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Introduction

By a remarkable result by W. L. Chow, [Cho49, Theorem V] (see also [Ser56]), projective manifolds (that is,
compact complex submanifolds of CPn :=

(
Cn+1 \ {0}

)/
(C \ {0}), for n ∈ N) are in fact algebraic (that is, they

can be described as the zero set of finitely many homogeneous holomorphic polynomials). One is hence interested
in relaxing the projective condition, looking for special properties on compact manifolds sharing a weaker structure
than projective manifolds. For example, a large amount of developed analytic techniques allows to prove strong
cohomological properties for compact Kähler manifolds (that is, compact complex manifolds endowed with a
Kähler metric, namely, a Hermitian metric admitting a local potential function), [SvD30, Käh33], see also [Wei58],
which are, in a certain sense, the “analytic-versus-algebraic”, [Cho49, Theorem V], or the “R-versus-Q”, [Kod54,
Theorem 4], version of projective manifolds. Kähler manifolds are in fact endowed with three different structures,
interacting each other: a complex structure, a symplectic structure, and a metric structure; it is the strong linking
between them that allows to develop many analytic tools and hence to derive the very special properties of
Kähler manifolds. In order to better understand any of such properties, it is natural to ask what of these three
structures is actually involved and required. Therefore, one is led to study complex, symplectic, and metric
contribution separately, possibly weakening either the interactions between them, or one of these structures. For
example, by relaxing the metric condition, one could ask what properties of a compact complex manifold can
be deduced by the existence of special Hermitian metrics defined by conditions similar to, but weaker than, the
defining condition of the Kähler metrics (for example, metrics being balanced in the sense of M. L. Michelsohn
[Mic82], pluriclosed [Bis89], astheno-Kähler [JY93, JY94], Gauduchon [Gau77], strongly-Gauduchon [Pop09]); by
relaxing the complex structure, one is led to study properties of almost-complex manifolds, possibly endowed with
compatible symplectic structures.

In particular, we are concerned with studying cohomological properties of compact (almost-)complex manifolds,
and of manifolds endowed with special structures, e.g., symplectic structures, D-complex structures in the sense of
F. R. Harvey and H. B. Lawson, exhaustion functions satisfying positivity conditions. Part of the original results
have been published or will appear in [AT11, AT12a, Ang11, AT12b, AR12, ATZ12, AC12]; some other results
have been collected in a preprint, see [AT12c]; some more results have not yet been submitted for publication.

We recall that a complex manifold X is endowed with a natural almost-complex structure, that is, an
endomorphism J ∈ End(TX) of the tangent bundle of X such that J2 = − idTX , which actually satisfies a further
integrability condition, [NN57, Theorem 1.1]. By considering the decomposition into eigen-spaces, just the datum
of the almost-complex structure yields a splitting of the complexified tangent bundle, namely,

TX ⊗ C = T 1,0X ⊕ T 0,1X ,

and hence it induces also a splitting of the bundle of complex differential forms, namely,

∧•X ⊗R C =
⊕

p+q=•
∧p,qX .

Furthermore, on a complex manifold, the integrability condition of such an almost-complex structure yields
a further structure on ∧•,•X, namely, a structure of double complex

(
∧•,•X, ∂, ∂

)
, where ∂ and ∂ are the

components of the C-linear extension of the exterior differential d.
Hence, on a complex manifold X, one can consider both the de Rham cohomology

H•dR (X;C) := ker d
im d

and the Dolbeault cohomology

H•,•
∂

(X) := ker ∂
im ∂

;

v
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whenever X is compact, the Hodge theory assures that they have finite-dimension as C-vector spaces. On a
compact complex manifold, in general, no natural map between H•,•

∂
(X) and H•dR (X;C) exists; on the other

hand, the structure of double complex of
(
∧•,•X, ∂, ∂

)
gives rise to a spectral sequence

E•,•1 ' H•,•
∂

(X) ⇒ H•dR(X;C) ,

from which one gets the Frölicher inequality, [Frö55, Theorem 2]: for every k ∈ N,

dimCH
k
dR(X;C) ≤

∑

p+q=k
dimCH

p,q

∂
(X) .

On a complex manifold, a “bridge” between the Dolbeault and the de Rham cohomology is provided, in a
sense, by the Bott-Chern cohomology,

H•,•BC(X) := ker ∂ ∩ ker ∂
im ∂∂

,

and the Aeppli cohomology,

H•,•A (X) := ker ∂∂
im ∂ + im ∂

.

In fact, the identity induces the maps of (bi-)graded C-vector spaces

H•,•BC(X)

��xxrrrrrrrrrr

&&LLLLLLLLLL

H•,•∂ (X)

&&LLLLLLLLLLL
H•dR(X;C)

��

H•,•
∂

(X)

xxrrrrrrrrrr

H•,•A (X)

which, in general, are neither injective nor surjective.
We recall that, whenever X is compact, the Hodge theory can be performed also for Bott-Chern and Aeppli

cohomologies, [Sch07, §2], yielding their finite-dimensionality; more precisely, one has that, on a compact complex
manifold X of complex dimension n endowed with a Hermitian metric,

H•,•BC(X) ' ∆̃BC and H•,•A (X) ' ∆̃A ,

where ∆̃BC and ∆̃A are 4th order self-adjoint elliptic differential operators; furthermore, the Hodge-∗-operator
associated to any Hermitian metric on X induces an isomorphism Hp,q

BC(X) ' Hn−q,n−p
A (X), for every p, q ∈ N.

By the definitions, the map H•,•BC(X)→ H•dR(X;C) is injective if and only if every ∂-closed ∂-closed d-exact
form is ∂∂-exact: a compact complex manifold fulfilling this property is said to satisfy the ∂∂-Lemma; see
[DGMS75] by P. Deligne, Ph. A. Griffiths, J. Morgan, and D. P. Sullivan, where consequences of the validity of
the ∂∂-Lemma on the real homotopy type of a compact complex manifold are investigated. When the ∂∂-Lemma
holds, it turns out that actually all the above maps are isomorphisms, [DGMS75, Lemma 5.15, Remark 5.16,
5.21]: in particular, one gets a decomposition

H•dR(X;C) '
⊕

H•,•
∂

(X) such that H•1,•2
∂

(X) ' H•2,•1
∂

(X) .

A very remarkable property of compact Kähler manifolds is that they satisfy the ∂∂-Lemma, [DGMS75,
Lemma 5.11]: this follows from the Kähler identities, which can be proven as a consequence of the fact that the
Kähler metrics osculate to order 2 the standard Hermitian metric of Cn at every point. Therefore, the above
decomposition holds true, in particular, for compact Kähler manifolds, [Wei58, Théorème IV.3].

In particular, if X is a compact complex manifold satisfying the ∂∂-Lemma, then, for every k ∈ N,

dimCH
k
dR(X;C) =

∑

p+q=k
dimCH

p,q
BC(X) .

In the first chapter, we study cohomological properties of compact complex manifolds, studying in particular
the Bott-Chern and Aeppli cohomologies, and their relation with the ∂∂-Lemma.
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In fact, the first result we prove states a Frölicher-type inequality for the Bott-Chern and Aeppli cohomologies,
which provides also a characterization of the compact complex manifolds satisfying the ∂∂-Lemma just in terms of
the dimensions of the Bott-Chern cohomology groups, [AT12b, Theorem A, Theorem B]; a key tool in the proof
of the Frölicher-type inequality relies on exact sequences by J. Varouchas, [Var86]. More precisely, we state the
following result.
Theorem (see Theorem 1.22 and Theorem 1.25). Let X be a compact complex manifold. Then, for every
k ∈ N, the following inequality holds:

∑

p+q=k
(dimCH

p,q
BC(X) + dimCH

p,q
A (X)) ≥ 2 dimCH

k
dR(X;C) .

The equality
dimCH

k
BC(X) + dimCH

k
A(X) = 2 dimCH

k
dR(X;C)

holds for every k ∈ N if and only if X satisfies the ∂∂-Lemma.
Note that the equality

∑
p+q=k dimCH

p,q

∂
(X) = dimCHk

dR(X;C) for every k ∈ N (which is equivalent to the
degeneration of the Hodge and Frölicher spectral sequence at the first step, E1 ' E∞) is not sufficient to let X
satisfy the ∂∂-Lemma: in some sense, the above result states that the Bott-Chern cohomology, together with its
dual, the Aeppli cohomology, encodes “more informations” on the double complex

(
∧•,•X, ∂, ∂

)
than just the

Dolbeault cohomology.
As a straightforward consequence of the previous theorem, we obtain another proof, see [AT12b, Corollary

2.7], of the following result, see [Voi02, Proposition 9.21], [Wu06, Theorem 5.12], [Tom08, §B].
Corollary (see Corollary 1.28). Satisfying the ∂∂-Lemma is a stable property under small deformations of
the complex structure, that is, if {Xt}t∈B is a complex-analytic family of compact complex manifolds and Xt0

satisfies the ∂∂-Lemma for some t0 ∈ B, then Xt satisfies the ∂∂-Lemma for every t in an open neighbourhood of
t0 in B.

A class of manifolds that turns out to be particularly interesting in non-Kähler geometry, as a fruitful source
of examples, is provided by the class of nilmanifolds, and, more in general, of solvmanifolds, namely, compact
quotients of connected simply-connected nilpotent, respectively solvable, Lie groups by co-compact discrete
subgroups. In fact, on the one hand, non-tori nilmanifolds admit no Kähler structure, [BG88, Theorem A], [Has89,
Theorem 1, Corollary], and, on the other hand, focusing on left-invariant geometric structures on solvmanifolds, one
can often reduce their study at the level of the associated Lie algebra; this turns out to hold true, in particular, for
the de Rham cohomology of completely-solvable solvmanifolds, [Nom54, Hat60], and for the Dolbeault cohomology
of nilmanifolds endowed with certain left-invariant complex structures, [Sak76, CFGU00, CF01, Rol09a, Rol11a],
see, e.g., [Con06, Rol11a].

More precisely, on a nilmanifold X = Γ\G, the inclusion of the subcomplex composed of the G-left-invariant
forms on X (which is isomorphic to the complex (∧•g∗, d), where g is the associated Lie algebra) turns out to be
a quasi-isomorphism, [Nom54, Theorem 1], that is,

i : H•dR (g;R) := H• (∧•g∗, d) '→ H•dR(X;R) ;

a similar result holds true also for completely-solvable solvmanifolds, [Hat60, Corollary 4.2], and for the Dolbeault
cohomology of nilmanifolds endowed with left-invariant complex structures belonging to certain classes, [Sak76,
Theorem 1], [CFGU00, Main Theorem], [CF01, Theorem 2, Remark 4], [Rol09a, Theorem 1.10], [Rol11a, Corollary
3.10].

As a matter of notation, denote by H•,•] (gC), for ] ∈
{
∂, ∂, BC, A

}
, the cohomology of the corresponding

subcomplex of G-left-invariant forms on a solvmanifold X = Γ\G, with Lie algebra g, endowed with a G-left-
invariant complex structure. The following result states a Nomizu-type theorem also for the Bott-Chern and
Aeppli cohomologies, [Ang11, Theorem 3.7, Theorem 3.8, Theorem 3.9].
Theorem (see Theorem 1.37, Theorem 1.39, Remark 1.41, and Theorem 1.42). Let X = Γ\G be a
solvmanifold endowed with a G-left-invariant complex structure J , and denote the Lie algebra naturally associated
to G by g. Suppose that the inclusions of the subcomplexes of G-left-invariant forms on X into the corresponding
complexes of differential forms on X yield the isomorphisms

i : H•dR(g;C) '→ H•dR(X;C) and i : H•,•
∂

(gC) '→ H•,•
∂

(X) ;

in particular, this holds true if one of the following conditions holds:

• X is holomorphically parallelizable;
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• J is an Abelian complex structure;

• J is a nilpotent complex structure;

• J is a rational complex structure;

• g admits a torus-bundle series compatible with J and with the rational structure induced by Γ;

• dimR g = 6 and g is not isomorphic to h7 :=
(
03, 12, 13, 23

)
.

Then also
i : H•,•BC (gC) '→ H•,•BC(X) and i : H•,•A (gC) '→ H•,•A (X)

are isomorphisms.
Furthermore, if C (g) denotes the set of G-left-invariant complex structures on X, then the set

U :=
{
J ∈ C (g) : i : H•,•]J (gC) '

↪→ H•,•]J (X)
}

is open in C (g), for ] ∈ {∂, ∂, BC, A}.
The above result allows to explicitly compute the Bott-Chern cohomology for the Iwasawa manifold

I3 := H (3;Z [i])\H(3;C)

and for its small deformations, where

H(3;C) :=








1 z1 z3

0 1 z2

0 0 1


 ∈ GL(3;C) : z1, z2, z3 ∈ C



 and H (3;Z [i]) := H(3;C) ∩GL (3;Z [i]) .

The Iwasawa manifold is one of the simplest example of compact non-Kähler complex manifold: as an example of
a complex-parallelizable manifold, it has been studied by I. Nakamura, [Nak75], who computed its Kuranishi space
and classified the small deformations of I3 by means of the dimensions of their Dolbeault cohomology groups.

In §1.4.4, [Ang11, §5.3], we explicitly compute the Bott-Chern cohomology of the small deformations of
the Iwasawa manifold, showing that it makes possible to give a finer classification of the small deformations
{Xt}t∈∆(0,ε)⊂C6 of I3 than the Dolbeault cohomology: more precisely, classes (ii) and (iii) in I. Nakamura’s
classification [Nak75, §3] are further subdivided into subclasses (ii.a) and (ii.b), respectively (iii.a) and (iii.b),
according to the value of dimCH

2,2
BC (Xt).

Another class that could provide several interesting examples is given by complex orbifolds of the type
X̃ = X/G, where X is a complex manifold and G is a finite group of biholomorphisms of X. Orbifolds of such a
global-quotient-type have been considered and studied, e.g., by D. D. Joyce in constructing examples of compact
7-dimensional manifolds with holonomy G2, [Joy96b] and [Joy00, Chapters 11-12], and examples of compact
8-dimensional manifolds with holonomy Spin(7), [Joy96a, Joy99] and [Joy00, Chapters 13-14].

One can define the space of differential forms ∧•,•X̃ on a complex orbifold of the type X̃ = X/G as the
space of G-invariant differential forms on X; hence, one can define the de Rham, Dolbeault, Bott-Chern, and
Aeppli cohomologies also for X̃. Analogously, one can define the space of currents D•,•X̃ on X̃ as the space of
G-invariant currents on X, as well as a Hermitian metric on X̃ as a G-invariant Hermitian metric on X.

As a first tool to investigate the Bott-Chern and Aeppli cohomologies of compact complex orbifolds of
global-quotient-type, we obtain the following result.
Theorem (see Theorem 1.55). Let X̃ = X/G be a compact complex orbifold of complex dimension n, where
X is a complex manifold and G is a finite group of biholomorphisms of X. Then, for any p, q ∈ N, there are
canonical isomorphisms

Hp,q
BC(X̃) ' ker

(
∂ : Dp,qX̃ → Dp+1,qX̃

)
∩ ker

(
∂ : Dp,qX̃ → Dp,q+1X̃

)

im
(
∂∂ : Dp−1,q−1X̃ → Dp,qX̃

) .

Furthermore, given a Hermitian metric on X, there are canonical isomorphisms

H•,•BC(X̃) ' ker ∆̃BC and H•,•A (X̃) ' ker ∆̃A .

In particular, the Hodge-∗-operator induces an isomorphism

H•1,•2BC (X̃) ' Hn−•2,n−•1
A (X̃) .
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In the second chapter, we do not require the integrability of the almost-complex structure, and we study
cohomological properties of almost-complex manifolds, that is, differentiable manifolds endowed with a (possibly
non-integrable) almost-complex structure. In this case, the Dolbeault cohomology is not defined. However,
following T.-J. Li and W. Zhang [LZ09], one can consider, for every p, q ∈ N, the subgroups

H
(p,q),(q,p)
J (X;R) :=

{
[α] ∈ Hp+q

dR (X;R) : α ∈ (∧p,qX ⊕ ∧q,pX) ∩ ∧p+qX
}
⊆ Hp+q

dR (X;R) ,

and their complex counterpart

H
(p,q)
J (X;C) :=

{
[α] ∈ Hp+q

dR (X;C) : α ∈ ∧p,qX
}
⊆ Hp+q

dR (X;C) .

If X is a compact Kähler manifold, then H
(p,q)
J (X;C) ' Hp,q

∂
(X) for every p, q ∈ N, [DLZ10, Lemma 2.15,

Theorem 2.16]; therefore these subgroups can be considered, in a sense, as a generalization of the Dolbeault
cohomology groups to the non-Kähler, or to the non-integrable, case.

Two remarks need to be pointed out. Firstly, note that, in general, neither the equality in
∑

p+q=k
p≤q

H
(p,q),(q,p)
J (X;R) ⊆ Hp+q

dR (X;R) , or
∑

p+q=k
H

(p,q)
J (X;C) ⊆ Hp+q

dR (X;C) ,

holds, nor the sum is direct, nor there are relations between the equality holding and the sum being direct, see,
e.g., Proposition 2.12. Hence, one may be interested in studying compact almost-complex manifolds for which one
of the above properties holds, at least for a fixed k ∈ N, see [LZ09, DLZ10, DLZ11, FT10, AT11, AT12a, Zha11,
ATZ12, DZ11, TWZZ11, HMT11, LT12, DLZ12]. A remarkable result by T. Drǎghici, T.-J. Li, and W. Zhang,
[DLZ10, Theorem 2.3], states that every almost-complex structure J on a compact 4-dimensional manifold X4

satisfies the cohomological decomposition

H2
dR

(
X4;R

)
= H

(2,0),(0,2)
J

(
X4;R

)
⊕H(1,1)

J

(
X4;R

)
.

Secondly, note that Jb∧2X satisfies (Jb∧2X)2 = id∧2X , therefore the above subgroups of H2
dR(X;R) can be

interpreted as the subgroup represented by J-invariant forms,

H+
J (X) := H

(1,1)
J (X;R) =

{
[α] ∈ H2

dR(X;R) : Jα = α
}
,

and the subgroup represented by J-anti-invariant forms,

H−J (X) := H
(2,0),(0,2)
J (X;R) =

{
[α] ∈ H2

dR(X;R) : Jα = −α
}
.

Note also that, if g is any Hermitian metric on X whose associated (1, 1)-form ω := g(J ·, ··) ∈ ∧1,1X ∩ ∧2X is
d-closed (namely, g is an almost-Kähler metric on X), then [ω] ∈ H+

J (X).
In fact, T.-J. Li and W. Zhang’s interest in studying such subgroups and C∞-pure-and-full almost-complex

structures (that is, almost-complex structures for which the decomposition

H2
dR(X;R) = H+

J (X)⊕H−J (X)

holds, [LZ09, Definition 2.2, Definition 2.3, Lemma 2.2]) arises in investigating the symplectic cones of an
almost-complex manifolds, that is, the J-tamed cone

KtJ :=
{

[ω] ∈ H2
dR(X;R) : ωx (vx, Jxvx) > 0 for every vx ∈ TxX \ {0} and for every x ∈ X

}

and the J-compatible cone

KcJ :=
{

[ω] ∈ H2
dR(X;R) : ωx (vx, Jxvx) > 0 for every vx ∈ TxX \ {0} and for every x ∈ X, and Jω = ω

}
.

Indeed, they proved in [LZ09, Theorem 1.1] that, given a C∞-pure-and-full almost-Kähler structure on a compact
manifold X, the J-anti-invariant subgroup H−J (X) of H2

dR(X;R) measures the quantitative difference between
the J-tamed cone and the J-compatible cone, namely,

KtJ = KcJ ⊕H−J (X) .

A natural question concerns the qualitative comparison between the tamed cone and the compatible cone: more
precisely, one could ask whether, whenever an almost-complex structure J admits a J-tamed symplectic form,
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there exists also a J-compatible symplectic form. This turns out to be false, in general, for non-integrable
almost-complex structures in dimension greater than 4, [MT00, Tom02]; on the other hand, it is not known
whether, for almost-complex structures on compact 4-dimensional manifolds, as asked by S. K. Donaldson, [Don06,
Question 2], or for complex structures on compact manifolds of complex dimension greater than or equal to 3, as
asked by T.-J. Li and W. Zhang, [LZ09, page 678], and by J. Streets and G. Tian, [ST10, Question 1.7], it holds
that KcJ is non-empty if and only if KtJ is non-empty. We prove the following result, stating that no counterexample
can be found among 6-dimensional non-tori nilmanifolds endowed with left-invariant complex structures, [AT11,
Theorem 3.3]; note that the same holds true, more in general, for higher dimensional nilmanifolds, as proven by N.
Enrietti, A. Fino, and L. Vezzoni, [EFV12, Theorem 1.3].
Theorem (see Theorem 2.67). Let X = Γ\G be a 6-dimensional nilmanifold endowed with a G-left-invariant
complex structure J . If X is not a torus, then there is no J-tamed symplectic structure on X.

One can study further cones in cohomology, which are related to special metrics, other than Kähler metrics;
a key tool is provided by the theory of cone structures on differentiable manifolds developed by D. P. Sullivan,
[Sul76]. In order to compare, in particular, the cone associated to balanced metrics (that is, Hermitian metrics
whose associated (1, 1)-form is co-closed, [Mic82, Definition 1.4, Theorem 1.6]) and the cone associated to
strongly-Gauduchon metrics (that is, Hermitian metrics whose associated (1, 1)-form ω satisfies the condition that
∂
(
ωdimCX−1) is ∂-exact [Pop09, Definition 3.1]), we give the following result, [AT12a, Theorem 2.9], which is the

semi-Kähler counterpart of [LZ09, Theorem 1.1]. (We refer to §2.4.3 for the definitions of the cones KbtJ and KbcJ
on a manifold X endowed with an almost-complex structure J .)
Theorem (see Theorem 2.74). Let X be a compact 2n-dimensional manifold endowed with an almost-complex
structure J . Assume that KbcJ 6= ∅ (that is, there exists a semi-Kähler structure on X) and that 0 6∈ KbtJ . Then

KbtJ ∩H(n−1,n−1)
J (X;R) = KbcJ

and
KbcJ +H

(n,n−2),(n−2,n)
J (X;R) ⊆ KbtJ .

Moreover, if the equality H2n−2
dR (X;R) = H

(n,n−2),(n−2,n)
J (X;R) +H

(n−1,n−1)
J (X;R) holds, then

KbcJ +H
(n,n−2),(n−2,n)
J (X;R) = KbtJ .

In order to better understand cohomological properties of compact almost-complex manifolds, and in view
of the Hodge decomposition theorem for compact Kähler manifolds, it could be interesting to investigate the
subgroups H(p,q),(q,p)

J (X;R) for almost-complex manifolds endowed with special structures. For example, we
prove the following result, [ATZ12, Proposition 4.1], providing a strong difference between the Kähler case and
the almost-Kähler case.
Proposition (see Proposition 2.42). The differentiable manifold X underlying the Iwasawa manifold I3 :=
H (3;Z [i])\H(3;C) admits a non-C∞-pure-and-full almost-Kähler structure.

A further study on almost-Kähler structures (J, ω, g) on a compact 2n-dimensional manifold X yields the
following result, [ATZ12, Theorem 2.3], which relates C∞-pure-and-fullness with the Lefschetz-type property on
2-forms firstly considered by W. Zhang, that is, the property that the Lefschetz operator

ωn−2 ∧ · : ∧2 X → ∧2n−2X

takes g-harmonic 2-forms to g-harmonic (2n− 2)-forms.
Theorem (see Theorem 2.35). Let X be a compact manifold endowed with an almost-Kähler structure (J, ω, g).
Suppose that there exists a basis of H2

dR(X;R) represented by g-harmonic 2-forms which are of pure type with
respect to J . Then the Lefschetz-type property on 2-forms holds on X.

As a tool to study explicit examples, we provide a Nomizu-type theorem for the subgroups H(p,q),(q,p)
J (X;R)

of a completely-solvable solvmanifold X = Γ\G endowed with a G-left-invariant almost-complex structure J ,
[ATZ12, Theorem 5.4], see Proposition 2.19, and Corollary 2.20.

A remarkable result by K. Kodaira and D. C. Spencer states that the Kähler property on compact complex
manifolds is stable under small deformations of the complex structure, [KS60, Theorem 15]: more precisely, it
states that, given a compact complex manifold admitting a Kähler structure, every small deformation still admits
a Kähler structure; it can be proven as a consequence of the semi-continuity properties for the dimensions of
the cohomology groups of a compact Kähler manifold. Hence, a natural question in non-Kähler geometry is
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to investigate the (in)stability of weaker properties than being Kähler. As a first result in this direction, L.
Alessandrini and G. Bassanelli proved that, given a compact complex manifold, the property of admitting a
balanced metric (that is, a Hermitian metric whose associated (1, 1)-form is co-closed) is not stable under small
deformations of the complex structure, [AB90, Proposition 4.1]; on the other hand, they proved that the class of
balanced manifolds is stable under modifications, [AB96, Corollary 5.7]. Another result in this context is the
stability of the property of satisfying the ∂∂-Lemma under small deformations of the complex structure, as already
recalled, see Corollary 1.28.

Therefore, it is natural to investigate stability properties for the cohomological decomposition by means
of the subgroups H(p,q),(q,p)

J (X;R) on (almost-)complex manifolds (X, J). More precisely, we consider the
Iwasawa manifold I3 := H (3;Z [i])\H(3;C), showing that the subgroups H(p,q),(q,p)

J (X;R) provide a cohomological
decomposition for I3 but not for some of its small deformations, Theorem 2.49. We prove the following result,
[AT11, Theorem 3.2].
Theorem (see Theorem 2.48). The properties of being C∞-pure-and-full is not stable under small deformations
of the complex structure.

More in general, one could try to study directions along which the curves of almost-complex structures on
a differentiable manifold preserve the property of being C∞-pure-and-full. Using a procedure by J. Lee, [Lee04,
§1], to construct curves of almost-complex structures through an almost-complex structure J , by means of
J-anti-invariant real 2-forms, we provide the following result, [AT11, Theorem 4.1].
Theorem (see Theorem 2.53). There exists a compact manifold N6(c) endowed with an almost-complex
structure J and a J-Hermitian metric g such that:
(i) J is C∞-pure-and-full;

(ii) each J-anti-invariant g-harmonic form gives rise to a curve {Jt}t∈(−ε,ε) of C∞-pure-and-full almost-complex
structures on N6(c) (where ε > 0 is small enough);

(iii) furthermore, the function

(−ε, ε) 3 t 7→ dimRH
(2,0),(0,2)
Jt

(
N6(c);R

)
∈ N

is upper-semi-continuous at 0.

Another problem in deformation theory is the study of semi-continuity properties for the dimensions of the
subgroups H+

J (X) and H−J (X). As a consequence of the Hodge theory for compact 4-dimensional manifolds, T.
Drǎghici, T.-J. Li, and W. Zhang proved in [DLZ11, Theorem 2.6] that, given a curve {Jt}t∈I⊆R of (C∞-pure-and-
full) almost-complex structures on a compact 4-dimensional manifold X, the functions

I 3 t 7→ dimRH
−
Jt

(X) ∈ N and I 3 t 7→ dimRH
+
Jt

(X) ∈ N

are, respectively, upper-semi-continuous and lower-semi-continuous.
In higher dimension this fails to be true, as we show in explicit examples. We provide hence the following

result, [AT12a, Proposition 4.1, Proposition 4.3].
Proposition (see Proposition 2.55 and Proposition 2.56). In dimension higher than 4, there exist compact
manifolds X endowed with families {Jt}t∈I of almost-complex structures such that either the function I 3 t 7→
dimRH

−
Jt

(X) ∈ N is not upper-semi-continuous, or the function I 3 t 7→ dimRH
+
Jt

(X) ∈ N is not lower-semi-
continuous.

Motivated by such counterexamples, we study a stronger semi-continuity property on almost-complex manifolds
(namely, that, for every d-closed J-invariant real 2-form α, there exists a d-closed Jt-invariant real 2-form
ηt = α + o (1), depending real-analytically in t, for t ∈ (−ε, ε) with ε > 0 small enough): we give a formal
characterization of the curves of almost-complex structures satisfying such a property, see Proposition 2.57, and
we provide also a counterexample to such a stronger semi-continuity property, see Proposition 2.60.

In the third chapter, motivated by the problem to study cohomological obstructions induced by special
structures on differentiable manifolds, we investigate cohomological properties of symplectic manifolds, D-complex
manifolds, and strictly p-convex domains.

We recall that compact Kähler manifolds have special cohomological properties not just in the complex
framework, but also from the symplectic viewpoint. More precisely, another important result, other than the
Hodge decomposition theorem, [Wei58, Théorème IV.3], is the Lefschetz decomposition theorem, [Wei58, Théorème
IV.5], which states a decomposition in terms of primitive subgroups of the cohomology, namely,

H•dR(X;C) =
⊕

r∈N
Lr
(
ker
(
Λ: H•−2r

dR (X;C)→ H•−2r−2
dR (X;C)

))
,
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where Λ is the adjoint operator of the Lefschetz operator L := ω ∧ · : ∧• X → ∧•+2X with respect to the pairing
induced by ω. Hence, after having investigated cohomological properties of almost-complex manifolds, we turn
our attention to cohomological properties of symplectic manifolds.

In particular, in §3.1, we provide a symplectic counterpart of T.-J. Li and W. Zhang’s cohomological theory for
almost-complex-manifolds, studying compact symplectic manifolds (X, ω) for which the Lefschetz decomposition
on differential forms,

∧•X =
⊕

r∈N
Lr P∧•−2rX ,

(where P∧•X := ker Λ is the space of primitive forms,) gives rise to a decomposition of the de Rham cohomology
by means of the subgroups

H(r,s)
ω (X;R) :=

{[
Lr β(s)

]
∈ H2r+s

dR (X;R) : β(s) ∈ P∧sX
}
⊆ H2r+s

dR (X;R) .

In particular, we provide the following result, [AT12c, Theorem 2.6], which gives a symplectic counterpart
to T. Drǎghici, T.-J. Li, and W. Zhang’s decomposition theorem [DLZ10, Theorem 2.3] in the almost-complex
setting (in fact, without the restriction to dimension 4).
Theorem (see Theorem 3.14). Let X be a compact manifold endowed with a symplectic structure ω. Then

H2
dR(X;R) = H(1,0)

ω (X;R)⊕H(0,2)
ω (X;R) .

A Nomizu-type theorem for the subgroups H(r,s)
ω (X;R) of a completely-solvable solvmanifold X = Γ\G

endowed with a G-left-invariant symplectic structure ω is provided, see Proposition 3.18, giving an useful tool in
order to investigate explicit examples.

In a sense, D-complex Geometry provides a “hyperbolic analogue” of Complex Geometry. An almost-D-
complex structure is, by definition, the datum of an endomorphism K ∈ End(TX) of the tangent bundle of a
differentiable manifold X such that K2 = idTX and with the additional property that the eigen-bundles T+X and
T−X have the same rank; a natural notion of integrability can be defined by requiring that the two distributions
T+X and T−X are involutive. Many connections between D-complex Geometry and other problems both in
Mathematics and Physics (in particular, concerning product structures, bi-Lagrangian geometry, and optimal
transport theory) have been investigated in the last years: see, e.g., [HL83, AMT09, CMMS04, CMMS05, CM09,
CFAG96, KMW10, ABDMO05, AS05, Kra10, Ros12a, Ros12b] and the references therein for further details on
D-complex structures and motivations for their study.

We study cohomological decomposition for compact manifolds X endowed with (almost-)D-complex structures
K. Note that the elliptic theory in the complex setting has not a D-complex counterpart: for example, a
D-complex counterpart of the Dolbeault cohomology is possibly infinite-dimensional, even if the manifold is
compact. This fact makes natural to consider the D-complex counterpart H(p,q)

K (X;R) of T.-J. Li and W. Zhang’s
subgroups H(p,q),(q,p)

J (X;R) as a possible substitute of the D-Dolbeault cohomology, and hence to study the
subgroups

H2 +
K (X;R) :=

{
[α] ∈ H2

dR (X;R) : Kα = α
}
⊆ H2

dR(X;R)

and
H2−
K (X;R) :=

{
[α] ∈ H2

dR (X;R) : Kα = −α
}
⊆ H2

dR(X;R) .

Nevertheless, several important differences arise between the complex and the D-complex cases. For example,
after having stated and proved a Nomizu-type result for the subgroups H(p,q)

K (X;R) of a completely-solvable
solvmanifold X = Γ\G endowed with a G-left-invariant D-complex structure K, we are able to prove the following
result, [AR12, Proposition 3.3], which turns out to be very different from the complex case, see [LZ09, Proposition
2.1], or [DLZ10, Lemma 2.15, Theorem 2.16]. (Recall that a D-Kähler structure on a D-complex manifold is the
datum of an anti-invariant symplectic form with respect to the D-complex structure.)
Proposition (see Proposition 3.34). Admitting a D-Kähler structure is not a sufficient condition for either
the sum

H2 +
K (X;R) +H2−

K (X;R) ⊆ H2
dR (X;R)

being direct, or the equality holding.
A partial D-complex counterpart of T. Drǎghici, T.-J. Li, and W. Zhang’s decomposition theorem [DLZ10,

Theorem 2.3] is provided by the following result, [AR12, Theorem 3.17].
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Theorem (see Theorem 3.47). Every left-invariant D-complex structure on a 4-dimensional nilmanifold
satisfies the cohomological decomposition

H2
dR (X;R) = H2 +

K (X;R)⊕H2−
K (X;R) .

Note that the hypothesis in Theorem 3.47 can not be weakened, as Example 3.32 and Example 3.33, Example
3.49, and Example 3.35 show.

Concerning deformations of the D-complex structure, we provide another strong difference with the complex
case: in contrast with the stability theorem of K. Kodaira and D. C. Spencer, [KS60, Theorem 15], we prove the
following result in the D-complex context, [AR12, Theorem 4.2].
Theorem (see Theorem 3.50). The property of being D-Kähler is not stable under small deformations of the
D-complex structure.

Analogously to Theorem 2.48 for almost-complex structures, we provide also the following instability result,
[AR12, Proposition 4.3].
Proposition (see Proposition 3.51). The properties of either the sum

H2 +
K (X;R) +H2−

K (X;R) ⊆ H2
dR (X;R)

being direct, or the equality holding are not stable under small deformations of the D-complex structure.
Finally, we prove that, even in the D-complex case, no general result on semi-continuity holds for the dimensions

of the K-(anti-)invariant subgroups of the de Rham cohomology, [AR12, Proposition 4.6].
Proposition (see Proposition 3.54). Let X be a compact manifold and let {Kt}t∈I⊆R be a curve of D-complex
structures on X. Then, in general, the functions

I 3 t 7→ dimRH
2 +
Kt

(X;R) ∈ N and I 3 t 7→ dimRH
2−
Kt

(X;R) ∈ N

are not upper-semi-continuous or lower-semi-continuous.

Finally, motivated by A. Andreotti and H. Grauert’s vanishing result for the higher Dolbeault cohomology
groups of a q-complete domain in Cn (that is, a domain in Cn admitting a smooth proper exhaustion function
whose Levi form has at least n−q+1 positive eigen-values), we turn our interest to study cohomological properties
of Riemannian manifolds endowed with exhaustion functions whose Hessian satisfies positivity conditions.

In particular, a first case to be considered is the case of strictly p-convex domains in Rn in the sense of F. R.
Harvey and H. B. Lawson, [HL12, HL11], that is, domains in Rn admitting a smooth proper exhaustion function
u such that, at every point, every sum of p different eigenvalues of the Hessian of u is positive. Adapting the L2-
techniques developed by L. Hörmander, [Hör65], and used also by A. Andreotti and E. Vesentini, [AV65a, AV65b],
(and which could be hopefully applied in a wider context,) we give a different proof of a vanishing result following
from J.-P. Sha’s theorem [Sha86, Theorem 1], and from H. Wu’s theorem [Wu87, Theorem 1], for the de Rham
cohomology of strictly p-convex domains in Rn in the sense of F. R. Harvey and H. B. Lawson; more precisely, the
following result holds, [AC12, Theorem 3.1], see [Sha86, Theorem 1], [Wu87, Theorem 1], [HL11, Proposition 5.7].
Theorem (see Theorem 3.67 and Theorem 3.68). Let X be a strictly p-convex domain in Rn, and fix k ∈ N
such that k ≥ p. Then, every d-closed k-form is d-exact, that is,

Hk
dR(X;R) = {0}

for every k ≥ p.

The plan of the thesis is as follows.
In Chapter 0, which contains no original material, we collect the basic notions concerning almost-complex,

complex, and symplectic structures, we recall the main results on Hodge theory for Kähler manifolds, and we
summarize the classical results on deformations of complex structures, on currents and de Rham homology, and
on solvmanifolds.

In Chapter 1, we study cohomological properties of compact complex manifolds, and in particular the Bott-
Chern cohomology, [AT12b, Ang11]. By using exact sequences introduced by J. Varouchas, [Var86], we prove a
Frölicher-type inequality for the Bott-Chern cohomology, Theorem 1.22, which also provides a characterization of
the validity of the ∂∂-Lemma in terms of the dimensions of the Bott-Chern cohomology groups, Theorem 1.25.
We then prove a Nomizu-type result for the Bott-Chern cohomology, showing that, for certain classes of complex
structures on nilmanifolds, the Bott-Chern cohomology is completely determined by the associated Lie algebra
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endowed with the induced linear complex structure, Theorem 1.37, Theorem 1.39, and Theorem 1.42. As an
application, in §1.4, we explicitly study the Bott-Chern and Aeppli cohomologies of the Iwasawa manifold and
of its small deformations. Finally, we study the Bott-Chern cohomology of complex orbifolds of the type X/G,
where X is a compact complex manifold and G a finite group of biholomorphisms of X, Theorem 1.55.

In Chapter 2, we study cohomological properties of almost-complex manifolds, [AT11, AT12a, ATZ12]. Firstly,
in §2.1, we recall the notion of C∞-pure-and-full almost-complex structure, which has been introduced by T.-J. Li
and W. Zhang in [LZ09] in order to investigate the relations between the compatible and the tamed symplectic
cones on a compact almost-complex manifold and with the aim to throw light on a question by S. K. Donaldson,
[Don06, Question 2]. In particular, we are interested in studying when certain subgroups, related to the almost-
complex structure, let a splitting of the de Rham cohomology of an almost-complex manifold, and their relations
with cones of metric structures. In §2.2, we focus on C∞-pure-and-fullness on several classes of (almost-)complex
manifolds, e.g., solvmanifolds endowed with left-invariant almost-complex structures, semi-Kähler manifolds,
almost-Kähler manifolds. In §2.3, we study the behaviour of C∞-pure-and-fullness under small deformations of the
complex structure and along curves of almost-complex structures, investigating properties of stability, Theorem
2.48, Theorem 2.53, and of semi-continuity for the dimensions of the invariant and anti-invariant subgroups of the
de Rham cohomology with respect to the almost-complex structure, Proposition 2.55, Proposition 2.56, Proposition
2.57, Proposition 2.60. In §2.4, we consider the cone of semi-Kähler structures on a compact almost-complex
manifold and, in particular, by adapting the results by D. P. Sullivan on cone structures, [Sul76], we compare the
cones of balanced metrics and of strongly-Gauduchon metrics on a compact complex manifold, Theorem 2.74.

In Chapter 3, we study the cohomological properties of (differentiable) manifolds endowed with special
structures, other than (almost-)complex structures, [AT12c, AR12, AC12]. More precisely, in Section 3.1, we
investigate the cohomology of symplectic manifolds; in Section 3.2, we study cohomological decompositions on
D-complex manifolds in the sense of F. R. Harvey and H. B. Lawson; finally, in Section 3.3, we consider domains
in Rn endowed with a smooth proper strictly p-convex exhaustion function, and, using L2-techniques, we give
another proof of a consequence of J.-P. Sha’s theorem [Sha86, Theorem 1], and of H. Wu’s theorem [Wu87,
Theorem 1], on the vanishing of the higher degree de Rham cohomology groups.
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Chapter 0

Preliminaries on (almost-)complex manifolds

In this preliminary chapter (which contains no original material), we summarize the basic notions and the classical
results concerning (almost-)complex and symplectic structures. In particular, we start by setting some definitions
and notation concerning (almost-)complex structures, §0.1, and symplectic structures, §0.2; then we recall the main
results in the Hodge theory for Kähler manifolds, §0.3, and in the Kodaira, Spencer, Nirenberg, and Kuranishi
theory of deformations of complex structures, §0.4; furthermore, we summarize the basic definitions and some
useful facts about currents and de Rham homology, §0.5, and about solvmanifolds, §0.6, in order to set the
notation for the following chapters. (As a matter of notation, unless otherwise stated, by “manifold” we mean
“connected differentiable manifold”, and by “compact manifold” we mean “closed manifold”.)

0.1 Almost-complex structures and integrability
The tangent bundle of a complex manifold X is naturally endowed with an endomorphism J ∈ End(TX) such
that J2 = − idTX , satisfying a further integrability property. It is hence natural to study differentiable manifolds
endowed with such an endomorphism, the so-called almost-complex manifolds. It turns out that the vanishing of
the Nijenhuis tensor NijJ characterizes the almost-complex structures J on X naturally induced by a structure of
complex manifold, [NN57, Theorem 1.1].

In this section, we recall the notions of almost-complex structure, complex manifold, and Dolbeault cohomology,
and some of their properties.

0.1.1 Almost-complex structures
Let X be a (differentiable) manifold endowed with an almost-complex structure J , namely, an endomorphism
J ∈ End(TX) such that J2 = − idTX .

Extending J by C-linearity to TX ⊗ C, we get the decomposition

TX ⊗ C = T 1,0X ⊕ T 0,1X ,

where T 1,0X (respectively, T 0,1X) is the sub-bundle of TX ⊗ C given by the i-eigen-spaces (respectively, the
(− i)-eigen-spaces) of J ∈ End (TX ⊗ C): that is, for every x ∈ X,

(
T 1,0X

)
x

= {vx − i Jxvx : vx ∈ TxX} ,
(
T 0,1X

)
x

= {vx + i Jxvx : vx ∈ TxX} .

Considering the dual of J , again denoted by J ∈ End (T ∗X), we get analogously a decomposition at the level of
the cotangent bundle:

T ∗X ⊗ C =
(
T 1,0X

)∗ ⊕
(
T 0,1X

)∗
,

where
(
T 1,0X

)∗ (respectively,
(
T 0,1X

)∗) is the sub-bundle of T ∗X ⊗ C given by the i-eigen-spaces (respectively,
the (− i)-eigen-spaces) of the C-linear extension J ∈ End (T ∗X ⊗ C). Extending the endomorphism J to the
bundle ∧• (T ∗X)⊗ C of complex-valued differential forms, we get, for every k ∈ N, the bundle decomposition

∧k (T ∗X)⊗ C =
⊕

p+q=k
∧p
(
T 1,0X

)∗ ⊗ ∧q
(
T 0,1X

)∗
.

As a matter of notation, we will denote by C∞ (X;F ) the space of smooth sections of a vector bundle F over X,
and, for every k ∈ N and p, q ∈ N, we will denote by ∧kX := C∞

(
X; ∧k (T ∗X)

)
the space of smooth sections of

∧k (T ∗X) over X and by ∧p,qX :=: ∧p,qJ X := C∞
(
X; ∧p

(
T 1,0X

)∗ ⊗ ∧q
(
T 0,1X

)∗) the space of smooth sections
of ∧p

(
T 1,0X

)∗ ⊗ ∧q
(
T 0,1X

)∗ over X.

1
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Since d
(
∧0X ⊗R C

)
⊆ ∧1,0X ⊕ ∧0,1X and d

(
∧1X ⊗R C

)
⊆ ∧2,0X ⊕ ∧1,1X ⊕ ∧0,2X, since every differential

form is locally a finite sum of decomposable differential forms, and by the Leibniz rule, the C-linear extension of
the exterior differential, d: ∧• X ⊗ C→ ∧•+1X ⊗ C, splits into four components:

d = A+ ∂ + ∂ + Ā

where

A : ∧•,•X → ∧•+2,•−1X , ∂ : ∧•,•X → ∧•+1,•X , ∂ : ∧•,•X → ∧•,•+1X , Ā : ∧•,•X → ∧•−1,•+2X ;

in terms of these components, the condition d2 = 0 is written as




A2 = 0
A∂ + ∂ A = 0

A∂ + ∂2 + ∂ A = 0
AĀ+ ∂ ∂ + ∂ ∂ +AĀ = 0

∂ Ā+ ∂
2 + Ā ∂ = 0

Ā ∂ + ∂ Ā = 0
Ā2 = 0

.

0.1.2 Complex structures, and Dolbeault cohomology
If X is a complex manifold, then there is a natural almost-complex structure on X: locally, in a holomorphic coor-
dinate chart

(
U,
{
zα =: x2α−1 + i x2α}

α∈{1,...,dimCX}

)
, with

(
U, {xα}α∈{1,...,2 dimCX}

)
a (differential) coordinate

chart, one defines, for every α ∈ {1, . . . ,dimCX},

J

(
∂

∂x2α−1

)
loc:= ∂

∂x2α , J

(
∂

∂x2α

)
loc:= − ∂

∂x2α−1 ;

note that this local definition does not depend on the coordinate chart, by the Cauchy and Riemann equations.
Conversely, an almost-complex structure on a manifold X is called integrable if it is the natural almost-complex

structure induced by a structure of complex manifold on X. The following theorem by A. Newlander and L.
Nirenberg characterizes the integrable almost-complex structures on a manifold X in terms of the Nijenhuis tensor
NijJ , defined as

NijJ(·, ··) := [·, ··] + J [J ·, ··] + J [·, J ··]− [J ·, J ··] .

Theorem 0.1 ([NN57, Theorem 1.1]). Let X be a manifold. An almost-complex structure J on X is integrable if
and only if NijJ = 0.

By a straightforward computation, the integrability of an almost-complex structure J turns out to be equivalent
to the vanishing of the components A and Ā of the exterior differential, equivalently, to

(
∧•,•X, ∂, ∂

)
being a

double complex of C∞ (X;C)-modules (see, e.g., [Wel08, §2.6], [Mor07, Proposition 8.2]).

Therefore, for a complex manifold X, one can consider, for every p ∈ N, the differential complex
(
∧p,•X, ∂

)

and its cohomology, defining the Dolbeault cohomology, as the bi-graded C-vector space

H•,•
∂

(X) := ker ∂
im ∂

.

For every p, q ∈ N, denote by Ap,qX the (fine) sheaf of germs of (p, q)-forms on X. For every p ∈ N, denote by
ΩpX the sheaf of germs of holomorphic p-forms on X, that is, the kernel sheaf of the map ∂ : Ap,0X → Ap,1X . By the
Dolbeault and Grothendieck Lemma, see, e.g., [Dem12, I.3.29], one has that

0→ ΩpX → Ap,•X
is a fine resolution of ΩpX ; hence, one gets the following result.

Theorem 0.2 (Dolbeault theorem, [Dol53]). Let X be a complex manifold. For every p, q ∈ N,

Hp,q

∂
(X) ' Ȟq (X; Ωp) .
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This gives a sheaf-theoretic interpretation of the Dolbeault cohomology. On the other hand, also an analytic
interpretation can be provided.

Suppose X is a compact complex manifold of complex dimension n, and fix g a Hermitian metric on X and vol
the induced volume form on X (recall that every complex manifold is orientable, see, e.g., [GH94, pages 17–18]);
denote by ω := g(J ·, ··) ∈ ∧1,1X ∩ ∧2X the associated (1, 1)-form to g. Recall that g induces a Hermitian inner
product 〈·, ··〉 on the space ∧•,•X of global differential forms on X, and that the Hodge-∗-operator associated to
g is the C-linear map

∗b∧p,qX : ∧p,q X → ∧n−q,n−pX
defined requiring that, for every α, β ∈ ∧p,qX,

α ∧ ∗β̄ = 〈α, β〉 vol .

Define
∂
∗ := − ∗ ∂ ∗ : ∧•,• X → ∧•,•−1X ;

the operator ∂∗ : ∧•,• X → ∧•,•−1X is the adjoint of ∂ : ∧•,• X → ∧•,•+1X with respect to 〈·, ··〉. Define

� :=
[
∂, ∂

∗] := ∂ ∂
∗ + ∂

∗
∂ : ∧•,• X → ∧•,•X ;

� being a 2nd order self-adjoint elliptic differential operator, (see, e.g., [Kod05, Theorem 3.16]), one gets the
following result.

Theorem 0.3 (Hodge theorem, [Hod89]). Let X be a compact complex manifold endowed with a Hermitian
metric. There is an orthogonal decomposition

∧•,•X = ker�
⊥
⊕ ∂ ∧•,•−1 X

⊥
⊕ ∂

∗ ∧•,•+1 X ,

and hence an isomorphism
H•,•
∂

(X) ' ker� .

In particular, dimCH
•,•
∂

(X) < +∞.

Note that, for any p, q ∈ N, the Hodge-∗-operator ∗ : ∧p,q X → ∧n−q,n−pX sends a �-harmonic (p, q)-form
ψ (that is, ψ ∈ ∧p,qX is such that �ψ = 0) to a �-harmonic (n − q, n − p)-form ∗ψ, where � := [∂, ∂∗] :=
∂∂∗ + ∂∗∂ ∈ End (∧•,•X) is the conjugate operator to �, and hence, by conjugating, one gets a �-harmonic
(n− p, n− q)-form ∗ψ. Hence, one gets the following result.

Theorem 0.4 (Serre duality, [Ser55, Théorème 4]). Let X be a compact complex manifold of complex dimension
n, endowed with a Hermitian metric. For every p, q ∈ N, the Hodge-∗-operator induces an isomorphism

∗ : Hp,q

∂
(X) '→ Hn−p,n−q

∂
(X) .

Since a ∂-closed form is not necessarily d-closed, Dolbeault cohomology classes do not define, in general, de
Rham cohomology classes, that is, in general, on a compact complex manifold, there is no natural map between
the Dolbeault cohomology and the de Rham cohomology (as we will see, in the special case of compact Kähler
manifolds, or more in general of compact complex manifolds satisfying the ∂∂-Lemma, the de Rham cohomology
actually can be decomposed by means of the Dolbeault cohomology groups, [Wei58, Théorème IV.3], [DGMS75,
Lemma 5.15, Remark 5.16, 5.21]). Nevertheless, the Frölicher inequality provides a relation between the dimension
of the Dolbeault cohomology and the dimension of the de Rham cohomology; it follows by considering the Hodge
and Frölicher spectral sequence, which we recall here.

The structure of double complex of
(
∧•,•X, ∂, ∂

)
gives rise to two natural filtrations of ∧•X ⊗C, namely, (for

p, q ∈ N and for k ∈ N,)

′F p
(
∧kX ⊗ C

)
:=

⊕

r+s=k
r≥p

∧r,sX and ′′F q
(
∧kX ⊗ C

)
:=

⊕

r+s=k
s≥q

∧r,sX ;

these filtrations induce two spectral sequences (see, e.g., [McC01, §2.4], [GH94, §3.5]),

{(E•,•r , dr) :=: (′E•,•r , ′ dr)}r∈N and, respectively, {(′′E•,•r , ′′ dr)}r∈N ,
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called Hodge and Frölicher spectral sequences (or Hodge to de Rham spectral sequences): one has
′E•,•1 ' H•,•

∂
(X) ⇒ H•dR(X;C) and ′′E•,•1 ' H•,•∂ (X) ⇒ H•dR(X;C) .

An explicit description of {(Er, dr)}r∈N is given in [CFUG97]: for any p, q ∈ N and r ∈ N, its terms are

Ep,qr ' X
p,q
r

Yp,qr
,

where, for r = 1,
X p,q1 :=

{
α ∈ ∧p,qX : ∂α = 0

}
, Yp,q1 := ∂ ∧p,q−1 X ,

and, for r ≥ 2,

X p,qr :=
{
αp,q ∈ ∧p,qX : ∂αp,q = 0 and, for any i ∈ {1, . . . , r − 1}, there exists αp+i,q−i ∈ ∧p+i,q−iX

such that ∂αp+i−1,q−i+1 + ∂αp+i,q−i = 0
}
,

Yp,qr :=
{
∂βp−1,q + ∂βp,q−1 ∈ ∧p,qX : for any i ∈ {2, . . . , r − 1}, there exists βp−i,q+i−1 ∈ ∧p−i,q+i−1X

such that ∂βp−i,q+i−1 + ∂βp−i+1,q+i−2 = 0 and ∂βp−r+1,q+r−2 = 0
}
,

see [CFUG97, Theorem 1], and, for any r ≥ 1, the map dr : E•,•r → E•+r,•−r+1
r is given by

dr : {[αp,q] ∈ Ep,qr }p,q∈N 7→
{[
∂αp+r−1,q−r+1] ∈ Ep+r,q−r+1

r

}
p,q∈N ,

see [CFUG97, Theorem 3].
As a consequence of ′E•,•1 ' H•,•

∂
(X) ⇒ H•dR(X;C), one gets the following inequality by A. Frölicher.

Theorem 0.5 (Frölicher inequality, [Frö55, Theorem 2]). Let X be a compact complex manifold. Then, for every
k ∈ N,

dimCH
k
dR(X;C) ≤

∑

p+q=k
dimCH

p,q

∂
(X) .

As a matter of notation, for k ∈ N and p, q ∈ N, we will denote by bk := dimRHk
dR(X;R), respectively

hp,q
∂

:= dimCH
p,q

∂
(X), the kth Betti number, respectively the (p, q)th Hodge number of X.

In the next chapter, we will provide a Frölicher-type inequality also for the Bott-Chern cohomology, Theorem
1.22, showing that it allows to characterize the compact complex manifolds satisfying the ∂∂-Lemma just in terms
of the dimensions of the Bott-Chern cohomology and of the de Rham cohomology, Theorem 1.25.

Remark 0.6. Other than the Dolbeault cohomology, other cohomologies can be defined for a complex manifold
X; more precisely, since, for every p, q ∈ N,

∧p−1,q−1X
∂∂→ ∧p,qX ∂+∂→ ∧p+1,qX ⊕ ∧p,q+1X and ∧p−1,q X ⊕ ∧p,q−1X

(∂, ∂)→ ∧p,qX ∂∂→ ∧p+1,q+1X

are complexes, one can define the Bott-Chern cohomology H•,•BC(X) and the Aeppli cohomology H•,•A (X) of X as

H•,•BC(X) := ker ∂ ∩ ker ∂
im ∂∂

and H•,•A (X) := ker ∂∂
im ∂ + im ∂

;

we refer to §1.1 for further details.

0.2 Symplectic structures
In this section, we recall some definitions and results concerning symplectic manifolds, that is, differentiable
manifolds endowed with a non-degenerate d-closed 2-form. An interesting class of examples of symplectic manifolds
is provided by the Kähler manifolds. Moreover, given a differentiable manifold X, its cotangent bundle T ∗X is
endowed with a natural symplectic structure (see, e.g., [CdS01, §2]): in fact, Symplectic Geometry has applications
and motivations in the study of Hamiltonian Mechanics, see, e.g., [CdS01, Part VII].

Let X be a compact 2n-dimensional manifold endowed with a symplectic form, namely, a non-degenerate
d-closed 2-form ω ∈ ∧2X.

The main difference between Symplectic Geometry and Riemannian Geometry is provided by G. Darboux’s
theorem.
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Theorem 0.7 (Darboux theorem, [Dar82]). Let X be a 2n-dimensional manifold endowed with a symplectic form
ω. Then, for every x ∈ X, there exists a coordinate chart

(
U,
{
xj
}
j∈{1,...,2n}

)
, with x ∈ U , such that

ω
loc=

n∑

j=1
dx2j−1 ∧ dx2j .

By exploiting the parallelism with Riemannian Geometry, one can try to develop a Hodge theory also for
compact symplectic manifolds, [Bry88]. The first tool that can be introduced is an analogue of the Hodge-∗-
operator.

Note that every symplectic manifold is orientable, ωnn! giving a canonical orientation.
Denote by I : TX → T ∗X the natural isomorphism of vector bundles induced by ω, namely, I(v)(·) := ω(v, ·) ∈

Hom (TxX;R), for every v ∈ TxX and x ∈ X. Then, for every k ∈ N, the form ω gives rise to a bi-C∞(X;R)-linear
form on ∧kX denoted by

(
ω−1)k, which is skew-symmetric, respectively symmetric, according that k is odd,

respectively even, and defined on the simple elements α1 ∧ . . . ∧ αk, β1 ∧ . . . ∧ βk ∈ ∧kX as
(
ω−1)k (α1 ∧ . . . ∧ αk, β1 ∧ . . . ∧ βk

)
:= det

(
ω−1 (α`, βm

))
`,m∈{1,...,k} ,

where ω−1 (α`, βm
)

:= ω
(
I−1 (α`

)
, I−1 (βm)

)
for every `,m ∈ {1, . . . , k}. In a Darboux coordinate chart(

U,
{
xj
}
j∈{1,...,2n}

)
, the canonical Poisson bi-vector Π := ω−1 ∈ ∧2TX associated to ω is written as ω−1 loc=

∑n
j=1

∂
∂x2j−1 ∧ ∂

∂x2j .
The symplectic-?-operator

?ω : ∧• X → ∧2n−•X ,

introduced by J.-L. Brylinski, [Bry88, §2], is defined requiring that, for every k ∈ N, and for every α, β ∈ ∧kX,

α ∧ ?ωβ =
(
ω−1)k (α, β) ω

n

n! .

As for (almost-)complex manifolds, on a symplectic manifold X one has a decomposition of differential forms in
symplectic-type components, the so-called Lefschetz decomposition; it is a consequence of a sl(2;R)-representation
on ∧2X by means of operators related to the symplectic structure.

More precisely, define the operators L, Λ, H ∈ End• (∧•X) as

L : ∧• X → ∧•+2X , α 7→ ω ∧ α ,

Λ: ∧• X → ∧•−2X , α 7→ −ιΠα ,

H : ∧• X → ∧•X , α 7→
∑

k

(n− k) π∧kXα

(where ιξ : ∧•X → ∧•−2X denotes the interior product with ξ ∈ ∧2 (TX), and, for k ∈ N, the map π∧kX : ∧•X →
∧kX denotes the natural projection onto ∧kX). Note that, using the symplectic-?-operator ?ω, one can write,
[Yan96, Lemma 1.5],

Λ = − ?ω L ?ω .

The following result holds.

Theorem 0.8 ([Yan96, Corollary 1.6]). Let X be a manifold endowed with a symplectic structure. Then

[L, H] = 2L , [Λ, H] = −2 Λ , [L, Λ] = H ,

and hence
sl(2;R) ' 〈L, Λ, H〉 → End• (∧•X)

gives a sl(2;R)-representation on ∧•X.

(See, e.g., [Hum78, §7] for general results concerning sl(2;R)-representations.)
The above sl(2;R)-representation, having finite H-spectrum, induces a decomposition of the space of the

differential forms.
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Theorem 0.9 ([Yan96, Corollary 2.6]). Let X be a manifold endowed with a symplectic structure. Then one has
the Lefschetz decomposition on differential forms,

∧•X =
⊕

r∈N
Lr P∧•−2rX ,

where
P∧•X := ker Λ

is the space of primitive forms.

Note (see, e.g., [Huy05, Proposition 1.2.30(v)]) that, for every k ∈ N,

P∧kX = kerLn−k+1b∧kX .

In general, see, e.g., [TY12b, pages 7–8], the Lefschetz decomposition of A(k) ∈ ∧kX reads as

A(k) =
∑

r≥max{k−n, 0}

1
r! L

r B(k−2r)

where, for r ≥ max {k − n, 0},

B(k−2r) :=
(∑

`∈N
ar,`,(n,k)

1
`! L

` Λr+`
)
A(k) ∈ P∧k−2rX

and, for r ≥ max {k − n, 0} and ` ∈ N,

ar,`,(n,k) := (−1)` · (n− k + 2r + 1)2 ·
r∏

i=0

1
n− k + 2r + 1− i ·

∏̀

j=0

1
n− k + 2r + 1 + j

∈ Q .

We recall that

Lb⊕n−2
k=−1

∧n−k−2X
:

n−2⊕

k=−1
∧n−k−2X → ∧n−kX

is injective, [Yan96, Corollary 2.8], and that, for every k ∈ N,

Lk : ∧n−k X → ∧n+kX

is an isomorphism, [Yan96, Corollary 2.7].

Since [L, d] = 0, for any k ∈ N, the map Lk : ∧n−kX → ∧n+kX induces a map Lk : Hn−k
dR (X;R)→ Hn+k

dR (X;R)
in cohomology. One says that X satisfies the Hard Lefschetz Condition, shortly hlc, if

for every k ∈ N , Lk : Hn−k
dR (X;R) '→ Hn+k

dR (X;R) . (HLC)

By continuing in the parallelism between Riemannian Geometry and Symplectic Geometry, one can introduce
the dΛ operator with respect to a symplectic structure ω as

dΛb∧kX := (−1)k+1 ?ω d ?ω

for any k ∈ N, and interpret it as the symplectic counterpart of the Riemannian d∗ operator with respect to a
Riemannian metric. In light of this, J.-L. Brylinski proposed in [Bry88] a Hodge theory for compact symplectic
manifolds, conjecturing that, on a compact manifold endowed with a symplectic structure ω, every de Rham
cohomology class admits a (possibly non-unique) ω-symplectically-harmonic representative, namely, a d-closed
dΛ-closed representative, [Bry88, Conjecture 2.2.7]. (Note that d dΛ + dΛ d = 0, [Bry88, Theorem 1.3.1], [Kos85,
page 265], provides a strong difference in the parallelism between Symplectic Geometry and Riemannian geometry;
in particular, it follows that a ω-symplectically-harmonic representative, whenever it exists, is not unique.)

For an almost-Kähler structure (J, ω, g) on a compact manifold X (that is, ω ∈ ∧2X is a symplectic form on
X, J ∈ End (TX) is an almost-complex structure on X, and g is a J-Hermitian metric on X such that ω is the
associated (1, 1)-form to g), the symplectic-?-operator ?ω and the Hodge-∗-operator ∗g are related by

?ω = J ∗g ,
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and hence
dΛ = − (dc)∗g

where dc := J−1 d J and (dc)∗g b∧kX := (−1)k+1 ∗g d ∗g for every k ∈ N (note that, when J is integrable, then
dc = − i

(
∂ − ∂

)
). Moreover, on a compact manifold X endowed with a Kähler structure (J, ω, g), by the Hodge

decomposition theorem, [Wei58, Théorème IV.3], the pure-type components with respect to J of the harmonic
representatives of the de Rham cohomology classes are themselves harmonic. Hence, it follows that Brylinski’s
conjecture holds true for compact Kähler manifolds, [Bry88, Corollary 2.4.3].

O. Mathieu in [Mat95], and D. Yan in [Yan96], provided counterexamples to Brylinski’s conjecture, characteriz-
ing the compact symplectic manifolds satisfying Brylinski’s conjecture in terms of the validity of the Hard Lefschetz
Condition. Furthermore, S. A. Merkulov in [Mer98], see also [Cav05], and V. Guillemin in [Gui01], proved that the
Hard Lefschetz Condition on compact symplectic manifolds is equivalent to satisfying the d dΛ-Lemma, namely,
to every d-exact dΛ-closed form being d dΛ-exact. Summarizing, we recall the following result.

Theorem 0.10 ([Mat95, Corollary 2], [Yan96, Theorem 0.1], [Mer98, Proposition 1.4], [Gui01], [Cav05, Theorem
5.4]). Let X be a compact manifold endowed with a symplectic structure ω. The following conditions are equivalent:

(i) every de Rham cohomology class admits a representative being both d-closed and dΛ-closed (i.e., Brylinski’s
conjecture [Bry88, Conjecture 2.2.7] holds true on X);

(ii) X satisfies the Hard Lefschetz Condition;

(iii) X satisfies the d dΛ-Lemma.

Note that, by the Lefschetz decomposition theorem, [Wei58, Théorème IV.5] (see §0.3), compact Kähler
manifolds satisfy the Hard Lefschetz Condition.

Remark 0.11. The Complex Generalized Geometry, introduced by N. J. Hitchin in [Hit03] and developed,
among others, by M. Gualtieri, [Gua04, Gua11], and G. R. Cavalcanti, [Cav05], see also [Hit10, Cav07], allows to
frame symplectic structures and complex structures in the same context (in a sense, this add more significance to
the term “symplectic”, which was invented by H. Weyl, [Wey97, §VI], substituting the Greek root in the term
“complex” with the corresponding Latin root). In such a framework, the dΛ operator associated to a symplectic
structure should be interpreted as the symplectic counterpart of the operator dc := − i

(
∂ − ∂

)
associated to a

complex structure, [Cav05].

0.3 Kähler structures and cohomological decomposition
Note that, given a manifold X endowed with a symplectic form ω, there is always a (possibly non-integrable)
almost-complex structure J on X such that g := ω(·, J ··) is a Hermitian metric on X with ω as the associated
(1, 1)-form, see, e.g., [CdS01, Corollary 12.7] (in fact, the set of such almost-complex structures is contractible,
see, e.g., [AL94, Corollary II.1.1.7], [CdS01, Proposition 13.1]; see also [Gro85, Corollary 2.3.C′2], which proves
that the space of almost-complex structures on X tamed by a given 2-form on X is contractible). Instead, the
datum of an integrable almost-complex structure with the above property yields a Kähler structure on X. The
notion of Kähler manifold has been studied for the first time by J. A. Schouten and D. van Dantzig [SvD30], see
also [Sch29], and by E. Kähler [Käh33], and the terminology has been fixed by A. Weil [Wei58].

Kähler structures can be defined in different ways, according to the point of view which is stressed, §0.3.1.
The presence of three different structures (complex, symplectic, and Riemannian) allows to make use of the
tools available for any of them; in addition, the relations between such structures make available further tools,
which yield many interesting results on Hodge theory, §0.3.2. Finally, we will study a cohomological property
of compact Kähler manifolds, namely, the ∂∂-Lemma, §0.3.3: other than being a very useful tool in Kähler
Geometry (compare, e.g., its role in S.-T. Yau’s proof [Yau77, Yau78] of E. Calabi’s conjecture [Cal57]), it provides
obstructions to the existence of Kähler structures on differentiable manifolds, by means of the notion of formality
introduced by D. P. Sullivan, [Sul77, §12].

0.3.1 Kähler metrics
Let X be a compact complex manifold of complex dimension n, and denote by J its natural integrable almost-
complex structure.

A Kähler metric on X is a Hermitian metric g such that the associated (1, 1)-form ω := g(J ·, ··) is d-closed
(that is, ω is a symplectic form on X).
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Remark 0.12. Let X be a complex manifold endowed with a Kähler metric g, and denote the associated
(1, 1)-form to g by ω. By the Poincaré lemma, see, e.g., [Dem12, I.1.22, Theorem I.2.24], and the Dolbeault and
Grothendieck lemma, see, e.g., [Dem12, I.3.29], the property that dω = 0 is equivalent to ask that, for every
x ∈ X, there exist an open neighbourhood U in X with x ∈ U and a smooth function u ∈ C∞(U ;R) such that
ω

loc= i ∂∂u in U , that is, the metric has a local potential, [Käh33] (see, e.g., [Mor07, Proposition 8.8]).

Remark 0.13. For every n ∈ N, the complex projective space CPn admits a Kähler metric, the so-called Fubini
and Study metric, [Fub04, Stu05], which is induced by the fibration S1 ↪→ S2n+1 → CPn; more precisely, by using
the homogeneous coordinates [z0 : · · · : zn], one has that the associated (1, 1)-form ωFS to the Fubini and Study
metric is

ωFS = i
2π ∂∂ log

(
n∑

`=0

∣∣z`
∣∣2
)
.

It follows that complex projective manifolds provide examples of Kähler manifolds. Conversely, by the Kodaira
embedding theorem [Kod54, Theorem 4], if X is a compact complex manifold endowed with a Kähler metric ω
such that [ω] ∈ H2

dR(X;R) ∩ im
(
H2(X;Z)→ H2

dR(X;R)
)
, then there exists a complex-analytic embedding of X

into a complex projective space CPN for some N ∈ N. In a sense, this suggest that projective manifolds are to
Kähler manifolds as Q is to R. Hence, it is natural to ask if every compact Kähler manifold is a deformation
of a projective manifold (which is known as the Kodaira problem). Since Riemann surfaces are projective, this
is trivially true in complex dimension 1. Furthermore, K. Kodaira proved in [Kod63, Theorem 16.1] that every
compact Kähler surface is a deformation of an algebraic surface, as conjectured by W. Hodge; another proof,
which does not make use of the classification of elliptic surfaces, has been given by N. Buchdahl, [Buc08, Theorem].
In higher dimension, a negative answer to the Kodaira problem has been given by C. Voisin, who constructed
examples of compact Kähler manifolds, of any complex dimension greater than or equal to 4, which do not have
the homotopy type of a complex projective manifold, [Voi04, Theorem 2] (indeed, recall that, by Ehresmann’s
theorem, if two compact complex manifolds can be obtained by deformation, then they are homeomorphic, and
hence they have the same homotopy type). The examples in [Voi04] being, by construction, bimeromorphic to
manifolds that can be deformed to projective manifolds, one could ask (as done by N. Buchdahl, F. Campana,
S.-T. Yau) whether, in higher dimension, a birational version of the Kodaira problem may hold true; in [Voi06,
Theorem 3], C. Voisin provided a negative answer to the birational version of the Kodaira problem, proving that,
in any even complex dimension greater that or equal to 10, there exist compact Kähler manifolds X such that,
for any compact Kähler manifold X ′ bimeromorphic to X, X ′ does not have the homotopy type of a projective
complex manifold.

In the definition of a Kähler manifold, three different structures are involved: a complex structure, a symplectic
structure, and a metric structure. Therefore, changing the point of view allows to give several equivalent definitions
of Kähler structure (see, e.g., [Bal06, Theorem 4.17]): we review here two of these characterizations.

Firstly, it is straightforward to prove that a Hermitian metric g on a compact complex manifold X is a Kähler
metric if and only if, for every point x ∈ X, there exists a holomorphic coordinate chart

(
U,
{
zj
}
j∈{1,...,n}

)
, with

x ∈ U , such that

g =
n∑

α,β=1
(δαβ + o (|z|)) d zα � d z̄β at x ,

that is, g osculates to order 2 the standard Hermitian metric of Cn (see, e.g., [GH94, pages 107–108], [Huy05,
Proposition 1.3.12], [Mor07, Theorem 11.6]).

As regards the second characterization, we recall that, on a compact complex manifold X endowed with a
Hermitian metric g, there is a unique connection ∇C such that

(i) ∇Cg = 0,

(ii) ∇CJ = 0, and

(iii) π∧0,1X∇CbC∞(X;C)= ∂bC∞(X;C);

such a connection is called the Chern connection of X (see, e.g., [Huy05, Proposition 4.2.14], [Bal06, Theorem 3.18],
[Mor07, Theorem 10.3]). Let g be a Hermitian metric on a compact complex manifold X, and set ω := g(J ·, ··)
its associated (1, 1)-form, where J is the natural integrable almost-complex structure on X; consider the Levi
Civita connection ∇LC . One can prove that, for every x, y, z ∈ C∞ (X;TX),

dω(x, y, z) = g
((
∇LCx J

)
y, z

)
+ g

((
∇LCy J

)
z, x

)
+ g

((
∇LCz J

)
x, y

)
,
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and
2 g
((
∇LCx J

)
y, z

)
= dω (x, y, z)− dω (x, Jy, Jz)− g (NijJ (y, Jz) , x) ;

(see, e.g., [Bal06, Theorem 4.16], [Tia00, Proposition 1.5]); in particular, it follows that g is a Kähler metric if and
only if ∇LCJ = 0 if and only if the Chern connection is the Levi Civita connection (see, e.g., [Bal06, Theorem
4.17], [Mor07, Proposition 11.8]).

0.3.2 Hodge theory for Kähler manifolds
The complex, symplectic, and metric structures being related on a Kähler manifold, one gets the following
identities concerning the corresponding operators (see, e.g., [Huy05, Proposition 3.1.12]); see also [Hod35, Hod89].
(In [Dem86, Theorem 1.1, Theorem 2.12], commutation relations on arbitrary Hermitian manifolds are provided;
see also [Gri66], [Dem12, §VI.6.2].)

Theorem 0.14 (Kähler identities, [Wei58, Théorème II.1, Théorème II.2, Corollaire II.1]). Let X be a compact
Kähler manifold. Consider the differential operators ∂ and ∂ associated to the complex structure, the symplectic
operators L and Λ associated to the symplectic structure, and the Hodge-∗-operator associated to the Hermitian
metric. Then, these operators are related as follows:

(i)
[
∂, L

]
= [∂, L] = 0 and

[
Λ, ∂∗

]
= [Λ, ∂∗] = 0;

(ii)
[
∂
∗
, L
]

= i ∂ and [∂∗, L] = − i ∂, and
[
Λ, ∂

]
= − i ∂∗ and [Λ, ∂] = i ∂∗.

Therefore, considering the 2nd order self-adjoint elliptic differential operators � := [∂, ∂∗], � :=
[
∂, ∂

∗], and
∆ := [d, d∗], one gets that

(iii) � = � = 1
2∆, and ∆ commutes with ∗, ∂, ∂, ∂∗, ∂∗, L, Λ.

The previous identities can be proven either using the sl (2;C) representation 〈L, Λ, H〉 → End• (∧•X ⊗ C),
or reducing to prove the corresponding identities on Cn with the standard Kähler structure (which are known as
Y. Akizuki and S. Nakano’s identities, [AN54, §3]) and hence using that every Kähler metric osculates to order 2
the standard Hermitian metric on Cn.

As a consequence, one gets the following theorems, stating a decomposition of the de Rham cohomology of a
Kähler manifold related to the complex, respectively symplectic, structure (see, e.g., [Huy05, Corollary 3.2.12],
respectively [Huy05, Proposition 3.2.13]).

Theorem 0.15 (Hodge decomposition theorem, [Wei58, Théorème IV.3]). Let X be a compact complex manifold
endowed with a Kähler structure. Then there exist a decomposition

H•dR(X;C) '
⊕

p+q=•
Hp,q

∂
(X) ,

and, for every p, q ∈ N, an isomorphism
Hp,q

∂
(X) ' Hq,p

∂
(X) .

Theorem 0.16 (Lefschetz decomposition theorem, [Wei58, Théorème IV.5]). Let X be a compact complex
manifold, of complex dimension n, endowed with a Kähler structure. Then there exist a decomposition

H•dR(X;C) =
⊕

r∈N
Lr
(
ker
(
Λ: H•−2r

dR (X;C)→ H•−2r−2
dR (X;C)

))
,

and, for every k ∈ N, an isomorphism

Lk : Hn−k
dR (X;C) '→ Hn+k

dR (X;C) .

0.3.3 ∂∂-Lemma and formality for compact Kähler manifolds
The Hodge decomposition theorem and the Lefschetz decomposition theorem provide obstructions to the existence
of Kähler structures on a compact complex manifold. In this section, we study another property of compact
Kähler manifolds, namely, formality, which provides an obstruction to the existence of a Kähler structure on a
compact (differentiable) manifold. Such a property turns out to be a consequence of the validity of the ∂∂-Lemma
on compact complex manifolds.
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Firstly, we need to recall some general notions regarding homotopy theory of differential algebras; we will then
summarize some results concerning the homotopy type of Kähler manifolds: by the classical result by P. Deligne,
Ph. A. Griffiths, J. Morgan, and D. P. Sullivan, [DGMS75, Main Theorem], the real homotopy type of a Kähler
manifold X is a formal consequence of its cohomology ring H•dR(X;R).

We recall that a differential graded algebra (shortly, dga) over a field K is a graded K-algebra A• (where the
structure of K-algebra is induced by an inclusion K ⊆ A0) being graded-commutative (that is, for every x ∈ Adeg x

and y ∈ Adeg y, it holds x · y = (−1)deg x·deg y
y · x) and endowed with a differential d: A• → A•+1 satisfying the

graded-Leibniz rule (that is, for every x ∈ Adeg x and y ∈ Adeg y, it holds d (x · y) = dx · y + (−1)deg x
x · d y). A

morphism of differential graded algebras F : (A•, dA•)→ (B•, dB•) is a morphism A• → B• of K-algebras such
that F ◦ dA• = dB• ◦F .

Given a dga (A•, d) over K, the cohomology H• (A•, d) := ker d
im d endowed with the zero differential has a natural

structure of dga over K; furthermore, every morphism F : (A•, dA•)→ (B•, dB•) of dgas induces a morphism
F ∗ : (H• (A•, dA•) , 0) → (H• (B•, dB•) , 0) of dgas in cohomology; a morphism F : (A•, dA•) → (B•, dB•)
of dgas is called a quasi-isomorphism (shortly, qis) if the corresponding morphism F ∗ : (H• (A•, dA•) , 0) →
(H• (B•, dB•) , 0) is an isomorphism.

The de Rham complex (∧•X, d) of a compact (differentiable) manifold X has a structure of dga over R, whose
cohomology is the dga (H•dR(X;R), 0).

Given a dga (A•, dA•) over K, the differential dA• is called decomposable if

dA• (A•) ⊆


 ⊕

k∈N\{0}
Ak


 ·


 ⊕

k∈N\{0}
Ak


 .

Given a dga (A•, dA•) over K, an elementary extension of (A•, dA•) is a dga (B•, dB•) over K such that

(i) B• = A• ⊗K ∧•Vk for Vk a finite-dimensional K-vector space and k > 0, where ∧•Vk is the free graded
K-algebra generated by Vk, the elements of Vk having degree k, and

(ii) dB•bA•= dA• and dB• (Vk) ⊆ A•.
A dga (M•, dM•) over K is called minimal if it can be written as an increasing union of sub-dga,

(K, 0) =
(
M•0 , dM•0

)
⊂
(
M•1 , dM•1

)
⊂
(
M•2 , dM•2

)
⊆ · · · , (M•, dM•) =

⋃

j∈N

(
M•j , dM•

j

)
,

such that

(i) for any j ∈ N, the dga
(
M•j+1, dM•

j+1

)
is an elementary extension of the dga

(
M•j , dM•

j

)
, and

(ii) dM• is decomposable.

A minimal model for a dga (A•, dA•) over K is the datum of a minimal dga (M•, dM•) over K and a
quasi-isomorphism ρ : (M•, dM•)

qis→ (A•, dA•) of dgas.
Two dgas (A•, dA•) and (B•, dB•) over K are equivalent if there exist an integer n ∈ N \ {0}, a family{(
C•j , dC•

j

)}
j∈{0,...,2n}

of dgas over K with
(
C•0 , dC•0

)
= (A•, dA•) and

(
C•2n, dC•2n

)
= (B•, dB•), and a family

{(
C•2j+1, dC•2j+1

)
qis→
(
C•2j , dC•2j

)
,
(
C•2j+1, dC•2j+1

)
qis→
(
C•2j+2, dC•2j+2

)}
j∈{0,...,n−1}

of quasi-isomorphisms. A dga (A•, dA•) over K is called formal if it is equivalent to a dga (B•, 0) over K with
zero differential, that is, if it is equivalent to (H• (A•, dA•) , 0).

A compact manifold X is called formal if its de Rham complex (∧•X, d) is a formal dga over R.
Let (A•, dA•) be a dga over K. Given

[α12] ∈ Hdegα12 (A•, dA•) , [α23] ∈ Hdegα23 (A•, dA•) , and [α34] ∈ Hdegα34 (A•, dA•)

such that
[α12] · [α23] = 0 and [α23] · [α34] = 0 ,

let α13 ∈ Adegα12+degα23−1 and α24 ∈ Adegα23+degα34−1 be such that

(−1)degα12 α12 · α23 = dA• α13 and (−1)degα23 α23 · α34 = dA• α24 ;
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one can then define the triple Massey product 〈[α12] , [α23] , [α34]〉 as

〈[α12] , [α23] , [α34]〉 :=
[
(−1)degα12 α12 · α24 + (−1)degα13 α13 · α34

]

∈ Hdegα12+degα23+degα34−1 (A•, dA•)
Hdegα12 (A•, dA•) ·Hdegα23+degα34−1 (A•, dA•) +Hdegα34 (A•, dA•) ·Hdegα12+degα23−1 (A•, dA•)

.

One can define the higher order Massey product by induction. Fixed m ∈ N such that m ≥ 4, and given

[α12] ∈ Hdegα12 (A•, dA•) , . . . , [αm,m+1] ∈ Hdegαm,m+1 (A•, dA•)

such that all the Massey products of order lower than or equal to m − 1 vanish, let {αrs}1≤r<s≤m+1 ⊆ A• be
such that ∑

h<`<k

(−1)degαh` αh` · α`k = dαhk ,

for any h, k ∈ {1, . . . ,m+ 1} with k − h < m. Then define the mth order Massey product as

〈[α12] , . . . , [αm,m+1]〉 :=
[ ∑

1<`<m+1
(−1)degα1k α1k · αk,m+1

]

belonging to a quotient of H• (A•, dA•).
As a direct consequence of the definitions, the Massey products (of any order) on a formal dga are zero.

Now, let X be a compact manifold endowed with a Kähler structure.
The Kähler identities allow to prove the following result, known as ∂∂-Lemma (see, e.g., [Huy05, Corollary

3.2.10]), which, in a sense, summarizes many of the cohomological properties of compact Kähler manifolds.

Theorem 0.17 (∂∂-Lemma for compact Kähler manifolds, [DGMS75, Lemma 5.11]). Let X be a compact Kähler
manifold. Then every ∂-closed, ∂-closed, d-exact form is also ∂∂-exact.

Using the differential operator dc := J−1 d J = − i
(
∂ − ∂

)
(where J is the integrable almost-complex structure

naturally associated to the structure of complex manifold on X), and noting that ker ∂ ∩ ker ∂ = ker d∩ ker dc
and im ∂∂ = im d dc, the following equivalent formulation can be provided.

Theorem 0.18 (d dc-Lemma for compact Kähler manifolds, [DGMS75, Lemma 5.11]). Let X be a compact
Kähler manifold. Then every d-closed, dc-closed, d-exact form is also d dc-exact.

Actually, the ∂∂-Lemma holds true for a larger class of compact complex manifolds than the compact Kähler
manifolds: indeed, it holds, for examples, for any compact complex manifold that can be blown up to a Kähler
manifold, [DGMS75, Theorem 5.22], e.g., for compact complex manifolds in class C of Fujiki, or for Mǒıšezon
manifolds; we refer to §1.1.3 for further results concerning the ∂∂-Lemma for compact complex manifolds.

If X is a compact Kähler manifold (or, more in general, any compact complex manifold for which the ∂∂-Lemma,
equivalently the d dc-Lemma, holds), then one has the following quasi-isomorphisms of dgas:

(ker dc, dbker dc)

qiswwoooooooooooo

qis ((PPPPPPPPPPPP

(∧•X, d)
(ker dc

im dc , 0
)

;

in particular, the dga (∧•X, d) is equivalent to a dga with zero differential, and hence it is formal. This proves
the following result by P. Deligne, Ph. A. Griffiths, J. Morgan, and D. P. Sullivan.

Theorem 0.19 ([DGMS75, Main Theorem]). Let X be a compact complex manifold for which the ∂∂-Lemma
holds (e.g., a compact Kähler manifold, or a manifold in class C of Fujiki). Then the differentiable manifold
underlying X is formal (that is, the differential graded algebra (∧•X, d) is formal).

In particular, all Massey products (of any order) on a compact complex manifold satisfying the ∂∂-Lemma
are zero, [DGMS75, Corollary 1]. This provide an obstruction to the existence of Kähler structures on compact
differentiable manifolds.
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0.4 Deformations of complex structures
A natural way to construct new complex structures on a manifold is by “deforming” a given complex structure.
Natural questions arise naturally from this construction, concerning, for example, what properties (e.g., the
existence of some special metric) remain still valid after such a small deformation.

We recall in this section the basic notions and the classical results concerning the K. Kodaira, D. C. Spencer,
L. Nirenberg, and M. Kuranishi theory of deformations of complex manifolds, [KS58, KS60, KNS58, Kur62],
referring to [Huy05], see also, e.g., [Kod05, MK06].

Let B be a complex (respectively, differentiable) manifold. A family {Xt}t∈B of compact complex manifolds
is said to be a complex-analytic (respectively, differentiable) family of compact complex manifolds if there exist
a complex (respectively, differentiable) manifold X and a surjective holomorphic (respectively, smooth) map
π : X → B such that (i) π−1(t) = Xt for any t ∈ B, and (ii) π is a proper holomorphic (respectively, smooth)
submersion. A compact complex manifold X is said to be a deformation of a compact complex manifold Y if
there exist a complex-analytic family {Xt}t∈B of compact complex manifolds, and b0, b1 ∈ B such that Xb0 = Xs

and Xb1 = Xt.
A complex-analytic (respectively, differentiable) family X π→ B of compact complex manifolds is said to be

trivial if X is bi-holomorphic (respectively, diffeomorphic) to B×Xb
πB→ B for some b ∈ B (where πB : B×Xb → B

denotes the natural projection onto B); it is said to be locally trivial if, for any b ∈ B, there exists an open

neighbourhood U of b in B such that π−1(U)
πbπ−1(U)→ U is trivial. The following theorem by C. Ehresmann

states the local triviality of a differentiable family of compact complex manifolds (see, e.g., [Kod05, Theorem 2.3,
Theorem 2.5], [MK06, Theorem 1.4.1]).

Theorem 0.20 (Ehresmann theorem, [Ehr47]). Let {Xt}t∈B be a differentiable family of compact complex
manifolds. For any s, t ∈ B, the manifolds Xs and Xt are diffeomorphic.

As a consequence of Ehresmann’s theorem, a complex-analytic family {Xt}t∈B of compact complex manifolds
with B contractible can be viewed as a family of complex structures on a compact differentiable manifold.

We recall some other useful definitions, see, e.g., [Huy05, §6.2]. Let π : X → B be a complex-analytic family
of compact complex manifolds, deformations of X := π−1(0). We recall that, given f : (B′, 0′) → (B, 0) a
morphism of germs with a distinguished point, the pull-back f∗X := X ×B B′ gives a complex-analytic family
of deformations of X. The complex-analytic family π : X → B of deformations of X is called complete if, for
any complex-analytic family π′ : X ′ → B′ of deformations of X, there exists a morphism f : B′ → B of germs
with a distinguished point such that X ′ = f∗X . The complex-analytic family π : X → B of deformations of X
is called universal if, for any complex-analytic family π′ : X ′ → B′ of deformations of X, there exists a unique
morphism f : B′ → B of germs with a distinguished point such that X ′ = f∗X . The complex-analytic family
π : X → B of deformations of X is called versal if, for any complex-analytic family π′ : X ′ → B′ of deformations
of X, there exists a morphism f : B′ → B of germs with a distinguished point such that X ′ = f∗X and such that
d f : T0′B

′ → T0S is uniquely determined.
The theory of complex-analytic deformations of compact complex manifolds has been introduced by K. Kodaira

and D. C. Spencer, [KS58, KS60], and developed also by L. Nirenberg, [KNS58], and M. Kuranishi, [Kur62, Kur65],
see also [Kod05, MK06]. In recalling the main results of this theory, we follow the approach in [Huy05], based on
the construction of a differential graded Lie algebra structure on C∞

(
X; T 1,0X ⊗ ∧0,•X

)
, see also [Man04].

Let X be a compact manifold endowed with an integrable almost-complex structure J . Every section
s ∈ C∞

(
X;T 1,0

J X ⊗ ∧0,1
J X

)
near to the zero section determines an almost-complex structure J ′, defined in such

a way that ∧1,0
J′ X is the graph of −s : ∧1,0

J X → ∧0,1
J X; it turns out that J ′ is integrable if and only if the Maurer

and Cartan equation
∂s+ 1

2 [s, s] = 0 (MC)

holds (see, e.g., [Huy05, Lemma 6.1.2]), where

• [·, ··] : C∞
(
X; T 1,0

J X ⊗ ∧0,p
J X

)
× C∞

(
X; T 1,0

J X ⊗ ∧0,q
J X

)
→ C∞

(
X; T 1,0

J X ⊗ ∧0,p+q
J X

)
is defined as

[
X ⊗ ᾱ, Y ⊗ β̄

]
:= X ⊗

(
β̄ ∧ LY ᾱ

)
+ Y ⊗

(
ᾱ ∧ LX β̄

)
+ [X, Y ]⊗

(
ᾱ ∧ β̄

)
,

where LWϕ := ιW dϕ+ d (ιWϕ) is the Lie derivative of ϕ along W ; locally, in a chart with holomorphic
coordinates

{
zj
}
j
, one has

[
w ⊗ d z̄`1 ∧ · · · ∧ d z̄`p , w′ ⊗ d z̄m1 ∧ · · · ∧ d z̄mq∧

] loc= [w, w′]⊗ d z̄`1 ∧ · · · ∧ d z̄`p ∧ d z̄m1 ∧ · · · ∧ d z̄mq ;
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• ∂ : C∞
(
X; T 1,0

J X ⊗ ∧0,p
J X

)
→ C∞

(
X; T 1,0

J X ⊗ ∧0,p+1
J X

)
is defined as

∂ϕ
(
Z̄, W̄

)
:=

[
Z̄, ϕ

(
W̄
)]1,0 −

[
W̄ , ϕ

(
Z̄
)]1,0 − ϕ

([
Z̄, W̄

])
,

where X1,0 := X − i J X is the (1, 0)-component of X; locally, in a chart with holomorphic coordinates{
zj
}
j
, one has

∂

(
∂

∂z`
⊗ α

)
loc= ∂

∂z`
⊗ ∂α .

Hence, to study complex-analytic families of infinitesimal deformations of a compact complex manifold X, it
suffices to study complex-analytic families {s(t)}t∈∆(0,ε)⊂Cm ⊆ C∞

(
X; T 1,0X ⊗ ∧0,1X

)
(where ε > 0 is small

enough) with s(0) = 0. Consider the power series expansion in t of s(t),

s(t) =:
∑

k∈N
sk(t) ,

where sk(t) ∈ C∞
(
X; T 1,0X ⊗ ∧0,1X

)
is homogeneous of degree k in t, and s0(t) = 0. Then the Maurer and

Cartan equation (MC) can be rewritten, for every t ∈ ∆(0, ε), as the system
{

∂s1(t) = 0
∂sk(t) = −∑1≤j≤k−1 [sj(t), sk−j(t)] for k ≥ 2

;

in particular, s1(t) defines a class in H0,1 (X; ΘX), where ΘX denotes the sheaf of the germs of holomorphic vector
fields on X; up to the action of Diff(X), one has that s1(t) is uniquely determined by its class in H0,1 (X; ΘX)
(see, e.g., [Huy05, Lemma 6.14]).

Fix now a Hermitian metric g on X. Consider the decomposition

T 1,0X ⊗ ∧0,1X =
(
T 1,0X ⊗ ker�b∧0,1X

)
⊕
(
T 1,0X ⊗ ∂ ∧0,0 X

)
⊕
(
T 1,0X ⊗ ∂∗ ∧0,2 X

)
,

and the corresponding projections

H∂ : T 1,0X ⊗ ∧0,1X → T 1,0X ⊗ ker�b∧0,1X , P∂ : T 1,0X ⊗ ∧0,1X → T 1,0X ⊗ ∂ ∧0,0 X .

In order that s(t) satisfies (MC), for every t ∈ ∆(0, ε), one should have

∂sk(t) = −P∂


 ∑

1≤j≤k−1
[sj(t), sk−j(t)]


 .

Hence, one gets
∂s(t) + [s(t), s(t)] = H∂ ([s(t), s(t)]) .

Therefore, define the map
obs : H0,1 (X; ΘX)→ H0,2 (X; ΘX)

as follows. Let
{
Xj ⊗ ω̄k

}
j∈{1,...,n}
k∈{1,...,m}

be a basis of H0,1 (X; ΘX). Given µ :=:
∑

j∈{1,...,n}
k∈{1,...,m}

tjkXj ⊗ ω̄k, denote

t :=:
(
tjk

)
j∈{1,...,n}
k∈{1,...,m}

, and define s1(t) := µ and sk(t) such that ∂sk(t) := −P∂
(∑

1≤j≤k−1 [sj(t), sk−j(t)]
)
for

k ≥ 2; hence, define the formal power series s(t) :=
∑
k∈N sk(t). Define

obs (µ) := H∂ ([s(t), s(t)]) .

Hence, one has then that {s(t)}t∈∆(0,ε)⊂Cm ⊆ C∞
(
X;T 1,0

J X ⊗ ∧0,1
J X

)
(where ε > 0 is small enough) defines

an infinitesimal family of compact complex manifolds if obs (s1 (t)) = 0 for every t ∈ ∆(0, ε) (indeed, for ε > 0
small enough, the formal power series converges, see, e.g., [Kod05, §5.3], [MK06, §2.3]).

One gets the following result by M. Kuranishi.

Theorem 0.21 ([Kur62, Theorem 2]). Let X be a compact complex manifold. Then X admits a versal complex-
analytic family of deformations.
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Fixed a Hermitian metric on X, such a family of deformations, which is called the Kuranishi space Kur(X) of
X, is parametrized by

Kur(X) =
{
µ ∈ H0,1 (X; ΘX) : ‖µ‖ � 1, obs(µ) = 0

}
.

Remark 0.22. A compact complex manifold X is called non-obstructed if Kur(X) is non-singular. In particular,
if H0,2 (X; ΘX) = {0}, then X is non-obstructed. There are other interesting cases in which the Kuranishi space
turns out to be non-singular: as announced by F. A. Bogomolov, [Bog78], and proven by G. Tian, [Tia87], and,
independently, by A. N. Todorov, [Tod89, Theorem 1], this happens for Calabi-Yau manifolds (that is, compact
complex manifolds X of complex dimension n endowed with a Kähler structure (J, ω, g) and with a nowhere
vanishing ε ∈ ∧n,0X such that (i) ∇LCε = 0,where ∇LC denotes the Levi Civita connection associated to g, and
(ii) ε∧ ε̄ = (−1)

n(n+1)
2 in ωn

n! ). In [dBT12], P. de Bartolomeis and A. Tomassini introduced the notion of quantum
inner state manifold, [dBT12, Definition 2.2], as a possible generalization of Calabi-Yau manifolds, proving that,
under a suitable hypothesis, the moduli space of quantum inner state deformations of a compact Calabi-Yau
manifold is totally unobstructed, [dBT12, Theorem 3.6]. On the other hand, in [Rol11b], S. Rollenske studied the
Kuranishi space of holomorphically parallelizable nilmanifolds, proving that it is cut out by polynomial equations
of degree at most equal to the step of nilpotency of the nilmanifold, [Rol11b, Theorem 4.5], and it is smooth if
and only if the associated Lie algebra is a free 2-step nilpotent Lie algebra, [Rol11b, Corollary 4.9].

It could be interesting to study what properties are, in a sense, compatible with the construction of small
deformations of the complex structure. In such a context, a property P concerning compact complex manifolds is
called open under (holomorphic) deformations of the complex structure (or stable under small deformations of the
complex structure) if, for every complex-analytic family {Xt}t∈B of compact complex manifolds, and for every
b0 ∈ B, ifXb0 has the property P , thenXb has the property P for every b in an open neighbourhood of b0; it is called
closed under (holomorphic) deformations of the complex structure if, for every complex-analytic family {Xt}t∈B
of compact complex manifolds, and for every converging sequence {bk}k∈N ⊂ B with b∞ := limk→+∞ bk ∈ B, if
Xbk has the property P for every k ∈ N, then Xb∞ has the property P.

We recall here the following classical result by K. Kodaira and D. C. Spencer, stating that admitting a Kähler
metric is a stable property under deformations of the complex structure.

Theorem 0.23 ([KS60, Theorem 15]). Let {Xt}t∈B be a differentiable family of compact complex manifolds. If
Xt admits a Kähler metric for some t ∈ B, then Xs admits a Kähler metric for every s in an open neighbourhood
of t in B. Moreover, given any Kähler metric ω on Xt, one can choose an open neighbourhood U of t in B and a
Kähler metric ωs on Xs for any s ∈ U such that ωs depends differentiably in s and ωt = ω.

Remark 0.24. In [Hir62], it is proven that admitting a Kähler structure is not a closed property under
deformations of the complex structure: in fact, H. Hironaka provided an explicit example of a complex-analytic
family of compact complex manifolds of complex dimension 3 such that (i) one of the complex manifold is
non-Kähler (indeed, it carries a positive 1-cycle algebraically equivalent to zero), and (ii) the others are Kähler
and, in fact, bi-regularly embedded in a projective space (and hence projective, [Moı66, Theorem 11]), [Hir62,
Theorem]. (Note that, in complex dimension 2, the Kähler property is also closed under small deformations of
the complex structure, since a compact complex surface is Kähler if and only if its 1st Betti number is even, by
[Kod64, Miy74, Siu83], or [Lam99, Corollaire 5.7], or [Buc99, Theorem 11].) It is not known whether the limit of
compact Kähler manifolds admits some special structure; J.-P. Demailly and M. Pǎun conjectured that, given
a complex-analytic family {Xt}t∈S of compact complex manifolds such that one of the fibers, Xt0 , is endowed
with a Kähler structure, then there exists a countable union S′ ( S of analytic subsets in the base such that Xt

admits a Kähler structure for t ∈ S \ S′, [DP04, Conjecture 5.1]; they also guessed that a “natural expectation”
is that the remaining fibres, Xt for t ∈ S′, are in class C of Fujiki, [DP04, page 1272]. In [Pop09, Pop10], D.
Popovici studied limits of projective, respectively Mǒıšezon manifolds under holomorphic deformations of complex
structures, stating, in particular, (by means of a class of Hermitian metrics called strongly-Gauduchon metrics,)
that the limit of Mǒıšezon manifolds is still Mǒıšezon. C. LeBrun and Y. S. Poon [LP92], and F. Campana
[Cam91] showed that being in class C of Fujiki is not a stable property under small deformations of the complex
structures, [LP92, Theorem 1], [Cam91, Corollary 3.13], studying twistor spaces. It is conjectured that being in
class C of Fujiki is a closed property under deformations of the complex structure, see, e.g., [Pop11, Standard
Conjecture 1.17].

We refer to [Pop11] for a review on the behaviour under holomorphic deformations of properties concerning,
e.g., the existence of various types of Hermitian metrics on compact complex manifolds. See also Corollary 1.28,
Theorem 2.48 for some results concerning stability or instability of special properties of complex manifolds, and
Theorem 2.47, Theorem 3.50 for other instability results for almost-complex or D-complex manifolds.
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0.5 Currents and de Rham homology
In this section, we recall the basic notions and results concerning currents on (differentiable) manifolds and de
Rham homology: they turn out to be a useful tool to study the geometry of complex manifolds (as an example,
we recall F. R. Harvey and H. B. Lawson’s intrinsic characterization of Kähler manifolds by means of currents,
[HL83, Proposition 12, Theorem 14], or M. L. Michelsohn’s intrinsic characterization of balanced manifolds by
means of currents [Mic82, Theorem 4.7], see also Theorem 2.73, or J. P. Demailly and M. Pǎun’s characterization
of compact complex manifolds in class C of Fujiki by means of Kähler currents [DP04, Theorem 3.4]). We refer,
e.g., to [dR84, Chapter 3], [Dem12, §I.2], and [Fed69] (see also [Ale98, Ale10]) for further details.

Let X be a m-dimensional oriented differentiable manifold.
For every compact set L ⊆ X and for every s ∈ N, define the semi-norm ρsL on ∧•X as follows: chosen(

U,
{
xj
}
j∈{1,...,m}

)
a coordinate chart with U ⊃ L, and given

ϕ
loc:=:

∑

{i1,...,ik}⊆{1,...,m}
i1<···<ik

ϕI dxi1 ∧ · · · ∧ dxik ∈ ∧•X ,

set
ρsL(ϕ) := sup

L
sup

{i1,...,ik}⊆{1,...,m}
i1<···<ik

sup
(α1,...,αm)∈Nm
α1+···+αm≤s

∣∣∣∣
∂α1+···+αmϕI

(∂x1)α1 · · · (∂xm)αm
∣∣∣∣ ∈ R .

Consider ∧•X endowed with the topology induced by the family of semi-norms ρsL, varying L among the compact
sets in X, and s ∈ N: the manifold X being second-countable, ∧•X has a structure of a Fréchet space. Let ∧•cX
be the topological subspace of ∧•X consisting of differential forms with compact support in X.

For any k ∈ N, the space of currents of dimension k (or degree m− k), denoted by

DkX :=: Dm−kX ,

is defined as the topological dual space of ∧kcX; the space D•X is endowed with the weak-∗ topology.
Two basic examples of currents are the following.

• If Z is a (possibly non-closed) k-dimensional oriented compact submanifold of X, then

[Z] :=
∫

Z

· ∈ DkX

is a current of dimension k.

• If ϕ ∈ ∧kX, then
Tϕ :=

∫

X

ϕ ∧ · ∈ DkX

is a current of degree k.

The exterior differential d: ∧• X → ∧•+1X induces a differential on D•X by duality:

d: D•X → D•−1X

is defined, for every T ∈ DkX, as
dT := (−1)k+1

T (d ·) .
In particular, if Z is a k-dimensional oriented closed submanifold of X, then d [Z] = (−1)m−k+1 [bZ], where b

is the boundary operator; if ϕ ∈ ∧kX, then dTϕ = Tdϕ.

By definition, the de Rham homology HdR
• (X;R) of X is the homology of the differential complex (D•X, d).

By means of a regularization process, [dR84, Theorem 12], (see also [Dem12, §2.D.3, §2.D.4],) one can prove,
[dR84, Theorem 14], that

H•dR(X;R) ' HdR
2n−•(X;R) .

Since, for every k ∈ N, the sheaf AkX is a sheaf of C∞X -module over a paracompact space (where C∞X denotes
the sheaf of germs of smooth functions over X), and by the Poincaré lemma for forms, see, e.g., [Dem12, I.1.22],
one has that

0→ RX → (A•X , d)
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is a fine (and hence acyclic, see, e.g., [Dem12, Corollary IV.4.19]) resolution of the constant sheaf RX , and hence

Ȟ• (X;RX) ' ker
(
d: ∧• X → ∧•+1X

)

im (d: ∧•−1 X → ∧•X) =: H•dR (X;R) ,

see, e.g., [Dem12, IV.6.4].
Analogously, the regularization process [dR84, Theorem 12] allows to prove the analogue of the Poincaré

lemma for currents, see, e.g., [Dem12, Theorem I.2.24], and hence, the sheaf DkX being fine for every k ∈ N since
it is a sheaf of C∞X -module over a paracompact space, one has that

0→ RX → (D•X , d)

is a fine (and hence acyclic, see, e.g., [Dem12, Corollary IV.4.19]) resolution of the constant sheaf RX over X, and
hence

Ȟ• (X;RX) ' ker
(
d: D•X → D•+1X

)

im (d: D•−1X → D•X) =: HdR
2n−• (X;R) ,

see, e.g., [Dem12, IV.6.4].
If X is compact, then it follows that the map T· : ∧• X → D•X is injective and a quasi-isomorphism of

differential complexes: indeed, fixed a Riemannian metric g on X, if α is a ∆-harmonic form (i.e., a d-closed
d∗-closed form), then Tα(∗α) = ‖α‖2.

Suppose now that X is a 2n-dimensional manifold endowed with an almost-complex structure J ∈ End(TX).
Considering the induced endomorphisms J ∈ End (∧•X) and J ∈ End (∧•cX), one can define J ∈ End (D•X) by
duality. In the same way as J ∈ End (∧•X) defines a bi-graduation on ∧•X ⊗ C, one has that J ∈ End (D•X)
defines the splitting

D•X ⊗ C =
⊕

p,q∈N
Dp,qX ;

note that Dp,qX :=: Dn−p,n−qX is the topological dual of ∧p,qX ∩ (∧•cX ⊗R C), for every p, q ∈ N.

0.6 Solvmanifolds
Nilmanifolds and solvmanifolds provide an important class of examples in non-Kähler geometry. Indeed, on the
one hand, in studying their properties, one often can reduce to study left-invariant objects on them, which is the
same to study linear objects on the corresponding Lie algebra (this allows, for example, to reduce the study of the
de Rham cohomology of a nilmanifold to the study of the cohomology of a complex of finite-dimensional vector
spaces, [Nom54, Theorem 1]); on the other hand, they do not admit too strong structures, e.g., they do not admit
any Kähler structure.

In this section, we recall the main definitions and results concerning the theory of nilmanifolds and solvmanifolds,
setting also the notation for the following chapters.

A nilmanifold, respectively solvmanifold, X = Γ\G is a compact quotient of a connected simply-connected
nilpotent, respectively solvable, Lie group G by a co-compact discrete subgroup Γ. A solvmanifold X = Γ\G is
called completely-solvable if, for any g ∈ G, all the eigenvalues of Adg ∈ End(g) are real, equivalently, if, for any
X ∈ g, all the eigenvalues of adX ∈ End(g) are real.

Given a 2n-dimensional solvmanifold X = Γ\G, consider (g, [·, ··]) the Lie algebra naturally associated to
the Lie group G; given a basis {e1, . . . , e2n} of g, the Lie algebra structure of g is characterized by the structure
constants

{
ck`m
}
`,m,k∈{1,...,2n} ⊂ R: namely, for any k ∈ {1, . . . , 2n},

dg e
k =:

∑

`,m

ck`m e
` ∧ em ,

where
{
e1, . . . , e2n} is the dual basis of g∗ of {e1, . . . , e2n} and dg : g∗ → ∧2g∗ is defined by

g∗ 3 α 7→ dg α(·, ··) := −α ([·, ··]) ∈ ∧2g∗ .

To shorten the notation, as in [Sal01], we will refer to a given solvmanifold X = Γ\G writing the structure
equations of its Lie algebra: for example, writing

X :=
(
04, 12, 13

)
, (or g :=

(
04, 12, 13

)
, )
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we mean that X = Γ\G and there exists a basis of the Lie algebra g naturally associated to G, let us say
{e1, . . . , e6}, whose dual will be denoted by

{
e1, . . . , e6}, such that the structure equations with respect to such

basis are 



d e1 = d e2 = d e3 = d e4 = 0
d e5 = e1 ∧ e2 =: e12

d e6 = e1 ∧ e3 =: e13

,

where we also shorten eAB := eA ∧ eB .
The following theorem by A. I. Mal’tsev characterizes the nilpotent Lie algebras g for which the naturally

associated connected simply-connected Lie group admits a co-compact discrete subgroup, and hence such that
there exists a nilmanifold with g as Lie algebra.

Theorem 0.25 ([Mal49, Theorem 7]). In order that a simply-connected connected nilpotent Lie group contain a
discrete co-compact Lie group it is necessary and sufficient that the Lie algebra of this group have rational constant
structures with respect to an appropriate basis.

Dealing with G-left-invariant objects on X, we mean objects induced by objects on G being invariant under
the left-action of G on itself given by left-translations. By means of left-translations, G-left-invariant objects will
be identified with objects on the Lie algebra g.

For example, a G-left-invariant complex structure J ∈ End(TX) on X is uniquely determined by a linear
complex structure J ∈ End(g) on g satisfying the integrability condition NijJ = 0, [NN57, Theorem 1.1], where

NijJ(·, ··) := [·, ··] + J [J ·, ··] + J [·, J ··]− [J ·, J ··] ∈ ∧2g∗ ⊗R g ;

we will denote the set of G-left-invariant complex structures on X by

C (g) :=
{
J ∈ End (g) : J2 = − idg and NijJ = 0

}
.

By the Leibniz rule, the map dg : ∧1 g∗ → ∧2g∗ induces a differential operator d: ∧• g∗ → ∧•+1g∗ giving a
graded differential algebra (∧•g∗, d), and hence a differential complex (∧•g∗, d); we will denote by H•dR (g;R) :=
H• (∧•g∗, d) the cohomology of such a differential complex.

In general, on a solvmanifold, the inclusion (∧•g∗, d) ↪→ (∧•X, d) induces an injective map in cohomology,
i : H•dR (g;R) ↪→ H•dR(X;R) (compare [CF01, Lemma 9] and Lemma 1.36, for the Dolbeault, respectively Bott-
Chern, cohomology), which is not always an isomorphism, as the example in [dBT06, Corollary 4.2, Remark
4.3] shows. On the other hand, the following theorem by K. Nomizu says that the de Rham cohomology of a
nilmanifold can be computed as the cohomology of the subcomplex of left-invariant forms (some results in this
direction have been provided also by Y. Matsushima in [Mat51, Theorem 5, Theorem 6]).

Theorem 0.26 ([Nom54, Theorem 1]). Let X = Γ\G be a nilmanifold and denote the Lie algebra naturally
associated to G by g. The complex (∧•g∗,d) is a minimal model for (∧•X, d). In particular, the map (∧•g∗, d)→
(∧•X, d) of differential complexes is a quasi-isomorphism:

i : H•dR(g;R) '→ H•dR(X;R) .

The proof rests on an inductive argument, which can be performed since every nilmanifold can be seen as a
principal torus-bundle over a lower dimensional nilmanifold, see [Mal49, Lemma 4], [Mat51, Theorem 3].

A similar result holds also in the case of completely-solvable solvmanifolds, as proven by A. Hattori, as a
consequence of the Mostow structure theorem, [Mos54, Mos57, Theorem 2].

Theorem 0.27 ([Hat60, Corollary 4.2]). Let X = Γ\G be a completely-solvable solvmanifold and denote the
Lie algebra naturally associated to G by g. The map (∧•g∗, d) → (∧•X, d) of differential complexes is a
quasi-isomorphism:

i : H•dR(g;R) '→ H•dR(X;R) .

(For some results concerning the de Rham cohomology of (non-necessarily completely-solvable) solvmanifolds,
see [Gua07, CF11].)

In some cases, we will see that the study of (properties of) geometric structures on a solvmanifold is reduced
to the study of the corresponding (properties of) geometric structures on the associated Lie algebra (see, e.g.,
Theorem 2.67, Proposition 2.19, Proposition 3.18, Proposition 3.30, Theorem 2.47). To this aim, we need the
following lemma by J. Milnor. (Recall that a Lie group G, with associated Lie algebra g, is called unimodular if,
for all X ∈ g, it holds tr adX = 0.)
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Lemma 0.28 ([Mil76, Lemma 6.2]). Any connected Lie group that admits a discrete subgroup with compact
quotient is unimodular and in particular admits a bi-invariant volume form η.

We will also need the following trick by F. A. Belgun (see also [FG04, Theorem 2.1]).

Lemma 0.29 (F. A. Belgun’s symmetrization trick, [Bel00, Theorem 7]). Let X = Γ\G be a solvmanifold, and
denote the Lie algebra naturally associated to G by g. Let η be a G-bi-invariant volume form on G such that∫
X
η = 1, whose existence follows from J. Milnor’s lemma [Mil76, Lemma 6.2]. Up to identifying G-left-invariant

forms on X and linear forms over g∗ through left-translations, define the F. A. Belgun’s symmetrization map

µ : ∧• X → ∧•g∗ , µ(α) :=
∫

X

αbm η(m) .

One has that
µb∧•g∗ = idb∧•g∗ ,

and that
d ◦µ = µ ◦ d .

In particular, the symmetrization map µ induces a map µ : (∧•X, d)→ (∧•g∗, d) of differential complexes,
and hence a map µ : H•dR(X;R)→ H•dR (g;R) in cohomology. Since µb∧•g∗= idb∧•g∗ , if the inclusion (∧•g∗, d) ↪→
(∧•X, d) is a quasi-isomorphism (for example, if X is a nilmanifold, by [Nom54, Theorem 1], or a completely-
solvable solvmanifold, by [Hat60, Corollary 4.2]), then the map µ : (∧•X, d) → (∧•g∗, d) turns out to be a
quasi-isomorphism.

K. Nomizu’s theorem [Nom54, Theorem 1], A. Hattori’s theorem [Hat60, Corollary 4.2], and F. A. Belgun’s
theorem [Bel00, Theorem 7] suggest that nilmanifolds, and, more in general, solvmanifolds, may provide a very
useful and interesting class of examples in non-Kähler geometry. On the other hand, another reason for this
statement is given by the following results by Ch. Benson and C. S. Gordon, and by K. Hasegawa.

Theorem 0.30 ([BG88, Theorem A]). Let X be a nilmanifold endowed with a symplectic structure ω such that
the Hard Lefschetz Condition holds. Then X is diffeomorphic to a torus.

(Actually, one can prove that any 2n-dimensional nilmanifold X endowed with a symplectic structure ω such
that the map [ω]n−1 : H1

dR(X;R)→ H2n−1
dR (X;R) is an isomorphism is diffeomorphic to a torus, [LO94], see, e.g.,

[FOT08, Theorem 4.98]. A minimal model proof of Ch. Benson and C. S. Gordon’s theorem [BG88, Theorem A]
is due to G. Lupton and J. Oprea, [LO94, Theorem 3.5].)

Theorem 0.31 ([Has89, Theorem 1, Corollary]). Let X be a nilmanifold. If X is formal, then X is diffeomorphic
to a torus.

In particular, since compact Kähler manifolds satisfy the Hard Lefschetz Condition, [Wei58, Théorème IV.5],
and are formal, [DGMS75, Main Theorem], it follows that a nilmanifold admits a Kähler structure if and only
if it is diffeomorphic to a torus (compare also [Han57, Theorem II, Footnote 1]). More in general, compact
completely-solvable Kähler solvmanifolds are tori, as proven by A. Tralle and J. Kedra in [TK97, Theorem 1],
solving a conjecture by Ch. Benson and C. S. Gordon, [BG90, page 972]. In fact, the following result by K.
Hasegawa gives a complete characterization of Kähler solvmanifolds.

Theorem 0.32 ([Has06, Main Theorem]). Let X be a compact homogeneous space of solvable Lie group, that
is, a compact differentiable manifold on which a connected solvable Lie group acts transitively. Then X admits
a Kähler structure if and only if it is a finite quotient of a complex torus which has a structure of a complex
torus-bundle over a complex torus. In particular, a completely-solvable solvmanifold has a Kähler structure if and
only if it is a complex torus.



Chapter 1

Cohomology of complex manifolds

In this chapter, we study cohomological properties of compact complex manifolds. In particular, we are concerned
with studying the Bott-Chern cohomology, which, in a sense, constitutes a bridge between the de Rham cohomology
and the Dolbeault cohomology of a complex manifold.

In §1.1, we recall some definitions and results on the Bott-Chern and Aeppli cohomologies, see, e.g., [Sch07],
and on the ∂∂-Lemma, referring to [DGMS75]. In §1.2, we provide a Frölicher-type inequality for the Bott-Chern
cohomology, Theorem 1.22, which also allows to characterize the validity of the ∂∂-Lemma in terms of the
dimensions of the Bott-Chern cohomology groups, Theorem 1.25; the proof of such inequality is based on two
exact sequences, firstly considered by J. Varouchas in [Var86]. In §1.3, we show that, for certain classes of complex
structures on nilmanifolds (that is, compact quotients of connected simply-connected nilpotent Lie groups by
co-compact discrete subgroups), the Bott-Chern cohomology is completely determined by the associated Lie algebra
endowed with the induced linear complex structure, Theorem 1.39, giving a sort of Nomizu-type result for the Bott-
Chern cohomology. This will allow us to explicitly study the Bott-Chern and Aeppli cohomologies of the Iwasawa
manifold and of its small deformations, in §1.4. In §1.5, we investigate the Bott-Chern cohomology of complex
orbifolds of the type X/G, where X is a compact complex manifold and G a finite group of biholomorphisms of
X, Theorem 1.55.

Some of the original results of this chapter have been obtained in [Ang11], and jointly with A. Tomassini in
[AT12b]; §1.5 contains some original results that have not yet been submitted for publication.

1.1 Cohomologies of complex manifolds
The Bott-Chern cohomology and the Aeppli cohomology provide important invariants for the study of the geometry
of compact (especially, non-Kähler) complex manifolds. These cohomology groups have been introduced by R.
Bott and S. S. Chern in [BC65], and by A. Aeppli in [Aep65], and hence studied by many authors, e.g., B. Bigolin
[Big69, Big70] (both from the sheaf-theoretic and from the analytic viewpoints), A. Andreotti and F. Norguet
[AN71] (to study cycles of algebraic manifolds), J. Varouchas [Var86] (to study the cohomological properties of a
certain class of compact complex manifolds), M. Abate [Aba88] (to study annular bundles), L. Alessandrini and
G. Bassanelli [AB96] (to investigate the properties of balanced metrics), S. Ofman [Ofm85a, Ofm85b, Ofm88] (in
view of applications to integration on analytic cycles), S. Boucksom [Bou04] (in order to extend divisorial Zariski
decompositions to compact complex manifolds), J.-P. Demailly [Dem12] (as a tool in Complex Geometry), M.
Schweitzer [Sch07] (in the context of cohomology theories), L. Lussardi [Lus10] (in the non-compact Kähler case),
R. Kooistra [Koo11] (in the framework of cohomology theories), J.-M. Bismut [Bis11b, Bis11a] (in the context of
Chern characters), L.-S. Tseng and S.-T. Yau [TY11] (in the framework of Generalized Geometry and type II
String Theory).

In this preliminary section, we recall the basic notions and classical results concerning cohomologies of complex
manifolds. More precisely, we recall the definitions of the Bott-Chern and Aeppli cohomologies, and some results
on Hodge theory, referring to [Sch07]; then, we recall the notion of ∂∂-Lemma, referring to [DGMS75].

1.1.1 The Bott-Chern cohomology
Let X be a complex manifold. The Bott-Chern cohomology of X is the bi-graded algebra

H•,•BC(X) := ker ∂ ∩ ker ∂
im ∂∂

.

Unlike in the case of the Dolbeault cohomology groups, for every p, q ∈ N, the conjugation induces an
isomorphism

Hp,q
BC(X) ' Hq,p

BC(X) .
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Furthermore, since ker ∂ ∩ ker ∂ ⊆ ker d and im ∂∂ ⊆ im d, one has the natural map of graded C-vector spaces
⊕

p+q=•
Hp,q
BC(X)→ H•dR(X;C) ,

and, since ker ∂ ∩ ker ∂ ⊆ ker ∂ and im ∂∂ ⊆ im ∂, one has the natural map of bi-graded C-vector spaces
H•,•BC(X)→ H•,•

∂
(X) .

In general, even for compact complex manifolds, these maps are neither injective nor surjective: see, e.g., the
examples in [Sch07, §1.c] or in §1.4.4. A case of special interest is when X is a compact complex manifold satisfying
the ∂∂-Lemma, namely, the property that every ∂-closed ∂-closed d-exact form is also ∂∂-exact, [DGMS75], that
is, the natural map H•,•BC(X)→ H•dR(X;C) is injective (we recall that compact Kähler manifolds and, more in
general, manifolds in class C of Fujiki, [Fuj78], that is, compact complex manifolds admitting a proper modification
from a Kähler manifold, satisfy the ∂∂-Lemma, [DGMS75, Lemma 5.11, Corollary 5.23]; we refer to §1.1.3 for
further details). In fact, we recall the following result.
Theorem 1.1 ([DGMS75, Lemma 5.15, Remark 5.16, 5.21]). Let X be a compact complex manifold. If X satisfies
the ∂∂-Lemma, then the natural maps

⊕

p+q=•
Hp,q
BC(X)→ H•dR(X;C) and H•,•BC(X)→ H•,•

∂
(X)

induced by the identity are isomorphisms.

As for the de Rham and the Dolbeault cohomologies, a Hodge theory can be developed also for the Bott-Chern
cohomology for compact complex manifolds: we recall here some results, referring to [Sch07, §2] (see also [Big69,
§5], and [Lus10]).

Suppose that X is a compact complex manifold. Fix a Hermitian metric on X, and define the differential
operator

∆̃BC :=
(
∂∂
) (
∂∂
)∗ +

(
∂∂
)∗ (

∂∂
)

+
(
∂
∗
∂
)(

∂
∗
∂
)∗

+
(
∂
∗
∂
)∗ (

∂
∗
∂
)

+ ∂
∗
∂ + ∂∗∂ ,

see [KS60, Proposition 5] (where it is used to prove the stability of the Kähler property under small deformations
of the complex structure), and also [Sch07, §2.b], [Big69, §5.1]. One has the following result.
Theorem 1.2 ([KS60, Proposition 5], see also [Sch07, §2.b]). Let X be a compact complex manifold endowed
with a Hermitian metric. The operator ∆̃BC is a 4th order self-adjoint elliptic differential operator, and

ker ∆̃BC = ker ∂ ∩ ker ∂ ∩ ker ∂∗∂∗ .
Therefore, as a consequence of the general theory of self-adjoint elliptic differential operators, see, e.g., [Kod05,

page 450], the following result holds.
Theorem 1.3 ([Sch07, Théorème 2.2], [Sch07, Corollaire 2.3]). Let X be a compact complex manifold, endowed
with a Hermitian metric. Then there exist an orthogonal decomposition

∧•,•X = ker ∆̃BC ⊕ im ∂∂ ⊕
(

im ∂∗ + im ∂
∗)

and an isomorphism
H•,•BC(X) ' ker ∆̃BC .

In particular, the Bott-Chern cohomology groups of X are finite-dimensional C-vector spaces.

Another consequence of general results in spectral theory, see, e.g., [KS60, Theorem 4], [Kod05, Theorem 7.3],
is the semi-continuity property for the dimensions of the Bott-Chern cohomology.
Theorem 1.4 ([Sch07, Lemme 3.2]). Let {Xt}t∈B a complex-analytic family of compact complex manifolds. Then,
for every p, q ∈ N, the function

B 3 t 7→ dimCH
p,q
BC (Xt) ∈ N

is upper-semi-continuous.

By using the Kähler identities (in particular, the fact that � = � and that ∂∗∂ + ∂∂∗ = 0 = ∂
∗
∂ + ∂∂

∗), one
can prove that, on a compact Kähler manifold,

∆̃BC = �2 + ∂∗ ∂ + ∂
∗
∂ ,

[KS60, Proposition 6], [Sch07, Proposition 2.4], and hence ker ∆̃BC = ker� = ker ∆; in particular, it follows
that, on a compact Kähler manifold, the de Rham cohomology, the Dolbeault cohomology, and the Bott-Chern
cohomology are isomorphic (actually, since the ∂∂-Lemma holds on every compact Kähler manifold, one gets an
isomorphism that does not depend on the choice of the Hermitian metric).
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1.1.2 The Aeppli cohomology
Let X be a complex manifold. Dualizing the definition of the Bott-Chern cohomology, one can define another
cohomology on X, the Aeppli cohomology: it is the bi-graded H•,•BC(X)-module

H•,•A (X) := ker ∂∂
im ∂ + im ∂

.

As for the Bott-Chern cohomology, the conjugation induces, for every p, q ∈ N, the isomorphism

Hp,q
A (X) ' Hq,p

A (X) .

Furthermore, since ker d ⊆ ker ∂∂ and im d ⊆ im ∂ + im ∂, one has the natural map of graded C-vector spaces

H•dR(X;C)→
⊕

p+q=•
Hp,q
A (X) ,

and, since ker ∂ ⊆ ker ∂∂ and im ∂ ⊆ im ∂ + im ∂, one has the natural map of bi-graded C-vector spaces

H•,•
∂

(X)→ H•,•A (X) ;

as we have noted for the Bott-Chern cohomology, such maps are, in general, neither injective nor surjective, but
they are isomorphisms whenever X is compact and satisfies the ∂∂-Lemma, [DGMS75, Lemma 5.15, Remark
5.16, 5.21], and hence, in particular, if X is a compact complex manifold admitting a Kähler structure, [DGMS75,
Lemma 5.11], or if X is a compact complex manifold in class C of Fujiki, [DGMS75, Corollary 5.23].

Remark 1.5. On a compact Kähler manifold X, the associated (1, 1)-form ω of the Kähler metric defines a
non-zero class in H2

dR(X;R). For general Hermitian manifolds, special classes of metrics are often defined in
terms of closedness of powers of ω, so they define classes in the Bott-Chern or Aeppli cohomology groups (e.g., a
Hermitian metric on a complex manifold of complex dimension n is said balanced if dωn−1 = 0 [Mic82], pluriclosed
if ∂∂ω = 0 [Bis89], astheno-Kähler if ∂∂ωn−2 = 0 [JY93, JY94], Gauduchon if ∂∂ωn−1 = 0 [Gau77]). (Note that,
they define possibly the zero class in the Bott-Chern or Aeppli cohomologies: for the balanced case, see [FLY12,
Corollary 1.3], where it is shown that, for k ≥ 2, the complex structures on ]kj=1

(
S3 × S3) constructed from the

conifold transitions admit balanced metrics.)

We refer to [Sch07, §2.c] for the following results, concerning Hodge theory for the Aeppli cohomology on
compact complex manifolds.

Suppose that X is a compact complex manifold. Once fixed a Hermitian metric on X, one defines the
differential operator

∆̃A := ∂∂∗ + ∂∂
∗ +

(
∂∂
)∗ (

∂∂
)

+
(
∂∂
) (
∂∂
)∗ +

(
∂∂∗

)∗ (
∂∂∗

)
+
(
∂∂∗

) (
∂∂∗

)∗
,

which turns out to be a 4th order self-adjoint elliptic differential operator such that

ker ∆̃A = ker ∂∂ ∩ ker ∂∗ ∩ ker ∂∗ .

Hence one has an orthogonal decomposition

∧•,•X = ker ∆̃A ⊕
(
im ∂ + im ∂

)
⊕ im

(
∂∂
)∗

from which one gets an isomorphism
H•,•A (X) ' ker ∆̃A ;

in particular, this proves that the Aeppli cohomology groups of a compact complex manifold are finite-dimensional
C-vector spaces.

Furthermore, as for the Bott-Chern cohomology, if {Xt}t∈B is a complex-analytic family of compact complex
manifolds, with B a complex manifold, then, for every p, q ∈ N, the function B 3 t 7→ dimCH

p,q
A (Xt) ∈ N is

upper-semi-continuous.
Once again, whenever X is a compact Kähler manifold, by using the Kähler identities, one has

∆̃A = �2 + ∂∂∗ + ∂∂
∗ ;
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indeed, recall that � = � and that ∂∗∂ = i
[
Λ, ∂

]
∂ = − i ∂ Λ ∂ = − i ∂

[
Λ, ∂

]
= −∂∂∗, and hence ∂∗∂ = −∂∂∗;

therefore

�2 = �� = ∂∂
∗
∂∂∗ + ∂∂

∗
∂∗∂ + ∂

∗
∂∂∂∗ + ∂

∗
∂∂∗∂

= −∂∂∂∗∂∗ − ∂∂∗∂∗∂ − ∂∗∂∂∂∗ − ∂∗∂∗∂∂

= ∂∂∂
∗
∂∗ + ∂∂∗∂∂

∗ + ∂∂
∗
∂∂∗ + ∂

∗
∂∗∂∂

= ∆̃A − ∂∂∗ − ∂∂
∗
.

In particular, it follows that, on a compact Kähler manifold, ker ∆̃A = ker� = ker ∆, and hence the de Rham
cohomology, the Dolbeault cohomology, and the Aeppli cohomology are isomorphic (actually, since the ∂∂-Lemma
holds on every compact Kähler manifold, one gets an isomorphism that does not depend on the choice of the
Hermitian metric).

In fact, since ker ∆̃BC = ker ∂ ∩ ker ∂ ∩ ker ∂∗∂∗ and ker ∆̃A = ker ∂∂ ∩ ker ∂∗ ∩ ker ∂∗, one has the following
isomorphism between the Bott-Chern cohomology and the Aeppli cohomology.

Theorem 1.6 ([Sch07, §2.c]). Let X be a compact complex manifold of complex dimension n. For any p, q ∈ N,
the Hodge-∗-operator associated to a Hermitian metric on X induces an isomorphism,

∗ : Hp,q
BC(X) ' Hn−q,n−p

A (X) ,

between the Bott-Chern and the Aeppli cohomologies.

Remark 1.7. We refer to [Dem12, §VI.12], [Sch07, §4], [Koo11, §3.2, §3.5] for a sheaf cohomology interpretation
of the Bott-Chern and Aeppli cohomologies (see also Remark 1.56).

1.1.3 The ∂∂-Lemma
Let X be a compact complex manifold, and consider its complex de Rham H•dR(X;C), Dolbeault H•,•

∂
(X),

conjugate Dolbeault H•,•∂ (X), Bott-Chern H•,•BC(X), and Aeppli H•,•A (X) cohomologies.
The identity map induces the following natural maps of (bi-)graded C-vector spaces:

H•,•BC(X)

��xxrrrrrrrrrr

&&LLLLLLLLLL

H•,•∂ (X)

&&LLLLLLLLLLL
H•dR(X;C)

��

H•,•
∂

(X)

xxrrrrrrrrrr

H•,•A (X)

In general, these maps are neither injective nor surjective: see, e.g., the examples in [Sch07, §1.c] or in §1.4.4.

By [DGMS75, Lemma 5.15, Proposition 5.17], it turns out that, if one of the above map is an isomorphism,
then all the maps are isomorphisms, [DGMS75, Remark 5.16]; this is encoded in the notion of ∂∂-Lemma, which
can be introduced in the more general setting of bounded double complexes of vector spaces. We start by recalling
the following general result by P. Deligne, Ph. A. Griffiths, J. Morgan, and D. P. Sullivan, [DGMS75].

Proposition 1.8 ([DGMS75, Lemma 5.15]). Let
(
K•,•, d′, d′′

)
be a bounded double complex of vector spaces

(or, more in general, of objects of any Abelian category), and let (K•, d) be the associated simple complex, where
d := d′+ d′′. For each h ∈ N, the following conditions are equivalent:

(a)h ker d′ ∩ ker d′′ ∩ im d = im d′ d′′ in Kh;

(b)h ker d′′ ∩ im d′ = im d′ d′′ and ker d′ ∩ im d′′ = im d′ d′′ in Kh;

(c)h ker d′ ∩ ker d′′ ∩
(
im d′+ im d′′

)
= im d′ d′′ in Kh;

(a∗)h−1 im d′+ im d′′+ ker d = ker d′ d′′ in Kh−1;

(b∗)h−1 im d′′+ ker d′ = ker d′ d′′ and im d′+ ker d′′ = ker d′ d′′ in Kh−1;
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(c∗)h−1 im d′+ im d′′+
(
ker d′ ∩ ker d′′

)
= ker d′ d′′ in Kh−1.

The above equivalent conditions define the validity of the d′ d′′-Lemma for a double complex.

Definition 1.9 ([DGMS75]). Let
(
K•,•, d′, d′′

)
be a bounded double complex of vector spaces (or, more in

general, of objects of any Abelian category), and let (K•, d) be the associated simple complex, where d := d′+ d′′.
One says that

(
K•,•, d′, d′′

)
satisfies the d′ d′′-Lemma if, for every h ∈ N, the equivalent conditions in [DGMS75,

Lemma 5.15] hold.

The following result by P. Deligne, Ph. A. Griffiths, J. Morgan, and D. P. Sullivan, [DGMS75], gives a
characterization for the validity of the d′ d′′-Lemma.

Theorem 1.10 ([DGMS75, Proposition 5.17]). Let
(
K•,•, d′, d′′

)
be a bounded double complex of vector spaces,

and let (K•, d) be the associated simple complex, where d := d′+ d. The following conditions are equivalent:

(i)
(
K•,•, d′, d′′

)
satisfies the d′ d′′-Lemma;

(ii) K•,• is a sum of double complexes of the following two types:

(dots) complexes which have only a single component, with d′ = 0 and d′′ = 0;
(squares) complexes which are a square of isomorphisms,

Kp−1,q d′ // Kp,q

Kp−1,q−1

'd′′
OO

d′ // Kp,q−1

'd′′

OO

(iii) the spectral sequence defined by the filtration associated to either degree (denoted by ′F or ′′F ) degenerates
at E1 (namely, E1 = E∞) and, for every h ∈ N, the two induced filtrations are h-opposite on Hh

dR(X;C),
i.e., ′F p ⊕ ′′F q '→ Hh

dR(X;C) for p+ q − 1 = h.

In particular, we are interested in dealing with compact complex manifolds X, where one considers the double
complex

(
∧•,•X, ∂, ∂

)
.

Definition 1.11 ([DGMS75]). A compact complex manifold X is said to satisfy the ∂∂-Lemma if
(
∧•,•X, ∂, ∂

)

satisfies the ∂∂-Lemma, namely, if
ker ∂ ∩ ker ∂ ∩ im d = im ∂∂ ,

that is, in other words, if the natural map H•,•BC(X) → H•dR(X;C) of graded C-vector spaces induced by the
identity is injective.

Remark 1.12. Let X be a compact complex manifold. By considering the differential operator

dc := − i
(
∂ − ∂

)
,

one can say that X satisfies the d dc, by definition, if

im d∩ ker dc = im d dc .

Since d dc = 2 i ∂∂, and ∂ = 1
2 (d + i dc) and ∂ = 1

2 (d− i dc), one has

ker d∩ ker dc = ker ∂ ∩ ker ∂ and im d dc = im ∂∂ ;

and hence X satisfies the d dc-Lemma if and only if X satisfies the ∂∂-Lemma.

For compact complex manifolds, P. Deligne, Ph. A. Griffiths, J. Morgan, and D. P. Sullivan’s characterization
[DGMS75, Proposition 5.17] is rewritten as follows.

Theorem 1.13 ([DGMS75, 5.21]). A compact complex manifold X satisfies the ∂∂-Lemma if and only if
(i) the Hodge and Frölicher spectral sequence degenerates at the first step (that is, E1 ' E∞), and (ii) the
natural filtration on

(
∧•,•X, ∂, ∂

)
induces, for every k ∈ N, a Hodge structure of weight k on Hk

dR(X;C)
(that is, Hk

dR(X;C) =
⊕

p+q=k F
pHk

dR(X;C) ∩ F̄ qHk
dR(X;C), where F •H•dR(X;C) is the filtration induced by

F • ∧•1,•2 X :=
⊕

p≥•, q ∧p,qX on H•dR(X;C) and F̄ •H•dR(X;C) is the conjugated filtration to F •H•dR(X;C)).
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Another characterization for the validity of the ∂∂-Lemma, in terms of the dimensions of the Bott-Chern
cohomology, will be given in Theorem 1.25.

Actually, as already mentioned, if a compact complex manifold satisfies the ∂∂-Lemma, then all the natural
maps between cohomologies induced by the identity turn out to be isomorphisms.

Theorem 1.14 ([DGMS75, Lemma 5.15, Remark 5.16, 5.21]). A compact complex manifold X satisfies the
∂∂-Lemma if and only if all the natural maps

H•,•BC(X)

��xxrrrrrrrrrr

&&LLLLLLLLLL

H•,•∂ (X)

&&LLLLLLLLLLL
H•dR(X;C)

��

H•,•
∂

(X)

xxrrrrrrrrrr

H•,•A (X)

induced by the identity are isomorphisms.

We recall that if X is a compact complex manifold endowed with a Kähler structure, then X satisfies the
∂∂-Lemma, [DGMS75, Lemma 5.11]. Moreover, one has the following result.

Theorem 1.15 ([DGMS75, Theorem 5.22]). Let X and Y be compact complex manifolds of the same dimension,
and let f : X → Y be a holomorphic birational map. If X satisfies the ∂∂-Lemma, then also Y satisfies the
∂∂-Lemma.

Indeed, one has that, if X and Y are complex manifolds of the same dimension, and π : X → Y is a proper
surjective holomorphic map, then the maps

π∗ : H•dR (Y ;C)→ H•dR (X;C) and π∗ : H•,•
∂

(Y )→ H•,•
∂

(X)

induced by π : X → Y are injective, see, e.g., [Wel74, Theorem 3.1]; then one can use the characterization in
[DGMS75, 5.21].

In particular, it follows that Mǒıšezon manifolds (that is, compact complex manifolds X such that the degree
of transcendence over C of the field of meromorphic functions over X is equal to the complex dimension of X,
[Moı66], equivalently, compact complex manifolds admitting a proper modification from a projective manifold,
[Moı66, Theorem 1]), and, more in general, manifolds in class C of Fujiki (that is, compact complex manifolds
admitting a proper modification from a Kähler manifold, [Fuj78]) satisfy the ∂∂-Lemma. (We recall that a proper
holomorphic map f : X → Y from the complex manifold X to the complex manifold Y is called a modification
if there exists a nowhere dense closed analytic subset B ⊂ Y such that fbX\f−1(B) : X \ f−1(B) → Y \ B is a
biholomorphism.)

Corollary 1.16 ([DGMS75, Lemma 5.11, Corollary 5.23]). The ∂∂-Lemma holds for compact Kähler manifolds,
for Mǒıšezon manifolds, and for manifolds in class C of Fujiki.

Remark 1.17. In [Hir62], H. Hironaka provided an example of a non-Kähler Mǒıšezon manifold of complex
dimension 3 with arbitrary small deformations being projective (in fact, as stated by D. Popovici, the limit of
projective manifolds under holomorphic deformations is Mǒıšezon, [Pop09, Theorem 1.1], and, more in general,
the limit of Mǒıšezon manifolds under holomorphic deformations is Mǒıšezon, [Pop10, Theorem 1.1]); in particular,
H. Hironaka’s manifold provides an example of a non-Kähler manifold satisfying the ∂∂-Lemma. Studying twistor
spaces, C. LeBrun and Y. S. Poon, and F. Campana, showed that being in class C of Fujiki is not a stable
property under small deformations of the complex structures, [LP92, Theorem 1], [Cam91, Corollary 3.13]; since
the property of satisfying the ∂∂-Lemma is stable under small deformations of the complex structure, Corollary
1.28, or [Voi02, Proposition 9.21], or [Wu06, Theorem 5.12], or [Tom08, §B], C. LeBrun and Y. S. Poon’s, and F.
Campana’s, result yields examples of compact complex manifolds satisfying the ∂∂-Lemma and not belonging to
class C of Fujiki.

Finally, we recall the following obstructions to the existence of complex structures satisfying the ∂∂-Lemma
on a compact (differentiable) manifold.

Theorem 1.18 ([DGMS75, Main Theorem, Corollary 1]). Let X be a compact manifold. If X admits a complex
structure such that the ∂∂-Lemma holds, then the differential graded algebra (∧•X, d) is formal. In particular, all
the Massey products of any order are zero.
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Indeed, if X satisfies the ∂∂-Lemma, equivalently, the d dc-Lemma, then the inclusion ker dc → ∧•X and the
projection ker dc → ker dc

im dc induce the quasi-isomorphisms

(ker dc, d)

qisxxqqqqqqqqqqq

qis &&MMMMMMMMMM

(∧•X, d)
(ker dc

im dc , 0
)

of differential graded algebras, proving that (∧•X, d) is equivalent to
(ker dc

im dc , 0
)
, and hence formal.

1.2 Cohomological properties of compact complex manifolds and the
∂∂-Lemma

In this section, we study some cohomological properties of compact complex manifolds, especially in relation with
the ∂∂-Lemma. More precisely, we prove a Frölicher-type inequality for the Bott-Chern cohomology, Theorem
1.22, and we characterize the validity of the ∂∂-Lemma in terms of the dimensions of the Bott-Chern cohomology
groups, Theorem 1.25. This has been the matter of a joint work with A. Tomassini, [AT12b].

Let X be a compact complex manifold of complex dimension n.
As a matter of notation, for every p, q ∈ N, for every k ∈ N, and for ] ∈

{
∂, ∂, BC, A

}
, we will denote

hp,q] := dimCH
p,q
] (X) < +∞ and hk] :=

∑

p+q=k
hp,q] < +∞ ,

while recall that the Betti numbers are denoted by

bk := dimCH
k
dR(X;C) < +∞ .

Recall that, for every p, q ∈ N, the conjugation induces the isomorphisms Hp,q
BC(X) '→ Hq,p

BC(X), Hp,q
A (X) '→

Hq,p
A (X), and Hp,q

∂
(X) '→ Hq,p

∂ (X), and the Hodge-∗-operator associated to any given Hermitian metric induces
the isomorphisms Hp,q

BC(X) '→ Hn−q,n−p
A (X) and Hp,q

∂
(X) '→ Hn−q,n−p

∂ (X); hence, for every p, q ∈ N, one has the
equalities

hp,qBC = hq,pBC = hn−p,n−qA = hn−q,n−pA and hp,q
∂

= hq,p∂ = hn−p,n−q
∂

= hn−q,n−p∂ ,

and therefore, for every k ∈ N, one has the equalities

hkBC = h2n−k
A and hk

∂
= hk∂ = h2n−k

∂
= h2n−k

∂ ;

Finally, recall that the Hodge-∗-operator (of any given Riemannian metric and volume form on X) yields, for
every k ∈ N, the isomorphism Hk

dR(X;R) '→ H2n−k
dR (X;R), and hence the equality

bk = b2n−k .

1.2.1 J. Varouchas’ exact sequences
In order to prove a Frölicher-type inequality for the Bott-Chern and Aeppli cohomologies and to give therefore
a characterization of compact complex manifolds satisfying the ∂∂-Lemma in terms of the dimensions of their
Bott-Chern cohomology groups, we need to recall two exact sequences from [Var86].

Following J. Varouchas, one defines the (finite-dimensional) bi-graded C-vector spaces

A•,• := im ∂ ∩ im ∂

im ∂∂
, B•,• := ker ∂ ∩ im ∂

im ∂∂
, C•,• := ker ∂∂

ker ∂ + im ∂

and

D•,• := im ∂ ∩ ker ∂
im ∂∂

, E•,• := ker ∂∂
ker ∂ + im ∂

, F •,• := ker ∂∂
ker ∂ + ker ∂

.
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For every p, q ∈ N and k ∈ N, we will denote their dimensions by

ap,q := dimCA
p,q , bp,q := dimCB

p,q , cp,q := dimC C
p,q ,

dp,q := dimCD
p,q , ep,q := dimCE

p,q , fp,q := dimC F
p,q ,

and

ak :=
∑

p+q=k
ap,q , bk :=

∑

p+q=k
bp,q , ck :=

∑

p+q=k
cp,q ,

dk :=
∑

p+q=k
dp,q , ek :=

∑

p+q=k
ep,q , fk :=

∑

p+q=k
fp,q .

The previous vector spaces give the following exact sequences, by J. Varouchas.

Theorem 1.19 ([Var86, §3.1]). The sequences

0→ A•,• → B•,• → H•,•
∂

(X)→ H•,•A (X)→ C•,• → 0 (1.2.1)

and
0→ D•,• → H•,•BC(X)→ H•,•

∂
(X)→ E•,• → F •,• → 0 (1.2.2)

are exact sequences of finite-dimensional bi-graded C-vector spaces.

Proof. We first prove the exactness of (1.2.1). Since im ∂ ⊆ ker ∂, the map A•,• → B•,• is injective. The kernel
of the map B•,• → H•,•

∂
(X) is ker ∂∩im ∂∩im ∂

im ∂∂
= im ∂∩im ∂

im ∂∂
, that is, the image of the map A•,• → B•,•. The kernel

of the map H•,•
∂

(X)→ H•,•A (X) is ker ∂∩im ∂

im ∂
, that is, the image of the map B•,• → H•,•

∂
(X). The kernel of the

map H•,•A (X) → C•,• is ker ∂∩ker ∂∂
im ∂+im ∂

= ker ∂
im ∂+im ∂

, that is, the image of the map H•,•
∂

(X) → H•,•A (X). Finally,
since im ∂ + im ∂ ⊆ ker ∂ + im ∂, the map H•,•A (X)→ C•,• is surjective. In particular, since H•,•A (X)→ C•,• is
surjective, then C•,• has finite dimension; since the identity induces an injective map B•,• → H•,•BC(X), then B•,•
has finite dimension; hence, since A•,• → B•,• is injective, then also A•,• has finite dimension.

We prove now the exactness of (1.2.2). Since im ∂ ⊆ ker ∂, the map D•,• → H•,•BC(X) is injective. The kernel
of the map H•,•BC(X) → H•,•

∂
(X) is ker ∂∩ker ∂∩im ∂

im ∂∂
= im ∂∩ker ∂

im ∂∂
, that is, the image of the map D•,• → H•,•BC(X).

The kernel of the map H•,•
∂

(X)→ E•,• is ker ∂∩(ker ∂+im ∂)
im ∂

= ker ∂∩ker ∂
im ∂

, that is, the image of the map H•,•BC(X)→
H•,•
∂

(X). The kernel of the map E•,• → F •,• is ker ∂∂∩(ker ∂+ker ∂)
ker ∂+im ∂

= ker ∂∂∩ker ∂
ker ∂+im ∂

, that is, the image of the map
H•,•
∂

(X) → E•,•. Finally, since ker ∂ + im ∂ ⊆ ker ∂ + ker ∂, the map E•,• → F •,• is surjective. In particular,
since D•,• → H•,•BC(X) is injective, then D•,• has finite dimension; since the identity induces a surjective map
H•,•A (X)→ E•,•, then E•,• has finite dimension; hence, since E•,• → F •,• is surjective, then also F •,• has finite
dimension.

Note, [Var86, §3.1], that the conjugation yields, for every p, q ∈ N, the equalities

ap,q = aq,p , fp,q = fq,p , dp,q = bq,p , ep,q = cq,p , (1.2.3)

and the isomorphisms ∂ : C•,• '→ D•,•+1 and ∂ : E•,• '→ B•+1,• yield the equalities

cp,q = dp,q+1 , ep,q = bp+1,q ;

hence, for every k ∈ N, one gets the equalities

dk = bk , ek = ck , and ck = dk+1 , ek = bk+1 .

Remark 1.20. Following the same argument used in [Sch07] to prove the duality between Bott-Chern and Aeppli
cohomology groups, we can prove the duality between A•,• and F •,•, and, similarly, between C•,• and D•,•.

Indeed, note that the pairing

A•,• × F •,• → C , ([α] , [β]) 7→
∫

X

α ∧ β ,
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is non-degenerate: choose a Hermitian metric g on X; if [α] ∈ A•,• ⊆ H•,•BC(X), then there exists a ∆̃BC -harmonic
representative α̃ in [α] ∈ A•,•, by [Sch07, Corollaire 2.3], that is, ∂α̃ = ∂α̃ = ∂∂ ∗ α̃ = 0; hence, [∗α̃] ∈ F •,•, and
([α̃] , [∗α̃]) =

∫
X
α̃ ∧ ∗α̃ is zero if and only if α̃ is zero if and only if [α] ∈ A•,• is zero.

Analogously, the pairing

C•,• ×D•,• → C , ([α] , [β]) 7→
∫

X

α ∧ β ,

is non-degenerate: indeed, choose a Hermitian metric g on X; if [α] ∈ D•,• ⊆ H•,•BC(X), then there exists a
∆̃BC-harmonic representative α̃ in [α] ∈ D•,•, by [Sch07, Corollaire 2.3], that is, ∂α̃ = ∂α̃ = ∂∂ ∗ α̃ = 0; hence,
[∗α̃] ∈ C•,•, and ([α̃] , [∗α̃]) =

∫
X
α̃ ∧ ∗α̃ is zero if and only if α̃ is zero if and only if [α] ∈ D•,• is zero.

1.2.2 A Frölicher-type inequality for the Bott-Chern cohomology
We can now state and prove a Frölicher-type inequality for the Bott-Chern and Aeppli cohomologies, Theorem
1.22.

Firstly, we recall that, on a compact complex manifold X, the Frölicher inequality [Frö55, Theorem 2] relates
the Hodge numbers and the Betti numbers.

Theorem 1.21 ([Frö55, Theorem 2]). Let X be a compact complex manifold. Then, for every k ∈ N, the following
inequality holds: ∑

p+q=k
dimCH

p,q

∂
(X) ≥ dimCH

k
dR(X;C) .

The equality
∑
p+q=k dimCH

p,q

∂
(X) = dimCHk

dR(X;C) holds for every k ∈ N if and only if the Hodge and
Frölicher spectral sequence {(Er, dr)}r∈N degenerates at the first step.

It is in general not true that hkBC (respectively, hkA) is higher than the kth Betti number of X for every k ∈ N:
an example is provided by the small deformations of the Iwasawa manifold I3 := H (3;Z [i])\H(3;C) (see §1.4.1).
In the following table, we summarize the dimensions of the Bott-Chern and Aeppli cohomology groups for I3
(which have been computed in [Sch07, Proposition 1.2]) and for the small deformations of I3 (see §1.4.4). We
recall that the small deformations of the Iwasawa manifold, according to I. Nakamura’s classification, [Nak75, §3],
are divided into three classes, (i), (ii), and (iii), in terms of their Hodge numbers; it turns out that the Bott-Chern
cohomology yields a finer classification of the Kuranishi space of I3, allowing a further subdivision of class (ii),
respectively class (iii), into subclasses (ii.a), (ii.b), respectively (iii.a), (iii.b), see §1.4.1.

classes h1
∂

h1
BC h1

A h2
∂

h2
BC h2

A h3
∂

h3
BC h3

A h4
∂

h4
BC h4

A h5
∂

h5
BC h5

A

(i) 5 4 6 11 10 12 14 14 14 11 12 10 5 6 4
(ii.a) 4 4 6 9 8 11 12 14 14 9 11 8 4 6 4
(ii.b) 4 4 6 9 8 10 12 14 14 9 10 8 4 6 4
(iii.a) 4 4 6 8 6 11 10 14 14 8 11 6 4 6 4
(iii.b) 4 4 6 8 6 10 10 14 14 8 10 6 4 6 4

b1 = 4 b2 = 8 b3 = 10 b4 = 8 b5 = 4

The following result, [AT12b, Theorem A], gives a Frölicher-type inequality for the Bott-Chern cohomol-
ogy. (We recall that, on a compact complex manifold X of complex dimension n, for any p, q ∈ N, one has
the equality dimCH

p,q
BC(X) = dimCH

n−q,n−p
A (X), and, for any k ∈ N, the equality

∑
p+q=k dimCH

p,q
BC(X) =∑

r+s=2n−k dimCH
r,s
A (X), [Sch07, §2.c].)

Theorem 1.22. Let X be a compact complex manifold. Then, for every p, q ∈ N, the following inequality holds:

dimCH
p,q
BC(X) + dimCH

p,q
A (X) ≥ dimCH

p,q

∂
(X) + dimCH

p,q
∂ (X) . (1.2.4)

In particular, for every k ∈ N, the following inequality holds:
∑

p+q=k
(dimCH

p,q
BC(X) + dimCH

p,q
A (X)) ≥ 2 dimCH

k
dR(X;C) . (1.2.5)
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Proof. Fix p, q ∈ N. The exact sequences (1.2.1), respectively (1.2.2), yield the equality

hp,qA = hp,q
∂

+ cp,q + ap,q − bp,q ,

respectively
hp,qBC = hp,q

∂
+ dp,q + fp,q − ep,q ;

using also the symmetries hp,qA = hq,pA and hp,q
∂

= hq,p∂ , and the equalities (1.2.3), we get

hp,qBC + hp,qA = hp,qBC + hq,pA

= hp,q
∂

+ hq,p
∂

+ fp,q + aq,p + dp,q − bq,p − ep,q + cq,p

= hp,q
∂

+ hp,q∂ + fp,q + ap,q

≥ hp,q
∂

+ hp,q∂ ,

which proves (1.2.4).
Now, fix k ∈ N; summing over (p, q) ∈ N× N such that p+ q = k, we get

hkBC + hkA =
∑

p+q=k
(hp,qBC + hp,qA )

≥
∑

p+q=k

(
hp,q
∂

+ hp,q∂

)
= hk

∂
+ hk∂

≥ 2 bk ,

from which we get (1.2.5).

Remark 1.23. Note that small deformations of the Iwasawa manifold show that both the inequalities (1.2.4)
and (1.2.5) can be strict.

For example, for small deformations of I3 in class (i), one has,

h1
BC + h1

A = 10 > 8 = 2 · b1 , h2
BC + h2

A = 22 > 16 = 2 · b2 , h3
BC + h3

A = 28 > 20 = 2 · b3 ,

showing that (1.2.5) is strict for every k ∈ {1, 2, 3, 4, 5}.
On the other hand, for small deformations of I3 in class (ii) or in class (iii), one has

h1,0
BC + h1,0

A = 1
2
(
h1
BC + h1

A

)
= 5 > 4 = h1

∂
= h1,0

∂
+ h0,1

∂
= h1,0

∂
+ h1,0

∂ ,

showing that (1.2.4) is strict, for example, for (p, q) = (1, 0).
(For further examples among the small deformations of the Iwasawa manifold, compare the computations in

§1.4.4, which are summarized in §1.4.5.)

Remark 1.24. Note that, in the proof of Theorem 1.22, we have actually shown that, for every k ∈ N,

hkBC + hkA = 2hk
∂

+ ak + fk .

1.2.3 A characterization of the ∂∂-Lemma in terms of the Bott-Chern cohomology
This section is devoted to give a characterization of the validity of the ∂∂-Lemma in terms of the Bott-Chern
cohomology.

Note that, if a compact complex manifold X satisfies the ∂∂-Lemma, then, for every k ∈ N, it holds
hkBC = hkA = hk

∂
= hk∂ = bk, and hence (1.2.5) is actually an equality. In fact, we prove now that also the converse

holds true: more precisely, the equality in (1.2.5) holds for every k ∈ N if and only if the ∂∂-Lemma holds; in
particular, this gives a characterization of the validity of the ∂∂-Lemma just in terms of

{
hkBC

}
k∈N, [AT12b,

Theorem B].

Theorem 1.25. Let X be a compact complex manifold. The equality
∑

p+q=k
(dimCH

p,q
BC(X) + dimCH

p,q
A (X)) = 2 dimCH

k
dR(X;C)

holds for every k ∈ N if and only if X satisfies the ∂∂-Lemma.
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Proof. If X satisfies the ∂∂-Lemma, then the natural maps H•,•BC(X)→ H•dR(X;C), H•,•BC(X)→ H•,•
∂

(X), and
H•,•
∂

(X)→ H•,•A (X), H•dR(X;C)→ H•,•A (X) induced by the identity are isomorphisms, [DGMS75, Remark 5.16],
and hence, for every k ∈ N, one has

hkBC = hkA = hk
∂

= bk

and hence, in particular,
hkBC + hkA = 2 bk .

We split the proof of the converse into the following claims.
Claim 1 – If hkBC + hkA = 2 bk holds for every k ∈ N, then the Hodge and Frölicher spectral sequences degenerate
at the first step (namely, E1 ' E∞, that is, hk

∂
= bk for every k ∈ N) and ak = 0 = fk for every k ∈ N.

Since, for every k ∈ N, we have

2 bk = hkBC + hkA = 2hk
∂

+ ak + fk ≥ 2 bk ,

then hk
∂

= bk and ak = 0 = fk for every k ∈ N.
Claim 2 – Fix k ∈ N. If ak+1 :=

∑
p+q=k+1 dimCAp,q = 0, then the natural map

⊕

p+q=k
Hp,q
BC(X)→ Hk

dR(X;C)

is surjective.
Let a = [α] ∈ Hk

dR(X;C). We have to prove that a admits a representative whose pure-type components are
d-closed. Consider the pure-type decomposition of α:

α =:
k∑

j=0
(−1)j αk−j,j ,

where αk−j,j ∈ ∧k−j,jX. Since dα = 0, we get that

∂αk,0 = 0 , ∂αk−j,j − ∂αk−j−1,j+1 = 0 for j ∈ {0, . . . , k − 1} , ∂α0.k = 0 ;

by the hypothesis ak+1 = 0, for every j ∈ {0, . . . , k − 1}, we get that,

∂αk−j,j = ∂αk−j−1,j+1 ∈
(
im ∂ ∩ im ∂

)
∩ ∧k−j,j+1X = im ∂∂ ∩ ∧k−j,j+1X

and hence there exists ηk−j−1,j ∈ ∧k−j−1,jX such that

∂αk−j,j = ∂∂ηk−j−1,j = ∂αk−j−1,j+1 .

Define

η :=
k−1∑

j=0
(−1)j ηk−j−1,j ∈ ∧k−1X ⊗R C .

The claim follows noting that

a = [α] = [α+ d η]

=


(αk,0 + ∂ηk−1,0)+

k−1∑

j=1
(−1)j

(
αk−j,j + ∂ηk−j−1,j − ∂ηk−j,j−1)+ (−1)k

(
α0,k − ∂η0,k−1)




=
[
αk,0 + ∂ηk−1,0]+

k−1∑

j=1
(−1)j

[
αk−j,j + ∂ηk−j−1,j − ∂ηk−j,j−1]+ (−1)k

[
α0,k − ∂η0,k−1] ,

that is, each of the pure-type components of α+ d η is both ∂-closed and ∂-closed.
Claim 3 – If hkBC ≥ bk and hkBC + hkA = 2 bk for every k ∈ N, then hkBC = bk for every k ∈ N.
If n is the complex dimension of X, then, for every k ∈ N, we have

bk ≤ hkBC = h2n−k
A = 2 b2n−k − h2n−k

BC ≤ b2n−k = bk

and hence hkBC = bk for every k ∈ N.
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Now, by Claim 1, we get that ak = 0 for each k ∈ N; hence, by Claim 2, for every k ∈ N the natural map
⊕

p+q=k
Hp,q
BC(X)→ Hk

dR(X;C)

induced by the identity is surjective, and hence, in particular, hkBC ≥ bk. By Claim 3 we get therefore that
hkBC = bk for every k ∈ N. Hence, the natural map H•,•BC(X)→ H•dR(X;C) is actually an isomorphism, which is
equivalent to say that X satisfies the ∂∂-Lemma.

Remark 1.26. We note that, using the exact sequences (1.2.2) and (1.2.1), one can prove that, on a compact
complex manifold X and for every k ∈ N,

ek =
(
hk
∂
− hkBC

)
+ fk + ck−1

=
(
hk
∂
− hkBC

)
−
(
hk−1
∂
− hk−1

A

)
+ fk − ak−1 + ek−2 .

Remark 1.27. Note that E1 ' E∞ is not sufficient to have the equality hkBC + hkA = 2 bk for every k ∈ N (and
hence the ∂∂-Lemma): a counterexample is provided by small deformations of the Iwasawa manifold.

Indeed, for small deformations of I3 in class (iii), since

h1
∂

= 4 = b1 , h2
∂

= 8 = b2 , h
3
∂

= 10 = b3 ,

the Hodge and Frölicher spectral sequences degenerate at the first step, but

h1
BC + h1

A = 10 > 8 = 2 b1 , h2
BC + h2

A = 16 = 2 b2 , h3
BC + h3

A = 28 > 20 = 2 b3 .

Using Theorem 1.25, we get another proof of the stability of the ∂∂-Lemma under small deformations of the
complex structure, [AT12b, Corollary 2.7]; for different proofs of the same result by means of other techniques see,
e.g., [Voi02, Proposition 9.21], [Wu06, Theorem 5.12], [Tom08, §B].

Corollary 1.28. Satisfying the ∂∂-Lemma is a stable property under small deformations of the complex structure.

Proof. Let {Xt}t∈B be a complex-analytic family of compact complex manifolds. Since, for every k ∈ N,
the dimensions hkBC(Xt) and hkA(Xt) are upper-semi-continuous functions in t, [Sch07, Lemme 3.2], while
the dimensions bk(Xt) are constant in t by Ehresmann’s theorem, one gets that, if Xt0 satisfies the equality
hkBC (Xt0) + hkA (Xt0) = 2 bk (Xt0) for every k ∈ N, the same holds true for Xt with t near t0.

We recall that [DGMS75, 5.21] by P. Deligne, Ph. A. Griffiths, J. Morgan, and D. P. Sullivan characterizes the
validity of the ∂∂-Lemma on a compact complex manifold in terms of the degeneracy of the Hodge and Frölicher
spectral sequence and of the existence of Hodge structures in cohomology. In particular, if follows that, on a
compact complex manifold satisfying the ∂∂-Lemma, one has the equality bk =

∑
p+q=k h

p,q

∂
for every k ∈ N

(which is equivalent to the degeneracy of the Hodge and Frölicher spectral sequence) and the symmetry hp,q
∂

= hq,p
∂for every p, q ∈ N.

Note that, on a compact complex surface X, since the Hodge and Frölicher spectral sequence degenerates
at the first step (see, e.g., [BHPVdV04, Theorem IV.2.8]) if h1,0

∂
= h0,1

∂
then b1 = 2h1,0

∂
is even, and hence X

is Kähler, by [Kod64, Miy74, Siu83], or [Lam99, Corollaire 5.7], or [Buc99, Theorem 11]. As already remarked,
the small deformations of I3 in class (iii) satisfy the degeneracy condition of the Hodge and Frölicher spectral
sequence, but they do not satisfy either the ∂∂-Lemma, or the symmetry of the Hodge numbers.

It could hence be interesting to construct a compact complex manifold (of any complex dimension greater
than or equal to 3) such that E1 ' E∞ and hp,q

∂
= hp,q∂ for every p, q ∈ N but for which the ∂∂-Lemma does not

hold. A compact complex manifold X whose double complex
(
∧•,•X, ∂, ∂

)
has the form in Figure 1.1 (where

dots denote generators of the C∞(X;R)-module ∧•,•X, horizontal arrows are meant as ∂, vertical ones as ∂ and
zero arrows are not depicted) provides such an example.

Remark 1.29. L. Ugarte informed us that M. Ceballos, A. Otal, he himself, and R. Villacampa have found such
an example among the 6-dimensional nilmanifolds endowed with left-invariant complex structures: they provided
a complete classification, up to equivalence, of the linear integrable complex structures on 6-dimensional nilpotent
Lie algebras in [COUV12], where they also studied some applications of their classification.
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Figure 1.1: An abstract example

1.3 Cohomology computations for special nilmanifolds
We are now interested in studying the Bott-Chern and Aeppli cohomologies in the special case of left-invariant
complex structures on nilmanifolds and solvmanifolds.

In this section, we firstly recall some results concerning the computation of the de Rham cohomology and of the
Dolbeault cohomology, for nilmanifolds and solvmanifolds, endowed with left-invariant complex structures, §1.3.2,
referring to [Nom54, Hat60], respectively [Sak76, CFGU00, CF01, Rol09a, Rol11a]; then, we state and prove the
results obtained in [Ang11] about the computation of the Bott-Chern and Aeppli cohomologies, Theorem 1.37,
Theorem 1.42. Using these tools, one can compute the de Rham, Dolbeault, Bott-Chern and Aeppli cohomologies
for the Iwasawa manifold and for its small deformations, §1.4.2, §1.4.3, §1.4.4.

1.3.1 Left-invariant complex structures on solvmanifolds
We start by recalling some facts and notations concerning left-invariant complex structures on solvmanifolds.

Let X = Γ\G be a solvmanifold, that is, a compact quotient of a connected simply-connected solvable Lie
group G by a discrete and co-compact subgroup Γ; the Lie algebra naturally associated to G will be denoted by g
and its complexification by gC := g⊗R C. We recall that, dealing with G-left-invariant objects on X, we mean
objects on X obtained by objects on G that are invariant under the action of G on itself given by left-translations;
note that G-left-invariant objects on X are uniquely determined by objects on g. In particular, a G-left-invariant
complex structure J on X is uniquely determined by a linear complex structure J on g satisfying the integrability
condition NijJ = 0, [NN57, Theorem 1.1]; the set of G-left-invariant complex structures on X is denoted by

C (g) :=
{
J ∈ End (g) : J2 = − idg and NijJ = 0

}
.

Recall that the exterior differential d on X can be written using only the action of Γ(X; TX) on C∞(X)
and the Lie bracket of the Lie algebra of vector fields on X: more precisely, recall that, if ϕ ∈ ∧kX and
X0, . . . , Xk ∈ C∞ (X;TX), then

dϕ (X0, . . . , Xk) =
k∑

j=0
(−1)j Xj ϕ (X0, . . . , Xj−1, Xj+1, . . . , Xk)

+
∑

0≤j<h≤k
(−1)j+h−1

ϕ ([Xj , Xh] , X0, . . . , Xj−1, Xj+1, . . . , Xh−1, Xh+1, . . . , Xk) .

Hence one has a differential complex (∧•g∗, d), which is isomorphic, as a differential complex, to the differential
subcomplex

(
∧•invX, db∧•invX

)
of (∧•X, d) given by the G-left-invariant forms on X.

If a G-left-invariant complex structure on X is given, then one also has the double complex
(
∧•,•g∗C, ∂, ∂

)
,

which is isomorphic, as a double complex, to the double subcomplex
(
∧•,•invX, ∂b∧•,•invX

, ∂b∧•,•invX

)
of
(
∧•,•X, ∂, ∂

)

given by the G-left-invariant forms on X.
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Finally, given a G-left-invariant complex structure on G and fixed p, q ∈ N, one also has the following complexes
and the following maps of complexes:

∧p−1,q−1g∗C
∂∂ //

'
��

∧p,qg∗C
d //

'
��

∧p+q+1g∗C

'
��

∧p−1,q−1
inv X

∂∂ //
� _

i

��

∧p,qinvX
d //

� _

i

��

∧p+q+1
inv (X;C)� _

i

��
∧p−1,q−1X

∂∂ // ∧p,qX d // ∧p+q+1(X;C)

, (1.3.1)

and
∧p−1,qg∗C ⊕ ∧p,q−1g∗C

∂+∂ //

'
��

∧p,qg∗C
∂∂ //

'
��

∧p+1,q+1g∗C

'
��

∧p−1,q
inv X ⊕ ∧p,q−1

inv X
∂+∂ //

� _

i

��

∧p,qinvX
∂∂ //

� _

i

��

∧p+1,q+1
inv X� _

i

��
∧p−1,qX ⊕ ∧p,q−1X

∂+∂ // ∧p,qX ∂∂ // ∧p+1,q+1X

. (1.3.2)

For ] ∈
{
∂, ∂, BC, A

}
and K ∈ {R,C}, we will write H•dR (g;K) :=: H•dR (g;K) and H•,•] (gC) to denote the

cohomology groups of the corresponding complexes of forms on g, which are isomorphic to the cohomology groups
of the corresponding complexes of G-left-invariant forms on X. The rest of this section is devoted to the problem
whether these cohomologies are isomorphic to the corresponding cohomologies on X.

1.3.2 Classical results on computations of the de Rham and Dolbeault cohomolo-
gies

In this section, we collect some results, by K. Nomizu [Nom54], A. Hattori [Hat60], S. Console and A. Fino
[CF01], Y. Sakane [Sak76], L. A. Cordero, M. Fernández, A. Gray, and L. Ugarte [CFGU00], S. Rollenske
[Rol09a, Rol11a, Rol09b], concerning the computation of the de Rham cohomology and the Dolbeault cohomology
for nilmanifolds and solvmanifolds, endowed with left-invariant complex structures.

First of all, we recall the following result, concerning the de Rham cohomology: it was firstly proven by K.
Nomizu for nilmanifolds, and then generalized by A. Hattori to the case of completely-solvable solvmanifolds.

Theorem 1.30 ([Nom54, Theorem 1], [Hat60, Corollary 4.2]). Let X = Γ\G be a nilmanifold, or, more in
general, a completely-solvable solvmanifold, and denote the Lie algebra naturally associated to G by g. The map
of differential complexes (∧•g∗, d)→ (∧•X, d) is a quasi-isomorphism:

i : H•dR(g;R) '→ H•dR(X;R) .

A counterexample in the non-completely-solvable case was provided by P. de Bartolomeis and A. Tomassini in
[dBT06, Corollary 4.2, Remark 4.3], studying the Nakamura manifold, [Nak75, §2].

Similar results hold for the Dolbeault cohomology of nilmanifolds endowed with certain left-invariant complex
structures; [Con06] and [Rol11a] are recent surveys on the known results. (Some results about the Dolbeault
cohomology of solvmanifolds have been recently proven by H. Kasuya, see [Kas12].)

First of all, we recall the following lemma by S. Console and A. Fino, [CF01]: the argument used in the proof
can be generalized to Bott-Chern and Aeppli cohomologies, see Lemma 1.36.

Lemma 1.31 ([CF01, Lemma 9]). Let X = Γ\G be a nilmanifold endowed with a G-left-invariant complex
structure J , and denote the Lie algebra naturally associated to G by g. For any p ∈ N, the map of complexes(
∧p,•g∗C, ∂

)
↪→
(
∧p,•X, ∂

)
induces an injective homomorphism i in cohomology:

i : H•,•
∂

(gC) ↪→ H•,•
∂

(X) .

For an arbitrary G-left-invariant complex structure on a nilmanifold X = Γ\G, it is not known whether
i : H•,•

∂
(gC) ↪→ H•,•

∂
(X) actually is an isomorphism, but some results are known for certain classes of G-left-

invariant complex structures.
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Theorem 1.32 ([Sak76, Theorem 1], [CFGU00, Main Theorem], [CF01, Theorem 2, Remark 4], [Rol09a, Theorem
1.10], [Rol11a, Corollary 3.10]). Let X = Γ\G be a nilmanifold endowed with a G-left-invariant complex structure
J , and denote the Lie algebra naturally associated to G by g. Then, for every p ∈ N, the map of complexes

(
∧p,•g∗C, ∂

)
↪→
(
∧p,•X, ∂

)
(1.3.3)

is a quasi-isomorphism, namely,
i : H•,•

∂
(gC) '→ H•,•

∂
(X) ,

provided one of the following conditions holds:

• X is holomorphically parallelizable;

• J is an Abelian complex structure;

• J is a nilpotent complex structure;

• J is a rational complex structure;

• g admits a torus-bundle series compatible with J and with the rational structure induced by Γ;

• dimR g = 6 and g is not isomorphic to h7 :=
(
03, 12, 13, 23

)
.

We recall, (see, e.g., [Rol09a, Definition 1.5],) that, given a nilpotent Lie algebra g, a rational structure for g is
a Q-vector space gQ such that gQ ⊗Q R = g. A sub-algebra h of g is said to be rational with respect to a rational
structure gQ if the Q-vector space h ∩ gQ of h is a rational structure for h. If G is the connected simply-connected
Lie group associated to g, then any discrete co-compact subgroup Γ of G induces a rational structure for g, given
by Q log Γ.

Consider a G-left-invariant complex structure on a nilmanifold X = Γ\G with associated Lie algebra g; we
recall that:

• J is called holomorphically parallelizable if the the holomorphic tangent bundle is holomorphically trivial,
see, e.g., [Wan54, Nak75];

• J is called Abelian if [Jx, Jy] = [x, y] for any x, y ∈ g, see, e.g., [BDMM95, ABDM11];

• J is called nilpotent if there exists a G-left-invariant co-frame
{
ω1, . . . , ωn

}
for
(
T 1,0X

)∗ with respect to
which the structure equations of X are of the form

dωj =
∑

h<k<j

Ajhk ω
h ∧ ωk +

∑

h,k<j

Bjhk ω
h ∧ ω̄k

with
{
Ajhk, B

j
hk

}
j,h,k

⊂ C, see, e.g, [CFGU00];

• J is called rational if J (gQ) ⊆ gQ where gQ is the rational structure for g induced by Γ, see, e.g., [CF01].

We recall also the following definitions, [Rol09a, Definition 1.8]. An ascending filtration
{
Sjg

}
j∈{0,...,k} on g is

called a torus-bundle series compatible with a linear complex structure J on g and a rational structure gQ for g if,
for every j ∈ {1, . . . , k}, it holds that (i) Sjg is rational with respect to gQ and an ideal in Sj+1g, (ii) JSjg = Sjg,
and (iii) Sj+1g

/
Sjg is Abelian. If, in addition, it holds that (iv) Sj+1g

/
Sjg is contained in the center of g/Sjg,

then
{
Sjg

}
j∈{0,...,k} is called a principal torus-bundle series compatible with J and gQ. Finally, an ascending

filtration
{
Sjg

}
j∈{0,...,k} on g is called a stable (principal) torus-bundle series if it is a (principal) torus-bundle

series compatible with J and gQ for any complex structure J and for any rational structure gQ. By S. Rollenske’s
theorem [Rol09a, Theorem B], every 6-dimensional nilpotent Lie algebra except h7 :=

(
03, 12, 13, 23

)
admits a

stable torus-bundle series.
The property of computing the Dolbeault cohomology using just left-invariant forms turns out to be open

along curves of left-invariant complex structures: this was proven by S. Console and A. Fino, [CF01].

Theorem 1.33 ([CF01, Theorem 1]). Let X = Γ\G be a nilmanifold endowed with a G-left-invariant complex
structure J , and denote the Lie algebra naturally associated to G by g. Let U ⊆ C(g) be the subset containing the
G-left-invariant complex structures J on X such that the inclusion i is an isomorphism:

U :=
{
J ∈ C (g) : i : H•,•

∂
(gC) '↪→ H•,•

∂
(X)

}
⊆ C (g) .

Then U is an open set in C (g).
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The strategy of the proof consists in proving that the dimension of the orthogonal of H•,•
∂

(gC) in H•,•
∂

(X)
with respect to a given J-Hermitian G-left-invariant metric on X = Γ\G is an upper-semi-continuous function in
J ∈ C (g) and thus, if it is zero for a given J ∈ C (g), then it remains equal to zero in an open neighbourhood of J
in C (g). We will use the same argument in proving Theorem 1.42, which is a slight modification of the previous
result in the case of the Bott-Chern cohomology.

The aforementioned results suggest the following conjecture.

Conjecture 1.34 ([Rol11a, Conjecture 1]; see also [CFGU00, page 5406], [CF01, page 112]). Let X = Γ\G be a
nilmanifold endowed with a G-left-invariant complex structure J , and denote the Lie algebra naturally associated
to G by g. Then, for any p ∈ N, the map of complexes (1.3.3) is a quasi-isomorphisms, that is,

i : H•,•
∂

(gC) '→ H•,•
∂

(X) .

Note that, since i is always injective by [CF01, Lemma 9], this is equivalent to asking that

dimC
(
H•,•
∂

(gC)
)⊥

= 0 ,

where the orthogonality is meant with respect to the inner product induced by a given J-Hermitian G-left-invariant
metric g on X.

Finally, as an application of the previous results, we recall the following theorem by S. Rollenske, concerning
the deformations of left-invariant complex structures on nilmanifolds.

Theorem 1.35 ([Rol09b, Theorem 2.6]). Let X = Γ\G be a nilmanifold endowed with a G-left-invariant complex
structure J , and denote the Lie algebra naturally associated to G by g. Suppose that, for p = 1, the map of
complexes (1.3.3) is a quasi-isomorphism: i : H1,q

∂
(gC) '→ H1,q

∂
(X) for every q ∈ N. Then all small deformations

of the complex structure J are again G-left-invariant complex structures. More precisely, the Kuranishi family of
X contains only G-left-invariant complex structures.

1.3.3 The Bott-Chern cohomology on solvmanifolds
We recall here the results obtained in [Ang11], concerning the computation of the Bott-Chern cohomology for
nilmanifolds and solvmanifolds.

Firstly, we prove a slight modification of [CF01, Lemma 9] proven by S. Console and A. Fino for the Dolbeault
cohomology: we repeat here their argument for the case of the Bott-Chern cohomology, [Ang11, Lemma 3.6].

Lemma 1.36. Let X = Γ\G be a solvmanifold endowed with a G-left-invariant complex structure J , and denote
the Lie algebra naturally associated to G by g. The map of complexes (1.3.1) induces an injective homomorphism

i : H•,•BC (gC) ↪→ H•,•BC(X) .

Proof. Fix p, q ∈ N. Let g be a J-Hermitian G-left-invariant metric on X and consider the induced inner product
〈 ·| ··〉 on ∧•,•X. Hence, both ∂, ∂, and their adjoints ∂∗, ∂∗ preserve the G-left-invariant forms on X and therefore
also ∆̃BC does. In such a way, we get a Hodge decomposition also at the level of G-left-invariant forms:

∧p,qg∗C = ker ∆̃BCb∧p,qg∗C ⊕ im ∂∂b∧p−1,q−1g∗C
⊕
(

im ∂∗b∧p+1,qg∗C
+ im ∂

∗b∧p,q+1g∗C

)
.

Now, take [ω] ∈ Hp,q
BC (gC) such that i [ω] = 0 in Hp,q

BC(X), that is, ω is a G-left-invariant (p, q)-form on X and
there exists a (possibly non-G-left-invariant) (p− 1, q − 1)-form η on X such that ω = ∂∂ η. Up to zero terms in
Hp,q
BC (gC), we may assume that η ∈ (i (∧p,qg∗C))⊥ ⊆ ∧p,qX. Therefore, since ∂∗∂∗∂∂η is a G-left-invariant form

(being ∂∂η a G-left-invariant form), we have that

0 =
〈
∂
∗
∂∗∂∂η

∣∣∣ η
〉

=
∥∥∂∂η

∥∥2 = ‖ω‖2

and therefore ω = 0.

The second general result says that, if the Dolbeault and de Rham cohomologies of a solvmanifold are computed
using just left-invariant forms, then also the Bott-Chern cohomology is computed using just left-invariant forms,
[Ang11, Theorem 3.7]. The idea of the proof is inspired by [Sch07, §1.c], where M. Schweitzer used a similar
argument to explicitly compute the Bott-Chern cohomology in the special case of the Iwasawa manifold.
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Theorem 1.37. Let X = Γ\G be a solvmanifold endowed with a G-left-invariant complex structure J , and
denote the Lie algebra naturally associated to G by g. Suppose that

i : H•dR(g;C) '↪→ H•dR(X;C) and i : H•,•
∂

(gC) '↪→ H•,•
∂

(X) .

Then also
i : H•,•BC (gC) '↪→ H•,•BC(X) .

Proof. Fix p, q ∈ N. We prove the theorem as a consequence of the following claims.
Claim 1 – It suffices to prove that im d∩∧p,qX

im ∂∂
can be computed using just G-left-invariant forms.

Indeed, we have the exact sequence

0→ im d∩ ∧p,q X
im ∂∂

→ Hp,q
BC(X)→ Hp+q

dR (X;C)

and, by hypothesis, H•dR(X;C) can be computed using just G-left-invariant forms.
Claim 2 – Under the hypothesis that the Dolbeault cohomology is computed using just G-left-invariant forms, if ψ
is a G-left-invariant ∂-closed form, then every solution φ of ∂φ = ψ is G-left-invariant up to ∂-exact terms.
Indeed, since [ψ] = 0 in H•,•

∂
(X), there is a G-left-invariant form α such that ψ = ∂α. Hence, φ− α defines a

class in H•,•
∂

(X) and hence φ− α is G-left-invariant up to a ∂-exact form, and so φ is.
Claim 3 – Under the hypothesis that the Dolbeault cohomology is computed using just G-left-invariant forms, the
space im d∩∧p,qX

im ∂∂
can be computed using just G-left-invariant forms.

Consider
ωp,q = d η mod im ∂∂ ∈ im d∩ ∧p,q X

im ∂∂
. (1.3.4)

Decomposing η =:
∑
p,q η

p,q in pure-type components, the equality (1.3.4) is equivalent to the system




∂ηp+q−1,0 = 0 mod im ∂∂

∂ηp+q−`,`−1 + ∂ηp+q−`−1,` = 0 mod im ∂∂ for ` ∈ {1, . . . , q − 1}
∂ηp,q−1 + ∂ηp−1,q = ωp,q mod im ∂∂

∂η`,p+q−`−1 + ∂η`−1,p+q−` = 0 mod im ∂∂ for ` ∈ {1, . . . , p− 1}
∂η0,p+q−1 = 0 mod im ∂∂

.

Applying several times Claim 2, we may suppose that the forms η`,p+q−`−1, with ` ∈ {0, . . . , p− 1}, are G-left-
invariant: indeed, they are G-left-invariant up to ∂-exact terms, but ∂-exact terms give no contribution in the
system, since it is modulo im ∂∂. Analogously, using the conjugate version of Claim 2, we may suppose that the
forms ηp+q−`−1,`, with ` ∈ {0, . . . , q−1}, are G-left-invariant. Then we may suppose that ωp,q = ∂ηp,q−1 +∂ηp−1,q

is G-left-invariant.

Remark 1.38. Let X = Γ\G be a solvmanifold endowed with a G-left-invariant complex structure J , and denote
the Lie algebra naturally associated to G by g. Note that, if the map of complexes i :

(
∧p,•g∗C, ∂

)
→
(
∧p,•X, ∂

)

is a quasi-isomorphism for every p ∈ N, that is,

i : H•,•
∂

(gC) '↪→ H•,•
∂

(X) ,

then also the map of complexes i : (∧•g∗, d)→ (∧•X, d) is a quasi-isomorphism, that is,

i : H•dR(g;C) '↪→ H•dR(X;C) .

Indeed, the map of double complexes i :
(
∧•,•g∗C, ∂, ∂

)
→
(
∧•,•X, ∂, ∂

)
induces a map between the corre-

sponding Hodge and Frölicher spectral sequences:

i : {(E•,•r (gC) ,dr)}r∈N → {(E•,•r (X) ,dr)}r∈N .

Since, see, e.g., [McC01, Theorem 2.15],

E•,•1 (gC) ' H•,•
∂

(g) ⇒ H•dR (gC) and E•,•1 (X) ' H•,•
∂

(X) ⇒ H•dR(X;C) ,

one gets that, if i : E•,•1 (gC)→ E•,•1 (X) is an isomorphism, then also i : H•dR (gC)→ H•dR(X;C) is an isomorphism,
see, e.g., [McC01, Theorem 3.5].
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As a corollary of [Nom54, Theorem 1], [Sak76, Theorem 1], [CFGU00, Main Theorem], [CF01, Theorem 2,
Remark 4], [Rol09a, Theorem 1.10], [Rol11a, Corollary 3.10], and Theorem 1.37, we get the following result,
[Ang11, Theorem 3.8].

Theorem 1.39. Let X = Γ\G be a nilmanifold endowed with a G-left-invariant complex structure J , and denote
the Lie algebra naturally associated to G by g. Suppose that one of the following conditions holds:

• X is holomorphically parallelizable;

• J is an Abelian complex structure;

• J is a nilpotent complex structure;

• J is a rational complex structure;

• g admits a torus-bundle series compatible with J and with the rational structure induced by Γ;

• dimR g = 6 and g is not isomorphic to h7 :=
(
03, 12, 13, 23

)
.

Then the de Rham, Dolbeault, Bott-Chern and Aeppli cohomologies can be computed as the cohomologies of the
corresponding subcomplexes given by the space of G-left-invariant forms on X; in other words, the inclusions of
the several subcomplexes of G-left-invariant forms on X into the corresponding complexes of forms on X are
quasi-isomorphisms:

i : H•dR (g;R) '
↪→ H•dR(X;R) and i : H•,•] (gC) '

↪→ H•,•] (X) ,

for ] ∈ {∂, ∂, BC, A}.

Remark 1.40. Note that Theorem 1.39, and [Hat60, Corollary 4.2], allow to straightforwardly compute the
de Rham, Dolbeault, Bott-Chern, and Aeppli cohomologies of nilmanifolds, endowed with certain left-invariant
complex structures, respectively the de Rham cohomology of completely-solvable solvmanifolds, just by computing
the space of left-invariant (∆, or �, or ∆̃BC , or ∆̃A-)harmonic forms with respect to a left-invariant Riemannian,
or Hermitian, metric.

Indeed, suppose that X is a nilmanifold, endowed with a left-invariant complex structure, or a completely-
solvable solvmanifold, satisfying i : H•dR (g;R) '

↪→ H•dR(X;R), or i : H•,•] (gC) '
↪→ H•,•] (X), for some ] ∈

{∂, ∂, BC, A}. Let g be a left-invariant Riemannian, or Hermitian, metric on X. Hence, the operators ∆,
�, ∆̃BC , ∆̃A send the subspace of left-invariant forms to the subspace of left-invariant forms, and induce the
self-adjoint operators

∆ ∈ End (∧•g∗) , � ∈ End (∧•,•g∗C) , ∆̃BC ∈ End (∧•,•g∗C) , ∆̃A ∈ End (∧•,•g∗C) ,

with respect to the inner products 〈·, ··〉 induced by g on the space ∧•g∗ and on the space ∧•,•g∗C. Hence, one
gets the orthogonal decompositions

∧• g∗ = ker ∆⊕ im ∆ , ∧•,• g∗C = ker�⊕ im� ,

∧•,• g∗C = ker ∆̃BC ⊕ im ∆̃BC , ∧•,• g∗C = ker ∆̃A ⊕ im ∆̃A

(one could argue also by using the F. A. Belgun symmetrization trick [Bel00, Theorem 7]). It follows that

H•dR (g;R) ' ker ∆ , H•,•
∂

(gC) ' ker� , H•,•BC (gC) ' ker ∆̃BC , H•,•A (gC) ' ker ∆̃A .

Remark 1.41. Let X = Γ\G be a 2n-dimensional solvmanifold endowed with a G-left-invariant complex
structure J , and denote the Lie algebra naturally associated to G by g. The map of complexes (1.3.2) induces an
injective homomorphism

i : H•,•A (gC) ↪→ H•,•A (X) .

Furthermore, if i : H•,•BC (gC) '↪→ H•,•BC(X), then the map of complexes (1.3.2) is a quasi-isomorphism, that is,

i : H•,•A (gC) '↪→ H•,•A (X) .

Indeed, fix a G-left-invariant Hermitian metric g on X. Recall that

∗ : H•1,•2A (X) '→ Hn−•2,n−•1
BC (X)
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is an isomorphism, [Sch07, §2.c]. Analogously, note that, by Remark 1.40 and since g is G-left-invariant, the map
∗ : ∧•1,•2 g∗C

'→ ∧n−•2,n−•1g∗C induces an isomorphism

∗ : H•1,•2A (gC) '→ Hn−•2,n−•1
BC (gC) .

Note also that the diagram
H•1,•2A (gC) i //

'∗
��

H•1,•2A (X)

∗'
��

Hn−•2,n−•1
BC (gC)

i
// Hn−•2,n−•1

BC (X)

commutes, since g is G-left-invariant. Since the map i : Hn−•2,n−•1
BC (gC) ↪→ Hn−•2,n−•1

BC (X) is injective by Lemma
1.36, then also the map H•1,•2A (gC)→ H•1,•2A (X) is injective. If i : Hn−•2,n−•1

BC (gC) ↪→ Hn−•2,n−•1
BC (X) is actually

an isomorphism, then also i : H•1,•2A (gC)→ H•1,•2A (X) is an isomorphism.

A slight modification of [CF01, Theorem 1] by S. Console and A. Fino gives the following result, which says
that the property of computing the Bott-Chern cohomology using just left-invariant forms is open in the space of
left-invariant complex structures on solvmanifolds, [Ang11, Theorem 3.9].
Theorem 1.42. Let X = Γ\G be a solvmanifold endowed with a G-left-invariant complex structure J , and
denote the Lie algebra naturally associated to G by g. Let ] ∈ {∂, ∂, BC, A}. Suppose that

i : H•,•]J (gC) '
↪→ H•,•]J (X) .

Then there exists an open neighbourhood U of J in C (g) such that any J̃ ∈ U still satisfies

i : H•,•]J̃ (gC) '
↪→ H•,•]J̃ (X) .

In other words, the set
U :=

{
J ∈ C (g) : i : H•,•]J (gC) '

↪→ H•,•]J (X)
}

is open in C (g).
Proof. As a matter of notation, for ε > 0 small enough, we consider

{(X, Jt) : t ∈ ∆(0, ε)}� ∆(0, ε)

a complex-analytic family of G-left-invariant complex structures on X, where ∆(0, ε) := {t ∈ Cm : |t| < ε} for
some m ∈ N \ {0}; moreover, let {gt}t∈∆(0,ε) be a family of Jt-Hermitian G-left-invariant metrics on X depending
smoothly on t. We will denote by ∂t := ∂Jt and ∂

∗
t := −∗gt ∂Jt∗gt the ∂ operator and its gt-adjoint respectively for

the Hermitian structure (Jt, gt) and we set ∆t := ∆]Jt
one of the differential operators involved in the definition

of the Dolbeault, conjugate Dolbeault, Bott-Chern or Aeppli cohomologies with respect to (Jt, gt); we remark
that ∆t is a self-adjoint elliptic differential operator for all the considered cohomologies.

By hypothesis, we have that
(
H•,•]J0

(gC)
)⊥

= {0}, where the orthogonality is meant with respect to the inner
product induced by g0, and we have to prove the same replacing 0 with t ∈ ∆(0, ε). Therefore, it will suffice to
prove that

∆(0, ε) 3 t 7→ dimC
(
H•,•]Jt (gC)

)⊥
∈ N

is an upper-semi-continuous function at 0. For any t ∈ ∆(0, ε), being ∆t a self-adjoint elliptic differential operator,
there exists a complete orthonormal basis {ei(t)}i∈I of eigen-forms for ∆t spanning

(
∧•,•Jt g∗C

)⊥, the orthogonal
complement of the space of G-left-invariant forms, see [KS60, Theorem 1]. For any i ∈ I and t ∈ ∆(0, ε), let ai(t)
be the eigen-value corresponding to ei(t); ∆t depending differentiably on t ∈ ∆(0, ε), for any i ∈ I, the function
∆(0, ε) 3 t 7→ ai(t) ∈ C is continuous, see [KS60, Theorem 2]. Therefore, for any t0 ∈ ∆(0, ε), choosing a constant
c > 0 such that c 6∈ {ai(t0) : i ∈ I}, the function

Ψc : ∆(0, ε)→ N , t 7→ dim span {ei(t) : ai(t) < c}
is locally constant at t0; moreover, for any t ∈ ∆(0, ε) and for any c > 0, we have

Ψc(t) ≥ dimC
(
H•,•]Jt (gC)

)⊥
.

Since the spectrum of ∆t0 has no accumulation point for any t0 ∈ ∆(0, ε), see [KS60, Theorem 1], the theorem
follows choosing c > 0 small enough so that Ψc(0) = dimC

(
H•,•]J0

(gC)
)⊥

.
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In particular, the left-invariant complex structures on nilmanifolds belonging to the classes of Theorem
1.39, and their small deformations satisfy the following conjecture, [Ang11, Conjecture 3.10], which generalizes
Conjecture 1.34.

Conjecture 1.43. Let X = Γ\G be a nilmanifold endowed with a G-left-invariant complex structure J , and
denote the Lie algebra naturally associated to G by g. Then the de Rham, Dolbeault, Bott-Chern and Aeppli
cohomologies can be computed as the cohomologies of the corresponding subcomplexes given by the space of
G-left-invariant forms on X, that is,

dimR (H•dR (g;R))⊥ = 0 and dimC
(
H•,•] (gC)

)⊥
= 0 ,

where ] ∈ {∂, ∂, BC, A}, and the orthogonality is meant with respect to the inner product induced by a given
J-Hermitian G-left-invariant metric g on X.

1.4 The cohomologies of the Iwasawa manifold and of its small de-
formations

The Iwasawa manifold is one of the simplest example of non-Kähler complex manifold: as such, it has been
studied by several authors, and it has turned out to be a fruitful source of interesting behaviours, see, e.g.,
[FG86, Nak75, AB90, Bas99, AGS97, KS04, Ye08, Sch07, AT11, Ang11, Fra11].

In this section, we recall the construction of the Iwasawa manifold §1.4.1, see, e.g., [FG86], [Nak75, §2], and
of its Kuranishi space, §1.4.1, see [Nak75, §3]; then we write down the de Rham cohomology, §1.4.2, and the
Dolbeault cohomology, §1.4.3, (using [Nom54, Theorem 1], and [Sak76, Theorem 1] and [CF01, Theorem 1]), and
we compute the Bott-Chern and Aeppli cohomologies, §1.4.4, (using Theorem 1.39 and Theorem 1.42), of the
Iwasawa manifold and of its small deformations.

1.4.1 The Iwasawa manifold and its small deformations
The Iwasawa manifold

Let H(3;C) be the 3-dimensional Heisenberg group over C defined by

H(3;C) :=








1 z1 z3

0 1 z2

0 0 1


 ∈ GL(3;C) : z1, z2, z3 ∈ C



 ,

where the product is the one induced by matrix multiplication. (Equivalently, one can consider H(3;C) as
isomorphic to

(
C3, ∗

)
, where the group structure ∗ on C3 is defined as

(z1, z2, z3) ∗ (w1, w2, w3) := (z1 + w1, z2 + w2, z3 + z1w2 + w3) .)

It is straightforward to prove that H(3;C) is a connected simply-connected complex 2-step nilpotent Lie group,
that is, the Lie algebra (h3, [·, ··]) naturally associated to H(3;C) satisfies [h3, h3] 6= 0 and [h3, [h3, h3]] = 0.

One finds that 



ϕ1 := d z1

ϕ2 := d z2

ϕ3 := d z3 − z1 d z2

is a H(3;C)-left-invariant co-frame for the space of (1, 0)-forms on H(3;C), and that the structure equations with
respect to this co-frame are 




dϕ1 = 0
dϕ2 = 0
dϕ3 = −ϕ1 ∧ ϕ2

.

Consider the action on the left of H (3;Z [i]) := H(3;C)∩GL (3;Z [i]) on H (3;C) and take the compact quotient

I3 := H (3;Z [i])\H(3;C) .

One gets that I3 is a 3-dimensional complex nilmanifold, whose (H(3;C)-left-invariant) complex structure J0 is
the one inherited by the standard complex structure on C3; I3 is called the Iwasawa manifold.
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The forms ϕ1, ϕ2 and ϕ3, being H(3;C)-left-invariant, define a co-frame also for
(
T 1,0I3

)∗. Note that I3 is a
holomorphically parallelizable manifold, that is, its holomorphic tangent bundle is holomorphically trivial. Since,
for example, ϕ3 is a non-closed holomorphic form, it follows that I3 admits no Kähler metric. In fact, one can show
that I3 is not formal, having a non-zero Massey triple product, see [FG86, page 158]; therefore the underlying
differentiable manifold of I3 has no complex structure admitting Kähler metrics, see [DGMS75, Main Theorem],
even though all the topological obstructions concerning the Betti numbers are satisfied. Nevertheless, I3 admits
the balanced metric ω :=

∑3
j=1 ϕ

j ∧ ϕ̄j .
We sketch in Figure 1.2 the structure of the finite-dimensional double complex

(
∧•,• (h3 ⊗R C)∗ , ∂, ∂

)
: the

dots denote a basis of ∧•,• (h3 ⊗R C)∗, horizontal arrows are meant as ∂, vertical ones as ∂ and zero arrows are
not depicted.

0

0

1

1

2

2

3

3

Figure 1.2: The double complex
(
∧•,• (h3 ⊗R C)∗ , ∂, ∂

)
.

Small deformations of the Iwasawa manifold

I. Nakamura classified in [Nak75, §2] the three-dimensional holomorphically parallelizable solvmanifolds into four
classes by numerical invariants, giving the Iwasawa manifold I3 as an example in the second class. Moreover, he
explicitly constructed the Kuranishi family of deformations of I3, showing that it is smooth and depends on 6
effective parameters, [Nak75, pages 94–95], compare also [Rol11b, Corollary 4.9]. In particular, he computed
the Hodge numbers of the small deformations of I3 proving that they have not to remain invariant along a
complex-analytic family of complex structures, [Nak75, Theorem 2], compare also [Ye08, §4]; moreover, he proved
in this way that the property of being holomorphically parallelizable is not stable under small deformations,
[Nak75, page 86], compare also [Rol11b, Theorem 5.1, Corollary 5.2].

Firstly, we recall in the following theorem the results by I. Nakamura concerning the Kuranishi space of the
Iwasawa manifold.
Theorem 1.44 ([Nak75, pages 94–96]). Consider the Iwasawa manifold I3 := H (3;Z [i])\H(3;C). There exists
a locally complete complex-analytic family of complex structures {Xt = (I3, Jt)}t∈∆(0,ε), deformations of I3,
depending on six parameters

t = (t11, t12, t21, t22, t31, t32) ∈ ∆(0, ε) ⊂ C6 ,

where ε > 0 is small enough, ∆(0, ε) :=
{

s ∈ C6 : |s| < ε
}
, and X0 = I3.

A set of holomorphic coordinates for Xt is given by




ζ1 := ζ1(t) := z1 +
∑2
k=1 t1k z̄

k

ζ2 := ζ2(t) := z2 +
∑2
k=1 t2k z̄

k

ζ3 := ζ3(t) := z3 +
∑2
k=1

(
t3k + t2k z

1) z̄k +A
(
z̄1, z̄2)−D (t) z̄3
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where
D (t) := det

(
t11 t12
t21 t22

)

and
A
(
z̄1, z̄2) := 1

2

(
t11 t21

(
z̄1)2 + 2 t11 t22 z̄

1 z̄2 + t12 t22
(
z̄2)2) .

For every t ∈ ∆(0, ε), the universal covering of Xt is C3; more precisely,

Xt = Γt\C3 ,

where Γt is the subgroup generated by the transformations

(
ζ1, ζ2, ζ3) (ω1, ω2, ω3)7→

(
ζ̃1, ζ̃2, ζ̃3) ,

varying
(
ω1, ω2, ω3) ∈ (Z [i])3, where





ζ̃1 := ζ1 +
(
ω1 + t11 ω̄

1 + t12 ω̄
2)

ζ̃2 := ζ2 +
(
ω2 + t21 ω̄

1 + t22 ω̄
2)

ζ̃3 := ζ3 +
(
ω3 + t31 ω̄

1 + t32 ω̄
2)+ ω1 ζ2

+
(
t21 ω̄

1 + t22 ω̄
2) (ζ1 + ω1)+A

(
ω̄1, ω̄2)−D (t) ω̄3

.

Remark 1.45. Note that, by [Rol11b, Theorem 4.5], if X = Γ\G is a holomorphically parallelizable nilmanifold
and G is ν-step nilpotent, then Kur(X) is cut out by polynomial equations of degree at most ν; furthermore, by
[Rol11b, Corollary 4.9], the Kuranishi space of X is smooth if and only if the associated Lie algebra g to G is a
free 2-step nilpotent Lie algebra, i.e., g ' bm with m = dimCH

0,1
∂

(X), where bm := Cm ⊕∧2Cm with Lie bracket
[a1 + b1 ∧ c1, a2 + b2 ∧ c2] := a1 ∧ a2 for a1, b1, c1, a2, b2, c2 ∈ Cm.

According to the classification by I. Nakamura, the small deformations of I3 are divided into three classes,
(i), (ii), and (iii), in terms of their Hodge numbers: such classes are explicitly described by means of polynomial
relations in the parameters, see [Nak75, §3]. As we will see in §1.4.4, it turns out that the Bott-Chern cohomology
yields a finer classification of the Kuranishi space of I3; more precisely, h2,2

BC assumes different values within class
(ii), respectively class (iii), according to the rank of a certain matrix whose entries are related to the complex
structure equations with respect to a suitable co-frame, whereas the numbers corresponding to class (i) coincide
with those for I3: this allows a further subdivision of classes (ii) and (iii) into subclasses (ii.a), (ii.b), and (iii.a),
(iii.b).

More precisely, the classes and subclasses of this classification are characterized by the following values of the
parameters:

class (i) t11 = t12 = t21 = t22 = 0;

class (ii) D (t) = 0 and (t11, t12, t21, t22) 6= (0, 0, 0, 0):

subclass (ii.a) D (t) = 0 and rkS = 1;
subclass (ii.b) D (t) = 0 and rkS = 2;

class (iii) D (t) 6= 0:

subclass (iii.a) D (t) 6= 0 and rkS = 1;
subclass (iii.b) D (t) 6= 0 and rkS = 2.

The matrix S is defined by
S :=

(
σ11̄ σ22̄ σ12̄ σ21̄
σ11̄ σ22̄ σ21̄ σ12̄

)

where σ11̄, σ12̄, σ21̄, σ22̄ ∈ C and σ12 ∈ C are complex numbers depending only on t such that

dϕ3
t =: σ12 ϕ

1
t ∧ ϕ2

t + σ11̄ ϕ
1
t ∧ ϕ̄1

t + σ12̄ ϕ
1
t ∧ ϕ̄2

t + σ21̄ ϕ
2
t ∧ ϕ̄1

t + σ22̄ ϕ
2
t ∧ ϕ̄2

t ,

being
ϕ1

t := d ζ1
t , ϕ2

t := d ζ2
t , ϕ3

t := d ζ3
t − z1 d ζ2

t −
(
t21 z̄

1 + t22 z̄
2) d ζ1

t ,
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see §1.4.1. As we will show, see §1.4.1, the first order asymptotic behaviour of σ12, σ11̄, σ12̄, σ21̄, σ22̄ for t near 0
is the following:





σ12 = −1 + o (|t|)
σ11̄ = t21 + o (|t|)
σ12̄ = t22 + o (|t|)
σ21̄ = −t11 + o (|t|)
σ22̄ = −t12 + o (|t|)

for t ∈ classes (i), (ii) and (iii) , (1.4.1)

and, more precisely, for deformations in class (ii) we actually have that





σ12 = −1 + o (|t|)
σ11̄ = t21 (1 + o (1))
σ12̄ = t22 (1 + o (1))
σ21̄ = −t11 (1 + o (1))
σ22̄ = −t12 (1 + o (1))

for t ∈ class (ii) . (1.4.2)

The complex manifold Xt is endowed with the Jt-Hermitian H(3;C)-left-invariant metric gt, which is defined
as follows:

gt :=
3∑

j=1
ϕjt � ϕ̄jt .

Structure equations for small deformations of the Iwasawa manifold

In this section, we give the structure equations for the small deformations of the Iwasawa manifold; we will use
these computations in §1.4.3 and §1.4.4 to write the Bott-Chern cohomology of Xt, and in Theorem 2.49 to prove
that the cohomological property of being C∞-pure-and-full is not stable under small deformations of the complex
structure.

Fix t ∈ ∆(0, ε) ⊂ C6, and consider the small deformation Xt of the Iwasawa manifold I3. Consider the system
of complex coordinates on Xt given by





ζ1
t := z1 +

∑2
λ=1 t1λz̄

λ

ζ2
t := z2 +

∑2
λ=1 t2λz̄

λ

ζ3
t := z3 +

∑2
λ=1(t3λ + t2λz

1)z̄λ +A (z̄)

.

Consider 



ϕ1
t := d ζ1

t

ϕ2
t := d ζ2

t

ϕ3
t := d ζ3

t − z1 d ζ2
t −

(
t21 z̄

1 + t22 z̄
2)d ζ1

t

as a co-frame of (1, 0)-forms on Xt (that is, as a Γt-invariant co-frame of (1, 0)-forms on C3). We want to write
the structure equations for Xt with respect to this co-frame.

A straightforward computation gives




z1 = γ
(
ζ1

t + λ1 ζ̄
1
t + λ2 ζ

2
t + λ3 ζ̄

2
t
)

z2 = α
(
µ0 ζ

1
t + µ1 ζ̄

1
t + µ2 ζ

2
t + µ3 ζ̄

2
t
) ,

where α, β, γ, λi (for i ∈ {1, 2, 3}), µj (for j ∈ {0, 1, 2, 3}) are complex numbers depending just on t, and defined
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as follows: 



α := 1
1− |t22|2 − t21 t̄12

β := t21 t̄11 + t22 t̄21

γ := 1
1− |t11|2 − αβ

(
t11 t̄12 + t12 t̄22

)
− t12 t̄21

λ1 := −t11

(
1 + α t̄12 t21 + α |t22|2

)

λ2 := α
(
t11 t̄12 + t12 t̄22

)

λ3 := −t12

(
1 + α t̄12 t21 + α |t22|2

)

µ0 := β γ

µ1 := λ1 β γ − t21

µ2 := 1 + λ2 β γ

µ3 := λ3 β γ − t22

.

For the complex structures in the class (i), one checks that the structure equations (with respect to the
co-frame

{
ϕ1

t , ϕ
2
t , ϕ

3
t
}
) are the same as the ones for I3, that is,





dϕ1
t = 0

dϕ2
t = 0

dϕ3
t = −ϕ1

t ∧ ϕ2
t

for t ∈ class (i) .

For small deformations in classes (ii) and (iii), we have that




dϕ1
t = 0

dϕ2
t = 0

dϕ3
t = σ12 ϕ

1
t ∧ ϕ2

t

+σ11̄ ϕ
1
t ∧ ϕ̄1

t + σ12̄ ϕ
1
t ∧ ϕ̄2

t

+σ21̄ ϕ
2
t ∧ ϕ̄1

t + σ22̄ ϕ
2
t ∧ ϕ̄2

t

for t ∈ classes (ii) and (iii) ,

where σ12, σ11̄, σ12̄, σ21̄, σ22̄ ∈ C are complex numbers depending just on t. The asymptotic behaviour of
σ12, σ11̄, σ12̄, σ21̄, σ22̄ ∈ C is the following:





σ12 = −1 + o (|t|)
σ11̄ = t21 + o (|t|)
σ12̄ = t22 + o (|t|)
σ21̄ = −t11 + o (|t|)
σ22̄ = −t12 + o (|t|)

for t ∈ classes (i), (ii) and (iii) , (1.4.3)

more precisely, for deformations in class (ii) we actually have that




σ12 = −1 + o (|t|)
σ11̄ = t21 (1 + o (1))
σ12̄ = t22 (1 + o (1))
σ21̄ = −t11 (1 + o (1))
σ22̄ = −t12 (1 + o (1))

for t ∈ class (ii) . (1.4.4)
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The explicit values of σ12, σ11̄, σ12̄, σ21̄, σ22̄ ∈ C in the case of class (ii) are the following, [AT11, page 416]:




σ12 := −γ + t21λ̄3γ̄ + t22ᾱµ̄3

σ11̄ := t21 γ
(

1 + t21t̄12α+ |t22|2 α
)

σ12̄ := t22 γ
(

1 + t21t̄12α+ |t22|2 α
)

σ21̄ := −t11 γ
(

1 + t21t̄12α+ |t22|2 α
)

σ22̄ := −t12 γ
(

1 + t21t̄12α+ |t22|2 α
)

for t ∈ class (ii) .

Note that, for small deformations in class (ii), one has σ12 6= 0 and (σ11̄, σ12̄, σ21̄, σ22̄) 6= (0, 0, 0, 0).

1.4.2 The de Rham cohomology of the Iwasawa manifold and of its small deforma-
tions

Recall that, by Ehresmann’s theorem, every complex-analytic family of compact complex manifolds is locally
trivial as a differentiable family of compact differentiable manifolds, see, e.g., [MK06, Theorem 4.1]. Therefore
the de Rham cohomology of small deformations of the Iwasawa manifold is the same as the de Rham cohomology
of I3, which can be computed by using K. Nomizu’s theorem [Nom54, Theorem 1].

In the table below, we list the harmonic representatives with respect to the metric g0 instead of their classes
and, as usually, we shorten the notation writing, for example, ϕAB̄ := ϕA ∧ ϕ̄B .

Hk
dR (I3;C) g0-harmonic representatives dimCHk

dR (I3;C)

k = 1 ϕ1, ϕ2, ϕ̄1, ϕ̄2 4

k = 2 ϕ13, ϕ23, ϕ11̄, ϕ12̄, ϕ21̄, ϕ22̄, ϕ1̄3̄, ϕ2̄3̄ 8

k = 3 ϕ123, ϕ131̄, ϕ132̄, ϕ231̄, ϕ232̄, ϕ11̄3̄, ϕ12̄3̄, ϕ21̄3̄, ϕ22̄3̄, ϕ1̄2̄3̄ 10

k = 4 ϕ1231̄, ϕ1232̄, ϕ131̄3̄, ϕ132̄3̄, ϕ231̄3̄, ϕ232̄3̄, ϕ11̄2̄3̄, ϕ21̄2̄3̄ 8

k = 5 ϕ1231̄3̄, ϕ1232̄3̄, ϕ131̄2̄3̄, ϕ231̄2̄3̄ 4

Remark 1.46. Note that all the g0-harmonic representatives of H•dR(I3;R) are of pure type with respect to J0,
that is, they are in (∧p,qI3 ⊕ ∧q,pI3) ∩ ∧p+qI3 for some p, q ∈ {0, 1, 2, 3}; this is no more true for Jt with t 6= 0
small enough, see Theorem 2.49.

1.4.3 The Dolbeault cohomology of the Iwasawa manifold and of its small defor-
mations

The Hodge numbers of the Iwasawa manifold and of its small deformations have been computed by I. Nakamura in
[Nak75, page 96]. The gt-harmonic representatives for H•,•

∂
(Xt), for t small enough, can be computed using the

considerations in §1.3.2 and the structure equations given in §1.4.1. We collect here the results of the computations.
In order to reduce the number of cases under consideration, recall that, on a compact complex Hermitian

manifold X of complex dimension n, for any p, q ∈ N, the Hodge-∗-operator and the conjugation induce an
isomorphism

Hp,q

∂
(X) '→ Hn−q,n−p

∂ (X) '→ Hn−p,n−q
∂

(X) .

• 1-forms. It is straightforward to check that

H1,0
∂

(Xt) = C
〈
ϕ1

t , ϕ
2
t , ϕ

3
t
〉

for t ∈ class (i)

and
H0,1
∂

(Xt) = C
〈
ϕ̄1

t , ϕ̄
2
t
〉

for t ∈ classes (i), (ii) and (iii) .
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Since ∂ ϕ3
t 6= 0 for Xt in class (ii) or in class (iii), one has

H1,0
∂

(Xt) = C
〈
ϕ1

t , ϕ
2
t
〉

for t ∈ classes (ii) and (iii) :

this means in particular that Xt is not holomorphically parallelizable for t in classes (ii) and (iii), [Nak75,
pages 86, 96].
Summarizing,

dimCH
1,0
∂

(Xt) =
{

3 for t ∈ class (i)
2 for t ∈ classes (ii) and (iii)

,

and
dimCH

0,1
∂

(Xt) = 2 for t ∈ classes (i), (ii) and (iii) .

• 2-forms. A straightforward computation yields

H2,0
∂

(Xt) = C
〈
ϕ12

t , ϕ
13
t , ϕ

23
t
〉

for t ∈ class (i) ,

H1,1
∂

(Xt) = C
〈
ϕ11̄

t , ϕ
12̄
t , ϕ

21̄
t , ϕ

22̄
t , ϕ

31̄
t , ϕ

32̄
t

〉
for t ∈ class (i) ,

and
H0,2
∂

(Xt) = C
〈
ϕ1̄3̄

t , ϕ
2̄3̄
t

〉
for t ∈ classes (i), (ii) and (iii) .

We now compute H2,0
∂

(Xt) for t ∈ classes (ii) and (iii). The H(3;C)-left-invariant (2, 0)-forms are of the
type Aϕ12

t +B ϕ13
t + C ϕ23

t with A,B,C ∈ C, so one has to solve the linear system



0 0 0
0 −σ21̄ σ11̄
0 −σ22̄ σ12̄


 ·




A
B
C


 =




0
0
0


 ;

since the associated matrix to the system has rank 0 for t ∈ class (i), rank 1 for t ∈ class (ii) and rank 2
for t ∈ class (iii), one concludes that

dimCH
2,0
∂

(Xt) = 2 for t ∈ class (ii)

(the generators being ϕ12
t and a linear combination of ϕ13

t and ϕ23
t ) and

dimCH
2,0
∂

(Xt) = 1 for t ∈ class (iii)

(the generator being ϕ12
t ).

It remains to compute H1,1
∂

(Xt) for t ∈ classes (ii) and (iii). For such t, one has that: three independent
�Jt-harmonic (1, 1)-forms are of the type ψ1 :=: Aϕ11̄

t + B ϕ12̄
t + C ϕ21̄

t + Dϕ22̄
t where A, B, C, D ∈ C

satisfy the equation

(
σ11̄ −σ12̄ −σ21̄ σ22̄

)
·




A
B
C
D


 = 0 ,

whose matrix has rank 1 for t ∈ classes (ii) and (iii) (while its rank is 0 for t ∈ class (i)); two other
independent �Jt-harmonic (1, 1)-forms are of the type ψ2 :=: E ϕ13̄

t + F ϕ23̄
t + Gϕ31̄

t + H ϕ32̄
t where

E, F, G, H ∈ C are solution of the system

(
−σ12 0 −σ12̄ σ11̄

0 −σ12 −σ21̄ σ22̄

)
·




E
F
G
H


 =

(
0
0

)
,

whose matrix has rank 2 for t ∈ classes (i), (ii) and (iii); note also that no (1, 1)-form with a non-zero
component in ϕ33̄

t can be �Jt-harmonic. Hence, one can conclude that

dimCH
1,1
∂

(Xt) = 5 for t ∈ classes (ii) and (iii) .
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Summarizing,

dimCH
2,0
∂

(Xt) =





3 for t ∈ class (i)
2 for t ∈ class (ii)
1 for t ∈ class (iii)

,

and

dimCH
1,1
∂

(Xt) =
{

6 for t ∈ class (i)
5 for t ∈ classes (ii) and (iii)

,

and
dimCH

0,2
∂

(Xt) = 2 for t ∈ classes (i), (ii) and (iii) .

• 3-forms. Finally, we have to compute H3,0
∂

(Xt) and H2,1
∂

(Xt). A straightforward linear algebra computa-
tion yields to

H3,0
∂

(Xt) = C
〈
ϕ123

t
〉

for t ∈ classes (i), (ii) and (iii)

and
H2,1
∂

(Xt) = C
〈
ϕ121̄

t , ϕ122̄
t , ϕ131̄

t , ϕ132̄
t , ϕ231̄

t , ϕ232̄
t

〉
for t ∈ class (i) .

It remains to compute H2,1
∂

(Xt) for t ∈ classes (ii) and (iii). Firstly, one notes that four of the six
generators of the space of H(3;C)-left-invariant (2, 1)-forms that are �Jt -harmonic for t ∈ class (i) can be
slightly modified to get four ∂Jt -holomorphic (2, 1)-forms for t ∈ class (ii) or class (iii): more precisely, one
has

H2,1
∂

(Xt) ⊇ C
〈
ϕ131̄

t − σ22̄
σ12

ϕ123̄
t , ϕ132̄

t − σ21̄
σ12

ϕ123̄
t , ϕ231̄

t − σ12̄
σ12

ϕ123̄
t , ϕ232̄

t − σ11̄
σ12

ϕ123̄
t

〉
;

in other words, four independent �Jt -harmonic (2, 1)-forms are of the type ψ2 :=: C ϕ123̄
t +Dϕ131̄

t +E ϕ132̄
t +

F ϕ231̄
t +Gϕ232̄

t , where C, D, E, F, G ∈ C are solution of the linear system

(
σ12 σ22̄ −σ21̄ −σ12̄ σ11̄

)
·




C
D
E
F
G




= 0 ,

whose matrix has rank 1 for every t ∈ classes (i), (ii) and (iii). Note that one can reduce to study
the �-harmonicity of the (2, 1)-forms of the type ψ1 :=: Aϕ121̄

t + B ϕ122̄
t : indeed, a (2, 1)-form ψ :=:

ψ1 + ψ2 +H ϕ133̄
t + Lϕ233̄

t , where H,L ∈ C, is �-harmonic if and only if H = 0 = L and both ψ1 and ψ2
are �-harmonic. A (2, 1)-form of the type ψ1 is �-harmonic if and only if A, B ∈ C solve the linear system

(
−σ11̄ σ12̄
−σ21̄ σ22̄

)
·
(
A
B

)
=
(

0
0

)
,

whose matrix has rank 0 for t ∈ class (i), rank 1 for t ∈ class (ii) and rank 2 for t ∈ class (iii). In
particular, one gets that

dimCH
2,1
∂

(Xt) = 5 for t ∈ class (ii)

and
dimCH

2,1
∂

(Xt) = 4 for t ∈ class (iii) .

Summarizing,
dimCH

3,0
∂

(Xt) = 1 for t ∈ classes (i), (ii) and (iii) ,

and

dimCH
2,1
∂

(Xt) =





6 for t ∈ class (i)
5 for t ∈ class (ii)
4 for t ∈ class (iii)

.
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1.4.4 The Bott-Chern and Aeppli cohomologies of the Iwasawa manifold and of its
small deformations

In this section, using Theorem 1.39 and Theorem 1.42, we explicitly compute the dimensions of H•,•BC(Xt), for t
small enough, [Ang11, §5.3]: such numbers are summarized in the tables in §1.4.5.

In order to reduce the number of cases under consideration, recall that, on a compact complex Hermitian
manifold X of complex dimension n, for every p, q ∈ N, the conjugation induces an isomorphism Hp,q

BC(X) '→
Hq,p
BC(X), and the Hodge-∗-operator induces an isomorphism Hp,q

BC(X) '→ Hn−q,n−p
A (X); furthermore, note that

Hp,0
BC(X) ' ker

(
d: ∧p,0 X → ∧p+1(X;C)

)

and that
Hn,0
BC(X) ' Hn,0

∂
(X) .

• 1-forms It is straightforward to check that

H1,0
BC(Xt) = C

〈
ϕ1

t , ϕ
2
t
〉

for t ∈ classes (i), (ii) and (iii) .

• 2-forms It is straightforward to compute

H2,0
BC(Xt) = C

〈
ϕ12

t , ϕ
13
t , ϕ

23
t
〉

for t ∈ class (i) .

The computations for H2,0
BC(Xt) reduce to find ψ = Aϕ12

t +B ϕ13
t + C ϕ23

t where A, B, C ∈ C satisfy the
linear system 


0 0 0
0 −σ21̄ σ11̄
0 −σ22̄ σ12̄


 ·




A
B
C


 =




0
0
0


 ,

whose matrix has rank 0 for t ∈ class (i), rank 1 for t ∈ class (ii) and rank 2 for t ∈ class (iii); so, in
particular, we get that

dimCH
2,0
BC(Xt) = 2 for t ∈ class (ii)

and
dimCH

2,0
BC(Xt) = 1 for t ∈ class (iii)

(more precisely, for t ∈ class (iii) we have H2,0
BC(Xt) = C

〈
ϕ12

t
〉
).

It remains to compute H1,1
BC(Xt) for t ∈ classes (i), (ii) and (iii). First of all, it is easy to check that

H1,1
BC(Xt) ⊇ C

〈
ϕ11̄

t , ϕ
12̄
t , ϕ

21̄
t , ϕ

22̄
t

〉
for t ∈ classes (i), (ii) and (iii) ,

and equality holds if t ∈ class (i), hence, in particular, if t = 0. This immediately implies that

H1,1
BC(Xt) = C

〈
ϕ11̄

t , ϕ
12̄
t , ϕ

21̄
t , ϕ

22̄
t

〉
for t ∈ classes (i), (ii) and (iii) ;

indeed, the function t 7→ dimCH
1,1
BC(Xt) is upper-semi-continuous at 0, since H1,1

BC(Xt) is isomorphic to
the kernel of the self-adjoint elliptic differential operator ∆̃BCJt

b∧1,1Xt . (One can explain this argument
saying that the new parts appearing in the computations for t 6= 0 are “too small” to balance out the lack
for the ∂-closure or the ∂-closure.) From another point of view, we can note that (1, 1)-forms of the type
ψ = Aϕ13̄

t +B ϕ23̄
t + C ϕ31̄

t +Dϕ32̄
t + E ϕ33̄

t are ∆̃BCJt
-harmonic if and only if E = 0 and A, B, C, D ∈ C

satisfy the linear system



−σ12 0 −σ12̄ −σ11̄
0 −σ12 −σ22̄ −σ21̄
σ12̄ −σ11̄ σ12 0
σ22̄ −σ21̄ 0 σ12


 ·




A
B
C
D


 =




0
0
0
0


 ,

whose matrix has rank 4 for every t ∈ classes (i), (ii) and (iii).
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• 3-forms It is straightforward to compute

H3,0
BC(Xt) = C

〈
ϕ123

t
〉

for t ∈ classes (i), (ii) and (iii) .

Moreover,

H2,1
BC(Xt) = C

〈
ϕ121̄

t , ϕ122̄
t , ϕ131̄

t − σ22̄
σ12

ϕ123̄
t , ϕ132̄

t + σ21̄
σ12

ϕ123̄
t , ϕ231̄

t + σ12̄
σ12

ϕ123̄
t , ϕ232̄

t − σ11̄
σ12

ϕ123̄
t

〉

for t ∈ classes (i), (ii) and (iii) ;

in particular,

H2,1
BC(Xt) = C

〈
ϕ121̄

t , ϕ122̄
t , ϕ131̄

t , ϕ132̄
t , ϕ231̄

t , ϕ232̄
t

〉
for t ∈ class (i) .

From another point of view, one can easily check that

H2,1
BC(Xt) ⊇ C

〈
ϕ121̄

t , ϕ122̄
t

〉
for t ∈ classes (i), (ii) and (iii) ,

and that the (2, 1)-forms of the type ψ = Aϕ123̄
t +B ϕ131̄

t +C ϕ132̄
t +Dϕ231̄

t +E ϕ232̄
t +F ϕ133̄

t +Gϕ233̄
t are

∆̃BCJt
-harmonic if and only if F = 0 = G and A, B, C, D, E ∈ C satisfy the equation

(
σ12 σ22̄ −σ21̄ σ12̄ σ11̄

)
·




A
B
C
D
E




= 0 ,

whose matrix has rank 1 for every t ∈ classes (i), (ii) and (iii). Note in particular that the dimensions of
H3,0
BC(Xt) and of H2,1

BC(Xt) do not depend on t.

• 4-forms It is straightforward to compute

H3,1
BC(Xt) = C

〈
ϕ1231̄

t , ϕ1232̄
t

〉
for t ∈ classes (i), (ii) and (iii)

and

H2,2
BC(Xt) = C

〈
ϕ121̄3̄

t , ϕ122̄3̄
t , ϕ131̄2̄

t , ϕ131̄3̄
t , ϕ132̄3̄

t , ϕ231̄2̄
t , ϕ231̄3̄

t , ϕ232̄3̄
t

〉
for t ∈ class (i) .

Moreover, one can check that

H2,2
BC(Xt) ⊇ C

〈
ϕ121̄3̄

t , ϕ122̄3̄
t , ϕ131̄2̄

t , ϕ231̄2̄
t

〉
for t ∈ classes (i), (ii) and (iii) ,

and that no (2, 2)-form with a non-zero component in ϕ121̄2̄
t can be ∆̃BCJt

-harmonic. For H2,2
BC(Xt)

with t ∈ classes (ii) and (iii), we get a new behaviour: there are subclasses in both class (ii) and class
(iii), which can be distinguished by the dimension of H2,2

BC(Xt). Indeed, consider (2, 2)-forms of the
type ψ = Aϕ131̄3̄

t + B ϕ132̄3̄
t + C ϕ231̄3̄

t + Dϕ232̄3̄
t ; a straightforward computation shows that such a ψ is

∆̃BCJt
-harmonic if and only if A, B, C, D ∈ C satisfy the linear system

(
σ22̄ −σ12̄ −σ21̄ σ11̄
σ22̄ −σ21̄ −σ12̄ σ11̄

)
·




A
B
C
D


 =

(
0
0

)
.

As one can straightforwardly note, the rank of the matrix involved is 0 for t ∈ class (i), while it is 1 or 2
depending on the values of the parameters within class (ii), or within class (iii). Therefore

dimCH
2,2
BC(Xt) = 7 for t ∈ subclasses (ii.a) and (iii.a)

and
dimCH

2,2
BC(Xt) = 6 for t ∈ subclasses (ii.b) and (iii.b) .
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• 5-forms Finally, let us compute H3,2
BC(Xt). It is straightforward to check that

H3,2
BC(Xt) = C

〈
ϕ1231̄2̄

t , ϕ1231̄3̄
t , ϕ1232̄3̄

t

〉
for t ∈ classes (i), (ii) and (iii) :

in particular, it does not depend on t ∈ ∆(0, ε).

We summarize the results of the computations above in the following theorem, [Ang11, Theorem 5.1].

Theorem 1.47. Consider the Iwasawa manifold I3 := H (3;Z [i])\H(3;C) and the family {Xt = (I3, Jt)}t∈∆(0,ε)
of its small deformations, where ε > 0 is small enough and X0 = I3. Then the dimensions hp,qBC := hp,qBC (Xt) :=
dimCH

p,q
BC (Xt) = dimCH

3−p,3−q
A (Xt) does not depend on t ∈ ∆(0, ε) whenever p + q is odd or (p, q) ∈

{(1, 1), (3, 1), (1, 3)}, and they are equal to

h1,0
BC = h0,1

BC = 2 ,

h2,0
BC = h0,2

BC ∈ {1, 2, 3} , h1,1
BC = 4 ,

h3,0
BC = h0,3

BC = 1 , h2,1
BC = h1,2

BC = 6 ,

h3,1
BC = h1,3

BC = 2 , h2,2
BC ∈ {6, 7, 8} ,

h3,2
BC = h2,3

BC = 3 .

Remark 1.48. As a consequence of the computations above, we notice that the Bott-Chern cohomology yields a
finer classification of the small deformations of I3 than the Dolbeault cohomology: indeed, note that dimCH

2,2
BC(Xt)

assumes different values according to different parameters in class (ii), respectively in class (iii); in a sense,
this says that the Bott-Chern cohomology “carries more informations” about the complex structure that the
Dolbeault one. Note also that most of the dimensions of Bott-Chern cohomology groups are invariant under small
deformations: this happens for example for the odd-degree Bott-Chern cohomology groups.
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1.5 Cohomology of orbifolds
The notion of orbifold has been introduced by I. Satake in [Sat56], with the name of V-manifold, and has been
studied, among others, by W. L. Baily, [Bai56, Bai54].

In this section, we start by recalling the main definitions and some classical results concerning complex orbifolds
and their cohomology, and we are then interested in their Bott-Chern cohomology. Compact complex orbifolds of
the type X̃ = X/G, where X is a compact complex manifold and G is a finite group of biholomorphisms of X,
constitute one of the simplest examples of singular spaces: more precisely, we study the Bott-Chern cohomology for
such orbifolds, proving that it can be defined using either currents or forms, or also by computing the G-invariant
∆̃BC-harmonic forms on X, Theorem 1.55.

1.5.1 Orbifolds and cohomologies
We first recall some classical definitions and results about orbifolds and their cohomologies, referring to [Joy07,
Joy00, Sat56, Bai56, Bai54] (see, e.g., [Joy07, Definition 7.4.3]).
Definition 1.49 ([Sat56, Definition 2]). A complex orbifold of complex dimension n is a singular complex space
of complex dimension n whose singularities are locally isomorphic to quotient singularities Cn/G, for finite
subgroups G ⊂ GL(n;C).

By definition, an object (e.g., a differential form, a Riemannian metric, a Hermitian metric) on a complex
orbifold X̃ is defined locally at x ∈ X̃ as a Gx-invariant object on Cn, where Gx ⊆ GL(n;C) is such that X̃ is
locally isomorphic to Cn/Gx at x.

In particular, one gets a differential complex
(
∧•X̃, d

)
, and a double complex

(
∧•,•X̃, ∂, ∂

)
. Define the de

Rham, Dolbeault, Bott-Chern, and Aeppli cohomology groups of X̃ respectively as

H•dR
(
X̃;R

)
:= ker d

im d , H•,•
∂

(
X̃
)

:= ker ∂
im ∂

,

H•,•BC
(
X̃
)

:= ker ∂ ∩ ker ∂
im ∂∂

, H•,•A
(
X̃
)

:= ker ∂∂
im ∂ + im ∂

.

The structure of double complex of
(
∧•,•X̃, ∂, ∂

)
induces naturally a spectral sequence {(E•,•r , dr)}r∈N, called

Hodge and Frölicher spectral sequence of X̃, such that E•,•1 ' H•,•
∂

(
X̃
)
(see, e.g., [McC01, §2.4]). Hence, one has

the Frölicher inequality, see [Frö55, Theorem 2],
∑

p+q=k
dimCH

p,q

∂

(
X̃
)
≥ dimCH

k
dR

(
X̃;C

)
,

for any k ∈ N.
Given a Riemannian metric on a complex orbifold X̃ of complex dimension n, one can consider the R-

linear Hodge-∗-operator ∗g : ∧• X̃ → ∧2n−•X̃, and hence the 2nd order self-adjoint elliptic differential operator
∆ := [d, d∗] := d d∗+ d∗ d ∈ End∧•X̃.

Analogously, given a Hermitian metric on a complex orbifold X̃ of complex dimension n, one can consider the
C-linear Hodge-∗-operator ∗g : ∧•1,•2 X̃ → ∧n−•2,n−•1X̃, and hence the 2nd order self-adjoint elliptic differential
operator � :=

[
∂, ∂

∗] := ∂ ∂
∗+∂∗ ∂ ∈ End∧•,•X̃. Furthermore, following [Sch07, §2], see also [KS60, Proposition

5], one can define the 4th order self-adjoint elliptic differential operators

∆̃BC :=
(
∂∂
) (
∂∂
)∗ +

(
∂∂
)∗ (

∂∂
)

+
(
∂
∗
∂
)(

∂
∗
∂
)∗

+
(
∂
∗
∂
)∗ (

∂
∗
∂
)

+ ∂
∗
∂ + ∂∗∂ ∈ End∧•,•X̃

and
∆̃A := ∂∂∗ + ∂∂

∗ +
(
∂∂
)∗ (

∂∂
)

+
(
∂∂
) (
∂∂
)∗ +

(
∂∂∗

)∗ (
∂∂∗

)
+
(
∂∂∗

) (
∂∂∗

)∗ ∈ End∧•,•X̃ .

As a matter of notation, given a compact complex orbifold X̃ of complex dimension n, denote the constant
sheaf with coefficients in R over X̃ by RX̃ , the sheaf of germs of smooth functions over X̃ by C∞

X̃
, the sheaf of

germs of (p, q)-forms (for p, q ∈ N) over X̃ by Ap,q
X̃

, the sheaf of germs of k-forms (for k ∈ N) over X̃ by Ak
X̃
, the

sheaf of germs of bidimension-(p, q)-currents (for p, q ∈ N) over X̃ by DX̃ p,q :=: Dn−p,n−q
X̃

, the sheaf of germs of
dimension-k-currents (for k ∈ N) over X̃ by DX̃ k :=: D2n−k

X̃
, and the sheaf of holomorphic p-forms (for p ∈ N)

over X̃ by Ωp
X̃
.

The following result, concerning the de Rham cohomology of a complex orbifold, was proven by I. Satake,
[Sat56], and by W. L. Baily, [Bai56].
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Theorem 1.50 ([Sat56, Theorem 1], [Bai56, Theorem H]). Let X̃ be a compact complex orbifold of complex
dimension n. There is a canonical isomorphism

H•dR
(
X̃;R

)
' Ȟ•

(
X̃;RX̃

)
,

where RX̃ is the constant sheaf with coefficients in R over X̃.
Furthermore, given a Riemannian metric on X̃, there is a canonical isomorphism

H•dR
(
X̃;R

)
' ker ∆ .

In particular, the Hodge-∗-operator induces an isomorphism

H•dR
(
X̃;R

)
' H2n−•

dR

(
X̃;R

)
.

The isomorphism H•dR
(
X̃;R

)
' ker ∆ can be seen as a consequence of a more general decomposition theorem

on orbifolds, [Bai56, Theorem D], which holds for 2nd order self-adjoint elliptic differential operators. In particular,
as regards the Dolbeault cohomology, the following result holds.

Theorem 1.51 ([Bai54, page 807], [Bai56, Theorem K]). Let X̃ be a compact complex orbifold of complex
dimension n. There is a canonical isomorphism

H•1,•2
∂

(
X̃
)
' Ȟ•2

(
X̃; Ω•1

X̃

)
,

where Ωp
X̃

is the sheaf of holomorphic p-forms over X̃, for p ∈ N.
Furthermore, given a Hermitian metric on X, there is a canonical isomorphism

H•,•
∂

(
X̃
)
' ker� .

In particular, the Hodge-∗-operator induces an isomorphism

H•1,•2
∂

(
X̃
)
' Hn−•1,n−•2

∂

(
X̃
)
.

1.5.2 Bott-Chern cohomology of orbifolds of global-quotient-type
Now, we will reduce to study complex orbifolds of the special type

X̃ = X/G ,

where X is a complex manifold and G is a finite group of biholomorphisms of X. Indeed, note that, by the S.
Bochner linearization theorem [Boc45, Theorem 1], see, e.g., [DK00, Theorem 2.2.1], see also [Rai06, Theorem
1.7.2], X̃ = X/G is an orbifold according to the above definition.

Orbifolds of global-quotient-type have been considered and studied by D. D. Joyce in constructing examples
of compact 7-dimensional manifolds with holonomy G2, [Joy96b] and [Joy00, Chapters 11-12], and examples
of compact 8-dimensional manifolds with holonomy Spin(7), [Joy96a, Joy99] and [Joy00, Chapters 13-14]. See
also [FM08, CFM08] for the use of orbifolds of global-quotient-type to construct compact 8-dimensional simply-
connected non-formal symplectic manifolds (which do not satisfy, respectively satisfy, the Hard Lefschetz condition),
answering to a question by I. K. Babenko and I. A. Tăımanov, [BT00, Problem].

Since G is a finite group of biholomorphisms, the singular set of X̃ is

Sing
(
X̃
)

= {xG ∈ X/G : x ∈ X and g · x = x for some g ∈ G \ {idX}} .

Remark 1.52. Not all orbifolds are global quotients X/G: a counterexample is provided by considering weighted
projective spaces, see, e.g., [Joy07, Definition 6.5.4].

In particular, for the sake of completeness, we provide in this special case a straightforward proof of [Sat56,
Theorem 1] and [Bai56, Theorem H] for the de Rham cohomology, and of [Bai54, page 807] and [Bai56, Theorem
K] for the Dolbeault cohomology; furthermore, we extend these results to Bott-Chern and Aeppli cohomologies.

Theorem 1.53 ([Sat56, Theorem 1], [Bai56, Theorem H]). Let X̃ = X/G be a compact complex orbifold of
complex dimension n, where X is a complex manifold and G is a finite group of biholomorphisms of X. There are
canonical isomorphisms

H•dR
(
X̃;R

)
' Ȟ•

(
X̃;RX̃

)
' ker

(
d: D•X̃ → D•+1X̃

)

im
(
d: D•−1X̃ → D•X̃

) .
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Furthermore, given a Riemannian metric on X̃, there is a canonical isomorphism

H•dR
(
X̃;R

)
' ker ∆ .

In particular, the Hodge-∗-operator induces an isomorphism

H•dR
(
X̃;R

)
' H2n−•

dR

(
X̃;R

)
.

Proof. We claim that
0→ RX̃ →

(
A•
X̃
, d
)

and 0→ RX̃ →
(
D•
X̃
, d
)

are fine resolutions of the constant sheaf RX̃ . Indeed, take φ a germ of a d-closed k-form on X̃, with k ∈ N \ {0},
that is, a germ of a G-invariant k-form on X; by the Poincaré lemma, see, e.g., [Dem12, I.1.22], there exists ψ a
germ of a (k − 1)-form on X such that φ = dψ; since φ is G-invariant, one has

φ = 1
ordG

∑

g∈G
g∗φ = 1

ordG
∑

g∈G
g∗ (dψ) = d


 1

ordG
∑

g∈G
g∗ψ


 ,

that is, taking the germ of the G-invariant (k − 1)-form

ψ̃ := 1
ordG

∑

g∈G
g∗ψ

on X, one gets a germ of a (k − 1)-form on X̃ such that φ = d ψ̃. As regards the case k = 0, it follows
straightforwardly since every (G-invariant) d-closed function on X is locally constant. The same argument applies
for the sheaves of currents, by using the Poincaré lemma for currents, see, e.g., [Dem12, Theorem I.2.24]. Finally,
note that, for every k ∈ N, the sheaves Ak

X̃
and Dk

X̃
are fine: indeed, they are sheaves of C∞

X̃
-modules over a

para-compact space.
Hence, one gets that

Ȟ•
(
X̃;RX̃

)
' ker

(
d: ∧• X̃ → ∧•+1X̃

)

im
(
d: ∧•−1 X̃ → ∧•X̃

)
︸ ︷︷ ︸

=: H•
dR(X̃;R)

' ker
(
d: D•X̃ → D•+1X̃

)

im
(
d: D•−1X̃ → D•X̃

) ,

see, e.g., [Dem12, Corollary IV.4.19, IV.6.4].
Consider now a Riemannian metric on X̃, that is, a G-invariant Riemannian metric on X. Since the elements of

G commute with both d and d∗ (the Riemannian metric being G-invariant), and hence with ∆, the decomposition

∧•X = ker ∆⊕ d∧•−1X ⊕ d∗ ∧•+1X

induces a decomposition of the space of G-invariant forms, namely,

∧•X̃ = ker ∆⊕ d∧•−1X̃ ⊕ d∗ ∧•+1X̃ .

More precisely, let α be a G-invariant form on X; considering the decomposition α :=: hα + dβ + d∗ γ with
hα, β, γ ∈ ∧•X such that ∆hα = 0, one has

α = 1
ordG

∑

g∈G
g∗α =


 1

ordG
∑

g∈G
g∗hα


+ d


 1

ordG
∑

g∈G
g∗β


+ d∗


 1

ordG
∑

g∈G
g∗γ


 ,

where 1
ordG

∑
g∈G g

∗hα, 1
ordG

∑
g∈G g

∗β, 1
ordG

∑
g∈G g

∗γ ∈ ∧•X̃ and

∆


 1

ordG
∑

g∈G
g∗hα


 = 1

ordG
∑

g∈G
g∗ (∆hα) = 0 .

Finally, note that the Hodge-∗-operator ∗ : ∧• X̃ → ∧2n−•X̃ sends ∆-harmonic forms to ∆-harmonic forms,
and hence it induces an isomorphism

∗ : H•dR
(
X̃;R

) '→ H2n−•
dR

(
X̃;R

)
,

concluding the proof.
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A similar argument can be repeated for the Dolbeault cohomology; more precisely, the following result holds.

Theorem 1.54 ([Bai54, page 807], [Bai56, Theorem K]). Let X̃ = X/G be a compact complex orbifold of
complex dimension n, where X is a complex manifold and G is a finite group of biholomorphisms of X. There are
canonical isomorphisms

H•1,•2
∂

(
X̃
)
' Ȟ•2

(
X̃; Ω•1

X̃

)
' ker

(
∂ : D•1,•2X̃ → D•1,•2+1X̃

)

im
(
∂ : D•1,•2−1X̃ → D•1,•2X̃

) .

Furthermore, given a Hermitian metric on X̃, there is a canonical isomorphism

H•,•
∂

(
X̃
)
' ker� .

In particular, the Hodge-∗-operator induces an isomorphism

H•1,•2
∂

(
X̃
)
' Hn−•1,n−•2

∂

(
X̃
)
.

Proof. We claim that, for every p ∈ N,

0→ Ωp
X̃
→
(
Ap,•
X̃
, ∂
)

and 0→ Ωp
X̃
→
(
Dp,•
X̃
, ∂
)

are fine resolutions of the constant sheaf Ωp

X̃
. Indeed, take φ a germ of a ∂-closed (p, q)-form (respectively,

bidimension-(p, q)-current) on X̃, with q ∈ N \ {0}, that is, a germ of a G-invariant (p, q)-form (respectively,
bidimension-(p, q)-current) on X; by the Dolbeault and Grothendieck lemma, see, e.g., [Dem12, I.3.29], there
exists ψ a germ of a (p, q − 1)-form (respectively, bidimension-(p, q − 1)-current) on X such that φ = ∂ψ; since φ
is G-invariant, one has

φ = 1
ordG

∑

g∈G
g∗φ = 1

ordG
∑

g∈G
g∗
(
∂ψ
)

= ∂


 1

ordG
∑

g∈G
g∗ψ


 ,

that is, taking the germ of the G-invariant (p, q − 1)-form (respectively, bidimension-(p, q − 1)-current)

ψ̃ := 1
ordG

∑

g∈G
g∗ψ

on X, one gets a germ of a (p, q − 1)-form (respectively, bidimension-(p, q − 1)-current) on X̃ such that φ = ∂ψ̃.
As regards the case q = 0, it follows by the fact that every (G-invariant) ∂-closed bidimension-(p, 0)-current on X
is locally a holomorphic p-form, see, e.g., [Dem12, I.3.29]. Finally, note that, for every q ∈ N, the sheaves Ap,q

X̃

and Dp,q
X̃

are fine: indeed, they are sheaves of
(
C∞
X̃
⊗R C

)
-modules over a para-compact space.

Hence, one gets that

Ȟp,•
(
X̃; Ωp

X̃

)
' ker

(
∂ : ∧p,• X̃ → ∧p,•+1X̃

)

im
(
∂ : ∧p,•−1 X̃ → ∧p,•X̃

)

' ker
(
∂ : Dp,•X̃ → Dp,•+1X̃

)

im
(
∂ : Dp,•−1X̃ → Dp,•X̃

) ,

see, e.g., [Dem12, Corollary IV.4.19, IV.6.4].
Consider now a Hermitian metric on X̃, that is, a G-invariant Hermitian metric on X. Since the elements of

G commute with both ∂ and ∂∗ (the Hermitian metric being G-invariant), and hence with �, the decomposition

∧•,•X = ker�⊕ ∂ ∧•,•−1 X ⊕ ∂∗ ∧•,•+1 X

induces a decomposition on the space of G-invariant forms, namely,

∧•,•X̃ = ker�⊕ ∂ ∧•,•−1 X̃ ⊕ ∂∗ ∧•,•+1 X̃ .

More precisely, let α be a G-invariant form on X; considering the decomposition α :=: hα + ∂β + ∂
∗
γ with

hα, β, γ ∈ ∧•,•X such that �hα = 0, one has

α = 1
ordG

∑

g∈G
g∗α =


 1

ordG
∑

g∈G
g∗hα


+ ∂


 1

ordG
∑

g∈G
g∗β


+ ∂

∗

 1

ordG
∑

g∈G
g∗γ


 ,
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where 1
ordG

∑
g∈G g

∗hα, 1
ordG

∑
g∈G g

∗β, 1
ordG

∑
g∈G g

∗γ ∈ ∧•,•X̃ and

�


 1

ordG
∑

g∈G
g∗hα


 = 1

ordG
∑

g∈G
g∗
(
�hα

)
= 0 .

Finally, note that the Hodge-∗-operator ∗ : ∧•1,•2 X̃ → ∧n−•2,n−•1X̃ sends �-harmonic forms to �-harmonic
forms, where � := [∂, ∂∗] := ∂∂∗ + ∂∗∂ ∈ End∧•,•X̃, and hence it induces an isomorphism

∗ : H•1,•2
∂

(
X̃
) '→ Hn−•1,n−•2

∂

(
X̃
)
,

concluding the proof.

Finally, as done in Theorem 1.53 and Theorem 1.54 for the de Rham cohomology and, respectively, the
Dolbeault cohomology, we provide the following result, concerning Bott-Chern and Aeppli cohomologies of compact
complex orbifolds of global-quotient-type.

Theorem 1.55. Let X̃ = X/G be a compact complex orbifold of complex dimension n, where X is a complex
manifold and G is a finite group of biholomorphisms of X. For any p, q ∈ N, there are canonical isomorphisms

Hp,q
BC

(
X̃
)
' ker

(
∂ : Dp,qX̃ → Dp+1,qX̃

)
∩ ker

(
∂ : Dp,qX̃ → Dp,q+1X̃

)

im
(
∂∂ : Dp−1,q−1X̃ → Dp,qX̃

) . (1.5.1)

Furthermore, given a Hermitian metric on X̃, there are canonical isomorphisms

H•,•BC
(
X̃
)
' ker ∆̃BC and H•,•A

(
X̃
)
' ker ∆̃A .

In particular, the Hodge-∗-operator induces an isomorphism

H•1,•2BC

(
X̃
)
' Hn−•2,n−•1

A

(
X̃
)
.

Proof. We use the same argument as in the proof of [Ang11, Theorem 3.7] to show that, since the de Rham
cohomology and the Dolbeault cohomology of X̃ can be computed using either differential forms or currents, the
same holds true for the Bott-Chern and the Aeppli cohomologies.

Indeed, note that, for any p, q ∈ N, one has the exact sequence

0→ im
(
d:
(
Dp+q−1X̃ ⊗R C

)
→
(
Dp+qX̃ ⊗R C

))
∩ Dp,qX̃

im
(
∂∂ : Dp−1,q−1X̃ → Dp,qX̃

)

→ ker
(
d: Dp,qX̃ → Dp+1,q+1X̃

)

im
(
∂∂ : Dp−1,q−1X̃ → Dp,qX̃

) → ker
(
d:
(
Dp+qX̃ ⊗R C

)
→
(
Dp+q+1X̃ ⊗R C

))

im
(
d:
(
Dp+q−1X̃ ⊗R C

)
→
(
Dp+qX̃ ⊗R C

)) ,

where the maps are induced by the identity. By [Sat56, Theorem 1], see Theorem 1.53, one has

ker
(
d:
(
Dp+qX̃ ⊗R C

)
→
(
Dp+q+1X̃ ⊗R C

))

im
(
d:
(
Dp+q−1X̃ ⊗R C

)
→
(
Dp+qX̃ ⊗R C

)) ' ker
(
d:
(
∧p+qX̃ ⊗R C

)
→
(
∧p+q+1X̃ ⊗R C

))

im
(
d:
(
∧p+q−1X̃ ⊗R C

)
→
(
∧p+qX̃ ⊗R C

)) ,

therefore it suffices to prove that the space

im
(
d:
(
Dp+q−1X̃ ⊗R C

)
→
(
Dp+qX̃ ⊗R C

))
∩ Dp,qX̃

im
(
∂∂ : Dp−1,q−1X̃ → Dp,qX̃

)

can be computed using just differential forms on X̃.
Firstly, we note that, since, by [Bai54, page 807], see Theorem 1.54,

ker
(
∂ : Dp,qX̃ → Dp,q+1X̃

)

im
(
∂ : Dp,q−1X̃ → Dp,qX̃

) ' ker
(
∂ : ∧p,q X̃ → ∧p,q+1X̃

)

im
(
∂ : ∧p,q−1 X̃ → ∧p,qX̃

) ,

one has that, if ψ ∈ ∧r,sX̃ is a ∂-closed differential form, then every solution φ ∈ Dr,s−1 of ∂φ = ψ is a differential
form up to ∂-exact terms. Indeed, since [ψ] = 0 in ker ∂∩Dr,sX̃

im ∂
and hence in ker ∂∩∧r,sX̃

im ∂
, there is a differential
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form α ∈ ∧r,s−1X̃ such that ψ = ∂α. Hence, φ − α ∈ Dr,s−1X̃ defines a class in ker ∂∩Dr,s−1X̃
im ∂

' ker ∂∩∧r,s−1X̃
im ∂

,
and hence φ− α is a differential form up to a ∂-exact form, and so φ is.

By conjugation, if ψ ∈ ∧r,sX̃ is a ∂-closed differential form, then every solution φ ∈ Dr−1,s of ∂φ = ψ is a
differential form up to ∂-exact terms.

Now, let
ωp,q = d η mod im ∂∂ ∈ im d∩Dp,qX

im ∂∂
.

Decomposing η =:
∑
p,q η

p,q in pure-type components, where ηp,q ∈ Dp,qX̃, the previous equality is equivalent to
the system





∂ηp+q−1,0 = 0 mod im ∂∂

∂ηp+q−`,`−1 + ∂ηp+q−`−1,` = 0 mod im ∂∂ for ` ∈ {1, . . . , q − 1}
∂ηp,q−1 + ∂ηp−1,q = ωp,q mod im ∂∂

∂η`,p+q−`−1 + ∂η`−1,p+q−` = 0 mod im ∂∂ for ` ∈ {1, . . . , p− 1}
∂η0,p+q−1 = 0 mod im ∂∂

.

By the above argument, we may suppose that, for ` ∈ {0, . . . , p− 1}, the currents η`,p+q−`−1 are differential forms:
indeed, they are differential forms up to ∂-exact terms, but ∂-exact terms give no contribution in the system,
which is modulo im ∂∂. Analogously, we may suppose that, for ` ∈ {0, . . . , q − 1}, the currents ηp+q−`−1,` are
differential forms. Then we may suppose that ωp,q = ∂ηp,q−1 + ∂ηp−1,q is a differential form. Hence (1.5.1) is
proven.

Now, we prove that, fixed a G-invariant Hermitian metric on X̃, the Bott-Chern cohomology of X̃ is isomorphic
to the space of ∆̃BC-harmonic G-invariant forms on X. Indeed, since the elements of G commute with ∂, ∂, ∂∗,
and ∂∗, and hence with ∆̃BC , the following decomposition, [Sch07, Théorème 2.2],

∧•,•X = ker ∆̃BC ⊕ ∂∂ ∧•−1,•−1 X ⊕
(
∂∗ ∧•+1,• X + ∂

∗ ∧•,•+1 X
)

induces a decomposition

∧•,•X̃ = ker ∆̃BC ⊕ ∂∂ ∧•−1,•−1 X̃ ⊕
(
∂∗ ∧•+1,• X̃ + ∂

∗ ∧•,•+1 X̃
)
.

More precisely, let α ∈ ∧•,•X̃, that is, α is a G-invariant form on X; if α has a decomposition α = hα + ∂∂β +(
∂∗γ + ∂

∗
η
)
with hα, β, γ, η ∈ ∧•,•X such that ∆̃BChα = 0, then one has

α = 1
ordG

∑

g∈G
g∗α =


 1

ordG
∑

g∈G
g∗hα


+ ∂∂


 1

ordG
∑

g∈G
g∗β




+


∂∗


 1

ordG
∑

g∈G
g∗γ


+ ∂

∗

η 1

ordG
∑

g∈G
g∗




 ,

where 1
ordG

∑
g∈G g

∗hα, 1
ordG

∑
g∈G g

∗β, 1
ordG

∑
g∈G g

∗γ, η 1
ordG

∑
g∈G g

∗ ∈ ∧•,•X̃ and

∆̃BC


 1

ordG
∑

g∈G
g∗hα


 = 1

ordG
∑

g∈G
g∗
(
∆̃BChα

)
= 0 .

As regards the Aeppli cohomology, one has the decomposition, [Sch07, §2.c],

∧•,•X = ker ∆̃A ⊕
(
∂ ∧•−1,• X + ∂ ∧•,•−1 X

)
⊕
(
∂∂
)∗ ∧•+1,•+1 X ,

and hence the decomposition

∧•,•X̃ = ker ∆̃A ⊕
(
∂ ∧•−1,• X̃ + ∂ ∧•,•−1 X̃

)
⊕
(
∂∂
)∗ ∧•+1,•+1 X̃ ,

from which one gets the isomorphism H•,•A
(
X̃
)
' ker ∆̃A.
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Finally, note that the Hodge-∗-operator ∗ : ∧•1,•2 X̃ → ∧n−•2,n−•1X̃ sends ∆̃BC-harmonic forms to ∆̃A-
harmonic forms, and hence it induces an isomorphism

∗ : H•1,•2BC

(
X̃
) '→ Hn−•2,n−•1

A

(
X̃
)
,

concluding the proof.

Remark 1.56. We note that another proof of the isomorphism

Hp,q
BC

(
X̃
)
' ker

(
∂ : Dp,qX̃ → Dp+1,qX̃

)
∩ ker

(
∂ : Dp,qX̃ → Dp,q+1X̃

)

im
(
∂∂ : Dp−1,q−1X̃ → Dp,qX̃

) ,

and a proof of the isomorphism

Hp,q
A

(
X̃
)
' ker

(
∂∂ : Dp,qX̃ → Dp+1,q+1X̃

)

im
(
∂ : Dp−1,qX̃ → Dp,qX̃

)
+ im

(
∂ : Dp,q−1X̃ → Dp,qX̃

)

follow from the sheaf-theoretic interpretation of the Bott-Chern and Aeppli cohomologies, developed by J.-P.
Demailly, [Dem12, §VI.12.1] and M. Schweitzer, [Sch07, §4], see also [Koo11, §3.2].

We recall that, for any p, q ∈ N, the complex
(
L•
X̃ p,q

, dL•
X̃ p,q

)
of sheaves is defined as

(
L•
X̃ p,q

, dL•
X̃ p,q

)
: A0,0

X̃

pr ◦ d→
⊕

r+s=1
r<p, s<q

Ar,s
X̃
→ · · · pr ◦ d→

⊕

r+s=p+q−2
r<p, s<q

Ar,s
X̃

∂∂→
⊕

r+s=p+q
r≥p, s≥q

Ar,s
X̃

d→
⊕

r+s=p+q
r≥p, s≥q

Ar,s
X̃
→ · · · ,

and the complex
(
M•

X̃ p,q
, dM•

X̃ p,q

)
of sheaves is defined as

(
M•

X̃ p,q
, dM•

X̃ p,q

)
: D0,0

X̃

pr ◦ d→
⊕

r+s=1
r<p, s<q

Dr,s
X̃
→ · · · pr ◦ d→

⊕

r+s=p+q−2
r<p, s<q

Dr,s
X̃

∂∂→
⊕

r+s=p+q
r≥p, s≥q

Dr,s
X̃

d→
⊕

r+s=p+q
r≥p, s≥q

Dr,s
X̃
→ · · · ,

where pr denotes the projection onto the appropriate space.
By the Poincaré lemma (see, e.g., [Dem12, I.1.22, Theorem I.2.24]) and the Dolbeault and Grothendieck lemma

(see, e.g., [Dem12, I.3.29]), one gets M. Schweitzer’s lemma [Sch07, Lemme 4.1], which can be extended also to
the context of orbifolds by using the same trick as in the proof of Theorem 1.53 and Theorem 1.54; this allows to
prove that the map (

L•
X̃ p,q

, dL•
X̃ p,q

)
→
(
M•

X̃ p,q
, dM•

X̃ p,q

)

of complexes of sheaves is a quasi-isomorphism, and hence, see, e.g., [Dem12, Corollary IV.12.6], for every ` ∈ N,

H`
(
X̃;
(
L•
X̃ p,q

, dL•
X̃ p,q

))
' H`

(
X̃;
(
M•

X̃ p,q
, dL•

X̃ p,q

))
.

Since, for every k ∈ N, the sheaves Lk
X̃ p,q

andMk
X̃ p,q

are fine (indeed, they are sheaves of
(
C∞
X̃
⊗R C

)
-modules

over a para-compact space), one has, see, e.g., [Dem12, Corollary IV.4.19, (IV.12.9)],

Hp+q−1
(
X̃;
(
L•
X̃ p,q

, dL•
X̃ p,q

))
' ker

(
∂ : ∧p,q X̃ → ∧p+1,qX̃

)
∩ ker

(
∂ : ∧p,q X̃ → ∧p,q+1X̃

)

im
(
∂∂ : ∧p−1,q−1 X̃ → ∧p,qX̃

)

and
Hp+q−1

(
X̃;
(
M•

X̃ p,q
, dL•

X̃ p,q

))
' ker

(
∂ : Dp,qX̃ → Dp+1,qX̃

)
∩ ker

(
∂ : Dp,qX̃ → Dp,q+1X̃

)

im
(
∂∂ : Dp−1,q−1X̃ → Dp,qX̃

) ,

and

Hp+q−2
(
X̃;
(
L•
X̃ p,q

, dL•
X̃ p,q

))
' ker

(
∂∂ : ∧p−1,q−1 X̃ → ∧p,qX̃

)

im
(
∂ : ∧p−2,q−1 X̃ → ∧p−1,q−1X̃

)
+ im

(
∂ : ∧p−1,q−2 X̃ → ∧p−1,q−1X̃

)

and

Hp+q−2
(
X̃;
(
M•

X̃ p,q
, dL•

X̃ p,q

))
' ker

(
∂∂ : Dp−1,q−1X̃ → Dp,qX̃

)

im
(
∂ : Dp−2,q−1X̃ → Dp−1,q−1X̃

)
+ im

(
∂ : Dp−1,q−2X̃ → Dp−1,q−1X̃

) ,

proving the stated isomorphisms.



Chapter 2

Cohomology of almost-complex manifolds

Let X be a 2n-dimensional (differentiable) manifold endowed with an almost-complex structure J . Note that if J
is not integrable, then the Dolbeault cohomology is not defined. In this section, we are concerned with studying
some subgroups of the de Rham cohomology related to the almost-complex structure: these subgroups have been
introduced by T.-J. Li and W. Zhang in [LZ09], in order to study the relation between the compatible and the
tamed symplectic cones on a compact almost-complex manifold, with the aim to throw light on a question by
S. K. Donaldson, [Don06, Question 2] (see §2.4.2), and it would be interesting to consider them as a sort of
counterpart of the Dolbeault cohomology groups in the non-integrable (or at least in the non-Kähler) case, see
[DLZ10, Lemma 2.15, Theorem 2.16]. In particular, we are interested in studying when they let a splitting of the
de Rham cohomology, and their relations with cones of metric structures.

More precisely, in §2.1 we introduce the notions of C∞-pure-and-full and pure-and-full almost-complex
structures, setting the notation and proving some useful relations between them. In §2.2, we study C∞-pure-and-
fullness on several classes of (almost-)complex manifolds, e.g., solvmanifolds, semi-Kähler manifolds, almost-Kähler
manifolds. In §2.3, we study the behaviour of C∞-pure-and-fullness under small deformations of the complex
structure and along curves of almost-complex structures, investigating properties of stability, and of semi-continuity
for the dimensions of the invariant, and anti-invariant subgroups of the de Rham cohomology with respect to the
almost-complex structure. In §2.4, we study the cone of semi-Kähler structures on a compact almost-complex
manifold and, in particular, we compare the cones of balanced metrics and of strongly-Gauduchon metrics on a
compact complex manifold.

The results of this chapter have been obtained jointly with A. Tomassini, in [AT11, AT12a], and with A.
Tomassini and W. Zhang, in [ATZ12].

2.1 Subgroups of the de Rham (co)homology of an almost-complex
manifold

In this section, we set the notation concerning C∞-pure-and-full and pure-and-full almost-complex structures, as
introduced in [LZ09], and we study the relations between C∞-pure-and-fullness and pure-and-fullness.

2.1.1 C∞-pure-and-full and pure-and-full almost-complex structures
In this section, we start by fixing some preliminary notation and recalling some definitions; then we briefly review
some results to motivate the study of these topics, see Remark 2.9, which will be further discussed in the next
sections.

Let S ⊆ N× N and define

HS
J (X;R) :=



[α] ∈ H•dR(X;R) : α ∈


 ⊕

(p,q)∈S
∧p,qX


 ∩ ∧•X



 ;

note that a real differential form α with a component of type (p, q) has also a component of type (q, p), and hence
we are interested in studying the sets S such that whenever (p, q) ∈ S, also (q, p) ∈ S. As a matter of notation,
we will usually list the elements of S instead of writing S itself.

Note that, for every k ∈ N, one has
∑

p+q=k
p≤q

H
(p,q),(q,p)
J (X;R) ⊆ Hk

dR(X;R) ,

but, in general, the sum is neither direct nor the equality holds: several examples of these facts will be provided
in the sequel.

57
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The subgroups H(2,0),(0,2)
J (X;R) and H(1,1)

J (X;R) of H2
dR(X;R) are of special interest for their interpretation

as the J-anti-invariant, respectively, J-invariant part of the second de Rham cohomology group. Indeed, note that
the endomorphism Jb∧2X∈ End (∧•X) naturally extending J ∈ End(TX) (that is, Jα := α (J ·, J ··) for every
α ∈ ∧2X) satisfies (Jb∧2X)2 = id∧2X ; hence, one has the splitting

∧2X = ∧+
JX ⊕ ∧−JX ,

where, for ± ∈ {+, −},
∧±JX :=

{
α ∈ ∧2X : Jα = ±α

}
.

Since H2
dR(X;R) contains, in particular, the classes represented by the symplectic forms, and H(1,1)

J (X;R) contains,
in particular, the classes represented by the (1, 1)-forms associated to the Hermitian metrics on X, in [LZ09], T.-J.
Li and W. Zhang were interested in studying the J-invariant subgroup of H2

dR(X;R), namely,

H+
J (X) := H

(1,1)
J (X;R) =

{
[α] ∈ H2

dR(X;R) : Jα = α
}
,

and the J-anti-invariant subgroup of H2
dR(X;R), namely,

H−J (X) := H
(2,0),(0,2)
J (X;R) =

{
[α] ∈ H2

dR(X;R) : Jα = −α
}
.

Note that, as in the general case, one has that

H+
J (X) +H−J (X) ⊆ H2

dR(X;R)

but, in general, the sum is neither direct nor equal to H2
dR(X;R). The following definition, by T.-J. Li and W.

Zhang, singles out the almost-complex structures whose subgroups H+
J (X) and H−J (X) provide a decomposition

of H2
dR(X;R).

Definition 2.1 ([LZ09, Definition 2.2, Definition 2.3, Lemma 2.2]). An almost-complex structure J on a manifold
X is said to be

• C∞-pure if H−J (X) ∩H+
J (X) = {0};

• C∞-full if H−J (X) +H+
J (X) = H2

dR(X;R);

• C∞-pure-and-full if it is both C∞-pure and C∞-full, i.e., if the following cohomology decomposition holds:

H2
dR(X;R) = H−J (X)⊕H+

J (X) .

We will also use the following definition, which is a natural generalization of the notion of C∞-pure-and-fullness
to higher degree cohomology groups.

Definition 2.2. Let X be a manifold endowed with an almost-complex structure J , and fix k ∈ N. Consider
Hk
dR(X;R) ⊇∑p+q=k

p≤q
H

(p,q),(q,p)
J (X;R):

• if ⊕

p+q=k
p≤q

H
(p,q),(q,p)
J (X;R) ⊆ Hk

dR(X;R)

(namely, the sum is direct), then J is called C∞-pure at the kth stage;

• if
Hk
dR(X;R) =

∑

p+q=k
p≤q

H
(p,q),(q,p)
J (X;R) ,

then J is called C∞-full at the kth stage;

• if J is both C∞-pure at the kth stage and C∞-full at the kth stage, that is,

Hk
dR(X;R) =

⊕

p+q=k
p≤q

H
(p,q),(q,p)
J (X;R) ;

then J is called C∞-pure-and-full at the kth stage.
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Analogous definitions can be given for the de Rham cohomology with complex coefficients. More precisely, let
S ⊆ N× N and define

HS
J (X;C) :=



[α] ∈ H•dR(X;C) : α ∈

⊕

(p,q)∈S
∧p,qX





(as previously, we will usually list the elements of S instead of writing S itself); with such notation, one has in
particular that HS

J (X;R) = HS
J (X;C) ∩H•dR(X;R).

Remark 2.3. Note that, when X is a compact manifold endowed with an integrable almost-complex structure J ,
then, for any (p, q) ∈ N× N,

H
(p,q)
J (X;C) = im

(
Hp,q
BC (X)→ Hp+q

dR (X;C)
)
,

where the map Hp,q
BC(X)→ Hp+q

dR (X;C) is the one induced by the identity (note that ker ∂ ∩ ker ∂ ⊆ ker d and
im ∂∂ ⊆ im d). Indeed, any d-closed (p, q)-form is both ∂-closed and ∂-closed.

Note that, for every k ∈ N, one has
∑

p+q=k
H

(p,q)
J (X;C) ⊆ Hk

dR(X;C) ,

but, in general, the sum is neither direct nor the equality holds. We can then give the following definition.

Definition 2.4. Let X be a manifold endowed with an almost-complex structure J , and fix k ∈ N. Consider
Hk
dR(X;C) ⊇∑p+q=kH

(p,q)
J (X;C):

• if ⊕

p+q=k
H

(p,q)
J (X;C) ⊆ Hk

dR(X;C)

(namely, the sum is direct), then J is called complex-C∞-pure at the kth stage;

• if
Hk
dR(X;C) =

∑

p+q=k
H

(p,q)
J (X;C) ,

then J is called complex-C∞-full at the kth stage;

• if J is both complex-C∞-pure at the kth stage and complex-C∞-full at the kth stage, that is,

Hk
dR(X;C) =

⊕

p+q=k
H

(p,q)
J (X;C) ;

then J is called complex-C∞-pure-and-full at the kth stage.

Remark 2.5. In general, being complex-C∞-full at the 2nd stage is a stronger condition that being C∞-full.
Furthermore, if J is integrable, then being complex-C∞-pure-and-full at the 2nd stage is stronger than being
C∞-pure-and-full. More precisely, for any (possibly non-integrable) almost-complex structure J , it holds, [DLZ10,
Lemma 2.11], {

H+
J (X) = H

(1,1)
J (X;C) ∩H2

dR(X;R)

H
(1,1)
J (X;C) = H+

J (X)⊗R C
,

and
H

(2,0)
J (X;C) +H

(0,2)
J (X;C) ⊆ H−J (X)⊗R C ,

and, if J is integrable, it holds




H−J (X) =
(
H

(2,0)
J (X;C) +H

(0,2)
J (X;C)

)
∩H2

dR(X;R)

H
(2,0)
J (X;C) +H

(0,2)
J (X;C) = H−J (X)⊗R C

;

indeed, d∧2,0X ⊆ ∧3,0X⊕∧2,1X and d∧0,2X ⊆ ∧1,2X⊕∧0,3X. (Compare also [DLZ10, Lemma 2.12] for further
results in the case of 4-dimensional manifolds.)

Note also that, if J is C∞-pure, then

H
(1,1)
J (X;R) ∩

(
H

(2,0)
J (X;R) + H

(0,2)
J (X;R)

)
= {0} .
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The construction of the subgroups HS
J (X;R) ⊆ H•dR(X;R) and the notion of C∞-pure-and-full almost-

complex structures can be repeated using the complex of currents
(
D•X :=: D2n−•X, d

)
instead of the complex of

differential forms (∧•X, d) and the de Rham homology HdR
• (X;R) instead of the de Rham cohomology H•dR(X;R).

(We refer to §0.5 for notations and references concerning currents and de Rham homology.)
As in the smooth case, accordingly to T.-J. Li and W. Zhang, [LZ09], given S ⊆ N× N, let

HJ
S (X;R) :=



[α] ∈ HdR

• (X;C) : α ∈


 ⊕

(p,q)∈S
Dp,qX


 ∩ D•X



 .

In particular, the almost-complex structures on X for which HJ
(2,0),(0,2)(X;R) and HJ

(1,1)(X;R) provide a
decomposition of HdR

2 (X;R) are emphasized by the following definition by T.-J. Li and W. Zhang.

Definition 2.6 ([LZ09, Definition 2.15, Lemma 2.16]). An almost-complex structure J on a manifold X is said
to be:

• pure if
HJ

(2,0),(0,2)(X;R) ∩ HJ
(1,1)(X;R) = {0} ;

• full if
HJ

(2,0),(0,2)(X;R) + HJ
(1,1)(X;R) = HdR

2 (X;R) ;

• pure-and-full if it is both pure and full, i.e., if the following decomposition holds:

HJ
(2,0),(0,2)(X;R) ⊕ HJ

(1,1)(X;R) = HdR
2 (X;R) .

The following are natural generalizations of the notion of pure-and-fullness.

Definition 2.7. Let X be a manifold endowed with an almost-complex structure J , and fix k ∈ N. Consider
Hk
dR(X;R) ⊇∑p+q=k

p≤q
HJ

(p,q),(q,p)(X;R):

• if ⊕

p+q=k
p≤q

HJ
(p,q),(q,p)(X;R) ⊆ HdR

k (X;R)

(namely, the sum is direct), then J is called pure at the kth stage;

• if
HdR
k (X;R) =

∑

p+q=k
p≤q

HJ
(p,q),(q,p)(X;R) ,

then J is called full at the kth stage;

• if J is both pure at the kth stage and full at the kth stage, that is,

HdR
k (X;R) =

⊕

p+q=k
p≤q

HJ
(p,q),(q,p)(X;R) ;

then J is called pure-and-full at the kth stage.

As regards de Rham homology with complex coefficients, given S ⊆ N× N, let

HJ
S (X;C) :=



[α] ∈ HdR

• (X;C) : α ∈
⊕

(p,q)∈S
Dp,qX



 ,

so that HJ
S (X;R) = HJ

S (X;C) ∩HdR
• (X;R).

Definition 2.8. Let X be a manifold endowed with an almost-complex structure J , and fix k ∈ N. Consider
HdR
k (X;C) ⊇∑p+q=kH

J
(p,q)(X;C):
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• if ⊕

p+q=k
HJ

(p,q)(X;C) ⊆ HdR
k (X;C)

(namely, the sum is direct), then J is called complex-pure at the kth stage;

• if
HdR
k (X;C) =

∑

p+q=k
HJ

(p,q)(X;C) ,

then J is called complex-full at the kth stage;

• if J is both complex-pure at the kth stage and complex-full at the kth stage, that is,

HdR
k (X;C) =

⊕

p+q=k
HJ

(p,q)(X;C) ;

then J is called complex-pure-and-full at the kth stage.

Remark 2.9. The study of the subgroups H(p,q),(q,p)
J (X;R) and the notion of C∞-pure-and-full almost-complex

structure have been introduced by T.-J. Li and W. Zhang in [LZ09], in order to study the relations between the
compatible and the tamed symplectic cones on a compact almost-complex manifold, and inspired by a question
by S. K. Donaldson, [Don06, Question 2]: whether, on a compact 4-dimensional manifold endowed with an
almost-complex structure J tamed by a symplectic form, there exists also a symplectic form compatible with J , see
§2.4.2. In [DLZ10], T. Drǎghici, T.-J. Li, and W. Zhang investigated the 4-dimensional case, proving, in particular,
that every almost-complex structure on a compact 4-dimensional manifold is C∞-pure-and-full; they also obtained
further results for 4-dimensional almost-complex manifolds in [DLZ11], where they studied the dimensions of
the subgroups H+

J (X) and H−J (X). In [FT10], A. Fino and A. Tomassini studied the C∞-pure-and-fullness
in connection with other properties on almost-complex manifolds: in particular, by studying almost-complex
solvmanifolds, they provided the first explicit example of a non-C∞-pure-and-full almost-complex structure.
Jointly with A. Tomassini, we studied in [AT11] the behaviour of C∞-pure-and-fullness under small deformations
of the complex structure or along curves of almost-complex structures, proving in particular its instability. In
[AT12a] we continued the study of the cohomological properties related to the existence of an almost-complex
structure, focusing, in particular, on the study of the cone of semi-Kähler structures on a compact semi-Kähler
manifold. In [ATZ12], jointly with A. Tomassini and W. Zhang, we further studied cohomological properties
of almost-Kähler manifolds, especially in relation with W. Zhang’s Lefschetz-type property; in particular, an
example of a non-C∞-full almost-Kähler structure on a compact manifold is provided. In [DZ11], T. Drǎghici
and W. Zhang reformulated the S. K. Donaldson “tamed to compatible” question in terms of spaces of exact
forms, proving, in particular, that an almost-complex structure J on a compact 4-dimensional manifold admits
a compatible symplectic form if and only if it admits tamed symplectic forms with any arbitrarily given J-
anti-invariant component. Q. Tan, H. Wang, Y. Zhang, and P. Zhu, in [TWZZ11], continued the study of the
dimension of the J-anti-invariant subgroup H−J (X) of the de Rham cohomology of a compact almost-complex
manifold, considering almost-complex structures being metric related or fundamental form related, showing, for
example, that dimRH

−
J (X) = 0 for a generic almost-complex structure J on a compact 4-dimensional manifold,

as conjectured by T. Drǎghici, T.-J. Li, and W. Zhang, [DLZ11, Conjecture 2.4]. For further results on the
study of J-anti-invariant forms and J-anti-invariant de Rham cohomology classes on a (possibly non-compact)
manifold endowed with an almost-complex structure J , see [HMT11] by R. K. Hind, C. Medori, and A. Tomassini,
where a result concerning analytic continuation for J-anti-invariant forms is proven. In [LT12], T.-J. Li and A.
Tomassini studied the analogue of the above problems for linear (possibly non-integrable) complex structures
on 4-dimensional unimodular Lie algebras; in particular, they proved that an analogue of the decomposition in
[DLZ10, Theorem 2.3] holds for every 4-dimensional unimodular Lie algebra endowed with a linear (possibly
non-integrable) complex structure; furthermore, they considered the linear counterpart of Donaldson’s “tamed to
compatible” question, and of the tamed and compatible symplectic cones, studying, in particular, a sufficient
condition on a 4-dimensional Lie algebra g (which holds, for example, for 4-dimensional unimodular Lie algebras)
in order that a linear (possibly non-integrable) complex structure admits a taming linear symplectic form if and
only if it admits a compatible linear symplectic form. The paper [DLZ12] by T. Drǎghici, T.-J. Li, and W. Zhang
furnishes a survey on the known results concerning the subgroups H+

J (X) and H−J (X), especially in dimension 4,
and their application to S. K. Donaldson’s “tamed to compatible” question.
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2.1.2 Relations between C∞-pure-and-fullness and pure-and-fullness
The following result summarizes the relations between C∞-pure-and-fullness and pure-and-fullness, see [AT11,
Theorem 2.1], see also [LZ09, Proposition 2.5], and between complex-C∞-pure-and-fullness and complex-pure-and-
fullness. (Analogous results will be proven in Proposition 3.25 for almost-D-complex structures in the sense of
F. R. Harvey and H. B. Lawson, and in Proposition 3.12 for symplectic structures.)

Theorem 2.10 (see [LZ09, Proposition 2.5]). Let J be an almost-complex structure on a compact 2n-dimensional
manifold X. The following relations between (complex-)C∞-pure-and-full and (complex-)pure-and-full notions
hold: for any k ∈ N,

C∞-full at the kth stage +3

��

pure at the kth stage

��
full at the (2n− k)th stage +3 C∞-pure at the (2n− k)th stage ,

and
complex-C∞-full at the kth stage +3

��

complex-pure at the kth stage

��
complex-full at the (2n− k)th stage +3 complex-C∞-pure at the (2n− k)th stage .

Proof. The horizontal implications follow by considering the non-degenerate duality pairing

〈·, ··〉 : H•dR(X;R)×HdR
• (X;R)→ R , respectively 〈·, ··〉 : H•dR(X;C)×HdR

• (X;C)→ C ,

and noting that, for any p, q ∈ N,

ker
〈
H

(p,q),(p,q)
J (X;R), ·

〉
⊇

∑

{(r,s),(s,r)}6={(p,q),(q,p)}
HJ

(r,s),(s,r)(X;R)

and ker
〈
·, HJ

(p,q),(q,p)(X;R)
〉
⊇

∑

{(r,s),(s,r)}6={(p,q),(q,p)}
H

(r,s),(s,r)
J (X;R) ,

respectively

ker
〈
H

(p,q)
J (X;C), ·

〉
⊇

∑

(r,s) 6=(p,q)

HJ
(r,s)(X;C) and ker

〈
·, HJ

(p,q)(X;C)
〉
⊇

∑

(r,s)6=(p,q)

H
(r,s)
J (X;C) .

As an example, we give the details to prove that if J is C∞-full at the kth stage then it is also pure at the kth

stage, when k = 2. Let
c ∈ HJ

(2,0),(0,2)(X;R) ∩ HJ
(1,1)(X;R) ,

with c 6= [0]. Hence,
〈c, ·〉 b

H
(2,0),(0,2)
J

(X;R) = 0 and 〈c, ·〉 b
H

(1,1)
J

(X;R) = 0 ;

since J is C∞-full, it follows that 〈c, ·〉 bH2
dR

(X;R)= 0, and hence c = [0].
To prove the vertical implications, it is enough to note that the quasi-isomorphism T· : ∧• X → D2n−•X

defined as Tϕ :=
∫
X
ϕ ∧ · (see §0.5) induces an injective map

H
(p,q),(q,p)
J (X;R)→ HJ

(n−p,n−q),(n−q,n−p)(X;R) , respectively H
(p,q)
J (X;C)→ HJ

(n−p,n−q)(X;C) ,

for any p, q ∈ N.

Remark 2.11. On a compact 2n-dimensional manifold X endowed with an almost-complex structure J , further
linkings between H2

dR(X;R) and H2n−2
dR (X;R) could provide further relations between C∞-pure-and-full and

pure-and-full notions: for example, A. Fino and A. Tomassini proved in [FT10, Theorem 3.7] that, given a
J-Hermitian metric g on X, if there exists a basis of g-harmonic representatives for H2

dR(X;R) being of pure type
with respect to J , then J is both C∞-pure-and-full and pure-and-full. Furthermore, A. Fino and A. Tomassini
proved in [FT10, Theorem 4.1] that, given a J-compatible symplectic form ω on X satisfying the Hard Lefschetz
Condition (that is, the map

[
ωk
]
^ · : Hn−k

dR (X;R) '→ Hn+k
dR (X;R) is an isomorphism for every k ∈ N), if J is

C∞-pure-and-full, then J is also pure-and-full (compare Proposition 2.28 for a similar result).
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Setting 2n = 4 and k = 2 in Theorem 2.10, it follows that, on compact 4-dimensional almost-complex manifolds,
C∞-fullness implies C∞-pureness. The following result states that, for higher dimensional manifolds, C∞-pureness
and C∞-fullness are not, in general, related properties, [AT12a, Proposition 1.4].

Proposition 2.12. There exist both examples of compact manifolds endowed with almost-complex structures
being C∞-full and non-C∞-pure, and examples of compact manifolds endowed with almost-complex structures being
C∞-pure and non-C∞-full.

Proof. The proof follows from the following examples, [AT12a, Example 1.2, Example 1.3].
Step 1 – Being C∞-full does not imply being C∞-pure. Take a nilmanifold N1 with associated Lie algebra

h16 :=
(
03, 12, 14, 24

)
.

Consider the left-invariant complex structure on N1 whose space of (1, 0)-forms is generated, as a C∞ (N1;C)-
module, by 




ϕ1 := e1 + i e2

ϕ2 := e3 + i e4

ϕ3 := e5 + i e6

.

Writing the structure equations in terms of
{
ϕ1, ϕ2, ϕ3},





2 dϕ1 = 0

2 dϕ2 = ϕ11̄

2 dϕ3 = − iϕ12 + iϕ12̄

,

the integrability condition is easily verified.
K. Nomizu’s theorem [Nom54, Theorem 1] makes the computation of the cohomology straightforward: in fact,

listing the harmonic representatives with respect to the left-invariant Hermitian metric g :=
∑
j ϕ

j � ϕ̄j instead
of their classes, one finds

H2
dR(N1;C) = C

〈
ϕ13, ϕ1̄3̄

〉
⊕ C

〈
ϕ13̄ − ϕ31̄

〉
⊕ C

〈
ϕ12 + ϕ12̄, ϕ21̄ − ϕ1̄2̄

〉
,

where
H

(2,0),(0,2)
J (N1;C) = C

〈
ϕ13, ϕ1̄3̄

〉
⊕ C

〈
ϕ12 + ϕ12̄, ϕ21̄ − ϕ1̄2̄

〉

and
H

(1,1)
J (N1;C) = C

〈
ϕ13̄ − ϕ31̄

〉
⊕ C

〈
ϕ12 + ϕ12̄, ϕ21̄ − ϕ1̄2̄

〉
.

In particular, J is a C∞-full, non-C∞-pure complex structure.
Step 2 – Being C∞-pure does not imply being C∞-full. Take a nilmanifold N2 with associated Lie algebra

h2 :=
(
04, 12, 34

)
.

and consider on it the left-invariant complex structure given requiring that the forms




ϕ1 := e1 + i e2

ϕ2 := e3 + i e4

ϕ3 := e5 + i e6

are of type (1, 0).
The integrability condition follows from the structure equations





2 dϕ1 = 0
2 dϕ2 = 0

2 dϕ3 = iϕ11̄ − iϕ22̄

.

K. Nomizu’s theorem [Nom54, Theorem 1] gives

H2
dR (N2;C) = C

〈
ϕ12, ϕ1̄2̄

〉
⊕ C

〈
ϕ12̄, ϕ21̄

〉
⊕ C

〈
ϕ13 + ϕ13̄, ϕ31̄ − ϕ1̄3̄, ϕ32̄ − ϕ2̄3̄, ϕ23 − ϕ23̄

〉
,
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where
H

(2,0),(0,2)
J (N2;C) = C

〈
ϕ12, ϕ1̄2̄

〉

and
H

(1,1)
J (N2;C) = C

〈
ϕ12̄, ϕ21̄

〉
;

this can be proven arguing as follows: with respect to the left-invariant Hermitian metric g :=
∑
j ϕ

j � ϕ̄j , one
computes

∂∗ ϕ13 = ∂∗ ϕ23 = ∂∗ ϕ12 = 0 ,
that is, ϕ13, ϕ12 and ϕ23 are g-orthogonal to the space ∂ ∧1,0 N2; in the same way, one computes

∂∗ ϕ12̄ = ∂
∗
ϕ12̄ = ∂∗ ϕ13̄ = ∂

∗
ϕ13̄ = 0

(compare also Proposition 2.19). In particular, J is a C∞-pure, non-C∞-full complex structure.

2.2 C∞-pure-and-fullness for special manifolds
In this section, we study the property of being C∞-pure-and-full on special classes of (almost-)complex manifolds.
After recalling some motivating results by T. Drǎghici, T.-J. Li, and W. Zhang, we study C∞-pure-and-fullness for
left-invariant complex-structures on solvmanifolds, providing some examples in dimension 4 or higher; furthermore,
we consider almost-complex manifolds endowed with special metric structures, namely, semi-Kähler, and almost-
Kähler structures.

2.2.1 Special classes of C∞-pure-and-full (almost-)complex manifolds
In this section, we recall some results by T. Drǎghici, T.-J. Li, and W. Zhang, providing classes of C∞-pure-and-full
and pure-and-full (almost-)complex manifolds. They could be considered as motivations to study C∞-pure-and-
fullness: in fact, [DLZ10, Lemma 2.15, Theorem 2.16] suggests that the subgroups H(•,•)

J (X;C) can be viewed as a
generalization of the Dolbeault cohomology groups for non-Kähler, and non-integrable, almost-complex manifolds
X. On the other hand, [DLZ10, Theorem 2.3] states that, on a compact 4-dimensional almost-complex manifold
X, the subgroups H+

J (X) and H−J (X) induce always a decomposition of H2
dR(X;R): this could be intended as a

generalization of the Hodge decomposition theorem for compact 4-dimensional almost-complex manifolds.

According to the following result, the groups H(•,•)
J (X;C) can be considered as the counterpart of the Dolbeault

cohomology groups in the non-Kähler and non-integrable cases.
Theorem 2.13 ([DLZ10, Lemma 2.15, Theorem 2.16]). Let X be a compact complex manifold. If the Hodge and
Frölicher spectral sequence degenerates at the first step and the natural filtration associated with the structure of
double complex of

(
∧•,•X, ∂, ∂

)
induces a Hodge decomposition of weight k on Hk

dR(X;C) for some k ∈ N, then
X is complex-C∞-pure-and-full at the kth stage, and

H
(p,q)
J (X;C) ' Hp,q

∂
(X)

for every p, q ∈ N such that p+ q = k.
A corollary of [DLZ10, Lemma 2.15, Theorem 2.16] is the following result.

Corollary 2.14 ([LZ09, Proposition 2.1], [DLZ10, Theorem 2.16, Proposition 2.17]). One has that:
(i) every compact complex surface is complex-C∞-pure-and-full at the 2nd stage, and hence, in particular,
C∞-pure-and-full and pure-and-full;

(ii) every compact complex manifold satisfying the ∂∂-Lemma is complex-C∞-pure-and-full at every stage, and
hence complex-pure-and-full at every stage;

(iii) every compact complex manifold admitting a Kähler structure is complex-C∞-pure-and-full at every stage,
and hence complex-pure-and-full at every stage.

Proof. As regards the complex-C∞-fullness at the 2nd stage for compact complex surfaces, one has that the
assumptions of Theorem 2.13 with k = 2 hold by [BHPVdV04, Theorem IV.2.8, Proposition IV.2.9].

As regards the complex-C∞-fullness at every stage for compact complex manifolds satisfying the ∂∂-Lemma,
one has that the assumptions of Theorem 2.13 for any k ∈ N are satisfied by [DGMS75, 5.21].

As regards the complex-C∞-fullness at every stage for compact Kähler manifolds, one has that a compact
complex manifold admitting a Kähler metric satisfies the ∂∂-Lemma, [DGMS75, Lemma 5.11].

Finally, the other statements follow from Remark 2.5 and Theorem 2.10.
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Actually, T. Drǎghici, T.-J. Li, and W. Zhang proved in [DLZ10] the following result, which one can consider
as a sort of Hodge decomposition theorem in the non-Kähler case.

Theorem 2.15 ([DLZ10, Theorem 2.3]). Every almost-complex structure on a compact 4-dimensional manifold
is C∞-pure-and-full and pure-and-full.

Proof. The proof of the previous theorem rests on the very special properties of 4-dimensional manifolds. For the
sake of completeness, we recall here the argument by T. Drǎghici, T.-J. Li, and W. Zhang in [DLZ10]. Firstly,
note that, by Theorem 2.10, it suffices to prove that an almost-complex structure J on a compact 4-dimensional
manifold is C∞-full. Suppose that J is not C∞-full. Fix a Hermitian metric g on X, and denote its associated
(1, 1)-form by ω. Recall that the Hodge-∗-operator ∗gb∧2X : ∧2 X → ∧2X satisfies (∗gb∧2X)2 = id∧2X , hence it
induces a splitting

∧2X = ∧+
g X ⊕ ∧−g X ,

where ∧±g X :=
{
ϕ ∈ ∧2X : ∗gϕ = ±ϕ

}
, for ± ∈ {+,−}. Setting P∧•X := ker Λ = kerL2−•+1b∧•X the space

of primitive forms, where Λ is the adjoint operator of the Lefschetz operator L := ω ∧ · : ∧• X → ∧•+2X with
respect to the pairing induced by ω (see §0.2), one has

∧+
g X = L (C∞ (X;R))⊕

((
∧2,0X ⊕ ∧0,2X

)
∩ ∧2X

)
and ∧−g X = P∧2X ∩ ∧1,1X ;

indeed, recall that, on a compact 2n-dimensional manifold X endowed with an almost-complex structure J and a
Hermitian metric g with associated (1, 1)-form ω, one has, for every j ∈ N, for every k ∈ N, the Weil identity,
[Wei58, Théorème 2],

∗g LjbP∧kX = (−1)
k(k+1)

2
j!

(n− k − j)! L
n−k−j J ,

see, e.g., [Huy05, Proposition 1.2.31]. Since the Laplacian operator ∆ and the Hodge-∗-operator ∗g commute, the
splitting ∧2X = ∧+

g X ⊕ ∧−g X induces a decomposition in cohomology,

H2
dR(X;R) = H+

g (X)⊕H−g (X) ,

where H±g (X) :=
{

[ϕ] ∈ H2
dR(X;R) : ϕ ∈ ∧±g X

}
for ± ∈ {+,−}. Consider the non-degenerate pairing

〈·, ··〉 : H2
dR(X;R)×H2

dR(X;R)→ R , 〈ϕ, ψ〉 :=
∫

X

ϕ ∧ ψ ,

and take a ∈
(
H+
J (X) +H−J (X)

)⊥ ⊆ H2
dR(X;R). Since ∧−g X ⊆ ∧1,1X, one can reduce to consider a ∈

H+
g (X); let α ∈ ∧+

g X be such that a = [α]. According to the decomposition ∧+
g X = L (C∞ (X;R)) ⊕((

∧2,0X ⊕ ∧0,2X
)
∩ ∧2X

)
, let f ω be the component of α in L (C∞ (X;R)). Consider the Hodge decompo-

sition
f ω = hf ω + dϑ+ d∗ η

of f ω ∈ ∧2X, where hf ω ∈ ker ∆ ∩ ∧2X, ϑ ∈ ∧1X, and η ∈ ∧3X. Since f ω ∈ ∧+
g X and by the uniqueness of

the Hodge decomposition, one has

hf ω + 2 dϑ = f ω + 2π∧−g X (dϑ) ∈ ∧1,1X ∩ ∧2X

(where π∧±g X : ∧2 X → ∧±g X denotes the natural projection onto ∧±g X, for ± ∈ {+,−}). Therefore, noting also
that H+

g (X) is orthogonal to H−g (X) with respect to 〈·, ··〉, one has

0 = 〈a, [hf ω + 2 dϑ]〉 =
〈
a,
[
f ω + 2π∧−g X (dϑ)

]〉
=
∫

X

f2 ω2 ,

from which it follows that f = 0, and hence a = 0.

Remark 2.16. The result in [DLZ10, Theorem 2.3] does not hold anymore true in dimension greater than or
equal to 6, or without the compactness assumption: the first example of a non-C∞-pure almost-complex structure
has been provided by A. Fino and A. Tomassini in [FT10, Example 3.3] using a 6-dimensional nilmanifold (for
other examples, even in the integrable case, see Proposition 2.12, Example 2.41, Theorem 2.49, Proposition 2.55,
Proposition 2.56), while non-C∞-pure-and-full almost-complex structures on non-compact 4-dimensional manifolds
arise from [DLZ11, Theorem 3.24] by T. Drǎghici, T.-J. Li, and W. Zhang.
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2.2.2 C∞-pure-and-full solvmanifolds
LetX = Γ\G be a solvmanifold, and denote the Lie algebra naturally associated to G by g, and its complexification
by gC := g⊗R C. (We refer to §0.6 for notations and results concerning solvmanifolds.)

We recall that if X is a nilmanifold or, more in general, a completely-solvable solvmanifold, the inclusion
of the sub-complex given by the G-left-invariant differential forms, which is isomorphic to the complex ∧•g∗ of
linear forms on the dual of the Lie algebra g associated to G, into the de Rham complex of X turns out to be
a quasi-isomorphism, in view of K. Nomizu’s theorem [Nom54, Theorem 1], respectively A. Hattori’s theorem
[Hat60, Corollary 4.2].

Let J be a G-left-invariant almost-complex structure on X. In this case, one can study the problem of
cohomological decomposition both on X and on g: in this section, we investigate the relations between the
cohomological decompositions at the level of the solvmanifold and at the level of the associated Lie algebra,
Proposition 2.19, Corollary 2.20.

Firstly, we set some notations. Consider H•dR (g;R) := H• (∧•g∗, d). Being J a G-left-invariant almost-complex
structure, it induces a bi-graded splitting also on the vector space ∧•g∗C. For every S ⊂ N×N, and for K ∈ {R, C},
set

HS
J (g;K) :=



[α] ∈ H•dR (g;K) : α ∈

⊕

(p,q)∈S
∧p,qg∗C ∩ (∧•g∗ ⊗R K)



 ,

see [LT12, Definition 0.3].
The following are the natural linear counterparts of the corresponding definitions for manifolds.

Definition 2.17. Let X = Γ\G be a solvmanifold, and denote the Lie algebra naturally associated to G by g.
Fixed k ∈ N, a G-left-invariant almost-complex structure J on X is called

• linear-C∞-pure at the kth stage if
⊕

p+q=k
p≤q

H
(p,q),(q,p)
J (g;R) ⊆ Hk

dR (g;R) ,

namely, if the sum is direct;

• linear-C∞-full at the kth stage if

Hk
dR (g;R) =

∑

p+q=k
p≤q

H
(p,q),(q,p)
J (g;R) ,

• linear-C∞-pure-and-full at the kth stage if J is both linear-C∞-pure at the kth stage and linear-C∞-full at
the kth stage, that is, if the cohomological decomposition

Hk
dR (g;R) =

⊕

p+q=k
p≤q

H
(p,q),(q,p)
J (g;R)

holds.

Furthermore, J is called

• linear-complex-C∞-pure at the kth stage if
⊕

p+q=k
H

(p,q)
J (g;C) ⊆ Hk

dR (g;C) ,

namely, if the sum is direct;

• linear-complex-C∞-full at the kth stage if

Hk
dR (g;C) =

∑

p+q=k
H

(p,q)
J (g;C) ,
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• linear-complex-C∞-pure-and-full at the kth stage if J is both linear-complex-C∞-pure at the kth stage and
linear-complex-C∞-full at the kth stage, that is, if the cohomological decomposition

Hk
dR (g;C) =

⊕

p+q=k
H

(p,q)
J (g;C)

holds.

(In any case, when k = 2, the specification “at the 2nd stage” will be understood.)

It is natural to ask what relations link the subgroups H(•,•)
J (X;R) and the subgroups H(•,•)

J (g;R), and whether
a G-left-invariant linear-C∞-pure-and-full almost-complex structure on X = Γ\G is also C∞-pure-and-full.

The following lemma is the F. A. Belgun symmetrization trick, [Bel00, Theorem 7], in the almost-complex
setting.

Lemma 2.18 ([Bel00, Theorem 7]). Let X = Γ\G be a solvmanifold, and denote the Lie algebra naturally
associated to G by g. Let J be a G-left-invariant almost-complex structure on X. Let η be the G-bi-invariant
volume form on G given by J. Milnor’s Lemma, [Mil76, Lemma 6.2], and such that

∫
X
η = 1. Up to identifying

G-left-invariant forms on X and linear forms over g∗ through left-translations, consider the Belgun symmetrization
map

µ : ∧• X → ∧•g∗ , µ(α) :=
∫

X

αbm η(m) .

Then one has that
µb∧•g∗ = idb∧•g∗ ,

and that
d (µ(·)) = µ (d ·) and J (µ(·)) = µ (J ·) .

Using the previous lemma, we can prove the following Nomizu-type result, which relates the subgroups
H

(r,s)
J (X;R) with their left-invariant part H(r,s)

J (g;R). (Analogous results will be proven in Proposition 3.30
for almost-D-complex structures in the sense of F. R. Harvey and H. B. Lawson, and in Proposition 3.18 for
symplectic structures; compare also with [FT10, Theorem 3.4], by A. Fino and A. Tomassini, for almost-complex
structures.)

Proposition 2.19 ([ATZ12, Theorem 5.4]). Let X = Γ\G be a solvmanifold endowed with a G-left-invariant
almost-complex structure J , and denote the Lie algebra naturally associated to G by g. For any S ⊂ N× N, and
for K ∈ {R, C}, the map

j : HS
J (g;K)→ HS

J (X;K)

induced by left-translations is injective, and, if H•dR (g;K) ' H•dR(X;K) (for instance, if X is a completely-solvable
solvmanifold), then j : HS

J (g;K)→ HS
J (X;K) is in fact an isomorphism.

Proof. Since J is G-left-invariant, left-translations induce the map j : HS
J (g;K) → HS

J (X;K). Consider the
Belgun symmetrization map µ : ∧•X ⊗K→ ∧•g∗ ⊗R K, [Bel00, Theorem 7]: since µ commutes with d by [Bel00,
Theorem 7], it induces the map µ : H•dR(X;K) → H•dR (g;K), and, since µ commutes with J , it preserves the
bi-graduation; therefore it induces the map µ : HS

J (X;K)→ HS
J (g;K). Moreover, since µ is the identity on the

space of G-left-invariant forms by [Bel00, Theorem 7], we get the commutative diagram

HS
J (g;K)

j //

id

55
HS
J (X;K)

µ // HS
J (g;K)

hence j : HS
J (g;K)→ HS

J (X;K) is injective, and µ : HS
J (X;K)→ HS

J (g;K) is surjective.
Furthermore, when H•dR (g;K) ' H•dR(X;K) (for instance, when X is a completely-solvable solvmanifold, by

A. Hattori’s theorem [Hat60, Theorem 4.2]), since

µb∧•g∗⊗RK = idb∧•g∗⊗RK

by [Bel00, Theorem 7], we get that µ : H•dR(X;K)→ H•dR (g;K) is the identity map, and hence µ : HS
J (X;K)→

HS
J (g;K) is also injective, and hence an isomorphism.

As a straightforward consequence, we get the following result.
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Corollary 2.20. Let X = Γ\G be a solvmanifold endowed with a G-left-invariant almost-complex structure J ,
and denote the Lie algebra naturally associated to G by g. Suppose that H•dR (g;R) ' H•dR(X;R) (for instance,
suppose that X is a completely-solvable solvmanifold). For every k ∈ N, the almost-complex structure J is
linear-C∞-pure (respectively, linear-C∞-full, linear-C∞-pure-and-full, linear-complex-C∞-pure, linear-complex-
C∞-full, linear-complex-C∞-pure-and-full) at the kth stage if and only if it is C∞-pure (respectively, C∞-full,
C∞-pure-and-full, complex-C∞-pure, complex-C∞-full, complex-C∞-pure-and-full) at the kth stage.

As an example, we provide here an explicit C∞-pure-and-full almost-complex structure on a 6-dimensional
solvmanifold, [AT11, Example 2.1].
Example 2.21. A C∞-pure-and-full and pure-and-full almost-complex structure on a compact 6-dimensional
completely-solvable solvmanifold.
Let G be the 6-dimensional simply-connected completely-solvable Lie group defined by

G :=








ex1 0 x2 ex1 0 0 x3

0 e−x1 0 x2 e−x1 0 x4

0 0 ex1 0 0 x5

0 0 0 e−x1 0 x6

0 0 0 0 1 x1

0 0 0 0 0 1



∈ GL(6;R) : x1, . . . , x6 ∈ R





.

According to [FdLS96, §3], there exists a discrete co-compact subgroup Γ ⊂ G: therefore X := Γ\G is a
6-dimensional completely-solvable solvmanifold.

The G-left-invariant 1-forms on G defined as
e1 := dx1 , e2 := dx2 ,

e3 := exp
(
−x1) ·

(
dx3 − x2 dx5) , e4 := exp

(
x1) ·

(
dx4 − x2 dx6) ,

e5 := exp
(
−x1) · dx5 ; e6 := exp

(
x1) · dx6

give rise to G-left-invariant 1-forms on X. With respect to the co-frame
{
e1, . . . , e6}, the structure equations are

given by 



d e1 = 0
d e2 = 0
d e3 = −e1 ∧ e3 − e2 ∧ e5

d e4 = e1 ∧ e4 − e2 ∧ e6

d e5 = −e1 ∧ e5

d e6 = e1 ∧ e6

.

Since G is completely-solvable, by A. Hattori’s theorem [Hat60, Corollary 4.2], it is straightforward to compute

H2(X;R) = R
〈
e1 ∧ e2, e5 ∧ e6, e3 ∧ e6 + e4 ∧ e5〉 .

Therefore, setting 



ϕ1 := e1 + i e2

ϕ2 := e3 + i e4

ϕ3 := e5 + i e6

,

we have that the almost-complex structure J whose C∞ (X;C)-module of complex (1, 0)-forms is generated by{
ϕ1, ϕ2, ϕ3} is C∞-full: indeed,

H
(1,1)
J (X;R) = R

〈
− 1

2 i ϕ
1 ∧ ϕ̄1, − 1

2 i ϕ
3 ∧ ϕ̄3〉 ,

H
(2,0),(0,2)
J (X;R) = R

〈 1
2 i
(
ϕ2 ∧ ϕ3 − ϕ̄2 ∧ ϕ̄3)〉 .

Since
d∧1g∗C = C

〈
ϕ13 − ϕ13̄, ϕ31̄ + ϕ1̄3̄, ϕ13 + ϕ13̄, ϕ31̄ − ϕ1̄3̄, ϕ12 − ϕ21̄, ϕ12̄ + ϕ1̄2̄

〉
,

then J is linear-C∞-pure-and-full. Since X is a completely-solvable solvmanifold, one gets that J is also C∞-pure
by Corollary 2.20. (Note that the C∞-pureness of J can be proven also by using a different argument: according
to [FT10, Theorem 3.7], since the above basis of harmonic representatives with respect to the G-left-invariant
Hermitian metric

∑3
j=1 ϕ

j � ϕ̄j consists of pure type forms with respect to the almost-complex structure, J is
both C∞-pure-and-full and pure-and-full.)
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Further results concerning linear (possibly non-integrable) complex structures on 4-dimensional unimodular
Lie algebra and their cohomological properties have been obtained by T.-J. Li and A. Tomassini in [LT12]. In
particular, they proved an analogous of [DLZ10, Theorem 2.3], namely, that for every 4-dimensional unimodular
Lie algebra g endowed with a linear (possibly non-integrable) complex structure J , one has the cohomological
decomposition H2

dR (g;R) = H
(2,0),(0,2)
J (g;R)⊕H(1,1)

J (g;R), [LT12, Theorem 3.3]. Furthermore, they studied the
linear counterpart of S. K. Donaldson’s question [Don06, Question 2] (see §2.4.2), proving that, on a 4-dimensional
Lie algebra g satisfying the condition B ∧B = 0, where B ⊆ ∧2g denotes the space of boundary 2-vectors, a linear
(possibly non-integrable) complex structure admits a taming linear symplectic form if and only if it admits a
compatible linear symplectic form, [LT12, Theorem 2.5]; note that 4-dimensional unimodular Lie algebras satisfy
the assumption B ∧B = 0. Finally, given a linear (possibly non-integrable) complex structure on a 4-dimensional
Lie algebra, they studied the convex cones composed of the classes of J-taming, respectively J-compatible, linear
symplectic forms, comparing them by means of H(2,0),(0,2)

J (g;R), [LT12, Theorem 3.10]: this result is the linear
counterpart of [LZ09, Theorem 1.1].

2.2.3 Complex-C∞-pure-and-fullness for 4-dimensional manifolds
By [DLZ10, Lemma 2.15, Theorem 2.16], or [LZ09, Proposition 2.1], every compact complex surface is complex-
C∞-pure-and-full at the 2nd stage; on the other hand, a compact complex surface is complex-C∞-pure-and-full at
the 1st stage if and only if its first Betti number b1 is even, that is, if and only if it admits a Kähler structure, see
[Kod64, Miy74, Siu83], or [Lam99, Corollaire 5.7], or [Buc99, Theorem 11].

One may wonder about the relations between being complex-C∞-pure-and-full and being integrable for an
almost-complex structure on a compact 4-dimensional manifold; this is the matter of the following result, [AT12a,
Proposition 1.7].

Proposition 2.22. There exist

• non-complex-C∞-pure-and-full at the 1st stage non-integrable almost-complex structures, and

• complex-C∞-pure-and-full at the 1st stage non-integrable almost-complex structures

on compact 4-dimensional manifolds with b1 even.

Proof. The proof follows from the following examples, [AT12a, Example 1.5, Example 1.6].
Step 1 – There exists a non-complex-C∞-pure-and-full at the 1st stage non-integrable almost-complex structure
on a 4-dimensional manifold. Consider the standard Kähler structure (J0, ω0) on the 4-dimensional torus T4

with coordinates
{
xj
}
j∈{1,...,4}, that is,

J0 :=




−1
−1

1
1


 ∈ End

(
T4) and ω0 := dx1 ∧ dx3 + dx2 ∧ dx4 ∈ ∧2T4 ,

and, for ε > 0 small enough, let {Jt}t∈(−ε, ε) be the curve of almost-complex structures defined by

Jt :=: Jt, ` := (id−t L) J0 (id−t L)−1 =




− 1−t `
1+t `

−1
1+t `
1−t `

1


 ∈ End

(
T4) ,

where

L =




`
0
−`

0


 ∈ End

(
T4)

and ` = `(x2) ∈ C∞(R4; R) is a Z4-periodic non-constant function.
For t ∈ (−ε, ε) \ {0}, a straightforward computation yields

H
(1,0)
Jt

(
T2
C;C

)
= C

〈
dx2 + i dx4〉 , H

(0,1)
Jt

(
T2
C;C

)
= C

〈
dx2 − i dx4〉

therefore
dimCH

(1,0)
Jt

(
T2
C;C

)
+ dimCH

(0,1)
Jt

(
T2
C;C

)
= 2 < 4 = b1

(
T2
C
)
,
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that is, Jt is not complex-C∞-pure-and-full at the 1st stage.
Step 2 – There exists a complex-C∞-pure-and-full at the 1st stage non-integrable almost-complex structure on a 4-
dimensional manifold. Consider a compact 4-dimensional nilmanifold X = Γ\G, quotient of the simply-connected
nilpotent Lie group G whose associated Lie algebra is

g :=
(
02, 14, 12

)
;

let J be the G-left-invariant almost-complex structure defined by

Je1 := −e2 , Je3 := −e4 ;

note that J is not integrable, since Nij(e1, e3) 6= 0, where {ei}i∈{1,2,3,4} is the dual basis of
{
ei
}
i∈{1,2,3,4}. In fact,

X has no integrable almost-complex structure: indeed, since b1(X) = 2 is even, if there were a complex structure
on X, then X should carry a Kähler metric; this is not possible for compact non-tori nilmanifolds, by [Has89,
Theorem 1, Corollary], or [BG88, Theorem A].

By K. Nomizu’s theorem [Nom54, Theorem 1], one computes

H1
dR(X;C) = C

〈
ϕ1, ϕ̄1〉 and H2

dR(X;C) = C
〈
ϕ12 + ϕ1̄2̄, ϕ12̄ − ϕ21̄

〉
;

in particular, it follows that J is complex-C∞-pure-and-full at the 1st stage. Note that J is not complex-C∞-pure-
and-full at the 2nd stage but just C∞-pure-and-full: indeed, using Proposition 2.19, one can prove that the class[
ϕ12 + ϕ1̄2̄

]
admits no pure type representative with respect to J . Moreover, observe that the G-left-invariant

almost-complex structure
J ′e1 := −e3 , J ′e2 := −e4 ,

is complex-C∞-pure-and-full at the 2nd stage and non-complex-C∞-pure-and-full at the 1st stage (obviously, in
this case, h−J′ = 0, according to [DLZ10, Corollary 2.14]).

Remark 2.23. T. Drǎghici, T.-J. Li, and W. Zhang proved in [DLZ10, Corollary 2.14] that an almost-complex
structure on a compact 4-dimensional manifold X is complex-C∞-pure-and-full at the 2nd stage if and only if J is
integrable or dimRH

−
J (X) = 0.

2.2.4 Almost-complex manifolds with large anti-invariant cohomology
Given an almost-complex structure J on a compact manifold X, it is natural to ask how large the cohomology
subgroup H−J (X) can be.

In [DLZ11, Theorem 1.1], T. Drǎghici, T.-J. Li, and W. Zhang, starting with a compact complex surface X
endowed with the complex structure J , proved that the dimension h−

J̃
:= dimRH

−
J̃

(X) of the J̃-anti-invariant
subgroup H−

J̃
(X) of H2

dR(X;R) associated to any metric related almost-complex structures J̃ on X (that is, the
almost-complex structures J̃ on X inducing the same orientation as J and with a common compatible metric with
J), such that J̃ 6= ±J , satisfies h−

J̃
∈ {0, 1, 2}, and they provided a description of such almost-complex structures

J̃ having h−
J̃
∈ {1, 2}.

In this direction, T. Drǎghici, T.-J. Li, and W. Zhang proposed the following conjecture.

Conjecture 2.24 ([DLZ11, Conjecture 2.5]). On a compact 4-dimensional manifold endowed with an almost-
complex structure J , if dimRH

−
J (X) ≥ 3, then J is integrable.

In [TWZZ11], Q. Tan, H. Wang, Y. Zhang, and P. Zhu proved that, on a compact 4-dimensional manifold
endowed with an almost-complex structure J and a J-Hermitian metric g, the dimension dimRH

−
J̃

(X) is constant
for all almost-complex structures J̃ being fundamental form related to J , namely, such that ω ∈ ∧1,1

J̃
X ∩ ∧2X,

where ω := g (J ·, ··) ∈ ∧1,1
J X ∩ ∧2X is the (1, 1)-form with respect to J associated to the J-Hermitian metric g,

[TWZZ11, Theorem 1.2]. Then, they proposed to modify [DLZ11, Conjecture 2.5] as follows.

Conjecture 2.25 ([TWZZ11, Question 1.5]). Let X be a compact 4-dimensional manifold endowed with an
almost-complex structure J and a J-Hermitian metric g, and denote by ω := g (J ·, ··) the (1, 1)-form associated to
g. Suppose that dimRH

−
J (X) ≥ 3. Does there exist an integrable almost-complex structure J̃ such that ω ∈ ∧1,1

J̃
X?

Furthermore, in [DLZ11], it was conjectured that h−J = 0 for a generic almost-complex structure J on a
compact 4-dimensional manifold, [DLZ11, Conjecture 2.4]. In [TWZZ11, Theorem 1.1], Q. Tan, H. Wang, Y.
Zhang, and P. Zhu proved that this holds true, showing that, on a compact 4-dimensional manifold X admitting
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almost-complex structures, the set of almost-complex structures J on X with dimRH
−
J (X) = 0 is an open dense

subset of the set of almost-complex structures on X.
In [ATZ12, §5], a 1-parameter family {Jt}t∈(−ε, ε) of (non-integrable) almost-complex structures on the 6-

dimensional torus T6, where ε > 0 is small enough, having dimRH
−
Jt

(
T6) greater than 3 has been provided. We

recall here the construction, see also [AT11, §4].

Example 2.26. A family of almost-complex structures on the 6-dimensional torus with anti-invariant cohomology
of dimension larger than 3.
Consider the 6-dimensional torus T6, with coordinates

{
xj
}
j∈{1,...,6}. For ε > 0 small enough, choose a function

α : (−ε, ε) × T6 → R such that αt :=: α (t, ·) ∈ C∞
(
T6) depends just on x3 for any t ∈ (−ε, ε), namely

αt = αt(x3), and that α0(x3) = 1. Define the almost-complex structure Jt in such a way that




ϕ1
t := dx1 + i αt dx4

ϕ2
t := dx2 + i dx5

ϕ3
t := dx3 + i dx6

provides a co-frame for the C∞
(
T6;C

)
-module of (1, 0)-forms on T6 with respect to Jt. In terms of this co-frame,

the structure equations are 



dϕ1
t = i dαt ∧ dx4

dϕ2
t = 0

dϕ3
t = 0

.

Straightforward computations give that the Jt-anti-invariant real closed 2-forms are of the type

ψ = C

αt

(
dx13 − αt dx46)+D

(
dx16 − αt dx34)+ E

(
dx23 − dx56)+ F

(
dx26 − dx35) ,

where C, D, E, F ∈ R (we shorten dxjk := dxj ∧ dxk). Moreover, the forms dx23 − dx56 and dx26 − dx35

are clearly harmonic with respect to the standard Riemannian metric
∑6
j=1 dxj ⊗ dxj , while the classes of

dx16 − αt dx34 and dx13 − αt dx46 are non-zero, being their harmonic parts non-zero. Therefore, we get that

h−Jt = 4 for small t 6= 0 ,

while h−J0
= 6.

The natural generalization of [DLZ10, Conjecture 2.5] to higher dimensional manifolds yields the following
question, [ATZ12, Question 5.2].
Question 2.27. Are there compact 2n-dimensional manifolds X endowed with non-integrable almost-complex
structures J with dimRH

−
J (X) > n (n− 1)?

Note that, when X = Γ\G is a 2n-dimensional completely-solvable solvmanifold endowed with a G-left-
invariant almost-complex structure J , then, by Proposition 2.19, it follows that

dimRH
−
J (X) ≤ n (n− 1) and dimRH

+
J (X) ≤ n2 .

2.2.5 Semi-Kähler manifolds
As already recalled, A. Fino and A. Tomassini’s [FT10, Theorem 4.1] proves that, given an almost-Kähler structure
on a compact manifold, if the almost-complex structure is C∞-pure-and-full and the symplectic structure satisfies
the Hard Lefschetz Condition, then the almost-complex structure is pure-and-full too; moreover, by [FT10,
Proposition 3.2], see also [DLZ10, Proposition 2.8], the almost-complex structure of every almost-Kähler structure
on a compact manifold is C∞-pure.

To study the cohomology of balanced manifolds X and the duality between H(•,•)
J (X;C) and HJ

(•,•)(X;C), we
get the following result, [AT12a, Proposition 3.1], which can be considered as the semi-Kähler counterpart of
[FT10, Theorem 4.1].

Proposition 2.28. Let X be a compact 2n-dimensional manifold endowed with an almost-complex structure J
and a semi-Kähler form ω. Suppose that

[
ωn−1] ^ · : H1

dR(X;R) → H2n−1
dR (X;R) is an isomorphism. If J is

complex-C∞-pure-and-full at the 1st stage, then it is also complex-pure-and-full at the 1st stage, and

H
(1,0)
J (X;C) ' HJ

(0,1)(X;C) .
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Proof. Firstly, note that J is complex-pure at the 1st stage. Indeed, if

a ∈ HJ
(1,0)(X;C) ∩HJ

(0,1)(X;C) ,

then
ab
H

(1,0)
J

(X;C) = 0 = ab
H

(0,1)
J

(X;C) .

Therefore, by the assumption

H1
dR(X;C) = H

(1,0)
J (X;C)⊕H(0,1)

J (X;C) ,

we get that
a = 0 .

Now, note that, since
[
ωn−1]^ H

(1,0)
J (X;C) ⊆ H(n,n−1)

J (X;C) and
[
ωn−1]^ H

(0,1)
J (X;C) ⊆ H(n−1,n)

J (X;C) ,

the isomorphism

H1
dR(X;C)

[ωn−1]^·−→ H2n−1
dR (X;C) T·−→ H1

dR(X;C)

yields the injective maps

H
(1,0)
J (X;C) ↪→ HJ

(0,1)(X;C) and H
(0,1)
J (X;C) ↪→ HJ

(1,0)(X;C) .

Since, by hypothesis, J is complex-C∞-pure-and-full at the 1st stage, namely, H1
dR(X;C) = H

(1,0)
J (X;C) ⊕

H
(0,1)
J (X;C), we get the proof.

We provide here some explicit examples, [AT12a, Example 3.2, Example 3.3], checking the validity of the
hypothesis of

[
ωn−1]^ · : H1

dR(X;R)→ H2n−1
dR (X;R) being an isomorphism in Proposition 2.28.

Example 2.29. A balanced structure on the Iwasawa manifold.
On the Iwasawa manifold I3 (see §1.4.1), consider the balanced structure

ω := i
2
(
ϕ1 ∧ ϕ̄1 + ϕ2 ∧ ϕ̄2 + ϕ3 ∧ ϕ̄3) .

Since

H1
dR (I3;C) = C

〈
ϕ1, ϕ2, ϕ̄1, ϕ̄2〉 and H5

dR (I3;C) = C
〈
ϕ1231̄3̄, ϕ1232̄3̄, ϕ131̄2̄3̄, ϕ231̄2̄3̄

〉
,

it is straightforward to check that
[
ω2]^ · : H1

dR (I3;C)→ H5
dR (I3;C)

is an isomorphism. Therefore, by Proposition 2.28, I3 is complex-C∞-pure-and-full at the 1st stage and complex-
pure-and-full at the 1st stage (the same result follows also arguing as in [FT10, Theorem 3.7], the above harmonic
representatives of H1

dR (I3;C), with respect to the Hermitian metric
∑3
j=1 ϕ

j � ϕ̄j , being of pure type with respect
to the complex structure).

Example 2.30. A 6-dimensional manifold endowed with a semi-Kähler structure not inducing an isomorphism
in cohomology.
Consider the 6-dimensional nilmanifold

X = Γ\G :=
(
04, 12, 13

)
.

In [FT10, Example 3.3], the almost-complex structure

J ′ e1 := −e2 , J ′ e3 := −e4 , J ′ e5 := −e6

is provided as a first example of non-C∞-pure almost-complex structure. Note that J ′ is not even C∞-full: indeed,
the cohomology class

[
e15 + e16] admits neither J ′-invariant nor J ′-anti-invariant G-left-invariant representatives,

and hence, by Proposition 2.19, it admits neither J ′-invariant nor J ′-anti-invariant representatives.
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Consider now the almost-complex structure

J e1 := −e5 , J e2 := −e3 , J e4 := −e6

and the non-degenerate J-invariant 2-form

ω := e15 + e23 + e46 .

A straightforward computation shows that

dω = −e134 6= 0 and dω2 = d
(
e1235 − e1456 + e2346) = 0 .

By K. Nomizu’s theorem [Nom54, Theorem 1], it is straightforward to compute

H1
dR(X;R) = R

〈
e1, e2, e3, e4〉 .

Since
ω2 e1 = e12346 = d e3456 ,

we get that
[
ω2]^ · : H1

dR(X;R)→ H5
dR(X;R) is not injective.

We give two explicit examples of 2n-dimensional complex manifolds endowed with a balanced structure, with
2n = 10, respectively 2n = 6, such that the (n− 1)th power of the associated (1, 1)-form induces an isomorphism
in cohomology, and admitting small balanced deformations, [AT12a, Example 3.4, Example 3.5].

Example 2.31. A curve of balanced structures on ηβ5 inducing an isomorphism in cohomology.
We recall the construction of the 10-dimensional nilmanifold ηβ5, introduced and studied in [AB90] by L.
Alessandrini and G. Bassanelli to prove that being p-Kähler is not a stable property under small deformations of
the complex structure; more in general, in [AB91], the manifold ηβ2n+1, for any n ∈ N \ {0}, has been provided
as a generalization of the Iwasawa manifold I3, and the existence of p-Kähler structures on ηβ2n+1 has been
investigated. (For definitions and results concerning p-Kähler structures, see [AB91], or, e.g., [Sil96, Ale11].)

For n ∈ N \ {0}, consider the complex Lie group

G2n+1 :=





A ∈ GL(n+ 2;C) : A =




1 x1 · · · xn z
0 1 y1

... . . . ...
0 1 yn

0 0 · · · 0 1








;

equivalently, one can identify G2n+1 with
(
C2n+1, ∗

)
, where the group structure ∗ is defined as

(
x1, . . . , xn, y1, . . . , yn, z

)
∗
(
u1, . . . , un, v1, . . . , vn, w

)

:=
(
x1 + u1, . . . , xn + un, y1 + v1, . . . , yn + vn, z + w + x1 · v1 + · · ·+ xn · vn

)
.

Since the subgroup
Γ2n+1 := G2n+1 ∩GL (n+ 2;Z [i]) ⊂ G2n+1

is a discrete co-compact subgroup of the nilpotent Lie group G2n+1, one gets a compact complex manifold, of
complex dimension 2n+ 1,

ηβ2n+1 := Γ2n+1\G2n+1 ,

which is a holomorphically parallelizable nilmanifold and admits no Kähler metric, [Wan54, Corollary 2], or [BG88,
Theorem A], or [Has89, Theorem 1, Corollary]; note that ηβ3 = I3 is the Iwasawa manifold (see §1.4.1). In fact,
one has that ηβ2n+1 is not p-Kähler for 1 < p ≤ n and it is p-Kähler for n+ 1 ≤ p ≤ 2n+ 1, [AB91, Theorem
4.2]; furthermore, ηβ2n+1 has complex submanifolds of any complex dimension less than or equal to 2n+ 1, and
hence it follows that the p-Kähler forms on ηβ2n+1 can never be exact, [AB91, §4.4].

Setting 



ϕ2j−1 := dxj , for j ∈ {1, . . . , n} ,
ϕ2j := d yj , for j ∈ {1, . . . , n} ,
ϕ2n+1 := d z −∑n

j=1 x
j d yj ,
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one gets the global co-frame
{
ϕj
}
j∈{1,...,2n+1} for the space of holomorphic 1-forms, with respect to which the

structure equations are {
dϕ1 = · · · = dϕ2n = 0
dϕ2n+1 = −∑n

j=1 ϕ
2j−1 ∧ ϕ2j .

Now, take 2n+ 1 = 5. With respect to the co-frame
{
ϕj
}
j∈{1,...,5} for the space of holomorphic 1-forms on

ηβ5, the structure equations are
{

dϕ1 = dϕ2 = dϕ3 = dϕ4 = 0
dϕ5 = −ϕ12 − ϕ34

(where, as usually, we shorten, e.g., ϕ12 := ϕ1 ∧ ϕ2).
Consider on ηβ5 the balanced structure

ω := i
2

5∑

j=1
ϕj ∧ ϕ̄j .

By K. Nomizu’s theorem [Nom54, Theorem 1], it is straightforward to compute

H1
dR (ηβ5;C) = C

〈
ϕ1, ϕ2, ϕ3, ϕ4, ϕ̄1, ϕ̄2, ϕ̄3, ϕ̄4〉

and

H9
dR (ηβ5;C) = C

〈
ϕ123452̄3̄4̄5̄, ϕ123451̄3̄4̄5̄, ϕ123451̄2̄4̄5̄, ϕ123451̄2̄3̄5̄,

ϕ23451̄2̄3̄4̄5̄, ϕ13451̄2̄3̄4̄5̄, ϕ12451̄2̄3̄4̄5̄, ϕ12351̄2̄3̄4̄5̄
〉

;

therefore, ηβ5 is complex-C∞-pure-and-full at the 1st stage and
[
ω4]^ · : H1

dR (ηβ5;R)→ H9
dR (ηβ5;R)

is an isomorphism, and so ηβ5 is also complex-pure-and-full at the 1st stage by Proposition 2.28 (note that, the
above pure type representatives being harmonic with respect to the metric

∑5
j=1 ϕ

j � ϕ̄j , the same result follows
also arguing as in [FT10, Theorem 3.7]).

Now, let {Jt}t∈∆(0,ε)⊂C, where ε > 0 is small enough, be a family of small deformations of the complex
structure such that 




ϕ1
t := ϕ1 + t ϕ̄1

ϕ2
t := ϕ2

ϕ3
t := ϕ3

ϕ4
t := ϕ4

ϕ5
t := ϕ5

is a co-frame for the Jt-holomorphic cotangent bundle. With respect to
{
ϕjt

}
j∈{1,...,5}

, the structure equations
are written as { dϕ1

t = dϕ2
t = dϕ3

t = dϕ4
t = 0

dϕ5
t = − 1

1−|t|2 ϕ
12
t − ϕ34

t − t
1−|t|2 ϕ

21̄
t

.

Setting, for t ∈ ∆ (0, ε) ⊂ C,

ωt := i
2

5∑

j=1
ϕjt ∧ ϕjt ,

one gets a curve of balanced structures {(Jt, ωt)}t∈∆(0,ε) on the smooth manifold underlying ηβ5. Furthermore,
for every t ∈ ∆ (0, ε), the complex structure Jt is complex-C∞-pure-and-full at the 1st stage and

[
ω4
t

]
^ · : H1

dR (ηβ5;R)→ H9
dR (ηβ5;R)

is an isomorphism. Therefore, according to Proposition 2.28, it follows that, for every t ∈ ∆ (0, ε), the complex
structure Jt is complex-pure-and-full at the 1st stage, and that H(1,0)

Jt
(ηβ5;C) ' HJt

(0,1) (ηβ5;C).
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Example 2.32. A curve of semi-Kähler structures on a 6-dimensional completely-solvable solvmanifold inducing
an isomorphism in cohomology.
Consider a completely-solvable solvmanifold

X = Γ\G := (0, −12, 34, 0, 15, 46)

endowed with the almost-complex structure J0 whose holomorphic cotangent bundle has co-frame generated by




ϕ1 := e1 + i e4

ϕ2 := e2 + i e5

ϕ3 := e3 + i e6

and with the J0-compatible symplectic form

ω0 := e14 + e25 + e36

(see also [FT10, §6.3]). The structure equations with respect to
{
ϕ1, ϕ2, ϕ3} are





dϕ1 = 0

2 dϕ2 = −ϕ12̄ − ϕ1̄2̄

2 i dϕ3 = −ϕ13̄ + ϕ1̄3̄

;

using A. Hattori’s theorem [Hat60, Corollary 4.2], one computes

H1
dR(X;R) = R

〈
e1, e4〉 ,

H5
dR(X;R) = R

〈
∗g0 e

1, ∗g0 e
4〉 = R

〈
e23456, e12356〉 ,

where g0 is the J0-Hermitian metric induced by (J0, ω0).
Now, consider the curve {Jt}t∈(−ε, ε)⊂R of almost-complex structures on X, where ε > 0 is small enough and

Jt is defined requiring that the Jt-holomorphic cotangent bundle is generated by




ϕ1
t := ϕ1

ϕ2
t := ϕ2 + i t e6

ϕ3
t := ϕ3

;

for every t ∈ (−ε, ε), consider also the non-degenerate Jt-compatible 2-form

ωt := e14 + e25 + e36 + t e26 ;

for t 6= 0, one has that dω 6= 0, but
dω2

t = d
(
ω2

0 − t e1246) = 0 ,
hence {(Jt, ωt)}t∈(−ε, ε) gives rise to a curve of semi-Kähler structures on X. Moreover, note that

ω2
t ∧ e1 = e12356 , ω2

t ∧ e4 = e23456 ,

therefore
[
ω2
t

]
^ · : H1

dR(X;R)→ H5
dR(X;R) is an isomorphism, for every t ∈ (−ε, ε).

2.2.6 Almost-Kähler manifolds and Lefschetz-type property
Recall that every compact manifold X endowed with a Kähler structure (J, ω) is C∞-pure-and-full, in fact,
complex-C∞-pure-and-full at every stage, [DLZ10, Lemma 2.15, Theorem 2.16], or [LZ09, Proposition 2.1]. A
natural question is whether or not the same holds true even for almost-Kähler structures, namely, without the
integrability assumption on J .

In this section, we study cohomological properties for almost-Kähler structures, in connection with a Lefschetz-
type property, Theorem 2.35, and we describe some explicit examples.

The results in this section have been obtained in a joint work with A. Tomassini and W. Zhang, [ATZ12].
Let X be a compact 2n-dimensional manifold endowed with an almost-Kähler structure (J, ω, g), that is, J is

an almost-complex structure on X and g is a J-Hermitian metric whose associated (1, 1)-form ω := g (J ·, ··) ∈
∧1,1X ∩ ∧2X is d-closed.

Firstly, we recall the following result on decomposition in cohomology for almost-Kähler manifolds, proven by
T. Drǎghici, T.-J. Li, and W. Zhang in [DLZ10] and, in a different way, by A. Fino and A. Tomassini in [FT10].



76 Cohomology of almost-complex manifolds

Proposition 2.33 ([DLZ10, Proposition 2.8], [FT10, Proposition 3.2]). Let X be a compact manifold and let
(J, ω, g) be an almost-Kähler structure on X. Then J is C∞-pure.

Hence, one is brought to study the C∞-fullness of almost-Kähler structures.

Note that ω is in particular a symplectic form on X. We recall that, given a compact 2n-dimensional manifold
X endowed with a symplectic form ω, and fixed k ∈ N, the Lefschetz-type operator on (n− k)-forms associated
with ω is the operator

Lk :=: Lkω : ∧n−k X → ∧n+kX , Lk(α) := ωk ∧ α
(see §0.2 for notations concerning symplectic structures); since dω = 0, the map Lk : ∧n−k X → ∧n+kX induces
a map in cohomology, namely,

Lk : Hn−k
dR (X;R)→ Hn+k

dR (X;R) , Lk (a) :=
[
ωk
]
^ a ,

Initially motivated by studying, in [Zha11], Taubes currents, which have been introduced by C. H. Taubes in
[Tau11] in order to study S. K. Donaldson’s “tamed to compatible” question, [Don06, Question 2], W. Zhang
considered the following Lefschetz-type property, see also [DLZ12, §2.2].

Definition 2.34. Let X be a compact 2n-dimensional manifold endowed with an almost-complex structure J
and with a J-Hermitian metric g; denote by ω the (1, 1)-form associated to g. One says that the Lefschetz-type
property (on 2-forms) holds on X if

Ln−2
ω : ∧2 X → ∧2n−2X

takes g-harmonic 2-forms to g-harmonic (2n− 2)-forms.

Since the map Lk : ∧n−k X → ∧n+kX is an isomorphism for every k ∈ N, [Yan96, Corollary 2.7], it follows
that the Lefschetz-type property on 2-forms is stronger than the Hard Lefschetz Condition on 2-classes, namely,
the property that [ω]n−2

^ · : H2
dR(X;R)→ H2n−2

dR (X;R) is an isomorphism.

In order to study the relation between the Lefschetz-type property on 2-forms and the C∞-fullness, we prove
here the following result, [ATZ12, Theorem 2.3], which states that the Lefschetz-type property on 2-forms is
satisfied provided that the almost-Kähler structure admits a basis of pure type harmonic representatives for the
second de Rham cohomology group. (Recall that A. Fino and A. Tomassini proved in [FT10, Theorem 3.7] that
an almost-Kähler manifold admitting a basis of harmonic 2-forms of pure type with respect to the almost-complex
structure is C∞-pure-and-full and pure-and-full; they also described several examples of non-Kähler solvmanifolds
satisfying the above assumption, [FT10, §5, §6].)

Theorem 2.35. Let X be a compact manifold endowed with an almost-Kähler structure (J, ω, g). Suppose that
there exists a basis of H2

dR(X;R) represented by g-harmonic 2-forms which are of pure type with respect to J .
Then the Lefschetz-type property on 2-forms holds on X.

Proof. We recall that, on a compact 2n-dimensional symplectic manifold, using the symplectic form ω instead of a
Riemannian metric and miming the Hodge theory for Riemannian manifolds, one can define a symplectic-?-operator
?ω : ∧• X → ∧2n−•X such that α ∧ ?ωβ =

(
ω−1)k (α, β) ωn

n! for every α, β ∈ ∧kX, see [Bry88, §2]. (See §0.2 for
further details on symplectic structures, and see §3.1.1 for definitions and results concerning the Hodge theory
for symplectic manifolds.) In particular, on a compact manifold X endowed with an almost-Kähler structure
(J, ω, g), the Hodge-∗-operator ∗g and the symplectic-?-operator ?ω are related by

?ω = ∗g J ,

see [Bry88, Theorem 2.4.1, Remark 2.4.4]. Therefore, for forms of pure type with respect to J , the properties
of being g-harmonic and of being ω-symplectically-harmonic (that is, both d-closed and dΛ-closed, where dΛ is
the symplectic co-differential operator, which is defined, for every k ∈ N, as dΛb∧kX := (−1)k+1

?ω d ?ω) are
equivalent. The statement follows noting that

[d, L] = 0 and
[
dΛ, L

]
= −d ,

see, e.g., [Yan96, Lemma 1.2]: hence L sends ω-symplectically-harmonic 2-forms (of pure type with respect to J)
to ω-symplectically-harmonic (2n− 2)-forms (of pure type with respect to J).

Remark 2.36. Note that, if X is a compact 2n-dimensional manifold endowed with an almost-Kähler structure
(J, ω, g) satisfying the Lefschetz-type property on 2-forms and J is C∞-full, then J is C∞-pure-and-full and
pure-and-full, too, [ATZ12, Remark 2.4].
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Indeed, we have already noticed that J is C∞-pure by [DLZ10, Proposition 2.8] or [FT10, Proposition 3.2].
Moreover, since J is C∞-full, J is also pure by [LZ09, Proposition 2.5]. We recall now the argument in [FT10,
Theorem 4.1] to prove that J is also full. Firstly, note that if the Lefschetz-type property on 2-forms holds, then[
ωn−2]^ · : H2

dR (X;R)→ H2n−2
dR (X;R) is an isomorphism. Therefore, we get that

H2n−2
dR (X;R) = H

(n,n−2),(n−2,n)
J (X;R) +H

(n−1,n−1)
J (X;R) ;

indeed, (following the argument in [FT10, Theorem 4.1],) since
[
ωn−2] ^ · : H2

dR(X;R) → H2n−2
dR (X;R) is in

particular surjective, we have

H2n−2
dR (X;R) =

[
ωn−2]^ H2

dR(X;R)

=
[
ωn−2]^

(
H

(2,0),(0,2)
J (X;R)⊕H(1,1)

J (X;R)
)

⊆ H
(n,n−2),(n−2,n)
J (X;R) +H

(n−1,n−1)
J (X;R) ,

yielding the above decomposition of H2n−2
dR (X;R). Then, it follows that J is also full by Theorem 2.10.

We describe here some examples, from [ATZ12], of almost-Kähler manifolds, studying Lefschetz-type property
and C∞-fullness on them.

In the following example, we give a family of C∞-full almost-Kähler manifolds satisfying the Lefschetz-type
property on 2-forms, [ATZ12, §2.2].

Example 2.37. A family of C∞-full almost-Kähler manifolds satisfying the Lefschetz-type property on 2-forms.
Consider the 6-dimensional Lie algebra

h7 :=
(
03, 23, 13, 12

)
.

By Mal’tsev’s theorem [Mal49, Theorem 7], the connected simply-connected Lie group G associated with h7
admits a discrete co-compact subgroup Γ: let N := Γ\G be the nilmanifold obtained as a quotient of G by Γ.
Note that N is not formal by K. Hasegawa’s theorem [Has89, Theorem 1, Corollary].

Fix α > 1 and consider the G-left-invariant symplectic form ωα on N defined by

ωα := e14 + α · e25 + (α− 1) · e36 .

Consider the left-invariant almost-complex structure J on N defined by

Jα e1 := e4 , Jα e2 := α e5 , Jα e3 := (α− 1) e6 ,

Jα e4 := −e1 , Jα e5 := − 1
α e2 , Jα e6 := − 1

α−1 e3 ,

where {e1, . . . , e6} denotes the global dual frame of the G-left-invariant co-frame {e1, . . . , e6} associated to the
structure equations.

Finally, define the G-left-invariant symmetric tensor

gα(·, ··) := ωα (·, Jα··) .

It is straightforward to check that {(Jα, ωα, gα)}α>1 is a family of G-left-invariant almost-Kähler structures
on N ; moreover, setting

E1
α := e1 , E2

α := α e2 , E3
α := (α− 1) e3 ,

E4
α := e4 , E5

α := e5 , E6
α := e6 ,

we get the G-left-invariant gα-orthonormal co-frame
{
E1
α, . . . , E

6
α

}
on N . The structure equations with respect

to the co-frame
{
E1
α, . . . , E

6
α

}
read as follows:





dE1
α = 0

dE2
α = 0

dE3
α = 0

dE4
α = 1

α(α−1) E
23
α

dE5
α = 1

α−1 E
13
α

dE6
α = 1

α E
12
α

.
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Then
ϕ1
α := E1

α + iE4
α , ϕ2

α := E2
α + iE5

α , ϕ3
α := E3

α + iE6
α

are (1, 0)-forms for the almost-complex structure Jα, and

ωα = E1
α ∧ E4

α + E2
α ∧ E5

α + E3
α ∧ E6

α .

By K. Nomizu’s theorem [Nom54, Theorem 1], the de Rham cohomology of N is straightforwardly computed:

H2
dR(N ;R) = R

〈
E15
α , E

16
α , E

24
α , E

26
α , E

34
α , E

35
α , E

14
α + 1

α
E25
α ,

1
α
E25
α + 1

α− 1 E
36
α

〉

= R
〈

i αϕ11̄
α + i ϕ22̄

α , i (α− 1)ϕ22̄
α + i αϕ33̄

α , Imϕ
12̄
α , Imϕ

13̄
α , Imϕ

32̄
α

〉

⊕
〈
Imϕ12

α , Imϕ
13
α , Imϕ

23
α

〉
.

Note that the gα-harmonic representatives of the above basis of H2
dR(N ;R) are of pure type with respect to Jα:

hence, the almost-complex structure Jα is C∞-pure-and-full and pure-and-full by [FT10, Theorem 3.7]; furthermore,
by Theorem 2.35, the Lefschetz-type property on 2-forms holds on N endowed with the almost-Kähler structure
(Jα, ωα, gα), where α > 1. Moreover, we get

h+
Jα

(N) = 5 , h−Jα(N) = 3 .

On the other hand, one can explicitly note that

LωαE
15
α = E1536

α = ∗gα E24
α ,

LωαE
16
α = E1625

α = ∗gα E34
α ,

LωαE
24
α = E2436

α = ∗gα E15
α ,

LωαE
26
α = E2614

α = ∗gα E35
α ,

LωαE
34
α = E3425

α = ∗gα E16
α ,

LωαE
35
α = E3514

α = ∗gα E26
α ,

and
d ∗gα Lωα

(
E14
α + 1

α
E25
α

)
= d

(
−α+ 1

α
E36
α − E25

α −
1
α
E14
α

)
= 0 ,

and
d ∗gα Lωα

(
e25 + e36) = 0 ;

this proves explicitly that the the Lefschetz-type property on 2-forms holds on N endowed with the almost-Kähler
structure (Jα, ωα, gα), where α > 1.

Note that, while ωα ∧ · : ∧2 N → ∧4N induces an isomorphism [ωα] ^ · : H2
dR(N ;R) '→ H4

dR(N ;R) in
cohomology, the map [ωα]2 ^ · : H1

dR(N ;R)→ H5
dR(N ;R) is not an isomorphism, according to [BG88, Theorem

A].
We show explicitly that the nilmanifold N is not formal, without using K. Hasegawa’s theorem [Has89,

Theorem 1, Corollary]. By [DGMS75, Corollary 1], every Massey product on a formal manifold is zero. Since
[
E1
α

]
^
[
E3
α

]
= (α− 1)

[
dE5

α

]
= 0 and

[
E3
α

]
^
[
E2
α

]
= −α (α− 1)

[
dE4

α

]
= 0 ,

the triple Massey product 〈
[E1
α], [E3

α], [E2
α]
〉

= − (α− 1)
[
E25
α + αE14

α

]

is not zero, and hence N is not formal.

Summarizing, we state the following result, [ATZ12, Proposition 2.5].

Proposition 2.38. There exists a non-formal 6-dimensional nilmanifold endowed with an 1-parameter family
{(Jα, ωα, gα)}α>1 of left-invariant almost-Kähler structures, such that Jα is C∞-pure-and-full and pure-and-full,
and for which the Lefschetz-type property on 2-forms holds.

In the following example, we give a C∞-pure-and-full almost-Kähler structure on the completely-solvable
Nakamura manifold, [ATZ12, §3].
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Example 2.39. A C∞-pure-and-full almost-Kähler structure on the completely-solvable Nakamura manifold.
Firstly, we recall the construction of the completely-solvable Nakamura manifold: it is a completely-solvable
solvmanifold diffeomorphic to the Nakamura manifold studied by I. Nakamura in [Nak75, page 90], and it is an
example of a cohomologically-Kähler non-Kähler manifold, [dAFdLM92], [FMS03, Example 3.1], [dBT06, §3].

Take A ∈ SL(2;Z) with two different real positive eigenvalues eλ and e−λ with λ > 0, and fix P ∈ GL(2;R)
such that PAP−1 = diag

(
eλ, e−λ

)
. For example, take

A :=
(

2 1
1 1

)
, and P :=

(
1−
√

5
2 1
1

√
5−1
2

)
,

and consequently λ = log 3+
√

5
2 .

Let M6 :=: M6(λ) be the 6-dimensional completely-solvable solvmanifold

M6 := S1
x2 ×

Rx1 × T2
C, (x3, x4, x5, x6)

〈T1〉

where T2
C is the 2-dimensional complex torus

T2
C := C2

PZ [i]2

and T1 acts on R× T2
C as

T1
(
x1, x3, x4, x5, x6) :=

(
x1 + λ, e−λ x3, eλ x4, e−λ x5, eλ x6) .

Using coordinates x2 on S1, x1 on R and
(
x3, x4, x5, x6) on T2

C, we set

e1 := dx1 , e2 := dx2 ,

e3 := ex1 dx3 , e4 := e−x1 dx4 ,

e5 := ex1 dx5 , e6 := e−x1 dx6 .

as a basis for g∗, where g denotes the Lie algebra naturally associated toM6; therefore, with respect to {ei}i∈{1,...,6},
the structure equations are the following:





d e1 = 0
d e2 = 0
d e3 = e1 ∧ e3

d e4 = −e1 ∧ e4

d e5 = e1 ∧ e5

d e6 = −e1 ∧ e6

.

Let J be the almost-complex structure on M6 defined requiring that a co-frame for the space of complex
(1, 0)-forms is given by 




ϕ1 := 1
2
(
e1 + i e2)

ϕ2 := e3 + i e5

ϕ3 := e4 + i e6

.

It is straightforward to check that J is integrable.
Being M6 a compact quotient of a completely-solvable Lie group, one computes the de Rham cohomology of

M6 by A. Hattori’s theorem [Hat60, Corollary 4.2]:

H0
dR

(
M6;C

)
= C 〈1〉 ,

H1
dR

(
M6;C

)
= C

〈
ϕ1, ϕ̄1〉 ,

H2
dR

(
M6;C

)
= C

〈
ϕ11̄, ϕ23̄, ϕ32̄, ϕ23, ϕ2̄3̄

〉
,

H3
dR

(
M6;C

)
= C

〈
ϕ123̄, ϕ132̄, ϕ123, ϕ12̄3̄, ϕ21̄3̄, ϕ31̄2̄, ϕ231̄, ϕ1̄2̄3̄

〉
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(as usually, for the sake of clearness, we write, for example, ϕAB̄ in place of ϕA ∧ ϕ̄B, and we list the harmonic
representatives with respect to the metric g :=

∑3
j=1 ϕ

j � ϕ̄j instead of their classes). Therefore, [FMS03,
Proposition 3.2]: (i) M6 is geometrically formal, that is, the product of g-harmonic forms is still g-harmonic, and
therefore it is formal; (ii) furthermore,

ω := e12 + e34 + e56

is a symplectic form on M6 satisfying the Hard Lefschetz Condition.
Note also that ω̃ := i

2

(
ϕ11̄ + ϕ22̄ + ϕ33̄

)
is not closed but d ω̃2 = 0, from which it follows that the manifold

M6 admits a balanced metric.
Since M6 is a compact quotient of a completely-solvable Lie group, by K. Hasegawa’s theorem [Has06, Main

Theorem], the manifold M6, endowed with any integrable almost-complex structure (e.g., the J defined above),
admits no Kähler structure, and it is not in class C of Fujiki, see also [FMS03, Theorem 3.3].

Therefore, we consider the (non-integrable) almost-complex structure J ′ defined by

J ′ e1 := −e2 , J ′ e3 := −e4 , J ′ e5 := −e6 .

Set 



ψ1 := 1
2
(
e1 + i e2)

ψ2 := e3 + i e4

ψ3 := e5 + i e6

as a co-frame for the space of (1, 0)-forms on M6 with respect to J ′; the structure equations with respect to this
co-frame are 




dψ1 = 0

dψ2 = ψ12̄ + ψ1̄2̄

dψ3 = ψ13̄ + ψ1̄3̄

,

from which it is clear that J ′ is not integrable.
The J ′-compatible 2-form

ω′ := e12 + e34 + e56

is d-closed; hence (J ′, ω′) is an almost-Kähler structure on M6.
Moreover, as already remarked, using A. Hattori’s theorem [Hat60, Corollary 4.2], one gets

H2
dR

(
M6;R

)
= R

〈
e12, e34, e56, −e36 + e45, e36 + e45〉

= R
〈

iψ11̄, iψ22̄, iψ33̄, i
(
ψ23̄ + ψ32̄

)〉

︸ ︷︷ ︸
⊆H+

J′ (M
6)

⊕R
〈

i
(
ψ23 − ψ2̄3̄

)〉

︸ ︷︷ ︸
⊆H−

J′ (M
6)

,

where we have listed the harmonic representatives with respect to the metric g′ :=
∑6
j=1 e

j � ej instead of
their classes; note that the above g′-harmonic representatives are of pure type with respect to J ′. Therefore,
J ′ is obviously C∞-full; it is also C∞-pure by [FT10, Proposition 3.2], or [DLZ10, Proposition 2.8]. Moreover,
since any cohomology class in H+

J′
(
M6), respectively in H−J′

(
M6), has a d-closed g′-harmonic representative in

∧1,1
J′ M

6 ∩ ∧2M6, respectively in
(
∧2,0
J′ M

6 ⊕ ∧0,2
J′ M

6
)
∩ ∧2M6, then J ′ is also pure-and-full, by [FT10, Theorem

3.7], and the Lefschetz-type property on 2-forms holds, by Theorem 2.35.
One can explicitly check that the Lefschetz-type operator

Lω′ : ∧2 M6 → ∧4M6

takes g′-harmonic 2-forms to g′-harmonic 4-forms, since

Lω′ e
12 = e1234 + e1256 = ∗g′

(
e34 + e56) ,

Lω′ e
34 = e1234 + e3456 = ∗g′

(
e12 + e56) ,

Lω′ e
56 = e1256 + e3456 = ∗g′

(
e12 + e34) ,

Lω′ e
36 = e1236 = ∗g′ e45 ,

Lω′ e
45 = e1245 = ∗g′ e36 .

Summarizing, the content of the last example yields the following result, [ATZ12, Proposition 3.3].
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Proposition 2.40. The completely-solvable Nakamura manifold M6 admits
• both a C∞-pure-and-full and pure-and-full complex structure J , and

• a C∞-pure-and-full and pure-and-full almost-Kähler structure (J ′, ω′, g′), for which the Lefschetz-type
property on 2-forms holds.

Finally, in the following example, we give a non-C∞-full almost-Kähler structure, [ATZ12, §4]. In particular,
this provides another strong difference between the (non-integrable) almost-Kähler case and the (integrable)
Kähler case, all the compact Kähler manifolds being C∞-pure-and-full by [DLZ10, Lemma 2.15, Theorem 2.16],
or [LZ09, Proposition 2.1].
Example 2.41. An almost-Kähler non-C∞-full structure for which the Lefschetz-type property on 2-forms does
not hold.
Consider the Iwasawa manifold I3 := H (3;Z [i])\H(3;C), see §1.4.1. Recall that, given the standard complex
structure induced by the one on C3 and setting

{
ϕ1, ϕ2, ϕ3} as a global co-frame for the (1, 0)-forms on I3, by K.

Nomizu’s theorem [Nom54, Theorem 1] one gets

H2
dR (I3;C) = R

〈
ϕ13 + ϕ1̄3̄, i

(
ϕ13 − ϕ1̄3̄

)
, ϕ23 + ϕ2̄3̄, i

(
ϕ23 − ϕ2̄3̄

)
, ϕ12̄ − ϕ21̄,

i
(
ϕ12̄ + ϕ21̄

)
, iϕ11̄, iϕ22̄

〉
⊗R C ,

where we have listed the harmonic representatives with respect to the metric g :=
∑3
h=1 ϕ

h � ϕ̄h instead of their
classes. Using the co-frame

{
e1, . . . , e6} of the cotangent bundle defined by

ϕ1 =: e1 + i e2 , ϕ2 =: e3 + i e4 , ϕ3 =: e5 + i e6 ,

one computes the structure equations

d e1 = d e2 = d e3 = d e4 = 0 , d e5 = −e13 + e24 , d e6 = −e14 − e23 .

Therefore

H2
dR (I3;R) = R

〈
e15 − e26, e16 + e25, e35 − e46, e36 + e45, e13 + e24, e23 − e14, e12, e34〉 .

Consider the almost-complex structure J on X defined by

J e1 := −e6 , J e2 := −e5 , J e3 := −e4 ,

and set
ω := e16 + e25 + e34 .

Then (J, ω, g) is an almost-Kähler structure on the Iwasawa manifold I3. We easily get that

R
〈
e16 + e25,

(
e35 − e46)+

(
e13 + e24) ,

(
e36 + e45)−

(
e23 − e14) , e34〉 ⊆ H+

J (I3)

and
R
〈
e15 − e26,

(
e35 − e46)−

(
e13 + e24) ,

(
e36 + e45)+

(
e23 − e14)〉 ⊆ H−J (I3) .

We claim that the previous inclusions are actually equalities, and in particular that J is a non-C∞-full
almost-Kähler structure on I3. Indeed, we firstly note that, by [FT10, Proposition 3.2] or [DLZ10, Proposition
2.8], J is C∞-pure, since it admits a symplectic structure compatible with it. Moreover, we recall that a C∞-full
almost-complex structure is also pure by [LZ09, Proposition 2.5], and therefore it is also C∞-pure at the 4th stage,
by Theorem 2.10, that is,

H
(3,1),(1,3)
J (I3;R) ∩H(2,2)

J (I3;R) = {0} .
Therefore, our claim reduces to prove that J is not C∞-pure at the 4th stage. Note that

0 6=
[
e3456] =

[
e3456 − d e135] =

[
e3456 + e1234]

=
[
e3456 + d e135] =

[
e3456 − e1234] ,

and that e3456 + e1234 ∈
(
∧3,1
J I3 ⊕ ∧1,3

J I3
)
∩ ∧4I3, while e3456 − e1234 ∈ ∧2,2

J I3 ∩ ∧4I3, and so H(3,1),(1,3)
J (I3;R) ∩

H
(2,2)
J (I3;R) 3

[
e3456], therefore J is not C∞-pure at the 4th stage, and hence it is not C∞-full.

Let Lω be the Lefschetz-type operator associated to the almost-Kähler structure (J, ω, g). Then, we have

Lω
(
e12) = e1234 = d

(
e245) ,

namely, Lω does not take g-harmonic 2-forms to g-harmonic 4-forms.
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The previous example proves the following result, [ATZ12, Proposition 4.1].

Proposition 2.42. The differentiable manifold X underlying the Iwasawa manifold I3 := H (3;Z [i])\H(3;C)
admits an almost-Kähler structure (J, ω, g) which is C∞-pure and non-C∞-full, and for which the Lefschetz-type
property on 2-forms does not hold.

The argument of the proof of [DLZ10, Theorem 2.3] suggests the following question, [ATZ12, Question 3.4],
compare also [DLZ12, §2], in accordance with Proposition 2.42.
Question 2.43. Let X be a compact 2n-dimensional manifold endowed with an almost-Kähler structure (J, ω, g)
such that the Lefschetz-type property on 2-forms holds. Is J C∞-full?

2.3 C∞-pure-and-fullness and deformations of (almost-)complex struc-
tures

In this section, we are interested in studying the behaviour of the cohomological decomposition of the de Rham
cohomology of an (almost-)complex manifold under small deformations of the complex structure and along curves
of almost-complex structures.

More precisely, we prove that being C∞-pure-and-full is not a stable property under small deformations of the
complex structure, Theorem 2.49, as a consequence of the study of the C∞-pure-and-fullness for small deformations
of the Iwasawa manifold, Theorem 2.49. Then we study some explicit examples of curves of almost-complex
structures on compact manifolds: by using a construction introduced by J. Lee, [Lee04, §1], we construct a curve
of almost-complex structures along which the property of being C∞-pure-and-full remains satisfied, Theorem 2.53.
In §2.3.2, we provide counterexamples to the upper-semi-continuity of t 7→ H−Jt(X), Proposition 2.55, and to the
lower-semi-continuity of t 7→ H+

Jt
(X), Proposition 2.56, where {Jt}t is a curve of almost-complex structures on a

compact manifold X of dimension greater than 4; we also study a stronger semi-continuity problem, §2.3.2.
The results in this section have been obtained in joint work with A. Tomassini, [AT11, AT12a].

2.3.1 Deformations of C∞-pure-and-full almost-complex structures
In this section, we consider the problem of the stability of the C∞-pure-and-fullness under small deformations of
the complex structure and along curves of almost-complex structures.

Instability of C∞-pure-and-full property
We recall that a property concerning compact complex (respectively, almost-complex) manifolds (e.g., admitting
Kähler metrics, admitting balanced metrics, satisfying the ∂∂-Lemma, admitting compatible symplectic structures)
is called stable under small deformations of the complex (respectively, almost-complex) structure if, for every
complex-analytic family {Xt :=: (X, Jt)}t∈B of compact complex manifolds (respectively, for every smooth curve
{Jt}t∈B of almost-complex structures on a compact differentiable manifold X), whenever the property holds for
(X, Jt) for some t ∈ B, it holds also for (X, Js) for any s in a neighbourhood of t in B.

The main result in the context of stability under small deformations of the complex structure is the following
classical theorem by K. Kodaira and D. C. Spencer, [KS60], which actually holds for differentiable families of
compact complex manifolds.

Theorem 2.44 ([KS60, Theorem 15]). For a compact manifold, admitting a Kähler structure is a stable property
under small deformations of the complex structure.

Remark 2.45. Conditions under which the property of admitting a balanced metric is stable under small
deformations of the complex structure have been studied by C.-C. Wu [Wu06, §5], and by J. Fu and S.-T. Yau
[FY11].

Note that, by [DLZ11, Theorem 5.4], see also [Don06], on compact almost-complex manifolds of dimension 4,
the property of admitting an almost-Kähler structure is stable under small deformations of the almost-complex
structure. This result stands on the very special properties of 4-dimensional manifolds, and does not hold true in
higher dimension. More precisely, we provide here an explicit example, in dimension 6, showing that, relaxing the
integrability condition in the previous theorem (namely, starting with an almost-Kähler structure), we lose the
stability under small deformations of the almost-complex structure.
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Example 2.46. A curve {Jt}t of almost-complex structures on a compact 6-dimensional manifold such that J0
admits an almost-Kähler structure and Jt, for t 6= 0, admits no almost-Kähler structure.
For c ∈ R, consider the completely-solvable Lie group

Sol(3)(x1,y1,z1) :=








ec z1
x1

e−c z1
y1

1 z1

1


 ∈ GL(4; R) : x1, y1, z1 ∈ R





.

Choose a suitable c ∈ R, for which there exists a co-compact discrete subgroup Γ(c) ⊂ Sol(3) such that

M(c)(x1,y1,z1) := Γ(c)
∖

Sol(3)(x1,y1,z1)

is a compact 3-dimensional completely-solvable solvmanifold, [AGH63, §3].
The manifold

N6(c) := M(c)(x1,y1,z1) × M(c)(x2,y2,z2) .

is cohomologically-Kähler, see [BG90, Example 1], is formal and has a symplectic structure satisfying the Hard
Lefschetz Condition, but it admits no Kähler structure, see [FMS03, Theorem 3.5].

Consider
{
ei
}
i∈{1,...,6} as a (Sol(3)× Sol(3))-left-invariant co-frame for N6(c), where

e1 := e−c z
1

dx1, e2 := e−c z1 d y1, e3 := d z1,

e4 := e−c z
2

dx2, e5 := e−c z2 d y2, e6 := d z2;

with respect to it, the structure equations are




d e1 = c e1 ∧ e3

d e2 = −c e2 ∧ e3

d e3 = 0
d e4 = c e4 ∧ e6

d e5 = −c e5 ∧ e6

d e6 = 0

.

By A. Hattori’s theorem [Hat60, Corollary 4.2], it is straightforward to compute

H2
dR

(
N6(c);R

)
= R

〈
e1 ∧ e2, e3 ∧ e6, e4 ∧ e5〉 ,

hence the space of (Sol(3)× Sol(3))-left-invariant d-closed 2-forms is

R
〈
e12, e36, e45〉⊕ R

〈
e13, e23, e45, e46〉

(where, as usually, we shorten eAB := eA ∧ eB).
Let J0 ∈ End

(
TN6(c)

)
be the almost-complex structure given, with respect to the frame {e1, . . . , e6} dual to{

e1, . . . , e6}, by

J0 :=




−1
1

−1
−1

1
1



∈ End

(
TN6(c)

)
.

It is straightforward to check that J0 admits almost-Kähler structures: more precisely, the cone KcJ0, inv of
(Sol(3)× Sol(3))-left-invariant almost-Kähler structures on

(
N6(c), J0

)
is

KcJ0, inv =
{
α e1 ∧ e2 + β e3 ∧ e6 + γ e4 ∧ e5 : α, β, γ > 0

}
.

Take now

L :=




0 0 1 0 0 0
0 0 0 0 0 −1
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0



∈ End

(
TN6(c)

)
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and define, for t ∈ R, the almost-complex structure

Jt :=
(
idTN6(c)−t L

)
J0
(
idTN6(c)−t L

)−1 =




1 2 t2 −2 t
−1 −2 t −2 t2

−2 t 1
1

−1
−1 −2 t



∈ End

(
T ∗N6(c)

)
.

We first prove that Jt admits no (Sol(3)× Sol(3))-left-invariant almost-Kähler structure for t 6= 0. Indeed, for
t 6= 0, the space of (Sol(3)× Sol(3))-left-invariant d-closed Jt-invariant 2-forms is

R
〈
e36 + 2t e46, e45〉

and (
β e3 ∧ e6 + γ e4 ∧ e5 + 2t β e4 ∧ e6)3 = 0 for every β, γ ∈ R ,

hence
KcJt, inv = ∅ for t 6= 0 .

Now, using F. A. Belgun’s symmetrization trick, [Bel00, Theorem 7], we get that, if Jt admits an almost-Kähler
structure ω, then it should admits a (Sol(3)× Sol(3))-left-invariant almost-Kähler structure

µ(ω) :=
∫

N6(c)
ωbm η(m) ,

where η is a (Sol(3)× Sol(3))-bi-invariant volume form on N6(c), whose existence is guaranteed by [Mil76, Lemma
6.2].

We resume the content of the previous example in the following result.

Theorem 2.47. Being almost-Kähler is not a stable property along curves of almost-complex structures.

In view of K. Kodaira and D. C. Spencer’s theorem [KS60, Theorem 15], a natural question in non-Kähler
geometry is what properties, weaker that the property of being Kähler, still remain stable under small deformations
of the complex structure. This does not hold true, for example, for the balanced property, as proven in [AB90,
Proposition 4.1] by L. Alessandrini and G. Bassanelli; on the other hand, the cohomological property of satisfying
the ∂∂-Lemma is stable under small deformations of the complex structure, as we have seen in Corollary 1.28, see
also [Voi02, Proposition 9.21], or [Wu06, Theorem 5.12], or [Tom08, §B]. We show now that the cohomological
property of C∞-pure-and-fullness turns out to be non-stable under small deformations of the complex structure,
[AT11, Theorem 3.2].

Theorem 2.48. The properties of being C∞-pure-and-full, or C∞-pure, or C∞-full, or pure-and-full, or pure, or
full are not stable under small deformations of the complex structure.

The proof of Theorem 2.48 follows studying explicitly C∞-pure-and-fullness for small deformations of the
standard complex structure on the Iwasawa manifold I3, [AT11, Theorem 3.1]. (We refer to §1.4.1 for notations
and results concerning the Iwasawa manifold and its Kuranishi space; we recall here that I3 is a holomorphically
parallelizable nilmanifold of complex dimension 3, and its Kuranishi space is smooth and depends on 6 effective
parameters; the small deformations of I3 can be divided into three classes, (i), (ii), and (iii), according to their
Hodge numbers; in particular, the Hodge numbers of the small deformations in class (i) are equal to the Hodge
numbers of I3.)

Theorem 2.49. Let I3 := H (3;Z [i])\H(3;C) be the Iwasawa manifold, endowed with the complex structure
inherited by the standard complex structure on C3, and consider the small deformations in its Kuranishi space.
Then:

• the natural complex structure on I3 is C∞-pure-and-full at every stage and pure-and-full at every stage;

• the small deformations in class (i) are C∞-pure-and-full at every stage and pure-and-full at every stage;

• the small deformations in classes (ii) and (iii) are neither C∞-pure nor C∞-full nor pure nor full.
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Proof. We follow the notation introduced in §1.4.1; in particular, we recall that the structure equations with
respect to a certain co-frame

{
ϕ1

t , ϕ
2
t , ϕ

3
t
}
of the space of (1, 0)-forms on Xt :=: (I3, Jt), for t ∈ ∆(0, ε) ⊂ C6

with ε > 0 small enough, are the following:




dϕ1
t = 0

dϕ2
t = 0

dϕ3
t = σ12 ϕ

1
t ∧ ϕ2

t + σ11̄ ϕ
1
t ∧ ϕ̄1

t + σ12̄ ϕ
1
t ∧ ϕ̄2

t + σ21̄ ϕ
2
t ∧ ϕ̄1

t + σ22̄ ϕ
2
t ∧ ϕ̄2

t

,

where σ12, σ11̄, σ12̄, σ21̄, σ22̄ ∈ C are complex numbers depending just on t. The asymptotic behaviour of σ12,
σ11̄, σ12̄, σ21̄, and σ22̄ for t near 0 is the following, see §1.4.1:





σ12 = −1 + o (|t|)
σ11̄ = t21 + o (|t|)
σ12̄ = t22 + o (|t|)
σ21̄ = −t11 + o (|t|)
σ22̄ = −t12 + o (|t|)

;

more precisely, for t in class (i), respectively class (ii), we actually have




σ12 = −1
σ11̄ = 0
σ12̄ = 0
σ21̄ = 0
σ22̄ = 0

for t ∈ class (i) ,

and 



σ12 = −1 + o (|t|)
σ11̄ = t21 (1 + o (1))
σ12̄ = t22 (1 + o (1))
σ21̄ = −t11 (1 + o (1))
σ22̄ = −t12 (1 + o (1))

for t ∈ class (ii) .

By K. Nomizu’s theorem [Nom54, Theorem 1], one computes straightforwardly the de Rham cohomology of I3
and of its small deformations; for the sake of clearness, we recall in the following table a basis of the space of the
harmonic representatives of the de Rham cohomology classes with respect to the metric g0 :=

∑3
j=1 ϕ

j
0 � ϕ̄j0.

k K g0-harmonic representatives of HkdR (I3;K)

1 C ϕ1, ϕ2, ϕ̄1, ϕ̄2

R ϕ1 + ϕ̄1, i
(
ϕ1 − ϕ̄1

)
, ϕ2 + ϕ̄2, i

(
ϕ2 − ϕ̄2

)

2 C ϕ13, ϕ23, ϕ11̄, ϕ12̄, ϕ21̄, ϕ22̄, ϕ1̄3̄, ϕ2̄3̄

R ϕ13 + ϕ1̄3̄, i
(
ϕ13 − ϕ1̄3̄

)
, ϕ23 + ϕ2̄3̄, i

(
ϕ23 − ϕ2̄3̄

)
, ϕ12̄ − ϕ21̄, i

(
ϕ12̄ + ϕ21̄

)
, iϕ11̄, iϕ22̄

3 C ϕ123, ϕ131̄, ϕ132̄, ϕ231̄, ϕ232̄, ϕ11̄3̄, ϕ12̄3̄, ϕ21̄3̄, ϕ22̄3̄, ϕ1̄2̄3̄

R ϕ123 + ϕ1̄2̄3̄, i
(
ϕ123 − ϕ1̄2̄3̄

)
, ϕ131̄ + ϕ11̄3̄, i

(
ϕ131̄ − ϕ11̄3̄

)
, ϕ132̄ + ϕ21̄3̄, i

(
ϕ132̄ − ϕ21̄3̄

)
,

ϕ231̄ + ϕ12̄3̄, i
(
ϕ231̄ − ϕ12̄3̄

)
, ϕ232̄ + ϕ22̄3̄, i

(
ϕ232̄ − ϕ22̄3̄

)

4 C ϕ1231̄, ϕ1232̄, ϕ131̄3̄, ϕ132̄3̄, ϕ231̄3̄, ϕ232̄3̄, ϕ11̄2̄3̄, ϕ21̄2̄3̄

R ϕ1231̄ − ϕ11̄2̄3̄, i
(
ϕ1231̄ + ϕ11̄2̄3̄

)
, ϕ1232̄ − ϕ21̄2̄3̄, i

(
ϕ1232̄ + ϕ21̄2̄3̄

)
, ϕ131̄3̄, ϕ132̄3̄ + ϕ231̄3̄, i

(
ϕ132̄3̄ − ϕ231̄3̄

)
, ϕ232̄3̄

5 C ϕ1231̄3̄, ϕ1232̄3̄, ϕ131̄2̄3̄, ϕ231̄2̄3̄

R ϕ1231̄3̄ + ϕ131̄2̄3̄, i
(
ϕ1231̄3̄ − ϕ131̄2̄3̄

)
, ϕ1232̄3̄ + ϕ231̄2̄3̄, i

(
ϕ1232̄3̄ − ϕ231̄2̄3̄

)
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Note that the above harmonic representatives of the classes in H•dR (I3;R) are of pure type with respect to J0
and to Jt with t in class (i): hence, by Theorem 2.10 (or arguing as in [FT10, Theorem 3.7]), one gets that I3
and its small deformations in class (i) are C∞-pure-and-full at every stage and pure-and-full at every stage.

Concerning small deformations Jt in class (ii) and in class (iii), using the asymptotic behaviour of the structure
equations, we obtain that

[
σ12 ϕ

12
t
]

=
[
σ11̄ ϕ

11̄
t + σ12̄ ϕ

12̄
t + σ21̄ ϕ

21̄
t + σ22̄ ϕ

22̄
t

]
6= 0

in H2
dR (I3;C). Therefore

H
(1,1)
Jt

(I3;C) ∩
(
H

(2,0)
Jt

(I3;C) +H
(0,2)
Jt

(I3;C)
)
6= {0} ,

and in particular Jt is not complex-C∞-pure. It follows from Remark 2.5 that Jt cannot be C∞-pure; from [LZ09,
Proposition 2.30], or Theorem 2.10, it follows that Jt cannot be full.

To prove that small deformations in class (ii) and in class (iii) are non-pure and non-C∞-full, fix t small
enough and choose two positive complex numbers A :=: A (t) ∈ C and B :=: B (t) ∈ C, depending just on t, such
that

(Aσ12̄ −B σ11̄, A σ22̄ −B σ21̄) 6= (0, 0) ;

computing −d
(
Aϕ133̄

t +B ϕ233̄
t

)
, note that

[
(Aσ21̄ −B σ11̄)ϕ121̄3̄

t + (Aσ22̄ −B σ12̄)ϕ122̄3̄
t −A σ̄12ϕ

131̄2̄
t −B σ̄12ϕ

231̄2̄
t

]

=
[
(A σ̄12̄ −B σ̄11̄)ϕ1231̄

t + (A σ̄22̄ −B σ̄21̄)ϕ1232̄
t

]
6= 0 ,

in H4
dR (I3;C). As before, it follows that Jt is not C∞-pure at the 4th stage, and consequently it is neither pure

nor C∞-full, by Theorem 2.10.

Curves of C∞-pure-and-full almost-complex structures

We study here some explicit examples of curves of almost-complex structures on compact manifolds, along which
the property of being C∞-pure-and-full remains satisfied. The aim of this section is to better understand the
behaviour of C∞-pure-and-fullness along curves of almost-complex structures.

Firstly, we recall some general results concerning curves of almost-complex structures on compact manifolds,
referring, e.g., to [AL94].

Let J be an almost-complex structure on a compact 2n-dimensional manifold X. Every curve {Jt}t∈(−ε,ε)⊂R
of almost-complex structures on X such that J0 = J can be written, for ε > 0 small enough, as

Jt = (id −Lt) J (id −Lt)−1 ∈ End (TX) ,

where Lt ∈ End (TX), see, e.g., [AL94, Proposition 1.1.6]; the endomorphism Lt is uniquely determined further
requiring that Lt ∈ T 1,0

J X ⊗
(
T 0,1
J X

)∗
, namely,

Lt J + J Lt = 0 ;

furthermore, set Lt =: t L + o(t): if J is compatible with a symplectic form ω, then the curves consisting of
ω-compatible almost-complex structures Jt are exactly those ones for which Lt = L.

In [dBM10, Proposition 3.3], P. de Bartolomeis and F. Meylan computed d
d t
⌊
t=0 NijJ , getting a characterization

in terms of L of the curves of complex structures starting at a given integrable almost-complex structure J .
A. Fino and A. Tomassini, in [FT10, §6, §7], studied several examples of families of almost-complex structures

constructed in such a way. We provide here some further examples, starting with a curve of almost-complex
structures on the 4-dimensional torus, [AT11, pages 420–422].
Example 2.50. A curve of almost-complex structures through the standard Kähler structure on the 4-dimensional
torus.
Let (J0, ω0) be the standard Kähler structure on the 4-dimensional torus T4 with coordinates {xj}j∈{1,...,4}, that
is,

J0 :=




−1
−1

1
1


 ∈ End

(
TT4) and ω0 := dx1 ∧ dx3 + dx2 ∧ dx4 ∈ ∧2T4 .
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Set

L :=




`
0
−`

0


 ∈ End

(
TT4) ,

where ` ∈ C∞(T4; R), that is, ` ∈ C∞(R4; R) is a Z4-periodic function. For t ∈ (−ε, ε) with ε > 0 small enough,
define

Jt, ` := (id − t L) J0 (id − t L)−1 =




− 1− t `
1 + t `

−1
1 + t `
1− t `

1


 ∈ End

(
TT4) ,

obtaining a curve of ω0-compatible almost-complex structures on T4, see also Proposition 2.22. To simplify the
notation, set

α :=: α(t, `) := 1 − t `

1 + t `
.

A co-frame for the holomorphic cotangent bundle of T4 with respect to Jt, ` is given by
{

ϕ1
t,` := dx1 + i α dx3

ϕ2
t,` := dx2 + i dx4 ,

with respect to which we compute the structure equations
{

dϕ1
t,` = i dα ∧ dx3

dϕ2
t,` = 0

.

Note that, taking ` = `
(
x1, x3), the corresponding almost-complex structure Jt, ` is integrable, in fact, (Jt, `, ω0)

is a Kähler structure on T4. Recall that, T4 being 4-dimensional, Jt, ` is C∞-pure-and-full by [DLZ10, Theorem
2.3]. For the sake of simplicity, assume ` = `

(
x2) depending just on x2 and non-constant. Set

v1 := dx1 ∧ dx2 − α dx3 ∧ dx4 ,

v2 := dx1 ∧ dx4 − α dx2 ∧ dx3 ,

w1 := α dx1 ∧ dx3 ,

w2 := dx2 ∧ dx4 ,

w3 := dx1 ∧ dx2 + α dx3 ∧ dx4 ,

w4 := dx1 ∧ dx4 + α dx2 ∧ dx3 .

Using this notation, an arbitrary Jt, `-anti-invariant real 2-form ψ :=: Av1 + B v2, with A,B ∈ C∞
(
T4;R

)
, is

d-closed if and only if 



∂A
∂x3 − ∂B

∂x1 α = 0
∂A
∂x4 − ∂B

∂x2 = 0
− ∂A
∂x1 α− ∂B

∂x3 = 0
− ∂B
∂x4 α− ∂A

∂x2 α−A ∂α
∂x2 = 0

. (2.3.1)

By solving (2.3.1), we obtain the solutions

ψ = A

α
v1 +B v2 where A, B ∈ R .

Therefore, for t ∈ (−ε, ε) with ε > 0 small enough, we have

dimRH
(2,0),(0,2)
Jt, `

(
T4;R

)
≤ 2 = dimRH

(2,0),(0,2)
J0

(
T4;R

)
,

and hence
dimRH

(1,1)
Jt, `

(
T4;R

)
≥ 4 = dimRH

(1,1)
J0

(
T4;R

)
,

accordingly to the upper-semi-continuity, respectively lower-semi-continuity, property proven in [DLZ11, Theorem
2.6] for 4-dimensional almost-complex manifolds.



88 Cohomology of almost-complex manifolds

Now, we turn our attention to the case of dimension greater than 4, [AT11, pages 422–423].

Example 2.51. A curve of almost-complex structures through the standard Kähler structure on the 6-dimensional
torus.
Let (J0, ω0) be the standard Kähler structure on the 6-dimensional torus T6 with coordinates {xj}j∈{1,...,6}, that
is,

J0 :=




−1
−1

−1
1

1
1



∈ End

(
TT6) and ω0 := dx1 ∧ dx4 + dx2 ∧ dx5 + dx3 ∧ dx6 .

Set

L =




`
0

0
−`

0
0



∈ End

(
TT6) ,

where ` ∈ C∞(T6; R), that is, ` ∈ C∞(R6; R) is a Z6-periodic function. For t ∈ (−ε, ε) with ε > 0 small enough,
define

Jt, ` := (id − t L) J0 (id − t L)−1 =




− 1− t `
1 + t `

−1
−1

1 + t `
1− t `

1
1



∈ End

(
TT6) ,

obtaining a curve of ω0-compatible almost-complex structures on T6, see also Example 2.26. Setting

α :=: α(t, `) := 1 − t `

1 + t `
,

a co-frame for the holomorphic cotangent bundle of T6 with respect to Jt, ` is given by





ϕ1
t,` := dx1 + i α dx4

ϕ2
t,` := dx2 + i dx5

ϕ3
t,` := dx3 + i dx6

,

with respect to which the structure equations are





dϕ1
t,` = i dα ∧ dx4

dϕ2
t,` = 0

dϕ3
t,` = 0

.

Note that if ` = `
(
x1, x4), then we get a curve of integrable almost-complex structures, in fact, of Kähler

structures, on T6: in particular, in such a case, Jt, ` is C∞-pure-and-full. Therefore, as an example, assume that
` = `

(
x3) depends just on x3 and is non-constant.

An arbitrary Jt, `-anti-invariant real 2-form

ψ :=: A
(
dx1 ∧ dx2 − α dx4 ∧ dx5)+B

(
dx1 ∧ dx5 − α dx2 ∧ dx4)+ C

(
dx1 ∧ dx3 − α dx4 ∧ dx6)

+D
(
dx1 ∧ dx6 − α dx3 ∧ dx4)+ E

(
dx2 ∧ dx3 − dx5 ∧ dx6)+ F

(
dx2 ∧ dx6 − dx3 ∧ dx5) ,
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with A,B,C,D,E, F ∈ C∞
(
T6;R

)
, is d-closed if and only if




∂A
∂x3 − ∂C

∂x2 + ∂E
∂x1 = 0

∂A
∂x4 − ∂B

∂x1 α = 0
∂A
∂x5 − ∂B

∂x2 = 0
∂A
∂x6 − ∂D

∂x2 + ∂F
∂x1 = 0

∂C
∂x4 − ∂D

∂x1 α = 0
− ∂B
∂x3 + ∂C

∂x5 − ∂F
∂x1 = 0

∂C
∂x6 − ∂D

∂x3 = 0
− ∂A
∂x1 α− ∂B

∂x4 = 0
− ∂C
∂x1 α− ∂D

∂x4 = 0
∂B
∂x6 − ∂D

∂x5 − ∂E
∂x1 = 0

∂(B α)
∂x3 − ∂D

∂x2 α+ ∂E
∂x4 = 0

∂E
∂x5 − ∂F

∂x2 = 0
∂E
∂x6 − ∂F

∂x3 = 0
− ∂A
∂x2 α− ∂B

∂x5 α = 0
− ∂B
∂x6 α− ∂C

∂x2 α− ∂F
∂x4 = 0

− ∂E
∂x2 − ∂F

∂x5 = 0

−∂(Aα)
∂x3 − ∂D

∂x5 α+ ∂F
∂x4 = 0

−∂(C α)
∂x3 − ∂D

∂x6 α = 0
− ∂E
∂x3 − ∂F

∂x6 = 0
− ∂A
∂x6 α+ ∂C

∂x5 α− ∂E
∂x4 = 0

. (2.3.2)

For t 6= 0 small enough, by solving (2.3.2), we obtain that the Jt, `-anti-invariant real d-closed 2-forms are

ψ = C

α

(
dx13 − α dx46)+D

(
dx16 − α dx34)+ E

(
dx23 − dx56)+ F

(
dx26 − dx35) ,

where C, D, E, F ∈ R.
For t 6= 0 small enough, we have

dimRH
(2,0),(0,2)
Jt, `

(
T6;R

)
≤ 4 < 6 = dimRH

(2,0),(0,2)
J0

(
T6;R

)
,

and hence the function t 7→ dimRH
(2,0),(0,2)
Jt, `

(
T6;R

)
is upper-semi-continuous at 0. On the other hand, the explicit

computations for H(1,1)
Jt, `

(
T6;R

)
are not so straightforward. In particular, it is not clear if Jt, ` remains still C∞-full;

note that Jt, ` is C∞-pure by [DLZ10, Proposition 2.7] or [FT10, Proposition 3.2].

We recall here the construction of curves of almost-complex structures through an almost-complex structure J
by means of a J-anti-invariant real 2-form, as introduced by J. Lee in [Lee04, §1], in the context of holomorphic
curves on symplectic manifolds and Gromov and Witten invariants.

Let J be an almost-complex structure on a compact manifold X; let g be a J-Hermitian metric on X and fix
γ ∈

(
∧2,0X ⊕ ∧0,2X

)
∩ ∧2X. Define Vγ ∈ End (TX) such that

γ (·, ··) = g (Vγ ·, ··) ; (2.3.3)

a direct computation shows that Vγ J + J Vγ = 0. Therefore, setting

Lγ := 1
2 Vγ J ∈ End (TX) ,

one gets that Lγ J + J Lγ = 0. For t ∈ (−ε, ε) with ε > 0 small enough, define

Jt, γ := (id − t Lγ) J (id − t Lγ)−1 ∈ End (TX) ,



90 Cohomology of almost-complex manifolds

obtaining a curve {Jt, γ}t∈(−ε,ε) of almost-complex structures associated with γ.

We give an example of a C∞-pure-and-full structure on a non-Kähler manifold such that the stability property
of the C∞-pure-and-fullness holds along a curve obtained using the construction by J. Lee, [AT11, pages 423–425].

Example 2.52. A curve of C∞-pure-and-full almost-complex structures on the completely-solvable solvmanifold
N6(c).
We recall that the manifold N6(c) is a compact 6-dimensional completely-solvable solvmanifold defined, for
suitable c ∈ R, as the product

N6(c) := (Γ(c) \Sol(3)) × (Γ(c) \Sol(3)) ,

where Sol(3) is a completely-solvable Lie group and Γ(c) is a co-compact discrete subgroup of Sol(3), [AGH63,
§3], see Example 2.46. It has been studied in [BG90, Example 1] as an example of a cohomologically Kähler
manifold, and in [FMS03, Example 3.4] by M. Fernández, V. Muñoz, and J. A. Santisteban, as an example of a
formal manifold admitting a symplectic structure satisfying the Hard Lefschetz Condition and with no Kähler
structure, [FMS03, Theorem 3.5]. A. Fino and A. Tomassini provided in [FT10, §6.3] a family of C∞-pure-and-full
structures on N6(c). We construct here a curve of C∞-pure-and-full almost-complex structures on N6(c) using
the construction by J. Lee, [Lee04, §1].

Let
{
ei
}
i∈{1,...,6} be a co-frame for N6(c) such that the structure equations are





d e1 = c e1 ∧ e3

d e2 = −c e2 ∧ e3

d e3 = 0
d e4 = c e4 ∧ e6

d e5 = −c e5 ∧ e6

d e6 = 0

.

Take the almost-complex structure

J =




−1
1

−1
1

−1
1



∈ End

(
TN6(c)

)
.

By A. Hattori’s theorem [Hat60, Corollary 4.2], one computes

H2
dR

(
N6(c);R

)
= R

〈
e1 ∧ e2, e3 ∧ e6 − e4 ∧ e5, e3 ∧ e6 + e4 ∧ e5〉 ,

proving that
(
N6(c), J

)
is C∞-pure-and-full and pure-and-full: indeed, the above harmonic representatives with

respect to the (Sol(3)× Sol(3))-left-invariant metric g :=
∑6
j=1 e

j � ej are of pure type with respect to J , and
hence [FT10, Theorem 3.7] assures the C∞-pure-and-fullness and the pure-and-fullness. Note that

H
(2,0),(0,2)
J

(
N6(c);R

)
= R

〈
e3 ∧ e6 + e4 ∧ e5〉 ;

apply J. Lee’s construction [Lee04, §1] to the real J-anti-invariant 2-form

γ := e3 ∧ e6 + e4 ∧ e5 :

the linear map V ∈ End(TX) representing γ as in (2.3.3) is

V =




0
0

−1
−1

1
1



∈ End

(
TN6(c)

)
,
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and then it is straightforward to compute

L =




0
0

− 1
2 1

2
1
2
− 1

2



∈ End

(
TN6(c)

)
,

and

Jt :=: Jt, γ =




−1
1

− 4−t2
4+t2 − 4t

4+t2
4−t2
4+t2 − 4t

4+t2
4t

4+t2 − 4−t2
4+t2

4t
4+t2

4−t2
4+t2



∈ End

(
TN6(c)

)
.

To shorten the notation, set

α :=: α(t) := 4− t2
4 + t2

, β :=: β(t) := 4t
4 + t2

.

A co-frame for the Jt-holomorphic cotangent bundle is given by




ϕ1
t := e1 + i e2

ϕ2
t := e3 + i

(
α e4 + β e6)

ϕ3
t := e5 + i

(
−β e4 + α e6)

.

Since the real d-closed 2-forms
1
2 i ϕ

11̄
t ,

1
2 iϕ

33̄
t −

α

c
d e5 ,

1
2 i

(
β ϕ22̄

t + α
(
ϕ23̄
t − ϕ2̄3

t

))
+ 1

2 iϕ
33̄
t

generate three different cohomology classes, we get that, for t 6= 0 small enough,

H2
dR

(
N6(c);R

)
= H

(1,1)
Jt

(
N6(c);R

)
,

and so, in particular, J is C∞-full and pure. A straightforward computation yields

H4
dR

(
N6(c);R

)
= R

〈
∗g
(

1
2 i ϕ

11̄
t

)
, ∗g

(
ϕ33̄
t −

α

c
d e5

)
+ α

c
d
(
e125) ,

α

4

(
ϕ121̄3̄
t + ϕ1̄2̄13

t

)
+ β

4 ϕ
121̄2̄
t + αβ

c
d
(
e125)

〉

= H
(2,2)
Jt

(
N6(c);R

)
,

therefore N6(c) is also C∞-full at the 4th stage and hence full and C∞-pure.

We resume the content of the last example in the following theorem, [AT11, Theorem 4.1].

Theorem 2.53. There exists a compact manifold N6(c) endowed with an almost-complex structure J and a
J-Hermitian metric g such that:

(i) J is C∞-pure-and-full;

(ii) each J-anti-invariant g-harmonic form gives rise to a curve {Jt}t∈(−ε,ε) of C∞-pure-and-full almost-complex
structures on N6(c), where ε > 0 is small enough, using J. Lee’s construction;

(iii) furthermore, the function

(−ε, ε) 3 t 7→ dimRH
(2,0),(0,2)
Jt

(
N6(c);R

)
∈ N

is upper-semi-continuous at 0.
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2.3.2 The semi-continuity problem
Given a compact 4-dimensional manifold X and a family {Jt}t of almost-complex structures on X, T. Drǎghici,
T.-J. Li, and W. Zhang studied in [DLZ11] the semi-continuity properties of the functions t 7→ dimRH

+
Jt

(X) and
t 7→ dimRH

−
Jt

(X). They proved the following result.
Theorem 2.54 ([DLZ11, Theorem 2.6]). Let X be a compact 4-dimensional manifold and let {Jt}t∈I⊆R be a
family of (C∞-pure-and-full) almost-complex structures on X, for I ⊆ R an interval. Then the function

I 3 t 7→ dimRH
−
Jt

(X) ∈ N

is upper-semi-continuous, and therefore the function

I 3 t 7→ dimRH
+
Jt

(X) ∈ N

is lower-semi-continuous.
The previous result is closely related to the geometry of 4-dimensional manifolds; more precisely, it follows

from M. Lejmi’s result in [Lej10, Lemma 4.1] that a certain operator is a self-adjoint strongly elliptic linear
operator with kernel the harmonic J-anti-invariant 2-forms. In this section, we are concerned with establishing if
a similar semi-continuity result could occur in dimension higher than 4, possibly assuming further hypotheses.

Counterexamples to semi-continuity

First of all, we provide two examples showing that, in general, no semi-continuity property holds in dimension
higher than 4.

The following result provides a counterexample to the upper-semi-continuity of t 7→ dimRH
−
Jt

in dimension
greater than 4, [AT12a, Proposition 4.1].
Proposition 2.55. The compact 10-dimensional manifold ηβ5 is endowed with a C∞-pure-and-full complex
structure J and a curve {Jt}t∈∆(0,ε)⊂C of complex structures (which are non-C∞-pure for t 6= 0), with J0 = J ,
and ε > 0, such that the function

∆ (0, ε) 3 t 7→ dimRH
−
Jt

(ηβ5) ∈ N

is not upper-semi-continuous.
Proof. The proof follows from the following example, [AT12a, Example 4.2].

Consider the nilmanifold ηβ5 endowed with its natural complex structure J , as described in Example 2.31. We
recall that, chosen a suitable co-frame

{
ϕj
}
j∈{1,...,5} of the holomorphic cotangent bundle, the complex structure

equations are {
dϕ1 = dϕ2 = dϕ3 = dϕ4 = 0
dϕ5 = −ϕ12 − ϕ34 .

By K. Nomizu’s theorem [Nom54, Theorem 1], it is straightforward to compute

H2
dR (ηβ5;C) = C

〈
ϕ13, ϕ14, ϕ23, ϕ24, ϕ1̄3̄, ϕ1̄4̄, ϕ2̄3̄, ϕ2̄4̄, ϕ12 − ϕ34, ϕ1̄2̄ − ϕ3̄4̄

〉

⊕ C
〈
ϕ11̄, ϕ12̄, ϕ13̄, ϕ14̄, ϕ21̄, ϕ22̄, ϕ23̄, ϕ24̄, ϕ31̄, ϕ32̄, ϕ33̄, ϕ34̄, ϕ41̄, ϕ42̄, ϕ43̄, ϕ44̄

〉

(where, as usually, we have listed the harmonic representatives with respect to the left-invariant Hermitian metric∑5
j=1 ϕ

j� ϕ̄j instead of their classes, and we have shortened, e.g., ϕAB̄ := ϕA∧ ϕ̄B). Hence the complex structure
J is C∞-pure-and-full by [FT10, Theorem 3.7], and

dimRH
−
J (ηβ5) = 10 , dimRH

+
J (ηβ5) = 16 .

Now, for ε > 0 small enough, consider the curve {Jt}t∈∆(0,ε) of complex structures such that a co-frame for
the Jt-holomorphic cotangent bundle is given by

{
ϕjt

}
j∈{1,...,5}

, where, for any t ∈ ∆ (0, ε),




ϕ1
t := ϕ1 + t ϕ̄1

ϕ2
t := ϕ2

ϕ3
t := ϕ3

ϕ4
t := ϕ4

ϕ5
t := ϕ5

,
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see Example 2.31. The structure equations with respect to
{
ϕjt

}
j∈{1,...,5}

are

{ dϕ1
t = dϕ2

t = dϕ3
t = dϕ4

t = 0

dϕ5
t = − 1

1−|t|2 ϕ
12
t − ϕ34

t − t
1−|t|2 ϕ

21̄
t

.

When ε > 0 is small enough, for t ∈ ∆ (0, ε) \ {0}, the complex structure Jt is not C∞-pure: indeed,

H
(1,1)
Jt

(ηβ5;C) 3
[

t

1− |t|2
ϕ21̄
t + dϕ5

t

]
=
[
− 1

1− |t|2
ϕ12
t − ϕ34

t

]
∈ H

(2,0)
Jt

(ηβ5;C) ,

where
[

t
1−|t|2 ϕ

21̄
t

]
∈ H2

dR (ηβ5;C) is a non-zero cohomology class by K. Nomizu’s theorem [Nom54, Theorem 1].
Moreover, note that

H
(2,0),(0,2)
Jt

(ηβ5;C) ⊇ C
〈
ϕ13
t , ϕ

14
t , ϕ

23
t , ϕ

24
t , ϕ

1̄3̄
t , ϕ

1̄4̄
t , ϕ

2̄3̄
t , ϕ

2̄4̄
t , ϕ

12
t , ϕ

34
t , ϕ

1̄2̄
t , ϕ

3̄4̄
t

〉
,

hence, for every t ∈ ∆ (0, ε) \ {0},

dimRH
−
J0

(ηβ5) = 10 < 12 ≤ dimRH
−
Jt

(ηβ5) ,

and in particular t 7→ h−Jt is not upper-semi-continuous at 0.

The following result provides a counterexample to the lower-semi-continuity of t 7→ dimRH
+
Jt

in dimension
greater than 4, [AT12a, Proposition 4.3].

Proposition 2.56. The compact 6-dimensional manifold S3 × T3 is endowed with a C∞-full (non-integrable)
almost-complex structure J and a curve {Jt}t∈∆(0,ε)⊂C, where ε > 0, of (non-integrable) almost-complex structures
(which are not C∞-pure), with J0 = J , such that

∆ (0, ε) 3 t 7→ dimRH
+
Jt

(
S3 × T3) ∈ N

is not lower-semi-continuous.

Proof. The proof follows from the following example, [AT12a, Example 4.4].
Consider the compact 6-dimensional manifold S3 ×T3, and set a global co-frame

{
ej
}
j∈{1,...,6} with respect to

which the structure equations are (
23, −13, 12, 03) ;

consider the (non-integrable) almost-complex structure J defined requiring that




ϕ1 := e1 + i e4

ϕ2 := e2 + i e5

ϕ3 := e3 + i e6

generate the C∞
(
S3 × T3;C

)
-module of (1, 0)-forms on S3 × T3. By the Künneth formula, one computes

H2
dR(S3 × T3;C) = C

〈
e45, e46, e56〉

=
〈
ϕ12 + ϕ1̄2̄, ϕ13 + ϕ1̄3̄, ϕ23 + ϕ2̄3̄

〉
= H−J

(
S3 × T3)

=
〈
ϕ12̄ − ϕ21̄, ϕ13̄ − ϕ31̄, ϕ23̄ − ϕ32̄

〉
= H+

J

(
S3 × T3) .

For ε > 0 small enough, consider the curve {Jt}t∈∆(0,ε)⊂C of (non-integrable) almost-complex structures defined
requiring that, for any t ∈ ∆ (0, ε), the Jt-holomorphic cotangent bundle has co-frame





ϕ1
t := ϕ1 + t ϕ̄1

ϕ2
t := ϕ2

ϕ3
t := ϕ3

.
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By using the F. A. Belgun symmetrization trick, [Bel00, Theorem 7], we have that, for t ∈ ∆ (0, ε) \ R,
[
ϕ12̄ − ϕ21̄

]
=
[

1
1− |t|2

(
ϕ12̄
t − ϕ21̄

t

)
− 1

1− |t|2
(
t̄ ϕ12

t + t ϕ1̄2̄
t

)]
6∈ H+

Jt

(
S3 × T3)

and [
ϕ13̄ − ϕ31̄

]
=
[

1
1− |t|2

(
ϕ13̄
t − ϕ31̄

t

)
− 1

1− |t|2
(
t̄ ϕ13

t + t ϕ1̄3̄
t

)]
6∈ H+

Jt

(
S3 × T3) ;

indeed, the terms ψ1 := t̄ ϕ12
t +t ϕ1̄2̄

t , respectively ψ2 := t̄ ϕ13 +t ϕ1̄3̄, cannot be written as the sum of a Jt-invariant
form and a d-exact form: on the contrary, since ψ1, and ψ2 are left-invariant, applying Belgun’s symmetrization
map, [Bel00, Theorem 7], we can suppose that the Jt-anti-invariant component of the d-exact term is actually the
Jt-anti-invariant component of the differential of a left-invariant 1-form; but the image of the differential on the
space of left-invariant 1-forms is

d∧1g∗C = C
〈
ϕ23
t + ϕ23̄

t − ϕ32̄
t + ϕ2̄3̄

t , (1− t̄)ϕ13
t + (1− t̄)ϕ13̄ − (1− t)ϕ31̄ + (1− t)ϕ1̄3̄,

(1− t̄)ϕ12
t + (1− t̄)ϕ12̄ − (1− t)ϕ21̄ + (1− t)ϕ1̄2̄

〉
,

and hence one should have t ∈ R. Hence, we have that, for t ∈ ∆ (0, ε) \ R,

dimRH
+
Jt

(
S3 × T3) = 1 < 3 = dimRH

+
J0

(
S3 × T3) ,

and consequently, in particular, t 7→ dimRH
+
Jt

(
S3 × T3) is not lower-semi-continuous at 0.

Semi-continuity in a stronger sense

Note that Proposition 2.55 and Proposition 2.56 force us to consider stronger conditions under which semi-continuity
may occur, or to slightly modify the statement of the semi-continuity problem.

We turn our attention to the aim of giving a more precise statement of the semi-continuity problem. We notice
that, for a compact 4-dimensional manifold X endowed with a family {Jt}t∈∆(0,ε) of almost-complex structures,
one does not have only the semi-continuity properties of t 7→ dimRH

+
Jt

(X) and t 7→ dimRH
−
Jt

(X), but one gets
also that every J0-invariant class admits a Jt-invariant class close to it. This is also a sufficient condition to assure
that, if α is a J0-compatible symplectic structure on X, then there is a Jt-compatible symplectic structure αt on
X for t small enough. Therefore, we are interested in the following problem.
Let X be a compact manifold endowed with an almost-complex structure J and with a curve {Jt}t∈(−ε, ε)⊂R of
almost-complex structures, where ε > 0 is small enough, such that J0 = J . Suppose that

H+
J (X) = C

〈[
α1] , . . . ,

[
αk
]〉

,

where α1, . . . , αk are forms of type (1, 1) with respect to J . We look for further hypotheses assuring that, for
every t ∈ (−ε, ε),

H+
Jt

(X) ⊇ C
〈[
α1
t

]
, . . . ,

[
αkt
]〉

with
αjt = αj + o (1) .

In this case, (−ε, ε) 3 t 7→ dimRH
+
Jt

(X) ∈ N is a lower-semi-continuous function at 0.

Concerning this problem, we have the following result, [AT12a, Proposition 4.5].

Proposition 2.57. Let X be a compact manifold endowed with an almost-complex structure J . Take L ∈ End(TX)
and consider the curve {Jt}t∈(−ε, ε)⊂R of almost-complex structures defined by

Jt := (id−t L) J (id−t L)−1 ∈ End(TX) ,

where ε > 0 is small enough. For every [α] ∈ H+
J (X) with α ∈ ∧1,1

J (X) ∩ ∧2X, the following conditions are
equivalent:

(i) there exists a family {ηt = α+ o (1)}t∈(−ε, ε) ⊆ ∧
1,1
Jt

(X) ∩ ∧2X of real 2-forms, with ε > 0 small enough,
depending real-analytically in t and such that d ηt = 0, for every t ∈ (−ε, ε);
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(ii) there exists {βj}j∈N\{0} ⊆ ∧2X solution of the system

d
(
βj + 2α

(
Lj ·, ··

)
+ 4

j−1∑

k=1
α
(
Lj−k·, Lk··

)
+ 2α

(
·, Lj ··

)

+
j−1∑

h=1

(
2βh

(
Lj−h·, ··

)
+ 4

j−h−1∑

k=1
α
(
Lj−h−k·, Lk··

)
+ 2α

(
·, Lj−h··

)
))

= 0 , (2.3.4)

varying j ∈ N \ {0}, such that
∑
j≥1 t

j βj converges.

In particular, the first order obstruction to the existence of ηt as in (i) reads: there exists β1 ∈ ∧2X such that

d (β1 + 2α(L·, ··) + 2α(·, L··)) = 0 . (2.3.5)

Proof. Expanding Jt in power series with respect to t, one gets

Jt = J +
∑

j≥1
2 tj J Lj ,

and then, for every ϕ ∈ ∧2X, one computes

Jt ϕ(·, ··) = J ϕ(·, ··) + 2t J (ϕ(L·, ··) + ϕ(·, L··)) + o (|t|)

and
dcJt ϕ = J−1

t d Jt ϕ = dcJ ϕ+ 2t Jt d J (ϕ(L·, ··) + ϕ(·, L··)) + o (|t|) .
Now, given [α] ∈ H+

J (X) with α ∈ ∧1,1
J (X) ∩ ∧2X, let {βj}j be such that (2.3.4) holds and

∑
j≥1 t

j βj
converges, for t ∈ (−ε, ε) with ε > 0 small enough; we define

αt := α+
∑

j≥1
tj βj ∈ ∧2X

and
ηt := αt + Jt αt

2 ∈ ∧1,1
Jt
X ∩ ∧2X .

By construction, ηt is a Jt-invariant real 2-form, real-analytic in t, and such that ηt = α+ o (1). A straightforward
computation yields

d ηt =
∑

j≥1
tj d

(
βj + 2α

(
Lj ·, ··

)
+ 4

j−1∑

k=1
α
(
Lj−k·, Lk··

)
+ 2α

(
·, Lj ··

)

+
j−1∑

h=1

(
2βh

(
Lj−h·, ··

)
+ 4

j−h−1∑

k=1
α
(
Lj−h−k·, Lk··

)
+ 2α

(
·, Lj−h··

)
))

therefore d ηt = 0.
Conversely, given [α] ∈ H+

J (X) with α ∈ ∧1,1
J (X) ∩ ∧2X, let ηt ∈ ∧1,1

Jt
(X) ∩ ∧2X be real-analytic in t and

such that ηt = α+ o (1) and d ηt = 0, for every t ∈ (−ε, ε) with ε > 0 small enough. Defining βj ∈ ∧2X, for every
j ∈ N \ {0}, such that

ηt =: α+
∑

j≥1
tj βj ,

by the same computation we have that (2.3.4) holds, being d ηt = d
(
ηt+Jt ηt

2

)
= 0.

Remark 2.58. We notice that, if d Jt = ±Jt d on ∧2M for any t, then one can simply let

ηt := α+ Jt α

2

so that ηt ∈ ∧1,1
Jt

and d ηt = 0. This is the case, for example, if any Jt is an Abelian complex structure;
C. Maclaughlin, H. Pedersen, Y. S. Poon, and S. Salamon characterized in [MPPS06, Theorem 6] the 2-step
nilmanifolds whose complex deformations are Abelian.
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Counterexample to the stronger semi-continuity

In the following example, we provide an application of Proposition 2.57, showing a curve of almost-complex
structures that does not have the semi-continuity property in the stronger sense described above, [AT12a, Example
4.8].

Example 2.59. A curve of almost-complex structures that does not satisfy (2.3.5).
As in Example 2.46 and in Example 2.52, consider, for suitable c ∈ R, [AGH63, §3], the solvmanifold

N6(c) := (Γ(c) \Sol(3)) × (Γ(c) \Sol(3)) ,

which has been studied in [FMS03, Example 3.4] as an example of a cohomologically Kähler manifold without
Kähler structures, see also [BG90, Example 1]. In the following, we consider N6 := N6(1). We recall that, with
respect to a suitable co-frame, the structure equations of N6 are

(12, 0, −36, 24, 56, 0) .

We look for a curve {Jt}t∈(−ε,ε)⊂R of almost-complex structures on N6, where ε > 0 is small enough, and
for a J0-invariant form α that do not satisfy the first-order obstruction (2.3.5) to the stronger semi-continuity
problem stated above: therefore, there will not be a Jt-invariant class close to α, for any t ∈ (−ε, ε).

Consider the almost-complex structure represented by

J =




−1
−1

−1
1

1
1



∈ End

(
TN6) ,

and
L =

(
A B
B −A

)
∈ End

(
TN6) ,

where
A =

(
aji

)
i,j∈{1,2,3}

, B =
(
bji

)
i,j∈{1,2,3}

are constant matrices; for
α = e14

we have

d (α(L·, ··) + α(·, L··)) = b31 e
123 +a2

1 e
125−a3

1 e
126 +b31 e136−a2

1 e
156 +a3

1 e
234−b21 e245−b31 e246 +a3

1 e
346 +b21 e456 .

Then, choosing

L =




b31
0

0
b31

0
0



∈ End

(
TN6)

with b31 ∈ R \ {0}, it is straightforward to check that there is no (Sol(3)× Sol(3))-left-invariant β ∈ ∧2N6 such
that

dβ = b31 e
123 + b31 e

136 − b31 e246 ; (2.3.6)

hence, by applying the F. A. Belgun symmetrization trick, [Bel00, Theorem 7], there is no (possibly non-
(Sol(3)× Sol(3))-left-invariant) β ∈ ∧2N6 satisfying (2.3.6).

We resume the content of the last example in the following proposition, [AT12a, Proposition 4.9].

Proposition 2.60. There exist a compact manifold X endowed with a C∞-pure-and-full almost-complex structure
J0, and a curve {Jt}t∈(−ε,ε) of almost-complex structures on X, where ε > 0 is small enough, such that, for every
t ∈ (−ε, ε), there is no Jt-invariant class, real-analytic in t, close to any fixed J0-invariant class.
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2.4 Cones of metric structures
In introducing and studying the subgroups H(•,•)

J (X;R) on a compact manifold X endowed with an almost-
complex structure J , T.-J. Li and W. Zhang were mainly aimed by the problem of investigating the relations
between the J-taming and the J-compatible symplectic cones on X. As follows by their theorem [LZ09, Theorem
1.1], whenever J is C∞-full, then the subgroup H−J (X) measures the difference between the J-taming cone and
the J-compatible cone.

In this section, we discuss some results obtained in [AT12a], jointly with A. Tomassini, giving a counterpart
of T.-J. Li and W. Zhang’s theorem [LZ09, Theorem 1.1] in the semi-Kähler case, Theorem 2.74, and, in
particular, comparing the cones of balanced metrics and of strongly-Gauduchon metrics on a compact complex
manifold. Furthermore, concerning the search of a holomorphic-tamed non-Kähler example, [LZ09, page 678],
[ST10, Question 1.7], we show that no such example can exist among 6-dimensional nilmanifolds endowed with
left-invariant complex structures, Theorem 2.67, as proven in a joint work with A. Tomassini, [AT11].

2.4.1 Sullivan’s results on cone structures
Firstly, we recall some results by D. P. Sullivan, [Sul76, §I.1], concerning cone structures on a (differentiable)
manifold X.

Fixed p ∈ N, a cone structure of p-directions on X is a continuous field C :=: {C(x)}x∈X , with C(x) a compact
convex cone in ∧p(TxX) for every x ∈ X.

A p-form ω on X is called transverse to a cone structure C if ωbx(v) > 0 for all v ∈ C(x) \ {0} and for all
x ∈ X; using the partitions of unity, a transverse form could be constructed for any given C, [Sul76, Proposition
I.4].

Every cone structure C gives rise to a cone C of structure currents, which are by definition the currents
generated by the Dirac currents associated to the elements in C(x), see [Sul76, Definition I.4]; the set C is a
compact convex cone in DpX.

The cone ZC of the structure cycles is defined as the sub-cone of C consisting of d-closed currents; denote with
B the set of d-exact currents.

Define the cone HC in HdR
p (X;R) as the set of the classes of the structure cycles.

The dual cone of HC in Hp
dR(X;R) is denoted by H̆C and is characterized by the relation

(
H̆C, HC

)
≥ 0 ;

its interior is denoted by int H̆C and is characterized by the relation
(

int H̆C, HC
)
> 0 .

A cone structure of 2-directions is said to be ample if, for every x ∈ X, it satisfies that

C(x) ∩ span{e ∈ Sτ : τ is a 2-plane} 6= {0} ,

where Sτ is the Schubert variety, given by the set of 2-planes intersecting τ in at least one line; by [Sul76, Theorem
III.2], an ample cone structure admits non-trivial structure cycles.

When the 2n-dimensional manifold X is endowed with an almost-complex structure J , the following cone
structures turn out to be particularly interesting.

For a fixed p ∈ {0, . . . , n}, let Cp,J be the cone {Cp,J(x)}x∈X , where, for every x ∈ X, the compact convex
cone Cp,J (x) is generated by the positive combinations of p-dimensional complex subspaces of TxX⊗RC belonging
to ∧2p (TxX ⊗R C).

The cone Cp,J of complex currents is defined as the compact convex cone, see [Sul76, §III.4], of the structure
currents.

The cone ZCp,J of complex cycles is defined as the compact convex cone, see [Sul76, §III.7], of the structure
cycles.

The structure cone C1,J is ample, [Sul76, p. 249], therefore it admits non-trivial cycles.

We recall the following theorem by D. P. Sullivan, which follows by Hahn and Banach’s theorem.

Theorem 2.61 ([Sul76, Theorem I.7]). Let X be a compact differentiable manifold (with or without boundary)
and let C be a cone structure of p-vectors defined on a compact subspace Y in the interior of X.

(i) There are always non-trivial structure cycles in Y or closed p-forms on X transversal to the cone structure.
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(ii) If no closed transverse form exists, some non-trivial structure cycle in Y is homologous to zero in X.

(iii) If no non-trivial structure cycle exists, some transversal closed form is cohomologous to zero.

(iv) If there are both structure cycles and transversal closed forms, then

(a) the natural map
{structure cycles on Y } → {homology classes in X}

is proper and the image is a compact cone C ⊆ HdR
p (X;R), and

(b) the interior of the dual cone C̆ ⊆ Hp
dR(X;R) (that is, C̆ is the cone defined by the relation

(
C̆, C

)
≥ 0)

consists precisely of the classes of closed forms transverse to C.

2.4.2 The cones of compatible, and tamed symplectic structures
Let X be a manifold endowed with an almost-complex structure J .

We recall that a symplectic form ω is said to tame J if it is positive on the J-lines, that is, if ωx (vx, Jxvx) > 0
for every vx ∈ TxX \ {0} and for every x ∈ X, equivalently, if

g̃J (·, ··) := 1
2 (ω (·, J ··)− ω (J ·, ··))

is a J-Hermitian metric on X with π∧1,1Xω as the associated (1, 1)-form (the map π∧1,1X : ∧• X → ∧1,1X being
the natural projection onto ∧1,1X). A symplectic form ω is called compatible with J if it tames J and it is
J-invariant, equivalently, if ω is the (1, 1)-form associated to the J-Hermitian metric gJ (·, ··) := ω(·, J ··). In
particular, an integrable almost-complex structure J is called holomorphic-tamed if it admits a taming symplectic
form; on the other hand, the datum of an integrable almost-complex structure and a compatible symplectic form
gives a Kähler structure.

Symplectic cones and Donaldson’s question

Consider the J-tamed cone KtJ , which is defined as the set of the cohomology classes of the J-taming symplectic
forms, namely,

KtJ :=
{

[ω] ∈ H2
dR(X;R) : ω is a J-taming symplectic form on X

}
,

and the J-compatible cone KcJ , which is defined as the set of the cohomology classes of the J-compatible symplectic
forms, namely,

KcJ :=
{

[ω] ∈ H2
dR(X;R) : ω is a J-compatible symplectic form on X

}
.

The set KtJ is an open convex cone in H2
dR(X;R), and the set KcJ is a convex sub-cone of KtJ and it is contained

in H(1,1)
J (X;R); moreover, both the sets are sub-cones of the symplectic cone

S :=
{

[ω] ∈ H2
dR(X;R) : ω is a symplectic form on X

}

in H2
dR(X;R).

T.-J. Li and W. Zhang proved the following result in [LZ09], concerning the relation between the J-tamed and
the J-compatible cones.

Theorem 2.62 ([LZ09, Proposition 3.1, Theorem 1.1, Corollary 1.1]). Let X be a compact manifold endowed
with an almost-Kähler structure J (namely, J is an almost-complex structure on X such that KcJ 6= ∅). Then

KtJ ∩H(1,1)
J (X;R) = KcJ and KcJ +H

(2,0),(0,2)
J (X;R) ⊆ KtJ .

Moreover, if J is C∞-full, then
KtJ = KcJ +H

(2,0),(0,2)
J (X;R) .

In particular, if dimX = 4 and b+(X) = 1, then KtJ = KcJ .
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The proof is essentially based on [Sul76, Theorem I.7]. Note indeed that the closed forms transverse to
the cone C1,J are exactly the J-taming symplectic forms. By [Sul76, Theorem I.7(iv)(b)], it follows that KtJ is
the interior of the dual cone H̆C1,J ⊆ H2

dR(X;R) of HC1,J ⊆ HdR
2 (X;R), [LZ09, Theorem 3.2]. On the other

hand, assumed that KcJ is non-empty, by the Hahn and Banach separation theorem, KcJ is the interior of the
dual cone of HC1,J ⊆ HJ

(1,1)(X;R), [LZ09, Theorem 3.4]. Finally, when dimX = 4, chosen a J-Hermitian
metric g on X with associated (1, 1)-form ω, one has ∧+

g X = R 〈ω〉 ⊕ ∧−JX, hence, in the almost-Kähler case, if
b+(X) := dimRH+

g (X) = 1, then H(2,0),(0,2)
J (X;R) = {0}, see [DLZ10, Proposition 3.1].

Whereas the previous theorem by T.-J. Li and W. Zhang could be intended as a “quantitative comparison”
between the J-taming and the J-compatible symplectic cones on a compact manifold X endowed with an almost-
complex structure J , one could ask what about their “qualitative comparison”, namely, one could ask whether KcJ
being empty implies KtJ being empty, too. The following question has been arisen by S. K. Donaldson in [Don06].

Question 2.63 ([Don06, Question 2]). Let X be a compact 4-dimensional manifold endowed with an almost-
complex structure J . If J is tamed by a symplectic form, is there a symplectic form compatible with J?

Remark 2.64. S. K. Donaldson’s “tamed to compatible” question has a positive answer for CP2 by the works
by M. Gromov [Gro85] and by C. H. Taubes, [Tau95]. When b+(X) = 1 (where b+ is the number of positive
eigenvalues of the intersection pairing on H2(X;R)), a possible positive answer to [Don06, Question 2], see
also [TWY08, Conjecture 1.2], would be provided as a consequence of [Don06, Conjecture 1], see also [TWY08,
Conjecture 1.1], concerning the study of the symplectic Calabi and Yau equation, which aims to generalize S.-T.
Yau’s theorem [Yau77, Yau78], solving the Calabi conjecture, [Cal57], to the non-integrable case. Some results
concerning this problem have been recently obtained by several authors, see, e.g., [Wei07, TWY08, TW11a, Tau11,
Zha11, LT12, FLSV11, BFV11], see also [TW11b]. More precisely, in [Wei07], all the estimates for the closedness
argument of the continuity method applied to the symplectic Calabi and Yau equation, [Don06, Conjecture 1],
are reduced to a C0 a priori estimate of a scalar potential function, [Wei07, Theorem 1]; then, the existence of a
solution of the symplectic Calabi and Yau equation is proven for compact 4-dimensional manifolds X endowed
with an almost-Kähler structure (J, ω, g) satisfying ‖NijJ‖L1 < ε, where ε > 0 depends just on the data, [Wei07,
Theorem 2]. In [TWY08], it is shown that the C∞ a priori estimates can be reduced to an integral estimate of
a scalar function potential, [TWY08, Theorem 1.3]; furthermore, it is shown that [Don06, Conjecture 1] holds
under a positive curvature assumption, [TWY08, Theorem 1.4]. In [TW11a], the symplectic Calabi-Yau equation
is solved on the Kodaira-Thurston manifold S1 × (H(3;Z)\H(3;R)) for any given left-invariant volume form,
[TW11a, Theorem 1.1]; further results on the Calabi-Yau equation for torus-bundles over a 2-dimensional torus
have been provided in [FLSV11, BFV11]. In [Tau11], it is shown that, on a compact 4-dimensional manifold with
b+ = 1 and endowed with a symplectic form ω, a generic ω-tamed almost-complex structure on X is compatible
with a symplectic form on X, [Tau11, Theorem 1], which is defined by integrating over a space of currents that are
defined by pseudo-holomorphic curves. The Taubes currents have been studied, both in dimension 4 and higher,
also by W. Zhang in [Zha11]. In [LZ11], T.-J. Li and W. Zhang were concerned with studying Donaldson’s “tamed
to compatible” question for almost-complex structures on rational 4-dimensional manifolds; they provided, in
particular, an affirmative answer to [Don06, Question 2] for S2 × S2 and for CP2]CP2, see [DLZ12, Theorem 4.11].
In [LT12], a positive answer to S. K. Donaldson’s question [Don06, Question 2] is provided in the Lie algebra
setting, proving that, given a 4-dimensional Lie algebra g such that B ∧B = 0 (where B ⊆ ∧2g is the space of
boundary 2-vectors), e.g., a 4-dimensional unimodular Lie algebra, a linear (possibly non-integrable) complex
structure is tamed by a linear symplectic form if and only if it is compatible with a linear symplectic form, [LT12,
Theorem 0.2].

In a sense, [LZ09, Corollary 1.1] provides evidences towards an affirmative answer for [Don06, Question 2],
especially in the case b+ = 1; confirmed in their opinion by the computations in [DLZ10] in the case b+ > 1, T.-J.
Li and W. Zhang speculated in [LZ09, page 655] that the equality KtJ = KcJ holds for a generic almost-complex
structure J on a 4-dimensional manifold.

The analogous of [Don06, Question 2] in dimension higher than 4 has a negative answer: counterexamples
in the (non-integrable) almost-complex case can be found in [MT00] by M. Migliorini and A. Tomassini, and in
[Tom02] by A. Tomassini. Notwithstanding, since examples of non-Kähler holomorphic-tamed complex structures
are not known, T.-J. Li and W. Zhang speculated a negative answer for the following question, also addressed by
J. Streets and G. Tian in [ST10].

Question 2.65 ([LZ09, page 678], [ST10, Question 1.7]). Do there exist non-Kähler holomorphic-tamed complex
manifolds, of complex dimension greater than 2?
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Tameness conjecture for 6-dimensional nilmanifolds

In view of the speculation in [LZ09, page 678], and of [ST10, Question 1.7], one could ask whether small
deformations of the Iwasawa manifold, see §1.4.1, may provide examples of non-Kähler holomorphic-tamed
complex structures. In this section, we prove that this is not the case: more precisely, we prove that no example
of left-invariant non-Kähler holomorphic-tamed complex structure can be found on 6-dimensional nilmanifolds.
The same holds true, more in general, for higher dimensional nilmanifolds, as proven by N. Enrietti, A. Fino, and
L. Vezzoni, [EFV12, Theorem 1.3].

We recall that a Hermitian metric g on a complex manifold X is called pluri-closed (or strong Kähler with
torsion, shortly skt), [Bis89], if the (1, 1)-form ω associated to g satisfies ∂∂ω = 0.

By the following result, holomorphic-tamed manifolds admit pluri-closed metrics, [AT11, Proposition 3.1].
Proposition 2.66. Let X be a manifold endowed with a symplectic structure ω and an ω-tamed complex structure
J . Then the (1, 1)-form ω̃ := g̃J (J ·, ··) associated to the Hermitian metric g̃J (·, ··) := 1

2 (ω (·, J ··)− ω (J ·, ··)) is
∂∂-closed, namely, g̃ is a pluri-closed metric on X.
Proof. Decomposing ω in pure type components, set

ω =: ω2,0 + ω1,1 + ω2,0

where ω2,0 ∈ ∧2,0X and ω1,1 = ω1,1 ∈ ∧1,1X. Since, by definition, ω̃ = 1
2 (ω + Jω), we have ω̃ = ω1,1. We get

that

dω = 0 ⇔
{

∂ω2,0 = 0
∂ω1,1 + ∂ω2,0 = 0

,

and hence
∂∂ω̃ = ∂∂ω1,1 = −∂∂ω1,1 = ∂

2
ω2,0 = 0 ,

proving that g̃ is a pluri-closed metric on X.

Now, we can prove the announced theorem, [AT11, Theorem 3.3].
Theorem 2.67. Let X = Γ\G be a 6-dimensional nilmanifold endowed with a G-left-invariant complex structure
J . If X is not a torus, then there is no symplectic structure ω on X taming J .
Proof. Let ω be a (non-necessarily G-left-invariant) symplectic form on X taming J . By F. A. Belgun’s
symmetrization trick, [Bel00, Theorem 7], setting

µ(ω) :=
∫

X

ωbm η(m) ,

where η is a G-bi-invariant volume form on G such that
∫
X
η = 1, whose existence follows from J. Milnor’s lemma

[Mil76, Lemma 6.2], we get a G-left-invariant symplectic form on X taming J . Then, it suffices to prove that,
on a non-torus 6-dimensional nilmanifold, there is no left-invariant symplectic structure taming a left-invariant
complex structure.

Hence, let ω be such a G-left-invariant symplectic structure. Then, by Proposition 2.66, X should admit
a G-left-invariant pluri-closed Hermitian metric g. Hence, by [FPS04, Theorem 1.2], there exists a co-frame
{ϕ1, ϕ2, ϕ3} for the J-holomorphic cotangent bundle such that





dϕ1 = 0
dϕ2 = 0
dϕ3 = Aϕ1 ∧ ϕ2 +B ϕ2 ∧ ϕ2 + C ϕ1 ∧ ϕ1 +Dϕ1 ∧ ϕ2 + E ϕ1 ∧ ϕ2

,

where A, B, C, D, E ∈ C are complex numbers such that |A|2 + |D|2 + |E|2 + 2Re
(
B̄C

)
= 0. Set

ω =: ω2,0 + ω1,1 + ω2,0 ,

where

ω2,0 =
∑

i<j

aij ϕ
i ∧ ϕj , ω1,1 = i

2

3∑

i,j=1
bi j ϕ

i ∧ ϕj ,

with
{
aij , bi j

}
i,j
⊂ C such that ω1,1 = ω1,1. A straightforward computation yields

dω = 0 ⇔
(
A = B = C = D = E = 0 or b33 = 0

)
.

Since b33̄ 6= 0, we get A = B = C = D = E = 0, namely, X is a torus.
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As a corollary, we get the following result, [AT11, Theorem 3.4], concerning the speculation in [LZ09, p. 678],
and [ST10, Question 1.7].

Theorem 2.68. No small deformation of the complex structure of the Iwasawa manifold I3 := H (3;Z [i])\H(3;C)
can be tamed by any symplectic form.

2.4.3 The cones of semi-Kähler, and strongly-Gauduchon metrics
Let X be a compact 2n-dimensional manifold endowed with an almost-complex structure J . We recall that a
non-degenerate 2-form ω on X is called semi-Kähler, [GH80, page 40], if ω is the (1, 1)-form associated to a
J-Hermitian metric on X (that is, ω(·, J ·) > 0 and ω(J ·, J ··) = ω(·, ··)) and d

(
ωn−1) = 0; when J is integrable,

a semi-Kähler structure is called balanced, [Mic82, Definition 1.4, Theorem 1.6].
We set

KbcJ :=
{

[Ω] ∈ H2n−2
dR (X;R) : Ω ∈ ∧n−1,n−1X is positive on the

complex (n− 1)-subspaces of TxX ⊗R C, for every x ∈ X} ,

and

KbtJ :=
{

[Ω] ∈ H2n−2
dR (X;R) : Ω ∈ ∧2n−2X is positive on the

complex (n− 1)-subspaces of TxX ⊗R C, for every x ∈ X} .

We note that KbcJ and KbtJ are convex cones in H2n−2
dR (X;R), and that KbcJ is a sub-cone of KbtJ and is contained

in H(n−1,n−1)
J (X;R).
We recall the following trick by M. L. Michelsohn.

Lemma 2.69 ([Mic82, pp. 279-280]). Let X be a compact 2n-dimensional manifold endowed with an almost-
complex structure J . Let Φ be a real (n− 1, n− 1)-form such that it is positive on the complex (n− 1)-subspaces
of TxX ⊗R C, for every x ∈ X. Then Φ can be written as Φ = ϕn−1, where ϕ is a J-taming real (1, 1)-form. In
particular, if Φ is d-closed, then ϕ is a semi-Kähler form.

The previous Lemma allows us to confuse the cone KbcJ with the cone generated by the (n− 1)th powers of
the semi-Kähler forms, namely,

KbcJ =
{[
ωn−1] : ω is a semi-Kähler form on X

}
.

In particular, if J is integrable, then the cone KbcJ is just the cone of balanced structures on X. On the
other hand, in the integrable case, KbtJ is the cone of strongly-Gauduchon metrics on X. We recall that a
strongly-Gauduchon metric on X, [Pop09, Definition 3.1], is a positive-definite (1, 1)-form γ on X such that the
(n, n− 1)-form ∂

(
γn−1) is ∂-exact. These metrics have been introduced by D. Popovici in [Pop09] in studying the

limits of projective manifolds under deformations of the complex structure, and they turn out to be special cases
of Gauduchon metrics, [Gau77], for which ∂

(
γn−1) is just ∂-closed; note that the notions of Gauduchon metric

and of strongly-Gauduchon metric coincide if the ∂∂-Lemma holds, [Pop09, page 15]. D. Popovici proved in
[Pop09, Lemma 3.2] that a compact complex manifold X, of complex dimension n, carries a strongly-Gauduchon
metric if and only if there exists a real d-closed (2n − 2)-form Ω such that its component Ω(n−1,n−1) of type
(n− 1, n− 1) satisfies Ω(n−1,n−1) > 0.

The aim of this section is to compare the cones KbcJ and KbtJ , Theorem 2.74, in the same way as [LZ09,
Theorem 1.1] does for KcJ and KtJ in the almost-Kähler case.

Note that KbtJ can be identified with the set of the classes of d-closed (2n− 2)-forms transverse to Cn−1,J .
On the other hand, we recall the following lemma.

Lemma 2.70 (see, e.g., [Sil96, Proposition I.1.3]). Let X be a compact manifold endowed with an almost-complex
structure J , and fix p ∈ N. A structure current in Cp,J is a positive current of bi-dimension (p, p).

As a direct consequence of [Sul76, Theorem I.7], we get the following result, [AT12a, Theorem 2.6].

Theorem 2.71. Let X be a compact 2n-dimensional manifold endowed with an almost-complex structure J . Then
KbtJ is non-empty if and only if there is no non-trivial d-closed positive currents of bi-dimension (n− 1, n− 1)
that is a boundary, i.e.,

ZCn−1,J ∩ B = {0} .
Furthermore, if we suppose that 0 6∈ KbtJ , then KbtJ ⊆ H2n−2

dR (X;R) is the interior of the dual cone H̆Cn−1,J ⊆
H2n−2
dR (X;R) of HCn−1,J ⊆ HdR

2n−2(X;R).
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Proof. Note that if ω ∈ KbtJ 6= ∅, and if η :=: d ξ is a non-trivial d-closed positive current of bi-dimension
(n− 1, n− 1) being a boundary, then

0 < (η, π∧n−1,n−1Xω) = (η, ω) = (d ξ, ω) = (ξ, dω) = 0

(where π∧n−1,n−1X : ∧• X → ∧n−1,n−1X is the natural projection onto ∧n−1,n−1X) yields an absurd.
To prove the converse, suppose that no non-trivial d-closed positive currents of bi-dimension (n− 1, n− 1) is a

boundary; then, by [Sul76, Theorem I.7(ii)], there exists a d-closed form that is transverse to Cn−1,J , that is, KbtJ
is non-empty.

The last statement follows from [Sul76, Theorem I.7(iv)]: indeed, by the assumption 0 6∈ KbtJ , no d-closed
transverse form is cohomologous to zero, therefore, by [Sul76, Theorem I.7(iii)], there exists a non-trivial structure
cycle.

We provide a similar characterization for KbcJ , [AT12a, Theorem 2.7].

Theorem 2.72. Let X be a compact 2n-dimensional manifold endowed with an almost-complex structure J .
Suppose that KbcJ 6= ∅ and that 0 6∈ KbcJ . Then KbcJ ⊆ H

(n−1,n−1)
J (X;R) is the interior of the dual cone

H̆Cn−1,J ⊆ H(n−1,n−1)
J (X;R) of HCn−1,J ⊆ HJ

(n−1,n−1)(X;R).

Proof. By the hypothesis 0 6∈ KcJ , we have that (KbcJ , HCn−1,J) > 0, and therefore the inclusion KbcJ ⊆ int H̆Cn−1,J
holds.

To prove the other inclusion, let e ∈ H
(n−1,n−1)
J (X;R) be an element in the interior of the dual cone in

H
(n−1,n−1)
J of HCn−1,J , i.e., e is such that (e,HCn−1,J) > 0. Consider the isomorphism

σn−1,n−1 : H(n−1,n−1)
J (X;R) '→

(
πDn−1,n−1XZ
πDn−1,n−1XB

)∗
,

[LZ09, Proposition 2.4] (where πDn−1,n−1X : D•X → Dn−1,n−1X denotes the natural projection onto Dn−1,n−1X):

hence, σn−1,n−1(e) gives rise to a functional on πDn−1,n−1XZ
πDn−1,n−1XB

, namely, to a functional on πDn−1,n−1XZ vanishing

on πDn−1,n−1XB; such a functional, in turn, gives rise to a hyperplane L in πDn−1,n−1XZ containing πDn−1,n−1XB.
Being a kernel hyperplane in a closed set, L is closed in Dn−1,n−1X ∩ D2n−2X; furthermore, L is disjoint from
Cn−1,J \ {0}, by the choice made for e. Pick a J-Hermitian metric and let ϕ be its associated (1, 1)-form; consider

K :=
{
T ∈ Cn−1,J : T

(
ϕn−1) = 1

}
,

which is a compact set. Now, in the space Dn−1,n−1X ∩ D2n−2X, consider the closed set L, and the compact
convex non-empty set K, which have empty intersection. By the Hahn and Banach separation theorem, there
exists a hyperplane containing L, and then containing also πDn−1,n−1XB, and disjoint from K. The functional on
Dn−1,n−1X ∩D2n−2X associated to this hyperplane is a real (n−1, n−1)-form being d-closed, since it vanishes on
πDn−1,n−1XB, and positive on the complex (n−1)-subspaces of TxX⊗RC, for every x ∈ X, that is, a J-compatible
symplectic form.

The same argument as in [HL83, Proposition 12, Theorem 14] yields the following result, [AT12a, Theorem
2.8], which generalizes [HL83, Proposition 12, Theorem 14], [LZ09, page 671], see also [Mic82, Theorem 4.7].

Theorem 2.73 ([HL83, Proposition 12, Theorem 14], [LZ09, page 671], [AT12a, Theorem 2.8]). Let X be a compact
2n-dimensional manifold endowed with an almost-complex structure J , and denote by πDk,kX : D•X → Dk,kX the
natural projection onto Dk,kX, for every k ∈ N.

(i) If J is integrable, then there exists a Kähler metric if and only if C1,J ∩ πD1,1XB = {0}.

(ii) There exists an almost-Kähler metric if and only if C1,J ∩ πD1,1XB = {0}.

(iii) There exists a semi-Kähler metric if and only if Cn−1,J ∩ πDn−1,n−1XB = {0}.
Proof. Note that (i), namely, [HL83, Proposition 12, Theorem 14], is a consequence of (ii): indeed, if J is
integrable, then J is closed, [HL83, Lemma 6], that is, πD1,1XB is a closed set.

The proof of (ii), namely, [LZ09, page 671], being similar, we prove (iii), following closely the proof of (i) in
[HL83, Proposition 12, Theorem 14].

Firstly, note that if ω is a semi-Kähler form and

0 6= η :=: lim
k→+∞

πDn−1,n−1X (dαk) ∈ Cn−1,J ∩ πDn−1,n−1XB 6= {0} ,
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where {αk}k∈N ⊂ D2n−1X, then

0 <
(
η, ωn−1) =

(
lim

k→+∞
πDn−1,n−1X (dαk) , ωn−1

)
= lim

k→+∞

(
dαk, ωn−1) = lim

k→+∞

(
αk, dωn−1) = 0 ,

yielding an absurd.
For the converse, fix a J-Hermitian metric and let ϕ be its associated (1, 1)-form; the set

K :=
{
T ∈ Cn−1,J : T

(
ϕn−1) = 1

}

is a compact convex non-empty set in Dn−1,n−1X ∩ D2n−2X. By the Hahn and Banach separation theorem,
there exists a hyperplane in Dn−1,n−1X ∩D2n−2X containing the closed subspace πDn−1,n−1XB and disjoint from
K; hence, the real (n− 1, n− 1)-form associated to this hyperplane is a real d-closed (n− 1, n− 1)-form and is
positive on the complex (n− 1)-subspaces, namely, it is a semi-Kähler form.

Now, we can prove the semi-Kähler counterpart, [AT12a, Theorem 2.9], of T.-J. Li and W. Zhang’s [LZ09,
Proposition 3.1, Theorem 1.1].

Theorem 2.74. Let X be a compact 2n-dimensional manifold endowed with an almost-complex structure J .
Assume that KbcJ 6= ∅ (that is, there exists a semi-Kähler structure on X) and that 0 6∈ KbtJ . Then

KbtJ ∩H(n−1,n−1)
J (X;R) = KbcJ

and
KbcJ +H

(n,n−2),(n−2,n)
J (X;R) ⊆ KbtJ .

Moreover, if J is C∞-full at the (2n− 2)th stage, then

KbcJ +H
(n,n−2),(n−2,n)
J (X;R) = KbtJ .

Proof. By Theorem 2.71, KbtJ ⊆ H2n−2
dR (X;R) is the interior of the dual cone H̆Cn−1,J ⊆ H2n−2

dR (X;R) of
HCn−1,J ⊆ HdR

2n−2(X;R), and, by Theorem 2.72, KbcJ ⊆ H
(n−1,n−1)
J (X;R) is the interior of the dual cone

H̆Cn−1,J ⊆ H(n−1,n−1)
J (X;R) of HCn−1,J ⊆ HJ

(n−1,n−1)(X;R); therefore KbtJ ∩H
(n−1,n−1)
J (X;R) = KbcJ .

The inclusion KbcJ +H
(n,n−2),(n−2,n)
J (X;R) ⊆ KbtJ follows straightforwardly noting that the sum of a semi-

Kähler form and a J-anti-invariant (2n− 2)-form is still d-closed and positive on the complex (n− 1)-subspaces.
Finally, if J is C∞-full at the (2n− 2)th stage, then

KbtJ = int H̆Cn−1,J = int H̆Cn−1,J ∩H2n−2
dR (X;R)

= int H̆Cn−1,J ∩
(
H

(n−1,n−1)
J (X;R) +H

(n,n−2),(n−2,n)
J (X;R)

)

⊆ KbcJ +H
(n,n−2),(n−2,n)
J (X;R) ,

and hence KbcJ +H
(n,n−2),(n−2,n)
J (X;R) = KbtJ .

Remark 2.75. We note that, while the de Rham cohomology class of an almost-Kähler metric cannot be trivial,
the hypothesis 0 6∈ KbtJ in Theorem 2.74 is not trivial: J. Fu, J. Li, and S.-T. Yau proved in [FLY12, Corollary
1.3] that, for any k ≥ 2, the connected sum

(
S3 × S3)]k, endowed with the complex structure constructed from

the conifold transitions, admits balanced metrics.
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Chapter 3

Cohomology of manifolds with special
structures

In this chapter, we continue in studying the cohomological properties of (differentiable) manifolds endowed with
special structures, other than (almost-)complex structures. More precisely, in Section 3.1, we recall the results
obtained jointly with A. Tomassini in [AT12c], concerning the cohomology of symplectic manifolds; in Section 3.2,
we study cohomological decompositions on D-complex manifolds in the sense of F. R. Harvey and H. B. Lawson:
this has been the matter of a joint work with F. A. Rossi, [AR12]; finally, in Section 3.3, we consider domains
in Rn endowed with a smooth proper strictly p-convex exhaustion function, and, using L2-techniques, we give
another proof of a consequence of J.-P. Sha’s theorem [Sha86, Theorem 1], and H. Wu’s theorem [Wu87, Theorem
1], on the vanishing of the higher degree de Rham cohomology groups, which has been obtained in a joint work
with S. Calamai, [AC12].

3.1 Cohomology of symplectic manifolds
The Kähler manifolds have special cohomological properties from both the complex and the symplectic point of
view, the Hodge decomposition theorem providing a decomposition of the complex de Rham cohomology in terms
of the Dolbeault cohomology groups, and the Lefschetz decomposition theorem providing a decomposition of the
de Rham cohomology in terms of primitive cohomology groups. Then, in order to better understand the geometry
of non-Kähler manifolds, it may be interesting to investigate both the contribution of the complex structure and
the contribution of the symplectic structure.

In this section, we develop the symplectic counterpart of the theory introduced by T.-J. Li and W. Zhang
in [LZ09] to study the cohomology of almost-complex manifolds. The results in this section have been obtained
jointly with A. Tomassini in [AT12c].

3.1.1 Hodge theory on symplectic manifolds
Cohomological properties of symplectic manifolds have been studied starting from the works by J.-L. Koszul,
[Kos85], and by J.-L. Brylinski, [Bry88]. Drawing a parallel between the symplectic and the Riemannian cases,
J.-L. Brylinski proposed in [Bry88] a Hodge theory for compact symplectic manifolds (X, ω), introducing a
symplectic Hodge-?-operator ?ω and the notion of ω-symplectically-harmonic form (i.e., a form being both d-closed
and dΛ-closed, where the symplectic co-differential is defined as dΛb∧kX := (−1)k+1 ?ω d ?ω for every k ∈ N): in
this context, O. Mathieu in [Mat95], and D. Yan in [Yan96], proved that any de Rham cohomology class admits
an ω-symplectically-harmonic representative if and only if the Hard Lefschetz Condition is satisfied. Recently,
L.-S. Tseng and S.-T. Yau, in [TY12a, TY12b], see also [TY11], introduced new cohomologies for symplectic
manifolds (X, ω): among them, in particular, they defined and studied

H•d + dΛ(X;R) :=
ker
(

d + dΛ
)

im d dΛ ,

developing a Hodge theory for this cohomology; furthermore, they studied the dual currents of Lagrangian and
co-isotropic submanifolds, and they defined a homology theory on co-isotropic chains, which turns out to be
naturally dual to a primitive cohomology. In the context of Generalized Geometry, [Gua04, Gua11, Cav05, Cav07],
the cohomology H•d + dΛ(X;R) can be interpreted as the symplectic counterpart of the Bott-Chern cohomology of
a complex manifold, see [TY11]. Inspired also by their works, Y. Lin developed in [Lin11] a new approach to the
symplectic Hodge theory, proving in particular that, on any compact symplectic manifold satisfying the Hard
Lefschetz Condition, there is a Poincaré duality between the primitive homology on co-isotropic chains and the
primitive cohomology.
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In this section, we recall some notions and results concerning Hodge theory for compact symplectic manifolds;
we refer to [Bry88, Mat95, Yan96, Cav05, TY12a, TY12b, Lin11] for further details. (See §0.2 for basic definitions
and results on symplectic manifolds.)

Symplectic cohomologies

Let X be a compact 2n-dimensional manifold endowed with a symplectic structure ω.
We recall, see §0.2, that, ω being non-degenerate, it induces a natural isomorphism I : TX → T ∗X, namely,

I(·)(··) = ω(·, ··), and hence a bi-C∞(X;R)-linear form
(
ω−1)k : ∧k X ⊗ ∧kX → C∞(X;R); the symplectic-?-

operator, is defined, for every α, β ∈ ∧kX, by, [Bry88, §2],

?ω : ∧• X → ∧2n−•X , α ∧ ?ωβ =
(
ω−1)k (α, β) ω

n

n! ,

and satisfies ?2
ω = id∧•X , [Bry88, Lemma 2.1.2].

We recall that the operators

L := ω ∧ · : ∧• X → ∧•+2X ,

Λ := −ιΠ = − ?ω L?ω : ∧• X → ∧•−2X ,

H :=
∑

k

(n− k) π∧kX : ∧• X → ∧•X ,

(where Π := ω−1 ∈ ∧2TX is the canonical Poisson bi-vector associated to ω, the interior product with ξ ∈ ∧2 (TX)
is denoted by ιξ : ∧• X → ∧•−2X, and, for k ∈ N, the map π∧kX : ∧• X → ∧kX denotes the natural projection
onto ∧kX) yields an sl(2;R)-representation on ∧•X having finite H-spectrum, and hence one has the Lefschetz
decomposition on differential forms, [Yan96, Corollary 2.6],

∧•X =
⊕

r∈N
Lr P∧•−2rX ,

where the space of primitive forms is

P∧•X := ker Λ = kerLn−•+1b∧•X .

Consider now the symplectic co-differential operator dΛ : ∧• X → ∧•−1X, defined, for every k ∈ N, by

dΛb∧kX := (−1)k+1 ?ω d ?ω ;

it has been introduced, in general for a Poisson manifold, by J.-L. Koszul, [Kos85], and studied also by J.-L.
Brylinski, [Bry88, §1.2]. The basic symplectic identity

[d, Λ] = dΛ

holds, see, e.g., [Yan96, Corollary 1.3]; by the graded-Jacobi identity, it follows that
[
d, dΛ

]
= [d, [d, Λ]] =

[d, [Λ, d]]− [Λ, [d, d]] = −
[
d, dΛ

]
, since [d, d] = 0 and [Λ, d] = − [d, Λ], and hence, [Kos85, page 265], [Bry88,

Theorem 1.3.1],
d dΛ + dΛ d = 0 .

Hence, interpreting, as in [Bry88], dΛ as the symplectic counterpart of the Riemannian co-differential operator
d∗ associated to a Riemannian metric g on X, then the symplectic counterpart of the Laplacian operator
∆ := d d∗+ d∗ d vanishes.

We recall that, if (J, ω, g) is an almost-Kähler structure on X, then the symplectic-?-operator ?ω and the
Hodge-∗-operator ∗g are related by

?ω = J ∗g ,
[Bry88, Theorem 2.4.1], and hence dΛ and dc := J−1 d J are related by

dΛ = − (dc)∗ .

The previous identity, together with the identity d dΛ + dΛ d = 0, suggests that dΛ should be interpreted as the
symplectic counterpart of the operator dc in Complex Geometry; this guess can be made more precise using
Complex Generalized Geometry, [Gua04, Gua11, Cav05, Cav07].
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The symplectic co-differential operator satisfies
(

dΛ
)2

= 0, and hence it gives rise to a differential complex
(
∧•X, dΛ

)
. This complex has been introduced, more in general, on a Poisson manifold, with the name of canonical

complex, by J.-L. Koszul, [Kos85], and studied also by J.-L. Brylinski, [Bry88, §1], and, more recently, by L.-S.
Tseng and S.-T. Yau, [TY12a, §3.1]. The homology of the complex

(
∧•X, dΛ

)
is, in J.-L. Koszul’s terminology,

the canonical homology of X,

H•dΛ(X;R) := ker dΛ

im dΛ .

Note that, [Bry88, Corollary 2.2.2],

?ω : H•dR(X;R) '→ H2n−•
dΛ (X;R) ,

hence, for a compact symplectic manifold, the canonical homology groups and the de Rham cohomology groups
are isomorphic.

In [TY12a], L.-S. Tseng and S.-T. Yau introduced also the
(

d + dΛ
)
-cohomology, [TY12a, §3.2],

H•d + dΛ(X;R) :=
ker
(

d + dΛ
)

im d dΛ ,

and the
(

d dΛ
)
-cohomology, [TY12a, §3.3],

H•d dΛ(X;R) := ker d dΛ

im d + im dΛ ;

such cohomologies are, in a sense, the symplectic counterpart of the Aeppli and Bott-Chern cohomologies of
complex manifolds, see [TY12a, §5] and [TY11] for further discussions.

Furthermore, they provided a Hodge theory for such cohomologies, proving the following result.

Theorem 3.1 ([TY12a, Theorem 3.5, Corollary 3.6]). Let X be a compact manifold endowed with a symplectic
structure ω. Let (J, ω, g) be an almost-Kähler structure on X. For a fixed λ > 0, the 4th order self-adjoint
differential operator

Dd + dΛ :=
(

d dΛ
)(

d dΛ
)∗

+
(

d dΛ
)∗ (

d dΛ
)

+
(

d∗ dΛ
)(

d∗ dΛ
)∗

+
(

d∗ dΛ
)∗ (

d∗ dΛ
)

+λ
(

d∗ d +
(

dΛ
)∗

dΛ
)
.

is elliptic, with kerDd + dΛ = ker d∩ ker dΛ ∩ ker
(

d dΛ
)∗

.
Furthermore, there exist an orthogonal decomposition

∧•X = kerDd + dΛ ⊕ d dΛ ∧•X ⊕
(

d∗ ∧•+1X +
(

dΛ
)∗
∧•−1 X

)

and an isomorphism
H•d + dΛ(X;R) ' kerDd + dΛ .

In particular, dimRH•d + dΛ(X;R) < +∞.

An analogous statement holds for the
(

d dΛ
)
-cohomology.

Theorem 3.2 ([TY12a, Theorem 3.16, Corollary 3.17]). Let X be a compact manifold endowed with a symplectic
structure ω. Let (J, ω, g) be an almost-Kähler structure on X. For a fixed λ > 0, the 4th order self-adjoint
differential operator

Dd dΛ :=
(

d dΛ
)(

d dΛ
)∗

+
(

d dΛ
)∗ (

d dΛ
)

+
(

d
(

dΛ
)∗)(

d
(

dΛ
)∗)∗

+
(

d
(

dΛ
)∗)∗ (

d
(

dΛ
)∗)

+λ
(

d d∗+ dΛ
(

dΛ
)∗)

.

is elliptic, with kerDd dΛ = ker
(

d dΛ
)
∩ ker d∗ ∩ ker

(
dΛ
)∗

.
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Furthermore, there exist an orthogonal decomposition

∧•X = kerDd dΛ ⊕
(

d∧•−1X + dΛ ∧•+1X
)
⊕
(

d dΛ
)∗
∧• X

and an isomorphism
H•d dΛ(X;R) ' kerDd dΛ .

In particular, dimRH•d dΛ(X;R) < +∞.

As for the Bott-Chern and the Aeppli cohomologies, the
(

d + dΛ
)
-cohomology and the

(
d dΛ

)
-cohomology

groups turn out to be isomorphic by means of the Hodge-∗-operator associated to any Riemannian metric being
compatible with ω.

Theorem 3.3 ([TY12a, Lemma 3.23, Proposition 3.24, Corollary 3.25]). Let X be a 2n-dimensional compact
manifold endowed with a symplectic structure ω. Let (J, ω, g) be an almost-Kähler structure on X. The operators
Dd + dΛ and Dd dΛ satisfy

∗gDd + dΛ = Dd dΛ ∗g ,
and hence ∗g induces an isomorphism

∗g : H•d + dΛ(X;R) '→ H2n−•
d dΛ (X;R) .

Moreover, the cohomology H•d + dΛ(X;R) is invariant under symplectomorphisms and Hamiltonian isotopies,
[TY12a, Proposition 2.8].

One has the following commutation relations between the differential operators d, dΛ, and d dΛ, and the
elements L, Λ, and H of the sl(2;R)-triple, see, e.g., [TY12a, Lemma 2.3]:

[d, L] = 0 ,
[
dΛ, L

]
= −d ,

[
d dΛ, L

]
= 0 ,

[d, Λ] = dΛ ,
[
dΛ, Λ

]
= 0 ,

[
d dΛ, Λ

]
= 0 ,

[d, H] = d ,
[
dΛ, H

]
= −dΛ ,

[
d dΛ, H

]
= 0 .

Hence, by setting

PH•d + dΛ(X;R) := ker d∩ ker dΛ ∩P∧•X
im d dΛ ∩P∧•X

= ker d∩P∧•X
im d dΛbP∧•X

(where the second equality follows from [TY12a, Lemma 3.9]), one gets the following result.

Theorem 3.4 ([TY12a, Theorem 3.11]). Let X be a 2n-dimensional compact manifold endowed with a symplectic
structure ω. Then there exist a decomposition

H•d + dΛ(X;R) =
⊕

r∈N
Lr PH•−2r

d + dΛ(X;R)

and, for every k ∈ N, an isomorphism

Lk : Hn−k
d + dΛ(X;R) '→ Hn+k

d + dΛ(X;R) ,

Analogously, by setting

PH•d dΛ(X;R) := ker d dΛ ∩P∧•X(
im d + im dΛ

)
∩ P∧•X

= ker d dΛ ∩P∧•X
im
(

d +LH−1 dΛ
)⌊

P∧•−1X
+ im dΛ

⌊
P∧•+1X

(where the second equality follows from [TY12a, Lemma 3.20]), one gets the following result.

Theorem 3.5 ([TY12a, Theorem 3.21]). Let X be a 2n-dimensional compact manifold endowed with a symplectic
structure ω. Then there exist a decomposition

H•d dΛ(X;R) =
⊕

r∈N
Lr PH•−2r

d dΛ (X;R)

and, for every k ∈ N, an isomorphism

Lk : Hn−k
d dΛ (X;R) '→ Hn+k

d dΛ (X;R) ,
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The identity map induces the following natural maps in cohomology:

H•d + dΛ(X;R)

wwooooooooooo

''OOOOOOOOOOO

H•dR(X;R)

''OOOOOOOOOOOO
H•dΛ(X;R)

wwooooooooooo

H•d dΛ(X;R)

Recall that a symplectic manifold is said to satisfy the d dΛ-Lemma if every d-exact dΛ-closed form is d dΛ-exact,
[DGMS75], namely, if H•d + dΛ(X;R)→ H•dR(X;R) is injective.

Remark 3.6. Note that

ker dΛ ∩ im d = im d dΛ if and only if ker d∩ im dΛ = im d dΛ .

Indeed, since ?2
ω = id∧•X , [Bry88, Lemma 2.1.2], and d dΛ + dΛ d = 0, [Bry88, Theorem 1.3.1], one has

?ω ker d = ker dΛ , ?ω im d = im dΛ , ?ω im d dΛ = im d dΛ .

Another cohomological property that can be defined on a 2n-dimensional compact manifold X endowed with
a symplectic form ω is the Hard Lefschetz Condition, that is,

for every k ∈ N , Lk : Hn−k
dR (X;R) '→ Hn+k

dR (X;R) . (HLC)

In fact, the following result relates the d dΛ-Lemma, the Hard Lefschetz Condition, and the existence of
ω-symplectically harmonic representatives in any de Rham cohomology class.

Theorem 3.7 ([Mat95, Corollary 2], [Yan96, Theorem 0.1], [Mer98, Proposition 1.4], [Gui01], [Cav05, Theorem
5.4]). Let X be a compact manifold endowed with a symplectic structure ω. The following conditions are equivalent:

(i) every de Rham cohomology class admits a representative being both d-closed and dΛ-closed (i.e., Brylinski’s
conjecture [Bry88, Conjecture 2.2.7] holds on X);

(ii) the Hard Lefschetz Condition holds on X;

(iii) the natural homomorphism H•d + dΛ(X;R)→ H•dR(X;R) induced by the identity is actually an isomorphism;

(iv) X satisfies the d dΛ-Lemma.

Note that, by the Lefschetz decomposition theorem, the compact Kähler manifolds satisfy the Hard Lefschetz
Condition; in other terms, note that, given a Kähler structure (J, ω, g) on a compact manifold X, one has
?ω = J ∗g, [Bry88, Theorem 2.4.1], and hence every de Rham cohomology class admits an ω-symplectically-
harmonic representative.

Primitive currents

Let X be a 2n-dimensional compact manifold endowed with a symplectic structure ω. Denote by D•X :=: D2n−•X
the space of currents, and consider the de Rham homology HdR

• (X;R) := H• (D•X, d). (See §0.5 for definitions
and results concerning currents and de Rham homology.)

Following [Lin11, Definition 5.1], set, by duality,

L : D•X → D•−2X , S 7→ S (L ·) ,

Λ: D•X → D•+2X , S 7→ S (Λ ·) ,

H : D•X → D•X , S 7→ S (−H ·) ;

note that
[L, H] = 2L , [Λ, H] = −2 Λ , [L, Λ] = H .

A current S ∈ DkX is said primitive if ΛS = 0, equivalently, if Ln−k+1S = 0, see, e.g., [Lin11, Proposition
5.3]; denote by PD•X :=: PD2n−•X the space of primitive currents on X.

In [Lin11], Y. Lin proved the following result.
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Theorem 3.8 ([Lin11, Lemma 5.2, Proposition 5.3, Lemma 5.12]). Let X be a compact manifold endowed with a
symplectic structure ω. Then 〈L, Λ, H〉 gives an sl(2;R)-module structure on D•X. In particular, one has the
Lefschetz decomposition on the space of currents,

D•X =
⊕

r∈N
Lr PD•−2rX :=:

⊕

r∈N
Lr PD2n−•+2rX .

Furthermore, the space of flat currents is an sl(2;R)-submodule of the space of currents.

Finally, if j : Y ↪→ X is a compact oriented submanifold of X of codimension k (possibly with non-empty
boundary), then the dual current [Y ] ∈ DkX associated with Y is defined, by setting, for every ϕ ∈ ∧kX,

[Y ] (ϕ) :=
∫

Y

j∗(ϕ) .

If Y is a closed oriented submanifold, then the dual current [Y ] is d-closed. According to [TY12a, Lemma 4.1],
the dual current [Y ] is primitive if and only if Y is co-isotropic.

3.1.2 Symplectic subgroups of (co)homology
In this section, we provide a symplectic counterpart to T.-J. Li and W. Zhang’s theory on cohomology of
almost-complex manifolds developed in [LZ09]. More precisely, we define the subgroups H(•,•)

ω (X;R) of the de
Rham cohomology H•dR(X;R) of a symplectic manifold (X, ω), and, analogously, the subgroups Hω

(•,•)(X;R) of
the de Rham homology HdR

• (X;R); then, we study some of their properties: in particular, we prove that, for
every compact symplectic manifold, the decomposition H2

dR(X;R) = H
(1,0)
ω (X;R)⊕H(0,2)

ω (X;R) holds, Theorem
3.14, which provides a symplectic counterpart of [DLZ10, Theorem 2.3].

Let X be a 2n-dimensional compact manifold endowed with a symplectic structure ω. For any r, s ∈ N, define

H(r,s)
ω (X;R) :=

{[
Lr β(s)

]
∈ H2r+s

dR (X;R) : β(s) ∈ P∧sX
}
⊆ H2r+s

dR (X;R) .

Obviously, for every k ∈ N, one has
∑

2r+s=k
H(r,s)
ω (X;R) ⊆ Hk

dR(X;R) :

we are concerned with studying when the above inclusion is actually an equality, and when the sum is actually a
direct sum.

Remark 3.9. We underline the relations between the above subgroups and the primitive cohomologies introduced
by L.-S. Tseng and S.-T. Yau in [TY12a]. As regards L.-S. Tseng and S.-T. Yau’s primitive

(
d + dΛ

)
-cohomology

PH•d + dΛ(X;R), note that, for every r, s ∈ N,

im
(
Lr PHs

d + dΛ(X;R)→ H•dR(X;R)
)

= LrH(0,s)
ω (X;R) ⊆ H(r,s)

ω (X;R) .

In [TY12a, §4.1], L.-S. Tseng and S.-T. Yau have introduced also the primitive cohomology groups

PHs
d(X;R) := ker d∩ ker dΛ ∩P∧sX

im dbP∧s−1X∩ker dΛ
,

where s ∈ N, proving that the homology on co-isotropic chains is naturally dual to PH2n−•
d (X;R), see [TY12a,

pages 40–41]; in [Lin11, Proposition 2.7], Y. Lin proved that, if the Hard Lefschetz Condition holds on X, then

H(0,•)
ω (X;R) = PH•d(X;R) .

Remark 3.10. In [CT07], D. Conti and A. Tomassini studied the notion of half-flat structure on a 6-dimensional
manifold X, see [CS02]. Namely, an SU(3)-structure (ω, ψ) on X, where ω is a non-degenerate real 2-form and ψ is
a decomposable complex 3-form such that ψ ∧ω = 0 and ψ ∧ ψ̄ = − 4 i

3 ω
3, is called half-flat if both ω ∧ω and Reψ

are d-closed. Note in particular that, if (ω, ψ) is a symplectic half-flat structure on X, then [Reψ] ∈ H(0,3)
ω (X;R).



3.1 Cohomology of symplectic manifolds 111

Remark 3.11. A class of examples of compact symplectic manifolds (X, ω) satisfying the cohomology decomposi-
tion by means of the above subgroups H•,•ω (X;R) (actually, satisfying an even stronger cohomology decomposition)
is provided by the compact symplectic manifolds satisfying the d dΛ-Lemma, equivalently, as already recalled, the
Hard Lefschetz Condition, [Mer98, Proposition 1.4], [Gui01], [Cav05, Theorem 5.4].

More precisely, on a compact manifold X endowed with a symplectic structure ω, the following conditions are
equivalent:

• X satisfies the d dΛ-Lemma;

• it holds the decomposition
H•dR(X;R) =

⊕

r∈N
LrH(0,•−2r)

ω (X;R) . (3.1.1)

Indeed, recall that the decomposition

H•d + dΛ(X;R) =
⊕

r∈N
Lr PH•−2r

d + dΛ(X;R)

holds on any compact symplectic manifold, [TY12a, Theorem 3.11]; moreover, the d dΛ-Lemma holds on a compact
symplectic manifold if and only if the natural homomorphism

H•d + dΛ(X;R)→ H•dR(X;R)

induced by the identity is actually an isomorphism; recall also that

im
(
Lr PHs

d + dΛ(X;R)→ H•dR(X;R)
)

= LrH(0,s)
ω (X;R) ;

hence, if the d dΛ-Lemma holds, then one has the decomposition (3.1.1). Conversely, if (3.1.1) holds, then,
straightforwardly, X satisfies the Hard Lefschetz condition, and hence also the d dΛ-Lemma, [Mer98, Proposition
1.4], [Gui01], [Cav05, Theorem 5.4].

Analogously, considering the space D•X :=: D2n−•X of currents and the de Rham homology HdR
• (X;R), for

every r, s ∈ N, define

Hω
(r,s)(X;R) :=

{[
Lr B(s)

]
∈ HdR

−2r+s(X;R) : B(s) ∈ PDsX
}
⊆ HdR

−2r+s(X;R) ;

as previously, for every k ∈ N, we have just the inclusion
∑

−2r+s=k
Hω

(r,s)(X;R) ⊆ HdR
k (X;R) ,

but, in general, neither the sum is direct nor the inclusion is an equality.

We prove that, fixed k ∈ N, if the sum
∑

2r+s=2n−kH
(r,s)
ω (X;R) gives the whole (2n− k)th de Rham

cohomology group, then the sum of the subgroups of the kth de Rham cohomology group is direct, [AT12c,
Proposition 2.4] (this result should be compared with [LZ09, Proposition 2.30] and Theorem 2.10 in the almost-
complex case, and with Proposition 3.25 in the D-complex case).

Proposition 3.12. Let X be a 2n-dimensional compact manifold endowed with a symplectic structure ω. For
every k ∈ N, the following implications hold:

Hk
dR(X;R) =

∑
2r+s=kH

(r,s)
ω (X;R) +3

��

⊕
−2r+s=kH

ω
(r,s)(X;R) ⊆ HdR

k (X;R)

��
HdR

2n−k(X;R) =
∑
−2r+s=2n−kH

ω
(r,s)(X;R) +3 ⊕

2r+s=2n−kH
(r,s)
ω (X;R) ⊆ H2n−k

dR (X;R) .

Proof. Note that the quasi-isomorphism T· : ∧• X 3 ϕ 7→
∫
X
ϕ ∧ · ∈ D•X satisfies

TL · = LT· ,

and hence, in particular, it preserves the bi-graduation,

T (L•1 P∧•2X) ⊆ L•1 PD•2X :=: L•1 PD2n−•2X ,
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and it induces, for every r, s ∈ N, an injective map

H(r,s)
ω (X;R) ↪→ Hω

(r,2n−s)(X;R) .

Therefore the two vertical implications are proven.
Consider now the non-degenerate duality pairing

〈·, ··〉 : H•dR(X;R)×HdR
• (X;R)→ R ,

and note that, for every r, s ∈ N,

ker
〈
H(r,s)
ω (X;R), ·

〉
⊇

∑

(p,q)6=(n−r−s,2n−s)
Hω

(p,q)(X;R) ,

and, analogously, for every p, q ∈ N,

ker
〈
·, Hω

(p,q)(X;R)
〉
⊇

∑

(r,s)6=(n−p−s,2n−q)
H(r,s)
ω (X;R) ;

this suffices to prove the two horizontal implications.

A straightforward consequence of [Mat95, Corollary 2], or [Yan96, Theorem 0.1], and Proposition 3.12 is the
following result, [AT12c, Corollary 2.5], which should be compared with [DLZ10, Theorem 2.16, Proposition 2.17].

Corollary 3.13. Let X be a compact manifold endowed with a symplectic structure ω. Suppose that the Hard
Lefschetz Condition holds on X, equivalently, that X satisfies the d dΛ-Lemma. Then

H•dR(X;R) =
⊕

r∈N
H(r,•−2r)
ω (X;R) and HdR

• (X;R) =
⊕

r∈N
Hω

(r,•+2r)(X;R) .

In particular, when dimX = 4 and taking k = 2 in Proposition 3.12, one gets that, if H2
dR(X;R) =

H
(1,0)
ω (X;R) + H

(0,2)
ω (X;R) holds, then actually H2

dR(X;R) = H
(1,0)
ω (X;R) ⊕H(0,2)

ω (X;R) holds. In fact, the
following result states that H2

dR(X;R) always decomposes as direct sum of H(1,0)
ω (X;R) and H(0,2)

ω (X;R), also in
dimension higher than 4, [AT12c, Theorem 2.6]: this gives a symplectic counterpart to T. Drǎghici, T.-J. Li and
W. Zhang’s decomposition theorem [DLZ10, Theorem 2.3] in the complex setting, in fact, without the restriction
to dimension 4.

Theorem 3.14. Let X be a compact manifold endowed with a symplectic structure ω. Then

H2
dR(X;R) = H(1,0)

ω (X;R)⊕H(0,2)
ω (X;R) .

In particular, if dimX = 4, then

H•dR(X;R) =
⊕

r∈N
H(r,•−2r)
ω (X;R) and HdR

• (X;R) =
⊕

r∈N
Hω

(r,•+2r)(X;R) .

Proof. Let 2n := dimX. Firstly, we prove that H(1,0)
ω (X;R) ∩H(0,2)

ω (X;R) = {0}. Let

c :=: [f ω] :=:
[
β(2)

]
∈ H(1,0)

ω (X;R) ∩H(0,2)
ω (X;R) ,

where f ∈ C∞(X;R) and β(2) ∈ P∧2X. Being P∧2X = kerLn−1b∧2X , one has

0 =
∫

X

f Ln−1β(2) =
∫

X

f ω ∧ β(2) ∧ ωn−2 =
∫

X

f ω ∧ f ω ∧ ωn−2 =
∫

X

f2ωn

hence f = 0, that is, c = 0.
Now, we prove that H2

dR(X;R) = H
(1,0)
ω (X;R) + H

(0,2)
ω (X;R). Let a :=: [α] ∈ H2

dR(X;R). Then Ln−1a ∈
H2n
dR(X;R) = R 〈[ωn]〉, that is, there exist λ ∈ R and γ2n−1 ∈ ∧2n−1X such that Ln−1α = λωn + d γ2n−1. Since

Ln−1 : ∧1 X
'→ ∧2n−1X is an isomorphism, there exists γ1 ∈ ∧1X such that Ln−1γ1 = γ2n−1. Hence, since[

d, Ln−1] = 0, we get that Ln−1 (α− d γ1 − λω) = 0, that is, α− d γ1 − λω ∈ P∧2X; therefore we get that

a :=: [α] = [α− d γ1] = λ [ω]︸ ︷︷ ︸
∈H(1,0)

ω (X;R)

+ [α− d γ1 − λω]︸ ︷︷ ︸
∈H(0,2)

ω (X;R)

,

concluding the proof.
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Part of the argument in the proof of Theorem 3.14 can be generalized to prove the following result, [AT12c,
Remark 2.7].

Proposition 3.15. Let X be a 2n-dimensional compact manifold endowed with a symplectic structure ω. For
every k ∈

{
1, . . . ,

⌊
n
2
⌋}

, it holds
H(k,0)
ω (X;R) ∩H(0,2k)

ω (X;R) = {0} .

Proof. Let c :=:
[
f ωk

]
:=:

[
β(2k)] ∈ H(k,0)

ω (X;R) ∩ H(0,2k)
ω (X;R), where f ∈ C∞(X;R) and β(2k) ∈ P∧2kX.

Being P∧2kX = kerLn−2k+1b∧2kX , one has

0 =
∫

X

f Ln−2k+1β(2k) ∧ ωk−1 =
∫

X

f ωk ∧ β(2k) ∧ ωn−2k =
∫

X

f ωk ∧ f ωk ∧ ωn−2k =
∫

X

f2ωn

hence f = 0, that is, c = 0.

In some cases, in studying H(r,s)
ω (X;R), one can reduce to study H

(0,s)
ω (X;R): this is the matter of the

following result, [AT12c, Proposition 2.8].

Proposition 3.16. Let X be a 2n-dimensional compact manifold endowed with a symplectic structure ω. Then,
for every r, s ∈ N such that 2r + s ≤ n, one has

H(r,s)
ω (X;R) = LrH(0,s)

ω (X;R) .

Proof. Since L : ∧j X → ∧j+2X is injective for j ≤ n− 1, [Yan96, Corollary 2.8], (in fact, an isomorphism for
j = n− 1, [Yan96, Corollary 2.7],) and [d, L] = 0, we get that

H(r,s)
ω (X;R) =

{[
ωr β(s)

]
∈ H2r+s

dR (X;R) : β(s) ∈ ∧sX ∩ ker Λ such that Lr dβ(s) = 0
}

=
{

[ωr] ^
[
β(s)

]
∈ H2r+2

dR (X;R) : β(s) ∈ ∧sX ∩ ker Λ
}
,

assumed that 2r + s ≤ n.

In particular, for every r ∈
{

1, . . . ,
⌊
n
2
⌋}

, the spaces H(r,0)
ω (X;R) are 1-dimensional R-vector spaces, more

precisely, H(r,0)
ω (X;R) = R 〈[ωr]〉.

Furthermore, by the previous proposition, it follows that, for k ≤ 1
2 dimX, the condition

Hk
dR(X;R) =

⊕

r∈N
H(r,k−2r)
ω (X;R)

is in fact equivalent to Hk
dR(X;R) =

⊕
r∈N L

rH
(0,k−2r)
ω (X;R).

3.1.3 Symplectic cohomological decomposition on solvmanifolds
As shown in Corollary 3.13, whenever X is a compact manifold endowed with a symplectic structure ω satisfying the
Hard Lefschetz Condition, the de Rham cohomology H•dR(X;R), respectively the de Rham homology HdR

• (X;R),
decomposes as direct sum of the subgroups H(•,•)

ω (X;R), respectively Hω
(•,•)(X;R). Hence, it should be interesting

to study cohomological properties for classes of symplectic manifolds not satisfying the Hard Lefschetz property,
e.g., non-tori nilmanifolds, [BG88, Theorem A].

In this section, we study a Nomizu-type theorem for the subgroups H(•,•)
ω (X;R) on completely-solvable

solvmanifolds endowed with left-invariant symplectic structures, Proposition 3.18, providing explicit examples and
studying their cohomological properties. (As regards notations, definitions, and results concerning nilmanifolds
and solvmanifolds, we refer to §0.6.)

Left-invariant symplectic structures on solvmanifolds

Let X = Γ\G be a completely-solvable solvmanifold endowed with a G-left-invariant symplectic structure ω.
Recall that, by A. Hattori’s theorem [Hat60, Corollary 4.2], the complex (∧•g∗, d), which is isomorphic to

the sub-complex composed of the G-left-invariant forms of (∧•X, d), turns out to be quasi-isomorphic to the de
Rham complex (∧•X, d), that is, H•dR (g;R) ' H•dR(X;R).
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Since ω is G-left-invariant, 〈L, Λ, H〉 induces a sl(2;R)-representation both on ∧•X and on ∧•g∗. Hence, for
any r, s ∈ N, we can consider both the subgroup H(r,s)

ω (X;R) of H•dR(X;R), and the subgroup

H(r,s)
ω (g;R) :=

{[
Lr β(s)

]
∈ H•dR (g;R) : Λβ(s) = 0

}

of H•dR (g;R) ' H•dR(X;R), namely, the subgroup constituted of the de Rham cohomology classes admitting
G-left-invariant representatives in Lr P∧sX.

In this section, we are concerned with studying the linking between H(•,•)
ω (X;R) and H(•,•)

ω (g;R). This will
let us study explicit examples in §3.1.3.

In the following lemma, we adapt the F. A. Belgun symmetrization trick, [Bel00, Theorem 7], to the symplectic
case, [AT12c, Lemma 3.2].

Lemma 3.17. Let X = Γ\G be a solvmanifold, and denote the Lie algebra naturally associated to G by g. Let ω
be a G-left-invariant symplectic structure on X. Let η be a G-bi-invariant volume form on G, given by J. Milnor’s
Lemma [Mil76, Lemma 6.2], such that

∫
X
η = 1. Up to identifying G-left-invariant forms on X and linear forms

over g∗ through left-translations, consider the F. A. Belgun symmetrization map, [Bel00, Theorem 7],

µ : ∧• X → ∧•g∗ , µ(α) :=
∫

X

αbm η(m) .

One has that
µb∧•g∗ = idb∧•g∗

and that
d (µ(·)) = µ (d ·) and L (µ(·)) = µ (L·) .

In particular, µ sends primitive forms to G-left-invariant primitive forms.

Proof. It has to be shown just that µ (Lα) = Lµ (α) for every α ∈ ∧•X. Note that, ω being a G-left-invariant form,
one has µ (Lα) =

∫
X

(ω ∧ α) bm η(m) =
∫
X
ωbm∧αbm η(m) = ω∧

∫
X
αbm η(m) = Lµ (α), for every α ∈ ∧•X.

As a consequence of the previous lemma, we can prove the following result, which relates the subgroups
H

(r,s)
ω (X;R) with their G-left-invariant part H(r,s)

ω (g;R), [AT12c, Proposition 3.3] (compare with Proposition 2.19,
and also with [FT10, Theorem 3.4], for almost-complex structures, and with Proposition 3.30 for almost-D-complex
structures in the sense of F. R. Harvey and H. B. Lawson).

Proposition 3.18. Let X = Γ\G be a solvmanifold endowed with a G-left-invariant symplectic structure ω, and
denote the Lie algebra naturally associated to G by g. For every r, s ∈ N, the map

j : H(r,s)
ω (g;R)→ H(r,s)

ω (X;R)

induced by left-translations is injective, and, if H•dR (g;R) ' H•dR(X;R) (for instance, if X is a completely-solvable
solvmanifold), then it is in fact an isomorphism.

Proof. Left-translations induce the map j : H(r,s)
ω (g;R)→ H

(r,s)
ω (X;R). Consider the F. A. Belgun’s symmetriza-

tion map µ : ∧•X → ∧•g∗: since it commutes with d by [Bel00, Theorem 7], it induces the map µ : H•dR(X;R)→
H•dR (g;R), and, since it commutes with L by Lemma 3.17, it induces the map µ : H(r,s)

ω (X;R) → H
(r,s)
ω (g;R).

Moreover, since µ is the identity on the space of G-left-invariant forms, we get the commutative diagram

H
(r,s)
ω (g;R)

j //

id

44
H

(r,s)
ω (X;R)

µ // H(r,s)
ω (g;R) .

Hence j : H(r,s)
ω (g;R)→ H

(r,s)
ω (X;R) is injective, and µ : H(r,s)

ω (X;R)→ H
(r,s)
ω (g;R) is surjective.

Furthermore, when H•dR (g;R) ' H•dR(X;R) (for instance, when X is a completely-solvable solvmanifold, by
A. Hattori’s theorem [Hat60, Theorem 4.2]), since µb∧•g∗= idb∧•g∗ by [Bel00, Theorem 7], we get that the map
µ : H•dR(X;R)→ H•dR (g;R) is the identity map, and hence µ : H(r,s)

ω (X;R)→ H
(r,s)
ω (g;R) is also injective, hence

an isomorphism.



3.1 Cohomology of symplectic manifolds 115

Symplectic (co)homology decomposition on solvmanifolds

Proposition 3.18 is a useful tool to study explicit examples, [AT12c, Example 3.4, Example 3.5, Example 3.6].

Example 3.19. A 6-dimensional symplectic nilmanifold such that H(0,3)
ω (X;R) +H

(1,1)
ω (X;R) ( H3

dR(X;R) and
H

(0,3)
ω (X;R) ∩H(1,1)

ω (X;R) 6= {0}.
Take a 6-dimensional nilmanifold

X = Γ\G :=
(
03, 12, 14− 23, 15 + 34

)

endowed with the G-left-invariant symplectic structure

ω := e16 + e35 + e24 .

By K. Nomizu’s theorem [Nom54, Theorem 1], one computes

H1
dR(X;R) = R

〈
e1, e2, e3〉

︸ ︷︷ ︸
=H(0,1)

ω (X;R)

,

H2
dR(X;R) = R

〈
e16 + e35 + e24〉

︸ ︷︷ ︸
=H(1,0)

ω (X;R)

⊕R
〈
e13, e14 + e23, 2 · e24 − e16 − e35〉

︸ ︷︷ ︸
=H(0,2)

ω (X;R)

,

H3
dR(X;R) = R

〈
e126 − e145 − 2 · e235, e136, e146 + 1

2 · e
236 + 1

2 · e
345, e245

〉

(where, as usual, we have listed the harmonic representatives with respect to the G-left-invariant metric
∑6
j=1 e

j�ej
instead of their classes, and we have shortened, for example, ehk := eh ∧ ek).

Since the Lefschetz decompositions of the g-harmonic representatives of H3
dR(X;R) are

e126 − e145 − 2 · e235 =
(
−1

2 · e
126 − 1

2 · e
235 − e145

)

︸ ︷︷ ︸
∈P∧3X

+
(

3
2 · e

126 − 3
2 · e

235
)

︸ ︷︷ ︸
= L(− 3

2 ·e2)

,

e136 =
(

1
2 · e

136 − 1
2 · e

234
)

︸ ︷︷ ︸
∈P∧3X

+
(

1
2 · e

136 + 1
2 · e

234
)

︸ ︷︷ ︸
= L(− 1

2 ·e3)

,

e146 + 1
2 · e

236 + 1
2 · e

345 =
(

1
4 · e

146 − 1
4 · e

345 + 1
2 · e

236
)

︸ ︷︷ ︸
∈P∧3X

+
(

3
4 · e

146 + 3
4 · e

345
)

︸ ︷︷ ︸
= L(− 3

4 ·e4)

,

e245 =
(

1
2 · e

156 + 1
2 · e

245
)

︸ ︷︷ ︸
∈P∧3X

+
(
−1

2 · e
156 + 1

2 · e
245
)

︸ ︷︷ ︸
= L( 1

2 ·e5)

,

and since
d∧2g∗ = R

〈
e123, e124, e125, e126 + e145, e134, e135, e146 − e236 − e345, e234〉 ,

we get that
[
e126 − e145 − 2 · e235] =

[
e126 − e145 − 2 · e235 + d e46] =

[
2 · e126 − 2 · e235] =

[
L
(
−2 · e2)] ∈ H(1,1)

ω (X;R)

and

[
e136] =

[
e136 + d

(
1
2 · e

45 − 1
2 · e

26
)]

=
[
e136 + e234] =

[
L
(
−e3)] ∈ H(1,1)

ω (X;R) ,

[
e136] =

[
e136 − d

(
1
2 · e

45 − 1
2 · e

26
)]

=
[
e136 − e234] ∈ H(0,3)

ω (X;R) ,
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while it is straightforward to check that

R
〈[
e146 + 1

2 · e
236 + 1

2 · e
345
]
,
[
e245]

〉
∩
(
H(0,3)
ω (X;R) +H(1,1)

ω (X;R)
)

= {0} ;

in particular, H(0,3)
ω (X;R) +H

(1,1)
ω (X;R) ( H3

dR(X;R) and H(0,3)
ω (X;R) ∩H(1,1)

ω (X;R) 6= {0}.

Example 3.20. A 6-dimensional symplectic solvmanifold satisfying the decomposition

H•dR (X;R) =
⊕

r∈N
LrH(0,•−2r)

ω (X;R) .

Take the 6-dimensional solvable Lie algebra

g−1
3.4 ⊕ g0

3.5 := (−13, 23, 0, −56, 46, 0)

endowed with the linear symplectic structure

ω := e12 + e36 + e45 .

The corresponding connected simply-connected Lie group G−1
3.4 ×G0

3.5 admits a compact quotient X, whose de
Rham cohomology is the same as the cohomology of

(
∧•
(
g−1

3.4 ⊕ g0
3.5
)∗
, d
)
, see [Boc09, Table 5]: indeed, note

that dimRHk
dR (X;R) = dimRHk

(
g−1

3.4 ⊕ g0
3.5;R

)
for every k ∈ N.

It is straightforward to compute

H1
dR (X;R) = R

〈
e3, e6〉

︸ ︷︷ ︸
= H

(0,1)
ω (X;R)

,

H2
dR (X;R) = R

〈
e12 + e36 + e45〉

︸ ︷︷ ︸
= H

(1,0)
ω (X;R)

⊕R
〈
e12 − e36, e12 − e45〉

︸ ︷︷ ︸
= H

(0,2)
ω (X;R)

,

H3
dR (X;R) = R

〈
e123 + e345, e126 + e456〉

︸ ︷︷ ︸
= H

(1,0)
ω (X;R) = LH

(0,1)
ω (X;R)

⊕R
〈
e123 − e345, e126 − e456〉

︸ ︷︷ ︸
= H

(0,3)
ω (X;R)

,

H4
dR (X;R) = R

〈
e1236 + e1245 + e3456〉

︸ ︷︷ ︸
= H

(2,0)
ω (X;R)

⊕R
〈
e1236 − e1245, e1236 − e3456〉

︸ ︷︷ ︸
= H

(1,2)
ω (X;R) = LH

(0,2)
ω (X;R)

,

H5
dR (X;R) = R

〈
e12456, e12345〉

︸ ︷︷ ︸
= H

(2,1)
ω (X;R) = L2 H

(0,1)
ω (X;R)

,

hence we get a decomposition
H•dR (X;R) =

⊕

r∈N
LrH(0,•−2r)

ω (X;R) .

In particular, it follows that the Hard Lefschetz Condition holds on (X, ω).

Example 3.21. A 6-dimensional completely-solvable solvmanifold such that H(0,3)
ω (X;R) + H

(1,1)
ω (X;R) (

H3
dR(X;R).

Take a 6-dimensional completely-solvable solvmanifold with Lie algebra g3.1 ⊕ g−1
3.4,

X = Γ\G := (−23, 0, 0, −46, 56, 0) ,

see [Boc09, Table 5], endowed with the G-left-invariant symplectic structure

ω := e12 + e36 + e45 .
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By A. Hattori’s theorem [Hat60, Corollary 4.2], one computes

H1
dR(X;R) = R

〈
e2, e3, e6〉

︸ ︷︷ ︸
=H(0,1)

ω (X;R)

,

H2
dR(X;R) = R

〈
e12 + e36 + e45〉

︸ ︷︷ ︸
=H(1,0)

ω (X;R)

⊕R
〈
e12 − e36, e12 − e45, e13, e26〉

︸ ︷︷ ︸
=H(0,2)

ω (X;R)

,

H3
dR(X;R) = R

〈
e123, e126, e136, e245, e345, e456〉 .

Note that e123 − e345, e126 − e456 and e245 + d e16 are primitive, and consequently

H(0,3)
ω (X;R) ⊇ R

〈
e123 − e345, e126 − e456, e245〉 ;

since e123 + e345 = Le3, e126 + e456 = Le6, and e245 − d e16 = Le2, it follows that

H(1,1)
ω (X;R) = LH(0,3)

ω (X;R) ⊇ R
〈
e123 + e345, e126 + e456, e245〉 ;

since
e136 = 1

2
(
e136 + e145)

︸ ︷︷ ︸
∈LP∧1X

+ 1
2
(
e136 − e145)

︸ ︷︷ ︸
∈P∧3X

,

and
d∧2g∗ = R

〈
e146 − e234, e156 + e235, e236, e246, e256, e346, e356〉 ,

it follows that 〈
e136〉 6∈ H(0,3)

ω (X;R) +H(1,1)
ω (X;R) ,

and hence H(0,3)
ω (X;R) +H

(1,1)
ω (X;R) ( H3

dR(X;R).

Finally, we give explicit examples of dual currents on a compact symplectic half-flat manifold, [AT12c, Example
3.7].

Example 3.22. Dual currents of oriented special Lagrangian submanifolds of the Nakamura manifold.
Let C3 be endowed with the product ∗ defined by

(
w1, w2, w3) ∗

(
z1, z2, z3) :=

(
z1 + w1, e−w

1
z2 + w2, ew

1
z3 + w3

)

for every
(
w1, w2, w3) ,

(
z1, z2, z3) ∈ C3. Then

(
C3, ∗

)
is a complex solvable (non-nilpotent) Lie group and,

according to [Nak75], it admits a lattice Γ ⊂ C3, such that X := Γ\(C3, ∗) is a solvmanifold, which is called the
Nakamura manifold, see also [dBT06, §3]. Setting

ϕ1 := d z1 , ϕ2 := ez
1

d z2 , ϕ3 := e−z
1

d z3 ,

then
{
ϕ1, ϕ2, ϕ3} is a global complex co-frame on X satisfying the following complex structure equations:





dϕ1 = 0
dϕ2 = ϕ12

dϕ3 = −ϕ13

.

If we set ϕj =: ej + i e3+j , for j ∈ {1, 2, 3}, then the last equations yield to




d e1 = 0
d e2 = e12 − e45

d e3 = −e13 + e46

d e4 = 0
d e5 = e15 − e24

d e6 = −e16 + e34

. (3.1.2)
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Then, [dBT06, §5],
ω := e14 + e35 + e62 ,

and
Je1 := −e4 , Je3 := −e5 , Je6 := −e2 ,

Je4 := e1 , Je5 := e3 , Je2 := e6 ,

and
ψ :=

(
e1 + i e4) ∧

(
e3 + i e5) ∧

(
e6 + i e2)

give rise to a symplectic half-flat structure on X, where

Reψ = e136 + e125 + e234 − e456 .

Note that the Hard Lefschetz Condition holds on (X, ω), [dBT06, Theorem 5.1].
Setting zj =: xj + i yj , for j ∈ {1, 2, 3}, and denoting by π : C3 → X the canonical projection, we easily check

that
Y1 := π

({(
x1, x2, x3, y1, y2, y3) ∈ C3 : x2 = y4 = y5 = 0

})
,

Y2 := π
({(

x1, x2, x3, y1, y2, y3) ∈ C3 : x3 = y4 = y6 = 0
})

are special Lagrangian submanifolds of (X, ω, ψ), namely, for j ∈ {1, 2}, it holds ReψbYj= VolYj , and, conse-
quently, the associated dual currents [Yj ] are primitive.

3.2 Cohomology of D-complex manifolds
In this section, we provide some results obtained in a joint work with F. A. Rossi, [AR12], concerning the de Rham
cohomology of almost-D-complex manifolds. D-complex Geometry is, in a sense, the “hyperbolic analogue” of
Complex Geometry: an almost-D-complex structure on a manifold X is given by an endomorphism K ∈ End(TX)
such that K2 = idTX and the eigen-bundles of TX with respect to the eigenvalues 1 and −1 of K ∈ End(TX)
have the same rank. Recently, D-complex Geometry appeared to be related with many other problems and
notions in Mathematics and Physics (in particular, with product structures, bi-Lagrangian geometry, and optimal
transport theory).

It is natural to ask what properties from Complex Geometry can be translated in the D-complex setting.
We refer to the work by F. A. Rossi, e.g., [Ros12a, Ros12b], for problems and results in this direction. Here,
we are mainly concerned in cohomological properties. In fact, it turns out that the D-complex counterpart of
the Dolbeault cohomology is not well-behaved, not being finite-dimensional. This fact leads us to study some
subgroups of the de Rham cohomology related to the almost-D-complex structure, miming the theory introduced
by T.-J. Li and W. Zhang in [LZ09] for almost-complex manifolds. More precisely, we study the subgroups of the
de Rham cohomology of an almost-D-complex manifold consisting of the classes admitting invariant, respectively
anti-invariant, representatives with respect to the almost-D-complex structure; in particular, we prove that,
on a 4-dimensional nilmanifold endowed with a left-invariant D-complex structure, such subgroups provide a
decomposition at the level of the real second de Rham cohomology group, Theorem 3.47; counterexamples without
the hypothesis on dimension, respectively nilpotency, respectively integrability, are provided. Moreover, we
consider deformations of D-complex structures: in particular, we show that admitting a D-Kähler structure is not
a stable property under small deformations of the D-complex structure, Theorem 3.50, providing another strong
difference with the complex case (indeed, recall that admitting a Kähler structure is a stable property under small
deformations of the complex structure by K. Kodaira and D. C. Spencer’s theorem [KS60, Theorem 15]).

3.2.1 D-complex structures on manifolds
We start by recalling the basic definitions in D-complex Geometry. We refer, e.g., to [HL83, AMT09, CMMS04,
CMMS05, CM09, CFAG96, KMW10, ABDMO05, AS05, Kra10, Ros12a, Ros12b] and the references therein for
more results about (almost-)D-complex structures and for motivations for their study.

Let X be a 2n-dimensional manifold. Consider K ∈ End(TX) such that K2 = λ idTX where λ ∈ {−1, 0, 1}:
if λ = −1, then by definition K is an almost-complex structure; if λ = 0, then the structure K is called an
almost-subtangent structure; if λ = 1, then K is said to be an almost-product structure; according to [Vai07, §1],
these three structures are called almost-c.p.s. structures.

In the case K2 = idTX , one gets that K has eigen-values {1, −1} and hence there is a decomposition
TX = T+X⊕T−X where T±X is given, point by point, by the eigen-space of K corresponding to the eigen-value
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±1, where ± ∈ {+, −}. By definition, an almost-D-complex structure (also called almost-para-complex structure)
on X is an endomorphism K ∈ End(TX) such that

K2 = idTX and rk T+X = rk T−X = 1
2 dimX ;

a D-holomorphic map between two almost-D-complex manifolds (X1, K1) and (X2, K2) is a smooth map
f : X1 → X2 such that d f ◦K1 = K2 ◦ d f .

An almost-D-complex structure is said to be integrable (and hence it is called D-complex, or also para-complex)
if [

T+X, T+X
]
⊆ T+X and

[
T−X, T−X

]
⊆ T−X .

The integrability condition is, straightforwardly, equivalent to the vanishing of the Nijenhuis tensor NK of K,
where

NK(·, ··) := [·, ··] + [K·, K··]−K [K·, ··]−K [·, K··] ;

furthermore, as in the complex case, one has that an almost-D-complex structure on an n-dimensional manifold X
is integrable if and only if it is naturally associated to a structure on X defined in terms of local homeomorphisms
with open sets in Dn and D-holomorphic changes of coordinates, see, e.g., [CMMS04, Proposition 3], where
Dn := Rn + τ Rn, with τ2 = 1, is the algebra of double numbers.

We recall that, given a 2n-dimensional manifold endowed with an almost-D-complex structure K, a D-
Hermitian metric on X is a pseudo-Riemannian metric of signature (n, n) such that g(K·, K··) = −g(·, ··). A
D-Kähler structure on a manifold X is the datum of an integrable D-complex structure K and a D-Hermitian
metric g such that its associated K-anti-invariant form ω := g (K ·, ··) is d-closed, equivalently, the datum of a
K-compatible (that is, a K-anti-invariant) symplectic form on X, see, e.g., [AMT09, §5.1], [CMMS04, Theorem 1].

The basic example of D-complex structure is given on the product of two manifolds of the same dimension:
given X+ and X− two manifolds with dimX+ = dimX−, the product X+ ×X− inherits a natural D-complex
structure K, given by the decomposition

T
(
X+ ×X−

)
= TX+ ⊕ TX− ,

where KbTX+= idT (X+×X−) and KbTX−= − idT (X+×X−). Every D-complex manifold is locally of this form, see,
e.g., [CMMS04, Proposition 2].

Starting from K ∈ End(TX) such that K2 = idTX , one can define, by duality, an endomorphism K ∈
End(T ∗X) such that K2 = idT∗X , and hence one gets a natural decomposition T ∗X = (T+X)∗ ⊕ (T−X)∗ into
eigen-bundles. Extending K ∈ End(T ∗X) to K ∈ End (∧•X), one gets the following decomposition on the bundle
of differential `-forms, for ` ∈ N:

∧`X =
⊕

p+q=`
∧p, q+−X where ∧p, q+− X := ∧p

(
T+X

)∗ ⊗ ∧q
(
T−X

)∗ ;

note that, for any p, q ∈ N, the structure K acts on ∧p, q+−X as (+1)p (−1)q id∧p, q+−X
. In particular, for any ` ∈ N,

one has
∧`X = ∧`+

K X ⊕ ∧`−K X

where
∧`+
K X :=

⊕

p+q=`, q=0 mod 2
∧p, q+−X and ∧`−K X :=

⊕

p+q=`, q=1 mod 2
∧p, q+−X ;

note that Kb∧`+
K
X= id∧`+

K
X and Kb∧`−

K
X= − id∧`−

K
X .

If a D-complex structure K is given, then the exterior differential splits as

d = ∂+ + ∂−

where
∂+ := π∧p+1, q

+− X ◦ d: ∧p, q+− X → ∧p+1, q
+− X

and
∂− := π∧p, q+1

+− X ◦ d: ∧p, q+− X → ∧p, q+1
+− X
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(where π∧r, s+−X
: ∧•, •+− X → ∧r, s+−X denotes the natural projection onto ∧r, s+−X, for every r, s ∈ N). In particular,

the condition d2 = 0 can be rewritten as




∂2
+ = 0

∂+∂− + ∂−∂+ = 0
∂2
− = 0

and hence one can define a D-complex counterpart of the Dolbeault cohomology by considering the cohomology
of the differential complex

(
∧•, q+−X, ∂+

)
for every q ∈ N, that is,

H•,•∂+
(X;R) := ker ∂+

im ∂+
.

Unfortunately, one cannot hope to adjust the Hodge theory of the complex case to this non-elliptic context.
For example, take X+ and X− two manifolds having the same dimension and consider the natural D-complex
structure on X+ ×X−; one has that

H0,0
∂+

(
X+ ×X−

)
' C∞

(
X−
)
,

hence the space H0,0
∂+

(X+ ×X−) of ∂+-closed functions on X+ ×X− is not finite-dimensional, even if X+ and
X− are compact.

3.2.2 D-complex subgroups of (co)homology
In this section, we adapt T.-J. Li and W. Zhang’s theory on cohomology of almost-complex manifolds, [LZ09],
to the almost-D-complex case. More precisely, let X be a 2n-dimensional compact manifold endowed with an
almost-D-complex structure K; we are interested in studying when the decomposition

∧•X =
⊕

p,q

∧p, q+−X = ∧•+
K X ⊕ ∧•−K X

gives rise to a cohomological decomposition.

We start by giving some definitions. For any p, q ∈ N, we define the subgroup

H
(p,q)
K (X;R) :=

{
[α] ∈ Hp+q

dR (X;R) : α ∈ ∧p, q+−X
}
⊆ H•dR(X;R) ,

and, for any ` ∈ N and for ± ∈ {+,−}, the subgroup

H`±
K (X;R) :=

{
[α] ∈ H`

dR (X;R) : Kα = ±α
}

=
{

[α] ∈ H`
dR (X;R) : α ∈ ∧`±K X

}
⊆ H•dR(X;R) .

Note, that, if K is integrable, then, for any ` ∈ N,

H`+
K =

⊕

p+q=`, q=0 mod 2
H

(p,q)
K (X;R) and H`−

K =
⊕

p+q=`, q=1 mod 2
H

(p,q)
K (X;R) .

As in [LZ09, Definition 2.2, Definition 2.3, Lemma 2.2], see §2.1.1, for almost-complex structures, we introduce
the following definition, [AR12, Definition 1.2].

Definition 3.23. For ` ∈ N, an almost-D-complex structure K on the manifold X is said to be

• C∞-pure at the `th stage if
H`+
K (X;R) ∩ H`−

K (X;R) = {0} ;

• C∞-full at the `th stage if
H`+
K (X;R) + H`−

K (X;R) = H`
dR (X;R) ;

• C∞-pure-and-full at the `th stage if it is both C∞-pure at the `th stage and C∞-full at the `th stage, namely,
if it satisfies the cohomological decomposition

H`
dR (X;R) = H`+

K (X;R) ⊕ H`−
K (X;R) .
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Consider now the space D•X :=: D2n−•X of currents on X and the de Rham homology HdR
• (X;R) (we refer

to §0.5, and references therein, for definitions and results concerning currents and de Rham homology). The
action of K on ∧•X induces, by duality, an action, still denoted by K, on D•X, and hence, for any ` ∈ N, a
decomposition

D`X =:
⊕

p+q=`
D+−
p, q X .

For any p, q ∈ N, note that the space D+−
p, q X :=: Dn−p, n−q+− is the topological dual space of the topological

subspace ∧p, q+−X of ∧•X, and that the quasi-isomorphism T· : ∧• X 3 α 7→
∫
X
α ∧ · ∈ D•X yields the inclusion

T· : ∧p, q+− ↪→ Dp, q+−X. As before, we have

D•X = DK•+X ⊕ DK•−X

where
DK•+X :=

⊕

q=0 mod 2
D+−
•, q X and DK•−X :=

⊕

q=1 mod 2
D+−
•, q X ,

and KbDK•±X= ± idDK•±X for ± ∈ {+, −}.
For any p, q ∈ N, we define the subgroup

HK
(p,q) (X;R) :=

{
[α] ∈ HdR

p+q (X;R) : α ∈ D+−
p, q X

}
⊆ HdR

• (X;R) ,

and, for any ` ∈ N and for ± ∈ {+,−}, the subgroup

HK
`± (X;R) :=

{
[α] ∈ HdR

` (X;R) : Kα = ±α
}

=
{

[α] ∈ HdR
` (X;R) : α ∈ DK`±X

}
⊆ HdR

• (X;R) .

We are particularly interested in the almost-D-complex structures admitting a homological decomposition
through the subgroups HK

•+ (X;R) and HK
•− (X;R), [AR12, Definition 1.3].

Definition 3.24. For ` ∈ N, an almost-D-complex structure K on the manifold X is said to be

• pure at the `th stage if
HK
`+ (X;R) ∩ HK

`− (X;R) = {0} ;

• full at the `th stage if
HK
`+ (X;R) + HK

`− (X;R) = H` (X;R) ;

• pure-and-full at the `th stage if it is both pure at the `th stage and full at the `th stage, namely, if it satisfies
the homological decomposition

H` (X;R) = HK
`+ (X;R) ⊕ HK

`− (X;R) .

The introduced notions are not completely independent. Using the same argument as in Theorem 2.10, see
[LZ09, Proposition 2.5], and in Proposition 3.12, we prove the following relations between C∞-pure-and-fullness
and pure-and-fullness for almost-D-complex structures, [AR12, Proposition 1.4].

Proposition 3.25. Let K be an almost-D-complex structure on a 2n-dimensional compact manifold X. Then,
for every ` ∈ N, the following implications hold:

C∞-full at the `th stage +3

��

pure at the `th stage

��
full at the (2n− `)th stage +3 C∞-pure at the (2n− `)th stage

Proof. We recall that the quasi-isomorphism T· : ∧• X 3 α 7→
∫
X
α ∧ · ∈ D2n−•X induces, for every p, q ∈ N, the

inclusion
H

(p,q)
K (X;R) ↪→ HK

(n−p,n−q)(X;R) :

this fact proves the two vertical implications.
To prove the horizontal implications, consider the duality paring 〈·, ··〉 : D`X × ∧`X → R and the induced

non-degenerate pairing
〈·, ··〉 : H`

dR(X;R)×HdR
` (X;R)→ R .



122 Cohomology of manifolds with special structures

Suppose that K is C∞-full at the `th stage, that is, H`
dR(X;R) = H`+

K (X;R) +H`−
K (X;R), and let c = [γ+] =

[γ−] ∈ HK
`+(X;R) ∩HK

`−(X;R) with γ+ ∈ DK
`+X and γ− ∈ DK

`−X; since
〈
H`(X;R), c

〉
=
〈
H`+
K (X;R) +H`−

K (X;R), c
〉

=
〈
H`+
K (X;R), [γ−]

〉
+
〈
H`−
K (X;R), [γ+]

〉
= 0 ,

one has c = 0 in HdR
` (X;R); hence K is pure at the `th stage.

Similarly, since 〈
H`+
K (X;R) ∩H`−

K (X;R), HK
`+(X;R) +HK

`−(X;R)
〉

= 0 ,
we get that, if K is full at the `th stage, then it is C∞-pure at the `th stage.

In particular, by applying Proposition 3.25 with 2n = 4 and k = 2, one gets that, on a compact 4-dimensional
manifold endowed with an almost-D-complex structure, being C∞-full at the 2nd stage is stronger than being
C∞-pure at the 2nd stage.

A straightforward consequence of Proposition 3.25 is the following result, [AR12, Corollary 1.5].

Corollary 3.26. Let K be an almost-D-complex structure on a compact manifold X. If K is C∞-full at every
stage, then it is also C∞-pure-and-full at every stage and pure-and-full at every stage.

As an application of the Künneth formula, T. Drǎghici, T.-J. Li, and W. Zhang noted that, given X1,
respectively X2, a compact manifold endowed with a C∞-pure-and-full almost-complex structure J1, respectively
J2, and assuming that b1 (X1) = 0, or b1 (X2) = 0, then the almost-complex structure J1 + J2 on X1 ×X2 is
C∞-pure-and-full, [DLZ12, Proposition 2.6]. In the D-complex case, we have the following, [AR12, Theorem 1.6].

Theorem 3.27. Let X+ and X− be two compact manifolds of the same dimension. Then the natural D-complex
structure on the product X+ ×X− is C∞-pure-and-full at every stage and pure-and-full at every stage.

Proof. For any ` ∈ N, using the Künneth formula, one gets

H`
dR

(
X+ ×X−;R

)
'

⊕

p+q=`
Hp
dR

(
X+;R

)
⊗ Hq

dR

(
X−;R

)

=


 ⊕

p+q=`, q=0 mod 2
Hp
dR

(
X+;R

)
⊗ Hq

dR

(
X−;R

)



︸ ︷︷ ︸
⊆H`+

K
(X+×X−;R)

⊕


 ⊕

p+q=`, q=1 mod 2
Hp
dR

(
X+;R

)
⊗ Hq

dR

(
X−;R

)



︸ ︷︷ ︸
⊆H`−

K
(X+×X−;R)

⊆ H`+
K

(
X+ ×X−;R

)
+ H`−

K

(
X+ ×X−;R

)
;

hence, by using Corollary 3.26, one gets the theorem.

3.2.3 D-complex cohomological decomposition on solvmanifolds
In this section, we consider left-invariant D-complex structures on solvmanifolds, as in §2.2.3 for almost-complex
structures, and in §3.1.3 for symplectic structures. We recall that, given a Lie algebra g, one has the differential
operator d: ∧• g∗ → ∧•+1g∗ naturally induced by the Lie bracket [·, ··], and hence the cohomology H•dR(g;R) :=
H• (∧•g∗, d). Hence, we are concerned with studying the linear counterpart of D-complex structures on Lie
algebras, and the corresponding decomposition problem for the cohomology H•dR(g;R). In particular, we prove a
Nomizu-type result for the subgroupsH`±

K (X;R), Proposition 3.30; it will allow to explicitly study several examples
of D-complex solvmanifolds: in §3.2.3, we provide some examples of D-complex structures on solvmanifolds, even
admitting a D-Kähler structure, that do not satisfy the cohomology decomposition by means of the subgroups
H`±
K (X;R); then, we prove that, for every left-invariant D-complex structure on a 4-dimensional nilmanifold, it

holds H2
dR(X;R) = H2 +

K (X;R)⊕H2−
K (X;R), Theorem 3.47, which provides a partial D-complex counterpart of

[DLZ10, Theorem 2.3]. (We refer to §0.6 for definitions and results concerning solvmanifolds.)
We recall that a linear almost-D-complex structure K on g is an endomorphism K ∈ End(g) such that

K2 = idg and dimR g+ = dimR g− = 1
2 dimR g ,

where g± is the eigen-space of K corresponding to the eigen-value ±1, for ± ∈ {+, −}. A linear almost-D-complex
structure on g is said to be integrable (and hence it is called a linear D-complex structure on g) if g+ and g− are
Lie subalgebras of g, that is,

[
g+, g+] ⊆ g+ and

[
g−, g−

]
⊆ g− .
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As a matter of notation, with respect to a given basis {ej}j∈{1,...,dimR g} of g, in writing a(n almost-)D-complex
structure K, e.g., (suppose dimR g = 6,) as

K := (− + + − − +)

we mean that
g+ := R 〈e2, e3, e6〉 and g− := R 〈e1, e4, e5〉 .

By considering the dual map K ∈ End (g∗) of K ∈ End(g) and by extending it to K ∈ End (∧•g∗), the
splitting g = g+ ⊕ g− into eigen-spaces given by the linear almost-D-complex structure K on g induces also a
splitting g∗ = (g+)∗ ⊕ (g−)∗, and hence, for every ` ∈ N, a splitting on the space of `-forms on g∗:

∧`g∗ =
⊕

p+q=`
∧p, q+− g∗ where ∧p, q+− g∗ :=

⊕

p+q=`
∧p
(
g+)∗ ⊗ ∧q

(
g−
)∗ ;

for any p, q ∈ N, one has Kb∧p, q+− g∗= (+1)p (−1)q id∧p, q+− g∗ . Consider also the splitting of the space of forms into
its K-invariant and K-anti-invariant components:

∧•g∗ = ∧•+
K g∗ ⊕ ∧•−K g∗

where
∧•+
K g∗ :=

⊕

q=0 mod 2
∧•, q+− g∗ and ∧•−K g∗ :=

⊕

q=1 mod 2
∧•, q+− g∗ .

As for manifolds, we define, for every p, q ∈ N, the subgroup

H
(p,q)
K (g;R) :=

{
[α] ∈ Hp+q

dR (g;R) : α ∈ ∧p, q+− g∗
}
⊆ H•dR (g;R) ,

and, for any ` ∈ N and for ± ∈ {+,−}, the subgroup

H`±
K (g;R) :=

{
[α] ∈ H` (g;R) : Kα = ±α

}
=
{

[α] ∈ H` (g;R) : α ∈ ∧•±K g∗
}
⊆ H•dR (g;R) ,

and we give the following definition, [AR12, Definition 2.1].

Definition 3.28. For ` ∈ N, a linear almost-D-complex structure on the Lie algebra g is said to be

• linear-C∞-pure at the `th stage if

H`+
K (g;R) ∩ H`−

K (g;R) = {0} ;

• linear-C∞-full at the `th stage if

H`+
K (g;R) + H`−

K (g;R) = H`
dR (g;R) ;

• linear-C∞-pure-and-full at the `th stage if it is both C∞-pure at the `th stage and C∞-full at the `th stage,
namely, if it satisfies the cohomological decomposition

H`
dR (g;R) = H`+

K (g;R) ⊕ H`−
K (g;R) .

Given a 2n-dimensional solvmanifold X = Γ\G, one can consider the associated Lie algebra g to the Lie group
G. Note that a G-left-invariant almost-D-complex structure on X is uniquely determined, through left-translations
on G, by a linear almost-D-complex structure on g; furthermore, a G-left-invariant almost-D-complex structure
on X is integrable if and only if the corresponding linear almost-D-complex structure on g is integrable. Hence,
in the following we will confuse a G-left-invariant (almost-)D-complex structure K on the solvmanifold X = Γ\G
and the corresponding linear (almost-)D-complex structure on the naturally associated Lie algebra g.

We recall that the left-translations induce an injective map in cohomology,

H•dR (g;R) ↪→ H•dR(X;R) ,

where H•dR (g;R) can be interpreted as the cohomology of the sub-complex composed of the G-left-invariant forms
of (∧•X, d), and that this map is actually an isomorphism if G is nilpotent, respectively completely-solvable, by
K. Nomizu’s theorem [Nom54, Theorem 1], respectively by A. Hattori’s theorem [Hat60, Corollary 4.2].
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Hence, given a G-left-invariant D-complex structure on X, we may study D-complex decomposition in
cohomology both on H•dR (g;R) and on H•dR(X;R). The aim of this section is to make clear the connection between
the C∞-pure-and-fullness of a left-invariant almost-D-complex structure on a completely-solvable solvmanifold
and the linear-C∞-pure-and-fullness of the corresponding linear almost-D-complex structure on the associated Lie
algebra.

The following lemma adapt F. A. Belgun’s symmetrization trick, [Bel00, Theorem 7], to the D-complex case,
[AR12, Lemma 2.3].

Lemma 3.29. Let X = Γ\G be a solvmanifold, and denote the Lie algebra naturally associated to G by g. Let
K be a G-left-invariant almost-D-complex structure on X, or equivalently the associated linear almost-D-complex
structure on g. Let η be the G-bi-invariant volume form on G given by J. Milnor’s Lemma [Mil76, Lemma
6.2], and such that

∫
X
η = 1. Up to identifying G-left-invariant forms on X and linear forms over g∗ through

left-translations, consider the Belgun symmetrization map, [Bel00, Theorem 7],

µ : ∧• X → ∧•g∗ , µ(α) :=
∫

X

αbm η(m) .

One has that
µb∧•g∗ = idb∧•g∗

and that
d (µ(·)) = µ (d ·) and K (µ(·)) = µ (K·) .

As a consequence, we get the following result, [AR12, Proposition 2.4] (compare with Proposition 2.19, see
also [FT10, Theorem 3.4], in the almost-complex case, and with Proposition 3.18 in the symplectic case).

Proposition 3.30. Let X = Γ\G be a solvmanifold, and denote the Lie algebra naturally associated to G by g.
Suppose that H•dR (g;R) ' H•dR(X;R) (e.g., suppose that X is a completely-solvable solvmanifold). Let K be a
G-left-invariant almost-D-complex structure on X. Then, for every ` ∈ N and for ± ∈ {+, −}, the injective map

H`±
K (g;R)→ H`±

K (X;R)

induced by left-translations is an isomorphism.

Proof. Consider the F. A. Belgun symmetrization map µ : ∧• X → ∧•g∗, [Bel00, Theorem 7]. It is enough to
observe the following three facts.

(i) Since d (µ(·)) = µ (d ·), [Bel00, Theorem 7], one has that µ sends d-closed, respectively d-exact, forms to
d-closed, respectively d-exact, G-left-invariant forms, and so it induces a map

µ : H•dR(X;R)→ H•dR (g;R) .

(ii) Since K (µ(·)) = µ (K·), Lemma 3.29, for ± ∈ {+, −}, one has

µb∧•±
K

X : ∧•±K X → ∧•±K g∗ ,

and hence
µbH•±

K
(X;R) : H•±K (X;R)→ H•±K (g;R) .

(iii) Finally, if H•dR(X;R) ' H•dR (g;R) (e.g., if X is a completely-solvable solvmanifold, [Hat60, Corollary 4.2]),
then the condition µb∧•invX

= idb∧•invX
, [Bel00, Theorem 7], gives that µ is the identity in cohomology.

As a straightforward corollary, we get the following result, [AR12, Proposition 2.4] (compare with Corollary
2.20 in the almost-complex case).

Corollary 3.31. Let X = Γ\G be a solvmanifold such that H•dR(X;R) ' H•dR (g;R) (e.g., a completely-solvable
solvmanifold), and denote the Lie algebra naturally associated to G by g. Let K be a G-left-invariant almost-
D-complex structure on X. For every ` ∈ N, the associated linear almost-D-complex structure K ∈ End(g) is
linear-C∞-pure (respectively, linear-C∞-full, linear-C∞-pure-and-full) at the `th stage if and only if the G-left-
invariant almost-D-complex structure K ∈ End(TX) is C∞-pure (respectively, C∞-full, C∞-pure-and-full) at the
`th stage.
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Non-C∞-pure-and-full (almost-)D-complex nilmanifolds

We provide here some explicit examples of left-invariant (almost-)D-complex structures on nilmanifolds, studying
the corresponding subgroups in cohomology, and providing differences between the D-complex and the complex
cases, Proposition 3.34.

More precisely, recall that every Kähler structure on a compact manifold is C∞-pure-and-full, [DLZ10, Lemma
2.15, Theorem 2.16], or [LZ09, Proposition 2.1], and that every almost-complex structure on a 4-dimensional
compact manifold is C∞-pure-and-full, [DLZ10, Theorem 2.3]: we give instead an example of a D-complex structure
on a 6-dimensional nilmanifold such that it is non-C∞-full at the 2nd stage, [AR12, Example 3.1], respectively
non-C∞-pure at the 2nd stage, [AR12, Example 3.2], despite it admits a D-Kähler structure; furthermore, we
provide a non-C∞-pure-and-full at the 2nd stage almost-D-complex structure on a 4-dimensional manifold, proving
that no almost-D-complex counterpart of [DLZ10, Theorem 2.3] could exist.

Example 3.32. A D-complex structure on a 6-dimensional nilmanifold that is C∞-pure at the 2nd stage and
non-C∞-full at the 2nd stage and that admits a D-Kähler structure.
Consider a nilmanifold

X = Γ\G :=
(
04, 12, 13

)

and define the G-left-invariant D-complex structure K by setting

K := (− + + − −+) .

By K. Nomizu’s theorem [Nom54, Theorem 1], the de Rham cohomology of X is given by

H2
dR(X;R) = R

〈
e14, e15, e16, e23, e24, e25, e34, e36, e26 + e35〉

(where, as usual, we list the harmonic representatives with respect to the G-left-invariant metric
∑6
j=1 e

j � ej
instead of their classes, and we write, e.g., ehk to shorten eh ∧ ek). Note that

H2 +
K (g;R) = R

〈
e14, e15, e23, e36〉 and H2−

K (g;R) = R
〈
e16, e24, e25, e34〉 ,

since the space of G-left-invariant d-exact 2-forms is R
〈
e12, e13〉, and hence no G-left-invariant representative

in the class
[
e26 + e35] is of pure type with respect to K. It follows that K ∈ End (g) is linear-C∞-pure at the

2nd stage and linear non-C∞-full at the 2nd stage, and hence K ∈ End(TX) is C∞-pure at the 2nd stage and
non-C∞-full at the 2nd stage, by Corollary 3.31. (Note that, K being Abelian, one can deduce the C∞-pureness at
the 2nd stage also by Corollary 3.43.)

Moreover, we observe that
ω := e16 + e25 + e34

is a (G-left-invariant) symplectic form compatible with K, hence (K, ω) is a D-Kähler structure on X.

Example 3.33. A D-complex structure on a 6-dimensional nilmanifold that is non-C∞-pure at the 2nd stage,
and hence non-C∞-full at the 4th stage, and that admits a D-Kähler structure.
Consider a nilmanifold

X = Γ\G :=
(
03, 12, 13 + 14, 24

)

and define the G-left-invariant D-complex structure

K := (+ − + − + −) .

(Note that [g−, g−] 6= {0}, since [e2, e4] = −e6, hence K is not Abelian.)
We have

H2 +
K (g;R) 3

[
e13] =

[
e13 − d e5] = −

[
e14] ∈ H2−

K (g;R)

and therefore 0 6=
[
e13] ∈ H2 +

K (g;R) ∩H2−
K (g;R), namely, K ∈ End(g) is not linear-C∞-pure at the 2nd stage,

hence, by Corollary 3.31, K ∈ End(TX) is not C∞-pure at the 2nd stage; moreover, by Proposition 3.25, we have
also that K is not C∞-full at the 4th stage.

Furthermore,
ω := e16 + e25 + e34

is a (G-left-invariant) symplectic form compatible with K, hence (K, ω) is a D-Kähler structure on X.

It is straightforward to obtain higher-dimensional examples of D-Kähler non-C∞-full, respectively non-C∞-pure,
at the 2nd stage structures, taking products with standard D-complex tori.

The contents of the previous two examples are resumed in the following result, [AR12, Proposition 3.3], which
gives a difference with the complex case, [LZ09, Proposition 2.1], or [DLZ10, Lemma 2.15, Theorem 2.16].
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Proposition 3.34. Admitting a D-Kähler structure is not a sufficient condition for either being C∞-pure at the
2nd stage or being C∞-full at the 2nd stage.

We provide now a counterexample showing that T. Drǎghici, T.-J. Li, and W. Zhang’s decomposition theorem
for compact 4-dimensional almost-complex manifolds, [DLZ10, Theorem 2.3], does not hold, in general, in the
almost-D-complex case, [AR12, Example 3.4].

Example 3.35. An almost-D-complex structure on a 4-dimensional nilmanifold that is non-C∞-pure-and-full at
the 2nd stage.
Consider a nilmanifold

X = Γ\G := (0, 0, 12, 0)
and define the G-left-invariant almost-D-complex structure K requiring that Kbg+= idg+ and Kbg−= − idg−

where
g+ := R 〈e1, e4 − e2〉 and g− := R 〈e2, e3〉 .

Note that K is not integrable, since [g+, g+] 3 [e1, e4 − e2] = e3 6∈ g+.
Note that we have

H2 +
K (g;R) 3

[
e14] =

[
e14 + d e3] =

[
e14 + e12] =

[
e1 ∧ (e4 + e2)

]
∈ H2−

K (g;R) ,

and therefore we get that 0 6=
[
e14] ∈ H2 +

K (g;R) ∩H2−
K (g;R); then, K is non-C∞-pure at the 2nd stage and

non-C∞-full at the 2nd stage, by Corollary 3.31, and Proposition 3.25.

C∞-pure-and-fullness of low-dimensional D-complex solvmanifolds

In this section, we state and prove Theorem 3.47, providing a partial D-complex counterpart of [DLZ10, Theorem
2.3] in the almost-complex case. We start by fixing some notations and by proving some preliminary results.

Given a linear D-complex structure K on a Lie algebra g, consider the induced eigen-spaces decomposition
g = g+ ⊕ g−, and consider the nilpotent steps

s+ := s
(
g+) and s− := s

(
g−
)
.

(As a matter of notation, recall that, given a Lie algebra (a, [·, ··]), the lower central series {an}n∈N is defined,
by induction on n ∈ N, as {

a0 := a

an+1 := [an, a] for n ∈ N
;

note that {an}n∈N is a descending sequence of Lie algebras:

a = a0 ⊇ a1 ⊇ · · · ⊇ aj−1 ⊇ aj ⊇ · · · ;

recall that the nilpotent step of a is defined as

s (a) := inf {m ∈ N : am = 0} ;

in particular, if s (a) < +∞, then, by definition, a is nilpotent.)
Since g+ ⊂ g and g− ⊂ g, we have obviously that

s+ ≤ s (g) and s− ≤ s (g) .

In fact, we have the following lemma, [AR12, Lemma 3.5].

Lemma 3.36. Let g be a 2n-dimensional nilpotent Lie algebra, namely, s (g) < +∞. Let K be a linear D-complex
structure on g, inducing the eigen-spaces decomposition g = g+ ⊕ g−. Then, setting s± := s (g±) for ± ∈ {+, −},
we have

1 ≤ s+ ≤ n− 1 and 1 ≤ s− ≤ n− 1 .

Proof. It suffices to note that, for ± ∈ {+, −}, we have




dimR (g±)0 = n

dimR (g±)k ≤ max {n− k − 1, 0} for k ∈ N \ {0} ,

as a consequence of the nilpotency and of the integrability properties.
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The following result, [AR12, Proposition 3.6], should be compared with Theorem 3.27.

Proposition 3.37. Let g be a Lie algebra. If K is a linear D-complex structure on g with eigen-spaces g+ and
g− such that [g+, g−] = {0}, then K is linear-C∞-pure-and-full at every stage.

Proof. Since [g+, g−] = {0}, one has g = g+ × g− and, using the Künneth formula, one gets the statement, as in
the proof of Theorem 3.27.

Therefore, from Corollary 3.31, one gets the following corollary, [AR12, Corollary 3.7].

Corollary 3.38. Let X = Γ\G be a completely-solvable solvmanifold endowed with a G-left-invariant D-complex
structure K, and denote the Lie algebra naturally associated to the Lie group G by g. Consider the linear D-complex
structure K ∈ End(g) induced by K ∈ End(TX). Suppose that the eigen-spaces g+ and g− of K ∈ End(g) satisfy
[g+, g−] = {0}. Then K is C∞-pure-and-full at every stage and pure-and-full at every stage.

We recall that a D-complex structure on a manifold X is said to be Abelian if the induced eigen-bundle
decomposition TX = T+X ⊕ T−X satisfies [T+X, T+X] = {0} = [T−X, T−X]; analogously, a linear D-
complex structure on a Lie algebra g is said to be Abelian if the induced decomposition g = g+ ⊕ g− satisfies
[g+, g+] = {0} = [g−, g−], namely, s (g+) = 1 = s (g−). Obviously, if X = Γ\G is a solvmanifold endowed
with a G-left-invariant D-complex structure, then K ∈ End (TX) is Abelian if and only if the associated linear
D-complex structure K ∈ End (g) is Abelian.

Remark 3.39. Note that every linear D-complex structure on a 4-dimensional nilpotent Lie algebra is Abelian,
as a consequence of Lemma 3.36.

We prove that every linear Abelian D-complex structure is linear-C∞-pure at the 2nd stage, [AR12, Theorem
3.10].

Theorem 3.40. Let g be a Lie algebra and K be a linear Abelian D-complex structure on g. Then K is
linear-C∞-pure at the 2nd stage.

Proof. Denote by π∧•+
K

g∗ : ∧• g∗ → ∧•+
K g∗ the natural projection onto the space ∧•+

K g∗. Recall that d η :=
−η ([·, ··]) for every η ∈ ∧1g∗; therefore, since [g+, g+] = 0 and [g−, g−] = 0 by hypothesis, we have that

π∧•+
K

g∗
(
im
(
d: ∧1 g∗ → ∧2g∗

))
= {0} .

Suppose that there exists [γ+] = [γ−] ∈ H2 +
K (g; R) ∩ H2−

K (g; R), where γ+ ∈ ∧2 +
K g∗ and γ− ∈ ∧2−

K g∗, and
γ+ = γ− + dα for some α ∈ ∧1g∗. Since π∧•+

K
g∗ (dα) = 0, we have that γ+ = 0 and hence [γ+] = 0, so K is

linear-C∞-pure at the 2nd stage.

Remark 3.41. We note that the condition of K being Abelian in Theorem 3.40 cannot be dropped or weakened, in
general. In fact, Example 3.49 shows that the Abelian assumption just on g− is not sufficient to have C∞-pureness
at the 2nd stage. Another example of this fact, on a (non-unimodular) solvable Lie algebra, is given below, [AR12,
Example 3.12].

Example 3.42. A 4-dimensional (non-unimodular) solvable Lie algebra with a non-Abelian D-complex structure
that is not linear-C∞-pure at the 2nd stage.
Consider the 4-dimensional solvable Lie algebra defined by

g :=
(
03, 13 + 34

)
;

note that g is not unimodular, since d e124 = e1234, see Lemma 3.45, [Kos50, §III].
Set the linear D-complex structure

K := (+ + − −) ;
K is not Abelian, since [g+, g+] = 0 but [g−, g−] = R 〈e4〉 6= {0}.

It is straightforward to check that K is linear-C∞-full at the 2nd stage: in fact,

H2
dR (g;R) = R

〈
e12, e34〉

︸ ︷︷ ︸
H+
K

(g;R)

⊕
〈
e23〉
︸ ︷︷ ︸
H−
K

(g;R)

;

on the other hand, K is not linear-C∞-pure at the 2nd stage, since

H2 +
K (g;R) 3

[
e34] =

[
e34 − d e4] = −

[
e13] ∈ H2−

K (g;R)

and
[
e34] 6= 0.
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A direct consequence of Theorem 3.40 and Corollary 3.31 is the following result, [AR12, Corollary 3.13].

Corollary 3.43. Let X = Γ\G be a completely-solvable solvmanifold endowed with a G-left-invariant Abelian
D-complex structure K. Then K is C∞-pure at the 2nd stage.

Remark 3.44. We remark that, for a D-complex structure on a compact manifold of dimension greater than
4, being Abelian or being C∞-pure at the 2nd stage is not a sufficient condition to have C∞-fullness at the 2nd

stage. Indeed, Example 3.32 provides a G-left-invariant D-complex structure K on a 6-dimensional nilmanifold
X = Γ\G such that K is Abelian, C∞-pure at the 2nd stage and non-C∞-full at the 2nd stage.

As observed in Remark 3.39, any left-invariant D-complex structure on a 4-dimensional nilmanifold is Abelian,
and hence C∞-pure at the 2nd stage by Corollary 3.43. In general, a left-invariant Abelian D-complex structure on
a nilmanifold of dimension greater than 4 may be non-C∞-full at the 2nd stage, Example 3.32. Notwithstanding,
we prove that every left-invariant D-complex structure on a 4-dimensional nilmanifold is C∞-full, in fact C∞-pure-
and-full, at the 2nd stage, Theorem 3.47. To prove this fact, we need the following lemmata: the first one is a
classical result, the second one is [AR12, Lemma 3.16].

Lemma 3.45 ([Kos50, §III]). Let g be a unimodular Lie algebra of dimension n. Then

db∧n−1g∗ = 0 .

Lemma 3.46. Let g be a unimodular Lie algebra of dimension 2n endowed with an Abelian linear D-complex
structure K. Then

db∧n, 0+− g∗⊕∧0, n
+− g∗ = 0 .

Proof. Consider the eigen-spaces decomposition g = g+⊕g− induced by K, and fix two bases for (g+)∗ and (g−)∗:
(
g+)∗ = R

〈
e1, . . . , en

〉
and

(
g−
)∗ = R

〈
f1, . . . , fn

〉
.

Since K is Abelian, the general structure equations, in terms of these bases, are
{

d ej =:
∑n
h, k=1 a

j
hk e

h ∧ fk for j ∈ {1, . . . , n}
d f j =:

∑n
h, k=1 b

j
hk e

h ∧ fk for j ∈ {1, . . . , n}
,

where
{
ajhk, b

j
hk

}
j,h,k∈{1,...,n}

⊂ R.
By [Kos50, §III], see Lemma 3.45, for any k ∈ {1, . . . , n}, one has that

d
(
e1 ∧ · · · ∧ en ∧ f1 ∧ · · · ∧ fk−1 ∧ fk+1 ∧ · · · ∧ fn

)
= 0 ;

by a straightforward computation, we get that,
n∑

`=1
a``k = 0 ,

Hence, we get that

d
(
e1 ∧ · · · ∧ en

)
= (−1)n

n∑

k=1

(
n∑

`=1
a``k

)
e1 ∧ · · · ∧ en ∧ fk = 0 .

Arguing in the same way, we prove also that

d
(
f1 ∧ · · · ∧ fn

)
= 0 ,

completing the proof.

We can now prove the following result, [AR12, Theorem 3.17].

Theorem 3.47. Every left-invariant D-complex structure on a 4-dimensional nilmanifold is C∞-pure-and-full at
the 2nd stage, and hence also pure-and-full at the 2nd stage.
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Proof. By Remark 3.39 and Corollary 3.43, we get the C∞-pureness at the 2nd stage.
We recall that, by J. Milnor’s lemma [Mil76, Lemma 6.2], the Lie algebra associated to any nilmanifold is

unimodular. From Lemma 3.46 one gets that, on every 4-dimensional D-complex nilmanifold, the D-complex
invariant component of a left-invariant 2-form is d-closed. Hence both the D-complex invariant component and the
D-complex anti-invariant component of a d-closed left-invariant 2-form is d-closed. Hence the linear D-complex
structure is linear-C∞-full at the 2nd stage. Therefore, by Corollary 3.31, the left-invariant D-complex structure is
C∞-full at the 2nd stage.

Finally, Proposition 3.25 gives the pure-and-fullness at the 2nd stage.

Remark 3.48. We note that Theorem 3.47 is optimal. Indeed, we cannot grow the dimension, Example 3.32
and Example 3.33, nor change the nilpotent hypothesis with a solvable condition, Example 3.49, nor drop the
integrability condition on the D-complex structure, Example 3.35.

3.2.4 Small deformations of D-complex structures
In this section, we study explicit examples of small deformations of the D-complex structure on nilmanifolds and
solvmanifolds, studying the behaviour of being D-Kähler, Theorem 3.50, the behaviour of C∞-pure-and-fullness,
Proposition 3.51, and the semi-continuity problem for the dimensions of the D-(anti-)invariant subgroups of the
second de Rham cohomology group, Proposition 3.54.

We refer to [MT11, Ros12a] for more results concerning deformations of (almost-)D-complex structures.
In the following example, [AR12, Example 4.1], we construct a curve {Kt}t∈R of left-invariant D-complex

structures on a 4-dimensional solvmanifold such that (i) K0 is C∞-pure-and-full at the 2nd stage and admits
a D-Kähler structure, and (ii) Kt, for t 6= 0, is neither C∞-pure at the 2nd stage nor C∞-full at the 2nd stage
and does not admit any D-Kähler structure. In particular, this example proves that being D-Kähler is not a
stable property under small deformations of the D-complex structure, Theorem 3.50, and it shows also that the
nilpotency condition in Theorem 3.47 cannot be dropped out, Remark 3.48.

Example 3.49. There exists a 4-dimensional solvmanifold endowed with a left-invariant D-complex structure K
such that (i) K is C∞-pure-and-full at the 2nd stage, (ii) it admits a D-Kähler structure, and (iii) it has small
D-complex deformations that are neither D-Kähler nor C∞-pure-and-full at the 2nd stage.
Consider a 4-dimensional completely-solvable solvmanifold

X = Γ\G :=
(
02, 23, −24

)

(for its existence, see, e.g., [Boc09, Table 8]).
By A. Hattori’s theorem [Hat60, Corollary 4.2], it is straightforward to compute

H2
dR(X;R) = R

〈
e12, e34〉 .

For every t ∈ R, consider the G-left-invariant D-complex structure

Kt :=




−1 0 0 0
0 1 0 −2t
0 0 1 0
0 0 0 −1


 .

For every t ∈ R, we have that

g+
Kt

= R 〈e2, e3〉 and g−Kt = R 〈e1, e4 + t e2〉 :

in particular,
[
g+
Kt
, g+

Kt

]
= R 〈e3〉 ⊆ g+

Kt
and

[
g−Kt , g

−
Kt

]
= {0}, which proves the integrability of Kt, for every

t ∈ R.
In particular, for t = 0, we have the (non-Abelian) D-complex structure

K0 = (− + +−) .

It is straightforward to check that K0 is linear-C∞-pure-and-full at the 2nd stage, and hence C∞-pure-and-full at
the 2nd stage by Corollary 3.31: in fact, by Proposition 3.30,

H2 +
K0

(X;R) = {0} and H2−
K0

(X;R) = H2
dR(X;R) ;

in particular, we have
dimRH

2 +
K0

(X;R) = 0 , dimRH
2−
K0

(X;R) = 2.
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Furthermore, for t 6= 0, we get

H2−
Kt

(X;R) 3
[
e34] =

[
e34 + 1

t
d e3

]
=
[
e34 + 1

t
(e23 + t e43 − t e43)

]
=
[

1
t

(e2 − t e4) ∧ e3
]
∈ H2 +

Kt
(X;R) ,

and therefore 0 6=
[
e34] ∈ H2−

Kt
(X;R) ∩H2 +

Kt
(X;R), namely, Kt is neither C∞-pure at the 2nd stage nor C∞-full

at the 2nd stage, by Proposition 3.25 (in fact, since the space of G-left-invariant d-exact 2-forms is

d∧1g∗ = R
〈
(e2 − t e4) ∧ e3 − t e34, (e2 − t e4) ∧ e4〉 ,

no G-left-invariant representative of the class
[
e12] =

[
e1 ∧ (e2 − te4) + te14] is of pure type with respect to Kt).

Therefore, for t 6= 0, we have

dimRH
2 +
Kt

(X;R) = 1 , dimRH
2−
Kt

(X;R) = 1.

Note that, for every t ∈ R, one has s
(
g−Kt
)

= 0 and s
(
g+
Kt

)
= 1, but, for t 6= 0, the D-complex structure Kt is

not C∞-pure at the 2nd stage: therefore the Abelian condition on just g− in Theorem 3.40 is not sufficient to have
C∞-pureness at the 2nd stage, as observed in Remark 3.41.

Note moreover that, in this example, the functions

R 3 t 7→ dimRH
2 +
Kt

(X;R) ∈ N and R 3 t 7→ dimRH
2−
Kt

(X;R) ∈ N

are, respectively, lower-semi-continuous and upper-semi-continuous.
Furthermore, we note that X admits a (G-left-invariant) symplectic form

ω := e12 + e34 ,

which is compatible with the D-complex structure K0: therefore, (K0, ω) is a D-Kähler structure on X. On the
other hand, for t 6= 0, one has H−Kt (X;R) = R

〈
e34〉 and therefore, if a Kt-compatible symplectic form ωt existed,

then it should be in the same cohomology class as e34, and then it should satisfy

Vol(X) =
∫

X

ωt ∧ ωt =
∫

X

e34 ∧ e34 = 0 ,

which is not possible; therefore, for t 6= 0, there is no symplectic structure compatible with the D-complex
structure Kt: in particular, (X, Kt) admits no D-Kähler structure.

In particular, the previous example proves the following result, [AR12, Theorem 4.2], providing another strong
difference between the D-complex and the complex cases (recall that being Kähler is a stable property under small
deformations of the complex structure by K. Kodaira and D. C. Spencer’s stability theorem [KS60, Theorem 15]).

Theorem 3.50. The property of being D-Kähler is not stable under small deformations of the D-complex
structure.

Furthermore, Example 3.49 proves also the following instability result, [AR12, Proposition 4.3], analogous to
Theorem 2.48, which proves the instability of C∞-pure-and-fullness in the complex case.

Proposition 3.51. The properties of being C∞-pure at the 2nd stage, or C∞-full at the 2nd stage are not stable
under small deformations of the D-complex structure.

We have already recalled, see §2.3.2, that T. Drǎghici, T.-J. Li, and W. Zhang proved in [DLZ11, Theorem 2.6]
that, given a curve {Jt}t of (C∞-pure-and-full) almost-complex structures on a 4-dimensional compact manifold
X, the dimension of H+

Jt
(X;R) is upper-semi-continuous in t and hence, as a consequence of [DLZ10, Theorem

2.3], the dimension of H−Jt(X;R) is lower-semi-continuous in t; this result holds no more true for almost-complex
manifolds of higher dimension, Proposition 2.56, Proposition 2.55. In the next two examples, [AR12, Example
4.4], respectively [AR12, Example 4.5], we study the behaviour of the dimensions of the D-complex invariant and
D-complex anti-invariant subgroups of the cohomology along curves of D-complex structures.

Example 3.52. A curve of D-complex structures on a 6-dimensional nilmanifold such that the dimensions of the
D-complex invariant and anti-invariant subgroups of the second de Rham cohomology group jump (lower-semi-
continuously) along the curve.
Consider a 6-dimensional nilmanifold

X = Γ\G :=
(
03, 12, 13, 24

)
.
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By K. Nomizu’s theorem [Nom54, Theorem 1], it is straightforward to compute

H2
dR(X;R) = R

〈
e14, e15, e23, e26, e35, e25 + e34〉 .

For every t ∈ [0, 1], consider the left-invariant D-complex structure

Kt :=




1
−1

(1−t)2−t2
(1−t)2+t2

2t(1−t)
(1−t)2+t2

2t(1−t)
(1−t)2+t2 − (1−t)2−t2

(1−t)2+t2

1
−1




.

For 0 ≤ t ≤ 1, one checks that

g+
Kt

= R 〈e1, (1− t) e3 + t e4, e5〉 and g−Kt = R 〈e2, t e3 − (1− t) e4, e6〉 ;

therefore, it is straightforwardly checked that the integrability condition of Kt is satisfied for every t ∈ [0, 1].

[Case t = 0] For t = 0, the D-complex structure

K0 = (+ − + − +−)

is C∞-pure-and-full at the 2nd stage: in fact,

H2
dR(X;R) = R

〈
e15, e26, e35〉

︸ ︷︷ ︸
= H2 +

K0
(X;R)

⊕ R
〈
e14, e23, e25 + e34〉

︸ ︷︷ ︸
= H2−

K0
(X;R)

;

therefore
dimRH

2 +
K0

(X;R) = 3 and dimH2−
K0

(X;R) = 3 .

[Case 0 < t < 1] For 0 < t < 1, one has

H2 +
Kt

(X;R) = R
〈
e14, e15, e23, e26〉

and
H2−
Kt

(X;R) = R
〈
e14, e23, e25 + e34〉 ;

it follows that the D-complex structure Kt is neither C∞-pure at the 2nd stage nor C∞-full at the 2nd stage;
moreover,

dimRH
2 +
Kt

(X;R) = 4 and dimH2−
Kt

(X;R) = 3 .

[Case t = 1] For t = 1, the D-complex structure

K1 = (+ − − + +−)

is C∞-pure-and-full at the 2nd stage: in fact,

H2
dR(X;R) = R

〈
e14, e15, e23, e26〉

︸ ︷︷ ︸
= H2 +

K1
(X;R)

⊕ R
〈
e35, e25 + e34〉

︸ ︷︷ ︸
= H2−

K1
(X;R)

;

therefore
dimRH

2 +
K1

(X;R) = 4 and dimH2−
K1

(X;R) = 2 .

In particular, it follows that the functions

[0, 1] 3 t 7→ dimRH
2 +
Kt

(X;R) ∈ N and [0, 1] 3 t 7→ dimRH
2−
Kt

(X;R) ∈ N

are non-constant and lower-semi-continuous.

Example 3.49 and Example 3.52 show that the dimension of the D-complex anti-invariant subgroup of the de
Rham cohomology in general is not upper-semi-continuous (as it is in Example 3.49) or lower-semi-continuous
(as it is in Example 3.52) along curves of D-complex structures. We give now an example showing that also the
dimension of the D-complex invariant subgroup of the de Rham cohomology in general is not lower-semi-continuous
(as it is in Example 3.49 and in Example 3.52) along curves of D-complex structures, [AR12, Example 4.5].
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Example 3.53. A curve of D-complex structures on a 6-dimensional nilmanifold such that the dimensions of the
D-complex invariant and anti-invariant subgroups of the second de Rham cohomology group jump (upper-semi-
continuously) along the curve.
Consider a 6-dimensional nilmanifold

X = Γ\G :=
(
03, 12, 13, 24

)
.

By K. Nomizu’s theorem [Nom54, Theorem 1], it is straightforward to compute

H2
dR(X;R) = R

〈
e14, e15, e23, e26, e35, e25 + e34〉 .

For every t ∈ [0, 1], consider the G-left-invariant D-complex structure

Kt :=




1
−1

−1
1

(1−t)2−t2
(1−t)2+t2

2t(1−t)
(1−t)2+t2

2t(1−t)
(1−t)2+t2 − (1−t)2−t2

(1−t)2+t2




.

For 0 ≤ t ≤ 1, one checks that

g+
Kt

= R 〈e1, e4, (1− t) e5 + t e6〉 and g−Kt = R 〈e2, e3, t e5 − (1− t) e6〉 .

Therefore one straightforwardly checks that, for every t ∈ [0, 1], the structure Kt is integrable, in fact Abelian:
hence it is in particular C∞-pure at the 2nd stage by Corollary 3.43.

[Case t = 0] For t = 0, the D-complex structure

K0 = (+ − − + +−)

is C∞-pure-and-full at the 2nd stage, and

H2
dR(X;R) = R

〈
e14, e15, e23, e26〉

︸ ︷︷ ︸
= H2 +

K0
(X;R)

⊕ R
〈
e35, e25 + e34〉

︸ ︷︷ ︸
= H2−

K0
(X;R)

;

in particular,
dimRH

2 +
K0

(X;R) = 4 and dimH2−
K0

(X;R) = 2 .

[Case 0 < t < 1] For 0 < t < 1, one has
H2 +
Kt

(X;R) = R
〈
e14, e23〉

and
H2−
Kt

(X;R) = R
〈
t e26 + (1− t) e25 + (1− t) e34〉 ,

while
R
〈
e15, e35, e26〉 ∩

(
H2 +
Kt

(X;R)⊕H2−
Kt

(X;R)
)

= {0} ;

it follows that the D-complex structure Kt is C∞-pure at the 2nd stage and non-C∞-full at the 2nd stage,
and that

dimRH
2 +
Kt

(X;R) = 2 and dimH2−
Kt

(X;R) = 1 .

[Case t = 1] For t = 1, the D-complex structure

K1 = (+ − − + −+) .

is C∞-pure at the 2nd stage and non-C∞-full at the 2nd stage, and

H2
dR(X;R) = R

〈
e14, e23, e35〉

︸ ︷︷ ︸
= H2 +

K1
(X;R)

⊕ R
〈
e15, e26〉

︸ ︷︷ ︸
= H2−

K1
(X;R)

⊕R
〈
e25 + e34〉 ,

where
R
〈
e25 + e34〉 ∩

(
H2 +
K1

(X;R)⊕H2−
K1

(X;R)
)

= {0} ;
in particular,

dimRH
2 +
K1

(X;R) = 3 and dimH2−
K1

(X;R) = 2 .
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In particular, the functions

[0, 1] 3 t 7→ dimRH
2 +
Kt

(X;R) ∈ N and [0, 1] 3 t 7→ dimRH
2−
Kt

(X;R) ∈ N

are non-constant and upper-semi-continuous.

Example 3.52 and Example 3.53 yield the following result, [AR12, Proposition 4.6].

Proposition 3.54. Let X be a compact manifold and let {Kt}t∈I⊆R be a curve of D-complex structures on X.
Then, in general, the functions

I 3 t 7→ dimRH
2 +
Kt

(X;R) ∈ N and I 3 t 7→ dimRH
2−
Kt

(X;R) ∈ N

are not upper-semi-continuous or lower-semi-continuous.

3.3 Cohomology of strictly p-convex domains in Rn

In Complex Analysis, properties concerning the existence of exhaustion functions with convexity properties may
have consequences on the vanishing of the cohomology. Indeed, recall, for example, that the Dolbeault cohomology
groups Hp,q

∂
(D) of a strictly pseudo-convex domain D in Cn (that is, a domain admitting a smooth proper strictly

pluri-sub-harmonic exhaustion function) vanish for q ≥ 1, for any p ∈ N. In fact, the following result holds.

Theorem 3.55 ([Hör65, Theorem 2.2.4, Theorem 2.2.5], [Hör90, Theorem 4.2.2, Corollary 4.2.6]). Let D ⊆ Cn
be a strictly pseudo-convex domain. Then, for any q > 0, every ∂-closed (p, q)-form η ∈ L2

loc (X;∧p,qT ∗X)
(respectively, η ∈ ∧p,qX) is ∂-exact, namely, there exists α ∈ L2

loc
(
X;∧p,q−1T ∗X

)
(respectively, α ∈ ∧p,q−1X)

such that η = ∂α.

Generalizing the notion of strictly pseudo-convex domain, A. Andreotti and H. Grauert, [AG62], studied
q-complete domains in Cn (that is, domains in Cn admitting a smooth proper exhaustion function whose Levi
form has at least n− q + 1 positive eigen-values), and provided an analogue of the L. Hörmander theorem.

Theorem 3.56 ([AG62, Proposition 27], [AV65a, Theorem 5]). Let D ∈ Cn be a q-complete domain. Then
Hr,s

∂
(X) = {0}, for any r ∈ N and for any s ≥ q.

Recently, F. R. Harvey and H. B. Lawson, [HL12, HL11], and references therein, raised the interest on
generalizations of the concept of convexity for Riemannian manifolds, studying the existence of exhaustion
functions whose Hessian is positive definite or satisfies weaker positivity conditions; in this context, holomorphic
convexity and q-completeness motivate the notion of geometric convexity.

J.-P. Sha, [Sha86, Theorem 1], and H. Wu, [Wu87, Theorem 1], (see also [HL11, Proposition 5.7],) proved,
using Morse theory, that the existence of a smooth proper strictly p-pluri-sub-harmonic exhaustion function on a
domain in Rn has consequences on the homotopy type of the domain; hence, vanishing results for the de Rham
cohomology hold for strictly p-convex domains in Rn in the sense of F. R. Harvey and H. B. Lawson.

In this section, we re-prove, using different techniques, the vanishing result by J.-P. Sha, and H. Wu for the
de Rham cohomology of strictly p-convex domains in Rn in the sense of F. R. Harvey and H. B. Lawson; more
precisely, we use the L2-techniques developed by L. Hörmander, [Hör65], and used also by A. Andreotti and E.
Vesentini, [AV65a, AV65b] (see also [Ves67]); such L2-techniques could be hopefully applied in a wider context.

The results in this section have been obtained in a joint work with S. Calamai, [AC12].

3.3.1 The notion of p-convexity by F. R. Harvey and H. B. Lawson
In this section, following F. R. Harvey and H. B. Lawson, [HL11, HL12], we recall the basic notions and results
concerning p-convexity, starting from the definition of p-positive symmetric endomorphism, and then recalling the
notions of (strictly) p-pluri-sub-harmonic function and (strictly) p-convex domain.

Let V be an n-dimensional R-vector space endowed with an inner product 〈· | ·· 〉.
Let G : V '→ V ∗ denote the isomorphism induced by 〈· | ·· 〉, defined as

G : V 3 v 7→ 〈v | · 〉 ∈ V ∗ .

One gets an isomorphism
G−1 : V ∗ ⊗ V ∗ '→ Hom (V, V ) ;
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this isomorphism sends the space of the symmetric elements of (V ⊗ V )∗, namely,

Sym2 (V ) :=
{
A ∈ (V ⊗ V )∗ : A(v ⊗ w) = A(w ⊗ v) , for any v, w ∈ V

}
.

to the space of the 〈· | ·· 〉-symmetric endomorphisms of V .
Given A ∈ V ∗ ⊗ V ∗, the endomorphism G−1A ∈ Hom (V, V ) extends to

D
[p]
G−1A ∈ Hom (∧pV, ∧pV )

by setting, for any simple vector vi1 ∧ · · · ∧ vip ∈ ∧pV ,

D
[p]
G−1A

(
vi1 ∧ · · · ∧ vip

)
:=

p∑

`=1
vi1 ∧ · · · ∧ vi`−1 ∧G−1A (vi`) ∧ vi`+1 ∧ · · · ∧ vip ;

note that D[p]
G−1A ∈ Hom (∧pV, ∧pV ) is a symmetric endomorphism with respect to the inner product on ∧pV

induced by 〈· | ··〉.
Note that, given A ∈ Sym2 (V ), if the set of the eigenvalues of G−1A is

spec
(
G−1A

)
= {λ1, . . . , λn} ,

then the set of the eigenvalues of D[p]
G−1A is

spec
(
D

[p]
G−1A

)
=
{
λi1 + · · ·+ λip : i1, . . . , ip ∈ {1, . . . , n} s.t. i1 < · · · < ip

}
.

Finally, given a 〈· | ··〉-symmetric endomorphism E ∈ Hom (V, V ), let sgn (E) denote the number of non-
negative eigenvalues of E:

sgn (E) := card {λ ∈ spec(E) : λ ≥ 0} .
Note that, given two inner products on V inducing the isomorphisms G1 : V '→ V ∗ and G2 : V '→ V ∗

respectively, then there holds sgn
(
G−1

1 A
)

= sgn
(
G−1

2 A
)
, but, for p > 1, it might hold

sgn
(
D

[p]
G−1

1 A

)
6= sgn

(
D

[p]
G−1

2 A

)
.

As said, sgn
(
D

[p]
G−1A

)
counts the non-negative sums of p eigenvalues of G−1A ∈ Hom (V, V ). As a natural

generalization of the notion of convexity, one is interested in studying symmetric endomorphisms having at least
a certain number of non-negative sums of p eigenvalues. (Compare also [HL12, Definition 2.1], concerning the
notion of positivity with respect to a sub-bundle of the Grassmannian bundle GR (p, TX) over a Riemannian
manifold X.)
Definition 3.57 ([HL11, Definition 2.1, §3]).

• Let V be an n-dimensional R-vector space endowed with an inner product 〈· | ·· 〉. For p ∈ {1, . . . , n}, and
for k ∈

{
1, . . . ,

(
n
p

)}
, define the space of p-positive forms of kth branch on V as

P(k)
p (V, 〈· | ·· 〉) :=

{
A ∈ Sym2 (V ) : sgn

(
D

[p]
G−1A

)
≥
(
n

p

)
− k + 1

}
.

• Let X be an n-dimensional manifold endowed with a Riemannian metric g. For p ∈ {1, . . . , n}, and for
k ∈

{
1, . . . ,

(
n
p

)}
, define the space of p-positive sections of kth branch of the bundle Sym2 (TX) of symmetric

endomorphisms of TX as

P(k)
p (X, g) :=

{
A ∈ Sym2 (TX) : ∀x ∈ X, Ax ∈ P(k)

p (TxX, gx)
}
.

In order to introduce exhaustion functions on a given Riemannian manifold, we focus on special p-positive
symmetric 2-forms: those arising from the Hessian of smooth functions.

Let (X, g) be a Riemannian manifold, and denote the Levi Civita connection associated to the Riemannian
metric g by ∇LC . For every u ∈ C∞ (X;R), let

Hessu ∈ Sym2 (TX)

be defined, for any V,W ∈ C∞(X;TX), as

Hessu (V,W ) := V W u−
(
∇LCV W

)
u .
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Definition 3.58 ([HL11, Definition 2.2’, §3]). Let X be an n-dimensional manifold endowed with a Riemannian
metric g. Fix p ∈ {1, . . . , n}, and k ∈

{
1, . . . ,

(
n
k

)}
.

• The space

PSH(k)
p (X, g) :=

{
u ∈ C∞ (X;R) : Hessu ∈ P(k)

p (X, g)
}
,

is called the space of p-pluri-sub-harmonic functions of kth branch on X.

• The space

int
(

PSH(k)
p (X, g)

)
:=

{
u ∈ C∞ (X;R) : Hessu ∈ int

(
P(k)
p (X, g)

)}
,

(where int
(
P(k)
p (X, g)

)
denotes the interior of P(k)

p (X, g)) is called the space of strictly p-pluri-sub-harmonic
functions of kth branch on X.

(Compare also [HL12, Definition 2.1] for the notion of (strictly) p-pluri-sub-harmonicity with respect to a
sub-bundle of the Grassmannian bundle GR (p, TX) over a Riemannian manifold X.)

We can now define (strictly) p-convexity in terms of the p-convex hulls (and of the p-core).
Let X be an n-dimensional Riemannian manifold endowed with a Riemannian metric g, and fix p ∈ {1, . . . , n}.

Let K ⊆ X be a subset of X; the p-convex hull of K, [HL11, Definition 4.1], is defined as

K̃PSH(1)
p (X, g) :=

{
x ∈ X : ∀φ ∈ PSH(1)

p (X, g) , φ(x) ≤ max
y∈K

φ(y)
}
.

(Compare also [HL12, Definition 4.3] for the notion of convex hull with respect to a sub-bundle of the Grassmannian
bundle GR (p, TX) over a Riemannian manifold X.)

Definition 3.59 ([HL11, Definition 4.3]). Let X be an n-dimensional Riemannian manifold endowed with a
Riemannian metric g, and fix p ∈ {1, . . . , n}. One says that X is p-convex if, for any subset K ⊆ X that is
relatively compact in X, then K̃PSH(1)

p (X, g) is relatively compact in X.

(Compare also [HL12, Definition 4.5] for the notion of convexity with respect to a sub-bundle of the Grass-
mannian bundle GR (p, TX) over a Riemannian manifold X.)

Define the p-core of X, [HL11, Definition 5.3], as

Corep (X, g) :=
{
x ∈ X : for all u ∈ PSH(1)

p (X, g) , Hessu(x) 6∈ int
(
P(1)
p (TxX, gx)

)}
.

(Compare also [HL12, Definition 4.1] for the notion of core with respect to a sub-bundle of the Grassmannian
bundle GR (p, TX) over a Riemannian manifold X.)

Definition 3.60 ([HL11, Definition 5.2, Theorem 5.4]). Let X be an n-dimensional Riemannian manifold
endowed with a Riemannian metric g, and fix p ∈ {1, . . . , n}. One says that the manifold X is strictly p-convex
if (i) Corep (X, g) = ∅, and (ii) for any subset K ⊆ X that is relatively compact in X, then K̃PSH(1)

p (X, g) is
relatively compact in X.

(Compare also [HL12, Definition 4.9] for the notion of strictly convexity with respect to a sub-bundle of the
Grassmannian bundle GR (p, TX) over a Riemannian manifold X.)

The relations between (strictly) p-convexity and the existence of smooth proper (strictly) p-pluri-sub-harmonic
exhaustion functions were proven by F. R. Harvey and H. B. Lawson in [HL11, HL12]. Namely, the following
result holds.

Theorem 3.61 ([HL11, Theorem 4.4, Theorem 5.4]). Let X be an n-dimensional Riemannian manifold endowed
with a Riemannian metric g, and fix p ∈ {1, . . . , n}. Then X is p-convex (respectively, strictly p-convex) if and
only if X admits a smooth proper exhaustion function u ∈ PSH(1)

p (X, g) (respectively, u ∈ int
(

PSH(1)
p (X, g)

)
).

(Compare also [HL12, Theorem 4.4, Theorem 4.8] for the relations between (strictly) convexity and the
existence of smooth proper (strictly) pluri-sub-harmonic exhaustion functions with respect to a sub-bundle of the
Grassmannian bundle GR (p, TX) over a Riemannian manifold X.)

(We recall that a function u : X → R, where X is a manifold, is said to be an exhaustion if, for any c ∈ R, the
set u−1 ((−∞, c)) = {x ∈ X : u(x) < c} ⊆ X is relatively compact in X.)

The previous definitions are motivated by the classical notions of (strictly) (q-)pseudo-convex functions, and
q-complete and pseudo-convex domains, in Complex Analysis.
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Definition 3.62 ([And63, §4], [AG62, §10]). Let D ⊆ Cn be a domain, and let φ be a smooth real-valued
function on D. The function φ is called q-pseudo-convex or q-pluri-sub-harmonic (respectively, strictly q-pseudo-
convex or strictly-q-pluri-sub-harmonic), if and only if, for any z ∈ D, the Hermitian form L(φ)z defined, for
ξ :=: (ξa)a∈{1,...,n} ∈ Cn, as

L(φ)z (ξ) :=
n∑

a,b=1

∂2φ

∂za∂z̄b
(z) ξa ξb ,

has, at least, n− q + 1 non-negative (respectively, positive) eigenvalues. When q = 1, (strictly) 1-pseudo-convex
functions are called (strictly) pseudo-convex, or (strictly) pluri-sub-harmonic.

Definition 3.63 ([Rot55], [AG62, §16.c]). A domain D ⊆ Cn is called q-complete if there exists a smooth
proper strictly q-pseudo-convex exhaustion function. When q = 1, the 1-complete domains are called strictly
pseudo-convex.

A. Andreotti and H. Grauert, in [AG62], proved a vanishing theorem for the higher-degree Dolbeault cohomology
groups of q-complete domains; the same result was proven by A. Andreotti and E. Vesentini, in [AV65a], (see also
[Ves67, Theorem 4.2],) extending the L2-techniques by L. Hörmander, [Hör65]. More precisely, [AG62, Proposition
27], and [AV65a, Theorem 5], state that, given a q-complete domain D ∈ Cn, it holds Hr,s

∂
(X) = {0}, for any

r ∈ N and for any s ≥ q.

3.3.2 Vanishing of the de Rham cohomology for strictly p-convex domains
In this section, motivated by A. Andreotti and H. Grauert’s vanishing result for the Dolbeault cohomology of
q-complete domains in Cn, [AG62], and by A. Andreotti and E. Vesentini’s proof using L2-techniques, [AV65a],
we consider domains X in Rn endowed with a proper exhaustion function u ∈ C∞(X;R) whose Hessian is in
int
(
P(1)
p (X, g)

)
, re-proving, with L2-techniques, the vanishing result for the higher-degree de Rham cohomology

groups for strictly p-convex domains in the sense of F. R. Harvey and H. B. Lawson, Theorem 3.68, yet shown
by J.-P. Sha, [Sha86], and by H. Wu, [Wu87, Theorem 1], using Morse theory, as a consequence of results on
the homotopy type of X. Firstly, we recall some definitions and we set some notations; then, we prove some
preliminary lemmata and estimates; finally we prove Theorem 3.67, stating that, on a strictly p-convex domain in
Rn, every d-closed k-form with k ≥ p is d-exact.

LetX be an oriented Riemannian manifold of dimension n, and denote its Riemannian metric by g and its volume
by vol. The Riemannian metric g induces, for every x ∈ X, a point-wise inner product 〈· |·· 〉gx : ∧•T ∗xX×∧•T ∗xX →
R.

Fix φ ∈ C0(X;R) a continuous function. For every ϕ, ψ ∈ C∞c (X;∧•T ∗X), let

〈ϕ |ψ 〉L2
φ

:=
∫

X

〈ϕ |ψ 〉gx exp (−φ) vol ∈ R ,

and, for k ∈ N, define L2
φ

(
X;∧kT ∗X

)
as the completion of the space C∞c

(
X;∧kT ∗X

)
of smooth k-forms with

compact support with respect to the metric induced by ‖·‖L2
φ

:= 〈· | · 〉L2
φ
. Therefore, the space L2

φ

(
X;∧kT ∗X

)

is a Hilbert space, endowed with the inner product 〈· | ·· 〉L2
φ
, and C∞c

(
X;∧kT ∗X

)
is dense in L2

φ

(
X;∧kT ∗X

)
.

For any k ∈ N, let L2
loc
(
X;∧kT ∗X

)
denote the space of k-forms ϕ whose restriction ϕbK to every compact set

K ⊆ X belongs to L2 (K;∧kT ∗K
)
.

For every φ1, φ2 ∈ C0(X;R), the operator

d: L2
φ1 (X;∧•T ∗X) 99K L2

φ2

(
X;∧•+1T ∗X

)

is densely-defined and closed; denote by

d∗φ2, φ1 : L2
φ2

(
X;∧•+1T ∗X

)
99K L2

φ1 (X;∧•T ∗X)

its adjoint, which is a densely-defined closed operator, see, e.g., [dSSST06, Theorem 7.55].

Moreover, for a domain X in Rn, with set of coordinates
{
x1, . . . , xn

}
, fixed k ∈ N, s ∈ N, and φ ∈ C∞ (X;R),

one can consider the Sobolev space Ws,2
φ

(
X;∧kT ∗X

)
, which is defined as the space of k-forms ϕ :=:

∑̃
|I|=kϕI dxI

such that ∂`1+···+`nϕI
∂`1x1···∂`nxn ∈ L2

φ

(
X;∧kT ∗X

)
for every multi-index (`1, . . . , `n) ∈ Nn satisfying `1 + · · ·+ `n ≤ s and
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for every strictly increasing multi-index I such that |I| = k. The space Ws,2
loc
(
X;∧kT ∗X

)
is defined as the space

of k-forms ϕ whose restriction ϕbK to every compact set K ⊆ X belongs to Ws,2 (K;∧kT ∗K
)
.

As a matter of notation, the symbol
∑̃
|I|=k denotes the sum over the strictly increasing multi-indices

I :=: (i1, . . . , ik) ∈ Nk (that is, the multi-indices such that 0 < i1 < · · · < ik) of length k. We use
{
x1, . . . , xn

}
as

a set of coordinates on Rn, and, given a multi-index I :=: (i1, . . . , ik) ∈ Nk, we shorten dxI := dxi1 ∧ · · · ∧ dxik .

Given I1 and I2 two multi-indices of length k, let sign
(
I1
I2

)
be the sign of the permutation

(
I1
I2

)
if I1 is a

permutation of I2, and zero otherwise.

Let X be a domain in Rn, that is, an open connected subset of Rn, endowed with the metric and the volume
induced, respectively, by the Euclidean metric and the standard volume of Rn.

For φ1, φ2 ∈ C∞ (X;R), consider d: L2
φ1

(
X;∧k−1T ∗X

)
99K L2

φ2

(
X;∧kT ∗X

)
. The following lemma gives an

explicit expression of the adjoint d∗φ2, φ1 : L2
φ2

(
X;∧kT ∗X

)
99K L2

φ1

(
X;∧k−1T ∗X

)
, [AC12, Lemma 2.1] (compare

with, e.g., [dSSST06, §8.2.1], [Gun90, Lemma O.2] in the complex case).

Lemma 3.64. Let X be a domain in Rn. Let φ1, φ2 ∈ C∞ (X;R) and consider

L2
φ1

(
X;∧k−1T ∗X

)
d

,,c _ [

L2
φ2

(
X;∧kT ∗X

)

d∗φ2, φ1

ll c_[
.

Let
v :=:

∑̃

|I|=k
vI dxI ∈ L2

φ2

(
X;∧kT ∗X

)

and suppose that v ∈ dom d∗φ2, φ1 . Then

d∗φ2, φ1v = exp (φ1) d∗0, 0 (exp (−φ2) v)

=
∑̃

|J|=k−1


− exp (φ1)

∑̃

|I|=k

n∑

`=1
sign

(
`J
I

)
∂ (vI exp (−φ2) )

∂x`


 dxJ .

Proof. By definition of d∗φ2, φ1 , for every u ∈ dom d, one has 〈du | v 〉L2
φ2

=
〈
u
∣∣d∗φ2, φ1v

〉
L2
φ1
. Hence, consider

u :=:
∑̃

|J|=k−1

uJ dxJ ∈ C∞c
(
X;∧k−1T ∗X

)
,

and compute

du =
∑̃

|J|=k−1
|I|=k

n∑

`=1
sign

(
`J
I

)
∂uJ
∂x`

dxI .

The statement follows by computing

〈du | v 〉L2
φ2

=
∫

X

∑̃

|J|=k−1
|I|=k

n∑

`=1
sign

(
`J
I

)
∂uJ
∂x`

vI exp (−φ2) vol

= −
∫

X

∑̃

|J|=k−1
|I|=k

n∑

`=1
sign

(
`J
I

)
∂ (vI exp (−φ2) )

∂x`
uJ vol

and
〈
u
∣∣ d∗φ2, φ1v

〉
L2
φ1

=
∫

X

∑̃

|J|=k−1

(
d∗φ2, φ1v

)
J
uJ exp (−φ1) vol ,

where d∗φ2, φ1v =: ˜∑
|J|=k−1

(
d∗φ2, φ1v

)
J

dxJ .
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For any fixed φ ∈ C∞ (X;R) and for any j ∈ {1, . . . , n}, define the operator

δφj : C∞ (X;R)→ C∞ (X;R) ,

where
δφj (f) := − exp (φ) ∂ (f exp (−φ) )

∂xj
= ∂φ

∂xj
· f − ∂f

∂xj
.

The following lemma states that δφj is the adjoint of ∂
∂xj in L2

φ

(
X;∧0T ∗X

)
, and computes the commutator

between δφj and ∂
∂xk

, [AC12, Lemma 2.2] (compare with, e.g., [Hör90, pages 83–84]).

Lemma 3.65. Let X be a domain in Rn. Let φ ∈ C∞ (X;R) and j ∈ {1, . . . , n}, and consider the operator
δφj : C∞ (X;R)→ C∞ (X;R). Then:

• for every w1, w2 ∈ C∞c (X;R),
∫

X

w1 ·
∂w2
∂xk

exp (−φ) vol =
∫

X

δφk (w1) · w2 exp (−φ) vol ;

• for any k ∈ {1, . . . , n}, the following commutation formula holds in End (C∞c (X;R)):
[
δφj ,

∂

∂xk

]
= − ∂2φ

∂xj∂xk
· .

Proof. As regards the first item, one has
∫

X

w1 ·
∂w2
∂xk

exp (−φ) vol = −
∫

X

w2 ·
∂

∂xk
(w1 exp (−φ) ) vol

=
∫

X

w2 ·
(
w1

∂φ

∂xk
− ∂w1
∂xk

)
exp (−φ) vol

=
∫

X

δφk (w1) · w2 exp (−φ) vol .

As regards the second item, one has, for every f ∈ C∞ (X;R),
[
δφj ,

∂

∂xk

]
(f) = δφj

(
∂f

∂xk

)
− ∂

∂xk

(
δφj (f)

)

= ∂φ

∂xj
· ∂f
∂xk

− ∂2f

∂xj∂xk
− ∂

∂xk

(
∂φ

∂xj
· f − ∂f

∂xj

)

= ∂φ

∂xj
· ∂f
∂xk

− ∂2f

∂xj∂xk
− ∂2φ

∂xk∂xj
· f − ∂φ

∂xj
· ∂f
∂xk

+ ∂2f

∂xk∂xj

= − ∂2φ

∂xk∂xj
· f ,

concluding the proof of the lemma.

Finally, we prove the following estimate, [AC12, Proposition 2.3, Remark 2.4], which will be used in the proof
of Theorem 3.67 (we refer to [Hör90, §4.2], or, e.g., [Gun90, Lemma O.3] and [dSSST06, §8.3.1] for its complex
counterpart).

Proposition 3.66. Let X be a domain in Rn and φ, ψ ∈ C∞ (X;R). Consider

L2
φ−2ψ

(
X;∧k−1T ∗X

)
d

,,b _ \

L2
φ−ψ

(
X;∧kT ∗X

)
d

,,b _ \

d∗φ−ψ, φ−2ψ

ll b_\
L2
φ

(
X;∧k+1T ∗X

)
.

d∗φ, φ−ψ

ll b_\
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Then, for any η :=:
∑̃
|I|=kηI dxI ∈ C∞c

(
X;∧kT ∗X

)
, one has

∫

X

∑̃

|J|=k−1
|I1|=k
|I2|=k

n∑

`1, `2=1
sign

(
`1J
I1

)
sign

(
`2J
I2

)
∂2φ

∂x`1 ∂x`2
ηI1 ηI2 exp (−φ) vol

≤
∫

X




∑̃

|J|=k−1
|I1|=k
|I2|=k

n∑

`1, `2=1
sign

(
`1J
I1

)
sign

(
`2J
I2

)
∂2φ

∂x`1 ∂x`2
ηI1 ηI2 +

∑̃

|I|=k

n∑

`=1

∣∣∣∣
∂ηI
∂x`

∣∣∣∣
2




· exp (−φ) vol

≤ C ·


∥∥d∗φ−ψ, φ−2ψη

∥∥2
L2
φ−2ψ

+ ‖d η‖2L2
φ

+
∫

X

∑̃

|I|=k

n∑

`=1

∣∣∣∣
∂ψ

∂x`

∣∣∣∣
2
|ηI |2 exp (−φ) vol


 ,

where C :=: C(k, n) ∈ N is a constant depending just on k and n.

Proof. It is straightforward to compute

d η =
∑̃

|I|=k
|H|=k+1

n∑

`=1
sign

(
`I
H

)
∂ηI
∂x`

dxH

and, using Lemma 3.64,

d∗φ−ψ, φ−2ψη = − exp (−ψ)
∑̃

|J|=k−1
|I|=k

n∑

`=1
sign

(
`J
I

) (
∂ηI
∂x`

− ∂ (φ− ψ)
∂x`

ηI

)
dxJ

= exp (−ψ)
∑̃

|J|=k−1
|I|=k

n∑

`=1
sign

(
`J
I

) (
δφ` (ηI)−

∂ψ

∂x`
ηI

)
dxJ .

For every J such that |J | = k − 1, the previous equality gives

∑̃

|I|=k

n∑

`=1
sign

(
`J
I

)
δφ` (ηI) = exp (ψ)

(
d∗φ−ψ, φ−2ψη

)
J

+
∑̃

|I|=k

n∑

`=1
sign

(
`J
I

)
∂ψ

∂x`
ηI ,

where d∗φ−ψ, φ−2ψη =: ˜∑
|J|=k−1

(
d∗φ−ψ, φ−2ψη

)
J

dxJ .
By the inequality between the geometric mean and the arithmetic mean, one gets

∫

X

∑̃

|J|=k−1

∣∣∣∣∣∣
∑̃

|I|=k

n∑

`=1
sign

(
`J
I

)
δφ` (ηI)

∣∣∣∣∣∣

2

exp (−φ) vol

≤ 2
∫

X

∑̃

|J|=k−1



∣∣∣
(
d∗φ−ψ, φ−2ψη

)
J

∣∣∣
2

exp (2ψ) +

∣∣∣∣∣∣
∑̃

|I|=k

n∑

`=1
sign

(
`J
I

)
∂ψ

∂x`
ηI

∣∣∣∣∣∣

2

 exp (−φ) vol

≤ C


∥∥d∗φ−ψ, φ−2ψη

∥∥2
L2
φ−2ψ

+
∫

X

∑̃

|I|=k

n∑

`=1

∣∣∣∣
∂ψ

∂x`

∣∣∣∣
2
· |ηI |2 exp (−φ) vol


 , (3.3.1)

where C :=: C(k, n) ∈ N depends on k and n only.
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Now, using Lemma 3.65, one computes

∫

X

∑̃

|J|=k−1

∣∣∣∣∣∣
∑̃

|I|=k

n∑

`=1
sign

(
`J
I

)
δφ` (ηI)

∣∣∣∣∣∣

2

exp (−φ) vol

=
∑̃

|J|=k−1

∑̃

|I1|=k
|I2|=k

n∑

`1, `2=1
sign

(
`1J
I1

)
sign

(
`2J
I2

) ∫

X

δφ`1 (ηI1) · δφ`2 (ηI2) exp (−φ) vol

=
∑̃

|J|=k−1
|I1|=k
|I2|=k

n∑

`1, `2=1
sign

(
`1J
I1

)
sign

(
`2J
I2

)

·
∫

X

(
∂ηI1
∂x`2

∂ηI2
∂x`1

+ ∂2φ

∂x`1 ∂x`2
ηI1 ηI2

)
exp (−φ) vol . (3.3.2)

Now, note that

|d η|2 =
∑̃

|H|=k+1

∣∣∣∣∣∣
∑̃

|I|=k

n∑

`=1
sign

(
`I
H

)
∂ηI
∂x`

∣∣∣∣∣∣

2

=
∑̃

|H|=k+1



∑̃

|I1|=k
|I2|=k

n∑

`1, `2=1
sign

(
`1I1
H

)
sign

(
`2I2
H

)
∂ηI1
∂x`1

∂ηI2
∂x`2




=
∑̃

|I1|=k
|I2|=k

n∑

`1, `2=1
sign

(
`1I1
`2I2

)
∂ηI1
∂x`1

∂ηI2
∂x`2

=
∑̃

|I|=k

n∑

`=1

∣∣∣∣
∂ηI
∂x`

∣∣∣∣
2
−

∑̃

|J|=k−1
|I1|=k
|I2|=k

n∑

`1, `2=1
sign

(
`1J
I1

)
sign

(
`2J
I2

)
∂ηI1
∂x`2

∂ηI2
∂x`1

. (3.3.3)

Hence, in view of (3.3.3), (3.3.2), (3.3.1), we get
∫

X

∑̃

|J|=k−1
|I1|=k
|I2|=k

n∑

`1, `2=1
sign

(
`1J
I1

)
sign

(
`2J
I2

)
∂2φ

∂x`1 ∂x`2
ηI1 ηI2 exp (−φ) vol

≤
∫

X




∑̃

|J|=k−1
|I1|=k
|I2|=k

n∑

`1, `2=1
sign

(
`1J
I1

)
sign

(
`2J
I2

)
∂2φ

∂x`1 ∂x`2
ηI1 ηI2 +

∑̃

|I|=k

n∑

`=1

∣∣∣∣
∂ηI
∂x`

∣∣∣∣
2




exp (−φ) vol

=
∫

X




∑̃

|J|=k−1

∣∣∣∣∣∣
∑̃

|I|=k

n∑

`=1
sign

(
`J
I

)
δφ` (ηI)

∣∣∣∣∣∣

2

+
∑̃

|H|=k+1

|(d η)H |
2


 exp (−φ) vol

≤ C ·


∥∥d∗φ−ψ, φ−2ψη

∥∥2
L2
φ−2ψ

+ ‖d η‖2L2
φ

+
∫

X

∑̃

|I|=k

n∑

`=1

∣∣∣∣
∂ψ

∂x`

∣∣∣∣
2
|ηI |2 exp (−φ) vol


 ,

concluding the proof.



3.3 Cohomology of strictly p-convex domains in Rn 141

Using the previous result, we prove here the following theorem, [AC12, Theorem 3.1].

Theorem 3.67. Let X be a strictly p-convex domain in Rn, and fix k ∈ N such that k ≥ p. Then, every d-closed
k-form η ∈ ∧kX is d-exact, namely, there exists α ∈ ∧k−1X such that η = dα.

Proof. Let us split the proof in the following steps.
Step 1 – Preliminary definitions. X being a strictly p-convex domain in Rn, by F. R. Harvey and H. B. Lawson’s
[HL12, Theorem 4.8] (see also [HL11, Theorem 5.4]), there exists a smooth proper strictly p-pluri-sub-harmonic
exhaustion function

ρ ∈ int
(

PSH(1)
p (X, g)

)
∩ C∞ (X;R) ,

where g is the metric on X induced by the Euclidean metric on Rn.
For every m ∈ N, consider the compact set

K(m) := {x ∈ X : ρ(x) ≤ m} ,

and define
L(m) := min

K(m)
λ

[k]
1 > 0 ,

where, for every x ∈ X, the real numbers λ[k]
1 (x) ≤ · · · ≤ λ[k]

(nk)
(x) are the ordered eigen-values of the endomorphism

D
[k]
g−1 Hess ρ(x) ∈ Hom

(
∧kTxX, ∧kTxX

)
, and λ1(x) ≤ · · · ≤ λn(x) are the ordered eigen-values of the endomorphism

g−1 Hess ρ(x) ∈ Hom (TxX, TxX); indeed, note that, for every x ∈ X, since ρ is strictly p-pluri-sub-harmonic,

λ
[k]
1 (x) = λ1(x) + · · ·+ λk(x) ≥ λ1(x) + · · ·+ λp(x) > 0 ,

and that the function X 3 x 7→ λ
[k]
1 (x) ∈ R is continuous.

Fix {ρν}ν∈N ⊂ C∞c (X;R) such that (i) 0 ≤ ρν ≤ 1 for every ν ∈ N, and (ii) for every compact set K ⊆ X,
there exists ν0 :=: ν0(K) ∈ N such that ρνbK= 1 for every ν ≥ ν0.

Then, we can choose ψ ∈ C∞ (X;R) such that, for every ν ∈ N,

|d ρν |2 ≤ exp (ψ) .

For every m ∈ N, set
γ(m) := max

K(m)

(
C · |dψ|2 + exp (ψ)

)
,

where C :=: C(n, k) is the constant in Proposition 3.66.
Fix χ ∈ C∞ (R;R) such that (i) χ′ > 0, (ii) χ′′ > 0, and (iii) χ′b(−∞,m]>

γ(m)

L(m) , for every m ∈ N. Define

φ := χ ◦ ρ ;

then, φ ∈ int
(

PSH(1)
p (X, g)

)
∩ C∞ (X;R); furthermore

∂2φ

∂x`1∂x`2
= χ′′ ◦ ρ · ∂ρ

∂x`1
· ∂ρ
∂x`2

+ χ′ ◦ ρ · ∂2ρ

∂x`1∂x`2
.

Choose µ ∈ C∞ (X;R) such that, for every m ∈ N,

χ′ ◦ ρbK(m) ·L(m) ≥ µbK(m) ≥ γ(m) .

Step 2 – For every η ∈ C∞c
(
X;∧kT ∗X

)
, it holds ‖η‖2L2

φ−ψ
≤ C ·

(∥∥d∗φ−ψ, φ−2ψη
∥∥2

L2
φ−2ψ

+ ‖d η‖2L2
φ

)
. Since

D
[k]
g−1 Hess ρ =


 ∑̃

|J|=k−1

n∑

`1, `2=1
sign

(
`1J
I1

)
sign

(
`2J
I2

)
∂2ρ

∂x`1∂x`2



I1,I2

∈ Hom
(
∧kTX, ∧kTX

)
,
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then, by Step 1, one has the estimate
∑̃

|J|=k−1
|I1|=k
|I1|=k

n∑

`1, `2=1
sign

(
`1J
I1

)
sign

(
`2J
I2

)
∂2φ

∂x`1∂x`2
ηI1 ηI2

=
∑̃

|J|=k−1
|I1|=k
|I1|=k

n∑

`1, `2=1
sign

(
`1J
I1

)
sign

(
`2J
I2

)
χ′′ ◦ ρ · ∂ρ

∂x`1
∂ρ

∂x`2
ηI1 ηI2

+
∑̃

|J|=k−1
|I1|=k
|I1|=k

n∑

`1, `2=1
sign

(
`1J
I1

)
sign

(
`2J
I2

)
χ′ ◦ ρ · ∂2ρ

∂x`1∂x`2
ηI1 ηI2

=
∑̃

|J|=k−1

χ′′ ◦ ρ ·

∣∣∣∣∣∣
∑̃

|I|=k

n∑

`=1
sign

(
`J
I

)
∂ρ

∂x`
ηI

∣∣∣∣∣∣

2

+ χ′ ◦ ρ ·
∑̃

|J|=k−1
|I1|=k
|I1|=k

n∑

`1, `2=1
sign

(
`1J
I1

)
sign

(
`2J
I2

)
∂2ρ

∂x`1∂x`2
ηI1 ηI2

≥ χ′ ◦ ρ · λ[k]
1 (x) ·

∑̃

|I|=k
|ηI |2

≥ µ ·
∑̃

|I|=k
|ηI |2 .

Hence, using Proposition 3.66, we get that, for every η ∈ C∞c
(
X;∧kT ∗X

)
,

‖η‖2L2
φ−ψ

=
∫

X

∑̃

|I|=k
|ηI |2 exp (− (φ− ψ)) vol

≤
∫

X

∑̃

|I|=k

(
µ− C ·

n∑

`=1

∣∣∣∣
∂ψ

∂x`

∣∣∣∣
2
)
· |ηI |2 exp (−φ) vol

≤
∫

X




∑̃

|J|=k−1
|I1|=k
|I2|=k

n∑

`1, `2=1
sign

(
`1J
I1

)
sign

(
`2J
I2

)
∂2φ

∂x`1 ∂x`2
ηI1 ηI2

−C ·
∑̃

|I|=k

n∑

`=1

∣∣∣∣
∂ψ

∂x`

∣∣∣∣
2
|ηI |2


 exp (−φ) vol

≤ C ·
(∥∥d∗φ−ψ, φ−2ψη

∥∥2
L2
φ−2ψ

+ ‖d η‖2L2
φ

)
,

where C :=: C(k, n) ∈ N is the constant in Proposition 3.66, depending just on k and n.
Step 3 – The space C∞c

(
X; ∧kT ∗X

)
is dense in the space dom d∩dom d∗φ−ψ, φ−2ψ endowed with the norm

‖·‖L2
φ−ψ

+
∥∥d∗φ−ψ, φ−2ψ·

∥∥
L2
φ−2ψ

+ ‖d ·‖L2
φ
. Consider

L2
φ−2ψ

(
X;∧k−1T ∗X

)
d

,,b _ \

L2
φ−ψ

(
X;∧kT ∗X

)
d

,,b _ \

d∗φ−ψ, φ−2ψ

ll b_\
L2
φ

(
X;∧k+1T ∗X

)
.

d∗φ−ψ, φ−2ψ

ll b_\
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Fix η ∈ dom d∩ dom d∗φ−ψ, φ−2ψ ⊆ L2
φ−ψ

(
X;∧kT ∗X

)
.

Firstly, we prove that {ρν η}ν∈N ⊂ dom d∩dom d∗φ−ψ, φ−2ψ ⊆ L2
φ−ψ

(
X;∧kT ∗X

)
, where {ρν}ν∈N ⊂ C∞c (X;R)

has been defined in Step 1, is a sequence of functions having compact support and converging to η in the graph
norm ‖·‖L2

φ−ψ
+
∥∥d∗φ−ψ, φ−2ψ·

∥∥
L2
φ−2ψ

+ ‖d ·‖L2
φ
. Indeed,

|d (ρν η)− ρν d η|2 exp (−φ) = |η|2 · |d ρν |2 exp (−φ)

≤ |η|2 exp (− (φ− ψ)) ∈ L2 (X;∧kT ∗X
)
,

hence, by the Lebesgue dominated convergence theorem, ‖d (ρν η)− ρν d η‖L2
φ
→ 0 as ν → +∞. Furthermore, for

every ν ∈ N, note that ρν η ∈ dom d∗φ−ψ, φ−2ψ: indeed, the map

L2
φ−2ψ

(
X;∧k−1T ∗X

)
⊇ dom d 3 u 7→ 〈ρν η |du 〉L2

φ−ψ
∈ R

is continuous, being

〈ρν η |du 〉L2
φ−ψ

= 〈η |d (ρν u) 〉L2
φ−ψ
− 〈η |d ρν ∧ u 〉L2

φ−ψ

=
〈
ρν d∗φ−ψ, φ−2ψη |u

〉
L2
φ−2ψ

− 〈η |d ρν ∧ u 〉L2
φ−ψ

,

hence, by the Riesz representation theorem, there exists

η̃ =: d∗φ−ψ, φ−2ψ (ρν η) ∈ L2
φ−2ψ

(
X;∧k−1T ∗X

)

such that, for every u ∈ dom d ⊆ L2
φ−2ψ

(
X;∧k−1T ∗X

)
, it holds

〈ρν η |du 〉L2
φ−ψ

= 〈η̃ |u 〉L2
φ−2ψ

.

Finally, note that, for every u ∈ dom d ⊆ L2
φ−2ψ

(
X;∧k−1T ∗X

)
,

∣∣∣∣
〈
d∗φ−ψ, φ−2ψ (ρν η)− ρν d∗φ−ψ, φ−2ψ η |u

〉
L2
φ−2ψ

∣∣∣∣ =
∣∣∣∣〈ρν η |du 〉L2

φ−ψ
−
〈
d∗φ−ψ, φ−2ψη | ρν u

〉
L2
φ−2ψ

∣∣∣∣

=
∣∣∣〈η |d ρν ∧ u 〉L2

φ−ψ

∣∣∣

≤ ‖η‖L2
φ−ψ
· ‖d ρν ∧ u‖L2

φ−ψ
,

hence, by the Lebesgue dominated convergence theorem,
∥∥d∗φ−ψ, φ−2ψ (ρν η)− ρν d∗φ−ψ, φ−2ψη

∥∥
L2
φ−2ψ

→ 0 as
ν → +∞. This shows that ρν η → η as ν → +∞ with respect to the graph norm.

Hence, we may suppose that η ∈ dom d∩dom d∗φ−ψ, φ−2ψ ⊆ L2
φ−ψ

(
X;∧kT ∗X

)
has compact support. Let

{Φε}ε∈R\{0} ⊆ C∞ (Rn;R) be a family of positive mollifiers, that is, for every ε ∈ R \ {0},

Φε := ε−n Φ
( ·
ε

)
∈ C∞ (Rn;R) ,

where (i) Φ ∈ C∞c (Rn;R), (ii)
∫
Rn Φ volRn = 1, (iii) limε→0 Φε = δ, where δ is the Dirac delta function, and

(iv) Φ ≥ 0. Consider the convolution

{η ∗ Φε}ε∈R ⊂ C∞c
(
X;∧kT ∗X

)
;

we prove that η ∗ Φε → η as ε→ 0 with respect to the graph norm. Clearly,

lim
ε→0
‖η − η ∗ Φε‖L2

φ−ψ
= 0 .

Since d (η ∗ Φε) = d η ∗ Φε, one has that

lim
ε→0
‖d (η ∗ Φε)− d η‖L2

φ
= 0 .

Finally, write
d∗φ−ψ, φ−2ψ =: exp (−ψ)

(
d∗0, 0 +Aφ−ψ, φ−2ψ

)
,
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where d∗0, 0 is a differential operator with constant coefficients, and Aφ−ψ, φ−2ψ is a differential operator of order
zero defined, for every v ∈ L2

φ−ψ
(
X;∧kT ∗X

)
, as

Aφ−ψ, φ−2ψ (v) :=
∑̃

|J|=k−1
|I|=k

n∑

`=1
sign

(
`J
I

)
∂ (φ− ψ)
∂x`

· η dxJ ;

hence
(
d∗0, 0 +Aφ−ψ, φ−2ψ

)
(η ∗ Φε) =

((
d∗0, 0 +Aφ−ψ, φ−2ψ

)
(η)
)
∗ Φε − (Aφ−ψ, φ−2ψη) ∗ Φε +Aφ−ψ, φ−2ψ (η ∗ Φε)

→
(
d∗0, 0 +Aφ−ψ, φ−2ψ

)
(η)

as ε→ 0 in L2
φ−2ψ

(
X;∧k−1T ∗X

)
; since η has compact support, it follows that

d∗φ−ψ, φ−2ψ (η ∗ Φε)→ d∗φ−ψ, φ−2ψ (η)

as ε→ 0 in L2
φ−2ψ

(
X;∧k−1T ∗X

)
, that is,

lim
ε→0

∥∥d∗φ−ψ, φ−2ψ (η ∗ Φε)− d∗φ−ψ, φ−2ψ (η)
∥∥

L2
φ−2ψ

= 0 .

Step 4 – If ‖η‖2L2
φ−ψ
≤ C ·

(∥∥d∗φ−ψ, φ−2ψη
∥∥2

L2
φ−2ψ

+ ‖d η‖2L2
φ

)
holds for every C∞c

(
X; ∧kT ∗X

)
, then it holds for ev-

ery η ∈ dom d∩dom d∗φ−ψ, φ−2ψ. Let η ∈ dom d∩dom d∗φ−ψ, φ−2ψ. By Step 3, take {ηj}j∈N ⊂ C∞c
(
X;∧kT ∗X

)

such that ηj → η as j → +∞ in the graph norm. Since, for every j ∈ N, one has

‖ηj‖2L2
φ−ψ

≤ C ·
(∥∥d∗φ−ψ, φ−2ψηj

∥∥2
L2
φ−2ψ

+ ‖d ηj‖2L2
φ

)
,

and since, for j → +∞,

‖ηj − η‖L2
φ−ψ
→ 0 ,

∥∥d∗φ−ψ, φ−2ψηj − d∗φ−ψ, φ−2ψη
∥∥

L2
φ−2ψ

→ 0 , and ‖d ηj − d η‖L2
φ
→ 0 ,

we get that also
‖η‖2L2

φ−ψ
≤ C ·

(∥∥d∗φ−ψ, φ−2ψη
∥∥2

L2
φ−2ψ

+ ‖d η‖2L2
φ

)
.

Step 5 – Existence of a solution in L2
loc
(
X;∧kT ∗X

)
. We prove here that the operator

d: L2
φ−2ψ

(
X;∧k−1T ∗X

)
99K ker

(
d: L2

φ−ψ
(
X;∧kT ∗X

)
99K L2

φ

(
X;∧k+1T ∗X

))

is surjective, hence, for every η ∈ ker
(

d: L2
φ−ψ

(
X;∧kT ∗X

)
99K L2

φ

(
X;∧k+1T ∗X

))
, the equation dα = η has a

solution α in L2
φ−ψ

(
X;∧k−1T ∗X

)
⊆ L2

loc
(
X;∧k−1T ∗X

)
.

We recall, see, e.g., [Hör90, Lemma 4.1.1], that, given the Hilbert spaces
(
H1, 〈·, ··〉H1

)
and

(
H2, 〈·, ··〉H2

)
,

and a densely-defined closed operator T : H1 99K H2, whose adjoint is T ∗ : H2 99K H1, if F ⊆ H2 is a closed
subspace such that imT ⊆ F , then the following conditions are equivalent:

(i) imT = F ;

(ii) there exists C > 0 such that, for every y ∈ domT ∗ ∩ F ,

‖y‖H2
≤ C · ‖T ∗y‖H1

.

Hence, consider
d: L2

φ−2ψ
(
X;∧k−1T ∗X

)
99K L2

φ−ψ
(
X;∧kT ∗X

)

and

L2
φ−ψ

(
X;∧kT ∗X

)
⊇ F := ker

(
d: L2

φ−ψ
(
X;∧kT ∗X

)
99K L2

φ

(
X;∧k+1T ∗X

))

⊇ im
(
d: L2

ψ−2ψ
(
X;∧k−1T ∗X

)
99K L2

φ−ψ
(
X;∧kT ∗X

))
.



3.3 Cohomology of strictly p-convex domains in Rn 145

By Step 4, for every η ∈ dom d∗φ−ψ, φ−2ψ ∩ F ⊆ dom d∩dom d∗φ−ψ, φ−2ψ, it holds that

‖η‖2L2
φ−ψ

≤ C
∥∥d∗φ−ψ, φ−2ψη

∥∥2
L2
φ−2ψ

,

from which it follows that

F = im
(
d: L2

ψ−2ψ
(
X;∧k−1T ∗X

)
99K L2

φ−ψ
(
X;∧kT ∗X

))
.

Step 6 – Sobolev regularity of the solutions with compact support. We prove that, for every α ∈ L2 (X;∧k−1T ∗X
)

with compact support, if dα ∈ L2 (X;∧kT ∗X
)
and d∗0, 0α ∈ L2 (X;∧k−2T ∗X

)
, then α ∈ W1,2 (X;∧k−1T ∗X

)
.

Indeed, take {Φε}ε∈R a family of positive mollifiers and, for every ε ∈ R, consider α ∗Φε ∈ C∞c
(
X;∧k−1T ∗X

)
; by

Proposition 3.66 with φ := 0 and ψ := 0, we get that, for any multi-index I such that |I| = k − 1 and for any
` ∈ {1, . . . , n}, ∫

X

∣∣∣∣
∂ (αI ∗ Φε)

∂x`

∣∣∣∣
2

vol ≤ C ·
(∥∥d∗0, 0 (α ∗ Φε)

∥∥2
L2 + ‖d (α ∗ Φε)‖2L2

)
,

where C :=: C(k, n) is a constant depending just on k and n; since, for every multi-index I such that |I| = k − 1,
and for every ` ∈ {1, . . . , n}, it holds that

lim
ε→0

∫

X

∣∣∣∣
∂ (αI ∗ Φε)

∂x`
− ∂αI
∂x`

∣∣∣∣
2

vol = lim
ε→0

∥∥d∗0, 0 (α ∗ Φε)− d∗0, 0α
∥∥

L2 = lim
ε→0
‖d (α ∗ Φε)− dα‖L2 = 0 ,

we get that ∫

X

∣∣∣∣
∂αI
∂x`

∣∣∣∣
2

vol ≤ C ·
(∥∥d∗0, 0α

∥∥2
L2 + ‖dα‖2L2

)
,

proving the claim.
Step 7 – Regularization of the solution. By Step 5, if η ∈ ∧kX is such that d η = 0, then the equation dα = η
has a solution α ∈ L2

loc
(
X;∧k−1T ∗X

)
; we prove that actually α ∈ ∧k−1X.

Note that we may suppose that the solution α ∈ L2
loc
(
X;∧k−1T ∗X

)
satisfies

α ∈ (ker d)⊥L2
loc(X;∧k−1T∗X) = im d∗0, 0 = im d∗0, 0 ⊆ ker d∗0, 0 ;

hence, α satisfies the system of differential equation
{

dα = η

d∗0, 0α = 0
.

We prove, by induction on s ∈ N, that α ∈Ws,2
loc
(
X;∧k−1T ∗X

)
for every s ∈ N. Indeed, we have by Step 5

that α ∈W0,2
loc
(
X;∧k−1T ∗X

)
= L2

loc
(
X;∧k−1T ∗X

)
. Suppose now that α ∈Ws,2

loc
(
X;∧k−1T ∗X

)
and prove that

α ∈Ws+1,2
loc

(
X;∧k−1T ∗X

)
. Clearly, η ∈ ∧kX ⊆Wσ,2

loc
(
X;∧kT ∗X

)
for every σ ∈ N. Take K a compact subset

of X, and choose χ̂ ∈ C∞c (X;R) such that supp χ̂ ⊃ K. For any multi-index L :=: (`1, . . . , `n) ∈ Nn such that
`1 + · · ·+ `n = s, being

d
(
χ̂ · ∂sα

∂`1x1 · · · ∂`nxn
)

= d χ̂ ∧ ∂sα

∂`1x1 · · · ∂`nxn + χ̂ · ∂sη

∂`1x1 · · · ∂`nxn ∈ L2 (K;∧kT ∗K
)

and

d∗0, 0
(
χ̂ · ∂sα

∂`1x1 · · · ∂`nxn
)

= −
∑̃

|J|=k−1
|I|=k

n∑

`=1
sign

(
`J
I

)
∂χ̂

∂x`
· ∂sαI
∂`1x1 · · · ∂`nxn dxJ ∈ L2 (K;∧k−2T ∗K

)

we get that χ̂ · ∂sα
∂`1x1···∂`nxn ∈ W1,2 (K;∧k−1T ∗K

)
, that is, α ∈ Ws+1,2 (K;∧k−1T ∗K

)
. Hence, we get that

α ∈Ws+1,2
loc

(
X;∧k−1T ∗X

)
.

Since Wσ,2
loc
(
X;∧k−1T ∗X

)
↪→ Cm

(
X;∧k−1T ∗X

)
for every 0 ≤ m < σ − n

2 , see, e.g., [GT01, Corollary 7.11],
we get that α ∈ ∧k−1X, concluding the proof of the theorem.

As a straightforward corollary, we get the following vanishing theorem for the higher-degree de Rham
cohomology groups of a strictly p-convex domain in Rn, [AC12, Theorem 3.1]; for a different proof, involving
Morse theory, compare [Sha86, Theorem 1] by J.-P. Sha, and [Wu87, Theorem 1] by H. Wu, see also [HL11,
Proposition 5.7].
Theorem 3.68 ([AC12, Theorem 3.1], see [Sha86, Theorem 1], [Wu87, Theorem 1], [HL11, Proposition 5.7]).
Let X be a strictly p-convex domain in Rn. Then Hk

dR(X;R) = {0} for every k ≥ p.
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[BT00] I. K. Babenko and I. A. Tăımanov, On nonformal simply connected symplectic manifolds, Sibirsk.
Mat. Zh. 41 (2000), no. 2, 253–269, Translation in Siberian Math. J. 41 (2000), no. 2, 204–217.

[Buc99] N. Buchdahl, On compact Kähler surfaces, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 1, 287–302.

[Buc08] , Algebraic deformations of compact Kähler surfaces. II, Math. Z. 258 (2008), no. 3, 493–498.

[Cal57] E. Calabi, On Kähler manifolds with vanishing canonical class, Algebraic geometry and topology. A
symposium in honor of S. Lefschetz, Princeton University Press, Princeton, N. J., 1957, pp. 78–89.

[Cam91] F. Campana, The class C is not stable by small deformations, Math. Ann. 290 (1991), no. 1, 19–30.

[Cav05] G. R. Cavalcanti, New aspects of the ddc-lemma, arXiv:math/0501406 [math.DG], 2005, Oxford
University D. Phil thesis.

[Cav07] , Introduction to generalized complex geometry, Publicações Matemáticas do IMPA. [IMPA
Mathematical Publications], Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de
Janeiro, 2007, 26o Colóquio Brasileiro de Matemática. [26th Brazilian Mathematics Colloquium].

[CdS01] A. Cannas da Silva, Lectures on symplectic geometry, Lecture Notes in Mathematics, vol. 1764,
Springer-Verlag, Berlin, 2001.

[CF01] S. Console and A. Fino, Dolbeault cohomology of compact nilmanifolds, Transform. Groups 6 (2001),
no. 2, 111–124.

[CF11] , On the de Rham cohomology of solvmanifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) X
(2011), no. 4, 801–818.

[CFAG96] V. Cruceanu, P. Fortuny Ayuso, and P. M. Gadea, A survey on paracomplex geometry, Rocky
Mountain J. Math. 26 (1996), no. 1, 83–115.

[CFGU00] L. A. Cordero, M. Fernández, A. Gray, and L. Ugarte, Compact nilmanifolds with nilpotent complex
structures: Dolbeault cohomology, Trans. Amer. Math. Soc. 352 (2000), no. 12, 5405–5433.

[CFM08] G. R. Cavalcanti, M. Fernández, and V. Muñoz, Symplectic resolutions, Lefschetz property and
formality, Adv. Math. 218 (2008), no. 2, 576–599.

[CFUG97] L. A. Cordero, M. Fernández, L. Ugarte, and A. Gray, A general description of the terms in the
Frölicher spectral sequence, Differential Geom. Appl. 7 (1997), no. 1, 75–84.

[Cho49] W.-L. Chow, On compact complex analytic varieties, Amer. J. Math. 71 (1949), no. 4, 893–914.



150 BIBLIOGRAPHY

[CM09] V. Cortés and T. Mohaupt, Special geometry of Euclidean supersymmetry. III. The local r-map,
instantons and black holes, J. High Energy Phys. (2009), no. 7, 066, 64.

[CMMS04] V. Cortés, C. Mayer, T. Mohaupt, and F. Saueressig, Special geometry of Euclidean supersymmetry.
I. Vector multiplets, J. High Energy Phys. (2004), no. 3, 028, 73 pp. (electronic).

[CMMS05] , Special geometry of Euclidean supersymmetry. II. Hypermultiplets and the c-map, J. High
Energy Phys. (2005), no. 6, 025, 37 pp. (electronic).

[Con06] S. Console, Dolbeault cohomology and deformations of nilmanifolds, Rev. Un. Mat. Argentina 47
(2006), no. 1, 51–60 (2007).

[COUV12] M. Ceballos, A. Otal, L. Ugarte, and R. Villacampa, Classification of complex structures on
6-dimensional nilpotent Lie algebras, arXiv:1111.5873v3 [math.DG], 2012.

[CS02] S. Chiossi and S. Salamon, The intrinsic torsion of SU(3) and G2 structures, Differential geometry,
Valencia, 2001, World Sci. Publ., River Edge, NJ, 2002, pp. 115–133.

[CT07] D. Conti and A. Tomassini, Special symplectic six-manifolds, Q. J. Math. 58 (2007), no. 3, 297–311.

[dAFdLM92] L. C. de Andrés, M. Fernández, M. de León, and J. J. Mencía, Some six-dimensional compact
symplectic and complex solvmanifolds, Rend. Mat. Appl. (7) 12 (1992), no. 1, 59–67.

[Dar82] G. Darboux, Sur le problème de Pfaff, Bull. Sci. Math. 6 (1882), 14–36, 49–68.

[dBM10] P. de Bartolomeis and F. Meylan, Intrinsic deformation theory of CR structures, Ann. Sc. Norm.
Super. Pisa Cl. Sci. (5) 9 (2010), no. 3, 459–494.

[dBT06] P. de Bartolomeis and A. Tomassini, On solvable generalized Calabi-Yau manifolds, Ann. Inst.
Fourier (Grenoble) 56 (2006), no. 5, 1281–1296.

[dBT12] , Exotic deformations of Calabi-Yau manifolds, to appear in Ann. Inst. Fourier (Grenoble),
2012.

[Dem86] J.-P. Demailly, Sur l’identité de Bochner-Kodaira-Nakano en géométrie hermitienne, Séminaire
d’analyse P. Lelong-P. Dolbeault-H. Skoda, années 1983/1984, Lecture Notes in Math., vol. 1198,
Springer, Berlin, 1986, pp. 88–97.

[Dem12] , Complex Analytic and Differential Geometry, http://www-fourier.ujf-grenoble.fr/
~demailly/manuscripts/agbook.pdf, 2012, Version of Thursday June 21, 2012.

[DGMS75] P. Deligne, Ph. A. Griffiths, J. Morgan, and D. P. Sullivan, Real homotopy theory of Kähler
manifolds, Invent. Math. 29 (1975), no. 3, 245–274.

[DK00] J. J. Duistermaat and J. A. C. Kolk, Lie groups, Universitext, Springer-Verlag, Berlin, 2000.
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