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Introduction

In their famous paper [15] Kazhdan and Lusztig defined for any Coxeter group

W a family of polynomials indexed by pairs of elements of W, which have be-

come known as Kazhdan-Lusztig polynomials. These polynomials are related

to different areas of mathematics such as Schubert varieties, representation the-

ory, Verma module theory, and combinatorics. In order to prove the existence

of these polynomials, Kazhdan and Lusztig used another family of polynomials

known as R-polynomials of W. Their importance stems mainly from the fact

that knowing them is equivalent to knowing the Kazhdan-Lusztig polynomi-

als. These polynomials are intimately related to the Bruhat order of W. This

partial order gives to the Coxeter group the structure of a poset and on this

structure, we can define a special matching. Our purpose in this work is to

investigate a connection between special matchings and the top coefficients of

Kazhdan-Lusztig polynomials:

µ(u, v) :=

{
[q

l(u,v)−1
2 ]Pu,v(q) if l(u, v) ≡ 1mod2,

0 otherwise.

There are many recent results about this function. Here, we list the most

important ones:

• In [18] Lusztig computed this function for the affine Weyl group of type

B̃2.

• MacLarnan and Warrington in [21] showed that in Sn µ(u, v) = 0, 1 is

not true for n ≥ 10.

• Xi showed in [25] that µ(u, v) ≤ 1 if u, v ∈ Sn and a(u) < a(v) (where

’a’ is the a-function on W defined by Lusztig in [18]).

• Scott and Xi in [22] showed that for elements in the affine Weyl group

of type Ãn µ(u, v) = n+ 2 if n ≥ 4.



• Jones showed in [14] that µ(u, v) ≤ 1 when v is a Deodhar element of a

finite Weyl group.

• Marietti in [20] find all the Boolean element in a linear Coxeter group

such that µ(u, v) 6= 0.

In recent years, there have also been many mathematicians who have studied

the connection between special matchings and Kazhadan-Lusztig polynomials,

but the most important result is due to Brenti, Caselli and Marietti which,

using the fact that any lower poset [e, v] (for v ∈ W ) has a special matching,

show the following.

Theorem 0.0.1 (F. Brenti - F.Caselli - M. Marietti). Let v ∈ W and M a

special matching of [e, v]. Then:

Ru,v(q) = qcRM(u),M(v)(q) + (qc − 1)Ru,M(v)(q),

for all u ≤ v where c = 1 if M(u) ⊲ u and c = 0 otherwise.

Theorem 0.0.2 (F. Brenti - F.Caselli - M. Marietti). Let u, v ∈ W , u < v

and M a special matching of [e, v]. Then:

Pu,v(q) = q1−cPM(u),M(v)(q) + qcPu,M(v)(q)−
∑

z:M(z)⊳z

µ(z,M(v))q
l(z,v)

2 Pu,z(q),

where c = 1 if M(u) ⊲ u and c = 0 otherwise.

The previous Theorems open two important questions:

• Can be extended the last results to any interval [u, v] (with u, v ∈ W )

that has a special matching?

• Is there a criterion to say if a poset has a special matching or not?
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• Can we use special matchings to prove the combinatorial invariance Con-

jecture?

Conjecture 0.0.3. Let u, v ∈ Sn and x, y ∈ Sm then:

[u, v] ∼= [x, y] ⇒ Pu,v(q) = Px,y(q).

In my work, beginning with the fact that it’s well known that µ(u, v) is

often the most important object in the study of Kazhdan-Lusztig polynomials,

I studied the previous questions by studying the following Conjecture due to

Brenti in [4]:

Conjecture 0.0.4 (F. Brenti). Let u, v ∈ Sn with [u, v] irreducible, l(u, v) > 1

and l(u, v) odd then:

µ(u, v) = 0 ⇔ [u, v] have a special matching.

The structure of the thesis is as follows. In the first part (Chapter 1) we

collect some basic definitions and results about graphs and posets, Coxeter

groups, Kazhdan-Lusztig polynomials and special matchings that will be used

in the rest of the work. In it we treat the basic examples (using the symmetric

group), which will allow the reader to gain some combinatorial intuition in

the new object. In the second part (Chapter 2) we disprove one direction of

Conjecture 0.0.2 and propose the following new Conjecture which generalizes

one direction of Brenti’s Conjecture 0.0.4.

Conjecture 0.0.5 (C. Bosca). Let u, v ∈ W with l(u, v) > 1 then:

[u, v] has a special matching ⇒ µ(u, v) = 0.

The third part (Chapter 3) is the heart of the thesis. In it we prove the

previous Conjecture on the following cases:

• element u, v in Sn such that u ≤ v and DR(v) ⊆ {1, n− 1}.

• Grasmannian elements in SJ
n (quotient set) where J = S \ {(i, i+ 1)}.

• Boolean element in a linear Coxeter group.
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In this section, we collect the background used in the rest of this work.

Notation

Here is a list of notation used in the sequel

Z the set of integers

N the set of natural numbers

Q,R the set of rational and real numbers

[n] the set {1, 2, . . . , n}
[a, b] the set {c ∈ Z : a ≤ c ≤ b}
[±n] the set [−n, n] \ {0}
|S| the cardinality of the set S

S∗ the set of words with letter from S

R[q] ring of polynomial with coefficients in R

[qi]P the coefficient of qi in the polynomial P

{s1, . . . , sr}< the set {s1, . . . , sr} where s1 < . . . < sr

odd(a1, . . . , ar) is the number of odd integers in the set {a1, . . . , ar}
where ai ∈ Z for all i ∈ [r]

e the identity element of the group W

We denote by Sn the symmetric group, that is the set of all bijection π : [n] →
[n]. If σ ∈ Sn we write σ = σ1 . . . σn mean that σ(i) = σi. In some cases,

we will be writing σ in disjoint cycle form. So, for example, the permutation

σ = 23451 can be also written in cycle form as σ = (1, 2, 3, 4, 5). Let u, v ∈ Sn,

we denote with uv the composition of function u ◦ v.
Let v ∈ Sn and u ∈ Sm (m ≤ n). We say that v is u-avoiding if there are no

1 ≤ ii < i2 < . . . < im ≤ n if:

v(iu(1)) < v(iu(2)) < . . . < v(iu(m)).



The Symmetric group plays a central role throughout the paper and, in some

sense, is the archetypal example of a Coxeter group.
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1 Chapter I: Notation and preliminaries

1.1 Graphs and Posets

By a graph G := (V,E) we denote:

• V a set of nodes or vertices.

• E ⊆
(
V
2

)
the set of edges.

A path in G is a sequence (x1, . . . , xr) ∈ V r such that {xi, xi+1} ∈ E (where

i ∈ [r − 1]). A graph is connected if for all x, y ∈ V there exists a path that

connects x with y. By a digraph (directed graph) D := (V,A) we denote:

• V a set of nodes or vertices.

• A ⊆ V 2 the set of directed edges.

When we have a pair of elements (x, y) ∈ A we write x → y. A directed path

in a directed graph is a sequence (x1, . . . , xr) ∈ V r such that x1 → . . . → xr,

r − 1 is called the length of the path (x1, . . . , xr).

A poset P (partially ordered set) is a set together with a partial order relation

≤ and is denoted usually as (P,≤) (where the order relation is suppressed

from the notation when it is clear from the context). If Q ⊆ P then Q has the

structure of poset with the order relation induced by P .

Two elements x, y ∈ P are said to be comparable if x ≤ y or y ≤ x and

incomparable otherwise. Given x, y ∈ P we define the interval:

[x, y] := {z ∈ P : x ≤ z ≤ y}.

An interval [x, y] is called irreducible in P if there are no a, b, c, d ∈ P such

that:

[x, y] = [a, b]× [c, d],

where with ”×” we denote the cartesian product.

We say that z covers t (or also that t is covered by z)in [x, y], and we write
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z ⊲ t (as well as t ⊲ z), if z, t ∈ [x, y] and [t, z] = {t, z}.
The standard way of depicting a finite poset P is to draw its Hasse diagram.

This is the graph with:

• vertex set V := P .

• edges set E := {{z, y} ∈ P 2 : z ⊳ t or t ⊳ zt}.

Given a poset [x, y] we define the coatom and atom set as follows:

c(x, y) := {z ∈ [x, y] : z ⊳ y},

a(x, y) := {z ∈ [x, y] : x ⊳ z}.

For these two sets and their connection with Kazhdan-Lusztig polynomials and

Bruhat order in the symmetric group see [7], [1] .

A sequence of elements of P (x0, . . . , xk) is called a chain if x0 < . . . < xk and

k is its length. The rank of P is the maxinum length of a chain in P . If all

maximal chains have the same length, then P is called pure. If P has a bottom

element 0̂ (an element such that 0̂ ≤ x for all x ∈ P ) and every interval [0̂, x]

is pure, then P is graded. P has a top element 1̂ if x ≤ 1̂ for each x ∈ P . If

P has a bottom and top element, then P is bounded.

In the sequel, we use the following rank function:

r : P −→ [0, k],

where r(x) is the rank of the subposet {y ∈ P : y ≤ x} and decompose P into

rank levels:

Pi := {x ∈ P : r(x) = i}.

If the rank function is defined for a graded poset (or for a pure poset) and if

|Pi| < ∞ then we can define the rank generating function:

∑

i≥0

|Pi|qi.
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A map f : P → Q of posets is order-preserving (order-reversing) if x ≤ y

implies f(x) ≤ f(y) (f(x) ≥ f(y)). Two posets P and Q are isomorphic

(and we denote this by P ∼= Q) if there exists an order-preserving function

f : P → Q such that f is a bijection and that f−1 is also order-preserving.

φ : P → P is called an automorphism (anti-automorphism) if φ is a bijection

and φ,φ−1 an order preserving (order reversing).

Example 1.1.1. Sn with the order relation:

u ≤ v

m

u ≤ v ⇔ u = (a1, b1) · · · (ar, br)v,

l(u) < l(u(a1, b1)) < . . . < l(u(a1, b1) · · · (ar, br)) = l(v),

where a1, b1, . . . , ar, br ∈ [n] has a structure of poset. A permutation u is

covered by v if u is obtained from v by a transposition (a, b) ∈ Sn such that

v(a) > v(b) and a < b. In figure 1.1.1 we show the Hasse diagram of the poset

[1234, 4321]. In this example, we have that:

c(u, v) = {4312, 3421, 4231},

a(u, v) = {1243, 2134, 1324},

while the rank generating function is:

r(1234, 4321) = 1 + 3q + 5q2 + 6q3 + 5q4 + 3q5 + q6.



1.1 Graphs and Posets

Figure 1.1.1: [1234, 4321].
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1.2 Coxeter systems and Bruhat order

Let S be a finite set and m : S × S → Z+ ∪ {∞} be such that:

• m is symmetric: m(s, t) = m(t, s) ∀s, t ∈ S;

• m(s, t) ≥ 2 ∀s, t ∈ S, s 6= t;

• m(s, s) = 1 ∀s ∈ S.

The Coxeter group associated to m is defined as:

W :=
Fs

N
,

where Fs is the free group generated by S and N is the normal subgroup

generated by:

{(st)m(s,t) : s, t ∈ S,m(s, t) < ∞}.

Observation 1.2.1. m can be represented by a Coxeter graph G := (V,E)

where:

• the vertex set is the set S,

• the edge set is the set of unordered pairs {s, t} such that m(s, t) ≥ 3,

• the edges with m(s, t) ≥ 4 are labelled by m(s, t).

Example 1.2.2. Given the matrix:




1 3 2

3 1 3

2 3 1




then its diagram is the following:
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Figure 1.2.1.

If W is a group defined as above, then the pair (W,S) is called a Coxeter

system, W a Coxeter group and S the set of Coxeter generators. We say that

a Coxeter system (W,S) is irreducible if the Coxeter graph is connected. The

cardinality of S is called the rank of W .

In a Coxeter groupW for each w ∈ W there exist s1, . . . , sr ∈ S (not necessarily

unique) such that:

w = s1 · · · sr.

The length function of an element w ∈ W is defined as the minimum number

of generators necessary to express w:

l(w) := min{r ∈ N : ∃s1, . . . , sr such that w = s1 · · · sr},

with the advice that l(e) = 0.

When an element v ∈ W is expressed as the product of l(v) generators, then

that expression is called a reduced expression for v.

Example 1.2.3. It can bee seen (see, e.g, [2]) that for Sn the length function

of a permutation v ∈ Sn is the number of inversions of v:

l(v) = |{(i, j) ∈ [n]2 : i < j, v(i) > v(j)}|.

Here is a simply property:

Proposition 1.2.4. Let u, v ∈ W then:

• l(u) = l(u−1),

• l(uv) ≤ l(u) + l(v),
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• l(uv) ≥ l(u)− l(v),

• if s ∈ S then:

l(v)− 1 ≤ l(vs) ≤ l(v) + 1.

Proof. (l(u) = l(u−1)l(u) = l(u−1)l(u) = l(u−1)): if u = s1 · · · sr is a reduced expression then also u−1 =

sr · · · s1 is a reduced expression.

(l(uv) ≤ l(u) + l(v))(l(uv) ≤ l(u) + l(v))(l(uv) ≤ l(u) + l(v)): if u = s1 · · · sr and v = t1 · · · tp are reduced expressions

then:

uv = s1 · · · srt1 · · · tp ⇒ l(uv) ≤ r + p.

(l(uv) ≥ l(u)− l(v)l(uv) ≥ l(u)− l(v)l(uv) ≥ l(u)− l(v)):

l(u) = l(uvv−1) ≤ l(uv) + l(v−1) = l(uv) + l(v).

(l(v)− 1 ≤ l(vs) ≤ l(v) + 1l(v)− 1 ≤ l(vs) ≤ l(v) + 1l(v)− 1 ≤ l(vs) ≤ l(v) + 1): if s ∈ S then:

l(v)− 1 = l(v)− l(s) ≤ l(vs) ≤ l(v) + l(s) = l(v) + 1.

We can now define the following sets:

• the set of reflection T := {wsw−1 : w ∈ W, s ∈ S},

• the right descent set : DR(w) := {s ∈ S : l(ws) < l(w)},

• the left descent set : DL(w) := {s ∈ S : l(sw) < l(w)}.

Example 1.2.5. In the case of Sn (see, e.g, [2]), the set of reflections is the

set of all transposition in Sn:

T = {(a, b) : a, b ∈ [n]},

and given a permutation u ∈ Sn:

DR(u) = {si ∈ S : u(i) > u(i+ 1)}.
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Proposition 1.2.6. Let v ∈ W , with v = s1 · · · sr reduced expression of v

where s1, . . . , sr ∈ S. Let t ∈ T such that:

l(vt) < l(w),

then ∃!1 ≤ i ≤ r such that:

vt = s1 · · · ŝi · · · sr.

Proof. The existence of that i is simply and left to the reader. We prove that

i is unique. Suppose by contradiction that exixts a j > i such that:

wt = s1 · · · ŝi · · · sr = s1 · · · ŝj · · · sr,

then:

si+1 · · · sj = si · · · sj−1,

si+1 · · · sj−1 = si · · · sj .

By this relation we can say that:

si · · · si−1si+1 · · · sj−1sj+1 · · · sr = s1 · · · sr = w.

Then we have find an expression of v such that l(v) ≤ r − 2. This is in

contradiction with v = s1 · · · sr reduced expression of v.

Corollary 1.2.7. For all s ∈ S, the following holds:

• s ∈ DL(v) if and only if some reduced expression of v begins with the

letter s.

• s ∈ DR(v) if and only if some reduced expression of v ends with the letter

s.

Now we define the Bruhat order which plays a fundamental role in all that

follows.
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Definition 1.2.8. Let u, v ∈ W we say that u ≤ v if ∃t1, . . . , tr ∈ T (r ≥ 0)

such that:

ut1 · · · tr = v

and

l(u) < l(ut1) < . . . < l(ut1 · · · tr) = l(v).

Here are some elementary properties:

Observation 1.2.9. if u ≤ v then l(u) ≤ l(v).

Observation 1.2.10. e ≤ v for all v ∈ W .

Observation 1.2.11. if t ∈ T then u ≤ ut if and only if l(u) ≤ l(ut).

The proof of the following fundamental results can be found in [2] Section

2.2.

Proposition 1.2.12. Let u, v ∈ W with u ≤ v and v = s1 · · · sr (s1, . . . , sr ∈
S). Then ∃i1, . . . , iq ∈ [r] with 1 ≤ ii < i2 < . . . < iq ≤ r such that:

u = si1 · · · siq .

Proof. Follow from Proposition 1.2.6.

Proposition 1.2.13. Let w ∈ W , s ∈ S and t ∈ T be such that l(wt) < l(v).

Then wts ≤ w or wts ≤ ws.

Proof. If s = t there is nothing to prove. Suppose that s 6= t, we have to

distinguish two cases:

(Case I: l(wts) = l(wt)− 1l(wts) = l(wt)− 1l(wts) = l(wt)− 1): In that case it is easy to see:

wts ≤ wt ≤ w.

(Case II: l(wts) = l(wt) + 1l(wts) = l(wt) + 1l(wts) = l(wt) + 1): We note that:

wts ≤ ws ⇔ l(wts) ≤ l(ws).
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Suppose by contradiction that l(wts) > l(ws). By Proposition 1.2.6:

wt = s1 · · · sr reduced

⇓

wts = s1 · · · srs reduced,

where s1, . . . , sr ∈ S.

By Proposition 1.2.6 ∃1 ≤ i ≤ r + 1 such that:

ws = s1 · · · ŝi · · · sr+1,

where sr+1 := s. We say that i 6= r + 1 otherwise ws = wt ⇒ s = t. Then:

ws = s1 · · · ŝi · · · srs,

w = s1 · · · ŝi · · · sr,

this imply that l(w) ≤ r − 1 but this is in contradiction with the relation:

r = l(wt) < l(w) ≤ r − 1.

Corollary 1.2.14. Let u, v ∈ W , u ≤ v and s ∈ S. Then us ≤ vs or us ≤ vs

Proof. If u ≤ v then ∃t1, . . . , tr ∈ T such that:

l(u) < l(ut1) < . . . < l(ut1 · · · tr) = l(v).

By the previous Proposition:

us ≤ ut1 or us ≤ ut1s,

then by induction:

ut1s ≤ v or ut1s ≤ vs.
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Theorem 1.2.15 (Lifting Lemma). Let u, v ∈ W with u < v and s ∈ DR(v) \
DR(u). Then us ≤ v and u ≤ vs.

Proof. Let vs = s1 · · · sq a reduced expression. Then:

v = s1 · · · sqs,

is reduced (sq+1 := s). By hypotesis u ≤ v then by Propositon 1.2.12 ∃1 ≤
ii < i2 < . . . < iq ≤ q + 1 such that:

u = si1 · · · sih

and this expression is reduced. Observe that ih 6= q + 1 otherwise u ≮ us.

Then:

1 ≤ ii < i2 < . . . < iq ≤ q ⇒ u = si1 · · · sih ≤ s1 · · · sq = vs

and

us = si1 · · · sihs ≤ s1sq+1 ≤ s1 · · · sqsq+1 = v.

Given S∗ the monoid generated by S and s, s′ ∈ S such that m(s, s′) < ∞
we define:

αs,s′ := ss′ss′ . . . ss′︸ ︷︷ ︸
m(s,s′)−letters

.

Given α, β ∈ S∗ we say that α and β are linked by a braid move if ∃s, s′ ∈ S

such that α is obtained from β by changing a factor αs,s′ to a factor αs′,s.

We say that α is obtained from β by a null move if α is obtained from β by

cancelling a factor ss (s ∈ S).

Theorem 1.2.16 (Tits’ word Theorem). Let v ∈ W . Then:

• each reduced expression of v is obtained from any other reduced expression

of v by a sequence of braid moves.
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• each expression of v is linked to any reduced expressions of v by braid

moves and null moves.

Example 1.2.17. Let S = {a, b, c} and the Coxeter matrix:




1 3 2

3 1 3

2 3 1




Then α = acbab is linked by a braid move to β = cabab that is linked by

a braid move to γ = caaba that is linked by a null move to δ = cba. δ is a

reduced expression of α.

In the rest of this work, we work with finite Coxeter groups. In this case

∃w0 ∈ W (necessarily unique) such that x ≤ w0 for all x ∈ W (see. e.g., [2]).

Proposition 1.2.18. Let W a finite Coxeter group. Then:

• w0w0 = e.

• l(w0w) = l(w0)− l(w) for all w ∈ W .

Proof. (w0w0 = ew0w0 = ew0w0 = e): w0 is the grater element in W so w−1
0 ≤ w0. We know also

that l(w0) = l(w−1
0 ) and then w0 = w−1

0 .

(l(w0w) = l(w0)− l(w)l(w0w) = l(w0)− l(w)l(w0w) = l(w0)− l(w)):

l(w0) = l(w0ww
−1) ≤ l(w0w) + l(w−1) = l(w0w) + l(w)

and then l(w0w) ≥ l(w0)− l(w). We prove now that l(w0w) ≤ l(w0)− l(w) by

induction on l(w0)− l(w).

If l(w0)− l(w) = 0 then it is clear by the previous point.

If l(w0) − l(w) > 0 observing that ∃s ∈ S such that l(ws) > l(w) then by

induction:

l(w0w)− 1 ≤ l(w0ws) ≤ l(w0)− l(ws) = l(w0)− l(w)− 1.
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For finite Coxeter groups, there is an important theorem useful on the

sequel.

Theorem 1.2.19 (M. Dyer). Suppose that (W,S) is finite and [u, v] be a

Bruhat interval of W with l(u, v) = r. Then there exists a reflection subgroup

(W ′, S ′) of rank |S ′| ≤ r and a Bruhat interval [u′, v′] in W ′ such that [u, v] ∼=
[u′, v′].

So the follow corollary holds:

Corollary 1.2.20. Let r ∈ N+. Then up to isomorphism, there are only

finitely many posets that occur as intervals of length r in Bruhat order of finite

Coxeter groups.

Example 1.2.21. In the symmetric group, for example, we have that:

• for r = 3 there are 3 intervals of length 3.

• for r = 5 there are 25 intervals of length 5.

• for r = 7 there are 217 intervals of length 7.

In [10] and [13] Hultman and Incitti list all the possibilities for the cases r =

5, r = 7. Their result will be used in the sequel.

Here, we briefly recall the classification of the finite irreducible Coxeter

group. Namely, a Coxeter system (W,S) is finite and irreducible if and only if

its Coxeter graph is one of the following ones.



1.2 Coxeter systems and Bruhat order

Figure 1.2.2.
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1.3 Parabolic subgroups and quotients

Given J ⊆ S we define the parabolic subgroup WJ as the subgroup of W

generated by the set J . We denote the quotient set by:

W J := {x ∈ W : DR(x) ∩ J = ∅}.

The following holds (see [2] Section 2.4 for proofs):

Observation 1.3.1. (WJ , J) is a Coxeter system.

Observation 1.3.2. lJ(w) = l(w) if w ∈ WJ .

Observation 1.3.3. WI ∩ WJ = WI∩J , < WI ∪ WJ >= WI∪J and WI =

WJ ⇒ I = J .

Observation 1.3.4. x ∈ W J if and only if no reduced expression of x ends

with an element of J .

Theorem 1.3.5. Let J ⊆ S and v ∈ W . Then there exist only one vJ ∈ W J

and only one vJ ∈ WJ such that v = vJvJ and l(v) = l(vJ) + l(vJ).

Proof. (Existence): Let v ∈ W exist s1, . . . , sk ∈ S, with k ∈ [l(v)] such

that:

vs1 · · · sj < vs1 · · · sj−1 and vs1 · · · srs > vs1 · · · sr,

for any s ∈ S and j ∈ [r].

Choosing x = sr · · · s1 ∈ WJ and y = vs1 · · · sr ∈ W J we have that:

v = xy and l(v) = l(x) + l(y).

(Uniqueness): Suppose by contradiction that:

v = xy = zt,

where x, z ∈ W J and y, t ∈ WJ . Let the following reduced expression of x:

x = s1 · · · sk
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and

yt−1 = s′1 · · · s′h,

where s1, . . . , sk, s
′
1, . . . s

′
h ∈ S. Then:

z = xyt−1 = s1, · · · , sk, s′1, · · · s′h.

If we extract from z a reduced subword of z by Observation 1.3.4 we can say

that it doesn’t end with letters s′j since z ∈ W J . Then this reduced subword

must be a subword of s1 · · · sk and so z ≤ x. By symmetry x ≤ z and so

x = z, y = t.

Example 1.3.6. Let W = Sn, S = {(1, 2), . . . , (n− 1, n)} and J = S \ {(i, i+
1)} (i ∈ [n− 1]). Then:

W J = SS\{(i,i+1)}
n = {x ∈ Sn : x(1) < x(2) < . . . < x(i) and x(i+1) < . . . < x(n)}.

About quotients, there are important facts to know:

Theorem 1.3.7 (V. V. Deodhar). Let u, v ∈ W then:

u ≤ v ⇔ uJ ≤ vJ ∀J ⊆ S : |J | = |S| − 1.

In general, it’s very difficult to say when two elements are comparable or

not.The previous Theorem is very useful for quotient sets. We now introduce

a criterion for Sn. First of all we define for x ∈ Sn the number:

x[i, j] := |{t ∈ [i] : x(t) ≥ j}|,

then the following holds.

Observation 1.3.8. For any v ∈ Sn:

v[n, i] = n+ 1− i, (1)

x[i, 1] = i, (2)

for all i ∈ [n].
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Observation 1.3.9. Given v ∈ Sn:

v[i, j]− v[k, j]− v[i, l] + v[k, l] = |{a ∈ [k + 1, i] : j ≤ v(a) ≤ l}|, (3)

for all 1 ≤ k ≤ i ≤ n and 1 ≤ j ≤ l ≤ n.

The following criteria (see [2] Section 2.1) play a fundamental role on com-

paring permutations and for this reason we include its proof.

Theorem 1.3.10. Given x, y ∈ Sn then the following are equivalent:

• x ≤ y,

• x[i, j] ≤ y[i, j] for all i, j ∈ [n].

Proof. Suppose that x ≤ y.

We can assume that:

y = x(a, b),

with x(a) < x(b). Then it’s easy to see that:

y[i, j] =

{
x[i, j] + 1, if a ≤ i < b, x(a) < j ≤ x(b),

x[i, j], otherwise

and so it’s true that x[i, j] ≤ y[i, j] for all i, j ∈ [n].

Assume now that x[i, j] ≤ y[i, j] for all i, j ∈ [n].

Let for brevity:

M(i, j) := y[i, j]− x[i, j].

If M(i, j) = 0 for all i, j ∈ [n] then there is nothing to prove because x = y.

Let (a, b) ∈ [n]2 be such that M(a, b) > 0 and:

M(i, j) = 0 for all (i, j) ∈ [1, a]× [b, n] \ {(a, b)}.

Then by the previous equation and the condition M(a, b) > 0 we have that:

y(a) = b and x(a) < b.
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Let (c, d) ∈ [n]2 be such that (c, d) is the bottom right corner of a maximal

positive connected submatrix of M having (a, b) the upper left corner. By

equations 1,2 we have that c < n and d > 1 (otherwise M(c, d) = 0) and by

maximality there exists f ∈ [a, c], g ∈ [b, d] such that:

M(f, d− 1) = 0 and M(c + 1, g) = 0

and then:

M(c + 1, d− 1)−M(f, d − 1)−M(c+ 1, g) +M(f, g) > 0.

By equation (3) this implies:

|{e ∈ [f + 1, c+ 1] : y(e) ∈ [d− 1, g − 1]}| > 0.

So let (a, b) ∈ [f + 1, c + 1] × [d − 1, g − 1] be such that y(a) = b then a < a

and y(a) = b > b = y(a). So we have that:

z = y(a, a) and x[i, j] ≤ z[i, j] for all i, j ∈ [n].

By induction, we can conclude that x ≤ z and so x ≤ y.

Example 1.3.11. u = 43215 ≤ v = 45321 because:

u[i, j] = v[i, j] for all i, j ∈ [4].

For example:

u[2, 4] = 1 < 2 = v[2, 4].

Another useful criterion is the following:

Theorem 1.3.12. Let x, y ∈ S
S\{(i,i+1)}
n . Then the following are equivalent:

• x ≤ y,

• x(j) ≤ y(j) for 1 ≤ j ≤ i,
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• x(j) ≥ y(j) for i+ 1 ≤ j ≤ n.

Let v ∈ Sn we call the inversion table the sequence (v1, . . . , vn) where:

vh := |{k ∈ [n] : k > h, v−1(k) < v−1(h)}|.

An integer partition is a sequence of non-negative integers λ = (λ1, . . . , λk)

such that λ1 ≥ . . . ≥ λk (when we write a partition we omit the zero parts).

We identify a partition with its diagram:

{(i, j) ∈ (N+)2 : 1 ≤ i ≤ k, 1 ≤ j ≤ λi}

and draw the diagram in Russian convention.

Example 1.3.13. In the following figure we have the diagram of (3, 2, 1, 1)

Figure 1.3.1.

We call the elements of λ cells. The level of a cell (i, j) ∈ (N+)2 is:

lv(i, j) := i+ j.

Let λ and µ be two partitions such that µ ⊆ λ. We consider the skew partition

λ \ µ. A skew partition is called a Dyck cbs (Dyck connected border strip) if:

• is connected.

• does not contain a 2× 2 square.
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• no cell in the diagram has level strictly less than the rightmost and

leftmost of its cells.

Observation 1.3.14. in a Dyck cbs the rightmost and leftmost cells have the

same level.

Example 1.3.15. in the following figure, we can see three different example

of no Dyck cbs partitions.

Figure 1.3.2.

Example 1.3.16. in the following figure, we can see three different examples

of skew partitions which are not Dyck cbs.

Figure 1.3.3.

In the sequel, we consider elements in the following quotient set:

SS\(i,i+1)
n = {x ∈ Sn : x(1) < x(2) < . . . < x(i) and x(i+ 1) < . . . < x(n)},
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these permutations are called Grasmannian permutations by Lascoux in [17]

i.e. permutations v ∈ Sn with a unique descent v(i) > v(i+ 1).

Given v ∈ S
S\{(i,i+1)}
n we associate to v the partition:

Λ(v) = (v(i)− i, . . . , v(1)− 1).

We recall that:

Proposition 1.3.17. Given u, v ∈ S
S\{(i,i+1)}
n , u ≤ v then:

Λ(u) ⊆ Λ(v).

For a proof see, e.g., [19].
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1.4 Permutation groups

The most important Coxeter group is certainly the symmetric group Sn, but

as the reader can see in Section 3.2 , there are other Coxeter groups important

in my research. We list in this Section the most important ones. We define SB
n

(the group of signed permutations) as the set of all bijections π : [±n] → [±n]

such that π(−x) = −π(x) for all x ∈ [n]. If v ∈ SB
n we write:

v = [v1, . . . , vn],

to mean that v(i) = vi (for i ∈ [n]) and call this notation the window notation.

We also write v in-line notation:

v = v−n, . . . , v−1, v1, . . . , vn

to mean that v(i) = vi (for i ∈ [±n]). Finally, as for permutations we can

write an element of SB
n in disjoint cycle notation.

Example 1.4.1. Let v = [−2, 1, 4, 3]. Then the line notation and disjoint

cycle notation are respectively:

v = −3,−4,−1, 2,−2, 1, 4, 3

v = (−2,−1, 2, 1)(3, 4)(−3,−4).

Let u, v ∈ SB
n . The group operation uv is defined as a composition of

functions.

The set of generators of SB
n is SB = {sB1 , . . . , sBn−1, s

B
0 } where:

sBi = [1, . . . , i− 1, i+ 1, i, i+ 2, . . . , n],

for i ∈ [n− 1] and

sB0 = [−1, 2, . . . , n].

Observation 1.4.2. If we multiply an element v ∈ SB
n by sBi on the right the

result in window notation is an exchange of the values in position i and i+ 1.

If we multiply an element v ∈ SB
n by sB0 on the right the result in window

notation is to change the sign of the value in position 1.
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(SB
n , SB) has the structure of a Coxeter system (see, e.g., [2]) and one can

show that the length function is:

lB(v) = |{(i, j) ∈ [n]2 : i < j, v(i) > v(j))}|+|{(i, j) ∈ [n]2 : i ≤ j, v(−i) > v(j)}|,

while the descent and reflection sets are:

DR(v) := {si ∈ S : v(i) > v(i+ 1)},

TB := {(i, j)(−i,−j) : 1 ≤ i < |j| ≤ n} ∪ {(i,−i) : i ∈ [n]},
where v(0) = 0. We refer the reader to [2], Section 8.1 for a proof of these

results.

There are some interesting subgroups of SB
n that are Coxeter groups too. In

particular:

SD
n = {v ∈ SB

n : neg(v(1), . . . , v(n)) ≡ 0mod2)}.

The set of Coxeter generators of this subgroup is:

SD = SB ∪ {[−2,−1, 3, . . . , n]}.

For this Coxeter group the length function, descent and reflection sets are

given by:

lD(v) := lB(v)− odd(v(1), . . . , v(n)),

DR(v) = {si ∈ S : v(i) > v(i+ 1)},
where v(0) := −v(2) and

TD = {(i, j)(−i,−j) : 1 ≤ i < |j| ≤ n}.

We refer the reader to, e.g., [2] Section 8.2, for a proof of these results.

Another extension of Sn is S̃n (n ≥ 2) that is the group of all bijection π :

Z → Z such that:

π(x+ n) = π(x) + n,

for all x ∈ Z and
n∑

x=1

π(x) =

(
n + 1

2

)
.
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Observation 1.4.3. Let a v ∈ S̃n. By the previous definition v is uniquely

determined by its values on [n].

By the previous observation, we can write each element v ∈ S̃n in the

window form v = [v1, . . . , vn] to mean that v(i) = vi for i ∈ [n]. The set of

Coxeter generators of this Coxetr group is S̃A = {s̃1A, . . . , s̃nA} where:

s̃i
A := [1, 2, . . . , i− 1, i+ 1, i+ 2, . . . , n],

for i ∈ [n− 1] and

s̃n
A := [0, 2, 3, . . . , n− 1, n+ 1].

As before we now list in order the length function and descent sets of S̃n

A
:

lÃ(v) = |{(i, j) ∈ [n]× N : i < j, v(i) > v(j))}|,

DR(v) = {si ∈ S : v(i) > v(i+ 1)}.

We refer the reader, e.g., [2] Section 8.3, for proofs of these results.
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1.5 Kazhdan-Lusztig polynomials

In order to have a unified construction of representations of finite Coxeter

groups, Kazhdan and Lusztig in [15], proposed an approach of representations

based on a set of polynomials now called Kazhdan-Lusztig polynomials. These

polynomials are indexed by pairs of elements in the Coxeter groups W and are

related to the Brhuat order of W and the descent set of its elements. There

are several ways to define Kazhdan-Lusztig polynomials,for example by Hecke

algebra (see [11]), here we give a list of Definition-Theorem. In this section,

we define also other useful families of polynomials such as R-polynomials and

R̃-polynomials and, in some sense, we will see that these other two families of

polynomials are equivalent to the Kazhdan-Lusztig polynomials.

Theorem 1.5.1 (Definition-Theorem). There is a unique family of polynomi-

als {Ru,v(q)}u,v∈W ⊆ Z[q] such that:

• Ru,v(q) = 0 if u ≤ v,

• Ru,v(q) = 1 if u = v,

• if s ∈ DR(v) then:

Ru,v(q) =

{
Rus,vs(q), if s ∈ DR(u),

qRus,vs(q) + (q − 1)Ru,vs(q), if s /∈ DR(u).

It is easy to see that the last property of the previous Definition-Theorem

can be used in a math software to compute R-polynomials by induction on

l(v).

Example 1.5.2. Let (W,S) = (S3, {(1, 2), (2, 3)}) and u = 123 , v = 321 then

by Theorem 1.5.1 we can easily compute:

R123,321(q) = qR213,231(q) + (q − 1)R123,231(q).

Compute now R213,231(q):

R213,231(q) = qR231,213(q) + (q − 1)R213,213(q) = q − 1
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and R123,231(q):

R123,231(q) = qR132,213+(q−1)R123,213 = 0+(q−1)(qR213,123+(q−1)R123,123) = (q−1)2.

Then finally:

R123,321(q) = q(q − 1) + (q − 1)3 = q3 − 2q2 + 2q − 1.

Here we list some classical results (see [2] Section 5 for the proofs):

Proposition 1.5.3. Let u, v ∈ W with u ≤ v. Then Ru,v(0) = (−1)l(u,v) and

Ru,v is a monic polynomial of degree l(u, v).

Proposition 1.5.4. Let u, v ∈ W with u ≤ v. Then:

ql(u,v)Ru,v(
1

q
) = (−1)l(u,v)Ru,v(q).

Proposition 1.5.5. Let W be a finite Coxeter group. Then:

• Ru,v(q) = Ru−1,v−1(q),

• Ru,v(q) = Rw0v,w0u(q),

for all u, v ∈ W

Using the R-polynomials, we can define Kazhdan-Lusztig polynomials.

Theorem 1.5.6 (Definition-Theorem). There is a unique family of polynomi-

als {Pu,v(q)}u,v∈W ⊆ Z[q] (usually called Kazhdan-Lusztig polynomials) such

that:

• Pu,v(q) = 0 if u ≤ v,

• Pu,v(q) = 1 if u = v,

• deg(Pu,v(q)) ≤ l(u,v)−1
2

if u < v,
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• if u ≤ v then:

ql(v)−l(u)Pu,v(
1

q
) =

∑

a∈[u,v]
Ru,a(q)Pa,v(q).

As for the R-polynomials the last condition in the previous Definition-

Theorem can be used in a math software to compute Kazhdan-Lusztig poly-

nomials.

Example 1.5.7. Let (W,S) = (S3, {(1, 2), (2, 3)}) and u = 123 , v = 321 then

by the previous Theorem we can easily compute:

ql(321)−l(123)P123,321(
1

q
)− P123,321(q) =

∑

123<a≤321

R123,a(q)Pa,321(q) =

= R123,213(q)P213,321(q) +R123,132(q)P132,321(q) +R123,231(q)P231,321(q)+

+R123,312(q)P312,321(q) +R123,321(q)P321,321(q)

and then we can deduce from this that:

ql(321)−l(123)P123,321(
1

q
)− P123,321(q) = q3 − 1

and using the third point of the previous Theorem that P123,321(q) = 1.

As before, here are some results useful to recall.

Proposition 1.5.8. Let u, v ∈ W , u ≤ v then Pu,v(0) = 1.

Proposition 1.5.9. Let W be a Coxeter group. Then:

• Pu,v(q) = Pu−1,v−1(q) for all u, v ∈ W ,

• if W is finite then Pu,v(q) = Pw0uw0,w0vw0(q) for all u, v ∈ W .
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Proof. (Pu,v(q) = Pu−1,v−1(q)Pu,v(q) = Pu−1,v−1(q)Pu,v(q) = Pu−1,v−1(q)): We prove this by induction on l(u, v).

Suppose that l(u, v) = 0 then u = v and the relation is clear.

If l(u, v) > 0 then:

ql(u,v)Pu,v(
1

q
)− Pu,v(q) =

∑

u<a<v

Ru,a(q)Pa,v(q) +Ru,v(q).

We know by Proposition 1.5.5 and Proposition 1.2.4 that:

l(u, v) = l(u−1, v−1) and Ru,v(q) = Ru−1,v−1(q)

and so with the first:

deg(Pu−1,v−1(q)) <
l(u−1, v−1)

2
=

l(u, v)

2
, (4)

with the second:

ql(u,v)Pu−1,v−1(
1

q
)− Pu−1,v−1(q) =

∑

u−1<a≤v−1

Ru−1,a(q)Pa,v−1(q) =

=
∑

u−1<a≤v−1

Ru,a−1(q)Pa−1,v(q) =
∑

u<a≤v

Ru,a(q)Pa,v(q) = ql(u,v)Pu,v(
1

q
)− Pu,v(q)

and by this relation, (4) and induction, we can conclude that:

Pu,v(q) = Pu−1,v−1(q).

(Pu,v(q) = Pw0uw0,w0vw0(q)Pu,v(q) = Pw0uw0,w0vw0(q)Pu,v(q) = Pw0uw0,w0vw0(q)): We have that:

ql(u,v)Pu,v(
1

q
)− Pu,v(q) =

∑

u<a≤v

Ru,a(q)Pa,v(q) =

by Proposition 1.5.5:

=
∑

w0v≤a<w0u

Ru,w0a(q)Pw0a,v(q) =
∑

w0vw0≤aw0<w0uw0

Rw0uw0,aw0(q)Paw0,w0vw0(q) =

= ql(u,v)Pw0uw0,w0vw0(q)(
1

q
)− Pw0uw0,w0vw0(q)
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and, as before, we conclude:

Pu,v(q) = Pw0uw0,w0vw0(q).

One of the main problems about Kazhdan-Lusztig polynomial is to find

a combinatorial interpretation for them. Even for the symmetric group only

some partial results are known. Here we list some of these results:

Theorem 1.5.10 (B. Shapiro - M. Shapiro - A. Vainshtein). Let v ∈ Sn be

such that DR(v) ⊆ {1, n− 1}. Then:

Pu,v(q) = (1 + q)r,

where r := |{j ∈ [v(n) + 1, v(1)− 2] :
∑j

i=1 u(i) =
(
j+1
2

)
}|.

Example 1.5.11. Given u = 321465, v = 623451 we have that:

r = |{3, 4}| = 2

and so by Theorem 1.5.10 Pu,v(q) = 1 + 2q + q2.

Theorem 1.5.12. Let u, v ∈ Sn, u ≤ v, be such that [2, n− 2] ⊆ DR(v) then:

Pu,v(q) =

{
1 + qv(1)−v(n), if u(n) > v(1) ≥ v(n) > u(1),

1, otherwise.

Proposition 1.5.13. Let u, v ∈ W , u ≤ v. If s ∈ DR(v) then:

Pu,v(q) = Pus,v(q).

Theorem 1.5.14. Let v ∈ Sn. Then the following are equivalent:

• Pe,v(q) = 1.

• Pu,v(q) = 1 for all u ≤ v.
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• v is 3412-avoiding and 4231-avoiding.

the proof of the first two Theorems appears in [23], while the last appears

in [16].

M. Dyer in 1987 [9] and G.Lusztig in 1980 (see [2] Section 5.6) independently

posed the following:

Conjecture 1.5.15 (M. Dyer - G. Lusztig). Let u, v ∈ Sn and x, y ∈ Sm then:

[u, v] ∼= [x, y] ⇒ Pu,v(q) = Px,y(q).

This Conjecture states that the value of the Kazhdan-Lusztig polynomials

depend only on the poset structure. In recent years the previous Conjecture

has been proved for particular cases, when [u, v] is a lattice (see [3]), when

u = x = e (see [8]) and for element u, v ∈ W such that l(u, v) ≤ 5 (see [4] and

[5]). We define now another class of polynomials:

Theorem 1.5.16 (Definition-Theorem). Let u, v ∈ W , then there exists a

unique polynomial R̃u,v(q) ∈ N[q] such that:

Ru,v(q) = q
l(u,v)

2 R̃u,v(q
1
2 − q−

1
2 ).

The advantage of the R̃-polynomials over the R-polynomials is that the

coefficients are all natural numbers.

Observation 1.5.17. the previous Definitions-Theorems say that computing

the Kazhdan-Lusztig polynomials is equalent to computing the R or R̃ polyno-

mials.

We now list some classical results for R̃-polynomials.

Proposition 1.5.18. Given u, v ∈ W , u ≤ v and s ∈ DR(v), then:

R̃u,v(q) =

{
R̃us,vs(q), if s ∈ DR(u),

R̃us,vs(q) + qR̃u,vs(q), if s /∈ DR(u).
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Proposition 1.5.19. Given u, v ∈ W , u ≤ v. Then R̃u,v(q) is a monic

polynomial of degree l(u, v).

We now define a function that will be used in Conjecture 2.1.5.

Definition 1.5.20. Let W be a Coxeter group, u, v ∈ W with u ≤ v, we

define:

µ(u, v) :=

{
[q

l(u,v)−1
2 ]Pu,v(q), if l(u, v) ≡ 1mod2,

0, otherwise,

where with [qi]Pu,v(q) we denote the coefficient of qi in Pu,v(q).

We recall here, some classical results on µ(u, v) (for proof see [2] and [11]).

Proposition 1.5.21. Let W a finite Coxeter group. Then:

µ(u, v) = µ(w0v, w0u),

for all u, v ∈ W .

Proposition 1.5.22. Let u, v ∈ W , u ≤ v, be such that µ(u, v) 6= 0 and

l(u, v) > 1.Then DR(v) ⊆ DR(u).

Theorem 1.5.23. Given u, v ∈ W , u ≤ v and s ∈ DR(v). Then:

Pu,v(q) = q1−cPus,vs(q) + qcPu,vs(q)−
∑

z:s∈DR(z)

q
l(z,v)

2 µ(z, vs)Pu,z(q),

where c = 1 if s ∈ DR(u), and c = 0 otherwise.

Proposition 1.5.24. Let u, v ∈ W , u ≤ v, be such that µ(u, v) 6= 0 and

l(u, v) > 1 then DR(v) ⊆ DR(u).

Proof. Given s ∈ DR(v) suppose by contradiction that s /∈ DR(u). Using

Proposition 1.5.13 then:

Pu,v(q) = Pus,v(q)

and so:

µ(u, v) = [q
l(u,v)−1

2 ]Pu,v(q) = [q
l(u,v)−1

2 ]Pus,v(q),
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but we have also that (recall Definition-Theorem 1.5.6):

deg(Pus,v) ≤
l(us, v)

2
=

l(u, v)− 2

2
,

so µ(u, v) = 0 and this contradiction shows that s ∈ DR(u).

We will use in the sequel the following Theorem (due to Brenti in [5])

Theorem 1.5.25. Let u, v ∈ S
S\{si}
n then:

µ(u, v) =

{
1, if Λ(v)− Λ(u) is a Dyck cbs,

0, otherwise.

The last result will be used in Section 3.3 to prove Conjecture 2.1.8 in the

Grassmannian case. There are many others results about the µ function, we

refer for interested reader to [18],[25],[22],[14] and [21].
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1.6 Linear Coxeter system and Boolean elements

For more informations and proof about Boolean elements, we refer to [20].

Definition 1.6.1. A Coxeter system (W, {s1, . . . , sn}) is called linear if:

• (sisj)
r = e, for r ≥ 3 if |i− j| = 1,

• sisj = sjsi, if 1 < |i− j| < n− 1.

W is called strictly linear if also s1sn = sns1.

Observation 1.6.2. The diagram of a Coxter linear group not strictly and

strictly are shows in the following figure:

Figure 1.6.1.

Let (W, {s1, . . . , sn}) be any Coxeter system and let t be a reflection in W

we call t a Boolean reflection if it admits a reduced expression:

t = s1 · · · sn−1snsn−1 · · · s1.

Every element w ∈ W such that w ≤ t is called a Boolean element.
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Observation 1.6.3. It’s easy to see that any Boolean permutations is covex-

illary i.e. 3412-avoiding.

Example 1.6.4. In the symmetric group, the Boolean reflections are the re-

flection and the Boolean elements are the permutation v ≤ t = (a, b) (for some

a, b ∈ [n]2).

Given v ∈ W , Boolean element, we denote by vh the number of times that

sh appears in a reduced expression of v (h ∈ [n]).

There is an interesting version of Lifting Lemma about Boolean elements.

Lemma 1.6.5. Given a Coxeter system (W,S), a Boolean element u ∈ W

and u∗ a reduced expression of u that is a subword of a Boolean reflection t.

Then:

• any other reduced expression u′ of u such that u′ ≤ t is linked by u∗ by a

sequence of short braid move of the type αs,s′ = ss′ (s, s′ ∈ S).

• any other expression u′ of u such that u′ ≤ t is linked by u∗ by a sequence

of short braid move of the type αs,s′ = ss′ (s, s′ ∈ S) and null move.

We list now some useful result about Boolean elements and Kazhdan-

Lusztig polynomials.

Theorem 1.6.6 (M. Marietti). Let u, v Boolean elements in Sn+1 with u ≤ v.

Then:

Pu,v(q) = (1 + q)b,

where:

b = |{k ∈ [n] : vk = vk+1 = 2, uk+1 = 0}|.

Example 1.6.7. In Sn given u = e and v = (1, 2)(2, 3)(3, 4)(2, 3)(1, 2) then

b = 1 in fact:

• v1 = 2, v2 = 2, v3 = 1,
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• u1 = u2 = u3 = 0

and then Pu,v(q) = 1 + q.

This Theorem can be extended to any linear Coxeter group W with a set

of generators {s1, . . . , sn}. Exists, in fact, an isomorphism φ (see [20]) such

that for any u, v ∈ W :

Pu,v(q) = Pφ(u),φ(v)(q),

where φ(u), φ(v) ∈ Sn+1 and uk = φ(u)k, vk = φ(v)k for all k ∈ [n+ 1]. So the

last Theorem become the following:

Theorem 1.6.8 (M. Marietti). Let a linear Coxeter group W and u, v Boolean

elements in W with u ≤ v. Then:

Pu,v(q) = (1 + q)b,

where:

b = |{k ∈ [n] : vk = vk+1 = 2, uk+1 = 0}|.

Observation 1.6.9. The last Theorem can’t be applied to any Coxeter system.

Recalling an example in [20], in fact, if we take the Coxeter system (W,S) such

that S contains s1, s2, s3 and r with:

m(si, sj) = 2 for all i 6= j,

m(si, r) ≥ 3 for all i.

Then choosing u = s1s2rs3rs2s1 and v = s3s2s1 we have that:

Pu,v(q) = 1 + 2q.

The following result play a central role to prove the Conjecture for Boolean

case.
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Theorem 1.6.10 (M. Marietti). Given u, v ∈ Sn be Boolean elements such

that l(u, v) > 1. Then:

µ(u, v) 6= 0 ⇔





vt = ut, if 1 ≤ t < a,

vt = 2 ∧ ut = 1, if t = a,

vt = 2 ∧ ut = 0, if a < t ≤ b,

vt = yt, if b < t < n− 1.

Observation 1.6.11. As before by φ we can extend the previous Theorem to

Boolean elements in a linear Coxeter group.

Example 1.6.12. It’s easy to see that if we take the following Boolean reflec-

tion:

v = si · · · sj−2sj−1sj−2 · · · si,

then, by the previous Theorem, µ(u, v) 6= 0 if and only if:

u = si · · · sk−1ŝkŝk+1 · · · ŝk+rsk+r+1 · · · sj−1 · · · ŝk+r · · · ŝk+1sk · · · si.

So if we take in S7:

• u = (1, 2)(5, 6)(2, 3)(1, 2),

• v = (1, 2)(2, 3)(3, 4)(4, 5)(5, 6)(4, 5)(3, 4)(2, 3)(1, 2).

Then by the previous Theorems:

Pu,v(q) = (1 + q)2 and µ(u, v) 6= 0.
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1.7 Special matchings

Let P be a poset and G := (V,E) its Hasse diagram. Following [2] (Section

5.6) we say that a function M : V → V is a special matching if:

• M is an involution such that {v,M(v)} ∈ E for all v ∈ V ,

• x ⊳ y ⇒ M(x) ≤ M(y) for all x, y ∈ V such that M(x) 6= y.

Example 1.7.1. The dotted line in Figure 1.7.1 represents a special matching

of [41256378, 41562738].

Figure 1.7.1: [41256378, 41562738].

In the sequel, we use the following observations:

Observation 1.7.2. if x ⊳ y and M(x) ⊲ x then M(y) ⊲ y and M(x) ⊳ M(y)

(seen Figure 1.7.2).
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Figure 1.7.2.

Observation 1.7.3. Dually if x ⊳ y and M(y) ⊳ y imply M(x) ⊳ x and M(x) ⊳

M(y) (see Figure 1.7.3).

Figure 1.7.3.

In general, it’s difficult to know if a poset has or not a special matching

but it’s true that:
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Proposition 1.7.4. Let (W,S) be a Coxeter system, u, v ∈ W , u ≤ v and

s ∈ DR(v) \DR(u). Then:

M(z) = zs,

for all z ∈ [u, v] is a special matching of [u, v].

Proof. This follows easily by the Definition of special matching and the Lifting

Lemma.

By the previous Proposition, it’s easy see that:

Corollary 1.7.5. Every Bruhat interval [e, v] has a special matching.

There are some connections about Kazhdan-Lusztig polynomials and spe-

cial matchings.

Theorem 1.7.6 (F. Brenti, F. Caselli, M. Marietti). Let (W,S) be a Coxeter

system, v ∈ W and M a special matching of [e, v]. Then:

Ru,v(q) = qcRM(u),M(v)(q) + (qc − 1)Ru,M(v)(q),

for all u ≤ v where c = 1 if M(u) ⊲ u and c = 0 otherwise.

Theorem 1.7.7 (F. Brenti, F. Caselli, M. Marietti). Let u, v ∈ W , u < v and

M be a special matching of [e, v]. Then:

Pu,v(q) = q1−cPM(u),M(v)(q) + qcPu,M(v)(q)−
∑

z:M(z)⊳z

µ(z,M(v))q
l(z,v)

2 Pu,z(q),

where c = 1 if M(u) ⊲ u and c = 0 otherwise.
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We now state the Conjecture, due to Brenti in [4], that we study in this work.

The Conjecture is motivated by the following questions:

• When does a Bruhat interval have a special matching?

• Is there some connection between special matchings and Kazhdan-Lusztig

polynomials for general Bruaht interval?

• Can we use the connection between special matchings and Kazhdan-Lusztig

polynomials to prove the combinatorial invariance?

we will show that the Conjecture 2.1.5 answer to this question in a partial

way.

2.1 Main Conjecture and some considerations

In the sequel, we use the following Proposition to such that a poset doesn’t

have a special matching:

Proposition 2.1.1 (Coatom’s and atom’s condition). Let [u, v] then:

• if |c(u, v)|−1 > |c(u, v′)| for all v′ ∈ {z ∈ [u, v] : z ⊳ v} then [u, v] doesn’t

have a special matchings,

• if |a(u, v)|−1 > |a(u′, v)| for all u′ ∈ {z ∈ [u, v] : u⊳z} then [u, v] doesn’t

have a special matchings.

Proof. Suppose by contradiction that there exists a special matching M of

[u, v] and let M(v) = w1 where:

c(u, v) = {w1, . . . ws},

by Observation 1.7.3 we must have that:

M(w2) ⊳ M(v), . . . ,M(ws) ⊳ M(v),
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so w1 = M(v) must cover in the poset |c(u, v)| − 1 different verties but:

|c(u, v′)| < |c(u, v)| − 1 for all v′ ∈ {z ∈ [u, v] : z ⊳ v},

so w1 can’t satisfy the previous cover relation, so [u, v] doesn’t have a special

matching.

In a similar way using Observation 1.7.2 we can conclude the second point of

the Proposition.

Observation 2.1.2. notice that the converse of Proposition 2.1.1 is not true

in general. For example the following figure doesn’t have a special matching

but there is a v′ ∈ {z ∈ [u, v] : z ⊳ v} such that:

|c(u, v)| − 1 ≯ |c(u, v′)|

and dually there is a u′ ∈ {z ∈ [u, v] : z ⊲ u} such that:

|a(u, v)| − 1 ≯ |a(u, v′)|.

Figure 2.1.1.
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Another useful criterion to decide if a poset has or not a special matching

is the following:

Lemma 2.1.3. Let P be a graded poset, M be a special matching of P , and

u, v ∈ P be such that M(v) ⊳ v and u ⊳ M(u). Then M restricts to a special

matching of [u, v].

Example 2.1.4. Let P be the poset in Figure 2.1.2 then the above results can’t

say directly if P has or not a special matching.

Figure 2.1.2.

Using Proposition 2.1.1 we can say that:

• the coatoms 12, 13, 14, 15 are a possible choice for M(16),

• the atoms 2, 3 are a possible choice for M(1).

So suppose that M(1) = 2 then using Lemma 2.1.3 the subposet [2, 16] has a

special matching, but by Figure 2.1.3 this is not true by the coatom’s condition

and by the atom’s condition, so M(1) 6= 2.
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Figure 2.1.3: no special matching by Proposition 2.1.1.

Suppose then that M(1) = 3. Then using lemma 2.1.3 the subposet [3, 16]

has a special matching, but by Figure 2.1.4 this is not true again by the coatom’s

condition and by the atom’s condition’s, so M(1) 6= 3.

Figure 2.1.4: no special matching by Proposition 2.1.1.

Hence by Proposition 2.1.1 and Lemma 2.1.3 we can say that the poset P
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doesn’t have a special matching.

Here’s the Conjecture that is the starting point of my work.

Conjecture 2.1.5 (F. Brenti). Let u, v ∈ Sn with [u, v] irreducible, l(u, v) > 1

and l(u, v) odd then:

[u, v] has a special matching ⇔ µ(u, v) = 0.

The Conjecture appears in [4] and has been verified by Brenti for 1 ≤
l(u, v) ≤ 5.

In this first part of my work, I give a counterexample to the direction ”⇐”.

Counterexaple 2.1.6. Consider in S6 the permutations:

u = 231564 and v = 562341,

for this pair of elements we have that:

• Pu,v(q) = 1 + 4q + 4q2,

• l(u, v) = 7 and so µ(u, v) = 0.

We now show that the poset [u, v] is irreducible. Recalling that given a poset

P = [u, v] the rank generating function is:

r(u, v) = r([u, v]) =
∑

i≥0

Piq
i,

where Pi are the rank level, then for the irreducibility, we use the following fact

(due to Stanley in [24]):

Proposition 2.1.7. Let u, v ∈ Sn if there doesn’t exist x, y ∈ Sm z, t ∈ Sp

(with m, p ≤ n) such that:

r(u, v) = r(x, y)r(z, t),

then the poset [u, v] is irreducible.
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The rank function of the poset [u, v] (see figure 2.1.5) is:

r(u, v) = 1 + 6q + 18q2 + 33q3 + 39q4 + 27q5 + 9q6 + q7

and factoring this polnomial:

r(u, v) = (1 + q)(1 + 5q + 13q2 + 20q3 + 19q4 + 8q5 + q6).

Using [13], that lists all the possible rank generating functions for u, v ∈ Sn

with 6 ≤ l(u, v) ≤ 7, we see that there doesn’t exixt a pair of z, t ∈ Sp (with

p ≤ 6) such that:

r(z, t) = 1 + 5q + 13q2 + 20q3 + 19q4 + 8q5 + q6

and so [u, v] is irreducible.

We now show, in contradiction with the left direction of Conjecture 2.1.5, that

[u, v] doesn’t have a special matching. In fact, by the following figure we can

see that:

|c(u, v)| − 1 = 8 > |c(u, v′)| for all v′ ∈ c(u, v)

and so by Proposition 2.1.1 [u, v] doesn’t have a special matching.
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In this work, we propose and study a new Conjecture, which generalizes

one direction of Brenti’s Conjecture 2.1.5.

Conjecture 2.1.8 (C.Bosca). Let W be a Coxeter group and u, v ∈ W with

l(u, v) > 1 then:

[u, v] has a special matching ⇒ µ(u, v) = 0.

We have verified the previous Conjecture for all u, v ∈ Sn with 1 ≤ l(u, v) ≤
7 using the result in [10],[12],[13]. In the rest of this work we prove Conjecture

2.1.8 for:

• u, v ∈ Sn such that u ≤ v, DR(v) ⊆ {1, n− 1},

• u, v Grassmanian permutation,

• u, v Boolean elements in a Coxeter linear group.
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3.1 Elements in Sn with D(v) ⊆ {1, n− 1}
In this Section, we prove Conjecture 2.1.8 for u, v ∈ Sn with u ≤ v and D(v) ⊆
{1, n− 1}. For this purpose, we use Theorem 1.5.10 with this observation:

Observation 3.1.1. Let u, v ∈ Sn u ≤ v, then the following two numbers are

equal:

|{j ∈ [v(n) + 1, v(1)− 2] : {u(1), . . . , u(j)} = [j]}|,

|{j ∈ [v(n) + 1, v(1)− 2] :

j∑

i=1

u(i) =

(
j + 1

2

)
}|.

We begin with a construction:

Theorem 3.1.2. Let u, v ∈ Sn, u ≤ v, DR(v) ⊆ {1, n−1} and d = u−1(v(1))−
u−1(v(n)).

Then µ(u, v) 6= 0 if and only if:

u = h, 1 . . . , ĵ, . . . , h−1, j, h+1, . . . , h+d−1, i, h+d+1, . . . , î, . . . , n, h+d (5)

where i = v(1) and j = v(n) for some h ∈ [j + 1, i− d− 1].

Proof. We begin with the case DR(v) = {1}:

v = k, 1, . . . , k̂, . . . , n.

In this case r = 0 because v(n)+1 > v(1)−2 so by Theorem 1.5.10, Pu,v(q) = 1

for all u ≤ v, so µ(u, v) = 0 for all u ≤ v, and the result follows.

Similary, if DR(v) = {n− 1} then:

v = 1, . . . , k̂, . . . , n− 1, n, k.

So as before, r = 0 because v(n) + 1 > v(1)− 2.

So the only important cases are the v with DR(v) = {1, n− 1}.
Let i := v(1) and j := v(n):

v = i, 1, 2, . . . , ĵ, . . . , î, . . . , n, j.
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Observation 3.1.3. Note that if j > i, then r = 0 for all u ≤ v and so by

Theorem 1.5.10 Pu,v(q) = 1 for all u ≤ v, and the result again follows.

We may therefore assume that j < i.

We now give two observations:

Observation 3.1.4. let u ≤ v. If u−1(j) > u−1(i) then r = 0 for either

i ∈ {u(1), . . . , u(h)} or j /∈ {u(1), . . . , u(h)} for all h ∈ [j + 1, i− 2].

Observation 3.1.5. if u−1(i) − u−1(j) = 1 and j + 2 ≤ u−1(i) ≤ i − 2 then

r = 1.

Denoting by:

d := u−1(i)− u−1(j).

We have to distinguish two cases:

(Case I: r < dr < dr < d): We begin with the case 1 = r < d. The plan of this proof

is to start from v and construct a u ≤ v such that µ(u, v) 6= 0.

Observation 3.1.6. note that with Theorem 1.5.10 the condition µ(u, v) 6= 0

is equal to l(u, v) = 2r + 1.

So first of all we move the integers j and i in v to have:

u−1(i)− u−1(j) = d.

Then we obtain:

v′ = h+ d, . . . , h− 1, j, h+ 1, . . . , h+ d− 1, i, h+ d+ 1, . . . , h

where h ∈ [j + 1, i− d− 1].

It’s easy to observe that l(v′, v) = 2 and that it is impossible, with only one

transposition, to obtain a permutation u ≤ v from v′, such that µ(u, v) 6= 0

(l(u, v) = 3).

We now suppose by contradiction that there exists a permutation u ≤ v with

r < u−1(i)− u−1(j) and µ(u, v) 6= 0 (l(u, v) = 2r + 1). Let:

{s1, . . . , sr}< := {k ∈ [j + 1, i− 2] : {u(1), . . . , u(k)} = [k]},
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Observation 3.1.7. u−1(j) ≤ s1, and sr < u−1(i) so:

u = . . . , j, . . . , u(s1), . . . , u(s2), . . . , u(sr−1) . . . , u(sr), . . . , i, . . .

We will show that such a u can’t exist. We have to distinguish four cases:

(Case I.a): Suppose that u−1(i)− sr > 1 and sr − sr−1 > 1:

u = . . . , u(sr−1), . . .︸︷︷︸
>1

, u(sr) . . .︸︷︷︸
>1

, i, . . .

Then recalling that:

{u(1), . . . , u(sr−1)} = [sr−1],

{u(1), . . . , u(sr)} = [sr],

we have that u(sr + 1) > sr and hence u(sr + 1) > u(sr), u(sr − 1), so:

• If u(sr) > u(sr − 1) we consider w1 = u(sr + 1, sr − 1)(sr, sr + 1),

• if u(sr) < u(sr − 1) we consider w2 = u(sr, sr + 1)(sr, u
−1(sr)).

In each cases we have that:

r(wi) = r − 1, l(wi) = l(u) + 2 (i = 1, 2)

and wi ≤ v in fact by Theorem 1.3.10 it’s easy to see that:

v[z, t] ≥ wi[z, t] for all z, t ∈ [n],

where i = 1, 2.

(Case I.b): Suppose that u−1(i)− sr > 1 and sr − sr−1 = 1:

u = . . . , u(sr−1), u(sr) . . .︸︷︷︸
>1

, i, . . .

Then recalling that:

{u(1), . . . , u(sr−1)} = [sr−1]

and

{u(1), . . . , u(sr)} = [sr],

we have that u(sr) = sr. In this case:
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• if u(sr−1) 6= sr − 1 then we let w3 = u(sr, sr − 1)(u−1(sr − 1), sr − 1),

• if u(sr−1) = sr − 1 then we let w4 = u(sr, sr +1)(sr − t, sr − t− 1) where

t < r − 1 is the maximal integer such that u(sr − t− 1) 6= sr − t− 1.

We have that:

r(wi) = r − 1, l(wi) = l(u) + 2, (i = 3, 4)

and wi ≤ v in fact using Theorem 1.3.10 it’s easy to see that:

v[z, t] ≥ wi[z, t] for all z, t ∈ [n],

where i = 3, 4.

(Case I.c): Suppose that sr − sr−1 > 1 and u−1(i)− sr = 1:

u = . . . u(sr−2), . . . , u(sr−1), . . .︸︷︷︸
>1

, u(sr), i, . . .

This case is analogous to the two previous one (where we consider u(sr) in

place of i, sr−1 in place of sr and sr−2 in place of sr−1 ).

(Case I.d): Suppose that sr − sr−1 = 1 and u−1(i)− sr = 1:

u = . . . , u(sk), . . . , u(sk+1), u(sk+2), . . . , u(sr−1), u(sr), i, . . .

where 1 ≤ k ≤ r − 2 is the maximal integer such that sk+1 − sk > 1 (if this

integer doesn’t exists then we have the u of the theorem and this arguments

are inapplicable).

In this case we consider:

w5 = u(sk+1, sk+1 − 1)(u−1(h + d), sr).

For this permutation we have that:

r(w5) = r − 1, l(w5) = l(u) + 2

and w5 ≤ v in fact using Theorem 1.3.10 it’s easy to see that:

v[z, t] ≥ w5[z, t] for all z, t ∈ [n].
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In each cases (I.a-I.b-I.c-I.d) we can decrease r and maintain l(w, v) = 2r(w)+

1.

But this is a contradiction because I can iterate this procedure and find a u

with r = 1 < u−1(i)− u−1(j).

(Case II: r = dr = dr = d): We start with an observation:

Observation 3.1.8. if u is given by 5 then by Theorem 1.5.10, deg(Pu,v(q)) =

2d + 1 and so µ(u, v) 6= 0. We want to prove that is the unique permutation

with this proprieties.

Suppose, by contradiction, that exist another w ≤ v with µ(w, v) 6= 0 and

deg(Pw,v) = w−1(i) − w−1(j). First of all, let h := w−1(j), we observe that

j < h < i− d− 1 otherwise by Theorem 1.5.10 we have r < d. So we can see

that:

w = . . .︸︷︷︸
[h]−{j}

, j, h + 1, . . . , h+ d− 1, i, . . .︸︷︷︸
[h+d,n]−{i}

,

where:

• in the left dots we have the integers [h]− {j} permutated,

• u(k) = w(k) for k ∈ [h, h + d] (they are fixed for have r = d),

• in the right dots we have the integer [h + d, n]− {i} permutated.

We have to distinguish three cases:

(Case II.a): Suppose to fix u(k) = w(k) for k ∈ [n]− [h− 1], we will prove

that if exist at least one k ∈ [h − 1] such that u(k) 6= w(k) then l(w) < l(u).

We prove this by induction on w−1(h). If w−1(h) = 2 then:

• If j = 1:

w = 2, h, 3, . . . , j − 1, j + 1, . . . , h− 1, j, . . .

• Otherwise:

w = 1, h, 2, 3 . . . , j − 1, j + 1, . . . , h− 1, j, . . .
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In both cases l(w) < l(u) and the assertion is true for w−1(h) = 2. Therefore

assume it be correct for w−1(h) = s− 1 with s ≤ h− 1. Consider w−1(h) = s,

we know that h is the greater integer in the first h−1 position. If we consider:

w′ = w(s, w−1(s)).

By Theorem 1.3.10, for have w ≤ v, we have w−1(h) < w−1(s). Then l(w′) =

l(w) + 1 and according to the induction hypothesis we can conclude:

l(w) = l(w′)− 1 < l(w′) < l(u).

(Case II.b):Suppose to fix u(k) = w(k) for k ∈ [n] − [h + d + 1, n], we will

prove that if exist at least one k ∈ [h+d+1, n]−{i} such that u(k) 6= w(k) then

l(w) < l(u). We prove this by induction on w−1(h+ d). If w−1(h+ d) = n− 1

then:

• If i = n:

. . . , i, h+ d+ 1, . . . , h+ d, n− 1. (6)

• Otherwise:

. . . , i, h+ d+ 1, . . . , h+ d, n. (7)

In both cases l(w) < l(v) and the assertion is true for w−1(h + d) = n − 1.

Therefore assume it be correct for w−1(h+d) = n−s+1. Consider w−1(h+d) =

n− s, we know that h+ d is the smallest integer in the position [h+ d+ 1, n].

If we consider:

w′ = w(n− s, w−1(n− s)).

By Theorem 1.3.10, for have w ≤ v, we have w−1(n− s) > w−1(h + d). Then

l(w′) = l(w) + 1 and according to the induction hypothesis we can conclude:

l(w) = l(w′)− 1 < l(w′) < l(u).

(Case II.c): Suppose to fix only u(k) = w(k) for k ∈ [h, h+ d]. Then using

the previous two cases we can conclude that for each w 6= u we have that

l(w) < l(v).
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Example 3.1.9. Here we list all the u, v ∈ S7 such that u ≤ v , DR(v) ⊆
{1, n− 1} and µ(u, v) 6= 0:

• u, v ∈ S7 such that: Pu,v(q) = 1 + q and µ(u, v) 6= 0.

(3125674, 5134672); (4132675, 6134572); (3126574, 6134572)

(5124376, 7124563); (4123765, 7124563); (2145673, 4235671)

(2145673, 4235671); (5123476, 7123564); (4123675, 6124573)

(4132765, 7134562); (5134276, 7134562); (3127564, 7134562)

(2154673, 5234671); (3215674, 5234671); (5234176, 7234561)

(4231765, 7234561); (3217564, 7234561); (2174563, 7234561)

(3216574, 6234571); (4231675, 6234571); (2164573, 6234571)

• u, v ∈ S7 such that: Pu,v(q) = 1 + 2q + q2 and µ(u, v) 6= 0.

(3124675, 6134572); (4123576, 7124563); (4132576, 7134562)

(3124765, 7134562); (2135674, 5234671); (2137564, 7234561)

(4231576, 7234561); (3214765, 7234561); (3214675, 6234571); (2136574, 6234571)

• u, v ∈ S7 such that: Pu,v(q) = 1 + 3q + 3q2 + q3 and µ(u, v) 6= 0.

(3124576, 7134562); (3214576, 7234561); (2134765, 7234561); (2134675, 6234571)

• u, v ∈ S7 such that: Pu,v(q) = 1 + 4q + 6q2 + 4q3 + q4 and µ(u, v) 6= 0.

(2134576, 7234561)

We now use the previous Theorem to prove Conjecture 2.1.8 for u, v ∈ Sn

such that DR(v) ⊆ {1, n− 1}.
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Theorem 3.1.10. Let u, v ∈ Sn , u ≤ v, DR(v) ⊆ {1, n − 1}, be such that

µ(u, v) 6= 0. Then [u, v] doesn’t have a special matching.

Proof. By the previous Theorem we know that:

u = h, 1, . . . , ĵ, . . . , h− 1, j, h+ 1, . . . , h+ d− 1, i, h+ d+ 1, . . . , î, . . . , n, h+ d

for some h ∈ [j + 1, i− d− 1]. We will show that:

|c(u, v′)| < |c(u, v)| − 1, (8)

for all v′ ∈ c(u, v), and by Proposition 2.1.1 we will conclude that [u, v] doesn’t

have a special matching.

We start by counting |c(u, v)|. The coatoms of v are all of the form (i, t)v or

(t, j)v for some 2 ≤ t ≤ n − 1. However, it is easy to see (using Theorem

1.3.10) that u ≤ (i, t)v if and only if h ≤ t ≤ h + d if and only if u ≤ (t, j)v.

Therefore:

|c(u, v)| = 2(d+ 1).

It remains to count |c(u, v′)| where v′ ∈ c(u, v). By the previous argument

either v′ = (i, t)v or v′ = (t, j)v for some h ≤ t ≤ h+ d.

Then we have to distinguish two cases:

Say v′ = (i, t)v for some h ≤ t ≤ h + d and let w be such that u ≤ w ⊳ v′.

Then either w = (t, a)v′ for some 2 ≤ a ≤ t − 1 or w = (i, a)v′ for some

t + 1 ≤ a ≤ i − 1 or w = (a, j)v′ for some 2 ≤ a ≤ i − 1, a 6= t. By Theorem

1.3.10 we have that (t, a)v′ ≥ u if and only if h ≤ a ≤ t−1 while (i, a)v′ ≥ u if

and only if t+1 ≤ a ≤ h+d and (a, j)v′ ≥ u if and only if either h ≤ a ≤ t−1

or t + 1 ≤ a ≤ h + d.

Say v′ = (t, j)v for some h ≤ t ≤ h + d and let w be such that u ≤ w ⊳ v′.

Then either w = (j, a)v′ for some 2 ≤ a ≤ t − 1 or w = (t, a)v′ for some

t + 1 ≤ a ≤ i − 1 or w = (i, a)v′ for some 2 ≤ a ≤ i − 1, a 6= t. By Theorem
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1.3.10 we have that (j, a)v′ ≥ u if and only if h ≤ a ≤ t−1 while (t, a)v′ ≥ u if

and only if t+1 ≤ a ≤ h+d and (i, a)v′ ≥ u if and only if either h ≤ a ≤ t−1

or t + 1 ≤ a ≤ h + d. So in all cases:

|c(u, v′)| = 2d

and therefore:

|c(u, v′)| < |c(u, v)| − 1 for all v′ ∈ c(u, v),

as claimed.

We illustrate the previous Theorem on an example.

Example 3.1.11. Let u = 4123576 and v = 7124563 then by Theorem 1.5.10

we have that:

r = 2 ⇒ Pu,v(q) = 1 + 2q + q2.

Since l(u, v) = 5 we have that µ(u, v) 6= 0, and [u, v] doesn’t have a special

matching. Indeed:

5 = |c(u, v)| − 1 > |c(u, v′)| = 4,

for all v′ ∈ {z ∈ [u, v] : z ⊳ v}. We show this by the following figure:
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Figure 3.1.1: [4123576, 7124563].
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3.2 Boolean elements

In this Section we prove Conjecture 2.1.8 for Boolean elements of linear Coxeter

systems. We begin with the following result.

Corollary 3.2.1. Let (W, {s1, . . . , sn}) be a linear Coxeter system and u, v ∈
W be two Boolean elements. Then µ(u, v) 6= 0 if and only if:

v = ∗ ∗ ∗sksk+1 · · · sk+r ∗ ∗ ∗ sk+r · · · sk ∗ ∗∗,

u = ∗ ∗ ∗skŝk+1 · · · ŝk+r ∗ ∗ ∗ ŝk+r · · · ŝk ∗ ∗∗, (9)

for some 1 ≤ k < k+ r < n, where by ”∗” we denote the parts where u and v

are equal.

Proof. This follows easily from Theorem 1.6.10.

We now prove Conjecture 2.1.8 for Boolean elements of linear Coxeter sys-

tems.

Theorem 3.2.2. Let (W, {s1, . . . , sn}) be a linear Coxeter system, u, v be

boolean elements, u ≤ v, such that µ(u, v) 6= 0. Then [u, v] doesn’t have

special matching.

Proof. We know, by the preceding theorem, that:

v = ∗ ∗ ∗sksk+1 · · · sk+r ∗ ∗ ∗ sk+r · · · sk ∗ ∗∗,

u = ∗ ∗ ∗skŝk+1 · · · ŝk+r ∗ ∗ ∗ ŝk+r · · · ŝk ∗ ∗∗, (10)

for some 1 ≤ k < k + r < n where by ”∗” we denote the parts where u and v

are equal.

We start by counting |c(u, v)|. We obtain 2r coatoms by deleting sk+i (with

i = 1, . . . , r) on the right and on the left , and two other coatoms by deleting

sk on the right and on the left. It’s clear that these are the only coatoms so

|c(u, v)| = 2r + 2.
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It remains to count c(u, v′) where v′ ∈ {z ∈ [u, v] : z ⊳ v}. This is simple

because if v′ is obtained from v by deleting one sk+i (with i = 1, . . . , r) there

are 2r − 2 possibilities, by deleting the other sk+j 6= sk+1 on the right and on

the left and two other by deleting sk on the left and on the right, so in total

2r possibilities.

If instead v′ is obtained from v by deleting one sk there are only 2r coatoms

in c(u, v′) obtained by cancelling sk+i (with i = 1, . . . , r) on the right and on

the left. So in all cases:

|c(u, v′)| = 2r < 2r + 1 = |c(u, v)| − 1,

for all v′ ∈ {z ∈ [u, v] : z ⊳ v}. Hence by Theorem 2.1.1 [u, v] doesn’t have a

special matching.

It’s easy to see that this result implies the following one for Sn (note that

all reflections are Boolean in Sn).

Corollary 3.2.3. Let u, v ∈ Sn,with u, v ≤ (1, n) u ≤ v, be such that µ(u, v) 6=
0. Then [u, v] doesn’t have a special matching.

Example 3.2.4. Let (W, {s1, . . . , s5}) be a linear Coxeter system and:

u = s1s5s2s1,

v = s1s2s3s4s5s4s3s2s1,

we have that u ≤ v and by Theorem 1.6.10:

Pu,v(q) = 1 + 2q + q2.

Since l(u, v) = 5 then µ(u, v) 6= 0, and [u, v] doesn’t have a special matching

by Proposition 2.1.1. Indeed (see Figure 3.2.1) c(u, v) = 6 and c(u, v′) = 4 for

all v′ ∈ {z ∈ [u, v] : z ⊳ v}.
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Figure 3.2.1: [s1s5s2s1, s1s2s3s4s5s4s3s2s1].

Example 3.2.5. In the symmetric group let:

v = 82345671,

u = 42318675,

then we have that u ≤ v and by Theorem 1.6.10:

Pu,v(q) = 1 + q.

Since l(u, v) = 3 then µ(u, v) 6= 0, and [u, v] doesn’t have a special matching
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by Proposition 2.1.1. Indeed (see Figure 3.2.2) c(u, v) = 4 and c(u, v′) = 2 for

all v′ ∈ {z ∈ [u, v] : z ⊳ v}.

Figure 3.2.2: [42318675, 82345671].
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3.3 Grasmannian permutations

In this Section we prove Conjecture 2.1.8 for permutations in SJ
n where J =

S \ {(i, i+ 1)} for some i ∈ [n− 1]. We recall that in this case:

SJ
n = {x ∈ Sn : x(1) < . . . < x(i), x(i+ 1) < . . . < x(n)}.

We take u, v ∈ SJ
n , with u ≤ v such that:

Λ := Λ(v) \ Λ(u),

is a Dyck cbs. As in the previous Section, we start by constructing u, v. In

this Section given a permutation u ∈ Sn we denote by u′
j (where j ∈ [n]) the

permutation in Sn−1:

u′
j = u′

j(1), . . . , u
′
j(j − 1), u′

j(j + 1), . . . , u′
j(n)

where:

u(k)′j =

{
u(k), if u(k) < u(j),

u(k)− 1, otherwise.

Example 3.3.1. Let u = 461235798 then:

u′
1 = 35124687 u′

2 = 35124687 u′
3 = 35124687

u′
4 = 51234687 u′

5 = 45123687 u′
6 = 41235687

u′
7 = 46123587 u′

8 = 46123578 u′
9 = 46123678

We will use the following function.

Definition 3.3.2. Let u, v ∈ SJ
n be such that there exists a k ∈ [i] with u(k) =

v(k) or u−1(n) = v−1(n) or u−1(1) = v−1(1). Let P := [u, v] we define a

function f : P → Sn−1 by letting:

f(x) =





x′
k, if there exists a k ∈ [i] such that u(k) = v(k),

x′
u−1(n), if the position of n in u and v is the same,

x′
u−1(1), if the position of 1 in u and v is the same,

for each x ∈ P .
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Example 3.3.3. Given u = 1234657, v = 1236745 then:

f 3(1234657) = 1324,

f 3(1236745) = 3412.

We use the previous function on the Grasmannian permutations. The fol-

lowing Proposition is useful in the sequel.

Proposition 3.3.4. Let u, v ∈ SJ
n , u ≤ v. If there exist a k ∈ [i] with

u(k) = v(k) or u−1(n) = v−1(n) or u−1(1) = v−1(1), then f(u), f(v) are

Grasmannian permutations.

Proposition 3.3.5. Let u, v ∈ SJ
n with u ≤ v and such that exits a k ∈ [i]

with u(k) = v(k) or u−1(n) = v−1(n) or u−1(1) = v−1(1). Then:

[u, v] ∼= f([u, v]) = [f(u), f(v)].

Proof. This is easy to see noting that if u and v are such that H = u(k) = v(k)

for some k ∈ [i] then all x ∈ [u, v] are such that x(k) = H since of u ≤ x ≤ v

then (by Proposition 1.3.12):

u(j) ≤ x(j) ≤ v(j),

for all j ∈ [i].

Example 3.3.6. Consider [2461357, 2671345]. Using the previous functions

(step by step) we can see that:

[2461357, 2671345] ∼= [351246, 561234] ∼= [24135, 45123] ∼= [1324, 3412],

see Figure 3.3.1.
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Figure 3.3.1: The two intervals are isomorphic.

We use the function f to simplify the study of Conjecture 2.1.8 for the

Grasmannian permutations. So we must prove the following Proposition.

Proposition 3.3.7. Let u, v ∈ SJ
n ,u ≤ v such that exists k ∈ [i] with u(k) =

v(k) or u−1(n) = v−1(n) or u−1(1) = v−1(1). Then:

Λ(v) \ Λ(u) = Λ(f(v)) \ Λ(f(u)).

In particular, Λ(v) \ Λ(u) is a Dyck cbs if and only if Λ(f(v)) \ Λ(f(u)) is.

Proof. Suppose that exist an integer j ∈ [i] such that u(j) = v(j).

In that case we have:

Λ(v) \ Λ(u) = (v(i)− u(i), . . . , v(j + 1)− u(j + 1), 0, . . . , 0),

where v(k)− u(k) = 0 for all k < j because Λ is a Dyck cbs by hypothesis or

Λ(v) \ Λ(u) = (0, . . . , 0, v(j − 1)− u(j − 1), . . . , v(1)− u(1)).

If we apply the function f we obtain:

f(u) = u(1), . . . , u(j − 1), u(j + 1)− 1, . . . , u(i)− 1, u(i+ 1)′j, . . . , u(n)
′
j
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f(v) = v(1), . . . , v(j − 1), v(j + 1)− 1, . . . , v(i)− 1, v(i)′j . . . , v(n)
′
j

and so:

Λ(f(v))\Λ(f(u)) = (v(i)−u(i), . . . , v(j+1)−u(j+1), v(j−1)−u(j−1), . . . , v(1)−u(1))

= (v(i)− u(i), . . . , v(j + 1)− u(i+ 1), 0, . . . , 0)

and this is equal to Λ.

Suppose now that u−1(1) = v−1(1) or u−1(n) = v−1(n) it’s then easy to see

that f conserves the Dyck cbs property because:

• In the first case when u, v have the 1 in the same position the function

f deletes 1 and

Λj(f(v))\Λj(f(u)) = (v(j)−1)−(u(j)−1) = v(j)−u(j) = Λj(v)\Λj(u),

for all j ∈ [i].

• In the second case when u, v have n in the same position the function f

deletes n and doesn’t rescale the other integers in u and v. Then also in

that case:

Λ(f(v)) \ Λ(f(u)) = Λ(v) \ Λ(u).

Example 3.3.8. In S5 there are 4 different pairs u, v ∈ SJ
n such that µ(u, v) 6=

0:

(12435, 14523); (13245, 34125)

(13524, 34512); (24135, 45123)

Applying f we can see that:

f([12435, 14523]) ∼= f([13245, 34125]) ∼= f([13524, 34512]) ∼= f([24135, 45123])

∼=
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[1324, 3412]

and by the previous Proposition:

Λ(12435, 14523) = Λ(13245, 34125) = Λ(13524, 34512) = Λ(24135, 45123)

=

Λ(1324, 3412) = (1, 2).

Using the previous Proposition we can study Conjecture 2.1.8 only for u, v ∈
SJ
n such that u ≤ v, u(k) 6= v(k) for all k ∈ [i] and u−1(1) 6= v−1(1), u−1(n) 6=

v−1(n). We now construct u, v with the following Theorem.

Theorem 3.3.9. Let u, v ∈ SJ
n with u ≤ v be such that u(h) 6= v(h) for all

h ∈ [i], u−1(1) 6= v−1(1) and u−1(n) 6= v−1(n). Then:

µ(u, v) 6= 0

m

v = v(1), v(2), . . . v(i− 1), n, 1, . . . v̂(1), . . . , v̂(2), . . . , v̂(i− 1) . . . , n− 1

u = 1, v(1), v(2), . . . n− 1, 2, . . . v̂(1), . . . , v̂(2), . . . , v̂(i− 1), . . . , n.

Proof. In the following we use Corollary 1.5.25:

Λ is a Dyck cbs ⇔ µ(u, v) 6= 0.

We start with some considerations:

Observation 3.3.10. v(i) = n otherwise v(n) = n but to have u ≤ v then

also u(n) = n. This is in contradiction with u−1(n) 6= v−1(n).

Observation 3.3.11. v(i+ 1) = 1 otherwise v(1) = 1 but to have u ≤ v then

also u(1) = 1. This is in contradiction with u−1(1) 6= v−1(1).

Observation 3.3.12. The only choice for 1, n that preserves u−1(1) 6= v−1(1)

and u−1(n) 6= v−1(n) is the following:

u(1) = 1, u(n) = n, v(i) = n, v(i+ 1) = 1.
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We now consider a generic position j ∈ [i] and will show that u(j) = v(j−1).

First of all we know that Λ is a Dyck cbs and so the possibilities are the

following:

(Case I: Λj−1 = 1,Λj = 1Λj−1 = 1,Λj = 1Λj−1 = 1,Λj = 1): In such case it is easy to see that:

{
v(j − 1)− u(j − 1) = 1,

u(j)− u(j − 1) = 1

and so u(j) = v(j − 1).

(Case II: Λj−1 = 1,Λj = RΛj−1 = 1,Λj = RΛj−1 = 1,Λj = R): In such case:

{
v(j)− u(j) = R,

v(j)− v(j − 1) = R

and so u(j) = v(j − 1).

(Case III: Λj−1 = R,Λj = 1Λj−1 = R,Λj = 1Λj−1 = R,Λj = 1): In such case:

{
v(j − 1)− u(j − 1) = R,

u(j)− u(j − 1) = R

and so u(j) = v(j − 1).

So we know the structure of u([i]) starting from the structure of v([i]). It’s

easy to see that, by the conditions on the first i integers, we can also conclude

that:

v(j) = u(j − 1) for j ∈ [i+ 2, n].

Observation 3.3.13. Note that in the previous Proposition u(k) 6= v(k) for

all k ∈ [n].

We can now use the following Corollary:

Corollary 3.3.14. Let u, v ∈ SJ
n be such that Λ(v)−Λ(u) = Λ(f(v))−Λ(f(u))

and u(k) 6= v(k) for all k ≤ i then:
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• u(j) 6= v(j) for all j ∈ [n],

• u(i) = n− 1, u(i+ 1) = 2 and so v(i− 1) = n− 1, v(i+ 2) = 2.

Example 3.3.15. In the following we list, up to isomorphism induced by f ,

the different pairs of Grasmannian permutation u, v ∈ Sn, with n ≤ 7, such

that Λ is a Dyck cbs.

• In S3 there isn’t any such pair while in S4 the only pair of Grasmannian

permutation with Λ a Dick cbs is:

[1324, 3412].

• In S5 there are 4 cases but all are isomorphic by f to the poset [1324, 3412].

• In S6 there are 14 cases but up to isomorphism by f we have only three

cases:

[1324, 3412]; [135246, 356124]; [145236, 456123].

• In S7 there are 40 cases but up to isomorphism by f we reduce to three

previous cases:

[1324, 3412]; [135246, 356124]; [145236, 456123].

So note that to study the Conjecture 2.1.8 for SJ
n and 1 ≤ l(u, v) ≤ 7 we must

only consider three different posets. This is a very useful simplification. Here

we list these three posets:
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Figure 3.3.2: [1324, 3412].

Figure 3.3.3: [135246, 356124].
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Figure 3.3.4: [145236, 456123].

We can now prove the main result of this Section.

Theorem 3.3.16. Let u, v ∈ SJ
n be such that µ(u, v) 6= 0 then [u, v] doesn’t

have a special matching

Proof. We begin by counting the number of coatoms in [u, v]. Recall that:

v = v(1), v(2), . . . , n− 1, n, 1, 2 . . . v(n)

and

u = 1, v(1), v(2), . . . , v(i− 2), n− 1, 2 . . . n.

It’s easy to see that to have v′ ⊳ v we can exchange on v:

• v(1) with the elements of the set {2, . . . v(1)− 1},

• v(2) with {2, . . . v(2)− 1} \ {v(1)},

• ...
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• v(i− 1) = n− 1 with {2, . . . , n− 1} \ {v(1), . . . v(i− 2)},

• n with all the v(j) for j ∈ [i+ 2, n],

• 1 with v(j) for all j ∈ [i]

and so:

c(u, v) = (v(1)−2)+(v(2)−3)+. . .+(v(i−2)−(i−1))+(v(i−1)−i)(n−i−1)+i =

=
i−1∑

j=1

(v(j))− (
i∑

k=2

k) + n− 1.

Observation 3.3.17. For each coatom v′ ⊳ v we can say that:

c(u, v′) ≤ c(u, v)− 1. (11)

This is because the only way to have a v′′ ⊳ v′ is to change an element v(h)

with h < i with another v(s) < v(h) as before. So each v(h) can be exchanged

at most with:

{2, . . . v(h)− 1} \ {v(1), . . . , v(h− 1)},

as before. We lose at least the change for pass from v to v′ and so we have

disequation 11.

So if we take a coatom:

v′ = v(1), . . . v(j−1), v(k), v(j+1), . . . , v(i−1), n, 1, . . . , v(k−1), v(j), v(k+1), . . .

in that case for have v′′ ⊳v′ we have the same change of previous minus at least

the change between the elements of the set {v(j + 1), . . . , n} with {v(s) : s ∈
[k + 1, n], v(s) < v(j)}. So we have that:

c(u, v′) ≤ c(u, v)− 1− (i− j)|{v(s) : s ∈ [k + 1, n], v(s) < v(j)}|,

now for conclude the proof we must consider the follow particular case:

(Case I.a: i− j = 0i− j = 0i− j = 0):

This is the case where we move v(i) = n. In such case we have:

va = v(1), . . . , n− 1, v(k), 1, . . . , v(k − 1), n, v(k + 1), . . .



3.3 Grasmannian permutations

For have v′ ⊳ va we can change n− 1 with v(k) but no change n− 1 with the

elements of the set {1, n− 2} \ {v(1), . . . , v(i− 2)}. So we have that:

c(u, va) ≤ c(u, v)− 1− (n− 2− i+ 2) = c(u, v)− n+ i− 1.

So for no have c(u, v)−1 > c(u, va) we must i = n but by hypothesis i ∈ [n−1].

(Case I.b: |{v(s) : s ∈ [k + 1, n], v(s) < v(j)}| = 0|{v(s) : s ∈ [k + 1, n], v(s) < v(j)}| = 0|{v(s) : s ∈ [k + 1, n], v(s) < v(j)}| = 0):

This is the case where:

vb = v(1), . . . v(j−1), v(k), v(j+1), . . . , v(i−1), n, 1, . . . , v(k−1), v(j), v(k+1), . . .

and v(k) < h < v(j) are all in the first j − 1 position of v.

We can see that for have v′ ⊳ vb we can’t change elements of the set {v(j +
1), . . . , n} with elements of the set {1, . . . , v(k − 1)} otherwise for Theorem

1.3.10 we have v′ � u. In such case we have:

c(u, vb) ≤ c(u, v)− 1− (i− j)|{1, . . . , v(k − 1)}|.

The particular case i− j = 0 is the previous so we can only consider:

|{1, . . . , v(k − 1)}| = 0.

In such situation vb is on the form:

vb = v(1), . . . v(j − 1), 1, v(j + 1), . . . , v(i− 1), n, v(j), . . .

we can see that the elements of the set {v(j+1), . . . , v(i− 1)} can’t be moved

otherwise we obtain v′ ⊳ vb such that v′ � u. So:

c(u, vb) ≤ c(u, v)− 1− (i− j).

We can again consider the particular case i− j = 0 but this is again the case

I.a.

We now show Theorem 3.3.16 with an example.
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Example 3.3.18. Let u = 145236 and v = 456123 in S
(S\{s3})
6 following the

proof of theorem we have that:

v(1) = 4, v(2) = 5, n = 6

and so:

2∑

j=1

(v(j))− (

3∑

k=2

k) + n− 1 = 4 + 5 +−(2 + 3) + 5 = 9.

And in the following figure we can see that |c(u, v)| − 1 > |c(u, v′)| for all

v′ ∈ c(u, v)

Figure 3.3.4.
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