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Introduction

Let g be a complex, finite dimensional, semisimple Lie algebra and let ¢ be an
indecomposable involution of g, with corresponding eigenspace decomposition g =
go @ g1. Since gg is reductive, we can fix a Borel subalgebra by. The main problem
of this thesis is the following: describe the maximal abelian bg-stable subalgebra of
g1-

The origins of this kind of problem go back to a paper of Malcev [15], published
in 1945, where the author found the maximal dimension of abelian subalgebras
of any simple Lie algebras by explicit case-by-case calculations. In 1965 Kostant
gave new motivations to the subject: in fact in [11] he showed a deep connection
between the eigenvalues of a Casimir operator if g and commutative subalgebras.
But only after 35 years from Kostant’s paper Peterson [12] introduced a striking
and powerful tool, a bijection between abelian ideals of a Borel subalgebra and a
certain subset of the affine Weyl group associated to g. At this point all the main
ingredients of the theory were present, and after few years Panyushev [17] and Suter
[20] Theorems gave a complete description of the structure of maximal abelian Borel
stable subalgebras.

In this work we deal with a generalization of this problem to the Z,-graded
setting introduced by Panyushev in [16], together with an extension of Kostant’s
theorems: in fact he found a relation between the eigenvalues of a Casimir operator
of go and abelian bg-stable subalgebras fo g;. The combinatorial translation of the
problem is still valid: thanks to Cellini, M6seneder Frajria and Papi [1] we have a
bijection between these special subalgebras and the set of the so called o-minuscule
elements, a subset of the affine Weyl group associated to the pair (g, o).

Our aim is a generalization of Panyushev’s and Suter’s Theorems to this setting.
The thesis is structured as follows:

Chapter 1: In the first part we state and describe more precisely all the theorems
previously cited. In particular we give a complete proof of the bijection between
o-minuscule element and abelian bg-stable subalgebras.

The second part is a collection of useful (and well known) combinatorial results
on Weyl groups.

Chapter 2: This is the core of the work. The study of maximal o-minuscule
elements is done according to the following steps:

1. We find a necessary condition for the maximality of an element. This let
us reduce to the study of only some subset Z ,,, indexed by simple roots
a of the affine Weyl group associated to (g, o), and by elements u of a
special subset M, of the walls of a polytope.



. We provide a criterion for Z, , to be non empty. Moreover we show that
Zap, if non empty, has minimum (Theorem 2.2.11).

. We determine the poset structure of Z, ,, by relating it to a quotient of

the subgroup Wa of W generated by the simple reflections orthogonal to
the simple root « by a reflection subgroup W/ (Theorem 2.3.6).

. We look at intersections among the posets Z, ,, and we find necessary
and sufficient conditions in order that the intersection of two such posets
is nonvoid.

. We study maximal elements in Z,,. We show that when I//I\/C’Y is not
standard parabolic, maximal elements appear in pairs of Z, ;,’s: if w is
maximal in Z, ,,, then there exist a unique simple root 3 and a unique
wall i/ € M, such that w is also maximal in Zg ,» (Lemma 2.5.4).

. We determine which maximal elements in Z, , are indeed maximal in the
set of the o-minuscule elements (Propositions 2.5.1, 2.5.2).

. We finally provide a complete parametrization of maximal abelian bg-
stable subalgebras (Theorem 2.5.3) and uniform formulas for their dimen-
sion (Corollary 2.5.6). Our results specialize nicely to Panyushev’s and
Suter’s Theorems quoted above.

vi



Chapter 1

Preliminaries

1.1 Eigenvalues of the Casimir operator and abelian ide-
als of Borel subalgebras

1.1.1 The Casimir operator

Let g be a complex, finite-dimensional, semisimple Lie algebra with Killing form
(-,-). Choose a basis {x1,...,zn} of g, and let {z],..., 2y} be the associated dual
basis relative to the Killing form, i.e. (z;, ) = di;.

We define the Casimir operator C in the universal enveloping algebra U(g) of g as

Remark 1.1.1. A straightforward calculation shows that the definition of C doesn’t
depend from the choice of the basis.

The Casimir operator acts on g through the adjoint representation ad : g —
End(g). In particular, since we can extend ad to the exterior algebra A g setting

k
adx(vl/\.../\vk):Zvl/\.../\[x,vi].../\vk Vo, vi,...,0% € @,
i=1

we obtain an action ad(C) of C on A g

ad(C)(vi A ... Avg) = Zadm(adz;(vl A...Nvg)) Yor,..., v, € 9.
i=1

Remark 1.1.2. Tt is well known that C acts as a scalar operator on every irreducible
representation. More precisely, fix a Cartan subalgebra h and choose a Borel
subalgebra of g with corresponding positive root system A*: if 7 : g — End(V}) is
an irreducible representation on a vector space V) with highest weight A € h*, then

m(C) = (A, A + 2p)idy,

where p = % doent V-
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One reason motivating the study of eigenvalues of the Casimir operator on
the exterior algebra of g is given by the following interpretation of C in terms of
differential operators on A g. First define a coboundary operator d on A g as

d=

e(z}) ady, .

1 n
2i:l

Herre € denotes the (left) exterior product
e@)(vi A AvE) =z Avp AL A g

Next let g, be a compact form of g: we can define a conjugation in g relative to g.
setting =* = —u + iv whenever x = u + iv with u,v € g.. This let us introduce a
hermitian form {-,-} on g, setting {z,y} = (z,y*) for every x,y € g. Moreover we
can extend it to /\k g via determinants, taking

{vi Ao oA v ur AL A ug ) =det [{vg, u | Yo, € g

and {u,v} = 0if u € A'gy and v € \? g1 with i # j. From this we obtain the formal
adjoint operator 0 of d: in particular for all v1 A ... Avg € A g we have

Ot A Avp) =Y (=1 ug ] Aoy AT AT A
1<j
which is the Chevalley boundary operator for the Lie algebra homology with trivial

coefficients.
Finally we define the Laplace operator

L =do+ 0d.

The statement that justifies the interest arose around the eigenvalues of C,q is the
following;:

Proposition 1.1.1. L = }ad(C)

Proof. We recall the following well-known relations (see [13]):
1. [d,ad;] = [0,ad,] = 0;
2. €(z)0 + Oe(z) = ad,.

Let v be in A g: using the previous identities and the definition of d we obtain

do(v) = Ze(:ci)adx;(a(vn

and hence the thesis. O

In the next section we will present the first key result of this theory, which is
due to Kostant [11].
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1.1.2 The link with abelian ideals of Borel subalgebras

From now on we will improperly write C instead of ad(C).

Let A be the set of all the commutative subalgebras of g: for every a € A of
dimension k we define the one-dimensional subspace [a] = AFa of A¥ g. Finally let
Aj be the subspace generated by all these elements with fixed dimension k.

Theorem 1.1.2 (Kostant [11]). If my, is the mazimal eigenvalue of C on \* g, then

Moreover the equality holds if and only if there is a commutative subalgebra of g
of dimension k. In this case the eigenspace associated to my is A, and every
decomposable element of Ay corresponds to a commutative subalgebra of g.

This is one of the results that motivate the study of commutative subalgebras of
semisimple Lie algebras. In particular Kostant’s Theorem gave new motivations to
the problem of finding the maximal dimension of these subalgebras.

Continuing to follow [11], we can restrict our study to a smaller class of subspaces.
Let b be a Cartan subalgebra of g with associated root system A and Weyl group
W. Choose a Borel subalgebra b of g such that A™ is the set of positive roots. Let
V be a g-module: we have

Proposition 1.1.3 (Kostant). 1. Suppose that W C /\k V' is irreducible. Then
W is generated by decomposable vectors if and only if it has a decomposable
highest weight vector.

2. Let My be the eigenspace corresponding to the mazximal eigenvalue of C on
AF V. Then M, is a sum of irreducible g-submodules generated by decomposable
vectors.

This proposition, together with Theorem 1.1.2, implies that, in order to determine
the maximal eigenvalue of C on an exterior power of g, it suffices to consider the
action of C only on decomposable elements. Furthermore observe that if v € A¥ g is
a decomposable highest weight vector for a submodule of My, then the associated
k-subalgebra (via Theorem 1.1.2) must be b-stable.

In conclusion the main problem becomes: describe, enumerate and find the
mazimal dimension of the abelian ideals of a Borel subalgebra.

1.1.3 The connection with the affine Weyl group

After some decades, Konstant returned on the study of abelian subalgebras, present-
ing in [12] a surprising result of Peterson.

Theorem 1.1.4 (Peterson). The cardinality of the set of abelian ideals of a Borel
subalgebra is 2", where n = rank(g).

To prove this theorem Peterson sets up a one-to-one correspondence between the
set I4p of all abelian ideals of b and a particular subset of the afﬁne Weyl group w.
To define this subset, let A be the set of affine roots and let II = {ag,a1,...,00}
be the set of affine simple roots. Denote by ag,...,a, the labels of the afﬁne
Dynkin diagram of g and let 6 = >°I"; a;c;; denote the fundamental immaginary
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root. Moreover let ;\* be the set of positive affine roots corresponding to the choice
of b. For any w € W define the inversion set

N(w) = {y € At |w™l(y) € —A*}.

Now an element w € W is said to be minuscule if N(w) is of the form {§—~ | v € S},
where S C A. Peterson found the following result:

Proposition 1.1.5. There exists a one-to-one correspondence between the set of
minuscule elements of W and L.

Proof. We sketch the proof following the approach of Cellini and Papi in [4].
Let i be an abelian ideal of b. Write i = @ ce 9o and define the set

L= |J(—®" + k),
E>1

where ®% = (®*~1 4 ®) N A. Since i is abelian, clearly ®* = 0 for every k > 2.
Knowing this, it is easy to verify that L; is closed. Furthermore At \ L; must
also be closed: if not, we could find «, 3 € AT\ ® such that a — 8 € ®, clearly a
contradiction since i is an ideal. This implies, by Proposition 1.3.1(3), that there
exists a w € W such that N (w) = Li. Thus we have established a bijection between
abelian ideals of b and the set of minuscule elements. O

Remark 1.1.1. It is possible to prove that L; is biconvex for all the ad-nilpotent
ideals i of b, i.e. ideals included in the nilpotent radical of b. See [2], [3] for further
details.

This proposition gives us a new interpretation of the main problem, that is
describe and find the mazimal lenght of the minuscule elements of w.

Peterson’s approach was the point of departure for a serie of papers regarding
abelian ideals and related problems in combinatorics and representation theory. For
example:

e in [18], Panyushev and Réhrle, while studying the relationship between spher-
ical nilpotent orbits and abelian ideals of b, observed a bijection between
maximal abelian ideals and the set of long simple roots of g. In [17] Panyushev
gave a conceptual explanation of that empirical observation;

o in [20] Suter found a uniform formula for the dimension of maximal abelian
ideals in terms of combinatorial invariants related to the associated long simple
root: this gave a conceptual explanation of an old resilt of Malcev [15], which
was a Lie algebra generalization of a classical result of Schur [19] on the
maximal number of linearly independent commuting matrices;

o in [4] Cellini and Papi found independently the same formula of Suter and
obtained a subtler description of the poset structure of the set of minuscule
elements.

In the next sections we will introduce the main topic of this thesis, that is a
generalization to Zo-graded Lie algebras of the theory previously developed.
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1.2 Generalization to Z,-graded Lie algebras

Let ¢ be an indecomposable involution acting on a semisimple Lie algebra g and
let g = go ® g1 be the corresponding Zy-gradation, i.e. g, = {x € g | o(z) = ™).
We recall that

Proposition 1.2.1. If g = go ® g1 is a Zo-graded semisimple Lie algebra then gg is
a reductive Lie subalgebra.

In view of this we can fix a Cartan subalgebra hy and a Borel subalgebra bg
of go. Moreover let {x1,...,zn} be a basis of g compatible with the Zs-grading,
that is, a basis consisting of eigenvector for the action of . We have the following
decompositions:

1
d=dy—+d, d; = B Z e(a:j) adxj
JiT;€0;
C=Cy+Cy, Ci = Z Tj-T
JiTi€g;

Remark 1.2.1. Observe that Cy is the Casimir operator of gy with respect to the
form (-, -)|q,- In particular by Theorem 1.1.1 we have ad(C;) = 2(d;0 + dd;).

In [16] Panyushev found a generalization of Theorem 1.1.2 to this setting.

Theorem 1.2.2 (Panyushev). If I is the maximal eigenvalue of Cy on AF gy then

I < K

RS
Moreover the equality holds if and only if g1 contains a k-dimensional commutative
subalgebra. In this case the eigenspace associated to ly is generated by /\k a where a

runs through all k-dimensional commutative subalgebras of g1.

Proof. Let v = v1 A ... A v be a decomposable element of A\¥ g1: we can assume

that vy,...,v; are orthonormal vectors in g; with respect to the hermitian form
{-,-} = (-,-*). We recall [16, Proposition 4.1]:
di(ly,2]) == > [zi,y] N[, 2].
JiTi €80

Using this, it’s not difficult to prove that

Co( —0—22 Dy (i v]) Avp oo D 0 A v
1<j

Define u;; as the generic summand in the right side of the previous equality. Since
v1,...,v) are orthonormal we obtain that {v,v} = 1. Moreover

{uij, v} = {di([vi, vj]), vi A}t = {[vi, vg], [vi, 5]} > 0

hence
{Cofo), v} = 5 = 23 {loi vl o ]} <

1<j

Nko
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In conclusion if v is an eigenvector for the action of Cy on AP g1, then the corre-
sponding eigenvalue is less or equal to % Observe that the equality holds if and only

if all [v;,v;] vanish, i.e. the algebra generated by {vi,..., v} is commutative.
By Theorem 1.1.3(2), the eigenspace of the maximal eigenvalue is generated by
decomposable highest weight vectors, and this suffices to prove the thesis. O

Remark 1.2.2. It is possible to recover Theorem 1.1.2 from the previous result. Let
g be a semisimple lie algebra, with decomposition into simple ideals g = @, ;. The
indecomposability of o implies that £ ~ £; and that o permutes ciclically the factors.
Since o is an involution, up to conjugation we may assume that g = g @ g and that
o(z,y) = o(y,z). Observe that in this case go is the diagonal, therefore gy ~ g
as algebras and g; ~ g as g-modules. Let C be the Casimir operator of g, with
o-decomposition C = Cy + Cy: observe that 2Cy = C , with C the Casimir operator
of g. Now, by Theorem 1.2.2, we obtain that the maximal eigenvalue of Co on
AF G~ A¥gis at most g Since the isomorphism g; ~ g preserves commutative
subalgebras, we have the thesis.

As in [11], we can refine Panyushev’s Theorem: first observe that a decomposable
element vi A. .. Av, € A¥ gy is a highest weight vector if and only if the corresponding
subspace generated by {v1,..., v} is bp-stable. Moreover let Ay be the subspace of
AP g1 generated by the lines A* a, where a ranges over all k-dimensional commutative
subalgebras of g;: it is known that

Proposition 1.2.3 (Panyushev). The subspace A = @, A of \g1 is generated by
decomposable highest weight vectors.

This clearly implies that in order to study the maximal eigenvalue of Cy on AP o1,
it suffices to consider the set of all bg-stable k-dimensional commutative subspaces
of g1.

Even in this case it is possible to translate the problem in combinatorial terms
as in Theorem 1.1.5. In particular in [1] Cellini, M6seneder Frajria and Papi found
a bijection between the set of bp-stable commutative subspaces of g; and a subset of
the affine Kac-Moody Lie algebra E(g, o).

This time we will explain in detail this relation, giving a complete proof of the
related theorems. To make this we need some results on affine Kac-Moody algebras
and their homology.

1.2.1 Realization of affine Kac-Moody algebras

The main reference of this section will be [9, Chapter 8§].

Let g be of type Xy and rank n, ¢ an automorphism of g of order m and k the
least positive integer such that o is inner. Denote with g the affine Kac-Moody Lie
algebra associated to a generalized Cartan matrix of type X](\]f). Define the Chevalley
generator {E;, F;}; of g as in [9]. We recall a theorem of Kac about automorphisms
of Lie algebras.

Theorem 1.2.4 (Kac [9]). 1. To each (n + 1)-tuple s = (so,...,Sn) of non-
negative coprime integers corresponds an automorphism osy of g of order

m = kY. a;s;, where a; are the labels of the diagram X](\f). These automor-
phisms are defined (uniquely) by os.i(E;) = e2msi/mEj, ji=0,...,n.
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2. Up to conjugation by an automorphism of g, the automorphisms o, exhaust
all automorphisms of order m of g.

3. Two automorphisms s, and og .1y are conjugate by an automorphism of g if
and only if k = k' and the sequence s can be transformed in the sequence s’ by

(k)

an automorphism of the diagram Xy~ .

Observe that the numbers so,..., s, define a Z-grading on g. In fact, fix a
Cartan subalgebra b of g and let A be the associated root system with simple roots
II ={ao,...,an}: for every v € A with v = >°I_; m;a; define the o-height

hty(7y) = Z 8;M;.
i=0

Let g, be root space corresponding to 7: if x € g, we set deg(z) = ht,(y); moreover
for every h € b we set deg(h) = 0. We denote by g; the subspace generated by all
z € § of degree i, and we set A; = {y € A | ht,(v) = i}.

By Theorem 1.2.4 we can assume that ¢ is an automorphism of type (so, ..., Sp; k).
In particular, since we are interessed in automorphism of order 2, we have to consider
only three kind of possibilities:

1. k=1 and there exist two indices p, ¢ such that o, = ay = s, = 54 = 1 and
s; =0 for i # p, g;

2. k =1 and there exists an index p such that s, = 1,a, = 2 and s; = 0 for i # p;
3. k = 2 and there exists an index p such that s, =1, a, = 1 and s; = 0 for 7 # p.

In the rest of the work we will refer to the first case as the hermitian symmetric
case, and to the remaining two as the semisimple case. To explain these definitions
we recall the following result.

Theorem 1.2.5 (Kac). Let iy,...,i, be all the indices such that s;; = ... =s;, =0.
Then the Lie algebra go is isomorphic to a direct sum of the (n — r)-dimensional
center and a semisimple Lie algebra whose Dynkin diagram is the subdiagram of the

affine diagram X](\I,C) consisting of the vertices i1,...,iy.

From the first part of this theorem we obtain that in the semisimple case the
subalgebra go has no center, hence it is semisimple. On the contrary, in the hermitian
symmetric case gg is reductive with a 1-dimensional center, therefore we can regard
g/go as an infinitesimal hermitian symmetric space.

Remark 1.2.3. By the above theorem it is clear that AO can be seen as a root system
for gg.

We can now show a useful realization of the affine Kac-Moody algebra g associated
to the pair (g,0). Let L(g) = C[t,t"!] ® g be the loop algebra of g and L(g) =
L(g) @ Cc its universal central extension, with Lie bracket defined by

[t" @2, t" @y] =t""" @ [z,y] + MOy —n(z,y)c, Y,y € g,Vm,n €Z

and clearly [c,t™ ® 2] = 0 for all € g, m € Z. Define a derivation [d,-] of L(g)

setting

4p(0) @] = tTp(0) @z, Vol © v € Lo
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and [d, ¢] = 0. We obtain the algebra L(g) = L(g) @ Cd and its subalgebra

L(g,0) =Y g; @t + Cc+Cd,
JEZ
where 7 € {0,1} is defined by j = 7 mod 2. Let by be a fixed Cartan subalgebra of
go- We have the follwing theorem.

Theorem 1.2.6 (Kac). There exists an isomorphism ® : § — L(g, o) such that
o & maps §; onto t' ® g; for i # 0;

-~

e ®(h) =1®bo+ Cc+ Cd;
. @(ﬁo):1®go+CC+Cd

Observe that this result implies a refinement of Remark 1.2.3: in fact we have
that Ag is isomorphic to the root system of gy corresponding to hg. More specifically,
define &' € b* setting ¢'(d) = 1 and &(c) = 6'(ho) = 0 (from now on we will omit the
isomorphism ®): following [9] it is possible to prove that

_ /
o = oG + 530,

where A — X is the restriction map from 6 to ho.
Remark 1.2.4. Since 6 = I ; a;c, by the previous equality we obtain that ¢’ = %(5.

Remark 1.2.5. The assumption of g simple can be dropped safely if we assume o
indecomposable: in fact, as explained in [10], most arguments given in [9] can be
extended to the case of g semisimple but not simple. This is the case of Remark
1.2.2, where we consider g = g ® g, with g simple, and o the flip. In the sequel this
case will be referred to as the adjoint case.

1.2.2 Homology and representation theory

In this section we will state some results about homology of Kac-Moody algebras.
First we recall an extended version of the Garland-Lepowsky Theorem (see [6]). We
will follow the presentation of Kumar [14].

Let g be a symmetrizable Kac-Moody algebra of rank n, with Cartan decomposi-
tion g = h © (D,ea 97) and let Il = {a1, ..., an} be the set of simple roots. Choose
a set of positive roots AT and a subset Y C {1,...,n}: we define the subalgebras

+
gy =h & (Dyea, 80), uy = eaweAi\A?E 8y

where Ay = AN (P,ey Zay) is the parabolic subsystem associated to Y, and
AT = Ay NA*E,

Moreover, let (-,-) be the Killing form of g and v : h — h* the induced natural
isomorphism: as usual we set o = <afai>y_1(ai). We can define an action on h* of
the Weyl group W of g in the following way: choose p € h* such that p(e) =1 for
allz=1,...,n, and set

wxA=wA+p)—p, YweWVAebh™

Clearly the definition does not depend on the choice of p.
We now consider the exterior algebra A g of g. First of all we have the following
lemma.
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Lemma 1.2.7. Let w be an element of the Weyl group Wy of Ay. Then the weight
space of A\ uy corresponding to the weight w0 is one dimensional and is spanned by

eg N...Ne_g,, p=~Lw)

where N(w) = {f1,...,Bp} and e_g, is a nonzero root vector corresponding to the
root —f3;.

Proof. Fix a basis of uy- of root vectors: by the definition of the action of ad on A g,
we have that, for every decomposable vector v =e_,, A... ANe_,, € APuy,

adp (v ( Z%) -v, Vheb.

In particular v is a root vector for w * 0 if and only if >F v = p — w(p). Now
2 <p7ai>

(o, o)

observe that sq,(p) = p— a; = p—ay: this, together with Proposition 1.3.1(2),

implies that w™'(p) = p— Y 5.¢ N(w) Bi, and hence, if v is a root vector,

> B zwl(iw). (1.2.1)
=1

BiEN (w)

We claim that {y1,...,7} = N(w): observe that, since w™(3°!_; ;) is negative,
there exists an index i; such that w=!(v;,) < 0, and then 7;, € N(w). Now (1.2.1)
becomes — Z/BiEN(w)\{’Yil} Bi = w_l(zi#l i), therefore repeating the previous ar-
gument we obtain the claim and the lemma. O

Now let V be a g-module and set A, = AP g ®c V: it is possible to define a
family of operators 9, : A, — Ap_1 setting

p

ap(vl/\.../\vp®$):Z(—l)iﬂvl/\--'/\@/\"'/\Up(g(vi'm) +
i=1
+ D) v v Av A G LA Ay @

1<J

when p > 1, and 01 (v® x) = 0 when p = 1. Furthermore, we can extend the internal
product € and the adjoint action ad to A,, setting

ew) (i A...ANY®@z)=wAVIA... ANV @
P

adw(vl/\.../\vp®:c):vl/\.../\vp®w‘x—|—2v1/\.../\[w,vi]/\.../\vp
i=1

for every w € g,v1 A...ANvp,®x € Ap. Observe that the relations stated in the proof
of Proposition 1.1.1 are still true, in particular we have

[Op,ady] = 0 (1.2.2)
ady = €(w)dp—1 + Ope(w).

Replacing (1.2.3) in (1.2.2) we obtain that

OpOpt1€(w) = e(w)0p—10,.
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Moreover, by a recursive argument, this clearly implies that 9,0,11 = 0 and hence
that (Ap,0p)p>1 is a chain complex. In conclusion we can define the Lie algebra
homology with coefficients in V as

ker O
Hy(g,V) = ﬁ-

Denote by W5, the (left) quotient of W by Y, that is, the set of minimal lenght
elements in the cosets Wyw, w € W. Furthermore, we denote by V() (resp. Vy (X))
the irriducible g-module (resp. gy-module) of highest weight A € h*. We have the
following generalization of Garland-Lepowsky Theorem (we refer to [14, Theorem
3.2.7] for the proof).

Theorem 1.2.8. For any subset Y C {1,...,n} and any integrable highest weight
g-module V(X\), we have

Hy(uy, VIN) = @ W(w=N).

wEW{,
L(w)=p

Now we translate Lemma 1.2.7 and Theorem 1.2.8 to our setting: the Kac-Moody
algebra will be the affine algebra g associated to the pair (g,0), Y will be the set
{i | s; = 0}, and we choose the trivial representation V' (0) as V(A). Finally set

u; =uy and W, = Wy,

Theorem 1.2.9. We have the following decomposition in irreducible go-modules:

Hy(u, ) = @ V(w(p) — p).
fﬁ&ﬁ

Moreover V(w(p) — p) is one-dimensional and a representative of highest weight
vector is e_g, N...Ne_g,, where N(w) = {B1,...,Bp} and the e_g, are root vectors.

We conclude this section recalling some results on Lie algebra homology and
Hodge theory.
We need to define a Laplacian operator on AP u_: set

hr = spang (), ..., aY) +Rc+ Rd

and define the antihomomorphism y — y* of g setting Ef = F;, Ef = F; on Chevalley
generators and H* = H when H € br. Let (+,+) be the normalized standard form on
g (]9, Section 6.2]) and define the hermitian form {z,y} = (z,y*) for every z,y € g.
By [14, Theorem 2.3.13] this hermitian form is positive definite on u_, therefore,
extending it via determinants on A1, we obtain the adjoint 9 : AP s o AP
of 9, and the associated Laplacian

Ly = Op419541 + 0,0p.
Define the set of harmonic p-form H, = ker(L,): it is known that

Theorem 1.2.10. 1. H, C ker(9p).
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2. The natural map H, — (Hp & Im(0p+1))/Im(0p+1) induces an isomorphism
Hp = Hp(u, ).

Remark 1.2.6. Observe that the grading on g defines a grading on uf and hence
on Au,. We denote with (AP u; ), the subspace of AP u; of degree q. Notice that
(N5, )y = 0 i p > —g

Remark 1.2.7. Tt is clear that d,((AP1i;),) € (AP~'1;),. Moreover, since AP, =
D,ez (A1) is an orthogonal sum, we have 8]’;((/\1”*1 u; )q) € (APuy )g. In partic-
ular since (AP 4i;)_, = 0 we obtain

(1.2.4)

~ =900 . .
PN, PRI NP,

1.2.3 The link with oc-minuscule elements

Definition 1.2.1. An element w € W is said to be o-minuscule if N(w) C {a €
A" | hty(a) = 1}. Denote by W2 the set of o-minuscule elements of .

Remark 1.2.1. Note that in the adjoint case g = g @ g, g simple, w is o-minuscule if
and only if N(w) C —A; +9, A; being the set of positive roots of g. So we recover
Peterson’s notion of minuscule elements quoted in the first section.

As preoviously stated, abelian bg-stable subalgebras of g; are related to Wc’,lb, in
fact

Theorem 1.2.11. There is a bijection between W2 and the set of abelian bg-stable
subalgebras of g1.

Proof. Let a C g1 be a bp-stable commutative subalgebra, and let {z1,...,z,} be a
basis of a. Set

p p
va=t'@m A AT @x, € NG = (/\ﬁ;)_p

By (1.2.4) and since a is abelian we have 050,(vs) = 0. Therefore v, is a cycle in
AP, and since a is bg-stable and v, is H—stable, its homology class is a highest
vector for an irreducible component V; of Hy,(u; ). By Theorem 1.2.9 there exists
w € W such that £(w) = p and Vz = V(w(p) — p). We need to check that w is
o-minuscule: set N(w) = {f1,...,p} and observe that there exists a ¢ € C such
that

e_p N Ne_g, =c t T @TIA AT @),

for fixed root vectors e_g;. So each e_g, lies in the subspace generated by 1 ®
z1...t 1 ® z,, and this implies that ht,(8;) = 1.

Suppose now conversely that w € W2 and set N(w) = {1, ..., B}. Since ht,(5;) =
1, we have that e_g, € (1i;)-1 and hence e_g, = t7 ! ® x; with 2; € g;. It is well
known that W/ = {w € W | N(w) N AJ = (0}, in particular if w is o-minuscule then
w € W;. Again by Theorem 1.2.9 the element v = e_g, A ... Ae_g, represents a
highest weight vector for V (w(p) — p) in Hp(u, ). By (1.2.4) it follows that

Lyp(v) = 0,0p(v) = 0.

It is a standard fact that 9;0(v) = 0 implies J,(v) = 0. It easily follows that the
space a generated by {z1,...,x,} is abelian. Since v is bp-stable, then a is also
bg-stable. ]
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Remark 1.2.2. The natural isomorphism of go-modules g; = ¢t~! ® g; maps the
bo-stable abelian subspaces of g; to byp-stable abelian subspaces of lA}(g, o). Through
this isomorphism, the map of the above proposition associates to w € ng the
bo-stable abelian subalgebra @F_, L(g,o)_ B

1.2.4 Maximal eigenvalues of the Casimir operator C,

In this section we present an interesting result on the maximal eigenvalues [ of Cy
on A¥gi. First we have to recall a well known property of the Casimir operator
(already stated in Remark 1.1.2).

Lemma 1.2.12. Let V(X) be an irreducible g-module with highest weight A € bh*.
For every v € V(X) we have

C(v) = (A A+ 2p)v.

Moreover if i € b* is a weight of V(\) then (u, u+ 2p) < (A, X+ 2p), and equality
holds if and only if u = A.

The following theorem is a straightforward generalization to the graded setting
of a result of Han [7].

Theorem 1.2.13. Let A; be the set of weights of g1 under the action of go. Set
r=|A1]|. For 0 <k <r we have

lk < lk+1.

Proof. The claim clearly holds when k& = 0. Assume then 1 < k < r: fix a basis
B ={hi,...,hpn}U{zs | B € A1} of g1, where h; € hNg; and x4 is a weight vector
for 5 € Aj. Let v = v1 A+ A such that v; € B and Cy(v) = l: by Theorem 1.1.3
we can assume that v is a highest weight vector whose weight is u = > 5. 3, where
S is the set of weights of the subalgebra generated by {v1,...,vt}. Now choose a
weight o € A; \ S with maximal height (observe that A; \ S is nonempty since
k < r). Let x4 be the associated weight vector and define u = v A e4: by the choice
of a we have that u is a highest weight vector of weight A = u + «. Since pu is
dominant we have
A a) = (p,a) +{a,a) >0

therefore A — av = p is a weight of V(). This, together with Lemma 1.2.12, implies
that

v = (N A+ 2p0) > (1, 1 — 2po) = U

1.3 Some results on Weyl groups and root systems

1.3.1 Conventions on root systems

o We assume that K is the canonical central element [9, Section 6.2], that is,

n

K:Za;/aiv.
i=0
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If we number the Dynkin diagrams as in [9, Tables Aff1, Aff2, Aff 3] then, by
Sections 6.1, 6.2, 6.4 of [9],

2&0

K=—"——v71(). 1.3.1
15— ool (9) (1.3.1)

o Define (ho)r = spang(ay,...,a,)). We let
Ci = {h S (bQ)R ’ @z(h) > —s;,1=0,... ,n} (1.3.2)

be the fundamental alcove of w.
o Ifwv 66*, we set v- = {xeﬁ* | (z,v) = 0}.

o If S CII, we denote by A(S) (resp. AT(S)) the root system generated by S
(resp. the set of positive roots corresponding to S). If A C A" we denote by
W(A) the Weyl group generated (inside W) by the reflections in the elements
of A.

We will often identify subsets of the set of simple roots with their Dynkin
diagram.

e If R is a finite or affine root system and Ilp is a basis of simple roots, we write
the expansion of a root v € R w.r.t. Il as

v= Y el (1.3.3)

a€cllp

We also set, for a € R,

Supp(e) = {8 € g | cs(a) # 0}.

e If R is a finite irreducible root system and II is a set of simple roots for R, we
denote by 0 (or by 6yy) its highest root. Recall that the highest root and the
highest short root are the only dominant weights belonging to R™. We will
use this remark in the following form:

a€ R along, (o,3) >0VBE€RT = a=0g.

e We recall the definition of dual Coxeter number gr of a finite irreducible root
system R. Write 0% = > ,cp,, Cav(0)a" and set

gr=14 Y cav(8Y). (1.3.4)

a€llr

Set finally g = > Cay (K). This number is called the dual Coxeter number
of L(g, o).
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1.3.2 Combinatorics of inversion sets

If « is a real root in 3“', we let s, denote the reflection in . If «; is a simple root
we set s; = Sq;-
The following facts are well-known. More details and references can be found in

[4].
Proposition 1.3.1. 1. N(w;) = N(w2) = w1 = ws.

2. If w=s;, -5y, is a reduced expression for w, then

N(w) = {ai, si (i), - -+, iy siy 4 ()}
If moreover By, = s, -+ si,_,(,), 1 < h <k, then

W = 58,58, , """ SBi- (1.3.5)

3. N(w) is biconvex, i.e. both N(w) and AT \ N(w) are closed under root
addition. Conversely, if A* has no irreducible components of type Agl) and L

is a finite subset of real roots which is biconvez, then there exists w € W such
that L = N(w).

4. Denote by < the weak left Bruhat order, that is, w1 < ws if there exists a

reduced expression for wi which is an initial segment of a reduced expression
for wy). Then
w) < wy <= N(w;) C N(w2).

5. Set N*(w) = N(w) U —N(w). Then N*(wiws) = N*(wy)+wi(N*(ws)),
where + denotes the symmetric difference. In particular, the following proper-
ties are equivalent:

(a) N(wiwz) = N(w1) Uwi(N(wz));
(b) f(’wllUQ) = E(wl) + €(w2);
(c) wi(N(ws2)) C AT.

We also introduce the sets of left and right descents for w € W

= =

(saw) < l(w)},

(wsa) < f(w)}.

We have that L(w) = IIN N (w), R(w) = I N N(w™?).

L {aell|t
R(w)={acIl|?

1.3.3 Reflection subgroups and coset representatives

Let G be a finite or affine reflection group and let £ be the length function with respect

to a fixed set of Coxeter generators S. Let R be the set of roots of GG in the geometric

representation, IIp a system of simple roots for R, and R the corresponding set of

positive roots. Let G’ be a subgroup of G generated by reflections, and R’ be the

set of roots a € R such that s, € G’, which is easily shown to be a root system.
We recall the main Theorem of [5]:
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Theorem 1.3.2 (Deodhar). IIgr = {a € RT | N(so) N R = {a}} is a set of simple
roots for R, whose associated set of positive roots is R'T = R' N RT.

Given g € G, we say that an element w € G'g is a minimal right coset represen-
tative if £(w) is minimal among the lengths of elements of G’g. From Theorem 1.3.2
follows that

Proposition 1.3.3. Every coset G'g has a unique minimal right coset representative
w. Moreover this element is characterized by the following property:

w(a) € RT foralla € R™. (1.3.6)

Proof. First observe that if ¢(sqg) > ¢(g) for all @ € Ilz then clearly g = w.
Suppose now £(sq,9) < €(g) for ay € Il and continue chosing «a; € Il so that
Sy Sa;9) < £(Say " Sa;_,9) as long as such «a; can be found. This process
clearly must end after at most ¢(g) steps. If it ends with g = s, - - 5q, 9, then
gr = w since £(sqgr) > £(gx) for every o € Il p.
To prove the uniqueness of such an element, suppose there exist two minimal coset
representative, namely wy = u1g, wy = usg, ui, us € G’'. Choose a reduced expression
wg = 8iy + -+ 8;, with a;; € g, and set u1u2_1 = 8y, "+ " 8y, With v; € IIg: we have
wy = u1u2_1w2 = Syt Sy Siy o Sy
From this expression we can extract a reduced subword of wy: since it can not start
with some s,, it must be a subword of s;, - --s;,, hence w; < wo. By simmetry we
obtain wy < wy and then wy; = ws. O

We will always choose as a coset representative for G’g the minimal right coset
representative and (with a slight abuse of notation) we denote by G'\G the set of
all minimal right coset representatives. Thus the restriction of the weak order of G
on G'\G induces a partial ordering on G'\G. When saying the poset G'\G, we shall
always refer to this ordering.

If « € R and G’ is the stabilizer of a in G, then, for each g € G, the minimal
length representative of G’g is the unique minimal length element that maps ¢~ 'a

to a. By formula 1.3.6, this element is characterized by the property
w™(B) € Rt for all B € RT orthogonal to o. (1.3.7)

A reflection subgroup G’ of G is standard parabolic when IIz C IIg. In this case,
if g € G and w is the minimal right coset representative of G’g, then g = ¢'w
with ¢ € G’ and £(g) = ¢(¢') + {(w). In particular N(g) N R’ = N(g'). Moreover,
it is well known that ¢ itself is the minimal representative of G’g if and only if
L(g) Cllg \ IIg,. Therefore G/\G = {w eG | L(w) Cllg \ HR’}-

If G is finite, the poset G'\G has a unique minimal and a unique maximal
element. The identity of G clearly corresponds to the minimum of G'\G. If wy is
the longest element of G and wy is the longest element of G’, then we have that
N(wywo) = R\ R'. If w € G'\G, then N(w) C R\ R'; therefore wjwy is the unique
maximal element of G'\G. Note that

Uwhwo) = [AF(R)| — |AT(R))] (13.8)
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1.3.4 Special elements in finite Weyl groups

We sum up in the following statement the content of Propositions 7.1 and 7.2 from
[4], which are based on earlier works of Panyushev and Sommers. Precise attributions
of the individual results are done in [4]. The properties below will be used many
times in the sequel.

Proposition 1.3.4. Let R be a finite irreducible root system, Wg its Weyl group.
Fiz a positive system R* and let IIg, Or be the corresponding set of simple root and
highest root, respectively.

1. For any long root « there exists a unique element yo € Wgr of minimal length
such that y(a) = Og.

2. L(ya) C{B € R | (B,0r) # 0}. If conversely v € Wg is such that v(a)) = Or
and L(’U) - {/8 € llg ‘ (,6,93) 7& 0}7 then v = yq.

3. If a € Illg, then ¢(yo) = gr — 2, gr being the dual Coxeter number of R.

4. If o € I, and B1 + B2 = Or, B1, P2 € RT, then exactly one element among
B1, B2 belongs to N(ya), and any element of N(ya) arises in this way. Con-
versely, if y € Wg is such that for any pair 31, B2 € R* such that B1 + 2 = Or
exactly one of 1, B2 belongs to N(y) and Or ¢ N(y), then there exists a long
sitmple root 8 such that y(5) = Og.

5 N(y,')={BeR"|(8,a")=—1}.
6. y€RT, (7,0r) =0 = v ¢& N(ya).

Proof.

1. We prove that there exists a unique element of minimal lenght in A = {v € Wy |
v(fr) = a}. This clearly is equivalent to our thesis. Let then m = min,c4 ¢(v)
and let v € A be an element such that ¢(v) = m. If v' € A, then v/ = vz with
x € Stabyw,(0r). We shall prove that £(v') = ¢(v) + ¢(z). Let v = s; -~ s,
x = 8, - -+ 55, be reduced expressions: if by contradiction s;, - - - s;, 55, - - - 55, is not
reduced, then there exist u <p v and y <p x, <p being the Bruhat order, such that
uy = vx. But
Stabyw, (0r) = (s5 | B € Ir N 0F),

therefore y € Stabyy, (6r) too. It follows that u(a) = 0, which is a contradiction
since £(w) is minimal.

2. For all y € Wh, if y(a) = Or then y = xy, with x € Staby,(0r) and {(y) =
£(x) +£(yo). In particular, £(sgya) > £(ya) for all B € lIgNO%, hence L, C I\ 0%.
Moreover L, C 6% and N(z) C N(Y), therefore if y # y, we must have L, Z TIg\ 0.
3. Let o € Il and v € W be such that v(a) = 0r. We first prove that ¢(v) > gr —2.
Let v = s,, ---s,, be a reduced expression. Set vg = 1, and vy = e, 5+, for
1 < h < k. Since N(vz) C N(v), v, '(0r) is a long positive root for 0 < h < k: in
particular v,:_ll(HR) % vp, for 0 < h < k. For any positive root 8 and any ~ € IR,
we have s,(8) = 8 — (8,7")y. Moreover, if j is long and 8 # v, then [(8Y,7)| < 1,

hence [(8,7")] = [(8%,7) 23| < | L8| = |Can)| Therefore v, (0r) v}, (Or) <
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(adidoy, for 1< h < by hence 6 — a = 0" (6r) — v (0n) < Sy P22y, Since
(0R70R)

Or = > ety MyY = Doqenip mY ﬁ% we obtain that each v # « occurs in the
sequence (Y1, .. .,Yk) at least m times, and « at least mY — 1 times. It follows that
g()—k>zwel‘[3 1—9R—2

Next, we show that there exists a w € Wg such that w(a) = g and 4(w) < gr—2.
If 3 is a long root and 8 # 6g, then there exists a simple root 7 such that (3,7") < 0
and hence s,(f8) = f + Or, GR)'y. Therefore, if a is a simple long root, we can

[C6%0)
find a sequence of simple roots (y1,...,7%) such that (s, , s, (®),7) < 0,

Sy Sy (@) = 8y, oo sy () + ((QWR 953),},“ for i <k, and s, --- sy, (@) = Op. Then

clearly k = > i,
concludes the proof.

my —1 = gr — 2 and therefore £(s-, -+ 5,,) < gr — 2. This

4. We have 0 ¢ N(y,), therefore, since N(y,) is biconvex, for any pair (31, f2 in
A} such that g = 81 + B2, at most one of B, 32 lies in N(ya). If o € Ilg, since
Yo(a) = Og, we have N(yaSa) = N(ya) U {0r}: this implies that at least one of
B1, P2 lies in N(yqaSqa) and hence in N(yq).

Now let y € Wg be such that for any pair 51, 52 in AE such that Og = 81 + [o,
exactly one of (i, B2 lies in N(y), and, moreover, r ¢ N(y). Then N(y) U {0r}
is still biconvex, therefore, by Proposition 1.3.1(3), there exists ¢y € W such that
N(y") = N(y) U{0gr}. By Proposition 1.3.1(1), v/ = yz with £(y) = £(y) + £(x),
therefore ¢(z) = 1 or equivalently z = s, for some « € IIg. Then by Proposition
1.3.1(2) we obtain that 6 = y(«), hence that « is a long simple root.

5. Assume y,(8) < 0. Then o # 5 and —y4(8) € N(ya). By part 2, Supp (—ya(8))\
0% # 0, hence (B,a") = —(—ya(B),0}) = —1. Conversely, assume (3,a") = —1.
Then (yo(8),0%) = —1, hence yq(8) < 0.

6. The claim follows from part 2 and Proposition 1.3.1(3). O






Chapter 2

The structure of Borel stable
abelian subalgebras

Recall that ITy denotes the set of simple roots of go corresponding to AJ". In general
Iy is disconnected and we write 3|IIy to mean that ¥ is a connected component of
IIy. Clearly, the Weyl group Wy of gg is the direct product of the W (X), X|II,. If
0y, is the highest root of A(X), set

Ao = {a+Zké | a € Ao} U£NKS,
ﬁo = H() U {k‘5 — 92 ’ E’HO}v
Af = A u{aeAg | a(d) > 0}.

Denote by Wo the Weyl group of Ao. Let A,. = WII be the set of real roots of
L(g,0). If XA € b, then we let gy C g be the corresponding weight space.

Definition 2.0.1. We say that a real root « is noncompact if gg C g1, compact if
gz C go, and complex if it is neither compact nor noncompact.

If « is a complex root then a corresponding eigenvector xg in gg decomposes as
Ty = Ug + Vg

with ug € go and vg € g1. Then ug is a root vector in gg for @ and vg is a weight
vector in g; for the weight @. From this follows that « is a compact root if and
only if @ € Aand & +a ¢ A a is a noncompact root if and only if @ ¢ A and
d+ace A and « is a complex root if and only if @ € A and & + @ € A. More
precisely if k = 1, since §' ¢ A then a real root is either compact or - noncompact. If
k = 2 and g is simple then ¢’ = §, hence, by the very definition of L(g, o), a€ Ave
is either compact or noncompact if and only if « is a long root (i.e., ||« is largest
among the possible root lengths). If g is not simple, since ¢ is indecomposable, all
the real roots are complex.

Recall that for every o € A

= Z SiCa; ()
i=0
and, for i € Z, A; = {o € A | hty(a) =i}

19
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Remark 2.0.1. Since «; = s;0' + @; (Section 1.2.1), for any «a € A, we have that
a = hty(a)d + @. In particular, since ké = 20’, ht,(kd) = 2. By definition, the
roots Oy, X|I1y, are the maximal roots having o-height equal to 0, with respect to
the usual order < on roots: a < § if and only if  — « is a sum of positive roots or
zero. It follows that the roots kd — 0y, are the minimal roots having o-height equal
to 2. More generally, if s € Z, {ské — Oy | X|llp} is the set of minimal roots in Ags.
Similarly, IT; + ské is the set of minimal roots in Aggy1.

Remark 2.0.1. It will be useful, from a notational point of view, to introduce the
following generalization of the o-height. Given A C IT and v € A, set

hta(v) = Y ca(7).

acA

In particular, the o-height equals htr;, and the usual height equals htﬁ. In these
two cases we will keep using ht, and ht.

As previously stated we are interested in the set of the o-minuscule elements
W = {we W | N(w) C A},

In this chapter we will study the structure of some particular subset of W2, regarded
as posets under the weak Bruhat order. In the next section we present the main
result of [1] about the cardinality of W2

2.1 The cardinality of the set of o-minuscule elements

Consider the set
DU = U ’LUCl.
wEWIP
Observe that in the adjoint case D, is twice the fundamental alcove of the affine
Weyl group of g.

The main idea of [1] is similar to the approach of Peterson in Theorem 1.1.4: in
fact the authors find the formula for the cardinality of the set ng calculating the
volume of the polytope D,. More precisely, in the semisimple case they calculate
the ratio Vol(P,)/Vol(Cy) where P, is a fundamental domain for W (Il). Since, by
[1, Proposition 5.8, Lemma 5.11], there exist w, € W such that

P o_ D, if « € II; is short
7] Dy Uw,(C1) otherwise

then the following theorem holds.

Theorem 2.1.1 (Cellini, M6seneder, Papi). If go is semisimple, II; = {a} and
xi(«@) is the truth function which is 1 if « is long and noncomplex and 0 otherwise,
then

W]
WS = ao(xi(a) + DE"F —=— — xi(a),
[W ()|
where L is the number of long roots in {aq, ..., an}.

If go is not semisimple then

w lo
[W (Ilo)| Ly
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where ls,l; are the connection indexes of, respectively, Ao and A.

We conclude this section with a result that refines [1, Proposition 4.1]. Let a be
the squared length of a long root in A™. Define

iy = Mo U {kd — 0 | a < 2)l6s]?} (2.1.1)
®, =115 U{a+ ké | a € I}, o long and noncomplex} (2.1.2)
Remark 2.1.1.
(1) It is immediate to see that IAI(’S =TI, unless E(g, o) is of type Ggl) or Ag). Indeed,
in the latter cases there exists X|IIy such that W = 3,4, respectively.

(2) When |II;| = 2, then both roots in IT; are long; moreover, for any %|IIy, both
roots in II; are not orthogonal to X. This is most easily seen by a brief inspection of
the untwisted Dynkin diagrams, recalling that, by Section 1.2.1, k = 1 and the labels
of the roots in Il in the Dynkin diagram of II are equal to 1. Anyway, we provide a
uniform argument. Let I1; = {a, 8}: since k =1 and ¢,(J) =1, § — «v is a root and
belongs to A(IL\ {a}). Since the support of § — ais II \ {a}, we see that I\ {a}
is connected. We claim that § — o is the highest root A(II\ {a}). Otherwise, if
B>6—aand B e A(L\ {a}), then 8 —§ would be a root with positive coefficients
in some simple root in II \ {a} and coefficient —1 in «. In particular, we obtain
that 6 — « is long with respect to A(II \ {a}) and, since it has the same length
as «, that both 6 — a and « are long. For proving the second claim, observe that
S U{B} C Supp(d — o) =II\ {a} and the latter is connected. Hence 3 has to be
nonorthogonal to . Switching the role of o and 8 we get the second claim.

If a € A then we let HY = {h € (ho)r | a(d + h) > 0}. This is the previously
annunced result.

Proposition 2.1.2.

D, = () HS.
acd,

Proof. By [1, Propositions 4.1 and 5.8] and by Remark 2.1.1 (2), we have that

D, = (\ H}, where
acd!

® =Ty U{a+ké | & € I}, o long and noncomplex}.

(Actually Propositions 4.1 and 5.8 of [1] cover only the cases when g is simple, but
the argument is easily extended to the adjoint case.) Therefore, we have only to
prove that we can restrict from I to ﬁz‘,, i.e. that if ¥ is a component of IIy such
that a > 2||0g||2, then 05 (z) < k for all 2 € D,. By Remark 2.1.1 (1), II is of type
Ggl) or AgZ), in particular II; has a single element: set II; = {&}. Note that & is
long. We proceed in steps.

1. &+ 36y € AT this follows from (&, 0Y) < —2.

2. 2a + 30y € Af: indeed (&,a + 365) < 0 and ||2& + 36| > 0.
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3. k6 —2a — 305 € A relation kd — 26 — 30y, € A follows from (2); it is also
clear that it belongs to Ag. So it remains to show that it is positive. Indeed (1)
implies kd — & — 36y € A, and this root is positive since ca(kd — & —30x) = 1,
hence (ké — & — 30y) —a € AT,

Now we can conclude, since (kd — 2& — 30x)(x) > 0 implies Ox(z) < % —2(a,z) <
k. O
2.2 The poset 7, , and its minimal elements
We now begin the study of maximal elements of W2, Set

Mgy = ®,\ (1N ®,). (2.2.1)

The following proposition gives us a necessary condition for the maximality of an
element.

Proposition 2.2.1. If w € W% is maximal, then there is a € II and w e Mg such
that w(a) = p.

Proof. By Proposition 2.1.2, we have that, if o € I, w(a) € £+, then wsy (C1) ¢ Dy,
hence there exists € ®, such that ws,(C1) ¢ H,f. Tt follows that u € N(wsq).
Since N(wsq) = N(w) U {w(a)}, we see that w(a) = p. We need therefore to prove
that there is a simple root a such that w(a) € At and w(a) & Ip.

Assume on the contrary that, if o € II and w(a) € AT, then w(«) € Ily. Then,
for all o € 1I, hts(w(a)) < 0 and, hence, for all § € A*, we have that ht,(w(B)) < 0.
It follows that, for all 8 € AJF, if w(p) is positive, then w(B) € Ay. Equivalently,
w(AT)NAT C Ag. Hence, in particular, w(A+)\ AT is infinite, but this is impossible,
since w(A*)\ AT = —N(w). O

Remark 2.2.1. In the adjoint case observe that M, = {—60 + 2§} and D, = 2C1,
hence Proposition 2.2.1 becomes geometrically evident.

The previous proposition suggests the following definition. Let o € ﬁ, e My:
we define
Topy={we W2 | w(a) = u}.

In this section we find necessary and sufficient conditions for the poset Z, , to be
nonempty, and in such a case we show that it has minimum.

2.2.1 The case pu = kd — by, with X|II,

Definition 2.2.1. Let X|IIj, and consider the subgraph of Il with {a € II | (o, 05) <
0} as set of vertices. We call A(X) the union of the connected components of this
subgraph which contain at least one root of II;. Moreover, we set

() =AX)NE.

Remark 2.2.2. If |TII;| = 1 then, obviously, A(X) is connected. If |II;| = 2 then a
brief inspection shows that there is only one case when A(Y) is disconnected, namely

when II is of type 07(11). Note that in such a case Il is connected and 6y, is a short
root.
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Example 2.2.1. We number affine Dynkin diagrams as in [9, Tables Aff1 and Aff2].

1. Let L(g,0) be of type BV (n>5)and IIT = {ap}, 4 < p < n—1. Then
IIp has two components, say ¥i, of type D, with simple roots {a;,| 0 <
i < p—1}, and Xy of type B,_, and simple roots {oy,| p+1 < i < n}.
We have A(X1) = {ap-1,...,an}, T'(X1) = {ap_1}, and A(X2) = {ao,...,
apr1}, T'(E2) = {ap}

2. Let E(g,a) be of type Eél) and II; = {ag}. Then Il has two components:
Y1, of type As, with simple roots {a1,...,a5}, and 3o = {ap}, of type A;.
We have A(X1) = {az,a3,a4, 06,0}, T'(X1) = {a2,a3,04} and A(X,) =
1I \ {Ozo}, F(Eg) = (Z)

3. Let E(g,a) be of type A;l), (n > 2), and I} = {ap, ap}, 1 < p < n. Then Il
has two components: X1, of type A,_1, with simple roots {c;,| 1 <7 <p—1},
and Xy of type A,_, and simple roots {a;,| p+1 < i < n}. We have and
A(El) = Yo UIly, A(Eg) = ¥ UIly, and F(EZ) = fori = 1,2.

Remark 2.2.3. Assume that 3|1y, kd — Oy, € M, a € T3, and set
ry = —(a, 0%).

By Remark 2.1.1 (2), ry is independent from the choice of a € II;. Moreover, we
see that ry = 1 if and only if fy. is long and non complex while, in the remaining
cases, since we are assuming that kd — 0y € ﬁg, we have that ry, = 2. If ryy, = 2,
then, for o € Iy, either ||a|| = 2||0x||, or @ = —0x. The latter instance occurs in
the adjoint case, so that kK = 2 and 0y, is long and complex. In the first case, Ox
is a short root, and k£ may be 1 or 2. In fact, £k = 2 and 6y, is complex, except in
the following two cases: g is of type By, II; = {a,—1} and 0y, = «, or g is of type
Cy, I} ={ao,an}, ¥ ={a1,...,a,—1}. (Dynkin diagrams are numbered as in [9,
Tables Affl and Aff2]).

From now on we will distinguish roots in two types, according to the following
definition.

Definition 2.2.2. We say that a € Ajﬁe is of type 1 if it is long and non complex
and of type 2 otherwise.

By the above remark, if kd — 0y € M,, its type is ry.

Lemma 2.2.2. Assume |y and kd — 60y, € M, . If% € Z, then A(X) is connected,

£ § — 0y, is a root, and
&>

Supp (;;5 - 92) C A(%). (2.2.2)

Proof. Note that % € Z if and only if ry, =1 or k = ry, = 2, in any case % € {1,2}.
If% = 2, then %5—92 € A and, if% =1 then, either £k = 1 or kK = 2 and 0y, is
complex. In both cases, %5 — 0y € A.

We now prove that Supp(%é —0x) C A(X). Note that II; C Supp(%(S —Oy),
hence we need only to prove that o ¢ Supp(%é — 0y) for any a € ¥ such that
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(ar,0y) > 0. We next show that, for such an «, we have ca( -0 — 0x) = 0. We have:

rs
2 S 0)B,00 = Y esl0)(6.0%)
BET BET
(8,65)>0
The first equality follows by the definition of ry, and the second by the relation
(0,0x) = 0. If there is only one root o € ¥ such that («,fy) > 0, we obtain that

T’;ca((s)(a, 05) = 2 = co(05)(a, 0%)),

hence ¢y 25 fx) = 0. If there is more than one root in ¥ not orthogonal to fx
then 3 ex (a,65)50 Ca(fs)(a, 0%) = 2, hence (a, fs) = ca(fs) = 1 for all @ € ¥ not
orthogonal to Ox.

Since 2 2 _aes,(a,05)>0 Cald) = ﬁ € Z, and ¢o(6) > 0 for all o € II, we obtain

%ca(& = 1 and again we have ca(%é — 0x) =0, as desired. O

Note that, if 0y is of type 1 or kK = 2, then % € Z. In particular A(X) is
connected.

Proposition 2.2.3. Assume X|Ily and ké — 0y € M,. If Oy is of type 1, then
kd — Ox, is the highest root of A(A(X)). If k =2 and Oy, is of type 2, then 6 — Oy, is
either the highest root of A(A(X)), or its highest short root.

Proof. Our assumptions imply in any case that % € Z. By (2.2.2) we have that
%5 — 6y € A(A(X)). By the definition of A(X), %(5 — Oy, is a dominant root in
A(A(Y)), therefore, since A(A(X)) is a finite root system, we obtain that it is either
the highest root of A(A(X)) or its highest short root. If 6y is of type 1, then it is a
long root, so, since ry = 1 ké — Oy, is the highest root of A(A(X)). If Oy is of type
2, then ry = 2, hence .= = 1. In this case, fx may be short or long, and ¢ — 0y is
the highest short or 1ong root of A(A(X)), according to its length. O

Lemma 2.2.4. Assur@g Y|y, ko — 0y, € M, and Ox, of type 2. Let s be the element
of minimal length in W such that s(0x) = kd — 0s,. Then s € W(A(X)) and is an
involution. Moreover,

N(s) = {8 € AT | (B,6%) = —2},
in particular, s € W20,

Proof. First we assume k = 2. We claim that in this case s = ss_g,,, which directly
implies that it is an involution and, by Proposition 2.2.3, that it belongs to W (A(X)).
It is immediate that ss_g.(fx) = 26 — fs. Moreover, for each a € AT which is

orthogonal to s, we have ss_g., (o) = a € 3*, therefore s is the unique element of
minimal length that maps § — 6y, to 26 —6x,. We study N(s). For each 8 € AT(A(Y)),

s(B) =B+ (B,05)(6 — 0x)

hence s(3) < 0 if and only if (3, 60y,) < 0. Thus if (8,60y;) = —2, then 8 € N(s). It
remains to prove the converse. Assume s(8) < 0, hence (3, 6:) < 0: since (a,05) >0
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for all o« € 11 \ IT;, this implies that ht,(3) > 1. Now we observe that, if 5 € N(s),
then also —s(f) € N(s), therefore ht,(—s(f)) > 1 as well. Since

hto(s(B)) = hto(B) + (B,0%)hte (8 — O5) = hts(B) + (B, 6%),

we obtain that —(3,0%) = hts(3) + hts(—s(8)) > 2. But kd — 0y, belongs to
M, C II§, therefore, by (2.1.1), we have — (3, 65,) < ﬁgg” < 24/2, s0 we can conclude
that —(8,6%) = 2 and ht,(8) = ht,(—s(8)) = 1.

Now we assume k = 1. By Remark 2.2.3, then either g is of type By, II; =
{an—1} and by, = ay, or g is of type C,, II} = {ap, an}, ¥ = {a1,...,an—1}. In
the first case a straightforward check shows that s = s,_1 52508182 Sp—1 =
Sapt-aot...4om_1Sa1+ast..+a,_; MAPS &y t0 0 — oy, ap—1 to ap—1 + 204 — 6, fixes
;i = 2,...,n — 2 and switches ag and a;. A positive root 7 is orthogonal to
oy, if and only if ¢, ,(7) = ¢a,, (7). Therefore s keeps positive any positive root
orthogonal to «,, as required. It is clear that s is an involution, being conjugated
to spsi. A direct computation shows that N(s) = {8 € AT(I\ {an}) | €a, ,(8) =
1} ={B € AT | (B,6) = —2}.

For g of type C’n,As =soSp,maps 0y = a1+ +ap_1tod—0Os=ap+ -+ ay.
Moreover, a root in A% is orthogonal to 6 if and only if it is of the form AU(NJ+ A)
where A is formed by the roots in the subsystem generated by as,...,a,_2 and
by the roots 2a; + ... + 201+ ap,2 <i<n—1and a; + ...+ a,. A direct
check shows that these roots are kept positive by s, which is therefore minimal. It is
immediate to see that N(s) = {ag, o} = {8 € AT | (8,0%) = —2}. O

Lemma 2.2.5. Assume Y|y, k6 — 0s, € My, a € 11, and ||a|| = ||0x]|.

1. If Os, is of type 1, a € A(X), and wy, is the element of minimal length such
that we (o) = ké — O, then w, € WP,

2. If Oy, is of type 2, a € X2, v, is the element of minimal length in W(X) such
that ve(a) = Ox, and s is the element of minimal length in W such that
5(0s) = kd — Ox;, then sv, € WP, Moreover, £(svy) = £(s) 4+ £(vy) and svy is
the element of minimal length in W that maps o to ko — Ox.

Proof.

1. By Proposition 2.2.3 (1) and Proposition 1.3.4 (5), if 8 € N(wg), then there
exists 8 € AT such that 3+ 8’ = kd — 0x. By Remark 2.0.1, each root less than p
in the usual root order has o-height strictly less than 2, hence ht,(3) = ht,(5') = 1.

2. Assume first k£ = 2, so that s = s5_g,,. We first show that s;_p.(5) = 5+ — by
for each 3 € N(vg). This amounts to prove that (6%, 3) = 1 for each 8 € N(vy),
which follows again from Proposition 1.3.4, (2). Thus we obtain that the o-height of
the roots in s5_g,, (N (vy)) is 1; moreover,

N(sva) = N(85-95) U s5-05 (N (va))

and £(sv,) = £(s) +£(vy). Since by Lemma 2.2.4, for each 8 € N(s), ht,(5) =1, we
conclude that sv, € W9, It remains to prove the assertion about the minimal length.
Notice that the above considerations show in particular that, for each g € N(sv,),
we have that (8, kd — 0x) # 0. By subsection 1.3.3, it follows that sv, is the unique
element of minimal length that maps a to kd — Ox.
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In the case of B, one has N(svy) = N(s) = {8 € AT\ {an}) | Ca,_, (B) = 1}.
This follows noting that L(s) = {an_1},4(s) = 2n — 2 = |ATII\ {an})| — |ATAT\
{on—1,an})l.

In the case C),, we first remark that sv,, = sg---Si—15,---8i41, 1 <1 <n—1.
Thus,

N(sva;) = N(So---Si—15n " Sit+1)
={ap+...+ap | 0<k<i—-1}U{ap+...4an|i+1<h<n},

whose elements have clearly o-height 1. The same argument used in case k = 2
proves that also in this case sv, is the unique element of minimal length that maps
o to kd — Oy, O

Lemma 2.2.6. Assume p € M,, a € I, and w € Zoy. Then
1. for each B € N(w), u+ 8 & N(w);
2. for each B, 8 € At such that B+ B’ = p, exactly one of B, B belongs to N(w).

Proof.

1. We have
N(wsq) = N(w) U {u}. (2.2.3)

If, for some 5 € N(w), f+u € A“', then by the convexity properties, we would obtain
B+ p € N(w): this cannot happen since ht, (5 + 1) > 3, while w is o-minuscule.

2. By the convexity properties, relation (2.2.3) implies that N(ws,) contains at
least one summand of each decomposition u = 8+ ', hence N(w) does. Since
1 & N(w), it contains exactly one summand. O

Lemma 2.2.7. Assume p = kd — 0y € M,, a € ﬁ, and w € Zy,. Then there
exists u € W such that

{BeN(w)|p—BeAT}=Nu).
Moreover, u belongs to I, and it is its minimal element.

Proof. Set U = {8 € N(w) | p— B € A+}. We first prove the existence of u: we have
only to check that U is biconvex. We observe that, if 8,5’ € U, then 8 + /3’ is not
a root, otherwise it would belong to N(w), which impossible since ht, (5 + ') = 2
and w is o-minuscule. Thus we have only to check that, if 3 € U and § = v+ «/,
then at least one of 7, 7/ belongs to U. Clearly, at least (in fact exactly) one of
7,7, say v, belongs to N(w). We have to prove that p — v is a positive root. Set
B = u — B: by definition, 3’ is a positive root and it is immediate that ht,(8') = 1.
Since v+v'+ ' = p, at least one of v+ ', v+ 3, is a root, otherwise, by the Jacobi
identity, v +~' + 8 would not be a root. But v+ 3’ cannot be a root, otherwise it
would have o-height equal to 2, while being less than pu. Therefore p — vy =~ + '
is a root, as required.

It remains to prove that u € Z, . It is clear that u € ng, we have only to check
that u(a) = p. By Lemma 2.2.6 (2), N(w) contains exactly one summand of any
decomposition of p as a sum of two positive roots and, by the definition of u, N (u)
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has the same property. From this fact, we easily deduce that N(u)U{u} is biconvex,
hence that there exist a simple root 8 € II such that N(usg) = N(u) U {p}. But
N(usg) = N(u) U {u(B)}, hence u(3) = p. We must prove that 8 = a. Since u < w,
there exists z € W such that w = uz and N(w) = N(u) UuN(z). If  # «, since
w(f) = uz(B) # pu, we obtain that z(3) # B, hence, by formula (1.3.5), that N(z)
contains at least one root « such that v / 8. Then u(y) £ pand u(y) € N(w)\ N (u):
we show that this is a contradiction. In fact, u(vy) £ p implies that either p + u(y)
or u— u(7y) is a positive root: the first instance is impossible by Lemma 2.2.6 (1);
the second one is impossible because it would imply that u(y) € N(u). O

In Lemma 2.2.5 we have constructed elements w, and sw, belonging to Z, ,,
under certain restrictions on « and p, so proving in particular that, under such
restrictions, Z, ,, is not empty. It is quite clear that, by the the minimality assertions
of both Lemmas 2.2.5 and 2.2.7, the element « built in Lemma 2.2.7 must be equal
t0 wq Or swy, when these are defined. In the next proposition we prove that w is in
any case equal to some w, or sw,, with the restriction on « stated il Lemma 2.2.5.
We have therefore determined necessary and sufficient conditions under which Z, ,
is not empty.

Proposition 2.2.8. Assume X|Iy, ké — Oy, € My, a € I ,and w € Ly ps—os -
1. If Oy, is of type 1, then a € A(X) and w > wq;
2. If Ox, is of type 2, then v € ¥ and w > sv,.

Proof.

1. Set p = ké — Oy, and consider the element v built in Lemma 2.2.7. By Lemma
2.2.6 (2) and by the definition of u, N(u) contains exactly one summand of any
decomposition of p as a sum of two positive roots, and each element of N(u) is one
of the summands of such a decomposition. By Proposition 2.2.3 and by Proposition
1.3.4 (6), there exists a simple root § € A(X) such that u(8) = p, and u is the
minimal length element with this property. But u(«) = u, hence a = 8 € A(X), and
U= Wey.

2. As above, we set ;1 = kd — 0y, and consider the element u built in Lemma 2.2.7.
We claim that in this case a € ¥ and v = sv,, which clearly implies the thesis.

We start proving that s < u, which, by Lemma 2.2.4, consists in proving that
all 3 € AT such that (3, ") = 2 belong to N(u). Assume 3 € A] and (8, ") = 2:
this imply that 4 — 8 and 2u — § are roots, and positive, having positive o-height.
By Lemma 2.2.6 (1), p — 3 ¢ N(u), since up — 8+ p is a root, hence § € N(u).
So s < u, i.c. there exists v € W such that u = sv and N(u) = N(s) UsN(v). It
remains to prove that o € ¥ and v = v,.

First, we prove that for all 8 € N(u), we have that (3,x") > 0. Assume by
contradiction that 8 € N(u) and (3, p") =0, and set 8’ = u — B. Then ht,(3') =1
and (8, ") = 2: by the previous part, this implies ' € N(u), which is impossible.
Therefore we have (B,1V) > 0, hence (3, ") € {1,2}, since u € M,. It follows that
sN(v) C {8 € AF | (B,u") =1},

Now, we claim that N(v) C A(X) and that, for each 3 € AT(X) such that 0y, — 3
is positive, exactly one amog ( and 6y — 3 belongs to N(v). Assume € N(v)
and set ' = s(3). Then ht,(8) = 1 and (5',u") = 1, so that pu — 3’ is a positive
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root, (u— B',p") =1, and ht,(u — B') = 1. By the explicit description of N(s),
Os, — 8 = s(u — f3') is positive, hence € A(X). Now let 3 € A(X)" be such that
Ox — B € A(X)" and set 8’ = s(3). Then, 0y, being long with respect to A(X), we
obtain that (3,60y%) = (0s — 38,6%) =1, hence (8, u¥) = (u — 8/, V') = 1. Moreover,
by the explict description of N(s), both 8’ and p — 8" are positive, therefore both
have o-height equal to 1. By Lemma 2.2.6 (2), it follows that exactly one among
them belongs to N(u), hence to sN(v), therefore, exactly one among /5 and 0y, — 3
belongs to N(v). Thus v has the property of Proposition 1.3.4 (6), whence there
exists § € ¥ such that v = vg. But svg(5) = p, hence 5 = a. O

2.2.2 The case iy = kd + 3, with g € 1;

According to our definitions, (2.1.2) and (2.2.1), the assumption that g + ké € M,
implies that 3 is long.
We start refining the analysis done in [1, Lemma 5.10].

Proposition 2.2.9. If gg is semisimple, then gy is irreducible as a go-module. If
go is not semisimple, then g1 has two irreducible components as a go-module. As a
consequence,

1. if I} = {a} and wyg is the longest element of Wy, then wo(a) = ké — a;
2. if 11 = {a, B}, then wo(a) =0 — B and wo(B) = — a.

Proof. As shown in the proof of [1, Lemma 5.10], t:l ® g1 occurs as a submodule
of the homology Hi(u™) where u™ = Zae(—Kﬂ\Ao L(g,0)q. By Garland-Lepowsky
theorem, this homology decomposes as @qem, V(—«), as a sum of irreducible

(go + CK + Cd)-modules, which stay irreducible as go-modules. It follows that

tr@gr = V(-a), if I} = {a}. (2.2.4)

Moreover, it is clear that —a occurs as a highest weights of t ' ® g1, for any « € II;,
hence,
'@ =V(—a)@ V(=8), if I} = {o, B} with a # 3. (2.2.5)

Since g; is self-dual as a go-module, if II; = {a} we obtain that wo(a) = —a,
hence wp(a) = wo(d' +a@) =6 —a =25 —a = kd — a (cfr. Section 1.2.1), as
claimed.

Assume II; = {a, 5}. Notice that in this case k = 1, so that § = 2§’ and that
ca(0) = cp(6) =1 (see Section 1.2.1). We have two cases:

1. V(—a)* = V(—a) and V(-p)* = V(-0),
2. V(—a)*

V(=p) and V(=)" = V(-a).

In the first case we have wg(a@) = —a, which forces wo(a) = wo(d'+a) ="' —a =
6 — « and this is not possible since co(wo(a)) = ca(a) = 1, while ¢4 (6 — a) = 0.

Hence (2) holds. It follows that wo(a) = —f8 and wo(8) = —a. Therefore, wo(a) =
§—pB=20-p=0—PLand wy(B) =0 —-a=2—-a=§—a.

O

Proposition 2.2.10. Assume 1 = a+kd € M,, with o € II;. Set Iy o = 1o N at,
Wo.o = W(Ilp,a), and denote by wo o the longest element of Wy 4.
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1. IfII; = {a}, then I, # 0 if and only if v = a. Moreover,
oy = {Sawoawo}.

2. If 1) = {a, B}, then I oips # 0 if and only if v = B. Moreover,

minZg o4ks = SaWo,aWo-

Proof. Set x = sqwp owo. By Proposition 2.2.9, we have that:
1. if II; = {a}, then z(a) = sqwp awo(@) = Sqwo,a(kd—a) = sq(kd—a) = kd+

2. if II) = {o, B}, then x(5) = sqwo owo(B) = SaWo,a(kd — a) = 54(kd — ) =
kd + a.

We prove that z is o-minuscule. Since wg qwo € Wy, it is clear that N(wgqwo) C
Af. In fact, we have N(woowo) = Af \ A(llp,). Since a is long, for each
v € A\ A(Ilpq), we have s4(7) =7 + a, hence N(z) = {a} U so N (wp awo) C Ay,
as claimed.

So we have proved that € Z, o4xs, if II1 = {a}, and « € Zg o1, if 11} = {o, B}.

Now we treat separately the two cases. First, let II; = {a} and assume that
w € Iy aqks, With v € II. Then N(wsy) = N(w) U {a + ké}, hence, since w is
o-minuscule,

w(C) € () B\ () H} =P;\D,,
nelly nEds

where we denote by P, the polytope mneﬁo H,T But by [1, Lemma 5.11], there

is exactly one w € W such that w(Cy) C P, \ Dy, hence w = z, ¥ = a, and
Ia,a+k5 - {.Z‘}

Now we assume II; = {a, 8}, v € IIand w € 7, 5+a- We will show that v = 8
and z < w. By Remark 2.1.1 (2) both roots in II; are long; moreover, § — « is the
highest root of A(IT\ {a}). For any v € I\ {a}, let v, be the element of minimal
length that maps v to d — a. We start proving that wg,wo = vg. In fact, it is
clear that wo 4w (B8) = & — a, so it suffices then to check that (wgqwo) t(y) > 0 for
all v € II such that (a,v) = 0. If y € Ily then (woawe) () = wowoa(y) > 0.
Moreover, in any case (wo qwo)~*(8) > 0, since N (woawo) C Ag. Thus we obtain
Wo,aWo = Vg, T = Squg, and N(z) = {a} U sa(N(vg)).

Now we consider w. Since w(y) = § + a, we have w™!(a) = —§ + v hence
a € N(w). It follows that w = soz with ¢(w) = 1+ ¢(z). In particular, N(w) =
{a} Usq(N(z)). Since z(y) = § — a, we have that N(zsy) = N(z) U {6 — a}, so the
biconvexity of N(zs,) implies that for any pair 1,72 € A* such that m+mn=0—a«a
exactly one of 71,72 belong to N(z). Moreover, § — a being a long root, for any such
pair of roots we have (n;, (6 —a)V) =1, for i = 1,2, since (1 + 12, (§ —a)") = 2 and
(i, (0 —a)Y) <1, for i = 1,2. Tt follows that s,(n;) = 17; + « and therefore, that
hts(sa(ni)) = hty(n;) + 1, for i = 1,2. Now, if n; € N(2), sa(n;) € N(w), and we
obtain that hty(n;) = 0. But ht,;(d —a) = 1, so that one of the 7; has o-height equal
to 1 and the other has o-height equal to 0. This implies that for any pair 71,72 € AT
such that 71 + 72 = § — a, N(z) contains exactly the summand 7; having o-height
equal to 0. This must hold in particular when we take w = = and so z = vg. In this
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case we clearly obtain that N(vg) is exactly the set of the summands of o-height
equal to 0 of all the decomposition of § — o as a sum of two positive roots. So, for
a general w, we obtain that N(vg) C N(z), whence wg o155 = Satg < Sqz = w as
desired.

It remains to prove that v = 3. We have z = vgy with N(z) = N(vg) UvgN(y),
and y(v) = B. If v # 3, then N(y) would contain some roots not orthogonal to 3,
whence vg N (y) contains some root 7 not orthogonal to & — «, hence to a. It follows
that so(n) =n+a € N(w). But n—a € N(w), being summable to « that belongs to
N(w), hence sq(n) =1+ a € N(w). In particular, hty(n) =0, and 6§ — o —n € At
this implies that 7 € N(vg), a contradiction. O

We sum up the results we have obtained in the following theorem. If S is a
connected subset of the set of simple roots, we denote by S; the set of elements of .S
of the same length of 0g. It is clear that, with respect to A(S), 6 is a long root,
therefore Sz, is the set of the long roots of S, with respect to the subsystem A(S).
With notation as in Lemma 2.2.5 and Proposition 2.2.10, we set

We if 4 = kd — Ox, Ox is of type 1, and a € A(X);
Wa,p = 4 SVq if 4 = kd — Ox, Ox is of type 2, and a € ¥ (2.2.6)
sgwogwo if p=p+k0, felly

and
A(X); if 4 = ké — Oy and Oy, is of type 1
i - ¥ if 4 = ké — 0y and Oy is of type 2
O if u=p+ ko and {f} =111
ILN\{p} ifpu=p+kd, gell,and |II;| =2

(2.2.7)

Theorem 2.2.11. Assume u € M, and o € II. Then Toyu # O if and only if
a € II,,. Moreover,
We,y = Min Lo, 4.

Proof. The claim follows directly from Lemma 2.2.5, Proposition 2.2.8, and Proposi-
tion 2.2.10. O

2.2.3 Reduced expressions of minimal elements

The aim of this section is to find reduced expressions for the minimal elements
Wa,y, defined in (2.2.6). To make this, we use a decomposition formula for ké (see
Corollary 2.2.16).

We start from the following formula, which is a variation of e.g. [9, Exercise
3.12].

Lemma 2.2.12. Let w € W,p,vy € A, w = s;, -+ s;, a reduced expression and
Bj = siy - 8i;_y () for j=1,....k. Then

k
2 .
i) = -3 A2,
j=1 1%
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or equivalently

wp) = 2 0,
J=1 ’O‘ij 2 K
Proof. We proceed by induction on ¢(w). We have
wil(')/) = Sip Sy (v) = Sig—1 """ S0 (v) — (Sik—1 80, (), aik) O‘z\é =

= iy s () — (0, Br) @

The first claim follows by inductive hypothesis. The second claim follows from the
first setting u = w(7y). O

Now we generalize Definition 2.2.1.

Definition 2.2.1. Let X be a component of IIy and set I'g(X) = Ilx, 6p(2) = Ox.
We define recursively I';(X) C T';_1(X) as the the component not orthogonal to Iy
in {yeli—1(2) | (7,0r,_,(x)) = 0} (if it exists), and we denote by 6;(¥) the highest
root O, (s of I'i(X).

Remark 2.2.4. Clearly I'1(X) = T'(Y).

We need some technical lemmas on the sets I'; and their highest roots. For the
sake of simplicity we fix a component ¥ of Iy and we omit ¥ in 6;(X) and I';(X).
Recall that ay is the unique simple root in IIy not orthogonal to o € II;.

Definition 2.2.3. For any component ¥ we define the elements Jy; € E* as

ké = Z kco(0)a + Z oy

a€ll S|
Lemma 2.2.13. Let wy; be the maximum of W (Ily). We have
wy(zr) = —z, Vr €T},
In particular wy(0;) = —0;.

Proof. First we observe that for every a € IlIy; we have («,f0y) = 0 if and only if
(ws(a),fs) = 0. In the semisimple case, by Proposition 2.2.9, we have wy(a) =
we'(a) = a + bx, therefore (ax, ws'(a)) = (ax,a + ds) = —(ax,a) and then
wy(ay) = —ax. Moreover, if I1; = {«a, 8}, with similar calculations it is possible to
show that wy(ay;) = —fx. This implies that wx(I'1) = —I'; and hence wx(01) = —6;.

The general case follows arguing by induction. O

Lemma 2.2.14. Let o € II; and ¢ € N such that I'; is not empty. We have
(O‘?e%) = (0479;/) and |00| = ‘61’

Proof. First we suppose g not of type Ag). We observe that since 6y > 6; then
(a¥,0p) < (a¥,0;) < —1: this implies that

12
(a,0) < 1

< GE®) <o (2.2.8)

If |«| > |6p| then, by our assumption, 6; must be a short root for every i: since in
this case (,6y) = —|a|?|0p| =2 we have the thesis. On the contrary let |a| < |0l if



32 2. The structure of Borel stable abelian subalgebras

we suppose |a|?|0o| 72 = [6;|*|00] 72 < 1 we would have («,6}) < —1, hence |a| > |6o|
and a contradiction. Therefore |6;| = |0y| and («a, 6;) = (o, 6p) = —1. The remaining
case is |a| = |6]: clearly we can assume 6y long. Moreover suppose there exists i
such that |0;| < |0o| and let j be the smallest index with such property: we have
r; c ﬁshort and hence ay, short. Since « is long and Ily; contains at least a long

root, we have that the diagram of {a} U3 contains a subdiagram of type Cl(l) for

some [. This clearly implies that g is of type C’l(l) and hence a contradiction since 6

would be short. In conclusion |;| = |6y| for every i and therefore by (2.2.8) we get
(a,0%) = (o, 0)) = —1.
The case g ~ AS) is dealt with a brief inspection. O

Proposition 2.2.15. Let N be the maximal integer such that I'n is not empty. We
have

N
(52 =Ty Z (97,
=0

Proof. We define w = wy; [Tv, sp,: by Lemma 2.2.14 and Lemma 2.2.13 we have
that w(a) = a+dx —rg YN 6;. From Lemma 2.2.12 follows that if (w='(v),a) =0
for every v € N(w) then w(a) = a:: hence we need to describe explicitly N (w) or,
equivalently, the set

{’yEA |H39 }

Let v be in A and suppose that exists j < N such that (6,7) # 0 and (6;,7) =0
for all ¢ < j: we observe that 0; & A for every i < N, therefore

N N
[Is0.)=v—6;= > (6,70
i=0 i=j+1

with |(6),7)| < 2. Sincey € AT(T;) and T'; C T';, we have that y—> % L1 (0, 7)0; €
A*(T;): this implies [J¥ sg,(7) < 0 and hence a contradiction.

So we have proved that N(w) C (; 0;: by Lemma 2.2.13 we also have w™ (N (w)) C
N; 0 and in particular w=(N(w)) € A(I'x) N 6. This implies that w™ (N (w)) €
As. NTI5, hence the thesis. O]

Corollary 2.2.16. For every component %, denote by N(X) the mazximal integer
such that T'ns)(X) # 0. We have

N(Z)
ko= calkd)a+ D> D 6:(%)

a€clly Y|y =0

Now we have all the tools to prove the main result of this section.
We start with some remarks on the components of IIy when |II;| = 1.

Lemma 2.2.17. 1. Suppose that o € 111 is a short root. Then Iy has at most
two component. In particular if Iy = Iy, then N(X) < 1, and if 11y = Iy UTlsy
then N(X) = N(X') = 0.
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2. Suppose that o € 111 is a long root. Then when Ily = Ily, and Oy, is of type
1 we have N(X) > 2, while if 05, is long and of type 2 we have N(X) = 1.
Finally if g = Ily UIly and Oy, s are of type 1, then N(X)+ N(X') > 0.

Proof. By Corollary 2.2.16 we have

N(®)
0=(a",ké) =2(a",a)+ Z Z re(a, 0;(%)).
S|y i=0
Since, by Lemma 2.2.14, [0;(2)| = |00(2)] and (a, 6;(X)Y) = —ry, for every i < N(X),

we obtain

6o(2)[”
|o?

4= " ri(N(E)+1)
%Mo

(2.2.9)

Now let o € II7 be a short root. Since we are interested in the case kd — Oy, € flé
(see Section 2.1), we have |0o(X)|?|a|=2 = 2. Therefore (2.2.9) becomes

2= > (NE)+D+2 > (NE+1D+4 > (NE)+1),
> of type 1 Ox; short 0s, long
3 of type 2 3 of type 2

from which we easily obtain part 1.
Finally, let « € 1I; be a long root. With the same assumption of the previous case,
from (2.2.9) we obtain

4= D (N®)+D+2 > (NE)+D+4 > (NE)+1),

Y of type 1 Oy, short 0s, long
3 of type 2 Y of type 2
from which the second part of the lemma follows. O

Definition 2.2.2. Given a € II; and X|Ily, we set Wy = W(Ily), ws, =
max (W (Il N1I,)). Recall that wy = max(Wy). Moreover fix a € II;: we denote
by vj o5 the minimal lenght element of the set {v € W(Ily) | v(a) = a + reb;i(X)}.

Remark 2.2.5. Observe that when « € II; is long we have v; o 5 = u; o »55, Where
Uj o,y is the minimal lenght element such that u; o x(ax) = 0x. In fact, as we have
observed in the proof of Lemma 2.2.14, when « and 0y, are long roots, ay must be
also long, therefore we have (o, ay,) = (a, 05,) = —ry.

Finally observe that v; o5 € Wx/W(IIs \ {ax}), and that

U(viax) = gryz) — 1- (2.2.10)

The following theorem is the announced result on reduced expressions of the
elements we, . To make the formulas a bit clearer, we set II;1 = {ap, oy} in the
hermitian case, and II1 = {a,} in the semisimple one. Furthermore, we omit ¢, in

Vi,ap,2-

Theorem 2.2.18. If s is of type 1 and o € T'1(X);, then

. (2.2.11)

SqUOW0,a,V0 3,01 515pVa otherwise,

W | — { (T em, 54) Vg if N(X) =1 and IIp =I5,
a,pu =
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where v} is the element of minimal lenght such that vl (a) = 61(%).
Ifa e E/Z with ¥ # Y and Oy, Oy of type 1, then

. (H’yeﬂl 87)’0/& if N(E) = N(Z/) =0 and Iy = IIy U Isy
W = sqw0w07apv[izv&§,spv; otherwise,
(2.2.12)
where v!, is the element of minimal lenght such that v}, () = Osy.
If a € 3y with O of type 2, then

T { (Myem, 59)va  if N(Z) = 0 and Ty = Tl
a,u —

SqUOW0,0,V 3 SpVa otherwise,

(2.2.13)

where vy, is the element of minimal lenght such that v, (o) = Oy.

Proof. Denote by w the second member of the equalities: by Lemma 2.2.5, it’s
enough to check that w(«) = p and that the lenght of @ is minimal.

We begin by considering the first cases of our equalities. Suppose then 0y, of
type 1, N(X) = 1,1Ip = Iy and a € I'1(X);: in the hermitian symmetric case, by
Corollary 2.2.16, we have

(II 5)va(a) = 0:(2) = (ay, 02(2))ap — (o, 61 (2))ag = 6 — Os.
~v€Elly
In the semisimple case, by Lemma 2.2.17(2), we can assume «;, short. This implies
that
( H sﬂvé(a} =601(2) + 20, =6 — b5
~v€Elly

Clearly (ITyer, $v)vg is of minimal lenght, therefore we have the thesis in the first
case of (2.2.11). The remaining cases are similar to the previous one. The only
difference occurs in (2.2.13) when N(X) = 0,1y = IIy, I} = {a,} and «, is long: by
Lemma 2.2.17(2) this implies that 0y, is long and complex, therefore, since @, = —0Oy,,
again we have the claim.

Finally, we deal with the most generic cases of our equalities. First observe that,
by Lemma 2.2.17(1), we can assume that IT; is composed of long roots. This implies
that, by Remark 2.2.5, we have v; » = u; xsx.. The first step consists in proving that

WyWs,ap = UN(T),Z """ V0,5 (2.2.14)

To make this, observe that vy(s) s vox(ap) = ap + 1532, 0:(X) = ap + ds, by
Proposition 2.2.15. Moreover it is not difficult to prove that vy(s) s - v, must be
of minimal lenght. From this we obtain that vy(s) s - vox € We/W(Ils \ {as}),
hence, since wywy o, is the maximum of this quotient with respect to the weak order,
we have wywsy o, > Uy(s)x -+ vo,x and hence s, HE,;AE WY Wy 0, UN(D),E - V0,5 €
W By Lemma 2.2.9 we have that Io, k6—a, = {SpWoWo,q, }, therefore we obtain
the desired equality. Once established (2.2.14), it’s easy to check that w(«) = p in
all three cases.

It remains to prove that ¢(wq,,) = ¢(w): from Remark 2.2.5, and in particular
Equation (2.2.10), we obtain that

5(1){72110011)0,%) = L(wowo,a,) — £(vis) = g — gr,(n)-

The claim on the lenghts of w,,, and w is now an easy calculation. O
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Example 2.2.2. As usually, we number affine Dynkin diagrams as in [9, Tables
Affl and Aff2].

1. Let L(g, o) be of type Eél) and IT; = {a7}. We set & = ag and ¥ as the only
component of IIy. Observe that N(X) = 3. Following formula 2.2.11, we have:

1
Vo = 81828584, U1y = 8182555483, V0,x = 50515256555453
WoWo,a; = 83525150545352515554535256555453

therefore wa,# — 8§783525453875152S5554.

2. Let L(g,0) be of type Bgl) and ITy = {a4}. We choose ¥ as the Dy-type
component and a = a5 € ¥'. This time, since N(X) = 1, we have:

/
U, = S6S7S6, V0,x = S0S1S283, Vo3’ = S65756S5
WoW0,0y = S3505152535556575655,

therefore, by formula 2.2.12, we obtain wq,, = 54535554565756.

3. Let L(g, o) be of type Agf) and II; = {as}. Choose a = ay. By formula 2.2.13

we have:
Va = 835452515052, V0,2 = $352505152535554
WoW0,a5 = 5453525051525354,

hence Wa,u = S55455535452515052-

2.3 The poset structure of 7, ,

We now study the poset structure of the sets Z, ,. This study is motivated by the
following result, that shows that, in most cases, the maximal elements of the sets
T, are maximal in the whole poset W,

Proposition 2.3.1. Suppose w € I, and that v > w with v € W%, Ifv ¢ T, ,
then a € Iy and v € Ty k545 where = o if [II1] =1 and IT; = {a, B} otherwise.

Proof. If v ¢ I, ,, write v = wzsyy with wx € I, ,, wrsy ¢ Z,, and {(v) =
l(w) +€(z) +£(y) + 1. Then (v, ) < 0. Set (o, 7¥) = —r and consider wzs,s,. We
have

N(wzsysq) = N(wzsy) U{wz(a+1ry)} = N(wzsy) U{p+rwz(y)}.

Note that ht,(p + rwz(y)) = hts (@) + r. Since the latter root is not simple, there
exists € IT such that p + wxz(y) —n € AT. Since N(wzsy) C A, and N(wxsysq)
is convex, we have that n ¢ IIy. Hence p + rwz(y) is minimal in Ahtg(u) 4+ Now
we use Remark 2.0.1 about minimal roots. If ht,(p) +r = 2s with s > 1 then
p+ rwz(y) = kso — Oy, for some X|IIp. But then, by convexity, kd — 0y, € N(wzs.)
which is absurd. If ht,(p) +7r = 2s + 1 with s > 1 then p + rwz(y) = ksd +
for some € II;. But then, by convexity, k6 + 5 € N(wzs,) which is absurd.
Therefore ht,(p) = 2 and r = 1. It follows that there exists 5 € II; such that
p+wz(y) = f+ k6. In turn, we deduce that wxsy € Z, ks43. By Proposition 2.2.10,
(1), we have a € II; as claimed, and wzsy € Z, k545 with 8 = o if |II1] = 1 and
Iy = {o, B} otherwise. Since v > wxsy € L, ks+p and hts(kd + ) = 3, by the first
part of the proof, we have that v € Z, 1543, as claimed. O
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We now turn to the description of the poset structure of Z, ,: we will show that
it is isomorphic to a poset G'\G for suitable reflection subgroups G, G’ of W.

Definition 2.3.1. For a € II, and Y|y, we set
I, =IInat, W,=Ww(l,)

Lemma 2.3.2. Let p € My, u,v € Ly, and u < v. Then v = ux with v € T//I\/a.
In particular,
Ia7l"‘ g wavMWOC'

Proof. By assumption, there exists z € W such that N(v) = N(u)UuN(z): suppose
by contradiction that x ¢ W,. Then we may assume x = x15gry with {(z) =
U(z1) + U(z2) + 1, 21 € Wa, and B € II, B £ a. Then N(uzy) Uuzi(8) C N(v). But
(B,a) <0, hence (uz1(B),uxi(a)) = (uz1(B), 1) < 0, therefore ux;(f) + p is a root:
this cannot happen by Lemma 2.2.6 (1). O

By Lemma 2.3.2, Z,, is in bijection, in a natural way, with a subset of Wa,
namely, the subset of all u € T//T\/a such that wq ,u € Z,,,. We will show that this
subset is a system of minimal coset representatives of I//I\/a modulo a certain subgroup
Wa#. This will take the rest of the section.

We start with giving a combinatorial characterization of the elements u such
that wa,,u € Lo y-

Definition 2.3.2. We set

{’yeﬁ\(’yﬂ%):l} if 4 = ké — Oy, and Oy, is of type 1,
B, =1L if 4 = ké — 0y and Oy is of type 2,
{B} 1f/L:k6+6,ﬁEH1,
Vo = {we Wy | htg, () =1 ¥y € N(w)},
if B, # 0. If B, = 0, we set Vo, = {1}.

Lemma 2.3.3. Assume X|lly, p = ké — 0y € M, and set

By ={y €Il (v,0s) > 0}.
Then

1. Foralln € A,
(n, 1") = hto(n)rs — htpg (n)es, (2.3.1)

where ey, = 2, if || =1, ex = 1, otherwise.

2. By ={v¢€ Il | (7,605%) =1}, unless |Z| = 1.

Proof. 1t is clear that for v € II, we have (7,0s) < 0 if and only if v € II;; moreover,
recall that ry = —(v,0%) = (v, p") for all y € II;.

On the other hand, by definition, we have (v,6y) > 0 if and only if v € By.
Clearly, By, C 3, and since 6y, is long with respect to A(X), it follows that, if v € By,
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then (7,6y) = 1 unless ¥ = By, = {0y}, in which case (v, 0y,) = 2. Therefore, for
any 1 € A,

(mu’) =D ey )+ Y ey (v, 1") = htg(n)rs — htpg (n)es
y€ell; YEBy

as wished. O

Lemma 2.3.4. Assume L, # 0. For any u € W, Wa,uth € Loy if and only if
u€ Vayu.

Proof. We deal with the three cases that occur in the definition of B, one by one.
We shall use several times relation (2.3.1) from Lemma 2.3.3.

1. u = ké — 0y, Ox of type 1. Then a € A(X), p is the highest root of A(X),
and wa, € W(A(X)). It is clear that By, N A(X) = 0, in fact, by Definition
2.2.1, A(Y) is a connected component of I \ By. In particular, for all n € A,
htgs,(wa,. (1)) = bty (n). Recall that ry, is the type of 5. By (2.3.1),

(wa,u(n)v MV) = hto(wa,u(/@)) — hips, (wa,u(n))gE =
= hto(wa,u(B)) — Mt sy (n)es.

Now, assume u € V,,. If u = 1, obviously wa,u € Z,,. So we may assume
u # 1and [¥| > 1. If n € N(u), then (n,a) = 0, so that (wa,(n),p) = 0;
moreover, htp,(n) = ex = 1. Therefore, by the above identities we obtain that
hts(wa,u(n)) = 1. Thus N(wa,uu) = N(Wa,u) Uwa,, N(u) C Ay, hence We, € WP,
Since u(a) = «, we conclude that wq ,u € Zy 4.

Conversely, if wq,,u € Iy, with u # 1, then, by Lemma 2.3.2, u € I//T\/a, so that,
if n € N(u), then (n,a) =0, hence (wq,u(n), 1) = 0. Moreover, ht,(wq,u(n)) = 1. It
follows that ex = 1 and htp,(n) = 1, so htp,(n) = htp,(n) =1, hence u € V, .

2. = ko —0Ox, Oy, of type 2. Then o € ¥, and wq,, = sV, Where v, is the minimal
element that maps « to Ay, and s is the minimal element that maps 0y to u. We
also know that s is an involution. In this case, B, = II;, hence B, N X = (). Thus
the By-height is the o-height and, since v, € W(X), we have that v, preserves the
o-height. Similarly, since s € W(A(X)), s preserves the By-height. Therefore, for
all n € A, we obtain that

(Wau (), 1) = (valn), s1”) = (va(n),6%) = —(va(n), n)
= —2ht,(va (1)) + Pt gy (va(n))ex
= —2ht,(n) + htpg (va(n))es,

and also that

(wa,u(n), Nv) = tha(wa,u(n)) — hipy, (wa,u(n))eZ
= 2ty (a0 (1)) — bty (valn) s

In particular, if (11", wa,, (1)) = 0, then hty(wa,. (1)) = hts(n) = htp,(n). By Lemma
2.3.2, this directly implies that w, ,u € Z,, if and only if u € V, .
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3. p=koé+p, pell. If [II;| = 1, then V, , = {1} and, by Proposition 2.2.10,
Zay = {wa,u}. So we may assume |II;| = 2, II; = {«, B}. Then, with notation as in
Proposition 2.2.10, we have that w, , = sgvg. Since vg(a) = — 3, we deduce that
%—)1(@ = J — «, hence, if (v,a) = 0, then

() = va(7) — (v8(7), BY)B = va(7) — (7,6 — ") B = vs().

It follows that, if ¥ € A}, then hty(wa (7)) = hto(va(7)) = cs(7) = hip, (v) and
we can argue as in case 2. O

Lemma 2.3.5. Assume o € I, peMy, Loy #0, By #0, and set
A2, ={y€A(L) | htp,(y) > 2}.

Then Agw # 0 if and only if p = ké — Oy, with s, of type 1 and |X| > 1, and
ac AX)\ (ZUILy). In this case, Ox. is the minimal element in AEW with respect
to the usual root order. Moreover, htp,(0s) = htp, (0s) = 2.

Proof. We deal with the three cases that occur in the definition of B, one by one.

1. p=kd — 0Oy, Os, of type 1. Then a € A(X) and |X| > 1, since we are assuming
B, # 0. In particular By, = B, = {y € Il | (v, 0%) = 1}.

We first prove that if v € A(ﬁa) and htp,(y) > 2 then v > fx. We notice
(8,6%,) € {0,1} for any 8 € AT(X)\{fs}, therefore, since (05, 0y%) = 2, htp, (0s) = 2
and Oy, is the unique root in A(X) with this property. It follows that we can assume
v ¢ A(X), so that ht,(y) > 0. Since co(kd —) > 0, we have that ké —~ is a positive
root, hence ht,(y) < 2. If hty(y) = 1, then (v,60y%) = 1, hence v — 0y, is a root,
which can’t be negative, since ~ is supported also outside . So it is positive, hence
v > 0. Suppose now ht,(v) = 2. Then kd — v € Ay, hence it should belong to the
component Y of Iy to which « belongs, since ¢ (kd —~) > 0. Thus v = kd — 3
with 8 € ¥/, If ¥ =¥/, then a € T'(X). Let Z be the component of I'(X) containing
a. Let n € II; be a root such that (n,0z) < 0. We have that n + 6z + 05 is a root,
so kd —n — Oy, — 0z is a root, which is positive since its o-height is 1. It follows that
kd > Ox, + 0z, hence v > s, — 4 0z. But then ¢, (y) > 0, which is impossible. We
have therefore ¥/ # X. But then v = ké — 3 with 8 € X, so, clearly, v > Ox.

It remains only to check that Aiu # 0 if and only if « € A(X) \ (X UIL). If

a € A(X)\ (S UIL) then 5 € A(Il,), hence O € Afw. Assume now vy € Azw'
If @« € II; U X, then Oy, ¢ A(ﬁa), hence v > fOx. This is absurd since it implies
cal(y) > 0.

2. = ké —Ox, Ox, of type 2. Then a € ¥ and B, = IIy, so that the B,,-height is
the o-height. We shall prove that, if v € A(ﬁa), then ht,(y) < 1.

Consider first the case k = 2. Assume v € A(Il,). Notice that, if § — v is a
root, then it is positive, since then ¢, (6 — ) > 0. Since ht,(d) = 1, this implies
that ht,(y) < 1. Now, assume by contradiction that ht,(y) > 1. Since, in any case,
26 — v € A, we obtain that ht,(y) =2 and 20 — v € AJ. In turn, this implies that
20 — v € A(X), since ¢4(26 — ) > 0, and o € X. Thus, since 6y, is of type 2, also
20 — v is of type 2. But this implies that 6 — 7 is a root, hence that ht,(y) < 1: a
contradiction.

Next, consider the case k = 1. In case B, we have ¥ = {«,} and II} = {a,,—1},
so @ = a, and and ht,(y) = 0 for all v € A(Il,). In case Cp, we have ¥ =
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{al,...A,an,l} and II; = {ap,an}, so it is clear that for all « € ¥, and for all
v e A(Il,), hty(y) < 1.

3. p=~ko+ B, B €lli. In this case a € II; and B, C IIy, so it is clear that, if
Iy = {a}, then hts(y) = 0 for all v € A(Il,). If II; = {e, B}, we obtain in any case
that ht,(y) <1 for all v € A(Il,). O

Definition 2.3.3. Given a € II and p € Mg such that Z, , # (), we set

~

Hopy = ﬁa \ By,

M., U{fs} if u=Fké—0s,0s of type 1, S| > 1,
I, = ac AR\ (SUIl),

I, in all other cases;
Wa,u = W(IG, ,)-

The main results of this section is the following statement. Recall that we identify
a coset space with the set of minimal length coset representatives.

Theorem 2.3.6. Let o € 11 and w € M,y be such that Iau # (. Then the map
U > We,, U iS a poset isomorphism between I, ,, and Wa M\W

Proof. By Lemma 2.3.4, we have only to prove that WQ,M\V/[?@ = Vapu-

Let v € Vo, u # 1. To prove that u € Wa#\ﬁ\/a we have to show that
if g € ﬁg,w then v~ 1(8) € A*: this is immediate from the definitions, since
htg,(B) € {0,2}, while, for all v € N(u), htp,(y) = 1.

Conversely, assume u € WQ,M\WQ, u# 1, and v € N(u). If, by contradiction,
htg, () = 0, then, by the biconvexity property of N(u), we obtain that there exists
some f € (II, \ B,) N N(u): this contradicts the definition of Wa7u\Wa. Therefore,
htg,(v) > 0. By Lemma 2.3.5, this implies that htp,(y) = 1 in all cases except
when = kd — Oy, with 6y, of type 1 and |X| > 1. It remains to prove that also in
this case htp, (7) = 1. First, we observe that, by Lemma 2.2.2, htp, (ké —fx) = 0: it
follows that htp,, (kd) = htp,(fx) and, by Lemma 2.3.5, that htp, (k) = 2. Hence,
htg, () < 2, since k§ — is a positive root. Now, if we assume, by contradiction, that
htp,(v) = 2, then by Lemma 2.3.5, we obtain that + is equal to 65 plus a, possibly
empty, sum of positive roots with null B,-height. By the biconvexity of N (u), this
implies that some root in (ITy \ B,) U{0x} belongs to N(u), in contradiction with
the definition of Wy “\W O

2.4 Intersections among 7, ,’s

Our goal in this Section is the proof of the following Theorem.

Theorem 2.4.1. 1. If a # 8, then I, , N1y, # 0 if and only if p = ké — Oy,
W=k —05 withE#Y, ae, €, and o, 8,05, 05 all of type 1.
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2. If I, NZg 0 # 0, then
Tou N Zp 0 = W((T, N 1) \ T )\W (I, N TI5),
the isomorphism being u +— wq U, U € W((ﬁaﬂﬁg) \Hl)\W(ﬁaﬂﬁB), where
Wa,g = sup{minZ, ,, minZg ,}.

Statements (1), (2) are proved in Propositions 2.4.7, 2.4.6, respectively.
Definition 2.4.1. Assume that ¥ and ¥/ are distinct components of ITy. We define
AL, YY) = AZ) N AY).

Moreover, we set
Wes = WAS, ), Wiy = WAS, )\ L)
and denote by uy sy the maximal element in Wiz/\WE,E“
According to Definition 2.4.1 and Subsection 1.3.3,
N(usys) ={B € A(A(%,Y)) | hto(B) > 0}. (2.4.1)

It is clear from Definition 2.2.1 that ¥’ C A(X); in fact, we have the partition

AX)= |J Sulur(s). (2.4.2)
/(Mo
pIETD
From this, we obtain
AZ,Y)=T(X)uILu(¥)uyx”, (2.4.3)

where ¥/ =TIy \ (X UX'). In particular we obtain the partition
A(Z) = AZ,Y) U (E\T(E)). (2.4.4)

Remark 2.4.1. From equation (2.4.3) and Definition 2.2.1, we obtain directly that 6x,
and fy are orthogonal to all the roots in A(X, Y'), except the ones in IT;. This implies
that (3,0x) < 0 and (8,60s/) <0 for all 8 € A(A(X,%')). Moreover, by equation
(2.4.1), for any 8 € A(X,Y’), we have the following equivalences of conditions:

(B,05) <0 < B€N(upy) < (B,0x) <0.
Lemma 2.4.2. Let X and Y be distinct components of Ily. Then
Uun sy € ng.

Proof. By formula (2.4.1), for all 8 € N(ux ), ht(8) > 0. Therefore, it suffices
to prove that, for all 8 € A(A(X,Y)), hty(S) < 2. Assume by contradiction that
B e A(A(X,Y)) and hit,(8) < 2. Then ht,(ké — 3) = 0, hence ké — 3 belongs to
some component Y of IIy. At least one among X, ¥/, say X, is not X”. Hence
(ko — 8,60x) = 0, which gives (3,0y) = 0: this is impossible, by Remark 2.4.1. [
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Remark 2.4.2. If Z is a connected component of A(X,Y’), then the sum of the roots
in Z is a root and, by the Lemma 2.4.2, it has o-height at most 1. This implies, in
particular, that Z contains at most one root of II;.

Though we shall not need this fact, we notice that A(X,Y’) is connected except
in type A;l), in which case A(X,Y) = Iy, with II; disconnected, since 3 # Y.

Lemma 2.4.3. Let X and Y/ be distinct components of Ily. If Ox, and Osy are both
of type 1, then

1. un sy (0s) = 9A(2/) = ko — Oxv, and ux sy is the element of minimal length in
W, with this property;

2. U%}E/ — 1.
Proof.

1. Set v = uyxyy. Since L(u) C Iy, by Proposition 1.3.4 (3), it suffices to show
that u(fs) = 04(sr) = k0 — Oxy. This is equivalent to show that u=H(Ox) = kd — Ox.
Since 6y is of type 1, hence long, and u~!(fs) € A(X), it suffices to show that
(u™t(Osr),7) > 0 for each v € A(Z) = A(Z,Y) U (X\['(X')). We know that
u = ug 11, Uo, where ug is the longest element of W(A(X,%")) and ug 11, is the longest
element of A(X,¥)\II;. Since the only roots in A(X,¥’) not orthogonal to Oy
are the roots in II;, we see that u=!(fs/) = ug(fss). Thus, since (fs/,vy) < 0
when v € A(%,Y), we see that (u=1(0sr),7) = (Osr,up(y)) > 0 for v € A(X,Y).
Next we deal with the case v € X'\ I'(X'). If (v, 60s/) = 0 then u(y) = v, hence
(u=(0sr),v) = (fsr,v) = 0. If instead (v, 0s/) # 0 and ht,(u(y)) = 1, we are done
because (0y,,u(y)) = (6%,v) —1 > 0. If hty(u(y)) = 2 then ht,(ké — u(y)) = 0,
so ké — u(y) belongs to some component of IIy. If this component is ¥/, then
0 = (kd — u(y),0x) gives a contradiction, since ¢,(kd — u(7y)) # 0 for all n € ¥ such
that (n,0x) # 0. In the other case we have 0 = (kd — u(7), fx/) hence 0 = (u(y), Osr)
and we are done.

2. Set again v = uyyy. Since ug(fx) = ké — Osy we see that, if o € II;, then
up(a) = —a. In fact, if Z is the component of A(X,Y’) containing «, then, by
Remark 2.4.2, « is the only root in Z that is not orthogonal to fy,. By [8], it follows
that v is an involution which permutes A(X,¥’) \ II; and maps o € IT; to —6z. O

Lemma 2.4.4. Let ¥ # Y/, 05,05 of type 1, a € A(X);, B € A(Y');, and assume
that w € Ia,kd—Gg N IB,k(S—@Z/ . Then

1. uxyy < w;
2. e and B € X;

3. uvavg < w, where v, is the element of minimal length in W(X') that maps «
to Oyy, and vg is the element of minimal length in W (X) that maps B to 0.
Moreover, uvy = Wq ks—o5, and uvg = wg ks—oy, -

Proof.

1. Let u = uy sy. If u £ w, then there is v € N(u) such that v ¢ N(w). Note that
(7,0%) = (v,6%) = —1, hence 05, + 7,05, + v+ 0xs € A. In particular we have that
ké — 0s; —~v € N(w). But then kd — Osy + kd — v — 0y = 2kd — 0y, — v — 0y € N(w),
which is absurd. We have therefore u < w.
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2. - 3. From (1) we obtain that w = wv with v(a) = 60x,. Let U = {5 € N(v) |
Oy — B € AJ“} Arguing as in the proof of Lemma 2.2.7, we see that U is biconvex,
hence there is an element x € W (X') such that N(x) = U. Since x satisfies the
hypothesis of Proposition 1.3.4 (6), we see that there is a root v € ¥’ such that
x = vy, where v, is the element of minimal length that maps v to f5xy. We conclude
that vy < v. We now show that ¢(uv,) = ¢(u) + £(vy); for this it suffices to prove
that u=1(n) = u(n) € At for n € N(vy). If not, then n € N(u), hence, by Remark
2.4.1, (n,05,) < 0; but n € X', hence (n,0sy) > 0. We now prove that L(uv,) = II;.
We have N(uvy) = N(u) Uu(N(vy)). Since L(u) = IIy, it suffices to prove that
u(n) ¢ I for any 71 € N(v,). Since n € ¥/, we have

(u(n), Osy) = (n,u(0sr)) = (n,ké — s) = 0.

This implies that if u(n) = £ € II, then ¢ ¢ II; and, since u € W(A(2,Y)), we see
that, for any v € Byy, we have 0 = ¢,(§) = ¢, (u(n)) = ¢, (n), hence (n,0s/) = 0,
against Proposition 1.3.4 (8). Since uvy(y) = ké — 0x = 0 sy and L(uv,) C Iy,
we can apply Proposition 1.3.4 (3), to get uv, = wyps—g,. This implies that
Wy k5—0y, < W, s0, by Proposition 2.3.1, w € Z, ,, hence a = v € ¥ and uv, < w.
Similarly, 8 = v € ¥ and uvg < w. Since

N(uvqvg) = N(u) Uu(N(va)) Uu(N(vg)), (2.4.5)
we get that uv,vg < w. O

Proposition 2.4.5. Assume ¥ # Y/, 0s,0s of type 1, o € A(X);, and B € A(X')s.
Then Lo xs—05 NLaks—os, 7 O if and only if a € ¥ and B € X. In this case,

min(Zo k565, N Ip k565 ) = UVaV,

where vy, is the element of minimal length in W (X') that maps « to s, and vg is
the element of minimal length in W (X) that maps [ to Ox.

Proof. We first prove that, if « € ¥’ and § € X, then uvavg € Lo ks—os, N L ks—0s-
Indeed, it is clear that it suffices to prove that uv,vg € W%, As shown above
Waks—0y, = UV and wgrs_o,, = uvg. From (2.4.5) we deduce that N(uv,vg) =
N(wa,ks—65) U N(wg ks, ) hence uvavg is a o-minuscule element.

The remaining statements follow from Lemma 2.4.4. O

Definition 2.4.2. Let ¥ # X', 05 and 6y of type 1. Consider a € ¥, § € ¥; and
let v, be the element of minimal length in W (X’) that maps « to 65y and vg the
element of minimal length in W (X) that maps /5 to 5. Then we set
Wq,B = UZZ/UQUQ.
Proposition 2.4.6. Let ¥ # ¥, 05, 0x of type 1, a € 37 and B € X5, Then
Wa,g = sup{minZ, ,, minZg ,/}
and
Wa, BT € Lo ks—0s, N L ks—0y,

if and only if R R R R
x e W((Il, N1lg) \ I} )\W(II, N 1Ig).
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Proof. Since N(uvavg) = N(wWa,ks—65) U N(ws k-0, ), it follows that
Wa,3 = SUP{Wa,ks—05,> W5, ks—0y }-

Take z € W ((Il, N ﬁﬁ) \ II)\W (IT, N ﬁg) We now show that wq gz € Zp g5—o5 N
Z5 k605, - We may assume that x # 1, in particular [¥| > 1. It suffices to see that
Wq, g is o-minuscule. Writing w, g = wq, ks—05,va7, by the proof of Theorem 2.3.6,
it suffices to prove that vgx € V, ps—gy,. Since we already know that vg € Vi, rs—os,
we are left with proving that htpg(vg(y)) = 1 for each v € N(xz). We have
(v3(7),0%) = (v,8) = 0, hence htpy(vg()) = hts(vs(7Y)) = hts(y) > 1. Actually,
the latter o-height is 1: if it were 2, then k§ — v would belong to some component,
but this is impossible since both « and g belong to its support.

Viceversa assume wq 3% € Lo k5—05 N L3 ks— T with E(wa px) = L(wq /3) + {(x)
and z # 1. By Lemma 2.3.2, we get vgx € Wa,vax € Wg, but vg € Wa, hence
z € W, and smularly x € W,B We are left with proving that L(x) C II;, so take
v € N(x)N II. Recall that v € Vo is—6y, hence

1= Wty (05(7) = hto (03(1). (2.4.6)
If v ¢ Iy, then vg(vy) € Ao, s0 hty(vg(7y)) = 0 against (2.4.6). Therefore v € Iy, as
desired. O

Proposition 2.4.7. Assume p, )’ € M,, and o, € Tl Then T, , NZg,w # 0 if
and only if either « = 8 and p = ', or p=kd —0x, p' = ké — 0%, with ¥ # X' and
Oy, Os: of type 1, a € Eg, and 3 € X.

Proof. In Proposition 2.4.5, we settled the cases u = ké — 0y, p/ = ké — 6%, with
¥ # ¥/ and Oy, 65y of type 1. It remains to prove that Z, , NZg,, = 0 in all other
non trivial cases.

We suppose by contradiction that there is w € Z, ;, NZg s and treat the possibile
cases one by one.

1. Let o, f € I} and p = ké + 3, 4/ = ké + a. Since N(wg gs+a) C N(w) and
wﬂi}ﬂﬂ_a(a) = —ké + B we see that o € N(w). If Il = () then (o, ) # 0, so

kd+a+ 5 € A and this implies that kd + a+ 8 € N(w). This is impossible since
hto (k6 + o+ B) = 4. If Ty # 0 and S|IIy then s 4+ a € A, so kd — 0y, — a € AT,
Since kd — a = Oy + kd — Oy — «a, using the explicit expression for wg r54q given in
Proposition 2.2.10, we see that Oy, + a = s,(fx) € N(w). Since a+ 4+ 05 € A, this
implies that (kd + 3) + (o + 0x) € N(w) and again this gives a contradiction.

2. Let a,y € Iy, u = kd +, y/ = ko — 0. As above, we see that Oy + v €
N(wa,k54+~) C N(w). But then k6 — 6y + 0y, +v = kd + v € N(w) and this is
impossible.

3. Let p = kd — Oy, ¢/ = kd — Oy with Oy, of type 2. We have clearly ¥ # X',
Assume first fy; complex. If § — 0y, is a simple root then I=>ull contrary to the
assumption that ¥ # ¥/. Thus § — fy, is not simple. We now rely on the explicit
description of wg,, given in Lemma 2.2.8. If v € II;, then v € N(s;_¢,,), hence
26 — 205, — v € N(s5-05,) C N(wq,u) C N(w). But then (20 —0s) + (20 — 205 —v) =
40 — Osy — v — 05, € N(w) and this is not possible. It remains to check the case when
Oy is short compact. There is only a case when this occurs and IIy has more than
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one component, namely type BY with I = {an—1}. By the explicit description
of wq,, given for this case in Lemma 2.2.5, we see that 0y € N(wq,,) C N(w) and
this gives clearly a contradiction. O

2.5 Maximal elements and dimension formulas

In this section we give a parametrization of the maximal ideals in ng and compute
their dimension.

As a first step in our classification of maximal ideals, we determine which Z, ,
admits maximum. Let IT} denote the set of roots of type 1 in II;.

Proposition 2.5.1.

1. If O, is of type 1 (resp. type 2) and o € T(X); UII} (resp. a € ;) then
Lo ks—05 has maximum.

2. Ifbs,0s,a € ¥, 3 € X, 5 # X, are all roots of type 1, then Lo, ks—05,NLg k5—0y,
has mazimum.

3. If I} =11y, then, Lo gtks, o, B € Iy has mazimum if nonempty.

Proof. Recall that, by Theorem 2.3.6, Z,, ;, is isomorphic to Wa,#\l//[\/a. The subgroup
Wa,u is standard parabolic for any o and p except when u = kd — 0y, 0y, of type 1,
|X| > 1, and a € A(X) \ (X UII;). The existence of the maximum in cases (1) and
(3) follows now from subsection 1.3.3. The same applies to Imkg_gz, N 18 ks—05, DY
Theorem 2.4.1. O

We already saw in Proposition 2.3.1 that, in many cases, the maximal elements
of Z,,,, are maximal in W. The next result deals with the missing cases.

Proposition 2.5.2. If I} = I} = {«a, B} (with possibly a = B), O is of type 1,
and w € Ly k5o, then w < max (Lo ks48)-

Proof. By Proposition 2.5.1, 7, y5—p,, has maximum. From subsection 1.3.3, we
see that its maximum is Wpaer = Wa,ks—o5Wo, BsWy i, » where wq gy, is the longest

element of W (Il,\Bx) and W, 1 the longest element of W,. Clearly there is a
root ay € 3 such that (ay,«) # 0, and we note that this root is necessarily unique,
for, otherwise, ¥ U {a} would contain a loop, and this is only possible in the adjoint
case of type A,. But in this case « is not of type 1.

We now show that wo,pyw), ﬁa(ag) = fy. This is clear if |X| = 1 so we assume
|X| > 1. Recall that wq, is the longest element of W ((Ilp),). Let wpy, be the
longest element of W ((Ilp)a\Bs). Obviously N(wp,woa) C N(U)O,Bzwo,ﬁa) and
we know that wp,wo.q(ax) = 0sx. We show that v(ax) = 6y, for any v such that
WBLWo,0 < v < wopyw, g - This is proven by induction on l(v) — L(wpswo,a)-
Assume that v(ay) = 0y and wpywoa < v < 8y < wo,Bs Wy 7, with v € ﬁa.
We need to prove that vsy(ax) = 6x. Set (ax,v") = —r with r € ZT. Then
vsy(ax) = bs + ru(y). Observe that v € V, ys5_4,,, s0 htp,(v(v)) = 1. It follows

that htpg(vsy(ax)) = 2+ 7. We claim that htp,(v) < 2 for any v € A(II\{a}).
Indeed this is obvious if |II;| = 1 and, in the hermitian symmetric case it follows
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from (2.3.1) and the observation that, in this case, ht,(r) < 1. We conclude that
r =0 and vsy(ax) = Ox.

We have shown that wopyw,5 (as) = Os, therefore we get wpas(ax) =
Wa, k6—0x, (92) Now

hto(Wa ks—o5 (05)) = (Wa,ks—0s (05), k0 — 05)) + htpy (Os) = 1.
This proves that wimazSay, € ng, SO WmazSas, € Lo ks+4- O
Proposition 2.5.1 allows us to give the following definition:

Definition 2.5.1. If 0 is of type 1 (resp. type 2) and a € I'(X); (resp. o € X),
we let MI(c) be the maximum of Z,, y5_¢5,. If ¥ # X' and 05,05, € ¥/, € &
are all roots of type 1, we let MI(«, ) be the maximum of Z, x5, N Zpks—05- If
a, B € I} with Ty k515 # 0, we let MI(«) be its maximum.

We are finally ready to state the main result of the paper, which gives a complete
parametrization of the set of maximal abelian bg-stable subspaces in W%. For
notational reasons, it is convenient to fix an arbitrary total order < on the components
of Ho.

Theorem 2.5.3. The maximal bg-stable abelian subalgebras are parametrized by the
set

M = U rE);|u U =z|u U (&pxp|ul. (25.1)
Z|Io E|o 2,5 Mo, ¥<%
3 of type 1 3 of type 2 3,3 of type 1

Remark 2.5.1. In the adjoint case, there is just one component ¥ in Iy, which is the
set of simple roots of g. In the r.h.s of (2.5.1) the only surviving term is 7, so M
is the set of long simple roots of g. This parametrization has been first discovered
by Panyushev [17].

Now we begin to work in view of the proof of Theorem 2.5.3. We need to study
the maximal elements of 7, ;,. This is immediate when Z, , has maximum, more
delicate in the other cases. We also need to determine when a maximal element of
W2 occurs in different Z,, ,’s. The description of the intersections among different
Zo,u's given in Section 2.4 is the key to solve both problems. We start with the
following

Lemma 2.5.4. Assume ¥ # Y/'. If Os,0s,a € X, are all roots of type 1 and
w € Lo ks—0y, s mazimal, then there is n € Y such that w(n) = kd — Ox.

Proof. Write w = wq rs—g,, ¢ with z maximal in Vi, ys_g,,. If ¥’ = {5/}, then by
Lemma 2.3.5 and Theorem 2.3.6, x = 1, so w(fyy) = ux svva(fsy) = kd — bx.

If |¥'| > 1, then by Definition 2.3.3, we have that I//‘\/mk(;_gz, # {1}. It follows
that x cannot be the longest element of W(ﬁa), hence there is a root v in Il, such
that z(y) > 0. Since z is maximal, then htp_, (2(7)) # 1, hence htp_, (x(v)) € {0,2}.
Next we exclude that htp, (z(y)) = 0 for all v. We start with proving that if

htgg, (z(y)) = 0, then z(y) is simple. Indeed, if 2(y) — 8 € A; with 5 & Byy,
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then, by convexity of N(x), we have that 8 € N (), contradicting the fact that
T € Vo ks—oy,- If, for all roots « in II, such that z(y) > 0 we have that z() € II\ By,

then, arguing as in Proposition 2.2.1, we see that N(x) is the set of roots § in A;“
such that htp_, () > 0. Since (s, 0y,) = 2 and |[X'| > 1, we see that this contradicts
again the fact that z € Vi xs—o,, -

Therefore there is v such that htp,, (z(7)) = 2. Then, arguing as above, we see
that x(v) is minimal among the roots 8 such that htp, (8) = 2. By Lemma 2.3.5,
we have that z(v) = Oy.

Arguing as in the proof of parts (2), (3) of Lemma 2.4.4, one checks that there
is n € ¥’ such that v, < z. It follows that Wa,kd—0g, Uy < W. SiNCE We k50, Uy =
us s VaVy € Iy ks—0s,, by Proposition 2.3.1 we have w € 7, xs_g, as desired. O

We are now ready to prove Theorem 2.5.3.

Proof of Theorem 2.5.3. Consider the map MI : M — ng defined in Definition
2.5.1. Let MAX be the set of maximal abelian bg-stable subalgebras of g;. By
Propositions 2.3.1 and 2.5.2, it is clear that MI(m) € MAX for any m € M. We
next prove that M1 : M — MAX is bijective. First we show that MI(M) = MAX.
Let w be maximal. By Proposition 2.2.1 we have that w is maximal in Z, , for some
e M, . If o €Il; and it is of type 2, then p is of type 2, hence u = kd — fx; with
Oy, of type 2, but this case is ruled out by Theorem 2.2.11. We can therefore assume
a of type 1. From Proposition 2.5.2 we deduce yu = 8+ k¢ so that o, 3 € I1}. Hence
w = MI(a). If a ¢ II; then, by Proposition 2.2.10, we have that u = ké — 0x. If
a € ¥ and Oy is of type 1 (resp. type 2), then by Theorem 2.2.11, we have a € I'(X);
(resp. ¥7) and by Proposition 2.5.1 we have w = MI(«a). Finally assume a € ¥/ # X.
In particular, by Theorem 2.2.11, «, 0y, and 0y are of type 1. By Lemma 2.5.4 and
Proposition 2.5.1 (2), we see that there is 8 € ¥’ such that w = MI(«, ).
Finally we prove that M1 is injective. Set

vy= |J TEu U 3ul. (2.5.2)
| E|o
Y of type 1 ¥ of type 2

If a, p €Y, it follows readily from Theorem 2.4.1 that MI(a) = MI(3) implies a = 3.
Theorem 2.4.1 also implies that MI(a) # MI(B,7) for a € Y and (8,7) € X7 x E/E
with 3,7, %, %" of type 1. Suppose finally that MI(a, 3) = MI(vy,n) with a € Xy,
BeX, ye E/Z/’ ne E%”, and X, Y, %7 3" all of type 1, and X < ¥/, ¥ < ¥ Set
w = MI(a, ) = MI(7y,n). We have w € Zg k5—05, N Ly ks—05, 7 0. Thus either
a=~vand X' =YY" or v € ¥ and o € X", In the first case we have w(n) = kd — 5
so = 7. In the second case we have ¥ = ¥ and X" = ¥’ contradicting the fact
that X" < X", O

We can improve Theorem 2.5.3 by computing the dimension of maximal abelian
subspaces.

Recall from (1.3.4) that gr denotes the dual Coxeter number of a finite irreducible
root system R. Suppose ¥|Ilp. To simplify notation, we set gs; = ga(x) and, if Oy is
type 1, ga(s) = 9a(a(z)) (note that in this case A(A(X)) is irreducible by Remark
2.2.2). Also recall from Section 1.3.1 that K is the canonical central element of

L(g,0) and g is its dual Coxeter number and from Section 2.1 that we denote by a
the squared length of a long root in A™.
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Lemma 2.5.5. Let v € Am. Then
1. (k6 +~)Y = mEk -+ V. In particular, (k6 — 0x)Y = reK — 6%.

2. If O, is of type 1, then gas) = g — gs + 2. In particular, if o € A(X), then
U(Wa ks—05) = & — gs-

3. If Ox is of type 2 and o € Xy, then L(waks—05) =g — 1.
4. Ifa,B €1}, and B # « if |II{| = 2, then £(wg ks1a) = & — 1.
Proof. We compute, using (1.3.1):

v_ 2k _ K [|§ — agao|®

kd+~)Y = v o) +4Y = K +~V.
k2" = @ PR T

_ 2
A direct inspection shows that M = a. This proves (1).

To prove the first part of (2) we observe that ga) = Mg, (k0 —0s)") + 1. The
result then follows readily from (1). By Proposition 1.3.4 (3) and (2.2.6), we see
that if 0y is of type 1 and o € A(X); then l(wars-65) = gaz) — 2 = g — gs. For
(3) recall that wq xs—os, = Sva, s being the element of W described in Lemma 2.2.4
and v, the element of minimal length in W (X) mapping « to fx. It follows that
U(Wak5—05) = £(s) + g= — 2. It is therefore enough to show that {(s) =g — g + 1.
Recall that, by Lemma 2.2.12,

l

w A = A=) (A B oy, (2.5.3)

=1

Here w € 171\/, AE E*, 8y + -+ 8i, is a reduced expression of w and 3 = s;, - 55, ()
(so that N(w) = {p1,...,0} and | = ¢(w)). Applying (2.5.3) to w = s and
A = kd — 6y, and using Lemma 2.2.4, we obtain that s(\) = A — 23!, 7, where

R P . _ o2 .
i = 12 In turn, recalling that s(u) = 6x, and applying oY to the previous

equality we get
!
0% = (k6 — 0s)" =2 .
j=1

In particular, taking hts, of both sides, we obtain 2¢(s) = hts, (k6 —0x)") — gs + 1.
Now use part (1) (recall that ry;, = 2) to finish the proof.

To prove (4), we recall that, by Proposition 2.2.10 wg q1ks = SaWo,qWo, hence
N(wg atks) = {a} U sqN(wo,qwp). By definition, for all v € N(wp,qwp), we have
(7,a") < 0, hence (s47,a") > 0. Now it is clear that s,y # a, so that s,y — « is a
root. Since

lsay—al> - llsanl? ,
NPy = ol _ 4 - .
Tk T oz~ (a0

and « is long, then (s,7,a") = 2 and |say — al| = 0 or (sa7,a") = 1. The
first case implies s,y = ¢d + « for some ¢ € R\ {0}. This is not possible, since
hts(say) = 1. Hence (sq7,a¥) = 1 for all v € N(wgqwp). Now, formula (2.5.3)
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with w = wg o1ks and A = o+ ké gives f = a + kd — 2a — ZéZQ(a, By )evi;, with

{Ba, ..., Bi} = saN(wpawo) and, applying —2-v~1,

(a,@)

It follows that | = g — 1, as claimed. O

If g is a simple Lie algebra, let g4 be the dual Coxeter number of the root system
of g. It is know that g = g, if g is simple and that g = g, in the adjoint case
g =g ®g. The following result gives our dimension formulas.

Theorem 2.5.6. If O is of type 1 and a € T'(X), then
dim MI(a) = g — gs + |AL| — |AF(IT ). (2.5.4)
Ifaclll, orac Y5 with Os, of type 2, then

dim MI(a) =g — 1+ |Af| - |AT(I ). (2.5.5)

If a € Xy, p € X, with ¥ # X' and Ox, Osr of type 1, then
dim MI(a, 8) = g — 2+ |AT (I, NTg)| — |A*((TT, N TIg) \ IT1)]. (2.5.6)
Proof. By (1.3.8), Theorems 2.2.11 and 2.3.6 imply that, for a« € Y (cf. (2.5.2))

dim MI(O() = E(?,Ua“u,) + ‘A(—H - |A+(ﬁz,u)|'

Using part (2) of the previous Lemma we obtain (2.5.4). Likewise, if 6y is of type 2
and o € ¥y, or a € 11} then (2.5.5) follows from (3), (4) in Lemma 2.5.5.
Finally, we have to prove (2.5.6). Theorem 2.4.1 gives

dim MI(a, 8) = lwa,p) + |AT (T NT5)| — |AT((Ta N TI5) \ II)].

So it remains to show that /((w,3) = g — 2. From Lemma 2.4.4 (3), we know
that w, g = uy syvavg with l(we g) = l(us sr) + €(va) + £(vg), where vy, vg are the
elements of minimal length mapping «, 3, respectively, to the highest root of their
component. By Proposition 1.3.4 (4), the lengths of the latter elements are g5, — 2,
gsy — 2, respectively. We know that uy, svvg is the element of minimal length in
W (A(X)) mapping 3 to ké — Os. Hence £(us sv) + {(vs) = gacs) — 2. Using Lemma
2.5.5 (1), we have

lussr) =gax) — 9o =8 —gs — g + 2,
hence (2.5.6) is proven. O

Remark 2.5.2. The dimension formula in the adjoint case is a specialization of (2.5.5)
and is due to Suter [20]. For a refinement of Suter’s formula, see [4, Theorem 8.13].

Proposition 2.5.7. In the hermitian case, if a € 111, we have

dim(MI(a)) = dim;gl).
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Proof. Let II; = {a,f}. It is clear that a root of L(g,0) has o-height 1 if it is
greater or equal than exactly one among «, 5. Hence

tlogn= @ Lgo)-e P L) (2.5.7)
Yo =B
BESupp(y) agSupp(y)

Since there is a automorphism of the Dynkin diagram of E(g,o') switching the
elements of II;, the two summands in the r.h.s. of (2.5.7) have both dimension
dim(g1)/2. Set Fy = {—y € A | v > B and o & Supp(v)}. Tt is clear that, if
—~',—~" € F,, then — —~"" & A; moreover, for each n € A such that —y+n € A
we have that —y + 7 € Fy. It follows that .= 5 ag¢supp(y) L(g, 0)—~ is an abelian
bo-stable subspace of t ! ® gy, hence, by Remark 1.2.2, it corresponds to a bg-stable
abelian subspace of g1. In order to conclude the proof, we shall prove that the element
of W corresponding to the latter subspace is MI(a). Set z = MI(a). By formula
(2.2.6), Theorem 2.2.11, and Lemma 2.3.2, z = sgz’ with 2’ € W (I\ {a}). It follows
that N(z) C —F, and therefore, by the maximality of MI(«a), that N(z) = —F,:
this proves the claim. O

Remark 2.5.3. If we take II; = {ag, 5}, where ag is the extra node of the extended
Dynkin diagram associated to g, then the sum i of all root subspaces corresponding
to {y> 0| ao & Supp(y)} is an ideal of the Borel subalgebra of g corresponding to
the simple system II \ {ao}. Moreover, if w is the element associated to this abelian
ideal via Peterson’s bijection quoted in the Introduction, then N(w) = {v > «y |
B & Supp()}. Now Proposition 2.2.10 implies that w(3) = § + ag, hence this ideal
is included in the maximal ideal associated to 8 via the Panyushev bijection [17].
By Theorem 2.5.6 and Suter dimension formula, we obtain that i is exactly this
maximal ideal. Notice that this applies to any simple root 3 of g that occurs with
coefficient 1 in the highest root of g.

Remark 2.5.4. As recalled in the Introduction, Panyushev [16] investigated the
maximal eigenvalue of the Casimir element of gg w.r.t. the Killing form of g. In
particular he showed that in the hermitian case N = dimT(gl) gives the required
maximal eigenvalue. By the previous Proposition, if v1,...,vy is any basis of

MI(a), then v A ... Avy is an explicit eigenvector of maximal eigenvalue.
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