence of a reduced quasistatic evolution can be actually proved
for every initial datum (ug, e, po) € Axr(w(0)) satisfying (3.5.14) by applying the abstract
method for rate-independent processes developed in [47], namely by discretizing time and by
solving suitable incremental minimum problems. Moreover, arguing as in [15, Theorem 5.2],
one can show that every reduced quasistatic evolution is absolutely continuous from [0, T
into BD(£2) x LZ(Q;Mi’;ﬁ;) X Mp(QU Fd;Mg’an%).

To prove Theorem 3.5.4 we need two technical lemmas concerning some consequences of
the minimality condition (qsl),.

Lemma 3.5.8. Let w € WH2(Q;R3) N KL(Q). A triple (u,e,p) € Axr(w) is a solution

of the minimum problem

min {Q,(f) +Hr(q—p): (v, f,q) € Axr(w)} (3.5.15)

if and only if
—Hr(q) < | Cre:fdx (3.5.16)
Q

for every (v, f,q) € Axr(0).

Proof. Let (u,e,p) € Agr(w) be a solution to (3.5.15) and let (v, f,q) € Agr(0). For
every 1 € R the triple (u+ nv,e +nf,p+ nq) belongs to Axr(w), hence

Qr(e) < Qr(e+nf) + Hr(ng).

Using the positive homogeneity of H,., we obtain
0< :I:n/ Cre: fdr +n*Q.(f) + nH,(£q),
Q

for every n > 0. Dividing by 7 and sending 7 to 0 yield (3.5.16).
The converse implication is true by convexity. O

Lemma 3.5.9. Let wi,wy € WH2(Q;R?) N KL(Q) and for o = 1,2 let (uq,€qPa) €

Ak (we) be a solution of the minimum problem

min { Q,(f) +H (¢ —pa) : (v, f,q) € Axr(wa)}. (3.5.17)

Then there exists a positive constant C, depending only on Ry, rc, Rc, 2, and Ty, such
that

[e2 —e1l[z2 < Cbra, (3.5.18)
HEu1 — EUQ”Mb S 0012, (3519)
Jur = uzl|pr < C(Or2 + [Jwi — wo[r2), (3.5.20)

where 615 is given by
1
012 := [[pr — p2llag, + P2 — P2l 3y, + | Ewr — Ewsl| .
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3. A quasistatic evolution model for perfectly plastic thin plates

Proof. Since (ug —u; — we + w1, e2 — e; — Ewy + Fwi,pa — p1) € Axr(0), we can choose
v=1ug—u; —ws+wy, f=ey—e; —FEwy+ Ewy, and ¢ = ps — p; in (3.5.16); thus, by the
minimality of (uq,€q,Pa), with @ = 1,2, and Lemma 3.5.8 we have

~Hr(p2 —p1) < /Q(Cr€1 :(e2 — e1 — Bws + Ew,) dw,
—H.(p1 —p2) < /Q(Creg (e — ea — Bwy + Ews) dx.
Adding term by term, changing sign, and applying (3.4.8) yield
/Q(Cr(eg —e1):(ea—ey)dx < /Q(CT(eg —e1): (Bwg — Bwy)dzx + 2\/§RK||p2 — 1l -
By (3.4.4) we deduce

rellez — e1ll32 < Rellez — ex|lr2|[Ewe — Ewy|z2 + 23Rk |[p2 — pillag,»

which implies (3.5.18) by the Cauchy inequality. Since Fu; = e;+p; in €, Holder inequality
gives
1Eus — Buallag, < L322 |lea = exllz2 + [p2 = p1llas,.

so that (3.5.19) follows from (3.5.18). Finally, since ps — p1 = (wg — w1 — Uz +uy) ® vgoH?
on 'y, we have

lug — w1l (r,) < llwe —willpr gy + P2 — pillag, < Cllwe —willwaz + Ip2 — p1lla,

where we used the continuity of the trace operator from W12(;R3) into L'(9Q;R3).
Inequality (3.5.20) now follows from (1.4.2) and (3.5.19). O

We are now in a position to prove Theorem 3.5.4.

Proof of Theorem 3.5.4. The proof is subdivided into four steps.

Step 1. Compactness estimates. Let us prove that there exists a constant C', depending

only on the data, such that

sup ||Ae®(t)||r2 < C, sup ||Aep®(t)||ar, < C (3.5.21)
t€[0,T t€[0,T)

for every . As t +— w(t) is absolutely continuous with values in W12(2; R?), the function
t — |[Ew(t)]|2 is integrable on [0,7T]. This fact, together with (3.2.2), (3.2.3), and (3.5.2),
implies that

T
relldee (O < RellAce” O)IF: +2Re sup [Ace (@)1 / |Bi(s)lpads  (35.22)
tel0,T 0

for every ¢ € [0,T]. The former inequality in (3.5.21) follows now from (3.5.6) and Cauchy
inequality. As for the latter, by (3.5.2), (3.5.22), and (3.5.6) we deduce that

D(A5P8§ 0, T) <C.
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3.5 Convergence of quasistatic evolutions

By definition of D and (3.2.4) we infer that
T | Aep®(t) — Aepfllag, < H(Aep®(t) — Aep®(0)) < D(Aep®;0,t) < C

for every ¢ € [0,T], which implies the second inequality in (3.5.21) by (3.5.7).
Combining (3.5.12), (3.5.13), and (3.5.21), we obtain

ta

c [ 1B ds
t
"

C [ |[Ew(s)]r2ds

t1

[Ace®(t1) — Ace®(f2)]| 2

IN

||A€p8(t1) - Aspe(t2)”Mb

IN

for every 0 <ty <ty < T, where C' is a constant depending only on the data. Therefore, by
Ascoli-Arzela Theorem there exist two subsequences, still denoted A.ef and A.p°, and two
absolutely continuous functions é : [0, 7] — L2(Q; M3%3) and 5 : [0, 7] — My(QUTg; M3?)

sym
such that

Aces(t) — é(t) weakly in L2(€;M3x2), (3.5.23)

Acpf(t) — p(t)  weakly* in My(QUT g; M) (3.5.24)

for every t € [0,77.
Let e:[0,T] — L?(;M2%3) be defined as

sym
eap(t) =e€ap(t) (o,8=1,2) and e;(t)=0 (i=1,2,3)

for every t € [0,7] and let p: [0,T] = My(QUT 4; M323) be defined as

sym

Pas(t) = Bas(t) (,8=1,2) and pia(t)=0 (i=1,2,3) (3.5.25)

for every ¢ € [0,T]. Then ¢+ e(t) is absolutely continuous from [0, 7] into L*(Q;M32x3),

t — p(t) is absolutely continuous from [0, 7] into M(Q2UTq; M2x3), and by (3.5.23) and
(3.5.24) we have

e*(t) — e(t) weakly in L?(Q;M2x3), (3.5.26)
pe(t) = p(t)  weakly* in My(QUT 4 M2x3) (3.5.27)

for every t € [0,T]. Using (1.4.2) and the fact that (u®(t),ec(t),p?(t)) € A (w(t)) for every
e > 0, it is easy to see that there exists an absolutely continuous function « : [0,7] — BD(Q)
such that

u®(t) = u(t) weakly™ in BD(Q)

for every t € [0,T]. Moreover, arguing as in the proof of Theorem 3.4.4, one can show that
Step 2. Reduced stability. We now show that the triple (u(t),e(t),p(t)) is a solution to the

minimum problem

min {Q,(f) + He(q—p(t)) : (v, f,q) € Arr(w(t))} (3.5.28)
for every ¢ € [0,T].
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3. A quasistatic evolution model for perfectly plastic thin plates

Let us fix t € [0,7]. By Lemma 3.5.8 it is enough to prove condition (3.5.16). Let
(v, f,q) € Ak (0). By Theorem 3.4.5 there exists a sequence of triples (v¢, f¢,¢%) € A.(0)
such that

Acf*— Af strongly in L*(Q; M%) (3.5.29)

and

H(Aq®) = H(q). (3.5.30)

By [15, Theorem 3.6] the minimality condition (3.5.1) is equivalent to
—H(AG) < /QCAseE(t) A f dx (3.5.31)
for every (9, f,G) € A.(0). Therefore, we have that
() < [ Ch(0):Af da
for every e > 0; hence, combining (3.5.23), (3.5.29), and (3.5.30), we obtain
(o) < [ Ct):afdo

Since Ceé(t) : Af = CAe(t) : Af = Ce(t): f a.e. in Q by (3.4.6), the inequality above reduces
to (3.5.16).

Step 3. Identification of the limiting scaled elastic strain. We shall prove that the function
é(t) in (3.5.23) satisfies
é(t) = Ae(t) (3.5.32)

for every ¢ € [0,77].
For every 1 € WH2(Q;R3) with 1 = 0 on I'; we can consider the triples (v, =E1,0)
as test functions in (3.5.31). This leads to the condition

/ CA.e*(t): Ao Ep da = 0 (3.5.33)
Q

for every v € WH2(;R3) with ¢ = 0 on I'y and for every «.

Let now U C w, (a,b) C (—3,%), and A\; € R, i = 1,2,3. Let us denote the char-
acteristic functions of the sets U and (a,b) by xu and X(ap), respectively. Finally, let
(¢¥) € CHw) and (¢%) Cc C'([—3,3]) be such that ¢Ff — Xxu strongly in L*(w),

11

i =1,2,3, and (€¥) — X(4p) strongly in L*(—3,3). For every ¢ and k € N we con-

sider the function
266" (23) 0 (')

() = | 2e¢k (ws) i («)

2" (x3) 5 ()

for every x € Q. Since 1=F € W12(Q;R3) and ¢** =0 on I'y, by (3.5.33) we have
/ CAef(t): AcEY=F de =0
Q
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3.5 Convergence of quasistatic evolutions

for every . Passing to the limit with respect to € — 0 and then to k — oo, we deduce

0 0 X
/ ce®): [0 0 A |dr=o0.
U x(a,b) A Ao Mg

Since U and (a,b) are arbitrary, we conclude that for every \; € R.

0 0 A\
cer)y: [ o 0 A | =0,
AMode A

a.e. in . This implies (3.5.32) by (3.4.2).

Step 4. Reduced energy balance. By (3.5.2) and lower semicontinuity we have

Q,(e(t)) +D(p;0,¢) < lim {Q(AEeE(O)) —l—/ot/Q(CAEeE(s) s Ew(s) dxds}

e—0

_ Qr(eo)—k/ot/ﬂ(cre(s):Eu')(s) da ds,

where the last equality follows from (3.5.6), (3.5.21), (3.5.23), (3.5.32), and the dominated
convergence theorem. Since by (3.5.25) and the definition of #, there holds

D, (p; 0,t) < D(p;0,1) (3.5.34)

for every ¢ € [0,T], we conclude that

Q,(e(t)) + Dr(p; 0,t) < Qr(eg) +/0 /Q(Cre(s) 1 E(s) dzds. (3.5.35)

As it is standard in the variational theory for rate-independent processes, the converse energy
inequality follows from the minimality condition (qsl),. We omit the proof as it follows
closely those of [15, Theorem 4.7] and of [47, Theorem 4.4].

Combining (gs2), (gs2),, and the fact that the right-hand side of (gs2) converges to the
right-hand side of (qs2),, we deduce that

Q(Ace*(t)) + D(Acp®;0,) — Qp(e(t)) + Dr(p; 0, 1) (3.5.36)

for every ¢ € [0,T]. On the other hand, by lower semicontinuity of Q, and of D, we have

9, (e(t)) < lim_%lf O(Ae(t)) (3.5.37)
and
D, (p;0,t) < lim iélf D(Ap%;0,t) (3.5.38)
E—r

for every ¢ € [0,7T]. From (3.5.36)—(3.5.38) it follows that
lim Q(A-c (1)) = @, (e(t)) = Qle(t))

for every t € [0,T]. This, together with (3.5.23) and (3.5.32), implies strong convergence of
the scaled strains Ace.(t), and consequently of the strains e (t), for every ¢t € [0,T]. This

concludes the proof of the theorem. O
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3. A quasistatic evolution model for perfectly plastic thin plates

3.6 Characterization of reduced quasistatic evolutions

In the following we shall consider the space IIr,(§2) of admissible plastic strains, defined
as the class of all p € My(QUIq; M2x2) for which there exist u € BD(Q), e € L*(Q;M22),

and w € WH2(Q;R3) N KL(Q) such that (u,e,p) € Axr(w).
We shall also use the set

¥(Q) := {o € L®(M2?) : divyd € L*(w;R?), divydived € My(w)},

sym

where 7,6 € L>®(w;M2y2) are the zero-th and first order moments of ¢, defined accord-
ing to Definition 3.3.3. In the first subsection we shall introduce a duality pairing between
stresses o € X(Q) and plastic strains p € IIp,(©2). In the second subsection we shall use
this duality pairing to deduce a weak formulation of the classical flow rule for a reduced
quasistatic evolution. In the last subsection we discuss some examples, where reduced qua-

sistatic evolutions can be characterized in terms of two-dimensional quantities.

3.6.1 Stress-strain duality

We first introduce a notion of duality for the zero-th order moments of the stress and the
plastic strain. We essentially follow the theory developed in [37] and [15, Subsection 2.3].

For every o € () we can define the trace [Gvp,] € L™ (dw;R?) of its zero-th order
moment & through the formula

/ [Gva.] - @ dH* ::/divwlﬁwpdx’—i—/&:Enpdx’ (3.6.1)
ow w

for every ¢ € Whl(w;R?). This is well defined since W11 (w;R?) is embedded into
L?(w;R?).
Let 0 € 3(Q2) and & € BD(w). We define the distribution [5: F¢] on w by

([: E€), @) := —/ pdivya-&dr’ — / 7: (Vo &) da (3.6.2)

for every ¢ € C°(w). From [37, Theorem 3.2] it follows that [5: E¢] is a bounded measure

on w, whose variation satisfies
|[0: E¢]| < ||o]|L=|E¢| in w. (3.6.3)
We can now define a duality between the zero-th order moments of elements in ()

and Ir,(Q). Given o € X(Q) and p € I, (Q), we fix (u,e,w) € BD(Q) x L*(;M272) x

sym

(Wh2(Q;R3) N KL(2)) such that (u,e,p) € Agr(w). Let @ € BD(w), us € BH(w) and
w € Wh2(w; R?), w3 € W22(w) be the Kirchhoff-Love components of u and w, respectively.
We then define the measure [7:p] € Mp(w U~y) by setting
[0:Eu)l—ad:e in w,
[Gvaw] - (W — u)H!  on g,
so that

/ pdlg:p] = / pdlg: Eu] — / po:edx’ +/ [Gva.] - (0 — a) dH? (3.6.4)

wUvyq w w Yd

for every ¢ € C(w).
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3.6 Characterization of reduced quasistatic evolutions

Remark 3.6.1. Arguing as in [15], one can prove that the definition of [5 : p] is independent
of the choice of the triple (u,e,w). Moreover, if & € C*(w;M2X2), then

sym

/ @d[5:ﬁ]=/ @G :dp
wUyq wUv4d

for every ¢ € C*(w). One can prove by approximation that the same equality is true for
every o € C(w;M2;2) and ¢ € C(@).

The following integration by parts formula can be proved.
Proposition 3.6.2. Let 0 € (), w € W1(w;R3) N KL(Q), and (u,e,p) € Axr(w).
Let also i € BD(w) and w € WH2(w;R?) be the tangential Kirchhoff-Love components of
u and w. Then

/wuwﬁpd[oip]+/wg001(e—Ew)dgc’-q-/wg;(v@@(u_w))dx/

= —/ divy 7 - (i — w) da’ +/ [Gvo.] - p(i —w)dH'  (3.6.5)

for every ¢ € C1(w).

Proof. The result is a corollary of [15, Proposition 2.2]. O
We now introduce a notion of duality for the first order moments of the stress and of the

plastic strain. We follow the lines of [22, Subsection 3.2] and [24, Subsection 2.3].

We start with a proposition concerning the traces of the first order moment of a stress
in X(92). To this purpose we introduce the space

S(w) = {9 € L®(w;M2)2) : divydivyd € My(w)},

sym

endowed with the norm |||z~ + ||div,y/divy/9|/as, . We also denote by Tp, : W21 (w) —
W11(0w) the trace operator on W2!(w). We recall that Ty, (W21 (w)) # Wi (0w), see
[23, Théoreme 2].

Proposition 3.6.3. There exists a surjective continuous linear operator

L: SW) — (Too (W2 (W) x L®(dw)
= (bo(V),b1(9))

such that for every ¥ € 3(w) and v € W'(w) there holds

dH', (3.6.6)

/ 9: D2 da’ — / v d(divdived) = —(bo(9), v) + / by (9) -2
w w Ow 8u3w

where (-,-) denotes the duality pairing between (To,(W*(w)))" and Ty, (W2 (w)). More-
over, if 9 € C?(w; M2X2), then

sym

bo(¥) = divy ¥ - vy, + (Yvow - Tow), (3.6.7)

o
OToe

b1 (19) = ﬁl/aw *Vow, (3.6.8)
where Ty, s the tangent vector to dw.
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3. A quasistatic evolution model for perfectly plastic thin plates

Proof. See [22, Théoreme 2.3]. O

Remark 3.6.4. The second integral on the left-handside of (3.6.6) is well defined because
of the embedding of W?1!(w) into C(w) (see [3, Theorem 4.12]).

Let o € X(Q) and v € BH(w). We define the distribution [6: D*v] on w by

([6: D], @) := / v d(divy divy ) — 2/ 6: (Ve ® Vu)ds' — / v6 Vi da'

for every ¢ € C°(w). From [24, Proposition 2.1] it follows that [6:D?%v] is a bounded

measure on w, whose variation satisfies
H&:DQUH < |16||z=|D*v| in w.

We can now define a duality between the first order moments of elements in X(€2) and
I, (). Given ¢ € ¥(Q) and p € IIp,(Q), we fix (u,e,w) € BD(Q) x L*(QMZ2<%) x

(WE2(Q;R3) N KL()) such that (u,e,p) € Axr(w). We then define the measure [6:p] €
Mp(w U~q) by setting

—[G:D%*u3] —6:¢ in w,
[6 ﬂ = O(uz — w3)
- 1
bl (0') aVaw H on vq,

so that
3(u3 — ’(1)3)

/ god[&:ﬁ]:—/cpd[(%:DQu?)]f/cp&:édm'Jr/ by () ————2 dH!
wUyg w w Yd Mo

for every ¢ € C(w).

Remark 3.6.5. The definition of [5:p] does not depend on the choice of the triple (u, e, w).
Moreover, if & € C%(w;M2X2) and p € Ir,(Q), then

sym
/ pdlo:p| = / w6 dp (3.6.9)
wUyq wUyd

for every ¢ € C?(w). This follows from the equality

/ @bl(&)M dHl = / o : (V(U,g — w3) ® Vaw) dHl,
Yd 3l/3w Yd

which, in turn, is a consequence of (3.6.8). By an approximation argument one can show
that (3.6.9) holds true for every 6 € C(w;M2;2) and ¢ € C(w).

As a corollary of [24, Proposition 2.1], we have the following integration by parts formula.
Proposition 3.6.6. Let 0 € (), w € Wh2(w;R3) N KL(Q), and (u,e,p) € Axr(w).
Then

/ gpd[&:ﬁ]+/(pfr:(é+D2w3)d:1:’
wUyq w

—2/&:(V@®V(u3 —wg))dgc’—/(ug—w;;)&:VQcpd:E’

O(p(uz — w3))

d 1
allaw &

_ / (s — ws) d(dives diverd) + (bo(6), @(us — ws)) — | b1(6)

(3.6.10)
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3.6 Characterization of reduced quasistatic evolutions

for every ¢ € C%*(w), where (-,-) denotes the duality pairing between (Tp,(W*(w))) and
To, (W2(w)).

o(ug — ws)) in (3.6.10) is well defined, since

Remark 3.6.7. The duality product (bo(5),
Hw)) (see, e.g., [23, Section 2]).

one can show that Ty, (BH (w)) = Ta,(W?

We are now in a position to introduce a duality pairing between ¥(€2) and IIp,(€2). For
every o € () and p € I, () we define the measure [o:p] € M(QUT,) as

[o:p]:=[G:p]@L" + 5[6:p|@L — 0y ey (3.6.11)

By Remarks 3.6.1 and 3.6.5 we have that

/ gad[a:p]:/cp(?:dﬁJr%/@&:dﬁf/goaL:ede (3.6.12)
QU4 w w Q
for every o € %(Q) with 7,6 € C(w; M2,2) and every ¢ € C(@). In particular, this implies
that
/ pdlo:p| = / wo: dp (3.6.13)
QUL Q
for every o € £(Q) N C(MZ%?) and every ¢ € C().

Following [15], for every o € () and p € IIp,(2) we consider the duality pairings

<Jﬂ 16> = [5:}5](“) U’Vd)v <(A7» ﬁ> = [6:]5](“) U"/d)v
and

(o, p) :==[o:p](QUTY) = (7, p) + %(&, p) — /QO’L tey dx. (3.6.14)

We shall now discuss the connection between the duality (3.6.14) and the functional H,

introduced in (3.4.9). To this purpose, we consider the set

K, :={oceM}2: 0:{< H,.(€) for every & € M2},

sym

which coincides with the subdifferential of H,. at the origin. We also set

K.(Q) :={o € L®(Q;M2*2): o(z) € K, for a.e. z € Q}.

sym

By (1.4.1) we have that for every pu € M,(QQUT 4;M2%2)

sym

Hr(u)zsup{/ﬂ Tidp TECo(QUFd;Miz;i)ﬂ’CT(Q)}.

ul'y

A variant of this equality can be proved using the duality defined in (3.6.14).

Proposition 3.6.8. Let p € II;, (). Then the following equalities hold:

H-(p) = sup{{o,p): 0 €X(Q)NK.(Q)} (3.6.15)
sup{(o, p): 0 € 0O(Q)}, (3.6.16)

where O(Y) is the set of all o € B(Q) NK,.() such that [Gvs,] =0 on vy, b1(6) =0 on
Yy and (bo(6), v) =0 for every v € W2 (w) with v=10 on 4.
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3. A quasistatic evolution model for perfectly plastic thin plates

Proof. Let us set Tg :=T',, U (w x { £ 1}). By [60, Chapter II, Section 4] and (3.6.13) w
have that

He(p) = SUlp{/Q . o:dp : o€ C™(R? Mg;n%)ﬁlC( ), suppo ﬂI‘ozg}
Ul'g

< sup{{(o,p): c€O(Q)}

< sup{(o,p): c €X(QY)NKL-(Q)}. (3.6.17)

To prove the converse inequality, let w € WH2(Q;R3) N KL(Q), u € KL(Q), and e €
L?(Q; M2)2) be such that (u,e,p) € Axr(w). By Theorem 3.3.9 and Remark 3.3.10 we can

construct a sequence of triples (u®,e,p®) € (WH2(R?) x L2 (Q; M2:2) x L2, (€ M2x2))N
Ak (w) such that

u® —u  weakly* in BD(Q), (3.6.18)
e* — e strongly in L?(€; Miyx,i) (3.6.19)
H,(p%) — Hr(p). (3.6.20)

By Remark 3.3.11 we can also assume that

u® — u strongly in L*(w;R?), ||Eu®||zr — || Bl am,, (3.6.21)

u§ —uz in C), || D%*u|p — ||D%us| - (3.6.22)

Let now o € K,.(2) N X(9Q). It is clear that

/ o:p°dx < H,(p°). (3.6.23)
Q
We now claim that
/ o:p°dx — (o, p). (3.6.24)
Q

If the claim is proved, then passing to the limit in (3.6.23) and applying (3.6.20) yield
<Ua p> S H’l”(p)a

which, together with (3.6.17), implies the thesis.
We now prove (3.6.24). Since @° € W12(w;R?) and Euf = &° + p° in w, the following
equalities hold:

/ / (e — Ew)dx’ +/a:(EaE—Ew)dx’
w w w

/6 (e — Ew)dx’ —/dlvwla (a® — w) da’ +/ [Gvo.] - (4° —w) dH?,

Tn
where we have used (3.6.1) and the fact that @ = @ on ~4. From (3.6.21) it follows that
u® — @ strongly in L'(0w;R?) (see, e.g., [60, Chapter II, Theorem 3.1]). By (3.6.19) and
(3.6.21) we can therefore pass to the limit in the identity above and by (3.6.5) we deduce
that

/ o:p°da’ — (o, p). (3.6.25)
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3.6 Characterization of reduced quasistatic evolutions

Similarly, since u§ € W2?(w) and D?*u§ = —(é° + p) in w, we have

/&:ﬁsdx’ = —/&:(éE—FDng)dx’—/&:(Dng—D2w3)dx’

w

= —/ 5 : (65 4 D*w3)da’ — /(u§ — w3) d(divy divy &)

o(u§ — ws)

d 1
al/aw H ’

+<b0(&)7u§—w3>—/ b1(6)

Tn

where we have used (3.6.6) and the fact that Vuj = Vws on v4. By (3.6.22) and [22,
Theorem 3.4] we can pass to the limit in the boundary terms. Therefore, by (3.6.19),
(3.6.22), and (3.6.10), we conclude that

/ 6:p°da’ — (6, p). (3.6.26)

Claim (3.6.24) follows now by combining the identity

/J:pedx:/5:]35dx’+l—12 6:ﬁ5dm’f/UL:eidx
Q w w Q
with (3.6.14) and the convergence properties (3.6.19), (3.6.25), and (3.6.26). O

We are now in a position to show a further equivalent characterization of the minimality

condition (gqsl),.

Proposition 3.6.9. Let o € L?(Q;M2X2). The following conditions are equivalent:

sym

() <H(a) < [ @2 da for cvery (0. 1.0) € Ak 0),

(b) c€0(Q), divyyd =0 in w, and divydivyd =0 in w.

Proof. Assume (a). Let B C Q be a Borel set and let xp denote its characteristic function.
Let £ € M2X2 and let f:= xg&. Since (0,—f, f) € Axr(0), by (a) we obtain

sym

o(x):£ < H.(§) forae. z€B.

Since B is arbitrary, we deduce that o € I,.(Q0).
We observe that (+v, +FEv,0) € Agr(0) for every v € WH2(Q;R3) N KL(Q) such that
v =0 on I'y. Hence, by (a) we have that

/ o:Evdx =0 (3.6.27)
Q

for every v € WH2(Q; R3)NKL(Q) with v =0 on T'y. Let now v € Wh2?(w; R?) with o =0
on 4. Choosing v, = 0, for a =1,2 and v3 = 0, we deduce by (3.6.27) that

/ g:Evds’ =0 (3.6.28)

for every v € W12?(w;R?) with © = 0 on ~4. Since this is true, in particular, for v €
C>(w;R?), we conclude that div,,6 = 0 in w. Moreover, by (3.6.1), (3.6.28), and the

subsequent Lemma 3.6.10, we obtain that [Gvg,] =0 on 7,.
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3. A quasistatic evolution model for perfectly plastic thin plates

Let us now consider the function
_ !
v(z) = x;;Vv;f(x ) for a.e. z €,
v3(2”)

where vz € W%2%(w) is such that v3 =0 and Vuz =0 on 4. Equation (3.6.27) yields
/&:D%g, de’ =0 (3.6.29)

for every v3 € W22(w) with v3 = 0 and Vuz = 0 on 4. Since (3.6.29) is satisfied, in
particular, for every vy € CS°(w), we deduce that div,/div,6 = 0 in w. Moreover, by
(3.6.6), (3.6.29), and Lemma 3.6.10, we obtain that

(9’[)3

dH' =
8uawH 0

—(bo(8), vs) + / bi(6)

n

for every vz € W2(w) such that v3 = 0 and Vv = 0 on ~4. By [23, Théoréme 1] the
trace operator from W?2!(w) into Th, (W21 (w)) x L(dw) that associates to u the traces
of u and of {fzgw on Jw is surjective. We deduce that b1(6) =0 on ~, and (bg(5), v3) =0
for every vy € W (w) with v3 = 0 on 7,4, hence o € ©(2). This concludes the proof of

(b).
Assume now (b). Choosing ¢ =1 in (3.6.5) and (3.6.10

)y
—/w&:fdm’, (6, 4) /w&ifdx/

for every (v, f,q) € Axr(0). Therefore, by (3.6.14)

(o, ) :—/Qa:fdx.

Condition (a) follows now from Proposition 3.6.8. O

ields

We conclude this subsection with an approximation lemma, that was needed in the proof

of Proposition 3.6.9.

Lemma 3.6.10. (i) Let v € Wh1(w;R?) with v =0 on ~4. Then there exists a sequence
(%) € WH2(w;R2) such that v = 0 on g for every € > 0 and v° — v strongly in
Whl(w;R?).

(ii) Let v € W2 (w) with v = 0 and Vv = 0 on 4. Then there exists a sequence
(v¥) C W22(w) such that v° =0 and Vv® =0 on 74, and v — v strongly in W21 (w).

Proof. We only sketch the proof of (i). Statement (ii) can be proved by similar arguments.

Arguing as in Step 1 of the proof of Theorem 3.3.9, we can reduce, without loss of
generality, to the case where there exists an open set J C dw such that 74 is compactly
contained in J and v = 0 on J. As in Step 2 of the proof of Theorem 3.3.9 we consider
the open covering {Q;}i=o,....m of @, a subordinate partition of unity {¢;}i=o,....m , and the

outward and inward translations 7; . with a. =¢. We set

mo
J.J::oJUUQi

i=1
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3.6 Characterization of reduced quasistatic evolutions

and we extend ¥ to @ by setting ¥ = 0 outside @, so that v € W (@;R?). We define

m

v = (Z(%ﬁ) 0 Tie + LPoﬁ) * Ps(e)

i=1

where ps(.) is a mollifier and 0(¢) < € is chosen small enough in such a way that v° = 0 on
~va- It is now easy to check that the sequence (0°) has all the required properties. O

3.6.2 Equivalent formulations in rate form

From here to the end of the section we will assume ¢ — w(t) to be absolutely continuous
from [0,7] into W2(Q; R3) N K L(S2). This implies that the maps ¢t — w(¢) and ¢ — ws(t)
are absolutely continuous from [0,7] into W2(w;R?) and W22(w), respectively.

We first prove some preliminary results. An easy adaptation of [15, Lemma 5.5] provides

us with the following lemma.

Lemma 3.6.11. Let ¢ — (u(t),e(t),p(t)) be an absolutely continuous function from [0,T)
into BD(Q2) x L2 (Q; M2%) x My, (QUT ¢; M2X2) with (u(t), e(t), p(t)) € Agr(w(t)) for every

sym

t€1[0,T]. Then (4(t),é(t),p(t)) € Axr(w(t)) for a.e. t €[0,T].

For absolutely continuous triples the energy balance can be equivalently written as a
balance of powers, as shown in the next proposition.

Proposition 3.6.12. Let t — (u(t),e(t),p(t)) be an absolutely continuous function from
[0,T] into BD(Q) x L*(Q;M2X2) x My(QUTTy;M2%2) and let o(t) := Cre(t). Then, the

sym sym

following conditions are equivalent:

(a) for every t € [0,T]
Q. (e(t)) + D, (p:0.1) = ./’}Q ) dads;
(b) for a.e. t €[0,T)]

/ o(t):é(t)de + H,(p(t)) = / o(t): Bw(t) dx.
Q

Q

Proof. Since t +— p(t) is absolutely continuous, by [15, Theorem 7.1] we have

u@ﬂﬂ=AHw@Ms

The equivalence of (a) and (b) follows now by differentiation of (a) and integration of (b). O
We are finally in a position to state the main result of this section.

Theorem 3.6.13. Let t — (u(t),e(t), p(t)) be a function from [0, T] into BD(2)x L?(£; M2%2)

sym

X My(QQUTg; M2x2) and let o(t) := Cre(t). Then the following conditions are equivalent:

(a) t— (u(t),e(t),p(t)) is a reduced quasistatic evolution for the boundary datum w(t);
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3. A quasistatic evolution model for perfectly plastic thin plates

(b) t— (u(t),e(t),p(t)) is absolutely continuous and
(b1) for everyt € [0, T] we have (u(t),e(t),p(t)) € Axr(w(t)), o(t) € O(Q), divya(t) =
0 in w, and divydivyd(t) =0 in w,

(b2) for a.e. t € [0,T] there holds

(c) t— (u(t),e(t),p(t)) is absolutely continuous and
(c1) foreveryt € [0,T] we have (u(t),e(t),p(t)) € Axr(w(t)), o(t) € ©(Q), divya(t) =
0 in w, and divydivy6(t) =0 in w,

(c2) for a.e. t € [0, T] and for every T € ©(Q) there holds

(o(t) — 7, p(t)) 2 0;

(d) t— (u(t),e(t)) is absolutely continuous and

(d1) for everyt € [0,T] we have o(t) € (), div,ya(t) =0 in w, and divy divy 6(t) =

0w,

(d2) for a.e. t € [0,T] and for every T € ©(Q) there holds

/ (tr—o(t)):é(t)de + / divy 7 - 4(t) da’ + 35 [ ts(t) d(divy divy 7)
Q

w w

> / [(F—5)vaw]-w(t) dH + 5 (bo (F—5(t)), wﬂt))—%/ bﬂ%—&(t))%ﬁ dHt,
(d3) for every t € [0,T], p(t) = Eu(t) —e(t) on Q and p(t) = (w(t) — u(t)) © vooH?
on I'y.

Remark 3.6.14. The duality products (o(¢), p(t)) and {(o(t) — 7, p(t)) in conditions (b)
and (c) are well defined since p(t) € IIr,(Q2) by Lemma 3.6.11.

Proof of Theorem 3.6.13. We first show that (a) is equivalent to (b). By Remark 3.5.7
every reduced quasistatic evolution is absolutely continuous, while Proposition 3.6.9 and
Lemma 3.5.8 yield the equivalence of (gqsl), and (bl). Hence, by Proposition 3.6.12 it is
enough to show that for every absolutely continuous function satisfying either (b1) or (gsl),,
(b2) is equivalent to the following condition: for a.e. ¢ € [0,T]

/J(t):é(t) dm—i—?—lr(}ﬁ(t)):/a(t):Eu')(t) dx.
Q Q

This follows from Propositions 3.6.2 and 3.6.6, once we notice that (u(t),é(t),p(t)) €
Axr(w(t)) by Lemma 3.6.11.

To show that (b) and (¢) are equivalent, it is enough to prove that, if (b1) holds, then
(b2) is equivalent to (c2). Indeed, condition (c2) is equivalent to

(o(t), p(t)) > sup (7, p(t)).
TEO(N)

107



3.6 Characterization of reduced quasistatic evolutions

On the other hand, by (bl) there holds

(o(t), p(t)) < sup (7, p(t)).
TEO(N)

By Proposition 3.6.8 we deduce the thesis.

To conclude the proof of the theorem, we show that (c) is equivalent to (d). We first
remark that if ¢ — (u(¢),e(t)) is absolutely continuous and (d3) holds, then t — p(t)
is absolutely continuous and (u(t),e(t),p(t)) € Axr(w(t)) for every ¢ € [0,T]. Hence, it
remains only to prove that, if (c1) holds, then (c2) is equivalent to (d2). By Propositions 3.6.2
and 3.6.6 there holds

(o(t) =7, p(t) = /Q (1 —o(t): (é(t) — Ew(t)) do
+ / divy/ 7 - (ﬂ — 'U_}) dx’ + TIQ / (’lng — 'lbg) d(diVx/din/f'),

therefore (c2) is equivalent to
| (=) (ete) = Bt da
+ / divye7 - (i — o) da’ + L / (1t — 1) d(divyydivy ) > 0 (3.6.30)
for a.e. t € [0,7] and every 7 € (). By (cl), (3.6.1), and (3.6.6) we deduce that

/(% —a(t)): Bw(t) da’ :/ [(F— & (t))vow] - w(t) dH — / divy 7 - w(t) da’,

w

and

/ (+ — 6(t)) : D2ig(t) da’

= —(bo(7 — (1)), ws(t)) + / bi (7 — &(t))aw?’(t) dH + / g d(divy div,: 7).

Ya 3Vaw w

Therefore, (3.6.30) is in turn equivalent to (d2) and the proof of the theorem is complete. O

3.6.3 Two-dimensional characterizations

In this subsection we show that, under some additional hypotheses on the boundary
datum and the initial data, a reduced quasistatic evolution can be written in terms of
two-dimensional quantities only. The first proposition concerns a quasistatic evolution
(u(t),e(t),p(t)) with “in-plane” boundary datum and initial data. In this case, the triple
given by the tangential component of w(t) and the zero-th order moments of e(t) and p(¢)
is a two-dimensional quasistatic evolution in w in the sense of [15]. It is convenient to in-
troduce the following notation: for every w € W12 (w;R?) we denote by A (w) the class
of all triples (v, f,q) in BD(w) x L*(w;MZ25<%) x My(w U ~g; M2x2) such that Ev = f +¢
in wand ¢ = (0 —v) ®vg,H' on 4. Moreover, we introduce the space

S(w) = {0 € L®(w;M2}2) : divyro € L*(w; M2)2)}

sym sym
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3. A quasistatic evolution model for perfectly plastic thin plates

and the set
Ki(w) :== {0 € L®(w;M22) : o(z') € K, for a.e. 2’ € w}.

Proposition 3.6.15. Let t — w(t) be absolutely continuous from [0,T] into W12(w;R?)
and let

0
Let (i, €9, po) € Arr,(w(0)) and let

ot 2
w(t, ) := (w( - )> for every t € [0,T) and a.e. x € Q.

up(z) = (uof)x’)> . eo(w)i=e(z') forae x€Q, poi=po® L.

Finally, let t — (u(t),e(t),p(t)) be a reduced quasistatic evolution for the boundary value
w(t) such that uw(0) = ug, e(0) =eq, and p(0) = po, and let o(t) ;== Cre(t). Then the map
t— (a(t),e(t),p(t)) satisfies the following conditions:

(i) t— (u(t),e(t), p(t)) is absolutely continuous from [0,T] into BD(w) x L*(w; MZ2x2) x
My(w U yg; M2%2) and 4(0) = i, €(0) = &g, and p(0) = po;

sym

(ii) for every t € [0,T] we have (u(t),e(t),p(t)) € Axr(w(t)), &(t) € L(w) N Kp(w),
div,a(t) =0 in w, and [6va,] =0 on vn;

(#ii) for a.e. t € [0,T] there holds
M, (p(t) = (a(2), p(1)). (3.6.31)

Proof. Condition (i) follows from Remark 3.5.7. By condition (bl) of Theorem 3.6.13 and
the convexity of K, we deduce condition (ii).
By property (b2) of Theorem 3.6.13 and Proposition 3.6.8 we have

He(p(t) = <5(t)7ﬁ(t)>+r12<6(t),ﬁ(t)>—/UL(t):éL(t)dm

Q

< M) + (600, L) — /Q oL ():éL (1) de

= H.(p(t)) - %/&(t):é(t) dx — / oy (t):é,(t)dx, (3.6.32)
w Q

where the last inequality follows from (3.6.10) with ¢ = 1 and from the fact that o(t) € ©(Q)
and ws(t) =0 for every t € [0,7]. On the other hand, setting

A1) = [B(t)] + [p(t)] + £
for a.e. t € [0,T], we have that the measure p(t) + z3p(t) — é, (-, 23) on wU~q is absolutely
continuous with respect to A(t) for a.e. z3 € (— ,%) Therefore, by Jensen inequality we

obtain

He(p(t) = /% /wuw Hr<d(15(t) + xgp(t) — éJ_(',.fS))) AN (#)das

3 dA(t)
> /wuw Hr( 1 d(p(t) +x3§§\t()t) el 3))d:z: )dA(t)
N /wuw Hr (nge)) dA(t) = H(p(1)) (3.6.33)



3.6 Characterization of reduced quasistatic evolutions

for a.e. t € [0,T]. Combining (3.6.32) and (3.6.33), we deduce that

In particular, this implies that
13Qr(E(0) + (e (1)) < 50 ((0) + Qr(er (0)) =0,

hence é(t) =0 and e, (t) = 0 for every t € [0,T]. This, together with (3.6.32) and (3.6.33),
yields (3.6.31). O

In this last proposition we consider a quasistatic evolution (u(t),e(t),p(t)) with “out-
of-plane” boundary datum and initial data and we prove that the triple given by the nor-
mal component of u(t) and the first order moment of e(t) and p(t) is a two-dimensional
quasistatic evolution in w in the sense of [24, Definition 4.1]. To this purpose, for every
wy € W2(w) we define the class Ay (ws) as the set of all triples (v, f,q) € BH(w) X
L2 (w; M2)2) X My(w;M2x2) such that D*v = —(f 4+ ¢) in w, v = w3 on 74, and

q = (Vv —Vws) ®vg,H' on 74.
Proposition 3.6.16. Assume the function H to be homogeneous of degree one, i.e.,

H(\E) = |NH(&) for every N€E R, € € M323. (3.6.34)

sym*

Let t — w3(t) be absolutely continuous from [0,T] into W2%(w) and let

_ /
w(t, z) = < xi:gj?’g;x )> for every t € [0,T] and a.e. z € Q.

Let (’Uo,éo,ﬁo) S AKL(U};),(O)) and let

(—x3Vvo(x')
vo(a’)

uo(zx) == ) . eo(x) :=w3é0(x")  for ae. x €Q, po:=w3p0 ® L.

Finally, let t — (u(t),e(t),p(t)) be a reduced quasistatic evolution for the boundary value
w(t) such that u(0) = ug, e(0) =ep, and p(0) = po, and let o(t) := Cre(t). Then the map
t— (us(t),é(t),p(t)) satisfies the following conditions:

(i) t (us(t),é(t), p(t)) is absolutely continuous from [0,T] into BH(w) x L*(w Mﬁ;n%)
X My(w U vg; M2%2) and u3(0) = vg, €(0) = ég, and p(0) = po;

sym

(ii) for every t € [0,T] we have (us(t), é(t),p(t) € Axr(ws(t)), 5(t) € B(w) N K (w),
divy dive () = 0 in w, bi(6(t)) =0 on v, and (bo(6(t)), v) = 0 for every v €
W2(w) with v="0 on vq;

(i1i) for a.e. t € [0,T] there holds

Ho(p(1) = (6(t), H(D))- (3.6.35)
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Proof. We first remark that (3.6.34) implies that the same property is fullfilled by H,.. This
latter condition is in turn equivalent to saying that the set K. is symmetric with respect to
the origin.

Condition (i) follows from Remark 3.5.7. By property (bl) of Theorem 3.6.13 we have
that o(t) € IC,.(Q) for every ¢ € [0,T]. Since K, is convex and symmetric with respect with
the origin, this implies that 6(t) € K, (w) for every ¢ € [0,7]. All the other conditions in
(ii) follow from Theorem 3.6.13.

By property (b2) of Theorem 3.6.13 and Proposition 3.6.8 we have

Hop(t) = (o(0), ) + L 6(0), pe)) — /Q oo ():eL (t) du
< LHGW) + (@00, 1)) - / o (t) 1 (1) da
= B0 - [ o0t [ a0 (3630

where the last inequality follows from (3.6.5) with ¢ = 1 and from the fact that o(t) € ()
and @(t) =0 for every t € [0,T]. On the other hand, setting

A(t) = [B(t)] + [p(t)] + £

for a.e. t € [0,7] and applying (3.6.34) and Jensen inequality, we obtain

HoApl) 2 /;/u |x3HT(d(p(t)+x3§§\t()t)_ éL(.Js)))d)\(t)dxs
> / UWHT< / . ()+$3P§\()) HEDIR
= B ) (3.6.37)

for a.e. t € [0,T]. Combining (3.6.36) and (3.6.37), we deduce that

*%(Qr( (1) + Qr(eL(t /w da:f/QaL(t):éL(t)d:cZO,
In particular, this implies that
Qr(e(t)) + Qr(eL(t)) < Qr(e(0)) + Qr(e1(0)) =0,

hence &(t) =0 and e, (t) = 0 for every ¢t € [0,T]. This, together with (3.6.36) and (3.6.37),
yields (3.6.35). O
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Chapter 4

Linearized plastic plate models

as ['-limits of 3D finite plasticity

4.1 Overview of the chapter

The subject of this chapter is the rigorous derivation of reduced models for a three-
dimensional plate of small thickness, whose elastic behaviour is nonlinear and whose plastic
response is that of finite plasticity with hardening, by means of I'-convergence. Denoting
by € the thickness of the plate, we analyse the case where the scaling factor of the elasto-

2a=2 with a > 3. According to the value of «, partially or fully

plastic energy is of order ¢
linearized models are deduced, which correspond, in the absence of plastic deformation, to

the Von Karman plate theory and the linearized plate theory.

The chapter is organized as follows: in Section 4.2 we recall some preliminary results and
we discuss the formulation of the problem. Section 4.3 is devoted to prove some compactness
results and liminf inequalities, while in Section 4.4 we show that the lower bounds obtained in
Section 4.3 are optimal. Finally, in Section 4.5 we deduce convergence of almost minimizers
of the three-dimensional energies to minimizers of the limit functionals and we discuss some

examples.

4.2 Preliminaries and setting of the problem

Let w C R? be a connected, bounded open set with Lipschitz boundary. Let & > 0.

We assume the set Q. = w x ( -5, %) to be the reference configuration of a finite-strain

elastoplastic plate.

We suppose that the boundary dw is partitioned into the union of two disjoint sets 74
and 7, and their common boundary, where 74 is such that H!(vy4) > 0. We denote by
I'. the portion of the lateral surface of the plate given by I'. := v4 X ( -5, %) . On T'. we
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4.2 Preliminaries and setting of the problem

prescribe a boundary datum of the form

¢ () ;:( v )+( et wlal) )fea*%gwo(x’) (4.2.1)

Z3 50¢—2,UO(1:/)

for z = (2/,ex3) € Q., where u® € Wh°(w;R?), v° € W2 (w) and o > 3.
We assume that every deformation n € W12(.;R?) of the plate fulfills the multiplica-
tive decomposition
Vn(xz) = Fe(x)Fp(z) for ae. z € Qe

where F,; € L*(Q.;M3*3) represents the elastic strain, Fj; € L?(Q;SL(3)) is the plastic
strain and SL(3) := {F € M®*3 : det F = 1}. The stored energy associated to a deformation

7 and to its elastic and plastic strains can be expressed as follows:

g(naF = / Wel V77( ) pl ( d:L’—i—/ Whard( pl( ))d

/Wel et ( d$+/ Whara(Fpi(x)) d (4.2.2)

where W, is the elastic energy density and Wj4,-q describes hardening.
Properties of the elastic energy density
We assume that W, : M3*3 — [0, +00] satisfies
H1) Wy € CYHM3*?), W = 400 on M3\ M3*3,
H2) Wy (Id) =0,

((RF) =W (F) for every R € SO(3), F € M3,
H4) We(F) > erdist®(F; SO(3))  for every F € M3,

(
(
(H3
(
(H5

)
) W
) W,
) |FTDWo(F)| < ea(We(F) + 1) for every F € M3

Here ¢y, ¢y are positive constants, M3*? := {F € M**3 : det I > 0} and SO(3) := {F €
M3X3 : FTF = Id}. We also assume that there exists a symmetric, positive semi-definite
tensor C : M3*3 — M2X3 such that, setting

sym
1
Q(F) := 5ch : F for every F € M>*3, (4.2.3)
the quadratic form @ encodes the local behaviour of W,; around the identity, namely

V6 > 0 3cei(8) > 0 such that VF € B, (5)(0) there holds [W(Id+ F) — Q(F)| < 6|F|.
(4.2.4)

Remark 4.2.1. By [17, Proposition 1.5] and by (H3) and (H5), there holds
|DWo(F)FT| < c3(We(F) + 1) for every F € M3*?, (4.2.5)

where ¢3 is a positive constant. Moreover, by (H1) and (H5), there exist ¢4, ¢5, ¥ > 0 such
that, for every G1, Gy € B,(Id) and for every F' € Mixg the following estimate holds true

Wet(G1F Ga) = Wa(F)| < ea(Wu(F) + ¢5)(1G1 — Id| + |G — Id]) (4.2.6)

(see [52, Lemma 4.1]).
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4. Linearized plastic plate models as I'-limits of 3D finite plasticity

Remark 4.2.2. As remarked in [52, Section 2], the frame-indifference condition (H3) yields
Cijrt = Cjire = Ciju, for every i,j,k,1 € {1,2,3}

and
CF =C(symF) for every F € M3*3,

Hence, the quadratic form @ satisfies:

Q(F) = Q(symF) for every F € M>*3

and by (H4) it is positive definite on symmetric matrices. This, in turn, implies that there

exist two constants r¢ and R¢ such that

rc|F|? < Q(F) < Re|F|* for every F € Mg;ﬁ, (4.2.7)
and
|CF| < 2R¢|F| for every F € MJ*3. (4.2.8)

Remark 4.2.3. We note that (4.2.4) entails, in particular,
We(Id) =0, DWg(Id)=0
and

PwW

C=D*Wy(Id), Cijm = ~r—me
l( ) Jkl aE]aFkl

(Id) for every i,7,k,l € {1,2,3}.
By combining (4.2.4) with (4.2.8) we deduce also that there exists a constant c.;, such that
|DWei(Id+ F)| < (2Rc + 1)|F| (4.2.9)

for every F € M3*3 | |F| < cqy, -

Properties of the hardening functional
We assume that the hardening map Whgrq : M3*3 — [0, +00] is of the form

Whard(F) for every F € K,
Whara(F) := _ (4.2.10)
400 otherwise.

Here K is a compact set in SL(3) that contains the identity as a relative interior point,
and the map Whapg : M3%3 — [0, +00) fulfills

Whm.d is locally Lipschitz continuous,

Whara(Id+ F) > cg|F|*  for every F € M>*3, (4.2.11)

where cg is a positive constant. We also assume that there exists a symmetric, positive
definite tensor B : M?*3 — M3*3 such that, setting

1 .
B(F) := §IB%F :F for every F € M?*3,
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4.2 Preliminaries and setting of the problem

the quadratic form B satisfies

V6 > 03cx(6) > 0 such that VF' € B, (5(0) there holds |thd(1d + F)— B(F)| <dB(F).

(4.2.12)
In particular, by the hypotheses on K there exists a constant ¢, such that
|F| +|F7Y <cp forevery F € K, (4.2.13)
|F — Id| > i for every F € SL(3) \ K. (4.2.14)
Combining (4.2.11) and (4.2.12) we deduce also
%6|F|2 < B(F) for every F' € M*<3, (4.2.15)

Dissipation functional

Denote by Mgbxg the set of trace-free symmetric matrices, namely

M3 = {F e M2%3 . tr F = 0}.

sym
Let Hp : M?]DX?’ — [0, +00) be a convex, positively one-homogeneous function such that
r|F| < Hp(F) < Rg|F| for every F € M&. (4.2.16)

We define the dissipation potential H : M3*3 — [0, +00] as

H(P) Hp(F) if F e My,
' +00 otherwise.

For every F € M3*3, we consider the quantity

1
D(Id, F) := inf {/O H(é(t)e 2 () dt : c € CL([0,1; M), ¢(0) = Id, c(1) = F}

(4.2.17)
Note that if D(Id, F') < o0, then F € SL(3).
We define the dissipation distance as the map D : M>*3 x M3*3 — [0, +00], given by

D(FL. Fy) = D(Id,FoF7Y) if Fy € MY?, Fy € M3
+00 if Fy ¢ M3*%, Fy € M3,
We note that the map D satisfies the triangle inequality
D(F1, Fy) < D(Fy, F3) + D(F3, Fy) (4.2.18)
for every Fi, Fy, F3 € M3*3,

Remark 4.2.4. We remark that there exists a positive constant c; such that

D(Fy,F>) <c¢; forevery Fy, Fy € K, (4.2.19)
D(Id,F) < ¢7|F —Id| for every F € K. (4.2.20)
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4. Linearized plastic plate models as T'-limits of 3D finite plasticity

Indeed, by the compactness of K and the continuity of the map D on SL(3) x SL(3) (see

[49]), there exists a constant ¢4 such that
D(Fy,Fy) <é4 for every Fy, F» € K. (4.2.21)

By the previous estimate, (4.2.20) needs only to be proved in a neighbourhood of the identity.
More precisely, let 6 > 0 be such that log F' is well defined for F € K and |F —Id| < §. If
F € K is such that |F' — Id| > §, by (4.2.21) we deduce

D(Id, F) < %4|F —Id.
If |F —Id| <4, taking c(t) = exp(tlog F') in (4.2.17), inequality (4.2.16) yields
D(Id,F) < Hp(log F) < Ri|log F| < C|F — Id|
for every F € K. Collecting the previous estimates we deduce (4.2.19) and (4.2.20).

Change of variable and formulation of the problem
As usual in dimension reduction problems we perform a change of variable to formulate the

problem on a domain independent of €. We consider the set  := w X ( — %, %) and the

map ¢ :  — Q. given by
Ye(x) == (2',ex3) for every x € Q.
To every deformation n € W12(Q,; R3) satisfying
n(z) = ¢°(z) M- ae. onl.

and to every plastic strain F,, € L*(Q;SL(3)) we associate the scaled deformation y :=
no° and the scaled plastic strain P := F},; o ¢°. Denoting by I'q the set 4 x ( — %, %),

the scaled deformation satisfies the boundary condition
y(z) = ¢°(2',ex3) H>- ae. on Ty (4.2.22)

Applying this change of variable to (4.2.2), the energy functional is now given by
1
I(y, P) == gfi’(n,Fpl) = / Wel(VEy(x)P_l(x))dx—i—/ Whara(P()) dz,
Q Q

where V.y(z) := (01y(z)|02y(x)|L5y(z)) for ae. x € Q.
Denote by A.(¢°) the class of pairs (y°, P?) € W12(Q;R3) x L?(Q; SL(3)) such that
(4.2.22) is satisfied. We associate to each pair (y°, P¢) € A.(¢°) the scaled energy given by

1 e,0 5
— /QD(P’ ,P?)dx, (4.2.23)

g g 151 1 g 151
Taly" PF) = oy O P +

where « > 3 is the same exponent as in (4.2.1) and P is a map in L?(2; SL(3)), which

represents a preexistent plastic strain.
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4.3 Compactness results and liminf inequality

Remark 4.2.5. We are interested in studying the asymptotic behaviour of sequences of pairs
(y, P?) € A.(¢°) such that the scaled total energies J:Z(y°, P°) are uniformly bounded.

This, in particular, holds for sequences of (almost) minimizers of

I(y,P) - /Q feyda, (4.2.24)

whenever the applied forces f€ are of order e, with o > 3. In fact by [34, Theorem 2],
in the absence of plastic deformation (P = Id), the elastic energy on (almost) minimizing
sequences scales like €272, In order to have interaction between the elastic and the plastic

2a=2 Finally,

energy at the limit we are lead to rescale also the hardening functional by ¢
the scaling of the dissipation functional is motivated by its linear growth and by the estimate
(4.2.20).

Our choice of the boundary datum is again motivated by [34, Theorem 2]. Indeed,
as remarked in the introduction, the structure of ¢° is compatible with the structure of

(almost) minimizers of (4.2.24) in absence of plastic deformation, as ¢ — 0.

4.3 Compactness results and liminf inequality

In this section we study compactness properties of sequences of pairs in A, (¢°) satisfying

the uniform energy estimate
JS(ye,PF) < C for every e. (4.3.1)

To state the compactness results it is useful to introduce the following notation: given
¢ : Q= R3, we denote by ¢ : Q2 — R? the map

/._(901)
¥ =
P2

0
and for every n € W2(Q) we denote by V'n the vector ( v

27
matrix M € M3*3, we use the notation M’ to represent the minor

) . Analogously, for every

M o= ( M1y Mia >

M21 M22

Given a sequence of deformations (y°) C WH2(Q;R?), we consider some associated
quantities: the in-plane displacements
1 3

uf (') = g / ((v°)'(a',23) — a') dxg  for ae. 2’ € w, (4.3.2)

1
2

the out-of-plane displacements

1

1 3
ve () = —2/ y5(2' z3) dxs  for ae. 2’ € w, (4.3.3)

N

S

118



4. Linearized plastic plate models as I'-limits of 3D finite plasticity

and the first order moments

/

1 3
&) = g /_1 T3 (ya(;v’,acg) - ( 523 )) dzs for a.e. 2’ € w. (4.3.4)

2

A key tool to establish compactness of in-plane and out-of-plane displacements is the
rigidity estimate due to Friesecke, James and Miiller (see Section 1.2). The rigidity esti-
mate provided in Theorem 1.2.1 allows us to approximate sequences of deformations whose
distance of the gradient from SO(3) is uniformly bounded, by means of rotations. More

precisely, the following theorem holds true.

Theorem 4.3.1. Assume that o > 3. Let (y°) be a sequence of deformations in W2(Q; R?)
satisfying (4.2.22) and such that

||diSt(V5ys, So(g))”LQ(Q;MFX?’) < C&a_l. (435)
Then, there erists a sequence (RF) C W (w; M3*3) such that for every € >0

4.3.6
4.3.7
4.3.8
4.3.9

Re(2') € SO(3) for every 2’ € w,
HVsyf — REHLQ(Q;ML«;xa) < C{:‘ail,
Haz‘REHLZ(MMsxa) < Cé‘a*Q, 1=1,2

(
(
(
|R® — IdHLZ(w;M3><3) < Cev2, (

)
)
)
)

Proof. Arguing as in [34, Theorem 6 and Remark 5] we can construct a sequence of maps
Rf € WHee(w; M3*3) satisfying (4.3.6)—(4.3.8). To complete the proof of the theorem it
remains only to prove (4.3.9).

To this aim, we preliminarily recall that there exists a neighbourhood U of SO(3) where
the projection IT : U — SO(3) onto SO(3) is well defined. By Poincaré inequality, (4.3.8)

yields
HRs - ][ RE do

On the other hand, by (4.3.6) we have

< Ce* 2 (4.3.10)
L2 (w;MB3x3)

distz(][ R da:’,SO(3)>£2(w) < HRE - ][ ra|’

L2(w;M3%3)

Hence, by (4.3.10) for e small enough we can define R® := II(f, R® dz'), which fulfills

‘Rf - ][ R° do

< Cev2,
L2 (w;M3%3)

< CHRE - ][ R da'

1R — BE|| 2 aponsy < HRE - ][ R da’ + H f R di' — R < Ceo?
w L2 (w;M3%3) w L2 (w;M3%3)
To prove (4.3.9) it is now enough to show that
|RE — Id| < Ce*72. (4.3.11)
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4.3 Compactness results and liminf inequality

To this purpose, we argue as in [39, Section 4.2, Lemma 13]. We consider the sequences

Ra — (éE)TR€7
gs — (Rs)Tys _ CE,

1
1 1
s (x') == g /2 ((7°)(2',23) — 2') dxg  for ae. 2’ € w,

Nl

[N

1
7% (') == 50‘7*2/ 75(2' x3) dxs  for ae. 2’ € w,

E) = [

[N

/

T3 (178(96/,963) - ( v )) drs for ae. 2’/ € w,
1 ET3

N=

N

where the constants ¢ are chosen in such a way that

/Q (7°(z) — x) dz = 0.

By [34, Lemma 1 and Corollary 1], there exist & € Wh2(w;R?), & € W22(w) and & €
W12(w;R3) such that

@ — 4 weakly in Wh?(w; R?), (4.3.12)
° = 0 strongly in Wh?(w), (4.3.13)
£ — € weakly in WhH2(w; R%). (4.3.14)

We now write u®,v® and £° in terms of @°,70° and £°. We have

€a71u€($/) A J?/ Ao 6(171&5(1:/) Ao .
( 02 (o) ) = (R —1a)( )+ e ( 0258 (1) )+ R (4.3.15)
for a.e. 2’ € w and

1
T 12e0—2

£ (') (R® — Id)es + R°€5(z') for ae. 2’ € w. (4.3.16)

By (4.3.14) there exists a constant C' such that ||§:5||L2(,M;R3) < C for every €. Moreover,
by (4.2.1) and (4.2.22) there holds

1
&) = 6:1/_1 x3 (¢E($/,E$3) - ( ;;/3 )) das = ( —IIQV(’JUO(I/) ) H!- ae. on g,
hence (£9) is uniformly bounded in L2(y4;R3). Therefore, by (4.3.16) we deduce
(R — Id)es| < Ce®2||¢° — REE%|| 12 (p me) < Ce®2, (4.3.17)
for every €. Since R® € SO(3), (4.3.17) implies that
[(RE — Id)Tes| < Ce®? (4.3.18)
for every e and there exists a sequence (Q°) € SO(2) such that

(RF) — Q°| < Ce* 2 (4.3.19)
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4. Linearized plastic plate models as T'-limits of 3D finite plasticity

Now, without loss of generality we can assume that

/ ' dH'(z') =0 and |2/ |> dH' (z') = ¢ > 0. (4.3.20)
Yd

Yd

By (4.3.12) and (4.3.13) we have |[|@°| 12 (y,;r2) + 10°]|22(4,) < C for every . On the other
hand (4.2.1) and (4.2.22) imply that

u(z') =u’(z') and 0°(z') =0%(2') H'- ae. on vy,

hence both (uf) and (v¢) are uniformly bounded in L?(v4;R?) and L?(7y4), respectively.
Therefore, by (4.3.15) and (4.3.19) we deduce

(QF — Id)a' + (REcF)'| < Ce®2, (4.3.21)

The two terms in the left hand side of (4.3.21) are orthogonal in the sense of L?(y4;R?) by
(4.3.20), hence (4.3.21) implies that

Q7 — Id)a’|[ 72y, oy < C*2.
Since Q° € SO(2), it satisfies
2(Q° — Id)2'|> = |Q° — Id)?|2'|*> for every 2’ € 4.
Therefore, applying again (4.3.20) we obtain

Q7 —1dP =2 | Q7 ~ 1d’[o’ P dH! (') < Ce*72). (4.3.22)

Yd

Claim (4.3.11) follows now by collecting (4.3.17)—(4.3.19) and (4.3.22). O

In the remaining of this section we shall establish some compactness results for the
displacements defined in (4.3.2) and (4.3.3), and we shall prove a liminf inequality both for
the energy functional and the dissipation potential.

We first introduce the limit functional. Let A : M2*2 — M3X3 be the operator given by

sym

sym Ao (F) ) for every F' € M?*?

AF = <
M(F) Aa(F) A3(F)
where for every F € M?*2 the triple (A\1(F), \a(F), A\3(F)) is the unique solution to the

minimum problem
AL
min Q( symF" Ao >

ek A Mg Az

We remark that for every F € M?X2 A(F) is given by the unique solution to the linear

equation
0 0 X
CA(F): ( 0 0 X ) =0 for every Ai, A3, A3 € R. (4.3.23)
Al AQ A3
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4.3 Compactness results and liminf inequality

This implies, in particular, that A is linear.
We define the quadratic form Qg : M2*2 — [0, +00) as

Q2(F) = Q(A(F)) for every F € M?**2,

By properties of @, we have that ()s is positive definite on symmetric matrices. We also
define the tensor Cy : M2*2 — M3X3 | given by

sym

CyF := CA(F) for every F' € M?*2. (4.3.24)

We remark that by (4.3.23) there holds

CoF : G=CyF: ( SyrgG 8 ) for every F € M?*?, G € M3*3 (4.3.25)
and
1 F
Q2(F) = E(CQF : ( Syr:)l 8 ) for every F' € M?*2,

Remark 4.3.2. We note that in the case where the tensors in formulas (3.2.1) and (4.2.3)
coincide, then Qo(F) = Q,.(F) for every M?*2, where @, is the quadratic form defined in
(3.4.3).

Denoting by A(u’,v°) the set of triples (u,v,p) € W12(Q;R?) x W22(Q) x L2(Q; M5 ?)
such that
u(z’) = u(2’), w(x’) =2"’), and Vu(z') = Vo(z') H' - ae. on g,

we introduce the functionals 7, : A(u°,v%) — [0, +00), given by

To(u,v,p) ::/Qg(symv/ufxg(v dm+/B der/HDp p°) dz
Q )
(4.3.26)

for a > 3, and
Ts(u,v,p) = / Q2 (symV'u+ Vv ® V'v — 23(V')?v — p') da + / B(p) dx
Q Q
+ / Hp(p—p°)dz, (4.3.27)
Q

for every (u,v,p) € A(u’,v°). In the expressions of the functionals, p° is a given map in
L2(; MBDXB) that represents the history of the plastic deformations.

Finally, for every sequence (y¢) in W12(Q;R3) satisfying both (4.2.22) and (4.3.5), we
introduce the strains

(R*(2))"Vey (2) — Id
sa—l

G*(x) == for a.e. z €, (4.3.28)

where the maps R® are the pointwise rotations provided by Theorem 4.3.1.

We are now in a position to state the main result of this section.
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4. Linearized plastic plate models as T'-limits of 3D finite plasticity

Theorem 4.3.3. Assume that o > 3. Let (y°,P%) be a sequence of pairs in A, (¢°)
satisfying
I(y5, P?) < O (4.3.29)

for every € > 0. Let u®, v° and G° be defined as in (4.3.2), (4.3.3) and (4.3.28), respec-
tively. Then, there exists (u,v,p) € A(u®,v°) such that, up to subsequences, there hold

!

y° — ( a(c) ) strongly in W12 (Q; R?), (4.3.30)

u® —u  weakly in W% (w; R?), (4.3.31)

v — v strongly in W2 (w), (4.3.32)
/,,E

l%g — V'v  strongly in L*(Q;R?), (4.3.33)

and the following estimate holds true

7| () < OO (4.3.34)

[
5
Moreover, there exists G € L*(Q; M3*3) such that
G —~ G weakly in L*(Q;M3*3), (4.3.35)

and the 2 x 2 submatriz G’ satisfies

G'(2',23) = Go(2) — 23(V') (')  for a.e. 2 € Q, (4.3.36)
where
/ A4 T A4 \vii
sym Go = Lt ( “)2+ vOVY) 3, (4.3.37)
sym Gy = symV'u  if a > 3. (4.3.38)
The sequence of plastic strains (P€) fulfills
Pe(z) e K for a.e. x €1, (4.3.39)
and
| P* — Id||p2(0mexs) < Ce® (4.3.40)
for every €. Moreover, setting
. P—1Id
P (4.3.41)
up to subsequences
p° —p weakly in L?(€;M3*3). (4.3.42)
Finally,
1
/Qg(symG' —p)dx < liminf —— / Wa(Vey® (P)™Y) de (4.3.43)
Q e—0 g2~ Q
and )
< limi © . 3.
/QB(p) dx < hgn_}glf 202 /QWhard(P ) dz (4.3.44)
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4.3 Compactness results and liminf inequality

If in addition
1
50(71

/ D(P*° P*)dx < C  for everye >0 (4.3.45)
Q

and there exist a map p° € L*(QM53) and a sequence (p=°) € L*(QM>*3) such that
PO = Id + 27 1p=0  with p=° — p° weakly in L?(Q;M3*3), then

1
/HD(p—pO)deIiminf 1/D(P6’0,P5)d:c. (4.3.46)
Q e—=0 go— Q

Proof. We first remark that by (4.3.29) there holds
/ Whard(PE) dz S 052(1—27 (4347)
Q

which, together with (4.2.10), implies (4.3.39). On the other hand, combining (4.2.11) and
(4.3.47) we deduce

3| PF — IdH%Z(Q;M(SXS) < / Whard(PE) dr < 05205727
Q

which in turn yields (4.3.40) and (4.3.42).
Let R € SO(3). By (4.2.13), (4.3.39) and (4.3.41) there holds

‘veys o R|2 _ |v6y5 o RPE +€a71Rp6|2 S 2(|Vsy€(P€)’1 o R‘2‘P5|2 +{,_:20472|p.5‘2)
<26k |Vey (PF) ™! = R + 2272 p° %,

Hence, the growth condition (H4) implies
[dist (Vey®, SO3))||72 s xsy < C(/QWel(VsyE(PE)_l)dl" +52a_2||p8H%2(Q;M3><3))7

which in turn yields
[dist(V.y", SO(3))|[3a o) <

by (4.3.29) and (4.3.42).

Due to (4.2.22), the deformations (y°) fulfill the hypotheses of Theorem 4.3.1. Hence,
we can construct a sequence (Rf) in W1 (w; M3*3) satisfying (4.3.6)—(4.3.9). Properties
(4.3.30)—(4.3.33) and (4.3.35)—(4.3.38) follow arguing as in [34, Lemma 1, Corollary 1 and
Lemma 2|. The only difference is due to the fact that compactness is now achieved by using
the boundary condition (4.2.22), instead of performing a normalization of the deformations

0, v=1° and

y©. Moreover the limit in-plane and out-of-plane displacements satisfy u = u
Vv =V Hl-ae. on qq.

By Poincaré inequality and the definition of v, there holds

| Y3
€
hence (4.3.34) is a consequence of (4.3.7) and (4.3.9).

Inequality (4.3.46) follows by adapting [52, Lemmas 3.4 and 3.5].

The proof of (4.3.43) and (4.3.44) is based on an adaptation of [52, Proof of Lemma 3.3]:

we give a sketch for convenience of the reader. Fix § > 0, let O, be the set

3,

8 £
—x3 — % <C3—y3—1‘

L2(Q) H €

L2(Q)’

0. = fa: & ' (2)] < en(0)}
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4. Linearized plastic plate models as T'-limits of 3D finite plasticity

and let x. be its characteristic function. By (4.3.42) and by Chebyshev inequality there
holds
L3(Q\ 0.) < Ce**2,

hence by (4.2.12) and (4.3.29), we deduce

liminf —— /Whard daﬁ>hm1nf 1-9 /B Yxedz > (1-4) /B )dx (4.3.48)
e—=0 €

which yields (4.3.44). To prove the liminf inequality for the elastic energy, we introduce the
auxiliary tensors
ps -1 _ Id a—1,¢
wE — ( ) +e€ p _ Eafl(Ps)fl(pe)Q' (4349)

Ea—l

By (4.2.13) and (4.3.39), there exists a constant C' such that
e HIp®|| oo (upazxsy < C (4.3.50)

and
605_1ng||Loc(s2;1vﬂ3x3) <C (4.3.51)

for every e. Furthermore, by (4.3.42),
lwe ]| L1 (m3x3) < Ce® 1 for every e.

By the two previous estimates it follows that (w®) is uniformly bounded in L?(Q;M?3*3)

and
w® — 0 weakly in L?(Q; M>*?). (4.3.52)

For every ¢ we consider the map

1 o -
Fe = g ((Id+e7'Go)(Pe) ™" — Id).
By the frame-indifference hypothesis (H3) there holds

W (Vey*(P?)™Y) = We(Id + 7' F*).

On the other hand,
Fe = G¢ + we _ps +8a71Gs(ws _ps).

Combining (4.3.35), (4.3.42) and (4.3.50)—(4.3.52) we deduce
F® ~ G —p weakly in L?(€; M3*3).

Therefore, by (4.2.4) and arguing as in the proof of (4.3.48) we conclude that

/Qg(symG'—p’)dazg/Q(SymG—p)dac
Q

< liminf
e—0 625‘ 2

/ Wo(Voy? (P)Y) da, (4.3.53)
which in turn implies (4.3.43). O
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4.4 Construction of the recovery sequence

4.4 Construction of the recovery sequence

In this section, under some additional hypotheses on the sequence (p°) and on 74, we
prove that the lower bound obtained in Theorem 4.3.3 is optimal by exhibiting a recovery

sequence.

Theorem 4.4.1. Assume that a« > 3 and 4 is a finite union of disjoint (nontrivial) closed
intervals (i.e., mazimally connected sets) in Ow. Let p° € L>®(Q;M%53) be such that there

exists a sequence (p=°) C LOO(Q;M%X?’) satisfying
||ps’0||L°°(Q;M%X3) < C for everye, (4.4.1)

"0 = p°  strongly in L'(Q; M%®). (4.4.2)

Assume also that for every € the map PV := Id + 2 'p=¥ satisfies det P&0 = 1. Let
(u,v,p) € A(u®,vY). Then, there exists a sequence (y°, P) € A.(¢F) such that, defining
u®,v° and p° as in (4.3.2), (4.3.3) and (4.3.41), we have

/

y° = ( 1(; ) strongly in W2(Q; R?), (4.4.3)
u® — u  strongly in Wh?(w; R?), (4.4.4)
v — v strongly in W (w), (4.4.5)
p° —p  strongly in L*(Q;M3*3). (4.4.6)
Moreover,
lir% TS5, P®) = Ja(u,v,p), (4.4.7)
e—

where JS and J, are the functionals introduced in (4.2.23), (4.3.26) and (4.3.27).

Proof. For the sake of simplicity we divide the proof into two steps.

Step 1

Let (u,v,p) € A(u®,v"). We first remark that by a standard approximation argument we
may assume that p € C°(; M3DX3). Moreover, we claim that we can always reduce to the
case where u € W1 *°(w; R?) and v € W2 (w). That is, we can approximate the pair (u,v)
in the sense of (4.4.4)-(4.4.5) by a sequence of pairs (u*,v*) in W5 (w;R?) x W2 (w)
satisfying the same boundary conditions as (u,v) on 74, and such that, for a > 3,

: TN N2, A
)\ETOO QQ2<symVu x3(V')v p)dx

= Q (symV’u —23(V')%0 — p’) dz, (4.4.8)
o)
whereas for a = 3
1
lim / Q2 (symV'u’\ + -V @ Vot — 23(V')20? — p’) dx

1
= / Q- (symV'u + §V’v ® Vv —23(V') %0 — p’) dx. (4.4.9)
Q
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4. Linearized plastic plate models as T'-limits of 3D finite plasticity

By the hypotheses on ~4, we may apply [33, Proposition A.2], and for every A > 0 we
construct a pair (u*,v) € WH*°(w; R2?) x W2 (w), such that (u*, v}, p) € A(u®, %),

[u [[wroe w2y + [0 w2 () < OA, (4.4.10)
and setting
W= {2’ cw:uM2)) £ u(z’) or v (2)) £ v(2))},
there holds
lim A2L%(wt) = 0. (4.4.11)

A——+o0

Now, by (4.4.10) we obtain

”u)\ - u‘lWl*2(w;R2) < C(HU’A - u||L2(w)‘;]R2) + ||V,u)\ - V/U”Lz(wk;szz))

1
< O(HUHLQ(WA;RQ) + Hv/u||L2(w’\;M2><2) + /\(‘C’Q(w/\)) 2)
and, analogously
1
[0 = vllw22@r2) < C(l[vllz2@r) + IV 0l L2@rmey + 170l L2 @r ey + A(L2 (W) 7).
Hence, by (4.4.11) we deduce
u* = u  strongly in W% (w; R?) (4.4.12)

and
vd — v strongly in W2 (w), (4.4.13)

as A — +oo. Therefore, in particular
V'v* = V'v  strongly in LP(w;R?) for every p € [2, +00). (4.4.14)

By (4.4.12)—(4.4.14) we obtain (4.4.8) and (4.4.9).
Step 2
To complete the proof of the theorem we shall prove that for every triple (u, v, p) € A(u°, %),
with u € Wh(w; R?),v € W2®(w) and p € C(QM%5®) we can construct a sequence
(ye, P?) € A(¢°) satistying (4.4.3)—(4.4.7).

To this purpose, consider the functions

a—1

Pe :=exp(e

1 _
p) and p° = e (exp(e*~1p) — Id).

Since p € C°(Q;M%53), it is immediate to see that det P¢(x) = 1 for every ¢ and for all
x € 2. Moreover, there exists €9 > 0 such that

Pe(z) e K for every x € Q and for all 0 < e < g,

and there holds
p° — p uniformly in €,

which in turn implies (4.4.6). Furthermore,
| P — Id|| pos (mzxay < Ce* 1,

127



4.4 Construction of the recovery sequence

and by (4.2.12), for every 6 > 0 there exists €5 such that if 0 < e < €5 there holds

_ € <
520‘ 2/V[/;W«d ) dx /QB(p )dx' _J/QBp

By (4.4.6) we deduce that

Eh_% o 2/thd dx:/QB(p) dx. (4.4.15)

To study the dissipation potential, we first remark that by (4.4.1), for £ small enough,
there holds
exp(e*1p=0(2))(P=°) " (x) € K for every x € Q. (4.4.16)

Hence, by (4.2.18) and (4.2.20) the following estimate holds true:

/D(PE’O,PE)d:U < /D (P=0 exp(e®*~1p=0)) dx
Q

ca—l1 ca—l1
+ Ea,l/D(eXp(Eo“lps’O),exp(ﬁ“‘lp))dw
Q
C a—1_¢,0 e,0\—1
< e |exp(e® " p=")(P=") ™" — Id| dx
Q

1
b oy [ DUdexp(e - 7)) do.
Q

By the positive homogeneity of Hp and taking c(t) = exp(e* 1 (p — p=9)t) in (4.2.17), we
obtain

1
/ D(Id,exp(e*~ (p — p°)) du < / Hp(p - p™°) da.
Q Q

On the other hand, by (4.4.1) there holds
/Q |exp(e®1p=0) (P — Id|dx < ek /Q lexp(e*1p0) — Id — e 1p=0| dx < Ce?*72.
Collecting the previous estimates we deduce

%/QD(P&O,PE) dr < /QHD(p —p)dx + Ce* 1,

which in turn, by (4.4.2), yields

limsup — [ D(P*% P°)dx < | Hp(p—p°)da. (4.4.17)
e—0 €% Q Q

Let d € C°(2;R?) and consider the deformations

/

Yo () := ( ;3 ) +5a_1( u(a’) = ?v/”(f) ) +5a—2< U((;/) ) +e° /_xj d(z',s)ds

for every x € Q. It is immediate to see that the sequence (y°) fulfills both (4.2.22) and

(4.4.3). We note that
u®(z") —1—5/ / (2, 8)ds dxs
1) 1
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4. Linearized plastic plate models as T'-limits of 3D finite plasticity

and

v (2') = v(z’) + & ds(2',s) ds dxs

for every a’ € w, hence both (4.4.4) and (4.4.5) hold true. To complete the proof of the
theorem, it remains to show that for a@ > 3

V'u —z3(V')%0

lim 82O(L_Q/QVVel(VEyE(PE)*l)dac = /QQ<sym< }d) —p) dz, (4.4.18)

e—0 0
and for a = 3,
li iy [ WV () ) do
B V'u+ 3V'v @ Vv —23(V')?v d
= /QQ(Sym( 0 ds + [V'0? ) —p> dz.

(4.4.19)
Indeed, if (4.4.18) holds, then by a standard approximation argument we may assume that

V'u — x3(V') %0

Q(sym( 0 ‘d) - p) = Qs (sym V'u — z3(V')?v — p').

Analogously, if (4.4.19) holds we may assume that

Q(s ( Viu+ iV'0 @ Vv — 23(V')v ‘ d ) )
m , —
Y 0 dg + 1922 ) 7P
1
= Qs (sym V'u + §V'v @ V'v — z3(V') %0 — p’).
In both cases by (4.4.15), (4.4.17), and Theorem 4.3.3, we obtain (4.4.7).
To prove (4.4.18) and (4.4.19) we first note that

eyt = Id+ e ( Viu = %3(VI)QU ‘d) +eo7( (V’OU)T _Z/U ) +0().

Hence, in particular, det(V.y°) > 0 for ¢ small enough. On the other hand, by the frame-
indifference hypothesis (H3), there holds

W (V.oys (PF)~L) = Wel(\/(VEyE)TvayE(Ps)_l) a.e. in Q.

A direct computation yields

1y 7\2
\/ (Veye)TV ye = Id—i—so‘_lsym( Viu 9;3(V) v ’d)

g2a—4 ( Vv ® Vv 0
2 0 Nk

+ ) +o(e*™h),

and
W (Veyt(P2) ") = W (Id+e* ' My +0(e*7"))  ae. in Q,
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4.5 Convergence of minimizers and characterization of the limit functional

where

V'u— v/2
sym( u = 2 )v‘d)—p if a > 3,

d/

Viu+ Vv @ Vv — 23(V')v )
Vo2 ) —p ifa=3.
2

sym ( ‘
0 ds +

Fix § > 0. For every a > 3 we have M, € L>(£;M3*3), therefore for € small enough
||€a71Ma + O(€a71)||Loo(Q;M3><3) < Cel((g).

By (4.2.4), we deduce
: 1 £ ey—1 0(€2a_2)
hmsup Sa_3 Wel(Vsy (P ) )d.’I} — Q(Ma> dr — ﬂ‘ S ) Q(Ma) dx.
e—0 1€ Q Q € Q

Claims (4.4.18) and (4.4.19) follow now by letting ¢ tend to zero. O

4.5 Convergence of minimizers and characterization of

the limit functional

In this section we deduce convergence of almost minimizers of the three-dimensional
energies to minimizers of the limit functional and we show some examples where a charac-

terization of the limit functional can be provided in terms of two-dimensional quantities.

The compactness and liminf inequalities proved in Theorem 4.3.3 and the limsup in-

equality deduced in Theorem 4.4.1 allow us to obtain the main result of the chapter.

Theorem 4.5.1. Assume that a > 3 and 74 is a finite union of disjoint (nontrivial) closed
intervals in the relative topology of Ow. Let p° € LOO(Q;M%XB) be such that there exists a
sequence (p=Y) C L°°(Q;M%X3) satisfying

||p870||L°°(Q;M%X3) <C,
p=0 — p®  strongly in LI(Q;M?bxg)'

Assume also that for every e the map P%° := Id + e* 1p=° satisfies det PS° =1 a.e. in
Q. Let ¢° be defined as in (4.2.1) and let JE and J, be the functionals given by (4.2.23),
(4.3.26) and (4.3.27). For every € > 0, let (y°, P?) € A.(¢°) be such that

“(ye, Pf) — inf “(y,P) < 4.5.1
T P = ot TE(P) < s (45.1)

where s, — 07 as € — 0. Finally, let u®, v° and p° be the displacements and scaled plastic
strain introduced in (4.3.2), (4.3.3) and (4.3.41). Then, there exists a triple (u,v,p) €
A(u®,0%) such that, up to subsequences, there holds

u® —u  strongly in Wh2(w; R?), (4.5.2)
v = v strongly in W2 (w), (4.5.3)
p° —p  strongly in L?(Q; M>*3). (4.5.4)
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4. Linearized plastic plate models as T'-limits of 3D finite plasticity

Moreover, (u,v,p) is a minimizer of J, and
lim 75 (y°, P°) = Ja(u,v,p). (4.5.5)
e—0

Proof. By Theorems 4.3.3 and 4.4.1 and by standard arguments in I"-convergence we deduce
(4.5.3), we show that

u® —u  weakly in WhH?(w; R?),
p° —p weakly in L?(Q; M3*3),

where (u,v,p) € A(u®,v°) is a minimizer of 7, , and we prove (4.5.5). Strong convergence
of u¢ and p° follows by (4.5.5) and by adaptating Corollaries 5.4.3 and 5.4.2. O

We remark that the limit plastic strain p depends nontrivially on the x3 variable. There-
fore, the limit functionals 7, cannot, in general, be expressed in terms of two-dimensional
quantities only. A characterization of the functionals in terms of the zeroth and first or-
der moments of p can be obtained arguing as follows. Denote by p,p € L? (W;M%XS) and
pL € L2(Q;M%®) the following orthogonal components (in the sense of L2(Q;M%®)) of
the plastic strain p:

1
p(x) ::/ p(a', z3) dxs, p(’) = 12/ z3p(x’,x3)drs  for a.e. 2’ € w,

1
2

=

and
pi(x) = p(z) — p(z') — z3p(z’) for a.e. z € Q.

Then the functionals 7, can be written in terms of p,p,p, as
Talwvp) = [ QuloymV'u—p)do +—/Q2 Yo+ ) do!
w
+ [ @+ [ o+ 3 [ Bea
Q
—I—/B(pJ_)das—l—/Hp(p—po)clav7
Q Q
for a > 3, and
Js3(u,v,p) = / Qa2 (symV'u+ iV'v @ Vv —p') do’
/Qz Vv +p) da’ +/Q2pl dm+/B(p)d:v'

/B dx+/Bpde+/HD dx,

for every (u,v,p) € A(u® ).
Under additional hypotheses on the boundary data and the preexistent limit plastic
strain p°, some two-dimensional characterizations of the limit model can be deduced in the

case « > 3. To this purpose, we introduce the reduced functionals
Jo(u,p) == / Q2(symV'u — p') dx’ + / B(p) dz’' + / Hp(p—p°) da’ (4.5.6)
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4.5 Convergence of minimizers and characterization of the limit functional

for every (u,p) € WH2(w;R?) x L?(w; M3?) such that u =" H! - a.e. on 74, and
Talw.d) = [ QP+ i) de’ [ B@)d'+ [ Ho- ) do (45.7)

for every (v,p) € W22(w) x L?(w; M3?) such that v = 1% and V'v = V' H! - ae. on

Yd -
We first show an example where 7, reduces to J,, that is the limit model depends just

on the in-plane displacement and the zeroth moment of the plastic strain.

Theorem 4.5.2. Under the hypotheses of Theorem 4.5.1, if @ > 3, p® = p°, with p° €
LOO(W;M%X?’), and v° =0 then, denofing by p the zeroth moment of the limit plastic strain
p, the pair (u,p) is a minimizer of Jo and

lim J:(y°, P?) = Tolu,p).

e—0

Proof. By Jensen inequality,

[ oo do = [ Ho(p- 5 ds'
Q w
hence there holds
Ja(u,v,p) > Ju(u,p).
On the other hand, by setting

a—1-

P® = exp (7 'p)

and
! xrs3

7= ( :a:; >+5a_1< 1(; )—1—50‘/_1 d(z',s)ds,

with d € C2°(Q;R3), then (J, PF) € A.(¢7) and an adaptation of Theorem 4.4.1 yields
lim T3 (57, P°) = Ja(u, p).
e—0
By combining the previous remarks we have
Ja(t,0,p) > Ja(u,p) = lim T3 (57, P7) > lim T3 (47, P°).
e—0 e—=0
The thesis follows now by Theorem 4.5.1 U

We conclude this section by providing an example where, if Hp is homogeneous of degree
one, the I'-limit 7, reduces to ja, that is the limit model depends just on the out-of-plane
displacement and the first order moment of the plastic strain.

Theorem 4.5.3. Assume the function Hp to be homogeneous of degree one, i.e.,
Hp(\E) = |\Hp (&)  for every A € R, £ € M>*3, (4.5.8)

Under the hypotheses of Theorem 4.5.1, if a > 3, p° = x3p°, with p° € Loo(w;M%XS) , and
u% = 0 then, denoting by p the first order moment of the limit plastic strain p, the pair
(v,p) is a minimizer of Jy and

: e(, € DE\ _ L . N
gl_I)T(l)joé(y 7P )*Ejoxvap)'
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4. Linearized plastic plate models as T'-limits of 3D finite plasticity

Proof. By Jensen inequality and (4.5.8) we deduce,

/ Hp(p—p°)de > / l2s| Hp(p — p°) do = / Hp(wsp — a3p”) da > L / Hp(p— 1) da,
Q Q Q w

which in turn implies

ja(uavap) Z %jﬂf(vﬂﬁ)'

On the other hand, by setting
P? = exp (e* tw3p)

7= ( :;; ) —50‘*1x3< V(;v ) +s°‘*2( 8 ) + e /13 d(z',s)ds,

with d € C2°(€;R?), an adaptation of Theorem 4.4.1 yields

and

: (<€ DE\ _ 1. ~

The conclusion follows now arguing as in the proof of Theorem 4.5.2. O
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Chapter 5

Quasistatic evolution models for

thin plates in finite plasticity

5.1 Overview of the chapter

In this chapter we deduce by I'-convergence some partially and fully linearized qua-
sistatic evolution models for a thin plate, whose elastic behaviour is nonlinear and whose
plastic response is governed by finite plasticity with hardening. Denoting by ¢ the thickness
of the plate, we study the case where the scaling factor of the elasto-plastic energy is of order
e22=2  with a > 3. We show that solutions to the three-dimensional quasistatic evolution
problems converge, as the thickness of the plate tends to zero, to quasistatic evolutions as-
sociated to the reduced models identified in Chapter 4.

The chapter is organized as follows: in Section 5.2 we set the problem and we prove
some preliminary results. Section 5.3 concerns the formulation of the quasistatic evolution
problems, the statement of the main result of the chapter and the construction of the mutual
recovery sequence, whereas Section 5.4 is entirely devoted to the proofs of the convergence
of quasistatic evolutions. Finally, in Section 5.5 we discuss convergence of approximate
discrete-time quasistatic evolutions. In the appendix (Section 5.6), we show existence of a

quasistatic evolution associated to our reduced model for a = 3.

5.2 Preliminaries and setting of the problem

Let w C R? be a connected, bounded open set with C? boundary. Let ¢ > 0. We assume

that the set Q. := w x ( -3, %) is the reference configuration of a finite-strain elastoplastic

plate, and every deformation n € W12(Q_;R?) fulfills the multiplicative decomposition
Vn(x) = Fe(x)Fp(z) for ae. z € Q.

where F,; € L*(Q.;M3*3) represents the elastic strain, Fy; € L?(Q;SL(3)) is the plastic
strain and SL(3) := {F € M3*3 : det F = 1}. The stored energy (per unit thickness)
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5.2 Preliminaries and setting of the problem

associated to a deformation 7 and to its elastic and plastic strains can be expressed as
follows:

E(n Fy) = /Wel V(@) F () dm—i—/ Whara(Fy(«)) de,

/ Wel el d$+/ Whard pl ))d (521)

where W, is a nonlinear elastic energy density, Wh.q describes hardening, and both maps
satisfy the same assumptions as in Section 4.2.

Given a preexistent plastic strain F;?l € L?(Q.;SL(3)), we define the plastic dissipation
potential associated to a plastic configuration F € L*(Q2.; SL(3)) as

€*” 1/ D(Fy; F (5.2.2)

where o > 3 is a given parameter and D is the dissipation distance considered in Section
4.2.

5.2.1 Change of variables and formulation of the problem

In this chapter we adopt a slightly different formulation of the problem with respect to
that of Chapter 4. Indeed we shall add further regularity assumptions both on dw and ~4
and on the boundary datum ¢°. We suppose that the boundary dw is partitioned into two
disjoint open subsets 4 and 7, , and their common boundary 9|s,v4 = 9| awn (topological
notions refer here to the relative topology of dw). We assume that 74 is nonempty and that
0lowyd = {P1, P2}, where P;, Py are two points in dw. We denote by I'c the portion of the
lateral surface of the plate given by I'. := 4 X ( -5, 2) On I'. we prescribe a boundary
datum of the form

/ a—1u0<

(;55(.%)::(1;)4_(8 ’

T3

x') ) o —x3V'0(a)
+e272( ) 5.2.3

v9(2) ( )
for every x = (2/,ex3) € Q., where u¥ € C'(w;R?), v € C?(W) and a > 3 is the same
parameter as in (5.2.2).

We consider deformations 7 € W2(Q.;R?) satisfying
n=¢° H>-ae onT.. (5.2.4)

Arguing as in Chapter 4, we consider the set Q := w X ( — %, %) and the map ¥°: Q — Q.
given by
Ye(x) = (2, ex3) for every x € Q. (5.2.5)

To every deformation n € W12(Q.;R?) satisfying (5.2.4) and to every plastic strain Fy; €
L2(9.; SL(3)), we associate the scaled deformation y :=nowt and the scaled plastic strain
P := F,; 09°. Denoting by I'y the set vq x ( — 5 5) the scaled deformation satisfies the
boundary condition

=¢ot® H%-ae only. (5.2.6)
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5. Quasistatic evolution models for thin plates in finite plasticity

We still denote by A.(¢°) the class of pairs (v, P¢) € WH2(Q;R3) x L3(Q; SL(3)) such
that (5.2.6) is satisfied. Applying the change of variable (5.2.5) to (5.2.1) and (5.2.2), the
energy functional is now given by

Z(y, P) := ég(Wval) = /QWel(Vsy(x)P_l(x)) dz + /Q Whara(P(2)) dz, (5.2.7)

where V. y(z) = (81y(x)}82y(x)|%83y(x)) for a.e. x € Q. The plastic dissipation potential
is given by

et [ D(P*°, P)dx (5.2.8)
Q

where P90 := Fj) 01)° is a scaled preexistent plastic strain.

5.2.2 Approximation results
We still denote by A(u®,v°) the set of triples (u,v,p) € WH2(Q;R?) x W22(Q) x
L?(Q;M%®) such that

u=u’, v=1" and Vo=V’ H!'-ae onny.

We conclude this section by stating an approximation result for triples (u,v,p) € A(u°,v%)
by means of smooth triples. Denoting by C°(w U 7,) the sets of smooth maps having

compact support in w U 7, , the following lemma holds true.

Lemma 5.2.1. (i) Let v € W12(w) with w = 0 H' - a.e. on 4. Then there exists a
sequence u* € C®°(wU~,) such that u* — u strongly in WH2(w). (ii) Let v € W22(w)
with v =0 and V'v =0 H' - a.e. on v45. Then there erists a sequence v* € C2(wU7,)
such that v* — v strongly in W%2(w).

Proof. The proof is an adaptation of the arguments in Theorem 3.3.9 and Lemma 3.6.10. [
In particular, the previous lemma implies the following density result.

Corollary 5.2.2. Let (u,v,p) € A(u®,v°). Then there exists a sequence of triples (u*,v*, p*) €
O (WU R?) x C2(wUny,) x C2(Q;ME?) such that

uf = u  strongly in W12 (w; R?),
P = v strongly in W% (w),

" —p  strongly in L?(Q; M5).
Proof. The approximation of the plastic strain p is obtained by standard arguments. The
approximation of the in-plane displacements and out-of-plane displacements follows by ap-
plying Lemma 5.2.1 to the maps u — u° and v — 0°. O

5.3 The quasistatic evolution problems

In this section we set the quasistatic evolution problem for the scaled energy functional
defined in (5.2.7).
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For every t € [0,7] we prescribe a boundary datum ¢°(t) € W (Q;R?*)NC>(R3;R3),

defined as
a 0 uO(t, ) o —z3VO(t, )
£(t, ::( >+€“1( ’ )+e“2( ’ )
o*(t.2) x3 0 WO(t, 2")

for every z € R3, where the map ¢ — u°(t) is assumed to be C1([0,T]; C*(R?;R?)) and the
map t — v0(t) is C1([0,T]; C*(R?)). We consider deformations t — y°(t) from [0,7] into
W12(Q; R3) that satisfy

Y (t, ) = ¢°(t, (o' exs)) H® - ae. onTy,

and plastic strains ¢ — P¢(¢) from [0,7] into L?(£2; SL(3)).
For technical reasons, it is convenient to modify the map ¢t — ¢°(¢) outside the set .
We consider a truncation function §° € W1°°(R) N C1(R) satisfying

0°(s) =s in (=L, ¥.), (5.3.1)
|6°(s)| < |s| for every s € R, (5.3.2)
105 o (my < 2, (5.3.3)
0(s) =0 if |zs] > Lo + 1, (5.3.4)
16% ()| Loe m) < 2, (5.3.5)
where /. is such that
e 1770 0, (5.3.6)
el — 400, (5.3.7)
g2a72p3 0, (5.3.8)
for some 0 < v < a—2. For a > 3 we also require
e 12 0. (5.3.9)

Remark 5.3.1. A possible choice of /. is {. = &, with 0 < A < min{?5%, 0 —2— 1~}
when o >3, and 0 < A <min{,1—~} in the case a = 3.

With a slight abuse of notation, for every ¢ € [0,7] we still denote by ¢°(¢) the map
defined as

(1) = ( 53 )+Ea_1< ud(t, ') —ee(o’?)V/vo(t,x’) >+€a—2( Uo(fw/) ) (5.3.10)

for every x € R3.

Remark 5.3.2. Conditions (5.3.1) and (5.3.7) guarantee that ¢°(t) is indeed an extension
of the originally prescribed boundary datum, for & small enough. Conditions (5.3.3) and
(5.3.5) provide a uniform bound with respect to ¢ on the W (R3; R3) norm of ¢°(t) —id.
By (5.3.3), (5.3.5) and (5.3.6), there exists g9 > 0 such that, for every t € [0,7T] and € < &g,
the map ¢°(¢) : R® — R? is invertible with smooth inverse ¢°(¢). Since

¢°(t,¢°(t,x)) = for every z € R,
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5. Quasistatic evolution models for thin plates in finite plasticity

by (5.3.10) there holds

(Y1)~ o =~ (7 1) + =20 (D) w0 r, (o (), (3.0

P5(t) — a3 = =200 (1, (¢°) (1)), (5.3.12)

for every t € [0,7]. Hence, by the smoothness of u° and v° and by (5.3.3), we deduce the
estimates
(%) (8) = @'[| Lo (r3;r2) < Ce® M, (5.3.13)

and
95 (t) — @3]l Loo (rsy < Ce*72, (5.3.14)

where both constants are independent of ¢. In particular, (5.3.11) yields

Verm-(, ) =R ) )V 0
v (B (w2001, (o ()W (67 1)
a2 (@)V'UO(@ (%) (1) ® Vs (t), (5.3.15)
and (5.3.12) implies
Vs (1) — es = =2V 1)Vt () (1), (5.3.16)

for every ¢ € [0,T7].
A direct computation shows that
V'ul(t,z') 0 ) —50‘_1< 0% (%) (V)2 (t,2") 0 )
0 0 0 0
0 —95(%)V’Uo(t, x’)
(V'O (t, z")T 0

Vo< (t,z) = Id + e~ (

+50‘_2( ) for every z € R3. (5.3.17)

Hence by (5.3.3), (5.3.5) and (5.3.6) there holds
IV ()] L= o pazxay < (V" ()™ | poe rouaasy < C (5:3.18)

for every ¢ € [0,7] and for every e < gg. Therefore, (5.3.3), (5.3.5), (5.3.7), (5.3.15) and
(5.3.16) yield
V(%) (t) — (e1le2]0)] oo (ra o2y < Ce® ML, (5.3.19)

and
IV@5(t) = €3l Lo mamsy < Ce* 2. (5.3.20)

By Remark 5.3.2 for ¢ small enough the function ¢°(¢) is a smooth diffeomorphism for
every t € [0,T]. This implies that we are allowed to define a map t — 2°(¢) from [0,7] into
W12(Q;R3) as the pointwise solution of

ye(t, @) = ¢°(t, 2°(t, @)
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for every ¢ € [0,7]. We note that
2(t) = (2 ex3) H?-ae onTy (5.3.21)

for every t € [0,7]. According to this change of variable, the elastic energy at time ¢
associated to the deformation y°(¢) can be written in terms of 2z°(t) as

/ W (Vey (6)(P%) (1)) dw = / Wi (Vo8 (£, 2°() Vet () (PF) 71 (1)) da.
Q Q
For every t € [0,T] we define the three-dimensional stress as

(Ve (1 2 (0) V2 (0P (1) (V67 (1, () Vo= () (P 1))

Let s1,s2 € [0,7], with s; < s5. For every function ¢ — P(t) from [0,7] into L?(Q; SL(3)),
we define its dissipation as

Ef(t) :=

N
'D(P;81782) = sup{Z/ D(P(tifl),P(ti»dl‘ s =g <t < - <ty = 82}.
i=179

Analogously, for every function ¢ — p(t) from [0, 7] into L?(Q;M%®), we define its Hp-
dissipation as

N
Dup (p; s1,82) := SUP{Z/ Hp(p(t:) —p(ti—1))de :s1 =1 <t1 < - <ty = 52}~
Finally, we denote by F.(t, z, P) the quantity
Fe(t,z, P) := / Wea (V(bs(t,z)vgzpfl) dz+/ Whara(P) dx
Q Q

for every t € [0,7], z € WH2(Q;R3) and P € L*(Q;SL(3)). We are now in a position to
give the definition of quasistatic evolution associated to the boundary datum t — ¢°(t).

Definition 5.3.3. Let ¢ > 0. An e-quasistatic evolution for the boundary datum ¢ — ¢°(t)
is a function t + (25(t), P(t)) from [0,7] into W12(Q;R?) x L?(; SL(3)) that satisfies
the following conditions:

(gs) global stability: for every t € [0,T] we have 2°(t,x) = (2/,ex3) H?-a.e. onTy,
Pe(t,z) € K for a.e. z € Q and

Fult, (), P(t) < Fu(t, 5, P) + e 1/DP5 Pyd

for every (2, P) € Wh2(Q; R3)x L?(Q; SL(3)) such that 2(z) = (z/,ex3) H? - a.e. on Ty
and P(z) € K for a.e. € Q;

(eb) energy balance: the map
s [ () (V6 ()(T0) 7 (5°(9)) da
is integrable in [0, 7] and for every ¢ € [0, T]
F.(t,25(t), P*(t)) + >~ 'D(P7;0,1)
— F(0,2(0), P(0)) + & / [ ) (92 () (V0) 5,55 s
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5. Quasistatic evolution models for thin plates in finite plasticity

Remark 5.3.4. We remark that if the function ¢ — (2°(t), P¢(¢)) satisfies condition (gs),
then E°(t) € LY(Q;M3*3) for every t € [0,T]. Indeed, by (gs), taking Z(z) = (2/,ex3) for
every z € Q and P = P%(t), we deduce

/ Wt (Vo2 (1, 2° (£) Ve (0)(P9) (1)) d < / Wt (V68 (¢, (o e3)) (P2) (1)) .

N N (5.3.22)
On the other hand, P¢(t,z) € K for a.e. = € Q and for ¢ small enough there exists
two constants C; and Co such that det(Ve¢ce(t, (a',ex3))) > C; for every z € £ and
V@< (t, (2!, ex3)) || oo (smzx3)y < Co. Therefore, by hypothesis (H1) (see Section 4.2) the
quantity in (5.3.22) is finite and

det (Vo= (t,2°(t)) V2 (£)(PF) "' (t)) > 0 ae. in Q (5.3.23)

for € small enough. Hence, by (4.2.5) we obtain

€3

/Q|E€(t)\dx < (/QWel(wf(t,ze(t))vEZE(t)(Ps)*l(t))dx+ 1) < oo

Remark 5.3.5. By the frame-indifference (H3) of W¢; (see Section 4.2), there holds
DWy(F)F" = F(DWy(F))"  for every F € M3,

Therefore, by (5.3.23), for € small enough E°(t,z) € M2x3 for every t € [0,T] and for a.e.
x €.

Set
0 ifa>3

1 ifa=3.

L, :=

For every a > 3 we define a reduced quasistatic evolution as follows.

Definition 5.3.6. For a > 3, a reduced quasistatic evolution for the boundary data ¢ —
u®(t) and t — v0(t) is amap t — (u(t),v(t),p(t)) from [0,T] into W12(w;R?) x W22(w) x
L2(%; M%Xg), that satisfies the following conditions:

(g8) o for every t € [0,T] there holds (u(t),v(t),p(t)) € A(u®(t),v°(t)), and setting
ea(t) == symV'u(t) + L= V'v(t) @ V'u(t) — 23(V')?0(t) — p(¢), (5.3.24)
we have
/ Qs (ca(t)) dz + / B(p(t)) dz < / Qo(sym V't + Lo V"6 @ V' — (V)% — ) da
Q Q Q
+ [ B)de+ [ Hol- p(e)do.
for every (a,7,p) € A(u(t),v°(t));
(eb) o the map

C V'AO(s) + Lo V'i0(s) @ V'u(s) — 23(V')?0(s) 0
5%/9((:26(1(5).< 0 3 O)dx
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5.3 The quasistatic evolution problems

is integrable in [0,T]. Moreover for every t € [0,7] there holds

AQMMWM+ABMWM+HMWM=AQ#JWM+ABMWM

"u0(s V00 (s "(s) — x3(V)209(s
[ Caraty: (T H BT T 0) 7R
0 Ja

0 8 )dxds.

Remark 5.3.7. An adaptation of [15, Theorem 4.5] guarantees that, if a > 3, for every
triple (w,v,p) € A(u®(0),v°(0)) satisfying

/ Q2 (symV'u — 23(V') v+ Lo Vo @ Vo — p) dz + / B(p) dx
Q Q

< / Qo (symV'i — x3(V')*0 + L V'o @ V'6 — ') da + /
Q

; B(p) dx + /Q Hp(p —p) dz,

for every (a,9,p) € A(u°(0),v°(0)), there exists a reduced quasistatic evolution ¢ ~
(u(t),v(t),p(t)) (according to Definition 5.3.6) such that «(0) =@, v(0) =7 and p(0) =p.
Moreover, by adapting [15, Theorem 5.2 and Remark 5.4] one can show that the maps
t — u(t), t — v(t) and t — p(t) are Lipschitz continuous from [0,7] into W1?(w;R?),
W22(w) and L2(Q;M3?), respectively.

In the case o = 3, the existence of a reduced quasistatic evolution ¢ +— (u(t), v(t), p(t))
such that (u(0),v(0),p(0)) = (uw,v,D) can still be proved by adapting [15, Theorem 4.5]. We
remark that the proof of this result is more subtle than its counterpart in the case a > 3,
due to the presence of the nonlinear term %V’ v®V'v. In fact, some further difficulties arise
when trying to prove the analogous of [15, Theorem 4.7], that is, to deduce the converse
energy inequality by the minimality. To do this, one can apply [16, Lemma 4.12], which
guarantees the existence of partitions of [0,7] on which the Bochner integrals of some
relevant quantities can be approximated by Riemann sums, and argue as in [6, Lemma 5.7)
(see Theorem 5.6.3).

Remark 5.3.8. By taking p = p(t) in (gs) r«, it follows that a reduced quasistatic evolution
t— (u(t),v(t),p(t)) satisfies

/Q Qalealt)) dz < /Q Qalsym V' + Lo V6 © V' — 25(V')%0 — p/ (1)) do
for every (4,9) € W12(w; R?) x W22(w) such that
a=u"(t), o = v°(t) and Vo = VO(t) H' - ae. onng.
Hence, in particular, there holds
/Q(Cgea(t) :V/¢dx =0

for every ¢ € Wh2?(w;R?) such that ( =0 H! - a.e. on 74.

With the previous definitions at hand we are in a position to state the main result of the

chapter.
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Theorem 5.3.9. Let a > 3. Assume that t — u®(t) belongs to C1([0,T]; WH*°(R%;R?) N
CL(R%;,R?)) and t + v°(t) belongs to C*([0,T]; W3>(R?) N C?(R?)), respectively. For
every t € [0,T], let ¢=(t) be defined as in (5.3.10). Let (a,9,p) € A(u®(0),v°(0)) be such
that

/ Q2(symV'a — z3(V')?0 + La Vo @ Vi — ) do + / B(p) dx
Q Q
< [ QuV'i—aa(VPo+ Vo0 V- )i+ | Bl)do+ [ H-p
w Q Q
for every (a,,p) € A(u°(0),v°(0)). Assume there exists a sequence of pairs (y5, P§) €
A:(9°(0)) such that
I(y5, PS) < I(y, P) +e“—1/ D(P§, P) d, (5.3.25)
Q

for every (g, P) € A-(¢°(0)), and

1
1 3
ug = g / ((y5) —a') dzs — @ strongly in W2 (w; R?), (5.3.26)
_1
1 y
vg = 50‘7—2/ (y5)z dxz — v strongly in W2 (w), (5.3.27)
_1
P —Id
P5 = 2—04—1 — P strongly in L?(Q; M35, (5.3.28)
li 1 T(vE. PE) = V/o V/za Lav/o v/c o/ d
) (6, F5) = QQz(Sym U —a3(V')*0+ Vo Vo —p)de
+ [ B(p)dx. (5.3.29)
Q

Finally, for every e > 0, let t — (2°(t), P¢(t)) be an € -quasistatic evolution for the boundary
datum ¢*(t) such that
2°(0) = ¢°(0,y5) a.e. in Q

and
P#(0) = F§.

Then, there exists a reduced quasistatic evolution t — (u(t),v(t),p(t)) for the boundary data
(u(t),v°(t)) (according to Definition 5.3.6), such that u(0) = @, v(0) = v, p(0) = p and,

up to subsequences,

Pe(t) —Id
pe(t) == (527_1 — p(t)  weakly in L*(;M3*3) (5.3.30)
for every t € [0,T]. Moreover, for a > 3 up to subsequences there holds

1
2

us(t) = Ea{l /_; (%) (t,2°(t)) — 2) das — u(t) weakly in W?(w; R?),
(5.3.31)
ve(t) == 6(%2 ’ B5(t,25(t)) dxg — v(t)  strongly in W2 (w), (5.3.32)

_1
2
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for every t € [0,T]. For o =3, for every t € [0,T)] there exists a t-dependent subsequence
e; — 0 such that

usit(t) := L /j ((¢59%) (¢, 259 (t)) — 2’) dws — u(t) weakly in W2 (w;R?),

e -4
(5.3.33)
1 [,
eIt (t) = =z, b3 (t, 2594 (t)) dws — v(t)  strongly in W2 (w). (5.3.34)
Jt 2

Remark 5.3.10. In the case a > 3 the convergence result is stronger than the analogous
result for a = 3 as the convergence of u°(t) and v¢(¢) holds on a subsequence independent
of t. This is related to the fact that, for o > 3, once ¢ — p(¢) is identified, both ¢ — u(t)
and t — v(t) are uniquely determined. In the case o = 3 this property is not true anymore

because of the presence of the nonlinear term £V'v(t) ® V'v(t).

We shall prove the previous theorem in the next section. To conclude this section, we
prove a technical lemma concerning some properties of the truncation maps 6° and we
provide the construction of the so-called “joint recovery sequence”, that will be used in the

proof of Theorem 5.3.9.

Lemma 5.3.11. Let 6 € W1>°(R) N C*(R) be such that (5.3.1)~(5.3.7) hold and let (%)
be a sequence in L*(Q)) such that

¢ L2 () < Ce. (5.3.35)
Then,
1—6¢(=— < —. 3.
H ( € ) £2(Q) ~ L. (5.3.36)
Moreover, if (¢ satisfies
CS a—3
||? —x3—¢ v||L2(Q) — 0, (5.3.37)
for some v € L?(w), then
€ if e > 3
6 (%) — e ifa strongly in LQ(Q). (5.3.38)

r3+v ifa=3
Proof. Denoting by O, the set
0, = {x €0 |c(x)] > 545},

by (5.3.35) and by Chebychev inequality, there holds

C

£30.) < 5.

Hence, by (5.3.1) and (5.3.5),

1= (%))

IN

s = 1=(5)
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5. Quasistatic evolution models for thin plates in finite plasticity

To prove (5.3.38), we note that by (5.3.37) there holds

98(%8)—) T3 ifa>3

a.e. in Q.
z3+v ifa=3

On the other hand, (5.3.2) yields ‘Gs(g)
(5.3.38) follows by the dominated convergence theorem. O

<&
€

<

for every ¢ and for a.e. = € 2. Therefore

For the sake of simplicity, in the next theorem we omit the time dependence of u° and

vY. With a slight abuse of notation, we denote by ¢° the map

ey (T a1 U(@") = 0°(2)VO(a') a—2( 0
¢>(z).f(x3)+e ( ) )+e (Uo(x,)),
for a.e. x € Q, where u® € WH(R?;R?) N CH(R?;R?) and v° € W2 (R?) N C?(R?). We

are now in a position to construct the joint recovery sequence.

Theorem 5.3.12. Let (y=, P¢) € A.(¢°) satisfy (4.3.29) for every ¢ > 0. Let u,v,G,p
be defined as in Theorem 4.3.8 and let 4 == u+ 4, v := v+ v, and p := p+ p, where
€ C®(wUy;R?), 0 € CX(wUx,) and p € CSO(Q;M?B(?’). Then, there exists a sequence
of pairs (¢, P) € A-(¢°), such that

/

9 ( ‘g ) strongly in W2(Q; R3), (5.3.39)
a° = Eal_l /_é1 ((5°) —2') des — @ weakly in W2 (w;R?) for a > 3,(5.3.40)
Wt =0 — va)z weakly in W2 (w; R?) for a = 3, (5.3.41)
€a1_2 /_%1 95 drs — 0 strongly in Wl’Z(w), (5.3.42)
Pe(z) € 2K for a.e. x € Q, (5.3.43)
P = P;__fd — P weakly in L?(Q;M>*3), (5.3.44)

Moreover, the following inequalities hold true:

1imsup€2%2(/ﬂwhmd(ﬁf)dx—AWhard(Pa)dx) g/QB(p) dx—/QB(p) dz, (5.3.45)

e—0

1

Ea—l

lim sup
e—0

/D(PE,PE)dxg/HD([)—p)d:z:, (5.3.46)
Q Q

and

. 1 ~EDE\— e £\ —
hmsupm</ﬂwel(vay () 1)da:—/QWel(ng (P)~") da)

e—0

< /QQQ(Sym G —p)dx — /Q Q2(sym G’ — p') dx,
(5.3.47)
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5.3 The quasistatic evolution problems

where the submatriz G’ satisfies

G' (', x3) := Go(2') — 23(V)?0(2")  for a.e. x € Q,

and

(V' + (Va)T + V'@ V')
2
symGo =symV'a  for a > 3.

sym Go = for a =3,

Proof. We divide the proof into four steps. In the first step we exhibit a sequence of defor-
mations (j°) satisfying (5.3.39)—(5.3.42). In the second step we construct a sequence (P?)
of plastic strains and we prove the limsup inequality for the hardening and the dissipation
terms. In the third step we rewrite the elastic energy in terms of some auxiliary quantities
and in the fourth step we prove the limsup inequality for the elastic energy.

We first remark that by (4.3.29) and the boundary condition

Yo (z) = ¢°(2',ex3) H? - ae. on Ty, (5.3.48)

the sequence (y°, P¢) fulfills the hypotheses of Theorems 4.3.1 and 4.3.3. Hence, there

exists a sequence (Rf) C W1 (w;M3*3) such that (4.3.6)—(4.3.9) hold true, and (y°)
satisfies (4.3.30). Moreover, defining u®, v®, and G° according to (4.3.2), (4.3.3) and (4.3.28),
properties (4.3.31)—(4.3.38) hold true. The sequence of plastic strains (P¢) satisfies

Pe(z) e K forae z€Q, (5.3.49)
and defining p° as in (4.3.41), there holds
p° —p weakly in L?(€;M3*3). (5.3.50)

Finally, by Theorem 4.3.3, (u,v,p) € A(u®,v°) and, by (4.3.32) and (4.3.34), the sequence
(y5) fulfills the hypotheses of Lemma 5.3.11, hence

£ T ifa>3
95(%) N strongly in L*(Q), (5.3.51)
€ rz3+v ifa=3

and by (5.3.7) and (5.3.36) we have

Lo 1.0y i T2
- 295 (?) — 0 strongly in L*(Q). (5.3.52)

Step 1: Construction of the deformations
Let d € C(R3;R3) with suppd C Q. Consider the map

3

n°(x) = ’ d(z',s)ds for every x € R?.

1
2

Since d has compact support in 2, there holds

2] :
In®(z)] < / ) |d(z’,s)|ds < / 1 |d(2',s)|ds < ||d|| oo (rs) for every z € R?
-2 2

146



5. Quasistatic evolution models for thin plates in finite plasticity

and analogously
||VI775||L30(R3;M3><2) < ||V/dHL°C(]R3;M3><2)- (5.3.53)

A straightforward computation yields

1
O3n® (z) = fd(x', ﬁ) for every z € R®. (5.3.54)
€ €
Hence,
R C
lIm |‘W1v°°(R3;R3) < = (5.3.55)
In particular, the map n° o y° satisfies
7% 0 ¥l (ars) < C, (5.3.56)

C
||V/(77E ] y€)||L2(Q;M3><2) S CHv/(ye)/lle(Q;M%d) =+ g||V’y§||L2(Q;R2). (5357)
We extend @ and ¥ to zero outside their support, we consider the functions

(e

@)=+ ( )+ (@)
for every x € R, and we set
QE = fE OyE‘
It is easy to see that §° € W12(Q;R3), we now check that

§° = ¢°(2',ex3) H?-ae onTly. (5.3.58)
To prove it, we first remark that by (5.3.48)
§° = f(¢°(2',ex3)) H?-ae. on Ty (5.3.59)
Hence, it remains only to show that
(6% (2, exs)) = ¢° (2, ex3) H? - ae. on Ty. (5.3.60)

Let A C R? be an open set such that 73 C (A N 0w) and @,9,V'sd = 0 in A. Since d
has compact support in §2, without loss of generality we may assume that 7°(z) = 0 for all
r € Ax R and every e. Therefore, we have f¢(x) =2 in A x R. Let now O C R? be an
open set such that 77 C (O Ndw) and O C A, and let 0 < & < dist(0,04). By (5.3.2),
there holds

am 1 do
|(¢€)/(Z‘/,6l‘3) — $/| S g 1||u0||Loo(R2;R2) + 55 2||V/UO||L°°(]R2;M2><2) < 5

for every € O x (— 3,3), for € small enough. Hence, ¢°(2,ex3) € A x R for every
z€0x(—3%1), and f5(¢°(2/,ex3)) = ¢°(a',ex3) for every z € O x (— 3,4). This
implies (5.3.60) and (5.3.58).

To prove (5.3.39), we remark that by the smoothness of %4 and @, estimates (5.3.3),

(5.3.5), (5.3.7) and (5.3.55) imply
15 — id|| .o (momsy < Ce® e (5.3.61)
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On the other hand, we have

()] <l - = (5)

— — 1,2(0. —
4 0 /llwrzqes) =W TV Iwr@Rrn T Y 0 /llwrz@zs
!

(5 )]
0 /llwr2ors)’

< CIIf# = idlwr.omoz) IVYF | 2(@ionoy + |

so that (5.3.39) follows by (4.3.30), (5.3.6) and (5.3.61).
We now prove convergence of the out-of-plane displacements associated to (§°). To show
(5.3.42) we note that

1 1 1
1 3 3 3
¥ = [ B = [ 2 [ i)

1

2
By (4.3.30), up to subsequences, we can assume

(v°) =2’ and V/'(y°) — Id a.e. in Q. (5.3.62)
Hence, by the dominated convergence theorem and the smoothness of ¥ we obtain

9((y°)) — o strongly in L*(Q)

and

V'o((y°)') — V'&  strongly in L*(Q;R?).
By (4.3.30), (4.3.32), (5.3.56) and (5.3.57) we conclude

9 —v+0=17 strongly in WI’Q(W)~

To prove (5.3.40) and (5.3.41) we note that

e [ * 0FY (5F) das. (5.3.63)

1
2

By (5.3.51), (5.3.62) and the dominated convergence theorem,
a((y°)) — @ strongly in L*(Q;R?),

1
5 €
/ 95<y€—3)V'6((y5)’) dxz — 0 strongly in L?(w;R?) for a > 3,

/

Hence, by (5.3.56), we have

N

Nl

95(%>V’6((y5)’) dxs — vV  strongly in L?(w;R?) for a = 3.

=

¢ — 4 strongly in L*(w;R?) for o > 3,

and
4 — 4 —vVd  strongly in L?(w;R?)  for a = 3.
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To complete the proof of (5.3.40) and (5.3.41), it remains to show that

1

— V'4° is bounded in L?(€2;M**?). (5.3.64)
EQ

By (5.3.63) there holds

-

3
+e V'(n° o y®) das.

1
2

By adding and subtracting the matrix (R°)" we obtain

/él 06(%%)(v/)%((yg)/)v/(ye)’ dzs = /é1 05(y?g)(v’)%((ys)/)(v/(ya)/ (R das

+/ 0 () (V)0((")) (B divs

_ €
2
Combining (4.3.7) and (5.3.3), we deduce

< Ce* ..
LQ(Q;MZX‘Z)

0 () (V' Pa((w) ) (V) — (BY)

€

On the other hand, by (4.3.6) and (5.3.51), the maps 0° (?fgi)v%((yE)')(Rs)' are bounded in L2(Q); M2%2),
The L?-boundedness of the quantity in (5.3.64) follows now by combining (4.3.30), (4.3.31),

(4.3.33), (5.3.5) and (5.3.57).

Step 2: Construction of the plastic strains

Arguing as in [52, Proof of Lemma 3.6], we introduce the sets
S, :={x € Q:exp(e* 'p(zx))P*(z) € K},

we define
= (exp(e®~'p)P* — Id) in S.,
pe in 2\ S,

and
Pf = Id+ e,

so that, by (5.3.49), the sequence (P?) satisfies (5.3.43). Since tr =0,
a—1~

det(exp(e*~1p)) = exp(e* 'tr p) = 1,

therefore

exp(e®'p(x))P*(z) € SL(3) for a.e. x € Q. (5.3.65)
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By (5.3.65) we can estimate £3(Q\ S:). Indeed by (4.2.14) and (5.3.50) there holds
2018 £ [ [(exple 5P () - 1dP ds
Q

oy / (exp(e () + e exp(e® f(a))p(z) — IdP da
Q

< Ceat) / (1 + [p°(2)|?) do < Ce2le=), (5.3.66)
Q
Now,
P E(w#_l(ezxp(eo‘_lﬁ) — Id)P€ in S,, (5.3.67)
0 in Q\ S..

By (5.3.49), (5.3.50) and (5.3.66) we deduce the following convergence properties:

15° — Pl Lo (g x3y < C,
p° —p° — P strongly in L2(£;M3*3), (5.3.68)
P +p° —p+p weakly in L?(Q;M3*3),

hence in particular (5.3.44) holds true. Arguing exactly as in [52, Proof of Lemma 3.6, Step
2 and Step 4], we obtain (5.3.45) and (5.3.46).
Step 3: Convergence properties of the elastic energy
To complete the proof of the theorem it remains to prove (5.3.47). To this purpose, let w®
be the map defined as

(Pe)~t — Id + 2 1p®

we = e =L (P (p)2 (5.3.69)

By (4.2.13) and (5.3.49), there exists a constant C such that

e Mp°|| o (mzxay < C
and

e Hw|| oo (oumsx3y < C (5.3.70)
for every e. Furthermore, by (5.3.50),

a—1

lw® || L1 (msxsy < Ce for every e.

By the two previous estimates it follows that (w®) is uniformly bounded in L?(€;M3*3)
and
w® — 0 weakly in L*(Q; M>*?). (5.3.71)

Now, by (4.3.28) and the frame-indifference property (H3) of W,; (see Section 4.2) there
holds

Wa(Veys (P = Wa((Id+e*'G9)(Id+ e (w —p%)))
We(Id + 1 Fe), (5.3.72)

for a.e. x € Q, where
F®i= G +wf —p 427G (0 — po). (5.3.73)
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We note that
1G*(w® = p*) || L2 (mazxsy < C

by (4.3.35), (5.3.50) and (5.3.71). Moreover, by (4.3.35), (5.3.49) and (5.3.70),
e G (w® = p*) |l L2 sy < e HIG |2y | (W = p°) || e (uassy < C
for every €. Hence
e 1G%(w® —p°) = 0 weakly in L?*(Q;M>*3),
which in turn, by (4.3.35), (5.3.50) and (5.3.71), yields
F® —~ G —p weakly in L?(£;M3*3). (5.3.74)
Analogously, we define

. ps -1 —Id+€a71ﬁ5 1) o1
0 ;:( ) T =L (PE)TH(p)2 (5.3.75)

Then,
(PF)™! = Id+ &1 (@° - p°),

by (4.2.13) and (5.3.43) we deduce
Ea_lnwsuLoo(Q;MBxS) S C,

and by (5.3.44),
@ — 0 weakly in L*(Q;M3*3).

We define
GF = G° +0° — pF +271GE (0 — §°). (5.3.76)

Arguing as before, we can prove that
Gf — G —p weakly in L2(Q; M>*3). (5.3.77)
We shall prove that there exists a sequence (F ) C L?(Q; M>*3) satisfying
We(Vegf(P) ) = Wa(Id + e F°)

and such that

Fe—G° = N, strongly in L2(Q; M**3), (5.3.78)
where
I~ N2
N, = Sym( Vi = (V)0 ‘d) for o > 3, (5.3.79)
0
and
~ N2~ o VeV’ d (2!
Ny = sym( Vi = (@ +u) (V)04 25 et )5.3.80)
0 ds(2', 23 +v) + 5|V'D|
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a.e. in Q. To this purpose, we first observe that by (4.3.28), (5.3.76) and the frame-
indifference hypothesis (H3) (see Section 4.2) there holds

W (Vi (P)™Y) = W (VfE(y°)Vey® (PF) 1)

= We ((R6>T\/(Vfa(ye))Tfo(yf)RE(Id + aa‘léa)). (5.3.81)
We set V() - Id
(g = v \F)—1d
M*(z) = sy
By (5.3.61) there holds
M2 (y°) || oo (mx3y < C (5.3.82)

for every e.
We claim that, to prove (5.3.78) it is enough to show that

vl~ _ V/ 25
sym( o= as(V)0 ’d) ifa>3
(- (R*)Tsym (M* (y°)) R —
€ ( ) Vi — (1'3 + U)(V/)Qf) ) .
Sym< ‘d(x,xg—i—v)) ifa=3
0
(5.3.83)
strongly in L2(£2; M3*3), and
V'@ V' 0
2R (M7 ()T M ()R — ( veve 9 ) ifa=3 (5.3.84)
0 |V'D|
strongly in L?(£; M*3). Indeed, a Taylor expansion around the identity yields
FTF F)?
JUd+ F)T(Id+ F) = Id + sym F + — - (SyH; Y o(FP)
for every F € M3*3. Hence,
. g20—22 .
VT TV () = Td+ e M sym ME () + T2 (M () "M ()
c2a—22 oz o
- S (sym M=(y%))” + O(3*362).
Substituting the previous expression into (5.3.81) we obtain
We(Veg®(PF) ™) = Wa(Id + 71 F%) (5.3.85)
where
. R a71€2
Fo= G (R Tsym M R+ T (RO (M () M () e
ga 12

—T(RE)T(sym Ms(ya))2Rs + Ea_lﬁg(RE)Tsym Ma(ya)Rana + O(€2a_2€§)
+O(222)G°
Now, if a > 3, by (4.3.6) and (5.3.82) there holds
||F€ — GE — fe(Rg)Tsym(ME(yE))RE||L2(Q;M3xs) < C{:‘a_lfg —+ CE(X_1€5||CATVE||L2(Q;M3><3)
+ O 7203 4 O 202||GE | Loz,
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5. Quasistatic evolution models for thin plates in finite plasticity

Hence, by combining (5.3.6), (5.3.9), (5.3.77) and (5.3.83) we deduce (5.3.78).
In the case a = 3, by (5.3.82) and (5.3.83) there holds

st / lsym (M= ()| dz < Cetet / lsym(Me(y°)|2 dz < Cele2,
Q Q

Therefore, by (4.3.6) and (5.3.82) we have

n A 5265 e €0, E €/, €\ RE
5% — GF — (BT sym(ME () R — S (BT (M (7)) M= () R gy

< Ol + O ||GF| 2 (qusxsy + Ce2
+C€4€§HGEHL2(Q;M3X3).

Therefore, once (5.3.83) and (5.3.84) are proved, (5.3.78) follows by (5.3.6), (5.3.8) and
(5.3.77).

We now prove (5.3.83) and (5.3.84). By straightforward computations we have

VM@W%W%?NVFW@W)O)

Cosym (M= (7)) = sym( ) .

Now, eV'n?(y?) — 0 strongly in L2(Q; M3*2) by (5.3.53). Moreover, (5.3.54) yields

e0sn® (Y (z)) = d((ys)/(x), @) for a.e. z € Q.

Hence, by (4.3.34) and (5.3.62), there holds

(0|d) ifa>3

/. € g 6 (3 g
VGBI = ey + ) ita—3

(5.3.86)

strongly in L?(Q; M3*3). On the other hand, by (5.3.51), (5.3.62), and the dominated con-

vergence theorem

/ﬂ e\ _ pe % / 2ﬁ N v/’&—.’L‘g(v/)Qﬁ ifaa>3
Via((y®)') -0 (6 )(V) (7)) — {V’ﬂ(z3+v)(V’)217 o (5.3.87)

strongly in L2(€;M?2*2). Claim (5.3.83) follows now by combining (4.3.6), (4.3.9), (5.3.52),
(5.3.86) and (5.3.87).

To prove (5.3.84), we observe that by (5.3.52), (5.3.86) and (5.3.87), if & = 3 there exists
a constant C' such that

) L 0L Ve

5( (V'o((y=) )" 0

<C
L2(Q;M3%3)

153



5.3 The quasistatic evolution problems

for every e. Hence, by (4.3.6) there holds

|22 (Re)T (e 7)) M () R0

_(pe\T 0 —V'o((y°)) \T 0 =V'5((¥7)) \ pe
E o o) Loy 0 ) e
2 E(, € 0 —V’f)((yf)/)
< O M)~ @) +C€H( (V'a((ye) )T 0 )HLoom;Maxsf
(5.3.88)
which converges to zero due to (5.3.6) and (5.3.82). On the other hand,
( 0 —V'5((y°)") )T( 0 —V'5((y°)") )
(V'o((y*))" 0 (V'o((y) )" 0
_ ( V'o((y°)) @ Vo((y©)') 0 )
0 IV'o((y°)")I?
Moreover, by (5.3.62) and by the dominated convergence theorem there holds
V'o((y7)) © Vo((y©)') 0 Vioeve 0
( 0 wane) 70 0 pee) 63

strongly in L?(Q; M3*3). By combining (5.3.88) and (5.3.89), we deduce (5.3.84) and there-
fore (5.3.78).

Step 4: Limsup inequality for the elastic energy

We are now in a position to prove (5.3.47). We argue as in [52, Lemma 3.6]. We fix 6 > 0
and we introduce the sets

Ue:={w € Q:e® H(|F°| + |F7]) < ca(8)},
where c¢(9) is the constant in (4.2.4). By (5.3.77) and (5.3.78) it follows that
Fe ~F,:=No,+G—p weakly in L?(Q;M>*3), for a > 3. (5.3.90)
By (5.3.74) and by Chebychev inequality we deduce
L3(Q\U,) < Ce?72, (5.3.91)

Since
Vet (PF) 71 = VI (y°) (Vey (P97 PE(P9) 7,
property (4.2.6) yields

Wt (Ve (PF) ™) = W (Ve (PF) )|
< C(L+ Wa(Vay? (PF) (VS5 (y°) — Id) + |P*(PF) " —Id])  (5.3.92)

a.e. in . By (4.2.13) and (5.3.43) there holds

|1PE(P%) ™! — Id|| poo (uasxsy < ek || PE — P| poo (o)
< ci]|(Id = exp(e®71P)) P7 || oo (uuasxsy < O,
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5. Quasistatic evolution models for thin plates in finite plasticity

hence, by combining (5.3.61), (5.3.91) and (5.3.92) we deduce
1
m‘/ Wea(Vey (Pa / Wer(Vey®(P)~ )‘
€ Q\U. O\U.
< Ce* M1+ L) / Wea(Vey*(PF)~ )dx), (5.3.93)

which tends to zero owing to (4.3.29) and (5.3.6).
On the other hand, on the sets U, we can use the estimate (4.2.4). Hence, by (5.3.72),
(5.3.85) and the quadratic structure of @ we obtain

g2a 5 / W (Vg (PF) 1) da — / We(Vey® (P5) ") da
<o [ (PP +I1PP e+ /Q QUF) - QUF) da
= 5/0 (|F2)? + |F5|?) dx + %/Q(C(FE — F®): (F° 4 F®)da. (5.3.94)
Now, by (5.3.74) and (5.3.90) there holds
Ff 4+ F° =~ F,+G—p weakly in L?(Q; M>*%). (5.3.95)
Moreover,
Fe—F° - F,—G+p strongly in L?(Q;M®*3). (5.3.96)
Indeed, by (5.3.78) and (5.3.90) it is enough to show that
GF —F° — p—p strongly in L?(Q;M>*3).
By (5.3.73) and (5.3.76) we have
GF— F* = (Id+£*7'G°) (" — p° — w® +p°).

Now, by (5.3.67), (5.3.69) and (5.3.75), @ —w® =0 in Q\ S¢, whereas in the sets S¢ we
have

B — w® = (PN (p7)? — e (P (pF)?
= e (P (exp(— 1)) — ()
) Hexp(—e*71p) — Id)(p°)? + 7 H(P7)TH(57)? — (r)°)-
Therefore, by (5.3.43), (5.3.44), (5.3.49) and (5.3.50), we deduce
[@° — w®|| p2(mzxsy < CE* ™ + [15° — p° || p2(mzxs)) < C,
[[@° — w®|| p1@mzxsy < Ce® !
[[0° — w[| oo (@uzxsy < C(1+ 157 = p°l| oo (paoxs))-

Combining these estimates with (4.3.35) and (5.3.68) we obtain (5.3.96).
Consider now the case @ > 3. By (5.3.93)-(5.3.96) we have

: 1 ~E(DE)— 1 e( peY—
thUp{m/QWel(Vsy (P9) 1)d$_62047_2/QWel(vsy (P9) 1)dm}

e—=0

1 R N
gi/C(FQ—G—&-p):(Fa—i-G—p)dx—i—C&
Q
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5.3 The quasistatic evolution problems

Since ¢ is arbitrary, we deduce

: 1 ~E(DEY— 1 e( peEY—
hmsuP{m/QWel(vay () 1)d5‘7_€2a7,2/QWel(Vey (P9) 1)d$}

e—0

VAN

1 . .
i/C(Fa—G—i—p):(Fa—i—G—p)dx
Q

/QQ(Fa)dx—/QQ(G—p)dxg/QQ(Fa)dx—/QQQ(G’—p')dx. (5.3.97)

By (5.3.79) and (5.3.90), up to an approximation argument, we may assume that d is such
that
Q(Fa) = Qa(sym V't — w3(V')?0 — p).
This, together with (5.3.97), implies (5.3.47).
In the case a = 3 a preliminary approximation argument is needed. Let (@) be a
sequence in C2°(w U v,; R?), such that

k

a* = 4+ vV's  strongly in W2 (w; R?)

(such a sequence exists by Lemma 5.2.1 because @ € C°(wU,;R?) and o € C(wUn,)).
Let also v¥ € C2°(w) be such that

¥ — v strongly in L?(w)

and set
d*(z) := d(a’, x5 — v"(2)) for a.e. z € Q.

Since d € C°(2;R3), there exists an open set O C R? such that O C w and d*(2,23) =0
for every = € (w\ O) x R. Moreover, d*(2',x3) = 0 for every x € R3 such that |z >
3+ [[v¥|| Lo (r2) . Hence, d¥ € C*°(R3;R?) and

Suppdk C 5 X ( — % — H’Uk”Loo(RQ), % + ||’Uk||Loo(R2)).

It is easy to see that (5.3.80), (5.3.90) and (5.3.93)—(5.3.96) can still be deduced, and for
every k we can construct a sequence (J, P¢) that satisfies (5.3.39)(5.3.44) with @ replaced
by u + @*, and

e—0

: 1 ~E(DE)— 1 e( pe\—
hmsuP{m/QWel(vayk(Pk) 1)dx_€2a7,2/s;wel(vey (P9) 1)d$}

1 A .
§§/C(F’“—G+p):(Fk+G—p)da:,
Q

where
- V'a* — (x5 +v)(V')%0 + w d' (2, 23 +v— ") .
F .:sym( , oy L1 /~2)+G—p.
0 d3(z’, w3 +v — ") + 3| VD]
On the other hand,
) I~ N2~ / 1~ L V@V’ d .
Fkﬁsym<vu SRR 1 /~2>+G*ﬁ:
0 d3+§|V’U|
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5. Quasistatic evolution models for thin plates in finite plasticity

strongly in L?(Q; M>*3), as k — +o0o. A diagonal argument leads then to the estimate

1 ~E 7 HEN — £(pPE\—
fimsup oy (| Wal(9.°(P) ") da = [ W9t (P) ) o)

e—0

1 . .
<§/(C(F7G+p):(F+Gfp)dx. (5.3.98)
Q
Up to a further approximation, we may assume that d is such that
A 1
QU = Qa(sym V't — a(V)%0+ V"2 @ Vo — ),

hence (5.3.47) follows by (5.3.98). O

5.4 Convergence of quasistatic evolutions

The first part of this section is devoted to the proof of Theorem 5.3.9. We first prove
the theorem for o > 3 and then we show how the proof must be modified for o = 3.

Proof of Theorem 5.3.9 in the case o > 3. The proof is divided into five steps.
Step 0: A priori estimates on the elasto-plastic energy
Set y°(t) := ¢°(t, 2°(t)) for every t € [0,T]. It is immediate to see that

Y (t,x) = ¢°(t, (2',ex3)) H?-ae. onTy. (5.4.1)

In this step we shall show that there exists a constant C' such that for every ¢ € [0,7] and
every ¢ there holds

o ISy () (P2) (1), SO e IOl 2 sy 17 () e sy < €.

(5.4.2)

To this purpose, we first remark that since ¢t — (2°(t), P*(t)) is an e-quasistatic evolu-
tion, then

Pe(t,z) € K for a.e. x €, for every € and ¢, (5.4.3)

hence e~ 1p#(t) € K — Id for every € and t and by (4.2.13) there exists a constant C' such
that
16 P (1) || Low (przx3) < C for every € and t. (5.4.4)

By the minimality condition (gs), taking Z(z) = (',ex3) and P(z) = Id for every
x € Q, and observing that Wheq(Id) =0 a.e. in Q, by (4.2.12) we deduce

w%fg(t,ze(t),Pe(t))g 5201472/(2W€l(v¢6(t’ (x/,gxg))) deFsal,l/QD(Ps(t)’Id) dgh.4.5)

for every ¢ € [0,T] and for all e. By (4.2.20) and (5.4.3), there holds
D(P=(t), Id) = D(Id, (P) () < er|(P%) 7} () = Id] < erexc|Td — P=(t)],
where the last inequality follows by (4.2.13). Hence, Holder inequality yields
1 C
o /Q D(P (1), 1d) de < — || Td — P(1)|2qeupeoes) (5.4.6)

157



5.4 Convergence of quasistatic evolutions

On the other hand, by frame indifference (H3) of W,; (see Section 4.2) we obtain

W (VoE(t, (2, exs))) = We (\/ (Vo) (1, (', 223)) Vo< (1, (' 23) )
for every x € Q and for all t € [0,7]. By (5.3.1), (5.3.7) and (5.3.17) there holds

V'ul(t,2') — x3(V')200 (¢, 2") 0 )

£ / _ a—1
Vo< (t, (2 exs)) =Id+ ¢ ( 0 0

0 —V"O(t, ")
a—2 )
e (VO (L, )T 0 ):

for every z € Q2. Since a > 3, we deduce

(Vo) (¢, (2", e23)) Vol (t, (2, ex3))

/,,0 AN \2,,0 4
a4 et T~ TP 0y
0 0
and
\/(V¢E)T(ta (SC/, 61’3))V¢€(t, (xlv 6%3)) =Id+ EailM(tv .’t) + 0<6a71)7 (547)
where
/,,0 AN N2,,0 /
M(t,x) = sym( Vit a) — zs(V)R(E 2) 0 ) for every = € Q.
0 0

Therefore,

1 1
52(17—2W6l (v¢€(ta ({E/, 5553))) = 620‘7_2W81 (Id + {-jo‘flj\[(t7 .’t) + O(Sail))

for every x € Q. Now, by the smoothness of u° and v°, there exists a constant C' such that

sup ||M(t)||L(x>(Q’M3><3) < C (548)
te(0,T)

and there exist € such that, if ¢ <&, for every t € [0, T
eI M(t) + (77| < ca(),

where ¢, is the constant in (4.2.4). Therefore, by (4.2.4), (4.2.7), and (5.4.8) we have

]‘ £ /
82TQ/QWQZ(vgz; (t, (2, em3))) da < 0(/Q |M(t)\2dx+1) <C (5.4.9)

for every ¢ and for all ¢ € [0,77].
By combining (5.4.5), (5.4.6) and (5.4.9) we obtain

g [ Wa (S O 0) dr + iy [ WiaraP2(0)

1
60471

< c(1+ ||Id—P5(t)||Lz(Q;M3x3)>.

(5.4.10)
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5. Quasistatic evolution models for thin plates in finite plasticity

Now, by (4.2.11) there holds

1
%/ Id — P*(t)[? dz < 0(1 + o lHd - Pe@)llmm;ww))’
I3 Q €

which in turn, by Cauchy inequality implies

1
I ()l @nessy = g 114 = P(0) 2 (@upeony < C (5.4.11)

for every e and for all ¢ € [0,T]. On the other hand, by (5.4.10) and (5.4.11), we deduce
1 —
s [ WV (0P () ds < €. (5.412)

for every e and for all ¢t € [0,T]. Estimate (5.4.2) follows now by (5.4.4), (5.4.11), (5.4.12)
and the growth condition (H4) (see Section 4.2).

Step 1: A priori estimate on the dissipation functional.

In this step we shall show that there exists a constant C, such that

1

Eoc—l

D(P%;0,t) < C for every ¢ and for all t € [0, T]. (5.4.13)

By (eb), (5.3.29) and (5.4.10)—(5.4.12) it is enough to show that there exists a constant C'

such that 1

Eafl

[ (1) V(25 (0)(VeT) 7 15 (0) o] < © (5.4.14)

for every € and t € [0,T]. To prove (5.4.14), we first deduce some properties of the map
t— E°(t).
Let R € SO(3). By (4.2.13) and (5.4.3) there holds
IVey® (t) — R|> = |[Vey®(t) — RPE(t) + e " Rp°(1)[?
< AV ()P (1) — RIEPE (1) + 222y (1)
< 20| Veyt ()(PF)7H(E) — RI* + 26 2[p*(1)]*.

Hence, the growth condition (H4) (see Section 4.2) implies

||diSt(v8y€(t)a SO(S))H%Z(Q,M?’X?’) < C’(/;2 W€l<v8y€(t)(Ps)_l(t)) dm+52(1_2||p€(t)||%2(Q;M3><3))7
which in turn yields
Hdlst(v,gys(t), 50(3))||%2(Q;M3X3) S 052(1—2 (5415)

by (5.4.2) and (5.4.12). By (5.4.1) and (5.4.15), the sequence y°(¢) fulfills the hypotheses
of Theorem 4.3.1. Hence, for every ¢ € [0,7] there exists a sequence of maps (R°(t)) C
W1 (w; M3*3) such that

R*(t,2") € SO(3) for every 2’ € w, ( )
IVey(t) = R ()| L2 (uuaoxsy < Ce® ( )
0: R (t)|| L2 (asxsy < Ce*2, i=1,2, (5.4.18)
[RE(t) = Id]| L2 apasxs) < O3, ( )
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5.4 Convergence of quasistatic evolutions

where the constant C is independent of ¢ and ¢.

We consider the auxiliary maps

a—1,¢e -1 _ a—1,¢
0 et L A 0}

g™

the elastic strains .
Ga(t) = (R (t)) Viyl (t) _ Id7

Ea

and the matrices
F(t) 1= G () + we (8) — p () + £ GE () (we (1) — (1)), (5.4.20)

for all t € [0,T]. Clearly we have
(PE)7Y(t) = Id+ e H(w(t) —p°(t)) and V.y(t) = RE(t)(Id + e *G*(t)). (5.4.21)

Since
we(t) = e*H(Id + > 1p (1) T (P (1)? (5.4.22)

for every ¢ € [0,T], by (5.4.2) and (5.4.3) there holds

||€a71w€(t)HLoo(Q;M3><3) < C foreveryte[0,T], (5.4.23)
ng(t)”Ll(Q;MSx?,) < C€a71 for every te [O,T], (5424)

and
lw® ()| L2(omzxsy < C for every t € [0,T]. (5.4.25)

Combining (5.4.24) and (5.4.25) we deduce
we(t) = 0 weakly in L?(Q; M3*3) for every t € [0, T]. (5.4.26)
On the other hand, (5.4.16) and (5.4.17) yield
G ()| 2 (mex3y < C (5.4.27)
for every ¢ and for all ¢ € [0,T]. Collecting (5.4.2), (5.4.23), (5.4.25) and (5.4.27), we obtain

[1F° ()| L2@mzxsy < [[G2(0) | p2@mexs)y + [wE ()| L2@upazxs) + ([P (8) || L2 (om0 x3)
G ()| L2 @umas sy 127w () = p*(1))l| L= (o 9%5) < C (5.4.28)

for every € and for all ¢ € [0,T].
Now, by (5.4.20), (5.4.21) and the frame-indifference (H3) of W,; (see Section 4.2) we
deduce the decomposition
E5(t) = RE(t)E=(t)(R ()7 (5.4.29)

for every ¢ € [0,T7], where

Ee(t) = 1_1

DWa(Id + e~ F*(£))(Id + e~ F* (1))

E(X
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5. Quasistatic evolution models for thin plates in finite plasticity

We argue as in [55, Proof of Theorem 3.1, Steps 2-3] and we first show that there exist two

positive constants ki, ko, independent of &, such that

Wi (Id + e 1 F(1))
5&71

|E=(t)] < k1( + k2|F5(t)|) (5.4.30)

for every t € [0,7T] and for a.e. x € Q.
Indeed, let ¢, be the constant in (4.2.9). Suppose that e*~1F¢(t)| > cey, . We remark
that (HI1) (see Section 4.2), (5.4.3) and (5.4.12) imply in particular that

det(Vey°(t)) >0 a.e. in Q.

Therefore, by (4.2.5) there holds

e c3 a—1 re vVa(IdgFgailﬁw(w) 1 €
< < .
B2 @) £ <25 (Walld+ 27 F(0) +1) < e o tolF (1))
(5.4.31)
Consider now the case where >~ 1|F¢(t)| < cey,. Then, by (4.2.9) there holds
DW(Id +e*  Fe(t)) < e* 1(2Rc + 1)|F5(t)],
which in turn implies
|E=()] < CIF(0)|(|1d] + | FE(1)]) < CIF=(2)]. (5.4.32)

Collecting (5.4.31) and (5.4.32), we obtain (5.4.30).
By (5.4.12), (5.4.28) and (5.4.30), for every measurable A C Q, the following estimate
holds true:

JiEe < [ (PUEEEZEOL ) <oga e, Gas)

for every e and for all ¢ € [0,T]. By (5.4.16) there holds also
/ |E(t)| dz < C(JA|2 + 1), (5.4.34)
A

for every e and for all ¢ € [0,7].
Let now v € (0, — 2) be the positive constant in the definition of the maps 6°. Let
Oc(t) be the set given by

O.(t) :=={x € Q: e 'NF(t,2)| < car },
and let x.(t) : & — {0,1} be the map

1 ifx € O(t),

0 otherwise.

Xe(t,z) =

By Chebychev inequality and (5.4.28) we deduce
L3\ O(t)) < Cela1=7), (5.4.35)
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5.4 Convergence of quasistatic evolutions

for every € and for all ¢ € [0,T]. By combining (5.4.33) and (5.4.35) we conclude that

(1 - Xg(t))ES(t)”Ll(Q;MSXS) < Ce* 77 for every t € [0,T). (5.4.36)
By (5.4.34) the previous estimate implies also

(1= xe(8))E°(t)|| 1 (omzxsy < Ce*™ 177 for every t € [0,T]. (5.4.37)
On the other hand (4.2.9) yields the following estimate on the sets O.(t):

X=()E*(t)] < (2Rc + D|F*(#)[[Id + e FE(1)] < C(1 + car,e?)|FE (1)),
which in turn, by (5.4.28), implies
I (OB ()] 2 ey < C (5.4.38)

for every ¢ and for all ¢ € [0,7].
By (5.3.6), (5.4.16), (5.4.37) and (5.4.38), and since E°(t) is symmetric by Remark 5.3.5,
to prove (5.4.14) it is enough to show that there exists a constant C' such that

E

| sy (V622 (T09) .22 @) )|

for every e and for all ¢ € [0,T]. By (5.3.17), there holds

1 .
a_lvqu(t,zs(t))(vng)—l(bzg(t))HLx(QMaxs) <O, (5.4.39)

and

sy < C (5.4.40)

Lo VO (27 () — 65 (D) (V)20 (2)'(t) O
V) = ( . ))

1 0 —0= ()10 (¢, (2¢) (1))
+2( o oy 0 ) (54.41)

Estimate (5.4.39) follows directly by (5.3.3), (5.3.5), (5.3.7), and (5.3.18). To prove (5.4.40),
we first provide an estimate for the L? norm of the maps 125(t). To this purpose, let v*(t)
be defined as in (5.3.32). It is easy to see that

(NI

1 1
V(0 = s [ O and Vo) = [ V(0 de
3 3
for every e and for all ¢ € [0,T]. By (5.4.1), arguing as in the proof of Theorem 4.3.1,
ve(t) =0 (t) H' - ae. on g
By (5.4.17) and (5.4.19), we have
[V (t) | 2 (wirey < C
for every e and t € [0,T]. Hence, by Poincaré inequality we deduce

0% (t) = (O] 20) < CIVE(E) = VO (0) |12y < C,
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5. Quasistatic evolution models for thin plates in finite plasticity

which in turn, by the smoothness of v°, yields
()] 12wy < C for every € and for all t € [0, T].

By (5.4.17), (5.4.19) and Poincaré-Wirtinger inequality, we deduce

J3y5(t)

y5(t) -3 ¢ —2
‘——x;;—so‘ v (t)’ SCHi—l’ < Ce® (5.4.42)
€ L2(Q) € L2(Q)
for every t € [0,T], which implies
5(t
’ y5(t) ’ < C for every € and t € [0,T]. (5.4.43)
e @)
On the other hand,
25(t) = ¢°(t,y°(t)) ae. in Q, (5.4.44)
hence by (5.3.12),
5(t 5(t
A0 _ B0 om0, (o) (17 (1) (5.4.45)
Therefore (5.3.2) and (5.4.43) yield
5(t 5(t
’ 6° (ZS—UN < ’ #(t) ‘ < C for every € and ¢ € [0, 7). (5.4.46)
€ L2(Q) e llz2@)
By Lemma 5.3.11, we deduce
- (%) ’ 3
_ fe < — . .
Hl 0 ( 6 ) Y for every € and t € [0, T (5.4.47)

Collecting (5.3.7), (5.4.41), (5.4.46) and (5.4.47), we obtain that there exists a constant C
such that

| msmvée =)

<
L2(Q;M3%3) -
for every e and for all ¢t € [0,T]. Therefore, to prove (5.4.40), it remains only to study the

quantity .
—rsym (Ve (27 (1) (Vo) 7 (1,27 (1) — 1d) ).

By (5.3.18),
(Vs ()~ — Id|| o (oqum3x3y < C for every € and ¢ € [0, 7.

By (5.4.46), the first term in the right hand side of (5.4.41) is uniformly bounded in
L2(2; M3*3) . Therefore, it remains to show that

1 0 —6= (290 (¢, () (t))

E( (V00 (25) (1)) T 0 )((Vaf)‘l(t,zs(t)) —Id) (5.4.48)

is uniformly bounded in L?(; M3*3).
By (5.3.5) and by the smoothness of v°, there holds

—0= () V0 (¢, (=) (1)) c
Hé( (V'0(t, (Oza)'(t»)T ( ) . t t )HLOO(Q;MSM) < . (5.4.49)
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5.4 Convergence of quasistatic evolutions

for every ¢ € [0,7]. On the other hand,
(Vo) 7(t, 25(t)) = Vo (t,y°(t))  a.e. in Q. (5.4.50)
Property (5.3.20) yields the estimate
V5 (L, y° (1) — eall Lo (umsy < Ce™2 (5.4.51)

for every ¢ € [0,T], whereas by (5.3.5), (5.3.15) and (5.3.18)

_ S(t,y°(t)) B
€ € —eillraro. < a—1||ne @3(7y ‘ a—2
1965t (1)) = exllizqamny < 0= o (P20 )| e,
hence by (5.4.44) and (5.4.46) we obtain
V5 (&, 45 (1) — eill L2ars) < Ce®2. (5.4.52)
By combining (5.4.49)—(5.4.52), we deduce
1 0 —0= ()70 (¢, (22)(t)) )
- c ’ Vo)t 25(t) — Id
I=( (V0 (25 (1)" 0 ) ((v6°) 70,2 (1) ~ 1d)| P
< Ce 3 (5.4.53)

for every ¢ and t € [0,7], therefore the quantity in (5.4.48) is uniformly bounded in
L2(Q;M3*3) | and the proof of (5.4.40) is complete. By (5.4.36)—(5.4.40), since all esti-
mates are uniform both in ¢ and ¢, we deduce (5.4.14), which in turn yields (5.4.13).

Step 2: Reduced Stability

Owing to the a priori bounds (5.4.2) and (5.4.13), we can apply the generalized version of
Helly’s Selection Principle in Theorem 1.5.2. To show it, take Z := L?({;M3*3) endowed
with the weak topology of L?, and set

1
6&71

D.(z1,22) := / D(Id+e“ 21, Id + ' 2z) da
Q

and
Doo(z1,22) i= / H(zo — z1) dx
Q

for every z1, 2o € L?(€; M3*3). Hypotheses (A.1) and (A.2) of Theorem 1.5.2 are satisfied by
(4.2.16)—(4.2.18). Hypothesis (A.3) follows by adapting [52, Lemmas 3.4 and 3.5], whereas
condition (A.4) follows directly by (5.4.2) and (5.4.13). Hence, by Theorem 1.5.2 there holds

p(t) — p(t) weakly in L2(;M3*3)  for every t € [0, 7],
(5.4.54)

D, (p;0,t) < lim iélf D(P*%;0,t) for every t € [0,T].
e—

Ea—l

Moreover, by (5.3.28), p(0) = p.
Let now t € [0,T] be fixed. By (5.4.1), (5.4.17), (5.4.19) and Poincaré inequality, up to

subsequences there holds

/

ye(t) — ( T) ) strongly in W12(Q;R?). (5.4.55)
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5. Quasistatic evolution models for thin plates in finite plasticity

Arguing as in the proof of Theorem 4.3.3 and owing to (5.4.2), we deduce the existence of
a pair (u*(t),v*(t)) € WhH2(w; R?) x W22(w) such that (u*(t),v*(t),p(t)) € A(u’(t),v°(¢))
and a sequence €; — 0 such that

u (t) — u*(t) weakly in Wh?(w;R?), (5.4.56)
v (t) = v*(t) strongly in Wh?(w). (5.4.57)

In particular, by (5.3.26) and (5.3.27) we have u*(0) = @ and v*(0) = ©. By (5.4.27) up to
extracting a further subsequence, there exists a map G*(t) € L?(£; M3*3) such that

G% (t) = G*(t) weakly in L?(Q; M?3*3) (5.4.58)
and the 2 x 2 submatrix (G*)'(t) satisfies
(G (t,x) = Gi(t,2") — x3(V')?v*(t,2') for ae. x € Q, (5.4.59)
where
sym G§(t) = sym V'u*(¢). (5.4.60)

We shall show that the triple (u*(t),v*(t),p(t)) satisfies the reduced stability condi-
tion (gs),q. By Corollary 5.2.2; it is enough to prove the inequality for triples (i, v,p) €
A(u®(t),v°(t)) such that

S TS TR !
I
D > S
\ I |
===
m M m
Q O Qq
08 08 8
DE T
=5 C
5¢ ¥ P
S S <
~ )

By Theorem 5.3.12 there exists a sequence (%, P%i) € Ac; (959t (t)) satisfying
| Quloym & i) da + / B(p)d
~ [ @ulm (@Y (W) =y O) o~ | Bw)dr+ [ Hoo o) da
znmsup{gjg - / W (V= (P9) ) o + g 1 - / Wiara(P) da

EjHO

L €5 e;\—1
s | WalVe (0P O)de iy / Wiara(P% (1)) d

1 R
+ a_l/D(Paj(t),Pfj)dx}
€j Q

where

G'(2',x3) == Go(z') — 23(V')?0(2) a.e. in Q,
and
sym Gy = sym V'i.
Inequality (gs),q follows now by the e-stability (gs) of (y°(t), P°(t)).
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5.4 Convergence of quasistatic evolutions

By strict convexity of the quadratic form @2, an adaptation of [15, Theorem 3.8] yields
that, once p(t) is identified, there exist unique u(t) € W2 (w;R?) and v(t) € W2?(w) such
that (gs),« holds at time ¢. This implies that u*(t) = u(t), v*(t) = v(t) for every t € [0, T
and both (5.4.56) and (5.4.57) hold for the whole sequences u®(t) and v®(¢) and for every
t € [0,T]. Moreover, by (5.4.58)—(5.4.60) we have

sym (G*)'(t) = sym V'u(t) — z3(V')?v(t)
and
sym (G (t) — sym V'u(t) — 23(V')?v(t) weakly in L*(Q;M>**3)  for every t € [0, T].

Step 8: Convergence of the scaled stress
In this step we shall show that for every ¢ € [0,T] there exists a subsequence ¢;, possibly
depending on t, such that

Xe, (£)E (t) = E*(t) weakly in L*(Q; M®*?), (5.4.61)

where
E*(t) = C(G*(t) — p(t)). (5.4.62)

To this purpose, for ¢t € [0, 7] fixed, let €; — 0 be such that (5.4.58) holds and let F®i (¢)
be the map defined in (5.4.20). By (5.4.2), (5.4.23) and (5.4.58) we deduce

671G (6)(w (£) — % ()| aqeypasns) < . for every <.
On the other hand, by (5.4.2), (5.4.25), and (5.4.58), there holds
LGS (1) (wi (t) — p®i (t)) — 0 strongly in L*(Q; M3*3), (5.4.63)
Hence, we conclude that
LGS () (w () — pi(t)) — 0 weakly in L?(€Q; M3*3). (5.4.64)
Collecting (5.4.20), (5.4.26), (5.4.54), (5.4.58) and (5.4.64) we obtain
F&i(t) = G*(t) — p(t) weakly in L*(Q;M>*3). (5.4.65)

By (5.4.35) we deduce that x,(t) — 1 boundedly in measure, therefore by (5.4.65) there
holds

X, () F% (t) = G*(t) — p(t) weakly in L?(Q; M>*?).
Now, estimate (5.4.33) implies that the sequence (E%i (t)) is uniformly bounded in L' (Q; M?3*3)
and is equiintegrable, hence by the Dunford-Pettis Theorem, up to extracting a further sub-

sequence, there exists E*(t) € L*(;M3X2) such that

sym
ESi(t) — E*(t) weakly in L*(Q; M>*3).

Using a Taylor expansion argument in O, (t), and arguing as in [55, Proof of Theorem 3.1,

Step 3] we deduce
Xe, (1) B (t) = C(G*(t) — p(t)) weakly in L*(Q;M373).

sym
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5. Quasistatic evolution models for thin plates in finite plasticity

By (5.4.16) and (5.4.19), the sequence (R°(t)) converges boundedly in measure to the iden-
tity, hence the previous convergence implies in particular (5.4.61) and (5.4.62).

Step 4: Characterization of the limit stress

In this step we shall show that

E*(t) = Ca(sym V'u(t) — x3(V")?u(t) — p/(t)) := E(t) for every t € [0,T]. (5.4.66)

This, in turn, will imply that all convergence properties established in the previous step hold
for the entire sequences and for every t € [0,T].
We first remark that, choosing P = P*(t) in (gs) there holds

/Q We( Vg (6)(PF) "1 (#)) dar < /Q Wo(V-5(P9)-1(1)) do, (5.4.67)

for every § € WH2(Q; R3) such that § = ¢°(t, (2/,e23)) H? - a.e. on I'y.

Let n € WHo°(R3; R3)NC>(R3; R3) be such that no¢®(t, (z/,ex3)) =0 H? - a.e. on Iy.
Then, in particular, we can consider in (5.4.67) inner variations of the form y° + An o y°,
where A € R. By the growth hypothesis (4.2.5) and by the minimality condition (5.4.67), an
adaptation Theorem 1.3.1 shows that y°(¢) satisfies the following Euler-Lagrange equation:

/QDWez(VsyE(t)(Ps)*l(t))(VsyE(t)(PE)*l(t))T Vn(y*(t) de = 0 (5.4.68)

for every t € [0, T] and for every n € W (R3; R3)NC>(R3; R?) such that no¢®(t, (2, cx3)) =
0 H2-ae. onTIy. Hence,

/QEE(t) s Vn(y*(t))dx =0 (5.4.69)

for every t € [0, T] and for every n € W (R3; R3)NC>(R3; R?) such that no¢(t, (2, cx3)) =
0 H2%-ae only.

Now, fix t € [0,7] and let £; be the sequence selected in the previous step. Let 7 €
Woo(R3; R3) N C°(R3;R3) be such that n =0 H? - a.e. on I'y. We consider the maps
n%i(t) € WH(R3,R3) N C°°(R3; R3) defined as

17 () = egn (7 (8), 02’ (1), 195 (1))

It is clear that 7% (¢) o ¢%i (¢, (2/,j23)) =0 H? - a.e. on Iy, hence we can use 7% (t) as a

test function in (5.4.69) and we obtain

/Q Bt () : Vi (y* (t)) da = 0 (5.4.70)

for every j.
Now, set &5 (z) = (@7’ (t, @), 05 (t,x), L3 (t,2)) for every € R?. We can rewrite
(5.4.70) as

o [ B e Y don(e (4 ()06 (v (1) do
1,23 79

i=1,2, k=1,2
ve; Y [ B e 0an(€5 (47 ()06 (47 (1) do

i=1,27 €
by [ B (ea - a6 (47 ()65 (7 (1) do = . (5.4.71)
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5.4 Convergence of quasistatic evolutions

Since n € WH*°(R3,R3) and E%t(t) is uniformly bounded in L!(Q;M3*3) by (5.4.34),
estimate (5.3.18) yields that the term in the first row of (5.4.71) converges to zero. By
(5.3.20), the term in the second row of (5.4.71) can be bounded as follows:

& 2 [ 0 dn(en (7 (0)AE (7 (1) da] < Ce5 B (el e
i=1,2

and hence converges to zero due to (5.4.34). By (5.3.20), there holds

5 [ B (tea - 0an(€™ (47 (0)0uF (47 () di — [ B (B Dun(e (57 (1)) da
Q

Q
< OB (Hesl| sz

which converges to zero, owing to (5.4.34). Therefore, (5.4.71) yields

lim [ Et(t)eg - 03n(€¥ (y* (t))) dz = 0. (5.4.72)

ej—>0 0
By (5.3.6), (5.3.13) and (5.4.55) we deduce
&7 (y(t)) — o strongly in L*(Q) for k= 1,2.

Since a > 3, by (5.3.14) and (5.4.42) we have &’ (y%i (t)) — x3 strongly in L?(2). Hence,
by the regularity of 7,

O3n(&%9 (Y% (t))) — O3n(t,z) a.e. in Qase; — 0.

By the dominated convergence theorem and by combining (5.3.6), (5.4.37), (5.4.61) and
(5.4.72), we conclude that

/ E*(t)es - 03n(t) dz = 0,

Q

for every n € WHo(R3;R3) N C>(R?; R?) such that =0 H? - a.e. on I';. Hence,
E*(t)es =0 ae. in Q. (5.4.73)

By combining (4.3.23), (4.3.24), (5.4.62) and (5.4.73) we deduce (5.4.66). Moreover, by
(4.3.23) there holds

sym G*(t) — p(t) = A(sym V'u(t) — x3(V')?v(t) — p'(t)), for every t € [0,T].  (5.4.74)

Step 5: Reduced energy balance
To complete the proof of the theorem it remains to show that the triple (u(t),v(t),p(t))
satisfies

/ Qa(sym¥'u(t) — x3(V)20(t) — p/(1)) da + / B(p(t)) dx + Dt (p; 0, 1)
Q Q

< /QQQ (symV'u(0) — z5(V')?v(0) — p/(0)) dz + /Q B(p(0)) dz
Vil (s) — 23(V')20%(s)

168



5. Quasistatic evolution models for thin plates in finite plasticity

Once (5.4.75) is proved, the opposite inequality in (eb),, follows by adapting [15, Theorem
4.7].
We claim that, to prove (5.4.75) it is enough to show that

VO (t) — 23(V")200(t)
0

L v (V1 2 (0) (V)7 1,20 ) — som( ") o)

strongly in L2(Q;M3*3), for all ¢ € [0,T]. Indeed, if (5.4.76) holds, by (5.3.6), (5.4.37),
(5.4.39), (5.4.61) and (5.4.66), one has

1 . _ R V'O (s) — z3(V)200(s
L [ B VG 6T = o) e [ B sy ( Y T )
€ Q Q 0
for every s € [0,t]. Hence, by (5.4.14) and the dominated convergence theorem we deduce
1/ . .
ot | [ B Vs, 6 (V) 57 () e ds
0 Ja
¢ 0(g) _ 2,0
—>/ /E(s) : sym( Vi(s) = 23V7%(s) 0 )dm ds. (5.4.77)
0o Ja 0 0

On the other hand, by Theorem 4.3.3 there holds

[ Qalsvm¥'utt) = aa(Vu(t) — () da + [ Bo(e) do

Q

< liminf %fg(t, 25(t), PE(t)).

e—m0 g2a—

Therefore, once (5.4.76) is proved, by (5.4.54) and (5.4.77), passing to the liminf in the ¢
energy balance (eb), inequality (5.4.75) follows by (5.3.29).

To prove (5.4.76), we first study some properties of the maps 2°(¢). By (5.3.11) and
(5.4.44) there holds

(0 = i (1) — =0, () (7 () +20~ o (B Y00 oy e,y )

for every t € [0,T], ¢ = 1,2. Hence, by (5.3.3), (5.3.6) and (5.4.55) we deduce
25(t) — x; strongly in L*(Q) for every t € [0,T], i = 1,2. (5.4.78)

Moreover, by (5.4.45) we have

s(t p . S(t ,
23( ) — 23 75‘1731)(15) +5a731}0(t)‘ < Hy3( ) — 23 *60‘731)6@)‘
€ [

L2(9) L2(9)
+e 2 (1) — ()| L2y + 2 00(t) — 0Ot (¢°) (8 T (D)) 22 (0)-
Hence, by (5.3.13), (5.3.32), (5.4.42) and (5.4.55),
5(t) a3 a=3,0 ’
—_ — - t t 4.
‘ R (UREAlO] (5.4.79)
for every t € [0,7T]. In particular, by Lemma 5.3.11,
s(t
95(23—()) — x3  strongly in L?(Q). (5.4.80)
€
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5.4 Convergence of quasistatic evolutions

Arguing as in the proof of (5.4.40), we perform the decomposition

sy (V6 2 (0)(V67) (4 (0)) = sy (V6 (1, (1)
(Ve 2 (0) (V) (1,5 (0) — 1d) ). (5.4.81)

By (5.3.7), (5.4.41), (5.4.47), (5.4.78) and (5.4.80), we obtain

Vil (t) — 23V200(t) 0 )

sym (Ve (t,2°(t))) — Sym( 0 0

(5.4.82)

Ea—l

strongly in L?(Q;M3*3). To study the second term in the right-hand side of (5.4.81), we
remark that by (5.4.41) and (5.4.53), there holds

§0(1+‘

s (V65 2 (0) (V) (1, 2°(0) — 1))

()

On the other hand, (5.3.7), (5.3.19), (5.3.20) and (5.4.50) yield

L2(Q;M3X3)

DIV (1 27(0) = T e gy + C*°.

1(V6°) 1 (t, 2°(1)) — Id]| e (cypaons) < C=" L.

Hence, by (5.3.6) and (5.4.80) we have

sym(w's(t, () (Vof) Lt 25(1)) — Jd)) 50 (5.4.83)

Ea—l

strongly in L2(€;M?3*3). By combining (5.4.82) and (5.4.83) we obtain (5.4.76). This
completes the proof of the theorem. O

We give only a sketch of the proof of Theorem 5.3.9 in the case a = 3, as it follows
closely that of Theorem 5.3.9 for a > 3.

Proof of Theorem 5.3.9 in the case a = 3. Steps 0-3
Steps 0-3 follow as a straightforward adaptation of the corresponding steps in the case
a > 3, where now (5.4.7) holds with

V'ul(t,z") — x3(V')20(t,2') 0
A4(t,$) — synl( ( ) (f( ) ( ) 0 )
L+ }( V'O(t, 2" @ V'O(t, ') 0 )
2 0 V'Ot 2") |2

for every x € Q and for all ¢ € [0,7]. The only relevant difference is that we can not
conclude that u(t) and v(t) are uniquely determined once p(t) is identified. Hence, now all
convergence properties hold on t-dependent subsequences. In particular the counterparts of
(5.4.1)—(5.4.65) still hold for a = 3.

Step 4: Characterization of the limit stress

Arguing exactly as in Step 4 of the proof of Theorem 5.3.9 for o > 3, we obtain
/ E(t,x)es - Osn(t, (', x5 +v(t,z’) —0°(t,2))) dz = 0 (5.4.84)
Q

170



5. Quasistatic evolution models for thin plates in finite plasticity

for every n € WH(R3; R?)NC°°(R3;R?) such that n =0 #H? - a.e. on I'y. Consider now
a sequence (wy) C C(w) that converges to v(t) — v°(¢) strongly in L?*(w). Taking as
test functions in (5.4.84) the maps nx(z) := n(z’, v3 — wi(a’)), where n € WH°(R3 R3) N
C>®(R3%R3) and n=0 H?- a.e. on I'y, we have

/ E(t,x)es - Osn(t, (2,23 + v(t,z') — 0 (t,2") —wi(x")))dx =0 for every k.
Q

Passing to the limit as & — +oo in the previous equation, by the dominated convergence

theorem we deduce

/QE(t)eg -O3ndx =0
for every n € WHo°(R3 R3) N C°°(R3;R3) such that n =0 H? - a.e. on I'y, which implies
E(t)es =0 a.e. in . Hence, (4.3.23) and (4.3.24) yield
E(t) = Ca(es(t)),
and
sym G(t) — p(t) = A(symV'u(t) + $V'0(t) ® V'v(t) — z3(V')?v(t) — p'(2)). (5.4.85)

Step 5: Reduced energy balance
Arguing as in Step 5 of the case a > 3, to prove (eb),3 it is enough to show that

/ Qales(t)) da + / B(p(t)) d + Dz, (p; 0,1)
Q Q
< /Q Qa(es(0)) di + /Q B(p(0)) da

[ [ e (T T T TR 0)

(5.4.86)

where t — e3(t) is the map defined in (5.3.24). Indeed, once (5.4.86) is proved, (eb),s
follows by adapting [15, Theorem 4.7] according to Remark 5.3.7 (see Lemma 5.6.4). To

prove (5.4.86), we argue as in [6, Lemma 5.1] and we set
1 : — e
O°%(t) == s—z/QEa(t) (Ve (t, 25 (1) (Vo) L (t, 25(t)) du,

O(t) := limsup O°(¢)

e—0

for every t € [0,T]. By (5.4.14) (which is still true for o = 3), ©(t) € L*([0,T]) and by
Fatou Lemma there holds

¢ ¢
limsup/ ©°(s) ds §/ O(s) ds. (5.4.87)
e—0 0 0

Now, by Theorem 4.3.3 we know that

/QQg(eg(t)) dx + /Q B(p(t))dx < ligri)iglf 52(1_2 FE(t,25(t), PE(t)).
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5.4 Convergence of quasistatic evolutions

By (eb), (5.3.29), (5.4.54) and (5.4.87) we deduce

t
[ @stestndo+ [ B0 do+ Dy 0.0 < [ Qateato o+ [ B ds+ [ O)as
Hence, to prove (5.4.86) it is enough to show that

-0 t / t 120 t) — N2,.0 t
@(t):/E(t): ( Vil(t) + Viv(t) @ VOR(t) — 25 (V)75 0 )dx (5.4.88)
Q 0 0
for a.e. t €0,T].
To this purpose, fix ¢t € [0,T] and let €;, — 0 be such that
O(t) = lim O%t(¢t).

Ejf,—>0

Up to extracting a further subsequence, we may assume that €;; is the same subsequence

we selected in the previous steps. We claim that

o (Vo (1,294 (1) (V) 12 1)
VA0 () + V'O (t) @ V0 (t) — (x5 + v(t) — v0(2))(V))200(¢) 0
— sym( 0 %\V'v;(t)F )
(5.4.89)

strongly in L?(€2; M3*3). To prove the claim, we perform the decomposition (5.4.81). Now,
arguing as in the proof of (5.4.82), and using (5.4.79) (which still holds for o« = 3) and
Lemma 5.3.11 we obtain

. laO —(z v _ UO ! 2{10
Eétsym(v(ésjt(t,zejt(t))) —>sym( \Y (t) ( 3+ (tg (f))(V) (t) 8 ) (5_4.90)

strongly in L?(Q;M3*3). To study the second term in the right-hand side of (5.4.81), we
remark that by (5.3.7), (5.3.19), (5.3.20) and (5.4.50), one has

“(V¢8jt)—1(t,zfjt (t)) - IdHLoo(Q;MSX3) < Cf;"?tfgjt.

By (5.4.46), there holds

.
20

H( Va0 (t, (25)'(t)) — 0% (Oeﬁ)(v’)%o(ﬁ (251)'(t)) 8 )((v(bsﬁ)—l(t,z% () - Id)‘ L)
< Ceyle,,, (5.4.91)

which tends to zero due to (5.3.6).
By (5.4.41), it remains only to study the asymptotic behaviour of

_ 'sjt Zgjt(t) /1,0 g5t )/
i( 0 0 ( 35jt )V v (ta (Z ) (t)) ) ((v(’bfjt)*l(t?zéfjt(t)) _ Id).
gt N (VO (250) (1)) T 0
By (5.4.50), this is the same as studying the quantity
i( 0 _96.7t(%f”)V’®0(t, (zs_n)’(t)) )(Vgﬁgﬁ(t ysjt(t)) N Id).
it N (V'0(t, (z50)'(1)))" 0
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5. Quasistatic evolution models for thin plates in finite plasticity

We claim that
1

Ejit

0 V00 (¢) )

<Vg0€jt(t7y6jt () — Id) N ( ()T 0 (5.4.92)

strongly in L?(Q;M3*3). Indeed, by (5.3.15) and (5.3.18) and the smoothness of u° and

0,
= (v - (g 8))—<o|v'U°<t>)\L2(QM2X3)gc@t\aw(W)\m)
o (B g, (o a0 (T o 0) = )
+‘ gese (sa?t(t;ieﬁ(t)))v’w(t, (%) (t, 71 (1)) — V’vo(t)’ O

By (5.3.2), (5.3.12), and (5.4.43)(which can be proved arguing exactly as in Step 1 of the

case o > 3), we deduce

Tty (t 3ty (t 5 (t

‘98j¢<‘p3 (7y1 ()))‘ t SH()D?) (7yJ ())‘ SC(‘ Y3 ()’ +||UO||L0°(w;R2))§C'
€jt L2(Q) Ejit L2(Q) gt 1L2(Q)
(5.4.93)
On the other hand, by (5.3.5) and (5.3.20)
Ejt £
jesi [ P3 (tvy Jt(t)) 1,0 ey €5t Ejt €5t _ ‘
[0 (B0 ) vl (Y v ) @ (T by ) =)

< ClIVeps” (t,y™" (1)) — esllL(@s) < Ceju-

Finally, by (5.4.93) and Lemma 5.3.11

o (W)V’v% () (g™ (1)) = V' (1)

L2(Q;R?)

=2 ngt(t’yejt(t» 7,0 ey €5 7,,0
<C|e | =———— ) -1 t t,y~7t(t))) — t)|| L2 (w:R2
< O (BmE52) — 1) g #1996 ) Gy 0) = VOl
C (> €5
< 7+ IV (6 (v () = V'O 2

gt
which converges to zero owing to (5.3.6), (5.3.13), (5.3.14), (5.4.55) (which can be proved
arguing exactly as in Step 2 of the case o > 3) and the dominated convergence theorem.

By collecting the previous remarks, we obtain

100

I=:
0 10

Ejit

(Ve )ty @) - ( )) = ©OI9'°(0)

On the other hand, by (5.3.16) there holds

1 0 O)H
O 1 O LOQ(Q;MZXS)

[ s (T <oty

HIVOO(, (950) (57 (1)) — V'O (D) L2 (m2)

which tends to zero owing to (5.3.6), (5.3.13), (5.3.14), (5.3.19), (5.4.55) and the dominated

convergence theorem. Therefore, the proof of claim (5.4.92) is completed.

L2(4R3)
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5.4 Convergence of quasistatic evolutions

Now, by (5.4.55), (5.4.92) and the dominated convergence theorem we conclude that

x 0 et (B0, (55 () (s o iy
2l @i ey 0 ) (99t @) - 1d)
AR V'Ot 0
%( (t)ﬁ) " 4 [V ) (5.4.94)
dt 2

strongly in L2(£2;M3*3). By combining (5.4.90), (5.4.91) and (5.4.94) we deduce (5.4.89).
Now, by (4.3.25), (5.3.6), (5.4.37), (5.4.39), (5.4.61) (which still hold true for a = 3), (5.4.85)
and (5.4.89) we obtain

m 190 "00(t) — (x5 +v(t) —0° 20
mﬂ:AE@:<VOM+V (£) ® V'O () = (w5 + v(t) umv><wo)m'

0 0
(5.4.95)
On the other hand,
sym(V'0°(t) ® V'o2(t) — (v(t) — v°())(V')*0°(2))
= —sym V' ((v(t) — °(t))V'6°(t)) + sym(V'v(t) ® V'i°(t))
and
/ C2E(t) : V' ((v(t) = 0° (1)) V'9°(t)) dz = 0 (5.4.96)
Q

by Remark 5.3.8. By combining (5.4.95) and (5.4.96), the proof of (5.4.88) and of the
theorem is complete. O

To conclude this section we show some corollaries of Theorem 5.3.9. We first prove that
under the hypotheses of the theorem we can deduce convergence of the elastic energies and

of the hardening functionals. More precisely, the following result holds true.

Corollary 5.4.1. Under the assumptions of Theorem 5.3.9, for a >3 for every t € [0,T],
setting y=(t) := ¢°(t, 2°(t)) there holds

lim EQi_Q /Q W (Vey® (1) (PF)7H(t)) dx = /Q Qa(sym V'u(t) — z3(V')?u(t) — p'(t)) dz,
and
313%52%2 /Q Whara(P(t)) dx = /Q B(p(t)) dz. (5.4.97)

The analogous result holds true for oo =3 on the t-dependent subsequence €;; — 0 selected
in Theorem 5.3.9.

Proof. The result follows by combining the liminf inequalities (4.3.43) and (4.3.44) in The-
orem 4.3.3, the e-energy balance (eb) and the reduced energy balance (eb) . . O

In particular, we can deduce strong convergence of the sequence of scaled plastic strains
by the convergence of the energies.

Corollary 5.4.2. Under the hypotheses of Theorem 5.3.9, for a > 3 there holds
p°(t) — p(t) strongly in L*(Q;M3*3) (5.4.98)

for every t € [0,T]. The analogous result holds true for a = 3 on the t-dependent
subsequence €;; — 0 selected in Theorem 5.5.9.
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5. Quasistatic evolution models for thin plates in finite plasticity

Proof. We prove the corollary for « > 3. The case o = 3 follows by simple adaptations.
Fix 6 > 0 and let ¢;,(d) be the constant in (4.2.12). By (4.2.12) there holds

Whara(Id + F) > B(F) — C8|F|* for every F € M**3 |F| < ¢,(9). (5.4.99)

Fix t € [0,T] and for every e consider the set

S.(t) = {x cQ: it a) < ) }

3

Denoting by p.(t) the characteristic function of the set S(¢), by (5.3.30) and Chebychev
inequality,

te(t) = 1 boundedly in measure as € — 0. (5.4.100)
and thus

pe()pS(t) — p(t)  weakly in L2(€; M>*3), (5.4.101)
We remark that in the set S.(t) we have e~ 1|p(¢)| < €% 2¢,(8). Hence, by (5.4.99) for ¢

small enough there holds

s Whara (P (1)) 2 12 Wiara (P (0)) 2 () (B (1)) — Colp (1))

In particular, by (5.3.30), (5.4.97) and the lower semicontinuity of B with respect to weak
L? convergence, we have

/QB( (t)) dx = lim —— / Whara(P%(t)) dz > limsup —— ! /,us(t)Whard(PE(t))dx

e—0 52(’ 2 e E2¢

> lim sup/ pe(t)B(p®(t)) de — Cd > limiélf we(t)B(p®(t)) de — C6 > / B(p(t)) de — C6.
Q el Ja

e—0

Since § is arbitrary, we obtain

tim [ 1o (1) B (1)) dr = / B(p(t)) do (5.4.102)
E— o) Q
and by (5.4.97)

lim 52% /s (1= e (D) Wara(P(0) o = 0. (5.4.103)

By (4.2.11) and (5.4.103) we deduce

fim [ (1= ()P (]2 dz < 2 lim —— /Q (1 — e () Whara(PE(£)) da = 0. (5.4.104)

e—0 Q cg €0 62(1 2

Hence, by (4.2.15) there holds

/ () — ()P dz = /Qua<t>|p5<t>—p<t>\2dx+ /Qu—ug(t))w(t)—p(t)\Qda:

2 ue(t)B(pE(t)—p(t))d$+2/9(1—us(t))(\ps(t)l2+Ip(t)IQ)dl”-

C6 JO
(5.4.105)

IN
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5.4 Convergence of quasistatic evolutions

Recalling the quadratic structure of B, the first term in the second row of (5.4.105) can be
decomposed as

2 BE® —p0)de = 2 [ pBe @) det+ 2 [ pe®)Bp() de

and tends to zero due to (5.4.100)—(5.4.102). On the other hand, by (5.4.100) and (5.4.104)

/Q (1= )P (O + [p(t)[*) dz — 0.

By combining the previous results, we deduce (5.4.98). O

Convergence of the energy implies also strong convergence of the in-plane displacements.
More precisely, the following result holds true.

Corollary 5.4.3. Under the assumptions of Theorem 5.3.9, for a > 3, for every t € [0,T]
there holds
ut(t) — u(t) strongly in W2 (w; R?). (5.4.106)

The same result holds true for o = 3, on the t-dependent subsequence €j; — 0 selected in
Theorem 5.3.9.

Proof. We prove the corollary for « > 3. The case where o = 3 follows by simple adapta-
tions. Fix ¢ € [0,7] and let F°(¢) be the map defined in (5.4.20). Fix § > 0 and consider
the set

Ud(t) = {x €Q:|Fe(t )| < Celg(‘s) }

where c;(0) is the constant in (4.2.4). In particular, in the set U.(¢) there holds e*~1|F¢(t)| <
€9 2¢.(0). Hence, denoting by pu.(t) the characteristic function of U.(t), by (H3) (see Sec-
tion 4.2), (4.2.4) and (5.4.21), we have

1

52(1—2

Wa(Vey® (6)(PF) 71 (1) = ngl_QWez(IdJr e TIFE(L)) 2 pe(QFE(2)) — pe()CO|F=(1) 2.
By Chebychev inequality and (5.4.28),
te(t) = 1 boundedly in measure, (5.4.107)
whereas by (5.4.65) and (5.4.74),
pe(t)sym Fe(t) — A(sym V'u(t) — x3(V')?0(t) — p/(t))  weakly in L*(Q;M3*3). (5.4.108)

Arguing as in the proof of (5.4.102) we obtain

lim ; pe()Q(FE(t)) do = /QQg(sym V'u(t) — z3(V')?0(t) — p'(t)) da5.4.109)

e—0

and

lim [ (1 — pe(t))We(Id + e* 1 FE(t)) dz = 0.
e=0 Jq
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5. Quasistatic evolution models for thin plates in finite plasticity

By (H4) (see Section 4.2), this implies that

lim [ (1= pe(t)dist*(Id + £~ F¥(t), SO(3)) dw — 0. (5.4.110)
E—r 0

On the other hand, (4.2.7) and (4.3.25) yield
/ |ue sym F=(t) — A(V'u(t) — 23(V)0(t) — o' (1) de

< % Q(us( Jsym F*©(t) — A(V’u(t) - arg(V/)Qv(t) fp/(t))) dx

1

ol Qp=(t)F ())der%C Q2(V'u(t) — 23(V')*u(t) — /(1)) dz

‘% | 1eOCFE(0) : (V'ult) = 25(V)*u(t) - #/(8)) da

Hence, by (5.4.108) and (5.4.109)
pe (t)sym FE(t) — A(V'u(t) — z3(V')?0(t) — p/(t)) strongly in L*(;M3*3).  (5.4.111)

Moreover,

50% e (H)dist(Id + >~ F=(£), SO(3))

= pe (1) [sym F= (t)| + pe ()0 HFE (1)) — |A(Vu(t) — z3(V")*0(t) — p'(1))]
(5.4.112)

strongly in L?(Q). By combining (5.4.110) and (5.4.112) we deduce

—dist(Id + £ F2(1), SO(3)) — |A(V'u(t) — 25(V')2u(t) — p'(t)]

strongly in L?(€2). In particular, the sequence gh%zdistQ(Id + e LFe(t),S0(3)) is equi-
integrable.
Now, recalling that by (5.4.20) there holds

Id+ e Fe(t) = (Id + e Ge(t))(Id + > 1p°(t)) 1,
by (4.2.13) and (5.4.3) for every R € SO(3) we deduce

1
|[Id + eI GE(t) — R = 5 |(Id + e F*(1))(Id + e~ 'p*(1)) — RJ?

2042

2 _
< asglld+e" T F () - RP? +2\p€(t)l27
which in turn implies
2
.2 a—1 s 2 a—1 2
——5dist (Id+e“7"G*(t),S50(3)) < mdlst (Id+e“"F=°(t),SO(3)) + [p°(t)|°.

Hence, by (5.4.98) Emy%gdistz(ld—l— > 1G#(t),S0(3)) is equi-integrable. Arguing as in [34,
Section 7.2, Proof of Theorem 2] we obtain the equi-integrability of |G¢(¢)|?.
We claim that also |F€(t)|? is equi-integrable. Indeed, by (5.4.20), there holds

[FE)] < CUGOP + [w ()] + [p° (1) + 72| G (w (H)* + 2 72|G=()p* (1))
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5.5 Convergence of approximate minimizers

Now, by (5.4.2), (5.4.3) and (5.4.22), we have
W ()|* < ciee®* 2 ()]* < Clp° (1))
Hence, by (5.4.98) the maps |w®(t)|? are equi-integrable. Moreover, by (5.4.2) there holds
2 2GE(1)p" ()]” < CIGE(1)?

and by (5.4.23)
272G (ws (1)) < CIGE ().

Therefore, the equi-integrability of |F(t)|? follows from the equi-integrability of |G®(t)|2.

By (5.4.111), this implies that
sym F=(t) = A(V'u(t) — 23(V')*0(t) — p'(t))
strongly in L?(Q; M3*3). On the other hand, by (5.4.24) and (5.4.63),
w*(t) — TG () (7 () — wi(t) = 0

strongly in L'(Q;M3*3). Therefore, by (5.4.20) and (5.4.98) we obtain

sym G (t) — A(V'u(t) — x3(V')?v(t) — p'(t)) + p(t) strongly in L'(£; M3*3).
By the equi-integrability of |G¢(¢)|?, it follows that

sym G (t) — A(V'u(t) — z3(V')?v(t) — p'(t)) + p(t) strongly in L?(Q; M3*3),

The conclusion follows then arguing as in [34, Section 7.2, Proof of Theorem 2]. O

5.5 Convergence of approximate minimizers

Theorems 5.3.9 is actually only a convergence result. Indeed, under our assumptions
the existence of an e-quasistatic evolution according to Definition 5.3.3 is not guaranteed.
Howewer, following the same approach as in [52, Theorem 2.3], we can extend our con-
vergence result to sequences of approximate discrete-time e-quasistatic evolutions. More

precisely, setting
Ao = {(z,P) e WHH(Q;R?) x L*(;SL(3)) :
z=(2',ex3) H?-ae onTy and P(zr)€ K ae. in Q},
we give the following definition.

Definition 5.5.1. Given a sequence of time-partitions

(0=t <t <.tV =1},

€

with time-steps

Te 1= mMax (=t >0 ase—0, (5.5.1)
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5. Quasistatic evolution models for thin plates in finite plasticity

and a sequence of positive parameters . — 0, we call {(z, P!)} a sequence of approzimate

minimizers if, for every € > 0, (22, P%) € A, and (2%, P!) € A. satisfies
Pt AP 4= [ DR do
Q

<e¥2 (L — )+ inf {]—'E(ti,z,P)—kgo‘_l/D(Pg_l,P)dﬂf} (5.5.2)

(z,P)eA. Q

g

for every i =1,---, N®.

Our final result is to show that every sequence of approximate minimizers converges, as

€ — 0, to a reduced quasistatic evolution.

Theorem 5.5.2. Let a > 3. Assume that t — u®(t) belongs to C1([0,T]; WH*°(R%;R?) N
CL(R%;,R?)) and t ~ v°(t) belongs to C*([0,T]; W3>(R?) N C?(R?)), respectively. For
every t € [0,T], let ¢°(t) be defined as in (5.3.10) and let (i, v,p) € A(u(0),v°(0)) be such
that

/ Q2(symV'u — 23(V')?0 + e Vo @ Vo — p) da + / B(p) dz
Q Q

< / Q2(symV'a — z3(V')2%0

+
ol
4
>
&
<4
>
\
=
QU
8

’+/QB@> dx+/QHD<ﬁ—f») dr,
(5.5.3)

for every (i, 9,p) € A(u®(0),v°(0)). Given a sequence of time-partitions
(0=t0<tl <.tV =1},

with time-steps

.= max (L —t"hH =0 ase—0,
i=1,--N*

and a sequence of positive parameters 0. — 0, assume there exists a sequence of pairs
(y5, P§) € Ac(¢°(0)) such that

T(. P5) < (g, P) + <! / D(PE, P)da + 6.7, (5.5.4)
Q

for every (4, P) € A:(¢°(0)), and

[

1
ug = g / 1 ((y5) —a') dzs — @ strongly in W2 (w; R?), (5.5.5)
-2
1 3
vG = 60{7_2/ ) (y5)z dxz — v strongly in W2 (w), (5.5.6)
-3
FP5 —Id
Py = ;7_1 — P strongly in L?(Q; M), (5.5.7)

. 1 o 20 L, o s o
lity 7006 F) = [ QalsymV'i— oa(V' P+ V' 0 Vi - ) da

+ /Q B(p) da. (5.5.8)
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5.5 Convergence of approximate minimizers

Let (2%, Pl) be a sequence of approzimate minimizers and let (z°(t), P*(t)) be the corre-
sponding right-continuous, piecewise constant interpolants on the time partitions. Let 56 (t)
be the associated interpolant of t — ¢°(t). Then, for every t € [0,T]

P(t) - Id
pe(t) = (3771 —p(t) weakly in L*(Q;M3*3).
€

Moreover, for o> 3, for every t € [0,T] the following convergence properties hold true:

us(t) := Eal_l /2 (@) (t,2°(t) — a') dws — u(t) weakly in W?(w; R?),
TE(t) = L 3 ’ Ba(t,7°(t)) dzs — v(t)  strongly in WH2(w),
ex—= J_

=

where t — (u(t),v(t),p(t)) is a reduced quasistatic evolution.
For o= 3, up to extracting a t-dependent subsequence €;; — 0, there holds

1
1 2 ey . .
uit(t) == —— /2 ((‘bsjl)'(t,?s”(t)) - :z:’) drs — u(t) weakly in W2 (w; R?),
it 1
Jl ;
TI(t) = ——5 7? (t, 259 (t)) dxs — v(t)  strongly in W3 (w),
Sjt _%

where t — (u(t),v(t),p(t)) is a reduced quasistatic evolution.

Remark 5.5.3. The set of admissible data (u,v,p) for Theorem 5.5.2 is nonempty.
Indeed, for every € > 0 let (y§, P§) € A:(¢°(0)) be such that

25, 75) + e [ DUA P e nt TGP et [ DU Pydo} + b
Q (#,P)€A:(¢2(0)) Q

By (4.2.18) there holds

D(Id, P) < D(Id, F{) + D(F;, P),
hence (y§, P§) fulfills (5.5.4). By the regularity of dw, the set 4 coincides H! - a.e. with
its closure in the relative topology of dw, which in turn is a closed (nontrivial) interval in
Ow. Hence, by Theorem 4.5.1, choosing p*° = p® = 0 for every € > 0, and s, = 6.7., we
infer the existence of a triple (i, %,p) € A(u®(0),v°(0)) such that (5.5.3) is satisfied and
(5.5.5)—(5.5.8) hold true.

Proof of Theorem 5.5.2. The proof follows along the general lines of the proof of Theorem
5.3.9. We sketch the main steps in the case a > 3. The case o« = 3 follows by straightforward
adaptations.

Quasi-stability condition

By (4.2.18) the piecewise constant interpolants fullfill

Fo(t,Z5(8), P (1)) < Fu(t, 2, P) 47} / D(P°(t), P) dx + 87,622 (5.5.9)
Q

for every (Z, 15) € A.. The previous inequality will play the role of the e-stability condition
(gs)-
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5. Quasistatic evolution models for thin plates in finite plasticity

Discrete energy inequality
To adapt the proof of Theorem 5.3.9 we shall need an analogue of condition (eb). To this
purpose, we notice that, by (5.5.2) the following discrete energy inequality holds true

Fe(tl, 2L, P+t | D(PIT Plyde < 720, (tL — t71) + Fe(t2, 227, PI7Y)
Q
ti

= €202, (L — 1Y)+ Fo (8, 2 P 4 O, F.(s, 2171 i) ds
= AT AR
et / [ PWa(V6 (5,9 (P ) 5 W ) Vs (P dds
= I ) A P
et / BN V2 (90 (5,5 dads,
where

T

Eil(s) =

- Ea—l

DWe (V¢ (s, 25 )Vezlm (P 71 (Ve (s, 20 Vel YR )

for every s € [ti1 t1].
By iterating the discrete energy inequality, recalling that I (t) is locally constant, we

obtain
Fo(t,Z°(t), P°(t)) + > 'D(P";0, 1)

t
< 2025 4 Fu(0, 25, P) + e / / B (s) : Vo(5,7°(5)) (V") " (s, 2°(s)) du ds,
0 Q
(5.5.10)

where z§ := ¢°(0,y§) and

B(5) 1= oy DWat(V6° (5, 25(9)) Vo7 (5) ()™ (5)) (V6 (5, 2°(5)) Vo7 () () (5)”
for every s € [0,1].

Proof of the reduced stability condition and energy balance

The reduced stability condition can be deduced as in Step 2 of the proof of Theorem 5.3.9.
Moreover, arguing as in the proof of Theorem 5.3.9 one can show that Eg(t) converges in
the sense of (5.4.37) and (5.4.61) to a limit stress E(¢) such that

The crucial step to deduce the reduced energy balance is to show that E(t)es = 0 a.e. in
Q, that is,
E(t) = Co(G'(t) — p'(1)). (5.5.11)

The main difference with respect to Theorem 5.3.9 is that in this case we can not deduce
this condition starting from the three-dimensional Euler-Lagrange equations because (5.5.10)
does not imply (5.4.68).

181



5.5 Convergence of approximate minimizers

To cope with this problem, set 7°(t) = ¢ (t,2°(t)) for every ¢t € [0,T]. Let 5 €
Whee(R3;R?) N C°°(R3R3) be such that n = 0 H? - a.e. on I'y. We argue as in the
proof of Theorem 1.3.1 and we consider variations of the form

=7 (1) + 7" 01,

where 1° is the test function considered in Step 4 of the proof of Theorem 5.3.9. By (5.5.9),
taking P = P (t), we deduce

e ] /Wel<(ld+%5°‘1V775(y€(t))>vsys(t)(P€)1(t))—Wez(Vsy5(t)(P5)1(t))
Q

< o dx

Tea—1

dsdx

ds Teex 1

1 a Wa((1d+sme V@) Y (0F) ()
- /Q /0 4

_ / (1) : Vi (7 (1)) d,

where

1

D°(t) := g

1
/0 DW,, ((Id + 5T (7 (t))) V.7 (H)(P) ! (t)) (Vo ()(P) "1 ()T ds.

Since P (t) € L%(9; SL(3)), det P°(t) = 1 a.e. in Q. Moreover, by (H1) (see Section
4.2) and (5.5.9) we deduce that det V.7°(¢t) > 0 a.e. in Q. On the other hand, since
IV0® |l Lo (amsx3y < C for every e (see Step 4 of the proof of Theorem 5.3.9 and (5.3.18)),
by (5.5.1),

det (Id + sT-c* "'V (7°(t))) > 0 for every s € [0, 1],

for € small enough. Hence, by combining (4.2.5) and (4.2.6) we deduce that ®°(¢) is well

defined for ¢ small enough. Moreover, there holds

liminf{/ (1) : V?f(ya(t))dx} > 0. (5.5.12)
e—0 Q
We claim that
lim [ ®°(¢) : Vi (7" (1)) dz = / E(t)es : Osndx. (5.5.13)
e—=0 /o Q

We note that, once (5.5.13) is proved, from (5.5.12) it follows that
/ E(t)es : 9sndz >0
Q

for every n € W1°(R3;R3) N C>°(R?;R3) such that n = 0 H? - a.e. on I'y, hence the
proof of (5.5.11) is complete.
To prove (5.5.13), it is enough to consider the sets

O(t) := {x: e 7V E ()| < 1},

where the maps F (t) are the piecewise constant interpolants of the maps F¢(t) defined in
(5.4.20). Arguing as in the proof of (5.4.36) and (5.4.61), one can show that, denoting by
Xe(t) the characteristic function of the set O.(t), there holds

11 = X ()2 ()| 1 (uasxay < Ce®™17
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5. Quasistatic evolution models for thin plates in finite plasticity

and
Xe(H)®E(t) = E(t) weakly in L*(Q; M3*3).

Claim (5.5.13) follows now arguing as in Step 4 of the proof of Theorem 5.3.9. O

5.6 Appendix

This section is devoted to the proof of the existence of a reduced quasistatic evolution
for the boundary data t — u%(¢) and t — v°(t) (according to Definition 5.3.6) in the case

a = 3. We first prove two lemmas that will be useful in the proof of the existence result.

Lemma 5.6.1. Let p° € L2(Q;ME?), u® € CH(w; R?) and v° € C*(@). Then, there exists
a triple (u,v,p) € A(u®,v°) that solves

min { / Q2(symV'a + IV'o @ V' — 23(V')*0 — p') dz + / B(p) dz
(@,7,p)€A(ul,00) Q Q

n HD(ﬁ—pO)dm}. (5.6.1)
Q

Proof. Let (u™,v™,p") C A(u°,v°) be a minimizing sequence for (5.6.1). Then, there exists

a constant C such that

|B(0™) 1) < C  for every n € N.
Since B is strictly positive definite, we deduce

||p"HL2(Q;M%x3) < C for every n € N. (5.6.2)
Hence, there exists a map p € L?($; M%XS) such that, up to subsequences

p" —p weakly in L?(Q; M%). (5.6.3)
By (4.2.7) and (5.6.2) there holds
[sym V'u™ + 2V'0" @ V0™ || 12 (mezxz)y + [[(V)?0" || p2(uzx2y < € for every n € N.
Therefore, Poincare inequality yields
o = o0l 2(ey < CIVU" = Vo]l gy < CHT)20" — (V)20 | cpaaea),

which in turn implies that the sequence (v™) is uniformly bounded in W22(Q). Thus, there

exists v € W22(Q) such that, up to subsequences
v — v weakly in W3%(Q). (5.6.4)

On the other hand, Proposition 1.1.1 implies

[[u" — UOHWL’“(Q;R?) < COfsym (V'u" - v/uO)HLz(Q;M“?)
< C||sym V’u” + %V”Un ® VI’U"||L2(Q;M2><2) + CHUOHWLQ(Q;]Rz)
+ C||’l)n||W2,2(Q) <C.
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Hence, (u™) is uniformly bounded in W2(Q;R?) and there exists u € W12({;R?) such
that, up to subsequences
u" —u  weakly in W2 (Q; R?). (5.6.5)

It is easy to see that (u,v,p) € A(u’,v%). Moreover, by combining (5.6.3)—(5.6.5) and by
the lower semicontinuity of Q2, B and Hp with respect to weak L? convergence, it follows
that the triple (u,v,p) is a solution to (5.6.1). O
Lemma 5.6.2. Let p° € L2(Q;M5?), v° € CY(@;R?) and v° € C*(@). Let (u,v,p) €

A(u®,v°) be a solution to the minimum problem (5.6.1). Then
/ Qg(symV’u—F%V’v@V’v—xg( Zv—p da:—|—/ B(p
Q

< / Q2(sym V' + Vo @ V' — 23(V')*0 — p') da +/ B(p)dx + / Hp(p—p)dx
Q Q o

for every (a,v,p) € A(u®,v°).

Proof. The thesis follows by (5.6.1), once we notice that by (4.2.18) there holds

Hp(p—p°) < Hp(p —p) + Hp(p — p°)
for every p € L2(Q;M3?). O
We are now in a position to prove the main result of the section.
Theorem 5.6.3. Let a = 3. Assume that t — u®(t) belongs to C1([0,T); W1 (R?;R?) N
CH(R?%R?)) and t — v°(t) belongs to C([0,T]; W2>(R?) N C?(R?)). Let (u,v,p) €
A(u®(0),v°(0)) be such that

/ Q2(symV'a+ §V'0 0 V' — 23(V')*0 — ') do + / B(p) dx
Q Q

< / Q2(sym V' + IV'o @ V's — 23(V')*0 — p') dz + /

QB(ﬁ)dm+LHD<ﬁ—ﬁ>dx

for every (a,9,p) € A(u°(0),v°(0)). Then, there exists a reduced quasistatic evolution
t — (u(t),v(t),p(t)) for the boundary data (u®(t),v°(t)) (according to Definition 5.5.6)
such that

w(0)=a, v(0)=v and p(0)=p.
Proof. Let us consider a sequence of subdivisions (¢})o<i<x of the interval [0,T], with
O=t) <th<---<til<th=T
and such that

lim max (£ — ¢ ') = 0.
k—+o00 1<i<k

Set (u®)i :=u%(t}) and (v°) :=vO(ti), for 0 <i < k and for every k and let (ul,vi,pl),
i=1,---k, be defined inductively as solutions to the minimum problem

min /Qg sym V'u + Vv@Vv—xg(V’)%—p’)dx—i—/B(p)dx
(u,v,p)EA((u0)f,,(v0)}, )

/HDp P d:c} (5.6.6)
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5. Quasistatic evolution models for thin plates in finite plasticity

e, :=sym V'uj + 2V'v, @ V'vj, — 23(V')*v], — (p},)’
and for every t € [0,T] we consider the piecewise constant interpolants
ug(t) = uj,  op(t) =vp, pe(t) = pi,  up(t) = (WO)y,
vh(t) = ()i and ex(t) = ¢,
where i is the larger integer such that i < ¢. By definition, (ux(t), v (t), pr(t)) € A(ul(t),v2(t))

for every t € [0,T]. Moreover, by Lemma 5.6.2 for every ¢ € [0,T] there holds

/ Qs (ex(t)) di + / B(pi(t)) de
Q Q

< / Q2(symV'a+ IV'o @ V'o — 23(V')*0 — p') dz + / B(p)dz + / Hp(p — pi(t)) dz
Q Q Q
(5.6.7)
for every (a,,p) € A(ul(t),vl(t)).
We split the construction of the reduced quasistatic evolution into three steps.

Step 1: A priori estimates
In this step we shall prove that there exists a constant C' such that

||Uk(t)||W1.2(S2;R2)+||vk(t>||W2,2(S2)+||pk;(t)||L2(Q:M3D><3) < C for every k and for all t € [0,T].
(5.6.8)
Indeed, by the minimality condition (5.6.6), there holds

/§2Q2<ek(t>>dx+/QB<pk(t>>dx

< / Oa (sym Yl (8) & 19"0(6) @ Vu(t) — s(V)200() — ) d + / B(p) do
Q Q

+ [ Hp(p—px(t))dx
Q

for every ¢ € [0,T]. Since B is strictly positive definite, by (4.2.16) we deduce
PO gy < O+ POl gapees):
Hence, by Holder and Cauchy inequalities,
”pk(t)”L"’(Q;M%“) < C for every k and t € [0,T].

Estimate (5.6.8) follows now by (4.2.7), and arguing as in the proof of Lemma 5.6.1.
Step 2: Discrete energy inequality
In this step we shall show that there exists a sequence §, — 0% such that

[ Quente) o+ /QB<pk<t>>dx+; /Q Ho i~ 7 ) do < | Qulen(0)do + /QB<pk<o>>dx

th C VEO(s) — 23(V)20%(s) + Vg (s) @ V'02(s) 0
+/0 LCQBk(S), ( . . )dx+C’6k. (5.6.9)
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5.6 Appendix

To prove inequality (5.6.9), we fix r such that 1 < r < ¢, and we consider the maps
= uz Ve ()t 4+ (), and © = vt — (00)5 1 + (00)f. Tt is immediate to see that
(@, 9,py ") € A((u®), (v°);). Hence, the minimality condition (5.6.7) yields

AQMDMfLMmM%AH%—%ﬂM

< / Qg(symvlﬂ—i—%V’f)@V’f)—xg(V) v —(py~ b d:r—i—/ B(p;.~
/Q2 dm—&—/B(;l)daz
Q
+2/ Q2 Symvl((UO)Z — (W)Y = (V)2 (W), - (00)271)) dx
Q
42 [ Qu(V/( - ) e (Vo 4 A - (0 )) de
Q
+ /Q Cacy ' (Symvl((uo)i — (W)™ = 2V ((°); - (UO)ZA)) dx
+/Q(C2€Z_l V() = @) hH e (V/UZ_I + 3V (") — (UO)Z_l)) dz.
Now,
K/Cwﬁﬁ(wmv%w%ifw%ﬁﬁfrdvfﬂwﬁgwfﬁ*ﬂdw
/ / Coe b (sym Va0 (s) — 23(V')?0°(s)) dw ds
and by (5.6.8)
/Q«:Qe;—l V(@) = (O e (Ve + 3VI((0); = () 71) da
th
_ / / Codi™t - V'i0(s) @ (Vo1 + 1V ((O)f — (o0)7)) da ds
"=t JQ
'
< / Cq ez_l :V0(s) ® V’v,’;_l dz ds
“tJa
th
+C|\V/@0\|L°°(w;ﬂ£2)< sup ||€k(t)|\L2(Q;M3x3)> / IV ()5 = (@) )) L2 (wim2 ds
t€[0,T] ty !
th
< / ' / Cae ! V(s) @ Vv Hdads + Ot — ;1)
o e
On the other hand, by (4.2.7) and Holder inequality
/QQz (Sym V(")) = ()71 = 23(V)2((0°), — (Uo)fl)) dx

ty
<Ol 1) [ IsymV'i0(s) = oV () g s
-

<ct — )
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5. Quasistatic evolution models for thin plates in finite plasticity

and
QY- 0O 1>®(v< D+ V(00— (0°);7Y)) de
<= [ [ 9008 1V - @O P s

<Ot -1
where the last inequality follows by (5.6.8). By combining the previous estimates and by

setting

8k := max (] —¢7 1
k 1§i§k( k k )7

we deduce

[ @terdo+ [ Bapdo+ [ HeL o

/Q2 dm+/B(p};—1)dx

+/ /Cge;_lz SymV’uO(s)—:zzg(V')2 O(s) + V' (s) ® V’v,:_l) dvds + Cor(ty — ;7 1).
it Ja

By iterating the previous inequality we obtain (5.6.9).

Step 3: Reduced global stability

The discrete energy inequality proved in Step 2 and the a priori estimates deduced in Step 1
imply, in particular, by (4.2.16) that

Z Ik —p271||L1(Q;M3DXs) < C forevery t € [0,T],
0<tr<t

which in turn, since pg(t) is piecewise constant, is equivalent to
V(pr;0,t) <C

for every k and ¢ € [0,T] (where V is the map defined in (1.5.1)). Therefore, by Theorem
1.5.1 there exists a map ¢ ~— p(t) which has bounded variation from [0, T] into L?(Q; M%),
such that

pr(t) = p(t)  weakly in L?(Q;M3?)

for every t € [0,T]. By (5.6.8) for every ¢ € [0,T] there exists a ¢t-dependent subsequence
k; — 0 such that

uy, (t) = u(t) weakly in W"?(Q;R*) and vy, (t) = v(t) weakly in W>?(Q). (5.6.10)

By the continuity of the trace operator, (u(t),v(t),p(t)) € A(u®(t),v°(¢)).
In this step we shall prove that (u(t),v(t),p(t)) fulfills (gs) .3 for every ¢t € [0,7T]. Indeed,
fix t € [0,7] and (@,d,p) € A(u’(t),v"(t)). We claim that

/QQQ(eg(t))dH/QB(p / ~)dx+/ (mdx+/QHD(§—p(t))da:,

(5.6.11)
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where es(t) is the map defined in (5.3.24) and
é:=symV'i+ V@ V'e—a3(V)*0—p.

Define the maps

Gp(t) == up(t) +a—u(t), Ok(t):=vrt)+0—0(t), and pi(t) :=pr(t) +p— p(t).
With these definitions (a(t), 0k (), pr(t)) € A(ud(t),v2(t)). Moreover,

g (t) =@, op(t) =0 and pr(t) — p(t)

weakly in W12(w;R?), W22(w) and L2(;M3*?), respectively. By (5.6.7), there holds

/Q QUex(t)) dr + /Q Blpi(t)) dr < /Q QUéx(t)) dr + /Q B(pi(t)) d + /Q Hp(pe(t) — pult)) de,

where
ék(t) (= Sym V’ﬂk(t) + %V'@k(t) ® V’f)k(t) - :v;;(V’)Qﬁk(t),

which in turn implies
/Q Qer(t)) da — /Q QUéx(t)) da + /Q Blpi(t)) dr — /Q B(pi(t)) di < /Q Ho( — plt)) da.

(5.6.12)
On the other hand,

/ B(pi(t)) de / B(pi(t)) do = 1 / B(pe(t) + 2x(t)) : (pt) — p) do
Q Q Q

and
[ @alent) s~ [ Qalente) ds
Q Q
=3 [ Caen(t) + exlt) s (sym V' (ult) - 3) = 2a(V)2(0(0) ~ 8) - (0 (0) ~ 7)) do
Q
+5 /Q Calex(®) + ex(t)) : (V)(0(t) = 3) @ (V'or(t) + 3V (5 =~ v(1) ) d.
Therefore, there holds

lim ( B(px(t)) da —
Q

k—+o00

B(w(®)ds) = [ Blp)do— [ Bpdo

Q Q Q

and

lim (/QQg(ek(t))dm—/QQg(ék(t))dx) :/QQQ(eg(t))dx—/QQg(é)dx,

k—+o00

By (5.6.12) we obtain (5.6.11) and hence (gs) 3.
Step 4: Reduced energy balance
To complete the proof of the lemma it remains to prove that (u(t),v(t), p(t)) satisfies (eb) 3.
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5. Quasistatic evolution models for thin plates in finite plasticity

Fix ¢ € [0,7]. Since pi(t) is piecewise constant in [, ', #[ there holds

DHD pk,O t Z HD 7 T )
0<tf<t

Hence, by lower semicontinuity, we deduce

Du,(p;0,t) < hmlnfDHD (p;0,t) < hmj_nf Hp(py —pi ).
k—+00
0<tp<t

By (5.6.8), (5.6.10) and the dominated convergence theorem, passing to the limit in the

discrete energy inequality, we obtain

/Q Qales(t)) da + /Q B(p(t)) dr < /Q Qa(es(0)) di + /Q B(p(0)) dz

+/O /Q(Cg es(s) : (Sym Vi (s) + V'u(s) @ V' (s) — xg(V')QiJO(s)) dz ds.
(5.6.13)

The converse inequality in (eb),3 follows by Lemma 5.6.4 below. O

As in [47, Theorem 4.4] and [15, Theorem 4.7], the reduced global stability (gs),. and
the energy inequality (5.6.13) imply the reduced energy balance (eb) ..

Lemma 5.6.4. Let a = 3. Assume that t — u°(t) belongs to C*([0,T]; W1>°(R?;R?) N
CL(R%;,R?)), t +— vO(t) belongs to CL([0,T); W2 (R?)NC?(R?)), and t — (u(t),v(t),p(t))
satisfies (9s)rs. Then, for every t € [0,T] there holds

/Q2(63(t))d33+ B(p(t)) dx + Dy (p; 0,t) > Q2(€3(0))d$+/3(p(0))d33
Q ) )

Q

+ /Ot /Q Caes(s) : ( Vv VO/UO(S) Sl g ) da ds,

where e3(t) is the map defined in (5.3.24).

Proof. Fix t € [0,T] and let (si)o<i<x be a sequence of subdivisions of [0, T such that
0=s) <sp---<sp=T

and

lim max (st — st~ = 0.
k%+ool§i§k( RSk )

Set u’ = u(sh) —ul(sh) +ul(si ) and v' := v(sh) —vO(sh) +0°(si "), and let e3(t) be the
map defined in (5.3.24). As (u’,v?,p(s%)) € A(ul(si),v%(st)), the reduced global stability
condition (gs),s yields

Q2 (es(s dx—l—/ B(p(si ) dz < / Q2(sym V'u' + IV @ Vo' — 23(V')%0" — p'(s},)) da
Q Q

/B( (s} d:c-l—/HD (p(s) — p(si™ 1)) da.

Q
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By substituting the definition of the maps u’ and v* in the previous expression we deduce
/ Qg(eg(sfjl))dx—i—/ B(p(s?l)) dx
Q Q
< [ Qutestskdo+ [ Blo(side+ | Holo(si) - plsi) do
+2 /Q Q2 (sym V' (u®(s;71) — u’(s3)) — 23(V")?(0%(s,71) — 0%(s},))) d
2 [ QT =6k @ (Tolei) + 3V ) = o(60) ) o
+ [ Caralol) s ym V(67 = (5)) — aa( TR 65) = (sh)) da
" / Caea(sh) : V(0(si7) — (1)) ® (VVu(sh) + V(00 (si71) — o*(s})) da.
(5.6.14)

Consider now the piecewise constant interpolants
ap(t) = u(sy), wk(t) =wv(s), Br(t) =p(sp), and  ex(t) = es(sp),

where ¢ is the smaller integer such that ¢ < 3;« Arguing as in Step 2 of the proof of Theorem

5.6.3 one can show that there exists a sequence d, — 0T such that
2 [ Quloym V' (si7) = ' (s}) — (VP51 — o6 da
Q
+2/QQ2 (V’(vo(sfc’l) —0%(sh)) ® (V’v(s};) + IV (s — vo(s};)))> dw
+%/Q(C%3(S§“) cV (O(si) = 00(sh)) @ V(00(si ) —00(s)))) da
< Cop(sh, — s h).
Hence, by iterating (5.6.14) we obtain

/ Qa(es(0)) di + / B(p(0)) dz

Q Q

< /Q Qales(t)) d + /Q B(p(t)) dz + Dy (p: 0,1) + C6,

[ [ (VI VROV EVIC) 0 4,
0 Q

which in turn implies
/Q Qales(t)) du + /Q B(p(t)) d + Dy (p:0,1) — /Q Qa(e3(0)) di — /Q B(p(0)) dx

/ t [ ( V) = (TP + TR ST 0y,

> limsu
> p 0

k—+oco

To conclude the proof of the lemma it remains to check that

- L om oy ((VE(S) = @s(V)?00(s) + V'oi(s) © V'00(s) 0
lllcgig}v)/o /Q(Cgek(s) : ( 0 )d:ﬂds

' VA0 (s) — 25(V)200(s) + Vu(s) @ V/oO(s) 0
2/0 /Q(CQG?,(S) ( 0 0 )dzds.(5.6.15)
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To this purpose we argue as in [6, Lemma 5.7]. For every s € [0,7T] we define

"0 (s) — x3(V')?0°(s "v(s "90(s
@(s);:/QCQ%(S):(V (s) — 2a(V") (O)+v (5) © V'00(s) g)dz'

By [16, Lemma 4.12], setting

al = (st — sf;l)<sym V'l (st) — xg(V')zi)O(s};)) - /:k (SymV'uo(s) - :cg(V’)21}0(5)) ds,

A A s,
bl == (sp — si " V'(s)) — / V'5°(s) ds,
s;_l
= (ks et - [ et ds
5

we may assume that our sequence of partitions (SZ)OSigk satisfies
k
lim (Ila/;CHLZ(w;M2><2) + ||b}c||L4(W;R2) + |C;€|) =0. (5616)
k——+o0 4

=
By (gs)r3, arguing as in Step 1 of the proof of Theorem 5.6.3 we deduce that there exists a

constant C' such that

sup |les(s)| L2imsxsy + sup [|[V'0(s)||pawrz) < C.
s€[0,7] s€[0,7]

Hence, by (5.6.16) there holds

lim Z’/Cgeg (si) : (af + V'u(sh) @ b}) d ‘

k—+4o0

k
< lim C( sup Heg( ||L2(QM3X3))Z(|a2||L2(W;M2X2)+ sup HV’q}(S)Hsz(w;Rz)||b§€||L4(w;R2)):0.

k—=too  Nsgfo,1] = s€[0,T]
Therefore,
t v/'O _ v/2'0 \vi v/'O 0
limsup/ /Cgék(s): ( (8) = @a(V1)70(s )+ O (s) @ (s) )dmds
k—+o0 Jo 0
= lim sup — st (st) = limsup / O(s)ds = / O(s
k— o0 ; k k k— 400 Z
This concludes the proof of (5.6.15) and of the lemma. O
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