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Chapter 1

Introduction

Let X be a smooth, projective, absolutely irreducible curve over
the finite field IF; and let K be the function field of X. For any
integer n > 0 let a,, denote the number of places of K of de-
gree n. Then N, = Zd‘n dag 1s the number of rational points over
the constant field extension KTFn. The Weil inequality (see [16])
states that

N, — ¢" — 1] < 2g¢"?,

where g is the genus of the curve. A search for curves with many
points, motivated by applications in coding theory, showed that
this bound is optimal when the genus ¢ is small compared to ¢
(see [6] for further details). When ¢ is large compared to ¢ sharper

estimates hold (see for example [10] for an asymptotic result or
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also [15] Chapter V). A similar problem arises from finding curves

without points of degree n when n is a positive integer. In partic-

qg"—1
2qn/2 .

ular when X has no points over Fy» then g > The genus 2
case was already considered in [11]. Moreover in a recent paper,
E. Howe, K. Lauter and J. Top [9] show that the previous bound
is not always sharp when n = 1 and g = 3 or 4. In the same
paper they cite an unpublished result of P. Clark and N. Elkies
that states that for every fixed prime p there is a constant C,, > 0
such that for any integer n > 0, there is a projective curve over
[F,, of genus g < Cynp" without places of degree smaller than n.

In this paper we prove that this bound is not optimal. In fact

we prove the following result.

Theorem 1.1. For any prime p there is a constant C,, > 0 such
that for any n > 0 and for any power g of p there is a projective
curve over I, of genus g < C),¢" without points of degree strictly

smaller than n.

We show the existence of such curves by means of class field
theory. The basic facts and definitions about this topic are showed
in the third Chapter. In the second Chapter we give the basic

definitions and results about the arithmetic of function fields. In



CHAPTER 1. INTRODUCTION 3

the forth Chapter we generalize a result in [1]| about the number
of ray class field extensions with given conductor m and we use
it in order to prove the bound of Clark and Elkies. In the last
Chapter the sharper estimate of Theorem 1.1 is proved. A table

of examples for ¢ = 2 and n < 20 is also given.



Chapter 2
Background and notation

By a curve over I, we mean a smooth, projective, geometrically
irreducible curve over the finite field IF, of characteristic p. Let X
be such curve and let K be the associated function field. The field
K is a finite extension of F,(x) where x is a transcendental element
over F, (see [15] Appendix B for more details). The constant field
of K is the maximal finite extension of I, in K.

Let Y be a curve with associated function field L. A morphism
f:Y — X is a covering of X if it is surjective and separable (see
|15] Appendix A). A covering is abelian if the associated exten-
sion L/K is Galois with abelian Galois group. The degree of the
extension is called the degree of the covering.

A place of K is a maximal ideal P in some discrete valuation
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ring Op C K (i.e. a principal domain in K with exactly one non-
zero maximal ideal). The degree of a place is the degree of the
residue field Fp = Op/P.

To every place is associated a discrete valuation that is denoted
by vp (see [15] Chapter I). Let L/K be an extension of K and
let @ (resp. P) be a place of L (resp. K). We write QP and
we say () lies over P if Q N K = P. The valuation vp can be
extended in a unique way to a discrete valuation vg over ). Then
the two valuation are related as follows: there is a positive inte-
ger e(Q|P) > 0 such that vg(z) = e(Q|P)vp(z) for all z € K.
A place @ over P is unramified if e(Q|P) = 1. Otherwise it is
ramified. A ramified place Q|P is wild if ple(Q|P) and is tame
otherwise. A place P of K is unramified in L/K if all the places
() over P are unramified, otherwise it is ramified. The extension
L/K is unramified if all the places of K are unramified, other-
wise it is ramified. Let f(Q|P) denote the degree [F¢o : Fp] of
the field extension F/Fp, then we have the well-known formula

ZQ|P f(QIP)e(Q|P) = [L : K]. If L/K is a Galois extension

then f(Q|P) = f(Q'|P) and e(Q|P) = e(Q'|P) for any place @
and Q' in L over P so we get the simpler formula ref = n, where

n is the degree [L : K|, the integer e is e(Q|P), the integer f is
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f(Q|P) and r is the number of places @ of L over P. In the sequel
we say that a place P is totally inert if f = n, is totally split if
r = n and is totally ramified is e = n. Similarly P is partially
inert if f > 1, is partially split if » > 1 and is partially ramified if
e> 1.

The next Lemma, is an elementary tool when we want to com-

pute the ramification index in the compositum of two function

fields.

Lemma 2.1 (Abhyankar’s Lemma). Let K’/K be a finite sep-
arable extension of function fields such that K’ = K;K> is the
compositum of two function fields K7 and Ky with K C K; and
K C K. Let P’ be a place of K" and let P = P' N K and
P, = P' N K; be the places under P’ in K and K; for i = 1,2.
If at least one of the extensions Pj|P or P|P is tame, then

e(P'|P) = lem{e(P|P),e(P|P)}.

It follows from the previous Lemma that the compositum of
two unramified extensions is still unramified.

A divisor Y, npP is a finite formal sum of places. A divisor is
effective if np > 0 for every place P. There is a partial ordering

relation D < D' whenever D' = )" n/, P has coefficients np < n/p
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for every place P. The degree of D is the integer ), npdeg(P).
The support Supp(D) of D is the set of places P such that np # 0.
We refer to [15] for the definition of the divisor Dif f(L/K).

This notion is important because of the following Lemma.

Lemma 2.2 (Hurwitz Genus Formula). Let K be a function field
of genus gx with constant field F, and let L/K be a finite sep-
arable extension with constant field F,«. Then the genus of L is

given by

L: K]
d

29, 2= L 8 o0 oy LaegDifp/R)). (2)

We need only the following result for computing the degree of

the different.

Lemma 2.3 (Dedekind’s Different Theorem). Let

Dif f(L/K)=> ) d(P'|P)P'

P PP

be the different of L/K, where P ranges over the places of K
and P’ over the places of L. Then d(P'|P) > e(P'|P) — 1 and

equality holds if and only if the place P’|P is not wild ramified.
In particular d(P’|P) = 0 if and only if P’|P is unramified.

The set of the places of K is denoted by Pg and the set of

divisors of K is denoted by Dg. The degree zero divisors are
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denoted by DY%. We can associate to every element z € K its
principal divisor (z) € D%. The set of principal divisors is denoted
by Prin(K). It is a well-known fact that the order of the quotient
group DY/ Prin(K), denoted by hp, is finite and it is called the
divisor class number of K (see |15], Chapter V).

Let L/K be a finite Galois extension.

Definition 2.1. Let () be a place of L and P = Q N K the place
of K under (). The decomposition group of ) is the stabilizer of
Qin L

D(Q|P) = {o € Gal(L/K)| 0(Q) = Q}.
The fixed field of D(Q|P) in L is called the decomposition field
of Q.

Let 0 € Gal(L/K). We define an isomorphism

7:00/Q — Oy)/0(Q)

by

5z) =0o(2), z€ 0o,

where Z € Fg = Og/Q is the residue class of z in Fy and

0(z) € Fyq) is the residue class in F, ). When o € D(Q|P),

the image @ belongs to the subgroup Gal(Fqy/Fp).
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Proposition 2.1. Let () be a place of L and let P = QN K. The

following sequence is exact

1 — I(Q|P) — D(Q|P) — Gal(Fo/Fp) — 1,

where I(Q|P) is the kernel of the map o — @ restricted to D(Q|P).

Moreover |D(Q|P)| = e(Q|P)f(Q|P) and [[(Q|P)| = e(Q|P).

Definition 2.2. The group I(Q|P) of Proposition 2.1 is the in-

ertia group of Q.

If QP is unramified then I(Q|P) = {1} and D(Q|P) is a
cyclic group isomorphic to Gal(Fg/Fp). In particular there is a
generator ® € D(Q|P) such that the image ® in Gal(Fg/Fp) is

the Frobenius morphism z — 2" for z € Fg, where u = qdeg(P)

is the cardinality of Fp. This element ® € D(Q|P) is called the
Frobenius automorphism Frob(Q|P) of Q.

Let Q'|P be a place of L over P distinct from . Then
Q' = o(Q) for at least one ¢ € Gal(L/K) and so I(Q'|P) =
oI(Q|P)o~tand D(Q'|P) = o D(Q|P)o~!. Moreover Frob(Q'|P)
oFrob(Q|P)o~!. 1In particular when Gal(L/K) is an abelian
group we get I(Q|P) = I(Q'|P) and similarly D(Q|P) = D(Q'|P)
and Frob(Q|P) = Frob(Q'|P) so we can define without ambigu-

ity the Frobenius automorphism and the decomposition group at
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P as Frob(P) = Frob(Q|P) and D(P) = D(Q|P) respectively.

Proposition 2.2. Let L/K be an abelian extension and M be a
subfield of L containing K. For any place P of K we denote by
Frob(P) the Frobenius automorphism in Gal(L/K). Then P is
totally split in M /K if and only if Frob(P) € Gal(L/M).

The following Lemma (see [12]|, Theorem 1) is an explicit ver-

sion of the well-known Chebotarev Theorem (see [5] Chapter 2).

Lemma 2.4. |Explicit version of the Chebotarev Theorem| Let
C' C G be a conjugacy class in the Galois Group G = Gal(Ms/My)
of a finite extension Ms/M;y. Assume that the constant field of
My and M, are the same. Let wo(d) be the number of places P
over M of degree d such that the coniugacy class [Frob(P)] is C
and let 7(d) is the number of unramified places P of M; of degree
d. Let e (d) = 32, grme(r) and ¢(d) = 32, rm(r). Then ¢e(d)
is bounded by

C C
() % ()] < 29M%qd/2 + deg(D),

where D is the divisor given by the formal sum of all the ramified

places of M;.

Proof. Let x : G — C* be a class function of G. For any un-

ramified place P of M; and for any integer n > 0 we define
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X(P") = x([Frob(P)]") as the evaluation by x of the n-power of
the conjugacy class of the Frobenius automorphism of P. When

P is ramified we define

X(P") =

> xlwa(P)]").

wel(P'|P)
where P’ is a place of M5 over P and o(P’) is an element of the de-
composition group D(P’| P) such that its image @ in Gal(Fp [/ Fp),
as in Proposition 2.1, is the Frobenius morphism. It is easy to see
that x(P") is well-defined. We say that y is averaged over the
ramified places. We define

I SR

rld deg(P)=r
where P runs over the places of Mj.

We denote by G the set of irreducible characters of G and by
Gr(t) = [T (@ -

PePy,
the zeta function of M; for + = 1,2. By the Riemann hypothesis
for curves the polynomial (/. (¢)(1 —1)(1 — qt) of degree 2g,;. (see

|15] Chapter V) is equal to

gi

H(1 — a; ;1) (1 — @ ;t)

j=1
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for suitable algebraic integers «y; ; such that |o; ;| = /g, where g;
is the genus of M;.
For a given a character y € G we define the L-function L(¢, x)

as 1 when ¢t = 0 and

d r— 1
dthg Z¢x )t

when [t| < %. This series is absolutely convergent for |t| < é

so L(t,x) admit an analytic continuation to the whole complex
plane.

It is easy to see that (yy, (t) = L(t, x0), where xg is the trivial
character, as one can easily verify by using the Taylor series for

the logarithm of (37, (¢). In a similar way we can verify the relation

d
d—logCM2 Z log L(t, x)* ()

e

It follows that

) =Gn) T Lt

XEG, x#x0
When x € G is not the trivial character, the L-function L(t, x)
is a polynomial (see [16]). By the Riemann hypothesis, this poly-
nomial can be written as H]Z:l(l — Bpt) with |8 = /q for

h=1,...,k and the degree k of L(t, x) is bounded by k < 2gyy,.
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It follows that

%) k

R0 0) = Yo = 30D

r=1 i=1

and so
[y ()] < deg(L(t, x))Vq" < 290,V 7"

By the orthogonality relations for irreducible characters

RCIPWRLENDWRUCE Gl

xe@ deg(P [Frob(P)|=C
where P runs over the unramified places of M; and Cg(C) is the

centralizer of C' in .

Similarly, when P is a ramified place, the sum } & x(C)x(P)

is bounded by % so we can estimate

G vl < 1Y Y XOwPl+ Y

X#Xxo0 PZSupp(D) PGSupp(D)

G
< SV (deg(Lit )+ Y :C:
x#1 PeSupp(D
., 1

+ 5101,
€

< 29w,

and the Lemma follows. ]
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Class field theory

3.1 Main definitions

In this section we introduce the Artin map and the ray class group.
The explicit construction of ray class fields by means of Carlitz

modules and Drinfeld modules will be showed in the next sections.

Definition 3.1. Let ) be a place of L lying over the place P of
K. We define, for every integer n > —1, the n-th ramification

group G, (Q|P) as
Gn(Q|P) ={o € Gal(L/K)| vg(o(x)—x) > n+1 for all z € Og}.

It follows by the definition that G_1(Q|P) = D(Q|P) and

Go(QIP) = 1(Q|P).
When Q' = o(Q) for a certain o € Gal(L/K) then G, (Q'|P) =

14
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0G,(Q|P)o~! for all n > —1. It follows that, when L/K is an
abelian extension, the group G, (Q|P) coincide with G,,(Q'| P) for
every place Q)" over P and for every n > —1. In this case we can
also denote G,,(Q|P) by G,(P).

We can extend the previous definition to any real number
u > —1 by

Gu.(Q|P) = Gy (Q|P),

where [u] is the integral part of u. Let g; = |G;(Q|P)| be the
order of the group G;(Q|P) for i > —1. We define a real function
¢ :[—1,400) = [—1,400) such that ¢(u) = u for =1 < u <0
and

1
P(u) = %(91 + g2+ F g+ (u— [u])gp41),

for u > 0. It is very easy to see that the function ¢ is continuous,
strictly increasing, piecewise linear and concave on [—1, +00). We
denote by 9 the inverse function. Then v is continuous, piecewise

linear, strictly increasing and convex on [—1, +00).

Lemma 3.1. The real number ¢(n) is an integer for any integer

n > —1.

Proof. The Lemma is trivial for n = —1 and n = 0. For n > 0 let
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u be the real number ¥ (n). Then

god(u) = gon = go + .- - + g + (u — [u])gpj+1,

by definition of ¢. It follows that

1
Jlu]+1

But Gp41(Q|P) is a subgroup of G;(Q|P) for i < [u]41 so u—[u]

u— [u] = (gon —go — - — gu))-

is an integer by the Lagrange Theorem, so w is an integer. ]
A partial converse of the previous Lemma is the following.

Proposition 3.1 (Hasse-Arf Theorem). Let n > —1 be an inte-

ger. Assume G, (Q|P) # G,+1(Q|P). Then ¢(n) is an integer.

Definition 3.2. We define the upper ramificaton group G*(Q|P) =

The completion of K with respect to the valuation vp is unique
and we denote it by Kp. The corresponding valuation is also
denoted by vp. In the sequel Up denotes the unit elements in
Op. We denote by Op and Up the valuation ring of Kp and
the group of units of Op, respectively. It is easy to check that

Op = {x € Kp| vp(x) > 0}. The n-th unit group is defined as

U = {z € Up| vp(x — 1) > n},
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when n > 0 and U](DO) = Up.
Assume now M is a complete field with respect to the valua-

tion v. Let L/M be a finite abelian extension. There is a map
Ojar - M™ — Gal(L/M),
called the local Artin reciprocity map, that satisfies:
1. Ker(0rm) = Nrju(L*), where Ny, /5y is the norm map;
2. if L/M is unramified then 0y ,,/(z) = Frob(P)"® for all
xr e M,

3. the image of U](\;), the n-th unit group of M, is the upper

ramification group G"(L/M) for all n > 0.

We are going to define a global Artin map of a function fields
extension L/K in terms of the local Artin map QEQ/XP’ where P

runs over the places of K and @ is a place of L over P.
Definition 3.3. The adele ring of K is the set

Ag ={(zp)p,zp € KP\ xp € Op for all but finitely many places}.
Where P runs over the set Pk of places of K.

The field K is canonically embedded in the adele ring Ag via

the diagonal morphism.
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Definition 3.4. The unit group Jx of Ag
Jix = {(xzp)p| xp € Up for all but finitely many places}.
is called the idele group of K.

The idele group Jx is a topological group. A base for the
topology is given by the neighborhoods of the unity

H[A(;XHUP,

Pes P¢S

where S is a finite set of Pg.

The multiplicative group K* is canonically embedded in J.

Definition 3.5. The quotient group Cx = Ji/K* is the idele

class group of K.

The class group is a topological group with respect to the quo-
tient topology.

Let L/K a finite abelian extension of K. We define the global
Artin reciprocity map 0r/x : Jx — Gal(L/K) as the product of
the local Artin reciprocity QEQ Jip where P runs over the places
of K and @ is a place of L over P. The map 0rx is well-defined
because Gal(Lo/Kp) = D(Q|P) = D(P) (see [13] Chapter 2)

and so 9%/}?]) does not depend on the choice of Q.
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The multiplicative group K™ is contained in the kernel of 0,k

so we can define an homomorphism
(wL/K):Cg — Gal(L/K)

induced by the global Artin reciprocity. We call (-, L/K) the
norm residue symbol of L/K. We describe the kernel of this
homomorphism.

The norm map N : L* — K* can be extended to a mor-
phism

NJL/JK Jp — Ji

such that the idele (2g)qgep, is sent to ([[gp Nr/x (7)) Pepy-
Let NE = (K*Ny, 7, (J1))/K* C Ckg. Then NE is a finite

index subgroup of Ck.

Theorem 3.1 (Artin Reciprocity). For any finite abelian exten-
sion L/K there is a canonical isomorphism Cg /NE = Gal(L/K)
induced by the norm residue symbol.

For any open subgroup M of C'k of finite index there is a finite
abelian extension L/K such that N2 = M.

Moreover L; C Ly if and only if ./\/[]}2 C ./\/}?1.

In the sequel we use ray class fields for constructing curves.

Let S be a finite non-empty set of places and let m = > npP be
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an effective divisor of the function field K with support disjoint
from S. The S-congruence subgroup modulo m is the subgroup

o= &5 = [] 00"

PesS PgS

Definition 3.6. A ray class group is a subgroup C¢ of Ck of the
form
C5 = (K" J§)/K*

where Jg is a S-congruence subgroup modulo m.

The index of CF in Cf is finite (see [13] Chapter 2 Section 4).
We denote by K¢ the function field associated to the subgroup
C¢ by the previous theorem.

The conductor of an abelian extension L/K is the divisor

ZCPP’

P

where P runs over the ramified places of K and cp is the least
integer u such that the upper ramification group G*(L¢/Kp) is

trivial for any Q|P (see |13] Chapter 2 Section 3).

Theorem 3.2 (Conductor Theorem). The function field K¢ is
the largest abelian extension of K with conductor f such that

f < m and such that every place of S splits completely.
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We end this section with a very useful tool that we will use in

the sequel.

Definition 3.7. Let K be a complete field according to the valu-
ation v and let g(z) = Z?:o giz' be a polynomial in K with d > 1
such that gy # 0 and g4 # 0. The Newton polygon of ¢ is the
lower convex hull in R x R of the points (i,v(g;)) forall 0 <i < d

with g; # 0.

The following Lemma shows that Newton polygons are useful
for computing the roots of irreducible polynomials in algebraic
extensions. We will use it in order to compute the ramification

index of a place P.

Lemma 3.2. Let K be a complete field according to the valuation
v. Let g(2) be a polynomial in K and let I C RxR be the segment

of the Newton polygon of ¢ joining (i,v(g;)) and (j,v(g;)) with

1 < j. Let m = v=vl) 1o the slope of I and assume that the

—v
i—j

slopes in the intervals [i — 1,4] and [j, 7 + 1] are different from m.

Then there are exactly ¢t = j—i distinct roots av, . . ., ay of g(z) in
K with vp(aq) = -+ = vp(ay) = —m, where L is the splitting
field of aq, ..., a; and vy, is the unique extension of v to L.

Moreover the polynomial h(z) = []i_,(z — o) is a polynomial



CHAPTER 3. CLASS FIELD THEORY 22
in K[z| and h(2)|g(z).

We are going to see the case K = F,(z) in more details in the

next section.

3.2 Carlitz modules

In the sequel we denote by R the polynomial ring IF,[z] contained
in the rational function field K and by K% an algebraic closure
of K.

Let o € Endp, (K) the endomorphism a(y) = y? + zy, for
y € K. We define the ring endomorphism ¢ : R — Endy, (K)
by

for y € K. In this way K% is an R-module and the action of

feRIis

for y € K. In the sequel, when there is no ambiguity, we denote

the action ¢(f)(y) simply by 3/.

The following properties are obvious

Lemma 3.3. Let y and 2z be elements in K%. For any a € F,

and f, g € R we have:
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L. y" = ay;
2. yIt =yl 4y,
3. (y/)! =y
4. (y+2) =y +27.

When f € R and n is an integer, we define the polynomial

[f,n] by the following properties
L. [f,n]=0if f=0o0rifn<0orn>deg(f);
2. [f.0] = f;
3. [z9, n] = z[z?, n] + [2%,n — 1]%
4. laf+bg,n| = a[f,n]+blg,n], for any a, b € F, and f, g € R.

The proof of the following Lemma, follows directly from the prop-

erties of [f,n].

Lemma 3.4. Let f € R be a polynomial of degree n > 0. Then
[f, 1] is well-defined for any integer i. Moreover deg([f,i]) = (d —

i)q' for 0 < i < d and

for all y € K.
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Definition 3.8. Let f be a non-zero polynomial in R. The subset
Ay ={y € K*|y/ =0} of K% is a Carlitz module. The splitting
field K(Ay) is called the cyclotomic function field over K with

modulus f.

The set Ay is an R-submodule of K. The derivative of the
polynomial y/ with respect to y is f by the previous Lemma so the
extension K(Ay)/K is finite and separable. Moreover K (Af)/K
is a Galois extension because the action of 0 € Gal(K*/K) on y

commutes with the action of f.

Lemma 3.5. Let f € R be an irreducible monic polynomial and

n > 0 be an integer. Then Ay is a cyclic R-module isomorphic

to R/(f").

Proof. Betore we assume n = 1. Let d be the degree of f. Then Ay
has exactly ¢? elements in K. Moreover Ay is a R/(f) module,
but R/(f) is a finite field with ¢? elements so Ay = R/(f) is a
cyclic R-module.

Now assume the result holds for n — 1. Consider Ap =
R/(f™1). Then A1 is a cyclic module generated by A. We get
a morphism B : A — Apr by B(y) = y/. Then the kernel

of B is Ay. There is an element z € K“ such that 2 =\ so
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z € A and f8 is surjective. Moreover 2 € Ag-1. We show that
z generates Ay, Let y € Apn. Then y/ = M\ for a suitable g € R
because y/ € Api-1. So yf = (2/)9 = (29)/ and y — 29 € A;. But
Ay is generated by 2" soy— 29 = (/" )" for a suitable h € R.
It follows that y = 29 + """ = 29th"" and = generates Agn.
Finally the morphism g — 29 is clearly an R-module isomorphism

between R/(f") and Ajgn. O
We have a similar result for f reducible.

Lemma 3.6. Let f, g € R two monic polynomials and let h =

ged(f, g) the greatest common divisor. Then Ay N A, = Ay,

Proof. 1t follows from the properties stated in Lemma 3.3 and

from the Bézout identity for the greatest common divisor. ]

Corollary 3.1. Let f and g be two monic coprime polynomials

in R. Then Ay, = Ay + Ay

Proof. Of course Ay + A, C Ay, But |Agy| = glea(F)+degly) —
|Af+ Ay| because Ay N Ay, = Ay = {0} by the previous Lemma

so the inclusion is an equality. ]

Corollary 3.2. Let f € R be a non-zero monic polynomial. Then

Ay is a cyclic module isomorphic to R/(f).
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Proof. Write the factorization of f in irreducible polynomials f =
Hle fi'. Then Ay = Apn + ...+ Af:k by the previous Corol-
lary. But Agn is a cyclic R-module generated by, say, A; for

i=1,2,...,ks0 A=A + ...+ \; is a generator of Ay. ]

Now we can compute the Galois group of the extension K (Af)/K.
Let f = Hle 1" the factorization in irreducibles of a monic poly-
nomial f € R and let U(f) = (R/(f))* be the group of units in
R/(f). Then U(f) is a multiplicative group. Its order u(f) is

deg —deg fz

::]»

z:l

Lemma 3.7. Let f € R be a monic irreducible polynomial and
n > 0 be a positive integer. Then the degree [K (Asn) @ K] is equal
to u(f") and the Galois group Gal(K (As»)/K) is isomorphic to
U(f™). Moreover the positive part (f), € Dy of the principal

divisor (f)
(f)+ = (f) + deg(f) P,

where P, is the infinite place, is totally ramified in K(Asm)/K

and all the other finite places are unramified.

Proof. Let A be a generator of Ag.. We show that A9 is an other

generator of A if and only if ged(f, g) = 1.
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When ged(f,g) # 1 then f|g so A € A1 s0 g is not a
generator of An.
When ged(f,g) = 1 then af + bg = 1 for suitable a and b in
R. So A=\ = (M) and M is a generator.
n

It follows that A9 is a root of the polynomial ¢(z) = Zjn—_l in

K%[z]. But
deg(c(2)) = glesf™) — qdeg(f"‘l) _ qdeg(f”)(l _ q—deg(f)) = u(f")
SO

c(z) = H (z—)\N) (3.1)
and

f

/. c(0) = (-1)"" T » (3.2)

/ geu(f™)
Let () be a place of K(As») over the place P of K correspond-

ing to the irreducible polynomial f and let e = e(Q|P) be the
ramification degree of the P in K(As)/K. Then e = vg(f) =
> geu(r) V() = u(f") because M" =0 and so vg()\) > 1 and
vo(N9) > 1 for any g € U(f). It follows that e > u(f). But
e <[K(Apm): K| <deg(c) =u(f) so the equality holds.

The morphism from Gal(K (A )/ K) to the set of generators of
An which sends 0 € Gal(K (A )/ K) to o(A) is injective, because

A is a generator of As», and surjective because a polynomial h
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determines an automorphism o(z) = 2" in Gal(K(As)/K) if

and only if h € U(f"). So
Gal(K (M) /) = U(f).

Finally let g be an irreducible prime polynomial in R prime to
f. Let S be a place of K(As) over the place of K corresponding
to (g). We show that vg(A) > 0. In fact if vg(A) < O then, by
Lemma 3.4,

vs(N") = s (M) <0,

because vg([f",i]) =0 fori =0,...,deg(f"). But A" = 0 so we
get a contradiction. In a similar way we get that vg(A*) > 0 for
any h € R.

We apply the Lemma 3.4 to the relation ¢(2)z" = 2/ and
we get ¢(2)2f" 4+ ¢(2) f~' = . 1t follows that

N =

and so the valuation vg(¢/(\)) = vs(f")—vs(A") = —ug(A") <
0. But vg(c/(A)) > 0 because vg(\) > 0 so the equality follows.

It follows from [4], Chapter I, Section 4, that the place S is not

ramified. O

Lemma 3.8. Let f and g two monic coprime polynomials in R.

Then K (Ay,) is the compositum field K (Ay)K(Ay).
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Proof. 1t follows from Corollary 3.1 and 3.2. ]
Corollary 3.3. Let f € R be a monic polynomial.

1. The degree [K(Ay) : K] is equal to u(f) and

Gal(K(Ay)/K) = (R/(f)"

2. Let ¢ € R be an irreducible monic polynomial and let P
the finite place corresponding to g. Then P is unramified in
K(Ay)/K if g does not divide f. In this case the Frobenius
morphism Frob(P) € Gal(K(Ay)/K) satisfies

Frob(P)(\) = M,

where A is a generator of Ay as R-module. The inertia degree

of P in K(Ay)/K is the multiplicative order of the image of

gin R/(f).

3. It g € R is an irreducible monic polynomial that divides f
then the corresponding place P is ramified in K(Ay)/K and
the ramification degree is equal to u(g") where ¢g" is the max-
imum power of g such that ¢” divides f. The inertia degree
of the place P in K(Ay)/K is equal to the multiplicative

order of the image of ¢ in the quotient group R/(gin)
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Proof. The first part follows from the last two Lemmas.

For the second part, we know by definition that Frob(P)(\) =
2“7 mod Q, where Q is a place of K (Ay) over the place P.
In particular A9 = Frob(P)(A) mod @ by Lemma 3.4 and by
property 3 of [g,i]. By Lemma 3.7 we know that Frob(P)(z) = 2"
for a suitable polynomial h € U(f). We have to show that \* = )\
mod ) implies h = g. But this follows from the equation (3.1),
in fact if we take the derivative of both sides then

Z H z— )
YER/(f) t#t'
and valuating ¢’ in z = A\ we get

f= 11 »=x)#o,

teR/(f)t#9

where g is the image of g in R/(f). Then

g If

implies that
AN #£ XN mod Q

whenever t Z g in R/(f). So

Frob(P)(z) = 27
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and the inertia degree is the order of the Frobenius automorphism
in Gal(K(Af)/K). By Lemma 3.7 the order of Frob(P) is the
order of g in R/(f).

Finally if f = ¢"¢' and ged(g,¢’) = 1, then P is totally rami-
fied in K (Ayn)/K and unramified in K'(A,)/K. The result follows

from part 2 and from the previous Lemma. ]

A different result holds for the infinite place P..

Proposition 3.2. Let f € R be a monic irreducible polynomial
of degree d. Then the place Py is partially ramified in K (Ay)/K.

The inertia group I(Ps) has order e(Pyx) = ¢ — 1 and there are

d

qq:ll places over Py, s0 f(Py) =1 and I(Py) = D(Px)-

Proof. Let @) be a place of K(Ay) over the place P. Let A be a
generator of Ay and let L be the completion of K(Af) over the
place Q. Let Q" be the place of L over ). Let ¢(z) be the minimal
polynomial of A in K. Then e(Q'|Px) = e(Q|Px) = e(Px)
because the extension is Galois and

_ a_
c(z) =co+ 2+ gt

with ¢; € R and deg(c;) = (d —i)¢’ for i = 0,...,d by Lemma

3.4. So the Newton polygon over L has vertexes

(¢ = Lvg(e) = (¢" = 1, —(d — i)q'e(Px)),
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fore = 0,1,...,d. We apply the Lemma 3.2 to the segment [
connecting (0, —de(Py)) and (¢ — 1, —(d — 1)ge(Px)) so there

are exactly ¢ — 1 roots ay,..., 041 € L% of ¢(z) of valuation
e(POO)Q(dq__#. But ¢(d—1)—d=d—1—d= -1 mod ¢g—1 so
q — 1]e(Px).

Let F' be the completion of K respect to the valuation vp_. We
apply Lemma 3.2 to the polynomial ¢(z) over the field F. The
polynomial h(z) = [[%,(z — a;) belongs to F[z] and h(z)|c(z).
But the extension F//K is Galois so ¢(z) splits in factors of degree
g — 1 and there are at least L— places in K(Ay) over Py,. It

follows that e(Pxx) = ¢ — 1. [

Corollary 3.4. Let f € R be a monic irreducible polynomial
and let n > 0 be a positive integer. Then the place P, is par-

tially ramified in K(As)/K. The inertia group I(Px) has order

u(f")

=) places over Py, so f(Py) =1

e(Px) = ¢ — 1 and there are
and I(Py) = D(Px). In particular the constant field of K(Am)

is .
Proof. Similar to Corollary 3.3. ]

From now on, given a monic polynomial f € R, we con-

sider the subfield K(Af)/F>) fixed by I(Ps), where I(Py) is
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the inertia group of Py. By the previous Corollary, the extension

K (A7) =) /K is a Galois extension of degree “L unramified out-
/ q—1

side the finite places dividing f, such that the infinite place P, is
completely split. In other words K (A;)/(F>) is the ray class field
K;OO, where f € Dy is the positive part (f)+ = (f) + deg(f) Px

of the principal divisor (f).

Example 3.1. Let g =2 and f = 23 + 2 + 1. Then

y =A@yt @ P+ D)+ (P a4 1)y
Let z € K% be a non-zero element in A¢. So

@ttt )+ @ D+ (a4 1) =0,

Then K(Ay) = Klfjoo = F,(z, ) and the function field extension
K};OO/K has degree u(f) = 2%(1 — §) = 7. By the Hurwitz genus

formula (2.1), the genus of KIJ;OO is

1
g=1—ulf) + gdeg()u(f) —1) =3
because the place f is totally ramified and the ramification is tame.

A similar construction holds when P is not the infinite place.
We will see in a later section that we can get finitely many different

field extensions (see Theorem 4.1).
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When K is not the rational function field, the previous con-

struction can be generalized by means of the Drinfeld modules.

3.3 Drinfeld modules

In this section we generalize the previous results in order to con-
struct a ray class field of an arbitrary function field K. For the
proofs we refer to [8].

Let K be a function field over F, and let be P be a place
of K. We assume that P is a rational place, otherwise we can
extend the constant field. Let H/K be the maximal unramified
extension of K such that the place P is completely split and let
7w : H — H be the Frobenius automorphism of H and let H|[r]
the left twisted polynomial ring with coefficients in H and with
multiplication given by the rule 7y = y7 for all y € H, where p
is the characteristic of F,. For any polynomial f(7) € H[n] we
denote by D(f) the constant term f(0) € H. We denote by R

the ring
R={y € K|vg(y) >0, for any place Q # P}.

Definition 3.9. A Drinfeld module of rank 1 is a ring morphism
¢ : R — H|[r| such that:
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1. the image of ¢ contains at least one non-constant polynomial;
2. D(¢(y)) =y for all y € R;

3. the degree of the polynomial ¢(y) is —log,(q)vp(y) for any

y € R.

It follows from the definition that a Carlitz module is a partic-
ular Drinfeld module with K = H = F,(x) and ¢(y) = 1y + xy.

As in the previous section we denote by H* the algebraic clo-
sure of H. Then H® is a H|r]-module with action induced by
my = yP for y € H*. We can give to H* an R-module structure
by the map ¢.

Let ¢ : H* — F, a group homomorphism such that 1 is the

identity on F and

where UI(Dl) is the 1-st unit group in P.

Definition 3.10. Let ¢ be a Drinfeld module and let M be an
ideal of R. We define the M-torsion module

Ay ={y € H*| o(M)(y) = 0}.

As in previous section the module Aj; is a finite R-module

isomorphic to R/M. The corresponding function field extension
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H(Ay)/H has degree [H(Ayy) : Hl = [(R/M)*| (see |8] or |13],
Chapter 3, for more details). It turn out that H(Ay)/K is a

finite extension of degree h(g%9™) — 1), where h is the degree of
[H : K| and deg(M) is the sum

3" vp(M)deg(P)

P|M
over the prime ideal dividing M. The places of K not divid-
ing M and different from P are unramified. Let [ = I(P) C
Gal(H(Ayr)/K) be the inertia group of P. Then I has exactly

q — 1 elements and the subfield fixed by I is a finite extension of

deg(M) -1
q—1

K of degree h< unramified outside the places dividing M
and such that P is totally split.
The following Theorem resumes all the previous results (see [2]

Chapter 2, Section 5).

Theorem 3.3. Let K be a function field over the constant field
IF, of genus gx and let hg be the divisor class number of K. Let S
be a place of degree d and m = Zle m; P; be an effective divisor
of K where P; are distinct places of degree n; for ¢ = 1, ..., k such
that S ¢ Supp(m) and & > 0 is a non negative integer (we set

m = 0 when & = 0). Then the ray class field K¢ is a function
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field over F . The degree [K§ : K] is equal to

mi—l)ni

k
(¢ — 1)¢'
dh
K 11 P

if £ > 0 and dhg otherwise. The genus ggw of K is given by
grp = 1+ hi(gx — 1), (3-3)

if deg(m) <1,

hi(q" —1)(gx — 1) N hxn(q" — q)g"mY
q—1 2(¢ — 1) ’

if k=1, the degree of P is n and m = mP with deg(m) > 1,

(3.4)

gz =1+

hig [1i(¢" — 1) deg(P;)q™i 1
20g — 1) (291(—2+d€9(m)—2 pr— ),
(3.5)

grr = 1+

1

otherwise.



Chapter 4

Ray class fields

In the sequel K is a function field with constant field .

It is a well-known fact that the maximal unramified abelian
extension of K is infinite because it contains all the possible con-
stant field extension. From now on we consider only unramified
abelian extensions of K with constant field IF,. Let h = hg be the
divisor class number of K. Then A is the degree of every maximal
unramified abelian extension of K with constant field IF,. There
are exactly h such extensions of K (see [1], Chapter 8). We denote
them by KY, ... ,K,?.

In this section we prove a similar result concerning also ramified

extensions and point out some consequences.

Theorem 4.1. Let m = 22:1 m;P; be an effective divisor and

38
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let n; be the degree of P, for2=1,...,t. Weset m=0if ¢t = 0.
Let d = qh_—Kl [T, (¢ — 1)g™ =Y if t > 0 and d = hy otherwise.
Then there are exactly d abelian extensions of K of degree d with

conductor m and constant field IF,.

As before we denote such extensions by Ki",..., KJ. There
is no conflict with the previous notation because the result con-
cerning unramified extensions can be seen as a special case of the

previous Theorem.

Proof. In order to apply the Artin reciprocity Theorem 3.1 we
construct suitable subgroups of the Class group Ck.

Let Uy be the subset of Jx given by
Uy = {(zp)pep,. € Ji|zp € Up for all places P € Px}
and let Uy, be the subset of Uj given by
Un ={(zp)pep, € Uplzp =1 mod t]" foralli=1,... t},

where t; is an uniformizer at P; for : = 1,...,t. As before we set
Un = Uy if m = 0. The field K* is canonically embedded in Jg.
We denote it again with K*. Let Cy, = Un/(K* N Uy) be the

classes of Uy in Ck.
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Let Dy be the subgroup of C'k of classes of ideles x = (2p) pepy
such that the divisor

Div(x) = Z vp(xp)P

PePg

has degree 0. It follows from the definition of idele that Div(z) is
a finite sum for all non zero x € Jg and Dy is well-defined because
the principal divisors have degree 0. Moreover Uy C Dy.

The following sequence is exact (see [1], Chapter 8):
0—=Dy—Cxg—7Z—0, (4.1)

where the map Cx — 7Z is the degree of the divisor and it is
surjective by the Schmidt Theorem (see [15], Chapter V). Let
D be a divisor of degree 1. It is very easy to construct a class
x € Ji such that Div(z) = D. Let [x] € Ck be the class of x in
Ck. The subgroup generated by Cy, U [z] in Ck has finite index
¢ =1|Dy/Cunl| = ;L__K1H§:1(qni — 1)gm=mif ¢ > 0 and ¢ = hy if
t = 0. In particular ¢ = d. Let aq, ..., aq be the representatives of
the cosets of G in Dy/Cy,. Then the subgroups B; of Cx generated
by Cy U ([z] + a;) are d distinct subgroups of Ck of index d such
that the image onto Z in (4.1) is surjective.

Let KT, ..., K7' be the function fields corresponding to the

subgroups By, ..., By by the Artin map. By Theorem 3.1 they
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are abelian extensions of K of degree d. The constant field is [,
by Theorem 3.1 because B; contains the element [x] 4 a; of degree
1 forz =1,...,d and so it is not contained in the norm group
N, ;I;qu for any 5 > 1. Moreover they are unramified outside m by
Theorem 3.2.

We show that K7, ..., KT' are all the abelian extensions of K
satisfying the hypothesis of the Theorem. Let L/K be an other
such extension and let G be the Galois group of L/K. Let M be
the norm group NE. By Theorem 3.1 G is isomorphic to C /M
and M is a subgroup of Ck of index d containing Cy, such that
there is an idele y € Jg such that the class [y] is in M and
deg(Div(y)) = 1. Then D — Div(y) has degree 0 and so [z] — [y]
belongs to one coset a; + Cy, for a suitable ¢ € {1,2,...,d}. But
M' = Cy U ly] is a subgroup of M N B; and the index of M’ in
Crxisdso M =M = B; and L = K" O

Remark 4.1. The proof of the previous Theorem shows that the
extensions KT, K3',..., KJ' of K are all contained in the constant
field extension of degree d of any one of them, say K{'F. In
fact the compositum of function fields K" K" corresponds to the

intersections B; ; = B; N B; in Ck by the Artin reciprocity map
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for 4,5 € {1,...,d}. The image of the valuation of B, ; by the
degree map in (4.1) is a subgroup of Z of finite index d'|d. In

particular K"K = K'F o

Remark 4.2. When the quotient group Dy/Cl, is cyclic we can
say something more about the subextensions of K" containing K
for e = 1,...,d. In fact let [ be a divisor of d. Then there is
only one subgroup G of Dy/Cy, of index [. Let gy, ..., g; be the
cosets representatives of G in Dy/Cy,. We denote by F; the fields
corresponding by the Artin reciprocity map to the subgroups G; of
Ck generated by GU([x]+g;) fori = 1,... 1. The field extensions
F;/ K are all the abelian extensions of degree [ unramified outside

m with constant field F, fori =1,...,1.

Corollary 4.1. Let m be an effective divisor and d a positive
integer as in the previous Theorem. Let P be a place of K of
degree d', let | = ged(d, d’) be a positive integer and P;|P be a
place of K™ over P for i € {1,...,d}. If Dy/Cy is a cyclic group

then f(P;|P) =1 in at most [ such extensions K"/ K.

Proof. Assume that the place P is totally split in K*/K for at
least one ¢ < d, otherwise the proof would be trivial. Then P

is split in KJ'/K for j # i if and only if P is totally split in
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the compositum K"KT'/K. But K'K!'/K = K'F./K for a
suitable integer a|d by the previous Remark. By the properties of
the constant field extensions this is possible only when a|d’ and
50 a|l and so KJ' C K['F .

It follows from the proof of the previous Theorem that - ([z] +
a;) € Bj and so [ - (a; — aj) € Cy and the class of [ - a; in the
quotient group Dy/Cy, is the class of [ - a;. It is very easy to see
that when Dy/Cy, is a cyclic group generated by ¢ the only classes
a; such that the class of [ - a; is the same class of [ - a; are the
classes of the elements a; + tTd -g fort =0,...,1 —1 so there
are at most [ such classes a; € Dy/Cy and there are at most [

corresponding fields extensions by the previous Theorem. ]

Remark 4.3. When D, /C}, is not a cyclic group the Theorem
does not hold. As an example consider m be a sum of two places
of degree m of the rational function field IF,(z). Then a place P of

degree d' with q;n%ll\d’ can be split in all the d extensions K"/ K

(qm-1)?

where d =
q—1

The previous Corollary can be generalized in the following re-

sult.

Corollary 4.2. Assume the quotient group Dy/Cl, be cyclic as in
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Corollary 4.1 and let s be a prime dividing d and let ¢ the maximal
power of s dividing d. Let F;/K be the extensions of degree t for
¢t =1,...,tas in the Remark 4.2. Let P be a place of K of degree
d" and P;|P be a place of F; over P. Let [ be the ged(d',t) and
let ¢ > 0 be the exponent such that % = s¢ Assume ¢ > 1. Then
for each positive integer j < ¢, the integer s/ divides f(P;|P)in at

least [(s¢ — s/71) such extensions Fj/K.

Proof. Let j' denote the number s/t and Ey/K, ..., E;/K
be the extensions of K unramified outside m of degree 5’ over K
by Corollary 4.1. If s/ Jf(P;|P) for a certain i € {1,...,t} then
the Frobenius Frob(P) of P in F;/K has order dividing s’~1. Let
E; /K be the only subfield of F; of degree j" over K and let P} be
the place under P; in Ey. Then Frob(P)) = Frob(P;)’~' =1 so
f(P)|P) = 1. By Corollary 4.1 there are at most [ such extensions
FE;/K such that f(P/|P) = 1, say, E1/K, ..., E;/K. There are
exactly s/71 extensions F;/K over each Ey so s/ [f(P;|P) in at

most /s~ extensions F;/K and the Corollary follows. O
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4.1 An other proof of the Clark Elkies bound

When K is the rational field F,(z), we get as a Corollary a result
similar to the one of Clark and Elkies cited in [9].

In what follows we denote by a4 the number of places of F,(z)

d n__
of degree d. Of course we have ), ag <1+, ;4 < qq_ll

but this bound is too rough.

Lemma 4.1. The number of places of F,(x) of degree strictly

smaller than n is at most ¢ - % when n > 1.

Proof. We prove it by induction over n. When n = 1 the result is

trivial. When n = 2 we have

1 2

and the result holds for every ¢ > 2. When n = 3 there are

¢ —q_¢+q+2

= 1
a + as Q'+ + 9 9

3

q

< qg.=
1 3

places of degree smaller than 3 and the result still holds when
q=2.

Suppose that >, aq <q- %, then

n n n
Yw<e T+ =grnL <q
n n n
d<n+1

when n > 3. H
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Corollary 4.3. For any finite field IF, there is a positive integer

no such that, for any n > ny, there is a projective curve over F,

(n—2)q"
2(g—-1)

of genus g < without points of degree strictly smaller than

n.

Proof. Let m be a finite place of K = F,(z) of degree n > 1
corresponding to the polynomial f € F,[x] and let d = %. The
quotient group Dy/Cy, is isomorphic to F,[z]*/(f) (see also [14],
Chapter 1). In particular Dy/Cy, is a cyclic group. By Remark
4.2 there are d distinct totally ramified subextensions K" of K of
degree d with constant field F, for ¢ =1,...,d.

We count the number of ray class field extensions K"/ K with
at least one partially split place P of degree deg(P) < n and
f(P|P) < Zeg() Where P is a place of K" over P.

Let ¢ be a positive integer smaller than n such that ¢|d. Let P
be a place of K of degree d’ < n and let | = ged(¢,d’). By Corol-
lary 4.1 there are at most [ extensions K*/K for i = 1,...,d
such that P is totally split in a subextension of degree ¢ and so
f(P|P) < 4. We sum the number of all these possible subexten-
sions with (potentially) at least one place of degree smaller than

g-q"*

n for all P of degree d’ and t dividing d. There are at most T
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n

7 80 there is at least one K" without

places of degree smaller than

place of degree smaller than n whenever
[n/t]
> D eed(td)ay <d (4.2

tlk, t<n d'=1

But the last formula holds when n is large because the left hand

side in (4.2) is smaller than

n/t
IRRE
t|k, t<n n/
¢ ¢ ~, ¢4
t <
n i tz_; n/t —
e n/2
q-q q
2q(n — 2)——
where the last inequality follows from
n/t n/2
‘. q <2. q
n/t n/2

whenever ¢ > 2 and n is large. In particular we get

n/t
vy n_1q
SN ged(d, hag < Ty aq g2 < -~ =d
tk, t<n d'=1 n -

when n is large.
The divisor class number of the rational function field is hg =
1, by the Hurwitz genus formula (2.1), so the genus g of K may

be computed by the formula (3.4)
¢"=1 n(@"—q9 ng"—-2¢"-ng+2q (n—2)¢"

I T o) T 20D 21
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The result now follows. ]

Remark 4.4. It is very easy to estimate the integer ng. In fact
one can prove that ng = [6log,(9/4)] < 14 is a possible value of

ny.
Example 4.1. Let ¢ = 2 and n = 2. Let m be the place
m= (2" +2+1)

of K = Fy(x). There are 7 distinct, totally ramified at m, subex-
tensions K"/ K of degree 7 with constant field Fy. These fields, up
to the order, satisfy Kj* C K§ where S; = {(2)}, S> = {(z+1)},
Sy ={(@* +x+ 1)}, Si={(a" +x+1)}, S5 = {(a* +2° + 1)},
Se = {(z*+2*+2?+2+1)} and S7; = {(1)} is the infinite place.

The reader can easily check that all the places of degree prime
to 7 split exactly in one of the extensions K" given above, see also
the following Example. We have already seen in the Example 3.1
that the genus of K" is 3forv=1,...,7.

In this manner we obtain three distinct curves (corresponding
to the function fields KJ', K and K{') of genus 3 without points
of degree 1 or 2. These examples of curves without points of

degree 1 or 2 are the one with the smallest genus.
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Example 4.2. In the previous Example we check that the place
P = (24 2%+ 1) is split in KI'/K. Let z € K& C J be the
element

(23 + 22 +1)?

(2242 +1)3°

By the local Artin map z corresponds to

z =

Frob(P)""¥) = Frob(P)? € D(P) C Gal(KY/K)

because P is unramified in K§'/K. By Proposition 2.2 it is enough
to see that Frob(P) is the trivial automorphism but z is in the
kernel of the Artin map via the embedding [A(I*D C Jgk because
z=1 mod 2® + x + 1 so [z], the class of z in Ck, belongs to

g, as in Definition 3.6. So the Frobenius automorphism at P is

trivial. The result follows from Proposition 2.2.

Example 4.3. Let ¢ = 2 and n = 4. Let m be the place (z* +
x+1) of K = Fy(x). A similar argument as in Example 4.1 above
shows that the ray class field of conductor m with constant field
[Fy such that the place P = (27 4+ 2* 4 1) splits completely gives a
function field of genus 14 without points of degree smaller than n.
This is not the best possible, in fact the subextension F' C K of
degree 5 over K has the same property but the genus is 4. This

is the best possible example when n = 3 and ¢ = 2.



Chapter 5

A refinement of the Clark-Elkies
bound

We can improve the result of Corollary 4.3 for large n by consid-
ering Carlitz modules with conductor given by a sum of different
places.

In the sequel we assume that K = F,(z) is the rational function
field over IF,. As in the previous section the number of places of
degree t of K is denoted by a; for any integer ¢ > 0.

The next Lemma shows that there are many function fields
without places of small degree when we consider the compositum

of several ray class field extension of K.

Lemma 5.1. Let C; > 0 and C5 > 0 be two positive constants
(not depending on n) with Cy < 1. Let m > log,(n) be a prime

20
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number and let a < a,, be a positive integer. Let qi,...,q, be

distinct places of K of degree m and m = Y ¢ q;. Let d =

(q”;:ll)("' Let KT',..., K} be the abelian extensions of degree d
unramified outside m as in Theorem 4.1.
Then there is a constant ny such that when n > ng and o >
C’lﬁ then there are at least Cd function field extensions K"
q
of K such that the inertia index f(P;|P) is greater than T (D)
n

whenever P is a place of K of degree deg(P) < oz and P is a

place of K" over P.
In the proof we use an elementary and well known Lemma.

Lemma 5.2. Let s and m be odd prime numbers and let ¢ be a
prime power such that s % but s f¢g — 1. Then s = 2am + 1

for a suitable integer @ > 0. In particular s > 2m.

Corollary 5.1. There is a constant ¢, > 0 such that when m > ¢,
is a prime then there are at most m distinct primes dividing qq"i_—11

and these primes are all greater than 2m.

Proof of Lemma 5.1. Let i € {1,...,d} such that K*/K is a

function field extension with f(P;|P) < #(P) for at least one

place P of K of degree smaller than ﬁ As in the proof of

Corollary 4.3 we estimate the number of such extensions.
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Let k& be the integer qqm_—_ll and let ¢t be a prime power dividing
k. Consider the subextensions of K’ C K™ totally ramified in g;
of degree t for j € {1,...,a}. Let P be an unramified place of
K of degree d' < —"— and let P, be the place of K under P,

log,(n)
with P, ;|P. Of course f(F;;|P)|f(F|P).

Assume that f(F;;|P) < % for a certain j € {1,...,a}. Let
[ = ged(t,d). Tt is easy to see, multiplying all the maximal prime
power t dividing k, that if for every prime power divisor ¢ of k£ the

number ; divides f(P; ;| P) for at least one j < o then
k| f (P P) ged(k, d')

and so
J(PIP) = 7.
because k > n and d' > ged(k, d').

It follows that there is at least one prime power ¢ dividing k
such that * /f(P,;|P) for all j = {1,...,a}. For this reason,
given a prime power t dividing k, it will be enough to estimate
only the number of extensions K/K such that ¢ [f(P,;|P) for
every j =1,...,qa.

Let t be a prime power of the prime s. The extensions Kiqj/K

are cyclic for j € {1,..., a}. By Corollary 4.2 there are at most £
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distinct extensions Kiqj /K of degree t totally ramified in q; such
that | Jf(P,|P).

It follows that there are at most

()’

S

extensions K™/K such that ¢ ff(P;|P) when P is unramified.
Now we consider the case P = q, for a certain h € {1,..., a},

is a ramified place. We consider m’ = m — P. For a similar

reasoning as above we get at most

()"

extensions K}“/ for j € {1,.. .,(qmq_flia_l} such that f(P}|P) <
#(P), where Pj’ is a place of K}“l over P. But K}“l C K™ for
q™ — 1 suitable i € {1,...,d} and f(Pj|P) < f(F|P) so there

are at most

a—1
(q - 1) ga—1
extensions K"/ K of K with f(F;|P) < 75 when P € Supp(m)

is ramified.
Now we sum the number of all such extensions for all the places

P of K, ramified or not, of degree smaller than ﬁ and for all
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prime s|k. So we prove the following inequality:

ZZ ka:1+ > Z—<1—02)k:, (5.1)

slk =1 deg(P)<iozoy slk

log

where P runs over the unramified places of K of degree smaller

than The left hand side in (5.1) is bounded by

lo gq( n)’
e
Toag (™) A
— (5.2)
s|l<: s|k

So we prove that

¢—1 eyl
O‘Zsa_l lgq<>zs_a<1—02. (5.3)

slk s|k

By Corollary 5.1 there are at most m distinct prime numbers s
dividing k£ and all such s are greater than 2m by Lemma 5.2 when
m is large so the left hand side in (5.3) is smaller than 1 — Cj

whenever

1 — Oy,

moa-———— + mgq's™

(2m)o1

or, equivalently,

1
@m)* =

(2m)* > (2ma + g®),

m
1 -y

or also

n m
alog,(2m) > log,(¢"%™ 4 2ma) + logq(l_—CQ).
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It is very easy to check the last inequality in fact the right hand

side 1s smaller than

m
—— +log, (2 log, (———

because the logarithm is a convex function and

alog,(2m) > + log, (2ma) + log,(

_n_ m
log,(n) 1—Cs

when n is large because o > C’lm by hypothesis.
This ends the proof because d > k®. ]
The proof of the following Lemma follows directly by the Hur-

witz genus formula (2.1). It is a generalization of (3.5).

Lemma 5.3. Let K = F,(z) and let qq, ..., q; be distinct places
of K of degree tq,...,t, respectively. Let py,...,pr be positive
integers such that pi\% fori=1,...,h. Let F;/K be ray class
field extensions of degree p; totally ramified in q; fore =1,..., h.
Then the genus gy, of the compositum field L = F} - - - F}, is smaller
than

gL, <

N | —

h h
2t
=1 j=1
Proposition 5.1. Let m and [ be distinct prime numbers with [

and m greater than 3log,(n) and let o and 8 be positive integers
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with o < a,, and § < a;. Let C; > 0 be a real constant and
let Cy > 0 be a real constant with Cy < 1 as in Proposition 5.1.
Let qi1,...,q4 (vesp. p1,...,ps) be distinct places of K of degree

m (resp. [) with a > Clm. Let m be the effective divisor
q

l

Do i + Z?Zl p;. Let ky and Ky be the integers % and 4=

qg—1
(¢"=1)*(¢'=1)"
q—1

. Assume that k; and ko are

respectively and d =
both prime to g — 1.

Then there is an integer ng such that when n > ny and

C - q"
g5 L1
2 n

there is a function field extension K"/ K for a certaini € {1,...,d}

without places of degree smaller than n.

Proof. We may assume that [ and m are smaller than —"— oth-

log,(n)

erwise the proof is more easy. By Lemma 5.1 there are at least
Cod function field extensions K*/K for i = 1,...,d such that

deg(P)f(P;)|P) > n whenever deg(P) < wemy and P is a place

over P. In one of these field extensions K" of K there is a place
of degree smaller than n only if there is a place P of K of degree
d < n with d > logZ(n) such that P is totally split in K.’ /K
for all j € {1,...,a} and in KI"/K for all h € {1,...,3} by

Lemma 5.2 where Kiqj and K| are the ray class fields of K with



CHAPTER 5. A REFINEMENT OF THE CLARK-ELKIES BOUND 57

conductor q; and py, respectively, contained in K". We are going
to estimate the number of such function field extensions K"/ K.
The rest of the proof is similar to the proof of Corollary 4.3.

For a fixed j < a we consider K" /K fori € {1,...,k}. There
are at most d; = ged(d', k1) function field extensions K’ /K such
that P is totally split by Corollary 4.1. Similarly for a fixed h < 8
there are at most dy = ged(d', k2) function field extensions K"/ K
with ¢ € {1,... ko} such that P is totally split. We denote by d”
the greatest common divisor ged(q — 1,d'). It follows that there
are at most dff‘dgd”aw*l extensions K*/K with ¢ € {1,...,d}
such that P is totally split.

Let Ag, a4, be the number of places of K of degree d’ totally
split in all the subextensions of degree did” (resp. dod”) of the
ray class fields K’ for i € {1,...,k;} and j € {1,...,a} (resp.
KM forie{1,...,ky} and h € {1,...,8}). Then

7

q gr d' /2
2
d’d‘f‘dgd"ﬁﬁ_l + dclydgd//mrﬁ—l 1

Ag dyar <

+ deg(m)

by Lemma 2.4 and so

q?

d/d?dgd//oﬁﬂfl

Ay dyar < + (qd//2 + 1)(ma +15)

by Lemma 5.3.
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By the previous Proposition there are at least Cyd distinct
extensions K/ K such that f(Q|P)deg(P) > n when deg(P) <

but there are at most
logq( n)

n—1

Z Ady i dyd" 7

/__n
Togg(n)

extensions K/K with at least one totally split place of degree

—log”(n) < d" < n by Lemma 4.1. In particular this number is
q

smaller than

-1
Z Lt "+ Dlam + A)EE™, (54

logq(n

by Lemma 2.4. But
hd' <d <n<k”

and similarly for dad”. Moreover am + Sl < 2log,(d). It follows

that there are at most

n—1 d

Z — + q"/2 (am + ﬁl)ka/?’kﬁ/3

n
) logq(n)

< q% + 2ng"? log, (d)d"/3

extensions K*/K such that at least one point of degree d’ < n is

totally split. The right hand side in the last equation is smaller
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than Ogd if

o C
qq—<—2d
n 2

and

C
2nq"*log,(d)d"/® < 7%5.

The first condition holds by hypothesis, the second one holds when
n is large because d > qbgz(") . So there is at least one function field

extension K"/K without places of degree smaller than n. O]

In order to prove Theorem 1.1 we choose [ and m greater than
3log,(n) but smaller than C'log,(n) for a suitable constant C' > 0
and we find suitable a and g smaller than n with o or 8 greater

than Clm for an other suitable C'; > 0 such that the integer
N OV
q—1
is bigger than 4q%” but smaller than C' - 4q - %" for a suitable

constant C' > 1 (not depending on n). In fact, when d < 4C’q%
then ma+[8 < n when n is large and the genus of K" is bounded
by g < 2218 for all i+ € {1,...,d}, by (3.5), so g < 2d <
2C"q - ¢". We will see that C' = ¢ is a possible choice for C’.

The existence of suitable a and (3 is proved by the next Lemma.

Lemma 5.4. Let [ and m be coprime numbers with [ < m. Then

there is a constant [y, such that when [ > [ then for any real
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number 7 greater than q2m3 there are two positive integers a and

[ such that

r < (" = D ~ 1) <rq. (5.5)

qg—1

Proof. Let R be the real number log, (rq) + log, (¢ — 1). Taking

logarithm of both sides in (5.5) we get the equivalent condition
R—1<ag,+ B8q <R, (5.6)

where g, and ¢; denote the real numbers log,(¢™ —1) and logq(ql—
1).

Let L C R? be the lattice generated by wi; = (gmn,0) and
wo = (0,¢q). The statement of the Lemma is equivalent to say
that there is a point of the lattice in the right-upper quarter of
the plane between the lines {x +y = R+ 1} and {z + y = R}.
We denote by I such region of the plane R x R.

We denote by | - | the pseudo-norm over the vector space R?
given by |(z,y)| = |z+y|. This is not a norm because |(x, —x)| =
0 also when x # 0.

We look for an element v = hwy — kwo € L with

v] <1 (5.7)

1
vI> 5 (5.8)
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and

0<h<k<m. (5.9)

Let u be an integer and let F, be the Farey series of order u,
that is the set of the ascending series of the irreducible fractions
between 0 and 1 whose denominator does not exceed u. It is a
well-known fact (see [7], Chapter III) that when 2 and 22 are two

1 2
consecutive elements of the series then |hiky — ki1ho| = 1.
When u = m is very easy to see that there is no element % e Fu
such that L < % < L when m and [ are large. In fact for any
4m m
positive € < 1
[ qi 1

— — — < €e—= 02.10
m. m em(m—l)’ (5.10)

when m and [ are large. Let % € F,, the element preceding % in

Fm. Then

h qi [
— << —
k' g, m

Choose v = (hqm, —kq) € L.

It follows that |v| < 1 otherwise

and |v| > L otherwise

qi 1.h [ o
Gm 2(k+m)_qm k Q(m k)<2kqm
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contradicting (5.10) with a suitable choise of €, say, € = 1.

Let z = cwy be the maximum point of L over the y-axis such
that ¢ is a positive integer and |z| < R. If R — 1 < |z| we choose
a = c and f = 0 and the Lemma follows.

Otherwise consider the points z; = z 4+ ¢v € L for all integers
i > 0. Then z; is in the right-upper quarter if i < 7 < lqim. Let

t be the integer [7] > 0. We prove that R — 1 < |z. In fact by

(5.8) t|v] > §[£] and so t|v| > |w1| = ¢ because R > 2¢2,m. So
R < (c+ 1)|wy| < |z (5.11)

Let ¢ be the minimal integer such that R — 1 < |z;|. Then
i is smaller than ¢ by (5.11) and greater than 0 by assumption.
Moreover

|Zi_1| +1<R

because i was supposed to be minimal. So R is greater than

1z;—1| + |v| = |z;| by (5.7) and so
R—1< |z < R.

Let &« = ¢ — th and 3 = ik be the coordinates of z;. The real

number g, + Bq; verifies (5.6). This concludes the proof. O

Proof of Theorem 1.1. We assume before ¢ = p is a prime.
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Choose prime numbers [ and m and two positive integers «
and [ satisfying (5.5) in the previous Lemma with r = 4p%n.
Such choice of r verifies the hypothesis of the Lemma when n is
large and [ and m are smaller than C'log,(n) for a constant C' > 0.
By the Bertrand postulate there are at least two primes smaller
than C'log,(n) when C' > 12 so there are such integers.

It is easy to see that o < a,, and § < q; if [ and m are greater
than 3log,(n) otherwise p™* ™7 would be greater than " and
it would not satisfy (5.5). In a similar way we see that o or
is greater than, say, 4%%% otherwise p”**%¥ would be smaller
than p™? in contrast with (5.5). So we can apply Proposition 5.1
with C7 = =. We get a function field without places of degree
smaller than n for all n > ng for a suitable constant ng. We have
already seen that the genus of such function field is smaller than
mpn by (3.5). Let C), be the constant ﬁp”o. Then there
is a function field with constant field I, without places of degree
smaller than n of genus smaller than C,p" for all integer n > 0.

Now let ¢ = p°® be a prime power of p. By the previous case
there is a function field K of genus gx < Cpp™ = Cpq" over

[F, without places of degree smaller of cn. The constant field

extension KF, is a function field over I, with the same genus
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without places of degree smaller than n. This concludes the proof.

[]

5.1 Tables

We list examples of curves over F, without points of degree d’

such that d < n when ¢ = 2 and n < 20.

The integer d in the table is the degree of a function field ex-
tension K/F,(x) of the rational function field with genus g and
constant field F,. In this table the field K is always a subfield of
the ray class field Kg of conductor m. The irreducible polynomi-
als in the forth column correspond to the places in the support
of m with multiplicity. The place S totally split in Kg/F,(z)

corresponding to a polynomial of F,(z) is also included.



S

n g d m

1 2 2 (23 + 2+ 1)2 (23 + 2% +
2 3 7 (3 +2+1) (z* + 2 +
3 4 5 (2% +2+1) (7 +2* +
5 12 7 (28 +2t + 23+ +1) (28 4+ 25 + 23 +
7 48 17 (8 +2"+ 28+ +1) (2 + 27 + 25 +
8 78 77 (3 + 22+ 1,23+ 4+1) (29 + 27 + 22 +
9 120 31 (219423 + 1) ('t + 2% + 27 +
11| 362 15-7 (e +z+ 1,25 + 25+ 23 +22 4+ 1) (213 4 28 + 2° +
12 | 588 31-7 (P 422+ 1,23+ +1) (213 + 212 4 210 4 27
13| 1480 | 31-15 (2®+22+ 1,2 +2+1) (™ + 213 + 25 + 24 4
14 | 3342 | 127-7 (" 4+ x4+ 1,23+ +1) (1% + 2™ + 213 4 27 4 25
15 8940 | 7317 | (2% + 2t + 1,28+ a5+ 23+ 22+ 1) | (210 4 2™ 4 213 4 2l 4 210
16 | 19861 | 23-89 | (z'!+ a0 +2° +22+ 1,2 +2%+1) (18 + 217 21t 4 29 -
17 | 41440 | 89-63 (e + 2%+ 1,20 + 2+ 1) (218 + 217 4 216 4 211
18 | 89415 | 127-89 (2" 4+ x4+ 1,2 + 22+ 1) (19 4+ 218 4 215 4 14 4 o1
19 | 95886 | 127 - 127 (2" 4+ x4+ 1,27 +25+1) (20 + 210 4 215 4 14 -
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