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CHAPTER 1

Introduction

1. Dispersive equations: Strichartz and smoothing estimates

With the term dispersion we mean, roughly speaking, the property of
each elementary component of a wave packet to travel with a speed depend-
ing on the frequency. Many fundamental partial differential equations in
quantum mechanics are dispersive: to name the most important ones in fact

Schrödinger:

{
iut + ∆xu(t, x) = 0

u(0, x) = f(x),
(t, x) ∈ R× Rn, (1.1)

Wave :





utt −∆xu(t, x) = 0

u(0, x) = f(x)

ut(0, x) = g(x)

(t, x) ∈ R× Rn, (1.2)

Klein−Gordon :





utt −∆xu(t, x) + u(t, x) = 0

u(0, x) = f(x)

ut(0, x) = g(x)

(t, x) ∈ R× Rn,

(1.3)

Dirac :

{
iut −Du(t, x)− βmu(t, x) = 0

u(0, x) = f(x)
(t, x) ∈ R× R3, (1.4)

are all dispersive equations. The existence of some connections between these
equations must not be completely surprising: although deeply different from
many points of view, they in fact all can be written as

ut + ih(D)u = 0, h(D) = F−1(h(ξ)F)

where F is the Fourier transform with respect to x. As a consequence,
the solutions can be defined by u = eith(D)f once we impose the initial
conditions, so it is not unnatural to suppose that they all show some common
features, which have to be related to the structure of the propagator eith(D)

and so of the operator h(D).
In this first introduction we mean to give an outline of some basic tools of
dispersion theory (as a standard reference see [73]), mainly focusing on the
aspects we shall deal with in the other chapters; we here begin by analizing
the cases of the Schrödinger (1.1) and the wave equations (1.2) as main
examples since the Dirac one, the main topic of this thesis, will be extensively
introduced in the next section.
The Schrödinger equation can be by many meanings considered the clearest
example: its propagator is indeed immediately determined to be S(t) = eit∆

which is a unitary group of operators on L2, and so it conserves the mass (the

3



1. DISPERSIVE EQUATIONS: STRICHARTZ AND SMOOTHING ESTIMATES 4

L2 spacial norm). The solution can be directly represented by its convolution
kernel, or by Fourier transforming with respect to the space variable:

u(t, x) ∼=
∫

Rn
ei(t|ξ|

2+x·ξ)f̂(ξ)dξ =
ei
|x|2
4t

(4πit)n/2

∫

Rn
e−i

x·y
2t ei

|y|2
4t f(y)dy

which immediately yields the estimate

‖eit∆f‖L∞ .
1

tn/2
‖f‖L1 . (1.5)

Interpolating with the conservation of energy

‖eit∆f‖L2 = ‖f‖L2

we obtain the dispersive estimates (or time-decay estimates) for the Schrödinger
flow:

‖eit∆f‖Lp . t−
n
2

+n
p ‖f‖Lp′ , p > 2. (1.6)

As a direct consequence of dispersive estimates we obtain Strichartz esti-
mates which are, as we shall see in details in the next pages, a fundamental
tool in the analysis of nonlinear problems; first introduced as a restriction
result, their application to questions of well posedness for dispersive equa-
tions turned to be remarkably useful since they provide suitable spaces on
which develop the contraction method (as standard and extensive references
see [75], [64], [72], [59], [38], [47]).
For the free Schrödinger operator, Strichartz estimates are given by

‖eit∆f‖LptLqx . ‖f‖L2 , (1.7)

where the mixed spaces LptL
q
x = Lp(Rt;Lq(Rnx)) are called Strichartz spaces,

and the exponents (p, q) must be Schrödinger admissibile, i.e. they have to
satisfy the relation

2

p
+
n

q
=
n

2
, 2 ≤ p ≤ ∞, 2n

n− 2
≥ q ≥ 2, q 6=∞.

The couple (p, q) = (2, 2n/(n − 2) is called the endpdoint and has been
separately proved to be true in [47] for n ≥ 2.
With all of this in mind we turn to the wave equation, which is a bit more
tricky, since it involves loss of derivatives. The Strichartz estimates for the
wave flow

eit|D|f = cos(t|D|)f +
sin(t|D|)
|D| f

turn to be

‖eit|D|f‖
LpḢ

1
q−

1
p−

1
2

q

. ‖f‖L2 , (1.8)

(here and in the following ‖f‖Ḣs
q

= ‖|D|sf‖Lq), provided the exponents

(p, q) are wave admissible, i.e.

2

p
+
n− 1

q
=
n− 1

2
, 2 ≤ p ≤ ∞, 2(n− 1)

n− 3
≥ q ≥ 2, q 6=∞.

The wave equation endpoint is the couple (p, q) = (2, 2(n− 1)/(n− 3)) and
is allowed in dimension n ≥ 4, while it is proved to be false for n = 3.
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Finally, we also recall the Strichartz estimates for the free Klein-Gordon
equation, which turn to be

‖eit〈D〉f‖
LpH

1
q−

1
p−

1
2

q

. ‖f‖L2 , (1.9)

with the same admissibility condition of the Schrödinger equation.
The importance of Strichartz estimates is mainly connected, as already men-
tioned, to questions of existence of solutions for nonlinear problems with low
regularity. When dealing with nonlinear perturbations it is indeed crucial
to have some efficient ways to control the ”size” of solutions to the linear
problem in term of the size of the initial datum, and to understand which
are the suitable function spaces in which the PDE is naturally wellposed.
In fact, Strichartz estimates can be viewed in two ways.

Locally in time they describe a type of smoothing effect, reflected in a gain
of integrability and/or of regularity, in a Lp time-averaged sense. For the
Schrodinger case for instance we get that if the initial datum is in L2 then
the solution is in Lq with q > 2 for most of the time.

Globally in time they describe a decay effect, meaning that some spacial
norm of a solution must decay to zero as t→∞, at least in some Lp time-
averaged sense.

Another set of important estimates due to the dispersive property are the so
called Kato-smoothing estimates, also known as weak dispersive estimates.
First discovered by Kato for the KdV, it is not a completely surprising fact
for equations with infinite speed of propagation that the solutions are more
regular than the initial data; the gain of derivatives is a very interesting fact
and often turns to be a crucial tool in the analysis of nonlinear problems.
In the case of Schrödinger equation (see [18], [68], [77], [76] as extensive
references) these estimates are given by

‖〈x〉− 1
2
−|D| 12 eit∆f‖L2L2 . ‖f‖L2 ; (1.10)

a stronger local version of this inequality is the following

sup
R>0

1

R

∫ +∞

−∞

∫

|x|≤R
|∇(eit∆f)|2dxdt . ‖f‖

Ḣ
1
2
. (1.11)

Both of these show that the unique solution of the free Schrödinger equation
with initial datum f gains half derivative in L2 with respect to f , if we look
to a weighted L2

tL
2
x norm. Analogous results are available for the wave

equation, though no gain of regularity can be expected because of the finite
speed of propagation of the semigroup eit|D|f .

2. The Dirac equation

In relativistic quantum mechanics the state of a free electron is repre-
sented by a wave function Ψ(t, x) with Ψ(t, ·) ∈ L2(R3,C4) for any t. This
wave satisfies the free Dirac equation:

i∂tΨ = DΨ +mβΨ (1.12)
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where m ≥ 0 is the mass of the electron and D, the Dirac operator, is the
first order operator defined as

D = −i
3∑

k=1

αk∂k = −i(α · ∇)

where α1, α2, α3 and β are 4 × 4 complex matrices, that in the standard
representation can be written in terms of the Pauli matrices as

β =

(
I2 0
0 −I2

)
αk =

(
0 σk
σk 0

)
, k = 1, 2, 3 (1.13)

with

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.14)

To briefly retrace the original argument followed by Dirac that led to equa-
tion (1.12), we recall that formally the transition from classical to quan-
tum mechanics can be accomplished by substituting appropriate operators,
usually differential or multiplication operators, for the classical quantities,
which act on suitable wavefunctions. In particular, for the energy E and
the momentum p of a free particle the substitution

E → ih
∂

∂t
, p→ −ih∇ (1.15)

is familiar from the nonrelativistic theory. If applied to the classical rela-
tivistic energy-momentum relation,

E =
√
c2p2 +m2c4 (1.16)

gives the square-root Klein-Gordon equation

ih
∂

∂t
Ψ(t, x) =

√
−c2h2∆ +m2c4Ψ(t, x), t ∈ R, x ∈ R3.

Due to the asymmetry of space and time derivatives, Dirac found it impos-
sible to include external electromagnetic fields in a relativistically invariant
way; so he looked for another equation which can be modified in order to
describe the action of electromagnetic forces. This new equation should also
describe the internal structure of the electrons, the spin. The Klein-Gordon
equation

−h2 ∂
2

∂t2
Ψ(t, x) = (−c2h2∆ +m2c4)Ψ(t, x) (1.17)

with a scalar wavefunction Ψ was not able to do so. Moreover, a quantum
mechanical evolution equation should be of first order in the time deriva-
tive. So Dirac reconsidered the energy-momentum relation (1.16) and before
translating it to quantum mechanics with the help of (1.15), he linearized it
by writing

E = c

3∑

j=1

αjpj + βmc2 = cα · p+ βmc2 (1.18)

where α = (α1, α2, α3) and β have to be determined by (1.16). Indeed,
(1.16) can be satisfied if one assumes that α and β are anticommuting quan-
tities, which are most naturally represented by n × n matrices (the ”Dirac
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matrices”). Comparing E2 according to equations (1.16) and (1.18) we find
that the following relations must hold

αjαk + αkαj = 2δjk1, j, k = 1, 2, 3; (1.19)

αjβ + βαj = 0, j = 1, 2, 3; (1.20)

β2 = 1 (1.21)

where δjk denotes the Kronecker symbol and 1,0 are the n-th dimensional
unit and zero matrices. The n × n matrices α and β should be Hermitian
so that (1.18) can lead to a self-adjoint expression, that is a necessary tool
for a quantum mechanical interpretation. For what concerns the dimension
n of such matrices, it can be determined as follows. From (1.19)-(1.21) we
have

Tr(αi) = Tr(β2αi) = −Tr(βαiβ) = −Tr(αiββ) = −Tr(αi) = 0. (1.22)

On the other hand, in view of α2
1 = 1, the eigenvalues of αi must be ±1. This

together with (1.22) shows that the dimension n of the matrices has to be
an even number. For n = 2 there are at most three linearly independent an-
ticommuting matrices: for example the Pauli matrices (1.14) together with
the unit matrix 1n form a basis in the space of Hermitian 2 × 2 matrices.
Hence there is no room for a ”rest energy” matrix β in two dimensions. In
four dimensions all the properties (1.19), (1.20), (1.21) can be satisfied with
the choice (1.13), that is the so called standard representation. Notice that
”translating” with this choice equation (1.18) to quantum mechanics (and
settig for convenience h = 1) one immediately obtains equation (1.23).

Our attention will be mostly devoted to the 3-dimensional massless Dirac
equation {

iut −Du(t, x) = 0

u(0, x) = f(x)
(1.23)

(we shall follow the mathematical notation indicating with u the unknown
function). The first thing to be observed is that massless Dirac equation is
strictly connected to to the wave one; by properties (1.19)-(1.21) we have
indeed

(i∂t +D)(i∂t −D)u = utt −∆u, (1.24)

so that every component of the solution of (1.23) satisfies a wave equation.
As a consequence, the Strichartz estimates that the free Dirac flow

eitD = cos(t|D|) +
sin(t|D|
|D| D (1.25)

satisfies are the same as the wave ones for n = 3 , so that

‖eitDf‖
LpḢ

1
q−

1
p−

1
2

q

. ‖f‖L2 (1.26)

with the admissibility condition

2

p
+

2

q
= 1, 2 < p ≤ ∞, 2 ≤ q <∞.

As for the wave equation, the 3D endpoint estimate

‖eitDf‖L2
tL
∞
x
. ‖f‖Ḣ1 (1.27)
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is generally known to be false.
While thus the linear homogeneous case turns to be quietly straightforward
analogous to the wave equation, when we deal with nonlinear or potential
perturbations (or both of them) things get of course much more messy, and
a deeper insight of the Dirac structure becomes often necessary.

3. Main results

Each chapter of this thesis is almost completely self-contained, and con-
sists of a different and independent paper: in this section we give a rapid
outline of the results we have proved, referring to the single introductions
for greater details.
The initial aim of this thesis was the study of the well-posedness for the
3D Ḣ1-critical nonlinear Dirac equation perturbed by a suitable electric
potential, i.e. the study of the Cauchy problem

{
iut −Du(t, x) + V (x)u = P3(u)

u(0, x) = f(x) ∈ Ḣ1
(1.28)

where the function

P3(u) = 〈βu, u〉u (1.29)

is the cubic nonlinearity.
The unperturbed nonlinear Dirac equation (that is. eq. (1.28) with V = 0) is
important in relativistic quantum mechanics, and was studied in a number of
works (see e.g. [62], [31], [57], [55], [33], [52], [51] and for the more general
Dirac-Klein-Gordon system see [25], [24]). In particular, it is well known

that the nonlinearity (1.29) is critical for solvability in the energy space Ḣ1;

global existence in Ḣ1 is still an open problem even for small initial data,
while the case of subcritical spaces Hs, s > 1 was settled in the positive in
[33], [52]. The major difficulty to overcome here is the lack of the endpoint
Strichartz estimate (1.27), since it prevents the standard application of the
contraction method (see the beginning of next chapter for further details),
and thus a different approach is required. Though nor a positive or negative
answer has been obtained, we have proved several interesting improvements
in this direction, most of all in the potential-perturbed case, whose interest
has rapidly grown in recent years.
In chapter 2 (see [13]) we first prove (Theorem 2.1) the endpoint estimate
for the perturbed Dirac flow

‖eit(D+V )f‖L2
tL
∞
x
. ‖f‖Ḣ1

for initial data f belonging to the class

Ḣ1 = {f1 +Df2, f1 ∈ Ḣ1, f2 ∈ Ḣ2; f1, f2 radial}.
This result, already known in the free case, is still new in presence of a po-
tential; as a consequence of this estimate and of the remarkable fact that a
proper subset (see section 5) of Ḣ1 is preserved by the cubic non linearity,
the standard application of the fixed point theorem yields a result of global
existence for problem (1.28) for Ḣ1-small initial data f with some additional
algebraic structure (Theorem 2.2).
In chapter 3 (see [16]) we generalize to the potential perturbed case and to
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higher dimensions n ≥ 4 some very recent results involving angular integra-
bility: in [51] the authors prove in fact the following endpoint estimate for
the wave flow

‖eit|D|f‖L2L∞ . ‖Λεωeit|D|f‖L2L∞r L
p
ω
. ‖|D|Λεωf‖L2 , p >

2

ε

where the angular derivative operator Λsω is defined in terms of the Laplace-
Beltrami operator on Sn−1 as

Λsω = (1−∆Sn−1)s/2.

Using new mixed Strichartz-smoothing estimates, we extend this result to
the perturbed case both for the wave, proving

‖u‖L2
tL
∞
r L

2
ω
. ‖f‖Ḣ1 + ‖g‖L2 + ‖〈x〉 12+F‖L2

tL
2
x
.

(here u solves utt − ∆u + V (x)u = F (t, x) with initial data f and g), and
for the Dirac equation, proving

‖eit(D+V )f‖L2
tL
∞
r L

2
ω
. ‖f‖H1 .

(for the precise statements and all the hypothesis on the potentials see The-
orems 3.1 and 3.2). As a consequence, we are able (see Theorem 3.3) to
prove global well-posedness for problem (1.28) assuming suitable smallness
of the norm ‖Λsωf‖H1 , s > 1.
chapter 4 (see [14]) is devoted to the study of the dispersive properties of
the magnetic-potential perturbation of the Dirac equation (this time with
m ≥ 0) for every dimension n ≥ 3. In fact, generalizing the 3-dimensional
results proved in [11], we use the classical multiplier method to prove a virial
identity for the operator

H = DA +mβ

where DA = i−1
n∑

k=1

(∂k − iAk), and A(x) = (A1(x), ..., An(x)) : Rn → Rn is

a static magnetic potential (see Theorem 4.2). As a standard consequence
of this identity, we obtain the following smoothing estimates (Theorem 4.3)

sup
R>0

∫ +∞

−∞

∫

|x|≤R
|eitHf |2dxdt . ‖f‖2L2 , ∀f ∈ L2

and Strichartz estimates as well (Theorem 4.4)

‖|D|
1
q
− 1
p
− 1

2 eitHf‖LpLq . ‖f‖L2

for the perturbed Dirac flow, for every n ≥ 3 .
The final chapter 5 (see [15]) is instead devoted to some harmonic analysis.
The analysis of the dispersive properties of Schrödinger equations on non-
flat waveguides (i.e. perturbations of domains of the form Rn × Ω with Ω
bounded set) leads to the necessity of a weighted L2 estimate of the form

‖Hθf‖Lp(w) ≤ C‖(−∆)θf‖Lp(w), 0 ≤ θ ≤ 1

where this time H = −∆+V . This result turns to be a corollary (see Corol-
lary 5.4) of much deeper results of independent interest (Theorems 5.2-5.3),
in which we give conditions on Lp(w)-boundedness for bounded functions of



3. MAIN RESULTS 10

Schrödinger operators or, more generally, of selfadjoint operators on L2(Rn)
satisfying a certain gaussian heat kernel estimate.



CHAPTER 2

The radial Dirac equation: global small solutions

1. Introduction

As it is well known, the classical strategy to study well-posedness for
nonlinear dispersive equations is by the use of a fixed point argument in
a suitable space, via the appropriate space-time Strichartz estimates. A
huge literature is available on these estimates for several dispersive operators
(wave, Schrödinger, Klein-Gordon, Dirac and others). For homogeneous
nonlinear terms one typically finds a threshold regularity sc in the scale of
Sobolev spaces Hs, such that for subcritical data with s > sc solvability
holds, while for supercritical data with s < sc one has various degrees of
ill-posedness. (see [73] as a general reference). Data of critical regularity
give rise to difficult questions which depend on the precise structure of the
equation.
In this chapter we wish to investigate well-posedness for the 3D cubic non
linear massless Dirac equation perturbed with a potential, that is

{
iut −Du(t, x) + V (x)u = P3(u)

u(0, x) = f(x) ∈ Ḣ1
(2.1)

for the spinor field u : Rt×R3
x → C4, where we recall that D is the operator

defined by

D = i−1
3∑

k=1

αk∂k = −i(α · ∇)

while the 4× 4 Dirac matrices are defined as

αk =

(
0 σk
σk 0

)
, k = 1, 2, 3 (2.2)

in terms of the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.3)

We shall assume that the nonlinear term P3(u) is cubic of a very specific
form, namely

either P3(u) = 〈βu, u〉u or P3(u) = 〈u, u〉u, (2.4)

where 〈·, ·〉 denotes the standard hermitian product in C4 and β is the 4× 4
Dirac matrix

β =

(
I2 0
0 −I2

)
.

Notice that nonlinearities of the form (2.4) are the most interesting from a
physical point of view (see e.g. [61]).

11
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To fix the basic ideas, we begin by briefly analyzing the unperturbed case,
i.e. {

iut −Du(t, x) = P3(u)

u(0, x) = f(x)
. (2.5)

The typical approach to the Dirac equation is based on the identity

(i∂t −D)(i∂t +D) ≡ (−∂tt + ∆)I4 (2.6)

which follows from the anticommuting relations

αiαk + αkαi = 2δikI4, i, k = 1, 2, 3, (2.7)

αiβ + βαi = 0, i = 1, 2, 3, β2 = I4, (2.8)

so that the linear propagator eitD associated to the Dirac operator, which
can be defined via Fourier transform as the operator of symbol eitξ·α, can
be written as

eitDf = cos(t|D|)f + i
sin(t|D|)
|D| Df, |D| = (−∆)1/2, (2.9)

showing that the estimates for the Dirac flow eitD are immediate conse-
quences of the corresponding estimates for the wave flow eit|D|, with the
same indices, restricted to the special case of dimension n = 3. Thus in
many cases identity (2.6) allows to reduce problems for the massless Dirac
equation to analogous ones for the wave equation, for which many effective
tools are available.
For the wave equation on R1+n, n ≥ 3, Strichartz estimates can be combined
with Sobolev embedding and take the general form

‖|D|
n
q

+ 1
p
−n

2 eit|D|f‖LptLqx . ‖f‖L2 (2.10)

for all p, q such that

p ∈ [2,∞], 0 <
1

q
≤ 1

2
− 2

(n− 1)p
.

Notice that the limiting case r =∞
‖eit|D|f‖L2L∞ . ‖|D|

n−1
2 f‖L2 (2.11)

is always excluded and is indeed false for general data. See [38] and [47]
for the general Strichartz estimates; concerning the limiting case r =∞, see
[49], [35]. The corresponding estimates for the Dirac equation are given in
[20]; in particular, the endpoint estimate

‖eitDf‖L2L∞ . ‖|D|f‖L2 (2.12)

fails.
The failure of (2.11) for generic data was first noticed for the 3D wave

equation in [49], and the corresponding statement for the Dirac equation
follows easily from relation (2.20).

A clever use of Strichartz estimates is sufficient for the study of (2.5)
in the subcritical case. Local existence, and global existence for small data,
was proved in [33] for nonlinearities of the form 〈βu, u〉(p−1)/2u with p > 3
and data in Hs with s > 3/2−1/(p−1). The case of cubic nonlinearities and
small data in Hs, s > 1, was solved in [52], where the result was generalized
to all space dimensions. We also mention that systems involving the Dirac
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equation, like Dirac-Klein-Gordon and Maxwell-Dirac, have beed the object
of intense attention and the subcritical theory was completed only recently
(see [25], [24], [26]).

The failure of the endpoint estimate (2.12) means that above methods
break down in the critical case of a cubic nonlinearity with H1 data, and
indeed the problem of global existence is still open in this case. To see the
connection between the endpoint estimate (2.12) and the critical equation,
we rewrite equation (2.5) as a fixed point problem for the map

v 7→ Φ(v) = eitDf + i

∫ t

0
ei(t−t

′)DP3(v(t′))dt′.

If (2.12) were true one could write
∥∥∥∥
∫ t

0
ei(t−t

′)Dv(t′)3dt

∥∥∥∥
L2L∞

.
∫ +∞

−∞
‖eitDe−it′DP3(v(t′))‖L2L∞dt

′ . ‖v3‖L1H1

and in conjuction with the conservation of H1 energy this would imply

‖Φ(v)‖L∞t H1
x

+ ‖Φ(v)‖L2
tL
∞
x
. ‖f‖H1 + ‖v‖L∞H1‖v‖2L2L∞ .

In other words, a contraction argument in the norm ‖ · ‖L2L∞ + ‖ · ‖L∞H1

would be enough to prove global existence of small H1 solutions to (2.5).

The main goal of this chapter is to study a special class of solutions to
equation (2.5) and more generally to a potential perturbation of the form
(2.1), which can be considered as a suitable generalization of the radial so-
lutions to the wave equation in the context of the Dirac equation. We recall
that, for small potentials V with suitable decay at infinity, the full range
of Strichartz estimates holds also for the perturbed flow eit(D+V ), as proved
in [21]. Hence subcritical problems can be treated exactly as in the un-
perturbed case and one can extend the results of [33], [52] to (2.1) in a

straightforward way. Here we focus on the more difficult case of critical Ḣ1

data with an additional symmetry assumption like

f = f1 +Df2 with f1 ∈ Ḣ1, f2 ∈ Ḣ2, f1, f2 radial.

In addition, in order to preserve the symmetry of solutions, we need to
assume that the potential V (x) is spherically symmetric in the sense of [74].

Our first result is an endpoint estimate for the linear flow:

Theorem 2.1. Let V (x) be a 4× 4 matrix of the form

V (x) = V1(|x|)I4 + iβ(α · x̂)V2(|x|), V1, V2 : R+ → R, x ∈ R3 (2.13)

(where x̂ = x/|x|). Assume that for some σ > 1 and some sufficiently small
δ > 0

|V (x)| ≤ δ

|x|1/2| log |x||σ/2 + |x|σ . (2.14)

Then the following endpoint Strichartz estimate

‖eit(D+V )f‖L2
tL
∞
x
. ‖f‖Ḣ1 (2.15)

holds for all initial data f ∈ Ḣ1 where

Ḣ1 = {f1 +Df2, f1 ∈ Ḣ1(R3), f2 ∈ Ḣ2(R3), f1, f2 radial}. (2.16)
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We recall that condition (2.14) is sufficient to ensure that the perturbed
Dirac operator D + V is self-adjoint on the domain H1(R3)4. For this and
many other properties of the Dirac equation, a comprehensive reference is
[74].

The natural application of estimate (2.15) is to prove global well posed-
ness for the critical equation (2.1). However the nonlinear term P3(u) does

not operate on the space Ḣ1 and additional restrictions on the algebraic
structure of the data are necessary. More precisely, it is possible to decom-
pose the space L2(R3)4 as a direct sum

L2(R3)4 '
∞⊕

j= 1
2
, 3
2
,...

j⊕

mj=−j

⊕

kj=

±(j+1/2)

L2(0,+∞; dr)⊗Hmj ,kj .

where the spaces Hmj ,kj are two dimensional and are generated by spherical

harmonics on the sphere S2 (this is called a dcomposition in partial wave
subspaces). When j = 1/2, we have four spaces

L2(0,+∞; dr)⊗Hm1/2,k1/2

corresponding to the four possible choices of indices

(m1/2, k1/2) = (−1/2,−1), (−1/2, 1), (1/2,−1), (1/2, 1). (2.17)

Then we notice the mildly surprising fact that each of these four spaces is
invariant not only for the Dirac operator but also for the action of cubic
nonlinearities of the forms (2.4). In a sense, these spaces can be considered
as a suitable generalization of radial functions adapted to the structure of
the nonlinear problem (2.1). A detailed analysis of the partial wave decom-
position is given in chapter 5, with explicit forms for the functions in these
spaces (see Lemma 2.14 and in particular (2.67)–(2.70)).

Thanks to this invariance, we can prove the following global existence
result:

Theorem 2.2. Consider the equation on R× R3

iut −Du+ V (x)u = P3(u), u(0, x) = f(x) (2.18)

where the potential has the form

V = V1(|x|)I4 + iβ(α · x̂)V2(|x|), x̂ = x/|x|
and satisfies assumption (2.14), while

P3(u) = 〈βu, u〉u or P3(u) = 〈u, u〉u.
Assume the initial data f belong to a space Ḣ1((0,∞), dr) ⊗Hm1/2,k1/2 for

one of the choices (2.17). Then if the Ḣ1 norm of the data is sufficiently

small, problem (2.18) has a unique global solution in the class Ct(R, Ḣ1) ∩
L2
t (R, L∞).

This chapter is organized as follows. section 2.2 contains an extension
of the endpoint estimate for the free Dirac operator which is then adapted
in section 2.3 to a mixed endpoint-smoothing estimate with weights for the
nonhomogeneous linear Dirac equation. section 2.4 is devoted to the proof of
Theorem (2.1). In section 2.5 we recall the structure of the Dirac operator,
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the partial wave decomposition, and we investigate the interaction of the
algebraic structure with the nonlinear term. chapter 6 contains the proof of
Theorem (2.2).

2. The homogeneous endpoint estimate

Since as we have observed the Dirac flow does not preserve radiality,
we cannot hope to adapt the simple argument used in [49] for the wave
equation to recover the endpoint Strichartz estimate for radial initial data
in the Dirac case. However we can prove an endpoint estimate for suitable
classes of function; to this end we need a deeper insight in the structure of
the Dirac operator expressed in radial coordinates.

Let u = eitDf and notice that, thanks to identity (2.6), u is (formally)
a solution of 




�u = 0

u(0) = f(x)

ut(0) = iDf.
(2.19)

This gives the formula

u = eitDf = cos(t|D|)f + i
sin(t|D|)
|D| Df (2.20)

and we easily see that this representation is valid for generic distribution
data.

We start by proving the following result:

Proposition 2.3. Let f belong to the space Ḣ1 defined in (2.16). Then
the following endpoint Strichartz estimate holds:

‖eitDf‖L2
tL
∞
x
. ‖f‖Ḣ1 . (2.21)

By formula (2.20), we see that the proof is an immediate consequence of the
following Lemma. Notice that the proof of the first estimate (2.22) is inspired
by an argument of [36] which holds for all n ≥ 3 without modification, while
we fix n = 3 in the second estimate.

Lemma 2.4. Let f be a radial function and let eit|D| be the linear prop-
agator associated to the wave operator. Then the following estimates hold:

‖eit|D|f‖L2
tL
∞
x
. ‖f‖

Ḣ
n−1
2

(n ≥ 3) (2.22)
∥∥∥∥∥
eit|D|

|D| Df
∥∥∥∥∥
L2
tL
∞
x

. ‖f‖Ḣ1 (n = 3). (2.23)

Proof. Using Fourier transform in spherical coordinates and the radi-
ality of f and setting ρ = |x|, |ξ| = λ, x · ξ = ρλ cos θ, we have

eit|D|f =

∫
ei(x·ξ+t|ξ|)f̂(ξ)dξ =

∫ ∞

0

∫ π

0
eiλ(t+ρ cos θ)f̂(λ)λn−1(sin θ)n−2dθdλ.

(2.24)
With the change of variable y = cos θ in (2.24) we obtain

=

∫

R
dλ eitλg(λ)

∫ 1

−1
eiλρy(1− y2)

n−3
2 dy
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with g(λ) = f̂(λ)λn−1H(λ) (H represents the classical Heaviside function).
Now changing the order of the integrals we obtain

=

∫ 1

−1
dy (1− y2)

n−3
2

∫ +∞

−∞
eiρ(t+λy)g(ρ)dρ =

∫ 1

−1
dy (1− y2)

n−3
2 ĝ(t+ λy)

Since for n ≥ 3 one has (1 − y2)
n−3
2 ≤ 1, the change of variable y → y/r

yields again

≤ 1

r

∫ r

−r
ĝ(t+ y)dy = M(ĝ)(t) (2.25)

where M denotes the standard maximal operator. Then we have for all t

‖eit|D|f‖L∞x .M(ĝ)(t), (2.26)

and thus by the Lp-boundedness of maximal operator and Plancherel’s the-
orem

‖eit|D|f‖L2
tL
∞
x
. ‖g‖L2

t
=

(∫ ∞

0
(λn−1|f̂ |)2dλ

) 1
2

=

(∫ ∞

0

∣∣∣λn−1
2 |f̂ |

∣∣∣
2
λn−1dλ

) 1
2

=

(2.27)

= ‖λn−1
2 f̂‖L2 = ‖f‖

Ḣ
n−1
2

which gives (2.22).
We now turn to estimate (2.23), for which the calculations are similar.

Indeed we can write (here we are fixing n = 3)

eit|D|

|D| Df =

∫
ei(x·ξ+t|ξ|)(α · ξ̂)f̂(ξ)dξ = (2.28)

where

α · ξ̂ =
3∑

k=1

(αk · ξk)
|ξ| .

Using spherical coordinates as before we have
∫ ∞

0
dλ

∫ 2π

0
dφ

∫ π

0
dθeiλ(t+ρ cos θ)A(θ, φ)f̂(λ)λ2 sin θ (2.29)

with the operator A(θ, φ) = α1 cos θ+α2 sin θ cosφ+α3 sin θ sinφ. Observing
that ∫ 2π

0
α2 sin θ cosφ dφ =

∫ 2π

0
α3 sin θ sinφ dφ = 0,

we see that (2.29) is equal to

∼=
∫ ∞

0
dλ

∫ π

0
dθeiλ(t+ρ cos θ)α1 cos θf̂(λ)λ2 sin θ.

Setting as before g(λ) = f̂(λ)λ2H(λ), changing variable cos θ → y and then
y → y/r yield

=

∫ 1

−1
dy (α1 · y)

∫ +∞

−∞
dρeiλ(t+ρy)g(ρ) =

1

r

∫ r

−r

(
α1 ·

y

r

)
ĝ(t+y)dy ∼= cM(ĝ)(t)

(2.30)
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since the term
(
α1 ·

y

r

)
is bounded, and so we have the bound

∥∥∥∥∥
eit|D|

|D| Df
∥∥∥∥∥
L∞x

.M(ĝ)(t). (2.31)

The Lp-boundedness of maximal operator and Placherel Theorem yield as
above ∥∥∥∥∥

eit|D|

|D| Df
∥∥∥∥∥
L2
tL
∞
x

. ‖f‖Ḣ1 (2.32)

which gives the desired estimate (2.23). �

Combining estimates (2.22) and (2.23) and using representation (2.20)
for the solution of the free Dirac system we obtain estimate (2.21).

3. The mixed endpoint-smoothing estimate

We consider now the non homogeneous equation

iut −Du = F (t, x), u(0, x) = 0. (2.33)

By Duhamel’s formula and the representation (2.20) we can write the solu-
tion u as

u(t, x) =

∫ t

0
ei(t−s)DF (s, x)ds = (2.34)

=

∫ t

0

(
cos((t− s)|D|)F (s, x) + i

sin((t− s)|D|)
|D| DF (s, x)

)
ds.

Thus in order to estimate the solution u to (2.33) we can deal separately
with the two integrals

∫ t

0
ei(t−s)|D|F (s, x)ds and

∫ t

0

ei(t−s)|D|

|D| DF (s, x)ds.

We prove the following:

Proposition 2.5. Let n = 3 and assume F (t, x) has the structure

F (t, x) = F1(|x|)I4 + iβ(α · x̂)F2(|x|). (2.35)

Then the following estimate holds
∥∥∥∥
∫ t

0
ei(t−s)DF (s) ds

∥∥∥∥
L2
tL
∞
x

. ‖〈x〉 12+|D|F‖L2
tL

2
x
. (2.36)

The key step in the proof of (2.36) is the following non homogeneous
estimate for the wave propagator with a radial term.

Lemma 2.6. Let n ≥ 3, F (t, ·) be a radial function. Then the following
estimate holds

∥∥∥∥
∫ t

0
ei(t−s)|D|F (s) ds

∥∥∥∥
L2
tL
∞
x

. ‖〈x〉 12+|D|n−1
2 F‖L2tL2

x
. (2.37)
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Proof. We start with (2.37). Expanding u as in the homogeneous case
(see formulas (2.24 and (2.25)), from the radiality of F we can estimate the

L∞ norm of the solution at fixed t as (here Ĝ(s, λ) = λn−1F̂ (s, λ)H(λ) and
H is the Heaviside function)

‖u‖L∞x . sup
r

1

r

∫ r

−r

(∫ t

0

∣∣∣Ĝ(s, y + t− s)
∣∣∣ ds
)
dy =

= sup
r

1

r

∫ r

−r

(∫ t

0

∣∣∣Ĝ(s, y + t− s)
∣∣∣ 〈y + t− s〉 12+〈y + t− s〉− 1

2
−ds

)
dy .

. sup
r

1

r

∫ r

−r
dy

[(∫

R

∣∣∣Ĝ1(s, y + t− s)
∣∣∣
2
ds

) 1
2

·
(∫ t

0
〈y + t− s〉−1−ds

) 1
2

]

where in the last inequality we have used Cauchy-Schwarz inequality and
G1 is the function defined by

Ĝ1(s, y) = Ĝ(s, y)〈y〉 12+.

Setting now h(z) :=

(∫

R

∣∣∣Ĝ1(s, z − s)
∣∣∣
2
ds

) 1
2

we have

sup
r

1

r

∫ r

−r
dy

(∫

R

∣∣∣Ĝ1(s, y + t− s)
∣∣∣
2
ds

) 1
2

= M(h)(t)

The Lp boundedness of the maximal operator yields

‖u‖L2
tL
∞
x
. ‖h(t)‖L2

t
=

(∫ ∫ ∣∣∣Ĝ1(s, t− s)2
∣∣∣
2
dsdt

) 1
2

= ‖Ĝ1‖L2
sL

2
y

The last quantity is precisely

‖〈y〉 12+Fλ→y
(
λn−1F̂ (s, λ)H(λ)

)
‖L2

sL
2
y

and to conclude the proof we need to estimate it by

. ‖〈x〉 12+|D|n−1
2 F‖L2

sL
2
x
.

Since F−1(|D|n−1
2 f) = |ξ|n−1

2 f̌ we see that it is enough to prove the general
inequality (we can neglect the dependence on time)

‖〈ρ〉kFλ→ρ
(
λ
n−1
2 f̂(λ)H(λ)

)
‖L2

ρ
. ‖〈x〉kf‖L2 (2.38)

for k = 1/2+.
We prove (2.38) by interpolation. The case k = 0 is trivial, since from

Placherel’s Theorem we obviously have

‖Fλ→ρ
(
λ
n−1
2 f̂(λ)H(λ)

)
‖L2
∼= ‖λn−1

2 f̂(λ)‖L2 = ‖f‖L2 . (2.39)

The case k = 1 is just a little more complicated. Since of course 〈ρ〉 ≤ 1+|ρ|,
we need only prove that

‖ρ Fλ→ρ
(
λ
n−1
2 f̂(λ)H(λ)

)
‖L2 . ‖〈x〉f‖L2

or equivalently

‖∂λ
(
λ
n−1
2 f̂(λ)H(λ)

)
‖L2 . ‖〈x〉f‖L2 . (2.40)
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We write

‖∂λ
(
λ
n−1
2 f̂(λ)χR+(λ)

)
‖L2 . ‖λn−1

2 ∂λf̂(λ)‖L2
+

+ ‖λn−3
2 f̂(λ)‖L2

+
= I1 + I2

with the shorthand notation L2
+ = L2(0,∞). For I1 we trivially have

I1 = ‖λn−1
2 (̂ρf)‖L2

∼= ‖|x|f‖L2 .

Let’s now turn to I2. We split the norm

‖λn−3
2 f̂(λ)‖L2

+
= ‖λn−3

2 f̂(λ)‖L2({λ≥1}) + ‖λn−3
2 f̂(λ)‖L2({λ<1}).

Plancherel’s Theorem yields again for the first term

‖λn−3
2 f̂(λ)‖L2({λ≥1}) ≤ ‖λ

n−1
2 f̂‖L2(R)

∼= ‖f‖L2 .

To handle the second term we use Hardy’s inequality:

‖λn−3
2 f̂(λ)‖L2({λ<1}) = ‖|ξ|−1f̂‖L2({|ξ|<1}) . ‖∇ξ f̂‖L2 ' ‖|x|f‖L2

and this concludes the case k = 1. By interpolation with (2.39) we obtain
the desired estimate (2.37). �

Lemma 2.7. Let n = 3 and F (t, ·) be of the form (2.35). Then the
following estimate holds

∥∥∥∥∥

∫ t

0

ei(t−s)|D|

|D|k DkF (s) ds

∥∥∥∥∥
L2
tL
∞
x

. ‖〈x〉 12+|D|F‖L2
tL

2
x
. (2.41)

for k = 0, 1.

Proof. Since the operator iDβ(α · x̂)φ applied to a radial function φ
produces the radial function iβφ′′, Lemma (2.6) holds, and we only need to
control terms of the form (where Frad denotes a radial function)

∥∥∥∥∥

∫ t

0

ei(t−s)|D|

|D|1−j AjFrad(s) ds

∥∥∥∥∥
L2
tL
∞
x

with Aj = iβj(α · x̂), j = 0, 1. Recalling (2.28)-(2.30), since the quantities
Aj are obviously bounded, we can estimate in both cases with

∣∣∣∣∣

∫ t

0

ei(t−s)|D|

|D|1−j AjFrad(s)ds

∣∣∣∣∣ .
∫ t

0

1

r

∫ r

−r
|Ĝ(s, y + t− s)| dsdy

where as before Ĝ(s, λ) = λ2F̂rad(s, λ)H(λ). Proceeding exactly as in the
proof of Lemma (2.6) we obtain estimate (2.41). �

Estimate (2.36) is an immediate consequence of (2.37), (2.41) and rep-
resentation (2.34)
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4. Proof of Theorem 2.1

We now turn to the proof of Theorem (2.1). This is based on a simple
application of a smoothing estimate for a Dirac equation with potential
proved in [21] (see also [20], [19] for related results):

Theorem 2.8 ([21]). Let V (x) = V (x)∗ be a 4×4 complex valued matrix
and assume that for some σ > 1 and some sufficiently small δ > 0 one has

|V (x)| ≤ δ

wσ(x)
where wσ(x) = |x|(1 + | log |x||)σ (2.42)

Then the following smoothing estimate holds:

‖w−1/2
σ eit(D+V )f‖L2

tL
2
x
. ‖f‖L2 . (2.43)

It is not difficult to deduce the endpoint estimate (2.15) for the perturbed
flow from the previous result and our mixed endpoint-smoothing estimate
(2.36). First of all, the solution of the equation

iut = Du+ V u, u(0, x) = f

can be written, regarding V u as a right-hand member of the equation

u = eit(D+V )f = eitDf + i

∫ t

0
ei(t−s)D(V u)ds.

Then we can write

‖|D|−1u‖L2
tL
∞
x

= ‖|D|−1eit(D+V )f‖L2
tL
∞
x
≤ (2.44)

≤
∥∥|D|−1eitDf

∥∥
L2
tL
∞
x

+

∥∥∥∥∥

∫ t

0

ei(t−s)D

|D| (V (s)eis(D+V )f)ds

∥∥∥∥∥
L2
tL
∞
x

.

The first term can be estimated by (2.21) (notice that |D| commutes with
D and hence with the flow). In order to apply estimate (2.36) to the second
term we need the following

Lemma 2.9. If f ∈ Ḣ1, then eitDf ∈ Ḣ1, and if V is of the form (2.13),
then V eitDf is of the form (2.35).

Proof. We write f = f1 + Df2 with f1, f2 radial functions. Then we
have, from (2.20),

eitDf =

(
cos(t|D|) +

sin(t|D|)
|D| D

)
(f1 +Df2) =

= cos(t|D|)f1 + sin(t|D|)|D|f2 +D
(

cos(t|D|)f2 +
sin(t|D|)
|D| f1

)
=

= f̃1 +Df̃2,

where f̃1 and f̃2 are radial functions with the appropirate regularity, and
this concludes the proof of the first statement. The proof of the second
statement is trivial. �
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We thus can estimate (2.44) with (2.21) and (2.36) obtaining

. ‖f‖L2 + ‖〈x〉 12+V u‖L2
tL

2
x

Now multiplying and dividing by wσ(x)1/2 in the second norm on the right
hand side yields

≤ ‖f‖L2 + ‖〈x〉1/2+w1/2
σ V ‖L∞ · ‖w−1/2

σ u‖L2
tL

2
x
.

Notice that the weighted norm of V at the right hand side is bounded as
it follows from assumption (2.14). Moreover (2.14) implies also that the
assumption of Theorem 2.8 is satisfied. Then using (2.43) we conclude

‖|D|−1u‖L2
tL
∞
x
≤
(

1 + ‖〈x〉1/2+w1/2
σ V ‖L∞

)
‖f‖L2 (2.45)

that gives, under hypothesis (2.14) on the potential, the desired Strichartz
endpoint estimate.

5. Partial wave subspaces and radial Dirac operator

The purpose of this chapter is to construct, following [74], invariant
subspaces for the Dirac operator with a potential having a special symmetry.
To this end we use the classical decomposition of the space L2(R3)4 in the
direct sum of 2-dimensional Hilbert spaces, the partial wave subspaces, which
are invariant for the Dirac operator. We shall aslo check that the lowest order
partial wave subspaces are invariant even for the cubic nonlinearities that
we consider here.

We begin by recalling the basic facts on the decomposition, referring to
[74] for more details. We shall use the standard notation for polar coordi-
nates in R3

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ

with the unit vectors in the directions of the polar coordinate lines given by




er = (sin θ cosφ, sin θ sinφ, cos θ) =
x

|x| = x̂

eθ = (cos θ cosφ, cos θ sinφ,− sin θ) =
∂er
∂θ

eφ = (− sinφ, cosφ, 0) =
1

sin θ

∂er
∂φ

.

Then we write for a function ψ ∈ L2(R3)

ψ(r, θ, φ) = rψ̃(x(r, θ, φ), y(r, θ, φ), z(r, θ, φ)). (2.46)

Since the function ψ(r, ·, ·) of the angular variables is square integrable on

the unit sphere L2(S2), the mapping ψ̃ → ψ defines a unitary isomorphism

L2(R3) ∼= L2((0,∞), dr;L2(S2)) = L2((0,∞), dr)⊗ L2(S2).

Applying the transformation (2.46) on each component of the (vector valued)
wavefunction, we obtain the analogous decomposition

L2(R3)4 ∼= L2((0,∞), dr)⊗ L2(S2)4.

The decomposition of the Hilbert space into a ”radial” and an ”angular”
part is very useful since the angular momentum operators

L = x ∧ (−i∇) orbital angular momentum
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J = L + S total angular momentum

act only on the angular part L2(S2)4 in a nontrivial way; here

S = −1/4(α ∧ α)

is the spin angular momentum operator. Recalling the expression of ∇ in
polar coordinates

∇ = er
∂

∂r
+

1

r

(
eθ
∂

∂θ
+ eφ

1

sin θ

∂

∂θ

)
(2.47)

we obtain that, since x = r · er,

L = i eθ
1

sin θ

∂

∂φ
− i eφ

∂

∂θ
(2.48)

where the differentiation applies to each component of the wavefunction.
The Dirac operator can be written in polar coordinates as follows. Com-

bining (2.47) and (2.48) yields

−i∇ = −i er
∂

∂r
− 1

r
(er ∧ L)

and thus

−iα · ∇ = −i(α · er)
∂

∂r
− 1

r
α · (er ∧ L). (2.49)

By the basic property of the Dirac matrices:

(α ·A)(α ·B) = A ·B + 2iS · (A ∧B);

which holds for any matrix-valued vector fields A = (A1, A2, A3), B =
(B1, B2, B3) with F i, Gi ∈M4×4(C), and

γ5α = 2S,

where γ5 =

(
0 1
1 0

)
, we obtain

(α ·A)(2S ·B) = iγ5A ·B − iα · (A ∧B),

thus equation (2.49) is equal to

= −i(α · er)
∂

∂r
+
i

r
(α · er)(2S · L).

Finally, introducing the spin orbit operator

K = β(2S · L + 1) ≡ β(J2 − L2 + 1/4) (2.50)

where we used the identity J2 = (L+ S)2 = L2 + 2S · L+ 3/4, we arrive at
the following representation:

Proposition 2.10. The 3-dimensional Dirac operator can be written as

D = −i(α · x̂)

(
∂

∂r
+

1

r
− 1

r
βK

)
(2.51)

where K is the spin orbit operator defined in (2.50).

The key step to construct the invariant spaces is the following:
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Proposition 2.11. For each choice (j,mj , kj) with j = 1
2 ,

3
2 ,

5
2 , .., mj =

−j,−j + 1, ...,+j, kj = −(j + 1/2),+(j + 1/2), there exist precisely two
eigenfunctions Φ±mj ,kj ∈ C

∞(S2)4 satisfying the following relations:

J2Φmj ,kj = j(j + 1)Φmj ,kj ,

J3Φmj ,kj = mjΦmj ,kj ,

KΦmj ,kj = −kjΦmj ,kj .

The family Φ±mj ,kj forms an orthonomral basis of L2(S2)4.

The functions Φmj ,kj can be written explicitly using spherical harmon-
ics. We first recall the following representation of 3-dimensional spherical
harmonics

Y m
l (θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
eimφPml (cos θ) ∀ − l ≤ m ≤ l. (2.52)

where Pml are the Legendre polynomials

Pml (x) =
(−1)m

2ll!
(1− x2)m/2

dm+l

dxm+l
(x2 − 1)l. (2.53)

As it is well known, the spherical harmonics form a complete orthonormal
set in L2(S2), i.e. every function f ∈ L2(S2) can be written as

f(θ, φ) =

∞∑

l=0

l∑

m=−l
fml Y

m
l (θ, φ)

for some constants fml ; moreover, they are eigenfunctions of both the oper-
ators L2 and L3, i.e.

L2Y m
l = l(l + 1)Y m

l (2.54)

L3Y
m
l = mY m

l . (2.55)

We now define for j = 1
2 ,

3
2 ,

5
2 , .., mj = −j,−j + 1, ...,+j the functions

Ψ
mj
j∓1/2 ∈ L2(S2)2:

Ψ
mj
j−1/2 =

1√
2j

( √
j +mj Y

mj−1/2

j−1/2√
j −mj Y

mj+1/2

j−1/2

)
(2.56)

Ψ
mj
j+1/2 =

1√
2j + 2

( √
j + 1−mj Y

mj−1/2

j+1/2

−
√
j + 1 +mj Y

mj+1/2

j+1/2

)
. (2.57)

These functions are, as it is easily seen, eigenfunctions of both the operators
L2 and J2 = L2+σ ·L+3/4 with eigenvalues l(l+1) and j(j+1) respectively.
So we conclude, in view of (2.50), that the functions in Proposition 2.11 are
given by

Φ+
mj ,∓(j+1/2) =

(
iΨ

mj
j∓1/2

0

)
Φ−mj ,∓(j+1/2) =

(
0

Ψ
mj
j±1/2.

)
. (2.58)
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Thus the Hilbert space L2(S2)4 is the orthogonal direct sum of 2-dimensional
Hilbert spaces Hmj ,kj , which are spanned by simultaneous eigenfunctions

Φ±mj ,kj of J2 and K:

L2(S2)4 =
∞⊕

j= 1
2
, 3
2
,...

j⊕

mj=−j

⊕

kj=±(j+ 1
2

)

Hmj ,kj (2.59)

Easy calculations show that the functions Ψ
mj
j±1/2 satisfy

(σ · x̂)Ψ
mj
j±1/2 = Ψ

mj
j∓1/2,

and hence
i(α · x̂)Φ±mj ,kj = ∓Φ∓mj ,kj . (2.60)

This proves the following:

Lemma 2.12. The subspaces Hmj ,kj are left invariant by the operators
β and
α · x̂. With respect to the basis {Φ+

mj ,kj
Φ−mj ,kj} defined above, these operators

are represented by the 2× 2 matrices

β =

(
1 0
0 −1

)
, −iα · x̂ =

(
0 −1
1 0

)
. (2.61)

The decomposition just shown obviously implies a similar one of L2(R3)4,
in which each partial wave subspace L2((0,∞), dr) ⊗ Hmj ,kj is isomorphic

to L2((0,∞), dr)2 if we choose the basis {Φ+
mj ,kj

,Φ−mj ,kj}. There is in fact a

unitary isomorphism between the Hilbert spaces:

L2(R3)4 ∼=
⊕

L2((0,∞), dr)⊗Hmj ,kj . (2.62)

This decomposition and (2.51) allow us to easily calculate the action of the
Dirac operator (at least on differentiable states) even in the presence of a
suitable potential.

Proposition 2.13. The Dirac operator (2.51) with the potential

V (x) = V1(|x|)I4 + iβ(α · x̂)V2(|x|) (2.63)

leaves the partial wave subspaces C∞0 (0,∞) ⊗ Hmj ,kj invariant. With re-

spect to the basis Φ+
mj ,kj

,Φ−mj ,kj the Dirac operator on each subspace can be

represented by the operator

dmj ,kj =

(
V1(|x|) − d

dr +
kj
r + V2(|x|)

d
dr +

kj
r + V2(|x|) V1(|x|)

)
(2.64)

which is well defined over C∞0 (0,∞)2 ⊂ L2((0,∞), dr)2. Moreover, the
Dirac operator D on C∞0 (R3)4is unitary equivalent to the direct sum of the
partial wave Dirac operators dmj ,kj ,

D ∼=
∞⊕

j= 1
2
, 3
2
,...

j⊕

mj=−j

⊕

kj=±(j+ 1
2

)

dmj ,kj (2.65)

Remark 2.1. Proposition 2.13 holds for slightly more general potentials
(see [74]), but we shall not need this fact here.
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Remark 2.2. The operator in (2.64) is also known as radial Dirac op-
erator. It can be proved that dmj ,kj is essentially self-adjoint (for every j)

on C∞0 (0,∞) if and only if D+V is essentially self-adjoint on C∞0 (R3\{0}).
Thus using spherical coordinates it is possible to construct invariant

spaces for the perturbed Dirac operator. What may come as a surprise is
that for j = 1/2 the partial wave subspaces are also invariant for the cubic
nonlinearity, and this fact is obviously crucial for the nonlinear application
we shall prove in the next chapter.

Lemma 2.14. Let j = 1/2 and let (m1/2, k1/2) be one of the couples
(-1/2,-1), (-1/2,1), (1/2,-1), (1/2,1). Then the partial wave subspaces
C∞0 ((0,∞), dr)⊗Hm1/2,k1/2 are invariant for the cubic nonlinearities P3(u) =

〈u, u〉u and 〈βu, u〉u, i.e.

u ∈ C∞0 ((0,∞), dr)⊗Hm1/2,k1/2 ⇒ P3(u) ∈ C∞0 ((0,∞), dr)⊗Hm1/2,k1/2 .

(2.66)

Proof. We explicitly write down the functions Φ+, Φ− in the four cases:
a straightforward calculation using formulas (2.52), (2.53), (2.56), (2.57) and
(2.58) yields

Φ+
−1/2,−1 =




0
i

2
√
π

0
0


 Φ−−1/2,−1 =




0
0

1

2
√
π
eiφ sin θ

− 1

2
√
π

cos θ



. (2.67)

Φ+
−1/2,1 =




i

2
√
π
eiφ sin θ

− i

2
√
π

cos θ

0
0




Φ−−1/2,1 =




0
0
0
1

2
√
π


 . (2.68)

Φ+
1/2,−1 =




i

2
√
π

0
0
0


 Φ−1/2,−1 =




0
0

1

2
√
π

cos θ

1

2
√
π
eiφ sin θ



. (2.69)

Φ+
1/2,1 =




i

2
√
π

cos θ

i

2
√
π
eiφ sin θ

0
0




Φ−1/2,1 =




0
0
1

2
√
π

0


 . (2.70)

We prove Lemma (2.14) for the couple (1/2, 1), i.e. for functions of the form
(2.70), being the proof for the other cases completely analogous.
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The generic function u ∈ L2((0,∞), dr)⊗H1/2,1 can be written as

u(r, θ, φ) = u+(r)Φ+
1/2,1(θ, φ) + u−(r)Φ−1/2,1(θ, φ)

for some radial functions u+, u−. So f takes the vectorial form

u =




u+(r)
i

2
√
π

cos θ

u+(r)
i

2
√
π
eiφ sin θ

u−(r)

2
√
π

0



. (2.71)

Thus the Hermitian product 〈u, u〉 yields

〈u, u〉 = − 1

4π
cos2 θ u+(r)2 − 1

4π
sin2 θ u+(r)2 +

1

4π
u−(r)2 =

= − 1

4π

(
u+(r)2 − u−(r)2

)

that has no angular components. This proves that if u ∈ C∞0 ((0,∞), dr)⊗
Hm1/2,k1/2 then 〈βu, u〉u ∈ C∞0 ((0,∞), dr)⊗Hm1/2,k1/2 .

Minor modifications yield the same result also for the nonlinear term
〈u, u〉u. In fact we know from Lemma (2.66) that the operator β acts
on the partial wave subspaces in a very simple way with respect to the
basis {Φ+,Φ−}: if in fact we associate to the function u its coordinates
(u+(r), u−(r)) with respect to such a basis we have βu = (u+(r),−u−(r)),
so that

〈βu, u〉 = − 1

4π
cos2 θ u+(r)2 − 1

4π
sin2 θ u+(r)2 − 1

4π
u−(r)2 =

= − 1

4π

(
u+(r)2 + u−(r)2

)

that again has no angular components, and this shows that if u ∈ C∞0 ((0,∞), dr)⊗
Hm1/2,k1/2 then 〈u, u〉u ∈ C∞0 ((0,∞), dr)⊗Hm1/2,k1/2 . �

6. Global existence for the nonlinear equation

As an application of the results we have presented in the previous chapter
we can now prove global existence for problem (2.18) with small initial data

in one of the four partial wave subspaces Ḣ1((0,∞), dr) ⊗ Hm1/2,k1/2 . Our
goal is to prove

Theorem 2.15. Consider the Cauchy problem for the 3-dimensional
nonlinear Dirac equation

iut −Du+ V (x)u = P3(u), u(0, x) = f(x) (2.72)

where the potential V is of the form

V = V1(|x|)I4 + iβ(α · x̂)V2(|x|)
and satisfies assumption (2.14), while the nonlinear term P3(u) is either of
the form 〈βu, u〉u or 〈u, u〉u.
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Then for every initial data f ∈ Ḣ1((0,∞), dr) ⊗ Hm1/2,k1/2, with suffi-

ciently small Ḣ1 norm, there exists a unique global solution u(t, x) to prob-

lem (2.18) in the class Ct(R, Ḣ1) ∩ L2
t (R, L∞).

Proof. The proof is identical for both choices of the form of the non-
linear term. We rewrite (2.18) in integral form

u = eitDf + i

∫ t

0
ei(t−s)D (V (s)u(s) + P3(u(s))) ds = (2.73)

= eitDf + i

∫ t

0
ei(t−s)D (V (s)u(s)) ds+ i

∫ t

0
ei(t−s)D (P3(u(s))) ds =

= eit(D+V )f + i

∫ t

0
ei(t−s)D (P3(u(s))) ds ≡ Φ(u) ≡ I1 + I2

we denote by Φ(u) the RHS of (2.73) and we check that the map Φ is a
contraction on the function space

X = L2
tL
∞
x ∩ L∞t Ḣ1

x.

In order to estimate the first term I1 we use our endpoint Strichartz
estimate (2.15), observing that if f ∈ Ḣ1((0,∞), dr) ⊗ Hm1/2,k1/2 then in
particular f is of the form f = f1 + Df2 with f1, f2 radial functions, so
estimate (2.15) holds and gives

‖I1‖X . ‖f‖Ḣ1 (2.74)

Now we need to handle the nonlinear term I2. By Minkowski inequality
∥∥∥∥
∫ t

0
ei(t−s)DP3(u(s))ds

∥∥∥∥
X

≤
∫ ∞

0
‖eitDe−isDP3(u(s))‖Xds.

By energy conservation we have

‖eitDe−isDP3(u(s))‖L∞t Ḣ1 = ‖P3(u(s))‖L∞s Ḣ1

On the other hand, in view of Lemma (2.14), we can use estimate (2.21)
and we have

‖eitDe−isDP3(u(s))‖L2
tL
∞
x

= ‖P3(u(s))‖Ḣ1 ≤ ‖P3(u(s))‖L∞s Ḣ1 .

Thus
‖I2‖X . ‖P3(u(s))‖L∞s Ḣ1

Then by Hölder inequality in t, x we obtain

‖P3(u)‖L1
t Ḣ

1
x
≤ ‖u‖2L2

tL
∞
x
‖u‖L∞t Ḣ1

x

which implies
‖Φ(u)‖X . ‖f‖Ḣ1 + ‖u‖3X .

An analogous computation gives

‖Φ(u)− Φ(v)‖X . (‖u‖2X + ‖v‖2X)‖u− v‖X . (2.75)

Therefore if the data belong to a sufficiently small ball in Ḣ1, Φ is a contrac-
tion on that ball, and its unique fixed point is the unique global solutions
to problem (2.18) in the space X. �



CHAPTER 3

Endpoint estimates with angular regularity

1. Introduzione

The main topic of this chapter is again the cubic massless Dirac equation
on R1+3 perturbed with a potential

{
iut −Du(t, x) + V (x)u = P3(u)

u(0, x) = f(x)
(3.1)

(the notation here is the same as the previous chapter). As we have already
widely discussed (see section 1), the cubic nonlinearity

P3(u) = 〈βu, u〉u or P3(u) = 〈u, u〉u

is Ḣ1-critical with respect to the scale-invariance of the Dirac operator, and
since the endpoint Strichartz estimate

‖eitDf‖L2L∞ . ‖f‖Ḣ1 (3.2)

fails even in the free case, we cannot directly apply the standard fixed-point
strategy in order to prove well-posedness for problem (3.1).
In an attempt to overcome this limitation, in recent years some refined
estimates involving angular regularity have been investigated leading to in-
teresting improvements. We introduce the natural notations

‖f‖LarLbω =

(∫ ∞

0
‖f(r · )‖aLb(Sn−1)r

n−1dr

) 1
a

and

‖f‖L∞r Lbω = sup
r≥0
‖f(r · )‖Lb(Sn−1).

Then the following estimate for the free wave propagator is proved in [51]:

n = 3, ‖eit|D|f‖L2
tL
∞
r L

p
ω
. √p · ‖|D|f‖L2 , ∀p <∞ (3.3)

(we have already pointed out in chapter 2 the strict connection that exists
between the Dirac and the wave equation).
Notice that the norm at the left hand side distinguishes between the in-
tegrability in the radial and tangential directions. Using estimate (3.3),
Machihara et al. were able to prove global well posedness for problem (3.1)

with V = 0 for small Ḣ1-norm data with slight additional angular regularity,
and in particular for all radial Ḣ1 data. This is especially interesting since
radial data do not correspond to radial solution for the Dirac equation (due
to the fact that the operator D does not commute with rotations of R3).

28
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Estimate (3.3) gives a bound for the standard L2L∞ norm via Sobolev em-
bedding on the unit sphere S2

‖eit|D|f‖L2L∞ . ‖Λεωeit|D|f‖L2L∞r L
p
ω
. ‖|D|Λεωf‖L2 , p >

2

ε
(3.4)

where the angular derivative operator Λsω is defined in terms of the Laplace-
Beltrami operator on Sn−1 as

Λsω = (1−∆Sn−1)s/2.

Using (3.4) one can prove global existence for (3.1) in the case V = 0,
provided the norm ‖|D|Λsωf‖L2 of the data is small enough for some s > 0.
In particular, this includes all radial data with a small H1 norm.

Our main goal here is to extend this group of results to the equation
(3.1) perturbed with a small potential V (x). We consider first the linear
equation

iut = Du+ V (x)u+ F (t, x). (3.5)

The perturbative term V u can not be handled using the inhomogeneous
version of (3.3) because of the loss of derivatives. Instead, we prove new
mixed Strichartz-smoothing estimates (Theorem 3.6)

n ≥ 3,

∥∥∥∥
∫ t

0
ei(t−s)|D|F (s, x)ds

∥∥∥∥
L2
tL
∞
|x|L

2
ω

. ‖〈x〉 12+|D|n−1
2 ΛσωF‖L2

tL
2
x

(3.6)
where

for n = 3, σ = 0

for n ≥ 4, σ = 1− n

2
.

(3.7)

Remark 3.1. As a byproduct of our proof, we obtain the following end-
point estimates for the wave flow with gain of angular regularity (Theorem
3.4):

n ≥ 3, ‖eit|D|f‖L2
tL
∞
r L

2
ω
. ‖Λσωf‖Ḣ n−1

2
(3.8)

where σ is as in (3.7). Although this was not the main purpose of the paper,
it is interesting to compare (3.8) with known results. In dimension n = 3,
estimate (3.8) is just a special case of Theorem 1.1-III in [51] where (3.8) is
proved with σ = −3

4 ; it is not known if this value is sharp, however in the

same paper it is proved that the estimate is false for σ < −5
6 . On the other

hand, to our knowledge, estimate (3.8) for n ≥ 4 and (3.6) for n ≥ 3 are
new. The literature on these kind of estimates is extensive and we refer to
[36], [44] and the references therein for further information.

Combining (3.6) with the techniques of [21] we obtain the following
endpoint result for a 3D linear wave equation with singular potential. Anal-
ogous estimates can be proved for higher dimensions; here we chose to focus
on the 3D case since the assumptions on V take a particular simple form:

Theorem 3.1. Let n = 3 and consider the Cauchy problem for the wave
equation

utt −∆u+ V (x)u = F, u(0, x) = f(x), ut(0, x) = g(x)

under the assumptions:
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(i) V (x) is real valued and the positive and negative parts V± satisfy

V+ ≤
C

|x| 12−ε + |x|2
, V− ≤

δ

|x| 12−ε + |x|2
(3.9)

for some δ, ε sufficiently small and some C ≥ 0;
(ii) −∆ + V is selfadjoint;
(iii) 0 is not a resonance for −∆+V− (in the following sense: if f is such

that (−∆ + V−)f = 0 and 〈x〉−1f ∈ L2, then f ≡ 0).

Then the solution u(t, x) satisfies the endpoint Strichartz estimate

‖u‖L2
tL
∞
r L

2
ω
. ‖f‖Ḣ1 + ‖g‖L2 + ‖〈x〉 12+F‖L2

tL
2
x
. (3.10)

The next step is to prove suitable smoothing estimates for the Dirac
equation with potential

iut = Du+ V (x)u+ F (t, x)

(see Proposition 3.11 and Corollary 3.12). Then by a perturbative argument
we obtain the following endpoint estimates for the linear flows:

Theorem 3.2. Assume that the hermitian matrix V (x) satisfies, for δ

sufficiently small, C arbitrary and σ > 1, with v(x) = |x| 12 | log |x|| 12++|x|1+,

|V (x)| ≤ δ

v(x)
, |∇V (x)| ≤ C

v(x)
. (3.11)

Then the perturbed Dirac flow satisfies the endpoint Strichartz estimate

‖eit(D+V )f‖L2
tL
∞
r L

2
ω
. ‖f‖H1 . (3.12)

If the potential satisfies the stronger assumptions: for some s > 1,

‖ΛsωV (|x| · )‖L2(S2) ≤
δ

v(x)
, ‖Λsω∇V (|x| · )‖L2(S2) ≤

C

v(x)
, (3.13)

then we have the endpoint estimate with angular regularity

‖Λsωeit(D+V )f‖L2
tL
∞
r L

2
ω
. ‖Λsωf‖H1 (3.14)

and the energy estimate with angular regularity

‖Λsωeit(D+V )f‖L∞t H1 . ‖Λsωf‖H1 (3.15)

We can finally apply Theorem 3.2 to the nonlinear equation (3.1) and
we obtain:

Theorem 3.3. Consider the perturbed Dirac system (3.1), where the
4 × 4 matrix valued potential V (x) is hermitian and satisfies assumptions
(3.13). Let P3(u, u) be a C4-valued homogeneous cubic polynomial. Then
for any s > 1 there exists ε0 such that for all initial data satisfying

‖Λsωf‖H1 < ε0 (3.16)

the Cauchy problem (3.92) admits a unique global solution u ∈ CH1∩L2L∞

with Λsωu ∈ L∞H1.

In particular, problem (3.1) has a global unique solution for all radial
data with sufficiently small H1 norm.
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Remark 3.2. It is clear that our methods can also be applied to non-
linear wave equations perturbed with potentials, and allow to prove global
well posedness for some types of critical nonlinearities. This problem will
be the object of a further note.

Remark 3.3. We did not strive for the sharpest condition on the poten-
tial V , which can be improved at the price of additional technicalities which
we prefer to skip here. Moreover, differently from the previous chapter in
which the structure of the non linear term was essential, the result can be
extended to more general cubic nonlinearities |P3(u)| ∼ |u|3.

Notice also that we need an angular regularity s > 1 on the data, higher
than the s > 0 assumed in the result of [51]. It is possible to relax our
assumptions to s > 0; the only additional tool we would need to prove is a
Moser-type product estimate

‖Λsω(uv)‖L2
ω
. ‖u‖L∞ω ‖Λsωv‖L2

ω
+ ‖Λsωu‖L2

ω
‖v‖L∞ω , s > 0

and an analogous one for Λsω|D|(uv). This would require a fair amount of
calculus on the sphere S2, and here we preferred to use the conceptually
much simpler algebra property of Hs(Sn−1) for s > n−1

2 .
On the other hand, the extension of our results to the massive case

iut = Du+ V (x)u+mβu+ P3(u), m 6= 0

requires a different approach and will be the object of further work.

Acknowledgments. We are indebted with Ilia Krasikov and Jim Wright
for invaluable conversations which helped shape up the proofs in section 2.

2. Endpoint estimates for the free flows

To fix our notations, we recall some basic facts on spherical harmonics
(see [71]) on Rn, n ≥ 2. For k ≥ 0, we denote by Hk the space of harmonic
polynomials homogeneous of degree k, restricted to the unit sphere Sn−1.
The dimension of Hk for k ≥ 2 is

dk =

(
n+ k − 1

k

)
−
(
n+ k − 3

k − 2

)
' 〈k〉n−2

while d0 = 1 and d1 = n. Hk is called the space of spherical harmonics of
degree k, and we denote by Y l

k , 1 ≤ l ≤ dk an orthonormal basis. Since

L2(Sn−1) =

∞⊕

k=0

Hk

every function f(x) = f(rω), r = |x|, can be expanded as

f(r) =

∞∑

k=0

dk∑

l=1

f lk(r)Y
l
k(ω) (3.17)

and we have

‖f(rω)‖L2
ω

=
∑

k≥0
1≤l≤dk

|f lk|2,
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where we use the notation L2
ω = L2(Sn−1). More generally, if ∆S is the

Laplace-Beltrami operator on Sn−1 and

Λω = (1−∆S)1/2,

we have the equivalence

‖Λσωf(rω)‖L2
ω
'

∑

k≥0
1≤l≤dk

〈k〉2σ|f lk|2, σ ∈ R.

As a consequence we have the equivalence

‖Λσωf‖2L2(Rn) '
∑

k≥0
1≤l≤dk

〈k〉2σ‖f lk(r)r
n−1
2 ‖2L2

r(0,∞). (3.18)

In a similar way

‖∇f‖2L2(Rn) = (−∆f, f)L2 '

'
∑

k≥0
1≤l≤dk

(
‖r n−1

2 ∂rf
l
k(r)‖2L2

r(0,∞) + k2‖r n−3
2 f lk(r)‖2L2

r(0,∞)

)
(3.19)

where we used the following representation of the action of ∆

−∆f(x) =
∑

Y l
k

(
x

|x|

)[
−r1−n∂r(rn−1∂rf

l
k) +

k(k + n− 2)

r2
f lk

]
, r = |x|

More generally we have for integer m

−∆(1−∆S)mf(x) =
∑

(1+k(k+n−2))mY l
k

[
−r1−n∂r(rn−1∂rf

l
k) +

k(k + n− 2)

r2
f lk

]

which implies

‖∇Λmω f‖2L2(Rn) = (−∆(1−∆S)mf, f)L2 '

'
∑

k≥0
1≤l≤dk

〈k〉2m
(
‖r n−1

2 ∂rf
l
k(r)‖2L2

r(0,∞) + k2‖r n−3
2 f lk(r)‖2L2

r(0,∞)

)

(3.20)

and by interpolation and duality we see that (3.20) holds for all m ∈ R.
We shall estimate the solution using the following norm:

‖f‖L∞r L2
ω

= sup
r>0
‖f(rω)‖L2

ω(Sn−1).

Theorem 3.4. For all n ≥ 4 the following estimate holds:

‖eit|D|f‖L2
tL
∞
r L

2
ω
. ‖Λ1−n

2
ω f‖

Ḣ
n−1
2
, (3.21)

while for n = 3 we have

‖eit|D|f‖L2
tL
∞
r L

2
ω
. ‖f‖Ḣ1 (3.22)

Remark 3.4. In dimension n = 3 the previous result is a special case of
the stronger estimate proved in [51]:

‖eit|D|f‖L2
tL
∞
r L

2
ω
. ‖Λ−3/4

ω f‖Ḣ1 . (3.23)
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Notice that it is not known if estimate (3.23) is sharp. For higher dimension,
estimate (3.21) seems to be new; it is reasonable to guess that this result is
not sharp and might be improved at least to

‖eit|D|f‖L2
tL
∞
r L

2
ω
. ‖Λε−

n−1
2

ω f‖
Ḣ
n−1
2
, ε > 0. (3.24)

Proof. It is well known that the Hk spaces are invariant for the Fourier
transform F , and more precisely

F
(
c(r)Y l

k(ω)
)

(ξ) = g(|ξ|)Y l
k

(
ξ

|ξ|

)
(3.25)

where g is given by the Hankel transform

g(r) = (2π)
n
2 i−kr−

n−2
2

∫ ∞

0
c(ρ)Jk+n−2

2
(rρ)ρ

n
2 dρ. (3.26)

Here Jν is the Bessel function of order ν which we shall represent using the
Lommel integral form

Jν(y) =
(y/2)ν

π
1
2 Γ(ν + 1/2)

∫ 1

−1
eiyλ(1− λ2)ν−

1
2dλ. (3.27)

Now, given a function f(x), we denote by f̌ its inverse Fourier transform
and with f̌ lk(r) the coefficients of the expansion in spherical harmonics of f̌ :

f̌ =
∞∑

k=0

dk∑

l=1

f̌ lk(r)Y
l
k(ω). (3.28)

Recalling (3.25) we obtain the representation

f(x) =
∑

(2π)
n
2 i−k|x|1−n2 Y l

k

(
x

|x|

)∫ ∞

0
f̌ lk(ρ)Jk+n−2

2
(|x|ρ)ρ

n
2 dρ (3.29)

which implies

eit|D|f =
∑

(2π)
n
2 i−k|x|1−n2 Y l

k

(
x

|x|

)∫ ∞

0
eitρf̌ lk(ρ)Jk+n−2

2
(|x|ρ)ρ

n
2 dρ.

(3.30)
Consider now Lommel’s formula (3.27) for Jν ; since eiλy = (iy)−k∂kλ(eiλy),
after k integration by parts we obtain

Jk+n−2
2

(y) = cky
n
2
−1

∫ 1

−1
eiλy∂kλ

(
(1− λ2)k+n−3

2

)
dλ (3.31)

with

ck =
ik2−

n
2
−k+1

π
1
2 Γ(n−1

2 + k)
. (3.32)

Thus we can write

|x|1−n2
∫ ∞

0
eitρf̌ lk(ρ)Jk+n−2

2
(|x|ρ)ρ

n
2 dρ =

= ck

∫ 1

−1
∂kλ

(
(1− λ2)k+n−3

2

)[∫ +∞

−∞
1+(ρ)f̌ lk(ρ)ρn−1eiρ(t+λ|x|)dρ

]
dλ

(3.33)
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where 1+(ρ) is the characteristic function of (0,+∞); regarding the inner
integral as a Fourier transform we arrive at

= ck

∫ 1

−1
∂kλ

(
(1− λ2)k+n−3

2

)
ĝlk(t+ λ|x|)dλ

where

glk(ρ) = 1+(ρ)f̌ lk(ρ)ρn−1 (3.34)

In conclusion, we have the following representation

eit|D|f =
∑

(2π)
n
2 i−kY l

k

(
x

|x|

)
ck

∫ 1

−1
∂kλ

(
(1− λ2)k+n−3

2

)
ĝlk(t+ λ|x|)dλ

(3.35)
where the constants ck are given by (3.32) and glk by (3.34). Notice that
similar representations play a fundamental role also in [36], [44] In particular
this gives for the L2

ω norm of the solution at t, |x| fixed the formula

‖eit|D|f(|x|·)‖2L2
ω
'
∑
|ck|2

∣∣∣∣
∫ 1

−1
∂kλ

(
(1− λ2)k+n−3

2

)
ĝlk(t+ λ|x|)dλ

∣∣∣∣
2

.

(3.36)
We now need the following estimate:

Lemma 3.5. Let Qk(x) be the function

Qk(x) =
∂kx

(
(1− x2)k+n−3

2

)

2kΓ(k + n−1
2 )

.

Then we have on x ∈ [−1, 1]

|Qk(x)| . 〈k〉1−n2 if n ≥ 4, |Qk(x)| ≤ 1 if n = 3. (3.37)

Proof. We recall that the Jacobi polynomials are defined by

P
(α,β)
k (x) =

(−1)k

2kk!
(1− x)−α(1 + x)−β

dk

dxk

[
(1− x)α+k(1 + x)β+k

]
. (3.38)

We shall use some standard properties of these polynomial which can be

found in [1]. The function Qk can be expressed in terms of P
(α,α)
k (x) with

α = (n− 3)/2 as

|Qk(x)| = k!(1− x2)
n−3
2

Γ(k + n−1
2 )

∣∣∣∣P
(n−3

2
,n−3

2
)

k (x)

∣∣∣∣ . (3.39)

Thus in order to estimate Qk we need a bound for the function

Ta(x) = (1− x2)aP
(a,a)
k (x), a =

n− 3

2
. (3.40)

The following approach was suggested by Ilia Krasikov, see [50]. Con-
sider the second orderd differential equation

f ′′(x) + p(x)f ′(x) + q(x)f(x) = 0

on the interval (−1, 1), and define the Sonine function as

S(f, x) = f(x)2 +
f ′(x)2

q(x)
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under the assumption q > 0. It is easy to check that function S satisfies the
relation

S′ = −
(

2
p

q
+
q′

q2

)
f ′2.

The function Ta(x) defined in (3.40) satisfies the differential equation

T ′′a (x) +
2(2a− 1)

1− x2
xT ′a(x) +

(k + 1)(2a+ k)

1− x2
Ta(x) = 0

so that the associated Sonine function

Sa(x) = T 2
a +

1− x2

(k + 1)(2a+ k)
T ′a

2

satisfies

S′a = − 2(2a− 1)

(k + 1)(2a+ k)
x T ′2a . (3.41)

From this identity it is clear that Sa has a maximum at x = 0 provided
a ≥ 1/2 i.e. n ≥ 4. In this case we have

Sa(x) ≤ Sa(0) = Ta(0)2 +
T ′a(0)2

(k + 1)(2a+ k)
= P

(a,a)
k (0)2 +

P
(a,a)
k

′
(0)2

(k + 1)(2a+ k)

Now we recall that, for even k ≥ 2,

P
(a,a)
k (0) =

Γ (k + a+ 1)

(−2)kΓ
(
k
2 + 1

)
Γ
(
k
2 + a+ 1

) ' (−1)kk−
1
2 P

(a,a)
k

′
(0) = 0

where we used the Stirling asymptotics

k! ' kk−1/2e−k, Γ(k + a+ 1) ' kk+a−1/2e−k.

In a similar way, for odd k,

P
(a,a)
k (0) = 0, P

(a,a)
k

′
(0) =

Γ (k + a+ 1)

(−2)k−1Γ
(
k
2 + 1

2

)
Γ
(
k
2 + a+ 1

2

) ' (−1)k−1k
1
2 .

Thus for all values of k ≥ 1 we have

|Ta(x)| ≤
√
Sa(x) . 1√

k

and by (3.39) we conclude that, for k ≥ 1 and |x| < 1,

|Qk(x)| . k1−n
2

which is precisely (3.37) for n ≥ 4.
In the remaining case n = 3 we have a = 0 and the best we can do is to

use the sharp inequality |P(0,0)
k | ≤ 1 to obtain

|Qk(x)| = k!

k!
||P(0,0)

k | ≤ 1.

�
Using the Lemma, we can continue estimate (3.36) as follows

‖eit|D|f(|x|·)‖2L2
ω
.
∑

ω2
k

(∫ 1

−1
|ĝlk(t+ λ|x|)|dλ

)2

where
ωk = 1 if n = 3, ωk = 〈k〉1−n2 if n ≥ 4. (3.42)
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Since
∫ 1

−1
|ĝlk(t+ λ|x|)|dλ =

1

|x|

∫ |x|

−|x|
|ĝlk(t+ λ)|dλ ≤M(ĝlk)(t)

where M(g) is the centered maximal function, we obtain

‖eit|D|f(|x|·)‖2L2
ω
.
∑

ω2
kM(ĝlk)(t)

2.

Now we can take the sup in |x| which gives

‖eit|D|f‖2L∞r L2
ω
.
∑

ω2
kM(ĝlk)(t)

2,

and integrating in time, by the L2 boundedness of the maximal funcion, we
obtain

‖eit|D|f‖2L2
tL
∞
r L

2
ω
.
∑

ω2
k‖ĝlk‖2L2 '

∑
ω2
k‖glk‖2L2 '

∑
ω2
k‖f̌ lk(ρ)ρn−1‖2L2

ρ(0,∞).

It is immediate to check that the last sum is equivalent to
∑

ω2
k‖f̌ lk(ρ)ρn−1‖2L2

ρ(0,∞) ' ‖|D|
n−1
2 Λσωf‖2L2(Rn)

where σ = 1 − n/2 for n ≥ 4, which proves (3.21), and σ = 0 for n = 3,
which proves (3.22). �

Although the method of proof of Theorem 3.4 is probably not sharp
for the homogeneous operator, it has the advantage that it can be adapted
to handle also the nonhomogeneous term and gives the following mixed
Strichartz-smoothing estimate:

Theorem 3.6. For any n ≥ 3, the following estimate holds:
∥∥∥∥
∫ t

0
ei(t−s)|D|F (s, x)ds

∥∥∥∥
L2
tL
∞
|x|L

2
ω

. ‖〈x〉 12+|D|n−1
2 ΛσωF‖L2

tL
2
x

(3.43)

where

σ = 1− n

2
if n ≥ 4, σ = 0 if n = 3.

Proof. As in the proof of the previous theorem, we expand F in spher-
ical harmonics and we obtain the representation
∫ t

0
ei(t−s)|D|F (s, x)ds =

=
∑

(2π)
n
2 i−kckY

l
k

(
x

|x|

)∫ 1

−1
∂kλ

(
(1− λ2)k+n−3

2

)
Ĝlk(s, t− s+ λ|x|)dλ

(3.44)

with the constants ck as in (3.32), where the functions Glk are defined as

follows: denoting by F lk(t, r) the coefficients of the expansion into spherical

harmonics of the inverse Fourier transform F̌ = F−1(F )

F̌ (s, x) =
∑

F̌ lk(s, |x|)Y l
k

(
x

|x|

)

and by Glk the functions

Glk(s, ρ) = 1+(ρ)ρn−1F̌ lk(s, ρ), (3.45)
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the Ĝlk(s, r) are the Fourier transforms of Glk in the second variable:

Ĝlk(s, r) =

∫ +∞

−∞
eirρGlk(s, ρ)dρ.

Thus applying Lemma 3.5 we obtain
∣∣∣∣
∫ t

0
ei(t−s)|D|F (s, x)ds

∣∣∣∣ .
∑
|Y l
k |
ωk
|x|

∫ |x|

−|x|
dλ

∫ t

0
ds|Ĝlk(s, t− s+ λ)| (3.46)

where ωk is the same as in (3.42). We estimate the integral in s as follows
∫ t

0
|Ĝlk|ds ≤

∫ +∞

−∞
〈λ+ t− s〉 12+〈λ+ t− s〉− 1

2
−|Ĝlk(s, λ+ t− s)|ds

.
(∫
〈λ+ t− s〉1+|Ĝlk(s, λ+ t− s)|2ds

) 1
2

= Qlk(λ+ t),

where

Qlk(µ) =

(∫ ∞

−∞
|Ĝlk(s, µ− s)|2〈µ− s〉1+ds

) 1
2

.

Thus we see that

1

|x|

∫ |x|

−|x|
dλ

∫ t

0
ds|Ĝlk(s, t− s+ λ)| . 1

|x|

∫ |x|

−|x|
Qlk(λ+ t)dλ ≤M(Qlk)(t).

Coming back to (3.46) we obtain
∣∣∣∣
∫ t

0
ei(t−s)|D|F (s, x)ds

∣∣∣∣ .
∑

ωk|Y l
k |M(Qlk)(t)

and taking first the L2
ω norm, then the sup in |x|, then the L2

t norm, by the
L2 boundedness of the maxiaml function we have

∥∥∥∥
∫ t

0
ei(t−s)|D|F (s, x)ds

∥∥∥∥
2

L2
tL
∞
r L

2
ω

.
∑

ω2
k‖Qlk(t)‖2L2

t
.

The definition of Qlk implies
∫
|Qlk(t)|2dt =

∫∫
|Ĝlk(s, µ− s)|2〈µ− s〉1+dsdµ = ‖Ĝlk(t, r)〈r〉

1
2

+‖2L2
tL

2
r

and hence
∥∥∥∥
∫ t

0
ei(t−s)|D|F (s, x)ds

∥∥∥∥
2

L2
tL
∞
r L

2
ω

.
∑

ω2
k‖Ĝlk(t, r)〈r〉

1
2

+‖2L2
tL

2
r
. (3.47)

Recalling the definition (3.45) of Glk, we see that to obtain (3.43) it is suf-
ficient to prove the following general inequality for s = 1/2+ and arbitrary
σ:
∑
〈k〉2σ

∥∥∥〈y〉sFλ→y
(
1+(λ)λn−1f̌ lk(λ)

)∥∥∥
2

L2
y

. ‖〈x〉sΛσω|D|
n−1
2 f‖2L2(Rb).

(3.48)
Here as usual f̌ lk denotee the coefficients in the expansion in spherical har-

monics of the inverse Fourier transform f̌ = F−1f .
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First of all, since F−1(|D|n−1
2 f) = |ξ|n−1

2 f̌ , we see that it is enough to
prove, for 0 ≤ s ≤ 1 and arbitrary σ, the slightly simpler

∑
〈k〉2σ

∥∥∥〈y〉sFλ→y
(
1+(λ)λ

n−1
2 f̌ lk(λ)

)∥∥∥
2

L2
y

. ‖〈x〉sΛσωf‖2L2(Rb). (3.49)

The inequality will follow by interpolation between the cases s = 0 and
s = 1; indeed, we can regard it as the statement that the operator T defined
as

T : f 7→
{
〈y〉sFλ→y

(
1+(λ)λ

n−1
2 ǧlk

)}
l,k
, g = Λ−σω f

which associates to the function f the sequence of coefficients in the ex-
pansion of F−1(Λ−σω f), multiplied by λ(n−1)/21+, transformed again and
multiplied by 〈y〉s, is bounded between the weighted spaces

T : L2(〈x〉2sdx)→ `2〈k〉2σ(L2(〈λ〉2sdλ)).

When s = 0 we have by Plancherel’s Theorem and by (3.18)
∑
〈k〉2σ

∥∥∥Fλ→y
(
1+(λ)λ

n−1
2 f̌ lk(λ)

)∥∥∥
2

L2
y

'

'
∑
〈k〉2σ

∥∥∥λn−1
2 f̌ lk(λ)

∥∥∥
2

L2
λ(0,λ)

' ‖Λσωf̌‖2L2(Rn).

Since Λω commutes with the Fourier transform, indeed

F(−∆Sf) = F
∑

(xj∂k − xj∂j)2f =
∑

(∂jξk − ∂kξj)2Ff,
again by Plancherel we obtain (3.49) for s = 0.

To handle the case s = 1 we consider the quantity
∥∥∥yFλ→y

(
1+(λ)λ

n−1
2 f̌ lk(λ)

)∥∥∥
2

L2
y

=
∥∥∥∂λ

(
1+(λ)λ

n−1
2 f̌ lk(λ)

)∥∥∥
2

L2
λ

.

.
∥∥∥λn−1

2 ∂λf̌
l
k(λ)

∥∥∥
2

L2
λ(0,∞)

+
∥∥∥λn−3

2 f̌ lk(λ)
∥∥∥

2

L2
λ(0,∞)

.

Multiplying by 〈k〉2σ, summing over l, k and recalling (3.20), we obtain
∑
〈k〉2σ

∥∥∥yFλ→y
(
1+(λ)λ

n−1
2 f̌ lk(λ)

)∥∥∥
2

L2
y

. ‖∇Λσωf̌‖2L2(Rn)+
∥∥∥λn−3

2 f̌0
0 (λ)

∥∥∥
2

L2
λ(0,∞)

where the last term can not estimated by (3.20) because of the factor k2

which vanishes when k = 0. However we have

f̌0
0 (λ) =

∫

|ω|=1
f̌(λω)dλ =

∫

|ω|=1
Λσωf̌(λω)dλ

which implies, using Hardy’s inequlity
∥∥∥λn−3

2 f̌0
0 (λ)

∥∥∥
2

L2
λ(0,∞)

.
∥∥∥∥

Λσωf̌

|ξ|

∥∥∥∥
L2(Rn)

. ‖∇Λσωf̌‖L2 .

Thus we have proved
∑
〈k〉2σ

∥∥∥yFλ→y
(
1+(λ)λ

n−1
2 f̌ lk(λ)

)∥∥∥
2

L2
y

. ‖∇Λσωf̌‖2L2(Rn) ' ‖|x|Λσωf‖2L2

again by the commutation of Λω with the Fourier transform. This gives
(3.49) for s = 1 and concludes the proof of the Theorem. �
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Remark 3.5. Since the operator Λω commutes with |D|, estimates
(3.21), (3.22) and (3.43) obviously generalize to the following; for any real
s ≥ 0,

‖Λsωeit|D|f‖L2
tL
∞
r L

2
ω
. ‖Λs+σω f‖

Ḣ
n−1
2

(3.50)

and
∥∥∥∥Λsω

∫ t

0
ei(t−s)|D|F (s, x)ds

∥∥∥∥
L2
tL
∞
|x|L

2
ω

. ‖〈x〉 12+|D|n−1
2 Λs+σω F‖L2

tL
2
x

(3.51)

where

σ = 1− n

2
if n ≥ 4, σ = 0 if n = 3.

From the previous estimate for the free wave equation it is not difficult
to obtain analogous endpoint Strichartz and Strichartz-smoothing estimates
for the 3D Dirac system:

Corollary 3.7. Let n = 3. Then the flow eitD satisfies, for all s ≥ 0,
the estimates

‖ΛsωeitDf‖L2
tL
∞
r L

2
ω
. ‖Λsωf‖Ḣ1 , (3.52)

and
∥∥∥∥Λsω

∫ t

0
ei(t−t

′)DF (t′, x)dt′
∥∥∥∥
L2
tL
∞
|x|L

2
ω

. ‖〈x〉 12+|D|ΛsωF‖L2
tL

2
x
. (3.53)

Proof. If u solves the problem

iut +Du = 0, u(0) = f(x), (3.54)

by applying the operator (i∂t −D), we see that u solves also

�u = 0, u(0) = f(x), ut(0) = iDf. (3.55)

This gives the representation

eitDf = cos(t|D|)f + i
sin(t|D|)
|D| Df. (3.56)

Moreover, we recall that the Riesz operators |D|−1∂j are bounded on weighted
L2 spaces with weight 〈x〉a for a < n/2. Thus in the case s = 0 estimates
(3.52), (3.53) are immediate consequences of the corresponding estimates
for the wave equation proved above.

In order to complete the proof in the case s > 0, we need analyze the
structure of the Dirac operator D in greater detail. Following [74], we know
that the space L2(R3)4 is isomorphic to an orthogonal direct sum

L2(R3)4 '
∞⊕

j= 1
2
, 3
2
,...

j⊕

mj=−j

⊕

kj=

±(j+1/2)

L2(0,+∞; dr)⊗Hmj ,kj .

Each space Hmj ,kj has dimension two and is generated by the orthonormal

basis {Φ+
mj ,kj

,Φ−mj ,kj}, which can be explicitly written in terms of spherical
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harmonics: when kj = j + 1/2 we have

Φ+
mj ,kj

=
i√

2j + 2




√
j + 1−mj Y

mj−1/2
kj

−
√
j + 1 +mj Y

mj+1/2
kj

0
0




Φ−mj ,kj =
1√
2j




0
0√

j +mj Y
mj−1/2
kj−1√

j −mj Y
mj+1/2
kj−1




while when kj = −(j + 1/2) we have

Φ+
mj ,kj

=
i√
2j




√
j +mj Y

mj−1/2
1−kj√

j −mj Y
mj+1/2

1−kj
0
0




Φ−mj ,kj =
1√

2j + 2




0
0√

j + 1−mj Y
mj−1/2
−kj

−
√
j + 1 +mj Y

mj+1/2
−kj


 .

The isomorphism is expressed by the explicit expansion

Ψ(x) =
∑ 1

r
ψ+
mj ,kj

(r)Φ+
mj ,kj

+
1

r
ψ−mj ,kj (r)Φ

−
mj ,kj

(3.57)

with

‖Ψ‖2L2 =
∑∫ ∞

0
[|ψ+

mj ,kj
|2 + |ψ−mj ,kj |

2]dr. (3.58)

Notice also that

‖Ψ‖2L2
ω

=
∑ 1

r2
|ψ+
mj ,kj

|2 +
1

r2
|ψ−mj ,kj |

2. (3.59)

Each L2(0,+∞; dr) ⊗ Hmj ,kj is an eigenspace of the Dirac operator D =

i−1
∑
αj∂j and the action of D can be written, in terms of the expansion

(3.57), as

DΨ =
∑(

− d

dr
ψ−mj ,kj +

kj
r
ψ−mj ,kj

) Φ+
mj ,kj

r
+

(
d

dr
ψ+
mj ,kj

+
kj
r
ψ+
mj ,kj

) Φ−mj ,kj
r

.

From decomposition (3.57) it is clear that the operator Λσω, which acts on
spherical harmonics as

ΛσωY
m
` = (1 + `(`+ 1))

σ
2 · Y m

` , (3.60)

does not commute with D. Indeed, each space Hmj ,kj involves two spherical
harmonics Y m

` with two values of ` which differ by 1, and D swaps them.

However, the modified operator Λ̃σω defined by

Λ̃σωΦ±mj ,kj = |kj |σΦ±mj ,kj (3.61)
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obviously commutes with D, thus estimates (3.52), (3.53) are trivially true

if we replace Λ with Λ̃. It remains to show that we obtain equivalent norms.
The equivalence

‖Λ̃σωf‖L2
ω
' ‖Λσωf‖L2

ω

follows directly from (3.60), (3.61) and (3.59). Moreover, Λ̃ and Λ commute
with ∆, hence with |D|, and this implies

‖|D|Λsωf‖L2 ' ‖|D|Λ̃sωf‖L2

or, equivalently,

‖Λsωf‖Ḣ1 ' ‖Λ̃sωf‖Ḣ1 .

This is sufficient to prove (3.52). Since Λ̃ and Λ also commute with radial
weights we have

‖〈x〉 12+|D|Λsωf‖L2 ' ‖〈x〉 12+|D|Λ̃sωf‖L2

which gives (3.53). �

3. The wave equations with potential

Our next goal is to extend the results of previous chapter to the case of
perturbed flows. This will be obtained by a perturbative argument, relying
on the smoothing estimates of [21] and the mixed Strichartz-smoothing
estimates of the previous chapter. In [21] smoothing estimates were proved
for several classes of dispersive equations perturbed with electromagnetic
potentials (while the 1D case was analyzed in [19]). For the wave equation
in dimension n ≥ 3 the estimates are the following:

Proposition 3.8. Let n ≥ 3. Assume the operator

−∆ +W (x,D) = −∆ + a(x) · ∇+ b1(x) + b2(x)

is selfadjoint and its coefficients satisfy

|a(x)| ≤ δ

|x|1−ε + |x|2| log |x||σ (3.62)

|b1(x)| ≤ δ

|x|1−ε + |x|2 , 0 ≤ b2(x) ≤ C

|x|1−ε + |x|2 (3.63)

for some δ, ε > 0 sufficiently small and some σ > 1/2, C > 0. Moreover
assume that 0 is not a resonance for −∆+b2. Then the following smoothing
estimate holds:

‖(|x| 12−ε + |x|)−1eit
√
−∆+W f‖L2L2 . ‖f‖L2 . (3.64)

The assumption that 0 is not a resonance for −∆ + b2(x) here means: if
(−∆ + b2)f = 0 and 〈x〉−1f ∈ L2 then f ≡ 0.

Combining Proposition 3.8 with (3.43) we obtain the following Strichartz
endpoint estimate for the 3D wave equation perturbed with an electric po-
tential:

Theorem 3.9. Let n = 3 and consider the Cauchy problem for the wave
equation

utt −∆u+ V (x)u = F, u(0, x) = f(x), ut(0, x) = g(x)

under the assumptions:
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(i) V (x) is real valued and the positive and negative parts V± satisfy

V+ ≤
C

|x| 12−ε + |x|2
, V− ≤

δ

|x| 12−ε + |x|2
(3.65)

for some δ, ε sufficiently small and some C ≥ 0;
(ii) −∆ + V is selfadjoint;
(iii) 0 is not a resonance for −∆ + V−.

Then the solution u(t, x) satisfies the endpoint Strichartz estimate

‖u‖L2
tL
∞
r L

2
ω
. ‖f‖Ḣ1 + ‖g‖L2 + ‖〈x〉 12+F‖L2

tL
2
x
. (3.66)

Proof. We represent u(t, x) in the form

u(t, x) = I + II − III
where

I = cos(t|D|)f +
sin(t|D|)
|D| g,

II =

∫ t

0
|D|−1 sin((t− s)|D|)F ds,

and

III =

∫ t

0
|D|−1 sin((t− s)|D|)V u ds.

We can use (3.21) to estimate I and (3.43) to estimate II in the norm
L2
tL
∞
r L

2
ω directly. On the other hand, applying (3.43) to III we get

‖III‖L2
tL
∞
r L

2
ω
. ‖〈x〉 12+V u‖L2L2 ≤ ‖〈x〉 12+τεV ‖L∞x ‖τ−1

ε u‖L2L2 .

By assumption 〈x〉 12+τεV is bounded on Rn, moreover we are allowed to
use (3.64) since V satisfies the assumptions of Proposition 3.8. Notice that
(3.64) implies

‖τ−1
ε u‖L2L2 . ‖f‖L2 + ‖|D|−1g‖L2

and in conclusion we have proved

‖III‖L2
tL
∞
r L

2
ω
. ‖f‖L2 + ‖|D|−1g‖L2

which completes the proof of (3.66). �

Analogous estimates can be proved for the Klein-Gordon equation, or
in higher dimension n ≥ 3, for first order perturbations, and for angular
derivatives of the solutions. We omit the details since we prefer to focus on
the Dirac equation here.

4. The Dirac equation with potential

We consider now the perturbed Dirac operator D+V (x) where V (x) is a
small 4× 4 hermitian matrix valued potential. We prove here more general
versions of the estimates given in [21], [20] in order to include angular
regularity. We begin with the free Dirac equation:
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Proposition 3.10. The free Dirac flow satisfies, for all σ > 1 and s ≥ 0,
the smoothing estimates (with wσ(x) = |x|(1 + | log |x||)σ)

‖w−1/2
σ Λsωe

itDf‖L2
tL

2
x
. ‖Λsωf‖L2 (3.67)

and ∥∥∥∥w−1/2
σ Λsω

∫ t

0
ei(t−t

′)DF (t′)dt′
∥∥∥∥
L2
tL

2
x

. ‖w1/2
σ ΛsωF‖L2

tL
2
x

(3.68)

Proof. When s = 0, both estimates follow from the resolvent estimate

‖w−1/2
σ RD(z)f‖L2(R3) ≤ C‖w1/2

σ f‖L2(R3), z 6∈ R,
with a constant uniform in z, proved in [20] using a standard application
of Kato’s theory (see also [21]). The case s > 0 is proved exactly as in

Corollary 3.7, first by replacing Λω with Λ̃ω which commutes with the flow,
and then by using the equivalence of norms. �

We consider now the case of a perturbed Dirac system

iut = Du+ V u

where V (x) is a 4 × 4 matrix potential. If V is hermitian and its weak
L3,∞ norm is small enough, the operator D + V is selfadjoint as proved in
[20]. In all of the following results the assumptions on the potential are

somewhat stronger than this, so in all cases the unitary flow eit(D+V ) will
be well defined and continuous on L2(R3)4 by spectral theory.

Proposition 3.11. Let V (x) be a hermitian 4 × 4 matrix on R3 such
that

|V (x)| ≤ δ

wσ(|x|) , wσ(r) = r · (1 + | log r|)σ (3.69)

for some δ > 0 sufficiently small and some σ > 1. Then the perturbed Dirac
flow eit(D+V ) satisfies the smoothing estimates

‖w−1/2
σ eit(D+V )f‖L2

tL
2
x
. ‖f‖L2 , (3.70)

∥∥∥∥w−1/2
σ

∫ t

0
ei(t−t

′)(D+V )F (t′)dt′
∥∥∥∥
L2
tL

2
x

. ‖w1/2
σ F‖L2

tL
2
x
. (3.71)

If in addition V satisfies for some s > 1 the condition

‖ΛsωV (r · )‖L2(S2) ≤
δ

wσ(r)
, (3.72)

then we have, for all 0 ≤ s ≤ 2, the estimates with angular regularity

‖w−1/2
σ Λsωe

it(D+V )f‖L2
tL

2
x
. ‖Λsωf‖L2 , (3.73)

∥∥∥∥w−1/2
σ Λsω

∫ t

0
ei(t−t

′)(D+V )F (t′)dt′
∥∥∥∥
L2
tL

2
x

. ‖w1/2
σ ΛsωF‖L2

tL
2
x
. (3.74)

Proof. If u solves

iut = Du+ V u+ F, u(0) = f

we can write

u = eitDf + i

∫ t

0
ei(t−t

′)D[V u(t′) + F (t′)]dt′.
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Using (3.67), (3.68) with s = 0 and assumption (3.69) we get

‖w−1/2
σ u‖L2

tL
2
x
. ‖f‖L2 + ‖w1/2

σ [V u+ F ]‖L2L2 ≤
≤ ‖f‖L2 + δ‖w−1/2

σ u‖L2L2 + ‖w1/2
σ F‖L2L2 .

If δ is sufficiently small this implies both (3.70) and (3.71).
To prove (3.73), (3.74) we proceed in a similar way using again (3.67)

and (3.68):

‖w−1/2
σ Λsωu‖L2

tL
2
x
. ‖Λsωf‖L2 + ‖w1/2

σ Λsω(V u+ F )‖L2L2 .

We shall need the following fairly elementary product estimate involving the
angular derivative operator Λω

‖Λsω(gh)‖L2
ω(S2) . ‖Λsωg‖L2

ω(S2)‖Λsωh‖L2
ω(S2) (3.75)

which holds provided s > 1. This estimate can be proved e.g. by localizing
the norm on the sphere via a finite partition of unity, and then applying
in each coordinate patch a standard product estimate in the Sobolev space
Hs(R2), s > 1.

Applying (3.75), and using assumption (3.72), we have

‖w1/2
σ Λsω(V u+ F )‖L2L2 ≤ δ‖w−1/2

σ Λsωu‖L2L2 + ‖w1/2
σ ΛsωF‖L2L2

and the proof is concluded as above. �

We note the following consequence of (3.70):

Corollary 3.12. Assume that the hermitian matrix V (x) satisfies, for
δ sufficiently small, C arbitrary and σ > 1 (with wσ(r) = r(1 + | log r|)σ)

|V (x)| ≤ δ

wσ(|x|) , |∇V (x)| ≤ C

wσ(|x|) . (3.76)

Then besides (3.70) we have the estimate for the derivatives of the flow

‖w−1/2
σ ∇eit(D+V )f‖L2

tL
2
x
. ‖f‖H1 . (3.77)

If in addition we assume that, for some s > 1,

‖ΛsωV (r·)‖L2(S2) ≤
δ

wσ(r)
, ‖Λsω∇V (r·)‖L2(S2) ≤

C

wσ(r)
, (3.78)

then we have the following estimate with angular regularity

‖w−1/2
σ ∇Λsωe

it(D+V )f‖L2
tL

2
x
. ‖Λsωf‖H1 . (3.79)

Proof. Assume at first s = 0 and let u = eit(D+V )f . Each derivative
uj = ∂ju satisfies an equation like

i∂tuj = Duj + V uj + Vju, Vj = ∂jV, uj(0, x) = fj = ∂jf

so we can represent it in the form

uj = eit(D+V )fj + i

∫ t

0
ei(t−s)(D+V )Vjuds.

To the first term at the r.h.s. we can apply estimate (3.70) obtaining

‖w−1/2
σ eit(D+V )fj‖L2

tL
2
x
. ‖f‖Ḣ1 .
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To handle the second term we use (3.71):∥∥∥∥w−1/2
σ

∫
ei(t−s)(D+V )Vju

∥∥∥∥
L2

. ‖w1/2
σ Vju‖L2

tL
2
x
≤ ‖wσVj‖L∞x ‖w−1/2

σ u‖L2
tL

2
x

and again by (3.70) and by the assumption on ∇V we conclude the proof of
(3.77).

For the proof of (3.79) we apply to the equation for u the operator |D|
which commutes with D:

i∂t(|D|u) = D(|D|u) + |D|(V u)

and we use estimates (3.73), (3.74), obtaining

‖w−1/2
σ |D|Λswu‖L2L2 . ‖Λswf‖Ḣ1 + ‖w1/2

σ |D|Λsw(V u)‖L2L2 .

Now in the last term we commute |D| with Λ and we notice that we can
replace |D| by ∇ obtaining an equivalent norm. This gives

‖w1/2
σ |D|Λsw(V u)‖L2L2 ≤ ‖w1/2

σ Λsw(∇V )u)‖L2L2 + ‖w1/2
σ ΛswV (∇u)‖L2L2 .

We can now apply the product estimate (3.75) and assumptions (3.78);
proceeding as in the first part of the proof we finally obtain (3.79). �

By a similar perturbative argument, we obtain the endpoint Strichartz
estimates for the Dirac equation with potential. Notice that in the version of
this Theorem given in the Introduction (Theorem 3.2) we used an equivalent

formulation in terms of the potential vσ(x) = |x| 12 | log |x||σ + 〈x〉1+σ.

Theorem 3.13. Assume that the hermitian matrix V (x) satisfies, for δ
sufficiently small, C arbitrary and σ > 1 (with wσ(r) = r(1 + | log r|)σ)

|V (x)| ≤ δ

〈x〉 12+wσ(|x|) 1
2

, |∇V (x)| ≤ C

〈x〉 12+wσ(|x|) 1
2

. (3.80)

Then the perturbed Dirac flow satisfies the endpoint Strichartz estimate

‖eit(D+V )f‖L2
tL
∞
r L

2
ω
. ‖f‖H1 . (3.81)

If instead we make the following assumption (which implies (3.80)): for
some s > 1,

‖ΛsωV (r·)‖L2(S2) ≤
δ

〈r〉 12+wσ(r)
1
2

, ‖Λsω∇V (r·)‖L2(S2) ≤
C

〈r〉 12+wσ(r)
1
2

,

(3.82)
then we have the endpoint estimate with angular regularity

‖Λsωeit(D+V )f‖L2
tL
∞
r L

2
ω
. ‖Λsωf‖H1 (3.83)

and the energy estimate with angular regularity

‖Λsωeit(D+V )f‖L∞t H1 . ‖Λsωf‖H1 (3.84)

Proof. Consider first (3.81). Notice that V satisfies in particular the
assumptions of Corollary 3.12. We can write

eit(D+V )f = I + II (3.85)

with

I = eitDf, II = i

∫ t

0
ei(t−s)DV u ds.
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The term I is estimated directly using (3.52) with s = 0. On the other
hand, applying (3.53) to the term II we get

‖II‖L2
tL
∞
r L

2
ω
. ‖〈x〉 12+|D|(V u)‖L2L2 .

Now we recall that the Riesz operators |D|−1∇ are bounded on weighted L2

spaces with A2 weights, and 〈x〉s belongs to this class provided s < n/2 (see
[69]). Thus we can continue the chain of inequalities as follows:

= ‖〈x〉 12+|D|−1∇|D|(V u)‖L2L2 . ‖〈x〉 12+∇(V u)‖L2L2 . A+B

where

A = ‖〈x〉 12+(∇V )u‖L2L2 , B = ‖〈x〉 12+V∇u‖L2L2

Then we have

A ≤ ‖〈x〉 12+w
1
2
σ∇V ‖L∞‖w

− 1
2

σ u‖L2L2 . ‖f‖L2

by the assumptions on ∇V and (3.70), while

B ≤ ‖〈x〉 12+w
1
2
σ V ‖L∞‖w

− 1
2

σ ∇u‖L2L2 . ‖f‖H1

by (3.77). Summing up, we arrive at (3.81).
The proof of (3.83) is similar. We estimate I using (3.52). Applying

(3.53) to the term II we get

‖ΛsωII‖L2
tL
∞
r L

2
ω
. ‖〈x〉 12+|D|Λsω(V u)‖L2L2 .

Then we commute |D| with Λω, and we can replace the operator |D| with
∇ since the norm is equivalent; we arrive at

‖ΛsωII‖L2
tL
∞
r L

2
ω
. ‖〈x〉 12+Λsω(∇V )u‖L2L2 + ‖〈x〉 12+ΛsωV (∇u)‖L2L2 .

Now we use the product estimate (3.75) and assumptions (3.82) to obtain

. C‖w−1/2
σ Λsωu‖L2L2 + δ‖w−1/2

σ Λsω∇u‖L2L2

and recalling the smoothing estimates (3.73), (3.79) we conclude the proof
of (3.83).

It remains to prove (3.84). Consider first the free case V ≡ 0. We have
the conservation laws

‖eitDf‖L∞L2 ≡ ‖f‖L2 , ‖DeitDf‖L∞L2 ≡ ‖Df‖L2 (3.86)

which imply

‖eitDf‖L∞H1 ' ‖f‖H1

since ‖Df‖L2 ' ‖f‖Ḣ1 . Moreover, the operator Λ̃ω introduced in (3.61)
commutes with D, so that we have for all s ≥ 0

‖Λ̃sωeitDf‖L∞H1 ≡ ‖Λ̃ωf‖H1

and switching back to the equivalent operator Λω as in the proof of Corollary
3.7 we obtain

‖ΛsωeitDf‖L∞H1 . ‖Λωf‖H1 . (3.87)

Consider now the case V 6≡ 0. We start from

‖〈x〉− 1
2
−eitDf‖L2L2 ≤ ‖f‖L2 (3.88)
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which is a consequence of (3.67) (we relaxed the weight). Taking the dual
of (3.88) we get

∥∥∥∥
∫
e−it

′DF (t′)dt′
∥∥∥∥
L2

. ‖〈x〉 12+F‖L2L2

which together with (3.86) gives
∥∥∥∥
∫
ei(t−t

′)DF (t′)dt′
∥∥∥∥
L∞L2

. ‖〈x〉 12+F‖L2L2 .

Now a standard application of Christ-Kiselev’ Lemma in the spirit of [47]
(see also [21] for the case of Dirac equations) allows to replace the time
integral with a truncated integral and we obtain

∥∥∥∥
∫ t

0
ei(t−t

′)DF (t′)dt′
∥∥∥∥
L∞L2

. ‖〈x〉 12+F‖L2L2 . (3.89)

Recalling that the operator Λ̃ω introduced in (3.61) commutes with D, and
proceeding as in the proof of Corollary 3.7 we obtain for all s ≥ 0

∥∥∥∥Λsω

∫ t

0
ei(t−t

′)DF (t′)dt′
∥∥∥∥
L∞L2

. ‖〈x〉 12+ΛsωF‖L2L2 (3.90)

and finally, applying |D| which commutes both with D and Λω, we have also
∥∥∥∥Λsω

∫ t

0
ei(t−t

′)DF (t′)dt′
∥∥∥∥
L∞Ḣ1

. ‖〈x〉 12+Λsω|D|F‖L2L2 (3.91)

Now we use again the representation (3.85); by (3.87) and (3.91) we can
write

‖Λsωeit(D+V )f‖L∞Ḣ1 . ‖Λsωf‖H1 + ‖〈x〉 12+Λsω|D|(V u)‖L2L2

and proceeding exactly as in the first part of the proof we arrive at (3.84). �

5. The nonlinear Dirac equation

Theorem 3.13 contains all the necessary tools to prove global well posed-
ness for the cubic nonlinear Dirac equation

iut = Du+ V u+ P3(u, u), u(0, x) = f(x). (3.92)

Our result is the following:

Theorem 3.14. Consider the perturbed Dirac system (3.92), where the
4× 4 matrix valued potential V = V (|x|) is hermitian and satisfies assump-
tions (3.82). Let P3(u, u) be a C4-valued homogeneous cubic polynomial.
Then for any s > 1 there exists ε0 such that for all initial data satisfying

‖Λsωf‖H1 < ε0 (3.93)

the Cauchy problem (3.92) admits a unique global solution u ∈ CH1∩L2L∞

with Λsωu ∈ L∞H1.

Proof. The proof is based on a fixed point argument in the space X
defined by the norm

‖u‖X := ‖Λsωu‖L2
tL
∞
r L

2
ω

+ ‖Λsωu‖L∞t H1
x
. (3.94)
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Notice that in Theorem 3.13 we proved the estimate

‖eit(D+V )f‖X . ‖Λsω‖H1 . (3.95)

Define u = Φ(v) for v ∈ X as the solution of the linear problem

iut = Du+ V u+ P (v, v), u(0, x) = f(x) (3.96)

and represent u as

u = Φ(v) = eit(D+V )f + i

∫ t

0
ei(t−t

′)(D+V )P (v(t′), v(t′))dt′.

We recall now the product estimate

‖Λsω(gh)‖L2
ω(S2) . ‖Λsωg‖L2

ω(S2)‖Λsωh‖L2
ω(S2)

(see (3.75)). Then we have, by (3.95)

‖u‖X . ‖Λsωf‖H1 +

∫ ∞

0
‖ei(t−t′)DP (v(t′), v(t′))‖Xdt′

. ‖Λsωf‖H1 +

∫ ∞

0
‖ΛsωP (v(t′), v(t′))‖H1dt′ ≡ ‖Λsωf‖H1 + ‖ΛsωP (v, v)‖L1H1 .

By (3.75) we have
‖Λsω(v3)‖L2

ω(S2) . ‖Λsωv‖3L2
ω(S2)

whence
‖Λsω(v3)‖L2

x
. ‖Λsωv‖L2

x
‖Λsωv‖2L∞r L2

ω

and
‖Λsω(v3)‖L1

tL
2
x
. ‖Λsωv‖L∞t L2

x
‖Λsωv‖2L2

tL
∞
r L

2
ω
≤ ‖v‖3X . (3.97)

In a similar way,

‖Λsω∇(v3)‖L2
ω(S2) . ‖Λsω∇v‖L2

ω(S2)‖Λsωv‖2L2
ω(S2)

so that
‖Λsω∇(v3)‖L2

x
. ‖Λsω∇v‖L2

x
‖Λsωv‖2L∞r L2

ω

and

‖Λsω∇(v3)‖L1
tL

2
x
. ‖Λsω∇v‖L∞t L2

x
‖Λsωv‖2L2

tL
∞
r L

2
ω
≤ ‖v‖3X . (3.98)

In conclusion, (3.97) and (3.98) imply

‖ΛsωP (v, v)‖L1H1 . ‖v‖3X
and the estimate for u = Φ(v) is

‖u‖X ≡ ‖Φ(v)‖X . ‖Λsωf‖H1 + ‖v‖3X .
An analogous computation gives the estimate

‖Φ(v)− Φ(w)‖X . ‖v − w‖X · (‖v‖X + ‖w‖X)2

and an application of the contraction mapping theorem concludes the proof.
�



CHAPTER 4

Higher dimensions: virial identity and dispersive
estimates

1. Introduction

The goal of this chapter is to study the dispersive properties of the Dirac
equation perturbed by a magnetic field in every dimension n ≥ 1.
First of all we thus need to clearly define the Dirac operator in the generic
space dimension.
In section 2 we have introduced the 3D Dirac equation from a physical
point of view, deriving it (following more or less the original argument) by
linearization and standard quantizazion of the energy-momentum relation.
The condition of anticommutation on the hermitian Dirac matrices α0 =
β, α1, ..., α3, i.e.

αjαk + αkαj = 2δjkIM , 0 ≤ j, k ≤ 3. (4.1)

and also their dimension M = 4 were natural consequences of the physical
structure.
In the general space dimension n ≥ 1 there exist different choices of M
and of matrices αj satisfying all of the above conditions: a possible way to
construct a familiy of matrices satisfying such properties is the following.
For n = 1 let

α1
0 =

(
0 1
1 0

)
, α1

1 =

(
1 0
0 −1

)
.

For n ≥ 2 let

α
(n)
j =

(
0 α

(n−1)
j

α
(n−1)
j 0

)
, j = 0, ..., n− 1, α(n)

n =

(
In 0
0 −In

)
.

Notice that in this case M = 2n (for a more detailed analysis of general
Dirac matrices, see [52], [45], [58]).
In this chapter, the Dirac equation on R1+n will thus be a constant coeffi-
cient, hyperbolic system of the form

iut −Du−mβu = 0 (4.2)

where u : Rt × Rnx → CM , the Dirac operator is defined by

D = i−1
n∑

k=1

αk
∂

∂xk
= i−1(α · ∇),

and the Dirac matrices α0 ≡ β, α1, . . . , αn are a set of M ×M hermitian
matrices satisfying the anticommutation relations

αjαk + αkαj = 2δjkIM , 0 ≤ j, k ≤ n. (4.3)

49
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The quantity m ≥ 0 is called the mass.
An easy consequence of the anticommutation relations is the identity

(i∂t −D −mβ)(i∂t +D +mβ) = (∆−m2 − ∂2
tt)IM . (4.4)

which reduces the study of (4.2) to a corresponding study of the Klein-
Gordon equation, or the wave equation in the massless case m = 0. The
analysis of the important Maxwell-Dirac and Dirac-Klein-Gordon systems
of quantum electrodynamics in [9]- [10] was based on this method; notice
however that in the reduction step some essential details of the structure
may be lost, as recently pointed out in [25], [24], [26].

From (4.4) one can deduce in a straightforward way the dispersive prop-
erties of the Dirac flow from the corresponding properties of the wave-Klein-
Gordon flow. Based on this approach, an extensive theory of local and global
well posedness for nonlinear perturbations of (4.2) was developed in [31],
[33], [52], [51]; see also [20], [21] for a study of the dispersive properties of
the Dirac equation perturbed by a magnetic field.

The goal of this chapter is thus to study the dispersive properties of
the system (4.2) perturbed by a magnetic field, thus extending to the n-
dimensional setting the smoothing and Strichartz estimates proved in [11]
for the 3D magnetic Dirac equation. Denoting with

A(x) = (A1(x), ..., An(x)) : Rn → Rn

a static magnetic potential, the standard way to express its interaction with
a particle is by replacing the derivatives ∂k with their covariant counterpart
∂k − iAk, thus obtaining the magnetic Dirac operator

DA = i−1
n∑

k=1

αk(∂k − iAk) = i−1α · ∇A, ∇A = ∇− iA(x). (4.5)

Here and in the following we denote with a dot the scalar product of two
vectors of operators:

(P1, . . . , Pm) · (Q1, . . . , Qm) =
m∑

j=1

PjQj .

We shall also use the unified notation

H = i−1α · ∇A +mβ = DA +mβ (4.6)

to include both the massive and the massless case.
Thus we plan to investigate the dispersive properties of the flow eitHf

defined as the solution to the Cauchy problem

iut(t, x) +Hu(t, x) = 0, u(0, x) = f(x). (4.7)

It is natural to require that the operator H be selfadjoint. Several sufficient
conditions are known for selfadjointness (see [74]). For greatest general-
ity, we prefer to make an abstract selfadjointness assumtpion; we also in-
clude a density condition which allows to approximate rough solutions with
smoother ones, locally uniformly in time, and is easily verified in concrete
cases. The condition is the following:
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SELF-ADJOINTNESS ASSUMPTION (A). The operator H
is essentially selfadjoint on C∞c (Rn), and in addition for ini-
tial data f ∈ C∞c (Rn) the flow eitHf belongs at least to

C(R, H3/2).

Remark 4.1. It is easy to show, using Fourier transform, the conserva-
tion of the mass under the magnetic Dirac flow: being eitH unitary we have
indeed

‖eitHf‖L2 = ‖f‖L2 .

The main tool used here is the method of Morawetz multipliers, in the
version of [23], [11]. This method allows to partially overcome the small-
ness assumption on the potential which was necessary for the perturbative
approach of [21]. An additional advantage is that the assumptions on the
potential are expressed in terms of the magnetic field B rather than the
vector potential A; indeed, B is a physically measurable quantity while A
should be thought of as a mathematical abstraction. We recall that in di-
mension 3 the magnetic field B is defined as

B = curlA.

In arbitrary dimension n, a natural generalization of the previous definition
is the following

Definition 4.1. Given a magnetic potential A : Rn → Rn, the magnetic
field B : Rn →Mn×n(R) is the matrix valued function

B = DA−DAt, Bjk =
∂Aj

∂xk
− ∂Ak

∂xj

and its tangential component Bτ = Rn → Rn is defined as

Bτ =
x

|x|B.

Notice indeed that Bτ (x) is orthogonal to x for all x.

Remark 4.2. The previous definition reduces to the standard one in
dimension n = 3: indeed the matrix B satisfies for all v ∈ R3

Bv = curlA ∧ v

and in this sense B can be identified with curlA. Notice also that

Bτ =
x

|x| ∧ curlA.

Our first result is the following (formal) virial identity for the n-dimensional
magnetic Dirac equation (4.7):

Theorem 4.2 (Virial identity). Assume that the operator H defined in
(4.6) satisfies (A), and let φ : Rn → R be a real valued function. Then any
solution u(t, x) of (4.7) satisfies the formal virial identity

2

∫

Rn
∇Au ·D2φ · ∇Au−

1

2

∫

Rn
|u|2∆2φ+ 2

∫

Rn
=
(
u∇φ ·B · ∇Au

)
+

+

∫

Rn
u ·
∑

j<k

αjαk(∇φ · ∇Bjk)u = − d

dt

∫

Rn
<
(
ut(2∇φ · ∇Au+ u∆φ)

)
.

(4.8)
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Remark 4.3. If φ = φ(|x|) is a radial function, as we shall always
assume in the following, the virial identity can be considerably simplified.
In particular, notice that

∑

j<k

αjαk(∇φ · ∇Bjk) = φ′(|x|)
∑

j<k

αjαk∂rB
jk.

As a direct consequence of the previous virial identity, we can prove a
smoothing estimate for the n-dimensional magnetic Dirac equation (4.7).
In the following we shall denote respectively with ∇rAu and ∇τAu the radial
and tangential components of the covariant gradient, namely

∇rAu :=
x

|x| · ∇Au, ∇τAu := ∇Au−
x

|x| · ∇
r
Au

so that

|∇rAu|2 + |∇τAu|2 = |∇Au|2.
We shall use the notation

[B]1 =
n∑

j,k=1

|Bjk|

to denote the `1 norm of a matrix (i.e. the sum of the absolute values of
its entries), and we shall measure the size of matrix valued functions using
norms like

‖B‖L∞ = ‖[B(x)]1‖L∞x
Then we have:

Theorem 4.3 (Smoothing estimates). Let n ≥ 4. Let the operator H
defined in (4.6) satisfies assumption (A). Let B = DA − DAt = B1 + B2

with B2 ∈ L∞, and assume that

|Bτ (x)| ≤ C1

|x|2 ,
1

2
[∂rB(x)]1 ≤

C2

|x|3 (4.9)

for all x ∈ Rn and for some constants C1, C2 such that
(

9

4

)
C2

1 + 3C2 ≤ (n− 1)(n− 3) (4.10)

Assume moreover that

C0 = ‖|x|2B1‖L∞(Rn) <
(n− 2)2

4
.

Finally, in the massless case restrict the choice to B1 = B, B2 = 0 in the
above assumptions.

Then for all f ∈ L2 the following smoothing estimate holds

sup
R>0

1

R

∫ +∞

−∞

∫

|x|≤R
|eitHf |2dxdt . ‖f‖2L2 . (4.11)

Remark 4.4. As in [34] and [11], a sharper estimate can be proved if
inequality (4.10) is strict, but we won’t deal with the details of this aspect
here.
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The limitation to n ≥ 3 space dimensions is intrinsic in the multiplier
method; low dimensions n = 1, 2 require a different approach (see e.g. [19]
for a general result in dimension 1). In the present paper we shall only deal
with the case n ≥ 4, the 3-dimensional case being exaustively discussed in
[11]. Notice that, as it often occurs, the three dimensional case yields dif-
ferent hypothesis on the potential, being slightly different the multiplicator
that one needs to consider.

A natural application of the smoothing estimate (4.11) is to derive
Strichartz estimates for the perturbed flow eitHf , both in the massless and
massive case. Our concluding result is the following:

Theorem 4.4 (Strichartz estimates). Let n ≥ 4. Assume H, A, B are
as in Theorem 4.3, and in addition assume that

∑

j∈Z
2j sup
|x|∼=2j

|A| <∞. (4.12)

Then the perturbed Dirac flow satisfies the Strichartz estimates

‖|D|
1
q
− 1
p
− 1

2 eitHf‖LpLq . ‖f‖L2 (4.13)

where, in the massless case m = 0, the couple (p, q) is any wave admissibile,
non-endpoint couple i.e. such that

2

p
+
n− 1

q
=
n− 1

2
, 2 < p ≤ ∞ 2(n− 1)

n− 3
> q ≥ 2, (4.14)

while in the massive case the same bound holds for all Schrödinger adim-
missible couple, non-endpoint (p, q), i.e. such that

2

p
+
n

q
=
n

2
, 2 < p ≤ ∞ 2n

n− 2
> q ≥ 2. (4.15)

The paper is organized as follows: in chapter 2 we shall prove Theorem
4.2, deriving it from a classical virial identity for the wave equation (see The-
orem 4.5) plus the algebric structure of the Dirac operator. In chapter 3 we
shall use the multiplicator technique to prove the smoothing estimate (4.11)
from Theorem 4.2. Finally in chapter 4 we shall derive the Strichartz esti-
mates of Theorem 4.4 by a perturbative argument based on the smoothing
estimates. chapter 5 is devoted to the proof of a magnetic Hardy inequality
for the Dirac operator, needed at several steps in the proof of the previous
theorems.

2. Proof of the virial identity

Let u be a solution to equation (4.2). Using identity

0 = (i∂t −H)(i∂t +H)u = (−∂tt −H2)u,

we see that u solves the Cauchy problem for a magnetic wave equation:



utt +H2u = 0

u(0) = f

ut(0) = iHf.
(4.16)

In [11] the following general result was proved for a solution u(t, x) of wave-
type equations:
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Theorem 4.5 ([11]). Let L be a selfadjoint operator on L2(Rn), and let
u(t, x) be a solution of the equation

utt(t, x) + Lu(t, x) = 0.

Let φ : Rn → R and define the quantity

Θ(t) = (φut, ut) +R((2φL− Lφ)u, u). (4.17)

Then u(t, x) satisfies the formal virial identities

Θ̇(t) = R([L, φ]u, ut) (4.18)

Θ̈(t) = −1

2
([L, [L, φ]]u, u). (4.19)

In order to apply this proposition to our case we thus need to compute
explicitly the commutators in (4.18), (4.41) with the choice L = H2. We
begin by expanding the square

H2 = (H0 − α ·A)2 = H2
0 −H0(α ·A)− (α ·A)H0 + (α ·A)(α ·A),

and we recall that the unperturbed part of the operator

H0 = D +mβ = i−1α · ∇+mβ

satisfies

H2
0 = (m2 −∆)IM .

Since β anticommutes with each αj we get

H2 = H2
0 − i−1(α · ∇)(α ·A)− i−1(α ·A)(α · ∇) + (α ·A)(α ·A). (4.20)

We need a notation to distinguish the composition of the operators (mul-
tiplication by) Ak and ∂j , which we shall denote with ∂j ◦Ak, i.e.,

∂j ◦Aku = ∂j(A
ku)

and the simple derivative ∂jA
k. After a few steps we obtain (we omit for

simplicity the factor IM in diagonal operators)

H2 = H2
0 + i(∇ ·A) + i(A · ∇) + |A|2 + i

n∑

j 6=k
αjαk(∂j ◦Ak +Aj∂k).

or equivalently

H2 = (m2 −∆A) + i

n∑

j 6=k
αjαk(∂j ◦Ak +Aj∂k), (4.21)

where

∆A = (∇− iA)2 = ∇2
A.
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Now we observe that∑

j 6=k
αjαk(∂j ◦Ak +Aj∂k)

=
∑

j<k

αjαk[(∂j ◦Ak +Aj∂k)− (∂k ◦Aj +Ak∂j)] =

=
∑

j<k

αjαk(∂jA
k − ∂kAj)

=
∑

j<k

αjαkB
jk =

=
1

4

n∑

j,k=1

(αjαk − αkαj)Bjk

since B is skewsymmetric. If we introduce the matrix S = [Sjk] whose
entries are the matrices

Sjk =
1

4
(αjαk − αkαj) ≡

1

2
αjαk

and we use the notation

[ajk] · [bjk] =
n∑

j,k=1

ajkbjk

for the scalar product of matrices, the above identity can be compactly
written in the form ∑

j 6=k
αjαk(∂j ◦Ak +Aj∂k) = S ·B.

In conclusion we have proved that

H2 = (m2 −∆A)IM + iS ·B (4.22)

and hence for the massless case

D2
A = −∆AIM + iS ·B. (4.23)

Thus the commutator with φ reduces to

[H2, φ] = [m2, φ]− [∆A, φ] + i[S ·B,φ] = −[∆A, φ].

Using the Leibnitz rule

∇A(fg) = g∇Af + f∇g,
we arrive at the explicit formula

[H2, φ] = −[∆A, φ] = −2∇φ · ∇A − (∆φ). (4.24)

Recalling (4.17) and (4.18) we thus obtain

Θ̇(t) = −<
∫

Rn
ut(2∇φ · ∇Au+ u∆φ). (4.25)

We now turn to the second commutator. By formulas (4.22) and (4.24) we
have

[H2, [H2, φ]] = [∆A, [∆A, φ]]− i[S ·B, [∆A, φ]]. (4.26)
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The first commutator is well known and was computed e.g. in [34]; taking
formula (2.19) there (with V ≡ 0) we obtain

(u, [∆A, [∆A, φ]]) = 4

∫

Rn
∇AuD2φ∇Au−

∫

Rn
|u|2∆2φ+ (4.27)

+4=
∫

Rn
u∇φBτ · ∇Au.

By (4.24) the last term in (4.26) becomes

[S ·B, [∆A, φ]] = 2[S ·B,∇φ · ∇A] =

= 2(S ·B∇φ · ∇A −∇φ · ∇AS ·B) =

=
∑

j<k

αjαkB
jk∇φ · ∇A −∇φ · ∇A

∑

j<k

αjαkB
jk =

=
∑

j<k

αjαk[B
jk,∇φ · ∇A] =

= −
∑

j<k

αjαk(∇φ · ∇Bjk). (4.28)

Identity (4.8) then follows from (4.41), (4.25), (4.26), (4.27) and (4.28).

3. Smoothing estimates

We shall use the following radial multiplier (for a detailed description
see [34], [11]):

φ̃R(x) = φ(x) + ϕR(x) (4.29)

where

φ(x) = |x|
for which we have

φ′(r) = 1, φ′′(r) = 0, ∆2φ(r) = −(n− 1)(n− 3)

r3

with the notation r = |x|, and ϕR is the rescaled ϕR(r) = Rϕ0(
r

R
), of the

multiplier

ϕ0(r) =

∫ r

0
ϕ′(s)ds (4.30)

where

ϕ′0(r) =

{
n−1
2n r, r ≤ 1

1
2 − 1

2nrn−1 , r > 1
(4.31)

and so

ϕ′′0(r) =

{
n−1
2n , r ≤ 1
n−1
2nrn , r > 1.

Thus we have

ϕ′R(r) =

{
(n−1)r

2nR , r ≤ R
1
2 − Rn−1

2nrn−1 , r > R
(4.32)

ϕ′′R(r) =

{
1
R
n−1
2n , r ≤ R

1
R
Rn(n−1)

2nrn , r > R
. (4.33)
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∆2ϕR = −n− 1

2R2
δ|x|=R −

(n− 1)(n− 3)

2r3
χ[R,+∞). (4.34)

Notice that ϕ′R, ϕ′′R, ∆ϕR ≥ 0 and moreover sup
r≥0

ϕ′(r) ≤ 1

2
.

Thus it’s easy to show the bounds for the derivatives of the perturbed mul-
tiplier

sup
r≥0

φ̃′R ≤
3

2
, ∆φ̃R ≤

n

r
. (4.35)

We separate the estimates of the LHS and the RHS of (4.8)

Estimate of the RHS of (4.8)
Consider the expression

∫

Rn
ut(2∇φ · ∇Au+ u∆φ) = (ut, 2∇φ · ∇Au+ u∆φ)L2

appearing at the right hand side of (4.8). Since u solves the equation we
can replace ut with

ut = −iHu = −imβu− iDAu.
By the selfadjointess of β it is easy to check that

<[−im(βu, 2∇φ · ∇Au)− im(βu,∆φu)] = 0

so that

<[(ut, 2∇φ · ∇Au+ u∆φ) = 2I(DAu,∇φ · ∇Au)] + I(DAu,∆φu)

and by Young inequality we obtain
∣∣∣∣<
(∫

Rn
ut(2∇φ · ∇Au+ u∆φ)

)∣∣∣∣ ≤
3

2
‖DAu‖2L2 +‖∇φ·∇Au‖2L2 +

1

2
‖u∆φ‖2L2 .

(4.36)

Now we put in (4.36) the multiplicator φ̃ defined in (4.29). From the bound-
edness of ϕ and the magnetic Hardy inequality (4.59) we have, with the
choice ε = (n − 2)2 − 4C0 which is positive in virtue of the assumption
C0 < (n− 2)2/4,

‖∇φ̃ · ∇Au‖2L2 ≤
3

2

1

(n− 2)2 − 4C0
‖DAu‖2L2 . (4.37)

The third term in (4.36) can be estimated again using Hardy inequality with

‖u∆φ̃‖2L2 ≤
4n

(n− 2)2 − 4C0
‖DAu‖2L2 . (4.38)

Summing up, by (4.36), (4.37) and (4.38) we can conclude
∣∣∣∣<
(∫

Rn
ut(2∇φ · ∇Au+ u∆φ)

)∣∣∣∣ ≤ c(n)‖DAu‖2L2 . (4.39)
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Estimate of the LHS of (4.8)
We shall make use of the following identity, that holds in every dimension:

∇AuD2φ∇Au =
φ′(r)
r
|∇τAu|2 + φ′′(r)|∇rAu|2. (4.40)

For the seek of simplicity, we divide this part in two steps, first consider-
ing just the multiplier φ(r) = r, for which the calculations turn out fairly

straightforward, and then perturbating it to φ̃.

Step 1
With the choice φ(r) = r, by (4.40) we can rewrite the LHS of (4.8) as
follows:

2

∫

Rn

|∇τAu|2
|x| dx+

(n− 1)(n− 3)

2

∫

Rn
|u|2
|x|3dx+ (4.41)

+2

∫

Rn
=(uBτ · ∇Au)dx+

∫

Rn
u ·
∑

j<k

αjαk∂rB
jku.

The first thing to be done is to prove this quantity to be positive. For what
concerns the perturbative term, assuming that

|Bτ | ≤
C1

|x|2
we have

−
∣∣∣∣2
∫

Rn
=(uBτ · ∇Au)dx

∣∣∣∣ ≥ −2

(∫

Rn
|u|2
|x|3dx

) 1
2
(∫

Rn
|x|3|Bτ |2|∇τAu|2dx

) 1
2

(4.42)

≥ −2C1K1K2,

where

K1 =

(∫

Rn
|u|2
|x|3dx

) 1
2

K2 =

(∫

Rn

|∇τAu|2
|x| dx

) 1
2

.

Analogously, assuming
∥∥∥
∑

j<k

αjαk∂rB
jk(x)

∥∥∥
M×M

≤ 1

2
[∂rB(x)]1 ≤

C2

|x|3

(recall that here ‖ · ‖M×M denotes the operator norm of M ×M matrices
and [·]1 denotes the sum of absolute values of the entries of a matrix) we
have

−

∣∣∣∣∣∣

∫

Rn
u ·
∑

j<k

αjαk∂rB
jkudx

∣∣∣∣∣∣
≥ −

∫
|u|2
∥∥∥
∑

j<k

αjαk∂rB
jk
∥∥∥
M×M

dx ≥ −C2K
2
1

(4.43)
where K1 is as before. Thus we have reached the following estimate

2

∫

Rn

|∇τAu|2
|x| dx+

(n− 1)(n− 3)

2

∫

Rn
|u|2
|x|3dx+ (4.44)
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+2

∫

Rn
=(uBτ · ∇Au)dx+

∫

Rn
u ·
∑

j<k

αjαk∂rB
jku ≥

≥ 2K2
2 − 2C1K1K2 − C2K

2
1 +

(n− 1)(n− 3)

2
K2

1 =: C(C1, C2,K1,K2).

As usual, we want to optimize the condition on the constants C1, C2 under
which the quantity C is positive for all K1, K2. Fixing K1 = 1 and requiring
that (

(n− 1)(n− 3)

2
− C2

)
K2

1 − 2C1K1 + 2 ≥ 0

we can easily conclude that the resulting condition on the constants is given
by

C2
1 + 2C2 ≤ (n− 1)(n− 3). (4.45)

Thus, if condition (4.45) is satisfied, we have that the quantity in (4.41) is
positive.

Step 2
We now perturb the multiplier to complete the proof. We thus put the mul-
tiplier φ̃R as defined in (4.29) in the LHS of (4.8), and repeat exactly the
same calculations as in Step 1. Notice that multiplier ϕR with properties
(4.32)-(4.34) yield the estimate, through (4.40),

2

∫

Rn
∇AuD2ϕR∇Au−

1

2

∫

Rn
|u|2∆2ϕR ≥ (4.46)

≥ C(n)

(
1

R

∫

|x|≤R
|∇Au|2dx+ 2

∫ |∇τAu|2
|x|

)
+

+
n− 1

4R2

∫

|x|=R
|u|2dσ(x) +

(n− 1)(n− 3)

4

∫ |u|2
|x|3

for some positive constant C(n). Using now the complete multiplier φ̃R we
notice that estimates (4.42) and (4.43) still hold with the rescaled constants

C̃1 = 3
2C1, C̃2 = 3

2C2, so that we can rewrite (4.44) as follows

1

R

∫

|x|≤R
|∇Au|2dx+ 2

∫

Rn

|∇τAu|2
|x| dx+

(n− 1)(n− 3)

2

∫

Rn
|u|2
|x|3dx+ (4.47)

+2

∫

Rn
=(uBτ · ∇Au)dx+

∫

Rn
u ·
∑

j<k

αjαk∂rB
jku ≥

≥ 1

R

∫

|x|≤R
|∇Au|2dx+ C(C̃1, C̃2,K1,K2).

Conditions (4.9)-(4.10) on the potential ensure the positivity of C(C̃1, C̃2,K1,K2)
Thus putting all together , taking the supremum over R > 0, integrating

in time and dropping the corresponding nonnegative terms we have reached
the estimate

2

∫ T

−T
dt

∫

Rn
∇AuD2φ∇Au−

1

2

∫ T

−T
dt

∫

Rn
|u|2∆2φ+ (4.48)
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2I
∫ T

−T
dt

∫

Rn
uφ′Bτ · ∇Au+

∫ T

−T
dt

∫

Rn
|u|2

∑

j<k

αjαk(∇φ · ∇Bjk) ≥

≥ sup
R>0

1

R

∫ T

−T
dt

∫

|x|≤R
|∇Au|2dx ≥

≥ sup
R>0

1

R

∫ T

−T
dt

∫

|x|≤R
|DAu|2dx

where in the last step we have used the pointwise inequality |DAu| ≤ |∇Au|.
We now integrate in time the virial idetity on [−T, T ], and using (4.48) and
(4.39) we obtain

sup
R>0

1

R

∫ T

−T
dt

∫

|x|≤R
|DAu|2dx . ‖DAu(T )‖2L2 + ‖DAu(−T )‖2L2 . (4.49)

Let us now consider the range of DA: from proposition (4.7) we have that
for C0 < (n − 2)2/4 0 6∈ ker(DA), so ran(DA) is either L2 or it is dense in
L2. Fix now an arbitrary g ∈ ran(DA), there exists f ∈ D(DA) = D(H)
such that DAf = g. We then consider the solution u(t, x) to the problem

{
iut = −mβu+DAu
u(0, x) = f(x)

with opposite mass, and notice that u satisifies (4.49) since no hypothesis
on the sign of the mass m have been used for it. If we thus apply to this
equation the operator DA we obtain, by the anticommutation rules,{

i(DAu)t = βm(DAu) +DA(DAu) = 0

DAu(0, x) = DAf(x)

or, in other words, the function v = DAu solves the problem{
ivt = Hv
v(0, x) = g

so that v = eitHg. Substituting in (4.49) and letting T → ∞ we conclude
that, in view of remark (4.1),

sup
R>0

1

R

∫ +∞

−∞

∫

|x|≤R
|eitHg|2 . ‖g‖2L2

that is exactly (4.11) for g ∈ ran(DA), which is as we have noticed dense in
L2. Density arguments conclude the proof.

4. Proof of the Strichartz estimates

We begin by recalling the Strichartz estimates for the free Dirac flow,
both in the massless and in the massive case. They are a direct consequence
of the corresponding estimates for the wave and Klein-Gordon equations:

Proposition 4.6. Let n ≥ 3. Then the following Strichartz estimates
hold:

(i) in the massless case, for any wave admissible couple (p, q) (see (4.14))

‖|D|
1
q
− 1
p
− 1

2 eitDf‖LpLq . ‖f‖L2 ; (4.50)
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(ii) in the massive case, for any Schrödinger admissible couple (p, q) (see
(4.15))

‖|D|
1
q
− 1
p
− 1

2 eit(D+β)f‖LpLq . ‖f‖L2 . (4.51)

Proof. We restrict the proof to the case n ≥, refering to [11] for an
exaustive proof of the 3-dimensional case.
Recalling identity (4.4) we immediately have that u(t, x) = eitDf and v(t, x) =

eit(D+β) satisfy the two Cauchy problems




utt −∆u = 0

u(0, x) = f(x)

ut(0, x) = iDf,
(4.52)





vtt −∆v +mv = 0

v(0, x) = f(x)

vt(0, x) = i(D + β)f,

(4.53)

and so each component of the M -dimensional vectors u and v satisfy the
same Strichartz estimates as for the n-dimensional wave equation and Klein-
Gordon equation respectively. Thus case (i) follows from the standard esti-
mates proved in [38] and [47], while case (ii) follows from similar techniques
(the details can be found e.g. in the Appendix of [21]). �

We turn now to the perturbed flow. In the massless case, from the
Duhamel formula we can write

u(t, x) ≡ eitDAf = eitDf +

∫ t

0
ei(t−s)Dα ·Au(s)ds. (4.54)

The term eitDf can be directly estimated with (4.50). For the perturbative
term we follow the Keel-Tao method [47]: by a standard application of the
Christ-Kiselev Lemma, since we only aim at the non-endpoint case, it is
sufficient to estimate the untruncated integral

∫
ei(t−s)Dα ·Au(s)ds = eitD

∫
e−isDα ·Au(s)ds.

Using again (4.50) we have
∥∥∥∥|D|

1
q
− 1
p
− 1

2 eitD
∫
e−isDα ·Au(s)ds

∥∥∥∥
LpLq

.
∥∥∥∥
∫
e−isDα ·Au(s)ds

∥∥∥∥
L2

.

(4.55)
Now we use the dual form of the smoothing estimate (4.11), i.e.

∥∥∥∥
∫
e−isDα ·Au(s)ds

∥∥∥∥
L2

≤
∑

j∈Z
2
j
2 ‖|A| · |u|‖L2

tL
2(|x|∼=2j), (4.56)

where we have used the dual of the Morrey-Campanato norm as in [60].
Hence by Hölder inequality, hypothesis (4.12) and estimate (4.11) we have
∑

j∈Z
2
j
2 ‖|A| · |u|‖L2

tL
2(|x|∼=2j) ≤

∑

j∈Z
2j sup
|x|∼=2j

|A| · sup
j∈Z
‖u‖L2

tL
2(|x|∼=2j) . ‖f‖L2

(4.57)
which proves (4.13). The proof in the massive case is exactly the same.



5. MAGNETIC HARDY INEQUALITY 62

Remark 4.5. The endpoint estimates can also be recovered, both in the
massless and massive case, adapting the proof of Lemma 13 in [?], but we
will not go into details of this aspect.

5. Magnetic Hardy inequality

This chapter is devoted to the proof of a version of Hardy’s inqeuality
adapted to the perturbed Dirac operator

H = DA +mβ, DA = i−1α · ∇A ≡ i−1α · (∇− iA).

The proof is simple but we include it for the sake of completeness.

Proposition 4.7. Let B = DA−DAt = B1 +B2 and assume that

‖|x|2B1‖L∞(Rn) <∞, ‖B2‖L∞(Rn) <∞. (4.58)

Then for every f : Rn → CM such that Hf ∈ L2 and any ε < 1 the following
inequality holds when m 6= 0:

m2

∫

Rn
|f |2 +

(
(1− ε)(n− 2)2

4
− 1

2
‖|x|2B1‖L∞

)∫

Rn
|f |2
|x|2 + ε

∫

Rn
|∇Af |2 ≤

≤
(

1 +
‖B2‖L∞

2m2

)∫

Rn
|Hf |2.
(4.59)

When m = 0, the inequality is also true provided we choose B1 = B, B2 = 0
and we interpret the right hand side of (4.59) simply as

∫
|Hf |2.

Proof. Denote with (·, ·) the inner product in L2(Rn,CM ) and with
‖ · ‖ the associated norm. Recalling (4.22), we can write

‖Hf‖2 = m2‖f‖2 + ‖∇Af‖2 + i(S ·Bf, f)

where the matrix S ·B = [Sjk] · [Bjk] is skew symmetric since

Sjk =
1

2
αjαk, Bjk = ∂jA

k − ∂kAj .

The selfadjoint matrices αj have norm less than 1 (recall α2
j = I), so that

|(S ·Bf, f)| ≤ 1

2
([B]1f, f)

where we denote by [B]1 the `1 matrix norm

[B(x)]1 =
∑

j,k

|Bjk(x)|.

Now recalling assumption (4.58) we can write

|(S ·Bf, f)| ≤ 1

2
‖|x|2B1‖L∞

∥∥∥∥
f

|x|

∥∥∥∥
2

+
1

2
‖B2‖L∞‖f‖2

and in conclusion

‖Hf‖2 ≥ m2‖f‖2 + ‖∇Af‖2 −
1

2
‖|x|2B1‖L∞

∥∥∥∥
f

|x|

∥∥∥∥
2

− 1

2
‖B2‖L∞‖f‖2.

We now recall the magnetic Hardy inequality proved in [34]:
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(n− 2)2

4

∫

Rn
|f |2
|x|2 ≤

∫

Rn
|∇Af |2. (4.60)

Observing now that

‖Hf‖2 = (H2f, f) = m2‖f‖2 + ‖DAf‖2

and that

(1− ε)
∥∥∥∥
f

|x|

∥∥∥∥
2

+ ε‖∇Af‖2 ≤ ‖∇Af‖2,

the proof is complete. �



CHAPTER 5

Weighted Lp-estimates for powers of self-adjoint
operators

1. Introduction

The question of Lp estimates for functions of a selfadjoint operator is a
delicate one. Indeed, even for a Schrödinger operator H = −∆ + V (x) with
a nonnegative potential V ∈ C∞c , and a bounded smooth function f(t), the
operator f(H) defined via spectral theory does not have in general a smooth
kernel and hence does not fall within the scope of the Calderòn-Zygmund
theory. The first to overcome this difficulty was Hebisch [41] who proved
the following result; we use the notation

Sλf(t) = f(λt), λ > 0

for the scaling operator, and we denote by Hs the usual L2–Sobolev space.

Theorem 5.1 ([41]). Let H be a nonnegative selfadjoint operator on
L2(Rn) satisfying a gaussian estimate

0 ≤ e−tH(x, y) ≤ Ct−n2 e−
|x−y|2

4t , (5.1)

let φ ∈ C∞c (R+) be a nonzero cutoff, and assume the function F (s) on R+

satisfies

sup
t>0
‖φStF‖Ha <∞ for some a >

n+ 1

2
. (5.2)

Then the operator F (H) is bounded from L1 to L1,∞ and on any Lp, 1 <
p <∞.

Theorem 5.1 raises a few interesing questions concerning the optimality
of the assumptions and the possibility of weighted Lp estimates for suitable
classes of operators. In the case H = −∆, the classical Hörmander mutliplier
theorem requires only a > n/2 in (5.2), and in this sense the result is not
optimal. Indeed, sharper results were obtained for bounded functions of
homogeneous Laplace operators acting on homogeneous groups or on groups
of polynomial growth (see [30], [17], [54], [2]). In these results the conditions
on the function F were sharpened to

sup
t>0
‖φStF‖Ha

p
<∞ for some a >

n

2
(5.3)

where Ha
p is the Sobolev space with norm ‖(1−d2/dx2)

a
2 f‖Lp , and p is equal

to 2 or ∞. The criticality of the order a = n/2 was proved by Sikora and
Wright [66] in the special case of imaginary powers Liy, with L a positive
selfadjoint operator of the form

L = −
∑

∂iaij∂j .

64
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They obtained

‖Liy‖L1→L1,∞ ' (1 + |y|)n2 (5.4)

provided L satisfies, besides the gaussian estimate, a finite speed of propa-
gation property, meaning that the operator cos(t

√
L) has an integral kernel

Kt(x, y) supported in the ball |x − y| ≤ t for all t ≥ 0. Notice that the

norm (5.2) for a = n/2 and F (s) = siy grows precisely like (1 + |y|)n2 . It
was later remarked by Sikora [65] that the finite speed of propagation is re-
dundant and actually equivalent to a weaker Gaussian bound, the so-called
Davies-Gaffey L2 estimate (see Remark 5.7 below).

Condition (5.3) was further improved by Duong, Ouhabaz and Sikora
[32]. They obtained a general result for functions of a selfajoint, positive
operator L on L2(X,µ) where X is any open subset of a space of homoge-
neous type, µ a doubling measure, and L satisfies a generalized pointwise
gaussian estimate analogous to (5.1). In particular they obtained that if F
is bounded and satisfies (5.3) with p =∞, then F (L) is of weak type (1, 1)
and bounded on all Lq, 1 < q < ∞. On the other hand, if (5.3) holds for
some p ∈ [2,∞), the same result holds provided L satisfies an additional

a priori condition of Plancherel type on the kernel of F (
√
L); see [32] for

further results and an extensive bibliography.
Our main purpose here is to extend these results, at least in the euclidean

setting, to the case of weighted Lp spaces. However, in order to develop our
techniques, we shall first prove a precised version of Theorem 5.1, building
on the ideas of [41], [66]. Concerning the operator H, as in Hebisch’ result,
we shall only require a gaussian bound; for further reference we state the
condition as

Assumption (H). H is a nonnegative selfadjoint operator on L2(Rn)
satisfying a gaussiam heat kernel estimate

|pt(x, y)| ≤ K0

tn/2
e−|x−y|

2/(dt), d > 0. (5.5)

A rescaling H → λH shows that it is not restrictive to assume d = 1.

Remark 5.1. In chapter 4 we shall exhibit a wide class of operators
satisfying (H), namely the electromagnetic Schrödinger operators

H = (i∇−A(x))2 + V (x) (5.6)

under very weak conditions on the potentials: more precisely, it is sufficient
to assume that A ∈ L2

loc and that V is in the Kato class with a negative part
V− small enough. For related results on magnetic Schrödinger operators see
also [8].

In order to express the smoothness conditions in an optimal way, we
shall introduce two norms on functions defined on the positive real line. In
the rest of the paper we fix a cutoff ψ ∈ C∞c (R) with support in [−2, 2] and
equal to 1 on [−1.1], and denote with φ the function, supported in [1/2, 2],

φ(s) =

{
ψ(s)− ψ(2s) if s > 0,

0 if s ≤ 0.
(5.7)
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As a consequence, notice the identities for s > 0

ψ(s) =
∑

k>0

φ(2ks), 1− ψ(s) =
∑

k≤0

φ(2ks). (5.8)

Then, writing 〈ξ〉 = (1 + |ξ|2)1/2, the norms µa, µ
′
a will be defined as

µa(g) = sup
λ>0
‖〈ξ〉aF [φ(s)Sλg]‖L1 , µ′a(g) = sup

λ>0
‖〈ξ〉aF [sφ(s)Sλg]‖L1 .

(5.9)

Remark 5.2. It is easy to control µa with ordinary Besov or Sobolev
norms:

µa(g) ≤ c(n) sup
t>0
‖φStg‖

B
a+1

2
2,1

≤ c(n, ε) sup
t>0
‖φStg‖

Ha+1
2+ε , ε > 0.

(5.10)
The last norm in (5.10) is the one used in Theorem 5.1, and using µa instead
allows to eliminate the 1/2+ loss of smoothness in Hebisch’ result.

Our first result is the following:

Theorem 5.2. Let H be an operator satisfying (H) and g(s) a function
on R+ with µ = µσ(g) < ∞ for some σ > n/2. Then the following weak
(1, 1) estimate holds:

‖g(
√
H)f‖L1,∞ ≤ C‖f‖L1 , C = c(n, σ)K4

0 (1 + µ+ ‖g‖2L∞), (5.11)

and for all 1 < p <∞, with the same C,

‖g(
√
H)f‖Lp ≤ 6C

(
p+ (p− 1)−1

)
‖f‖Lp (5.12)

If in addition we assume that for some q > 1 the following estimate holds:

‖
√
Hg(
√
H)f‖Lq ≤ Cq‖∇f‖Lq , (5.13)

and µ′ = µ′σ(g) <∞ for a σ > 1 + n/2, then we have also

‖
√
Hg(
√
H)f‖L1,∞ ≤ C‖∇f‖L1 , C = c(n, σ, Cq)K

4
0 (1 + µ′ + ‖g‖2L∞),

(5.14)
and for all 1 < p ≤ q, with the same C,

‖
√
Hg(
√
H)f‖Lp ≤

c(q)

p− 1
C‖∇f‖Lp . (5.15)

Remark 5.3. As mentioned above, in [32] it was proved that the weak
(1, 1) estimate holds under the sole assumption

sup
t>0
‖φStg‖Ha∞ <∞

for some a > n/2 (see Theorem 3.1 and Remark 1 in that paper). Since
obviously

sup
t>0
‖φStg‖Ha∞ . µa(g),

we see that estimate (5.11) can be obtained as a special case of that result,
with a slightly different form of the constant which we made explicit in terms
of the gaussian constant K0. On the other hand, estimate (5.15), which
uses Auscher’s Calderon-Zygmund decomposition for Sobolev functions [3],
seems to be new.
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Remark 5.4. As evidenced by the previous discussion, the constant in
(5.11) is close to optimal in the following sense: if we choose g(s) = s2iy, we
have

µa(g) ≤ C(1 + |y|)a, a ≥ 0;

(the proof is trivial for integer values of a and follows by interpolation for
real values). This implies that, for all ε > 0 and 1 < p <∞,

‖H iyf‖Lp ≤ C(p, n, ε)(1 + |y|)n2 +ε‖f‖Lp (5.16)

which is close to the optimal bound (5.4). Notice also that the strict con-
dition σ > n/2 can be further optimized to a logarithmic condition, but we
prefer not to pursue this idea here.

After it was made clear by the results of Hebisch and others that kernel
smoothness is not a necessary condition for Lp boundedness, alternative
weaker conditions where thoroughly investigated, also in connection with the
Kato problem. A fairly complete answer was given by Auscher and Martell
who developed a general theory in a series of papers (see in particular [4],
[5] and the references therein). By combining the techniques of Auscher and
Martell with ideas from the proof of Theorem 5.2, we are able to extend the
previous estimates to weighted spaces Lp(w). In the following we use the
notation

‖f‖Lp(w) =

(∫
|f |pw(x)dx

)1/p

and we recall that a measurable function w(x) > 0 belongs to the Mucken-
houpt class Ap, 1 < p <∞, if the quantity

‖w‖Ap = sup
Q cube

(
−
∫

Q
w

)(
−
∫

Q
w1−p′

)p/p′
<∞. (5.17)

is finite. Then the main result of this paper is

Theorem 5.3. Let H be an operator satisfying (H), and let g be a
bounded function on R+ such that µ = µσ(g) is finite for some σ > n/2.

Then, given any 1 < p < ∞ and any weight w ∈ Ap, the operator g(
√
H)

satisfies, for all 1 < q <∞ with q > p ·max{1, n/σ}
‖g(
√
H)f‖Lq(w) ≤ c(n, σ, p, ψ, w)K1+2p2

0 (1+µ+‖g‖2L∞) ·q ·‖f‖Lq(w). (5.18)

Remark 5.5. It is well known that if w ∈ Ap for some p > 1, then
we have also w ∈ Ap−ε for some ε > 0 depending only on ‖w‖Ap (for a
quantitative estimate of ε see [48]). Thus in the statement of Theorem 5.3
the condition on q can be relaxed to

q > (p− ε) max
{

1,
n

σ

}
. (5.19)

In particular, if σ ≥ n, we have that g(
√
H) is bounded on Lq(w) for all

w ∈ Ap and all q > p− ε, which includes the case q ≥ p.
Remark 5.6. The original motivation for the present work was the need

for an estimate

‖〈x〉−1−εHθg‖L2 ≤ C(V )‖〈x〉−1−ε(−∆)θg‖L2 , θ =
1

4
, H = −∆+V (x)

(5.20)
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for fractional powers of a selfadjoint Schrödinger operator H, with explicit
bounds on the constant C(V ). For the case θ = 1/2, and operators in
divergence form, similar estimates are included in the results of [5] (see also
[4]) concerning reverse estimates for square roots of an elliptic operator.
However, other values of θ, different forms of H, and the need for precise
bounds on the constant, forced us to go beyond the existing theory.

It may be interesting to recall briefly the line of investigation leading to
(5.20). An analysis of the dispersive properties of Schrödinger equations on
non-flat waveguides (i.e. perturbations of domains of the form Rn ×Ω with
Ω a bounded open set, see [29] for details) leads to a family of perturbed
Schrödinger equations

iut + ∆xu− Vj(x)u = 0, u(0, x) = fj(x), j ≥ 1, x ∈ Rn. (5.21)

Here u = uj is a component of the expansion in a distorted Fourier series
of a function u(t, x, y) =

∑
φj(y)uj(t, x). Writing for short Hj = −∆ + Vj

and representing the solution as

uj = eitHjfj ,

one expects to estimate each component separately and sum over j. Notice
that a precise bound on the growth in j of the constants is essential, since
this will translate into y-derivatives after summing over j. To this end we
can use smoothing estimates of the form

‖〈x〉−1−ε(−∆)1/4eitHjfj‖L2
tL

2
x
≤ C‖H1/4

j fj‖L2 . (5.22)

which can be proved by multiplier techniques and give a complete control on
the growth of the constants, and then deduce, in a standard way, Strichartz
estimates, which are the basci tool for applications to nonlinear problems.
This is possible provided we can “simplify” the powers of −∆ and Hj ap-
pearing in (5.22) and obtain the L2–level estimate

‖〈x〉−1−εeitHjfj‖L2
tL

2
x
≤ C‖fj‖L2 . (5.23)

But of course (−∆)1/4 and eitHj do not commute, hence this step is not
trivial. We need a weighted L2 estimate of the form

‖〈x〉−1−εH1/4
j g‖L2 ≤ C(Vj)‖〈x〉−1−ε(−∆)1/4g‖L2 (5.24)

so that we can replace (−∆)1/4 by H
1/4
j in the LHS of (5.22), commute it

with eitHj , and obtain (5.23). From the previous discussion, it is clear that
we need also a precise control on the constant in (5.24).

Our weighted estimates, via complex interpolation, allow us to give a
partial answer to the original problem (5.20). Indeed, for a Schrödinger
operator on Rn, n ≥ 3

H = −∆ + V (x), V ≥ 0

we obtain the bounds

‖〈x〉−sHθf‖Lp ≤ C(n, p, s) · [1 + ‖V ‖Ln/2,∞ ]θ · ‖〈x〉−s(−∆)θf‖Lp (5.25)

for all θ, p, s in the range

0 ≤ θ ≤ 1, 1 < p <
n

2θ
, s > −n

p
.



2. KERNEL ESTIMATES AND PROOF OF THEOREM 5.2 69

More generally, we can prove (see the beginning of chapter 4 for the definition
of Kato classes):

Corollary 5.4. Consider the operator

H = (i∇−A(x))2 + V (x)

on L2(Rn), n ≥ 3, under the assumptions that A ∈ L2
loc(Rn,Rn), V+ =

max{V, 0} is of Kato class, V− = max{−V, 0} has a small Kato norm

‖V−‖K < cn =
π
n
2

Γ
(
n
2 − 1

) , (5.26)

and
|A|2 − i∇ ·A+ V ∈ Ln/2,∞, A ∈ Ln,∞. (5.27)

Then H satisfies assumption (H), and for all 0 ≤ θ ≤ 1 the following esti-
mate holds:

‖Hθf‖Lp(w) ≤ C‖(−∆)θf‖Lp(w) (5.28)

for all weights w ∈ Ap provided

1 < p <
n

2θ
.

The constant in (5.28) has the form

C =
C(n, p, w)

(1− ‖V−‖K/cn)c(p)

[
1 + ‖|A|2 − i∇ ·A+ V ‖Ln/2,∞ + ‖A‖Ln,∞

]θ
.

The chapter is organized as follows. In section 2 we build the necessary
kernel estimates for functions of an operator and apply them to the proof of
the Lp estimates of Theorem 5.2; section 3 is devoted to the proof of the main
result, Theorem 5.3, concerning weighted Lp estimates; the application to
magnetic Schródinger operators is contained in sections 4 and 5. We added
an appendix containing a slightly adapted version of the Auscher-Martell
maximall lemma in order to make the paper self contained. In forthcoming
papers we plan to apply our estimates to questions of local smoothing and
dispersion for evolution equations, in the spirit of [29], [28].

Acknowledgments. We would like to thank Dr. The Anh Bui for his useful
remarks on the first version of the paper (see [12] for related results). We are
also grateful to the Referee whose remarks led to substantial improvements
in our results.

2. Kernel estimates and proof of Theorem 5.2

Throughout the proof, φ and ψ are the functions fixed in (5.7)–(5.8).
Given an operator A with kernel A(x, y), we denote its Schur norm with

‖A‖ = ‖A(x, y)‖ ≡ max

{
sup
x

∫
|A(x, y)|dy, sup

y

∫
|A(x, y)|dx

}
;

notice the product inequality

‖AB‖ ≤ ‖A‖ · ‖B‖ (5.29)

which follows from the identity

(AB)(x, y) =

∫
A(x, z)B(z, y)dy. (5.30)
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Following [41], for any nonnegative function w(x) on Rn we can define a
weighted version of the above norm as

‖A‖w = ‖A(x, y)w(x− y)‖. (5.31)

Remark 5.7. In the proof of the following Lemma we shall use the
finite speed of propagation property of the kernel cos(ξ

√
H)(x, y), namely

the property

cos(t
√
H)(x, y) = 0 for |x− y| > t ≥ 0. (5.32)

Adam Sikora in [65] proved the remarkable fact that (5.32) is equivalent
to the following estimate: for all functions f1, f2 supported in the balls
B(x1, r1) and B(x2, r2) respectively, and for any r with

|x1 − x2| − (r1 + r2) > r ≥ 0 (5.33)

one must have
∣∣(e−tHf1, f2)L2

∣∣ ≤ Ce−r2/t‖f1‖L2‖f2‖L2 . (5.34)

Estimates of the form (5.34) are usually called L2 estimates of Davies-Gaffey
type. Notice that the pointwise estimate in assumption (H) implies imme-
diately (5.34) and hence (5.32).

For the sake of completeness, we recall here the elementary argument
from [65] which allows to deduce (5.32) from (5.34). Let f1, f2 be two
functions as in (5.33), and define

w(t) = 1R+(t) · 2(πt)−
1
2 (cos(

√
tH)f1, f2)L2 .

Notice that w(t) is a tempered distribution on R and so are the products
etyw(t) for any y ≤ 0. Thus the Fourier-Laplace transform

v(z) =

∫
w(t)e−iztdt

is well defined and analytic on the half complex plane =z < 0. Recalling the
subordination formula

(e−sHf1, f2)L2 =

∫ ∞

0
(cos(t

√
H)f1, f2)L2

2√
πs
e−

t2

4sdt,

via the changes of variables t →
√
t and s → 1/(4s), we see that v(z) can

be computed explicitly as

v(z) = (iz)−
1
2 (e−

H
4iz f1, f2)L2 .

Now introduce the analytic function

F (z) = z
1
2 eir

2zv(z) on =z < 0 (5.35)

for some fixed r satifying (5.33). By spectral calculus we have easily the
bound

|v(z)| ≤ |z|− 1
2 ‖f1‖ · ‖f2‖

(all the norms in this proof are L2 norms) which implies the growth rate

|F (z)| ≤ ‖f1‖ · ‖f2‖ · er
2|z|. (5.36)

If we fix a y0 < 0, again by spectral calculus we obtain the bound

|F (x+ iy0)| ≤ ‖f1‖ · ‖f2‖ (5.37)
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along the line z = x+ iy0, x ∈ R. Finally, along the half line z = it, t < 0,
we obtain by assumption (5.34)

|F (it)| ≤ C‖f1‖ · ‖f2‖. (5.38)

Now we can apply the Phragmén-Lindelöf theorem on the two sectors =z ≤
y0 and <z ≥ 0 or <z ≤ 0 (see Theorem IV.3.4 in [70]) and we obtain that
F (z) satisfies a bound like (5.38) on the whole half plane =z ≤ y0. This
implies an exponential growth rate

|v(z)| ≤ |z|− 1
2 er

2=z‖f1‖ · ‖f2‖, =z ≤ y0 < 0 (5.39)

for the transform of w(t). To conclude the proof, it is sufficient to use the
Paley-Wiener theorem (see Theorem 7.4.3 in [42]) which implies that the
support of w(t) must be contained in the closed convex set

suppw ⊆ [r2,+∞) (5.40)

and this gives (5.32) as claimed.

Lemma 5.5. Assume H satisfies (H) and let g be an even function with
supp g ⊆ [−R,R]. Then we have for all a ≥ 0

‖g(
√
H)‖〈x〉a ≤ c(n, a,R) ·K0‖〈ξ〉a+n/2ĝ‖L1 (5.41)

‖
√
Hg(
√
H)‖〈x〉a ≤ c(n, a,R) ·K0‖〈ξ〉a+n/2ĝ′‖L1 (5.42)

where c(n, a,R) is independent of the operator H and K0 is defined in (5.75).

Proof. It is sufficient to estimate the quantity

sup
y

∫ ∣∣∣g(
√
H)(x, y)〈x− y〉a

∣∣∣ dx

since the symmetric one follows from the same computation applied to the

adjoint kernel g(
√
H)∗(x, y) = g(

√
H)(y, x). Let G(s) = g(s)es

2
. Since G is

an an even function, apart from a (2π)−1 factor we can write

G(t) =

∫ +∞

−∞
Ĝ(ξ) cos(tξ)dξ

and we have

g(
√
H) = G(

√
H)e−H =

∫
Ĝ(ξ) cos(ξ

√
H)e−Hdξ.

We decompose G using a non homogeneous Paley-Littlewood partition of
unity χj(ξ), j ≥ 0 (the support of χj(s) being s ∼ 2j) as

G =
∑

j≥0

Gj , Ĝj(s) = χj(s)Ĝ.

Then we have to estimate the integrals

Ij =

∫
|Gj(
√
H)e−H(x, y)|〈x−y〉adx ≤

∫
|Ĝj(ξ)|

∫
| cos(ξ

√
H)e−H |〈x−y〉adxdξ.

The innermost integral can be written in full

II =

∫ ∣∣∣∣
∫

cos(ξ
√
H)(x, z)e−H(z, y)dz

∣∣∣∣ 〈x− y〉adx
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We introduce a a partition of Rn in almost disjoint unit cubes Q and denote
with 1Q their characteristic functions. Then we can write

II ≤
∑

Q

IIQ, IIQ =

∫ ∣∣∣∣
∫

cos(ξ
√
H)(x, z)e−H(z, y)1Q(z)dz

∣∣∣∣ 〈x−y〉adx.

If zq is the center of the cube Q we have

|x− zQ| . 〈ξ〉
by the finite speed of propagation for cos(ξ

√
H)(x, z) (see Remark 5.7), and

recalling that ξ ∈ supp Ĝj we have also

〈x− y〉 ≤ 〈x− zQ〉〈zQ − y〉 . 〈ξ〉〈zQ − y〉 . 2j〈zQ − y〉.
Thus by Cauchy-Schwartz in dx we obtain

II2
Q . 〈ξ〉n+2a〈zQ − y〉2a

∫ ∣∣∣∣
∫

cos(ξ
√
H)(x, z)e−H(z, y)1Q(z)dz

∣∣∣∣
2

dx.

Using the unitarity of cos(ξ
√
H) and the gaussian estimate, this gives

II2
Q . 2j(n+2a)〈zQ−y〉2a

∫ ∣∣e−H1Q
∣∣2 dz . 2j(n+2a)K2

0

∫

Q
e−2|z−y|2〈z−y〉2adz

and hence, taking square roots and summing over Q we conclude

II ≤ c(n, a) · 2(a+n/2)jK0

independently of y. Inserting this into Ij we see that

Ij ≤ c(n, a)K02(a+n/2)j

∫
|Ĝj(ξ)|dξ ≤ c1(n, a)K0‖〈ξ〉a+n/2Ĝj(ξ)‖L1

and summing over j

‖g(
√
H)‖〈x〉a ≤ c(n, a)‖〈ξ〉a+n/2Ĝ(ξ)‖L1 .

Finally we can write

G(s) = g(s)es
2

= g(s) · χ(s)es
2

with χ(s) a cutoff function equal to 1 on [−R,R]. Then we have

Ĝ = ĝ ∗ (̂χes2) =⇒ ‖〈ξ〉sĜ‖L1 ≤ c(s,R)‖〈ξ〉sĝ(s)‖L1

whence (5.41) follows; indeed, the symmetric quantity obtained by switching
x, y in I is estimated in an identical way.

The proof of (5.42) is similar: we must estimate now the integrals

I ′j =

∫
|
√
HGj(

√
H)e−H |·〈x−y〉ady ≤

∫∫
|Ĝj
′
(ξ)|·| cos(ξ

√
H)e−H |〈x−y〉adξdy

where we used that ŝG(s) = iĜ′(ξ). Proceeding as above we obtain

‖
√
Hg(
√
H)‖〈x〉a ≤ c(n, a)‖〈ξ〉a+n/2Ĝ′(ξ)‖L1

and to conclude it is sufficient to remark that

Ĝ′ = ĝ′ ∗ (̂χes2) =⇒ ‖〈ξ〉sĜ‖L1 ≤ c(s,R)‖〈ξ〉sĝ′‖L1 .

�
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Lemma 5.6. Assume H satisfies (H) and φ is given by (5.7). Let g be
a function on R+, and define, for j ∈ R, gj(s) = φ(2js)g(s). Then for any
a ≥ 0

‖gj(
√
H)‖〈2−jx〉a ≤ c(n, a)K0 · ‖〈ξ〉a+n

2F [φ(s)S2−jg]‖L1 , (5.43)

‖
√
Hgj(

√
H)‖〈2−jx〉a ≤ c(n, a)K0 · ‖〈ξ〉a+n

2F [sφ(s)S2−jg]‖L1 · 2−j . (5.44)

Proof. Extend g(s) for s ≤ 0 as an even function; notice that the values

of g on (−∞, 0] are irrelevant in the definition of g(
√
H). We can write

gj(
√
H) = S2−jGj(

√
Hj)S2j (5.45)

where

Gj(s) = φ(s)g(2−js) = φS2−jg

and

Hj = 22jS2jHS2−j .

It is easy to check by rescaling that the operator Hj satisfies the conditions
in Assumption (H) with the same constants. Thus we can apply Lemma 5.5
and obtain

‖Gj(
√
Hj)‖〈x〉a ≤ c(n, a,R)K0‖〈ξ〉a+n

2F [φS2−jg]‖L1 .

As a consequence of (5.45), the kernels of Gj(
√
Hj) and gj(

√
H) are related

by

gj(
√
H)(x, y) = Gj(

√
Hj)(2

−jx, 2−jy) · 2−jn.
and this implies (5.43). Since we have also

√
Hj = 2jS2j

√
HS2−j

(5.44) follows immediately from (5.42). �
Lemma 5.7. Assume H satisfies (H), let α ∈ C∞c (R) be an even function,

and for r > 0 write αr(s) = α(rs). Then, for all m ≥ 0,

|αr(
√
H)(x, y)| ≤ C(n,m,α)K2

0 ·
〈
x− y
r

〉−m
r−n, (5.46)

|
√
Hαr(

√
H)(x, y)| ≤ C(n,m,α)K2

0 ·
〈
x− y
r

〉−m
r−n−1. (5.47)

Proof. By rescaling, as in the proof of the previous lemma, we can

reduce to the case r = 1. Then define G(s) = α(s)es
2

so that, using the
inequality

〈x− y〉 ≤ 〈x− z〉〈z − y〉,
we can write

〈x− y〉m|α(
√
H)(x, y)| ≤

∫
|G(
√
H)(x, z)|〈x− z〉m · |e−H(z, y)|〈z − y〉mdz.

Now we have

|p1(z, y)| · 〈z − y〉m ≤ K0 · c(n,m)

and this implies

〈x− y〉m|ψ(
√
H)(x, y)| ≤ c(n,m)K0‖G(

√
H)‖〈x〉m .
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Applying (5.41) with a = m we obtain

‖G(
√
H)‖〈x〉m ≤ c(n,m,α)K0

and (5.46) follows. Analogously, (5.47) follows from (5.44). �

We can now conclude the proof of (5.12) in a similar way as [41]. Let
f ∈ L1, λ > 0 and consider the Calderòn-Zygmund decomposition of f : a
sequence of disjoint cubes Qj and functions h, fj with supp fj ⊆ Qj , j ≥ 1,
such that

f = h+
∑

j fj , |h| ≤ Cλ,
∫
|fj | ≤ Cλ|Qj |,

∑ |Qj | ≤ Cλ−1‖f‖L1 .

Then we can write g(
√
H)f as

g(
√
H)f = g(

√
H)h+

∑
j g(
√
H)ψrj (

√
H)fj +

∑
j(1− ψrj (

√
H))fj (5.48)

where

2rj = 4 diam(Qj).

For the first term in (5.48) we have, by the spectral theorem,

|{|g(
√
H)h| > λ}| ≤ λ−2‖g(

√
H)h‖2L2 ≤ λ−2‖g‖2L∞‖h‖2L2 ≤ Cλ−1‖g‖2L∞‖h‖L1

and hence

|{g(
√
H)h > λ}| ≤ C‖g‖2L∞‖f‖L1 · λ−1 (5.49)

since ‖h‖L1 ≤ C‖f‖L1 . To handle the second term, we consider the product
with γ(x) ∈ L2

|(ψrj (
√
H)fj , γ)L2 | ≤ CK2

0

∫∫ 〈
x− y
rj

〉−m
r−nj |γ(x)fj(y)|dxdy

where we have used estimate (5.46) for the kernel. Now we nortice that for
all y ∈ Qj we have

〈
x− y
rj

〉−m
≤ c(m,n)

∫

Qj

〈
x− z
rj

〉−m
dz · |Qj |

with a constant independent of j. Thus, using
∫
|fj(y)|dy ≤ Cλ|Qj |,

|(ψrj (
√
H)fj , γ)L2 | ≤ CK2

0λ

∫

Qj

dz

∫ 〈
x− z
rj

〉−m
r−nj |γ(x)|dx.

The innermost integral is bounded by cnMγ(z) provided we choose e.g.
m = n+ 1, so that
∑

j

|(ψrj (
√
H)fj , γ)L2 | ≤ CK2

0λ ·
∫

Qj

Mγ(z)dz ≤ CK2
0λ‖Mγ‖L2‖∑1Qj‖L2

and noticing that ‖∑1Qj‖L2 ≤ Cλ−1/2‖f‖1/2
L1 we find

∑

j

|(ψrj (
√
H)fj , γ)L2 | ≤ CK2

0λ
1/2‖f‖1/2

L1 ‖γ‖L2 .

This implies

‖g(
√
H)
∑

j

ψrj (
√
H)fj‖2L2 ≤ CK4

0‖g‖L∞λ‖f‖L1
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and proceeding as for the first piece we obtain

|{|g(
√
H)
∑

j

ψrj (
√
H)fj | > λ}| ≤ CK4

0‖g‖2L∞‖f‖L1 · λ−1 (5.50)

Finally, consider the third piece in (5.48)

III =
∑

j

(1− ψrj (
√
H))fj .

Recalling that

1− ψ(s) =
∑

k≤0

φ(2ks) for s > 0,

using the notation lg r = log2 r,

1− ψrj (s) = 1− ψ(rjs) =
∑

k≤0

φ(2krjs) ≡
∑

k≤0

φ(2k+lg rjs) for s > 0

we can write

III =
∑

k≤0

gk+lg rj (
√
H), gj(s) = g(s)φ(2js).

Now, if 4Qj is a cube with the same center as Qj but with sides multiplied
by 4, and A = ∪4Qj ,

|{|III| > λ}| ≤ |A|+ λ−1
∑

j

∑

k≤0

∫

Rn\A
|gk+lg rj (x, y)| · |fj(y)|dy.

We shall estimate the kernel of gk+lg rj as follows: let a = σ − n/2 (recall
that by assumption µ = µσ(g) <∞ for some σ > n/2, so that a > 0), then
we can write

|gk+lg rj (x, y)| ≤ ‖gk+lg rj‖〈x/2krj〉a ·
〈
x− y
2krj

〉−a
≤ c(n, a)K0µ · 2a(k−j)

where we have used (5.43), and the fact that for x 6∈ A and y ∈ Qj we have
|x− y| ≥ 2jrj . Notice also that |A| ≤ c(n)

∑ |Qj |. Thus we obtain

|{|III| > λ}| ≤ c(n)λ−1‖f‖L1 + c(n, a)K0µλ
−1
∑

j

∑

k≤0

2a(k−j)‖fj‖L1 .

Since a > 0, we can sum over k ≤ 0 and we conclude

|{|III| > λ}| ≤ c(n, a)(1 +K0µ)λ−1‖f‖L1 . (5.51)

Summing (5.49), (5.50) and (5.51) we obtain (5.11).
Estimate (5.12) for general p can be obtained in a standard way by real

interpolation with the L2 trivial estimate and duality. Notice however that
the constant in the Marcinkiewicz interpolation theorem diverges at both
ends: if p = (1 − θ)/p0 + θ/p1 and the linear operator T satisfies weak Lpj

estimates with constants Cj , j = 0, 1, then T satisfies a strong Lp estimate
with a norm

‖T‖Lp→Lp ≤ 2

(
p

p− p0
+

p

p1 − p

)1/p

C1−θ
0 Cθ1

(see e.g. [40]). Thus a second (complex) interpolation step between two
strong estimates is necessary in order to get (5.12).
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The proof of (5.14) requires a variant of the Calderòn-Zygmund decom-
position for Sobolev functions due to Auscher [3]: given f with ‖∇f‖L1 <∞
and λ > 0, there exists a sequence of cubes Qj with controlled overlapping
(i.e.

∑
1Qj ≤ N = N(n)), and functions h, fj with fj ∈W 1

0 (Qj) such that

f = h+
∑

j fj , |∇h| ≤ Cλ,
∫
|∇fj | ≤ Cλ|Qj |,

∑ |Qj | ≤ Cλ−1‖∇f‖L1 .

We list the modifications necessary in the preceding proof. The decomposi-
tion is obviously
√
Hg(
√
H)f =

√
Hg(
√
H)h+

∑
j

√
Hg(
√
H)ψrj (

√
H)fj+

∑
j

√
H(1−ψrj (

√
H))fj

(5.52)
with rj as above. The first piece is estimated using (5.13) instead of the
elementary L2 bound, which gives

|{|g(
√
H)h| > λ}| ≤ λ−qCqq‖∇h‖qLq ≤ CCqqλ−1‖∇h‖L1 ≤ CCqqλ−1‖∇f‖L1 .

For the second piece we write as before, but using now the kernel estimate
(5.47),

|(
√
Hψrj (

√
H)fj , γ)L2 | ≤ CK2

0

∫∫ 〈
x− y
rj

〉−m
r−n−1
j |γ(x)fj(y)|dxdy.

Notice that Poincaré’s inequality implies
∫
|fj(y)|dy ≤ Crj

∫
|∇fj‖dy ≤ Crjλ|Qj |

and the factor rj cancels the additional power in r−n−1
j . Thus we arrive at

∑

j

|(
√
Hψrj (

√
H)fj , γ)L2 | ≤ CK2

0λ ·
∫

Qj

Mγ(z)dz

and as above this implies

|{|
√
Hg(
√
H)
∑

j

ψrj (
√
H)fj | > λ}| ≤ CK4

0‖g‖2L∞‖∇f‖L1 · λ−1. (5.53)

The third piece is decomposed again as

III ′ =
∑

k≤0

√
Hgk+lg rj (

√
H), gj(s) = g(s)φ(2js).

Using the kernel estimate (5.44) we get now, with a = σ−n/2 (so that a > 1
now)

|{|III ′| > λ}| ≤ c(n)λ−1‖∇f‖L1+c(n, a)K0µ
′λ−1

∑

j

∑

k≤0

2a(k−j)‖fj‖L1 ·2−kr−1
j .

Since a > 1 the sum in k converges with sum bounded by a constant c(a),
and another application of Poincaré’s inequality cancels the power r−1

j . In
conclusion

|{|III ′| > λ}| ≤ c(n, a)(1 +K0µ
′)λ−1‖∇f‖L1

and the proof is complete.
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3. Bounded functions of the operator: Theorem 5.3

3.1. The Auscher-Martell maximal lemma. We reproduce here
the maximal lemma of [6], in a version slightly simplified for our needs
(i.e., in the original Lemma a finer decomposition in condition (5.60) is
permitted). We decided to include a short but complete proof in the Ap-
pendix, since we needed to keep track precisely of the constants appearing
in the final estimate (5.63); this gives the additional bonus of making the
paper self-contained. We also took the liberty of introducing some minor
simplifications in the final step of the proof.

In the statement of Lemma 5.8 below, the quantity aq/Kq in (5.62)
must be interpreted as 0 when q =∞, MF denotes the uncentered maximal
operator over balls B

Mf(x) = sup
B3x
−
∫

B
|f(x)|dx, (5.54)

and cq is its norm in the weak (q, q) bound

sup
λ>0

λq|{Mf > λ}| ≤ cq‖f‖qLq , 1 ≤ q <∞, c∞ ≡ 1. (5.55)

We also recall that a weight w(x) > 0 belongs the reverse Hölder class RHq,
1 < q <∞, if there exists a constant C such that for every cube Q

(
−
∫

Q
wq
)1/q

≤ C−
∫

Q
wdx. (5.56)

while RH∞ is defined by the condition

w(x) ≤ C−
∫

Q
wdx for a.e. x ∈ Q. (5.57)

The best constant C in these inequalities is denoted by ‖w‖RHq . We shall
use the following consequence of the previous definition: if w ∈ RHs′ for
some 1 ≤ s <∞, then there exists C such that for every cube Q and every
measurable subset E ⊆ Q

w(E)

w(Q)
≤ ‖w‖RHs′

( |E|
|Q|

) 1
s

(5.58)

Indeed, for s′ <∞ one can write

w(E)

w(Q)
≤ |Q|
w(Q)

(
−
∫

Q
ws
′
) 1
s′
( |E|
|Q|

) 1
s

≤ ‖w‖RHs′
( |E|
|Q|

) 1
s

while for s′ =∞ the proof is even more elementary.

Lemma 5.8 ([6]). Let F,G be positive measurable functions on Rn, 1 <
q ≤ ∞, a ≥ 1, 1 ≤ s < ∞, w ∈ RHs′. Assume that for every ball B there
exist GB, HB positive functions such that

F ≤ GB +HB a.e. on B, (5.59)

‖HB‖Lq(B) ≤ a(MF (x) +G(y)) · |B|
1
q for every x, y ∈ B, (5.60)

‖GB‖L1(B) ≤ G(x) · |B| for every x ∈ B. (5.61)
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Then for all λ > 0, 0 < γ < 1, K ≥ 2n+2a, we have, with C0 = 26(n+q)(c1 +
cq),

w{MF > Kλ, G ≤ γλ} ≤ C0‖w‖RHs′ ·
(
γ

K
+

aq

Kq

) 1
s

·w{MF > λ}. (5.62)

As a consequence, if F is L1 and 1 ≤ p < q/s,

‖MF‖Lp(w) ≤ C1‖G‖Lp(w), C1 =
[
(8C0‖w‖RHs′ + 2n+3)ap

] s
1−ps/q .

(5.63)

3.2. Proof of Theorem 5.3. Assume for the moment w ∈ RHs′ for
some 1 ≤ s < ∞; at the end of the proof we shall optimize the choice in
order to handle a generic weight in Ar. Moreover, fix a ν > 1 so large that
σ > n/ν i.e. ν > n/σ.

Given any test function f , set F (x) = |g(
√
H)f |ν , which is in L1 by

Theorem 5.2. Then, for any ball B define, with ψr(s) = ψ(rs),

GB = 2ν |g(
√
H)(1− ψr(

√
H))f |ν , HB = 2ν |g(

√
H)ψr(

√
H)f |ν

where r is the radius of the ball B. We will show now that with these
choices the assumptions of the maximal lemma are satisfied. Clearly we
have F ≤ GB +HB a.e. on Rn.

We check that assumption (5.60) holds with q = ∞. For any z ∈ B we

have, writing for short T = g(
√
H),

|Tψr(
√
H)f(z)| ≤

∫
|ψr(
√
H)(z, y)| · |Tf(y)|dy = I.

We can apply Lemma 5.7 with m = n+1; writing Bj = 2jB, j ≥ 0, B−1 = ∅,
we have

I ≤ C(n, ψ)K2
0r
−n∑

j≥0

∫

Bj\Bj−1

〈
z − y
r

〉−n−1

|Tf(y)|dy

and using 〈|z − y|/r〉 ≥ 2j−1 and |Bj | = 2njrnωn, we obtain

I ≤ C(n, ψ)K2
02n+1ωn

∑

j≥0

2−j−
∫

Bj

|Tf(y)|dy.

Now if x ∈ B and B′ = B(x, r), B′j = 2jB′, we have

−
∫

Bj

|Tf(y)|dy ≤ c(n)

(
−
∫

B′j+1

|Tf(y)|νdy
) 1

ν

≤ c(n) ·MF (x)1/ν

and we obtain (5.60) with q =∞:

|HB(z)| = 2ν |Tψr(
√
H)f(z)|ν ≤ aMF (x), a = c(n, ψ, ν)K2ν

0 . (5.64)

Consider now the remaining term, which we split as

GB = 2ν |g(
√
H)(1− ψr(

√
H))f |ν ≤ 4ν(IIν + IIIν)

where

II = |g(
√
H)(1− ψr(

√
H))f1|, III = |g(

√
H)(1− ψr(

√
H))f2|,

f1 = f · 14B, f2 = f · 1Rn\4B.
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For the piece II we use Theorem 5.2 (recall that we can take ν >> 1):

‖II‖Lν(B) ≤ ν · c(n, σ)K4
0 (1 + µ+ ‖g‖2L∞)‖(1− ψr(

√
H))f1‖Lν .

Notice that

‖(1− ψr(
√
H))f1‖Lν ≤ ‖ψr(

√
H)f1‖Lν + ‖f1‖Lν

and using (5.46) with m = n+ 1 we see that

‖ψr(
√
H)f1‖Lν ≤ c(n, ψ)K2

0‖f1‖Lν
which implies

‖II‖Lν(B) ≤ cK6
0 (1 + µ+ ‖g‖2L∞)‖f1‖Lν .

Estimating with the maximal function we obtain

‖II‖Lν(B) ≤ c(n, σ, ψ)K6
0 (1 + µ+ ‖g‖2L∞) · rn/ν ·M(|f |ν)(x)1/ν ∀x ∈ B.

(5.65)
We can now focus on the piece III; we write

1− ψ(s) =
∑

k≤0

φ(2ks) for s > 0

and hence, using the notation lg r = log2 r,

1− ψr(s) = 1− ψ(rs) =
∑

k≤0

φ(2krs) ≡
∑

k≤0

φ(2k+lg rs) for s > 0

which implies

g(
√
H)(1− ψr(

√
H)) =

∑

k≤0

gk+lg r(
√
H), gj(s) = g(s)φ(2js).

Denote by ak(x, y) the kernel of gk+lg r(
√
H), then we have (Bj = 2jB)

‖gk+lg r(
√
H)f2‖L2(B) ≤

∑

j≥3

∥∥∥∥∥

∫

Bj\Bj−1

|ak(z, y)f2(y)|dy
∥∥∥∥∥
L2
z(B)

.

Now by Hölder’s inequality
∥∥∥∥
∫

A
|a(z, y)f(y)|dy

∥∥∥∥
Lνz (B)

≤ C‖f‖Lν(A)

where

C = max

{
sup
z∈A

(∫

B
|a(z, y)|dy

)
, sup
z∈B

(∫

A
|a(z, y)|dy

)}
. (5.66)

Moreover, Lemma 5.6 and assumption (5.9) ensure that

‖ak‖〈2kr−1x〉σ ≤ c(n, σ)K0µ. (5.67)

We notice that for z ∈ B and y ∈ Bj \Bj−1, j ≥ 2, k ≤ 0, one has

|z − y|
2kr

≥ 2j−k−2 ≥ 1 =⇒
〈
z − y
2kr

〉σ
≥ 4−σ2σ(j−k)

which together with (5.67) implies for (5.66)

C ≤ c(n, σ)K0µ · 2σ(k−j)
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amd hence∥∥∥∥∥

∫

Bj\Bj−1

|ak(z, y)f2(y)|dy
∥∥∥∥∥
Lνz (B)

≤ c(n, σ)K0µ · 2σ(k−j)‖f‖Lν(Bj\Bj−1).

Now let x ∈ B arbitrary and B′ = B(x, r), B′j = 2jB, then

‖f‖Lν(Bj\Bj−1) ≤ ‖f‖Lν(B′j+1) ≤ cn2nj/νrn/ν ·M(|f |ν)(x)1/ν ,

thus we have proved for all x ∈ B
∥∥∥∥∥

∫

Bj\Bj−1

|ak(z, y)f2(y)|dy
∥∥∥∥∥
Lνz (B)

≤ c(n, σ)K0µ·2σ(k−j)2nj/νrn/νM(|f |ν)(x)1/ν .

Summing over j ≥ 3, since σ > n/ν we get

‖gk+lg r(
√
H)f2‖L2(B) ≤ c(n, σ)K0µ · 2kσrn/ν ·M(|f |ν)(x)1/ν . (5.68)

and summing over k ≤ 0, and recalling (5.65), we conclude

‖GB‖L1(B) ≤4ν‖II‖νLν(B) + 4ν‖III‖νLν(B)

≤ννc(n, σ)νKν
0 (1 + µ+ ‖g‖2L∞)ν ·M(|f |ν)(x) · |B|.

(5.69)

This proves (5.61) with the choice

G(x) = ννc(n, σ)νKν
0 (1 + µ+ ‖g‖2L∞)ν ·M(|f |ν)(x) (5.70)

We are finally in position to apply Lemma 5.8 and we obtain, for all
1 ≤ p <∞, and any weight w ∈ RHs′ for some 1 ≤ s <∞,

‖F‖Lp(w) ≤ ‖MF‖Lp(w) ≤ C1‖G‖Lp(w) (5.71)

where in our case

C1 = c(n, σ, ψ, p, s)(‖w‖RHs′ + 1)sK2psν
0 ,

that is to say

‖g(
√
H)f‖νLpν(w) ≤ C2‖M(|f |ν)‖Lp(w) (5.72)

where

C2 = ννc(n, σ, ψ, p, s)ν(‖w‖RHs′ + 1)sKν+2psν
0 (1 + µ+ ‖g‖2L∞)ν

Now, assume the weight is in some Ap; recalling that ∪1≤p<∞Ap =
∪1<q≤∞RHq, we have also w ∈ RHs′ for some 1 ≤ s < ∞, and all the
previous computations apply. Since the maximal operator is bounded on
Lp(w), we deduce from (5.72)

‖g(
√
H)f‖Lpν(w) ≤ C3‖f‖Lpν(w)

where

C3 = ν · c(n, σ, ψ, p, w)K1+2p2

0 (1 + µ+ ‖g‖2L∞).

Let q = νp; since we can take ν > n/σ (provided ν > 1) arbitrarily large,
we see that we have proved (5.18) for all q > max{p, pn/σ}, with a constant

q

p
·c(n, σ, ψ, p, w)K1+2p2

0 (1+µ+‖g‖2L∞) = c′(n, σ, ψ, p, w)K1+2p2

0 (1+µ+‖g‖2L∞)q

as claimed.
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4. The electromagnetic laplacian

In this chapter we verify that an electromagnetic Laplacian

H = (i∇−A(x))2 + V (x)

satisfies Assumption (H), under suitable (very weak) regularity and integra-
bility conditions on the coefficients. We recall that a measurable function V
on Rn is in the Kato class when

sup
x

lim
r↓0

∫

|x−y|<r

|V (y)|
|x− y|n−2

dy, (n ≥ 3)

while the Kato norm is defined by

‖V ‖K = sup
x

∫ |V (y)|
|x− y|n−2

dy (n ≥ 3)

(replace |x− y|2−n with log |x− y| in dimension n = 2).
Our conditions will be based on the following result, which is obtained

by combining an heat kernel estimate from [27] with Simon’s diamagnetic
inequality:

Proposition 5.9. Consider the Schrödinger operator H = (i∇−A(x))2+
V (x) on L2(Rn), n ≥ 3. Assume that A ∈ L2

loc(Rn,Rn), moreover the posi-
tive and negative parts V± of V satisfy

V+ is of Kato class, (5.73)

‖V−‖K < cn = πn/2/Γ (n/2− 1) . (5.74)

Then H has a unioque nonnegative selfadjoint extension, e−tH is an integral
operator whose kernel satisfies the pointwise estimate

|e−tH(x, y)| ≤ K0

tn/2
e−|x−y|

2/(8t), K0 =
(2π)−n/2

1− ‖V−‖K/cn
. (5.75)

Proof. Simon’s diamagnetic pontwise inequality (see Theorem B.13.2
in [67]), which holds under weaker assumptions, states that for any test
function φ(x),

|et[(∇−iA(x))2−V ]φ| ≤ et(∆−V )|φ|.
By choosing a delta sequence φε of test functions, this implies an analogous
pointwise inequality for the corresponding heat kernels. Now we can apply
the second part of Proposition 5.1 in [27] which gives precisely estimate

(5.75) for the heat kernel of e−t(∆−V ) under (5.73), (5.74). �

5. Fractional powers: proof of Corollary 5.4

Theorem 5.4 will be proved via Stein-Weiss interpolation for a suitable
analytic family of operators We need the following lemma:

Lemma 5.10. Assume n ≥ 3, 1 < p < n/2, and let w(x) be a weight of
class Ap. Then the operator H = (i∇−A)2 + V satisfies the estimate

‖Hg‖Lp(w) ≤ c(n, p, w) · (‖|A|2− i∇ ·A+V ‖Ln/2 + ‖A‖Ln + 1)‖(−∆)g‖Lp(w)

(5.76)
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Proof. Setting w = vp, the right hand side of (5.76) can be written
‖vHg‖Lp . If we expand the operator H and use Hölder’s inequality for
Lorentz spaces we find

‖vHg‖Lp ≤ ‖|A|2 − i∇ ·A+ V ‖Ln/2,∞‖vg‖Lp∗∗,p + 2‖A‖Ln,∞‖v∇g‖Lp∗,p
where

p∗ =
np

n− p, p∗∗ =
np

n− 2p
.

We can use now the weighted version of Sobolev embeddings proved by
Muckenhopt and Wheeden (see [56] and [7]). Recall also the definition of
the reverse Hölder class (5.56) – (5.57).

Theorem 5.11. For 1 < p ≤ q <∞ we have

‖v(−∆)−α/2g‖Lq ≤ C‖vg‖Lp

provided
α

n
=

1

p
− 1

q
and v ∈ A2− 1

p
∩RHq.

By real interpolation the preceding estimates extend easily to Lorentz
spaces as follows

‖v(−∆)−α/2g‖Lq,p ≤ C‖vg‖Lp , (5.77)

under the same conditions on p, q, w. Notice that this result for α =
1, 2, combined with the boundedness of the Riesz operator ∇(−∆)−1/2 in
weighted spaces, gives precisely the estimates we need:

‖vg‖Lp∗∗,p ≤ C‖v(−∆)g‖Lp , ‖v∇g‖Lp∗,p ≤ C‖v(−∆)g‖Lp
as soon as the weights are in the appropriate classes. In order to apply
Theorem 5.11 we must require that

v = w1/p ∈ A2− 1
p
∩RH np

n−p
∩RH np

n−2p

We now use a few basic properties of weighted spaces and reverse Hölder
classes (for more details see [37]). First of all, for 1 ≤ r ≤ ∞ and 1 < q <∞
one has

v ∈ Ar ∩RHq ⇔ vq ∈ Aq(r−1)+1.

Setting q = p = q(r − 1) + 1, which implies r = 2− 1/p, we obtain

v ∈ A2− 1
p
∩RHp ⇔ w = vp ∈ Ap.

Since the classes RHq are decreasing in q, i.e.

RH∞ ⊂ RHq ⊂ RHp, for 1 < p ≤ q ≤ ∞
and p < p∗ < p∗∗, all conditions on v collapse to w ∈ Ap and the proof is
concluded. �

Now fix 1 < p0 <∞, 1 < p1 < n/2, and two weights w0 ∈ Ap0 , w1 ∈ Ap1 ,
and consider the family of operators for z in the strip 0 ≤ <z ≤ 1

Tz = wzH
z(−∆)−zw−1

z , w
1
pz
z = w

1−z
p0

0 w
z
p1
1 ,

1

pz
=

1− z
p0

+
z

p1
.
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We follow here the standard theory of [71] (see Theorem V.4.1), and in
particular the operators Tz are defined on simple functions φ belonging to
L1(Rn), with values into measurable functions. Moreover, we have

|T1+iyφ| = w
1
p1
1 |H iyH(−∆)(−∆)−iyw

− 1
p1

1 (w
1/p0
0 w

−1/p1
1 )iyφ|.

The function g(s) = s2iy satisfies µσ(g) ≤ C(1 + |y|)σ < ∞ for all σ (see
Remark 5.4), so choosing e.g. σ = n+ 1, by the weighted estimate (5.18) we
have that H iy is bounded on Lq(w) for all w ∈ Ap and all q ≥ p (actually
q > p − ε as per Remark 5.5). This applies also to the special case of the
operator (−∆)iy. Combining (5.18) with Lemma 5.10, we deduce

‖T1+iyφ‖Lp1 ≤ c(n, p1, w1)K
1+2p21
0 C(A, V )(1 + |y|)n+1‖φ‖Lp1 ,

where

C(A, V ) = ‖|A|2 − i∇ ·A+ V ‖Ln/2 + ‖A‖Ln + 1. (5.78)

Notice in particular the polynomial growth in y which ensures that Tz is an
admissible family in the sense of [71]. On the other hand we have

|Tiyφ| = w
1
p0
0 |H iy(−∆)−iyw

− 1
p0

0 (w
1/p0
0 w

−1/p1
1 )iyφ|

and by a similar argument we deduce

‖Tiyφ‖Lp0 ≤ c(n, ε, p0, w0)K
1+2p20
0 (1 + |y|)n‖φ‖Lp0 .

Thus we are in position to apply complex interpolation for the family Tz,
and we conclude that, for 0 < θ < 1,

‖Tθφ‖Lpθ ≤ c(n, pj , wj)K2(1+p20+p21)
0 C(A, V )θ‖φ‖Lpθ

which is equivalent to

‖Hθφ‖Lpθ (wθ) ≤ c(n, ε, pj , wj)K2(1+p20+p21)
0 C(A, V )θ‖(−∆)θφ‖Lpθ (wθ).

Notice that
1

pθ
=

1− θ
p0

+
θ

p1
(5.79)

and since 1 < p0 < ∞, 1 < p1 < n/2 are arbitrary, pθ can be any index in
the range 1 < p < n/(2θ).

Summing up, we have proved inequality (5.28) for all choices of 0 < θ <
1, 1 < p < n/(2θ) and all weights w(x) which can be represented in the form

w = w
pθ

1−θ
p0

0 w
pθ

θ
p1

1 , (5.80)

with wj ∈ Apj . The indices p0, p1 must be such that

1

p
=

1− θ
p0

+
θ

p1

and of course 1 < p0 < ∞, 1 < p1 < n/2. It is clear that the weights
of the form (5.80) belong to Ap (using e.g. the characterization in therms
of maximal estimates). Conversely, it is not difficult to see that any Ap
weight can be represented in the form (5.80). Indeed, recall the following
characterization of Muckenhoupt weights (see [69]): w ∈ Ap, 1 ≤ p <∞, if
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and only if there exist two weights a(x), b(x) ∈ A1 with w = a · b1−p. Then
if we choose

w0(x) = a(x)b(x)1−p0 , w1(x) = a(x)b(x)1−p1

we see that (5.80) is satisfied, and of course wj ∈ Apj . This concludes the
proof.

5.1. Proof of Lemma 5.8. The following proof follows [6] closely, with
some minor modifications and simplifcations as explained at the beginning
of chapter 3. We denote by 1A the characteristic function of a set A, and,
given a ball B, by mB the ball with the same center and radius multiplied
by a factor m. Consider the sets

Uλ = {MF > Kλ, G ≤ γλ} ⊆ Eλ = {MF > λ}.
Eλ is open and we can decompose it in a sequence of disjoint Whitney cubes
E =

⋃
j Qj with 4Qj ∩ (Rn \ Eλ) 6= ∅, so that

∃xj ∈ 4Qj with MF (xj) ≤ λ. (5.81)

To each Qj we associate a ball Bj with the same center as Qj and radius
equal to 16 times the side of Qj . Clearly we have also Uλ =

⋃
j Eλ ∩Qj . In

the following we shall discard the cubes such that Uλ ∩ Qj = ∅, and select
an arbitrary yj ∈ Uλ ∩Qj , so that

yj ∈ Qj , MF (yj) > Kλ, G(yj) ≤ γλ. (5.82)

We remark that from the above choices it follows

|{MF > Kλ} ∩Qj | ≤ |{M(F1Bj ) > Kλ/2}|. (5.83)

Indeed, take any point x ∈ {MF > λ} ∩Qj and a ball B containing x with∫
B |F | > Kλ|B|. If B ⊆ Bj we have

∫

Q∩Bj
|F | =

∫

B
|F | > Kλ|B| =⇒ M(F1Bj )(x) > Kλ;

if on the other hand B 6⊆ Bj , it is easy to chack that 2B must contain xj
and this implies (recalling that MF (xj) ≤ λ)

∫

B\Bj
|F | ≤

∫

2B
|F | ≤ λ|2B|

so that, using K ≥ 2n+2a ≥ 2n+2,
∫

B∩Bj
|F | > Kλ|B| − |2B|λ ≥ (K − 2n) · |B ∩Bj | · λ ≥

Kλ

2
· |B ∩Bj |.

In order to prove inequality (5.62), we rewrite it as

w(Uλ) ≤ ‖w‖RHs′C0 ·
(
γ

K
+

aq

Kq

) 1
s

· w(Eλ)

which is implied by

w(Uλ ∩Qj) ≤ ‖w‖RHs′C0 ·
(
γ

K
+

aq

Kq

) 1
s

· w(Qj) for every j.
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Thus, recalling (5.58), we see that it is sufficient to prove

|Uλ ∩Qj | ≤ C0 ·
(
γ

K
+

aq

Kq

)
|Qj | for every j. (5.84)

Now, by (5.83), we can write

|Uλ ∩Qj | ≤ |{MF > Kλ} ∩Qj | ≤ |{M(F1Bj) > Kλ/2}|
and using F1Bj ≤ GBj1Bj +HBj1Bj we obtain

|Uλ ∩Qj | ≤ |{M(GBj1Bj ) > Kλ/4}|+ |{M(HBj1Bj ) > Kλ/4}| = I + II.
(5.85)

To the term I we apply the weak bound (5.55) for q = 1:

|{M(GBj1Bj ) > Kλ/4}| ≤ 4c1

Kλ

∫

Bj

|GBj | ≤
4c1

Kλ
|Bj |G(yj) ≤

25n+2c1

K
|Qj |γ

(5.86)
where we used (5.61), (5.82) and |Bj | ≤ 25n|Qj |.

Consider then the term II in (5.85). When q = ∞ we can write by
(5.60), (5.81), (5.82) and K ≥ 2n+1a

‖M(HBj1Bj )‖L∞ ≤ ‖HBj1Bj‖L∞ ≤ a(MF (xj) +MG(yj)) ≤ 2aλ ≤ Kλ

4

so that II ≡ 0. When q < ∞, we use the weak (q, q) bound (5.55), (5.60)
and (5.81) to obtain

II ≤ 4qcq
(Kλ)q

‖HBj‖qLq(Bj) ≤
4qcq

(Kλ)q
·|Bj |·aq[MF (xj)+G(yj)]

q ≤ 25(n+q)cqa
q

Kq
|Qj |

which together with (5.86) implies (5.84) and concludes the proof of (5.62).
We now prove (5.63); we can assume that the right hand side is finite.

First we choose K large enough and γ small enough that

C0 ·
(
γ

K
+

aq

Kq

) 1
s

· ‖w‖RHs′ ≤
1

2Kp
;

to obtain this, it is sufficient to set

Kq−ps = 4s(C0‖w‖RHs′ + 2n)saq, γ = 4−s(C0‖w‖RHs′ + 2n)−s ·K1−ps.
(5.87)

With this choice, (5.62) implies (after a rescaling λ→ λ/K)

w{MF > λ} ≤ 1

2Kp
w{MF > λ/K}+ w{MG > γλ/K}. (5.88)

Now define, for j ∈ Z,

cj =

∫ Kj+1

Kj

pλpw{MF > λ}dλ
λ
, dj =

∫ γKj

γKj−1

pλpw{MG > λ}dλ
λ
.

Multiplying (5.88) by pλp and integrating in dλ/λ we obtain that cj , dj are
finite and satisfy

cj ≤
1

2
cj−1 +

(
K

γ

)p
dj . (5.89)
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Summing from −N to N , N > 0, we have, with C ′ = (K/γ)p,

N∑

−N
cj ≤

1

2

N−1∑

−N−1

cj + C ′
N∑

−N
dj ≤

1

2

N∑

−N
cj +

1

2
c−N−1 + C ′

N∑

−N
dj

and hence
N∑

−N
cj ≤ c−N−1 + 2C ′

N∑

−N
dj =⇒

+∞∑

−∞
cj ≤ lim sup

j→−∞
cj + 2C ′

+∞∑

−∞
dj .

If we can show that cj is uniformly bounded for j < 0, this implies that the
series in cj converges and hence the limsup is actually 0, implying

+∞∑

−∞
cj ≤ 2

(
K

γ

)p +∞∑

−∞
dj

which gives (5.63) and concludes the proof. The bound on cj is easy if the
weight w is an L∞ function: using the weak (1, 1) estimate for MF we have

cj ≤ ‖w‖L∞‖F‖L1

∫ Kj

Kj−1

pλp−1dλ

which is bounded uniformly for j < 0 since K > 1 and p ≥ 1. If w is not in
L∞, we first prove the estimate for the truncated weight wR = inf{w,R} for
all R > 0, then observe that the constant in the estimate depends only on the
quantity ‖wR‖RHs′ , which is bounded uniformly in R ≥ 1 since w ∈ RHs′ ,
and does not depend on the L∞ norm of the weight. Letting R → ∞ we
obtain (5.63).
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équation de Dirac non linéaire. Portugal. Math., 46(suppl.):553–565, 1989. Workshop
on Hyperbolic Systems and Mathematical Physics (Lisbon, 1988).

[56] Benjamin Muckenhoupt and Richard Wheeden. Weighted norm inequalities for frac-
tional integrals. Trans. Amer. Math. Soc., 192:261–274, 1974.

[57] Branko Najman. The nonrelativistic limit of the nonlinear Dirac equation. Ann. Inst.
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