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Abstract

Using techniques both of non linear analysis and geometric measure theory, we prove existence of minimiz-
ers and more generally of critical points for the Willmore functional and other Lp curvature functionals
for immersions in Riemannian manifolds. More precisely, given a 3-dimensional Riemannian manifold
(M, g) and an immersion of a sphere f : S2 ↪→ (M, g) we study the following problems.

1) The Conformal Willmore functional in a perturbative setting: consider (M, g) = (R3, eucl +εh)
the euclidean 3-space endowed with a perturbed metric (h = hµν is a smooth field of symmetric bilinear
forms); we prove, under assumptions on the trace free Ricci tensor and asymptotic flatness, existence
of critical points for the Conformal Willmore functional I(f) := 1

2

∫
|A◦|2 (where A◦ := A − 1

2H is the
trace free second fundamental form). The functional is conformally invariant in curved spaces. We also
establish a non existence result in general Riemannian manifolds. The technique is perturbative and
relies on a Lyapunov-Schmidt reduction.

2) The Willmore functional in a semi-perturbative setting: consider (M, g) = (R3, eucl +h) where
h = hµν is a C∞

0 (R3) field of symmetric bilinear forms with compact support and small C1 norm. Under
a general assumption on the scalar curvature we prove existence of a smooth immersion of S2 minimizing
the Willmore functional W (f) := 1

4

∫
|H|2 (where H is the mean curvature). The technique is more

global and relies on the direct method in the calculus of variations.

3) The functionals E := 1
2

∫
|A|2 and W1 :=

∫ ( |H|2
4 + 1

)
in compact ambient manifolds: consider

(M, g) a 3-dimensional compact Riemannian manifold. We prove, under global conditions on the curva-
ture of (M, g), existence and regularity of an immersion of a sphere minimizing the functionals E or W1.
The technique is global, uses geometric measure theory and regularity theory for higher order PDEs.

4) The functionals E1 :=
∫ ( |A|2

2 + 1
)

and W1 :=
∫ ( |H|2

4 + 1
)

in noncompact ambient manifolds:

consider (M, g) a 3-dimensional asymptotically euclidean non compact Riemannian 3-manifold. We prove,
under general conditions on the curvature of (M, g), existence and regularity of an immersion of a sphere
minimizing the functionals E1 or W1. The technique relies on the direct method in the calculus of varia-
tions.

5) The supercritical functionals
∫

|H|p and
∫

|A|p in arbitrary dimension and codimension: consider
(N, g) a compact n-dimensional Riemannian manifold possibly with boundary. For any 2 ≤ m < n
consider the functionals

∫
|H|p and

∫
|A|p with p > m, defined on the m-dimensional submanifolds of N .

We prove, under assumptions on (N, g), existence and partial regularity of a minimizer of such functionals
in the framework of varifold theory. During the arguments we prove some new monotonicity formulas
and new Isoperimetric Inequalities which are interesting by themselves.



Chapter 1

Introduction

An important problem in geometric analysis concerning the intrinsic geometry of manifolds sounds
roughly as follows: given an n-dimensional smooth manifold find the ”best metrics” on it, where with
”best metric” we mean a metric whose curvature tensors satisfy special conditions (for example some
traces of the Riemann curvature tensor are null or constant or prescribed, or minimize some functional;
think of the Yamabe Problem, the Uniformization Theorem, etc. ).

The analogous problem concerning the extrinsic geometry of surfaces sounds roughly as follows: given
an abstract 2-dimensional surface Σ (we will always consider Σ closed: compact and without boundary)
and a Riemannian 3-dimensional manifold (M, g) find the ”best immersions” f : Σ ↪→ M of Σ into M .
Here with ”best immersion” we mean an immersion whose curvature, i.e. second fundamental form,
satisfies special conditions: for example if the second fundamental form is null the immersion is totally
geodesic, if the mean curvature is null the immersion is minimal, if the trace-free second fundamental
form is null the immersion is totally umbilical, etc.

Before proceeding let us introduce some notation. Given an immersion f : Σ ↪→ (M, g) let us denote
by g̊ = f∗g the pull back metric on Σ (i.e. the metric on Σ induced by the immersion f); the area form√

det g̊ is denoted with dµg or with dΣ; the second fundamental form is denoted with A and its trace
H := g̊ijAij is called mean curvature (notice that we use the convention that the mean curvature is the
sum of the principal curvatures and not the arithmetic mean), finally A◦ := A − 1

2Hg̊ is called trace-free
second fundamental form.

As written in the second paragraph, classically the ”best immersions” are the ones for which the
quantities A, H, A◦ are null or constant (i.e. parallel) but in many cases such immersions do not exist
(for example if Σ is a closed surface and (M, g) = (R3, eucl) is the euclidean three dimensional space,
by maximum principle there exist no minimal, and in particular totally geodesic, immersion of Σ into
(R3, eucl); more references about the existence of these classical special submanifolds will be given in the
following more specific introductions, here we just want to motivate the problem).
If such classical special submanifolds do not exist it is interesting to study the minimization of natural
integral functionals associated to A, H, A◦ of the type

∫

Σ

|A|pdµg,

∫

Σ

|H|pdµg,

∫

Σ

|A◦|pdµg, for some p ≥ 1.

A global minimizer, if it exists, can be seen respectively as a generalized totally geodesic, minimal, or
totally umbilic immersion in a natural integral sense. The general integral functionals above have been
studied, among others, by Allard [Al], Anzellotti-Serapioni-Tamanini [AST], Delladio [Del], Hutchinson
[Hu1], [Hu2], [Hu3], Mantegazza [MantCVB] and Moser [Mos].

An important example of such functionals is given by the Willmore functional 1
4

∫
Σ

H2dµg. The
topic is classical and goes back to the 1920-’30 when Blaschke [Bla] and Thomsen [Tho] discovered the
functional and observed that it is invariant under conformal transformations of R3.
The functional was later rediscovered in the 60’s by Willmore who proved that the standard spheres Sρ

p

are the points of strict global minimum for 1
4

∫
H2. The proofs of the last facts can be found in [Will]

(pag. 271, 276-279).
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The functional relative to immersions in R3 and S3 has been deeply studied with remarkable results
(for a panoramic view up to the 80’s see [Will] Chap. 7, for immersions in Rn see [SiL], [BK], [Chen]
[KS], [Schy] and [Riv], for immersions in S3 and space forms see [LY], [Wei], [ZG], [GLW], [LU], [WG]
[MW]). Finally, in the last years, the flow generated by the L2-differential of the functional has been
analyzed ([Sim], [KS1], [KS2]).

The Willmore functional has lots of applications in biology, general relativity, string theory and
elasticity theory: in the study of lipid bilayer membranes it is called “Hellfrich energy”, in general
relativity it is linked with the “Hawking mass”, in string theory it appears in the “Polyakov extrinsic
action” and in nonlinear elasticity theory it arises as Γ-limit of some energy functionals (see [FJM]). We
also mention the classical fact that in the mean curvature flow analysis one has

d

dt
V ol(M̊) = −

∫

M̊

H2dΣ

where M̊ is the evolving submanifold with respect to the parameter t and V ol(M̊) :=
∫

M̊
dΣ is its area.

While, as we remarked, there is an extensive literature for immersions into Rn or Sn, very little is
known for general ambient manifolds (apart from the case of minimal surfaces). The aim of this thesis is
to study the Willmore and other natural Lp curvature functionals in curved spaces.

Before passing to more detailed introductions let us write which problems are analyzed in the present
thesis. In [Mon1], the author studied the Willmore functional in a perturbative setting: considered
R3 with the metric δµ,ν + εhµν which is an infinitesimal perturbation of the euclidean metric δµν , under
generic conditions on the scalar curvature and a fast decreasing assumption at infinity on the perturbation
hµν , existence and multiplicity of immersions which are critical point for the functional 1

4

∫
H2dµg were

proven (for more details see [Mon1]). The method was perturbative and the proof relied on a Lyapunov-
Schmidt reduction. Using a similar technique, in Chapter 2 we study the conformal Willmore functional
1
2

∫
|A◦|2dµg, which is conformally invariant in Riemannian manifolds, in the same perturbative setting

(R3, δµν + εhµν). Under generic conditions on the trace-free Ricci tensor Sµν := Ricµν − 1
3Rgµν (where

Ricµν is the Ricci tensor and R is the scalar curvature, see also Definition (1.5)) and a fast decreasing
assumption at infinity on the perturbation hµν , we prove existence and multiplicity of critical points;
with the same technique we prove also a non existence result in general Riemannian manifolds. For more
details see the corresponding Introduction 1.0.1 and Chapter 2; this work is the object of the paper [Mon2].

Using more global techniques coming from geometric measure theory, in the rest of the thesis we study
the Willmore and other Lp curvature functionals in semi-perturbative and global settings. With this in
mind, in Appendix 6.6 we recall some basic notions about varifold theory which will be useful in the rest
of the thesis.

In Chapter 3 we study the Willmore functional 1
4

∫
|H|2dµg in a semiperturbative setting: while in

[Mon1] the perturbation to the euclidean metric was infinitesimal, here the perturbation is small but
finite. More precisely we consider R3 with the metric δµν + hµν where hµν is a C∞

0 (R3) bilinear form
with compact support and small C1 norm. If there exist a point p̄ ∈ R3 where the scalar curvature
of this metric is strictly positive, R(p̄) > 0, then we prove the existence of an immersion of a sphere
f : S2 ↪→ (R3, δµ,ν + hµν) minimizing the Willmore functional among immersed spheres. The technique
is the so called direct method in the calculus of variations: we consider a minimizing sequence of immer-
sions, we associate to it a sequence in an enlarged space where it is easier to prove compactness, then by
lower semicontinuity we prove the existence of a candidate minimizer weak object and finally we prove
its regularity. For more details see Introduction 1.0.2 and Chapter 3; this content is part of a joint work
with J. Schygulla, see [MS1].

In the rest of the thesis we study global problems: the ambient manifold will be a Riemannian
manifold under global curvature conditions. First, in Section 4.1 and Chapter 5, we study the case of a
closed (compact without boundary) ambient manifold (M, g) which as always is of dimension 3. In this
framework we consider immersions of 2 spheres f : S2 ↪→ M and the problem of the minimization of the

functionals E(f) := 1
2

∫
|A|2dµg and W1(f) :=

∫ (
H2

4 + 1
)

dµg. Notice that in (R3, eucl) it is equivalent

to minimize the Willmore functional W (f) := 1
4

∫
|H|2dµg and the functional E(f) := 1

2

∫
|A|2dµg among

2



immersions of 2-spheres, indeed by Gauss-Bonnet Theorem we have

E(f) :=
1

2

∫
|A|2dµg =

1

2

∫
|H|2dµg − 2πχ(S2) = 2W (f) − 4π.

Therefore E is a natural generalization of the Willmore functional W for immersions in manifolds. In-
stead, as it can be easily seen, the infimum of W1 is not attained for immersions of spheres in (R3, eucl).
Under global conditions on the ambient manifold (M, g) we will prove the existence of a smooth immer-
sion f : S2 ↪→ M minimizing E (respectively W1) among immersions of 2-spheres. The technique is the
direct method in the calculus of variations, but here the hard part is to get geometric a priori estimates
on the minimizing sequences and even harder the regularity of the candidate minimizer. For more details
see Introduction 1.0.3, Section 4.1 and Chapter 5; this part is the object of a joint work with E. Kuwert
and J. Schygulla, see [MS2].

Next, in Section 4.2 we study the global problem of minimizing the Willmore type functionals

W1(f) :=
∫ ( |H|2

4 + 1
)

dµg, E1(f) :=
∫ ( |A|2

2 + 1
)

dµg in non compact 3-dimensional ambient Rieman-

nian manifold (M, g) without boundary (as before f : S2 ↪→ M is an immersion of 2-sphere in M). Also
in this case we prove, under the assumption that (M, g) is asymptotically euclidean and under curvature
conditions, that there exists a smooth immersion f : S2 ↪→ M minimizing E1 (respectively W1) among
immersions of spheres. As before the technique is the direct method in the calculus of variations, here
the difficulty is that the surfaces in the minimizing sequence can become larger and larger or can escape
to infinity so, using curvature assumptions on (M, g), we will prove a priori estimates which prevents
those bad behaviors. Once the existence of a weak candidate minimizer is settled, the regularity theory is
exactly the same as in the compact case (see Chapter 5); this part is contained in the joint paper [MS1]
with J. Schygulla.

In the last Chapter 6 we study supercritical Lp-curvature functionals
∫

|H|p and
∫

|A|p for submani-
folds of any codimension in a Riemannian manifold of arbitrary dimension. Let us be more precise. Let
(N, g) be a compact (maybe with boundary) Riemannian manifold of dimension n ∈ N and consider on
the m-dimensional submanifolds, 2 ≤ m < n, the Lp curvature functionals

∫
|H|p and

∫
|A|p with p > m.

Let us stress that here the exponent p > m is supercritical, in contrast with the preceding chapters where
we were dealing with 2-dimensional surfaces and the exponent was 2 (so before we were dealing with the
critical exponent). In this chapter we heavily use varifold theory and, using direct methods in the calcu-
lus of variations, we prove existence and partial regularity of integral rectifiable m-dimensional varifolds
(the non expert reader can think at them as generalized m-dimensional submanifolds) minimizing the
above functionals

∫
|H|p and

∫
|A|p in a given Riemannian n-dimensional manifold (N, g), 2 ≤ m < n

and p > m, under suitable assumptions on N (in the end of the chapter we give many examples of such
ambient manifolds). To this aim we introduce the following new tools: some monotonicity formulas for
varifolds in RS involving

∫
|H|p, to avoid degeneracy of the minimizer, and a sort of isoperimetric in-

equality to bound the mass (the non expert reader can think of the mass as the volume of the generalized
m-dimensional submanifold) in terms of the mentioned functionals. For more details see Introduction
1.0.4 and Chapter 6; this part corresponds to the paper [MonVar].

1.0.1 Introduction and results about the Conformal Willmore Functional
1
2

∫
|A◦|2 in a perturbative setting: Chapter 2

The aim of Chapter 2 is to study a (Riemannian) conformally invariant Willmore functional. The study
of Conformal Geometry was started by H. Weil and E. Cartan in the beginning of the 20th century and
since its foundation it has been playing ever more a central role in Riemannian Geometry; its task is to
analyze how geometric quantities change under conformal transformations (i.e. diffeomorphisms which
preserves angles) and possibly find out conformal invariants (i.e. quantities which remain unchanged
under conformal transformations).

Let us first recall the definition of “standard” Willmore functional for immersions in R3 which is a
topic of great interest in the contemporary research as explained before. Given a compact orientable
Riemannian surface (M̊, g̊) isometrically immersed in R3 endowed with euclidean metric, the “standard”

3



Willmore functional of M̊ is defined as

W (M̊) =

∫

M̊

H2

4
dΣ (1.1)

where H is the mean curvature and dΣ is the area form of (M̊, g̊) (we will always adopt the convention
that H is the sum of the principal curvatures: H := k1 + k2).
As written above, this functional satisfies two crucial properties:

a) W is invariant under conformal transformations of R3; that is, given Ψ : R3 → R3 a conformal
transformation, W (Ψ(M̊)) = W (M̊).

b) W attains its strict global minimum on the standard spheres Sρ
p of R3 (hence they form a critical

manifold - i.e. a manifold made of critical points):

W (M̊) :=

∫

M̊

H2

4
dΣ ≥ 4π; W (M̊) = 4π ⇔ M̊ = Sρ

p . (1.2)

The proofs of the last facts can be found in [Will] (pag. 271 and pag. 276-279).
Clearly the “standard” Willmore functional W can be defined in the same way for compact oriented

surfaces immersed in a general Riemannian manifold (M, g) of dimension three. Although this functional
has several interesting applications, it turns out that W is not conformally invariant.

As proved by Bang-Yen Chen in [Chen] (see also [Wei] and for higher dimensional and codimensional
analogues [PW] ), the “correct” Willmore functional from the conformal point of view is defined as follows.
Given a compact orientable Riemannian surface (M̊, g̊) isometrically immersed in the three dimensional
Riemannian manifold (M, g), the conformal Willmore functional of M̊ is

I(M̊) :=
1

2

∫

M̊

|A◦|2dΣ =

∫

M̊

(
H2

4
− D

)
dΣ (1.3)

where |A◦|2 = 1
2 (k1−k2)

2 is the norm of the traceless second fundamental form (recall that A◦ = A− 1
2Hg̊),

D := k1k2 is the product of the principal curvatures and as before H and dΣ are respectively the mean
curvature and the area form of (M̊, g̊). In the aforementioned papers it is proved that I is conformally
invariant (i.e. given Ψ : (M, g) → (M, g) a conformal transformation, I(Ψ(M̊)) = I(M̊)) so in this sense
it is the “correct” generalization of the standard Willmore functional which, as pointed out, is conformally
invariant in R3. We say that I generalizes W because if R3 is taken as ambient manifold, the quantity
D = k1k2 is nothing but the Gaussian curvature which, fixed the topology of the immersed surface, gives
a constant when integrated (by the Gauss-Bonnet Theorem) hence it does not influence the variational
properties of the functional.

A surface which makes the conformal Willmore functional I stationary with respect to normal varia-
tions is called conformal Willmore surface and it is well known (the expression of the differential in full
generality is stated without proof in [PW] and the computations can be found in [HL], here we deal with
a particular case which will be computed in the proof of Proposition 2.2.9) that such a surface satisfies
the following PDE:

1

2
)M̊H + H

(
H2

4
− D

)
+

(λ1 − λ2)

2
[R(N̊ , e1, N̊ , e1) − R(N̊ , e2, N̊ , e2)] +

∑

ij

(∇ei
R)(N̊ , ej , ej , ei) = 0

where )M̊ is the Laplace Beltrami operator on M̊ , R is the Riemann tensor of the ambient manifold

(M, g) (for details see “notations and conventions”), N̊ is the inward unit normal vector, λ1 and λ2 are
the principal curvatures and e1, e2 are the normalized principal directions.

The goal of Chapter 1.0.1 is to study the existence of conformal Willmore surfaces.
The topic has been extensively studied in the last years: in [ZG] the author generalizes the conformal
Willmore functional to arbitrary dimension and codimension and studies the existence of critical points
in space forms; in [HL] the authors compute the differential of I in full generality and give examples of
conformal Willmore surfaces in the sphere and in complex space forms; other existence results in spheres
or in space forms are studied for instance in [GLW], [LU], [WG] and [MW].
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The novelty of Chapter 1.0.1 is that the conformal Willmore functional is analyzed in an ambient
manifold with non constant sectional curvature: we will give existence (resp. non existence) results for
curved metrics in R3, close and asymptotic to the flat one (resp. in general Riemannian manifolds). More
precisely, taken hµν ∈ C∞

0 (R3) a smooth bilinear form with compact support (as we will remark later it
is sufficient that hµν decreases fast at infinity with its derivatives) we take as ambient manifold

(R3, gε) with gε = δ + εh (1.4)

where δ is the euclidean scalar product.
The candidate critical surfaces are perturbed standard spheres (resp. perturbed geodesic spheres), let

us define them. Let Sρ
p be a standard sphere of R3 parametrized by

Θ ∈ S2 +→ p + ρΘ

and let w ∈ C4,α(S2) be a small function, then the perturbed standard sphere Sρ
p(w) is the surface

parametrized as
Θ ∈ S2 +→ p + ρ(1 − w(Θ))Θ.

Analogously the perturbed geodesic sphere Sp,ρ(w) is the surface parametrized by

Θ ∈ S2 +→ Expp[ρ(1 − w(Θ))Θ]

where S2 is the unit sphere of TpM , Expp is the exponential map centered at p and, as before, w is a
small function in C4,α(S2).

The main results of Chapter 1.0.1 are Theorem 1.0.1 and Theorem 1.0.2 below, which will be proved in
Subsection 2.3.3. Before stating them recall that given a three dimensional Riemannian manifold (M, g),
the traceless Ricci tensor S is defined as

Sµν := Rµν − 1

3
gµνR (1.5)

where Rµν is the Ricci tensor and R is the scalar curvature. Its squared norm at a point p is defined as

‖Sp‖2 =
∑3

µ,ν=1 Sµν(p)2 where Sµν(p) is the matrix of S at p in an orthonormal frame. Expanding in ε
the curvature tensors (see for example [And-Mal] pages 23-24) it is easy to see that the traceless Ricci
tensor corresponding to (R3, gε) (defined in (1.4) )is

‖Sp‖2 = ε2s̃p + o(ε2) (1.6)

where s̃p is a nonnegative quadratic function in the second derivatives of hµν which does not depend on
ε. In the following Theorem, π will denote an affine plane in R3 and H1(π) will be the Sobolev space
of the L2 functions defined on π whose distributional gradient is a vector valued L2 integrable function.
H1(π) is equipped with the norm

‖f‖2
H1(π) := ‖f‖2

L2(π) + ‖∇f‖2
L2(π) ∀f ∈ H1(π).

Now we can state the Theorems.

Theorem 1.0.1. Let h ∈ C∞
0 (R3) be a symmetric bilinear form with compact support and let c be such

that
c := sup{‖hµν‖H1(π) : π is an affine plane in R3, µ, ν = 1, 2, 3}.

Then there exists a constant Ac > 0 depending on c with the following property: if there exists a point p̄
such that

s̃p̄ > Ac

then, for ε small enough, there exists a perturbed standard sphere Sρε
pε

(wε) which is a critical point of the
conformal Willmore functional Iε converging to a standard sphere as ε → 0.

It is well-known (see Remark 1.0.5 point 3) that if a three dimensional Riemannian Manifold has
non constant sectional curvature then the traceless Ricci tensor S cannot vanish everywhere. Clearly
(R3, gε) has non constant sectional curvature (the metric is asymptotically flat but not flat) hence it
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cannot happen that ‖S‖2 ≡ 0; for the following existence result we ask that this non null quantity has
non degenerate expansion in ε: we assume

M := max
p∈R3

s̃p > 0. (1.7)

Actually it is a maximum and not only a supremum because the metric is asymptotically flat.
The following is like a mirror Theorem to the previous existence result: in the former we bounded c

and asked s̃ to be large enough at one point, in the latter we assume that s̃ is non null at one point (at
least) and we ask c to be small enough.

Theorem 1.0.2. Let h, c be as in Theorem 1.0.1 and M satisfying (1.7). There exists δM > 0 depending
on M such that if c < δM then, for ε small enough, there exists a perturbed standard sphere Sρε

pε
(wε) which

is a critical point of the conformal Willmore functional Iε converging to a standard sphere as ε → 0.

Remark 1.0.3. 1. As done in [Mon1], the assumption h ∈ C∞
0 (R3) in Theorem 1.0.1 and Theorem

1.0.2 can be relaxed asking that h decreases fast enough at infinity with its derivatives.

2. The conditions of Theorem 1.0.1

sup{‖hµν‖H1(π) : π is an affine plane in R3, µ, ν = 1, 2, 3} ≤ c

and
s̃p̄ > Ac

are compatible. In fact the former involves only the first derivatives of h while the latter the second
derivatives (see for instance [And-Mal] page 24). Of course the same fact is true for the conditions
s̃p̄ ≥ M and c < δM of Theorem 1.0.2.

3. If the perturbation h satisfies some symmetries (invariance under reflections or rotations with respect
to planes, lines or points of R3), it is possible to prove multiplicity results (see Subsection 5.2 of
[Mon1]).

4. If h is C∞ then a standard regularity argument (see the paper of Leon Simon [SiL] pag. 303 or
the book by Morrey [MCB]) shows that a C2,α conformal Willmore surface is actually C∞. It
follows that the conformal Willmore surfaces exhibited in the previous Theorems, which are C4,α by
construction, are C∞.

5. The critical points Sρε
pε

(wε) of Iε are of (maybe degenerate) saddle type. In fact from (1.2) the stan-

dard spheres Sρ
p are strict global minima in the direction of variations in C4,α(S2)⊥ = Ker[I ′′

0 (Sρ
p)]⊥∩

C4,α(S2), it is easy to see that for small ε the surfaces Sρε
pε

(wε) are still minima in the C4,α(S2)⊥

direction; but, since they are obtained as maximum points of the reduced functional, in the direction
of Ker[I ′′

0 (Sρ
p)] they are (maybe degenerate) maximum points.

As we said before, the non existence result concerns perturbed geodesic spheres of small radius. Let
us state it:

Theorem 1.0.4. Let (M, g) be a Riemannian manifold. Assume that the traceless Ricci tensor of M at
the point p̄ is not null:

‖Sp̄‖ /= 0.

Then there exist ρ0 > 0 and r > 0 such that for radius ρ < ρ0 and perturbation w ∈ C4,α(S2) with
‖w‖C4,α(S2) < r, the surfaces Sp̄,ρ(w) are not critical points of the conformal Willmore functional I.

Remark 1.0.5. 1. Observe the difference with the flat case: thanks to (1.2), in R3 the spheres of
any radius are critical points of the conformal Willmore functional I (as we noticed, the term D
does not influence the differential properties of the functional by Gauss-Bonnet Theorem); on the
contrary, in the case of ambient metric with non null traceless Ricci curvature we have just shown
that the geodesic spheres of small radius are not critical points.

2. The condition ‖Sp‖ /= 0 is generic.
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3. If (M, g) has not constant sectional curvature then there exists at least one point p̄ such that ‖Sp̄‖ /=
0. In fact if ‖S‖ ≡ 0 then (M, g) is Einstein, but Einstein manifolds of dimension three have
constant sectional curvature (for example see [Pet] pages 38-41).

The abstract method employed throughout Chapter 1.0.1 is the Lyapunov-Schmidt reduction (for
more details about the abstract method see Section 2.1). An analogous technique has been used in the
study of constant mean curvature surfaces (see [Ye], [Ye2], [PX], [CM1], [CM2], [FMa], [FMe] and [Fe]).

We discuss next the structure of the Chapter, but first let us explain (informally) the main idea (for
the details see Subsection 2.2.3 and Subsection 2.3.1).
As we remarked, (1.2) implies that the Willmore functional in the euclidean space R3 possesses a critical
manifold Z made of standard spheres Sρ

p . The tangent space to Z at Sρ
p is composed of constant and

affine functions on Sρ
p so, with a pull back via the parametrization, on S2. The second derivative of I0

at Sρ
p is

I ′′
0 (Sρ

p)[w] =
1

2
)S2()S2 + 2)w

(for explanations and details see Remark 2.3.1) which is a Fredholm operator of index zero and whose
Kernel is made of the constant and affine functions; exactly the tangent space to Z.
So, considered C4,α(S2) as a subspace of L2(S2) and called

C4,α(S2)⊥ := C4,α(S2) ∩ Ker[)S2()S2 + 2)]⊥,

it follows that I ′′
0 |C4,α(S2)⊥ is invertible on its image and one can apply the Lyapunov-Schmidt reduction.

Thanks to this reduction, the critical points of Iε in a neighborhood of Z are exactly the stationary points
of a function (called reduced functional) Φε : Z → R of finitely many variables (we remark that in a
neighborhood of Z the condition is necessary and sufficient for the existence of critical points of Iε).

In order to study the function Φε, we will compute explicit formulas and estimates of the conformal
Willmore functional. More precisely for small radius ρ we will give an expansion of the functional on
small perturbed geodesic spheres, for large radius we will estimate the functional on perturbed standard
spheres and we will link the geodesic and standard spheres in a smooth way using a cut off function (for
details see Subsection 2.3.1).

The Chapter is organized as follows: in Section 2.2 we will start in the most general setting, the
conformal Willmore functional for small perturbed geodesic spheres in ambient manifold (M, g). Even
in this case the reduction method can be performed, using the small radius ρ as perturbation parameter
(see Lemma 2.2.10).
Employing the geometric expansions of Subsection 2.2.1 and the expression of the constrained w given in
Subsection 2.2.3, in Subsection 2.2.4 we will compute the expansion of the reduced functional on small
perturbed geodesic spheres of (M, g). Explicitly, in Proposition 2.2.11, we will get

Φ(p, ρ) =
π

5
‖Sp‖2ρ4 + Op(ρ

5) (1.8)

where Φ(., .) is the reduced functional and, as before, Sp is the traceless Ricci tensor evaluated at p.
Using this formula we will show that if ‖Sp̄‖ /= 0 then Φ(p̄, .) is strictly increasing for small radius. The
non existence result will follow from the necessary condition.

Section 2.3 will be devoted to the conformal Willmore functional in ambient manifold (R3, gε). In
Subsection 2.3.1 we will treat the applicability of the abstract method and in the last Subsection 2.3.3
we will bound the reduced functional Φε for large radius ρ using the computations of Subsection 2.3.2.
We remark that the expansion of Φε is degenerate in ε (i.e. the first term in the expansion is null and
Φε = O(ε2)), clearly this feature complicates the problem. Using the estimates on the reduced functional
Φε for large radius and the expansions for small radius (since for small radius we take geodesic spheres
it will be enough to specialize (1.8) in the setting (R3, gε)) we will force Φε to have a global maximum,
sufficient condition to conclude with the existence results.

1.0.2 Introduction and results about the Willmore Functional 1
4

∫
|H|2 in a

semiperturbative setting: Chapter 3

Let (R3, δµν + hµν) be the Riemannian manifold associated to R3 with the perturbed metric δµν + hµν

where hµν is a C∞
0 (R3) compactly supported bilinear form with small C1 norm. The framework is semi
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perturbative in the following sense: while previously the perturbation εhµν was infinitesimal, now the
perturbation is small in C1 norm but finite.
In this setting let us define the classical Willmore functional Wh. Let Σ ⊂ R3 be an embedded surface,
then we define

Wh(Σ) :=
1

4

∫

Σ

|Hh|2dµh =
1

4

∫

Σ

|H|2dµh

where H = Hh is the mean curvature of the surface Σ as submanifold of (R3, δµν + hµν) and dµh the
associated area form. The main result of Chapter 3 is the following theorem.

Theorem 1.0.6. Let (R3, δµν + hµν) be R3 with the perturbed metric δµν + hµν where hµν is a C∞
0 (R3)

compactly supported bilinear form with small C1 norm. Assume there exists a point p̄ ∈ R3 where the
scalar curvature is strictly positive: R(p̄) > 0.

Then there exists an embedded 2-sphere Σ ⊂ R3 which minimizes the Willmore functional Wh among
embedded spheres:

Wh(Σ) := inf{Wh(Σ̃) : Σ̃ is an embedded 2-sphere }.

The technique we adopt is the direct method in the calculus of variations. We consider a minimizing
sequence and associate to each surface a Radon measure, then for having compactness we have to prove
that the sequence does not shrink to a point, that there exist upper bound on the diameters and the
areas of the surfaces in the minimizing sequence, and that the sequence does not escape to infinity. With
this in mind we first link the euclidean and the perturbed quantities proving a monotonicity formula in
a semiperturbative setting, then using these estimates we prove the desired non degeneracy of the mini-
mizing sequence via blow up and blow down procedures which use the scale invariance of the functional
and the assumption on the scalar curvature. Once we have the existence of a candidate weak minimizer
then we prove C∞ regularity following closely the theory developed by Simon in [SiL].

1.0.3 Introduction and results about the Willmore type functionals 1
2

∫
|A|2,

∫ ( |A|2
2

+ 1
)

,
∫ ( |H|2

4
+ 1
)

in a global setting: Chapters 4 and 5

The functionals 1
2

∫
|A|2 and

∫ ( |H|2
4 + 1

)
in COMPACT ambient manifold

Let f : Σ ↪→ R3 be an immersion of a compact 2-dimensional surface Σ in R3. An important problem
in geometric analysis is to find immersions which minimize the L2 norm of the second fundamental form
E(f) = 1

2

∫
|A|2. Using the Gauss Bonnet Theorem, one obtains

E(f) :=
1

2

∫
|A|2 =

1

2

∫
|H|2 − 2πχ(Σ) = 2W (f) − 2πχ(Σ), (1.9)

where χ(Σ) is the Euler characteristic of Σ and W (f) = 1
4

∫
|H|2 is the Willmore energy of f . Hence,

once the topological type of Σ is fixed, it is equivalent to minimize the Willmore functional W and the
functional E. If Σ is a 2-sphere then Willmore proved (Theorem 7.2.2 in [Will]) that the minimizing
immersion is a round sphere, and this is actually a strict global minimum on all surfaces. If Σ is a torus
then Simon, using the direct method of the calculus of variations and regularity theory for fourth order
PDEs, proved in [SiL] that there exists a smooth embedding f of a torus in R3 minimizing the Willmore
functional W among immersed tori (the Willmore conjecture asserts that the minimizing torus is actually
the Clifford torus). The minimization problems for higher genuses were solved by Bauer and Kuwert in
[BK]. The variational problems related to the Willmore functional (which by (1.9) are equivalent to the
variational problems related to E) have become of interest for the community (see for example [KS], [LY],
[Riv] and [Schy]).

Although there is a quite extensive literature about the Willmore functional in euclidean space, the
analogous problems for immersions in a Riemannian manifold are almost unexplored. There are some
perturbative results (see [LM], [LMS], [Mon1], [Mon2]) but the global problem has not been faced yet. In
this thesis we give the first existence and full regularity results for the global problem of finding minimizers
for the functional E in a compact manifold.

Before writing precisely which are the problems we study let us introduce some notation. Let (M, g)
be a compact 3-dimensional Riemannian manifold without boundary; for any immersion of a 2-sphere
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f : S2 ↪→ M we consider the functional given by the L2 norm of the second fundamental form A of the
immersion f :

E(f) :=
1

2

∫

S2

|A|2dµg (1.10)

where dµg is the area form induced by the pull back metric f∗g on S2. We consider moreover the
Willmore-type functional

W1(f) :=

∫

S2

(
H2

4
+ 1

)
dµg = W (f) + Area(f) (1.11)

where H is the mean curvature (we adopt the convention that H is the sum of the principal curvatures),
W (f) := 1

4

∫
S2 H2dµg is the Willmore functional of f and Area(f) is the area of S2 endowed with the

pullback metric f∗g as above. In this thesis we study the minimization problems relative to the functionals
E and W1:

inf
f :S2↪→(M,g)

E(f) := inf{E(f)|f : S2 ↪→ (M, g) is a C∞ immersion in (M, g)}, (1.12)

inf
f :S2↪→(M,g)

W1(f) := inf{W1(f)|f : S2 ↪→ (M, g) is a C∞ immersion in (M, g)}, (1.13)

and we prove that the minimization problems above have a smooth solution, as follows.

Theorem 1.0.7. Let (M, g) be a 3-dimensional Riemannian manifold whose sectional curvature K̄ is
bounded below by a positive constant:

there exists a Λ > 0 such that K̄ ≥ Λ > 0. (1.14)

Then the minimization problem (1.12) has a smooth solution, i.e. there exists a smooth immersion
f : S2 ↪→ M such that

E(f) = inf{E(h)|h : S2 ↪→ (M, g) is a C∞ immersion in (M, g)}.

Notice that under the condition (1.14) the manifold M is forced to be compact. Observe moreover
that the theorem is not trivial in the sense that there are examples of compact 3-manifolds satisfying
the condition (1.14) which do not contain totally geodesic immersions (i.e. immersion whose second
fundamental form A vanish identically, A ≡ 0 ); for instance in [ST] it is proved that the Berger Spheres
M3(k, τ) with k > 0, τ /= 0 do not contain totally geodesic surfaces (note that for k > 3τ2 the space
M3(k, τ) has strictly positive sectional curvature, for the computation see [Dan]).

Theorem 1.0.8. Let (M, g) be a compact 3-dimensional Riemannian manifold which does not contain
non null 2-varifolds with null second fundamental form (for the definitions see Appendix 6.6 or for more
details [MonVar]) and such that the scalar curvature R is strictly positive in at least one point p̄: R(p̄) > 0.

Then the minimization problem (1.12) has a smooth solution, i.e. there exists a smooth immersion
f : S2 ↪→ M such that

E(f) = inf{E(h)|h : S2 ↪→ (M, g) is a C∞ immersion in (M, g)}.

Notice that the condition on the non existence of non null 2-varifolds with null second fundamental
form should be generic and of course implies that there exists no totally geodesic surface in (M, g).

Theorem 1.0.9. Let (M, g) be a compact 3-dimensional Riemannian manifold whose curvature satisfies
the following conditions:

i) there exists a point p̄ ∈ M where the scalar curvature is strictly greater than 6: R(p̄) > 6,
ii) the sectional curvature K̄ is bounded above by 2: K̄ ≤ 2.
Then the minimization problem (1.13) has a smooth solution, i.e. there exists a smooth immersion

f : S2 ↪→ M such that

W1(f) = inf{W1(h)|h : S2 ↪→ (M, g) is a C∞ immersion in (M, g)}.
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Notice that the conditions i) and ii) of Theorem 1.0.9 are compatible since 6 is the scalar curvature
of the standard sphere S3 ⊂ R4 of radius 1 (whose sectional curvature is identically equal to 1) while 2
is the sectional curvature of the sphere 1√

2
S3 ⊂ R4 of radius 1√

2
, so for instance (M, g) := 1√

2
S3 ⊂ R4

satisfies both i) and ii) above.
The assumption on the scalar curvature in Theorem 1.0.9 is quite natural if one thinks at surfaces

which are critical points for W1 as generalized minimal surfaces, for example in [MN] Marquez and Neves
prove existence and rigidity results for min-max minimal spheres assuming that the scalar curvature of
the ambient manifold is greater or equal to 6 (plus other assumptions).

Remark 1.0.10. In the proceeding [SiProc], Simon claimed that the minimizers of 1
4

∫
|H|2 in a Rie-

mannian manifold are branched C1,α immersions but a complete proof never appeared. This chapter is
the first attempt to fill in this gap in the comprehension of minimizers of integral curvature functionals
in Riemannian manifolds.

Remark 1.0.11. Let (M, g) be as in the assumptions of Theorem 1.0.7 or Theorem 1.0.8. The two
existence results imply that if (M, g) does not contain an immersed totally geodesic sphere then there is
the following gap:

there exists ε > 0 such that for all smooth immersions h : S2 ↪→ M we have E(h) ≥ ε. (1.15)

Notice moreover that if (M, g) is a simply connected 3-dimensional manifold with strictly positive sectional
curvature in the sense of (1.14) then Theorem 0.5 in [FMR] implies that any totally geodesic immersed
surface is actually embedded. Hence the gap (1.15) is still true under the a priori weaker assumption that
(M, g) does not contain embedded totally geodesic spheres.

Remark 1.0.12. In this chapter we studied the minimization problem in compact manifolds without
boundary. If one studied the minimization problem in non compact manifold (respectively in compact
manifold with boundary) and manages to show that a minimizing sequence is contained in a relatively
compact open subset (respectively in an open subset with strictly positive distance from the boundary) then
the existence and regularity theory developed in this chapter can be analogously applied.

Now let us briefly sketch the technique of the proof and the structure of our argument.
As done in [SiL] we use the direct method of the calculus of variations: we take a minimizing sequence
of immersions, associate to them weak objects (Radon measures and varifolds) for which one has a
good compactness theory, prove a priori estimates which ensure compactness and non degeneracy of the
minimizing sequence, by lower semicontinuity of the functional get the existence of a candidate minimizer
and then prove the regularity.

We remark that in the euclidean case, from the conformal invariance of the functional, by rescaling it
is trivial to have an area bound on a minimizing sequence and it is not difficult to prove that the sequence
does not shrink to a point; in a Riemannian manifold the situation is different and we prove all the a
priori estimates in Section 4.1.1; in this part the curvature of the ambient manifold plays a central role.

Once the needed estimates are proved, we associate to each smooth immersion a weak object (a Radon
measure and a varifold) and in Section 4.1.2, using geometric measure theory, we prove compactness in
the enlarged space and lower semicontinuity of the functionals, and therefore the existence of a candidate
minimizer weak object. In the rest of the chapter we prove the regularity of the candidate minimizer.

We took inspiration from the work of Simon [SiL] where the regularity of the minimizers of W in
euclidean setting is performed, but there are some serious modifications to be done for immersions in
a Riemannian manifold. First of all, since in Euclidean setting one has an 8π bound on the Willmore
functional which turns out to be very useful, using an inequality of Li and Yau [LY] and a monotonicity
formula Simon manages to work with embedded surfaces; in Riemannian manifold instead we work with
immersions, hence there could be multiplicity and the technique is a bit more involved. Nevertheless
in Section 5.2, working locally in normal coordinates, we manage to enter into the assumptions of the
Graphical Decomposition Lemma of Simon and prove that near all points (except possibly finitely many
”bad points” where the curvature concentrates) of the candidate minimizer, the minimizing sequence can
be written locally as union of graphs and small ”pimples” with good estimates.

In Section 5.3 we prove that the candidate minimizer is locally given by graphs of C1,α ∩ W 2,2

functions. For getting this partial regularity we first prove a local power decay on the L2 norms of the
second fundamental forms of the minimizing sequence (see Lemma 5.3.1) away from the bad points; then,
still working locally away from the bad points, replacing the pimples by sort of biharmonic discs, by
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Ascoli-Arzelá theorem we get existence of Lipschitz limit functions; at this point, using a generalized
Poincaré inequality, the power decay of the second fundamental forms and Radon Nicodym Theorem,
we show in Lemma 5.3.2 that the candidate minimizer is associated to the limit Lipschitz graphs; finally
using that this candidate minimizer has weak mean curvature in L2, together with the aforementioned
power decay, a lemma of Morrey implies the C1,α ∩ W 2,2 regularity away from the bad points. Using a
topological argument involving degree theory and Gauss Bonnet theorem, in Subsection 5.3.2 we prove
that actually there are no bad points and therefore the candidate minimizer is C1,α ∩ W 2,2 everywhere.
This step is quite different (and simpler) from [SiL], indeed since we work with immersed spheres we
manage to exclude bad points while Simon works with surfaces of higher genus and he has to handle the
bad points without excluding them.

To complete the regularity we need to show that the candidate minimizer satisfies the Euler-Lagrange
equation, and for this step we need to prove that it can be parametrized on S2. At this point (see
Subsection 5.4.1) we use the notion of generalized (r,λ)-immersions developed by Breuning in his Ph. D.
Thesis [BreuTh] taking inspiration by previous work of Langer [Lan]. Once the Euler Lagrange equation
is satisfied the C∞ regularity follows (see Subsection 5.4.2)

For the reader’s convenience we end Chapter 5 with some appendices about maybe non standard basic
material used throughout the arguments.

The functionals
∫ ( |A|2

2 + 1
)

and
∫ ( |H|2

4 + 1
)

in NONCOMPACT asymptotically euclidean

ambient manifold

Once the existence in compact manifolds is settled we move to noncompact ones.
Let (M, g) be a 3-dimensional non compact asymptotically euclidean Riemannian manifold without

boundary and with bounded geometry. By asymptotically euclidean we mean that there exist compact
subsets K1 ⊂⊂ M and K2 ⊂⊂ R3 such that

(M\K1) is isometric to (R3\K2, eucl +o1(1)) (1.16)

where (R3, eucl +o1(1)) denotes the “Riemannian manifold” R3 endowed with the euclidean metric δµν +
o1(1)µν and o1(1) denotes a symmetric bilinear form which goes to 0 with its first derivatives at infinity:

lim
|x|→∞

(|o1(1)(x)| + |∇o1(1)(x)|) = 0.

We also assume that the Riemannian manifold (M, g) has bounded geometry: the sectional curvature is
bounded and the injectivity radius is uniformly bounded below by a strictly positive constant, i.e. there
exists Λ ∈ R such that |K̄| ≤ Λ2 and 1

Λ2 ≤ Inj(M).
For any immersion of a 2-sphere f : S2 ↪→ M we consider the following Willmore-type functionals:

W1(f) :=

∫

S2

(
H2

4
+ 1

)
dµg (1.17)

E1(f) :=

∫

S2

(
A2

2
+ 1

)
dµg (1.18)

where as before A is the second fundamental form, H is the mean curvature and dµg is the area form
induced on S2 by the immersion f . We consider the minimization problems of W1 and E1 among smooth
immersions of S2

inf
f

W1(f) := inf{W1(f) : f : S2 ↪→ (M, g) is a smooth immersion in (M, g)}, (1.19)

inf
f

E1(f) := inf{E1(f) : f : S2 ↪→ (M, g) is a smooth immersion in (M, g)}, (1.20)

and prove the following theorems.

Theorem 1.0.13. Let (M, g) be a 3-dimensional non compact Riemannian manifold with bounded ge-
ometry such that:

i) (M, g) is asymptotically euclidean in the sense of Definition (1.16),
ii) there exists a point p̄ where the scalar curvature is strictly greater than 6, R(p̄) > 6,
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iii) the sectional curvature K̄ of (M, g) is bounded above by 2: K̄ ≤ 2.
Then the minimization problem (1.19) has a smooth solution, i.e. there exists a smooth immersion
f : S2 ↪→ M such that

W1(f) = inf{W1(h)|h : S2 ↪→ (M, g) is a C∞ immersion in (M, g)}.

Theorem 1.0.14. Let (M, g) be a 3-dimensional non compact Riemannian manifold with bounded ge-
ometry such that:

i) (M, g) is asymptotically euclidean in the sense of Definition (1.16),
ii) there exists a point p̄ where the scalar curvature is strictly greater than 6, R(p̄) > 6.

Then the minimization problem (1.20) has a smooth solution, i.e. there exists a smooth immersion
f : S2 ↪→ M such that

E1(f) = inf{E1(h)|h : S2 ↪→ (M, g) is a C∞ immersion in (M, g)}.

The technique of the proof is analogous to the one described in the introduction of the global problems
in compact ambient manifolds. Here there is the major difficulty that the minimizing sequence can
become larger and larger or it could escape to infinity. Using the bounded geometry condition, the scalar
curvature assumption, and the asymptotic flatness we prove the geometric a priori estimates that give
compactness of the minimizing sequence and hence the existence of a weak candidate minimizer. The
further assumption on the sectional curvature in the case of W1 is useful for having a small bound on∫

|A|2 for the minimizing sequence and this is crucial in the regularity theory in order to exclude bad
points (such a bound is automatic for E1). Once we have that the minimizing sequence is contained in
a compact subset of (M, g) and we show the existence of a weak candidate minimizer then we enter into
the framework of the regularity theory discussed in Chapter 5 and we conclude with the existence of a
smooth minimizer.

1.0.4 Introduction and results about the supercritical functionals
∫

|H|p and∫
|A|p in Riemannian manifolds, arbitrary dimension and codimension:

Chapter 6

Given an ambient Riemannian manifold (N, g) of dimension n ≥ 3 (with or without boundary), a classical
problem in differential geometry is to find smooth immersed m-dimensional submanifolds, 2 ≤ m ≤ n−1,
with null mean curvature vector, H = 0, or with null second fundamental form, A = 0, namely the
minimal (respectively, the totally geodesic) submanifolds of N (for more details about the existence see
Example 6.5.1, Example 6.5.2, Theorem 6.5.4, Theorem 6.5.5, Remark 6.5.6 and Remark 6.5.7).

In more generality, it is interesting to study the minimization problems associated to integral func-
tionals depending on the curvatures of the type

Ep
H,m(M) :=

∫

M

|H|p or Ep
A,m(M) :=

∫

M

|A|p, p ≥ 1 (1.21)

where M is a smooth immersed m-dimensional submanifold with mean curvature H and second funda-
mental form A; of course the integrals are computed with respect to the m-dimensional measure of N
induced on M . A global minimizer of Ep

H,m (respectively of Ep
A,m), if it exists, can be seen as a generalized

minimal (respectively totally geodesic) m-dimensional submanifold in a natural integral sense.
An important example of such functionals is given by the Willmore functional for surfaces E2

H,2

introduced by Willmore (see [Will]) and studied in the euclidean space (see for instance the works of
Simon [SiL], Kuwert and Shätzle [KS], Rivière [Riv]) or in Riemannian manifolds (see, for example, [LM],
[Mon1] and [Mon2]).

The general integral functionals (1.21) depending on the curvatures of immersed submanifolds have
been studied, among others, by Allard [Al], Anzellotti-Serapioni-Tamanini [AST], Delladio [Del], Hutchin-
son [Hu1], [Hu2], [Hu3], Mantegazza [MantCVB] and Moser [Mos].

In order to get the existence of a minimizer, the technique adopted in the present chapter (as well
as in most of the aforementioned papers) is the so called direct method in the calculus of variations. As
usual, it is necessary to enlarge the space where the functional is defined and to work out a compactness-
lowersemicontinuity theory in the enlarged domain.
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In the present chapter, the enlarged domain is made of generalized m-dimensional submanifolds of
the fixed ambient Riemannian manifold (N, g): the integral rectifiable m-varifolds introduced by Alm-
gren in [Alm] and by Allard in [Al]. Using integration by parts formulas, Allard [Al] and Hutchinson
[Hu1]-Mantegazza [MantCVB] defined a weak notion of mean curvature and of second fundamental form
respectively (for more details about this part see Appendix 6.6). Moreover these objects have good com-
pactness and lower semicontinuity properties with respect to the integral functionals above.

The goal of this chapter is to prove existence and partial regularity of an m-dimensional minimizer
(in the enlarged class of the rectifiable integral m-varifolds with weak mean curvature or with generalized
second fundamental form in the sense explained above) of functionals of the type (1.21). Actually we will
consider more general functionals modeled on this example, see Definition 6.6.2 for the expression of the
considered integrand F .

More precisely, given a compact subset N ⊂⊂ N̄ of an n-dimensional Riemannian manifold (N̄ , g)
(which, by Nash Embedding Theorem, can be assumed isometrically embedded in some RS) we will
denote

HVm(N) := {V integral rectifiable m-varifold of N with weak mean curvature HN relative to N̄}
CVm(N) := {V integral rectifiable m-varifold of N with generalized second fundamental form A};

for more details see Appendix 6.6; in any case, as written above, the non expert reader can think about
the elements of HVm(N) (respectively of CVm(N)) as generalized m-dimensional submanifolds with mean
curvature HN (respectively with second fundamental form A). Precisely, we consider the following two
minimization problems

βm
N,F := inf

{∫

Gm(N)

F (x, P, HN )dV : V ∈ HVm(N), V /= 0 with weak mean curvature HN relative to N̄

}

(1.22)
and

αm
N,F := inf

{∫

Gm(N)

F (x, P, A)dV : V ∈ CVm(N), V /= 0 with generalized second fundamental form A

}

(1.23)
where F is as in Definition 6.6.2 and satisfies (6.33) ( respectively (6.27)). As the reader may see, the
expressions

∫
Gm(N)

F (x, P, HN )dV (respectively
∫

Gm(N)
F (x, P, A)dV ) are the natural generalizations of

the functionals Ep
H,m (respectively Ep

A,m) in (1.21) with p > m in the context of varifolds.
Before stating the two main theorems, let us recall that an integral rectifiable m-varifold V on N is
associated with a “generalized m-dimensional subset” spt µV of N together with an integer valued density
function θ(x) ≥ 0 which carries the “multiplicity” of each point (for the precise definitions, as usual, see
Appendix 6.6).

At this point we can state the two main theorems of this chapter. Let us start with the mean curvature.

Theorem 1.0.15. Let N ⊂⊂ N̄ be a compact subset with non empty interior, int(N) /= ∅, of the
n-dimensional Riemannian manifold (N̄ , g) isometrically embedded in some RS (by Nash Embedding
Theorem), fix m ≤ n − 1 and consider a function F : Gm(N) × RS → R+ satisfying (6.6.2) and (6.33),
namely

F (x, P, H) ≥ C|H|p

for some C > 0 and p > m.
Then, at least one of the following two statement is true:
a) the space (N, g) contains a non zero m-varifold with null weak mean curvature HN relative to N̄

(in other words, N contains a stationary m-varifold; see Remark 6.6.13 for the details),
b) the minimization problem (6.33) corresponding to F has a solution i.e. there exists a non null

integral m-varifold V ∈ HVm(N) with weak mean curvature HN relative to N̄ such that

∫

Gm(N)

F (x, P, HN )dV = βm
N,F = inf

{∫

Gm(N)

F (x, P, H̃N )dṼ : Ṽ ∈ HVm(N), Ṽ /= 0

}
.
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Moreover, in case b) is true, we have βm
N,F > 0 and the minimizer V has the following properties:

b1) the support spt µV of the spatial measure µV associated to V is connected,
b2) the diameter of sptµV as a subset of the Riemannian manifold (N̄ , g) is strictly positive

diamN̄ (spt µV ) > 0.

Remark 1.0.16. It could be interesting to study the regularity of the minimizer V . Notice that if
x ∈ spt µV , under the hypothesis that the density in x satisfies θ(x) = 1 plus other technical assumptions
(see Theorem 8.19 in [Al]), Allard proved that spt µV is locally around x a graph of a C1,1− m

p function
since H ∈ Lp(V ), p > m given by (6.33). Moreover, under similar assumptions, Duggan proved local W 2,p

regularity in [Dug]. In the multiple density case the regularity problem is more difficult. For instance,
in [Brak], is given an example of a varifold Ṽ with bounded weak mean curvature whose spatial support
contains a set C of strictly positive measure such that if x ∈ C then spt µṼ does not correspond to the
graph of even a multiple-valued function in any neighborhood of x.

Now let us state the second main Theorem about the second fundamental form A.

Theorem 1.0.17. Let N ⊂⊂ N̄ be a compact subset with non empty interior, int(N) /= ∅, of the
n-dimensional Riemannian manifold (N̄ , g) isometrically embedded in some RS (by Nash Embedding

Theorem), fix m ≤ n − 1 and consider a function F : Gm(N) × RS3 → R+ satisfying (6.6.2) and (6.27),
namely

F (x, P, A) ≥ C|A|p

for some C > 0 and p > m.
Then, at least one of the following two statements is true:
a) the space (N, g) contains a non zero m-varifold with null generalized second fundamental form,
b) the minimization problem (6.27) corresponding to F has a solution i.e. there exists a non null

curvature m-varifold V ∈ CVm(N) with generalized second fundamental form A such that

∫

Gm(N)

F (x, P, A)dV = αm
N,F = inf

{∫

Gm(N)

F (x, P, Ã)dṼ : Ṽ ∈ CVm(N), Ṽ /= 0

}
.

Moreover, in case b) is true, we have αm
N,F > 0 and the minimizer V has the following properties:

b1)the support spt µV of the spatial measure µV associated to V is connected,
b2) the diameter of sptµV as a subset of the Riemannian manifold (N̄ , g) is strictly positive

diamN̄ (spt µV ) > 0,

b3) For every x ∈ spt µV , V has a unique tangent cone at x and this tangent cone is a finite union of
m-dimensional subspaces Pi with integer multiplicities mi; moreover, in some neighborhood of x we can
express V has a finite union of graphs of C1,1− m

p , mi-valued functions defined on the respective affine
spaces x + Pi (p given in (6.27)).

Remark 1.0.18. For the precise definitions and results concerning b3), the interested reader can look at
the original paper [Hu2] of Hutchinson. Notice that the boundary of N does not create problems since, by
our definitions, the minimizer V is a fortiori an integral m-varifold with generalized second fundamental
form A ∈ Lp(V ), p > m, in the n-dimensional Riemannian manifold (N̄ , g) which has no boundary.
Moreover, by Nash Embedding Theorem, we can assume N̄ ⊂ RS; therefore V can be seen as an integral
m-varifold with generalized second fundamental form A ∈ Lp(V ), p > m, in RS and the regularity theorem
of Hutchinson can be applied.

It could be interesting to prove higher regularity of the minimizer V . About this point, notice that it is
not trivially true that V is locally a union of graphs of W 2,p (Sobolev) functions. Indeed in [AGP] there
is an example of a curvature m-varifold Ṽ ∈ CVm(RS), S ≥ 3, 2 ≤ m ≤ S − 1, with second fundamental
form in Lp, p > m, which is not a union of graphs of W 2,p functions.

In the spirit of proving higher regularity of the minimizer of such functionals we mention the preprint
of Moser [Mos] where the author proves smoothness of the minimizer of

∫
|A|2 in the particular case of

codimension 1 Lipschitz graphs in RS.
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In both theorems, a delicate point is whether or not a) is satisfied (fact which trivializes the result);
we will study this problem in Section 6.5: we will recall two general classes of examples (given by White
in [Whi]) of Riemannian manifolds with boundary where a) is not satisfied in codimension 1, we will
give two new examples for higher codimensions (namely Theorem 6.5.4 and Theorem 6.5.5) and we will
propose a related open problem in Remark 6.5.7. Here, let us just remark that every compact subset
N ⊂⊂ RS for s > 1 does not satisfy a) (see Theorem 6.5.5).

The idea for proving the results is to consider a minimizing sequence {Vk}k∈N of varifolds, show that
it is compact (i.e. there exists a varifold V and a subsequence {Vk′} converging to V in an appropriate
sense) and it is non degenerating: if the masses decrease to 0 the limit would be the null varifold so
not a minimizer, and if the diameters decrease to 0 the limit would be a point which has no geometric
relevance.

In order to perform the analysis of the minimizing sequences, in Section 6.1 we prove monotonicity
formulas for integral rectifiable m-varifolds in RS with weak mean curvature in Lp, p > m. These
formulas are similar in spirit to the ones obtained by Simon in [SiL] for smooth surfaces in RS involving
the Willmore functional. These estimates are a fundamental tool for proving the non degeneracy of the
minimizing sequences and we think they might have other applications.

To show the compactness of the minimizing sequences it is crucial to have a uniform upper bound
on the masses (for the non expert reader: on the volumes of the generalized submanifolds). Inspired by
the paper of White [Whi], in Section 6.2 we prove some isoperimetric inequalities involving our integral
functionals which give the mass bound on the minimizing sequences in case a) in the main theorems is
not satisfied. The compactness follows and is proved in the same Section. Also in this case, we think
that the results may have other interesting applications.

The proofs of the two main theorems is contained in Section 6.3 and 6.4. Finally, as written above,
Section 6.5 is devoted to examples and remarks: we will notice that a large class of manifold with
boundary can be seen as compact subset of manifold without boundary, we will give examples where the
assumption for the isoperimetric inequalities are satisfied and we will end with a related open problem.

The new features of the present chapter relies, besides the main theorems, in the new tools introduced
in Section 6.1 and Section 6.2, and in the new examples presented in Section 6.5.
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Chapter 2

The conformal Willmore functional
in a perturbative setting: existence
of saddle type critical points

In this Chapter we study the conformal Willmore functional (which is conformal invariant in general
Riemannian manifold (M, g)) with a perturbative method: the Lyapunov-Schmidt reduction. We show
existence of critical points in ambient manifolds (R3, gε) -where gε is a metric close and asymptotic to the
euclidean one. With the same technique we prove a non existence result in general Riemannian manifolds
(M, g) of dimension three.

Notations and conventions

1) R+ denotes the set of strictly positive real numbers.

2) As mentioned before, the perturbed spheres will play a central role throughout this Chapter.
First, let us define the perturbed standard sphere Sρ

p(w) ⊂ R3 we will use to prove the existence
results. We denote by S2 the standard unit sphere in the euclidean 3-dimensional space , Θ ∈ S2 is the
radial versor with components Θµ parametrized by the polar coordinates 0 < θ1 < π and 0 < θ2 < 2π
chosen in order to satisfy 




Θ1 = sin θ1 cos θ2

Θ2 = sin θ1 sin θ2

Θ3 = cos θ1.

We call Θi the coordinate vector fields on S2

Θ1 :=
∂Θ

∂θ1
, Θ2 :=

∂Θ

∂θ2

and θ̄i or Θ̄i the corresponding normalized ones

θ̄1 = Θ̄1 :=
Θ1

‖Θ1‖
, θ̄2 = Θ̄2 :=

Θ2

‖Θ2‖
.

The standard sphere in R3 with center p and radius ρ > 0 is denoted by Sρ
p ; we parametrize it as

(θ1, θ2) +→ p + ρΘ(θ1, θ2) and call θi the coordinate vector fields

θ1 := ρ
∂Θ

∂θ1
, θ2 := ρ

∂Θ

∂θ2
.

The perturbed spheres will be normal graphs on standard spheres by a function w which belongs to a
suitable function space. Let us introduce the function space which has been chosen by technical reasons
(to apply Schauder estimates in Lemma 2.3.3).
Denote C4,α(S2) (or simply C4,α) the set of the C4 functions on S2 whose fourth derivatives, with respect
to the tangent vector fields, are α-Hölder (0 < α < 1). The Laplace-Beltrami operator on S2 is denoted
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by )S2 or, if there is no confusion, as ). The fourth order elliptic operator )()+2) induces a splitting
of L2(S2):

L2(S2) = Ker[)() + 2)] ⊕ Ker[)() + 2)]⊥

(the splitting makes sense because the kernel is finite dimensional, so it is closed).
If we consider C4,α(S2) as a subspace of L2(S2), we can define

C4,α(S2)⊥ := C4,α(S2) ∩ Ker[)() + 2)]⊥.

Of course C4,α(S2)
⊥

is a Banach space with respect to the C4,α norm; it is the space from which we will

get the perturbations w. If there is no confusion C4,α(S2)⊥ will be called simply C4,α⊥
.

Now we can define the perturbed spheres we will use to prove existence of critical points: fix ρ > 0 and

a small C4,α⊥
function w; the perturbed sphere Sρ

p(w) is the surface parametrized by

Θ ∈ S2 +→ p + ρ
(
1 − w(Θ)

)
Θ.

Now let us define the perturbed geodesic spheres Sp,ρ(w) in the three dimensional Riemannian man-
ifold (M, g); we will use them to prove the non-existence result.
Once a point p ∈ M is fixed we can consider the exponential map Expp with center p. For ρ > 0 small
enough, the sphere ρS2 ⊂ TpM is contained in the radius of injectivity of the exponential. We call Sp,ρ

the geodesic sphere of center p and radius ρ. This hypersurface can be parametrized by

Θ ∈ S2 ⊂ TpM +→ Expp[ρΘ].

Analogously to the previous case, fix p ∈ M , ρ > 0 and a small C4,α(S2) function w; the perturbed
geodesic sphere Sp,ρ(w) is the surface parametrized by

Θ ∈ S2 +→ Expp[ρ
(
1 − w(Θ)

)
Θ].

The tangent vector fields on Sp,ρ(w) induced by the canonical polar coordinates on S2 are denoted by
Zi.

3) Let (M, g) be a 3-dimensional Riemannian manifold.
First we make the following convention: the Greek index letters, such as µ, ν, ι, . . . , range from 1 to

3 while the Latin index letters, such as i, j, k, . . . , will run from 1 to 2.
About the Riemann curvature tensor we adopt the convention of [Will]: denoting X(M) the set of the

vector fields on M , ∀X, Y, Z ∈ X(M)

R(X, Y )Z := ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z

R(X, Y, Z, W ) := g(R(Z,W )Y, X);

chosen in p an orthonormal frame Eµ, the Ricci curvature tensor is

Ricp(v1, v2) :=
3∑

µ=1

R(Eµ, v1, Eµ, v2) =
3∑

1

g(Rp(Eµ, v2)v1, Eµ)

= −
3∑

µ=1

g(Rp(v2, Eµ)v1, Eµ) ∀v1, v2 ∈ TpM. (2.1)

In order to keep formulas not too long, we introduce the following notation:

R(0i0j) := g(Rp(Θ, Θi)Θ, Θj)

∇0R(0i0j) := g(∇ΘRp(Θ, Θi)Θ, Θj)

∇00R(0i0j) := g(∇Θ∇ΘRp(Θ, Θi)Θ, Θj)

R(0i0µ) := g(Rp(Θ, Θi)Θ, Eµ).

In the following ambiguous cases we will mean:

R(0101) := g(Rp(Θ, Θ1)Θ, Θ1)

R(02̄02̄) := g(Rp(Θ, Θ̄2)Θ, Θ̄2)

R(0102̄) := g(Rp(Θ, Θ1)Θ, Θ̄2).
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Recall the definitions of the Hessian and the Laplace-Beltrami operator on a function w:

Hess(w)µν := ∇µ∇νw

) := gµν∇µ∇νw.

4) Let (M̊, g̊) ↪→ (M, g) be an isometrically immersed surface. Recall the notion of second fundamental

form h̊: fix a point p and an orthonormal base Z1, Z2 of TpM̊ ; the (inward) normal unit vector is denoted

as N̊ . By the Weingarten equation h̊ij = −g(∇Zi
N̊ , Zj).

Call k1 and k2 the principal curvatures (the eigenvalues of the second fundamental form with respect to

the first fundamental form of M̊ , i.e. the roots of det(̊hij − kg̊ij) = 0). We adopt the convention that the
mean curvature is defined as H := k1 + k2.
The product of the principal curvatures will be denoted with D:

D := k1k2 =
det(̊h)

det(̊g)
. (2.2)

5) Following the notation of [PX], given a ∈ N, any expression of the form L
(a)
p (w) denotes a linear

combination of the function w together with its derivatives with respect to the tangent vector fields Θi

up to order a. The coefficients of L
(a)
p might depend on ρ and p but, for all k ∈ N, there exists a constant

C > 0 independent of ρ ∈ (0, 1) and p ∈ M such that

‖L(a)
p (w)‖Ck,α(S2) ≤ C‖w‖Ck+a,α(S2).

Similarly, given b ∈ N, any expression of the form Q
(b)(a)
p (w) denotes a nonlinear operator in the

function w together with its derivatives with respect to the tangent vector fields Θi up to order a such

that, for all p ∈ M , Q
(b)(a)
p (0) = 0. The coefficients of the Taylor expansion of Q

(b)(a)
p (w) in powers of

w and its partial derivatives might depend on ρ and p but, for all k ∈ N, there exists a constant C > 0
independent of ρ ∈ (0, 1) and p ∈ M such that

‖Q(b)(a)
p (w2)−Q(b)(a)

p (w1)‖Ck,α(S2) ≤ c
(
‖w2‖Ck+a,α(S2)+‖w1‖Ck+a,α(S2)

)b−1×‖w2−w1‖Ck+a,α(S2), (2.3)

provided ‖wl‖Ca(S2) ≤ 1, l = 1, 2. If the numbers a or b are not specified, we intend that their value is 2.

We also agree that any term denoted by Op(ρ
d) is a smooth function on S2 that might depend on p

but which is bounded by a constant (independent of p) times ρd in Ck topology, for all k ∈ N .

6) Large positive constants are always denoted by C, and the value of C is allowed to vary from formula
to formula and also within the same line. When we want to stress the dependence of the constants on
some parameter (or parameters), we add subscripts to C, as Cδ, etc.. Also constants with subscripts are
allowed to vary.

2.1 A Preliminary result: the Lyapunov-Schmidt reduction

The technique used throughout this Chapter relies on an abstract perturbation method which first ap-
peared in [AB1], [AB2] and is extensively treated with proofs and examples in [AM]. Let us briefly
summarize it. Actually we present the abstract method in a form which permits to deal with degenerate
expansions (as the ones we will have to handle).

Given an Hilbert space H, let Iε : H → R be a C2 functional of the form

Iε(u) = I0(u) + εG1(u) + ε2G2(u) + o(ε2),

where I0 ∈ C2(H, R) plays the role of the unperturbed functional and G1, G2 ∈ C2(H, R) are the
perturbations.

We first assume that there exists a finite dimensional smooth manifold Z made of critical points of
I0: I ′

0(z) = 0 for all z ∈ Z. The set Z will be called critical manifold (of I0). The critical manifold is
supposed to satisfy the following non degeneracy conditions:

(ND) for all z ∈ Z, TzZ = Ker[I ′′
0 (z)],
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(Fr) for all z ∈ Z, I ′′
0 (z) is a Fredholm operator of index zero.

Under these assumptions it is known that near Z there exists a perturbed manifold Zε such that the
critical points of Iε constrained on Zε give rise to stationary points of Iε.
More precisely, the key result is the following Theorem.

Theorem 2.1.1. Suppose I0 possesses a non degenerate (satisfying (ND) and (Fr)) critical manifold Z
of dimension d.
Given a compact subset Zc of Z, there exists ε0 > 0 such that for all |ε| < ε0 there is a smooth function

wε(z) : Zc → H

such that
(i) for ε = 0 it results wε(z) = 0, ∀z ∈ Zc;
(ii) wε(z) is orthogonal to TzZ, ∀z ∈ Zc;
(iii) the manifold

Zε = {z + wε(z) : z ∈ Zc}
is a natural constraint for I ′

ε. Namely, denoting

Φε(z) = Iε(z + wε(z)) : Zc → R

the constriction of Iε to Zε, if zε is a critical point of Φε then uε = zε + wε(zε) is a critical point of Iε.

Thanks to this fundamental tool, in order to find critical points of Iε, we can reduce ourselves to study
Φε which is a function of finitely many variables.

If we are slightly more accurate, it can be shown that the function wε(z) is of order O(ε) as ε → 0
uniformly in z varying in the compact Zc. In our application, the expansion is degenerate in the sense
that

G1(z) = 0 ∀z ∈ Z.

Using the previous facts, by a Taylor expansion it is easy to see that (we will prove it in full detail in
Lemma 2.3.7)

Φε(z) = ε2
[
G2(z) − 1

2

(
G′

1(z)|I ′′
0 (z)−1G′

1(z)
)]

+ o(ε2).

In Section 2.3 we will give sense to this formula, which will be crucial for the estimates involved in the
existence result.

2.2 The conformal Willmore functional on perturbed geodesic
spheres Sp,ρ(w) of a general Riemannian Manifold (M, g)

2.2.1 Geometric expansions

In this subsection we give accurate expansions of the geometric quantities appearing in the conformal
Willmore functional. First we recall and refine the well-known expansions of the first and second fun-
damental form and the mean curvature for the geodesic perturbed spheres Sp,ρ(w) introduced in the
previous “notations and conventions”. Recall that Θi are the coordinate vector fields on S2 (induced by
polar coordinates) and Zi are the corresponding coordinate vector fields on Sp,ρ(w). The derivatives of
w with respect to Θi are denoted by wi.

Let g̊ denote the first fundamental form on Sp,ρ(w) induced by the immersion in (M, g). The next
Lemma, whose proof can be found in [PX] (Lemma 2.1), gives an expansion of the components g̊ij :=
gp(Zi, Zj):

Lemma 2.2.1. The first fundamental form on Sp,ρ(w) has the following expansion:

(1 − w)−2ρ−2g̊ij = g(Θi, Θj) + (1 − w)−2wiwj +
1

3
R(0i0j)ρ2(1 − w)2 +

1

6
∇0R(0i0j)ρ3(1 − w)3

+
[ 1

20
∇00R(0i0j) +

2

45
R(0i0µ)R(0j0µ)

]
ρ4(1 − w)4 + Op(ρ

5) + ρ5Lp(w) + ρ5Q(2)
p (w)

where all curvature terms and scalar products are evaluated at p (since we are in normal coordinates, at
p the metric is euclidean).
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Let h̊ denote the second fundamental form on Sp,ρ(w) induced by the immersion in (M, g) and N̊ the

inward normal unit vector to Sp,ρ(w); by the Weingarten equation h̊ij = −g(∇Zi
N̊ , Zj).

Lemma 2.2.2. The second fundamental form on Sp,ρ(w) has the following expansion:

h̊ij = ρ(1 − w)g(Θi, Θj) + ρ(HessS2w)ij +
2

3
R(0i0j)ρ3(1 − w)3 +

5

12
∇0R(0i0j)ρ4(1 − w)4

+
[ 3

20
∇00Rp(0i0j) +

2

15
R(0i0µ)R(0j0µ)

]
ρ5(1 − w)5 − ρBk

ijwk + Op(ρ
6) + ρ5Lp(w) + ρ2Q(2)

p (w)

where Bk
ij are functions on S2 of the form Bk

ij = O(ρ2) + Lp(w) + Q
(2)
p (w) and, as usual, all curvature

terms and scalar products are evaluated at p.

Proof. In [PX] the authors consider ˚̃N such that the normal unit vector N̊ has the form N̊ = ˚̃N(1 −
ρ2g̊ijwiwj)

−1/2. They set
˚̃
hij = −g(∇Zi

˚̃N,Zj)

and they derive the following formula

˚̃
hij =

1

2(1 − w)
∂ρg̊ − 1

1 − w
ρdw ⊗ dw + ρHessg̊w.

Using Lemma 2.2.1 the first summand is:

1

2(1 − w)
∂ρg̊ = g(Θi, Θj)ρ(1 − w) +

ρ

1 − w
wiwj +

2

3
R(0i0j)ρ3(1 − w)3 +

5

12
∇0R(0i0j)ρ4(1 − w)4

+
3

20

[
∇00R(0i0j) +

2

15
R(0i0µ)R(0j0µ)

]
ρ5(1 − w)5 + Op(ρ

6) + ρ6Lp(w) + ρ6Q(2)
p (w)

The third summand is:

ρ(Hessg̊w)ij = ρ(wij − Γ̊k
ijwk).

With a direct computation it is easy to check that

Γ̊k
ij = Γk

ij + Bk
ij (2.4)

where Γk
ij are the Christoffel symbols of S2 in polar coordinates and Bk

ij are functions on S2 of the
form

Bk
ij = O(ρ2) + Lp(w) + Q(2)

p (w).

Hence
ρ(Hessg̊w)ij = ρ(HessS2w)ij − ρBk

ijwk.

Observing that the second summand simplifies with an adding of the first summand and that

h̊ij = −g(∇Zi
N̊ , Zj) = −g(∇Zi

˚̃N(1 − ρ2g̊ijwiwj)
−1/2, Zj) =

˚̃
hij + ρ2Q(2)

p (w)

we get the desired formula.

Recall that the mean curvature H is the trace of h̊ with respect to the metric g̊: H = h̊ij g̊
ij . Collecting

the two previous Lemmas we obtain the following

Lemma 2.2.3. The mean curvature of the hypersurface Sp,ρ(w) can be expanded as

H =
2

ρ
+

1

ρ
(2 + )S2)w +

1

ρ

[
2w(w + )S2w) − gij

S2wiwj

]
− 1

ρ
gij

S2B
k
ijwk

−1

3

[
gil

S2R(0l0k)gkj
S2(HessS2w)ij + Ricp(Θ, Θ)(1 − w)

]
ρ+

1

4
gij

S2∇0R(0i0j)ρ2(1 − w)2

+
[ 1

10
gij

S2∇00R(0i0j) +
4

45
gij

S2R(0i0µ)R(0j0µ) − 1

9
gil

S2R(0l0k)gkn
S2 R(0n0i)

]
ρ3(1 − w)3

+Op(ρ
4) + ρ2Lp(w) + Q(2)

p (w) +
1

ρ
Lp(w)Q(2)

p (w)

where Ricp is the Ricci tensor computed at p.
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Proof. First let us find an expansion of g̊ij . Given an invertible matrix A,

(A+Bρ2+Cρ3+Dρ4)−1 = A−1−A−1BA−1ρ2−A−1CA−1ρ3−A−1DA−1ρ4+A−1BA−1BA−1ρ4+O(ρ5)

so we get

g̊ij =
1

ρ2(1 − w)2

{
gij

S2 − gil
S2(1 − w)−2wlwkgkj

S2 − 1

3
gil

S2R(0l0k)gkj
S2ρ

2(1 − w)2 − 1

6
gil

S2∇0R(0l0k)gkj
S2ρ

3(1 − w)3

−gil
S2

[ 1

20
∇00R(0l0k) +

2

45
R(0l0µ)R(0k0µ)

]
gkj

S2ρ
4(1 − w)4 +

1

9
gil

S2R(0l0k)gkn
S2 R(0n0q)gqj

S2ρ
4(1 − w)4

}

+Op(ρ
3) + ρ3Lp(w) + ρ2Q(2)

p (w) +
1

ρ2
(Dw)4.

(2.5)

Where (Dw)4 is an homogeneous polynomial in the first derivatives wi of order four. Putting together

(2.5) and Lemma 2.2.2 it is easy to evaluate H = h̊ij g̊
ij just using the following observations:

•ρ̊gij(HessS2w)ij =
(1
ρ
(1 + 2w)gij

S2 − ρ

3
gil

S2R(0l0k)gkj
S2 +

1

ρ
Q(w) + O(ρ2) + ρL(w)

)
(HessS2w)ij

=
1

ρ
(1 + 2w))S2w − ρ

3
gil

S2R(0l0k)gkj
S2(HessS2w)ij + ρ2L(w) + ρQ(w) +

1

ρ
L(w)Q(w)

• with a Taylor expansion
2

ρ(1 − w)
=

2(1 + w + w2)

ρ
+

1

ρ
wQ(w),

1

ρ(1 − w)3
gij

S2wiwj =
1

ρ
gij

S2wiwj +
1

ρ
wQ(w)

• finally, recalling our notations, (2.1) and that {Θ, Θ1

‖Θ1‖ , Θ2

‖Θ2‖} form an orthonormal base of TpM

g(Θi, Θj)g
il
S2R(0l0k)gkj

S2 = δl
jg(Rp(Θ, Θl)Θ, Θk)gkj

S2 = g(Rp(Θ, Θi)Θ, Θj)g
ij
S2 = −Ricp(Θ, Θ). (2.6)

Now we compute H2:

Lemma 2.2.4. The square of the mean curvature H2 on Sp,ρ(w) can be expanded as

H2 =
4

ρ2
+

4

ρ2
(2 + )S2)w +

1

ρ2
(12w2 + 12w )S2 w + ()S2w)2 − 4gij

S2wiwj) − 4

ρ2
gij

S2B
k
ijwk

−4

3
gil

S2R(0l0k)gkj
S2(HessS2w)ij − 2

3
Ricp(Θ, Θ)(2 + )S2w) + [gij

S2∇0R(0i0j)]ρ

+
[2
5
gij

S2∇00R(0i0j) +
16

45
gij

S2R(0i0µ)R(0j0µ) − 4

9
gil

S2R(0l0k)gkn
S2 R(0n0i) +

1

9
Ricp(Θ, Θ)Ricp(Θ, Θ)

]
ρ2

+Op(ρ
3) + ρLp(w) +

1

ρ
Q(2)

p (w) +
1

ρ2
Lp(w)Q(2)

p (w).

Proof. Just compute the square of H expressed as in Lemma 2.2.3.

Lemma 2.2.5. The determinant of the first fundamental form of Sp,ρ(w) can be expanded as

det[̊g] = ‖Θ2‖2ρ4
{

(1 − w)4 + (gij
S2wiwj) − 1

3
Ricp(Θ, Θ)ρ2(1 − w)6 +

1

6
gij

S2∇0R(0i0j)ρ3(1 − w)7

+
[ 1

20
gij

S2∇00R(0i0j) +
2

45
gij

S2R(0i0µ)R(0j0µ) +
1

9
R(0101)R(02̄02̄) − R(0102̄)2

]
ρ4(1 − w)8

}

+Op(ρ
9) + ρ9Lp(w) + ρ6Q(2)

p (w) + ρ4Lp(w)Q(2)
p (w)

where recall that R(0101) = g(Rp(Θ, Θ1)Θ, Θ1), R(02̄02̄) = g(Rp(Θ, Θ̄2)Θ, Θ̄2), R(0102̄) = −g(Rp(Θ, Θ1)Θ, Θ̄2)
and Θ̄2 is Θ2 normalized: Θ̄2 := Θ2

|Θ2| .
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Proof. Just compute det[̊g] using Lemma 2.2.1, formula (2.6) and observing that gij
S2 = diag(1, 1/‖Θ2‖2)

Lemma 2.2.6. The determinant of the second fundamental form of Sp,ρ(w) has the following expansion:

det[̊h] = ρ2(1 − w)2‖Θ2‖2 + ρ2‖Θ2‖2)S2w(1 − w) + ρ2
[
(HessS2w)11(HessS2w)22 − (HessS2w)212

]

+
2

3
ρ4
[
R(0101)(HessS2w)22 + R(0202)(HessS2w)11 − 2R(0102)(HessS2w)12 − Ricp(Θ, Θ)(1 − w)4‖Θ2‖2

]

+‖Θ2‖2
[ 5

12
gij

S2∇0R(0i0j)ρ5(1 − w)5 +
3

20
gij

S2∇00R(0i0j)ρ6(1 − w)6 +
2

15
gij

S2R(0i0µ)R(0j0µ)ρ6(1 − w)6
]

+
4

9
ρ6(1 − w)6‖Θ2‖2

[
R(0101)R(02̄02̄) − R(0102̄)2

]
− ‖Θ2‖2ρ2gij

S2B
k
ijwk + Op(ρ

7) + ρ5Lp(w) + ρ3Q(2)
p (w).

Proof. Just compute the determinant of h̊ij expressed as in Lemma 2.2.2 using the same tricks of the
previous Lemmas.

Lemma 2.2.7. The product of the principal curvatures of Sp,ρ(w)

D = k1k2 =
det(̊h)

det(̊g)

has the following expansion:

D =
1

ρ2
(1 + 2w + )S2w + 3w)S2w + 3w2) − 1

ρ2
gij

S2wiwj +
1

‖Θ2‖2ρ2

[
(HessS2w)11(HessS2w)22 − (HessS2w)212

]

+
2

3‖Θ2‖2

[
R(0101)(HessS2w)22 + R(0202)(HessS2w)11 − 2R(0102)(HessS2w)12

]

+
1

3
Ricp(Θ, Θ)()S2w − 1) +

1

4
gij

S2∇0R(0i0j)ρ(1 − w) − 1

ρ2
gij

S2B
k
ijwk

+
[ 1

10
gij

S2∇00R(0i0j) +
4

45
gij

S2R(0i0µ)R(0j0µ) +
1

3
[R(0101)R(02̄02̄) − R(0102̄)2] − 1

9
Ricp(Θ, Θ)2

]
ρ2(1 − w)2

+Op(ρ
3) + ρLp(w) +

1

ρ
Q(2)

p (w) +
1

ρ2
Lp(w)Q(2)

p (w).

Proof. Recalling the expansion 1
1+x = 1 − x + x2 + O(x3) and Lemma 2.2.5 we get

1

det[̊g]
=

1

‖Θ2‖2(1 − w)4ρ4
{1 − (gij

S2wiwj) +
1

3
Ricp(Θ, Θ)ρ2(1 − w)2 − 1

6
gij

S2∇0R(0i0j)ρ3(1 − w)3

−
[ 1

20
gij

S2∇00R(0i0j) +
2

45
gij

S2R(0i0µ)R(0j0µ) +
1

9
R(0101)R(02̄02̄) − R(0102̄)2

]
ρ4(1 − w)8

+
1

9
Ricp(Θ, Θ)2ρ4(1 − w)4 + Op(ρ

5) + ρ5Lp(w) + ρ2Q(2)
p (w) + Lp(w)Q(2)

p (w)}.

Gathering together this formula and the expansion of det(̊h) of Lemma 2.2.6 we can conclude.

The quantity we have to integrate is H2

4 − D; collecting the previous Lemmas we finally get the
following

Proposition 2.2.8. The integrand of the conformal Willmore functional has the following expansion:

H2

4
− D =

1

ρ2

[1
4
()S2w)2 − 1

‖Θ2‖2
(HessS2w)11(HessS2w)22 +

1

‖Θ2‖2
(HessS2w)212

]

+
1

3‖Θ2‖2

[
2R(0102)(HessS2w)12 − R(0101)(HessS2w)22 − R(02̄02̄)(HessS2w)11

]

+
1

9
ρ2
[1
4
Ricp(Θ, Θ)2 − R(0101)R(02̄02̄) + R(0102̄)2

]
− 1

6
Ricp(Θ, Θ) )S2 w

+Op(ρ
3) + ρLp(w) +

1

ρ
Q(2)

p (w) +
1

ρ2
Lp(w)Q(2)

p (w)
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Proof. Putting together the formulas of Lemma 2.2.4 and Lemma 2.2.7, we get

H2

4
− D =

1

4ρ2
()S2w)2 +

1

‖Θ2‖2ρ2

[
(HessS2w)212 − (HessS2w)11(HessS2w)22

]

−1

3
gil

S2R(0l0k)gkj
Sm(HessS2w)ij − 1

2
Ricp(Θ, Θ) )S2 w

+
2

3‖Θ2‖2

[
2R(0102)(HessS2w)12 − R(0101)(HessS2w)22 − R(0202)(HessS2w)11

]

−1

9
ρ2
[
gik

S2g
jl
S2R(0i0l)R(0j0k)

]
− 1

3
ρ2
[
R(0101)R(02̄02̄) − R(0102̄)2

]

+
5

36
Ricp(Θ, Θ)2ρ2 + Op(ρ

3) + ρLp(w) +
1

ρ
Q(2)

p (w) +
1

ρ2
Lp(w)Q(2)

p (w)

Let us simplify the second and the third lines; they can be rewritten as

−1

3
R(0101)(HessS2w)11 − 1

3
R(02̄02̄)

1

‖Θ2‖2
(HessS2w)22 +

2

3‖Θ2‖2
R(0102)(HessS2w)12

−2

3
R(0101)

1

‖Θ2‖2
(HessS2w)22 − 2

3
R(02̄02̄)(HessS2w)11 − 1

2
Ricp(Θ, Θ) )S2 w

=
2

3‖Θ2‖2
R(0102)(HessS2w)12 +

1

3
Ricp(Θ, Θ) )S2 w

−1

3
R(0101)

1

‖Θ2‖2
(HessS2w)22 − 1

3
R(02̄02̄)(HessS2w)11 − 1

2
Ricp(Θ, Θ) )S2 w

= −1

6
Ricp(Θ, Θ) )S2 w +

1

3‖Θ2‖2

[
2R(0102)(HessS2w)12 − R(0101)(HessS2w)22 − R(02̄02̄)(HessS2w)11

]

Finally we have to simplify the fourth and the fifth lines; they can be rewritten as

{
− 1

9
R(0101)2 − 1

9
R(02̄02̄)2 − 2

9
R(0102̄)2 +

5

36
Ricp(Θ, Θ)2 − 1

3
R(0101)R(02̄02̄) +

1

3
R(0102̄)2

}
ρ2

=
{

− 1

9
[R(0101) + R(02̄02̄)]2 − 1

9
R(0101)R(02̄02̄) +

1

9
R(0102̄)2 +

5

36
Ricp(Θ, Θ)2

}
ρ2

=
{ 1

36
Ricp(Θ, Θ)2 − 1

9
R(0101)R(02̄02̄) +

1

9
R(0102̄)2

}
ρ2

where, in the last equality, we used the usual identity R(0101) + R(02̄02̄) = −Ricp(Θ, Θ).
Collecting the formulas we get the desired expansion.

2.2.2 The differential of the conformal Willmore functional on perturbed
geodesic spheres Sp,ρ(w)

Proposition 2.2.9. On the perturbed geodesic sphere Sp,ρ(w) the differential of the conformal Willmore
functional has the following form:

I ′(Sp,ρ(w)) =
1

2ρ3
)S2()S2 + 2)w − 1

6ρ
)S2Ricp(Θ, Θ) + Op(ρ

0) +
1

ρ2
L(4)

p (w) +
1

ρ3
Q(2)(4)

p (w)

Proof. Let us recall the general expression of the differential of the conformal Willmore functional com-
puted in [HL] (Theorem 3.1 plus an easy computation using Codazzi equation).

Given a compact Riemannian surface (M̊, g̊) isometrically immersed in the three dimensional Rie-
mannian manifold (M, g) and called N̊ the inward normal unit vector, the differential of the conformal
Willmore functional

I(M̊) =

∫

M̊

(
H2

4
− D

)
dΣ

is

I ′(M̊) =
1

2
)M̊H+H

(
H2

4
−D

)
+
∑

ij

R(N̊ , ei, N̊ , ej )̊hij−
1

2

∑

i

HR(N̊ , ei, N̊ , ei)+
∑

ij

(∇ei
R)(N̊ , ej , ej , ei)
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where e1, e2 is a local orthonormal frame of TpM̊ which diagonalizes the second fundamental form h̊ij .
Since e1, e2 are principal directions we get

∑

ij

R(N̊ , ei, N̊ , ej )̊hij − 1

2

∑

i

HR(N̊ , ei, N̊ , ei) =
(λ1 − λ2)

2
[R(N̊ , e1, N̊ , e1) − R(N̊ , e2, N̊ , e2)]

where λ1,λ2 are the principal curvatures. So in this frame the differential is

I ′(M̊) =
1

2
)M̊H +H

(
H2

4
−D

)
+

(λ1 − λ2)

2
[R(N̊ , e1, N̊ , e1)−R(N̊ , e2, N̊ , e2)]+

∑

ij

(∇ei
R)(N̊ , ej , ej , ei).

(2.7)
Now we want to compute the differential on the perturbed geodesic sphere Sp,ρ(w).

Recall that

)g̊u = g̊ij
(
uij − Γ̊k

ijuk

)

=
1

ρ2
gij

S2

(
uij − Γk

ijuk

)
+ O(ρ0)L(u) +

1

ρ2
Lp(w)L(u) +

1

ρ2
Q(2)

p (w)L(u)

=
1

ρ2
)S2 u + O(ρ0)L(u) +

1

ρ2
Lp(w)L(u) +

1

ρ2
Q(2)

p (w)L(u)

where L(u) is a linear function depending on u and on its derivatives up to order two. From the above
computation of H we have

H =
2

ρ
+

1

ρ
(2 + )S2)w − 1

3
Ricp(Θ, Θ)ρ+ O(ρ2) + ρLp(w) +

1

ρ
Q(2)

p (w),

hence

)g̊H =
1

ρ3
)S2()S2 + 2)w − 1

3ρ
)S2Ricp(Θ, Θ) + Op(ρ

0) +
1

ρ2
L(4)

p (w) +
1

ρ3
Q(2)(4)

p (w).

Now let us show that the other summands are negligible.
First we find an expansion for the principal directions λ1 and λ2. From the definitions, they are the roots
of the polynomial equation

x2 − Hx + D = 0

so

λ1,2 =
H

2
±

√
H2 − 4D

2
=

1

ρ
+ O(ρ) +

1

ρ
Lp(w) +

1

ρ
Q(2)

p (w)

and the third summand is negligible:

(λ1 − λ2)[R(N̊ , e1, N̊ , e1) − R(N̊ , e2, N̊ , e2)] = O(ρ) +
1

ρ
Lp(w) +

1

ρ
Q(2)

p (w).

From the above computation of H2

4 − D, we have

H2

4
− D = Op(ρ

2) + Lp(w) +
1

ρ2
Q(2)

p (w)

hence we get

H

(
H2

4
− D

)
= Op(ρ) +

1

ρ
Lp(w) +

1

ρ3
Q(2)

p (w).

Therefore also this term is negligible and we can conclude observing that (∇ei
R)(N̊ , ej , ej , ei) = O(ρ0).
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2.2.3 The finite dimensional reduction

NOTATION. In this subsection, the functional space will be C4,α(S2)⊥: the perturbation w will be an
element of C4,α(S2)⊥ and B(0, r) will denote the ball of center 0 and radius r in C4,α(S2)⊥.

Lemma 2.2.10. Fixed a compact subset Zc ⊆ M, there exist ρ0 > 0, r > 0 and a map w(.,.) : Zc×[0, ρ0] →
C4,α(S2)⊥, (p, ρ) +→ wp,ρ such that if Sp,ρ(w) is a critical point of the conformal Willmore functional I
with (p, ρ, w) ∈ Zc × [0, ρ0] × B(0, r) then w = wp,ρ.
Moreover the map w(.,.) satisfies the following properties:
(i) the map (p, ρ) +→ wp,ρ is C1,
(ii) ‖wp,ρ‖C4,α(S2) = O(ρ2) as ρ → 0 uniformly for p ∈ Zc,

(iii) ‖ ∂
∂ρwp,ρ‖L2(S2) = O(ρ) as ρ → 0 uniformly for p ∈ Zc,

(iv) we have the following explicit expansion of wp,ρ:

wp,ρ = − 1

12
ρ2Ricp(Θ, Θ) +

1

36
ρ2R(p) + O(ρ3) (2.8)

where the remainder O(ρ3) has to be intended in C4,α(S2) norm.

Proof. For the proof of (i), (ii) and (iii) we refer to Lemma 4.4 of [Mon1], here we only give a sketch of
the idea. Fixed a compact subset Zc ⊆ M and p ∈ Zc, if

I ′(Sp,ρ(w)) = 0 (equality in L2(S2)),

then, setting P : L2(S2) → Ker[)S2()S2 + 2)]⊥ the orthogonal projection, a fortiori we have

PI ′(Sp,ρ(w)) = 0;

that is, using the expansion of Proposition 2.2.9,

P
[
)S2()S2 + 2)w + Op(ρ

2) + ρL(4)
p (w) + Q(2)(4)

p (w)
]

= 0. (2.9)

Since )S2()S2+2) is invertible on the space orthogonal to the Kernel and w ∈ C4,α(S2)⊥ := Ker[)S2()S2+
2)]⊥ ∩ C4,α(S2), setting

K := [)S2()S2 + 2)]−1 : Ker[)S2()S2 + 2)]⊥ ⊆ L2(S2) → Ker[)S2()S2 + 2)]⊥,

the equation (2.9) is equivalent to the fixed point problem

w = K[Op(ρ
2) + ρL(4)

p (w) + Q(2)(4)
p (w)] = Fp,ρ(w). (2.10)

The projection in the right hand side is intended. In the aforementioned paper (using Schauder estimates)
it is proved that once the compact Zc ⊂ M is fixed, there exist ρ0 > 0 and r > 0 such that for all p ∈ Zc

and ρ < ρ0 the map
Fp,ρ : B(0, r) ⊂ C4,α(S2)⊥ → C4,α(S2)⊥

is a contraction. In the same paper the regularity and the decay properties are shown.

Now let us prove the expansion (iv).
Using the formula of Proposition 2.2.9, the unique solution w ∈ B(0, r) to the fixed point problem will
have to satisfy the following fourth order elliptic PDE:

)S2()S2 + 2)w =
1

3
ρ2)S2Ricp(Θ, Θ) + Op(ρ

3) + ρL(4)
p (w) + Q(2)(4)

p (w).

Clearly the unique solution w has the form w = ρ2w̄ + O(ρ3) where the remainder has to be intended in
C4,α(S2) norm and w̄ ∈ C4,α(S2) is independent of ρ. Now we want to find an explicit formula for w̄.
Writing the radial unit vector in normal coordinates on TpM , we have Θ = xi ∂

∂xi and the Ricci tensor
can be written as

Ricp(Θ, Θ) =
∑

i+=j

Rijx
ixj +

∑

i

Rii(x
i)2.
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Recall that the eigenfunctions of )S2 relative to the second eigenvalue λ2 = −6 are xixj , i /= j and
(xi)2 − (xj)2, i /= j and notice that

2(x1)2 − 1 = (x1)2 − (x2)2 + (x1)2 − (x3)2 − (x1)2

so

(x1)2 − 1

3
=

1

3

{
[(x1)2 − (x2)2] + [(x1)2 − (x3)2]

}

is an element of the eigenspace relative to λ2 = −6 (analogously for the others (xi)2). So

Ricp(Θ, Θ) =
∑

i+=j

Rij(p)xixj +
∑

i

Rii(p)[(xi)2 − 1

3
] +

1

3

∑

i

Rii(p)

=
∑

i+=j

Rij(p)xixj +
∑

i

Rii(p)[(xi)2 − 1

3
] +

1

3
R(p)

and Ricp(Θ, Θ) − 1
3R(p) is an element of the second eigenspace of )S2 .

Recalling that w = ρ2w̄ + O(ρ3), then w̄ has to solve the following linear elliptic PDE

)S2()S2 + 2)w̄ =
1

3
)S2

[
Ricp(Θ, Θ) − 1

3
R(p)

]
.

Since the right hand side is an eigenfunction of )S2 with eigenvalue −6 the equation is easily solved as

w̄ = − 1

12
Ric(Θ, Θ) +

1

36
R(p).

2.2.4 The expansion of the reduced functional I(Sp,ρ(wp,ρ))

In this subsection we want to evaluate the reduced functional I(Sp,ρ(wp,ρ)), that is the conformal Willmore
functional on perturbed geodesic spheres with perturbation w in the constraint given by Proposition
2.2.10.

Proposition 2.2.11. The conformal Willmore functional on perturbed geodesic spheres Sp,ρ(wp,ρ) with
perturbation wp,ρ lying in the constraint given by Proposition 2.2.10 can be expanded in ρ as follows

I(Sp,ρ(wp,ρ)) =
π

5
‖Sp‖2ρ4 + Op(ρ

5),

where Sp is the Traceless Ricci tensor defined in (1.5).

Proof. In the sequel we fix a point p ∈ M and we want to evaluate I(Sp,ρ(wp,ρ)) for small ρ. For simplicity
of notation, let us denote w = wp,ρ; from Proposition 2.2.10 we know that w = ρ2w̄ +O(ρ3). Notice that
the leading part of H2/4 − D is homogeneous of degree two in ρ, so in order to evaluate I(Sp,ρ(wp,ρ)) it

is sufficient to multiply H2/4 − D by the first term of
√

det[̊g] (that is ρ2‖Θ2‖). Using the expansion of
Proposition 2.2.8 we get

I(Sp,ρ(w)) = ρ4

∫

S2

[
1

4
()S2w̄)2 − 1

‖Θ2‖2
(HessS2w̄)11(HessS2w̄)22 +

1

‖Θ2‖2
(HessS2w̄)212 − 1

6
Ricp(Θ, Θ) )S2 w̄

+
2

3‖Θ2‖2
R(0102)(HessS2w̄)12 − 1

3‖Θ2‖2
R(0101)(HessS2w̄)22 − 1

3
R(02̄02̄)(HessS2w̄)11

+
1

9

(1

4
Ricp(Θ, Θ)2 − R(0101)R(02̄02̄) + R(0102̄)2

)]
dΣ0 + Op(ρ

5). (2.11)

From (iv) of Proposition 2.2.10 it follows that

)S2w̄ = −6w̄ =
1

2
Ricp(Θ, Θ) − 1

6
R(p)
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so, after some easy computation, one can write

1

4
()S2w̄)2 − 1

6
Ricp(Θ, Θ) )S2 w̄ +

1

36
Ricp(Θ, Θ)2 =

1

144
Ricp(Θ, Θ)2 − 1

72
Ricp(Θ, Θ)R(p) +

1

144
R(p)2.

(2.12)
In order to simplify the other integrands of (2.11) we compute (HessS2w̄)ij . The nonvanishing Christoffel
symbols of S2 in polar coordinates θ1, θ2 are

Γ2
12 = Γ2

21 = cotanθ1

Γ1
22 = − sin θ1 cos θ1.

Hence, recalling that (Hessw)ij = wij − Γk
ijwk and the expression of w given in (iv), we get

(HessS2w̄)11 = w̄11 = −1

6
∂θ1(Ricp(Θ, Θ1))

= −1

6
Ricp(Θ1, Θ1) − 1

6
Ricp(Θ, Θ11) but Θ11 = −Θ

= −1

6
Ricp(Θ1, Θ1) +

1

6
Ricp(Θ, Θ)

(HessS2w̄)12 = w̄12 − Γ2
12w̄2 = −1

6
∂θ1(Ricp(Θ, Θ2)) +

1

6
Γ2

12Ricp(Θ, Θ2)

= −1

6
Ricp(Θ1, Θ2) − 1

6
Ricp(Θ, Θ12) +

1

6
Γ2

12Ricp(Θ, Θ2) but Θ12 = cotanθ1Θ2

= −1

6
Ricp(Θ1, Θ2)

(HessS2w̄)22 = w̄22 − Γ1
22w̄1

= −1

6
Ricp(Θ2, Θ2) − 1

6
Ricp(Θ, Θ22) +

1

6
Γ1

22Ricp(Θ, Θ1) but Θ22 = − sin θ1 cos θ1Θ1 − sin2 θ1Θ

= −1

6
Ricp(Θ2, Θ2) +

1

6
‖Θ2‖2Ricp(Θ, Θ).

Therefore the other part of the integrand can be written as

− 1

‖Θ2‖2
(HessS2w̄)11(HessS2w̄)22 +

1

‖Θ2‖2
(HessS2w̄)212 +

2

3‖Θ2‖2
R(0102)(HessS2w̄)12

−1

3
R(0101)

1

‖Θ2‖2
(HessS2w̄)22 − 1

3
R(02̄02̄)(HessS2w̄)11 − 1

9
R(0101)R(02̄02̄) +

1

9
R(0102̄)2

= − 1

36
Ric(Θ, Θ)2 +

1

36
Ric(Θ, Θ)[Ric(Θ̄2, Θ̄2) + Ric(Θ1, Θ1)] − 1

36
Ric(Θ̄2, Θ̄2)Ric(Θ1, Θ1)

+
1

36
Ric(Θ1, Θ̄2)

2 − 1

9
R(0102̄)Ric(Θ1, Θ̄2) +

1

18
R(0101)(Ric(Θ̄2, Θ̄2) − Ric(Θ, Θ))

+
1

18
R(02̄02̄)(Ric(Θ1, Θ1) − Ric(Θ, Θ)) − 1

9
R(0101)R(02̄02̄) +

1

9
R(0102̄)2. (2.13)

Using the following three identities (which follow from the orthogonality of {Θ, Θ1, Θ̄2}, from the defini-
tions and the symmetries of the curvature tensors)

− 1

18

(
R(0101) + R(02̄02̄)

)
Ricp(Θ, Θ) =

1

18
Ricp(Θ, Θ)2

Ricp(Θ1, Θ1) + Ricp(Θ̄2, Θ̄2) = R(p) − Ricp(Θ, Θ) (2.14)

R(0102̄) = −Ricp(Θ1, Θ̄2),

after some easy computations we can say that (2.13) equals

=
1

36
Ric(Θ, Θ)R(p) − 1

36
Ric(Θ̄2, Θ̄2)Ric(Θ1, Θ1) +

1

4
Ric(Θ1, Θ̄2)

2

+
1

18
R(0101)Ric(Θ̄2, Θ̄2) +

1

18
R(02̄02̄)Ric(Θ1, Θ1) − 1

9
R(0101)R(02̄02̄). (2.15)

27



Let us try to simplify the last line using that R(0101) + R(2̄12̄1) = −Ric(Θ1, Θ1) and identity (2.14):

1

18
R(0101)Ric(Θ̄2, Θ̄2) +

1

18
R(02̄02̄)Ric(Θ1, Θ1) − 1

9
R(0101)R(02̄02̄)

= − 1

18

[
Ricp(Θ1, Θ1) + R(12̄12̄)

]
Ricp(Θ̄2, Θ̄2) − 1

18

[
Ric(Θ̄2, Θ̄2) + R(12̄12̄)

]
Ricp(Θ1, Θ1)

−1

9

[
Ricp(Θ1, Θ1) + R(12̄12̄)

][
Ric(Θ̄2, Θ̄2) + R(12̄12̄)

]

= −2

9
Ricp(Θ1, Θ1)Ricp(Θ̄2, Θ̄2) +

1

6
R(12̄12̄)Ricp(Θ, Θ) − 1

6
R(12̄12̄)R(p) − 1

9
R(12̄12̄)2. (2.16)

Since {Θ, Θ1, Θ̄2} is an orthonormal base of TpM we have the following useful identity

R(12̄12̄) = R(12̄12̄) − Ricp(Θ, Θ) + Ricp(Θ, Θ)

=
[
R(12̄12̄) + R(02̄02̄) + R(0101)

]
+ Ricp(Θ, Θ)

= −1

2

[
Ricp(Θ1, Θ1) + Ricp(Θ̄2, Θ̄2) + Ricp(Θ, Θ)

]
+ Ricp(Θ, Θ)

= −1

2
R(p) + Ricp(Θ, Θ). (2.17)

Plugging the last identity (2.17) into formula (2.16), we get that (2.16) equals

= −2

9
Ricp(Θ1, Θ1)Ricp(Θ̄2, Θ̄2) − 5

36
Ricp(Θ, Θ)R(p) +

1

18
Ricp(Θ, Θ)2 +

1

18
R(p)2. (2.18)

Therefore the last line of (2.13) equals (2.18) and the integrands (2.13) become

=
1

18
Ric(Θ, Θ)2 − 1

9
Ric(Θ, Θ)R(p) +

1

18
R(p)2 +

1

4
Ric(Θ1, Θ̄2)

2 − 1

4
Ricp(Θ1, Θ1)Ricp(Θ̄2, Θ̄2);

hence the conformal Willmore functional expressed as in (2.11), using the last formula and (2.12), becomes

I(Sp,ρ(w)) = ρ4

∫

S2

[
1

16
Ricp(Θ, Θ)2 − 1

8
Ricp(Θ, Θ)R(p) +

1

16
R(p)2 +

1

4
Ric(Θ1, Θ̄2)

2 +

−1

4
Ricp(Θ1, Θ1)Ricp(Θ̄2, Θ̄2)

]
dΣ0 + Op(ρ

5). (2.19)

The integral of the first three summands is well-known (see for example the appendix of [PX]), let us
compute the integral of the last two summands.

Claim. ∫

S2

[
Ricp(Θ1, Θ̄2)

2 − Ricp(Θ1, Θ1)Ricp(Θ̄2, Θ̄2)
]
dΣ0 =

2π

3

(
‖Ricp‖2 − R(p)2

)

Proof of the Claim:
As before let us denote by Eµ, µ = 1, 2, 3 an orthonormal base of TpM and with xµ the induced coordi-
nates. Under this notation the radial unit vector is

S2 6 Θ = xµEµ.

Recall that the polar coordinates 0 < θ1 < π, 0 < θ2 < 2π have been chosen such that S2 is
parametrized as follows 




x1 = sin θ1 cos θ2

x2 = sin θ1 sin θ2

x3 = cos θ1.

The normalized tangent vectors Θ̄i := Θi

‖Θi‖ have coordinates

Θ̄1 = Θ1 = (cos θ1 cos θ2, cos θ1 sin θ2, − sin θ1)

=

(
x1x3

√
(x1)2 + (x2)2

,
x2x3

√
(x1)2 + (x2)2

, −
√

(x1)2 + (x2)2

)
(2.20)

Θ̄2 = (− sin θ2, cos θ2, 0)

=

(
− x2

√
(x1)2 + (x2)2

,
x1

√
(x1)2 + (x2)2

, 0

)
. (2.21)
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Using this expressions for Θ̄i we get the following formulas for Ricp(Θ̄i, Θ̄j):

Ricp(Θ1, Θ1) = R11
(x1)2(x3)2

(x1)2 + (x2)2
+ 2R12

x1x2(x3)2

(x1)2 + (x2)2
+ R22

(x2)2(x3)2

(x1)2 + (x2)2
− 2R13x

1x3 − 2R23x
2x3

+R33[(x
1)2 + (x2)2]

Ricp(Θ̄2, Θ̄2) = R11
(x2)2

(x1)2 + (x2)2
− 2R12

x1x2

(x1)2 + (x2)2
+ R22

(x1)2

(x1)2 + (x2)2

Ricp(Θ1, Θ̄2) = −R11
x1x2x3

(x1)2 + (x2)2
− 2R12

(x2)2x3

(x1)2 + (x2)2
+ R22

x1x2x3

(x1)2 + (x2)2
+ R12x

3 + R13x
2 − R23x

1.

Notice that the summands which contain a term of the type (xi)2m+1 (m ∈ N) have vanishing integral
on S2; then, calling “Remainder” all these summands, we get

Ric(Θ1, Θ̄2)
2 = (R2

11 − 2R11R22 + R2
22 − 4R2

12)
(x1)2(x2)2(x3)2

[(x1)2 + (x2)2]2
+ R2

12(x
3)2 + R2

13(x
2)2 + R2

23(x
1)2

+ Remainder,

Ric(Θ1, Θ1)Ric(Θ̄2, Θ̄2) = (R2
11 − 2R11R22 + R2

22 − 4R2
12)

(x1)2(x2)2(x3)2

[(x1)2 + (x2)2]2
+ R11R22(x

3)2

+R11R33(x
2)2 + R22R33(x

1)2 + Remainder.

Therefore the integral of the left hand side of the Claim becomes

=

∫

S2

[
R2

12(x
3)2 + R2

13(x
2)2 + R2

23(x
1)2 − R11R22(x

3)2 − R11R33(x
2)2 − R22R33(x

1)2
]
dΣ0.

Recalling that
∫

S2(x
µ)2dΣ0 = 4π

3 ,we can continue the equalities

=
4π

3

[
R2

12 + R2
13 + R2

23 − R11R22 − R11R33 − R22R33

]

=
2π

3

[
(R2

11 + R2
22 + R2

33 + 2R2
12 + 2R2

13 + 2R2
23) − (R2

11 + R2
22 + R2

33 + 2R11R22 + 2R11R33 + 2R22R33)
]

=
2π

3

(
‖Ricp‖2 − R(p)2

)
.

Now we are in position to conclude the computation of the integral (2.19).
It is known that

∫
S2 Ricp(Θ, Θ)dΣ0 = 4π

3 R(p) and
∫

S2 [Ricp(Θ, Θ)]2dΣ0 = 4π
15 (2‖Ricp‖2 + R(p)2) (see the

appendix of [PX]) thus, grouping together this formulas and the claim, we can say that the conformal
Willmore functional on constrained small geodesic spheres can be expanded as

I(Sp,ρ(w)) =
π

5

(
‖Ricp‖2 − 1

3
R(p)2

)
ρ4 + Op(ρ

5).

A simple computation in the orthonormal basis that diagonalizes Ricp shows that the first term in the
expansion is the squared norm of the Traceless Ricci tensor:

(
‖Ricp‖2 − 1

3
R(p)2

)
= ‖Ricp − 1

3
gpR(p)‖2 = ‖Sp‖2.

2.2.5 Proof of the non existence result

We start with a Lemma, which asserts that for small perturbation u ∈ C4,α(S2) and small radius ρ, the
perturbed geodesic sphere Sp,ρ(u) can be obtained as a normal graph on an other geodesic sphere Sp̃,ρ̃

with perturbation w̃ ∈ C4,α⊥
: Sp,ρ(u) = Sp̃,ρ̃(w̃); for the proof see [Mon1] Lemma 5.3.

Lemma 2.2.12. Let (M, g) be a Riemannian manifold of dimension three and fix p̄ ∈ M . Then there
exist B(0, r1) ⊂ C4,α(S2), ρ1 > 0, a compact neighborhood U of p̄ and three continuous functions
p(.) : B(0, r1) → U ⊂ M ,
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ρ(., .) : (0, ρ1) × B(0, r1) → R+,
w(., .) : U × B(0, r1) → C4,α(S2)⊥,
such that for all ρ̄ < ρ1 and u ∈ B(0, r1), all the perturbed geodesic spheres Sp̄,ρ̄(u) can be realized as

Sp̄,ρ̄(u) = Sp(u),ρ(ρ̄,u)[w(p(u), u)].

Now we are in position to prove the non existence result.

Proof of Theorem 1.0.4.
Since ‖Sp̄‖ /= 0, there exists η > 0 and a compact neighborhood Zc of p̄ such that ‖Sp‖ > η for all p ∈ Zc.

From Lemma 2.2.10 there exist ρ0 > 0 and a ball B(0, r) ⊂ C4,α(S2) such that- for w ∈ C4,α⊥∩B(0, r),
p ∈ Zc and ρ < ρ0- if the perturbed geodesic sphere Sp,ρ(w) is a critical point of I then w = wp,ρ with
good decay properties as ρ → 0. Moreover, for p ∈ Zc and ρ < ρ0 we can consider the C1 function

Φ(p, ρ) = I(Sp,ρ(wp,ρ)).

Observe that if Sp̃,ρ̃(wp̃,ρ̃) is a critical point for I then a fortiori (p̃, ρ̃) is a critical point of the constricted
functional Φ(., .).
Proposition 2.2.11 gives an expansion for Φ(p, ρ); differentiating it with respect to ρ and recalling (from
Lemma 2.2.10) that as ρ → 0 one has ‖wp,ρ‖C4,α = O(ρ2) and ‖ ∂

∂ρwp,ρ‖L2 = O(ρ) uniformly for p ∈ Zc,
we get

∂

∂ρ
Φ(p, ρ) =

4π

5
‖Sp‖ρ3 + Op(ρ

4)

and ∣∣∣ ∂
∂ρ

Φ(p, ρ)
∣∣∣ > 4π

5
ηρ3 + O(ρ4) for all p ∈ Zc, (2.22)

where the remainder O(ρ4) is uniform on Zc.
From this equation we can say that there exist ρ2 ∈]0, ρ0[ such that for all p ∈ Zc and ρ < ρ2, (p, ρ) is
not a critical point of Φ.
Hence

∀w ∈ C4,α(S2)⊥ ∩ B(0, r), ρ < ρ2 and p ∈ Zc (2.23)

⇒ Sp,ρ(w) is NOT a critical point of I.

Now from Lemma 2.2.12, if u ∈ B(0, r1) ⊂ C4,α(S2) and ρ̄ < ρ1, any perturbed sphere Sp̄,ρ̄(u) can be
realized as

Sp̄,ρ̄(u) = Sp(u),ρ(ρ̄,u)[w(p(u), u)], w(p(u), u) ∈ C4,α(S2)⊥.

From the continuity of the functions p(.), ρ(., .) and w(., .), there exist ρ3 ∈]0, min(ρ1, ρ2)[ and r2 ∈
]0, min(r, r1)[ such that for all u ∈ B(0, r2) ⊂ C4,α(S2) and ρ̄ < ρ3 we have:

· p(u) ∈ Zc,
· ρ(ρ̄, u) < ρ2 and
· w(p(u), u) ∈ C4,α(S2)⊥ ∩ B(0, r).
It follows that if u ∈ B(0, r2) and ρ̄ < ρ3, the sphere Sp̄,ρ̄(u) can be realized as Sp(u),ρ(ρ̄,u)[w(p(u), u)]

which satisfies the assumptions (2.23); so it is not a critical point of I.

2.3 The conformal Willmore functional on perturbed standard
spheres Sρ

p(w) in (R3, gε)

Throughout this section Iε(M̊) :=
∫

M̊

[
H2

4 − D
]
dΣε will be the conformal Willmore functional of the

surface M̊ embedded in the ambient manifold (R3, gε), where gε = δ + εh is a perturbation of the
euclidean metric (h is a bilinear form with good decay properties at infinity, for simplicity we will treat
in detail the case when h has compact support but as one can see from the estimates it is enough to take
h fast decreasing. See for example [Mon1] Theorem 1.1).

The problem will be studied through a perturbation method relying on the Lyapunov-Schmidt reduc-
tion: In Subsection 2.3.1 we will perform the abstract reduction, in Subsection 2.3.2 we will compute an
expansion of the reduced functional and in the last Subsection 2.3.3 we will prove the main Theorems of
this Chapter, that is the existence of conformal Willmore surfaces.
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2.3.1 The finite dimensional reduction

We already know from Theorem 1.2 that I0 possesses a critical manifold made up of the standard spheres
Sρ

p of R3, we want to study the perturbed functional Iε near this critical manifold. First of all let us point
out a clarification about I ′

0(S
ρ
p) and I ′′

0 (Sρ
p), that are the first and second variations of the unperturbed

functional on the standard spheres, which will be useful throughout this Section.

Remark 2.3.1. In the previous paper [Mon1], (remark 3.3, notice the factor difference in the definition
of the Willmore functional) we observed that

I ′
0(S

ρ
p(w)) =

1

2ρ3
)S2()S2 + 2)w +

1

ρ3
Q(2)(4)

p (w)

and

I ′′
0 (Sρ

p)[w] =
1

2ρ3
)S2()S2 + 2)[w].

The sense of the two formulas were the following.
By definition Sρ

p(w) is a normal graph on Sρ
p with perturbation ρw (we chose the inward normal N̊ for

all the computations), hence

I0(S
ρ
p(w)) = I0(S

ρ
p) +

∫

Sρ
p

(
I ′
0(S

ρ
p)(ρw)

)
dΣ0 +

1

2

∫

Sρ
p

(
I ′′
0 (Sρ

p)[w](ρw)
)
dΣ0 + o(|w|2).

If we want to bring the expression to the standard sphere we get

I0(S
ρ
p(w)) = I0(S

ρ
p) +

∫

S2

(
ρ3I ′

0(S
ρ
p)w

)
dΣ0 +

1

2

∫

S2

(
ρ3I ′′

0 (Sρ
p)[w]w

)
dΣ0 + o(|w|2).

Now we denote

Ĩ ′
0(S

ρ
p(w)) = ρ3I ′

0(S
ρ
p(w)) =

1

2
)S2()S2 + 2)[w] + Q(2)(4)

p (w)

and

Ĩ ′′
0 (Sρ

p)[w] = ρ3I ′′
0 (Sρ

p)[w] =
1

2
)S2()S2 + 2)[w]

then we get the more familiar formula

I0(S
ρ
p(w)) = I0(S

ρ
p) +

∫

S2

(
Ĩ ′
0(S

ρ
p)w

)
+

1

2

∫

S2

(
Ĩ ′′
0 (Sρ

p)[w]w
)

+ o(|w|2).

This was about the functional
∫

H2

4 but the same argument can be repeated for the functional
∫ (

H2

4 −D
)

(since the ambient is euclidean, D = K the Gaussian curvature which by the Gauss Bonnet Theorem does
not influence the differential). Since Sρ

p are critical points for I0 we can say that the conformal Willmore
functional on perturbed standard spheres is

I0(S
ρ
p(w)) =

1

4

∫

S2

(
)S2()S2 + 2)[w]w

)
+ o(|w|2).

In the following we will always denote

I ′
0(S

ρ
p)[w] =

1

2
)S2()S2 + 2)[w] + Q(2)(4)

p (w)

I ′′
0 (Sρ

p)[w] =
1

2
)S2()S2 + 2)[w]

since, as we saw, it is more natural.

Since from Proposition 2.2.11 we have an expansion of Iε on small geodesic spheres and on the other
hand the critical manifold of I0 is made up of standard spheres, let us link the two objects. The geodesic
sphere in (R3, gε) of center p and radius ρ will be denoted by Sε

p,ρ.
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Lemma 2.3.2. For small ε the geodesic spheres Sε
p,ρ are normal graphs on the standard spheres Sρ

p with
a perturbation vε ∈ C∞(R+ × R3 × S2):

Sε
p,ρ = Sρ

p(vε(ρ, p, .)).

Moreover the perturbation vε satisfies the following decreasing properties:
1) ρvε = O(ε) in Ck norm on compact subsets of R+ × R3 × S2 for all k ≥ 0;
2) vε(ρ, ., .) = O(ρ) as ρ → 0 uniformly for Θ ∈ S2 and p in a compact subset of R3.

Proof. The geodesic spheres Sε
p,ρ are parametrized by Θ +→ Expp(ρΘ). So one is interested in the solution

of the geodesic equation





ÿi + Γi
jkẏj ẏk = 0

yi(0) = pi

ẏi(0) = Θi

evaluated at ρ. We look for yi of the form

yi = pi + ρΘi + εui + o(ε)

where
ui : R+ × R3 × S2 → R, (ρ, p,Θ) +→ ui(ρ, p,Θ)

is C∞(R+ × R3 × S2) and have to be determined. A straightforward computation ( setting Γi
jk = εΓ̃i

jk )

shows that ui must solve the following non linear second order ODE:




üi + Γ̃i
jkΘjΘk = 0

ui(0) = 0
u̇i(0) = 0

where we have denoted u̇i = ∂
∂ρui and üi = ∂2

∂ρ2 ui and the equation has to be considered at (p, Θ) fixed.

Since h is compactly supported (more generally it is enough to assume that h and its first derivatives
vanish at infinity), the Christoffel symbols Γ̃i

jk vanish at infinity and the ODE admits unique solution

defined for all ρ ≥ 0. From differentiable dependence on parameters, ui is of class C∞(R+ × R3 × S2),
observe also that ui = O(ρ2) as ρ → 0 uniformly for Θ ∈ S2 and p in a compact subset of R3.
It follows that the geodesic sphere Sε

p,ρ can be obtained from the standard sphere Sρ
p with the small

variation εui(ρ, p,Θ). Now it is easy to see that for ε small enough there exists vε ∈ C∞(R+ × R3 × S2)
such that

• Sε
p,ρ = Sρ

p(vε)

• ρvε = O(ε) in Ck norm on compact subsets of R+ × R3 × S2 for all k ≥ 0

• vε(ρ, Θ) = O(ρ) as ρ → 0, uniformly for Θ ∈ S2 and p in a compact subset of R3.

Now we define the manifold of approximate solutions that will play the role of the “critical manifold”
Z. Let R1 and R2 be positive real numbers to be determined and χ a C∞(R+) cut off function such that





χ(ρ) = 1 for 0 ≤ ρ ≤ R1

0 ≤ χ(ρ) ≤ 1 for R1 ≤ ρ ≤ R2

χ(ρ) = 0 for ρ ≥ R2.

We denote by Σε
p,ρ the perturbed standard sphere

Σε
p,ρ = Sρ

p(χvε) (2.24)

and we consider it as parametrized on S2; observe that for ρ < R1 one gets the geodesic spheres Σε
p,ρ = Sε

p,ρ

and for ρ > R2 one has the standard spheres Σε
p,ρ = Sρ

p .

Denoted by N̊ the inward normal unit vector, given a function w on S2, Σε
p,ρ(w) will be the surface

parametrized by Σε
p,ρ + ρwN̊ (notice that we are consistent with the previous notations since Θ points

outward).
At this point we can state the two Lemmas which allow us to perform the Finite Dimensional Reduc-

tion. Recall that, as always, P : L2(S2) → Ker[)S2()S2 + 2)]⊥ is the orthogonal projection.
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Lemma 2.3.3. For each compact subset Zc ⊆ R3 ⊕ R+, there exist ε0 > 0 and r > 0 with the following
property: for all |ε| ≤ ε0 and (p, ρ) ∈ Zc, the auxiliary equation PI ′

ε(Σ
ε
p,ρ(w)) = 0 has unique solution

w = wε(p, ρ) ∈ B(0, r) ⊂ C4,α(S2)⊥ such that:
1) the map wε(., .) : Zc → C4,α(S2)⊥ is of class C1;
2) ‖wε(p, ρ)‖C4,α(S2) → 0 for ε → 0 uniformly with respect to (p, ρ) ∈ Zc;
3) more precisely ‖wε(p, ρ)‖C4,α(S2) = O(ε) for ε → 0 uniformly in (p, ρ) ∈ Zc;
4) ‖wε(p, ρ)‖C4,α = O(ρ2) uniformly for p in the compact set.

Proof. The proof will be rather sketchy, for more details we refer to Section 4 of [Mon1].
• ρ ≤ R1: Recall Lemma 2.2.10 and choose R1 = ρ0; for ρ ≤ R1, the surface Σε

p,ρ coincides with the

geodesic sphere Sp,ρ, so thanks to Lemma 2.2.10 there exists a unique wε(p, ρ) ∈ C4,α(S2)⊥ which solves
the auxiliary equation. During the proof of Proposition 2.2.9 we wrote I ′ as in equation (2.7); observing
that all the curvature tensors of (R3, gε) are of order O(ε) (in Ck norm ∀k ∈ N on each fixed compact set
of R3), it follows that

PI ′
ε(S

ε
p,ρ(wε(p, ρ))) =

1

2
)Sε

p,ρ(wε(p,ρ))H + Q(2)(4)(wε(p, ρ)) + O(ε) = 0 in C0,α(S2);

from this formula and the expansions of h̊, g̊−1 and H, we have that

)S2()S2 + 2)[wε(p, ρ)] + Q(2)(4)(wε(p, ρ)) = O(ε) in C0,α(S2)

uniformly for (p, ρ) ∈ Zc; first observe that ‖wε‖C4,α(S2) → 0 as ε → 0 uniformly in Zc so the second
summand is negligible, then conclude that ‖wε‖C4,α(S2) = O(ε) uniformly on Zc. The other properties
follow from Lemma 2.2.10.

• ρ ≥ R2: in this case the surface Σε
p,ρ coincides with the standard sphere Sρ

p for which the discussion
has already been done in Lemma 4.1 of [Mon1].

• R1 ≤ ρ ≤ R2: with a Taylor expansion the auxiliary equation becomes

0 = PI ′
ε(Σ

ε
p,ρ(wε)) = PI ′

ε(Σ
ε
p,ρ) + PI ′′

ε (Σε
p,ρ)[wε] + o(‖wε‖C4,α(S2)).

But by definition Σε
p,ρ = Sρ

p(χvε), so

I ′
ε(Σ

ε
p,ρ) = I ′

ε(S
ρ
p(χvε)) = I ′

0(S
ρ
p) + I ′′

0 (Sρ
p)[χvε] + O(ε).

Since I ′
0(S

ρ
p) = 0 and ‖vε‖C4,α = O(ε) we get

‖I ′
ε(Σ

ε
p,ρ)‖C0,α(S2) = O(ε).

Now PI ′′
0 (Sρ

p) = )S2()S2 + 2) which is an invertible map C4,α⊥ → C0,α⊥
uniformly on Zc; since the

set of invertible operators is open, for ε small also PI ′′
ε (Sρ

p) is uniformly invertible. From the fact that
‖vε‖Ck(S2) = O(ε) for all k it follows that also PI ′′

ε (Σε
p,ρ) = PI ′′

ε (Sρ
p(χvε)) is uniformly invertible on Zc.

With a fixed point argument analogous to the proof of Lemma 4.1 in [Mon1] it is possible to show that

there exist r > 0 and a unique solution wε ∈ B(0, r) ⊂ C4,α⊥
of

wε = −PI ′′
ε (Σε

p,ρ)
−1
(
PI ′

ε(Σ
ε
p,ρ) + o(‖wε‖C4,α(S2))

)

with the desired properties.

Now we are in position to define the reduced functional Φε(p, ρ) = Iε(Σ
ε
p,ρ(wε(p, ρ))) and to state the

following fundamental Lemma:

Lemma 2.3.4. Fixed a compact set Zc ⊆ R3 ⊕ R+, for |ε| ≤ ε0 consider the functional Φε : Zc → R.
Assume that, for ε small enough, Φε has a critical point (pε, ρε) ∈ Zc. Then Σε

pε,ρε
(wε(pε, ρε)) is a critical

point of Iε.

Proof. The proof is a slight modification of the proof of Lemma 4.2 in [Mon1] just using the good decay
properties of vε, wε and their derivatives as ε → 0.

Remark 2.3.5. The reduced functional Φε is defined for small ε once a compact Zc ⊂ R3⊕R+ is fixed. In
the following discussion we will study the behavior of Φε for large ρ; this makes sense since the compact
Zc can be chosen arbitrarily large and the solution of the auxiliary equation wε(p, ρ) given in Lemma
2.3.3 is unique in a small ball of C4,α(S2)⊥. However the compact Zc will be chosen in a rigorous and
appropriate way in the proofs of Theorem 1.0.1 and Theorem 1.0.2.
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2.3.2 Expansion of the reduced functional Iε(Σ
ε
p,ρ(wε(p, ρ)))

Since Lemma 2.3.3 applies, we can perform the Finite Dimensional Reduction. In this Subsection we
will study the reduced functional Φε(p, ρ) = Iε(Σ

ε
p,ρ(wε(p, ρ))). For ρ < R1, Σε

p,ρ = Sε
p,ρ so for small

radius ρ we have the explicit expansion of Φε(p, ρ) = Iε(S
ε
p,ρ(wε(p, ρ))) given by Proposition 2.2.11. More

generally, for all the radius we can write the conformal Willmore functional on our surfaces Σε
p,ρ(w) as

Iε(Σ
ε
p,ρ(w)) = I0(Σ

ε
p,ρ(w)) + εG1(Σ

ε
p,ρ(w)) + ε2G2(Σ

ε
p,ρ(w)) + o(ε2). (2.25)

Now let us study the case ρ > R2, when Σε
p,ρ = Sρ

p ; in this circumstance we get the formula

Iε(S
ρ
p(w)) = I0(S

ρ
p(w)) + εG1(S

ρ
p(w)) + ε2G2(S

ρ
p(w)) + o(ε2). (2.26)

Lemma 2.3.6. For all standard spheres Sρ
p one has

I0(S
ρ
p) = G1(S

ρ
p) = 0.

Proof. As above, we write the functional as Iε(S
ρ
p) = I0(S

ρ
p) + εG1(S

ρ
p) + o(ε). First let us expand in ε

the geometric quantities of interest starting from the area form dΣε :=
√

EεGε − F 2
ε .

Eε = gε(θ1, θ1) = (θ1, θ1) + εh(θ1, θ1) = E0 + εh(θ1, θ1)

Fε = F0 + εh(θ1, θ2) = εh(θ1, θ2)

Gε = G0 + εh(θ2, θ2),

where (., .) denotes the euclidean scalar product and E0, F0, G0 are the coefficients of the first fundamental
form in euclidean metric. The area form can be expanded as

dΣε :=
√

EεGε − F 2
ε

=
√

E0G0 + ε
(
E0h(θ2, θ2) + G0h(θ1, θ1)

)
+ o(ε),

where the remainder o(ε) is uniform fixed the compact set in the variables (p, ρ), ρ > 0.
Using the standard Taylor expansion

√
a + bx + cx2 =

√
a + 1

2
b√
a
x + o(x), we get

√
EεGε − F 2

ε =
√

E0G0 +
ε

2

E0h(θ2, θ2) + G0h(θ1, θ1)√
E0G0

+ o(ε), (2.27)

where the remainder o(ε) is uniform fixed the compact set in the variables (p, ρ).
Now let us expand the second fundamental form.

First of all we have to find an expression of the inward normal unit vector νε on Sρ
p in metric gε.

We look for νε of the form
νε = ν0 + εN + o(ε)

where ν0 = −Θ is the inward normal unit vector on Sρ
p in euclidean metric and the remainder is o(ε)

uniformly fixed the compact in (p, ρ). From the orthogonality conditions gε(θ1, νε) = 0 and gε(θ2, νε) = 0,
we get

0 = gε(θ1, νε) = (θ1, ν0) + ε(θ1, N) + εh(θ1, ν0) + o(ε)

0 = gε(θ2, νε) = (θ2, ν0) + ε(θ2, N) + εh(θ2, ν0) + o(ε)

from which, being ν0 the euclidean normal vector to Sρ
p ,

(N, θ1) = −h(ν0, θ1) (2.28)

(N, θ2) = −h(ν0, θ2). (2.29)

Imposing the normalization condition on νε we obtain

1 = gε(νε, νε) = (ν0, ν0) + 2ε(ν0, N) + εh(ν0, ν0) + o(ε)

from which, being (ν0, ν0) = 1

(N, ν0) = −1

2
h(ν0, ν0). (2.30)
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Denote by θ̄i = θi

|θi| the normalized tangent vectors; since (θ̄1, θ̄2, ν0) are an orthonormal base, the

expressions (2.28),(2.29),(2.30) characterize univocally N , which can be written in this base as

N = −h(ν0, θ̄1)θ̄1 − h(ν0, θ̄2)θ̄2 − 1

2
h(ν0, ν0)ν0. (2.31)

Knowing the normal vector we can evaluate the coefficients of the second fundamental form

h̊εij := −gε(∇θi
νε, θj),

where ∇ is the connection on R3 endowed with the metric gε. By linearity, denoting with ∂
∂xλ the standard

euclidean frame of R3

∇θi
νε = θµ

i ∇µ(νλ
ε

∂

∂xλ
) =

∂νε

∂θi
+ θµ

i ν
λ
ε Γν

µλ

∂

∂xν

where Γν
µλ are the Christoffel symbols of (R3, gε).

Let us find an expansion in ε of Γν
µλ. By definition

Γν
µλ =

1

2
gνσ[Dµgλσ + Dλgσµ − Dσgµλ].

Noticing that gµσ = δµσ − εhµσ + o(ε) and Dµgλσ = εDµhλσ, we obtain

Γν
µλ =

1

2
εδνσ[Dµhλσ + Dλhσµ − Dσhµλ] + o(ε)

=
1

2
εδνσAµσλ

(2.32)

where we set
Aµνλ := [Dµhλν + Dλhνµ − Dνhµλ]. (2.33)

Hence

∇θi
νε =

∂νε

∂θi
+

1

2
εθµ

i ν
λ
0 δ

νσAµσλ
∂

∂xν
+ o(ε)

and the second fundamental form becomes

h̊εij = −
(
∂ν0
∂θi

, θj

)
− ε

[
h

(
∂ν0
∂θi

, θj

)
+

(
∂N

∂θi
, θj

)]
− 1

2
εθµ

i θ
ν
j ν

λ
0 Aµνλ. (2.34)

In order to simplify the expressions let us recall the values of the coefficients of the unperturbed first
fundamental form

E0 = ρ2

F0 = 0

G0 = ρ2 sin2 θ1,

those of the unperturbed second fundamental form (following the classical notation of the theory of

surfaces, we denote by l0, m0, n0 the quantities h̊011
, h̊012

, h̊022
)

l0 = ρ

m0 = 0

n0 = ρ sin2 θ1

and the unperturbed mean curvature and Gaussian curvature

H0 =
2

ρ

D0 =
1

ρ2
.

35



From formula (22) in the proof of Lemma 3.4 in [Mon1] and the above expressions of the unperturbed
quantities we have immediately that

∫

Sρ
p

H2
ε

4
dΣε = 4π − 1

2
ε

∫

S2

[
h(θ̄1, θ̄1) + h(θ̄2, θ̄2)

]
dΣ0 − 1

2
ερ

∫

S2

[
(θ̄µ

2 θ̄
ν
2 + θ̄µ

1 θ̄
ν
1 )νλ

0 Aµνλ

]
dΣ0

−ε
∫

(0,π)×(0,2π)

[
h

(
∂ν0
∂θ2

, θ̄2

)
+

(
∂N

∂θ2
, θ̄2

)]
dθ1dθ2

−ε
∫

S2

[
h

(
∂ν0
∂θ1

, θ̄1

)
+

(
∂N

∂θ1
, θ̄1

)]
dΣ0 + o(ε). (2.35)

Now we have to compute
∫

Sρ
p

DεdΣε. Knowing the first and the second fundamental forms we can evaluate

Dε := det h̊ε

det g̊ε
, in fact observing that

det h̊ε = det h̊0 − εn0

[
h

(
∂ν0
∂θ1

, θ1

)
+

(
∂N

∂θ1
, θ1

)]
− 1

2
εn0θ

µ
1 θ

ν
1ν

λ
0 Aµνλ +

−εl0
[
h

(
∂ν0
∂θ2

, θ2

)
+

(
∂N

∂θ2
, θ2

)]
− 1

2
εl0θ

µ
2 θ

ν
2ν

λ
0 Aµνλ + o(ε) (2.36)

and that
det g̊ε = det g̊0 + εE0h(θ2, θ2) + εG0h(θ1, θ1),

using the Taylor expansion 1
a+εb+o(ε) = 1

a − ε b
a2 + o(ε), we get

Dε = D0 − ε

n0

[
h

(
∂ν0

∂θ1 , θ1

)
+

(
∂N
∂θ1 , θ1

)]
+ 1

2n0θ
µ
1 θ

ν
1ν

λ
0 Aµνλ + l0

[
h

(
∂ν0

∂θ2 , θ2

)
+

(
∂N
∂θ2 , θ2

)]
+ 1

2 l0θ
µ
2 θ

ν
2ν

λ
0 Aµνλ

E0G0

−ε
[
E0h(θ2, θ2) + G0h(θ1, θ1)

]
det h̊0

(E0G0)2
+ o(ε).

Recalling (2.27) we obtain

∫

Sρ
p

DεdΣε =

∫

Sρ
p

D0dΣ0 +
ε

2

∫

(0,π)×(0,2π)

D0

{
E0h(θ2, θ2) + G0h(θ1, θ1)√

E0G0

}
dθ1dθ2

−ε
∫

(0,π)×(0,2π)

{n0

[
h

(
∂ν0

∂θ1 , θ1

)
+

(
∂N
∂θ1 , θ1

)]
+ 1

2n0θ
µ
1 θ

ν
1ν

λ
0 Aµνλ

√
E0G0

}
dθ1dθ2

−ε
∫

(0,π)×(0,2π)

{ l0

[
h

(
∂ν0

∂θ2 , θ2

)
+

(
∂N
∂θ2 , θ2

)]

√
E0G0

}
dθ1dθ2

−ε
∫

(0,π)×(0,2π)

{
1
2 l0θ

µ
2 θ

ν
2ν

λ
0 Aµνλ√

E0G0

+

[
E0h(θ2, θ2) + G0h(θ1, θ1)

]
det h̊0

(E0G0)3/2

}
dθ1dθ2 + o(ε).

(2.37)

Plugging the unperturbed quantities into (2.37), after some easy computations we get
∫

Sρ
p

DεdΣε = 4π − 1

2
ε

∫

S2

[
h(θ̄2, θ̄2) + h(θ̄1, θ̄1)

]
dΣ0 − ε

∫

(0,π)×(0,2π)

[
h

(
∂ν0
∂θ2

, θ̄2

)
+

(
∂N

∂θ2
, θ̄2

)]
dθ1dθ2

−ε
∫

S2

{[
h

(
∂ν0
∂θ1

, θ̄1

)
+

(
∂N

∂θ1
, θ̄1

)]
+
ρ

2
[θ̄µ

1 θ̄
ν
1ν

λ
0 Aµνλ + θ̄µ

2 θ̄
ν
2ν

λ
0 Aµνλ]

}
dΣ0 + o(ε).(2.38)

Comparing the integrals (2.35) and (2.38) we see that all terms cancel out and we can conclude that
∫

Sρ
p

[H2
ε

4
− Dε

]
dΣε = o(ε).
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In the following Lemma we find the expansion of the reduced functional Φε in terms of I0, G1, G2 and
their derivatives. Recall the notation introduced in Remark 2.3.1 about I ′

0 and I ′′
0 and the definition of

R2 given in the Subsection 2.3.1 after Lemma 2.3.2.

Lemma 2.3.7. For ρ > R2 the reduced functional has the following expression:

Φε = ε2
(

G2(S
ρ
p) − 1

2

∫

S2

[
G′

1(S
ρ
p)
(
I ′′
0 (Sρ

p)−1
[
G′

1(S
ρ
p)
])]

dΣ0

)
+ o(ε2).

Proof. With a Taylor expansion in ε, w and recalling that ‖w‖C4,α = O(ε) (see Lemma 2.3.3), we have

I ′
ε(S

ρ
p(w)) = I ′

0(S
ρ
p(w)) + εG′

1(S
ρ
p(w)) + o(ε)

= I ′
0(S

ρ
p) + I ′′

0 (Sρ
p)[w] + εG′

1(S
ρ
p) + o(ε).

Since I ′
0(S

ρ
p) = 0 and w satisfies the auxiliary equation PI ′

ε(S
ρ
p(w)) = 0, we must have

w = −εI ′′
0 (Sρ

p)−1[PG′
1(S

ρ
p)].

Observe that from G1(S
ρ
p) ≡ 0 ∀p, ρ it follows that G′

1(S
ρ
p) ∈ Ker[)S2()S2 +2)]⊥, so PG′

1(S
ρ
p) = G′

1(S
ρ
p).

Hence, recalling that I0(S
ρ
p) = 0, I ′

0(S
ρ
p) = 0, G1(S

ρ
p) = 0 we have

Iε(S
ρ
p(w)) = I0(S

ρ
p(w)) + εG1(S

ρ
p(w)) + ε2G2(S

ρ
p(w)) + o(ε2)

=
1

2

∫

S2

[
I ′′
0 (Sρ

p)[w] w
]
dΣ0 + ε

∫

S2

[
G′

1(S
ρ
p) w

]
dΣ0 + ε2G2(S

ρ
p) + o(ε2)

= −1

2
ε2
∫

S2

[
G′

1(S
ρ
p) I ′′

0 (Sρ
p)−1[G′

1(S
ρ
p)]
]
dΣ0 + ε2G2(S

ρ
p) + o(ε2).

Now we want to estimate the quantities G′
1(S

ρ
p) and G2(S

ρ
p) appearing in the expression of the reduced

functional.

Lemma 2.3.8. Writing the conformal Willmore functional on perturbed standard spheres as in (2.26),
we get the following expressions for the differential of G1 and for G2 evaluated on Sρ

p :

G′
1(S

ρ
p) = L(h) + (1 + ρ)

[
L(Dh) + L(D2h) + L(D3h)

]

G2(S
ρ
p) =

∫

Sρ
p

[ 1

ρ2
L(h)L(Dh) +

1

ρ
L(h)L(Dh) +

1

ρ2
(Q(h) + Q(Dh)) +

1

ρ
Q(Dh) + Q(Dh)

]

where L(.) and Q(.) denote a generic linear (respectively quadratic) function in the entries of the matrix
argument with smooth coefficients on S2 which can change from formula to formula and also in the same
formula.

Proof. To get the expression of the desired quantities we compute the expansion of Iε(S
ρ
p) at second order

in ε and first order in w. In the intention of simplifying the notation, we will omit the remainder terms in
the expansions. During the proof we use L(.) and Q(.) to denote a generic linear (respectively quadratic)
in the components real, vector or matrix-valued function, with real, vector or matrix argument and with
smooth coefficients on S2. The letter a will denote a smooth real, vector or matrix-valued function on
S2. L,Q and a can change from formula to formula and also in the same formula.

Let us start with the expansion. Observe that Sρ
p is parametrized by p + ρ(1 − w)Θ so the tangent

vectors are
Zi = ρ(1 − w)Θi − ρwiΘ = ρ(a + L(w) + L(Dw)).

The first fundamental form on Sρ
p is

g̊ij = gε(Zi, Zj) = (Zi, Zj) + εh(Zi, Zj) = ρ2
[
a + L(w) + L(Dw) + εL(h)(a + L(w) + L(Dw))

]

and
det g̊ = ρ4

[
a + L(w) + L(Dw) + εL(h)(a + L(w) + L(Dw)) + ε2Q(h)

]
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√
det g̊ = ρ2

[
a + L(w) + L(Dw) + εL(h)(a + L(w) + L(Dw)) + ε2Q(h)

]
;

it is easy to see that the inverse of metric is

g̊ij =
1

ρ2

[
a + L(w) + L(Dw) + εL(h)(a + L(w) + L(Dw)) + ε2Q(h)

]
.

The normal versor νε has to satisfy the three following equations:

0 = gε(νε, Zi) = (νε, Zi) + εh(νε, Zi) = νε(1 + εL(h))
(
a + L(w) + L(Dw)

)

1 = gε(νε, νε).

Hence, just solving the linear system given by the first two conditions and plugging in the third one, we
realize that

νε = a + L(w) + L(Dw) + εL(h)(a + L(w) + L(Dw)) + ε2Q(h).

In order to compute the second fundamental form h̊ε = −gε(∇Zi
νε, Zj) recall that

∇Zi
νε =

∂νε

∂θi
+ Zµ

i ν
λ
ε Γν

µλ

∂

∂xν

and that

Γν
µλ =

1

2
εδνσ[Dµhλσ + Dλhσµ − Dσhµλ] = εL(Dh),

so the covariant derivative of νε can be written as

∇Zi
νε = a + L(w) + L(Dw) + L(D2w) + εL(Dh)(a + L(w) + L(Dw)) + εL(h)(a + L(w) + L(Dw) + L(D2w))

+ερL(Dh)
(
a + L(w) + L(Dw)

)
+ ε2(1 + ρ)L(h)L(Dh)

and the second fundamental form becomes

h̊ε = ρ
[
a + L(w) + L(Dw) + L(D2w) + εL(Dh)(a + L(w) + L(Dw)) + εL(h)(a + L(w) + L(Dw) + L(D2w))

]

+ερ2L(Dh)
(
a + L(w) + L(Dw)

)
+ ε2ρ(1 + ρ)L(h)L(Dh) + ε2ρQ(h).

Using the previous formulas now we are in position to estimate H, H2 and D. With some easy compu-
tations one gets

H =
1

ρ

[
a + L(w) + L(Dw) + L(D2w) + εL(Dh)(a + L(w) + L(Dw)) + εL(h)(a + L(w) + L(Dw) + L(D2w))

]

+εL(Dh)
(
a + L(w) + L(Dw)

)
+ ε2

1

ρ
(1 + ρ)L(h)L(Dh) + ε2

1

ρ
Q(h).

H2 =
1

ρ2

[
a + L(w) + L(Dw) + L(D2w) + ε(L(h) + L(Dh) + ρL(Dh))(a + L(w) + L(Dw) + L(D2w))

]

+ε2
1

ρ2
(1 + ρ)L(h)L(Dh) +

ε2

ρ2
(Q(h) + Q(Dh)) +

ε2

ρ
L(Dh)(L(h) + L(Dh)) + ε2Q(Dh)

det h̊ = ρ2
[
a + L(w) + L(Dw) + L(D2w) + ε(L(h) + L(Dh) + ρL(Dh))(a + L(w) + L(Dw) + L(D2w))

]

+ε2ρ2(1 + ρ)L(h)L(Dh) + ε2ρ2(Q(h) + Q(Dh)) + ε2ρ3(1 + ρ)Q(Dh)

D =
det h̊

det g̊
=

1

ρ2

[
a + L(w) + L(Dw) + L(D2w) + ε(L(h) + L(Dh) + ρL(Dh))(a + L(w) + L(Dw) + L(D2w))

]

+
ε2

ρ2
(1 + ρ)L(h)L(Dh) +

ε2

ρ2
(Q(h) + Q(Dh)) + ε2

1

ρ
(1 + ρ)Q(Dh)

Now we can compute Iε(S
ρ
p(w)) = I0(S

ρ
p(w)) + εG1(S

ρ
p(w)) + ε2G2(S

ρ
p(w)) at the second order in ε and

first order in w:

Iε(S
ρ
p)) =

∫

Sρ
p

[
H2

4
− D

]
dΣ0 =

∫

S2

[
a + L(w) + L(Dw) + L(D2w)

]
dΣ0

+ε

∫

S2

[(
L(h) + L(Dh) + ρL(Dh)

)(
a + L(w) + L(Dw) + L(D2w)

)]
dΣ0

+ε2
∫

S2

[
(1 + ρ)L(h)L(Dh) + ρL(Dh)(L(h) + L(Dh)) + Q(h) + Q(Dh) + ρQ(Dh) + ρ2Q(Dh)

]
dΣ0.
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So G1(S
ρ
p(w)) =

∫
S2 [(L(h) + L(Dh) + ρL(Dh)

)(
a + L(w) + L(Dw) + L(D2w))], but also

G1(S
ρ
p(w)) = G1(S

ρ
p) +

∫

S2

G′
1(S

ρ
p)wdΣ0;

with an integration by parts we get the first variation
∫

S2

G′
1(S

ρ
p)w =

∫

S2

[(
L(h) + (1 + ρ)

(
L(Dh) + L(D2h) + L(D3h)

))
w
]
dΣ0,

then the differential of G1 at Sρ
p is

G′
1(S

ρ
p) = L(h) + (1 + ρ)

[
L(Dh) + L(D2h) + L(D3h)

]
.

Finally observe that

G2(S
ρ
p) =

∫

Sρ
p

[1 + ρ

ρ2
L(h)L(Dh)+

1

ρ
L(Dh)(L(h)+L(Dh))+

1

ρ2
(Q(h)+Q(Dh))+

1

ρ
Q(Dh)+Q(Dh)

]
dΣ0

2.3.3 Proof of the existence Theorems

In order to get existence of critical points we study the reduced functional Φε : R3 ⊕ R+ → R. Since for
small radius ρ, the reduced functional coincides with the conformal Willmore functional evaluated on the
perturbed geodesic spheres Sε

p,ρ(wε(p, ρ)) obtained in Lemma 2.2.10, then we know the expansion of Φε

for small radius from Proposition 2.2.11. Now, using the expression of the reduced functional for large
radius given in Lemma 2.3.7 and the estimates of Lemma 2.3.8, we are able to bound Φε(p, ρ) for large
radius. This is done in the following Lemma:

Lemma 2.3.9. Let hµν ∈ C∞
0 (R3) a symmetric bilinear form with compact support (it is enough that h

and its first derivatives decrease fast at infinity) and let c ∈ R such that

c := sup{‖hµν‖H1(π) : π is an affine plane in R3, µ, ν = 1, 2, 3}.

Then there exists a constant Cc > 0 depending on c and R3 > 0 such that for all ρ > R3

|Φε(p, ρ)| < ε2Cc.

Moreover one has that ∀η > 0 there exist δ > 0 small enough and R4 ≥ 0 large enough such that for c < δ
and ρ > R4

|Φε(p, ρ)| < ηε2.

Proof. For simplicity the proof of the Lemma is done in the case h ∈ C∞
0 . Using the notations established

in Remark 2.3.1, from Lemma 2.3.7 and Lemma 2.3.8 we can write the reduced functional as

Φε(p, ρ) = ε2
(

G2(S
ρ
p) − 1

2

∫

S2

[
G′

1(S
ρ
p)((I ′′

0 (Sρ
p))−1

[
G′

1(S
ρ
p)
]
)

])
+ o(ε2)

= ε2
∫

Sρ
p

[ 1

ρ2
L(h)L(Dh) +

1

ρ
L(h)L(Dh) +

1

ρ2
(Q(h) + Q(Dh)) +

1

ρ
Q(Dh) + Q(Dh)

]
dΣ0

+ε2
∫

Sρ
p

1

ρ2

[
L(h) + (1 + ρ)(L(Dh) + L(D2h) + L(D3h)) ×

×()S2()S2 + 2))−1
[
L(h) + (1 + ρ)(L(Dh) + L(D2h) + L(D3h))

]]
dΣ0.

Now denote K = supp(h) which is a compact subset of R3; of course in the formula above the domain of
integration can be replaced with Sρ

p ∩ K.
Observe that for all σ > 0 there exists R > 0 with the following property:

for all standard spheres Sρ
p with radius ρ > R there exists an affine plane π ⊂ R3 such that

‖h‖2
H1(Sρ

p∩K) < ‖h‖2
H1(π∩K) + σ. (2.39)
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This is simply because one can approximate (in Ck norm for all k ∈ N ) the portion of standard sphere
Sρ

p ∩ K with a portion of an affine plane π provided that the radius ρ is large enough.
So the first integral can be bounded by a constant times ‖h‖2

H1(π∩K) + σ. Using the standard elliptic
regularity estimates and integration by parts also the second integral can be bounded with a constant
times ‖h‖2

H1(π∩K) + σ.

Hence for all σ > 0 there exists R > 0 and C̃ > 0 such that for all (p, ρ) with ρ > R, there exists an affine
plane π such that

|Φε(p, ρ)| < ε2C̃(‖h‖2
H1(π∩K) + σ).

Notice that C̃ depends on the structure of the functions L(.) and Q(.) but is uniform in (p, ρ), R and σ
as above. Recalling the definition of c we get:

For all σ > 0 there exists R > 0 such that for all (p, ρ) with ρ > R,

|Φε(p, ρ)| < ε2C̃(c2 + σ).

Clearly setting σ = 1, R3 = R and Cc = C̃(c2 +1) one obtains the first part of the thesis. For the second
part we have to show that for all η > 0 there exist δ > 0 and R4 > 0 such that if c < δ then for all (p, ρ)
with ρ > R4 one has Φε(p, ρ) < ε2η; but this is true setting above δ2 = σ = η

2C̃
and R4 = R associated

to σ as before (observe that the estimate is uniform in p).

Now we are in position to prove the main results of the Chapter.

Proof of Theorem 1.0.1 In order to show the Theorem, by Lemma 2.3.4, it is enough to prove that Φε

has a critical point.
Observe that for ρ < R1

Φε(p, ρ) = Iε(S
ε
p,ρ(wε)) = O(ρ4),

so Φε can be extended to a C1 function up to ρ = 0 just putting Φε(p, 0) = 0 for all p ∈ R3.
Let R3 and Cc be as in Lemma 2.3.9. Since h has compact support, there exists a R > 0 such that for
|p| ≥ R and ρ ≤ R3, Sρ

p ∩ supp(h) = ∅.
In order to apply the Finite Dimensional Reduction, we have to fix a compact Zc ⊂ R3 ⊕ R+. Let us

choose it as
Zc := {(p, ρ) : |p| ≤ R, 0 ≤ ρ ≤ R3}.

Apply Lemma 2.3.3 to the compact Zc and observe that on the boundary ∂Zc we have:
- ρ = 0: Φε = 0.
- |p| = R: Φε = 0. In fact for |p| = R the standard sphere Sρ

p does not intersect the support of h, so
Σε

p,ρ = Sρ
p for all the radius 0 ≤ ρ ≤ R3; since the solution of the auxiliary equation PI ′

ε(Σ
ε
p,ρ(wε)) = 0

is unique for wε small enough and since Sρ
p is already a critical point for Iε(= I0 since Sρ

p ∩ supp(h) = ∅)
it follows that Σε

p,ρ(wε) = Sρ
p , hence

Φε(p, ρ) = Iε(Σ
ε
p,ρ(wε)) = Iε(S

ρ
p) = I0(S

ρ
p) = 0.

-ρ = R3: from Lemma 2.3.9 we have that |Φε| < ε2Cc.
Now observe that Φε = O(ε2) uniformly on Zc:

from the definition of reduced functional, with a Taylor expansion one gets

Φε(p, ρ) = Iε(Σ
ε
p,ρ(wε)) = I ′

ε(Σ
ε
p,ρ)[wε] + O(‖wε‖2),

but ‖wε‖C4,α(S2) = O(ε) and ‖vε‖C4,α(S2) = O(ε) uniformly for (p, ρ) ∈ Zc, so

I ′
ε(Σ

ε
p,ρ) = I ′

ε(S
ρ
p(vε)) = I ′′

0 (Sρ
p)[vε] + εG′

1(S
ρ
p) + o(ε) = O(ε)

hence Φε = O(ε2) uniformly on Zc.
At this moment we know that Φε is of order O(ε2) uniformly on Zc and we know its behavior on the

boundary ∂Zc.
Now we are going to use the expansion for small radius computed in Proposition 2.2.11. Recall that for
ρ < R1, Φε(p, ρ) = Iε(S

ε
p,ρ(wε(p, ρ))) and from Proposition 2.2.11 we have the expansion:

Φε(p, ρ) =
π

5
‖Sp‖2ρ4 + O(ε2)Op(ρ

5).
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Recalling (1.6), the first term can be written as ‖Sp‖2 = ε2s̃p + o(ε2), so

Φε(p, ρ) =
π

5
ε2s̃pρ

4 + ρ4o(ε2) + O(ε2)Op(ρ
5).

Choose ρ̄ < R1 such that for small ε the remainder |ρ̄4o(ε2) + O(ρ̄5)O(ε2)| < ε2 and choose Ac > 5
π

Cc+1
ρ̄4 .

If there exists a point p̄ such that s̃p̄ > Ac then

Φε(p̄, ρ̄) > ε2Cc

so Φε attains its global maximum on Zc at an interior point (pε, ρε) for all ε small enough and applying
Lemma 2.3.4 we can say that Σε

p,ρ(wε(p, ρ)) is a critical point of Iε for ε small enough.
Since for ε → 0 we have ‖vε‖C4,α(S2) → 0 and ‖wε‖C4,α(S2) → 0 (see Lemma 2.3.2 and Lemma 2.3.3),
then the critical point Σε

p,ρ(wε(p, ρ)), for small ε, can be realized as normal graph on a standard sphere
and it converges to a standard sphere as ε → 0.

Proof of Theorem 1.0.2 Recall (1.6) and let p̄ ∈ R3 be a maximum point of the first term in the
expansion of the squared norm of the Traceless Ricci tensor: s̃p̄ = M . Observe that from Proposition
2.2.11 and from the proof of the last Theorem, for small radius ρ the reduced functional Φε(p̄, ρ) expands
as

Φε(p̄, ρ) =
π

5
ε2s̃p̄ρ

4 + ρ4o(ε2) + O(ε2)Op̄(ρ
5).

Let ρ̄ and ε small enough such that the remainder |ρ̄4o(ε2) + O(ε2)Op̄(ρ̄
5)| < π

10Mε2ρ̄4; in this way

Φε(p̄, ρ̄) >
π

10
Mε2ρ̄4.

From the second part of Lemma 2.3.9 there exist δM > 0 and R4 > 0 such that, if c < δM

|Φε(p, ρ)| <
π

11
Mε2ρ̄4 ∀(p, ρ) : ρ ≥ R4.

(Recall that h has compact support and if Σε
p,ρ(wε(p, ρ)) does not intersect supp(h) then Φε(p, ρ) = 0.)

As in the proof of Theorem 1.0.1, let R > 0 be such that for |p| ≥ R and ρ ≤ R4, Sρ
p ∩ supp(h) = ∅;

now we apply the Finite Dimensional Reduction to the compact subset Zc ⊂ R3 ⊕ R+ defined as

Zc := {(p, ρ) : |p| ≤ R, 0 ≤ ρ ≤ R4}.

If we apply Lemma 2.3.3 to the compact Zc, from the previous discussion and from the proof of Theorem
1.0.1, on the boundary ∂Zc we have:
- ρ = 0: Φε = 0.
- |p| = R: Φε = 0.
-ρ = R4: |Φε(p, ρ)| < π

11Mε2ρ̄4.
Observe that (p̄, ρ̄) is an interior point of ∂Zc and that

Φε(p̄, ρ̄) >
π

10
Mε2ρ̄4 > sup

(p,ρ)∈∂Zc

|Φε(p, ρ)|

so Φε attains its global maximum on Zc at an interior point (pε, ρε) for all ε small enough. Applying
Lemma 2.3.4 we can say that Σε

p,ρ(wε(p, ρ)) is a critical point of Iε for ε small enough and we conclude
as in the previous Theorem.
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Chapter 3

Existence of a smooth embedded
sphere minimizing the Willmore
functional in a semi perturbative
setting

3.1 Preliminaries and notations of the chapter

1) We use the following notation: Greek index letters, such as µ, ν, ι, . . . , range from 1 to 3 while Latin
index letters, such as i, j, k, . . . , will run from 1 to 2.

2) Let h = hµν(x) be a symmetric bilinear form with compact support in R3 and small C1 norm; the
support of h will be called spth. With C0 and C1 norm we mean

‖h‖C0 := sup
x∈R3

sup
u,v∈S2

|h(x)(u, v)|

‖Dh‖C0 := sup
x∈R3

sup
u,v,w∈S2

|Dw(h(x)(u, v))|

where Dw is just the directional derivative and of course ‖h‖C1 = ‖h‖C0 + ‖Dh‖C0 .
In all the chapter R3 will be just the “manifold” without metric, (R3, δ) will be the “Riemannian mani-
fold” of the three dimensional euclidean space and (R3, δ+ h) will denote the manifold R3 endowed with
the Riemannian metric δµν + hµν(x).
We will call Be

ρ(x) (and Bh
ρ (x)) the euclidean ball (respectively the geodesic ball in (R3, δ+ h)) of center

x and radius ρ.

3) We will denote by Σ ↪→ R3 an immersed smooth closed (i.e. compact without boundary) orientable
surface of genus g (for simplicity we will assume g = 0 but most of the results remain true only with a
uniform bound on the genus).
The surface Σ can be seen as immersed in two different Riemannian manifolds: (R3, δ) and (R3, δ+h). It
follows that all the geometric quantities can be computed with respect the two different spaces and will
have two values: the euclidean and the perturbed ones. We use the convention that all the quantities
computed with respect to the euclidean metric will have a subscript “e” and the corresponding ones
evaluated in perturbed metric will have a subscript “h”:

|Σ|e, (Ae)ij , He, We(Σ) . . .

are the euclidean area of Σ, euclidean second fundamental form, euclidean mean curvature, euclidean
Willmore functional while

|Σ|h, (Ah)ij , Hh, Wh(Σ) . . .

are the corresponding quantities in metric δ + h. The first fundamental form induced on Σ by the two
different metrics will be denoted respectively by δ̊ij and ( ˚δ + h)ij or simply by δ̊ and ˚δ + h.
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We will call Σx,ρ := Σ ∩ Be
ρ(x).

4) Let Σ be as above. Recall that the euclidean Willmore functional of Σ is defined as

We(Σ) :=
1

4

∫

Σ

|He|2
√

det δ̊

where He = k1 + k2 is the sum of the principal curvatures and
√

det δ̊ is the area form induced by the
euclidean metric. Analogously, just taking the corresponding quantities in metric δ + h, one defines Wh.
Let us denote

αg
h := inf{Wh(Σ) : Σ ↪→ R3is an immersed smooth closed orientable surface of genus ≤ g} (3.1)

and when g is not written we mean genus= 0:

αh := α0
h.

3.2 Geometric estimates and a monotonicity formula in a per-
turbed setting

The goal of this Section is to prove monotonicity formulas which link the area, the diameter and the
Willmore functional of a surface Σ ↪→ (R3, δ + h); in order to obtain it we get estimates from above and
below of the perturbed geometric quantities in terms of the corresponding euclidean ones.
Let us start with a straightforward but useful Lemma.

Lemma 3.2.1. Let (R3, δ+h) be the euclidean space with compactly supported perturbation h and assume
that ‖h‖C0(R3) ≤ η < 1.

Then
i) (R3, δ + h) is a complete Riemannian manifold
ii) for every pair of points p1, p2 ∈ R3 we have

1√
1 + η

dh(p1, p2) ≤ de(p1, p2) ≤ 1√
1 − η

dh(p1, p2)

where de(p1, p2) (respectively dh(p1, p2)) is the distance in (R3, δ) (respectively in (R3, δ+h)) between the
points p1, p2.

Proof. To get i) it is sufficient to prove that all the geodesics of (R3, δ + h) are defined globally; but
this is a simple exercise of ODE just considering the geodesic differential equation ẍµ +Γµ

νλẋν ẋλ = 0 and
observing that the Christoffel symbols Γµ

νλ of (R3, δ + h) are bounded. Indeed, since the the geodesics
of (R3, δ + h) can be parametrized by arclength, the geodesic differential equation can be interpreted as
a dynamical system on the Spherical bundle S(R3, δ + h) of (R3, δ + h) (the bundle of the unit tangent
vectors) generated by the vector field Xh(xµ, yµ) := (yµ, −Γµ

νλyνyλ) where x ∈ R3, y ∈ TxR3 with
|y|h = 1. But Xh is a bounded vector field on S(R3, δ + h) which implies by standard and simple ODE
arguments (see for instance Lemma 7.2 and Lemma 7.3 of [AMNonLin]) that the integral curves are
defined on the whole R.

ii) Consider the segment of straight line [p1, p2] connecting p1 and p2. Then by definition of distance
as inf of the lengths of the curves connecting p1 and p2

dh(p1, p2) ≤ lengthh([p1, p2]) :=

∫ 1

0

√
(δ + h)(p2 − p1, p2 − p1) ≤

√
1 + η de(p1, p2)

where of course lengthh([p1, p2]) is the length of the segment [p1, p2] in the metric δ + h.
Let us prove the other inequality; let γh : [0, 1] → R3 be the minimizing geodesic in (R3, δ + h)

connecting p1 and p2 (it exists since (R3, δ + h) is complete by part i) ). Then

dh(p1, p2) =

∫ 1

0

√
(δ + h)(γ̇h, γ̇h) ≥

∫ 1

0

√
(1 − η) δ(γ̇h, γ̇h) =

√
1 − η lengthe(γh) ≥

√
1 − η de(p1, p2)

where of course lengthe(γh) is the length of the curve γh in euclidean metric.
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Lemma 3.2.2. Let Σ ↪→ R3 be an immersed smooth closed orientable surface and let ||h||C0 ≤ η < 1/4.
Then the following pointwise estimate on the area form holds:

(1 − 4η)

√
(det δ̊) ≤

√
det( ˚δ + h) ≤ (1 + 4η)

√
(det δ̊). (3.2)

Denoted with Be
ρ(x) the euclidean ball of radius ρ and center x, we will call Σx,ρ := Σ∩Be

ρ(x). Then just
integrating one gets

(1 − 4η)|Σx,ρ|e ≤ |Σx,ρ|h ≤ (1 + 4η)|Σx,ρ|e
for all x ∈ R3 and ρ > 0.

Proof. Let us call f : Ω ⊂ R2 → R3 a coordinate patch for the surface Σ (Ω is a regular open subset
of R2); of course it is enough to do all the computation for a general patch, moreover we can assume
that the patch is conformal with respect to the euclidean metric (i.e. we are using isothermal coordinates
w.r.t. the euclidean structure). Recall that

|Σx,ρ|e :=

∫

Σx,ρ

√
det(̊δ)

and

|Σx,ρ|h :=

∫

Σx,ρ

√
det( ˚δ + h)

where δ̊ and ˚δ + h are the first fundamental forms induced by euclidean and perturbed metric.
Let fi, i = 1, 2 be the derivatives of f with respect to the two coordinates (i.e. the two tangent vectors
of the coordinate frame), then by definition:

( ˚δ + h)ij = (δ + h)(fi, fj) = δ̊ij + h(fi, fj)

where δ̊ij is diagonal. We can evaluate the determinant:

det( ˚δ + h) = det(̊δ) + δ̊11h(f2, f2) + δ̊22h(f1, f1) + det(h(fi, fj)). (3.3)

From the assumptions we have
|h(fi, fi)| ≤ ηδ̊ii

h(f1, f2)
2 ≤ η2δ̊11δ̊22 ≤ η2 det δ̊.

Putting the last two estimates in (3.3) and observing that η2 < η we get

(1 − 4η)(det δ̊) ≤ det( ˚δ + h) ≤ (1 + 4η)(det δ̊). (3.4)

Since in our range 1 − 4η ≤ √
1 − 4η and

√
1 + 4η ≤ 1 + 4η, we have the thesis just taking the square

root of (3.4) and integrating on the desired domain.

In the following Lemma we derive a pointwise estimate from above and below of the mean curvature
squared in a perturbed setting in terms of the corresponding euclidean quantities.

Lemma 3.2.3. Let Σ be as in Lemma 3.2.2 and assume that ‖h‖C0 ≤ η, ‖Dh‖C0 ≤ θ ( η is supposed to
be small while no assumption is made on θ). Then the following pointwise estimate holds:

(1 − Cη − γ)|He|2 − (Cη + γ)|Ae|2 − Cγθ
2 ≤ |H|2h ≤ (1 + Cη + γ)|He|2 + (Cη + γ)|Ae|2 + Cγθ

2

where γ > 0 can be chosen arbitrarily small and Cγ is a constant depending on γ such that Cγ → ∞ if
γ → 0 but which can be bounded by Cγ ≤ C(1 + 1

γ ) for C large enough independent of γ.

Proof. Let us fix a point p ∈ Σ and use the same notation of Lemma 3.2.2; all the computations
will be done at the point p. Choose the parametrization f given by the normal coordinates at p (with

respect to the metric δ̊) such that the coordinate vectors fi are euclidean-orthonormal and diagonalize
the euclidean second fundamental form Ae at p (the first condition is trivial, the second can be achieved
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by a rotation). With this choice of coordinates, the euclidean-Christoffel symbols Γ̃k
ij of Σ vanish at p

and one can say that
∂2f

∂xi∂xj
= (Ae)ijνe + Γ̃k

ijfk = (Ae)ijνe (3.5)

at the point p; this will be useful later. In the formula above and in what follows, νe denotes the euclidean
normal vector to Σ:

νe := f1 × f2.

The normal vector to Σ in the perturbed metric is denoted with νh and it has the form

νh = νe + N

where the correction N is small since ‖h‖C0 is small. More precisely from the orthogonality conditions
(δ + h)(f1, νh) = 0 and (δ + h)(f2, νh) = 0 we get

δ(N, f1) = −h(νe, f1) + higher order terms

δ(N, f2) = −h(νe, f2) + higher order terms.

Imposing the normalization condition (δ + h)(νh, νh) = 1 we obtain

δ(N, νe) = −1

2
h(νe, νe) + higher order terms.

Collecting the formulas above, being (f1, f2, νe) an orthonormal frame in euclidean metric, we can repre-
sent N as

N = −h(νe, f1)f1 − h(νe, f2)f2 − 1

2
h(νe, νe)νe + higher order terms. (3.6)

Observe that the higher order terms can be computed in an inductive way using the orthonormality
conditions above and that for η small

|N |e :=
√
δ(N,N) ≤ Cη. (3.7)

Now let us compute the perturbed second fundamental form

(Ah)ij := (δ + h)(νh, δ+h∇fi
fj)

where δ+h∇ is the covariant derivative in (R3, δ + h); by definition

δ+h∇fi
fj =

∂2f

∂xi∂xj
+δ+h Γfifj

where δ+hΓ are the Christoffel symbols of (R3, δ+h) and δ+hΓfifj := δ+hΓµ
νλfν

i fλ
j eµ ({eµ} is the standard

euclidean orthonormal basis of (R3, δ) and fi = fµ
i eµ).

Using (3.5), the perturbed second fundamental form becomes

(Ah)ij = (δ + h)(νe + N, (Ae)ijνe + δ+hΓfifj).

Observing that |δ+hΓ| ≤ Cθ and recalling (3.7) one gets

(Ae)ij − Cη(Ae)ij − Cθ ≤ (Ah)ij ≤ (Ae)ij + Cη(Ae)ij + Cθ. (3.8)

Just squaring and using γ-Cauchy inequality we get that for any small γ > 0 there exists a Cγ > 0 such
that the following estimate holds

(1 − 2γ − Cη)|Ae|2 − Cγθ
2(1 + η2) ≤ |Ah|2 ≤ (1 + 2γ + Cη)|Ae|2 + Cγθ

2(1 + η2). (3.9)

Taking the trace of (3.8) with respect to ˚δ + h,

Hh := ( ˚δ + h)ij(Ah)ij ;
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and since
(̊δ)ij − Cη ≤ ( ˚δ + h)ij ≤ (̊δ)ij + Cη

we get
He − Cη|Ae|e − Cθ ≤ Hh ≤ He + Cη|Ae|e + Cθ (3.10)

where |Ae|e (in the sequel called just |Ae|) is the euclidean norm of the euclidean second fundamental
form. At this point we can compute the estimate of |Hh|2, let us do the one from above (the other one
is analogous). Using the Cauchy inequality we can write

|Hh|2 ≤ |He|2 + Cη|He||Ae| + Cθ|He| + Cη2|Ae|2 + Cθ|Ae| + Cθ2

≤ (1 + Cη + γ)|He|2 + (Cη + γ)|Ae|2 + Cγθ
2

where Cγ → ∞ as γ → 0 but can be bounded by Cγ ≤ C(1 + 1
γ ) for C large enough.

Lemma 3.2.4. Let spth ⊆ Be
r0

(x0) for some x0 ∈ R3 and r0 > 0. As before ‖h‖C0 ≤ η, ‖Dh‖C0 ≤ θ
(η is supposed to be small while no assumption is made on θ) and Σ ↪→ R3 is a closed smooth orientable
surface of genus 0 (it is enough to ask the uniform bound genus(Σk) ≤ g) immersed in R3. Then

(1 − Cη − Cγ − Cγr2
0θ

2)We(Σ) − Cg(η + γ) ≤ Wh(Σ) (3.11)

where Cg → ∞ as g → ∞, γ > 0 can be chosen arbitrarily small and Cγ is a constant depending on γ
such that Cγ → ∞ if γ → 0 but which can be bounded by Cγ ≤ C(1 + 1

γ ) for C large enough independent
of γ. It follows that for γ, η and r0θ small enough

We(Σ) ≤ 3

2
Wh(Σ) + 1. (3.12)

Proof. Recalling the estimate of the area form (3.2), just integrating the formula of Lemma 3.2.3 one
gets

Wh(Σ) :=
1

4

∫

Σ

|Hh|2
√

det ˚(δ + h) ≥
∫

Σ

[(1

4
− Cη − γ

)
|He|2 − (Cη + γ)|Ae|2 − Cγθ

2χh

]
(1 − 4η)

√
det δ̊

where χh is the characteristic function of spt h (i.e χh(x) = 1 if x ∈ spt h and χh(x) = 0 otherwise).
From the Gauss-Bonnet Theorem

∫

Σ

|Ae|2
√

det δ̊ =

∫

Σ

|He|2
√

det δ̊ − 4πχE(Σ)

where χE(Σ) = 2 − 2 genus(Σ) is the Euler Characteristic of Σ. In the case genus(Σ) = 0 of course
χE(Σ) = 2 but more generally if genus(Σ) is uniformly bounded also −4πχE(Σ) will be uniformly
bounded from above. Hence

Wh(Σ) ≥ (1 − Cη − γ)We(Σ) − Cg(η + γ) − Cγθ
2|Σ ∩ spt h|e

where Cg → ∞ as g → ∞. From formula (1.3) in [SiL],

|Σ ∩ spt h|e ≤ |Σ ∩ Be
r0

(x0)|e ≤ Cr2
0We(Σ). (3.13)

We can conclude that

Wh(Σ) ≥ (1 − Cη − γ − Cγθ
2r2

0)We(Σ) − Cg(η + γ).

We get the thesis by first fixing γ small enough and then choosing sufficiently small η, θ.

Using the estimates of the previous Lemmas, we get the desired monotonicity formulas in the following
proposition.
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Proposition 3.2.5. As before let spth ⊆ Be
r0

(x0) for some x0 ∈ R3, r0 > 0 and ‖h‖C0 ≤ η, ‖Dh‖C0 ≤ θ;
recall that Σ ↪→ R3 is a closed smooth orientable surface of genus g ≥ 0 immersed in R3. Then for η and
r0θ small enough the following inequality holds

σ−2|Σx,σ|h ≤ C
[
ρ−2|Σx,ρ|h + Wh(Σx,ρ) + [Cg(η + γ) + Cγr2

0θ
2](Wh(Σ) + 1)

]
0 < σ ≤ ρ < ∞

where γ > 0 can be chosen arbitrarily small and Cγ , Cg are constants depending on γ (respectively on g)
such that Cγ → ∞ if γ → 0 (respectively Cg → ∞ if g → ∞). It follows the more simple estimate

σ−2|Σx,σ|h ≤ Cg

[
ρ−2|Σx,ρ|h + Wh(Σ) + 1

]
0 < σ ≤ ρ < ∞ (3.14)

and just taking the limit ρ → ∞,

|Σ|h ≤ Cg(Wh(Σ) + 1)(diame Σ)2 (3.15)

where diame Σ is the euclidean diameter of Σ.

Proof. Let us recall the euclidean monotonicity formula proved by Simon (formula (1.3) in [SiL]):

σ−2|Σx,σ|e ≤ C(ρ−2|Σx,ρ|e + We(Σx,ρ)). (3.16)

We just have to estimate from above and below the area part and from above the Willmore term.
From Lemma 3.2.2

1

1 + 4η
|Σx,σ|h ≤ |Σx,σ|e,

|Σx,ρ|e ≤ 1

1 − 4η
|Σx,ρ|h

and integrating the formula of Lemma 3.2.3 one gets

Wh(Σx,ρ) ≥
∫

Σx,ρ

[(1

4
− Cη − γ

)
|He|2 − (Cη + γ)|Ae|2

]
(1 − 4η)

√
det δ̊ − Cγθ

2

∫

Σx,ρ

χh

√
det ˚(δ + h)

where χh is the characteristic function of spt h.
From the Gauss Bonnet Theorem and the estimate (3.12),

∫

Σx,ρ

|Ae|2
√

det δ̊ ≤
∫

Σ

|Ae|2
√

det δ̊ ≤ Cg(We(Σ) + 1) ≤ Cg(Wh(Σ) + 1)

where Cg is a constant depending on genus(Σ) such that Cg → ∞ if genus(Σ) → ∞. Hence

Wh(Σx,ρ) ≥ (1 − Cη − Cγ)We(Σx,ρ) − Cg(η + γ)(Wh(Σ) + 1) − Cγθ
2|Σx,ρ ∩ spth|h

and for η, γ small enough (γ will be small but fixed while η can vary and be arbitrarily closed to 0)

We(Σx,ρ) ≤ CWh(Σx,ρ) + Cg(η + γ)(Wh(Σ) + 1) + Cγθ
2|Σx,ρ ∩ spth|h.

From the previous inequalities (3.2)-(3.13) and (3.12)

|Σx,ρ ∩ spth|h ≤ C|Σ ∩ Be
r0

(x0)|e ≤ Cr2
0We(Σ) ≤ Cr2

0(Wh(Σ) + 1),

hence
We(Σx,ρ) ≤ CWh(Σx,ρ) + Cg(η + γ)(Wh(Σ) + 1) + Cγr2

0θ
2(Wh(Σ) + 1)

and we can conclude that

σ−2|Σx,σ|h ≤ C
[
ρ−2|Σx,ρ|h + Wh(Σx,ρ) + [Cg(η + γ) + Cγr2

0θ
2](Wh(Σ) + 1)

]
.

47



3.3 Global a priori estimates on the minimizing sequence Σk

Under a very general assumption on the metric (we just ask that the scalar curvature of the ambient
manifold is strictly positive at one point) we will show global a priori estimates on the minimizing sequence
of the Willmore functional: more precisely we will get a uniform upper area bound and uniform upper
and lower bounds on the diameters.

Proposition 3.3.1. Following the previous notation, let (R3, δ + h) be the ambient manifold and αg
h =

inf(Wh) over the surfaces of genus less or equal than g (for the precise definition see equation (3.1)). If
there exists a point p̄ ∈ R3 such that the scalar curvature Rh of (R3, δ + h) is strictly positive

Rh(p̄) > 0

then there exists ε > 0 such that
αg

h < 4π − 2ε.

Proof. From Proposition 3.1 of [Mon1], on geodesic spheres Sp̄,ρ of center p̄ and small radius ρ one has

Wh(Sp̄,ρ) = 4π − 2π

3
Rh(p̄)ρ2 + O(ρ3).

Since the genus of these surfaces is 0 and Rh(p̄) > 0 the conclusion follows.

Corollary 3.3.2. Let Σk, with genus Σk ≤ g, be a minimizing sequence for Wh of bounded genus

Wh(Σk) ↓ αg
h

and assume there exists a point p̄ ∈ R3 such that the scalar curvature Rh(p̄) > 0.
Then there exists ε > 0 such that for large k

Wh(Σk) < 4π − ε.

Now let us state and prove uniform a priori upper bounds on the minimizing sequence Σk. The idea
is to use just that Wh(Σk) < 4π− ε and then perform a blow down procedure making use of the rescaling
invariance of the Willmore functional (see equation (3.24) below).

Proposition 3.3.3. Let (R3, δ + h) be as before with small ‖h‖C1 and let Σk ↪→ R3 be a sequence of
immersed smooth closed orientable surfaces of genus 0 (more generally one can ask the uniform bound
genus(Σk) ≤ g, but in this case the required smallness of ‖h‖C1 depends on g and goes to 0 as g → ∞).
Assume that

lim sup
k

Wh(Σk) < 4π,

then
i)there exists a compact subset K ⊂ R3 such that

Σk ⊆ K ∀k ∈ N,

ii) there exists a uniform area bound
|Σk|h ≤ C.

for some large C > 0.

Proof. We can assume that each surface Σk is connected, otherwise just replace the sequence {Σk}k∈N
with the sequence of the connected components and observe that it satisfies the same assumptions.
As before call η := ‖h‖C0 and θ := ‖Dh‖C0 . Since h has compact support then spth ⊆ Be

r0
(0) for some

r0 > 0 and from Wh(Σk) < 4π it follows that

Σk ∩ Be
r0

(0) /= ∅ for k large.

In fact if Σk ∩ Be
r0

(0) = ∅ then Wh(Σk) = We(Σk) and We(Σk) ≥ 4π from Theorem 7.2.2 in [Will].
If we prove that lim supk(diame Σk) < ∞ then of course we get i) and statement ii) follows in virtue of
estimate (3.15). Let us prove it by contradiction and assume that up to subsequences

diame Σk ↑ ∞.
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For each k rescale both, Σk and the perturbation h, by 1/diame Σk in the following sense:

Σ̃k :=
1

diame Σk
Σk (3.17)

(hk)µν(x) := hµν

(
(diame Σk) x

)
(3.18)

where the right hand side of (3.17) denotes the multiplication in R3 (as vector space) of each point of Σk

by 1/(diame Σk). It follows that

diame Σ̃k = 1 (3.19)

spt hk =
1

diame Σk
spt h ⊆ Be

rk
(0) (3.20)

where

rk :=
1

diame Σk
r0 ↓ 0. (3.21)

Called ηk := ‖hk‖C0 and θk := ‖Dhk‖C0 , observe that

ηk = η := ‖h‖C0 (3.22)

rkθk =
1

diame Σk
r0 · diame Σk θ = r0θ. (3.23)

The second equality follows simply from the chain rule

∂

∂xλ
(hk)µν |x =

∂

∂xλ
[hµν(diame Σk .)]|x = diame Σk

∂

∂xλ
hµν |diame Σk x.

Moreover, just from the definitions, it is easy to check the scale invariance of the Willmore functional

Whk
(Σ̃k) = Wh(Σk). (3.24)

Now for each k consider Σ̃k ↪→ (R3, δ + hk). Since ηk = η and rkθk = r0θ, for small ‖h‖C1 , we can apply
equation (3.15) at each step k to get

|Σ̃k|hk
≤ C (3.25)

where we used the uniform diameter and Willmore bound on the Σ̃k.
Applying for each k the inequality (3.12) and Lemma 3.2.2, we have a bound on the global euclidean
quantities

|Σ̃k|e ≤ C (3.26)

We(Σ̃k) ≤ C. (3.27)

Let us denote by V e
Σ̃k

the associated Allard varifold in (R3, δ) (i.e. integral varifold with finite first

variation δV e
Σ̃k

:=
∫
Σ̃k

|He|
√

det (̊δ); for the definition and properties see the book of Simon [SiGMT], the

original paper of Allard [Al], or the thesis of Mantegazza [Mant]). Observe that V e
Σ̃k

are Allard varifolds

without boundary in (R3, δ) which have uniform bound on the mass (inequality (3.26)) and on the first
variation (from Schwartz inequality and equation (3.27))

|δV e
Σ̃k

|e :=

∫

Σ̃k

|He|
√

det δ̊ ≤ C

√
We(Σ̃k)

√
|Σ̃k|e ≤ C.

Then, from Allard Compactness Theorem (see for example [SiGMT] Remark 42.8 or the original paper
of Allard [Al]), the varifolds V e

Σ̃k
converge (in the sense of Allard varifolds) up to subsequences to a

limit Allard varifold V in (R3, δ). Moreover, from lower semicontinuity of the Willmore functional under
Allard-varifold convergence, we have

We(V ) ≤ lim inf
k

We(Σ̃k) ≤ C.

Of course the Willmore functional of the integral 2-varifold V

We(V ) :=
1

4

∫

R3

|HV |2d‖V ‖
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is just, up to a factor, the L2 norm of the weak mean curvature HV with respect to the mass measure
‖V ‖ of V . In particular the limit integral 2-varifold V has square integrable mean curvature HV ∈ L2(V )
in the whole (R3, δ). Now let us prove that actually V /= 0 is not the null varifold and it does not shrink
to 0.

Claim. The mass of V in (R3, δ) is strictly positive and, the spatial support of V , spt ‖V ‖ /= {0}.

Proof of the Claim: we will prove that there exists β > 0 such that

|Σ̃k ∩ (R3\Be
1/2(0))|e > β for large k. (3.28)

Since the varifold convergence implies the weak convergence of measures of the associated mass measures,
we will have for the converging subsequence

‖V ‖(R3\Be
1/2−ε(0)) = lim

k
|Σ̃k ∩ (R3\Be

1/2−ε(0))|e ≥ lim sup
k

|Σ̃k ∩ (R3\Be
1/2(0))|e > β (3.29)

for some ε ≥ 0 such that ‖V ‖(∂Be
1/2−ε(0)) = 0 (it exists since ‖V ‖ is a finite measure); observe we

denoted with ‖V ‖(R3\Be
1/2(0)) the measure of R3\Be

1/2(0) with respect to the mass measure ‖V ‖ of the
varifold V . This will prove the Claim.

Now let us prove (3.28). Since Σ̃k is connected, diame Σ̃k = 1, Σ̃k ∩ Be
rk

(0) /= ∅ and rk → 0 it follows
that

spt hk ⊂ B1/2 for k large and (3.30)

Σ̃k ∩ S3/4 /= ∅ for k large

where S3/4 := {x ∈ R3 : |x|e = 3/4} is the euclidean sphere of center 0 and radius 3/4.

Let us consider a partition of Be
3/4(0)\Be

1/2(0) with N annuli at distance 1
4N one each other, i.e. the ith

annulus is of the type
Ai := Be

1/2+ i
4N

(0)\Be

1/2+
(i−1)
4N

(0) i = 1, . . . , N.

We can assume that each Σ̃k ∩ (R3\Be
1/2(0)) is connected, otherwise just take a connected component of

Σ̃k ∩ (R3\Be
1/2(0)) which intersects S3/4.

From the connection property, for each annulus and for each Σ̃k there is a point xk
i ∈ Σ̃k ∩ Ai such that

Be
1/(8N)(x

k
i ) ⊂ Ai. From Simon’s monotonicity formula (formula (1.4) page 285 of [SiL]),

π ≤ C
(
64N2|Σ̃k ∩ Be

1/(8N)(x
k
i )|e + We(Σ̃k ∩ Be

1/(8N)(x
k
i )
)
.

It follows that

|Σ̃k ∩ Be
1/(8N)(x

k
i )|e ≥ 1

64N2

( π
C

− We(Σ̃k ∩ Be
1/(8N)(x

k
i )
)
. (3.31)

Now it is enough to prove that ∃N large enough: ∀k large ∃xk
i (notation above) such that

We(Σ̃k ∩ Be
1/(8N)(x

k
i )) <

π

2C
.

If it is not true, ∀N > 0 there exists a large k such that ∀xk
i i = 1, . . . , N,

We(Σ̃k ∩ Be
1/(8N)(x

k
i )) ≥ π

2C
.

But, for k fixed, the balls Be
1/(8N)(x

k
i ) i = 1, . . . , N are disjoint; hence

We(Σ̃k ∩ (R3\B1/2)) ≥
N∑

i=1

We(Σ̃k ∩ Be
1/(8N)(x

k
i )) ≥ N

π

2C
.

Since N is arbitrarily large, this contradicts the boundness of We(Σ̃k) ≥ We(Σ̃k ∩ (R3\B1/2)).
This concludes the proof of the claim.
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From the Claim and the discussion above, we can say that V is a non null integral 2-varifold with
square integrable weak mean curvature H ∈ L2(V ) in the whole (R3, δ) such that spt ‖V ‖ /= {0}. Kuwert
and Shätzle proved that the euclidean monotonicity formula of Simon generalizes to non null integral
2-varifolds with square integrable weak mean curvature (see the Appendix A of [KS]; in particular we
use formula (A.18) at page 355) so

We(V ) ≥ 4π. (3.32)

In order to reach a contradiction we want to prove that from the assumptions it also follows We(V ) < 4π.
Let us denote by V hk

Σ̃k
the Allard varifold in the Riemannian manifold (R3, δ + hk) associated to Σ̃k

(i.e. integral varifold with finite first variation δVΣ̃k
:=
∫
Σ̃k

|Hhk
|
√

det ˚(δ + hk)). Consider the sequence

of closed shrinking balls B1/n := B̄e
1
n

(0) and the restriction of the varifolds to the open subsets R3\B1/n

V hk

Σ̃k .(R3\B1/n)
.

Actually, to be precise, V hk

Σ̃k .(R3\B1/n)
denotes the restriction of V to the Grassmannian of the 2-planes

based on the points of R3\B1/n (by definition of varifold, V is a measure on the Grassmannian). Observe
that for each fixed n and for varying large k, spt hk ⊆ B1/n then

V hk

Σ̃k .(R3\B1/n)
= V e

Σ̃k .(R3\B1/n)
for large k. (3.33)

Recall that up to subsequences V e
Σ̃k

→ V in (R3, δ) in varifold sense; since varifold convergence is a local

property (one perform tests with C0
c functions) it follows that V e

Σ̃k .(R3\B1/n)
→ V.(R3\B1/n) and using

equation (3.33)

V hk

Σ̃k .(R3\B1/n)

k→∞→ V.(R3\B1/n) in varifold sense.

Now from the lower semicontinuity of Willmore functional under varifold convergence

We(V.(R3\B1/n)) ≤ lim inf
k

We(V
e
Σ̃k .(R3\B1/n)

) = lim inf
k

Whk
(V hk

Σ̃k .(R3\B1/n)
) ≤ lim inf

k
Whk

(Σ̃k) ≤ 4π − ε

(3.34)
for some ε > 0 independent of n (the last inequality comes directly from the statement assumption
on Wh(Σk) and the invariance under rescaling (3.24)). Using Simon’s euclidean monotonicity formula
(formula (1.3) in [SiL] recalled before in equation (3.16)) |Σ̃k ∩ Be

ρ(0)|e ≤ Cρ2, so we have the local area
bound

‖V ‖(Be
ρ(0)) ≤ Cρ2. (3.35)

Since HV ∈ L2(V ), the local area bound (3.35) and the inequality (3.34) imply

We(V ) = lim
n→∞

We(V.(R3\B1/n)) ≤ 4π − ε

which contradicts (3.32).
As remarked in the beginning of the proof, the contradiction proves a uniform bound on diame Σk

and the existence of the compact set K; the uniform area bound follows from equation (3.15).

We also would like to say that the minimizing sequence does not shrink to a point. This is proved
in the following proposition in the more general framework of a Riemannian manifold as ambient space.
The idea is the following: if a sequence of surfaces shrinks to a point and we use normal coordinates
in that point, we are reduced to the previous framework of perturbed metric. Hence we can use all the
estimates computed in Section 6.1.

Proposition 3.3.4. Let (M, g) be a (maybe non compact) 3 dimensional Riemannian manifold without
boundary: ∂M = ∅. Let {Σk}k∈N be a sequence of immersed smooth closed oriented surfaces of genus
≤ G. Assume that
i) there exists a compact subset K ⊂⊂ M such that

Σk ⊂ K for all k ∈ N,
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ii)
lim sup

k
Wg(Σk) ≤ 4π − ε

for some ε > 0; where Wg(Σk) := 1
4

∫
Σk

|Hg|2
√

det g̊ is the Willmore functional of Σk ↪→ (M, g).
Then

lim inf
k

(diamg Σk) > 0

where diamg Σk is the diameter of Σk in the Riemannian manifold (M, g).

Proof. Let us prove it by contradiction and assume that up to subsequences diamg Σk ↓ 0.
For each surface take a point yk ∈ Σk; from assumption i), (yk)k∈N is a sequence in the compact

subset K ⊂⊂ M and up to subsequences
yk → x̄

for some x̄ ∈ K. Since diamg Σk ↓ 0 then

Σk → x̄ in Hausdorff distance sense.

Consider geodesic normal coordinates centered at x̄ (the coordinates of x̄ are 0); in these coordinates the
metric can be written as (see for example [LP] formula (5.4) page 61)

gµν(x) = δµν +
1

3
Rµσλνxσxλ + O(|x|3) (3.36)

= δµν + hµν(x) (3.37)

where
hµν(0) = 0 and Dλhµν(0) = 0 ∀λ, µ, ν = 1, 2, 3. (3.38)

Call inj(x̄) > 0 the injectivity radius at x̄; for k large, up to subsequences, Σk ⊂ Bg
inj(x̄)(x̄) (the geodesic

ball of center x̄ and radius inj(x̄)). In this ball we have the geodesic normal coordinates so, using (5.4)
and (5.5), we can argue as if the ambient manifold was a euclidean ball centered at 0 in the perturbed
manifold (R3, δ + h) as before (since the Σk are inside a euclidean ball, one can use cutoff functions to
make hµν with compact support in R3).
Now let us perform the following

Blow up procedure: Recall that in our coordinates Σk → 0 in Hausdorff distance sense (in (R3, δ+
h)). Since the Hausdorff convergence is a topological notion and of course the topology of (R3, δ) and of
(R3, δ + h) is the same, we have that Σk → 0 in Hausdorff distance sense in (R3, δ) so

Σk ⊂ Be
rk

(0) and rk ↓ 0 (3.39)

where, as in the previous notation, Be
rk

(0) denotes the ball of center 0 and radius rk in (R3, δ). As
done in Proposition 3.3.3 using the vector space structure of R3, let us rescale everything (the surfaces
and the metric) by 1/rk getting

Σ̃k :=
1

rk
Σk (3.40)

(hk)µν(x) := hµν(rk x). (3.41)

It follows that

Σ̃k ⊂ Be
1(0) (3.42)

‖hk‖C1(Be
2(0)) ↓ 0 (3.43)

where equation (3.43) just expresses the uniform convergence in Be
2(0) of hk and Dhk given by the

continuity of h,Dh and by the property (5.5). Observe that we can assume that spthk ⊆ Be
2(0); indeed if

we multiply each hk by a fixed cutoff function identically 1 in Be
1(0), 0 outside B2

e (0) and with bounded
gradient, nothing changes on Σ̃k and (3.43) remains true. So summarizing we can assume that

spt hk ⊆ Be
2(0) and ‖hk‖C1(Be

2(0)) ↓ 0. (3.44)
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As in the Proof of Proposition 3.3.3, from the definitions it is easy to check the scale invariance of
the Willmore functional given in (3.24); the fact implies that Wg(Σk) :=: Wh(Σk) = Whk

(Σ̃k), so from
assumption ii)

lim sup
k

Whk
(Σ̃k) = lim sup

k
Wg(Σk) ≤ 4π − ε. (3.45)

Now, from the properties of hk stated in (3.44), for large k we are in position to apply the inequality
(3.11) of Lemma 3.2.4 to Σ̃k ↪→ (R3, δ + hk). In the present case we get

(1 − C‖hk‖C1(Be
2(0)) − Cγ − Cγ‖hk‖2

C1(Be
2(0)))We(Σ̃k) − CG(‖hk‖C1(Be

2(0)) + γ) ≤ Whk
(Σ̃k) (3.46)

where all the constants are independent of k, γ > 0 can be chosen arbitrarily small and Cγ , CG are
constants depending on γ (respectively on the genus bound G) such that Cγ → ∞ if γ → 0 (respectively
CG → ∞ if G → ∞) but which can be bounded by Cγ ≤ C(1 + 1

γ ) for C large enough independent of γ.

Now for each k choose γk := ‖hk‖C1(Be
2(0)); then using the bound on Cγ and the boundness of We(Σ̃k)

given by (3.12), taking the lim sup of both sides we obtain

lim sup
k→∞

Whk
(Σ̃k) ≥ lim sup

k→∞
We(Σ̃k) ≥ 4π

where the last inequality comes from Theorem 7.2.2 in [Will]. The inequality clearly contradicts (3.45).

Putting together Corollary 3.3.2, Proposition 3.3.3 and Proposition 3.3.4 we have the following useful
Corollary:

Corollary 3.3.5. Let (R3, δ + h) be, as before, the euclidean space with a small in C1 norm compactly
supported perturbation h and assume that there exists a point p̄ where the scalar curvature Rh is positive:

Rh(p̄) > 0.

Let {Σk}k∈N be a sequence of immersed, smooth, closed, oriented surfaces of genus ≤ g and assume they
are minimizing for αg

h (see (3.1) for the definition).
Then, for ‖h‖C1(R3) small enough,
i)there exists a compact subset K ⊂ R3 such that

Σk ⊆ K ∀k ∈ N,

ii) there exists a uniform area bound
|Σk|h ≤ C.

iii) there exists a lower diameter bound

lim inf
k

(diame Σk) > 0

where diame Σk is the diameter of Σk in (R3, δ).
iv) the 8π bound on the euclidean Willmore functional of the minimizing sequence holds asymptotically:

lim sup
k

We(Σk) < 8π.

It follows by Theorem 6 in [LY] that the surfaces Σk are embedded for large k.

Proof. i) and ii) follow directly from Corollary 3.3.2 and Proposition 3.3.3. From Corollary 3.3.2 and
Proposition 3.3.4 it follows that lim infk(diamh Σk) > 0 where diamh Σk is the diameter of Σk in the
Riemannian manifold (R3, δ + h). We can end the proof of iii) using part ii) of Lemma 3.2.1. Finally,
putting together Corollary 3.3.2 and estimate (3.12) we obtain iv).

3.4 C∞ regularity of an embedded 2-sphere minimizing Wh

In this section we work with a minimizing sequence Σk of embedded surfaces of genus 0. Using the a
priori estimates on the minimizing sequence Σk of Section 4.1.1, adapting the regularity theory developed
in [SiL], we will get the existence of a minimizer for the Willmore functional among embedded 2-spheres.
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3.4.1 Existence of a minimizer, definitions of good/bad points and graphical
decomposition Lemma

Thanks to the Allard compactness Theorem and the a priori estimates on the minimizing sequence of
Section 4.1.1 we can state and prove the following compactness and lower semi continuity result.

Proposition 3.4.1. Let (R3, δ + h) be as above, ‖h‖C1(R3) be small enough and assume there exists a
point p̄ such that the scalar curvature

Rh(p̄) > 0.

Consider {Σk}k∈N a minimizing sequence for Wh of smooth embedded 2-spheres:

lim
k

Wh(Σk) ↓ αh

where αh is defined in (3.1).
Then there exists a non null integral 2-varifold V h (associated to a 2-rectifiable set of R3) with square

integrable weak mean curvature Hh ∈ L2(V h) such that
i) up to subsequences

V h
Σk

→ V h in varifold sense

where V h
Σk

is the Allard varifold associated to Σk ↪→ (R3, δ + h).
ii) from the lower semi continuity of the Willmore functional under varifold convergence

Wh(V h) :=
1

4

∫

R3

|Hh|2dµh ≤ lim inf
k

Wh(Σk) = αh

where µh := ‖V h‖ is the mass measure associated to the varifold V h.
iii) up to subsequences

µe
k → µe weak convergence of Radon measures

where, for every B ⊆ R3 Borel set, µe
k(B) := |Σk ∩ B|e are the euclidean Radon measures naturally

associated to Σk and µe is a Radon measure on R3 which satisfies spt µe = spt µh.
iv) the Radon measures converging subsequence also converges in Hausdorff distance sense:

sptµh
k = spt µe

k → spt µe = spt µh =: Σ in Hausdorff distance sense in R3.

In particular from the lower diameter bound on the minimizing sequence ( see iii) of Corollary 3.3.5) we
have diame(spt µe) > 0.

Proof. From Corollary 3.3.5 there exists a compact subset K ⊂⊂ R3 such that Σk ⊆ K for all k and
there exists C such that |Σk|h ≤ C. Since the surfaces have no boundary, using Schwartz inequality, we
have the uniform bound on the first variation

|δV h
Σk

| =

∫

Σk

|Hh|
√

det( ˚δ + h) ≤ 2
√

Wh(Σk)
√

|Σk|h ≤ C.

From Allard compactness Theorem (see [Al], [SiGMT] or [Mant]), there exists an integral 2-varifold V h

(associated to a 2-rectifiable set of R3) with finite first variation (i.e. V h
Σ has integrable weak mean

curvature Hh) such that, up to subsequences,

V h
Σk

→ V h in varifold sense.

Since ‖h‖C1(R3) is small, from Lemma 3.2.4, we have

We(Σk) ≤ C ∀k ∈ N

for some C > 0; using that (see Corollary 3.3.5)

0 < lim inf
k

diame(Σk) ≤ sup
k

diame(Σk) ≤ C

and Lemma 1.1 of [SiL] we have
1

C
≤ |Σk|e ≤ C for large k (3.47)
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and, thanks to Lemma 3.2.2,
1

C
≤ |Σk|h ≤ C for large k. (3.48)

Since the varifold convergence implies the weak convergence of the mass measures, on the converging
subsequence we have

‖V h‖(R3) = lim
k

‖V h
Σk

‖(R3) := lim
k

|Σk|h ≥ 1

C
,

hence V h is non null.
From the lower semi continuity of the Willmore functional under varifold convergence it follows that

the weak mean curvature Hh of the limit varifold V h
Σ is square integrable and, denoted µh := ‖V h‖,

Wh(V h) :=
1

4

∫

R3

|Hh|2dµh ≤ lim inf
k

Wh(Σk) = αh.

To get iii) observe that (from Corollary 3.3.5) all the Radon measures µe
k have support in the same

compact subset K ⊂⊂ R3 and (from inequality (3.47)) µe
k(K) := |Σk|e ≤ C. From Banach-Alaoglu

Theorem (see for example [SiGMT] page 22), µe
k converge up to subsequences to a limit Radon measure

µe with spt µe ⊆ K. But recalling that the mass measures of V h
Σk

weak converge to the mass measure of

V h, namely µh, and using Lemma 3.2.2 it is easy to see that sptµe = spt µh previously defined.
In order to prove iv) recall that, from iii), µe

k → µe weak as Radon measures; moreover we have the
uniform bound on the euclidean Willmore functional We(Σk) ≤ C. These conditions imply the Hausdorff
distance convergence of sptµe

k → spt µe (see [SiL] page 311).

Remark 3.4.2. From Proposition 3.4.1 we have existence of a candidate minimizer V h with spatial
support Σ in metric δ + h. Observe that up to now V h is not a minimizer since it could be not smooth
and a priori it may happen that Wh(V h) < αh. Hence we have to study the regularity of Σ := spt µh;
to this aim it is useful to consider both the euclidean geometric quantities of the minimizing sequence
and the perturbed ones. The perturbed ones have been analyzed in Corollary 3.3.5, Proposition 3.4.1 and
estimate (3.48).

About the euclidean quantities we have estimate (3.47); from Corollary 3.3.5 we know that for small
‖h‖C1(R3) we have We(Σk) < 8π for large k. Moreover from the Gauss Bonnet Theorem

∫

Σk

|Ae|2
√

det δ̊ = 4We(Σk) − 4πχE(Σk) ≤ C

Now we define the so called bad points with respect to a given ε > 0 in the following way: define the
Radon measures αk on R3 by

αk = µh
k!|Ak|2.

From Remark 3.4.2 we know αk(R3) ≤ C, by compactness there exists a Radon measure α on R3 such
that (after passing to a subsequence) αk → α weak as Radon measures. It follows that sptα ⊂ Σ = spt µh

and α(R3) ≤ C. Now we define the bad points with respect to ε > 0 by

Bε =
{
ξ ∈ Σ

∣∣α({ξ}) > ε2
}

. (3.49)

Since α(R3) ≤ c, there exist only finitely many bad points. Moreover for ξ0 ∈ Σ \ Bε there exists a
0 < ρ0 = ρ0(ξ0, ε) ≤ 1 such that α(Bρ0

(ξ0)) < 3
2ε

2, and since αk → α weakly as measures we get

∫

Σk∩Be
ρ0

(ξ0)

|Ah
k |2 dH2

h ≤ 3

2
ε2 for k sufficiently large (3.50)

where, as before, Ah
k and H2

h denote the second fundamental form of Σk and the 2-dimensional Hausdorff
measure in (R3, δ + h). Consider geodesic normal coordinates of the Riemannian manifold (R3, δ + h)
centered at ξ0 (the coordinates of ξ0 are 0); in these coordinates the metric can be written as (see for
example [LP] formula (5.4) page 61)

(δ + h)µν(x) = δµν +
1

3
Rµσλνxσxλ + O(|x|3) = δµν + o1(1)(x)µν
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where, as before if x → 0 we have |o1(1)(x)| + |Do1(1)(x)| → 0. Called inj(ξ0) > 0 the injectivity
radius at ξ0, for ρ0 < inj(ξ0) we can put on Bρ0

(ξ0) the normal coordinates just introduced and work on

Σk ∩ Bρ0
(ξ0) as it was immersed in the manifold (R3, δ + h̃) where ‖h̃‖C1 can be taken arbitrarily small

(for ρ0 small enough). Then taking γ > 0 sufficiently small in estimate (3.9), using (3.2) and (3.14) we
conclude that for ρ0 small enough

∫

Σk∩Be
ρ0

(ξ0)

|Ae
k|2 dH2

e ≤ 2ε2 for k sufficiently large. (3.51)

Now fix ξ0 ∈ Σ \ Bε and let ρ0 as in (5.2). Let ξ ∈ Σ ∩ B ρ0
2

(ξ0). We want to apply Simon’s graphical
decomposition lemma to show that the surfaces Σk can be written as a graph with small Lipschitz norm
together with some ”pimples” with small diameter in a neighborhood around the point ξ. This is done in
exactly the same way Simon did in [SiL]. We just sketch this procedure. By the Hausdorff convergence
there exists a sequence ξk ∈ Σk such that ξk → ξ. In view of (5.2) and the Monotonicity formula applied
to Σk and ξk the assumptions of Simon’s graphical decomposition lemma are satisfied for ρ ≤ ρ0

4 and
infinitely many k ∈ N. Since We(Σk) ≤ 8π − δ0, we can apply Lemma 1.4 in [SiL] to deduce that for
θ ∈

(
0, 1

2

)
small enough, τ ∈

(
ρ
4 , ρ

2

)
and infinitely many k ∈ N only one of the discs Dk

τ,l appearing in the
graphical decomposition lemma can intersect the ball Bθ ρ

4
(ξk). Moreover, by a slight perturbation from

ξk to ξ, we may assume that ξ ∈ Lk for all k ∈ N. Now Lk → L in ξ + G2(R3), and therefore we may
furthermore assume that the planes, on which the graph functions are defined, do not depend on k ∈ N.
After all we get a graphical decomposition in the following way.

Lemma 3.4.3. For ε ≤ ε0, ρ ≤ ρ0

4 and infinitely many k ∈ N there exist pairwise disjoint closed subsets
P k

1 , . . . , P k
Nk

of Σk such that

Σk ∩ Bθ ρ
8
(ξ) = Dk ∩ Bθ ρ

8
(ξ) =

(
graph uk ∪

⋃

n

P k
n

)
∩ Bθ ρ

8
(ξ),

where Dk is a topological disc and where the following holds:

1. The sets P k
n are topological discs disjoint from graph uk.

2. uk ∈ C∞(Ωk, L⊥), where L ⊂ R3 is a 2-dim. plane such that ξ ∈ L, and Ωk = (Bλk
(ξ) ∩ L) \⋃

m dk,m. Here λk > ρ
4 and the sets dk,m ⊂ L are pairwise disjoint closed discs.

3. The following inequalities hold:

∑

m

diam dk,m +
∑

n

diam P k
n ≤ c

(∫

Σk∩Be
2ρ(ξ)

|Ae
k|2 dH2

e

) 1
4

ρ ≤ cε
1
2 ρ, (3.52)

||uk||L∞(Ωk) ≤ cε
1
6 ρ+ δk where δk → 0, (3.53)

||Duk||L∞(Ωk) ≤ cε
1
6 + δk where δk → 0. (3.54)

3.4.2 C∞ regularity of Σ

Since this semiperturbative setting is closely related with the setting in [SiL], we just sketch the procedure
for proving regularity pointing out the main differences with [SiL] and referring to the mentioned paper
for more details (for details see also Chapter 5 or [Schy]).

Now we prove a power decay for the L2-norm of the second fundamental form on small balls around
the good points ξ ∈ Σ \ Bε. This will help us to show that Σ is actually C1,α ∩ W 2,2 away from the bad
points.

Lemma 3.4.4. Let ξ0 ∈ Σ \ Bε. There exists a ρ0 = ρ0(ξ0, ε) > 0 such that for all ξ ∈ Σ ∩ B ρ0
2

(ξ0) and

all ρ ≤ ρ0

4 we have

lim inf
k→∞

∫

Σk∩Bθ
ρ
8
(ξ)

|Ah
k |2 dH2

h ≤ cρα,

where α ∈ (0, 1) and c < ∞ are universal constants.
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The proof of this Lemma is the same as in [SiL] (pages 299-300) noticing that in view of the expansion
of the metric in normal coordinates as above one can pass from the setting (R3, δ + h) to the standard
euclidean setting up to an error bounded by cρ2 ( for more details see also the proof Lemma 5.3.1 where
the proof is carried in an general Riemannian manifold).

Next we show that our candidate minimizer limit measure µh is given locally by a Lipschitz graph
with small Lipschitz norm away from the bad points. Again we briefly sketch the construction referring
to the aforementioned references for more details.
First of all one can replace the pimples of the Graphical Decomposition Lemma 3.4.3 with appropriate
graph extensions with small C1 norm, thus they converge to a Lipschitz function with small Lipschitz
norm. Then, using a generalized Poincaré inequality proved in Lemma A.1 in [SiL], together with the
previous Lemma 3.4.4 one proves that for all ξ ∈ Σ ∩ Be

ρ0
2

(ξ0) and all sufficiently small ρ

µh!Be
ρ(ξ) = H2

h!
(
graph u ∩ Be

ρ(ξ)
)
, (3.55)

where u ∈ C0,1(Be
ρ
4
(ξ) ∩ L,L⊥). For more details see the proof of Lemma 5.3.2 carried in general

Riemannian manifold.
Since the limit measure µh has weak mean curvature in L2, it follows that u ∈ W 2,2; moreover using

Lemma 3.4.4 one has that the L2 norm of the Hessian of u satisfies the following power decay

∫

Bρ∩L

|D2u|2 ≤ cρα. (3.56)

From Morrey’s lemma (see [GT], Theorem 7.19) it follows that u ∈ C1,α ∩ W 2,2. Thus our limit varifold
V h can be written as a C1,α ∩ W 2,2-graph away from the bad points.

Now one excludes the bad points Bε by proving a similar power decay as in Lemma 3.4.4 for balls
around the bad points (notice that at this point we use that we are minimizing among spheres, because
for higher bad points might appear), for details see Subsection 5.3.2. Therefore our candidate minimizer
limit varifold V h is given locally by a C1,α ∩ W 2,2-graph everywhere.

Let us point out that by [SiL], genus(Σ) ≤ lim infk genus(Σk) = 0 (for a different proof see Lemma
5.4.2). Via a standard approximation argument one can check that

inf{Wh(Σ)|Σ is a smooth embedded 2-sphere} = inf{Wh(Σ)|Σ is a C1 ∩ W 2,2 embedded 2-sphere}

Then by lower semicontinuity (Proposition 3.4.1 ) the limit embedded surface Σ is an embedded 2-
sphere which minimizes Wh among C1 ∩ W 2,2-embedded 2-spheres, in particular it satisfies the Euler
Lagrange equation

W ′
h(Σ) =

1

2
)H − 1

4
H(H2 − 2|A|2 − 2Rich(ν, ν))

where ) is the Laplace Beltrami of the surface Σ and Rich(ν, ν) is the Ricci tensor of (R3, δ+h) evaluated
on the unit normal ν to Σ. It is a long and tedious computation but it is possible to check that the Euler
Lagrange equation of Wh fits in Lemma 3.2 in [SiL].

It follows that the function u locally representing µh is actually C2,α ∩ W 3,2 and the L2 norm of the
3rd derivatives satisfies the power decay

∫
Bρ

|D3u|2 ≤ cρα. Now using the difference quotients method

one proves that the function u is actually C3,α ∩ W 4,2 and the L2 norm of the 4th derivatives satisfies
the power decay

∫
Bρ

|D4u|2 ≤ cρα; continuing this bootstrap argument one shows the smoothness of u

and thus of Σ.
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Chapter 4

Willmore type functionals in global
setting: existence of a weak
minimizing surface

4.1 Existence of a weak minimizer for 1
2

∫
|A|2 and

∫ ( |H|2
4 + 1

)

in COMPACT Riemannian manifolds under curvature as-
sumptions

Throughout this section (M, g) will be a closed (compact without boundary) Riemannian 3-dimensional
manifold.

4.1.1 Global a priori estimates on the minimizing sequence

Under geometric assumptions on the ambient manifold we will show global a priori estimates on the
minimizing sequences of the functionals E and W1: more precisely we will get uniform upper area
bounds, uniform upper and lower bounds on the diameters and lower 2-density bounds.

Upper Area bounds

Proposition 4.1.1. Let (M, g) be a closed 3-dimensional manifold with positive sectional curvature K̄:

∃λ such that K̄ > λ2 > 0. (4.1)

Then, for every smooth immersion f : S2 ↪→ (M, g), the following area estimate holds:

|f(S2)|g ≤ 1

λ2

(
4π + E(f)

)
(4.2)

where |f(S2)|g :=
∫

S2 dµg is the area of S2 equipped with the pull back metric f∗g given by the immersion.

Proof. Recall that by the Gauss equation

K̄(Txf) = KG − k1k2 = KG − 1

4
H2 +

1

2
|A◦|2

where K̄(Txf) is the sectional curvature of the ambient manifold evaluated on the plane Txf ⊂ TxM
with x ∈ f(S2), KG is the Gaussian curvature of (S2, f∗g) (also called sectional curvature of the surface)
and k1, k2 are the principal curvatures.
Integrating the assumption (4.1) and using Gauss Bonnet theorem we get

λ2|f(S2)|g ≤
∫

S2

K̄dµg = 2πχE(S2) − W (f) + Wc(f)

≤ 4π + Wc(f) (4.3)

≤ 4π + E(f)
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where, in the last two inequalities, we used that W (f) > 0 and E(Σ) ≤ Wc(f).

The next condition for the area bound is a very special case of the Isoperimetric Inequality given in
Theorem 6.2.1 which holds for more general functionals in the contest of varifolds. For the basic concepts
about varifolds see Appendix 6.6 (for more material the interested reader is referred to the paper of
Hutchinson [Hu1] or to the book of Simon [SiGMT]).

Proposition 4.1.2. Let (M, g) be a closed (compact, without boundary) Riemannian 3-manifold and
assume that there are no nonzero 2-varifolds with null generalized second fundamental form.

Then there exists a constant C such that for every smooth immersion f : S2 ↪→ (M, g), the following
area estimate is true

|f(S2)|g ≤ C

∫

S2

|A|2dµg. (4.4)

Proof. In Section 5 of [Hu1] is proved that to an immersed closed smooth k-submanifold one can
associate a k-varifold with generalized curvature; moreover the function F (x, P, q) := |q|2, q ∈ Rp3 trivially
satisfies the condition (6.6.2). Hence it is enough to apply Theorem 6.2.1 to the 2-varifold with curvature
associated to f(S2) and the specified function F .

Remark 4.1.3. Let (M, g) be a Riemannian 3-manifold and fk : S2 ↪→ (M, g) be a sequence of smooth
immersions such that

W1(fk) :=

∫

S2

( |H|2
4

+ 1

)
dµg < C

for some C > 0 independent of k. Then, of course, the area |fk(S2)|g is uniformly bounded.

Diameter bounds on the minimizing sequences

First of all, since the ambient manifold is closed, we have a trivial upper bound on the diameter of the
immersed surfaces. In this section we want to establish a lower bound on the diameters.

Lower diameter bounds for minimizing sequences of E

First let us prove that under quite general assumptions on the ambient manifold (namely we assume that
the scalar curvature is strictly positive at a point) the infimum of the functional E is strictly less then
the one of the corresponding functional in the euclidean space R3.

Lemma 4.1.4. Let (M, g) be a (not necessarily compact) Riemannian 3-manifold and assume that there
exists a point p̄ ∈ M where the scalar curvature is strictly positive

Rg(p̄) > 0.

Then there exist ε > 0 and small ρ > 0 such that the geodesic sphere Sp̄,ρ of center p̄ and radius ρ satisfies

E(Sp̄,ρ) :=
1

4

∫

Sp̄,ρ

|H|2dµg +
1

2

∫

Sp̄,ρ

|A◦|2dµg < 4π − 2ε.

Proof. From Proposition 3.1 of [Mon1], on geodesic spheres Sp̄,ρ of center p̄ and small radius ρ one has

W (Sp̄,ρ) :=
1

4

∫

Sp̄,ρ

|H|2dµg = 4π − 2π

3
Rg(p̄)ρ2 + O(ρ3).

Moreover, the quantity

1

2

∫

Sp̄,ρ

|A◦|2dµg =
1

4

∫

Sp̄,ρ

(k1 − k2)
2dµg =

∫

Sp̄,ρ

( |H|2
4

− k1k2

)
dµg

is what we called Conformal Willmore functional and studied in Chapter 2. In that chapter the expan-
sion of the functional on geodesic spheres of small radius is computed. Considering w = 0 (w is the
perturbation of the geodesic sphere) in Lemma 2.2.5 and in Proposition 2.2.8, it is easy to check that

1

2

∫

Sp̄,ρ

|A◦|2dµg =

∫

Sp̄,ρ

( |H|2
4

− k1k2

)
dµg = O(ρ4).
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It follows that, since Rg(p̄) > 0,

E(Sp̄,ρ) = 4π − 2π

3
Rg(p̄)ρ2 + O(ρ3) < 4π − 2ε

for ρ > 0 and ε > 0 small enough.

Remark 4.1.5. Observe that if the ambient manifold (M, g) is the euclidean space (R3, δ), for every
smooth closed immersed surface Σ, the functional E(Σ) ≥ W (Σ) ≥ 4π (the last inequality is a famous
Theorem of Willmore which can be found in [Will], Theorem 7.2.2); moreover the equality E(Σ) = 4π is
reached if and only if Σ is a round sphere.

Thanks to Lemma 4.1.4 and Remark 4.1.5, using a blow up procedure it is possible to prove a lower
diameter bound on the minimizing sequences of E:

Proposition 4.1.6. Let (M, g) be a closed Riemannian 3-manifold whose scalar curvature is strictly
positive at a point:

∃p̄ ∈ M : Rg(p̄) > 0.

Consider a sequence of immersions {fk : S2 ↪→ M}k∈N minimizing E (i.e a minimizing sequence of the
problem (1.12))

Then
lim inf

k
(diamg fk(S2)) > 0

where diamg fk(S2) is the diameter of fk(S2) in the Riemannian manifold (M, g).

Proof. From the assumption on the scalar curvature and since {fk}k∈N is a minimizing sequence of E,
Lemma 4.1.4 implies that

lim
k

E(fk) ≤ 4π − 2ε.

Since M is compact and W (fk) ≤ E(fk), the minimizing sequence satisfies the assumptions of Proposition
3.3.4 and the conclusion follows.

Lower diameter and E bounds for the minimizing sequences of W1

In this subsection we want to prove a bound from below on the diameters of minimizing sequences of
W1. In order to get this bound it is useful to prove that the inf W1 in the manifold is less then the
corresponding inf in euclidean space; so let us compute the expansion of W1 on small geodesic spheres.

Lemma 4.1.7. Let (M, g) be a (not necessarily compact) Riemannian 3-manifold and assume that there
exists a point p̄ ∈ M where the scalar curvature is greater than 6

Rg(p̄) > 6

Then there exists ε > 0 and small ρ > 0 such that the geodesic sphere Sp̄,ρ of center p̄ and radius ρ
satisfies

W1(Sp̄,ρ) :=

∫

Sp̄,ρ

H2

4
dµg + |Sp̄,ρ|g < 4π − 2θ.

Proof. From Proposition 3.1 of [Mon1], on geodesic spheres Sp̄,ρ of center p̄ and small radius ρ one has

W (Sp̄,ρ) :=
1

4

∫

Sp̄,ρ

|H|2dµg = 4π − 2π

3
Rg(p̄)ρ2 + O(ρ3).

From equation (8) in the Proof of Proposition 3.1 in [Mon1], we have the following expansion of the area
of small geodesic spheres:

|Sp̄,ρ|g = 4πρ2 + O(ρ4).

Hence the expansion of W1 on small geodesic spheres is

W1(Sp̄,ρ) = 4π −
(2

3
Rg(p̄) − 4

)
πρ2 + O(ρ3).

We can conclude that, if Rg(p̄) > 6, for ρ > 0 and ε > 0 small enough we have the thesis.
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Remark 4.1.8. Observe that if the ambient manifold (M, g) is the euclidean space (R3, δ), for every
smooth closed immersed surface Σ, the functional W1(Σ) > W (Σ) ≥ 4π. Moreover taking the sequence

of round spheres S
1/n
p of center p and radius 1/n, W1(S

1/n
p ) = 4π + πε

n2 ↓ 4π. Therefore in the euclidean
space the infimum of W1 is 4π and it is never achieved, so the condition on the scalar curvature is not
purely technical but is somehow necessary to prevent the shrinking of the minimizing sequences.

Using Lemma 4.2.1 one can repeat the proof of Proposition 4.1.6 and obtain the desired lower bound
on the diameters:

Proposition 4.1.9. Let (M, g) be a closed Riemannian 3-manifold whose scalar curvature is greater than
6 at one point:

∃p̄ ∈ M : Rg(p̄) > 6.

Consider a sequence of immersions {fk : S2 ↪→ M}k∈N minimizing W1 (i.e a minimizing sequence of the
problem (1.13))

Then
lim sup

k
W1(fk) < 4π and lim inf

k
(diamg fk(S2)) > 0

where diamg fk(S2) is the diameter of fk(S2) in the Riemannian manifold (M, g).

A local area bound for surfaces in Riemannian manifolds

In this subsection we will prove a quadratic area decay for immersions with equibounded area and
Willmore functional, and lying in a fixed compact subset of a Riemannian 3-manifold (M, g).

Lemma 4.1.10. Let (M, g) be a (maybe non compact) Riemannian 3-manifold and K ⊂⊂ M a compact
subset. Consider a smooth immersion f : S2 ↪→ K ⊂ M with bounded area:

|f(S2)|g ≤ c1

and whose Willmore functional is bounded by a constant c2:

W (f) :=
1

4

∫

S2

|Hg|2dµg ≤ c2.

Then there exists a constant CK,c1,c2
> 0 depending only on K, c1 and c2 such that for every ξ ∈ M

and every ρ > 0
µf (Bg

ρ(ξ)) ≤ CK,c1,c2
ρ2,

where µf (Bg
ρ(ξ)) =

∫
f−1(Bg

ρ(ξ))
dµg is the area of the intersection f(S2) ∩ Bg

ρ(ξ).

Proof. By Nash Theorem we can assume that M ↪→ RS is isometrically embedded for some p ≥ 4;
hence f(S2) ⊂ M ⊂ RS can be seen both as a surface in M and as a surfaces in RS . We call HS2↪→RS and
HS2↪→M the mean curvature of f(S2) as immersed surface in RS (respectively in M); AM ↪→RS denotes
the second fundamental form of M as submanifold of RS . The following estimate holds:

|HS2↪→RS |2 ≤ |HS2↪→M |2 + C|AM ↪→RS |2

where C is universal constant depending only on the dimensions. Integrating over S2 we obtain

∫

S2

|HS2↪→RS |2dH2
RS ≤ 4W (f) + C

∫

S2

|AM ↪→RS |2dH2
RS (4.5)

where H2
RS is the area form induced by the immersion in RS (observe that the area measure dµg of S2

as surface in M is the same as dH2
RS from the Nash isometric embedding). Since f(S2) ⊂ K and K is a

compact set, then
∫

S2 |AM ↪→RS |2dH2
RS ≤ maxK |AM ↪→RS |2|f(S2)|g ≤ CK,c1

. Using the assumed estimate
on the Willmore functional we obtain

∫

S2

|HS2↪→RS |2dH2
RS ≤ CK,c1,c2

. (4.6)
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Let us denote by BRS

ρ (ξ) the ball in RS of center ξ and radius ρ. From Simon’s Monotonicity formula

for immersed surfaces in RS (see formula (1.3) in [SiL])

|f(S2) ∩ BRS

ρ (ξ)|RS ≤ Cρ2

∫

S2

|HΣ↪→RS |2dH2
RS ≤ CK,c1,c2

ρ2,

where |f(S2) ∩ BRS

ρ (ξ)|RS is the area of f−1(BRS

ρ (ξ)) with respect to the area form induced by the

immersion in RS and the constant C in the first inequality depends only on the dimensions.
Now observe that the metric ball Bg

ρ(ξ) in the Riemannian manifold (M, g) with center ξ and radius ρ

is always contained in BRS

ρ (ξ): Bg
ρ(ξ) ⊂ BRS

ρ (ξ); moreover, as remarked above, dµg coincide with dH2
RS .

We can conclude that

µf (Bg
ρ(ξ)) = |f(S2) ∩ Bg

ρ(ξ)|RS ≤ |f(S2) ∩ BRS

ρ (ξ)|RS ≤ CK,c1,c2
ρ2.

4.1.2 Properties of the functionals and compactness of the minimizing se-
quences

Compactness and lower semicontinuity of the functional E

Before stating the fundamental theorem, let us recall some notation. If fk : S2 ↪→ M is a sequence of
smooth immersions, as explained in Appendix 6.6, to each fk we can associate a 2-varifold with curvature
(Vfk

, Ak) also denoted for simplicity with (Vk, Ak). The spatial measure ‖Vk‖ will be also called µk and
is simply µk(B) :=

∫
f−1

k (B)
dµg, ∀B ⊂ M Borel set, i.e. the area of fk(S2) ∩ B counted with multiplicity.

Theorem 4.1.11. Let (M, g) be a closed Riemannian 3-manifold which satisfies at least one of the two
conditions below:
- (M, g) has uniformly strictly positive sectional curvature in the sense of (4.1); or
- there is no nonzero 2-varifold of M with null generalized second fundamental form and there is a point
p̄ where the scalar curvature is strictly positive: Rg(p̄) > 0.

Let {fk}k∈N be a minimizing sequence of smooth immersions fk : S2 ↪→ M for E, i.e. a minimizing
sequence for problem (1.12).Then the following properties hold:
i) there exists an integral 2-varifold V of M such that, up to subsequences, Vk → V in varifold sense,
ii) V is an integral varifold with generalized second fundamental form A (so we write (V, A) ∈ CV2(M)),
iii) called {(Vk, Ak)}k∈N the measure-function pairs associated to the immersions fk with second funda-
mental forms Ak,

(Vk, Ak) ⇀ (V, A) weak converge of measure-function pairs,

iv) called µ := ‖V ‖ the mass measure of the limit varifold V then up to subsequences

µk ⇀ µ weak as Radon measures and

spt µk → spt µ in Hausdorff distance sense,

v) E(µ) := E(V ) := 1
2

∫
G2(M)

|A(x, P )|2dV ≤ lim infk E(fk) < 4π,

vi) sptµ is compact, connected and

diamg(spt µ) ≥ lim inf
k

(diamg spt µk) > 0.

Proof.
i): First, by Lemma 4.1.4, since {fk}k∈N is a minimizing sequence of E, we have

lim inf
k

E(fk) = lim
k

E(fk) < 4π.

From Proposition 4.1.1 and Corollary 4.1.2 it follows a uniform bound on the areas of fk(S2):

∃C > 0 : ∀k ∈ N |fk(S2)|g < C.
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Using Cauchy-Schwartz we can estimate the first variation of the varifolds Vk associated to the immersions
fk:

‖δVk‖ :=

∫

S2

|Hk|dµg ≤ C

∫

S2

|Ak|dµg ≤ C
(∫

S2

|Ak|2dµg

) 1
2
√

|fk(S2)|g ≤ C.

Now applying Allard compactness Theorem (Theorem 6.4 in [Al]) to the sequence of varifolds Vk, we can
say that there exists an integral 2-varifold V such that

Vk → V in varifold sense.

ii), iii) and v): Of course the integrand of the functional E satisfies the condition (6.6.2). Using
the previous point i), we can apply the Theorem 6.6.7 of Hutchinson and say that V ∈ CV2(M) with
generalized second fundamental form A. Hence we can define the functional E also on V :

E(V ) :=

∫

G2(M)

|A(x, P )|2dV.

Properties iii) and v) follow again from Theorem 6.6.7.
iv): Of course, since the Grassmannian of the 2-planes in R3 is compact, the varifold convergence

of a sequence of varifolds implies the measure theoretic convergence of the spatial supports; so up to
subsequences

µk ⇀ µ weak as Radon measures.

In order to get the Hausdorff convergence recall that M ⊂ RS is isometrically embedded by Nash Theorem,
so we can see the surfaces fk(S2) as immersed in RS .

Exactly as in the proof of Lemma 4.1.10, it is possible to prove that fk(S2) ⊂ RS is a sequence of
surfaces with uniformly bounded Willmore functional. Moreover we know that the associated measures
µk ⇀ µ; under this conditions Leon Simon proved (see [SiL] pages 310-311) that actually

sptµk → sptµ in Hausdorff distance sense

as subsets of RS ; but since M is isometrically embedded in RS it clearly implies that spt µk → sptµ in
Hausdorff distance as subsets of M .

vi): The inequality lim infk(diamg spt µk) > 0 follows from Proposition 4.1.6. Called k′ the subse-
quence converging in Hausdorff distance sense, from the definition of Hausdorff convergence it is easy to
see that diamg spt µ = limk′(diamg sptµk′). Hence

diamg spt µ = lim
k′

(diamg sptµk′) ≥ lim inf
k

(diamg sptµk) > 0.

About the topological properties of sptµ observe that by definitions it is a closed subset of the compact
manifold M so it is compact. Moreover fk(S2) is connected and the Hausdorff distance limit of a sequence
of connected subsets must be connected.

Remark 4.1.12. The limit varifold with curvature (V, A) is the candidate to be the minimizer of E
among the immersions of S2. We remark that V , up to now, is only a candidate minimizer since it may
not be smooth (so the value of the functional could be a priori strictly less than the inf on the smooth
immersions) and it may even vanish as measure since we have not yet proved a lower bound on the areas
of fk(S2). In the following we will prove the desired lower bound and the regularity.

Compactness and lower semicontinuity of the functional W1

In this subsection we prove a counterpart of the compactness lower semicontinuity Theorem 4.2.6 for the
functional W1. Before stating it let us recall that the theory of the varifolds with weak mean curvature
can be seen as a part of the theory of the measure-function pairs of Hutchinson [Hu1] (see Appendix 6.6).
We mean that a varifold with weak mean curvature can be seen as a measure function pair (V, H) with
H vector valued L1

loc(V ) function which satisfies an integration by parts formula (the corresponding of
the tangential divergence theorem for smooth surfaces

∫
Σ

divΣXdµg = −
∫
Σ

H · Xdµg where X is any
C1

c (M) vector field tangent to the ambient manifold M and divΣ is the tangential divergence on Σ).
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Theorem 4.1.13. Let (M, g) be a compact Riemannian 3-manifold with scalar curvature strictly greater
than 6 at a point:

∃p̄ ∈ M : Rg(p̄) > 6.

Let {fk}k∈N be a sequence of smooth immersions fk : S2 ↪→ M minimizing W1, i.e. a minimizing
sequence for problem (1.13).

Then the following compactness and lower semicontinuity properties hold:
i) there exists an integral 2-varifold V of M such that, up to subsequences, Vk → V in varifold sense,
ii) V is an integral varifold with weak mean curvature H ∈ L2(V ),
iii) called {(Vk, Hk)}k∈N the measure-function pairs associated to the immersions fk with mean curvatures
Hk,

(Vk, Hk) ⇀ (V, H) weak converge of measure-function pairs,

iv) called µ := ‖V ‖ the mass measure of the limit varifold V then up to subsequences

µk ⇀ µ weak as Radon measures and

spt µk → spt µ in Hausdorff distance sense,

v) We can define

W1(µ) := W1(V ) :=

∫

G2(M)

( |H(x, P )|2
4

+ 1

)
dV ≤ lim inf

k
W1(fk) < 4π,

vi) sptµ is compact, connected and

diamg(spt µ) ≥ lim inf
k

(diamg spt µk) > 0.

Proof. i): since W1(fk) is uniformly bounded on k, by the very definition on W1 it follows a uniform
bound on the areas and on the Willmore functionals of fk:

∃C > 0 : ∀k ∈ N |fk(S2)|g < C, (4.7)

∃C > 0 : ∀k ∈ N
∫

S2

|Hk|2dµg < C. (4.8)

Using Schwartz inequality we can estimate the first variation of the varifold Vk associated to the immersion
fk:

‖δVk‖ :=

∫

S2

|Hk|dµg ≤
(∫

S2

|Hk|2dµg

) 1
2
√

|fk(S2)|g ≤ C.

Now applying Allard compactness Theorem (Theorem 6.4 in [Al]) to the sequence of varifolds Vk, we can
say that there exists an integral 2-varifold V such that

Vk → V in varifold sense.

iv) and vi): the proof is analogous to the corresponding statements in Theorem 4.2.6.
ii), iii) and v): first of all let us observe that, since from i) up to subsequences Vk → V in varifold

sense, then we have the convergence of the masses

‖Vk‖(M) = |fk(S2)|g → ‖V ‖(M).

Hence the second adding of the functional W1 is continuous under varifold convergence and we are
left to consider the Willmore functional 1

4

∫
G2(M)

|Hk|2dVk. Recall the uniform bound on the Willmore

functionals (4.8) and observe that the function F (x, p, q) := |q|2 satisfies the condition 6.6.2. Then we
can apply the compactness-lower semicontinuity Theorem 6.2.7 for integral varifolds with weak mean
curvatures (observe that now we don’t need the hypothesis on the non existence of a stationary varifold
since we already have the uniform mass bound (4.7)). ii), iii) and v) follow.

For the regularity theory it will be useful the following Lemma.
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Lemma 4.1.14. Let (M, g) be a (maybe non compact) manifold with sectional curvature bounded above
by 2, K̄ ≤ 2, and let f : S2 ↪→ M be a smooth immersion. Then one has the following bound:

E(f) ≤ 2W1(f) − 4π

Proof. For a general immersion f : S2 ↪→ M , by Gauss equation we can write

1

2
|A|2 =

1

2
H2 − k1k2 =

1

2
H2 − KG + K̄(Txf) =

(
H2

4
+ 1

)
+

(
H2

4
+ K̄(Txf) − 1

)
− KG

where K̄(Txf) is the sectional curvature of the ambient manifold evaluated on the plane Txf ⊂ TxM
with x ∈ f(S2), KG is the Gaussian curvature of (S2, f∗g) and k1, k2 are the principal curvatures.
Integrating, by Gauss Bonnet theorem and the bound K̄ ≤ 2, we get

E(f) ≤ 2W1(f) − 2πχE(S2) = 2W1(f) − 4π

Remark 4.1.15. The limit varifold V is the candidate minimizer of W1 among smooth immersions of
S2 in M but it is not trivially a minimizer since, up to now, it may not be smooth and its measure may
even vanish since we have not yet proved a lower bound on the areas of fk(S2).

4.2 Existence of a weak minimizer for
∫ ( |H|2

4 + 1
)

and
∫ ( |A|2

2 + 1
)

in NONCOMPACT asymptotically euclidean Riemannian
manifolds under curvature assumptions

4.2.1 A priori bounds on the minimizing sequences of W1 and E1

In this subsection we want to prove a bound from below on the diameters of minimizing sequences of
W1 and E1. In order to get this bound it is useful to prove that the infimum of W1 in the manifold is
less than the corresponding infimum in euclidean space; so let us compute the expansion of W1 on small
geodesic spheres.

Lemma 4.2.1. Let (M, g) be a (maybe non compact) Riemannian 3-manifold and assume that there
exists a point p̄ ∈ M where the scalar curvature is greater than 6

Rg(p̄) > 6.

Then there exists ε > 0 and small ρ > 0 such that the geodesic sphere Sp̄,ρ of center p̄ and radius ρ
satisfies

W1(Sp̄,ρ) :=

∫

Sp̄,ρ

H2

4
dµg + |Sp̄,ρ|g < 4π − 2ε,

E1(Sp̄,ρ) :=

∫

Sp̄,ρ

|A|2
2

dµg + |Sp̄,ρ|g < 4π − 2ε.

Proof. From Proposition 3.1 of [Mon1], on geodesic spheres Sp̄,ρ of center p̄ and small radius ρ one has

W (Sp̄,ρ) :=
1

4

∫

Sp̄,ρ

|H|2dµg = 4π − 2π

3
Rg(p̄)ρ2 + O(ρ3).

From equation (8) in the Proof of Proposition 3.1 in [Mon1], we have the following expansion of the area
of small geodesic spheres:

|Sp̄,ρ|g = 4πρ2 + O(ρ4).

Hence the expansion of W1 on small geodesic spheres is

W1(Sp̄,ρ) = 4π −
(2

3
Rg(p̄) − 4

)
πρ2 + O(ρ3).
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We conclude that, if Rg(p̄) > 6, for ρ > 0 and ε > 0 small enough we have the first inequality.
For the second inequality, observe that 1

2 |A2| = 1
4H2 + 1

2 |A◦|2. Moreover, the quantity

1

2

∫

Sp̄,ρ

|A◦|2dµg =
1

4

∫

Sp̄,ρ

(k1 − k2)
2dµg =

∫

Sp̄,ρ

( |H|2
4

− k1k2

)
dµg

is what we called Conformal Willmore functional and studied in Chapter 2. In that chapter the expan-
sion of the functional on geodesic spheres of small radius is computed. Considering w = 0 (w is the
perturbation of the geodesic sphere) in Lemma 2.2.5 and in Proposition 2.2.8, it is easy to check that

1

2

∫

Sp̄,ρ

|A◦|2dµg =

∫

Sp̄,ρ

( |H|2
4

− k1k2

)
dµg = O(ρ4).

It follows that E1(Sp̄,ρ) = W1(Sp̄,ρ) + O(ρ4) and we conclude as above.

Remark 4.2.2. Observe that if the ambient manifold (M, g) is the euclidean space (R3, δ), for every
smooth closed immersed surface Σ, the functional W1(Σ) > W (Σ) ≥ 4π. Moreover taking the sequence

of round spheres S
1/n
p of center p and radius 1/n, W1(S

1/n
p ) = 4π + 4π

n2 ↓ 4π. So in the euclidean space
the infimum of W1 is 4π and it is never achieved.

Proposition 4.2.3. Let (M, g) be a Riemannian 3-manifold whose scalar curvature is strictly greater
than 6 at one point:

∃p̄ ∈ M : Rg(p̄) > 6.

Consider a sequence of immersions {fk : S2 ↪→ M}k∈N minimizing W1 ,respectively E1 (i.e a minimizing
sequence of the problem (1.19), respectively (1.20))

Then
lim inf

k
(diamg fk(S2)) > 0

where diamg fk(S2) is the diameter of fk(S2) in the Riemannian manifold (M, g).

Proof. From the assumption on the scalar curvature, if {fk}k∈N is a minimizing sequence of W1,
Lemma 4.2.1 implies that

lim
k

W1(fk) ≤ 4π − 2ε. (4.9)

Observe that if instead {fk}k∈N is a minimizing sequence of E1, Lemma 4.2.1 implies limk E1(fk) ≤
4π − 2ε, but as shown in the proof of the previously cited Lemma, E1(fk) ≥ W1(fk), so inequality (4.9)
also holds for minimizing sequences of E1.
Let us assume by contradiction that lim infk(diamg fk(S2)) = 0, so up to subsequences diamg fk(S2) → 0.

First, using inequality (4.9) and that (M, g) is asymptotically euclidean let us show that there exists
a compact subset K ⊂⊂ M such that fk(S2) ⊂ K. If it in not the case than, up to subsequence, for every
k ∈ N we can take a point ξk ∈ fk(S2) ⊂ R3 (recall that outside a compact subset (M, g) is isometric to
(R3, δ + o1(1)) such that |ξk| → ∞. Since we are assuming that diamg fk(S2) → 0, for k large enough all
of the surface fk(S2) is contained in a region where o1(1) is arbitrarily small in C1 norm:

lim inf
k

‖o1(1)‖C1(fk(S2) = 0.

Now for every fixed k ∈ N we can put γ = r0 = diame(fk(S2))
k→∞→ 0 in estimate (3.11) (repeat the proof

of Lemma 3.2.4 with such quantities), since for k large also η and θ are arbitrarily small, passing to the
liminf in estimate (3.11) we can conclude that

lim inf W1(fk) > lim inf W (fk) ≥ lim inf We(fk) ≥ 4π

contradicting (4.9); so there exists a compact subset K ⊂⊂ M such that fk(S2) ⊂ K for all k ∈ N.
Since W1(fk) > W (fk), the estimate (4.9) and the argument above put us in position to apply

Proposition 3.3.4 and the conclusion follows.

Since the ambient manifold is non compact, it is not trivial a priori that the minimizing sequence of
surfaces has a uniform upper diameter bound. But this is true, using a monotonicity formula of Link (see
his Ph.D. Thesis [FL]).
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Proposition 4.2.4. Let (M, g) be a (maybe non compact) Riemannian 3-manifold such that
i) the sectional curvature is uniformly bounded

|K̄| ≤ Λ2 for some Λ ∈ R,

ii) the injectivity radius is uniformly bounded below away from 0

Inj(M, g) ≥ ρ̄ > 0.

Then there exists a constant C = C(ρ̄, Λ) > 0 such that for every Σ ↪→ (M, g) connected smooth closed
immersed oriented surface we have

diamg Σ ≤ max{1, C(|Σ|g + W (Σ))}.

Proof. If diamg Σ ≤ 1 we have finished, so we can assume that diamg Σ ≥ 1.
Under the assumptions i) and ii), Link proved (see [FL]) that there exists a constant C = C(ρ̄, Λ) such
that for 0 < σ ≤ ρ < ρ0 = c min(Inj(M), 1

Λ )

|Σ ∩ Bσ(x)|g
σ2

≤ C
( |Σ ∩ Bρ(x)|g

ρ2
+ W (Σ ∩ Bρ(x))

)
.

From the smoothness and the compactness of Σ, sending σ → 0 in the formula above, for every ρ ≤ ρ0

and x ∈ Σ one has

1 ≤ C
( |Σ ∩ Bρ(x)|g

ρ2
+ W (Σ ∩ Bρ(x))

)
. (4.10)

Since Σ is compact there exists a pair of points x, y ∈ Σ such that dg(x, y) = diamg Σ. Let us divide the
interval [0, diamg Σ] in N ≥ 1 (N ∈ N to be determined from ρ) subintervals, of the same length ρ with

1

2
min(1, ρ0) < ρ ≤ min(1, ρ0).

Consider the corresponding partition of the metric ball Bdiamg Σ(x) into N spherical (metric) annuli at
distance ρ one to each other

Ai = Biρ(x)\B(i−1)ρ(x) i = 1, . . . , N

where Biρ(x) is the metric ball.
Since the surface Σ is connected, for each annulus Ai there exists a metric ball B ρ

3
(xi) ⊂ Ai all

contained in the annulus with center xi ∈ Σ and radius ρ
3 . For each ball B ρ

3
(xi) we can apply the

estimate (5.11) and summing on i we get

N ≤ C

N∑

i=1

( |Σ ∩ B ρ
3
(xi)|g

ρ2
+ W (Σ ∩ B ρ

3
(xi))

)

≤ C
( |Σ|g
ρ2

+ W (Σ)
)

(4.11)

where the last inequality comes from the disjointness of the balls B ρ
3
(xi). Now multiplying both sides by

ρ2 we get
ρ diamg Σ = Nρ2 ≤ C(|Σ|g + ρ2W (Σ)) ≤ C(|Σ|g + W (Σ)),

where the last inequality comes from the condition ρ ≤ 1. Now, from the estimate 1
2 min(1, ρ0) < ρ we

have the bound 1
ρ < 2max(1, 1/ρ0) ≤ Cρ̄,Λ where Cρ̄,Λ is a constant depending on ρ̄ ≤ Inj(M) and Λ.

We can conclude that
diamg Σ ≤ Cρ̄,Λ (|Σ|g + W (Σ)).

Called {fk}k∈N a minimizing sequence of W1 (respectively E1), thanks to Proposition 4.2.4, Lemma
4.2.1 and Remark 4.2.2, it is possible to prove that the immersions {fk}k∈N are all valued in a compact
subset of M .
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Proposition 4.2.5. Let (M, g) be a non compact asymptotically euclidean Riemannian 3-manifold (in
the sense of (1.16)) with bounded geometry (i.e. with bounded sectional curvature |K̄| ≤ Λ2 for some
Λ ∈ R, and strictly positive injectivity radius Inj(M, g) ≥ ρ̄ > 0) whose scalar curvature is strictly greater
than 6 at a point:

∃p̄ ∈ M : Rg(p̄) > 6.

Consider a minimizing sequence {fk : S2 ↪→ M}k∈N of smooth immersions of W1 (respectively of E1)
among immersions of the same kind.
Then there exists a compact subset K ⊂⊂ M such that fk(S2) ⊂ K for all k ∈ N.

Proof. As in the proof of Lemma 4.2.3, since {fk}k∈N is a minimizing sequence of W1 (respectively
E1) we know that estimate (4.9) holds, namely W1(fk) ≤ 4π − 2ε.

From (4.9), we have a uniform bound on W (fk) and on |fk(S2)|g; since the ambient manifold (M, g)
is of bounded geometry, the conditions i) and ii) of Proposition 4.2.4 are satisfied and we can say that

diamg(fk(S2)) ≤ C(W (fk) + |fk(S2)|g) ≤ C

for some C > 0 independent of k.
If by contradiction there exists no compact subset K ⊂⊂ M such that fk(S2) ⊂ K then, up to

subsequences, for every k ∈ N we can take a point ξk ∈ fk(S2) ⊂ R3 (recall that outside a compact subset
(M, g) is isometric to (R3, δ + o1(1)) such that |ξk| → ∞. Since diamg fk(S2) ≤ C, for k large enough all
the surface fk(S2) is contained in a region where o1(1) is arbitrarily small in C1 norm:

lim inf
k

‖o1(1)‖C1(fk(S2) = 0.

Now consider estimate (3.11) and apply it to fk(S2) for k large; observe that in proof of that estimate one
can consider r0 = diamg fk(S2) ≤ C, moreover the quantities η and θ converge to 0 as k → ∞. Choosing
γ small enough (depending on the ε of (4.9)) it follows that for k sufficiently large we have the Euclidean
Willmore functional We(fk) < 4π contradicting Theorem 7.2.2 in [Will].

4.2.2 Existence of a smooth immersion of S2 minimizing W1, respectively E1

Let us start by summarizing the estimates and properties of a minimizing sequence fk : S2 ↪→ M for W1

(respectively E1).

Theorem 4.2.6. Let (M, g) be an asymptotically flat Riemannian 3-manifold (in the sense of (1.16))
of bounded geometry which satisfies:
- For the minimization problems of W1 and E1: there exists a point p̄ ∈ M such that R(p̄) > 6,
- For the minimization problems of W1: the sectional curvature K̄ is bounded by 2, K̄ ≤ 2.

Let {fk}k∈N be a minimizing sequence of smooth immersions fk : S2 ↪→ M for W1 (respectively E1),
i.e. a minimizing sequence for problem (1.19) (resp. problem (1.20)).

Then, called Vk the varifolds associated to fk and µk := ‖Vk‖ the associated spatial measures, the
following holds:
i) there exists a compact subset K ⊂⊂ M such that fk(S2) ⊂ K,
ii) there exists a constant C such that 1

C ≤ diamg(fk(S2)) ≤ C,
iii) lim supk

1
2

∫
|Ak|2dµk < 4π, where Ak is the second fundamental form of fk,

iv) there exists an integral 2-varifold V of M such that, up to subsequences, Vk → V in varifold sense,
v) V is an integral varifold with weak mean curvature H ( resp. generalized second fundamental form A),
vi) called µ := ‖V ‖ the mass measure of the limit varifold V then spt µ is compact, connected and up to
subsequences

µk ⇀ µ weak as Radon measures and

spt µk → spt µ in Hausdorff distance sense,

vii)

W1(µ) := W1(V ) :=

∫

G2(M)

( |H(x, P )|2
4

+ 1

)
dV ≤ lim inf

k
W1(fk) < 4π, and respectively

E1(µ) := E1(V ) :=

∫

G2(M)

( |A(x, P )|2
2

+ 1

)
dV ≤ lim inf

k
E1(fk) < 4π,

68



Proof. i) follows from Proposition 4.2.5, ii) follows from Proposition 4.2.3 and Proposition 4.2.4.
iii): by Lemma 4.2.1 we know that if fk is a minimizing sequence for E1 (respectively W1) then for

large k we have 1
2

∫
|Ak|2dµk ≤ E1(fk) ≤ 4π − ε for some ε > 0 (respectively W1(fk) ≤ 4π − ε). In the

first case we conclude; in the second case by Gauss equation, for an immersion f : S2 ↪→ M , we get

1

2
|A|2 =

1

2
H2 − k1k2 =

1

2
H2 − KG + K̄(Txf) =

(
H2

4
+ 1

)
+

(
H2

4
+ K̄(Txf) − 1

)
− KG

where K̄(Txf) is the sectional curvature of the ambient manifold evaluated on the plane Txf ⊂ TxM
with x ∈ f(S2), KG is the Gaussian curvature of (S2, f∗g) and k1, k2 are the principal curvatures.
Integrating, by Gauss Bonnet theorem and the bound K̄ ≤ 2, we get

1

2

∫
|A|2) ≤ 2W1(f) − 2πχE(S2) = 2W1(f) − 4π.

Since for k large we know that W1(fk) < 4π − ε we conclude that 1
2

∫
|Ak|2dµk ≤ 4π − ε.

iv) For the minimizing sequences fk of both E1 and W1, from part iii) we have the uniform bound
on the L2 norms of the second fundamental forms 1

2

∫
|Ak|2dµk ≤ 4π − ε; moreover by definition of the

functionals it is clear the uniform bound on the areas of fk(S2): ∃C > 0 such that ∀k ∈ N |fk(S2)|g < C.
Using the Cauchy-Schwartz inequality we can estimate the first variation of the varifolds Vk associated

to the immersions fk:

‖δVk‖ :=

∫
|Hk|dµk ≤ C

∫
|Ak|dµk ≤ C

(∫
|Ak|2dµk

) 1
2
√

|fk(S2)|g ≤ C.

Now applying Allard compactness Theorem (Theorem 6.4 in [Al]) to the sequence of varifolds Vk, we can
say that there exists an integral 2-varifold V such that

Vk → V in varifold sense.

v) and vii): from the uniform bound 1
2

∫
|Ak|2dµk ≤ 4π − ε, using the previous point i), we can

apply Theorem 5.3.2 in [Hu1] and say that V ∈ CV2(M) is a curvature 2-varifold with generalized second
fundamental form A (hence in particular with weak mean curvature H, see Remark 5.2.3 in [Hu1]). By
the lower semicontinuity of the functionals proved in the aforementioned paper by Hutchinson (notice
that the functionals are sum of a lower semicontinuous and a continuous part under varifold convergence),
we can define W1 and E1 on the limit varifold V and vii) follows.

vi): Of course, since the Grassmannian of the 2-planes is compact, the varifold convergence of a
sequence of varifolds implies the measure theoretic convergence of the spatial supports; so up to subse-
quences

µk ⇀ µ weak as Radon measures.

In order to get the Hausdorff convergence recall that K ⊂⊂ M ⊂ RS is isometrically embedded by
Nash Theorem, so we can see the surfaces fk(S2) as immersed in RS . Since fk as immersions in K have
uniformly bounded Willmore energy and area, and since K is compact and isometrically embedded in RS

it follows that fk as immersions in RS have uniformly bounded Willmore energy (for more details see the
proof of Lemma 4.1.10). Moreover we know that the associated measures µk ⇀ µ; under this conditions
Leon Simon proved (see [SiL] pages 310-311) that actually

sptµk → sptµ in Hausdorff distance sense

as subsets of RS ; but since M is isometrically embedded in RS it clearly implies that spt µk → sptµ in
Hausdorff distance as subsets of M .

At this point we proved the existence of a candidate minimizer varifold V for the functional E1,
respectively W1; moreover we showed that the minimizing sequence is contained in a compact subset
K ⊂⊂ M . Henceforth we are in the setting of Chapter 5, for convenience the regularity theory in that
chapter is stated for closed ambient manifold and for the functionals analyzed in Section 4.1 but can
be repeated analogously for the functionals E1 and W1 since the we just proved that the minimizing
sequences stay in a compact subset (see Remark 1.0.12). It follows that the candidate minimizer V is a
non null 2-varifold associated to a smooth immersion f : S2 ↪→ M which therefore is a minimizer for E1,
respectively W1.
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Chapter 5

Regularity theory for minimizers of
Willmore type functionals in
Riemannian manifolds

In this chapter we prove the regularity of the candidate minimizer given in Chapter 4, the content of the
chapter is a joint work with E. Kuwert and J. Schygulla from Freiburg (see [MS2])

5.1 Introduction to the chapter

For the regularity theory we took inspiration from the work of Simon [SiL] where the regularity of the
minimizers of W in euclidean setting is performed, but there are some non trivial modifications to be done
for immersions in a Riemannian manifold. First of all, since in Euclidean setting one has an 8π bound
on the Willmore functional which turns out to be very useful, using an inequality of Li and Yau [LY]
and a monotonicity formula Simon manages to work with embedded surfaces; in Riemannian manifold
instead we work with immersions, hence there could be multiplicity and the technique is a bit more
involved. Nevertheless in Section 5.2, working locally in normal coordinates, we manage to enter into the
assumptions of the Graphical Decomposition Lemma of Simon and prove that near all the points (except
possibly finitely many ”bad points” where the curvature concentrates) of the candidate minimizer, the
minimizing sequence can be written locally as union of graphs and small ”pimples” with good estimates.

In Section 5.3 we prove that the candidate minimizer is locally given by graphs of C1,α ∩ W 2,2

functions. For getting this partial regularity we first prove a local power decay on the L2 norms of the
second fundamental forms of the minimizing sequence (see Lemma 5.3.1) away from the bad points; then,
still working locally away from the bad points, replacing the pimples by sort of biharmonic discs, by
Ascoli-Arzelá theorem we get existence of Lipschitz limit functions; at this point, using a generalized
Poincaré inequality, the power decay of the second fundamental forms and Radon Nicodym Theorem,
we show in Lemma 5.3.2 that the candidate minimizer is associated to the limit Lipschitz graphs; finally
using that this candidate minimizer has weak mean curvature in L2, together with the aforementioned
power decay, a lemma of Morrey implies the C1,α ∩ W 2,2 regularity away from the bad points. Using a
topological argument involving degree theory and Gauss Bonnet theorem, in Subsection 5.3.2 we prove
that actually there are no bad points and therefore the candidate minimizer is of class C1,α ∩ W 2,2

everywhere. This step is quite different (and simpler) from [SiL], indeed since we work with immersed
spheres we manage to exclude bad points while Simon works with surfaces of higher genus and he has to
handle the bad points without excluding them.

To complete the regularity we need to show that the candidate minimizer satisfies the Euler-Lagrange
equation, and for this step we need to prove that it can be parametrized on S2. At this point (see
Subsection 5.4.1) we use the notion of generalized (r,λ)-immersions developed by Breuning in his Ph. D.
Thesis [BreuTh] taking inspiration by previous work of Langer [Lan]. Once the Euler Lagrange equation
is satisfied the C∞ regularity follows (see Subsection 5.4.2)
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5.2 Good/Bad Points and the Graphical Decomposition Lemma

In the present section we will define the good and bad points, we will state the Graphical Decomposition
Lemma of Leon Simon and we will show that it can be applied in our settings. This is the starting point
for the regularity theory of the candidate minimizer varifold V .

5.2.1 Definition and first properties of the good/bad points

Let us start introducing some notation: since we will work in normal coordinates we will see our surfaces
immersed locally either in R3 with euclidean metric δµν or with the Riemannian metric gµν . The quantities
in ”euclidean” setting will be denoted with an ”e” (ex. µe

k, He
k , Ae

k, . . .) and the Riemannian quantities
will be denoted with a ”g” (ex. µg

k, Hg
k , Ag

k, . . . ).
This subsection is common to the two functionals E and W1 since we use properties that both the

functionals satisfy. First we define the so called bad points with respect to a given ε > 0 in the following
way: define the Radon measures αk on M by

αk = µg
k!|Ag

k|2.

From the definition of E and for Lemma 4.1.14 we know that αk(M) ≤ C. By compactness there exists
a Radon measure α on M such that (after passing to a subsequence) αk ⇀ α weak as Radon measures.
It follows that sptα ⊂ spt µ and α(M) ≤ C.

Definition 5.2.1. We define the bad points with respect to ε > 0 by

Bε =
{
ξ ∈ spt µ

∣∣α({ξ}) > ε2
}

. (5.1)

The points of spt µ\Bε are called ε-good points.

Remark 5.2.2. Since α(M) ≤ C, there exist only finitely many bad points. Moreover if ξ0 is an ε-good
point there exists a 0 < ρ0 = ρ0(ξ0, ε) ≤ 1 such that α(Bg

ρ0
(ξ0)) < 2ε2, and since αk ⇀ α weakly as

measures we get ∫

Bg
ρ0

(ξ0)

|Ag
k|2 dµg

k ≤ 2ε2 for k sufficiently large, (5.2)

where Bg
ρ0

(ξ0) is the metric ball in (M, g) of center ξ0 and radius ρ0.

5.2.2 Some geometric estimates in normal coordinates

Throughout this subsection, let (M, g) be our closed Riemannian 3-manifold and {fk : S2 ↪→ M}k∈N a
sequence of smooth immersions.

Fix ξ ∈ sptµ an ε−good point for some ε > 0 and consider xµ, µ = 1, 2, 3, normal coordinates of
(M, g) centered at ξ (i.e the coordinates of ξ are 0). Recall that, in this coordinates, the metric gµν takes
the following shape (see for example [LP] formula (5.4) page 61):

gµν(x) = δµν +
1

3
Rµσλνxσxλ + O(|x|3) (5.3)

= δµν + hµν(x) (5.4)

where
hµν(0) = 0 and Dλhµν(0) = 0 ∀λ, µ, ν = 1, 2, 3. (5.5)

Called inj(ξ) > 0 the injectivity radius at ξ, observe that inside the geodesic ball Bg
inj(ξ)(ξ) we have two

metrics: the metric gµν = δµν + hµν of the Riemannian manifold (M, g) and the euclidean metric δµν .
Denoted with |x| the norm of x as a vector in R3, observe that (5.3) (or (5.5) ) implies

|hµν(x)| = O(|x|2) |Dλhµν(x)| = O(|x|) for small |x|, (5.6)

where the notation O(t), t > 0 of course means that there exists C > 0 such that limt→0+
O(t)

t ≤ C.
Moreover, since M is compact, all the curvatures of g are bounded on M and the remainders O(|x|2),
O(|x|) (which clearly depend on the base point ξ) are uniform in M ; i.e. there exist a constant CM
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depending on M which can be used in the definition of O for the remainders in (5.6) for all the base
points ξ ∈ M .

Since we have two metrics, all the geometric quantities associated to a surface have two values: the
euclidean and the Riemannian one. The euclidean quantities are labeled with an ”e” (de(x, y) is the
euclidean distance between x and y,dµe is the euclidean area form, |.|e is the euclidean area, He is the
euclidean mean curvature, Ae is the euclidean second fundamental form, . . . ) and the Riemannian ones
with a ”g” (dg(x, y),dµg, |.|g, Hg, Ag . . . are the corresponding Riemannian ones). We also adopt the
convention that |Ae|2 ( respectively |Ag|2) is the squared euclidean (respectively Riemannian) norm of
the euclidean (respectively Riemannian) second fundamental form; analogous notation is used for |He|2
and |Hg|2.

For the regularity theory it is important to relate the euclidean and the Riemannian quantities; let
us do it.

Proposition 5.2.3. Let (M, g) be a Riemannian 3-manifold, consider a point ξ ∈ M and normal coor-
dinates xµ, µ = 1, 2, 3, centered in ξ. Let Σ ↪→ M be an immersed smooth surface, as explained above we
have couples of geometric quantities: the euclidean and the Riemannian ones.

Then the following relations between the two of them hold:

i) de(x, y) ≈ (1 + O(ρ2))dg(x, y) for |x|, |y| ≤ ρ

ii) dµe(x) ≈ (1 + O(|x|2))dµg(x)

iii) µe(Be
ρ(ξ)) := |Σ ∩ Be

ρ(ξ)|e ≈ (1 + O(ρ2))|Σ ∩ Bg
ρ+O(ρ3)(ξ)|g =: (1 + O(ρ2))µg(Bg

ρ+O(ρ3)(ξ))

iv) (Ag)ij(x) ≈ [1 + O(|x|2)](Ae)ij(x) + O(|x|)
v) |Ag|2 ≈ (1 + O(|x|2−2α))|Ae|2(x) + O(|x|2α) ∀ 0 ≤ α ≤ 1

vi) Hg(x) ≈ He(x) + O(|x|2)|Ae|(x) + O(|x|)
vii) |Hg|2(x) ≈ (1 + O(|x|2−2α))|He|2(x) + O(|x|2)|Ae|2 + O(|x2α|) ∀ 0 ≤ α ≤ 1

where x ∈ Σ is a small vector of R3 and with the symbol ≈ we mean that we have an upper and lower
bound of the left hand side with the right hand side.

Proof. In Chapter 3, we considered the ”manifold” R3 with two metrics: the standard euclidean
one and a perturbed one. We denoted the euclidean scalar product by δµν and the perturbed metric as
δµν +hµν(x) where hµν(.) was a compactly supported field of smooth symmetric bilinear forms. We called
η := ‖h‖C0(R3) and θ := ‖Dh‖C0(R3) and we worked out estimates of the geometric quantities (distance,
area, second fundamental form, mean curvature,. . .) in perturbed metric in terms of the euclidean ones
and the remainders depended on η and θ.

Now, as remarked above, near the point ξ the Riemannian metric in normal coordinates is a perturba-
tion of the euclidean metric, moreover |hµν(x)| = O(|x2|) and |Dλhµν(x)| = O(|x|). Since the estimates
of Chapter 3 are punctual then, in their proof adapted to the present contest, it does not matter if h has
not compact support; moreover one can estimate |hµν(x)| with O(|x|2) instead of η and Dλhµν(x) with
O(|x|) instead of θ.

i) follows from statement ii) of Lemma 3.2.1;

ii) follows from Lemma 3.2.2; about the notation observe that now dµe is what we called

√
det(̊δ)

and dµg is what we called

√
det( ˚δ + h);

iii) from statement i) above we have that Be
ρ(ξ) ≈ Bg

ρ(1+O(ρ2))(ξ) where we mean that the left hand

side is contained in and contains a set in the form of the right hand side. Now we apply statement ii)
above to get

|Σ ∩ Be
ρ(ξ)|e ≈ |Σ ∩ Bg

ρ+O(ρ3)(ξ)|e ≈ (1 + O(ρ2))|Σ ∩ Bg
ρ+O(ρ3)(ξ)|g;

iv) follows from estimate (3.8) in the proof of Lemma 3.2.3;
v) at the point x ∈ Σ take a g-orthonormal base of the tangent space TxΣ which diagonalizes Ag.

Then |Ag|2 = (Ag)
2
11 + (Ag)

2
22. Plugging statement iv) above into the last equality we get

|Ag|2 ≈ [1 + O(|x|2)][(Ae)
2
11 + (Ae)

2
22] + O(|x|)He(x) + O(|x|2)

≈ [1 + O(|x|2)][(Ae)
2
11 + (Ae)

2
22] + O(|x|)|Ae|(x) + O(|x|2) (5.7)
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Notice that the chosen g-orthonormal frame of TxΣ may not be euclidean-orthonormal and it can also
happen that in this base Ae is not diagonal. Nevertheless, using statement iv) we have (Ae)12(x) = O(|x|),
moreover the inverse of the euclidean first fundamental form is δij + O(|x|2), then

|Ae|2(x) = [δik + O(|x|2)][δjl + O(|x|2)](Ae)ij(x)(Ae)kl(x) ≈ [1 + O(|x|2)][(Ae)
2
11 + (Ae)

2
22] + O(|x|2)

it follows that [(Ae)
2
11(x)+ (Ae)

2
22(x)] ≈ [1+O(|x|2)]|Ae|2(x)+O(|x|2) and plugging into (5.7) we obtain

|Ag|2 ≈ (1 + O(|x|2))|Ae|2(x) + O(|x|)|Ae|(x) + O(|x|2).

Using the estimate 2ab ≤ a2 + b2 observe that, for any 0 ≤ α ≤ 1,

O(|x|)|Ae|(x) = O(|x|α)O(|x|1−α)|Ae|(x) ≈ O(|x|2α) + O(|x|2−2α)|Ae|2(x)

hence we can conclude that

|Ag|2 ≈ (1 + O(|x|2−2α))|Ae|2(x) + O(|x|2α) ∀ 0 ≤ α ≤ 1;

vi) follows from estimate (3.10) in the proof of Lemma 3.2.3;
vii) from statement vi), just taking the norm with respect with the two metrics, recalling that gµν(x) =

δµν + O(|x|2) and that |He| ≤ C|A2|we have

|Hg|2(x) ≈ (1 + O(|x|2))|He|2(x) + O(|x|2)|Ae|2(x) + O(|x|)|He| + O(|x|2).

With the same trick of statement v), O(|x|)|He| = O(|x|α)O(|x|1−α)|He|(x) ≈ O(|x|2α)+O(|x|2−2α)|He|2(x)
for all 0 ≤ α ≤ 1 ; we can conclude that

|Hg|2(x) ≈ (1 + O(|x|2−2α))|He|2(x) + O(|x|2)|Ae|2(x) + O(|x|2α) ∀ 0 ≤ α ≤ 1.

Using Proposition 5.2.3, in the next Lemma we will get easy but fundamental estimates in order to
apply the Graphical Decomposition Lemma of Leon Simon.

Lemma 5.2.4. Let (M, g), fk and µ as before and assume a uniform bound on the L2 norms of the
second fundamental forms of fk

∃ C > 0 such that

∫
|Ag

k|2dµg
k ≤ C ∀ k ∈ N

and on the areas
∃ C > 0 such that |fk(S2)|g ≤ C.

Fix ε > 0, take a good point ξ0 ∈ sptµ\Bε ( by Remark 5.2.2, see also Remark 5.2.6, we know that
the set of the good points sptµ\Bε is non empty).

Then there exist ρ0 = ρ0(ξ0, ε) > 0 (maybe smaller than the ρ0 of Remark 5.2.2), β > 0 (β depending
only on M and on the assumed two uniform bounds) and infinitely many k such that the following is
true:

for all ξ ∈ sptµ ∩ Be
ρ0
2

(ξ0) there exist ξk ∈ fk(S2) such that ξk → ξ and for all 0 < ρ ≤ ρ0

4 we have

that

i) µe
k(Be

ρ(ξk)) = |fk(S2) ∩ Be
ρ(ξk)|e ≤ βρ2,

ii) (∂fk(S2)) ∩ Be
ρ(ξk) = ∅,

iii)

∫

Be
ρ(ξk)

|Ae
k|2dµe

k ≤ 3ε2.

Proof. Let us call Σ := spt µ and Σk := sptµk. Let ξ ∈ Σ ∩ Be
ρ0
2

(ξ0) and Σk 6 ξk → ξ ∈ Σ, with

ρ0 and ξk to be determined during the proof (of course since Σk → Σ in Hausdorff distance sense, then
there exists a sequence ξk ∈ Σk such that ξk → ξ).
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i) Statement i) of Proposition 5.2.3, tells us that for small ρ > 0 we have Be
ρ(ξk) ≈ Bg

ρ+O(ρ3)(ξk) (for

the notation see the proof of Proposition 5.2.3); then, using the estimate on the area form (statement ii)
of Proposition 5.2.3)

|Σk ∩ Be
ρ(ξk)|e ≈ |Σk ∩ Bg

ρ+O(ρ3)(ξk)|e ≈ (1 + O(ρ2))|Σk ∩ Bg
ρ+O(ρ3)(ξk)|g.

Since we can estimate |Hg|2 ≤ 2|Ag|2, the assumed uniform bounds permit us to apply Lemma 4.1.10

and say that |Σk ∩ Bg
ρ(ξk)|g ≤ Cρ2 (we get the estimate with the closed ball with a limit process on

decreasing open balls containing it). Thus

|Σk ∩ Be
ρ(ξk)|e ≈ (1 + O(ρ2))|Σk ∩ Bg

ρ+O(ρ3)(ξk)|g ≤ C[1 + O(ρ2)][ρ+ O(ρ3)]2 ≤ βρ2

for small ρ; let us say ∀ 0 < ρ ≤ ρ0, for some ρ0 > 0 (notice that we used that the remainders O(.)
are uniform in the compact set K, moreover the last estimate holds with the same β for every choice of
ξk ∈ Σk).

ii) is trivial since by assumption the surfaces have no boundary
iii) Let ρ0 = ρ0(ξ0, ε) be as in Remark 5.2.2 (or smaller in a way that statement i) above is satisfied);

then ∫

Bg
ρ0

(ξ0)

|Ag
k|2 dµg

k ≤ 2ε2 for infinitely many k. (5.8)

Using statements i), ii) and v) of Proposition 5.2.3 we get
∫

Be
ρ(ξ0)

|Ae
k|2 dµe

k ≈
∫

Bg

ρ+O(ρ3)
(ξ0)

[
(1 + O(ρ))|Ag

k|2 + O(ρ)
]
[1 + O(ρ2)] dµg

k

≈ [1 + O(ρ)]

∫

Bg

ρ+O(ρ3)
(ξ0)

|Ag
k|2 dµg

k + O(ρ)|Σk ∩ Be
ρ(ξ0)|e

≤ [1 + O(ρ)]2ε2 + O(ρ3)

≤ 3ε2 for infinitely many k (5.9)

for small ρ; let us say ∀ 0 < ρ ≤ ρ0, for an even smaller ρ0 > 0. Notice that we used the local
area estimate we got in statement i) and the property (5.8). Then, for ξ ∈ Be

ρ0
2

(ξ0) we have that

Be
ρ0
2

(ξ) ⊂ Be
ρ0

(ξ0). Since Σk → Σ in Hausdorff distance sense, for k large enough (uniformly on ξ) we

can choose ξk ∈ Be
ρ0
4

(ξ) ∩ Σk; it follows that Be
ρ0
4

(ξk) ⊂ Be
ρ0
2

(ξ) ⊂ Be
ρ0

(ξ0) and, using (5.9),

∫

Be
ρ(ξk)

|Ae
k|2 dµe

k ≤ 3ε2

for 0 < ρ ≤ ρ0

4 as desired.

5.2.3 A lower 2-density bound near the good points

In this subsection we prove that for both the functionals E and W1 we have a lower 2-density bound on
the minimizing sequence of immersions fk near the good points. The result is crucial since it avoids the
trivial case when the candidate minimizer limit measure is null.

Proposition 5.2.5. Let (M, g), fk and µ be as before. Then there exists ε0 > 0, ρ0 > 0 small enough
and C > 0 such that the following is true: fix a ε0-good point ξ0 and take ξ ∈ Be

ρ0
(ξ0); thus there exists a

sequence ξk′ ∈ fk′(S2) (where k′ is a subsequence of the ks ) which satisfies the following two properties
i) ξk′ → ξ
ii)

µg
k′(Bg

ρ(ξk′))

ρ2
=

|Σk′ ∩ Bg
ρ(ξk′)|g

ρ2
≥ C > 0, ∀ 0 < ρ ≤ ρ0.

It follows a 2-density lower bound on the limit measure µ at the point ξ ∈ Be
ρ0

(ξ0):

µ(Be
ρ(ξ))

ρ2
≥ C ∀ 0 < ρ ≤ ρ0.
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Proof. As before let us call Σk := spt µk and Σ := spt µ. Since by assumption Σk → Σ in Hausdorff
distance sense, for each ξ ∈ Σ there exists a sequence ξk ∈ Σk such that ξk → ξ.
The numbers ε0 > 0 and ρ0 will be chosen later in the proof. Since ξ0 is a good point, then by Remark
5.2.2, for ρ0 > 0 small enough

∫

Bg
ρ0

(ξ0)

|Ag
k|2 dµg

k ≤ 2ε20 for infinitely many k.

From statement i) of Proposition 5.2.3 and from the assumption ξ ∈ Be
ρ̄
2

(ξ0) (ρ̄ small to be determined),

it follows that Be
ρ̄
2

(ξ) ⊂ Be
ρ̄(ξ0) ⊂ Bg

ρ̄+O(ρ̄3)(ξ0) ⊂ Bg
ρ0

(ξ0) for ρ̄ small enough. Analogously, since ξk → ξ,

for k large enough and ρ small enough we have that Bg
ρ(ξk) ⊂ Bg

2ρ(ξ) ⊂ Be
ρ̄
2

(ξ) ⊂ Bg
ρ0

(ξ0). Recalling

that the norm of the mean curvature can be estimated with the norm of the second fundamental form,
|Hg

k |2 ≤ 2|Ag
k|2, we get for infinitely many k

W (Σk ∩ Bg
ρ(ξk)) =

1

4

∫

Bg
ρ(ξk)

|Hg
k |2 dµg

k ≤ 1

2

∫

Bg
ρ(ξk)

|Ag
k|2 dµg

k ≤ 1

2

∫

Bg
ρ0

(ξ0)

|Ag
k|2 dµg

k ≤ ε20. (5.10)

Let us recall a monotonicity formula proved by Florian Link in his Ph. D. Thesis [FL]. Under the
assumptions on the ambient manifold (M, g) of strictly positive lower bound on the injectivity radius and
bounded sectional curvature (which now are of course satisfied since our M is compact) he proves that
there exists a constant C = C(M) such that for 0 < σ ≤ ρ < ρ0 = c(M) and every smooth immersed
surface Σ̃

|Σ̃ ∩ Bg
σ(x)|g

σ2
≤ C

( |Σ̃ ∩ Bg
ρ(x)|g
ρ2

+ W (Σ̃ ∩ Bg
ρ(x))

)
.

From the smoothness of Σ̃, sending σ → 0 in the formula above, for every ρ ≤ ρ0 and x ∈ Σ̃ one has

1 ≤ C
( |Σ̃ ∩ Bg

ρ(x)|g
ρ2

+ W (Σ̃ ∩ Bg
ρ(x))

)
. (5.11)

Using estimate (5.11) for the subsequence k′ for which the inequality (5.10) holds, we obtain that for
every 0 < ρ ≤ ρ0 (taking ρ0 even smaller in a way that Link’s monotonicity formula can be applied)

1 ≤ C

( |Σk′ ∩ Bg
ρ(ξk′)|g

ρ2
+ W

(
Σk′ ∩ Bg

ρ(ξk′)
))

≤ C

( |Σk′ ∩ Bg
ρ(ξk′)|g

ρ2
+ ε20

)
.

Chosen ε20 ≤ 1
2C we get

|Σk′ ∩ Bg
ρ(ξk′)|g

ρ2
≥ C > 0 (5.12)

for the subsequence of the k′, for some C > 0 and for 0 < ρ < ρ0, ρ0 maybe smaller. Now let us show
the lower 2-density bound on µ, the limit of the measures µk associated to Σk.
Since µ is a finite Radon measure, for almost every 0 < ρ ≤ ρ0 we have µ(∂Bg

2ρ(ξ)) = 0 then the weak
convergence of measures implies

µ(Bg
2ρ(ξ)) = lim

k
[µk(Bg

2ρ(ξ))] = lim
k′

[µk′(Bg
2ρ(ξ))].

Since ξk′ → ξ, for k′ large enough ξk′ ∈ Bg
ρ(ξ) and Bg

ρ(ξk′) ⊂ Bg
2ρ(ξ); it follows that

lim
k′

[µk′(Bg
2ρ(ξ))] ≥ lim sup

k′
[µk′(Bg

ρ(ξk′))] = lim sup
k′

|Σk′ ∩ Bg
ρ(ξk′)|g ≥ Cρ2 > 0

where in the last step we used inequality (5.12). Collecting the last two chains of inequalities we get

µ(Bg
2ρ(ξ))

4ρ2
≥ C > 0

for almost every 0 < ρ ≤ ρ0. Now fix an arbitrary ρ ∈ (0, 2ρ0), then there exists a sequence ρn ↑ ρ such
that the last inequality is satisfied: µ(Bg

ρn
(ξ)) ≥ Cρ2

n. Passing to the limit in n we get

µ(Bg
ρ(ξ))

ρ2
≥ C > 0 ∀ ρ ∈ (0, 2ρ0).
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We can conclude using statement i) of Proposition 5.2.3 and the smallness of ρ0; indeed, for small ρ we
have Be

ρ(ξ) ⊃ Bg
ρ+O(ρ3)(ξ) then

µ(Be
ρ(ξ)) ≥ µ(Bg

ρ+O(ρ3)(ξ)) ≥ C[ρ2 + O(ρ6)] ≥ Cρ2

for all ρ ∈ (0, ρ0), ρ0 small enough.

Remark 5.2.6. Proposition 5.2.5 is crucial for our minimization problems since it avoids the trivial
case when the candidate minimizer limit measure µ is null. Indeed in the case {fk}k∈N is a minimizing
sequence for either E or W1, we know from Theorem 4.2.6 ( respectively Theorem 4.1.13) that the support
sptµ of the limit measure µ is compact, connected and with positive diameter; hence it contains infinitely
many points. Since for both the functionals the L2 norms of the second fundamental forms of fk are
uniformly bounded (for E it is trivial, see Lemma 4.1.14 for W1), by Remark 5.2.2, for every ε > 0 there
are infinitely many ε-good points. Thus, applying Proposition 5.2.5, we have that there exists a small
ρ0 > 0 such that µ(Be

ρ0
(ξ0)) > Cρ2

0 > 0.

5.2.4 The Graphical Decomposition Lemma

Thanks to Lemma 5.2.4 we are in position to apply the Graphical Decomposition Lemma of Leon Simon
(Lemma 2.1 in [SiL]).

Lemma 5.2.7. Let (M, g),fk and µ be as in the assumptions of Lemma 5.2.4. Let β be given by Lemma
5.2.4 and ε0 = ε0(β) the associated one by Lemma 2.1 in [SiL]. Let ε < ε0, fix a good point point ξ0 with
respect to ε and consider ρ0 = ρ0(ξ0, ε0) given by Lemma 5.2.4.

Then for any ξ ∈ spt µ ∩ Be
ρ0
2

(ξ0), for all ρ ≤ ρ0

4 and for infinitely many k ∈ N the following holds:

There exist 2-dimensional planes Ll containing ξ and functions ul
k ∈ C∞

(
Ωl

k, L⊥
l

)
such that

fk(S2) ∩ Be
ρ
4
(ξ) =

Mk⋃

l=1

Dl
k ∩ Be

ρ
4
(ξ) =




Mk⋃

l=1

graph ul
k ∪

Nk⋃

j=1

P k
j


 ∩ Be

ρ
4
(ξ)

where

Ωl
k = (Be

λ(ξ) ∩ Ll) \
⋃

m

dl
k,m

(
λ ∈

(
67

128

ρ

4
,

67

128

ρ

2

))

and where the dl
k,m ⊂ Ll are pairwise disjoint closed discs disjoint from ∂Be

λ(ξ).

Furthermore each Dl
k is a topological disc with graph ul

k ∩ Be
ρ
4
(ξ) ⊂ Dl

k and Dl
k \ graph ul

k is a union

of a subcollection of the P k
j ⊂ fk(S2), and each P k

j is diffeomorphically a closed disc.
We have the following estimates:

Mk ≤ cβ, (Mk = the number of slices for a fixed k)

M l
k∑

m=1

diam dl
k,m ≤ c

(∫

Be
2ρ(ξk)

|Ae
k|2 dµe

k

) 1
4

ρ ≤ cε
1
2 ρ, (5.13)

Nk∑

j=1

diam P k
j ≤ c

(∫

Be
2ρ(ξk)

|Ae
k|2 dµe

k

) 1
4

ρ ≤ cε
1
2 ρ, (5.14)

1

ρ
||ul

k||L∞(Ωk) ≤ cε
1
6 +

δk
ρ

where δk → 0, (5.15)

||Dul
k||L∞(Ωk) ≤ cε

1
6 + δk where δk → 0. (5.16)

5.3 C1,α ∩ W 2,2 regularity of the limit measure µ

5.3.1 Regularity in the good points

In the next step we estimate the squared integral of the second fundamental form on small balls around
the ”good points”. This estimate will help us to show that the candidate minimizer (for W1 or E) µ is
actually the measure associated to C1,α ∩ W 2,2 graphs in a neighborhood around the good points.
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Lemma 5.3.1. Consider the following two cases:
i)Let (M, g) be a closed Riemannian 3-manifold which satisfies at least one of the two conditions

below:
- (M, g) has uniformly strictly positive sectional curvature in the sense of (4.1); or
- there is no nonzero 2-varifold of M with null generalized second fundamental form and there is a point
p̄ where the scalar curvature is strictly positive: Rg(p̄) > 0.
Let {fk : S2 ↪→ M}k∈N be a minimizing sequence of smooth immersions for E among the immersions of
the same type.

ii) Let (M, g) be a closed Riemannian 3-manifold whose scalar curvature is strictly greater than 6 at
a point:

∃p̄ ∈ M : Rg(p̄) > 6.

Let {fk : S2 ↪→ M}k∈N be a minimizing sequence of smooth immersions for W1 among the immersions
of the same type.

Let µ be the limit measure given by the corresponding compactness Theorems (Theorem 4.2.6 and
Theorem 4.1.13) and consider ε0 > 0, ξ0 ∈ spt µ\Bε for ε ≤ ε0, ρ0 = ρ0(ξ0, ε0) as in Lemma 5.2.7
(actually ε0 > 0 can be chosen smaller during the proof).

Then we have for all ξ ∈ sptµ ∩ Be
ρ0
2

(ξ0) and all ρ ≤ ρ0

4 that

lim inf
k→∞

∫

Be
ρ
8

(ξ)

|Ae
k|2 dµe

k ≤ cρα where c = c(ρ0) and α ∈ (0, 1).

Proof. First of all observe that from Proposition 4.1.1, Corollary 4.1.2, Remark 4.1.3 (which give the
area bounds), Lemma 4.1.14 (which give the L2 bound on A), and the compactness results of Theorem
4.2.6 and Theorem 4.1.13, then we are in the assumptions of Definition 5.2.1, Lemma 5.2.4 and Lemma
5.2.7.

For infinitely many k ∈ N apply the Graphical Decomposition given by Lemma 5.2.7 and for those
k ∈ N (surface index), l ∈ {1, . . . , Mk} (slice index) and γ ∈

(
ρ
16 , 3ρ

32

)
define the set

Cl
γ(ξ) =

{
x + y

∣∣x ∈ Be
γ(ξ) ∩ Ll, y ∈ L⊥

l

}
.

From the estimates on the diameters of the pimples and the C1 estimates on the graph functions ul
k, it

follows that
Dl

k ∩ Cl
γ(ξ) = Dl

k ∩ Cl
γ(ξ) ∩ Be

ρ
4
(ξ) for ε ≤ ε0 and δk ≤ ρ

8
. (5.17)

To see this, let z ∈ Dl
k ∩ Cl

γ(ξ), then z = x1 + y1 with x1 ∈ Bγ(ξ) ∩ Ll, y1 ∈ L⊥
l . Since Dl

k is disjoint
union of a graph and a pimple part, there are two possible cases:

1) z ∈ graph ul
k ∩ Cl

γ(ξ): thus |y1| = |ul
k(x1)| ≤ cε

1
6 ρ+ δk and

|z − ξ| ≤ |x1 − ξ| + |y1| ≤ γ + cε
1
6 ρ+ δk ≤ 3ρ

32
+ cε

1
6 ρ+ δk

≤ ρ

8
+ δk for ε ≤ ε0, ε0 maybe smaller

≤ ρ

4
for δk ≤ ρ

8
. (5.18)

2) z ∈ Dl
k ∩ P k

j ∩ Cl
γ(ξ) for some j ∈ N: Since diam P k

j ≤ cε
1
2 ρ it follows that |y1| ≤ cε

1
6 ρ + δk +

diam P k
j ≤ cε

1
6 ρ+ δk. Now the claim follows in the same way as above in 1).

Next define the set Al
k by

Al
k(ξ) =



γ ∈

(
ρ

16
,
3ρ

32

) ∣∣∣ ∂Cl
γ(ξ) ∩

⋃

j

P k
j = ∅



 .

For ε ≤ ε0 (ε0 maybe smaller) it follows that

L1(Al
k(ξ)) ≥ ρ

32
−
∑

j

diam P k
j ≥ ρ

32
− cε

1
2 ρ ≥ ρ

64
.
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From Lemma 5.5.2 it follows that there exists a set Tl ⊂
(

ρ
16 , 3ρ

32

)
with L1(Tl) ≥ ρ

64 such that for all
γ ∈ Tl,

∂Cl
γ(ξ) ∩

⋃

j

P k
j = ∅ for infinitely many k ∈ N.

Now let γ ∈ Tl be arbitrary (it will be chosen later); we apply the Extension Lemma given in the Appendix

(see Lemma 5.5.1, for the proof see [Schy]) to get a function wl
k ∈ C∞

(
Be

γ(ξ) ∩ Ll, L
⊥
l

)
for infinitely

many k such that

wl
k = ul

k ,
∂wl

k

∂ν
=
∂ul

k

∂ν
on ∂Be

γ(ξ) ∩ Ll,

1

γ
||wl

k||L∞(Be
γ(ξ)∩Ll) ≤ cε

1
6 +

δk
γ

where δk → 0,

||Dwl
k||L∞(∂Be

γ(ξ)∩Ll) ≤ cε
1
6 + δk where δk → 0,

∫

Be
γ(ξ)∩Ll

|D2wl
k|2 ≤ cγ

∫

graph ul
k|∂Be

γ (ξ)∩Ll

|Ae
k|2 dH1

e.

where dH1
e is the 1 dimensional euclidean Hausdorff measure.

Observe that, with an analogous argument as above using the estimates on wl
k, we get

graph wl
k ⊂ Be

ρ
4
(ξ) for ε ≤ ε0 (ε0 maybe smaller) and δk ≤ ρ

8
. (5.19)

Now we consider the immersed surfaces

Σ̃k =

(
fk(S2) \

(⋃

l

Dl
k ∩ Cl

γ(ξ)

))
∪
⋃

l

graph wl
k. (5.20)

Let us check that Σ̃k can be parametrized on S2 by a C1,1 immersion f̃k : S2 ↪→ M : Since the pimples
are diffeomorphic to discs and since we have chosen a good radius γ for the cylinder Cl

γ(ξ), it is possible

to show that Dl
k ∩ Cl

γ(ξ) is diffeomorphic to graph wl
k for all k, l. By the boundary properties of wl

k one

can define a C1,1 immersion f̃k : S2 ↪→ M which parametrizes Σ̃k.
From the definition of γ we have that
∫

graph wl
k

|Ae|2 dH2
e ≤ c

∫

Be
γ(ξ)∩Ll

|D2wl
k|2 ≤ cγ

∫

graph ul
k|∂Be

γ (ξ)∩Ll

|Ae
k|2dH1

e = cγ

∫

∂Cl
γ(ξ)∩Dl

k

|Ae
k|2dH1

e.

Until now, γ ∈ Tl ⊂
(

ρ
16 , 3ρ

32

)
was arbitrary and L1(Tl) ≥ ρ

64 . Therefore, with a Fubini-type argument,
we get that the set

Sl
k =



γ ∈ Tl

∣∣∣
∫

∂Cl
γ(ξ)∩Dl

k

|Ae|2dµe ≤ 128

ρ

∫
(

Dl
k∩Cl

k,
3ρ
32

(ξ)\Cl
k,

ρ
16

(ξ)

)
\⋃

j P k
j

|Ae|2 dµe





has measure L1(Sl
k) ≥ ρ

128 . Indeed otherwise we would have that
∫

(
Dl

k∩Cl

k,
3ρ
32

(ξ)\Cl
k,

ρ
16

(ξ)

)
\⋃

j P k
j

|Ae|2 dµe ≥
∫

Tl\Sl
k

∫

∂Cl
γ(ξ)∩Dl

k

|Ae|2

≥ L1
(
Tl \ Sl

k

) 128

ρ

∫
(

Dl
k∩Cl

k,
3ρ
32

(ξ)\Cl
k,

ρ
16

(ξ)

)
\⋃

j P k
j

|Ae|2 dµe

>
( ρ

64
− ρ

128

) 128

ρ

∫
(

Dl
k∩Cl

k,
3ρ
32

(ξ)\Cl
k,

ρ
16

(ξ)

)
\⋃

j P k
j

|Ae|2 dµe

=

∫
(

Dl
k∩Cl

k,
3ρ
32

(ξ)\Cl
k,

ρ
16

(ξ)

)
\⋃

j P k
j

|Ae|2 dµe,
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a contradiction.
Until now, γ ∈ Tl ⊂

(
ρ
16 , 3ρ

32

)
was arbitrary and L1(Tl) ≥ ρ

64 . Therefore, with a simple Fubini-type
argument as done in [SiL], it is easy to see that we can choose γ such that for every l, k (fixed)

∫

graph wl
k

|Ae|2 dH2
e ≤ c

∫
(

Dl
k∩Cl

3ρ
32

(ξ)\Cl
ρ
16

(ξ)

)
\⋃

j P k
j

|Ae
k|2 dH2

e.

Now notice that (this follows from the estimates on ul
k and Dul

k for ε ≤ ε0, ε0 maybe smaller)

Be
ρ
16

(ξ) ⊂ Cl
ρ
16

(ξ),
(
Dl

k ∩ Cl
3ρ
32

(ξ)
)

\
⋃

j

P k
j ⊂

(
Dl

k ∩ Be
ρ
8
(ξ)
)

\
⋃

j

P k
j .

We get that ∫

graph wl
k

|Ae|2 dH2
e ≤ c

∫

Dl
k∩Be

ρ
8

(ξ)\Be
ρ
16

(ξ)

|Ae
k|2 dH2

e.

It follows that (using the uniform bound on Mk),

Mk∑

l=1

∫

graph wl
k

|Ae|2 dH2
e ≤ c

Mk∑

l=1

∫

Dl
k∩Be

ρ
8

(ξ)\Be
ρ
16

(ξ)

|Ae
k|2 dH2

e = c

∫

Be
ρ
8

(ξ)\Be
ρ
16

(ξ)

|Ae
k|2 dµe

k. (5.21)

Under the assumptions of the present Lemma, there are two cases:
i) fk is a minimizing sequence for the functional E, then

E(f̃k) ≥ E(fk) − εk where εk → 0,

which implies, since Be
ρ
16

(ξ) ⊂ Cl
γ(ξ),

Mk∑

l=1

∫

graph wl
k

|Ag|2 dH2
g ≥

∫

Be
ρ
16

(ξ)

|Ag
k|2 dµg

k − εk. (5.22)

Using statements ii) and v) of Proposition 5.2.3,

|Ae|2 ≈ (1 + O(ρ2))|Ag|2 + C (5.23)

dµe ≈ [1 + O(ρ)2]dµg, (5.24)

we can compare the L2-norm of the second fundamental form in metric g and in euclidean metric.
On the one hand we have

∫

graph wl
k

|Ag|2 dH2
g ≈

∫

graph wl
k

(
(1 + O(ρ2))|Ae|2 + C

) (
1 + O

(
ρ2
))

dH2
e

≈
∫

graph wl
k

|Ae|2 dH2
e + cH2

e(graph wl
k) + O

(
ρ2
) ∫

graph wl
k

|Ae|2 dH2
e.

The bounds on the gradient of wl
k imply H2

e(graph wl
k) ≤ cρ2. Using (5.21) we also have

∑Mk

l=1

∫
graph wl

k
|Ae|2 dH2

e ≤
c. It follows that

Mk∑

l=1

∫

graph wl
k

|Ag|2 dH2
g ≤

Mk∑

l=1

∫

graph wl
k

|Ae|2 dH2
e + cρ2. (5.25)

On the other hand, with analogous estimates,

∫

Be
ρ
16

(ξ)

|Ag
k|2 dµg

k ≈
∫

Be
ρ
16

(ξ)

|Ae
k|2 dµe

k + Cµe
k(Be

ρ
16

(ξ)) + O
(
ρ2
) ∫

Be
ρ
16

(ξ)

|Ae
k|2 dµe

k.
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From statement i) in Lemma 5.2.4, we know that µe
k(Be

ρ
16

(ξ)) ≤ βρ2; since as above
∫

Be
ρ
16

(ξ)
|Ae

k|2 dµe
k ≤

c, it follows that ∫

Be
ρ
16

(ξ)

|Ag
k|2 dµg

k ≥
∫

Be
ρ
16

(ξ)

|Ae
k|2 dµe

k − cρ2. (5.26)

Therefore, putting estimates (5.25) and (5.26) into the inequality (5.22), we get

Mk∑

l=1

∫

graph wl
k

|Ae|2dH2
e ≥ c

∫

Be
ρ
16

(ξ)

|Ae
k|2 dµe

k − εk − cρ2. (5.27)

ii) fk is a minimizing sequence for the functional W1, then

W1(f̃k) ≥ W1(fk) − εk where εk → 0. (5.28)

Integrating the Gauss equation

1

4
|Hg|2 =

1

4
|Ag|2 +

1

2
KG − 1

2
K̄(Tfk)

(KG is the Gauss curvature and K̄(Tfk) is the sectional curvature of the ambient manifold evaluated on
the tangent space to fk) and applying Gauss-Bonnet Theorem, we get

W1(fk) :=

∫ ( |Hg
k |2
4

+ 1

)
dµg

k =

∫ ( |Ag
k|2
4

+ 1

)
dµg

k + πχE(S2) − 1

2

∫
K̄(Tfk)dµg

k.

Since both fk and f̃k are immersions of a sphere,the last inequality and (5.28) imply

∫ ( |Ãg
k|2
4

+ 1

)
dµ̃g

k − 1

2

∫
K̄(T f̃k)dµ̃g

k ≥
∫ ( |Ag

k|2
4

+ 1

)
dµg

k − 1

2

∫
K̄(Tfk)dµg

k − εk

where, of course, Ãg
k and µ̃g

k are respectively the second fundamental form and the area measure associate

to the immersion f̃k. Since from the definition of Σ̃k and inclusions (5.17), (5.19) outside the ball Be
ρ
4
(ξ)

the surfaces fk(S2) and Σ̃k coincide at k fixed, then

Mk∑

l=1

∫

graph wl
k

|Ag|2 dH2
g + 4

Mk∑

l=1

Hg(graph wl
k) − 2

Mk∑

l=1

∫

graph wl
k

K̄ dH2
g (5.29)

≥
∫

Be
ρ
16

(ξ)

|Ag
k|2 dµg

k + 4µg
k(Be

ρ
16

(ξ)) − 2

∫

Be
ρ
4

(ξ)

K̄ dµg
k − εk.

Using that the sectional curvature K̄ is bounded since M is compact, the local area bounds written for
case i), and estimates (5.25), (5.26), we get

Mk∑

l=1

∫

graph wl
k

|Ae|2dH2
e ≥

∫

Be
ρ
16

(ξ)

|Ae
k|2 dµe

k − εk − cρ2. (5.30)

In both cases i) and ii), plugging (5.21) into (5.27) or in (5.30) we obtain

∫

Be
ρ
16

(ξ)

|Ae
k|2 dµe

k ≤ c

∫

Be
ρ
8

(ξ)\Be
ρ
16

(ξ)

|Ae
k|2 dµe

k + εk + cρ2.

By adding c times the left hand side of this inequality to both sides (”hole filling”) we deduce the
following: for all ρ ≤ ρ0

4 we have for infinitely many k ∈ N that

∫

Be
ρ
16

(ξ)

|Ae
k|2 dµe

k ≤ θ

∫

Be
ρ
8

(ξ)

|Ae
k|2 dµe

k + εk + cρ2,
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where θ = c
c+1 ∈ (0, 1) is a fixed universal constant. Now if we let g(ρ) = lim infk→∞

∫
Be

ρ(ξ)
|Ae

k|2 dµe
k we

get that

g(ρ) ≤ θg(2ρ) + cρ2 for all ρ ≤ ρ0

64
.

In view of Lemma 5.5.3 in the Appendix, the present Lemma is proved.

Now we are able to show that, in a neighborhood of the good points, the limit measure µ is the
Radon measure associated to C1,α ∩ W 2,2-graphs. First we recall the setting shortly: let 0 < ε ≤ ε0,
ξ0 ∈ spt µ\Bε be an ε-good point and let ρ0 = ρ0(ξ0, ε) > 0 be as in Lemma 5.2.4. Let ξ ∈ spt µ∩Be

ρ0
2

(ξ0),

ρ ≤ ρ0

4 and recall Lemma 5.2.7.
We had that ul

k : Ωl
k → L⊥

l where the set Ωl
k was given by

Ωl
k = (Be

λ(ξ) ∩ Ll) \
⋃

m

dl
k,m

where λ ∈
(

ρ
4 , ρ

2

)
and where the sets dl

k,m ⊂ Ll are pairwise disjoint closed discs which do not intersect
∂Be

λ(ξ).

Define the quantity αk(ρ) by

αk(ρ) =

∫

Be
4ρ(ξ)

|Ae
k|2 dµe

k

and notice that by Lemma 5.3.1 we have

lim inf
k→∞

αk(ρ) ≤ cρα for all ρ ≤ ρ0

128
. (5.31)

Since ξk → ξ and therefore Be
2ρ(ξk) ⊂ Be

4ρ(ξ) for k sufficiently large we have that

∑

m

diam dl
k,m ≤ cαk(ρ)

1
4 ρ ≤ cε

1
2 ρ. (5.32)

Therefore for ε ≤ ε0 we may apply Lemma 5.5.4 to the functions f l
j = Dju

l
k and δ = cαk(ρ)

1
4 ρ in order

to get a constant vector ηl
k, with |ηl

k| ≤ cε
1
6 + δk ≤ c and δk → 0, such that

∫

Ωl
k

∣∣Dul
k − ηl

k

∣∣2 ≤ cρ2

∫

Ωl
k

∣∣D2ul
k

∣∣2 + cαk(ρ)
1
4 ρ2 sup

Ωl
k

∣∣Dul
k

∣∣2 .

Now we have that
∫

Ωl
k

∣∣D2ul
k

∣∣2 ≤ c

∫

graph ul
k

|Ae
k|2 dH2

e ≤ c

∫

Be
2ρ(ξ)

|Ae
k|2 dµe

k ≤ cαk(ρ).

Since |Dul
k| ≤ c and αk(ρ) ≤ 1 for ε ≤ ε0, it follows that

∫

Ωl
k

∣∣Dul
k − ηl

k

∣∣2 ≤ cαk(ρ)
1
4 ρ2. (5.33)

Now let ul
k ∈ C1,1(Be

λ(ξ) ∩ Ll, L
⊥
l ) be an extension of ul

k to all of Be
λ(ξ) ∩ Ll as in Lemma 5.5.1, i.e.

ul
k = ul

k in Be
λ(ξ) ∩ Ll \

⋃

m

dl
k,m,

ul
k = ul

k ,
∂ul

k

∂ν
=
∂ul

k

∂ν
on
⋃

m

∂dl
k,m,

||ul
k||L∞(dl

k,m) ≤ cε
1
6 ρ+ δk where δk → 0,

||Dul
k||L∞(dl

k,m) ≤ cε
1
6 + δk, where δk → 0.
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It follows that ||ul
k||L∞(Be

λ(ξ)∩Ll)+ ||Dul
k||L∞(Be

λ(ξ)∩Ll) ≤ c where c is independent of k. From the gradient

estimates for the function ul
k, since |ηl

k| ≤ c and because of (5.32) we get that

∫

Be
λ(ξ)∩Ll

∣∣Dul
k − ηl

k

∣∣2 =

∫

Ωl
k

∣∣Dul
k − ηl

k

∣∣2 +
∑

m

∫

dl
k,m

∣∣Dul
k − ηl

k

∣∣2

≤ cαk(ρ)
1
4 ρ2 + c

∑

m

∫

dl
k,m

∣∣Dul
k

∣∣2 + c
∑

m

∫

dl
k,m

∣∣ηl
k

∣∣2

≤ cαk(ρ)
1
4 ρ2 + c

∑

m

L2(dl
k,m) ≤ cαk(ρ)

1
4 ρ2 + c

(∑

m

diam dl
k,m

)2

≤ cαk(ρ)
1
4 ρ2 + cαk(ρ)

1
2 ρ2 ≤ cαk(ρ)

1
4 ρ2,

so ∫

Be
λ(ξ)∩Ll

∣∣Dul
k − ηl

k

∣∣2 ≤ cαk(ρ)
1
4 ρ2.

Thus, in view of (5.31), we conclude that

lim inf
k→∞

∫

Be
λ(ξ)∩Ll

∣∣Dul
k − ηl

k

∣∣2 ≤ cρ2+α for all ρ ≤ ρ0

128
. (5.34)

Moreover, it trivially follows that
∥∥ul

k

∥∥
W 1,2(Be

λ(ξ)∩Ll)
≤ cρ2 ≤ c. Therefore it follows that the sequence

ul
k is equicontinuous and uniformly bounded in C1(Be

λ(ξ)∩Ll, L
⊥
l ) and W 1,2(Be

λ(ξ)∩Ll, L
⊥
l ) and we get

the existence of a function ul
ξ ∈ C0,1(Be

λ(ξ) ∩ Ll, L
⊥
l ) ∩ W 1,2(Be

λ(ξ) ∩ Ll, L
⊥
l ) such that (after passing to

a subsequence)

ul
k → ul

ξ in C0(Be
λ(ξ) ∩ Ll, L

⊥
l ),

ul
k ⇀ ul

ξ weakly in W 1,2(Be
λ(ξ) ∩ Ll, L

⊥
l )

and such that the following estimates hold for the function ul
ξ:

1

ρ
||ul

ξ||L∞(Be
λ(ξ)∩Ll) + ||Dul

ξ||L∞(Be
λ(ξ)∩Ll) ≤ cε

1
6 .

We notice that, a priori, the limit function might depend on the point ξ; indeed, the sequence ul
k depends

on ξ since it comes from the graphical decomposition lemma which is a local statement.
Observe that, up to subsequences, ηl

k → ηl with |ηl| ≤ cε
1
6 . Since Dul

k ⇀ Dul
ξ weakly in L2(Be

λ(ξ) ∩
Ll), then Dul

k − ηl
k ⇀ Dul

ξ − ηl weakly in L2(Be
λ(ξ) ∩ Ll); therefore, by lower-semicontinuity, estimate

(5.34) implies that ∫

Be
λ(ξ)∩Ll

∣∣Dul
ξ − ηl

∣∣2 ≤ cρ2+α for all ρ ≤ ρ0

128
. (5.35)

Lemma 5.3.2. Let fk and µ be as in Lemma 5.3.1 (µ is the limit candidate minimizer measure). Thus
there exists ε0 > 0 such that for every 0 < ε ≤ ε0 and every good point ξ0 ∈ Σ \ Bε there exists
ρ0 = ρ0(ξ0, ε0, M) such that the following is true:

For all ξ ∈ sptµ ∩ Be
ρ0
2

(ξ0) and all ρ ≤ ρ0 such that

µ!Be
ρ(ξ) =

M∑

l=1

H2
g!
(
graph ul

ξ ∩ Be
ρ(ξ)

)
,

where each ul
ξ ∈ C0,1

(
Be

2ρ(ξ) ∩ Ll, L
⊥
l

)
such that

1

ρ
||ul

ξ||L∞(Be
2ρ(ξ)∩Ll) +

∥∥Dul
ξ

∥∥
L∞(Be

2ρ(ξ)∩Ll)
≤ cε

1
6

and where H2
g denotes the 2 dimensional Hausdorff measure of the Riemannian manifold (M, g).
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Proof. First we claim that for all ρ ≤ ρ0

128 the following equation holds:

µg
k!Be

ρ(ξ) =
M∑

l=1

H2
g!
(
graph ul

k ∩ Be
ρ(ξ)

)
+ θk (5.36)

where θk is a signed measure with lim infk→∞ of the total mass is smaller than cρ2+α, i.e. there exist two
radon measures θ1k and θ2k such that θk = θ1k − θ2k and such that lim infk→∞

(
θ1k(M) + θ2k(M)

)
≤ cρ2+α.

To prove the claim, recall that we have ( from the diameter estimates in Lemma 5.2.7 and from the

quadratic area decay)
∑

m,l L2
(
dl

k,m

)
+
∑

j H2
g

(
P k

j

)
≤ cαk(ρ)

1
2 ρ2; thus for ρ ≤ ρ0

128 Lemma 5.3.1 yields

lim infk→∞
∑

m,l L2
(
dl

k,m

)
+ lim infk→∞

∑
j H2

g

(
P k

j

)
≤ cρ2+α.

It follows that µg
k!Be

ρ(ξ) =
∑M

l=1 H2
g!
(
graph ul

k ∩ Be
ρ(ξ)

)
+ θk where

θk =

M∑

l=1

H2
g!
((

Dl
k \ graph ul

k

)
∩ Be

ρ(ξ)
)

−
M∑

l=1

H2
g!
((

graph ul
k \ Dl

k

)
∩ Be

ρ(ξ)
)

= θ1k − θ2k.

We have that θ1k(M) ≤∑j H2
g

(
P k

j

)
and that θ2k(M) ≤ c

∑
m,l L2

(
dl

k,m

)
, and (5.36) follows.

Now by taking limits in the measure theoretic sense we claim that for all ξ ∈ spt µ ∩ Be
ρ0
2

(ξ0):

µ!Be
ρ(ξ) =

M∑

l=1

H2
g!
(
graph ul

ξ ∩ Be
ρ(ξ)

)
+ θ (5.37)

where θ is a signed measure with total mass smaller than cρ2+α. This equation holds for all ρ ≤ ρ0

128 such
that

µ
(
∂Be

ρ(ξ)
)

= H2
g!graph ul

ξ

(
∂Be

ρ(ξ)
)

= 0 for all l.

Notice that the last sequence of equations holds for a.e. ρ (since we are dealing with radon measures with
finite mass).

To prove (5.37) let U ⊂ M be an open subset. We have that

1) Let ρ ≤ ρ0

128 be such that µ
(
∂Be

ρ(ξ)
)

= 0. Moreover assume that µ!Be
ρ(ξ) (∂U) = 0. It follows

that µ
(
∂
(
U ∩ Be

ρ(ξ)
))

= 0 and therefore µg
k

(
U ∩ Be

ρ(ξ)
)

→ µ
(
U ∩ Be

ρ(ξ)
)
.

2) Let ρ ≤ ρ0

128 be such that H2
g!graph ul

ξ

(
∂Be

ρ(ξ)
)

= 0. Moreover assume that H2
g!
(
graph ul

ξ ∩ Be
ρ(ξ)

)
(∂U) =

0. It follows from ii) of Proposition 5.2.3 that

H2
g!
(
graph ul

k ∩ Be
ρ(ξ)

)
(U) =

∫

Ll

χ
U∩Be

ρ(ξ)
(x + ul

k(x))

√
1 + |Dul

k(x)|2 + O(ρ4).

Now we have that
∣∣∣∣
∫

Ll

χ
U∩Be

ρ(ξ)
(x + ul

k(x))

√
1 + |Dul

k(x)|2 −
∫

Ll

χ
U∩Be

ρ(ξ)
(x + ul

ξ(x))
√

1 + |Dul
ξ(x)|2

∣∣∣∣

≤ c

∫

Ll

∣∣∣χU∩Be
ρ(ξ)

(x + ul
k(x)) − χ

U∩Be
ρ(ξ)

(x + ul
ξ(x))

∣∣∣+
∫

Ll

χ
U∩Be

ρ(ξ)
(x+ul

ξ(x))

∣∣∣∣
√

1 + |Dul
k(x)|2 −

√
1 + |Dul

ξ(x)|2
∣∣∣∣ .

Since ul
k → ul

ξ uniformly and since H2
g!graph ul

ξ

(
∂Be

ρ(ξ)
)

= 0 it follows that

χ
U∩Be

ρ(ξ)
(x + ul

k(x)) → χ
U∩Be

ρ(ξ)
(x + ul

ξ(x)) for a.e. x ∈ Ll.

To see this we have to consider two distinct cases:

(i) x ∈ Ll such that x + ul
ξ(x) ∈ U ∩ Be

ρ(ξ): Then χ
U∩Be

ρ(ξ)
(x + ul

ξ(x)) = 1 and since U ∩ Be
ρ(ξ) is

open and ul
k → ul

ξ uniformly it follows that x + ul
k(x) ∈ U ∩ Be

ρ(ξ) for k sufficiently large so that

χ
U∩Be

ρ(ξ)
(x + ul

k(x)) = 1.
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(ii) x ∈ Ll such that x+ul
ξ(x) ∈ U ∩ Be

ρ(ξ)
c
: Now χ

U∩Be
ρ(ξ)

(x+ul
ξ(x)) = 0 and since U ∩ Be

ρ(ξ)
c

is open

it again follows that x + ul
k(x) ∈ U ∩ Be

ρ(ξ)
c

for k sufficiently large and χ
U∩Be

ρ(ξ)
(x + ul

k(x)) = 0.

Now notice that
L2
({

x ∈ Ll | x + ul
ξ(x) ∈ ∂

(
U ∩ Be

ρ(ξ)
)})

= 0

since H2
g!graph ul

ξ

(
∂
(
U ∩ Be

ρ(ξ)
))

= 0 by the choice of the set U and

H2
g!graph ul

ξ

(
∂
(
U ∩ Be

ρ(ξ)
))

= (1 + O(ρ2))

∫

{x∈Ll | x+ul
ξ(x)∈∂(U∩Be

ρ(ξ))}

√
1 + |Dul

ξ|2

≥ 1

C
L2
({

x ∈ Ll | x + ul
ξ(x) ∈ ∂

(
U ∩ Be

ρ(ξ)
)})

.

Therefore
χ

U∩Be
ρ(ξ)

(x + ul
k(x)) → χ

U∩Be
ρ(ξ)

(x + ul
ξ(x)) for a.e. x ∈ Ll.

By the dominated convergence theorem we get that
∫

Ll

∣∣∣χU∩Be
ρ(ξ)

(x + ul
k(x)) − χ

U∩Be
ρ(ξ)

(x + ul
ξ(x))

∣∣∣→
0. Because of the elementary inequality

∣∣√1 + a2 −
√

1 + b2
∣∣ ≤ |a − b| we get on the other hand that

∫

Ll

χ
U∩Be

ρ(ξ)
(x + ul

ξ(x))

∣∣∣∣
√

1 + |Dul
k(x)|2 −

√
1 + |Dul

ξ(x)|2
∣∣∣∣

≤
∫

Ll

χ
U∩Be

ρ(ξ)
(x+ul

ξ(x))
∣∣Dul

k(x) − ηl
k

∣∣+
∫

Ll

χ
U∩Be

ρ(ξ)
(x+ul

ξ(x))
∣∣ηl

k − ηl
∣∣+
∫

Ll

χ
U∩Be

ρ(ξ)
(x+ul

ξ(x))
∣∣ηl − Dul

ξ(x)
∣∣ .

Now we have that χ
U∩Be

ρ(ξ)
(x + ul

ξ(x)) = 0 if x /∈ Be(
1−cε

1
6

)
ρ
(ξ) ∩ Ll. This follows from the L∞-bound for

the function ul
ξ. Therefore we get that

(∫
L
χ

U∩Be
ρ(ξ)

(x + ul
ξ(x))

) 1
2 ≤ L2

(
Be(

1−cε
1
6

)
ρ
(ξ) ∩ Ll

) 1
2

≤ cρ. In

view of (5.34) the lim inf of the first term can now be estimated by

lim inf
k→∞

∫

Ll

χ
U∩Be

ρ(ξ)
(x + ul

ξ(x))
∣∣Dul

k(x) − ηl
k

∣∣ ≤ cρ2+α.

With (5.35) we get in the same way that
∫

Ll
χ

U∩Be
ρ(ξ)

(x+ul
ξ(x))

∣∣∣ηl − Dul
ξ(x)

∣∣∣ ≤ cρ2+α. Now since ηl
k → ηl

(strongly) we have that limk→∞
∫

Ll
χ

U∩Be
ρ(ξ)

(x + ul
ξ(x))

∣∣ηl
k − ηl

∣∣ = 0. Therefore after all we get that

H2
g!
(
graph ul

k ∩ Be
ρ(ξ)

)
(U) = H2

g!
(
graph ul

ξ ∩ Be
ρ(ξ)

)
(U) + θ̃k(U) + O(ρ4)

where θ̃k is a signed measure with lim infk→∞ total mass ≤ cρ2+α.

Since θ̃k is a signed measure it converges weakly (after passing to a subsequence) to some signed measure
θ̃ with total mass smaller than cρ2+α. Assume that θ̃(∂U) = 0. Then it follows that θ̃k(U) → θ̃(U) and
therefore we get that

lim
k→∞

H2
g!
(
graph ul

k ∩ Be
ρ(ξ)

)
(U) = H2

g!
(
graph ul

ξ ∩ Be
ρ(ξ)

)
(U) + θ̃(U) + O(ρ4). (5.38)

3) Since the θk’s were signed measures such that the lim inf of the total mass is smaller than cρ2+α they
converge in the weak sense (after passing to a subsequence) to a signed measure θ with total mass smaller

than cρ2+α, cε
1
4 ρ2}. Assuming θ(∂U) = 0 it follows that

θk(U) → θ(U). (5.39)

Now by taking limits in (5.36) we get that

µ!Be
ρ(ξ)(U) =

M∑

l=1

H2
g!
(
graph ul

ξ ∩ Be
ρ(ξ)

)
(U) + θ(U)
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where θ = θ+ θ̃+O(ρ4) is a signed measure with total mass smaller than cρ2+α. Notice that this equation

holds for every U ⊂ M open such that µ!Be
ρ(ξ)(∂U) = H2

g!
(
graph ul

ξ ∩ Be
ρ(ξ)

)
(∂U) = θ(∂U) = θ̃(∂U) =

0. By choosing an appropriate exhaustion this equation holds for arbitrary open sets U ⊂ M and (5.37)
is shown.

Next we claim that sptµ is locally given by the union of the graphs of the functions ul
ξ, i.e. there

exists a ρ0 = ρ0(ξ0, ε0, M) such that for all ξ ∈ spt µ ∩ Be
ρ0
2

(ξ0) and all ρ ≤ ρ0 it follows that

sptµ ∩ Be
ρ(ξ) =

M⋃

l=1

graph ul
ξ ∩ Be

ρ(ξ). (5.40)

To prove the claim (5.40) let ρ0 be such that Proposition 5.2.5 holds. Let ξ ∈ spt µ ∩ Be
ρ0
2

(ξ0) and

choose ρ ∈
(

ρ0

256 , ρ0

128

)
according to (5.37) such that µ!Be

ρ(ξ) =
∑M

l=1 H2
g!
(
graph ul

ξ ∩ Be
ρ(ξ)

)
+ θ.

-′′ ⊆ ′′: let x ∈ spt µ ∩ Be
ρ
2
(ξ). Since ξ0 is a good point and ξ, x are near ξ0, the lower density bound

given in Proposition 5.2.5 holds and we get µ!Be
ρ(ξ)

(
Be

ρ
2
(x)
)

= µ
(
Be

ρ
2
(x)
)

≥ ĉρ2. We get

ĉρ2 ≤
M∑

l=1

H2
g

(
graph ul

ξ ∩ Be
ρ
2
(x)
)

+ cρ2+α.

For ρ ≤ ρ0, where ρ0 = ρ0(ξ0, ε0, M), we conclude that
∑M

l=1 H2
g

(
graph ul

ξ ∩ Be
ρ
2
(x)
)

> 0 and therefore

x ∈ ⋃M
l=1 graph ul

ξ.

-′′ ⊇ ′′: let z ∈ ⋃M
l=1 graph ul

ξ ∩ Be
ρ
2
(ξ). Write z = x + ul

ξ(x) for some l ∈ {1, . . . , M} and some

x ∈ Ll. If y ∈ Be
ρ
4
(x) ∩ Ll we claim that y + ul

ξ(y) ∈ Be
ρ
2
(z), indeed for ε ≤ ε0 (ε0 maybe smaller ) we get

|z − y − ul
ξ(y)| ≤ |x − y| + |ul

ξ(x) − ul
ξ(y)| ≤

(
1 + cε

1
6

)
|x − y| ≤

(
1 + cε

1
6

) ρ
4

≤ ρ

2
.

Therefore

H2
g!graph ul

ξ

(
Be

ρ
2
(z)
)

≥
∫

Be
ρ
4

(x)∩Ll

χ
Be

ρ
2

(z)
(y + ul

ξ(y)) dµg ≥ c L2
(
Be

ρ
4
(x) ∩ Ll

)
= ĉρ2.

As above we obtain µ
(
Be

ρ
2
(z)
)

≥ ĉρ2 − cρ2+α > 0 for ρ ≤ ρ0, where ρ0 = ρ0(ξ0, ε0, M), and conclude

that z ∈ spt µ.
This shows (5.40). Now the claim (5.40) implies that the functions ul

ξ do not depend on the point ξ
in the following sense: let η ∈ Σ ∩ Be

ρ0
2

(ξ0). Then we have for all ρ ≤ ρ0 that

M⋃

l=1

graph ul
ξ ∩
(
Be

ρ(ξ) ∩ Be
ρ(η)

)
=

N⋃

l=1

graph ul
η ∩

(
Be

ρ(ξ) ∩ Be
ρ(η)

)
. (5.41)

In the next step choose ρ ≤ ρ0 such that µ
(
∂Be

ρ(ξ)
)

= H2
g!graph ul

ξ

(
∂Be

ρ(ξ)
)

= 0 for all l, therefore,
from (5.37),

µ!Be
ρ(ξ) =

M∑

l=1

H2
g!
(
graph ul

ξ ∩ Be
ρ(ξ)

)
+ θ. (5.42)

Let z ∈ sptµ ∩ Be
ρ(ξ) =

⋃M
l=1 graph ul

ξ ∩ Be
ρ(ξ) and let σ > 0 be such that Be

σ(z) ⊂ Be
ρ(ξ) and such that

(due to (5.37) for the point z) µ!Be
σ(z) =

∑N
l=1 H2

g!
(
graph ul

z ∩ Be
σ(z)

)
+ θz, where the total mass of θz

is smaller than cσ2+α.
From (5.41) it follows that θ (Be

σ(z)) = θz (Be
σ(z)) , hence we get a nice decay for the signed measure θ:

lim
σ→0

θ (Be
σ(z))

σ2
= 0 for all z ∈ spt µ ∩ Be

ρ(ξ) =

M⋃

l=1

graph ul
ξ ∩ Be

ρ(ξ). (5.43)
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Next we claim that for all z ∈ sptµ ∩ Be
ρ(ξ) =

⋃M
l=1 graph ul

ξ ∩ Be
ρ(ξ),

lim inf
σ→0

∑M
l=1 H2

g!
(
graph ul

ξ ∩ Be
ρ(ξ)

)
(Be

σ(z))

πσ2
≥ C > 0. (5.44)

To prove the claim (5.44), let z ∈ spt µ ∩ Be
ρ(ξ) =

⋃M
l=1 graph ul

ξ ∩ Be
ρ(ξ) and let σ > 0 be such that

Be
σ(z) ⊂ Be

ρ(ξ). Let z ∈ graph ul
ξ for some l, then

H2
g!
(
graph ul

ξ ∩ Be
ρ(ξ)

)
(Be

σ(z)) = H2
g

(
graph ul

ξ ∩ Be
σ(z)

)
=

∫

Ll

χ
Be

σ(z)
(y + ul

ξ(y)) dµg.

Now let z = x + ul
ξ(x) with x ∈ Be

ρ(ξ) ∩ Ll. We have that

|z − y − ul
ξ(y)| ≤ |x − y| + |ul

ξ(x) − ul
ξ(y)| ≤

(
1 + cε

1
6

)
|x − y|,

therefore

χ
Be

σ(z)
(y + ul

ξ(y)) = 1 if |x − y| ≤ 1

1 + cε
1
6

σ.

Estimating as before (5.44) follows (with ε0 maybe smaller).

Now for z ∈ sptµ ∩ Be
ρ(ξ) =

⋃M
l=1 graph ul

ξ ∩ Be
ρ(ξ) and σ > 0 such that Be

σ(z) ⊂ Be
ρ(ξ), it follows

from (5.42), (5.43) and (5.44) that

µ!Be
ρ(ξ) (Be

σ(z))
∑M

l=1 H2
g!
(
graph ul

ξ ∩ Be
ρ(ξ)

)
(Be

σ(z))
= 1 +

θ (Be
σ(z))

∑M
l=1 H2

g!
(
graph ul

ξ ∩ Be
ρ(ξ)

)
(Be

σ(z))
.

Since the right hand side converges to 1 this shows that D(
∑M

l=1 H2
g!(graph ul

ξ∩Be
ρ(ξ)))

(
µ!Be

ρ(ξ)
)
(z) = 1

for all z ∈ spt µ ∩ Be
ρ(ξ) =

⋃M
l=1 graph ul

ξ ∩ Be
ρ(ξ) and the lemma follows from the Theorem of Radon-

Nikodym.

Proposition 5.3.3. Let (M, g) and fk be as in i) or ii) of Lemma 5.3.1. Let µ be the candidate
minimizer limit measure given by Theorem 4.2.6 or Theorem 4.1.13. Then there exists ε0 > 0 such that
for all ε ∈ (0, ε0] the following is true: for every ε-good point ξ0 there exist
- ρ0 = ρ0(ξ0, ε0),
- 2-dimensional subspaces Ll ⊂ Tξ0

M, l = 1, . . . , Mξ0
( by estimates in Lemma 5.2.7, Lemma 5.2.4 and

the above discussion Mξ0
≤ cβ is uniformly bounded with respect to ξ0) and

- functions ul
ξ0

: Ll ∩Be
ρ0

(ξ0) → L⊥
l , with ul

ξ0
∈ C1,α(Ll ∩Be

ρ0
(ξ0))∩W 2,2(Ll ∩Be

ρ0
(ξ0)) which satisfy the

following power decay ∫

Be
σ(x)∩Ll

|D2ul
ξ0

|2 ≤ Cσα (5.45)

for all x ∈ Be
ρ0

(ξ0) ∩ Ll and all σ > 0 sufficiently small,
such that for all ρ ≤ ρ0 the following equation holds

µ!Be
ρ(ξ0) =

Mξ0∑

l=1

H2
g!
(
graph ul

ξ0
∩ Be

ρ(ξ0)
)
.

Proof. In Lemma 5.3.2 we showed that there exists ε0 > 0 such that for all ε ∈ (0, ε0] the following
is true: for every ε-good point ξ0 there exist ρ0 = ρ0(ξ0, ε0), 2-dimensional subspaces Ll ⊂ Tξ0

M, l =
1, . . . , Mξ0

and functions ul
ξ0

: Ll ∩ Be
ρ0

(ξ0) → L⊥
l , with ul

ξ0
∈ C0,1(Ll ∩ Be

ρ0
(ξ0)) such that for all ρ ≤ ρ0,

µ!Be
ρ(ξ0) =

∑Mξ0

l=1 H2
g!
(
graph ul

ξ0
∩ Be

ρ(ξ0)
)

.

Here we have to prove that the functions ul
ξ0

are actually C1,α ∩ W 2,2 regular. Observe that, by the
uniform bounds on the area and on the Willmore functional of the immersions fk in metric g, using Propo-
sition 5.2.3 it is easy to see that for ρ0 maybe smaller we have µe

k(Be
ρ0

(ξ0)) ≤ C and
∫

Be
ρ0

(ξ0)
|He

k |2dµe
k ≤ C.

Called V e
k !Be

ρ0
(ξ0) the varifold associated to fk(S2) ∩ Be

ρ0
(ξ0), where Be

ρ0
(ξ0) is endowed with eu-

clidean metric, with a Schwartz inequality we get the uniform bound on the first variation |δV e
k | :=
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∫
Be

ρ0
(ξ0)

|He
k |dµe

k ≤ C. By Allard Compactness Theorem there exists a 2-varifold V e such that, up to

subsequences V e
k → V e in varifold sense; moreover the varifold V e has finite first variation and, applying

the theory of the measure-function pairs of Hutchinson (see Theorem 4.4.2 in [Hu1]) to the measure-
function pairs (V e

k , He
k) (for more explanations see Appendix 6.6) we get that the limit varifold V e has

weak mean curvature He. Moreover, called µe its spatial measure, repeating the proof of Lemma 5.3.2
by replacing everywhere the Hausdorff measure H2

g of the manifold with the euclidean Hausdorff measure
H2

e we obtain

µe!Be
ρ(ξ0) =

Mξ0∑

l=1

H2
e!
(
graph ul

ξ0
∩ Be

ρ(ξ0)
)

for all ρ ≤ ρ0 maybe smaller. Notice that by the lower semicontinuity of the Willmore functional under
varifold convergence we have

∫

Be
ρ(ξ0)

|He|2dµe ≤ lim inf
k

∫

Be
ρ(ξ0)

|He
k |2dµe

k ≤ 2 lim inf
k

∫

Be
ρ(ξ0)

|Ae
k|2dµe

k ≤ cρα

for 0 < ρ ≤ ρ0, ρ0 maybe smaller, where we used the inequality |He
k |2 ≤ 2|Ae

k|2 and Lemma 5.3.1.
Observe that for every ξ ∈ Be

ρ0
(ξ0), ρ0 maybe smaller, choosing ρξ in a way that Be

ρξ
(ξ) ⊂ Be

ρ0
(ξ0)

and repeating the arguments above just replacing ξ0 with ξ and ρ0 with ρξ it is easy to check that the
following conditions are satisfied:
- there exist 2-dimensional affine subspaces Lξ

l ⊂ Tξ0
M, l = 1, . . . , Mξ0

passing through ξ

- there exist functions ul
ξ : Lξ

l ∩ Be
ρξ

(ξ) → Lξ
l

⊥
, with ul

ξ ∈ C0,1(Ll ∩ Be
ρξ

(ξ))

- µe!Be
ρξ

(ξ) =
∑Mξ0

l=1 H2
e!
(
graph ul

ξ ∩ Be
ρξ

(ξ)
)

- the radius power decay of the Willmore functional
∫

Be
ρ(ξ)

|He|2dµe ≤ cρα for all ρ ≤ ρξ.

It is not difficult to check that the graph functions ul
ξ are weak solutions to the following equation:

2∑

i,j=1

∂j

(√
det gl gij

l ∂iFl

)
=
√

det gl He ◦ F in Bρξ
(ξ) ∩ Ll

where F (x) = x + ul
ξ(x) and gij = δij + ∂iu

l
ξ · ∂ju

l
ξ; this follows directly from the definition of the weak

mean curvature vector and the graph representation of Lemma 5.3.2.
Using the bounds on Dul

ξ and the power decay of the Willmore functional above one gets for all
σ ≤ ρξ sufficiently small that (choosing ε ≤ ε0, ε0 small enough)

∫

Be
σ
2

(ξ)∩Lξ
l

|D2ul
ξ|2 ≤ c

∫

Be
σ(ξ)\Be

σ
2

(ξ)∩Lξ
l

|D2ul
ξ|2 + cσα.

Now again by ”hole-filling” we get
∫

Be
σ
2

(ξ)∩Lξ
l
|D2ul

ξ|2 ≤ θ
∫

Be
σ(ξ)∩Lξ

l
|D2ul

ξ|2 + cσα for some θ ∈ (0, 1), for

all ξ ∈ Be
ρ0

(ξ0) ∩ Σ and all σ ≤ ρξ sufficiently small.

Applying Lemma 5.5.3 we obtain
∫

Be
σ(ξ)∩Lξ

l
|D2ul

ξ|2 ≤ cσα. It is important to observe that c and α do

not depend on ξ ∈ Be
ρ0

(ξ0). Finally, with a Schwartz inequality we get

∫

Be
σ(ξ)∩Lξ

l

|D2ul
ξ| ≤ cσ

(∫

Be
σ(ξ)∩Lξ

l

|D2ul
ξ|2
) 1

2

≤ cσ1+α

for all ξ ∈ Be
ρ0

(ξ0) ∩ sptµ and all σ ≤ ρξ sufficiently small.

By the bound ‖Dul
ξ‖L∞(Be

ρξ
(ξ)) ≤ cε

1
6 , varying ξ we observe that the planes Lξ

l are obtained from Ll

by rotations of order ε
1
6 and translations. Since

⋃Mξ0

l=1 graph ul
ξ0

∩ Be
ρξ

(ξ) =
⋃Mξ0

l=1 graph ul
ξ ∩ Be

ρξ
(ξ) we

get that |D2ul
ξ0

|2 ≤ c|D2ul
ξ|2 + c for ε0 small enough; moreover, taken x ∈ Ll ∩ Be

ρ0
(ξ0) and called ξ its

projection on graphul
ξ0

, it is easy to see that the projection of Be
σ(x)∩Ll into Lξ

l is contained in the ball

Be
cσ(ξ) ∩ Lξ

l for some c > 1 uniform on x.
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Hence, there exist C > 0 and 0 < α < 1 such that for all x ∈ Ll ∩ Be
ρ0

(ξ0)

∫

Be
σ(x)∩Ll

|D2ul
ξ0

| ≤ c

∫

Be
cσ(ξ)∩Lξ

l

|D2ul
ξ| + cσ2 ≤ Cσ1+α.

Since ul
ξ0

∈ W 2,2
(
Be

ρ0
(ξ0) ∩ Ll, L

⊥
l

)
and therefore Dul

ξ ∈ W 1,1
(
Be

ρ0
(ξ0) ∩ Ll, L

⊥
l

)
, it follows from Mor-

rey’s lemma (see [GT], Theorem 7.19) that

Dul
ξ0

∈ C0,α
(
Be

ρ0
(ξ0) ∩ Ll, L

⊥
l

)

and therefore that each graph function ul
ξ0

∈ C1,α
(
Be

ρ0
(ξ0) ∩ Ll, L

⊥
l

)
. This finally shows that for each

ε-good point ξ0 there exists a neighborhood of ξ0 in which our limit varifold is given as a union of
C1,α ∩ W 2,2-graphs ul

ξ0
: Be

ρ0
(ξ0) ∩ Ll → L⊥

l with small gradient bounded by cε
1
6 and such that

∫

Be
σ(x)∩Ll

|D2ul
ξ0

|2 ≤ Cσα

for all x ∈ Be
ρ0

(ξ0) ∩ Ll and all σ > 0 sufficiently small.

5.3.2 Non existence of bad points

Let us start with a technical but useful Lemma.

Lemma 5.3.4. Let (M, g), {fk}k∈N and µ be as in i) or ii) of Lemma 5.3.1. Fix an arbitrary ξ ∈ sptµ
(good or bad point) and consider normal coordinates centered in ξ on a neighborhood U ⊂ M . Given
x ∈ U take p ∈ f−1

k ({x}) a preimage and consider the tangent space Tpfk; we denote by (Tpfk)⊥e the
orthogonal complement in the normal coordinates and with ⊥e the projection on (Tpfk)⊥e .

Then for every ε > 0 there exists ρ0 > 0 small enough such that, up to subsequences in {fk},

|(x − ξ)⊥e |e
|x − ξ|e

≤ ε for all x ∈
(
fk(S2) ∩ Be

ρ(ξ) \ Be
ρ
2
(ξ)
)

\ Bk (5.46)

where Bk ⊂ fk(S2) ∩ Be
ρ0

(ξj) with H2
e

(
fk(S2) ∩ Be

ρ(ξ) \ Be
ρ
2
(ξ) ∩ Bk

)
≤ cερ2.

Proof. First of all, as before, by Nash Theorem we can assume that M ⊂ RS is isometrically em-
bedded for some p; therefore the sequence {fk}k∈N can be seen also as a sequence of immersions in RS .
Recall the uniform area bounds given by Proposition 4.1.1, Proposition 4.1.2 and Remark 4.1.3, and the
uniform bound on the Willmore functionals W (fk); then the proof of Lemma 4.1.10 gives (4.6) namely∫

|HS2↪→RS |2dH2
RS ≤ C.

From (3.32) in [SiL] (for more details see also (3.54) in [Schy]) there exists ρ0 such that for ρ < ρ0

4 ,
up to subsequences in {fk}k∈N, for k large enough (the subsequence does not depend on ρ while the
largeness of k does)

|(x − ξ)⊥RS |RS

|x − ξ|RS

≤ ε

2
on
(
fk(S2) ∩ BRS

2ρ (ξ) \ BRS

ρ
4

(ξ)
)

\ Bk

where Bk ⊂ fk(S2) ∩ BRS

ρ0/2(ξ) with H2
RS

(
fk(S2) ∩ BRS

2ρ (ξ) \ BRS

ρ
4

(ξ) ∩ Bk

)
≤ cερ2. Now it is easy to see

that
|(x − ξ)⊥e |e

|x − ξ|e
≤ |(x − ξ)⊥RS |RS

|x − ξ|RS

+ remainder(ρ)

where remainder(ρ) ↓ 0 as ρ ↓ 0. Therefore, choosing ρ0 small enough such that for ρ < ρ0 we have

remainder(ρ) < ε/2, M ∩ (Be
ρ(ξ) \ Be

ρ
2
(ξ)) ⊆ M ∩ (BRS

2ρ (ξ) \ BRS

ρ
4

(ξ)) and BRS

ρ0/2(ξ) ∩ M ⊆ Be
ρ0

(ξ) ∩ M ,

we obtain for such ρ

|(x − ξ)⊥e |e
|x − ξ|e

≤ ε for all x ∈
(
fk(S2) ∩ Be

ρ(ξ) \ Be
ρ
2
(ξ)
)

\ Bk
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where Bk ⊂ fk(S2) ∩ Be
ρ0

(ξ) with H2
e

(
fk(S2) ∩ Be

ρ(ξ) \ Be
ρ
2
(ξ) ∩ Bk

)
≤ cερ2.

Now we will handle the bad points and prove a similar power decay as in Lemma 5.3.1, but now for
balls around the bad points. Since the bad points are discrete and since we want to prove a local decay,
we can assume here that there is only one bad point ξ. As in the Definition 5.2.1, there exists ρ0 > 0
such that for ρ < ρ0 and k sufficiently large

∫

Bg
3
2

ρ
(ξ)\Bg

ρ
4

(ξ)

|Ag
k|2 dµg

k <
ε2

2
.

Now the statements i), ii) and v) of Proposition 5.2.3 and Lemma 4.1.10, for a maybe smaller ρ0 we have

∫

Be
ρ(ξ)\Be

ρ
2

(ξ)

|Ae
k|2 dµe

k ≤ ε2. (5.47)

Now let us show that for ρ < ρ0 and k sufficiently large

fk(S2) ∩ ∂Be
3
4 ρ(ξ) /= ∅. (5.48)

Let ξk ∈ fk(S2) be such that ξk → ξ. Thus fk(S2) ∩ Be
3
4 ρ

(ξ) /= ∅ for k sufficiently large. Now suppose

that fk(S2) ∩ ∂Be
3
4 ρ

(ξ) = ∅. Since fk(S2) is connected, we get that fk(S2) ⊂ Be
3
4 ρ

(ξ). Due to Proposition

5.2.3 it follows that
diamg(fk(S2)) ≈ (1 + O(ρ2)) diame(fk(S2)) ≤ cρ < cρ0,

and therefore, by choosing ρ0 smaller, we get a contradiction with the lower diameter bound given by
Proposition 4.1.6 (or Proposition 4.2.3).

Let z ∈ Σk ∩ ∂Be
3
4 ρ

(ξ); recalling Lemma 4.1.10, we may apply the graphical decomposition lemma to

fk, z and infinitely many k to get that there exist pairwise disjoint closed subsets P k
1 , . . . , P k

Nk
⊂ Σk such

that

Σk ∩ Be
ρ
32

(z) =




Mk(z)⋃

l=1

graph ul
k ∪

⋃

n

P k
n


 ∩ Be

ρ
32

(z),

where the following holds:

1. The sets P k
n are diffeomorphic to discs and disjoint from graphul

k.

2. ul
k ∈ C∞(Ωl

k, (Ll
k)⊥), where Ll

k is a 2-dim. plane and Ωl
k =

(
Bλl

k
(πLl

k
(z)) ∩ Ll

k

)
\⋃m dl

k,m, where

λl
k > ρ

16 and where the sets dl
k,m are pairwise disjoint closed discs in Ll

k.

3. The following inequalities hold:

Mk(z) ≤ c, where c < ∞ does not depend on z, k and ρ, (5.49)

∑

m

diam dl
k,m +

∑

n

diam P k
n ≤ cε

1
2 ρ, (5.50)

1

ρ
‖ul

k‖L∞(Ωl
k) + ‖Dul

k‖L∞(Ωl
k) ≤ cε

1
6 . (5.51)

Remark 5.3.5. Notice that z ∈ fk(S2)∩∂Be
3
4 ρ

(ξ) was arbitrary. Now cover Be

( 3
4+ 1

128 )ρ
(ξ)\Be

( 3
4 − 1

128 )ρ
(ξ)

by finitely many balls Be
ρ
64

with center in ∂Be
3
4 ρ

(ξ), where the number does not depend on ρ, namely

Be

( 3
4+ 1

128 )ρ
(ξ) \ Be

( 3
4 − 1

128 )ρ
(ξ) ⊂

I⋃

i=1

Be
ρ
64

(yi),
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where yi ∈ ∂Be
3
4 ρ

(ξ) and I is an universal constant. From this it follows that there exist points {z1
k, . . . , zJk

k } ⊂
fk(S2) ∩ ∂Be

3
4 ρ

(ξ) with Jk ≤ I such that

fk(S2) ∩ Be

( 3
4+ 1

128 )ρ
(ξ) \ Be

( 3
4 − 1

128 )ρ
(ξ) ⊂

Jk⋃

i=1

Be
ρ
32

(zk
i ). (5.52)

Now denote by {
Σp

k

∣∣ 1 ≤ p ≤ Pk

}
(5.53)

the images via fk of the connected components of f−1
k (Be

( 3
4+ 1

128 )ρ
(ξ) \ Be

( 3
4 − 1

128 )ρ
(ξ)). From the above

inclusion, the universal bound on Jk, the graphical decomposition from above and the universal bound on
Mk(zk

i ) we get that

Pk ≤ c, where c is an universal constant independent of k and ρ. (5.54)

In the next step we show that

dist
(
ξ, Ll

k

)
≤ cε

1
6 ρ for all l ∈ {1, . . . , Mk(z)}. (5.55)

To prove this notice that Proposition 5.2.5 and Proposition 5.2.3 imply

µe
k(Be

ρ
32

(z)) ≥ cρ2. (5.56)

Now to prove (5.55) notice that (
graph ul

k ∩ Be
ρ
32

(z)
)

\ Bk /= ∅,

where Bk was defined in Lemma 5.3.4. This follows from the graphical decomposition above, the diameter
estimates for the sets P k

n , the area estimate concerning the set Bk and (5.56).

Let y ∈
(
graph ul

k ∩ Be
ρ
32

(z)
)

\ Bk ⊂
(
fk(S2) ∩ Be

ρ(ξ) \ Be
ρ
2
(ξ)
)

\ Bk. It follows that

|ξ − πTyfk
(ξ)| ≤ ε|y − ξ| ≤ ε (|y − z| + |z − ξ|) ≤ cερ.

Define the perturbed plane L̃l
k by L̃l

k = Ll
k +(y−πLl

k
(y)). Thus dist(L̃l

k, Ll
k) = |y−πLl

k
(y)| ≤ cε

1
6 ρ (since

y ∈ graph ul
k ∩ Be

ρ
32

(z)). Thus clearly, by Pythagoras Theorem, |y − πL̃l
k
(πTyfk

(ξ))|2 ≤ |y − πTyfk
(ξ)|2 ≤

|y − ξ|2 ≤ cρ2. Since Tyfk can be parametrized in terms of Dul
k(y) over L̃l

k we get that

|πTyfk
(ξ) − πL̃l

k
(πTyfk

(ξ))| ≤ ‖Dul
k‖L∞ |y − πL̃l

k
(πTyfk

(ξ))| ≤ cε
1
6 ρ.

Therefore by triangle inequality we finally get (5.55).

dist(ξ, Ll
k) =

∣∣∣ξ − πLl
k
(ξ)
∣∣∣

≤
∣∣∣ξ − πLl

k
(πTyΣk

(ξ))
∣∣∣

≤
∣∣ξ − πTyΣk

(ξ)
∣∣+
∣∣∣πTyΣk

(ξ) − πL̃l
k
(πTyΣk

(ξ))
∣∣∣

+
∣∣∣πL̃l

k
(πTyΣk

(ξ)) − πLl
k
(πTyΣk

(ξ))
∣∣∣

≤ cε
1
6 ρ,

Since dist(ξ, Ll
k) ≤ cε

1
6 ρ, we may assume (after translation) that ξ ∈ Ll

k for all l ∈ {1, . . . , Mk(z)}
and k without changing the estimates for the functions ul

k. Moreover we again have that Ll
k → Ll with

ξ ∈ Ll. Therefore for k sufficiently large we may assume that Ll
k is a fixed 2-dim. plane Ll.

Now we have that either the point z lies in one of the graphs or can be connected to one of the graphs.
Without loss of generality we may assume that this graph corresponds to the function u1

k. Subsequently
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we will work only with this function u1
k, which is defined on some part of the plane L1 with some discs

d1
k,m removed. We will therefore drop the index 1. Define the set

Tk(z) =

{
τ ∈

(
ρ

64
,

ρ√
2 · 32

) ∣∣∣∣∣ ∂Be
τ (πL(z)) ∩

⋃

m

dk,m = ∅
}

.

It follows from the diameter estimates and the selection principle in [SiL] that for ε ≤ ε0 there exists a

τ ∈
(

ρ
64 , ρ√

2·32

)
such that τ ∈ Tk(z) for infinitely many k.

Since ξ ∈ L, it follows from the choice of τ that for ε ≤ ε0

∂Be
3
4 ρ(ξ) ∩ ∂Be

τ (πL(z)) ∩ L = {p1,k, p2,k} ,

where p1,k, p2,k ∈
(
Be

ρ√
2·32

(πL(z)) ∩ L
)

\⋃m dk,m are distinct.

Define the image points zi,k ∈ graph uk by

zi,k = pi,k + uk(pi,k).

Using the L∞-estimates for uk we get for ε ≤ ε0 that 5
8ρ < |zi,k−ξ| < 7

8ρ and thus
∫

Be
ρ
8

(zi,k)
|Ae

k|2 dµe
k ≤ ε2.

Therefore we can again apply the graphical decomposition lemma to the points zi,k. Thus there exist

pairwise disjoint subsets P i,k
1 , . . . , P i,k

Ni,k
⊂ fk(S2) such that

fk(S2) ∩ Be
ρ
32

(zi,k) =




Mi,k(zi,k)⋃

l=1

graph ul
i,k ∪

⋃

n

P i,k
n


 ∩ Be

ρ
32

(zi,k),

where the usual properties and estimates holds.

1. The sets P i,k
n are closed topological discs disjoint from graphui,k.

2. ul
i,k ∈ C∞(Ωl

i,k, (Ll
i,k)⊥), where Ll

i,k is a 2-dim. plane and Ωl
i,k =

(
Bλl

i,k
(πLl

i,k
(zi,k)) ∩ Ll

i,k

)
\

⋃
m dl

i,k,m, where λl
i,k > ρ

16 and where the sets dl
i,k,m are pairwise disjoint closed discs in Ll

i,k.

3. The following inequalities hold:

Mi,k(zi,k) ≤ c, where c < ∞ does not depend on zi,k, k and ρ, (5.57)

∑

m

diam dl
i,k,m +

∑

n

diam P i,k
n ≤ cε

1
2 ρ, (5.58)

1

ρ
‖ul

i,k‖L∞(Ωl
i,k) + ‖Dul

i,k‖L∞(Ωl
i,k) ≤ cε

1
6 . (5.59)

Now we have again that the points zi,k either lie in one of the graphs ul
i,k or can be connected to one

of them. Without loss of generality let this be the graph corresponding to u1
i,k. We will again drop the

upper index. Since zi,k ∈ graph uk it follows that dist(zi,k, L) ≤ cε
1
6 ρ and that graph ui,k is connected

to graph uk. Since the L∞-norms of uk and ui,k and their derivatives are small, we may assume (after
translation and rotation as done before) that Li,k = L.

By continuing with this procedure we get after a finite number of steps, depending not on ρ and k,
an open cover of ∂Be

3
4 ρ

(ξ) ∩ L which also covers the set

A(L) =

{
x + y

∣∣∣x ∈ L, dist
(
x, ∂Be

3
4 ρ(ξ) ∩ L

)
<

ρ√
2 · 64

, y ∈ L⊥, |y| <
ρ√

2 · 64

}
.

Now it can happen that after one ”walk-around” we do not end up in the same disc of fk(S2) ∩ Be
ρ
32

(z)

which contains the point z. But then we can proceed in a similar way and do another ”walk-around”.
Now by construction, the ”flatness” of the involved graph functions and the diameter bounds for the discs,
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every ”walk-around” corresponds to a part of fk(S2) with an area that is bounded from below by cρ2,
where c is a universal constant independent of k and ρ. On the other hand we have that µe

k(Be
ρ(ξ)) ≤ cρ2.

It follows that after a finite number of ”walk-arounds” (which is bounded by a universal constant) we
have to get back to the disc of fk(S2) ∩ Be

ρ
32

(z) which contains the point z.

We summarize the above procedure and the resulting properties in the following remark.

Remark 5.3.6. If ε ≤ ε0, for each component Σ̃p
k there exist pairwise disjoint subsets P k,p

1 , . . . , P k,p
Nk,p

⊂
fk(S2), a natural number kp ∈ N and a smooth function up

k defined on the rectangular set

Bp
k =

[((
3

4
− 1√

2 · 64

)
ρ,

(
3

4
+

1√
2 · 64

)
ρ

)
× [0, 2πkp)

]
\
⋃

dp
k,m,

where the dp
k,m are closed discs in

((
3
4 − 1√

2·64

)
ρ,
(

3
4 + 1√

2·64

)
ρ
)

× [0, 2πkp), such that

Σ̃p
k =


Rp (graph Up

k ) ∪
⋃

j

P k,p
j


 ∩ Be

( 3
4+ 1

128 )ρ
(ξ) \ Be

( 3
4 − 1

128 )ρ
(ξ),

where graph Up
k =

{(
reiθ, up

k(r, θ)
) ∣∣ (r, θ) ∈ Bp

k

}
and Rp denotes a rotation such that Rp(R2) = Lp, where

Lp is the 2-dim. plane from before. Moreover we have

∑

m

diam dp
k,m +

∑

j

diam P k,p
j ≤ cε

1
2 ρ,

1

ρ
‖up

k‖L∞(Bp
k) + ‖Dup

k‖L∞(Bp
k) ≤ cε

1
6 .

We may assume without loss of generality that the discs dp
k,m are pairwise disjoint, since otherwise we

can exchange two intersecting discs by one disc whose diameter is smaller than the sum of the diameters
of the intersecting discs.

Now let ρ ≤ ρ0 and define the set

Ck(ξ) =



σ ∈

((
3

4
− 1

256

)
ρ,

(
3

4
+

1

256

)
ρ

) ∣∣∣∣∣ ∂Be
σ(ξ) ∩

⋃

p,j

P k,p
j = ∅,

∫

∂Be
σ(ξ)

|Ae
k|2 dse

k ≤ 512

ρ
ε2



 .

It follows that

L1(Ck(ξ)) ≥ 1

512
ρ,

since by the diameter estimates for the ”pimples” we have for ε ≤ ε0 that

L1





σ ∈

((
3

4
− 1

256

)
ρ,

(
3

4
+

1

256

)
ρ

) ∣∣∣∣∣ ∂Be
σ(ξ) ∩

⋃

p,j

P k,p
j = ∅






 ≥ 1

256
ρ,

and therefore we would get, assuming that L1(Ck(ξ)) < 1
512ρ,

ε2 ≥
∫

Σk∩Be
ρ(ξ)\Be

ρ
2

(ξ)

|Ae|2 dµe

≥
∫

{
σ∈(( 3

4 − 1
256 )ρ,( 3

4+ 1
256 )ρ)

∣∣ ∂Be
σ(ξ)∩⋃

p,j P k,p
j =∅

}
\Ck(ξ)

∫

Σk∩∂Be
σ(ξ)

|Ae|2 dse dσ

> ε2.

Again it follows from the diameter bounds, a simple Fubini argument and Lemma 5.5.2 that there exists
a σ ∈

((
3
4 − 1

256

)
ρ,
(

3
4 + 1

256

)
ρ
)

such that σ ∈ Ck(ξ) for infinitely many k ∈ N. Denote by

{
Σ̃q

k | 1 ≤ q ≤ Qk

}
(5.60)

the images of the components of f−1
k (Be

σ(ξ)). By Remark 5.3.5, we get that Qk is bounded by an universal
constant which is independent of k and ρ.
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Lemma 5.3.7. Suppose that
1

2

∫
|Ag

k|2 dµg
k ≤ 4π − δ

for some δ > 0 (this holds in both our cases by Lemma 4.1.4, and Lemma 4.1.14 together with Proposition
4.2.3). Then for ε ≤ ε0 each Σ̃q

k is a topological disc. Moreover we have that kp = 1 for all p (for the
definition of kp see Remark 5.3.6).

Proof. Fix k ∈ N. First of all we construct a new surface Σ̄k such that, called µ̄k the associated Radon
measure, we have

(i) µ̄k!Be
σ(ξ) = µe

k!Be
σ(ξ),

(ii)

∣∣∣∣∣∣∣

∫

Be

( 3
4
+ 1

128 )ρ
(ξ)\Be

σ(ξ)

KG dµ̄k

∣∣∣∣∣∣∣
≤ cε

1
3 (KG = Gauss curvature of Σ̄k),

(iii)

∫

Σ̄k\Be

( 3
4
+ 1

128 )ρ
(ξ)

KG dµ̄k = 0.

To define Σ̄k recall Remark 5.3.6 and notice that
∑

p,m diam dp
k,m ≤ cε

1
2 ρ. Now denote by Mk the

number of all discs dp
k,m. Because of the diameter estimate it follows for ε ≤ ε0 that there exists an

interval Ip
k ⊂

((
3
4 − 1

256

)
ρ,
(

3
4 + 1

128

)
ρ
)

with L1(Ip
k) ≥ 1

512Mk
ρ such that (Ip

k × [0, 2πkp)) ∩⋃m dp
k,m = ∅.

Let Ip
k = (ap

k, bp
k) and ϕp ∈ C∞((0, ∞) × [0, 2πkp)) with 0 ≤ ϕp ≤ 1 such that

ϕp = 1 on (0, ap
k) × [0, 2πkp), ϕp = 0 on (bp

k, ∞) × [0, 2πkp), |Dϕp| ≤ c

ρ
and |D2ϕp| ≤ c

ρ2
.

Now define new ”components” Σ̄p
k by

Σ̄p
k =


Rp

(
graph Ūp

k

)
∪
⋃

j

P k,p
j


 ∩ Be

( 3
4+ 1

128 )ρ
(ξ) \ Be

( 3
4 − 1

128 )ρ
(ξ),

where graph Ūp
k is given by

graph Ūp
k =

{(
reiθ,ϕp(r, θ)u

p
k(r, θ)

) ∣∣ (r, θ) ∈ Bp
k

}
,

and Rp denotes a rotation such that Rp(R2) = Lp, where Lp is the 2-dim. plane from before. Namely we
just ”flattened out” the components Σp

k.
Now define the new surface Σ̄k by

Σ̄k =

((
fk(S2) ∩ Be

( 3
4+ 1

128 )ρ
(ξ)
)

\
⋃

p

Σp
k

)
∪
⋃

p

(
Σ̄p

k ∪ Lp

)
.

By definition i) follows immediately. Since Σ̄k \ Be

( 3
4+ 1

128 )ρ
(ξ) =

⋃
p Lp \ Be

( 3
4+ 1

128 )ρ
(ξ), we moreover have

∫
Σ̄k\Be

( 3
4
+ 1

128 )ρ
(ξ)

KG dµ̄k = 0. To prove property (ii) above notice that

∫

Σ̄k∩Be

( 3
4
+ 1

128 )ρ
(ξ)\Be

σ(ξ)

|KG| dµ̄k ≤
∫

fk(S2)∩Be
ρ(ξ)\Be

ρ
2

(ξ)

|KG| dµe
k +

∑

p

∫

Rp(graph Ūp
k)

|KG| dµ̄k.

Now the first integral on the right hand side can be estimated by
∫

fk(S2)∩Be
ρ(ξ)\Be

ρ
2

(ξ)

|KG| dµe
k ≤ 1

2

∫

Be
ρ(ξ)\Be

ρ
2

(ξ)

|Ae
k|2 dµe

k ≤ ε2.

The second integral can be estimated by
∫

Rp(graph Ūp
k)

|KG| dµ̄k ≤ 1

2

∫

graph Ūp
k

|Ae|2 dµ̄k ≤ c

∫

Bp
k

|D2(ϕpu
p
k)|2.
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Because of the properties of the functions up
k and ϕp we have

|D2(ϕpu
p
k)|2 ≤ c

(
|up

k|2|D2ϕp|2 + |Dup
k|2|Dϕp|2 + |ϕp|2|D2up

k|2
)

≤ c
ε

1
3

ρ2
+ |D2up

k|2

and therefore we get
∫

Bp
k

|D2(ϕpu
p
k)|2 ≤ cε

1
3 + c

∫

graph Up
k

|Ae
k|2 dµe

k ≤ cε
1
3 + c

∫

Be
ρ(ξ)\Be

ρ
2

(ξ)

|Ae
k|2 dµe

k ≤ cε
1
3 .

Thus the desired property (ii) is shown (here we also use that 1 ≤ p ≤ Pk ≤ c) and the construction of
Σ̄k is concluded.

Now denote by N : Σ̄k → S2 the Gauss-map. Since the degree of the Gauss-map deg(N) is half the
Euler characteristic, it follows from Gauss-Bonnet that

deg(N) =
1

4π

∫

Σ̄k

KG dµ̄k =
1

4π

∫

Σ̄k∩Be

( 3
4
+ 1

128 )ρ
(ξ)\Be

σ(ξ)

KG dµ̄k +
1

4π

∫

Σ̄k∩Be
σ(ξ)

KG dµ̄k,

and therefore we get using (ii) above that
∣∣∣∣∣

∫

Σ̄k∩Be
σ(ξ)

KG dµ̄k − 4π deg(N)

∣∣∣∣∣ ≤ cε
1
3 .

On the other hand it follows from the assumptions and Proposition 5.2.3 that
∣∣∣∣∣

∫

Σ̄k∩Be
σ(ξ)

KG dµ̄k

∣∣∣∣∣ =
∣∣∣∣∣

∫

fk(S2)∩Be
σ(ξ)

KG dµe
k

∣∣∣∣∣ ≤
1

2

∫

Be
σ(ξ)

|Ae
k|2 dµe

k ≤ 4π − δ

2

by choosing ρ0 smaller if necessary (remember: ρ ≤ ρ0). Since deg(N) ∈ Z it follows for ε ≤ ε0 that
∣∣∣∣∣

∫

fk(S2)∩Be
σ(ξ)

KG dµe
k

∣∣∣∣∣ =
∣∣∣∣∣

∫

Σ̄k∩Be
σ(ξ)

KG dµ̄k

∣∣∣∣∣ ≤ cε
1
3 . (5.61)

Now by the choice of σ we have for all p = 1, . . . , Pk that

Σp
k ∩ ∂Be

σ(ξ) = γp,

where each γp is a closed, immersed smooth curve and where Pk is bounded by a universal constant.

By construction and the choice of σ we have that γp ∩ ⋃j P k,p
j = ∅, therefore (see the almost graph

representation of Σp
k above) γp is almost a flat circle of radius σ which can be parametrized on the

interval [0, 2πkp). After some computations it follows from the choice of σ that (called κ the geodesic
curvature)

∣∣∣∣∣

∫

γp

κ dse
k − 2πkp

∣∣∣∣∣ ≤ cε
1
6 + c

∫

γp

|Ae
k| dse

k ≤ cε
1
6 + cσ

1
2

(∫

∂Be
σ(ξ)

|Ae
k|2 dse

k

) 1
2

≤ cε
1
6 + c

(
σ

ρ

) 1
2

ε ≤ cε
1
6 ,

and therefore it follows from the bound on Pk that
∣∣∣∣∣

∫

∂Be
σ(ξ)

κ dse
k − 2π

Pk∑

p=1

kp

∣∣∣∣∣ ≤ cε
1
6 . (5.62)

On the other hand we have that fk(S2)∩Be
σ(ξ) =

⋃Qk

q=1 Σ̃q
k. Now the Euler characteristic of the components

is given by
χ(Σ̃q

k) = 2(1 − gq) − bq,

where bq is the number of boundary components of Σ̃q
k and gq is the genus of the closed surface which

arises by gluing bq topological discs. Especially we have that

bq ≥ 1 and

Qk∑

q=1

bq = Pk.
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By summing over q we get that the Euler characteristic of
⋃Qk

q=1 Σ̃q
k is

χE

(
Qk⋃

q=1

Σ̃q
k

)
= 2(Qk − g) − Pk, with g =

Qk∑

q=1

gq ≥ 0.

Since Qk ≤ Pk we finally get that

Pk ≥ 2(Qk − g) − Pk =
1

2π

∫

fk(S2)∩Be
σ(ξ)

KG dµe
k +

1

2π

∫

fk(S2)∩∂Be
σ(ξ)

κ dse
k ≥

Pk∑

p=1

kp − cε
1
6 ≥ Pk − cε

1
6 .

Since 2(Qk −g)−Pk ∈ N it follows for ε ≤ ε0 that Pk = 2(Qk −g)−Pk and therefore (since Qk ≤ Pk) that
Qk = Pk and g = 0. It follows that gq = 0 and bq = 1 for all q. This yields that the Euler characteristic

of Σ̃q
k is 1 for all q and therefore each Σ̃q

k is a topological disc. Moreover the estimate above yields that
kp = 1 for all p.

Remark 5.3.8. Notice that it follows from the last Lemma and Remark 5.3.6 that for each component
Σ̃p

k of Σk ∩ Be

( 3
4+ 1

128 )ρ
(ξ) \ Be

( 3
4 − 1

128 )ρ
(ξ) there exist pairwise disjoint subsets P k,p

1 , . . . , P k,p
Nk,p

⊂ Σk and a

smooth function up
k defined on the rectangular set

Bp
k =

[((
3

4
− 1√

2 · 64

)
ρ,

(
3

4
+

1√
2 · 64

)
ρ

)
× [0, 2π)

]
\
⋃

dp
k,m,

where the dp
k,m are pairwise disjoint, closed discs in

((
3
4 − 1√

2·64

)
ρ,
(

3
4 + 1√

2·64

)
ρ
)

× [0, 2π), such that

Σ̃p
k =


Rp (graph Up

k ) ∪
⋃

j

P k,p
j


 ∩ Be

( 3
4+ 1

128 )ρ
(ξ) \ Be

( 3
4 − 1

128 )ρ
(ξ),

where graph Up
k is given by

graph Up
k =

{(
reiθ, up

k(r, θ)
) ∣∣ (r, θ) ∈ Bp

k

}

and Rp denotes a rotation such that Rp(R2) = Lp, where Lp is the 2-dim. plane. Moreover we have

∑

m

diam dp
k,m +

∑

j

diam P k,p
j ≤ cε

1
2 ρ,

1

ρ
‖up

k‖L∞(Bp
k) + ‖Dup

k‖L∞(Bp
k) ≤ cε

1
6 .

Moreover it follows from the last Lemma that the number of components of Σk ∩ B( 3
4+ 1

128 )ρ(ξ) equals

the number of components of Σk ∩ Be

( 3
4+ 1

128 )ρ
(ξ) \ Be

( 3
4 − 1

128 )ρ
(ξ).

Define the set

Cp
k =

{
s ∈

(
0,

ρ

128

) ∣∣∣∣∣

((
3

4
ρ+ s

)
× [0, 2π)

)
∩
⋃

m

dp
k,m = ∅

}
.

By the diameter estimates for the discs dp
k,m and Lemma 5.5.2 there exists a s ∈

(
0, ρ

128

)
such that s ∈ Cp

k

for infinitely many k.
Now define the set

Dp
k =





s ∈ Cp

∣∣∣∣∣

∫

Rp


graph Up

k |
(( 3

4
ρ+s)×[0,2π))




|Ae
k|2 dse

k ≤ 512

ρ

∫

Σp
k

|Ae
k|2 dµe

k





.
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As before there exists s ∈
(
0, ρ

128

)
such that s ∈ Dp

k for infinitely many k and up
k is defined on the line(

3
4ρ+ s

)
× [0, 2π). Now it follows from the last Remark that Rp(graph Up

k |
(( 3

4
ρ+s)×[0,2π))

) divides fk(S2)

into two topological discs Σk,p
1 , Σk,p

2 , one of them, w.l.o.g. Σk,p
1 , intersecting Be

3
4 ρ

(ξ).

From the estimates for the function up
k and the choice of s we get that Σk,p

1 ⊂ Be

( 3
4+ 1

128 )ρ
(ξ) and Lemma

4.1.10 yields µe
k(Σk,p

1 ) ≤ cρ2.

According to the Lemma 5.5.1, let wp
k ∈ C∞

(
Be

3
4 ρ+s

(ξ) ∩ Lp, L
⊥
p

)
be an extension of Rp(U

p
k ) restricted

to ∂Be
3
4 ρ+s

(ξ) ∩ Lp. In view of the estimates for up
k and therefore for wp

k we get that graphwp
k ⊂

Be

( 3
4+ 1

128 )ρ
(ξ).

Now, we can define the surface Σ̃k by

Σ̃k =

(
fk(S2) \

⋃

p

Σk,p
1

)
∪
⋃

p

graph wp
k

and we can do exactly the same as in the proof of Lemma 5.3.1 to get the same power decay as for the
good points, but now for balls around the bad points. But by definition the bad points do not allow a
decay like this, and therefore we have proved that there are no bad points.

5.4 C∞ regularity of the minimizer

At this point we proved that the candidate minimizer limit measure µ is locally the measure associated
to C1,α ∩ W 2,2 graphs. To prove higher regularity we have to show that such graphs satisfy the Euler
Lagrange equation of the functional. Since we started from a minimizing sequence among immersions of
2-spheres, we first have to show that µ is the measure associated to an immersion of a 2-sphere, then we
will prove that the graphs satisfy the equation and finally, using a PDE Lemma of Simon and a bootstrap
argument, we conclude with the smoothness of µ.

5.4.1 C1,α ∩ W 2,2 parametrization on S2 of the limit measure µ

Up to now we have shown that the limit measure µ is everywhere the sum of the Radon measures
associated to the graphs of some C1,α∩W 2,2 functions; now we want to show that there exists a C1,α∩W 2,2

immersion f : S2 ↪→ M such that µ is the Radon measure on M associated to f . In order prove this,
let us show that we can modify the immersions {fk}k∈N of the minimizing sequence such that the new
immersions f̃k are generalized (r,λ)-immersions for some λ < 1

4 and r > 0 ( see Definition 5.5.5) and the
associated measures µ̃k converge to µ weakly as measures.

Lemma 5.4.1. Let fk and µ as before. Then it is possible to modify the smooth immersions {fk : S2 ↪→
M}k∈N into the new C1,1-immersions {f̃k : S2 ↪→ M}k∈N which are generalized (r,λ)-immersions in the
sense of Definition 5.5.5 with λ < 1

4 , some r > 0 and |f̃k(S2)| ≤ C, namely {f̃k}k∈N ⊂ F1
C(r,λ).

Proof. Recall that both µ and the fk’s are locally representable as union of graphs and pimples in the
following way: for every ξ ∈ spt µ there exists rξ > 0 and there exists Kξ such that

i) for k ≥ Kξ we have µk!Be
rξ

(ξ) =
∑Mξ

l=1 H2
g!
(
graph uk

l ∪⋃i P k
i ∩ Be

rξ
(ξ)
)

where uk
l are smooth

functions defined on appropriate planes Ll with the usual properties and estimates (see Lemma 5.2.7),

ii) µ!Be
rξ

(ξ) =
∑Mξ

l=1 H2
g!
(
graph ul ∩ Be

rξ
(ξ)
)
, where ul are C1,α∩W 2,2 functions defined on the planes

Ll (see Lemma 5.3.2).
For ξ ∈ sptµ denote ρξ := sup{rξ which satisfies i) and ii) }.

Claim. We have that ρ := inf{ρξ : ξ ∈ spt µ} > 0.

Proof. If by contradiction ρ = 0 then there exists a sequence {ξi}i∈N of points in sptµ such that ρξi
→ 0.

By compactness of spt µ, up to subsequences ξi → ξ ∈ spt µ; let rξ > 0 be as in i) and ii) above. Since
ξi → ξ, we have Be

rξ
2

(ξi) ⊂ Be
rξ

(ξ) for i large therefore on the ball Be
rξ
2

(ξi) we have the desired graphical

decomposition i),ii). It follows that ρξi
≥ rξ

2 > 0, contradiction.
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By compactness of spt µ there exist {ξ1, . . . , ξJ} ⊂ spt µ such that sptµ ⊂ ⋃J
j=1 Be

ρ
4
(ξj). Since fk(S2)

converges to spt µ in Hausdorff distance sense, for k large we also have fk(S2) ⊂ ⋃J
j=1 Be

ρ
4
(ξj).

From i) above recall that µk!Be
ρ(ξj) =

∑Mξj

l=1 H2
g!
(
graph uk,j

l ∪⋃i P k,j
i ∩ Be

ρ(ξj)
)
.

By the diameter estimates on the pimples P k,j
i and the selection principle 5.5.2 there exists ρ̄

2 ∈ (ρ
4 , ρ

2 )

such that ∂Bρ̄(ξl) ∩⋃i,j P k,j
i = ∅ for all l ∈ {1, . . . , J} and for infinitely many k.

Of course we still have that
⋃

k≥K fk(S2) ∪ sptµ ⊂ ⋃J
j=1 Be

ρ̄
2

(ξj) and the graphical decomposition as

in i), ii) still holds in Be
ρ̄(ξj).

First consider fk(S2)∩Be
ρ̄(ξ1). We replace the pimples {P k,1

i }i,k of fk(S2)∩Be
ρ̄(ξ1) with the extension

Lemma 5.5.1 as done in the proof of Lemma 5.3.1 (see (5.20) by graphs of functions with small C1-norms

defined on the discs dk,1
i . It follows that the area of these graphs is bounded by c(diam dk,1

i )2, thus

the sum of the areas of all the graphs is bounded by c
∑

i(diam dk,1
i )2 ≤ cερ̄, which followed from the

graphical decomposition lemma. Notice that by the choice of ρ̄ no pimple intersects ∂Be
ρ̄(ξ1) and we

obtain a new C1,1 immersion f1
k : S2 ↪→ M such that

fk(S2) \ Be
ρ̄(ξ1) = f1

k (S2) \ Be
ρ̄(ξ1), f1

k (S2) ∩ Be
ρ̄(ξ1) =

M1⋃

l=1

graph wk
l,1. (5.63)

Moreover by the above area estimate we get |f1
k (S2)| ≤ |fk(S2)| + cερ̄. Observe that wk

l,1 : Ll
1 ∩ Be

ρ̄(ξ1) →
(Ll

1)
⊥ are C1,1 functions which satisfy: 1

ρ̄‖wk
l,1‖L∞ + ‖Dwk

l,1‖L∞ ≤ cε
1
6 + δk with δk → 0. Moreover we

have that µ!Be
ρ̄(ξ1) =

∑M1

l=1 H2
g!
(
graph ul,1 ∩ Be

ρ̄(ξ1)
)

and by the construction after Lemma 5.3.1 we have

that wk
l,1 → ul,1 uniformly.

Now consider some ξj such that Be
ρ̄
2

(ξ1) ∩ Be
ρ̄
2

(ξj) /= ∅, without loss of generality we can take j =

2. Recall that µk!Be
ρ̄(ξ2) =

∑M2

l=1 H2
g!
(
graph uk

l,2 ∪⋃i P k,2
i ∩ Be

ρ̄(ξ2)
)

where uk,2
l are smooth functions

defined on appropriate planes Ll,2.

Observe that on the intersection of the doubled balls, f1
k (S2) ∩ Be

ρ̄(ξ1) ∩ Be
ρ̄(ξ2) =

⋃M1

l=1 graph wk
l,1

and because of the C1 estimates for wk
l,1 and uk,2

l and the diameter estimate on the pimples, these
functions can be written as graphs on the planes Ll,2 satisfying analogous estimates. We conclude that

f1
k (S2) ∩ Be

ρ̄(ξ1) ∩ Be
ρ̄(ξ2) =

⋃M1

l=1 graph wk
l,2 where now the functions wk

l,2 are defined on the planes Ll
2.

From (5.63), the graphical representation of fk(S2)∩Be
ρ̄(ξ2)\Be

ρ̄(ξ1) and the choice of ρ̄, we can replace the
pimples inside Be

ρ̄(ξ2)\Be
ρ̄(ξ1) with new graphs as done before obtaining a new C1,1 immersion f2

k : S2 ↪→
M which is union of graphs (without pimples) in both balls such that the corresponding graph functions
converge uniformly to the graph functions representing µ, and such that |f2

k (S2)| ≤ |fk(S2)| + 2cερ̄.

Repeating the above procedure a finite number of times we obtain the desired C1,1 immersion f̃k :=
fJ

k : S2 ↪→ M with |f̃k(S2)| ≤ |fk(S2)| + cJερ̄ ≤ C because of the uniform area estimate given in
Proposition 4.1.1, Proposition 4.1.2 and Remark 4.1.3.

Now let us show that the C1,1 immersion f̃k are actually generalized (r,λ)-immersions. Recall that

sptµ ⊂ ⋃J
j=1 Be

ρ̄(ξj) is an open cover of sptµ, then by Lebesgue Lemma there exists the Lebesgue
number ρ̃ > 0 with the following property: for every ξ ∈ spt µ we have that Be

ρ̃(ξ) ⊂ Be
ρ̄(ξj) for some

j ∈ {1, . . . , J}.
Now observe that also f̃k(S2) converges to spt µ in Hausdorff distance sense (this follows by the

uniform convergence of the corresponding graphs), then B ρ̃
2
(f̃k(S2)) ⊂ ⋃J

j=1 Be
ρ̄(ξj) for k large. Let

us take a point p ∈ S2 and observe that Be
ρ̃
2

(f̃k(p)) ⊂ Be
ρ̄(ξj) for some j; therefore by construction

of f̃k we have f̃k(S2) ∩ Be
ρ̃
2

(f̃k(p)) =
⋃Mj

l=1 graph wk
l,j where wk

l,j : Ll
j ∩ Be

ρ̃
2

(πl
j(f̃k(p))) → (Ll

j)
⊥ are

C1,1 functions which satisfy ‖Dwk
l,j‖L∞ ≤ cε

1
6 + δk with δk → 0 (where πl

j denotes the orthogonal

projection onto Ll
j). Now let us recall that by Nash embedding theorem we can assume that our ambient

manifold is isometrically embedded in some RS ; let us denote by Ak
p,Ll

j
: RS → RS an Euclidean isometry

which maps the origin to f̃k(p) and the subspace R2 × {0} onto f̃k(p) + (Ll
j − πl

j(f̃k(p))). We get

that f̃k(S2) ∩ Be
ρ̃
2

(f̃k(p)) =
⋃Mj

l=1

(
Ak

p,Ll
j
(graph w̃k

l,j)
)

where w̃k
l,j : R2 ∩ Be

ρ̃
2

(0) → (R2)⊥ is given by

w̃k
l,j = (Ak

p,Ll
j
)−1 ◦wk

l,j ◦Ak
p,Ll

j
−(f̃k(p)−πl

j(f̃k(p))) are C1,1 functions which satisfy ‖Dw̃k
l,j‖L∞ ≤ cε

1
6 +δk
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with δk → 0. Now call Uk
ρ̃
2 ,p

⊂ S2 the p-component of the set (π ◦ (Ak
p,Ll

j
)−1 ◦ f̃k)−1(R2 ∩ Be

ρ̃
2

(0))

where π : RS → R2 is the projection on the first two coordinates. By construction we have that
(Ak

p,Ll
j
)−1 ◦ f̃k(Uk

ρ̃
2 ,p

) = graph w̃k
l,j , where w̃k

l,j : R2 ∩ Be
ρ̃
2

(0) → (R2)⊥ is a C1,1 function which satisfies

‖Dw̃k
l,j‖L∞ ≤ cε

1
6 + δk with δk → 0.

For any λ < 1
4 , choosing in the beginning of the construction ε small enough, for k large enough we

have that f̃k : S2 ↪→ M is a generalized ( ρ̃
2 ,λ)-immersion.

By the compactness Theorem 5.5.6 for generalized (r,λ)-immersions of Breuning, we know that there
exists a generalized ( ρ̃

2 ,λ)-function f : S2 ↪→ M (see Definition 5.5.5) and diffeomorphisms φk : S2 → S2

such that f̃k ◦ φk → f uniformly. Let us briefly recall Breuning’s construction of the limit f (see page
57 of [BreuTh]). Let q be in S2 and qk = φk(q); by the uniform convergence of the f̃k ◦ φk we have that
for k large Be

ρ̃
2

(f̃k(qk)) ⊂ Be
ρ̄(ξj) for some j. By the construction carried in the proof of Lemma 5.4.1 we

know that for each large k
(Ak

qk,Ll
j
)−1 ◦ f̃k(Uk

ρ̃
2 ,qk

) = graph w̃k
l,j .

As Breuning proves, there exist λ-Lipschitz functions ũl,j such that

w̃k
l,j

k→∞−→ ũl,j and (Aq,Ll
j
)−1 ◦ f(U ρ̃

2 ,q) = graph ũl,j .

On the other hand we know from the representation of the limit measure µ we have

µ!Be
ρ̄(ξj) =

Mj∑

l=1

H2
g!
(
graph ul,j ∩ Be

ρ̄(ξj)
)
,

where ul,j are C1,α ∩ W 2,2 functions defined on the planes Lj
l (see Lemma 5.3.2) and Aq,Ll

j
◦ w̃k

l,j ◦
(Aq,Ll

j
)−1 k→∞−→ ul,j . By uniqueness of the limit it follows that ũl,j = (Aq,Ll

j
)−1 ◦ ul,j ◦ Aq,Ll

j
is actually

C1,α ∩ W 2,2 and Aq,Ll
j
(graph ũl,j) = graph ul,j . Thus

f(U ρ̃
2 ,q) = Aq,Ll

j
(graph ũl,j) = graph ul,j .

We have therefore shown that the generalized ( ρ̃
2 ,λ)-function f : S2 ↪→ M is actually a C1,α ∩ W 2,2

immersion and µ is the Radon measure on M associated to the immersion f . Henceforth we have just
proven the following Lemma.

Lemma 5.4.2. Let fk and µ as before. Then there exists a C1,α ∩ W 2,2 immersion f : S2 ↪→ M such
that µ is the Radon measure associated to the immersion f .

5.4.2 Smoothness of the immersion f parametrizing µ

First of all let us point out that via a standard approximation argument one can check that

inf{E(h)|h : S2 ↪→ M smooth immersion } = inf{E(h)|h : S2 ↪→ M C1 ∩ W 2,2 immersion }

(analogous equality for W1 replacing E). Then by lower semicontinuity (Theorem 4.2.6 and Theorem
4.1.13) the limit immersion f constructed in Lemma 5.4.2 minimizes E (respectively W1) among C1∩W 2,2

immersions of S2 into M , in particular it satisfies the Euler Lagrange equation (at the point x)

E′(f)[x] = )H − 1

2
H(H2 − 2|A|2 − Rg(f(x))) + (∇νK̄)(Txf)

where ) is the Laplace Beltrami of the immersion f and as before Rg and ∇νK̄ are respectively the
scalar curvature and the covariant derivative of the sectional curvature of the ambient manifold (M, g)
(instead, the Euler equation for W1 is W1(f)′ = 1

2)H − 1
4H(H2 − 2|A|2 − 2Ricg(ν, ν) + 4) where, of

course, Ricg(ν, ν) is the Ricci tensor of (M, g) evaluated on the unit normal ν to f). It is a long and
tedious computation but it is possible to check that the Euler Lagrange equation of E (resp. of W1) fits
in Lemma 3.2 in [SiL].
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It follows that the functions ul representing µ are actually C2,α ∩ W 3,2 and the L2 norm of the 3rd

derivatives satisfies the power decay
∫

Bρ
|D3ul|2 ≤ cρα. Now using the difference quotients method one

proves that the functions ul are actually C3,α ∩ W 4,2 and the L2 norm of the 4th derivatives satisfies the
power decay

∫
Bρ

|D4ul|2 ≤ cρα; continuing this bootstrap argument one shows the smoothness of ul and

thus that of f .

5.5 Appendix to regularity theory

5.5.1 Some useful lemmas

The following Lemmas have been used in the regularity theory and their proof is essentially due to Simon
(see [SiL]). Simon’s formulation of the next lemma a is bit different, here we use a little modification
given by Schygulla in [Schy] which has the advantage of having a more constructive proof.

Lemma 5.5.1. Let L be a 2-dimensional plane in Rn, x0 ∈ L and u ∈ C∞ (U, L⊥) where U ⊂ L
is an open neighborhood of L ∩ ∂Bρ(x0). Moreover let |Du| ≤ c in U . Then there exists a function

w ∈ C∞
(
Bρ(x0), L

⊥
)

with the following properties:

1.) w = u on ∂Bρ(x0)

2.)
∂w

∂ν
=
∂u

∂ν
on ∂Bρ(x0) (ν = outer unit normal to ∂Bρ(x0))

3.)
1

ρ
||w||L∞(Bρ(x0)) ≤ c(n)

(
1

ρ
||u||L∞(∂Bρ(x0)) + ||Du||L∞(∂Bρ(x0))

)

4.) ||Dw||L∞(Bρ(x0)) ≤ c(n)||Du||L∞(∂Bρ(x0))

5.)

∫

Bρ(x0)

|D2w(x)|2 dx ≤ c(n)ρ

∫

graph u|∂Bρ(x0)

|A(x)|2 dµ

The next Lemma can be found with proof in the appendix of [SiL]

Lemma 5.5.2. Let δ > 0, I ⊂ R a bounded interval and Ak ⊂ I, k ∈ N, measurable sets with L1(Ak) ≥ δ
for all k. Then there exists a set A ⊂ I with L1(A) ≥ δ such that each point x ∈ A lies in Ak for infinitely
many k.

The Lemma below is a little modification of what Simon uses in [SiL], hence we give a proof.

Lemma 5.5.3. Let g : (0, b) → [0, +∞[ be a real valued bounded function such that

g (x) ≤ γg(2x) + Cxα for all x ∈
(

0,
b

2

)

where α > 0, γ ∈ (0, 1) and C some positive constant. It follows that there exists β ∈ (0, 1) and a constant
C = C

(
b, ||g||L∞(0,b)

)
such that

g(x) ≤ Cxβ for all x ∈ (0, b) .

Proof. First of all observe that since g is non negative we can choose γ ∈ (0, 1) maybe a little larger

such that γ /=
(

1
2

)α
. Next choose β ∈ (0, min(1,α)) such that γ ≤

(
1
2

)β
. Now let x ∈

(
b
2 , b
)

and m ∈ N.
It follows that

g(2−mx) ≤ γmg(x) +

m−1∑

j=0

Cγj
(
2j−mx

)α
.
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Let us estimate the second adding term in the right hand side:

m−1∑

j=0

Cγj
(
2j−mx

)α
=

C

2αm
xα

m−1∑

j=0

(2αγ)
j

=
C

2αm
xα 1 − 2αmγm

1 − 2αγ

≤ Cbγ
m +

C

2αm
xα = Cbγ

m + C
(
2−mx

)α
= Cbγ

m + C
(
2−mb

x

b

)α

≤ Cbγ
m + Cb

(
2−mx

)β
,

therefore it follows that (since g is bounded)

g(2−mx) ≤ Cb,‖g‖L∞(0,b)
γm + Cb

(
2−mx

)β
for all x ∈

(
b

2
, b

)
and m ∈ N.

Since g is bounded, for m = 0 and x ∈
(

b
2 , b
)

we have

g(x) ≤ C(= ‖g‖L∞(0,b)) ≤ C‖g‖L∞(0,b)

2x

b
≤ C‖g‖L∞(0,b)

x

b
≤ C‖g‖L∞(0,b)

(x

b

)β

≤ Cb,‖g‖L∞(0,b)
xβ .

Now for m ≥ 1 let Im =
(
2−(m+1)b, 2−mb

)
. For y ∈ Im there exists x ∈

(
b
2 , b
)

such that y = 2−mx and

therefore we get (notice that γm ≤
(

2
b

)β
yβ)

g(y) ≤ Cb,‖g‖L∞(0,b)
γm + Cby

β ≤ Cb,‖g‖L∞(0,b)
yβ .

Therefore the lemma is proved.

Lemma 5.5.4. Let µ > 0, δ ∈
(
0, µ

2

)
and Ω = BR2

µ (0)\E where E ⊂ R2 is measurable with L1(p1(E)) ≤ µ
2

and L1(p2(E)) ≤ δ where p1 is the projection onto the x-axis and p2 is the projection onto the y-axis.
Then for any f ∈ C1(Ω) there exists a point (x0, y0) ∈ Ω such that

∫

Ω

|f − f(x0, y0)|2 ≤ Cµ2

∫

Ω

|Df |2 + Cδµ sup
Ω

|f |2

where C is a absolute constant.

Proof. First consider the case µ = 1.
Let f ∈ C1(Ω) and define the set S by

S :=

{
x ∈

(
−3

4
,
3

4

) ∣∣∣x /∈ p1(E)

}
.

It follows by assumption that

L1(S) ≥ 6

4
− L1(p1(E)) ≥ 1.

We also have that
lx ∩ E = ∅ for all x ∈ S

where lx = {(x, y) | y ∈ R}. Now let T ⊂ S be given by

T :=

{
x ∈ S

∣∣∣
∫

lx∩Ω

|Df(x, y)|2 dy ≤ 4

∫

Ω

|Df |2
}

.

It follows that

L1(T ) ≥ 3

4

since otherwise we would have that
∫

Ω

|Df |2 ≥
∫

S\T

∫

lx∩Ω

|Df(x, y)|2 dy dx >

∫

S\T

4

∫

Ω

|Df |2 = 4
(
L1(S) − L1(T )

) ∫

Ω

|Df |2

> 4

(
1 − 3

4

)∫

Ω

|Df |2 =

∫

Ω

|Df |2 ,
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a contradiction.
Since L1(lx ∩ Ω) ≤ 2 for all x ∈ T and |f(x, y) − f(x, 0)| ≤

∫
lx∩Ω

|Df(x, y)| dy for all y ∈ lx ∩ Ω we
therefore get, by using the Cauchy-Schwartz-Inequality, that

sup
lx∩Ω

|f − f(x, 0)|2 ≤ 8

∫

Ω

|Df |2 for all x ∈ T.

On the other hand the inequality ∫ b

a

h2 ≤ (b − a)2
∫ b

a

(h′)2

holds for every function h ∈ C1((a, b)) such that h = 0 at some point of (a, b).
For y ∈ (−1, 1)\p2(E) define the set Ly = {(x, y) | x ∈ R}. Since L1(Ly ∩ Ω) ≤ 2 we get for all
y ∈ (−1, 1)\p2(E) and all x0 ∈ T that

∫

Ly∩Ω

|f(x, y) − f(x0, y)|2 dx ≤ 4

∫

Ly∩Ω

|Df |2.

By the above estimates, we conclude that for all y ∈ (−1, 1)\p2(E) and all x0 ∈ T
∫

Ly∩Ω

|f(x, y) − f(x0, 0)|2 dx ≤ 4

∫

Ly∩Ω

|Df |2 + 16

∫

Ω

|Df |2.

By integration over all y ∈ (−1, 1)\p2(E) we get that
∫

Ω\p−1
2 (E)

|f(x, y) − f(x0, 0)|2 ≤ C

∫

Ω

|Df |2 for all x0 ∈ T.

Since |f(x, y) − f(x0, 0)|2 ≤ 4 supΩ |f |2 and L2(Ω ∩ p−1
2 (E)) ≤ 2δ by assumption, we also get that

∫

Ω∩p−1
2 (E)

|f − f(x0, 0)|2 ≤ 8δ sup
Ω

|f |2 for all x0 ∈ T.

Therefore we conclude that
∫

Ω

|f − f(x0, 0)|2 ≤ C

∫

Ω

|Df |2 + Cδ sup
Ω

|f |2 for all x0 ∈ T.

Since T /= ∅ the Lemma is proven for µ = 1.

Now let µ > 0 be arbitrary and f ∈ C1(Ω). Define the set

Ω̃ =
1

µ
Ω = B1(0) \ Ẽ

where the set Ẽ is given by Ẽ = 1
µE. By the assumptions it follows that

L1(p1(Ẽ)) ≤ 1

2
and L1(p2(Ẽ)) ≤ δ

µ
≤ 1

2
.

Define also the function f̃ ∈ C1(Ω̃) by f̃(x) = f(µx). From the µ = 1-case it follows that
∫

Ω̃

∣∣∣f̃ − f̃(x̃0, ỹ0)
∣∣∣
2

≤ C

∫

Ω̃

∣∣∣Df̃
∣∣∣
2

+ C
δ

µ
sup
Ω̃

|f̃ |2 (5.64)

for some point (x̃0, ỹ0) ∈ Ω̃.
Elementary calculations using the transformation formula show that

∫

Ω̃

∣∣∣f̃ − f̃(x̃0, ỹ0)
∣∣∣
2

= µ−2

∫

Ω

|f − f(x0, y0)|2 where (x0, y0) = µ(x̃0, ỹ0) ∈ Ω,

∫

Ω̃

∣∣∣Df̃
∣∣∣
2

=

∫

Ω

|Df |2 and sup
Ω̃

|f̃ |2 = sup
Ω

|f |2.

Plugging the last formulas in (5.64), the desired estimate follows for arbitrary µ > 0.
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5.5.2 Definitions and properties of generalized (r, λ)-immersions

In this subsection we briefly recall the definitions and properties of generalized (r,λ)-immersions of
f : S2 ↪→ M ⊂ RS appearing in [BreuTh].

We call a mapping A : RS → RS a Euclidean isometry, if there is a rotation R ∈ SO(p) and a
translation T ∈ RS , such that A(x) = Rx + T for all x ∈ RS .

For a given point q ∈ S2 and a given 2-plane E ∈ G(p, 2) let Aq,E : RS → RS be a Euclidean isometry,
which maps the origin to f(q) and the subspace R2 × {0} ⊂ RS onto f(q) + E.

Let UE
r,q ⊂ S2 be the q-component of the set (π ◦A−1

q,E ◦f)−1(Br), where π : RS → R2 is the projection
on the first two coordinates.

Definition 5.5.5. An immersion f : S2 ↪→ (M, g) ⊂ RS is called a generalized (r,λ)-immersion, if for
each point q ∈ S2 there is an E = E(q) ∈ G(p, 2), such that A−1

q,E ◦ f(UE
r,q) is the graph of a differentiable

function u : Br → (R2)⊥ with ‖Du‖C0(Br) ≤ λ.
The set of generalized (r,λ)-immersions is denoted by F1(r,λ). Moreover let F1

V (r,λ) be the set of
all immersions f ∈ F1(r,λ) such that |f(S2)| ≤ V (of course |f(S2)| is the area of S2 with respect to the
pullback metric f∗g).

A continuous function f : S2 ↪→ (M, g) ⊂ RS is called an (r,λ)-function, if for each point q ∈ S2 there
is an E = E(q) ∈ G(p, 2), such that A−1

q,E ◦ f(UE
r,q) is the graph of a Lipschitz function u : Br → (R2)⊥

with with Lipschitz constant λ.
The set of (r,λ)-functions is denoted by F0(r,λ).

Now we recall the compactness theorem Theorem 0.5 in [BreuTh].

Theorem 5.5.6. Let λ ≤ 1
4 . Then F1

V (r,λ) is relatively compact in F0(r,λ) in the following sense: Let
fk : S2 ↪→ (M, g) ⊂ RS be a sequence in F1

V (r,λ). Then, after passing to a subsequence, there exists an
f ∈ F0(r,λ) and a sequence of diffeomorphisms φk : S2 → S2, such that fk ◦ φk is uniformly Lipschitz
bounded and converges uniformly to f .
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Chapter 6

Existence and partial regularity of
minimizers for supercritical Lp

curvature integral functionals in
Riemannian manifolds, arbitrary
dimension and codimension

In this chapter we prove existence and partial regularity of integral rectifiable m-dimensional varifolds
minimizing functionals of the type

∫
|H|p and

∫
|A|p in a given Riemannian n-dimensional manifold

(N, g), 2 ≤ m < n and p > m, under suitable assumptions on N (in the end of the chapter we give
many examples of such ambient manifolds). To this aim we introduce the following new tools: some
monotonicity formulas for varifolds in RS involving

∫
|H|p, to avoid degeneracy of the minimizer, and a

sort of isoperimetric inequality to bound the mass in terms of the mentioned functionals. The content of
the chapter corresponds to the paper [MonVar].

6.1 Monotonicity formulas for integral m-varifolds with weak
mean curvature in Lp, p > m

Let V = V (M, θ) be an integral varifold of RS (associated to the rectifiable set M ⊂ RS and with integer
multiplicity function θ) with weak mean curvature H (since throughout this section we consider only

varifolds in RS and there is no ambiguity, we adopt the easier notation H for HRS

). Let us write µ for
µV := π2(V ) the push forward of the varifold measure V on Gm(N) to N via the standard projection
π : Gm(N) → N,π(x, P ) = x (see Appendix 6.6 for more details); of course µV can also be seen as
µV = HmBθ, the restriction of the m-dimensional Hausdorff measure to the multiplicity function θ.

The first Lemma is a known fact (see for example the book of Leon Simon [SiGMT] at page 82) of
which we report also the proof for completeness.

Lemma 6.1.1. Let V = V (M, θ) ∈ IVm(RS) be with weak mean curvature H as above and fix a point
x0 ∈ M . For µ-a.e. x ∈ M call r(x) := |x−x0| and D⊥r the orthogonal projection of the gradient vector
Dr onto (TxM)⊥. Consider a nonnegative function φ ∈ C1(R) such that

φ′(t) ≤ 0 ∀t ∈ R, φ(t) = 1 for t ≤ 1

2
, φ(t) = 0 for t ≥ 1.
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For all ρ > 0 let us denote

I(ρ) :=

∫

M

φ(r/ρ)dµ,

L(ρ) :=

∫

M

φ(r/ρ)(x − x0) · Hdµ,

J(ρ) :=

∫

M

φ(r/ρ)|D⊥r|2dµ;

then
d

dρ
[ρ−mI(ρ)] = ρ−mJ ′(ρ) + ρ−m−1L(ρ). (6.1)

Proof. The idea is to use formula (6.44) and chose the vector field X in an appropriate way in order
to get informations about V . First of all let us recall that for any function f ∈ C1(RS) and any x ∈ M
where the approximate tangent space TxM exists (it exists for µ-a.e. x ∈ M see [SiGMT] 11.4-11.6 ) one
can define the tangential gradient as the projection of the gradient in RS onto TxM :

∇Mf :=
S∑

j,l=1

P jlDlf(x)ej

where Dlf denotes the partial derivative ∂f
∂xl of f , P jl is the matrix of the orthogonal projection of RS

onto TxM and {ej}j=1,...,S is an orthonormal basis of RS . Denoted ∇M
j := ej · ∇M , recall that the

tangential divergence is defined as

divMX :=
S∑

j=1

∇M
j Xj ;

moreover it is easy to check the Leibniz formula

divMfX := ∇Mf · X + f divMX ∀f ∈ C1(RS) and ∀X ∈ C1(RS) vector field.

Now let us choose the vector field. Fix ρ > 0 and consider the function γ ∈ C1(R) defined as

γ(t) := φ(t/ρ);

then of course we have the following properties:

γ′(t) ≤ 0 ∀t ∈ R, γ(t) = 1 for t ≤ ρ

2
, γ(t) = 0 for t ≥ ρ.

Call r(x) := |x − x0| and choose the vector field

X(x) := γ(r(x))(x − x0).

Using the Leibniz formula we get

divMX = ∇Mγ(r) · (x − x0) + γ(r)divM (x − x0)

= rγ′(r)
(x − x0)

T

|x − x0|
(x − x0)

T

|x − x0|
+ mγ(r)

= rγ′(r)(1 − |D⊥r|2) + mγ(r), (6.2)

where uT is the projection of the vector u ∈ RS onto TpM and D⊥r = (x−x0)
⊥

|x−x0| is the orthogonal projection

of the gradient vector Dr onto (TxM)⊥. The equation (6.44) of the weak mean curvature thus yields

m

∫

M

γ(r)dµ +

∫

M

rγ′(r)dµ =

∫

M

rγ′(r)|D⊥r|2dµ −
∫

M

H · (x − x0)γ(r)dµ. (6.3)

Now recall that γ(r) = φ(r/ρ), so rγ′(r) = r
ρφ

′(r/ρ) = −ρ ∂
∂ρ [φ(r/ρ)]. Thus, combining (6.3) and the

definitions of I(ρ), J(ρ) and L(ρ) one gets

mI(ρ) − ρI ′(ρ) = −ρJ ′(ρ) − L(ρ).
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Thus, multiplying both sides by ρ−m−1 and rearranging we obtain

d

dρ
[ρ−mI(ρ)] = ρ−mJ ′(ρ) + ρ−m−1L(ρ).

This concludes the proof

Estimating from below the right hand side of (6.1) and integrating, we get the following useful
inequalities.

Proposition 6.1.2. Let V = V (M, θ) ∈ IVm(RS) be with weak mean curvature H ∈ Lp(V ), p > m (we
mean that

∫
Gm(RS)

|H|pdV < ∞ or equivalently, denoted with an abuse of notation H(x) = H(x, TxM),∫
M

|H|pdµ < ∞). Fixed a point x0 ∈ M and 0 < σ < ρ < ∞, then

[σ−mµ(Bσ(x0))]
1
p ≤ [ρ−mµ(Bρ(x0))]

1
p +

p2

p − m
ρ1− m

p

(∫

Bρ(x0)

|H|pdµ
) 1

p − p2

p − m
σ1− m

p

(∫

Bσ(x0)

|H|pdµ
) 1

p

.

(6.4)

Proof. Let us estimate from below the right hand side of equation (6.1). Observe that

J ′(ρ) =
d

dρ

∫

M

φ(r/ρ)|D⊥r|2dµ = −ρ−2

∫

M

rφ′(r/ρ)|D⊥r|2dµ ≥ 0

since φ′(t) ≤ 0 for all t ∈ R. Thus we can say that

d

dρ
[ρ−mI(ρ)] ≥ ρ−m−1L(ρ). (6.5)

Let us estimate from below the right hand side by the Schwartz inequality:

ρ−m−1L(ρ) = ρ−m−1

∫

M

φ(r/ρ)(x − x0) · Hdµ

≥ −ρ−m−1

∫

M

(
φ(r/ρ)

1
p |H|

)
|x − x0|φ(r/ρ)

p−1
p dµ.

Now recalling that φ(t) = 0 for t ≥ 1 we get that φ(r/ρ) = 0 for r ≥ ρ so |x − x0| in the integral can be
estimated from above by ρ and we can say that

ρ−m−1L(ρ) ≥ −ρ−m

∫

M

(
φ(r/ρ)

1
p |H|

)
φ(r/ρ)

p−1
p dµ;

thus, by Holder inequality, for all p > 1

ρ−m−1L(ρ) ≥ −ρ−m
(∫

M

φ(r/ρ)|H|pdµ
) 1

p
(∫

M

φ(r/ρ)dµ
) p−1

p

= −ρ−m
(∫

M

φ(r/ρ)|H|pdµ
) 1

p

I(ρ)
p−1

p . (6.6)

Putting together inequalities (6.5) and (6.6) we get

d

dρ
[ρ−mI(ρ)] ≥ −ρ−m

(∫

M

φ(r/ρ)|H|pdµ
) 1

p

I(ρ)
p−1

p ;

multiplying both sides by ρm− m
p I(ρ)

1
p −1 and rearranging we get

d

dρ
[ρ−mI(ρ)]

1
p ≥ −p ρ− m

p

(∫

M

φ(r/ρ)|H|pdµ
) 1

p

.

Now, after choosing p > m, integrate the last inequality from σ to ρ (the same ρ chosen in the statement
of the Proposition) and get with an integration by parts of the right hand side

ρ− m
p I(ρ)

1
p − σ− m

p I(σ)
1
p ≥ −p

∫ ρ

σ

[ (
t−

m
p

)(∫

M

φ(r/t)|H|pdµ
) 1

p
]
dt

= −p
[(

1 − m

p

)−1(
ρ1− m

p

(∫

M

φ(r/ρ)|H|pdµ
) 1

p − σ1− m
p

(∫

M

φ(r/σ)|H|pdµ
) 1

p
)]

+ p

∫ ρ

σ

[(
1 − m

p

)−1

t1− m
p

( d

dt

∫

M

φ(r/t)|H|pdµ
)]

dt (6.7)
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Observe that, as before for J ′(ρ), since φ′(t) ≤ 0 for all t it follows

d

dt

∫

M

φ(r/t)|H|pdµ = −t−2

∫

M

rφ′(r/t)|H|pdµ ≥ 0

so the second integral in equation (6.7) is non negative and, recalling the definition of I, we can write

(
ρ−m

∫

M

φ(r/ρ)dµ
) 1

p −
(
σ−m

∫

M

φ(r/σ)dµ
) 1

p ≥ p2

p − m

[
− ρ1− m

p

(∫

M

φ(r/ρ)|H|pdµ
) 1

p

+σ1− m
p

(∫

M

φ(r/σ)|H|pdµ
) 1

p
]
. (6.8)

Now observe that during all this proof and during all the proof of Lemma 6.1.1 the only used properties
of φ have been

φ ∈ C1(R), φ′(t) ≤ 0 ∀t ∈ R, φ(t) ≤ 1 ∀t ∈ R, φ(t) = 0 ∀t ≥ 1;

thus, for all such φ, the inequality (6.8) holds. Now taking a sequence φk of such functions pointwise
converging to the characteristic function of ] − ∞, 1] and, using the Dominated Convergence Theorem,
passing to the limit on k in (6.8) we get

[
ρ−mµ(Bρ(x0))

] 1
p −
[
σ−mµ(Bσ(x0))

] 1
p ≥ p2

p − m

[
−ρ1− m

p

(∫

Bρ(x0)

|H|pdµ
) 1

p

+σ1− m
p

(∫

Bσ(x0)

|H|pdµ
) 1

p
]
.

Rearranging we can conclude that

[
σ−mµ(Bσ(x0))

] 1
p ≤

[
ρ−mµ(Bρ(x0))

] 1
p +

p2

p − m
ρ1− m

p

(∫

Bρ(x0)

|H|pdµ
) 1

p − p2

p − m
σ1− m

p

(∫

Bσ(x0)

|H|pdµ
) 1

p

.

From Corollary 17.8 page 86 of [SiGMT], if H ∈ Lp(V ) for some p > m, then the density θ(x) =

limρ↓0
µ(B̄ρ(x))
wmρm exists at every point x ∈ RS and θ is an upper semicontinuous function. Hence, letting

σ → 0, one has

[ωmθ(x0)]
1
p ≤

[µ(Bρ(x0))

ρm

] 1
p

+
p2

p − m

[
ρp−m

∫

Bρ(x0)

|H|pdµ
] 1

p

.

Using the inequality a
1
p + b

1
p ≤ 2

p−1
p (a + b)

1
p given by the concavity of the function t +→ t

1
p with p > 1

and t > 0, we get

ωmθ(x0) ≤ 2p−1
[µ(Bρ(x0))

ρm
+
( p2

p − m

)p

ρp−m

∫

Bρ(x0)

|H|pdµ
]
.

Since V ∈ IVm(RS), then θ is integer valued and by definition θ ≥ 1 µ-a.e. From the upper semicontinuity
of θ it follows that θ(x) ≥ 1 for all x ∈ spt µ (where, as before, µ is the spatial measure associated to V ).
Then the last formula can be written more simply getting the fundamental inequality

1 ≤ Cp,m

[µ(Bρ(x0))

ρm
+ ρp−m

∫

Bρ(x0)

|H|pdµ
]

∀x0 ∈ sptµ, (6.9)

where Cp,m > 0 is a positive constant depending on p,m and such that Cp,m → ∞ if p ↓ m.
Using the fundamental inequality now we can link through inequalities the mass of V , the diameter

of M and the Lp norm of the weak mean curvature H.

Lemma 6.1.3. Let V = V (M, θ) ∈ IVm(RS) be a non null integral m-varifold with compact spatial
support sptµ ⊂ RS and weak mean curvature H ∈ Lp(V ) for some p > m. Then, called d = diamRS (spt µ)
the diameter of sptµ as a subset of RS,

|V | ≤
(

d

m

)p ∫

M

|H|pdµ. (6.10)
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Proof. In the same spirit of the proof of Lemma 6.1.1 we choose a suitable vector field X to plug in
the mean curvature equation (6.44)

∫

M

divMXdµ = −
∫

M

X · Hdµ

in order to get informations about the varifold V = V (M, θ). Now fix a point x0 ∈ spt µ and simply let
X(x) = x − x0. Since divMX = m µ-a.e. (for more details see the proof of Lemma 6.1.1), observing that
|X| ≤ d µ-a.e. and estimating the right hand side by Holder inequality we get

m|V | ≤ d
(∫

M

|H|pdµ
) 1

p |V | p−1
p .

Now multiply both sides by |V | 1
p −1 and raise to the power p in order to get the thesis.

Lemma 6.1.4. Let V = V (M, θ) ∈ IVm(RS) be a non null integral m-varifold with compact connected
spatial support sptµ ⊂ RS and weak mean curvature H ∈ Lp(V ) for some p > m. Then, called d =
diamRS (spt µ),

d ≤ Cp,m

(∫

M

|H|pdµ
)m−1

p |V |1− m−1
p (6.11)

where Cp,m > 0 is a positive constant depending on p,m and such that Cp,m → ∞ if p ↓ m.

Proof. Since spt µ ⊂ RS is compact, then there exist x0, y0 ∈ spt µ such that

d = |x0 − y0|.

Let ρ ∈]0, d/2] and call N := Bd/ρC the integer part of d/ρ. For j = 1, . . . , N − 1 take

yj ∈ ∂B(j+ 1
2 )ρ(y) ∩ spt µ

(observe that, since spt µ is connected, ∂B(j+ 1
2 )ρ(y0) ∩ spt µ /= ∅ for j = 1, . . . , N − 1). For each ball

Bρ/2(yj), j = 0, . . . , N − 1 we have the fundamental inequality (6.9); since the balls Bρ/2(yj), j =
0, . . . , N − 1 are pairwise disjoint, summing up over j we get

N ≤ Cp,m

( |V |
ρm

+ ρp−m

∫

M

|H|pdµ

)
.

Moreover, since N = Bd/ρC ≥ d
2ρ , we have

d ≤ 2ρN ≤ Cp,m

( |V |
ρm−1

+ ρp−m+1

∫

M

|H|pdµ

)
. (6.12)

Now let us choose ρ in an appropriate way; observe that taken

ρ =
m

2

( |V |∫
M

|H|pdµ

) 1
p

,

in force of the estimate (6.10), the condition ρ ≤ d/2 is satisfied. Finally, plugging this value of ρ into
equation (6.12), after some trivial computation we conclude that

d ≤ Cp,m |V | p−m+1
p

(∫

M

|H|pdµ

)m−1
p

.

Combining the Fundamental Inequality with the previous lemmas we are in position to prove a lower
diameter and mass bound.
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Lemma 6.1.5. Let V = V (M, θ) ∈ IVm(RS) be a non null integral m-varifold with spatial support
sptµ ⊂ RS and weak mean curvature H ∈ Lp(V ) for some p > m. Then, called d := diamRS (spt µ)

d ≥ 1

Cp,m

( ∫
M

|H|pdµ
) 1

p−m

(6.13)

where Cp,m > 0 is a positive constant depending on p,m and such that Cp,m → ∞ if p ↓ m.

Proof. If d = ∞, the inequality (6.13) is trivially satisfied; hence we can assume that spt µ ⊂ RS is
compact. It follows that there exist x0, y0 ∈ spt µ such that

d = |x0 − y0|.

Recall the Fundamental Inequality (6.9) and choose ρ = d obtaining

1 ≤ Cp,m

( |V |
dm

+ dp−m

∫

M

|H|pdµ
)
. (6.14)

From Lemma 6.1.3,

|V | ≤ 1

mp
dp

∫

M

|Hp|dµ,

hence the inequality (6.14) becomes

1 ≤ Cp,m dp−m

∫

M

|H|pdµ

and we can conclude.

Lemma 6.1.6. Let V = V (M, θ) ∈ IVm(RS) be a non null integral m-varifold with compact spatial
support sptµ ⊂ RS and weak mean curvature H ∈ Lp(V ) for some p > m. Then

|V | ≥ 1

Cp,m

( ∫
M

|H|pdµ
) m

p−m
(6.15)

where Cp,m > 0 is a positive constant depending on p,m and such that Cp,m → ∞ if p ↓ m.

Proof. First of all we remark that each connected component of sptµ is the support of an integral
varifold with weak mean curvature in Lp. Hence can assume that spt µ ⊂ RS is connected, otherwise just
argue on a non null connected component of sptµ and observe that the inequality (6.15) is well behaved
for bigger subsets.

Call as before d := diamRS (spt µ); from the inequality (6.11),

|V | ≥ d
p

p−m+1

(∫
M

|H|pdµ
) m−1

p−m+1

.

But from the last inequality (6.13),

d
p

p−m+1 ≥ 1

Cp,m

( ∫
M

|H|pdµ
) p

(p−m)(p−m+1)

.

Combining the two estimates, with an easy computation we get the conclusion.

Proposition 6.1.7. Let {Vk = Vk(Mk, θk)}k∈N ⊂ IVm(RS) be a sequence of integral varifolds with weak
mean curvature Hk ∈ Lp(Vk) for some p > m and associated spatial measures µk. Assume a uniform
bound on the Lp norms of Hk:

∃C > 0 : ∀k ∈ N
∫

Mk

|Hk|pdµk =

∫

Gm(RS)

|Hk|pdVk ≤ C,
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and assume a uniform bound on the spatial supports sptµk:

∃R > 0 : sptµk ⊂ BRS

R

where BRS

R is the ball of radius R centered in the origin in RS.
It follows that if there exists a Radon measure µ on RS such that

µk → µ weak as Radon measures,

then
spt µk → spt µ in Hausdorff distance sense.

Proof. First of all observe that the uniform bound on the spatial supports sptµk implies that spt µ is
compact. Since spt µ is compact, recall that spt µk → sptµ if and only if the set of the all possible limit
points of all possible sequences {xk}k∈N with xk ∈ spt µk coincides with spt µ. Let us prove it by double
inclusion.

i) since µk → µ weak as Radon measures of course ∀x ∈ spt µ there exists a sequence {xk}k∈N with
xk ∈ sptµk such that xk → x. Otherwise there would exist ε > 0 such that for infinitely many k′

Bε(x) ∩ sptµk′ = ∅.

This would imply that µk′(Bε(x)) = 0, but x ∈ spt µ so we reach the contradiction

0 < µ(Bε(x)) = lim
k′

µk′Bε(x) = 0.

ii) Let {xk}k∈N with xk ∈ spt µk be such that xk → x. We have to show that x ∈ sptµ. Let us argue
by contradiction:
if x /∈ sptµ then there exists ε0 > 0 such that

0 = µ(Bε0(x)) = lim
k

µk(Bε0(x)). (6.16)

Since spt µk 6 xk → x, then for every ε ∈ (0, ε0/2) there exists Kε > 0 large enough such that

xk ∈ (spt µk ∩ Bε(x)) ∀k > Kε.

Now consider the balls Bε(xk) for k > Kε: by the triangle inequality Bε(xk) ⊂ Bε0(x), moreover, since
by construction xk ∈ sptµk, we can apply the fundamental inequality (6.9) to each Bε(xk) and obtain

1 ≤ Cp,m

[µk(Bε(xk))

εm
+ εp−m

∫

Bε(xk)

|Hk|pdµk

]

≤ Cp,m

[µk(Bε0(x))

εm
+ εp−m

∫

Mk

|Hk|pdµk

]
∀k > Kε. (6.17)

Keeping in mind (6.16), for every fixed ε ∈ (0, ε0/2) we can pass to the limit on k in inequality (6.17)
and get

lim inf
k

∫

Mk

|Hk|pdµk ≥ 1

Cp,m εp−m
.

But ε > 0 can be arbitrarily small, contradicting the uniform bound
∫

Mk
|Hk|pdµk ≤ C of the assumptions.

6.2 Isoperimetric inequalities and compactness results

6.2.1 An isoperimetric inequality involving the generalized second funda-
mental form

The following Isoperimetric Inequality involving the generalized second fundamental form is inspired by
the paper of White [Whi] and uses the concept of varifold with second fundamental form introduced by
Hutchinson [Hu1]. Actually we need a slight generalization of the definition of curvature varifold given
by Hutchinson: in Definition 5.2.1 of [Hu1], the author considers only integral varifolds but, as a matter
of fact, a similar definition makes sense for a general varifold. In Appendix 6.6 we recalled the needed
concepts.
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Theorem 6.2.1. Let N ⊂⊂ N̄ be a compact subset of a (maybe non compact) n-dimensional Riemannian
manifold (N̄ , g) (which, by Nash Embedding Theorem we can assume isometrically embedded in some RS)
and let m ≤ n − 1. Then the following conditions are equivalent:

i) N contains no nonzero m-varifold with null generalized second fundamental form

ii) There is an increasing function Φ : R+ → R+ with Φ(0) = 0 and a function F : Gm(N)×RS3 → R+

satisfying (6.6.2) (see Appendix 6.6) such that for every m-varifold V in N with generalized second
fundamental form A

|V | ≤ Φ
(∫

Gm(N)

F (x, P, A(x, P ))dV
)
.

iii) for every function F : Gm(N) × RS3 → R+ satisfying (6.6.2) (see Appendix 6.6) there exists a
constant CF > 0 such that for every m-varifold V in N with generalized second fundamental form A

|V | ≤ CF

∫

Gm(N)

F (x, P, A(x, P ))dV.

Proof. Of course iii) ⇒ ii) ⇒ i). It remains to prove that i) ⇒ iii). Let us argue by contradiction:
assume that iii) is not satisfied and prove that also i) cannot be satisfied.
First fix the function F . If iii) is not satisfied then there exists a sequence {(Vk, Ak)}k∈N of m-varifolds
in N with generalized second fundamental form (see Definition 6.6.5) such that

|Vk| ≥ k

∫

Gm(N)

F (x, P, Ak(x, P ))dVk.

We can assume that |Vk| = 1 otherwise replace Vk with the normalized varifold Ṽk := 1
|Vk|Vk (ob-

serve that the second fundamental form is invariant under this rescaling of the measure and that∫
Gm(N)

F (x, P, Ak)dVk = |Vk|
∫

Gm(N)
F (x, P, Ak)dṼk). Hence

∫

Gm(N)

F (x, P, Ak(x, P ))dVk ≤ 1

k
.

Recall that |Vk| = 1 so, from Banach-Alaoglu and Riesz Theorems, there exists a varifold V such that,
up to subsequences, Vk → V in varifold sense (i.e weak convergence of Radon measures on Gm(N)). Of
course |V | = limk |Vk| = 1.

Using the notation of [Hu1] (see the Appendix 6.6) we have that the measure-function pairs (Vk, Ak)
over Gm(N), up to subsequences, satisfy the assumptions of Theorem 6.6.4. From (i) of the mentioned

Theorem 6.6.4, it follows that there exists a measure-function pair (V, Ã) with values in RS3
(i.e a Radon

measure V on Gm(N) and a matrix valued function Ã ∈ L1
loc(V ) ) such that (Vk, Ak) ⇀ (V, Ã) (i.e

VkBAk → V BÃ weak convergence of Radon vector valued measures).
From Remark 6.6.6 we can express the generalized curvatures Bk of the varifolds Vk in terms of the

second fundamental forms Ak. Moreover, calling B the corresponding quantity to Ã, from the explicit
expression (6.42) it is clear that the weak convergence (Vk, Ak) ⇀ (V, Ã) implies the weak convergence
(Vk, Bk) ⇀ (V, B).
Passing to the limit in k in (6.40) we see that (V, B) satisfies the equation, so V is an m-varifold with
generalized curvature B.

Now let us check that the corresponding generalized second fundamental form (in sense of equation
(6.41)) to B is Ã.
Call

Λl
ij(x, P ) := PpjBilp(x, P ) − PpjPiq

∂Qlp

∂xq
(x)

the corresponding second fundamental form to B and Λk = Ak the corresponding to Bk (in a varifold
with generalized curvature, Bijl is uniquely determined by the integration by parts formula (6.40) and,

by definition, Al
ij = Λl

ij ; but for our limit varifold it is not a priori clear that Ã = Λ).
Since (Vk, Bk) ⇀ (V, B), from the definitions it is clear that (Vk, Λk) ⇀ (V, Λ); but, from the definition

of Ã, (Vk, Λk) = (Vk, Ak) ⇀ (V, Ã). It follows that Λ = Ã V -almost everywhere and that Ã is the
generalized second fundamental form of V .
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Finally, the lower semicontinuity of the functional ( sentence (ii) of Theorem 6.6.4) implies

∫

Gm(N)

F (x, P, A)dV ≤ lim inf
k

∫

Gm(N)

F (x, P, Ak)dVk = 0.

From the assumption ii) of condition (6.6.2) on F it follows that A = 0 V -almost everywhere; henceforth
we constructed a non null m-varifold V in N with null second fundamental form and this concludes the
proof.

Remark 6.2.2. A trivial but fundamental example of F : Gm(N) × RS3 → R satisfying the assumptions
of Theorem 6.2.1 is F (x, P, A) = |A|p for any p > 1. Hence the Theorem implies that if a compact subset
N of a Riemannian n-dimensional manifold (N̄ , g) does not contain any non null k-varifold (k ≤ n − 1)
with null generalized second fundamental form then for every p > 1 there exists a constant Cp > 0 such
that

|V | ≤ Cp

∫

Gm(N)

|A|pdV

for every k-varifold V in N with generalized second fundamental form A.

Putting together the fundamental compactness and lower semicontinuity Theorem 6.6.7 of Hutchinson
and the Isoperimetric Theorem 6.2.1 we get the following useful compactness-lower semicontinuity result.

Theorem 6.2.3. Let N ⊂⊂ N̄ be a compact subset of a (maybe non compact) n-dimensional Riemannian
manifold (N̄ , g) (which, by Nash Embedding Theorem we can assume isometrically embedded in some RS),

fix m ≤ n − 1 and let F : Gm(N) × RS3 → R+ be a function satisfying (6.6.2).
Assume that, for some m ≤ n − 1, the space (N, g) does not contain any non zero m-varifold with

null generalized second fundamental form.
Consider a sequence {Vk}k∈N ⊂ CVm(N) of curvature varifolds with generalized second fundamental

forms {Ak}k∈N such that ∫

Gm(N)

F (x, P, Ak)dVk ≤ C

for some C > 0 independent of k.
Then there exists V ∈ CVm(N) with generalized second fundamental form A such that, up to subse-

quences,
i) (Vk, Ak) ⇀ (V, A) in the weak sense of measure-function pairs,
ii)
∫

Gm(N)
F (x, P, A)dV ≤ lim infk

∫
Gm(N)

F (x, P, Ak)dVk.

Proof. From Theorem 6.2.1 there exists a constant CF > 0 depending on the function F such that
|Vk| ≤ CF

∫
Gm(N)

F (x, P, Ak(x, P ))dVk, thus from the boudness of
∫

Gm(N)
F (x, P, Ak)dVk we have the

uniform mass bound
|Vk| ≤ C (6.18)

for some C > 0 independent of k. This mass bound, together with Banach Alaoglu and Riesz Theorems,
implies that there exists an m-varifold V on N such that, up to subsequences, Vk → V in varifold sense.

In order to apply Hutchinson compactness Theorem 6.6.7 we have to prove that V actually is an
integral m-varifold.
From assumption iv) on F of Definition 6.6.2, there exists a continuous function φ : Gm(N) × [0, ∞) →
[0, ∞), with 0 ≤ φ(x, P, s) ≤ φ(x, P, t) for 0 ≤ s ≤ t and (x, P ) ∈ Gm(N), φ(x, P, t) → ∞ locally
uniformly in (x, P ) as t → ∞, such that

φ(x, P, |A|)|A| ≤ F (x, P, A) (6.19)

for all (x, P, A) ∈ Gm(N) × RS3
. Since N is compact, also Gm(N) is so and from the properties of φ

there exists C > 0 such that φ(x, P, |A|) ≥ 1 for |A| > C and any (x, P ) ∈ Gm(N). Thus for every k we
can split the computation of the L1(Vk) norm of Ak as

∫

Gm(N)

|Ak|dVk =

∫

Gm(N)∩{|Ak|≤C}
|Ak|dVk +

∫

Gm(N)∩{|Ak|>C}
|Ak|dVk.
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The first term is bounded above by the mass bound (6.18). About the second term observe that, for
|A| > C the inequality (6.19) implies that |A| ≤ F (x, P, A); then also the second term is bounded in
virtue on the assumption that

∫
Gm(N)

F (x, P, Ak)dVk is uniformly bounded.

We have proved that there exists a constant C such that, for all k ∈ N,
∫

Gm(N)

|Ak|dVk ≤ C. (6.20)

Now, change point of view and look at the varifolds Vk as curvature varifolds in RS . Recall (see Remark
6.6.6) that the curvature function B can be written in terms of the generalized second fundamental form A
relative to N̄ and of the extrinsic curvature of the manifold N̄ (as submanifold of RS) which is uniformly
bounded on N from the compactness assumption. Using the triangle inequality together with estimate
(6.20) and the mass bound (6.18) we obtain the uniform estimate of the L1(Vk) norms of the curvature
functions Bk ∫

Gm(RS)

|Bk|dVk ≤ C (6.21)

for some C > 0 independent of k.
Estimate (6.21) and Remark 6.6.10 tell us that the integral varifolds Vk of RS have uniformly bounded

first variation: there exists a C > 0 independent of k such that

|δVk(X)| ≤ C sup
RS

|X|, ∀X ∈ C1
c (RS) vector field.

The uniform bound on the first variations and on the masses of the integral varifolds Vk allow us to apply
Allard’s integral compactness Theorem (see for example [SiGMT] Remark 42.8 or the original paper of
Allard [Al]) and say that the limit varifold V is actually integral.

The conclusions of the Theorem then follow from Hutchinson Theorem 6.6.7.

Corollary 6.2.4. Let N ⊂⊂ N̄ be a compact subset with non empty interior, int(N) /= ∅, of a (maybe
non compact) n-dimensional Riemannian manifold (N̄ , g) (which, by Nash Embedding Theorem can be

assumed isometrically embedded in some RS) and let F : Gm(N) × RS3 → R+ be a function satisfying
(6.6.2).

Assume that, for some m ≤ n − 1, the space (N, g) does not contain any non zero m-varifold with
null generalized second fundamental form.

Call

αm
N,F := inf

{∫

Gm(N)

F (x, P, A)dV : V ∈ CVm(N), V /= 0 with generalized second fundamental form A

}

(6.22)
and consider a minimizing sequence {Vk}k∈N ⊂ CVm(N) of curvature varifolds with generalized second
fundamental forms {Ak}k∈N such that

∫

Gm(N)

F (x, P, Ak)dVk ↓ αm
N,F .

Then there exists V ∈ CVm(N) with generalized second fundamental form A such that, up to subse-
quences,

i) (Vk, Ak) ⇀ (V, A) in the weak sense of measure-function pairs,
ii)
∫

Gm(N)
F (x, P, A)dV ≤ αm

F .

Proof. We only have to check that αm
N,F < ∞, then the conclusion follows from Theorem 6.2.3. But

the fact is trivial since int(N) /= ∅, indeed we can always construct a smooth compact m-dimensional
embedded submanifold of N , which of course is a curvature m-varifold with finite energy.

Remark 6.2.5. Notice that, a priori, Corollary 6.2.4 does not ensure the existence of a minimizer
since it can happen that the limit m-varifold V is null. In the next Section 6.3 we will see that, if
F (x, P, A) ≥ C|A|p for some C > 0 and p > m, then this is not the case and we have a non trivial
minimizer.
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6.2.2 An isoperimetric inequality involving the weak mean curvature

In this Subsection we adapt to the context of varifolds with weak mean curvature the results of the previous
Subsection 6.2.1 about varifolds with generalized second fundamental form (for the basic definitions and
properties see Appendix 6.6). The following Isoperimetric Inequality involving the weak mean curvature
can be seen as a variant of Theorem 2.3 in [Whi].

Theorem 6.2.6. Let N ⊂⊂ N̄ be a compact subset of a (maybe non compact) n-dimensional Riemannian
manifold (N̄ , g) (which, by Nash Embedding Theorem we can assume isometrically embedded in some RS)
and let m ≤ n − 1. Then the following conditions are equivalent:

i) N contains no nonzero m-varifold with null weak mean curvature relative to N̄ (i.e N contains no
nonzero stationary m-varifold; see Remark 6.6.13).

ii) There is an increasing function Φ : R+ → R+ with Φ(0) = 0 and a function F : Gm(N)×RS → R+

satisfying (6.6.2) (see Appendix 6.6) such that for every m-varifold V in N with weak mean curvature
HN relative to N̄

|V | ≤ Φ
(∫

Gm(N)

F (x, P, HN (x, P ))dV
)
.

iii) for every function F : Gm(N) × RS → R+ satisfying (6.6.2) (see Appendix 6.6) there exists a
constant CF > 0 such that for every m-varifold V in N with weak mean curvature HN relative to N̄

|V | ≤ CF

∫

Gm(N)

F (x, P, HN (x, P ))dV.

Proof. The proof is similar to the proof of Theorem 6.2.1. Of course iii) ⇒ ii) ⇒ i). We prove by
contradiction that i) ⇒ iii): assume that iii) is not satisfied and show that also i) cannot be satisfied.
First fix the function F . If iii) is not satisfied then there exists a sequence {Vk}k∈N of m-varifolds in N
with weak mean curvatures HN

k relative to N̄ (see Definition 6.6.11) such that

|Vk| ≥ k

∫

Gm(N)

F (x, P, HN
k (x, P ))dVk.

We can assume that |Vk| = 1 otherwise replace Vk with the normalized varifold Ṽk := 1
|Vk|Vk (observe that

the weak mean curvature is invariant under this rescaling of the measure and that
∫

Gm(N)
F (x, P, HN

k )dVk =

|Vk|
∫

Gm(N)
F (x, P, HN

k )dṼk). Hence
∫

Gm(N)

F (x, P, HN
k (x, P ))dVk ≤ 1

k
.

Recall that |Vk| = 1 so, from Banach-Alaoglu and Riesz Theorems, there exists a varifold V such that,
up to subsequences, Vk → V in varifold sense (i.e weak convergence of Radon measures on Gm(N)). Of
course |V | = limk |Vk| = 1.

Now the measure-function pairs (Vk, HN
k ) over Gm(N), up to subsequences, satisfy the assumptions

of Theorem 6.6.4 and (i) (of the mentioned Theorem 6.6.4) implies that there exists a measure-function
pair (V, H̃N ) with values in RS such that (Vk, HN

k ) ⇀ (V, H̃N ) weak convergence of measure-function
pairs (see Definition 6.6.1).

At this point we have to check that V is an m-varifold of N with weak mean curvature H̃N relative
to N̄ . Recall that N ↪→ RS , so the varifolds Vk can be seen as varifolds with weak mean curvatures

HRS

k in RS ; from equation (6.45), the measure-function pair convergence (Vk, HN
k ) ⇀ (V, H̃N ) implies

the measure-function pair convergence (Vk, HRS

k ) ⇀ (V, H̃N + Pjk
∂Qij

∂xk ) which says ( pass to the limit

in Definition 6.6.9) that V is an m-varifold in RS with weak mean curvature H̃N + Pjk
∂Qij

∂xk . Thus, by

Definition 6.6.11, V is an m-varifold of N with weak mean curvature HN := H̃N relative to N̄ .
Finally, the lower semicontinuity of the functional ( sentence (ii) of Theorem 6.6.4) implies

∫

Gm(N)

F (x, P, HN )dV ≤ lim inf
k

∫

Gm(N)

F (x, P, HN
k )dVk = 0.

From the assumption ii) of condition (6.6.2) on F it follows that HN = 0 V -almost everywhere; henceforth
we constructed a non null m-varifold V in N with null weak mean curvature relative to N̄ and this
concludes the proof.

We also have a counterpart of Theorem 6.2.3 concerning the weak mean curvature:
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Theorem 6.2.7. Let N ⊂⊂ N̄ be a compact subset of a (maybe non compact) n-dimensional Riemannian
manifold (N̄ , g) (which, by Nash Embedding Theorem we can assume isometrically embedded in some RS),
fix m ≤ n − 1 and let F : Gm(N) × RS → R+ be a function satisfying (6.6.2).

Assume that, for some m ≤ n − 1, the space (N, g) does not contain any non zero m-varifold with
null weak mean curvature relative to N̄ .

Consider a sequence {Vk}k∈N ⊂ HVm(N) of integral m-varifolds with weak mean curvatures {HN
k }k∈N

relative to N̄ such that ∫

Gm(N)

F (x, P, HN
k )dVk ≤ C

for some C > 0 independent of k.
Then there exists V ∈ HVm(N) integral varifold with weak mean curvature HN relative to N̄ such

that, up to subsequences,
i) (Vk, HN

k ) ⇀ (V, HN ) in the weak sense of measure-function pairs,
ii)
∫

Gm(N)
F (x, P, HN )dV ≤ lim infk

∫
Gm(N)

F (x, P, HN
k )dVk.

Proof. The proof is analogous to the proof of Theorem 6.2.3. From Theorem 6.2.6 there exists a
constant CF > 0 depending on the function F such that |Vk| ≤ CF

∫
Gm(N)

F (x, P, HN
k (x, P ))dVk, thus

from the boudness of
∫

Gm(N)
F (x, P, HN

k )dVk we have the uniform mass bound

|Vk| ≤ C (6.23)

for some C > 0 independent of k. This mass bound, together with Banach Alaoglu and Riesz Theorems,
implies that there exists an m-varifold V on N such that, up to subsequences, Vk → V in varifold sense.

The proof that V actually is an integral m-varifold is completely analogous to the same statement in
the proof of Theorem 6.2.3: formally substituting HN

k to Ak in the mentioned proof we arrive to

∫

Gm(N)

|HN
k |dVk ≤ C. (6.24)

Now, change point of view and look at the varifolds Vk as integral varifolds in RS . From Definition

6.6.11 the weak mean curvature HRS

k in RS can be written in terms of HN
k and of the extrinsic curvature

of the manifold N̄ (as submanifold of RS) which is uniformly bounded on N from the compactness
assumption. Using the triangle inequality together with estimate (6.24) and the mass bound (6.23) we

obtain the uniform estimate of the L1(Vk) norms of the weak mean curvatures HRS

k

∫

Gm(RS)

|HRS

k |dVk ≤ C (6.25)

for some C > 0 independent of k. It follows (see Definition 6.6.9) that the integral varifolds Vk of RS

have uniformly bounded first variation: there exists a constant C > 0 independent of k such that

|δVk(X)| ≤ C sup
RS

|X|, ∀X ∈ C1
c (RS) vector field.

The uniform bound on the first variations and on the masses of the integral varifolds Vk allow us to apply
Allard’s integral compactness Theorem (see for example [SiGMT] Remark 42.8 or the original paper of
Allard [Al]) and say that the limit varifold V is actually integral.

With the same arguments in the end of the proof of Theorem 6.2.6, one can show that the varifold
convergence of a subsequence Vk → V and the uniform energy bound

∫
Gm(N)

F (x, P, HN
k )dVk < C implies

the existence of a measure-function pair converging subsequence (Vk, HN
k ) ⇀ (V, HN ) for some RS -valued

function HN ∈ L1
loc(V ) which actually is the weak mean curvature of V relative to N̄ .

We conclude that V ∈ HVm(N) is an integral m-varifold of N with weak mean curvature HN relative
to N̄ and i) holds; property ii) follows from the general Theorem 6.6.7 about measure-function pair
convergence (specifically see sentence ii) of the mentioned Theorem).

Finally we have a counterpart of Corollary 6.2.4
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Corollary 6.2.8. Let N ⊂⊂ N̄ be a compact subset with non empty interior, int(N) /= ∅, of a (possibly
non compact) n-dimensional Riemannian manifold (N̄ , g) (which, by Nash Embedding Theorem can be
assumed isometrically embedded in some RS) and let F : Gm(N) × RS → R+ be a function satisfying
(6.6.2).

Assume that, for some m ≤ n − 1, the space (N, g) does not contain any non zero m-varifold with
null weak mean curvature relative to N̄ .

Call

βm
N,F := inf

{∫

Gm(N)

F (x, P, HN )dV : V ∈ HVm(N), V /= 0 with weak wean curvature HN relative to N̄

}

(6.26)
and consider a minimizing sequence {Vk}k∈N ⊂ HVm(N) of integral varifolds with weak mean curvatures
{HN

k }k∈N such that ∫

Gm(N)

F (x, P, HN
k )dVk ↓ βm

N,F .

Then there exists an integral m-varifold V ∈ HVm(N) with weak mean curvature HN relative to N̄
such that, up to subsequences,

i) (Vk, HN
k ) ⇀ (V, HN ) in the weak sense of measure-function pairs,

ii)
∫

Gm(N)
F (x, P, HN )dV ≤ βm

N,F .

Proof. As in Corollary 6.2.4 we have that βm
N,F < ∞, then the conclusion follows from Theorem 6.2.7.

Remark 6.2.9. As for the generalized second fundamental form, a priori, Corollary 6.2.4 does not ensure
the existence of a minimizer since it can happen that the limit m-varifold V is null. In Section 6.4 we
will see that, if F (x, P, HN ) ≥ C|HN |p for some C > 0 and p > m, then this is not the case and we have
a non trivial minimizer.

6.3 Case F (x, P, A) ≥ C|A|p with p > m: non degeneracy of the
minimizing sequence and existence of a C1,α minimizer

Throughout this Section, (N̄ , g) stands for a compact n-dimensional Riemannian manifold isometrically
embedded in some RS (by Nash Embedding Theorem) and N ⊂⊂ N̄ is a compact subset with non empty
interior (as subset of N). Fix m ≤ n−1; we will focus our attention and specialize the previous techniques
to the case

F : Gm(N) × RS3 → R+ is a function satisfying (6.6.2)

F (x, P, A) ≥ C|A|p for some p > m and C > 0. (6.27)

Recall that we are considering the minimization problem

αm
N,F := inf

{∫

Gm(N)

F (x, P, A)dV : V ∈ CVm(N), V /= 0 with generalized second fundamental form A

}
.

Our goal is to prove the existence of a minimizer for αm
N,F , F as in (6.27).

Let {Vk}k∈N ⊂ CVm(N) be a minimizing sequence of curvature varifolds with generalized second
fundamental forms {Ak}k∈N such that

∫

Gm(N)

F (x, P, Ak)dVk ↓ αm
N,F ;

from Corollary 6.2.4 we already know that there exists V ∈ CVm(N) with generalized second fundamental
form A such that, up to subsequences,

i) (Vk, Ak) ⇀ (V, A) in the weak sense of measure-function pairs,
ii)
∫

Gm(N)
F (x, P, A)dV ≤ αm

N,F .

In order to have the existence of a minimizer we only have to check that V is not the zero varifold;
this will be done in the next Subsection 6.3.1 using the estimates of Section 6.1.
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6.3.1 Non degeneracy properties of the minimizing sequence

First of all, since N ⊂ RS , a curvature m-varifold V of N can be seen as a curvature varifold in RS (for
the precise value of the curvature function B in RS see Remark 6.6.6); as before we write V = V (M, θ)
where M is a rectifiable set and θ is the integer multiplicity function. Let us call HRs

the weak mean
curvature of V as integral m-varifold in RS and, as in Section 6.1, let us denote by µ = µV = HmBθ = π2V
the spatial measure associated to V and with spt µ its support.

Lemma 6.3.1. Let N ⊂⊂ N̄ be a compact subset of the n-dimensional Riemannian manifold (N, g)
isometrically embedded in some RS (by Nash Embedding Theorem) and fix p > 1. Then there exists a
constant CN,p > 0 depending only on p and N such that for every V = V (M, θ) ∈ CVm(N) curvature
m-varifold of N ∫

M

∣∣∣HRS
∣∣∣
p

dµ ≤ CN,p

(
|V | +

∫

Gm(N)

|A|pdV

)
.

Proof. Recall (see Remark 6.6.6) that it is possible to write the curvature function B of V seen as
curvature m-varifold of RS in terms of the second fundamental form A relative to N̄ and the curvature
of the manifold N̄ seen as submanifold of RS (the terms involving derivatives of Q):

Bijk = Ak
ij + Aj

ik + PjlPiq
∂Qlk

∂xq
(x) + PklPiq

∂Qlj

∂xq
(x).

From Remark 6.6.10 the weak mean curvature HRS

, which is a vector of RS , can be written in terms of
B as

(
HRS

)
i
=

S∑

j=1

Bjij =

S∑

j=1

(
Aj

ji + Ai
jj + PilPjq

∂Qlj

∂xq
(x) + PjlPjq

∂Qli

∂xq
(x)

)
i = 1 . . . , S.

Notice that, since N ⊂⊂ N̄ is a compact subset of the manifold N̄ smoothly embedded in RS , the functions
∂Qlj

∂xm
are uniformly bounded by a constant CN depending on the embedding N ↪→ RS ; moreover the Pjm

are projection matrices so they are also uniformly bounded and we can say that

∣∣∣∣∣∣




S∑

j,l,m=1

PilPjq
∂Qlj

∂xq
+ PjlPjq

∂Qli

∂xq




i=1,...,S

∣∣∣∣∣∣
≤ CN

as vector of RS .
About the first term observe that, from the triangle inequality applied to the RS-vectors (Aj

ji)i=1,...,S (j
is fixed for each single vector),

∣∣∣∣∣∣




S∑

j=1

Aj
ji




i=1,...,S

∣∣∣∣∣∣
≤

S∑

j=1

∣∣∣(Aj
ji)i=1,...,S

∣∣∣ ≤ S|A|

where, of course |A| :=
√∑S

i,j,k=1(A
i
jk)2 ≥ |(Aj

ji)i=1,...,S | for all j = 1, . . . , S. The second adding term is

analogous.
Putting together the two last estimates, by a triangle inequality, we have

∣∣∣HRS
∣∣∣ ≤ 2S|A| + CN .

Using the standard inequality (a + b)p ≤ 2p−1(ap + bp) for a, b ≥ 0 and p > 1 given by the convexity of
the function t +→ tp for t ≥ 0, p > 1 we can write

∣∣∣HRS
∣∣∣
p

≤ CN,p (|A|p + 1) . (6.28)

With an integration we get the conclusion.

Using the estimates of Section 6.1 and the last Lemma we have uniform lower bounds on the mass
and on the diameter of the spatial support of a curvature m-varifold V ∈ CVm(N) of N with bounded∫

Gm(N)
|A|pdV , p > m.
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Theorem 6.3.2. Let N ⊂⊂ N̄ be a compact subset of the n-dimensional Riemannian manifold (N, g)
isometrically embedded in some RS (by Nash Embedding Theorem) and fix m ≤ n − 1, p > m.

Then there exists a constant CN,p,m > 0 depending only on p,m and on the embedding of N into RS

such that CN,p,m ↑ +∞ as p ↓ m and such that for every V = V (M, θ) ∈ CVm(N) curvature m-varifold
of N with spatial measure µ

i) diamN̄ (spt µ) ≥ 1

CN,p,m

(
|V | +

∫
Gm(N)

|A|pdV
) 1

p−m

(6.29)

where diamN̄ (spt µ) is the diameter of sptµ as a subset of the Riemannian manifold N̄ ;

ii) CN,p,m |V |
(

|V | +

∫

Gm(N)

|A|pdV

) m
p−m

≥ 1. (6.30)

Notice that ii) implies the existence of a constant aN,m,p,
∫

|A|p > 0 depending only on p,m, on
∫

Gm(N)
|A|pdV

and on the embedding of N into RS, with aN,p,m,
∫

|A|p ↓ 0 if p ↓ m or if
∫

Gm(N)
|A|pdV ↑ +∞ such that

|V | ≥ aN,p,m,
∫

|A|p > 0.

Proof.
i) From Lemma 6.1.5

diamN̄ (spt µ) ≥ diamRS (spt µ) ≥ 1

Cp,m

( ∫
M

|H|pdµ
) 1

p−m

where Cp,m > 0 is a positive constant depending on p,m and such that Cp,m → ∞ if p ↓ m. The
conclusion follows plugging into the last inequality the estimate of Lemma 6.3.1.

ii) From Lemma 6.1.6,

|V | ≥ 1

Cp,m

( ∫
M

|H|pdµ
) m

p−m

with Cp,m > 0 as above. The conclusion, again, follows plugging into the last inequality the estimate of
Lemma 6.3.1 and rearranging.

Corollary 6.3.3. Let N ⊂⊂ N̄ be a compact subset with non empty interior, int(N) /= ∅, of the
n-dimensional Riemannian manifold (N, g) isometrically embedded in some RS (by Nash Embedding
Theorem) and fix m ≤ n − 1.

Assume that the space (N, g) does not contain any non zero m-varifold with null generalized second

fundamental form and consider a function F : Gm(N) × RS3 → R+ satisfying (6.6.2), (6.27) and a
corresponding minimizing sequence of curvature m-varifolds {Vk}k∈N ⊂ CVm(N) with generalized second
fundamental forms {Ak}k∈N such that

∫

Gm(N)

F (x, P, Ak)dVk ↓ αm
N,F

( for the definition of αm
N,F see (6.22)). Then, called µk the spatial measures associated to Vk, there exists

a constant aN,F,m > 0 depending only on N ,F and m such that

i) diamN̄ (spt µk) ≥ aN,F,m (6.31)

ii) |Vk| ≥ aN,F,m. (6.32)

Proof. From Theorem 6.2.1 and the finiteness of αm
N,F , since (N, g) does not contain any non zero

m-varifold with null generalized second fundamental form,

|Vk| ≤ CN,F,m

∫

Gm(N)

F (x, P, Ak)dVk ≤ CN,F,m
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for some CN,F,m > 0 depending only on N,F and m.
Moreover, since (by assumption (6.27)) F (x, P, A) ≥ C|A|p for some p > m and C > 0, the boundness of∫

Gm(N)
F (x, P, Ak)dVk implies that

∫

Gm(N)

|Ak|pdVk ≤ CN,F,m

for some CN,F,m>0 depending only on N,F and m.
The conclusion follows putting the last two inequalities into Theorem 6.3.2.

6.3.2 Existence and regularity of the minimizer

Collecting Corollary 6.2.4 and Corollary 6.3.3 we can finally state and prove the first main Theorem 1.0.17.

Proof of Theorem 1.0.17
If a) is true we are done, so we can assume that a) is not satisfied.
Let {Vk}k∈N ⊂ CVm(N) with generalized second fundamental forms {Ak}k∈N be a minimizing se-

quence of αm
N,F : ∫

Gm(N)

F (x, P, Ak)dVk ↓ αm
N,F .

Called µk the spatial measures associated to Vk notice that, since the integrand F is non negative,
we can assume that the spatial supports sptµk are connected (indeed, from Definition 6.6.5, using cut
off functions it is clear that every connected component of spt µk is the spatial support of a curvature
varifold). From Corollary 6.3.3 we have the lower bounds:

i) diamN̄ (spt µk) ≥ aN,F,m

ii) |Vk| ≥ aN,F,m,

for a constant aN,F,m > 0 depending only on N ,F and m. Corollary 6.2.4 implies the existence of a
curvature m-varifold V = V (M, θ) ∈ CVm(N) with generalized second fundamental form A such that,
up to subsequences,

i) (Vk, Ak) ⇀ (V, A) in the weak sense of measure-function pairs of N ,
ii)
∫

Gm(N)
F (x, P, A)dV ≤ αm

N,F .

The measure-function pair convergence implies the varifold convergence of Vk → V and the convergence
of the associated spatial measures

π2Vk =: µk → µ := π2V weak convergence of Radon measures on N .

It follows that
0 < aN,F,m ≤ |Vk| = µk(N) → µ(N) = |V |,

thus V /= 0 is a minimizer for αm
N,F .

Notice that, since N ↪→ RS is properly embedded, the weak convergence µk → µ on N implies the
weak convergence of µk → µ as Radon measures on RS . From mass bound on the Vk and the bound on∫

Gm(N)
|Ak|pdVk given by the assumption (6.27) on F , Lemma 6.3.1 allows us to apply Proposition 6.1.7

and we can say that the spatial supports

spt µk → spt µ Hausdorff convergence as subsets of RS .

Notice that, since N̄ ↪→ RS is embedded, the Hausdorff convergence of Mk → M as subsets of RS implies

sptµk → sptµ Hausdorff convergence as subsets of N̄ ,

and this implies that
0 < aN,F,m ≤ lim

k
diamN̄ (spt µk) = diamN̄ (spt µ),

hence b2). Moreover the Hausdorff limit of connected subsets is connected thus also b1) is proved.
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Now the minimizer V ∈ CV (N) is a non null curvature varifold on N with generalized second
fundamental form A (relative to N̄) in Lp(V ) for some p > m. Since N ↪→ RS , V can also be seen as a
varifold in RS and Remark 6.6.6 tell that V is actually a varifold with generalized curvature function B
given by

Bijk = Ak
ij + Aj

ik + PjlPiq
∂Qlk

∂xq
(x) + PklPiq

∂Qlj

∂xq
(x)

where the terms of the type PjlPiq
∂Qlk

∂xq
(x) represent the extrinsic curvature of N̄ as a submanifold of RS

and, of course, are bounded on N from the compactness:

sup
x∈N

∣∣∣∣PjlPiq
∂Qlk

∂xq
(x) + PklPiq

∂Qlj

∂xq
(x)

∣∣∣∣ ≤ CN .

Hence, from triangle inequality,
|B| ≤ 2|A| + CN

and
|B|p ≤ CN,p (|A|p + 1).

Using the mass bound |V | = limk |Vk| ≤ C < ∞, with an integration we get
∫

Gm(RS)

|B|pdV < ∞.

Under this conditions Hutchinson shows in [Hu2] that V is a locally a graph of multivalued C1,α functions
and that b3) holds.

6.4 Existence of an integral m-varifold with weak mean curva-
ture minimizing

∫
|H|p for p > m

As before, throughout this Section (N̄ , g) stands for a compact n-dimensional Riemannian manifold
isometrically embedded in some RS (by Nash Embedding Theorem) and N ⊂⊂ N̄ is a compact subset
with non empty interior (as subset of N). Fix m ≤ n − 1; analogously to Section 6.3 we will focus our
attention to the case

F : Gm(N) × RS → R+ is a function satisfying (6.6.2)

F (x, P, H) ≥ C|H|p for some p > m and C > 0. (6.33)

Recall that we are considering the minimization problem

βm
N,F := inf

{∫

Gm(N)

F (x, P, HN )dV : V ∈ HVm(N), V /= 0 with weak mean curvature HN relative to N̄

}
.

Our goal is to prove the existence of a minimizer for βm
N,F , F as in (6.33).

As in Section 6.3 we consider a minimizing sequence {Vk}k∈N ⊂ HVm(N) of integral m-varifolds with
weak mean curvatures {HN

k }k∈N relative to N̄ such that
∫

Gm(N)

F (x, P, HN
k )dVk ↓ βm

N,F ;

from Corollary 6.2.8 we already know that there exists V ∈ HVm(N) with with weak mean curvature
HN relative to N̄ such that, up to subsequences,

i) (Vk, HN
k ) ⇀ (V, HN ) in the weak sense of measure-function pairs,

ii)
∫

Gm(N)
F (x, P, HN )dV ≤ βm

N,F .

In order to have the existence of a minimizer we only have to check that V is not the zero varifold;
this will be done analogously to Subsection 6.3.1 using the estimates of Section 6.1.

As before, since N ⊂ RS , an integral m-varifold V of N with weak mean curvature HN relative to N̄

can be seen as integral m-varifold of RS with weak mean curvature HRS

. We write V = V (M, θ) where
M is a rectifiable set and θ is the integer multiplicity function; finally, as in Section 6.1, let us denote by
µ = µV = HmBθ = π2V the spatial measure associated to V and with spt µ the spatial support of V .
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Lemma 6.4.1. Let N ⊂⊂ N̄ be a compact subset of the n-dimensional Riemannian manifold (N, g)
isometrically embedded in some RS (by Nash Embedding Theorem) and fix p > 1. Then there exists a
constant CN,p > 0 depending only on p and N such that for every V = V (M, θ) ∈ HVm(N) integral
m-varifold of N with weak mean curvature HN relative to N̄

∫

M

∣∣∣HRS
∣∣∣
p

dµ ≤ CN,p

(
|V | +

∫

Gm(N)

|HN |pdV

)
.

Proof. By Definition 6.6.11 we can express

(HRS

)i = (HN )i + Pjk
∂Qij

∂xk

and from the triangle inequality ∣∣∣HRS
∣∣∣ ≤

∣∣HN
∣∣+
∣∣∣∣Pjk

∂Qij

∂xk

∣∣∣∣ ; (6.34)

as vectors in RS . The second summand of the right hand side is a smooth function on the compact set
Gm(N) hence bounded by a constant CN depending on N :

∣∣∣∣Pjk
∂Qij

∂xk

∣∣∣∣ ≤ CN .

Using the standard inequality (a + b)p ≤ 2p−1(ap + bp) for a, b ≥ 0 and p > 1 we get

∣∣∣HRS
∣∣∣
p

≤ CN,p

(
1 +

∣∣HN
∣∣p )

which gives the thesis with an integration.

Remark 6.4.2. An analogous result to Theorem 6.3.2 holds, just replace V = V (M, θ) ∈ CVm(N) with
V = V (M, θ) ∈ HVm(N) and

∫
Gm(N)

|A|pdV with
∫

Gm(N)
|HN |pdV .

Now we can show the non degeneracy of the minimizing sequence for βm
N,F , F as in 6.6.2, (6.33).

Lemma 6.4.3. Let N ⊂⊂ N̄ be a compact subset with non empty interior, int(N) /= ∅, of the n-
dimensional Riemannian manifold (N, g) isometrically embedded in some RS (by Nash Embedding The-
orem) and fix m ≤ n − 1.

Assume that the space (N, g) does not contain any non zero m-varifold with null weak mean curvature
HN relative to N̄ and consider a function F : Gm(N) × RS → R+ satisfying (6.6.2), (6.33) and a cor-
responding minimizing sequence of integral m-varifolds {Vk}k∈N ⊂ HVm(N) with weak mean curvatures
{HN

k }k∈N relative to N̄ such that

∫

Gm(N)

F (x, P, HN
k )dVk ↓ βm

N,F

( for the definition of βm
N,F see (6.26)). Then, called µk the spatial measures of Vk, there exists a constant

bN,F,m > 0 depending only on N ,F and m such that

i) diamN̄ (spt µk) ≥ bN,F,m (6.35)

ii) |Vk| ≥ bN,F,m. (6.36)

Proof. From Theorem 6.2.6 and the finiteness of βm
N,F , since (N, g) does not contain any non zero

m-varifold with null weak mean curvature HN relative to N̄ ,

|Vk| ≤ CN,F,m

∫

Gm(N)

F (x, P, HN
k )dVk ≤ CN,F,m
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for some CN,F,m > 0 depending only on N,F and m.
Moreover, since (by assumption (6.33)) F (x, P, HN ) ≥ C|HN |p for some p > m and C > 0, the boundness
of
∫

Gm(N)
F (x, P, HN

k )dVk implies that
∫

Gm(N)

|HN
k |pdVk ≤ CN,F,m

for some CN,F,m>0 depending only on N,F and m.
The conclusion follows from the last two inequalities and Remark 6.4.2.

Now, collecting Corollary 6.2.8 and Lemma 6.4.3 we can finally state and prove Theorem 1.0.15,
namely the existence of a non trivial minimizer for βm

N,F , F as in 6.6.2, (6.33).

Proof of Theorem 1.0.15
If a) is true we are done, so we can assume that a) is not satisfied.
Let {Vk}k∈N ⊂ HVm(N) with weak mean curvatures {HN

k }k∈N be a minimizing sequence of βm
N,F :

∫

Gm(N)

F (x, P, HN
k )dVk ↓ βm

N,F .

Called µk the spatial measures of Vk notice that, since the integrand F is non negative, we can assume
that the spatial supports spt µk are connected (indeed, as for the curvature varifolds, every connected
component of spt µk is the spatial support of a mean curvature varifold). From Lemma 6.4.3 we have the
lower bounds:

i) diamN̄ (spt µk) ≥ bN,F,m > 0

ii) |Vk| ≥ bN,F,m > 0,

for a constant bN,F,m > 0 depending only on N ,F and m. Corollary 6.2.8 implies the existence of
an integral m-varifold V ∈ HVm(N) with weak mean curvature HN relative to N̄ such that, up to
subsequences,

i) (Vk, HN
k ) ⇀ (V, HN ) in the weak sense of measure-function pairs of N ,

ii)
∫

Gm(N)
F (x, P, HN )dV ≤ βm

N,F .

Analogously to the proof of Theorem 1.0.17, one shows that

0 < bN,F,m ≤ |Vk| = µk(N) → µ(N) = |V |,
thus V /= 0 is a minimizer for βm

N,F . The proof of b1) and b2) are again analogous to the proof of
the corresponding sentences in Theorem 1.0.17: from the mass bound on the Vk and the bound on∫

Gm(N)
|HN

k |pdVk given by the assumption (6.33) on F , Lemma 6.4.1 allows us to apply Proposition 6.1.7

and, using the same tricks of Theorem 1.0.17 we can say that the spatial supports

sptµk → sptµ Hausdorff convergence as subsets of N̄ ,

and this implies that
0 < bN,F,m ≤ lim

k
diamN̄ (spt µk) = diamN̄ (spt µ),

hence b2). Moreover the Hausdorff limit of connected subsets is connected thus also b1) is proved.

6.5 Examples and Remarks

First of all let us point out that our setting includes, speaking about ambient manifolds, a large class of
Riemannian manifolds with boundary.

Remark 6.5.1. Notice that if N is a compact n-dimensional manifold with boundary then there exists
an n-dimensional (a priori non compact) manifold N̄ without boundary such that N is a compact subset
of N̄ (to define N̄ just extend N a little beyond ∂N in the local boundary charts). Hence, given a compact
n-dimensional Riemannian manifold (N, g) with boundary such that the metric g can be extended in a
smooth and non degenerate way (i.e. g positive definite) up to the boundary ∂N , then N is isometric to
a compact subset of an n-dimensional Riemannian manifold (N̄ , ḡ) without boundary.

Thus all the Lemmas, Propositions and Theorems apply to the case in which the ambient space is a
Riemannian manifold with boundary with the described non degeneracy property at ∂N .
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Now let us show that the main results Theorem 1.0.17 and Theorem 1.0.15 are non empty, i.e we have
examples of compact subsets of Riemannian manifolds where do not exist non zero varifolds with null
weak mean curvature relative to N̄ and a fortiori there exists no non zero varifold with null generalized
second fundamental form. Let us start with an easy Lemma:

Lemma 6.5.2. Let N ⊂⊂ N̄ be a compact subset of the n-dimensional Riemannian manifold (N, g)
isometrically embedded in some RS (by Nash Embedding Theorem), fix m ≤ n − 1 and assume that N
contains no non zero m-varifold with null weak mean curvature relative to N̄ . Then N does not contain
any non zero m-varifold with null generalized second fundamental form.

Proof. We show that if the varifold V has null generalized second fundamental form relative to N̄ then
V also has null weak mean curvature relative to N̄ . Indeed let V be a varifold on N with generalized
curvature function B and second fundamental form A relative to N̄ , then, from Remark 6.6.6,

Bijk = Ak
ij + Aj

ik + PjlPip
∂Qlk

∂xp
(x) + PklPip

∂Qlj

∂xp
(x)

where P and Q(x) are the projection matrices on P ∈ Gm(N) and TxN̄ . Moreover, from Remark 6.6.10,
V has weak mean curvature as a varifold in RS

(HRS

)i = Bjij ;

hence, if the generalized second fundamental form A is null, then

(HRS

)i = PilPjk
∂Qlj

∂xk
(x) + PjlPjk

∂Qli

∂xk
(x).

It is not hard to check that the first summand of the right hand side is null (fix a point x of N̄ and choose
a base of TxN̄ in which the Christoffel symbols of N̄ vanish at x; write down the orthogonal projection

matrix Q with respect to this base and check the condition in this frame). Thus HRS

i = Pjk
∂Qij

∂xk and
Definition 6.6.11 gives

(HN )i = (HRS

)i − Pjk
∂Qij

∂xk
(x) = 0.

Collecting Lemma 6.5.2 and Remark 6.6.12 we can say that if a compact subset N ⊂⊂ N̄ has a non
zero m-varifold with null generalized second fundamental form, then a fortiori N contains a non zero
m-varifold with null weak mean curvature relative to N̄ , then a fortiori N contains a non zero m-varifold
with null first variation relative to N̄ (recall, see Remark 6.6.13, that a varifold with null first variation
is also called stationary varifold). Hence it is enough to give examples of compact subsets of Riemannian
manifolds which do not contain any non zero m-varifold with null first variation relative to N̄ .

First, we mention two examples given by White in [Whi] (for the proofs we refer to the original paper)
next we will propose a couple of new examples which can be seen as a sort of generalization of White’s
ones. Recall that if N is a compact Riemannian manifold with smooth boundary, N is said to be mean
convex provided that the mean curvature vector at each point of ∂N is an nonnegative multiple of the
inward-pointing unit normal.

Example 6.5.1. Suppose that N is a compact, connected, mean convex Riemannian manifold with
smooth, nonempty boundary, and that no component of ∂N is a minimal surface. Suppose also that the
dimension n of N is at most 7 and that the Ricci curvature of N is everywhere positive. Then N contains
no non zero (n − 1)-varifold with null first variation relative to N (i.e. stationary n − 1-varifold).

More generally, if N has nonnegative Ricci curvature, then the same conclusion holds unless N con-
tains a closed, embedded, totally geodesic hypersurface M such that Ric(ν, ν) = 0 for every unit normal
ν to M (where Ric is the Ricci tensor of N).

Minimal surfaces in ambient manifolds of the form M × R have been deeply studied in recent years
(see for example [MeRo04], [MeRo05] and [NeRo02]); notice that M × R is foliated by the minimal
surfaces M ×{z}. In the second example we can see that very general compact subsets of ambient spaces
admitting such foliations do not contain non zero codimension 1 varifolds with null first variation.
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Example 6.5.2. Let N̄ be an n-dimensional Riemannian manifold. Let f : N̄ → R be a smooth function
with nowhere vanishing gradient such that the level sets of f are minimal hypersurfaces or, more generally,
such that the sublevel sets {x : f(x) ≤ z} are mean convex. Let N be a compact subset of N̄ such that
for each z ∈ R, no connected component of f−1(z) is a minimal hypersurface lying entirely in N . Then
N contains no non zero n − 1-varifold with null first variation relative to N̄ .

Observe that both examples concern the non-existence of codimension 1 stationary varifolds: next
we propose a couple of new examples in higher codimension. We need the following maximum principle
for stationary (i.e. with null first variation) varifolds given by White, for the proof see [Whi2], Theorem
1. Before stating it recall that if N is an n-dimensional Riemannian manifold with boundary ∂N , N is
said strongly m-convex at a point p ∈ ∂N provided

k1 + k2 + . . . + km > 0

where k1 ≤ k2 ≤ . . . ≤ kn−1 are the principal curvatures of ∂N at p with respect to the unit normal νN

that points into N .

Theorem 6.5.3. Let N̄ be a smooth Riemannian manifold of dimension n, let N ⊂ N̄ be a smooth
Riemannian n-dimensional manifold with boundary, and assume p to be a point in ∂N at which N is
strongly m-convex. Then p is not contained in the support of any m-varifold in N with null first variation
relative to N̄ .

Actually the Theorem of White is more general and precise, but for our purposes this weaker version
is sufficient.

Now are ready to state and prove the two examples.

Theorem 6.5.4. Let N̄ be an n-dimensional Riemannian manifold and consider as ambient manifold
N̄ × RS , s > 1 with the product metric. Then any compact subset N ⊂⊂ N̄ × RS does not contain any
non null stationary n + k-varifold, k = 1, . . . , s − 1 (i.e. n + k-varifold with null first variation relative to
N̄ × RS).

Proof. Assume by contradiction that V is a non null n + k-varifold in N with null first variation in
N̄ × RS for some 1 ≤ k ≤ s − 1. Consider the function ρ : N̄ × RS → R+ defined as

N̄ × RS 6 (x, y) +→ ρ(x, y) := |y|RS

where of course |y|RS is the norm of y as vector of RS . With abuse of notation, call M ⊂ N the spatial
support of V (now M may not be rectifiable, it is just compact); observe that, since M is compact, then
the function ρ restricted to M has a maximum r > 0 at the point (x0, y0) ∈ M ⊂ N̄ × RS (observe
that the maximum r has to be strictly positive otherwise we would have a non null n + k-varifold in
an n-dimensional space, which clearly is not possible by the very definition of varifold). It follows that,
called N̄r the tube of center N̄ and radius r

N̄r := {(x, y) : x ∈ N̄ , |y|RS ≤ r},

the spatial support of V is contained in N̄r:

M ⊂ N̄r. (6.37)

Moreover M is tangent to the hypersurface Cr := ∂N̄r = {(x, y) : x ∈ N̄ , |y|RS = r} at the point (x0, y0).
Observe that Cr is diffeomorphic to N̄ × rSs−1

RS , where of course rSs−1
RS is the s − 1-dimensional sphere of

RS of radius r centered in the origin.
Using normal coordinates in N̄ × RS it is a simple exercise to observe that the principal curvatures

of Cr with respect to the inward pointing unit normal are constantly

k1 = k2 = . . . = kn = 0, kn+1 = kn+2 = . . . = ks−1 =
1

r

(just observe that the inward unit normal is −Θ, where Θ is the radial vector which parametrizes Ss−1
RS ; of

course −Θ is constant respect to the x coordinates; using normal coordinates one checks that the second
fundamental form is made of two blocks: the one corresponding to N̄ is null and the other one coincides
with the second fundamental form of Ss−1

RS as hypersurface in RS).
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It follows that Cr = ∂N̄r is strongly n + k-convex in all of its points, for all 1 ≤ k ≤ n − 1; but V
is a non null n + k-varifold in N̄r with null first variation relative to N̄ and tangent to Cr at the point
(x0, y0) ∈ Cr ∩ M . Fact which contradicts the maximum principle, Theorem 6.5.3.

As a corollary we have an example in all the codimensions in RS :

Theorem 6.5.5. Let N ⊂⊂ RS be a compact subset of RS, s > 1. Then, for all 1 ≤ m ≤ s − 1, N
contains no non zero m-varifold with null first variation relative to RS.

Proof. Just take N̄ := {x} in the previous example, Theorem 6.5.4, and observe that {x} × RS is
isometric to RS .

Otherwise argue by contradiction as in the proof of Theorem 6.5.4 and observe that the support of
the non zero m-varifold with null first variation is contained in a ball of RS and tangent to its boundary,
namely a sphere. Of course the sphere is strongly m-convex; it follows a contradiction with the maximum
principle, Theorem 6.5.3.

Remark 6.5.6. Recall that if the ambient n-dimensional Riemannian manifold N is compact without
boundary, then Almgren proved in [Alm] that for every 1 ≤ m < n there exists an integral m-varifold
with null first variation relative to N . Moreover, in the same setting of compact N and ∂N = ∅, Schoen
and Simon [ShSim81], using the work of Pitts [Pit81], proved that N must contain a closed, embedded
hypersurface with singular set of dimension at most n − 7. Hence, the isoperimetric inequality Theorem
6.2.6 fails for such N and the Theorem 1.0.15 is trivially true. However, as written above, there are
many interesting examples of ambient manifolds with boundary where the Theorem is non trivial.

Remark 6.5.7. It is known that the ambient Riemannian n-manifolds, n ≥ 3 (with or without boundary)
which contain a smooth m-dimensional submanifold, m ≥ 2, with null second fundamental form (i.e a
totally geodesic submanifold) are quite rare. It could be interesting to show the same in the context of
varifolds, that is to prove that the ambient compact Riemannian n-manifolds, n ≥ 3 (with or without
boundary) which contain a non zero (a priori non rectifiable) m-varifold, m ≥ 2, with null second fun-
damental form relative to N (see Definition 6.6.5) are quite rare. This fact would imply the existence of
a larger class of ambient Riemannian manifolds where the isoperimetric inequality Theorem 6.2.1 holds
and the main Theorem 1.0.17 is non trivial.

6.6 Appendix: some basic facts about varifold theory

Since throughout the thesis we use the theory of varifolds, in order to make the exposition as much as
possible self-contained, we recall here some basic useful facts. In particular we review the concept of
curvature varifold introduced by Hutchinson in [Hu1] giving a slightly more general definition; namely
Hutchinson defines the curvature varifolds as “special” integral varifolds in a Riemannian manifold but,
as a matter of fact, the same definition makes sense for an even non rectifiable varifold in a subset of
a Riemannian manifold. So we will define (a priori non rectifiable) varifolds with curvature, which are
endowed with a generalized second fundamental form.

We start by recalling the basic definitions. For more material about the general theory, the interested
reader may look at the standard references [Fed], [Mor], [SiGMT] or, for faster introductions, at [Mant]
or the appendix of [Whi].

Consider a (maybe non compact) n-dimensional Riemannian manifold (N̄ , g). Without loss of gener-
ality, by the Nash Theorem, we can assume that

(N̄ , g) ↪→ RS isometrically embedded for some S > 0.

We will be concerned with a subset N ⊂ N̄ which, a fortiori, is also embedded in RS : N ↪→ RS .
Since throughout the thesis we reduce ourself to the case when N ⊂⊂ N̄ is a compact subset (to avoid
pathological behavior we will also assume that it has non empty interior int(N) /= ∅) also in this appendix
it is assumed to be so, even if most of the following definitions and properties are valid for more general
subsets.

Let us denote by G(S,m) the Grassmannian of unoriented m-dimensional linear subspaces of RS ,
with

Gm(N̄) := (RS × G(S,m)) ∩ {(x, P ) : x ∈ N̄ , P ⊂ TxN̄ m-dimensional linear subspace}
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and with
Gm(N) := Gm(N̄) ∩ {(x, P ) : x ∈ N}.

We recall that a m-varifold V on N is a Radon measure on Gm(N) and that the sequence of varifolds
{Vk}k∈N converges to the varifold V in varifold sense if Vk → V weak as Radon measures on Gm(N); i.e.

∫

Gm(N)

φ dVk →
∫

Gm(N)

φ dV

as k → ∞, for all φ ∈ C0
c (Gm(N)). A special class of varifolds are the rectifiable varifolds : given

a countably m-rectifiable, Hm- measurable subset M of N ⊂ RS and θ a non negative locally Hm

integrable function on M , the rectifiable varifold V associated to M and θ is defined as

V (φ) :=

∫

M

θ(x)φ(x, TxM)dHm ∀φ ∈ C0
c (Gm(N))

and sometimes it is denoted with V (M, θ). Recall that if M, θ are as above then the approximate tangent
space TxM exists for Hm-almost every x ∈ M (Theorem 11.6 in [SiGMT], for the definitions see 11.4 of
the same book). If moreover θ is integer valued, then we say that V is an integral varifold ; the set of the
integral m-varifolds in N is denoted by IVm(N).

If V is a k-varifold, let |V | denote its mass:

|V | := V (Gm(N)).

Observe that we have a natural projection

π : Gm(N) → N (x, P ) +→ x, (6.38)

and pushing forward the measure V via the projection π, we have a positive Radon measure µV on N

µV (B) := V (π−1(B)) = V (Gm(B)) ∀B ⊂ N Borel set.

Since V is a measure on Gm(N), its support is a closed subset of Gm(N). If we project that closed set
on N by the projection π then we get the spatial support of V , which coincides with spt µV .

Now let us define the notion of measure-function pair.

Definition 6.6.1. Let V be a Radon measure on Gm(N) (i.e. a varifold) and f : Gm(N) → Rα be a
well defined V almost everywhere L1

loc(V ) function. Then we say that (V, f) is a measure-function pair
over Gm(N) with values in Rα.

Given {(Vk, fk)}k∈N and (V, f) measure-function pairs over Gm(N) with values in Rα, suppose Vk →
V weak as Radon measures in Gm(N) (or equivalently as varifolds in N). Then we say (Vk, fk) converges
to (V, f) in the weak sense and write

(Vk, fk) ⇀ (V, f)

if VkBfk → V Bf weak convergence of Radon vector valued measures. In other words, if

∫

Gm(N)

〈fk,φ〉 dVk →
∫

Gm(N)

〈f,φ〉 dV

as k → ∞, for all φ ∈ C0
c (Gm(N), Rα), where 〈., .〉 is the scalar product in Rα.

Definition 6.6.2. Suppose F : Gm(N) × Rα → R. We will denote the variables in Gm(N) × Rα by
(x,P,q). We say that F satisfies the condition (6.6.2) if the following statements are verified:
i) F is continuous,
ii) F is non negative ( i.e. F (x, P, q) ≥ 0 for all (x, P, q) ∈ Gm(N) × Rα) and F (x, P, q) = 0 if and only
if q = 0,
iii) F is convex in the q variables, i.e.

F (x, P,λq1 + (1 − λ)q2) ≤ λF (x, P, q1) + (1 − λ)F (x, P, q2)

for all λ ∈ (0, 1), (x, P ) ∈ Gm(N), q1 ∈ Rα, q2 ∈ Rα,
iv) F has non linear growth in the q variables, i.e. there exists a continuous function φ, where φ :
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Gm(N) × [0, ∞) → [0, ∞), 0 ≤ φ(x, P, s) ≤ φ(x, P, t) for 0 ≤ s ≤ t and (x, P ) ∈ Gm(N), φ(x, P, t) → ∞
locally uniformly in (x, P ) as t → ∞, such that

φ(x, P, |q|)|q| ≤ F (x, P, q)

for all (x, P, q) ∈ Gm(N) × Rα.

An example (trivial but fundamental for this thesis) of such an F is F (x, P, q) := |q|p for any p > 1.

Remark 6.6.3. For simplicity, in Definition 6.6.2, we assumed the same conditions of Hutchinson ([Hu1]
Definition 4.1.2) on F but some hypotheses can be relaxed. For example, about the results in this thesis,
if F = F (q) depends only on the q variables it is enough to assume (in place of i)) that F is lower
semicontinuous (see Theorem 6.1 in [MantCVB]).

In the aforementioned paper, Hutchinson proves the following useful compactness and lower semicon-
tinuity Theorem (see Theorem 4.4.2 in [Hu1]):

Theorem 6.6.4. Suppose {(Vk, fk)}k∈N are measure-function pairs over Gm(N) with values in Rα.
Suppose V is a Radon measure on Gm(N) (i.e a varifold in N) and Vk → V weak converges as Radon
measures (equivalently varifold converges in N). Suppose F : Gm(N) × Rα → R satisfies the condition
(6.6.2). Then the following are true:
i) If there exists C > 0 such that

∫

Gm(N)

F (x, P, fk(x, P ))dVk ≤ C ∀k ∈ N (6.39)

then there exists a function f ∈ L1
loc(V ) such that, up to subsequences, (Vk, fk) ⇀ (V, f).

ii) if there exists C > 0 such that (6.39) is satisfied and (Vk, fk) ⇀ (V, f) then

∫

Gm(N)

F (x, P, f(x, P ))dV ≤ lim inf
k

∫

Gm(N)

F (x, P, fk(x, P ))dVk.

Now we want to define the varifolds of N with curvature. Observe that given (x, P ) ∈ Gm(N), the
m-dimensional linear subspace P ⊂ TxN̄ ⊂ RS can be identified with the orthogonal projection matrix

on Hom(RS , RS) ∼= RS2

P ≡ [Pij ] ∈ RS2
.

Similarly, the tangent space of N̄ at x can be identified with its orthogonal projection matrix

TxN̄ ≡ Q(x) := [Qij(x)] ∈ RS2
.

Before defining the varifolds with curvature let us introduce a bit of notation: given φ = φ(x, P ) ∈
C1(RS × RS2

) we call the partial derivatives of φ with respect to the variables xi and Pjk (freezing all
other variables) by

Diφ and D∗
jkφ for i, j, k = 1, . . . , S

respectively. In the following definition we will consider the quantity

Pij
∂ψ

∂xj
(x) for ψ ∈ C1(N̄);

we mean that ψ is extended to a C1 function to some neighborhood of x ∈ RS and, since P is the
projection on a m-subspace of TxN̄ , the definition does not depend on the extension. Observe moreover
that the quantity depends on (x, P ) so it is a function on Gm(N̄).

Definition 6.6.5. Let V be an m-varifold on N ⊂ N̄ ↪→ RS, m ≤ n−1. We say that V is a varifold with
(generalized) curvature or with (generalized) second fundamental form if there exist real-valued functions
Bijk, for 1 ≤ i, j, k ≤ S, defined V almost everywhere in Gm(N) such that on setting B = [Bijk] the
following are true:
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i) (V, B) is a measure-function pair over Gm(N) with values in RS3

ii) For all functions φ = φ(x, P ) ∈ C1
c (RS × RS2

) one has

0 =

∫

Gm(N)

[PijDjφ(x, P )+Bijk(x, P )D∗
jkφ(x, P )+Bjij(x, P )φ(x, P )]dV (x, P ) for i = 1, . . . , S. (6.40)

In this case B is called (generalized) curvature and we can also define the (generalized) second funda-

mental form of V (with respect to N̄) as the L1
loc(V ) function with values in RS3

A : Gm(N) → RS3
,

Ak
ij(x, P ) := PljBikl(x, P ) − PljPiq

∂Qkl

∂xq
(x). (6.41)

We will denote the set of integral m-varifolds of N with generalized curvature as CVm(N) and we will
call them curvature m-varifolds.

Observe that we use different notation from [Hu1]: we call B what Hutchinson calls A and vice versa;
this is because we want to denote by A the second fundamental form with respect to N̄ . Moreover, as it is
shown in Section 5 of [Hu1], if V is the integral varifold associated to a smooth immersed m-submanifold
of N then A coincides with the classical second fundamental form with respect to N .

Remark 6.6.6. By definition, the generalized second fundamental form A is expressed in terms of B
but, as Hutchinson proved in [Hu1] Propositions 5.2.4 and 5.2.6, it is possible to express B in terms of
A. Indeed, choosing appropriate test functions, with some easy computations one can prove that

Bijk = Ak
ij + Aj

ik + PjlPiq
∂Qlk

∂xq
(x) + PklPiq

∂Qlj

∂xq
(x). (6.42)

Now let us recall the fundamental compactness and lower semi continuity Theorem of Hutchinson
(Theorem 5.3.2 in [Hu1])

Theorem 6.6.7. Consider {Vk}k∈N ⊂ CVm(N) with generalized second fundamental forms {Ak}k∈N, V

an integral m-varifold of N and suppose Vk → V in varifold sense. Let F : Gm(N) × RS3 → R be a
function satisfying the condition (6.6.2) and assume that

∫

Gm(N)

F (x, P, Ak)dVk ≤ C

for some C > 0 independent of k. Then
i) V ∈ CVm(N) with generalized second fundamental form A,
ii) (Vk, Ak) ⇀ (V, A) in the weak sense of measure-function pairs,
iii)

∫
Gm(N)

F (x, P, A)dV ≤ lim infk

∫
Gm(N)

F (x, P, Ak)dVk.

Now we briefly recall the definition of first variation of an m-varifold V in RS ; the original definitions
are much more general, here we recall only the facts we need for this thesis.

Definition 6.6.8. Let V be an m-varifold in RS and let X be a C1
c (RS) vector field. We define first

variation δV the linear functional on C1
c (RS) vector fields

δV (X) :=

∫

Gm(RS)

divP X(x)dV (x, P );

where for every P ∈ G(S,m),

divP X :=
S∑

i=1

∇P
i Xi =

S∑

i,j=1

PijDjX
i,

where ∇P f = P (∇f) is the projection on P of the gradient in RS of f and ∇P
i := ei · ∇P (where

{ei}i=1,...,S is an orthonormal basis of RS).

127



V is said to be of locally bounded first variation in RS if for every relatively compact open W ⊂⊂ RS

there exists a constant CW < ∞ such that

|δV (X)| ≤ CW sup
W

|X|

for all X ∈ C1
c (RS) vector fields with support in W .

An interesting subclass of varifolds with locally bounded first variation are the varifolds with weak
mean curvature.

Definition 6.6.9. Let V be an m-varifold in RS and H : Gm(RS) → RS an L1
loc(V ) function (in the

previous notation we would say that (V, H) is a measure-function pair on Gm(RS) with values in RS);
then we say that V has weak mean curvature H if for any vector field X ∈ C1

c (RS) one has

δV (X) :=

∫

Gm(RS)

divP X(x)dV (x, P ) = −
∫

Gm(RS)

H · XdV (x, P ). (6.43)

Observe that if V = V (M, θ) is a rectifiable varifold with weak mean curvature H then with abuse of
notation we can write H(x) = H(x, TxM) and we get the following identities:

∫

M

divMXdµV =

∫

Gm(RS)

divTxMX(x)dV = −
∫

Gm(RS)

H(x, TxM) · XdV = −
∫

M

H(x) · XdµV , (6.44)

where divMX is the tangential divergence of the vector field X and is defined to be divMX(x) :=
divTxMX(x) where TxM is the approximate tangent space to M at x (which exists for µV -a.e. x).

Remark 6.6.10. As Hutchinson observed in [Hu1], if V is an m-varifold on N ↪→ RS with generalized

curvature B = [Bijk]i,j,k=1,...,S then, as a varifold in RS, V has weak mean curvature Hi =
∑S

j=1 Bjij for

i = 1, . . . , S. Indeed, for any relatively compact open subset W ⊂⊂ RS and any vector field X ∈ C1
c (RS)

with compact support in W , taking φ = Xi, i = 1, . . . , S in equation (6.40) and summing over i we get

0 =

∫

Gm(RS)

[PijDjX
i(x) + Bjij(x, P )Xi(x)]dV (x, P )

which implies

δV (X) :=

∫

Gm(RS)

divP X(x)dV (x, P ) = −
∫

Gm(RS)

Bjij(x, P )Xi(x) dV (x, P );

the conclusion follows from the fact that B ∈ L1
loc(V ).

Now let us define the varifolds with weak mean curvature in a compact subset N ⊂⊂ N̄ of a Rieman-
nian manifold (N, g) isometrically embedded in RS .

Definition 6.6.11. Let V be an m-varifold on N ⊂ N̄ ↪→ RS, m ≤ n − 1. We say that V is a varifold

with weak mean curvature HN relative to N̄ if it has weak mean curvature HRS

as varifold in RS. In
this case the value of (HN )i, i = 1, . . . , S is given by

(HN )i = (HRS

)i − Pjk
∂Qij

∂xk
. (6.45)

Consistently with the notation introduced for the curvature varifolds, we denote by HVm(N) the set of
integral m-varifolds on N with weak mean curvature relative to N̄ ; the elements of HVm(N) are called
mean curvature varifolds.

Observe that in case V is the varifold associated to a smooth submanifold of N̄ then HN coincides
with the classical mean curvature relative to N̄ (it is enough to trace the identity (i) of Proposition 5.1.1
in [Hu1] recalling that we denote by A,Q what Hutchinson calls B,S). Moreover, as an exercise, the

reader may check that also in the general case the vector
(
Pjk

∂Qij

∂xk

)
i=1,...,S

of RS is orthogonal to N̄ (fix

a point x of N̄ and choose a base of TxN̄ in which the Christoffel symbols of N̄ vanish at x; write down
the orthogonal projection matrix Q with respect to this base and check the orthogonality condition).
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Remark 6.6.12. If V is an m-varifold on N ⊂ N̄ ↪→ RS, m ≤ n − 1 with weak mean curvature HN

relative to N̄ then, for each compactly supported vector field X ∈ C1
c (N̄) tangent to N̄ ,

δV (X) =

∫

Gm(N)

divP X(x)dV (x, P ) = −
∫

Gm(N)

HN · XdV (x, P ).

This fact gives consistency to Definition 6.6.11 and follows from Definition 6.6.11, from formula (6.43)

and the orthogonality of
(
Pjk

∂Qij

∂xk

)
i=1,...,S

to N̄ .

Remark 6.6.13. If V is an m-varifold on N ⊂ N̄ ↪→ RS, m ≤ n − 1 with null weak mean curvature
HN = 0 relative to N̄ then, for each compactly supported vector field X ∈ C1

c (N̄) tangent to N̄ ,

δV (X) =

∫

Gm(N)

divP X(x)dV (x, P ) = 0.

In this case we say that V is an m-varifold in N with null weak mean curvature relative to N̄ or, using
more classical language, that V is a stationary m-varifold in N (where stationary as to be intended in
N̄).
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