Tesi di Dottorato

Claudio Stirpe

An upper bound for the genus of a curve without points of small degree

Dottorato in Matematica, Roma «La Sapienza»(2011).
http://www.bdim.eu/item?id=tesi_2011_StirpeClaudio_1

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Università degli studi di Roma 'Sapienza'
Facoltà di Scienze Matematiche Fisiche e Naturali
Dottorato in Matematica

An upper bound for the genus of a curve without points of small degree

Claudio Stirpe

Dottorando XXIII ciclo

Contents

1 Introduction 1
2 Background and notation 4
3 Class field theory 14
3.1 Main definitions 14
3.2 Carlitz modules 22
3.3 Drinfeld modules 34
4 Ray class fields 38
4.1 An other proof of the Clark Elkies bound 45
5 A refinement of the Clark-Elkies bound 50
5.1 Tables 64

Chapter 1

Introduction

Let X be a smooth, projective, absolutely irreducible curve over the finite field \mathbb{F}_{q} and let K be the function field of X. For any integer $n>0$ let a_{n} denote the number of places of K of degree n. Then $N_{n}=\sum_{d \mid n} d a_{d}$ is the number of rational points over the constant field extension $K \mathbb{F}_{q^{n}}$. The Weil inequality (see [16]) states that

$$
\left|N_{n}-q^{n}-1\right| \leq 2 g q^{n / 2},
$$

where g is the genus of the curve. A search for curves with many points, motivated by applications in coding theory, showed that this bound is optimal when the genus g is small compared to q (see [6] for further details). When g is large compared to q sharper estimates hold (see for example [10] for an asymptotic result or
also [15] Chapter V). A similar problem arises from finding curves without points of degree n when n is a positive integer. In particular when X has no points over $\mathbb{F}_{q^{n}}$ then $g \geq \frac{q^{n}-1}{2 q^{n / 2}}$. The genus 2 case was already considered in [11]. Moreover in a recent paper, E. Howe, K. Lauter and J. Top [9] show that the previous bound is not always sharp when $n=1$ and $g=3$ or 4 . In the same paper they cite an unpublished result of P. Clark and N. Elkies that states that for every fixed prime p there is a constant $C_{p}>0$ such that for any integer $n>0$, there is a projective curve over \mathbb{F}_{p} of genus $g \leq C_{p} n p^{n}$ without places of degree smaller than n.

In this paper we prove that this bound is not optimal. In fact we prove the following result.

Theorem 1.1. For any prime p there is a constant $C_{p}>0$ such that for any $n>0$ and for any power q of p there is a projective curve over \mathbb{F}_{q} of genus $g \leq C_{p} q^{n}$ without points of degree strictly smaller than n.

We show the existence of such curves by means of class field theory. The basic facts and definitions about this topic are showed in the third Chapter. In the second Chapter we give the basic definitions and results about the arithmetic of function fields. In
the forth Chapter we generalize a result in [1] about the number of ray class field extensions with given conductor \mathfrak{m} and we use it in order to prove the bound of Clark and Elkies. In the last Chapter the sharper estimate of Theorem 1.1 is proved. A table of examples for $q=2$ and $n<20$ is also given.

Chapter 2

Background and notation

By a curve over \mathbb{F}_{q} we mean a smooth, projective, geometrically irreducible curve over the finite field \mathbb{F}_{q} of characteristic p. Let X be such curve and let K be the associated function field. The field K is a finite extension of $\mathbb{F}_{q}(x)$ where x is a transcendental element over \mathbb{F}_{q} (see [15] Appendix B for more details). The constant field of K is the maximal finite extension of \mathbb{F}_{q} in K.

Let Y be a curve with associated function field L. A morphism $f: Y \rightarrow X$ is a covering of X if it is surjective and separable (see [15] Appendix A). A covering is abelian if the associated extension L / K is Galois with abelian Galois group. The degree of the extension is called the degree of the covering.

A place of K is a maximal ideal P in some discrete valuation
ring $O_{P} \subseteq K$ (i.e. a principal domain in K with exactly one nonzero maximal ideal). The degree of a place is the degree of the residue field $\mathcal{F}_{P}=O_{P} / P$.

To every place is associated a discrete valuation that is denoted by v_{P} (see [15] Chapter I). Let L / K be an extension of K and let Q (resp. P) be a place of L (resp. K). We write $Q \mid P$ and we say Q lies over P if $Q \cap K=P$. The valuation v_{P} can be extended in a unique way to a discrete valuation v_{Q} over Q. Then the two valuation are related as follows: there is a positive integer $e(Q \mid P)>0$ such that $v_{Q}(x)=e(Q \mid P) v_{P}(x)$ for all $x \in K$. A place Q over P is unramified if $e(Q \mid P)=1$. Otherwise it is ramified. A ramified place $Q \mid P$ is wild if $p \mid e(Q \mid P)$ and is tame otherwise. A place P of K is unramified in L / K if all the places Q over P are unramified, otherwise it is ramified. The extension L / K is unramified if all the places of K are unramified, otherwise it is ramified. Let $f(Q \mid P)$ denote the degree $\left[\mathcal{F}_{Q}: \mathcal{F}_{P}\right]$ of the field extension $\mathcal{F}_{Q} / \mathcal{F}_{P}$, then we have the well-known formula $\sum_{Q \mid P} f(Q \mid P) e(Q \mid P)=[L: K]$. If L / K is a Galois extension then $f(Q \mid P)=f\left(Q^{\prime} \mid P\right)$ and $e(Q \mid P)=e\left(Q^{\prime} \mid P\right)$ for any place Q and Q^{\prime} in L over P so we get the simpler formula $r e f=n$, where n is the degree [$L: K$], the integer e is $e(Q \mid P)$, the integer f is
$f(Q \mid P)$ and r is the number of places Q of L over P. In the sequel we say that a place P is totally inert if $f=n$, is totally split if $r=n$ and is totally ramified is $e=n$. Similarly P is partially inert if $f>1$, is partially split if $r>1$ and is partially ramified if $e>1$.

The next Lemma is an elementary tool when we want to compute the ramification index in the compositum of two function fields.

Lemma 2.1 (Abhyankar's Lemma). Let K^{\prime} / K be a finite separable extension of function fields such that $K^{\prime}=K_{1} K_{2}$ is the compositum of two function fields K_{1} and K_{2} with $K \subseteq K_{1}$ and $K \subseteq K_{2}$. Let P^{\prime} be a place of K^{\prime} and let $P=P^{\prime} \cap K$ and $P_{i}=P^{\prime} \cap K_{i}$ be the places under P^{\prime} in K and K_{i} for $i=1,2$. If at least one of the extensions $P_{1} \mid P$ or $P_{2} \mid P$ is tame, then $e\left(P^{\prime} \mid P\right)=\operatorname{lcm}\left\{e\left(P_{1} \mid P\right), e\left(P_{2} \mid P\right)\right\}$.

It follows from the previous Lemma that the compositum of two unramified extensions is still unramified.

A divisor $\sum_{P} n_{P} P$ is a finite formal sum of places. A divisor is effective if $n_{P} \geq 0$ for every place P. There is a partial ordering relation $D \leq D^{\prime}$ whenever $D^{\prime}=\sum n_{P}^{\prime} P$ has coefficients $n_{P} \leq n_{P}^{\prime}$
for every place P. The degree of D is the integer $\sum_{P} n_{P} d e g(P)$. The support $\operatorname{Supp}(D)$ of D is the set of places P such that $n_{P} \neq 0$.

We refer to $[15]$ for the definition of the divisor $\operatorname{Diff}(L / K)$. This notion is important because of the following Lemma.

Lemma 2.2 (Hurwitz Genus Formula). Let K be a function field of genus g_{K} with constant field \mathbb{F}_{q} and let L / K be a finite separable extension with constant field $\mathbb{F}_{q^{d}}$. Then the genus of L is given by

$$
\begin{equation*}
2 g_{L}-2=\frac{[L: K]}{d}\left(2 g_{K}-2\right)+\operatorname{deg}(\operatorname{Diff}(L / K)) \tag{2.1}
\end{equation*}
$$

We need only the following result for computing the degree of the different.

Lemma 2.3 (Dedekind's Different Theorem). Let

$$
\operatorname{Diff}(L / K)=\sum_{P} \sum_{P^{\prime} \mid P} d\left(P^{\prime} \mid P\right) P^{\prime}
$$

be the different of L / K, where P ranges over the places of K and P^{\prime} over the places of L. Then $d\left(P^{\prime} \mid P\right) \geq e\left(P^{\prime} \mid P\right)-1$ and equality holds if and only if the place $P^{\prime} \mid P$ is not wild ramified. In particular $d\left(P^{\prime} \mid P\right)=0$ if and only if $P^{\prime} \mid P$ is unramified.

The set of the places of K is denoted by \mathcal{P}_{K} and the set of divisors of K is denoted by \mathcal{D}_{K}. The degree zero divisors are
denoted by \mathcal{D}_{K}^{0}. We can associate to every element $z \in K$ its principal divisor $(z) \in \mathcal{D}_{K}^{0}$. The set of principal divisors is denoted by $\operatorname{Prin}(K)$. It is a well-known fact that the order of the quotient group $\mathcal{D}_{K}^{0} / \operatorname{Prin}(K)$, denoted by h_{K}, is finite and it is called the divisor class number of K (see [15], Chapter V).

Let L / K be a finite Galois extension.

Definition 2.1. Let Q be a place of L and $P=Q \cap K$ the place of K under Q. The decomposition group of Q is the stabilizer of Q in L

$$
D(Q \mid P)=\{\sigma \in G a l(L / K) \mid \sigma(Q)=Q\}
$$

The fixed field of $D(Q \mid P)$ in L is called the decomposition field of Q.

Let $\sigma \in G a l(L / K)$. We define an isomorphism

$$
\bar{\sigma}: O_{Q} / Q \rightarrow O_{\sigma(Q)} / \sigma(Q)
$$

by

$$
\bar{\sigma}(\bar{z})=\overline{\sigma(z)}, \quad z \in O_{Q}
$$

where $\bar{z} \in \mathcal{F}_{Q}=O_{Q} / Q$ is the residue class of z in \mathcal{F}_{Q} and $\overline{\sigma(z)} \in \mathcal{F}_{\sigma(Q)}$ is the residue class in $\mathcal{F}_{\sigma(Q)}$. When $\sigma \in D(Q \mid P)$, the image $\bar{\sigma}$ belongs to the subgroup $\operatorname{Gal}\left(\mathcal{F}_{Q} / \mathcal{F}_{P}\right)$.

Proposition 2.1. Let Q be a place of L and let $P=Q \cap K$. The following sequence is exact

$$
1 \rightarrow I(Q \mid P) \rightarrow D(Q \mid P) \rightarrow \operatorname{Gal}\left(\mathcal{F}_{Q} / \mathcal{F}_{P}\right) \rightarrow 1,
$$

where $I(Q \mid P)$ is the kernel of the map $\sigma \rightarrow \bar{\sigma}$ restricted to $D(Q \mid P)$. Moreover $|D(Q \mid P)|=e(Q \mid P) f(Q \mid P)$ and $|I(Q \mid P)|=e(Q \mid P)$.

Definition 2.2. The group $I(Q \mid P)$ of Proposition 2.1 is the inertia group of Q.

If $Q \mid P$ is unramified then $I(Q \mid P)=\{1\}$ and $D(Q \mid P)$ is a cyclic group isomorphic to $\operatorname{Gal}\left(\mathcal{F}_{Q} / \mathcal{F}_{P}\right)$. In particular there is a generator $\Phi \in D(Q \mid P)$ such that the image $\bar{\Phi}$ in $\operatorname{Gal}\left(\mathcal{F}_{Q} / \mathcal{F}_{P}\right)$ is the Frobenius morphism $z \rightarrow z^{u}$ for $z \in \mathcal{F}_{Q}$, where $u=q^{\text {deg }(P)}$ is the cardinality of \mathcal{F}_{P}. This element $\Phi \in D(Q \mid P)$ is called the Frobenius automorphism $\operatorname{Frob}(Q \mid P)$ of Q.

Let $Q^{\prime} \mid P$ be a place of L over P distinct from Q. Then $Q^{\prime}=\sigma(Q)$ for at least one $\sigma \in \operatorname{Gal}(L / K)$ and so $I\left(Q^{\prime} \mid P\right)=$ $\sigma I(Q \mid P) \sigma^{-1}$ and $D\left(Q^{\prime} \mid P\right)=\sigma D(Q \mid P) \sigma^{-1}$. Moreover $\operatorname{Frob}\left(Q^{\prime} \mid P\right)=$ $\sigma \operatorname{Frob}(Q \mid P) \sigma^{-1}$. In particular when $\operatorname{Gal}(L / K)$ is an abelian group we get $I(Q \mid P)=I\left(Q^{\prime} \mid P\right)$ and similarly $D(Q \mid P)=D\left(Q^{\prime} \mid P\right)$ and $\operatorname{Frob}(Q \mid P)=\operatorname{Frob}\left(Q^{\prime} \mid P\right)$ so we can define without ambiguity the Frobenius automorphism and the decomposition group at
P as $\operatorname{Frob}(P)=\operatorname{Frob}(Q \mid P)$ and $D(P)=D(Q \mid P)$ respectively.
Proposition 2.2. Let L / K be an abelian extension and M be a subfield of L containing K. For any place P of K we denote by $\operatorname{Frob}(P)$ the Frobenius automorphism in $\operatorname{Gal}(L / K)$. Then P is totally split in M / K if and only if $\operatorname{Frob}(P) \in \operatorname{Gal}(L / M)$.

The following Lemma (see [12], Theorem 1) is an explicit version of the well-known Chebotarev Theorem (see [5] Chapter 2).

Lemma 2.4. [Explicit version of the Chebotarev Theorem] Let $C \subseteq G$ be a conjugacy class in the Galois Group $G=\operatorname{Gal}\left(M_{2} / M_{1}\right)$ of a finite extension M_{2} / M_{1}. Assume that the constant field of M_{1} and M_{2} are the same. Let $\pi_{C}(d)$ be the number of places P over M_{1} of degree d such that the coniugacy class $[\operatorname{Frob}(P)]$ is C and let $\pi(d)$ is the number of unramified places P of M_{1} of degree d. Let $\psi_{C}(d)=\sum_{r \mid d} r \pi_{C}(r)$ and $\psi(d)=\sum_{r \mid d} r \pi(r)$. Then $\psi_{C}(d)$ is bounded by

$$
\left|\psi_{C}(d)-\frac{|C|}{|G|} \psi(d)\right| \leq 2 g_{M_{2}} \frac{|C|}{|G|} q^{d / 2}+\operatorname{deg}(D)
$$

where D is the divisor given by the formal sum of all the ramified places of M_{1}.

Proof. Let $\chi: G \rightarrow \mathbb{C}^{*}$ be a class function of G. For any unramified place P of M_{1} and for any integer $n \geq 0$ we define
$\chi\left(P^{n}\right)=\chi\left([\operatorname{Frob}(P)]^{n}\right)$ as the evaluation by χ of the n-power of the conjugacy class of the Frobenius automorphism of P. When P is ramified we define

$$
\chi\left(P^{n}\right)=\frac{1}{e(P)} \sum_{\omega \in I\left(P^{\prime} \mid P\right)} \chi\left(\left[\omega \sigma\left(P^{\prime}\right)\right]^{n}\right),
$$

where P^{\prime} is a place of M_{2} over P and $\sigma\left(P^{\prime}\right)$ is an element of the decomposition group $D\left(P^{\prime} \mid P\right)$ such that its image $\bar{\sigma}$ in $\operatorname{Gal}\left(\mathcal{F}_{P^{\prime}} / \mathcal{F}_{P}\right)$, as in Proposition 2.1, is the Frobenius morphism. It is easy to see that $\chi\left(P^{n}\right)$ is well-defined. We say that χ is averaged over the ramified places. We define

$$
\psi_{\chi}(d)=\sum_{r \mid d} \sum_{\operatorname{deg}(P)=r} \chi\left(P^{d / r}\right)
$$

where P runs over the places of M_{1}.
We denote by \hat{G} the set of irreducible characters of G and by

$$
\zeta_{M_{i}}(t)=\prod_{P \in \mathcal{P}_{M_{i}}}\left(1-t^{\operatorname{deg}(P)}\right)^{-1}
$$

the zeta function of M_{i} for $i=1,2$. By the Riemann hypothesis for curves the polynomial $\zeta_{M_{i}}(t)(1-t)(1-q t)$ of degree $2 g_{M_{i}}$ (see [15] Chapter V) is equal to

$$
\prod_{j=1}^{g_{i}}\left(1-\alpha_{i, j} t\right)\left(1-\bar{\alpha}_{i, j} t\right)
$$

for suitable algebraic integers $\alpha_{i, j}$ such that $\left|\alpha_{i, j}\right|=\sqrt{q}$, where g_{i} is the genus of M_{i}.

For a given a character $\chi \in \hat{G}$ we define the L-function $L(t, \chi)$ as 1 when $t=0$ and

$$
\frac{d}{d t} \log (L(t, \chi))=\sum_{r=1}^{\infty} \psi_{\chi}(r) t^{r-1}
$$

when $|t|<\frac{1}{q}$. This series is absolutely convergent for $|t|<\frac{1}{q}$ so $L(t, \chi)$ admit an analytic continuation to the whole complex plane.

It is easy to see that $\zeta_{M_{1}}(t)=L\left(t, \chi_{0}\right)$, where χ_{0} is the trivial character, as one can easily verify by using the Taylor series for the logarithm of $\zeta_{M_{1}}(t)$. In a similar way we can verify the relation

$$
\frac{d}{d t} \log \zeta_{M_{2}}(t)=\sum_{\chi \in \hat{G}} \frac{d}{d t} \log L(t, \chi)^{\chi(1)}
$$

It follows that

$$
\zeta_{M_{2}}(t)=\zeta_{M_{1}}(t) \prod_{\chi \in \hat{G}, \chi \neq \chi_{0}} L(t, \chi)^{\chi(1)}
$$

When $\chi \in \hat{G}$ is not the trivial character, the L-function $L(t, \chi)$ is a polynomial (see [16]). By the Riemann hypothesis, this polynomial can be written as $\prod_{h=1}^{k}\left(1-\beta_{h} t\right)$ with $\left|\beta_{h}\right|=\sqrt{q}$ for $h=1, \ldots, k$ and the degree k of $L(t, \chi)$ is bounded by $k \leq 2 g_{M_{2}}$.

It follows that

$$
\frac{d}{d t} \log (L(t, \chi))=\sum_{r=1}^{\infty} \psi_{\chi}(r) t^{r-1}=\sum_{r=1}^{\infty}\left(\sum_{i=1}^{k} \beta_{i}^{r}\right) t^{r}
$$

and so

$$
\left|\psi_{\chi}(r)\right| \leq \operatorname{deg}(L(t, \chi)) \sqrt{q^{r}} \leq 2 g_{M_{2}} \sqrt{q^{r}}
$$

By the orthogonality relations for irreducible characters

$$
\sum_{\chi \in \hat{G}} \overline{\chi(C)} \sum_{\operatorname{deg}(P) \mid d} \chi(P)=\sum_{[F r o b(P)]=C}\left|\mathcal{C}_{G}(C)\right|=\frac{|G|}{|C|} \psi_{C}(d),
$$

where P runs over the unramified places of M_{1} and $\mathcal{C}_{G}(C)$ is the centralizer of C in G.

Similarly, when P is a ramified place, the sum $\sum_{\chi \in \hat{G}} \overline{\chi(C)} \chi(P)$ is bounded by $\frac{G}{C}$ so we can estimate

$$
\begin{aligned}
\left|\frac{|G|}{|C|} \psi_{C}(d)-\psi(d)\right| & \leq\left|\sum_{\chi \neq \chi_{0}} \sum_{P \notin \operatorname{Supp}(D)} \overline{\chi(C)} \chi(P)\right|+\sum_{P \in \operatorname{Supp}(D)} \frac{|G|}{|C|} \\
& \leq \sum_{\chi \neq 1} \sqrt{q^{d / 2}} \chi(1) \operatorname{deg}(L(t, \chi))+\sum_{P \in \operatorname{Supp}(D)} \frac{|G|}{|C|} \\
& \leq 2 g_{M_{2}} \sqrt{q^{d / 2}}+\frac{|G|}{|C|}|D|
\end{aligned}
$$

and the Lemma follows.

Chapter 3

Class field theory

3.1 Main definitions

In this section we introduce the Artin map and the ray class group. The explicit construction of ray class fields by means of Carlitz modules and Drinfeld modules will be showed in the next sections.

Definition 3.1. Let Q be a place of L lying over the place P of K. We define, for every integer $n \geq-1$, the n-th ramification group $G_{n}(Q \mid P)$ as
$G_{n}(Q \mid P)=\left\{\sigma \in \operatorname{Gal}(L / K) \mid v_{Q}(\sigma(x)-x) \geq n+1\right.$ for all $\left.x \in O_{Q}\right\}$.
It follows by the definition that $G_{-1}(Q \mid P)=D(Q \mid P)$ and $G_{0}(Q \mid P)=I(Q \mid P)$.

When $Q^{\prime}=\sigma(Q)$ for a certain $\sigma \in \operatorname{Gal}(L / K)$ then $G_{n}\left(Q^{\prime} \mid P\right)=$
$\sigma G_{n}(Q \mid P) \sigma^{-1}$ for all $n \geq-1$. It follows that, when L / K is an abelian extension, the group $G_{n}(Q \mid P)$ coincide with $G_{n}\left(Q^{\prime} \mid P\right)$ for every place Q^{\prime} over P and for every $n \geq-1$. In this case we can also denote $G_{n}(Q \mid P)$ by $G_{n}(P)$.

We can extend the previous definition to any real number $u \geq-1$ by

$$
G_{u}(Q \mid P)=G_{[u]}(Q \mid P)
$$

where $[u]$ is the integral part of u. Let $g_{i}=\left|G_{i}(Q \mid P)\right|$ be the order of the group $G_{i}(Q \mid P)$ for $i \geq-1$. We define a real function $\phi:[-1,+\infty) \rightarrow[-1,+\infty)$ such that $\phi(u)=u$ for $-1 \leq u \leq 0$ and

$$
\phi(u)=\frac{1}{g_{0}}\left(g_{1}+g_{2}+\ldots+g_{[u]}+(u-[u]) g_{[u]+1}\right),
$$

for $u \geq 0$. It is very easy to see that the function ϕ is continuous, strictly increasing, piecewise linear and concave on $[-1,+\infty)$. We denote by ψ the inverse function. Then ψ is continuous, piecewise linear, strictly increasing and convex on $[-1,+\infty)$.

Lemma 3.1. The real number $\psi(n)$ is an integer for any integer $n \geq-1$.

Proof. The Lemma is trivial for $n=-1$ and $n=0$. For $n>0$ let
u be the real number $\psi(n)$. Then

$$
g_{0} \phi(u)=g_{0} n=g_{0}+\ldots+g_{[u]}+(u-[u]) g_{[u]+1},
$$

by definition of ϕ. It follows that

$$
u-[u]=\frac{1}{g_{[u]+1}}\left(g_{0} n-g_{0}-\ldots-g_{[u]}\right) .
$$

But $G_{[u]+1}(Q \mid P)$ is a subgroup of $G_{i}(Q \mid P)$ for $i<[u]+1$ so $u-[u]$ is an integer by the Lagrange Theorem, so u is an integer.

A partial converse of the previous Lemma is the following.
Proposition 3.1 (Hasse-Arf Theorem). Let $n \geq-1$ be an integer. Assume $G_{n}(Q \mid P) \neq G_{n+1}(Q \mid P)$. Then $\phi(n)$ is an integer.

Definition 3.2. We define the upper ramificaton group $G^{u}(Q \mid P)=$ $G_{\psi(u)}(Q \mid P)$.

The completion of K with respect to the valuation v_{P} is unique and we denote it by \hat{K}_{P}. The corresponding valuation is also denoted by v_{P}. In the sequel U_{P} denotes the unit elements in O_{P}. We denote by \hat{O}_{P} and \hat{U}_{P} the valuation ring of \hat{K}_{P} and the group of units of \hat{O}_{P}, respectively. It is easy to check that $\hat{O}_{P}=\left\{x \in \hat{K}_{P} \mid v_{P}(x) \geq 0\right\}$. The n-th unit group is defined as

$$
\hat{U}_{P}^{(n)}=\left\{x \in \hat{U}_{P} \mid v_{P}(x-1) \geq n\right\},
$$

when $n>0$ and $\hat{U}_{P}^{(0)}=\hat{U}_{P}$.
Assume now M is a complete field with respect to the valuation v. Let L / M be a finite abelian extension. There is a map

$$
\theta_{L / M}: M^{*} \rightarrow \operatorname{Gal}(L / M)
$$

called the local Artin reciprocity map, that satisfies:

1. $\operatorname{Ker}\left(\theta_{L / M}\right)=N_{L / M}\left(L^{*}\right)$, where $N_{L / M}$ is the norm map;
2. if L / M is unramified then $\theta_{L / M}(x)=\operatorname{Frob}(P)^{v(x)}$ for all $x \in M^{*} ;$
3. the image of $U_{M}^{(n)}$, the n-th unit group of M, is the upper ramification group $G^{n}(L / M)$ for all $n \geq 0$.

We are going to define a global Artin map of a function fields extension L / K in terms of the local Artin map $\theta_{\hat{L}_{Q} / \hat{K}_{P}}$, where P runs over the places of K and Q is a place of L over P.

Definition 3.3. The adele ring of K is the set
$\mathbb{A}_{K}=\left\{\left(x_{P}\right)_{P}, x_{P} \in \hat{K}_{P} \mid x_{P} \in \hat{O}_{P}\right.$ for all but finitely many places $\}$.

Where P runs over the set \mathcal{P}_{K} of places of K.

The field K is canonically embedded in the adele ring \mathbb{A}_{K} via the diagonal morphism.

Definition 3.4. The unit group J_{K} of \mathbb{A}_{K}

$$
J_{K}=\left\{\left(x_{P}\right)_{P} \mid x_{P} \in \hat{U}_{P} \text { for all but finitely many places }\right\} .
$$

is called the idele group of K.

The idele group J_{K} is a topological group. A base for the topology is given by the neighborhoods of the unity

$$
\prod_{P \in S} \hat{K}_{P}^{*} \times \prod_{P \notin S} \hat{U}_{P}
$$

where S is a finite set of \mathcal{P}_{K}.
The multiplicative group K^{*} is canonically embedded in J_{K}.
Definition 3.5. The quotient group $C_{K}=J_{K} / K^{*}$ is the idele class group of K.

The class group is a topological group with respect to the quotient topology.

Let L / K a finite abelian extension of K. We define the global Artin reciprocity map $\theta_{L / K}: J_{K} \rightarrow \operatorname{Gal}(L / K)$ as the product of the local Artin reciprocity $\theta_{\hat{L}_{Q} / \hat{K}_{P}}$, where P runs over the places of K and Q is a place of L over P. The map $\theta_{L / K}$ is well-defined because $\operatorname{Gal}\left(\hat{L}_{Q} / \hat{K}_{P}\right) \cong D(Q \mid P)=D(P)$ (see [13] Chapter 2) and so $\theta_{\hat{L}_{Q} / \hat{K}_{P}}$ does not depend on the choice of Q.

The multiplicative group K^{*} is contained in the kernel of $\theta_{L / K}$ so we can define an homomorphism

$$
(\cdot, L / K): C_{K} \rightarrow \operatorname{Gal}(L / K)
$$

induced by the global Artin reciprocity. We call $(\cdot, L / K)$ the norm residue symbol of L / K. We describe the kernel of this homomorphism.

The norm map $N_{L / K}: L^{*} \rightarrow K^{*}$ can be extended to a morphism

$$
N_{J_{L} / J_{K}}: J_{L} \rightarrow J_{K}
$$

such that the idele $\left(x_{Q}\right)_{Q \in \mathcal{P}_{L}}$ is sent to $\left(\prod_{Q \mid P} N_{L / K}\left(x_{Q}\right)\right)_{P \in \mathcal{P}_{K}}$.
Let $\mathcal{N}_{K}^{L}=\left(K^{*} N_{J_{L} / J_{K}}\left(J_{L}\right)\right) / K^{*} \subseteq C_{K}$. Then \mathcal{N}_{K}^{L} is a finite index subgroup of C_{K}.

Theorem 3.1 (Artin Reciprocity). For any finite abelian extension L / K there is a canonical isomorphism $C_{K} / \mathcal{N}_{K}^{L} \cong \operatorname{Gal}(L / K)$ induced by the norm residue symbol.

For any open subgroup M of C_{K} of finite index there is a finite abelian extension L / K such that $\mathcal{N}_{K}^{L}=M$.

Moreover $L_{1} \subseteq L_{2}$ if and only if $\mathcal{N}_{K}^{L_{2}} \subseteq \mathcal{N}_{K}^{L_{1}}$.
In the sequel we use ray class fields for constructing curves. Let S be a finite non-empty set of places and let $\mathfrak{m}=\sum n_{P} P$ be
an effective divisor of the function field K with support disjoint from S. The S-congruence subgroup modulo \mathfrak{m} is the subgroup

$$
J_{S}^{\mathfrak{m}}=\prod_{P \in S} \hat{K}_{P}^{*} \times \prod_{P \notin S} \hat{U}_{P}^{\left(n_{P}\right)}
$$

Definition 3.6. A ray class group is a subgroup $C_{S}^{\mathfrak{m}}$ of C_{K} of the form

$$
C_{S}^{\mathfrak{m}}=\left(K^{*} J_{S}^{\mathfrak{m}}\right) / K^{*}
$$

where $J_{S}^{\mathfrak{m}}$ is a S-congruence subgroup modulo \mathfrak{m}.

The index of $C_{S}^{\mathfrak{m}}$ in C_{K} is finite (see [13] Chapter 2 Section 4). We denote by $K_{S}^{\mathfrak{m}}$ the function field associated to the subgroup C_{S}^{m} by the previous theorem.

The conductor of an abelian extension L / K is the divisor

$$
\sum_{P} c_{P} P
$$

where P runs over the ramified places of K and c_{P} is the least integer u such that the upper ramification group $G^{u}\left(\hat{L}_{Q} / \hat{K}_{P}\right)$ is trivial for any $Q \mid P($ see [13] Chapter 2 Section 3$)$.

Theorem 3.2 (Conductor Theorem). The function field $K_{S}^{\mathfrak{m}}$ is the largest abelian extension of K with conductor \mathfrak{f} such that $\mathfrak{f} \leq \mathfrak{m}$ and such that every place of S splits completely.

We end this section with a very useful tool that we will use in the sequel.

Definition 3.7. Let K be a complete field according to the valuation v and let $g(z)=\sum_{i=0}^{d} g_{i} z^{i}$ be a polynomial in K with $d \geq 1$ such that $g_{0} \neq 0$ and $g_{d} \neq 0$. The Newton polygon of g is the lower convex hull in $\mathbb{R} \times \mathbb{R}$ of the points $\left(i, v\left(g_{i}\right)\right)$ for all $0 \leq i \leq d$ with $g_{i} \neq 0$.

The following Lemma shows that Newton polygons are useful for computing the roots of irreducible polynomials in algebraic extensions. We will use it in order to compute the ramification index of a place P.

Lemma 3.2. Let K be a complete field according to the valuation v. Let $g(z)$ be a polynomial in K and let $I \subseteq \mathbb{R} \times \mathbb{R}$ be the segment of the Newton polygon of g joining $\left(i, v\left(g_{i}\right)\right)$ and $\left(j, v\left(g_{j}\right)\right)$ with $i<j$. Let $m=\frac{v(i)-v(j)}{i-j}$ be the slope of I and assume that the slopes in the intervals $[i-1, i]$ and $[j, j+1]$ are different from m. Then there are exactly $t=j-i$ distinct roots $\alpha_{1}, \ldots, \alpha_{t}$ of $g(z)$ in $K^{a c}$ with $v_{L}\left(\alpha_{1}\right)=\cdots=v_{L}\left(\alpha_{t}\right)=-m$, where L is the splitting field of $\alpha_{1}, \ldots, \alpha_{t}$ and v_{L} is the unique extension of v to L.

Moreover the polynomial $h(z)=\prod_{i=1}^{t}\left(z-\alpha_{i}\right)$ is a polynomial
in $K[z]$ and $h(z) \mid g(z)$.
We are going to see the case $K=\mathbb{F}_{q}(x)$ in more details in the next section.

3.2 Carlitz modules

In the sequel we denote by R the polynomial ring $\mathbb{F}_{q}[x]$ contained in the rational function field K and by $K^{a c}$ an algebraic closure of K.

Let $\alpha \in \operatorname{End}_{\mathbb{F}_{q}}\left(K^{a c}\right)$ the endomorphism $\alpha(y)=y^{q}+x y$, for $y \in K^{a c}$. We define the ring endomorphism $\phi: R \rightarrow \operatorname{End}_{\mathbb{F}_{q}}\left(K^{a c}\right)$ by

$$
\phi(f(x))(y)=f(\alpha)(y),
$$

for $y \in K^{a c}$. In this way $K^{a c}$ is an R-module and the action of $f \in R$ is

$$
f(y)=\phi(f)(y),
$$

for $y \in K^{a c}$. In the sequel, when there is no ambiguity, we denote the action $\phi(f)(y)$ simply by y^{f}.

The following properties are obvious
Lemma 3.3. Let y and z be elements in $K^{a c}$. For any $a \in \mathbb{F}_{q}$ and $f, g \in R$ we have:

1. $y^{a}=a y$;
2. $y^{f+g}=y^{f}+y^{g}$;
3. $\left(y^{f}\right)^{g}=y^{f g}$;
4. $(y+z)^{f}=y^{f}+z^{f}$.

When $f \in R$ and n is an integer, we define the polynomial $[f, n]$ by the following properties

1. $[f, n]=0$ if $f=0$ or if $n<0$ or $n>\operatorname{deg}(f)$;
2. $[f, 0]=f$;
3. $\left[x^{d+1}, n\right]=x\left[x^{d}, n\right]+\left[x^{d}, n-1\right]^{q}$;
4. $[a f+b g, n]=a[f, n]+b[g, n]$, for any $a, b \in \mathbb{F}_{q}$ and $f, g \in R$.

The proof of the following Lemma follows directly from the properties of $[f, n]$.

Lemma 3.4. Let $f \in R$ be a polynomial of degree $n>0$. Then $[f, i]$ is well-defined for any integer i. Moreover $\operatorname{deg}([f, i])=(d-$ i) q^{i} for $0 \leq i \leq d$ and

$$
y^{f}=\sum_{i=0}^{d}[f, i] y^{q^{i}}
$$

for all $y \in K^{a c}$.

Definition 3.8. Let f be a non-zero polynomial in R. The subset $\Lambda_{f}=\left\{y \in K^{a c} \mid y^{f}=0\right\}$ of $K^{a c}$ is a Carlitz module. The splitting field $K\left(\Lambda_{f}\right)$ is called the cyclotomic function field over K with modulus f.

The set Λ_{f} is an R-submodule of $K^{a c}$. The derivative of the polynomial y^{f} with respect to y is f by the previous Lemma so the extension $K\left(\Lambda_{f}\right) / K$ is finite and separable. Moreover $K\left(\Lambda_{f}\right) / K$ is a Galois extension because the action of $\sigma \in G a l\left(K^{a c} / K\right)$ on y commutes with the action of f.

Lemma 3.5. Let $f \in R$ be an irreducible monic polynomial and $n>0$ be an integer. Then $\Lambda_{f^{n}}$ is a cyclic R-module isomorphic to $R /\left(f^{n}\right)$.

Proof. Before we assume $n=1$. Let d be the degree of f. Then Λ_{f} has exactly q^{d} elements in $K^{a c}$. Moreover Λ_{f} is a $R /(f)$ module, but $R /(f)$ is a finite field with q^{d} elements so $\Lambda_{f} \cong R /(f)$ is a cyclic R-module.

Now assume the result holds for $n-1$. Consider $\Lambda_{f^{n-1}} \cong$ $R /\left(f^{n-1}\right)$. Then $\Lambda_{f^{n-1}}$ is a cyclic module generated by λ. We get a morphism $\beta: \Lambda_{f^{n}} \rightarrow \Lambda_{f^{n-1}}$ by $\beta(y)=y^{f}$. Then the kernel of β is Λ_{f}. There is an element $z \in K^{a c}$ such that $z^{f}=\lambda$ so
$z \in \Lambda_{f^{n}}$ and β is surjective. Moreover $z \notin \Lambda_{f^{n-1}}$. We show that z generates $\Lambda_{f^{n}}$. Let $y \in \Lambda_{f^{n}}$. Then $y^{f}=\lambda^{g}$ for a suitable $g \in R$ because $y^{f} \in \Lambda_{f^{n-1}}$. So $y^{f}=\left(z^{f}\right)^{g}=\left(z^{g}\right)^{f}$ and $y-z^{g} \in \Lambda_{f}$. But Λ_{f} is generated by $z^{f^{n-1}}$ so $y-z^{g}=\left(z^{f^{n-1}}\right)^{h}$ for a suitable $h \in R$. It follows that $y=z^{g}+z^{h f^{n-1}}=z^{g+h f^{n-1}}$ and z generates $\Lambda_{f^{n}}$. Finally the morphism $g \rightarrow z^{g}$ is clearly an R-module isomorphism between $R /\left(f^{n}\right)$ and $\Lambda_{f^{n}}$.

We have a similar result for f reducible.

Lemma 3.6. Let $f, g \in R$ two monic polynomials and let $h=$ $\operatorname{gcd}(f, g)$ the greatest common divisor. Then $\Lambda_{f} \cap \Lambda_{g}=\Lambda_{h}$.

Proof. It follows from the properties stated in Lemma 3.3 and from the Bézout identity for the greatest common divisor.

Corollary 3.1. Let f and g be two monic coprime polynomials in R. Then $\Lambda_{f g}=\Lambda_{f}+\Lambda_{g}$.

Proof. Of course $\Lambda_{f}+\Lambda_{g} \subseteq \Lambda_{f g}$. But $\left|\Lambda_{f g}\right|=q^{\operatorname{deg}(f)+\operatorname{deg}(g)}=$ $\left|\Lambda_{f}+\Lambda_{g}\right|$ because $\Lambda_{f} \cap \Lambda_{g}=\Lambda_{1}=\{0\}$ by the previous Lemma so the inclusion is an equality.

Corollary 3.2. Let $f \in R$ be a non-zero monic polynomial. Then Λ_{f} is a cyclic module isomorphic to $R /(f)$.

Proof. Write the factorization of f in irreducible polynomials $f=$ $\prod_{i=1}^{k} f_{i}^{n_{i}}$. Then $\Lambda_{f}=\Lambda_{f_{1}^{n_{1}}}+\ldots+\Lambda_{f_{k}^{n_{k}}}$ by the previous Corollary. But $\Lambda_{f_{i}} n_{i}$ is a cyclic R-module generated by, say, λ_{i} for $i=1,2, \ldots, k$ so $\lambda=\lambda_{1}+\ldots+\lambda_{k}$ is a generator of Λ_{f}.

Now we can compute the Galois group of the extension $K\left(\Lambda_{f}\right) / K$. Let $f=\prod_{i=1}^{k} f_{i}^{n_{i}}$ the factorization in irreducibles of a monic polynomial $f \in R$ and let $U(f)=(R /(f))^{*}$ be the group of units in $R /(f)$. Then $U(f)$ is a multiplicative group. Its order $u(f)$ is

$$
u(f)=q^{\operatorname{deg}(f)} \prod_{i=1}^{k}\left(1-q^{-\operatorname{deg}\left(f_{i}\right)}\right) .
$$

Lemma 3.7. Let $f \in R$ be a monic irreducible polynomial and $n>0$ be a positive integer. Then the degree $\left[K\left(\Lambda_{f^{n}}\right): K\right]$ is equal to $u\left(f^{n}\right)$ and the Galois group $\operatorname{Gal}\left(K\left(\Lambda_{f^{n}}\right) / K\right)$ is isomorphic to $U\left(f^{n}\right)$. Moreover the positive part $(f)_{+} \in \mathcal{D}_{K}$ of the principal divisor (f)

$$
(f)_{+}=(f)+\operatorname{deg}(f) P_{\infty},
$$

where P_{∞} is the infinite place, is totally ramified in $K\left(\Lambda_{f^{n}}\right) / K$ and all the other finite places are unramified.

Proof. Let λ be a generator of $\Lambda_{f^{n}}$. We show that λ^{g} is an other generator of $\Lambda_{f^{n}}$ if and only if $\operatorname{gcd}(f, g)=1$.

When $\operatorname{gcd}(f, g) \neq 1$ then $f \mid g$ so $\lambda^{g} \in \Lambda_{f^{n-1}}$ so g is not a generator of $\Lambda_{f^{n}}$.

When $\operatorname{gcd}(f, g)=1$ then $a f+b g=1$ for suitable a and b in R. So $\lambda=\lambda^{b g}=\left(\lambda^{g}\right)^{b}$ and λ^{g} is a generator.

It follows that λ^{g} is a root of the polynomial $c(z)=\frac{z^{f}}{z^{n-1}}$ in $K^{a c}[z]$. But

$$
\operatorname{deg}(c(z))=q^{\operatorname{deg}\left(f^{n}\right)}-q^{\operatorname{deg}\left(f^{n-1}\right)}=q^{\operatorname{deg}\left(f^{n}\right)}\left(1-q^{-\operatorname{deg}(f)}\right)=u\left(f^{n}\right)
$$

so

$$
\begin{equation*}
c(z)=\prod_{g \in U\left(f^{n}\right)}\left(z-\lambda^{g}\right) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f=\frac{f^{n}}{f^{n-1}}=c(0)=(-1)^{u\left(f^{n}\right)} \prod_{g \in U\left(f^{n}\right)} \lambda^{g} . \tag{3.2}
\end{equation*}
$$

Let Q be a place of $K\left(\Lambda_{f^{n}}\right)$ over the place P of K corresponding to the irreducible polynomial f and let $e=e(Q \mid P)$ be the ramification degree of the P in $K\left(\Lambda_{f^{n}}\right) / K$. Then $e=v_{Q}(f)=$ $\sum_{g \in U(f)} v_{Q}\left(\lambda^{g}\right) \geq u\left(f^{n}\right)$ because $\lambda^{f^{n}}=0$ and so $v_{Q}(\lambda) \geq 1$ and $v_{Q}\left(\lambda^{g}\right) \geq 1$ for any $g \in U(f)$. It follows that $e \geq u(f)$. But $e \leq\left[K\left(\Lambda_{f^{n}}\right): K\right] \leq \operatorname{deg}(c)=u(f)$ so the equality holds.

The morphism from $\operatorname{Gal}\left(K\left(\Lambda_{f^{n}}\right) / K\right)$ to the set of generators of $\Lambda_{f^{n}}$ which sends $\sigma \in \operatorname{Gal}\left(K\left(\Lambda_{f^{n}}\right) / K\right)$ to $\sigma(\lambda)$ is injective, because λ is a generator of $\Lambda_{f^{n}}$, and surjective because a polynomial h
determines an automorphism $\sigma(z)=z^{h}$ in $\operatorname{Gal}\left(K\left(\Lambda_{f^{n}}\right) / K\right)$ if and only if $h \in U\left(f^{n}\right)$. So

$$
\operatorname{Gal}\left(K\left(\Lambda_{f^{n}}\right) / K\right) \cong U\left(f^{n}\right) .
$$

Finally let g be an irreducible prime polynomial in R prime to f. Let S be a place of $K\left(\Lambda_{f^{n}}\right)$ over the place of K corresponding to (g). We show that $v_{S}(\lambda) \geq 0$. In fact if $v_{S}(\lambda)<0$ then, by Lemma 3.4,

$$
v_{S}\left(\lambda^{f^{n}}\right)=v_{S}\left(\lambda^{q^{\operatorname{deg}\left(f^{n}\right)}}\right)<0,
$$

because $v_{S}\left(\left[f^{n}, i\right]\right)=0$ for $i=0, \ldots, \operatorname{deg}\left(f^{n}\right)$. But $\lambda^{f^{n}}=0$ so we get a contradiction. In a similar way we get that $v_{S}\left(\lambda^{h}\right) \geq 0$ for any $h \in R$.

We apply the Lemma 3.4 to the relation $c(z) z^{f^{n-1}}=z^{f^{n}}$ and we get $c^{\prime}(z) z^{f^{n-1}}+c(z) f^{n-1}=f^{n}$. It follows that

$$
c^{\prime}(\lambda) \lambda^{f^{n-1}}=f^{n}
$$

and so the valuation $v_{S}\left(c^{\prime}(\lambda)\right)=v_{S}\left(f^{n}\right)-v_{S}\left(\lambda^{f n-1}\right)=-v_{S}\left(\lambda^{f^{n-1}}\right) \leq$
0 . But $v_{S}\left(c^{\prime}(\lambda)\right) \geq 0$ because $v_{S}(\lambda) \geq 0$ so the equality follows. It follows from [4], Chapter I, Section 4, that the place S is not ramified.

Lemma 3.8. Let f and g two monic coprime polynomials in R.
Then $K\left(\Lambda_{f g}\right)$ is the compositum field $K\left(\Lambda_{f}\right) K\left(\Lambda_{g}\right)$.

Proof. It follows from Corollary 3.1 and 3.2.

Corollary 3.3. Let $f \in R$ be a monic polynomial.

1. The degree $\left[K\left(\Lambda_{f}\right): K\right]$ is equal to $u(f)$ and

$$
G a l\left(K\left(\Lambda_{f}\right) / K\right) \cong(R /(f))^{*}
$$

2. Let $g \in R$ be an irreducible monic polynomial and let P the finite place corresponding to g. Then P is unramified in $K\left(\Lambda_{f}\right) / K$ if g does not divide f. In this case the Frobenius morphism $\operatorname{Frob}(P) \in \operatorname{Gal}\left(K\left(\Lambda_{f}\right) / K\right)$ satisfies

$$
\operatorname{Frob}(P)(\lambda)=\lambda^{g}
$$

where λ is a generator of Λ_{f} as R-module. The inertia degree of P in $K\left(\Lambda_{f}\right) / K$ is the multiplicative order of the image of g in $R /(f)$.
3. If $g \in R$ is an irreducible monic polynomial that divides f then the corresponding place P is ramified in $K\left(\Lambda_{f}\right) / K$ and the ramification degree is equal to $u\left(g^{n}\right)$ where g^{n} is the maximum power of g such that g^{n} divides f. The inertia degree of the place P in $K\left(\Lambda_{f}\right) / K$ is equal to the multiplicative order of the image of g in the quotient group $R /\left(\frac{f}{g^{n}}\right)$.

Proof. The first part follows from the last two Lemmas.
For the second part, we know by definition that $\operatorname{Frob}(P)(\lambda) \equiv$ $\lambda^{q^{\operatorname{deg} g}} \bmod Q$, where Q is a place of $K\left(\Lambda_{f}\right)$ over the place P. In particular $\lambda^{g} \equiv \operatorname{Frob}(P)(\lambda) \bmod Q$ by Lemma 3.4 and by property 3 of $[g, i]$. By Lemma 3.7 we know that $\operatorname{Frob}(P)(z)=z^{h}$ for a suitable polynomial $h \in U(f)$. We have to show that $\lambda^{h} \equiv \lambda^{g}$ $\bmod Q$ implies $h=g$. But this follows from the equation (3.1), in fact if we take the derivative of both sides then

$$
f=c^{\prime}(z)=\sum_{t^{\prime} \in R /(f)} \prod_{t \neq t^{\prime}}\left(z-\lambda^{t}\right)
$$

and valuating c^{\prime} in $z=\lambda^{g}$ we get

$$
f=\prod_{t \in R /(f), t \neq \bar{g}}\left(\lambda^{g}-\lambda^{t}\right) \neq 0
$$

where \bar{g} is the image of g in $R /(f)$. Then

$$
g \not \backslash f
$$

implies that

$$
\lambda^{t} \not \equiv \lambda^{g} \quad \bmod Q
$$

whenever $t \not \equiv \bar{g}$ in $R /(f)$. So

$$
\operatorname{Frob}(P)(z)=z^{g}
$$

and the inertia degree is the order of the Frobenius automorphism in $\operatorname{Gal}\left(K\left(\Lambda_{f}\right) / K\right)$. By Lemma 3.7 the order of $\operatorname{Frob}(P)$ is the order of \bar{g} in $R /(f)$.

Finally if $f=g^{n} g^{\prime}$ and $\operatorname{gcd}\left(g, g^{\prime}\right)=1$, then P is totally ramified in $K\left(\Lambda_{g^{n}}\right) / K$ and unramified in $K\left(\Lambda_{g^{\prime}}\right) / K$. The result follows from part 2 and from the previous Lemma.

A different result holds for the infinite place P_{∞}.
Proposition 3.2. Let $f \in R$ be a monic irreducible polynomial of degree d. Then the place P_{∞} is partially ramified in $K\left(\Lambda_{f}\right) / K$. The inertia group $I\left(P_{\infty}\right)$ has order $e\left(P_{\infty}\right)=q-1$ and there are $\frac{q^{d}-1}{q-1}$ places over P_{∞} so $f\left(P_{\infty}\right)=1$ and $I\left(P_{\infty}\right)=D\left(P_{\infty}\right)$.

Proof. Let Q be a place of $K\left(\Lambda_{f}\right)$ over the place P_{∞}. Let λ be a generator of Λ_{f} and let L be the completion of $K\left(\Lambda_{f}\right)$ over the place Q. Let Q^{\prime} be the place of L over Q. Let $c(z)$ be the minimal polynomial of λ in K. Then $e\left(Q^{\prime} \mid P_{\infty}\right)=e\left(Q \mid P_{\infty}\right)=e\left(P_{\infty}\right)$ because the extension is Galois and

$$
c(z)=c_{0}+c_{1} z^{q-1}+\ldots+c_{d} z^{q^{d}-1}
$$

with $c_{i} \in R$ and $\operatorname{deg}\left(c_{i}\right)=(d-i) q^{i}$ for $i=0, \ldots, d$ by Lemma
3.4. So the Newton polygon over L has vertexes

$$
\left(q^{i}-1, v_{Q^{\prime}}\left(c_{i}\right)\right)=\left(q^{i}-1,-(d-i) q^{i} e\left(P_{\infty}\right)\right),
$$

for $i=0,1, \ldots, d$. We apply the Lemma 3.2 to the segment I connecting $\left(0,-d e\left(P_{\infty}\right)\right)$ and $\left(q-1,-(d-1) q e\left(P_{\infty}\right)\right)$ so there are exactly $q-1$ roots $\alpha_{1}, \ldots, \alpha_{q-1} \in L^{a c}$ of $c(z)$ of valuation $e\left(P_{\infty}\right) \frac{q(d-1)-d}{q-1}$. But $q(d-1)-d \equiv d-1-d \equiv-1 \bmod q-1$ so $q-1 \mid e\left(P_{\infty}\right)$.

Let F be the completion of K respect to the valuation $v_{P_{\infty}}$. We apply Lemma 3.2 to the polynomial $c(z)$ over the field F. The polynomial $h(z)=\prod_{i=1}^{q-1}\left(z-\alpha_{i}\right)$ belongs to $F[z]$ and $h(z) \mid c(z)$. But the extension F / K is Galois so $c(z)$ splits in factors of degree $q-1$ and there are at least $\frac{q^{d}-1}{q-1}$ places in $K\left(\Lambda_{f}\right)$ over P_{∞}. It follows that $e\left(P_{\infty}\right)=q-1$.

Corollary 3.4. Let $f \in R$ be a monic irreducible polynomial and let $n>0$ be a positive integer. Then the place P_{∞} is partially ramified in $K\left(\Lambda_{f^{n}}\right) / K$. The inertia group $I\left(P_{\infty}\right)$ has order $e\left(P_{\infty}\right)=q-1$ and there are $\frac{u\left(f^{n}\right)}{q-1}$ places over P_{∞} so $f\left(P_{\infty}\right)=1$ and $I\left(P_{\infty}\right)=D\left(P_{\infty}\right)$. In particular the constant field of $K\left(\Lambda_{f^{n}}\right)$ is \mathbb{F}_{q}.

Proof. Similar to Corollary 3.3.

From now on, given a monic polynomial $f \in R$, we consider the subfield $K\left(\Lambda_{f}\right)^{I\left(P_{\infty}\right)}$ fixed by $I\left(P_{\infty}\right)$, where $I\left(P_{\infty}\right)$ is
the inertia group of P_{∞}. By the previous Corollary, the extension $K\left(\Lambda_{f}\right)^{I\left(P_{\infty}\right)} / K$ is a Galois extension of degree $\frac{u(f)}{q-1}$, unramified outside the finite places dividing f, such that the infinite place P_{∞} is completely split. In other words $K\left(\Lambda_{f}\right)^{I\left(P_{\infty}\right)}$ is the ray class field $K_{P_{\infty}}^{\mathfrak{f}}$, where $\mathfrak{f} \in \mathcal{D}_{K}$ is the positive part $(f)_{+}=(f)+\operatorname{deg}(f) P_{\infty}$ of the principal divisor (f).

Example 3.1. Let $q=2$ and $f=x^{3}+x+1$. Then
$y^{f}=y^{8}+\left(x^{4}+x^{2}+x\right) y^{4}+\left(x^{4}+x^{3}+x^{2}+1\right) y^{2}+\left(x^{3}+x+1\right) y$.

Let $z \in K^{a c}$ be a non-zero element in Λ_{f}. So

$$
z^{7}+\left(x^{4}+x^{2}+x\right) z^{3}+\left(x^{4}+x^{3}+x^{2}+1\right) z+\left(x^{3}+x+1\right)=0
$$

Then $K\left(\Lambda_{f}\right)=K_{P_{\infty}}^{\mathfrak{f}}=\mathbb{F}_{q}(x, z)$ and the function field extension $K_{P_{\infty}}^{\mathfrak{f}} / K$ has degree $u(f)=2^{3}\left(1-\frac{1}{8}\right)=7$. By the Hurwitz genus formula (2.1), the genus of $K_{P_{\infty}}^{f}$ is

$$
g=1-u(f)+\frac{1}{2} \operatorname{deg}(f)(u(f)-1)=3
$$

because the place \mathfrak{f} is totally ramified and the ramification is tame.

A similar construction holds when P_{∞} is not the infinite place. We will see in a later section that we can get finitely many different field extensions (see Theorem 4.1).

When K is not the rational function field, the previous construction can be generalized by means of the Drinfeld modules.

3.3 Drinfeld modules

In this section we generalize the previous results in order to construct a ray class field of an arbitrary function field K. For the proofs we refer to [8].

Let K be a function field over \mathbb{F}_{q} and let be P be a place of K. We assume that P is a rational place, otherwise we can extend the constant field. Let H / K be the maximal unramified extension of K such that the place P is completely split and let $\pi: H \rightarrow H$ be the Frobenius automorphism of H and let $H[\pi]$ the left twisted polynomial ring with coefficients in H and with multiplication given by the rule $\pi y=y^{p} \pi$ for all $y \in H$, where p is the characteristic of \mathbb{F}_{q}. For any polynomial $f(\pi) \in H[\pi]$ we denote by $D(f)$ the constant term $f(0) \in H$. We denote by R the ring

$$
R=\left\{y \in K \mid v_{Q}(y) \geq 0, \text { for any place } Q \neq P\right\} .
$$

Definition 3.9. A Drinfeld module of rank 1 is a ring morphism $\phi: R \rightarrow H[\pi]$ such that:

1. the image of ϕ contains at least one non-constant polynomial;
2. $D(\phi(y))=y$ for all $y \in R$;
3. the degree of the polynomial $\phi(y)$ is $-\log _{p}(q) v_{P}(y)$ for any $y \in R$.

It follows from the definition that a Carlitz module is a particular Drinfeld module with $K=H=\mathbb{F}_{q}(x)$ and $\phi(y)=\pi y+x y$.

As in the previous section we denote by $H^{a c}$ the algebraic closure of H. Then $H^{a c}$ is a $H[\pi]$-module with action induced by $\pi y=y^{p}$ for $y \in H^{a c}$. We can give to $H^{a c}$ an R-module structure by the map ϕ.

Let $\psi: H^{*} \rightarrow \mathbb{F}_{q}^{*}$ a group homomorphism such that ψ is the identity on \mathbb{F}_{q}^{*} and

$$
\psi\left(U_{P}^{(1)}\right)=1
$$

where $U_{P}^{(1)}$ is the 1-st unit group in P.

Definition 3.10. Let ϕ be a Drinfeld module and let M be an ideal of R. We define the M-torsion module

$$
\Lambda_{M}=\left\{y \in H^{a c} \mid \phi(M)(y)=0\right\}
$$

As in previous section the module Λ_{M} is a finite R-module isomorphic to R / M. The corresponding function field extension
$H\left(\Lambda_{M}\right) / H$ has degree $\left[H\left(\Lambda_{M}\right): H\right]=\left|(R / M)^{*}\right|$ (see [8] or [13], Chapter 3, for more details). It turn out that $H\left(\Lambda_{M}\right) / K$ is a finite extension of degree $h\left(q^{\operatorname{deg}(M)}-1\right)$, where h is the degree of [$H: K$] and $\operatorname{deg}(M)$ is the sum

$$
\sum_{P \mid M} v_{P}(M) \operatorname{deg}(P)
$$

over the prime ideal dividing M. The places of K not dividing M and different from P are unramified. Let $I=I(P) \subset$ $\operatorname{Gal}\left(H\left(\Lambda_{M}\right) / K\right)$ be the inertia group of P. Then I has exactly $q-1$ elements and the subfield fixed by I is a finite extension of K of degree $h \frac{d^{d e g}(M)-1}{q-1}$ unramified outside the places dividing M and such that P is totally split.

The following Theorem resumes all the previous results (see [2] Chapter 2, Section 5).

Theorem 3.3. Let K be a function field over the constant field \mathbb{F}_{q} of genus g_{K} and let h_{K} be the divisor class number of K. Let S be a place of degree d and $\mathfrak{m}=\sum_{i=1}^{k} m_{i} P_{i}$ be an effective divisor of K where P_{i} are distinct places of degree n_{i} for $i=1, \ldots, k$ such that $S \notin \operatorname{Supp}(\mathfrak{m})$ and $k \geq 0$ is a non negative integer (we set $\mathfrak{m}=0$ when $k=0)$. Then the ray class field $K_{S}^{\mathfrak{m}}$ is a function
field over $\mathbb{F}_{q^{d}}$. The degree $\left[K_{S}^{\mathfrak{m}}: K\right]$ is equal to

$$
d h_{K} \prod_{i=1}^{k} \frac{\left(q^{n_{i}}-1\right) q^{\left(m_{i}-1\right) n_{i}}}{q-1}
$$

if $k>0$ and $d h_{K}$ otherwise. The genus $g_{K_{S}^{\mathrm{m}}}$ of $K_{S}^{\mathfrak{m}}$ is given by

$$
\begin{equation*}
g_{K_{S}^{\mathrm{m}}}=1+h_{K}\left(g_{K}-1\right) \tag{3.3}
\end{equation*}
$$

if $\operatorname{deg}(\mathfrak{m}) \leq 1$,

$$
\begin{equation*}
g_{K_{S}^{\mathrm{m}}}=1+\frac{h_{K}\left(q^{n}-1\right)\left(g_{K}-1\right)}{q-1}+\frac{h_{K} n\left(q^{n}-q\right) q^{n(m-1)}}{2(q-1)} \tag{3.4}
\end{equation*}
$$

if $k=1$, the degree of P is n and $\mathfrak{m}=m P$ with $\operatorname{deg}(\mathfrak{m})>1$,
$g_{K_{S}^{\mathrm{m}}}=1+\frac{h_{K} \prod_{i}\left(q^{n_{i}}-1\right)}{2(q-1)}\left(2 g_{K}-2+\operatorname{deg}(\mathfrak{m})-\sum_{i} \frac{\operatorname{deg}\left(P_{i}\right) q^{\left(m_{i}-1\right) n_{i}}}{q^{n_{i}}-1}\right)$,
otherwise.

Chapter 4

Ray class fields

In the sequel K is a function field with constant field \mathbb{F}_{q}.
It is a well-known fact that the maximal unramified abelian extension of K is infinite because it contains all the possible constant field extension. From now on we consider only unramified abelian extensions of K with constant field \mathbb{F}_{q}. Let $h=h_{K}$ be the divisor class number of K. Then h is the degree of every maximal unramified abelian extension of K with constant field \mathbb{F}_{q}. There are exactly h such extensions of K (see [1], Chapter 8$)$. We denote them by $K_{1}^{0}, \ldots, K_{h}^{0}$.

In this section we prove a similar result concerning also ramified extensions and point out some consequences.

Theorem 4.1. Let $\mathfrak{m}=\sum_{i=1}^{t} m_{i} P_{i}$ be an effective divisor and
let n_{i} be the degree of P_{i} for $i=1, \ldots, t$. We set $\mathfrak{m}=0$ if $t=0$. Let $d=\frac{h_{K}}{q-1} \prod_{i=1}^{t}\left(q^{n_{i}}-1\right) q^{\left(m_{i}-1\right) n_{i}}$ if $t>0$ and $d=h_{K}$ otherwise. Then there are exactly d abelian extensions of K of degree d with conductor \mathfrak{m} and constant field \mathbb{F}_{q}.

As before we denote such extensions by $K_{1}^{\mathfrak{m}}, \ldots, K_{d}^{\mathfrak{m}}$. There is no conflict with the previous notation because the result concerning unramified extensions can be seen as a special case of the previous Theorem.

Proof. In order to apply the Artin reciprocity Theorem 3.1 we construct suitable subgroups of the Class group C_{K}.

Let U_{0} be the subset of J_{K} given by

$$
U_{0}=\left\{\left(x_{P}\right)_{P \in \mathcal{P}_{K}} \in J_{K} \mid x_{P} \in \hat{U}_{P}^{*} \text { for all places } P \in \mathcal{P}_{K}\right\}
$$

and let $U_{\mathfrak{m}}$ be the subset of U_{0} given by

$$
U_{\mathfrak{m}}=\left\{\left(x_{P}\right)_{P \in \mathcal{P}_{K}} \in U_{0} \mid x_{P} \equiv 1 \quad \bmod t_{i}^{m_{i}} \text { for all } i=1, \ldots, t\right\}
$$

where t_{i} is an uniformizer at P_{i} for $i=1, \ldots, t$. As before we set $U_{\mathfrak{m}}=U_{0}$ if $\mathfrak{m}=0$. The field K^{*} is canonically embedded in J_{K}. We denote it again with K^{*}. Let $C_{\mathfrak{m}}=U_{\mathfrak{m}} /\left(K^{*} \cap U_{\mathfrak{m}}\right)$ be the classes of $U_{\mathfrak{m}}$ in C_{K}.

Let D_{0} be the subgroup of C_{K} of classes of ideles $x=\left(x_{P}\right)_{P \in \mathcal{P}_{K}}$ such that the divisor

$$
\operatorname{Div}(x)=\sum_{P \in \mathcal{P}_{K}} v_{P}\left(x_{P}\right) P
$$

has degree 0 . It follows from the definition of idele that $\operatorname{Div}(x)$ is a finite sum for all non zero $x \in J_{K}$ and D_{0} is well-defined because the principal divisors have degree 0 . Moreover $U_{0} \subseteq D_{0}$.

The following sequence is exact (see [1], Chapter 8):

$$
\begin{equation*}
0 \rightarrow D_{0} \rightarrow C_{K} \rightarrow \mathbb{Z} \rightarrow 0 \tag{4.1}
\end{equation*}
$$

where the map $C_{K} \rightarrow \mathbb{Z}$ is the degree of the divisor and it is surjective by the Schmidt Theorem (see [15], Chapter V). Let D be a divisor of degree 1 . It is very easy to construct a class $x \in J_{K}$ such that $\operatorname{Div}(x)=D$. Let $[x] \in C_{K}$ be the class of x in C_{K}. The subgroup generated by $C_{\mathfrak{m}} \cup[x]$ in C_{K} has finite index $c=\left|D_{0} / C_{\mathfrak{m}}\right|=\frac{h_{K}}{q-1} \prod_{i=1}^{t}\left(q^{n_{i}}-1\right) q^{\left(m_{i}-1\right) n_{i}}$ if $t>0$ and $c=h_{K}$ if $t=0$. In particular $c=d$. Let a_{1}, \ldots, a_{d} be the representatives of the cosets of G in $D_{0} / C_{\mathfrak{m}}$. Then the subgroups B_{i} of C_{K} generated by $C_{\mathfrak{m}} \cup\left([x]+a_{i}\right)$ are d distinct subgroups of C_{K} of index d such that the image onto \mathbb{Z} in (4.1) is surjective.

Let $K_{1}^{\mathrm{m}}, \ldots, K_{d}^{\mathrm{m}}$ be the function fields corresponding to the subgroups B_{1}, \ldots, B_{d} by the Artin map. By Theorem 3.1 they
are abelian extensions of K of degree d. The constant field is \mathbb{F}_{q} by Theorem 3.1 because B_{i} contains the element $[x]+a_{i}$ of degree 1 for $i=1, \ldots, d$ and so it is not contained in the norm group $\mathcal{N}_{K}^{\mathbb{F}_{q_{j}} K}$ for any $j>1$. Moreover they are unramified outside \mathfrak{m} by Theorem 3.2.

We show that $K_{1}^{\mathfrak{m}}, \ldots, K_{d}^{\mathfrak{m}}$ are all the abelian extensions of K satisfying the hypothesis of the Theorem. Let L / K be an other such extension and let G be the Galois group of L / K. Let M be the norm group \mathcal{N}_{K}^{L}. By Theorem $3.1 G$ is isomorphic to C_{K} / M and M is a subgroup of C_{K} of index d containing $C_{\mathfrak{m}}$ such that there is an idele $y \in J_{K}$ such that the class $[y]$ is in M and $\operatorname{deg}(\operatorname{Div}(y))=1$. Then $D-\operatorname{Div}(y)$ has degree 0 and so $[x]-[y]$ belongs to one coset $a_{i}+C_{\mathfrak{m}}$ for a suitable $i \in\{1,2, \ldots, d\}$. But $M^{\prime}=C_{\mathfrak{m}} \cup[y]$ is a subgroup of $M \cap B_{i}$ and the index of M^{\prime} in C_{K} is d so $M=M^{\prime}=B_{i}$ and $L \cong K_{i}^{\mathfrak{m}}$.

Remark 4.1. The proof of the previous Theorem shows that the extensions $K_{1}^{\mathfrak{m}}, K_{2}^{\mathfrak{m}}, \ldots, K_{d}^{\mathfrak{m}}$ of K are all contained in the constant field extension of degree d of any one of them, say $K_{1}^{\mathfrak{m}} \mathbb{F}_{q^{d}}$. In fact the compositum of function fields $K_{i}^{\mathfrak{m}} K_{j}^{\mathfrak{m}}$ corresponds to the intersections $B_{i, j}=B_{i} \cap B_{j}$ in C_{K} by the Artin reciprocity map
for $i, j \in\{1, \ldots, d\}$. The image of the valuation of $B_{i, j}$ by the degree map in (4.1) is a subgroup of \mathbb{Z} of finite index $d^{\prime} \mid d$. In particular $K_{i}^{\mathfrak{m}} K_{j}^{\mathfrak{m}}=K_{i}^{\mathfrak{m}} \mathbb{F}_{q^{d^{\prime}}}$.

Remark 4.2. When the quotient group $D_{0} / C_{\mathfrak{m}}$ is cyclic we can say something more about the subextensions of $K_{i}^{\mathfrak{m}}$ containing K for $i=1, \ldots, d$. In fact let l be a divisor of d. Then there is only one subgroup G of $D_{0} / C_{\mathfrak{m}}$ of index l. Let g_{1}, \ldots, g_{l} be the cosets representatives of G in $D_{0} / C_{\mathfrak{m}}$. We denote by F_{i} the fields corresponding by the Artin reciprocity map to the subgroups G_{i} of C_{K} generated by $G \cup\left([x]+g_{i}\right)$ for $i=1, \ldots, l$. The field extensions F_{i} / K are all the abelian extensions of degree l unramified outside \mathfrak{m} with constant field \mathbb{F}_{q} for $i=1, \ldots, l$.

Corollary 4.1. Let \mathfrak{m} be an effective divisor and d a positive integer as in the previous Theorem. Let P be a place of K of degree d^{\prime}, let $l=\operatorname{gcd}\left(d, d^{\prime}\right)$ be a positive integer and $P_{i} \mid P$ be a place of $K_{i}^{\mathfrak{m}}$ over P for $i \in\{1, \ldots, d\}$. If $D_{0} / C_{\mathfrak{m}}$ is a cyclic group then $f\left(P_{i} \mid P\right)=1$ in at most l such extensions $K_{i}^{\mathfrak{m}} / K$.

Proof. Assume that the place P is totally split in $K_{i}^{\mathfrak{m}} / K$ for at least one $i \leq d$, otherwise the proof would be trivial. Then P is split in $K_{j}^{\mathfrak{m}} / K$ for $j \neq i$ if and only if P is totally split in
the compositum $K_{i}^{\mathfrak{m}} K_{j}^{\mathfrak{m}} / K$. But $K_{i}^{\mathfrak{m}} K_{j}^{\mathfrak{m}} / K=K_{i}^{\mathfrak{m}} \mathbb{F}_{q^{a}} / K$ for a suitable integer $a \mid d$ by the previous Remark. By the properties of the constant field extensions this is possible only when $a \mid d^{\prime}$ and so $a \mid l$ and so $K_{j}^{\mathfrak{m}} \subseteq K_{i}^{\mathfrak{m}} \mathbb{F}_{q^{l}}$.

It follows from the proof of the previous Theorem that $l \cdot([x]+$ $\left.a_{i}\right) \subseteq B_{j}$ and so $l \cdot\left(a_{i}-a_{j}\right) \in C_{\mathfrak{m}}$ and the class of $l \cdot a_{j}$ in the quotient group $D_{0} / C_{\mathfrak{m}}$ is the class of $l \cdot a_{i}$. It is very easy to see that when $D_{0} / C_{\mathfrak{m}}$ is a cyclic group generated by g the only classes a_{j} such that the class of $l \cdot a_{j}$ is the same class of $l \cdot a_{i}$ are the classes of the elements $a_{i}+\frac{t d}{l} \cdot g$ for $t=0, \ldots, l-1$ so there are at most l such classes $a_{j} \in D_{0} / C_{\mathfrak{m}}$ and there are at most l corresponding fields extensions by the previous Theorem.

Remark 4.3. When $D_{0} / C_{\mathfrak{m}}$ is not a cyclic group the Theorem does not hold. As an example consider \mathfrak{m} be a sum of two places of degree m of the rational function field $\mathbb{F}_{q}(x)$. Then a place P of degree d^{\prime} with $\left.\frac{q^{m}-1}{q-1} \right\rvert\, d^{\prime}$ can be split in all the d extensions $K_{i}^{\mathfrak{m}} / K$ where $d=\frac{\left(q^{m}-1\right)^{2}}{q-1}$.

The previous Corollary can be generalized in the following result.

Corollary 4.2. Assume the quotient group $D_{0} / C_{\mathfrak{m}}$ be cyclic as in

Corollary 4.1 and let s be a prime dividing d and let t the maximal power of s dividing d. Let F_{i} / K be the extensions of degree t for $i=1, \ldots, t$ as in the Remark 4.2. Let P be a place of K of degree d^{\prime} and $P_{i} \mid P$ be a place of F_{i} over P. Let l be the $\operatorname{gcd}\left(d^{\prime}, t\right)$ and let $c \geq 0$ be the exponent such that $\frac{t}{l}=s^{c}$. Assume $c \geq 1$. Then for each positive integer $j \leq c$, the integer s^{j} divides $f\left(P_{i} \mid P\right)$ in at least $l\left(s^{c}-s^{j-1}\right)$ such extensions F_{i} / K.

Proof. Let j^{\prime} denote the number $l s^{c-j+1}$ and $E_{1} / K, \ldots, E_{j^{\prime}} / K$ be the extensions of K unramified outside \mathfrak{m} of degree j^{\prime} over K by Corollary 4.1. If $s^{j} \not \backslash f\left(P_{i} \mid P\right)$ for a certain $i \in\{1, \ldots, t\}$ then the Frobenius $\operatorname{Frob}(P)$ of P in F_{i} / K has order dividing s^{j-1}. Let $E_{i^{\prime}} / K$ be the only subfield of F_{i} of degree j^{\prime} over K and let $P_{i^{\prime}}^{\prime}$ be the place under P_{i} in $E_{i^{\prime}}$. Then $\operatorname{Frob}\left(P_{i^{\prime}}^{\prime}\right)=\operatorname{Frob}\left(P_{i}\right)^{j-1}=1$ so $f\left(P_{i^{\prime}}^{\prime} \mid P\right)=1$. By Corollary 4.1 there are at most l such extensions E_{i} / K such that $f\left(P_{i}^{\prime} \mid P\right)=1$, say, $E_{1} / K, \ldots, E_{l} / K$. There are exactly s^{j-1} extensions F_{i} / K over each $E_{i^{\prime}}$ so $s^{j} \chi f\left(P_{i} \mid P\right)$ in at most $l s^{j-1}$ extensions F_{i} / K and the Corollary follows.

4.1 An other proof of the Clark Elkies bound

When K is the rational field $\mathbb{F}_{q}(x)$, we get as a Corollary a result similar to the one of Clark and Elkies cited in [9].

In what follows we denote by a_{d} the number of places of $\mathbb{F}_{q}(x)$ of degree d. Of course we have $\sum_{d<n} a_{d} \leq 1+\sum_{d=1}^{n} \frac{q^{d}}{d} \leq \frac{q^{n}-1}{q-1}$ but this bound is too rough.

Lemma 4.1. The number of places of $\mathbb{F}_{q}(x)$ of degree strictly smaller than n is at most $q \cdot \frac{q^{n}}{n}$ when $n \geq 1$.

Proof. We prove it by induction over n. When $n=1$ the result is trivial. When $n=2$ we have

$$
a_{1}=q+1 \leq \frac{q(q+1)}{2} \leq q \cdot \frac{q^{2}}{2}
$$

and the result holds for every $q \geq 2$. When $n=3$ there are

$$
a_{1}+a_{2}=q+1+\frac{q^{2}-q}{2}=\frac{q^{2}+q+2}{2} \leq q \cdot \frac{q^{3}}{3}
$$

places of degree smaller than 3 and the result still holds when $q \geq 2$.

Suppose that $\sum_{d<n} a_{d} \leq q \cdot \frac{q^{n}}{n}$, then

$$
\sum_{d<n+1} a_{d} \leq q \cdot \frac{q^{n}}{n}+\frac{q^{n}}{n}=(q+1) \frac{q^{n}}{n} \leq q \cdot \frac{q^{n+1}}{n+1}
$$

when $n \geq 3$.

Corollary 4.3. For any finite field \mathbb{F}_{q} there is a positive integer n_{0} such that, for any $n>n_{0}$, there is a projective curve over \mathbb{F}_{q} of genus $g<\frac{(n-2) q^{n}}{2(q-1)}$ without points of degree strictly smaller than n.

Proof. Let \mathfrak{m} be a finite place of $K=\mathbb{F}_{q}(x)$ of degree $n>1$ corresponding to the polynomial $f \in \mathbb{F}_{q}[x]$ and let $d=\frac{q^{n}-1}{q-1}$. The quotient group $D_{0} / C_{\mathfrak{m}}$ is isomorphic to $\mathbb{F}_{q}[x]^{*} /(f)$ (see also [14], Chapter 1). In particular $D_{0} / C_{\mathfrak{m}}$ is a cyclic group. By Remark 4.2 there are d distinct totally ramified subextensions $K_{i}^{\mathfrak{m}}$ of K of degree d with constant field \mathbb{F}_{q} for $i=1, \ldots, d$.

We count the number of ray class field extensions $K_{i}^{\mathfrak{m}} / K$ with at least one partially split place P of degree $\operatorname{deg}(P)<n$ and $f\left(P_{i} \mid P\right)<\frac{n}{\operatorname{deg}(P)}$ where P_{i} is a place of $K_{i}^{\mathfrak{m}}$ over P.

Let t be a positive integer smaller than n such that $t \mid d$. Let P be a place of K of degree $d^{\prime}<n$ and let $l=\operatorname{gcd}\left(t, d^{\prime}\right)$. By Corollary 4.1 there are at most l extensions $K_{i}^{\mathfrak{m}} / K$ for $i=1, \ldots, d$ such that P is totally split in a subextension of degree t and so $f\left(P_{i} \mid P\right) \leq \frac{d}{t}$. We sum the number of all these possible subextensions with (potentially) at least one place of degree smaller than n for all P of degree d^{\prime} and t dividing d. There are at most $\frac{q \cdot q^{n / t}}{n / t}$
places of degree smaller than $\frac{n}{t}$ so there is at least one $K_{i}^{\mathfrak{m}}$ without place of degree smaller than n whenever

$$
\begin{equation*}
\sum_{t \mid k, t<n} \sum_{d^{\prime}=1}^{[n / t]} \operatorname{gcd}\left(t, d^{\prime}\right) a_{d^{\prime}}<d \tag{4.2}
\end{equation*}
$$

But the last formula holds when n is large because the left hand side in (4.2) is smaller than

$$
\begin{gathered}
\sum_{t \mid k, t<n} t \cdot \frac{q \cdot q^{n / t}}{n / t} \leq \\
\frac{q \cdot q^{n}}{n}+\sum_{t=2}^{n-1} t \cdot \frac{q \cdot q^{n / t}}{n / t} \leq \\
\frac{q \cdot q^{n}}{n}+2 q(n-2) \frac{q^{n / 2}}{n / 2}
\end{gathered}
$$

where the last inequality follows from

$$
t \cdot \frac{q^{n / t}}{n / t} \leq 2 \cdot \frac{q^{n / 2}}{n / 2}
$$

whenever $t \geq 2$ and n is large. In particular we get

$$
\sum_{t \mid k, t<n} \sum_{d^{\prime}=1}^{[n / t]} \operatorname{gcd}\left(d^{\prime}, t\right) a_{d^{\prime}} \leq \frac{q \cdot q^{n}}{n}+4 q \cdot q^{n / 2}<\frac{q^{n}-1}{q-1}=d
$$

when n is large.
The divisor class number of the rational function field is $h_{K}=$ 1, by the Hurwitz genus formula (2.1), so the genus g of $K_{i}^{\mathfrak{m}}$ may be computed by the formula (3.4)
$g=1-\frac{q^{n}-1}{q-1}+\frac{n\left(q^{n}-q\right)}{2(q-1)}=\frac{n q^{n}-2 q^{n}-n q+2 q}{2(q-1)}<\frac{(n-2) q^{n}}{2(q-1)}$.

The result now follows.

Remark 4.4. It is very easy to estimate the integer n_{0}. In fact one can prove that $n_{0}=\left[6 \log _{q}(9 / 4)\right]<14$ is a possible value of n_{0}.

Example 4.1. Let $q=2$ and $n=2$. Let \mathfrak{m} be the place

$$
\mathfrak{m}=\left(x^{3}+x+1\right)
$$

of $K=\mathbb{F}_{2}(x)$. There are 7 distinct, totally ramified at \mathfrak{m}, subextensions $K_{i}^{\mathfrak{m}} / K$ of degree 7 with constant field \mathbb{F}_{2}. These fields, up to the order, satisfy $K_{i}^{\mathrm{m}} \subseteq K_{S_{i}}^{\mathrm{m}}$ where $S_{1}=\{(x)\}, S_{2}=\{(x+1)\}$, $S_{3}=\left\{\left(x^{2}+x+1\right)\right\}, S_{4}=\left\{\left(x^{4}+x+1\right)\right\}, S_{5}=\left\{\left(x^{4}+x^{3}+1\right)\right\}$, $S_{6}=\left\{\left(x^{4}+x^{3}+x^{2}+x+1\right)\right\}$ and $S_{7}=\left\{\left(\frac{1}{x}\right)\right\}$ is the infinite place.

The reader can easily check that all the places of degree prime to 7 split exactly in one of the extensions K_{i}^{m} given above, see also the following Example. We have already seen in the Example 3.1 that the genus of K_{i}^{m} is 3 for $i=1, \ldots, 7$.

In this manner we obtain three distinct curves (corresponding to the function fields $K_{4}^{\mathrm{m}}, K_{5}^{\mathrm{m}}$ and K_{6}^{m}) of genus 3 without points of degree 1 or 2 . These examples of curves without points of degree 1 or 2 are the one with the smallest genus.

Example 4.2. In the previous Example we check that the place $P=\left(x^{3}+x^{2}+1\right)$ is split in $K_{3}^{\mathfrak{m}} / K$. Let $z \in \hat{K}_{P}^{*} \subseteq J$ be the element

$$
z=\frac{\left(x^{3}+x^{2}+1\right)^{2}}{\left(x^{2}+x+1\right)^{3}}
$$

By the local Artin map z corresponds to

$$
\operatorname{Frob}(P)^{v_{P}(z)}=\operatorname{Frob}(P)^{2} \in D(P) \subseteq G a l\left(K_{3}^{\mathfrak{m}} / K\right)
$$

because P is unramified in $K_{3}^{\mathfrak{m}} / K$. By Proposition 2.2 it is enough to see that $\operatorname{Frob}(P)$ is the trivial automorphism but z is in the kernel of the Artin map via the embedding $\hat{K}_{P}^{*} \subseteq J_{K}$ because $z \equiv 1 \bmod x^{3}+x+1$ so $[z]$, the class of z in C_{K}, belongs to $C_{S_{3}}^{\mathfrak{m}}$ as in Definition 3.6. So the Frobenius automorphism at P is trivial. The result follows from Proposition 2.2.

Example 4.3. Let $q=2$ and $n=4$. Let \mathfrak{m} be the place $\left(x^{4}+\right.$ $x+1)$ of $K=\mathbb{F}_{2}(x)$. A similar argument as in Example 4.1 above shows that the ray class field of conductor \mathfrak{m} with constant field \mathbb{F}_{2} such that the place $P=\left(x^{7}+x^{4}+1\right)$ splits completely gives a function field of genus 14 without points of degree smaller than n. This is not the best possible, in fact the subextension $F \subseteq K_{P}^{\mathfrak{m}}$ of degree 5 over K has the same property but the genus is 4 . This is the best possible example when $n=3$ and $q=2$.

Chapter 5

A refinement of the Clark-Elkies

bound

We can improve the result of Corollary 4.3 for large n by considering Carlitz modules with conductor given by a sum of different places.

In the sequel we assume that $K=\mathbb{F}_{q}(x)$ is the rational function field over \mathbb{F}_{q}. As in the previous section the number of places of degree t of K is denoted by a_{t} for any integer $t>0$.

The next Lemma shows that there are many function fields without places of small degree when we consider the compositum of several ray class field extension of K.

Lemma 5.1. Let $C_{1}>0$ and $C_{2}>0$ be two positive constants (not depending on n) with $C_{2}<1$. Let $m>\log _{q}(n)$ be a prime number and let $\alpha \leq a_{m}$ be a positive integer. Let $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{\alpha}$ be distinct places of K of degree m and $\mathfrak{m}=\sum_{i=1}^{\alpha} \mathfrak{q}_{i}$. Let $d=$ $\frac{\left(q^{m}-1\right)^{\alpha}}{q-1}$. Let $K_{1}^{\mathfrak{m}}, \ldots, K_{d}^{\mathfrak{m}}$ be the abelian extensions of degree d unramified outside \mathfrak{m} as in Theorem 4.1.

Then there is a constant n_{0} such that when $n>n_{0}$ and $\alpha>$ $C_{1} \frac{n}{\log _{q}(n)}$ then there are at least $C_{2} d$ function field extensions $K_{i}^{\mathfrak{m}}$ of K such that the inertia index $f\left(P_{i} \mid P\right)$ is greater than $\frac{n}{\operatorname{deg}(P)}$ whenever P is a place of K of degree $\operatorname{deg}(P)<\frac{n}{\log _{q}(n)}$ and P_{i} is a place of K_{i}^{m} over P.

In the proof we use an elementary and well known Lemma.

Lemma 5.2. Let s and m be odd prime numbers and let q be a prime power such that $s \left\lvert\, \frac{q^{m}-1}{q-1}\right.$ but $s \not \backslash q-1$. Then $s=2 a m+1$ for a suitable integer $a>0$. In particular $s>2 m$.

Corollary 5.1. There is a constant $c_{q}>0$ such that when $m>c_{q}$ is a prime then there are at most m distinct primes dividing $\frac{q^{m}-1}{q-1}$ and these primes are all greater than $2 m$.

Proof of Lemma 5.1. Let $i \in\{1, \ldots, d\}$ such that $K_{i}^{\mathfrak{m}} / K$ is a function field extension with $f\left(P_{i} \mid P\right)<\frac{d}{\operatorname{deg}(P)}$ for at least one place P of K of degree smaller than $\frac{n}{\log _{q}(n)}$. As in the proof of Corollary 4.3 we estimate the number of such extensions.

Let k be the integer $\frac{q^{m}-1}{q-1}$ and let t be a prime power dividing k. Consider the subextensions of $K_{i}^{\mathfrak{q}_{j}} \subseteq K_{i}^{\mathfrak{m}}$ totally ramified in \mathfrak{q}_{j} of degree t for $j \in\{1, \ldots, \alpha\}$. Let P be an unramified place of K of degree $d^{\prime}<\frac{n}{\log _{q}(n)}$ and let $P_{i, j}$ be the place of $K_{i}^{\mathfrak{q}_{j}}$ under P_{i} with $P_{i, j} \mid P$. Of course $f\left(P_{i, j} \mid P\right) \mid f\left(P_{i} \mid P\right)$.

Assume that $f\left(P_{i, j} \mid P\right)<\frac{n}{t}$ for a certain $j \in\{1, \ldots, \alpha\}$. Let $l=\operatorname{gcd}\left(t, d^{\prime}\right)$. It is easy to see, multiplying all the maximal prime power t dividing k, that if for every prime power divisor t of k the number $\frac{t}{l}$ divides $f\left(P_{i, j} \mid P\right)$ for at least one $j \leq \alpha$ then

$$
k \mid f\left(P_{i} \mid P\right) \operatorname{gcd}\left(k, d^{\prime}\right)
$$

and so

$$
f\left(P_{i} \mid P\right) \geq \frac{n}{d^{\prime}}
$$

because $k>n$ and $d^{\prime} \geq \operatorname{gcd}\left(k, d^{\prime}\right)$.
It follows that there is at least one prime power t dividing k such that $\frac{t}{l} \backslash f\left(P_{i, j} \mid P\right)$ for all $j=\{1, \ldots, \alpha\}$. For this reason, given a prime power t dividing k, it will be enough to estimate only the number of extensions $K_{i}^{\mathfrak{m}} / K$ such that $\frac{t}{l} \not \backslash f\left(P_{i, j} \mid P\right)$ for every $j=1, \ldots, \alpha$.

Let t be a prime power of the prime s. The extensions $K_{i}^{\mathfrak{q}_{j}} / K$ are cyclic for $j \in\{1, \ldots, \alpha\}$. By Corollary 4.2 there are at most $\frac{t}{s}$ that $\frac{t}{l} \times f\left(P_{i, j} \mid P\right)$.

It follows that there are at most

$$
\left(\frac{k}{s}\right)^{\alpha}
$$

extensions $K_{i}^{\mathfrak{m}} / K$ such that $\frac{t}{l} \not \backslash f\left(P_{i} \mid P\right)$ when P is unramified.
Now we consider the case $P=\mathfrak{q}_{h}$, for a certain $h \in\{1, \ldots, \alpha\}$, is a ramified place. We consider $\mathfrak{m}^{\prime}=\mathfrak{m}-P$. For a similar reasoning as above we get at most

$$
\left(\frac{k}{s}\right)^{\alpha-1}
$$

extensions $K_{j}^{\mathfrak{m}^{\prime}}$ for $j \in\left\{1, \ldots, \frac{\left(q^{m}-1\right)^{\alpha-1}}{q-1}\right\}$ such that $f\left(P_{j}^{\prime} \mid P\right)<$ $\frac{n}{\operatorname{deg}(P)}$, where P_{j}^{\prime} is a place of $K_{j}^{\mathfrak{m}^{\prime}}$ over P. But $K_{j}^{\mathfrak{m}^{\prime}} \subseteq K_{i}^{\mathfrak{m}}$ for $q^{m}-1$ suitable $i \in\{1, \ldots, d\}$ and $f\left(P_{j}^{\prime} \mid P\right) \leq f\left(P_{i} \mid P\right)$ so there are at most

$$
\left(q^{m}-1\right) \frac{k^{\alpha-1}}{s^{\alpha-1}}
$$

extensions $K_{i}^{\mathfrak{m}} / K$ of K with $f\left(P_{i} \mid P\right)<\frac{n}{\operatorname{deg}(P)}$ when $P \in \operatorname{Supp}(\mathfrak{m})$ is ramified.

Now we sum the number of all such extensions for all the places P of K, ramified or not, of degree smaller than $\frac{n}{\log _{q}(n)}$ and for all prime $s \mid k$. So we prove the following inequality:

$$
\begin{equation*}
\sum_{s \mid k} \sum_{i=1}^{\alpha}\left(q^{m}-1\right) \frac{k^{\alpha-1}}{s^{\alpha-1}}+\sum_{\operatorname{deg}(P)<\frac{n}{\log _{q}(n)}} \sum_{s \mid k} \frac{k^{\alpha}}{s^{\alpha}}<\left(1-C_{2}\right) k^{\alpha} \tag{5.1}
\end{equation*}
$$

where P runs over the unramified places of K of degree smaller than $\frac{n}{\log _{q}(n)}$. The left hand side in (5.1) is bounded by

$$
\begin{equation*}
\alpha \sum_{s \mid k}(q-1) \frac{k^{\alpha}}{s^{\alpha-1}}+q^{\frac{n}{\log _{q}(n)}} \sum_{s \mid k} \frac{k^{\alpha}}{s^{\alpha}} \tag{5.2}
\end{equation*}
$$

So we prove that

$$
\begin{equation*}
\alpha \sum_{s \mid k} \frac{q-1}{s^{\alpha-1}}+q^{\frac{n}{\log _{q}(n)}} \sum_{s \mid k} \frac{1}{s^{\alpha}}<1-C_{2} . \tag{5.3}
\end{equation*}
$$

By Corollary 5.1 there are at most m distinct prime numbers s dividing k and all such s are greater than $2 m$ by Lemma 5.2 when m is large so the left hand side in (5.3) is smaller than $1-C_{2}$ whenever

$$
m \alpha \frac{1}{(2 m)^{\alpha-1}}+m q^{\log _{q}(n)} \frac{1}{(2 m)^{\alpha}}<1-C_{2}
$$

or, equivalently,

$$
(2 m)^{\alpha}>\frac{m}{1-C_{2}}\left(2 m \alpha+q^{\frac{n}{\log _{q}(n)}}\right)
$$

or also

$$
\alpha \log _{q}(2 m) \geq \log _{q}\left(q^{\frac{n}{\log _{q}(n)}}+2 m \alpha\right)+\log _{q}\left(\frac{m}{1-C_{2}}\right)
$$

It is very easy to check the last inequality in fact the right hand side is smaller than

$$
\frac{n}{\log _{q}(n)}+\log _{q}(2 m \alpha)+\log _{q}\left(\frac{m}{1-C_{2}}\right)
$$

because the logarithm is a convex function and

$$
\alpha \log _{q}(2 m) \geq \frac{n}{\log _{q}(n)}+\log _{q}(2 m \alpha)+\log _{q}\left(\frac{m}{1-C_{2}}\right)
$$

when n is large because $\alpha>C_{1} \frac{n}{\log _{q}(n)}$ by hypothesis.
This ends the proof because $d>k^{\alpha}$.

The proof of the following Lemma follows directly by the Hurwitz genus formula (2.1). It is a generalization of (3.5).

Lemma 5.3. Let $K=\mathbb{F}_{q}(x)$ and let $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{h}$ be distinct places of K of degree t_{1}, \ldots, t_{h} respectively. Let p_{1}, \ldots, p_{h} be positive integers such that $p_{i} \frac{q^{t_{i-1}}}{q-1}$ for $i=1, \ldots, h$. Let F_{i} / K be ray class field extensions of degree p_{i} totally ramified in \mathfrak{q}_{i} for $i=1, \ldots, h$. Then the genus g_{L} of the compositum field $L=F_{1} \cdots F_{h}$ is smaller than

$$
g_{L} \leq \frac{1}{2} \sum_{i=1}^{h} t_{i} \prod_{j=1}^{h} p_{j}
$$

Proposition 5.1. Let m and l be distinct prime numbers with l and m greater than $3 \log _{q}(n)$ and let α and β be positive integers
with $\alpha \leq a_{m}$ and $\beta \leq a_{l}$. Let $C_{1}>0$ be a real constant and let $C_{2}>0$ be a real constant with $C_{2}<1$ as in Proposition 5.1. Let $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{\alpha}\left(\right.$ resp. $\left.\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{\beta}\right)$ be distinct places of K of degree m (resp. l) with $\alpha>C_{1} \frac{n}{\log _{q}(n)}$. Let \mathfrak{m} be the effective divisor $\sum_{i=1}^{\alpha} \mathfrak{q}_{i}+\sum_{j=1}^{\beta} \mathfrak{p}_{j}$. Let k_{1} and k_{2} be the integers $\frac{q^{m}-1}{q-1}$ and $\frac{q^{l}-1}{q-1}$ respectively and $d=\frac{\left(q^{m}-1\right)^{\alpha}\left(q^{l}-1\right)^{\beta}}{q-1}$. Assume that k_{1} and k_{2} are both prime to $q-1$.

Then there is an integer n_{0} such that when $n>n_{0}$ and

$$
\frac{C_{2}}{2} d>\frac{q \cdot q^{n}}{n}
$$

there is a function field extension $K_{i}^{\mathfrak{m}} / K$ for a certain $i \in\{1, \ldots, d\}$ without places of degree smaller than n.

Proof. We may assume that l and m are smaller than $\frac{n}{\log _{q}(n)}$ otherwise the proof is more easy. By Lemma 5.1 there are at least $C_{2} d$ function field extensions $K_{i}^{\mathfrak{m}} / K$ for $i=1, \ldots, d$ such that $\operatorname{deg}(P) f\left(P_{i} \mid P\right) \geq n$ whenever $\operatorname{deg}(P)<\frac{n}{\log _{q}(n)}$ and P_{i} is a place over P. In one of these field extensions $K_{i}^{\mathfrak{m}}$ of K there is a place of degree smaller than n only if there is a place P of K of degree $d^{\prime}<n$ with $d^{\prime} \geq \frac{n}{\log _{q}(n)}$ such that P is totally split in $K_{i}^{\mathfrak{q}_{j}} / K$ for all $j \in\{1, \ldots, \alpha\}$ and in $K_{i}^{\mathfrak{p}_{h}} / K$ for all $h \in\{1, \ldots, \beta\}$ by Lemma 5.2 where $K_{i}^{\mathfrak{q}_{j}}$ and $K_{h}^{\mathfrak{p}}$ are the ray class fields of K with conductor \mathfrak{q}_{j} and \mathfrak{p}_{h}, respectively, contained in $K_{i}^{\mathfrak{m}}$. We are going to estimate the number of such function field extensions $K_{i}^{\mathfrak{m}} / K$. The rest of the proof is similar to the proof of Corollary 4.3.

For a fixed $j \leq \alpha$ we consider $K_{i}^{\mathfrak{q}_{j}} / K$ for $i \in\left\{1, \ldots, k_{1}\right\}$. There are at most $d_{1}=\operatorname{gcd}\left(d^{\prime}, k_{1}\right)$ function field extensions $K_{i}^{\mathfrak{q}_{j}} / K$ such that P is totally split by Corollary 4.1. Similarly for a fixed $h \leq \beta$ there are at most $d_{2}=\operatorname{gcd}\left(d^{\prime}, k_{2}\right)$ function field extensions $K_{i}^{\mathfrak{q}_{h}} / K$ with $i \in\left\{1, \ldots, k_{2}\right\}$ such that P is totally split. We denote by $d^{\prime \prime}$ the greatest common divisor $\operatorname{gcd}\left(q-1, d^{\prime}\right)$. It follows that there are at most $d_{1}^{\alpha} d_{2}^{\beta} d^{\prime \prime \alpha+\beta-1}$ extensions $K_{i}^{\mathfrak{m}} / K$ with $i \in\{1, \ldots, d\}$ such that P is totally split.

Let $A_{d_{1}, d_{2}, d^{\prime}}$ be the number of places of K of degree d^{\prime} totally split in all the subextensions of degree $d_{1} d^{\prime \prime}$ (resp. $d_{2} d^{\prime \prime}$) of the ray class fields $K_{i}^{\mathfrak{q}_{j}}$ for $i \in\left\{1, \ldots, k_{1}\right\}$ and $j \in\{1, \ldots, \alpha\}$ (resp. $K_{i}^{\mathfrak{p}_{h}}$ for $i \in\left\{1, \ldots, k_{2}\right\}$ and $\left.h \in\{1, \ldots, \beta\}\right)$. Then

$$
A_{d_{1}, d_{2}, d^{\prime}} \leq \frac{q^{d^{\prime}}}{d^{\prime} d_{1}^{\alpha} d_{2}^{\beta} d^{\prime \prime \alpha+\beta-1}}+2 \frac{g_{F}}{d_{1}^{\alpha} d_{2}^{\beta} d^{\prime \prime \alpha+\beta-1}} q^{d^{\prime} / 2}+\operatorname{deg}(\mathfrak{m})
$$

by Lemma 2.4 and so

$$
A_{d_{1}, d_{2}, d^{\prime}} \leq \frac{q^{d^{\prime}}}{d^{\prime} d_{1}^{\alpha} d_{2}^{\beta} d^{\prime \prime \alpha+\beta-1}}+\left(q^{d^{\prime} / 2}+1\right)(m \alpha+l \beta)
$$

by Lemma 5.3.

By the previous Proposition there are at least $C_{2} d$ distinct extensions $K_{i}^{\mathfrak{m}} / K$ such that $f(Q \mid P) \operatorname{deg}(P)>n$ when $\operatorname{deg}(P)<$ $\frac{n}{\log _{q}(n)}$ but there are at most

$$
\sum_{d^{\prime}=\frac{n}{\log _{q}(n)}}^{n-1} A_{d_{1}, d_{2}, d^{\prime}} d_{1}^{\alpha} d_{2}^{\beta} d^{\prime \prime \alpha+\beta-1}
$$

extensions $K_{i}^{\mathfrak{m}} / K$ with at least one totally split place of degree $\frac{n}{\log _{q}(n)} \leq d^{\prime}<n$ by Lemma 4.1. In particular this number is smaller than

$$
\begin{equation*}
\sum_{d^{\prime}=\frac{n}{\log _{q}(n)}}^{n-1} \frac{q^{d^{\prime}}}{d^{\prime}}+\left(q^{d^{\prime} / 2}+1\right)(\alpha m+\beta l) d_{1}^{\alpha} d_{2}^{\beta} d^{\prime \prime \alpha+\beta-1} \tag{5.4}
\end{equation*}
$$

by Lemma 2.4. But

$$
d_{1} d^{\prime \prime} \leq d^{\prime}<n<k_{1}^{1 / 3}
$$

and similarly for $d_{2} d^{\prime \prime}$. Moreover $\alpha m+\beta l<2 \log _{q}(d)$. It follows that there are at most

$$
\begin{gathered}
\sum_{d^{\prime}=\frac{n}{2 \log _{q}(n)}}^{n-1} \frac{q^{d^{\prime}}}{d^{\prime}}+q^{n / 2}(\alpha m+\beta l) k_{1}^{\alpha / 3} k_{2}^{\beta / 3} \leq \\
\leq q \frac{q^{n}}{n}+2 n q^{n / 2} \log _{q}(d) d^{1 / 3}
\end{gathered}
$$

extensions $K_{i}^{\mathfrak{m}} / K$ such that at least one point of degree $d^{\prime}<n$ is totally split. The right hand side in the last equation is smaller
than $C_{2} d$ if

$$
q \frac{q^{n}}{n}<\frac{C_{2}}{2} d
$$

and

$$
2 n q^{n / 2} \log _{q}(d) d^{1 / 3}<\frac{C_{2}}{2} d
$$

The first condition holds by hypothesis, the second one holds when n is large because $d>q^{\frac{n}{\log _{q}(n)}}$. So there is at least one function field extension $K_{i}^{\mathfrak{m}} / K$ without places of degree smaller than n.

In order to prove Theorem 1.1 we choose l and m greater than $3 \log _{q}(n)$ but smaller than $C \log _{q}(n)$ for a suitable constant $C>0$ and we find suitable α and β smaller than n with α or β greater than $C_{1} \frac{n}{\log _{q}(n)}$ for an other suitable $C_{1}>0$ such that the integer

$$
d=\frac{\left(q^{m}-1\right)^{\alpha}\left(q^{l}-1\right)^{\beta}}{q-1}
$$

is bigger than $4 q \frac{q^{n}}{n}$ but smaller than $C^{\prime} \cdot 4 q \cdot \frac{q^{n}}{n}$ for a suitable constant $C^{\prime}>1$ (not depending on n). In fact, when $d \leq 4 C^{\prime} q \frac{q^{n}}{n}$ then $m \alpha+l \beta \leq n$ when n is large and the genus of $K_{i}^{\mathfrak{m}}$ is bounded by $g \leq \frac{m \alpha+l \beta}{2} d$ for all $i \in\{1, \ldots, d\}$, by (3.5), so $g \leq \frac{n}{2} d \leq$ $2 C^{\prime} q \cdot q^{n}$. We will see that $C^{\prime}=q$ is a possible choice for C^{\prime}.

The existence of suitable α and β is proved by the next Lemma.

Lemma 5.4. Let l and m be coprime numbers with $l<m$. Then there is a constant l_{0}, such that when $l>l_{0}$ then for any real number r greater than $q^{2 m^{3}}$ there are two positive integers α and β such that

$$
\begin{equation*}
r<\frac{\left(q^{m}-1\right)^{\alpha}\left(q^{l}-1\right)^{\beta}}{q-1}<r q \tag{5.5}
\end{equation*}
$$

Proof. Let R be the real number $\log _{q}(r q)+\log _{q}(q-1)$. Taking logarithm of both sides in (5.5) we get the equivalent condition

$$
\begin{equation*}
R-1<\alpha q_{m}+\beta q_{l} \leq R \tag{5.6}
\end{equation*}
$$

where q_{m} and q_{l} denote the real numbers $\log _{q}\left(q^{m}-1\right)$ and $\log _{q}\left(q^{l}-\right.$ 1).

Let $L \subset \mathbb{R}^{2}$ be the lattice generated by $\mathbf{w}_{\mathbf{1}}=\left(q_{m}, 0\right)$ and $\mathbf{w}_{\mathbf{2}}=\left(0, q_{l}\right)$. The statement of the Lemma is equivalent to say that there is a point of the lattice in the right-upper quarter of the plane between the lines $\{x+y=R+1\}$ and $\{x+y=R\}$. We denote by I such region of the plane $\mathbb{R} \times \mathbb{R}$.

We denote by $|\cdot|$ the pseudo-norm over the vector space \mathbb{R}^{2} given by $|(x, y)|=|x+y|$. This is not a norm because $|(x,-x)|=$ 0 also when $x \neq 0$.

We look for an element $\mathbf{v}=h \mathbf{w}_{\mathbf{1}}-k \mathbf{w}_{\mathbf{2}} \in L$ with

$$
\begin{align*}
& |\mathbf{v}|<1 \tag{5.7}\\
& |\mathbf{v}|>\frac{1}{2} \tag{5.8}
\end{align*}
$$

and

$$
\begin{equation*}
0<h<k \leq m . \tag{5.9}
\end{equation*}
$$

Let u be an integer and let \mathcal{F}_{u} be the Farey series of order u, that is the set of the ascending series of the irreducible fractions between 0 and 1 whose denominator does not exceed u. It is a well-known fact (see [7], Chapter III) that when $\frac{h_{1}}{k_{1}}$ and $\frac{h_{2}}{k_{2}}$ are two consecutive elements of the series then $\left|h_{1} k_{2}-k_{1} h_{2}\right|=1$.

When $u=m$ is very easy to see that there is no element $\frac{h}{k} \in \mathcal{F}_{u}$ such that $\frac{q_{l}}{q_{m}}<\frac{h}{k}<\frac{l}{m}$ when m and l are large. In fact for any positive $\epsilon<1$

$$
\begin{equation*}
\frac{l}{m}-\frac{q_{l}}{q_{m}}<\epsilon \frac{1}{m(m-1)}, \tag{5.10}
\end{equation*}
$$

when m and l are large. Let $\frac{h}{k} \in \mathcal{F}_{m}$ the element preceding $\frac{l}{m}$ in \mathcal{F}_{m}. Then

$$
\frac{h}{k}<\frac{q_{l}}{q_{m}}<\frac{l}{m} .
$$

Choose $\mathbf{v}=\left(h q_{m},-k q_{l}\right) \in L$.
It follows that $|\mathbf{v}|<1$ otherwise

$$
\frac{q_{l}}{q_{m}}-\frac{h}{k} \geq \frac{1}{k q_{m}} \geq \frac{1}{k m}=\frac{l}{m}-\frac{h}{k}
$$

and $|\mathbf{v}|>\frac{1}{2}$ otherwise

$$
\frac{q_{l}}{q_{m}}-\frac{1}{2}\left(\frac{h}{k}+\frac{l}{m}\right)=\frac{q_{l}}{q_{m}}-\frac{h}{k}-\frac{1}{2}\left(\frac{l}{m}-\frac{h}{k}\right)<\frac{1}{2 k q^{m}}
$$

contradicting (5.10) with a suitable choise of ϵ, say, $\epsilon=\frac{1}{4}$.
Let $\mathbf{z}=c \mathbf{w}_{\mathbf{1}}$ be the maximum point of L over the y-axis such that c is a positive integer and $|\mathbf{z}|<R$. If $R-1<|\mathbf{z}|$ we choose $\alpha=c$ and $\beta=0$ and the Lemma follows.

Otherwise consider the points $\mathbf{z}_{i}=\mathbf{z}+i \mathbf{v} \in L$ for all integers $i>0$. Then \mathbf{z}_{i} is in the right-upper quarter if $i<\frac{c}{h}<\frac{R}{l q_{m}}$. Let t be the integer $\left[\frac{c}{h}\right]>0$. We prove that $R-1<\left|\mathbf{z}_{t}\right|$. In fact by (5.8) $t|\mathbf{v}|>\frac{1}{2}\left[\frac{c}{h}\right]$ and so $t|\mathbf{v}| \geq\left|\mathbf{w}_{\mathbf{1}}\right|=q_{m}$ because $R>2 q_{m}^{2} m$. So

$$
\begin{equation*}
R<(c+1)\left|\mathbf{w}_{\mathbf{1}}\right|<\left|\mathbf{z}_{t}\right| . \tag{5.11}
\end{equation*}
$$

Let i be the minimal integer such that $R-1<\left|\mathbf{z}_{i}\right|$. Then i is smaller than t by (5.11) and greater than 0 by assumption. Moreover

$$
\left|\mathbf{z}_{i-1}\right|+1<R
$$

because i was supposed to be minimal. So R is greater than $\left|\mathbf{z}_{i-1}\right|+|\mathbf{v}|=\left|\mathbf{z}_{i}\right|$ by (5.7) and so

$$
R-1<\left|\mathbf{z}_{i}\right|<R
$$

Let $\alpha=c-i h$ and $\beta=i k$ be the coordinates of \mathbf{z}_{i}. The real number $\alpha q_{m}+\beta q_{l}$ verifies (5.6). This concludes the proof.

Proof of Theorem 1.1. We assume before $q=p$ is a prime.

Choose prime numbers l and m and two positive integers α and β satisfying (5.5) in the previous Lemma with $r=4 p \frac{p^{n}}{n}$. Such choice of r verifies the hypothesis of the Lemma when n is large and l and m are smaller than $C \log _{p}(n)$ for a constant $C>0$. By the Bertrand postulate there are at least two primes smaller than $C \log _{p}(n)$ when $C \geq 12$ so there are such integers.

It is easy to see that $\alpha<a_{m}$ and $\beta<a_{l}$ if l and m are greater than $3 \log _{p}(n)$ otherwise $p^{m \alpha+l \beta}$ would be greater than $p^{n^{3}}$ and it would not satisfy (5.5). In a similar way we see that α or β is greater than, say, $\frac{1}{48} \frac{n}{\log _{p}(n)}$ otherwise $p^{m \alpha+l \beta}$ would be smaller than $p^{n / 2}$ in contrast with (5.5). So we can apply Proposition 5.1 with $C_{1}=\frac{1}{48}$. We get a function field without places of degree smaller than n for all $n>n_{0}$ for a suitable constant n_{0}. We have already seen that the genus of such function field is smaller than $\frac{1}{2(p-1)} p^{n}$ by (3.5). Let C_{p} be the constant $\frac{1}{2(p-1)} p^{n_{0}}$. Then there is a function field with constant field \mathbb{F}_{p} without places of degree smaller than n of genus smaller than $C_{p} p^{n}$ for all integer $n>0$.

Now let $q=p^{c}$ be a prime power of p. By the previous case there is a function field K of genus $g_{K} \leq C_{p} p^{c n}=C_{p} q^{n}$ over \mathbb{F}_{p} without places of degree smaller of $c n$. The constant field extension $K \mathbb{F}_{q}$ is a function field over \mathbb{F}_{q} with the same genus
without places of degree smaller than n. This concludes the proof.

5.1 Tables

We list examples of curves over \mathbb{F}_{q} without points of degree d^{\prime} such that $d^{\prime} \leq n$ when $q=2$ and $n<20$.

The integer d in the table is the degree of a function field extension $K / \mathbb{F}_{q}(x)$ of the rational function field with genus g and constant field \mathbb{F}_{q}. In this table the field K is always a subfield of the ray class field $K_{S}^{\mathfrak{m}}$ of conductor \mathfrak{m}. The irreducible polynomials in the forth column correspond to the places in the support of \mathfrak{m} with multiplicity. The place S totally split in $K_{S}^{\mathfrak{m}} / \mathbb{F}_{q}(x)$ corresponding to a polynomial of $\mathbb{F}_{q}(x)$ is also included.

n	g	d	\mathfrak{m}	S
1	2	2	$\left(x^{3}+x+1\right)^{2}$	$\left(x^{3}+x^{2}+\right.$
2	3	7	$\left(x^{3}+x+1\right)$	$\left(x^{4}+x+\right.$
3	4	5	$\left(x^{4}+x+1\right)$	$\left(x^{7}+x^{4}+\right.$
5	12	7	$\left(x^{6}+x^{4}+x^{3}+x+1\right)$	$\left(x^{8}+x^{5}+x^{3}+\right.$
7	48	17	$\left(x^{8}+x^{7}+x^{6}+x+1\right)$	$\left(x^{9}+x^{7}+x^{5}+\right.$
8	78	$7 \cdot 7$	$\left(x^{3}+x^{2}+1, x^{3}+x+1\right)$	$\left(x^{9}+x^{7}+x^{2}+\right.$
9	120	31	$\left(x^{10}+x^{3}+1\right)$	$\left(x^{11}+x^{9}+x^{7}+\right.$
11	362	$15 \cdot 7$	$\left(x^{4}+x+1, x^{6}+x^{5}+x^{3}+x^{2}+1\right)$	$\left(x^{13}+x^{8}+x^{5}+\right.$
12	588	$31 \cdot 7$	$\left(x^{5}+x^{2}+1, x^{3}+x+1\right)$	$\left(x^{13}+x^{12}+x^{10}+x^{7}\right.$
13	1480	$31 \cdot 15$	$\left(x^{5}+x^{2}+1, x^{4}+x+1\right)$	$\left(x^{14}+x^{13}+x^{5}+x^{4}+\right.$
14	3342	$127 \cdot 7$	$\left(x^{7}+x+1, x^{3}+x+1\right)$	$\left(x^{15}+x^{14}+x^{13}+x^{7}+x^{6}\right.$
15	8940	$73 \cdot 17$	$\left(x^{9}+x^{4}+1, x^{8}+x^{5}+x^{3}+x^{2}+1\right)$	$\left(x^{16}+x^{14}+x^{13}+x^{11}+x^{10}\right.$
16	19861	$23 \cdot 89$	$\left(x^{11}+x^{6}+x^{5}+x^{2}+1, x^{11}+x^{9}+1\right)$	$\left(x^{18}+x^{17}+x^{11}+x^{9}\right.$
17	41440	$89 \cdot 63$	$\left(x^{11}+x^{9}+1, x^{6}+x+1\right)$	$\left(x^{18}+x^{17}+x^{16}+x^{11}\right.$
18	89415	$127 \cdot 89$	$\left(x^{7}+x+1, x^{11}+x^{9}+1\right)$	$\left(x^{19}+x^{18}+x^{15}+x^{14}+x^{11}\right.$
19	95886	$127 \cdot 127$	$\left(x^{7}+x+1, x^{7}+x^{6}+1\right)$	$\left(x^{20}+x^{19}+x^{15}+x^{14}\right.$

Bibliography

[1] E. Artin, J. Tate: Class field theory. New York, W.A. Benjamin (1967).
[2] R. Auer: Ray class fields of global function fields with many rational places. Dissertation at the Oldenburg University, http://oops.unioldenburg.de/volltexte/1999/457/pdf/Aueray99.pdf (1999).
[3] R. Auer: Ray class fields of global function fields with many rational places. Acta Arithmetica 95, 97-122 (2000).
[4] J.W.S. Cassels, A. Frohlich: Algebraic number theory. Academic Press, London (1967).
[5] M. D. Fried, M. Jarden: Field Arithmetic. Springer Verlag (1987).
[6] R. Fuhrmann, F. Torres: The genus of curves over finite fields with many rational points. Manuscr. Math., 89, 103-106 (1996).
[7] G.H. Hardy, E.M. Wright: An introduction to the theory of numbers. Oxford Science Publications, Clarendon (1938)
[8] D. R. Hayes: Explicit class field theory in global function fields. Studies in algebra and number theory, Adv. in Math. Suppl. Stud. 6, Academic Press, 173-217 (1979).
[9] H. Howe, K. Lauter, J. Top: Pointless curves of genus three and four. Séminaires et congrès, 11, 125-141 (2005). Web address: http://smf.math.fr/Publications/SeminairesCongres/2005/11/pdf/ smf_sem_cong_11_115_141.pdf.
[10] Y. Ihara: Some remarks on the number of rational points of algebraic curves over finite fields. J. Fac. Sci. Univ. Tokyo, 28, 721-724 (1981).
[11] D. Maisner, E. Nart: Abelian surfaces over finite fields as Jacobians. With an appendix by Everett W. Howe. Experiment. Math. 11, no. 3, 321-337 (2002).
[12] K. Murty, J. Scherk: Effective versions of the Chebotarev density theorem for function fields. Comptes Rendus de l'Académie des Sciencies (Paris), Série I, Mathématique, 319, No. 6, 523-528 (1994).
[13] H. Niederreiter, C. Xing: Rational points on curves over finite fields: theory and applications. Cambridge, Cambridge University Press (2001).
[14] A. Rigato: Uniqueness of optimal curves over \mathbb{F}_{2} of small genus. Phd Thesis at Universitá di Roma Tor Vergata, http://dspace.uniroma2.it/dspace/index.jsp (2009).
[15] H. Stichtenoth: Algebraic function fields and codes. Berlin, Springer-Verlag (1993).
[16] A. Weil: Courbes algébriques et variétés abéliennes. Paris, Hermann (1971).

