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Introduction

By a remarkable result by W. L. Chow, [Cho49, Theorem V] (see also [Ser56]), projective manifolds (that is,
compact complex submanifolds of CP" := (C"\ {0})/(C\ {0}), for n € N) are in fact algebraic (that is, they
can be described as the zero set of finitely many homogeneous holomorphic polynomials). One is hence interested
in relaxing the projective condition, looking for special properties on compact manifolds sharing a weaker structure
than projective manifolds. For example, a large amount of developed analytic techniques allows to prove strong
cohomological properties for compact Kdhler manifolds (that is, compact complex manifolds endowed with a
Kéhler metric, namely, a Hermitian metric admitting a local potential function), [SvD30, K&h33], see also [Wei58],
which are, in a certain sense, the “analytic-versus-algebraic”, [Cho49, Theorem V], or the “R-versus-Q”, [Kod54,
Theorem 4], version of projective manifolds. Kéhler manifolds are in fact endowed with three different structures,
interacting each other: a complex structure, a symplectic structure, and a metric structure; it is the strong linking
between them that allows to develop many analytic tools and hence to derive the very special properties of
Kahler manifolds. In order to better understand any of such properties, it is natural to ask what of these three
structures is actually involved and required. Therefore, one is led to study complex, symplectic, and metric
contribution separately, possibly weakening either the interactions between them, or one of these structures. For
example, by relaxing the metric condition, one could ask what properties of a compact complex manifold can
be deduced by the existence of special Hermitian metrics defined by conditions similar to, but weaker than, the
defining condition of the Kahler metrics (for example, metrics being balanced in the sense of M. L. Michelsohn
[Mic82], pluriclosed [Bis89], astheno-Kahler [JY93, JY94], Gauduchon [Gau77], strongly-Gauduchon [Pop09]); by
relaxing the complex structure, one is led to study properties of almost-complexr manifolds, possibly endowed with
compatible symplectic structures.

In particular, we are concerned with studying cohomological properties of compact (almost-)complex manifolds,
and of manifolds endowed with special structures, e.g., symplectic structures, D-complex structures in the sense of
F. R. Harvey and H. B. Lawson, exhaustion functions satisfying positivity conditions. Part of the original results
have been published or will appear in [AT11, AT12a, Angll, AT12b, AR12, ATZ12, AC12|; some other results
have been collected in a preprint, see [AT12c]; some more results have not yet been submitted for publication.

We recall that a complex manifold X is endowed with a natural almost-complex structure, that is, an
endomorphism J € End(7X) of the tangent bundle of X such that J2 = —idrx, which actually satisfies a further
integrability condition, [NN57, Theorem 1.1]. By considering the decomposition into eigen-spaces, just the datum
of the almost-complex structure yields a splitting of the complexified tangent bundle, namely,

TX®C = TYX 1% X,
and hence it induces also a splitting of the bundle of complex differential forms, namely,

A*X Qg C = @ APAX
ptq=e

Furthermore, on a complex manifold, the integrability condition of such an almost-complex structure yields
a further structure on A®*X, namely, a structure of double complex (/\"'X , 0, 5), where 9 and 0 are the
components of the C-linear extension of the exterior differential d.

Hence, on a complex manifold X, one can consider both the de Rham cohomology

. kerd
Hip (X;C) = imd
and the Dolbeault cohomology
ker O
H2*(X) := = ;
9 (X) imo
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whenever X is compact, the Hodge theory assures that they have finite-dimension as C-vector spaces. On a
compact complex manifold, in general, no natural map between Hg'(X ) and H3j, (X;C) exists; on the other

hand, the structure of double complex of (/\"'X , 0, 5) gives rise to a spectral sequence
Bt = HY(X) = Hip(X:C),
from which one gets the Frolicher inequality, [Fro55, Theorem 2]: for every k € N,

dime Hjp(X;C) < ) dime HZY(X) .
p+q=k

On a complex manifold, a “bridge” between the Dolbeault and the de Rham cohomology is provided, in a
sense, by the Bott-Chern cohomology,

.o ker 0 Nker &
HpA(X) = —m———
so(X) im 90
and the Aeppli cohomology,
. ker 0
HY(X) = ———.
a0 imd+imad

In fact, the identity induces the maps of (bi-)graded C-vector spaces

Hye(X)

Hy* (X) Hip(X;C) HZ*(X)

~. 7

HY* ()

which, in general, are neither injective nor surjective.

We recall that, whenever X is compact, the Hodge theory can be performed also for Bott-Chern and Aeppli
cohomologies, [Sch07, §2], yielding their finite-dimensionality; more precisely, one has that, on a compact complex
manifold X of complex dimension n endowed with a Hermitian metric,

Hy(X) ~ Apc and HY*(X) ~ Ay,

where Agc and A4 are 4t order self-adjoint elliptic differential operators; furthermore, the Hodge-*-operator
associated to any Hermitian metric on X induces an isomorphism HZL(X) ~ H ™" 7P(X), for every p,q € N.

By the definitions, the map Hpy5(X) — H3,(X;C) is injective if and only if every d-closed d-closed d-exact
form is 0d-exact: a compact complex manifold fulfilling this property is said to satisfy the 00-Lemma; see
[DGMST75] by P. Deligne, Ph. A. Griffiths, J. Morgan, and D. P. Sullivan, where consequences of the validity of
the 00-Lemma on the real homotopy type of a compact complex manifold are investigated. When the 99-Lemma
holds, it turns out that actually all the above maps are isomorphisms, [DGMS75, Lemma 5.15, Remark 5.16,
5.21]: in particular, one gets a decomposition

H3p(X;C) ~ P HY*(X such that H'*(X) =~ H*'(X).

A very remarkable property of compact Kihler manifolds is that they satisfy the d0-Lemma, [DGMST75,
Lemma 5.11]: this follows from the Kéahler identities, which can be proven as a consequence of the fact that the
Kéhler metrics osculate to order 2 the standard Hermitian metric of C" at every point. Therefore, the above
decomposition holds true, in particular, for compact Kéhler manifolds, [Wei58, Théoréme IV.3].

In particular, if X is a compact complex manifold satisfying the d9-Lemma, then, for every k € N,

dlmcHdR (X;0) Z dime HZL(X) .
pta=k

In the first chapter, we study cohomological properties of compact complex manifolds, studying in particular
the Bott-Chern and Aeppli cohomologies, and their relation with the 09-Lemma.



Introduction vii

In fact, the first result we prove states a Frolicher-type inequality for the Bott-Chern and Aeppli cohomologies,
which provides also a characterization of the compact complex manifolds satisfying the 90-Lemma just in terms of
the dimensions of the Bott-Chern cohomology groups, [AT12b, Theorem A, Theorem B]; a key tool in the proof
of the Frolicher-type inequality relies on exact sequences by J. Varouchas, [Var86]. More precisely, we state the
following result.

Theorem (see Theorem 1.22 and Theorem 1.25). Let X be a compact complex manifold. Then, for every
k € N, the following inequality holds:

> (dime HBE(X) + dime HY(X)) > 2 dime Hjp(X;C) .
pta=k

The equality
dime Hyo(X) + dime H5(X) = 2 dime H55(X;C)
holds for every k € N if and only if X satisfies the 00-Lemma.

Note that the equality >° . _, dimc Hg’q (X) = dimc HY,(X; C) for every k € N (which is equivalent to the
degeneration of the Hodge and Frolicher spectral sequence at the first step, 1 >~ E) is not sufficient to let X
satisfy the 00-Lemma: in some sense, the above result states that the Bott-Chern cohomology, together with its
dual, the Aeppli cohomology, encodes “more informations” on the double complex (/\'"X , 0, 8) than just the
Dolbeault cohomology.

As a straightforward consequence of the previous theorem, we obtain another proof, see [AT12b, Corollary
2.7], of the following result, see [Voi02, Proposition 9.21], [Wu06, Theorem 5.12], [Tom08, §B|.

Corollary (see Corollary 1.28). Satisfying the 00-Lemma is a stable property under small deformations of
the complex structure, that is, if {Xi},cp is a complex-analytic family of compact complex manifolds and X,

satisfies the 0-Lemma for some tg € B, then X, satisfies the 00-Lemma for every t in an open neighbourhood of
to in B.

A class of manifolds that turns out to be particularly interesting in non-Kéahler geometry, as a fruitful source
of examples, is provided by the class of nilmanifolds, and, more in general, of solvmanifolds, namely, compact
quotients of connected simply-connected nilpotent, respectively solvable, Lie groups by co-compact discrete
subgroups. In fact, on the one hand, non-tori nilmanifolds admit no Kéhler structure, [BG88, Theorem A], [Has89,
Theorem 1, Corollary], and, on the other hand, focusing on left-invariant geometric structures on solvmanifolds, one
can often reduce their study at the level of the associated Lie algebra; this turns out to hold true, in particular, for
the de Rham cohomology of completely-solvable solvmanifolds, [Nom54, Hat60], and for the Dolbeault cohomology
of nilmanifolds endowed with certain left-invariant complex structures, [Sak76, CFGU00, CF01, Rol09a, Rolllal,
see, e.g., [Con06, Rolllal.

More precisely, on a nilmanifold X = T'\ G, the inclusion of the subcomplex composed of the G-left-invariant
forms on X (which is isomorphic to the complex (A®g*, d), where g is the associated Lie algebra) turns out to be
a quasi-isomorphism, [Nom54, Theorem 1], that is,

i: Hip (GR) == H* (A\°g", d) = Hip(X;R);

a similar result holds true also for completely-solvable solvmanifolds, [Hat60, Corollary 4.2], and for the Dolbeault
cohomology of nilmanifolds endowed with left-invariant complex structures belonging to certain classes, [Sak76,
Theorem 1], [CFGU00, Main Theorem]|, [CF01, Theorem 2, Remark 4], [Rol09a, Theorem 1.10], [Rollla, Corollary
3.10].

As a matter of notation, denote by Hﬁ"' (gc), for ¢ € {5, 0, BC, A}, the cohomology of the corresponding

subcomplex of G-left-invariant forms on a solvmanifold X = I'\ G, with Lie algebra g, endowed with a G-left-
invariant complex structure. The following result states a Nomizu-type theorem also for the Bott-Chern and
Aeppli cohomologies, [Angll, Theorem 3.7, Theorem 3.8, Theorem 3.9].
Theorem (see Theorem 1.37, Theorem 1.39, Remark 1.41, and Theorem 1.42). Let X = I'\ G be a
solvmanifold endowed with a G-left-invariant complex structure J, and denote the Lie algebra naturally associated
to G by g. Suppose that the inclusions of the subcomplexes of G-left-invariant forms on X into the corresponding
complezes of differential forms on X yield the isomorphisms

n

H2*(X)

i: Hip(g;C) = Hip(X;C) and it H2*® (gc) ]

in particular, this holds true if one of the following conditions holds:

e X is holomorphically parallelizable;
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e J is an Abelian complex structure;

J is a nilpotent complex structure;

J is a rational complex structure;

g admits a torus-bundle series compatible with J and with the rational structure induced by T';

dimg g = 6 and g is not isomorphic to hr := (03, 12,13, 23).

Then also

1

i: Hpe (9c) = Hpeo(X) and it Hy® (g9¢) = HY*(X)

are tsomorphisms.
Furthermore, if C (g) denotes the set of G-left-invariant complex structures on X, then the set

U = {JeC(g) i HY® (gc) 5 g (X)}

is open in C(g), for § € {0, 9, BC, A}.
The above result allows to explicitly compute the Bott-Chern cohomology for the Iwasawa manifold

I; == H(3;Z[i])\H(3;C)

and for its small deformations, where

1 2t 23
H(3;C) := 0 1 22 | €GL(3;C) : 2 22 3 ecC and H(3;Z[i]) = H(3;C)NGL (3;Z[i]) .
0 0 1

The Iwasawa manifold is one of the simplest example of compact non-Kéhler complex manifold: as an example of
a complex-parallelizable manifold, it has been studied by I. Nakamura, [Nak75], who computed its Kuranishi space
and classified the small deformations of I3 by means of the dimensions of their Dolbeault cohomology groups.

In §1.4.4, [Angll, §5.3], we explicitly compute the Bott-Chern cohomology of the small deformations of
the Iwasawa manifold, showing that it makes possible to give a finer classification of the small deformations
{Xt}iea(o,e)ces of I than the Dolbeault cohomology: more precisely, classes (i) and (#i) in I. Nakamura’s
classification [Nak75, §3] are further subdivided into subclasses (ii.a) and (7i.b), respectively (%ii.a) and (4.b),
according to the value of dim¢ H 123% (Xt).

Another class that could provide several interesting examples is given by complex orbifolds of the type
X=X / G, where X is a complex manifold and G is a finite group of biholomorphisms of X. Orbifolds of such a
global-quotient-type have been considered and studied, e.g., by D. D. Joyce in constructing examples of compact
7-dimensional manifolds with holonomy Gs, [Joy96b] and [Joy00, Chapters 11-12], and examples of compact
8-dimensional manifolds with holonomy Spin(7), [Joy96a, Joy99] and [Joy00, Chapters 13-14].

One can define the space of differential forms A**X on a complex orbifold of the type X = X / G as the
space of G-invariant differential forms on X; hence, one can define the de Rham, Dolbeault, Bott-Chern, and
Aeppli cohomologies also for X. Analogously, one can define the space of currents D**X on X as the space of
G-invariant currents on X, as well as a Hermitian metric on X as a G-invariant Hermitian metric on X.

As a first tool to investigate the Bott-Chern and Aeppli cohomologies of compact complex orbifolds of
global-quotient-type, we obtain the following result.

Theorem (see Theorem 1.55). Let X = X/ G be a compact complex orbifold of complex dimension n, where
X is a complex manifold and G is a finite group of biholomorphisms of X. Then, for any p,q € N, there are
canonical isomorphisms

% ker (8: Drax — DP‘H’QX) N ker (5: DPaX — Dp’q+1X)
im (90: Dr—1a-1X — DraX) ’

Furthermore, given a Hermitian metric on X, there are canonical isomorphisms
Hyt(X) =~ kerApc and HY*(X) ~ kerAyu .
In particular, the Hodge-x-operator induces an isomorphism

Hélé.2 (X) ~ Hz—og,n—ol(X) ]
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In the second chapter, we do not require the integrability of the almost-complex structure, and we study
cohomological properties of almost-complex manifolds, that is, differentiable manifolds endowed with a (possibly
non-integrable) almost-complex structure. In this case, the Dolbeault cohomology is not defined. However,
following T.-J. Li and W. Zhang [LZ09], one can consider, for every p, ¢ € N, the subgroups

HPD@P(XR) = {[a] € HIFY(X;R) = € (APIX @ ATPX) N APHIX} C HEEY(X;R),
and their complex counterpart
HP9(X;C) == {[a] € HEHI(X;C) : a€ APIX} C HYFI(X;C) .

If X is a compact Kéhler manifold, then HL(]p’q) (X;C) ~ Hg’q(X) for every p,q € N, [DLZ10, Lemma 2.15,
Theorem 2.16]; therefore these subgroups can be considered, in a sense, as a generalization of the Dolbeault
cohomology groups to the non-Kéhler, or to the non-integrable, case.

Two remarks need to be pointed out. Firstly, note that, in general, neither the equality in

ST HPOUP(XR) C HIFYXR),  or S HPO(X;C) € HYE(X;0),
pre=k pta=k
pP>q

holds, nor the sum is direct, nor there are relations between the equality holding and the sum being direct, see,
e.g., Proposition 2.12. Hence, one may be interested in studying compact almost-complex manifolds for which one
of the above properties holds, at least for a fixed k € N, see [LZ09, DLZ10, DLZ11, FT10, AT11, AT12a, Zhall,
ATZ12, DZ11, TWZZ11, HMT11, LT12, DLZ12]. A remarkable result by T. Draghici, T.-J. Li, and W. Zhang,
[DLZ10, Theorem 2.3], states that every almost-complex structure .J on a compact 4-dimensional manifold X*
satisfies the cohomological decomposition

Hip (X4R) = HPOOD (x4R) 0 HIVY (X4R) .

Secondly, note that J|2x satisfies (JL/\QX)Q = ids2, therefore the above subgroups of H3,(X;R) can be
interpreted as the subgroup represented by J-invariant forms,

HE(X) == H'(X;R) = {[o] € HR(X;R) : Ja=a},
and the subgroup represented by J-anti-invariant forms,
_ 2,0),(0,2
Hy(X) == HP?OY(X;R) = {[o] € HIR(X;R) : Ja=—a} .

Note also that, if g is any Hermitian metric on X whose associated (1, 1)-form w := g(J-, --) € AM1X NA2X is
d-closed (namely, g is an almost-Kéhler metric on X), then [w] € Hf (X).

In fact, T.-J. Li and W. Zhang’s interest in studying such subgroups and C*°-pure-and-full almost-complex
structures (that is, almost-complex structures for which the decomposition

Hip(X;R) = Hj(X)® Hj (X)

holds, [LZ09, Definition 2.2, Definition 2.3, Lemma 2.2]) arises in investigating the symplectic cones of an
almost-complex manifolds, that is, the J-tamed cone

KY = {[w] € HIz(X;R) @ wy (vg, Jyvg) > 0 for every v, € T, X \ {0} and for every z € X}
and the J-compatible cone
KS = {lw] € HIg(X;R) : wy (vg, Jyvs) > 0 for every v, € T, X \ {0} and for every z € X, and Jw =w} .

Indeed, they proved in [LZ09, Theorem 1.1] that, given a C*°-pure-and-full almost-Kéhler structure on a compact
manifold X, the J-anti-invariant subgroup H; (X) of H3,(X;R) measures the quantitative difference between
the J-tamed cone and the J-compatible cone, namely,

Ky = K5e Hy (X) .

A natural question concerns the qualitative comparison between the tamed cone and the compatible cone: more
precisely, one could ask whether, whenever an almost-complex structure J admits a J-tamed symplectic form,
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there exists also a J-compatible symplectic form. This turns out to be false, in general, for non-integrable
almost-complex structures in dimension greater than 4, [MT00, Tom02]; on the other hand, it is not known
whether, for almost-complex structures on compact 4-dimensional manifolds, as asked by S. K. Donaldson, [Don06,
Question 2], or for complex structures on compact manifolds of complex dimension greater than or equal to 3, as
asked by T.-J. Li and W. Zhang, [LZ09, page 678], and by J. Streets and G. Tian, [ST10, Question 1.7], it holds
that K¢ is non-empty if and only if K is non-empty. We prove the following result, stating that no counterexample
can be found among 6-dimensional non-tori nilmanifolds endowed with left-invariant complex structures, [AT11,
Theorem 3.3]; note that the same holds true, more in general, for higher dimensional nilmanifolds, as proven by N.
Enrietti, A. Fino, and L. Vezzoni, [EFV12, Theorem 1.3].

Theorem (see Theorem 2.67). Let X = I'\G be a 6-dimensional nilmanifold endowed with a G-left-invariant
complex structure J. If X is not a torus, then there is no J-tamed symplectic structure on X.

One can study further cones in cohomology, which are related to special metrics, other than Kéhler metrics;
a key tool is provided by the theory of cone structures on differentiable manifolds developed by D. P. Sullivan,
[Sul76]. In order to compare, in particular, the cone associated to balanced metrics (that is, Hermitian metrics
whose associated (1,1)-form is co-closed, [Mic82, Definition 1.4, Theorem 1.6]) and the cone associated to
strongly-Gauduchon metrics (that is, Hermitian metrics whose associated (1, 1)-form w satisfies the condition that
0 (wdimc X _1) is 0-exact [Pop09, Definition 3.1]), we give the following result, [AT12a, Theorem 2.9], which is the
semi-Kéhler counterpart of [LZ09, Theorem 1.1]. (We refer to §2.4.3 for the definitions of the cones Kb, and Kb§
on a manifold X endowed with an almost-complex structure J.)

Theorem (see Theorem 2.74). Let X be a compact 2n-dimensional manifold endowed with an almost-complex
structure J. Assume that KbS # @ (that is, there exists a semi-Kdihler structure on X ) and that 0 & KbY,. Then

Kb, n H (X R) = Kb

and
Kb5 + HY" RO (XGR) C K

Moreover, if the equality Hip *(X;R) = H§"7n_2)’(n_2’n) (X;R) + Hsn_l’n_l)(X; R) holds, then

Ko + H DR (XGR) = Kb

In order to better understand cohomological properties of compact almost-complex manifolds, and in view
of the Hodge decomposition theorem for compact Kéhler manifolds, it could be interesting to investigate the
subgroups ng 0):(2:p) (X;R) for almost-complex manifolds endowed with special structures. For example, we
prove the following result, [ATZ12, Proposition 4.1], providing a strong difference between the Kéhler case and
the almost-Kahler case.

Proposition (see Proposition 2.42). The differentiable manifold X underlying the Iwasawa manifold I3 :=
H (3; Z [i])\ H(3; C) admits a non-C*>®-pure-and-full almost-Kahler structure.

A further study on almost-Kéhler structures (J, w, g) on a compact 2n-dimensional manifold X yields the
following result, [ATZ12, Theorem 2.3], which relates C*°-pure-and-fullness with the Lefschetz-type property on
2-forms firstly considered by W. Zhang, that is, the property that the Lefschetz operator

WPTZA G AZX 5 AZT2X

takes g-harmonic 2-forms to g-harmonic (2n — 2)-forms.

Theorem (see Theorem 2.35). Let X be a compact manifold endowed with an almost-Kdhler structure (J, w, g).
Suppose that there exists a basis of HgR(X;R) represented by g-harmonic 2-forms which are of pure type with
respect to J. Then the Lefschetz-type property on 2-forms holds on X.

As a tool to study explicit examples, we provide a Nomizu-type theorem for the subgroups HS’) 0):(:p) (X;R)
of a completely-solvable solvmanifold X = I'\ G endowed with a G-left-invariant almost-complex structure J,
[ATZ12, Theorem 5.4], see Proposition 2.19, and Corollary 2.20.

A remarkable result by K. Kodaira and D. C. Spencer states that the Kéhler property on compact complex
manifolds is stable under small deformations of the complex structure, [KS60, Theorem 15]: more precisely, it
states that, given a compact complex manifold admitting a Kéhler structure, every small deformation still admits
a Kéhler structure; it can be proven as a consequence of the semi-continuity properties for the dimensions of
the cohomology groups of a compact Kéhler manifold. Hence, a natural question in non-Kéhler geometry is
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to investigate the (in)stability of weaker properties than being Kédhler. As a first result in this direction, L.
Alessandrini and G. Bassanelli proved that, given a compact complex manifold, the property of admitting a
balanced metric (that is, a Hermitian metric whose associated (1, 1)-form is co-closed) is not stable under small
deformations of the complex structure, [AB90, Proposition 4.1]; on the other hand, they proved that the class of
balanced manifolds is stable under modifications, [AB96, Corollary 5.7]. Another result in this context is the
stability of the property of satisfying the 99-Lemma under small deformations of the complex structure, as already
recalled, see Corollary 1.28.

Therefore, it is natural to investigate stability properties for the cohomological decomposition by means
of the subgroups ng a)(ap )(X ;R) on (almost-)complex manifolds (X, J). More precisely, we consider the

Iwasawa manifold I3 := H (3;Z [i])\ H(3; C), showing that the subgroups H!Sp’q)’(q’p) (X; R) provide a cohomological
decomposition for I3 but not for some of its small deformations, Theorem 2.49. We prove the following result,
[AT11, Theorem 3.2].

Theorem (see Theorem 2.48). The properties of being C*°-pure-and-full is not stable under small deformations
of the complex structure.

More in general, one could try to study directions along which the curves of almost-complex structures on
a differentiable manifold preserve the property of being C*°-pure-and-full. Using a procedure by J. Lee, [Lee04,
§1], to construct curves of almost-complex structures through an almost-complex structure J, by means of
J-anti-invariant real 2-forms, we provide the following result, [AT11, Theorem 4.1].

Theorem (see Theorem 2.53). There exists a compact manifold N®(c) endowed with an almost-complex
structure J and a J-Hermitian metric g such that:

(i) J is C*°-pure-and-full;

(ii) each J-anti-invariant g-harmonic form gives rise to a curve {Jt}tG(fs,E) of C*°-pure-and-full almost-complex
structures on N°(c) (where e > 0 is small enough);

(iii) furthermore, the function
(—e,e) >t dimg HP”"% (NS(c);R) € N
is upper-semi-continuous at 0.

Another problem in deformation theory is the study of semi-continuity properties for the dimensions of the
subgroups H; (X) and H; (X). As a consequence of the Hodge theory for compact 4-dimensional manifolds, T.
Draghici, T.-J. Li, and W. Zhang proved in [DLZ11, Theorem 2.6] that, given a curve {J; }+crcr of (C*°-pure-and-
full) almost-complex structures on a compact 4-dimensional manifold X, the functions

I > t—dimgH;(X) €N and I 5 t—dimgHj(X) €N

are, respectively, upper-semi-continuous and lower-semi-continuous.
In higher dimension this fails to be true, as we show in explicit examples. We provide hence the following
result, [AT12a, Proposition 4.1, Proposition 4.3].

Proposition (see Proposition 2.55 and Proposition 2.56). In dimension higher than 4, there exist compact
manifolds X endowed with families {Ji},.; of almost-complex structures such that either the function I >t
dimg H (X) € N is not upper-semi-continuous, or the function I >t — dimg H}rt (X) € N is not lower-semi-
continuous.

Motivated by such counterexamples, we study a stronger semi-continuity property on almost-complex manifolds
(namely, that, for every d-closed J-invariant real 2-form «, there exists a d-closed Ji-invariant real 2-form
n: = a + o(1), depending real-analytically in ¢, for ¢ € (—¢, ) with € > 0 small enough): we give a formal
characterization of the curves of almost-complex structures satisfying such a property, see Proposition 2.57, and
we provide also a counterexample to such a stronger semi-continuity property, see Proposition 2.60.

In the third chapter, motivated by the problem to study cohomological obstructions induced by special
structures on differentiable manifolds, we investigate cohomological properties of symplectic manifolds, D-complex
manifolds, and strictly p-convex domains.

We recall that compact Kéahler manifolds have special cohomological properties not just in the complex
framework, but also from the symplectic viewpoint. More precisely, another important result, other than the
Hodge decomposition theorem, [Wei58, Théoréme IV.3], is the Lefschetz decomposition theorem, [Wei58, Théoréme
IV.5], which states a decomposition in terms of primitive subgroups of the cohomology, namely,

H3p(X;C) = @L" (ker (A: H3R” (X;C) - H> *(X;0))) |
reN
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where A is the adjoint operator of the Lefschetz operator L :=w A -: A®* X — A*T2X with respect to the pairing
induced by w. Hence, after having investigated cohomological properties of almost-complex manifolds, we turn
our attention to cohomological properties of symplectic manifolds.

In particular, in §3.1, we provide a symplectic counterpart of T.-J. Li and W. Zhang’s cohomological theory for
almost-complex-manifolds, studying compact symplectic manifolds (X, w) for which the Lefschetz decomposition
on differential forms,

ANX = PLPATTX,

reN

(where PA®X := ker A is the space of primitive forms,) gives rise to a decomposition of the de Rham cohomology
by means of the subgroups

HO9)(X;R) = {[Uﬁ“)] € HZH(X;R) : B GPA“”X} C Hi"(X;R).

In particular, we provide the following result, [AT12¢, Theorem 2.6], which gives a symplectic counterpart
to T. Dréghici, T.-J. Li, and W. Zhang’s decomposition theorem [DLZ10, Theorem 2.3] in the almost-complex
setting (in fact, without the restriction to dimension 4).

Theorem (see Theorem 3.14). Let X be a compact manifold endowed with a symplectic structure w. Then

Hip(X;R) = HJO(X;R)® HP?(X;R).

A Nomizu-type theorem for the subgroups Ho(f’s) (X;R) of a completely-solvable solvmanifold X = T\ G
endowed with a G-left-invariant symplectic structure w is provided, see Proposition 3.18, giving an useful tool in
order to investigate explicit examples.

In a sense, D-complex Geometry provides a “hyperbolic analogue” of Complex Geometry. An almost-D-
complez structure is, by definition, the datum of an endomorphism K € End(TX) of the tangent bundle of a
differentiable manifold X such that K2 = idrx and with the additional property that the eigen-bundles 7+ X and
T~ X have the same rank; a natural notion of integrability can be defined by requiring that the two distributions
T+X and T~ X are involutive. Many connections between D-complex Geometry and other problems both in
Mathematics and Physics (in particular, concerning product structures, bi-Lagrangian geometry, and optimal
transport theory) have been investigated in the last years: see, e.g., [HL83, AMT09, CMMS04, CMMS05, CMO09,
CFAGY96, KMW10, ABDMOO05, AS05, Kral0, Ros12a, Ros12b] and the references therein for further details on
D-complex structures and motivations for their study.

We study cohomological decomposition for compact manifolds X endowed with (almost-)D-complex structures
K. Note that the elliptic theory in the complex setting has not a D-complex counterpart: for example, a
D-complex counterpart of the Dolbeault cohomology is possibly infinite-dimensional, even if the manifold is
compact. This fact makes natural to consider the D-complex counterpart H}?’Q) (X;R) of T.-J. Li and W. Zhang’s
subgroups HSP 0):(2:p) (X;R) as a possible substitute of the D-Dolbeault cohomology, and hence to study the
subgroups

Hy P (X5R) = {[a] € Hip (X;R) : Ka=a} C Hjz(X;R)

and
H} (X5R) = {[a] € Hip (X;R) : Ka=—a}

N

HC%R(X§R) .

Nevertheless, several important differences arise between the complex and the D-complex cases. For example,
after having stated and proved a Nomizu-type result for the subgroups Hl(f’q) (X;R) of a completely-solvable
solvmanifold X = T'\ G endowed with a G-left-invariant D-complex structure K, we are able to prove the following
result, [AR12, Proposition 3.3], which turns out to be very different from the complex case, see [LZ09, Proposition
2.1], or [DLZ10, Lemma 2.15, Theorem 2.16]. (Recall that a D-Kdhler structure on a D-complex manifold is the

datum of an anti-invariant symplectic form with respect to the D-complex structure.)

Proposition (see Proposition 3.34). Admitting a D-Kdhler structure is not a sufficient condition for either
the sum

Hi " (X;R) + Hi (X;R) C Hip (X:R)
being direct, or the equality holding.

A partial D-complex counterpart of T. Draghici, T.-J. Li, and W. Zhang’s decomposition theorem [DLZ10,
Theorem 2.3] is provided by the following result, [AR12, Theorem 3.17].
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Theorem (see Theorem 3.47). Every left-invariant D-complex structure on a 4-dimensional nilmanifold
satisfies the cohomological decomposition

H3p (X;R) = HEY(X;R) & Hy (X;R).

Note that the hypothesis in Theorem 3.47 can not be weakened, as Example 3.32 and Example 3.33, Example
3.49, and Example 3.35 show.

Concerning deformations of the D-complex structure, we provide another strong difference with the complex
case: in contrast with the stability theorem of K. Kodaira and D. C. Spencer, [KS60, Theorem 15], we prove the
following result in the D-complex context, [AR12, Theorem 4.2].

Theorem (see Theorem 3.50). The property of being D-Kdihler is not stable under small deformations of the
D-complex structure.

Analogously to Theorem 2.48 for almost-complex structures, we provide also the following instability result,
[AR12, Proposition 4.3].

Proposition (see Proposition 3.51). The properties of either the sum
Hy (X;R) + Hy (X;R) C© Hip (X:R)

being direct, or the equality holding are not stable under small deformations of the D-complex structure.

Finally, we prove that, even in the D-complex case, no general result on semi-continuity holds for the dimensions
of the K-(anti-)invariant subgroups of the de Rham cohomology, [AR12, Proposition 4.6].

Proposition (see Proposition 3.54). Let X be a compact manifold and let {K;},c ;g be a curve of D-complex
structures on X. Then, in general, the functions B

15t dimg HyF(X;R) €N and 1>t dimg Hy (X;R) €N
are not upper-semi-continuous or lower-semi-continuous.

Finally, motivated by A. Andreotti and H. Grauert’s vanishing result for the higher Dolbeault cohomology
groups of a g-complete domain in C™ (that is, a domain in C™ admitting a smooth proper exhaustion function
whose Levi form has at least n — ¢+ 1 positive eigen-values), we turn our interest to study cohomological properties
of Riemannian manifolds endowed with exhaustion functions whose Hessian satisfies positivity conditions.

In particular, a first case to be considered is the case of strictly p-convexr domains in R™ in the sense of F. R.
Harvey and H. B. Lawson, [HL12, HL11], that is, domains in R™ admitting a smooth proper exhaustion function
u such that, at every point, every sum of p different eigenvalues of the Hessian of u is positive. Adapting the L2-
techniques developed by L. Hérmander, [H6r65], and used also by A. Andreotti and E. Vesentini, [AV65a, AV65b],
(and which could be hopefully applied in a wider context,) we give a different proof of a vanishing result following
from J.-P. Sha’s theorem [Sha86, Theorem 1], and from H. Wu’s theorem [Wu87, Theorem 1], for the de Rham
cohomology of strictly p-convex domains in R™ in the sense of F. R. Harvey and H. B. Lawson; more precisely, the
following result holds, [AC12, Theorem 3.1}, see [Sha86, Theorem 1], [Wu87, Theorem 1], [HL11, Proposition 5.7].

Theorem (see Theorem 3.67 and Theorem 3.68). Let X be a strictly p-convex domain in R™, and fixr k € N
such that k > p. Then, every d-closed k-form is d-exact, that is,

Hq(X;R) = {0}

for every k > p.

The plan of the thesis is as follows.

In Chapter 0, which contains no original material, we collect the basic notions concerning almost-complex,
complex, and symplectic structures, we recall the main results on Hodge theory for Kdhler manifolds, and we
summarize the classical results on deformations of complex structures, on currents and de Rham homology, and
on solvmanifolds.

In Chapter 1, we study cohomological properties of compact complex manifolds, and in particular the Bott-
Chern cohomology, [AT12b, Angll]. By using exact sequences introduced by J. Varouchas, [Var86], we prove a
Frolicher-type inequality for the Bott-Chern cohomology, Theorem 1.22, which also provides a characterization of
the validity of the 99-Lemma in terms of the dimensions of the Bott-Chern cohomology groups, Theorem 1.25.
We then prove a Nomizu-type result for the Bott-Chern cohomology, showing that, for certain classes of complex
structures on nilmanifolds, the Bott-Chern cohomology is completely determined by the associated Lie algebra
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endowed with the induced linear complex structure, Theorem 1.37, Theorem 1.39, and Theorem 1.42. As an
application, in §1.4, we explicitly study the Bott-Chern and Aeppli cohomologies of the Iwasawa manifold and
of its small deformations. Finally, we study the Bott-Chern cohomology of complex orbifolds of the type X /G,
where X is a compact complex manifold and G a finite group of biholomorphisms of X, Theorem 1.55.

In Chapter 2, we study cohomological properties of almost-complex manifolds, [AT11, AT12a, ATZ12]. Firstly,
in §2.1, we recall the notion of C*°-pure-and-full almost-complex structure, which has been introduced by T.-J. Li
and W. Zhang in [LZ09] in order to investigate the relations between the compatible and the tamed symplectic
cones on a compact almost-complex manifold and with the aim to throw light on a question by S. K. Donaldson,
[Don06, Question 2]. In particular, we are interested in studying when certain subgroups, related to the almost-
complex structure, let a splitting of the de Rham cohomology of an almost-complex manifold, and their relations
with cones of metric structures. In §2.2, we focus on C*°-pure-and-fullness on several classes of (almost-)complex
manifolds, e.g., solvmanifolds endowed with left-invariant almost-complex structures, semi-Kéhler manifolds,
almost-Kéahler manifolds. In §2.3, we study the behaviour of C*°-pure-and-fullness under small deformations of the
complex structure and along curves of almost-complex structures, investigating properties of stability, Theorem
2.48, Theorem 2.53, and of semi-continuity for the dimensions of the invariant and anti-invariant subgroups of the
de Rham cohomology with respect to the almost-complex structure, Proposition 2.55, Proposition 2.56, Proposition
2.57, Proposition 2.60. In §2.4, we consider the cone of semi-Kéhler structures on a compact almost-complex
manifold and, in particular, by adapting the results by D. P. Sullivan on cone structures, [Sul76], we compare the
cones of balanced metrics and of strongly-Gauduchon metrics on a compact complex manifold, Theorem 2.74.

In Chapter 3, we study the cohomological properties of (differentiable) manifolds endowed with special
structures, other than (almost-)complex structures, [AT12¢, AR12, AC12]. More precisely, in Section 3.1, we
investigate the cohomology of symplectic manifolds; in Section 3.2, we study cohomological decompositions on
D-complex manifolds in the sense of F. R. Harvey and H. B. Lawson; finally, in Section 3.3, we consider domains
in R endowed with a smooth proper strictly p-convex exhaustion function, and, using L2-techniques, we give
another proof of a consequence of J.-P. Sha’s theorem [Sha86, Theorem 1], and of H. Wu’s theorem [Wu87,
Theorem 1], on the vanishing of the higher degree de Rham cohomology groups.
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CHAPTER 0

Preliminaries on (almost-)complex manifolds

In this preliminary chapter (which contains no original material), we summarize the basic notions and the classical
results concerning (almost-)complex and symplectic structures. In particular, we start by setting some definitions
and notation concerning (almost-)complex structures, §0.1, and symplectic structures, §0.2; then we recall the main
results in the Hodge theory for Kédhler manifolds, §0.3, and in the Kodaira, Spencer, Nirenberg, and Kuranishi
theory of deformations of complex structures, §0.4; furthermore, we summarize the basic definitions and some
useful facts about currents and de Rham homology, §0.5, and about solvmanifolds, §0.6, in order to set the
notation for the following chapters. (As a matter of notation, unless otherwise stated, by “manifold” we mean
“connected differentiable manifold”, and by “compact manifold” we mean “closed manifold”.)

0.1 Almost-complex structures and integrability

The tangent bundle of a complex manifold X is naturally endowed with an endomorphism J € End(T'X) such
that J? = —idrx, satisfying a further integrability property. It is hence natural to study differentiable manifolds
endowed with such an endomorphism, the so-called almost-complex manifolds. It turns out that the vanishing of
the Nijenhuis tensor Nij; characterizes the almost-complex structures J on X naturally induced by a structure of
complex manifold, [NN57, Theorem 1.1].

In this section, we recall the notions of almost-complex structure, complex manifold, and Dolbeault cohomology,
and some of their properties.

0.1.1 Almost-complex structures

Let X be a (differentiable) manifold endowed with an almost-complex structure J, namely, an endomorphism
J € End(TX) such that J? = —idrx.
Extending J by C-linearity to TX ® C, we get the decomposition

TX®C = T'X @1 X,

where TH0X (respectively, T X) is the sub-bundle of TX ® C given by the i-eigen-spaces (respectively, the
(—1)-eigen-spaces) of J € End (T'X ® C): that is, for every z € X,

(TY0X) = {ve —iJavs : vz €T X},  (TO'X) = {va+iJovy : vz €TX} .

Considering the dual of J, again denoted by J € End (T*X), we get analogously a decomposition at the level of
the cotangent bundle:

"X®C = (T"X) o (1"'X)",

where (T10X)" (respectively, (T%1X)") is the sub-bundle of 7*X ® C given by the i-eigen-spaces (respectively,
the (—1i)-eigen-spaces) of the C-linear extension J € End (T*X ® C). Extending the endomorphism J to the
bundle A® (T*X) ® C of complex-valued differential forms, we get, for every k € N, the bundle decomposition

N (T X)@C = @ A"P(THX) @A(TX)".
p+q=k
As a matter of notation, we will denote by C* (X; F') the space of smooth sections of a vector bundle F' over X,
and, for every k € N and p,q € N, we will denote by AFX :=C>® (X; NFE (T*X)) the space of smooth sections of
AE(T*X) over X and by AP9X :=: ANPIX = C> (X; AP (TLOXYk ® N1 (To’lX)*> the space of smooth sections
of /\p(TlvoX)* ® A(TO1X)" over X.



2 Preliminaries on (almost-)complex manifolds

Since d (/\OX QR (C) CAYYX &AL X and d (/\1X QR (C) CA20X @ ALLX @ AD2X | since every differential
form is locally a finite sum of decomposable differential forms, and by the Leibniz rule, the C-linear extension of
the exterior differential, d: A®* X ® C — A*T1X ® C, splits into four components:

d=A+0+0+A
where

A AT X 5 AT2IX 0 9 AT X s AT O AT X 5 ATTIX ) A AT X o AT

in terms of these components, the condition d® = 0 is written as
A2 =
A0+0A =
Ad+0*+0A =
AA+00+00+AA =
OA+D +AD =
Ad+9A =

A2 =

o O O o o o o

0.1.2 Complex structures, and Dolbeault cohomology

If X is a complex manifold, then there is a natural almost-complex structure on X: locally, in a holomorphic coor-
dinate chart (U, {z =i 2?71 4 x2a}a6{1,...7dimCX})’ with (U, {2t e, dich}) a (differential) coordinate
chart, one defines, for every « € {1,...,dim¢c X},

0 loc 0 0 loc 0
J(amml) T Hg2e J(axza) T a1

note that this local definition does not depend on the coordinate chart, by the Cauchy and Riemann equations.

Conversely, an almost-complex structure on a manifold X is called integrable if it is the natural almost-complex
structure induced by a structure of complex manifold on X. The following theorem by A. Newlander and L.
Nirenberg characterizes the integrable almost-complex structures on a manifold X in terms of the Nijenhuis tensor
Nij 7, defined as

Nij (-, =) = [ o]+ T[T ]+ T[T = [T T
Theorem 0.1 ([NN57, Theorem 1.1]). Let X be a manifold. An almost-complex structure J on X is integrable if
and only if Nij; = 0.

By a straightforward computation, the integrability of an almost-complex structure J turns out to be equivalent
to the vanishing of the components A and A of the exterior differential, equivalently, to (/\"'X , 0, 8) being a
double complex of C*° (X; C)-modules (see, e.g., [Wel08, §2.6], [Mor07, Proposition 8.2]).

Therefore, for a complex manifold X, one can consider, for every p € N, the differential complex (AP*X, )
and its cohomology, defining the Dolbeault cohomology, as the bi-graded C-vector space

ker O

imod

For every p,q € N, denote by A%? the (fine) sheaf of germs of (p, ¢)-forms on X. For every p € N, denote by
Q% the sheaf of germs of holomorphic p-forms on X, that is, the kernel sheaf of the map 9: A%° — A%'. By the
Dolbeault and Grothendieck Lemma, see, e.g., [Dem12, 1.3.29], one has that

0— QF — AR®
is a fine resolution of Q% ; hence, one gets the following result.
Theorem 0.2 (Dolbeault theorem, [Dol53]). Let X be a complex manifold. For every p, ¢ € N,

HE(X) = HY(X;07)
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This gives a sheaf-theoretic interpretation of the Dolbeault cohomology. On the other hand, also an analytic
interpretation can be provided.

Suppose X is a compact complex manifold of complex dimension n, and fix g a Hermitian metric on X and vol
the induced volume form on X (recall that every complex manifold is orientable, see, e.g., [GH94, pages 17-18]);
denote by w := g(J-, --) € ALLX N A%ZX the associated (1, 1)-form to g. Recall that g induces a Hermitian inner
product (-, --) on the space A**X of global differential forms on X, and that the Hodge-x-operator associated to
g is the C-linear map

>)<|_/\p,qX : ANPEX 5 AMTONTPX

defined requiring that, for every «, 8 € AP7X,
aAxf = (a, B) vol .

Define

0 = —x0x: A" X 5 ATLIX
the operator 91 A% X — A®*"1X is the adjoint of 9: A®®* X — A®*T1X with respect to (-, --). Define

O := {5, 5*} =00 +0 9: A" X = A%*X ;

[ being a 2°¢ order self-adjoint elliptic differential operator, (see, e.g., [Kod05, Theorem 3.16]), one gets the
following result.

Theorem 0.3 (Hodge theorem, [Hod89]). Let X be a compact complex manifold endowed with a Hermitian
metric. There is an orthogonal decomposition

o0 =L = o e—1 L= o 01
A**X = kerO® OAN**"" X & 0 AT X |

and hence an isomorphism

H

5 (X) ~ ker(.

In particular, dimg HX*(X) < +oo.

Note that, for any p,q € N, the Hodge-*-operator *: AP*¢ X — A"~9""PX sends a O-harmonic (p, q)-form
¥ (that is, ¥ € AP9X is such that T = 0) to a O-harmonic (n — ¢,n — p)-form x¢p, where O := [0, 0*] :=
00* + 0*0 € End (A**X) is the conjugate operator to [J, and hence, by conjugating, one gets a [J-harmonic
(n — p,n — q)-form *1). Hence, one gets the following result.

Theorem 0.4 (Serre duality, [Ser55, Théoréme 4]). Let X be a compact complex manifold of complex dimension
n, endowed with a Hermitian metric. For every p, q € N, the Hodge-x-operator induces an isomorphism

. 17b:q = n—p,n—q
«: HP'(X) = Hy (X).

Since a 0-closed form is not necessarily d-closed, Dolbeault cohomology classes do not define, in general, de
Rham cohomology classes, that is, in general, on a compact complex manifold, there is no natural map between
the Dolbeault cohomology and the de Rham cohomology (as we will see, in the special case of compact Kahler
manifolds, or more in general of compact complex manifolds satisfying the 99-Lemma, the de Rham cohomology
actually can be decomposed by means of the Dolbeault cohomology groups, [Wei58, Théoréme IV.3], [DGMS75,
Lemma 5.15, Remark 5.16, 5.21]). Nevertheless, the Frolicher inequality provides a relation between the dimension
of the Dolbeault cohomology and the dimension of the de Rham cohomology; it follows by considering the Hodge
and Frolicher spectral sequence, which we recall here.

The structure of double complex of (/\"'X , 0, 5) gives rise to two natural filtrations of A®*X ® C, namely, (for
p,q € N and for k € N))

PPN ) = @ X ad PN e C) = @) A
r+§:k r+§:k
r=2p s>q

these filtrations induce two spectral sequences (see, e.g., [McC01, §2.4], [GH94, §3.5]),

{(Er*,d,) = (E>°, /dr)}reN and, respectively, {("E>*, " dr)}reN ,
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called Hodge and Frolicher spectral sequences (or Hodge to de Rham spectral sequences): one has
'EPt ~ H*(X) = Hgp(X;C) and "EP* ~ H3*(X) = Hiz(X;C).

An explicit description of {(Ey, d;)},cy is given in [CFUGY97]: for any p, ¢ € N and r € N, its terms are

AP
pra ~ 20
P
where, for r =1, B 7
AP = {ae APIX : da =0}, P = gAPTL X

and, for r > 2,

xP4 = {aP? e APIX 1 9aP? =0 and, for any i € {1,...,r — 1}, there exists a?TH97" € APTHITIX

such that 9P Ti—1a=i1 L §apTia—i — 0} ,
yra = {oprThe 4+ 9pP 1 € APIX : for any i € {2,...,r — 1}, there exists g4 T e APTRATIT LY

such that §pP—Ha+i=l 4 Gap=itlati=2 — o anq ggr—r+latr=2 = o} |
see [CFUG97, Theorem 1], and, for any r > 1, the map d,: E®® — E*T™*~"+1 i35 given by

. s s +r—1,q—r+1 “+r,g—r+1
dp: {[aP] € BP9}, oy {[0aPtT e ] @ prinarily
see [CFUGY97, Theorem 3].

As a consequence of 'E7"® ~ Hg'(X ) = HJrp(X;C), one gets the following inequality by A. Frolicher.

Theorem 0.5 (Frolicher inequality, [Frob5, Theorem 2]). Let X be a compact complex manifold. Then, for every
keN,
; k . ; P:q
dime Hjp(X;C) < dell’nc H (X).
p+g=

As a matter of notation, for ¥ € N and p,q € N, we will denote by by := dimg H%,(X;R), respectively
h%q = dim¢ Hg’q(X), the k™ Betti number, respectively the (p,q)™ Hodge number of X.

In the next chapter, we will provide a Frolicher-type inequality also for the Bott-Chern cohomology, Theorem
1.22, showing that it allows to characterize the compact complex manifolds satisfying the 90-Lemma just in terms
of the dimensions of the Bott-Chern cohomology and of the de Rham cohomology, Theorem 1.25.

Remark 0.6. Other than the Dolbeault cohomology, other cohomologies can be defined for a complex manifold
X; more precisely, since, for every p,q € N,

(2.9)

/\pfl’qle %5 AP X 635 APTLax oy INERED'S and /\pflyq X APa—1x fg&) AP X (@ /\p+1’q+1X

are complexes, one can define the Bott-Chern cohomology H o (X) and the Aeppli cohomology Hy*(X) of X as

ker & N ker & ker 90
H?2 (X)) = ————— d HY* (X)) i= —————;
sc(X) im 90 o A (X0 imod +imad

we refer to §1.1 for further details.

0.2 Symplectic structures

In this section, we recall some definitions and results concerning symplectic manifolds, that is, differentiable
manifolds endowed with a non-degenerate d-closed 2-form. An interesting class of examples of symplectic manifolds
is provided by the Kéahler manifolds. Moreover, given a differentiable manifold X, its cotangent bundle 7* X is
endowed with a natural symplectic structure (see, e.g., [CdS01, §2]): in fact, Symplectic Geometry has applications
and motivations in the study of Hamiltonian Mechanics, see, e.g., [CdS01, Part VII].

Let X be a compact 2n-dimensional manifold endowed with a symplectic form, namely, a non-degenerate
d-closed 2-form w € A2X.

The main difference between Symplectic Geometry and Riemannian Geometry is provided by G. Darboux’s
theorem.
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Theorem 0.7 (Darboux theorem, [Dar82]). Let X be a 2n-dimensional manifold endowed with a symplectic form

w. Then, for every x € X, there exists a coordinate chart (U, {zf} with x € U, such that

j€{l,...,2n}) ’

n
l s .
w = E da¥ ' Adz¥ .

Jj=1

By exploiting the parallelism with Riemannian Geometry, one can try to develop a Hodge theory also for
compact symplectic manifolds, [Bry88]. The first tool that can be introduced is an analogue of the Hodge-x-
operator.

Note that every symplectic manifold is orientable, %,L giving a canonical orientation.

Denote by I: TX — T*X the natural isomorphism of vector bundles induced by w, namely, I(v)(-) := w(v,-) €
Hom (T, X;R), for every v € T, X and 2 € X. Then, for every k € N, the form w gives rise to a bi-C*(X;R)-linear

form on A*X denoted by (wil)k, which is skew-symmetric, respectively symmetric, according that k is odd,
respectively even, and defined on the simple elements a* A ... Aa®, BLA...ABF € AFX as
—1\k (1 k pl kY ._ —1 (.0
(w ) (a Ao AN, B AN..OAS ) = det (w (a ’Bm))é,me{l,...,k} ,

where w™! (ae,ﬁm) = w (I_1 (O/) St (ﬁm)) for every ¢,m € {1,...,k}. In a Darboux coordinate chart

(U, {xj }je{l 2n}>, the canonical Poisson bi-vector II := w—' € A2T'X associated to w is written as w=! %

n o o
> i1 e N e
The symplectic-x-operator

*o: A* X = ATTOX
introduced by J.-L. Brylinski, [Bry88, §2], is defined requiring that, for every k € N, and for every o, 8 € A*X,

wn

aAx,f = (w_l)k(a,ﬁ) -

As for (almost-)complex manifolds, on a symplectic manifold X one has a decomposition of differential forms in
symplectic-type components, the so-called Lefschetz decomposition; it is a consequence of a s[(2; R)-representation
on A%2X by means of operators related to the symplectic structure.

More precisely, define the operators L, A, H € End® (A*X) as

L: A®°X — A*T2X a—wAa,
A A X = A°T2X = —ino,
H: N*X - A°X oz»—)Z(n—k)ﬂ,\kon
k

(where t¢: A®*X — A®*72X denotes the interior product with £ € A% (T'X), and, for k € N, the map myrx: A*X —
AF X denotes the natural projection onto A*X). Note that, using the symplectic-x-operator x,,, one can write,
[Yan96, Lemma 1.5],

A= —x, L%, .

The following result holds.
Theorem 0.8 ([Yan96, Corollary 1.6]). Let X be a manifold endowed with a symplectic structure. Then
[L,H] = 2L, A, H] = —2A, [L,A] = H,

and hence
sl(2;R) ~ (L, A, H) — End® (A*X)

gives a sl(2; R)-representation on N*X.

(See, e.g., [Hum78, §7] for general results concerning sl(2; R)-representations.)
The above s[(2; R)-representation, having finite H-spectrum, induces a decomposition of the space of the
differential forms.
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Theorem 0.9 ([Yan96, Corollary 2.6]). Let X be a manifold endowed with a symplectic structure. Then one has
the Lefschetz decomposition on differential forms,

ANX = PLPATTX,
reN

where
PA*X := kerA

is the space of primitive forms.
Note (see, e.g., [Huy05, Proposition 1.2.30(v)]) that, for every k € N,
PAPX = ker L" R+ iy .
In general, see, e.g., [TY12b, pages 7-8], the Lefschetz decomposition of A®) € AFX reads as
AR 3 %Lr ple-2r)
r>max{k—n, 0}
where, for r > max {k — n, 0},
Bk=2r) .~ (Z Qr,g,(n k) %Lf ATH) AR e paRryx
LeN
and, for r > max {k —n, 0} and ¢ € N,

r 4

’ 2 1 1
vt ng) = (1) -(n—k+2 1)”- - - - € Q.
@b, (n.k) (=1)"-(n o+l il;[()n—k+27“—|—1—z jl;[()n—k+2r+l+3 ©
We recall that )
. n—k—2 n—k
LL@Z:iIAn,_k_QX. &P X 5 Anvhx
= k=—1

is injective, [Yan96, Corollary 2.8], and that, for every k € N,
LF: AmR X o AR
is an isomorphism, [Yan96, Corollary 2.7].

Since [L, d] = 0, for any k € N, the map LF: A" %X — A"+F X induces amap L*: Hjz*(X;R) — HF(X;R)
in cohomology. One says that X satisfies the Hard Lefschetz Condition, shortly HLC, if

for every k e N,  LF: HizF(X;R) S HIF(X;R) . (HLC)

By continuing in the parallelism between Riemannian Geometry and Symplectic Geometry, one can introduce
the d* operator with respect to a symplectic structure w as

A ey = (=1)F 1w, dx

for any k € N, and interpret it as the symplectic counterpart of the Riemannian d* operator with respect to a
Riemannian metric. In light of this, J.-L. Brylinski proposed in [Bry88] a Hodge theory for compact symplectic
manifolds, conjecturing that, on a compact manifold endowed with a symplectic structure w, every de Rham
cohomology class admits a (possibly non-unique) w-symplectically-harmonic representative, namely, a d-closed
d?-closed representative, [Bry88, Conjecture 2.2.7]. (Note that dd*+dtd =0, [Bry88, Theorem 1.3.1], [Kos85,
page 265], provides a strong difference in the parallelism between Symplectic Geometry and Riemannian geometry;
in particular, it follows that a w-symplectically-harmonic representative, whenever it exists, is not unique.)

For an almost-Kéhler structure (J, w, g) on a compact manifold X (that is, w € A%2X is a symplectic form on
X, J € End (T'X) is an almost-complex structure on X, and ¢ is a J-Hermitian metric on X such that w is the
associated (1, 1)-form to g), the symplectic-*-operator *,, and the Hodge-*-operator #, are related by

*, = J*g,
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and hence
b = —(d9)*

where d:= J~1 d J and (d°)* | \ex:= (—1)"" kg d %4 for every k € N (note that, when J is integrable, then
d°=—i (8 — 5)) Moreover, on a compact manifold X endowed with a Kéhler structure (J, w, g), by the Hodge
decomposition theorem, [Wei58, Théoréme IV.3], the pure-type components with respect to J of the harmonic
representatives of the de Rham cohomology classes are themselves harmonic. Hence, it follows that Brylinski’s
conjecture holds true for compact Kahler manifolds, [Bry88, Corollary 2.4.3].

O. Mathieu in [Mat95], and D. Yan in [Yan96], provided counterexamples to Brylinski’s conjecture, characteriz-
ing the compact symplectic manifolds satisfying Brylinski’s conjecture in terms of the validity of the Hard Lefschetz
Condition. Furthermore, S. A. Merkulov in [Mer98], see also [Cav05], and V. Guillemin in [Gui01], proved that the
Hard Lefschetz Condition on compact symplectic manifolds is equivalent to satisfying the d d*-Lemma, namely,
to every d-exact d*-closed form being d d*-exact. Summarizing, we recall the following result.

Theorem 0.10 ([Mat95, Corollary 2], [Yan96, Theorem 0.1], [Mer98, Proposition 1.4, [Gui01], [Cav05, Theorem
5.4]). Let X be a compact manifold endowed with a symplectic structure w. The following conditions are equivalent:

(i) every de Rham cohomology class admits a representative being both d-closed and d*-closed (i.e., Brylinski’s
conjecture [Bry88, Conjecture 2.2.7] holds true on X );

(ii) X satisfies the Hard Lefschetz Condition;
(iii) X satisfies the d d*-Lemma.

Note that, by the Lefschetz decomposition theorem, [Wei58, Théoréme IV.5] (see §0.3), compact Kahler
manifolds satisfy the Hard Lefschetz Condition.

Remark 0.11. The Complex Generalized Geometry, introduced by N. J. Hitchin in [Hit03] and developed,
among others, by M. Gualtieri, [Gua04, Guall], and G. R. Cavalcanti, [Cav05], see also [Hit10, Cav07], allows to
frame symplectic structures and complex structures in the same context (in a sense, this add more significance to
the term “symplectic”, which was invented by H. Weyl, [Wey97, §VI], substituting the Greek root in the term
“complex” with the corresponding Latin root). In such a framework, the d? operator associated to a symplectic
structure should be interpreted as the symplectic counterpart of the operator d° := —1i (8 — 5) associated to a
complex structure, [Cav05].

0.3 Kahler structures and cohomological decomposition

Note that, given a manifold X endowed with a symplectic form w, there is always a (possibly non-integrable)
almost-complex structure J on X such that g := w(:, J--) is a Hermitian metric on X with w as the associated
(1,1)-form, see, e.g., [CdS01, Corollary 12.7] (in fact, the set of such almost-complex structures is contractible,
see, e.g., [AL94, Corollary I1.1.1.7], [CdS01, Proposition 13.1]; see also [Gro85, Corollary 2.3.C}], which proves
that the space of almost-complex structures on X tamed by a given 2-form on X is contractible). Instead, the
datum of an integrable almost-complex structure with the above property yields a Kéahler structure on X. The
notion of Kéahler manifold has been studied for the first time by J. A. Schouten and D. van Dantzig [SvD30], see
also [Sch29], and by E. Kéahler [K&h33], and the terminology has been fixed by A. Weil [Wei58].

Kéhler structures can be defined in different ways, according to the point of view which is stressed, §0.3.1.
The presence of three different structures (complex, symplectic, and Riemannian) allows to make use of the
tools available for any of them; in addition, the relations between such structures make available further tools,
which yield many interesting results on Hodge theory, §0.3.2. Finally, we will study a cohomological property
of compact Kahler manifolds, namely, the 09-Lemma, §0.3.3: other than being a very useful tool in Kéhler
Geometry (compare, e.g., its role in S.-T. Yau’s proof [Yau77, Yau78] of E. Calabi’s conjecture [Cal57]), it provides
obstructions to the existence of Kéhler structures on differentiable manifolds, by means of the notion of formality
introduced by D. P. Sullivan, [Sul77, §12].

0.3.1 Kahler metrics

Let X be a compact complex manifold of complex dimension n, and denote by J its natural integrable almost-
complex structure.

A Kahler metric on X is a Hermitian metric g such that the associated (1, 1)-form w := g(J-, -) is d-closed
(that is, w is a symplectic form on X).
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Remark 0.12. Let X be a complex manifold endowed with a Ké&hler metric g, and denote the associated
(1,1)-form to g by w. By the Poincaré lemma, see, e.g., [Dem12, 1.1.22, Theorem 1.2.24], and the Dolbeault and
Grothendieck lemma, see, e.g., [Dem12, 1.3.29], the property that dw = 0 is equivalent to ask that, for every
x € X, there exist an open neighbourhood U in X with € U and a smooth function u € C*°(U;R) such that

w % i99u in U, that is, the metric has a local potential, [K&h33] (see, e.g., [Mor07, Proposition 8.8]).

Remark 0.13. For every n € N, the complex projective space CP" admits a Kahler metric, the so-called Fubini
and Study metric, [Fub04, Stu05], which is induced by the fibration S' — S27+! — CP"; more precisely, by using
the homogeneous coordinates [zg : --- : 2], one has that the associated (1, 1)-form wgg to the Fubini and Study

metric is
- “ 2
Wpg = %aalog <e50|z[| ) .

It follows that complex projective manifolds provide examples of Kéhler manifolds. Conversely, by the Kodaira
embedding theorem [Kod54, Theorem 4], if X is a compact complex manifold endowed with a Kahler metric w
such that [w] € H3,(X;R) Nim (H?(X;Z) — H3x(X;R)), then there exists a complex-analytic embedding of X
into a complex projective space CPY for some N € N. In a sense, this suggest that projective manifolds are to
Kéhler manifolds as Q is to R. Hence, it is natural to ask if every compact Kéhler manifold is a deformation
of a projective manifold (which is known as the Kodaira problem). Since Riemann surfaces are projective, this
is trivially true in complex dimension 1. Furthermore, K. Kodaira proved in [Kod63, Theorem 16.1] that every
compact Kéhler surface is a deformation of an algebraic surface, as conjectured by W. Hodge; another proof,
which does not make use of the classification of elliptic surfaces, has been given by N. Buchdahl, [Buc08, Theorem].
In higher dimension, a negative answer to the Kodaira problem has been given by C. Voisin, who constructed
examples of compact Kdhler manifolds, of any complex dimension greater than or equal to 4, which do not have
the homotopy type of a complex projective manifold, [Voi04, Theorem 2] (indeed, recall that, by Ehresmann’s
theorem, if two compact complex manifolds can be obtained by deformation, then they are homeomorphic, and
hence they have the same homotopy type). The examples in [Voi04] being, by construction, bimeromorphic to
manifolds that can be deformed to projective manifolds, one could ask (as done by N. Buchdahl, F. Campana,
S.-T. Yau) whether, in higher dimension, a birational version of the Kodaira problem may hold true; in [Voi06,
Theorem 3], C. Voisin provided a negative answer to the birational version of the Kodaira problem, proving that,
in any even complex dimension greater that or equal to 10, there exist compact Kéhler manifolds X such that,
for any compact Kahler manifold X’ bimeromorphic to X, X’ does not have the homotopy type of a projective
complex manifold.

In the definition of a Kéhler manifold, three different structures are involved: a complex structure, a symplectic
structure, and a metric structure. Therefore, changing the point of view allows to give several equivalent definitions
of Kéhler structure (see, e.g., [Bal06, Theorem 4.17]): we review here two of these characterizations.

Firstly, it is straightforward to prove that a Hermitian metric g on a compact complex manifold X is a Kéhler
metric if and only if, for every point € X, there exists a holomorphic coordinate chart (U, {zj }j e, n}), with

x € U, such that

n

9= > (fap+o(z))d"edz’ at @,
a,B=1

that is, g osculates to order 2 the standard Hermitian metric of C" (see, e.g., [GH94, pages 107-108], [Huy05,
Proposition 1.3.12], [Mor07, Theorem 11.6]).
As regards the second characterization, we recall that, on a compact complex manifold X endowed with a
Hermitian metric g, there is a unique connection V¢ such that
(i) V€9 =0,
(i5) VCJ =0, and
(iii) mroa x V[ eoe(x,0)= Ol e (x:0);

such a connection is called the Chern connection of X (see, e.g., [Huy05, Proposition 4.2.14], [Bal06, Theorem 3.18],
[Mor07, Theorem 10.3]). Let g be a Hermitian metric on a compact complex manifold X, and set w := g(J+, -)
its associated (1,1)-form, where J is the natural integrable almost-complex structure on X; consider the Levi
Civita connection V#. One can prove that, for every z,y,z € C* (X;TX),

dw(z,y,2) = g ((VﬁCJ) Y, z) +g ((VﬁCJ) z, z) +g ((VﬁcJ) T, y) ,
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and
29 ((VfCJ) v, z) = dw(z, vy, 2) —dw (z,Jy, Jz) — g (Nij; (y, J2), x) ;

(see, e.g., [Bal06, Theorem 4.16], [Tia00, Proposition 1.5]); in particular, it follows that g is a Kéhler metric if and
only if VE€J = 0 if and only if the Chern connection is the Levi Civita connection (see, e.g., [Bal06, Theorem
4.17], [Mor07, Proposition 11.8]).

0.3.2 Hodge theory for Kahler manifolds

The complex, symplectic, and metric structures being related on a Kéhler manifold, one gets the following
identities concerning the corresponding operators (see, e.g., [Huy05, Proposition 3.1.12]); see also [Hod35, Hod89].
(In [Dem86, Theorem 1.1, Theorem 2.12], commutation relations on arbitrary Hermitian manifolds are provided;
see also [Gri66], [Dem12, §VI.6.2].)

Theorem 0.14 (Kéhler identities, [Wei58, Théoréme II.1, Théoréme II.2, Corollaire IL.1]). Let X be a compact
Kihler manifold. Consider the differential operators @ and O associated to the complex structure, the symplectic
operators L and A associated to the symplectic structure, and the Hodge-x-operator associated to the Hermitian
metric. Then, these operators are related as follows:

(i) [0, L] = [0, L] = 0 and [A, 5*} —[A, 0] = 0;
(i) [5*, L} =10 and [0*, L] = —i0, and [A, 9] = —1 0" and [A, 8] =i 9.

Therefore, considering the 2% order self-adjoint elliptic differential operators O := [0, 0*], O :=
A :=[d, d*], one gets that

—

0, 5*} , and

(iii) O=0= %A, and A commutes with , 8, 9, 9*, 9", L, A.

The previous identities can be proven either using the sl (2; C) representation (L, A, H) — End® (A*X ® C),
or reducing to prove the corresponding identities on C™ with the standard Kéhler structure (which are known as
Y. Akizuki and S. Nakano’s identities, [AN54, §3]) and hence using that every Kéahler metric osculates to order 2
the standard Hermitian metric on C”.

As a consequence, one gets the following theorems, stating a decomposition of the de Rham cohomology of a
Kéhler manifold related to the complex, respectively symplectic, structure (see, e.g., [Huy05, Corollary 3.2.12],
respectively [Huy05, Proposition 3.2.13)).

Theorem 0.15 (Hodge decomposition theorem, [Wei58, Théoréme IV.3]). Let X be a compact complex manifold
endowed with a Kdhler structure. Then there exist a decomposition

H3(X;C) ~ € HZYX),
ptqg=e

and, for every p,q € N, an isomorphism

p,q ~ q,p
HE(X) ~ HEP(X).

Theorem 0.16 (Lefschetz decomposition theorem, [Weib8, Théoréme IV.5]). Let X be a compact complex
manifold, of complex dimension n, endowed with a Kdhler structure. Then there exist a decomposition

Hip(X;C) = L7 (ker (A: Hip™ (X;0) — Hip™ 2(X;0)))
reN

and, for every k € N, an isomorphism

LF: Hi " (X;C) = Hig%(X;C) .

0.3.3 00-Lemma and formality for compact Kihler manifolds

The Hodge decomposition theorem and the Lefschetz decomposition theorem provide obstructions to the existence
of Kéhler structures on a compact complex manifold. In this section, we study another property of compact
Kaéhler manifolds, namely, formality, which provides an obstruction to the existence of a Kéahler structure on a
compact (differentiable) manifold. Such a property turns out to be a consequence of the validity of the d9-Lemma
on compact complex manifolds.
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Firstly, we need to recall some general notions regarding homotopy theory of differential algebras; we will then
summarize some results concerning the homotopy type of Kédhler manifolds: by the classical result by P. Deligne,
Ph. A. Griffiths, J. Morgan, and D. P. Sullivan, [DGMS75, Main Theorem]|, the real homotopy type of a Kahler
manifold X is a formal consequence of its cohomology ring H3,(X;R).

We recall that a differential graded algebra (shortly, dga) over a field K is a graded K-algebra A® (where the
structure of K-algebra is induced by an inclusion K C A°) being graded-commutative (that is, for every z € Adeg®
and y € A%8Y it holds z - y = (—1)8 %8 4. 2) and endowed with a differential d: A® — A**1 satisfying the
graded-Leibniz rule (that is, for every z € A%8% and y € A%8Y it holds d (z-y) =dz -y + (—1)*% z-dy). A
morphism of differential graded algebras F: (A®, dae) — (B®, dge) is a morphism A®* — B*® of K-algebras such
that ' odge = dpge oF.

Given a dga (A®, d) over K, the cohomology H* (A®, d) := ¥4 endowed with the zero differential has a natural

structure of dga over K; furthermore, every morphism F': (/ian,dd A+) — (B*®, dps) of dgas induces a morphism
F*: (H*(A® dae),0) — (H*(B*, dp.), 0) of dgas in cohomology; a morphism F': (A®*, dss) — (B®, dpe)
of dgas is called a quasi-isomorphism (shortly, ¢is) if the corresponding morphism F*: (H® (A®, d4.), 0) —
(H® (B*, dge), 0) is an isomorphism.

The de Rham complex (A*X, d) of a compact (differentiable) manifold X has a structure of dga over R, whose
cohomology is the dga (HJ,(X;R), 0).

Given a dga (A®, de) over K| the differential d 4« is called decomposable if

dye (A C | P 4| | P 4

keN\{o} keN\{0}
Given a dga (A®, dae) over K, an elementary extension of (A®, dae) is a dga (B®, dps) over K such that

(i) B* = A®* @k A*V} for Vi, a finite-dimensional K-vector space and k > 0, where A®*Vj is the free graded
K-algebra generated by Vi, the elements of Vi having degree k, and

(’LZ) dBo I_A': dAo and dBo (Vk) - A°.
A dga (M*, dpse) over K is called minimal if it can be written as an increasing union of sub-dga,
(K, 0) = (Mg, dug) C (M?,dug) C (M3, dmg) C -, (M, dye) = | (Mj.a dM;) ;
jEN
such that

(i) for any j € N, the dga (Mj'_H, dM].‘H) is an elementary extension of the dga (Mj', de-), and

(ii) dpse is decomposable.
A minimal model for a dga (A°®, dae) over K is the datum of a minimal dga (M?®, dpse) over K and a
quasi-isomorphism p: (M®, dpe) 55 (A®, dae) of dgas.
Two dgas (A®, das) and (B®, dps) over K are equivalent if there exist an integer n € N\ {0}, a family
{(C;7 dc9)} P of dgas over K with (Cg, dCJ) = (A°®, dae) and (C3,,, des ) = (B®, dp.), and a family
7/ 7 je{0,...2n 2n

(e, ) % (05003 ). (€ des, ) (Chon s )

of quasi-isomorphisms. A dga (A®, d4.) over K is called formal if it is equivalent to a dga (B®, 0) over K with
zero differential, that is, if it is equivalent to (H® (A®, dae), 0).
A compact manifold X is called formal if its de Rham complex (A®X, d) is a formal dga over R.

Let (A®, dss) be a dga over K. Given

je{0,....n—1}

[o1o] € HI®12 (A dye) [orps] € HI®23 (A d.) , and [or34] € HI®34 (A dy0)

such that
[a12] - [ags] = 0 and [aas] - [osa] = 0,

let a5 € Adesenztdegans—1 o o, € Adegaestdegasa—l Ko guch that

(71)dega12 (71)dega23

a2 -3 = dae 13 and O3 - 34 = dae g ;
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one can then define the triple Massey product ([a12], [ces], [asa]) as

(loua], (o], [aaa]) = [(—1)dega12 Q12 - orzg + (—1)7B 0‘13'a34]

Hdega12+deg ag3+deg aszs—1 (1407 dA')
Hdeg aiz (Ao7 dA') . Hdegazs+degaza—1 (Ao’ dA') + Hdeg aza (Ao7 dA') . Hdegaia+degans—1 (A', dA') .

S

One can define the higher order Massey product by induction. Fixed m € N such that m > 4, and given
[Oqg] S I{nga12 (A., dA-) R e, [Ozm7m+1] S Hng Fm,m+1 (A., dA')

such that all the Massey products of order lower than or equal to m — 1 vanish, let {O‘rs}1<r<s<m+1 C A® be
such that
S (=D)*E gy ag, = dap
h<t<k

for any h,k € {1,...,m + 1} with k — h < m. Then define the m* order Massey product as

(fona] s - amme]) = | D (=D E gy g
1<l<m+1

belonging to a quotient of H® (A°®, ds).
As a direct consequence of the definitions, the Massey products (of any order) on a formal dga are zero.

Now, let X be a compact manifold endowed with a Kéhler structure.
The Kéhler identities allow to prove the following result, known as 9-Lemma (see, e.g., [Huy05, Corollary
3.2.10]), which, in a sense, summarizes many of the cohomological properties of compact Kéahler manifolds.

Theorem 0.17 (99-Lemma for compact Kéhler manifolds, [DGMST75, Lemma 5.11]). Let X be a compact Kihler
manifold. Then every 0-closed, 0-closed, d-ezxact form is also 00-exact.

Using the differential operator d®:=J~1d J = —i (8 — 5) (where J is the integrable almost-complex structure
naturally associated to the structure of complex manifold on X ), and noting that ker d N ker & = ker d Nker d°
and im 90 = im d d°, the following equivalent formulation can be provided.

Theorem 0.18 (dd“Lemma for compact Kéhler manifolds, [DGMS75, Lemma 5.11]). Let X be a compact
Kihler manifold. Then every d-closed, d°-closed, d-exact form is also d d°-exact.

Actually, the 90-Lemma holds true for a larger class of compact complex manifolds than the compact Kihler
manifolds: indeed, it holds, for examples, for any compact complex manifold that can be blown up to a Kéahler
manifold, [DGMS75, Theorem 5.22], e.g., for compact complex manifolds in class C of Fujiki, or for MoiSezon
manifolds; we refer to §1.1.3 for further results concerning the 99-Lemma for compact complex manifolds.

If X is a compact Kihler manifold (or, more in general, any compact complex manifold for which the 9-Lemma,
equivalently the d d°-Lemma, holds), then one has the following quasi-isomorphisms of dgas:

(kerd®, d|kerdc)

(/\.X7 d) (kerdC O) :

imde¢’

in particular, the dga (A®X, d) is equivalent to a dga with zero differential, and hence it is formal. This proves
the following result by P. Deligne, Ph. A. Griffiths, J. Morgan, and D. P. Sullivan.

Theorem 0.19 ([DGMS75, Main Theorem|). Let X be a compact complex manifold for which the d0-Lemma
holds (e.g., a compact Kihler manifold, or a manifold in class C of Fujiki). Then the differentiable manifold
underlying X is formal (that is, the differential graded algebra (A*X, d) is formal).

In particular, all Massey products (of any order) on a compact complex manifold satisfying the 99-Lemma
are zero, [DGMST75, Corollary 1]. This provide an obstruction to the existence of Ké&hler structures on compact
differentiable manifolds.
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0.4 Deformations of complex structures

A natural way to construct new complex structures on a manifold is by “deforming” a given complex structure.
Natural questions arise naturally from this construction, concerning, for example, what properties (e.g., the
existence of some special metric) remain still valid after such a small deformation.

We recall in this section the basic notions and the classical results concerning the K. Kodaira, D. C. Spencer,
L. Nirenberg, and M. Kuranishi theory of deformations of complex manifolds, [KS58, KS60, KNS58, Kur62],
referring to [Huy05], see also, e.g., [Kod05, MKO6].

Let B be a complex (respectively, differentiable) manifold. A family {X;}, 5 of compact complex manifolds
is said to be a complez-analytic (respectively, differentiable) family of compact complex manifolds if there exist
a complex (respectively, differentiable) manifold X and a surjective holomorphic (respectively, smooth) map
7: X — B such that (i) 7=1(t) = X, for any t € B, and (%) 7 is a proper holomorphic (respectively, smooth)
submersion. A compact complex manifold X is said to be a deformation of a compact complex manifold Y if
there exist a complex-analytic family {X;}, 5 of compact complex manifolds, and by, b1 € B such that X;, = X,
and Xb1 = Xt.

A complex-analytic (respectively, differentiable) family X = B of compact complex manifolds is said to be
trivial if X is bi-holomorphic (respectively, diffecomorphic) to B x X}, % B for some b € B (where 73: Bx X, — B
denotes the natural projection onto B); it is said to be locally trivial if, for any b € B, there exists an open

Tle-1(0)

neighbourhood U of b in B such that 7=1(U) "= U is trivial. The following theorem by C. Ehresmann
states the local triviality of a differentiable family of compact complex manifolds (see, e.g., [Kod05, Theorem 2.3,
Theorem 2.5], [MKO06, Theorem 1.4.1]).

Theorem 0.20 (Ehresmann theorem, [Ehrd7]). Let {X;},.p be a differentiable family of compact complex
manifolds. For any s, t € B, the manifolds X5 and X; are diffeomorphic.

As a consequence of Ehresmann’s theorem, a complex-analytic family {X;},. of compact complex manifolds
with B contractible can be viewed as a family of complex structures on a compact differentiable manifold.

We recall some other useful definitions, see, e.g., [Huy05, §6.2]. Let 7: X — B be a complex-analytic family
of compact complex manifolds, deformations of X := 771(0). We recall that, given f: (B, 0') — (B, 0) a
morphism of germs with a distinguished point, the pull-back f*X := X xpg B’ gives a complex-analytic family
of deformations of X. The complex-analytic family 7: X — B of deformations of X is called complete if, for
any complex-analytic family 7’: X’ — B’ of deformations of X, there exists a morphism f: B’ — B of germs
with a distinguished point such that X’ = f*X. The complex-analytic family 7: X — B of deformations of X
is called universal if, for any complex-analytic family 7’: X’ — B’ of deformations of X, there exists a unique
morphism f: B’ — B of germs with a distinguished point such that X’ = f*X. The complex-analytic family
m: X — B of deformations of X is called versal if, for any complex-analytic family 7’: X’ — B’ of deformations
of X, there exists a morphism f: B’ — B of germs with a distinguished point such that X’ = f*X" and such that
df: Ty B' — TyS is uniquely determined.

The theory of complex-analytic deformations of compact complex manifolds has been introduced by K. Kodaira
and D. C. Spencer, [KS58, KS60], and developed also by L. Nirenberg, [KNS58], and M. Kuranishi, [Kur62, Kur65],
see also [Kod05, MKO06]. In recalling the main results of this theory, we follow the approach in [Huy05], based on
the construction of a differential graded Lie algebra structure on C*> (X s THOX @ A0 X ), see also [Man04].

Let X be a compact manifold endowed with an integrable almost-complex structure J. Every section

seC® (X ;T }’OX ® /\?,’IX ) near to the zero section determines an almost-complex structure J’, defined in such

a way that /\},’,OX is the graph of —s: /\‘1,’0 X - /\OJ’IX; it turns out that J’ is integrable if and only if the Maurer
and Cartan equation

-1
Os + 3 [s,s] =0 (MC)
holds (see, e.g., [Huy05, Lemma 6.1.2]), where
o [0 (X TOX @ AYPX) x 0 (X5 TPOX @ AG1X) ¢ (X5 750X @ AGPTIX) s defined as
X®a,Y®pB] = X0 (BALya)+Y @ (anlxf)+[X, Y@ (aAp) ,

where Ly := tw dp + d (twe) is the Lie derivative of ¢ along W; locally, in a chart with holomorphic
coordinates {zj }j, one has

_ _ _ _ 1 _ _ _ _
(wedz A AdZP W @dE™ A AdE™A] E [w, w ] @d 2 A AdE ADE™ A Ad
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- 3:0% (X3 10X @ AGPX ) 5 € (X3 170X @ AYPTX) is defined as

3o (2.W) = [Z.¢ (W)™~ [W, ¢(2)]" o (2. W) .

where X1:0 := X —i J X is the (1,0)-component of X; locally, in a chart with holomorphic coordinates

{zj}j, one has
a5 0 loc 0 -5
0 <Z ® a) = w ® Ja .

Hence, to study complex-analytic families of infinitesimal deformations of a compact complex manifold X, it
suffices to study complex-analytic families {s(t)};ca(0o)cem S C (X5 THOX @ A%1X) (where € > 0 is small
enough) with s(0) = 0. Consider the power series expansion in t of s(t),

s(t) = ) sk(t),

keN

where s;(t) € C> (X; T°X ® A"!X) is homogeneous of degree k in t, and so(t) = 0. Then the Maurer and
Cartan equation (MC) can be rewritten, for every t € A(0,¢), as the system

{ gsl(t) = 0

dsi(t) = = Di<j<ho1 [5i(t), sp—;(t)]  for k=>2

in particular, s;(t) defines a class in H%! (X; ©x), where © x denotes the sheaf of the germs of holomorphic vector
fields on X; up to the action of Diff (X), one has that s;(t) is uniquely determined by its class in H%! (X; Oy)

(see, e.g., [Huy05, Lemma 6.14]).
Fix now a Hermitian metric g on X. Consider the decomposition

THX @ AMX = (TX @kerOlay) @ (THX @00 X) @ (T0X 00 A" X)
and the corresponding projections
Hz: TYX @ A" X - TYX @kerO|ponx, Py THOXRAYX 5 TYOX @A X .

In order that s(t) satisfies (MC), for every t € A(0, ), one should have

Bon(t) = ~Py | S Isi(t), sy (8)]

1<j<k—1

Hence, one gets
Os(t) + [s(t), s(t)] = Hp([s(t), s(t)]) .
Therefore, define the map
obs: H*' (X; ©x) — H*? (X; Ox)
as follows. Let {Xj ®d)k}je{17m7n} be a basis of H*! (X; Ox). Given p :=: Y je{l,m} ti X; ® @*, denote
ke{l,....,m} ke{l,...,m}
t = (tfc) je{1,...ny » and define s1(t) := p and s;(t) such that Osi(t) == —P5 (Z1§jgk71 [s;(t), sk,j(t)]) for

ke{l,....m}
k > 2; hence, define the formal power series s(t) := ), . sx(t). Define

obs () = Hg ([s(t), s(t)]) -

Hence, one has then that {s(t)}ycn( oycom € C™ (X; T}’OX ® /\3’1X> (where € > 0 is small enough) defines

an infinitesimal family of compact complex manifolds if obs (s1 (t)) = 0 for every t € A(0,¢) (indeed, for € > 0
small enough, the formal power series converges, see, e.g., [Kod05, §5.3], [MKO06, §2.3]).
One gets the following result by M. Kuranishi.

Theorem 0.21 ([Kur62, Theorem 2]). Let X be a compact complex manifold. Then X admits a versal complex-
analytic family of deformations.



14 Preliminaries on (almost-)complex manifolds

Fixed a Hermitian metric on X, such a family of deformations, which is called the Kuranishi space Kur(X) of
X, is parametrized by

Kur(X) = {p € H"' (X; Ox) : |u|| <1, obs(u) =0} .

Remark 0.22. A compact complex manifold X is called non-obstructed if Kur(X) is non-singular. In particular,
if H%2 (X; ©x) = {0}, then X is non-obstructed. There are other interesting cases in which the Kuranishi space
turns out to be non-singular: as announced by F. A. Bogomolov, [Bog78|, and proven by G. Tian, [Tia87], and,
independently, by A. N. Todorov, [Tod89, Theorem 1], this happens for Calabi- Yau manifolds (that is, compact
complex manifolds X of complex dimension n endowed with a Kéhler structure (J, w, ¢g) and with a nowhere

vanishing € € A™?X such that (i) VE¢e = 0,where V¢ denotes the Levi Civita connection associated to g, and
n(n+1)

(it)ene=(—-1)" 2 " “;L—, ). In [dBT12], P. de Bartolomeis and A. Tomassini introduced the notion of quantum
inner state manifold, [dBT12, Definition 2.2], as a possible generalization of Calabi-Yau manifolds, proving that,
under a suitable hypothesis, the moduli space of quantum inner state deformations of a compact Calabi-Yau
manifold is totally unobstructed, [dBT12, Theorem 3.6]. On the other hand, in [Roll1b], S. Rollenske studied the
Kuranishi space of holomorphically parallelizable nilmanifolds, proving that it is cut out by polynomial equations
of degree at most equal to the step of nilpotency of the nilmanifold, [Rolllb, Theorem 4.5], and it is smooth if
and only if the associated Lie algebra is a free 2-step nilpotent Lie algebra, [Rol11lb, Corollary 4.9].

It could be interesting to study what properties are, in a sense, compatible with the construction of small
deformations of the complex structure. In such a context, a property P concerning compact complex manifolds is
called open under (holomorphic) deformations of the complex structure (or stable under small deformations of the
complex structure) if, for every complex-analytic family {X;}, 5 of compact complex manifolds, and for every
by € B, if Xj, has the property P, then X, has the property P for every b in an open neighbourhood of by; it is called
closed under (holomorphic) deformations of the complex structure if, for every complex-analytic family {X;},.p5
of compact complex manifolds, and for every converging sequence {b} .y C B with bo := limy_, 1 oo by € B, if
Xp, has the property P for every k € N, then X;__ has the property P.

We recall here the following classical result by K. Kodaira and D. C. Spencer, stating that admitting a Kéhler
metric is a stable property under deformations of the complex structure.

Theorem 0.23 ([KS60, Theorem 15]). Let {X:},. 5 be a differentiable family of compact complex manifolds. If
X admits a Kdhler metric for some t € B, then X, admits a Kdhler metric for every s in an open neighbourhood
of t in B. Moreover, given any Kdhler metric w on Xy, one can choose an open neighbourhood U of t in B and a
Kahler metric ws on X for any s € U such that ws depends differentiably in s and wy = w.

Remark 0.24. In [Hir62], it is proven that admitting a Kéhler structure is not a closed property under
deformations of the complex structure: in fact, H. Hironaka provided an explicit example of a complex-analytic
family of compact complex manifolds of complex dimension 3 such that (i) one of the complex manifold is
non-Kéhler (indeed, it carries a positive 1-cycle algebraically equivalent to zero), and (i) the others are Kahler
and, in fact, bi-regularly embedded in a projective space (and hence projective, [M0166, Theorem 11]), [Hir62,
Theorem]. (Note that, in complex dimension 2, the Kéahler property is also closed under small deformations of
the complex structure, since a compact complex surface is Kéhler if and only if its 15¢ Betti number is even, by
[Kod64, Miy74, Siu83], or [Lam99, Corollaire 5.7], or [Buc99, Theorem 11].) It is not known whether the limit of
compact Kéhler manifolds admits some special structure; J.-P. Demailly and M. Paun conjectured that, given
a complex-analytic family {X;}, ¢ of compact complex manifolds such that one of the fibers, Xy, is endowed
with a Kéhler structure, then there exists a countable union S’ C S of analytic subsets in the base such that X;
admits a Kéhler structure for ¢t € S\ S, [DP04, Conjecture 5.1]; they also guessed that a “natural expectation”
is that the remaining fibres, X; for t € S’ are in class C of Fujiki, [DP04, page 1272]. In [Pop09, Pop10], D.
Popovici studied limits of projective, respectively Moisezon manifolds under holomorphic deformations of complex
structures, stating, in particular, (by means of a class of Hermitian metrics called strongly-Gauduchon metrics,)
that the limit of MoiSezon manifolds is still MoiSezon. C. LeBrun and Y. S. Poon [LP92], and F. Campana
[Cam91] showed that being in class C of Fujiki is not a stable property under small deformations of the complex
structures, [LP92, Theorem 1], [Cam91, Corollary 3.13], studying twistor spaces. It is conjectured that being in
class C of Fujiki is a closed property under deformations of the complex structure, see, e.g., [Popl1, Standard
Conjecture 1.17].

We refer to [Popl1] for a review on the behaviour under holomorphic deformations of properties concerning,
e.g., the existence of various types of Hermitian metrics on compact complex manifolds. See also Corollary 1.28,
Theorem 2.48 for some results concerning stability or instability of special properties of complex manifolds, and
Theorem 2.47, Theorem 3.50 for other instability results for almost-complex or D-complex manifolds.
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0.5 Currents and de Rham homology

In this section, we recall the basic notions and results concerning currents on (differentiable) manifolds and de
Rham homology: they turn out to be a useful tool to study the geometry of complex manifolds (as an example,
we recall F. R. Harvey and H. B. Lawson’s intrinsic characterization of Kédhler manifolds by means of currents,
[HL83, Proposition 12, Theorem 14], or M. L. Michelsohn’s intrinsic characterization of balanced manifolds by
means of currents [Mic82, Theorem 4.7], see also Theorem 2.73, or J. P. Demailly and M. Paun’s characterization
of compact complex manifolds in class C of Fujiki by means of Ké&hler currents [DP04, Theorem 3.4]). We refer,
e.g., to [dR84, Chapter 3], [Dem12, §1.2], and [Fed69] (see also [Ale98, Alel0]) for further details.

Let X be a m-dimensional oriented differentiable manifold.
For every compact set L C X and for every s € N, define the semi-norm pj on A®*X as follows: chosen

(U, {wj }je{l """" m}) a coordinate chart with U D L, and given

1 . .
@ = Z prda A Ada™ e N°X
{i,eenyit {10}
1 <---<tg
set ot
a1t tom
Pr
p1(p) = sup sup sup —| € R.
L (i in}C{Lm) (arram)en™ | (Oz1)™ - (0x™m)®
i <o <lig a1t tam<s

Consider A®*X endowed with the topology induced by the family of semi-norms p7, varying L among the compact
sets in X, and s € N: the manifold X being second-countable, A®*X has a structure of a Fréchet space. Let A2 X
be the topological subspace of A®X consisting of differential forms with compact support in X.

For any k € N; the space of currents of dimension k (or degree m — k), denoted by
DX = D" FX |

is defined as the topological dual space of AFX; the space D X is endowed with the weak-* topology.
Two basic examples of currents are the following.

o If Z is a (possibly non-closed) k-dimensional oriented compact submanifold of X, then

(2] = /Z € DpX

is a current of dimension k.
o If p € AFX, then
T, = / pN- € D'X
X

is a current of degree k.

The exterior differential d: A® X — A*T1X induces a differential on De X by duality:
d: DeX — De_1 X

is defined, for every T' € D*X, as
AT = (-7 .

In particular, if Z is a k-dimensional oriented closed submanifold of X, then d [Z] = (—1)™ **![b Z], where b
is the boundary operator; if ¢ € A*X, then dT, = Tqe.

By definition, the de Rham homology H3(X;R) of X is the homology of the differential complex (Do X, d).
By means of a regularization process, [dR84, Theorem 12], (see also [Dem12, §2.D.3, §2.D.4],) one can prove,
[dR84, Theorem 14], that

HSp(X;R) ~ HIE (X:R).

2n—e
Since, for every k € N, the sheaf A% is a sheaf of C3¢-module over a paracompact space (where C3¥ denotes
the sheaf of germs of smooth functions over X), and by the Poincaré lemma for forms, see, e.g., [Dem12, 1.1.22],

one has that
0— RX — ( 3(7 d)
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is a fine (and hence acyclic, see, e.g., [Dem12, Corollary IV.4.19]) resolution of the constant sheaf Ry, and hence

e (X:Ry) ker (d: /\'X—>/\°+1X)
XL im(d: AL X = ACX)

= H(;R (XaR) )

see, e.g., [Dem12, IV.6.4].

Analogously, the regularization process [dR84, Theorem 12] allows to prove the analogue of the Poincaré
lemma for currents, see, e.g., [Dem12, Theorem 1.2.24], and hence, the sheaf D% being fine for every k € N since
it is a sheaf of C§-module over a paracompact space, one has that

0_>KX _>(D;(a d)

is a fine (and hence acyclic, see, e.g., [Dem12, Corollary IV.4.19]) resolution of the constant sheaf Ry over X, and
hence
. ker (d: DX — D'*lX)
H®* (X;Ry) ~

= H{ ,(X;R
im (d: D*~1X — D*X) e (XR)
see, e.g., [Deml12, IV.6.4].

If X is compact, then it follows that the map 7.: A®* X — D*X is injective and a quasi-isomorphism of
differential complexes: indeed, fixed a Riemannian metric g on X, if « is a A-harmonic form (i.e., a d-closed
d*-closed form), then T, (xa) = ||a||*.

Suppose now that X is a 2n-dimensional manifold endowed with an almost-complex structure J € End(TX).
Considering the induced endomorphisms J € End (A*X) and J € End (A?X), one can define J € End (D*X) by
duality. In the same way as J € End (A®*X) defines a bi-graduation on A*X ® C, one has that J € End (D*X)
defines the splitting

DX®C = P DpoX;
p,qEN

note that Dy, ;X :=: D" P"~9X is the topological dual of A”?7X N (A2X ®g C), for every p,q € N.

0.6 Solvmanifolds

Nilmanifolds and solvmanifolds provide an important class of examples in non-Kéhler geometry. Indeed, on the
one hand, in studying their properties, one often can reduce to study left-invariant objects on them, which is the
same to study linear objects on the corresponding Lie algebra (this allows, for example, to reduce the study of the
de Rham cohomology of a nilmanifold to the study of the cohomology of a complex of finite-dimensional vector
spaces, [Nom54, Theorem 1]); on the other hand, they do not admit too strong structures, e.g., they do not admit
any Kéhler structure.

In this section, we recall the main definitions and results concerning the theory of nilmanifolds and solvmanifolds,
setting also the notation for the following chapters.

A nilmanifold, respectively solvmanifold, X = T'\ G is a compact quotient of a connected simply-connected
nilpotent, respectively solvable, Lie group G by a co-compact discrete subgroup I'. A solvmanifold X = T'\ G is
called completely-solvable if, for any g € G, all the eigenvalues of Adg € End(g) are real, equivalently, if, for any
X € g, all the eigenvalues of adX € End(g) are real.

Given a 2n-dimensional solvmanifold X = T'\ G, consider (g, [,-"]) the Lie algebra naturally associated to
the Lie group G; given a basis {e1,...,ea,} of g, the Lie algebra structure of g is characterized by the structure
constants {cf,, C R: namely, for any k € {1,...,2n},

dg et =: g cpL et ne™

Lm

}Z,m,ke{l,...,Zn}

where {e!,...,e*"} is the dual basis of g* of {e1,...,e2,} and dg: g* — A?g* is defined by

g° 3 a—dga(, ) =—a(, ]) € N2g

To shorten the notation, as in [Sal01], we will refer to a given solvmanifold X = T'\ G writing the structure
equations of its Lie algebra: for example, writing

X = (0% 12, 13) , (or g := (0% 12, 13) ,)
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we mean that X = I'\ G and there exists a basis of the Lie algebra g naturally associated to G, let us say

{e1, ..., e}, whose dual will be denoted by {el, e 66}, such that the structure equations with respect to such
basis are

de! = de? = de? = de* =0

de® = el ne? = el? ,

deb = el ne? = el3

where we also shorten e := e A eB.

The following theorem by A. I. Mal’tsev characterizes the nilpotent Lie algebras g for which the naturally
associated connected simply-connected Lie group admits a co-compact discrete subgroup, and hence such that
there exists a nilmanifold with g as Lie algebra.

Theorem 0.25 ([Mal49, Theorem 7]). In order that a simply-connected connected nilpotent Lie group contain a
discrete co-compact Lie group it is necessary and sufficient that the Lie algebra of this group have rational constant
structures with respect to an appropriate basis.

Dealing with G-left-invariant objects on X, we mean objects induced by objects on G being invariant under
the left-action of G on itself given by left-translations. By means of left-translations, G-left-invariant objects will
be identified with objects on the Lie algebra g.

For example, a G-left-invariant complex structure J € End(TX) on X is uniquely determined by a linear
complex structure J € End(g) on g satisfying the integrability condition Nij; = 0, [NN57, Theorem 1.1], where

Ny o) o= T Tl T = 0 T € A% e
we will denote the set of G-left-invariant complex structures on X by

C(g):={J€End(g) : J>=—idy and Nij; =0} .

By the Leibniz rule, the map dg: A' g* — A%g* induces a differential operator d: A® g* — A*T!g* giving a
graded differential algebra (A®g*, d), and hence a differential complex (A®g*, d); we will denote by Hjy (g;R) :=
H* (A*g*, d) the cohomology of such a differential complex.

In general, on a solvmanifold, the inclusion (A®g*, d) < (A®X, d) induces an injective map in cohomology,
i: Hyp (3;R) = HJ,(X;R) (compare [CF01, Lemma 9] and Lemma 1.36, for the Dolbeault, respectively Bott-
Chern, cohomology), which is not always an isomorphism, as the example in [dBT06, Corollary 4.2, Remark
4.3] shows. On the other hand, the following theorem by K. Nomizu says that the de Rham cohomology of a
nilmanifold can be computed as the cohomology of the subcomplex of left-invariant forms (some results in this
direction have been provided also by Y. Matsushima in [Mat51, Theorem 5, Theorem 6]).

Theorem 0.26 ([Nomb4, Theorem 1]). Let X = T'\ G be a nilmanifold and denote the Lie algebra naturally
associated to G by g. The complex (A*g*,d) is a minimal model for (A*X, d). In particular, the map (A®g*, d) —
(A*X, d) of differential complezes is a quasi-isomorphism:

i: Hip(g;R) = Hip(X;R) .

The proof rests on an inductive argument, which can be performed since every nilmanifold can be seen as a
principal torus-bundle over a lower dimensional nilmanifold, see [Mal49, Lemma 4], [Mat51, Theorem 3].

A similar result holds also in the case of completely-solvable solvmanifolds, as proven by A. Hattori, as a
consequence of the Mostow structure theorem, [Mos54, Mos57, Theorem 2].

Theorem 0.27 ([Hat60, Corollary 4.2]). Let X = T'\ G be a completely-solvable solvmanifold and denote the
Lie algebra naturally associated to G by g. The map (A*g*, d) — (A*X, d) of differential complezes is a
quasi-isomorphism:

it Hip(g;R) = Hp(X;R) .

(For some results concerning the de Rham cohomology of (non-necessarily completely-solvable) solvmanifolds,
see [Gua07, CF11].)

In some cases, we will see that the study of (properties of) geometric structures on a solvmanifold is reduced
to the study of the corresponding (properties of) geometric structures on the associated Lie algebra (see, e.g.,
Theorem 2.67, Proposition 2.19, Proposition 3.18, Proposition 3.30, Theorem 2.47). To this aim, we need the
following lemma by J. Milnor. (Recall that a Lie group G, with associated Lie algebra g, is called unimodular if,
for all X € g, it holds trad X = 0.)
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Lemma 0.28 ([Mil76, Lemma 6.2]). Any connected Lie group that admits a discrete subgroup with compact
quotient is unimodular and in particular admits a bi-invariant volume form 7).

We will also need the following trick by F. A. Belgun (see also [FG04, Theorem 2.1]).

Lemma 0.29 (F. A. Belgun’s symmetrization trick, [Bel00, Theorem 7]). Let X = I'\ G be a solvmanifold, and
denote the Lie algebra naturally associated to G by g. Let n be a G-bi-invariant volume form on G such that
fX n =1, whose existence follows from J. Milnor’s lemma [Mil76, Lemma 6.2]. Up to identifying G-left-invariant
forms on X and linear forms over g* through left-translations, define the F. A. Belgun’s symmetrization map

p A Xt ) = [ alunm).

One has that
Hlrege = id|pege
and that
doyu = pod .

In particular, the symmetrization map p induces a map u: (A*X, d) — (A®g*, d) of differential complexes,
and hence a map p: Hjp(X;R) — Hjj, (g;R) in cohomology. Since fi| asg+= id[ e g+, if the inclusion (A®g*, d) —
(A*X, d) is a quasi-isomorphism (for example, if X is a nilmanifold, by [Nom54, Theorem 1], or a completely-
solvable solvmanifold, by [Hat60, Corollary 4.2]), then the map p: (A*X, d) — (A®g*, d) turns out to be a
quasi-isomorphism.

K. Nomizu’s theorem [Nom54, Theorem 1], A. Hattori’s theorem [Hat60, Corollary 4.2], and F. A. Belgun’s
theorem [Bel00, Theorem 7] suggest that nilmanifolds, and, more in general, solvmanifolds, may provide a very
useful and interesting class of examples in non-Ké&hler geometry. On the other hand, another reason for this
statement is given by the following results by Ch. Benson and C. S. Gordon, and by K. Hasegawa.

Theorem 0.30 ([BG88, Theorem A]). Let X be a nilmanifold endowed with a symplectic structure w such that
the Hard Lefschetz Condition holds. Then X is diffeomorphic to a torus.

(Actually, one can prove that any 2n-dimensional nilmanifold X endowed with a symplectic structure w such
that the map [w]" ™" : Hlo(X;R) — H2%"1(X;R) is an isomorphism is diffeomorphic to a torus, [LO94], see, e.g.,
[FOTO08, Theorem 4.98]. A minimal model proof of Ch. Benson and C. S. Gordon’s theorem [BG88, Theorem A
is due to G. Lupton and J. Oprea, [LO94, Theorem 3.5].)

Theorem 0.31 ([Has89, Theorem 1, Corollary]). Let X be a nilmanifold. If X is formal, then X is diffeomorphic
to a torus.

In particular, since compact Kahler manifolds satisfy the Hard Lefschetz Condition, [Wei58, Théoréme IV.5],
and are formal, [DGMS75, Main Theorem)], it follows that a nilmanifold admits a Kéhler structure if and only
if it is diffeomorphic to a torus (compare also [Han57, Theorem II, Footnote 1]). More in general, compact
completely-solvable Kéhler solvmanifolds are tori, as proven by A. Tralle and J. Kedra in [TK97, Theorem 1],
solving a conjecture by Ch. Benson and C. S. Gordon, [BG90, page 972]. In fact, the following result by K.
Hasegawa gives a complete characterization of Kéahler solvmanifolds.

Theorem 0.32 ([Has06, Main Theorem]). Let X be a compact homogeneous space of solvable Lie group, that
s, a compact differentiable manifold on which a connected solvable Lie group acts transitively. Then X admits
a Kahler structure if and only if it is a finite quotient of a complex torus which has a structure of a complex
torus-bundle over a complex torus. In particular, a completely-solvable solvmanifold has a Kdihler structure if and
only if it is a complex torus.



CHAPTER 1

Cohomology of complex manifolds

In this chapter, we study cohomological properties of compact complex manifolds. In particular, we are concerned
with studying the Bott-Chern cohomology, which, in a sense, constitutes a bridge between the de Rham cohomology
and the Dolbeault cohomology of a complex manifold.

In §1.1, we recall some definitions and results on the Bott-Chern and Aeppli cohomologies, see, e.g., [Sch07],
and on the 99-Lemma, referring to [DGMS75]. In §1.2, we provide a Frolicher-type inequality for the Bott-Chern
cohomology, Theorem 1.22, which also allows to characterize the validity of the 99-Lemma in terms of the
dimensions of the Bott-Chern cohomology groups, Theorem 1.25; the proof of such inequality is based on two
exact sequences, firstly considered by J. Varouchas in [Var86]. In §1.3, we show that, for certain classes of complex
structures on nilmanifolds (that is, compact quotients of connected simply-connected nilpotent Lie groups by
co-compact discrete subgroups), the Bott-Chern cohomology is completely determined by the associated Lie algebra
endowed with the induced linear complex structure, Theorem 1.39, giving a sort of Nomizu-type result for the Bott-
Chern cohomology. This will allow us to explicitly study the Bott-Chern and Aeppli cohomologies of the Iwasawa
manifold and of its small deformations, in §1.4. In §1.5, we investigate the Bott-Chern cohomology of complex
orbifolds of the type X /G, where X is a compact complex manifold and G a finite group of biholomorphisms of
X, Theorem 1.55.

Some of the original results of this chapter have been obtained in [Angl1], and jointly with A. Tomassini in
[AT12b]; §1.5 contains some original results that have not yet been submitted for publication.

1.1 Cohomologies of complex manifolds

The Bott-Chern cohomology and the Aeppli cohomology provide important invariants for the study of the geometry
of compact (especially, non-Kéahler) complex manifolds. These cohomology groups have been introduced by R.
Bott and S. S. Chern in [BC65], and by A. Aeppli in [Aep65], and hence studied by many authors, e.g., B. Bigolin
[Big69, Big70] (both from the sheaf-theoretic and from the analytic viewpoints), A. Andreotti and F. Norguet
[ANT1] (to study cycles of algebraic manifolds), J. Varouchas [Var86] (to study the cohomological properties of a
certain class of compact complex manifolds), M. Abate [Aba88] (to study annular bundles), L. Alessandrini and
G. Bassanelli [AB96] (to investigate the properties of balanced metrics), S. Ofman [Ofm85a, Ofm85b, Ofm88] (in
view of applications to integration on analytic cycles), S. Boucksom [Bou04] (in order to extend divisorial Zariski
decompositions to compact complex manifolds), J.-P. Demailly [Dem12] (as a tool in Complex Geometry), M.
Schweitzer [Sch07] (in the context of cohomology theories), L. Lussardi [Lus10] (in the non-compact Kéhler case),
R. Kooistra [Kooll] (in the framework of cohomology theories), J.-M. Bismut [Bis11b, Bislla] (in the context of
Chern characters), L.-S. Tseng and S.-T. Yau [TY11] (in the framework of Generalized Geometry and type II
String Theory).

In this preliminary section, we recall the basic notions and classical results concerning cohomologies of complex
manifolds. More precisely, we recall the definitions of the Bott-Chern and Aeppli cohomologies, and some results
on Hodge theory, referring to [Sch07]; then, we recall the notion of d9-Lemma, referring to [DGMS75].

1.1.1 The Bott-Chern cohomology
Let X be a complex manifold. The Bott-Chern cohomology of X is the bi-graded algebra

.o ker O N ker 0
HeeX) = = %5

Unlike in the case of the Dolbeault cohomology groups, for every p,q € N, the conjugation induces an
isomorphism
HE(X) ~ HEL(X) .
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Furthermore, since ker d Nker 9 C kerd and im 90 C imd, one has the natural map of graded C-vector spaces
D HEE(X) » Hig(X:C),
pta=e
and, since ker @ Nker d C ker 9 and im &9 C im 0, one has the natural map of bi-graded C-vector spaces
HEAL(X) — Hg"(X) .

In general, even for compact complex manifolds, these maps are neither injective nor surjective: see, e.g., the
examples in [Sch07, §1.c] or in §1.4.4. A case of special interest is when X is a compact complex manifold satisfying
the 99-Lemma, namely, the property that every d-closed 0-closed d-exact form is also d9-exact, [DGMS75], that
is, the natural map Hy(X) — H3,(X;C) is injective (we recall that compact Kéhler manifolds and, more in
general, manifolds in class C of Fujiki, [Fuj78], that is, compact complex manifolds admitting a proper modification
from a Kihler manifold, satisfy the d9-Lemma, [DGMS75, Lemma 5.11, Corollary 5.23]; we refer to §1.1.3 for
further details). In fact, we recall the following result.

Theorem 1.1 ([DGMST75, Lemma 5.15, Remark 5.16, 5.21]). Let X be a compact complex manifold. If X satisfies
the 00-Lemma, then the natural maps

D HEL(X) > HIp(X;C) and  HES(X) = H3*(X)
pt+qg=e

induced by the identity are isomorphisms.

As for the de Rham and the Dolbeault cohomologies, a Hodge theory can be developed also for the Bott-Chern
cohomology for compact complex manifolds: we recall here some results, referring to [Sch07, §2] (see also [Big69,
§5], and [Lus10]).

Suppose that X is a compact complex manifold. Fix a Hermitian metric on X, and define the differential
operator

Apc = (99) (99)" + (99)" (99) + (9°9) (9°0) + (9°0) (970) +D@+ 00,
see [KS60, Proposition 5] (where it is used to prove the stability of the Kéahler property under small deformations
of the complex structure), and also [Sch07, §2.b], [Big69, §5.1]. One has the following result.
Theorem 1.2 ([KS60, Proposition 5], see also [Sch07, §2.b]). Let X be a compact complex manifold endowed
with o Hermitian metric. The operator Apc is a 4™ order self-adjoint elliptic differential operator, and
ker Agc = kerdNkerdNkerd O* .

Therefore, as a consequence of the general theory of self-adjoint elliptic differential operators, see, e.g., [Kod05,
page 450], the following result holds.
Theorem 1.3 ([Sch07, Théoréme 2.2], [Sch07, Corollaire 2.3]). Let X be a compact complex manifold, endowed
with a Hermitian metric. Then there exist an orthogonal decomposition

A**X = kerApc @ imdd & (ima* + im5*>
and an isomorphism R
Hé’é(X) ~ ker Agc .

In particular, the Bott-Chern cohomology groups of X are finite-dimensional C-vector spaces.

Another consequence of general results in spectral theory, see, e.g., [KS60, Theorem 4], [Kod05, Theorem 7.3],
is the semi-continuity property for the dimensions of the Bott-Chern cohomology.
Theorem 1.4 ([Sch07, Lemme 3.2]). Let {X:},. 5 a complex-analytic family of compact complex manifolds. Then,

for every p,q € N, the function
B >t dime Hpd (X¢) € N

1S upper-semi-continuous.
By using the Kihler identities (in particular, the fact that O = [0 and that 9*0 + 00* = 0 = 970+ 85*), one
can prove that, on a compact Kédhler manifold,
Ape =7 +0°0+0°d,
[KS60, Proposition 6], [Sch07, Proposition 2.4], and hence ker Apc = kerO = ker A; in particular, it follows
that, on a compact Kéhler manifold, the de Rham cohomology, the Dolbeault cohomology, and the Bott-Chern

cohomology are isomorphic (actually, since the 99-Lemma holds on every compact Kéhler manifold, one gets an
isomorphism that does not depend on the choice of the Hermitian metric).
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1.1.2 The Aeppli cohomology

Let X be a complex manifold. Dualizing the definition of the Bott-Chern cohomology, one can define another
cohomology on X, the Aeppli cohomology: it is the bi-graded Hp2 (X )-module

ker 90

HY (X)) = ——— .
AT (X) im0 + imo

As for the Bott-Chern cohomology, the conjugation induces, for every p,q € N, the isomorphism
HY(X) ~ HP(X).
Furthermore, since kerd C ker 90 and imd C im @ + im 0, one has the natural map of graded C-vector spaces

Hip(X:C) = P HY'(X),

ptg=e
and, since ker @ C ker 99 and im & C im 0 + im 0, one has the natural map of bi-graded C-vector spaces

HS®(X) > HY*(X) ;
as we have noted for the Bott-Chern cohomology, such maps are, in general, neither injective nor surjective, but
they are isomorphisms whenever X is compact and satisfies the 09-Lemma, [DGMS75, Lemma 5.15, Remark
5.16, 5.21], and hence, in particular, if X is a compact complex manifold admitting a Kéhler structure, [DGMST75,
Lemma 5.11], or if X is a compact complex manifold in class C of Fujiki, [DGMS75, Corollary 5.23].

Remark 1.5. On a compact Kéhler manifold X, the associated (1,1)-form w of the Kéhler metric defines a
non-zero class in H3,(X;R). For general Hermitian manifolds, special classes of metrics are often defined in
terms of closedness of powers of w, so they define classes in the Bott-Chern or Aeppli cohomology groups (e.g., a
Hermitian metric on a complex manifold of complex dimension n is said balanced if dw™~! = 0 [Mic82], pluriclosed
if 90w = 0 [Bis89], astheno-Kdihler if 00w™=2 = 0 [JY93, JY94], Gauduchon if 00w™ ! = 0 [Gau77]). (Note that,
they define possibly the zero class in the Bott-Chern or Aeppli cohomologies: for the balanced case, see [FLY12,
Corollary 1.3], where it is shown that, for k > 2, the complex structures on ﬁle (83 X 83) constructed from the
conifold transitions admit balanced metrics.)

We refer to [Sch07, §2.c] for the following results, concerning Hodge theory for the Aeppli cohomology on
compact complex manifolds.

Suppose that X is a compact complex manifold. Once fixed a Hermitian metric on X, one defines the
differential operator

Ay = 99"+ 09 + (09) (99) + (99) (99)" + (90*)" (90*) + (90*) (90*)"
which turns out to be a 4t order self-adjoint elliptic differential operator such that
ker Ay = kerdd Nkerd* Nkerd .
Hence one has an orthogonal decomposition
A**X = kerAy @ (imd + imd) @ im (99)"

from which one gets an isomorphism

HY*(X) ~ kerAyu ;

in particular, this proves that the Aeppli cohomology groups of a compact complex manifold are finite-dimensional
C-vector spaces.

Furthermore, as for the Bott-Chern cohomology, if {X;},. 5 is a complex-analytic family of compact complex
manifolds, with B a complex manifold, then, for every p,q € N, the function B 3 t — dim¢c H}? (X;) € N is
upper-semi-continuous.

Once again, whenever X is a compact Kédhler manifold, by using the Kéhler identities, one has

Ay =T +00°+99" ;



22 Cohomology of complex manifolds

—x

indeed, recall that O = O and that 0*0 =i [A,g] 0=—10A0=—-i0 [A,m = —00*, and hence 99 =—-00 ;
therefore

O =00 = 900" +99 970+ 909" + 9 990

= —000°0"—00"9°9—0 000" — 0 0"00

= 000°0"+00"00 +09 90" +0 0"90

= A4—00" -89 .
In particular, it follows that, on a compact Kéhler manifold, ker A4 =ker = ker A, and hence the de Rham
cohomology, the Dolbeault cohomology, and the Aeppli cohomology are isomorphic (actually, since the 00-Lemma

holds on every compact Kéhler manifold, one gets an isomorphism that does not depend on the choice of the
Hermitian metric).

In fact, since ker Age = ker & Nker & N ker 8 0* and ker A4 = ker 89 N ker §* N ker 5*, one has the following
isomorphism between the Bott-Chern cohomology and the Aeppli cohomology.

Theorem 1.6 ([Sch07, §2.c]). Let X be a compact complex manifold of complex dimension n. For any p,q € N,
the Hodge-x-operator associated to a Hermitian metric on X induces an isomorphism,

w: HRd(X) ~ Hy " P(X),
between the Bott-Chern and the Aeppli cohomologies.
Remark 1.7. We refer to [Dem12, §VI.12], [Sch07, §4], [Kooll, §3.2, §3.5] for a sheaf cohomology interpretation
of the Bott-Chern and Aeppli cohomologies (see also Remark 1.56).

1.1.3 The 90-Lemma

Let X be a compact complex manifold, and consider its complex de Rham Hj3,(X;C), Dolbeault Hg'(X ),
conjugate Dolbeault H*(X), Bott-Chern Hy & (X), and Aeppli H3®(X) cohomologies.
The identity map induces the following natural maps of (bi-)graded C-vector spaces:

Hye(X)

R TR

Hy*(X)  Hi(X:C)  HY(X)

~. 7

HY* ()

In general, these maps are neither injective nor surjective: see, e.g., the examples in [Sch07, §1.c] or in §1.4.4.

By [DGMST75, Lemma 5.15, Proposition 5.17], it turns out that, if one of the above map is an isomorphism,
then all the maps are isomorphisms, [DGMS75, Remark 5.16]; this is encoded in the notion of 9-Lemma, which
can be introduced in the more general setting of bounded double complexes of vector spaces. We start by recalling
the following general result by P. Deligne, Ph. A. Griffiths, J. Morgan, and D. P. Sullivan, [DGMS75].

Proposition 1.8 ([DGMS75, Lemma 5.15]). Let (K'?', d, d") be a bounded double complex of vector spaces
(or, more in general, of objects of any Abelian category), and let (K*®, d) be the associated simple complex, where
d:=d +d”. For each h € N, the following conditions are equivalent:

(a)n, kerd Nkerd” Nimd =imd'd” in K";

(b), kerd” Nimd" =imd’d” and kerd’Nimd” =imd’'d” in K";
(¢)n kerd' Nkerd” N (imd'+imd”) =imd'd” in K";

(a*)p—1 imd +imd” +kerd = kerd’d” in K"~1;

(b*)p_1 imd” +kerd = kerd’ d” and imd’ +kerd” = kerd'd” in K"1;
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(c*)ph—1 imd +imd” + (kerd' Nkerd”) =kerd d” in K"~
The above equivalent conditions define the validity of the d’ d”-Lemma, for a double complex.

Definition 1.9 ([DGMS75]). Let (K**°, d’, d”) be a bounded double complex of vector spaces (or, more in
general, of objects of any Abelian category), and let (K®, d) be the associated simple complex, where d := d’ +d".
One says that (K”', d, d”) satisfies the A’ d”-Lemma if, for every h € N, the equivalent conditions in [DGMS75,
Lemma 5.15] hold.

The following result by P. Deligne, Ph. A. Griffiths, J. Morgan, and D. P. Sullivan, [DGMS75], gives a
characterization for the validity of the d’ d”-Lemma.

Theorem 1.10 ([DGMST75, Proposition 5.17]). Let (K"f', d, d") be a bounded double complex of vector spaces,
and let (K*®, d) be the associated simple complex, where d := d’' +d. The following conditions are equivalent:

(7) (K"', d, d”) satisfies the d’ d”-Lemma;
(ii) K** is a sum of double complezes of the following two types:

(dots) complexes which have only a single component, with d' = 0 and d” = 0;

(squares) complexes which are a square of isomorphisms,

(iii) the spectral sequence defined by the filtration associated to either degree (denoted by 'F or”F) degenerates
at By (namely, By = E,) and, for every h € N, the two induced filtrations are h-opposite on H(?R(X; C),

ie., 'FP @"F1 5 H}L(X;C) forp+q—1=h.
In particular, we are interested in dealing with compact complex manifolds X, where one considers the double
complex (/\"'X, 0, 8).

Definition 1.11 ([DGMS75]). A compact complex manifold X is said to satisfy the d0-Lemma if (A**X, 9, 0)

satisfies the 0-Lemma, namely, if B B
kerONkerdNimd = imda ,

that is, in other words, if the natural map Hp2(X) — H3p(X;C) of graded C-vector spaces induced by the
identity is injective.

Remark 1.12. Let X be a compact complex manifold. By considering the differential operator
&= —i(9-9),
one can say that X satisfies the d d®, by definition, if
imdNkerd® = imdd® .
Since dd® =21 09, and § = 3 (d+1d°) and 9 = 3 (d—1d°), one has
kerd Nkerd® = kerd Nkerd and imdd® =imad ;

and hence X satisfies the d d®-Lemma if and only if X satisfies the J9-Lemma.

For compact complex manifolds, P. Deligne, Ph. A. Griffiths, J. Morgan, and D. P. Sullivan’s characterization
[DGMST75, Proposition 5.17] is rewritten as follows.

Theorem 1.13 ([DGMST75, 5.21)). A compact compler manifold X satisfies the d0-Lemma if and only if
(i) the Hodge and Frélicher spectral sequence degenerates at the first step (that is, E1 ~ Ew ), and (ii) the
natural filtration on (/\”’X, 0, 8) induces, for every k € N, a Hodge structure of weight k on HE,(X;C)
(that is, HkL(X;C) = D, o= FPHE(X;C) N Fquij(X;(C), where F*H3,(X;C) is the filtration induced by
Feneve2 X =@ APIX on HYp(X;C) and F*HY,(X;C) is the conjugated filtration to F*H35(X;C)).

p>e, q
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Another characterization for the validity of the d0-Lemma, in terms of the dimensions of the Bott-Chern
cohomology, will be given in Theorem 1.25.

Actually, as already mentioned, if a compact complex manifold satisfies the 99-Lemma, then all the natural
maps between cohomologies induced by the identity turn out to be isomorphisms.

Theorem 1.14 ([DGMS75, Lemma 5.15, Remark 5.16, 5.21]). A compact complex manifold X satisfies the
00-Lemma if and only if all the natural maps

Hpe (X)

SN

H3*(X) Hip(X;C) HZ*(X)

~. 7

HY*(X)
induced by the identity are isomorphisms.

_ We recall that if X is a compact complex manifold endowed with a Kéhler structure, then X satisfies the
09-Lemma, [DGMST75, Lemma 5.11]. Moreover, one has the following result.

Theorem 1.15 ([DGMS75, Theorem 5.22]). Let X andY be compact complex manifolds of the same dimension,
and let f: X — Y be a holomorphic birational map. If X satisfies the 00-Lemma, then also Y satisfies the
00-Lemma.

Indeed, one has that, if X and Y are complex manifolds of the same dimension, and 7: X — Y is a proper

surjective holomorphic map, then the maps
7 Hyjp (V;C) —» Hijp (X;C) and T Hg" (Y)%H%" (X)

induced by 7: X — Y are injective, see, e.g., [Wel74, Theorem 3.1]; then one can use the characterization in
[DGMST75, 5.21].

In particular, it follows that Moisezon manifolds (that is, compact complex manifolds X such that the degree
of transcendence over C of the field of meromorphic functions over X is equal to the complex dimension of X,
[Mo166], equivalently, compact complex manifolds admitting a proper modification from a projective manifold,
[Mo0166, Theorem 1]), and, more in general, manifolds in class C of Fujiki (that is, compact complex manifolds
admitting a proper modification from a Kihler manifold, [Fuj78]) satisfy the 9-Lemma. (We recall that a proper
holomorphic map f: X — Y from the complex manifold X to the complex manifold Y is called a modification
if there exists a nowhere dense closed analytic subset B C Y such that f[x\s-15): X \ f7'(B) > Y\ Bisa
biholomorphism.)

Corollary 1.16 ([DGMS75, Lemma 5.11, Corollary 5.23]). The 99-Lemma holds for compact Kdihler manifolds,
for Moisezon manifolds, and for manifolds in class C of Fugjiki.

Remark 1.17. In [Hir62], H. Hironaka provided an example of a non-Ké&hler MoiSezon manifold of complex
dimension 3 with arbitrary small deformations being projective (in fact, as stated by D. Popovici, the limit of
projective manifolds under holomorphic deformations is MoiSezon, [Pop09, Theorem 1.1], and, more in general,
the limit of MoiSezon manifolds under holomorphic deformations is MoiSezon, [Popl0, Theorem 1.1]); in particular,
H. Hironaka’s manifold provides an example of a non-Kéhler manifold satisfying the 99-Lemma. Studying twistor
spaces, C. LeBrun and Y. S. Poon, and F. Campana, showed that being in class C of Fujiki is not a stable
property under small deformations of the complex structures, [LP92, Theorem 1], [Cam91, Corollary 3.13]; since
the property of satisfying the 99-Lemma is stable under small deformations of the complex structure, Corollary
1.28, or [Voi02, Proposition 9.21], or [Wu06, Theorem 5.12], or [Tom08, §B], C. LeBrun and Y. S. Poon’s, and F.
Campana’s, result yields examples of compact complex manifolds satisfying the 99-Lemma and not belonging to
class C of Fujiki.

Finally, we recall the following obstructions to the existence of complex structures satisfying the 99-Lemma
on a compact (differentiable) manifold.

Theorem 1.18 ([DGMS75, Main Theorem, Corollary 1]). Let X be a compact manifold. If X admits a complex
structure such that the 00-Lemma holds, then the differential graded algebra (A*X, d) is formal. In particular, all
the Massey products of any order are zero.
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Indeed, if X satisfies the 99-Lemma, equivalently, the d d°-Lemma, then the inclusion ker d® — A®*X and the

. . c ., . . .
projection kerd® — li‘r‘;rgc induce the quasi-isomorphisms

(kerd®, d)

(/\o)(7 d) (ker d° O)

imde¢ "’

kerd®
imde¢

of differential graded algebras, proving that (A®X, d) is equivalent to ( 0), and hence formal.

1.2 Cohomological properties of compact complex manifolds and the
00-Lemma

In this section, we study some cohomological properties of compact complex manifolds, especially in relation with
the 00-Lemma. More precisely, we prove a Frolicher-type inequality for the Bott-Chern cohomology, Theorem
1.22, and we characterize the validity of the 00-Lemma in terms of the dimensions of the Bott-Chern cohomology
groups, Theorem 1.25. This has been the matter of a joint work with A. Tomassini, [AT12b].

Let X be a compact complex manifold of complex dimension n. B
As a matter of notation, for every p,q € N, for every k € N, and for f € {6, 0, BC, A}, we will denote

hP? = dimc HPY(X) < 400 and  hf = >  hP7 < +oo,
p+q=Fk

while recall that the Betti numbers are denoted by

by = dimc Hp(X;C) < 4o00.

Recall that, for every p,q € N, the conjugation induces the isomorphisms Hi&(X) = HEE(X), HY(X) =
H%?(X), and Hg’q(X ) = HYP(X), and the Hodge-*-operator associated to any given Hermitian metric induces

the i?omorphisms HPA(X) 5 H) """ P(X) and Hg’q(X) 5 Hy~%""P(X); hence, for every p,q € N, one has the
equalities

Pg _ pqP _ pn—pn—q _ pn—qgn—p Pg _ pap _ pn—pn—q _ pn—qn—p
Wt = hBe = h)y = hy and h5 = h} —h5 = hj ,
and therefore, for every k € N, one has the equalities
hpe = BE" and  hb = hy = B2VF = ngth

Finally, recall that the Hodge-*-operator (of any given Riemannian metric and volume form on X) yields, for
every k € N, the isomorphism H¥,(X;R) = Han F(X;R), and hence the equality

by, = bop_y .

1.2.1 J. Varouchas’ exact sequences

In order to prove a Frélicher-type inequality for the Bott-Chern and Aeppli cohomologies and to give therefore
a characterization of compact complex manifolds satisfying the 09-Lemma in terms of the dimensions of their
Bott-Chern cohomology groups, we need to recall two exact sequences from [Var86].

Following J. Varouchas, one defines the (finite-dimensional) bi-graded C-vector spaces

Aes . MONIMDY o . kerdnimd o kerdd
B imod B im 89 ’ " kerd+imd
and _ B -
pee . mONkerd oo _ _ kerdd oo kerdd
N im 00 ’ " kerd+imo " kerd 4+ kerd
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For every p,q € N and k € N, we will denote their dimensions by
a?? = dimc AP? | b1 = dimc BP? ? = dimc CP?,
dP = dime D, ePd = dimg B, P4 = dime FP9 |

and

a = E aP? b= E e o= E AN

p+q=k p+q=Fk p+q=Fk
a* = § ’ ara ek = § ePd fk — § P
pta=k p+q=Fk p+q=Fk

The previous vector spaces give the following exact sequences, by J. Varouchas.

Theorem 1.19 ([Var86, §3.1]). The sequences
0— A** — B** — Hg'(X) — HY*(X)—=C** =0 (1.2.1)

and
0= D** = Hge(X) = HZ*(X) = E** = F** =0 (1.2.2)

are exact sequences of finite-dimensional bi-graded C-vector spaces.

Proof. We first prove the exactness of (1.2.1). Since im 0 C ker 0, the map A**® — B** is injective. The kernel
of the map B** — H%"(X) js kerdNimoNimo _ imOMimd )4t is the image of the map A** — B**. The kernel

im 99 im 80
of the map HZ'*(X) — H*(X) is %, that is, the image of the map B** — H2'*(X). The kernel of the
map Hy*(X) — C** is k;%rﬁigg = imlgjigmg, that is, the image of the map Hg'(X) — HY*(X). Finally,

since im & 4+ im 0 C ker d + im 8, the map HY*(X) — C** is surjective. In particular, since Hy*(X) — C** is
surjective, then C'*** has finite dimension; since the identity induces an injective map B** — Hyo(X), then B**
has finite dimension; hence, since A*®* — B** is injective, then also A®* has finite dimension.

We prove now the exactness of (1.2.2). Since im d C ker 9, the map D** — Hyo(X) is injective. The kernel
of the map Hpe (X) — HZ*(X) is ker9nker 90im 9 imONkerd “that is, the image of the map D** — Hpo(X).

im 99 im 09
. ker 0N (ker 9-+im 0 5 - ) )
The kernel of the map H2'*(X) — E** is < n(i;rg +m9) _ ker i:gerd, that is, the image of the map Hpo(X) —
o0 .0 .0 : ker agﬂ(ker +ker 8) _ ker 80Nker . .
H5 (X). The kernel of the map E*® — F'** is P = eor o4imd that is, the image of the map

H%"(X) — E**. Finally, since ker 9 + im d C ker 9 + ker 9, the map E** — F** is surjective. In particular,
since D** — Hp2(X) is injective, then D** has finite dimension; since the identity induces a surjective map
H%*(X) — E**, then E** has finite dimension; hence, since E** — F** is surjective, then also F'*** has finite
dimension.

O

Note, [Var86, §3.1], that the conjugation yields, for every p,q € N, the equalities
aPl = qi? P = fap dPl = piP ePd = P (1.2.3)
and the isomorphisms 9: C** = D***1 and §: E** 5 B*t1* yield the equalities
P = gratl , el = pprtla :
hence, for every k£ € N, one gets the equalities
¥ = v, ek =k and &= gt ek = phtt,

Remark 1.20. Following the same argument used in [Sch07] to prove the duality between Bott-Chern and Aeppli
cohomology groups, we can prove the duality between A®® and F'**, and, similarly, between C*®* and D®**.
Indeed, note that the pairing

A ST ([aLwDH/XaAB,
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is non-degenerate: choose a Hermitian metric g on X; if [a] € A** C Hp 2 (X), then there exists a A pe-harmonic
representative & in [a] € A**, by [Sch07, Corollaire 2.3], that is, 0& = d& = 90 * & = 0; hence, [xa] € F**, and
([a], [xa]) = [y & A *a is zero if and only if & is zero if and only if [a] € A** is zero.

Analogously, the pairing

O D% 5 C . ([a],[ﬁ])*—)/xoz/\g,

is non-degenerate: indeed, choose a Hermitian metric g on X; if [a] € D** C Hé’é(X ), then there exists a

Apc-harmonic representative & in [a] € D**, by [Sch07, Corollaire 2.3], that is, d& = da = 90 * & = 0; hence,
[xa] € C**, and ([a], [*@]) = [y & A *a is zero if and only if & is zero if and only if [a] € D** is zero.

1.2.2 A Frolicher-type inequality for the Bott-Chern cohomology

We can now state and prove a Frolicher-type inequality for the Bott-Chern and Aeppli cohomologies, Theorem
1.22.

Firstly, we recall that, on a compact complex manifold X, the Frélicher inequality [Fro55, Theorem 2] relates
the Hodge numbers and the Betti numbers.

Theorem 1.21 ([Fro55, Theorem 2]). Let X be a compact complex manifold. Then, for every k € N, the following
inequality holds:
> dime H2Y(X) > dime Hjp(X;C) .
p+q=k

The equality >_,, _; dimc Hg’q (X) = dimc H3(X; C) holds for every k € N if and only if the Hodge and

Frolicher spectral sequence {(E,, d;)}, .y degenerates at the first step.

It is in general not true that h’fgc (respectively, hfg) is higher than the k" Betti number of X for every k € N:
an example is provided by the small deformations of the Iwasawa manifold I3 := H (3; Z [i])\ H(3; C) (see §1.4.1).
In the following table, we summarize the dimensions of the Bott-Chern and Aeppli cohomology groups for I3
(which have been computed in [Sch07, Proposition 1.2]) and for the small deformations of I3 (see §1.4.4). We
recall that the small deformations of the Iwasawa manifold, according to I. Nakamura’s classification, [Nak75, §3],
are divided into three classes, (i), (i1), and (%), in terms of their Hodge numbers; it turns out that the Bott-Chern
cohomology yields a finer classification of the Kuranishi space of I3, allowing a further subdivision of class (%),
respectively class (7i7), into subclasses (ii.a), (ii.b), respectively (%ii.a), (iii.b), see §1.4.1.

classes || hz hpc ha | hZ hic b3 | h3 hic hi | b hic hi | by hic hji |
G || 5 4 6 |11 10 12 |14 14 14]11 12 10| 5 6 4 |
(iia) || 4 4 9 8 11 ]12 14 149 11 8 |4 6 4
(ii.b) 4 4 6 |9 8 10|12 14 14]9 10 8|4 6 4
(iti.a) || 4 4 6 |8 6 11|10 14 14]8 11 6|4 6 4
(ii.b) || 4 4 6 |8 6 10|10 14 14|8 10 6 |4 6 4
| by =4 \ by =8 | bs=10 | by =8 \ bs =4 |

The following result, [AT12b, Theorem A], gives a Frolicher-type inequality for the Bott-Chern cohomol-
ogy. (We recall that, on a compact complex manifold X of complex dimension n, for any p,q € N, one has
the equality dime¢ HRL(X) = dime H) ?"77(X), and, for any k € N, the equality > dimec HRL(X) =
>t s—on—k dime H'®(X), [Sch07, §2.c].)

p+q=Fk
Theorem 1.22. Let X be a compact complex manifold. Then, for every p,q € N, the following inequality holds:

dime HZA(X) + dime HY*(X) > dimc Hg’q (X) +dime HYY(X) . (1.2.4)
In particular, for every k € N, the following inequality holds:

> (dime HEE(X) + dime HY9(X)) > 2 dime Hfp(X;C) . (1.2.5)
pt+q=k
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Proof. Fix p,q € N. The exact sequences (1.2.1), respectively (1.2.2), yield the equality
Wy = h%q NPT e s X

respectively
hB, = h%q + qPU 4 P P

using also the symmetries h%;? = h%"” and hg’q = h{?, and the equalities (1.2.3), we get
T =
— RBP4 RIP  fPA g I PO AP Py (0P
o o

_ h%’q+hg’q+fp’q+ap’q

Y

g 1P
h5 + hy?,

which proves (1.2.4).
Now, fix k € N; summing over (p,q) € N x N such that p+ ¢ = k, we get

Wpo+hy = ) (hE +h)
p+q=k
> ) (h’gq + hg’q) = hE+nf
p+q=k
> 2bk7
from which we get (1.2.5). O

Remark 1.23. Note that small deformations of the Iwasawa manifold show that both the inequalities (1.2.4)
and (1.2.5) can be strict.
For example, for small deformations of I3 in class (%), one has,

hbo+hly =10 > 8 = 2-by, hic+h% =22 > 16 = 2-by,  hho+h% = 28 > 20 = 2-b3,
showing that (1.2.5) is strict for every k € {1, 2, 3, 4, 5}.

On the other hand, for small deformations of I3 in class (%) or in class (4), one has

hpo+hy" = 5 (hpe+hh) =5 >4 = hi = b+ 2" = 2%+ hy"

showing that (1.2.4) is strict, for example, for (p,q) = (1,0).
(For further examples among the small deformations of the Iwasawa manifold, compare the computations in
§1.4.4, which are summarized in §1.4.5.)

Remark 1.24. Note that, in the proof of Theorem 1.22, we have actually shown that, for every k € N,

hpo + by = 2he+ad" + f* .

1.2.3 A characterization of the 99-Lemma in terms of the Bott-Chern cohomology

This section is devoted to give a characterization of the validity of the 90-Lemma in terms of the Bott-Chern
cohomology.

Note that, if a compact complex manifold X satisfies the J0-Lemma, then, for every k € N, it holds
hk o =hk = h% = h% = by, and hence (1.2.5) is actually an equality. In fact, we prove now that also the converse

holds true: more precisely, the equality in (1.2.5) holds for every k& € N if and only if the 00-Lemma holds; in
particular, this gives a characterization of the validity of the 00-Lemma just in terms of {h%c} N’ [AT12D,
Theorem B].

Theorem 1.25. Let X be a compact complex manifold. The equality

> (dime HEE(X) 4 dime HY(X)) = 2 dime Hjz(X;C)
ptg=k

holds for every k € N if and only if X satisfies the 00-Lemma.
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Proof. If X satisfies the 90-Lemma, then the natural maps Hy5(X) = H3x(X;C), Hpo(X) — HZ*(X), and
Hg"(X) — HY*(X), H3p(X;C) — Hy*(X) induced by the identity are isomorphisms, [DGMST75, Remark 5.16],
and hence, for every k € N, one has

hpo = by = b = by

and hence, in particular,
e + 1Y = 20 .

We split the proof of the converse into the following claims.

Claim 1 - If h%c + h’jl = 2by, holds for every k € N, then the Hodge and Frélicher spectral sequences degenerate
at the first step (namely, E1 ~ E, that is, h% = by, for every k € N) and a* =0 = f* for every k € N.
Since, for every k € N, we have

2bp = hlpe + bl = 2hE+d" + f* > 20,

then h% = by and a* = 0 = f* for every k € N.
Claim 2 — Fiz k € N. If a**! := Zp+q:k+1 dim¢ AP9 = 0, then the natural map
D HFEX) — Hip(X:C)
p+q=k

1S surjective.
Let a = [a] € HE,(X;C). We have to prove that a admits a representative whose pure-type components are
d-closed. Consider the pure-type decomposition of a:

k
a =: (—1)j k=i
§=0
where a¥=9J € A*=3J X Since da = 0, we get that
20 =0, 0al=33 — gak—i=1itt — o for j € {0,...,k — 1}, 0% =0;
by the hypothesis a**! = 0, for every j € {0,...,k — 1}, we get that,
0aF=11 = 9aF~I7It € (ImdNimd) NAFIITIY = im 9o N AR X

and hence there exists n*~7=1J € A¥=J=1J X such that

Dok = ggytI 1 = gak—i—Lit
Define
k-1 4 o
n = (—1)? pF=i7Li ¢ AFlX g C.
j=0
The claim follows noting that
a = [of = [a+dy]
k—1

_ (ak’0+8nk_1’0) + (_1)3' (ak—j,j +ank—j—1,j _gnk—j,j—l) +(_1)k (ao,k_gno,k—l)
1

J

E

-1
_ [ak’o—i-@nk_l’o] + (_1>j [ak—j,j+ank—j—1,j _gnk—j,j—l] +<_1)k [ao,k_gno,k—l] 7
1

J
that is, each of the pure-type components of o + d 7 is both d-closed and O-closed.

Claim 3 — If k% > by, and b + hY = 2by for every k € N, then h% = by, for every k € N.
If n is the complex dimension of X, then, for every k € N, we have

b < e = B3R = 260,k — AT < bopoy = by

and hence k% = by, for every k € N.
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Now, by Claim 1, we get that a® = 0 for each k € N; hence, by Claim 2, for every k € N the natural map

P HEL(X) — Hi(X:0)
p+q=k

induced by the identity is surjective, and hence, in particular, h’fBC > bg. By Claim 3 we get therefore that
h% o = by, for every k € N. Hence, the natural map Hp(X) — H3p(X;C) is actually an isomorphism, which is
equivalent to say that X satisfies the 00-Lemma. O

Remark 1.26. We note that, using the exact sequences (1.2.2) and (1.2.1), one can prove that, on a compact
complex manifold X and for every k € N,

ek = (hg— h’fgc) +fE
(h%— hgc) _ (h%fl _ hlj(l) L

Remark 1.27. Note that Ey ~ F is not sufficient to have the equality hlfac + bk = 2b;, for every k € N (and
hence the 90-Lemma): a counterexample is provided by small deformations of the Iwasawa manifold.
Indeed, for small deformations of I in class (%), since

hy = 4 = by, hZ =8 = by,h3 = 10 = b3,
the Hodge and Frolicher spectral sequences degenerate at the first step, but

hbo+hly =10 > 8 = 2b;,  hio+h% = 16 = 2by,  hio+h% = 28 > 20 = 2b;.

Using Theorem 1.25, we get another proof of the stability of the 9-Lemma under small deformations of the
complex structure, [AT12b, Corollary 2.7]; for different proofs of the same result by means of other techniques see,
e.g., [Voi02, Proposition 9.21], [Wu06, Theorem 5.12], [Tom08, §B].

Corollary 1.28. Satisfying the 00-Lemma is a stable property under small deformations of the complex structure.

Proof. Let {X:},.p be a complex-analytic family of compact complex manifolds. Since, for every k € N,
the dimensions h%.(X;) and h%(X;) are upper-semi-continuous functions in ¢, [Sch07, Lemme 3.2], while
the dimensions by (X;) are constant in ¢ by Ehresmann’s theorem, one gets that, if X;, satisfies the equality
Rk o (X)) + BY (Xyy) = 2y (Xy,) for every k € N, the same holds true for X; with ¢ near ¢o. O

We recall that [DGMST75, 5.21] by P. Deligne, Ph. A. Griffiths, J. Morgan, and D. P. Sullivan characterizes the
validity of the J9-Lemma on a compact complex manifold in terms of the degeneracy of the Hodge and Frolicher
spectral sequence and of the existence of Hodge structures in cohomology. In particular, if follows that, on a
compact complex manifold satisfying the d0-Lemma, one has the equality by = Zp gk h%q for every kK € N
(which is equivalent to the degeneracy of the Hodge and Frolicher spectral sequence) and the symmetry h%q = h%’p
for every p,q € N.

Note that, on a compact complex surface X, since the Hodge and Frolicher spectral sequence degenerates
at the first step (see, e.g., [BHPVdV04, Theorem IV.2.8]) if h%’o = h%’l then b; = Qh%"o is even, and hence X
is Kéhler, by [Kod64, Miy74, Siu83], or [Lam99, Corollaire 5.7], or [Buc99, Theorem 11]. As already remarked,
the small deformations of I3 in class (7ii) satisfy the degeneracy condition of the Hodge and Frolicher spectral
sequence, but they do not satisfy either the 99-Lemma, or the symmetry of the Hodge numbers.

It could hence be interesting to construct a compact complex manifold (of any complex dimension greater
than or equal to 3) such that E; ~ E., and h%’q = h%? for every p,q € N but for which the 99-Lemma does not

hold. A compact complex manifold X whose double complex (/\"'X , 0, 5) has the form in Figure 1.1 (where

dots denote generators of the C*°(X; R)-module A**X, horizontal arrows are meant as 0, vertical ones as 0 and
zero arrows are not depicted) provides such an example.

Remark 1.29. L. Ugarte informed us that M. Ceballos, A. Otal, he himself, and R. Villacampa have found such
an example among the 6-dimensional nilmanifolds endowed with left-invariant complex structures: they provided
a complete classification, up to equivalence, of the linear integrable complex structures on 6-dimensional nilpotent
Lie algebras in [COUV12], where they also studied some applications of their classification.
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Figure 1.1: An abstract example

1.3 Cohomology computations for special nilmanifolds

We are now interested in studying the Bott-Chern and Aeppli cohomologies in the special case of left-invariant
complex structures on nilmanifolds and solvmanifolds.

In this section, we firstly recall some results concerning the computation of the de Rham cohomology and of the
Dolbeault cohomology, for nilmanifolds and solvmanifolds, endowed with left-invariant complex structures, §1.3.2,
referring to [Nomb4, Hat60], respectively [Sak76, CFGU00, CF01, Rol09a, Rolllal; then, we state and prove the
results obtained in [Angll] about the computation of the Bott-Chern and Aeppli cohomologies, Theorem 1.37,
Theorem 1.42. Using these tools, one can compute the de Rham, Dolbeault, Bott-Chern and Aeppli cohomologies
for the Iwasawa manifold and for its small deformations, §1.4.2, §1.4.3, §1.4.4.

1.3.1 Left-invariant complex structures on solvmanifolds
We start by recalling some facts and notations concerning left-invariant complex structures on solvmanifolds.

Let X = I'\ G be a solvmanifold, that is, a compact quotient of a connected simply-connected solvable Lie
group G by a discrete and co-compact subgroup I'; the Lie algebra naturally associated to G will be denoted by g
and its complexification by gc := g ®r C. We recall that, dealing with G-left-invariant objects on X, we mean
objects on X obtained by objects on G that are invariant under the action of G on itself given by left-translations;
note that G-left-invariant objects on X are uniquely determined by objects on g. In particular, a G-left-invariant
complex structure J on X is uniquely determined by a linear complex structure J on g satisfying the integrability
condition Nij; = 0, [NN57, Theorem 1.1]; the set of G-left-invariant complex structures on X is denoted by

C(g):={J€End(g) : J?=—idy and Nij; =0} .

Recall that the exterior differential d on X can be written using only the action of I'(X; TX) on C*(X)
and the Lie bracket of the Lie algebra of vector fields on X: more precisely, recall that, if ¢ € AFX and
Xo,..., Xk € C®(X;TX), then

k
de(Xo,.. . Xe) = > (=1 X0 (X0, X1, X1, ., Xx)

+ Z (_1)j+h71 @([vaXh}7X07"'7Xj717Xj+17"'7Xh717Xh+17"°7Xk:) .
0<j<h<k

Hence one has a differential complex (A®g*, d), which is isomorphic, as a differential complex, to the differential
subcomplex (A$, X, dLAi'mX) of (A*X, d) given by the G-left-invariant forms on X.

mnv

If a G-left-invariant complex structure on X is given, then one also has the double complex (/\”’g(’e, 0, 5),

which is isomorphic, as a double complex, to the double subcomplex (/\-"'X7 Ol pooxs 5LA9,-X> of (/\"'X, 0, 5)

mv

given by the G-left-invariant forms on X.
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Finally, given a G-left-invariant complex structure on G and fixed p, ¢ € N, one also has the following complexes
and the following maps of complexes:

_1.g— 89 d
AP—1q—-1 b > N\Pdgk > /\p+q+lg&k:

L )

AP~La—1y 99 _ Apax d /\p+q+1(X;(C) , (1.3.1)

inv my, inv

AP—La—1x 2 AP X —9 APHatl (X C)

and

_ _ o+98 99
AP MQEE @ NP4 19(?: —— N\PigE % /\p+1,q+1g%

Lk

1, g—1+, 010 P 99 ptlg+l v . 1.3.2
A @ Anttx P apax 08 aptlatly (1.3.2)

AP~Lax @ aPa-1X % INZ‘D e £> APHLat+l x
For § € {9, 9, BC, A} and K € {R,C}, we will write H3p (g;K) :=: Hp (g;K) and Hﬁ"' (gc) to denote the
cohomology groups of the corresponding complexes of forms on g, which are isomorphic to the cohomology groups
of the corresponding complexes of G-left-invariant forms on X. The rest of this section is devoted to the problem
whether these cohomologies are isomorphic to the corresponding cohomologies on X.

1.3.2 Classical results on computations of the de Rham and Dolbeault cohomolo-
gies

In this section, we collect some results, by K. Nomizu [Nomb54], A. Hattori [Hat60], S. Console and A. Fino
[CF01], Y. Sakane [Sak76], L. A. Cordero, M. Ferndndez, A. Gray, and L. Ugarte [CFGUO00], S. Rollenske
[Rol09a, Rollla, Rol09b], concerning the computation of the de Rham cohomology and the Dolbeault cohomology
for nilmanifolds and solvmanifolds, endowed with left-invariant complex structures.

First of all, we recall the following result, concerning the de Rham cohomology: it was firstly proven by K.
Nomizu for nilmanifolds, and then generalized by A. Hattori to the case of completely-solvable solvmanifolds.

Theorem 1.30 ([Nom54, Theorem 1], [Hat60, Corollary 4.2]). Let X = T'\ G be a nilmanifold, or, more in
general, a completely-solvable solvmanifold, and denote the Lie algebra naturally associated to G by g. The map
of differential complexzes (A*g*, d) — (A*X, d) is a quasi-isomorphism:

i: Hip(g;R) 5 Hip(X;R) .

A counterexample in the non-completely-solvable case was provided by P. de Bartolomeis and A. Tomassini in
[dBT06, Corollary 4.2, Remark 4.3], studying the Nakamura manifold, [Nak75, §2].

Similar results hold for the Dolbeault cohomology of nilmanifolds endowed with certain left-invariant complex
structures; [Con06] and [Rollla] are recent surveys on the known results. (Some results about the Dolbeault
cohomology of solvmanifolds have been recently proven by H. Kasuya, see [Kas12].)

First of all, we recall the following lemma by S. Console and A. Fino, [CF01]: the argument used in the proof
can be generalized to Bott-Chern and Aeppli cohomologies, see Lemma 1.36.

Lemma 1.31 ([CF01, Lemma 9]). Let X = T'\ G be a nilmanifold endowed with a G-left-invariant complex
structure J, and denote the Lie algebra naturally associated to G' by g. For any p € N, the map of complexes
(/\p"g?{:, 6) — (/\p"X, 6) induces an injective homomorphism i in cohomology:

in H2* (gc) = H2*(X) .

For an arbitrary G-left-invariant complex structure on a nilmanifold X = T'\ G, it is not known whether
i H%" (gc) < H%"(X ) actually is an isomorphism, but some results are known for certain classes of G-left-
invariant complex structures.
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Theorem 1.32 ([Sak76, Theorem 1], [CFGUO00, Main Theorem], [CF01, Theorem 2, Remark 4], [Rol09a, Theorem
1.10], [Rollla, Corollary 3.10]). Let X = I'\ G be a nilmanifold endowed with a G-left-invariant complex structure
J, and denote the Lie algebra naturally associated to G by g. Then, for every p € N, the map of complexes

(AP*gg, 9) = (AP*X, D) (1.3.3)

is a quasi-isomorphism, namely,

provided one of the following conditions holds:
e X is holomorphically parallelizable;
e J is an Abelian complex structure;
e J is a nilpotent complex structure;
e J is a rational complex structure;
e g admits a torus-bundle series compatible with J and with the rational structure induced by T';
o dimpg g =6 and g is not isomorphic to h7 := (03, 12, 13, 23).

We recall, (see, e.g., [Rol09a, Definition 1.5],) that, given a nilpotent Lie algebra g, a rational structure for g is
a Q-vector space gg such that gp ®g R = g. A sub-algebra b of g is said to be rational with respect to a rational
structure gg if the Q-vector space h N gg of h is a rational structure for h. If G is the connected simply-connected
Lie group associated to g, then any discrete co-compact subgroup I' of G induces a rational structure for g, given
by QlogT.

Consider a G-left-invariant complex structure on a nilmanifold X = I'\ G with associated Lie algebra g; we
recall that:

e J is called holomorphically parallelizable if the the holomorphic tangent bundle is holomorphically trivial,
see, e.g., [Wanb4, Nak75];

o Jis called Abelian if [Jx, Jy] = [z, y] for any z,y € g, see, e.g., [BDMM95, ABDM11];

e J is called nilpotent if there exists a G-left-invariant co-frame {wl, e ,w”} for (Tl’OX)* with respect to
which the structure equations of X are of the form

do’ = g Aikwh/\wk—l—g Bflkwh/\@k
h<k<j hk<j

with {Aik, Bik}j . C C, see, e.g, [CFGUOO];

o J is called rational if J (gg) C gg where gg is the rational structure for g induced by T, see, e.g., [CF01].

We recall also the following definitions, [Rol09a, Definition 1.8]. An ascending filtration {S7 g}j 0.5y OR OIS
called a torus-bundle series compatible with a linear complex structure J on g and a rational structure gg for g if,
for every j € {1,...,k}, it holds that (i) S7g is rational with respect to gg and an ideal in S T1g, (i) JSig = Sig,

and (iii) S7T'g/ S7g is Abelian. If, in addition, it holds that () S77'g/S7g is contained in the center of g/ S7g,
then {SJg}jg{O’wk}
filtration {S]g}je{o,...,k}
series compatible with J and gg for any complex structure J and for any rational structure gg. By S. Rollenske’s

theorem [Rol09a, Theorem B], every 6-dimensional nilpotent Lie algebra except by := (03, 12, 13, 23) admits a
stable torus-bundle series.

is called a principal torus-bundle series compatible with J and gg. Finally, an ascending

on g is called a stable (principal) torus-bundle series if it is a (principal) torus-bundle

The property of computing the Dolbeault cohomology using just left-invariant forms turns out to be open
along curves of left-invariant complex structures: this was proven by S. Console and A. Fino, [CFO01].

Theorem 1.33 ([CF01, Theorem 1]). Let X = T'\ G be a nilmanifold endowed with a G-left-invariant complex
structure J, and denote the Lie algebra naturally associated to G by g. Let U C C(g) be the subset containing the
G-left-invariant complex structures J on X such that the inclusion © is an isomorphism:

U = {JeC(g) i HY (gc)ng(X)} C C(g) .

Then U is an open set in C (g).
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The strategy of the proof consists in proving that the dimension of the orthogonal of Hg" (gc) in H%"(X )

with respect to a given J-Hermitian G-left-invariant metric on X = I'\ G is an upper-semi-continuous function in
J € C(g) and thus, if it is zero for a given J € C (g), then it remains equal to zero in an open neighbourhood of J
in C(g). We will use the same argument in proving Theorem 1.42, which is a slight modification of the previous
result in the case of the Bott-Chern cohomology.

The aforementioned results suggest the following conjecture.

Conjecture 1.34 ([Rollla, Conjecture 1]; see also [CFGUO00, page 5406], [CFO01, page 112]). Let X = I'\G be a
nilmanifold endowed with a G-left-invariant complex structure J, and denote the Lie algebra naturally associated
to G by g. Then, for any p € N, the map of complexes (1.3.3) is a quasi-isomorphisms, that is,

i HY® (gc) = HY*(X) .

Note that, since i is always injective by [CF01, Lemma 9], this is equivalent to asking that

dime (H5 (gc))l —0,

where the orthogonality is meant with respect to the inner product induced by a given J-Hermitian G-left-invariant
metric g on X.

Finally, as an application of the previous results, we recall the following theorem by S. Rollenske, concerning
the deformations of left-invariant complex structures on nilmanifolds.

Theorem 1.35 ([Rol09b, Theorem 2.6]). Let X = T'\ G be a nilmanifold endowed with a G-left-invariant complex
structure J, and denote the Lie algebra naturally associated to G by g. Suppose that, for p = 1, the map of
complezes (1.3.3) is a quasi-isomorphism: i: H%’q (ac) = H%’Q(X) for every q € N. Then all small deformations
of the complex structure J are again G-left-invariant complex structures. More precisely, the Kuranishi family of
X contains only G-left-invariant complex structures.

1.3.3 The Bott-Chern cohomology on solvmanifolds

We recall here the results obtained in [Angll], concerning the computation of the Bott-Chern cohomology for
nilmanifolds and solvmanifolds.

Firstly, we prove a slight modification of [CF01, Lemma 9] proven by S. Console and A. Fino for the Dolbeault
cohomology: we repeat here their argument for the case of the Bott-Chern cohomology, [Angll, Lemma 3.6].

Lemma 1.36. Let X = I'\ G be a solvmanifold endowed with a G-left-invariant complex structure J, and denote
the Lie algebra naturally associated to G by g. The map of complexes (1.3.1) induces an injective homomorphism

iz Hyt (9c) = HEo(X) -

Proof. Fix p,q € N. Let g be a J-Hermitian G-left-invariant metric on X and consider the induced inner product
— —%

(:|-) on A®**X. Hence, both 9, 0, and their adjoints 0%, 0 preserve the G-left-invariant forms on X and therefore

also Apc does. In such a way, we get a Hodge decomposition also at the level of G-left-invariant forms:

/\p7QQEE = ker ABC \_/\ILQgE @ im 85|_/\p71,q71g€@ (im 8* |_/\p+1,q‘3% + 1m5* LAP,Q+1QE) .

Now, take [w] € HRZ (gc) such that ¢ [w] = 0 in HZA(X), that is, w is a G-left-invariant (p, ¢)-form on X and
there exists a (possibly non-G-left-invariant) (p — 1,¢ — 1)-form 1 on X such that w = 99 7. Up to zero terms in
HP%E (gc), we may assume that 7 € (i (/\p’qg{f:))J‘ C AP4X. Therefore, since 8 0*90n is a G-left-invariant form
(being 00n a G-left-invariant form), we have that

0= (8"9"90n|n) = |00n]* = 1w
and therefore w = 0. O

The second general result says that, if the Dolbeault and de Rham cohomologies of a solvmanifold are computed
using just left-invariant forms, then also the Bott-Chern cohomology is computed using just left-invariant forms,
[Angll, Theorem 3.7]. The idea of the proof is inspired by [Sch07, §1.c], where M. Schweitzer used a similar
argument to explicitly compute the Bott-Chern cohomology in the special case of the Iwasawa manifold.
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Theorem 1.37. Let X = I'\G be a solvmanifold endowed with a G-left-invariant complex structure J, and
denote the Lie algebra naturally associated to G by g. Suppose that

i: Hip(g;C) = HIp(X;C) and i Hg' (gC)QHg"(X) .
Then also N
it Hpo (9c) = Hpo(X) .
Proof. Fix p,q € N. We prove the theorem as a consequence of the following claims.
Claim 1 — It suffices to prove that % can be computed using just G-left-invariant forms.

Indeed, we have the exact sequence "

imdN AP? X
0— == - HBL(X) = HEE(X;0)
im 99
and, by hypothesis, HJ;(X;C) can be computed using just G-left-invariant forms.

Claim 2 — Under the hypothesis that the Dolbeault cohomology is computed using just G-left-invariant forms, if 1
is a G-left-invariant 0-closed form, then every solution ¢ of d¢ = 1 is G-left-invariant up to 0-exact terms.
Indeed, since [¢)] = 0 in Hg"(X), there is a G-left-invariant form « such that ¢ = da. Hence, ¢ — « defines a

class in H%"(X ) and hence ¢ — « is G-left-invariant up to a d-exact form, and so ¢ is.

Claim 3 — Under the hypothesis that the Dolbeault cohomology is computed using just G-left-invariant forms, the

space % can be computed using just G-left-invariant forms.
Consider
- imdNAP? X
wP? = dn mod im0 € —— . (1.3.4)
im 00

Decomposing n =: Zp ¢ M"? in pure-type components, the equality (1.3.4) is equivalent to the system

oppta-10  — mod im 99
Gypra=bi-1 4 gppte—t-Lt _ mod imdd for (€ {l,...,q—1}
Onpra—1 + onp—1a = WP mod im &9
optrra—t=1 4 gpt—lrte—t — mod imdd for e {l,...,p—1}
onorta—l = 0 mod im 90

Applying several times Claim 2, we may suppose that the forms n®P+4=¢~1 with ¢ € {0,...,p — 1}, are G-left-
invariant: indeed, they are G-left-invariant up to 0-exact terms, but d-exact terms give no contribution in the
system, since it is modulo im d9. Analogously, using the conjugate version of Claim 2, we may suppose that the
forms nPTa—t=1¢ with £ € {0,...,q—1}, are G-left-invariant. Then we may suppose that wP9 = gnP9~1 4 gpp—1:4
is G-left-invariant. O

Remark 1.38. Let X = I'\ G be a solvmanifold endowed with a G-left-invariant complex structure J, and denote
the Lie algebra naturally associated to G by g. Note that, if the map of complexes i: (/\p"g(’é7 8) — (/\p"X7 8)
is a quasi-isomorphism for every p € N, that is,

i HE* (50) S (X))

then also the map of complexes i: (A®g*, d) = (A*X, d) is a quasi-isomorphism, that is,
it Hip(g;C) = Hip(X;C) .

Indeed, the map of double complexes i: (/\"'g?(j, 0, 5) — (/\"'X, 0, 5) induces a map between the corre-
sponding Hodge and Frolicher spectral sequences:

i: {(E’:,. (g(C) 9 dT)}TEN — {(E':V. (X) 7d7‘)}TEN .
Since, see, e.g., [McC01, Theorem 2.15],
B (gc) = HY' (@) = Higlae)  and  EP*(X) = HI'(X) = Hip(X:0),

one gets that, if i: E7"* (gc) — E7'° (X) is an isomorphism, then also i: H} (gc) — Hjz(X;C) is an isomorphism,
see, e.g., [McCO01, Theorem 3.5].
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As a corollary of [Nom54, Theorem 1], [Sak76, Theorem 1], [CFGU00, Main Theorem], [CF01, Theorem 2,
Remark 4], [Rol09a, Theorem 1.10], [Rollla, Corollary 3.10], and Theorem 1.37, we get the following result,
[Angl1, Theorem 3.8].

Theorem 1.39. Let X = T'\ G be a nilmanifold endowed with a G-left-invariant complex structure J, and denote
the Lie algebra naturally associated to G by g. Suppose that one of the following conditions holds:

e X is holomorphically parallelizable;

e J is an Abelian complex structure;

J is a nilpotent complex structure;

J is a rational complex structure;
e g admits a torus-bundle series compatible with J and with the rational structure induced by T';
e dimg g =6 and g is not isomorphic to h7 := (03, 12, 13, 23).

Then the de Rham, Dolbeault, Bott-Chern and Aeppli cohomologies can be computed as the cohomologies of the
corresponding subcomplexes given by the space of G-left-invariant forms on X; in other words, the inclusions of
the several subcomplezes of G-left-invariant forms on X into the corresponding complexes of forms on X are
quasi-isomorphisms:

it Hyp (R) < Hip(X3R)  and i H®(gc) & HP®(X)

fort € {0, 0, BC, A}.

Remark 1.40. Note that Theorem 1.39, and [Hat60, Corollary 4.2], allow to straightforwardly compute the
de Rham, Dolbeault, Bott-Chern, and Aeppli cohomologies of nilmanifolds, endowed with certain left-invariant
complex structures, respectively the de Rham cohomology of completely-solvable solvmanifolds, just by computing
the space of left-invariant (A, or O, or Agc, or A A-)harmonic forms with respect to a left-invariant Riemannian,
or Hermitian, metric.

Indeed, suppose that X is a nilmanifold, endowed with a left-invariant complex structure, or a completely-

solvable solvmanifold, satisfying i: H3x (g;R) < H35(X;R), or i: H;* (gc) 5 H* (X), for some § €
19, ?, BC, A}. Let g be a left-invariant Riemannian, or Hermitian, metric on X. Hence, the operators A,
O, Apc, A4 send the subspace of left-invariant forms to the subspace of left-invariant forms, and induce the
self-adjoint operators

A € End(A%g*), O € End(A*%g), Apc € End(A*®gh),  Aa € End(A*°gl)

with respect to the inner products (-, --) induced by g on the space A®g* and on the space A**g¢. Hence, one
gets the orthogonal decompositions

A*g" = kerA@imA A*® gt = kerO@ im0,
A*® gt = kerABC@imABC, A gt = ker A4 ®im A4
(one could argue also by using the F. A. Belgun symmetrization trick [Bel00, Theorem 7]). It follows that
Hip (g;R) ~ ker A H%" (gc) ~ ker, H}E2 (9c) =~ ker Apc HY® (gc) ~ kerAy .

Remark 1.41. Let X = T'\ G be a 2n-dimensional solvmanifold endowed with a G-left-invariant complex
structure J, and denote the Lie algebra naturally associated to G by g. The map of complexes (1.3.2) induces an
injective homomorphism

it HY® (gc) — HY*(X) .
Furthermore, if i: Hy (g¢) Sy H72(X), then the map of complexes (1.3.2) is a quasi-isomorphism, that is,
it HY® (gc) = HY*(X) .
Indeed, fix a G-left-invariant Hermitian metric g on X. Recall that

w: HY®(X) 5 Hpo™ " " (X)
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is an isomorphism, [Sch07, §2.c]. Analogously, note that, by Remark 1.40 and since g is G-left-invariant, the map
x: A\*1%2 gr 5 AN gl induces an isomorphism

% HAh.Q (gC) E> Hga'z,n—'l (g(C) )
Note also that the diagram

H:ql;'2 (gC) H;‘h'z (X)

*lN Ni*

Hgaog,n—ol (Q(C) Hga.27n_.1(X)

)

commutes, since g is G-left-invariant. Since the map i: H5-*>" "% (gc) <= Hpo">" *'(X) is injective by Lemma
1.36, then also the map H3'"** (gc) — H3"**(X) is injective. If i: Hp """ (gc) — Hpo'>" ™ *'(X) is actually
an isomorphism, then also i: H3"** (gc) — H}'""**(X) is an isomorphism.

A slight modification of [CF01, Theorem 1] by S. Console and A. Fino gives the following result, which says
that the property of computing the Bott-Chern cohomology using just left-invariant forms is open in the space of
left-invariant complex structures on solvmanifolds, [Angll, Theorem 3.9].

Theorem 1.42. Let X = T'\ G be a solvmanifold endowed with a G-left-invariant complex structure J, and
denote the Lie algebra naturally associated to G by g. Let § € {0, 0, BC, A}. Suppose that

i Hy® (gc) — H® (X) .

Then there exists an open neighbourhood U of J in C (g) such that any J e U still satisfies
i HY® (gc) < Hp'*(X) .
In other words, the set
U = {J €C(g) : i HY (ac) & HY' (X)}
is open in C (g).
Proof. As a matter of notation, for € > 0 small enough, we consider

{(X, Jy) : t€A0,e)} = A(0,¢)

a complex-analytic family of G-left-invariant complex structures on X, where A(0,¢) := {t € C™ : |t| < &} for
some m € N\ {0}; moreover, let {g;},c (o) e a family of Ji-Hermitian G-left-invariant metrics on X depending

smoothly on . We will denote by 9; := 9, and 5: = —%g, 0, %4, the 0 operator and its g;-adjoint respectively for
the Hermitian structure (J;, g¢) and we set A; := Ay, one of the differential operators involved in the definition
of the Dolbeault, conjugate Dolbeault, Bott-Chern or Aeppli cohomologies with respect to (J¢, g¢); we remark
that A, is a self-adjoint elliptic differential operator for all the considered cohomologies.

1
By hypothesis, we have that (Hﬂ.J. (g(c)> = {0}, where the orthogonality is meant with respect to the inner
0
product induced by gg, and we have to prove the same replacing 0 with ¢ € A(0, ). Therefore, it will suffice to
prove that

1
A0,€) 3 t v dime (H,;;: (gc)) €N

is an upper-semi-continuous function at 0. For any ¢t € A(0, ), being A; a self-adjoint elliptic differential operator,

there exists a complete orthonormal basis {e;(t)};cr of eigen-forms for A; spanning (/\}’t' g?&)l, the orthogonal
complement of the space of G-left-invariant forms, see [KS60, Theorem 1]. For any i € I and t € A(0,¢), let a;(t)
be the eigen-value corresponding to e;(t); A; depending differentiably on t € A(0,¢), for any ¢ € I, the function
A(0,e) 3t — a;(t) € C is continuous, see [KS60, Theorem 2]. Therefore, for any ¢ty € A(0, e), choosing a constant
¢ > 0 such that ¢ & {a;(ty) : @ € I'}, the function

U.: A(0,e) > N, t — dimspan {e;(t) : a;(t) < ¢}

is locally constant at ¢y; moreover, for any t € A(0,¢) and for any ¢ > 0, we have

V.(t) > dimc (H,;J: (9<c))L :

Since the spectrum of A, has no accumulation point for any ¢y € A(0, €), see [KS60, Theorem 1], the theorem
IS
follows choosing ¢ > 0 small enough so that ¥.(0) = dim¢ (HL' (gc)> . O

0
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In particular, the left-invariant complex structures on nilmanifolds belonging to the classes of Theorem
1.39, and their small deformations satisfy the following conjecture, [Angll, Conjecture 3.10], which generalizes
Conjecture 1.34.

Conjecture 1.43. Let X = '\ G be a nilmanifold endowed with a G-left-invariant complex structure J, and
denote the Lie algebra naturally associated to G by g. Then the de Rham, Dolbeault, Bott-Chern and Aeppli
cohomologies can be computed as the cohomologies of the corresponding subcomplexes given by the space of
G-left-invariant forms on X, that is,

. ° 1 . o0 L
dimg (Hig (GR)" = 0 and  dime (H}®(a0)) = 0,

where § € {0, 0, BC, A}, and the orthogonality is meant with respect to the inner product induced by a given
J-Hermitian G-left-invariant metric g on X.

1.4 The cohomologies of the Iwasawa manifold and of its small de-
formations

The Iwasawa manifold is one of the simplest example of non-Kéhler complex manifold: as such, it has been
studied by several authors, and it has turned out to be a fruitful source of interesting behaviours, see, e.g.,
[FG86, Nak75, AB90, Bas99, AGS97, KS04, Ye08, Sch07, AT11, Angll, Frall].

In this section, we recall the construction of the Iwasawa manifold §1.4.1, see, e.g., [FG86], [Nak75, §2], and
of its Kuranishi space, §1.4.1, see [Nak75, §3]; then we write down the de Rham cohomology, §1.4.2, and the
Dolbeault cohomology, §1.4.3, (using [Nomb54, Theorem 1], and [Sak76, Theorem 1] and [CF01, Theorem 1]), and
we compute the Bott-Chern and Aeppli cohomologies, §1.4.4, (using Theorem 1.39 and Theorem 1.42), of the
Iwasawa manifold and of its small deformations.

1.4.1 The Iwasawa manifold and its small deformations
The Iwasawa manifold

Let H(3;C) be the 3-dimensional Heisenberg group over C defined by
2423

1 22 | €eGL(3;C) : 24 2%, 23¢Cy ,
0 1

H(3;C) :=

S O =

where the product is the one induced by matrix multiplication. (Equivalently, one can consider H(3;C) as
isomorphic to (C3, «), where the group structure * on C? is defined as

(21, 22, 23) * (w1, wo, w3) = (21 + w1, 22 + wa, 23+ 21W2 + w3) .)

It is straightforward to prove that H(3;C) is a connected simply-connected complex 2-step nilpotent Lie group,
that is, the Lie algebra (b3, [, -/]) naturally associated to H(3;C) satisfies [h3, hs] # 0 and [hs, [h3, hs]] = 0.
One finds that

ol = dz!
p? = d2?
3 = dz? -2l d2?

is a H(3; C)-left-invariant co-frame for the space of (1, 0)-forms on H(3; C), and that the structure equations with
respect to this co-frame are

det = 0
dp? = 0
dg® = —plAy?

Consider the action on the left of H (3; Z [i]) := H(3; C)NGL (3; Z[i]) on H (3; C) and take the compact quotient
I3 := H(3; Z[i])\ H(3; C) .

One gets that I3 is a 3-dimensional complex nilmanifold, whose (H(3; C)-left-invariant) complex structure Jo is
the one inherited by the standard complex structure on C3; I is called the Twasawa manifold.
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The forms ¢!, p? and 3, being H(3; C)-left-invariant, define a co-frame also for (Tl’oﬂg)*. Note that I3 is a
holomorphically parallelizable manifold, that is, its holomorphic tangent bundle is holomorphically trivial. Since,
for example, 2 is a non-closed holomorphic form, it follows that I3 admits no Kéhler metric. In fact, one can show
that I3 is not formal, having a non-zero Massey triple product, see [FG86, page 158]; therefore the underlying
differentiable manifold of I3 has no complex structure admitting Kéhler metrics, see [DGMS75, Main Theorem],
even though all the topological obstructions concerning the Betti numbers are satisfied. Nevertheless, I3 admits
the balanced metric w := Zj’:l NN

We sketch in Figure 1.2 the structure of the finite-dimensional double complex (A®* (h3 @r C)", 0, 9): the
dots denote a basis of A** (h3 ®r C)*, horizontal arrows are meant as 0, vertical ones as d and zero arrows are
not depicted.

A T
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e
0 1 2 3

Figure 1.2: The double complex (A** (h3 @ C)", 0, 9).

Small deformations of the Iwasawa manifold

I. Nakamura classified in [Nak75, §2] the three-dimensional holomorphically parallelizable solvmanifolds into four
classes by numerical invariants, giving the Iwasawa manifold I3 as an example in the second class. Moreover, he
explicitly constructed the Kuranishi family of deformations of I3, showing that it is smooth and depends on 6
effective parameters, [Nak75, pages 94-95|, compare also [Roll1lb, Corollary 4.9]. In particular, he computed
the Hodge numbers of the small deformations of I3 proving that they have not to remain invariant along a
complex-analytic family of complex structures, [Nak75, Theorem 2], compare also [Ye08, §4]; moreover, he proved
in this way that the property of being holomorphically parallelizable is not stable under small deformations,
[Nak75, page 86], compare also [Roll1lb, Theorem 5.1, Corollary 5.2].

Firstly, we recall in the following theorem the results by I. Nakamura concerning the Kuranishi space of the
Iwasawa manifold.

Theorem 1.44 ([Nak75, pages 94-96]). Consider the Iwasawa manifold Is := H (3; Z [i])\ H(3; C). There exists
a locally complete complex-analytic family of complex structures {Xy = (I3, Jt)}teA(o,a)7 deformations of I3,
depending on six parameters

t = (ti1, ti2, to1, ta2, t31, ts2) € A(0,e) C C°,

where € > 0 is small enough, A(0,¢) := {s eCh : Js| < 5}, and Xo = I3.
A set of holomorphic coordinates for Xt is given by

¢t o= M) = A+ Tt
¢ o= () 224 Yy ton 2
¢3 C3(t) 2430 (tar +top 2V) ZF + A (2, 22) — D (t) B
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where

D () := det ( TIGE )

ta1 a2
and 1
A 2) =5 (o (B1) 20010 1 2 4tz s (2)7)

For every t € A(0,¢), the universal covering of Xy is C3; more precisely,
Xy = [\ C?,
where I'y is the subgroup generated by the transformations

(e, ¢ ) ) @ e ey

varying (wl, w?, w3) ez [i])g, where

o= O (Wt e+t @?)
o= Ot (Wt @+t @?)
53 = C3 + (UJ3 + t31 (I}l + t32 w?) + UJl CQ

+ (tor @' +t220?%) (¢t +w!) + A (01, @) — D (t) &°

Remark 1.45. Note that, by [Rolllb, Theorem 4.5], if X = T'\ G is a holomorphically parallelizable nilmanifold
and G is v-step nilpotent, then Kur(X) is cut out by polynomial equations of degree at most v; furthermore, by
[Roll1b, Corollary 4.9], the Kuranishi space of X is smooth if and only if the associated Lie algebra g to G is a
free 2-step nilpotent Lie algebra, i.e., g ~ b, with m = dim¢ Hg’l(X), where b,, := C™ @ A2C™ with Lie bracket
[(11 + b1 ANep, ag + b A CQ] = aq N ag for ay, by, c1,a9,ba,c0 € C™.

According to the classification by I. Nakamura, the small deformations of I3 are divided into three classes,
(i), (ii), and (iii), in terms of their Hodge numbers: such classes are explicitly described by means of polynomial
relations in the parameters, see [Nak75, §3]. As we will see in §1.4.4, it turns out that the Bott-Chern cohomology
yields a finer classification of the Kuranishi space of I3; more precisely, h%QC assumes different values within class
(i), respectively class (i), according to the rank of a certain matrix whose entries are related to the complex
structure equations with respect to a suitable co-frame, whereas the numbers corresponding to class (i) coincide
with those for I3: this allows a further subdivision of classes (i) and (74) into subclasses (ii.a), (ii.b), and (%i.a),
(iii.b).

More precisely, the classes and subclasses of this classification are characterized by the following values of the
parameters:

class (i) t11 = t12 = ta1 = taa = 0;

class (’1:1/) D (t) =0 and (tlla tlg, t21, tgg) 7é (0, O, 0, O)
subclass (i.a) D (t) =0 and rkS = 1;
subclass (4.b) D (t) =0 and rk S = 2;

class (i) D (t) # 0:
subclass (iii.a) D (t) # 0 and rk S = 1;
subclass (4i.b) D (t) # 0 and k.S = 2.

The matrix S is defined by

g (011 T3 O 021)
011 022 021 013

where 0,1, 013, 057, 095 € C and 015 € C are complex numbers depending only on t such that
dgf =t 01206 NgE + 01106 APy + 01390 AP+ 0a1 9} APy + 03 G NG

being
or = A, v =A@, @ = A -2 dG - (fn 2 2 2) A
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see §1.4.1. As we will show, see §1.4.1, the first order asymptotic behaviour of 012, 017, 013, 097, 093 for t near 0
is the following;:

o2 = —1+4o([t])

o1 = ta+o(]t])

013 = taa+o0(|t]) for t € classes (7), (i) and (iii) , (1.4.1)
o1 = —tut+o(|t])

oy = —tiz+o([t])

and, more precisely, for deformations in class (ii) we actually have that

o2 = —1+4+o([t])

o1 = ta(l+0(1))

o153 = taa(l+0(1)) for t € class (i) . (1.4.2)
o1 = —tu(l+o0(1))

o3 = —tia(l+o0(1))

The complex manifold Xy is endowed with the Ji-Hermitian H(3; C)-left-invariant metric g¢, which is defined
as follows:

3
g = Y _plod.
j=1

Structure equations for small deformations of the Iwasawa manifold

In this section, we give the structure equations for the small deformations of the Iwasawa manifold; we will use
these computations in §1.4.3 and §1.4.4 to write the Bott-Chern cohomology of Xy, and in Theorem 2.49 to prove
that the cohomological property of being C°°-pure-and-full is not stable under small deformations of the complex
structure.

Fix t € A(0,¢) C C°, and consider the small deformation X; of the Iwasawa manifold I3. Consider the system
of complex coordinates on X given by

o= 2t

G2 = 22435t

G o= B0 (b + itz + A(Z)
Consider

pr = dg

p; = A

0 = A -z d@ - (ta 2+t 2?) A

as a co-frame of (1,0)-forms on Xy (that is, as a 'y-invariant co-frame of (1, 0)-forms on C3). We want to write
the structure equations for X; with respect to this co-frame.
A straightforward computation gives

2= (Ct1+)\1<_t1+/\24t2+)\3§t2)

22 a(NOC€+N1§€+N2Ct2+M3§E)

where a, 8, v, A; (for ¢ € {1,2,3}), p; (for j € {0,1,2,3}) are complex numbers depending just on t, and defined
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as follows:
1
a = 5 —
1 — [taa]” — to1 t12
B = tartin +ilaalan
1
v o= - = _ -
L—|t11]” — B (t11 o + tia taz) — t1a o
A=~ (1 + atioto + o |t22|2)
A2 = o (tintie +tiatag)
)\3 = —tlg (1 + Oél?lg t21 + « |t22|2)
po = By
p1 = Ay —tar
p2 = 14+ A8y
puz = A3y —ta

For the complex structures in the class (i), one checks that the structure equations (with respect to the
co-frame {cp%, @2, cp::’}) are the same as the ones for I3, that is,

deg = 0
dei = 0 for te class (7).
dgf = —pi A}

For small deformations in classes (4i) and (%), we have that

deg = 0
dgpf = 0
for t € classes (%) and (%ii) ,
def = o208 A} () (i)
+011 9% A Py + 013 A B
+091 9F A Py + 093 07 N 7

where 012, 011, 013, 051, 095 € C are complex numbers depending just on t. The asymptotic behaviour of
012, 011, 013, 091, 093 € C is the following:

oz = —1+4o(]t])

o1 = ta +o(]t])

o153 = tag+o(|t]) for t € classes (7), (ii) and (iii) , (1.4.3)
oy = —tuto(t])

o3 = —tizto(t])

for t € class (ii) . (1.4.4)
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The explicit values of 012, 0,1, 013, 057, 095 € C in the case of class (i) are the following, [AT11, page 416]:

O12 = =7+t AsY + taodls

o171 = to1y (1 + tortipa + |t22|2a>

o153 = ta7y (1 + tortroa + [tao]? 04) for t € class (ii).
Oy = —tiny (1 + tortaa + [tas]? a)

Oy = —t127 (1 + tortiger + |tz a)

Note that, for small deformations in class (i), one has 12 # 0 and (041, 013, 091, 093) # (0, 0, 0, 0).

1.4.2 The de Rham cohomology of the Iwasawa manifold and of its small deforma-
tions

Recall that, by Ehresmann’s theorem, every complex-analytic family of compact complex manifolds is locally
trivial as a differentiable family of compact differentiable manifolds, see, e.g., [MK06, Theorem 4.1]. Therefore
the de Rham cohomology of small deformations of the Iwasawa manifold is the same as the de Rham cohomology
of I3, which can be computed by using K. Nomizu’s theorem [Nomb54, Theorem 1].

In the table below, we list the harmonic representatives with respect to the metric go instead of their classes
and, as usually, we shorten the notation writing, for example, 4P := p4 A gB.

HE, (I3;C) H go-harmonic representatives dimc HYp, (I35 C)
E—1 ol 02, Bt &2 4
k=2 P18, 2B o1 12 21 22 1323 )
E—=3 Q123 131 132 231 232 113 193 213 ;223 123 10
k=4 Q1231 ;1232 1313 1323 2313 2323 1123 2123 8
L=5 @12313, 90123237 @13123’ (ngiéﬁ 4

Remark 1.46. Note that all the go-harmonic representatives of HJ(I3;R) are of pure type with respect to Jo,
that is, they are in (AP4l3 & A%PI3) N APT4I3 for some p, q € {0, 1, 2, 3}; this is no more true for Jy with t # 0
small enough, see Theorem 2.49.

1.4.3 The Dolbeault cohomology of the Iwasawa manifold and of its small defor-
mations

The Hodge numbers of the Iwasawa manifold and of its small deformations have been computed by I. Nakamura in
[Nak75, page 96]. The g¢-harmonic representatives for H>'® (Xy), for t small enough, can be computed using the
considerations in §1.3.2 and the structure equations given in §1.4.1. We collect here the results of the computations.

In order to reduce the number of cases under consideration, recall that, on a compact complex Hermitian
manifold X of complex dimension n, for any p,q € N, the Hodge-*-operator and the conjugation induce an
isomorphism

HEU(X) 5 Hy *"7P(X) 5 Hy 7" (X) .

e 1-forms. It is straightforward to check that
H%’O(Xt) = C{pg, ¢t, py) for te class (i)

and
Hg’l(Xt) _ (C<<,5%, ¢2> for t e classes (i), (i) and (7).
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Since 0 ¢} # 0 for Xy in class (#) or in class (i), one has
H%’O(Xt) = C{pg, ;) for te€ classes (ii) and (iii) :

this means in particular that X is not holomorphically parallelizable for t in classes (ii) and (%), [Nak75,
pages 86, 96].

Summarizing,
for te class (i)

3
dime HX?(X,) =
o 2 for t e classes (ii) and (iii)

and
dime HO'(X¢) = 2 for  t € classes (i), (ii) and (iii) .

2-forms. A straightforward computation yields

Hg’O(Xt) = C{p®, o8, 03%)y  for te class (i),

HZ'(Xy) = C<<ﬂ%i, 0i%, o3l o2, i, wi’§> for te class (i),
and

Hg’2(Xt) = (C<<p23, <p2‘6’> for t e classes (i), (ii) and (%) .

We now compute Hg’O(Xt) for t € classes (%) and (%i). The H(3; C)-left-invariant (2, 0)-forms are of the
type Api? + B3 + C 33 with A, B,C € C, so one has to solve the linear system

0 0 0 A 0
0 —o91 oy |- B | =] 0 [:
0 —095 0713 C 0

since the associated matrix to the system has rank 0 for t € class (%), rank 1 for t € class (%) and rank 2
for t € class (iii), one concludes that

dimc Hg’O(Xt) =2 for te class (i)
(the generators being pi? and a linear combination of ¢{? and p?3) and
dime H2"(X¢) = 1 for  t€ class (iii)

(the generator being ({?).
It remains to compute H%’l(Xt) for t € classes (ii) and (7). For such t, one has that: three independent

O, -harmonic (1,1)-forms are of the type ¢ :=: A(p%i + B(p%j + C(pfi + Dapfé where A, B, C, D € C
satisfy the equation

(o7 —013 —0o1 095 )- =0,

DQwm e

whose matrix has rank 1 for t € classes (i7) and (4i) (while its rank is 0 for t € class (4)); two other
independent Oj,-harmonic (1,1)-forms are of the type 1o :=: Ep{3 + F ¢ + Gl + H p3? where
E, F, G, H € C are solution of the system

E
—oz2 0 -0 o\ [ F | _ (0
0 -0z —031 0xn G 0/)"
H

whose matrix has rank 2 for t € classes (i), (%) and (%i); note also that no (1,1)-form with a non-zero

component in ¢$* can be 0 ;,-harmonic. Hence, one can conclude that

dim¢ H%"l(Xt) =5 for te€ classes (%) and (%) .
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Summarizing,
3 for t e class (7)
dim@Hg’O(Xt) = 2 for te class (it)
1 for t e class (iii)
and
6 for t e class (I
dime HXY(X,) = g
9 5 for t e classes (i) and (iii)
and

dim¢ H%Q(Xt) = 2 for te€ classes (4), (ii) and (iii) .

o 3-forms. Finally, we have to compute Hg’o (X¢) and Hg’l (Xt). A straightforward linear algebra computa-
tion yields to

Hg’O(Xt) = C{p**) for te€ classes (i), (i) and (iii)

and
2 (X0 = €Al ol Gl I G 6B for b class (i),

It remains to compute Hg’l(Xt) for t € classes (ii) and (iii). Firstly, one notes that four of the six

generators of the space of H(3; C)-left-invariant (2, 1)-forms that are 0, -harmonic for t € class (i) can be
slightly modified to get four J ,-holomorphic (2, 1)-forms for t € class (i) or class (ii): more precisely, one
has

2,1 131 922 123 132 021 123 231 912 123 232 011 123\ .
Ha (Xe) 2 CLog™ — =06 o7 — == > P6 — =—=%6 » Pp — =—%Pt )
012 012 o o

in other words, four independent [ ,-harmonic (2, 1)-forms are of the type v :=: C OB 4L D3 L B o132 4
F 3 + G 3% where C, D, E, F, G € C are solution of the linear system

(UT2 O3 —091 =033 ‘711)‘

QMmO AQ
|
o

whose matrix has rank 1 for every t € classes (i), (i) and (#4). Note that one can reduce to study
the O-harmonicity of the (2,1)-forms of the type v =: Api? + Bpi??: indeed, a (2,1)-form 1 :=:
1 + 1y + H o33 + L 233, where H, L € C, is O-harmonic if and only if H = 0 = L and both 1, and 1),
are (-harmonic. A (2,1)-form of the type 1 is O-harmonic if and only if A, B € C solve the linear system

—oix 03 \ (ANY_ (0
—031 O3 B ) \0)”
whose matrix has rank 0 for t € class (i), rank 1 for t € class (i) and rank 2 for t € class (#4). In

particular, one gets that
dimg¢ H;’I(Xt) =5 for te class (i)

and
dime H2'(Xy) = 4 for  t € class (iii) .
Summarizing,
dimc Hg’O(Xt) =1 for te classes (7), (ii) and (iii) ,
and
6 for te class (7)
dim@Hg’l(Xt) = 5 for te class (i)

4 for t e class (iii)
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1.4.4 The Bott-Chern and Aeppli cohomologies of the Iwasawa manifold and of its
small deformations

In this section, using Theorem 1.39 and Theorem 1.42, we explicitly compute the dimensions of Hy(X¢), for t
small enough, [Angll, §5.3]: such numbers are summarized in the tables in §1.4.5.

In order to reduce the number of cases under consideration, recall that, on a compact complex Hermitian

manifold X of complex dimension n, for every p,q € N, the conjugation induces an isomorphism HEA(X) —
H%E(X), and the Hodge-+-operator induces an isomorphism H%&(X) = HY}y~*" P(X); furthermore, note that

H%2(X) ~ ker (d: APP X — APTH(X;C))

and that
Hpo(X) = HX'(X) .

e 1-forms It is straightforward to check that
Hpl(Xy) = Clpg, ¢f)  for  te classes (3), (i) and (iii) .
e 2-forms It is straightforward to compute
HEa(Xe) = Clpf2, o, 92%)  for  te class ().

The computations for Hyg(Xs) reduce to find ¢ = A2 + B ol + C 3? where A, B, C € C satisfy the
linear system

0 0 0 A 0
0 —o91 oy |- B |=]0 [,
0 —095 0713 C 0

whose matrix has rank 0 for t € class (i), rank 1 for t € class (i) and rank 2 for t € class (%i); so, in
particular, we get that
dimcleg’g(Xt) =2 for te class (i)

and
dime Hpo(Xy) = 1 for  te class (iii)
(more precisely, for t € class (7ii) we have Hye(X¢) = C (pi?)).
It remains to compute Hg’é(Xt) for t € classes (i), (i) and (%i). First of all, it is easy to check that

H}g’é(Xt) 2 (C<g0:§i, 90%5, 90%17 4,0%§> for t € classes (i), (%) and (%) ,
and equality holds if t € class (i), hence, in particular, if t = 0. This immediately implies that
Hpb(Xy) = (C<L,O%I, 012, o7, LP%Q> for t € classes (i), (i) and (%) ;

indeed, the function t — dim¢ H,é’é(Xt) is upper-semi-continuous at 0, since HlBé (Xt) is isomorphic to
the kernel of the self-adjoint elliptic differential operator Apgc 5, [atix,. (One can explain this argument
saying that the new parts appearing in the computations for t # 0 are “too small” to balance out the lack
for the O-closure or the d-closure.) From another point of view, we can note that (1, 1)-forms of the type
v=Ap + BpP + Cydt + D2 + E 33 are ABcJt—harmonic ifand only if E=0and A, B, C, DeC
satisfy the linear system

—012 0 —012 011 A 0

0 —012 —0935 —05] B . 0
013 —011 012 0 c 0 ’
Oy —0o1 0 o12 D 0

whose matrix has rank 4 for every t € classes (%), (ii) and (iii).
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e 3-forms It is straightforward to compute
H%’g(Xt) = C{pg*) for te classes (4), (ii) and (iii) .

Moreover,

Hpe(Xe) = C <s0%21, P2, o — ZZ B 3Ry AL 128 aal | T 1z ek UL soi23>
012 012 012 012
for t e classes (i), (%) and (%) ;
in particular,
HEE(Xe) = Coi?, o2, 0¥, o2, o, o) for te class (i).
From another point of view, one can easily check that

Hé’é(Xt) 2 (C<<p%2i, <p,1;2§> for t e classes (i), (i) and (%) ,

and that the (2, 1)-forms of the type i) = A Oi22 L B3l 4+ Cpl32 4+ DBl 4 B2 4+ F pl3 4 G 0233 are
Apc,,-harmonic if and only if F'=0= G and 4, B, C, D, E € C satisfy the equation

(UT? 023 —091 033 011)'

BT QT
Il
o

whose matrix has rank 1 for every t € classes (7), (#) and (7i). Note in particular that the dimensions of
H%’g(Xt) and of Hé’é(Xt) do not depend on t.

e 4-forms It is straightforward to compute
H%é(Xt) = C<<,0%231, 4,0%23§> for t e classes (i), (%) and (%)
and
H22(X,) = (C<<p%21:§7 p1228 1812 1815 1335 2312 2s13 S05323> for te class (i) .
Moreover, one can check that
Héé(Xt) 2 (C<<p,1:213, QD%2§3, @%BE, gof?’ﬁ> for te€ classes (i), (it) and (%) ,
12

and that no (2,2)-form with a non-zero component in {22 can be ABC‘]t—harmonic. For Hé’é(Xt)

with t € classes (i) and (iii), we get a new behaviour: there are subclasses in both class (i) and class

(ii¢), which can be distinguished by the dimension of H;;é(Xt). Indeed, consider (2,2)-forms of the

type ¥ = A@%Sig + B cp%gig + Ccpf:ﬁg + D 302353; a straightforward computation shows that such a 1 is
Apc,, -harmonic if and only if A, B, C, D € C satisfy the linear system

A
(Uzi 053 —0a1 011)_ B :<0>.
022 —021 —012 011 C 0
D

As one can straightforwardly note, the rank of the matrix involved is 0 for t € class (%), while it is 1 or 2
depending on the values of the parameters within class (%), or within class (7). Therefore

dime Hpa(Xy) = 7 for t € subclasses (ii.a) and (iii.a)

and
dim¢ H?B’é(Xt) =6 for t & subclasses (i.b) and (%.b) .
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o 5-forms Finally, let us compute Hg’é(Xt). It is straightforward to check that

HE2(X,) = C(

in particular, it does not depend on t € A(0,¢).

2312 12313 @%23§3> for t e classes (i), (4) and () :

We summarize the results of the computations above in the following theorem, [Angll, Theorem 5.1].

Theorem 1.47. Consider the Iwasawa manifold I := H (3; Z [i])\ H(3; C) and the family {X¢ = (I3, Jt)}sen(o,0)
of its small deformations, where € > 0 is small enough and Xo = I3. Then the dimensions W3¢ := Wil (X¢) ==
dime HEE (Xy) = dime HY 779 (Xy) does not depend on t € A(0,¢) whenever p + q is odd or (p,q) €
{(1,1), (3,1), (1,3)}, and they are equal to

e
e
e
Hi

3,2
hgo

A
2
B
i

2,3
hgé

= 2,
e {1,2,3}, hie
=1 R = W
= 2, h3z,
= 3.

m

4,
6,
{65778}7

Remark 1.48. As a consequence of the computations above, we notice that the Bott-Chern cohomology yields a
finer classification of the small deformations of I3 than the Dolbeault cohomology: indeed, note that dim¢c H éé (Xt)
assumes different values according to different parameters in class (i), respectively in class (i4); in a sense,
this says that the Bott-Chern cohomology “carries more informations” about the complex structure that the
Dolbeault one. Note also that most of the dimensions of Bott-Chern cohomology groups are invariant under small
deformations: this happens for example for the odd-degree Bott-Chern cohomology groups.
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1.5 Cohomology of orbifolds

The notion of orbifold has been introduced by I. Satake in [Sat56], with the name of V-manifold, and has been
studied, among others, by W. L. Baily, [Bai56, Bai54].

In this section, we start by recalling the main definitions and some classical results concerning complex orbifolds
and their cohomology, and we are then interested in their Bott-Chern cohomology. Compact complex orbifolds of
the type X = X / G, where X is a compact complex manifold and G is a finite group of biholomorphisms of X,
constitute one of the simplest examples of singular spaces: more precisely, we study the Bott-Chern cohomology for
such orbifolds, proving that it can be defined using either currents or forms, or also by computing the G-invariant
ABC—harmonic forms on X, Theorem 1.55.

1.5.1 Orbifolds and cohomologies

We first recall some classical definitions and results about orbifolds and their cohomologies, referring to [Joy07,
Joy00, Sat56, Bai56, Baib4] (see, e.g., [Joy07, Definition 7.4.3]).

Definition 1.49 ([Sat56, Definition 2]). A complex orbifold of complex dimension n is a singular complex space
of complex dimension n whose singularities are locally isomorphic to quotient singularities C"/ G, for finite
subgroups G C GL(n;C).

By definition, an object (e.g., a differential form, a Riemannian metric, a Hermitian metric) on a complex
orbifold X is defined locally at # € X as a Gy-invariant object on C”, where G, C GL(n;C) is such that X is
locally isomorphic to C"/ G, at z.

In particular, one gets a differential complex (/\'f( , d), and a double complex (/\'"f( , 0, 5). Define the de
Rham, Dolbeault, Bott-Chern, and Aeppli cohomology groups of X respectively as

. /o kerd I ker 9
Hip(XiR) = 57 Hy*(X) =5
e /5 ker & Nker & 0o /G ker 00
He (X) = =155 Ha(X) = o rms

The structure of double complex of (/\'7')2 , 0, 9) induces naturally a spectral sequence {(Ep®, d,)}, oy, called
Hodge and Frolicher spectral sequence of X, such that E}'® ~ H%" (X) (see, e.g., [McCO1, §2.4]). Hence, one has
the Frolicher inequality, see [Fr655, Theorem 2],
. s - . k < .
Y dime H2?(X) > dime Hjg (X;C) |
p+q=Fk
for any k € N.

Given a Riemannian metric on a complex orbifold X of complex dimension n, one can consider the R-
linear Hodge-*-operator *4: A® X —>~/\2""X , and hence the 2" order self-adjoint elliptic differential operator
A:=[d,d]:=dd"+d" d € EndA*X. ~

Analogously, given a Hermitian metric on a complex orbifold X of complex dimension n, one can consider the
C-linear Hodge-*-operator *,: A®1*2 X — A"7*2"~*1 X and hence the 274 order self-adjoint elliptic differential

operator J := {57 5*} =00 +0 € EndA**X. Furthermore, following [Sch07, §2], see also [KS60, Proposition
5], one can define the 4" order self-adjoint elliptic differential operators
Apo = (00) (00)" + (90)" (99) + (3°0) (7"0) + (30) (9°0) +33+0°0 € Budn™*X
and -~
Ay = 90" +99 + (99) (99) + (99) (99)" + (90%)" (99*) + (90%) (99*)" € End A™*X .

As a matter of notation, given a compact complex orbifold X of complex dimension n, denote the constant
sheaf with coefficients in R over X by R¢ R, the sheaf of germs of smooth functions over X by C¥, the sheaf of
germs of (p, q)-forms (for p,q € N) over X by .AX , the sheaf of germs of k-forms (for k& € N) over X by .A’}(, the
sheaf of germs of bidimension-(p, g)-currents (for p,q € N) over X by D¢, :=: D """ "% the sheaf of germs of
dimension-k-currents (for k € N) over X by Dy, :=: D?(”_k, and the sheaf of holomorphic p-forms (for p € N)
over X by Q.

The following result, concerning the de Rham cohomology of a complex orbifold, was proven by I. Satake,
[Sat56], and by W. L. Baily, [Bai56].
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Theorem 1.50 ([Sat56, Theorem 1], [Bai56, Theorem H]). Let X be a compact complex orbifold of complex
dimension n. There is a canonical isomorphism

Hyp (X5R) ~ H* (X;Rg) |

where R is the constant sheaf with coefficients in R over X.
Furthermore, given a Riemannian metric on X, there is a canonical isomorphism

Hjp (X5R) ~ kerA.
In particular, the Hodge-x-operator induces an isomorphism
Hyp (X;R) ~ HIE* (XR) .

The isomorphism Hj3p, (f( ; R) ~ ker A can be seen as a consequence of a more general decomposition theorem
on orbifolds, [Bai56, Theorem D], which holds for 224 order self-adjoint elliptic differential operators. In particular,
as regards the Dolbeault cohomology, the following result holds.

Theorem 1.51 ([Bai54, page 807], [Bai56, Theorem K]). Let X be a compact complex orbifold of complex
dimension n. There is a canonical isomorphism

L) > ~ T .
Hyt (X)) = 1 (%08
where QI;Z, is the sheaf of holomorphic p-forms over X, for p € N.

Furthermore, given a Hermitian metric on X, there is a canonical isomorphism

Hg" (X) =~ kerO.

In particular, the Hodge-x-operator induces an isomorphism

H* (X) = HD 0 (X))

1.5.2 Bott-Chern cohomology of orbifolds of global-quotient-type

Now, we will reduce to study complex orbifolds of the special type
X = X/G,

where X is a complex manifold and G is a finite group of biholomorphisms of X. Indeed, note that, by the S.
Bochner linearization theorem [Boc45, Theorem 1], see, e.g., [DK00, Theorem 2.2.1], see also [Rai06, Theorem
1.7.2], X = X/ G is an orbifold according to the above definition.

Orbifolds of global-quotient-type have been considered and studied by D. D. Joyce in constructing examples
of compact 7-dimensional manifolds with holonomy Gs, [Joy96b] and [Joy00, Chapters 11-12], and examples
of compact 8-dimensional manifolds with holonomy Spin(7), [Joy96a, Joy99] and [Joy00, Chapters 13-14]. See
also [FMO08, CEMO08] for the use of orbifolds of global-quotient-type to construct compact 8-dimensional simply-
connected non-formal symplectic manifolds (which do not satisfy, respectively satisfy, the Hard Lefschetz condition),
answering to a question by I. K. Babenko and I. A. Taimanov, [BT00, Problem].

Since G is a finite group of biholomorphisms, the singular set of X is

Sing (X) = {tG€ X/G : v € X and g-x =z for some g € G\ {idx}} .

Remark 1.52. Not all orbifolds are global quotients X/ G: a counterexample is provided by considering weighted
projective spaces, see, e.g., [Joy07, Definition 6.5.4].

In particular, for the sake of completeness, we provide in this special case a straightforward proof of [Sat56,
Theorem 1] and [Bai56, Theorem H] for the de Rham cohomology, and of [Bai54, page 807] and [Bai56, Theorem
K] for the Dolbeault cohomology; furthermore, we extend these results to Bott-Chern and Aeppli cohomologies.

Theorem 1.53 ([Sat56, Theorem 1], [Bai56, Theorem H]). Let X = X/ G be a compact complex orbifold of
complex dimension n, where X is a complex manifold and G is a finite group of biholomorphisms of X. There are
canonical isomorphisms

ker (d: D*X — D*+1X)
im (d: DX — D'X) ’

H(;R(X;]R) ~ H* (X;KX) ~



52 Cohomology of complex manifolds

Furthermore, given a Riemannian metric on X, there is a canonical isomorphism
Hi, (X;R) ~ kerA.
In particular, the Hodge-x-operator induces an isomorphism
Hyp (X;R) ~ HIE* (XR) .

Proof. We claim that
0= Rz — (A%, d) and 0= Rz — (D%, d)

are fine resolutions of the constant sheaf R . Indeed, take ¢ a germ of a d-closed k-form on X, with k € N'\ {0},
that is, a germ of a G-invariant k-form on X; by the Poincaré lemma, see, e.g., [Dem12, 1.1.22], there exists ¢ a
germ of a (k — 1)-form on X such that ¢ = d; since ¢ is G-invariant, one has

¢ = 0rdGZg¢ B ordng (dy) = d ordGZgw ’
g geG geG

€G
that is, taking the germ of the G-invariant (k — 1)-form

. 1 i}
Y= ordGZg v

geG

on X, one gets a germ of a (k — 1)-form on X such that ¢ = d¢). As regards the case k = 0, it follows
straightforwardly since every (G-invariant) d-closed function on X is locally constant. The same argument applies
for the sheaves of currents, by using the Poincaré lemma for currents, see, e.g., [Dem12, Theorem 1.2.24]. Finally,
note that, for every k& € N, the sheaves A’}( and D’}( are fine: indeed, they are sheaves of C¥-modules over a
para-compact space.

Hence, one gets that

i (X'R~) N ker (d: /\'X—>/\‘+1X)
T im(d: AT X = ACX)

=: H3,(XiR)

ker (d: D*X — D*H1X)
im (d: D*~1X = D*X) ’

see, e.g., [Dem12, Corollary IV.4.19, IV.6.4].

Consider now a Riemannian metric on X, that is, a G-invariant Riemannian metric on X. Since the elements of
G commute with both d and d* (the Riemannian metric being G-invariant), and hence with A, the decomposition

A°X = ker A@dAATIX @d*ATIX
induces a decomposition of the space of G-invariant forms, namely,
A*X = kerA@dA*IX @d* A®HLIX .

More precisely, let o be a G-invariant form on X; considering the decomposition « :=: hy + d 8 + d* v with
ha, 8,7 € A*X such that Ah, = 0, one has

1 1 1 1
= * — *ha dl —— * d* * 7
@ ordGZga ordGZg + ordGZgﬂ + ordGng
geG geG geG geG

1 1 1 %
where 55 3 geq 97has Gria 2gec 970 orig 2gec 9™7 € A°X and

|
o

1 1
A * = (A =
ordGZgha ordGZg (&)
geG geG

Finally, note that the Hodge-+-operator *: A®* X — A?*~*X sends A-harmonic forms to A-harmonic forms,
and hence it induces an isomorphism

«: H3p (XGR) = Hi* (XGR)

concluding the proof. O
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A similar argument can be repeated for the Dolbeault cohomology; more precisely, the following result holds.

Theorem 1.54 ([Bai54, page 807], [Bai56, Theorem K]). Let X = X/G be a compact complex orbifold of
complex dimension n, where X is a complex manifold and G is a finite group of biholomorphisms of X. There are
canonical isomorphisms

ker (9: D*1:*2 X — D*1-*2+1X)

im (5: Deve2—1X D’17'2)~() ’

Hg”z (X) ~ H* (X',Q}g) ~

Furthermore, given a Hermitian metric on X, there is a canonical isomorphism
Hg' (X) =~ kerO.
In particular, the Hodge-x-operator induces an isomorphism
®1,® V) o~ —eo1,n—e &
H (R) = HIZ" ()
Proof. We claim that, for every p € N|
P p,e 5 14 D, 7
0—>QX—><AX,6> and 0—>QX—>(DX,6>

are fine resolutions of the constant sheaf Q})’?. Indeed, take ¢ a germ of a d-closed (p,q)-form (respectively,

bidimension-(p, ¢)-current) on X, with ¢ € N\ {0}, that is, a germ of a G-invariant (p, q)-form (respectively,
bidimension-(p, ¢)-current) on X; by the Dolbeault and Grothendieck lemma, see, e.g., [Dem12, 1.3.29], there
exists 1 a germ of a (p, ¢ — 1)-form (respectively, bidimension-(p, ¢ — 1)-current) on X such that ¢ = 9¢; since ¢
is G-invariant, one has

1 v, 1 Y .
¢ = ordGZg¢_ ordGZg (8¢) =9 ordGZgw ’
geG geG geq

that is, taking the germ of the G-invariant (p,q — 1)-form (respectively, bidimension-(p, ¢ — 1)-current)

- 1 .
Y= ordGZg v

geG

on X, one gets a germ of a (p,q — 1)-form (respectively, bidimension-(p, ¢ — 1)-current) on X such that ¢ = 9.
As regards the case ¢ = 0, it follows by the fact that every (G-invariant) d-closed bidimension-(p, 0)-current on X
is locally a holomorphic p-form, see, e.g., [Dem12, 1.3.29]. Finally, note that, for every ¢ € N, the sheaves A%7
and D;q are fine: indeed, they are sheaves of (C;’f R (C) -modules over a para-compact space.

Hence, one gets that

)
=
_

Ql

D AP X — APRHLY))
D APl X 5 AP X

12

HP»* (X, QZ;()

B
—_
Ql

:DP*X — DPotlY
. Dpe—1X s Do X

)
=
—

Ql

12

Y

)
)
)

=
—_
Ql

see, e.g., [Dem12, Corollary 1V.4.19, TV.6.4].

Consider now a Herlnitianir*netric on X, that is, a G-invariant Hermitian metric on X. Since the elements of
G commute with both 9 and 9 (the Hermitian metric being G-invariant), and hence with O, the decomposition

A X = kerO@ NI X ©0 A™TLX
induces a decomposition on the space of G-invariant forms, namely,
A X = kerO@IN* 1 X @D AT X

More precisely, let a be a G-invariant form on X; considering the decomposition « :=: hy + 0B + 5*7 with
ha, Byy € A**X such that Oh, = 0, one has

1

_ I R .
+9 ordGZgﬁ +9 ordGZg’y ’
geG geG

Q

1 . 1 -
“= ordGZga_ ordGZgh
geG geG
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1 1 1 %
where ord G ZgGG g*ho“ ord G ZgEG 9*6, ord G ZgEG 9*7 € A**X and

= ordGZg ha | = ordGZg (Dha) = 0.
geG geG

Finally, note that the Hodge-*-operator *: A®1-*2 X — A"*2n=1 X gends O-harmonic forms to O-harmonic
forms, where O := [0, §*] := 00* + 9*0 € End A** X, and hence it induces an isomorphism

w: Hov® (X) = Hp7 9 "% (X))

concluding the proof. O

Finally, as done in Theorem 1.53 and Theorem 1.54 for the de Rham cohomology and, respectively, the
Dolbeault cohomology, we provide the following result, concerning Bott-Chern and Aeppli cohomologies of compact
complex orbifolds of global-quotient-type.

Theorem 1.55. Let X = X/ G be a compact complex orbifold of complex dimension n, where X is a complex
manifold and G is a finite group of biholomorphisms of X. For any p,q € N, there are canonical isomorphisms

ker (0: DP9X — DPHLaX) Nker (: DPIX — DPITLX)

P4 (¥) ~
He: (X) = im (90: Dr-—14-1X — DraX) (15.1)

Furthermore, given a Hermitian metric on X, there are canonical isomorphisms
HyZ (X') ~ ker Agc and HY® (X') ~ ker Ay, .
In particular, the Hodge-x-operator induces an isomorphism
Hper* (X) ~ Hy "% (X))

Proof. We use the same argument as in the proof of [Angll, Theorem 3.7] to show that, since the de Rham
cohomology and the Dolbeault cohomology of X can be computed using either differential forms or currents, the
same holds true for the Bott-Chern and the Aeppli cohomologies.

Indeed, note that, for any p,q € N, one has the exact sequence

im (d: (PPT9=1X ®g C) — (DPT2X @p C)) NDPIX
im (09: Dr—14=1X — DraX)

|, er (d: DX — DrLatiy) | ker (d: (DP*9X @R C) — (DPHI+1X gp C))
im (90: Dr—14=1X — DraX)  im(d: (Drte-1X @ C) — (PrtaX ®p C))

)

where the maps are induced by the identity. By [Sat56, Theorem 1], see Theorem 1.53, one has

ker (d: (D"MX @ C) = (PP X @z C))  ker (d: (APHIX @ C) = (AWPH1X @g C))
im (d: (Prte-1X @g C) — (PrraX ®x C)) ~ im(d: (AWH71X @ C) — (APH1X @ C))

)

therefore it suffices to prove that the space

im (d: (DPT971X @ C) — (DPT9X ®g C)) NDP9IX
im (09: Dr—1a~1X — DraX)

can be computed using just differential forms on X.
Firstly, we note that, since, by [Bai54, page 807], see Theorem 1.54,

ker (5: DPaX — Dp’q""lf() ker (5: AP X — /\p’q'HX)
im (0: Dra-1X o DraX) | m (9 AP X 5 APIX)

one has that, if ¢ € A™*X is a d-closed differential form, then every solution ¢ € D51 of d¢ = 1 is a differential

ker onDT7 X ker OOATEX | there is a differential
im0 m O

form up to d-exact terms. Indeed, since [¢)] = 0 in and hence in
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- _ ~ . Syrs—1 o FAaTs—1 %
form a € A™*~1X such that ¢y = Oa. Hence, ¢ — a € D™~ 1X defines a class in keragpg X~ keramg X
1m 1m

and hence ¢ — « is a differential form up to a O-exact form, and so ¢ is.

By conjugation, if ¢ € A™*X is a O-closed differential form, then every solution ¢ € D"~1% of 9¢ = 9 is a
differential form up to d-exact terms.

Now, let
imdNDP9X

im 00 )
Decomposing n =: Zp 4”7 in pure-type components, where P9 € DP4X | the previous equality is equivalent to
the system

wP? = dn mod im I €

onppta-10 = mod im 99
onpra—ti=1 4 gppta—t-Lt = ¢ mod im9d for L€ {l,...,q—1}
onpa—t + onp—14 = wht mod im 99
onbrra—t=1 4 gpt-lrta—t — mod imdd for (€ {l,....p—1}
onorta—l = 0 mod im 99
By the above argument, we may suppose that, for £ € {0,...,p—1}, the currents ntPta—t=1 are differential forms:
indeed, they are differential forms up to d-exact terms, but d-exact terms give no contribution in the system,
which is modulo im 9. Analogously, we may suppose that, for £ € {0,...,q — 1}, the currents n?+9=*=1.¢ are

differential forms. Then we may suppose that w?? = 9?91 + 9nP~14 is a differential form. Hence (1.5.1) is
proven.

Now, we prove that, fixed a G-invariant Hermitian metric on X, the Bott-Chern cohomology of X is isomorphic
to the space of Apgc-harmonic G-invariant forms on X. Indeed, since the elements of G' commute with 9, 9, 0%,
. -
and 0 , and hence with Apc, the following decomposition, [Sch07, Théoréme 2.2],

A**X = kerApc @ 99N X @ (E)* AT X 4§ A%t X)
induces a decomposition
A**X = kerApc @ 99N X @ (8* ASHLe X 49" A%t X) .

More precisely, let @ € A®*X, that is, a is a G-invariant form on X; if & has a decomposition a = hg + 098 +
(6*’y +5*7]) with ha, 8,7,m € A**X such that Agcha = 0, then one has

1 * 1 * Ya) 1 *
@ = ordGZga o ordGZgha +99 ordGZg/B
9geG geG geG

o R I .
19 ordGng +9 nordGZg ’
geG geG

1 1 1 1 N
where ord G ZQEG g*ho“ ord G ZQEG g*ﬁ’ ord G ZgEG g*’Y, nordG ZgEG g* € A**X and

~ 1 . 1 L
Apc ord G Zg ha' | = ord G Zg (Apcha) = 0.
geG geG

As regards the Aeppli cohomology, one has the decomposition, [Sch07, §2.c],
A*X = ket Ay @ (DA X AL X) @ (09) AT X
and hence the decomposition
A*X = ket Ay @ (AT X +9A 1 X) @ (00)" AT X

from which one gets the isomorphism H%* (f( ) ~ker Ay.
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Finally, note that the Hodge-%-operator %: A*1® X — A""*27~*1 X sends Apc-harmonic forms to Ay-
harmonic forms, and hence it induces an isomorphism

s Hpet? (X) = Hy "% (X))
concluding the proof. O
Remark 1.56. We note that another proof of the isomorphism

ker (9: DP9X — DPHUaX) Aker (3: DPOX — DPatiX)

Pad () ~
Hié, (X) =~ im (99: Dp—La-1X — DraX)

b

and a proof of the isomorphism

ker (99: DP9X — DPHLatlY)
im (9: DP~14X — DraX) +im (9: DPa-1X — DraX)

HY ()Z') ~

follow from the sheaf-theoretic interpretation of the Bott-Chern and Aeppli cohomologies, developed by J.-P.
Demailly, [Dem12, §VI.12.1] and M. Schweitzer, [Sch07, §4], see also [Kooll, §3.2].

We recall that, for any p,q € N, the complex (E}(p » dg;_( ) of sheaves is defined as

p,q

. . 0,0 prod T,8 prod 7,8 29 r,s d T,8
(ﬁxp,q7d£;-(p,q)~ APPSR P AT - DAY DAY S DAY

r+s=1 r4+s=p+q—2 r+s=p+q r+s=p+q
r<p,s<q r<p,s<q r>p,s>q T>p,s>q

and the complex (M;(p o d M, ) of sheaves is defined as

p,q
. . 0,0 prod @ s prod @ rs 00 @ rs d @ s
(MXM, dM;_(p’q) . DY = DY — — DY = DY — DY — ,
r4+s=1 r+s=p+q—2 r4+s=p+q r4+s=p+q
r<p,s<q r<p,s<q r>p,s>q r>p,s>q

where pr denotes the projection onto the appropriate space.

By the Poincaré lemma (see, e.g., [Dem12, 1.1.22, Theorem 1.2.24]) and the Dolbeault and Grothendieck lemma
(see, e.g., [Deml12, 1.3.29]), one gets M. Schweitzer’s lemma [Sch07, Lemme 4.1], which can be extended also to
the context of orbifolds by using the same trick as in the proof of Theorem 1.53 and Theorem 1.54; this allows to
prove that the map

([’}fp’q’ d‘:?cp,q) - (M;?M’ dM??p,q)

of complexes of sheaves is a quasi-isomorphism, and hence, see, e.g., [Dem12, Corollary IV.12.6], for every £ € N,

H’ (X; (ﬁ}(P,Q’ dﬁ}(p,)) ~ H' (X; (M}(Wz’ dﬁ}p,q)) '

Since, for every k € N, the sheaves U;( . and /\/l’}(p_q are fine (indeed, they are sheaves of CT ®r (C) -modules
over a para-compact space), one has, see, e.g., [Dem12, Corollary 1V.4.19, (IV.12.9)],

. AP X +1,q % 3. AP ¥ g+l %
! (f(; (£°~ o )) N ker(@. AP9 X — AP qX)ﬂker(a. NP9 X — AP X)

Xp = im (99: Av-1a-1 X — AraX)
and B N . ~ ~
-1 (X; (MSzp e )) _ er (9 Drax Df*l’q)_() fike~r (9: DX — DPoHIX) |
: p.q im (99: Dr~1.4=1X — DPaX)
and

o /= ker (35: AP~La=1 X /\p’qf()
P+a—2 (X; (£'~  dge )) ~ § _ _ _ N
XPa? "X im (0: AP=24-1 X — AP=14-1X) +im (§: AP~La72 X — AP—La-1X)

and

. ker (00: DP~14=1X — DPaX)
HP+a—2 (X; (M‘~ dge )) ~ ~ ~ — ~ .
XPa’ "X pa im (9: DP=29-1X — Dr~1,4-1X) +im (9: DP~14—-2X — Dr-La-1X)

proving the stated isomorphisms.



CHAPTER 2

Cohomology of almost-complex manifolds

Let X be a 2n-dimensional (differentiable) manifold endowed with an almost-complex structure J. Note that if J
is not integrable, then the Dolbeault cohomology is not defined. In this section, we are concerned with studying
some subgroups of the de Rham cohomology related to the almost-complex structure: these subgroups have been
introduced by T.-J. Li and W. Zhang in [LZ09], in order to study the relation between the compatible and the
tamed symplectic cones on a compact almost-complex manifold, with the aim to throw light on a question by
S. K. Donaldson, [Don06, Question 2] (see §2.4.2), and it would be interesting to consider them as a sort of
counterpart of the Dolbeault cohomology groups in the non-integrable (or at least in the non-Kéhler) case, see
[DLZ10, Lemma 2.15, Theorem 2.16]. In particular, we are interested in studying when they let a splitting of the
de Rham cohomology, and their relations with cones of metric structures.

More precisely, in §2.1 we introduce the notions of C*°-pure-and-full and pure-and-full almost-complex
structures, setting the notation and proving some useful relations between them. In §2.2, we study C°°-pure-and-
fullness on several classes of (almost-)complex manifolds, e.g., solvmanifolds, semi-Kéhler manifolds, almost-Kéahler
manifolds. In §2.3, we study the behaviour of C*°-pure-and-fullness under small deformations of the complex
structure and along curves of almost-complex structures, investigating properties of stability, and of semi-continuity
for the dimensions of the invariant, and anti-invariant subgroups of the de Rham cohomology with respect to the
almost-complex structure. In §2.4, we study the cone of semi-Kéahler structures on a compact almost-complex
manifold and, in particular, we compare the cones of balanced metrics and of strongly-Gauduchon metrics on a
compact complex manifold.

The results of this chapter have been obtained jointly with A. Tomassini, in [AT11, AT12a], and with A.
Tomassini and W. Zhang, in [ATZ12].

2.1 Subgroups of the de Rham (co)homology of an almost-complex
manifold

In this section, we set the notation concerning C*>°-pure-and-full and pure-and-full almost-complex structures, as
introduced in [LZ09], and we study the relations between C*°-pure-and-fullness and pure-and-fullness.

2.1.1 C*°-pure-and-full and pure-and-full almost-complex structures

In this section, we start by fixing some preliminary notation and recalling some definitions; then we briefly review
some results to motivate the study of these topics, see Remark 2.9, which will be further discussed in the next
sections.

Let S € N x N and define

HJ(X;R) = (o] € HIp(X;R) : a€ | @ APIX | NAX p s
(p.9)€S
note that a real differential form « with a component of type (p, ¢) has also a component of type (g, p), and hence
we are interested in studying the sets S such that whenever (p,q) € S, also (¢,p) € S. As a matter of notation,

we will usually list the elements of S instead of writing S itself.
Note that, for every k € N, one has

> HPPUPXGR) © HER(XGR)

pt+q=k
r<q

but, in general, the sum is neither direct nor the equality holds: several examples of these facts will be provided
in the sequel.

o7
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The subgroups HSQ’O)’(O’Q)(X; R) and Hgl’l)(X; R) of H35(X;R) are of special interest for their interpretation
as the J-anti-invariant, respectively, J-invariant part of the second de Rham cohomology group. Indeed, note that
the endomorphism J| 2x€ End (A*X) naturally extending J € End(TX) (that is, Ja := a(J-, J-) for every
a € A2X) satisfies (JL/\2X)2 = ida2x; hence, one has the splitting

2 —
NX = ANTXan, X,

where, for + € {+, —},
/\fX = {aE/\2X : Ja::l:a} .

Since H(?R(X ;R) contains, in particular, the classes represented by the symplectic forms, and H 51’1) (X;R) contains,
in particular, the classes represented by the (1, 1)-forms associated to the Hermitian metrics on X, in [LZ09], T.-J.
Li and W. Zhang were interested in studying the J-invariant subgroup of H3p(X;R), namely,

HF(X) = HYYV(X;R) = {[a] € HIz(X;R) : Ja=a} ,
and the J-anti-invariant subgroup of H3,(X;R), namely,
_ 2,0),(0,2
Hy(X) = HP?OY(X;R) = {[a] € HIz(X;R) : Ja=—a} .
Note that, as in the general case, one has that
H(X)+ Hj (X) © Hip(X;R)

but, in general, the sum is neither direct nor equal to H3,(X;R). The following definition, by T.-J. Li and W.
Zhang, singles out the almost-complex structures whose subgroups Hj (X) and H (X) provide a decomposition
of H3p(X;R).

Definition 2.1 ([LZ09, Definition 2.2, Definition 2.3, Lemma 2.2]). An almost-complex structure J on a manifold
X is said to be

o C®-pureif H; (X)NH}(X)={0};
o C®-fullif H; (X)+ Hf(X) = H3z(X;R);
e C®-pure-and-full if it is both C*°-pure and C*°-full, i.e., if the following cohomology decomposition holds:

Hip(X;R) = H; (X) & Hj(X).

We will also use the following definition, which is a natural generalization of the notion of C*°-pure-and-fullness
to higher degree cohomology groups.

Definition 2.2. Let X be a manifold endowed with an almost-complex structure .J, and fix £ € N. Consider
Hf(X3R) 2 Sppgmp HP 7 (X R):

p<
o if
@ HYXGR) C Hjp(XR)
p+q=k
P<q

(namely, the sum is direct), then .J is called C*-pure at the k*" stage;

o if
Hip(XGR) = Y HPPUI(GR),
p+q=Fk
p<q

then J is called C*®-full at the k™ stage;

o if J is both C*-pure at the k' stage and C>°-full at the k' stage, that is,
Hip(XGR) = @ HP U (XR);
p+q=Fk

p<q

then J is called C*®-pure-and-full at the k™ stage.
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Analogous definitions can be given for the de Rham cohomology with complex coefficients. More precisely, let
S C N x N and define

HY(X;C) := ¢ [a] € HIp(X;C) : a€ P APIX
(p.a)€S

(as previously, we will usually list the elements of .S instead of writing S itself); with such notation, one has in
particular that HS(X;R) = H7(X;C) N H3x(X;R).

Remark 2.3. Note that, when X is a compact manifold endowed with an integrable almost-complex structure J,
then, for any (p,q) € N x N,

HPY(X;C) = im (HBL (X) = HLLY (X;C))
where the map H;&(X) — HYE9(X;C) is the one induced by the identity (note that ker & Nkerd C kerd and
im 99 C imd). Indeed, any d-closed (p, ¢)-form is both d-closed and O-closed.
Note that, for every k € N, one has
>0 HPP(X:C) © Hjp(X:0),
p+q=k
but, in general, the sum is neither direct nor the equality holds. We can then give the following definition.

Definition 2.4. Let X be a manifold endowed with an almost-complex structure .J, and fix k¥ € N. Consider
HEp(X5C) 2 5, 4oy HPV(X;C):
o if
B HPV(X;0) © Hig(X:C)
ptg=Fk
(namely, the sum is direct), then J is called complex-C>°-pure at the k™ stage;
o if )
Hip(X;C) = ) HP(X;0),
p+q=k
then J is called complez-C®-full at the k' stage;
« if J is both complex-C®-pure at the k*® stage and complex-C>-full at the k" stage, that is,
Hip(X;0) = @ HPO(X:0);
p+q=k
then J is called complex-C™®-pure-and-full at the k' stage.

Remark 2.5. In general, being complex-C>®-full at the 2"? stage is a stronger condition that being C>-full.
Furthermore, if J is integrable, then being complex-C>-pure-and-full at the 2°¢ stage is stronger than being
C°-pure-and-full. More precisely, for any (possibly non-integrable) almost-complex structure J, it holds, [DLZ10,

Lemma 2.11],
{ Hj (X)

HY(X;0) = HI(X)@C

HY(X;C) N H2,(X;R)

and
BV (X;C) + HP?(X:C) € Hy (X)@=C,
and, if J is integrable, it holds
H7 (X) = (HF]?’O)(X;C) +H§0’2)(X;C)> N H2,(X;R)
HPY(X;C) + HP?(X;C) = Hy (X)® C

)

indeed, d A%°X C A3OX @ A%LX and dAP2X C AM2X @ AP3X. (Compare also [DLZ10, Lemma 2.12] for further
results in the case of 4-dimensional manifolds.)
Note also that, if J is C°°-pure, then

HD(XR) 0 (HPY(X5R) + HYP(XGR)) = {0} -
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The construction of the subgroups H5(X;R) C H3$p(X;R) and the notion of C*-pure-and-full almost-
complex structures can be repeated using the complex of currents (D.X = DX, d) instead of the complex of
differential forms (A®X, d) and the de Rham homology HZ®(X;R) instead of the de Rham cohomology H3z(X;R).
(We refer to §0.5 for notations and references concerning currents and de Rham homology.)

As in the smooth case, accordingly to T.-J. Li and W. Zhang, [LZ09], given S C N x N, let

H{(X;R) = {[o] € HU(X;C) : ae | @ DpoX | NDX
(p.a)€S

In particular, the almost-complex structures on X for which H(J2 0),(0,2) (X;R) and H(J1 1)(X; R) provide a
decomposition of H$f(X;R) are emphasized by the following definition by T.-J. Li and W. Zhang.

Definition 2.6 ([LZ09, Definition 2.15, Lemma 2.16]). An almost-complex structure J on a manifold X is said
to be:

o pure if
H 002 (X;R) N HY 5 (XGR) = {0} ;

o full if
H(J2,0),(0,2)(X§R) + H(J1,1)(X;R) = HI(X;R);

e pure-and-full if it is both pure and full, i.e., if the following decomposition holds:

Hly 0 02 (X3 R) @ HY 1y (X5R) = HE™(X;R) .

The following are natural generalizations of the notion of pure-and-fullness.

Definition 2.7. Let X be a manifold endowed with an almost-complex structure .J, and fix £ € N. Consider

Hijp(X;R) 2 Zp+2:k Héﬂ%(%?) (X;R):
p<q
o if
J . dR [y .
@ H(p,q),(q,p)(X’R) C Hi"(X;R)
p+q=k
p<gq

(namely, the sum is direct), then .J is called pure at the k** stage;
o if
dR (. _ J )
Hi " (X;R) = Z H(p,q)ﬁ(q,p)(X’R) ’
p+q=k
r<q
then J is called full at the k™" stage;
e if J is both pure at the k*" stage and full at the k' stage, that is,
dR (. _ J SR -
Hi " (X:R) = @ H(p,q),(qﬁp)(X’R) ’
p+q=k
r<q

then J is called pure-and-full at the k™ stage.

As regards de Rham homology with complex coefficients, given S C N x N, let

HI(X;C) := { [a] € HI*(X;C) : ac€ EB DpoX ¢,
(p,a)es

so that H{(X;R) = H{(X;C) n HIE(X;R).

Definition 2.8. Let X be a manifold endowed with an almost-complex structure .J, and fix £ € N. Consider
HgR(X’ (C) 2 Zp+q:k Hé)7q) (X? (C)
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o if
D Hy(X:C) € HF(X:0)
p+q=Fk

(namely, the sum is direct), then .J is called complez-pure at the k' stage;

o if
H'(X;C) = > HY,,(X;C),
p+q=k

then J is called complea-full at the k™ stage;

« if J is both complex-pure at the k*" stage and complex-full at the k' stage, that is,

HF(X;C) = @@ Hpp(X:0)
p+q=k

then .J is called complez-pure-and-full at the k™ stage.

Remark 2.9. The study of the subgroups HSP 2):(2:P) (X;R) and the notion of C*°-pure-and-full almost-complex
structure have been introduced by T.-J. Li and W. Zhang in [LZ09], in order to study the relations between the
compatible and the tamed symplectic cones on a compact almost-complex manifold, and inspired by a question
by S. K. Donaldson, [Don06, Question 2]: whether, on a compact 4-dimensional manifold endowed with an
almost-complex structure J tamed by a symplectic form, there exists also a symplectic form compatible with J, see
§2.4.2. In [DLZ10], T. Dréghici, T.-J. Li, and W. Zhang investigated the 4-dimensional case, proving, in particular,
that every almost-complex structure on a compact 4-dimensional manifold is C*°-pure-and-full; they also obtained
further results for 4-dimensional almost-complex manifolds in [DLZ11], where they studied the dimensions of
the subgroups H(X) and H; (X). In [FT10], A. Fino and A. Tomassini studied the C*°-pure-and-fullness
in connection with other properties on almost-complex manifolds: in particular, by studying almost-complex
solvmanifolds, they provided the first explicit example of a non-C*-pure-and-full almost-complex structure.
Jointly with A. Tomassini, we studied in [AT11] the behaviour of C*°-pure-and-fullness under small deformations
of the complex structure or along curves of almost-complex structures, proving in particular its instability. In
[AT12a] we continued the study of the cohomological properties related to the existence of an almost-complex
structure, focusing, in particular, on the study of the cone of semi-Ké&hler structures on a compact semi-Kéahler
manifold. In [ATZ12], jointly with A. Tomassini and W. Zhang, we further studied cohomological properties
of almost-K&hler manifolds, especially in relation with W. Zhang’s Lefschetz-type property; in particular, an
example of a non-C*-full almost-Kéhler structure on a compact manifold is provided. In [DZ11], T. Draghici
and W. Zhang reformulated the S. K. Donaldson “tamed to compatible” question in terms of spaces of exact
forms, proving, in particular, that an almost-complex structure J on a compact 4-dimensional manifold admits
a compatible symplectic form if and only if it admits tamed symplectic forms with any arbitrarily given J-
anti-invariant component. Q. Tan, H. Wang, Y. Zhang, and P. Zhu, in [TWZZ11], continued the study of the
dimension of the J-anti-invariant subgroup H (X) of the de Rham cohomology of a compact almost-complex
manifold, considering almost-complex structures being metric related or fundamental form related, showing, for
example, that dimg H; (X) = 0 for a generic almost-complex structure J on a compact 4-dimensional manifold,
as conjectured by T. Draghici, T.-J. Li, and W. Zhang, [DLZ11, Conjecture 2.4]. For further results on the
study of J-anti-invariant forms and J-anti-invariant de Rham cohomology classes on a (possibly non-compact)
manifold endowed with an almost-complex structure J, see [HMT11] by R. K. Hind, C. Medori, and A. Tomassini,
where a result concerning analytic continuation for J-anti-invariant forms is proven. In [LT12], T.-J. Li and A.
Tomassini studied the analogue of the above problems for linear (possibly non-integrable) complex structures
on 4-dimensional unimodular Lie algebras; in particular, they proved that an analogue of the decomposition in
[DLZ10, Theorem 2.3] holds for every 4-dimensional unimodular Lie algebra endowed with a linear (possibly
non-integrable) complex structure; furthermore, they considered the linear counterpart of Donaldson’s “tamed to
compatible” question, and of the tamed and compatible symplectic cones, studying, in particular, a sufficient
condition on a 4-dimensional Lie algebra g (which holds, for example, for 4-dimensional unimodular Lie algebras)
in order that a linear (possibly non-integrable) complex structure admits a taming linear symplectic form if and
only if it admits a compatible linear symplectic form. The paper [DLZ12] by T. Draghici, T.-J. Li, and W. Zhang
furnishes a survey on the known results concerning the subgroups H j(X ) and H (X), especially in dimension 4,
and their application to S. K. Donaldson’s “tamed to compatible” question.
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2.1.2 Relations between C*-pure-and-fullness and pure-and-fullness

The following result summarizes the relations between C*°-pure-and-fullness and pure-and-fullness, see [AT11,
Theorem 2.1], see also [LZ09, Proposition 2.5], and between complex-C>°-pure-and-fullness and complex-pure-and-
fullness. (Analogous results will be proven in Proposition 3.25 for almost-D-complex structures in the sense of
F. R. Harvey and H. B. Lawson, and in Proposition 3.12 for symplectic structures.)

Theorem 2.10 (see [LZ09, Proposition 2.5]). Let J be an almost-complex structure on a compact 2n-dimensional
manifold X. The following relations between (complex-)C* -pure-and-full and (complez-)pure-and-full notions

hold: for any k € N,

C®-full at the k™ stage =——==> pure at the k™ stage

M ﬂ

full at the (2n — k)™ stage ==> C>-pure at the (2n — k)™ stage

and
complex-C®-full at the k" stage ——=> complez-pure at the k™" stage

ﬂ M

complez-full at the (2n — k)™ stage ==> complex-C>®-pure at the (2n — k)th stage .
Proof. The horizontal implications follow by considering the non-degenerate duality pairing
(-, ) Hip(X;R) x HIB(X;R) - R, respectively (-, ) : H3x(X;C) x HIE(X:;C) - C,
and noting that, for any p,q € N,

ker <H§p,q),(p,q)(X;R)’ > 2 Z H(Jns),(s,r) (X;R)
{(r.5),(s,)}#{(p.9):(q:P)}

and — Ker (o, Hi, (G R)) 2 > H 0 (X R)
{(r,9),(s,m)}#{(p,0)(a,p)}

respectively

ker <H§p’q)(X;C), > 2 Z H(JT)S)(X;(C) and ker<~, H(‘;’q)(X;(C)> 2 Z H&T’S)(X;C) .
(r:5)#(psq) (r,5)#(p,9)

As an example, we give the details to prove that if .J is C*°-full at the k'™ stage then it is also pure at the k"
stage, when k£ = 2. Let
¢ € Hi ) 02)(XR) N HY ) (X5R),
with ¢ # [0]. Hence,
(e, %) |-H§2‘0)'(°’2)(X;R) =0 and (c, ) LH‘(Il’l)(X;]R) =0;
since J is C*°-full, it follows that (c, -) LH(%R(X;R)Z 0, and hence ¢ = [0].

To prove the vertical implications, it is enough to note that the quasi-isomorphism 7': A®* X — Ds,,_¢X
defined as T, := [y ¢ A - (see §0.5) induces an injective map

HSP,Q),(q,p) (X;R) — H(‘;_p,n—q),(n—q,n—p) (X5R), respectively ng’q) (X;C) — H({l_pm_q) (X;0),
for any p,q € N. O]

Remark 2.11. On a compact 2n-dimensional manifold X endowed with an almost-complex structure J, further
linkings between H2,(X;R) and Hip ?(X;R) could provide further relations between C>-pure-and-full and
pure-and-full notions: for example, A. Fino and A. Tomassini proved in [FT10, Theorem 3.7] that, given a
J-Hermitian metric g on X, if there exists a basis of g-harmonic representatives for H75(X;R) being of pure type
with respect to J, then J is both C*°-pure-and-full and pure-and-full. Furthermore, A. Fino and A. Tomassini
proved in [FT10, Theorem 4.1] that, given a J-compatible symplectic form w on X satisfying the Hard Lefschetz
Condition (that is, the map [w*] — -: H7ZF(X;R) S HIEF(X;R) is an isomorphism for every k € N), if J is
C*>-pure-and-full, then J is also pure-and-full (compare Proposition 2.28 for a similar result).
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Setting 2n = 4 and k& = 2 in Theorem 2.10, it follows that, on compact 4-dimensional almost-complex manifolds,
C>°-fullness implies C*°-pureness. The following result states that, for higher dimensional manifolds, C°°-pureness
and C*>°-fullness are not, in general, related properties, [AT12a, Proposition 1.4].

Proposition 2.12. There exist both examples of compact manifolds endowed with almost-complex structures
being C*°-full and non-C*>-pure, and examples of compact manifolds endowed with almost-complez structures being
C>-pure and non-C*°-full.

Proof. The proof follows from the following examples, [AT12a, Example 1.2, Example 1.3].
Step 1 — Being C>®-full does not imply being C>°-pure. Take a nilmanifold N; with associated Lie algebra

bie == (0%, 12, 14, 24) .

Consider the left-invariant complex structure on Ny whose space of (1,0)-forms is generated, as a C* (Ny; C)-
module, by

ol = el 4ie?
©? = e3+4iet
@3 = eS4iel

Writing the structure equations in terms of {¢!, ¢?, ©3},

2delt = 0
2d¢’ = oV :
2dg03 — —i(pu—i—i(plé

the integrability condition is easily verified.

K. Nomizu’s theorem [Nomb4, Theorem 1] makes the computation of the cohomology straightforward: in fact,
listing the harmonic representatives with respect to the left-invariant Hermitian metric g := 5 j ¢! ® @7 instead
of their classes, one finds

Hip(Ny;C) = <C<9013, <p13> o <C<s013 —s031> & <C<<p12+<p1§7 2! —soﬁ> ,

where

and
1,1 3 i 5 1 13
HS )(Nl;(C) _ (C<<p13 _ ¢31> o (C<<p12 o2 2 @12> .
In particular, J is a C*°-full, non-C*>°-pure complex structure.

Step 2 — Being C*®-pure does not imply being C*°-full. Take a nilmanifold Ny with associated Lie algebra
b = (0%, 12, 34) .

and consider on it the left-invariant complex structure given requiring that the forms

ot = el tie?
©? = e4iet
@3 = eStied

are of type (1,0).
The integrability condition follows from the structure equations

2det = 0
2dp? = 0
2d(p3 — 1@11—19022

K. Nomizu’s theorem [Nom54, Theorem 1] gives

HgR (Na; C) = (C<<p12, SDi§> @ (C<cp1§, <p2i>®(C<cp13+cp1§, (psi_wi; 8032_9053, <p23—<p2§’> ,
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where b o) (0 .
H§ ),(0, )(Nz;(C) _ (C<8012a @12>

and » ~ B
HY (Ny;€) = <C<<p12, 9021> ;

this can be proven arguing as follows: with respect to the left-invariant Hermitian metric g := > y @ ® @7, one
computes
8*@13 _ 8*@23 _ a*s012 — 07

that is, '3, ©'? and ¢?? are g-orthogonal to the space 9 A? Ny; in the same way, one computes

a*<p12 _ 6*3012 — a*@lé — 5*@13 -0

(compare also Proposition 2.19). In particular, J is a C*°-pure, non-C*-full complex structure. O

2.2 (C*°-pure-and-fullness for special manifolds

In this section, we study the property of being C*°-pure-and-full on special classes of (almost-)complex manifolds.
After recalling some motivating results by T. Draghici, T.-J. Li, and W. Zhang, we study C°°-pure-and-fullness for
left-invariant complex-structures on solvmanifolds, providing some examples in dimension 4 or higher; furthermore,
we consider almost-complex manifolds endowed with special metric structures, namely, semi-Kdhler, and almost-
Kdhler structures.

2.2.1 Special classes of C*-pure-and-full (almost-)complex manifolds

In this section, we recall some results by T. Draghici, T.-J. Li, and W. Zhang, providing classes of C*°-pure-and-full
and pure-and-full (almost-)complex manifolds. They could be considered as motivations to study C°°-pure-and-
fullness: in fact, [DLZ10, Lemma 2.15, Theorem 2.16] suggests that the subgroups H§°’°)(X; C) can be viewed as a
generalization of the Dolbeault cohomology groups for non-Kéhler, and non-integrable, almost-complex manifolds
X. On the other hand, [DLZ10, Theorem 2.3] states that, on a compact 4-dimensional almost-complex manifold
X, the subgroups H (X) and H (X) induce always a decomposition of H3,(X;R): this could be intended as a
generalization of the Hodge decomposition theorem for compact 4-dimensional almost-complex manifolds.

According to the following result, the groups H 5"°) (X;C) can be considered as the counterpart of the Dolbeault
cohomology groups in the non-Kéahler and non-integrable cases.

Theorem 2.13 ([DLZ10, Lemma 2.15, Theorem 2.16]). Let X be a compact complex manifold. If the Hodge and
Frélicher spectral sequence degenerates at the first step and the natural filtration associated with the structure of
double complex of (/\'*'X, 0, 5) induces a Hodge decomposition of weight k on HZ;R(X; C) for some k € N, then
X is complex-C> -pure-and-full at the k' stage, and

HP?(X;C) ~ HY(X)
for every p,q € N such that p+ q = k.

A corollary of [DLZ10, Lemma 2.15, Theorem 2.16] is the following result.

Corollary 2.14 ([LZ09, Proposition 2.1], [DLZ10, Theorem 2.16, Proposition 2.17]). One has that:

2nd

(i) every compact complex surface is complex-C>-pure-and-full at the stage, and hence, in particular,

C* -pure-and-full and pure-and-full;

(ii) every compact complex manifold satisfying the 00-Lemma is complex-C>-pure-and-full at every stage, and
hence complex-pure-and-full at every stage;

(iii) every compact complex manifold admitting a Kahler structure is complez-C* -pure-and-full at every stage,
and hence complex-pure-and-full at every stage.

Proof. As regards the complex-C®-fullness at the 2" stage for compact complex surfaces, one has that the
assumptions of Theorem 2.13 with k& = 2 hold by [BHPVdV04, Theorem IV.2.8, Proposition IV.2.9].

As regards the complex-C>°-fullness at every stage for compact complex manifolds satisfying the 9-Lemma,
one has that the assumptions of Theorem 2.13 for any k € N are satisfied by [DGMS75, 5.21].

As regards the complex-C*°-fullness at every stage for compact Kahler manifolds, one has that a compact
complex manifold admitting a Kéhler metric satisfies the 90-Lemma, [DGMS75, Lemma 5.11].

Finally, the other statements follow from Remark 2.5 and Theorem 2.10. O
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Actually, T. Dréaghici, T.-J. Li, and W. Zhang proved in [DLZ10] the following result, which one can consider
as a sort of Hodge decomposition theorem in the non-Kéhler case.

Theorem 2.15 ([DLZ10, Theorem 2.3]). Every almost-complex structure on a compact 4-dimensional manifold
is C*°-pure-and-full and pure-and-full.

Proof. The proof of the previous theorem rests on the very special properties of 4-dimensional manifolds. For the
sake of completeness, we recall here the argument by T. Draghici, T.-J. Li, and W. Zhang in [DLZ10]. Firstly,
note that, by Theorem 2.10, it suffices to prove that an almost-complex structure J on a compact 4-dimensional
manifold is C*°-full. Suppose that J is not C*°-full. Fix a Hermitian metric g on X, and denote its associated
(1,1)-form by w. Recall that the Hodge-*-operator #4|s2x: A% X — A?X satisfies (x, I_/\2X)2 = id2x, hence it
induces a splitting

NX = N XS X,

where ALX 1= {p € A2X : x4 = ¢}, for + € {+,—}. Setting PA®X :=ker A = ker L>~*!| e x the space
of primitive forms, where A is the adjoint operator of the Lefschetz operator L :=w A -: A®* X — A*T2X with
respect to the pairing induced by w (see §0.2), one has

AFX = L(C™(X;R) @ (A*°X & A"2X) N APX) and Ay X = PAPX NAMX

indeed, recall that, on a compact 2n-dimensional manifold X endowed with an almost-complex structure J and a

Hermitian metric g with associated (1,1)-form w, one has, for every j € N, for every k € N, the Weil identity,

[Wei58, Théoreme 2],

k(k+1) ] |
2

*g LJ I_P/\kX = (_1 | Ln_k_j J,

(n—Fk—j)!

see, e.g., [Huy05, Proposition 1.2.31]. Since the Laplacian operator A and the Hodge-*-operator %, commute, the
splitting A2X = /\;X ©® A, X induces a decomposition in cohomology,

Hip(X;R) = HJ (X)® Hy (X)),

where HE (X)) := {[¢] € Hip(X;R) : ¢ € AfX} for + € {+,—}. Consider the non-degenerate pairing

(o) Hin(OR) x HE(GR) 2R, (o) = [ oo,
and take a € (Hf(X) +HJ_(X))J' C Hip(X;R). Since A; X C AM X, one can reduce to consider a €
HFf(X); let a € AfX be such that a = [a]. According to the decomposition AfX = L(C™(X;R)) @
((A2°X & A%2X) NA2X), let fw be the component of o in L (C> (X;R)). Consider the Hodge decompo-
sition

fw = hp,+dd+d"n

of fw e A’X, where hf,, € ker ANA’X, 9 € A'X, and ) € A°X. Since fw € Af X and by the uniqueness of
the Hodge decomposition, one has

hio+2dd = fwt2m, -y (dY) € APIX N AZX

(where 7+ A2 X — /\;X denotes the natural projection onto /\;tX, for £ € {+, —}). Therefore, noting also
g
that H(X) is orthogonal to H, (X) with respect to (-, --), one has

0 = (o [hyo+2d9)) = (a, [fw+2m,_ ([@9)]) = / Frw?,
¥ X
from which it follows that f = 0, and hence a = 0. U

Remark 2.16. The result in [DLZ10, Theorem 2.3] does not hold anymore true in dimension greater than or
equal to 6, or without the compactness assumption: the first example of a non-C*°-pure almost-complex structure
has been provided by A. Fino and A. Tomassini in [FT10, Example 3.3] using a 6-dimensional nilmanifold (for
other examples, even in the integrable case, see Proposition 2.12, Example 2.41, Theorem 2.49, Proposition 2.55,
Proposition 2.56), while non-C*°-pure-and-full almost-complex structures on non-compact 4-dimensional manifolds
arise from [DLZ11, Theorem 3.24] by T. Draghici, T.-J. Li, and W. Zhang.
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2.2.2 (C*™-pure-and-full solvmanifolds

Let X = I'\ G be a solvmanifold, and denote the Lie algebra naturally associated to G by g, and its complexification
by gc := g ®r C. (We refer to §0.6 for notations and results concerning solvmanifolds.)

We recall that if X is a nilmanifold or, more in general, a completely-solvable solvmanifold, the inclusion
of the sub-complex given by the G-left-invariant differential forms, which is isomorphic to the complex A®g* of
linear forms on the dual of the Lie algebra g associated to G, into the de Rham complex of X turns out to be
a quasi-isomorphism, in view of K. Nomizu’s theorem [Nomb4, Theorem 1], respectively A. Hattori’s theorem
[Hat60, Corollary 4.2].

Let J be a G-left-invariant almost-complex structure on X. In this case, one can study the problem of
cohomological decomposition both on X and on g: in this section, we investigate the relations between the
cohomological decompositions at the level of the solvmanifold and at the level of the associated Lie algebra,
Proposition 2.19, Corollary 2.20.

Firstly, we set some notations. Consider H3 (g; R) := H® (A®g*, d). Being J a G-left-invariant almost-complex
structure, it induces a bi-graded splitting also on the vector space A®gg. For every S € Nx N, and for K € {R, C},
set

Hf (g:K) := < [o] € Hip (5:K) : a€ P AP9en (A" @ K) ¢ |
(p.a)ES

see [LT12, Definition 0.3].
The following are the natural linear counterparts of the corresponding definitions for manifolds.

Definition 2.17. Let X = I'\ G be a solvmanifold, and denote the Lie algebra naturally associated to G by g.
Fixed k € N, a G-left-invariant almost-complex structure J on X is called

o linear-C=-pure at the k' stage if

B #P (GR) C Hig (6:R) |
p+q=Fk
P<q

namely, if the sum is direct;

o linear-C>®-full at the k™ stage if

HYp (gR) = > HPPOP (gR)
ptq=Fk
p<q

o linear-C™-pure-and-full at the k*" stage if J is both linear-C>°-pure at the k*" stage and linear-C>-full at
the k*" stage, that is, if the cohomological decomposition

Hip (@R) = @ B (gR)
p+q=k
P=q
holds.

Furthermore, J is called

e linear-complez-C®-pure at the k' stage if

P HP? (5:C) C HEg(5:C) |
p+aq=k

namely, if the sum is direct;

o linear-complex-C>®-full at the k™ stage if

Hp (0:€) = > HPY (g:0)
p+q=Fk
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o linear-complez-C>® -pure-and-full at the k™ stage if J is both linear-complex-C>®-pure at the k" stage and
linear-complex-C*-full at the k*" stage, that is, if the cohomological decomposition

HYe (0:C) = @@ HP? (8:C)
p+qg=k

holds.

(In any case, when k = 2, the specification “at the 2°¢ stage” will be understood.)

It is natural to ask what relations link the subgroups H §°’°) (X;R) and the subgroups H §°’°) (g;R), and whether
a G-left-invariant linear-C*°-pure-and-full almost-complex structure on X = I'\ G is also C*°-pure-and-full.

The following lemma is the F. A. Belgun symmetrization trick, [Bel00, Theorem 7], in the almost-complex
setting.

Lemma 2.18 ([Bel00, Theorem 7]). Let X = T\ G be a solvmanifold, and denote the Lie algebra naturally
associated to G by g. Let J be a G-left-invariant almost-complex structure on X. Let n be the G-bi-invariant
volume form on G given by J. Milnor’s Lemma, [Mil76, Lemma 6.2], and such that fX n = 1. Up to identifying
G-left-invariant forms on X and linear forms over g* through left-translations, consider the Belgun symmetrization
map

g ATX A ula) = /Xatmmm).

Then one has that
M|_/\'g* = id\_,\.g* ,
and that
d(p() = p(d-) and  J(p() = n(J) .

Using the previous lemma, we can prove the following Nomizu-type result, which relates the subgroups
H§r’s)(X ;R) with their left-invariant part ng’s) (g;R). (Analogous results will be proven in Proposition 3.30
for almost-D-complex structures in the sense of F. R. Harvey and H. B. Lawson, and in Proposition 3.18 for
symplectic structures; compare also with [FT10, Theorem 3.4], by A. Fino and A. Tomassini, for almost-complex
structures.)

Proposition 2.19 ([ATZ12, Theorem 5.4]). Let X = '\ G be a solvmanifold endowed with a G-left-invariant
almost-complex structure J, and denote the Lie algebra naturally associated to G by g. For any S C N x N, and
for K € {R, C}, the map

J: H3(g:K) = H5(X;K)
induced by left-translations is injective, and, if Hip (9;K) o~ H3p(X;K) (for instance, if X is a completely-solvable
solvmanifold), then j: H5(3;K) — HY(X;K) is in fact an isomorphism.

Proof. Since J is G-left-invariant, left-translations induce the map j: HY(g;K) — H5(X;K). Consider the
Belgun symmetrization map p: A®* X @ K — A®g* @r K, [Bel00, Theorem 7]: since p commutes with d by [Bel00,
Theorem 7], it induces the map p: Hjz(X;K) — H3, (g;K), and, since ;1 commutes with J, it preserves the
bi-graduation; therefore it induces the map u: H5(X;K) — H7(g; K). Moreover, since y is the identity on the
space of G-left-invariant forms by [Bel00, Theorem 7], we get the commutative diagram

HY(g; K) —> HY(X;K) —— H$(g; K)
v

id

hence j: HY(g;K) — HS(X;K) is injective, and pu: HS(X;K) — H%(g;K) is surjective.
Furthermore, when Hjj (g; K) >~ H3,(X;K) (for instance, when X is a completely-solvable solvmanifold, by
A. Hattori’s theorem [Hat60, Theorem 4.2]), since

plregeesk = 1d|aeg @Rk

by [Bel00, Theorem 7], we get that u: H3r(X;K) — H3p (g;K) is the identity map, and hence p: H3 (X;K) —
H :? (g; K) is also injective, and hence an isomorphism. O

As a straightforward consequence, we get the following result.



68 Cohomology of almost-complex manifolds

Corollary 2.20. Let X = I'\ G be a solvmanifold endowed with a G-left-invariant almost-complex structure J,
and denote the Lie algebra naturally associated to G by g. Suppose that Hyp (g;R) ~ Hj,(X;R) (for instance,
suppose that X is a completely-solvable solvmanifold). For every k € N, the almost-complex structure J is
linear-C>= -pure (respectively, linear-C*°-full, linear-C* -pure-and-full, linear-complex-C*>-pure, linear-complez-
C>®-full, linear-complex-C™®-pure-and-full) at the k™ stage if and only if it is C*-pure (respectively, C>-full,
C>®-pure-and-full, comples-C>-pure, complex-C*>°-full, complex-C>-pure-and-full) at the k™ stage.

As an example, we provide here an explicit C°°-pure-and-full almost-complex structure on a 6-dimensional
solvmanifold, [AT11, Example 2.1].

Example 2.21. A C*°-pure-and-full and pure-and-full almost-complex structure on a compact 6-dimensional
completely-solvable solvmanifold.
Let G be the 6-dimensional simply-connected completely-solvable Lie group defined by

eg”1 0 x? e””1 0 0 23
0 e 0 a22e® 0 a2t
1
G = 0 0 e’ 01 0 a® € GL(6;R) : =, ..., 2R
0 0 0 e " 0 25
0 0 0 0 1 2t
0 0 0 0 0 1

According to [FALS96, §3], there exists a discrete co-compact subgroup I' C G: therefore X := I'\G is a
6-dimensional completely-solvable solvmanifold.
The G-left-invariant 1-forms on G defined as

el == dat, e? = da?,
e = exp (71'1) . (dx?’ —z? d:z:5) , et = exp (:cl) . (dz4 —z? de) ,
e? = exp (71'1) ~dazb; el = exp (xl) ~d b
give rise to G-left-invariant 1-forms on X. With respect to the co-frame {61, e eﬁ}, the structure equations are
given by
de! = 0
de? = 0
de? = —elne?—e?Aéd
det = el Aet —e?AeS
de® = —elned
deb = el e

Since G is completely-solvable, by A. Hattori’s theorem [Hat60, Corollary 4.2], it is straightforward to compute
H*(X;R) = R{e' Ae? e®nel, e® Ne® + et A e’) .

Therefore, setting

ot = el +ie?
p? = e +iet |
03 = e’ +ieb

we have that the almost-complex structure J whose C*° (X; C)-module of complex (1, 0)-forms is generated by
{¢', % ¢} is C-full: indeed,
1,1 _ ~
HY (XR) = R(-£0'A@Y —F¢* AE)
2,0),(0,2 .
HFOCO(XR) = R( ($* A8 - FAF)

b

SN~—
I

Since dAlgs = C <§013 _ <,01‘§, s031 4 (pié, ol 4 (p13’ (psi _ (pi?,’ o2 — <,021, s012 4 (pié> ’

then J is linear-C*°-pure-and-full. Since X is a completely-solvable solvmanifold, one gets that J is also C*°-pure
by Corollary 2.20. (Note that the C*°-pureness of J can be proven also by using a different argument: according
to [FT10, Theorem 3.7], since the above basis of harmonic representatives with respect to the G-left-invariant
Hermitian metric 23:1 @ ® @7 consists of pure type forms with respect to the almost-complex structure, J is
both C*°-pure-and-full and pure-and-full.)
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Further results concerning linear (possibly non-integrable) complex structures on 4-dimensional unimodular
Lie algebra and their cohomological properties have been obtained by T.-J. Li and A. Tomassini in [LT12]. In
particular, they proved an analogous of [DLZ10, Theorem 2.3], namely, that for every 4-dimensional unimodular
Lie algebra g endowed with a linear (possibly non-integrable) complex structure J, one has the cohomological
decomposition H2, (g;R) = H5270)’(0’2) (g;R) @ H§1’1) (g;R), [LT12, Theorem 3.3]. Furthermore, they studied the
linear counterpart of S. K. Donaldson’s question [Don06, Question 2] (see §2.4.2), proving that, on a 4-dimensional
Lie algebra g satisfying the condition B A B = 0, where B C A%g denotes the space of boundary 2-vectors, a linear
(possibly non-integrable) complex structure admits a taming linear symplectic form if and only if it admits a
compatible linear symplectic form, [LT12, Theorem 2.5]; note that 4-dimensional unimodular Lie algebras satisfy
the assumption B A B = 0. Finally, given a linear (possibly non-integrable) complex structure on a 4-dimensional
Lie algebra, they studied the convex cones composed of the classes of J-taming, respectively J-compatible, linear
symplectic forms, comparing them by means of H§2’0)’(0’2) (g;R), [LT12, Theorem 3.10]: this result is the linear
counterpart of [LZ09, Theorem 1.1].

2.2.3 Complex-C*-pure-and-fullness for 4-dimensional manifolds

By [DLZ10, Lemma 2.15, Theorem 2.16], or [LZ09, Proposition 2.1], every compact complex surface is complex-
C>-pure-and-full at the 2°¢ stage; on the other hand, a compact complex surface is complex-C>-pure-and-full at
the 15 stage if and only if its first Betti number by is even, that is, if and only if it admits a Kéhler structure, see
[Kod64, Miy74, Siu83], or [Lam99, Corollaire 5.7], or [Buc99, Theorem 11].

One may wonder about the relations between being complex-C*-pure-and-full and being integrable for an
almost-complex structure on a compact 4-dimensional manifold; this is the matter of the following result, [AT12a,
Proposition 1.7].

Proposition 2.22. There exist
o non-complex-C>®-pure-and-full at the 15 stage non-integrable almost-complex structures, and
e complez-C®-pure-and-full at the 15 stage non-integrable almost-complex structures

on compact 4-dimensional manifolds with by even.

Proof. The proof follows from the following examples, [AT12a, Example 1.5, Example 1.6].

Step 1 — There exists a non-complex-C>®-pure-and-full at the 1°¢ stage non-integrable almost-complex structure
on a 4-dimensional manifold. Consider the standard Kéhler structure (Jo, wg) on the 4-dimensional torus T4

with coordinates {x }je{l 4y that is,

Jo = € End ("JI‘4) and wy = da' Ada® +dz? Ada? e /\2T4,

and, for £ > 0 small enough, let {Jt}te(— e e) be the curve of almost-complex structures defined by

1—t¢
14t 4
Jp =t Jy g = (id—tL) Jy (id—t L)™' = Trer -1 € End (T4) ,
T—t¢
|
where
L =
and £ = {(x9) € C*®°(R*; R) is a Z*-periodic non-constant function.
For t € (—¢, €) \ {0}, a straightforward computation yields
(1,0) (2. _ 2 9.4 (0,1) (m2 . _ 2 4.4
Hj, (TC,(C) = (C<dx +idz > , Hj (TC,(C) = (C<da: idz >

therefore
dime HS” (T%;C) + dime HV (T3:C) = 2 < 4 = by (T2) |
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that is, J; is not complex-C>®-pure-and-full at the 15t stage.

Step 2 — There exists a complex-C*-pure-and-full at the 15t stage non-integrable almost-complex structure on a 4-
dimensional manifold. Consider a compact 4-dimensional nilmanifold X = I'\G, quotient of the simply-connected
nilpotent Lie group G whose associated Lie algebra is

g = (0% 14, 12) ;
let J be the G-left-invariant almost-complex structure defined by
Jet = —€? | Je = —et;

note that .J is not integrable, since Nij(e1, e3) # 0, where {e;};c(; 5 5 4 I8 the dual basis of {e'} In fact,

ie{1,2,3,4}"
X has no integrable almost-complex structure: indeed, since b (X) = 2 is even, if there were a complex structure
on X, then X should carry a Kéhler metric; this is not possible for compact non-tori nilmanifolds, by [Has89,
Theorem 1, Corollary], or [BG88, Theorem A].

By K. Nomizu’s theorem [Nom54, Theorem 1], one computes
Hip(X;C) = C(p, @'y and  Hig(X;0) = C(p™ + ™2 912 =) ;

in particular, it follows that J is complex-C>®-pure-and-full at the 15 stage. Note that J is not complex-C>-pure-
and-full at the 2" stage but just C*°-pure-and-full: indeed, using Proposition 2.19, one can prove that the class

[9012 + gpﬁ} admits no pure type representative with respect to J. Moreover, observe that the G-left-invariant
almost-complex structure
Jel = —e3 Je? = —et

is complex-C*-pure-and-full at the 2°¢ stage and non-complex-C*-pure-and-full at the 1% stage (obviously, in
this case, h;, = 0, according to [DLZ10, Corollary 2.14]). O

Remark 2.23. T. Draghici, T.-J. Li, and W. Zhang proved in [DLZ10, Corollary 2.14] that an almost-complex
structure on a compact 4-dimensional manifold X is complex-C>-pure-and-full at the 2"? stage if and only if J is
integrable or dimg H (X) = 0.

2.2.4 Almost-complex manifolds with large anti-invariant cohomology

Given an almost-complex structure J on a compact manifold X, it is natural to ask how large the cohomology
subgroup H (X) can be.

In [DLZ11, Theorem 1.1], T. Draghici, T.-J. Li, and W. Zhang, starting with a compact complex surface X
endowed with the complex structure J, proved that the dimension h; := dimg H7 (X) of the J-anti-invariant
subgroup H7 (X) of H2,(X;R) associated to any metric related almost-complex structures J on X (that is, the
almost-complex structures J on X inducing the same orientation as J and with a common compatible metric with
J), such that J # +J, satisfies h} € {0, 1, 2}, and they provided a description of such almost-complex structures
J having h; € {1, 2}.

In this direction, T. Draghici, T.-J. Li, and W. Zhang proposed the following conjecture.

Conjecture 2.24 ([DLZ11, Conjecture 2.5]). On a compact 4-dimensional manifold endowed with an almost-
complex structure J, if dimg H; (X) > 3, then J is integrable.

In [TWZZ11], Q. Tan, H. Wang, Y. Zhang, and P. Zhu proved that, on a compact 4-dimensional manifold
endowed with an almost-complex structure J and a J-Hermitian metric g, the dimension dimg H (X) is constant
for all almost-complex structures J being fundamental form related to J, namely, such that w € /\}’1X NA2X,

where w := g (J -, ) € AY'X N A2X is the (1,1)-form with respect to J associated to the J-Hermitian metric g,
[TWZZ11, Theorem 1.2]. Then, they proposed to modify [DLZ11, Conjecture 2.5] as follows.

Conjecture 2.25 ([TWZZ11, Question 1.5]). Let X be a compact 4-dimensional manifold endowed with an
almost-complex structure J and a J-Hermitian metric g, and denote by w := g (J -, --) the (}7 1)-form associated to
g. Suppose that dimg H; (X) > 3. Does there exist an integrable almost-complex structure J such that w € /\lj’lX ?

Furthermore, in [DLZ11], it was conjectured that h; = 0 for a generic almost-complex structure J on a
compact 4-dimensional manifold, [DLZ11, Conjecture 2.4]. In [TWZZ11, Theorem 1.1}, Q. Tan, H. Wang, Y.
Zhang, and P. Zhu proved that this holds true, showing that, on a compact 4-dimensional manifold X admitting
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almost-complex structures, the set of almost-complex structures J on X with dimg H; (X) = 0 is an open dense
subset of the set of almost-complex structures on X.

In [ATZ12, §5], a 1-parameter family {J;},_. .y of (non-integrable) almost-complex structures on the 6-

dimensional torus T%, where € > 0 is small enough, having dimp Hj (Tﬁ) greater than 3 has been provided. We
recall here the construction, see also [AT11, §4].

Example 2.26. A family of almost-complex structures on the 6-dimensional torus with anti-invariant cohomology
of dimension larger than 3.

Consider the 6-dimensional torus T®, with coordinates {xj } For € > 0 small enough, choose a function

a: (—&,&) x TS — R such that a; :=: a(t,-) € C® (T6)]€(§é£).éﬁis just on 2 for any t € (—¢, €), namely
a; = ay(23), and that ag(2®) = 1. Define the almost-complex structure J; in such a way that

ot da! + iy dat

07 = dz? +ida’®

03 = da® +idaf

provides a co-frame for the C*° (Tﬁ; (C)-module of (1,0)-forms on T® with respect to J;. In terms of this co-frame,
the structure equations are
de} = iday Adat

def =0
de} =0
Straightforward computations give that the J;-anti-invariant real closed 2-forms are of the type
Y = < (dz"® — oy d2%) + D (d2'® — oy d2*!) + E (d2®* — d2™) + F (d2*° — da2¥) |
Qi

where C, D, E, F € R (we shorten da* :=dazd A d:vk). Moreover, the forms d 22 — d %6 and d 226 — d 23°
are clearly harmonic with respect to the standard Riemannian metric 2?21 dz’ ® da’, while the classes of
dx'% — a; da?* and dz'® — a; d2*® are non-zero, being their harmonic parts non-zero. Therefore, we get that

h; =4 for small t # 0,
while h; = 6.

The natural generalization of [DLZ10, Conjecture 2.5] to higher dimensional manifolds yields the following
question, [ATZ12, Question 5.2].

Question 2.27. Are there compact 2n-dimensional manifolds X endowed with non-integrable almost-complex
structures J with dimg H; (X) >n (n —1)?

Note that, when X = T'\ G is a 2n-dimensional completely-solvable solvmanifold endowed with a G-left-
invariant almost-complex structure J, then, by Proposition 2.19, it follows that

dimgp H; (X) < n(n—1) and dimRHj'(X) < n?.

2.2.5 Semi-Kihler manifolds

As already recalled, A. Fino and A. Tomassini’s [FT10, Theorem 4.1] proves that, given an almost-Kéhler structure
on a compact manifold, if the almost-complex structure is C*°-pure-and-full and the symplectic structure satisfies
the Hard Lefschetz Condition, then the almost-complex structure is pure-and-full too; moreover, by [FT10,
Proposition 3.2], see also [DLZ10, Proposition 2.8], the almost-complex structure of every almost-Kéhler structure
on a compact manifold is C*°-pure.

To study the cohomology of balanced manifolds X and the duality between H §°’°) (X;C) and H (J.’.)(X ;C), we
get the following result, [AT12a, Proposition 3.1], which can be considered as the semi-Kéahler counterpart of
[FT10, Theorem 4.1].

Proposition 2.28. Let X be a compact 2n-dimensional manifold endowed with an almost-complex structure J
and a semi-Kdihler form w. Suppose that [w"‘l] — -t Hio(X;R) — Hggfl(X;R) is an isomorphism. If J is
complex-C>® -pure-and-full at the 15t stage, then it is also complex-pure-and-full at the 15 stage, and

HSY O (X;5€) > HY 1) (X5C) .
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Proof. Firstly, note that J is complex-pure at the 15 stage. Indeed, if
a € H} o (X;C)NnH ) (X;C),

then

0:

Lo e = e xie) -

Therefore, by the assumption
Hip(X:C) = Hy O (X:0) 0 HYV(X;0),

we get that
a=20.

Now, note that, since
] = HPOOGO) CHPTTI(GC) and W0 HPP(XG0) € HYTRU(XGC),
the isomorphism
L0 P ey o) I m (v o)
dR ) dR ) dR ’

yields the injective maps
HO(X;C) — HY 1) (X;C) and  HPV(X;C) — H o) (X;C).

Since, by hypothesis, J is complex-C*®-pure-and-full at the 15 stage, namely, H},(X;C) = H((,l’o) (X;0) o
Hgo’l)(X;C), we get the proof. O

We provide here some explicit examples, [AT12a, Example 3.2, Example 3.3], checking the validity of the
hypothesis of [w" 1] — - H}(X;R) — H7% ' (X;R) being an isomorphism in Proposition 2.28.

Example 2.29. A balanced structure on the Iwasawa manifold.
On the Iwasawa manifold I3 (see §1.4.1), consider the balanced structure

i _ _ _
w = (@1/\901_%@2/\@2_%@3/\803)‘

o |

Since
H}n (I3;C) = (C<<p1, 02, @l ¢2> and HS, (I3;C) = C<<p12313, 12323 ;13123 (p23153> :
it is straightforward to check that
[w?] =+ Hig (I3; €) — Hip (I3; C)

is an isomorphism. Therefore, by Proposition 2.28, I3 is complex-C*-pure-and-full at the 1%* stage and complex-
pure-and-full at the 15 stage (the same result follows also arguing as in [FT10, Theorem 3.7], the above harmonic
representatives of H j r (I3; C), with respect to the Hermitian metric Z?:l 0 ® @7, being of pure type with respect
to the complex structure).

Example 2.30. A 6-dimensional manifold endowed with a semi-Kdhler structure not inducing an isomorphism
in cohomology.
Consider the 6-dimensional nilmanifold

X =T\G = (0% 12, 13) .
In [FT10, Example 3.3], the almost-complex structure
Jel = —¢ Jed = —et Je® = —€f

is provided as a first example of non-C®-pure almost-complex structure. Note that J’ is not even C>®°-full: indeed,
the cohomology class [615 + 616} admits neither J'-invariant nor J'-anti-invariant G-left-invariant representatives,
and hence, by Proposition 2.19, it admits neither J'-invariant nor J’-anti-invariant representatives.
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Consider now the almost-complex structure

and the non-degenerate J-invariant 2-form
w = e 4B el
A straightforward computation shows that
dw = =€ £ 0 and dw? = d(e'?° — !0 4 26) = 0.
By K. Nomizu’s theorem [Nomb4, Theorem 1], it is straightforward to compute
Hip(X;R) = R{e', €2, €%, e*) .

Since

wlel — 12346 _ 3456

we get that [w?] — -1 Hjp(X;R) — H3(X;R) is not injective.

We give two explicit examples of 2n-dimensional complex manifolds endowed with a balanced structure, with
2n = 10, respectively 2n = 6, such that the (n — 1)th power of the associated (1, 1)-form induces an isomorphism
in cohomology, and admitting small balanced deformations, [AT12a, Example 3.4, Example 3.5].

Example 2.31. A curve of balanced structures on nfs inducing an isomorphism in cohomology.

We recall the construction of the 10-dimensional nilmanifold 785, introduced and studied in [AB90] by L.

Alessandrini and G. Bassanelli to prove that being p-Kahler is not a stable property under small deformations of

the complex structure; more in general, in [AB91], the manifold 72,41, for any n € N'\ {0}, has been provided

as a generalization of the Iwasawa manifold I3, and the existence of p-Ké&hler structures on 182,41 has been

investigated. (For definitions and results concerning p-Kéahler structures, see [AB91], or, e.g., [Sil96, Alell].)
For n € N\ {0}, consider the complex Lie group

1]t " | oz

0| 1 y1
Gons1 == { A€GL(n+2;C) : A = :

0 1| y"

0] 0 0 1

equivalently, one can identify Gg,1 with ((C2"+1, *), where the group structure * is defined as
(acl, L TR T z) * (ul7 B L ) ,w)
= (:cl—l—ul, oty ol oy, z—i—w—l—xlwl—l—---—l—x”-vn) .

Since the subgroup
Tont1 = Gant1 NGL(n+2Z[i]) C Ganta

is a discrete co-compact subgroup of the nilpotent Lie group Ga,11, one gets a compact complex manifold, of
complex dimension 2n + 1,

NB2n+1 = Tont1\ Gont1 »

which is a holomorphically parallelizable nilmanifold and admits no K&hler metric, [Wan54, Corollary 2], or [BG88,
Theorem A], or [Has89, Theorem 1, Corollary]; note that 783 = I3 is the Iwasawa manifold (see §1.4.1). In fact,
one has that 782,41 is not p-Kahler for 1 < p < n and it is p-Kéhler for n +1 < p < 2n + 1, [AB91, Theorem
4.2]; furthermore, 782,41 has complex submanifolds of any complex dimension less than or equal to 2n + 1, and
hence it follows that the p-Kéhler forms on 12,41 can never be exact, [AB91, §4.4].
Setting
P2t = dad for je{l,....,n},

dy? for je{l,...,n},
Pl dz—Z?lej dy’
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one gets the global co-frame {cpj }j for the space of holomorphic 1-forms, with respect to which the

structure equations are

c{1,...,2n+1}
d<p1 . d<p2" =0
d(p2n+1 _ —Z?:1 (p2j71/\(p2j

Now, take 2n + 1 = 5. With respect to the co-frame {cpj}j
185, the structure equations are

{15} for the space of holomorphic 1-forms on

{d<p1:d<p2:dgo3=dg04=0
d<p5 _ _@12_@34

(where, as usually, we shorten, e.g., 12 := ©! A p?).
Consider on 718y the balanced structure

.5
1 . .
— J A G
w = 5 ng N’ .
Jj=1
By K. Nomizu’s theorem [Nom54, Theorem 1], it is straightforward to compute
Hjp (nB5;C) = C(p', %, ¢* ¢* &', % &°, &%)
and

9 . _ 123452345 123451345 123451245 123451235
HdR(ﬁ55,C) = C<S0 y P ) P y P )

234512345 134512345 124512345 123512345
¥ ¥ ¥ ¥ >

) ) )

therefore, 7835 is complex-C>®°-pure-and-full at the 15* stage and
[w'] — -: Hjg (nBs;R) = Hjp (165; R)

is an isomorphism, and so 135 is also complex-pure-and-full at the 15 stage by Proposition 2.28 (note that, the
above pure type representatives being harmonic with respect to the metric Z?:1 @l ® @7, the same result follows
also arguing as in [FT10, Theorem 3.7]).

Now, let {Ji},c A(0,e)cc> Where € > 0 is small enough, be a family of small deformations of the complex
structure such that

pi = ¢ +tg!
o7 = ¢
pi = ¢
v o= ¢
pp = ¢
is a co-frame for the J;-holomorphic cotangent bundle. With respect to {api }je{l , the structure equations

are written as

5 _

dop = dgf = dy} = dgf =0
dyy = *ﬁ@?*%‘?zlfl%w@tm

Setting, for t € A (0,¢) C C,

. 5

i o

wp = 5 > PLAT,
j=1

o |

one gets a curve of balanced structures {(.J;, we)}, ¢ A(0,¢) On the smooth manifold underlying n8s. Furthermore,
for every t € A(0,¢), the complex structure J; is complex-C>-pure-and-full at the 1% stage and

[wi] — -t Hip (nBs;R) — HYp (nBs;R)

is an isomorphism. Therefore, according to Proposition 2.28, it follows that, for every ¢ € A (0, ), the complex

structure J; is complex-pure-and-full at the 1% stage, and that HL(,?O) (nBs; C) ~ H(Jot 1 (nBs; C).
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Example 2.32. A curve of semi-Kdihler structures on a 6-dimensional completely-solvable solvmanifold inducing
an tsomorphism in cohomology.
Consider a completely-solvable solvmanifold

X = T\G = (0, —12, 34, 0, 15, 46)

endowed with the almost-complex structure Jy whose holomorphic cotangent bundle has co-frame generated by

el = el 4iet
©? = e?+ied
3 = e3+ieb
and with the Jp-compatible symplectic form
wo = el 4 e 4 30

(see also [FT10, §6.3]). The structure equations with respect to {Lpl, 2, <p3} are

de! = 0
) d(p2 — —<p1§ _ 901? ;
2i deS — _()013 + ()013

using A. Hattori’s theorem [Hat60, Corollary 4.2], one computes

e,

Hip(X;R) = R{xg €', x4 e") = R (10, 12356}

],
Hip(X;R) = R{e',
where gg is the Jo-Hermitian metric induced by (Jo, wo).

Now, consider the curve {Jt}te(—e )CR of almost-complex structures on X, where € > 0 is small enough and
J¢ is defined requiring that the J;-holomorphic cotangent bundle is generated by

pr = !
©? = p?+ited
pi = ¢’

for every ¢ € (—¢, €), consider also the non-degenerate J;-compatible 2-form
wp = eM g e 40 12

for t # 0, one has that dw # 0, but
dout2 = d(w%—teu%) =0,

hence {(Ji, wi)},e(_c, ) gives rise to a curve of semi-Kéhler structures on X. Moreover, note that

WAl = (12396 WAt = (23156

therefore [wf] — -1 Hjp(X;R) — HJx(X;R) is an isomorphism, for every t € (—¢, ¢).

2.2.6 Almost-Kahler manifolds and Lefschetz-type property

Recall that every compact manifold X endowed with a Kéhler structure (J, w) is C*°-pure-and-full, in fact,
complex-C*-pure-and-full at every stage, [DLZ10, Lemma 2.15, Theorem 2.16], or [LZ09, Proposition 2.1]. A
natural question is whether or not the same holds true even for almost-Kéhler structures, namely, without the
integrability assumption on J.

In this section, we study cohomological properties for almost-Kéhler structures, in connection with a Lefschetz-
type property, Theorem 2.35, and we describe some explicit examples.

The results in this section have been obtained in a joint work with A. Tomassini and W. Zhang, [ATZ12].

Let X be a compact 2n-dimensional manifold endowed with an almost-Kahler structure (J, w, g), that is, J is
an almost-complex structure on X and ¢ is a J-Hermitian metric whose associated (1,1)-form w:=g¢g(J-, ) €
ALLX N A2X is d-closed.

Firstly, we recall the following result on decomposition in cohomology for almost-Kéhler manifolds, proven by
T. Draghici, T.-J. Li, and W. Zhang in [DLZ10] and, in a different way, by A. Fino and A. Tomassini in [FT10].
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Proposition 2.33 ([DLZ10, Proposition 2.8|, [FT10, Proposition 3.2]). Let X be a compact manifold and let
(J, w, g) be an almost-Kahler structure on X. Then J is C*>-pure.

Hence, one is brought to study the C°°-fullness of almost-Kéhler structures.

Note that w is in particular a symplectic form on X. We recall that, given a compact 2n-dimensional manifold
X endowed with a symplectic form w, and fixed k € N, the Lefschetz-type operator on (n — k)-forms associated
with w is the operator
LF = LF: AP X 5 APRX LRa) = WP A

(see §0.2 for notations concerning symplectic structures); since dw = 0, the map L¥: A"7% X — A"F X induces
a map in cohomology, namely,

LF: HIZF(X5R) —» HFR(XGR),  LF(a) = [w¥] —a,

Initially motivated by studying, in [Zhall], Taubes currents, which have been introduced by C. H. Taubes in
[Taull] in order to study S. K. Donaldson’s “tamed to compatible” question, [Don06, Question 2], W. Zhang
considered the following Lefschetz-type property, see also [DLZ12, §2.2].

Definition 2.34. Let X be a compact 2n-dimensional manifold endowed with an almost-complex structure J
and with a J-Hermitian metric ¢g; denote by w the (1, 1)-form associated to g. One says that the Lefschetz-type
property (on 2-forms) holds on X if

L% AP X = AP 2X

takes g-harmonic 2-forms to g-harmonic (2n — 2)-forms.

Since the map LF: A" ™% X — A"tk X is an isomorphism for every k € N, [Yan96, Corollary 2.7], it follows
that the Lefschetz-type property on 2-forms is stronger than the Hard Lefschetz Condition on 2-classes, namely,
the property that [w]" > — -: H2,(X;R) — H3% 2(X;R) is an isomorphism.

In order to study the relation between the Lefschetz-type property on 2-forms and the C*°-fullness, we prove
here the following result, [ATZ12, Theorem 2.3|, which states that the Lefschetz-type property on 2-forms is
satisfied provided that the almost-Kéhler structure admits a basis of pure type harmonic representatives for the
second de Rham cohomology group. (Recall that A. Fino and A. Tomassini proved in [FT10, Theorem 3.7] that
an almost-Ké&hler manifold admitting a basis of harmonic 2-forms of pure type with respect to the almost-complex
structure is C*°-pure-and-full and pure-and-full; they also described several examples of non-Kéhler solvmanifolds
satisfying the above assumption, [FT10, §5, §6].)

Theorem 2.35. Let X be a compact manifold endowed with an almost-Kihler structure (J, w, g). Suppose that
there exists a basis of HL%R(X;R) represented by g-harmonic 2-forms which are of pure type with respect to J.
Then the Lefschetz-type property on 2-forms holds on X.

Proof. We recall that, on a compact 2n-dimensional symplectic manifold, using the symplectic form w instead of a
Riemannian metric and miming the Hodge theory for Riemannian manifolds, one can define a symplectic-x-operator
%t A®* X — A2"7*X such that o A x,3 = (w’l)k (o, B) % for every a, B € A*X, see [Bry88, §2]. (See §0.2 for
further details on symplectic structures, and see §3.1.1 for definitions and results concerning the Hodge theory
for symplectic manifolds.) In particular, on a compact manifold X endowed with an almost-Kéhler structure
(J, w, g), the Hodge-*-operator %, and the symplectic-x-operator %, are related by

ko = *g.J,

see [Bry88, Theorem 2.4.1, Remark 2.4.4]. Therefore, for forms of pure type with respect to J, the properties
of being g-harmonic and of being w-symplectically-harmonic (that is, both d-closed and d®-closed, where d* is
the symplectic co-differential operator, which is defined, for every k € N, as d* | Ak xi= (71)1ngl *, d *,) are

equivalent. The statement follows noting that

L] =0  and [dA, L] = d,
see, e.g., [Yan96, Lemma 1.2]: hence L sends w-symplectically-harmonic 2-forms (of pure type with respect to J)
to w-symplectically-harmonic (2n — 2)-forms (of pure type with respect to J). O

Remark 2.36. Note that, if X is a compact 2n-dimensional manifold endowed with an almost-Kéhler structure
(J, w, g) satisfying the Lefschetz-type property on 2-forms and J is C*°-full, then J is C*°-pure-and-full and
pure-and-full, too, [ATZ12, Remark 2.4].
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Indeed, we have already noticed that J is C*°-pure by [DLZ10, Proposition 2.8] or [FT10, Proposition 3.2].
Moreover, since J is C*°-full, J is also pure by [LZ09, Proposition 2.5]. We recall now the argument in [FT10,
Theorem 4.1] to prove that J is also full. Firstly, note that if the Lefschetz-type property on 2-forms holds, then
(w2 — - H2, (X;R) — HJ% % (X;R) is an isomorphism. Therefore, we get that

HE 2 (XGR) = H =020 (X R) + HY T D (XGR)

indeed, (following the argument in [FT10, Theorem 4.1],) since [w"™2] — -: H3,(X;R) — Hip *(X;R) is in
particular surjective, we have

H3p2(X3R) = [w"7%] — Hip(X3R)
= [0 = (HPOCOP xR @ BE Y (XGR))

c HL(]n,n72),(n72,n) (X,R) + HL(]nil’nil) (X,R) ’

yielding the above decomposition of H;g_Q(X ;R). Then, it follows that J is also full by Theorem 2.10.

We describe here some examples, from [ATZ12], of almost-Kéhler manifolds, studying Lefschetz-type property
and C*°-fullness on them.

In the following example, we give a family of C*°-full almost-Kéahler manifolds satisfying the Lefschetz-type
property on 2-forms, [ATZ12, §2.2].

Example 2.37. A family of C*>°-full almost-Kaihler manifolds satisfying the Lefschetz-type property on 2-forms.
Consider the 6-dimensional Lie algebra
br = (0%, 23,13, 12) .

By Mal’tsev’s theorem [Mal49, Theorem 7], the connected simply-connected Lie group G associated with by
admits a discrete co-compact subgroup I': let N := T'\ G be the nilmanifold obtained as a quotient of G by T'.
Note that N is not formal by K. Hasegawa’s theorem [Has89, Theorem 1, Corollary].

Fix a > 1 and consider the G-left-invariant symplectic form w, on N defined by

We = e ta-eP 4 (a—1)-e%.

Consider the left-invariant almost-complex structure J on N defined by

Ja€1 = eq, Ja€s = aes, Jaes = (a—1)eg,
Jaeg == —e1, Jaes == —Zeg, Jaes = —yes,
where {e1, ..., eg} denotes the global dual frame of the G-left-invariant co-frame {e!, ..., €%} associated to the

structure equations.
Finally, define the G-left-invariant symmetric tensor

It is straightforward to check that {(Ja, Wa; ga)}esq is @ family of G-left-invariant almost-Kéhler structures
on N; moreover, setting

El = ¢!, E2 = ae?, E3 = (a—1)é?,
E! = ¢t E> = ¢€° ES = ¢
we get the G-left-invariant g,-orthonormal co-frame {E}X, ceey Eg} on N. The structure equations with respect
to the co-frame {EZ, ..., ES} read as follows:
dEL = 0
dE2 = 0
dE3 = 0
4 _ 1 23
dE, = Y Ex
dB; = HEB
dE6 _ 1 E12
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Then
Yo = Ba+iB,, @y = Bo+iE,, ¢ = B +iE;

are (1,0)-forms for the almost-complex structure J,,, and
wo = EXNEY+E2NES +E2 NES.

By K. Nomizu’s theorem [Nom54, Theorem 1], the de Rham cohomology of N is straightforwardly computed:

HgR(N;R)

1 1 1
R(EP, B, B2, BX, B B, B+ B, Tpp e Lom)
« « a—1
= R{iapl +i¢2 i(a-1)¢2+iapl, Impl?, Imel?, Tmel?)
@ (Jmepl?, Imel? Tme2?) .
Note that the g,-harmonic representatives of the above basis of H(%R(N ;R) are of pure type with respect to J,:
hence, the almost-complex structure J, is C*°-pure-and-full and pure-and-full by [FT10, Theorem 3.7]; furthermore,

by Theorem 2.35, the Lefschetz-type property on 2-forms holds on N endowed with the almost-Kéhler structure
(Jos Was g ), where a > 1. Moreover, we get

by (N) =5, h; (N) = 3.

o

On the other hand, one can explicitly note that

L, . BY = EY% = s« B2,

L, EY¥ = EIY» = s, E3*,

L, .B* = B2 = 4« FEY,

L, E* = E¥Y4 — 4 FE35

L, B3 = E3% = «, EI,

L, B¥® = B = 4 B2,
and

d #g, La, <E;4+;E§5) = d<—°‘zlE§6—E§5—;E;4> =0,

and

d *ga L"Joz (625 + 636) = 0 ;
this proves explicitly that the the Lefschetz-type property on 2-forms holds on N endowed with the almost-Kéhler
structure (Jo, Wa, ga), where o > 1.

Note that, while wa A -: A2 N — AN induces an isomorphism [w,] — -: H25(N;R) = Hip(N;R) in
cohomology, the map [wa]2 — : HYp(N;R) — H3R(N;R) is not an isomorphism, according to [BG88, Theorem
Al

We show explicitly that the nilmanifold N is not formal, without using K. Hasegawa’s theorem [Has89,
Theorem 1, Corollary]. By [DGMS75, Corollary 1], every Massey product on a formal manifold is zero. Since

(B — [E}] = (@—1) [dE]] =0 and [EY] —[E2] = —a(a—1) [dE}] =0,

the triple Massey product
([Ba), Q) [E2]) = —(a—1) [ED + o B,

is not zero, and hence N is not formal.
Summarizing, we state the following result, [ATZ12, Proposition 2.5].

Proposition 2.38. There exists a non-formal 6-dimensional nilmanifold endowed with an 1-parameter family
{(Ja, Wa, 9a)tost Of left-invariant almost-Kdhler structures, such that J, is C>-pure-and-full and pure-and-full,
and for which the Lefschetz-type property on 2-forms holds.

In the following example, we give a C*>°-pure-and-full almost-Kéhler structure on the completely-solvable
Nakamura manifold, [ATZ12, §3].



2.2 C*°-pure-and-fullness for special manifolds 79

Example 2.39. A C*-pure-and-full almost-Kdhler structure on the completely-solvable Nakamura manifold.
Firstly, we recall the construction of the completely-solvable Nakamura manifold: it is a completely-solvable
solvmanifold diffeomorphic to the Nakamura manifold studied by I. Nakamura in [Nak75, page 90], and it is an
example of a cohomologically-Kéhler non-Kéhler manifold, [{AFdLM92], [FMS03, Example 3.1], [dBT06, §3].

Take A € SL(2;Z) with two different real positive eigenvalues e* and e~ with A > 0, and fix P € GL(2;R)
such that PAP~! = diag (e)‘, e*)‘). For example, take

2 1 1-V5 1
A::<11), and P::(i \/51>,

3+v5
5

and consequently A = log
Let M :=: M5()) be the 6-dimensional completely-solvable solvmanifold

le X T%, (3
(T1)

ot a8, 20)

M6 = S;z X

where TZ is the 2-dimensional complex torus

and T; acts on R x T% as
Ty (xl, :c?’, :E4, x5, x6) = (xl + A, e*>‘x3, e ac4, e x5, e 1’6) .

Using coordinates 22 on S', 2! on R and (x3, zt, x°, xG) on ’]I%, we set

el == dat, e? = da?,
1 1

e = &% da3, et == e da?t,
1 1

e = e dab b = e daxb.

3

as a basis for g*, where g denotes the Lie algebra naturally associated to M®; therefore, with respect to {ei}ie{lwﬁ},
the structure equations are the following:

de! = 0

de? = 0

de? = etAed
der = —elnet
de® = et Aéd
de = —elnel

Let J be the almost-complex structure on M6 defined requiring that a co-frame for the space of complex
(1,0)-forms is given by

Pl = % (61 + 162)
©? = e3+ied
@3 = et4ieb

It is straightforward to check that J is integrable.
Being M5 a compact quotient of a completely-solvable Lie group, one computes the de Rham cohomology of
M6 by A. Hattori’s theorem [Hat60, Corollary 4.2]:

HL%R (M67(C) = C<§01, ¢1> )
H(%R (M6;(C) - C 9011, @25, (psi, @23, <p25> 7

H(%R (M6,(C) _ C<301237 901327 90123’ ()0123, S0213, 903127 ()0231’ 80123>
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(as usually, for the sake of clearness, we write, for example, % in place of o4 A ¢?, and we list the harmonic
representatives with respect to the metric g := Z?=1 ¢! ® @’ instead of their classes). Therefore, [FMS03,
Proposition 3.2]: (i) M® is geometrically formal, that is, the product of g-harmonic forms is still g-harmonic, and

therefore it is formal; () furthermore,
W o= el2 g 34y 56

is a symplectic form on MS satisfying the Hard Lefschetz Condition.
Note also that @ := (np” +*2 + @33) is not closed but d@? = 0, from which it follows that the manifold

M5 admits a balanced metric.

Since MY is a compact quotient of a completely-solvable Lie group, by K. Hasegawa’s theorem [Has06, Main
Theorem], the manifold M®, endowed with any integrable almost-complex structure (e.g., the J defined above),
admits no Kéahler structure, and it is not in class C of Fujiki, see also [FMS03, Theorem 3.3].

Therefore, we consider the (non-integrable) almost-complex structure J' defined by

Je! = —e?, Jed = —et, J e’ = —eb.
Set )
Pl = 5 (e1 + 162)
P2 = edtiet
3 = ed+ieb

as a co-frame for the space of (1,0)-forms on M® with respect to J’; the structure equations with respect to this
co-frame are

dyt = 0
d¢2 _ wl? +¢i§
de _ wlﬁ +wi§
from which it is clear that J’ is not integrable.
The J'-compatible 2-form
W o= el2 g B 56

is d-closed; hence (J’, w’) is an almost-Kéhler structure on M®S.
Moreover, as already remarked, using A. Hattori’s theorem [Hat60, Corollary 4.2], one gets

H2, (MG;R) _ R<612, 34 50 36 4 45 636+€45>
_ R<iwﬁ, 022, 1%, (1/)23 n w3é)> oR <i (1/]23 _ wéé)> 7
CHT,(MS) CH,(MS)
where we have listed the harmonic representatives with respect to the metric ¢’ := Z?:l el ® el instead of

their classes; note that the above g’-harmonic representatives are of pure type with respect to J’. Therefore,
J' is obviously C*°-full; it is also C*°-pure by [FT10, Proposition 3.2], or [DLZ10, Proposition 2.8]. Moreover,
since any cohomology class in H, (M°®), respectively in H, (M®), has a d-closed g’-harmonic representative in

/\Ll,’,1 M5 N A2MS, respectively in (A?,7,0M6 @ /\3’,2M6> N A2MSC, then J' is also pure-and-full, by [FT10, Theorem

3.7], and the Lefschetz-type property on 2-forms holds, by Theorem 2.35.
One can explicitly check that the Lefschetz-type operator

Lo N2 MS — A*MS

takes g’-harmonic 2-forms to ¢g’-harmonic 4-forms, since

Lyel? = 2341256 — (344 ¢56)
Ly = 2384 ¢3456 — (124 %)
Ly € = 264 ¢3456 — (124 ¢34)
L¢3 = 1236 — % €35
L e% = 01245 — xgr €3 .

Summarizing, the content of the last example yields the following result, [ATZ12, Proposition 3.3].
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Proposition 2.40. The completely-solvable Nakamura manifold MS admits

e both a C*°-pure-and-full and pure-and-full complex structure J, and

e a C®-pure-and-full and pure-and-full almost-Kihler structure (J', ', ¢'), for which the Lefschetz-type
property on 2-forms holds.

Finally, in the following example, we give a non-C*°-full almost-Kéhler structure, [ATZ12, §4]. In particular,
this provides another strong difference between the (non-integrable) almost-Kéhler case and the (integrable)
Kéhler case, all the compact Kahler manifolds being C*°-pure-and-full by [DLZ10, Lemma 2.15, Theorem 2.16],
or [LZ09, Proposition 2.1].

Example 2.41. An almost-Kdhler non-C*°-full structure for which the Lefschetz-type property on 2-forms does
not hold.

Consider the Iwasawa manifold I3 := H (3;Z [i])\ H(3; C), see §1.4.1. Recall that, given the standard complex
structure induced by the one on C? and setting {<p1, 02, g03} as a global co-frame for the (1, 0)-forms on I3, by K.
Nomizu’s theorem [Nomb4, Theorem 1] one gets

Hip(I5;C) = R <w13 +'%, i (wlg - 9013) , 0P+ % (<p23 - <p23) , o2 — o,
i(@lé _Hpﬂ) 7 i<pﬁ, icp25> ®r C,

where we have listed the harmonic representatives with respect to the metric g := 22:1 ©" ® @" instead of their
classes. Using the co-frame {el, cee 66} of the cotangent bundle defined by

ot =:el +ie?, @2::63+ie4, cpS::eerieG,

one computes the structure equations
de! = de? = de® = de* = 0, de® = —e? 42t deb = —e —e23
Therefore
H2, (I3;R) = R<el5_e26’ L6 4 25 ¢35 _ 46 36 4 p45 (18 24 023 14 12 e34> .
Consider the almost-complex structure J on X defined by
Jet = —¢b | Je? = —¢é°, Je = —et,

and set
w = el 4 e et
Then (J, w, g) is an almost-Kéahler structure on the Iwasawa manifold I3. We easily get that
R<616 e (635 _ 646) i (613 Jr624)’ (636 Jr645) _ (623 _ 614) : 634> c Hj (I3)
and
]R<el5 — %, (635 _ e46) _ (613 +624) 7 (636 +e45) + (623 _ el4)> C H; (I3) .

We claim that the previous inclusions are actually equalities, and in particular that J is a non-C°°-full
almost-Kéhler structure on I3. Indeed, we firstly note that, by [FT10, Proposition 3.2] or [DLZ10, Proposition
2.8], J is C*°-pure, since it admits a symplectic structure compatible with it. Moreover, we recall that a C°°-full

almost-complex structure is also pure by [LZ09, Proposition 2.5], and therefore it is also C*°-pure at the 4*" stage,
by Theorem 2.10, that is,

HFFD 0 (133 R) 0 HP? (I;; R) = {0}
Therefore, our claim reduces to prove that J is not C>®-pure at the 4** stage. Note that
0 # [63456] _ [63456 _ d6135] _ [63456 +61234]

_ [63456 + d€135] _ [63456 o 61234]
)

and that 3456 4 1234 ¢ (Aj”;l]lg @ /\1J’3]I3> N A4, while €3456 — 1234 € A22[; A5, and so HPD ) (15 R) 0

H§2’2) (I3;R) > [63456], therefore J is not C*™-pure at the 4" stage, and hence it is not C>-full.
Let L, be the Lefschetz-type operator associated to the almost-Kéhler structure (J, w, g). Then, we have

Lw (612) _ 61234 — d(€245) ;

namely, L, does not take g-harmonic 2-forms to g-harmonic 4-forms.
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The previous example proves the following result, [ATZ12, Proposition 4.1].

Proposition 2.42. The differentiable manifold X underlying the Iwasawa manifold I3 := H (3;Z[i])\ H(3; C)
admits an almost-Kahler structure (J, w, g) which is C*°-pure and non-C>°-full, and for which the Lefschetz-type
property on 2-forms does not hold.

The argument of the proof of [DLZ10, Theorem 2.3] suggests the following question, [ATZ12, Question 3.4],
compare also [DLZ12, §2], in accordance with Proposition 2.42.

Question 2.43. Let X be a compact 2n-dimensional manifold endowed with an almost-Kéhler structure (J, w, g)
such that the Lefschetz-type property on 2-forms holds. Is J C*-full?

2.3 C>™-pure-and-fullness and deformations of (almost-)complex struc-
tures

In this section, we are interested in studying the behaviour of the cohomological decomposition of the de Rham
cohomology of an (almost-)complex manifold under small deformations of the complex structure and along curves
of almost-complex structures.

More precisely, we prove that being C*°-pure-and-full is not a stable property under small deformations of the
complex structure, Theorem 2.49, as a consequence of the study of the C*°-pure-and-fullness for small deformations
of the Iwasawa manifold, Theorem 2.49. Then we study some explicit examples of curves of almost-complex
structures on compact manifolds: by using a construction introduced by J. Lee, [Lee04, §1], we construct a curve
of almost-complex structures along which the property of being C°°-pure-and-full remains satisfied, Theorem 2.53.
In §2.3.2, we provide counterexamples to the upper-semi-continuity of ¢t — H 7 (X), Proposition 2.55, and to the
lower-semi-continuity of ¢ — HI (X), Proposition 2.56, where {J;}, is a curve of almost-complex structures on a
compact manifold X of dimension greater than 4; we also study a stronger semi-continuity problem, §2.3.2.

The results in this section have been obtained in joint work with A. Tomassini, [AT11, AT12a].

2.3.1 Deformations of C*-pure-and-full almost-complex structures

In this section, we consider the problem of the stability of the C*°-pure-and-fullness under small deformations of
the complex structure and along curves of almost-complex structures.

Instability of C*°-pure-and-full property

We recall that a property concerning compact complex (respectively, almost-complex) manifolds (e.g., admitting
Kihler metrics, admitting balanced metrics, satisfying the 99-Lemma, admitting compatible symplectic structures)
is called stable under small deformations of the complex (respectively, almost-complez) structure if, for every
complex-analytic family {X; :=: (X, Jy)},.5 of compact complex manifolds (respectively, for every smooth curve
{Ji},c g of almost-complex structures on a compact differentiable manifold X'), whenever the property holds for
(X, Jp) for some t € B, it holds also for (X, J;) for any s in a neighbourhood of ¢ in B.

The main result in the context of stability under small deformations of the complex structure is the following
classical theorem by K. Kodaira and D. C. Spencer, [KS60], which actually holds for differentiable families of
compact complex manifolds.

Theorem 2.44 ([KS60, Theorem 15]). For a compact manifold, admitting a Kahler structure is a stable property
under small deformations of the complex structure.

Remark 2.45. Conditions under which the property of admitting a balanced metric is stable under small
deformations of the complex structure have been studied by C.-C. Wu [Wu06, §5], and by J. Fu and S.-T. Yau
[FY11].

Note that, by [DLZ11, Theorem 5.4}, see also [Don06], on compact almost-complex manifolds of dimension 4,
the property of admitting an almost-Kéahler structure is stable under small deformations of the almost-complex
structure. This result stands on the very special properties of 4-dimensional manifolds, and does not hold true in
higher dimension. More precisely, we provide here an explicit example, in dimension 6, showing that, relaxing the
integrability condition in the previous theorem (namely, starting with an almost-Kéahler structure), we lose the
stability under small deformations of the almost-complex structure.
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Example 2.46. A curve {J;}, of almost-complex structures on a compact 6-dimensional manifold such that Jy
admits an almost-Kahler structure and Jy, for t # 0, admits no almost-Kahler structure.
For ¢ € R, consider the completely-solvable Lie group

eczl 1

801(3)($17y1721) = ¢

X
1

. Y | €GL&R) : 2t y' 2t eR
z
1

Choose a suitable ¢ € R, for which there exists a co-compact discrete subgroup I'(¢) C Sol(3) such that

M(c)(£17y1721) = F(C) \801(3)(9617111,21)

is a compact 3-dimensional completely-solvable solvmanifold, [AGH63, §3].
The manifold
NG(C) = M(C)(x17y17zl) X M(C)(x27y2722) .

is cohomologically-Kéhler, see [BG90, Example 1], is formal and has a symplectic structure satisfying the Hard
Lefschetz Condition, but it admits no Kéhler structure, see [FMS03, Theorem 3.5].

Consider {6i}ie{1 g asa (Sol(3) x Sol(3))-left-invariant co-frame for N6(c), where

e 1

el == e ¢ dat, €2 == e % dyt, e = dzt,
—c2? a2

et = e da?, e’ = e %% dy?, eb = dz%

with respect to it, the structure equations are

de! = celne?
de? = —ce?ned
de? = 0
de* = cet e’
de® = —ce® Neb
det = 0

By A. Hattori’s theorem [Hat60, Corollary 4.2], it is straightforward to compute
H?p, (N6(c);R) = R<61 Ne2 e3NeS) et A e5> ,
hence the space of (Sol(3) x Sol(3))-left-invariant d-closed 2-forms is
R <e12 36 e45> o R <613 023 45 e46>
(where, as usually, we shorten e4? := e4 A ).
Let Jy € End (TN 6 (c)) be the almost-complex structure given, with respect to the frame {ej,...,es} dual to

{et,..., €5}, by
-1

Jo = a € End (TN%(¢)) .

1

It is straightforward to check that Jo admits almost-Kéhler structures: more precisely, the cone Kf ;.. of
(Sol(3) x Sol(3))-left-invariant almost-Kéhler structures on (NS(c), Jo) is

go,inv = {Oéel/\€2+ﬁe3/\e6+’ye4/\e5 ) 67'7>0} .
Take now
001 0 O 0
00 0 0 0 -1
. 00 0 1 o0 0 6
L = 0000 0 0 € End (TN (c))
00 0 0 O 0
00 0 0 -1 0
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and define, for ¢t € R, the almost-complex structure

1 2t -2t
-1 -2t —2¢2
Ji = (idryse —t L) Jo (idrys (e —zsL)‘1 = _ft 1 € End (T*N°%(c)) .
-1
-1 -2t

We first prove that J; admits no (Sol(3) x Sol(3))-left-invariant almost-Kéhler structure for ¢ # 0. Indeed, for
t # 0, the space of (Sol(3) x Sol(3))-left-invariant d-closed Ji-invariant 2-forms is

R<€36 42ttt 645>

and
(ﬁe?’/\eﬁ—i-ve‘l/\(f+2tﬁe4/\e6)3 =0 forevery B, 7y€R,

hence
=g fort #£0.

c
Jy, inv

Now, using F. A. Belgun’s symmetrization trick, [Bel00, Theorem 7], we get that, if J; admits an almost-Kéhler
structure w, then it should admits a (Sol(3) x Sol(3))-left-invariant almost-Kéhler structure

pe) = [ ol

where 7 is a (Sol(3) x Sol(3))-bi-invariant volume form on N°(c), whose existence is guaranteed by [Mil76, Lemma
6.2].

We resume the content of the previous example in the following result.

Theorem 2.47. Being almost-Kihler is not a stable property along curves of almost-complex structures.

In view of K. Kodaira and D. C. Spencer’s theorem [KS60, Theorem 15|, a natural question in non-Kéahler
geometry is what properties, weaker that the property of being Kéhler, still remain stable under small deformations
of the complex structure. This does not hold true, for example, for the balanced property, as proven in [AB90,
Proposition 4.1] by L. Alessandrini and G. Bassanelli; on the other hand, the cohomological property of satisfying
the 00-Lemma is stable under small deformations of the complex structure, as we have seen in Corollary 1.28, see
also [Voi02, Proposition 9.21], or [Wu06, Theorem 5.12], or [Tom08, §B]. We show now that the cohomological
property of C*°-pure-and-fullness turns out to be non-stable under small deformations of the complex structure,
[AT11, Theorem 3.2].

Theorem 2.48. The properties of being C*-pure-and-full, or C*°-pure, or C*°-full, or pure-and-full, or pure, or
full are not stable under small deformations of the complex structure.

The proof of Theorem 2.48 follows studying explicitly C*°-pure-and-fullness for small deformations of the
standard complex structure on the Iwasawa manifold I3, [AT11, Theorem 3.1]. (We refer to §1.4.1 for notations
and results concerning the Iwasawa manifold and its Kuranishi space; we recall here that I3 is a holomorphically
parallelizable nilmanifold of complex dimension 3, and its Kuranishi space is smooth and depends on 6 effective
parameters; the small deformations of I3 can be divided into three classes, (%), (ii), and (%ii), according to their
Hodge numbers; in particular, the Hodge numbers of the small deformations in class (i) are equal to the Hodge
numbers of I3.)

Theorem 2.49. Let I3 := H(3;Z]i])\ H(3;C) be the Iwasawa manifold, endowed with the complex structure
inherited by the standard complex structure on C3, and consider the small deformations in its Kuranishi space.
Then:

e the natural complex structure on I3 is C*°-pure-and-full at every stage and pure-and-full at every stage;
e the small deformations in class (i) are C*-pure-and-full at every stage and pure-and-full at every stage;

o the small deformations in classes (i) and (iii) are neither C*°-pure nor C*°-full nor pure nor full.
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Proof. We follow the notation introduced in §1.4.1; in particular, we recall that the structure equations with
respect to a certain co-frame {¢f, pf, ¢} of the space of (1,0)-forms on Xy :=: (I3, Jy), for t € A(0,¢) C C®
with € > 0 small enough, are the following:

deg = 0
d(p% = 0 )
de} = oot ANpE+ 0119t APL+ 01308 NG + 091 07 NGt + 095 0 A Pi

where 019, 011, 013, 091, 095 € C are complex numbers depending just on t. The asymptotic behaviour of o2,
011, 013, 091, and 0,5 for t near O is the following, see §1.4.1:

o2 = —1+o(t])

011 = tar+o([t])

013 = taato(lt])
o1 = —tu+o([t])
o3 = —tizto(t])

more precisely, for t in class (7), respectively class (i¢), we actually have

oz = —1
o1 = 0
o3 = 0 for t € class (i),
o1 = 0
095 = 0
and
o2 = —1+o([t])
o7 = tar(14+0(1))
o5 = ta(14+0(1)) for t € class (ii) .
on = —ti(1+o(1)
03 = —tiz(l+0(1))

By K. Nomizu’s theorem [Nom54, Theorem 1], one computes straightforwardly the de Rham cohomology of T3
and of its small deformations; for the sake of clearness, we recall in the following table a basis of the space of the
harmonic representatives of the de Rham cohomology classes with respect to the metric go := Z?Zl 0h O @Y.

k. K ‘ go-harmonic representatives of H, (I3;K)
1 C o', 0%, o', @
R Pt (et —3t), WP+ 0% i (92— 77)
2 C "%, 0%, oM, 912, O, P, 13, P
R P13 4 13 (¢13 _ ¢13) RPN (¢23 _ <p23) L pl2 — 21 1(9012 T 1) Liptl 122
3 C 123 181 182 231 232 113 193 213 233 123

R meﬁ _ @1153’ i(wlzsi + Lpliéé) , @1235 _ @2153’ i(@lz:}i + wziéﬁ) , <’0131:’3’ <P13§§ + @2313, i((plsi:’s _ ¢2313) , tPQSﬁ
(%}
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Note that the above harmonic representatives of the classes in Hjj (I3;R) are of pure type with respect to Jo
and to Jy with t in class (7): hence, by Theorem 2.10 (or arguing as in [FT10, Theorem 3.7]), one gets that I3
and its small deformations in class (i) are C*°-pure-and-full at every stage and pure-and-full at every stage.

Concerning small deformations J; in class (i) and in class (%ii), using the asymptotic behaviour of the structure
equations, we obtain that

[o1204%] = [011 ¢t 01307 + a1 ¢t + 0o 9052} # 0
in H?p, (I3; C). Therefore
HY (155€) 0 (HEY (1 €) + B (15;0)) # {0}

and in particular Ji is not complex-C*-pure. It follows from Remark 2.5 that J; cannot be C*°-pure; from [LZ09,
Proposition 2.30], or Theorem 2.10, it follows that J; cannot be full.

To prove that small deformations in class (%) and in class (¥i) are non-pure and non-C*>-full, fix t small
enough and choose two positive complex numbers A :=: A (t) € C and B :=: B (t) € C, depending just on t, such
that

(Aoyz — Boyg, Aoy — Boayg) # (0,0) 5

computing —d (A P+ B <p,2;33>, note that
{(A oo1 — Boyy) @%213 + (Aoyy — Boy) 50%223 - A51280%312 -B 612‘?%312}

= {(Aﬁi — Boy1) <P11;231 + (A Gy — Bay) @%232 #0,

in H;‘R (I3; C). As before, it follows that J; is not C>-pure at the 4*® stage, and consequently it is neither pure
nor C*-full, by Theorem 2.10. O

Curves of C*-pure-and-full almost-complex structures

We study here some explicit examples of curves of almost-complex structures on compact manifolds, along which
the property of being C*°-pure-and-full remains satisfied. The aim of this section is to better understand the
behaviour of C*°-pure-and-fullness along curves of almost-complex structures.

Firstly, we recall some general results concerning curves of almost-complex structures on compact manifolds,
referring, e.g., to [AL94].

Let J be an almost-complex structure on a compact 2n-dimensional manifold X. Every curve {Jt}te(fa,g) R
of almost-complex structures on X such that Jy = J can be written, for € > 0 small enough, as

Jy = (id — L) J (id —Ly)~" € End(TX) ,
where L; € End (TX), see, e.g., [AL94, Proposition 1.1.6]; the endomorphism L; is uniquely determined further
requiring that L; € T}’OX ® (T3’1X) , namely,

L;J+ JL, = 0;

furthermore, set Ly =: t L 4 o(t): if J is compatible with a symplectic form w, then the curves consisting of
w-compatible almost-complex structures J; are exactly those ones for which L' = L.

In [dBM10, Proposition 3.3], P. de Bartolomeis and F. Meylan computed % L +—o Nij 7, getting a characterization
in terms of L of the curves of complex structures starting at a given integrable almost-complex structure J.

A. Fino and A. Tomassini, in [FT10, §6, §7], studied several examples of families of almost-complex structures
constructed in such a way. We provide here some further examples, starting with a curve of almost-complex
structures on the 4-dimensional torus, [AT11, pages 420-422].

Example 2.50. A curve of almost-complez structures through the standard Kdihler structure on the 4-dimensional
torus.

Let (Jo, wo) be the standard Kihler structure on the 4-dimensional torus T* with coordinates {2/ }ieq1,....43, that
is,

Jo = € End (TT*) and  wp = dz' Ada® +da® Adat € APTE.
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Set

€ End (TT") ,

0

where ¢ € C*°(T*; R), that is, £ € C>°(R*; R) is a Z*-periodic function. For t € (—¢, ) with € > 0 small enough,
define

—{

1-te
1+t

€ End (TT*) ,

Joo o= (id —tL) Jo (id —t L)™' =

=
+
|
o~

—
|

-

~|

1
obtaining a curve of wy-compatible almost-complex structures on T%, see also Proposition 2.22. To simplify the

notation, set
1 —tL

I

A co-frame for the holomorphic cotangent bundle of T* with respect to J; , is given by
cp%’[ = dao! +iada?
o7, = da? +idat

a = o(t,l) =

with respect to which we compute the structure equations
d@%,e =ida A da?
d <pt2} , =0
Note that, taking £ = /¢ (wl, ac3), the corresponding almost-complex structure Jy, o is integrable, in fact, (J, ¢, wo)

is a Kihler structure on T*. Recall that, T* being 4-dimensional, J; ¢ is C*°-pure-and-full by [DLZ10, Theorem
2.3]. For the sake of simplicity, assume ¢ = ¢ (2?) depending just on z? and non-constant. Set

v = datAdz®—ada®Adaz?,
vy = da'Adz—adz®Adz?,
wyp = ozda:l/\dccg,

Wy = dsr:2/\d1:47

wg = datAda?+ada®Aadat,
wy = datAdz*+adz®Adad.

Using this notation, an arbitrary .J; ,-anti-invariant real 2-form v :=: Av; + Bvg, with A, B € C*° (’]I‘4; R), is
d-closed if and only if

0A 9B
525 "t = 0
oA 0B _
Ox ox2
oo (2.3.1)
gt g = 0
OB 0A Ada _

Toaf ¥ T gz ¥ T Az

By solving (2.3.1), we obtain the solutions
A
P = EU1+BU2 where A BeR.
Therefore, for t € (—e, €) with € > 0 small enough, we have
dimg H?? 2 (T4R) < 2 = dimg HPO P (TLR) |

and hence

die HY (TR) > 4 = e ) (T4E)

vV

accordingly to the upper-semi-continuity, respectively lower-semi-continuity, property proven in [DLZ11, Theorem
2.6] for 4-dimensional almost-complex manifolds.
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Now, we turn our attention to the case of dimension greater than 4, [AT11, pages 422-423].

Example 2.51. A curve of almost-complex structures through the standard Kdahler structure on the 6-dimensional
torus. _

Let (Jo, wo) be the standard Kihler structure on the 6-dimensional torus T® with coordinates {z7 }ieq1,....63, that
is,

-1
-1

Jo = — € End (TT°) and wo = da' Ada* +daz* Ada® +da® Ada® .

Set

L = € End (TT°) ,

0

where £ € C*°(TS; R), that is, £ € C>°(RS; R) is a ZS-periodic function. For ¢ € (—¢, ¢) with € > 0 small enough,
define

Joo = (id —tL) Jy (id =t L)™' = — € End (TT°) ,

=
+
o+
o~

—
|

~

~

obtaining a curve of wg-compatible almost-complex structures on T®, see also Example 2.26. Setting

1 -1t/
1+te’

a =: a(t,l) =

a co-frame for the holomorphic cotangent bundle of T® with respect to Ji, ¢ is given by

‘Ptl,e = da! +iadast

@r = da® +idaP ,
go?e = dad +1idaf

)

with respect to which the structure equations are

d@%,e =ida Adaz?

d@?,e =0
dgoié =0
Note that if £ = ¢ (xl,:c4), then we get a curve of integrable almost-complex structures, in fact, of Kéahler

structures, on TC: in particular, in such a case, .J; ; is C*°-pure-and-full. Therefore, as an example, assume that
=1 (;C3) depends just on x> and is non-constant.
An arbitrary J; ,-anti-invariant real 2-form

Y oo= A(dxlAde—adx4Adx5)+B(dxl/\dm5—adx2/\dx4)+0(dmlAde—adx4Adx6)

+D (dx1 ANdazb —a do:3/\d;v4) +FE (d£E2/\dl‘3 fdx‘r’/\de) + F (de/\dx6fdx3/\dx5) ,
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with A, B,C,D,E, F € C*® (TG;R), is d-closed if and only if

OA oC oFE _
ox3 ~ 9z? + dzl T 0
0A 0B
Pat ~ baT 0
0A _ 0B _
ox° Ox? -
0A oD OF _
925 " 022 T o = U
oC oD
Pt ~oir @ = 0
0B oC OF _

T 9x° + x5 ~ 9zl 0
oCc _ oD _ 0
0x6 ox3 -

OA OB
ot @5z = 0
ocC oD
ot @~ gz = 0
0B _ 9D _ 9E  _
o0x6 Oxd Oxl - 9.3.9
a(Ba) oD o8 _ g (2.3.2)
025 a2 O gt =
OE _ OF  _
o0x> o0x2 -
OE _ OF _ 0
Ox6 Ox3 -
0A OB _
~ 9z2 a— oz a =0
OB oC OF
e X gz @~ = 0
_9E _O9F  _
o0x2 x> -
d(Aa) oD OF  _
Ox3 oxb o+ Ozt =0
I(C « oD
O SR = 0
_O9E _OF _
ox3 0z -
OA oC oF
gt T g a—gm = 0

For ¢ # 0 small enough, by solving (2.3.2), we obtain that the J; ¢-anti-invariant real d-closed 2-forms are

P = g(dxw—adx%) +D (dmw—adx34) + F (dx23—dx56) + F (dx26—dx35) ,

where C, D, E, F € R.
For t # 0 small enough, we have

dime DO (T9R) < 4 < 6 = dimg HEO0 (198)

and hence the function ¢ — dimg H 5?’2)’(0’2) (TG; ]R) is upper-semi-continuous at 0. On the other hand, the explicit

computations for H 511) (T®;R) are not so straightforward. In particular, it is not clear if J; ; remains still C*°-full;

note that J; , is C>-pure by [DLZ10, Proposition 2.7] or [FT10, Proposition 3.2].

We recall here the construction of curves of almost-complex structures through an almost-complex structure J
by means of a J-anti-invariant real 2-form, as introduced by J. Lee in [Lee04, §1], in the context of holomorphic
curves on symplectic manifolds and Gromov and Witten invariants.

Let J be an almost-complex structure on a compact manifold X; let g be a J-Hermitian metric on X and fix
v e (AN*0X @ A2X) N A?X. Define V, € End (TX) such that

Yy ) = gV ) s (2.3.3)
a direct computation shows that V., J + JV, = 0. Therefore, setting
1
L, = gVﬂ,J € End (TX) ,
one gets that L, J + JL, = 0. For t € (—¢, ¢) with € > 0 small enough, define

Jio = (id —tL,) J (id —tL,)"" € End(TX) ,
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obtaining a curve {Jy ,} te(—e.e) of almost-complex structures associated with ~.

—&,e

We give an example of a C*-pure-and-full structure on a non-Kéhler manifold such that the stability property
of the C*°-pure-and-fullness holds along a curve obtained using the construction by J. Lee, [AT11, pages 423-425].

Example 2.52. A curve of C*®-pure-and-full almost-complex structures on the completely-solvable solvmanifold
NS(c).

We recall that the manifold N°(c) is a compact 6-dimensional completely-solvable solvmanifold defined, for
suitable ¢ € R, as the product

N®(c) = (T(c)\Sol(3)) x (T'(c)\Sol(3)) ,

where Sol(3) is a completely-solvable Lie group and I'(c) is a co-compact discrete subgroup of Sol(3), [AGH63,
§3], see Example 2.46. It has been studied in [BG90, Example 1] as an example of a cohomologically Kahler
manifold, and in [FMS03, Example 3.4] by M. Ferndndez, V. Mufioz, and J. A. Santisteban, as an example of a
formal manifold admitting a symplectic structure satisfying the Hard Lefschetz Condition and with no Kéahler
structure, [FMS03, Theorem 3.5]. A. Fino and A. Tomassini provided in [FT10, §6.3] a family of C*°-pure-and-full
structures on N6(c). We construct here a curve of C*°-pure-and-full almost-complex structures on N°(c) using
the construction by J. Lee, [Lee04, §1].

Let {ei}ie{l 6} be a co-frame for NY(c) such that the structure equations are

del = cetne?

de? = —ce2ne?

de? = 0

de* = ce*ne

de® = —ce®neb

deb = 0

Take the almost-complex structure
-1
1
] G
J = 1 € End (T'N°(c)) .
-1

1

By A. Hattori’s theorem [Hat60, Corollary 4.2], one computes
Hip (NS(e)iR) = R(e'ne?, e®Nnel —etne®, e® nel +et ne’)

proving that (N 6(e), J ) is C*°-pure-and-full and pure-and-full: indeed, the above harmonic representatives with
respect to the (Sol(3) x Sol(3))-left-invariant metric g := 22:1 ed @ e’ are of pure type with respect to J, and
hence [FT10, Theorem 3.7] assures the C*°-pure-and-fullness and the pure-and-fullness. Note that

HPO O (NS(e);R) = R(ANeS+et Aed) ;
apply J. Lee’s construction [Lee04, §1] to the real J-anti-invariant 2-form
v o= SN et ned

the linear map V € End(TX) representing v as in (2.3.3) is

vV = B € End (TN%(c)) ,
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and then it is straightforward to compute

0
0
_1
L = 2, | € End(TN%¢)) ,
I 2
S
2
and
-1
1
At _ 4
Jt = Jt,'y = 4—¢2 4+t 4t At S End (TNG(C)) .
412 11¢2
4t 412
a+¢2 4412
4t 4—t2
1+t2 1+t2
To shorten the notation, set
4 — 2 4t
= t) i = —— = t) =
a=alt) = s = B =

A co-frame for the Ji-holomorphic cotangent bundle is given by
of = et +ie?
o7 = e®+i(ae + )
@} = e +i(—Bet +aed)
Since the real d-closed 2-forms

I g1 i@33_9d65

1 ; . 1 o
TR : 5(&@32+a(¢53—¢§3))+*¢53

2i
generate three different cohomology classes, we get that, for £ # 0 small enough,

H2p (N%(c);R) = HOY (NS(e);R) |

and so, in particular, J is C*°-full and pure. A straightforward computation yields
L1 33 & .5 @ 125
R<*g<2i¢t)7*g(%0t —Ede)—i—;d(e ),

% (%}213 n @7?13) n g@%ﬁé n Lf d (6125)>

H;ilR (N6(C)§R)

2,2
= HPY (N%(c)R)
therefore N6(c) is also C*°-full at the 4*® stage and hence full and C>-pure.

We resume the content of the last example in the following theorem, [AT11, Theorem 4.1].

Theorem 2.53. There exists a compact manifold N°(c) endowed with an almost-complex structure J and a
J-Hermitian metric g such that:

(i) J is C*°-pure-and-full;

(it) each J-anti-invariant g-harmonic form gives rise to a curve {Jt}te(—s o) of C* -pure-and-full almost-complex
structures on NS(c), where € > 0 is small enough, using J. Lee’s construction;

(iii) furthermore, the function
(—g,e) 3 t+— dimpg H53’0)7(0’2) (N°(c);R) € N

s upper-semi-continuous at 0.
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2.3.2 The semi-continuity problem

Given a compact 4-dimensional manifold X and a family {J;}, of almost-complex structures on X, T. Dréaghici,
T.-J. Li, and W. Zhang studied in [DLZ11] the semi-continuity properties of the functions ¢t — dimg H:}: (X) and
t+— dimg H; (X). They proved the following result.

Theorem 2.54 ([DLZ11, Theorem 2.6]). Let X be a compact 4-dimensional manifold and let {J;}iercr be a
family of (C>°-pure-and-full) almost-complex structures on X, for I C R an interval. Then the function

I > tedimgH;(X) € N
is upper-semi-continuous, and therefore the function

I 5 t—dimgH}(X) €N
is lower-semi-continuous.

The previous result is closely related to the geometry of 4-dimensional manifolds; more precisely, it follows
from M. Lejmi’s result in [Lejl0, Lemma 4.1] that a certain operator is a self-adjoint strongly elliptic linear
operator with kernel the harmonic J-anti-invariant 2-forms. In this section, we are concerned with establishing if
a similar semi-continuity result could occur in dimension higher than 4, possibly assuming further hypotheses.

Counterexamples to semi-continuity

First of all, we provide two examples showing that, in general, no semi-continuity property holds in dimension
higher than 4.

The following result provides a counterexample to the upper-semi-continuity of ¢ — dimg H;, in dimension
greater than 4, [AT12a, Proposition 4.1].

Proposition 2.55. The compact 10-dimensional manifold npPs is endowed with a C*-pure-and-full complex
structure J and a curve {Jt}teA(o,s)cC of complex structures (which are non-C*®-pure for t #0), with Jy = J,
and € > 0, such that the function

A(0,e) > t—dimg Hj (n85) € N
1S not upper-semi-continuous.

Proof. The proof follows from the following example, [AT12a, Example 4.2].

Consider the nilmanifold 185 endowed with its natural complex structure J, as described in Example 2.31. We
recall that, chosen a suitable co-frame {<pj} of the holomorphic cotangent bundle, the complex structure
equations are

j€{1,....5}

{d<p1—d¢2—d¢3—d¢4—o

dg® = —pl2 - 34
By K. Nomizu’s theorem [Nom54, Theorem 1], it is straightforward to compute
H2,(nBs;C) = C <<p13 Pl o2 2 (pié (pia @53 (pé:; P12 @ié _ S0321>

o C <g011, ()0157 (plé’ s01417 cpﬂ, <p2§, Sazé’ L)0221) @31, @35, @35, @31, <p4i, S0427 4,0437 <p421>
(where, as usually, we have listed the harmonic representatives with respect to the left-invariant Hermitian metric

oI ® @ instead of their classes, and we have shortened, e.g., 2% := 4 A pB). Hence the complex structure
j=19 O@ 2 (ZAN)
J is C*°-pure-and-full by [FT10, Theorem 3.7], and

dimg H} (nBs) = 10, dimg H} (nBs) = 16.
Now, for € > 0 small enough, consider the curve {J;},. A@0,e) of complex structures such that a co-frame for
the Jy-holomorphic cotangent bundle is given by {gog }je{l,..‘,5}’ where, for any t € A (0, ¢),

pr = @l Aty

07 = p?

v = ¢ ,

of = ¢

p; o= ¢
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see Example 2.31. The structure equations with respect to {api} . , are
je{l,...,5

t

dot = def = dg} = dy} =0
dgp = —ﬁwy—@f‘l—wﬁl

When € > 0 is small enough, for ¢t € A (0,¢) \ {0}, the complex structure J; is not C*-pure: indeed,

t —
— ¢} +dyp

1,1
" 085 ©) 2 | T

1 : 2,0
= [W@%2¢f4‘| € Hﬁt )(7755;(:)7

t
1-]tf?
Moreover, note that

where [ gofi} € H2x (nB5;C) is a non-zero cohomology class by K. Nomizu’s theorem [Nom54, Theorem 1].

2,0),(0,2 13 14 23 24 12 34
HEPOOD (i €) 2 C{el, o, o, o, o, ol o, o, ol?, o, o2, o)
hence, for every t € A(0,¢) \ {0},
dimg Hj (nfs5) = 10 < 12 < dimg Hj, (985) ,

and in particular ¢ — hj is not upper-semi-continuous at 0. O
The following result provides a counterexample to the lower-semi-continuity of ¢ — dimg H jt in dimension
greater than 4, [AT12a, Proposition 4.3].

Proposition 2.56. The compact 6-dimensional manifold S* x T3 is endowed with a C*°-full (non-integrable)
almost-complex structure J and a curve {Jt}teA(o scC where € > 0, of (non-integrable) almost-complex structures
(which are not C*-pure), with Jy = J, such that

A(0,e) > t+> dimg Hj (S*xT?) € N
is not lower-semi-continuous.

Proof. The proof follows from the following example, [AT12a, Example 4.4].
Consider the compact 6-dimensional manifold S? x T3, and set a global co-frame {ej }
which the structure equations are

je{1,....6} with respect to

(23, —13, 12, 0%) ;

consider the (non-integrable) almost-complex structure J defined requiring that

ol = el 4iet
©? = e?+ied
@3 = e3+ied

generate the C*> (S?’ x T3; (C)—module of (1,0)-forms on S x T3. By the Kiinneth formula, one computes

Hip(S* x T*C) = C(e*, €', %)

_ <8012+S0 A IILS <,023+<,023> = Hy (S* x T%)

<¢12 B2 S L <)032> _ Hj (S3 % ’JI‘3) .

For £ > 0 small enough, consider the curve {Ji},c7 (9 )cc of (non-integrable) almost-complex structures defined
requiring that, for any ¢ € A (0, ¢), the Ji-holomorphic cotangent bundle has co-frame

pr = @ttty
07 = ¢?

e = ¢
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By using the F. A. Belgun symmetrization trick, [Bel00, Theorem 7], we have that, for t € A (0,¢) \ R,
12 21 1 12 21 1 7 12 12 + (Q3 3
[90 - } = ?W(% _@t)_l_img(t@t +t<Pt> ¢ Hj (S° x T°)

and

_ _ 1 _ _ 1 _ _
|:(1013 - (1031i| = |:1 — |t‘2 (50%3 - @?1) - 1— |t|2 (twig +t80t13):| ¢ H:]i (83 X Tg) 5

indeed, the terms 1 := t ;2 +1t 12, respectively 1 := t '3+t o3 cannot be written as the sum of a J;-invariant
form and a d-exact form: on the contrary, since 11, and 5 are left-invariant, applying Belgun’s symmetrization
map, [Bel00, Theorem 7], we can suppose that the Ji-anti-invariant component of the d-exact term is actually the
Ji-anti-invariant component of the differential of a left-invariant 1-form; but the image of the differential on the
space of left-invariant 1-forms is

da'ge = C <<p?3 07—+ 0, (L= + (L= —(1—t)*t + (1 — 1) "2,

A=De+ (1 =D = (1= +(1-1p'?) |
and hence one should have ¢ € R. Hence, we have that, for t € A (0,¢) \ R,
dimg H}, (S* xT?) = 1 < 3 = dimg H}, (S* x T?) ,
and consequently, in particular, ¢t — dimg H }Lt (83 X T3) is not lower-semi-continuous at 0. O

Semi-continuity in a stronger sense

Note that Proposition 2.55 and Proposition 2.56 force us to consider stronger conditions under which semi-continuity
may occur, or to slightly modify the statement of the semi-continuity problem.

We turn our attention to the aim of giving a more precise statement of the semi-continuity problem. We notice
that, for a compact 4-dimensional manifold X endowed with a family {.J;},. A0,) of almost-complex structures,

one does not have only the semi-continuity properties of ¢ — dimg H j{t (X) and t = dimg H} (X), but one gets
also that every Jyp-invariant class admits a Jy-invariant class close to it. This is also a sufficient condition to assure
that, if « is a Jy-compatible symplectic structure on X, then there is a J;-compatible symplectic structure a; on
X for t small enough. Therefore, we are interested in the following problem.

Let X be a compact manifold endowed with an almost-complex structure J and with a curve {Jt}te(—s,s)cR of
almost-complex structures, where € > 0 is small enough, such that Jy = J. Suppose that

HH(X) = ([a'], ... ["]) ,
where o, ..., o* are forms of type (1,1) with respect to J. We look for further hypotheses assuring that, for
every t € (—e, €),

H}(X) 2 C{[oq], ..., [of])

with 4
a; = o +0o(1) .

In this case, (—¢, €) > t — dimp HI (X) € N is a lower-semi-continuous function at 0.
Concerning this problem, we have the following result, [AT12a, Proposition 4.5].

Proposition 2.57. Let X be a compact manifold endowed with an almost-complex structure J. Take L € End(TX)
and consider the curve {Jt}te(fs,s)CR of almost-complex structures defined by

J; == (id—tL) J (id—tL)"" € End(TX),

where € > 0 is small enough. For every [a] € H (X) with o € AYN(X) N A2X, the following conditions are
equivalent:

(i) there exists a family {n: = o+ o0 (1)}c_. o) C Ab;l(X) N A%2X of real 2-forms, with € > 0 small enough,
depending real-analytically in t and such that dn, = 0, for every t € (—e, €);
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(i) there exists {Bj}jeN\{O} C A%X solution of the system

(Bj—i—?a +4Za LJ . ~)+2a(-, Lj~-)
j—h—1

j—1
+> (2 B (L7h, ) + 4
h=1

varying j € N\ {0}, such that 3 -, 9 B3; converges.

o (Lhk. L) 120, La‘h..))) =0, (234

In particular, the first order obstruction to the existence of n; as in (i) reads: there exists B1 € A2X such that
d(Bi+2a(L, ) +2a(-, L) = 0. (2.3.5)
Proof. Expanding J; in power series with respect to ¢, one gets
o= J+Y 201,
j>1
and then, for every ¢ € A2X, one computes

Jrp(s ) = ol ) +26T (p(Les ) + (- L)) +o(Jt])

and
G = Jitddip = dge+2tJ dJ (p(L-, =)+ ¢, L) +o(]t]) -
Now, given [a] € H}(X) with a € ALN(X) N A2X, let {B,}; be such that (2.3.4) holds and Zj21tj B;
converges, for t € (—¢, ¢) with € > 0 small enough; we define

ap = aJthjﬂj e NZX
Jjz1
and
ay + Jy oy
2
By construction, 7 is a Ji-invariant real 2-form, real-analytic in ¢, and such that n; = a4 o0(1). A straightforward
computation yields

no= e AP'X NAZX .

dn, = Zt]d<5]+2a +4Za (L7, LF) +2a (-, L7+)

Jj=1

+j§ (2 B (777, ) +4 jfl a(L7hk LR 24, Lj‘h~-)>>

h=1 k=1
therefore dn; = 0.
Conversely, given [o] € Hf (X) with a € ALH(X) N A2X, let 7 € Alftl (X) N A%X be real-analytic in ¢ and
such that 7, = a+o0(1) and dn; = 0, for every t € (—¢, €) with € > 0 small enough. Defining 8; € A2X, for every
j € N\ {0}, such that

e = a+ztjﬁj )
Jjz1
by the same computation we have that (2.3.4) holds, being dn, = d (%J”’t) =0. O

Remark 2.58. We notice that, if d J, = £J; d on A2M for any ¢, then one can simply let

a+ Ji«

n = 5

so that n; € /\IJ’t1 and dn; = 0. This is the case, for example, if any J; is an Abelian complex structure;
C. Maclaughlin, H. Pedersen, Y. S. Poon, and S. Salamon characterized in [MPPS06, Theorem 6] the 2-step
nilmanifolds whose complex deformations are Abelian.
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Counterexample to the stronger semi-continuity

In the following example, we provide an application of Proposition 2.57, showing a curve of almost-complex
structures that does not have the semi-continuity property in the stronger sense described above, [AT12a, Example
4.8].

Example 2.59. A curve of almost-complex structures that does not satisfy (2.3.5).
As in Example 2.46 and in Example 2.52, consider, for suitable ¢ € R, [AGH63, §3], the solvmanifold

N°(c) = (D(e)\Sol(3)) x (I(c)\Sol(3)) ,

which has been studied in [FMS03, Example 3.4] as an example of a cohomologically Kédhler manifold without
Kéhler structures, see also [BG90, Example 1]. In the following, we consider N® := N6(1). We recall that, with
respect to a suitable co-frame, the structure equations of N6 are

(12, 0, —36, 24, 56, 0) .

We look for a curve {Jt}te(— c.6)CR of almost-complex structures on NY, where ¢ > 0 is small enough, and
for a Jp-invariant form « that do not satisfy the first-order obstruction (2.3.5) to the stronger semi-continuity
problem stated above: therefore, there will not be a Ji-invariant class close to «, for any t € (—e, €).

Consider the almost-complex structure represented by

-1
-1
-1 6
J = T € End (TN) ,
1
1
and
A| B 6
where ] )
A = (df) : B = (v)
i,7€{1,2,3} i,5€{1,2,3}
are constant matrices; for
a = et
we have
d(a(L-, )+ a(, L)) = b? e1234_(13 6125_(1? e1264_17:% 6136_a% 6156_|_a11> 6234_6% 6245—17“;’ 6246+a:13 6346+b% o456
Then, choosing
b3
1
0
L = 0 € End (TN°)
bi
0
0

with b3 € R\ {0}, it is straightforward to check that there is no (Sol(3) x Sol(3))-left-invariant 3 € A2N® such
that
dB = b} e 4 b7 el — b 10 (2.3.6)

hence, by applying the F. A. Belgun symmetrization trick, [Bel00, Theorem 7], there is no (possibly non-
(Sol(3) x Sol(3))-left-invariant) 8 € A2N satisfying (2.3.6).

We resume the content of the last example in the following proposition, [AT12a, Proposition 4.9].

Proposition 2.60. There exist a compact manifold X endowed with a C*°-pure-and-full almost-complex structure
Jo, and a curve {Ji}ie(—c) of almost-complex structures on X, where € > 0 is small enough, such that, for every
t € (—¢,¢€), there is no Ji-invariant class, real-analytic in t, close to any fixed Jo-invariant class.
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2.4 Cones of metric structures

In introducing and studying the subgroups H ((]"') (X;R) on a compact manifold X endowed with an almost-
complex structure J, T.-J. Li and W. Zhang were mainly aimed by the problem of investigating the relations
between the J-taming and the J-compatible symplectic cones on X. As follows by their theorem [LZ09, Theorem
1.1], whenever J is C*>°-full, then the subgroup H (X) measures the difference between the J-taming cone and
the J-compatible cone.

In this section, we discuss some results obtained in [AT12a], jointly with A. Tomassini, giving a counterpart
of T.-J. Li and W. Zhang’s theorem [LZ09, Theorem 1.1] in the semi-Ké&hler case, Theorem 2.74, and, in
particular, comparing the cones of balanced metrics and of strongly-Gauduchon metrics on a compact complex
manifold. Furthermore, concerning the search of a holomorphic-tamed non-Kéhler example, [LZ09, page 678],
[ST10, Question 1.7], we show that no such example can exist among 6-dimensional nilmanifolds endowed with
left-invariant complex structures, Theorem 2.67, as proven in a joint work with A. Tomassini, [AT11].

2.4.1 Sullivan’s results on cone structures

Firstly, we recall some results by D. P. Sullivan, [Sul76, §I.1], concerning cone structures on a (differentiable)
manifold X.

Fixed p € N, a cone structure of p-directions on X is a continuous field C :=: {C(z)},ecx, with C(z) a compact
convex cone in AP(T,X) for every z € X.

A p-form w on X is called transverse to a cone structure C if w|,(v) > 0 for all v € C(z) \ {0} and for all
x € X; using the partitions of unity, a transverse form could be constructed for any given C, [Sul76, Proposition
1.4].

Every cone structure C gives rise to a cone € of structure currents, which are by definition the currents
generated by the Dirac currents associated to the elements in C(z), see [Sul76, Definition 1.4]; the set € is a
compact convex cone in D, X.

The cone Z¢€ of the structure cycles is defined as the sub-cone of € consisting of d-closed currents; denote with
B the set of d-exact currents.

Define the cone HC in HgR(X ;R) as the set of the classes of the structure cycles.

The dual cone of HC in HY,(X;R) is denoted by H¢ and is characterized by the relation
(ﬁeﬁ, HQ:) >0
its interior is denoted by int H¢ and is characterized by the relation
(int e, Het) > 0.
A cone structure of 2-directions is said to be ample if, for every x € X, it satisfies that
C(z) Nspan{e € S, : 7 is a 2-plane} # {0},

where S, is the Schubert variety, given by the set of 2-planes intersecting 7 in at least one line; by [Sul76, Theorem
IT1.2], an ample cone structure admits non-trivial structure cycles.

When the 2n-dimensional manifold X is endowed with an almost-complex structure J, the following cone
structures turn out to be particularly interesting.

For a fixed p € {0,...,n}, let C, ; be the cone {C}, j(7)}, .y, where, for every x € X, the compact convex
cone Cp, () is generated by the positive combinations of p-dimensional complex subspaces of T, X ®r C belonging
to A% (T, X @ C).

The cone €, ; of complex currents is defined as the compact convex cone, see [Sul76, §II1.4], of the structure
currents.

The cone Z€, ; of complex cycles is defined as the compact convex cone, see [Sul76, §IIL.7], of the structure
cycles.

The structure cone Ci,; is ample, [Sul76, p. 249], therefore it admits non-trivial cycles.

We recall the following theorem by D. P. Sullivan, which follows by Hahn and Banach’s theorem.

Theorem 2.61 ([Sul76, Theorem 1.7]). Let X be a compact differentiable manifold (with or without boundary)
and let C be a cone structure of p-vectors defined on a compact subspace Y in the interior of X.

(i) There are always non-trivial structure cycles in'Y or closed p-forms on X transversal to the cone structure.
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(i) If no closed transverse form exists, some non-trivial structure cycle in'Y is homologous to zero in X.
(iii) If no non-trivial structure cycle exists, some transversal closed form is cohomologous to zero.
(iv) If there are both structure cycles and transversal closed forms, then

(a) the natural map
{structure cycles on Y} — {homology classes in X}

is proper and the image is a compact cone C C HgR(X;R), and

(b) the interior of the dual cone C C HYL(X5R) (that is, C is the cone defined by the relation (é, C) >0)

consists precisely of the classes of closed forms transverse to C'.

2.4.2 The cones of compatible, and tamed symplectic structures

Let X be a manifold endowed with an almost-complex structure J.
We recall that a symplectic form w is said to tame J if it is positive on the J-lines, that is, if w, (v, Jyv,) > 0
for every v, € T, X \ {0} and for every x € X, equivalently, if

is a J-Hermitian metric on X with 71,1 xw as the associated (1,1)-form (the map ma11x: A®* X — ALLX being
the natural projection onto A»X). A symplectic form w is called compatible with J if it tames J and it is
J-invariant, equivalently, if w is the (1,1)-form associated to the J-Hermitian metric g; (-, --) := w(-, J--). In
particular, an integrable almost-complex structure J is called holomorphic-tamed if it admits a taming symplectic
form; on the other hand, the datum of an integrable almost-complex structure and a compatible symplectic form
gives a Kéhler structure.

Symplectic cones and Donaldson’s question

Consider the J-tamed cone K, which is defined as the set of the cohomology classes of the J-taming symplectic
forms, namely,

KY = {[w] € Hzx(X;R) : wis a J-taming symplectic form on X} ,

and the J-compatible cone K, which is defined as the set of the cohomology classes of the J-compatible symplectic
forms, namely,

KS = {[w] € Hjr(X;R) : w is a J-compatible symplectic form on X} .

The set K is an open convex cone in H3x(X;R), and the set K¢ is a convex sub-cone of K and it is contained
in HL(Il’l)(X ;R); moreover, both the sets are sub-cones of the symplectic cone

S = {[w] € H(?R(X;R) : w is a symplectic form on X}
in H2,(X;R).

T.-J. Li and W. Zhang proved the following result in [LZ09], concerning the relation between the J-tamed and
the J-compatible cones.

Theorem 2.62 ([LZ09, Proposition 3.1, Theorem 1.1, Corollary 1.1]). Let X be a compact manifold endowed
with an almost-Kdhler structure J (namely, J is an almost-complex structure on X such that KG # @). Then

KynHEY(XGR) = K5 and ¢+ HPOO2 (x.R) C K .

Moreover, if J is C*°-full, then
KY = K5+ HP?OP(XR)

In particular, if dim X =4 and b*(X) =1, then K = K.
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The proof is essentially based on [Sul76, Theorem 1.7]. Note indeed that the closed forms transverse to
the cone Cy ; are exactly the J-taming symplectic forms. By [Sul76, Theorem 1.7(iv)(b)], it follows that K is
the interior of the dual cone HE; ; C H3p(X;R) of HE, ; C H{®(X;R), [LZ09, Theorem 3.2]. On the other
hand, assumed that K9 is non-empty, by the Hahn and Banach separation theorem, K9 is the interior of the

dual cone of H€; ; C H(J1 1)(X;R), [LZ09, Theorem 3.4]. Finally, when dim X = 4, chosen a J-Hermitian

metric g on X with associated (1, 1)-form w, one has /\;X =R (w) ® A; X, hence, in the almost-Kéhler case, if
bT(X) := dimg H;’(X) =1, then H§2’0)’(0’2) (X;R) = {0}, see [DLZ10, Proposition 3.1].

Whereas the previous theorem by T.-J. Li and W. Zhang could be intended as a “quantitative comparison”
between the J-taming and the J-compatible symplectic cones on a compact manifold X endowed with an almost-
complex structure J, one could ask what about their “qualitative comparison”, namely, one could ask whether K9
being empty implies K being empty, too. The following question has been arisen by S. K. Donaldson in [Don06].

Question 2.63 ([Don06, Question 2]). Let X be a compact 4-dimensional manifold endowed with an almost-
complex structure J. If J is tamed by a symplectic form, is there a symplectic form compatible with J?

Remark 2.64. S. K. Donaldson’s “tamed to compatible” question has a positive answer for CP? by the works
by M. Gromov [Gro85] and by C. H. Taubes, [Tau95]. When b™(X) = 1 (where b is the number of positive
eigenvalues of the intersection pairing on Hs(X;R)), a possible positive answer to [Don06, Question 2], see
also [TWY08, Conjecture 1.2], would be provided as a consequence of [Don06, Conjecture 1], see also [TWYO08,
Conjecture 1.1], concerning the study of the symplectic Calabi and Yau equation, which aims to generalize S.-T.
Yau’s theorem [Yau77, Yau78], solving the Calabi conjecture, [Cal57], to the non-integrable case. Some results
concerning this problem have been recently obtained by several authors, see, e.g., [Wei07, TWY08, TW11la, Taull,
Zhall, LT12, FLSV11, BFV11], see also [TW11b]. More precisely, in [Wei07], all the estimates for the closedness
argument of the continuity method applied to the symplectic Calabi and Yau equation, [Don06, Conjecture 1],
are reduced to a CY a priori estimate of a scalar potential function, [Wei07, Theorem 1]; then, the existence of a
solution of the symplectic Calabi and Yau equation is proven for compact 4-dimensional manifolds X endowed
with an almost-Kéhler structure (J, w, g) satisfying ||Nij, ||, <&, where ¢ > 0 depends just on the data, [Wei07,
Theorem 2]. In [TWYO08], it is shown that the C* a priori estimates can be reduced to an integral estimate of
a scalar function potential, [TWY08, Theorem 1.3]; furthermore, it is shown that [Don06, Conjecture 1] holds
under a positive curvature assumption, [TWYO08, Theorem 1.4]. In [TW11a], the symplectic Calabi-Yau equation
is solved on the Kodaira-Thurston manifold S' x (H(3;Z)\ H(3;R)) for any given left-invariant volume form,
[TW1la, Theorem 1.1]; further results on the Calabi-Yau equation for torus-bundles over a 2-dimensional torus
have been provided in [FLSV11, BFV11]. In [Taull], it is shown that, on a compact 4-dimensional manifold with
bt = 1 and endowed with a symplectic form w, a generic w-tamed almost-complex structure on X is compatible
with a symplectic form on X, [Taull, Theorem 1], which is defined by integrating over a space of currents that are
defined by pseudo-holomorphic curves. The Taubes currents have been studied, both in dimension 4 and higher,
also by W. Zhang in [Zhall]. In [LZ11], T.-J. Li and W. Zhang were concerned with studying Donaldson’s “tamed
to compatible” question for almost-complex structures on rational 4-dimensional manifolds; they provided, in
particular, an affirmative answer to [Don06, Question 2] for S? x S§? and for (C]P’zﬁ(C]P’Q, see [DLZ12, Theorem 4.11].
In [LT12], a positive answer to S. K. Donaldson’s question [Don06, Question 2] is provided in the Lie algebra
setting, proving that, given a 4-dimensional Lie algebra g such that B A B = 0 (where B C A2%g is the space of
boundary 2-vectors), e.g., a 4-dimensional unimodular Lie algebra, a linear (possibly non-integrable) complex
structure is tamed by a linear symplectic form if and only if it is compatible with a linear symplectic form, [LT12,
Theorem 0.2].

In a sense, [LZ09, Corollary 1.1] provides evidences towards an affirmative answer for [Don06, Question 2],
especially in the case b = 1; confirmed in their opinion by the computations in [DLZ10] in the case b+ > 1, T.-J.
Li and W. Zhang speculated in [LZ09, page 655] that the equality K = K holds for a generic almost-complex
structure J on a 4-dimensional manifold.

The analogous of [Don06, Question 2] in dimension higher than 4 has a negative answer: counterexamples
in the (non-integrable) almost-complex case can be found in [MT00] by M. Migliorini and A. Tomassini, and in
[Tom02] by A. Tomassini. Notwithstanding, since examples of non-Kéhler holomorphic-tamed complex structures
are not known, T.-J. Li and W. Zhang speculated a negative answer for the following question, also addressed by
J. Streets and G. Tian in [ST10].

Question 2.65 ([LZ09, page 678], [ST10, Question 1.7]). Do there exist non-Kdhler holomorphic-tamed complex
mamnifolds, of complex dimension greater than 27
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Tameness conjecture for 6-dimensional nilmanifolds

In view of the speculation in [LZ09, page 678], and of [ST10, Question 1.7], one could ask whether small
deformations of the Iwasawa manifold, see §1.4.1, may provide examples of non-Kéhler holomorphic-tamed
complex structures. In this section, we prove that this is not the case: more precisely, we prove that no example
of left-invariant non-K&ahler holomorphic-tamed complex structure can be found on 6-dimensional nilmanifolds.
The same holds true, more in general, for higher dimensional nilmanifolds, as proven by N. Enrietti, A. Fino, and
L. Vezzoni, [EFV12, Theorem 1.3].

We recall that a Hermitian metric g on a complex manifold X is called pluri-closed (or strong Kdhler with
torsion, shortly SKT), [Bis89], if the (1,1)-form w associated to g satisfies 90w = 0.

By the following result, holomorphic-tamed manifolds admit pluri-closed metrics, [AT11, Proposition 3.1].
Proposition 2.66. Let X be a manifold endowed with a symplectic structure w and an w-tamed complex structure
J. Then the (1,1)-form & := gy (J -, ) associated to the Hermitian metric gy (-, ) :== 3 (w (-, J-) —w (J-, +)) is
00-closed, namely, § is a pluri-closed metric on X.

Proof. Decomposing w in pure type components, set

w = w>? 4+ wh! 4 2.0

where w29 € A20X and wh! = Wbl € ALLX. Since, by definition, @& = % (w+ Jw), we have @ = whl. We get

that
q 0 Ow*Y =0
w = - — )
Owb! + w0 = 0
and hence B B B o
000 = dOwh! = —dowtt = W’ = 0,
proving that g is a pluri-closed metric on X. O

Now, we can prove the announced theorem, [AT11, Theorem 3.3].

Theorem 2.67. Let X = T'\G be a 6-dimensional nilmanifold endowed with a G-left-invariant complex structure
J. If X is not a torus, then there is no symplectic structure w on X taming J.

Proof. Let w be a (non-necessarily G-left-invariant) symplectic form on X taming J. By F. A. Belgun’s
symmetrization trick, [Bel00, Theorem 7], setting

) = [ wlunm).

where 7 is a G-bi-invariant volume form on G such that [ =1, whose existence follows from J. Milnor’s lemma
[Mil76, Lemma 6.2], we get a G-left-invariant symplectic form on X taming J. Then, it suffices to prove that,
on a non-torus 6-dimensional nilmanifold, there is no left-invariant symplectic structure taming a left-invariant
complex structure.

Hence, let w be such a G-left-invariant symplectic structure. Then, by Proposition 2.66, X should admit
a G-left-invariant pluri-closed Hermitian metric g. Hence, by [FPS04, Theorem 1.2], there exists a co-frame
{p!, ©?, ©®} for the J-holomorphic cotangent bundle such that

de! =0
de? =0
dg® = AD'AN@*+ BB AP +C o' AP + Do AG + Ep! AP
where A, B, C, D, E € C are complex numbers such that |A|* 4+ |D|* + |E|* + 29Re (BC) = 0. Set
w = w4 bt +ﬁ,
where s
e ;aiﬂ’iwv whh = ;,-;fwiwjv

with {aij, bﬁ}_ ~C C such that wh! = wh1. A straightforward computation yields
0.

dw =0 & (A=B=C=D=E=0 or bg=0).
Since bgz # 0, we get A= B = C = D = E = 0, namely, X is a torus. O
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As a corollary, we get the following result, [AT11, Theorem 3.4], concerning the speculation in [LZ09, p. 678],
and [ST10, Question 1.7].

Theorem 2.68. No small deformation of the complex structure of the Iwasawa manifold I3 := H (3;Z [i])\ H(3; C)
can be tamed by any symplectic form.

2.4.3 The cones of semi-Kihler, and strongly-Gauduchon metrics

Let X be a compact 2n-dimensional manifold endowed with an almost-complex structure J. We recall that a
non-degenerate 2-form w on X is called semi-Kahler, [GH80, page 40], if w is the (1,1)-form associated to a
J-Hermitian metric on X (that is, w(:, J-) > 0 and w(J-, J-) = w(-, -)) and d (w™~') = 0; when J is integrable,
a semi-Kéahler structure is called balanced, [Mic82, Definition 1.4, Theorem 1.6].

We set
Kb5 = {[Q] € Hjp *(X;R) : Q€ A" " 1X is positive on the
complex (n — 1)-subspaces of T, X ®g C, for every x € X} |
and
KoY, = {[Q] € Hjp *(X;R) : Q€ A* X is positive on the
complex (n — 1)-subspaces of T, X ®g C, for every x € X} .

We note that Kb and Kb, are convex cones in Hjpy 2(X;R), and that Kb is a sub-cone of Kb, and is contained
. (n—1,n—1) .
in Hj (X;R).

We recall the following trick by M. L. Michelsohn.

Lemma 2.69 ([Mic82, pp. 279-280]). Let X be a compact 2n-dimensional manifold endowed with an almost-
complex structure J. Let ® be a real (n — 1,n — 1)-form such that it is positive on the complex (n — 1)-subspaces
of T.X ®g C, for every x € X. Then ® can be written as ® = "1, where ¢ is a J-taming real (1,1)-form. In
particular, if ® is d-closed, then ¢ is a semi-Kdhler form.

The previous Lemma allows us to confuse the cone Kb$ with the cone generated by the (n — 1)*® powers of
the semi-Kéhler forms, namely,

KbG = {[w"fl} : w is a semi-Kéhler form on X} .

In particular, if J is integrable, then the cone Kb is just the cone of balanced structures on X. On the
other hand, in the integrable case, Kb’ is the cone of strongly-Gauduchon metrics on X. We recall that a
strongly-Gauduchon metric on X, [Pop09, Definition 3.1], is a positive-definite (1, 1)-form « on X such that the
(n,n — 1)-form 0 (’y”’l) is 0-exact. These metrics have been introduced by D. Popovici in [Pop09] in studying the
limits of projective manifolds under deformations of the complex structure, and they turn out to be special cases
of Gauduchon metrics, [Gau77], for which 9 (’y"‘l) is just O-closed; note that the notions of Gauduchon metric
and of strongly-Gauduchon metric coincide if the 99-Lemma holds, [Pop09, page 15]. D. Popovici proved in
[Pop09, Lemma 3.2] that a compact complex manifold X, of complex dimension n, carries a strongly-Gauduchon
metric if and only if there exists a real d-closed (2n — 2)-form Q such that its component Q*~1"=1) of type
(n —1,n — 1) satisfies Q17— > 0.

The aim of this section is to compare the cones Kb% and Kb%, Theorem 2.74, in the same way as [LZ09,
Theorem 1.1] does for £$ and K in the almost-Kéhler case.

Note that ICbtJ can be identified with the set of the classes of d-closed (2n — 2)-forms transverse to Cp,_1_;.
On the other hand, we recall the following lemma.

Lemma 2.70 (see, e.g., [Sil96, Proposition 1.1.3]). Let X be a compact manifold endowed with an almost-complex
structure J, and fit p € N. A structure current in €, 5 is a positive current of bi-dimension (p,p).

As a direct consequence of [Sul76, Theorem 1.7], we get the following result, [AT12a, Theorem 2.6].

Theorem 2.71. Let X be a compact 2n-dimensional manifold endowed with an almost-complex structure J. Then
KbY is non-empty if and only if there is no non-trivial d-closed positive currents of bi-dimension (n —1,n — 1)
that is a boundary, i.e.,

Z€n717!] nB = {0} .

Furthermore, if we suppose that 0 & Kb, then Kbl C ng_z(X;R) is the interior of the dual cone E[Q:n_l,J C
HZ2(X5R) of HC,_1,5 € HYE L(X;R).
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Proof. Note that if w € KbY; # @, and if n :=: d¢ is a non-trivial d-closed positive current of bi-dimension
(n —1,n — 1) being a boundary, then

0 < (n, Tan—1m-1xw) = (n, w) = (A& w) = (£, dw) =0

(where Tan-1,n-1x: A®* X — A"~L77LX ig the natural projection onto A"~ 1"~1X) yields an absurd.

To prove the converse, suppose that no non-trivial d-closed positive currents of bi-dimension (n —1,n—1) is a
boundary; then, by [Sul76, Theorem 1.7(ii)], there exists a d-closed form that is transverse to C,,_; s, that is, Kb
is non-empty.

The last statement follows from [Sul76, Theorem 1.7(iv)]: indeed, by the assumption 0 ¢ Kb%, no d-closed
transverse form is cohomologous to zero, therefore, by [Sul76, Theorem I.7(iii)], there exists a non-trivial structure
cycle. O

We provide a similar characterization for Kb%, [AT12a, Theorem 2.7].

Theorem 2.72. Let X be a compact 2n-dimensional manifold endowed with an almost-complex structure J.
Suppose that Kb # @ and that 0 ¢ Kb5. Then KbG C H&n_l’"_l)(X;R) is the interior of the dual cone
He, 1, CHM D (XR) of HE, 1.y C HY o (XGR).
Proof. By the hypothesis 0 ¢ K, we have that (b5, HE,,_1,5) > 0, and therefore the inclusion b5 C int Iv{Q:n_:[,J
holds.

To prove the other inclusion, let e € Hyb_l’"_l)(X;R) be an element in the interior of the dual cone in

H&n_l’n_l) of HE,,_y j, i.e., e is such that (e, HC,_; ;) > 0. Consider the isomorphism

[ *
—n—1.n— —1,n—1 ~ (™D, 1,1 XZ
gnh—ln 1:H§" o )(X;R)—> e )

Tr’anl,n—lXB

[LZ09, Proposition 2.4] (where 7p, _, ,_,x: DeX — Dy_1,,—1X denotes the natural projection onto Dy, 1, -1X):

—n—1n—1 n—1,n—1%X

. . . D z . E— s

hence, & (e) gives rise to a functional on = namely, to a functional on 7p__, ,_,xZ vanishing
T™p_1,n—1X o
on Tp xBB; such a functional, in turn, gives rise to a hyperplane L in mp,_, ,xZ containing 7p, ,, ,xB.
Being a kernel hyperplane in a closed set, L is closed in D;,_1 5,—1X N Dap_2X; furthermore, L is disjoint from

€,—1,7 \ {0}, by the choice made for e. Pick a J-Hermitian metric and let ¢ be its associated (1,1)-form; consider

n—1,n—1

K:={Tet, _1,:T(e" ") =1},

which is a compact set. Now, in the space D,,_1 ,—1X N Dy, _2X, consider the closed set L, and the compact
convex non-empty set K, which have empty intersection. By the Hahn and Banach separation theorem, there
exists a hyperplane containing L, and then containing also 7p,_, ,_, x B, and disjoint from K. The functional on
Dy—1n—1X NDa,_2X associated to this hyperplane is a real (n—1,n —1)-form being d-closed, since it vanishes on
TD,_1.._1x B, and positive on the complex (n — 1)-subspaces of T, X ®r C, for every x € X, that is, a .J-compatible
symplectic form. O

The same argument as in [HL83, Proposition 12, Theorem 14] yields the following result, [AT12a, Theorem
2.8], which generalizes [HL83, Proposition 12, Theorem 14], [LZ09, page 671], see also [Mic82, Theorem 4.7].

Theorem 2.73 ([HL83, Proposition 12, Theorem 14], [LZ09, page 671], [AT12a, Theorem 2.8]). Let X be a compact
2n-dimensional manifold endowed with an almost-complex structure J, and denote by mp, ,x: De X — Dy 1 X the
natural projection onto Dy 1, X, for every k € N.

(i) If J is integrable, then there exists a Kdihler metric if and only if € j Nwp, , xB = {0}.
(ii) There exists an almost-Kihler metric if and only if €& yN7wp, ,xB = {0}.
(iii) There exists a semi-Kihler metric if and only if €,y yN7p,_, ,_, xB = {0}.

Proof. Note that (i), namely, [HL83, Proposition 12, Theorem 14], is a consequence of (7i): indeed, if J is
integrable, then J is closed, [HL83, Lemma 6], that is, mp, , x B is a closed set.

The proof of (i), namely, [LZ09, page 671], being similar, we prove (iii), following closely the proof of (i) in
[HL83, Proposition 12, Theorem 14].

Firstly, note that if w is a semi-K&hler form and

0#n:= lim 7p,_, _,x(da) € & 1,N7mp,_,, ,xB # {0},

k—+o00
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where {ag},cn C Don—1X, then

0 < (powh) = ( lim 7p, , . ,x(dag), w"_1> = lim (dag, w"™") = lim (a, dw"™") =0,

k—+o0o k—+o0 k—+oc0

yielding an absurd.
For the converse, fix a J-Hermitian metric and let ¢ be its associated (1, 1)-form; the set

K = {T €1,y : T((p"il) = 1}

is a compact convex non-empty set in D,,_1 ,—1X N Dy,_»X. By the Hahn and Banach separation theorem,
there exists a hyperplane in D,,_1 ,,—1 X NDa,_2X containing the closed subspace 7p,_, ,_, xB and disjoint from
K; hence, the real (n — 1,n — 1)-form associated to this hyperplane is a real d-closed (n — 1,n — 1)-form and is
positive on the complex (n — 1)-subspaces, namely, it is a semi-Kéhler form. O

Now, we can prove the semi-Kéahler counterpart, [AT12a, Theorem 2.9], of T.-J. Li and W. Zhang’s [LZ09,
Proposition 3.1, Theorem 1.1].

Theorem 2.74. Let X be a compact 2n-dimensional manifold endowed with an almost-complex structure J.
Assume that KbS # @ (that is, there exists a semi-Kdihler structure on X ) and that 0 & KbY,. Then

Koy, N H (G R) = Kb
and
KCb5 + HP 2 (X R) K
Moreover, if J is C-full at the (2n — 2)™ stage, then

KbS + H P2 m2m) xRy — e

Proof. By Theorem 2.71, KbY, C H3% ?(X;R) is the interior of the dual cone He, 1, C H2'72(X;R) of
H¢, 1, C HYE ,(X;R), and, by Theorem 2.72, Kb% C H‘(Jnfl’nfl)(X;R) is the interior of the dual cone
HE,\ 15 CHP " V(XGR) of HE, 1y € HY 1 (X;R); therefore Kb N HS ™M"Y (X;R) = Kb,

The inclusion b5 + HL(]n’n_Q)’(n_Z’n)(X; R) C KbY, follows straightforwardly noting that the sum of a semi-

Kahler form and a J-anti-invariant (2n — 2)-form is still d-closed and positive on the complex (n — 1)-subspaces.
Finally, if J is C*°-full at the (2n — 2)*® stage, then

Kby, = intHC, ; = int HC, 1 ;N HZ3(X;R)

int €, 15N (Hf,”*l’”*”(x; R) + H{wn 220k R))

N

ICbS + Hgn,n—2),(n—2,n)(X;R) 7

and hence Kb5 + H{" 2020 (. R) = Kbt O
Remark 2.75. We note that, while the de Rham cohomology class of an almost-K&hler metric cannot be trivial,

the hypothesis 0 ¢ Kb, in Theorem 2.74 is not trivial: J. Fu, J. Li, and S.-T. Yau proved in [FLY12, Corollary

1.3] that, for any k > 2, the connected sum (83 X S3)ﬁk, endowed with the complex structure constructed from
the conifold transitions, admits balanced metrics.
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CHAPTER 3

Cohomology of manifolds with special
structures

In this chapter, we continue in studying the cohomological properties of (differentiable) manifolds endowed with
special structures, other than (almost-)complex structures. More precisely, in Section 3.1, we recall the results
obtained jointly with A. Tomassini in [AT12c], concerning the cohomology of symplectic manifolds; in Section 3.2,
we study cohomological decompositions on D-complex manifolds in the sense of F. R. Harvey and H. B. Lawson:
this has been the matter of a joint work with F. A. Rossi, [AR12]; finally, in Section 3.3, we consider domains
in R endowed with a smooth proper strictly p-convex exhaustion function, and, using L2-techniques, we give
another proof of a consequence of J.-P. Sha’s theorem [Sha86, Theorem 1], and H. Wu’s theorem [Wu87, Theorem
1], on the vanishing of the higher degree de Rham cohomology groups, which has been obtained in a joint work
with S. Calamai, [AC12].

3.1 Cohomology of symplectic manifolds

The Kéahler manifolds have special cohomological properties from both the complex and the symplectic point of
view, the Hodge decomposition theorem providing a decomposition of the complex de Rham cohomology in terms
of the Dolbeault cohomology groups, and the Lefschetz decomposition theorem providing a decomposition of the
de Rham cohomology in terms of primitive cohomology groups. Then, in order to better understand the geometry
of non-Kéhler manifolds, it may be interesting to investigate both the contribution of the complex structure and
the contribution of the symplectic structure.

In this section, we develop the symplectic counterpart of the theory introduced by T.-J. Li and W. Zhang
in [LZ09] to study the cohomology of almost-complex manifolds. The results in this section have been obtained
jointly with A. Tomassini in [AT12c]|.

3.1.1 Hodge theory on symplectic manifolds

Cohomological properties of symplectic manifolds have been studied starting from the works by J.-L. Koszul,
[Kos85], and by J.-L. Brylinski, [Bry88]. Drawing a parallel between the symplectic and the Riemannian cases,
J.-L. Brylinski proposed in [Bry88] a Hodge theory for compact symplectic manifolds (X, w), introducing a
symplectic Hodge-x-operator x,, and the notion of w-symplectically-harmonic form (i.e., a form being both d-closed
and d®-closed, where the symplectic co-differential is defined as d*| jrx:= (—1)¥T1 %, d*, for every k € N): in
this context, O. Mathieu in [Mat95], and D. Yan in [Yan96], proved that any de Rham cohomology class admits
an w-symplectically-harmonic representative if and only if the Hard Lefschetz Condition is satisfied. Recently,
L.-S. Tseng and S.-T. Yau, in [TY12a, TY12b], see also [TY11], introduced new cohomologies for symplectic
manifolds (X, w): among them, in particular, they defined and studied

ker (d + dA>

° X;R) =
(XiR) imdd*

d+dA 9

developing a Hodge theory for this cohomology; furthermore, they studied the dual currents of Lagrangian and
co-isotropic submanifolds, and they defined a homology theory on co-isotropic chains, which turns out to be
naturally dual to a primitive cohomology. In the context of Generalized Geometry, [Gua04, Guall, Cav05, Cav07],
the cohomology H} Lan (X;R) can be interpreted as the symplectic counterpart of the Bott-Chern cohomology of
a complex manifold, see [TY11]. Inspired also by their works, Y. Lin developed in [Linll] a new approach to the
symplectic Hodge theory, proving in particular that, on any compact symplectic manifold satisfying the Hard
Lefschetz Condition, there is a Poincaré duality between the primitive homology on co-isotropic chains and the
primitive cohomology.

105
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In this section, we recall some notions and results concerning Hodge theory for compact symplectic manifolds;
we refer to [Bry88, Mat95, Yan96, Cav05, TY12a, TY12b, Linl1] for further details. (See §0.2 for basic definitions
and results on symplectic manifolds.)

Symplectic cohomologies
Let X be a compact 2n-dimensional manifold endowed with a symplectic structure w.

We recall, see §0.2, that, w being non-degenerate, it induces a natural isomorphism 7: TX — T* X, namely,
I(-)(-) = w(:, ), and hence a bi-C*(X;R)-linear form (wil)k : AP X @ AFX — C°(X;R); the symplectic-x-
operator, is defined, for every a, 8 € A*X, by, [Bry88, §2],

wn

kot ATX S ATX L aAxB = (w ) (a,B) —
n.

and satisfies x2 = idex, [Bry88, Lemma 2.1.2].
We recall that the operators

= WA A X 5 ATEX
= —im = — %y Lay: A X — A°T2X
H = > (n—k) mux: A°X =5 A°X,
k

(where IT := w1 € A2T'X is the canonical Poisson bi-vector associated to w, the interior product with & € A? (T'X)
is denoted by t¢: A®* X — A*72X, and, for k € N, the map mprx: A®* X — AR X denotes the natural projection
onto A*X) yields an s[(2; R)-representation on A®*X having finite H-spectrum, and hence one has the Lefschetz
decomposition on differential forms, [Yan96, Corollary 2.6],

ANX = DL PATTX,
reN

where the space of primitive forms is

PA*X := kerA = ker L"*"!|ex .

Consider now the symplectic co-differential operator d*: A® X — A*~1X | defined, for every k € N, by
e = (CD) T s A

it has been introduced, in general for a Poisson manifold, by J.-L. Koszul, [Kos85], and studied also by J.-L.
Brylinski, [Bry88, §1.2]. The basic symplectic identity

[d, A] = d*

holds, see, e.g., [Yan96, Corollary 1.3]; by the graded-Jacobi identity, it follows that [d, dA} =[d, [d, A]] =

[d, [A, d]] = [A, [d, d]] = — [d, dA}, since [d, d] = 0 and [A, d] = — [d, A], and hence, [Kos85, page 265], [Bry88,
Theorem 1.3.1],
dd*+d*d = 0.

Hence, interpreting, as in [Bry8§], d* as the symplectic counterpart of the Riemannian co-differential operator
d* associated to a Riemannian metric ¢ on X, then the symplectic counterpart of the Laplacian operator
A :=dd* +d* d vanishes.

We recall that, if (J, w, g) is an almost-Kéhler structure on X, then the symplectic-x-operator *, and the
Hodge-*-operator *, are related by

*w = J*g 5
[Bry88, Theorem 2.4.1], and hence d* and d®:= J~' d J are related by
at = —(d9)" .

The previous identity, together with the identity dd* +dtd = 0, suggests that d” should be interpreted as the
symplectic counterpart of the operator d° in Complex Geometry; this guess can be made more precise using
Complex Generalized Geometry, [Gua04, Guall, Cav05, Cav07].
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2
The symplectic co-differential operator satisfies (dA) = 0, and hence it gives rise to a differential complex

(/\'X , dA). This complex has been introduced, more in general, on a Poisson manifold, with the name of canonical
complez, by J.-L. Koszul, [Kos85], and studied also by J.-L. Brylinski, [Bry88, §1], and, more recently, by L.-S.
Tseng and S.-T. Yau, [TY12a, §3.1]. The homology of the complex (/\’X, dA) is, in J.-L. Koszul’s terminology,

the canonical homology of X,
ker d*

im d?®

NWXGR) =
Note that, [Bry88, Corollary 2.2.2],
*wt Hip(X;R) S Hap7*(X5R)

hence, for a compact symplectic manifold, the canonical homology groups and the de Rham cohomology groups
are isomorphic.

In [TY12a], L.-S. Tseng and S.-T. Yau introduced also the (d—|—dA) -cohomology, [TY12a, §3.2],

ker (d + dA>
arar(KiR) o= = R
and the <d dA) -cohomology, [TY12a, §3.3],
ker d d*
*AXGR) = —m—————
dan( ) imd + im d*

such cohomologies are, in a sense, the symplectic counterpart of the Aeppli and Bott-Chern cohomologies of
complex manifolds, see [TY12a, §5] and [TY11] for further discussions.
Furthermore, they provided a Hodge theory for such cohomologies, proving the following result.

Theorem 3.1 ([TY12a, Theorem 3.5, Corollary 3.6]). Let X be a compact manifold endowed with a symplectic
structure w. Let (J, w, g) be an almost-Kihler structure on X. For a fived X\ > 0, the 4" order self-adjoint
differential operator

Dyyar = (dat)(aat) + (aa")" (aat)+ (@ at) (@ a®) "+ (aat) (a7a?)
2 (dd+ (dA>*dA) .

is elliptic, with ker Dy, 42 = kerd Nker d* Nker (dd*) .

Furthermore, there exist an orthogonal decomposition
A*X = ker Dy, g2 ®dd*A®X @ (d* AHLX + (dA) A1 X)

and an isomorphism
Jrar(XGR) =~ ker Dy ga .

In particular, dimg H*® (X;R) < +00.

d+dA
An analogous statement holds for the (d dA)—cohomology.

Theorem 3.2 ([TY12a, Theorem 3.16, Corollary 3.17]). Let X be a compact manifold endowed with a symplectic
structure w. Let (J, w, g) be an almost-Kihler structure on X. For a fized X\ > 0, the 4" order self-adjoint
differential operator

e = (00) )+ () 00) + 00 ) ()  (0(0) ) ()
2 (dd*+a (dA)*) .

is elliptic, with ker Dy 4a = ker (d dA) Nker d* Nker (dA> .
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Furthermore, there exist an orthogonal decomposition
AX = Fer Dygs @ (AA*71X +a ATFIX) @ (dat) At X

and an isomorphism
ddA(X R) ~ kededA .

In particular, dimg H? , (X;R) < +00.

ddr

As for the Bott-Chern and the Aeppli cohomologies, the (d + dA)—Cohomology and the (d dA>—coh0m010gy

groups turn out to be isomorphic by means of the Hodge-*-operator associated to any Riemannian metric being
compatible with w.

Theorem 3.3 ([TY12a, Lemma 3.23, Proposition 3.24, Corollary 3.25]). Let X be a 2n-dimensional compact
manifold endowed with a symplectic structure w. Let (J, w, g) be an almost-Kihler structure on X. The operators
Dy ga and Dy g satisfy

*ng+dA = DddA *g y

and hence *4 induces an isomorphism
xg: HY 1 (X;R) 5 H2' 0 (XGR)

Moreover, the cohomology H$

Jian (X;R) is invariant under symplectomorphisms and Hamiltonian isotopies,
[TY12a, Proposition 2.8].

One has the following commutation relations between the differential operators d, d*, and dd*, and the
elements L, A, and H of the s[(2; R)-triple, see, e.g., [TY12a, Lemma 2.3]:

4, ] = 0, [dA,L} - —d, [ddA,L] -0,
[d,A] = d*, [dA, A} = 0, [ddA, A} - 0,
d, H = d, [dA,H} = _d, {ddA, H} - 0.

Hence, by setting
ker d Nker d® NPA®X ker dNPA®X
PH.+dA(X;R) = B A . = A
imdd® NPA*X imdd \_p/\-X

(where the second equality follows from [TY12a, Lemma 3.9]), one gets the following result.

Theorem 3.4 ([TY12a, Theorem 3.11]). Let X be a 2n-dimensional compact manifold endowed with a symplectic
structure w. Then there exist a decomposition

° r o—2r
d+dA @L Hd+dA X R)
reN

and, for every k € N, an isomorphism

LP: HY R (XGR) S HITE(XGR)

Analogously, by setting
kerdd® NPA®X kerdd® NPA®X

PHian (R = (imd+ima*) nPA*X " im (a+rH-1a%)| +im d*|

PA®—1X

PACtLX

(where the second equality follows from [TY12a, Lemma 3.20]), one gets the following result.

Theorem 3.5 ([TY12a, Theorem 3.21]). Let X be a 2n-dimensional compact manifold endowed with a symplectic
structure w. Then there exist a decomposition

. TP o271
ddA @L ]a’ddA X R)
reN

and, for every k € N, an isomorphism

Lk B V(XGR) S HIT(XGR)
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The identity map induces the following natural maps in cohomology:

HY, 2(X5R)

/ \
H3:(X;R) A (X5 R)
\ /

ddA

Recall that a symplectic manifold is said to satisfy the d d*-Lemma if every d-exact d*-closed form is d dA—exact,

[DGMST5], namely, if HY | 1 (X;R) = Hip(X;R) is injective.

Remark 3.6. Note that
kerd*Nimd = imdd® if and only if kerdNimd® = imdd® .
Indeed, since 2 = idex, [Bry88, Lemma 2.1.2], and dd* +d* d = 0, [Bry88, Theorem 1.3.1], one has
*, kerd = kerdA, *,imd = imdA, *,imdd® = imdd® .

Another cohomological property that can be defined on a 2n-dimensional compact manifold X endowed with
a symplectic form w is the Hard Lefschetz Condition, that is,

for every ke N, LF: HIzF(X;R) S HIFH(X;R) . (HLC)

In fact, the following result relates the d d*-Lemma, the Hard Lefschetz Condition, and the existence of
w-symplectically harmonic representatives in any de Rham cohomology class.

Theorem 3.7 ([Mat95, Corollary 2], [Yan96, Theorem 0.1], [Mer98, Proposition 1.4], [Gui01], [Cav05, Theorem
5.4]). Let X be a compact manifold endowed with a symplectic structure w. The following conditions are equivalent:

(i) every de Rham cohomology class admits a representative being both d-closed and d*-closed (i.e., Brylinski’s
conjecture [Bry88, Conjecture 2.2.7] holds on X );

(ii) the Hard Lefschetz Condition holds on X ;

(iii) the natural homomorphism H3 | x(X;R) — H3p(X;R) induced by the identity is actually an isomorphism;

() X satisfies the d d™-Lemma.

Note that, by the Lefschetz decomposition theorem, the compact Kéhler manifolds satisfy the Hard Lefschetz
Condition; in other terms, note that, given a Kéhler structure (J, w, g) on a compact manifold X, one has
%, = J*g, [Bry88, Theorem 2.4.1], and hence every de Rham cohomology class admits an w-symplectically-
harmonic representative.

Primitive currents

Let X be a 2n-dimensional compact manifold endowed with a symplectic structure w. Denote by Do X :=: D?"~*X
the space of currents, and consider the de Rham homology HI®(X;R) := H* (DeX, d). (See §0.5 for definitions
and results concerning currents and de Rham homology.)

Following [Linl11, Definition 5.1], set, by duality,

L: DeX — De_2X , S— S(L-),
A: DX — Dy 2 X, S S(A),
H: DX — DX , S— S(-H") ;
note that
[L,Hl = 2L, [A, H = —2A, [L, A] =

A current S € DFX is said primitive if AS = 0, equivalently, if L"~*+19 = 0, see, e.g., [Linl1, Proposition
5.3]; denote by PD*X :=: PDg, X the space of primitive currents on X.
In [Linl1], Y. Lin proved the following result.



110 Cohomology of manifolds with special structures

Theorem 3.8 ([Linll, Lemma 5.2, Proposition 5.3, Lemma 5.12]). Let X be a compact manifold endowed with a
symplectic structure w. Then (L, A, H) gives an sl(2;R)-module structure on D*X. In particular, one has the
Lefschetz decomposition on the space of currents,

DX = (DL PD*X = (DL PDyyui, X .
reN reN

Furthermore, the space of flat currents is an sI(2; R)-submodule of the space of currents.

Finally, if j: Y < X is a compact oriented submanifold of X of codimension k (possibly with non-empty
boundary), then the dual current [Y] € DX associated with Y is defined, by setting, for every ¢ € AKX,

Y](p) = /Y (9).

If Y is a closed oriented submanifold, then the dual current [Y] is d-closed. According to [TY12a, Lemma 4.1],
the dual current [Y] is primitive if and only if Y is co-isotropic.

3.1.2 Symplectic subgroups of (co)homology

In this section, we provide a symplectic counterpart to T.-J. Li and W. Zhang’s theory on cohomology of
almost-complex manifolds developed in [LZ09]. More precisely, we define the subgroups HS")(X ;R) of the de
Rham cohomology Hj3,(X;R) of a symplectic manifold (X, w), and, analogously, the subgroups H. (“’.’.)(X ;R) of
the de Rham homology HZ%(X;R); then, we study some of their properties: in particular, we prove that, for
every compact symplectic manifold, the decomposition H3p(X;R) = g (X;R)o Hﬁ(uo’z)(X ;R) holds, Theorem
3.14, which provides a symplectic counterpart of [DLZ10, Theorem 2.3].

Let X be a 2n-dimensional compact manifold endowed with a symplectic structure w. For any r, s € N, define
HU(X5R) o= {|[1789)] € B3 (XGR) + B € PAX ) € HIE(XiR).
Obviously, for every k € N, one has
S HUO(XGR) C Hig(X:R) -
2r+s=k

we are concerned with studying when the above inclusion is actually an equality, and when the sum is actually a
direct sum.

Remark 3.9. We underline the relations between the above subgroups and the primitive cohomologies introduced
by L.-S. Tseng and S.-T. Yau in [TY12a]. As regards L.-S. Tseng and S.-T. Yau’s primitive (d + dA>-cohomology

1:’I1Td’+dA(X;}R)7 note that, for every r,s € N,

im (L7 PH , n(XGR) = Hig(XGR)) = L7 HOO(XGR) € HIW(XR) .

In [TY12a, §4.1], L.-S. Tseng and S.-T. Yau have introduced also the primitive cohomology groups

ker d Nker d* NPA® X

PHS(X;R) :=
d( ’ ) irndI_P/\SleﬁkerdA

where s € N, proving that the homology on co-isotropic chains is naturally dual to PHE""(X ;R), see [TY12a,
pages 40-41]; in [Linll, Proposition 2.7], Y. Lin proved that, if the Hard Lefschetz Condition holds on X, then

H*)(X;R) = PH(X;R).

Remark 3.10. In [CTO07], D. Conti and A. Tomassini studied the notion of half-flat structure on a 6-dimensional
manifold X, see [CS02]. Namely, an SU(3)-structure (w, ¥) on X, where w is a non-degenerate real 2-form and v is
a decomposable complex 3-form such that Y Aw =0 and Y Ay = f% w3, is called half-flat if both w A w and Rey

are d-closed. Note in particular that, if (w, ¥) is a symplectic half-flat structure on X, then [Re)] € b2 A (X;R).
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Remark 3.11. A class of examples of compact symplectic manifolds (X, w) satisfying the cohomology decomposi-
tion by means of the above subgroups H?*(X;R) (actually, satisfying an even stronger cohomology decomposition)
is provided by the compact symplectic manifolds satisfying the ddA—Lemma, equivalently, as already recalled, the
Hard Lefschetz Condition, [Mer98, Proposition 1.4], [Gui01], [Cav05, Theorem 5.4].

More precisely, on a compact manifold X endowed with a symplectic structure w, the following conditions are
equivalent:

e X satisfies the ddA—Lemma;

e it holds the decomposition
Hip(X;R) = L HO* ) (X;R). (3.1.1)
reN

Indeed, recall that the decomposition

° TP o—2 .
d-&-dA @L ]{d+;A X’R)
reN

holds on any compact symplectic manifold, [TY12a, Theorem 3.11]; moreover, the d d*-Lemma holds on a compact
symplectic manifold if and only if the natural homomorphism

drar(X5R) = Hip(X3R)

induced by the identity is actually an isomorphism; recall also that

im (L7 PH; 0 (X;R) = Hip(X:R)) = I HO) (X R) ;

hence, if the dd*-Lemma holds, then one has the decomposition (3.1.1). Conversely, if (3.1.1) holds, then,
straightforwardly, X satisfies the Hard Lefschetz condition, and hence also the dd*-Lemma, [Mer98, Proposition
1.4], [Gui01], [Cav05, Theorem 5.4].

Analogously, considering the space D*X :=: Ds,,_4X of currents and the de Rham homology HZ®(X;R), for
every 1, s € N, define
. — T dR . . dR . .

HE*;,S)(X,R) = {[L B(S)} € H%, , (X;R) : B €PD X} C H%,  (X5R);

as previously, for every k € N, we have just the inclusion
> HEH(XGR) € HIF(XR),
—2r+s=k

but, in general, neither the sum is direct nor the inclusion is an equality.

We prove that, fixed & € N, if the sum » 2, o kH( )(X R) gives the whole (2n — k)™ de Rham
cohomology group, then the sum of the subgroups of the £ de Rham cohomology group is direct, [AT12c,
Proposition 2.4] (this result should be compared with [LZ09, Proposition 2.30] and Theorem 2.10 in the almost-
complex case, and with Proposition 3.25 in the D-complex case).

Proposition 3.12. Let X be a 2n-dimensional compact manifold endowed with a symplectic structure w. For
every k € N, the following implications hold:

HYp(XGR) = Yo, ooy, HS (X3 R) == @ gy Hi o (G R) © HEF(XSR)
Héi’r]jfk:(X7 R) Z 2r4+s=2n—k H(r s) (X R) — @2r+s 2n—k H(T ) (X R) - ng_k(X7 R) .
Proof. Note that the quasi-isomorphism 7.: A® X 3 ¢ — fX @ N+ € D*X satisfies
T,. = LT,
and hence, in particular, it preserves the bi-graduation,

T(L**PA®X) C L' PD*X :=: L* PDy,_o,X ,
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and it induces, for every r, s € N, an injective map
HI(X3R) = HE o (X5R)

Therefore the two vertical implications are proven.
Consider now the non-degenerate duality pairing

()« Hip(X5R) x HIF(X;R) - R,
and note that, for every r;s € N,
ker (HU9(X;R), +) 2 S HE,(XGR),
(p,q)#(n—r—s,2n—s)
and, analogously, for every p,q € N,
er (- H{, ) (XiR)) 2 > HPIXGR):
(r,5)#(n—p—s,2n—q)
this suffices to prove the two horizontal implications. O

A straightforward consequence of [Mat95, Corollary 2], or [Yan96, Theorem 0.1], and Proposition 3.12 is the
following result, [AT12¢c, Corollary 2.5], which should be compared with [DLZ10, Theorem 2.16, Proposition 2.17].

Corollary 3.13. Let X be a compact manifold endowed with a symplectic structure w. Suppose that the Hard
Lefschetz Condition holds on X, equivalently, that X satisfies the dd™-Lemma. Then

Hip(X:R) = QHI*?V(XR) and  HIF(XGR) = DH{ 4 0 (X:R).
rEN reN
In particular, when dim X = 4 and taking k = 2 in Proposition 3.12, one gets that, if H2p(X;R) =
a&Ho (X;R) + HLS,OJ)(X;R) holds, then actually Hip(X;R) = a&Ho (X5R) @ HY? (X;R) holds. In fact, the
following result states that H3,(X;R) always decomposes as direct sum of HU(JI"O)(X; R) and a’? (X;R), also in
dimension higher than 4, [AT12c, Theorem 2.6]: this gives a symplectic counterpart to T. Draghici, T.-J. Li and

W. Zhang’s decomposition theorem [DLZ10, Theorem 2.3] in the complex setting, in fact, without the restriction
to dimension 4.

Theorem 3.14. Let X be a compact manifold endowed with a symplectic structure w. Then
Hip(X;R) = HJO(X;R)® HP?(XGR).
In particular, if dim X = 4, then

Hp(X;R) = HT?(XGR) and  HIF(XGR) = @ HE ey0) (XGR)
reN reN

Proof. Let 2n := dim X. Firstly, we prove that g (X;R)N g (X;R) = {0}. Let
¢i=i [fu] = [B®] € HIMO (X R) N B (X3 R),

where f € C*°(X;R) and 83 € PA®2X. Being PA2X = ker L' | x>y, one has

0= [ 150 = [ fong®awt = [ ronfonen = [ pur

hence f = 0, that is, ¢ = 0.

Now, we prove that H2,(X;R) = HS""(X;R) + H"?(X;R). Let a :=: [a] € H2,(X;R). Then L" 'a €
Hgﬁ(X;]R) = R ([w"]), that is, there exist A € R and 7o,,_1 € A" 71X such that L"'a = Aw™ + dy2,_1. Since
L1 AL X 5 A?"1X s an isomorphism, there exists 71 € A'X such that L™ !y, = ~5,,_1. Hence, since
[d, L""'] = 0, we get that L" ! (o — dy; — Aw) = 0, that is, @ — d 1 — Aw € PA®X; therefore we get that

a:=:[a] = [a—dm] = Aw]  +ja—dym —Aw],
—— | —
e HVV (X;R) e HY P (XR)

concluding the proof. O
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Part of the argument in the proof of Theorem 3.14 can be generalized to prove the following result, [AT12c,
Remark 2.7].

Proposition 3.15. Let X be a 2n-dimensional compact manifold endowed with a symplectic structure w. For
every k € {17 ceey L%J }, 1t holds
HMO(XGR) N HPPY(X:R) = {0} .

Proof. Let ¢ :=: [fwk] = [6(2’“)} € Hf,k’o)(X;R) N HLO’%)(X;]R), where f € C*(X;R) and B ¢ PAPFX.
Being PA?* X = ker L"2K*1| 2y, one has

0 = / an72k+1IB(2k) /\wkfl — / fwk /\B(Qk) /\wn72k — / fwk /\fwk /\wn72k _ / f2wn
X X X X

hence f =0, that is, ¢ = 0. O
In some cases, in studying H&T’S)(X;R), one can reduce to study HLE,O’S)(X;]R): this is the matter of the
following result, [AT12c, Proposition 2.8].

Proposition 3.16. Let X be a 2n-dimensional compact manifold endowed with a symplectic structure w. Then,
for every r,s € N such that 2r + s < n, one has

H)(X;R) = L"HOY(X;R) .

Proof. Since L: N X — ANJT2X is injective for j < n — 1, [Yan96, Corollary 2.8], (in fact, an isomorphism for
j=mn—1, [Yan96, Corollary 2.7],) and [d, L] = 0, we get that

HU(X;R) = {[wﬁ@] € HZH(X;R) : B9 € A*X Nker A such that L7 d 3¢ = 0}

{[w“] — {/3(‘9)} € HIP(X3R) « B € /\sXﬁkerA} :
assumed that 2r + s < n. O

In particular, for every r € {1, ceey LgJ }, the spaces Ho(f’o) (X;R) are 1-dimensional R-vector spaces, more
precisely, HY"” (X;R) = R ([w"]).
Furthermore, by the previous proposition, it follows that, for & < % dim X, the condition

Hjp(X;R) = @ HSF (X5 R)
reN
L HF 29 (X3 R).

is in fact equivalent to Hp(X;R) = €D, oy

3.1.3 Symplectic cohomological decomposition on solvmanifolds

As shown in Corollary 3.13, whenever X is a compact manifold endowed with a symplectic structure w satisfying the
Hard Lefschetz Condition, the de Rham cohomology HJ,(X;R), respectively the de Rham homology HIE(X;R),

decomposes as direct sum of the subgroups H&"')(X ;R), respectively H A .)(X ;R). Hence, it should be interesting
to study cohomological properties for classes of symplectic manifolds not satisfying the Hard Lefschetz property,
e.g., non-tori nilmanifolds, [BG88, Theorem A].

In this section, we study a Nomizu-type theorem for the subgroups Hu()"')(X ;R) on completely-solvable
solvmanifolds endowed with left-invariant symplectic structures, Proposition 3.18, providing explicit examples and
studying their cohomological properties. (As regards notations, definitions, and results concerning nilmanifolds
and solvmanifolds, we refer to §0.6.)

Left-invariant symplectic structures on solvmanifolds

Let X = T'\ G be a completely-solvable solvmanifold endowed with a G-left-invariant symplectic structure w.

Recall that, by A. Hattori’s theorem [Hat60, Corollary 4.2], the complex (A®g*, d), which is isomorphic to
the sub-complex composed of the G-left-invariant forms of (A®*X, d), turns out to be quasi-isomorphic to the de
Rham complex (A*X, d), that is, H (g;R) ~ HIp(X;R).
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Since w is G-left-invariant, (L, A, H) induces a sl(2;R)-representation both on A®*X and on A®*g*. Hence, for
any r,s € N, we can consider both the subgroup H&T’S)(X; R) of HJ;(X;R), and the subgroup

HE (g R) = {[L78Y)] € Hin (@R) = A5 =0}

of Hj, (9;R) ~ HJ,(X;R), namely, the subgroup constituted of the de Rham cohomology classes admitting
G-left-invariant representatives in L™ PA°*X.

In this section, we are concerned with studying the linking between HU(J”')(X; R) and Hu(f")(g; R). This will
let us study explicit examples in §3.1.3.

In the following lemma, we adapt the F. A. Belgun symmetrization trick, [Bel00, Theorem 7], to the symplectic
case, [AT12c, Lemma 3.2].

Lemma 3.17. Let X = T'\ G be a solvmanifold, and denote the Lie algebra naturally associated to G by g. Let w
be a G-left-invariant symplectic structure on X. Let n be a G-bi-invariant volume form on G, given by J. Milnor’s
Lemma [Mil76, Lemma 6.2], such that fX n = 1. Up to identifying G-left-invariant forms on X and linear forms
over g* through left-translations, consider the F. A. Belgun symmetrization map, [Bel00, Theorem 7],

p A Xt ) = [ alunm).

One has that
flnegs = id[reg-
and that
du() = ) and  Lu() = p(L) .

In particular, u sends primitive forms to G-left-invariant primitive forms.

Proof. It has to be shown just that y (L ) = L pu () for every oo € A®*X. Note that, w being a G-left-invariant form,
one has p (L) = [y (WA @) [mn(m) = [y wlmAalmn(m) =wA [y almn(m) = Lu(a), for every a € A*X. O

As a consequence of the previous lemma, we can prove the following result, which relates the subgroups
al? (X;R) with their G-left-invariant part Hu(f’s)(g; R), [AT12c, Proposition 3.3] (compare with Proposition 2.19,
and also with [FT10, Theorem 3.4], for almost-complex structures, and with Proposition 3.30 for almost-D-complex
structures in the sense of F. R. Harvey and H. B. Lawson).

Proposition 3.18. Let X = T'\ G be a solumanifold endowed with a G-left-invariant symplectic structure w, and
denote the Lie algebra naturally associated to G by g. For every r,s € N, the map

g HY (g R) — HI) (X;R)

induced by left-translations is injective, and, if Hy (g;R) ~ H3p(X;R) (for instance, if X is a completely-solvable
solvmanifold), then it is in fact an isomorphism.

Proof. Left-translations induce the map j: Hy’s)(g; R) — Ho(f’s) (X;R). Consider the F. A. Belgun’s symmetriza-
tion map p: A* X — A®g*: since it commutes with d by [Bel00, Theorem 7], it induces the map p: Hjp(X;R) —
Hj3, (g;R), and, since it commutes with L by Lemma 3.17, it induces the map p: H&T’S)(X;R) — Hy’s)(g;R).
Moreover, since p is the identity on the space of G-left-invariant forms, we get the commutative diagram

HY (g R) —> I (XGR) ——> H (g:R)
\\W/

id
Hence j: al (;R) — a& (X;R) is injective, and u: a& (X5R) — a& (g;R) is surjective.

Furthermore, when HJp (g;R) ~ H3J,(X;R) (for instance, when X is a completely-solvable solvmanifold, by
A. Hattori’s theorem [Hat60, Theorem 4.2]), since fi| reg+= id|req+ by [Bel00, Theorem 7], we get that the map

p: Hyp(X;R) — HYp (g;R) is the identity map, and hence p: HT(X;R) — HY ¥ (g;R) is also injective, hence
an isomorphism. O
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Symplectic (co)homology decomposition on solvmanifolds
Proposition 3.18 is a useful tool to study explicit examples, [AT12c, Example 3.4, Example 3.5, Example 3.6].
Example 3.19. A 6-dimensional symplectic nilmanifold such that HL(UO’3)(X;R) —|—H¢E,1’1)(X;R) C H3o(X;R) and
79 (X R) N HEY (X R) # {0}
Take a 6-dimensional nilmanifold

X = T\G = (0°, 12, 14— 23, 15+ 34)
endowed with the G-left-invariant symplectic structure

w = e'f 4 e¥ et

By K. Nomizu’s theorem [Nom54, Theorem 1], one computes

Hip(X;R) = R{e', € ¢%),
N—————
=HV (XiR)
Hip(X;R) = R{e'®4e¥+eYaR (e, e +e*, 2. —e'0 — %),
=H{O (XiR) =H? (XR)
HS’R(X;R) _ R<6126 _el45 9. 235 136 o146 4 % 236 4 % 345 e245>

(where, as usual, we have listed the harmonic representatives with respect to the G-left-invariant metric Z?zl el Oed
instead of their classes, and we have shortened, for example, e"* := " A €F).
Since the Lefschetz decompositions of the g-harmonic representatives of H3,(X;R) are

P26 _ 145 _ o 235 _ 71 o126 _ 1 235 _ 145 ) 4 § . el26 _ § . 235 ,
2 2 2 2
EPASX — L(_% ez)
1 1 1 1
136 __ L o136 1 234 o136 4~ 234
€PA3X = L(—%-e?’)
1 1 1 1 1 3 3
6146+§'6236+§~6345 _ (4.6146_4.6345_’_2_6236>+<4.614G+4.6345) 7
EPASX _ L(,% 64)
1 1 1
245 1156, ~ 245 _ L 156 245
e —<2€ +2 )+<2€ —|—2e>7
EPASX = L(% eo)
and since
d/\29* _ R<€123 o124 (125 126 | (145 134 135 146 _ 236 _ 345 6234>
we get that

[6126 _ o5 _ 9. 6235] _ [6126 P45 9. .23 +d€46} _ [2 Lel26 _ 9. 6235] _ [L (_2 ) 62)] c HS’”(X;R)

and

[6136] _ |:€136+d<;.€45__626>:| - [6136+e234] _ [L (_63)} c HS’D(X;R%

[6136] _ |:el36 _d (; e _ % _ezﬁﬂ _ [6136 _ 6234] c H£073)(X;R) 7
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while it is straightforward to check that

1

R < [6146 + % ey e345] : [6245]> N (HOD(XGR) + HID(XGR)) = {0} ;

in particular, H"? (X;R) + H'V (X5 R) € H3,(X;R) and HY (X;R) n HSV (X5 R) # {0}
Example 3.20. A 6-dimensional symplectic solvmanifold satisfying the decomposition

Hip (X;R) =P L HP* ) (X;R) .
reN

Take the 6-dimensional solvable Lie algebra
g5t @ gds = (=13, 23, 0, =56, 46, 0)
endowed with the linear symplectic structure
w = el? 430 4t

The corresponding connected simply-connected Lie group G }1 x GY 5 admits a compact quotient X, whose de
Rham cohomology is the same as the cohomology of (/\' (g;}l &) gg_5)*, d), see [Boc09, Table 5]: indeed, note
that dimp HY, (X;R) = dimp H* (g5 ® ¢3.5;R) for every k € N.

It is straightforward to compute

H(}R (X;R) = R<e3, 66> ,
—_—
= BV (XR)
HgR (X,R) _ R<612 + 636 +€45> @R<612 o 636, 612 o 645> ,
= HO (XR) = H? (X R)
HgR (X,R) - R <el23 + 6345, 6126 + 6456> EBR <€123 _ 6345, 6126 _ 6456> ,
= HO(XiR) = LHS (X5R) = HO® (XiR)
HjilR (X,R) - R <€1236 T 61245 4 63456> EBR <€1236 _ 61245, 61236 _ e3456> ,
= HZO (XR) = HS"® (XiR) = LH? (X3R)
HSR (X, R) _ R <€124567 612345> ,

= H®Y(XR) = 12 HOV (X R)

hence we get a decomposition

Hin (X:R) = @ L7 HO* ) (X:R) .
reN

In particular, it follows that the Hard Lefschetz Condition holds on (X, w).
Example 3.21. A 6-dimensional completely-solvable solvmanifold such that H(O %) (X;R) + Hc(ul’l) (X;R) C
HgR(X ;R).
Take a 6-dimensional completely-solvable solvmanifold with Lie algebra gs.1 © g5 411,
X = I'\G := (-23, 0, 0, —46, 56, 0) ,

see [Boc09, Table 5], endowed with the G-left-invariant symplectic structure

W o= 612+636+645
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By A. Hattori’s theorem [Hat60, Corollary 4.2], one computes

HéR(XvR) = R<62, 63’ e6>a
N————
=H"V (XR)
HﬁR(X;R) _ R<612 + 636 Jre45> @R<612 o 636, 612 o 645, 613, 626> ,
=H{" (X R) =H{? (X ;R)
HgR(XJR) — R<6123, 6126, 6136, 6245, 6345, 6456> .

Note that e!23 — e345 126 _ 456 and 245 4+ de'6 are primitive, and consequently

HO(JO,S) (X7R) 2 R<6123 _ 6345 6126 _ 6456, e245> :

)

since e!23 4 345 = Le3, €126 4 456 = Leb and e2%° — de' = Le?, it follows that

HU(JM) (X;R) = LHU(JO,S) (X;R) D R<€123+6345’ 6126+6456’ 6245> ;
since 1 1
o136 _ 3 (6136 +el45)—|—§ (6136 _6145) :
€LPA'X EPASX
and

d/\2g* _ R<€146—6234, 6156+€235, 6236, 6246, 6256, 6346, 6356> ,

it follows that
(1) ¢ BP9 (X;R) + HID (GR) |

and hence H® (X;R) + HS"Y (X;R) € H3,(X;R).

Finally, we give explicit examples of dual currents on a compact symplectic half-flat manifold, [AT12c, Example
3.7].
Example 3.22. Dual currents of oriented special Lagrangian submanifolds of the Nakamura manifold.
Let C? be endowed with the product * defined by

(wh, w?, w?) * (21, 2%, 2°%) = (zl +uwl, e 22 4w e 23 4 w3>

for every (w', w?, w?), (2!, 2%, 2%) € C®. Then (C3, «) is a complex solvable (non-nilpotent) Lie group and,

according to [Nak75], it admits a lattice I' C C3, such that X := I'\(C3, %) is a solvmanifold, which is called the
Nakamura manifold, see also [dBT06, §3]. Setting

1 1
901 = dzl7 S02 — % dZQ, S03 Z:ede3,

then {cpl, 2, @3} is a global complex co-frame on X satisfying the following complex structure equations:

do! =
d? = 2
dg? = —p3

If we set @7 =: e/ +1ie3t9 for j € {1, 2, 3}, then the last equations yield to

det 0

de2 = el2_ 45

ded = —el3 4 46

det = 0o (3.1.2)
ded = 15 _ 24

deb = —elb 4 ¢34
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Then, [dBT06, §5],

w = el e g b2
and
Jel = —e?, Jed = —eb | Jeb = —e?,
Jet = el Je? = %, Je? = eb,
and

P o= (61 —l—ie4) A (63 —l—ies) A (66 —|—i€2)
give rise to a symplectic half-flat structure on X, where
Reep = €136 1 o125 4 (234 _ (456

Note that the Hard Lefschetz Condition holds on (X, w), [dBT06, Theorem 5.1].
Setting 2/ =: 27 +1iy7, for j € {1, 2, 3}, and denoting by m: C> — X the canonical projection, we easily check
that
Yl =T ({(1‘17 172, l,B’ y17 927 ?JS) € (CB : $2 = y4 = y5 = 0}) )
Yy o= w({(at, 2% 2%yt o2 %) € C3 : 2® =yt =90 =0})

are special Lagrangian submanifolds of (X, w, 1), namely, for j € {1, 2}, it holds Re |y, = Voly,, and, conse-
quently, the associated dual currents [Y;] are primitive.

3.2 Cohomology of D-complex manifolds

In this section, we provide some results obtained in a joint work with F. A. Rossi, [AR12], concerning the de Rham
cohomology of almost-D-complex manifolds. D-complex Geometry is, in a sense, the “hyperbolic analogue” of
Complex Geometry: an almost-D-complex structure on a manifold X is given by an endomorphism K € End(TX)
such that K2 = idrx and the eigen-bundles of TX with respect to the eigenvalues 1 and —1 of K € End(TX)
have the same rank. Recently, D-complex Geometry appeared to be related with many other problems and
notions in Mathematics and Physics (in particular, with product structures, bi-Lagrangian geometry, and optimal
transport theory).

It is natural to ask what properties from Complex Geometry can be translated in the D-complex setting.
We refer to the work by F. A. Rossi, e.g., [Ros12a, Ros12b], for problems and results in this direction. Here,
we are mainly concerned in cohomological properties. In fact, it turns out that the D-complex counterpart of
the Dolbeault cohomology is not well-behaved, not being finite-dimensional. This fact leads us to study some
subgroups of the de Rham cohomology related to the almost-D-complex structure, miming the theory introduced
by T.-J. Li and W. Zhang in [LZ09] for almost-complex manifolds. More precisely, we study the subgroups of the
de Rham cohomology of an almost-D-complex manifold consisting of the classes admitting invariant, respectively
anti-invariant, representatives with respect to the almost-D-complex structure; in particular, we prove that,
on a 4-dimensional nilmanifold endowed with a left-invariant D-complex structure, such subgroups provide a
decomposition at the level of the real second de Rham cohomology group, Theorem 3.47; counterexamples without
the hypothesis on dimension, respectively nilpotency, respectively integrability, are provided. Moreover, we
consider deformations of D-complex structures: in particular, we show that admitting a D-K&hler structure is not
a stable property under small deformations of the D-complex structure, Theorem 3.50, providing another strong
difference with the complex case (indeed, recall that admitting a Kahler structure is a stable property under small
deformations of the complex structure by K. Kodaira and D. C. Spencer’s theorem [KS60, Theorem 15]).

3.2.1 D-complex structures on manifolds

We start by recalling the basic definitions in D-complex Geometry. We refer, e.g., to [HL83, AMT09, CMMS04,
CMMS05, CM09, CFAG96, KMW10, ABDMOO05, AS05, Kral0, Ros12a, Ros12b] and the references therein for
more results about (almost-)D-complex structures and for motivations for their study.

Let X be a 2n-dimensional manifold. Consider K € End(7T'X) such that K? = X idrx where A € {1, 0, 1}:
if A = —1, then by definition K is an almost-complex structure; if A = 0, then the structure K is called an
almost-subtangent structure; if A = 1, then K is said to be an almost-product structure; according to [Vai07, §1],
these three structures are called almost-c.p.s. structures.

In the case K? = idry, one gets that K has eigen-values {1, —1} and hence there is a decomposition
TX =T+tX ®T~ X where T*X is given, point by point, by the eigen-space of K corresponding to the eigen-value
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+1, where £ € {4, —}. By definition, an almost-D-complex structure (also called almost-para-complex structure)
on X is an endomorphism K € End(7TX) such that

1
K? = idpx and tkTHX = 1kT-X = §dimX;

a D-holomorphic map between two almost-D-complex manifolds (X7, K;) and (X2, K») is a smooth map
f: X7 — Xgosuch that d f o K1 = Ko od f.
An almost-D-complex structure is said to be integrable (and hence it is called D-complez, or also para-complex)
if
[TJFX7 T*X] C TTX and [T*X, T*X] CT X.

The integrability condition is, straightforwardly, equivalent to the vanishing of the Nijenhuis tensor Ni of K,
where

Ni(, =) o= [ | +[K K] - K[K-, -] - K[, K] ;

furthermore, as in the complex case, one has that an almost-D-complex structure on an n-dimensional manifold X
is integrable if and only if it is naturally associated to a structure on X defined in terms of local homeomorphisms
with open sets in D™ and D-holomorphic changes of coordinates, see, e.g., [CMMS04, Proposition 3], where
D" := R" + 7R", with 72 = 1, is the algebra of double numbers.

We recall that, given a 2n-dimensional manifold endowed with an almost-D-complex structure K, a D-
Hermitian metric on X is a pseudo-Riemannian metric of signature (n,n) such that g(K-, K--) = —g(-, --). A
D-Kahler structure on a manifold X is the datum of an integrable D-complex structure K and a D-Hermitian
metric g such that its associated K-anti-invariant form w := g (K -, --) is d-closed, equivalently, the datum of a
K -compatible (that is, a K-anti-invariant) symplectic form on X, see, e.g., [AMT09, §5.1], [CMMS04, Theorem 1].

The basic example of D-complex structure is given on the product of two manifolds of the same dimension:
given X+ and X~ two manifolds with dim X+ = dim X ~, the product X+ x X~ inherits a natural D-complex
structure K, given by the decomposition

T(XTxX") =TXt o TX",

where K |rx+= idp(x+xx-) and K|px-= —idpx+xx-). Every D-complex manifold is locally of this form, see,
e.g., [CMMS04, Proposition 2].

Starting from K € End(TX) such that K? = idrx, one can define, by duality, an endomorphism K &
End(T*X) such that K? = idy«x, and hence one gets a natural decomposition 7*X = (T+X)" @ (T~ X)" into
eigen-bundles. Extending K € End(T*X) to K € End (A*X), one gets the following decomposition on the bundle
of differential ¢-forms, for £ € N:

ANX = @ NPT X where ANy X = /\p(T+X)* ®/\q(T_X)* :
p+q=¢

note that, for any p, ¢ € N, the structure K acts on Al'? X as (+1)” (—1)* idsr.a x. In particular, for any ¢ € N,

one has
ANX = NFX oA X
where
l s l— ._ ) .
NFX = $H AT X and N X o= $H AR X
p+q=¢, g=0mod 2 p+q=¢, g=1mod 2
note that KL/\?’X: ld/\i('*'X and KL/\i(_X: 7ld/\§(_X'

If a D-complex structure K is given, then the exterior differential splits as
d =04y+0-

where
- . AP p+1l.q
8_;,_ = Tr/\iJrj’qud' /\+7X—>/\+7 X

and
1
0 = mypar yods AP? X = APTTX
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(where TAms X AYS X — A% X denotes the natural projection onto A% X, for every r, s € N). In particular,

the condition d? = 0 can be rewritten as

2 = 0
6+8_+a_8+ == 0
2 =0

and hence one can define a D-complex counterpart of the Dolbeault cohomology by considering the cohomology
of the differential complex (/\1"1 X, 3+) for every ¢ € N, that is,

ker 04

Hé:(X;]R) = mo,

Unfortunately, one cannot hope to adjust the Hodge theory of the complex case to this non-elliptic context.
For example, take X+ and X~ two manifolds having the same dimension and consider the natural D-complex
structure on Xt x X ~; one has that

Hgf (XTxX7) >~ C®(X7),

hence the space Hgf (XT x X7) of 9;-closed functions on X x X~ is not finite-dimensional, even if X* and
X~ are compact.

3.2.2 D-complex subgroups of (co)homology

In this section, we adapt T.-J. Li and W. Zhang’s theory on cohomology of almost-complex manifolds, [LZ09],
to the almost-D-complex case. More precisely, let X be a 2n-dimensional compact manifold endowed with an
almost-D-complex structure K; we are interested in studying when the decomposition

ANX = PAIX = AFX oA X
p,q

gives rise to a cohomological decomposition.
We start by giving some definitions. For any p,q € N, we define the subgroup
HPY (X;R) = {[o] € HIZ(X;R) : a € ARL X} C Hip(X5R),
and, for any £ € N and for + € {+, —}, the subgroup
HiE (X5R) = {lo] € Hiz (X;R) : Ka==a} = {[a] € Hiz (X;R) : a € AFX} C HIR(X3R).
Note, that, if K is integrable, then, for any ¢ € N,

Hit = P  HPPXR) and  HE = P  HIYXR).
p+q=~{, g=0mod 2 p+q=~¢, g=1mod 2

As in [LZ09, Definition 2.2, Definition 2.3, Lemma 2.2], see §2.1.1, for almost-complex structures, we introduce
the following definition, [AR12, Definition 1.2].

Definition 3.23. For ¢ € N, an almost-D-complex structure K on the manifold X is said to be

o C>®-pure at the (™ stage if
Hi' (X5R) N H (XGR) = {0} ;

o C®-full at the (" stage if
HEF (X5R) + HE (X5R) = Hip (XGR)

o C*®-pure-and-full at the £ stage if it is both C*>°-pure at the £*" stage and C>-full at the /" stage, namely,
if it satisfies the cohomological decomposition

Hip (X;R) = HiT (X3R) @ Hy (XR) .
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Consider now the space D*X :=: Dy, _oX of currents on X and the de Rham homology HJ®(X;R) (we refer
to §0.5, and references therein, for definitions and results concerning currents and de Rham homology). The
action of K on A®*X induces, by duality, an action, still denoted by K, on DX, and hence, for any £ € N, a
decomposition

DX = P Dy, X.
p+q=~

For any p,q € N, note that the space D} =~ X :=: D}/"”""? is the topological dual space of the topological
subspace Af’? X of A*X, and that the quasi-isomorphism 7.: A®* X 3 a — [, a A- € D*X yields the inclusion
T.: NP9 — DB? X, As before, we have

DX = DX, X @ DEX

where
DX = P DI, X and DEX:= P DI X,
q=0mod 2 g=1mod 2
and KLDKiX: +idpx, x for £ € {+, —}.
For any p,q € N, we define the subgroup
K
Hy

Lo (XGR) = {[a] € HIY (X;R) : aeDf 7 X} € HIF(X;R),

p+q

and, for any ¢ € N and for + € {+, —}, the subgroup
HE (X;R) = {[a] € H® (X;R) : Ka=+a} = {[o] € HIF (X;R) : a € DE.X} C HIE(X;R).

We are particularly interested in the almost-D-complex structures admitting a homological decomposition
through the subgroups H,KJr (X;R) and HX (X;R), [AR12, Definition 1.3].

Definition 3.24. For ¢ € N, an almost-D-complex structure K on the manifold X is said to be

o pure at the 0 stage if
Hy (X;R) N Hi” (X;R) = {0}

o full at the (™ stage if
HE (X5R) + HE (X;R) = Hy (XGR)

gth gth

o pure-and-full at the ¢*" stage if it is both pure at the stage and full at the stage, namely, if it satisfies

the homological decomposition

He(X;R) = H{% (X;R) @ H{Z (X;R) .

The introduced notions are not completely independent. Using the same argument as in Theorem 2.10, see
[LZ09, Proposition 2.5], and in Proposition 3.12, we prove the following relations between C*°-pure-and-fullness
and pure-and-fullness for almost-D-complex structures, [AR12, Proposition 1.4].

Proposition 3.25. Let K be an almost-D-complex structure on a 2n-dimensional compact manifold X. Then,
for every £ € N, the following implications hold:

C®-full at the ("™ stage =——=—====> pure at the [*" stage

ﬂ ﬂ

full at the (2n — 0)"" stage =—=> C>®-pure at the (2n — ()"

h stage

Proof. We recall that the quasi-isomorphism T.: A®* X 3> a — fX a - € Dyy_oX induces, for every p,q € N, the
inclusion (
HPP(X;R) = HE_, | (X;R)

this fact proves the two vertical implications.
To prove the horizontal implications, consider the duality paring (-, --) : D;X x A*X — R and the induced
non-degenerate pairing
(-, ) s Hip(X5R) x HIF(X;R) - R.
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Suppose that K is C*°-full at the £t stage, that is, H{p(X;R) = Hi™ (X;R) + Hi (X;R), and let ¢ = [y4] =
[v-] € HE (X;R) N HE (X;R) with vy € D, X and y_ € D X; since

(HY(X;R), ¢) = (Hi N (X5R)+ Hy” (X3R), ¢) = (HeH(X3R), [v-]) + (H (X;R), [v4]) = 0,

one has ¢ = 0 in HI¥(X;R); hence K is pure at the £*" stage.
Similarly, since
(Hg"(X;R) N H~ (X3R), HE (X;R) + Hi (X;R)) = 0,

we get that, if K is full at the /*® stage, then it is C>-pure at the £*" stage. O

In particular, by applying Proposition 3.25 with 2n = 4 and k = 2, one gets that, on a compact 4-dimensional
manifold endowed with an almost-D-complex structure, being C>°-full at the 2" stage is stronger than being
C>™-pure at the 2" stage.

A straightforward consequence of Proposition 3.25 is the following result, [AR12, Corollary 1.5].

Corollary 3.26. Let K be an almost-D-complex structure on a compact manifold X. If K is C*°-full at every
stage, then it is also C*°-pure-and-full at every stage and pure-and-full at every stage.

As an application of the Kiinneth formula, T. Dréaghici, T.-J. Li, and W. Zhang noted that, given Xj,
respectively X5, a compact manifold endowed with a C*°-pure-and-full almost-complex structure Ji, respectively
Ja, and assuming that b (X1) = 0, or by (X3) = 0, then the almost-complex structure J; + J» on X; x X3 is
C°°-pure-and-full, [DLZ12, Proposition 2.6]. In the D-complex case, we have the following, [AR12, Theorem 1.6].

Theorem 3.27. Let X and X~ be two compact manifolds of the same dimension. Then the natural D-complex
structure on the product X x X~ is C*®°-pure-and-full at every stage and pure-and-full at every stage.

Proof. For any ¢ € N, using the Kiinneth formula, one gets

Hip (Xt x XR) ~ @ HY, (XT5R) @ Hi, (X75R)

pt+q=¢
= D HETReHR(XE)| e | @ HR(XUR) e Hiy (X R)
p+q=~¢, g=0mod 2 p+q=~£, g=1mod 2
CHI{T(X+xX~;R) CH!™(X+xX—;R)

C Hit (XTxX5R) + Hi (Xt x X5R) ;

hence, by using Corollary 3.26, one gets the theorem. O

3.2.3 D-complex cohomological decomposition on solvmanifolds

In this section, we consider left-invariant D-complex structures on solvmanifolds, as in §2.2.3 for almost-complex
structures, and in §3.1.3 for symplectic structures. We recall that, given a Lie algebra g, one has the differential
operator d: A®g* — A*T!g* naturally induced by the Lie bracket [-, -], and hence the cohomology H3x(g; R) :=
H* (A*g*, d). Hence, we are concerned with studying the linear counterpart of D-complex structures on Lie
algebras, and the corresponding decomposition problem for the cohomology Hjx(g;R). In particular, we prove a
Nomizu-type result for the subgroups H ff (X;R), Proposition 3.30; it will allow to explicitly study several examples
of D-complex solvmanifolds: in §3.2.3, we provide some examples of D-complex structures on solvmanifolds, even
admitting a D-Ké&hler structure, that do not satisfy the cohomology decomposition by means of the subgroups
H f(i (X;R); then, we prove that, for every left-invariant D-complex structure on a 4-dimensional nilmanifold, it
holds H2,(X;R) = HIQ(+(X R)® HIZ(_ (X;R), Theorem 3.47, which provides a partial D-complex counterpart of
[DLZ10, Theorem 2.3]. (We refer to §0.6 for definitions and results concerning solvmanifolds.)

We recall that a linear almost-D-complex structure K on g is an endomorphism K € End(g) such that
1
K? = id, and dimggt = dimgg™ = 2 dimg g ,

where g% is the eigen-space of K corresponding to the eigen-value +1, for + € {+, —}. A linear almost-D-complex
structure on g is said to be integrable (and hence it is called a linear D-complex structure on g) if g™ and g~ are
Lie subalgebras of g, that is,

gt,07] C gt  and 07,07 C g
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As a matter of notation, with respect to a given basis {e;} of g, in writing a(n almost-)D-complex

je{1,...,dimg g}
structure K, e.g., (suppose dimg g = 6,) as

K:&=(-++--4)

we mean that

T = Rea, e3, eg) and g = Ren, ey, €5) .

g

By considering the dual map K € End(g*) of K € End(g) and by extending it to K € End (A®g*), the
splitting g = g+ @ g into eigen-spaces given by the linear almost-D-complex structure K on g induces also a
splitting g* = (g+)" @ (g7)", and hence, for every ¢ € N, a splitting on the space of /-forms on g*:

Ag* = @ AP g where ANy L gt o= @ A (gh) @ ni(g)";
p+q=¢ p+q=¢

for any p,q € N, one has KL/\i’ e »= (+1)P (=1)2 id/\i’i g+~ Consider also the splitting of the space of forms into
its K-invariant and K —anti—invarlant components:

/\‘g*f/\ g" d Ny 9"

AyTgt = @ A2 g and Ay 9" = @ iVl

q=0mod 2 g=1mod 2

where

As for manifolds, we define, for every p, ¢ € N, the subgroup
H(pq) (g;R) = {[qa] eHggq (BR) : a e g*} C Hip(:R) ,
and, for any ¢ € N and for + € {+, —}, the subgroup
Hi (3:R) = {lo] € H' (5:R) : Ka==a} = {[o] € H' (R) : a € \}JFg"} C Hip(siR) ,

and we give the following definition, [AR12, Definition 2.1].
Definition 3.28. For ¢ € N, a linear almost-D-complex structure on the Lie algebra g is said to be

o linear-C>®-pure at the ("™ stage if

Hi* (R) N Hi (;R) = {0} ;
o linear-C®-full at the ¢* stage if
Hi" (8:R) + Hy (@:R) = Hip (8:R) ;

o linear-C>™-pure-and-full at the (™ stage if it is both C>-pure at the ¢! stage and C>-full at the /** stage,
namely, if it satisfies the cohomological decomposition

Hip(@R) = Hi" (gR) @ Hi (;R) .

Given a 2n-dimensional solvmanifold X = T'\ G, one can consider the associated Lie algebra g to the Lie group
G. Note that a G-left-invariant almost-D-complex structure on X is uniquely determined, through left-translations
on G, by a linear almost-D-complex structure on g; furthermore, a G-left-invariant almost-D-complex structure
on X is integrable if and only if the corresponding linear almost-D-complex structure on g is integrable. Hence,
in the following we will confuse a G-left-invariant (almost-)D-complex structure K on the solvmanifold X = T'\ G
and the corresponding linear (almost-)D-complex structure on the naturally associated Lie algebra g.

We recall that the left-translations induce an injective map in cohomology,

Hir (R) — Hir(X;R),

where Hj, (g;R) can be interpreted as the cohomology of the sub-complex composed of the G-left-invariant forms
of (A*X, d), and that this map is actually an isomorphism if G is nilpotent, respectively completely-solvable, by
K. Nomizu’s theorem [Nomb54, Theorem 1], respectively by A. Hattori’s theorem [Hat60, Corollary 4.2].
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Hence, given a G-left-invariant D-complex structure on X, we may study D-complex decomposition in
cohomology both on Hj3p (g;R) and on Hj,(X;R). The aim of this section is to make clear the connection between
the C*°-pure-and-fullness of a left-invariant almost-D-complex structure on a completely-solvable solvmanifold
and the linear-C°°-pure-and-fullness of the corresponding linear almost-D-complex structure on the associated Lie
algebra.

The following lemma adapt F. A. Belgun’s symmetrization trick, [Bel00, Theorem 7], to the D-complex case,
[AR12, Lemma 2.3].

Lemma 3.29. Let X = T'\ G be a solvmanifold, and denote the Lie algebra naturally associated to G by g. Let
K be a G-left-invariant almost-D-complex structure on X, or equivalently the associated linear almost-D-complex
structure on g. Let n be the G-bi-invariant volume form on G given by J. Milnor’s Lemma [Mil76, Lemma
6.2], and such that fX n = 1. Up to identifying G-left-invariant forms on X and linear forms over g* through
left-translations, consider the Belgun symmetrization map, [Bel00, Theorem 7],

p A Xt ) = [ alun(m).

One has that
plnege = id[pege
and that
d(pu(-) = p(d-) and K (u()) = p(K) .

As a consequence, we get the following result, [AR12, Proposition 2.4] (compare with Proposition 2.19, see
also [FT10, Theorem 3.4], in the almost-complex case, and with Proposition 3.18 in the symplectic case).

Proposition 3.30. Let X = I'\ G be a solvmanifold, and denote the Lie algebra naturally associated to G by g.
Suppose that H3p (g;R) ~ Hjp(X;R) (e.g., suppose that X is a completely-solvable solvmanifold). Let K be a
G-left-invariant almost-D-complex structure on X. Then, for every £ € N and for + € {+, —}, the injective map

HiE(g;R) — HEF(X;R)
induced by left-translations is an isomorphism.

Proof. Consider the F. A. Belgun symmetrization map p: A®* X — A®g*, [Bel00, Theorem 7]. It is enough to
observe the following three facts.

(i) Since d (u(-)) = u(d-), [Bel00, Theorem 7], one has that p sends d-closed, respectively d-exact, forms to
d-closed, respectively d-exact, G-left-invariant forms, and so it induces a map

p: Hjp(X5R) — Hig (g;R) .

(i) Since K (u(-)) = p(K-), Lemma 3.29, for + € {+, —}, one has

o+ o+t
plassx: Nig X = Ng™,

and hence
plgs* xm s Hi(GR) = Hi* (g:R)

(ttt) Finally, if Hp(X;R) ~ H3, (g;R) (e.g., if X is a completely-solvable solvmanifold, [Hat60, Corollary 4.2]),
then the condition u[ae x=1id[se x, [Bel00, Theorem 7], gives that p is the identity in cohomology. [

As a straightforward corollary, we get the following result, [AR12, Proposition 2.4] (compare with Corollary
2.20 in the almost-complex case).

Corollary 3.31. Let X = I'\ G be a solvmanifold such that H3(X;R) ~ Hjp (g;R) (e.g., a completely-solvable
solvmanifold), and denote the Lie algebra naturally associated to G by g. Let K be a G-left-invariant almost-
D-complex structure on X. For every ¢ € N, the associated linear almost-D-complex structure K € End(g) is
linear-C*-pure (respectively, linear-C>®-full, linear-C>®-pure-and-full) at the {*™ stage if and only if the G-left-
invariant almost-D-complex structure K € End(TX) is C*°-pure (respectively, C*°-full, C*°-pure-and-full) at the
0" stage.
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Non-C*-pure-and-full (almost-)D-complex nilmanifolds

We provide here some explicit examples of left-invariant (almost-)D-complex structures on nilmanifolds, studying
the corresponding subgroups in cohomology, and providing differences between the D-complex and the complex
cases, Proposition 3.34.

More precisely, recall that every Kahler structure on a compact manifold is C*°-pure-and-full, [DLZ10, Lemma
2.15, Theorem 2.16], or [LZ09, Proposition 2.1], and that every almost-complex structure on a 4-dimensional
compact manifold is C*°-pure-and-full, [DLZ10, Theorem 2.3]: we give instead an example of a D-complex structure
on a 6-dimensional nilmanifold such that it is non-C>-full at the 2"? stage, [AR12, Example 3.1], respectively
non-C>®-pure at the 2°¢ stage, [AR12, Example 3.2], despite it admits a D-Kéhler structure; furthermore, we
provide a non-C>®-pure-and-full at the 2°¢ stage almost-D-complex structure on a 4-dimensional manifold, proving
that no almost-D-complex counterpart of [DLZ10, Theorem 2.3] could exist.

Example 3.32. A D-complex structure on a 6-dimensional nilmanifold that is C*®-pure at the 2™ stage and
non-C>-full at the 2™ stage and that admits a D-Kéhler structure.
Consider a nilmanifold

X = I\G = (0%, 12, 13)

and define the G-left-invariant D-complex structure K by setting
K= (-+4+4+-—-4).
By K. Nomizu’s theorem [Nom54, Theorem 1], the de Rham cohomology of X is given by
H2,(X;R) = ]R<614, 15 10 (23 24 25 (B34 36 26 4 635>

(where, as usual, we list the harmonic representatives with respect to the G-left-invariant metric Z?Zl el oel
instead of their classes, and we write, e.g., e"* to shorten e A eF). Note that

H12<+ (:R) = R<el4, el 23 e36> and Hf{ (3;R) = R<e167 €2t 25 e34> 7

since the space of G-left-invariant d-exact 2-forms is R <612, 613>, and hence no G-left-invariant representative
in the class [626 + 635] is of pure type with respect to K. It follows that K € End (g) is linear-C*-pure at the
274 stage and linear non-C>=-full at the 2"¢ stage, and hence K € End(TX) is C*°-pure at the 2°¢ stage and
non-C*°-full at the 2°¢ stage, by Corollary 3.31. (Note that, K being Abelian, one can deduce the C>-pureness at
the 2 stage also by Corollary 3.43.)
Moreover, we observe that
W o= el6 o254 34

is a (G-left-invariant) symplectic form compatible with K, hence (K, w) is a D-Ké&hler structure on X.

Example 3.33. A D-complex structure on a 6-dimensional nilmanifold that is non-C>®-pure at the 2" stage,
and hence non-C>-full at the 4™ stage, and that admits a D-Kdihler structure.
Consider a nilmanifold

X = I\G = (0%, 12, 13+ 14, 24)

and define the G-left-invariant D-complex structure
K:=H-4+—-+-).

(Note that [g—, g~ # {0}, since [ez, e4] = —eg, hence K is not Abelian.)
We have
Hi  (mR) 3 [e7] = [ —de’] = —[e"] € Hy (¢:R)

and therefore 0 # [613] € HIQ(Jr (g;R)N HIQ{ (g;R), namely, K € End(g) is not linear-C>=-pure at the 2"¢ stage,
hence, by Corollary 3.31, K € End(TX) is not C*®-pure at the 2°¢ stage; moreover, by Proposition 3.25, we have
also that K is not C>°-full at the 4*" stage.

Furthermore,

w = et 4 e 43

is a (G-left-invariant) symplectic form compatible with K, hence (K, w) is a D-Kéhler structure on X.

It is straightforward to obtain higher-dimensional examples of D-Kéhler non-C*°-full, respectively non-C*°-pure,
at the 2" stage structures, taking products with standard D-complex tori.

The contents of the previous two examples are resumed in the following result, [AR12, Proposition 3.3], which
gives a difference with the complex case, [LZ09, Proposition 2.1], or [DLZ10, Lemma 2.15, Theorem 2.16].
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Proposition 3.34. Admitting a D-Kahler structure is not a sufficient condition for either being C*°-pure at the
2" stage or being C*-full at the 2™ stage.

We provide now a counterexample showing that T. Draghici, T.-J. Li, and W. Zhang’s decomposition theorem
for compact 4-dimensional almost-complex manifolds, [DLZ10, Theorem 2.3], does not hold, in general, in the
almost-D-complex case, [AR12, Example 3.4].

Example 3.35. An almost-D-complez structure on a 4-dimensional nilmanifold that is non-C*-pure-and-full at
the 24 stage.
Consider a nilmanifold

X = I"\G := (0, 0, 12, 0)

and define the G-left-invariant almost-D-complex structure K requiring that K|g+= idg+ and K|j-= —idg-
where
g7 = Rer,ea—ez) and g~ := Rey, e3).

Note that K is not integrable, since g7, g7] 3 [e1,e4 —e2] = e3 € gT.
Note that we have

H2 (g;R) > [614] = [614 + de?’] = [614 + 612] = [el A (et + 62)} € Hy (R),
and therefore we get that 0 # [e!] € Hyt (g;R) N Hy (g;R); then, K is non-C*-pure at the 22 stage and
non-C>-full at the 2°¢ stage, by Corollary 3.31, and Proposition 3.25.

C>-pure-and-fullness of low-dimensional D-complex solvmanifolds

In this section, we state and prove Theorem 3.47, providing a partial D-complex counterpart of [DLZ10, Theorem
2.3] in the almost-complex case. We start by fixing some notations and by proving some preliminary results.

Given a linear D-complex structure K on a Lie algebra g, consider the induced eigen-spaces decomposition
g =g" ® g, and consider the nilpotent steps

st = s (g+) and sT = s (g_) .
(As a matter of notation, recall that, given a Lie algebra (a, [-,--]), the lower central series {a"}, . is defined,
by induction on n € N, as
a = a
at! = [a",a] forneN ’

note that {a,}, .y is a descending sequence of Lie algebras:
a=a"2¢dd D ... Dt Dd D ...
recall that the nilpotent step of a is defined as

s(a) :== inf{meN : a™

Il
o
—

in particular, if s (a) < 400, then, by definition, a is nilpotent.)
Since g™ C g and g~ C g, we have obviously that

st < s(g) and s7 < s(g) .
In fact, we have the following lemma, [AR12, Lemma 3.5].

Lemma 3.36. Let g be a 2n-dimensional nilpotent Lie algebra, namely, s (g) < +oo. Let K be a linear D-complex
structure on g, inducing the eigen-spaces decomposition g = g* @ g~. Then, setting s* := s (g%) for + € {+, -},
we have
1< st <n-1 and 1 <s <n-1.
Proof. Tt suffices to note that, for + € {+, —}, we have
dimg (g%)°

dimg (gi)k < max{n—k—1,0} forkeN\{0}

= n

)

as a consequence of the nilpotency and of the integrability properties. O
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The following result, [AR12, Proposition 3.6], should be compared with Theorem 3.27.

Proposition 3.37. Let g be a Lie algebra. If K is a linear D-complex structure on g with eigen-spaces g= and
g~ such that [gF, g7] = {0}, then K is linear-C>-pure-and-full at every stage.

Proof. Since [gT, g7] = {0}, one has g = g™ x g~ and, using the Kiinneth formula, one gets the statement, as in
the proof of Theorem 3.27. O

Therefore, from Corollary 3.31, one gets the following corollary, [AR12, Corollary 3.7].

Corollary 3.38. Let X = I'\ G be a completely-solvable solvmanifold endowed with a G-left-invariant D-complex
structure K, and denote the Lie algebra naturally associated to the Lie group G by g. Consider the linear D-complex
structure K € End(g) induced by K € End(TX). Suppose that the eigen-spaces g™ and g~ of K € End(g) satisfy
[67, g7] = {0}. Then K is C®-pure-and-full at every stage and pure-and-full at every stage.

We recall that a D-complex structure on a manifold X is said to be Abelian if the induced eigen-bundle
decomposition TX = THTX & T~ X satisfies [TTX, TTX] = {0} = [T~ X, T~ X]; analogously, a linear D-
complex structure on a Lie algebra g is said to be Abelian if the induced decomposition g = g™ @ g~ satisfies
g%, 9] = {0} = [g7, g7, namely, s(g") = 1 = s(g~). Obviously, if X = I'\ G is a solvmanifold endowed
with a G-left-invariant D-complex structure, then K € End (T'X) is Abelian if and only if the associated linear
D-complex structure K € End (g) is Abelian.

Remark 3.39. Note that every linear D-complex structure on a 4-dimensional nilpotent Lie algebra is Abelian,
as a consequence of Lemma 3.36.

We prove that every linear Abelian D-complex structure is linear-C>°-pure at the 2°¢ stage, [AR12, Theorem
3.10].

Theorem 3.40. Let g be a Lie algebra and K be a linear Abelian D-complex structure on g. Then K is
linear-C®-pure at the 2™ stage.

Proof. Denote by Tps g A® g* — A%Tg* the natural projection onto the space A%"g*. Recall that dn :=
—n ([, ~]) for every n € Alg*; therefore, since [g, g7] = 0 and [g~, g~] = 0 by hypothesis, we have that

. (im (d: AMg* = A%g")) = {0}.

7'('/\;(+g

Suppose that there exists [y*] = [y7] € Hx' (g; R) N Hy~ (g; R), where v+ € A%Tg* and v~ € A% g*, and
vt =4~ +da for some a € Alg*. Since Tps b ge (da) = 0, we have that v = 0 and hence [yT] = 0, so K is
linear-C*>®-pure at the 2"? stage. O

Remark 3.41. We note that the condition of K being Abelian in Theorem 3.40 cannot be dropped or weakened, in
general. In fact, Example 3.49 shows that the Abelian assumption just on g~ is not sufficient to have C*°-pureness
at the 2" stage. Another example of this fact, on a (non-unimodular) solvable Lie algebra, is given below, [AR12,
Example 3.12].

Example 3.42. A 4-dimensional (non-unimodular) solvable Lie algebra with a non-Abelian D-complex structure
that is not linear-C*>-pure at the 2" stage.
Consider the 4-dimensional solvable Lie algebra defined by

g = (0°, 13+ 34) ;

note that g is not unimodular, since d e!?* = 1234 see Lemma 3.45, [Kos50, §I11].
Set the linear D-complex structure
K=+ --);

K is not Abelian, since [gF, g7] =0 but [g7, 7] = R {e4) # {0}.
It is straightforward to check that K is linear-C>-full at the 2" stage: in fact,

Hip (@:R) = R(e?, )@ (7) ;
—_—— ~——
H(g:R) Hy (gR)
on the other hand, K is not linear-C>®-pure at the 2°¢ stage, since
Hi (G R) 3 [¢¥] = [ —de'] = —[e"] € H (5;R)
and [634} # 0.
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A direct consequence of Theorem 3.40 and Corollary 3.31 is the following result, [AR12, Corollary 3.13].

Corollary 3.43. Let X = T'\ G be a completely-solvable solvmanifold endowed with a G-left-invariant Abelian
D-complex structure K. Then K is C®-pure at the 2™ stage.

Remark 3.44. We remark that, for a D-complex structure on a compact manifold of dimension greater than
4, being Abelian or being C*®-pure at the 2" stage is not a sufficient condition to have C*°-fullness at the 274
stage. Indeed, Example 3.32 provides a G-left-invariant D-complex structure K on a 6-dimensional nilmanifold
X = I'\ G such that K is Abelian, C*-pure at the 2" stage and non-C>-full at the 2" stage.

As observed in Remark 3.39, any left-invariant D-complex structure on a 4-dimensional nilmanifold is Abelian,
and hence C*°-pure at the 2"¢ stage by Corollary 3.43. In general, a left-invariant Abelian D-complex structure on
a nilmanifold of dimension greater than 4 may be non-C>®-full at the 2°¢ stage, Example 3.32. Notwithstanding,
we prove that every left-invariant D-complex structure on a 4-dimensional nilmanifold is C*°-full, in fact C*°-pure-
and-full, at the 2" stage, Theorem 3.47. To prove this fact, we need the following lemmata: the first one is a
classical result, the second one is [AR12, Lemma 3.16].

Lemma 3.45 ([Kos50, §II1)). Let g be a unimodular Lie algebra of dimension n. Then
d{pn-14- = 0.

Lemma 3.46. Let g be a unimodular Lie algebra of dimension 2n endowed with an Abelian linear D-complex
structure K. Then

d| 0.

APl grand ™ gr
Proof. Consider the eigen-spaces decomposition g = g+ @ g~ induced by K, and fix two bases for (g*)" and (g7)":
(@) =R ...,e”)  and  (g7)" =R

Since K is Abelian, the general structure equations, in terms of these bases, are

{ ded =: ZZkzlaikeh/\fk for j e {1,...,n}

dfi = Y b e ASE for j € {1,...,n}
h { iy } CR.

where ahk h j)h,ke{l,,..,n}

By [Kos50, §I11], see Lemma 3.45, for any k € {1,...,n}, one has that
d(e" A A" AFEA A FETEA TN A ) = 0

by a straightforward computation, we get that,

Il
o

¢
Qo

~
HM:
)

Hence, we get that
d(e'A-ne) = (="

(iaﬁk) A ne"AfE =0
k=1 \¢=1
Arguing in the same way, we prove also that
d(f'A--Af") =0,
completing the proof. O
We can now prove the following result, [AR12, Theorem 3.17].

Theorem 3.47. FEvery left-invariant D-complex structure on a 4-dimensional nilmanifold is C*°-pure-and-full at
the 27¢ stage, and hence also pure-and-full at the 2™ stage.
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Proof. By Remark 3.39 and Corollary 3.43, we get the C*°-pureness at the 2°¢ stage.

We recall that, by J. Milnor’s lemma [Mil76, Lemma 6.2], the Lie algebra associated to any nilmanifold is
unimodular. From Lemma 3.46 one gets that, on every 4-dimensional D-complex nilmanifold, the D-complex
invariant component of a left-invariant 2-form is d-closed. Hence both the D-complex invariant component and the
D-complex anti-invariant component of a d-closed left-invariant 2-form is d-closed. Hence the linear D-complex
structure is linear-C>°-full at the 2"¢ stage. Therefore, by Corollary 3.31, the left-invariant D-complex structure is
C>-full at the 2" stage.

Finally, Proposition 3.25 gives the pure-and-fullness at the 2"¢ stage. O

Remark 3.48. We note that Theorem 3.47 is optimal. Indeed, we cannot grow the dimension, Example 3.32
and Example 3.33, nor change the nilpotent hypothesis with a solvable condition, Example 3.49, nor drop the
integrability condition on the D-complex structure, Example 3.35.

3.2.4 Small deformations of D-complex structures

In this section, we study explicit examples of small deformations of the D-complex structure on nilmanifolds and
solvmanifolds, studying the behaviour of being D-Ké&hler, Theorem 3.50, the behaviour of C*°-pure-and-fullness,
Proposition 3.51, and the semi-continuity problem for the dimensions of the D-(anti-)invariant subgroups of the
second de Rham cohomology group, Proposition 3.54.

We refer to [MT11, Rosl2a] for more results concerning deformations of (almost-)D-complex structures.

In the following example, [AR12, Example 4.1], we construct a curve {K;}, p of left-invariant D-complex
structures on a 4-dimensional solvmanifold such that (i) Ky is C*°-pure-and-full at the 2°¢ stage and admits
a D-Kihler structure, and (i) K, for t # 0, is neither C*°-pure at the 2°¢ stage nor C*-full at the 2"¢ stage
and does not admit any D-Kéhler structure. In particular, this example proves that being D-Kéhler is not a
stable property under small deformations of the D-complex structure, Theorem 3.50, and it shows also that the
nilpotency condition in Theorem 3.47 cannot be dropped out, Remark 3.48.

Example 3.49. There exists a 4-dimensional solvmanifold endowed with a left-invariant D-complex structure K
such that (i) K is C®-pure-and-full at the 2™¢ stage, (%) it admits a D-Kdhler structure, and (iii) it has small
D-complex deformations that are neither D-Kéhler nor C*®-pure-and-full at the 2™ stage.

Consider a 4-dimensional completely-solvable solvmanifold

X = T'\G = (0% 23, —24)

(for its existence, see, e.g., [Boc09, Table 8]).
By A. Hattori’s theorem [Hat60, Corollary 4.2], it is straightforward to compute

Hin(X;R) = R{(e'?, ) .

For every t € R, consider the G-left-invariant D-complex structure

-1 0 0 0
0 1 0 —2¢
Ky = 0 01 0
0 0 0 -1

For every t € R, we have that
Q;FQ = Rez, e3) and g, = Rer, eq+tea) :

in particular, [g}t, g}t] =R{e3) C g;r(t and [g;(t, g;(t] = {0}, which proves the integrability of K3, for every
t e R.
In particular, for ¢ = 0, we have the (non-Abelian) D-complex structure

KOZ(—++—)

It is straightforward to check that Kj is linear-C®-pure-and-full at the 2" stage, and hence C*®-pure-and-full at
the 2°¢ stage by Corollary 3.31: in fact, by Proposition 3.30,

H?(j(X;R) = {0} and H?{J(X;R) = H2,(X;R);

in particular, we have
dimg Hy(X;R) = 0, dimg Hy (X;R) = 2.
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Furthermore, for t # 0, we get

1
(e —teyne®| € Hyf (X5R)

1 1
Hi~ (X;R) > [¢*] = {634+td63] = {634+t(623+te43t643)] = L

and therefore 0 # [e3*] € Hf(: (X;R)N H?J (X;R), namely, K, is neither C*°-pure at the 2" stage nor C>-full
at the 2°¢ stage, by Proposition 3.25 (in fact, since the space of G-left-invariant d-exact 2-forms is

dalgt = R{(e® —te')ne® —te®, (2 —te') net)

no G-left-invariant representative of the class [e!?] = [e A (e? — te*) + te'*] is of pure type with respect to K).
Therefore, for t # 0, we have

dimp HyF(X;R) = 1, dimp Hy, (X;R) = 1.

Note that, for every t € R, one has s (g;{t) =0and s (g;t) =1, but, for ¢ # 0, the D-complex structure K; is
not C*-pure at the 2"¢ stage: therefore the Abelian condition on just g~ in Theorem 3.40 is not sufficient to have
C>-pureness at the 2"? stage, as observed in Remark 3.41.

Note moreover that, in this example, the functions

RStHdimRHIZJ(X;R)GN and RStHdimRHIQ(:(X;R)GN

are, respectively, lower-semi-continuous and upper-semi-continuous.
Furthermore, we note that X admits a (G-left-invariant) symplectic form

w = e'? e )

which is compatible with the D-complex structure Ky: therefore, (Kp, w) is a D-Kéhler structure on X. On the
other hand, for ¢ # 0, one has Hp, (X;R)=R <e34> and therefore, if a K;-compatible symplectic form w; existed,
then it should be in the same cohomology class as e**, and then it should satisfy

Vol(X) :/wt/\wt = / et =0,
b'e b'e

which is not possible; therefore, for ¢t £ 0, there is no symplectic structure compatible with the D-complex
structure K;: in particular, (X, K;) admits no D-Kéhler structure.

In particular, the previous example proves the following result, [AR12, Theorem 4.2], providing another strong
difference between the D-complex and the complex cases (recall that being Kéahler is a stable property under small
deformations of the complex structure by K. Kodaira and D. C. Spencer’s stability theorem [KS60, Theorem 15]).

Theorem 3.50. The property of being D-Kdahler is not stable under small deformations of the D-complex
structure.

Furthermore, Example 3.49 proves also the following instability result, [AR12, Proposition 4.3], analogous to
Theorem 2.48, which proves the instability of C*°-pure-and-fullness in the complex case.

Proposition 3.51. The properties of being C*-pure at the 2% stage, or C®-full at the 2™ stage are not stable
under small deformations of the D-complex structure.

We have already recalled, see §2.3.2, that T. Draghici, T.-J. Li, and W. Zhang proved in [DLZ11, Theorem 2.6]
that, given a curve {J;}, of (C*°-pure-and-full) almost-complex structures on a 4-dimensional compact manifold
X, the dimension of HI (X;R) is upper-semi-continuous in ¢ and hence, as a consequence of [DLZ10, Theorem
2.3], the dimension of H (X;R) is lower-semi-continuous in ¢; this result holds no more true for almost-complex
manifolds of higher dimension, Proposition 2.56, Proposition 2.55. In the next two examples, [AR12, Example
4.4], respectively [AR12, Example 4.5], we study the behaviour of the dimensions of the D-complex invariant and
D-complex anti-invariant subgroups of the cohomology along curves of D-complex structures.

Example 3.52. A curve of D-complex structures on a 6-dimensional nilmanifold such that the dimensions of the
D-complex invariant and anti-invariant subgroups of the second de Rham cohomology group jump (lower-semi-
continuously) along the curve.

Consider a 6-dimensional nilmanifold

X = I'\G := (0% 12, 13, 24) .



3.2 Cohomology of D-complex manifolds 131

By K. Nomizu’s theorem [Nom54, Theorem 1], it is straightforward to compute
H(%R(X,R) — R<€14, 615, @237 626, 635, 625+€34> .

For every t € [0, 1], consider the left-invariant D-complex structure

1
—1
(1—t)%—¢2 2t(1—t)
K = i’
(A=t)24t2  ~— (A-0)2F12
1
-1

For 0 <t <1, one checks that
g};t = R{er, (1 —t)es+tes, e5) and g, = R (ea, tes — (1 —t) ey, eg) ;
therefore, it is straightforwardly checked that the integrability condition of K} is satisfied for every t € [0, 1].
[Case ¢t = 0] For ¢t = 0, the D-complex structure
Ko=(+-+—-+-)
is C*°-pure-and-full at the 2" stage: in fact,

Hip(X;R) = R(e', e®, ) @ R(e™, e, ® + ™) ;

= Hi o (XiR) = Hi (XiR)

therefore
dimg Hy"(X;R) = 3 and dim Hy (X;R) = 3.

[Case 0 <t < 1] For 0 <t < 1, one has
H?J(X;R) = R{(e", e'? ¥, e*)

and
Hf(:(X;]R) _ R(e“‘, 2, e25+634> :

it follows that the D-complex structure K, is neither C*°-pure at the 2"4 stage nor C>°-full at the 2" stage;

moreover,
dimp H3 (X;R) = 4 and dim H (X;R) = 3.

[Case t = 1] For t = 1, the D-complex structure
Ki=(+H-=++-)
is C*°-pure-and-full at the 2" stage: in fact,

Hip(X;R) = R{e™, e, e, %) @ R(e”, e + ™) ;

2 —
= Hy [ (XR) = H (XiR)

therefore
dimg Hy " (X;R) = 4 and dim Hy (X;R) = 2.

In particular, it follows that the functions
[0,1] >t~ dimg Hy! (X;R) €N and [0, 1] 5 ¢+ dimp Hy, (X;R) € N

are non-constant and lower-semi-continuous.

Example 3.49 and Example 3.52 show that the dimension of the D-complex anti-invariant subgroup of the de
Rham cohomology in general is not upper-semi-continuous (as it is in Example 3.49) or lower-semi-continuous
(as it is in Example 3.52) along curves of D-complex structures. We give now an example showing that also the
dimension of the D-complex invariant subgroup of the de Rham cohomology in general is not lower-semi-continuous
(as it is in Example 3.49 and in Example 3.52) along curves of D-complex structures, [AR12, Example 4.5].
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Example 3.53. A curve of D-complex structures on a 6-dimensional nilmanifold such that the dimensions of the
D-complez invariant and anti-invariant subgroups of the second de Rham cohomology group jump (upper-semi-
continuously) along the curve.

Consider a 6-dimensional nilmanifold

X = I\G = (0% 12, 13, 24) .
By K. Nomizu’s theorem [Nom54, Theorem 1], it is straightforward to compute
H2,(X;R) = R<614, 15 23 (2 o35 625+634> .

For every t € [0, 1], consider the G-left-invariant D-complex structure

1
-1
-1
Kt = 1

(1-t)2-+7 2t(1—t)

(1—¢)2+t2 (1—¢)2+¢2
2t(1—t) (1—t)2—¢2

(I—t)Z+t2  — (1—-t)2+t2

For 0 <t <1, one checks that
g}t = Rer, eq, (1 —t)es +tes) and gy, = Riez, ez, tes —(1—1)eq) -

Therefore one straightforwardly checks that, for every ¢t € [0, 1], the structure K, is integrable, in fact Abelian:
hence it is in particular C>-pure at the 2" stage by Corollary 3.43.

[Case t = 0] For t = 0, the D-complex structure
Ko=(+—-—-++-)
is C>°-pure-and-full at the 2"? stage, and

H(?R(X,R) _ R<614, 615, 623, 626> o) R<€35, 625 +€34>;

= Hf(;r(X;]R) = H;g(x;ﬂ@)

in particular,
dimp HyH(X;R) = 4 and dim H; (X;R) = 2.

[Case 0 <t < 1] For 0 <t < 1, one has
HiF(X;R) = R{e", e*)

and
Hi (X;R) = R{(te®® +(1—t)e* + (1 —t)e*) |

while
R<615, e, 626> N (Hf(j(X;R)GBHIQ(;(X;R)) = {0} ;

it follows that the D-complex structure K; is C>®-pure at the 2" stage and non-C*=-full at the 2" stage,
and that
dimp Hy (X;R) = 2 and dim H7 (X;R) = 1.

[Case t = 1] For t = 1, the D-complex structure
K= (H——+—-4) .
is C>°-pure at the 2" stage and non-C>-full at the 2"¢ stage, and

HgR(XJ:R) — R<€14, 623, 635> @ R<€15, 626> @R<€25+€34> ;

= Hf(f(x;R) = Hf(;(X;R)

where
R (e +e*) N (HEF(X;R) @ Hy (X;R)) = {0} ;

in particular,
dimg H7 " (X;R) = 3 and dim Hy (X;R) = 2.
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In particular, the functions
[0,1]> ¢~ dimp Hi(X;R) €N and  [0,1] 5t dimg H, (X;R) €N
are non-constant and upper-semi-continuous.
Example 3.52 and Example 3.53 yield the following result, [AR12, Proposition 4.6].

Proposition 3.54. Let X be a compact manifold and let {K,},.;cp be a curve of D-complex structures on X.
Then, in general, the functions B

I35t dimg HyF(X;R) €N and 1>t dimg Hy (X;R) €N

are not upper-semi-continuous or lower-semi-continuous.

3.3 Cohomology of strictly p-convex domains in R”

In Complex Analysis, properties concerning the existence of exhaustion functions with convexity properties may
have consequences on the vanishing of the cohomology. Indeed, recall, for example, that the Dolbeault cohomology
groups Hg’q(D) of a strictly pseudo-conver domain D in C™ (that is, a domain admitting a smooth proper strictly
pluri-sub-harmonic exhaustion function) vanish for ¢ > 1, for any p € N. In fact, the following result holds.

Theorem 3.55 ([Hor65, Theorem 2.2.4, Theorem 2.2.5], [H6r90, Theorem 4.2.2, Corollary 4.2.6]). Let D C C"
be a strictly pseudo-convex domain. Then, for any q > 0, every d-closed (p,q)-form n € L3 (X;AP9T*X)

(respectively, s AP4X ) is D-exact, namely, there exists a € L2, (X; /\p’q_lT*X) (respectively, a € AP471X)
such that n = Oa.

Generalizing the notion of strictly pseudo-convex domain, A. Andreotti and H. Grauert, [AG62], studied
q-complete domains in C™ (that is, domains in C" admitting a smooth proper exhaustion function whose Levi
form has at least n — g + 1 positive eigen-values), and provided an analogue of the L. Hormander theorem.

Theorem 3.56 ([AG62, Proposition 27|, [AV65a, Theorem 5]). Let D € C™ be a q-complete domain. Then
HgS(X) = {0}, for any r € N and for any s > q.

Recently, F. R. Harvey and H. B. Lawson, [HL12, HL11], and references therein, raised the interest on
generalizations of the concept of convexity for Riemannian manifolds, studying the existence of exhaustion
functions whose Hessian is positive definite or satisfies weaker positivity conditions; in this context, holomorphic
convexity and g-completeness motivate the notion of geometric convexity.

J.-P. Sha, [Sha86, Theorem 1], and H. Wu, [Wu87, Theorem 1], (see also [HL11, Proposition 5.7],) proved,
using Morse theory, that the existence of a smooth proper strictly p-pluri-sub-harmonic exhaustion function on a
domain in R™ has consequences on the homotopy type of the domain; hence, vanishing results for the de Rham
cohomology hold for strictly p-convex domains in R™ in the sense of F. R. Harvey and H. B. Lawson.

In this section, we re-prove, using different techniques, the vanishing result by J.-P. Sha, and H. Wu for the
de Rham cohomology of strictly p-convex domains in R™ in the sense of F. R. Harvey and H. B. Lawson; more
precisely, we use the L2-techniques developed by L. Hérmander, [Hér65], and used also by A. Andreotti and E.
Vesentini, [AV65a, AV65b] (see also [Ves67]); such L2-techniques could be hopefully applied in a wider context.

The results in this section have been obtained in a joint work with S. Calamai, [AC12].

3.3.1 The notion of p-convexity by F. R. Harvey and H. B. Lawson

In this section, following F. R. Harvey and H. B. Lawson, [HL11, HL12], we recall the basic notions and results
concerning p-convexity, starting from the definition of p-positive symmetric endomorphism, and then recalling the
notions of (strictly) p-pluri-sub-harmonic function and (strictly) p-convex domain.

Let V be an n-dimensional R-vector space endowed with an inner product (- | --).
Let G: V 5 V* denote the isomorphism induced by (- | --), defined as

G:V3vm—(w|) e V™.

One gets an isomorphism
G L:V*®@V* S Hom (V, V) ;
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this isomorphism sends the space of the symmetric elements of (V ® V)", namely,
Sym? (V) := {Ae(VeV) : Avew)=Aw®v), forany v,w eV} .

to the space of the (- | --)-symmetric endomorphisms of V.
Given A € V* ® V*, the endomorphism G~'A € Hom (V, V) extends to

DPL, | € Hom (APV, APV)

by setting, for any simple vector v;, A--- Av;, € APV,
p
DEL, (viy Ao Aw) =) on A At AGTEA(03,) Avigy Ao A, s
=1

note that D[g},l 4 € Hom (APV, APV) is a symmetric endomorphism with respect to the inner product on APV
induced by (- | --).
Note that, given A € Sym? (V'), if the set of the eigenvalues of G~'4 is
spec (GTTA) = {A\1, ..., A},

then the set of the eigenvalues of D[CZ;],] 4 18

spec(D[é’],lA) = {/\i1—|—~--—|—/\ip D1, 0p € {1,...,n} s.t. i1<~-~<ip} .

Finally, given a (- | --)-symmetric endomorphism F € Hom (V, V), let sgn (E) denote the number of non-
negative eigenvalues of E:
sgn (E) := card {\ € spec(E) : A >0} .
Note that, given two inner products on V inducing the isomorphisms Gy: V 5 V* and Go: V 5 V*
respectively, then there holds sgn (Gl_lA) = sgn (G2_1A), but, for p > 1, it might hold

sgn (Dg’]l_lA> % sgn (Dglle) .

As said, sgn (D[g],lA) counts the non-negative sums of p eigenvalues of G=1'A € Hom (V, V). As a natural
generalization of the notion of convexity, one is interested in studying symmetric endomorphisms having at least
a certain number of non-negative sums of p eigenvalues. (Compare also [HL12, Definition 2.1], concerning the

notion of positivity with respect to a sub-bundle of the Grassmannian bundle Gg (p, TX) over a Riemannian
manifold X.)

Definition 3.57 ([HL11, Definition 2.1, §3]).

o Let V be an n-dimensional R-vector space endowed with an inner product (- |--). For p € {1,...,n}, and
for k € {1, ceey (Z) }, define the space of p-positive forms of k™ branch on V as

PE (V, (- [)) = {A € Sym? (V) : sgn (D[C’;LA) > (Z) k+1} .

o Let X be an n-dimensional manifold endowed with a Riemannian metric g. For p € {1,...,n}, and for
k€ {1, cee (Z) }, define the space of p-positive sections of k" branch of the bundle Sym? (T'X) of symmetric
endomorphisms of T'X as

PE (X, g) = {A € Sym? (TX) : Va € X, 4, € P®) (T, X, gm)}.

In order to introduce exhaustion functions on a given Riemannian manifold, we focus on special p-positive
symmetric 2-forms: those arising from the Hessian of smooth functions.

Let (X, g) be a Riemannian manifold, and denote the Levi Civita connection associated to the Riemannian
metric g by VE¢. For every u € C* (X;R), let

Hessu € Sym?(TX)
be defined, for any VW € C>*(X;TX), as
Hessu (V,W) = VWu— (VﬁCW) u .
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Definition 3.58 ([HL11, Definition 2.2, §3]). Let X be an n-dimensional manifold endowed with a Riemannian
metric g. Fix pe€ {1,...,n}, and k € {1,..., (Z)}

e The space
PSH(Y (X, g) i= {ueC™(XR) : Hessue P (X, 9)} .

is called the space of p-pluri-sub-harmonic functions of k" branch on X.

e The space

int (PSH§,’“> (X, g)) = {uecoo (X;R) : Hessu € int (7?,5’“) (X, g))} :

(where int (7?15’“) (X, g)) denotes the interior of P,(,k) (X, g)) is called the space of strictly p-pluri-sub-harmonic

functions of k*" branch on X.

(Compare also [HL12, Definition 2.1] for the notion of (strictly) p-pluri-sub-harmonicity with respect to a
sub-bundle of the Grassmannian bundle Gg (p, TX) over a Riemannian manifold X.)

We can now define (strictly) p-convexity in terms of the p-convex hulls (and of the p-core).
Let X be an n-dimensional Riemannian manifold endowed with a Riemannian metric g, and fix p € {1,...,n}.
Let K C X be a subset of X; the p-conver hull of K, [HL11, Definition 4.1], is defined as

KPSH(X.9) {x €X : Voe PSH (X, g), ¢() < max QS(y)} .
ye
(Compare also [HL12, Definition 4.3] for the notion of convex hull with respect to a sub-bundle of the Grassmannian
bundle Gg (p, TX) over a Riemannian manifold X.)

Definition 3.59 ([HL11, Definition 4.3]). Let X be an n-dimensional Riemannian manifold endowed with a
Riemannian metric g, and fix p € {1,...,n}. One says that X is p-convez if, for any subset K C X that is

RKPSHV (X, 9)

relatively compact in X, then is relatively compact in X.

(Compare also [HL12, Definition 4.5] for the notion of convexity with respect to a sub-bundle of the Grass-
mannian bundle Gg (p, TX) over a Riemannian manifold X.)
Define the p-core of X, [HL11, Definition 5.3], as

Core, (X, g) := {x €X : forallue PSHI(}) (X, g), Hessu(z) & int (771()1) (T X, gm))} )

(Compare also [HL12, Definition 4.1] for the notion of core with respect to a sub-bundle of the Grassmannian
bundle Gg (p, TX) over a Riemannian manifold X.)

Definition 3.60 ([HL11, Definition 5.2, Theorem 5.4]). Let X be an n-dimensional Riemannian manifold
endowed with a Riemannian metric g, and fix p € {1,...,n}. One says that the manifold X is strictly p-convex
it (¢) Corep (X, g) = @, and (%) for any subset K C X that is relatively compact in X, then KPSHV(X,9) i
relatively compact in X.

(Compare also [HL12, Definition 4.9] for the notion of strictly convexity with respect to a sub-bundle of the
Grassmannian bundle Gg (p, TX) over a Riemannian manifold X.)

The relations between (strictly) p-convexity and the existence of smooth proper (strictly) p-pluri-sub-harmonic
exhaustion functions were proven by F. R. Harvey and H. B. Lawson in [HL11, HL12]. Namely, the following
result holds.

Theorem 3.61 ([HL11, Theorem 4.4, Theorem 5.4]). Let X be an n-dimensional Riemannian manifold endowed
with a Riemannian metric g, and fitp € {1,...,n}. Then X is p-convex (respectively, strictly p-convezx) if and

only if X admits a smooth proper exhaustion function u € PSHS) (X, g) (respectively, u € int (PSHS) (X, g)))

(Compare also [HL12, Theorem 4.4, Theorem 4.8] for the relations between (strictly) convexity and the
existence of smooth proper (strictly) pluri-sub-harmonic exhaustion functions with respect to a sub-bundle of the
Grassmannian bundle Gg (p, TX) over a Riemannian manifold X.)

(We recall that a function u: X — R, where X is a manifold, is said to be an ezhaustion if, for any ¢ € R, the
set u™t ((—o00, ¢)) ={x € X : u(z) < c} C X is relatively compact in X.)

The previous definitions are motivated by the classical notions of (strictly) (¢-)pseudo-convex functions, and
g-complete and pseudo-convex domains, in Complex Analysis.
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Definition 3.62 ([And63, §4], [AG62, §10]). Let D C C™ be a domain, and let ¢ be a smooth real-valued
function on D. The function ¢ is called g-pseudo-convex or g-pluri-sub-harmonic (respectively, strictly q-pseudo-
convez or strictly-q-pluri-sub-harmonic), if and only if, for any z € D, the Hermitian form L(¢), defined, for

£ = (fa)ae{L...,n} e C", as

n 82¢
0220z

a,b=1

L(¢): (§) = ()€,

has, at least, n — ¢ + 1 non-negative (respectively, positive) eigenvalues. When ¢ = 1, (strictly) 1-pseudo-convex
functions are called (strictly) pseudo-convex, or (strictly) pluri-sub-harmonic.

Definition 3.63 ([Rot55], [AG62, §16.c]). A domain D C C” is called g-complete if there exists a smooth
proper strictly g-pseudo-convex exhaustion function. When ¢ = 1, the 1-complete domains are called strictly
pseudo-conver.

A. Andreotti and H. Grauert, in [AG62], proved a vanishing theorem for the higher-degree Dolbeault cohomology
groups of g-complete domains; the same result was proven by A. Andreotti and E. Vesentini, in [AV65a], (see also
[Ves67, Theorem 4.2],) extending the L2-techniques by L. Hérmander, [H6r65]. More precisely, [AG62, Proposition
27], and [AV65a, Theorem 5], state that, given a g-complete domain D € C™, it holds Hgs(X) = {0}, for any
r € N and for any s > q.

3.3.2 Vanishing of the de Rham cohomology for strictly p-convex domains

In this section, motivated by A. Andreotti and H. Grauert’s vanishing result for the Dolbeault cohomology of
g-complete domains in C", [AG62], and by A. Andreotti and E. Vesentini’s proof using L2-techniques, [AV65a],
we consider domains X in R™ endowed with a proper exhaustion function v € C*°(X;R) whose Hessian is in

int (P;gl)(X , g)), re-proving, with L2-techniques, the vanishing result for the higher-degree de Rham cohomology

groups for strictly p-convex domains in the sense of F. R. Harvey and H. B. Lawson, Theorem 3.68, yet shown
by J.-P. Sha, [Sha86], and by H. Wu, [Wu87, Theorem 1], using Morse theory, as a consequence of results on
the homotopy type of X. Firstly, we recall some definitions and we set some notations; then, we prove some
preliminary lemmata and estimates; finally we prove Theorem 3.67, stating that, on a strictly p-convex domain in
R™, every d-closed k-form with k > p is d-exact.

Let X be an oriented Riemannian manifold of dimension n, and denote its Riemannian metric by g and its volume
by vol. The Riemannian metric g induces, for every € X, a point-wise inner product (- |--) 9o P NTEXXNTEX —
R.

Fix ¢ € C°(X;R) a continuous function. For every ¢, 1 € C° (X; A*T*X), let

(@ 10hig = [ tol),, exp(—¢) vol € R,

and, for k € N, define Li (X; /\kT*X) as the completion of the space C° (X; /\kT*X) of smooth k-forms with
compact support with respect to the metric induced by ||-||Li := (- [-)L2 . Therefore, the space L2 (X; A\"T*X)
)

is a Hilbert space, endowed with the inner product (- |-);2, and C&° (X; A*T*X) is dense in L} (X; AFT*X).
)
For any k € N, let L2 (X (ARFT*X ) denote the space of k-forms ¢ whose restriction | i to every compact set

loc

K C X belongs to L? (K; A\FT*K).

For every ¢1, ¢ € C°(X;R), the operator

. T2 YN Y atd 2 Ao+l
d: Ly, (X5A°T*X) --» Ly, (X,/\ T X)
is densely-defined and closed; denote by
A, 0 L3, (XGATTIT*X) -5 LY (X5 AT X)

its adjoint, which is a densely-defined closed operator, see, e.g., [dSSST06, Theorem 7.55].

Moreover, for a domain X in R"™, with set of coordinates {xl, cee x"}, fixed k € N, s € N, and ¢ € C* (X;R),

one can consider the Sobolev space WZ’Q (X; /\’“T*X), which is defined as the space of k-forms ¢ :=: Z|1|:k901 da!
such that 20 ""er ¢ Li (X; /\kT*X) for every multi-index (¢1,...,£,) € N satisfying ¢; +--- + ¢, < s and

1zl 9ln g
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for every strictly increasing multi-index I such that |I| = k. The space W} 3 (X NET* X ) is defined as the space
of k-forms ¢ whose restriction ¢|x to every compact set K C X belongs to W*2 (K, /\kT*K).

As a matter of notation, the symbol ZI =k denotes the sum over the strictly increasing multi-indices
I :=: (i1,...,i) € N¥ (that is, the multi-indices such that 0 < iy < --- < i},) of length k. We use {x ,xz"} as
a set of coordinates on R™, and, given a multi-index I :=: (41, .. zk) € N*, we shorten dz! := da™ /\ /\ dz'x.

) be the sign of the permutation ( j:l ) if I is a
2

Given I; and Is two multi-indices of length k, let sign ( ?
2

permutation of I, and zero otherwise.

Let X be a domain in R", that is, an open connected subset of R”, endowed with the metric and the volume
induced, respectively, by the Euclidean metric and the standard volume of R".

For ¢1, ¢2 € C* (X;R), consider d: L7 (X; ARTIT*X) -5 L2 (X; AFT*X). The following lemma gives an
explicit expression of the adjoint d, , : L3 (X;AFT*X) --» L3, (X; AFTIT*X), [AC12, Lemma 2.1] (compare
with, e.g., [dSSST06, §8.2.1], [Gun90, Lemma O.2] in the complex case).

Lemma 3.64. Let X be a domain in R™. Let ¢1, ¢2 € C* (X;R) and consider

d

- T T >
L2 (X;AFIT*X) L2 (X;AFT*X)

< — —

d;2,¢1
Let o
> wvrda’ € L, (X;AMTX)
|I|=Fk

and suppose that v € domdy, , . Then

g, v = exp(¢1) dg,o (exp (=o2) v)

— Z —exp (¢1) iZsign( E}] ) 9 (vrexp(=¢2)) e}g;g_%)) dz’ .

|J|=k—1 [I|=k £=1
Proof. By definition of dj, , , for every u € domd, one has (du |1}>L?52 =(u | dy, 4,V >L3>1' Hence, consider

wi= Y uyda’ € ¢ (X;AMITHX)
|J|=k—1

and compute

—~ n . KJ aUJ .
du = E E&gn(I)axédx.
|J]|=k—1 =1
[|=Fk

The statement follows by computing

(du |”>ij = /X Z Zagn( ) %v; exp (—¢2) vol

2
|J|=k—1 £=1
[I|=k

L () g

and
1), = [ 30 (@), w e (-60) vol,
|J|=k—1

—~—

—_ J
where dg, 4 v =37 551 (dZZ,m“)J da. :
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For any fixed ¢ € C* (X;R) and for any j € {1,...,n}, define the operator
§2:C (X;R) = C (X;R) |

where

0 Xp (— 0 9
) = —exp(p) JLERED) 00 OF

The following lemma states that (5? is the adjoint of % in Li (X; /\OT*X), and computes the commutator

between 6;5 and % , [AC12, Lemma 2.2] (compare with, e.g., [H6r90, pages 83-84]).

Lemma 3.65. Let X be a domain in R™. Let ¢ € C*° (X;R) and j € {1,...,n}, and consider the operator
§7:C% (X;R) — C® (X;R). Then:

o for every wi,ws € C° (X;R),

x Ox X

o forany k € {1,...,n}, the following commutation formula holds in End (C° (X;R)):

59 9 - _ ¢ .
77 Qxk OxI Oz
Proof. As regards the first item, one has
811}2 0
/X Wi ok P (=¢) vol = — /X W2 5% (w1 exp (—¢) ) vol

8d> 8’[1}1
= /Xw2~ (wlaa:’“ W) exp (—¢) vol

/ 5,’?(11}1) - wy exp (—¢) vol .
X

As regards the second item, one has, for every f € C* (X;R),

[5;5, aik} (f) = o (g;) ~ ()

LB NS

Oxi  Oxk  0ridzk Ok \9xi ' Oxd
_ 9 of _ _&f & . 06 Of = _&F
 9xd Ozk 0299xF Oxkox Oxi  Oxk  OxkdxI
0%
= oo
concluding the proof of the lemma. O

Finally, we prove the following estimate, [AC12, Proposition 2.3, Remark 2.4], which will be used in the proof
of Theorem 3.67 (we refer to [Hor90, §4.2], or, e.g., [Gun90, Lemma O.3] and [dSSST06, §8.3.1] for its complex
counterpart).

Proposition 3.66. Let X be a domain in R™ and ¢, ¢ € C*° (X;R). Consider

d d
- = - o _ =

- >
L2 _,, (X;AFIT7X) L2, (X;AFT*X) L2 (X; AMFIT*X)
< — — — < —-— - =

d<p_w,¢—2w d¢,¢—«/)
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—~

Then, for any n :=: lelzkm dz! e Cc® (X; /\kT*X), one has

~ v (0T 0%¢
/ Z Z 51gn< I >Slgn( I )Wmlnb exp (—¢) vol

X\ J|=k=1£1, £=1
|I1|=Fk
[I2|=k

< 06N o lad 0%¢ ~ |0 |’

A > e (G )t (5 ) gl o 2 3|3
[J|=k—141,£2=1 [I|=k ¢=1
|1 |=k
|| =k

-exp (—¢) vol
< /(/) 2
< O[5y e 2w77||L2 . +||d77||L2 + Z Z 52| [l exp(=¢) vol |,

X\ 11=k £=1
where C :=: C(k,n) € N is a constant depending just on k and n.

Proof. Tt is straightforward to compute

dn = Z Z&gn(e )%dxH

|I|l=k (=1
|H|=k+1
and, using Lemma 3.64,
* — . LJ on O(p—1p
Govomnn = —en(v) 3 S (( ) (22020 0w
|J|=k—1€=1
|T|=k
= exp(—v) Z Z&gn( I > <§j(m)_a;/’em> dz’
|J|=k—1£=1
|I|=k

For every J such that |J| = k — 1, the previous equality gives

Z Zﬁgn ( > 5¢ (nr) = exp(¢) (dg—w,w?w”)J +§Zsign ( E}] ) % s

[I|=k £=1 |I|=k £=1

. L . ;
where df_y, a1 =2 25121 (Qomy, g-2pm) ; d 27
By the inequality between the geometric mean and the arithmetic mean, one gets

2

/ Z Zblgn ( ) (nr)| exp(—¢) vol

|J|=k—1 ||I|=k £=1

2

/ Z (dZ;f’L/),(be’L/)n)J‘ exp (2¢) + Z ZSlgn( E}] > 61/’5 nr exp (—¢) vol

|J|=k—1 |I|=k £=1

<cC ||d37¢,¢72¢77”i2 /ZZ

|T|=k £=1

[mil* exp (—¢) vol | (3.3.1)

where C :=: C(k,n) € N depends on k and n only.



140 Cohomology of manifolds with special structures

Now, using Lemma 3.65, one computes

2

/ Z ZSIg“( ) (nr)| exp (—¢) vol

|J|=k—1||I|=k £=1

Z Z Z Sign( g}lj > sign( ) / 52 (n1,) nlz)exp (—¢) vol

|J|=k—1|I1|=k €1, £2=1
[12|=k

o, O, o2
/x (azéz aZZ * oeh gxfz " ’712) exp (=¢) vol . (3.3.2)

Now, note that

—~ |~ TN a
= Y sy ) o

|H|=k+1 ||I|=k £=1

B e~ —~— n sion 61.[1 sion 62.[2 87’}]1 87’]]2
B Z Z Z & H & H Ozt Ozl
|H|=k+1 \ |I1]|=k {1, {2=1
|I2|=k

_ /X\:_/ zn: sign v oy, On,
61y ) Ozt Oxte

[I2|=k
= w 87]1 2 — " . Klj . €2J 87]]1 677]
= dola| - 2o D sien no)serl ) gt et (3:3.3)
[I|=k £=1 |J|=k—141,£2=1
|I1|=k
|I2|=k

Hence, in view of (3.3.3), (3.3.2), (3.3.1), we get

A J 0
/ Z Z sign ( 1 ) sign < ; ) 8417;@2 N1, M1, €xp (—¢) vol
|J|=k—1£1, =1 h g o

|11 |=k
|I2|=k

—_— n ) £2J 82¢ — N 877] 2
< / Z Z 1gn( > 81gn< 12 > Wﬂh ni, + Z Z W exp (7¢) vol
X =k—101, lo= [I|=k t=1
hie
[12|=k
2
L X [ (Y ) w3 @k | e
X\ 11=k=1 |111=k e=1 \H|=kt1
oy |?
< C Hd¢ Y, - anH]} Caw +Hd77HL2 +/ Z Z Dl \771 exp (—¢) vol |

|I|=k £=1

concluding the proof. O
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Using the previous result, we prove here the following theorem, [AC12, Theorem 3.1].

Theorem 3.67. Let X be a strictly p-convex domain in R™, and fiz k € N such that k > p. Then, every d-closed
k-form n € A*X is d-ezact, namely, there exists & € NF1X such that n = d a.

Proof. Let us split the proof in the following steps.

Step 1 — Preliminary definitions. X being a strictly p-convex domain in R”, by F. R. Harvey and H. B. Lawson’s
[HL12, Theorem 4.8] (see also [HL11, Theorem 5.4]), there exists a smooth proper strictly p-pluri-sub-harmonic
exhaustion function

p € int (PSH;” (X, g)) NeC=(X;R) ,

where ¢ is the metric on X induced by the Euclidean metric on R™.
For every m € N, consider the compact set

KM = {zeX : p(x) <m},

and define

L™ = min A > 0,
K(m)

where, for every x € X, the real numbers /\[f] () <--- < /\[(k]

ng,]l Hess p(z) © Hom (/\]“TIX7 /\]“TIX)7 and A1 (z) < --- < A\, (x) are the ordered eigen-values of the endomorphism

g ' Hess p(x) € Hom (T, X, T, X); indeed, note that, for every x € X, since p is strictly p-pluri-sub-harmonic,

)(a:) are the ordered eigen-values of the endomorphism

A @)y = M@+ M) > M@+ + A(@) > 0,

and that the function X 3 x — A[lk] (z) € R is continuous.

Fix {p,},cn C C&° (X;R) such that (i) 0 < p, <1 for every v € N, and (i) for every compact set K C X,
there exists vg :=: vp(K) € N such that p, | k=1 for every v > vy.
Then, we can choose ¢ € C* (X;R) such that, for every v € N,

ldpu|? < exp(v) .

For every m € N, set

,y(m) = max (C . |d¢‘2 =+ exp (¢)) )
K(m)

where C' :=: C(n, k) is the constant in Proposition 3.66.
Fix x € C* (R;R) such that () x’ > 0, () x” > 0, and (74%) X'| (—oo, m]> %, for every m € N. Define

¢ = xop;

then, ¢ € int (PSHS) (X, g)) N C*® (X;R); furthermore

’o ey 00 0P &p
ortiorte X P ozt T apte T X OP T Grtipgt:

Choose p € C* (X;R) such that, for every m € N,

X' 0 plgom L™ > plgom > ™

Ak . 2 * 2 2 .
Step 2 — For every n € C° (X; A*T*X), it holds Hn”Li—w <C- (‘ d¢*¢’¢*2¢n“ﬂ;,w + ||d77L3)>. Since

] [N N e (BT o (T 0% A
‘Dg*1 Hessp Z Z S1g1 ( I > sign ( I FRGY € Hom (/\ TX, A TX) ,
|J|=k—101, €2=1 L
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then, by Step 1, one has the estimate

/i/ z": sign b7 sign baJ 82¢
I, 1o}

I 2l ggta T M
| T|=k—1£1, £2=1
|I1|=k
|I1]=k

= Z Z sign< E}J ) sign( toJ ) X" o '73;) 9p
1

I P oat gat T M0

|J|=k—141,€2=1

|I1|=k

|I1|=k

—_—— n

(TN T p

> s (3] ) s () o g
|J|=k—141,€2=1

|I1]|=k

|I1]|=k

—_~— n

62
+x op- Z Z sign(g}l‘])sign(&‘])a p

T V] 75 Ty 1y
|J|:k71€1,£2:1 2 z 161’ 2
[I1|=k
[I1|=k
> X op A Z I ?
=k

> M'/Z\:/|77I|2

[|=k

Hence, using Proposition 3.66, we get that, for every n € C° (X; AMT*X),

s, = [ ST Il e (- (6= ) vo

[1|=k

o |? )
< Z W . |77[| exp (7(725) vol
X |11=k 1

— n . 0 J . lyd 826
= —_—
</ zg( 7 Y () 22,

|1 |=k '

[I2|=k

-C- ZZ fw@ nt|* | exp (—¢) vol
|I|=k t=

IN

* 2 2
O (I umnanllyy + 1y )
where C :=: C'(k,n) € N is the constant in Proposition 3.66, depending just on k and n.
Step 3 — The space C® (X; /\kT*X) is dense in the space domdNdomdy_, s o, endowed with the norm
||'HL§HP + Hd‘ﬁ_w"ﬁ_zw'HLi,w + ||d-||L(2b. Consider

d d
- = - o =

- >
L2 ,, (X;AF1T7X) L2, (X;AFT*X) L2 (X; AMFITX)

< —

— — < —
de—yp, p—20

dé—yp, p—20
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Fixn e domdﬂdomd;@ﬂpﬂVw C Li_d) (X; /\kT*X).

Firstly, we prove that {p, 1}, ¢y C domdNdomd_,, 4 o, CLZ_, (X; AFT*X), where {p,},cy C C& (X;R)
has been defined in Step 1, is a sequence of functions having compact support and converging to 7 in the graph
norm ||||Lifw + Hd¢_w7¢_2w'HL§)_2w + Hd”Li Indeed,

A (pvm) = po dnf* exp (=) = [n|*-|dpu|* exp (—¢)
< nf* exp(=(¢—v) € L? (X5A"T7X)

hence, by the Lebesgue dominated convergence theorem, ||d (p, ) — p, d 7|2 — 0 as v — +oo. Furthermore, for
s
every v € N, note that p, n € domdg_, 4 o, indeed, the map

L3 o, (X;AFIT*X) D domd 3 urs (pyn |du).  €R
is continuous, being
(ponfdu)ps = (fdlppu))z  —0ldpy Az
. *
= <Pu Ay, p—29M |u>Li—2w —(n|dpy /\U>Liw )
hence, by the Riesz representation theorem, there exists
= dy_y 4oy (pun) € L3 oy (X; ANTITX)
such that, for every u € domd C Li_w (X; /\’“_1T*X)7 it holds

(pvm |du>L§>—w = (7 |u)ye

b—20
Finally, note that, for every u € domd C Li_w (X; /\k_lT*X),

(i, 2 (Po) = P d_y gopm [U) s

b—24 b—29

= ’<pun [dudpz | = (o o2 [ o)

= ’<7I |dpy /\U>L(2pw’

A

< Mills, Mo Aulys

hence, by the Lebesgue dominated convergence theorem, |‘d2_¢,¢_2w (pvm) — po d;_w,(b_anHLg — 0 as
d)_

24

v — +o0. This shows that p, n — n as v — +o0o with respect to the graph norm.
Hence, we may suppose that n € domdNdom d;_%(z)_zw - Liﬂb (X; /\kT*X) has compact support. Let
{®}ocry 0y € € (R™R) be a family of positive mollifiers, that is, for every € € R\ {0},

O, = 5_”<I>(é) e C* (R%R) ,

where (i) ® € C° (R™;R), (ii) [g. @ volgn = 1, (iii) lim._,o . = &, where § is the Dirac delta function, and
(iv) ® > 0. Consider the convolution

{n* P} g CCT (X; /\kT*X) ;
we prove that % &, — 1 as ¢ — 0 with respect to the graph norm. Clearly,
li —n*xd =0.
lim [l = Peflpz =0
Since d (n* ®.) = dn * $., one has that
lim [ld (7« ®2) —dnll, = 0.

Finally, write
v o2 = exp (=) (A5 o + Ap—y,6-24)
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where d;  is a differential operator with constant coefficients, and Ay, 42y is a differential operator of order
zero defined, for every v € L}, (X; A\MT*X), as

= . 0T\ 0(¢—1)
A¢'—1Z1,¢—21Z1 (1)) = Z ZSlgn ( I ) W .nd]}J :
|J|=k—1¢=1
|I|=Fk
hence
(d5,0 + Ap—p,p-20) @) = ((dg 0+ Ap—p, 9-2¢) () * P — (Ap—y, p—207) * Pe + Ap—y, 29 (1 % Bc)

= (d§0+ Agp—, 6—20) (1)
ase —0in Li—?«/) (X; /\k_lT*X); since 1 has compact support, it follows that
Ao, g—20p (1% ) = gy, 529 (1)

ase —0in Li_w (X; /\kilT*X), that is,

i {5y gy (1% @) =5y 50 ()], = 0.

e—0 b—29

2 % 2 2 . ks .
Step 4 - If”nHLi—w <C- <|’d¢w,¢2wnHLiw + ||d77|Li> holds for every C° (X; AFT* X)), then it holds for ev-
eryn € domdNdomdy_, 4 o, Let n € domdndomdy , , o, By Step 3, take {nj}jeN C C (X;AFT*X)
such that n; — 1 as j — 400 in the graph norm. Since, for every j € N, one has

2 2 2
otz < € (Iiwomaomlly ,, +lmils)
and since, for j — 400,
i =nlls =0, A5y pmzums — d;—¢;¢—2¢nHL§)_M -0, and ldm; —dnllp: =0,

we get that also

2 X 2 2
< . .
HUHL@W <C (| d¢7w,¢72w77HLiiw + ||d77||L§5)

Step 5 — Eristence of a solution in L3 (X; /\kT*X). We prove here that the operator

loc

d: LY 5 (X5ARTITX) -5 ker (d: L3y, (X5 ART*X) --» LY (X; AMTITH X))

is surjective, hence, for every n € ker (d: L, (X;APT*X) --» L7 (X; /\kHT*X)), the equation da = 7 has a
solution a in L, (X AT X)) CLE (X APTITX).

We recall, see, e.g., [Hor90, Lemma 4.1.1], that, given the Hilbert spaces (Hl, (-, >H1) and (Hg7 (-, ~-)H2),
and a densely-defined closed operator T': H; --+ Hs, whose adjoint is T*: Hy --» Hy, if FF C Hs is a closed

subspace such that imT" C F', then the following conditions are equivalent:
(4) imT = F;

(#) there exists C' > 0 such that, for every y € domT* N F,
9l < C- 1Tyl -

Hence, consider
d: L3, (X5ARTIT*X) > L3, (X5 APTHX)

and

Liﬂp (X;AFT*X) 2 F ker (d: Liﬂp (X5 AFT*X) —-s L2 (X AT X))

O im(d: LY o, (X;AFTITHX) - L2, (X APTHX))
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By Step 4, for every n € domdj_,, 4 5, N F CdomdNdomdj_, ,_,, it holds that

* 2
<C Hdmw,qbfzw"HL?k ;

917
o— 24

»

from which it follows that
Fo=im(d: L3, (X5AF1TX) -» L3, (X5APT7X)

Step 6 — Sobolev reqularity of the solutions with compact support. We prove that, for every o € L2 (X; /\k_lT*X)
with compact support, if da € L? (X; AFT*X) and dj go € L? (X; AF72T*X), then o € Wh? (X; AFTIT*X).
Indeed, take {®.},  a family of positive mollifiers and, for every € € R, consider o * ®. € CZ° (X; /\k_lT*X); by
Proposition 3.66 with ¢ := 0 and v := 0, we get that, for any multi-index I such that |I| = k — 1 and for any

te{l,...,n},
2

0 (ay x D) . ) ,
/ S| vol < O ([l o (ax @7 + ld (e B2
X
where C :=: C(k,n) is a constant depending just on k and n; since, for every multi-index I such that |I| =k — 1,

and for every ¢ € {1,...,n}, it holds that

lim/ 0 (ar *xD,) _%
D' 81‘6

e—0 61‘6

2
vol = lim [|d5 o (@ ®.) = d§ gl . = lim d (@ @) —dall. = 0,

/%
Xaxe

Step 7 — Regularization of the solution. By Step 5, if n € A*X is such that dn = 0, then the equation da = 7
has a solution a € L? (X; /\k_lT*X); we prove that actually o € AF~1X.

loc

Note that we may suppose that the solution a € L2 (X; /\k_lT*X) satisfies

loc

we get that
2

vol = O (|l pallf, + Idall?.)

proving the claim.

L2 Ak—1px T .
a € (kerd) (X TITTX) imdg o = imdy o € kerdg g ;

hence, « satisfies the system of differential equation

da = 7¢

dg’oa = O
We prove, by induction on s € N, that a € W;? (X; AP7IT*X) for every s € N. Indeed, we have by Step 5
that o € Wloc;g (X; AT X)) =12 (X; AP7IT*X). Suppose now that o € Wlsoi (X; AF=1T* X)) and prove that

a € Wfotl’Z (X; AFIT*X). Clearly, n € APX C Wﬁjf (X;A\FT*X) for every o € N. Take K a compact subset

of X, and choose ¥ € C° (X;R) such that suppx D K. For any multi-index L :=: ({1,...,¢,) € N” such that
by +---4+ ¥, = s, being

. X . X . 0°
d(x O‘) = dxA a + U € L? (K;\FT*K)

Tl gl Qlgn Dbl lngn X Plhigl .. glugn
and
[~ [oge G 0]\ Ox Oar J 2 k=2
G (g ) = = L s () S g de’ € L (KT K)
|J|=k—1£=1
|7|=F

we get that ¥ - %f% € Wh2 (K; AFIT*K), that is, a € W12 (K; AF7IT*K). Hence, we get that
a € Witl? (X; Ab1T7X).

Since W22 (X; AF=1T*X) < €™ (X; AF=1T*X) for every 0 < m < o — 2, see, e.g., [GT0L, Corollary 7.11],
we get that a € A¥~1 X, concluding the proof of the theorem. O

As a straightforward corollary, we get the following vanishing theorem for the higher-degree de Rham
cohomology groups of a strictly p-convex domain in R”, [AC12, Theorem 3.1]; for a different proof, involving
Morse theory, compare [Sha86, Theorem 1] by J.-P. Sha, and [Wu87, Theorem 1] by H. Wu, see also [HL11,
Proposition 5.7].

Theorem 3.68 ([AC12, Theorem 3.1], see [Sha86, Theorem 1], [Wu87, Theorem 1], [HL11, Proposition 5.7]).
Let X be a strictly p-convex domain in R™. Then H%L(X;R) = {0} for every k > p.
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