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Introduction

In the last thirty years, starting with the seminal papers of Cheeger
and Goresky MacPherson[23], [24], [25] and [27], stratified pseudomani-
folds turned out to be a very interesting and reach field of interactions be-
tweens analysis and topology. In particular, on stratified pseudomanifolds,
the L2−de Rham-Hodge theory and its relationships with intersection co-
homology of Goresky-MacPherson turned out to be a very important topic.
Roughly speaking the question is the following:
given a compact and smoothly stratified pseudomanifold X is there a rie-
mannian metric g over its regular part reg(X) such that the L2 (maximal
or minimal) cohomology of reg(X) relative to g is isomorphic to the inter-
section cohomology of X relative to some perversity? Is it possible to state
a Hodge theorem for these groups? In other words is there a self-adjoint ex-
tension of ∆i : Ωi

c(reg(X))→ Ωi
c(reg(X)) such that its kernel is isomorphic

to some L2 cohomology group?
The first results in this direction were obtained by Cheeger in his celebrated
papers [23], [24] and [25]. In these papers Cheeger introduced the notion
of adapted riemannian metric over the regular part of a stratified pseudo-
manifold X and he proved that

H i
2,max(reg(X), g) ∼= ImH i(X,R)

that is the L2 maximal de Rham cohomology of (reg(X), g) is isomorphic
the intersection cohomology of X relative to the lower middle perversity.
Moreover, when X is a Witt space, Cheeger also proved that

∆i : Ωi
c(reg(X))→ Ωi

c(reg(X))

as unbounded and densely defined operator on L2Ωi(reg(X), g) is essentially
self-adjoint. Subsequently many authors have dealt with these problems; we
can cite for example the work of Nagase [57] and [58]. In these papers the
author showed that if p is a perversity such that p ≤ m then on reg(X) there
is a riemannian metric g such that its L2 de Rham maximal cohomology is
isomorphic to the intersection cohomology of X associated to the perversity
p. Other examples are provided by the work of Hsiang and Pati [43]. In this
paper the authors proved the Cheeger-Goresky-MacPherson’s conjecture for
a class of complex projective surfaces endowed with the Fubini-Study met-
ric. Saper’s paper [63] which is devoted to the L2 cohomology of the Weill-
Peterson metric, Saper and Stern’s paper [64] in which the authors proved
the Zucker conjecture (see [72]), the works of Hunsicker [44] and Hunsicker
and Mazzeo [45].
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4 INTRODUCTION

The first part of our thesis is devoted to a problem of this kind. More pre-
cisely we considerer a compact and oriented smoothly stratified pseudoman-
ifold X. Over its regular part, reg(X), we introduce a class of riemannian
metrics which we call quasi-edge metrics with weights and which generalize
the metrics used by Cheeger in [23]. Our goal is to prove an L2−de Rham-
Hodge theorem for these metrics.
The first part of the thesis is structured in the following way: in the first
chapter we recall the background, that is Hilbert complexes and L2 coho-
mology, stratified pseudomanifolds, intersection cohomology, Thom-Mather
stratifications and we introduce the particular class of riemannian metrics
we will use in the second and in the third chapter and that we call quasi-
edge metrics with weights. The first two sections of the second chapter are
devoted to the calculation of the L2 maximal cohomology of a cone over a
riemannian manifold while in the third section we prove the main theorems
of the second chapter: in the first theorem we will show that if X is a com-
pact, oriented and smoothly stratified pseudomanifold with a Thom-Mather
stratification and if g is a quasi-edge metric with weights on reg(X) then it
is possible to associate two general perversities, pg and qg, to the metric g
such that the following Hodge-de Rham isomorphisms hold:

IqgH i(X,R0) ∼= H i
2,max(reg(X), g) ∼= Hiabs(reg(X), g) (0.1)

IpgH i(X,R0) ∼= H i
2,min(reg(X), g) ∼= Hirel(reg(X), g) (0.2)

This theorem generalizes the de Rham theorems proved in [23], [44]
and [45]. Our next result, the second theorem of section 3, gives a partial
answer to the inverse question: given a general perversity p on X is there
a riemannian metric g over reg(X) such that the L2 (maximal or minimal)
cohomology of (reg(X), g) is isomorphic to the intersection cohomology of
X associated to p? Generalizing the results obtained by Nagase in [57] and
[58] we show that:

(1) if p is a general perversity on X in the sense of Friedman such
that p ≥ m, where m is the upper middle perversity, and such that
p(Y ) = 0 for each stratum with cod(Y ) = 1, then it is possible to
construct on reg(X) a quasi edge metric with weights g such that
(0.2) holds.

(2) if q is a general perversity on X in the sense of Friedman such
that p ≤ m, where m is the lower middle perversity, and such that
p(Y ) = −1 for each stratum with cod(Y ) = 1, then it is possible to
construct on reg(X) a quasi edge metric with weights g such that
(0.1) holds.

These results were obtained in [6].

The third chapter of the thesis is devoted to the study of the following
groups:

H i
2,m→M (M, g), H

i
2,m→M (M, g) (0.3)
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where (M, g) is an open, oriented and incomplete riemannian manifold, the
groups are defined as the image

H i
2,min(M, g) −→ H i

2,max(M, g), H
i
2,min(M, g) −→ H

i
2,max(M, g)

and the maps are the natural maps induced by the inclusion of complexes
(L2Ωi(M, g), dmin,i) ⊂ (L2Ωi(M, g), dmax,i). The reason behind this study
is given by the fact that, when (M, g) is an open and incomplete riemann-
ian manifold, then usually Poincaré duality doesn’t hold for the groups
H i

2,max(M, g) i = 0, ..., n and H i
2,min(M, g) i = 0, ..., n. As we will see

this is not true for the groups: H
i
2,m→M (M, g) i = 0, ..., n. More precisely

the main results we obtained about these groups can be summarized in the
following way:

1) If each vector space H
i
2,m→M (M, g) is finite dimensional then Poincaré

duality holds for the sequence H
i
2,m→M (M, g), i = 0, ..., n.

2) If dmin,i has closed range for each i then there exists a Hilbert complex
(L2Ωi(M, g), dm,i) such that

H i
2,m(M, g) = H i

2,m→M (M, g)

where H i
2,m(M, g) i = 0, ..., n are the cohomology groups of the complex

(L2Ωi(M, g), dm,i).

3) If (L2Ωi(M, g), dmin,i) is a Fredholm complex then also (L2Ωi(M, g), dm,i)
is a Fredholm complex. This implies that for each i there exists a self-adjoint
extension of ∆i : Ωi

c(M) → Ωi
c(M), the i−th Laplacian acting on smooth

i−forms with compact support, that we label ∆m,i, such that ∆m,i is a
Fredholm operator on its domain with the graph norm and

Ker(∆m,i) ∼= H i
2,m→M (M, g).

In particular Poincaré duality holds for the sequence:

H i
2,m→M (M, g), i = 0, ..., n.

Moreover, when (M, g) is an open and oriented riemannian manifold of

dimension 4n such that im(H
2n
2,min(M, g) → H

2n
2,max(M, g)) is finite dimen-

sional, we introduce an L2−signature defined as the signature of the non
degenerate pairing

H
2n
2,m→M (M, g)×H2n

2,m→M (M, g) −→ R (0.4)

([ω], [η]) 7→
∫

M
ω ∧ η

where ω, η ∈ Ker(dmin,2n). Using the fact that, if im(H
i
2,min(M, g) →

H
i
2,max(M, g)) is finite dimensional then also im(H i

c(M)→ H i(M)) is finite

dimensional, we show that, if (M, g) admits the L2−signature defined above,
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then it admits a topological signature as well, defined as the signature of
the following pairing:

im(H i
c(M)→ H i(M))× im(H i

c(M)→ H i(M)) −→ R (0.5)

([α], [β]) 7→
∫

M
α ∧ β

where α, β are closed forms with compact support.
In the rest of the chapter we describe some geometric and topological ap-
plications of the above results. In particular we apply them when M is the
regular part of a compact, oriented and smoothly stratified pseudomanifold
X and g is a quasi-edge metric with weights on reg(X). In this context, as
we will see, the kernel of the operator ∆m,i, previously introduced, admits a
topological interpretation:

Ker(∆m,i) ∼= im(IqgH i(X,R0)→ IpgH i(X,R0)). (0.6)

Moreover we have also the following index theorem:

ind((dm + d∗m)ev) = Ipg→qgχ(X,R0) (0.7)

where

Ipg→qgχ(X,R0) =
∑

i

(−1)idim(im(IpgH i(X,R0)→ IqgH i(X,R0)))

and (dm + d∗m)ev is the extension of

d+ δ :
⊕

i

Ω2i
c (M)→

⊕

i

Ω2i+1
c (M)

defined by

(dm + d∗m)ev|L2Ω2i(M,g) := dm,2i + d∗m,2i−1

which is a Fredholm operator on its domain endowed with the graph norm.
We remark as well that in this framework the L2 signature introduced previ-
ously admit a topological interpretation because it coincides with the per-
verse signature introduced by Friedman and Hunsicker in [34], that is

σ2(reg(X), g) = σpg→qg(X).

Finally, among the others applications, we get a topological obstruction
to existence of a riemannian metric g with finite L2 cohomology over an open
and oriented manifold M and we get some properties of ∆Fi , the Friedrichs
extension of ∆i.
More precisely we prove that, if (M, g) is an open, oriented and incom-
plete riemannian manifold such that (L2Ωi(M, g), dmax,i), or equivalently
(L2Ωi(M, g), dmin,i), is a Fredholm complex, then for each i, ∆Fi , the Friedrichs
extension of ∆i : Ωi

c(M) → Ωi
c(M), is a Fredholm operator on its domain

endowed with the graph norm. Moreover it satisfies:

Ker(∆Fi ) = Ker(∆min,i) and ran(∆Fi ) = ran(∆max,i).

This last result applies, for example, whenM is the regular part of a compact
and smoothly stratified pseudomanifold with a Thom-Mather stratification.
These results were obtained in [8].
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The second part of the thesis is devoted to the Atiyah-Bott-Lefschetz
theorem over a compact manifold with conical singularities. The Atiyah-
Bott-Lefschtz theorem, see [3], is a fundamental result of elliptic theory on
closed manifolds proved by Atiyah and Bott in 1969. It provides a formula
for the Lefschetz number of a geometric endomorphism acting on an elliptic
complex over a closed manifold. More precisely let M be a closed manifold
and consider an elliptic complex over M :

0→ C∞c (M,E0)
P0→ C∞c (M,E1)

P1→ ...
Pn−1→ C∞c (M,En)

Pn→ 0 (0.8)

Let T = (T0, ..., Tn) be a geometric endomorphism of the above complex
where geometric means that, for each i = 0, ..., n:

Ti = φi ◦ f∗

where f∗ : C∞(M,Ei) → C∞(M,f∗Ei) is the natural map induced by a
smooth map f : M → M and φi : f∗Ei → Ei is a bundle homomorphism.
Then, assuming that f has only simple fixed points, Atiyah and Bott pro-
vided a formula for the Lefschetz number of T , that is

L(T ) :=
∑

i

(−1)i Tr(T ∗i : H i(M,E∗)→ H i(M,E∗))

showing that

L(T ) =
∑

p=f(p)

∑

i

(−1)i Tr(φi)

|det(Id− dpf)| .

Moreover in [4] Atiyah and Bott applied their formula to the main com-
plexes arising in differential geometry, that is the de Rham complex, the
Dolbeault complex, the signature and the spin complex, obtaining several
interesting applications. In particular, for the de Rham complex, they ob-
tained a new proof of the Lefschetz’s fixed point theorem for compact and
smooth manifolds, that is given a map f : M → M with only simple fixed
points, then its Lefschetz number is given by the formula:

L(f) =
∑

p=f(p)

sgn det(Id− dpf).

Another important application is the holomorphic Lefschetz formula. Given
a complex manifold M and an holomorphic map f : M → M with only
simple fixed points, they proved that :

L∂(f) =
∑

f(p)=p

1

detC(Id− dpf)
.

The results recalled above inspired various works in the last forty years.
In particular several papers have been devoted to the applications of the
Atiyah-Bott-Lefschetz theorem, to investigate new approaches to its proof
and to find some generalizations. For example in [11], [36], [49], [50] and
[61] the heat kernel approach is developed, while in [10] an approach using
probabilistic methods is employed. In [15], [59], [60] [66],[68], [70] and [71]
the Atiyah-Bott-Lefschetz theorem is extended to some kind of manifolds
that are not closed: for example [59] is devoted to the case of elliptic conic
operators on manifolds with conical singularities defined on suitable Sobolev
spaces, in [66] the case of a manifold with cylindrical ends is studied and
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[68] concerns the case of a complex of Hecke operators over an arithmetic
variety. In particular the use of the heat kernel turned out to be a powerful
tool in order to get alternative proofs and extensions of the theorem. Since
the heat kernel associated to a conic operator has been intensively studied
in the last thirty years, e.g. [18], [19] [20], [21], [25],[51] and [56], it is
interesting to explore its applications in this context as well. This is exactly
the goal of the second part of this thesis:
to prove an Atiyah-Bott-Lefschetz theorem for the L2−Lefschetz numbers
(maximal and minimal) associated to a geometric endomorphism of an el-
liptic complex of differential cone operators using a heat kernel approach.
Also this part is divided in three chapters. The first one is devoted to back-
ground material such as differential cone operators, elliptic complexes and
heat kernel. In the second chapter we define the class of geometric endo-
morphisms we consider in the rest of the text, we define the L2−Lefschetz
numbers L2,max/min(T ) and we prove several properties about them. In
the third chapter some explicit formulas for the contribution given by the
singular points to the Lefschetz numbers are proved while the last chapter
contains the application of the previous results to the L2 de Rham com-
plexes. Our geometric framework is the following: given a compact and
orientable manifold with isolated conical singularities X, we consider over
its regular part, reg(X) (usually labeled M), a complex of elliptic conic
differential operators:

0→ C∞c (M,E0)
P0→ C∞c (M,E1)

P1→ ...
Pn−1→ C∞c (M,En)

Pn→ 0 (0.9)

and a geometric endomrphism T = (T0, ..., Tn) of the complex, that is for
each i = 0, .., n, Ti = φi ◦ f∗ where f : X → X is an isomorphism and
φi : f∗Ei → Ei is a bundle homomorphism. Using a conic metric over M we
associate to (0.9) two Hilbert complexes (L2(M,Ei), Pmax/min,i) and then
we prove the following properties:

• The cohomology groups of (L2(M,Ei), Pmax/min,i) are finite dimen-
sional.
• If f satisfies some conditions (see definition 5.1) then each Ti ex-

tends to a bounded map acting on L2(M,Ei) such that (Ti+1 ◦
Pmax/min,i)(s) = (Pmax/min ◦ Ti)(s) for each s ∈ D(Pmax/min,,i).

In this way we can associate to T and (0.9) two L2−Lefschetz numbers
L2,max/min(T ) defined as

L2,max(T ) :=
n∑

i=0

(−1)i Tr(T ∗i : H i
2,max(M,Ei)→ H i

2,max(M,Ei)) (0.10)

and analogously

L2,min(T ) :=
n∑

i=0

(−1)i Tr(T ∗i : H i
2,min(M,Ei)→ H i

2,min(M,Ei)) (0.11)

Subsequently, using the operators Pi := P ti ◦ Pi + Pi−1 ◦ P ti−1, their abso-
lute and relative extensions and the fact that the respective heat operators
e−tPabs/rel,i : L2(M,Ei) → L2(M,Ei) are trace-class operators we prove the
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following results:

L2,max/min(T ) =

n∑

i=0

(−1)i Tr(Ti ◦ e−tPabs/rel,i).

In particular, in the expression above, the term on the right end side does
not depend on t. Moreover if Fix(f), the fixed points of f , is made only by
simple fixed points (condition which in turn implies that each p ∈ Fix(f) is
an isolated fixed point) then we have:

L2,max/min(T ) =
∑

q∈Fix(f)

n∑

i=0

(−1)i
∫

Uq

tr(φi ◦ kabs/rel,i(t, f(x), x))dvolg

where φi ◦ kabs/rel,i(t, f(x), x) is the smooth kernel of Ti ◦ e−tPabs/rel,i and
Uq is an open neighborhood of q. Under some additional hypothesis, in
particular that f takes the form (rA(p), B(p)) in a suitable neighborhood of
each q ∈ sing(X) (see theorem 6.3), we have the following formulas:

L2,max/min(T ) =
∑

p∈Fix(f)∩M

n∑

i=0

(−1)i Tr(φi)

|det(Id− dq(f))|+ (0.12)

+
∑

q∈sing(X)

n∑

i=0

(−1)iζTi,q(Pabs/rel,i)(0)

where each ζTi,q(Pabs/rel,i)(0) satisfies :

ζTi,q(Pabs/rel,i)(0) = (0.13)

=
1

2ν

∫ ∞

0

dx

x

∫

Lq

tr(φi ◦ e−xPabs/rel,i(A(p), B(p), 1, p))dvolh.

Finally, in the last part of the paper, we apply the previous results to the
de Rham complex. We get an analytic construction of the Lefschetz numbers
arising in intersection cohomology and a topological interpretation of the
contributions given by the singular points to the L2−Lefschetz numbers. In
particular, under suitable conditions, we prove the following formula:

ImL(f) = L2,max(T ) =
∑

q∈Fix(f)∩reg(X)

sgn det(Id− dqf)+ (0.14)

+
∑

q∈sing(X)

∑

i<m+1
2

(−1)i Tr(B∗ : H i(Lq)→ H i(Lq)).

where ImL(f) is the intersection Lefschetz number arising in intersection
cohomology, T is the endomorphism of (L2Ωi(M, g), dmax,i) induced by f
and B is a diffeomorphism of the link Lq such that, in a neighborhood of q,
f satisfies f = (rA(p), B(p)). In particular from (0.14) we get:

m+1∑

i=0

(−1)iζTi,q(∆abs,i)(0) =
∑

i<m+1
2

(−1)i Tr(B∗ : H i(Lq)→ H i(Lq)). (0.15)
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2. Poincaré duality and Hodge theorem. 65
3. Some geometric applications 71
4. L2 and topological signature for an incomplete manifold. 76
5. Application to stratified pseudomanifolds 78
6. Manifolds without finite L2 cohomology groups 82
7. Some application to the Friedrichs extension 85
8. Additional remarks 89

Part 2. The L2−Atiyah-Bott-Lefschetz theorem on manifolds
with conical singularities. 93

Chapter 4. Background 95
1. Differential cone operators 95
2. Elliptic complex on manifolds with conical singularities 99
3. A brief reminder on the heat kernel 101

Chapter 5. L2−Lefschetz numbers 107
1. Geometric endomorphism 107
2. L2−Lefschetz numbers of a geometric endomorphism 111

Chapter 6. The contribution of the singular points 119
1. First case 119

13



14 CONTENTS

2. The case of a short complex 125

Chapter 7. A thorough analysis of the de Rham case 129
1. Applications of the previous results 129
2. Some further results arising from Cheeger’s work on the heat

kernel 132

Bibliography 137



Part 1
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stratified pseudomanifolds





CHAPTER 1

Background

This chapter contains the background material. It is dived in three sec-
tions: in the first section we recall briefly the notion of Hilbert complex
and we prove some properties about it. The second section is devoted to
a rapid introduction to intersection cohomology. Finally, in the third sec-
tion, we introduce the notion of Thom-Mather stratification and the class
of riemannian metrics we use in the second and in the third chapter.

1. Hilbert complexes

In this first section we start by recalling the notion of Hilbert com-
plex and how it appears in riemannian geometry. It is a very useful abstract
framework to analyze the general properties satisfied by the natural L2 com-
plexes arising in riemannian geometry. The theory is fully developped in [16]
and we refer to it for a deeper discussion on this subject and for the proofs.

Definition 1.1. A Hilbert complex is a complex, (H∗, D∗) of the form:

0→ H0
D0→ H1

D1→ H2
D2→ ...

Dn−1→ Hn → 0, (1.1)

where each Hi is a separable Hilbert space and each map Di is a closed
operator called the differential such that:

(1) D(Di), the domain of Di, is dense in Hi.
(2) ran(Di) ⊂ D(Di+1).
(3) Di+1 ◦Di = 0 for all i.

The cohomology groups of the complex areH i(H∗, D∗) := Ker(Di)/ran(Di−1).
If the groups H i(H∗, D∗) are all finite dimensional we say that it is a
Fredholm complex.

Given a Hilbert complex there is a dual Hilbert complex

0← H0
D∗0← H1

D∗1← H2
D∗2← ...

D∗n−1← Hn ← 0, (1.2)

defined using D∗i : Hi+1 → Hi, the Hilbert space adjoints of the differentials
Di : Hi → Hi+1. The cohomology groups of (Hj , (Dj)

∗), the dual Hilbert
complex, are

H i(Hj , (Dj)
∗) := Ker(D∗n−i−1)/ran(D∗n−i).

For all i there is also a laplacian ∆i = D∗iDi + Di−1D
∗
i−1 which is a self-

adjoint operator on Hi with domain

D(∆i) = {v ∈ D(Di) ∩ D(D∗i−1) : Div ∈ D(D∗i ), D
∗
i−1v ∈ D(Di−1)} (1.3)

and nullspace:

Hi(H∗, D∗) := ker(∆i) = Ker(Di) ∩Ker(D∗i−1). (1.4)

17



18 1. BACKGROUND

The following propositions are standard results for these complexes. The
first result is a weak Kodaira decomposition:

Proposition 1.2. [[16], Lemma 2.1] Let (Hi, Di) be a Hilbert complex
and (Hi, (Di)

∗) its dual complex, then:

Hi = Hi ⊕ ran(Di−1)⊕ ran(D∗i ).

The reduced cohomology groups of the complex are:

H
i
(H∗, D∗) := Ker(Di)/(ran(Di−1)).

By the above proposition there is a pair of weak de Rham isomorphism
theorems: {

Hi(H∗, D∗) ∼= H
i
(H∗, D∗)

Hi(H∗, D∗) ∼= H
n−i

(H∗, (D∗)∗)
(1.5)

where in the second case we mean the cohomology of the dual Hilbert com-
plex.
The complex (H∗, D∗) is said weak Fredholm if Hi(H∗, D∗) is finite dimen-
sional for each i. By the next propositions it follows immediately that each
Fredholm complex is a weak Fredholm complex.

Proposition 1.3. [[16], corollary 2.5] If the cohomology of a Hilbert
complex (H∗, D∗) is finite dimensional then, for all i, ran(Di−1) is closed
and H i(H∗, D∗) ∼= Hi(H∗, D∗).

Proposition 1.4 ([16], corollary 2.6). A Hilbert complex (Hj , Dj), j =
0, ..., n is a Fredholm complex (weak Fredholm) if and only if its dual complex,
(Hj , D

∗
j ), is Fredholm (weak Fredholm). If it is Fredholm then

Hi(Hj , Dj) ∼= Hi(Hj , Dj) ∼= Hn−i(Hj , (Dj)
∗) ∼= Hn−i(Hj , (Dj)

∗). (1.6)

Analogously in the the weak Fredholm case we have:

Hi(Hj , Dj) ∼= H i(Hj , Dj) ∼= Hn−i(Hj , (Dj)
∗) ∼= Hn−i(Hj , (Dj)

∗). (1.7)

Proposition 1.5. A Hilbert complex (Hj , Dj), j = 0, ..., n is a Fredholm
complex if and only if for each i the operator ∆i defined in (1.3) is a Fredholm
operator on its domain endowed with the graph norm.

Proof. See [65], lemma 1 pag 203. �

Now we recall another result which shows that it is possible to compute
the cohomology groups of an Hilbert complex using a core subcomplex

D∞(Hi) ⊂ Hi.

For all i we define D∞(Hi) as consisting of all elements η that are in the
domain of ∆l

i for all l ≥ 0.

Proposition 1.6 ([16], Theorem 2.12). The complex (D∞(Hi), Di) is
a subcomplex quasi-isomorphic to the complex (Hi, Di)
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As it is well known, riemannian geometry offers a framework in which
Hilbert and (sometimes) Fredholm complexes can be built in a natural way.
The rest of this subsection is devoted to recall these constructions.
Let (M, g) be an open and oriented riemannian manifold of dimension m and
let E0, ..., En be vector bundles over M . For each i = 0, ..., n let C∞c (M,Ei)
be the space of smooth section with compact support. If we put on each
vector bundle a metric hi i = 0, ..., n the we can construct in a natural way
a sequences of Hilbert space L2(M,Ei), i = 0, ..., n as the completion of
C∞c (M,Ei). Now suppose that we have a complex of differential operators :

0→ C∞c (M,E0)
P0→ C∞c (M,E1)

P1→ ...
Pn−1→ C∞c (M,En)→ 0, (1.8)

To turn this complex into a Hilbert complex we must specify a closed ex-
tension of P∗ that is an operator between L2(M,E∗) and L2(M,E∗+1) with
closed graph which is an extension of P∗. We start recalling the two canon-
ical closed extensions of P .

Definition 1.7. The maximal extension Pmax; this is the operator act-
ing on the domain:

D(Pmax,i) = {ω ∈ L2(M,Ei) : ∃ η ∈ L2(M,Ei+1) (1.9)

s.t. < ω, P ti ζ >L2(M,Ei)=< η, ζ >L2(M,Ei+1) ∀ ζ ∈ C∞0 (M,Ei+1)}

where P ti is the formal adjoint of Pi.
In this case Pmax,iω = η. In other words D(Pmax,i) is the largest set of

forms ω ∈ L2(M,Ei) such that Piω, computed distributionally, is also in
L2(M,Ei+1).

Definition 1.8. The minimal extension Pmin,i; this is given by the
graph closure of Pi on C∞0 (M,Ei) respect to the norm of L2(M,Ei), that
is,

D(Pmin,i) = {ω ∈ L2(M,Ei) : ∃ {ωj}j∈J ⊂ C∞0 (M,Ei), ωj → ω, (1.10)

Piωj → η ∈ L2(M,Ei+1)}
and in this case Pmin,iω = η

Obviously D(Pmin,i) ⊂ D(Pmax,i). Furthermore, from these definitions,
it follows immediately that

Pmin,i(D(Pmin,i)) ⊂ D(Pmin,i+1), Pmin,i+1 ◦ Pmin,i = 0

and that

Pmax,i(D(Pmax,i)) ⊂ D(Pmax,i+1), Pmax,i+1 ◦ Pmax,i = 0.

Therefore (L2(M,E∗), Pmax/min,∗) are both Hilbert complexes and their co-
homology groups, reduced cohomology groups, are denoted respectively by

H i
2,max/min(M,E∗) and H

i
2,max/min(M,E∗).
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Another straightforward but important fact is that the Hilbert complex
adjoint of
(L2(M,E∗), Pmax/min,∗) is (L2(M,E∗), P tmin/max,∗), that is

(Pmax,i)
∗ = P tmin,i, (Pmin,i)

∗ = P tmax,i. (1.11)

Using proposition 1.2 we obtain two weak Kodaira decompositions:

L2(M,Ei) = Hiabs/rel(M,Ei)⊕ ran(Pmax/min,i−1)⊕ ran(P tmin/max,i) (1.12)

with summands mutually orthogonal in each case. For the first summand
in the right, called the absolute or relative Hodge cohomology, we have by
(1.4):

Hiabs/rel(M,E∗) = Ker(Pmax/min,i) ∩Ker(P tmin/max,i−1). (1.13)

We can also consider the natural laplacians associated to the complex 1.8:

Pi := P ti ◦ Pi + Pi−1 ◦ P ti−1 (1.14)

where we recall that P ti is the formal adjoint of Pi. Using the Hilbert com-
plexes (L2(M,Ei), Pmax/min,i) we can construct for each i two self-adjoint
extensions of Pi:

Pabs,i := P tmin,i ◦ Pmax,i + P tmin,i−1 ◦ Pmax,i−1 (1.15)

and
Prel,i := P tmax,i ◦ Pmin,i + P tmax,i−1 ◦ Pmin,i−1 (1.16)

with domain described in (1.3). Using (1.4) and (1.5) it follows that the
nullspace of (1.15) is the absolute Hodge cohomology which is in turn isomor-
phic to the reduced cohomology of the Hilbert complex (L2(M,E∗), Pmax,∗).
Analogously, using again (1.4) and (1.5), it follows that the nullspace of
(1.16) is the relative Hodge cohomology which is in turn isomorphic to the
reduced cohomology of the Hilbert complex (L2(M,E∗), Pmin,∗).
Moreover we can define other two Hodge cohomology groupsHimax/min(M,E∗)
and other two closed extension of Pi defined as:

Himax/min(M,E∗) = Ker(Pmax/min,i) ∩Ker(P tmax/min,i−1). (1.17)

Pmax,i : L2(M,Ei)→ L2(M,Ei) (1.18)

and
Pmin,i : L2(M,Ei)→ L2(M,Ei). (1.19)

Pmax,i is defined as the maximal closure of Pi : C∞c (M,Ei) → C∞c (M,Ei)
that is u ∈ D(Pmax,i) and v = Pmax,i(u) if

< u,Pti (φ) >L2(M,Ei)=< v, φ >L2(M,Ei) for each φ ∈ C∞c (M,Ei).

Pmin,i is the minimal closure of Pi : C∞c (M,Ei) → C∞c (M,Ei) that is
u ∈ D(Pmin,i) and v = Pmin,i(u) if there is a sequence {φ}i∈N ⊂ C∞c (M,Ei)
such that

φi → u in L2(M,Ei) and Pi(φ)→ u in L2(M,Ei).

Proposition 1.9. The operators Pmax,i and Pmin,i satisfy the following
properties:

(1) (Pmax,i)∗ = Pmin,i, (Pmin,i)∗ = Pmax,i.
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(2) Ker(Pmin,i) = Himin(M, g).
(3) Ker(Pmax,i) = Himax(M,Ei).

(4) ran(Pmin,i) = ran(Pmin,i−1)⊕ ran(P tmin,i).

(5) ran(Pmax,i) = ran(Pmax,i−1) + ran(P tmax,i).

Proof. The first property is immediate. For the second property con-
sider the following operator:

Pmax,i−1 ◦ P tmin,i−1 + P tmax,i ◦ Pmin,i : L2(M,Ei)→ L2(M,Ei).

We label it Pm,i. This is a symmetric operator and it is clear that Pm,i ex-
tends Pmin,i that is D(Pmin,i) ⊂ D(Pm,i) and Pmin,i(u) = Pm,i(u) for each
u ∈ D(Pmin,i). From this it follows that Ker(Pmin,i) ⊂ Himin(M,Ei) be-
cause Ker(Pmin,i) ⊂ Ker(Pm,i) and Ker(Pm,i) = Himin(M,Ei). By the fact

that ran(Pmax,i) ⊂ ran(Pmax,i−1) + ran(P tmax,i) and by the first property it

follows thatKer(Pmin,i) = (ran(Pmax,i))⊥ ⊃ (ran(Pmax,i−1) + ran(P tmax,i))
⊥

= Himin(M,Ei). Therefore Ker(Pmin,i) = Himin(M,Ei).
For the third property consider the following operator:

Pmin,i−1 ◦ P tmax,i−1 + P tmin,i ◦ Pmax,i : L2(M,Ei)→ L2(M,Ei).

We label it PM,i. Also PM,i is a symmetric operator and it is clear that Pmax,i
extends PM,i. ThereforeKer(Pmax,i) ⊃ Himax(M,Ei) becauseKer(Pmax,i) ⊃
Ker(PM,i) and Ker(PM,i) = Himax(M,Ei). By the fact that ran(Pmin,i) ⊂
ran(Pmin,i−1) + ran(P tmin,i) and by the first property it follows that

(ran(Pmin,i))⊥ ⊃ (ran(Pmin,i−1) + ran(P tmin,i))
⊥ = Himax(M,Ei).

In this way we can conclude that Ker(Pmax,i) = Himax(M,Ei) because

Ker(Pmax,i) = (ran(Pmin,i))⊥.

For the fourth property we can observe that ran(Pmin,i) ⊂ ran(Pm,i) ⊂
ran(Pmin,i−1) ⊕ ran(P tmin,i). But, by the third point, (ran(Pmin,i−1) ⊕
ran(P tmin,i))

⊥ = Ker(Pmax,i) and (Ker(Pmax,i))⊥ = ran(Pmin,i); there-
fore the fourth point is proved.
For the fifth property we can observe that

ran(Pmax,i) ⊂ ran(Pmax,i−1) + ran(P tmax,i).

But, by the second point, (ran(Pmax,i−1) + ran(P tmax,i))
⊥ = Ker(Pmin,i)

and (Ker(Pmin,i))⊥ = ran(Pmax,i) and therefore the fifth point is proved.
�

From proposition 1.9 follows immediately the following Kodaira decom-
position for the Hilbert space L2(M,Ei). It was proved for the de Rham
complex in [48].

Proposition 1.10. In the same assumptions of proposition 1.9 we have
the following Kodaira decomposition :

L2(M,Ei) = Himax(M ;Ei)⊕ ran(Pmin,i−1)⊕ ran(P tmin,i). (1.20)
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Proof. It is well known that, by the fact that (Pmax,i)∗ = Pmin,i and
(Pmin,i)∗ = Pmax,i, the following L2 decomposition holds for L2(M,Ei):

L2(M,Ei) = Ker(Pmax,i)⊕ ran(Pmin,i).
By proposition 1.9 we know that Ker(Pmax,i) = Himax(M ;Ei) and that

ran(Pmin,i) = ran(Pmin,i−1)⊕ ran(P tmin,i) and this complete the proof. �

Another useful application of the abstract theory of Hilbert complexes
is given in the next proposition:

Proposition 1.11. Consider a complex as in (1.8); suppose moreover
that it is an elliptic complex. Consider now the following complex

0→ D2(P0)
P0→ D2(P1)

P1→ ...
Pn−1→ D2(Pn)→ 0, (1.21)

where for each i = 0, ..., n we have:

D2(Pi) := {s ∈ C∞(M,Ei) ∩ L2(M,Ei) : Pi(s) ∈ L2(M,Ei)}.
Then (6.8) is a subcomplex quasi-isomorphic to the Hilbert complex
(L2(M,Ei), Pmax,i).

Proof. Clearly (6.8) is a subcomplex of (L2(M,Ei), Pmax,i). To show
that the inclusion induces an isomorphism between cohomology groups con-
sider proposition 1.6. By the fact that (1.8) is an elliptic complex it follows
that for each i = 0, ..., n, Pi is an elliptic operator. In this way, using el-
liptic regularity, it follows that the complex (D∞(L2(M,Ei)), Pmax,i) is a
subcomplex of (6.8) and therefore the statement follows. �

Obviously, a particular and fundamental case, which satisfies all the
previous results is the de Rham complex:

0→ Ω0
c(M)

d0→ Ω1
c(M)

d1→ ...
dn−1→ Ωn

c (M)→ 0, (1.22)

where Ωi
c(M) is the space of smooth i−forms with compact support. Subse-

quently, when we will deal with the Hilbert complexes associated to (1.22),
we will use the notations ∆i,∆abs,i and ∆rel,i instead of Pi,Pabs,i and Prel,i
we will label (Ωi

2(M), gc), di) the subcomplex of (L2Ωi(M, g), dmax,i) de-
scribed in proposition 6.8.

2. Stratified pseudomanifolds and intersection homology

We begin the section by recalling the concept of stratified pseudomani-
fold. The definition is given by induction on the dimension.

Definition 1.12. A 0−dimensional stratified space is a countable set
with the discrete topology. For m > 0 a m−dimensional topologically strat-
ified space is paracompact Hausdorff topological space X equipped with a
filtration

X = Xm ⊃ Xm−1 ⊃ ... ⊃ X1 ⊃ X0 (1.23)

of X by closed subsets Xj such that if x ∈ Xj −Xj−1 there exists a neigh-
bourhood Nx of x in X, a compact (m − j − 1)−dimensional topologically
stratified space L with a filtration

L = Lm−j−1 ⊃ ... ⊃ L1 ⊃ L0 (1.24)
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and a homeomorphism

φ : Nx → Rj × C(L) (1.25)

where C(L) = L × [0, 1)/L × {0} is the open cone on L, such that φ takes
Nx ∩Xj+i+1 homeomorphically onto

Rj × C(Li) ⊂ Rj × C(L) (1.26)

for m− j − 1 ≥ i ≥ 0 and φ takes Nx ∩Xj homeomorphically onto

Rj × {vertex of C(L)} (1.27)

This definition guaranties that, for each j, the subset Xj − Xj−1 is a
topological manifold of dimension j. The strata of X are the connected
components of these manifolds. If a stratum Y is a subset of X −Xn−1 it
is called a regular stratum; otherwise it is called a singular stratum.
The space L is referred as to the link of the stratum. In general it is
not uniquely determined up to homeomorphism, though if X is a stratified
pseudomanifold it is unique up to stratum preserving homotopy equivalence
(see[32] pag 108).

Definition 1.13. A topological pseudomanifold of dimension m is a
paracompact Hausdorff topological space X which posses a topological strat-
ification such that

Xm−1 = Xm−2 (1.28)

and X −Xm−2 is dense in X.(For more details see [5] or [47]).

Over these spaces, at the end of the seventies, Mark Goresky and Robert
MacPherson have defined a new homological theory known as intersection
homology. On of the reasons that led Goresky and MacPherson to introduce
this new theory was the idea to extend Poincaré duality to these kind of
singular spaces. Here we recall briefly the main definitions and we refer to
[5], [12], [38], [39] and [47] for a complete development of the theory.

Definition 1.14. A perversity is a function p : {2, 3, 4, ..., n} → N such
that

p(2) = 0 and p(i) ≤ p(i+ 1) ≤ p(i) + 1. (1.29)

Example 1.15. Some example of perversities are the following:

(1) The lower middle perversity: m(k) = bk2c − 1 where bxc is the
integer part of x.

(2) The upper middle perversity: m(k) = dk2e − 1 where dxe is the
smallest integer bigger or equal than x.

(3) The top perversity: t(k) = k − 2

Finally it is immediate verify that, given a perversity p, than also t− p is a
perversity. It is called the dual is the perversity of p.

Remark 1.1. m is the dual perversity of m . The trivial perversity is
the dual perversity of t.



24 1. BACKGROUND

Let ∆i ⊂ Ri+1 the standard i−simplex. The j−skeleton are of ∆i is the
set of j−subsimplices. We say a singular i−simplex in X, i.e. a continuous
map σ : ∆i → X, is p−allowable if for all k ≥ 2

σ−1(Xm−k −Xm−k−1) ⊂ {(i− k + p(k))− skeleton of ∆i}. (1.30)

The elements of the space IpSi(X) are the finite linear combinations of
singular i−simplex σ : ∆i → X such that σ and ∂σ are p−allowable. Clearly
(IpSi(X), ∂i) is a complex, more precisely a subcomplex of (Si(X), ∂i), and
the perversity p singular intersection homology groups, IpHi(X),
are the homology groups of this complex.

Remark 1.2. The above definition is not the original definition given
by Goresky and MacPherson in [38]. In fact in their paper Goresky and
MacPherson use a simplicial point of view and in particular the notion of
p-allowable simplicial chains. The definition that we have recalled here
was given in [46] by H. King. Over a PL-stratified pseudomanifold it is
equivalent to the Goresky and MacPherson’s definition but the advantage
is that it holds even if X is only a stratified pseudomanifold.

Some of the fundamental results proved by Goresky and MacPherson
are the following (see [38], [39], [5], [12] and [47]):

Let X a stratified pseudomanifold, X a fixed stratification on X, p a
perversity on X, G a local system on X −Xn−2 and O the orientation sheaf
on X −Xn−2.
Consider now the following set of axioms (AX1)p,X,G⊗O for a complex of
sheaves (S∗, d∗):

(1) S∗ is bounded, Si = 0 for i < 0 and S∗|X−Xn−2 is quasi-isomorphic
to G ⊗ O.

(2) If x ∈ Z for a stratum Z, then Hi(S∗x) = 0 for i > p(k) where k is
the codimension of Z.

(3) Let Uk = X −Xn−k and let ik : Uk → Uk+1 the natural inclusion.
Then for x ∈ Z ⊂ Uk+1 the attachment map

αk : S∗|Uk+1
→ Rik∗i

∗
kS∗|Uk+1

given by the composition of natural morphism

S∗|Uk+1
→ ik∗i

∗
kS∗|Uk+1

→ Rik∗i
∗
kS∗|Uk+1

is a quasi-isomorphism at x up to p(k).

In almost all references the previous axioms are formulated in the derived
category of sheaves on X. In that case the term quasi-isomorphism should
be replaced with the term isomorphism.

Theorem 1.16. Let X a compact stratified pseudomanifold of dimension
n, p a perversity on X and (S∗, d∗) a complex of sheaves that satisfies the
set of axioms (AX1)p,X,G⊗O. Then the following isomorphism holds:

Hi(X,S∗) ∼= IpHn−i(X,G) (1.31)

that is the i−th hypercohomology group of the complex (S∗, d∗) is isomorphic
to the (n − i)−th intersection homology group with coefficient in the local
system G and relative to the perversity p.
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Corollary 1.17. In the same hypothesis of the previous theorem if
(S∗, d∗) is a complex of fine or flabby or soft sheaves then the following
isomorphism holds:

H i(S∗(X), d∗) ∼= IpHn−i(X,G) (1.32)

where H i(S∗(X), d∗) are the cohomology groups of the complex

0...
di−1→ Si(X)

di→ Si+1(X)
di+1→ Si+2(X)

di+2→ ...

Theorem 1.18. Let F a field, X a compact and F−oriented stratified
pseudomanifold of dimension n, p, q perversities on X such that p+ q = t
and F a local system over X that is (X−Xn−2)×F over X−Xn−2 where the
fibers F have the discrete topology. Then the following isomorphism holds:

IpHi(X,F) ∼= Hom(IqHn−i(X,F), F ). (1.33)

Before to recall the last result we give the following definition:

Definition 1.19. Let X be a stratified pseudomanifold. Then X is
called a Witt space if the following property is satisfied: let Y be a singular
stratum of X and let LY be its link. Suppose that Y has odd codimension
2f + 1. Then

ImH f
2
(LY ,Q) = 0

Theorem 1.20. Let X be a compact and orientable Witt space. Then
the natural inclusion of complexes (ImSi(X), ∂i) ⊂ (ImSi(X), ∂i) induces
an isomorphism between the homology groups ImHi(X,Q) ∼= ImHi(X,Q).
In this case we have Poincaré duality:

ImHi(X,Q) ∼= Hom(ImHn−i(X,Q), Q). (1.34)

However, for our goals we need a more general notion of perversity and
associated intersection homology. A generalization of the theory of Goresky
and MacPherson that is suited for our needs was made by Greg Friedman.
As in the previous case we recall only the main definitions and results and
we refer to the [31], [32] and [33] for a complete development of the theory.
First, we remember that the theory proposed by Friedman applies to a
wider class of spaces: from now on a stratified pseudomanifold will
be simply a paracompact Hausdorff topological space X which
posses a topological stratification and such that X −Xn−1 is dense
in X. That is, we do not require that the condition Xm−1 = Xm−2

apply. In the following propositions each stratified pseudomanifolds will
have a fixed stratification. We start by introducing the notion of general
perversity:

Definition 1.21. A general perversity on a stratified pseudomanifold
X is any function

p : {Singular Strata of X} → Z. (1.35)
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The notion of p−allowable singular simplex is modified in the following
way: a singular i−simplex in X, i.e. a continuous map σ : ∆i → X, is
p−allowable if

σ−1(Y ) ⊂ {(i− cod(Y ) + p(Y ))− skeleton of ∆i} (1.36)

for any singular stratum Y of X.

A key ingredient in this new theory is the notion of homology with
stratified coefficient system. (The definition uses the notion homology
with local coefficient system; for the definition of local coefficient system see
[28], [42] and[67])

Definition 1.22. Let X stratified pseudomanifold and let G a local
system on X − Xn−1. Then the stratified coefficient sistem G0 is defined
to consist of the pair of coefficient systems given by G on X − Xn−1 and
the constant 0 system on Xn−1 i.e. we think of G0 as consisting of a locally
constant fiber bundle GX−Xn−1 over X−Xn−1 with fiber G with the discrete
topology together with the trivial bundle on Xn−1 with the stalk 0.

Then a coefficient n of a singular simplex σ can be described by a lift of
σ|σ−1(X−Xn−1) to G over X−Xn−1 together with the trivial lift of σ|σ−1(Xn−1)

to the 0 system on Xn−1. A coefficient of a simplex σ is considered to be
the 0 coefficient if it maps each points of ∆ to the 0 section of one of the
coefficient systems. Note that if σ−1(X − Xn−1) is path-connected then a
coefficient lift of σ to G0 is completely determined by the lift at a single point
of σ−1(X −Xn−1) by the lifting extension property for G. The intersection
homology chain complex (IpS∗(X,G0), ∂∗) are defined in the same way as
IpS∗(X,G), where G is any field, but replacing the coefficient of simplices
with coefficient in G0. If nσ is a simplex σ with its coefficient n, its boundary
is given by the usual formula ∂(nσ) =

∑
j(−1)j(n ◦ ij)(σ ◦ ij) where ij :

∆i−1 → ∆i is the j−face inclusion map. Here n◦ ij should be interpreted as
the restriction of n to the jth face of σ, restricting the lift to G where possible
and restricting to 0 otherwise. The basic idea behind the definition is that
when we consider if a chain is allowable with respect to a perversity, simplices
with support entirely in Xn−1 should vanish and thus not be counted for
admissibility considerations. (For more details see [31], [32] and [33]).

The next proposition shows that Friedman’s theory is an extension of
the classical theory made by Goresky and MacPherson.

Proposition 1.23. (see [32] pag. 110, [33] pag. 1985) If p is a tra-
ditional perversity, that is a perversity like those defined in definition 1.14,
and Xn−1 = Xn−2 then

IpS∗(X,G) = IpS∗(X,G0).

Example 1.24. Let X be a stratified pseudomanifold and p a general
perversity on X. Consider as stratified coefficient system R0, that is the
pair of coefficient systems given by (X −Xn−1) × R over X −Xn−1 where
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the fibers R have the discrete topology and the constant 0 system on Xn−1.
Now suppose that X and p satisfy the assumptions of proposition 1.23; then

IpS∗(X,R) = IpS∗(X,R0)

where IpS∗(X,R) is the usual intersection homology chain complex with
coefficient in the field R.

We conclude this section recalling the generalizations, obtained by Fried-
man, of the previous results obtained by Goresky and MacPherson.

Again let X be a stratified pseudomanifold, X a fixed stratification on
X, p a generalized perversity on X, G a local system on X −Xn−1 and O
the orientation sheaf on X −Xn−1.
Consider now the following set of axioms (AX1)p,X,G⊗O for a complex of
sheaves (S∗, d∗):

(1) S∗ is bounded, Si = 0 for i < 0 and S∗|X−Xn−1 is quasi-isomorphic
to G ⊗ O.

(2) If x ∈ Z for a stratum Z, then Hi(S∗x) = 0 for i > p(Z).
(3) Let Uk = X −Xn−k and let ik : Uk → Uk+1 the natural inclusion.

Then for x ∈ Z ⊂ Uk+1 the attachment map

αk : S∗|Uk+1
→ Rik∗i

∗
kS∗|Uk+1

given by the composition of natural morphism

S∗|Uk+1
→ ik∗i

∗
kS∗|Uk+1

→ Rik∗i
∗
kS∗|Uk+1

is a quasi-isomorphism at x up to p(Z).

We recall again for the benefit of the reader that in almost all references
the previous axioms are formulated in the derived category of sheaves on X.
In that case the term quasi-isomorphism should be replaced with the term
isomorphism.

Theorem 1.25. (see [31] pag 116) Let X a compact stratified pseudo-
manifold of dimension n, p a general perversity on X and (S∗, d∗) a complex
of sheaves that satisfies the set of axioms (AX1)p,X,G⊗O. Then the following
isomorphism holds:

Hi(X,S∗) ∼= IpHn−i(X,G0) (1.37)

that is the i−th hypercohomology group of the complex (S∗, d∗) is isomorphic
to the (n−i)−th intersection homology group with coefficient in the stratified
system G0 and relative to the perversity p.

Corollary 1.26. In the same hypothesis of the previous theorem if
(S∗, d∗) is a complex of fine or flabby or soft sheaves then the following
isomorphism holds:

H i(S∗(X), d∗) ∼= IpHn−i(X,G0) (1.38)

where H i(S∗(X), d∗) are the cohomology groups of the complex

0...
di−1→ Si(X)

di→ Si+1(X)
di+1→ Si+2(X)

di+2→ ...
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Theorem 1.27. (see [31] pag 122 or [32] pag 25.) Let F a field, X
a compact and F−oriented stratified pseudomanifold of dimension n, p, q
general perversities on X such that p+q = t (that is for each stratum Z ⊂ X
p(Z) + q(Z) = codim(Z)− 2) and F0 a stratified coefficient system over X,
consisting of the pair of coefficient systems given by (X −Xn−1) × F over
X −Xn−1 where the fibers F have the discrete topology and the constant 0
system on Xn−1. Then the following isomorphism holds:

IpHi(X,F0) ∼= Hom(IqHn−i(X,F0), F ). (1.39)

Remark 1.3. In this paper with the symbol IpH i(X,G0) we mean the
cohomology of the complex

(Hom(IpSi(X,G0), G), (∂i)
∗).

We call it the i− th intersection cohomology group of X with respect to the
perversity p and the stratified coefficient system G0. When G = F is a field
then

IpH i(X,F0) ∼= Hom(IpHi(X,F0), F ).

Remark 1.4. Summarizing, by theorems 1.25 and 1.27, it follows that if
(S∗, d∗) is a complex of sheaves that satisfies the set of axioms (AX1)p,X,F⊗O
then

Hi(X,S∗) ∼= IqH i(X,F0) (1.40)

where p+ q = t and if (S∗, d∗) is a complex of fine or flabby or soft sheaves
then, by corollary 1.26,

H i(S∗(X), d∗) ∼= IqH i(X,F0) (1.41)

3. Thom-Mather stratification and quasi edge metrics with
weights

In this section we introduce stratified pseudomanifolds with a Thom-
Mather stratification and quasi-edge metrics wight weights. Following [1],
we start recalling the definition of a smoothly stratified pseudomanifold with
a Thom-Mather stratification.

Definition 1.28. A smoothly stratified pseudomanifoldX with a Thom-
Mather stratification is a metrizable, locally compact, second countable
space which admits a locally finite decomposition into a union of locally
closed strata G = {Yα}, where each Yα is a smooth, open and connected
manifold, with dimension depending on the index α. We assume the follow-
ing:

(1) If Yα, Yβ ∈ G and Yα ∩ Y β 6= ∅ then Yα ⊂ Y β

(2) Each stratum Y is endowed with a set of control data TY , πY and
ρY ; here TY is a neighbourhood of Y in X which retracts onto Y ,
πY : TY → Y is a fixed continuous retraction and ρY : TY → [0, 2)
is a proper radial function in this tubular neighbourhood such that
ρ−1
Y (0) = Y . Furthermore, we require that if Z ∈ G and Z∩TY 6= ∅

then (πY , ρY ) : TY ∩ Z → Y × [0, 2) is a proper differentiable
submersion.
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(3) If W,Y,Z ∈ G, and if p ∈ TY ∩ TZ ∩W and πZ(p) ∈ TY ∩ Z then
πY (πZ(p)) = πY (p) and ρY (πZ(p)) = ρY (p).

(4) If Y,Z ∈ G, then Y ∩ Z 6= ∅ ⇔ TY ∩ Z 6= ∅ , TY ∩ TZ 6= ∅ ⇔ Y ⊂
Z, Y = Z or Z ⊂ Y .

(5) For each Y ∈ G, the restriction πY : TY → Y is a locally triv-
ial fibration with fibre the cone C(LY ) over some other stratified
space LY (called the link over Y ), with atlas UY = {(φ,U)} where
each φ is a trivialization π−1

Y (U) → U × C(LY ), and the transi-
tion functions are stratified isomorphisms which preserve the rays
of each conic fibre as well as the radial variable ρY itself, hence are
suspensions of isomorphisms of each link LY which vary smoothly
with the variable y ∈ U .

(6) For each j let Xj be the union of all strata of dimension less or
equal than j, then

X −Xn−1 is dense in X

We make a few comments to the previous definition (for more details we
refer to [1]):

(1) The previous definition is more general than that given in [1]. In
[1] a space that satisfies the definition 1.28 is only a smoothly
stratified spaces (with a Thom-Mather stratification). To be a
smoothly stratified pseudomanifold (with a Thom-Mather strati-
fication) there is another requirement to satisfy: let Xj be the
union of all strata of dimensions less or equal than j, then

X = Xn ⊃ Xn−1 = Xn−2 ⊃ Xn−3 ⊃ ... ⊃ X0 (1.42)

and X −Xn−2 is dense in X. For our goals, thanks to the results
of Friedman, we can waive the requirement Xn−1 = Xn−2 and
therefore we will call smoothly stratified pseudomanifold with a
Thom-Mather stratification each space X that satisfies the defini-
tion 1.28.

(2) The link LY is uniquely determined, up to isomorphism (see point
number 5 below for the notion of isomorphism), by the stratum Y .

(3) The depth of a stratum Y is largest integer k such that there is a
chain of strata Y = Yk, ..., Y0 such that Yj ⊂ Yj−1 for i ≤ j ≤ k.
A stratum of maximal depth is always a closed subset of X. The
maximal depth of any stratum in X is called the depth of X as
stratified spaces.

(4) Consider the filtration

X = Xn ⊃ Xn−1 ⊃ Xn−2 ⊃ Xn−3 ⊃ ... ⊃ X0 (1.43)

We refer to the open subset X−Xn−1 of a stratified pseudomanifold
X as its regular set, and the union of all other strata as the singular
set,

reg(X) := X − sing(X) where sing(X) :=
⋃

Y ∈G,depthY >0

Y.

(5) If X,X ′ are two stratified spaces a stratified isomorphism between
them is a homeorphism F : X → X ′ which carries the strata of X
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to the strata of X ′ diffeomorphically, and such that π′F (Y ) ◦ F =

F ◦ πY , ρY = ρ′(F (Y )) ◦ F for all Y ∈ G(X).

Summarizing a smoothly stratified pseudomanifold with Thom-Mather
stratification is a stratified pseudomanifold with a richer structure from a
differentiable and topological point of view.

Now we introduce an important class of riemannian metrics on the regu-
lar part of a smoothly stratified pseudomanifold with a Thom-Mather strat-
ification. Before giving the definition we recall that two riemannian metrics
g, h on a smooth manifold M are quasi-isometric if there are constants
c1, c2 such that c1h ≤ g ≤ c2h.

Definition 1.29. Let X be a smoothly stratified pseudomanifold with
a Thom-Mather stratification and let g a riemannian metric on reg(X). We
call g a quasi edge metric with weights if it satisfies the following
properties:

(1) Take any stratum Y of X; by definition 1.28 for each q ∈ Y there
exist an open neighbourhood U of q in Y such that φ : π−1

Y (U) →
U × C(LY ) is a stratified isomorphism; in particular φ : π−1

Y (U) ∩
reg(X) → U × reg(C(LY )) is a diffeomorphism. Then, for each
q ∈ Y , there exists one of these trivializations (φ,U) such that g
restricted on π−1

Y (U) ∩ reg(X) satisfies the following properties:

(φ−1)∗(g|π−1
Y (U)∩reg(X))

∼= dr ⊗ dr + hU + r2cgLY (1.44)

where hU is a riemannian metric defined over U , c ∈ R and c > 0,
gLY is a riemannian metric on reg(LY ), dr ⊗ dr + hU + r2cgLY is
a riemannian metric of product type on U × reg(C(LY )) and with
∼= we mean quasi-isometric.

(2) If p and q lie in the same stratum Y then in (1.44) there is the same
weight. We label it cY .

Before continuing we make some remarks:

(1) Obviously if the codimension of Y is 1 then LY is just a point and
therefore by the previous definition

(φ−1)∗(g|π−1
Y (U)∩reg(X))

∼= dr ⊗ dr + hU .

(2) In the first point of the previous definition the metric gLY depends
also on the open neighborhood U and the stratified isomorphism
φ. However we prefer to use the notation gLY instead of gLY ,U,φ for
the sake of simplicity.

(3) Let g and U be like in the first point of the previous definition and
let ψ : π−1

Y (U) → U × C(LY ) another stratified isomorphism that
satisfies the requirements of definition 1.28. From the fifth point of
definition 1.28 it follows that ψ ◦ φ−1 : U × C(LY ) → U × C(LY )
acts in this way: given p = (y, [r, x]) ∈ U × C(LY ) (ψ ◦ φ−1)(p) =
(y, [r, f(y, x)]) where the maps x 7→ f(y, x) are a family of smooth
stratified isomorphisms of LY which vary smoothly with the vari-
able y ∈ U . From this it follows immediately that if we fix a point
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y0 ∈ U and if we put hLY = (f(y0, x)−1)∗(gLY ) then there exists
an open subset V ⊂ U, y0 ∈ V such that (ψ−1)∗(g|π−1

Y (V )∩reg(X))
∼=

dr ⊗ dr + hU |V + r2cY hLY where hU |V is the metric hU restricted
to V . Therefore the weight cY does not depend from the particular
trivialization φ that it is chosen.

Now we give a definition which is a more refined version of the previous
one; it is also a slight generalization of the definition of the adapted metric
given by Brasselet, Hector and Saralegi in [13]. This definition is given by
induction on depth(X).

Definition 1.30. Let X be a stratified pseudomanifold with a Thom-
Mather stratification and let g a riemannian metric on reg(X). If depth(X) =
0, that isX is a closed manifold, a quasi rigid iterated edge metric with
weights is any riemannian metric on X. Suppose now that depth(X) = k
and that the definition of quasi rigid iterated edge metric with weights is
given in the case depth(X) ≤ k − 1; then we call a riemannian metric g on
reg(X) a quasi rigid iterated edge metric with weights if it satisfies
the following properties:

(1) Take any stratum Y of X; by definition 1.28 for each q ∈ Y there
exist an open neighbourhood U of q in Y such that φ : π−1

Y (U) →
U × C(LY ) is a stratified isomorphism; in particular φ : π−1

Y (U) ∩
reg(X) → U × reg(C(LY )) is a diffeomorphism. Then, for each
q ∈ Y , there exists one of these trivializations (φ,U) such that g
restricted on π−1

Y (U) ∩ reg(X) satisfies the following properties:

(φ−1)∗(g|π−1
Y (U)∩reg(X))

∼= dr ⊗ dr + hU + r2cgLY (1.45)

where hU is a riemannian metric defined over U , c ∈ R and c > 0,
gLY is a quasi rigid iterated edge metric with weights on
reg(LY ), dr ⊗ dr + hU + r2cgLY is a riemannian metric of product
type on U × reg(C(LY )) and with ∼= we mean quasi-isometric.

(2) If p and q lie in the same stratum Y then in (1.45) there is the same
weight. We label it cY .

Also in this case a remark to the previous definition is in order. Let
ψ : π−1

Y (U) → U × C(LY ) another stratified isomorphism that satisfies the
requirements of definition 1.28. Using the same observations and notations
of the second remark of definition 1.29 we can conclude that there exists an
open subset V ⊂ U and a quasi rigid iterated edge metric with weights hLY
on reg(LY ) such that (ψ−1)∗(g|π−1

Y (V )∩reg(X))
∼= dr ⊗ dr + hU |V + r2cY hLY .

Furthermore, by the fact that f(y0, x) is a smooth stratified isomorphism
between LY and LY such that (f(y0, x))∗(hLY ) = gLY , it follows that gLY
and hLY have the same weights and therefore, by proposition 1.32 below,
gLY and hLY are quasi-isometric on reg(LY ) when LY is compact.

Proposition 1.31. Let X be a smoothly stratified pseudomanifold with
a Thom-Mather stratification X. For any stratum Y ⊂ X fix a positive real
number cY . Then there exists a quasi rigid iterated edge metric with weights
g on reg(X) having the numbers {cY }Y ∈X as weights.
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Proof. In [1] is defined a class of riemannian metric called rigid iter-
ated edge metric and in prop. 3.1 of the same paper is proved the existence
of such metrics. Using the same notation of definition 1.30 a riemannian met-
ric g on reg(X) is a rigid iterated edge metric if (φ−1)∗(g|π−1

Y (U)∩reg(X)) =

dr⊗dr+hU+r2gLY (u, y), with u ∈ U , y ∈ LY , and for any fixed u, gLY (u, y)
is a rigid iterated edge metric on reg(LY ). In [1] proposition 3.1 is proved in
the case Xn−1 = Xn−2 but it is easy to see that it holds also in our case that
is when Xn−1 6= Xn−2 and cY 6= 1 . Therefore on reg(X) there is a rigid
iterated edge metric g having the numbers {cY }Y ∈X as weights. Using again
the notation of definition 1.30 this means that for each stratum Y and for
any point q ∈ Y (φ−1)∗(g|π−1

Y (U)∩reg(X)) = dr⊗dr+hU +r2cY gLY (u, y), with

u ∈ U , y ∈ LY , and for any fixed u, gLY (u, y) is a rigid iterated edge metric
with weights on reg(LY ). Now it is clear that g is a quasi rigid iterated
edge metric on reg(X) having the numbers {cY }Y ∈X as weights. Alterna-
tively the existence of such metrics follows using the same arguments used
by Brasselet, Hector and Saralegi in [13].

�

Proposition 1.32. Let X be a compact smoothly stratified pseudoman-
ifold with a Thom-Mather stratification. For any stratum Y ⊂ X fix a
positive real number cY . Let g, g′ two quasi edge metrics with weights on
reg(X) having both the numbers {cY }Y ∈X as weights. Then g and g′ are
quasi-isometric.

Proof. Let K be a compact subset of X such that K ⊂ reg(X).
Obviously g|K is quasi-isometric to g′|K . Now let Y be a stratum such
that Y ⊂ Xn−1 − Xn−2. Let x ∈ Y ; consider π−1

Y (x) and let VY,x :=

π−1
Y (x) ∩ ρ−1

Y (1). Then there exists a compact subset of X, K such that
K ⊂ reg(X) and reg(VY,x) ⊂ K. Therefore g|reg(VY,x) is quasi-isometric to

g′|reg(VY,x) and from this it follows that, given an open neighbourhood U of x

in Y sufficiently small such that π−1
Y (U) ∼= U×C(LY ), g|reg(π−1

Y (U)) is quasi-

isometric to g′|reg(π−1
Y (U)). This last assertion is a consequence of the fact

that, by definition 1.29 and remarks following it, there is an isomorphism
φ : π−1

Y (U)→ U ×C(LY ) such that, by definition 1.29, (φ−1)∗(g|reg(π−1
Y (U)))

is quasi isometric to h+dr2 +r2cY gLY and analogously (φ−1)∗(g′|reg(π−1
Y (U)))

is quasi isometric to h′ + dr2 + r2cY g′LY . But from the fact that g|reg(VY,x)

is quasi-isometric to g′|reg(VY,x) it follows that gLY is quasi-isometric to g′LY
and therefore for a sufficiently small U we get g|reg(π−1

Y (U)) is quasi-isometric

to g′|reg(π−1
Y (U)). So we can conclude that if K ⊂ (X −Xn−2) is a compact

subset then g|reg(K) is quasi-isometric to g′|reg(K). Now consider a stra-

tum Z ⊂ Xn−2 − Xn−3 and let x ∈ Z. As before consider π−1
Z (x) and let

VZ,x = π−1
Z (x)∩ρ−1

Z (1). Then there exists a compact subset K ⊂ (X−Xn−2)
such that VZ,x ⊂ K. From this it follows that g|reg(VZ,x) is quasi-isometric

to g′|reg(VZ,x) and now, as before, we can conclude that given an open neigh-

bourhood U of x in Z sufficiently small such that g|π−1
Z (U)

∼= U × C(LZ),

g|reg(π−1
Z (U)) is quasi-isometric to g′|reg(π−1

Z (U)). As before from this it follows
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that if K ⊂ (X −Xn−3) is a compact subset then g|reg(K) is quasi-isometric
to g′|reg(K). Now it is obvious that iterating this procedure we obtain what
was asserted. �

Corollary 1.33. Let X be a compact smoothly stratified pseudoman-
ifold with a Thom-Mather stratification and let g a quasi edge metric with
weights on reg(X). Then there exist g′, a quasi rigid iterated edge
metric with weights on reg(X), that is quasi-isometric to g.

We conclude this section introducing the notion of general perversity
associated to a quasi edge metric with weights.

Definition 1.34. Let X be a smoothly stratified pseudomanifold with
a Thom-Mather stratification and let g a quasi edge metric with weights on
reg(X). Then the general perversity pg associated to g is:

pg(Y ) := Y 7−→ [[
lY
2

+
1

2cY
]] =





0 lY = 0
lY
2 + [[ 1

2cY
]] lY even and lY 6= 0

lY −1
2 + [[1

2 + 1
2cY

]] lY odd

(1.46)
where lY = dimLY and, given any real and positive number x, [[x]] is the
greatest integer strictly less than x.





CHAPTER 2

L2−cohomology and L2−de Rham-Hodge theorems

In this chapter we prove an L2−de Rham-Hodge theorem for a stratified
pseudomanifold endowed with a quasi edge metric with weights. The chapter
is divided in three sections: in the first section some technical proposition
we need in order to prove the theorems are proved. In the second sections
we calculate the L2 de Rham maximal cohomology groups of a cone over a
riemannian manifold. Finally, in the last section, the L2−de Rham-Hodge
theorems are stated and proved.

1. Preliminary propositions

In this section we establish the necessary tools to calculate the L2 max-
imal cohomology of a cone over a riemannian manifold. We follow, with
some modifications, [23]. Given an oriented riemannian manifold (F, g) of
dimension f , C∗(F ) will be the regular part of C(F ), that is C(F ) − {v},
and gc will be the riemannian metric on C∗(F )

gc = dr ⊗ dr + r2cπ∗g (2.1)

where π : C∗(F )→ F is the projection over F and c ∈ R, c > 0.
With the symbol dF : Ωi(C∗(F )) → Ωi+1(C∗(F )) we mean the exterior
differential obtained by ignoring the variable r.

Proposition 2.1. Let φ ∈ L2Ωi(F, g), φ 6= 0 and let π : C∗(F ) −→ F

be the projection. Then π∗(φ) ∈ L2Ωi(C∗(F ), gc) if and only if i < f
2 + 1

2c .
In this case the pullback map is also bounded.

Proof. If φ ∈ L2Ωi(F, g) then

‖π∗(φ)‖2L2(C∗(F ),gc)
=

∫

C∗(F )
‖π∗(φ)‖2C∗(F )dvolC∗(F ) =

∫ 1

0

∫

F
rc(f−2i)‖φ‖2FdvolFdr = ‖φ‖2L2(F,g)

∫ 1

0
rc(f−2i)dr <∞

if and only if i < f
2 + 1

2c . Since
∫ 1

0 r
c(f−2i)dr is independent of φ, the pullback

map is bounded. �

Proposition 2.2. There exists a constant K > 0 such that for all α =
φ + dr ∧ ω ∈ L2Ωi(C∗(F ), gc) and for any null set S ⊂ (1/2, 1) there is an
a ∈ (1/2, 1)− S such that

‖φ(a)‖2L2(F,g) ≤ K‖φ‖2L2(C∗(F ),gc)
≤ K‖α‖2L2(C∗(F ),gc)

.

35
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Proof. Suppose that this proposition is false. Then for any K > 0
there is a form φ ∈ L2Ωi(C∗(F ), gc) such that

‖φ‖2L2(C∗(F ),gc)
≥
∫ 1

1/2

∫

F
rc(f−2i)‖φ‖2FdvolFdr =

∫ 1

1/2
rc(f−2i)‖φ(r)‖2L2(F,g)dr > K‖φ‖2L2(C∗(F ),gc)

∫

(1/2,1)−S
rc(f−2i)dr

= K‖φ‖2L2(C∗(F ),gc)

∫ 1

(1/2,1)
rc(f−2i)dr.

In this way by choosing K > (
∫

(1/2,1) r
c(f−2i)dr)−1 we obtain a contradiction.

�
Proposition 2.3. If i < f

2 + 1
2c+1 and α = φ+dr∧ω ∈ L2Ωi(C∗(F ), gc),

then for any a ∈ (1/2, 1)

Ka(α) =

∫ r

a
ω(s)ds ∈ L2Ωi−1(C∗(F ), gc)

and Ka is a bounded operator uniformly in a ∈ (1/2, 1).

Proof. By definition

‖Ka(α)‖2L2(C∗(F ),gc)
= ‖

∫ r

a
ω(s)ds‖2L2(C∗(F ),gc)

=

=

∫ 1

0

∫

F
‖
∫ r

a
ω(s)ds‖2F rc(f−2i+2)dvolFdr.

We consider the term ‖
∫ r
a ω(s)ds‖2F . The following inequality holds :

‖
∫ r

a
ω(s)ds‖2F ≤ (

∫ r

a
‖ω(s)ds‖F )2

and using the Schwartz inequalities the right side of this becomes:

(

∫ r

a
‖ω(s)‖Fds)2 ≤

∫ r

a
ds

∫ r

a
‖ω(s)‖2Fds

≤
∫ 1

a
ds

∫ r

a
‖ω(s)‖2Fds = (1− a)

∫ r

a
‖ω(s)‖2Fds ≤ (1− a)

∫ 1

a
‖ω(s)‖2Fds.

So we have obtained that

‖Ka(α)‖2L2(C∗(F ),gc)
≤ (1− a)

∫ 1

0

∫

F

∫ 1

a
‖ω(s)‖2Fdsrc(f−2i+2)dvolFdr.

Now consider the term
∫ 1

0

∫
F

∫ 1
a ‖ω(s)‖2Fdsrc(f−2i+2)dvolFdr

=

∫ 1

0

∫

F

∫ 1

a
‖ω(s)‖2F (sc(f−2i+2) + 1− sc(f−2i+2))dsrc(f−2i+2)dvolFdr.

We can bound the term
∫ 1
a ‖ω(s)‖2F sc(f−2i+2)ds in the following way

∫ 1

a
‖ω(s)‖2F sc(f−2i+2)ds ≤

∫ 1

0
‖ω(s)‖2F sc(f−2i+2)ds

and therefore∫

F

∫ 1

a
‖ω(s)‖2F sc(f−2i+2)dsdvolF ≤

∫

F

∫ 1

0
‖ω(s)‖2F sc(f−2i+2)dsdvolF =
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= ‖ω‖2L2(C∗(F ),gc)

while for the term
∫ 1
a ‖ω(s)‖2F (1 − sc(f−2i+2))ds we can use the following

observation: there exist l > 0 such that 1 − sc(f−2i+2) ≤ |1 − sc(f−2i+2)| ≤
lsc(f−2i+2) for any s ∈ (1

2 , 1]. Therefore:
∫ 1

a
‖ω(s)‖2F (1− sc(f−2i+2))ds ≤

∫ 1

a
‖ω(s)‖2F |(1− sc(f−2i+2))|ds ≤

l

∫ 1

a
‖ω(s)‖2F sc(f−2i+2)ds ≤ l

∫ 1

0
‖ω(s)‖2F sc(f−2i+2)ds

and similarly to the previous case we get
∫

F

∫ 1

a
‖ω(s)‖2F (1− sc(f−2i+2))dsdvolF ≤ l‖ω‖2L2(C∗(F ),gc)

and the constant l is independent of the choice of the form ω and of the

choice of a. The fact that i < f
2 + 1

2c + 1 implies that
∫ 1

0 r
c(f−2i+2)dr =

1
1+c(f−2i+2) <∞ and so the following inequalities hold:

‖Ka(α)‖2L2(C∗(F ),gc)
≤ (1− a)

∫ 1

0

∫

F

∫ 1

a
‖ω(s)‖2Fdsrc(f−2i+2)dvolFdr

≤
∫ 1

0
rc(f−2i+2)dr(1− a)(1 + l)‖ω‖2L2(C∗(F,gc)) ≤

1

2

1 + l

1 + c(f − 2i+ 2)
‖α‖2L2(C∗(F ),gc)

.

Therefore we can conclude that for i < f
2 + 1

2c + 1

Ka : L2Ωi(C∗(F ), gc) −→ L2Ωi−1(C∗(F ), gc)

is a bounded operator uniformly in a ∈ (1
2 , 1). �

Proposition 2.4. Let 0 < ρ < 1 and endow (ρ, 1)×F with the metric gc
restricted from C∗(F ). Let α = φ+ dr ∧ ω ∈ L2Ωi(C∗(F ), gc). If i ≥ f

2 + 1
2c

then there exists a sequences εs → 0 such that

lim
εs→0

‖φ(εs)‖2L2((ρ,1)×F,gc) = 0

Proof. By the fact that α ∈ L2Ωi(C∗(F ), gc) follows that φ ∈ L2Ωi(C∗(F ), gc),

so we know that
∫ 1

0

∫
F ‖φ(r)‖2F rc(f−2i)dvolFdr <∞. This means that
∫

F
‖φ(r)‖2F rc(f−2i)dvolF ∈ L1(0, 1).

Thus by [23] lemma 1.2 there is a sequences εs → 0 for wich
∣∣∣∣
∫

F
‖φ(εs)‖2F εc(f−2i)

s dvolF

∣∣∣∣ <
C

εs|ln(εs)|
for some constant C > 0. In this way we obtain

∣∣∣∣
∫

F
‖φ(εs)‖2FdvolF

∣∣∣∣ <
Cε

c(f−2i)−1
s

|ln(εs)|
.
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Since i ≥ f
2 + 1

2c the right side tends to zero as εs → 0. Thus we obtain:

‖φ(εs)‖2L2((ρ,1)×F,gc) =

∫ 1

ρ

∫

F
‖φ(εs)‖2F εc(f−2i)

s dvolFdr

= ‖φ(εs)‖2L2(F,g)

∫ 1

ρ
rc(f−2i)dr −→ 0

when εs → 0. �
Proposition 2.5. If i > f

2− 1
2c+1 and α = φ+dr∧ω ∈ L2Ωi(C∗(F ), gc),

then

K0(α) =

∫ r

0
ω(s)ds ∈ L2Ωi−1(C∗(F ), gc)

and K0 : L2Ωi(C∗(F ), gc) −→ L2Ωi−1(C∗(F ), gc) is a bounded operator.

Proof. By definition

‖K0(α)‖2L2(C∗(F ),gc)
=

∫ 1

0

∫

F
‖
∫ r

0
ω(s)ds‖2F rc(f−2i+2)dvolFdr.

We consider the term ‖
∫ r

0 ω(s)ds‖2F . Then:

‖
∫ r

0
ω(s)ds‖2F ≤ (

∫ r

0
‖ω(s)‖Fds)2 = (

∫ r

0
s
c
2

(f−2i+2)s
c
2

(2i−f−2)‖ω(s)‖Fds)2

and applying the Schwartz inequality we get that

≤
∫ r

0
sc(2i−f−2)ds

∫ r

0
sc(f−2i+2)‖ω(s)‖2Fds =

=
r1+c(f−2i+2)

1 + c(f − 2i+ 2)

∫ r

0
sc(f−2i+2)‖ω(s)‖2Fds.

The last equality is a consequence of the fact that i > f
2− 1

2c+1. Substituting

the previous inequality in the definition of ‖K0(α)‖2L2(C∗(F ),gc)
we get:

‖K0(α)‖2L2(C∗(F ),gc)
≤

∫ 1

0

∫

F

∫ 1

0
sc(2i−f−2)ds

∫ r

0
sc(f−2i+2)‖ω(s)‖2FdsdvolF rc(f−2i+2)dr

≤
∫ 1

0

r

1 + c(2i− f − 2)
dr

∫

F

∫ 1

0
sc(f−2i+2)‖ω(s)‖2FdsdvolF

=
1

2 + 2c(2i− f − 2)
‖ω‖2L2(C∗(F ),gc)

≤ 1

2 + 2c(2i− f − 2)
‖α‖L2(C∗(F ),gc).

Thus
K0 : L2Ωi(C∗(F ), gc) −→ L2Ωi−1(C∗(F ), gc)

is a bounded operator. �
Proposition 2.6. Let

Kε(α) =

∫ r

ε
ω(s)ds

and let 0 < ρ < 1. If i > f
2 − 1

2c + 1 then on (ρ, 1) × F with the restricted
metric gc,

Kε(α) −→ K0(α)
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in the ‖ ‖L2((ρ,1)×F,gc) norm when ε→ 0.

Proof. We have

‖Kε(α)−K0(α)‖ =

∫ 1

ρ

∫

F
‖
∫ ε

0
ω(s)ds‖2F rc(f−2i+2)dvolFdr.

Using the same techniques of the previous proof we obtain that the right
hand side is at most

ε1+c(2i−f−2)

1 + c(2i− f − 2)
(

∫ 1

ρ
rc(f−2i+2)dr)‖ω‖2L2(C∗(F ),gc)

.

Since i > f
2 − 1

2c + 1 the whole expression tends to 0 as ε→ 0. �
Proposition 2.7. Let (F, g) be an oriented riemannian manifold. Let

φ ∈ D(dmax,i−1) ⊂ L2Ωi−1(F, g), η ∈ L2Ωi(F, g) such that dmax,i−1φ = η.
Then for all ρ ∈ (0, 1) on (ρ, 1)× F with the restricted metric gc:

(1) π∗φ ∈ L2Ωi−1((ρ, 1)× F )
(2) π∗η ∈ L2Ωi((ρ, 1)× F )
(3) For all β ∈ C∞0 Ωi((ρ, 1)× F ) we have

< π∗φ, δi−1β >L2((ρ,1)×F )=< π∗η, β >L2((ρ,1)×F )

that is on (ρ, 1)× F with the restricted metric gc

dmax,i−1π
∗φ = π∗η.

Proof.

‖π∗φ‖2L2((ρ,1)×F ) =

∫ 1

ρ
rc(f−2i+2)dr

∫

F
‖φ‖2FdvolF =

=

∫ 1

ρ
rc(f−2i+2)dr‖φ‖2L2(F,g) <∞

so π∗φ ∈ L2Ωi−1((1, ρ)× F );

‖π∗η‖2L2((ρ,1)×F ) =

∫ 1

ρ
rc(f−2i)dr

∫

F
‖η‖2FdvolF =

=

∫ 1

ρ
rc(f−2i)dr‖η‖2L2(F,g) <∞

so π∗η ∈ L2Ωi((1, ρ)× F ).
By a Cheeger’s result, [23] pag 93,

< π∗φ, δiβ >L2((ρ,1)×F )=< π∗η, β >L2((ρ,1)×F ) for all β ∈ C∞0 Ωi((ρ, 1)×F )

if and only if there is a sequence of smooth forms αj ∈ L2Ωi−1((ρ, 1) × F )
such that di−1αj ∈ L2Ωi((ρ, 1)× F ),

‖π∗φ− αj‖L2((ρ,1)×F ) → 0, ‖π∗η − di−1αj‖L2((ρ,1)×F ) → 0

for j →∞.
Using this Cheeger’s result , from the fact that φ ∈ Dom(di−1,max), it follows
that there is a sequences of smooth forms φj ∈ L2Ωi−1(F, g) such that
di−1φj ∈ L2Ωi(F, g), ‖φ − φj‖L2(F,g) → 0, ‖η − di−1φj‖L2(F,g) → 0 for j →
∞. Now if we put αj = π∗(φj) we obtain a sequence of smooth forms in



40 2. L2−COHOMOLOGY AND L2−DE RHAM-HODGE THEOREMS

L2Ωi−1((ρ, 1) × F ) satisfying the assumptions of the same Cheeger’s result
cited above. Indeed for each j

diαj ∈ L2Ωi((ρ, 1)× F )

‖αj − π∗φ‖L2((ρ,1)×F ) =

∫ 1

ρ
rc(f−2i+2)dr

∫

F
‖φ− αj‖2FdvolF → 0

for j →∞ and similarly

‖dαj − π∗η‖L2((ρ,1)×F ) → 0

for j →∞. Therefore we can conclude that for all β ∈ C∞0 Ωi((ρ, 1)× F )

< π∗φ, δiβ >L2((ρ,1)×F )=< π∗η, β >L2((ρ,1)×F ) .

�
Proposition 2.8. Let (F, g) be an oriented odd dimensional riemannian

manifold such that
dmax,i−1 : D(dmax,i−1) −→ L2Ωi(F, g) has closed range, where i = f+1

2 and

f = dimF . Let α ∈ L2Ωi(C∗(F ), gc) a smooth i−form such that diα ∈
L2Ωi+1(C∗(F ), gc). Then:

(1) For almost all b ∈ (0, 1) there is an exact i−form ηb ∈ D(dmax,i) ⊂
L2Ωi(F, g), ηb = dmax,i−1ψb, ψb ∈ D(dmax,i−1) ⊂ L2Ωi−1(F, g),
such that for all 0 < ρ < 1 on (ρ, 1)× F with the restricted metric
gc

‖di−1(Kbα)− (α−K0(diα)− π∗(ηb))‖L2((ρ,1)×F ) = 0

(2) On L2Ωi−1(C∗(F ), gc) we have:

dmax,i−1(Kbα+ π∗(ψb)) +K0(diα) = α

Proof. 1) Let α = φ+dr∧ω. ConsiderKε(diα) = φ−π∗φ(ε)−
∫ r
ε dFωds.

Obviously for each 0 < ρ < 1 Kε(diα) ∈ L2Ωi((ρ, 1)×F ) with the restricted

metric gc. From the fact that α is an i− form and that i + 1 = f+1
2 + 1 >

f
2 + 1− 1

2c follows that we can use prop. 2.6 to conclude that

K0(diα) ∈ L2Ωi(C∗(F ), gc)

and
‖Kε(diα)−K0(diα)‖L2((ρ,1)×F ) → 0

for ε→ 0. For the same reasons we can use prop. 2.4 to say that there is a
sequence εj → 0 such that, on (ρ, 1)× F with the restricted metric gc,

lim
εj→0

‖π∗φ(εj)‖2L2((ρ,1)×F,gc) = 0.

Therefore using these facts we can conclude that

lim
εj→0

∫ r

εj

dFωds exists in L2Ωi((ρ, 1)× F )

and, if we call this limit γ, we have

K0(di(α)) = φ− γ
in L2Ωi((ρ, 1)× F ) with the restricted metric gc. From this fact it follows

that for almost all b ∈ (0, 1)
∫ b
εj
dFωds → γ(b) in L2Ωi(F, g) for εj → 0.
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But
∫ b
εj
dFωds is a smooth form in L2Ωi(F, g);

∫ b
εj
ωds is a smooth form

in L2Ωi−1(F, g) and di−1(
∫ b
εj
ωds) =

∫ b
εj
dFωds. So we can conclude that

∫ b
εj
dFωds = dmax,i−1(

∫ b
εj
ωds) with dmax,i−1 : D(dmax,i−1) → L2Ωi(F, g).

From this it follows that γ(b) is in the closure of the image of dmax,i−1 :
D(dmax,i−1)→ L2Ωi(F, g) and so it follows from the assumptions that there
is ψb ∈ D(dmax,i−1) ⊂ L2Ωi−1(F, g) such that

dmax,i−1ψb = γ(b).

We choose one of these b and ε such that b > ε.
Now we consider di−1(Kb(α)) = dr ∧ ω +

∫ r
b dFω. Adding di−1(Kb(α)) and

Kε(diα) we obtain

di−1(Kb(α)) = α−Kε(diα)− π∗φ(ε)− π∗(
∫ b

ε
dFωds) ∈ L2Ωi((ρ, 1)× F ))

with the restricted metric gc for all ρ ∈ (0, 1).
We analyze in detail the terms on the right of equality. As noted above from
the prop. 2.4 we know that there is a sequence εj → 0 such that

lim
εj→0

‖π∗φ(εj)‖2L2((ρ,1)×F,gc) = 0.

Similarly from the proposition 2.6 we know that

‖Kεj (diα)−K0(diα)‖L2((ρ,1)×F ) −→ 0

for εj → 0. For the term π∗(
∫ b
εj
dFωds) we know, by the observations made

at the beginning of the proof and prop. 2.7, that there is an (i − 1)−form
ψb ∈ Dom(dmax,i−1) ⊂ L2Ωi−1(F, g) such that

‖π∗(
∫ b

εj

dFωds)− π∗(dmax,i−1(ψb))‖L2((ρ,1)×F ) −→ 0

for εj → 0. Summarizing, for all ρ ∈ (0, 1), we have on (ρ, 1) × F with the
restricted metric gc

lim
εj→0

‖α−Kεj (diα)− φ(εj)+

−π∗(
∫ b

εj

dFωds)− (α−K0(diα)− π∗(di−1,max(ψb)))‖L2((ρ,1)×F ) = 0.

Therefore, if we put ηb = γ(b), by the fact that

di−1(Kb(α)) = α−Kεj (diα)− π∗φ(εj)− π∗(
∫ b

εj

dFωds)

for all j, we can conclude that

‖di−1(Kbα)− (α−K0(diα)− π∗(ηb))‖L2((ρ,1)×F ) = 0

2) Before proving the statement we observe that from that fact that

i = f+1
2 it follows that we can use prop 2.3 to conclude that Kbα ∈
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L2Ωi−1(C∗(F ), gc). Analogously we can use prop 2.1 to conclude that π∗ψb ∈
L2Ωi−1(C∗(F ), gc). Let φ ∈ C∞0 Ωi(C∗(F )). Then there is ρ ∈ (0, 1) such
that supp(φ) ⊂ (ρ, 1)× F .
We consider now:

< Kbα, δi−1φ >L2(C∗(F ),gc)=< Kbα, δi−1φ >L2((ρ,1)×F ) .

By the fact that Kb(α) is a smooth (i− 1)−form such that

‖Kb(α)‖L2((1,ρ)×F ) <∞, ‖di−1(Kbα)‖L2((1,ρ)×F ) <∞
and that φ is a smooth form with compact support it follows that:

< Kbα, δi−1φ >L2((ρ,1)×F )=< di−1(Kb(α), φ >L2((ρ,1)×F )=

=< α−K0(diα)− π∗(ηb), φ >L2((ρ,1)×F )=

=< α, φ >L2((ρ,1)×F )) − < K0(diα), φ >L2((ρ,1)×F ) +

− < π∗(ηb), φ >L2((ρ,1)×F )=

=< α, φ >L2((ρ,1)×F ) − < K0(diα), φ >L2((ρ,1)×F ) +

− < π∗(ψb), δi−1φ >L2((ρ,1)×F )=

=< α, φ >L2(C∗(F ),gc) − < K0(diα), φ >L2(C∗(F ),gc) +

− < π∗(ψb), δi−1φ >L2(C∗(F ),gc) .

In particular the equality:

< π∗(ψb), δi−1φ >L2((ρ,1)×F )=< π∗(ηb), φ >L2((ρ,1)×F )

follows from prop. 2.7. We have obtained that for all φ ∈ C∞0 Ωi(C∗(F ))

< Kbα+ π∗ψb, δi−1φ >L2(C∗(F ),gc)=< α−K0(diα), φ >L2(C∗(F ),gc) .

So we can conclude that

dmax,i−1(Kbα+ π∗(ψb)) +K0(diα) = α.

�

2. L2 cohomology of a cone over a riemannian manifold

In this section we continue to use the notations of the previous section.

Theorem 2.9. Let (F, g) be an oriented riemannian manifold. Then
for the riemannian manifold (C∗(F ), gc), with gc as in (2.1) the following
isomorphism holds:

H i
2,max(C∗(F ), gc) =

{
H i

2,max(F, g) i < f
2 + 1

2c

0 i > f
2 + 1− 1

2c

(2.2)

Proof. In the first part of the proof we use the complex

(Ω∗2(C∗(F ), gc), d∗)

of prop. 1.11. Let α ∈ Ωi
2(C∗(F ), gc), α = φ + dr ∧ ω, i = 0, ..., f + 1. Let

a ∈ (1
2 , 1). Consider the following map

va : Ωi
2(C∗(F ), gc)→ Ωi

2(F, g), va(α) = φ(a). (2.3)

By prop.2.2 va(α) ∈ L2Ωi(F, g). Furthermore this map satisfies va ◦di = di ◦
va where on the left of the equality di is the i−th differential of the complex
(Ω∗2(C∗(F ), gc), d∗) while on the right of the equality the operator di is the
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i−th differential of the complex (Ω∗2(F, g), d∗). Therefore va is a morphism
between the complex (Ω∗2(C∗(F ), gc), d∗) and the complex (Ω∗2(F, g), d∗) so
it induces a map between the cohomology groups

v∗a : H i
2(C∗(F ), gc)→ H i

2(F, g) (2.4)

where H i
2(F, g) is the i− th cohomology group of the complex (Ω∗2(F, g), d∗).

Now in the case i < f
2 + 1

2c , by proposition 2.3, we know that Ka(α) and
Ka(diα) are two smooth form such that
‖Ka(diα)‖L2(C∗(F ),gc) < ∞ and ‖Kaα‖L2(C∗(F ),gc) < ∞. If we add the two
following terms, di−1(Ka(α)) and Ka(di(α)) we obtain:

di−1(Kaα) +Ka(di(α)) = (2.5)

= dr ∧ ω(s)ds+

∫ r

a
dF (s)dsω + φ− φ(a)−

∫ r

a
dF (s)dsω = α− π∗(va(α)).

So we have obtained that ‖di−1(Kaα)‖L2(C∗(F ),gc) < ∞ and from this and
(2.5) it follows that

(π∗)∗ ◦ v∗a : H i
2(C∗(F ), gc)→ H i

2(C∗(F ), gc)

is an isomorphism for i < f
2 + 1

2c . Now from this fact it follows that for the
same i:

v∗a : H i
2(C∗(F ), gc)→ H i

2(F, g)

is injective and that

(π∗)∗ : H i
2(F, g)→ H i

2(C∗(F ), gc)

is surjective. But from prop. 2.1 we know that v∗a : H i
2(C∗(F ), gc) →

H i
2(F, g) is surjective. So for i < f

2 + 1
2c H

i
2(C∗(F ), gc) and H i

2(F, g) are
isomorphic and therefore by proposition 1.11 for the same i we have

H i
2,max(C∗(F ), gc) ∼= H i

2,max(F, g).

Now we start the second part of the proof. We know that for each i every
cohomology class [α] ∈ H i

2,max(C∗(F )) has a smooth representative. So let

α ∈ L2Ωi(C∗(F ), gc), i >
f
2 + 1 − 1

2c , a smooth form such that diα = 0.

Observe that from the fact that α is closed follows that φ
′

= dFω and
therefore, given ε ∈ (0, 1) we have:

di−1(Kεα) = di−1(

∫ r

ε
ω(s)ds) = dr∧ω+

∫ r

ε
dFω(s)ds = dr∧ω+

∫ r

ε
φ
′
(s)ds =

= dr ∧ ω + φ− φ(ε) = α− φ(ε).

Consider K0(α); by proposition 2.5 we know that K0(α) ∈ L2Ωi(C∗(F ), gc).
We want to show that dmax,i−1(K0(α)) = α.
Let β ∈ C∞0 Ωi(C∗(F )). Then there is ρ > 0 such that supp(β) ⊂ (ρ, 1)×F .
Therefore:

< K0α, δi−1β >L2(C∗(F ))=< K0α, δi−1β >L2((ρ,1)×F )= (by prop 2.6)

= lim
ε→0

< Kεα, δi−1β >L2((ρ,1)×F ) .

By the fact that Kε(α) is a smooth form such that

‖Kε(α)‖L2((1,ρ)×F ) <∞, ‖di−1(Kεα)‖L2((1,ρ)×F ) <∞
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and that φ is a smooth form with compact support it follows that:

lim
ε→0

< Kεα, δi−1β >L2((ρ,1)×F )= lim
ε→0

< di−1(Kεα), β >L2((ρ,1)×F )=

= lim
ε→0

< α− φ(ε), β >L2((ρ,1)×F )=

=< α, β >L2((ρ,1)×F ) − lim
ε→0

< φ(ε), β >L2((ρ,1)×F ) .

In particular the limit

lim
ε→0

< φ(ε), β >L2((ρ,1)×F )

exist. But from prop. 2.4 we know that there is a sequence εj → 0 such that

lim
εj→0

< φ(εj), β >L2((ρ,1)×F )= 0.

Therefore

< K0α, δi−1β >L2((ρ,1)×F )=< α, δi−1β >L2((ρ,1)×F )=< α, δi−1β >L2(C∗(F ),gc) .

Thus we can conclude that dmax,i−1(K0(α)) = 0 and hence that

H i
2,max(C∗(F ), gc) = 0 for i >

f

2
+ 1− 1

2c
.

�
Corollary 2.10. Suppose that one of three following hypotheses ap-

plies:

(1) 0 < c < 1.
(2) c ≥ 1 and f = dimF is even.
(3) c ≥ 1, f is odd and dmax,i−1 : D(dmax,i−1) → L2Ωi(F, g) has close

range where i = f+1
2 . (By prop 1.3 this happen for example when

H i
2,max(F, g) is finite dimensional.)

Then for the riemannian manifold (C∗(F ), gc) the following isomorphism
holds:

H i
2,max(C∗(F ), gc) =

{
H i

2,max(F, g) i < f
2 + 1

2c

0 i ≥ f
2 + 1

2c

(2.6)

Proof. If 0 < 1 < c then f
2 + 1

2c >
f
2 + 1− 1

2c .

If c ≥ 1 and f is even then i > f
2 + 1− 1

2c if and only if i ≥ f
2 + 1

2c .

Finally if c ≥ 1, f is odd and dmax,i−1 : Dom(dmax,i−1) → L2Ωi(F, g) has
close range then the thesis immediately follows from prop. 2.8. �

Remark 2.1. Now we make a simple remark; theorem 2.9 also holds in
the following two cases:

1) If we replace C(F ) with Cε(F ) where Cε(F ) = F × [0, ε)/F ×{0} and
where ε is any real positive number. In this case we have only to modify
prop. 2.2 and prop. 2.3 choosing a ∈ (γ, ε) where γ is a fixed and positive
real number strictly smaller than ε. Furthermore if ε < δ

i∗ : (L2Ω∗(C∗δ (F ), gc), dmax,∗)→ (L2Ω∗(C∗ε (F ), gc), dmax,∗)

where i∗ is the morphism of complexes induced by the inclusion i : Cε(F )→
Cδ(F ), induces an isomorphism between the cohomology groups

H i
2,max(C∗ε (F ), gc) and H i

2,max(C∗δ (F ), gc)
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for each i < f
2 + 1

2c or i > f
2 +1− 1

2c . This last assertion is easy to see. When

i > f
2 + 1 − 1

2c it is obvious because the cohomology groups are both null;

when i < f
2 + 1

2c it follows by the fact that given a ∈ (γ, ε) and given va,
which is the evaluation map defined like in (2.3), we have va = va ◦ i∗ where
at the left of the equality va is between Ωi

2(C∗δ (F ), gc) and Ωi
2(F, g) and at the

right of the equality it is between Ωi
2(C∗ε (F ), gc) and Ωi

2(F, g) . Finally if the
hypotheses of corollary 2.10 holds then the same corollary holds for C∗ε (F )
and in this case i∗ induces an isomorphism between H i

2,max(C∗ε (F ), gc) and

H i
2,max(C∗δ (F ), gc) for all i.

2) When (F, g) is a disconnected riemannian manifold made of a finite
number of connected components all having the same dimension, that is
(F, g) =

⋃
j∈J(Fj , gj), dimFi = dimFj for each i, j ∈ J and J is finite.

Indeed in this case:

H i
2,max(C∗(F ), gc) = H i

2,max(C∗(
⋃

j∈J
Fj), gc) = (2.7)

=
⊕

j∈J
H i

2,max(C∗(Fj), gc,j) = (2.8)

=
⊕

j∈J

{
H i

2,max(Fj , gj) i < f
2 + 1

2c

0 i > f
2 + 1− 1

2c

=

{
H i

2,max(F, g) i < f
2 + 1

2c

0 i > f
2 + 1− 1

2c

Obviously if each (Fj , gj) satisfies the assumptions of corollary 2.10 then also
corollary 2.10 holds for (C∗(F ), gc). This situation could happen in theorem
2.12 of the next section. In that case the manifold F will be the regular part
of a link and it could happen that it is disconnected.

We conclude the section recalling a result from [23] that we will use in
the proof of theorem 2.12.

Proposition 2.11. Let (M, g) be a Riemannian manifold. Then for the
riemannian manifold ((0, 1) × M,dr ⊗ dr + g) the following isomorphism
holds:

H i
2,max((0, 1)×M,dr ⊗ dr + g) ∼= H i

2,max(M, g) for all i = 0, ..., dimM + 1
(2.9)

Proof. See [23] pag 115. �

3. L2 de Rham and Hodge theorems

In this section we prove the mail results of the chapter. The first one is
an L2-de Rham-Hodge theorem for (reg(X), g) where X is a compact and
oriented smoothly stratified pseudomanifol with a Thom-Mather stratifica-
tion and g is a quasi-edge metric with weights over reg(X). We will show
that the absolute and relative Hodge cohomology groups are respectively
isomorphic to the maximal and minimal L2 de Rham cohomology which are
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in turn isomorphic respectively to the intersection cohomology groups asso-
ciated to t − pg and pg . Moreover we give a partial answer to the inverse
question: given a general perversity p on X is there a riemannian metric
over reg(X) such that its maximal (or minimal )L2 de Rham cohomology
is isomorphic to the intersection cohomology relative to p? Under some as-
sumptions we will show that the answer is positive.
Before starting we make a remark about the notation. Given an open sub-
set U ⊂ X with D(U, dmax/min,i) we mean the domain of dmax/min,i in

L2Ωi(reg(U), g|reg(U)) Given a complex of sheaves (L∗, d∗) over X and an

open subset U of X with the symbol H i(L∗(U), d∗) we mean the i−th co-
homology group of the complex

...
di−2→ Li−1(U)

di−1→ Li(U)
di→ Li+i(U)

di+1→ ...

Finally with Hi(L∗, d∗) we mean the i−th cohomology sheaf associated to
the complex (L∗, d∗).

Theorem 2.12. Let X be a compact and oriented smoothly stratified
pseudomanifold of dimension n with a Thom-Mather stratification X. Let
g be a quasi edge metric with weights on reg(X), see definition 1.29. Let
R0 be the stratified coefficient system made of the pair of coefficient systems
given by (X−Xn−1)×R over X−Xn−1 where the fibers R have the discrete
topology and the constant 0 system on Xn−1. Let pg be the general perversity
associated to the metric g, see definition 1.34. Then, for all i = 0, ..., n, the
following isomorphisms holds:

IqgH i(X,R0) ∼= H i
2,max(reg(X), g) ∼= Hiabs(reg(X), g) (2.10)

IpgH i(X,R0) ∼= H i
2,min(reg(X), g) ∼= Hirel(reg(X), g) (2.11)

where qg is the complementary perversity of pg, that is, qg = t− pg and t is
the usual top perversity. In particular, for all i = 0, ..., n the groups

H i
2,max(reg(X), g), H i

2,min(reg(X), g), Hiabs(reg(X), g), Hirel(reg(X), g)

are all finite dimensional.

Theorem 2.13. Let X be as in the previous theorem. Let p a general
perversity in the sense of Friedman on X. If p satisfies the following condi-
tions: {

p ≥ m
p(Y ) = 0 if cod(Y ) = 1

(2.12)

then there exists g, a quasi edge edge metric with weights on reg(X), such
that

IpH i(X,R0) ∼= H i
2,min(reg(X), g) ∼= Hirel(reg(X), g). (2.13)

Conversely if p satisfies:{
p ≤ m
p(Y ) = −1 if cod(Y ) = 1

(2.14)

then, also in this case, there exists a quasi edge metric with weights h on
reg(X) such that

IpH i(X,R0) ∼= H i
2,max(reg(X), h) ∼= Hiabs(reg(X), h). (2.15)
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Before proving these theorems we need some preliminary results.

Proposition 2.14. Let X be an oriented smoothly stratified pseudo-
manifold of dimension n with a Thom-Mather stratification and let g a rie-
mannian metric on reg(X). Consider, for every i = 0, ..., n, the following
presheaf:

U 7−→ D(U, dmax,i) =

{
D(U, dmax,i) U ∩Xn−1 = ∅
D(U − (U ∩Xn−1), dmax,i) U ∩Xn−1 6= ∅

(2.16)
or

U 7−→
{
ω ∈ Ωi

2(U, g|U ) U ∩Xn−1 = ∅
ω ∈ Ωi

2(reg(U), g|reg(U)) U ∩Xn−1 6= ∅ (2.17)

Let Li2,max and Li2 be the sheaves associated to the previous presheaves; then
for these sheaves we have the following explicit descriptions:

(1) let U an open subset of X then:

Li2,max(U) ∼= {ω ∈ L2
LocΩ

i(reg(U), g|reg(U)) : ∀ p ∈ U∃ V open

neighbourhood ofp in U such that ω|reg(V ) ∈ D(reg(V ), dmax,i)}.
(2) Li2(U) ∼= {ω ∈ Ωi(reg(U), g|reg(U)) : ∀ p ∈ U ∃ V open neighbourhood

of p in U such that ω|reg(V ) ∈ Ωi
2(reg(V ), g|reg(V ))}.

(3) If X is compact Li2,max(X) = D(reg(X), dmax,i).

(4) Li2(X) = {ω ∈ Ωi(reg(X)) : ω ∈ L2Ωi(reg(X), g),

diω ∈ L2Ωi(reg(X), g)}.
(5) The complexes Li2,max and Li2 are quasi isomorphic.

Proof. The first and the second statement follow from the fact that
the sheaves Li2,max, Li2 and the respective sheaves at the right of ∼= have
isomorphic stalks. The third and fourth statement are an immediate conse-
quences of the compactness of X. The fifth statement follows immediately
from proposition 1.11. �

Proposition 2.15. Let X be an oriented smoothly stratified pseudoman-
ifold with a Thom-Mather stratification of dimension n such that for each
stratum Y the link LY is compact and let g be a quasi rigid iterated edge
metric with weights on reg(X). Then, for each i = 0, ..., n, Li2,max and Li2
are fine sheaves.

Proof. From the description of the sheaves Li2,max, Li2 given in prop.
2.14 it follows that in order to prove this proposition it is sufficient to show
that on X, given an open cover UA = {Uα}α∈A, there is a bounded partition
of unity with bounded differential subordinate to UA, that is a family of
functions λα : X → [0, 1], α ∈ A such that

(1) Each λα is continuous and λα|reg(X) is smooth.
(2) supp(λα) ⊂ Uα for some α ∈ A.
(3) {supp(λα)}α∈A is a locally finite cover of X.
(4) For each x ∈ X ∑

α∈A λα(x) = 1.
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(5) There are constants Cα > 0 such that each λα satisfies

‖d(λα|reg(X))‖L2(reg(X),g) ≤ Cα.

The proof is given by induction on the depth of X. If depth(X) = 0
the statement is immediate because in this case X is a differentiable mani-
fold. Suppose now that the statement is true if depth(X) ≤ k − 1 and that
depth(X) = k. Let UJ = {Uj}j∈J be a locally finite refinement of UA such
that for each UJ there is a diffeomorphism φj : Uj → Rn if Uj ∩Xn−1 = ∅
or, in the case Uj ∩Xn−1 6= ∅, an isomorphism φj : Uj →Wj ⊂ Rk × C(Lj)

between Uj and an open subset, Wj , of the product Rk × C(Lj) for some
k < n and stratified space Lj .
Let VJ = {Vj}j∈J a shrinking of UJ ; this means that VJ is a refinement

of UJ such that if Vj ⊂ Uj then Vj ⊂ Uj . Now let Vj ∈ VJ , Uj ∈ UJ
such that Vj ⊂ Uj and Uj ∩ Xn−1 = ∅. Let ψj : Rn → [0, 1] be a
smooth function such that ψj |φj(Vj) = 1 and supp(ψj) ⊂ φj(Uj). Define

λj : X → [0, 1], λj := ψj ◦ φj . Now let Vj ∈ VJ , Uj ∈ UJ such that

Vj ⊂ Uj and Uj ∩ Xn−1 6= ∅. We can take two functions η : Rk → [0, 1],
ξ : [0, 1) → [0, 1] and, using the inductive hypothesis and the fact that LY
is compact, a third function τj : Lj → [0, 1] smooth on reg(Lj) and with
bounded differential such that ψj := ηjξjτj is a a continuous function on

Rk ×C(Lj)→ [0, 1] smooth on the regular part and with bounded differen-
tial such that ψj |φj(Vj) = 1 and supp(ψj) ⊂ φj(Uj). Also in this case define

λj : X → [0, 1], λj := ψj ◦ φj . Finally define

µj : X → [0, 1], µj =
λj∑
j∈J λj

(2.18)

{µj}∈J is a partition of unity with bounded differential subordinated to
the cover UJ and therefore from this follows immediately that there exist a
partition of unity with bounded differential subordinated to the cover UA.
Now the statement of the proposition is an immediate consequence. �

Now we state the last proposition that we will use in the proof of theorem
2.12.

Proposition 2.16. Let L be a compact smoothly stratified pseudoman-
ifold with a Thom-Mather stratification and let gL be a riemannian metric
on reg(L). Let C(L) be the cone over L and on reg(C(L)) consider the
metric dr ⊗ dr + r2cgL. Finally consider on C(L) the complex of sheaves
(L∗2,max, dmax,∗) associated to the metric dr⊗dr+r2cgL. Then the canonical
inclusion

iv : C(L)− {v} −→ C(L),

where v is the vertex of the cone, induces a quasi-isomorphism between the
complexes

(L∗2,max, dmax,∗) and (iv∗i∗vL∗2,max, dmax,∗)
for i ≤ [[dimL2 + 1

2c ]].
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Proof. We start the proof showing that the complexes (L∗2,max, dmax,∗)
and (iv∗i∗vL∗2,max, dmax,∗) are quasi isomorphic for i ≤ [[dimL2 + 1

2c ]]. This is

equivalent to show that for each x ∈ C(L)

(Hi(L∗2,max, dmax,∗))x ∼= (Hi(iv∗i∗vL∗2,max, dmax,∗))x
where each term in the previous isomorphism is the stalk at the point x of the
i−th cohomology sheaf associated to (L∗2,max, dmax,∗) and (iv∗i∗vL∗2,max, dmax,∗)
respectively. For every i = 0, ..., dimL+1 the sheaf iv∗i∗vLi2,max is isomorphic

to the following sheaf; let U ⊂ C(L) be an open subset then:

iv∗i∗vLi2,max(U) ∼= {ω ∈ L2
LocΩ

i(reg(U), dr⊗dr+r2cgL|reg(U)) : ∀ p ∈ U−{v}
∃ V open neighbourhood of p in U such that ω|reg(V ) ∈ D(reg(V ), dmax,i)}.
From this fact and prop. 2.14 it follows that for every x ∈ C(L)− {v}

(Hi(L∗2,max, dmax,∗))x ∼= (Hi(iv∗i∗vL∗2,max, dmax,∗))x. (2.19)

Now by theorem 2.9 and remark 2.1 we know that for i ≤ [[dimL2 + 1
2c ]]

(Hi(L∗2,max, dmax,∗))v ∼= H i(L∗2,max(C(L)), dmax,∗) ∼= H i
2,max(reg(L), gL).

Using the same techniques it is easy to show that for each i

(Hi(iv∗i∗vL∗2,max, dmax,∗))v ∼= H i(iv∗i∗vL∗2,max(C(L)), dmax,∗).

Therefore we have to show that for i ≤ [[dimL2 + 1
2c ]]

H i(iv∗i∗vL∗2,max(C(L)), dmax,∗) ∼= H i
2,max(reg(L), dmax,∗).

On the whole cone C(L) the main difference between the complexes

(L∗2,max, dmax,∗) and (iv∗i∗vL∗2,max, dmax,∗)
is that for each ω ∈ Li2,max(L), by prop. 2.1,

π∗ω ∈ Li2,max(C(L)) if and only if i <
dimL

2
+

1

2c
.

Instead
π∗ω ∈ iv∗i∗vLi2,max(C(L)) for every i = 0, ..., dimL.

Therefore by the proof of the first part of theorem 2.9 and in particular from
(2.5) follows that

H i(iv∗i∗vL∗2,max(C(L)), dmax,∗) ∼= H i
2,max(reg(L), gL) (2.20)

for everyi = 0, ..., dimL+ 1.
But from theorem 2.10 we know that for i ≤ [[dimL2 + 1

2c ]]

H i(L∗2,max(C(L)), dmax,∗) ∼= H i
2,max(reg(L), gL). (2.21)

So for i ≤ [[dimL2 + 1
2c ]]

(Hi(iv∗i∗vL∗2,max, dmax,∗))v ∼= (Hi(L∗2,max, dmax,∗))v
and therefore we can conclude that for the same i the complexes

(L∗2,max, dmax,∗) and (iv∗i∗vL∗2,max, dmax,∗)
are quasi-isomorphic.
Now let j be the morphism between (L∗2,max, dmax,∗) and (iv∗i∗vL∗2,max, dmax,∗)
induced from iv : C(L) − {v} → C(L). It is immediate to note that
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for each open subset U ⊂ C(L) jU is just the inclusion of L∗2,max(U) in

iv∗i∗vL∗2,max(U). Therefore if we call j∗ the morphism induced from j between

the cohomology sheaves H i(L∗2,max, dmax,∗) and H i(iv∗i∗vL∗2,max, dmax,∗) it is

immediate to note that j∗ induces the isomorphism (2.19). Finally if we call
φ and ψ respectively the isomorphisms (2.20) and (2.21) we have that for
i ≤ [[dimL2 + 1

2c ]]
φ ◦ j∗ = ψ.

Therefore we can conclude that

j : (L∗2,max, dmax,∗)→ (iv∗i∗vL∗2,max, dmax,∗)
is a quasi-isomorphism for i ≤ [[dimL2 + 1

2c ]]. �
Corollary 2.17. Let (M,h) be an oriented riemannian manifold, let

L be a compact smoothly stratified pseudomanifold with a Thom-Mather
stratification and let gL be a riemannian metric on reg(L). Consider now
M×C(L) and on reg(M×C(L)) consider the metric h+dr⊗dr+r2cgL. Let
iM : M × C(L)− (M × {v})→M × C(L) be the canonical inclusion where
v is the vertex of the cone. Finally consider over M × C(L) the complex of
sheaves (L∗2,max, dmax,∗). Then the canonical inclusion

iM : M × C(L)− (M × {v}) −→M × C(L)

induces a quasi-isomorphism between the complexes

(L∗2,max, dmax,∗) and (iM∗i∗ML∗2,max, dmax,∗)
for i ≤ [[dimL2 + 1

2c ]].

Proof. The proof is completely analogous to the proof of proposition
2.16. For every i = 0, ..., dimM + dimL + 1 the sheaf iM∗i∗MLi2,max is iso-

morphic to the following sheaf; let U ⊂M × C(L) an open subset then:

iM∗i∗MLi2,max(U) ∼= {ω ∈ L2
LocΩ

i(reg(U), h+ dr ⊗ dr + r2cgL|reg(U)) :

∀ p ∈ U − (U ∩ (M × {v}) ∃ V open neighbourhood of p in U

such that ω|reg(V ) ∈ D(reg(V ), dmax,i)}.
From this it follows that for every x ∈M × C(L)− (M × {v})

(Hi(L∗2,max, dmax,∗))x ∼= (Hi(iM∗i∗ML∗2,max, dmax,∗))x.
Now let p = (m, v) ∈M ×{v}. By theorem 2.9, remark 2.1 and proposition
2.11 we know that:

(Hi(L∗2,max, dmax,∗))p ∼= H i(L∗2,max(U × C(L)), dmax,∗) ∼= (2.22)

∼= H i
2,max(reg(L), gL)

for i ≤ [[dimL2 + 1
2c ]] where U is an open neighborhood of m in M diffeomor-

phic to an open ball in Rs where s = dimM . Moreover, like in the proof of
the previous proposition, it is easy to show that

(Hi(iv∗i∗vL∗2,max, dmax,∗))p ∼= H i(iv∗i∗vL∗2,max(U × C(L)), dmax,∗) (2.23)

where U is as in (2.22). Therefore in order to show that

(Hi(iM∗i∗ML∗2,max, dmax,∗))p ∼= (Hi(L∗2,max, dmax,∗))p
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for i ≤ [[dimL2 + 1
2c ]] it is sufficient to show that for the same i

H i(iM∗i∗ML∗2,max(U × C(L)), dmax,∗) ∼= H i(L∗2,max(U × C(L)), dmax,∗)

where U is as in (2.22). But from the same observations of the proof of
prop. 2.16 and prop. 2.11 follows immediately that

H i(iM∗i∗ML∗2,max(U × C(L)), dmax,∗) ∼= H i
2,max(reg(L), gL) for each i

and that

H i(L∗2,max(U × C(L)), dmax,∗) ∼= H i
2,max(reg(L), gL) for i ≤ [[

dimL

2
+

1

2c
]].

So for i ≤ [[dimL2 + 1
2c ]]

(Hi(iM∗i∗ML∗2,max, dmax,∗))p ∼= (Hi(L∗2,max, dmax,∗))p
and therefore we can conclude that for the same i the complexes

(L∗2,max, dmax,∗) and (iM∗i∗ML∗2,max, dmax,∗)
are quasi-isomorphic. Now using the same final considerations of the previ-
ous proof we get the conclusion. �

Finally we can give the proof of the theorem announced at the beginning
of the section:

Proof. (of theorem 2.12). Using corollary 1.33 we know that there is
a quasi rigid iterated edge metric on reg(X), g′, that is quasi-isometric to
g. So, without loss of generality, we can suppose that g is a quasi rigid
iterated edge metric with weights. We start by proving the isomorphism
2.10. The proof is given by induction on the depth of X. If depth(X) = 0
there is nothing to show because, in this case, X is a closed manifold and
therefore the isomorphisms 2.10 are the well know theorems of Hodge and de
Rham. Suppose now that the theorem is true if depth(X) ≤ k − 1 and that
depth(X) = k. We will show that the theorem is also true in this case. We
begin showing the first isomorphism, H i

2,max(reg(X), g) ∼= IqgH i(X,R0);
to do this we will use theorem 1.25, corollary 1.26 and remark 1.4. More
precisely we will show that the complex (Li2,max, dmax,i) satisfies the three
axioms of theorem 1.25 respect to the perversity pg, the stratification X and
the local system over reg(X) given by R⊗O where R is (X −Xn−1) × R
with R endowed of the discrete topology and O is the orientation sheaf
(see example 1.24). By proposition 2.15 we know that (Li2,max, dmax,i) is a
complex of fine sheaves. The first two requirements of axiom 1 are clearly
satisfied. The third requirement of the same axiom follows by proposition
2.11 wich implies that for each x ∈ reg(X) (Hi(L∗2,max, dmax,∗))x, that is the
stalk at the point x of the i−th cohomology sheaf associated to the complex
(L∗2,max, dmax,∗), satisfies:

(Hi(L∗2,max, dmax,∗))x =

{
R i = 0
0 i > 0

(2.24)

Consider now a stratum Y ⊂ X and a point x ∈ Y . Let l = dimY . If
l = n−1, that is if the codimension of Y is 1, then it is clear from proposition
2.11 that for all x ∈ Y the second axiom of theorem 1.25 is satisfied. So we
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can suppose that l ≤ n− 2. By definition 1.30 we know that there exists an
open subset V ⊂ Y such that π−1

Y (V ) ∼= V × C(LY )and such that

φ : (π−1
Y (V )∩reg(X), g|π−1

Y (V )∩reg(X))→ (V×reg(C(LY )), dr2+hV +r2cY gLY )

is a quasi-isometry. Therefore by the invariance of L2−cohomology under
quasi-isometry we can use (V ×reg(C(LY )), dr2 +hV +r2cY gLY ) to calculate

the L2−cohomology of π−1
Y (V )∩reg(X). Choosing V diffeomorphic to (0, ε)l

with ε sufficiently small we have that

(V × reg(C(LY )), dr2 + hV + r2cY gLY ) (2.25)

is quasi-isometric to

((0, ε)l × reg(C(LY )), ds2
1 + ...+ ds2

l + dr2 + r2cY gY ).

Therefore from proposition 2.11 and the invariance of L2−cohomology under
quasi-isometry it follows that:

H i
2,max(V × reg(C(LY )), dr2 + hV + r2cY gLY ) ∼= (2.26)

∼= H i
2,max(reg(C(LY )), dr2 + r2cY gLY ).

In this way we have obtained that:

H i
2,max(reg(π−1

Y (V )), g|reg(π−1
Y (V )))

∼= (2.27)

∼= H i
2,max(reg(C(LY )), dr2 + r2cY gLY ).

As we have already observed in the proof of corollary 2.17 we know that

(Hi(L∗2,max, dmax,∗))x ∼= H i
2,max(reg(π−1

Y (V )), g|reg(π−1
Y (V )))

where V is as in 2.25. Therefore from this and (2.27) we get that

(Hi(L∗2,max, dmax,∗))x ∼= H i
2,max(reg(C(LY )), dr ⊗ dr + r2cY gLY ) (2.28)

Now, using the inductive hypothesis we know that this theorem is true for
(LY , gLY ) that is H i

2,max(reg(LY ), gLY ) ∼= I
qgLY H i(LY ,R0) where qgLY =

t − pgLY and pgLY is the general perversity associated to gLY on LY . This

implies that dimH i
2,max(reg(LY ), gLY ) <∞ for each i = 0, ..., dimLY . From

this it follows that at least one of the three hypotheses of corollary 2.10 is
always satisfied. So we can use the same corollary to get:

H i
2,max(reg(C(LY )), gc) =

{
H i

2,max(reg(LY ), gLY ) i < dimLY
2 + 1

2cY

0 i ≥ dimLY
2 + 1

2cY

(2.29)
In this way we can conclude that for each x ∈ Y

(Hi(L∗2,max, dmax,∗))x = 0 for i > pg(Y )

and therefore the complex (L∗2,max, dmax,∗) satisfies the second axiom of the-
orem 1.25.
To conclude the first part of the proof we have to show that given any stra-
tum Z ⊂ Xn−k −Xn−k−1 and any point x ∈ Z the attaching map, that is
the morphism given by the composition of

L∗2,max|Uk+1
→ ik∗L∗2,max|Uk → Rik∗L∗2,max|Uk
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where the first morphism is induced by the inclusion ik : Uk → Uk+1, is a
quasi-isomorphism at x up to pg(Z). By the fact that (L∗2,max, dmax,∗) is a

complex of fine sheaves it follows that ik∗L∗2,max|Uk → Rik∗L∗2,max|Uk is a

quasi-isomorphism (for example see [12] pag. 32 or [16] pag. 222). There-
fore, to conclude, we have only to show that the morphism L∗2,max|Uk+1

→
ik∗L∗2,max|Uk is a quasi-isomorphism at x up to pg(Z), that is, for each x ∈ Z
it induces an isomorphism

(Hi(L∗2,max|Uk+1
, dmax,∗))x ∼= (Hi(ik∗L∗2,max|Uk , dmax,∗))x (2.30)

for i ≤ pg(Z). Now, like in the previous case to prove the validity of the
second axiom, to show that for each x ∈ Z

(Hi(L∗2,max|Uk+1
, dmax,∗))x ∼= (Hi(ik∗L∗2,max|Uk , dmax,∗))x for i ≤ pg(Z)

it is sufficient to show that there exists an open neighbourhood U of x ∈ Z
such that π−1

Z (U) ∼= U × C(LZ) and such that

H i(L∗2,max|Uk+1
(π−1
Z (U)), dmax,∗) ∼= H i(ik∗L∗2,max|Uk(π−1

Z (U)), dmax,∗)

for i ≤ pg(Z), where the isomorphism is induced by the inclusion ik : Uk →
Uk+1. Finally this last statement follows from corollary 2.17. So given a
stratum Z ⊂ Xn−k −Xn−k−1 and a point x ∈ Z we can conclude that for
i ≤ pg(Z) the natural maps induced by the inclusion of Uk in Uk+1 induces
a quasi isomorphism between

L∗2,max|Uk+1
→ ik∗L∗2,max|Uk .

So also the third axiom of theorem 1.25 is satisfied.
Therefore for all i = 0, ..., n H i(L2,max(reg(X)), dmax,∗) ∼= IqgH i(X,R0).
Finally by the compactness of X, see the third point of proposition 2.14, we
get, for each i = 0, ..., n, the desired isomorphisms:

H i
2,max(reg(X), g) ∼= IqgH i(X,R0).

From the isomorphism H i
2,max(reg(X), g) ∼= IqgH i(X,R0) it follows that

H i
2,max(reg(X), g) is finite dimensional and then the isomorphism

Hiabs(reg(X)) ∼= H i
2,max(reg(X), g)

is an immediate consequence of proposition 1.3 and formula 1.12. The first
part of the proof is completed.

To prove the second part of the theorem it is sufficient observe that the
finite dimension of H i

2,max(reg(X), g) for all i = 0, ..., n implies that the

complex (L2Ω∗(reg(X), g), dmax,∗) is a Fredholm complex.
Now, using the isomorphism induced by the Hodge star operator ∗ between
the Hilbert complexes (L2Ω∗(reg(X), g), dmin,∗) and the adjoint complex of
(L2Ω∗(reg(X), g), dmax,∗) and proposition 1.4, it follows that

H i
2,max(reg(X), g) ∼= Hn−i

2,min(reg(X), g).

Finally, using Poincaré duality for intersection homology, that is theorem
1.27, we get the isomorphism

H i
2,min(reg(X), g) ∼= IpgH i(X,R0).
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Now, like in the previous case, we know that H i
2,min(reg(X), g) is finite

dimensional and then the isomorphism Hirel(reg(X)) ∼= H i
2,min(reg(X), g) is

an immediate consequences of proposition 1.3 and formula 1.12. �
Proof. (of theorem 2.13). Suppose that p is a general perversity in

the sense of Friedman on X such that p ≥ m and p(Y ) = 0 for each one
codimensional stratum Y of X. We recall that m is defined in the following
way: if Y ⊂ X is a stratum of X and if LY is the link relative to Y with
lY = dimLY then

m(Y ) =

{
lY
2 lY even
lY −1

2 lY odd

Therefore it follows that for each stratum Y there is a non negative integer
nY such that

p(Y ) =





0 lY = 0
lY
2 + nY lY even, lY 6= 0
lY −1

2 + nY lY odd

Now we can choose some non negative real numbers {cY }Y ∈X such that
nY = [[ 1

2cY
]] if lY is even and nY = [[1

2 + 1
2cY

]] if lY is odd. By proposition

1.31 we know that there is a quasi rigid iterated edge metric g on reg(X)
having the numbers {cY }Y ∈X like weights. In this way p = pg, the general
perversity associated to g, and therefore by theorem 2.12 we can get the
isomorphism (2.13) .
Conversely if p satisfies p ≤ m and p(Y ) = −1 for each one codimensional
stratum Y of X, then q := t − p, where t is top perversity, satisfies q ≥ m
and q(Y ) = 0 for each one codimensional stratum Y of X. Therefore by the
previous point there exists a quasi edge metric with weights h on reg(X) such
that ph = q. Finally using again theorem 2.12 we can get the isomorphism
(2.15). �

In the same hypothesis of the theorem 2.12 we have the following corol-
laries:

Corollary 2.18. For each i = 0, ..., n on L2Ωi(reg(X), g) we have the
following decompositions:

L2Ωi(reg(X), g) = Hiabs ⊕ ran(dmax,i−1)⊕ ran(δmin,i) (2.31)

L2Ωi(reg(X), g) = Hirel ⊕ ran(dmin,i−1)⊕ ran(δmax,i) (2.32)

and

L2Ωi(reg(X), g) = Himax ⊕ ran(dmin,i−1)⊕ ran(δmin,i) (2.33)

Proof. By theorem 2.12 we know that H i
2,max(reg(X), g) and

H i
2,min(reg(X), g) are finite dimensional. Therefore by prop. 1.3, the fact

that (L2Ω∗(M, g), δmin,∗) is the dual complex of (L2Ω∗(M, g), dmax,∗),
(L2Ω∗(M, g), δmax,∗) is the dual complex of (L2Ω∗(M, g), dmin,∗) and propo-
sition 1.4 it follows that, for each i, ran(dmax,i), ran(dmin,i), ran(δmax,i) and
ran(δmin,i) are closed. Now applying (1.12) we can get (2.31) and (2.32)
and applying (1.20) we can get (2.33). �
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Corollary 2.19.

dmax + δmin, dmin + δmax : L2Ω∗(reg(X), g)→ L2Ω∗(reg(X), g)

and for each i

∆abs,i, ∆rel,i : L2Ωi(reg(X), g)→ L2Ωi(reg(X), g)

are Fredholm operators. Moreover also

dmax + δmin, dmin + δmax : L2Ωeven(reg(X), g)→ L2Ωodd(reg(X), g)

are Fredholm operators and their indexes satisfy:

ind(dmax + δmin) =
n∑

i=0

(Iqgb2i(X)− Ipgb2i+1(X))

ind(dmin + δmax) =
n∑

i=0

(Ipgb2i(X)− Iqgb2i+1(X))

where Ipgb2i(X) = dim(IpgH i(X,R)) and Iqgb2i(X) = dim(IqgH i(X,R)).
Finally

∆max,i : L2Ωi(reg(X), g)→ L2Ωi(reg(X), g)

has closed range and its orthogonal complement is finite dimensional while

∆min,i : L2Ωi(reg(X), g)→ L2Ωi(reg(X), g)

has closed range and finite dimensional nullspace; in other words ∆max,i is
essentially surjective and ∆min,i is essentially injective.

Proof. The first three assertions follow immediately from theorem 2.12.
For the last two we know that ran(∆abs,i) ⊂ ran(∆max). This implies that
there exists a surjective map from

L2Ωi(M, g)

ran(∆abs,i)
−→ L2Ωi(M, g)

ran(∆max,i)
.

But we know that ∆abs is Fredholm; this implies that the term on the
left in the above equality is finite dimensional and therefore also the term
on the right is finite dimensional. So ∆max,i from its natural domain en-
dowed with the graph norm to L2Ωi(M, g) is a continuous operator with
finite dimensional cokernel and this implies the statement of the corollary
about ∆max,i. For ∆min,i we know, see prop. 1.9, that Ker(∆min,i) =
Ker(dmin,i) ∩ Ker(δmin,i−1) and therefore by theorem 2.12 it follows that
Ker(∆min,i) is finite dimensional. Using again proposition 1.9 we know that
(∆max,i)

∗ = ∆min,i and therefore by the fact that ∆max,i has closed range
it follows that also ∆min,i has closed range. �

Finally the remaining corollaries follow immediately from theorem 2.12
and from the definition of intersection cohomology with general perversity.

Corollary 2.20. Consider the following complex (C∞0 Ωi(reg(X)), di).
Then a necessary condition to have the minimal exstension equal to the
maximal one is that the perversities pg and qg gives isomorphic intersection
cohomology groups.
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Corollary 2.21. If every weight is greater or equal than 1, that is for
every stratum Y cY ≥ 1, then, for all i, we obtain the following isomor-
phisms:

Hiabs(reg(X), g) ∼= H i
2,max(reg(X), g) ∼= ImH i(X,R0) (2.34)

Hirel(reg(X), g) ∼= H i
2,min(reg(X), g) ∼= ImH i(X,R0) (2.35)

where m is the lower middle perversity and m is the upper middle perversity.

Corollary 2.22. Suppose that the general perversity associated to the
quasi edge metric with weights g satisfies pg(Z) ≥ cod(Z) − 1 for each sin-
gular stratum Z. Then, for all i, we have the following isomorphisms:

Hiabs(reg(X), g) ∼= H i
2,max(reg(X), g) ∼= H i(X −Xn−1,R) (2.36)

Hirel(reg(X), g) ∼= H i
2,min(reg(X), g) ∼= H i(X,R0). (2.37)

Corollary 2.23. If pg is classical perversity in the sense of Goresky-
MacPherson and Xn−1 = Xn−2 then, for all i, we have the following iso-
morphisms:

Hiabs(reg(X), g) ∼= H i
2,max(reg(X), g) ∼= IqgH i(X,R) (2.38)

Hirel(reg(X), g) ∼= H i
2,min(reg(X), g) ∼= IpgH i(X,R) (2.39)

Corollary 2.24. Let g, h be two quasi edge metrics with weights on
reg(X) such that pg = ph. Then for all i:

Hiabs(reg(X), g) ∼= H i
2,max(reg(X), g) ∼= H i

2,max(reg(X), h) ∼= (2.40)

∼= Hiabs(reg(X), h)

and

Hirel(reg(X), g) ∼= H i
2,min(reg(X), g) ∼= H i

2,min(reg(X), h) ∼= (2.41)

∼= Hirel(reg(X), h).

In particular a necessary condition for two quasi edge metrics with weights
are quasi-isometric is that they induce perversities with isomorphic intersec-
tion cohomology groups.

Corollary 2.25. Let X ′ be another compact and oriented smoothly
stratified pseudomanifold with a Thom-Mather stratification and h a quasi
edge metric with weights on reg(X ′). Let f : X → X ′ a stratum preserving
homotopy equivalence, see [47] pag 62 for the definition. Suppose that both
pg and ph depend only on the codimension of the strata and that pg = ph.
Then for all i

Hiabs(reg(x), g) ∼= H i
2,max(reg(X), g) ∼= H i

2,max(reg(X ′), h) (2.42)

∼= Hiabs(reg(X ′), h)

and

Hirel(reg(x), g) ∼= H i
2,min(reg(X), g) ∼= H i

2,min(reg(X ′), h) (2.43)

∼= Hirel(reg(X ′), h).



CHAPTER 3

H
i
2,m→M(M, g) and H i

2,m→M(M, g): Poincaré duality
and Hodge theorem.

This chapter is devoted to the study of the following groups:

H
i
2,m→M (M, g) and H i

2,m→M (M, g)

defined respectively as the image of im(H
i
2,min(M, g)→ H

i
2,max(M, g)) and

im(H i
2,min(M, g) → H i

2,max(M, g)). The reason behind this study is given

by the fact that usually, when (M, g) is an open oriented and incomplete
riemannian manifold, Poincaré duality does not hold for the complexes
(L2Ωi(M, g), dmax/min,i). Conversely, as we will see, this is not true for

the groups: H
i
2,m→M (M, g), i = 0, ..., n, n = dim(M). Therefore, when

H
i
2,m→M (M, g) = H i

2,m→M (M, g), it is interesting to investigate the exis-

tence of a Hilbert complex having the groups H i
2,m→M (M, g) as cohomology

groups. The chapter is structured in the following way: in the first section
two abstract theorems on Hilbert complexes are proved. They provide the

necessary tools to investigate the groupsH
i
2,m→M (M, g) andH i

2,m→M (M, g).
The second section contains the main results about these groups. We show

that Poincaré duality holds for H
i
2,m→M (M, g), i = 0, ..., n and, under

suitable hypothesis, we show the existence of a Hilbert complex having
H i

2,m→M (M, g) as cohomology groups. In particular this lead us to prove a

Hodge theorem for the groups im(H i
2,min(M, g) → H i

2,max(M, g)). Finally
the subsequent sections contain several applications of the previous results.
In particular in the fourth section an L2−signature in defined and in fifth
section the previous results are applied to the case of a compact and oriented
smoothly stratified pseudomanifold X such that reg(X) is endowed with a
quasi edge metric with weights.

1. Two theorems on Hilbert complexes

In this section we continue the theory of Hilbert complexes introducing
the notion of pair of complementary Hilbert complexes and proving two
theorem about it. We will use these theorems subsequently to investigate

the groups H
i
2,m→M (M, g) and H i

2,m→M (M, g).

Given a pair of Hilbert complexes (Hj , Dj) and (Hj , D
′
j) we will write

(Hj , Dj) ⊆ (Hj , D
′
j) if for each j one of the two following properties is

satisfied:

(1) D′j : Hi → Hj+1 is equal to Dj : Hj → Hj+1

57
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(2) D′j : Hj → Hj+1 is a proper closed extension of Dj : Hi → Hj+1

We will write (Hj , Dj) ⊂ (Hj , D
′
j) when the second of the above prop-

erties is satisfied. For each j let ij : D(Dj) → D(Lj) denote the natural
inclusion of the domain of Dj into the domain of Lj . Obviously ij induces

a maps between Hj(H∗, D∗) and Hj(H∗, L∗) and between H
j
(H∗, D∗) and

H
j
(H∗, L∗). We will label the first as

i∗j : Hj(H∗, D∗)→ Hj(H∗, L∗) (3.1)

and the second as

i∗r,j : H
j
(H∗, D∗)→ H

j
(H∗, L∗) (3.2)

Consider again a pair of Hilbert complexes (Hi, Di) and (Hi, Li) with i =
0, ...n .

Definition 3.1. The pair (Hi, Di) and (Hi, Li) is said to be related
if the following property is satisfied

• for each i there exist a linear, continuous and bijective map φi :
Hi → Hn−i such that φi(D(Di)) = D(L∗n−i−1) and L∗n−i−1 ◦ φi =
Ci(φi+1 ◦ Di) on D(Di) where L∗n−i−1 : Hn−i → Hn−i−1 is the
adjoint of Ln−i−1 : Hn−i−1 → Hn−i and Ci 6= 0 is a constant which
depends only on i.

Furthermore we call the maps φi link maps.

• We call the complexes complementary if each φi is an isometry
between Hi and Hn−i.

We have the following propositions:

Proposition 3.2. Let (Hi, Di) and (Hi, Li) be related Hilbert complexes.
Then:

(1) Also (Hi, Li) and (Hi, Di) are related Hilbert complexes. Moreover
if {φi} are the link maps which make (Hi, Di) and (Hi, Li) related
then {φ∗i }, the family of respective adjoint maps, are the link maps
which make (Hi, Li) and (Hi, Di) related.

(2) The complexes (Hi, Di) and (Hi, L
∗
i ) have isomorphic cohomology

groups and isomorphic reduced cohomology groups. In the same way
the complexes (Hi, Li) and (Hi, D

∗
i ) have isomorphic cohomology

groups and isomorphic reduced cohomology groups.
(3) The following isomorphisms hold:

Hj(Hi, Di) ∼= Hn−j(Hi, Li), H
j
(Hi, Di) ∼= H

n−j
(Hi, Li).

(4) If the complexes (Hi, Di) and (Hi, L
∗
i ) are complementary then each

φj induces an isomorphism between Hj(Hi, Di) and Hn−j(Hi, Li).

Proof. By definition 3.1 we know that φ∗i : Hn−i → Hi, the adjoint of
φi : Hi → Hn−i , is a family of linear continuous and bijective maps. In
this way if we look at L∗n−i−1 ◦ φi as an unbounded linear map between Hi

and Hn−i−1 with domain D(L∗n−i−1 ◦ φi) = φ−1
i (D(L∗n−i−1)) = D(Di) we

have that (L∗n−i−1 ◦ φi)∗ = φ∗i ◦ Ln−i−1 that is the adjoint of L∗n−i−1 ◦ φi is
φ∗i ◦ Ln−i−1 with D(φ∗i ◦ Ln−i−1) = D(Ln−i−1).
In the same way we have (φi+1 ◦Di)

∗ = (D∗i ◦ φ∗i+1) where D(φi+1 ◦Di) =
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D(Di) and D(D∗i ◦ φ∗i+1) = (φ∗i+1)−1(D(D∗i )). In this way it follows that,
for each i, D(D∗i ◦ φ∗i+1) = D(φ∗i ◦ Ln−i−1), Ci(D

∗
i ◦ φ∗i+1) = φ∗i ◦ Ln−i−1 on

D(Ln−i−1) and that φ∗i+1(D(Ln−i−1)) = D(D∗i ). So we can conclude that
the complexes (Hi, Li) and (Hi, Di) are related with {φ∗i } as link maps.
The second property is an immediate consequences of definition 3.1 and the
first point of the proposition . Now if we compose the isomorphisms of the
second point with the isomorphisms of (1.5) we can get the isomorphisms
of the third point. Finally if each φi is an isometry then φ∗i = φ−1

i . By
definition 3.1 we know that φi induces an isomorphism between Ker(Di)
and Ker(L∗n−i−1). In the same way by the first point of the proposi-
tion we know that φ∗i induces an isomorphism between Ker(Ln−i) and

Ker(D∗i−1). But now we know that φ∗i = φ−1
i and so we can conclude

that for each i φi induces an isomorphism between Ker(Di) ∩ Ker(D∗i−1)

and Ker(Ln−i)∩Ker(Ln−i−1)∗, that is an isomorphism between Hi(H∗, D∗)
and Hn−i(H∗, L∗). �

Proposition 3.3. Let (Hi, Di), i = 0, ..., n a Hilbert complex and sup-
pose that for each i there exists φi : Hi → Hn−i that is linear, continuous and
bijective. Then there exist a Hilbert complex (Hi, Li) such that the complexes
(Hi, Di) and (Hi, Li) are related with {φi} as link maps. Moreover if each φj
is an isometry then the complexes (Hi, Di) and (Hi, Li) are complementary
with {φi} as link maps.

Proof. Consider the following complexes (Hi, Li) where each Li is the
adjoint of the closed and densely defined operator (φn−i ◦Dn−i−1 ◦φ−1

n−i−1) :
Hi+1 → Hi. It clear that (Hi, Li) is a Hilbert complex and by its construc-
tion it follows immediately that (Hi, Di) and (Hi, Li) are a pair of related
Hilbert complexes having the maps {φi} as link maps. Finally it is clear
that if each φj is an isometry then the complexes (Hi, Di) and (Hi, Li) are
complementary with {φi} as link maps. �

Now we give the following definition which we will use later.

Definition 3.4. Let V0, V1, ..., Vn be a finite sequence of finite dimen-
sional vector spaces. We will say that it is a finite sequence of finite dimen-
sional vector spaces with Poincaré duality if for each i:

Vi ∼= Vn−i.

We are now in position to state the first of the two main results of this
section.

Theorem 3.5. Let (Hj , Dj) ⊆ (Hj , Lj) be a pair of complementary
Hilbert complexes. Let i∗r,j be the map defined in (3.2). Suppose that for
each j

im(H
j
(H∗, D∗)

i∗r,j−→ H
j
(H∗, L∗)) (3.3)

is finite dimensional. Then

im(H
j
(H∗, D∗)

i∗r,j−→ H
j
(H∗, L∗)), j = 0, ..., n (3.4)

is a finite sequence of finite dimensional vector spaces with Poincaré duality.
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Now we state some propositions which we will use in the proof of theorem
3.5.

Proposition 3.6. Let H,K be two Hilbert spaces and let T : H → K be
a linear and continuous map. Let T ∗ : K → L the adjoint of T . Suppose that
ran(T ) is closed. Then T : Ker(T )⊥ → Ker(T ∗)⊥ is continuous, bijective
with bounded inverse.

Proof. We have K = Ker(T ∗)⊕Ker(T ∗)⊥ and Ker(T ∗)⊥ = ran(T ).
Therefore by the fact that ran(T ) is closed it follows that T is a bijection
between Ker(T )⊥ and Ker(T ∗)⊥. Now from the fact that Ker(T )⊥ and
(Ker(T ∗))⊥ are closed subspace of H and K respectively it follows we can
look at them as Hilbert spaces with the products induced by the products
of H and K respectively. In this way we can use the closed graph theorem
to conclude that T |Ker(T )⊥ has a continuous inverse. �

Proposition 3.7. Let H be a Hilbert space and let M,N be two closed
subspace of it. Let πM , πN be the orthogonal projection on M and N respec-
tively. Consider M and N as Hilbert spaces with the scalar product induced
by the one of H. Then

πM |N = (πN |M )∗

that is if we look at πN |M as a linear and continuous map from the Hilbert
space M to the Hilbert space N then πM |N is its adjoint.

Proof. During the proof we use <,>H to indicate the scalar product
of H and <,>M , <,>N to indicate the scalar product induced by <,>H on
M and N respectively. For each u ∈M, v ∈ N we have < πN (u), v >N=<
πN (u) +πN⊥(u), v >H=< u, v >H=< u, πM (v) +πM⊥(v) >H=< u, πM >M
and so we get the assertion. �

Now we are in position to prove theorem 3.5 .

Proof. From proposition 1.2 we know that

Hj = Hj(H∗, D∗)
⊕

ran(Di−1)
⊕

ran(D∗i )

and that
Hj = Hj(H∗, L∗)

⊕
ran(Li−1)

⊕
ran(L∗i ).

So for each j we can define πDj as the orthogonal projection of Hj on

Hj(H∗, D∗) and πLj as the orthogonal projection of Hj on Hj(H∗, L∗). In
the same way we can define π

ran(Dj−1)
, π

ran(Lj−1)
, π

ran(D∗j )
and π

ran(L∗j )
.

Finally we define:

π1,j := (πLj )|Hj(H∗,D∗), π2,j := (π
ran(Lj−1)

)|Hj(H∗,D∗),

π3,j := (π
ran(L∗j )

)|Hj(H∗,D∗).
Analogously, but now projecting from Hj(H∗, L∗) on the orthogonal com-

ponents of the sum Hj = Hj(H∗, D∗)
⊕
ran(Di−1)

⊕
ran(D∗i ), we define

π4,j , π5,j , π6,j .
Our first claim is tho show that for each j

π1,j(Hj(H∗, D∗)) ∼= im(H
j
(H∗, D∗)

i∗r,j−→ H
j
(H∗, L∗)) (3.5)
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Let [h] ∈ H
j
(H∗, D∗) a cohomology class. By (1.5) we know that there

exists a unique representative of [h] in Hj(H∗, D∗). We call it ω. Ev-

ery other representative of [h] differs from ω by an element in ran(Dj−1);
therefore i∗r,j([h]) = [ij(ω)]. Now we can decompose ω as ω = π1,j(ω) +

π2,j(ω) + π3,j(ω). Clearly [ij(ω)] = [π1,j(ω)] + [π3,j(ω)]. So if we show that
π3,j |Hj(H∗,D∗) ≡ 0 we get the claim. Now let η ∈ Hj(H∗, D∗). Then π3,j(η) ∈
ran(L∗j ) ∩ Ker(Lj) because π3,j(η) = η − π1,j(η) − π2,j(η) and each term

on the right hand side of the equality lies in Ker(Lj). But (Ker(Lj))
⊥ =

ran(L∗j ) and therefore π3,j(η) = 0. So for each η ∈ Hj(H∗, D∗) we have

π3,j(η) = 0. Therefore the claim is proved.
In this way we know that π1,j has closed range and that Ker(π1,j) =

ran(Lj−1)∩Hj(H∗, D∗). Analogously it follows that Ker(π4,j) = ran(D∗j )∩
Hj(H∗, L∗). Finally from the observations above and from propositions 3.6
and 3.7 we get:

(1) Hj(H∗, D∗) = ran(π4,j)⊕ (ran(Lj−1) ∩Hj(H∗, D∗)) =
= ran(π4,j)⊕Ker(π1,j) for each j.

(2) Hj(H∗, L∗) = ran(π1,j)⊕ (ran(D∗j ) ∩Hj(H∗, L∗)) =

= ran(π1,j)⊕Ker(π4,j) for each j.
(3) (π1,j)

∗ = π4,j and both induce an isomorphism between ran(π4,j)
and ran(π1,j).

By the fourth point of proposition 3.2 it follows that each φj induces an
isomorphism between Hj(H∗, D∗) and Hn−j(H∗, L∗) . For the same reason

φj induces an isomorphism between ran(Lj−1) and ran(D∗n−j) and between

ran(Dj−1) and ran(L∗n−j) . This implies that each φj induces an isomor-

phism between Hj(H∗, D∗)∩ran(Lj−1) and Hn−j(H∗, L∗)∩ran(D∗n−j) that

is an isomorphism between Ker(π1,j) and Ker(π4,n−j). In this way we can
conclude that each φj induces an isomorphism between

Hj(H∗, D∗)
Ker(π1,j)

and
Hn−j(H∗, L∗)
Ker(π4,n−j)

.

But

Hj(H∗, D∗)
Ker(π1,j)

∼= ran(π4,j) ∼= ran(π1,j) ∼= im(H
j
(H∗, D∗)

i∗r,j−→ H
j
(H∗, L∗))

and similarly

Hn−j(H∗, L∗)
Ker(π4,n−j)

∼= ran(π1,n−j) ∼= im(H
n−j

(H∗, D∗)
i∗r,n−j−→ H

n−j
(H∗, L∗)).

The composition of the above isomorphisms gives

im(H
j
(H∗, D∗)

i∗r,j−→ H
j
(H∗, L∗)) ∼= im(H

n−j
(H∗, D∗)

i∗r,n−j−→ H
n−j

(H∗, L∗))

and this complete the proof. �
Remark 3.1. By the above proof it follows that given a pair of Hilbert

complexes (H∗, D∗) ⊆ (H∗, L∗), without any other assumption, the following
isomorphism holds for each j :

ran(π1,j) ∼= im(H
j
(H∗, D∗)

i∗r,j−→ H
j
(H∗, L∗)). (3.6)
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Moreover when the sequences of vector spaces on the right hand side of the
above equality isomorphism is finite dimensional we have

Hj(H∗, D∗) ∩ (Hj(H∗, D∗) ∩ ran(Lj−1))⊥ ∼=
∼= (Hj(H∗, L∗) ∩ ran(D∗j ))

⊥ ∩Hj(H∗, L∗)
that is

ran(π1,j) ∼= ran(π4,j).

The following statements are immediate consequences of theorem 3.5.

Corollary 3.8. Suppose that one of the two complexes of theorem 3.5
is Fredholm; then also the other complex is Fredholm and

im(Hj(H∗, D∗) −→ Hj(H∗, L∗)), j = 0, ..., n (3.7)

is a finite sequence of finite dimensional vector spaces with Poincaré duality.
Moreover

ran(π1,j) ∼= im(Hj(H∗, D∗) −→ Hj(H∗, L∗)). (3.8)

and
Hj(H∗, D∗) ∩ (Hj(H∗, D∗) ∩ ran(Lj−1))⊥ ∼= (3.9)

∼= (Hj(H∗, L∗) ∩ ran(D∗j ))
⊥ ∩Hj(H∗, L∗).

Proposition 3.9. Let (H∗, D∗) ⊆ (H∗, L∗) be a couple of complemen-
tary Hilbert complexes. Furthermore suppose that there is a third Hilbert
complex (H∗, P∗) with the following properties:

(1) (H∗, D∗) ⊆ (H∗, P∗) ⊆ (H∗, L∗).
(2) The reduced cohomology of (H∗, P∗) is finite dimensional.

Then

im(H
j
(H∗, D∗)

i∗r,j−→ H
j
(H∗, L∗)), j = 0, ..., n

is a finite sequence of finite dimensional vector spaces with Poincaré duality.

Proof. The assertion is an immediate consequence of the following,
simple fact. Let i1,j be the natural inclusion of (H∗, D∗) in (H∗, P∗), let i2,j
be the natural inclusion of (H∗, P∗) in (H∗, L∗) and finally let i3,j be the
natural inclusion of (H∗, D∗) in (H∗, L∗). Obviously we have i3,j = i2,j ◦ i1,j .
This implies that also the respective maps induced between the reduced
cohomology groups commute. So we have i∗r,3,j = i∗r,2,j ◦ i∗r,1,j and therefore

im(H
j
(H∗, D∗)

i∗r,3,j−→ H
j
(H∗, L∗)) ⊆ im(H

j
(H∗, P∗)

i∗r,2,j−→ H
j
(H∗, L∗)).

In this way, by the second hypothesis, we know that

im(H
j
(H∗, D∗)

i∗r,3,j−→ H
j
(H∗, L∗))

is a finite sequence of finite dimensional vector spaces. Now we are in posi-
tion to apply theorem 3.5 and so the proposition follows. �

Now we state the following theorem:

Theorem 3.10. Let (Hj , Dj) ⊆ (Hj , Lj), j = 0, ..., n, be a pair of Hilbert
complexes. Suppose that for each j ran(Dj) is closed in Hj+1. Then there
exists a third Hilbert complex (Hj , Pj) such that
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(1) (Hj , Dj) ⊆ (Hj , Pj) ⊆ (Hj , Lj).
(2) H i(H∗, P∗) = im(H i(H∗, D∗)→ H i(H∗, L∗)).

Moreover if (Hj , Dj) ⊆ (Hj , Lj) are complementary and (Hj , Dj), or equiva-
lently (Hj , Lj), is Fredholm then (Hj , Pj) is a Fredholm complex with Poincaré
duality.

Proof. It is immediate that

im(H i(H∗, D∗)→ H i(H∗, L∗)) =
Ker(Di)

ran(Li−1) ∩ D(Di)
.

Therefore for each i = 0, ..., n we have to construct a closed extension of Di,
that we call Pi, such that Ker(Pi) = Ker(Di) and ran(Pi−1) = ran(Li−1)∩
D(Di). To do this, from now on we will consider the following Hilbert
space (D(Li), < ,>G), which is by definition the domain of Li endowed with
the graph scalar product. Therefore all the direct sum that will appear
and all the assertions of topological type are referred to this Hilbert space
(D(Li), < ,>G). We can decompose (D(Li), < ,>G) in the following way:

(D(Li), < ,>G) = Ker(Li)⊕ Vi (3.10)

where Vi = {α ∈ D(Li) ∩ ran(L∗i )} and obviously these subspaces are both
closed in (D(Li), < ,>G).
Consider now (D(Di), < ,>G); it is a closed subspace of (D(Li), < ,>G) and
we can decompose it as

(D(Di), <>G) = Ker(Di)⊕Ai. (3.11)

Analogously to the previous case Ai = {α ∈ D(Di)∩ran(D∗i )} and obviously
these subspaces are both closed in (D(Di), <>G). Now let Ci = {α ∈ D(Li) :
Li(α) ∈ D(Di+1)}. Ci is closed in (D(Di), <>G) because it is the preimage
of a closed subspace under a continuous map. Finally let Wi = Ci ∩ Vi.
Then it is clear that

Ci = Ker(Li)⊕Wi. (3.12)

Obviously if Ker(Di) = Ker(Li) then it enough to define Pi := Li|Ci . So
we can suppose that Ker(Di) is properly contained in Ker(Li). Let π1 be
the orthogonal projection of Ai onto Ker(Li) and analogously let π2 be the
orthogonal projection of Ai onto Vi. We have the following properties:

(1) π2 is injective
(2) ran(π2) ⊆Wi

(3) ran(π2) is closed.

The first property follows from the fact that Ker(π2) = Ai ∩Ker(Li). But
Li is an extension of Di; therefore if an element α lies in Ai ∩ Ker(Li)
then it lies also in Ker(Di) and so α = 0. For the second property, given
α ∈ Ai, we have Di(α) = Li(α) = Li(π1(α) + π2(α)) = Li(π2(α)) and
therefore π2(α) ∈ Wi. Finally, for the third property, consider a sequence
{γm}m∈N ⊂ Ai such that π2(am) converges to γ ∈Wi. Then

lim
m→∞

Dj(am) = lim
m→∞

Lj(am) = lim
m→∞

Lj(π2(am)) = Lj(γ).

This implies that

lim
m→∞

Dj(am) = Lj(γ)
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and therefore the limit exists. So by the assumptions about the range of Dj

it follows that there exists an element η ∈ Ai such that

lim
m→∞

Dj(am) = Dj(η).

Moreover Lj(γ) = Dj(η) = Lj(η) = Lj(π2(η)). This implies that Lj(π2(η)−
γ) = 0 and therefore π2(η) = γ because π2(η), γ ∈Wi and Li is injective on
Wi. In this way we showed that π2 is closed.
Now defineNi as the orthogonal complement of ran(π2) inWi. Then for each
α ∈ Ai and for each β ∈ Ni we have < α, β >G=< π1(α) + π2(α), β >= 0.
This last property, joined with the fact that both Ai and Ni are closed,
implies that the vector space generated by Ai and Ni is closed and, if we
call it Mi, then we have Mi = Ai⊕Ni. Again for each α ∈ Ker(Di) and for
each β ∈ Mi we have < α, β >G= 0. This is because for each β ∈ Mi there
exist unique β1 ∈ Ai, β2 ∈ Ni such that β = β1 ⊕ β2. Now it is clear that
< α, β1 >G= 0 =< α, β2 >G because Ker(Di) ⊂ Ker(Li), Ni ⊂Wi, Wi and
Ker(Li) are orthogonal and Ker(Di) and Ai are orthogonal. Therefore, also
in this case, if we call Bi the vector space generated by Ker(Di) and Mi

we have that Bi = Ker(Di)⊕Mi = D(Di)⊕Ni and therefore Bi is closed.
Finally define Pi as

Pi := Li|Bi (3.13)

By the construction it is clear that for each α ∈ Bi then Pi(α) ∈ D(Di+1)∩
ran(Li) and that D(Di) ⊂ Bi. Therefore this implies that the composition
Pi+1 ◦ Pi is defined on the whole Bi and that Pi+1 ◦ Pi ≡ 0. Moreover, if we
look at Pi as an unbounded operator from Hi to Hi+1, then it clear that it
is densely defined and closed.
To conclude the proof we have to check that Ker(Pi) = Ker(Di) and that
ran(Pi) = ran(Li) ∩ D(Di+1). Let α ∈ Ker(Pi). We can decompose α in a
unique way as α1 +α2 +α3 where α1 ∈ Ker(Di), α2 ∈ Ai and α3 ∈ Ni. The
assumption on α implies that α2 + α3 ∈ Ker(Pi). We can decompose α2 in
a unique way as α2 = β1 + β2 where β1 ∈ ran(π1) and β2 ∈ ran(π2). Again
from the assumption on α it follows that Li(β2 +α3) = 0. This implies that
β2 + α3 ∈ Wi ∩ Ker(Li) and therefore from (3.12) we can conclude that
β2 + α3 = 0. But β2 + α3 ∈ ran(π2) ⊕ Ni, β2 ∈ ran(π2), α3 ∈ Ni and so
we got 0 = β2 = α3. Now we have α2 = β1 that is α2 ∈ Ai ∩ Ker(Li) =
Ker(π2). By the injectivity of π2 it follows that α2 = 0 and therefore
α = α1 ∈ Ker(Dj). So we got Ker(Pi) ⊆ Ker(Di); the other inclusion is
trivial and therefore we have Ker(Pi) = Ker(Di). Now we have to check
that ran(Pi) = ran(Li)∩D(Di+1). Clearly, as observed above, the inclusion
⊆ follows immediately by the construction of Pi. So we have to prove the
converse. Let γ ∈ Wi. Then there exist and are unique γ1 ∈ ran(π2) and
γ2 ∈ Ni such that γ = γ1 + γ2. Now let θ ∈ Ai be the unique element in
Ai such that π2(θ) = γ1. Finally consider θ + γ2. Then θ + γ2 ∈ Bi and
Pi(θ + γ2) = Li(θ + γ2) = Li(π1(θ) + π2(θ) + γ2) = Li(γ1 + γ2) = Li(γ).
In this way we showed that ran(Li) ∩ D(Di+1) = ran(Pi).
Finally if (Hj , Dj) or equivalently (Hj , Lj) is Fredholm then H i(H∗, D∗) is
finite dimensional for each i and therefore ran(Dj) is closed in Hj+1 for each
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j. We have the following natural and surjective map

Ker(Di+1)

ran(Di)
−→ Ker(Di+1)

ran(Pi)
.

This implies that also H i(H∗, P∗) is finite dimensional, that is (Hj , Pj) is
a Fredholm complex, and now using theorem 3.5 it follows that Poincaré
duality holds for it. This complete the proof. �

Finally we conclude the section stating the following proposition which
assures, under some conditions, that an operator is self-adjoint.

Proposition 3.11. Let T : H → H be a closed and densely defined
operator such that ran(T ) ⊂ D(T ) and T 2(u) = 0 for each u ∈ D(T ). Then

T + T ∗ : H → H

with domain given by D(T + T ∗) = {u : u ∈ D(T ) ∩ D(T ∗)} is self-adjoint.

Proof. Clearly T + T ∗ is a symmetric operator. Therefore, to prove
the statement, we have to show that (T + T ∗)∗ is extended by T + T ∗. Let
u ∈ D((T + T ∗)∗). This means that for each v ∈ D(T + T ∗) we have that

v 7−→< T (v) + T ∗(v), u >

is bounded. Now, by the fact that T is closed and densely defined it follows
that H = Ker(T )⊕ ran(T ∗). Therefore D(T ) = Ker(T )⊕D(T ) ∩ ran(T ∗)
and this implies that

ran(T ) = ran(T |D(T )∩ran(T ∗)).

Now consider again an element u ∈ D((T + T ∗)∗) and let α ∈ D(T ). Then
< T (α), u >=< T (α1) + T (α2), u >=< T (α2), u > where α = α1 ⊕ α2 with

α1 ∈ Ker(T ) and α2 ∈ D(T ) ∩ ran(T ∗). But α2 ∈ D(T + T ∗) and this
implies that for each α ∈ D(T ) the linear application

α 7−→< T (α), u >

is bounded.
By the properties of T it follows that T ∗ is closed, densely defined and that
ran(T ∗) ⊂ Ker(T ∗). Therefore we can applying the same argumentations
to T ∗ getting that for each β ∈ D(T ∗) the linear application

β 7−→< T ∗(β), u >

is bounded. This implies that u ∈ D(T ∗) ∩D(T ) and therefore the proposi-
tion is proved. �

2. Poincaré duality and Hodge theorem.

In this section we apply, to the pairs of complementary Hilbert complexes
arising in riemannian geometry, the results stated in the previous section.

Theorem 3.12. Let (M, g) be an open and oriented riemannian man-
ifold of dimension m and let E0, ..., En be vector bundles over M endowed
with metrics hi i = 0, ..., n. Suppose that we have a complex of differential
operator :

0→ C∞c (M,E0)
P0→ C∞c (M,E1)

P1→ ...
Pn−1→ C∞c (M,En)→ 0, (3.14)
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and let

0→ L2(M,E0)
Pmax,0→ L2(M,E1)

Pmax,1→ ...
Pmax,n−1→ L2(M,En)→ 0, (3.15)

and

0→ L2(M,E0)
Pmin,0→ L2(M,E1)

Pmin,1→ ...
Pmin,n−1→ L2(M,En)→ 0, (3.16)

the two natural Hilbert complexes associated to (3.14) as described above.
Suppose that for each i = 0, ..., n there exists an isometry φi : (Ei, hi) →
(En−i, hn−i); with a little abuse of notation let still φi denotes the induced
isometry from L2(M,Ei) to L2(M,En−i). Finally suppose that P tn−i−1◦φi =
ci(φi+1 ◦ Pi), where ci is a constant which depends only on i.

If im(H
i
2,min(M,E∗)

i∗r,i−→ H
i
2,max(M,E∗)) is finite dimensional for each i

then

im(H
i
2,min(M,E∗)

i∗r,i−→ H
i
2,max(M,E∗))

is a finite sequence of finite dimensional vector spaces with Poincaré duality.

Proof. From the hypothesis we know that for each i = 0, ..., n there
exists an isometry φi : (Ei, hi) → (En−i, hn−i) such that P tn−i−1 ◦ φi =
ci(φi+1 ◦Pi), where ci is a constant which depends just by i. This isometries
of vector bundles induces isometries from L2(M,Ei) to L2(M,En−i), that
with a little abuse of notation we still label φi, such that φi(D(Pmin,i)) =
D(P tmin,n−i−1) and P tmin,n−i−1 ◦ φi = ci(φi+1 ◦ Pmin,i). So we showed that

the complexes (L2(M,E∗), Pmin,∗) ⊆ (L2(M,E∗), Pmax,∗) are a pair of com-
plementary Hilbert complexes. Now, applying theorem 3.5, we can get the
conclusion. �

Theorem 3.13. In the same hypothesis of the previous theorem, suppose
furthermore that for each i = 0, ..., n ran(Pmin,i) is closed in L2(M,Ei+1).
Then there exists a Hilbert complex (L2(M,Ei), Pm,i) such that for each i =
0, ..., n

D(Pmin,i) ⊂ D(Pm,i) ⊂ D(Pmax,i),

Pmax,i is an extension of Pm,i which is an extension of Pmin,i and

H i
2,m(M,Ei) = im(H i

2,min(M,E∗)
i∗i−→ H i

2,max(M,E∗))

where H i
2,m(M,Ei) is the cohomology of the Hilbert complex (L2(M,Ei), Pm,i).

Finally if (L2(M,Ei), Pmax,i) or equivalently (L2(M,Ei), Pmin,i) is Fredholm
then (L2(M,Ei), Pm,i) is a Fredholm complex with Poincaré duality.

Proof. It follows immediately from the previous theorem and from
theorem 3.10. �

As a particular and important case we have the following two theorems:

Theorem 3.14. Let (M, g) be an open, oriented and incomplete rie-
mannian manifold of dimension m. Then the complexes

(L2Ω∗(M, g), dmax,∗) and (L2Ω∗(M, g), dmin,∗)
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are a pair of complementary Hilbert complexes.

In particular if im(H
i
2,min(M, g)

i∗r,i−→ H
i
2,max(M, g)) is finite dimensional for

each i then

im(H
i
2,min(M, g)

i∗r,i−→ H
i
2,max(M, g))

is a finite sequence of finite dimensional vector spaces with Poincaré duality.

Proof. Let ∗ : Λi(M) → Λn−i(M) the Hodge star operator. Then ∗
induces a map between Ωi

c(M) and Ωn−i
c (M) such that for η, ω ∈ Ωi

c(M) we
have:

< ∗η, ∗ω >L2(M,g)=

∫

M
< ∗η, ∗ω >M dvolM =

∫

M
∗η ∧ ∗ ∗ ω =

∫

M
ω ∧ ∗η =

=< ω, η >L2(M,g)=< η, ω >L2(M,g)

that is ∗ is an isometry between Ωi
c(M) and Ωn−i

c (M). This implies that ∗
extends to an isometry between L2Ωi(M, g) and L2Ωn−i(M, g). Now it is
an immediate consequence of definition 1.7 and definition 1.8 that

∗dmin,i = ±δmin,n−i−1 ∗ and that ∗ dmax,i = ±δmax,n−i−1∗
and the sign depends only on the parity of the degree i. So we can apply
theorem 3.5 and the assertion follows. �

Remark 3.2. The previous theorem shows that pair of complementary
Hilbert complexes appear naturally in riemannian geometry. In fact the
Hodge star operator provides naturally a family of link maps and so we do
not need to assume their existence.

Theorem 3.15. Let (M, g) be an open, oriented and incomplete rie-
mannian manifold of dimension n. Suppose that for each i = 0, ..., n ran(dmin,i)
is closed in L2Ωi+1(M, g). Then there exists a Hilbert complex:

(L2Ωi(M, g)), dm,i)

such that for each i = 0, ...n

D(dmin,i) ⊂ D(dm,i) ⊂ D(dmax,i),

dmax,i is an extension of dm,i which is an extension of dmin,i and

H i
2,m(M, g) = im(H i

2,min(M, g)
i∗i−→ H i

2,max(M, g))

where H i
2,m(M, g) is the cohomology of the Hilbert complex (L2Ωi(M, g), dm,i).

Finally, if (L2Ωi(M, g), dmax,i) or equivalently (L2Ωi(M, g), dmin,i) is Fred-
holm, then (L2Ωi(M, g), dm,i) is a Fredholm complex with Poincaré duality.

Proof. Also in this case it follows immediately from the previous the-
orem and from theorem 3.10. �

We have the following corollary which is a Hodge theorem for the L2

cohomology groups im(H i
2,min(M, g)

i∗i−→ H i
2,max(M, g)):
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Corollary 3.16. In the same assumptions of theorem 3.15; Let ∆i :
Ωi
c(M) → Ωi

c(M) be the Laplacian acting on the space of smooth com-
pactly supported forms. Then there exists a self-adjoint extension ∆m,i :
L2Ωi(M, g)→ L2Ωi(M, g) with closed range such that

Ker(∆m,i) ∼= im(H i
2,min(M, g)

i∗i−→ H i
2,max(M, g)).

Moreover, if (L2Ωi(M, g), dmax,i) or equivalently (L2Ωi(M, g), dmin,i) is Fred-
holm, then ∆m,i is a Fredholm operator on its domain endowed with the graph
norm.

Proof. Consider the Hilbert complex (L2Ωi(M, g), dm,i). For each i =
0, ..., n define

∆m,i := d∗m,i ◦ dm,i + dm,i−1 ◦ d∗m,i−1 (3.17)

with domain given by

D(∆m,i) = (3.18)

{ω ∈ D(dm,i) ∩ D(d∗m,i−1) : dm,i(ω) ∈ D(d∗m,i) and d∗m,i−1(ω) ∈ D(dm,i−1)}.
In other words, for each i = 0, ..., n, ∆m,i is the i− th Laplacian associated
to the Hilbert complex (L2Ωi(M, g), dm,i). So, as recalled in the first sec-
tion, it follows that (3.17) is a self-adjoint operator. Moreover, by the fact
that dmin,i has closed range for each i = 0, ..., n it follows that also δmin,i
has closed range for each i. Finally this implies that also dmax,i has closed
range because dmax,i = δ∗min,i. This means that for the Hilbert complex

(L2Ωi(M, g), dm,i) the L2 cohomology and the reduced L2 cohomology are

exactly the same. The reason is that ran(dm,i) = ran(dmax,i) ∩Ker(dmin,i+1)
= ran(dmax,i)∩Ker(dmin,i+1) because they are both closed in L2Ωi+1(M, g)
and clearly ran(dmax,i) ∩ Ker(dmin,i+1) = ran(dm,i). So we can apply
(1.5) to get the first conclusion. Moreover by the fact that ran(∆m,i) =
ran(dm,i−1)⊕ ran(δm,i) it follows that ∆m,i is an operator with closed range.
Finally, using the fact that (L2Ωi(M, g), dm,i) is Fredholm, we get that ∆m,i

is self-adjoint, with finite dimensional nullspace and with closed range and
therefore it is a Fredholm operator on its domain endowed with the graph
norm. �

Remark 3.3. We remark that from the previous proof it follows that,
under the assumptions of theorem 3.15, the operator dm,i has closed range
for each i and therefore for the Hilbert complex (L2Ωi(M, g), dm,i) the L2

cohomology coincides with the reduced L2 cohomology.

From now on we will focus our attention exclusively on the vector spaces

im(H
i
2,min(M, g)

i∗r,i−→ H
i
2,max(M, g)) because, using these, we will get some

geometric and topological applications concerning the manifold M .
Anyway it will be clear that all the following corollaries of the remaining

part of this subsection apply also for the vector spaces im(H
i
2,min(M,E∗)

i∗r,i−→
H
i
2,max(M,E∗)) under the hypothesis of theorem 3.12.
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Now, to get a lighter notation, we label the vector spaces

im(H
i
2,min(M, g)

i∗r,i−→ H
i
2,max(M, g)) := H

i
2,m→M (M, g) and H i

2,m→M (M, g)

in the non reduced case. Moreover, when it makes sense, we define

χ2,m→M (M, g) :=
m∑

i=0

(−1)idim(H
i
2,m→M (M, g)) (3.19)

and in the non reduced case :

χ2,m→M (M, g) :=
m∑

i=0

(−1)idim(H i
2,m→M (M, g)) (3.20)

We have the following propositions:

Proposition 3.17. In the hypothesis of theorem 3.14, if m is odd then

χ2,m→M (M, g) = 0. (3.21)

If m is even then

χ2,m→M (M, g) = 2dim(H
0
2,m→M ) + dim(H

m
2

2,m→M (M, g) (3.22)

when m
2 is still even while if m

2 is odd then

χ2,m→M (M, g) = 2dim(H
0
2,m→M )− dim(H

m
2

2,m→M (M, g). (3.23)

Finally if the complex (L2Ωi(M, g), dmax,i) is Fredholm, or equivalently if
(L2Ωi(M, g), dmin,i) is Fredholm, then we have: if m is odd

χ2,m→M (M, g) = 0. (3.24)

If m is even then

χ2,m→M (M, g) = 2dim(H0
2,m→M ) + dim(H

m
2

2,m→M (M, g) (3.25)

when m
2 is still even while if m

2 is odd then

χ2,m→M (M, g) = 2dim(H0
2,m→M )− dim(H

m
2

2,m→M (M, g). (3.26)

Proof. The equalities (3.21), (3.22) and (3.23) are an immediate conse-
quence of theorem 3.14. Finally, if for example (L2Ωi(M, g), dmax,i) is Fred-

holm then H i
2,max(M, g) ∼= H

i
2,max(M, g) ∼= H

n−i
2,min

∼= Hn−i
2,min(M, g) and so

also (L2Ωi(M, g), dmin,i) is Fredholm. Obviously the same arguments show
that, if (L2Ωi(M, g), dmin,i) is Fredholm, then also (L2Ωi(M, g), dmax,i) is
Fredholm and therefore in (3.24), (3.25) and (3.26) follow immediately be-
cause the L2 cohomology coincides with the reduced L2 cohomology. �

Proposition 3.18. In the hypothesis of theorem 3.5. Suppose that one
of the two following properties is satisfied

(1) i∗r,i : H
i
2,min(M, g) −→ H

i
2,max(M, g) is injective,

(2) i∗r,i : H
i
2,min(M, g) −→ H

i
2,max(M, g) is surjective.
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Then

H
i
2,min(M, g), H

i
2,max(M, g) i = 0, ..., n (3.27)

are both a finite sequences of finite dimensional vector spaces with Poincaré
duality. Finally, under the same hypothesis, if one of the two complexes
(L2Ωi(M, g), dmax/min,i) is Fredholm then the same conclusion holds for

H i
2,min(M, g), H i

2,max(M, g) i = 0, ..., n

Proof. If i∗r,i : H
i
2,min(M, g) −→ H

i
2,max(M, g) is injective then

H
i
2,min(M, g) ∼= H

i
2,m→M (M, g).

This implies that each H
i
2,min(M, g) is finite dimensional and therefore, us-

ing theorem 3.14, we get H
i
2,min(M, g) ∼= H

n−i
2,min(M, g). Finally by the fact

that the Hodge star operator induces an isomorphism between H
i
2,min(M, g)

and H
n−i
2,max(M, g) it follows that H

i
2,max(M, g) is a finite sequences of fi-

nite dimensional vector spaces with Poincaré duality. In the same way

if i∗r,i : H
i
2,min(M, g) −→ H

i
2,max(M, g) is surjective then H

i
2,max(M, g) ∼=

H
i
2,m→M (M, g). Now the same arguments used in the injective case shows

that H
i
2,max(M, g) is a finite sequence of finite dimensional spaces with

Poincaré duality. Finally, using again the isomorphism induced by the

Hodge star operator between H
i
2,min(M, g) and H

n−i
2,max(M, g) we get the

same conclusions for H
i
2,min(M, g). �

Finally we conclude the section with the following proposition; before
stating it we give some definitions: let

dm + d∗m :
n⊕

i=0

L2Ωi(M, g) −→
n⊕

i=0

L2Ωi(M, g) (3.28)

the operator defined as dm+d∗m|L2Ωi(M,g) = dm,i+d
∗
m,i−1 where dm,i is defined

in theorem 3.15 and the domain of (3.28) is

D(dm + d∗m) =

n⊕

i=0

D(dm,i + d∗m,i−1)

and D(dm,i + d∗m,i−1) = D(dm,i) ∩ D(d∗m,i−1).

Proposition 3.19. Let (M, g) be an open oriented and incomplete rie-
mannian manifold of dimension n. Suppose that for each i = 0, ..., n ran(dmin,i)
is closed in L2Ωi+1(M, g) and that (L2Ωi(M, g), dm,i) is a Fredholm complex.
Then the operator (dm + d∗m)ev defined as

dm + d∗m :
n⊕

i=0

L2Ω2i(M, g) −→
n⊕

i=0

L2Ω2i+1(M, g)

with domain given by

D((dm,i + d∗m,i−1)ev) := D(dm + d∗m) ∩
n⊕

i=0

L2Ω2i(M, g)
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is a Fredholm operator on its domain endowed with the graph norm and its
index satisfies

ind((dm + d∗m)ev) = χm→M (M, g) (3.29)

Proof. By the fact that (L2Ωi(M, g), dm,i) is a Fredholm complex it
follows that dm + d∗m is a Fredholm operator on its domain endowed with
graph norm. Now if we define (dm + d∗m)odd analogously to (dm + d∗m)ev,
then it is clear that D(dm + d∗m) = D((dm + d∗m)ev) ⊕ D((dm + d∗m)odd), that
Ker(dm+d∗m) = Ker((dm+d∗m)ev)⊕Ker((dm+d∗m)odd) and that ran(dm+d∗m)
= ran((dm +d∗m)ev)⊕ ran((dm +d∗m)odd). This implies immediately that also
(dm + d∗m)ev is a Fredholm operator on its domain endowed with the graph
norm. Finally (3.29) is an easy consequence of the Hodge theorem stated in
corollary 3.16. �

3. Some geometric applications

The aim of this section is show some geometric application of the groups

H
i
2,m→M (M, g) and H i

2,m→M (M, g). In particular we will show that, us-
ing them, we can deduce the presence of a topological obstruction to the
existence of a riemannian metric (complete ore incomplete) with finite L2

cohomology.
Consider again the complex (Ω∗c(M), d∗). We will call a closed extension
of (Ω∗c(M), d∗) any Hilbert complex (L2Ωi(M, g), Di) where

Di : L2Ωi(M, g)→ L2Ωi+1(M, g)

is a densely defined, closed operator which extends di : Ωi
c(M, g)→ Ωi+1

c (M, g)
and such that the action of Di on D(Di), its domain, coincides with the
action of di on Di in a distributional way. Obviously for every closed ex-
tension of (Ω∗c(M), d∗) we have (L2Ω∗(M, g), dmin,∗) ⊆ (L2Ω∗(M, g), Di) ⊆
(L2Ω∗(M, g), dmax,∗). We will label with H

i
2,D∗(M, g), H i

2,D∗(M, g) respec-

tively the reduced cohomology and the cohomology groups of (L2Ωi(M, g), Di)
and with HiD∗(M, g) its Hodge cohomology groups.

Moreover if (L2Ω∗(M, g), D′i) is another closed extension of (Ω∗c(M), d∗) such
that (L2Ω∗(M, g), Di) ⊆ (L2Ω∗(M, g), D′i) we will label with

H i
2,D→D′(M, g), H

i
2,D→D′(M, g)

respectively the image of the cohomology groups, reduced cohomology groups,
of the complex (L2Ω∗(M, g), Di) into the cohomology groups, reduced co-
homology groups, of the complex (L2Ω∗(M, g), D′i) induced by the natural
inclusion of complexes.
Before we proceed we need the following propositions.

Proposition 3.20. Let (M,g) be an incomplete and oriented riemannian
manifold of dimension m. For each i = 0, ...,m consider D(dmax,i). Let
ω ∈ D(dmax,i). Then there exists a sequence of smooth forms {ωj}j∈N ⊂
Ωi(M) ∩ L2Ωi(M, g) such that :

(1) diωj ∈ L2Ωi+1(M, g).
(2) ωj → ω in L2Ωi(M, g).
(3) diωj → dmax,iω in L2Ωi+1(M, g).
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Proof. See [23] pag 93. �

The next proposition is a variation of a result of de Rham, see [29]
theorem 24.

Proposition 3.21. Let (M,g) be an incomplete and oriented riemannian
manifold of dimension m. For each i = 0, ...,m consider D(dmax,i). Let

ω ∈ ran(dmax,i) such that ω is smooth. Then there exist η ∈ Ωi(M) such
that diη = ω.

Proof. By Poincaré duality between de Rham cohomology and com-
pactly supported de Rham cohomology on an open and oriented manifold
we know that it sufficient to show that∫

M
ω ∧ φ = 0

for each closed and compactly supported n − i−form φ to get that ω is an
exact i−form in the smooth de Rham complex. Now, by proposition 3.20,
we know that there exists a sequence of smooth i−forms {ωj}j∈N such that
diωj → ω in L2Ωi+1(M, g). Then:
∫

M
ω∧φ =

∫

M
( lim
j→∞

diωj)∧φ = lim
j→∞

∫

M
diωj∧φ = ± lim

j→∞

∫

M
diωj∧(∗∗φ) =

= ± lim
j→∞

< diωj , ∗φ >L2(M,g)= ± lim
j→∞

< ωj , δi−1(∗φ) >L2(M,g)= 0.

So the proposition is proved. �
Proposition 3.22. Let (L2Ωi(M, g), Di) be any closed extension of

(Ω∗c(M), d∗) where (M, g) is an incomplete oriented riemannian manifold.

Then every cohomology class in H
i
2,D∗(M, g) has a smooth representative.

The same conclusion holds for every cohomology class in H i
2,D∗(M, g).

Proof. By (1.5) we know that every cohomology class in H
i
2,D∗(M, g)

has a representative in HiD∗(M, g). Now, by elliptic regularity (see for ex-

ample de Rham book [29]), it follows that every element in HiD∗(M, g) is
smooth. Now if we look at proposition 1.6, elliptic regularity tells us again
that every element in D∞(L2Ωi(M, g)) is smooth. Therefore form this it
follows immediately the statement for H i

2,D∗(M, g). �

From the above propositions 3.21 and 3.22 it follows that that there

exists a well defined map from H
i
2,D∗(M, g), respectively from H i

2,D∗(M, g),
to the ordinary de Rham cohomology ofM which assigns to each cohomology

class [ω] ∈ H
i
2,D∗(M, g), respectively [ω] ∈ H i

2,D∗(M, g), the cohomology

class in H i
dR(M) given by the smooth representatives of [ω]. By proposition

3.21 this cohomology class in H i
dR(M) does not depend from the choice of

the smooth representative of [ω] and therefore this map is well defined.
We will label these maps:

s∗D,i : H i
2,D∗(M, g) −→ H i

dR(M) in the non reduced case (3.30)

and

s∗r,D,i : H
i
2,D∗(M, g) −→ H i

dR(M) in the reduced case (3.31)
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In particular for the maximal and minimal extension we will label these
maps:

s∗M,i : H i
2,max(M, g) −→ H i

dR(M) in the non reduced case (3.32)

and

s∗r,M,i : H
i
2,max(M, g) −→ H i

dR(M) in the reduced case (3.33)

and analogously for the minimal extension

s∗m,i : H i
2,min(M, g) −→ H i

dR(M) in the non reduced case (3.34)

and

s∗r,m,i : H
i
2,min(M, g) −→ H i

dR(M) in the reduced case (3.35)

Now we are ready to state the following proposition:

Proposition 3.23. Let (M, g) be an open, oriented and incomplete rie-
mannian manifold. Let (L2Ωi(M, g), Da,∗), (L2Ωi(M, g), Db,∗) be two closed
extension of (Ω∗c(M), d∗) such that

(L2Ω∗(M, g), dmin,∗) ⊆ (L2Ω∗(M, g), Da,∗) ⊆ (L2Ω∗(M, g), Db,∗) ⊆ (3.36)

⊆ (L2Ω∗(M, g), dmax,∗).

Then the two following diagrams commute:

H i
c(M)

��

// H i
dR(M)

H i
2,min(M, g)

��

// H i
2,max(M, g)

s∗M,i

OO

H i
2,Da,∗(M, g) // H i

2,DB,∗(M, g)

OO

H i
c(M)

��

// H i
dR(M)

H
i
2,min(M, g)

��

// H
i
2,max(M, g)

s∗r,M,i

OO

H
i
2,Da,∗(M, g) // H

i
2,DB,∗(M, g)

OO

(3.37)
where all the above arrows without label are the natural maps between co-
homology, respectively reduced cohomology groups, induced by the natural
inclusion of the relative complexes.

Proof. It is clear that both the two following diagrams commute:

H i
c(M)

�� ((
H i

2,min(M, g)

��

// H i
2,max(M, g)

H i
2,Da,∗(M, g) // H i

2,DB,∗(M, g)

OO

H i
c(M)

�� ((

H
i
2,min(M, g)

��

// H
i
2,max(M, g)

H
i
2,Da,∗(M, g) // H

i
2,DB,∗(M, g)

OO
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So, to complete the proof, we have to show that the two following diagrams
are both commutative:

H i
c(M)

���� ''
H i

2,max(M, g)
s∗M,i // H i

dR(M)

H i
c(M)

���� &&
H
i
2,max(M, g)

s∗r,M,i // H i
dR(M)

To prove this it is enough to show that given a cohomology class [ω] ∈
H i

2,max(M, g), respectively [ω] ∈ H i
2,max(M, g), such that ω is closed, smooth

and with compact support, if [ω] = 0 in H i
2,max(M, g) or in H

i
2,max(M, g)

then also s∗M,i(ω) = 0, respectively s∗r,M,i(ω) = 0, that is the cohomology

class of ω in H i
dR(M) is null. This last statement follows immediately from

proposition 3.21. �
Using the previous proposition we get the following corollary in which

the first statement extends a result of Anderson, see [2], to the case of an
incomplete riemannian metric both for the reduced and the unreduced L2

cohomology groups.

Corollary 3.24. Let (M, g) be as in the previous proposition. Then,
for each j = 0, ..., dimM , there are injective maps:

im(Hj
c (M)→ Hj

dR(M)) −→ H
j
2,m→M (M, g) −→ H

j
2,Da→Db(M, g) (3.38)

im(Hj
c (M)→ Hj

dR(M)) −→ Hj
2,m→M (M, g) −→ Hj

2,Da→Db(M, g) (3.39)

Moreover if H i
c(M)→ H i

dR(M) is injective then

H i
c(M)→ H i

2,m→M (M, g), H i
c(M)→ H

i
2,m→M (M, g) (3.40)

are injective and therefore for each closed extension (L2Ω∗(M, g), D∗) also
the following maps are injective:

H i
c(M)→ H i

2,D(M, g), H i
c(M)→ H

i
2,D(M, g) (3.41)

Proof. It is an immediate consequence of the previous proposition. �
Now we give other three corollaries of proposition 3.23. In particular

the third corollary shows that it could exist a topological obstruction to
the existence of a riemannian metric on g with certain analytic properties.

Corollary 3.25. Let M be an open manifold such that for some j

im(Hj
c (M)

i∗j→ Hj
dR(M)) is non trivial. Then for every riemmannian met-

ric g on M and for every pair of closed extensions (L2Ω∗(M, g), Da,∗),
(L2Ω∗(M, g), Db,∗) such that (L2Ω∗(M, g), Da,∗) ⊆ (L2Ω∗(M, g), Db,∗) we
have that for the same j both vector spaces

Hj
2,Da→Db(M, g), H

j
2,Da→Db(M, g)

are non trivial. In particular this implies that for the same j the following
four vector spaces are non trivial:

Hj
2,Da

(M, g), Hj
2,Db

(M, g), H
j
2,Da(M, g), H

j
2,Db

(M, g).
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Corollary 3.26. Let (M, g) be an open, oriented and incomplete rie-
mannian manifold. Suppose that there exists a pair of closed extension
(L2Ω∗(M, g), Da,∗), (L2Ω∗(M, g), Db,∗) of (Ω∗c(M), d∗) such that are both weak
Fredholm and (L2Ω∗(M, g), Da,∗) ⊆ (L2Ω∗(M, g), Db,∗).

Then im(Hj
c (M)

i∗j−→ Hj
dR(M)) is finite dimensional and we have

dim(im(Hj
c (M)

i∗j−→ Hj
dR(M))) ≤ dimHj

2,Da(M, g) (3.42)

dim(im(Hj
c (M)

i∗j−→ Hj
dR(M))) ≤ dimHj

2,Db
(M, g) (3.43)

In particular if one of the two complexes (L2Ω∗(M, g), dmax/min,∗) is
weak Fredholm then also the other one is weak Fredholm and for each j =
0, ...,m we have:

dim(im(Hj
c (M)

i∗j−→ Hj
dR(M))) ≤ dimHj

2,max(M, g) (3.44)

dim(im(Hj
c (M)

i∗j−→ Hj
dR(M))) ≤ dimHj

2,min(M, g). (3.45)

Finally if one of the two complexes (L2Ω∗(M, g), dmax/min,∗) is Fredholm
then for each j = 0, ...,m we have:

dim(im(Hj
c (M)

i∗j−→ Hj
dR(M))) ≤ dimHj

2,max(M, g) (3.46)

dim(im(Hj
c (M)

i∗j−→ Hj
dR(M))) ≤ dimHj

2,min(M, g). (3.47)

Proof. It is an immediate consequence of corollary 3.24. �
Corollary 3.27. Let M be an open, oriented and incomplete riemann-

ian manifold where m = dim(M). Suppose that there exists an j ∈ {0, ...,m}
such that im(Hj

c (M)
i∗j−→ Hj

dR(M)) is infinite dimensional. Then M does
not admit any riemannian metrics g (complete or incomplete) such that g
implies the existence of a closed extension (L2Ω∗(M, g), D∗) of (Ω∗c(M), d∗)
with one of the following properties for the same j:

(1) H
j
2,D∗(M, g) or H

m−j
2,D∗(M, g) is finite dimensional.

(2) Hj
2,D∗(M, g) or Hm−j

2,D∗ (M, g) is finite dimensional.

(3) D∗j ◦Dj +Dj−1 ◦D∗j−1 on its domain (as defined in (1.3)) endowed
with the graph norm is a Fredholm operator.

Moreover M does not admit any riemannian metric g such that:

(1) ∆max,j, the maximal closed extension of ∆j : Ωj
c(M) → Ωj

c(M),
has finite dimensional nullspace.

(2) ∆min,j, the minimal closed extension of ∆j : Ωj
c(M) → Ωj

c(M),

satisfies dim(ran(∆min,j)
⊥) <∞.

Proof. The first two points are immediate consequence of corollary 3.24
and theorem 3.14. The third point follows immediately by (1.4) and (1.5).
Finally, for the last two points , if Ker(∆max,j) is finite dimensional then all

the other closed extensions of ∆j : Ωj
c(M)→ Ωj

c(M) have finite dimensional
nullspace. So we can apply the third point to get the conclusion. Finally if we
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consider ∆min,j then we have ∆∗min,j = ∆max,j . So if dim(ran(∆min,j)
⊥) <

∞ then Ker(∆max,j) is finite dimensional. Now by the previous point we
can get the conclusion. �

4. L2 and topological signature for an incomplete manifold.

The aim of this subsection is to show that if (M, g) is an open oriented

and incomplete riemannian manifold such that for i = 2k H
i
2,m→M (M, g)

is finite dimensional, where 4k = dimM , then we can define over M an
L2 signature and a topological signature. The first step is to show that
using the wedge product we can construct a well defined and non degener-

ate pairing between H
i
2,m→M (M, g) and H

n−i
2,m→M (M, g) where n = dimM .

In fact any cohomology class [ω] ∈ H
i
2,m→M (M, g) is a cohomology class

in H
i
2,max(M, g) which admits a representative in Ker(dmin,i). So we can

define:

H
i
2,m→M (M, g)×Hn−i

2,m→M (M, g) −→ R, ([η], [ω]) 7→
∫

M
η ∧ ω (3.48)

where ω ∈ Ker(dmin,i) and η ∈ Ker(dmin,n−i)
Proposition 3.28. Let (M,g) be an open, oriented and incomplete rie-

mannian manifold of dimension n. Then (3.48) is a well defined and non

degenerate pairing and therefore when the vector spaces H
i
2,m→M (M, g) i =

0, ..., n are finite dimensional it induces an isomorphism between

H
i
2,m→M (M, g) and (H

n−i
2,m→M (M, g))∗.

Proof. The first step is to show that (3.48) is well defined.

Let η′, ω′ other two forms such that [η] = [η′] in H
i
2,m→M (M, g), [ω] = [ω′]

in H
n−i
2,m→M (M, g) and that ω′ ∈ Ker(dmin,i), η

′ ∈ Ker(dmin,n−i) . Then

there exist α ∈ dmax,i−1 ∩ D(dmin,i) and β ∈ dmax,n−i−1 ∩ D(dmin,n−i) such
that η = η′ + α and ω = ω′ + β. Therefore∫

M
η∧ω =

∫

M
(η′+α)∧(ω′+β) =

∫

M
η′∧ω′+

∫

M
η′∧β+

∫

M
α∧ω′+

∫

M
α∧β

Now ∫

M
η′ ∧ β = ±

∫

M
< η′, ∗β > dvolM =< η′, ∗β >L2(M,g)= 0

because Ker(dmin,i)
⊥ = ran(δmax,i). In the same way:

∫

M
α ∧ β = ±

∫

M
< α, ∗β > dvolM =< α, ∗β >L2(M,g)= 0.

Finally ∫

M
α ∧ ω′ = ±

∫

M
< α, ∗ω′ > dvolM =< α, ∗ω′ >L2(M,g)= 0

because Ker(δmin,i−1)⊥ = ran(dmax,i−1). So we can conclude that (3.48)

is well defined. Now fix [η] ∈ H
i
2,m→M (M, g) and suppose that for each

[ω] ∈ H
n−i
2,m→M (M, g) the pairing (3.48) vanishes. Then this means that
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for each ω ∈ Ker(dmin,n−i) we have
∫
M η ∧ ω = 0. We also know that∫

M η ∧ ω =< η, ∗ω >L2(M,g) and that ∗(Ker(dmin,n−i)) = Ker(δmin,i−1)

. So by the fact that (Ker(δmin,i−1))⊥ = ran(dmax,i−1) we obtain that

[η] = 0. In the same way if [ω] ∈ H
n−i
2,m→M (M, g) is such that for each

[η] ∈ H i
2,m→M (M, g) the pairing (3.48) vanishes then we know that for each

η ∈ Ker(dmax,i) we have
∫
M η ∧ ω = 0. But we know that

∫
M η ∧ ω =<

η, ∗ω >L2(M,g). So by the fact that ∗(ran(dmax,n−i−1) = ran(δmax,i) and

that (Ker(dmin,i))
⊥ = ran(δmax,i) we obtain that [ω] = 0.

So we can conclude that the pairing (3.48) is well defined and non degen-

erate and therefore when the vector spaces H
i
2,m→M (M, g) i = 0, ..., n are

finite dimensional it induces an isomorphism between H
i
2,m→M (M, g) and

(H
n−i
2,m→M (M, g))∗. �

Remark 3.4. We can look at this proposition as an alternative state-
ment (and proof) of theorem 3.14.

We have the following immediate corollary:

Corollary 3.29. Let (M, g) be an open, oriented and incomplete rie-

mannian manifold of dimension 4n. Then on H
2n
2,m→M (M, g) the pairing

(3.48) is a symmetric bilinear form.

We can now state the following definition:

Definition 3.30. Let (M, g) be an open and oriented riemannian man-

ifold of dimension 4n such that, for i = 2n, H
2n
2,m→M (M, g) is finite dimen-

sional. Then we define the L2 signature of (M, g) and we label it σ2(M, g)

as the signature of the pairing (3.48) on H
2n
2,m→M (M, g).

Consider now the sequence of vector spaces im(H i
c(M) → H i

dR(M)).
A cohomology class in im(H i

c(M) → H i
dR(M)) is a cohomology class in

H i
dR(M) which admits as representative a smooth and closed form with

compact support. So in a similar way to the previous case we can define:

im(H i
c(M)→ H i

dR(M))× im(Hn−i
c (M)→ Hn−i

dR (M)) −→ R, (3.49)

([η], [ω]) 7→
∫

M
η ∧ ω

where ω is a i−form closed with compact support and in the same way η
is a closed n− i−form with compact support. Now by Poincaré duality for
open and oriented manifolds it follows easily that this pairing is well defined
and non degenerate. So we can conclude that, if for each i = 0, ..., dimM
im(H i

c(M) → H i
dR(M)) is finite dimesional, then 3.49 induces an isomor-

phism between im(H i
c(M) → H i

dR(M)) and im(Hn−i
c (M) → Hn−i

dR (M))∗.
Moreover it is clear that when dimM = 4n then, for i = 2n, (3.49) is a
symmetric bilinear form. This implies that when dimM = 4n it is possible
to define a signature on M , which is topological by de Rham isomorphism
theorem, taking the signature of the pairing (3.49) for i = 2n. This leads us
to state the next proposition:
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Proposition 3.31. Let (M, g) be an open, oriented and incomplete
riemannian manifold of dimension 4n. If (M, g) admits the L2 signature
σ2(M, g) of definition 3.30 then it admits also a topological signature de-
fined as the signature of the pairing (3.49) on im(H2n

c (M)→ H2n
dR(M)).

Proof. If M admits the signature σ2(M, g) then, by definition 3.30,

we know that H
2n
2,m→M (M, g) is finite dimensional. Now, by corollary 3.24,

we know that also im(H2n
c (M)→ H2n(M)) is finite dimensional and so the

pairing 3.49 admits a signature. �

Moreover in the next section we will see that, on a class of open, incom-
plete and oriented riemannian manifold, the L2 signature of definition 3.30
has a topological meaning.

5. Application to stratified pseudomanifolds

The aim of this section is to exhibit some applications of the previous
results to stratified pseudomanifolds and intersection cohomology.

Proposition 3.32. Let X be a compact and oriented smoothly stratified
pseudomanifold of dimension n with a Thom-Mather stratification X. Let g
be a quasi edge metric with weights on reg(X). Then

H i
2,m→M (reg(X), g), i = 0, ..., n

is a finite sequence of finite dimensional vector spaces with Poincaré dual-
ity. Moreover proposition 3.17 and proposition 3.18 apply to this kind of
riemannian manifolds.

Proof. By theorem 2.12 we know that both cohomology groups

H i
2,max(reg(X), g) and H i

2,min(reg(X), g)

are finite dimensional. This implies that in the following sequence

H i
2,m→M (reg(X), g), i = 0, ..., n

each vector space is finite dimensional. In this way we are in position to
apply theorem 3.14, proposition 3.17, proposition 3.18 and therefore the
thesis follows. �

Now consider two general perversities p, q such that q ≤ p. Then the
complex associated to q is a subcomplex of that associated to p and therefore
the inclusion i induces a maps between the intersection cohomology groups
IqH i(X,R0) and IpH i(X,R0) that we call i∗. In analogy to the previous
section we define for each j = 0, ..., n

Iq→pHj(X,R0) := im(IqHj(X,R0)
i∗−→ IpHj(X,R0)) (3.50)

and

Iq→pχ(X,R0) :=

n∑

i=0

(−1)idim(Iq→pHj(X,R0)) (3.51)

Now we are ready to state the following proposition:
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Proposition 3.33. Let X be a compact and oriented smoothly stratified
pseudomanifold of dimension n with a Thom-Mather stratification X. Let

p : {Singular Strata of X} → N

a general perversity such that

p(Y ) = −1

for each stratum Y of X with cod(Y ) = 1. Suppose that, if we call q its
dual, then we have

p ≤ q.
Then

Iq→pHj(X,R0), j = 0, ..., n

is a finite sequence of finite dimensional vector spaces with Poincaré duality.
Analogously if

p(Y ) = 0

for each stratum Y of X with cod(Y ) = 1 and

p ≥ q
where q denote again the dual perversity of p, then

Ip→qHj(X,R0), j = 0, ..., n

is again a finite sequence of finite dimensional vector spaces with Poincaré
duality.

Proof. We know that p ≤ q. This means that for each singular stratum
of codimension i we have p ≤ i− 2− p that is p ≤ i−2

2 . But p takes values

in N and therefore p ≤ i−2
2 if and only if p ≤ [ i−2

2 ] that is p ≤ m . This
implies that p satisfies the assumptions of theorem 2.13 that is there exist
a quasi edge metric g on reg(X) such that pg = p. In this way we can use
proposition 3.32 to get the conclusion.
In the same way if p ≥ q then we get p ≥ m . So we can use again theorem
2.13 and proposition 3.32 to get the assertion. �

We have the following four immediate corollaries:

Corollary 3.34. In the hypothesis of proposition 3.33, if n is odd then

Iq→pχ(X,R0) = 0 (3.52)

If n is even then

Iq→pχ(X,R0) = 2dim(Iq→pH0(X,R0)) + dim(Iq→pH
n
2 (X,R0)) (3.53)

when n
2 is still even while if n

2 is odd then

Iq→pχ(X,R0) = 2dim(Iq→pH0(X,R0))− dim(Iq→pH
n
2 (X,R0)) (3.54)

Corollary 3.35. In the same hypothesis of proposition 3.33 suppose
that one of the two following properties is satisfied

(1) i∗j : IqHj(X,R0) −→ IpHj(X,R0) is injective,

(2) i∗j : IqHj(X,R0) −→ IpHj(X,R0) is surjective.
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Then

IqHj(X,R0), IpHj(X,R0) j = 0, ..., n (3.55)

are a finite sequences of finite dimensional vector spaces with Poincaré du-
ality.

Corollary 3.36. In the hypothesis of proposition 3.33 we have the fol-
lowing inequalities:

dim(im(Hj
c (reg(X))

i∗−→ Hj
dR(reg(X)))) ≤ dimIpHj(X,R0) (3.56)

dim(im(Hj
c (reg(X))

i∗−→ Hj
dR(reg(X)))) ≤ dimIqHj(X,R0). (3.57)

Moreover if on reg(X) we have that im(Hj
c (reg(X))

i∗j−→ Hj
dR(reg(X))) is

not trivial for some j then on X IpHj(X,R0) and IqHj(X,R0) are always
non trivial for each general perversity p such that p ≤ m or p ≥ m. Finally,
if on reg(X) we have that H i

c(reg(X))→ H i
dR(reg(X)) is injective, then we

can improve the inequalities (3.56) and (3.57) in the following way:

dim(Hj
c (reg(X))) ≤ dimIpHj(X,R0) (3.58)

dim(Hj
c (reg(X))) ≤ dimIqHj(X,R0) (3.59)

bn−j(reg(X)) ≤ dimIpHn−j(X,R0) (3.60)

bn−j(reg(X)) ≤ dimIqHn−j(X,R0) (3.61)

Proof. All the previous inequalities from (3.56) to (3.59) are imme-
diate consequences of the previous results. For the last two inequalities

we observe that by Poincaré duality, we know that dim(Hj
c (reg(X))) =

dim(Hn−j
dR (reg(X))) = bn−j(reg(X)). Moreover, from theorem 3.14, we

know that

Hj
2,m→M (reg(X), g) ∼= Hn−j

2,m→M (reg(X), g).

Therefore using corollary 3.24 we get

bn−j(reg(X)) ≤ dim(Hn−j
2,m→M (reg(X), g)) ≤ dim(Hn−j

2,max(reg(X), g)) =

= dim(IqHn−j(X,R0)),

bn−j(reg(X)) ≤ dim(Hn−j
2,m→M (reg(X), g)) ≤ dim(Hn−j

2,min(reg(X), g)) =

= dim(IpHn−j(X,R0))

and so the statement follows. �

Gluing together some of the previous results, now we can state the
main result of this section. The first part is a Hodge theorem for
im(IqgH i(X,R0) → IpgH i(X,R0)), that is we will show the existence of a
self-adjoint extension of ∆i : Ωi

c(reg(X))→ Ωi
c(reg(X)) having the nullspace

isomorphic to im(IqgH i(X,R0)→ IpgH i(X,R0)). In the second part we will
show that (d + δ)ev, that is the Gauss-Bonnet operator having as domain
the space of the smooth forms of even degree with compact support, admits
a Fredholm extension such that its index has a topological meaning.
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Theorem 3.37. In the same hypothesis or theorem 2.12; Let ∆m,i and
(dm + d∗m)ev be the operators, as defined respectively in corollary 3.16 and
proposition 3.19, associated to the riemannian manifold (reg(X), g). Then
we have the following results:

Ker(∆m,i) ∼= im(IqgH i(X,R0)→ IpgH i(X,R0)) (3.62)

ind((dm + d∗m)ev) = Ipg→qgχ(X,R0). (3.63)

Proof. (3.62) follows by theorem 2.12 and corollary 3.16; analogously
(3.63) follows from theorem 2.12 and from proposition 3.19. �

Now suppose that dimX = 4n where X is as in proposition 3.33. Let g
be a quasi edge metric with weights on reg(X). Then, by theorem 2.12, it
follows that (L2Ωi(Reg(X), g), dmax/min,i) are Fredholm complexes and so

(Reg(X), g) admits the L2 signature σ2(reg(X), g) as defined in definition
3.30. Moreover, using again theorem 2.12, it follows that in this case the
L2 signature σ2(reg(X), g) is just the analytic version of the perverse
signature introduced by Hunsicker in [44] in the case of depth(X) = 1 and
reintroduced in a purely topological way and generalized to any compact
topological pseudomanifolds by Friedman and Hunsicker in [34]. In other
words, if pg is the general perversity of definition 1.34 and qg it is its dual,
then

σ2(reg(X), g) = σqg→pg(X) (3.64)

and we provided an analytic way to construct σqg→pg(X) when X is a
smoothly stratified pseudomanifold with a Thom-Mather stratification wich
generalize the construction given by Hunsicker in [44] in the particular case
of depth(X) = 1. (For the definition of σqg→pg(X) see [34] pag. 15).
We have the following corollaries:

Corollary 3.38. Let X be as in theorem 2.12 and let g and h two quasi
edge metrics with weights on reg(X). If pg = ph then

σ2(reg(X), g) = σ2(reg(X), h).

Proof. It follows immediately from theorem 2.12. �

Corollary 3.39. Let X and X ′ be as in theorem 2.12. Let g and h two
a quasi edge metric with weights respectively on reg(X) and reg(X ′). Let
f : X → X ′ be a stratum preserving homotopy equivalence which preserves
also the orientations of X and X ′, see [47] pag 62 for the definition. Suppose
that both pg and ph depend only on the codimension of the strata and that
pg = ph. Then

σ2(reg(X), g) = σ2(reg(X ′), h).

Proof. As remarked above, by theorem 2.12, it follows that σ2(reg(X), g)
is the perverse signature of Friedman and Hunsicker associated to the gen-
eral perversities pg and t − pg. Analogously σ2(reg(X ′), h) is the perverse
signature of Friedman and Hunsicker associated to the general perversities
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ph and t−ph. So the statement follows by the invariance of the perverse sig-
nature under the action of stratum preserving homotopy equivalences which
preserve also the orientations. �

6. Manifolds without finite L2 cohomology groups

In this section we exhibit some example of manifolds which satisfy the
assumptions of corollary 3.27 and that therefore they do not admit any rie-
mannian metric with finite L2 cohomology groups (reduced ore not.) Finally
in the last part we show some other applications to stratified pseudomani-
folds. We start with the following definition:

Definition 3.40. Let M be a smooth manifold and let A ⊂M .

(1) We will say that A is bounded if its closure, A, is compact.
(2) We will say that M has only one end if for each compact subset

K ⊂M M −K has only one unbounded connected component.
(3) We will say that M has k ends (where k ≥ 2) if there is a compact

set K0 ⊂ M such that for every compact set K ⊂ M containing
K0, M −K has exactly k unbounded connected components.

The following proposition is a modified version of lemma 2.3 in [22]:

Proposition 3.41. Let M be a manifold with only one end. Then the
natural map

H1
c (M)→ H1

dR(M)

is injective.

Proof. Let α ∈ Ω1
c(M) closed and let f : M → R be a smooth function

such that df = α. This implies the existance of a costant c such that
f |M−supp(α) = c. Therefore, by the fact that M has only one end, it follows
that f − c has compact support. �

Now using Poincaré duality for open and oriented manifolds we know
that the de Rham cohomology with compact support is infinite dimensional
if and only if the de Rham cohomology is infinite dimensional. From this it
follows that if M is a smooth and oriented manifold with only one end and
such that H1

dR(M) is infinite dimensional then also im(H i
c(M)→ H i

dR(M))
is infinite dimensional. So we can state the following proposition:

Proposition 3.42. Let M be an open and oriented surface with infi-
nite genus and with only one end. Then im(H i

c(M) → H i
dR(M)) is infinite

dimensional and therefore M does not admit a riemannian metric g (com-
plete or incomplete) such that g implies one of the properties listed in the
corollary 3.27.

The rest of this subsection is devoted to show another example of an open
manifold which satisfies corollary 3.27 but that it is not contemplate in the
previous proposition. To do this we state the following lemma which gives
another sufficient condition to have im(H i

c → HdR(M)) infinite dimensional
for some i.

Lemma 3.43. Let M be an open and oriented smooth manifold of di-
mension n. Let {Aj}j∈J a sequence of open subset such that
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(1) ∂Aj is smooth for each j.
(2) limj→∞ dim(im(H i

c(Aj)→ H i
dR(Aj))) =∞.

Then for the same i im(H i
c(M)→ H i

dR(M)) is infinite dimensional.

Proof. It is an immediate consequence of the next proposition. �

Proposition 3.44. Let M be an open and oriented smooth manifold of
dimension n. Let A ⊂M an open subset with smooth boundary. Then there
a natural injective maps

im(Hn−i
c (A)→ Hn−i

dR (A)) −→ (im(H i
c(M)→ H i

dR(M))∗

Proof. Consider the following pairing:

im(H i
c(M)→ H i

dR(M))× im(Hn−i
c (A)→ Hn−i

dR (A)) −→ R, (3.65)

([η], [ω]) 7→
∫

M
η ∧ ω

where ω is a i−form closed with compact support in M and η is a closed
(n− i)−form with compact support in A. As observed at the end of subsec-
tion 2.3 this pairing makes sense because a cohomology class in im(H i

c(M)→
H i
dR(M)), or in im(H i

c(A)→ H i
dR(A)), is just a cohomology class inH i

dR(M),
or in H i

dR(A), such that it admits a representative with compact support re-
spectively in M or A. Moreover from Poincaré duality for open and oriented
manifold it follows immediately that this pairing is well defined. Now let
[ω] ∈ im(Hn−i

c (A) → Hn−i
dR (A)) such that for each class [η] ∈ im(H i

c(M) →
H i
dR(M)) the pairing (3.65) is zero. This implies that for each smooth and

closed i forms φ with compact support in M we have
∫

M
φ ∧ ω = 0.

In particular this is true for each smooth and closed i forms φ with compact
support in A and therefore, using again the Poincaré duality for open and
oriented manifold, we get that there exists β ∈ Ωn−i−1(A) such that dβ = ω.
So we can conclude that [ω] = 0 in im(H i

c(A) → H i
dR(A)) and this implies

the statement. �

Using the previous lemma we have the following corollary that was sug-
gested to the author by Pierre Albin:

Corollary 3.45. Let M be an open and oriented surface obtained gluing
an infinite but countable family of tori. Suppose that M has a finite number
of ends. Then im(H i

c(M)→ H1
dR(M)) is infinite dimensional and therefore

M does not admit a riemannian metric g such that g implies one of the
properties listed in the corollary 3.27.

Proof. The idea is to show that this is a situation in which the previous
lemma applies. By the assumptions for each j ∈ N big enough, we can find
an open subset Aj with the following properties:

(1) M −Aj is disconnected, made of k unbounded components, where
k is the number of ends of M .

(2) ∂Aj is smooth, and made of k compact connected components.
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2,m→M (M, g): POINCARÉ DUALITY AND HODGE THEOREM.

(3) By the compactness of ∂Aj it follows that each of its connected
components is a compact smooth one dimensional manifold and
therefore it is diffeomorphic to S1. So we can glue to Aj k copies of

B, the unit ball in R2 with boundary, to get a closed and oriented
surfaces Σj of genus j.

Now, recalling that 2−2j = χ(Σj) = b0(Σj)− b1(Σj)+ b2(Σj) and using the
Mayer-Vietoris sequence, it is not hard to see that dim(H1(Aj)) ≥ 2j − k
where k is the number of ends of M and therefore it is fixed. By the
assumptions this implies that on M we can find a sequence of open subsets
Aj such that

lim
j→∞

dim(H1
dR(Aj)) =∞. (3.66)

Now recall the fact that, on a compact and oriented manifold with boundary
M , we have H i(M,∂M) ∼= H i

c(M) where M is the interior of M . So,
from the long exact sequence for the relative de Rham cohomology on a
compact manifold with boundary, it is easy to show that dim(H1(Aj)) =
dim(im(H1

c (Aj) → H1
dR(Aj))) + λAj where λAj ∈ {0, ..., k}. This means

that the correction term λAj could depends from Aj but in any case it
lies in {0, ..., k} which is a bounded set being k fixed. Therefore, from this
equality and from (3.66), it follows that if we take a sequence of open subsets
{Aj} such that each Aj satisfies the properties listed above then

lim
j→∞

dim(im(H1
c (Aj)→ H1

dR(Aj))) =∞.

This implies that we can apply lemma 3.43 and therefore the statement
follows. �

Finally, using the notions introduced in definition 3.40 and proposition
3.41, we conclude the section giving another application to the stratified
pseudomanifolds and intersection cohomology.

Proposition 3.46. Let X be as in theorem 2.12. Suppose that X is
normal, that is for each p ∈ sing(X) there exists an open neighbourhood U
such that U − (U ∩ sing(X)) is connected. Then, if sing(X) is connected,
reg(X) is an open manifold with only one end.

Proof. Let K ⊂ reg(X) a compact subset. If reg(X)−K is connected
then we have nothing to show. Suppose therefore that it is disconnected
and let A1, ..., Al the connected components. By the fact that X is normal
it follows that there exists an open neighbourhood sing(X) ⊂ V ⊂ X such
that V − sing(X) is connected. By the fact that K ⊂ reg(X) it follows
that V = ∪li=1(Ai∩V ) and from this equality it follows that V −sing(X) =
∪li=1(Ai∩ (V −sing(X)). Every subset Ai∩ (V −sing(X)) is an open subset
of V − sing(X) and for each i, j ∈ {1, ..., l} we have (Ai ∩ (V − sing(X)))∩
(Aj ∩ (V − sing(X))) = ∅. So the fact that V − sing(X) is connected,

joined with the fact that V − sing(X) = ∪li=1(Ai ∩ (V − sing(X)), implies
that there exists just one index in {1, ..., l}, which we label γ, such that
Aγ ∩ (V − sing(X)) 6= ∅. So we can conclude that

(1) V − sing(X) ⊂ Aγ .
(2) Aγ ∪ sing(X) is open in X.



7. SOME APPLICATION TO THE FRIEDRICHS EXTENSION 85

This implies that if we label K the closure in X of

(
l⋃

i=1,i 6=γ
Ai) ∪K

then we have

K ⊆ X − (Aγ ∪ sing(X)} (3.67)

and therefore K is a compact subset of X. But from (3.67) it follows that
K ⊂ reg(X) and therefore it is a compact subset of reg(X). This allow us
to conclude that for each i ∈ {1, ..., l}, i 6= γ we have that Ai is a compact
subset of reg(X) and so we got the statement. �

We have the following corollary:

Corollary 3.47. Let X be as in theorem 2.12 such that X is normal
and sing(X) is connected. Let p be a general perversity as in the statement
of theorem 2.13 and let q be its dual. Then we have the following inequalities:

(1) dim(H1
c (reg(X))) ≤ Ipb1(X,R0), dim(H1

c (reg(X))) ≤ Iqb1(X,R0)
(2) bn−1(reg(X)) ≤ Ipbn−1(X,R0), bn−1(reg(X)) ≤ Iqbn−1(X,R0)

where Ipbi(X,R0) is the dimension of IpH i(X,R0) and Iqbi(X,R0) is
the dimension of IqH i(X,R0). Finally if dimX = 2 and cod(sing(X)) = 0
then

Imχ(X) ≤ χ(reg(X)) (3.68)

where Imχ(X) =
∑2

i=0(−1)iImbi(X).

Proof. From proposition 3.46 we know that reg(X) has only one end.
Therefore from proposition 3.40 it follows that the maps H1

c (M)→ H1
dR(M)

is injective and so the thesis follows by corollary 3.36. Before to prove the
second part of the corollary we do the following observation: by the as-
sumption it follows that H1

c (reg(X)) is finite dimensional; using Poincaré
duality for open and oriented manifolds this implies that bi(reg(X)) is fi-
nite dimensional for each i = 0, ..., 2 and therefore χ(reg(X)) makes sense.
Now by the assumptions on X it follows that sing(X) = {p} and X is a
Witt space (For the definition of Witt space see for example [47] pag 75).
It is well known that, over a Witt space, the intersection cohomology as-
sociated to the lower middle perversity satisfies has the Poincaré duality,
that is we have ImH i(X) ∼= ImH2−i(X). Poincaré duality for open and ori-
ented manifolds implies that b2(reg(X)) = dim(H0

c (reg(X))) = 0. So, using
the previous statements of this corollary, we have Imχ(X) = −Imb1(X) ≤
−b1(reg(X)) ≤ 1− b1(reg(X)) = χ(reg(X)). �

7. Some application to the Friedrichs extension

This last section is devote to show some properties of the Friedrichs
extension of ∆i : Ωi

c(M)→ Ωi
c(M).

The main result is to show that if (M, g) is an open and oriented riemannian
manifold such that (L2Ω∗(M, g), dmax/min,∗) are Fredholm complexes then,

for each i = 0, ..., dimM , the Friedrichs extension of ∆i : Ωi
c(M)→ Ωi

c(M) is
a Fredholm operator. In particular this applies when M is the regular part
of a compact and smoothly stratified pseudomanifold with a Thom-Mather
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stratification and g is a quasi edge metric with weights on reg(X). We start
recalling the definition of the Friedrichs extension:

Definition 3.48. Let H be an Hilbert space and B : H → H a densely
defined operator. Suppose that B is positive, that is for each u ∈ D(B) we
have < Bu, u >≥ 0. The Friedrichs extension of B, usually labeled BF , is
the operator defined in the following way:

D(BF ) = {u ∈ D(B∗) : there exists {un} ⊂ D(B) such that

< u− un, u− un >→ 0 and

< B(un − um), un − um >→ 0 for n,m→∞}; we put BF (u) = B∗(u).

Proposition 3.49. In the same assumptions of the previous definition
BF is a positive self-adjoint extension of B.

Proof. See [53] appendix C. �

Lemma 3.50. Let Aj : Hj → Hj, j = 1, 2, be two positive and densely
defined operators. Then on H1⊕H2, with the natural Hilbert space structure
of a direct sum, we have

(A1 ⊕A2)F = AF1 ⊕AF2 .
Proof. It follows from the assumptions of the lemma that A1 ⊕ A1 :

H1 ⊕H2 → H1 ⊕H2 is densely defined and positive. Moreover it clear that
(A1 ⊕A2)∗ = A∗1 ⊕A∗2.
Now let (a, b) ∈ D((A1⊕A2)F ). From definition 3.48 it follows that (a, b) ∈
D((A1 ⊕ A2)∗) and there exists a sequence {(an, bn)} ⊂ D(A1 ⊕ A2) such
that:

(an, bn)→ (a, b) and < A⊕B((an, bn)−(am, bm)), (an, bn)−(am, bm) >→ 0.

Furthermore from the same definition we know that (A1 ⊕ A2)F (a, b) =
(A1 ⊕ A2)∗(a, b). But from these requirements it follows immediately that
a ∈ D(A∗1), b ∈ D(A∗2), {an} ⊂ D(A1), {bn} ⊂ D(A2), an → a, < A1(an −
am), an−am >→ 0 and analogously that bn → b and that < A2(bn−bm), bn−
bm >→ 0. So it follows that a ∈ D(AF1 ), b ∈ D(AF2 ) and (A1⊕A2)F (a, b) =
AF1 (a) ⊕ AF2 (b). In this way we know that AF1 ⊕ AF2 is an extension of
(A1 ⊕ A2)F . Moreover it is clear that also AF1 ⊕ AF2 it is a self-adjoint
operator because it is a direct sum of two self-adjoint operators acting on H1

and H2 respectively. Finally, by the fact that both AF1 ⊕AF2 and (A1⊕A2)F

are self-adjoint operators, it follows that AF1 ⊕AF2 = (A1 ⊕A2)F . �

Remark 3.5. It clear that the previous proposition generalizes to the
case of a finite sum, that is if we have Aj : Hj → Hj j = 1, ..., n such that
for each j Aj is positive and densely defined then:

(A1⊕...⊕An)F :

n⊕

j=1

Hj →
n⊕

j=1

Hj = AF1 ⊕...⊕AFn :

n⊕

j=1

Hj →
n⊕

j=1

Hj (3.69)

Lemma 3.51. Let E,F be two vector bundles over an open, incomplete
and oriented riemannian manifold (M, g). Let g and h be two metrics on
E and F respectively. Let d : C∞c (M,E) → C∞c (M,F ) an unbounded an
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densely defined differential operator. Let dt : C∞c (M,F ) → C∞c (M,E) its
formal adjoint. Then for dt ◦ d : L2(M,E)→ L2(M,E) we have:

(dt ◦ d)F = dmax ◦ dmin.
Proof. See [17], lemma 3.1 pag. 447. �
From lemma 3.51 we get, as it is showed in [17] pag. 448, the following

useful corollary:

Corollary 3.52. Let (M, g) be an open, oriented and incomplete rie-
mannian manifold of dimension n. Consider the Laplacian acting on the
space of smooth forms with compact support:

∆ :
n⊕

i=0

Ωi
c(M) −→

n⊕

i=0

Ωi
c(M).

Then for

∆F :

n⊕

i=0

L2Ωi(M, g) −→
n⊕

i=0

L2Ωi(M, g)

we have

∆F = (d+ δ)max ◦ (d+ δ)min.

Now we are in positions to state the following result:

Theorem 3.53. Let (M, g) be an open, oriented and incomplete rie-
mannian manifold of dimension n. Then for each i = 0, ..., n we have the
following properties:

(1) Ker(∆Fi ) = Himin(M, g) = Ker(∆min,i), ran(∆Fi ) = ran(∆max,i).

(2) If H
i
2,m→M (M, g) is finite dimensional then Ker(∆Fi ) is finite di-

mensional.
(3) If (L2Ω∗(M, g), dmax,∗) is a Fredholm complex, or equivalently if

(L2Ω∗(M, g), dmin,∗) is a Fredholm complex, then for each i ∆Fi is
a Fredholm operator on its domain endowed with graph norm and
ran(∆Fi ) = ran(∆max,i).

Proof. In the first point the equality Himin(M, g) = Ker(∆min,i) is
showed in [6] prop. 5. For the other equality, from lemma 3.50 and corollary
3.52, we know that

(d+ δ)max ◦ (d+ δ)min = ∆F = ⊕ni=0∆Fi
and therefore

Ker((d+ δ)max ◦ (d+ δ)min) = Ker(⊕ni=0∆Fi ) = ⊕ni=0Ker(∆
F
i ).

But for Ker((d+ δ)max ◦ (d+ δ)min) we have:

Ker((d+ δ)max ◦ (d+ δ)min) = Ker(d+ δ)min) = Ker(dmin)∩Ker(δmin) =

=

n⊕

i=0

Ker(dmin,i) ∩Ker(δmin,i−1).

The first equality follows by the fact that for each

η ∈ D((d+ δ)max ◦ (d+ δ)min) < ((d+ δ)max ◦ (d+ δ)min)(η), η >L2Ω(M,g)=
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=< (d+ δ)min)(η), (d+ δ)min)(η) >L2Ω(M,g) .

For the second equality it is clear that Ker(d + δ)min) ⊆ Ker(dmin) ∩
Ker(δmin). But Ker(dmin) ∩ Ker(δmin) = (ran(dmax) + ran(δmax))⊥ and

Ker(d+δ)min) = (ran((d+ δ)max))⊥. By the fact that (ran((d+ δ)max)) ⊆
(ran(dmax) + ran(δmax)) it follows that Ker(dmin)∩Ker(δmin) ⊆ Ker((d+
δ)min) and so we have obtained the second equality. The last equality follows

because (ran(dmax) + ran(δmax)) = ⊕ni=0(ran(dmax,i−1) + ran(δmax,i)) that
is

(Ker(dmin) ∩Ker(δmin))⊥ =
n⊕

i=0

(Ker(dmin,i) ∩Ker(δmin,i−1))⊥

and both Ker(dmin) ∩Ker(δmin) and ⊕ni=0Ker(dmin,i) ∩Ker(δmin,i−1) are
closed.
In this way can conclude that

n⊕

i=0

Ker(∆Fi ) =

n⊕

i=0

Himin(M, g)

and therefore that

Himin(M, g) = Ker(∆Fi ).

Finally, using the fact that ∆Fi is self-adjoint and that ∆min,i = (∆max,i)
∗

it follows that

ran(∆Fi ) = ran(∆max,i).

For the second point, if we call πabs,i : L2Ωi(M, g) → Hiabs(M, g) the pro-

jection on Hiabs(M, g), we know that πabs,i(Hirel) ∼= H
i
2,m→M (M, g). This

property is showed in a more general context in the proof of theorem 3.5 and
remarked in remark 3.1. But Himin(M, g) = Ker(dmin,i) ∩Ker(δmin,i−1) =
Hiabs(M, g) ∩ Hirel(M, g). So Himin(M, g) ⊆ πabs,i(Hirel(M, g)) and therefore
the second statement follows.
Now consider the third point; we want to show that if (L2Ω∗(M, g), dmax,∗)
is a Fredholm complex then also (d+ δ)max ◦ (d+ δ)min : ⊕ni=0L

2Ωi(M, g)→
⊕ni=0L

2Ωi(M, g) is a Fredholm operator. By the previous point, we already
know that the nullspace of (d+ δ)max ◦ (d+ δ)min is finite dimensional. So
we have to show that its range it is closed with finite dimensional orthog-
onal complement. To do this is equivalent to show that the cokernel of
(d + δ)max ◦ (d + δ)min is finite dimensional. We will do this showing that
ran((d + δ)max ◦ (d + δ)min) = ran((d + δ)max) and that (d + δ)max has
finite dimensional cokernel. To do this we observe that, by the fact that
(d+ δ)∗min = (d+ δ)max, it follows that

ran((d+ δ)max) = (3.70)

= {(d+ δ)max(u) : u ∈ ran((d+ δ)min) ∩ D((d+ δ)max)}.
Now, as we showed in corollary 6 of [6], if (L2Ω∗(M, g), dmax,∗) is a Fred-
holm complex then dmax + δmin is a Fredholm operator. But the fact that
ran(dmax + δmin) ⊂ ran((d+ δ)max) implies that there is a surjective map

(⊕ni=0L
2Ωi(M, g))

ran((d+ δ)max)
−→ (⊕ni=0L

2Ωi(M, g))

ran(dmax + δmin)
.
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So (d+δ)max on its domain with the graph norm is a bounded linear operator
with finite dimensional cokernel and this implies that the range of (d+δ)max
is closed with finite dimensional orthogonal complement. But ((d+δ)max)∗ =
(d+ δ)min and therefore also (d+ δ)min has closed range. In this way (3.70)
becomes:

ran((d+ δ)max) = {(d+ δ)max(u) : u ∈ ran((d+ δ)min) ∩ D((d+ δ)max)}.
So we can conclude that ran((d+ δ)max ◦ (d+ δ)min) = ran((d+ δ)max)

and therefore (d+ δ)max ◦ (d+ δ)min is a Fredholm operator.
Now, by the equality (d + δ)max ◦ (d + δ)min = ⊕ni=0∆Fi , we get, for each
i = 0, ..., n, that also ∆Fi has closed range. Moreover we already know that
its nullspace of ∆Fi is finite dimensional and so, because it is self-adjoint
and with closed range, we can conclude that it is Fredholm. Finally, as
we showed in [6] corollary 6, we know that ∆max,i has finite dimensional
cokernel and so we can conclude that ran(∆max,i) = ran(∆Fi ). �

As mentioned at the beginning of the section the following corollary is an
application of the previous theorem; it already known when X is a compact
manifold with isolated singularities for any positive conic operator (see [51])
and also for ∆Fi when (M, g) is a manifold with incomplete edges, see [54].

Corollary 3.54. Let X be a compact smoothly and oriented stratified
pseudomanifold of dimension n with a Thom Mather stratification. Let g
be a quasi-edge metric with weights on reg(X). Then on L2Ωi(reg(X), g),
for each i = 0, ..., n, ∆Fi is a Fredholm operator; moreover ran(∆Fi ) =
ran(∆max,i) and Ker(∆Fi ) = Ker(∆min,i) = Himin(M, g).

8. Additional remarks

Consider again an open, oriented and incomplete riemannian mani-
fold (M, g) of dimension n. By corollary 3.24 we now that that there is

a copy of im(H
i
2,min(M, g) → H

i
2,max(M, g)) in each i − th reduced co-

homology group H
i
2,D∗(M, g) of each closed extension (L2Ω∗(M, g), D∗) of

(Ω∗c(M), d∗). In the same way, using again corollary 3.24, we know that there
is a copy of im(H i

2,min(M, g) → H i
2,max(M, g)) in each i − th cohomology

group H i
2,D∗(M, g) of each closed extension (L2Ω∗(M, g), D∗) of (Ω∗c(M), d∗).

In particular, by theorem 3.15, we know that when dmin,i has closed range
for each i then the groups im(H i

2,min(M, g)→ H i
2,max(M, g)) are really the

cohomology groups of an Hilbert complex that we labeled (L2Ωi(M, g), dm,i).
Therefore we can look at im(H i

2,min(M, g)→ H i
2,max(M, g)) as the smallest

possible L2−cohomology groups for (M, g).
From the Hodge point of view the smallest Hodge cohomology groups are
Himin(M, g) defined, for each i = 0, ..., n, as Ker(dmin,i) ∩Ker(δmin,i−1) or
equivalently, see proposition 1.9, as the nullspace of ∆min,i, where ∆min,i is
the minimal closed extension of ∆i : Ωi

c(M)→ Ωi
c(M). Therefore a natural

question is:

• Is there any relations between

Himin(M, g) and im(H
i
2,min(M, g)→ H

i
2,max(M, g))
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or between

Himin(M, g) and im(H i
2,min(M, g)→ H i

2,max(M, g))?

In [45] theorem 4.8, using techniques arising from Mazzeo’s edge calculus,
the author showed that if (M, g) is an incomplete manifold with edge then
we have the following isomorphism:

Himin(M, g) ∼= im(H i
2,min(M, g)→ H i

2,max(M, g)). (3.71)

Therefore, using corollary 3.16 and theorem 3.53, we get the following im-
mediate consequences:

Corollary 3.55. Let (M, g) be an incomplete manifold with edge. Then,
for each i = 0, ..., n

(1) Ker(∆m,i) = Ker(∆min,i) = Ker(∆Fi )
(2) ran(∆m,i) = ran(∆max,i) = ran(∆Fi )

Finally we conclude the section showing that the isomorphism (3.71)
is equivalent to require that the Hilbert space L2Ωi(M, g) satisfies some
geometric properties.

Proposition 3.56. Let (M, g) an open oriented and incomplete rie-

mannian manifold. Suppose that, for each i = 0, ..., n, im(H
i
2,min(M, g) →

H
i
2,max(M, g)) is finite dimensional. Then there exists alway an injective

map

Himin(M, g)→ im(H
i
2,min(M, g)→ H

i
2,max(M, g)).

Moreover the following properties are equivalent:

(1) Himin(M, g) ∼= im(H
i
2,min(M, g)→ H

i
2,max(M, g))

(2) Hiabs(M, g) = Himin(M, g)⊕ (ran(δmax,i) ∩Hiabs(M, g))
(3) Let πabs/rel/min,i : L2Ωi(M, g)→ Hiabs/rel/min(M, g) be the orthogo-

nal projections of L2Ωi(M, g) respectively on Hiabs(M, g), Hirel(M, g)
and Himin(M, g). Then:
πrel,i ◦ πabs,i = πmin,i = πabs,i ◦ πrel,i.

(4) Hirel(M, g) = Himin(M, g)⊕ (ran(dmax,i) ∩Hirel(M, g))

(5) ran(dmax,i) = (ran(dmax,i)∩Hirel(M, g))⊕ran(dmin,i)⊕(ran(dmax,i)∩
ran(δmax,i))

Finally, if (L2Ωi(M, g), dmax,i) or equivalently (L2Ωi(M, g), dmin,i) is a Fred-
holm complex then there exists always an injective map

Himin(M, g)→ im(H i
2,min(M, g)→ H i

2,max(M, g)).

Moreover the previous four equivalent conditions become:

(1) Himin(M, g) ∼= im(H i
2,min(M, g)→ H i

2,max(M, g))

(2) Hiabs(M, g) = Himin(M, g)⊕ (ran(δmax,i) ∩Hiabs(M, g))
(3) Let πabs/rel/min,i : L2Ωi(M, g)→ Hiabs/rel/min(M, g) be the orthogo-

nal projections of L2Ωi(M, g) respectively on Hiabs(M, g), Hirel(M, g)
and Himin(M, g). Then:
πrel,i ◦ πabs,i = πmin,i = πabs,i ◦ πrel,i.

(4) Hirel(M, g) = Himin(M, g)⊕ (ran(dmax,i) ∩Hirel(M, g))
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(5) ran(dmax,i) = (ran(dmax,i)∩Hirel(M, g))⊕ran(dmin,i)⊕(ran(dmax,i)∩
ran(δmax,i))

Proof. Clearly it is enough to prove just the first part of the proposi-
tion. The second part follows by the first part of the proposition and by the
fact that if (L2Ωi(M, g), dmax/min,i) is a Fredholm complex then dmax/min,i
has closed range. Let π1,i : Hirel(M, g) → Hiabs(M, g), π4,i : Hiabs(M, g) →
Hirel(M, g) as defined in the proof of theorem 3.5. Moreover, by proposi-
tion 3.7, we know that (π1,i)

∗ = π4,i and analogously (π1,i)
∗ = π4,i. By the

proof of theorem 3.5 we know that π1,i(Hirel(M, g)) ∼= im(H
i
2,min(M, g) →

H
i
2,max(M, g)). Clearly, by the fact that

Himin(M, g) = Hiabs(M, g) ∩Hirel(M, g)

it follows that Himin(M, g) ⊂ π1,i(Hirel(M, g)) and so we got the first asser-
tion.
Now we pass to show that 1) ⇒ 2). As recalled above we know that

π1,i(Hirel(M, g)) ∼= im(H
i
2,min(M, g)→ H

i
2,max(M, g)) and thatHimin(M, g) =

Hiabs(M, g) ∩ Hirel(M, g); therefore using 1) it follows that Himin(M, g) =
π1,i(Hirel(M, g)). This implies that

(Himin(M, g))⊥ ∩Hiabs(M, g) = (π1,i(Hirel(M, g)))⊥ ∩Hiabs(M, g) =

= Ker(π4,i) = (ran(δmax,i) ∩Hiabs(M, g))

and this complete the proof of the first implication.
Now suppose that 2) is satisfied. Then it is immediate that πrel,i ◦ πabs,i =
πmin,i and therefore it is an easy consequence that also πabs,i ◦ πrel,i =
πmin,i. Moreover it is still immediate that 3) ⇒ 4) because in this case
π4,i(Hiabs(M, g)) = Himin(M, g). Now we want to show that 4)⇒ 5). Clearly

Himin(M, g) is orthogonal to ran(δmax,i) and to ran(dmax,i). This implies

that the range of the orthogonal projection of ran(dmax,i) onto Hirel(M, g) is

just the intersection Hirel(M, g)∩ ran(dmax,i). From this it follows that also

the range of the orthogonal of projection of ran(dmax,i) onto ran(δmax,i)

is just the intersection ran(dmax,i) ∩ ran(δmax,i) and therefore the implica-
tion 3) ⇒ 4) is proved. Finally, if 5) holds, it is immediate to show that
π1,i(Hirel(M, g)) = Himin(M, g) and this , using the fact that

π1,i(Hirel(M, g)) ∼= im(H
i
2,min(M, g)→ H

i
2,max(M, g))

implies 1). This complete the proof of the proposition. �





Part 2

The L2−Atiyah-Bott-Lefschetz
theorem on manifolds with conical

singularities.





CHAPTER 4

Background

This chapter contains the background material we need in order to define
the L2−Lefschetz numbers of a geometric endomorphism acting on an elliptic
complex of differential cone operators. In the first section the notion of
differential cone operator and the relative notion of ellipticity are given. In
the second section the notion of elliptic complex of differential cone operators
is introduced. Finally the last section contains a brief remainder on heat
kernel.
As recalled during the introduction also [59] is devoted to the Atiyah-Bott-
Lefschetz theorem on manifolds with conical singularities. Anyway there
are some substantial differences between our paper and [59]: the notion
of ellipticity used there, which is taken from [65], is stronger than that
one used in this paper; in particular the de Rham complex is not elliptic
for the definition given in [65]. Moreover the complexes considered in [59]
are complexes of weighted Sobolev space while our complexes are Hilbert
complexes of unbounded operator defined on some natural extensions of their
core domain; finally also the techniques used are different because we use
the heat kernel while in [59] the existence of a parametrix of an elliptic cone
operator is used. Some results of this paper are also close to results proved
in [51]: indeed in [51] the heat kernel is studied in an equivariant situation
and an equivariant index theorem is proved (see corollary 2.4.7 ). Also in
this case there are some relevant differences: the Lie group G acting in [51]
is a compact Lie group of isometry, while in our work we just require that the
map f is a diffeomorphism. Moreover the non degeneracy conditions that
we require on the fixed point of f led us to different formulas to those stated
in [51]. On the other hand, for the geometric endomorphisms considered in
[51], that is those induced by isometries g lying in a compact Lie group G,
the formula obtained by Lesch applies to a more general case than the ours
because in his work there are not assumptions on the fixed points set while
in our work there are.
Moreover the last part of this work contains several applications to the de
Rham complex which are not mentioned in the other papers.

1. Differential cone operators

Definition 4.1. Let M an open manifold. The cone over M , usually
labeled C(M), is the topological space defined as

M × [0,∞)/({0} ×M). (4.1)

The truncated cone, usually labeled Ca(M), is defined as

M × [0, a)/({0} ×M). (4.2)

95
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Finally with Ca(M) we mean

M × [0, a]/({0} ×M). (4.3)

In both the above cases, with v, we will label the vertex of the cone or the
truncated cone, that is C(M) − (M × (0,∞)), Ca(M) − (M × (0, a)) and
Ca(M)− (M × (0, a]) respectively.

Definition 4.2. A manifold with conical singularities X is a metrizable,
locally compact, Hausdorff space such that there exists a sequence of points
{p1, ..., pn, ...} ⊂ X which satisfies the following properties:

(1) M − {p1, ..., pn, ...} is a smooth open manifold.
(2) For each pi there exist an open neighbourhood Upi , a closed mani-

fold Lpi and a map φpi : Upi → C2(Lpi) such that φpi(pi) = v and
φpi |Upi−{pi} : Upi − {pi} →M × (0, 2) is a diffeomorphism.

The regular and the singular part of X are defined as

sing(X) = {p1, ..., pn, ...}, reg(X) := X − sing(X) = X − {p1, ..., pn, ...}.
The singular points pi are usually called conical points and the smooth
closed manifold Lpi is usually called the link relative to the point pi. If X
is compact then it is clear, from the above definition, that the sequences of
conical points {p1, ..., pn, ...} is made of isolated points and therefore on X
there are just a finite number of conical points.
A manifold with conical singularities is a particular case of a compact
smoothly stratified pseudomanifold; more precisely it is a compact smoothly
stratified pseudomanifold with depth 1 and with the singular set made of a
sequence of isolated points. Since in this paper we will work exclusively with
compact manifolds with conical singularities we prefer to omit the definition
of smoothly compact stratified pseudomanifold and the notions related to it
and refer to [1] for a thorough discussion on this subject.

Remark 4.1. Let X be a compact manifold with one conical singularity
p and let Lp its link; it follows from definition 4.2 that we can decompose
X as

X ∼= Y ∪Lp C1(Lp)

where Y is a compact manifold with boundary defined as X −φ−1
p (C1(Lp)).

Obviously this decomposition generalizes in a natural way when X has sev-
eral conical points. As we will see in one of the following sections this
decomposition is the starting point to study the heat kernel on X and we
will use it to calculate the contribution given by the conical points to the
Lefschetz number of some geometric endomorphisms.

Now we recall from [1] a particular case, which is suitable for our pur-
pose, of an important result which describe a blowup process to resolve the
singularities of a compact smoothly stratified pseudomanifold.

Proposition 4.3. Let X be a compact manifold with conical singular-
ities. The there exists a manifold with boundary M and a blow-down map
β : M → X which has the following properties:



1. DIFFERENTIAL CONE OPERATORS 97

(1) β|M : M → reg(X), where M is the interior of M , is a diffeo-
morphsim.

(2) There is a bijective correspondence between the conical points of X
and the (possibly disconnected) boundary hypersurfaces of M which
blow down to these conical points through β;

(3) If for each conical point pi the relative link Lpi is connected, then
there is a bijection between the conical points of X and the con-
nected components of ∂M.

Proof. See [1], proposition 2.5. �
Now we introduce a class of natural riemannian metrics on these spaces.

Definition 4.4. Let X be a manifold with conical singularities. A conic
metric g on reg(X) is riemannian metric with the following property: for
each conical point pi there exists a map φpi , as defined in definition 4.2, such
that

(φ−1
pi )∗(g|Upi ) = dr2 + r2hLpi(r) (4.4)

where hLpi(r) depends smoothly on r up to 0 and for each fixed r ∈ [0, 1) it

is a riemannian metric on Lpi . Analogously, if M is manifold with boundary
and M is its interior part, then g is a conic metric on M if it is a smooth,
symmetric section of T ∗M ⊗T ∗M , degenerate over the boundary, such that
over a collar neighborhood U of ∂M , g satisfies (4.4) with respect to some
diffeomorphism φ : U → [0, 1)× ∂M.

The next step is to recall the notion of differential cone operator and
its main properties. Before to proceed we introduce some notations that we
will use steadily through the paper.
Given an open manifold M and two vector bundles E,F over it, with
Diffn(M,E,F ), n ∈ N, we will label the space of differential operator P :
C∞c (M,E) → C∞c (M,F ) of order n. Given M , a manifold with boundary,
we will label with N the boundary of M and with M the interior part of M .
Given a vector bundle E over M , with EN we mean the restriction of E on
N . Finally each metric ρ over E (riemannian if E is real or hermitian if E
is complex) is assumed to be a non degenerate metric up to the boundary.
The next definition is taken from [51]:

Definition 4.5. Let M be a manifold with boundary N = ∂M . Let
E,F be two vector bundles on M . Let UN be a collar neighborhood of N ,
UN ∼= [0, ε) × N and let UN = UN − N . A differential cone operator of
order µ ∈ N and weight ν > 0 is a differential operator P : C∞c (M,E) →
C∞c (M,F ) such that on UN it takes the form:

P |UN = x−ν
µ∑

i=0

Ak(−x
∂

∂x
)k (4.5)

where Ak ∈ C∞([0, ε),Diffµ−k)(EN , FN )) and x is a boundary defining func-
tion. As in [51] we will label with Diffµ,ν0 (M,E,F ) the space of differential
cone operators between the bundles E and F .

Now we explain what we mean by differential cone operator on a man-
ifold X with conical singularities. In the previous definition we recalled
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the notion of differential cone operator acting on the smooth sections with
compact support of two vector bundles E,F defined on a manifold M with
boundary. In proposition 4.3, given a manifold with conical singularities X,
we stated the existence of a manifold with boundary M endowed with a
blow down map β : M → X which desingularize X. Therefore given two
vector bundles E,F on reg(X) and P ∈ Diff(reg(X), E, F ) we will say that
P is a differential cone operators if the following properties are satisfied:

(1) β∗(E), β∗(F ) that are vector bundles on M , the interior of M ,
extend as smooth vector bundles over the whole M . In the same
way, if E and F are endowed with metrics ρ1 and ρ2 then β∗ρ1 and
β∗ρ2 extend as non degenerate metric up to the boundary of M.

(2) The differential operator induced by P through β acting on
C∞c (M,β∗E, β∗F ) is a differential cone operator in the sense of
definition 4.5.

In the rest of the paper, with a slight abuse of notation, we will identify
M with reg(X), E with β∗E, F with β∗F and P with the operator that it
induces through β between C∞c (M,β∗E, β∗F ).

Remark 4.2. We can reformulate definition 4.5 in the following way:
P is differential cone operator of order µ and weight ν if and only if xνP
is a b−differential operator of order µ in the sense of Melrose. For the
definition of b−operator and the full development of this subject we refer
to the monograph [55]. Using this approach we have Diffµ,ν0 (M,E,F ) =
x−ν Diffµb (M,E,F ). This last point of view is used for example in [35] .

Now we introduce the notion of ellipticity:

Definition 4.6. Let M be a manifold with boundary and let E,F be
two vector bundles over M . Let P ∈ Diffµ,ν0 (M,E,F ) and let σµ(P ) its
principal symbol. Then P is called elliptic if it is elliptic on M in the usual
sense and if

xνσµ(P )(x, p, x−1τ, ξ) (4.6)

is invertible for (x, p) ∈ [0, ε)×N and (τ, ξ) ∈ T ∗M − {0}.
In the above definition there is implicit the natural identification of

T ∗M |[0,ε)×N with R× T ∗N .

Definition 4.7. Let M,E,F and P be as in the previous definition.
The conormal symbol of P , as defined in [51], is the family of differential
operators, acting between C∞(N,EN , FN ), defined as

σµ,νM (P )(z) :=

µ∑

k=0

Ak(0)zk (4.7)

Now we make some further comments about the notion of ellipticity
introduced in definition 4.6. The requirement (4.6) in definition 4.6 means
that

µ∑

k=0

σµ−k(Ak(x))(ξ)σk((−x ∂
∂x

)k)(x, x−1τ) =

µ∑

k=0

σµ−k(Ak(x))(ξ)(−iτ)k
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is invertible. On M this is covered by classical ellipticity and for x = 0 it is
equivalent to require that (4.7) is a parameter dependent elliptic family of
differential operators with parameters in iR.
Using again the b framework of Melrose, definition 4.6 is equivalent to say
that the b−principal symbol of P ′ := xνP , that is

σµb (P ′) := σµ(P ′)(x, p, x−1τ, ξ)

as an object lying in C∞(T ∗bM,Hom(π∗bE, π
∗
bF )), where πb : T ∗bM → M is

the b−cotangent bundle of M , is an isomorphism on T ∗bM−{0}. For further
details on these approach see [35] and the relative bibliography.
Finally we remark that in definition 4.6 we followed [51] and [35]. This
is slightly different from those given, for example, in [59], [60] and [65].
The definition given in these papers, in fact, requires the invertibility of the
conormal symbol on a certain weight line (for more details see the above
papers). By the fact that we are interested to study the operators on their
natural domains, that is the maximal and the minimal one, we can waive
this requirement (see [51] pag. 13 for more comments about this).

Finally we conclude this subsection stating an important proposition on
the theory of differential cone operators:

Theorem 4.8. Let (M, g) be a compact and oriented manifold of dimen-
sion m with boundary where g is a conic metric over M ; let E,F be two
hermitian vector bundles over M and let P ∈ Diffµ,ν0 (M,E,F ) be an elliptic
differential cone operator.

(1) Each closed extension P : L2(M,E) → L2(M,F ) of P is a Fred-
holm operator on its domain, D(P ), endowed with the graph norm.

(2) Suppose that E = F and that P is positive. Suppose, in addition,
that on a collar neighborhood of ∂M the metric ρ on E does not
depend on r and that the conic metric g satisfies g = dr2 + r2h
where h is any riemannian metric over ∂M which does not depend
on r. Then, for each positive self-adjoint extension P of P , the

heat operator e−tP : L2(M,E) → L2(M,E) is a trace-class opera-
tor. Moreover P is discrete and the sequences of eigenvalues of P

satisfies λj ∼ Cj
µ
m .

Proof. For the first statement see [51] prop. 1.3.16 or [35] prop. 3.14.
For the second one see [51] theorem 2.4.1 and corollary 2.4.3. �

2. Elliptic complex on manifolds with conical singularities

The aim of this subsection is to define the notion of elliptic complex on
a manifold with conical singularities. As for the notion of ellipticity, the
definition of elliptic complex on a manifold with conical singularities was
introduced in [65], pag. 205, but our definition is slightly different because
we waive some requirements about the sequence of conormal symbols on
a certain weight line. The reason is still given by the fact that we are
interested on the minimal and maximal extension of a complex differential
cone operators.
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Let M be a manifold with boundary, E0, ..., En a sequence of vector bundle
over M and consider Pi ∈ Diffµ,ν0 (M,Ei, Ei+1) such that

0→ C∞c (M,E0)
P0→ C∞c (M,E1)

P1→ ...
Pn−1→ C∞c (M,En)

Pn→ 0 (4.8)

is a complex. We have the following definition:

Definition 4.9. The complex (4.8) is an elliptic complex if it is an
elliptic complex in the usual sense on M and if the sequence

0→ π∗E0 → π∗E1 → ...→ π∗En → 0 (4.9)

where the maps are given by xνσµ(Pi)(x, p, x
−1τ, ξ) : π∗iEi → π∗i+1Ei+1 is

an exact sequence up to x = 0 over T ∗M − {0}.
With the help of Melrose’s b framework we can reformulate the previous

definition in the following way: (4.8) is an elliptic complex if and only if the
following sequence is exact over T ∗b (M)− {0}:

0→ π∗bE0
σµb (P ′0)→ π∗bE1

σµb (P ′1)→ ...
σµb (P ′n−1)
→ π∗bEn

σµb (P ′n)→ 0 (4.10)

where P ′ = xνP , that is the b−operator naturally associated to P ,
πb : T ∗bM →M is the b−cotangent bundle and

σµb (P ′i ) ∈ C∞(M,Hom(π∗bEi, π
∗
bEi+1))

is the b−principal symbol of P ′i .
We have the following proposition:

Proposition 4.10. Consider a complex of differential cone operators as
in (4.8). Suppose moreover that M is endowed with a conic metric g. Then
the complex is an elliptic complex if and only if for each i = 0, ..., n

P ti ◦ Pi + Pi−1 ◦ P ti−1 : C∞c (M,Ei)→ C∞c (M,Ei)

is an elliptic differential cone operator.

Proof. It is clear that if P ∈ Diffµ,ν0 (M,Ei, Ei+1) then also P t ∈
Diffµ,ν0 (M,Ei+1, Ei) where Pt : C∞c (M,Ei+1) → C∞c (M,Ei) is the for-
mal adjoint of P . Now, as in the previous comment, let P ′i = xνP be
the b−operator that is naturally associated to P . It is well known that
σµb (P ′i+1◦P ′i ) = σµb (P ′i+1)◦σµb (P ′i ) and that σµb ((P ′i )

t) = (σµb (P ′i ))
t. The proof

follows now by standard arguments of linear algebra, in complete analogy
with the case of an elliptic complex on a closed manifold. �

From the above proposition it follows the following useful corollary:

Corollary 4.11. In the same hypothesis of the previous proposition.
The Hilbert complexes (L2(M,E∗), Pmax/min,∗) are both Fredholm complexes.

Moreover each Hilbert complex that extends (L2(M,E∗), Pmin,∗) and that is
extended by (L2(M,E∗), Pmax,∗) is still an Fredholm complex.

Proof. From theorem 4.8 it follows that P tmin,i ◦ Pmax,i + Pmax,i−1 ◦
P tmin,i−1 and P tmax,i◦Pmin,i+Pmin,i−1◦P tmax,i−1 are both Fredholm operators
on their natural domain endowed with the graph norm. Now the statement
follows from prop. 1.5 �
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We remark the fact that we gave the definition of an elliptic complex of
differential cone operators on a manifold with boundary M . Following the
remark after definition 4.5 the notion of elliptic complex of differential cone
operators is naturally extended on a manifold X with conical singularities.

3. A brief reminder on the heat kernel

The aim of this subsection is to recall briefly the main local properties
of the heat kernel on an open and oriented riemannian manifold (M, g).
Let (M, g) be an open and oriented riemannian manifold, E a vector bundle
over M , P0 : C∞c (M,E) → C∞c (M,E) a non-negative symmetric differ-
ential operator and P : D(P ) ⊂ L2(M,E) → L2(M,E) a non-negative,
self-adjoint extension of P0. It is well know that, using the spectral theorem
for unbounded self-adjoint operators and its associated functional calculus
(see [30], chap. XXII), it is possible to construct the operator e−tP . The
next result we are going to recall summarizes the main local properties of
e−tP that we will use in the rest of the paper. We start with the following
definitions:

Definition 4.12. A cut-off function is a smooth function η : [0,∞) →
[0, 1] which admits a ε > 0 such that η(x) = 1 for x ≤ ε

4 and η = 0 for x ≥ ε.
Definition 4.13. Let M be an open manifold, E a vector bundle over

M and P0 : C∞c (M,E)→ C∞c (M,E) a differential operator of second order.
Then P0 is a generalized Laplacian if its principal symbol satisfies:

σ2(P0)(x, ξ) = ‖ξ‖2.
An operator of this type is clearly elliptic. We refer to [9] for a compre-

hensive discussion on this class of operators.

Theorem 4.14. Let (M, g) be an open and oriented riemannian man-
ifold, E a vector bundle over M , P0 : C∞c (M,E) → C∞c (M,E) a non-
negative symmetric differential operator of order d and

P : D(P ) ⊂ L2(M,E)→ L2(M,E)

a non-negative, self-adjoint extension of P . Then e−tP satisfies the following
properties:

• e−tP has a C∞−kernel, that is usually labeled e−tP (s, q) or kP (t, s, q),
which lies in C∞((0,∞)×M ×M,E � E∗).
• If K1,K2 are compact subset of M such that K1 ∩K2 = ∅ then

‖kP (t, s, q)‖Ck(K1×K2,E�E∗) = O(tn), t→ 0

for all k, n ∈ N.
• Let φ, χ ∈ C∞c (M); then the operator φe−tPχ is a trace-class oper-

ator and we have, on C l(K1 ×K2, E � E∗|K1×K2) for each l ∈ N,

(φe−tPχ)(q, q) ∼t→0

∞∑

n=0

φ(q)χ(q)Φn(q)t
n−m
d

and

Tr((φe−tPχ)(q, q)) ∼t→0

∞∑

n=0

(

∫

M
φ(q)χ(q) tr(Φ(q))dvolg)t

n−m
d
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where q ∈M , {Φ1, ...,Φn, ..., } is a suitable sequence of sections in
C∞(M,End(E)), K1 = supp(φ) and K2 = supp(χ).

Finally if P0 is a generalized Laplacian then the last property above modifies
in the following way:

• Let φ, χ ∈ C∞c (M); then the operator φe−tPχ is a trace-class oper-
ator and we have

φ(s)e−tP (s, q)χ(q) ∼t→0 ht(s, q)

∞∑

n=0

φ(s)χ(q)Φn(s, q)tn

where (s, q) ∈M×M , {Φ1, ...,Φn, ..., } is a suitable sequence of sec-

tions in C∞(M×M,E�E∗) and ht(s, q) = (4πt)
−n
2 e

−d(s,q)2
4t η(d(s, q)2)

with η a cut-off function. As in the previous case the above expan-
sion holds in C l(K1 × K2, E � E∗|K1×K2) for each l ∈ N, where
K1 = supp(φ) and K2 = supp(χ).

Proof. For the first three properties we refer to [51], theorem 1.1.18.
As explained there these properties are proved globally, for example in [37],
when M is a closed manifold. A careful examination of those proofs shows
that the same properties remain true locally when M is an open manifold.
The same argumentation applies to the last property which is proved glob-
ally, on a closed manifold, in [9] prop. 2.46 or in [62] theorem 7.15. �

The rest of the subsection is a brief reminder about the heat kernel of
a differential cone operator. For more details and for the proof we refer to
[51]. As already recalled in theorem 4.8 we know that, if M is a compact and
oriented manifold with boundary, M its interior part, P0 ∈ Diff0(M,E;E)
is a positive operator and g is a conic metric over M , then for each positive
self-adjoint extension P of P0, e−tP : L2(M, g) → L2(M, g) is a trace-class
operator. Now we want to recall an important property named scaling
property. Before doing this we need to introduce some notations:
Let N be a compact manifold; consider C(N) and endow it with a product
metric g = dr2 +h where h is a riemannian metric over N . Finally let E be
a vector bundle over reg(C(N)).

Define Ut : L2(reg(C(N)), E) → L2(reg(C(N)), E) as s(r, p) 7→ t
1
2 s(tr, p).

It is immediate to show that Ut : L2(reg(C(N)), E)→ L2(reg(C(N)), E) is
an isometry and that Ut1 ◦ Ut2 = Ut1t2 .

Proposition 4.15. Let N be a compact manifold, E a vector bundle over
reg(C(N)), let P0 ∈ Diffµ,ν0 (reg(C(N)), E,E) be a symmetric differential
cone operator and let P be a self-adjoint extension of P0. Endow reg(C(N))
with a product metric g, that is g = dr2 +h where h is a riemannian metric
over N . Finally let Pt = tνUtPU

∗
t and let f : R → R a function such that

f(P ) has a measurable kernel. Then for each λ > 0

f(P )(r, p, s, q) =
1

λ
f(λ−νPλ)(

r

λ
, p,

s

λ
, q), λ > 0 (4.11)

As particular case, given P0 ∈ Diff0(reg(C(N)), E,E) positive and P a
positive self-adjoint extension then

e−tP (r, p, r, q) =
1

r
e−tr

−νPr(1, p, 1, q) (4.12)
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Proof. See [51] lemma 2.2.3. �

Now we modify the above proposition for the heat operator in the case
that g is a conic metric over M . As we will see, we are interested to the
study of the L2−Lefschetz numbers where the L2 space are built using a
conic metric. The reason is that when the considered complex is the L2 de
Rham complex (built using a conic metric) then its L2−cohomology has a
topological meaning. More precisely, as showed by Cheeger in [24], we have
the following theorem:

Theorem 4.16. Let (F, h) be a compact and oriented riemannian man-
ifold of dimension f . Consider the cone Cb(F ) with b a positive real number
and endow Cb(F ) with the conic metric g = dr2 + r2h. Then

H i
2,max(Cb(F ), g) ∼=

{
H i(F ) i < f

2 + 1
2

0 i ≥ f
2 + 1

2

(4.13)

If X is a compact and oriented manifold with conical singularities and if g
is a conic metric over reg(X) then

H i
2,max(reg(X), g) ∼= ImH i(X), H i

2,min(reg(X), g) ∼= ImH i(X). (4.14)

Proof. See [24]. �

For the definition and the main properties of intersection cohomology
we refer to [38] and [39]

Lemma 4.17. Let N be a compact manifold of dimension n, E a vector
bundle over reg(C(N)), let P0 ∈ Diffµ,ν0 (reg(C(N)), E,E) be a positive dif-
ferential cone operator and let P be a positive self-adjoint extension of P0.
Endow reg(C(N)) with a conic metric g, that is g = dr2 + r2h where h is a
riemannian metric over N . Then for each λ > 0

e−tP (r, p, s, q) =
1

λn+1
e−tλ

−νPλ(
r

λ
, p,

s

λ
, q), λ > 0 (4.15)

In particular we have

e−tP (r, p, r, q) =
1

rn+1
e−tλ

−νPr(1, p, 1, q), λ > 0. (4.16)

Proof. The proof is completely analogous to the proof of proposition
4.15. We have just to add the natural modifications caused by the fact
that now the Hilbert space L2(reg(C(N)), E) is built using the conic met-
ric g = dr2 + r2h and this means that given γ ∈ L2(reg(C(N)), E) we
have ‖γ‖L2(reg(C(N)),E) =

∫
reg(C(N)) ‖γ‖rndrdvolh where ‖γ‖ is the point-

wise norm induced by the metric on E (which is a riemannian metric if E
is a real vector bundle and is a Hermitian metric if E is complex.). This
implies that now the isometry Ut, introduced above proposition 4.15, is de-

fined as Ut : L2(reg(C(N)), E) → L2(reg(C(N)), E), Ut(γ) = t
n+1
2 γ(tr, p).

The proof follows now in completely analogy to that one of proposition
4.15 . Moreover, in the case that P is a positive self-adjoint extension of
∆i : Ωi

c(reg(C(N))) → Ωi
c(reg(C(N))), the Laplacian constructed using

a conic metric and acting on the space of smooth i−forms with compact
support, the proof is given in [25], pag. 582. �
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Finally we conclude the section with the following proposition; before to
state it we introduce some notations. Given λ ∈ R we define

p+(λ) := |λ+
1

2
| and

p−(λ) :=

{
|λ− 1

2 | |λ| ≥ 1
2

λ− 1
2 |λ| < 1

2

(4.17)

Moreover we recall that Ia(x) is the modified Bessel function of order a. For
the definition see [51] pag. 67.

Proposition 4.18. Let (N,h) be a compact and oriented riemannian
manifold of dimension n. Consider C(N) and let E be a vector bundle over
reg(C(N)) endowed with a metric ρ (hermitian if it is complex o riemann-
ian if it is real). Suppose that E admits an extension over all [0,∞) × N
that we denote E. Let EN = E|N and suppose that (E, ρ) is isometric to
π∗(EN , ρ|N ) where π : (0,∞)×N → N is the natural projection. Finally let
P : C∞c (E)→ C∞c (E) be an elliptic differential cone operator of order one.
Then:

(1) On L2(reg(C2(N)), E) built with the product metric gp = dr2 + h,

if P satisfies P = ∂
∂r + 1

rS, where S ∈ Diff1(N,EN ) is elliptic, we
have

e−tP
t
max◦Pmin(r, p, s, q) =

∑

λ∈specS

1

2t
(rs)

1
2 Ip+(λ)(

rs

2t
)e−

r2+s2

4t Φλ(p, q) (4.18)

and

e−tPmin◦P
t
max(r, p, s, q) =

∑

λ∈specS

1

2t
(rs)

1
2 Ip−(λ)(

rs

2t
)e−

r2+s2

4t Φλ(p, q)

where Φλ(p, q) is the smooth kernel of Φλ : L2(N,EN ) → Vλ, the
orthogonal projection on the eigenspace Vλ.

(2) On L2(reg(C2(N)), E) built with the conic metric gc = dr2 + r2h,
if P satisfies
P = n

2r + ∂
∂r + 1

rS, where S ∈ Diff1(N,EN ) is elliptic, we have

e−tP
t
max◦Pmin(r, p, s, q) =

∑

λ∈specS

1

2t
(rs)

1−n
2 Ip+(λ)(

rs

2t
)e−

r2+s2

4t Φλ(p, q)

(4.19)
and

e−tPmin◦P
t
max(r, p, s, q) =

∑

λ∈specS

1

2t
(rs)

1−n
2 Ip−(λ)(

rs

2t
)e−

r2+s2

4t Φλ(p, q)

where Φλ(p, q) is the smooth kernel of Φλ : L2(N,EN ) → Vλ , the
orthogonal projection on the eigenspace Vλ.

Proof. The first assertion is proved in [51], see proposition 2.3.11 and
pag. 68. The second statement follows using the following argument. Only
for the remaining part of this proof let us label L2(reg(C2(N)), E, gp) the
L2 space of sections built using the product metric gp = dr2 + h and
L2(reg(C2(N)), E, gc) the L2 space of sections built using the conic met-
ric gc = dr2 + r2h. The measure induced by gp is drdvolh while the
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measure induce by gc is rndrdvolh. Therefore it is clear that the map
τ : L2(reg(C(N)), E, gc) → L2(reg(C2(N)), E, gp), τ(γ) = r

n
2 γ is an isom-

etry with inverse given by τ−1(γ) = r
−n
2 γ . A simple calculation shows

that P̃ := τ−1 ◦ P ◦ τ satisfies P̃ = ∂
∂r + 1

rS. Therefore P̃ tmax ◦ P̃min =

r
n
2 P tmax ◦ Pminr

−n
2 and this implies that

e−tP̃
t
max◦P̃min = r

n
2 e−tP

t
max◦Pminr

−n
2 .

Therefore if we call k̃(t, r, p, s, q) the heat kernel relative to e−tP̃
t
max◦P̃min and

analogously k(t, r, p, s, q) the heat kernel relative to e−tP
t
max◦Pmin we have,

for each γ ∈ L2(reg(C2(N)), E, gp):∫

reg(C2(N))
k̃(t, r, p, s, q)γ(s)dsdvolh =

=

∫

reg(C2(N))
r
n
2 k(t, r, p, s, q)s

−n
2 γ(s)sndsdvolh

and therefore k̃(t, r, p, s, q) = r
n
2 k(t, r, p, s, q)s

n
2 . Finally, applying this last

equality to (4.18), we get (4.19). For the heat kernel of e−tPmin◦P
t
max the

proof is completely analogous to the previous one. �





CHAPTER 5

L2−Lefschetz numbers

This chapter is devote to the L2−Lefschetz numbers. In the first section
the notion of geometric endomorphism is developed. The second section
contains the definitions of L2−Lefschetz numbers. Finally in the last part
the approach using the heat kernel in order to calculate this numbers is
developed.

1. Geometric endomorphism

The goal of this section is to introduce and study the notion of geomet-
ric endomorphism of an elliptic complex of differential cone operators.
Let X be a compact manifold with conical singularities and let M be its
regular part that, as explained after definition 4.5, we identify with the in-
terior part of M the manifold with boundary which desingularizes X, see
prop. 4.3. Finally consider an elliptic complex of differential cone operators
as described in definition 4.9:

0→ C∞c (M,E0)
P0→ C∞c (M,E1)

P1→ ...
Pn−1→ C∞c (M,En)

Pn→ 0 (5.1)

Definition 5.1. A geometric endomorphism T of (5.1) is given by
a n−tuple of maps T = (T1, ..., Tn) constructed in the following way: there
exists a smooth map f : M → M and a n−tuples of morphisms of bundles
φi : f∗Ei → Ei such that the following properties hold:

(1) f : M →M is a diffeomorphism.
(2) If {N1, ..., Nk} are the connected components of ∂M then f(Ni) =

Ni for each i = 1, ..., k.
(3) Ti = φi ◦ f∗ where f∗ acts naturally between

C∞(M,E) and C∞(M,f∗E).
(4) Pi ◦ Ti = Ti+1 ◦ Pi.

We make a little comment on the above definition. The second and the
third property are exactly the definition of geometric endomorphism of an
elliptic complex over a closed manifold given in [3]. However our definition
is not a complete extension of that one given by Atiyah and Bott in [3].
The reason is that in the closed case any smooth map is allowed. For our
purposes we need that Ti induce a bounded map from L2(M,Ei) to itself
and clearly this prevents us to allow every smooth map in definition 5.1.
As we will see in the following lemma, the property that f : M → M is a
diffeomorphism is a reasonable sufficient condition in order to get a bounded
extension of Ti on L2(M,Ei).

Lemma 5.2. In the same hypothesis of the above definition the endomor-
phism T satisfies that the following properties:

107
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(1) For each i and for each ψ ∈ C∞c (M,Ei) we have Ti(ψ) ∈ C∞c (M,Ei).
(2) For each i Ti extends as a bounded operator from L2(M,Ei) to

itself; with a small abuse of notation, we denote this again by Ti.
(3) Let T ∗i : L2(M,Ei) → L2(M,Ei) be the adjoint of Ti. Then for

each ψ ∈ C∞c (M,Ei) we have T ∗i (ψ) ∈ C∞c (M,Ei).

Proof. The first two properties follow immediately by the fact that
f : M → M is a diffeomorphism and that M is compact. For the third
properties, we observe first of all that Ti admits an adjoint because it is
densely defined and that T ∗i is bounded and defined over the whole L2(M,Ei)
because Ti is bounded. Now consider the bundle f∗E. The metric over E
induces in a natural way through f a metric over f∗E. Therefore it make
sense consider the bundle homomorphism φ∗ : E → f∗E defined in each fiber
as the adjoint of φ. Now consider the pull-back under f of the volume form
dvolg. Then there exists a smooth function τ such that τdvolg = f∗dvolg
and τ > 0 if f preserves the orientation of M , τ < 0 if f reverses the
orientation of M . Finally define S : C∞c (M,Ei)→ C∞c (M,Ei) as

Si(ψ) :=

{
τ(φ∗i ◦ (f−1)∗)(ψ) if f preserves the orientation
−τ(φ∗i ◦ (f−1)∗)(ψ) if f reserves the orientation

(5.2)

It is immediate to check that for each ψ1, ψ2 ∈ C∞c (M,Ei) we have

< Ti(ψ1), ψ2 >L2(M,Ei)=< ψ1, Si(ψ2) >L2(M,Ei) .

Therefore, over C∞c (M,Ei) , T ∗i coincides with S and so from this the third
property follows immediately. �

Now we state the following property :

Proposition 5.3. Let M be an open and oriented riemannian manifold
and let g be an incomplete riemannian metric on M . Let E0, ..., En be a
sequence of vector bundles over M and consider a complex of differential
operators:

0→ C∞c (M,E0)
P0→ C∞c (M,E1)

P1→ ...
Pn−1→ C∞c (M,En)

Pn→ 0 (5.3)

Let T be an endomorphism of (5.3) that satisfies the second, the third and
the fourth property of definition 5.1. Then we have the following properties:

(1) For each i = 0, ..., n, for each s ∈ D(Pmin,i) we have Ti(s) ∈
D(Pmin,i) and Pmin,i ◦ Ti = Ti+1 ◦ Pmin,i.

(2) For each i = 0, ..., n, for each s ∈ D(Pmax,i) we have Ti(s) ∈
D(Pmax,i) and Pmax,i ◦ Ti = Ti+1 ◦ Pmax,i.

Proof. Let i ∈ {0, ..., n} and let s ∈ D(Pmin,i). Then there exists
a sequence {sj}j∈N such that sj → s in L2(M,Ei) and Pi(sj) → Pi(s)
in L2(M,Ei+1). Using definition 5.3, we know that {Ti(sj)}j∈N is a se-
quence of smooth sections with compact support contained in C∞c (M,Ei)
such that Ti(sj) → Ti(s) in L2(M,Ei) and Ti+1(Pi(sj)) → Ti+1(Pi(s)) in
L2(M,Ei+1). But Ti+1(Pi(sj)) = Pi(Ti(sj)). Therefore Pi(Ti(sj)) con-
verges in L2(M,Ei+1) and this implies that Ti(s) ∈ D(Pmin,i) and that
Pmin,i ◦ Ti = Ti+1 ◦ Pmin,i.
Now we give the proof of the second statement. From the first part of the
proof it follows that, if we look at Ti+1 ◦ Pmin,i, Pmin,i ◦ Ti as unbounded



1. GEOMETRIC ENDOMORPHISM 109

operator with domain D(Pmin,i) then Ti+1 ◦ Pmin,i = Pmin,i ◦ Ti and there-
fore (Ti+1 ◦ Pmin,i)∗ = (Pmin,i ◦ Ti)∗. Moreover, by the fact that Ti+1 is
bounded, it follows that (Ti+1 ◦ Pmin,i)∗ = P ∗min,i ◦ T ∗i+1 with domain given

by (T ∗i+1)−1(D(P ∗min,i)). Now let s ∈ D(Pmax,i) and let φ ∈ C∞c (M,Ei+1).
Then:

< Ti(s), P
t
i (φ) >L2(M,Ei)=< s, T ∗i (P ti (φ)) >L2(M,Ei)=

=< s, (Pmin,i ◦ Ti)∗(φ) >L2(M,Ei)=

=< s, P ∗min,i(T
∗
i+1(φ)) >L2(M,Ei)= (because T ∗i+1(φ) ∈ C∞c (M,Ei+1))

=< s, P ∗max,i(T
∗
i+1(φ)) >L2(M,Ei)=< Pmax,i(s), (T

∗
i+1(φ)) >L2(M,Ei)

=< Ti+1(Pmax,i(s)), φ >L2(M,Ei) .

So we can conclude that Ti(s) ∈ D(Pmax,i) and that Ti+1 ◦Pmax,i = Pmax,i ◦
Ti. �

In the rest of this section we describe the notion of non degeneracy
condition for a fixed point of a map f : X → X. As we will see, over the
regular part of X, this is the same of the one used in [3].
Let X be a compact manifold with conical singularities and let f : X → X
a continuous map such that f(sing(X)) ⊂ sing(X), f(reg(X)) ⊂ reg(X)
and f |reg(X) is a smooth map. Define

Fix(f) := {p ∈ X : f(p) = p} (5.4)

Definition 5.4. A point p ∈ reg(X) ∩ Fix(f) is said to be simple if
det(Id− dpf) 6= 0.

Obviously this definition make sense because, being p a fixed point, it
follows that dpf is an endomorphism of Tp(reg(X)). Moreover it is easy to
show that definition 5.4 is equivalent to require that, on reg(X) × reg(X),
G(f) meets transversely ∆reg(X) on (p, p), where G(f) is the graph of f |reg(X)

and ∆reg(X) is the diagonal of reg(X) . In this way we get the following
useful corollary:

Corollary 5.5. Each simple fixed point in reg(X) ∩ Fix(f) is an iso-
lated fixed point.

Now, following [59], [60] but with little modifications, we recall what is
a simple fixed point p ∈ Fix(f) ∩ sing(X). As we said above, we assumed
that f(sing(X)) ⊂ sing(X) and that f(reg(X)) ⊂ reg(X). Therefore if q ∈
sing(X)∩Fix(f) is a fixed conical point it follows that, on a neighborhood
Uq ∼= C2(Lq) of q, f takes the form:

f(r, p) = (rA(r, p), B(r, p)) (5.5)

We make the additional assumption that A(r, p) and B(r, p) are smooth up
to zero, that is

A(r, p) : [0, 2)× Lq → [0, 2)

is smooth up to 0 and analogously

B(r, p) : [0, 2)× Lq → Lq

is smooth up to 0. Moreover, by the fact that f(sing(X)) ⊂ sing(X) and
that f(reg(X)) ⊂ reg(X) it follows that A(r, p) 6= 0 for r > 0. Obviously if
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our starting point is a diffeomorphism f : M →M as in definition 5.1, then
these requirements are automatically satisfied.

Definition 5.6. A point q ∈ Fix(f) ∩ sing(X) is a simple fixed point
if at least one of the two following conditions is satisfied:

(1) For each p ∈ Lq limr→0A(r, p) 6= 1.
(2) There exists ε > 0 such that, for each fixed r ∈ [0, ε), B(r, .) : Lq →

Lq satisfies B(r, p) 6= p.

Obviously in the first requirement the limit exists because in (5.5) we
required that A(r, p) is smooth up to 0. A natural question follows from
definition 5.6: what is the meaning of these requirements? The answer
is that if f satisfies one of the two requirements above then a sequence
of fixed point converging to q cannot exists and therefore q is an isolated
fixed point. We can show this last properties in the following way: suppose
that {(rj , pj)} is a sequence of fixed point of f contained in Uq ∼= C2(Lq).
Then {pj} is a sequence of point in Lq which is compact and therefore
there exists a subsequence, that with a little abuse of notations we still
label {pj}, such that pj converges to some p ∈ Lq. By the assumptions,
for each j, (rj , pj) = (rjA(rj , pj), B(rj , pj)). Therefore A(rj , pj) = 1 =
limj→∞A(rj , p) and B(rj , pj) = pj and this implies that f does not satisfies
both the properties of definition 5.6.

So we can state the following useful corollary:

Corollary 5.7. Let X be a compact manifold with conical singularities
and let f : X → X a map such that f(sing(X)) ⊂ sing(X), f(reg(X)) ⊂
reg(X), f |reg(X) : reg(X)→ reg(X) is smooth and, on a neighborhood of a
conical point, A(r, p) and B(r, p) are smooth up to 0. Then, if f has only
simple fixed point, Fix(f) is made of a finite number of points.

Proof. If f has only simple fixed points then we already know that each
of this fixed points is an isolated fixed point and this implies that Fix(f) is
a sequence without accumulation points. Therefore, by the compactness of
X, it follows that Fix(f) is made of a finite number of points. �

Now we state the following definition:

Definition 5.8. Let f be as in the previous corollary. Let q ∈ Fix(f)∩
sing(X) a simple fixed point for f such that f satisfies the first requirement
of definition 5.6. Then if for each p ∈ Lq

lim
r→0

A(r, p) < 1 (5.6)

q is called attractive simple fixed point while if

lim
r→0

A(r, p) > 1 (5.7)

then q is called repulsive simple fixed point.

Clearly if for each q ∈ sing(X) the relative link Lq is connected then
each simple fixed point q ∈ sing(X) is necessarily attractive or repulsive.

Finally we conclude the section observing that in [40], pag. 384, Goresky
and MacPherson introduced the notion of contracting fixed point. An el-
ementary check shows that (5.6) is equivalent to the definition given by
Goresky and MacPherson.
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2. L2−Lefschetz numbers of a geometric endomorphism

Let X be a compact manifold with conical singularities of dimension
m+ 1. Consider an elliptic complex of cone differential operators as defined
in definition 4.9:

0→ C∞c (M,E0)
P0→ C∞c (M,E1)

P1→ ...
Pn−1→ C∞c (M,En)

Pn→ 0 (5.8)

where Pi ∈ Diffµ,ν0 (M,Ei, Ei+1) and let T = φ ◦ f be a geometric endomor-
phism of (5.8) as in definition 5.1. Obviously, with a small abuse of notation,
we are using the same notation for the diffeomorphism f : M →M and for
the isomorphism that it induces on X. Clearly the isomorphism f : X → X
satisfies

(1) f |reg(X) : reg(X)→ reg(X) is a diffeomorphism
(2) For each p ∈ sing(X) we have f(p) = p
(3) A(r, p) and B(r, p) (see (5.5)) are smooth up to 0.

Using corollary 4.11 we know that both the complexes (L2(M,Ei), Pmax/min,i)

are Fredholm complexes, that is the cohomology groups H i
2,max/min(M,Ei)

are finite dimensional.
Moreover by proposition 5.3 we know that T is a morphism of both com-
plexes (L2(M,Ei), Pmax/min,i). Therefore, for each i = 0, ..., n, it induces an
endomorphism

T ∗i : H i
2,max(M,Ei)→ H i

2,max(M,Ei)

and analogously

T ∗i : H i
2,min(M,Ei)→ H i

2,min(M,Ei).

So we are in position to give the following definition:

Definition 5.9. The L2−Lefschetz numbers of T are defined in the
following way:

L2,max(T ) =

n∑

i=0

(−1)i tr(T ∗i : H i
2,max(M,Ei)→ H i

2,max(M,Ei)) (5.9)

and analogously

L2,min(T ) =
n∑

i=0

(−1)i tr(T ∗i : H i
2,min(M,Ei)→ H i

2,min(M,Ei)) (5.10)

The L2−Lefschetz numbers satisfy the following property:

Proposition 5.10. L2,max/min(T ) do not depend on the conic metric g
that we fix on M and on the metrics ρ0, ..., ρn that we fix on E0, ..., En

Proof. By the fact that M is compact and that, as explained above
definition 4.5, (Ei, ρi) are defined over all M and ρi is non degenerate up
to the boundary, it follows that all the metrics we consider on Ei are quasi-
isometric. Moreover, using proposition 1.32, it follows that if g and g′ are
two conic metric over M then they are quasi-isometric, that is there exists a
positive real number c such that g′ ≤ g ≤ g′. Therefore, for each i = 0, .., n,
L2(M,Ei) doesn’t depend from the metric that we fix on Ei and from the
conic metric that we fix over M . This in turn implies that same conclusion
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holds for H i
2,max(M,Ei) and for H i

2,min(M,Ei), that is they do not depend
from the metric that we fix on Ei and from the conic metric that we fix over
M . In this way we can conclude that also the traces of T ∗i : H i

2,max(M,E∗)→
H i

2,max(M,E∗) and T ∗i : H i
2,min(M,E∗) → H i

2,min(M,E∗) satisfy the same
property and so the proposition is proved. �

• From the above proposition it follows that in order to calculate
L2,max/min(T ) we can use any conic metric g on M and any metrics
ρ0, ..., ρn over E0, ..., En. Therefore, in the remaining part of this
section, we make the following assumptions: for each singular point
q there exists Uq, an open neighborhood of q satisfying Uq ∼= C2(Lq),
such that on reg(C2(Lq)) the conic metric g satisfies g = dr2 + r2h
where h is any riemannian metric over Lq that does not depend on
r. Moreover we assume that each metric ρi on Ei does not depend
on r in a collar neighborhood of ∂M .

Consider, for each i = 0, ..., n, the operator

Pi := P ti ◦ Pi + Pi ◦ P ti : C∞c (M,Ei)→ C∞c (M,Ei).

It is clearly a positive operator. As stated in proposition 4.10, we know
that Pi is an elliptic differential cone operator. Therefore, by theorem 4.8,
we know that for each positive self-adjoint extension of Pi, the relative heat
operator is a trace-class operator. In particular this is true for Pabs,i that we
recall it is defined as P tmin,i ◦Pmax,i +Pmax,i−1 ◦P tmin,i−1 and for Prel,i that

it is defined as P tmax,i ◦Pmin,i+Pmin,i−1 ◦P tmax,i−1. A well known and basic

result of operators theory (see [62], prop. 8.8) says that, given an Hilbert
space H, the space of trace-class operators is a two sided ideal of B(H), the
space of bounded operators of H, and that the trace doesn’t depend on the
order of composition. In this way we know that for each i = 0, ..., n

Ti ◦ e−tPabs/rel,i : L2(M,Ei)→ L2(M,Ei)

are trace-class operator and that Tr(Ti ◦ e−tPabs/rel,i) = Tr(e−tPabs/rel,i ◦Ti)1.
Moreover it is clear that Ti ◦ e−tPabs/rel,i are operators with smooth kernel
given by

φi ◦ kabs,i(t, f(x), y) for Ti ◦ e−tPabs,i (5.11)

and analogously

φi ◦ krel,i(t, f(x), y) for Ti ◦ e−tPrel,i (5.12)

where kabs/rel,i(t, x, y) are respectively the smooth kernel of e−tPabs/rel,i . In
both the expressions above φi acts on the x variable of kabs/rel,i(t, f(x), y)
because kabs/rel,i(t, f(x), y) is a section of f∗Ei�E∗i and φi : f∗Ei → Ei is a
morphism of bundle. So the kernels φi ◦ kabs/rel,i(t, f(x), y) are well defined
and they are smooth sections of E � E∗.
Now we are in position to state the following theorem which is one of the
main results of this section:

1This is the reason because we need to require that f : M →M is a diffeomorphism.
In this way each Ti : L2(M,Ei) → L2(M,Ei) is bounded and so we can conclude that

Ti ◦ e−tPabs/rel,i is a trace-class operator
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Theorem 5.11. Consider an elliptic complex of differential cone opera-
tors as in (5.8) and let T be a geometric endomorphism as in definition 5.1.
Then

L2,max(T ) =
n∑

i=0

(−1)i Tr(Ti ◦ e−tPabs,i) (5.13)

and analogously

L2,min(T ) =
n∑

i=0

(−1)i Tr(Ti ◦ e−tPrel,i) (5.14)

In particular, in both the equalities, the member on the right hand side does
not depend on t.

We need to state some propositions in order to prove the above theorem.
We give the proof only for the complex (L2(M,Ei), Pmax,i). The other one
is completely analogous.

Lemma 5.12. Consider an abstract Fredholm complex as in (1.1) and
let T be an endomorphism of this complex, that is T = (T0, ..., Tn), for each
i = 0, ..., n Ti : Hi → Hi is bounded and Di ◦ Ti = Ti+1 ◦Di on D(Di). Let
πi : Hi → Hi(H∗, D∗) be the orthogonal projection induced by the Kodaira
decomposition of proposition 1.2. Then for each i = 0, .., n we have

Tr(πi◦Ti : Hi(H∗, D∗)→ Hi(H∗, D∗)) = Tr(T ∗i : H i(H∗, D∗)→ H i(H∗, D∗))

Proof. Let γ : Hi(H∗, D∗) → H i(H∗, D∗) the isomorphism of (1.6).
Then it is clear that T ∗i , that is the endomorphism of H i(H∗, D∗) induced
by Ti, satisfies T ∗i = γ ◦ πi ◦ Ti ◦ γ−1. Now from this it follows immedi-
ately that Tr(πi ◦ Ti : Hi(H∗, D∗) → Hi(H∗, D∗)) = Tr(T ∗i : H i(H∗, D∗) →
H i(H∗, D∗)). �

Lemma 5.13. We have the following properties.

(1) For each i = 0, ..., n the operators Pabs,i have the same non zero
eigenvalues.

(2) Let Ei(λ) be the eigenspace relative to Pabs,i and the eigenvalue λ.
Then Ei(λ) is finite dimensional and made of smooth eigensections.

(3) Finally, for each eigenvalue λ 6= 0, consider the following complex:

......
Pλmax,i−1→ Ei(λ)

Pλmax,i→ Ei+1(λ)
Pλmax,i+1→ Ei+2(λ)

Pλmax,i+2→ ... (5.15)

where P λmax,i := Pmax,i|Ei(λ) Then it is an acyclic complex.

Proof. Let λ 6= 0 an eigenvalue of Pabs,i and let s ∈ D(Pabs,i) such that
Pabs,i(s) = λs. Consider Pmax,i(s). Then Pmax,i(s) ∈ D(Pabs,i+1) if and only
if P tmin,i(Pmax,i(s)) ∈ D(Pmax,i). Clearly P tmin,i(Pmax,i(s)) ∈ D(Pmax,i) if

and only if (P tmin,i(Pmax,i(s))+Pmax,i−1(P tmin,i−1(s))) ∈ D(Pmax,i). But this

last condition is satisfied because P tmin,i(Pmax,i(s)) + Pmax,i−1(P tmin,i−1(s))

= Pabs,i(s) = λs and this implies that Pmax,i(s) ∈ D(Pabs,i+1) and that
Pabs,i+1(Pmax,i(s)) = λPmax,i(s). In the same way, if s ∈ D(Pabs,i+1) sat-
isfies Pabs,i+1(s) = λs, then P tmin,i(s) ∈ D(Pabs,i) and Pabs,i(P tmin,i(s)) =

λP tmin,i(s). Therefore we can conclude that for each i = 0, ..., n the opera-
tors Pabs,i and Pabs,i+1have the same non zero eigenvalues.
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Now consider the eigenspaces Ei(λ). That is finite dimensional for each
λ 6= 0 follows by the fact that e−tPabs,i is a trace-class operator while that it
is finite dimensional for λ = 0 follows by the fact that Pabs,i is a Fredholm
operator on its domain endowed with the graph norm. Moreover elliptic
regularity tells us that Ei(λ) is made of smooth eigensections.
Finally consider

......
Pλmax,i−1→ Ei(λ)

Pλmax,i→ Ei+1(λ)
Pλmax,i+1→ Ei+2(λ)

Pλmax,i+2→ ... (5.16)

where P λmax,i := Pmax,i|Ei(λ).

Let s ∈ Ker(Pmax,i). Then Pabs,i(s) = λs = Pmax,i−1(P tmin(s)). Therefore
s ∈ ran(Pmax,i−1) and this implies that (5.16) is a long exact sequences, or
in other words, it is an acyclic complex. �

Now we state the last result we need to prove theorem 5.11. We take it
from [3].

Lemma 5.14. Consider a complex of finite dimensional vector space

0→ V0
f0→ ...

fi−1→ Vi
fi→ Vi+1

f,i+1→ Vi+2
fi+2→ ...

fn−1→ Vn
fn→ 0. (5.17)

and for each i let Gi : Vi → Vi an endomorphism such that fi◦Gi = Gi+1◦fi.
Then

n∑

i=0

(−1)i Tr(Gi) =

n∑

i=0

(−1)i Tr(G∗i )

where G∗i is the endomorphism of the i−th cohomology group of the complex
(5.17) induced by Gi.

Proof. See [3]. �

Proof. (of theorem 5.11). As said above we give the proof only for
(5.13). The proof for (5.14) is completely analogous. Consider the heat
operator e−tPabs,i : L2(M,Ei) → L2(M,Ei). By the third point of theorem
4.8 it follows that there exists an Hilbert base of L2(M,Ei), {φj}j∈N, made

of smooth eigensections of Pabs,i, in such way the smooth kernel of e−tPabs,i

satisfies k(t, x, y) =
∑

j e
−tλjφj(x) � φ∗j (y). Moreover, by the fact that

Ti : L2(M,Ei) → L2(M,Ei) is bounded, we know that Ti ◦ e−tPabs,i and
e−tPabs,i◦Ti are trace class and that Tr(Ti◦e−tPabs,i) = Tr(e−tPabs,i◦Ti). Now,
if we label π(i, λj) the orthogonal projection π(i, λj) : L2(M,Ei)→ Ei(λj),

then we can write e−tPabs,i =
∑

j e
−tλjπ(i, λj) and therefore e−tPabs,i ◦ Ti =

(
∑

j e
−tλjπ(i, λj)) ◦ Ti =

∑
j e
−tλj (π(i, λj) ◦ Ti). In this way we get

Tr(Ti ◦ e−tPabs,i) = Tr(e−tPabs,i ◦ Ti) =
∑

j

e−tλj Tr((π(i, λj) ◦ Ti)). (5.18)

Consider
∑n

i=0(−1)i Tr(Ti ◦ e−tPabs,i). Then
∑n

i=0(−1)i Tr(Ti ◦ e−tPabs,i) =

=
n∑

i=0

(−1)i
∑

j

e−tλj Tr((π(i, λj)◦Ti)) =
∑

j

e−tλj
n∑

i=0

(−1)i Tr((π(i, λj)◦Ti)).

(5.19)



2. L2−LEFSCHETZ NUMBERS OF A GEOMETRIC ENDOMORPHISM 115

Now examine carefully this last expression. Both π(i, λj)◦Ti : L2(M,Ei)→
Ei(λj) and π(i, λj) : L2(M,Ei) → Ei(λj) are trace-class operators. This
implies that Tr(π(i, λj) ◦ Ti) = Tr(π(i, λj) ◦ π(i, λj) ◦ Ti) = Tr(π(i, λj) ◦ Ti ◦
π(i, λj)) and this last one is equal to the trace of π(i, λj) ◦ Ti : Ei(λj) →
Ei(λj). But if we take the following complex for λj 6= 0

......
Pλmax,i−1→ Ei(λj)

Pλmax,i→ Ei+1(λj)
Pλmax,i+1→ Ei+2(λj)

Pλmax,i+2→ ... (5.20)

we know that (5.20) is an acyclic complex. Moreover it is immediate to
check that π(i, λj)◦Ti is an endomorphism of (5.20) and therefore, applying
lemma 5.17, we can conclude that

∑n
i=0(−1)i Tr(π(i, λj)◦Ti) = 0 for λj 6= 0.

This leads to a relevant simplification of (5.19):
n∑

i=0

(−1)i Tr(Tie
−tPabs,i) =

∑

j

e−tλj
n∑

i=0

(−1)i Tr(π(i, λj) ◦ Ti) = (5.21)

n∑

i=0

(−1)i Tr(π(i, 0) ◦ Ti).

Finally, using lemma 5.12, it follows that Tr(π(i, 0) ◦ Ti) = Tr(T ∗i ) and
therefore the theorem is proved. �

As an immediate consequence of theorem 5.11 we have the following
corollary

Corollary 5.15. In the same assumptions of theorem 5.11 then

L2,max(T ) = lim
t→0

n∑

i=0

(−1)i Tr(Ti ◦ e−tPabs,i) (5.22)

and analogously

L2,min(T ) = lim
t→0

n∑

i=0

(−1)i Tr(Ti ◦ e−tPrel,i) (5.23)

Before to go ahead we add some comments to theorem 5.11.

Remark 5.1. In the statement of theorem 5.11 we assume that the
endomorphism T satisfies definition 5.1. But from the proof it is clear
that the particular structure of the endomorphism, that is Ti = φi ◦ f∗
doesn’t play any role. It is just a sufficient condition to assure that each
Ti induces a bounded map acting on L2(M,Ei) and that T is an endomor-
phism of (L2(M,Ei), Pmax/min,i). Therefore if we have a n− tuple of map

T = (T1, ..., Tn) such that, for each i = 0, ..., n, Ti : L2(M,Ei)→ L2(M,Ei)
is bounded and Ti+1 ◦ Pmax/min,i = Pmax/min,i ◦ Ti on D(Pmax/min,i) then
we can state and prove theorem 5.11 in the same way.

Remark 5.2. We stated theorem 5.11 in the case of an elliptic complex
of differential cone operators over a compact manifold with conical singu-
larities. This is because, using the result coming from the theory of elliptic
differential cone operators, we know that (L2(M,Ei), Pmax/min,i) are Fred-

holm complexes and that e−tPabs/rel,i are trace-class operators. Therefore it
is possible to define maximal and minimal L2−Lefschetz numbers and to



116 5. L2−LEFSCHETZ NUMBERS

prove theorem 5.11. A priori it is not possible to do the same for an arbi-
trary elliptic complex of differential operators over a (possible incomplete)
riemannian manifold (M, g). But it is clear that if we know that the maximal
and the minimal extension of our complex are Fredholm complexes and that
for each i the heat operator constructed from the i-th laplacian associated
to the maximal/minimal complex is a trace-class operator, then it is possi-
ble to state and prove in the same way formulas (5.13) and (5.14) for the
L2−Lefschetz numbers associated to the maximal and minimal extension of
our complex.

We conclude the section with the following theorems:

Theorem 5.16. Let X be a compact manifold with conical singularities
of dimension m+1 and let g be a conic metric on reg(X) = M . Consider an
elliptic complex of differential cone operators as in (5.8) and let T = φ ◦ f∗
be a geometric endomorphism of (5.8) as in definition 5.1. Finally suppose
that f has only simple fixed points. Then we have:

L2,max/min(T ) = lim
t→0

(
∑

q∈Fix(f)

n∑

i=0

(−1)i
∫

Uq

tr(T ◦ e−tPabs/rel,i)dvolg) (5.24)

where Uq is an open neighborhood of q ∈ Fix(f).

Proof. We know, by the assumptions, that f has only simple fixed
points. For each of these point, that we label q, let Uq be an open neighbor-
hood of q. Then, using again corollary 5.15, we know that L2,max/min(T ) =

limt→0
∑

i(−1)i
∫
M tr(Ti ◦ e−tPabs/rel,i). Obviously we can break the member

on the right as

∑

q∈Fix(f)

n∑

i=0

(−1)i
∫

Uq

tr(Ti ◦ e−tPabs/rel,i)dvolg+

+
n∑

i=0

(−1)i
∫

V
tr(Ti ◦ e−tPabs/rel,i)dvolg

where V = M − ∪q∈Fix(f)Uq. Clearly, in the term on the left we mean
the regular part of Uq when q ∈ Fix(f) ∩ sing(X). Now, as remarked
previously, we know that f(q) = q for each q ∈ sing(X). This implies
{(f(q), q) : q ∈ V } is a compact subset of M ×M disjoint from ∆M . So we
can use the second property of theorem 4.14 to conclude that

lim
t→0

∫

V
tr(φi ◦ e−tPabs/rel,i(f(q), q))dvolg =

=

∫

V
lim
t→0

tr(φi ◦ e−tPabs/rel,i(f(q), q))dvolg = 0.

This complete the proof. �

The second point in the above theorem suggests to break the Lefschetz
numbers as a contribution of two terms, that is

L2,max/min(T ) = Lmax/min(T,R) + Lmax/min(T,S) (5.25)
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where Lmax/min(T,R) is the contribution given by the simple fixed point
lying in reg(X), that is

Lmax/min(T,R) = lim
t→0

(
∑

q∈Fix(f)∩reg(X)

n∑

i=0

(−1)i
∫

Uq

tr(Ti ◦ e−tPabs/rel,i)dvolg)

and analogously Lmax/min(T,S) is the contribution given by the simple fixed
point lying in Fix(f) ∩ sing(X), that is

Lmax/min(T,S) = lim
t→0

(
∑

q∈Fix(f)∩sing(X)

n∑

i=0

(−1)i
∫

Uq

tr(Ti◦e−tPabs/rel,i)dvolg).

Theorem 5.17. In the hypothesis of the previous theorem, suppose fur-
thermore that for each i = 0, ..., n

P ti ◦ Pi + Pi−1 ◦ P ti−1 : C∞c (M,Ei)→ C∞c (M,Ei)

is a generalized Laplacian (see definition 4.13). Then we get :

L2,max(T ) =
∑

q∈Fix(f)∩M

n∑

i=0

(−1)i Tr(φi)

|det(Id− dqf)| + L2,max(T,S).

Analogously for L2,min(T ) we have

L2,min(T ) =
∑

q∈Fix(f)∩M

n∑

i=0

(−1)i Tr(φi)

|det(Id− dqf)| + L2,min(T,S).

Proof. By theorem 5.16, we know that the L2−Lefschetz numbers de-
pend only on the simple fixed point of f and that we can localize their
contribution, that is,

L2,max/min(T ) = lim
t→0

(
∑

q∈Fix(f)

n∑

i=0

(−1)i
∫

Uq

tr(T ◦ e−tPabs/rel,i)dvolg)

where Uq is an arbitrary open neighborhood of q. Now if q ∈ reg(X) ∩
Fix(f), by the assumptions, we can use the local asymptotic expansion
recalled in the last point of theorem 4.14. Now, to get the conclusion, the
proof is exactly the same as in the closed case; see for example [9] theorem
6.6 or [62] theorem theorem 10.12. �

We have the following immediate corollary:

Corollary 5.18. In the same hypothesis of theorem 5.17; Then:

(1) Lmax(T,R) = Lmin(T,R) that is, the simple fixed points in M give
the same contributions for both the Lefschetz numbers L2,max/min(T ).

(2) Lmax/min(T,S) do not depend on the particular conic metric fixed
on M and on the metrics ρ0, ..., ρn respectively fixed on E0, ..., En.

Proof. The first assertion is an immediate consequence of the second
point of theorem 5.17. For the second statement, by proposition 5.10, we
know that L2,max/min(T ) are independent on the conic metric we put over M
and on the metric ρ0, ..., ρn respectively on E0, ..., En. Again, by the second
point of theorem 5.17, we know that also Lmax/min(T,R) are independent
from the conic metrics and on the metric ρ0, ..., ρn respectively on E0, ..., En.
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Therefore the same conclusion holds forLmax/min(T,S). The corollary is
proved. �



CHAPTER 6

The contribution of the singular points

In this chapter the main formulas for the L2−Lefschetz numbers are
proved. In the fist section, under suitable hypothesis, we describe the con-
tribution of the singular points using a sort of ”modified zeta function”
which involves in its definition the action of the endomorphism T . More-
over a geometric interpretation for the contribution given by the singular
points of attractive or repulsive type is provided. Finally the second section
concerns the case of a short elliptic complex of differential operators.

1. First case

The aim of this section is to give, in some particular cases, an explicit
formula for Lmax/min(T,S), that is for the contribution given by the singular
points to the Lefschetz numbers L2,max/min(T ).
Consider the same situation described in theorem 5.16. Suppose moreover
that the following properties hold:

(1) For each q ∈ sing(X) there exists an isomorphism χq : Uq →
C2(Lq) such that on [0, 2) × Lq, using (4.5), each operator Ak is
constant in x and, using the decomposition (5.5), the map f takes
the form:

f = (rA(p), B(p)). (6.1)

(2) On reg(C2(Lq)), using again the isomorphism χq : Uq → C2(Lq),
the conic metric g satisfies g = dr2 + r2h with h that does not
depend on r and each metric ρi on Ei does not depend on r in a
collar neighborhood of ∂M .

Before stating the next theorem we recall a definition from [51].

Definition 6.1. Let Ut : L2(reg(C(N)), E)→ L2(reg(C(N)), E) be the

isometry as defined in the proof of lemma (4.17), that is Ut(γ) = t
n+1
2 γ(tr, p).

Consider an operator P0 ∈ Diffµ,ν0 (reg(C(N))) such that, using the expres-
sion (4.5), each Ak is constant in x. Then a closed extension P of P0 is said
scalable if U∗t PUt = tνP .

Lemma 6.2. Given P0 ∈ Diffµ,ν0 (reg(C(N))) as in definition 6.1 then
P0,max and P0,min are always scalable. If we take P t0, the formal adjoint of
P0, then also P t0,min ◦ P0,max, P t0,max ◦ P0,min, P0,min ◦ P t0,max and P0,max ◦
P t0,min are scalable extensions of P t0 ◦ P0 and P0 ◦ P t0 respectively. Finally,

if in a complex we consider Pi := P ti ◦ Pi + Pi−1 ◦ P ti−1 (see the statement
of theorem 5.17) then also the closed extension Pabs,i and Prel,i (see (1.15)
and (1.16)) are scalable extensions.

119
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Proof. For the first assertion see [51] pag. 58. The others assertions
are an immediate consequence of the previous one and of the definition of
scalable extension. �

Now we are ready to state the following theorem:

Theorem 6.3. In the same hypothesis of theorem 5.16. Suppose more-
over that the two properties described above definition 6.1 hold. Then we
have:

Lmax/min(T,S) = (6.2)

∑

q∈sing(X)

n∑

i=0

(−1)i
1

2ν

∫ ∞

0

dx

x

∫

Lq

tr(φi ◦ e−xPabs/rel,i(A(p), B(p), 1, p))dvolh.

Proof. Let q ∈ sing(X). By the hypothesis we know that there exists
an open neighborhood Uq and an isomorphism χq : Uq → C2(Lq) such that,
on C2(Lq), f takes the form (6.1) and each Ak is constant in x. Using the
properties stated in [51] pag. 42-43, we get that the limit

lim
t→0

∫

reg(Uq)
tr(φi ◦ e−tPabs/rel,i(rA(p), B(p), r, p))dvolg

is equal to

lim
t→0

∫

reg(C2(Lq))
tr(φi ◦ e−tPabs/rel,i(rA(p), B(p), r, p))rmdvolhdr

where, with a little abuse of notation, in the second expression we mean the
heat kernel associated to the absolute and relative extension of the operator,
induced by Pi|Uq through χq, acting on C∞c (reg(C2(Lq)), (χ

−1
q )∗Ei) . So, for

each i = 0, ..., n, we have to calculate

lim
t→0

∫

reg(C2(Lq))
tr(φi ◦ e−tPabs/rel,i(rA(p), B(p), r, p))rmdrdvolh.

Moreover, we assumed that, on reg(C2(Lq)), the conic metric g satisfies
g = dr2 + r2h with h that does not depend on r and that each metric ρi on
Ei does not depend on r in a neighborhood of ∂M . This implies that, for
each i = 0, ..., n, the operator Pi satisfies the assumption at the beginning
of the subsection, that is each Ak does not depend on x. Therefore, using
lemma 6.2, we get that Pabs/rel,i are scalable extensions of Pi. Now, after
these observations, we can go on to calculate

lim
t→0

∫

reg(C2(Lq))
tr(φi ◦ e−tPabs/rel(rA(p), B(p), r, p))dvolg.

Using lemma 4.17 and the fact that Pabs/rel,i are scalable extensions of Pi
we get

∫

reg(C2(Lq))
tr(φi ◦ e−tPabs/rel,i(rA(p), B(p), r, p))rmdrdvolh =

=

∫ 2

0

∫

Lq

1

r
tr(φi ◦ e−tr

−2νPabs/rel,i(A(p), B(p), 1, p))dvolhhdr.
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Now if we put t
r2ν

= x we get −2νtdr
r2ν+1 = dx which implies that dr

r = dx
x =

−2νtdr
r2ν+1

r2ν

t and in conclusion dr
r = −1

2ν
dx
x . Moreover when r goes to 0 then x

goes to ∞ and when r goes to 2 then x goes to t
4 . So we get

∫ 2

0

∫

Lq

1

r
tr(φi ◦ e−tr

−2νPabs/rel,i(A(p), B(p), 1, p))dvolhhdr =

=
1

2ν

∫ ∞

t/4

dx

x

∫

Lq

tr(φi ◦ e−xPabs/rel,i(A(p), B(p), 1, p))dvolh. (6.3)

Therefore to conclude we have to evaluate the limit

lim
t→0

1

2ν

∫ ∞

t/4

dx

x

∫

Lq

tr(φi ◦ e−xPabs/rel,i(A(p), B(p), 1, p))dvolh (6.4)

To do this consider the term
∫
Lq

tr(φi ◦ e−xPabs/rel,i(A(p), B(p), 1, p))dvolh.

We know, by the hypothesis, that f has only simple fixed points. In partic-
ular each q ∈ sing(X) is a simple fixed point. The conditions described in
definition 5.6 together with (6.1) implies that either A(p) 6= 1 for all p ∈ Lq
or B : Lq → Lq has not fixed points. Anyway each of these conditions im-
plies that when p runs over Lq then {(A(p), B(p), 1, p)} is a compact subset
of reg(C2(Lq))× reg(C2(Lq)) that doesn’t intersect the diagonal. Therefore
we can use the second property stated in theorem 4.14 to conclude that,
when x→ 0,
∫

Lq

tr(φi ◦ e−xPabs/rel,i(A(p), B(p), 1, p))dvolh = O(xN ) for each N > 0.

(6.5)
In this way we can conclude that the limit (6.4) exists and we have

lim
t→0

1

2ν

∫ ∞

t/4

dx

x

∫

Lq

tr(φi ◦ e−xPabs/rel,i(A(p), B(p), 1, p))dvolh =

=
1

2ν

∫ ∞

0

dx

x

∫

Lq

tr(φi ◦ e−xPabs/rel,i(A(p), B(p), 1, p))dvolh. (6.6)

Finally it is also clear that (6.6) converges because, given a sufficient small
ε > 0 we have

(6.6) =

∫ ε

0
O(xN )dx+

∫ ∞

ε
x−1dx

∫

Lq

tr(φi◦e−xPabs/rel,i(A(p), B(p), 1, p))dvolh.

The first term is clearly finite and the second one is finite because, by (6.3),
it is the trace of Ti◦e−tPabs/rel,i valued in ε and Ti◦e−tPabs/rel,i are trace-class.
This completes the proof. �

Now, for each i = 0, .., n, using again the hypothesis and the notations
of theorem 6.3, and assuming still that q is a simple fixed point for f , define
the following ”modified version” of the classical ζ−function:

ζTi,q(Pabs/rel,i)(s) := (6.7)

=
1

2ν

∫ ∞

0
xs−1dx

∫

Lq

tr(φi ◦ e−xPabs/rel,i(A(p), B(p), 1, p))dvolh.
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The definition makes sense for each s ∈ C because, as observed in the proof
of theorem 6.3, {(A(p), B(p), 1, p)} is a compact subset of reg(X)× reg(X)
that is disjoint from the diagonal ∆reg(X). Therefore we can apply the second
point of theorem 4.14 to conclude that, when x→ 0,
∫

Lq

tr(φi ◦ e−xPabs/rel,i(A(p), B(p), 1, p))dvolh = O(xN ) for each N > 0.

(6.8)
and this implies that ζTi,q(Pabs/rel,i)(s) is a holomorphic function over the
whole complex plane. The reason behind (6.6) is that if we compare (6.6)
with the definitions of the zeta functions for a generalized Laplacian, see
for example [9] pag. 300, then it natural to think at (6.6) as a sort of zeta
function for the operators Pabs/rel,i valued in 0, which takes account of the
action of Ti in its definition. In this way, using (6.7), we can reformulate
theorem 6.3 in a more concise way:

Lmax/min(T,S) =
∑

q∈sing(X)

n∑

i=0

(−1)iζTi,q(Pabs/rel,i)(0). (6.9)

Before to conclude the section we make the following remarks.
In the same hypothesis of theorem 5.16 consider a point q ∈ sing(X) such
that q is an attractive simple fixed point. We recall that over a neighborhood
Uq ∼= [0, 2)×Lq of q we can look at f as a map given by (rA(r, p), B(r, p)) :
[0, 2)×Lq → [0, 2)×Lq with A and B smooth up to 0. From definition 5.8 we
know that q is attractive if limr→0A(r, p) < 1 for each fixed p ∈ Lq. Clearly
this implies that f(Uq) ⊂ Uq. Therefore it follows that, if we consider the
complex

0→ C∞c (Uq, E0|Uq)
P0→ C∞c (Uq, E1|Uq)

P1→ ...
Pn−1→ C∞c (Uq, En|Uq)

Pn→ 0
(6.10)

then T is also a geometric endomorphism of (6.10) and, using proposition
5.3, we get that T extends as a bounded endomorphism of the complexes
(L2(Uq, Ei|Uq), (P |Uq)max/min,i).
Moreover, by the results proved in the first and the second chapter of [51],
it follows that (L2(Uq, Ei|Uq), (P |Uq)max/min,i) are both Fredholm complexes

and that, the respective heat operators , e−t(P|Uq )abs/rel,i : L2(Uq, Ei|Uq) →
L2(Uq, Ei|Uq), are trace-class operators.
Using again the properties stated in [51] at pag. 42-43, it follows that for
each open neighborhood Vq of q, such that Vq is a subset of Uq, we have

lim
t→0

∫

Vq

tr(φi ◦ e−tPabs/rel,i(rA(r, p), B(r, p), r, p)dvolg =

= lim
t→0

∫

Vq

tr(φi ◦ e−t(P|Uq )abs/rel,i(rA(r, p), B(r, p), r, p)dvolg.

Suppose now that we are in the hypothesis of theorem 6.3. By the proof of
the same theorem, it follows that for each 0 < b ≤ 2

lim
t→0

∫ b

0

∫

Lq

tr(φi ◦ e−t(P|Uq )abs/rel,i)(rA(p), B(p), r, p)rmdvolhdr =
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∫ ∞

0
x−1dx

∫

Lq

tr(φi ◦ e−x(P|Uq )abs/rel,i)(A(p), B(p), 1, p)dvolh

that is it does not depend on the particular b we fixed. Therefore we can
conclude that

lim
t→0

∫

Uq

tr(φi ◦ e−tPabs/rel,i(rA(p), B(p), r, p)dvolg = (6.11)

= lim
t→0

∫

Uq

tr(φi ◦ e−t(P|Uq )abs/rel,i(rA(p), B(p), r, p)dvolg.

Summarizing we obtained that it makes sense to define, for an attractive sim-
ple fixed point, L2,max/min(T |Uq) as the L2−Lefschetz numbers of T acting
on the maximal/minimal extension of (6.10) and that, under the hypothesis
of theorem 6.3, it satisfies

L2,max/min(T |Uq) = lim
t→0

n∑

i=0

(−1)i
∫

Uq

tr(φi◦e−tPabs/rel,i(rA(p), B(p), r, p)dvolg.

(6.12)
Now we proceed making another remark before the conclusion.
As showed in the second section, T ∗i , the adjoint of Ti, has the following
form:

T ∗i = θi ◦ (f−1)∗ (6.13)

where θi = τφ∗i with τ positive or negative function respectively if f pre-
serves or reverses the orientation.
Moreover, a simple computation, shows that T ∗ is an endomorphism of the
following Fredholm complexes: (L2(M,Ei), P

t
max/min,i). By the fact that, if

Q : H → H is a trace-class operator acting on the Hilbert space H then also
Q∗ is trace-class and Tr(Q) = Tr(Q∗), it follows that

Tr(Ti ◦ e−tPabs/rel,i) = Tr(e−tPabs/rel,i ◦ T ∗i ) = Tr(T ∗i ◦ e−tPabs/rel,i). (6.14)

In other words we proved that:

L2,max/min(T ) = L2,min/max(T ∗) (6.15)

where T acts on (L2(M,Ei), Pmax/min,i) and T ∗ acts on (L2(M,Ei), P
t
min/max,i).

A second consequence is the following: consider a point q ∈ sing(X) such
that q is a repulsive simple fixed point. Clearly, by the fact that f on
Uq ∼= C2(Lq) takes the form f = (rA(p), B(p)) it follows that f−1 =
(rG(p), B−1(p)) where G = 1

A◦B−1 . The fact that q is repulsive means
that A > 1. Therefore it follows that q is an attractive simple fixed point
for T ∗.
Finally we are in positions to conclude with the following results:

Corollary 6.4. In the same hypothesis of theorem 6.3; Suppose more-
over that q ∈ sing(X) is an attractive fixed point. Then

n∑

i=0

(−1)iζTi,q(Pabs/rel,i)(0) = L2,max/min(T |Uq).

In particular this tells us that
∑n

i=0(−1)iζTi,q(Pabs/rel,i)(0) has a geometric
meaning itself.
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Proof. It follows immediately from theorem 6.3 and (6.12). �

Theorem 6.5. In the same hypothesis of theorem 5.17. Suppose more-
over that the first property stated at the beginning of the section holds. Then
we have:

L2,max/min(T ) = (6.16)

=
∑

p∈Fix(f)∩M

n∑

i=0

(−1)i Tr(φi)

|det(Id− dqf)| +
∑

q∈sing(X)

n∑

i=0

(−1)iζTi,q(Pabs/rel,i)(0)

where in (6.16) the contribution given by the singular points is calculated
fixing any conic metric g on reg(X) and any metrics ρ0, ..., ρn on E0, ..., En
which satisfy the hypothesis of theorem 6.3.
Moreover if each point q ∈ sing(X) is an attractive fixed point we have:

L2,max/min(T ) = (6.17)

=
∑

p∈Fix(f)∩M

n∑

i=0

(−1)i Tr(θi)

|det(Id− dq(f−1))| +
∑

q∈sing(X)

L2,min/max(T ∗|Uq)

while if each q ∈ sing(X) is a repulsive fixed point then we have :

L2,max/min(T ) = (6.18)

=
∑

p∈Fix(f)∩M

n∑

i=0

(−1)i Tr(θi)

|det(Id− dq(f−1))| +
∑

q∈sing(X)

L2,min/max(T ∗|Uq).

Finally we remark again that, when Pi is a generalized Laplacian, the con-
tribution given by the singular simplex fixed points, that is

Lmax/min(T,S) =
∑

q∈sing(X)

n∑

i=0

(−1)iζTi,q(Pabs/rel,i)(0)

does not depend on the particular conic metric that we fix on reg(X) and
on the metrics ρ0, ..., ρn that we fix on E0, ..., En.

Proof. As showed in corollary 5.18, when each Pi is a generalized
Laplacian, then L2,max/min(T ), L(T,R) and Lmax/min(T,S) do not depend
on the conic metric we fix on reg(X) and do not depend on the metrics we
fix ρ0, ..., ρn on E0, ..., En. Therefore, without loss of generality, we can as-
sume that for each q ∈ sing(X), using the isomorphism χq : Uq → C2(Lq) of
(6.1), the conic metric g satisfies g = dr2 + r2h with h that does not depend
on r and that each metric ρi on Ei does not depend on r in a neighborhood
of ∂M . In this way we are in position to apply theorem 6.3 and so (6.16)
follows combining the theorems 5.17 and 6.3. Moreover this tell us that, in
(6.16), the contribution of the singular points is well defined and does not
depend on the metrics g, ρ0, ..., ρn (satisfying the assumptions of theorem
6.3) used to calculate it. The second assertion follows from corollary 6.4
while the last assertion follows from (6.13) and (6.15). �

Remark 6.1. We stress on the fact that, unlike theorem 6.3, in theorem
6.5 there are not assumptions about the conic metric g on reg(X) and about
the metrics ρ0, ..., ρn on E0, ..., En respectively.



2. THE CASE OF A SHORT COMPLEX 125

Finally we conclude the section with the following comment.
The condition that we required at the beginning of the subsection for each
operator Pi, that each Ak does not depend from x, might appear as to be
too strong at first right. Obviously this is indeed a strong assumption but it
is at the same time quite natural because the most natural complex arising
in differential geometry, the de Rham complex, satisfies this assumption.
The requirement (6.1), about the behavior of f near the point p, is justified
by the idea to evaluate Lmax/min(T,S) using the scaling invariance of the
heat kernel, see lemma 4.17. In fact if f = (rA(r, p), B(r, p)) then, after
the scaling invariance is used, we get in our expression the term tr(φi ◦
e−tr

−2νPabs/rel,i(A(r, p), B(r, p), 1, p)). To have that this last expression make
sense we need that (A(r, p), B(r, p), 1, p) ∈ G(f) and therefore this leads us
to assume (6.1).

2. The case of a short complex

The aim of this subsection is to give a formula for the L2−Lefschetz
numbers in the particular case of a short complex, that is is an elliptic conic
operator P : C∞c (M,E)→ C∞c (M,E), using the result stated in proposition
4.18. To do this we start describing our geometric situation which is the
same of the previous results with some additional requirements: let X be a
compact and oriented manifold with conical singularities of dimension m+1.
Let M be its regular part and let M be the compact manifold with boundary
which desingularize X. Endow M with a conic metric g. Let (E, ρ) be a
vector bundle endowed with a metric (riemannian or hermitian) according
if E is complex or real. Let (E, ρ) be the extension of (E, ρ) over M . Let
T = (T1, T2) be a geometric endomorphism where, as we already know,
Ti = φi ◦ f∗ with f : M →M is a diffeomorphism as described in definition
5.1 and φ : f∗E → E a bundle homorphism. Suppose that Fix(f) is made
only by simple fixed points. Finally, suppose that in each neighborhood
Uq ∼= C2(Lq) of q ∈ sing(X) the operator P take the form

P =
n

2r
+

∂

∂r
+

1

r
S (6.19)

where S ∈ Diff1(N,EN ) is an elliptic operator and the map f take the form

f = (rc,B(p)), c 6= 1 (6.20)

where c > 0 and depends only on q.

Theorem 6.6. In the same hypothesis of theorem 6.3; suppose moreover
that the properties described above hold. Then for each q ∈ sing(X) we have:

ζT0,q(P
t
max ◦ Pmin)(0) =

c
1−n
2

4

∫ ∞

0
e−

u(c2+1)
4

∑

λ∈specS

Ip+(λ)(
uc

2
)duTr(Φ̃0,λ,q)

(6.21)
and analogously

ζT1,q(Pmin ◦ P tmax)(0) =
c
1−n
2

4

∫ ∞

0
e−

u(c2+1)
4

∑

λ∈specS

Ip−(λ)(
uc

2
)duTr(Φ̃1,λ,q)

(6.22)
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where

Tr(Φ̃j,λ,q) =

∫

Lq

tr(φjΦλ,q(B(p), p))dvolh, j = 0, 1.

Proof. We give the proof only for (6.21) because for (6.22) is completely
analogous. To prove the assertion we have to calculate

lim
t→0

∫

reg(C2(Lq))
tr(T0 ◦ e−P

t
max◦Pmin)dvolg.

By the assumptions we are in position to use the second statement of propo-
sition 4.18 and therefore it is clear that the smooth kernel of T0◦e−P tmax◦Pmin
is ∑

λ∈specS

1

2t
(crs)

1−n
2 Ip+(λ)(

crs

2t
)e−

c2r2+s2

4t φ0Φλ(B(p), q) (6.23)

In this way we have to calculate

lim
t→0

∫ 2

0

∑

λ∈specS

1

2t
(cr2)

1−n
2 Ip+(λ)(

cr2

2t
)e−

r2(c2+1)
4t rmdr

∫

Lq

tr(φ0Φλ(B(p), q))dvolh.

Clearly
∫
Lq

tr(φ0Φλ(B(p), q))dvolh does not depend on t and so, if we label

it Tr(Φ̃0,λ,q), our task now is to calculate

lim
t→0

∫ 2

0

∑

λ∈specS

1

2t
(cr2)

1−n
2 Ip+(λ)(

cr2

2t
)e−

r2(c2+1)
4t rmdr.

To do this put r2

t = u. Then rdr = tdu
2 . Moreover when r goes to 2 u goes

to 4
t while when r goes to 0 u goes to zero. So, applying this change of

variable, we get

lim
t→0

c
1−n
2

4

∫ 4
t

0
e−

u(c2+1)
4

∑

λ∈specS

Ip+(λ)(
uc

2
)du.

Now, by the asymptotic behavior of the integrand, we know that this limit
exists and is equal to

c
1−n
2

4

∫ ∞

0
e−

u(c2+1)
4

∑

λ∈specS

Ip+(λ)(
uc

2
)du.

So we proved the statement. �
From theorem 6.6 we have the following immediate corollary:

Corollary 6.7. In the same hypothesis of theorem 6.6 but without any
assumptions about the conic metric g on reg(X) and the metric ρ on E.
Suppose moreover that P t ◦ P : C∞c (M,E) → C∞c (M,E) is a generalized
Laplacian. Then we have the following formula:

L2,min(T ) =
∑

q∈M∩Fix(f)

1∑

j=0

(−1)j Tr(φj)

|det(Id− dqf)|+ (6.24)

+
∑

q∈sing(X)

c
1−n
2

4

∫ ∞

0
e−

u(c2+1)
4

∑

λ∈specS

Ip+(λ)(
uc

2
)duTr(Φ̃0,λ,q)+
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−
∑

q∈sing(X)

∫ ∞

0
e−

u(c2+1)
4

∑

λ∈specS

Ip−(λ)(
uc

2
)duTr(Φ̃1,λ,q)

where the contribution of the singular points is calculated fixing any conic
metric g on reg(X) and any metric ρ on E which satisfy the assumptions
of theorem 6.6.

Proof. As observed in the proof of theorem 6.5, by the fact that P t ◦P
is a generalized Laplacian, it follows that L(T,S) does not depend on the
conic metric we fix on reg(X) and does not depend on the metric ρ we fix
on E. Therefore, without loss of generality, we can assume that for each
q ∈ sing(X), using the isomorphism χq : Uq → C2(Lq) of (6.1), the conic
metric g satisfies g = dr2 + r2h with h that does not depend on r and that
each metric ρi on Ei does not depend on r in a neighborhood of ∂M . In this
way we are in position to apply theorem 6.6 and therefore (6.24) follows. �





CHAPTER 7

A thorough analysis of the de Rham case

In this chapter we deal with the L2−de Rham complexes over a compact
manifold with conical singularities endowed with a conic metric over its
regular part. The first section contains the applications of the previous
results. In particular we give some formulas in the case that each q ∈
sing(X) is an attractive fixed point. Finally the last section contains some
consequences arising from Cheeger’s work on the heat kernel.

1. Applications of the previous results

As remarked previously, theorems 5.17 and 6.5, corollary 6.4 and in
particular (6.16) hold for the Hilbert complexes (L2Ωi(M, g), dmax/min,i).
More explicitly, we have the following result:

Theorem 7.1. Let X be a compact and oriented manifold with isolated
conical singularities and of dimension m + 1. Let g be a conic metric over
its regular part reg(X). Let f : X → X a map induced by a diffeomorphism
f : M → M which fixes each connected component of ∂M . Consider T :=
(df)∗ ◦ f∗, the natural endomorphism of the de Rham complex induced by f .
Finally suppose that f has only simple fixed points. Then we have:

L2,max/min(T ) =
∑

q∈Fix(f)∩reg(X)

sgn det(Id− dqf) + Lmax/min(T,S). (7.1)

If in a neighborhood of each simple fixed point q f satisfies the condition
described in (6.1), then we have: L2,max/min(T ) =

=
∑

q∈Fix(f)∩reg(X)

sgn det(Id− dqf) +
∑

q∈sing(X)

m+1∑

i=0

(−1)iζTi,q(∆abs/rel,i)(0)

(7.2)
where in (7.2) the contribution of the singular points is calculated using
any conic metric g on reg(x) such that, again through the isomorphism
χq : Uq → C2(Lq) of (6.1), g takes the form dr2 + r2h and h does not
depend on r.
In particular if each q ∈ sing(X) is an attractive simple fixed point then we
have:

L2,max/min(T ) =
∑

q∈Fix(f)∩reg(X)

sgn det(Id−dqf)+
∑

q∈sing(X)

L2,max/min(T |Uq).

(7.3)
while if each q ∈ sing(X) is a repulsive simple fixed point then we have:

L2,max/min(T ) = (7.4)

129
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=
∑

q∈Fix(f)∩reg(X)

sgn det(Id− dq(f−1)) +
∑

q∈sing(X)

L2,min/man(T ∗|Uq).

Moreover in (7.2) the member on the right, that is Lmax/min(T,S), does not
depend on the particular conic metric that we fix on reg(X).

Proof. (7.1) follows immediately from theorem 5.17. In particular the
expression for Lmax/min(T,R) follows by a standard argument of linear alge-
bra; see for example [4] or [62]. (7.2) follows as in the proof of theorem (6.5);
in particular, as remarked in the proof of lemma 4.17, the scaling invariance
property for the heat operator associated to positive self-adjoint extension
of ∆i, was proved by Cheeger in [25]. Finally (7.3) and (7.4) follows again
from theorem 6.5. �

By the fact that f : X → X is induced by a diffeomorphism of M it
follows that the map f satisfies f(sing(X)) = sing(X) and f(reg(X)) =
reg(X). This implies, see for example [38], that if we fix a perversity p
then f induces a well defined map, f∗, between the intersection cohomology
groups respect to the perversity p. In particular we have f∗ : ImH(X) →
ImH(X) and f∗ : ImH(X)→ ImH(X). Therefore it is natural to define in
this context, as it is showed in [40], the intersection Lefschetz number
respects to a given perversity p as

IpL(f) =
n∑

i=0

tr(f∗ : IpH i(X)→ IpH i(X)). (7.5)

IpL(f) is deeply studied, from a topological point of view, in [40] and [41]
in the more general context of a stratified pseudomanifold; our goal in the
next corollaries is to give an analytic description of ImL(f) and ImL(f)
when X is a compact manifold with conical singularities. In particular in
(7.10) we will give an analytic proof of a formula already proved in [40]. So,
using theorem 7.1 and theorem 4.13, we get the following results:

Proposition 7.2. In the same hypothesis of theorem 7.1; let q ∈ sing(X)
be an attractive fixed point . Let Uq be an open neighborhood of q iso-
morphic to C2(Lq) and suppose that f satisfies (6.1) and g takes the form
g = dr2 + r2h where h does not depend on r. Then, for i < m+1

2 , we have:

Tr((f |Uq)∗ : H i
2,max(Uq, g|Uq)→ H i

2,max(Uq, g|Uq)) = (7.6)

= Tr(B∗ : H i(Lq)→ H i(Lq)).

Proof. As it is showed in [24], in (4.13) the isomorphism between
H i

2,max(reg(C2(Lq)), g) and H i(Lq), for i < m
2 + 1

2 , is given by the pull-back

π∗ where π : (0, b)×F → F is the projection on the second factor and inverse
is given by va, the evaluation map in a, where a is any point (0, 2). Now by
the hypothesis, over Uq f can be written as (rA(p), B(p)). An immediate
check shows that π∗ ◦B∗ = B∗ ◦π∗ and therefore Tr((f |Uq)∗) = Tr(B∗). �
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Corollary 7.3. In the same hypothesis of theorem 7.1, suppose more-
over that near each point q ∈ sing(X) f satisfies (6.1). Then we have:

ImL(f) =
∑

q∈Fix(f)∩reg(X)

sgn det(Id−dqf)+
∑

q∈sing(X)

m+1∑

i=0

(−1)iζTi,q(∆abs,i)(0)

(7.7)
and analogously

ImL(f) =
∑

q∈Fix(f)∩reg(X)

sgn det(Id−dqf)+
∑

q∈sing(X)

m+1∑

i=0

(−1)iζTi,q(∆rel,i)(0)

(7.8)
Finally, if q ∈ sing(X) is an attractive fixed point, then we have

m+1∑

i=0

(−1)iζTi,q(∆abs,i)(0) =
∑

i<m
2

+ 1
2

(−1)i tr(B∗ : H i(Lq)→ H i(Lq)) (7.9)

and therefore from (7.7) we get:

ImL(f) = L2,max(T ) =
∑

q∈Fix(f)∩reg(X)

sgn det(Id− dqf)+ (7.10)

+
∑

q∈sing(X)

∑

i<m+1
2

(−1)i Tr(B∗ : H i(Lq)→ H i(Lq)).

Proof. As in theorem 7.1, to get the Lefschetz numbers, we can use a
conic metric g such that, in each neighborhood Uq of q ∈ sing(X), using the
isomorphism χq : Uq → C2(Lq), g takes the form g = dr2 +r2h where h does
not depend on r. Now (7.7) and (7.8) follow immediately by the previously
theorems. Finally (7.9) and (7.10) follow immediately from proposition 7.2.

�
Finally we have this last corollary; before stating it we recall that a

manifold with conical singularities of dimension m + 1 is a Witt space if
m+ 1 is even or, when it is odd, if H

m
2 (Lq) = 0 for each link Lq. For more

details see, for example, [38] .

Corollary 7.4. In the same hypothesis of corollary 7.3. Suppose more-
over that X is a Witt space. Then we get:

L2,max(T ) = L2,min(T ), Lmax(T,S) = Lmin(T,S) (7.11)

and, if each q ∈ sing(X) is an attractive fixed point then

Lmax(T,S) = Lmin(T,S) =
∑

q∈sing(X)

L2,max(T |Uq) =
∑

q∈sing(X)

L2,min(T |Uq) =

(7.12)

=
∑

q∈sing(X)

∑

i<m+1
2

(−1)i Tr(B∗a : H i(Lq)→ H i(Lq)).

Finally if each q ∈ sing(X) is repulsive then we have:

Lmax(T,S) = Lmin(T,S) =
∑

q∈sing(X)

L2,max(T ∗|Uq) =
∑

q∈sing(X)

L2,min(T ∗|Uq).

(7.13)
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Proof. (7.11) follows by the fact that, as it is showed in [24], if X is a
Witt space then for each i, ∆i : Ωi

c(reg(X))→ Ωi
c(reg(X)) is essentially self-

adjoint as unbounded operator acting on L2Ω(reg(X), g) and this implies
that dmax,i = dmin,i for i = 0, ...,m + 1. (7.12) follows by (7.11) combined
with (7.3) and (7.10). Finally (7.13) follows from the fact that X is Witt
and from theorem 6.5. �

2. Some further results arising from Cheeger’s work on the heat
kernel

The aim of this section is to approach the L2−Lefschetz numbers of
the L2−de Rham complex using the results of Cheeger stated in [24] and
in [25]. For simplicity assume that X is a Witt space. As recalled previ-
ously, if X is a Witt space and if over reg(X) we put a conic metric, then
∆i : L2Ω∗(reg(X), g) → L2Ω∗(reg(X), g) is essentially self-adjoint for each
i = 0, ...,m+1, with core domain given by the smooth compactly supported
forms. In particular this implies that, if dimX = m + 1, then for each
i = 0, ...,m + 1, dmax,i = dmin,i. Therefore, for each map f : X → X that
induces a geometric endomorphism T as in theorem 7.1, we have just one
L2−Lefschetz number that we label L2(T ).
Now we recall briefly the results we need and we refer to [24] and in par-
ticular to [25], section 3, for the complete details and for the proofs. Let N
be an oriented closed manifold of dimension m and let C(N) be the cone
over N . Endow reg(C(N)) with a conic metric g = dr2 + r2h where h is a
riemannian metric over N . In the mentioned papers Cheeger introduce four
types of differential forms over reg(C(N)), called forms of type 1, 2, 3 and
4, such that each eigenform of ∆i, the Laplacian acting on the i−forms over
reg(C(N)), can be expressed as convergent sum of these forms. For the def-
inition of these forms see [25] pag. 586-588. The main reason to introduce
these four types of forms is that now we can break the heat operator in four
pieces, see [25] pag. 90-92:

e−t∆i = 1e
−t∆i + 2e

−t∆i + 3e
−t∆i + 4e

−t∆i

where, for each l = 1, ..., 4, le
−t∆i is the heat operator built using the i−forms

of type l. As it is showed in [25], pag. 590-592, it is possible to give an
explicit expression for le

−t∆i . In particular for type 1 forms we have:

1e
−t∆i = (r1r2)a(i)

∑

j

∫ ∞

0
e−tλ

2
Jνj(i)(λr1)Jνj(i)(λr2)λdλφij(p1)⊗ φij(p2) =

(7.14)

= (r1r2)a(i)
∑

j

1

2t
e−

r21+r
2
2

4t Iνj(i)(
r1r2

2t
)φij(p1)⊗ φij(p2) (7.15)

where Iνj(i) is the modified Bessel function (see [51] pag. 67), a(i) = 1
2(1 +

2i−m), νj(i) = (µj + a2(i))
1
2 and a±j (i) = a(i)± νj(i). The corresponding

expression for type 2 forms is

2e
−t∆i =

∑

j

d1d2((r1r2)a(i−1)

∫ ∞

0
e−tλ

2
Jνj(i−1)(λr1) (7.16)
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Jνj(i−1)(λr2)λ−1dλφi−1
j (p1)⊗ φi−1

j (p2)).

The expression for forms of type 3 is:

3e
−t∆i =

∑

j

∫ ∞

0
e−tλ

2
((−a(i− 1)r

a(i−1)
1 Jνj(i−1)(λr1)+ (7.17)

+r
a(i−1)+1
1 J ′νj(i−1)(λr1)λ)

dφi−1
j (p1)
√
µj

+

+r
a(i−1)−1
1 Jνj(i−1)(λr1)dr1 ∧√µjφi−1

j (p1))⊗ ((−a(i− 1)r
a(i−1)
2 Jνj (λr2)+

+r
a(i−1)+1
2 J ′νj(i−1)(λr2)λ)

dφi−1
j (p2)
√
µj

+r
a(i−1)−1
2 Jνj (λr2)dr2∧√µjφi−1

j (p2))λ−1dλ

Finally for forms of type 4 we have:

4e
−t∆i = (r1r2)a(i−1)

∑

j

∫ ∞

0
e−tλ

2
Jνj(i−2)(λr1)

Jνj(i−2)(λr2)λdλdr1 ∧
dφi−2

j (p1)
√
µj

⊗ dr2 ∧
dφi−2

j (p2)
√
µj

=

= (r1r2)a(i−2)
∑

j

1

2t
e−

r21+r
2
2

4t Iνj(i−2)(
r1r2

2t
)dr1 ∧

dφi−2
j (p1)
√
µj

⊗ dr2 ∧
dφi−2

j (p2)
√
µj

(7.18)
Now suppose that for each point q ∈ sing(X), over a neighborhood Uq ∼=
C2(Lq), f satisfies (6.20).

Using Cheeger’s results recalled above, it make sense to break T ◦ e−t∆i ,
over C2(Lq), as a sum of four pieces such that:

lim
t→0

Tr(T ◦e−t∆i) = lim
t→0

Tr(T ◦ 1e
−t∆i+T ◦ 2e

−t∆i+T ◦ 3e
−t∆i+T ◦ 4e

−t∆i).

(7.19)
Moreover, using (5.11), (6.20), (7.15) and (7.18) it is clear that on reg(C2(Lq))
we have:

tr(T ◦ 1e
−t∆i)(r, p) = (cr2)a(i)

∑

j

1

2t
e−

r2(c2+1)
4t Iνj(i)(

cr2

2t
) tr(B∗φij ⊗B∗φij)

(7.20)
and analogously

tr(T ◦ 4e
−t∆i)(r, p) = (7.21)

(cr2)a(i−2)
∑

j

1

2t
e−

r2(c2+1)
4t Iνj(i−2)(

cr2

2t
) tr(dr∧

d(B∗φi−2
j )

√
µj

⊗dr∧
d(B∗φi−2

j )
√
µj

).

Now we are in position to state the following result:

Theorem 7.5. Let X, g and f be as in theorem 7.1 such that dimX =
m + 1. Suppose moreover that X is a Witt space and that, on each neigh-
borhood Uq ∼= C2(Lq) of each point q ∈ sing(X), f satisfies (6.20) and g
takes the form g = dr2 + r2h where h does not depend on r. Then, for each
q ∈ sing(X), we have:

(1) The forms of type 1 give a contribution only in degree 0.
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(2) The contribution given by q in degree zero depends only on the forms
of type 1 and we have

ζT0,q(∆0)(0) =
c
1−m

2

4
(

∫ ∞

0
e−u(c2+1)

∑

j

Iνj(0)(
cu

2
)du)(Tr(B∗φij ⊗B∗φij))

(7.22)
(3) The forms of type 4 give a contribution only in degree 2 and this

contribution is
Tr(T2 ◦ 4e

−t∆2) = (7.23)

c
1−m

2

4
(

∫ ∞

0
e−

u(c2+1)
4

∑

j

Iνj(0)(
cu

2
)du)(Tr(dr∧

d(B∗φi−2
j )

√
µj

⊗dr∧
d(B∗φi−2

j )
√
µj

)).

where Tr(T2 ◦ 4e
−t∆2) is taken over reg(C2(Lq)).

(4) The contribution given by q in the others degrees, that is i 6= 0, 2,
depends only on the forms of type 2 and 3.

Proof. First of all we note that from (7.15), (7.16), (7.17) and (7.18) it
follows that 1e

−t∆i = e−t∆i for i = 0 and that 4e
−t∆i occurs only for i ≥ 2.

Now, using (7.15) and (7.20) we know that, over reg(C2(Lq)),

lim
t→0

Tr(Ti ◦ 1e
−t∆i) =

= lim
t→0

∫ 2

0

∫

Lq

(cr2)a(i)
∑

j

1

2t
e−

r2(c2+1)
4t Iνj(i)(

cr2

2t
) tr(B∗φij ⊗B∗φij)rmdrdvolh.

Clearly this last term it is in turn equal to

lim
t→0

((

∫ 2

0
(cr2)a(i) 1

2t
e−

r2(c2+1)
4t

∑

j

Iνj(i)(
cr2

2t
)rmdr)(Tr(B∗φij ⊗B∗φij)))

(7.24)
and therefore, to get the first two points we have to calculate

lim
t→0

∫ 2

0
(cr2)a(i) 1

2t
e−

r2(c2+1)
4t

∑

j

Iνj(i)(
cr2

2t
)rmdr (7.25)

First of all remember that a(i) = 1
2(1−m+2i); therefore r2a(i)rm = r2i+1.

Now put r2

t = u. It follows immediately that dr = tdu
2r . Now, by the

fact that r2 = tu it follows that r2i+1 = tiuir and therefore we also get

r2i+1dr = ti+1uidu
2 . Moreover when r goes to 2 then u goes to 2

t and when r
goes to 0 then u goes to 0. In this way we have

lim
t→0

ca(i)

4
ti
∫ 2

t

0
e−u(c2+1)

∑

j

Iνj(i)(
c2u

2
)uidu (7.26)

Now, by the asymptotic behavior of the integrand it follows that

lim
t→0

ca(i)

4

∫ 2
t

0
e−u(c2+1)

∑

j

Iνj(i)(
c2u

2
)uidu =

=
ca(i)

4

∫ ∞

0
e−u(c2+1)

∑

j

Iνj(i)(
c2u

2
)uidu.
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Therefore we can conclude that

(7.26) =

{
c
1−m

2

4

∫∞
0 e−u(c2+1)

∑
j Iνj(0)(

c2u
2 )du i = 0

0 i > 0
(7.27)

In this way we proved the first and the second assertion. For the third
statement the proof is completely analogous to the previous one. Also in this
case it is clear that in order to establish the assertion we have to calculate:

lim
t→0

ca(i−2)+1

∫ 2

0

1

2t
e−

r2(c2+1)
4t

∑

j

Iνj(i−2)(
cr2

2t
)r2i−3dr.

Now if we put again r2

t = u the remaining part of the proof is completely
analogous to that one of the first two points.
Finally the last point follows from the first three points. �
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