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Introduction

The problems that involve the image processing field concern a large quantity of
areas very wide. This openness to the applications reflects for first the easiness of the
phenomenon through the human vision and, as a second step, the enormous capacity
of data processing that today the computers provide for this kind of problems.

In the image processing field, the tridimensional reconstruction of an object
has gained a growing importance since expensive instruments (like laser scanner)
can solve the problem only for objects whose dimensions do not prevent a correct
working of the detector. So, beyond the costly limit of these instruments, this
they are unable to reconstruct those objects whose dimensions are not compatible,
and it must be considered also that the distance from the object may represent
a problem. Therefore, in order to overcome these inconveniences, a new research
direction has appeared, which uses an object’s digital pictures as basic data for the
3D reconstruction, that is the SfS problem [1, 2, 3]. Even if the firsts to take an
interest of the problem were some optics [4, 5, 6], the coming of the computer has
marked a true out-and-out change of the scientific brach interested opening to the
computer science. Afterwards, on the impulse of Horn [1, 7] and of his collaborators
of MIT, another change of scientific interests is arrived. It regards the mathematics
field where, starting from the first work of Lions [8, 9], it has introduced the SfS
problem of image processing in a much more theoretical area.

The Shape from Shading one, that in the next parts of the thesis will be
abbreviated as SfS, is a classical problem of image processing that bring into play
some concepts not only relative to the human vision and computer science, but it uses
widely elements of mathematics (analysis, geometry, probability) and optics. The
model of the SfS problem that we will consider is related to the 3D reconstruction
of surfaces which represent objects photographed by simple digital cameras. That
is, given a gray scale digital image I(x, y) the target is to reconstruct the surface
z = u(x, y) that corresponds to the object photographed. The first equation that
bring us to consider the variation of the gray values of the image with respect to the
surface is the following brightness equation:

R(n(x, y)) = I(x, y)

where the reflectance function R depends on the unitary normal vector n outgoing
from the surface u. This function R indicate the way the light is reflected from the
surface. In a simplified model where a Lambertian surface and a light source at
infinity are considered, this equation can be expressed as:

I(x, y) = γn(x, y) · ω ∀(x, y) ∈ Ω
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where γ is a parameter that represents the albedo (i.e. the percentage of the light
that can be reflected by the surface). In our case we consider γ = 1 that is all the
points of the surface reflect completely the light that hits them. The unitary vector
ω = (ω̃, ω3) ∈ R3 represents the light source direction that hits the surface and it is
considered constant for all the image domain Ω.

Once we express the surface normal vector n(x, y) in terms of u is possible to
obtain the formulation of our problem:

I(x, y) = −∇u(x, y) · ω̃ + ω3√
1 + ||∇u(x, y)||2 ∀(x, y) ∈ Ω

that is a nonlinear equation that represents a first model of the orthographic SfS.
It results to be an ill posed inverse problem, this means that it has not a unique
solution and small perturbations of the data can produce big variation of the solution.
Just in this field, respecting the base hypotheses for the model (that we will see in
the next), some results on impossibility to solve univocally this problem using only
one digital image are well known.

Many articles have been written about the impossibility to solve the problem
considering only one picture [2]; this impossibility, from the PDEs point of view,
comes out from the difficulty we meet in differentiating the concave surfaces from
the convex ones. However, they represent solutions of non-linear problem which
are provided, as further starting data, even with the boundary condition (that
is the surface’s height on the image’s boundary which retracts it). As described
in the survey of Durou-Falcone-Sagona [2] the methods that permit to solve this
inverse problem can be collect in two big types: methods of resolution of PDEs (in
particular the characteristics method and the approximation of viscosity solutions)
and optimization methods based on the variational approach.

However this methods do not permit to obtain the unique solution and from this
new start were born several ways to solve the problem, which use more than one
picture. An interesting result was obtained by Chambolle [10] considering the stereo
vision technique: he proved that if we have two images of the same object taken
from two different point of view (but considering the same light source) then the
solution of the problem is unique. The technique that will be take into consideration
in this thesis is the photometric stereo one (SfS-PS) that allows us to study the
problem when we have, as initial data, only the images which portray the object
(photographed always from the same point of view) and the relative luminous source
position for each image [11]. It brings us to consider the following nonlinear system
of PDEs: 




−∇u(x, y) · ω̃′ + ω′3√
1 + ||∇u(x, y)||2 = I1(x, y), ∀(x, y) ∈ Ω;

−∇u(x, y) · ω̃′′ + ω′′3√
1 + ||∇u(x, y)||2 = I2(x, y), ∀(x, y) ∈ Ω.

with the Dirichlet boundary condition u(x, y) = g(x, y) known for all (x, y) ∈ ∂Ω.
The work of the thesis has began with the aim to find, coherently with the starting

SfS model, a formulation of the problem that permits to obtain the uniqueness of
solution. The study of the presented new differential approach, beyond a well posed
definition, has permitted to arrive also to other conclusion regarding some problem
strictly connected to the SfS-PS one. In fact we have studied some satellite problems
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around the main one with the purpose to give a better collocation inside a very big
set of techniques related to the SfS-PS problem.

The Chapter (1) describes in detail the SfS orthographic problem using only
one image giving the formulation of the model and of the hypotheses (Lambertian
surface, without black shadows and self-reflection and light source placed at infinity
in order to avoid prospectives deformations). It summarizes the classes of methods
used to solve this problem showing how it is impossible to obtain a unique solution
(even if the surface is supposed C1) caused by the concave/convex ambiguity.

In Chapter (2) we introduce the new differential model that permits to obtain the
uniqueness. In particular, assuming the absence of black shadows, the initial results
permit to illustrate the stoutness of this model for which it is possible to prove
the uniqueness of the solution in a very weak function space. In fact the solution
is found in W 1,∞ (Lipschitz functions) and it is possible also to prove that this is
the weakest kind of solution that this problem permits to obtain. An exhaustive
study, which concerns the surface reconstruction of the object using two images,
made the problem evolve from the initial study of a non-linear PDE system to the
analysis of an hyperbolic partial differential equation whose solution is exactly the
searched surface. But this approximation doesn’t satisfy wholly the applications
demands. In fact we can’t obtain the uniqueness of the solution without taking
into account the Dirichlet type boundary condition, even though switching from a
system of non-linear PDEs to a single partial differential equation makes the study
extremely simpler.

In this part we introduce the numerical schemes we use for the tests. We compare
some finite difference schemes with two semi-lagrangians schemes. In particular
this last method permits to obtain the best result on term of approximation of the
solution. With the aim to prove the efficiency of the semi-lagrangians schemes we
consider synthetic image for the approximation of the consistence order on several
type of surfaces, especially on Lipschitz one.

The Dirichlet boundary condition (that we need to know just to make the
problem well-posed) in the real applications consists to know a priori the height
of the surface on the boundary of the image. This is a supplementary data that
in the Chapter (3) we want to approximate using the classical (not differential)
approach of photometric stereo, following the seminal paper by Woodham [12], aims
at reconstructing the surface through its normal field approximation and integration.
The use of only two digital images, for this local method, brings an ambiguity of the
solution which involves, for each pixel, the determination of two possible normals.
In this Chapter the main goal is to merge the two approaches in order to solve the
problem using only two images. Then we use the normal field approximation to
determine a boundary condition, while we use the PDE numerical techniques for
the surface approximation in all other internal points.

In the last part, Chapter (4), we obtain the uniqueness of the SfS-PS problem
using only the information relatives to three images (and then also considering the
light source vectors). The increase of one image (passing from two to three images)
in fact permits us to solve the differential problem explained in Chapter (2) without
considering the boundary condition. In order to emphasize the possibility to apply
this approach also to the real applications we test the semi-lagrangians schemes also
on real images.

In this part we introduce the definition of linear independent images with the aim
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to focus our attention on the possibility to take advantage of symmetry properties
of the object pictured. In particular we prove that it is possible so solve the SfS-PS
problem (without boundary condition) using two images if the surface has only one
axis of symmetry and using only one image if the axis of symmetry are (at least)
four. This means that we arrive to solve the SfS classic problem (passing from the
photometric stereo) if the surface has a particular geometrical structure (i.e. if it
has four axis of symmetry).
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Chapter 1

Shape from shading problem
introduction

Shape from Shading (SfS) has been a central problem in the field of computer vision
since the early days. The problem is to compute the three-dimensional shape of a
surface from the brightness variation in a gray scale image Fig. 1.1.

Figure 1.1. The Shape-from-Shading problem.

The work in our field was pioneered by Horn who was the first to pose the problem
as that of finding the solution of a nonlinear first order partial differential equation
called the brightness equation [3]. This initial idea was limited by the particular
numerical method that was used (the method of characteristics) and was enriched by
posing the problem as a variational problem [13] within which additional constrains
such as those provides by occluding contours [14] can be taken into account. The
book [1] contains a very nice panorama of the research in this area up to 1989.
Questions about the existence and the uniqueness of solutions to the problem were
simply not even posed at that time with the important exception of the work of Bruss
[15]. These questions as well as those related to the convergence of numerical schemes
for computing the solutions became central in the last decade of the 20th century.
Brightness equations that do not admit continuously differentiable solution were
produced [16, 17], Durou and his co-workers showed that some well-known numerical
schemes were in fact almost never convergent [18] and exhibited a continuous family
of ambiguous solutions [19] A breakthrough was achieved by people who realized
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2 1. Shape from shading problem introduction

that control theory could be bought to bear on this problem. Dupuis and Oliensis
showed that this theory provided a way of constructing numerical schemes with
provable convergence properties in the case where a continuously differentiable
solution existed [20]. More significantly papers, Lions, Rouy and Tourin used the
theory of viscosity solution of Hamilton-Jacobi equation and to characterize the
existence and uniqueness of weak solutions to the brightness equation and to come
up with provably convergent numerical schemes to compute them [9, 21]. In doing
so, they considerably generalized the applicability of SfS since solutions could be
only continuous and they opened the way to the mathematically well-posed use of
such constrains as occluding edges and shadows as well as general light sources.

1.1 Mathematical formulation
We start by giving an outline of the SfS problem and introducing the basic assump-
tions. In this thesis we have worked on the simplest version of SfS problem where
we attach the camera a three-dimensional coordinate system (Oxyz), such that Oxy
coincides with the image plane and Oz coincides with the optical axis. Under the
assumption of orthographic projection, the visible part of the scene is, up to a scale
factor, a graph z = u(x, y), where (x, y) is an image point. As is well know [1] the
SfS problem can be modeled by the "image irradiance equation":

R(n(x, y)) = I(x, y) (1.1)

where I(x, y) is the grey level measured in the image at point (x, y) (in fact I(x, y)
is the irradiance at point (x, y), but both quantity are proportional) and R(n(x, y))
is the reflectance function, giving the value of the light re-emitted by the surface as
a function of its orientation (i.e. of the unit normal n(x, y) to the surface at point
(x, y, u(x, y)). This normal can easily be expressed as:

n(x, y) = 1√
1 + ||∇u(x, y)||2 (−∇u(x, y), 1), (1.2)

where ∇u(x, y) = (∂u∂x(x, y), ∂u∂y (x, y)). Irradiance function I is the datum in the
model since it is measured at each pixel of the image, for example in terms of
a grey level (from 0 to 255). To construct a continuous model, we will assume
that I takes real values in the interval [0, 1]. Height function u : Ω → R, which
is the unknown of the problem, has to be reconstructed on a compact domain
Ω ⊂ R2 (where Ω = Ω ∪ ∂Ω), called the reconstruction domain. Assume that there
is a unique light source at infinity whose direction is indicated by the unit vector
ω = (ω1, ω2, ω3) = (ω̃, ω3) ∈ R3 where (ω3 > 0). Also assume for simplicity that ω
is given (in some works, ω as well is considered as unknown, see [22, 23], even if
this problem is sometimes ill-posed [24]). Recalling that for a Lambertian surface of
uniform albedo equal to 1, R(n(x, y)) = ω · n(x, y), equation (1.1) can be written
using (1.2):

I(x, y)
√

1 + ||∇u(x, y)||2 + ω̃ · ∇u(x, y)− ω3 = 0 ∀(x, y) ∈ Ω (1.3)

that is a first order nonlinear partial differential equation (PDE) of the Hamilton-
Jacobi type. In order to complete the formulation of the SfS problem we add the



1.2 Viscosity solution 3

Dirichlet boundary condition u(x, y) = g(x, y) ∀(x, y) ∈ ∂Ω that must be known.
The complete problem can be written as follow:

{
H(x, y,∇u(x, y)) = 0, on Ω;
u(x, y) = g(x, y) on ∂Ω; (1.4)

where H is the Hamiltonian of the problem.
Points (x, y) ∈ Ω such that I(x, y) is maximal correspond to the particular

situation where ω and n(x, y) point in the same direction: these points are usually
called "singular points".

Let us mention that that (1.3) is not the most general equation of SfS [25]:
since real material are not purely Lambertian, some publications are concerned with
non-Lambertian SfS problems [26, 27, 28]; moreover, the situation is more complex
in the presence of other lighting models [29, 30] or when the inter-reflection are taken
into account [31, 32]. We will also consider the equation which appears in most
of the papers and corresponds to frontal light source at infinity (i.e. ω = (0, 0, 1)).
Then (1.3) becomes the "eikonal equation":

||∇u(x, y)|| = f(x, y) ∀(x, y) ∈ Ω, (1.5)

where

f(x, y) =
√

1
I(x, y)2 − 1. (1.6)

In the last few years, new model have appeared. The main goal of those models
is to modify the classical assumptions, in order to deal with real-life applications. In
fact, if we suppose the surface Lambertian this means that the intensity reflected by
a point of the surface is proportional only to the cosine of the angle between the
direction of the illumination and the normal vector to the surface.

Although the classical SfS problem has attracted many researcher for years, its
impact on applications has been rather limited. The major modification that has
been considered is to replace the usual assumption that the projection of scene points
during a photographic process is orthographic, with the more realistic assumption
of perspective projection [33, 34, 35, 36, 37], and none of them had established the
equation of this more realistic model.

Equations (1.3) and (1.5) have attracted much attention in the research com-
munity in PDEs for their wide range of applications. In the framework of the
SfS problem, several methods of resolution have been tested: characteristic strips
expansion, approximation of viscosity solutions, etc.

1.2 Viscosity solution
In this section we present a brief introduction to the notion of continuous viscosity
solutions of first order Hemilton-Jacobi equations. Its aim is first to present the
fundamental definitions and theorems which are used to try to solve the SfS problem
(i.e. the differential problem (1.4)). In a more general sense, we will only consider
thorems dealing with Dirichlet problems.

The notion of viscosity solution of Hamilton-Jacobi equations ha been introduced
by Crandall and Lions [38, 39, 40, 41] in the 80s. It is a very nice way of making
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quantitative and operational the intuitive idea of weak solutions of first-order (and
for that matter, second-order) PDEs. In the context of the SfS problem we are only
concerned with first-order PDEs.

The following definitions and results can be found in Barles’s, Bardi and Capuzzo
Dolcetta’s or Lions’ book [42, 43, 41].

1.2.1 A notion of weak solutions
Let u : Ω ⊂ R2 → R be a C1 function (Ω is an open set of R2) and consider a
Hemilton-Jacobi equation of the form:

H(x, y, u(x, y),∇u(x, y)) = 0 on (x, y) ∈ Ω, (1.7)

where H is a continuous scalar function on Ω×R×Rn and it is called Hamiltonian.

Definition 1.1 Viscosity subsolution:
u ∈ BUC(Ω) (set of bounded and uniformly continuous functions) is a viscosity
subsolution of equation (1.7) if:

∀φ ∈ C1(Ω), ∀(x0, y0) ∈ Ω local maximum of (u− φ),

H(x0, y0, u(x0, y0),∇φ(x0, y0)) ≤ 0

Definition 1.2 Viscosity supersolution:
u ∈ BUC(Ω) is a viscosity supersolution of equation (1.7) if:

∀φ ∈ C1(Ω), ∀(x0, y0) ∈ Ω local minimum of (u− φ),

H(x0, y0, u(x0, y0),∇φ(x0, y0)) ≥ 0

Definition 1.3 Viscosity solution:
u is a viscosity solution of equation (1.7) if it is both subsolution and supersolution
of (1.7).

1.2.2 Existence and uniqueness of continuous viscosity solutions
As we have seen, the classical modelisation of SfS problem results in an Hamilton-
Jacobi equation where the Hamiltonian does not depend on u considering the
differential formulation (1.4).

We present here an uniqueness result due to Ishii [44]. This result has been
proved later in a different manner by Lions [41]. Rouy and Tourin have also given
this uniqueness result for Hamiltonian H which do not depend upon u (see [21]).
For more general condition, see [9].

Theorem 1.4 Let u, v ∈ BUC(Ω) respectively subsolution and supersolution of the
equation:

H(x, y,∇u(x, y)) = 0on the bounded open Ω ⊂ R2. (1.8)

If the following hypotheses are verified:

• ∀(x1, y1), (x2, y2) ∈ Ω, ∀p ∈ R2, |H(x1, y1, p)−H(x2, y2, p)| ≤ ρ(|(x1−x2, y1−
y2)|(1+|p|)), where ρ is a continuous nondecreasing function such that ρ(0) = 0;
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• H is continuous in Ω× R2 and convex with respect to ∇u;

• there exists a strict viscosity subsolution u ∈ C1(Ω)
∫
C(Ω) of (1.8) (i.e. such

that H(x, y,∇u(x, y)) < 0 for all (x, y) ∈ Ω);

then there exists at most one continuous viscosity solution of (1.8) verifying u = g
in ∂Ω where g ∈ C(∂Ω) (it is to say a continuous solution of (1.4)).

In the eikonal equation case, it is easy to show that the previous theorem is
sharp: there exists many solutions if there are singular points in Ω. Recall that in
this context, a singular point is a point (x, y) ∈ Ω such that I(x, y) = 1.

Starting from the paper by Rouy and Tourin [21], the most recent approach to
the resolution of SfS uses the notion of viscosity solutions to first order PDEs. These
are almost-everywhere solution (a.e. solutions) which can be obtained as the limit in
a family of solutions of regularized second order problems (the so-called "vanishing
viscosity" method). These solution are typical Lipschitz continuous solutions (but
discontinuous viscosity solutions have also been considered in the literature [43]. The
development of the theory of viscosity solutions for Hamilton-Jacobi type equations
provides a good framework for the analysis of the SfS problem.

Moreover, several algorithms have been proposed to compute viscosity solutions.
Finite difference numerical methods have been used in [21, 9] for the resolution of
(1.5) and generalized to the resolution of (1.3) in [45]. Similar results have been
obtained by Oliensis and Dupuis [46] with an algorithm based on the Markow Chain
approximation. Unfortunately, the Dirichlet problem (1.4) can have several weak
solutions in the viscosity sense and also several classic solutions (due to the so-called
concave/convex ambiguity, see [3]. As an example, all the surfaces represented in Fig.
1.2 are viscosity solutions of the same equation which is a particular case of (1.4)
(in fact the equation is |u′| = −2x with homogenous Dirichlet boundary condition).
The solution represented in Fig. 1.2-a is the maximal solution and is smooth. All
the non-smooth a.e. solutions which can be obtained by a reflection with respect
to a horizontal axis, are still admissible weak solutions Fig. 1.2-b. In this example,
the lack of uniqueness of the viscosity solutions is due to the existence of a singular
point where the right hand side of (1.5) vanishes. An additional effort is then needed
to define which the preferable solution since the lack of uniqueness is also a big
drawback when trying to compute a numerical solution. In order to circumvent
these difficulties, the problem is usually solved by adding some information such as
height at each singular point [9].

More recently, an attempt has been made to eliminate the need for a priori
additional information. In recent results in the theory of viscosity solutions, the
"maximal solution" without additional information apart from the equation was
characterized, as was the construction of an algorithm which converges to that
solution. A result by Ishii and Ramaswamy [47] applied to SfS guarantees that
if the function I is continuous and the number of singular points is finite, then a
unique maximal solution (in the viscosity sense) of (1.4) exists. It should be noted
that their result on the characterization of the maximal solution does not apply to
the general situation when the set of singular points has a positive measure. More
general uniqueness results for maximal solution have been recently obtained by
Camilli et al. [48, 49]. Several papers have followed this approach providing different
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a b

Figure 1.2. Illustration of the concave/convex ambiguity: (a) maximal solution and (b)
a.e. solutions giving the same image.

algorithms to compute the maximal solution, which has been shown to be unique,
see [50, 51] and the references therein.

We conclude this section by mentioning a few other extensions in the framework
of viscosity solutions. All the theoretical results mentioned above use the regularity
of the grey level function I, which is supposed to be (at least) continuous. Naturally,
real images do not fit that assumption, even in the case of Lambertian objects. The
continuity assumption for I has been removed in paper by Kain and Ostrov [52] and
by Prados and Faugeras [53]. Both these papers also contain a scheme and some
numerical example. At the end we note that, considering the SfS like an inverse
problem, if we want to approximate a Lipschitz surface we must have (except for very
spacial cases) a discontinuous function image I. This means that the Hamiltonian H
of (1.4) is not continuous at all, so it is not possible to study the SfS problem with
the aim to find the unique Lipschitz solution if the Hamiltonian is not discontinuous.

In our new differential approach we arrive to find a robust model that permits us to
study a discontinuous Hamiltonian and that find a unique Lipschitz solution passing
through the photometric stereo technique applied to the SfS problem. We arrive to
the solution (and also to an efficient numerical scheme) using the characteristic strip
expansion that will be introduced below.

1.3 Characteristic strip expansion

The first mention of 3D reconstruction using photometric cues is due to the Dutch
astronomer Van Diggelen [4]. The first resolution was suggested by Rindfleisch
[6] who demonstrated that if the photometric behavior of a surface follows certain
properties, then the shape can be expressed as an integral along a set of convergent
straight lines. He implemented this computation on images of the Moon, claiming
that its surface verifies the necessary photometric properties reasonably well. Later,
Horn suggested calling this problem "shape-form-shading", and showed that the
resolution proposed by Rindfleisch in a particular case could be generalized, while
still using the characteristic strip expansion [3], under the following two confition:

• the function u has to be of class C2;

• the 5-uplet (x, y, u, ∂u∂x ,
∂u
∂y ) has to be known at every point of a curve called

the initial curve, which means in fact that two boundary condition are needed
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simultaneously, one on u (Dirichlet boundary condition) and other on (∂u∂x ,
∂u
∂y )

(Neumann boundary condition).

The characteristic lines (which are the lines along which the integration has to be
performed) can be of any form in the image domain, and this differs from the case
studied by Rindfleisch.

Besides the inherent defect of error accumulation, which is typical of every
method of resolution using integration, the determination of these characteristic lines
is a new problem itself, since they also are defined through integration. Therefore,
the accuracy of boundary conditions is much more crucial than for other methods.
It follows that a certain number of obstacles must be overcome (i.e. the crossing of
a characteristic lines) which should normally occur only at a singular points, or the
presence of holes in Ω, which must be filled using secondary lines [3].

Finally this method has been essentially used for the theoretical study of the
number of solutions of class C2 of the eikonal equation: a number of uniqueness
results have been provided (see [54, 55, 56, 57] and the reference therein).

The characteristic method is an important instrument useful to solve a particular
class of PDE. The one more suitable are the partial differential equations where the
information is propagated with finite velocity: hyperbolic equation which belong the
wave equation and the transport equation are an example.

The simpler way to introduce this method, that convey understandable its
intrinsic means in particular for our problem, is to introduce the characteristic
considering directly the problem (1.4) where we suppose ∂Ω and g : ∂Ω ⊂ R2 →
R known. Furthermore we suppose that H and g are regular functions. The
characteristics method solve (1.4) converting the partial differential equation in a
opportune ordinary differential equations system. We suppose that u solves (1.4)
and we fix a point (x, y) ∈ Ω. We want to compute u(x, y) finding a curve that lies
in Ω, which connects (x, y) to a point (x0, y0) ∈ ∂Ω. and along which is possible
to calculate u. Since the boundary condition, we know the value of u in (x0, y0).
We want to calculate u along all the curve and in particular in (x, y). But, how we
chose this curve? We suppose that it is parametrically described by the function
(xc(s), yc(s)); the parameter s belong to an interval of R. We suppose u ∈ C2

solution of the equation of the problem (1.4). We define also:

z(s) = u(xc(s), yc(s)). (1.9)

In addition we set:
p(s) = ∇u(xc(s), yc(s)); (1.10)

that is p(s) = (p1(s), p2(s)) where

p1(s) = ∂u

∂x
(xc(s), yc(s)), p2(s) = ∂u

∂y
(xc(s), yc(s)). (1.11)

In this way z(·) gives the value of u along the curve and p(·) records the values
of the gradient ∇u. We must choose the function (xc(·), yc(·)) in such a way that
we can compute z(·) and p(·).

If we differentiate (1.11) with respect to s, the equation of the problem (1.4)
with respect to x and y and (1.9), making opportune substitutions, we arrive to the
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following equations:




(a) (ṗ1(s), ṗ2(s)) = −DzH(p(s), z(s), xc(s), yc(s))p(s)
−(DxcH(p(s), z(s), xc(s), yc(s)), DycH(p(s), z(s), xc(s), yc(s)))

(b) ż(s) = DpH(p(s), z(s), xc(s), yc(s)) · p(s)
(c) (ẋc(s), ẏc(s)) = DpH(p(s), z(s), xc(s), yc(s)).

(1.12)

this system of 2n+ 1 ODEs of the first order include the characteristic equations of
the first order PDE of the problem (1.4). The functions p(·) = (p1(·), p2(·)), z(·),
(xc(·), yc(·)) are called characteristics. We will refer to (xc(·), yc(·)) as projected
characteristic: it is the projection of the characteristic (p(·), z(·), xc(·), yc(·)) ⊂ R5

on the domain Ω ⊂ R2.
We have seen how can be impossible to have a unique solution of the problem

(1.4) through the viscosity solution notion. This kind of impossibility can also be
seen considering the characteristic method. In fact, the singular points represent
source (or well) where the information get out (or is sucked in). That is why we
need to add information about the heigh of the surface in these points [58]. In the
next part we will explain in a much more exhaustive way the

1.3.1 Other PDE methods
Another approach which produces a global solution to SfS consists in the search for
equal-height contours, originally proposed by Bruckstein [59] and later re-introduced
by Kimmel and Bruckstein [60, 61]. The method consists of two major steps: the
computation of weighted distance functions from all the singular points, using a
level set method, and the merging of these surfaces. The algorithm can compute
a global solution (which is an a.e. solution) of eikonal equation (1.5) in the recon-
struction domain, only combining the local solutions obtained during the first step.
Interestingly, this method has been extended to the case of near light source [36].

Finally, the idea of solving the eikonal equation using a power series expansion at
a regular point, in the case of a grey level function of class C∞, has been introduced
by Bruss [15] and has been extended to the analytical grey level functions by Durou
and Piau, which could exhibit a "non-visible deformation" (i.e., a continuous family of
analytical shapes giving the same image [19]). This is an important theoretical result
but, nevertheless, no algorithm has been derived from this method of resolution.

1.3.2 Boundary condition
The use of PDE methods for the resolution of the SfS problem leads necessarily to
the definition of some sort of boundary conditions. This is one of the differences
with respect to the methods using optimization, since for those methods boundary
conditions can be imposed but are not compulsory. A detailed analysis of the well-
posedness of the boundary value problem for nonlinear PDEs in the framework of the
weak solutions (in the viscosity sense) can be found in Barles’ book [43] and in the
references therein. It is important to note that the addiction of boundary conditions
does not solve the concave/convex ambiguity and that in practical applications
boundary conditions are seldom known.

Te choice between the different types of boundary conditions is a question of
appropriateness and simplicity, or depends on the additional information available
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on the object (if any). The Dirichlet boundary condition is typically used when the
object is standing on a flat background and the surfaces meets the background at ∂Ω,
or if the height on ∂Ω is known (or assumed, for example by symmetry). Neumann
boundary conditions correspond to ∂u

∂ν (x, y) = m(x, y), where ν(·) represents the
outward normal to domain Ω. A typical use of it is when we know (or we presume)
that the level curves of the surface are orthogonal to the boundary ∂Ω or to a subset
of it where we simply choose m(x, y) = 0. The Neumann boundary condition gives
more freedom in the computation since it only imposes the value of a derivative and
does not fix the height of the surface at the boundary. Naturally, also this condition
modifies the surface. State constraint boundary conditions differ from the previous
ones since the do not impose a value either for the height or for its normal derivative.
In this respect, it has been interpreted as a "no boundary condition" choice [62],
although this interpretation is rather superficial. In fact, a real function u bounded
and uniformly continuous is said to be a "state constraint viscosity solution" if and
only if it is a subsolution (in the viscosity sense) in Ω and a supersolution in Ω (i.e.
up to the boundary). It can also be stated as a Dirichlet boundary condition, simply
setting g(x, y) = gc on ∂Ω, where gc is a constant, provided:

gc > max
(x,y)∈Ω

{u(x, y)}

Note that in our problem, this is a mild assumption since we can easily fix an upper
bound for the height of the object. The effect of the state constraint boundary
condition is to produce solutions that grow inwards from the boundary ∂Ω. This
choice ca be appropriate in some situations and wrong in other situations, in any
case also this boundary condition affects the computation.

1.4 Methods using optimization
Another class of algorithms which have been suggested are optimization method
based on the variational approach. Note that these algorithms can work in the most
general case of (1.1), contrary to the PDE method. In this class of methods, three
basic ingredients must be chosen: the unknowns, the functional which has to be
optimized (in fact, minimized), and the minimization method. Surprisingly, a certain
number of paper flling within the domain of optimization do not clearly show the
implications of these choices, so that the choice of a functional is something only
guided by considerations on convergence. Even in [63], which is a major reference in
the field, the discussion of several functionals is based on the possibility of finding
an algorithm that converges toward a minimum. Indeed, it is possible a priori to
freely combine any functional and any minimization algorithm.

1.4.1 Unknowns

The first difficulty encountered in the SfS problem is the choice of the unknown.
The natural unknown (i.e. height u) is already used [64]: problems of convergence
[63] or of slowness [65] are mentioned. Many papers dealing with optimization use
p = ∂u

∂x and q = ∂u
∂y as unknowns (see [63, 65, 66, 67]), because u appears in the

image irradiance equation only through its first derivativs; however, if u is supposed
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to be of class C2, p and q are two non-independent functions, since:

∂p

∂y
= ∂q

∂x
. (1.13)

Other unknowns have been used: the three unknowns (u, p, q) have been dealt
with simultaneously [13, 68]; the stereographic coordinates of the normal [14, 69]
present the great interest of being bounded on the occluding boundarues, contrary
to (p, q); the normal itself is sometimes used [70, 71]. Finally, several model.based
approaches have been proposed, such as quadratic models [72], triangular elements
[73], deformable models [74] or B-splines [75].

When dealing with other unknowns than u itself, an additional problem is then
to compute u. For instance, using (p, q) as unknown, the following equations must
solved: 




∂u

∂x
= p,

∂u

∂y
= q,

(1.14)

which give (1.13) by elimination of u. Nevertheless, since (1.14) are linear in u, the
problem of integration is much easier to solve than the SfS problem.

1.4.2 Functionals
The only quantity which has to be minimized, whatever the unknowns, is the
"brightness error". Using u as unknown, defining function r so that R(n(x, y)) =
r(p(x, y), q(x, y)), and using least square error, this term can be expressed as:

F1(u) =
∫

(x,y)∈Ω

(
r

(
∂u

∂x
(x, y), ∂u

∂y
(x, y)

)
− I(x, y)

)2
dxdy.

Using (p, q), a strictly equivalent functional to F1 is:

F2(p, q, µ) =
∫

(x,y)∈Ω
(r(p(x, y), q(x, y))− I(x, y))2dxdy+

+
∫

(x,y)∈Ω
µ(x, y)

(
∂p

∂y
(x, y)− ∂q

∂x
(x, y)

)
dxdy,

where µ is a Lagrange multiplier (i.e. a new unknown [63]). this last functional is
often approximated by another one (for numerical reason) where the constraint term
becomes a least square penalty term, often called the "integrability term" [63]:

F3(p, q, u) =
∫

(x,y)∈Ω
(r(p(x, y), q(x, y))− I(x, y))2dxdy+

+ λi

∫

(x,y)∈Ω

(
∂p

∂y
(x, y)− ∂q

∂x
(x, y)

)2
dxdy.

Several discrete implementations of this functional have been proposed [63, 66]. A
problem is that it is parametric, contrary to F1(u) and F2(p, q, u), depending on
parameter λi which is called the "integrability factor". Another way to translating
functional (1.4.2), without introducing any parameter, consists in imposing the
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hard constraint (1.13) in an iterative process: this leads to the well-known method
Frankot and Chellappa [67], where integrability is forced at each step. Symmetrically,
it has recently been proposed in [71] to impose (1.5) at each step of an iterative
optimization method. Another least square penalty term which has been much used
is the "smoothness term" [62]:

F4(p, q) =
∫

(x,y)∈Ω
(r(p(x, y), q(x, y))− I(x, y))2dxdy+

+ λs

∫

(x,y)∈Ω
(|∇p(x, y)|2 + |∇q(x, y)|2)dxdy

where λs is a second parameter given the name of "smoothing factor". Incidentally,
one critical point of the optimization approach is that, given a noise-less image with
assumptions satisfied, the true surface will minimize functionals F1 and F2(p, q, µ),
but the same may not be said of the "improvement" that results in functional F4(p, q).
This can be avoided by progressibely decreasing λs as long as the brightness error
decreases [64, 13]. Of course, some authors have used the functional combining both
least square penalty terms [65, 68]:

F5(p, q) =
∫

(x,y)∈Ω
(r(p(x, y), q(x, y))− I(x, y))2dxdy+

+ λi

∫

(x,y)∈Ω

(
∂p

∂y
(x, y)− ∂q

∂x
(x, y)

)2
dxdy+

+ λs

∫

(x,y)∈Ω
(|∇p(x, y)|2 + |∇q(x, y)|2)dxdy.

FInally, some other least square penalty terms have been used, as for example
the "image intensity gradient constraint" [76] and, beside the classical least square
estimator, robust estimator have also been used [77].

1.4.3 Methods of minimization
When a given functional is chosen, two main strategies to find its minimum exist,
as recalled in [68]: either the Euler equations associated with the functional are
solved, or the functional is directly minimized. The first strategy has been used
much more often than the second one (see [13, 63, 66, 67, 14]), since it is easier to
implement and generally faster, but its main drawback is possible possible divergence
[18], because convergence is hard to prove for a Jacobi iteration. Neverthless, on the
one hand, such a method is proved to be convergent in [69] and, on the other hand,
linearizing the reflectance function renders the associated Euler equations linear [73],
thus avoiding possible problems of divergence. Conjugate gradient descent has been
used as a method of direct minimization in [64, 67], providing results of rather good
quality, but convergence is not guaranteed, contrary to the classical gradient descent
method combined with line search [65].

The approximate solutions computed are typically local minima of the functional.
To obtain a global minimum, a global optimization algorithm has to be used, typically
a stochastic algorithm like simulated annealing [75, 78] or genetic algorithms [79].
Naturally, the price to pay is a longer CPU time for the computation. This problem
of a long computing time has been partially solved either using multiresolution
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[68, 74, 78] or dealing with a parametric model with few parameters [75]. Finally,
Courteille et al. [80] have extended some minimization algorithms to PSFS, showing
some applications to documents digitization.

1.5 Not unique solution using one image.
Photometric stereo introduction

We want to emphasize one more time that using only one images, because of the
presence of singular points, it is not possible to find the unique solution of the
SfS problem. With the purpose to try to find the unique solution, we increase the
information about the surface in a natural way (i.e. starting with the same data
types of the SfS problem). There are two techniques that permit us an increasing in
this sense, that is we consider two images (I1 e I2) taken:

• from two different points of view, but using only one light source for both
(stereo vision [10])

• from the same point of view, but using a different light source for each image
(photometric stereo)

In this work we want to study the photometric stereo SfS problem (SfS-PS),
where we can use more than one image of the same surface. In this problem the
images will correspond to the same point of view but to different light sources. Let
us assume that we have k different pictures of the same surface, this will produce k
equations similar to (1.3), i.e.

Ii(x, y) = n(x, y) · ωi ∀(x, y) ∈ Ω , i = 1, . . . , k (1.15)

As we will see in the following section, this will result in a system of nonlinear
partial differential equations. Several points have to be clarified: what is the minimal
number k which allows to reconstruct the a generic surface z = u(x, y) without
ambiguities? Which are the assumptions on light sources directions ωi in order to
obtain uniqueness? How can the surface be reconstructed? How can we deal with
black shadows in the image?
Let us mention that some results of existence and uniqueness are already been proved
by Onn and Bruckstein ([81]) and by Kozera ([11]). These theorems however have
some important drawbacks as regards the class of functions where the solution is
found and also as regards some hypothesis that threshold the use of these results in
the real applications. Our purpose is to weaken all the hypothesis for try to prove
the existence and the uniqueness, and to find some numerical convergent schemes
for a function in a less regular space (i.e. Lipschitz functions space).

1.5.1 Photometric Stereo existing results

The concept of photometric stereo technique in this SfS characterization, will be
taken as the possibility to take advantage of the light not in a physical sense (i.e.
considering the intrinsic features of the ray of light like the wavelength), but in
a simpler way. In fact, the purpose is to determine the surface starting from two
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its images (I1 and I2) taken from the same point of view, changing every time the
direction of the light source (ω′ and ω′′ respectively).

There are many possible approaches to make a model of the SfS-PS problem. In
this work we will concentrate the dissertation on the possibility to arrive, through
at least two nonlinear Hamilton-Jacobi equations, at the solution of the problem.
This means that we are considering the hypotheses of the previous modelization of
the SfS problem, that is:

1. the light sources are at infinity;

2. the surface is Lambertian, which means that the intensity reflected by a point
of the surface is proportional only to the cosine of the angle between the
direction of the illumination and the normal vector to the surface;

3. there are no self-reflections on the surface;

4. there are no black shadows on the surface.

5. the optical point is sufficiently far from the surface so that perspective defor-
mations can be neglegted.

The condition of the complete illumination of the surface from the light source
ω is guaranteed from the following

u((x, y) + tω̃) < u(x, y) + tω3 ∀t > 0. (1.16)

We consider the SfS-PS problem for two light sources (ω′ e ω′′) and what we
obtain is a system of the following type:





−∇u(x, y) · ω̃′ + ω′3√
1 + ||∇u(x, y)||2 = I1(x, y), ∀(x, y) ∈ Ω;

−∇u(x, y) · ω̃′′ + ω′′3√
1 + ||∇u(x, y)||2 = I2(x, y), ∀(x, y) ∈ Ω.

(1.17)

with the Dirichlet boundary condition u(x, y) = g(x, y) known for all (x, y) ∈ ∂Ω.
Some results of uniqueness will be enunciate below ([11]):

Lemma 1.5 The first derivatives of u can be expressed in terms of I1, I2, ω′ and
ω′′ in the following form:

u±x = (ω′′1(ω′ · ω′′)− ω′1)I1 + (ω′1(ω′ · ω′′)− ω′′1)I2 ± (ω′3ω′′2 − ω′2ω′′3)ε
√

Λ
(ω′3 − ω′′3(ω′ · ω′′))I1 + (ω′′3 − ω′3(ω′ · ω′′))I2 ± (ω′1ω′′2 − ω′2ω′′1)ε

√
Λ

(1.18)

u±y = (ω′′2(ω′ · ω′′)− ω′2)I1 + (ω′2(ω′ · ω′′)− ω′′2)I2 ± (ω′1ω′′3 − ω′3ω′′1)ε
√

Λ
(ω′3 − ω′′3(ω′ · ω′′))I1 + (ω′′3 − ω′3(ω′ · ω′′))I2 ± (ω′1ω′′2 − ω′2ω′′1)ε

√
Λ

(1.19)

where

Λ = Λ(x, y) = 1− I2
1 (x, y)− I2

2 (x, y)− (ω′ · ω′′)[ω′ · ω′′ − 2I1(x, y)I2(x, y)] (1.20)

and the function ε = ε(x, y) take only the values ±1 in such a way that the function
f(x, y) = ε(x, y)

√
Λ(x, y) is continuous.
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Theorem 1.6 Let I1 and I2 be functions of class C1 over a simply connected region
Ω of R2 with values in [0, 1]. Suppose that Λ > 0 on Ω and that for each choice of
sign,

σ± = (ω′3 − ω′′3(ω′ · ω′′))I1 + (ω′′3 − ω′3(ω′ · ω′′))I2 ± (ω′1ω′′2 − ω′2ω′′1)
√

Λ (1.21)

does not vanish over Ω. Then a necessary and sufficient condition for the existence
of exactly two solutions to (1.17) of class C2 is, for each choice of sign,

∂

∂y
u±x (x, y) = ∂

∂x
u±y (x, y) (1.22)

with u±x and u±y defined respectively from (1.18) and (1.19).

Corollary 1.7 Let I1 and I2 be functions of class C1 over a simply connecter region
Ω of R2 with values in [0, 1]. Suppose that Λ ≡ 0 on Ω and that

σ = (ω′3 − ω′′3(ω′ · ω′′))I1 + (ω′′3 − ω′3(ω′ · ω′′))I2 (1.23)

does not vanish over Ω. Then a necessary and sufficient condition for the existence
of exactly one solution of class C2 to (1.17) is

∂

∂y
ux(x, y) = ∂

∂x
uy(x, y) (1.24)

with ux and uy defined respectively in (1.18) and (1.19) taken with Λ ≡ 0.

We note that the hypothesis of a regular starting data (in this case I1 and I2
taken in C1(Ω)) is not a sufficient condition in order to prove the uniqueness of u
because of the strong hypothesis Λ ≡ 0 on all the domain Ω. Another thing where
we want to focus the attention is the regularity of the surface. In fact these results
arrive to obtain a solution u ∈ C2(Ω). The next and the original part of the thesis
is based on the study of this problem but based on a different approach. Our aim is
to reduce the strong hypotheses with the contemporary objective to obtain a weaker
solution.

Let consider now two cases:

• a non - physical case where we wonder if exist a function u related to any
images I1 and I2 and any light vector ω′ and ω′′ not correlated among them;

• a physical case when we assume the existence of a surface u and we think that
the images I1 and I2 are not generic since they are expressed in terms of two
light vector ω′ and ω′′ like this:

I1(x, y) = −∇u(x, y) · ω̃′ + ω′3√
1 + ||∇u(x, y)||2 , I2(x, y) = −∇u(x, y) · ω̃′′ + ω′′3√

1 + ||∇u(x, y)||2 (1.25)

In the next part we will use the more applicable case that is the physical one.



Chapter 2

A new differential approach to
the photometric stereo using two
images

Let’s start the introduction of our new model from a first one-dimensional case
(where Ω = [a, b] and ω′ = (ω′1, ω′2), ω′′ = (ω′′1 , ω′′2)). The SfS problem transforms
itself in the following system





−ux(x)ω′1 + ω′2√
1 + ux(x)2 = I1(x), a.e. x ∈ Ω;

−ux(x)ω′′1 + ω′′2√
1 + ux(x)2 = I2(x), a.e. x ∈ Ω.

u(a) = ua, u(b) = ub with ua, ub ∈ R;

(2.1)

We want to emphasize that now and in the sequel all the partial differential
equation are of the first order . We consider then the function set of the solutions,
strictly connected with the definition of the problem. That is, if we define the
equation almost everywhere we are searching for a function differentiable almost
everywhere in Ω, that is a Lipschitz function [82].

For the non-linear system (2.1) the next result stands:

Theorem 2.1 Let ω′ and ω′′ be two linearly independent (light) vectors. Let I1(x),
I2(x) ∈ L∞(Ω) and such that 0 < I1(x), I2(x) ≤ 1 for x ∈ Ω ⊂ R connected. Then
exist unique the lipschitz function u(x) solution of the system (2.1) determined from
a single boundary condition.

Proof.
If we consider

ν1 = − ux√
1 + u2

x

and ν2 = 1√
1 + u2

x

(2.2)

then it is possible to rewrite the system (2.1) like this:
(
ω′1 ω′2
ω′′1 ω′′2

)(
ν1
ν2

)
=
(
I1
I2

)
(2.3)

If the light source vectors are linear independents, is possible calculate the unique
solution (ν1, ν2) from which is easy to get the ux; in fact: ux = −ν1

ν2
.

15
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If we know the first derivative we can calculate the function from the fundamental
theorem of calculus:

u(x) = ua +
∫ x

a
ux(s)ds (2.4)

otherwise

u(x) = ub −
∫ b

x
ux(s)ds (2.5)

�

We observe that if we repeat the same reasoning with space dimension n (where
we are studying the problem) and considering a number of light sources equal to
n + 1, we can note that is always possible to write a formula for the first partial
derivative ([11]).

The problem is to reduce, as possible, the number of light sources (i.e. the
number of images, i.e. the information about the surface). The next step will be to
consider the two-dimensional case and repeat the elimination of the non linearity
and try to reduce the space dimension of the problem looking for find the unique
solution when we use only two light sources.

That is, we consider the system (1.17) and we eliminate the non linearity
considering, for example, from the first equation the following:

√
1 + ||∇u(x, y)||2 = −∇u(x, y) · ω̃′ + ω′3

I1(x, y) (2.6)

Replacing it into the other equation we obtain the following linear equation:

(I2(x, y)ω′1 − I1(x, y)ω′′1)∂u
∂x

+ (I2(x, y)ω′2 − I1(x, y)ω′′2)∂u
∂y

=

(I2(x, y)ω′3 − I1(x, y)ω′′3) ∀(x, y) ∈ Ω (2.7)

considering also the same boundary condition the previous (1.17), that is:
{
b(x, y) · ∇u(x, y) = f(x, y), ∀(x, y) ∈ Ω;
u(x, y) = g(x, y) ∀(x, y) ∈ ∂Ω. (2.8)

where
b(x, y) = (I2(x, y)ω′1 − I1(x, y)ω′′1 , I2(x, y)ω′2 − I1(x, y)ω′′2) (2.9)

and
f(x, y) = I2(x, y)ω′3 − I1(x, y)ω′′3 . (2.10)

We note that the fact that b(x, y) doesn’t vanish in Ω imply the absence of
attracting or source points in the domain. We will see in the next part a better
result that permits us to have a weaker solution.

In order to pass from a two dimensional to a one dimensional problem, exploiting
the previous result, we solve the equation along the characteristics curve. In the
general case the characteristics relative to the linear differential equation (2.8) results
to be dependent on the shape of the surface. This inconvenient makes particularly
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complicated the reconstruction of the surface. We can have a considerable simplifi-
cation choosing opportunely the light sources in order to have a light information
that propagates in a linear way (i.e. the characteristics are straight lines).

Example 1
We consider now a particular position of the light sources. Let’s take the two

light vectors ω′ = (0, 0, 1) and ω′′ = (sin(ϕ), 0, cos(ϕ)) (ϕ ∈ (−π
2 , 0) ∪ (0, π2 )); the

equation becomes:

− I1(x, y) sin(ϕ)∂u
∂x

= (I2(x, y)− I1(x, y) cos(ϕ)) ∀(x, y) ∈ Ω (2.11)

This example is useful to understand how the information about the surface is
given by the light. We can see that the main information is given in the direction
of the vector ω̃′′ that in our case coincides with the direction of the X axis (the
same thing, but with the Y axis, happens if we take the second light source ω′′ =
(0, sin(ϕ), cos(ϕ))). The approximation schemes give, like we will see in the next
paragraph, good results also for finite difference methods with low order convergence
because of their numerical integration along the characteristic lines. This allows us
to study a two-dimensional problem like a one-dimensional case considering it along
the characteristic curves.

(xi−1, yj+1)

(xs, ys)(xi−1, yj)

(xi, yj+1)

(xs, ys)

(xi+1, yj)

(xi+1, yj+1)

(xi, yj)

ρ(xi, yj)

(xk, yk+1)

ω′
ω′′

x

y

z

ϕ
ω′

ω′′

x

y

z

ϕ

θ

 North ElevationFigure 2.1. On the left the two light sources of the first example (that is coplanar to the
xz plane) and on the right the light vectors of the second example.

Example 2
When the second light is any unitary vector (i.e. ω′′ = (sin(ϕ) cos(θ), sin(θ) sin(ϕ),

cos(ϕ)) with ϕ ∈ (−π
2 , 0) ∪ (0, π2 ) and θ ∈ [0, 2π]), we can note that the equation

becomes

− I1(x, y)ω′′1
∂u

∂x
− I1(x, y)ω′′2

∂u

∂y
= I2(x, y)− I1(x, y)ω′′3 ∀(x, y) ∈ Ω (2.12)

and the curves where the luminous information travel (i.e. the characteristic field)
is the same as before and for θ 6= k π2 (with k = 0, 1, 2, 3) we lose the complete
coordination with the axis. This inconvenient does not change the type of problem
to solve, that is, the characteristic curves continue to be straight lines. In particular
now they are an improper sheaf of lines defined by the angle θ. The approximation
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of the linear equation (2.7) in fact is very difficult if we don’t consider schemes that
take care of the direction of the luminous information.

Lemma 2.2 If there are not any points (x, y) ∈ Ω of black shadows for the image
functions (i.e. I1(x, y) 6= 0 and I2(x, y) 6= 0), we have that ||b(x, y)|| 6= 0 (i.e. the
vectorial function does not vanish in Ω).

Proof. Now, considering the definition of the function b(x, y), suppose for
absurd that there exists a point (x, y) ∈ Ω such that b(x, y) = 0, that is:

{
I2(x, y)ω′1 − I1(x, y)ω′′1 = 0
I2(x, y)ω′2 − I1(x, y)ω′′2 = 0 (2.13)

If ω̃′ = ω̃′′ then also ω′3 = ω′′3 because we are considering this vector on the upper semi
sphere. This is redundant with the conclusion of (2.13) (that is I1(x, y) = I2(x, y))
since {

I2(x, y)ω1 = I1(x, y)ω1
I2(x, y)ω2 = I1(x, y)ω2

where (ω1, ω2) = ω̃′ = ω̃′′, but it is not the situation of the photometric stereo
technique.

In this case it is necessary to consider only the case when ω̃′ 6= ω̃′′, that is
{

(I1(x, y),−I2(x, y)) · (ω′′1 , ω′1) = 0
(I1(x, y),−I2(x, y)) · (ω′′2 , ω′2) = 0

This means that the vector (I1(x, y),−I2(x, y)) is in the same time orthogonal to
(ω′′1 , ω′1) and (ω′′2 , ω′2). We can distinguish two cases:

1. the vectors (ω′′1 , ω′1) and (ω′′2 , ω′2) are orthogonal and coincident (that is
(ω′′1 , ω′1) ≡ (ω′′2 , ω′2)), see Fig. 2.2;

(ω′′
1 , ω′

1) ≡ (ω′′
2 , ω′

2)

(ω′′
1 , ω′

1)

(ω′′
2 , ω′

2)

(I1(x, y),−I2(x, y))

(I1(x, y),−I2(x, y))

(I1,−I2)

(ω′′
1 , ω′

1) ≡ (ω′′
2 , ω′

2) {
ω′

1 = ω′
2

ω′′
1 = ω′′

2

x

y

z

π

4

5π

4

(I1,−I2)

x

y

z

{
ω′

1 = −ω′
2

ω′′
1 = −ω′′

2

(ω′′
1 , ω′

1)

(ω′′
2 , ω′

2)

3π

4

7π

4

Figure 2.2. On the left the disposition of the orthogonal vector relatively to the first case.
On the right, in red, the set of all the possible light sources respect this situation.
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(ω′′

1 , ω′
1) ≡ (ω′′

2 , ω′
2)

(ω′′
1 , ω′

1)

(ω′′
2 , ω′

2)

(I1(x, y),−I2(x, y))

(I1(x, y),−I2(x, y))

(I1,−I2)

(ω′′
1 , ω′

1) ≡ (ω′′
2 , ω′

2) {
ω′

1 = ω′
2

ω′′
1 = ω′′

2

x

y

z

π

4

5π

4

(I1,−I2)

x

y

z

{
ω′

1 = −ω′
2

ω′′
1 = −ω′′

2

(ω′′
1 , ω′

1)

(ω′′
2 , ω′

2)

3π

4

7π

4

Figure 2.3. On the left the second case explained by the disposition of the vectors. On the
right se set of all the possible light sources in the unitary sphere.

2. the two vectors (ω′′1 , ω′1) and (ω′′2 , ω′2) are orthogonal and placed in the opposite
direction (that is ω′′1 = −ω′′2 and ω′1 = −ω′2), see Fig. 2.3.

For both cases we arrive to keep, instead of the two null component of the vector b
in (2.13), only one equation (because it is easy to see that in this two cases they are
the same). Let us take, for example, the first. That is:

I2(x, y)ω′1 − I1(x, y)ω′′1 = 0 (2.14)

Now, in order to complete the proof we consider the definition of images I1 and I2
like for the physic case. This means that, replacing their definition we have:

−∇u(x, y) · ω̃′′ + ω′′3√
1 + ||∇u(x, y)||2 ω′1−

−∇u(x, y) · ω̃′ + ω′3√
1 + ||∇u(x, y)||2 ω

′′
1 = 0

−∇u(x, y) · (ω′′1 , ω′′2) + ω′′3√
1 + ||∇u(x, y)||2 ω′1−

−∇u(x, y) · (ω′1, ω′2) + ω′3√
1 + ||∇u(x, y)||2 ω′′1 = 0

∂u

∂x
(x, y)ω′′1ω′1 −

∂u

∂y
(x, y)ω′′2ω′1 + ω′′3ω

′
1+∂u

∂x
(x, y)ω′1ω′′1 + ∂u

∂y
(x, y)ω′2ω′′1 − ω′3ω′′1 = 0

∂u

∂x
(x, y)ω′′1ω′1 −

∂u

∂y
(x, y)ω′′1ω′1 + ω′′3ω

′
1+∂u

∂x
(x, y)ω′1ω′′1 + ∂u

∂y
(x, y)ω′1ω′′1 − ω′3ω′′1 = 0

Then we finally arrive to:
ω′′3
ω′3

= ω′′1
ω′1

= ω′′2
ω′2

and if we consider the previous equivalence using the spherical coordinates for the
light source vectors we obtain:

cosϕ2
cosϕ1

= sinϕ2 cos θ2
sinϕ1 cos θ1

= sinϕ2 sin θ2
sinϕ1 sin θ1

. (2.15)

In the first case we have that θ1, θ2 ∈ {π4 , 5π
4 } whereas in the second case θ1, θ2 ∈

{3π
4 ,

7π
4 }. Our target is to prove that θ1 = θ2 in order to obtain the absurd considering
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that in this case it results that ω̃′ = ω̃′′ (i.e. ω′ = ω′′) and it is not the case of the
photometric stereo.

It is clear that, for both cases, if cos θ2
cos θ1

= +1 then θ1 = θ2 while cos θ2
cos θ1

= −1
means θ1 6= θ2.

Let us suppose, for absurd again, that θ1 6= θ2. Then, from (2.15) we have:

cosϕ2
cosϕ1

= −sinϕ2
sinϕ1

and it is not possible because ϕ1, ϕ2 ∈ [0, π2 ].

�

We will see that this lemma will be useful in two important points in the next
parts: the first is for the proof of the uniqueness of the weakest admissible solution
of the problem and, the second, is related to an important consideration related to
the semi-lagrangian numerical scheme.

One way to prove the existence and the uniqueness of the solution of the problem
(2.8) is to consider the characteristics method ([58]). This kind of proof gives us
the possibility to use a numerical scheme that retraces this method to construct an
approximation of the solution.

If we consider the function that describes the previous linear problem as the (1.4)
one, that is

H(x, y, p) = b(x, y) · p− f(x, y) = 0 (2.16)

we can write the uniqueness theorem like this:

Theorem 2.3 If we consider H(x, y, p) = b(x, y) · p − f(x, y) with b(x, y), f(x, y)
and g(x, y) Lipschitz functions, then the problem

{
H(x, y,∇u) = 0, ∀(x, y) ∈ Ω;
u(x, y) = g(x, y) ∀(x, y) ∈ ∂Ω. (2.17)

admits an unique solution u(x, y) ∈ C1(Ω).

We have rewritten the problem (1.4) just for emphasize that, if we want to arrive
to find the unique smooth solution of this kind of differential problem, we need
to have the equation defined ∀(x, y) ∈ Ω. In the next sections we will see as the
weakening of the regularity of the solution for the same problem allow us to write
that the equation of the problem must be verified a.e.(x, y) ∈ Ω. This is because
the equation depends only from the gradient on u and also because we want to
weakening the solution till the Lipschitz continuity space.

2.1 Existence and uniqueness of the weak solution
As seen before, for the problem (2.8) it is possible to prove the existence and the
uniqueness of a regular solution that is a classical smooth solution. In order to
complete the analysis and try to make this approach applicable in practice, we
will extend the uniqueness results also in the case of weak solution. In our case
we denote by weak solutions the set of Lipschitz functions defined on Ω. In real
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applications indeed the most part of the objects that we can take a picture can be
considered without points of discontinuity, and only with points where they are not
differentiable.

Let’s observe that the SfS problem, when we use only one image, fails its target
(the reconstruction of the surface) even if we consider the restriction of the problem
to the classical solutions that is to the C1(Ω) functions ([2, 9]).

If we remain in the context of the applications, it is possible to consider the
advantage of the study of an inverse problem like the SfS. In this case (that is the
physical case), in fact, we can understand what happens to the function coefficients
b(x, y) and f(x, y). If we consider as a solution surface u a Lipschitz one, and we
consider the points where it is not differentiable as the family of piecewise regular
curves (γ1(t), . . . , γk(t)) where t is the argument of the parametric representation,
it is clear that this curve contains also the points of discontinuity of the functions
b(x, y) and f(x, y) because of their definition depends by I1(x, y) and I2(x, y). This
means that our problem (2.8) has, in the linear equation, discontinuous coefficients.
That is, if we consider our differential problem like an inverse problem of SfS with
photometric stereo technique, searching for a weak solution implies a study of the
linear partial differential equation with discontinuous coefficients. Moreover there is
a relation between the set of points of discontinuity of b(x, y) and f(x, y) and the set
of points where the solution u is not differentiable in fact they are the same (see Fig.
2.4). Another feature about the discontinuity type of b(x, y) and f(x, y) is always
related to the fact that we are considering an inverse problem where it is proposed
to find a Lipschitz solution. This means that it must be a jump discontinuity.

ω

u(x) = 1 − |x| I(x) = ω · n(x)

1

1−1

1

1−1

Figure 2.4. A schematic example shows that the points where the image function I is
discontinuous are the same for which the solution u is not differentiable. On the left the
Lipschitz function, on the right the associated image through the light ω.

Theorem 2.4 Let us consider two points (x̂, ŷ), (x̃, ỹ) ∈ Ω\(γ1(t), . . . , γk(t)) (where
(γ1(t), . . . , γk(t)) represents the family of jump discontinuity curves for b) and let us
define the following quantities:

Î1 = I1(x̂, ŷ), Ĩ1 = I1(x̃, ỹ)
Î2 = I2(x̂, ŷ), Ĩ2 = I2(x̃, ỹ).
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Replacing them in the analytical form of b(x, y) (2.9)

b̂ = (b1(x̂, ŷ), b2(x̂, ŷ)) = (Î2ω
′
1 − Î1ω

′′
1 , Î2ω

′
2 − Î1ω

′′
2)

b̃ = (b1(x̃, ỹ), b2(x̃, ỹ)) = (Ĩ2ω
′
1 − Ĩ1ω

′′
1 , Ĩ2ω

′
2 − Ĩ1ω

′′
2)

we have
b̂ · b̃ ≥ 0. (2.18)

Proof.
Let us start the prove writing (2.18) in its complete analytical form. We obtain:

(Î2ω
′
1 − Î1ω

′′
1 , Î2ω

′
2 − Î1ω

′′
2) · (Ĩ2ω

′
1 − Ĩ1ω

′′
1 , Ĩ2ω

′
2 − Ĩ1ω

′′
2) ≥ 0

(Î2ω
′
1 − Î1ω

′′
1)(Ĩ2ω

′
1 − Ĩ1ω

′′
1) + (Î2ω

′
2 − Î1ω

′′
2)(Ĩ2ω

′
2 − Ĩ1ω

′′
2) ≥ 0

that is

Î2Ĩ2(ω′2)2 − Ĩ1Î2ω
′
1ω
′′
1 − Î1Ĩ2ω

′
1ω
′′
1 + Î1Ĩ1(ω′′1)2+

+ Î2Ĩ2(ω′2)2 − Ĩ1Î2ω
′
2ω
′′
2 − Î1Ĩ2ω

′
2ω
′′
2 + Î1Ĩ1(ω′′2)2 ≥ 0

that can be showed as follow:

Î2Ĩ2((ω′1)2 + (ω′2)2)− Ĩ1Î2(ω′1ω′′1 + ω′2ω
′′
2)−

− Î1Ĩ2(ω′1ω′′1 + ω′2ω
′′
2) + Î1Ĩ1((ω′′1)2 + (ω′′2)2) ≥ 0

so in the end we study the inequality below

Î2Ĩ2||ω̃′||2 + Î1Ĩ1||ω̃′′||2 ≥ (Î1Ĩ2 + Ĩ1Î2)ω̃′ · ω̃′′. (2.19)

Now we have to take into account that our image functions have all bounded
values in (0, 1]. The only way to have the left side of (2.19) equal to zero consists to
take ω̃′ and ω̃′′ such that ||ω̃′|| and ||ω̃′′|| are equal to zero at the same time. But
this is not permitted by the photometric stereo technique definition used to solve
the problem (i.e. the light sources must be different).

It is clear that if we take the two light vectors such that ω̃′ · ω̃′′ ≤ 0 we obtain
(2.18) verified, but now we want to prove it (through the (2.19) formulation) in a
more general case.

Let us recall the definition of the image function (in the interested points) in the
physic case:

Î1 = −∇u(x̂, ŷ) · ω̃′ + ω′3√
1 + ||∇u(x̂, ŷ)||2 , Ĩ1 = −∇u(x̃, ỹ) · ω̃′ + ω′3√

1 + ||∇u(x̃, ỹ)||2 ,

Î2 = −∇u(x̂, ŷ) · ω̃′′ + ω′′3√
1 + ||∇u(x̂, ŷ)||2 , Ĩ2 = −∇u(x̃, ỹ) · ω̃′′ + ω′′3√

1 + ||∇u(x̃, ỹ)||2 .

replacing them into (2.19), we observe that the denominator of all the terms of both
sides is the same, that is:

√
1 + ||∇u(x̃, ỹ)||2

√
1 + ||∇u(x̂, ŷ)||2
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and we can study the inequality without it because it is always different from zero
(and in particular it is positive). Let us define the following quantities (positive by
definition):

î1 = −∇u(x̂, ŷ) · ω̃′ + ω′3, ĩ1 = −∇u(x̃, ỹ) · ω̃′ + ω′3,

î2 = −∇u(x̂, ŷ) · ω̃′′ + ω′′3 , ĩ2 = −∇u(x̃, ỹ) · ω̃′′ + ω′′3 ,
(2.20)

for which is possible to calculate the differences below:

|̂i1 − ĩ1| = |(∇u(x̂, ŷ) · ω̃′ + ω′3)− (−∇u(x̃, ỹ) · ω̃′ + ω′3)| =
= |(∇u(x̃, ỹ)−∇u(x̂, ŷ)) · ω̃′| ≤ ||∇u(x̃, ỹ)−∇u(x̂, ŷ)||||ω̃′|| ≤ ∆L||ω̃′|| (2.21)

|̂i2 − ĩ2| = |(∇u(x̂, ŷ) · ω̃′′ + ω′′3)− (−∇u(x̃, ỹ) · ω̃′′ + ω′′3)| =
= |(∇u(x̃, ỹ)−∇u(x̂, ŷ)) · ω̃′′| ≤ ||∇u(x̃, ỹ)−∇u(x̂, ŷ)||||ω̃′′|| ≤ ∆L||ω̃′′||

(2.22)

that permit to write that

∃! ξ ∈ [−∆L,∆L] : î1 = ĩ1 + ξ||ω̃′||, î2 = ĩ2 + ξ||ω̃′′||. (2.23)

Now, replacing the equalities of (2.23) in (2.19) we obtain:

(̃i2+ξ||ω̃′′||)̃i2||ω̃′||2+(̃i1+ξ||ω̃′||)̃i1||ω̃′′||2−
[
(̃i1+ξ||ω̃′||)̃i2+(̃i2+ξ||ω̃′′||)̃i1

]
ω̃′·ω̃′′ ≥ 0

(̃i2)2||ω̃′||2 + ĩ2ξ||ω̃′′||||ω̃′||2 + (̃i1)2||ω̃′′||2 + ĩ1ξ||ω̃′||||ω̃′′||−
−
[
ĩ1ĩ2 + ĩ2ξ||ω̃′||+ ĩ1ĩ2 + ĩ1ξ||ω̃′′||

]
ω̃′ · ω̃′′ ≥ 0

(̃i2ω̃′ − ĩ1ω̃′′)2 + ξ
[
ĩ2||ω̃′′||||ω̃′||2 + ĩ1||ω̃′||||ω̃′′||2 −

(
ĩ2||ω̃′||+ ĩ1||ω̃′′||

)
ω̃′ · ω̃′′

]
≥ 0

(̃i2ω̃′ − ĩ1ω̃′′)2 + ξ
[
||ω̃′||||ω̃′′||(̃i2||ω̃′||+ ĩ1||ω̃′′||)−

(
ĩ2||ω̃′||+ ĩ1||ω̃′′||

)
ω̃′ · ω̃′′

]
≥ 0

(̃i2ω̃′ − ĩ1ω̃′′)2 + ξ
[
(̃i2||ω̃′||+ ĩ1||ω̃′′||)(||ω̃′||||ω̃′′|| − ω̃′ · ω̃′′)

]
≥ 0. (2.24)

Considering that ||ω̃′||||ω̃′′|| − ω̃′ · ω̃′′ ≥ 0 (for the Cauchy-Schwarz inequality), we
have that the (2.24) is verified if ξ ≥ 0. Now we can obtain the appropriate sign
of this coefficient considering the most appropriate relation between ĩj and îj for
j = 1, 2. That is, let us suppose that ξ ∈ [−∆L, 0), it is clear that we can choose the
following relation

ĩ1 = î1 − ξ||ω̃′||, ĩ2 = î2 − ξ||ω̃′′||
(or the others intermediate relations) and repeat the substitutions in order to obtain
the (2.24) satisfied.

�

It is clear that is very important the structure of the vector field b(x, y) near the
points of discontinuity because the characteristics have not to meet any obstacle for
the propagation of the information across the domain. In Fig. 2.5 we summarize the
possibles cases of behavior of b(x, y) around a point (x, y) of a fixed discontinuity
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curve γ(t). In the picture of Fig. 2.5(a) and Fig. 2.5(b) we consider the vector field
well structured for the information flow because in these cases we can obtain the
uniqueness of a weak solution for the linear problem (2.17). In the others two cases
of Fig. 2.5(c) and Fig. 2.5(d) we are not able to obtain a unique continuous solution
without know additional information about the height of the surface on the curve
γ(t).
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Figure 2.5. The vector field with respect to the discontinuity curve γ(t).

Let us start proving a result regarding the global structure of b(x, y). We will
emphasize later the importance of this result respect the curves of its discontinuity.
In fact it is possible to prove that the characteristic field has the features of the
Fig.2.5(a) or Fig.2.5(b).

Theorem 2.5 Let γ(t) be a curve of discontinuity for the function b(x, y) (and
f(x, y)) and let (x, y) be a point of this curve. Let n(x, y) be the outgoing normal
with respect to the set Ω+, than we have

[
lim

(x,y)∈Ω+→(x,y)
b(x, y) · n(x, y)

][
lim

(x,y)∈Ω−→(x,y)
b(x, y) · n(x, y)

]
≥ 0 (2.25)

Proof.
Let us define the following quantities:

I+
1 = lim

(x,y)∈Ω+→(x,y)
I1(x, y), I−1 = lim

(x,y)∈Ω−→(x,y)
I1(x, y),

I+
2 = lim

(x,y)∈Ω+→(x,y)
I2(x, y), I−2 = lim

(x,y)∈Ω−→(x,y)
I2(x, y),

in order to work with the vector field b(x, y) in the limit zone of (x, y) considering:

lim
(x,y)∈Ω+→(x,y)

b(x, y) = (b+1 , b+2 ) =(I+
2 ω
′
1 − I+

1 ω
′′
1 , I

+
2 ω
′
2 − I+

1 ω
′′
2),

lim
(x,y)∈Ω−→(x,y)

b(x, y) = (b−1 , b−2 ) =(I−2 ω′1 − I−1 ω′′1 , I−2 ω′2 − I−1 ω′′2).
(2.26)

Calling as (n1, n2) = (n1(x, y), n2(x, y)) the two coordinates of n(x, y) and replacing
these last identity in the inequality (2.25) it is possible to write the following passages:

(b+1 n1 + b+2 n2)(b−1 n1 + b−2 n2) ≥ 0
b+1 b
−
1 n

2
1 + b+2 b

−
2 n

2
2 + n1n2(b+1 b−2 + b+2 b

−
1 ) ≥ 0
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and now, using (2.26), we have

(I+
2 ω
′
1 − I+

1 ω
′′
1)(I−2 ω′1 − I−1 ω′′1)n2

1 + (I+
2 ω
′
2 − I+

1 ω
′′
2)(I−2 ω′2 − I−1 ω′′2)n2

2+
[
(I+

2 ω
′
1 − I+

1 ω
′′
1)(I−2 ω′2 − I−1 ω′′2) + (I−2 ω′1 − I−1 ω′′1)(I+

2 ω
′
2 − I+

1 ω
′′
2)
]
n1n2 ≥ 0 (2.27)

For a better understanding, let us separate the coefficients that multiply n2
1 (2.28),

n2
2 (2.29) and n1n2 (2.30). We can write them respectively below:

I+
2 I
−
2 (ω′1)2 − I2 + I−1 ω

′
1ω
′′
1 − I+

1 I
−
2 ω
′
1ω
′′
1 + I+

1 I
−
1 (ω′′1)2 =

= I+
2 I
−
2 (ω′1)2 − (I+

2 I
−
1 + I+

1 I
−
2 )ω′1ω′′1 + I+

1 I
−
1 (ω′′1)2 (2.28)

I+
2 I
−
2 (ω′2)2 − I+

2 I
−
1 ω
′
2ω
′′
2 − I+

1 I
−
2 ω
′
2ω
′′
2 + I+

1 I
−
1 (ω′′2)2 =

I+
2 I
−
2 (ω′2)2 − ω′2ω′′2(I+

1 I
−
2 + I+

2 I
−
1 ) + I+

1 I
−
1 (ω′′2)2 (2.29)

I+
2 I
−
2 ω
′
1ω
′
2 − I−1 I+

2 ω
′
1ω
′′
2 − I+

1 I
−
2 ω
′′
1ω
′
2 + I+

1 I
−
1 ω
′′
1ω
′′
2+

+ I+
2 I
−
2 ω
′
2ω
′
1 − I+

2 I
−
1 ω
′
2ω
′′
1 − I+

1 I
−
2 ω
′′
2ω
′
1 + I+

1 I
−
1 ω
′′
1ω
′′
2 =

= 2I+
2 I
−
2 ω
′
1ω
′
2 − ω′1ω′′2(I−1 I+

2 + I+
1 I
−
2 )− ω′′1ω′2(I−1 I2

2 + I+
1 I
−
2 ) + 2I+

1 I
−
1 ω
′′
1ω
′′
2 =

= 2I+
2 I
−
2 ω
′
1ω
′
2 − (ω′1ω′′2 + ω′′1ω

′
2)(I−1 I+

2 + I+
1 I
−
2 ) + 2I+

1 I
−
1 ω
′′
1ω
′′
2 (2.30)

In order to proceed with the prove in the physic case, we consider the following
equality for the image functions:

I+
1 = lim

(x,y)∈Ω+→(x,y)
I1(x, y) = lim

(x,y)∈Ω+→(x,y)

−∇u(x, y) · ω̃′ + ω′3√
1 + ||∇u(x, y)||2 = −∇u

+ · ω̃′ + ω′3√
1 + ||∇u+||2 ,

I−1 = lim
(x,y)∈Ω−→(x,y)

I1(x, y) = lim
(x,y)∈Ω−→(x,y)

−∇u(x, y) · ω̃′ + ω′3√
1 + ||∇u(x, y)||2 = −∇u

− · ω̃′ + ω′3√
1 + ||∇u−||2 ,

I+
2 = lim

(x,y)∈Ω+→(x,y)
I2(x, y) = lim

(x,y)∈Ω+→(x,y)

−∇u(x, y) · ω̃′′ + ω′′3√
1 + ||∇u(x, y)||2 = −∇u

+ · ω̃′′ + ω′′3√
1 + ||∇u+||2 ,

I−2 = lim
(x,y)∈Ω−→(x,y)

I2(x, y) = lim
(x,y)∈Ω−→(x,y)

−∇u(x, y) · ω̃′′ + ω′′3√
1 + ||∇u(x, y)||2 = −∇u

− · ω̃′′ + ω′′3√
1 + ||∇u−||2 .

Since in the coefficients (2.28), (2.29) and (2.30) there are all terms divided by a
common denominator always strictly positive

√
1 + ||∇u+||2

√
1 + ||∇u−||2

we can eliminate it and consider the following quantities (always positive because of
the absence of the black shadows):

i+1 = −∇u+ · ω̃′ + ω′3, i−1 = −∇u− · ω̃′ + ω′3,

i+2 = −∇u+ · ω̃′′ + ω′′3 , i−2 = −∇u− · ω̃′′ + ω′′3 ,
(2.31)

and, considering the same differences (as in the Theorem 2.4)

|i+1 − i−1 | = |(∇u+ · ω̃′ + ω′3)− (−∇u− · ω̃′ + ω′3)| =
= |(∇u− −∇u+) · ω̃′| ≤ ||∇u− −∇u+||||ω̃′|| ≤ ∆±||ω̃′|| (2.32)
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|i+2 − i−2 | = |(∇u+ · ω̃′′ + ω′′3)− (−∇u− · ω̃′′ + ω′′3)| =
= |(∇u− −∇u+) · ω̃′′| ≤ ||∇u− −∇u+||||ω̃′′|| ≤ ∆±||ω̃′′||

(2.33)

we can write that

∃! η ∈ [−∆±, 0) ∪ (0,∆±] : i+1 = i−1 + η||ω̃′||, i+2 = i−2 + η||ω̃′′||. (2.34)

We are excluding the case η = 0 because it corresponds to the case of a regular
point for the surface u (i.e. η = 0 if and only if (x, y) /∈ γ(t)). Now, replacing the
equalities of (2.34) in (2.28), (2.29) and (2.30) we obtain respectively:

(i−2 )2(ω′1)2 + i−2 (ω′1)2||ω̃′′||η + (i−1 )2(ω′′1)2 + i−1 (ω′′1)2||ω̃′||η−
−
[
i−2 i
−
1 + i−1 ||ω̃′′||η + i−1 i

−
2 + i−2 ||ω̃′||η

]
ω′1ω

′′
1 =

= (i−1 ω′′1 − i−2 ω′1)2 + η
[
i−2 (ω′1)2||ω̃′′||+ i−1 (ω′′1)2||ω̃′|| − ω′1ω′′1(i−1 ||ω̃′′||+ i−2 ||ω̃′||)

]

(i−2 )2(ω′2)2 + i−2 (ω′2)2||ω̃′′||η + (i−1 )2(ω′′2)2 + i−1 (ω′′2)2||ω̃′||η−
−
[
i−1 i
−
2 + i−2 ||ω̃′||η + i−2 i

−
1 + i−1 ||ω̃′′||η

]
ω′2ω

′′
2 =

= (i−2 ω′2 − i−1 ω′′2)2 + η
[
i−2 (ω′2)2||ω̃′′|| − i−1 (ω′′2)2||ω̃′|| − ω′2ω′′2(i−1 ||ω̃′′||+ i−2 ||ω̃′||)

]

2(i−2 )2ω′1ω
′
2 + 2i−2 ω′1ω′2||ω̃′′||η + 2(i−1 )2ω′′1ω

′′
2 + 2i−1 ω′′1ω′′2 ||ω̃′′||η−

− (ω′1ω′′2 + ω′′1ω
′
2)
[
i−1 i
−
2 + i−1 ||ω̃′′||η + i−1 i

−
2 + i−2 ||ω̃′||η

]
=

= 2(i−1 )2ω′′1ω
′′
2 + 2(i−2 )2ω′1ω

′
2 − 2i−1 i−2 (ω′1ω′′2 + ω′′1ω

′
2)+

+ η
[
2i−2 ω′1ω′2||ω̃′′||+ 2i−1 ω′′1ω′′2 ||ω̃′′|| − (ω′1ω′′2 + ω′′1ω

′
2)(i−1 ||ω̃′′||+ i−2 ||ω̃′||)

]
=

= −2i−1 i−2 ω′′1ω′2 + 2(i−1 )2ω′′1ω
′′
2 + 2(i−2 )2ω′1ω

′
2 − 2i−1 i−2 ω′1ω′′2+

+ η
[
2i−2 ω′1ω′2||ω̃′′||+ 2i−1 ω′′1ω′′2 ||ω̃′′|| − (ω′1ω′′2 + ω′′1ω

′
2)(i−1 ||ω̃′′||+ i−2 ||ω̃′||)

]
=

= −2(i−1 ω′′1 − i2ω′1)(i−2 ω′2 − i−1 ω′′2)+

+ η
[
2i−2 ω′1ω′2||ω̃′′||+ 2i−1 ω′′1ω′′2 ||ω̃′′|| − (ω′1ω′′2 + ω′′1ω

′
2)(i−1 ||ω̃′′||+ i−2 ||ω̃′||)

]

Replacing them into (2.27), we have:

[
(i−1 ω′′1 − i−2 ω′1)n1 − (i−2 ω2 − i−1 ω′′2)n2

]2
+

+ η
[(
i−2 (ω′1)||ω̃′′|| − (i−2 ||ω̃′||+ i−1 ||ω̃′′)ω′1ω′′1 + i−1 (ω′′1)2||ω̃′||)n2

1+

+
(
i−2 (ω′2)2||ω̃′′|| − (i−2 ||ω̃′||+ i−1 ||ω̃′′||)ω′2ω′′2 + i1(ω′′2)2||ω̃′||)n2

2+

+
(
2i−2 ω′1ω′2||ω̃′′||+ 2i−1 ω′′1ω′′2 ||ω̃′|| − (ω′1ω′′2 + ω′′1ω

′
2)(i−2 ||ω̃′||+ i−1 ||ω̃′′||

)
n1n2

]
≥ 0.



2.1 Existence and uniqueness of the weak solution 27

In order to verify the previous inequality we continue to manipulate the left side
obtaining

[
(i−1 ω′′1 − i−2 ω′1)n1 − (i−2 ω2 − i−1 ω′′2)n2

]2
+

+ η
[
i−2 ||ω̃′′||

(
(ω′1)2n2

1 + (ω′2)2n2
2 + 2ω′1ω′2n1n2

)
+

+ i−1 ||ω̃′||
(
(ω′′1)2n2

1 + (ω′′2)2n2
2 + 2ω′′1ω′′2n1n2

)−
− (i−2 ||ω̃′||+ i−1 ||ω̃′′||

)(
ω′1ω

′′
1n

2
1 + ω′2ω

′′
2n

2
2 + (ω′1ω′′2 + ω′′1ω

′
2)n1n2

)] ≥ 0

that in the end becomes
[
(i−1 ω′′1 − i−2 ω′1)n1 − (i−2 ω2 − i−1 ω′′2)n2

]2
+

+ η
[
i−2 ||ω̃′′||

(
ω′1n1 + ω′2n2

)2 + i−1 ||ω̃′||
(
ω′′1n1 + ω′′2n2

)2−

− (i−2 ||ω̃′||+ i−1 ||ω̃′′||
)(
ω′1ω

′′
1n

2
1 + ω′2ω

′′
2n

2
2 + (ω′1ω′′2 + ω′′1ω

′
2)n1n2

)] ≥ 0.

Now, with the aim to have the inequality verified, (as in the Theorem 2.4) it is
possible to choose the appropriate representation of the numerator of the images
valued by the limit in (x, y) (that is i+1 , i−1 , i+2 and i−2 ) in order to have an η of an
appropriate sign.

�

The conclusion of the previous theorem is related to the structure of the vector
field b(x, y). In fact, near the points of discontinuity, the condition (2.18) permits to
respects the structure represented in Fig. 2.5(a) and Fig. 2.5(b). Instead, in a global
sense, some difficult structures (like in Fig. 2.6) for b(x, y) are avoided. However this
condition on the vector field b is necessary for the construction of a unique Lipschitz
solution shown in the following result.

γ1(t)

γ2(t)

γ1(t)

γ2(t)

 South Elevation

γ1(t)

γ2(t)

γ1(t)

γ2(t)

 South Elevation

Figure 2.6. Two example of impossible structures for the vector field b(x, y).

Theorem 2.6 Let us consider the problem
{
b(x, y) · ∇u(x, y) = f(x, y), a.e. (x, y) ∈ Ω;
u(x, y) = g(x, y) ∀(x, y) ∈ ∂Ω. (2.35)
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Let us suppose that (γ1(t), . . . , γk(t)), the family of discontinuity curves for b(x, y)
and f(x, y), are not characteristic curves (with respect to the previous problem).
Then there exists a unique Lipschitz solution of the problem.

Proof.
We start the proof considering the problem written like (2.17). The following

system of ordinary differential equation permits to obtain the characteristics:




(a) ż(s) = DpH(p(s), xc(s), yc(s)) · p(s)
(b) ẋc(s) = DpH(p(s), xc(s), yc(s))1
(c) ẏc(s) = DpH(p(s), xc(s), yc(s))2

(2.36)

where s is the variable of the parameterization and z(s), p(s) are respectively the
value of u and ∇u on the projected characteristic (that is z(s) = u(xc(s), yc(s)) and
p(s) = ∇u((x(cs), yc(s))). The (2.36) in our case becomes





(a) ż(s) = f(xc(s), yc(s))
(b) ẋc(s) = b1(xc(s), yc(s))
(c) ẏc(s) = b2(xc(s), yc(s))

(2.37)

The initial condition to integrate this system of ordinary differential equations is
taken from the values of the function u known on the boundary. Then





(a0) u(xc(0), yc(0)) = g(x0, y0)
(b0) xc(0) = x0
(c0) yc(0) = y0

with (x0, y0) ∈ ∂Ω. It is possible now to use the result (2.2) considering that there
is no possibility to have attracting or source points in the domain Ω since the vector
field b(x, y) is always different from the null vector inside this domain.

Starting from the boundary, it is possible to integrate till the first point of inter-
section between the projection of the characteristic and the first jump discontinuity
curve using the standard method ([58]). Let’s consider the point (x1, y1) ∈ γj also
a point of the characteristic passing through (x0, y0), that is, there exists s̄ and t̄j
such that (x1, y1) = (xc(s̄), yc(s̄)) = γj(t̄j), see Fig. 2.7.

Now we can begin to solve another Dirichlet problem on the characteristic, very
similar to the starting one:

{
F (∇u(x, y), x, y) = 0, ∀(x, y) ∈ (xc(s), yc(s)) with s > s̄;
u(xc(s̄), yc(s̄)) = lim

s→s̄
u(xc(s), yc(s))

(2.38)
The well posedness of (2.38) is guaranteed from the type of discontinuity of the

functions b(x, y) and f(x, y). In fact the jump discontinuity permits to work with
prolongation by the limit. This problem is a simplification of the previous one (2.17)
because we are studying it only on a specific characteristic taking like initial starting
value the limit of z(s)s→s̄ for the system of ordinary differential equation (2.37).
Using the Theorem 2.5 is possible to understand that we don’t need of additional
information about the solution u inside the domain. In fact, the only information
we need to reconstruct the surface all over the domain Ω is the Dirichlet boundary
condition.
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(xc(s̄), yc(s̄))

(xc(s), yc(s))

∂Ω

γj(t)

Figure 2.7. A schematic representation of a first intersection point (xc(s̄), yc(s̄)) between
the projected characteristic and the curve of discontinuity γ(t).

The reasoning can be extended to all the discontinuity points, that is for all the
points of (γ1(t), . . . γk(t)). This means that the integration along the characteristic
s > s̄ is intended till a new point of discontinuity of the functions b(x, y) and f(x, y),
that is till a new intersection point between the characteristic and one of the γi
curve.

�

Now we want to explain that these kind of solution are the weakest possible to
obtain using this type of model for the SfS. If we continue to consider the problem
in the physical case, it is much easier to understand the impossibility to have a
discontinuous function of the problem (2.35). Let’s now use the one dimensional
case (always having reference to the two dimensional one) taking for example these
two functions:

u1(x) =
{
x+ 1, if x ≤ 1,
−x+ 3, if x > 1. u2(x) =

{
x+ 1, if x ≤ 1,
−x+ 2, if x > 1.

If we choose a two dimensional light source ω such that there is no shadow for both
the functions, it is then possible to write the respective image functions:

I(u1(x)) = (−u′1(x), 1)√
1 + (u′1(x)2)

· (ω1, ω2) = (−u′1(x)ω1 + ω2)√
1 + (u′1(x)2)

=

= (−u′2(x)ω1 + ω2)√
1 + (u′2(x)2)

= (−u′2(x), 1)√
1 + (u′2(x)2)

· (ω1, ω2) = I(u2(x))

This is because of the derivative of u1(x) and u2(x) (where they are derivable)
coincide.

It is clear that these two functions, when we fix the Ω domain, differ from the
values they assume on the boundary ∂Ω, but we will see in the next section that
not all the boundary is necessary to find the solution. Then, following the previous
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constructive demonstration with the aim to obtain a weaker solution, we need to
know the value of the jump of u in every point of discontinuity for u. Then, this
limitation implies that we are not able to consider discontinuous functions is relative
to this kind of model of SfS. In fact, by using a light placed at infinity it is not
possible to obtain an associate image that distinguishes from different discontinuous
surfaces with the same derivative.

2.2 Consistent boundary condition
In this section we want to introduce the concept of consistent boundary condition
with the purpose to define it for our differential problem.

In the previous section we have presented a way to find the unique solution using
the characteristic field across all the domain Ω. This approach can be used in two
different ways depending on the direction of the characteristic field we want take
into account.

If we call ν(x, y) the unit outgoing normal vector to ∂Ω, it is possible define the
following subsets of ∂Ω:

Γin = {(x, y) ∈ ∂Ω : ν(x, y) · lim
(x̃,ỹ)∈Ω→(x,y)

b(x̃, ỹ) < 0}

Γout = {(x, y) ∈ ∂Ω : ν(x, y) · lim
(x̃,ỹ)∈Ω→(x,y)

b(x̃, ỹ) > 0}

they are, respectively, the sets of points where the characteristic field is incoming
and outgoing respect to Ω. Let us recall that, in our hypotheses, the vector field b
is not continuous. This means that in all the discontinuous points of b belonging
to ∂Ω we have to consider the limit vector from the inside of the domain. Let us
emphasize once more Theorem 2.5 ensure us any ambiguous case about the sets Γin
and Γout in fact, as said before, if a curve of discontinuity coincides on a part of the
boundary, we have to consider the limit vector of b(x, y).

Then, we can write,
∂Ω = Γout ∪ Γin ∪ Γtan

where Γtan is the sets of points where the characteristic field is tangent to ∂Ω.
Let us explain what happens in a simple case going back to a previous example

where the light sources are: ω′ = (0, 0, 1) and ω′′ = (ω′′1 , ω′′2 , ω′′3) = (ω̃′′, ω′′3) =
(sin(ϕ) cos(θ), sin(θ) sin(ϕ), cos(ϕ)). Then, the vector field that defines the char-
acteristic field, that is b(x, y) = (−I1(x, y)ω′′1 ,−I1(x, y)ω′′2) = −I1(x, y)ω̃′′, can be
represented by straight lines all parallels to ω̃′′ but with the head in the opposite
side of it. In this case it is possible to see the two sets Γin and Γout of a particular
domain Ω (i.e. image domain) like in Fig. 2.8.

As we have seen before, we get to the uniqueness of the weak solution through
the characteristic method. In the proof we have not specified the orientation of this
field, giving for certain that the direction we consider is orientated as the vector
field b. In other words, the problem we solved in the proof is the forward problem,
that is: {

b(x, y) · ∇u(x, y) = f(x, y), a.e. (x, y) ∈ Ω;
u(x, y) = gin(x, y) ∀(x, y) ∈ Γin.

(2.39)
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Figure 2.8. An example of image domain Ω and the distribution of the ΓIn and ΓOut
sets considering a constant characteristic field (represented by the arrows) like in the
previous example.

In the same way we can consider the opposite direction and repeat the proof of
the uniqueness theorem obtaining the same result. Let us consider then the following
backward problem:

{
b(x, y) · ∇u(x, y) = f(x, y), a.e. (x, y) ∈ Ω;
u(x, y) = gout(x, y) ∀(x, y) ∈ Γout.

(2.40)

It is clear that, when we consider a global boundary condition g(x, y) (like in
the general problem (2.35)) defined all over the boundary domain ∂Ω, we need to
define the consistence of this function with both the previous cases. That is, when
we start to solve the solution from Γin, for example, we need to obtain, through the
characteristic method, the exact value of g(x, y) on the "other side" of the boundary,
that is Γout. With the aim to define the condition of compatibility of this boundary
condition we will define all the constraints that it has to respect to make the problem
well posed.

Let us emphasize that all the points of Ω which are not points of discontinuity for
b, can be reached by a characteristic curve, that is, for all these points the solution
can be univocally determined. We start considering (2.39). We define Γ̃(x0,y0)(t) as
the characteristic curve passing through (x0, y0) ∈ Γin and (x1, y1) ∈ Γout∩Γ̃(x0,y0)(t).
Now, following the characteristic method, we determine the value of uin at the point
(x1, y1). Fixing gin(x1, y1) = uin(x1, y1) we obtain the boundary condition gin(x, y)
defined in Γin ∪ Γout. Let us call it ḡin(x, y). In the same way we can repeat the
reasoning and build ḡout(x, y) defined in Γin ∪ Γout.

Definition 2.7 A function g(x, y) ∈ C(Γin) ∩ C(Γout) is a consistent boundary
condition if ḡout(x, y) = ḡin(x, y) and we setting it equal to them.

Let us emphasize that this kind of definition of consistent boundary condition
does not allow us to characterize a unique g(x, y) all over the boundary. That is,
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once we set it on Γin and Γout like explained before, there is not a unique way
to define it globally on all ∂Ω because of Γtan. However, this ambiguity does not
prevent to reconstruct the solution on all the open domain, on the contrary, using
the solution u(x, y) calculated on the open set Ω we can extend continuously the
surface also in Γtan.

That is, if we consider (xtan, ytan) ∈ Γtan we can call ν(xtan, ytan) the nor-
mal unitary vector defined through its polar coordinates, that is: ν(xtan, ytan) =
(cos(θtan), sin(θtan)). Let us define the continuous extension of u by the limit:

u(xtan, ytan) = lim
ρ→0

U(xtan + ρ cos(θtan), ytan + ρ sin(θtan)) (2.41)

where U is the composed function after the polar coordinates substitution.

2.3 Equivalence between the non-linear problem and
the linear one

Now we want to prove the equivalence between the problem (2.35) and the following




−∇u(x, y) · ω̃′ + ω′3√
1 + ||∇u(x, y)||2 = I1(x, y), a.e.(x, y) ∈ Ω;

−∇u(x, y) · ω̃′′ + ω′′3√
1 + ||∇u(x, y)||2 = I2(x, y), a.e.(x, y) ∈ Ω;

u(x, y) = g(x, y) ∀(x, y) ∈ ∂Ω.

(2.42)

Proposition 2.8 If v(x, y) is a solution of the nonlinear system (2.42) than it is a
solution also of (2.35).

Proof.
We will prove that the two problems are equivalent in the physical case, that is

when we consider the relation between the two images and the surface:




I1(x, y) = Gω′(v) = −∇v(x, y) · ω̃′ + ω′3√
1 + |∇v(x, y)|2 , (x, y) ∈ Ω;

I2(x, y) = Gω′′(v) = −∇v(x, y) · ω̃′′ + ω′′3√
1 + |∇v(x, y)|2 , (x, y) ∈ Ω;

(2.43)

Let’s call Gω′(v) and Gω′′(v) the operators that describe the SfS classical problem
applied to the surface v. We want now to emphasize how the functions I1(x, y),
I2(x, y) and the function u, solution of the problem (2.35), are correlated between
them. First, we fix the light sources, so the applications Gω′(v) and Gω′′(v) are
univocally determined (that is, if we assign a surface v, it is always possible to
calculate the bringhtness images I1 and I2 respectively for the light vectors ω′ e
ω′′), but they are not bijective (because it’s not possible to determine the surface v
only by the single function of the bringhtness and the value of the surface on the
boundary of the set Ω). Now we want to verify that, if u satisfies (2.35) and we add
the condition u(x, y) = v(x, y) for the (x, y) ∈ ∂Ω, then u(x, y) = v(x, y) in Ω. If
we consider v as the solution of the non-linear system, we can use the fact that it
generates the image functions I1 and I2. Then, by substitution we have:

∇u(x, y) · (ω̃′Gω′′(v)− ω̃′′Gω′(v)) = ω′3Gω′′(v)− ω′′3Gω′(v) (2.44)



2.4 Analysis of some approximation schemes 33

then

∇u(x, y) ·
(
ω̃′
−∇v(x, y) · ω̃′′ + ω′′3√

1 + |∇v(x, y)|2 − ω̃′′−∇v(x, y) · ω̃′ + ω′3√
1 + |∇v(x, y)|2

)
=

= ω′3
−∇v(x, y) · ω̃′′ + ω′′3√

1 + |∇v(x, y)|2 − ω′′3
−∇v(x, y) · ω̃′ + ω′3√

1 + |∇v(x, y)|2

∇u(x, y) · ((−∇v(x, y) · ω̃′′)ω̃′ + ω′′3 ω̃
′ + (∇v(x, y) · ω̃′)ω̃′′ − ω′3ω̃′′) =

= −∇v(x, y) · ω̃′′ω′3 + ω′3ω
′′
3 +∇v(x, y) · ω̃′ω′′3 − ω′3ω′′3

∇u(x, y)·((−∇v(x, y)·ω̃′+∇v(x, y)·ω̃′)ω̃′′+ω′′3 ω̃′−ω′3ω̃′′) = −∇v(x, y)·(ω̃′′ω′3−ω̃′ω′′3)

for which
∇u(x, y) · (ω′′3 ω̃′ − ω′3ω̃′′) = ∇v(x, y) · (ω̃′ω′′3 − ω̃′′ω′3)

and this implies the equality ∇u(x, y) = ∇v(x, y) in Ω. If we consider the condition
u(x, y) = v(x, y) for the points (x, y) ∈ ∂Ω, we obtain the extention of the equality
also in all the domain.

�

We will use now this result for the uniqueness of solution of the problem (2.42),
that is:

Corollary 2.9 The nonlinear system (2.42) admits only one solution.

Proof.
If, for absurd, we take two solutions of the problem (2.42) called v1(x, y) and

v2(x, y) then, by (2.8) we can also say that both of them are solutions of the problem
(2.35). But, by the uniqueness result Theorem 2.6, we have that v1(x, y) = v2(x, y)
∀(x, y) ∈ Ω.

�

2.4 Analysis of some approximation schemes

Now we consider the numerical methods through which we have obtained the
numerical results on artificial images.

For all the numerical schemes we consider a square domain Ω like the set [a, b]2
and with a uniform discretization space step ∆ = (b− a)/n where n is the number
of intervals divides the side of the square (that is xi = −1 + i∆, yj = −1 + j∆ with
i, j = 0, . . . , n). We use this uniform discretization calling by Ωd all the points of
the lattice belonging to Ω, by Ωd all the internal points and by ∂Ωd all the points
boundary points.
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2.4.1 Finite difference
First of all we start with the approximation of u via the following discretization
of the first derivative: ux(xi, yj) = u(xi+1,yj)−u(xi−1,yj)

2∆ + O(∆2) and uy(xi, yj) =
u(xi,yj+1)−u(xi,yj)

∆ +O(∆). We can write a discretization (2.35) as

U1(xi, yj+1) = U1(xi, yj)+
[
f(xi, yj)−b1(xi, yj)

U1(xi+1, yj)− U1(xi−1, yj)
2∆

] ∆
b2(xi, yj)
(2.45)

and solve it for i = 1, . . . , n− 1 and j = 0, . . . , n− 1. In this case, the only necessary
boundary conditions are those on the left, right and inferior sides of the square.

For this first method the approximation of the surface is better when the
characteristics of the problem are vertical (or almost vertical).

A second method discretizes backward with respect to the y variable rather then
forward (i.e. uy(xi, yj) = u(xi,yj)−u(xi,yj−1)

∆ +O(∆)), the derivative with respect to x
is descritized in the same way. We obtain then:

U2(xi, yj−1) = U2(xi, yj)−
[
f(xi, yj)−b1(xi, yj)

U2(xi+1, yj)− U2(xi−1, yj)
2∆

] ∆
b2(xi, yj)
(2.46)

and approximate the solution taking the index in this order: i = 1, . . . , n − 1
and j = n, . . . , 1. The difference compared with the previous one is that the
approximation is done from top to bottom. In this case the only boundary conditions
we need are those on the left, right and superior sides of the square.

Now we consider, on the same previous idea, a finite difference discretization of
the equation (2.35) of the second order with respect to the y variable and a first order
discretization of the first derivative in x. That is: ux(xi, yj) = u(xi+1,yj)−u(xi,yj)

∆ +
O(∆) and uy(xi, yj) = u(xi,yj+1)−u(xi,yj−1)

2∆ +O(∆2); we obtain the following scheme:

U3(xi+1, yj) = U3(xi, yj)+
[
f(xi, yj)−b2(xi, yj)

U3(xi, yj+1)− U3(xi, yj−1)
2h

] ∆
b1(xi, yj)
(2.47)

for i = 0, . . . , n− 1 and j = 1, . . . , n− 1. For this case the only necessary boundary
conditions are those on the left, upper and bottom sides of the square.

In the end we consider the last finite difference explicit method where the differ-
ence compared with the previous one is that the first derivative in x is approximated
by ux(xi, yj) = u(xi,yj)−u(xi−1,yj)

∆ +O(∆). Then the scheme becomes:

U4(xi−1, yj) = U4(xi, yj)−
[
f(xi, yj)−b2(xi, yj)

U4(xi, yj+1)− U4(xi, yj−1)
2∆

] ∆
b1(xi, yj)
(2.48)

for i = n, . . . , 1 and j = 1, . . . , n− 1. The only boundary conditions that we need
are on the left, upper and bottom sides of the square.

From the numerical tests one can see that the good approximation of the surface
(at least in the case of a vertical ω′) depends only on the direction of the characteristics
(i.e. ω̃2). It is clear that this way to solve numerically the problem has all the
limits well known of the approximation of the solution relative to the transport
equation. In particular, the velocity function depends by the ratio between the two
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components of the vector field b, that is b1 and b2. Furthermore, in our case there
is not a real dependence on the time, but, in the previous schemes, the role of the
evolution parameter is given to x for the approximation U3 and U4, and to y for
the approximation U1 and U2.

See [83] and [84] for others results about the stability, consistence and convergence
of this kind of numerical schemes.

Now, we want to explain that even if we use the implicit finite difference schemes
(usually used to ameliorate the stability of this kind of techniques) we have to
continue to respect some constraints in order to reach the convergence [85].

Let us consider the following two discretization for the first derivative of u:
∂u

∂x
(xi, yj) = u(xi+1, yj+1)− u(xi−1, yj+1)

2∆ +O(∆2),

∂u

∂y
(xi, yj) = u(xi, yj+1)− u(xi, yj)

∆ +O(∆).

This time, starting with the knowledge of the boundary condition in the left, right
and inferior sides of the domain, we apply the previous two approximations to the
equation of the hyperbolic problem (2.8) and we get the following implicit scheme:

U5(xi, yj+1) + b1(xi, yj+1)
2b2(xi, yj)

(U5(xi+1, yj+1)− U5(xi−1, yj+1)) =

= U5(xi, yj) + ∆
b2(xi, yj)

f(xi, yj). (2.49)

Since that for this scheme we should divide by the second component of the
vector field b, if it exists a point (xi, yj) such that b2(xi, yj) = 0 it is clear that the
numerical scheme is ill-posed.

Then, for every line of the domain (and for j = 0, . . . , n− 1) we have to solve
the following tridiagonal linear systems:




1 b1
1,j+1
2b2

1,j
0 0 . . . 0

− b1
2,j+1
2b2

2,j
1 b1

2,j+1
2b2

2,j
0 . . . 0

0 . . . . . . . . . . . . ...
... . . . . . . . . . . . . 0
0 . . . 0 − b1

n−2,j+1
2b2

n−2,j
1 b1

n−2,j+1
2b2

n−2,j

0 . . . . . . 0 − b1
n−1,j+1
2b2

n−1,j
1







U5
1,j+1

U5
2,j+1
...
...

U5
n−2,j+1

U5
n−1,j+1




=

=




U5
1,j + ∆

b2
1,j
f1,j + b1

1,j+1
2b2

1,j
U5

0,j+1

U5
2,j + ∆

b2
2,j
f2,j

...

...
U5
n−2,j + ∆

b2
n−2,j

fn−2,j

U5
n−1,j + ∆

b2
n−1,j

fn−1,j −
b1

n,j+1
2b2

n,j
U5
n,j+1




(2.50)
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where we are calling b1(xi, yj) and b2(xi, yj) respectively as b1i,j and b2i,j .
In order to increase the efficiency of calculus we optimize the Thomas’ algorithm

for the computation of the solution using the LU factorization (M = LU). In
particular, instead of use matrix structure, we store all the coefficients in the less
number of vectors and adapt the calculus to this particular case. That is, once we
rewrite the diagonal, superior and inferior coefficients of the previous matrix as
follow:

mdiag = (1, . . . , 1);

msup =
(
b11,j+1
2b21,j

, . . . ,
b1n−2,j+1
2b2n−2,j

)
;

minf =
(
−
b12,j+1
2b22,j

, . . . ,−
b1n−1,j+1
2b2n−1,j

)
;

(2.51)

it is possible to compute easily the coefficients of the two matrices L and U (re-
spectively lower triangular and upper triangular). In fact, if we fix the diagonal
coefficients of L equal to 1 and udiag1 = mdiag

1 , we have that:

usupk = msup
k ;

lsupk = msup
k

udiagk

;

udiagk+1 = mdiag
k+1 − l

sup
k usupk ;

(2.52)

for k = 1, . . . , n−1. As we explain in the numerical tests part, this kind of algorithm
optimization permits to be efficient and increase the speedup of the numerical scheme
in order to solve the problem of the approximation of the solution U5 in less than
one second even if we are using images of size 800× 800.

In order to complete the computation of the values of U5 for the row j we have to
solve two triangular linear systems which is a very standard issue for the numerical
analysis.

With the aim to study the stability of this scheme we will use the Fourier-method.
Let us consider the homogenous differential equation

b(x, y) · ∇u(x, y) = 0. (2.53)

With the use of of discretization (2.49) this leads to the following implicit scheme:

U5(xi, yj+1) + b1(xi, yj+1)
2b2(xi, yj)

(U5(xi+1, yj+1)− U5(xi−1, yj+1)) = U5(xi, yj). (2.54)

with u(x0, yj), u(xn, yj) and u(xi, y0) given for i, j = 0, . . . , n.
If we prove the stability for this scheme, we can use the principle of Duhamel

[86], which states, that the scheme for the inhomogeneous problem is stable if the
corresponding scheme for the homogenous scheme is stable. Let u(xi, yj) be the
theoretical solution of the finite difference scheme (2.54) and U5(xi, yj) the solution
of the scheme which is actually obtained, so that U5(xi, yj) contains rounding errors.
Thus the error at every mesh point (xi, yj) is defined as:

err(xi, yj) = u(xi, yj)− U5(xi, yj).
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If we substitute
err(xi, yj) = eαj∆eIβi∆ (2.55)

where I2 = −1, then a finite difference scheme with constant coefficients is stable if

|eα∆| ≤ 1 ∀α ∈ R. (2.56)

This is the Von Neumann (Fourier) criterion of stability.

Theorem 2.10 The numerical scheme (2.54) is unconditionally stable.

Proof. Once we have defined the error at every mesh point as err(xi, yj), with
the substitution (2.55), it remains to show that condition (2.56) is satisfied. Taking
the scheme (2.54) we have:

eα(j+1)∆eIβi∆ + b

2
(
eα(j+1)∆eIβ(i+1)∆ − eα(j+1)∆eIβ(i−1)∆) = eαj∆eIβi∆

where b = max(xi,yj)∈Ωd

b1(xi,yj+1)
b2(xi,yj) . Division by eα(j+1)∆eIβi∆ yields:

1 + b

2
(
eIβ∆ − e−Iβ∆) = e−α∆,

and with θ = eα∆:
1 + b

2(2I sin(β∆)) = 1
θ
.

Thus we obtain for θ:
θ = 1− bI sin(β∆)

1 + b
2 sin2(β∆)

and
|θ| ≤ 1.

�

It is clear that even if the stability can be reached if there exists a point (xi, yj)
such that b2(xi, yj) = 0, in this case the discretized problem (2.50) can not be solved.

In order to use a numerical scheme that works without consider the variability
of the vector field b we introduce in the next session the semi-Lagrangian scheme
used to solve the SfS-PS problem with very efficient results.

2.4.2 An efficient numerical scheme: semi-lagrangian discretization
A second numerical approach to the solve equation (2.35) is to mimic the solution
along the characteristics in th general case, i.e. when they are not parallel to the
axis as in the finite difference case. We pass then to consider the following equivalent
equation obtained dividing the two sides of (2.35) by the norm of b(x, y):

∇ρu(x, y) = f(x, y)
||b(x, y)|| ∀(x, y) ∈ Ω (2.57)

with ρ(x, y) = b(x,y)
||b(x,y)|| .
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We observe that the division by ||b(x, y)|| doesn’t involve any kind of difficulties
for the numerical scheme (Lemma 2.2). Now, considering the definition of directional
derivative, we can write:

lim
h→0

u(x+ hρ1(x, y), y + hρ2(x, y))− u(x, y)
h

= f(x, y)
||b(x, y)|| ∀(x, y) ∈ Ω (2.58)

for which is true the next approximation
u(x+ hρ1(x, y), y + hρ2(x, y))− u(x, y)

h
' f(x, y)
||b(x, y)|| ∀(x, y) ∈ Ω (2.59)

Considering a uniform discretization Ωd as in the previous section, we can finally
write the semi-lagrangian schemes:

u(xi, yj) ' u(xi + hρ1(xi, yj), yj + hρ2(xi, yj))−
f(xi, yj)
||b(xi, yj)||

h (2.60)

for all (xi, yj) ≡ (−1 + i∆,−1 + j∆) with i, j = 1, . . . , n− 1 (namely ∀(xi, yj) ∈ Ωd)
where n represents the number of intervals whereby [−1, 1] is been divided (if we
talk about digial images, (n+ 1)× (n+ 1) represents the resolution) and h > 0.

This scheme has the advantage to follow a numerical integration along the
characteristics of the equation (2.35), but it has some computational drawback:

• it resolves for every point (xi, yj) ∈ Ωd a linear system for the interpolation of
the point u(xi + hρ1(xi, yj), yj + hρ2(xi, yj)) with respect to the uniform grid;

• it is iterative, because it is a fixed point scheme.

Now we describe the algorithm in detail in order to explain the difficulties written
above.

We introduce two discrete functions un(xi, yj) = uni,j and un+1(xi, yj) = un+1
i,j

defined only on the grid nodes. Therefore, the iterative scheme (2.60) is corresponding
to:

un+1
i,j = un(xi + hρ1(xi, yj), yj + hρ2(xi, yj))−

fi,j
||bi,j ||

h ∀(xi, yj) ∈ Ωd (2.61)

If we assign an initial function u0
i,j , such that u0(xi, yj) = g(xi, yj) ∀(xi, yj) ∈ ∂Ωd,

it is possible to start the iterations computing the successive approximation un+1
i,j

like described in (2.61).
With the same construction of the previous algorithm (forward semi-lagrangian

scheme), we can write a second type of semi-lagrangian scheme which works backward.
Taking into account the equation (2.35), we now modify the orientation of the
characteristic field without changing the equation. We multiply by minus one both
the sides and dividing by ||b(x, y)|| we obtain:

∇−ρu(x, y) = − f(x, y)
||b(x, y)|| ∀(x, y) ∈ Ω (2.62)

with ρ(x, y) the same as before. Considering the definition of directional derivative
now with respect to −ρ(x, y), we can write:

lim
h→0

u(x− hρ1(x, y), y − hρ2(x, y))− u(x, y)
h

= − f(x, y)
||b(x, y)|| ∀(x, y) ∈ Ω (2.63)
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for which is true the next approximation

u(x− hρ1(x, y), y − hρ2(x, y))− u(x, y)
h

' − f(x, y)
||b(x, y)|| ∀(x, y) ∈ Ω (2.64)

Like before we have obtained a scheme that approximates the solution along the
characteristics direction, but this time from the inflow verse. The fix point scheme
that comes out is the following:

un+1
i,j = un(xi − hρ1(xi, yj), yj − hρ2(xi, yj)) + fi,j

||bi,j ||
h ∀(xi, yj) ∈ Ωd (2.65)

Let us explain the difference between the forward (2.61) and backward (2.65)method.
The substantial difference is in the way they use the starting data u0 and in the use
of the information stored in the boundary condition. Let’s take first the forward
scheme; if we consider the vector (ρ1(xi, yj), ρ2(xi, yj)) like the linear approximation
of the characteristics field (defined by the vector field b(x, y)) in the point (xi, yj),
it is easy to see that the value un+1(xi, yj) depends on the value of the previous
one un at the point (xi + hρ1(xi, yj), yj + hρ2(xi, yj)). This means that the informa-
tion is propagated in the opposite toward to the characteristic field (i.e. it solves
(2.40)). For the backward one it is possible to consider the same way to intend
the different problem solved by the scheme. It is clear that the use of the point
(xi − hρ1(xi, yj), yj − hρ2(xi, yj)) implies that the information for the calculation
of un+1, considering the verse of the characteristics, will be taken back from the
point (xi, yj). This means that the approximation of the surface will follow the same
orientation of the problem (2.39).

Consistency and convergence

For every point it will be necessary to compute un(xi + hρ1(xi, yj), yj + hρ2(xi, yj))
and thus to approximate with an interpolation method the function un at a point not
belonging to the grid Ωd. For this purpose we consider the bilinear interpolation which
needs of the coefficients (a, b, c, d) ∈ R4 to express the function value un(xs, ys) =
un(xi+hρ1(xi, yj), yj +hρ2(xi, yj)) in the bilinear combination axsys+ bxs+ cys+d.
We choose this kind of interpolation because every point (xs, ys) ∈ (Ω \ Ωd) falls
inside a cell of four nodes and we assume as the reference vertex the one in the
bottom on the left that we will call (xk, yk) ∈ Ωd. If we impose the interpolation
condition for the nearest four points of (xs, ys) inside this cell is thus possible to
obtain the following system:





axkyk + bxk + cyk + d = un(xk, yk)
axk+1yk + bxk+1 + cyk + d = un(xk+1, yk)
axk+1yk+1 + bxk+1 + cyk+1 + d = un(xk+1, yk+1)
axkyk+1 + bxk + cyk+1 + d = un(xk, yk+1)

(2.66)

that is



xkyk xk yk 1
xk+1yk xk+1 yk 1
xk+1yk+1 xk+1 yk+1 1
xkyk+1 xk yk+1 1







a
b
c
d


 =




un(xk, yk)
un(xk+1, yk)
un(xk+1, yk+1)
un(xk, yk+1)


 . (2.67)
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Let us emphasize an interpolation results based on the uniqueness of bilinear inter-
polation on this kind of data:

Lemma 2.11 The system (2.67) admits a unique solution.

Proof. The proof is simply based on the computation of the determinant of the
matrix. We want to prove that the necessary conditions to make it be zero are not
possibles to obtain considering a discretization like our.

det




xkyk xk yk 1
xk+1yk xk+1 yk 1
xk+1yk+1 xk+1 yk+1 1
xkyk+1 xk yk+1 1


 =

= −(xk+1ykxk+1yk+1 + xk+1yk+1xkyk+1 + xk+1yk+1xkyk−
−xkyk+1xk+1yk − xk+1yk+1xk+1yk+1 − xkyk+1xk+1yk)+

+xkykxk+1yk+1 + xkyk+1xkyk+1 + xk+1yk+1xkyk

−xkyk+1xk+1yk − xk+1yk+1xkyk+1 − xkyk+1xkyk−
−(xkykxk+1yk+1 + xkykxkyk+1 + xk+1ykxkyk−
−xkyk+1xk+1yk − xk+1ykxkyk+1 − xkykxkyk)+

+xkykxk+1yk+1 + xkykxk+1yk+1 + xk+1ykxk+1yk−
−xk+1yk+1xk+1yk − xk+1ykxkyk+1 − xk+1ykxkyk =

= −2x2
k+1ykyk+1 − 2xkxk+1y

2
k+1 + x2

k+1y
2
k+1 + 4xkxk+1ykyk+1+

+x2
ky

2
k+1 − 2x2

kykyk+1 − 2xkxk+1y
2
k + x2

ky
2
k + x2

k+1y
2
k =

= x2
k+1(yk − yk+1)2 + x2

k(yk − yk+1)2 − 2xkxk+1(yk − yk+1)2 =
= (yk − yk+1)2(xk − xk+1)2.

Therefore the matrix has the determinant equal to zero if and only if

yk = yk+1 or xk = xk+1.

Then it concludes the proof.

�

Let us call the unique solution of the previous system (a∗, b∗, c∗, d∗) for every
point (xi, yj) ∈ Ωd. Now it is possible to calculate the bilinear form in the evaluation
point (xs, ys), that is:

a∗xsys+ b∗xs+ c∗ys+d∗ = un(xs, ys) = un(xi+hρ1(xi, yj), yj +hρ2(xi, yj)) (2.68)

If we consider a linear interpolation (that has the same order as of the bilinear
interpolation) in dimension one with the purpose to obtain an estimation of the
order of consistency, we can use the following

|I[q](x)− q(x)| =
∣∣∣∣∣q(xi) + q(xi+1)− q(xi)

xi+1 − xi
(x− xi)− q(x)

∣∣∣∣∣ ≤

≤ |q′(ξ)(xi − x) + q′(η)(x− xi)| ≤ |q′′(τ)||η − ξ||x− xi| ≤M∆2
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With I[q] we consider the linear interpolation of a function q ∈ C2(xi, xi+1), τ , η
and ξ are points in (xi, xi+1) and M = max(xi,xi+1) |q′′(x)|. Now, if we take into
account that

u(x+ hρ1(x, y), y + hρ2(x, y))− u(x, y)
h

= ∇u(x, y) · ρ+O(h).

Let us define the following two quantities:

M(x, y) = ∇ρu−
f(x, y)
||b(x, y)||

Ph,∆u(x, y) = I[u](x+ hρ1(x, y), y + hρ2(x, y))− u(x, y)
h

− f(x, y)
||b(x, y)||

that permit us to calculate the consistency error considering the difference M(x, y)−
Ph,∆u(x, y) calculated in the domain Ωd, that is

Mi,j − Ph,∆ui,j =

= ∇ρui,j −
fi,j
||bi,j ||

− I[u](xi + hρ1(xi, yj), yj + hρ2(xi, yj))− ui,j
h

+ fi,j
||bi,j ||

=

= u(xi + hρ1(xi, yj), yj + hρ2(xi, yj))− ui,j
h

+O(h)−

−I[u](xi + hρ1(xi, yj), yj + hρ2(xi, yj))− ui,j
h

=

= u(xi + hρ1(xi, yj), yj + hρ2(xi, yj))− I[u](xi + hρ1(xi, yj), yj + hρ2(xi, yj))
h

+O(h) =

= O(h) +O
(∆2

h

)
.

We can obtain an order one of consistency if we take h = ∆.

(xi−1, yj+1)

(xs, ys)(xi−1, yj)

(xi−1, yj−1) (xi, yj−1) (xi+1, yj−1)

(xi, yj+1)

(xs, ys)

(xi+1, yj)

(xi+1, yj+1)

(xi, yj)

ρ(xi, yj)

(xk, yk) (xk+1, yk)

(xk+1, yk+1)(xk, yk+1)

(xi−1, yj+1) (xi, yj+1) (xi+1, yj+1) (xk+1, yk+1)(xk, yk+1)

 North Elevation

Figure 2.9. The picture explains the position of the different points for the bilinear
interpolation to determine the value un(xs, ys) in the case where ρ1(xi, yj) and ρ2(xi, yj)
are both positive. On the left the part of the lattice centered on (xi.yj), on the right
the zooming of the interesting square with the reference coordinate.

Let now give a proof of the convergence of this method. In this case we will
show that the numerical algorithm is a non increasing map in L∞(Ω) on the Banach
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Figure 2.10. The structure of this picture is the same of the (2.9) but in the case when
ρ1(xi, yj) and ρ2(xi, yj) are both negative.

space function W 1,∞(Ω), that is the Sobolev space notation for the Lipschitz type
functions.

In order to prove the convergence of the scheme using the existence of a unique
fixed point for the nonexpansive map [89] we give the following

Definition 2.12 If D is a subset of a Banach space X, T is a mapping from
D into X, and x1 ∈ D, then M(x1, tn, T ) is the sequence {xn}∞n=1 defined by
xn+1 = (1− tn)xn + tnTxn, where {tn}∞n=1 is a real sequence. If a point x1 and a
sequence {tn}∞n=1 satisfy the following three conditions:

∞∑

n=1
tn =∞, (2.69)

0 ≤ tn ≤ b < 1 for all positive integers n, (2.70)
then x1 and {tn}∞n=1 will be said to satisfy Condition A.

Note that if tn ∈ [a, b] for all positive integers n and 0 < a ≤ b < 1, then it is
obvious that the sequence {tn}∞n=1 satisfies (2.69) and (2.70).

Theorem 2.13 Let D be a closed subset of a Banach space X and let T be a
nonexpansive mapping from D into a compact subset of X. If there exist x1 and
{tn}∞n=1 that satisfy Condition A, then T has a fixed point in D and M(x1, tn, T )
converges to a fixed point of T .

Using the previous result we want to prove the convergence of the numerical
semi-lagrangian schemes using the fact that the operator that defines the schemes
satisfies Condition A.

Theorem 2.14 The numerical scheme (2.61) (and (2.65)) converges to the unique
weak solution of the problem (2.35)

Proof. For first we define the map T described by the numerical scheme (2.61)
on the Lipschitz functional space:

T (u)(x, y) = u((x, y) + hρ(x, y))− h f(x, y)
||b(x, y)|| (2.71)
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It is easy to see that (2.71) is nonexpansive in W 1,∞(Ω). In fact, if we take two
functions u and w both in W 1,∞(Ω), then

||T (u)(x, y)− T (w)(x, y)||∞ =

=
∥∥∥∥u((x, y) + hρ(x, y))− h f(x, y)

||b(x, y)|| − w((x, y) + hρ(x, y)) + h
f(x, y)
||b(x, y)||

∥∥∥∥
∞

=

= ‖u((x, y) + hρ(x, y))− w((x, y) + hρ(x, y))‖∞ = ||u(x, y)− w(x, y)||∞

The iterative numerical method uses this map to build the sequence by the recursive
scheme, that is: un+1 = T (un). In order to use the previous thorem we define some
objects useful to this purpose. Let M(v0, tn, T ) be the sequence defined as follows:

vn+1 = (1− tn)vn + tnT (vn) (2.72)

where v0 ∈W 1,∞(Ω) is the initial data and {tn}∞n=0 is a sequence of real numbers
such that:

∞∑

n=0
tn =∞, with 0 ≤ tn ≤ b < 1

with b ∈ R. In our case it is also possible to take it as a constant sequence (for
example tn = 1

2).
In the weakest case (where we prove the existence and the uniqueness, Theorem

2.6) we consider that the functions b(x, y) and f(x, y) are discontinuous on the
same curve γ(t) ⊂ Ω. The operator T is applied on functions taken in a discrete
domain Ωd, then if we consider f(x,y)

||b(x,y)|| with (x, y) ∈ Ωd as the values of a function
in W 1,∞(Ω), then the following can be considered true:

vn ∈W 1,∞(Ω) ∀n ≥ 0

We finally have all the necessary hypothesis satisfied in order to apply the
previous theorem.

�

The computational cost for every iteration of both the schemes is considerable,
taking into account that for every internal point of the grid we have to resolve a
linear system whose dimension is small and constant for every point if we use a
bilinear interpolation. In fact, for every pixel we solve a linear system of dimension
four to find the coefficients (a∗, b∗, c∗, d∗) of the bilinear function.

The arrest criterion is based on the convergence of the succession of approxima-
tions un through the Cauchy criterion with the infinity norm, that is, since un → u,
then the algorithm will be stop when:

||un − un+1||∆∞ = max
(xi,yj)∈Ωd

||un(xi, yj)− un+1(xi, yj)|| < ε (2.73)

with ε opportunely chosen small.
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2.4.3 Numerical tests
The numerical schemes previously described are tested on a set of surfaces and
permit us to show how the approximation methods work well compared with the
previous theorem of existence of a Lipschitz weak solution. In this purpose we use
two kind of surfaces (see Fig. 4.4) and, for simplicity, both of them have an easy
boundary condition (that is u(x, y) = 0 ∀(x, y) ∈ ∂Ω) that permits us to start with
an initial guess u0 which values are zero in all the domain (included the boundary).
Both surfaces will be used also in the next next numerical tests because they have
interesting features for this problem. In fact:

• vsym has a big slope between the maximum and the minimum points;

• v+
lip is a Lipschitz surface with an interesting disposition of the curves where it
is not differentiable.

Figure 2.11. Set of surfaces used in the numerical tests

vsym(x, y) v+
lip(x, y)

The results presented in this chapter were first applied on synthetic surfaces.
That is surfaces defined in their analytical form (let us call it v(x, y)) known till
the beginning. In this case the mathematical approach is much more detailed and
correct because, first of all, it is possible to eliminate the noise effect from the images
and furthermore we can compare the exact solution to the approximate one. This
permits an analysis on the convergence order for the adopted numerical scheme
adopted.

For the synthetic case we consider the square domain [−1, 1]2 with uniform
discretization space step ∆ = 2/n where n represents the number of intervals that
divide the square (that is xi = −1 + i∆, yj = −1 + j∆ with i, j = 0, . . . , n). We call
Ωd the set that contains the internal (xi, yj) and ∂Ωd the set of points (xi, yj) that
discretize the boundary.

The procedure followed is resumed below:
1. we consider two light sources expressed in the spherical coordinates (ω =

(sin(ϕ) cos(θ), sin(θ) sin(ϕ), cos(ϕ))) in order to obtain no black shadow using
(1.16);
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2. we construct the images from the analytical formula of the surface. Let us call
its height v(x, y);

3. we calculate the initial guess such that u0(xi, yj) = v(xi, yj) ∀(xi, yj) ∈ ∂Ωd

and equal to zero inside Ωd;
4. we start the iteration of (2.61) and (2.64) till (2.73) with ε = 10−7. Let us

note n the last iteration;
5. the error in the L∞(Ωd) norm is calculated
err = max(xi,yj)∈Ωd

|un(xi, yj)− v(xi, yj)|.

Finite difference schemes

Like described before, very good numerical integration results are obtained using the
light source such that the propagation of the light information (i.e. the projected
characteristics) is parallel to the direction of one of the coordinate axis. One first
series of test are then carried out with a vertical light source (ω′), while the second
light source (ω′′) such that ω̃′′ is been taken parallel to the x axis. It is possible to
see the coordinates of the light vectors under every image used for the test.

Expressing the light source vector in spherical coordinates, like in the first case
we consider this choice of angles θ1 = 0.0, ϕ1 = 0.0, θ2 = 0.0 and ϕ2 = 0.1 that is
ω′ = (0, 0, 1) and ω′′ = (sin(0.1), 0, cos(0.1)). The reason for which we take this kind
of light sources is that the information propagated from the light sources generates
a characteristic field of straight lines all parallel to the x axis. The starting images
are then the following

Figure 2.12. On the left the image I1, on the right the image I2 of vsym.

ϕ1 = 0.0, θ1 = 0.0 → (I1) ϕ2 = 0.0, θ2 = 0.0 → (I2)

For the numerical integration we use a uniform step ∆ = 0.02 considering that
in the application we have a uniform pixel’s size for all the image domain. Then, we
have the surfaces error of Fig. 2.13.

Repeating the numerical integration for v+
lip we have that, starting from the two

images of the Fig. 2.14 obtained from the same light sources we have the error of
Fig. 2.15.

Similar results have been obtained considering like direction of propagation of
light information the y axis (with the only difference that we use the finite difference
schemes with U1 and U2).
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Figure 2.13. On the left the error for the approximate solution U3, on the right the
error for U4 (the maximum errors on the grid with the exact solution are respectively
5.47×10−2 and 5.23×10−2)

Figure 2.14. On the left the image I1, on the right the image I2 of v+
lip.

ϕ1 = 0.0, θ1 = 0.0 → (I1) ϕ2 = 0.0, θ2 = 0.0 → (I2)

Figure 2.15. On the left the error for the approximate solution U3, on the right the
error for U4 (the maximum errors on the grid with the exact solution are respectively
2.0×10−2 and 1.0×10−2)

In the end we want to stress that only the direction of the numerical integration is
important for the convergence of the schemes and not the verse of the characteristics.

Semi-lagrangian schemes

In the case of the semi-lagrangian schemes instead, there isn’t the problem of the
placement of the light in a way to have the characteristics curve oriented parallel
to the coordinate axis. This fact allows us to obtain important results for the
reconstruction of surfaces with the SfS using the photometric stereo technique
considering every type of light sources. The only constraints is that the light source
must be taken so that we don’t have shadows on the surface.

A first example for these schemes is related to the starting images of Fig. 2.16.
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Figure 2.16. On the left the image I1, on the right the image I2 of vsym for the semi-
lagrangian approximation.

ϕ1 = 0.1, θ1 = π
3 + 0.2 → (I1) ϕ2 = −0.1, θ2 = π

3 + 0.3 → (I2)

With a uniform integration step ∆ = 0.02 and a semi-lagrangian step h equal to
∆ we have obtained the error shown in Fig. 2.17 with 113 iterations (with ε = 10−7).

Figure 2.17. On the left the error of the numerical solution approximation with the
forward-semi-lagrangian scheme where the maximum is 6.514×10−2. On the right the
error of the approximation with the backward ones where the maximum of this surface
is 7.425×10−2

Figure 2.18. On the left the image I1, on the right the image I2 of v+
lip for the semi-

lagrangian approximation.

z z z z
ϕ1 = 0.1, θ1 = π

3 + 0.2 → (I1) ϕ2 = −0.1, θ2 = π
3 + 0.3 → (I2)

For the other kind of surface we have obtained the convergence also considering
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the discontinuity of b(x, y) and f(x, y). This is an application of the Theorem 2.6
where the discontinuity curve γ(t) (i. e. the discontinuity set of points) can be
represented with the red lines of Fig. 2.18.

With the same data used for vsym, we repeat the approximation with the semi-
lagrangian schemes starting from the images of Fig. 2.19 obtaining the errors of Fig.
2.19 with 114 iterations.

Figure 2.19. On the left the error of the numerical solution approximation with the
forward-semi-lagrangian scheme where the maximum is 3.487×10−2. On the right the
error of the approximation with the backward ones where the maximum of this surface
is 3.469×10−2

In Tab. 2.1 and Tab. 2.2 we summarize the results obtained from the numerical
integration of various examples where we fix the light socurces (with ϕ1 = 0.1,
θ1 = π

3 + 0.2, ϕ2 = −0.1 and θ2 = π
3 + 0.3) and the ε = 10−7. The test surfaces

are always the same. The only parameters we change are the coefficient α of
proportionality between ∆ and h (α = ∆

h ) and the grid step ∆. The rows of the
tables are divided by for just for emphasize where the coefficient of proportionality
α changes. That is, in the first four rows (for both tables) we have α = 1

2 , in the
second four α = 1 and in the last four rows α = 2. We can see that the bests results
(about the errors) are in the middle part. This is bear out also from the consistency
estimation (??) that can be minimize taking ∆ = h.

vsym Semi-lagrangian Semi-lagrangian
Forward Backward Forward Backward

h ∆ n err

0.04 0.02 160 126 8.951×10−2 9.45×10−2

0.02 0.01 159 118 4.542×10−2 4.963×10−2

0.01 0.005 217 216 2.348×10−2 2.576×10−2

0.005 0.0025 428 426 1.366×10−2 1.39×10−2

0.02 0.02 116 113 6.514×10−2 7.425×10−2

0.01 0.01 223 219 3.493×10−2 3.853×10−2

0.005 0.005 434 430 1.969×10−2 2.032×10−2

0.0025 0.0025 856 850 1.201×10−2 1.116×10−2

0.01 0.02 278 267 7.641×10−2 8.691×10−2

0.005 0.01 507 491 4.071×10−2 4.571×10−2

0.0025 0.005 949 929 2.259×10−2 2.37×10−2

0.00125 0.0025 1815 1788 1.346 ×10−2 1.284×10−2

Table 2.1. Numerical test on vsym.
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v+
lip Semi-lagrangian Semi-lagrangian

Forward Backward Forward Backward
h ∆ n err

0.04 0.02 150 113 4.808×10−2 4.734×10−2

0.02 0.01 152 133 2.392×10−2 2.356×10−2

0.01 0.005 217 217 1.196×10−2 1.176×10−2

0.005 0.0025 427 427 5.98×10−3 5.88×10−3

0.02 0.02 115 114 3.487×10−2 3.469×10−2

0.01 0.01 222 221 1.744×10−2 1.736×10−2

0.005 0.005 434 432 8.79×10−3 8.76×10−3

0.0025 0.0025 854 852 4.44×10−3 4.46×10−3

0.01 0.02 274 274 4.004×10−2 4.01×10−2

0.005 0.01 503 502 2.008×10−2 2.012×10−2

0.0025 0.005 945 945 1.004×10−2 1.006×10−2

0.00125 0.0025 1809 1812 5.02×10−3 5.02×10−3

Table 2.2. Numerical test on v+
lip.





Chapter 3

Boundary condition
approximation via normal field
method

All the previous differential model use, in a very strong way, the information stored in
the boundary condition of the height of the surface. In fact it is a very indispensable
ingredient that let us start to build the solution. Instead, in the applications, is
very difficult to obtain this kind of information. If we take a picture of a real object
is not possible to obtain this precious data using only a digital photo camera. In
this part we discuss about the impossibility to reconstruct the problem without the
boundary condition.

Now we explain that the problem of SfS, that uses the photometric stereo
techniques with only two images, is ill posed if the boundary condition is not take
into account. Let us start considering two different surfaces z+ = u+(x, y) and
z− = u−(x, y) defined as follow:

u+(x, y) = q(x) + g(y)
u−(x, y) = −q(x) + g(y)

(3.1)

where q and g are two functions defined in a limited and connected intervals of R
and these intervals can also be different.

If we calculate the unitary normal vector for both surfaces we obtain a particular
case 




n+(x, y) = 1√
q′(x)2 + g′(y)2 + 1

(−q′(x),−g′(y), 1)

n−(x, y) = 1√
q′(x)2 + g′(y)2 + 1

(q′(x),−g′(y), 1)
(3.2)

writing with the symbol q(x)′ and g(y)′ the first derivative respect the correspondent
variable (x for q and y for g). If we use this kind of light sources

ωϕ = (0, sinϕ, cosϕ)

it is possible to obtain the same image function:

Iϕ+(x, y) = ωϕ · n+(x, y) = −g′(y) sinϕ+ cosϕ√
q′(x)2 + g′(y)2 + 1

= ωϕ · n−(x, y) = Iϕ−(x, y)

51
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It is clear that the angle ϕ can be taken for every values where shadows do not
appear, that is for all the values of ϕ that respect the illumination inequality (1.16).
In general the admissible angles vary in an open interval, so we can chose infinity
light sources. In our case, in the case of two images, it is sufficient to take two
different values for ϕ.

This means that, for both the surfaces, we obtain the same image functions
and this imply that the functions b(x, y) and f(x, y) that describe the problem are
the same. In this case there is not the ambiguity relative to the regularity of the
surfaces seen that we have no limited q(x) and g(y) to a particular class of functions.
Then, this means that the complete problem admits only one solution (like proved
before), but the problems connected to the two different surfaces differ only from
the boundary condition. Here the dependence relative to the boundary condition of
this kind of formulation of the problem.

Another case where is possible to see the same ambiguity (solved by the boundary
condition) is this similar one:

u+(x, y) = q(x) + g(y)
u−(x, y) = q(x)− g(y)

(3.3)

with this other kind of normal field




n+(x, y) = 1√
q′(x)2 + g′(y)2 + 1

(−q′(x),−g′(y), 1)

n−(x, y) = 1√
q′(x)2 + g′(y)2 + 1

(−q′(x), g′(y), 1)
(3.4)

If we use this other kind of light sources

ωϕ = (sinϕ, 0, cosϕ)

we obtain the following image functions:

Iϕ+(x, y) = ωϕ · n+(x, y) = −q′(y) sinϕ+ cosϕ√
q′(x)2 + g′(y)2 + 1

= ωϕ · n−(x, y) = Iϕ−(x, y)

and then we arrive to the same conclusion.
In the last years another kind of approach which has allowed to solve the SfS

problem with stereo photometric techniques is been the determination of the surface
through the approximation and the integration of its normal field.

Let us now consider this problem using three images. This means that we use
another light source ω′′′ defined like the previous two. The number of equations that
is possible to consider is now three and, for the normal field approximation, the way
to solve the problem is based on the solution of the following linear system:





ω′1n1 + ω′2n2 + ω′3n3 = I1

ω′′1n1 + ω′′2n2 + ω′′3n3 = I2

ω′′′1 n1 + ω′′′2 n2 + ω′′′3 n3 = I3

(3.5)

These are the three irradiance equations considering the derivative of u inside the
component of the normal vector n = (n1, n2, n3). In fact:

n =
(

−ux√
1 + ||∇u||2 ,

−uy√
1 + ||∇u||2 ,

1√
1 + ||∇u||2

)
(3.6)
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with ux = −n1
n3

and uy = −n2
n3
.

The procedure consists in solving the system (3.5) for every pixel (i, j), that is,
solve the following linear systems:





ω′1n1(xi, yj) + ω′2n2(xi, yj) + ω′3n3(xi, yj) = I1(xi, yj)
ω′′1n1(xi, yj) + ω′′2n2(xi, yj) + ω′′3n3(xi, yj) = I2(xi, yj)
ω′′′1 n1(xi, yj) + ω′′′2 n2(xi, yj) + ω′′′3 n3(xi, yj) = I3(xi, yj)

(3.7)

This permits to calculate the normal field n for every pixel; in others words we know
the gradient vector for every pixel. The hypothesis on the previous system in order
to obtain a unique solution is the linear independence of the light sources. From
here it is possible to use interpolation method to obtain u from its normal field
([90, 91, 92]).

But this kind of approach uses three digital images in order to obtain the
uniqueness of the solution, and this represents a drawback. The use of only two
digital images, that is, to consider only the first two equations of (3.7), brings an
ambiguity of the solution which involves for each pixel, the determination of two
possible normal vectors. However, there are some areas in the image domain for
which we can determine univocally the normal field.

On equal terms of image data, the difference between the normal field approxi-
mation and our differential approach is the resolution of the problem in a local way
with the normal field’s approximation. Each point (pixel) and the relative normal
calculation is treated separately. This technique doesn’t allow the propagation of
any kind of information obtained through the calculation of the normal vectors to
the surface, and this is a drawback. Through the technique which uses the PDE
approximation we have two very important aspects which are different from the
previous one: the first is that the differential equation which defines the problem is
valid for each point in the image domain (that is for each pixel, so there is a "rule",
suggested by the equation, which is valid uniformly for all the pixels), the second
one is that we take into consideration a propagation of information related to the
numerical approximation technique which approximates the surface through the
characteristic method.

In order to use only two images to solve the problem we take into consideration
both methods. Then we use the normal field approximation to determine the
boundary conditions, while, for the surface approximation, we use the PDE numerical
techniques.

3.1 Geometrical approach to the normal field approxi-
mation with two images

In this paragraph we study two different cases in which it is possible to determine the
uniqueness of the normal field and then we develop a method used to identify these
sets inside the images taken into account. The example we are going to illustrate
take in consideration the artificial surfaces cases as well as real images cases.

We introduce the problem of normal field approximation emphasizing one more
time that it is based on a local study of the image. For each pixel we approximate
the unitary vector which represents the outgoing normal to the surface supposed



54 3. Boundary condition approximation via normal field method

lambertian. Referring to a cartesian coordinates system (x, y, z) (which we will name
from now on (n1, n2, n3) in order to assimilate it to the set of possible normals for
each pixel), we suppose that for each image used as a photo the camera’s point of
view is placed on the z axis. Therefore, in this image, we can determine, for each
pixel, a set of visible unitary vectors detected like the sphere’s superior part (n3 > 0)
centered in the origin and with radius one. We consider now the two light sources
supposing them placed at the infinity. Therefore, we can write them like two vectors
(for simplicity unitary) ω′ and ω′′ for which it is possible to determine two plans
passing through the origin.

They are:

π′ : ω′1n1 + ω′2n2 + ω′3n3 = 0
π′′ : ω′′1n1 + ω′′2n2 + ω′′3n3 = 0

(3.8)

Now we can determine the set of the possible normals for each pixel, which can be
sum up in the following non linear system:





ω′1n1 + ω′2n2 + ω′3n3 ≥ 0
ω′′1n1 + ω′′2n2 + ω′′3n3 ≥ 0

n2
1 + n2

2 + n2
3 = 1
n3 > 0

(3.9)

Naming I1(i, j) and I2(i, j) the grey level of the images (between 0 and 1) respectively
obtained with ω′ and ω′′ for the pixel (i, j), we can say that the linear system





ω′1n1 + ω′2n2 + ω′3n3 = I1(i, j)
ω′′1n1 + ω′′2n2 + ω′′3n3 = I2(i, j)

n2
1 + n2

2 + n2
3 = 1

(3.10)

admits two solutions. An important study is carried out on the line relative to the
line intersection of the two planes r : π′ ∩ π′′, whose parameters are

k = ω′2ω
′′
3 − ω′3ω′′2

l = ω′3ω
′′
1 − ω′1ω′′3

m = ω′1ω
′′
2 − ω′2ω′′1

(3.11)

This allows to establish the direct connection between the two solutions of the
system (3.10). So, suppose we calculate one solution of the system (3.10), that is
n̂ = (n̂1, n̂2, n̂3). If we consider the line of parameters (k, l,m) passing through n̂,
then the second solution (ˆ̂n) will be its second intersection on the sphere.

3.1.1 Uniqueness of normal obtained by visibility (ΣG)
Now we consider the first case in which we can obtain the normal field uniqueness
using two images. This first case is explainable geometrically considering the set
obtained changing the sign of the last inequality of the system (3.9) (which represents
the condition of visibility) and then projecting it, through the line of the parameters
(k, l,m), on the other side of the sphere. Clearly, we can obtain the uniqueness
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because, in this situation, we are able to discard one of the solutions of the system
(3.10) considering only the possible one.

Therefore, in order to determine these points, the first step is to determine the
set so that 




ω′1n1 + ω′2n2 + ω′3n3 ≥ 0
ω′′1n1 + ω′′2n2 + ω′′3n3 ≥ 0

n2
1 + n2

2 + n2
3 = 1
n3 < 0

(3.12)

Clearly, these set of points, which we will name n̂, can’t be considered as a possible
candidate for the normal field at the surface taken into consideration (because they
are placed on the part of the sphere which is not visible; see the yellow set in Fig.
3.1). The points which could be candidate for the normal field are the ones in the set
in biunique correspondence with (3.12) through the intersection of the straight line
of parameters (k, l,m) and passing through n̂. It intersects the sphere in another
point ˆ̂n that we take into consideration inside the set of possibles surface normal
vectors (see the green set in Fig. 3.1).

n̂

ˆ̂n

r

π′
π′′

ω′ ω′′

V
n1

n2

n3

Figure 3.1. The planes π′ and π′′ are orthogonal, respectively, to the directions ω′ and
ω′′ of the lightenings. The intersection between π′ and π′′ is denoted as r. Therefore,
the three lines in red, which are supported by ω′, ω′′ and r, form an orthogonal basis.
Each normal ˆ̂n pointing to the green area is known without ambiguity, since the second
possible normal n̂ points to the yellow area, which is a twice lighted but non-visible part
of the sphere, because it lies under the equator E.

Let’s consider now the details of the calculus which is going to determine the
point ñ = (ñ1, ñ2, ñ3). It is simple; between the two points determined from the
intersection between the straight line r and the unitary sphere, the one which has
the third component ñ3 negative is chosen. We note that the existence of this set
is guaranteed by passing through origin of the straight line r. Considering the
parametric equation of r 




n1 = kt

n2 = lt

n3 = mt
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it is possible to find the intersections with the sphere (n2
1 + n2

2 + n2
3 = 1) if we

consider the substitution 



n1 = k

m
n3

n2 = l

m
n3

which permits to determine the two values of

n3 = ±

√√√√1 +
(
k

m

)2
+
(
l

m

)2
−1

(3.13)

Then ñ3 is the negative determination of the previous square root.

Remark 3.1 In order to avoid numerical instability when m is too close to zero, it
is possible to calculate the ñ point in a similar way but dividing by k or l.

Now it is possible to start the discretization of the set defined by (3.12). Let
us consider a point we can imagine attached at one lattice that discretizes this set
on the sphere; let’s take n̄3 like one point that describes longitudinally this lattice
(ñ3 < n̄3 < 0). We describe now the latitudinal discretization of this set. In this
aim we consider the intersection of two planes π′ e π′′ with the section of the sphere
horizontally cut at height n̄3 (see Fig. 3.2).

ω′ ω′′

n2

P̄ ′ P̄ ′′

θ∗ π′
π′′

ω′ ω′′

r

 W
e
s
t 
E

le
v
a
ti
o
n

Figure 3.2. The intersections of a parallel plane with π′ and π′′ form the two straight lines
in red.

Now we describe in detail the steps relative to the calculus of the intersection
points among this sphere section and the light planes considering a generic plane
of parameters (ω1, ω2, ω3) (the diversification on our case is referred only to the
application of the suitable apexes). To do this it is sufficient to solve the following
nonlinear system: {

ω1n1 + ω2n2 + ω3n̄3 = 0
n2

1 + n2
2 = 1− n̄2

3
(3.14)
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Changing it in an opportune way (for example n1 = (−ω2n2 − ω3n̄3) 1
ω1

in the
second equation) it is possible to determine the two solutions solving the second
order equation (in the variable n2) where the coefficients are:

a =
(
ω2
ω1

)2
+ 1

b = 2ω2ω3n̄3
ω2

1

c =
(
ω3n̄3
ω1

)2
+ n̄2

3 − 1

(3.15)

We find then the two intersections that we will call P ∗1 = (1n∗1, 1n∗2) and P ∗2 =
(2n∗1, 2n∗2).

ω′ω′′

n1

n2

P̄ ′ P̄ ′′

θ∗

ω′

π′
π′′

ω′′

Figure 3.3. Seen from the direction of observation, these two intersections are orthogonal
to the lightenings ω′ and ω′′. This allows us to define the angle θ∗.

Remark 3.2 With the aim to decrease the bad conditioning relative to the calculus
of these points, it is also possible to express in n2 in order to divide by ω2 in the
case where ω1 is computationally small.

The point that interests us is the one nearest to ñ. The point we consider will
be determined by the distance criteria, that is:

P ∗ = arg min
i=1,2

(dist(P ∗i , (ñ1, ñ2))) = (n∗1, n∗2) (3.16)

We can calculate it for both planes (π′ and π′′) obtaining the intersection
points between them and the sphere section at quote n̄3. Let us call these points
P̄ ′ = (n′1, 1n′2, n̄3) and P̄ ′′ = (n′′1, n′′2, n̄3).

After we have calculated the angles θ1 and θ2 determined by the axis n1 and the
segment connecting the origin of the plane (n1, n2, n̄3) with, respectively P̄ ′ and P̄ ′′,
we consider like referential angle θ∗ = |θ1 − θ2|.
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Now it is possible to express the vector n̂ in the following way:

n̂1 = cos(θ̄ + min(θ1, θ2))
√

1− n̄2
3

n̂2 = sin(θ̄ + min(θ1, θ2))
√

1− n̄2
3

n̂3 = n̄3

(3.17)

We can make vary θ∗ < θ̄ < 0 and n̂3 < n̄3 < 0, obtaining the discretization of the
set (3.12). Now, for every of these points n̂ it is necessary to find the correspondent
point ˆ̂n in the visible zone of the sphere.

In order to make this let us consider the equation of the straight line in the R3

space passing through n̂ and of parameters (l,m, n):




n1 = n̂1 + kt

n2 = n̂2 + lt

n3 = n̂3 +mt

let’s express now:

n1 = n3 − n̂3
m

k + n̂1

n2 = n3 − n̂3
m

l + n̂2

that we substitute in the equation of the sphere n2
1 + n2

2 + n2
3 = 1. We obtain the

two solutions of the second order equation whose coefficients are:

a∗ =
(
k

m

)2
+
(
l

m

)2
+ 1

b∗ = 2
(
k

m
n̂1 −

(
k

m

)2
n̂3 + l

m
n̂2 −

(
l

m

)2
n̂3

)

c∗ = n̂2
1 − 2 k

m
n̂3n̂1 +

(
kn̂3
m

)2
+ n̂2

2−

2 l

m
n̂3n̂2 +

(
ln̂3
m

)2
− 1

(3.18)

From this two solutions we consider the one such that n3 > 0.

Remark 3.3 In order to decrease the bad conditioning relative to the calculus of
these points it is possible to express all in the variable n1 or in n2 by dividing through
(respectively) k or l in the event that m is too small.

Remark 3.4 The point n̂ represents itself one solution of the previous problem.
The fact that n̂3 = n̄3 < 0 and that the straight line r passes through the origin,
implies necessary the existence of an unique point ˆ̂n.

The final passage has the aim to consider, for each point ˆ̂n, the correspondent
couple of values in the gray scale values:

Ĩ1 = ω′1 ˆ̂n1 + ω′2 ˆ̂n2 + ω′3 ˆ̂n3

Ĩ2 = ω′′1 ˆ̂n1 + ω′′2 ˆ̂n2 + ω′′3 ˆ̂n3
(3.19)
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and check if, for each pixel (i, j) exists the couple of values in gray scale I1(i, j) e
I2(i, j) such that:

{
|I1(i, j)− Ĩ1| < ε

|I2(i, j)− Ĩ2| < ε
(3.20)

with ε fixed small (0.001).

Definition 3.5 Given a couple of images I1 and I2, we call as ΣI
G the corresponding

set of coordinates (xi, yj) ∈ Ω on the images (determined as explained before) respect
to ΣG.

As we will see in the numerical test section, the set ΣI
G depending on the

shape of the surface, can be made from different disjoint parts, that is ΣI
G =

ΣI
G(1) ∪ . . . ∪ ΣI

G(gk).

3.1.2 Uniqueness of the normal obtained by coincidence (ΣR)

Differently from the first set, this second way to describe the uniqueness of the
solution for the system (3.10) becomes considering the case wherein the two normal
vectors are coincident in the part of the sphere that defines all the possible normals
to the surface pictured. This set is determined by all the points on the sphere
tangent to the straight line of parameters directors (k, l,m) between the two light
planes π′ and π′′. First we determine the two extreme points of the geodesic (P̂1 and

π′
π′′

ω′
ω′′

V
n1

n2

n3

P̂1 P̂2

r

Figure 3.4. The geodesic in red is a part of the intersection of the sphere with the plane
supported by ω′ and ω′′. Each normal ˆ̂n pointing to this line is known without ambiguity,
since both normals coincide in this case.

P̂2) in order to apply a linear transformation for the parametrization of this curve
through the angle included between the light vectors. Such points are determined
from the intersection among the sphere, the plane orthogonal to the straight line
r (passing through the origin) and the respective light plane (π′ for P̂1 and π′′ for
P̂2). Let us solve therefore the next system considered now in a generalized form, as
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follows: 



kn1 + ln2 +mn3 = 0
n2

1 + n2
2 + n2

3 = 1
ω1n1 + ω2n2 + ω3n3 = 0

(3.21)

and that gives the solutions (P̂1 and P̂2) relative to ω′ and ω′′. The tangency is given
by the first equation, that is the equation of the plane orthogonal to the straight
line r and passing through the origin. For both cases (that is for each light plane)
the number of solutions of (3.21) is two. The sought solution is easily identifiable
considering the one with the third component positive.

Expressing, for example, n2 and n3 respectively from the first and the third
equation of (3.21), it is possible to arrive to the following solutions:

n1 = ±
(√

1 + k2

l2
+ (mc̃3)2

l2
+ 2kmc̃3

l2
+ c̃2

3

)−1

n2 = −k −mc̃3
l

n1

n3 = c̃3n1

(3.22)

Remark 3.6 Also in this case, in order to avoid numeric instability effects, it
is necessary to diversify the previous calculus with respect to the others variables
depending on which of the three directors parameters (k, l,m) is bigger in absolute
value.

Once we determine these points, it is possible also to consider the angle included
between them. Both these points belonging to the unitary radius sphere, the angle
included is then θ = arccos(P̂1 · P̂2).

Next step consists in determining the affine application that allows us to represent
the geodesic on the sphere like a part of the circumference on the plane (n1, n2) (see
Fig.4.3). This step permits then a better discretization of this curve, taking into
consideration, like parameter that discretize this curve, the angle which identifies
these points. This application A must be such that:

A(1, 0, 0)T = P̂1

A(cos θ, sin θ, 0)T = P̂2

A(0, 0, 1)T = q

(3.23)

We call q the unitary vector orthogonal to the plane on which lie the vectors P̂1 and
P̂2 and opportunely oriented (that is with the direction towards the visible side of
the sphere, q3 > 0). That is, we consider the normalization of the vector (k, l,m)
as possible q relatively to the sign of m. If it results m < 0 then we will take the
opposite direction to this normalization. Now, considering the conditions imposed
from (3.23) it is possible to determine the parameters of the application:

A =




(P̂1)1
(P̂2)1−(P̂1)1 cos θ

sin θ q1

(P̂1)2
(P̂2)2−(P̂1)2 cos θ

sin θ q2

(P̂1)3
(P̂2)3−(P̂1)3 cos θ

sin θ q3


 (3.24)
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θ̂

θ̂

ω′ω′′

n1

n2

n3

P̂2

P̂1

θ̂

θ̂x

ω′

ω′′

n1

n2

n3

P̂2

P̂1

Figure 3.5. Two examples of applications A between the area defined by the arc of the
circumference (in green) and the one relatives to the geodesic (in blue)

Now, considering an angle θ̃ such that 0 < θ̃ < θ, it is possible to determine the
point ˆ̂n on the geodesic considering the previous application, that is:

A(cos θ̃, sin θ̃, 0)T = ˆ̂n (3.25)

Exactly like before it is possible to determine, on the image, all the elements of this
set going to check them point to point one time calculated Ĩ1 and Ĩ2 like in (3.19)
and check always the distance (3.20).

In the same way of ΣG we can define the respective set for ΣR in the images:

Definition 3.7 Let ΣI
R be the corresponding set of coordinates (xi, yj) ∈ Ω on the

images (determined with the previous algorithm) respect to ΣR.

Also in this case we can define ΣI
R as the union of connected sets, i.e. ΣI

R =
ΣI
R(1) ∪ . . . ∪ ΣI

R(rk).

3.2 Preliminary advantages: predictable number of so-
lutions and approximation of boundary condition

The reasoning explained in the previous section permits us to take some important
preliminary advantages for the study of the SfS-PS problem with both differential
and normal field approach. For the first method we are able, depending on the
position of the sets ΣI

R and ΣI
G (on the image domain Ω), to approximate the

boundary condition that permits to the differential approach to be primed.

3.2.1 Approximation of the boundary condition

A interesting advantages one can take from the study of the ΣR and ΣG sets is
related to the combination of this study with the PDE approach (2.8). In fact let us
suppose that the boundary points (xi, yj) ∈ ∂Ω don’t belong to ΣR. This means that
we can approximate the height of the surface with at most two values (continuing to
use the differentiability of the surface on the boundary). This implies that there
are two different values for ∇u for each point. In general, once we fix the image
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domain in the vertex points (x̃i, ỹj) for i, j = 0, 1 (see Fig. 2.8), we can consider a
parametrization of ∂Ω like a closed piecewise regular curve γ : [0, 4]→ ∂Ω as follow:

γ(t) =





(tx̃0 + (1− t)x̃1, ỹ0), 0 ≤ t < 1;
(x̃1, (2− t)ỹ0 + (t− 1)ỹ1), 1 ≤ t < 2;
((t− 2)x̃0 + (3− t)x̃1, ỹ1), 2 ≤ t < 3;
(x̃0, (t− 3)ỹ0 + (4− t)ỹ1), 3 ≤ t ≤ 4;

(3.26)

Than we can obtain two boundary conditions considering:

g1(γ(t)) =
∫ t

0
∇u1(γ(s))γ′(s)ds+ g1(γ(0)) (3.27)

and
g2(γ(t)) =

∫ t

0
∇u2(γ(s))γ′(s)ds+ g2(γ(0)) (3.28)

That is, once we fix a common value for g1 and g2 in the vertex (x̃0, ỹ0) we can
calculate them without ambiguity. Let us then fix g1(x̃0, ỹ0) = g2(x̃0, ỹ0) = 0.

We obtain than two different boundary conditions, let us call them g1(xi, yj)
and g2(xi, yj) for every (xi, yj) ∈ ∂Ωd. We can now start solving the two differential
problems that differ only for the boundary condition. Independently from the
presence points inside the domain Ω belonging to ΣR or Σg, we can approximate only
one solution for each differential problem than, globally we have only two solutions.
In the next section we will give an explanation of this paradox considering the way
of the PDE resolution works respect the other local method. It is clear that only one
boundary condition is the one that permits us to converge to the real solution of the
problem. We can distinguish the right boundary condition just take into account
that ∮

∂Ω
∇uds = 0 (3.29)

that is
g(γ(4))− g(γ(0)) = 0 (3.30)

that is the key property of a irrotational field. This means that, once we have
calculated the two solutions of the linear system (∇u1 and ∇u2), the right solution
can be selected before considering the one that is irrotational.

As we will emphasize with the numerical tests, the differentiability of the surface
permits to both the sets to keep the same topology. That is, ΣI

G continue to be a
compact set (or a disjointed union of compact sets), while ΣI

R remains a curve (or a
disjointed union of curves) also in the image domain. In the case of the red set we
will see that the differentiability of the surface guarantees us also the closure closure
of these curves.

3.2.2 Predictable number of solutions
The second advantage is related to the completion of the SfS-PS problem using
the normal field approximation. In fact, if the surface in differentiable everywhere
(that is, if the normal field varies with continuity), we can count how many globally
solutions this method permits to find. For example, if the ΣI

R is empty while ΣI
G is

not empty than we have the uniqueness of solution. This analysis of the problem
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permits to have a priori number of globally solutions for the local normal approach.
The differentiability of the surface allows us to attach the parts obtaining different
solution without ambiguity.

3.2.3 Ambiguity for the local normal vector field approach, no am-
biguity for the differential approach: paradox explanation

Let us now explain why the differential problem, starting with the knowledge of
the boundary condition, has not any ambiguities with respect to the local one and
succeeds in the approximation of the surface.

With the aim to show how the vector field b(x, y) of the problem (2.8) is placed
respect the two solutions of the linear local problem (3.8), we start the example
supposing to know the surface. Let us take a simple function that describe the
surface as the follows:

u(x, y) = x (3.31)

with gradient and normal field both constants

∇u(x, y) = (1, 0), n(x, y) =
(
− 1√

2
, 0, 1√

2

)
. (3.32)

Let us choose two light sources vectors that permits to have a constant characteristic
field b(x, y). This can succeed if one of the two light sources is chosen vertical, than:

ω′ = (0, 0, 1), ω′′ =
(1

2 ,
1
2 ,
√

2
2

)

where ω′′ has its spherical coordinates equals to ϕ2 = π
4 and θ2 = π

4 . This permits
to have the following two image functions constant, that is:

I1(x, y) = 1√
2
, I2(x, y) =

√
2− 1
2
√

2
.

With these kinds of data, the system (3.8) becomes:




n3(xi, yj) = 1√
2

1
2n1(xi, yj) + 1

2n2(xi, yj) +
√

2
2 n3(xi, yj) =

√
2− 1
2
√

2

(3.33)

that admits infinite solutions dependents by a parameter


n1
n2
n3


 =



− 1√

2
0
1√
2


+ t



−1
1
0


 .

We can calculate the two solutions considering that both belong to the unitary
sphere. That is, solving the equation n2

1 + n2
2 + n2

3 = 1 we obtain the following two
solutions:

n1
sol =

(
− 1√

2
, 0, 1√

2

)
, n2

sol =
(

0,− 1√
2
,

1√
2

)
. (3.34)
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If we calculate the characteristic vector field using its definition we obtain:

b1(x, y) = I2ω
′
1 − I1ω

′′
1 = − 1

2
√

2
, b2(x, y) = I2ω

′
2 − I1ω

′′
2 = − 1

2
√

2
.

With the aim to understand the relation between the vector field b and the two
normal solutions. we consider the projection of the two vectors on the xy plane
(Pxy), making the dot product with the constant vector field b, that is:

Pxy(n1
sol) · b =

(
− 1√

2
, 0
)
·
(
− 1

2
√

2
,− 1

2
√

2

)
=

=
(

0,− 1√
2

)
·
(
− 1

2
√

2
,− 1

2
√

2

)
= Pxy(n2

sol) · b (3.35)

Let us call as θ1 and θ2 the two angles between the vector b and, respectively, the
vectors n1

sol and n2
sol. The equality between the previous two dot product implies

that these two angles are equal. This means that the characteristic field crosses all
the domain Ω passing in the middle of the two normal vectors (see Fig. 3.6). So, the
characteristic field does not follow the same direction imposed by the correct normal
vector solution. In fact, the vector field b(x, y), that gives the direction where the
characteristics have to take the information for the construction of the surface in
the differential problem, permits to take the common information given from the
two normal vector n1

sol and n2
sol.

V
n1

n2
P̂2

n1
sol

n2
sol

b

γ(t)γ1(t)

Ω

Γin

Γout

θ1

θ2

(x̃0, ỹ0) (x̃1, ỹ0)

(x̃0, ỹ1) (x̃1, ỹ1)

(x0, y0)

Figure 3.6. An example of the distribution of the Γin and Γout sets considering a constant
characteristic field (represented by the arrows). In this picture are visible also the
solution of the normal field problem.

3.3 Numerical tests
Here the results of the previous theory applied, for first on synthetic images. We
report now some results obtained through the implementation of the previous
algorithm. The images taken into consideration are relative to two surfaces showed
in Fig. 4.4.
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Figure 3.7. Set of surfaces used for the numerical tests

vreg(x, y) vlip(x, y)

They have particular features. For example, vreg has a very big slope between
the maximum point and the minimum point with a flat boundary. Instead, the main
feature of vlip is its irregularity. In fact it has a smooth boundary, but in Ω it is
not differentiable because of its structure. For both the surface we know from the
beginning their analytical formula that we will call vreg(x, y) and vlip(x, y).

In all the tests the closed set that defines the domain is Ω ≡ [−1, 1]× [−1, 1] =
∂Ω ∪ Ω and then Ω ≡ (−1, 1) × (−1, 1). Working with digital image we call the
discrete set of point where the images are defined as Ωd ≡ ∂Ωd ∪ Ωd calling (xi, yj)
the position of a generic pixel. That is, once we fix a step (namely ∆) like a distance
from one pixel to the adjacent one, we can simply define the coordinates of the point
(xi, yj) ∈ Ωd as xi = −1 + i∆ and yj = −1 + j∆ (for i, j = 1, . . . , r, where r is the
resolution of the square image of r × r pixels).

3.3.1 Counting the solutions
We start the presentation of the numerical part explaining in the practice how is
possible to count the solutions considering the ΣI

G and ΣI
R disposition. Let us remind

that we are able to do that only if the surface is smooth (i.e. it must be differentiable
inside the image domain). In order to do that we consider the surface vreg.

A first example of this study can be introduced by two images of Fig. 3.8 where
the surface vreg is lighted up (on the left) from the first light ω′ (I1) and (on the
right) from second light vector ω′′ (I2). These light vectors are expressed in spherical
coordinates (ω = (sinϕ cos θ, sin θ sinϕ, cosϕ)) and the angles that define them are
marked below each image of Fig. 3.8.

In this case the sets ΣI
G and ΣI

R can be seen in Fig. 3.9 where it is possible to
see I1 in the left side where is spotlighted ΣI

G in green, whereas in the right one
there is I2 where we can note ΣI

R in red. This kind of representation (of the sets ΣI
G

and ΣI
R respectively on I1 and I2) is completely arbitrary and comes useful for an

awareness in the domain Ω with respect to the surface.
First of all let us observe (from Fig. 3.9) the structure of these sets that draw

the same topology on the sphere, that is , ΣI
G is a convex set, while ΣI

R(1) and ΣI
R(2)

are closed curves.
Just for understand how we can count the solutions, let us introduce the sets ΣU

and ΣD. They are the subsets of the unitary sphere (of all the admissible normal
vectors), respectively, upon and below the geodesic (ΣR), see Fig. 3.10.



66 3. Boundary condition approximation via normal field method

ω′ : ϕ1 = 0.15, θ1 = π → (I1) ω′′ : ϕ2 = 0.15, θ2 = π
2 → (I2)

Figure 3.8. Synthetic images of the vreg surface (400×400 pixels) used for count the
number of solutions for the local normal field method.

ΣI
G

ΣI
R(1)

ΣI
R(2)

ΣI
G

ΣI
R(1)

ΣI
R(2)

Figure 3.9. On the left the previous image I1 with drown the set ΣI
G. On the right the

image I2 with, in red, the two sets ΣIR(1) and ΣIR(2) which union gives ΣIR.

n1 n1

n2

V

r

ω′′

ω′

P̂1

P̂2

ΣD

ΣR

ΣU

ΣG

Figure 3.10. Vertical view of the sphere where ΣU is the set colored in orange and in violet
the set ΣD.

Now, taking into account that these sets can be mapped in the image domain Ω
(namely ΣI

U = ΣI
U (1), . . . ,ΣI

U (h) and ΣI
D = ΣI

D(1), . . . ,ΣI
D(q)), we show in Fig. 3.11

the four solutions in term of the sets previously describe.

3.3.2 Uniqueness using normal field approximation
In this section we give an example that explain the analysis that can be made using
the research of the ΣI

G and ΣI
R on the image domain. First of all we have to underline
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ΣI
U

ΣI
R(1)

ΣI
R(2)

ΣI
D(1)

ΣI
D(2)

ΣI
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ΣI
R(2)

ΣI
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ΣI
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ΣI
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ΣI
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ΣI
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ΣI
R(1)

ΣI
R(2)

ΣI
D(1)

ΣI
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ΣI
U (1)

ΣI
G ΣI
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Solution1 Solution2
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ΣI
R(2)

ΣI
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ΣI
U (2)

ΣI
U (1)

ΣI
R(1)

ΣI
R(2)

ΣI
U (2)

ΣI
U (1)

ΣI
U (3)

ΣI
G ΣI

G

ΣI
R(1)

ΣI
R(2)

ΣI
D(1)

ΣI
U (2)

ΣI
U (1)

ΣI
R(1)

ΣI
R(2)

ΣI
U (2)

ΣI
U (1)

ΣI
U (3)

ΣI
G ΣI

G

Solution3 Solution4

Figure 3.11. All the possible combinations that permits us to count the solutions obtainable
with the normal approach.

the difficulties that we can find with this kind of analysis, in particular with respect
to the resolution of the images. In fact the mathematical analysis of these two sets
on Ω is exact inside a domain where the images functions I1(x, y) and I2(x, y) are
know for every (x, y) ∈ Ω (that is in the continuous domain). In particular, for
the correct approximation of the boundary condition we should know these images
functions all over ∂Ω and not only a discrete set of its points ∂Ωd.

Let us introduce the numerical test giving all the information relatively to the
starting data (that is the images and the respective light sources) summarized in Fig.
3.12. In these two images is also possible to see (in blue) the set of points where the
surface is not differentiable. The problem that we have to avoid is the presence of ΣI

R

ω′ : ϕ1 = 0.15, θ1 = π + 0.2→ (I1) ω′′ : ϕ2 = 0.1, θ2 = π → (I2)

Figure 3.12. Two synthetic images (400×400 pixels) of vlip used for the approximation of
the boundary condition. In blue is emphasize the set of point where the surface is not
differentiable.

on the boundary (that is ΣI
R ∩ ∂Ωd = ∅). As we have shown in the previous section,

this sets make appear ambiguity. In fact, the normal can cross the geodesic passing
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from ΣD and ΣU (or vice versa) or remain on the same set of provenance. With
this aim we choose the light vectors very close to them with the purpose to have
ΣR and ΣG small on the sphere and therefore to have a little possibility to find the
respective sets on the image domain. Like in the previous section, if we have some
points of ∂Ωd belong to ΣI

R we are able to count the different boundary conditions.
In this case we obtain that ΣI

G ≡ ∅ and, in particular, ΣI
G ≡ ∅. This means that

there are only two possible boundary conditions, but only one is admissible for a
correct approximation of the surface.

Once we calculate the two normal field for every point of ∂Ωd (n+ and n−), we
approximate the boundary condition in a very simple way. That is, considering the
definition of the normal vector depending from the gradient we can approximate
the partial derivative (g+

x , g+
y from n+ and g−x , g−y from n−) for every boundary

point and then approximate the two values of u calling them g±. Considering the
boundary of the image like a rectangle where the cartesian reference system has the
axis parallel to its sides, the order of approximation followed has been to start from
a reference point (that is (x0, y0) = (−1,−1)) and continuing the integration of the
gradient vector field simultaneously on the inferior and left sides. After that we
continue the integration on the right and upper sides (Fig. 3.13).

ω′′

(x0, y0)

i =1, . . . , n

j = 0

i =1, . . . , n

j = n

i = n

j = 1, . . . , n

i =0

j = 1, . . . ,n

Figure 3.13. Order on integration for the approximation of the boundary data.

The integration of the gradient field starts by fixing a value for the reference
point, that is g±(x0, y0) = vlip(x0, y0) (just for estimate the error committed) and it
continues using a backward integration scheme of the first order for the respective
sides of the boundary, as follows:

• g±(xi, yj) = g±(xi−1, yj) + u±x (xi, yj)∆ per i = 2, . . . , r, j = 1;

• g±(xi, yj) = g±(xi, yj−1) + u±y (xi, yj)∆ per i = 1, j = 2, . . . , r;

• g±(xi, yj) = g±(xi, yj−1) + u±y (xi, yj)∆ per i = r, j = 2, . . . , r;
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• g±(xi, yj) = g±(xi−1, yj) + u±x (xi, yj)∆ per i = 2, . . . , r, j = r.

The way we use to reconstruct the surface using the knowledge of its gradient
value in the boundary is very simple. Others different ways to reconstruct the height
of u starting from the same data can be find [90].

Let us call the right boundary condition as g. In Tab. 3.1 is possible to find the
error relative to the boundary conditions approximation in L∞(∂Ωd), that is:

||g − v||L∞(∂Ωd) = max
(xi,yj)∈∂Ωd

|g(xi, yj)− v(xi, yj)|.

Following the same steps we repeat the approximation using the surface vreg
considering the images of Fig. 3.8. Underline one more time that also in this case
we have not intersection between ΣI

R and ∂Ωd (see Fig. 3.9) we obtain the two
boundary conditions with the error of Tab. 3.1.

L∞(∂Ωd)
g − vreg 5.38× 10−3

g − vlip 3.325× 10−2

Table 3.1. Errors in L∞(∂Ωd) norm between the correct boundary condition approximation
g and the exact surface v.

Another thing we can note is the possibility to find the right normal field a
posteriori. That is, once we approximate the right solution u of the differential
problem (2.8) (using the boundary conditions g±) we can find the its right normal
field (on Ωd) a posteriori even if our surface is not differentiable.





Chapter 4

SfS-PS problem using three
images and symmetry

In the previous chapters we have presented a new model for the study of the SfS-PS.
This differential approach uses the following data for the resolution of the problem:

1. two functions (that is, the intensity of the grayscale images) I1, I2 : Ω ⊂ R2 →
(0, 1];

2. two normalized vectors ω′ and ω′′ ∈ R3 (with ω3 > 0) for which we obtain
(through the SfS orthographic model) the respective aforementioned images;

3. the boundary condition g(x, y) = u(x, y) ∀(x, y) ∈ ∂Ω.

We have seen in the Chapter (3) how the boundary condition results to be of primary
importance not only for the well-posedness of the differential problem, but also
for its very difficult deduction in real applications. In order to ease the usage of
this differential approach in real applications, we need to be able to eliminate the
necessity of knowing the height of the surface on the image boundary, by increasing
the information on the surface.

4.1 Uniqueness of solution without boundary conditions

We can consider like a natural extension of our disposal data the possibility to consider
a further additional image. The idea behind this approach is to use the third image
for the approximation of the boundary condition (that is g(x, y) ∀(x, y) ∈ ∂Ω). This
approximation is based on two steps: the first is relative to the determination of
the gradient field on the entire boundary ∂Ω of the domain Ω; the second is the
approximation of the hight u on the boundary using the gradient value previously
calculated. We solve this first step in two different but equivalent ways. The first
take inspiration by our new differential method while the second one is given by
some existent results.

71
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4.1.1 Gradient values from the new differential SfS-PS model
The first one is based on considering the third image like a function that, coupled
with the other two image functions, permits us to write the following linear PDEs:





b(1,2)(x, y) · ∇u(x, y) = f (1,2)(x, y), a.e. (x, y) ∈ Ω;
b(1,3)(x, y) · ∇u(x, y) = f (1,3)(x, y), a.e. (x, y) ∈ Ω;
b(2,3)(x, y) · ∇u(x, y) = f (2,3)(x, y), a.e. (x, y) ∈ Ω.

(4.1)

where b(h,k)(x, y) = (Ik(x, y)ωh1−Ih(x, y)ωk1 , Ik(x, y)ωh2−Ik(x, y)ωk2 ) and f(x, y)(h,k) =
Ik(x, y)ωh3−Ih(x, y)ωk3 where (h, k) is the combination of two of the first three natural
integer without repeating.

Let us see how it is possible, using for example the first and the second equation
of (4.1), to determine the boundary condition g(x, y). One consideration we have to
do is relative to a different connotation that one should give to these two equations.
Once we fix a point (xi, yj) on the boundary of the image, we consider, rather than
a system of PDEs, the following linear system:





b
(1,2)
1 (xi, yj)

∂u

∂x
(xi, yj) + b

(1,2)
2 (xi, yj)

∂u

∂y
(xi, yj) = f (1,2)(xi, yj)

b
(1,3)
1 (xi, yj)

∂u

∂x
(xi, yj) + b

(1,3)
2 (xi, yj)

∂u

∂y
(xi, yj) = f (1,3)(xi, yj)

(4.2)

where the unknowns are the values of the partial derivative of u in the point
(xi, yj) ∈ ∂Ωd. Let us prove the next result relative to the uniqueness of solution of
the previous linear system.

Proposition 4.1 Let

A =
(
b
(1,2)
1 (xi, yj) b

(1,2)
2 (xi, yj)

b
(1,3)
1 (xi, yj) b

(1,3)
2 (xi, yj)

)
(4.3)

then det(A) = 0 if and only if ω′, ω′′, ω′′′ are coplanar.

Proof.
(⇒) Let us prove that: det(A) = 0 implies ω′, ω′′, ω′′′ coplanar.
We generalize the proof simplifying the notation, by not considering the depen-

dence on a specific point (xi, yj). We explicit the relative functions that appear in
the matrix A in terms of the images and of the light sources and we obtain:

det(A) =ω′1ω′2I2I3 − ω′1ω′′′2 I1I2 − ω′′1ω′2I1I3 + ω′′1ω
′′′
2 (I1)2+

− [ω′1ω′2I2I3 − ω′′′1 ω′2I1I2 − ω′1ω′′2I1I3 + ω′′′1 ω
′′
2(I1)2]

(4.4)

Let us consider the physical case where the three images I1, I2 and I3 are defined
by the surface u and the respective light sources as follows:

I1(x, y) =
−ω′1 ∂u∂x(x, y)− ω′2 ∂u∂y (x, y) + ω′3√

1 + ||∇u(x, y)||2 ,

I2(x, y) =
−ω′′1 ∂u∂x(x, y)− ω′′2 ∂u∂y (x, y) + ω′′3√

1 + ||∇u(x, y)||2 ,

I3(x, y) =
−ω′′′1 ∂u

∂x(x, y)− ω′′′2 ∂u
∂y (x, y) + ω′′′3√

1 + ||∇u(x, y)||2 .

(4.5)
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Replacing the previous equalities in (4.4) we have:

det(A) =

I1

[
∂u

∂x
(ω′1ω′′1ω′′′2 − ω′2ω′′1ω′′′1 ) + ∂u

∂y
(ω′1ω′′2ω′′′2 − ω′2ω′′2ω′′′1 )− ω′1ω′′3ω′′′2 + ω′2ω

′′
3ω
′′′
1 +

+∂u

∂x
(ω′2ω′′1ω′′′1 − ω′1ω′′2ω′′′1 ) + ∂u

∂y
(ω′2ω′′1ω′′′2 − ω′1ω′′2ω′′′2 )− ω′2ω′′1ω′′′3 + ω′1ω

′′
2ω
′′′
3 +

+∂u

∂x
(ω′1ω′′2ω′′′1 − ω′1ω′′1ω′′′2 )∂u

∂y
(ω′2ω′′2ω′′′1 − ω′2ω′′1ω′′′2 ) +−ω′3ω′′2ω′′′1 + ω′3ω

′′
1ω
′′′
2

]
=

=∂u

∂x

[
− ω′1

(− ω′1ω′′3ω′′′2 + ω′2ω
′′
3ω
′′′
1 − ω′2ω′′1ω′′′3 + ω′1ω

′′
2ω
′′′
3 + ω′3ω

′′
1ω
′′′
2 − ω′3ω′′2ω′′′1

)]
+

∂u

∂y

[
− ω′2

(− ω′1ω′′3ω′′′2 + ω′2ω
′′
3ω
′′′
1 − ω′2ω′′1ω′′′3 + ω′1ω

′′
2ω
′′′
3 + ω′3ω

′′
1ω
′′′
2 − ω′3ω′′2ω′′′1

)]−

− ω′3
(
ω′1ω

′′
3ω
′′′
2 − ω′2ω′′3ω′′′1 + ω′2ω

′′
1ω
′′′
3 − ω′1ω′′2ω′′′3 − ω′3ω′′1ω′′′2 + ω′3ω

′′
2ω
′′′
1
)
.

(4.6)
With the aim to prove the coplanarity of ω′′′ with respect to ω′ and ω′′, we define
the director parameters of the plane generated by these last two vectors, that is:

k = ω′2ω
′′
3 − ω′3ω′′2 ,

l = ω′3ω
′′
1 − ω′1ω′′3 ,

m = ω′1ω
′′
2 − ω′2ω′′1 .

(4.7)

The director parameters (k, l,m) of a plane represent a vector orthogonal to it, thus,
orthogonal to every vector v = (v1, v2, v3) belonging to the plane. Therefore:

kv1 + lv2 +mv3 = 0. (4.8)

Now, considering det(A)(x, y) like a polynomial in the variables ξ = ∂u
∂x(x, y) and

η = ∂u
∂x(x, y), we have:

det(A)(ξ, η) =

ξ

[
− ω′1

(
ω′′′1
(
ω′2ω

′′
3 − ω′3ω′′2

)
+ ω′′′2

(
ω′3ω

′′
1 − ω′1ω′′3

)
+ ω′′′3

(
ω′1ω

′′
2 − ω′2ω′′1

))]
+

η

[
− ω′2

(
ω′′′1
(
ω′2ω

′′
3 − ω′3ω′′2

)
+ ω′′′2

(
ω′3ω

′′
1 − ω′1ω′′3

)
+ ω′′′3

(
ω′1ω

′′
2 − ω′2ω′′1

))]
+

+ ω′3
(
ω′′′1
(
ω′2ω

′′
3 − ω′3ω′′2

)
+ ω′′′2

(
ω′3ω

′′
1 − ω′1ω′′3

)
+ ω′′′3

(
ω′1ω

′′
2 − ω′2ω′′1

))

(4.9)
If we suppose that det(A) = 0 ∀(ξ, η) than this means that all the coefficients are
zero, that is:

ω′′′1
(
ω′2ω

′′
3 − ω′3ω′′2

)
+ ω′′′2

(
ω′3ω

′′
1 − ω′1ω′′3

)
+ ω′′′3

(
ω′1ω

′′
2 − ω′2ω′′1

)
= 0 (4.10)

which implies the coplanarity.
(⇐) Let us prove now that: ω′, ω′′, ω′′′ coplanar implies det(A) = 0.
We start by replacing in (4.4) the coplanarity equality ω′′′ = αω′ + βω′′ and, in
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consequence, I3 with αI1 + βI2. We obtain:

det(L) =
− ω′1(αω′2 + βω′′2)I1I2 − ω′′1ω′2I1(αI1 + βI2) + ω′′1(αω′2 + βω′′2)(I1)2+
+ (αω′1 + βω′′1)ω′2I1I2 + ω′1ω

′′
2I1(αI1 + βI2)− (αω′1 + βω′′1)ω′′2(I1)2 =

= −αω′1ω′2I1I2 − βω′1ω′′2I1I2 − αω′′1ω′2(I1)2 − βω′′1ω′2I1I2 + αω′′1ω
′
2(I1)2 + βω′′1ω

′′
2(I1)2+

+ αω′1ω
′
2I1I2 + βω′′1ω

′
2I1I2 + αω′1ω

′′
2(I1)2 + βω′1ω

′′
2I1I2 − αω′1ω′′2(I1)2 − βω′′1ω′′2(I1)2 = 0.

�

Remark 4.2 The modelization of the SfS orthographic problem permits us to define
the linear dependence of the images through their associated light vectors. In fact
the way we consider the vector ω′′′ coplanar with the other two permits us to define,
in the same way, the concept of linear dependent image functions.

Definition 4.3 Three image functions I1, I2 and I3 obtained from the SfS ortho-
graphic model, are linearly independent if they are generated by three non coplanar
light vectors.

Instead, if we consider two images I1 and I2 obtained by the light vectors ω′ and
ω′′ it is possible to get all the images obtainable with a light vector that is coplanar
to the first two (ω′′′ = αω′ + βω′′), i.e.: I3 = αI1 + βI2 as α e β change.

Let us see how, once we choose ω′′′ = αω′ + βω′′, it results that I3 = αI1 + βI2.
Starting from the image definition of the SfS model we can write:

I3 =
−∂u
∂xω

′′′
1 − ∂u

∂yω
′′′
2 + ω′′′3√

1 + ||∇u||2 =

=
−∂u
∂x(αω′1 + βω′′1)− ∂u

∂y (αω′2 + βω′′2) + (αω′3 + βω′′3)
√

1 + ||∇u||2 =

= α
−∂u
∂xω

′
1 − ∂u

∂yω
′
2 + ω′3√

1 + ||∇u||2 + β
−∂u
∂xω

′′
1 − ∂u

∂yω
′′
2 + ω′′3√

1 + ||∇u||2 =

= αI1 + βI2.

(4.11)

The last proof, related to the singularity of the matrix A permits us to delineate
a first strong hypothesis without which this procedure doesn’t work: the non
coplanarity of the light sources.

4.1.2 Gradient values from the Kozera method
For the second method of calculating the gradient of u on the ∂Ωd, we first recall
the procedure used in [11] where, using the photometric stereo technique with three
light sources, it succeeds to determine the value of the first partial derivatives of u
all over the Ω domain through the following equality:
∂u

∂x
(x, y) = (ω′′2ω′′′3 − ω′′3ω′′′2 )I1(x, y) + (ω′3ω′′′2 − ω′2ω′′′3 )I2(x, y) + (ω′2ω′′3 − ω′3ω′′2)I3(x, y)

(ω′′2ω′′′1 − ω′′1ω′′′2 )I1(x, y) + (ω′1ω′′′2 − ω′2ω′′′1 )I2(x, y) + (ω′2ω′′1 − ω′1ω′′2)I3(x, y)
∂u

∂y
(x, y) = (ω′′3ω′′′1 − ω′′1ω′′′3 )I1(x, y) + (ω′1ω′′′3 − ω′3ω′′′1 )I2(x, y) + (ω′3ω′′1 − ω′1ω′′3)I3(x, y)

(ω′′2ω′′′1 − ω′′1ω′′′2 )I1(x, y) + (ω′1ω′′′2 − ω′2ω′′′1 )I2(x, y) + (ω′2ω′′1 − ω′1ω′′2)I3(x, y)
(4.12)



4.2 Reduction of the number of the images 75

4.1.3 Approximation of the boundary condition
After the calculus of the gradient for all the points of ∂Ωd, we can approximate the
value of u based on the shape of the image domain. In this case the procedure we
have followed, especially for the numerical tests, is been the same of the Chapter (3).

4.2 Reduction of the number of the images
Supposing that we are able to determine univocally the surface u(x, y) of the SfS-PS
problem using three images obtained with three non coplanar light sources, we want
to consider some classes of particular functions for which it is possible to resolve the
SfS-PS problem using less than three images.

4.2.1 Symmetric surfaces
We will prove a theorem that gives us the possibility to produce an image (of a
particular surface) by using another image of the same surface, obtained from a light
source happily chosen. Let us start to define the type of surface we can use in order
to apply that.

Definition 4.4 Let z = u(x, y) be a function defined in Ω ⊂ R2. Let πs (symmetry
plane) be a plane passing through the z axis and let rs (symmetry straight line) be
its intersection with the xy plane. We say that u is symmetric with respect to the
plane πs if, for every point (x0, y0) ∈ Ω, it results:

u(x0, y0) = u(x1, y1) (4.13)

where (x1, y1) ∈ Ω is the symmetric point of (x0, y0) with respect to the straight line
rs (Fig. 4.1).

(x0, y0)

(x1, y1)

rs

α

ω′′

y

i =1, . . . , n

j = 0

x

y

Figure 4.1. Orthogonal view of the plane (x, y): example of a positioning of the points
(x0, y0) and (x1, y1) related to the symmetry straight line rs.

With regard to the orthographic SfS problem, since the model has not a direct
dependence on the value of the function u in a point, but only on its gradient, it
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is indispensable to determine a symmetry relation with respect to the derivative
for the point of the domain. We identify rs like a particular straight line passing
through the origin of the reference system xyz, that is

x sinα = y cosα, with α ∈ [0, π]. (4.14)

We consider this straight line like a subspace generated by the vector (cosα, sinα).
It is possible to identify the perpendicular straight line to rs from its base vector.
Then, let

v = (cos(α+ π

2 ), sin(α+ π

2 )) = (− sinα, cosα) (4.15)

be this perpendicular straight line. The main relation about the symmetry that we
use in the SfS model is the following:

v · ∇u(x0, y0) = −v · ∇u(x1, y1) (4.16)

4.2.2 Uniqueness theorem for the symmetric surfaces
We aim at obtaining further information relative to the symmetric surfaces by
deducing the greyscale values of an image got from a particular light source whose
position depends on the symmetry straight line rs. These information, together with
a third image, permit us to resolve the SfS-PS problem using three images linearly
independent.

Theorem 4.5 Let u(x, y) be a symmetric surface with respect to any straight line.
We suppose that the orthogonal projection of the camera point of view is a point
belong to a considered straight line.

Let ω′ = (ω̃′, ω′3) and ω′′ = (ω̃′′, ω′′3) be two light vectors such that:

1. ω̃′ is perpendicular with respect to the symmetry straight line rs;

2. ω̃′′=−ω̃′ (that is ω′′ = (−ω̃′, ω′3) since the light vectors are constrained to be
taken in the upper semi sphere)

Then:
I2(x0, y0) = I1(x1, y1) (4.17)

Proof:
Considering the image definition of the SfS problem, we have:

I2(x0, y0) = −ω̃
′′ · ∇u(x0, y0) + ω′′3√
1 + ||∇u(x0, y0)||2 =∗∗ ω̃

′ · ∇u(x0, y0) + ω′3√
1 + ||∇u(x0, y0)||2 =∗

= −ω̃
′ · ∇u(x1, y1) + ω′3√
1 + ||∇u(x0, y0)||2 = −ω̃

′ · ∇u(x1, y1) + ω′3√
1 + ||∇u(x1, y1)||2 = I1(x1, y1) (4.18)

where in ∗∗ we use the hypothesis 2, whereas in ∗ as the surface is symmetric, we
consider furthermore that the normal vector in the point (x0, y0) has the same norm
as in (x1, y1).

�
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Once we choose (x0, y0) ∈ Ω, the problem consists in determining the coordinates
of the symmetric point (x1, y1) with respect to rs. This point (x1, y1) belongs to the
straight line r⊥s , perpendicular to rs and passing through the point (x0, y0), whose
equation is

(x− x0) cosα = −(y − y0) sinα. (4.19)
Finally, observing that the symmetric straight line rs passes through the origin, it
results necessarily that the distances with respect to (0, 0) of both points are the
same. That is, both points belong to the same circumference centered in the origin
of the axis. This formulation of the problem permits that the following non linear
system {

(x− x0) cosα = −(y − y0) sinα
x2 + y2 = x2

0 + y2
0

(4.20)

admits only two solutions, that is (x0, y0) and (x1, y1).
The procedure we use to solve the system (4.20) is relative to an algorithm that

takes into account the numerical instability. To this purpose, some particularities
appear.

A first difference in the calculus of the solutions of (4.20) is related to the angle
α. In order to avoid numerical instability, we consider two possible sets to which
this angle could belong:

A =
[
0, π4

]
∪
[3π

4 , π

]
and B =

(
π

4 ,
3π
4

)
(4.21)

Let us suppose that α ∈ A; we use the first equation of (4.20), and we write the
first coordinate of the point (since the division by cosα does not involve numerical
instability). We have then:

x = (y0 − y) sinα
cosα + x0

which, replaced in the second equation of (4.20), gives a second order equation (in
the general case written as ay2 + by + c = 0) where the coefficients are:

a = 1 + (tanα)2

b = −2(y0(tanα)2 + x0 tanα)
c = y2

0(tanα)2 + 2y0x0 tanα− y2
0.

(4.22)

The two solutions of this equation are y0 and y1. It is possible to determine the
exact solution since y0 is known.

In the same way, if α ∈ B it is possible to divide by sinα. We write then the
second coordinate of the point:

y = (x0 − x)cosα
sinα + y0

and, by substitution, we solve the second order equation in the x variable with the
following coefficients:

a = 1 + (cotα)2

b = −2(x0(cotα)2 + y0 cotα)
c = x2

0(cotα)2 + 2x0y0 cotα− x2
0.

(4.23)
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The choice of the right solution can be done exactly like explained before, that is
excluding the value x0 already known.

In the end, if we consider an image I1 obtained with a light that respects the
hypotheses of the theorem (4.5), it is possible to deduce another image I2 in the way
we explained before.

Corollary 4.6 Let u(x, y) be a symmetric surface with respect to a straight line
passing through the orthogonal projection of the view point of the SfS model. Let

1. I1 be an image obtained with a light vector ω′ = (ω̃′, ω′3) such that ω̃′ is
perpendicular to the symmetry straight line of u(x, y),

2. I3 be an image obtained with a light source ω′′′ = (ω̃′′′, ω′′′3 ) such that ω̃′ · ω̃′′′ 6=
±||ω̃′||||ω̃′′′|| (that is ω̃′ and ω̃′′′ have not the same direction).

Than it is possible to univocally determine the surface u(x, y) using the SfS-PS
model.

The use of the image I2 defined in the theorem (4.5) is necessary to the application
of the reconstruction technique using three images obtained with non coplanar light
vectors.

Other simplifications in the calculus of the point (x1, y1) are possible when the
surface u(x, y) has a particular kind of symmetry. As a first particular case we
consider now a symmetry relative to the orthogonal straight line. Let r′s and r′′s
be two symmetry straight lines of u orthogonal between them. Thus we have the
relation

∇u(x0, y0) = −∇u(−x0,−y0) (4.24)
for which we note the facility of calculus in the point previously called (x1, y1) =
(−x0,−y0).

Remark 4.7 As the link between the points (x, y) and (−x − y) is relative to a
rotation of π radiant, i.e.:

(
cos(π) − sin(π)
sin(π) cos(π)

)(
x
y

)
=
(
−x
−y

)
(4.25)

the image I2 results to be a rotation of π radiants of I1.

A very interesting particular case is related to the surfaces with four symmetry
straight lines. In relation to these surfaces, in fact, it is possible to solve the classical
SfS problem considering only one image generated from any light source. For this
case the constraint concerning the light sources direction vanishes. As before, we
follow the procedure of reconstructing the missing information (that is the three
linear independent images). In this case, because of the particular surface geometry,
we are able to obtain the necessary three images only from one. That is we can
reconstruct the two missing images (generated with non coplanar light vectors)
starting from only one image of the surface lighted up by any light source.

Let us consider the image I1 and let ω′ be its relative light source. The other
two images can be calculated in the following way:

I2(x, y) = I1(−x,−y) with ω′′ = (−ω̃′, ω′3)
I3(x, y) = I1(−y, x) with ω′′′ = (ω′2,−ω′1, ω′3)

(4.26)
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Relative to the third image, we use (v1, v2) · ∇u(x, y) = −(v2,−v1) · ∇u(−y, x),
where (v1, v2) is any vector of the plane (x, y). The choice of the light placing,
together with the way to determine the images, is not unique. The aim of this
construction is to obtain linearly independent reconstructed images for which the
uniqueness of solution for the SfS problem stands.

Theorem 4.8 Let I(x, y) be an image of the surface u(x, y) ∈W 1,∞(Ω), with four
straight lines of symmetry obtained by the SfS model such that 0 < I(x, y) ≤ 1
∀(x, y) ∈ Ω with the light source ω. Then it is possible to determine this surface
univocally solving the SfS classic problem.

The procedure followed until now is a constructive prove of the previous theorem
and permits to solve, for a particular class of surfaces, the classical SfS problem
passing through the SfS-PS one. Furthermore, our analysis of the problem permits us
to give also a numerical method for the approximation of this unique weak solution.

Remark 4.9 Following this procedure it is possible to prove the uniqueness of a
weak solution of the classic SfS problem also if the surface is radial.

4.3 Applications: linear dependent image reconstruc-
tion

An interesting application regarding the orthographic SfS model is related to the
possibility of generating the images of an object making vary the light source
between two points ω′ and ω′′ for which we already have the relative images. That
is, supposing we have two images I1 and I2 obtained with two light sources ω′ and
ω′′ respectively, it is possible to deduce all the linearly dependent images. In the
geometrical sense, if we consider these two light vectors like points of the upper
hemi-sphere B((0, 0, 0), 1), then it is possible to calculate all the images obtainable
with a light source in the geodesic identified by ω′ and ω′′.

θ̂

z

ω′ω′′

x

y

z

i = n

j = 1, . . . , n

ω′′

y

θ̂(x1, y1)

ω′

ω′′

x

y

z

y

ω′′

Figure 4.2. Examples of geodesics (in blue) on the unitary sphere between ω′ and ω′′

The main idea is the same of the previous chapter related to the approximation
of the points of a geodesic defined between the two light sources vector on the unitary
sphere. We briefly repeat some passages only to make coherent the notation with
the next step of the algorithm.
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The method we use to calculate the vector defined from the geodesic is based
on the Remark (4.2). In fact, once we fix the extremal points, the main idea is to
discretize the geodesic through an affine application that permits us to see this curve
as an arc of a circumference on the xy plane. Let us start by observing that the
angle between the two unitary light vectors θ̂ is computable using the dot product
between them. In fact:

θ̂ = arccos(ω′ · ω′′) (4.27)

Now, we determine the affine application repeating the same procedure as in the
previous chapter. This function permits the use of one angular parameter for the
discretization of all the curve. Let us define then the linear application T such that:

T (1, 0, 0)T = ω′

T (cos θ̂, sin θ̂, 0)T = ω′′

T (0, 0, 1)T = q.

(4.28)

θ̂

θ̂

ω′

x

ω′ω′′

x

y

z

ω′

z

θ̂ θ̂

θ̂x

z

y

ω′

ω′′

x

y

z

Figure 4.3. Examples of affine applications T between the area defined by the arc of the
circumference (in green) and the one relative to the geodesic (in blue)

We note as q the unitary vector (opportunely oriented) orthogonal to the plane
where lie the vectors ω′ and ω′′ (such that they are outgoing from the plane, i.e.
q3 > 0). We consider the plane generated by the vectors ω′ and ω′′ which has the
following director parameters:

k = ω′2ω
′′
3 − ω′3ω′′2

l = ω′3ω
′′
1 − ω′1ω′′3

m = ω′1ω
′′
2 − ω′2ω′′1

(4.29)

We consider the normalization of the vector (k, l,m) like a possible vector q depending
on the sign of m. If m < 0 we take the opposite direction to the normalization.

Let us explicit the condition imposed by (4.28) by writing the coefficients of the
matrix that represents the application:

T =




ω′1
ω′′1−ω′1 cos θ̂

sin θ̂ q1

ω′2
ω′′2−ω′2 cos θ̂

sin θ̂ q2

ω′3
ω′′3−ω′3 cos θ̂

sin θ̂ q3


 (4.30)
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If we consider an angle θ such that 0 < θ < θ̂, we obtain a third light ω̄ using just
the previous application, that is:

T (cos θ, sin θ, 0)T = ω̄ (4.31)

Now, we have built ω̄ coplanar to the previous two light vectors, then we have
ω̄ = αω′ + βω′′. Next step is to determine the coefficients α, β ∈ R. We write the
previous equality and we obtain:





ω̄1 = αω′1 + βω′′1
ω̄2 = αω′2 + βω′′2
ω̄3 = αω′3 + βω′′3

(4.32)

With the aim to calculate the coefficients that determine the third light source, we
solve the following linear system of two equations in two unknowns:

C

(
α
β

)
= b (4.33)

The matrix C and the vector (α, β) vary depending on the first two light vectors ω′ =
(cos(θ1) sin(ϕ1), sin(θ1) sin(ϕ1), cos(ϕ1)) and ω′′ = (cos(θ2) sin(ϕ2), sin(θ2) sin(ϕ2), cos(ϕ2))
(with θ1, θ2 ∈ [0, 2π]). In fact, if we consider the following set:

Ā =
[
0, π4

]
∪
[3π

4 ,
5π
4

]
∪
[7π

4 , 2π
]

(4.34)

we take (
ω′2 ω′′2
ω′3 ω′′3

)(
α
β

)
=
(
ω̄2
ω̄3

)
if θ1, θ2 ∈ Ā (4.35)

while (
ω′1 ω′′1
ω′3 ω′′3

)(
α
β

)
=
(
ω̄1
ω̄3

)
otherwise. (4.36)

Once we determine the coefficient α, β, we can compute the linear dependent image
as follows:

Ī = αI1 + βI2 (4.37)

4.4 Numerical Tests
In this section we present the numerical tests that explain, as well as the theoretical
part relatives to the Chapter (4), also the one relative to the Chapter (2). Indeed
the semi- lagrangian (SL) schemes used for the approximation on the next surfaces
is the same introduced previously.

4.4.1 Synthetic surfaces (3,2,1 image/s)
Let us start the numerical tests studying several surfaces. Every single one is of a
typology that permits us to apply each variant of the previuos results explained.

We consider also surfaces with symmetric characteristics that permit to study all
the different way to approximate and deduce the others images in all the previous
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Figure 4.4. Set of surfaces used for the numerical tests

vreg(x, y) virreg(x, y) vsymm(x, y) vlip(x, y)

cases explained before. These surfaces have symmetries that permits us to apply all
the previous techniques that solve the SfS-PS problem.

The different typologies of the four surfaces represented in Fig. 4.4 is such that
their geometrical characteristics differentiate the number of necessary images for
their tridimensional reconstruction, in fact:

• vreg(x, y) is a non symmetric surface. For its tridimensional reconstruction,
then, we need of three its linear independents images;

• virreg(x, y) is still a non symmetric surface, but it is also non smooth. In fact
it is the weakest case we present like test;

• vsimm(x, y) is a surface with a symmetry axes (the straight line y + x = 0) for
which we need of two images;

• vlip(x, y) instead is a surface used (in a very similar vesion) also in the previous
numerical test. It has four axis of symmetry (that is y = ±x, y = 0, x = 0).
For its reconstruction we need of only one image. We note that it is also a
Lipschitz surface.

For these starting data, summarized in Fig. 4.5 we made different tests modifying
the size of the grid ∆, uniform for all the domain Ω. About the discretization step
h of the directional derivative we have taken it equal to ∆ for every test in order to
reach the best consistence order.

All the numerical tests have been made using a computer with Intel Core 2 Duo
processor of 2.13 GHz and 2GB of RAM.

The numerical approximation was carried out with both the semi-Lagrangian
schemes, forward (SL-F) and backward (SL-B), and the implicit finite difference
scheme (IFD U5). We calculated the errors in L∞(Ωd) norm by varying the uniform
discretization step following the same procedure of the previous numerical tests.
The results relative to vreg are presented in Tab. 4.1. Here and in the almost all the
previous tables (relative to the other surfaces) is possible to see the order estimation
approximatively close to one. We have used the same angles for virreg (see Tab. 4.2)
for compare the difference with vreg when the size of the grid decreases. We note
that the irregularity of the surface appears in the different approximation order. In
fact, the one of virreg is much more far from one than the order relative to vreg and
the difference becomes bigger when ∆ decreases.

In Tab. 4.3 and Tab. 4.4 we have tested the same surface vsym using two
different dispositions of light sources in order to show that there is no difference (in
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v r
eg

ω′ : ϕ1 = 0.1, θ1 = 0→ (I1) ω′′ : ϕ2 = 0.1, θ2 = 7
18π → (I2) ω′′′ : ϕ3 = 0.1, θ3 = π → (I3)

v i
r
r
eg

ω′ : ϕ1 = 0.1, θ1 = 0→ (I1) ω′′ : ϕ2 = 0.1, θ2 = 7
18π → (I2) ω′′′ : ϕ3 = 0.1, θ3 = π → (I3)

v s
y
m

ω′ : ϕ1 = 0.1, θ1 = π
4 → (I1) ω′′ : ϕ2 = 0.1, θ2 = 3

4π → (I2)

v l
ip

(x0, y0)

i =1, . . . , n

j = 0j = 1

ω′ : ϕ1 = 0.1, θ1 = π
4 → (I1)

Figure 4.5. Set of images used with the respective light sources described by their spherical
coordinates. For each surface is possible to see the straight line of symmetry (in red)
and the curve where the surface is not differentiable (in blue).

the error and in the order) using one of the two angles that give the perpendicularity
with respect the symmetry straight line. In fact, in Tab. 4.3 we deduce the
supplementary image starting from an angle θ1 = π

4 and in Tab. 4.4 from θ1 = 5
4π

(both perpendicular to the straight line y + x = 0).
The computer used for computing the CPU time has an Intel Core 2 Duo

processor of 2.66 GHz and 4GB of RAM. Relatively to this, the computing time for
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∆ SL-F error SL-F order SL-B error SL-B order IFD U5 error
0.02 2.085× 10−1

0.8993 1.7434× 10−1
0.9762 3.6446× 10−1

0.01 1.1179× 10−1
0.9358 8.862× 10−2

0.9886 2.1028× 10−1

0.005 5.844× 10−2
0.9654 4.466× 10−2

0.9936 1.692× 10−1

0.0025 2.993× 10−2 2.243× 10−2 1.652× 10−1

Table 4.1. Error in L∞(Ωd) norm and order of convergence relative to vreg with angles:
θ1 = 0, θ2 = 7

18π and θ3 = π; ϕ1 = ϕ2 = ϕ3 = 0.1.

∆ SL-F error SL-F order SL-B error SL-B order
0.02 1.6475× 10−1

0.7091 1.8247× 10−1
1.00980.01 1.0078× 10−1

0.5543 9.062× 10−2
0.88700.005 6.863× 10−2

0.8582 4.900× 10−2
0.69730.0025 3.786× 10−2 3.022× 10−2

Table 4.2. Error in L∞(Ωd) norm and order of convergence relative to virreg with angles:
θ1 = 0, θ2 = 7

18π and θ3 = π; ϕ1 = ϕ2 = ϕ3 = 0.1.

∆ SL-F error SL-F order SL-B error SL-B order
0.02 5.254× 10−2

1.0050 6.856× 10−2
10.01 2.618× 10−2

1.0022 3.428× 10−2
1.00880.005 1.307× 10−2

1.3025 1.713× 10−2
0.99920.0025 5.299× 10−3 8.570× 10−3

Table 4.3. Error in L∞(Ωd) norm and order of convergence relative to vsym with angles:
θ1 = π

4 and θ2 = 3
4π; ϕ1 = ϕ2 = 0.1.

∆ SL-F error SL-F order SL-B error SL-B order
0.02 1.600× 10−4

1 1.016× 10−2
0.90390.01 8.000× 10−5

1 5.430× 10−3
0.93510.005 4.000× 10−5

1 2.840× 10−3
0.81880.0025 2.000× 10−5 1.610× 10−3

Table 4.4. Error in L∞(Ωd) norm and order of convergence relative to vsym with angles:
θ1 = 5

4π and θ2 = 7
4π; ϕ1 = ϕ2 = 0.1.

the tests of Tab. 4.5 goes from 0.86 seconds for the SL forward scheme and 0.832
seconds for the backward one with ∆ = 0.02 (that is with images of size 100× 100
pixels). It arrives till 451.037 seconds (about 7 minutes and 30 seconds) for the
SL forward scheme and 452.832 seconds (about 7 minutes and 32 seconds) for the
backward one with the size grid of 0.0025 (i.e. using images of size 800 × 800).
Instead, since the implicit finite difference scheme is a direct method, it needs at the
maximum of only few tenths of a second. On the other side it is possible to note
that in the cases of Tab. 4.2, 4.3 and 4.4 the direction of the vector field b does not
permit the correct convergence of the scheme. In fact in these cases b2(x, y) (i.e. the
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second component of b) that compares in the denominator of all the non-diagonal
coefficients of the discretization matrix is very close to zero for all the points of the
domain. Another particular case is the one of Tab. 4.1 where the convergence is not
guaranteed always because of the "bad" disposition of the vector field b.

∆ SL-F error SL-F order SL-B error SL-B order IFD U5 error
0.02 2.731× 10−2

0.8975 2.731× 10−2
0.8975 1.327× 10−2

0.01 1.466× 10−2
0.8630 1.466× 10−2

0.8630 6.73× 10−3

0.005 8.060× 10−3
0.9165 8.060× 10−3

0.9165 3.35× 10−3

0.0025 4.270× 10−3 4.270× 10−3 1.68× 10−3

Table 4.5. Error in L∞(Ωd) norm and order of convergence relative to vlip with angles:
θ1 = π

4 and ϕ1 = 0.1.

From Tab. 4.5 and Tab. 4.6 is possible to note also that the way we use the
images permits to obtain the same errors (for the SL forward and backward schemes).
That is the images we generate are such that the integration of the differential
problem (2.35) does not depends from the direction we want to use (i.e. if we want
to start from Γin or from Γout).

A very interesting result is relative to the Tab. 4.6. In fact, we can see that the
order is not close to one at all, but it is almost 0.5. This depends from the vector
field b(x, y), in fact from the Fig. 4.6 is possible to see that some curves where the
surface is not differentiable coincide exactly with the projection of the characteristic.

∆ SL-F error SL-F order SL-B error SL-B order IFD U5 error
0.02 6.221× 10−2

0.5131 6.221× 10−2
0.5131 2.619× 10−2

0.01 4.359× 10−2
0.5067 4.359× 10−2

0.5067 1.316× 10−2

0.005 3.068× 10−2
0.5036 3.068× 10−2

0.5036 6.56× 10−3

0.0025 2.164× 10−2 2.164× 10−2 3.28× 10−3

Table 4.6. Error in L∞(Ωd) norm and order of convergence relative to vlip with angles:
θ1 = π and ϕ1 = 0.1.

4.4.2 Real case (Beethoven 3 images)

In this section we want to solve the SfS-PS problem on real application using three
linear independent images taken from the web. We apply it for the pictures of a
Beethoven bust shown in Fig. 4.7. The size of the images is 77 × 210 pixels and
this rectangular structure is due to the fact that the complete bust has not a simple
structure of the boundary. As we will see in the next section (where the complete
pictures are used) the boundary of the statue with respect the background is not
rectangular. This does not permit us to approximate the boundary condition using
the procedure explained in Section (4.1.3).

The spherical coordinates of the light sources used for these picture are, respec-
tively:
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Figure 4.6. In these overlapping images are emphasize in red the point where the surface
is note differentiable. We can also note that the the vector field b(x, y) (in blue) has the
same direction of one of these curves.

Ireal1 Ireal2 Ireal3

Figure 4.7. Beethoven bust: real images.

ϕ1 = 0.263, θ1 = −0.305 for Ireal1 ;
ϕ2 = 0.2, θ2 = 3.226 for Ireal2 ;
ϕ3 = 0.281, θ3 = 3.502 for Ireal3 .

The reasons for which we use three pictures are essentially two. The first is
that, as we can see from the pictures, the surface is not symmetric because of some
details (like the hair and the foulard). The second problem is relative to the light
sources direction. In fact, in order to apply the reduction of the images necessary
to the reconstruction we need of a light source such that ω̃ is perpendicular to the
symmetry straight line. This is the way, even if we cut the images around the face
of Beethoven (that is around the part of the statue that seems to be symmetric with
respect a vertical axes), we can not apply the reduction method.
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The computing times relative to the SL forward and backward scheme have
been, respectively, of 2.033 and 2.13 seconds. The surfaces approximated with both
schemes are shown in Fig. 4.8.

Figure 4.8. Approximated surface of the Beethoven bust using the SL forward scheme (on
the left) and the SL backward scheme (on the right).

Observing the reconstructed surface we note, especially for the SL forward
scheme, that the boundary condition is not respected very well on the right side. In
fact the surface on that side does not match with the boundary value precalculated.
This depends on the direction of the vector field b(x, y) that determines the direction
of the approximation of the surface. Indeed, the propagation of the information,
oriented by b(x, y), starts from the left side with respect to the SL forward arriving
on the right side with a substantial accumulate error. Relatively to the SL backward
scheme, even if the information propagation starts from right, the compensation of
the errors during the iterations balances much more better the matching with the
left boundary.

The noise and the approximation of the spherical coordinates of the light sources
can be also seen like a loss of consistence of the boundary condition (see Section
(2.2) of the second chapter). This means that the surfaces of Fig. 4.8 are different
because they start with incongruous boundary conditions respect the grayscale value
of the images altered by the noise and the rough spherical coordinates.

4.4.3 Linear Independent Images
The tests on the linear independent images concept were carried out both on synthetic
and real surfaces.

For the synthetic case we consider like test surface the one in Fig. 4.9.
Like starting images we consider the first and the last one of the right column of

Fig. 4.10. Once we choose the respective angle θ (θ1 = 0 and θ2 = π), we calculate
the optimal angle ϕ (respectively ϕ1 = 0.26 and ϕ2 = 0.19) in order to have the
biggest angle θ̂ (4.27) avoiding the black shadows. In Fig. 4.10 are represented the
three intermediate images obtained with three light vectors coplanar to the first two
ω′ e ω′′.

For the real case, we focus our attention on the first and last image of the left
column of Fig. 4.10 already used in the previous section (namely Ireal1 and Ireal3 ).
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Figure 4.9. Test surface for the calculus of the linear independent in the synthetic case.

In Fig. 4.10 the three intermediate images are obtained from our method as
linear combinations of the given ones (pictures 1 and 5).
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ω′real : ϕ1 = 0.263, θ1 = −0.305→ (Ireal1 ) ω′ : ϕ1 = 0.26, θ1 = 0.0→ (I1)

ω′′′real : ϕ3 = 0.281, θ3 = 3.502→ (Ireal3 ) ω′′ : ϕ2 = 0.19, θ3 = π → (I2)

Figure 4.10. Results of the simulation of linear dependent images.
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