
TESI DI DOTTORATO

Marco Bright Caminati

A simplified framework for first-order languages

Dottorato in Matematica, Roma «La Sapienza» (2011).

<http://www.bdim.eu/item?id=tesi_2011_CaminatiMarcoBright_1>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non
è consentito l’utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare
questo avvertimento.

bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI

http://www.bdim.eu/

http://www.bdim.eu/item?id=tesi_2011_CaminatiMarcoBright_1
http://www.bdim.eu/

A simplified framework for first-order languages
and its formalization in Mizar

Scuola Dottorale in Scienze Astronomiche, Chimiche, Fisiche, Matematiche
e della Terra “Vito Volterra”
Dottorato di Ricerca in Matematica – XXII Ciclo

Candidate
Marco Caminati
ID number 1146957

Thesis Advisor
Prof. Giuseppe Rosolini

A thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mathematics
30/11/2011

Thesis not yet defended

Marco Caminati. A simplified framework for first-order languages and its formal-
ization in Mizar.
Ph.D. thesis. Sapienza – University of Rome
© 2011

website: http://www.mat.uniroma1.it/people/caminati
email: caminati@mat.uniroma1.it

Acknowledgments

Support and guidance from my advisor, Prof. Giuseppe Rosolini, have been invaluable.
I am grateful to Prof. Claudio Bernardi for helpful advice.
I am indebted to Prof. Peter Koepke, who encouraged me with his interest in my
research and gave me the opportunity to meet other people working in my area
through his gracious hospitality.
I had the luck of making the acquaintance of Flavia Mascioli and Enrico Rogora,
among the friendliest and most supportive people I met in my department.
My neighborly fellow graduate students Stefano, Fabio, Linda, Paolo and Andrea
supplied good company and interesting discussion.
Finally, I thank rms for being the zealot he is, which I think made this thesis, and
the world, better. Through him I wish to thank every individual who ever contributed
to free information.

ii

Contents

Introduction v

1 A set-theoretical treatment of first-order logic 1
1.1 Preliminaries . 1
1.2 Languages . 4
1.3 Comments and an example . 5
1.4 Formal definition of derivation rule 7

1.4.1 An example of ruleset . 8
1.5 Formal definitions of derivability and provability 9
1.6 Justification of diagrams . 10

1.6.1 Derivation trees. Proofs . 11
1.7 Elementary results concerning derivability and provability 13
1.8 Semantics . 14
1.9 Henkin interpretation . 17

1.9.1 Quotients . 17
1.9.2 Equability relation and Henkin interpretation 20
1.9.3 Compatibility . 21
1.9.4 The Henkin model . 22

1.10 Enlarging sets of formulas . 28
1.10.1 Preliminaries . 28
1.10.2 Witness-subjoining construction for countable languages . . . 30
1.10.3 Consistent maximization for countable languages 32

1.11 Putting it all together . 33
1.12 Alternative rules . 38

2 The formalization 39
2.1 Software for proving . 39
2.2 An overview of Mizar . 40

2.2.1 Types and definitions . 41
2.2.2 Attributes and registrations 43
2.2.3 Predicates . 44

2.3 First-order logic in MML . 45
2.4 Organization of the codebase . 47
2.5 Dealing with subterms . 50
2.6 Encoding in Mizar . 51

2.6.1 The Language type . 51
2.6.2 Syntax and semantics . 56

iii

2.6.3 Saving work in doing semantics 57
2.6.4 Free interpretation . 61
2.6.5 Justification of ruleset choice 62
2.6.6 Sequents and rules . 64
2.6.7 How to define a single specific rule 66
2.6.8 Derivation rules as Mizar registrations 69
2.6.9 Definitions for readability . 73

3 Technical aspects of the formalization 74
3.1 Custom automations in Mizar . 74

3.1.1 Type clustering to avoid redefinitions 75
3.1.2 Type clustering with dummy arguments: combining type

clustering with notations . 77
3.1.3 Combining dummy arguments and type clustering 79
3.1.4 Reference redirection via functorial registrations 79
3.1.5 Definiens clustering: combining identification and equals ex-

pansion . 82
3.2 Considerations on some formalization design issues 83
3.3 About duplications in MML . 85
3.4 Numerically characterizing the formalization 87

3.4.1 Estimating formalizing time 88
3.4.2 Establishing an equivalent source text 88
3.4.3 Results . 89

3.5 Formalization can bring insight . 89

A Proof of the Substitution Lemma 90

B Mizar functors used in the text 93

iv

Introduction

The axioms of set theory in first-order logic, together with a choice of a deductive
system, form the foundations on which most mathematicians set their research work.
Thus it is quite natural that also logicians study formalizations of first-order logic
and of deductive systems in those same foundations. It appears rather surprising
that formalizations of deductive systems are still missing.

One possible explanation for the lack of a mathematically-flavored treatment of
a foundational block of such kind is that its fundamental role in the mechanization
of mathematics makes research efforts focus on it as a computational tool and divert
them from rather viewing it as an object of mathematical study in its own sake. The
adjective “mathematical” in the last sentence is crucial: indeed, deductive systems
are subject to intense study by proof-theorists, but mainly from a computational
point of view and with methods typical of computer science. While this is certainly
critical for the mechanization, it yields as a consequence that deductive systems
are, for instance, usually expressed in languages far from set theory (or any other
language a mathematician may be accustomed to).

For example, consider the sequent calculus. Its rules are usually displayed
through diagrams like

Γ ψ

Γ ϕ ψ
.

Such diagrams serve well the goals of mechanization, because generally they are
readily rendered into concrete computer languages adopted by many proof assistants;
on the other hand, they are far from being a definition of the rule itself according to
set theory. Therefore there is a gap between the mechanization of mathematics and
the formalization in (one of the most standard) foundations of mathematics.1

Indeed, considering the way standard expositions of sequent calculus or natural
deduction define what a derivation or a proof is (often such notions are merely
introduced with examples, as in [EFT84] (section IV.1), [CH07] (chapter 2)), it is
invariably found that it pivots on some notion describing what an atomic step in
a derivation is, and that this latter notion is not rigorous, from a strictly formal
point of view, because it is based on the diagrams just discussed, rather than on a
set-theoretical description of each single rule (in the quotations below, we emphasize
the words referring to entities lacking a rigorous symbolic definition):

. . . the labels at the immediate successors of a node ν are the premises
1In alternative formal systems there are rigorous definition of deductive systems; see for example

[DG10], section 3 and [MVW98], section 2.

v

of a rule application, the label at ν the conclusion.
[TS96], section 1.3.

By a derivation of Y from X in the system is meant a finite sequence of
lines [. . .] such that for each i < n, the line Xi+1 is a direct consequence
of the preceding line Xi by one of the inference rules.

[Smu95], chapter XVII.
A formal proof in first-order logic is a finite sequence of statements of
the form X Y each of which follows from the previous statements by
one of the rules we have listed. . .

[Hed04], chapter 1.

A symptom of this issue is that virtually every exposition of such matters tends to
be rather wordy. It is very usual in other realms of mathematics to turn to symbols
and strictly defined concepts even in textbooks (compare the neat definition of group
in section 2.1 of [Her96]). This suggests a pragmatic criterion for assessing the
affinity of a treatment with standard set-theoretical language of mathematics, basing
on the number and complexity of actual implementations of it in a computer-checked
proof system adopting set-theoretical foundations. For first-order languages and
deductive calculus only one such implementation already existed, and it is written
in Mizar [BK05]: we discuss its shortcomings in sections 2.3 and 2.6.6. One major
drawback of [BK05] is that it does not aim to be a general framework in which
arbitrary rules can be inserted, rather it deals with provability with a fixed set of
rules, with the only goal of getting to Gödel’s completeness theorem.

The first task accomplished in this thesis is the formulation of first-order logic
and sequent calculus in the standard mathematical foundations of set theory. This
is done in chapter 1. Given the view, exposed above, that a good formulation should
be effectively formalizable, we try to keep definitions set-theoretically simple, that
is, invoking low-level entities. This is especially important for sequent calculus, as
already discussed. Very few assumptions are made on the actual rules adopted, not
even that of monotonicity. This is a departure from the only theory sharing some
traits with the present one which the author is aware of, brought out by Tarski in
[Tar28; Tar35; Tar30]; on other accounts, that theory is more general than the present
one, being agnostic with respect to the type of calculus (Hilbert, natural deduction,
sequent calculus, etc. . .) adopted. The same chapter also tests this formulation
against the proofs of cornerstone applications to model theory and proof theory, like
satisfiability, Löwenheim-Skolem and completeness theorems. We should stress here
that, while it is certainly obvious to every reader of a textbook on first-order logic
that a deductive system can be formalized in set theory, frequently it is not so clear
if the writer has even considered the problem of how to face that task. Thus the
treatment results often in something quite regardless of the mathematization of the
deductive system.

Chapter 2 brings the effort a step further, testing all the contents of chapter 1 even
more concretely: it passes from the formulation there contained to its mechanically
verified formalization, honoring the criterion hinted above. Given our starting goal
of supplying a mathematically-oriented, that is, set-theoretical, formalization of the
foundations in themselves, it is natural to choose a verifier adopting set theory axioms
and first-order logic. This reduces the candidate verifiers to a handful, of which Mizar

vi

is surely the one with the largest library of already verified mathematics: Mizar
Mathematical Library (MML). Besides presenting the Mizar verified formalization,
chapter 2 aims to supply (notably in sections 2.4, 2.6.5 and 2.6.6) concrete instances
and discussions of the thesis that in formalizing a piece of mathematics there is
more than just precisely stating it and certifying its correctness: see [Boy+94] and
[Gon08] for general analysis of how much more there is.

Chapter 3 discusses related issues in a more concrete context: it gives Mizar
examples of design principles stated in chapter 2 and showcases Mizar coding
techniques of general applicability. Notably, section 3.1 discusses some general
methods for the Mizar system, whose support for custom automation is usually
regarded as poor ([Wie07b], section 4), aiming at bypassing, in limited circumstances,
this shortage, and thus of possible interest for other Mizar users.

This work can also be viewed as a study of how the process of mechanically
verifying some theory influences back the theory itself. Although mechanization of
mathematics presents some important differences with respect to writing common
software, the main one being that producing executable code is no longer the final
goal, it can bring some arguably beneficial factors from the realm of computer
programming into the matter being mechanized. First of all, since ‘controlling
complexity is the essence of computer programming’ ([KP81], page 311), one is led to
eliminate all that is not strictly needed, and in general to find approaches minimizing
the code to write. This has the side effect of accurately evaluating the point at
which some notion or construct is really needed, and which results need which
notion or construct. Secondly, and relatedly, once one chooses a specific foundational
framework, set theory in our case, he is brought to favor the employment of some
theoretical toolkit in lieu of another, if the former is more naturally or more simply
expressed in the chosen framework than the latter and, consequently, is somehow
better supported by the software used. See point (4) of list below.

It is natural to wonder whether the consequences of adopting design principles
like the ones stated above are of a merely technical nature, or rather influence the
mathematics to an extent possibly interesting in its own sake. Of such consequences,
I put forward some I believe are of more than merely technical interest in the
particular case of the present work, and refer the reader to the corresponding points
of the text, and to related discussion scattered along chapter 2:

1. The introduction of a definition of language with only two special symbols,
and no need for constant symbols.

2. The distinction between free and bound occurrences of a variable is not needed
to prove the theorems mentioned above. Indeed it is never stated in this work.

3. Monotonicity of single inference rules can often be replaced by monotonicity of
a ruleset, which is a weaker condition. Compare definitions 1.6.0.9 and 1.6.1.1.

4. The definition of sequent derivation and of proof can be substituted by those
of derivability (1.5.0.4) and of provability (1.5.0.5), respectively. The latter, in
turn, can be made without resorting to the notion of tree, which in set-theory is
quite a high-level object, and instead basing on the notion of function iteration.
This alternative view is shown to be reconcilable with the standard, tree-based
one by proposition 1.6.1.4.

vii

Chapter 1

A set-theoretical treatment of
first-order logic

This chapter illustrates a way of expressing the building blocks of first-order logic
in a standard set-theoretical background. We will define the notions of first-order
language, of formulas, of interpretation, of derivation rule, of derivability and
provability. We will also define how to evaluate a formula given an interpretation,
how to extract subformulas, how to perform substitutions in a formula. Finally, we
will deploy this machinery to obtain satisfiability, completeness and Löwenheim-
Skolem theorems, after having introduced a suitable set of derivation rules following
our definitions. In chapter 2 the task of concretely pouring this formulation into
Mizar code will be faced.

1.1 Preliminaries
In this section we fix most of the set-theoretic notations we will be using throughout
the chapter. Most of them is certainly conventional; all the same we prefer to make
sure that the reader is aware of the meaning of each involved symbol.

1. |X| is the cardinality of the set X.

2. X × Y is the cartesian product of the sets X and Y :

X × Y = {(x, y) : x ∈ X, y ∈ Y } .

3. N, Z are the sets of natural numbers (including 0 = ∅) and of the integers,
respectively. We also write Z+ for N\ {0}.

4. domP and ranP denote the domain and range of a given relation P .

5. We will use the terms function, map and mapping interchangeably.

6. Y X is the set of the maps from X into Y .

7. Given sets Y and X, 1YX is the characteristic function (also known as indicator
function) of X, defined on Y :

1YX := ((Y \X)× {0}) ∪ ((Y ∩X)× {1}) .

1

1. First-order logic in set theory 2

Often, X is declaredly a subset of Y and one can write just 1X .

8. Since 2X =
{

1XX′ : X ′ ⊆ X
}
, it is in a one-to-one correspondence with the

power set of X; hence we will also abusively write 2X for the power set of X. 2Xn
is the set of the subsets of X having n elements, and F (X) := ⋃

n∈N 2Xn ⊆ 2X
is the set of the finite subsets of X.

9. }{X is the map:

2X1 3 {x} 7→ x ∈ X;

often, we just indicate it with }{.

10. IX is the identity map on the set X: IX := ⋃
x∈X {x} × {x}.

11. Given sets X,Y, Z, and f ∈ ZX×Y , the unique F ∈
(
ZY
)X

such that
(F (x)) (y) = f ((x, y))∀x ∈ X, y ∈ Y is the currying (known also as schön-
finkeling) of f . We denote as xf ∈ ZY its value in x ∈ X:

xf : Y 3 y 7→ f ((x, y)) .

Notation 1.1.0.1. Consider a relation P and a set X. We write P |X for the
restriction of P to X:

P |X := (X × ranP) ∩ P,

and P [X] for the set of those elements of ranP corresponding through P to some
element of X:

P [X] := ran (P |X) .

Notation 1.1.0.2. • is the infix symbol for the composition of relations: (Q • P) [X] =
P [Q [X]].
◦ is the infix symbol for the composition of functions: g ◦ f : x 7→ g (f (x))

Remark 1.1.0.3. Mizar provides one single symbol to denote both relation and
function compositions, being able to resolve ambiguities thanks to the typing of
the arguments it is applied to. This resolution would require an extra effort to the
reader, so we chose to adopt distinct symbols in 1.1.0.2.

Notation 1.1.0.4. Given a set P all elements of which are relations, we define

bPc :=
⋃

P∈P
ranP.

Notation 1.1.0.5. If P is a relation such that ranP ⊆ domP , we can refer to the
n-th iteration of P for any given n ∈ N. We write it as

P (n).

Notation 1.1.0.6 (‘Functional pasting with right-hand precedence’). Given rela-
tions Q, P , set

QC P := Q\ (domP × (ranQ)) ∪ P.

1. First-order logic in set theory 3

Remark 1.1.0.7. Given two functions f , g:

• f C g is a function;

• if f and g agree on dom f ∩ (dom g), then f C g = f ∪ g.

Definition 1.1.0.8 (Simple substitution). Given y, y′ and a function f , we define

y′

y
f :=

(Iran f C
{(
y, y′

)}) ◦ f ∈ (ran f\ {y} ∪ {y′})dom f
.

Definition 1.1.0.9. Given n ∈ N, a n-tuple (or just tuple) is a function having
{j ∈ N : j < n} = n as a domain. By notation (6) introduced on page 1, then, Xn is
the set of all n-tuples valued in X. We set X+ := ⋃

n∈Z+ Xn, and X∗ := X+ ∪ {∅}.
We will also refer to an element of Xn or X∗ as a (n-)tuple on X.

Definition 1.1.0.10. Given two tuples p, q, we set

p ∗ q :=
{
p q = ∅
p ∪ (q ◦ {(|p|, 0) , . . . , (|p|+ |q| − 1, |q| − 1)}) otherwise,

that is

p ∗ q := p ∪
(
q ◦
(

(x 7→ x− |p|)|(|p|+|q|)\|p|
))
.

Note that

1. p ∗ q is still a tuple: the functions p and
(

(x 7→ x− |p|)|(|p|+|q|)\|p|
)
have as

domains respectively |p| and (|p|+ |q|) \ |p|: being the latter mutually disjoint,
p∗q, as a union of the former functions, is still a function; moreover, its domain
is precisely the union of |p| and (|p|+ |q|) \ |p|.

2. ran (p ∗ q) = (ran p) ∪ ran q.

Hence the mapping (p, q) 7→ p ∗ q is a binary operation on X∗:

Definition 1.1.0.11. Given X, set ∗X := X∗ ×X∗ 3 (p, q) 7→ p ∗ q.

∗ is associative. That is:

(p ∗ q) ∗ r = p ∗ (q ∗ r)

for any three tuples p, q, r. This permits to consider (X∗, ∗X , ∅) as a monoid, also
abusively indicated with X∗. Similarly, X+ will be also used to denote the sub-
semigroup

(
X+, (∗X)|(X+)

)
of X∗ on X+.

Thanks to its associativity, ∗X naturally yields a homomorphism (X∗)∗ → X∗,
which restricts to a homomorphism (X+)+ → X+; both are denoted by ∗∗X .

Notation 1.1.0.12. When no ambiguity arises, we reserve to employ the following
shorthand notations, writing

1. x instead of {(0, x)} ∈ X1 ⊆ X+;

2. pq in place of p ∗ q;

1. First-order logic in set theory 4

3. p ∗ q ∗ r for (p ∗ q) ∗ r = p ∗ (q ∗ r).

4. ∗ instead of ∗X ;

5. ∗∗ instead of ∗∗X .

Remark 1.1.0.13. It would be natural to add to the ones in 1.1.0.12 the further
shorthand notation identifying the distinct mappings ∗ and ∗∗ under one symbol.
We refrain from doing so: those distinct functions will occasionally appear together,
so being able to resolve between them arguably adds clarity when this happens.

1.2 Languages
Definition 1.2.0.14. A language is a triple (#,≡, ↓), where # is an integer-valued
function and ≡ is an element of its domain, such that

1. # (≡) = −2;

2. ↓/∈ dom #;

3. #−1 ({0}) is not finite.

Notation 1.2.0.15.

• # is called the arity of the language, and {↓} ∪ dom # is called the symbol set
of the language.

• ≡ is called the equality symbol of the language, and ↓ the logical connective of
the language.

• Given a language S, we also denote by S its symbol set (so that, e.g. S∗ is
the free monoid on the latter, and ∗S the operation of this monoid); when
needed, we may use a subscript to refer explicitly to the arity, equality symbol
or logical connective of S: S = (#S ,≡S , ↓S).

• The elements of #−1
S ({0}) are called the literals of S, those of #−1

S (Z\ {0})
its compounders.

Definition 1.2.0.16 (The set of terms of depth not exceeding n).
Given a language S, we recursively construct the following countable family of sets

of tuples on S:

TS,0 :=
(
#−1 [{0}]

)1

TS,n+1 := TS,n ∪
⋃

o∈#−1[Z+]
∗
[
{{(0, o)}} × ∗∗

[
(TS,n)#(o)

]]
.

Definition 1.2.0.17 (Terms of a language).

TS :=
⋃

n∈N
TS,n.

1. First-order logic in set theory 5

Definition 1.2.0.18 (The set of formulas of depth not exceeding n).
Given a language S, we recursively construct the following countable family of
tuples on S:

FS,0 :=
⋃

r∈#−1[Z−]
∗
[
{{(0, r)}} × ∗∗

[
(TS)|#(r)|

]]

FS,n+1 := FS,n ∪ ∗ [{{(0, ↓)}} × ∗ [FS,n × FS,n]] ∪ ∗
[(

#−1 [{0}]
)1
× FS,n

]
.

Definition 1.2.0.19 (The formulas, or well-formed tuples, or wffs of a language).

FS :=
⋃

n∈N
FS,n.

Definition 1.2.0.20 (Depth of a term and of a formula). The depth of a term t of
S is written |t|, and defined as the least n ∈ N such that t ∈ TS,n.
The depth of a formula ψ of S is written |ψ|, and defined as the least n ∈ N such
that ψ ∈ FS,n. A formula of depth zero is said to be atomic.

Definition 1.2.0.21. Given a language S, we consider the set

G (S) := F (FS)× FS .

An element (Γ, ϕ) of G (S) is called a sequent of the language S; Γ is styled the
antecedent of the sequent, ϕ its succedent.

1.3 Comments and an example
The definition of a first order language presented here, and the subsequent ones,
have been devised with an eye to Mizar formalization: as little and as basic as
possible objects were pushed into them. In particular, the following points should
be emphasized:

• The first design choice is to use polish notation: for example x > y+z becomes
> x + yz. This is a common choice in software and in formalization for its
simplicity; both [RT90] and [Ban90] adopt it as well.

• There is no quantification symbol. This does not mean that we cannot quantify,
of course: existential quantification is indicated by heading a formula with a
literal symbol, and this gives rise to no ambiguity.
Of course, universal quantification can be rendered via existential and negation
constructs, as is customarily done; we shall soon an applied instance of this in
the example about group axioms below.

• There is no native distinction between free and bound variables. What’s more,
there is not even a distinction between variables and constants symbols. There
are only symbols of arity zero, which are called literals, and symbols of non
zero arity, called compounders. To be more precise, the distinction is left to
the semantics, in the sense that a constant becomes a variable exactly when it
is caught by quantification inside a formula.

1. First-order logic in set theory 6

• Arity yields signed natural numbers, with the convention that negative arity
symbols are relational (predicate) compounders and positive arity symbols are
operational compounders. The absolute value of the arity will indicate the ac-
tual arity of the compounder. In many treatments, (even inside Mizar’s library,
see [RT90]) there are no operational symbols, which can always semantically
be emulated by relational (predicate) symbols, but this makes the definition of
well-formed formulas (wff) and, most importantly, that of free interpretation,
trickier.

• There is only one logical connector, that is NOR, here denoted by ‘Peirce
arrow’ (↓). This suffices since NOR is universal (functionally complete), as is
its dual NAND (↑ or ‘Sheffer stroke’).

• Term substitution, 1.8.0.32, will be defined by leveraging the pre-existing
notions of reassignment, of evaluation of an interpretation, and of free inter-
pretation. Additionally, simple substitution, 1.1.0.8, is preferred to it when
sufficing, as in definition of W, 1.9.4.6, and of rule R←

∃
, see 1.4.1.1.

Therefore, in definitions regarding syntax and semantics, we have can take advantage
of dealing with only two special symbols: equality and NOR; notably in treating wff
formulas and evaluation (see 2.6.3), this will be a life-saving simplification.

To give one among the simplest illustrations, let us rephrase in this language
the group axioms, using N as a symbol set, 1 as ≡, 0 as ↓, and an arity f : Z+ → Z
given by

f(n) :=

-2 if n=1
2 if n=2
0 otherwise

Direct translation might result bewildering, so let us first list axioms in standard
human-friendly form (on the left in the table below) and in an intermediate jargon
made by combining polish notation with shortcut symbols ∃,∀,=,+ for quantifiers
and compounders:

∀a, b, c a(bc) = (ab)c ∀3∀4∀5 = +3 + 45 + +345
∀a ea = a ∀4 = +344
∀a∃b ba = e ∀4∃5 = +543.

Finally, we pass to the real coding first by rendering ∀xφ as ¬∃xφ, ¬φ as ↓ φφ, ∃xφ
as xφ, and subsequently by substituting =, + respectively with 1, 2, in the end
obtaining some nasty strings:

03040512324523425512324523425405123245234255123245234253
04051232452342551232452342540512324523425512324523425

0412344412344
045124534512453,

(1.1)

1. First-order logic in set theory 7

where the first, exceedingly long axiom has been split across two lines.
This shows how the absence of auxiliary boolean connectors and quantifiers

makes even trivial formulas go wildly verbose. Note that none of the three axioms
uses more than seven literals, so we have been able to unambiguously use decimal
representation for N. Also compare the role of the symbol ’3’ in expressing first and
second axioms: in the first case it is quantified and thus used as a variable, while in
the second it acts as a constant (the unity of the group) since it is not quantified.
Not having distinguished between constants and variables permits reusing a literal
symbol in both ways, as long as the corresponding constant does not appear in
the formula in which the symbol is used as a variable. Given our goals, we do not
care much about readability of the language: all that matters is that any first-order
theory is expressible in the language, and that a proof calculus being both sound
and complete (that is, powerful enough to prove any consequence of a first-order
theory) is provided, which we did with completeness theorem 1.11.0.18. Under
these constraints, we sought for the design maximizing simplicity and neatness of
formalization.

1.4 Formal definition of derivation rule
Definition 1.4.0.22 (Rules and rulesets). A derivation rule, or inference rule for
S is any map 2G(S) → 2G(S). A ruleset of S is a set of derivation rules, that is, a
subset of

(
2G(S)

)(2G(S))
.

Notation 1.4.0.23 (Character reservations; abbreviations for writing sequents).

• As a rule, we will use the letter S to indicate a language, and X to indicate a
generic set.

• We conventionally agree to reserve (unless otherwise specified) some characters
according to the type of S-related objects we will want to denote:

– s for an element of dom #S ,
– v for a literal,
– w for a tuple on S,
– t for a term,
– Γ for a finite set of formulas,
– ϕ,ψ for a formula,
– Ψ for a set of formulas,
– σ for a sequent,
– Σ for a set of sequents,
– R for an inference rule, and
– D for a ruleset.

Subscripts or superscripts will be added when needed.

1. First-order logic in set theory 8

• A sequent (Γ, ϕ) will be often represented as Γ ` ϕ.

• When writing a sequent, the following abbreviations can be adopted:

Γ1 Γ2 ` ϕ in lieu of Γ1 ∪ Γ2 ` ϕ

Γ ψ ` ϕ in lieu of Γ ∪ {ψ} ` ϕ.

• The turnstile symbol (`) parting antecedent from succedent can be omitted
when adopting the foregoing abbreviations for writing a sequent.

Example 1.4.0.24. Consider Γ1 := {ψ1, ψ2} ,Γ2 := {ψ3} ,Γ := Γ1 ∪ Γ2.
Here is a list of some of the notations rendering the sequent (Γ, ϕ), obtainable by
combining shorthand notations introduced in 1.4.0.23:

ψ1 ψ3 ψ2 ψ3 ` ϕ

Γ1 Γ2 ` ϕ

{ψ1, ψ2} ψ3 ` ϕ

{ψ1, ψ2, ψ3} ` ϕ

ψ1 ψ2 ψ3 ϕ.

1.4.1 An example of ruleset
Definition 1.4.1.1. We introduce some particular derivation rules of the language
S by specifying the way each acts on a given Σ ⊆ G (S):

R0 (Σ):={(Γ, ϕ) : Γ = {ϕ}}
R∪ (Σ):={(Γ, ϕ) : ∃ (Γ′, ϕ) ∈ Σ|Γ′ ⊆ Γ}
R= (Σ):={(Γ, ϕ) : ∃t|Γ = ∅ and ϕ =≡ tt}
R↔= (Σ):={(Γ, ϕ) : ∃t1, t2|Γ = {≡ t1t2} and ϕ =≡ t2t1}
R⇒= (Σ):={(Γ, ϕ) : ∃t1, t2, t3|Γ = {≡ t1t2,≡ t2t3} and ϕ =≡ t1t3}
R+ (Σ):={(Γ, ϕ) : ∃n ∈ Z+, s ∈ S, t, t′ ∈ (TS)n |ϕ =≡ s ∗∗ (t) s ∗∗ (t′) and

Γ = {≡ t (j) t′ (j) , j ∈ n}}
RR (Σ):={(Γ, ϕ) : ∃n ∈ Z+, s ∈ S, t, t′ ∈ (TS)n |ϕ = s ∗∗ (t′) and

n = −# (s) and Γ = {≡ t (j) t′ (j) , j ∈ n} ∪ {s ∗∗ (t)}}
R↓ (Σ):={(Γ, ϕ) : ∃ϕ1, ϕ2, ϕ3, ϕ4 ∈ FS |Γ = {↓ ϕ1ϕ2, ↓ ϕ3ϕ4} and ϕ =↓ ϕ2ϕ3}
R←
∃

(Σ):=
{

(Γ, ϕ) : ∃v, v1, v2, ψ,Γ′|
(
Γ′ ∪

{
v2
v1
ψ
}
, ϕ
)
∈ Σ and

ϕ =↓ ≡ vv≡ vv and Γ = Γ′\
{
v2
v1
ψ
}
∪ {v1ψ} and

v2 /∈ bΓ′ ∪ {ψ}c}
Rc (Σ):={(Γ, ϕ) : ∃ψ1, ψ2| (Γ ∪ {ψ1}, ψ2) , (Γ ∪ {ψ1}, ↓ ψ2ψ2) ∈ Σ

and ϕ =↓ ψ1ψ1}
R6¬ (Σ):={(Γ, ϕ) : (Γ, ↓ ↓ ϕϕ↓ ϕϕ) ∈ Σ} .

1. First-order logic in set theory 9

Notation 1.4.1.2. When wanting to express the particular language S relative to
which one of the rules defined in 1.4.1.1 is to be meant, we adjoin its name S to the
rule’s subscript, as in R=,S .

1.5 Formal definitions of derivability and provability
If we want to formalize results about completeness of first-order languages in a
first-order language like Mizar or set theory, we first have to rigorously define in it
what a proof is. It turns out that it is both sufficient and convenient to establish
the notion of provability rather than that of proof.

Definition 1.5.0.3. Given a ruleset D of S, we define the following derivation rule
of S:

D : Σ 7→
⋃

R∈D
R (Σ) . (1.2)

Definition 1.5.0.4. A sequent belonging to D(n) (Σ) will be said to be derivable
from Σ through D in n steps.

The set of all sequents derivable from Σ through D will be indicated with
D

(∞) (Σ):

D
(∞) (Σ) :=

⋃

n∈N
D

(n) (Σ) .

Definition 1.5.0.5 (Formal definition of provability). Given S, X and D, we set

D (X) := ran
(
2X × FS ∩

(
D

(∞) (∅)
))
⊆ FS .

As well as ϕ ∈ D (X), one can also write X D ϕ, and say that X proves ϕ in D, or
that ϕ is provable from X in D.

Remark 1.5.0.6. Equivalently, X D ϕ if and only if there is a sequent (Γ, ϕ) ∈
D

(∞) (∅) such that Γ ⊆ X.
Alternatively, since D(0) (∅) = ∅, X `D ϕ if and only if there are n ∈ N, Γ ∈ F (FS)
such that (Γ, ϕ) ∈ D(n+1) (∅) .

Remark 1.5.0.7. In 1.2.0.21 we defined sequents of S as having for an antecedent a
finite subset of FS . Other conventions are to define sequents having either multisets
or tuples of formulas as an antecedent. The one adopted here, however, involves lower-
level objects than the other two, if one works in a set-theoretical formal framework
as we are doing. Moreover, it allows dispensing with introducing exchange and
contraction rules.

Definition 1.5.0.8. X is said to be deductively closed with respect to D (or just
D-closed) if

D (X) ⊆ X.

1. First-order logic in set theory 10

1.6 Justification of diagrams
Definition 1.6.0.9. A rule R of S is said to be monotone if it is monotone with
respect to the partial order ⊆ of G (S); that is, for any Σ1,Σ2 ∈ G (S) such that
Σ1 ⊆ Σ2, it is:

R (Σ1) ⊆ R (Σ2) .

Remark 1.6.0.10. Any hypothesis requesting some rule to be monotone will always
be made explicit. However, all the concrete examples of rule we will introduce will
be monotone. This will be often exploited without explicit mention.

Definition 1.6.0.11. Given a derivation rule R of S and n ∈ N, we write

R ≤ n

to mean that for any Σ2 ⊆ G (S) , σ ∈ R (Σ2), there is Σ1 ⊆ Σ2 with |Σ1| = n such
that σ ∈ R (Σ1). In this case we say that n is an upper bound for R.

If R ≤ 0 we say R is an axiom.

All the rules introduced in 1.4.1.1 are monotone and have 2 as an upper bound
(some even admit 1 as an upper bound, with many being just axioms): roughly
speaking, this means that each sequent belonging to the image of a given Σ through
one of those rules can be derived by applying that rule just to a suitable subset of Σ
having cardinality either 0 (for those rules being axioms), 1 or 2.

This allows us to introduce schematic diagrams succinctly illustrating how each
of our rules work by a graphical arrangement describing its action on a given generic
pair of sequents (or either respectively on a single sequent or on the empty set). This
description is done simply by listing above a horizontal line the input sequent(s), if
any, and below it the output sequent:

1. First-order logic in set theory 11

R0 ϕ ` ϕ
R∪

Γ ` ϕ

Γ′ ` ϕ
where Γ ⊆ Γ′

R= ` ≡ tt R↔= ≡ t1t2 ` ≡ t2t1
R⇒= ≡ t1t2 ≡ t2t3 ` ≡ t1t3

R+≡ t1t′1 . . . ≡ tnt′n ` ≡ st1 . . . tnst′1 . . . t′n
where n = #(s) ∈ Z+

RR st1 . . . tn ≡ t1t′1 . . . ≡ tnt′n ` st′1 . . . t
′
n

where n = −#(s) ∈ Z+

R↓ ↓ ϕ1ϕ2 ↓ ϕ3ϕ4 ` ↓ ϕ2ϕ3

R←
∃

Γ v2
v1
ϕ ` ↓ ≡ vv≡ vv

Γ v1ϕ ` ↓ ≡ vv≡ vv
where v2 does not occur in Γ, ϕ

Rc
Γ ϕ ` ψ Γ ϕ ` ↓ ψψ

Γ ` ↓ ϕϕ R6¬ Γ ` ↓ ↓ ϕϕ↓ ϕϕ
Γ ` ϕ

We lastly observe that such a suggestive representation of rules is effective
because each of the latter works in a syntactically simple manner: hence its action
is immediately conveyed by glancing at the variations of the morphological patterns
between the sequent schematas above and below the horizontal line.

This is one of the reasons for splitting derivations into several applications
of different rules: otherwise we could have helped the trouble of introducing the
definitions of a ruleset D and of the derived rule D (see 1.5.0.3), and rather state
directly 1.5.0.4 and 1.5.0.5 in terms of a single generic, comprehensive rule taking
the place of D.

1.6.1 Justification for the introduction of derivation trees. Formal
definitions of derivation and proof

Motivation

Although the notions of derivability and provability of 1.5 will turn out, throughout
chapters 1 and 2, to be perfectly sufficient to formalize (see [Cam11e]) all our results,
a human is usually more comfortable in carrying out and conveying reasonings
involving those notions if he adopts some interface to them more resembling a

1. First-order logic in set theory 12

calculation. To this end, we will obtain a graphical representation of such calculi in
form of oriented trees, which matches the diagrams introduced in 1.6. We start with
a rather elementary notational convention. For a generic rule R and sequents σ1, σ2,
instead of writing σ2 ∈ R ({σ1}), we just write

σ1
σ2
R.

Now, the convenience we gain is that such writings can be ‘piled up’, resulting in a
more natural way of expressing a succession of rule applications. When dealing with
rules not all of which are bounded by 1, such ‘piles’ become trees.

Formal definitions

The aforementioned trees, which will be referred to as derivations, can be rigorously
defined in terms of derivability (1.5.0.4) and of a basic subset of the usual gear
of graph theory. First of all we note that we need the assumption that the rules
involved are monotone to proceed. In fact the fitting notion is for rulesets.

Definition 1.6.1.1. A ruleset D is said to be monotone if and only if the rule D is
monotone.

Now the reader may want to consult some reference on graphs (e.g., [Knu97],
section 2.3.4.2, ‘Oriented trees’) for the few standard definitions and results about
trees we will need in what follows.

Notation 1.6.1.2. Given an oriented tree T := (V,E), we denote with |T | its depth,
with rT the root of T , that is the only element of V \ ranE, and with ΓT the set
V \ domE (that is, the set of the leaves of T).

Definition 1.6.1.3 (Recursive definition of a derivation tree). Let T := (V,E) be
an oriented tree with n+ 2 vertices for some n ∈ N. Denote as r1, . . . , rl the distinct
elements of E [{rT }] (that is, the vertices of T having depth 1), with Tj , j = 1, . . . , l
the unique oriented sub-tree of T having rj as a root.
Let f be a function with V ⊆ dom f and ran f ⊆ G (S). We say that (T, f) is a
D-derivation, where D is a ruleset of the language S, if

• |T | = 1 and r ∈ R (f [ΓT]) for some R ∈ D.

• |T | = m+2 for somem ∈ N, there isR ∈ D such that f(rT) ∈ R (f [{r1, . . . , rl}]),
and, for each j ∈ l + 1:

– |Tj | = m+ 1, and
– (Tj , f) is a D-derivation.

The final step is to state the existence of a D-derivation as sufficient condition
for the derivability of its root sequent from the set of its leaves according to the
rules of D:

Proposition 1.6.1.4. If D is a monotone ruleset of S and (T = (V,E) , f) is a
D-derivation of depth n+ 1 ∈ Z, then f(rT) ∈ D(n+1) (f [ΓT]).

1. First-order logic in set theory 13

Proof. By induction on n. For n = 0 the thesis is immediate from 1.6.1.3.
Assume n = m+ 1 for some m ∈ N. As done in 1.6.1.3, denote with r1, . . . , rl the
distinct elements of E [{rT }], and with Tj , j = 1, . . . , l the unique oriented subtree
of T having rj as root.
By 1.6.1.3, each (Tj , f) is a D-derivation and has depth m + 1; thus, by the
inductive hypothesis, f(rj) ∈ D

(m+1) (
f
[
ΓTj

])
. 1.6.1.3 also says that f(rT) ∈

R (f [{r1, . . . , rl}]) for some R ∈ D. Hence f(rT) ∈ D (f [{r1, . . . , rl}]). Since D is
monotone, we conclude

f(rT) ∈ D

⋃

j

D
(m+1) (

f
[
ΓTj

])

 . (1.3)

Now, D(m+1) is monotone as well, and f
[
ΓTj

]
⊆ f [ΓT], yielding

⋃

j

D
(m+1) (

f
[
ΓTj

])
⊆ D(m+1) (f [ΓT]) .

Using this (again along with the fact that D is monotone) inside (1.3), we get
f(rT) ∈ D(m+2) (f [ΓT]).

Definition 1.6.1.5. A D-proof is a D-derivation (T, f) such that

f [ΓT] ⊆ D(1) (∅) .

1.7 Elementary results concerning derivability and prov-
ability

Proposition 1.7.0.6. Given D1 ⊆ D2 such that at least one among D1 and D2 is
monotone, for any Σ1 ⊆ Σ2 and any n ∈ N it holds

D1
(n) (Σ1) ⊆ D2

(n) (Σ2) .

Proof. By induction on n. For n = 0, we have trivially D1
(0) (Σ1) = Σ1 ⊆ Σ2 =

D2
(0) (Σ2). Now assume n = m+ 1 for some m ∈ N.

D1
(n) (Σ1) = D1

(
D1

(m) (Σ1)
)
⊆

!
⊆ D1

(
D2

(m) (Σ2)
) 1.5.0.3
⊆ D2

(
D2

(m) (Σ2)
)

1.5.0.3
⊆ D2

(
D1

(m) (Σ1)
) !
⊆ D2

(
D2

(m) (Σ2)
)

= D2
(n) (Σ2) .

In the reasoning above, upper branch is for the case D1 monotone, lower branch
is for the case D2 monotone. In both, ‘!’ denotes the passages invoking inductive
hypothesis together with (respective) monotonicity hypothesis.

Proposition 1.7.0.7. If D is monotone, then

D
(n) (∅) ⊆ D(n+1) (∅)

for any n ∈ N.

1. First-order logic in set theory 14

Proof. By induction on n:

D
(0) (∅) = ∅ ⊆ D(1) (∅) .

Assuming D(n) (∅) ⊆ D(n+1) (∅), one has

D
(
D

(n) (∅)
)
⊆ D

(
D

(n+1) (∅)
)

by monotonicity.

Definition 1.7.0.8. Ruleset D2 emulates ruleset D1 from Σ (written D2 ≥Σ D1) if
⋃

n∈Z+

D1
(n) (Σ) ⊆

⋃

n∈Z+

D2
(n) (Σ) .

D2 emulates D1 (written D2 ≥ D1) if, for each Σ ⊆ G (S):

D2 ≥Σ D1.

Remark 1.7.0.9. Given Σ ⊆ G (S), the relation ≥Σ is transitive:

D2 ≥Σ D1 and D3 ≥Σ D2 imply D3 ≥Σ D1.

Corollary 1.7.0.10 (of 1.7.0.6). If D1 ⊆ D2 and at least one of D1 and D2 is
monotone, then

D2 ≥ D1.

Proposition 1.7.0.11. If X D1
ϕ and D2 ≥∅ D1, then X ∪ Y D2

ϕ.

Corollary 1.7.0.12 (of 1.7.0.10 and 1.7.0.11). If at least one of D1, D2 is monotone,
then

D1 ⊆ D2 and X D1
ϕ imply X D2

ϕ.

Corollary 1.7.0.13 (of 1.7.0.11). If X is D2-closed and D2 ≥∅ D1, then X is
D1-closed.

1.8 Semantics
It is not difficult to show that ∗∗|FS1∪FS2 is one-to-one, and, by recursion on n (see
section 2.5), that ∗∗|(TS)n is one-to-one; this permits defining the following three
functions.

The first one is in (T ∗S)TS :

Definition 1.8.0.14 (Subterms of a term).

�0 := t 7→

∅ if t ∈ TS,0((
∗∗|(TS)#(t(0))

)−1
◦
(
(t|1)∗

)−1
)

(t) otherwise.

The second function is in (T ∗S)FS,0 :

1. First-order logic in set theory 15

Definition 1.8.0.15 (Subterms of an atomic formula).

�1 := ψ0 7→
(
∗∗|(TS)−#(ψ0(0))

)−1
((

(ψ0|1)∗
)−1

(ψ0)
)
.

Finally, the third function is in
(
(FS)1 ∪ (FS)2

)FS\FS,0 :

Definition 1.8.0.16.

�2 := ψ 7→
((
∗∗|(FS1∪FS2)

)−1
◦
(
ψ|1∗

)−1
)

(ψ) .

In 1.8.0.14, 1.8.0.15 and 1.8.0.16, we took advantage of the easy fact that x(∗X)
is one-to-one for any X and x ∈ X∗.

Since �0, �1 and �2 have mutually disjoint domains, we can refer to the function
resulting from their union, denoting it simply as �:

Definition 1.8.0.17 (Sub-tuples of a term or wff).

� := �0 ∪ �1 ∪ �2 ∈
(
(TS)∗ ∪ (FS)1 ∪ (FS)2

)(TS∪FS)
.

Notation 1.8.0.18. We will often write −→w in place of � (w). If w is a non-atomic
formula, −→w are the subformulas of w, while if it is an atomic formula or a term, −→w
are the subterms of w.

Remark 1.8.0.19. If ψ is a non-atomic formula, then the number of its subformulas,∣∣∣
−→
ψ
∣∣∣, is either 1 (if ψ (0) is a literal) or 2 (if ψ (0) =↓).

Definition 1.8.0.20 (Interpretation and universe). Given a language S, an in-
terpretation of S is a function i for which there is a non empty set U (called the
universe of the interpretation) such that

∀s ∈ dom #S , i (s) ∈

U(U#(s)) if # (s) ≥ 0
{0, 1}(U−#(s)) if # (s) < 0.

Notation 1.8.0.21. The symbol i, with optional subscripts and superscripts, will
be reserved for generic interpretations from now on, unless otherwise specified.

Remark 1.8.0.22. Every interpretation has exactly one universe.

Remark 1.8.0.23. According to 1.8.0.20, an interpretation having universe U
assigns to each literal a map of the form {(∅, u)}, where u ∈ U , rather than assigning
to it directly the value u.

Example 1.8.0.24 (The free interpretation). Given X and a language S, the free
interpretation of S given by X is the interpretation of S having TS as universe and
defined thus:

ΦX := dom # 3 s 7→

(
{(0,s)}∗

)
◦
(
∗∗|(TS#(s))

)
(s) ≥ 0

1FSX ◦
(
{(0,s)}∗

)
◦
(
∗∗|(TS−#(s))

)
(s) < 0.

1. First-order logic in set theory 16

Notation 1.8.0.25 (Reassignment of a literal in an interpretation). Given an
interpretation i, an element u′ of its universe, and a literal v, we introduce the
shorthand notation

u′

v
i := iC

{(
v,
{(∅, u′)})}

designating a new interpretation with the same universe of i, called a reassignment
of v in i.

Definition 1.8.0.26 (Evaluation of terms and atomic formulas). Given an inter-
pretation i of universe U , we define

i (t0) := (i (t0 (0))) (∅) ∀t0 ∈ TS,0,

then recursively:

i (t) := (i (t (0)))
(
i ◦ −→t

)
, t ∈ TS ;

and finally, given ψ0 ∈ FS,0 :

i (ψ0) :=

(i (ψ0 (0)))
(
i ◦ −→ψ0

)
ψ0 (0) 6=≡

1 ψ0 (0) =≡ and i
(−→
ψ0 (0)

)
= i

(−→
ψ0 (1)

)

0 otherwise.

Definition 1.8.0.27 (Evaluation of non-atomic formulas). Given an interpretation
i of universe U , we recursively define

i (ψ) :=

1 if ∃v ∈ #−1 [{0}] , u ∈ U |
(
v = ψ (0) and u

v
i
(−→
ψ (0)

)
= 1

)

1 if ψ (0) =↓ and i ◦ −→ψ = 2× {0}
0 otherwise

for every ψ ∈ FS\FS,0.

Definition 1.8.0.28. Merging 1.8.0.26 with 1.8.0.27, we in the end obtain a function

i : (TS ∪ FS)→ (U ∪ {0, 1}) ,

called the evaluation of the interpretation i.

Notation 1.8.0.29 (Model, or satisfaction, relation). Instead of writing i
∣∣
FS

[X] ⊆
{1}, one often writes i

S
X, or simply i X, and says that i is a model of X, or

that i satisfies X.

Definition 1.8.0.30. A ruleset D is sound if X D ϕ and i X imply i (ϕ) = 1.

Remark 1.8.0.31. Any hypothesis requesting some generic ruleset to be sound
will always be made explicit. However, all the concrete examples of ruleset we will
introduce will be sound.

1. First-order logic in set theory 17

Definition 1.8.0.32 (Depth-recursive definition of term substitution in a formula).
Given v and t, define the map [v/t] : FS → FS as follows:

[v/t] (ϕ0) :=
(
ϕ0|{0}

)
∗
(
∗∗
((

t

v
Φ∅

)
◦ −→ϕ0

))

for any atomic formula ϕ0; then, given ϕ ∈ FS,n+1\FS,n, recursively on n:

[v/t] (ϕ) :=

(
ϕ|{0}

)
∗ (∗∗ ([v/t] ◦ −→ϕ)) if ϕ (0) =↓

{(0, v′)} ∗
(
[v/t]

(
v′
ϕ(0) (−→ϕ (0))

)) otherwise, where
v′ /∈ {v} ∪ b{t,−→ϕ (0)}c .

There is a glitch in 1.8.0.32, in that its outcome actually depends on the choice
of the literal v′ appearing in its definiens. This is immaterial, however, since
the different formulas obtained by varying v′ are all good candidates to be the
substitution result for our purpose: as long as the outcome obeys substitution
lemma (see 1.9.4.5), it is acceptable. So we chose not to specify this dependance
in 1.8.0.32. To make matters rigorous, one could fix a suitable choice function
η :

(
2#−1[{0}]

)
\
{

#−1 [{0}]
}
3 X 7→ x ∈

(
#−1 [{0}]

)
\X and define [v/t]η by

substituting v′ with η ({v} ∪ b{t,−→ϕ (0)}c) inside the definiens of 1.8.0.32, which,
however, would probably result a bit too cluttered this way. In Mizar one utterly
bypasses such problems generically related to the dependence on some choice function
by using the construct the, which provides an object of the given type, undefined
yet usable as if it was defined. It should be noted, however, that this device as well
is merely a convenient way, offered by Mizar, to invoke the axiom of choice: [Try].

Notation 1.8.0.33. We will often write ψ [v/l] instead of [v/l] (ψ).

We now introduce a further derivation rule we will need.

Definition 1.8.0.34.

R→
∃

(Σ) := {(Γ, ϕ) : ∃v, t, ψ|Γ = {ψ [v/t]} and ϕ = vψ} .

Since R→
∃
≤ 0, we can depict R→

∃
via a diagram as those from section 1.6:

Notation 1.8.0.35.

R→
∃ ψ [v/t] ` vψ

1.9 Henkin interpretation
1.9.1 Quotients
Definition 1.9.1.1. Let P,Q be relations, f be a function. We say that f is
(P,Q)-compatible if, given (x, y) ∈ dom f × (dom f) ∩ P , it is (f (x), f (y)) ∈ Q.

Remark 1.9.1.2. In Mizar code, the keyword -compatible being already in use,
the attribute -respecting is used instead.

1. First-order logic in set theory 18

Definition 1.9.1.3. Given a non empty relation P , we consider the map

πP : domP 3 x 7→ P [{x}] ∈ 2ranP .

Given a set X and a relation P such that X = domP , we set

X/P := ran (πP) .

Remark 1.9.1.4. If P is an equivalence relation over X, X/P is the set of the
equivalence classes of P (hence a partition of X), and πP maps each element of the
domain of P to the unique equivalence class including it.

Definition 1.9.1.5 (Quotient of a relation). Let O,P,Q be relations, with P and
Q non empty. The quotient of O by (P,Q) is defined as:

O

P Q
:= {(p, q) ∈ ran (πP)× (ran (πQ)) : p× q ∩O 6= ∅} .

Proposition 1.9.1.6. Let E,F be non empty equivalence relations.
If f ∈ (domF)domE is (E,F)-compatible, then

f

E F
∈ (ran πF)ranπE .

Proof. Set g := f
E F . Since g ⊆ ran πE × ran πF by 1.9.1.5, it is ran g ⊆ ran πF ,

hence we are left with two points to prove:

1. g is functional.

2. g is left-total, that is, ran πE ⊆ dom g.

The two corresponding proofs are given.

1. Consider sets X, Y1, Y2 such that {(X,Y1) , (X,Y2)} ⊆ g. The goal is to show
Y1 = Y2. By 1.9.1.5, consider x1, x2, y1, y2 such that (x1, y1) ∈ X × Y1 ∩ f
and (x2, y2) ∈ X × Y2 ∩ f . Since X is an equivalence class of E, this implies
(x1, x2) ∈ E which in turn, by 1.9.1.1, gives (y1, y2) ∈ F . Hence y1 and y2
must belong to the same equivalence class of F , which gives Y1 = Y2.

2. Let X ∈ ran πE . X being an equivalence class of the non empty equivalence
relation E, there is x ∈ X ⊆ domE. Set

y :=f (x) ∈ domF (1.4)
Y :=πF (y) ∈ ranF.

Since (x, y) ∈ f by (1.4), and y ∈ Y , we draw (X,Y) ∈ g by 1.9.1.5.

Result 1.9.1.6 supplies a canonical construction to pass from a function on sets
to a function on classes relative to equivalence relations respected by the original
function. We want to carry this mechanism over to the case in which the function
is i (s) and the equivalence relation is given on U , where i is an interpretation of
the language S, s is a symbol of it, and U is the universe of i. Since i (s) is defined
on U |#(s)|, we have to specify how to adapt some of the last definitions to tuples.
First of all, we formally specify the natural way to pass from a relation over sets to
a relation over tuples:

1. First-order logic in set theory 19

Definition 1.9.1.7 (Tupled relation). Let O be a non empty relation, and n a
natural number. We set

O[n] := {(p, q) ∈ (domO)n × ((ranO)n) : q ⊆ p •O} .

Now, we want to combine the quotient defined in 1.9.1.5 with the construction
of 1.9.1.7 to obtain a quotient operating on interpretations. A technical nuisance
stands on our way, though: when quotienting by a tupled relation, we are left with
a function acting on classes of equivalence of tuples, while an interpretation should
act on tuples (of equivalence classes, in this case). So we have to provide an object
translating between these two types:

Definition 1.9.1.8. Let P be a relation, n be a natural number. Set

ηP,n :=
((
π−1
P

)[n]
)
• πP [n] .

It can finally be plugged into the following definiens:

Definition 1.9.1.9 (Quotient interpretation). Given an interpretation i and a
relation P , set

i

P
:= dom # 3 s 7→

ηP,|#(s)| • i(s)

P [|#(s)|] P
(s) ≥ 0

ηP,|#(s)| • i(s)
P [|#(s)|] {(0,0),(1,1)}•}{ # (s) < 0.

Now we have to put forward some requests to make the quotient in 1.9.1.9
actually an interpretation:

Definition 1.9.1.10. Given an interpretation i of the language S, having U as
universe, we say that i and the relation P are compatible if

∀s ∈ dom #

i (s) is

(
P [#(s)], P

)
-compatible # (s) ≥ 0

i (s) is
(
P [−#(s)], {(0, 0) , (1, 1)}

)
-compatible # (s) < 0

Proposition 1.9.1.11. Given an interpretation i of the language S having universe
U , and an equivalence relation E on U such that i and E are compatible, i

E is an
interpretation of S having ran (πE) as universe.

Proof. Set I := i
E . Let s ∈ dom #S ; set n := |# (s)| ∈ N, f := i (s), E := E[n] and

η := ηE,n. One easily realizes (or may refer to the Mizar article FOMODEL3.MIZ to
find the proofs) that E is an equivalence relation on Un and that

η : (ran πE)n → ran πE . (1.5)

We show that I, s and ran πE satisfy 1.8.0.20. By cases

(s) ≥ 0 Then I (s) = ηE,n • f

E E
and f : Un → U . The goal is to prove that

I (s) : (ran πE)n → ran πE . By 1.9.1.10, f is
(
E,E

)
-compatible, so that

f

E E
: ran πE → ran πE by 1.9.1.6. This yields thesis by (1.5).

1. First-order logic in set theory 20

(s) < 0 Then I (s) = η • f

E I2
and f : Un → 2. The goal is to prove that

I (s) : (ran πE)n → 2. By 1.9.1.10, f is
(
E, I2

)
-compatible, so that f

E I2
:

ran πE → ran πI2 by 1.9.1.6. This yields thesis by (1.5), being }{ : ran πI2 =
{{0} , {1}} → 2.

Result 1.9.1.11 ends this section. Wanting to apply it to the free interpretation,
in the next section we introduce a relation on terms, and investigate the conditions
to make it an equivalence relation, as required by 1.9.1.11. In the subsequent section,
we finally face the issue of compatibility.

1.9.2 The equability relation on terms and the Henkin interpreta-
tion

Definition 1.9.2.1. Given a ruleset D and a set X, we define

D∼
X

:=
(
∗|TS×TS

)−1
[(
{(0,≡)}∗

)−1
[D (X)]

]
.

Remark 1.9.2.2. Since
D∼
X

=
{

(t1, t2) ∈ TS × TS : X D≡ t1t2
}
, (1.6)

D∼
X

is a relation on TS .

Definition 1.9.2.3 (The Henkin ‘interpretation’). HD,X := ΦX
D∼
X

.

Proposition 1.9.2.4. If D ≥∅ {R=}, then dom D∼
X

= TS and D∼
X

is reflexive.

Proof. Set D0 := {R=}, P :=D∼
X
. Let t be a term. We have to show that (t, t) ∈ P .

Now

(∅,≡ tt) ∈ R= (∅) ⊆ D0 (∅) ⊆ D0
(∞) (∅) ⊆ D(∞) (∅) ,

which shows that X D≡ tt by 1.5.0.6, and hence thesis by virtue of (1.6).

Proposition 1.9.2.5. If D ≥∅
{
R↔=

}
and X is D-closed, then D∼

X
is symmetric.

Proof. Set D0 := {R=}. Assume X D≡ t1t2. We have to show X D≡ t2t1.

({≡ t1t2},≡ t2t1) ∈ R↔= (∅) = D0 (∅) ⊆ D0
(∞) (∅) ⊆ D(∞) (∅) ,

and closure yields ≡ t1t2 ∈ X. Hence X D≡ t2t1 by 1.5.0.6.

Proposition 1.9.2.6. If D ≥∅
{
R⇒=

}
and X is D-closed, then D∼

X
is transitive.

1. First-order logic in set theory 21

Proof. Set D0 :=
{
R⇒=

}
. Assume X D≡ t1t2 and X D≡ t2t3. We have to show

X D≡ t1t3.

({≡ t1t2,≡ t2t3},≡ t1t3) ∈ R⇒= (∅) = D0 (∅) ⊆ D0
(∞) (∅) ⊆ D(∞) (∅) ,

and closure yields {≡ t1t2,≡ t2t3} ⊆ X. Hence X D≡ t1t3 by 1.5.0.6.

Lemma 1.9.2.7. If D ≥∅ {R=}, D ≥∅
{
R↔=

}
, D ≥∅

{
R⇒=

}
and X is D-closed,

then D∼
X

is an equivalence relation on TS.

Proof. Immediate from 1.9.2.4, 1.9.2.5, 1.9.2.6.

1.9.3 Compatibility
Lemma 1.9.3.1. If D ≥∅ {R=}, X is D-closed, D ≥∅ {R+}, X is {RR}-closed, X
is
{
R↔=

}
-closed, then ΦX and D∼

X
are compatible.

Proof. Take s ∈ dom #. Set P :=D∼
X

and f := ΦX (s). By cases.
1) # (s) = 0

By 1.9.1.10, we have to show that f is
(
P [0], P

)
-compatible. Since P [0] = {(∅, ∅)},

it suffices to show that (f (∅), f (∅)) ∈ P . f (∅) is in the universe TS of ΦX (see
1.8.0.23); hence, since domP = TS and P is reflexive by 1.9.2.4 and the hypothesis
D ≥∅ {R=}, we have thesis.

2) # (s) > 0
By 1.9.1.10, we have to show that f is

(
P [n], P

)
-compatible, where we set n :=

(s) ∈ Z+. As from 1.9.1.1, let t, t′ ∈ (TS)n, and assume (t, t′) ∈ P [n]. The goal
is to prove (f (t), f (t′)) ∈ P . Set Γ := {≡ t (j) ′ (j) : j ∈ n} ∈ 2FSn and ϕ :=≡
s ∗∗ (t) s ∗∗ (t′) =≡ f (t) f (t′). From

(Γ, ϕ) ∈ R+ (∅) = {R+} (∅) ⊆ {R+}
(∞) (∅) ⊆ D(∞) (∅) ,

which takes advantage of the hypothesis D ≥∅ {R+}, and
(
t, t′

) ∈ P [n] ⇔ ∀j ∈ n (tt (j) , tt′ (j)
) ∈ P ⇔

∀j ∈ nX D≡ tt (j) tt′ (j)⇒ Γ ⊆ X,

where last deduction employed D-closure, we draw X D ϕ thanks to 1.5.0.6.
3) # (s) < 0

By 1.9.1.10, we have to show that f is
(
P [n], I2

)
-compatible, where we set n :=

−# (s) ∈ Z+ and I2 := {(0, 0) , (1, 1)}. As from 1.9.1.1, let t, t′ ∈ (TS)n, and assume
(t, t′) ∈ P [n]. The goal is to prove (f (t), f (t′)) ∈ I2. Set Γ := {≡ t (j) ′ (j) : j ∈ n} ∈
2FSn , and preliminarily deduce

(
t, t′

) ∈ P [n] ⇔ ∀j ∈ n (tt (j) , tt′ (j)
) ∈ P ⇔

∀j ∈ nX D≡ tt (j) tt′ (j)⇒ Γ ⊆ X (1.7)

thanks to D-closure. Now proceed by subcases.

1. First-order logic in set theory 22

a) f (t) = 1 The thesis reduces to showing f (t′) = 1, which, by 1.8.0.24, means
ϕ′ := s ∗∗ (t′) ∈ X. Let ϕ := s ∗∗ (t) ∈ X. The subcase assumption gives
ϕ ∈ X by 1.8.0.24, hence Γ ∪ {ϕ} ⊆ X by (1.7). Also,

(
Γ ∪ {ϕ}, ϕ′) ∈ RR (∅) = RR (∅) ⊆ {RR}

(∞) (∅) .

Thus X {RR} ϕ
′. By {RR}-closure, we are finished.

b) f (t) = 0 Thesis reduces to showing f (t′) = 0, which, by 1.8.0.24, means ϕ′ :=
s ∗∗ (t′) /∈ X. By contradiction, assume

ϕ′ ∈ X. (1.8)

Set Γ′ := {≡ t′ (j) t (j) : j ∈ n}. Given j ∈ n, it is easily seen that X {
R↔

=

}≡

t′ (j) t (j), since {≡ t (j) t′ (j)} ⊆ X by (1.7), and

({≡ t (j) t′ (j)
}
,≡ t′ (j) t (j)

) ∈ R↔= (∅) =
{
R↔=

}
(∅) ⊆

{
R↔=

}(∞)
(∅) .

By
{
R↔=

}
-closure, we conclude that Γ′ ⊆ X, and hence that Γ′ ∪ {ϕ′} ⊆ X by

(1.8). Moreover,

(
Γ′ ∪ {ϕ′}, ϕ) ∈ RR (∅) = RR (∅) ⊆ {RR}

(∞) (∅) ,

yielding X {RR} ϕ, and hence ϕ ∈ X by {RR}-closure, contradicting f (t) = 0.

Corollary 1.9.3.2. If D ≥∅
{
R=, R↔=, R⇒=, R+, RR

}
and D (X) ⊆ X, then D∼

X
and

ΦX are compatible.

Corollary 1.9.3.3 (of 1.9.3.2 and 1.9.1.11). If D ≥∅
{
R=, R↔=, R⇒=, R+, RR

}
and

D (X) ⊆ X, then HD,X is an interpretation having TS/D∼
X

as universe.

1.9.4 The Henkin model
Here, the conditions making HD,X a model of X are studied. We first work out two
preparatory results.

Lemma 1.9.4.1. Let i be an interpretation of S, and P an equivalence relation
over its universe U such that i and P are compatible. Then

(
i

P

)∣∣∣∣∣
TS

=πP ◦ i
∣∣
TS

and

(
i

P

)
(ϕ0) =i (ϕ0) if ϕ0 (0) ∈ #−1 [Z−

] \ {≡} .

1. First-order logic in set theory 23

Proof. Set I := i
P . Let us show that

I
∣∣∣
TS,n

= πP ◦ i
∣∣
TS,n

(1.9)

for every n ∈ N by complete induction on n. For the case n = 0, consider t0 ∈ TS,0;
the goal equation is I (t0) = πP

(
i (t0)

)
. Set v := t0 (0), f := i (v) and reason as

follows:

I (t0) 1.8.0.26= (I (v)) (0) 1.9.1.9=
(

f

P [0] P
◦ ηP,0

)
(0) =

(
f

I1 P
◦ {(0, {0})}

)
(0)

= f

I1 P
({(0, {0})} (0)) = f

I1 P
({0}) = πP (f (0)) .

Now assume (1.9) holds for every n ≤ m. Let us prove that it holds for n = m+ 1.
Considered arbitrary t ∈ TS,m+1, it suffices to show I (t) = πP

(
i (t)

)
. Set s := t (0),

k := # (s), f := i (s). We can assume k > 0; then

I (t) 1.8.0.26= I (s)
(
I ◦ −→t

) != I (s)
(
πP ◦ i ◦ −→t

)
1.9.1.9=

(
f

P [k] P
◦ ηP,k

)(
πP ◦ i ◦ −→t

)

=
(

f

P [k] P
◦ ηP,k

)(
(πP)[k]

(
i ◦ −→t

))
=
(

f

P [k] P
◦ ηP,k ◦ (πP)[k]

)(
i ◦ −→t

)

=
(

f

P [k] P
◦ πP [k]

)(
i ◦ −→t

) !!= (πP ◦ f)
(
i ◦ −→t

)
= πP

(
f
(
i ◦ −→t

))
1.9.1.9= πP

(
i (t)

)
.

! denotes the step employing inductive hypothesis. !! denotes the spot where
compatibility has been used. This secures the first thesis.

Finally, set r := ϕ0 (0), l := −# (r) ∈ Z+ and g := i (r):

I (ϕ0) = (I (r))
(
I ◦ −→ϕ0

) != (I (r))
(
πP ◦ i ◦ −→ϕ0

)
= (I (r))

(
(πP)[l] (i ◦ −→ϕ0

))

1.9.1.9=
(
}{◦ g

P [l] I2
◦ ηP,l ◦ (πP)[l]

) (
i ◦ −→ϕ0

)
=
(

(}{2) ◦ g

P [l] I2
◦ πP [l]

) (
i ◦ −→ϕ0

)

!!= ((}{2) ◦ πI2 ◦ g)
(
i ◦ −→ϕ0

)
= g

(
i ◦ −→ϕ0

)
.

Last equality is due to }{2= π−1
I2

. In the passage marked by ‘!’, the freshly proved
first thesis were employed. ‘!!’ denotes the step employing compatibility.

Lemma 1.9.4.2. ΦX

∣∣∣
TS

= ITS .

Proof. Let us show

ΦX

∣∣∣
TS,n

= ITS,n ∀n ∈ N (1.10)

by complete induction on n. For the case n = 0, consider t0 ∈ TS,0, and set
v := t0 (0).

ΦX (t0) 1.8.0.26= ΦX (v) (0) 1.8.0.24=
(
{(0,v)}∗

)
◦
(
∗∗|(TS0)

)
(0)

=
(
{(0,v)}∗

) ((
∗∗|{0}

)
(0)
)

= {(0, v)} ∗ ∅ = t0.

1. First-order logic in set theory 24

Now, assume (1.10) is verified for every n ≤ m + 1, and consider t ∈ TS,m+1. Set
s := t (0), k := # (t) ∈ N. We can assume k > 0, and have to show that ΦX (t) = t:

ΦX (t) 1.8.0.26= (ΦX (s))
(
ΦX ◦ −→t

) != (ΦX (s))
(−→
t
)

1.8.0.24=
(
{(0,s)}∗

) ((
∗∗|(TSk)

) (−→
t
))

= {(0, s)} ∗
(
∗∗
(−→
t
))

= t.

‘!’ denotes the induction step.

Now we see that, when restricting to atomic formulas, one actually needs to
impose very little additional requests for HD,X to be a model, besides those from
1.9.3.3 making it an interpretation:

Theorem 1.9.4.3. If D ≥∅
{
R0, R=, R↔=, R⇒=, R+, RR

}
and D (X) ⊆ X, then

HD,X
∣∣∣
FS,0

= 1FS,0X .

Proof. We set i := ΦX , P :=D∼
X
, I := HD,X = i

P . Let ϕ0 ∈ FS,0, and set r := ϕ0 (0),
n := −# (r) ∈ Z+. By cases.
Case r 6=≡:

I (ϕ0) 1.9.3.2, 1.9.4.1= i (ϕ0) 1.8.0.26= (i (r))
(
i ◦ −→ϕ0

) 1.9.4.2= (i (r)) (−→ϕ0) 1.8.0.24=

1FS,0X ◦
(
{(0,r)}∗

)
◦
(
∗∗|TnS

)
(−→ϕ0) = 1FS,0X ◦

((
{(0,r)}∗

)
◦ ∗∗

)
(−→ϕ0) =

1FS,0X

((
{(0,r)}∗

)
(∗∗ (−→ϕ0))

)
= 1FS,0X (∗ ({(0, r)}, ∗∗ (−→ϕ0))) = 1FS,0X (ϕ0) .

Case r =≡:
Set t1 := −→ϕ0 (0), t2 := −→ϕ0 (1).

I (ϕ0) = 1 1.8.0.26⇔ I (t1) = I (t2)⇔ πP
(
i (t1)

)
= πP

(
i (t2)

) 1.9.4.2⇔
πP (t1) = πP (t2) 1.9.2.1⇔ X D≡ t1t2 ⇔≡ t1t2 = ϕ0 ∈ X.

Last equivalence is due to D-closure (⇒) and to D ≥∅ {R0} (⇐).

The ultimate goal of this section is the extension of 1.9.4.3 to the whole FS . To
this end, we will need to employ a couple of auxiliary results significant in their
own right, as relating the syntactical constructions of simple substitution and term
substitution (defined in 1.1.0.8 and 1.8.0.32) to the semantical one of reassignment
(defined in 1.8.0.25):

Lemma 1.9.4.4.
u

v1
i (ψ) = u

v2
i

(
v2
v1
ψ

)
,

where u is an element of the universe of the interpretation i and v2 /∈ ranψ.

1. First-order logic in set theory 25

Proof. Denote with S the language we are working in, with A the symbol set of
S, and with U the universe of i. Set i1 := u

v1
i, i2 := u

v2
i, f1 := i1, f2 := i2,

g := IA C {(v1, v2)}, B := A\ {v2}. We start with showing that

f1
(
t′
)

= f2
(
g ◦ t′) ∀t′ ∈ TS,n ∩B∗ (1.11)

by complete induction on n. The case n = 0 is trivial, and anyway is treated in MML
article FOMODEL3, at the label Lm44. Now suppose (1.11) holds for every n ≤ m, and
consider t ∈ T such that |t| ≤ m+ 1. Set s := t (0). We can assume

(s) > 0 (1.12)

and complete the proof of (1.11) as from the following iterative equation

f2 (g ◦ t) 1.8.0.26= (i2 (s))
(
f2 ◦ −−→g ◦ t

)
= (i1 (s))

(
f2 ◦ −−→g ◦ t

)
= (i1 (s))

(
f1 ◦ −→t

)
,

whose last step rests on inductive hypothesis applied to (1.11). The immediately
preceding step is due to the fact that (1.12) implies s /∈ {v1, v2}. Similarly, one can
show that

f1 (ψ0) = f2 (g ◦ ψ0) ∀ψ0 ∈ FS,0 ∩B∗. (1.13)

To avoid repetitions, we refer the interested reader to FOMODEL3:Lm45 for the proof
of (1.13). At last, we show

f1
(
ψ′
)

= f2
(
g ◦ ψ′) ∀ψ′ ∈ B∗ ∩ FS,n (1.14)

by complete induction on n. The case n = 0 is given by (1.13). Let us then assume
(1.14) for every n ≤ m, and consider ψ ∈ B∗ ∩ FS,m+1. We can assume as well
|ψ| > 0 and set s := ψ (0) ∈ #−1 [{0}] \ {v2} ∪ {↓}. By cases.

Case 1): s =↓
Then set ψ1 := −→ψ (0), ψ2 := −→ψ (1) and N := 12×2

{(0,0)}. We employ (1.14) via induction
on the unmarked step of the following chain:

f2 (g ◦ ψ) 1.8.0.27= N ((f2 (g ◦ ψ1), f2 (g ◦ ψ2)))
= N ((f1 (ψ1), f1 (ψ2))) 1.8.0.27= f1 (ψ) .

Case 2): s ∈ #−1 [{0}] \ {v2}
Then consider ϕ ∈ B∗ ∩ FS,m such that ψ = sϕ. By subcases.

Subcase s = v1:
Then g ◦ ψ = v2 ∗ (g ◦ ϕ). Assume f2 (g ◦ ψ) = 1. Then, by 1.8.0.27, consider
u′ ∈ U such that

1 = u′

v2

u

v2
i (g ◦ ϕ) = u′

v2
i (g ◦ ϕ) (1.14)= u′

v1
i (ϕ) = u′

v1

u

v1
i (ϕ) .

Hence, again by 1.8.0.27, u
v1
i (v1ϕ) = 1. Analogously one shows u

v1
i (v1ϕ) =

1 ==⇒ u
v2
i (g ◦ ψ) = 1.

1. First-order logic in set theory 26

Subcase s 6= v1:
Assume f2 (g ◦ ψ) = 1. Then, by 1.8.0.27, consider u′ ∈ U such that

1 = u′

s
i2 (g ◦ ϕ) = u′

s

u

v2
i (g ◦ ϕ) = u

v2

u′

s
i (g ◦ ϕ)

= u

v1

u′

s
i (ϕ) = u′

s

u

v1
i (ϕ) .

Hence u
v1
i = 1 by 1.8.0.27. In a similar way, one shows 1 = f1 (ψ) ==⇒

f2 (g ◦ ψ) = 1.

Lemma 1.9.4.5 (Substitution lemma). Given v, t, ϕ:

1. |ϕ [v/t]| = |ϕ|;

2. i (ϕ [v/t]) = i(t)
v i (ϕ), for any interpretation i.

Proof. See appendix A.

Definition 1.9.4.6 (Witness). Given a language S, consider the following relation
on FS :

WS :=
{(
{(0, v1)} ∗ ϕ, v2

v1
ϕ

)
: v1, v2 ∈ #−1 [{0}] , ϕ ∈ FS | v2 /∈ ranϕ

}
.

Often the context will allow to drop the subscript and write just W.
If ϕ ∈WS [{ψ}], we say that ϕ is a witness for ψ.
A set X will be said to be S-witnessed (simply witnessed when the context is

safe) if

X ∩ domWS ⊆W−1
S [X] .

Definition 1.9.4.7. X is a minimal cover of the language S (or an S-mincover, or
even just a mincover) if

∀ϕ ∈ FS (ϕ ∈ X if and only if ↓ ϕϕ /∈ X) .

Theorem 1.9.4.8 (Henkin’s theorem). Suppose

• D ≥∅
{
R0, R=, R↔=, R⇒=, R+, RR, R↓, R→∃

}
,

• X is a mincover,

• D (X) ⊆ X, and

• X is witnessed.

Then

HD,X
∣∣∣
F

= 1FX .

1. First-order logic in set theory 27

Proof. Set i := ΦX , P :=D∼
X
, I := HD,X = i

P . We will prove

I
∣∣∣
FS,m

= 1FS,mX (1.15)

by complete induction on m. For m = 0, thesis is given by 1.9.4.3. Assume the
inductive hypothesis: (1.15) holds for all m ≤ n. Let ψ ∈ FS,n+1. We have to show
that

I (ψ) = 1⇔ ψ ∈ X.

We can suppose ψ /∈ FS,0, and proceed by cases.

Case ψ (0) 6=↓: Then consider v1, ϕ such that ψ = v1ϕ.

I (ψ) = 1 1.8.0.27⇔ ∃t ∈ T| 1 = πP (t)
v1

I (ϕ) 1.9.4.2= πP
(
i (t)

)

v1
I (ϕ)

1.9.4.1, 1.9.3.2= I (t)
v1

I (ϕ) 1.9.4.5= I (ϕ [v1/t]) . (1.16)

⇐
Assume ψ ∈ X. Then consider v2 ∈ #−1 [{0}] \ ranϕ such that v2

v1
ϕ ∈ X

by 1.9.4.6. Since
∣∣∣v2
v1
ϕ
∣∣∣ = |ϕ| < |ψ|, we can trigger induction:

1 = I

(
v2
v1
ϕ

)
= (I (v2)) (∅)

v2
I

(
v2
v1
ϕ

)
1.9.4.4= (I (v2)) (∅)

v1
I (ϕ) .

Thesis follows from 1.8.0.27.
⇒

Assume I (ψ) = 1 and, by (1.16), consider t| ϕ [v1/t] ∈ X.

({ϕ [v1/t]}, v1ϕ) ∈ R→
∃

(∅) ⊆
{
R→
∃

}(∞)
(∅) ⊆ D(∞) (∅) .

By D-closure, we draw ψ ∈ X.

Case ψ (0) =↓: Set ϕ1 := −→ψ (0), ϕ2 := −→ψ (1).

I (ψ) = 1 1.8.0.27⇔ I (ϕ1) = 0 = I (ϕ2)⇔
{ϕ1, ϕ2} ∩X = ∅ ⇔ {↓ ϕ1ϕ1, ↓ ϕ2ϕ2} ⊆ X,

where last equivalence is due to mincover hypothesis, and previous one to
inductive hypothesis. Hence we have reduced our task to showing that

ψ ∈ X ⇔ {↓ ϕ1ϕ1, ↓ ϕ2ϕ2} ⊆ X.

⇐
Assume {↓ ϕ1ϕ1, ↓ ϕ2ϕ2} ⊆ X. Since

({↓ ϕ1ϕ1, ↓ ϕ2ϕ2}, ψ) ∈ R↓ (∅) ⊆ {R↓}
(∞) (∅) ⊆ D(∞) (∅) ,

thesis follows immediately from 1.5.0.6 and D-closure hypothesis.

1. First-order logic in set theory 28

⇒
Assume ψ ∈ X. Set ψ′ :=↓ ϕ2ϕ1. Now

{ψ} {R↓} ψ
′ ==⇒ {ψ} D ψ′,

where the implication is given by D ≥∅ {R↓}. By D-closure, we conclude
{ψ,ψ′} ⊆ X. This, together with

({
ψ,ψ′

}
, ↓ ϕ1ϕ1

)
,
({
ψ,ψ′

}
, ↓ ϕ2ϕ2

) ∈ R↓ (∅)
⊆ {R↓}

(∞) (∅) ⊆ D(∞) (∅) ,

ends the proof by virtue of D-closure.

Remark 1.9.4.9. It is readily checked that in proof of 1.9.4.8, the following slightly
weaker flavor of R↓ would suffice:

G (S) ⊇ Σ 7→ {(Γ, ϕ) : ∃ϕ1, ϕ2, ϕ3, ϕ4 ∈ FS |Γ = {↓ ϕ1ϕ2, ↓ ϕ3ϕ4}
and ϕ =↓ ϕ2ϕ3 and |{ϕ1, ϕ2, ϕ3, ϕ4}| ≤ 2} .

Since all the forthcoming results requiring R↓ do so precisely to invoke 1.9.4.8, the
same goes for them. We adopt R↓ mainly because it is more straightly put into a
diagram than its variant above.

1.10 Enlarging sets of formulas
In this section we study how to enlarge a given set X of formulas to make it

• closed with respect to a given ruleset D and

• witnessed,

so that the enlargement can be applied 1.9.4.8: in particular, this automatically
supplies a model forX, which is our ultimate goal. We shall investigate the conditions
X and D must obey to perform this operation. Also, we will restrict to countable
languages to more easily develop constructive methods to build the two distinct
enlargements corresponding to the points of the above checklist. The rub is how
to combine sequentially the two enlargements avoiding the second cancelling the
effect of the first. The property of the witness subjoining construction expressed by
1.10.2.4 and deployed in 1.11.0.6 will be the key.

1.10.1 Preliminaries
Definition 1.10.1.1. Consider the following element of (FS)FS :

¬S : ϕ 7→↓ ϕϕ.

1. First-order logic in set theory 29

Notation 1.10.1.2. Again, we can drop the subscript in ¬S when it is safe to do
so. Also, we will usually write ¬ϕ instead of ¬ (ϕ):

¬ϕ =↓ ϕϕ,

and ¬(n)ϕ instead of ¬(n) (ϕ).

Definition 1.10.1.3 (Forms of consistency). X is said to be S-consistent (or
syntactically consistent when the context is clear) if

X ∩ ¬−1
S [X] = ∅.

X is S-inconsistent (syntactically inconsistent) if it is not S-consistent. It is said to
be an S-cover (or just a cover) if

X ∪ ¬−1
S [X] ⊇ FS .

It is termed D-consistent (or just consistent when no ambiguity can arise) if D (X) is
S-consistent, otherwise we say it is D-inconsistent (inconsistent): we write ConD (X)
and IncD (X), respectively.

Remark 1.10.1.4. X is a mincover if and only if X is a syntactically consistent
cover.

Definition 1.10.1.5. A ruleset D is said to be weakly assumptive if any D-consistent
cover is a D-closed mincover.

Definition 1.10.1.6. A ruleset D is said to be strongly assumptive if for any
D-consistent cover X it holds D (X) = X ∩ FS .

Remark 1.10.1.7. Any strongly assumptive ruleset is weakly assumptive.

Proposition 1.10.1.8. {R0} is strongly assumptive.

Proof. Let X be a {R0}-consistent cover. We can assume X ⊆ FS . Of course, being
({ψ}, ψ) ∈ R0 (∅) for any ψ ∈ FS , one has, in particular, that X ⊆ ({R0}) (X).
Hence it remains to show that ({R0}) (X) ⊆ X. Assume ψ ∈ ({R0}) (X). Then
consider, by 1.5.0.6, n ∈ N and a finite Γ ⊆ X such that (Γ, ψ) ∈ {R0}

(n+1) (∅) =
R0

(
{R0}

(n) (∅)
)
. This gives Γ = {ψ} by definition of R0. Hence thesis.

Proposition 1.10.1.9. If D1 is strongly assumptive and D2 ≥∅ D1, then D2 is
strongly assumptive.

Proof. Given a D2-consistent cover X ⊆ FS , we must show that D2 (X) = X. First
X = D1 (X) ⊆ D2 (X). To show the reverse inclusion, D2 (X) ⊆ X, consider ϕ and
suppose ϕ ∈ D2 (X):

ϕ ∈ D2 (X) ==⇒↓ ϕϕ /∈ D2 (X) ==⇒↓ ϕϕ /∈ D1 ==⇒↓ ϕϕ /∈ X ==⇒ ϕ ∈ X.

First implication is due to consistency, and last one to X being a cover.

Definition 1.10.1.10. A ruleset D is cut-like if IncD (X ∪ {ϕ}) implies X D ↓ ϕϕ
for every X, ϕ.

1. First-order logic in set theory 30

1.10.2 Witness-subjoining construction for countable languages
Definition 1.10.2.1. Given X, D and two mappings

l : N 3 n 7→ vn ∈ #−1 [{0}]
f : N 3 n 7→ ϕn ∈ FS ,

define recursively

X0 := X

an := #−1 [{0}] \ bXn ∪ {ϕn}c

Xn+1 :=

Xn ∪

{
l(min l−1[an])

vn
ϕn

} if ConD (Xn ∪ {vnϕn}) ,
Xn ∩W [{vnϕn}] = ∅ and an 6= ∅

Xn otherwise ,

and finally

W l,f
D (X) :=

⋃

n∈N
Xn.

Lemma 1.10.2.2. Assume that

1. D is cut-like;

2. D ≥∅ {R=};

3. R←
∃
∈ D.

If ConD (X), then ConD
(
W l,f
D (X)

)
.

Proof. Suppose IncD
(
W l,f
D (X)

)
. Then, referring to the objects introduced in

1.10.2.1, we can take the minimum m of the non empty subset of N:

{n ∈ N| IncD (Xn)} .

If m = 0, then we are done. Otherwise, consider k ∈ N|m = k + 1. Having set

vk :=l (k)
ϕk :=f (k)

v′k :=l
(
min l−1 [ak]

)
,

from definition 1.10.2.1 and that of minimum we must draw

ConD (Xk ∪ {vkϕk}) (1.17)
ak 6= ∅ (1.18)

IncD
(
Xk ∪

{
v′k
vk
ϕk

})
. (1.19)

By the last fact, we also have IncD
(
Xk ∪

{
v′k
vk
ϕk
}
∪ {≡ vv}

)
, which gives Xk ∪{

v′k
vk
ϕk
}

D ↓ ≡ vv≡ vv by hypothesis (1). Hence consider a finite set of formulas

1. First-order logic in set theory 31

Γ ⊆ Xk ∪
{
v′k
vk
ϕk
}
such that (Γ, ↓ ≡ vv≡ vv) ∈ D(m+1) (∅) for some m ∈ N. This in

particular implies Γ D ↓ ≡ vv≡ vv; since it is also true that Γ D≡ vv by hypothesis
(2), it must be Γ 6⊆ Xk, because ConD (Xk) by (1.17). Then

(
Γ′ ∪ {vkϕk}, ↓ ≡ vv≡ vv

) ∈ R←
∃

({(Γ,≡ vv)}) ⊆ R←
∃

(
D

(m+1) (∅)
)

1.5.0.3
⊆ D

(1) (
D

(m+1) (∅)
)

= D
(m+2) (∅) ,

where first inclusion is given by monotonicity of R←
∃
, and we set Γ′ := Γ\

{
v′k
vk
ϕk
}
⊆

Xk. This contradicts (1.17).

Notation 1.10.2.3. If S is a countable language, one can always find l ∈
(
#−1
S [{0}]

)N
,

f ∈ (FS)N such that

N 3 n 7→ l (n) f (n)

is onto domWS . This surjectivity property aside, we will not be interested in how l
and f actually work, and we will thus write WD instead of W l,f

D when dealing with
a ruleset D of a countable language, implying l and f satisfy it.
Lemma 1.10.2.4. Let D be a ruleset of a countable language S. Assume that the
sets X, Y satisfy:

1. ConD (Y);

2. WD (X) ⊆ Y ;

3. #−1
S [{0}] \ bXc is not finite.

Then Y is S-witnessed.
Note that no particular request is placed on D.

Proof. WD = W l,f
D for some pair of maps l, f . Thanks to hypothesis (3) we have,

referring to 1.10.2.1:

am 6= ∅ ∀m ∈ N. (1.20)

Now assume vϕ ∈ Y . By surjectivity, there is n ∈ N such that vϕ = l (n) f (n). Set

vn :=l (n)
ϕn :=f (n)

v′n :=l
(
min l−1 [an]

)
.

We have Xn ⊆ WD (X) ⊆ Y and {vnϕn} ⊆ Y , whence ConD (Xn ∪ {vnϕn}), which,
together with (1.20), implies either

Xn ∪
{
v′n
vn
ϕn

}
= Xn+1 ⊆ WD (X) ⊆ Y

or
Xn+1 = Xn and Xn ∩W [{vnϕn}] 6= ∅

by definition 1.10.2.1. Given the arbitrariness of vϕ, this yields thesis as demanded
by 1.9.4.6.

1. First-order logic in set theory 32

1.10.3 Consistent maximization for countable languages
Definition 1.10.3.1. Given a mapping f : N 3 n 7→ ϕn ∈ FS , recursively define

X0 := X

Xn+1 :=
{
Xn ∪ {↓ ϕnϕn} if Xn D ↓ ϕnϕn
Xn ∪ {ϕn} otherwise,

and set

EfD (X) :=
⋃

n∈N
Xn.

Lemma 1.10.3.2 (Lindenbaum’s lemma). If D is a cut-like ruleset of S and
f ∈ (FS)N, then ConD (X) implies ConD

(
EfD (X)

)
for any X.

Proof. Assume IncD
(
EfD (X)

)
; then min {n ∈ N| IncD (Xn)} ∈ Z+ (it cannot be

zero because X = X0 is consistent by hypothesis), so it equals m+1 for some m ∈ N.
Set ϕm := f (m).

Now, it cannot be Xm+1 = Xm ∪ {ϕm}, for in this case we would get Xm 0D↓
ϕmϕm by definition 1.10.3.1, and, as a consequence, ConD (Xm ∪ {ϕm}) by 1.10.1.10,
while Xm+1 is inconsistent. Hence the upper branch of definition 1.10.3.1 must be
the one in charge, that is

Xm+1 = Xm ∪ {↓ ϕmϕm} , (1.21)

and consequently
Xm `D↓ ϕmϕm. (1.22)

On the other hand, from (1.21) and 1.10.1.10 it descends that

Xm `D↓ ↓ ϕmϕm↓ ϕmϕm,

yielding, together with (1.22), that Xm is inconsistent according to definition 1.10.1.3,
thus contradicting minimality of m+ 1.

Notation 1.10.3.3. If S is a countable language, one can always find f ∈ (FS)N
being onto FS . This surjectivity property aside, we will not be interested in how f
actually works, and we will thus write ED instead of EfD when dealing with a ruleset
D of a countable language, implying f satisfies it.

Proposition 1.10.3.4. Let D be a ruleset of a countable language S. ED (X) is a
cover of S.

Proof. ED = EfD for some function f onto FS . Consider ϕ ∈ FS , and, by surjectivity,
a natural number n such that ϕ = ϕn := f (n).
Either Xn 0D↓ ϕnϕn or Xn `D↓ ϕnϕn, where Xn is as from 1.10.3.1. Therefore,
by 1.10.3.1, eitherXn+1 = Xn∪{ϕn} orXn+1 = Xn∪{↓ ϕnϕn}, andXn+1 ⊆ ED (X).
Thus at least one between

Xn ∪ {ϕn}

1. First-order logic in set theory 33

and
Xn ∪ {↓ ϕnϕn}

is a subset of ED (X), giving that at least one between ↓ ϕnϕn and ϕn belongs to
ED (X). This, by the arbitrariness of ϕ and by definition 1.10.1.3, ends the proof.

Remark 1.10.3.5. Together, 1.10.3.2 and 1.10.3.4 yield that a D-consistent set
X can be completed to the D-consistent cover ED (X). This, until one adds the
request of D being weakly assumptive (see 1.10.1.5), does not generally imply that it
can be completed to a maximally consistent set, which is the thesis of the standard
formulation (see, e.g., [Smu95], section III.2 and [Che80], 2.19) of Lindenbaum’s
lemma.

1.11 Putting it all together
Lemma 1.11.0.6. Let D be a ruleset of a countable language S, and X be a set;
assume they comply with the following requirements:

1. R←
∃
∈ D;

2. D is cut-like;

3. D ≥∅ {R=};

4. #−1
S [{0}] \ bXc is not finite;

5. ConD (X).

Then ED (WD (X)) is a witnessed, D-consistent S-cover.

Proof. Set

Y :=WD (X) Z := ED (Y) .

Z is a cover by 1.10.3.4. By (1), (2), (3), (5) and 1.10.2.2, Y is D-consistent.
Consequently Z is D-consistent as well by 1.10.3.2, (2). This fact, fed together with
(4) into 1.10.2.4, grants that Z is S-witnessed, ending the proof.

Lemma 1.11.0.7. Let D be a ruleset of the language S, and X be a set such that

1. S is countable;

2. ConD (X);

3. #−1 [{0}] \ bXc is not finite;

4. R←
∃
∈ D;

5. D is cut-like;

6. D ≥∅
{
R0, R=, R↔=, R⇒=, R+, RR, R→∃

, R↓
}
.

Then HD,ED(WD(X)) X.

1. First-order logic in set theory 34

Proof. Set Y := ED (WD (X)) ⊇ X. By 1.7.0.10 and 1.7.0.9, D ≥∅ {R=}, so 1.11.0.6
can be invoked: Y is a witnessed, D-consistent S cover. Analogously, D ≥∅ {R0},
so that D is strongly assumptive by 1.10.1.8 and 1.10.1.9. By 1.10.1.5, then, Y is
also a D-closed mincover. Hence, ϕ ∈ Y ⇔ HD,Y (ϕ) = 1 by 1.9.4.8. In particular,
HD,Y X.

Proposition 1.11.0.8. If {R∪, Rc} ⊆ D and D is monotone, then D is cut-like.

Proof. Consider a set X and a wff ϕ such that IncD (X ∪ {ϕ}). We have to show
that X D ¬ϕ. By assumption, there are Γ1,Γ2 ⊆ X ∪ {ϕ} finite, and ψ such that
(Γ1, ψ) ∈ D(m) (∅) and (Γ2,¬ψ) ∈ D(n) (∅) for some m,n ∈ N. Since D is monotone,
by 1.7.0.7, we have {(Γ1, ψ) , (Γ2,¬ψ)} ⊆ D(m+n) (∅). So

(Γ,¬ϕ) ∈ Rc ({(Γ ∪ {ϕ}, ψ) , (Γ ∪ {ϕ},¬ψ)})
⊆ Rc (R∪ ({(Γ1, ψ) , (Γ2,¬ψ)})) ⊆ Rc

(
R∪

(
D

(m+n) (∅)
))

⊆ Rc
(
D
(
D

(m+n) (∅)
))
⊆ D

(
D
(
D

(m+n) (∅)
))

= D
(2+m+n) (∅) ,

where we set Γ := Γ1 ∪ Γ2\ {ϕ}. Hence X\ {ϕ} D ¬ϕ.

Corollary 1.11.0.9. Given a countable language S, and X such that #−1
S [{0}] \ bXc

is not finite, suppose X is D0-consistent, where

D0 :=
{
R0, R=, R↔=, R⇒=, R+, RR, R↓, R→∃

, R←
∃
, Rc, R∪

}
.

Then

H
D0,ED0

(
WD0

(X)
) X.

Proof. From the fact that D0 is monotone we can draw two conclusions: D0 ≥∅{
R0, R=, R↔=, R⇒=, R+, RR, R↓, R→∃

}
, by 1.7.0.10, and D0 is cut-like by 1.11.0.8, so

that 1.11.0.7 can be invoked.

We now want to get rid of requirement (3) in the statement of 1.11.0.7. This
will be accomplished by following the standard path of adjoining to (the symbol
set of) the language S a countably infinite family N of fresh literals, enlarging it to
a second language SN ; then 1.11.0.7 is applied to SN , and carried on to S, being
the latter a restriction of the former. To do this, we have to show the natural
fact that satisfaction relation, 1.8.0.29, is preserved through such enlargements and
restrictions:

Lemma 1.11.0.10 (Coincidence lemma). Let S1, S2 be languages. Let i1 i2 be
interpretations, of S1 and S2 respectively, over the same universe U . Assume that

1. ≡S1=≡S2;

2. ↓S1=↓S2;

3.
(
#S1

)∣∣
dom(#S1) =

(
#S2

)∣∣
dom(#S1);

1. First-order logic in set theory 35

4. i1|dom(#S1) = i2|dom(#S1).

Then FS1 ⊆ FS2 and i1
∣∣
FS1

= i2
∣∣
FS2

.

Proof of 1.11.0.10 turns out to be tedious, giving rise to a ‘de Bruijn surge’: its
proof in Mizar seem disproportionally verbose with respect to both its informal
counterparts and the simplicity of the intuitive idea conveyed, so that its de Bruijn
factor (see 3.4) sharply increases: that same proof takes less than one page in
([EFT84], III.5.1). Whether this fact depends inherently on the result or the
chosen formalization system, or even on the coder not devising a better proof seems
very hard to assess. The reader is thus referred to Mizar sources for that proof
(FOMODEL3.MIZ:12).

Theorem 1.11.0.11 (Satisfiability theorem). Suppose that

1. S is a countable language;

2. X ⊆ FS;

3. R←
∃
∈ D;

4. D is cut-like;

5. D ≥∅
{
R0, R=, R↔=, R⇒=, R+, RR, R→∃

, R↓
}
;

6. ConD (X).

Then there is an interpretation of S having a countable universe and satisfying X.

Proof. Consider a countably infinite set N missing both S and bXc, and the language
SN extending S and obtained by setting

≡SN :=≡S
↓SN :=↓S

#SN := N × {0} ∪#S .

By construction, SN is countable (because S and N are) and N ⊆ #−1
SN

({0}) \ bXc .
Now set

DN :=
{
R0,SN , R∪,SN , R=,SN , R↔= ,SN

, R⇒= ,SN
, R+,SN ,

RR,SN , R↓,SN , R→∃ ,SN
, R←
∃ ,SN

Rc,SN

}
.

Suppose we manage to show

ConDN (X) . (1.23)

Then we can deploy 1.11.0.9, and infer that

H
DN ,EDN

(
WDN

(X)
) � X. (1.24)

1. First-order logic in set theory 36

The very final step towards thesis is to realize that H
DN ,EDN

(
WDN

(X)
) can be

restricted to an interpretation i of S, and that this latter interpretation returns the
same truth value as H

DN ,EDN
(
WDN

(X)
) on every formula of X thanks to 1.11.0.10,

so that i X by (1.24).

Subproof for claim (1.23) It will suffice to show (1.23) holds for a generic finite
Y ⊆ X:

ConDN (Y) . (1.25)

Thus, let Y ⊆ X, Y being finite. Now, ConD (Y) (use hypothesis (6)) and
#−1
S ({0}) \ bY c is not finite, so HD,EDWDY

� Y by 1.11.0.7 and hypotheses (3),
(4) and (5). Consider an interpretation iN,Y of SN obtained by extending
HD,EDWDY

to SN arbitrarily: we can do so keeping the universe of iN,Y
the same as that of HD,EDWDY

, so that, given ϕ ∈ Y , one has (again by
1.11.0.10) iN,Y (ϕ) = HD,EDWDY

(ϕ); hence iN,Y SN
Y . This in the end

implies ConDN (Y), as DN is sound.

Corollary 1.11.0.12. Let D be a ruleset of a countable language S, and X ⊆ FS.
Suppose

1.
{
R←
∃
, Rc, R∪

}
⊆ D;

2. D is monotone;

3. D ≥∅
{
R0, R=, R↔=, R⇒=, R+, RR, R→∃

, R↓
}
;

4. ConD (X) .

Then there is an interpretation of S having a countable universe and satisfying X.

Corollary 1.11.0.13 (Countable downward Löwenheim-Skolem theorem). Assume
X ⊆ FS is countable, and suppose there is an interpretation i of S such that i X.
Then there is an interpretation i′ of S having a countable universe and satisfying X
as well.

Proof. Let N be a countably infinite subset of the symbol set of S such that
bXc ∪ {≡S , ↓S} ⊆ N . Restrict #S and i to N , obtaining respectively a countable
language S′ and an interpretation i′ of the latter over the same universe of i.

For any ϕ ∈ X, one has that ϕ is also a formula of S′, and that i (ϕ) = i′ (ϕ) by
construction and coincidence lemma, 1.11.0.10, so that i′

S′
X, and hence ConD (X),

where we set

D :=
{
R0, R=, R↔=, R⇒=, R+, RR, R→∃

, R↓, R←∃
, Rc, R∪

}
,

thanks to soundness. This allows to consider an interpretation j′ of S′ having a
countable universe and satisfying X by 1.11.0.12. This latter interpretation can be
arbitrarily enlarged to one of S with the same universe, preserving the satisfiability
of X through it (again thanks to coincidence lemma), and thus yielding thesis.

1. First-order logic in set theory 37

Remark 1.11.0.14. We note that the language S in 1.11.0.13 is not required to be
countable.

Definition 1.11.0.15 (Entailment). Given sets X, Y , we say that X entails Y
with respect to the language S if any interpretation i of S satisfying X also satisfies
Y .

In this case we write X
S
Y or just X Y . We also will usually write X

S
ϕ

(or X ϕ) in lieu of X
S
{ϕ}.

Remark 1.11.0.16. The symbol results thus overloaded by definitions of satis-
faction (1.8.0.29) and entailment (1.11.0.15). The type of the argument on its left
will usually resolve which use is being made.

Corollary 1.11.0.17 (of 1.11.0.11). Let X be a subset of the set of formulas FS of
a countable language S, and D be a cut-like ruleset of S such that

1. R←
∃
∈ D

2. D ≥∅
{
R0, R=, R↔=, R⇒=, R+, RR, R→∃

, R↓
}
.

Then X ↓ ϕϕ implies X D ↓ ϕϕ for any ϕ ∈ FS.

Proof. By contradiction. Suppose that X D ↓ ϕϕ is false. Then, D being cut-like,
ConD (X ∪ {ϕ}). Hence, allowed by 1.11.0.11, let us consider an interpretation i of
S such that

i (ϕ) = 1 (1.26)
i X. (1.27)

Given the hypothesis, X ↓ ϕϕ, so that by definition of entailment and (1.27),
i (↓ ϕϕ) = 1. Now, by 1.8.0.27, i (ϕ) = 0, contradicting (1.26).

Theorem 1.11.0.18 (Gödel’s completeness theorem).

X ϕ implies X D1
ϕ,

where we set

D1 :=
{
R0, R=, R↔=, R⇒=, R+, RR, R→∃

, R↓, R←∃
, Rc, R∪, R6¬

}
.

Proof. Assume X ϕ. Then X ↓ ↓ ϕϕ↓ ϕϕ by 1.8.0.27. This implies the existence
of Γ ⊆ X such that (Γ, ↓ ↓ ϕϕ↓ ϕϕ) ∈ D1\ {R6¬}

(∞) (∅) by 1.11.0.17. Hence there is
k ∈ Z+ such that (Γ, ↓ ↓ ϕϕ↓ ϕϕ) ∈ D1

(k) (∅), so that

(Γ, ϕ) ∈ R6¬ ({(Γ, ↓ ↓ ϕϕ↓ ϕϕ)}) ⊆ R6¬
(
D1

(k) (∅)
)

⊆ D1
(
D1

(k) (∅)
)

= D1
(k+1) (∅) .

1. First-order logic in set theory 38

1.12 Alternative rules
The attributes ‘weakly assumptive’, ‘strongly assumptive’, and ‘cut-like’ have been
introduced to detach, to some extent, the main results proven from the particular
choice of derivation rules. Indeed the rulesets occurring in hypotheses of main
theorems we saw are often required to be applicable such attributes, rather than
to include some specific rules. This means that if one of those results is valid for a
given ruleset, it remains valid if we substitute in that ruleset some rules satisfying a
given attribute with others, as long as the new rules still make the ruleset satisfy the
corresponding attribute. As an example, consider the following pair of new rules.

Definition 1.12.0.19. Given a literal v, define

R<v : G (S) ⊇ Σ 7→ {(Γ, ϕ) : ∃Γ1,Γ2, ψ0, ψ| (Γ1, ψ0) , (Γ2, ↓ ψ0ψ0) ∈ Σ and
ϕ =↓ ≡ vv¬ψ0 and Γ = Γ1 ∪ Γ2 ∪ {ψ}} ⊆ G (S)
Rv : G (S) ⊇ Σ 7→
{(Γ, ϕ) : ∃ψ,ψ0| (Γ ∪ {ψ}, ↓ ≡ vv¬ψ0) ∈ Σ and ϕ = ¬ψ and Γ\ {ψ} = Γ}

Notation 1.12.0.20. We also give the diagram representation (introduced in section
1.6) for rules defined in 1.12.0.19:

R<v : Γ1 ` ψ Γ2 ` ¬ψ
Γ1 Γ2 ϕ ` ↓ ≡ vv¬ψ

Rv : Γ ϕ ` ↓ ≡ vv¬ψ
Γ ` ¬ϕ

The following result, mirroring 1.11.0.8, permits to replace {R∪, Rc} with
{R<v, Rv} in the statement of 1.11.0.18.

Proposition 1.12.0.21. A monotone ruleset D ≥ {R<v, Rv} is cut-like.

Proof. Assumed IncD (X ∪ {ϕ}), we must show X D ¬ϕ. There are Γ1,Γ2 ⊆
X∪{ϕ}, m,n ∈ Z+, ψ such that (Γ1, ψ) ∈ D(m) (∅), (Γ2,¬ψ) ∈ D(n) (∅). By the fact
that D is monotone, we have (Γ1, ψ) , (Γ2,¬ψ) ∈ D(p) (∅), where p := max {m,n}.
Now

(Γ1 ∪ Γ2 ∪ {ϕ}, ↓ ≡ vv¬ψ) ∈ R<v ({(Γ1, ψ) , (Γ2,¬ψ)}) ⊆ R<v
(
D

(p))

⊆ D(∞) (
D

(p) (∅)
)

==⇒ ∃q ∈ N| (Γ1 ∪ Γ2 ∪ {ϕ}, ↓ ≡ vv¬ψ) ∈ D(q) (
D

(p) (∅)
)
,

so that

(Γ1 ∪ Γ2 ∪ {ϕ} \ {ϕ},¬ϕ) ∈ Rv ({(Γ1 ∪ Γ2 ∪ {ϕ}, ↓ ≡ vv¬ψ)})
⊆ Rv

(
D

(p+q) (∅)
)
⊆ D(∞) (

D
(p+q) (∅)

)

==⇒ ∃l ∈ N| (Γ1 ∪ Γ2 ∪ {ϕ} \ {ϕ},¬ϕ) ∈ D(l) (
D

(p+q) (∅)
)
.

Chapter 2

The formalization

This chapter illustrates the actual Mizar implementation of the set-theoretical
treatment of first-order languages built in chapter 1; it includes material from
[Cam10] and [CR11]. Introductory sections 2.1 and 2.2 give background on proof
checkers and on the particular proof checker chosen in our case, respectively.

2.1 Software for proving
Rigor and creativity are both essential qualities of mathematics. Logic supplies
precise notions of rigor, and tools to attain it: for example, Zermelo-Fraenkel set
theory with the axiom of choice (ZFC) is commonly accepted as a first-order axiom
system in which most parts of current mathematics could be rendered; however,
such renditions (commonly referred to as formalizations) are usually reputed to
be tedious if not impracticable, and anyway a hindrance for the creative process,
equally essential for mathematics. Thus, instead of actually formalize mathematics,
the classical compromise is to supply a sketch of formalization in a variably rigorous
pseudo-code, the purpose of which is to get accepted (and thus possibly trusted,
relied on and employed, in the end) as a result of what is ultimately a social process:
the one of persuading other people of its correctness ([AGN09]).

The success of Hilbert’s program in thrusting towards formalization of mathe-
matics and the advent of digital computers set the scene for a change. Virtually
every scientific realm presents examples of endeavors which were unthinkable be-
fore the advent of computers: given the evident affinity between formalization and
mechanization, one can arguably maintain that formalization of mathematics might
well become such an endeavor ([Boy+94], [Wie07b]).1 And indeed, since de Bruijn’s
Automath ([Bru70]), the software implementations of proof checkers proliferated.2

In the vast landscape of software born to carry out the old idea of mechanizing
proofs, a first distinction can be drawn between proof checkers (like Mizar, Metamath,
Twelf, Automath) and automated theorem provers (like E, ACL2, SPASS, Vampire).
The latter find proofs, rather than merely certifying them. One of the first known

1Recent years have provided a further strong reason, probably not foreseeable at the time in
which [Boy+94] was written, to be optimistic about the feasibility of this endeavor: the several
blatant and huge successes brought by the commons-based peer production model ([Ben06]), like,
most notably, the GNU/Linux operating system and the Wikipedia project.

2http://www.cs.ru.nl/~freek/digimath/

39

2. The formalization 40

concrete computer programs developed for proving, namely Logic Theorist, [NS56],
was a representative of this category.

Proof assistants, or interactive theorem provers (Coq, Isar, Matita, PhoX, to
name a few), stand between the two ends, requiring some user intervention, the
amount and form of which varies greatly among different systems, to guide the proof,
yet saving him to spell out a full proof.

There is a further family of recent projects ([Cra+10]3, [HR10], [Sch+12]) taking
an alternative, ‘linguistic’ approach: the very rough idea is to supply a ‘controlled
natural language’ coupled with some automated prover which validate the formal
language extracted from the higher-level natural language. This would relief math-
ematicians from both the burdens of proving the trivial details and of facing a
language less friendly than the common mathematical language, with the controlled
natural language acting as an interface with both the automated prover and the
formal language backends. Less ambitiously, ProofCheck (see [NA09]) embeds a
low-level proof checker directly into the TEX and LATEX languages via additional
TEX macros.

The largest digital libraries of already formalized mathematics are those written
with the proof checkers Mizar, HOL Light, Coq and Isabelle. Mizar is the most
mathematically-oriented one, adopting a grammar resembling common mathematical
language, a declarative style, and being based on set theory.

2.2 An overview of Mizar
The Mizar project (http://www.mizar.org) delivers a few provisions:

1. Mizar language permits to write formulas in first-order set theory which read
close to common mathematical language. For example, the formula

X 6= ∅ =⇒ ∃x(x ∈ X)

is written
X <> {} implies ex x st x in X;

In addition to the few reserved words pertaining to the first-order alphabet of
set theory, the language specifies grammar and reserved words to invoke the
verifier (see point 2) and to exploit advanced features of the system.

2. Mizar verifier (PC Mizar) is a software certifying whether one such formula can
be deduced (according to some formal system for classical logic, see sections
2.2.1 and 3.5 of [GKN10]) from other given formulas, specified via the keyword
by of the Mizar language:

A1: x in X;
A2: for y being set holds y in X\/Y iff (y in X or y in Y);
x in X\/Y by A1, A2;

3At the time of writing, Naproche seems the only one in this family having made tangible
progress, to the point of offering a web interface: http://naproche.net/inc/webinterface.php,
with LATEX support.

2. The formalization 41

3. The Mizar Mathematical Library (MML) builds on the components (1) and (2)
above to provide a mass of Mizar language formulas certified, by Mizar verifier,
to be derivable from a handful of set-theoretical axioms affine to ZFC axioms.
The set theory resulting from these axioms, Tarski-Grothendieck (TG), is an
extension of ZFC, and more on it can be found in [RT99].

MML is made up of Mizar source files called articles, and its latest version
is always browsable at http://mizar.uwb.edu.pl/version/current/mml/. In
the following, we will be using typewriter font for referencing articles and results
inside MML: for example, XBOOLE_1:4 denotes the fourth theorem appearing in
the MML article xboole_1.miz, which is thus viewable at http://mizar.uwb.edu.
pl/version/current/mml/xboole_1.miz. We will also adopt typewriter font for
Mizar code, as already done in point (1) of the numbered list above.

2.2.1 Types and definitions
The primitive workflow consisting of writing set-theoretical formulas, linking them
together via the by keyword, and invoking the verifier on them, as depicted in section
2.2, would theoretically suffice to accomplish a great deal of first-order formalization
tasks. In practice, one cannot actually get very far without higher-level abstractions
to structure the code. Among others, Mizar supplies (soft) types and definitions:

Types A term can be assigned a type (via the reserved word let); as a consequence,
the type of a term can be the subject of a first-order atomic formula. The
special first-order relation symbol is has exactly this use:

let x be Function;
x is Function;

The formulas based on the special relation symbol is, as the one above, present
the distinctive property of needing no justification: they are a way to query
Mizar type system. This means that the last line of code in the example above
is accepted by the verifier without the need of a by statement (see item (2) on
page 40). The basic type set is applicable to any term.

Functors New function symbols (called functors in Mizar jargon) can be added to
the first order language via the reserved word func. This can be done in two
ways:

1. either in a macro-like fashion:

definition
let x, y be set;
func [x,y] equals { { x,y }, { x } };
...

In this case, the keyword equals is used.
2. or by stating some formula the new object must satisfy, subject to the

proof that exactly one term exists for which this happens:

2. The formalization 42

definition
let X, Y be set;
func X /\ Y -> set means
for x being set holds x in it iff x in X & x in Y;
existence
proof
...

end;
uniqueness
proof
...

end;
end;

In this case, the keyword means is used, and the entity to be defined is
denoted by the keyword it in the definiens, as seen above.

The two functionalities just introduced can work together, meaning that the definition
of a functor can accept as arguments a finite list of typed arguments; and, viceversa,
the term obtained by the application of the defined functor can be associated a type
(keyword ->):

definition
let R be Relation;
func R~ -> Relation means

[x,y] in it iff [y,x] in R;
...

After this association, the verifier will know the type returned by any application of
that functor. This suggests that the very presence of types can be a first, seminal
step to some form of automation: some methods we shall see in section 3.1 rely on
the capability of the system to know the type of each term straightaway, and all of
them somehow revolve around the type system.

Sometimes, the abstraction of types hides the fact that two functors behave the
same way at the underlying set-theoretical level, even if they operate on, or yield,
different types; in this case one can make the verifier aware that the results coincide,
using the keyword identify. For example:

registration
let x,y be real number, a,b be complex number;
identify x+y with a+b when x = a, y = b;
compatibility
proof

...
end;

end;

This correspondence can be achieved because the type system implemented in the
verifier is a soft one ([Wie07a]): terms are actually untyped sets, and one can always
forget about their type, which is offered for a matter of convenience.

2. The formalization 43

2.2.2 Attributes and registrations
Functorial registrations are a further form of Mizar automation, and one of the most
powerful and least restricted. To see how it works, we need to introduce attributes.

Attributes

Attributes are a flexible and natural way to define types; they are used to qualify
and restrict a given type (called radix type) by just prefixing it with the attribute
name (or with its name preceded by the keyword non, to negate it). For example,
article XBOOLE_0 defines the attribute empty, applicable to any term, so that one
can write:

{} is empty set;

It is important to note that this juxtaposition is a subtype of the radix, and
therefore can be treated like it under many aspects; at the same time, being itself a
type, attributes can in turn be applied to it. To put it differently, attributes can be
clustered:

{} is empty finite set;

This flexibility is a first reason to prefer them to the standard way of defining types
seen in section 2.2.1.

Functorial registrations

Functorial registrations automatically attach an attribute to all terms presenting a
given syntactic form or pattern, once one proves (keyword coherence in the snippet
below) that terms of that form can be assigned the given attribute. For example:4.

registration
let X be set;
cluster (bool X) \ X -> non empty for set;
coherence
proof

...
end;

end;

Note that the term in the example above contains two nested functors; there are
no limitations on the syntactical complexity of a term being applied a functorial
registration. This kind of registration will have a fundamental role in doing sequent
calculus in Mizar (section 2.6.8) and in implementing custom Mizar automations
(section 3.1).

4bool X is the power set of X. See appendix B

2. The formalization 44

Attribute registrations

Attribute registrations works in a way similar to functorial registrations: the attribute
on the right of the keyword -> gets automatically attached to a term (which must
have the type appearing on the right of the keyword for) based on the condition
expressed by the matter on the left of that special symbol. What is different is how
this condition works: instead of checking that a term has a given shape to apply
the automation, now it is applied when a term of a given type possesses a given
attribute. So this registration has the form

cluster attribute1 -> attribute2 for type. (2.1)

Once such a registration is enforced, for any term of type type one has that if the
checker knows this term enjoys attribute1, the checker also knows this term enjoys
attribute2. Note that, contrary to functorial registrations, the left hand side of ->
can be empty, which means that the checker will attach an attribute to any term of
a given type, regardless of the term being applicable a further attribute. Of course,
upon registering, one has to prove the corresponding first order formula

for X being type st X is attribute1 holds X is attribute2.

Such proofs has to be enclosed in a coherence block immediately following the
registration statement. For example

registration
cluster empty -> one-to-one for Function-like (Relation-like set);
coherence
proof

...
end;

end;

2.2.3 Predicates
In many formulations of first-order languages, as in the one seen in chapter 1, one
has operation symbols (also said function symbols) each operating on terms and
yielding a term; correspondingly there are predicate symbols (also said relation
symbols) each operating on terms and yielding truth values. In the same manner,
besides functors, which yield terms, Mizar offers predicates, which yield truth values.
Alongside of the basic predicates in (the primitive binary relation of ZFC and TG
set theories) and is (introduced in section 2.2.1), one of the most pervasive relations
in set theory is that of inclusion, which we take as an instance to show how Mizar
predicates work:

definition
let X,Y be set;
pred X c= Y means
for x being set st x in X holds x in Y;

end;

2. The formalization 45

Note that Mizar does not provide for predicates forms of automations as powerful
as those seen in section 2.2.2 for attributes. For example, the following can be
automated

let X, Y be set; X /\ Y \ X is empty;

while the predicate-based equivalent formula

let X, Y be set; X /\ Y c= X;

cannot. We will detail on such topics in chapter 3.

2.3 First-order logic in MML
Inside Mizar Mathematical Library there are at least three strains hosting articles
of content suitable for the treatment of first-order logic:

1. A series of articles supplying a language apt to describe set theory according
to Zermelo-Fraenkel axioms, started with [Ban90].

2. A series of articles supplying a general language for first-order logic, started
with [RT90].

3. A series of articles supplying terminology and results about universal algebras,
started with [KMK92].

Most of the classical results of first order logic have, during the years, found their
way in strain (2): building on those articles a fairly equipped gear of formalizations
has been created.
There are treatments about the most elementary syntactical properties (those of
variables and free variables in a formula (QC_LANG3), of subformulas (QC_LANG2,
QC_LANG4), of substitution (CQC_LANG,SUBSTUT1,SUBSTUT2), of similarity between
formulas (CQC_SIM1)), which in turn allow for less and less elementary results, regard-
ing: propositional calculus (PROCAL_1, LUKASI_1), interpretation and satisfiability
(VALUAT_1), Gentzen-style sequent calculus (CALCUL_1, CALCUL_2), up to a basic
version of Gödel’s completeness theorem (HENMODEL,GOEDELCP).

Unfortunately, the coding of the first order language adopted from the very
beginning in [RT90] is somewhat rigid: roughly sketching the situation, strings of
first-order language are represented as tuples of couples of natural numbers, with
special symbols (quantifiers, connectives, truth symbol) represented by couples in
which the first component is a reserved (small) natural.

This inherently prevents treating uncountable languages, which, alas, would be
quite the point for developing even the most fundamental results of model theory,
starting with Löwenheim-Skolem and compactness theorems.

Also, the completeness theorem currently present in MML has some limitations
that look hardly removable in the established framework. For example, it is restricted
to equality-lacking languages, while it would be of interest to talk about languages
with equality: Mizar first-order language itself is furnished with equality, and the
option of possibly applying results worked out to Mizar itself is desirable.

2. The formalization 46

The following is an account of how a fully developed codebase for model the-
ory in Mizar has been laid down, given the considerations above. They imposed
reformulating things from scratch with a hopefully more flexible approach.

This codebase culminates, as a testbed for itself, with formalizations of the
fundamental Gödel’s completeness and Löwenheim-Skolem theorems, restricted to
the case of a generic countable language, and has been submitted to MML Library
Committee for peer-reviewing; after triple refereeing, it got accepted in MML in
January 2011, with the corresponding five articles ([Cam11d], [Cam11a], [Cam11b],
[Cam11c], [Cam11e]) published on ‘Formalized Mathematics’ in 2011. A ‘dynamic’
(i.e. constantly updated) version of it is accessible at the author’s homepage5 . More
precisely, among the many flavors of Löwenheim-Skolem theorem, the one checked is
the ‘downward’ flavor, like the one stated in 1.11.0.13. Its Mizar statement sounds
like:

for
U2 being non empty set, S being Language,
X being countable Subset of AllFormulasOf S,
I2 being Element of U2-InterpretersOf S st X is I2-satisfied

ex U1 being countable non empty set,
I1 being Element of U1-InterpretersOf S st

X is I1-satisfied;

Let us report the Mizar statement of satisfiability theorem (compare 1.11.0.12),
too:

for C being countable Language st
X is (C-rules)-consistent & X c= AllFormulasOf C

ex U being non empty countable set,
I being Element of U-InterpretersOf C st
X is I-satisfied;

Finally, the completeness theorem (see 1.11.0.18) runs thus:

for C being countable Language,
phi wff string of C, X being set st
X c= AllFormulasOf C & phi is X-implied

holds
phi is X-provable;

Note that this last restriction to countable languages is a mere matter of convenience:
the whole work was set up to treat an arbitrary language up to Henkin’s theorem
(see 1.9.4.8); on the other hand, reducing to the least-cardinality case was desirable
in order to have the job done more quickly (under the urge of demonstrating its
usability), without having to handle complications related to the axiom of choice
and the likes.

Those theorems are here regarded as significant goals because of their fundamental
role in mathematical logic. In particular, the family of Löwenheim-Skolem theorems
have a fruitful interplay with the cardinality of the language, which the ability to
deal with, as said, was a starting, motivating point for the present work. Moreover,

5http://www.mat.uniroma1.it/people/caminati

2. The formalization 47

this latter kind of results seem to be underrepresented in the global repository of
mechanically checked mathematics: the only work sharing the aims of the present
which the author is aware of is [Har98]; both the checker and the proof techniques
used there are entirely different than what we are going to deploy here, however.
Additionally, that work is subject to the issue, hinted in the introduction, of being
stated in a language far from the standard mathematical one. Finally, this is the
only known presentation of several fundamental theorems for model theory and
proof theory formalized together and in a coherent, unitary framework.

2.4 Organization of the codebase
With a total of about 700k bytes and 19k lines of Mizar code, this turned out to
be a fairly complex project, so care has been constantly taken to orderly arrange
the various results according to their scope into five separate Mizar articles, each
depending on the previous ones and hosting affine themes:

• FOMODEL0.MIZ is the receptacle of all results of broader scope stemmed during
the various formalizations, with results and registrations about objects already
in MML and quite few dependencies.

• FOMODEL1.MIZ introduces the type Language, the classification of symbols
according to their arity and of terms according to their depth, and the functor
to extract subterms from a term or an atomic formula. The bulk of syntax
(section 1.2) is done here and in next article.

• FOMODEL2.MIZ (corresponding roughly to sections 1.2 and 1.8) deals with
syntax of non atomic formulas and all the semantics by giving the following
constructions: the definition of an interpretation I relative to a non empty set
U (universe), the constructions saying how to evaluate a term in U , how to
evaluate an atomic formula in {0, 1}, what can be regarded as a generic wff
formula, how to evaluate it in {0, 1} according to I, and how to evaluate its
depth. Also, the functor to obtain another interpretation in the same universe
U from I by changing the evaluation of a single literal symbol of the language
(reassignment), and the definitions of satisfaction and of entailment are given.

• FOMODEL3.MIZ (mainly mirroring sections 1.8 and 1.9.1) supplies a toolkit of
constructions to work with languages and interpretations, and results relating
them: the free interpretation of a language, having as a universe the set of terms
of the language itself, is defined; the quotient of an interpretation with respect
to an equivalence relation is built, and shown to remain an interpretation
when the relation respects it. Both the concepts of quotient and of respecting
relation are defined in broadest terms, with respect to objects as general as
possible. This is arguably the most ‘technical’ article in the tier.

• FOMODEL4.MIZ (reflecting material from sections 1.9.2, 1.9.3, 1.9.4, 1.10 and
1.11) introduces the proof-theoretical notions and binds all together. As a first
more general task, it defines what a sequent and a rule are, and what means for
a rule to be correct. Then, using these definitions, it builds the particular set
of derivation rules we chose in 1.4.1.1. Among many other results, satisfiability

2. The formalization 48

theorem is proven. Finally, restricting to countable languages, completeness
and downward Löwenheim-Skolem are proved.

Having sketched the themes dealt with in each article, now the idea is that each
formalized result should be placed in the lowest article in which the entities to
enunciate it are available, so to give a precise criterion for the arraying of Mizar
code among the five articles.

About one sixth of the code dwells in FOMODEL0.MIZ, thus applying to already-
defined Mizar entities; also, the results located there tend to be shorter and more
numerous than the lemmas showing up in subsequent articles. This is a clue of a
general separation and modularization design policy pursued across the whole work,
aiming at

• stating results in terms of the most general possible Mizar entities;

• breaking statements into smaller lemmas, especially if the latter as a result get
applicable to a broader class of objects or if the smaller lemmas can be put
together in more than a way to get significant theorems. The same applies to
definitions.

As an example, take the construction of the already discussed Henkin model. In
[EFT84], it is introduced just before the proof of the satisfiability theorem, and so,
given the rather instrumental nature of its role, its definition is quite condensed. Here,
on the other hand, it has been split into the pair of definitions of free interpretation,
1.8.0.24, and of quotient interpretation, 1.9.1.9, with a twofold benefit. First, the
former object gets reused to define the term substitution in 1.8.0.32, and hence one
of the deduction rules in 1.8.0.34. On the other hand, the latter applies not only to
the former, but to any interpretation. What’s more, the quotient functor is defined
more generally as quotient of a relation by a pair of equivalence relations. Relations
are more general than equivalence relations, which are in turn more general than
functions, which finally are more general than interpretations, if one call an entity
more general than another when the latter is defined in terms of the former.

Accordingly, the various results needed for the Henkin interpretation break into
smaller and more general statements, sometimes of interest themselves, or occurring
more than once in building further theorems, or maybe just hopefully useful to a
possible coder in the future: having stated them in less restrictive terms increases
the probability that this will be the case.

This process of separation and modularization may provide a further benefit: in
breaking a statement into smaller steps, a fine-grained analysis of which assumptions
are needed for each step is encouraged. This blatantly occurs in chopping down
satisfiability theorem: in section 1.9 each step specifies which derivation rules are
needed for it to hold (see also section 2.6.5). Indeed, keeping track of which result
traces back to which rules did provide the main guidance in forming our ruleset.
In the sequel, other, more specific occurrences of this attitude will be given: see
especially section 3.2.

Here, another facet of this policy is examined: closely related to the just discussed
tendency to predicate about as less specialized entities as possible is the choice of
encoding formulas in simple strings of symbols.6 As for a generic language, this

6In the context of Mizar formalizations, we will use the synonyms ‘string’ and ‘finite sequence’
(FinSequence) for the notion of ‘tuple’ defined in 1.1.0.9.

2. The formalization 49

concrete syntax can be opposed by some representation-agnostic device describing
the abstract syntax, in the same spirit of de Bruijn indexes ([Bru72]) or parse trees
([CH07], pages 34-36) approaches, which directly model the semantics and thus
inherently dispense one from undergoing the twofold labor of first specifying the
syntax rules for well-formedness and then give a way to attach a meaning to each
formula. This is surely a strong plus for them.

We maintain that using ‘plain text’, as done here, presents advantages, too. A
first advantage is readability: as strings require little assumed knowledge to be
understood and have simple notations, the results worked out here are themselves
very readable. Indeed plain text, concrete syntax is arguably one of the best
representations of any data to be read by a human, in most diverse contexts
ranging from didactic expositions of formal languages to software design (classical
Unix philosophy advocates it as an universal interface, [Sal94], p.52). This is of
importance especially for a project like Mizar which, besides verifying, also aims
at building a library of mathematical knowledge straightforwardly accessible to
humans.
Secondly, in the same vein of what has just been discussed, all the results worked
out here are likely to produce sub-lemmas of interest to more Mizar coders than if
we assume we chose parse trees: indeed, there is a series of Mizar articles supplying
the machinery of parse trees in the context of formal languages (DTCONSTR.MIZ),
and in this assumption, many of the general results in FOMODEL0.MIZ would have
been in a form available only to the users of that machinery. This is a two-way
phenomenon, of course: the author, using plain sequences instead of parse trees, has
been able to take advantage of the massive amount of pre-existing results about the
mode FinSequence. As an example of a ‘by-product’ of the present formalization
which could be of more general interest, and which has been brought out because of
the choice of using strings instead of more abstract representations, we pick a result
regarding monoids and prefixes (see (2.2) in section 2.5); it is one of the numerous
results got by treating sub-terms.

As a last argument supporting our choice, we remark a fundamental quality
of our treatment of first order languages notably alleviating one arguably major
drawback typically encountered when using ‘plain text’; that is, the study of free
occurrences of variables in strings, faced generally when studying the semantics of
a previously defined syntax. In the present framework, one does not even need to
introduce the concept of free occurrence, because our sequent calculus only demand
to watch for simple occurrences of literals inside formulas (rule R←

∃
). The issues

of free occurrences and of substitution are two related hindrances when describing
or teaching (see [Tar65]) a formal language. They are related because when doing,
or formalizing, substitution, attention is to be paid to prevent the capture of
free variables: see [EFT84], III.8 for a standard exposition and for the typical
complications arising.
In our case, we managed to devise a sequent calculus not needing this concept, and,
on the other hand, substitution is resolved using a novel formalization approach,
to the best of author’s knowledge, that is, reusing the functors -freeInterpreter,
-TermEval and ReassignIn, which sets the scene for the complete disposal of the
former notion.
It should be noted that the issue of free occurrences can be arguably regarded as a

2. The formalization 50

hindrance, with several papers either devoted to mitigate (or even eliminate) the
problem:

The relatively complex character of these two [the second being that
of term substitution] notions is a source of certain inconveniences of
both practical and theoretical nature . . . we shall show in this paper
that . . . we can simplify the formalization in such a way that the use of
the notions discussed proves to be considerably reduced or even entirely
eliminated . . .

[Tar65],

or merely devoted to treat the problem; to limit ourselves to MML: QC_LANG3,
QC_LANG2, QC_LANG4, CQC_LANG, SUBSTUT1, SUBSTUT2, CQC_SIM1.

The argument above does not imply, of course, that introducing the concept of
free occurrence of a variable in a formula is not worth the toil; it just stands as a
grant (certified by machine checking) that it is not needed to provide a complete
sequent calculus.

2.5 Dealing with subterms
In key points of any treatment of first-order logic, one has to extract the subterms of a
term or of an atomic formula (see, e.g., 1.8.0.26 and 1.8.0.32), hence the formalization
supplies a functor SubTerms doing this.
It is used crucially in the definition of TermEval and TruthEval functors, see
section 2.6.3. Its coding will not be explicitly shown here for space reasons.

Here, we want to discuss how its construction slightly departs from standard
treatments. The task at hand is plain dull: one usually does it recursively starting
from literals and iterating through operational symbols, and there is not much room
from alternative approaches. However, since the language is presently constructed
in terms of strings and concatenation, we tried to do the job at the more general
level of monoids and associative operations. We discuss briefly the idea, without
displaying Mizar code.

Take a monoid (M,�). One can easily extend the operation � to a function ��
taking any finite number of arguments iteratively, for example setting

�� (a, b, c) := (a�b)�c, �� (a, b, c, d) := (�� (a, b, c))�d,

and so on. To do this in Mizar we introduced the functor MultPlace, which actually
takes any binary operation (associativity is not needed yet). Consider any X ⊆M ,
and call it unambiguous (similarly to [Lot02], 1.2.1) if the restriction of � to X ×M
is injective:

� (x1,m1) = � (x2,m2)⇒ x1 = x2,m1 = m2 x1, x2 ∈ X,m1,m2 ∈M

Now associativity comes into play for the result:

� associative and X unambiguous ⇒ ��|Xn is injective ∀n ∈ N, (2.2)

that is, unambiguity is sort-of preserved for n-tuples. Now, taking the case M = S∗,
where S is a language, and taking as � the concatenation (which is associative), it

2. The formalization 51

is easy to show that TS,0 is unambiguous; indeed, any one-letter strings subset of a
language is unambiguous with respect to concatenation. Starting from that, and
using (2.2), it is easily shown by induction that any TS,m is unambiguous, too; and
finally:

Theorem 2.5.0.1. TS is unambiguous.

Proof. Suppose t, t′ ∈ TS and y, y′ ∈ S∗ are such that ty = t′y′. Call m the greater
among the depths of t and t′. Since t, t′ ∈ TS,m and TS,m is unambiguous, it must
be t = t′ and y = y′.

This permits defining subterms of a term t as the n-tuple of terms t1, . . . , tn such
that:

t = ∗∗ (o, t1, . . . , tn),

where o is the first operation symbol, of arity n, of the string t. Since we know that
t1, . . . , tn all belong to TS , which is unambiguous, we can again apply (2.2) to decree
their uniqueness, which is the point. We have discussed the general idea, the exact
formulation is contained inside Mizar articles.

2.6 Encoding in Mizar
In reporting here Mizar formalizations, some minor typographic changes to the
original code have been made to accommodate it and make it more readable; thus
the snippets reported here should not be expected to compile correctly. For the real
code, please refer to Mizar articles.
For a concise reminder of the Mizar notations we will be using, refer to appendix B.
An extensive tutorial specific to Mizar is [Wie06], while a systematic, up-to-date
user manual is [GKN10].

2.6.1 The Language type
Here the ground mode Language we will be talking about all the time is defined; it
is the Mizar counterpart of the structure ‘language’ introduced in 1.2.0.14. There is
good support in MML for finite sequences (articles FINSEQ_1 through FINSEQ_8),
so it is natural to identify the strings of the language we are defining with the finite
sequences over its carrier. The same was done originally in [RT90]. The difference is
that there it has been imposed to use exclusively sequences of Kuratowski pairs of
natural numbers. Moreover, the encoding of special logical symbols is “hardwired”
into that scheme. Then a layer of functors and modes definitions is added to be
able to refer to these pairs with more suggestive names instead of using directly the
encoding.
However, there is no apparent need to impose preemptively how a first-order language
should be encoded into sets, rather it seems more sensible to work only at the level
of Mizar types, leaving freedom to choose what actual symbol set to use to the
instantiator of the type.
Indeed, we will see that such a rigidity, imposing how to encode even only pieces of

2. The formalization 52

the language happens to be troublesome for further development (see page 53). So
let us start by introducing a preparatory type named Language-like:

definition
struct (ZeroOneStr) Language-like
(#carrier->set, ZeroF, OneF->Element of the carrier,
adicity->Function of the carrier\{the OneF}, INT#);

end;

In this definition there appears yet another provision of Mizar to cope with
types. struct is a “structured type”, similar in spirit to the ones found in many
programming languages (called something like aggregates, records, structures, as
appropriate). It is a concise way to group a finite number of types into one entity
which becomes a new type. Each entry, or selector, of the new type is denoted by an
arbitrary type name. In our case, we took a pre-defined (see STRUCT_0) structure
type, called ZeroOneStr, inherited all of its fields and added one more. So we end up
with a quadruple consisting of an alphabet (the carrier), two distinguished symbols
of it, and a arity (adicity) function. For brevity, a couple of devices are introduced
here: first, OneF will serve as our logical connective Nor (↓), and it will turn out
convenient not to have the arity defined on it; secondly, we agree that a negative
arity will denote a relation symbol, a positive arity an operation symbol, and a zero
arity a literal; these two points had been already introduced in section 1.3. With
this in mind, the following definitions are obvious shorthands:

definition
let S be Language-like;
func AllSymbolsOf S equals the carrier of S;
func LettersOf S equals (the adicity of S) " {0};
func OpSymbolsOf S equals (the adicity of S) " (NAT \ {0});
func RelSymbolsOf S equals (the adicity of S) " (INT \ NAT);
func TermSymbolsOf S equals (the adicity of S) " NAT;
func LowerCompoundersOf S equals

(the adicity of S) " (INT \ {0});
func TheEqSymbOf S equals the ZeroF of S;
func TheNorSymbOf S equals the OneF of S;
func OwnSymbolsOf S equals
(the carrier of S)\{the ZeroF of S,the OneF of S};

end;
definition
let S be Language-like;
mode Element of S is Element of (AllSymbolsOf S);
func AtomicFormulaSymbolsOf S equals

AllSymbolsOf S\{TheNorSymbOf S};
func AtomicTermsOf S equals 1-tuples_on (LettersOf S);

end;

This almost suffices to encode any first-order language. We only add a couple of
further features we wish to endow our new type with:

2. The formalization 53

definition
let S be Language-like;
attr S is eligible means LettersOf S is infinite &
(the adicity of S).(TheEqSymbOf S)=-2;

end;

These two requests impose to have access to an infinite number of letters (we
do not know the length of the terms and formulas we will need to write down),
and that the arity of the equality symbol is −2, as already discussed in section 1.3,
and as dictated by 1.2.0.14. This automatically likens equality symbol to any other
predicate symbol. However, this is true only at this stage of syntax. The equality
symbol will acquire of course special meaning in evaluation, as discussed in section
2.6.4. Finally, Language type is:

definition
mode Language is eligible (non degenerated Language-like);

end;

degenerated is an attribute inherited from the type ZeroOneStr, and means
that the ZeroF and the OneF coincide. So we are requesting that the equality
symbol and the logical connective symbol are distinguishable. For a more elegant
formalization and a purely technical convenience (the deployment of registrations,
see section 2.2.2), we also translate definitions in 2.6.1 attribute-wise:

definition
let S be Language-like;
let s be Element of S;
attr s is literal means s in LettersOf S;
attr s is low-compounding means s in LowerCompoundersOf S;
attr s is operational means s in OpSymbolsOf S;
attr s is relational means s in RelSymbolsOf S;
attr s is termal means s in TermSymbolsOf S;
attr s is own means s in OwnSymbolsOf S;
attr s is ofAtomicFormula means s in AtomicFormulaSymbolsOf S;

end;

Too simple an encoding

We want to hint at an alternative definition for the Language type, which originally
was adopted for its further simplicity, but then deprecated and removed for reasons
we will discuss. It was modeled after the idea that, looking at definition 1.2.0.14,
there is no reason to separate the concept of a language and its arity, with the latter
being able to carry an almost full description of the language itself in ZF. So, instead
of using a higher level, structured type to declare the type -Language, initially the
code relied on a simpler definition based on the Function type, which is one of the
most basic and rich in already-made results inside MML:

definition
let f be Function;

2. The formalization 54

attr f is eligible means :DefEli: f"{0} is infinite;
end;
definition
mode lang is eligible INT-valued Function;
end;
definition
let S be lang;
func OwnSymbolsOf S equals dom S;
coherence;
end;
notation
let S be lang;
synonym TheEqSymbOf S for OwnSymbolsOf S;
end;
end;
definition
let S be lang;
func TheNorSymbOf S equals {TheEqSymbOf S};
coherence;
end;
definition
let S be lang;
func AllSymbolsOf S equals
OwnSymbolsOf S \/ {TheEqSymbOf S} \/ {TheNorSymbOf S};
coherence;
end;
definition
let S be lang;
mode Element of S is Element of AllSymbolsOf S;
end;

This definition presents some nice aspects:

• Relying straightforward on Function type, the type lang presents a terse
definition, and, thus and most importantly, carries very little work to show
existence of entities: it is to be noted that in Mizar one has to prove, in the
end, existence of any construct he introduces.

• The conditions

1. TheEqSymbOf S <> TheNorSymbOf S (see request (2) of 1.2.0.14),
2. not TheEqSymbOf S in OwnSymbolsOf S, and
3. not TheNorSymbOf S in OwnSymbolsOf S

are automatically honored, since Tarski-Grothendieck axioms easily allow to
show, respectively:

1. X <> {X},
2. not X in X,

2. The formalization 55

3. not {X} in X

for any set X.
So we have conditions (2) and (3) of definition 1.2.0.14 already satisfied, the

former automatically and the latter via an explicit, yet posing little difficulties to
be existentially proved, attribute eligible, thus fulfilling the same tasks of the
attribute of the same name in the ultimate Mizar code. The remaining condition
(1) in definition 1.2.0.14 was actually not imposed at all; rather, the arity of the
language was successively overlaid with an ar functor based on it, and which was
subsequently used in its place:

definition
let S be lang, s be Element of S;
attr s is own means :DefOwn: s in OwnSymbolsOf S;
attr s is ofAtomicFormula means s in AtomicFormulaSymbolsOf S;
end;
definition
let S be lang;
let s be ofAtomicFormula Element of S;
func ar s equals
S.s if s is own
otherwise -2;
coherence;
consistency;
end;

Actually, an utterly similar ar functor, for the respective Language mode, is still
present in current Mizar code and largely preferred to direct invocation of adicity
function because the former is handier to typewrite and leaves to Mizar the burden
of checking its argument having the correct type. It looks like the original definition
of language given above was neater and required less preliminary work, so why has
it been replaced by Language? The trouble with this definition becomes apparent
when trying to restrict or extend a language. In a handful of key steps along the
proof of satisfiability theorem, and of Löwenheim-Skolem, we needed to apply the
following scheme: take two languages agreeing on some common symbols (typically
because one is the restriction/extension of the other), and apply coincidence lemma
on a formula consisting only of some of those symbols to conclude that it is a formula
in both languages, and that its evaluations in two interpretation of the respective
languages coincide. This kind of reasoning is fundamental in the following points:

• In eliminating the demand for #−1 ({0}) to be infinite from 1.11.0.7 in proof
of 1.11.0.11. In turn, the coincidence lemma occurs twice there, once in the
main proof, to pass through restriction from an interpretation of SN to one of
S, and once in the subproof, to pass through extension from an interpretation
of S to an interpretation of SN , thus in the opposite verse as before.

• In the proof of 1.11.0.13, to restrict a generic language to the countable one
made by the symbols appearing in a countable set of formulas, suitable to be
applied 1.11.0.12, and in extending it back, to supply the interpretation thus
found as the witness for the thesis.

2. The formalization 56

Obviously, for the coincidence lemma to work, the special symbols, that is ≡
and ↓, of the two languages must coincide (see 1.11.0.10). This fails to hold in the
definition above; indeed, one is granted that this will not happen, unless the two
languages are the same. Indeed, explicitly constructing the Mizar representations
of ≡ and ↓ from a given language is a form of the rigid “hardwiring” we wanted to
depart from, as explained in motivating our work: see the beginning of section 2.6.1.

2.6.2 Syntax and semantics
The main objects introduced in this section are the three functors -termsOfMaxDepth,
-formulasOfMaxDepth, -TruthEval and the type Interpreter. They are the coun-
terparts of the entities presented in 1.2.0.16, 1.2.0.18, 1.8.0.27 and 1.8.0.20, respec-
tively, and have the fundamental roles of describing the sets of terms and formulas
of a given (or smaller) depth, of defining what is an interpretation, and of evaluating
a term or a formula in a given interpretation. For the sake of convenience, let us
introduce a dedicated type for the generic S-string:

definition
let S be Language;
mode string of S is Element of ((AllSymbolsOf S)*\{{}});

end;

The present construction will be split in stages: first atomic terms (already
introduced in 2.6.1), then terms inductively, and finally atomic formulas. Let us start
with an auxiliary function performing the basic construction for polish notation,
that is, appending an n-tuple of strings to a leading symbol according to its arity:

definition
let S be Language,s be ofAtomicFormula Element of S;
let Strings be set;
func ar(s) -> Element of INT equals (the adicity of S).s;
func Compound(s,Strings) -> Subset of (AllSymbolsOf S)*\{{}}
equals

{<*s*> ^ ((S-multiCat).StringTuple) where
StringTuple is Element of (AllSymbolsOf S)**:
rng StringTuple c= Strings &
StringTuple is (abs(ar(s)))-long};

end;

Here, S-multiCat is a dedicated function which concatenates tuples of strings,
and renders the mapping ∗∗ introduced on page 3. Roughly speaking, it is the finite
iteration of the functor ^. Now recursive construction of terms is straightforward:

definition
let S be Language;
func S-termsOfMaxDepth ->
Function of NAT,bool((AllSymbolsOf S)*\{{}})
means dom it=NAT & it.0 = (AtomicTermsOf S) & for n being Nat

holds it.(n+1) = (union {Compound(s,it.n)

2. The formalization 57

where s is ofAtomicFormula Element of S:s is operational}
) \/ it.n;

func AllTermsOf S equals union rng (S-termsOfMaxDepth);
end;

Again, let us rephrase above definitions in terms of attributes:

definition
let m be Nat, S be Language, w be string of S;
attr w is m-termal means w in S-termsOfMaxDepth.m;
let w be string of S;
attr w is termal means w in AllTermsOf S;
attr w is atomic means

ex s being relational Element of S,
V being abs(ar(s))-long Element of (AllTermsOf S)* st
w=<*s*>^(S-multiCat.V);

end;

2.6.3 Saving work: completing syntax and doing semantics, con-
currently

Definitions in 2.6.2 are the Mizar version of definitions up to 1.2.0.16. Now, instead of
proceeding with the syntax of non-atomic formulas, we digress to start concurrently
putting forth some building blocks of semantics. We will then be able to define both
syntax and semantics of non-atomic formulas in one shot, taking advantage of the
fact that, in contrast to the building of terms, the compounders to derive higher-level
formulas from lower-level ones are fixed and well-known. The fact of having reduced
them to just two types (that is, one logical connective and one existential quantifier)
will ease the job. This strategy saves a good deal of work for our purpose. First,
we start with defining what is an interpretation of a Language S in a non empty
set U (standing for universe). The definition is similar to the one given in [EFT84],
only since we don’t make distinction between 0-arity compounders (constants) and
variables symbols, the distinction made there between interpretation, structure and
assignment vanishes too. Also, we separate the universe from the interpretation
(the corresponding type is called Interpreter; in informal talking we will use both
words), more precisely, we make the latter a type dependent on the former. Here,
too, we proceed gradually:

definition
let S be Language, U be non empty set,
s be ofAtomicFormula Element of S;
mode Interpreter of s, U ->
Function of (abs(ar(s)))-tuples_on U, U\/BOOLEAN means

it is Function of (abs(ar(s)))-tuples_on U, BOOLEAN
if s is relational otherwise

it is Function of (abs(ar(s)))-tuples_on U, U;
end;

2. The formalization 58

It is worth noting that in case of a literal (0-arity) symbol s, the interpreter
of s,U reduces to a function from ∅ into an element of U . So, the assignment of
a literal, instead of being directly a constant of u of U , is rendered as a function
{{}} --> u, see 1.8.0.23. This is convenient for reducing the cases in subsequent
proofs and definitions from three (positive, negative and zero arity) to two (negative
and non negative arity). Now the definition of an interpreter of the whole alphabet
is straightforward:

definition
let S be Language, U be non empty set;
mode Interpreter of S, U -> Function means
for s being own Element of S holds

it.s is Interpreter of s, U;
end;
definition
let S be Language, U be non empty set, f be Function;
attr f is (S,U)-interpreter-like means
f is Interpreter of S,U & f is Function-yielding;

:: Function-yielding not fundamental;
:: added for technical convenience
end;
definition
let S be Language, U be non empty set;
func U-InterpretersOf S equals {f where f is
Element of Funcs(OwnSymbolsOf S, PFuncs(U*,U\/BOOLEAN)):
f is (S,U)-interpreter-like};

end;

Before going on we introduce two further constructs: the first is the standard
Mizar functor (FUNCT_4:def 1) +* which ‘pastes’ two function f and g into a
function f +* g defined on the union of their domains, with g (the right term)
prevailing in case of conflicts: a generalization of it to relations was introduced in
1.1.0.6.

The second is the functor ReassignIn which implements the operator changing
the assignment of a single literal in a given interpretation, defined in 1.8.0.25 and
examined thoroughly in section 3.2.

Now, building a functor I-AtomicEval phi yielding the truth value of the atomic
formula phi in the interpretation I is standard practice, and the corresponding code
is omitted here. As anticipated, we rather want to indulge on the interpretation of
non atomic formulas. Usually, one has to do first a recursive definition of the set
of wffs, then another recursive definition to evaluate a wff in a given interpretation.
The idea here is to do both in one single recursive definition. This technically can
be done by having, as an object of the recursive definition, a partial function, here
called F provisionally for brevity, such that, for any natural mm, F.mm

• It has as a domain exactly the cartesian product of U-InterpretersOf S with
the set of wff of depth not exceeding mm.

• On that domain it maps a pair (interpretation, string) into the right truth
value.

2. The formalization 59

We are thus working on a higher level, where also the interpreter I is a variable
which gets evaluated together with a wff to return a truth value; only L and U are
fixed parameters. For this reason, we first need a tedious but necessary step to
transform I-AtomicEval phi from a functor into a function of I and phi, named
S-TruthEval U (its name is regretfully not too descriptive):

definition
let S,U;
func S-TruthEval(U) -> Function of
[: U-InterpretersOf S, AtomicFormulasOf S :], BOOLEAN
means for I being Element of U-InterpretersOf S,
phi being Element of AtomicFormulasOf S holds

it.(I,phi)=I-AtomicEval(phi);
end;

For the same reason, in Mizar code the name of the functor F contains only S
and U, and is (S,U)-TruthEval; so we can get the expected behaviour for it via the
fundamental definition:

definition
let S be Language, U be non empty set;
func (S,U)-TruthEval -> Function of NAT, PFuncs
([:U-InterpretersOf S, (AllSymbolsOf S)*\{{}}:], BOOLEAN)
means it.0=S-TruthEval(U) & for mm being Element of NAT holds
it.(mm+1)=G(it.mm) +* it.mm;

end;

At each step the partial function (S,U)-TruthEval.mm, which applied to the
generic pair [:I, phi:] yields a defined, and correct, truth value if and only if phi
is of depth not exceeding mm, is extended by the operator G, which of course must
yield a partial function of domain extended to the wffs of depth mm+1. So the task is
now the construction of G. We divide the problem in two simpler parts, taking care
respectively of the existential symbol and of the NOR symbol separately, so that
G(it.mm) in the actual Mizar definition is written as

ExIterator(it.mm) +* NorIterator(it.mm)

Let us illustrate only the construction of ExIterator g alone: the idea behind the
other half is the same. Here g is a generic, appropriate PartFunc. We said that
ExIterator has to take care simultaneously that the PartFunc it returns has both
the right domain and the right output on it, based on g. This does not mean that we
cannot further divide the problem into simpler parts: the definition of ExIterator g
will actually specify only the correct domain, delegating the evaluation to yet another
functor -ExFunctor:

definition
let S be Language, U be non empty set;
let g be Element of PFuncs
([:U-InterpretersOf S, (AllSymbolsOf S)*\{{}}:], BOOLEAN);
func ExIterator(g) -> PartFunc of

2. The formalization 60

[:U-InterpretersOf S, (AllSymbolsOf S)*\{{}}:],BOOLEAN means
(for x being Element of U-InterpretersOf S,
y being Element of (AllSymbolsOf S)*\{{}} holds
([x,y] in dom it iff (
ex v being literal Element of S, w being string of S st
[x,w] in dom g & y=<*v*>^w
))) &

(for x being Element of U-InterpretersOf S,
y being Element of (AllSymbolsOf S)*\{{}} st [x,y] in dom it

holds it.(x,y)=g-ExFunctor(x,y));
end;

We have indented the part of definition which actually does something (i.e. the
specification of the domain, as we were just saying); it does that something quite
trivially, too. Also trivial is the action of the functor -ExFunctor(x,y) to which we
delegated the semantical part:

definition
let S be Language, U be non empty set, f be PartFunc of
[:U-InterpretersOf S, (AllSymbolsOf S)*\{{}}:], BOOLEAN;
let I be Element of U-InterpretersOf S;
let phi be Element of(AllSymbolsOf S)*\{{}};
func f-ExFunctor(I,phi) -> Element of BOOLEAN equals
TRUE if ex u being Element of U, v being literal Element of S

st (phi.1=v & f.((v,u) ReassignIn I, phi/^1)=TRUE)
otherwise FALSE;

end;

Just notice that this functor is expected to be accurate only when yielding TRUE,
since otherwise it could yield FALSE when actually it is supposed to be undefined.
This is not a problem anymore, since the previous definition already took care of
that matter.

Now the significant part of the work is done: all the syntactical and semantical
knowledge is thus stored in (S,U)-TruthEval, we just may want to rearrange it in
a more accessible way, a task with which we end this section. First, we can go back
to the lower level and get a function of just the string we want to evaluate:

definition
let S be Language, U be non empty set, m be Nat;
let I be Element of U-InterpretersOf S;
func (I,m)-TruthEval ->
Element of PFuncs((AllSymbolsOf S)*\{{}},BOOLEAN)
equals (curry ((S,U)-TruthEval.m)).I;

end;

Information about both syntax and semantics is now carried by (I,m)-TruthEval
in respectively its domain and its return value, so:

definition

2. The formalization 61

let S be Language, m be Nat, w be string of S;
func S-formulasOfMaxDepth m ->
Subset of ((AllSymbolsOf S)*\{{}}) means
for U being non empty set,
I being Element of U-InterpretersOf S holds

it=dom (I,m)-TruthEval;
attr w is m-wff means w in S-formulasOfMaxDepth m;
attr w is wff means ex m st w is m-wff;
func AllFormulasOf S equals
{x where x is string of S: ex m st x is m-wff};

end;

definition
let S be Language, U be non empty set;
let I be Element of U-InterpretersOf S, w be wff string of S;
func I-TruthEval w -> Element of BOOLEAN means
for m being Nat st w is m-wff holds it=((I,m)-TruthEval).w;

end;

Here only the independence of dom (I,m)-TruthEval on I and U needs to be shown
to finally be able to evaluate the truth value of a wff formula, which is omitted here.
Let us end this part with stating the remaining semantical definitions implied in
the statement of Löwenheim-Skolem and completeness theorems, both traditionally
indicated by the double turnstile �; the satisfaction relation (cmp. 1.8.0.29):

definition
let U be non empty set, S be Language;
let I be Element of U-InterpretersOf S; let X be set;
attr X is I-satisfied means
for phi being wff string of S st phi in X holds

I-TruthEval phi=1;
end;

and the logical implication (entailment, cmp. 1.11.0.15):

definition
let X be set, S be Language, phi be wff string of S;
attr phi is X-implied means
for U being non empty set,
I being Element of U-InterpretersOf S st
X is I-satisfied holds I-TruthEval phi=1;

end;

2.6.4 Free interpretation
The free interpreter of a given operational symbol s of arity n of a Language S is
the operation on the set of n-tuples of terms of S obtained by concatenating the
tuple and appending it to the symbol s. Obviously the result is again an element of
the set of all terms of S, which now acts as a universe and makes this operation an
interpreter as of 2.6.3.

2. The formalization 62

If we add to the picture an arbitrary set X of formulas of S we can talk also of
the free interpreter of a relational symbols r of S, of arity −n ∈ Z−. In this case an
n-tuple of terms is evaluated TRUE if and only if the atomic formula obtained by
concatenating and appending to r (the same job done in previous case) belongs to
X.

definition
let X be set, S be Language;
let s be ofAtomicFormula Element of S;
func X-freeInterpreter(s) -> Interpreter of s,(AllTermsOf S)

equals s-compound |(abs(ar(s))-tuples_on(AllTermsOf S))
if not s is relational otherwise

chi(X,AtomicFormulasOf S) *
(s-compound | (abs(ar(s))-tuples_on (AllTermsOf S)));

end;

It is worth noting that this definition is also applicable to the equality symbol.
This does not matter since, for any interpreter, the evaluation of any ≡ atomic
formula is overridden at the level of the definition of -TruthEval to give the correct
value. This is indeed what is meant when talking about a language with equality.
The functor -compound appearing above is introduced to aid the typing and has a
trivial definition (see 2.6.2 for -multiCat):

definition
let S be Language, s be Element of S;
func s-compound -> Function of ((AllSymbolsOf S)*\{{}})*,
(AllSymbolsOf S)*\{{}} means for V being Element of
((AllSymbolsOf S)*\{{}})* holds it.V = <*s*>^(S-multiCat.V);

end;

And finally here is the free interpretation over all the symbols of S, with
AllTermsOf S as universe.

definition
let S be Language, X be set;
func (S,X)-freeInterpreter ->
Element of (AllTermsOf S)-InterpretersOf S means
dom it=OwnSymbolsOf S & for s being own Element of S holds

it.s=X-freeInterpreter(s);
end;

2.6.5 Justification of ruleset choice
The complete ruleset appearing in the statement of 1.11.0.18 has formed as a result of
the process of Mizaring completeness theorem. This means that, as the proof of the
latter is staged into a string of roughly escalating results, each rule has been gradually
introduced when the previously introduced ones no longer sufficed to proceed. This
way, a tight bound between each intermediate result and the corresponding needed
subset of rules have been established, and consequently a hierarchy among rules
have been established; for example:

2. The formalization 63

1. rules R=, R↔=, R⇒= are needed for D∼
X

to be an equivalence relation (see 1.9.2.7),

2. R↔=, R=, R+, RR are needed for it to be compatible with ΦX (see 1.9.3.2), so
that

3. rules R=, R↔=, R⇒=, R+, RR are needed to merely define the Henkin interpreta-
tion,

4. rules R0, R=, R↔=, R⇒=, R+, RR are needed for this interpretation to be a model
of the atomic formulas of X (1.9.4.3),

5. rule R→
∃
permits extension of result as from point (4) to existential formulas

like vϕ, while

6. rule R↓ permits to extend point (4) to non-existential, non-atomic formulas
like ↓ ϕ1ϕ2.

7. Since the extension as from points (5) and (6) pertain to a witnessed and
expanded theory, we use only rules R∪, Rc, R←∃ , R= to complete a theory with
witnesses, and

8. we use only rules R∪, Rc to expand a theory into a closed one, so that

9. the ruleset appearing in satisfiability theorem’s statement, 1.11.0.9, are exactly
the one needed to prove it.

10. Rule R6¬ has to be added to the remaining only to prove non-negative formulas
entailed by a consistent theory (1.11.0.18).

Rules can thus be precisely tiered according to their functional role during the
various proofs.

Moreover, each single subjunction of a new rule in such stepped enlargement of
the ruleset was made trying to comply with secondary criteria such as simplicity and
minimality: axioms (that is, rules with no input sequents) have been preferred over
rules having one, and, even more, over rules having two premisses; rules involving
atomic formulas have been preferred over rules involving non-atomic formulas.

Some rules (in particular R+ and RR), besides complying with the above ideas,
are also more formalization-friendly than the ones initially conceived (see [Cam09]),
so that how to formalize back-influenced what to formalize, a phenomenon occurred
several times along the realization of the whole project. Instead of the one-way
dynamics (from human to machine) one could expect when starting digging into
formalization, this turned into a sort of feedback leading the human to rethink and
rephrase along the way what he is formalizing. Every time this happened, the final
outcome was always tidier and neater than the initial idea; some reflections on this
facet of formalization are in section 3.5.

Admittedly, R+ andRR are a bit clumsy to write down, but their proof-theoretical
weakness turned out to be quite helpful in easing formalization.
Anyway, writing derivation rules in the manner above is like drawing diagrams,
in that their goal is to communicate to another human how the rule works; what
matters is the formalizability, and maybe the computability (which is likely to be

2. The formalization 64

good if the former is), so we should not worry about the appearance of those two
rules.

Given the guiding ideas according to which we formed our ruleset, and for the
reasons exposed in section 2.4, it is therefore natural to wonder whether we can
dispense from these notions, or if we can provide simplified versions of them. We
could not help using the notion of term substitution in R→

∃
; however, the form of

R←
∃
presents two notable simplifications:

• Only the trivial literal-with-literal form of substitution (simple substitution,
1.1.0.8) appears.

• There is no request on the freeness of the occurrence of the substituted letter.

2.6.6 Sequents and rules
We first define what sequents are in just a plain way:

definition
let S be Language; func S-sequents equals
{[antecedent,succedent] where
antecedent is Subset of AllFormulasOf S,
succedent is wff string of S: antecedent is finite};

end;

Only observe that antecedent is an (unsorted) finite set, not a n-tuple or a bag.
Since the common way of representing sequent derivation rules, as already noticed,

has more the nature of a diagram rather than that of a precise formulation, encoding
them has presented a number of fundamental design choices. When starting from
scratch, as in this case, one should put an effort in laying down a structure with
enough flexibility and generality to last in time and possibly be reused for other
purposes.

The first decision regarded modularization: the framework specifying what a
rule is and its general properties has been separated from the description itself of the
single rule and from the definition of derivability. MML presents at least two further
formalizations of a proof system: see definitions of is_a_correct_step_wrt inside
CQC_THE1 and of is_a_correct_step inside CALCUL_1. Both adopt a monolithic,
less articulated approach, simply hardcoding inside the definition itself the possible
cases admitted by each single calculus rule via Mizar if statements. A proof is
deemed correct if each step of it is correct according to the above cluster of cases.
This is arguably another instance of rigidity in a basic definition, like the one we
complained about in justifying the introduction of a new encoding of language (see
section 2.6.1).

Here are some benefits brought by our modular approach:

• Definitions are terse and readable, compared with other approaches like those
of CALCUL_1 and CQC_THE1, see below.

• The effect of allowing or forbidding the use of a rule can be studied. Indeed,
here for each result proved the single rules needed are resolved.

2. The formalization 65

• Possible expansion upon this schemes would be feasible; e.g. for applying logic
flavors other than classical one.

So we first define a framework in which to deal with rules by specifying an
abstract Rule type as done in 1.4.0.22:

definition
let S be Language;
mode Rule of S is

Element of Funcs (bool (S-sequents), bool (S-sequents));
mode RuleSet of S is

Subset of Funcs (bool (S-sequents), bool (S-sequents));
end;

One should think of a Rule as the function mapping a set X of sequents into
the set of all sequents obtainable by applying the rule to all the sequents in X .

Having to do generally with deductions using several rules in succession, we
introduce the functor OneStep to specify all the sequents derivable from some starting
sequents using only one rule of a given RuleSet D, as in 1.5.0.3.

definition
let D be RuleSet of S;
func OneStep(D) -> Rule of S means
dom it = bool (S-sequents) &
for Seqs being set st Seqs in dom it holds

it.Seqs = union ((union D) .: {Seqs});
end;

With that, we have started specifying how to pass from rules to derivations, and
the next definition will complete the job. Sequent calculus separates the concepts
of formal derivability and of provability, so we have two distinct, corresponding
attributes as well; the first (to be compared with 1.5.0.4) is applied to a sequent
and certifies it to be derivable from an initial set of sequents, while the second (see
1.5.0.5) applies to a formula and witnesses it is the tail of a sequent derivable from
no assumptions and whose premises are given:

definition
let S be Language, D be RuleSet of S, Seqs1, Seqs2 be set;
attr Seqs2 is (Seqs1,D)-derivable means

Seqs2 c= union (((OneStep D) [*]) .: {Seqs1});
let X,phi be set;
attr phi is (X,D)-provable means

ex seqt being set st
(seqt‘1 c= X & seqt‘2 = phi & {seqt} is ({},D)-derivable)

end;

Note how the passage from OneStep to derivability leverages some most general
constructs as union, [*] and .: (cfr appendix (B) for their standard notation
equivalents). This would have not been possible without having detached the notion

2. The formalization 66

of rule from that of provability. Had not we done that, we probably would have
ended up to setting some dedicated construction to describe a derivation, including
in it an in-line (and verbose) condition of correctness, as it happens in CQC_THE1 (see
definitions of Proof_Step_Kinds and is_a_correct_step_wrt) and in CALCUL_1
(see the definition of is_a_correct_step). This latter kind of formalizations is not
likely to bring any formalization useful outside of its scope and seems much harder
to work with. It seems arguable, however, that the original choice of rigidly encoding
the language (see 2.6.1) encourages rigidity as in the constructs just cited. On the
other hand, as stressed in other circumstances, our approach leads to possibly useful
by-products of general interest regarding the general objects occurring in definitions:
see section 3.2.

Now we want to actually code the rules given in section 1.4.1.1 in this framework.
The difficulties in encoding a general definition of derivation rule arise from how
they are customarily represented; that is, in a diagrammatic form leveraging on
the excellent pattern-matching capabilities of the human reader. These diagrams
operatively represent the mechanics of a rule by representing how formulas, or
parts of formulas, get altered when passing from the input to the output of a rule.
Usually the manipulations thus represented are limited to string concatenations and
substitutions, and are possibly ‘decorated’ with side-conditions (typically regarding
the demand of some literal not occurring free inside some formulas occurring in
sequents). In other proof checkers (e.g. Isabelle and HOL variants in general, see
section 1.2 of [Wie09]) there is stronger support for computations and automation,
which is just what we would need here (as done in [Gor09] with Isabelle).

In Mizar, however, there is just set theory: we have therefore to express a rule
in this language; one does not have a provision to compute a function, one can
just describe a function by encoding its graph in set theory. Similarly, we cannot
compute a rule as its diagram suggest; instead, we must set-theoretically describe
what sequents it can associate to a given set of sequents. This is why the type Rule
has been defined as from Mizar code above. With such an approach, doing even most
elementary derivations becomes extremely tiresome: every single rule application
must be validated by formally checking it satisfies the corresponding Mizar predicate
(see section 2.6.7). With no other provision to do sequent calculus, any subsequent
Mizar formalization would probably have been much tougher. Luckily, we will find
out a scheme to overlay raw rule definitions with a much more friendly calculus
based on Mizar’s functorial registrations: see section 2.6.8. On the other hand, even
without this overlay, this merely descriptive method presents at least one advantage
over the computational method:

The disadvantage is that there is no explicit encoding of a derivation.
The derivation is kept implicitly by the proof-assistant and we cannot
manipulate its structure. [Gor09]

We, on the contrary, have full control on a derivation: indeed each derivation will be
hand-crafted into single rule application steps.

2.6.7 How to define a single specific rule
A slight nuisance we have to face preliminarily is given by the fact that the symbol set
of Mizar is pure ASCII, which forced to translate the names of the rules introduced

2. The formalization 67

in 1.4.1.1 and elsewhere into plain text, as from the following table

Rule0 R0
Rule1 R∪
Rule2 R=
Rule3a R⇒=
Rule3b R↔=
Rule3d R+
Rule3e RR
Rule4 R→

∃
Rule5 R←

∃
RuleNor R↓
Rule8 Rc
Rule9 R6¬

We try to separate the jobs of typing from that of actually specifying how a rule
works, by proceeding in stages.

First we specify the core of the rules as Mizar predicates (which were introduced
in section 2.2.3); compare this with their definition 1.4.1.1 and with their customary
representation of page 10:

definition
let Seqts be set; let S be Language; let seqt be S-null set;

pred seqt Rule0 Seqts means seqt‘2 in seqt‘1;

pred seqt Rule1 Seqts means ex y being set st y in Seqts &
y‘1 c= seqt‘1 & seqt‘2 = y‘2;

pred seqt Rule2 Seqts means seqt‘1 is empty &
ex t being termal string of S st
seqt‘2 = <* TheEqSymbOf S *> ^ t ^ t;

pred seqt Rule3a Seqts means
ex t1,t2,t3 being termal string of S, x being set st
(seqt=[{<*TheEqSymbOf S*>^t1^t2,<*TheEqSymbOf S*>^t2^t3},
<*TheEqSymbOf S*>^t1^t3]);

pred seqt Rule3b Seqts means
ex t1,t2 being termal string of S st
seqt‘1 = {<*TheEqSymbOf S*>^t1^t2} &
seqt‘2 = <*TheEqSymbOf S*>^t2^t1;

pred seqt Rule3d Seqts means
ex s being low-compounding Element of S,
T,U being (abs(ar(s)))-element Element of (AllTermsOf S)* st

(s is operational & seqt‘1=
{<*TheEqSymbOf S*>^(TT.j)^(UU.j) where

2. The formalization 68

j is Element of Seg abs(ar(s)),
TT,UU is Function of Seg abs(ar(s)), (AllSymbolsOf S)*\{{}}
: TT=T & UU=U}
& seqt‘2=<*TheEqSymbOf S*>^(s-compound(T))^(s-compound(U)));

pred seqt Rule3e Seqts means
ex s being relational Element of S,
T,U being (abs(ar(s)))-element Element of (AllTermsOf S)* st

(seqt‘1={s-compound(T)} \/
{<*TheEqSymbOf S*>^(TT.j)^(UU.j) where
j is Element of Seg abs(ar(s)),
TT,UU is Function of Seg abs(ar(s)), (AllSymbolsOf S)*\{{}}
: TT=T & UU=U}
& seqt‘2=s-compound(U));

pred seqt Rule4 Seqts means
ex l being literal Element of S,
phi being wff string of S,
t being termal string of S st
seqt‘1={(l,t) SubstIn phi} & seqt‘2=<*l*>^phi;

pred seqt Rule5 Seqts means ex v1,v2 being
(literal Element of S), x being set, p being FinSequence st
seqt‘1=x \/ {<*v1*>^p} & v2 is (x\/{p}\/{seqt‘2})-absent &
[x\/{(v1 SubstWith v2).p},seqt‘2] in Seqts;

pred seqt RuleNor Seqts means
ex phi1, phi2, phi3, phi4 being wff string of S st seqt=
[{<*TheNorSymbOf S*>^phi1^phi2, <*TheNorSymbOf S*>^phi3^phi4},
<*TheNorSymbOf S*>^phi2^phi3];

pred seqt Rule8 Seqts means
ex y1,y2 being set, phi,phi1 being wff string of S st
y1 in Seqts & y2 in Seqts & y1‘1=y2‘1 & y1‘2=phi1 &
y2‘2 = <* TheNorSymbOf S *> ^ phi1 ^ phi1 &
seqt‘1\/{phi}=y1‘1 & seqt‘2=<*TheNorSymbOf S*>^phi^phi;

pred seqt Rule9 Seqts means
ex y being set, phi being wff string of S st
y in Seqts & seqt‘2=phi & y‘1=seqt‘1 & y‘2=xnot (xnot phi);
end;

In the definiens of last rule we took advantage, for a matter of convenience, of
the Mizar analog of the map seen in 1.10.1.1:
definition
let S be Language, w be string of S;
func xnot w -> string of S equals <*TheNorSymbOf S*>^w^w;
end;

2. The formalization 69

We want at this stage to reduce at a minimum the role of types, to concentrate
on the mechanics of the rule, so we declare the starting sequents, represented by
Seqts, as an untyped variable (a set); at the same time, to do the correct typing
later, we need to preserve a link to the type of the specific language S we are referring
to, so we introduce a fake attribute -null, and save it in the variable seqt, which
represents the derived sequent (the “denominator”) of the rule.

Now we pass from the predicate RuleX to a rule as specified by Rule type; let us
take Rule0 for example:

definition
let S be Language,
R be Relation of bool (S-sequents), S-sequents;
func FuncRule(R) -> Rule of S means
for inseqs being set st inseqs in bool (S-sequents) holds

it.inseqs=
{x where x is Element of S-sequents:[inseqs,x] in R};

end;
registration
let S be Language;
cluster -> S-null Element of S-sequents;

end;
definition
let S be Language;
func P0(S) -> Relation of bool (S-sequents), S-sequents
means for Seqts being Element of bool (S-sequents),
seqt being Element of (S-sequents) holds

[Seqts, seqt] in it iff seqt Rule0 Seqts;
end;

definition
let S be Language;
func R0(S) -> Rule of S equals FuncRule(P0(S));
end;

When having to code many rules this scheme is convenient because one needs
only to define a Mizar predicate without much worrying about typing; afterwards,
the rule is easily, and standardly, converted into a Relation and finally applied
FuncRule. The last couple of definitions have to be manually repeated verbatim
inside Mizar code, only changing P0(S) to P1(S) and R0(S) to R1(S) (and so on for
each rule. . .), because Mizar lacks second-order definitions. The code contains the
proofs of soundness and monotonicity for all the rules above. We warn the reader
that in it, the attribute isotone is used, since the keyword monotone was already
in use.

2.6.8 Exploiting Mizar’s functorial registrations to restore a se-
quent calculus

As discussed earlier, there is only one other proof checker in which a sequent calculus
has been encoded, to the best of author’s knowledge: Isabelle (or variants, [DG10],

2. The formalization 70

[Gor09], [CMU08]), probably due to some nice facilities provided, as inductive
definitions and structured proofs ([Nip03]). Mizar has fewer provisions to actually
calculate things apart from small integer arithmetics; thus, the idea is to exploit its
functorial registrations (see section 2.2.2), which actually do some pattern matching
on a term of the first order language of Mizar: we can try to employ this capability
to recognize whether a sequent is derivable from another using a given rule. Once
finished, we will have adapted Mizar’s powerful registrations to gain back some
resemblance to a calculus, lost with the purely descriptive definition of derivation rules
in the set theory of Mizar (given in section 2.6.6) as opposed to their computational
application possible in Isabelle.

Preliminarily, however, we need to make more precise the definition of -derivable
attribute: in that definition, derivability is assessed first taking all sequents derivable
from an initial set of sequents using one rule of D, and exactly once (OneStep D).
The sequents derivable from a fixed initial set of sequents are those obtainable by
iterating the scheme above a finite number of times, that is its transitive closure
([*]). Now we want to be able to resolve that finite number of times, by defining,
in parallel with 1.5.0.4:

definition
let S be Language, D be RuleSet of S, m be Nat;
func (m,D)-derivables -> Rule of S equals iter(OneStep D,m);
end;

and

definition
let m be Nat, S be Language, D be RuleSet of S;
let Seqts,seqt be set;
attr seqt is (m,Seqts,D)-derivable means
seqt in (m,D)-derivables.Seqts;
end;

This at first looked straightforward, since it seemed sufficient to replace the
transitive closure operator with the iteration operator: we have constantly advocated
the use of as general objects as possible also as good practice in such situations.
Indeed, it turned out to be sufficient, the only shame being that no ready-made
result connecting those two operators existed in MML strong enough to be useful in
this case. As we insistently maintained, however, there is a good side also in this
worst case, that is: some additional work had to be done, but there is good chance
somebody else will use it in the future. The general result we obtained is reported
in section 3.2. Here, it permits:

Lm18: union (((OneStep D)[*]).:{X}) = union
{(mm,D)-derivables.X where mm is Element of NAT:
not contradiction};

and finally, the redefinition:

2. The formalization 71

definition
let S be Language, D be RuleSet of S; let X,x be set;
redefine attr x is (X,D)-provable means
ex H being set, m st H c= X & [H,x] is (m,{},D)-derivable;

The redefinition above allows to exhibit derivations (and hence proofs) in sin-
gle steps, and allow finally to render most of our derivation rules as functorial
registrations (which were introduced in section 2.2.2).

definition
let x be set; let S be Language;
attr x is S-premises-like means
x c= AllFormulasOf S & x is finite;
end;

registration
let S be Language; let H1, H2 be S-premises-like set;
let l, l1 be literal Element of S;
let phi, phi1, phi2 be wff string of S;
let t, t1, t2 be termal string of S;
cluster [Phi \/ {phi}, phi] -> (1,{},{R0(S)})-derivable set;

cluster [H1\/H2, phi] -> (1,{[H1,phi]},{R1(S)})-derivable set;

cluster {[{},<*TheEqSymbOf S*>^t^t]} -> {R2(S)}-derivable set;

cluster
[{<*TheEqSymbOf S*>^t^t1,
<*TheEqSymbOf S*>^t1^t2}, <*TheEqSymbOf S*>^t^t2]
-> (1,{},{R3a(S)})-derivable set;

cluster [{(l,t) SubstIn phi}, <*l*>^phi] ->
(1,{},{R4(S)})-derivable set;

let l2 be (H\/{phi1}\/{phi2})-absent literal Element of S;
cluster [(H\/{<*l1*>^phi1}) null l2, phi2] ->
(1,{[H\/{(l1,l2)-SymbolSubstIn phi1},phi2]},{R5(S)})-derivable
set;

cluster [{<*TheNorSymbOf s*>^phi1^phi1, <*TheNorSymbOfs*>^phi2^phi2},
<*TheNorSymbOf s*>^phi1^phi2] ->
(1,{},{RNor(S)})-derivable set;

cluster
[{<*TheNorSymbOf S*>^phi1^phi2}, <*TheNorSymbOf S*>^phi2^phi1]
-> (1,{},{RNor(S)})-derivable set;

2. The formalization 72

cluster [H null (phi1^phi2),xnot phi] -> (1,
{[H\/{phi},phi1],[H\/{phi},<*TheNorSymbOf S*>^phi1^phi2]},
{R8(S)})-derivable set;

cluster [H, phi] null 1 ->
(1,{[H, xnot (xnot phi)]},{RD(S)})-derivable set;

end;

Please see section 3.1 for remarks on the null functor, which ignores the operands
on its right and serves merely syntactical, technical purposes connected with some
Mizar idiosyncrasies.

Combining the one-step derivations above, one can perform standard multi-
step derivations; additionally, if some particular multi-step derivation is found to
occur recurrently, one can of course register it in turn into a composite, macro-like
derivation (often called derived rule); for example, the following registration might
be handy:

registration
let S be Language, t be termal string of S;
let phi be wff string of S;
cluster [{phi}, <*TheEqSymbOf S*>^t^t] ->
(2, {}, {R1(S),R2(S)})-derivable set;
end;

Once he has a decent set of clustered rules, one can perform a derivation in a
very natural manner, close to a standard derivation of sequent calculus, especially
combining them together, which is essential in calculations, permitting to transitively
concatenate derivations, and moreover keeping precise track of their depth: the latter
results stowed in the first argument of the -derivable attribute at the end of the
derivation chain.

Here is a sample taken from FOMODEL4 and rendering a simplest chained deriva-
tion:

[H1\/H2, phi] is (n+1,{[H1, phi]},{R1(S)})-derivable &
[(H1\/H2)\/(H1\/H2),phi] is
(1,{[H1\/H2,phi]},{R1(S)})-derivable; then
[H1\/H2,phi] is
(n+1+1,{[H1,phi]},{R1(S)}\/{R1(S)})-derivable by Lm28;

The lastly derived sequent’s attribute always stores the depth of the respective
derivation, in this case n+2. Notice that invariably, when combining at least two
rules to perform multi-step derivations or to obtain a derived rule, one needs
monotonicity (see definition 1.6.1.1), which accounts for the invoking of Lm28 above.

Clearly, our original predicate-based definitions of rules, given in section 2.6.7,
are much more obnoxious to deal with than this device exploiting Mizar clusters,
and serve only to validate the latter, being doomed to disuse after that.

2. The formalization 73

2.6.9 Definitions for readability
Tinkering with rulesets, as we did by weighing the exact needed rules in statements
of results from chapter 1, is not a common practice. Usually, the ruleset is fixed
in advance, with everything thereafter meant relative to that unique ruleset. As a
reward, statement of theorems result terser. We of course can regain back that same
advantage by introducing shorthand Mizar definitions, which make possible to state
completeness theorem in the concise form seen on page 46.

definition
let S be Language;
func S-rules -> RuleSet of S equals
{R0(S), R1(S), R2(S), R3a(S), R3b(S), R3d(S), R3e(S), R4(S)} \/
{R5(S), RNor(S), R8(S)};
coherence;
end;

definition
let X be set, S be Language, phi be wff string of S;
attr phi is X-provable means
phi is (X,{R9(S)}\/S-rules)-provable;
end;

These can be regarded as placeholders, introduced to make theorem statements
more mainstream, so that a casual reader will better grasp an idea of what a theorem
deals with upon reading it. This is important for MML, which aims to supply a
library of mathematics being human-readable, besides being machine-verified.

As a side-note, we observe that the keyword -provable now results overloaded
to denote two distinct attributes (compare definition above with that on page 71).
Mizar has no problem with that, being able to resolve which use is being made by
looking at the number of the arguments accompanying the identifier (the format);
in case this is not sufficient, it looks at both the number of arguments and at their
type (the pattern).

Chapter 3

The formalization from a
technical point of view

This chapter provides techniques and practical considerations, pertaining the practice
of writing Mizar code and formalizations in general, accrued while working with the
system. It features material from [CR11].

3.1 Custom automations in Mizar
When writing a Mizar formalization, a significant amount of the user’s time usually
goes into browsing the Mizar Mathematical Library (MML) for those results that
he needs and that are already proved. Here a few techniques to reduce this time
are illustrated. Let us begin by pointing out two shortcomings related to the Mizar
verifier, which was introduced in section 2.2:

1. At a low level, a Mizar user has no practical way to specify the logic the Mizar
verifier applies to approve an inference: no full programmability is provided,
besides tweaking the source code, to plug in alternative proof systems.

2. At a higher level, there is no general provision to instruct the verifier to ‘know’
a generic custom-defined formula already proved, in order to avoid to list
explicitly some, or all, of the labels following the keyword by when the writer
perceives the inference as obvious, natural, or recurring so often to deserve
some kind of automation.
For example, one might want to program the verifier to ‘know’ the trivial
set-theoretical inclusion

X ∩ Y ⊆ X, (3.1)

so as not to have to ‘by’ the corresponding MML theorem in reasonings
involving it.

We will not discuss the reasons and implications of these design choices: considera-
tions on such topics can be found in [Urb06a]. Rather, we will focus on how certain
Mizar features can be exploited to mitigate issue 2, which is relevant to a user from
a purely practical point of view: it is frequently the case that the user knows the

74

3. Technical aspects of the formalization 75

steps to lay down a proof, or the statements of the needed theorems (especially when
trivial or natural) and then must go and dig into the vastities of the MML to justify
each of them. While this can turn out to be a highly instructive experience, it also
leads to distraction and to longer formalization times, and urged the creation of a
range of tools to aid the user in facing this task ([RU11], [BU04], [Urb06b], [CG07]).
Here, a different, possibly complementary, approach is proposed aiming instead at
reducing the occasions when he faces such a task.

Ideally, to a generic inference submitted to the verifier, one or more finite sets
can be associated, each made of premisses strictly needed for the inference to be
accepted (the references one must list following the keyword by).

We adopt the term automation to loosely indicate any device or mechanism
enabling to reduce such a set, even if possibly only for some kinds of inferences.

First of all, it must be said that indeed Mizar does supply some automations
natively. However, they present several constraints: they are not strong enough
to instruct the verifier to blindly accept any already proved formula. To be more
precise, the automations called requirements, imported using the eponymous keyword,
are powerful enough to do exactly this, which is what we fancied of in item (2)
of the above list. The point is that requirements are out of reach of most users,
because they are hard-coded in verifier’s sources by developers ([NB04], [Nau07]).
The remaining Mizar provisions (see section 2.2) to introduce automations are less
general, and mostly embedded in its type system; however, they are the building
blocks of the methods we will see.

3.1.1 Type clustering to avoid redefinitions
Let us return to the example automation in (3.1): we would like to teach the verifier
that

X ∩ Y ⊆ X.

A first naive way to do that would be to redefine the output type of the functor /\.
This can be done for whatever functor via the keyword redefine, subject of course
to the appropriate proof. This process of ‘type recasting’, however, is destructive:
only the last (re)definition is retained by the verifier. And indeed, MML already
provides (in articleSUBSET_1) yet another redefinition of /\:

definition
let E, X be set; let A be Subset of E;
redefine func A /\ X -> Subset of E;
coherence
proof

...
end;

end;

which we do not want to lose. The idea then is to combine the ability of Mizar to
recognize one type for a given term with the identification scheme seen at the end
of section 2.2.1, to ‘funnel’ several recognized types into a single term as a result.
Following an example taken, as others in the sequel, from [Cam11d] we introduce

3. Technical aspects of the formalization 76

a dummy functor symbol, a ‘shadow’ of the main functor symbol /\, let us call it
typed/\:

definition
let X,Y be set;
func X typed/\ Y -> Subset of X equals X /\ Y;
coherence;

end;

Now, if we make Mizar identify (see section 2.2.1) X typed/\ Y with X /\ Y:

registration
let X,Y be set;
identify X /\ Y with X typed/\ Y;
compatibility;
identify X typed/\ Y with X /\ Y;
compatibility;

end;

then the two distinct typing we wanted do simultaneously co-exist:

now
let Z be set; let X, Y be Subset of Z;
X/\Y is Subset of Z; :: thanks to redefinition in article SUBSET_1
X/\Y is Subset of X; :: thanks to registration above

end;

The verifier accepts both the formulas above without justification. What happens is
clear: the term X/\Y occurring in last formula is identified with X typed/\ Y, which
has the right type, convincing the verifier. A couple of musings:

• Generally, when employing the identify registration, we always do it in both
verses, as above. This is to be on the safe side, as identify works in a
not completely symmetrical manner ([GKN10], section 2.7). As observed in
practice, the second identification in such cases always comes for free; that
is, once the compatibility condition for the first one is secured, the second
compatibility statement is validated without proof, even without starting
a new registration . . . end; block. Hence, not requiring much additional
time, it is useful to do double identification each time. In subsequent examples
we sometimes will omit transcribing the second identification, though.

• There is already an automation granting X /\ Y = Y /\ X without justifica-
tion (this is achieved via so-called properties, more on which can be found in
[GKN10], section 2.5). Thence, one could expect he has obtained for free also
the automation X /\ Y is Subset of Y, via the ideal chain:

X /\ Y = Y /\ X = Y typed/\ X.

This will not work straightaway, however. There are two possibilities:

3. Technical aspects of the formalization 77

1. Introduce a further identification between X typed/\ Y and Y typed/\ X.
2. Introduce a further functor /\typed working symmetrically with respect

to typed/\:

definition
let X,Y be set;
func X /\typed Y -> Subset of Y equals X/\Y;
coherence;

end;

and then proceed with the suitable registrations.

Both approaches solve the problem providing the automation

X /\ Y is Subset of Y;

As a passing note, method (1) above suggests that identifications may replace
properties in some circumstances: Mizar can be made aware of the commuta-
tivity of a given functor either via properties (as done in MML for /\) or by
identifying a functor application with the application obtained by swapping
its arguments. It would be interesting to know to what extent these two
approaches are equivalent. One simple remark is that the latter has wider ap-
plicability: upon establishing commutativity property when defining typed/\,
one gets the error:
The result type is not invariant under swapping the arguments,
while an identification does the job.

3.1.2 Type clustering with dummy arguments: combining type
clustering with notations

We would like to repeat the scheme above for the (trivial) set-theoretical property

Y ⊆ X ⇒ X ∩ Y = Y.

Here, however, we face a limitation of the identify construct we have not mentioned
yet: there are formal restrictions on the functors being identified. In particular, they
must have the same number of arguments, so we cannot just write:

registration
let X be set, Y be Subset of X;
identify X /\ Y with Y;

We just introduce a functor null whose only (for the time being) utility is formally
to take a second argument for the mere sake of balancing things:

definition
let X,Y be set;
func X null Y equals X;
coherence;

end;

3. Technical aspects of the formalization 78

registration
let X be set; let Y be Subset of X;
identify X /\ Y with Y null X;
compatibility by XBOOLE_1:28;
identify Y null X with X /\ Y;
compatibility;

end;

The final effect is not as neat as that of section 3.1.2, in that we cannot submit
the verifier simply

let X be set, Y be Subset of X;
X/\Y = Y;

This is because the verifier of course cannot guess that writing Y we mean Y null X:
although the argument X is semantically thrown away by null, its presence supplies
information. Indeed, Mizar can understand things the other way round:

let X be set, Y be Subset of X;
X /\ Y = Y null X; then
X /\ Y = Y;

This works.1 Again, we have some remarks:

• The last inference works because the definition of null is done via equals
rather than via means (see item (1) on page 41): the corresponding definition
being a macro permits to take advantage of Mizar’s equals expansion, see
section 2.3.4 of [GKN10]. Note that, in order to take advantage of equals
expansion for a given functor outside the file in which it is defined, that file
must be imported via the definitions directive.

• As we said before, the aim of automations is to reduce the time devoted to
searching MML, rather than to save keypresses. So this scheme is still arguably
worth being applied: no by is needed.

The following sort of a dual of the previous registration:

registration
let X be set; let Y be Subset of X;
identify X \/ Y with X null Y;
compatibility by XBOOLE_1:12;
identify X null Y with X \/ Y;
compatibility;

end;

permits

let X; let Y be Subset of X;
X \/ Y = X null Y; then X \/ Y = X;

1then can replace by when referring to the immediately preceding formula.

3. Technical aspects of the formalization 79

3.1.3 Combining dummy arguments and type clustering
The dummy argument of the functor null can be more than a placeholder to satisfy
identify’s requirements. It can be used to control the desired type of a term. For
example, we could redefine X null Y to be a Subset of X\/Y, and then be able to
automate properties like:

let X, Y be set;
X null Y is Subset of X \/ Y; then X is Subset of X \/ Y;

However, one can do better: recall that type redefinitions are destructive, while we
might want in the future null not to have that type. It is natural then to resort to
type clustering, just seen in section 3.1.2; for example:

definition
let X, Y be set;
func X \typed/ Y -> Subset of X \/ Y equals X;
coherence by XBOOLE_1:7;

end;

registration
let X, Y be set;
identify X \typed/ Y with X null Y;
compatibility;
identify X null Y with X \typed/ Y;
compatibility;

end;

and the wanted automation is in charge.

3.1.4 Reference redirection via functorial registrations
Since functorial registration, seen in section 2.2.2, are so powerful, the idea is to
reduce the most used first-order relation symbols to attributes in order to save
lookups into MML.

Translating set-theoretical equality, =, via attribute empty

Let us start with the Mizar equality symbol, =. It can be rendered via the functor
\+\2 and the attribute empty via the result (FOMODEL0:29):

for X, Y being set holds X \+\ Y is empty iff X=Y;

This means that for every theorem in MML whose statement has the form

B1: term1 = term 2; (3.2)

one can produce a translation like
2\+\ is the set-theoretical symmetric difference, commonly denoted as ∆: X∆Y = X\Y ∪(Y \X).

See also appendix B.

3. Technical aspects of the formalization 80

term1 \+\ term2 is empty by B1, FOMODEL0:29; (3.3)

This latter version has the advantage of being applicable as a functorial registration,
which allows to use it without justification in subsequent proofs. Even if one needs
the original version of the theorem, one can get it by referring back to FOMODEL0:29.
This gives the possibility of remembering just one reference (FOMODEL0:29) in place
of several references, one for each needed theorem: of course, the more theorems are
translated in registrable form (3.3), the more convenient this scheme gets. As an
example, XBOOLE_1:4 states associativity of \/. We then register the following:

registration
let X, Y, Z be set;
cluster ((X \/ Y) \/ Z) \+\ (X \/ (Y \/ Z)) -> empty for set;
coherence by XBOOLE_1:4, FOMODEL0:29;

end;

Now, when we need this theorem we write:

let X,Y,Z be set; ((X\/Y)\/Z) \+\ (X\/(Y\/Z)) is empty; then
(X\/Y)\/Z = X\/(Y\/Z) by FOMODEL0:29;

XBOOLE_1 contains many such elementary results, frequently employed and having
form (3.2), so it is arguably convenient to turn them into registrations. After doing
that, each time the user invokes one of them, he will only need to remember at
most FOMODEL0:29. Here is a list of some registrations of this kind introduced
and deployed in Mizar articles FOMODEL0-4 (to save space, environments and type
declarations are mostly omitted):

cluster ([x,y]‘1) \+\ x -> empty for set;
cluster ([x,y]‘2) \+\ y -> empty for set;
cluster (id {x}) \+\ {[x,x]} -> empty for set;
cluster (x.-->y) \+\ {[x,y]} -> empty for set;
cluster (id {x}) \+\ (x.-->x) -> empty for set;
cluster <*x*> \+\ {[1,x]} -> empty for set;
let p be FinSequence; cluster (<*x*>^p).1 \+\ x -> empty for set;
let m be Nat;
cluster m-tuples_on X \+\ Funcs(Seg m,X) -> empty for set;
let f,g be Function;
cluster (f+*g) \+\ (f \ [:dom g, rng f:] \/ g) -> empty for set;
cluster (f+*g) \+\ f|(dom f \ dom g) \/ g -> empty for set;
cluster (f+*g) \+\ ((f|(dom f) \ (f|(dom g))) \/ g) -> empty for set;

Translating set-theoretical inclusion, c=, via attribute empty

A similar translation can be done for the inclusion symbol c= into the functor \ and
the attribute empty via XBOOLE_1:37:

X \ Y = {} iff X c= Y;

Here are some examples of registrations for this case:

3. Technical aspects of the formalization 81

cluster {x}\{x,y} -> empty for set;
cluster NAT\INT -> empty for set;
let X be set; let F be Subset of bool X;
cluster union F \ X -> empty for set;
let X,Y be set; let x be Subset of X, y be Subset of Y;
cluster x\Y \ (X\y) -> empty for set;
let m be Nat; cluster (m-tuples_on X) \ (X*) -> empty for set;

Translating set-theoretical membership, in, via attribute empty

The same goes with the rendering of relation symbol in via functors { }, \ and
again attribute empty, thanks to:

for x, X being set holds x in X iff {x} \ X is empty;

Also for this scheme we give some examples of registrations:

let U be non empty set, u be Element of U;
cluster {(id U).u} \ U -> empty set;
let m,n be Nat; let p be (m+1+n)-long Element of U*;
cluster {p.(m+1)} \ U -> empty set;

Translating basic arithmetics into attributes

The same idea can be adapted to a broad scope of contexts. Here, it was exploited
when needing some very basic arithmetical identities, like:

let z be zero (integer number);
cluster abs(z) -> zero (integer number);
let z1 be non zero (complex number);
cluster abs(z1) -> positive (real number);
let x,y be real number;
cluster max(x,y)-x -> non negative (real number);

As another application, request 1 in definition 1.2.0.14 was translated as follows
for easier reference:

let S be Language; cluster ar(TheEqSymbOf S) + 2 -> zero number;
cluster abs(ar(TheEqSymbOf S)) - 2 -> zero number;

Similarly, other trivial arithmetical facts were rendered thus:

let v be literal Element of S; cluster ar(v) -> zero number;
let m0 be zero number; let t be m0-termal string of S;
cluster Depth t -> zero number;
let phi0 be m0-wff string of S;
cluster Depth phi0 -> zero number;
let m be Nat; let phi be m-wff string of S;
cluster m - (Depth phi) -> non negative (real number);
let phi1 be non 0wff (wff string of S);
cluster Depth phi1 -> non zero Nat;

We omit any further detail; some more examples are in articles FOMODEL0-4.

3. Technical aspects of the formalization 82

3.1.5 Definiens clustering: combining identification and equals ex-
pansion

Consider the last three registrations of section 3.1.4 involving the functor +*: recalling
the idea of that section, they express three set-theoretical equalities which, as all
other equalities of this form, can be used remembering just one MML reference,
FOMODEL0:29, once registered. There is also a way to avoid even the need to refer
to this single theorem, and make Mizar accept the corresponding equalities:

f \ [:dom g, rng f:] \/ g) = (f +* g);
f|(dom f \ dom g) \/ g = (f +* g);
((f|(dom f) \ (f|(dom g))) \/ g) = (f +* g);

straightaway. Note that MML’s original definition of +* is done via means, so equals
expansion cannot be used. One could redefine +* with one of the equalities above,
but this would exclude the other two from automation. Instead, it is possible to
keep the original definition and proceed as follows:

definition
let P,Q be Relation;
func P +*1 Q equals P \ [:dom Q, rng P:] \/ Q;
coherence;
func P +*2 Q equals P|(dom P \ dom Q) \/ Q;
coherence;
func P +*3 Q equals ((P|(dom P) \ (P|(dom Q))) \/ Q);
coherence;

end;

Note that the shadow functors +*1, +*2, +*3 all accept more general arguments than
its forefront functor +*: every Function is a Relation, but the opposite does not
hold. For this reason we first proceed with the mutual identification of the functors
defined above:

registration
let P, Q be Relation;
identify P +*1 Q with P +*2 Q;
compatibility

proof
...
end;

identify P +*2 Q with P +*3 Q;
compatibility by RELAT_1:109;

end;

Having done so, Mizar now accepts equalities like:

let P, Q be Relation; P +*3 Q = P \[:dom Q, rng P:] \/ Q;

This means, in particular, that identifications work transitively: we have identified
+*1 with +*2 and +*2 with +*3, but not +*1 with +*3. Finally, we can bind all these
identifications with the forefront functor +*, and then forget about the others:

3. Technical aspects of the formalization 83

registration
let f, g be Function;
identify f +*1 g with f+*g;
compatibility

proof
...
end;

identify f+*g with f +*1 g;
compatibility;

end;

Now the following works without justifications:

let f, g be Function;
f+*g = f\[:dom g, rng f:] \/ g;
f+*g = f|(dom f \ dom g) \/ g;

We have thus ‘clustered’ several definientia into the single functor +*.

3.2 Considerations on some formalization design issues
Awareness that thoroughly calibrating types when spelling out definitions is a key
factor for a well-structured proof grew steadily during the work. If one goes too
strong, by being too fussy in specifying what type of arguments a functor takes,
and at some point faces the need, for example, to apply the same functor to two
arguments which differ little, but do not have the same type, in this case he is
forced to do double work; also, sometimes a job can be made lighter by adapting
an existing type to an affine situation, and base on ready-made formalizations,
instead of creating a brand new world of types and having to re-invent the wheel.
On the other hand, being too light with typing one loses the advantages of a tidy
formalization given by Mizar. As an example, compare the definitions of atomic wff
in [RT90] and in the present work:

definition
let F be Element of QC-WFF;
attr F is atomic means

...

definition
let S be Language;
let phi be string of S;
attr phi is 0wff means

...

The definition on the right applies to any string, and not to anything less only
because inside the body of the definition there are functors requiring a string (a
FinSequence) as arguments; on the other hand the left definition restricts the objects
to which atomic attribute can be applied. This is likely to complicate forthcoming
treatments. One could object that the first solution has the strength of ensuring that
‘atomic’ implies ‘wff’. But this can be attained also in the second case by clustering
(see section 2.2), which is indeed done in the formalization:

3. Technical aspects of the formalization 84

registration
let S be Language;
cluster 0-wff -> atomic string of S;
cluster atomic -> 0-wff string of S;
let m be Nat;
cluster m-wff -> wff string of S;
let n be Nat;
cluster (m+0*n)-wff -> (m+n)-wff (string of S);
end;

The heavy adoption of attributes and clusters is a trait of the present formal-
ization3. Their use has a few advantages: first, a technical one, for they permit
to automatically and implicitly reach conclusions which otherwise should be made
explicit with a by statement; this also brings an advantage in terms of terseness and
legibility; finally, they make type-trimming easier, allowing rich typing with relative
ease.

In the present case, this is especially true for the classification of the various
types of alphabet symbols: literal, compounder, relational, etc. . . (see 2.6.1), and for
the classification of well-formed tuples, as in the example above.

A further character of this formalization is the effort to find definitions based
on equals and is, avoiding those based on means when possible. It seems that the
former encourage the reusing of pre-existing objects (functors, modes or attributes),
at the price of doing the preparatory work of translating the definition to be expressed
in terms of those other objects. Definitions thus obtained are arguably more neat and
readable, although sometimes less immediate. For sure “equals” definitions have a
technical advantage resembling that of attributes: they are grasped automatically
by Mizar if included in the definitions directive, again making life easier and code
terser. See [Kor09], section 3. Good examples of this method could be the definitions
of the functors === (not reviewed here, needed in construction of -TruthEval),
X-freeInterpreter (see 2.6.4), (I,m)-TruthEval (see 2.6.3), and ReassignIn (see
sections 2.6.3 and 2.6.5).

The last example is interesting because it also honors the ideas introduced
in section 2.4: indeed, besides having a clean, equals-based definition, it is first
introduced for arguments of more general types than we need for our particular case:

definition
let x,y be set, f be Function;
func (x,y) ReassignIn f -> Function equals
f +* (x .--> ({} .--> y));
end;

Recalling the action of +* functor and how we encoded the interpretation of a
literal symbol (section 2.6.3), its way of working should be clear. We are leaning of
course on a definition (+*) given elsewhere, but this permits to use more general
tools, avoid restating things, reduce the length of the definition, and, above all, reuse

3FOMODEL0 is the single registration-richest article in the whole MML, as checked
at http://mmlquery.mizar.org/mmlquery/fillin.php?filledfilename=registrations.
mqt&argument=number+1 on 31st March 2011

3. Technical aspects of the formalization 85

possible results already proven about +*. Even if these results were not already
available in MML, proving them for a more general, pre-defined object is always
better than providing a specialized result framed in a narrower context: somebody
else could take advantage of them for developing possibly different areas of MML.
Again, as in the first example of this section, we adapt this general definition to our
needs by showing this functor returns the expected type when applied to the types
we will feed it, using the powerful tool of functorial clustering (section 2.2):

registration
let S be Language,U be non empty set,
I be (S,U)-interpreter-like Function;
let x be literal Element of S, u be Element of U;
cluster (x,u) ReassignIn I -> (S,U)-interpreter-like;

end;

Indeed, as noted in section 2.4, some developments needed in the present work
produced results regarding only pre-existing, more general objects: as examples, one
could consider the introduction of the -unambiguous attribute for generic binary
operations, and the related results for the generic monoids, sketched in section 2.5.
Here, two more examples, taken again from FOMODEL0 and which were missing from
MML, are exhibited in view of their concise and general statement; they both derived
from investigations on how to formalize sequent calculus.

The first regards the transitive closure R[*] of a relation R and states that it is
both transitive and reflexive:

registration
let R be Relation;
cluster R[*] -> transitive Relation;
cluster R[*] -> reflexive Relation;

end;

The second binds together the transitive closure and the iteration of a function:

for f being Function st rng f c= dom f holds f[*] = union
{iter(f,mm) where mm is Element of NAT: not contradiction};

3.3 About the specialization of existing results
In proving 1.10.3.2, we implicitly employed the following intuitive fact:

Y finite
∀n ∈ N Xn ⊆ Xn+1

Y ⊆
⋃

n∈N
Xn

⇒ ∃n ∈ N |Y ⊆ Xn

Initially, we relied on HENMODEL:3, which in turn employs the ad-hoc results
HENMODEL:1 and HENMODEL:2, for a total of more than 250 lines of dedicated Mizar
code. Actually, such specific propositions could have not been written at all, for
they are predated by the more general result COHSP_1:13:

3. Technical aspects of the formalization 86

for X being non empty set, Y being set st
X is c=directed & Y c= union X & Y is finite
ex Z being set st Z in X & Y c= Z;

where c=directed substantially means somehow closed with respect to finite union,
as from definition COHSP_1:def 3:

definition
let X be set;
attr X is c=directed means
for Y being finite Subset of X ex a being set st
union Y c= a & a in X;

end;

Now consider the theorem COHSP_1:6 coupled with COHSP_1:13 reported above:

for X being non empty set st
(for a,b being set st a in X & b in X
ex c being set st a \/ b c= c & c in X) holds X is c=directed;

Clearly these two results generalize HENMODEL:3, which runs like:

for f being Function of NAT,C, X being finite set st
(for n,m st m in dom f & n in dom f & n < m holds
f.n c= f.m) & X c= union rng f
ex k st X c= f.k,

and whose authors could have saved a fair amount of work by leveraging COHSP_1:13
and COHSP_1:6. Other instances of duplicated work inside MML were noticed during
the work, with this being probably the most blatant. What is more, the excessive
specialization of duplicate results in HENMODEL makes their statement inelegant,
e.g., obfuscating the simple meaning expressed by COHSP_1:13 with unnecessary
objects like f, m, n, k appearing in HENMODEL:3. Duplication is a serious issue,
because it bloats MML, creates confusion in it, dissipates people’s work, while often,
like in this case, reusing existing code as much as possible results in more elegant
and general formalizations (if the pre-existing code is already elegant and general
enough). A major cause of this issue is the problematic browsing and mastering of
such an extensive corpus like MML. Various attempts at delivering tools to assist
Mizar authors in browsing it have been made ([Urb06b], [BU04] and [BR03]). Let us
note that, in turn, COHSP_1:13 itself is susceptible of what, in the writer’s opinion,
are improvements: indeed, in FOMODEL0, that same result, indeed stated in a slightly
more general form

for Y being set st Y is c=directed holds
for X being finite Subset of union Y
ex y being set st y in Y & X c= y;

is proved by slicing it into six small and general propositions, for an amount of
66 lines of Mizar code versus the 68 lines of the original proof. Obviously the only
purpose of this computation is to show that the two proofs are comparably long,
what actually matters is the bunch of auxiliary results obtained ‘for free’:

3. Technical aspects of the formalization 87

Th60: for X, Y being set st union X c= Y holds X c= bool Y;

Th61: for X being set holds
A is_finer_than B & X is_finer_than Y implies

A\/X is_finer_than B\/Y;

Th62: for A, B being set st A is_finer_than B holds
A\/B is_finer_than B;

Th63: for A, B being set st
B is c=directed & A is_finer_than B holds
A\/B is c=directed;

Th64: for X, Y being set holds
INTERSECTION(X,Y) is_finer_than X,

also reverberating on other, even more general, Mizar articles. Indeed, INTERSECTION
and is_finer_than are introduced in SETFAM_1:

definition
let SFX,SFY be set;
pred SFX is_finer_than SFY means
for X being set st X in SFX ex Y being set st

Y in SFY & X c= Y;
end;

definition
let SFX,SFY be set;
func INTERSECTION (SFX,SFY) means
for Z being set holds
(Z in it iff

ex X,Y being set st X in SFX & Y in SFY & Z = X /\ Y);
existence;
uniqueness;

end;

This kind of trimming is here regarded as important for MML, for reasons
previously discussed in similar cases in which the proof of a given fact led to a string
of by-products of independent interest.

3.4 Numerically characterizing the formalization
We want to estimate formalization cost and de Bruijn factor ([Wie00; ASC10;
Nau06]).
There are huge spaces of discretionality, which will be discussed below, in both
calculations, so we will make some arbitrary choices, hoping they will result sensible
and acceptable.

Two figures are to be estimated in order to trigger calculations: the amount of
man hours devoted to formalization and a number measuring the size of a non-formal,
human-targeted mathematical text carrying information grossly equivalent to the
one formalized.

3. Technical aspects of the formalization 88

3.4.1 Estimating formalizing time
A significant amount of work regarded preliminary reformulation ([Cam09]) rather
than Mizar formalization, as seen in chapter 1. This portion of work was carried
on largely before Mizar formalization even started, however its results were revised
‘dynamically’ during the formalization as a result of the ‘feedback’ cited in section
2.6.5, and as confirmed by the differences noticeable between Mizar code and [Cam09].
Thus, formalization time assessment will be affected by some excess due to this
auxiliary work subtracting time to effective coding, and to the fact that the workflow
was rather irregular and interleaved with idle periods due to extraneous activities;
this last issue is probably common to most formalization time estimations.

With the foregoing cautionary remarks, evolution of the codebase is as follow,
using Mizar public repository on author’s homepage as a development history record.
The first Mizar file ever written by the author dates back to 24th January 2010,
and, since then, formalization and Mizar learning efforts went on concurrently; the
first codebase including Gödel’s completeness theorem was successfully checked
on 12th October 2010.

Löwenheim-Skolem theorem was first successfully compiled on 5th November 2010.
As a conclusion, formalizing time can be estimated in 284 days.

3.4.2 Establishing a non-formal, equivalent mathematical source
text

For the reasons exposed in section 3.4.1, choosing a denominator to compute de Bruijn
factor is not so straightforward in this case. The nearest treatment would obviously
be [Cam09], which, however, merely highlights the points in the proof which are novel
and less trivial, and silently assumes a lot of prerequisites. Instead, the low starting
point of this formalization demands we choose a more thorough treatment as a fairer
reference, with an exposition starting from scratch (alphabets, strings, etc...) as this
formalization does, and not omitting the tedious and ‘trivial’ details. Since [EFT84],
being an undergraduate text book, arguably satisfies these requirements and was the
original source of inspiration, it seems a good candidate. Specifically, we OCRed4 its
scans and selected the excerpt going from section II.1 (‘Alphabets’, page 10) through
section VI.1 (‘The Löwenheim-Skolem Theorem’, ending on page 89), taking the
resulting ASCII text as our non-formal source text. It is available on author’s home
page for reference. We have not removed the dispensable bits occurring in this source
(exercises, historical notes, examples); first, they can be considered quantitatively
negligible for our purposes, especially if one consider how arbitrary the whole matter
is; secondarily, if one regards de Bruijn factor as a fundamental ratio between how
much information is needed for a machine to accept statements and how much
information is needed for a human to accept the same statements, rather than a
totally empirical indicator to practically compare formalization verbosities, he could
consider those bits as effectively useful for that human reader to accept (assimilate,
he would say) those statements.

4Optical character recognition, usually abbreviated to OCR, is the mechanical or electronic
translation of scanned images of handwritten, typewritten or printed text into machine-encoded
text.

3. Technical aspects of the formalization 89

3.4.3 Results
The formalization cost is then calculated to be

284
7

89− 10 + 1 = 0.5 weeks per page

The de Bruijn factor is shown below:

informal (bytes) formal (bytes) de Bruijn factor
uncompressed 132495 710144 5.4 apparent

gzipped 46839 153399 3.3 intrinsic

3.5 Formalization can bring insight
Various reasons supporting the endeavour of formalizing the body of known math-
ematics have been given in several expositions. After doing such an extensive
formalization, we would like to explicitly state an often overlooked, though merely
potential, one: formalizing a proof can and should increase the amount of information
the proof itself brings with it, with respect to the same proof in its ‘paper’ version
one has when starting mechanizing it.
To elaborate on such a vague assertion, let us give specific cases, annotated with
references to the present formalization:

• One is strongly encouraged to variously simplify things to make them digestible
by a machine. This is likely to lead to a finer discern about what notions are
really needed for a result to hold or event to be stated. For example, we note
that the notion of consistency was not needed until Henkin’s theorem, 1.9.4.8.

• One is strongly encouraged to modularize and reuse. This can possibly bring
to previously unknown, or at least not clearly stated, or maybe just obvious
but useful in cutting down redundancies, relations between results. This
is of particular relevance in case of community-developed, self-referencing
repositories such as the MML. See the discussion on page 48.

• Combining the two points above, one could, for example, obtain more, smaller
propositions with less/weaker hypotheses, with the possible side effect of an
escalation of their total number; as an example take what done in section 3.3.

• As for other kinds of computation, a machine can help the human keeping
track of a large amount of data, as could be a large number of hypotheses
among which a minimal set is to be isolated to make a theorem hold; maybe
this set of hypotheses has grown after some application of previous point. In
our case, we had to filter out what derivation rules were needed corresponding
to various lemmas, see section 2.6.5.

Of course, the ‘final user’ of a theorem is often little interested in this kind of
internals; on the other hand, if a theorem is regarded as a particle of information,
this collateral, supplementary information pursued in refining it can be deemed
some value; which indeed happens when dealing with foundational issues, as in, e.g.,
reverse mathematics.

Appendix A

Proof of the Substitution
Lemma

Proposition A.0.0.1. Given an interpretation i, a literal v and a term t of the
language S, and given a set X, it holds:

i ◦ t
v

ΦX

∣∣∣∣∣
TS,n

= i (t)
v
i

∣∣∣∣∣
TS,n

(A.1)

for every n ∈ N.

Proof. Let U 6= ∅ be the universe of i, and set u := i (t) ∈ U , I := t
vΦX . The proof

is by induction on n. First, consider t0 ∈ TS,0, and show that i
(
I (t0)

)
= u

v i (t0) as
follows. Set v0 := t0 (0) ∈ #−1 [{0}] and proceed by cases.

Case v0 = v Then

i
(
I (t0)

)
1.8.0.26= i ((I (v)) (0)) 1.8.0.25= i ({(0, t)} (0)) = u

1.8.0.25=
(
u

v
i ({(0, v)})

)
(0) 1.8.0.26= u

v
i ({(0, v)}) = u

v
i (t0) .

Case v0 6= v

i
(
I (t0)

)
1.8.0.26= i ((I (v0)) (0)) 1.8.0.25= i ((ΦX (v0)) (0)) 1.8.0.24= i (t0)
1.8.0.26= (i (v0)) (0) 1.8.0.25=

((
u

v
i

)
(v0)

)
(0) 1.8.0.26= u

v
i (t0) .

Now suppose (A.1) is verified for every n ≤ m. Consider t′ ∈ TS,m+1. It will
suffice to show

i
(
I
(
t′
))

= u

v
i
(
t′
)
. (A.2)

Set s := t′ (0).
Left hand side of (A.2) can be rewritten thus by 1.8.0.26:

i

(
(I (s))

(
I ◦
−→
t′
))

= i

(
(ΦX (s))

(
I ◦
−→
t′
))

1.8.0.24= i

(
{(0, s)} ∗

(
∗∗
(
I ◦
−→
t′
)))

,

90

A. Proof of the Substitution Lemma 91

where the first step is justified by v 6= s. After setting t′′ := {(0, s)}∗
(
∗∗
(
I ◦ −→t′

))
∈

TS , we notice that
−→
t′′ = I◦−→t′ by definition 1.8.0.14, so that left side of (A.2) becomes,

recalling 1.8.0.26,

(i (s))
(
i ◦
−→
t′′
)

= (i (s))
(
i ◦
(
I ◦
−→
t′
))

. (A.3)

We now perform calculations on right hand of (A.2) as well:
u

v
i
(
t′
)

=
(
u

v
i (s)

)(
u

v
i ◦
−→
t′
)

(A.1)= u

v
i
(
t′
)

=
(
u

v
i (s)

)(
i ◦ I ◦

−→
t′
)

= (i (s))
(
i ◦ I ◦

−→
t′
)
,

with last equality justified again by v 6= s. Comparing this with (A.3) yields the
thesis.

Proposition A.0.0.2. Given an interpretation i, a literal v and a term t of the
language S

1. For any formula ψ, |ψ [v/t]| = 0 if and only if |ψ| = 0.

2. i ◦ [v/t]
∣∣
FS,0

= i(t)
v i

∣∣∣∣
FS,0

.

Proof. First thesis descends immediately from 1.8.0.32. Consider ψ0 ∈ FS , |ψ0| = 0.
We have to show i ◦ [v/t] (ψ0) = i(t)

v i (ψ0). Set r := ψ0 (0) and go by cases.

r 6=≡
Then

(
i ◦ [v/t]

)
(ψ0) = i (ψ0 [v/t]) 1.8.0.32, 1.8.0.26= (i (r))

(
i ◦
(
t

v
Φ∅

)
◦ −→ψ0

)

A.0.0.1= (i (r))
(
i (t)
v
i ◦ −→ψ0

)
=
(
i (t)
v
i (r)

)(
i (t)
v
i ◦ −→ψ0

)
1.8.0.26= i (t)

v
i (ψ0) ,

where the second last step took into account that v 6= r (this is because
(v) = 0 while # r < 0).

r =≡ This case is similar to the one above. It can be retrieved inside FOMODEL3:8.

Proposition A.0.0.3. |ψ [v/t]| = |ψ|.
Proof. It is an easy induction exploiting A.0.0.2 and 1.8.0.32.

Lemma A.0.0.4. Given n ∈ N, a set U 6= ∅, a language S, a literal v and a term t
of S:

for every interpretation i of S having U as universe, it holds

i ◦ [v/t]
∣∣
FS,n

= i (t)
v
i

∣∣∣∣∣
FS,n

. (A.4)

A. Proof of the Substitution Lemma 92

Proof. Set f := [v/t] (see definition 1.8.0.32). By induction on n. The base case
n = 0 is given by A.0.0.2. Assume (A.4) holds for any n ≤ m, then consider
ψ ∈ FS,m+1 and an interpretation i of S having universe U . It suffices to show
i (f (ψ)) = i(t)

v i (ψ). Set s := ψ (0). We can assume |ψ| > 0, and proceed by cases.

Case 1): s 6=↓.
Then s = v1 ∈ #−1 [{0}], and ψ = {(0, v1)} ∗ ϕ for some ϕ ∈ FS,m. By 1.8.0.32,
f (ψ) = {(0, v2)} ∗ f

(
v2
v1
ϕ
)
, with

v2 /∈ {v} ∪ bt, ϕc . (A.5)

Assume i (f (ψ)) = 1. Then, by 1.8.0.27, consider u2 ∈ U such that

1 = u2
v2
i

(
f

(
v2
v1
ϕ

))
A.0.0.3= i2 (t)

v

u2
v2
i

(
v2
v1
ϕ

)

(A.5)= u2
v2

i2 (t)
v

i

(
v2
v1
ϕ

)
1.9.4.4, (A.5)= u2

v1

i2 (t)
v

i (ϕ) ,

where we set i2 := u2
v2
i, and A.0.0.3 is invoked to trigger induction. Hence, by 1.8.0.27

1 = i2 (t)
v

i ({(0, v1)} ∗ ϕ) = i (t)
v
i (ψ) ,

where last step is due to v2 /∈ ran t. The proof of i(t)
v i (ψ) = 1 ==⇒ i (f (ψ)) = 1 is

very similar.

Case 2): s =↓.
Then consider ψ1, ψ2 ∈ FS,m such that ψ = {(0, ↓)} ∗ ψ1 ∗ ψ2.

i (f(ψ)) 1.8.0.32= i ((0, ↓) ∗ f (ψ1) ∗ f (ψ2)) 1.8.0.27= N
((
i (f (ψ1)), i (f (ψ2))

))

A.0.0.3= N

((
i (t)
v
i (ψ1), i (t)

v
i (ψ2)

))
1.8.0.27= i (t)

v
i ({(0, ↓)} ∗ ψ1 ∗ ψ2) .

Again, A.0.0.3 is needed to deploy induction, and N is a shorthand for the map
12×2
{(0,0)}.

93

B. Mizar functors used in the text 94

Appendix B

Mizar functors used in the text

f"X preimage of the set X through f f−1 [X]
X/\Y set-theoretical intersection X ∩ Y
X\/Y set-theoretical union X ∪ Y
X\Y set-theoretical difference X\Y
X\+\Y symmetric difference (A\B) ∪ (B\A)
[x,y] Kuratowski ordered pair (x, y)
[:X,Y:] cartesian product of sets X × Y
NAT, INT natural numbers and integers N,Z
X* tuples on X X∗

n-tuples_on X tuples of n letters in X Xn

Seg n {1, . . . , n}
<*s*> the tuple made of the char s {(0, s)}
p^q concatenation of tuples p and q p ∗ q
dom R, rng R domain, range of relation R
p/^n the tuple p with the first n chars

removed
bool X the power set of X 2X
f.x the value of the function f in x f (x)
id X the identity function on X ⋃

x∈X {x} × {x}
f +* g the pasting of functions f, g f C g
curry currying x 7→ λx.f (x, y)
f * g functional composition f ◦ g
f.:X image of the set X through f f [X]

[x,y]‘1 [x,y]‘2 projectors for Kuratowski pairs (x, y) 7→ x

(x, y) 7→ y
Funcs(X,Y) the set of functions from X to Y Y X

PFuncs(X,Y) the set of partial functions from X
to Y

⋃

x⊆X
Y x

iter(f,n) n-th iteration of a function f f (n)

R[*] transitive closure of R
X –> y the y-constant function on X X → {y}
x .–> y function between two singletons {(x, y)}
chi(Y,X) characteristic function of Y ⊆ X 1XY

Bibliography

[AGN09] A. Asperti, H. Geuvers, and R. Natarajan. “Social processes, program
verification and all that”. In: Mathematical Structures in Computer
Science 19.05 (2009), pp. 877–896. issn: 1469-8072.

[ASC10] A. Asperti and C. Sacerdoti Coen. “Some Considerations on the Usability
of Interactive Provers”. In: Intelligent Computer Mathematics: 10th
International Conference, Aisc 2010, 17th Symposium, Calculemus 2010,
and 9th International Conference, Mkm 2010, Paris, France, July 5-10,
2010. Proceedings. 2010, p. 147. isbn: 3642141277.

[Ban90] G. Bancerek. “A model of ZF set theory language”. In: Formalized
Mathematics 1.1 (1990), pp. 131–145. issn: 1426-2630.

[Ben06] Y. Benkler. The wealth of networks: How social production transforms
markets and freedom. Yale Univ Pr, 2006. isbn: 0300110561.

[BK05] P. Braselmann and P. Koepke. “Gödel’s Completeness Theorem”. In:
Formalized Mathematics 13.1 (2005), pp. 49–53. issn: 1426-2630.

[Boy+94] R. Boyer et al. “The QED Manifesto”. In: Automated deduction, CADE-
12. Vol. 12. 1994, pp. 238–251. isbn: 9783540581567.

[BR03] G. Bancerek and P. Rudnicki. “Information retrieval in MML”. In:
Mathematical Knowledge Management: Second International Confer-
ence, MKM 2003, Bertinoro, Italy, February 16-18, 2003. Proceedings.
Springer. 2003, pp. 119–132.

[Bru70] N. de Bruijn. “The mathematical language AUTOMATH, its usage, and
some of its extensions”. In: Proceedings of the Automatic Demonstration
Symposium. Springer. 1970, pp. 29–61. isbn: 9780387049144.

[Bru72] N. G. de Bruijn. “Lambda calculus notation with nameless dummies, a
tool for automatic formula manipulation, with application to the Church-
Rosser theorem”. In: Nederl. Akad. Wetensch. Proc. Ser. A 75=Indag.
Math. 34 (1972), pp. 381–392.

[BU04] G. Bancerek and J. Urban. “Integrated semantic browsing of the Mizar
Mathematical Library for authoring Mizar articles”. In: Mathematical
Knowledge Management. Springer. 2004, pp. 44–57. isbn: 9783540230298.

[Cam09] M. Caminati. “Yet another proof of Gödel’s completeness theorem for
first-order classical logic”. In: Arxiv preprint arXiv:0910.2059 (2009).

[Cam10] M. Caminati. “Basic first-order model theory in Mizar”. In: Journal of
Formalized Reasoning 3.1 (2010), pp. 49–77. issn: 1972-5787.

95

Bibliography 96

[Cam11a] M. Caminati. “Definition of first order language with arbitrary alphabet”.
In: Formalized Mathematics 19.3 (2011). issn: 1426-2630.

[Cam11b] M. Caminati. “First order languages: syntax, part two; semantics”. In:
Formalized Mathematics 19.3 (2011). issn: 1426-2630.

[Cam11c] M. Caminati. “Free interpretation, quotient interpretation and substi-
tution of a letter with a term for first order languages”. In: Formalized
Mathematics 19.3 (2011). issn: 1426-2630.

[Cam11d] M. Caminati. “Preliminaries to Classical First-order Model Theory”. In:
Formalized Mathematics 19.3 (2011). issn: 1426-2630.

[Cam11e] M. Caminati. “Sequent calculus, derivability, provability. Gödel’s com-
pleteness theorem”. In: Formalized Mathematics 19.3 (2011). issn: 1426-
2630.

[CG07] P. Cairns and J. Gow. “Integrating searching and authoring in Mizar”.
In: Journal of Automated Reasoning 39.2 (2007), pp. 141–160. issn:
0168-7433.

[CH07] I. Chiswell and W. Hodges. Mathematical logic. Vol. 3. Oxford Texts
in Logic. Oxford: Oxford University Press, 2007, pp. viii+250. isbn:
978-0-19-921562-1.

[Che80] B. Chellas. Modal logic: an introduction. Cambridge Univ Press, 1980.
isbn: 0521224764.

[CMU08] P. Chapman, J. McKinna, and C. Urban. “Mechanising a Proof of Craig’s
Interpolation Theorem for Intuitionistic Logic in Nominal Isabelle”. In:
Springer, 2008, pp. 38–52. isbn: 9783540851097.

[CR11] M. Caminati and G. Rosolini. “Custom automations in Mizar”. In: Jour-
nal of Automated Reasoning (2011). Invited article for the special issue
‘Formal Mathematics for Mathematicians: Developing Large Repositories
of Advanced Mathematics’. Under review as of November 15th, 2011.

[Cra+10] M. Cramer et al. “The naproche project controlled natural language
proof checking of mathematical texts”. In: Springer, 2010, pp. 170–186.
isbn: 9783642144172.

[DG10] J. Dawson and R. Goré. “Generic methods for formalising sequent
calculi applied to provability logic”. In: Logic for Programming, Arti-
ficial Intelligence, and Reasoning. Springer. 2010, pp. 263–277. isbn:
9783642162411.

[EFT84] H. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Sec-
ond. Undergraduate Texts in Mathematics. Springer-Verlag, 1984. isbn:
0387908951.

[GKN10] A. Grabowski, A. Korniłowicz, and A. Naumowicz. “Mizar in a Nutshell”.
In: Journal of Formalized Reasoning 3.2 (2010), pp. 153–245. issn: 1972-
5787.

[Gon08] G. Gonthier. “Formal proof—the four-color theorem”. In: Notices Amer.
Math. Soc. 55.11 (2008), pp. 1382–1393. issn: 0002-9920.

Bibliography 97

[Gor09] R. Goré. “Machine checking proof theory: an application of logic to logic”.
In: Logic and its applications. Vol. 5378. Lecture Notes in Comput. Sci.
Berlin: Springer, 2009, pp. 23–35. doi: 10.1007/978-3-540-92701-3_2.
url: http://dx.doi.org/10.1007/978-3-540-92701-3_2.

[Har98] J. Harrison. “Formalizing basic first order model theory”. In: Theorem
Proving in Higher Order Logics. Springer, 1998, pp. 153–170. isbn:
9783540649878.

[Hed04] S. C. Hedman. A first course in logic. Vol. 1. Oxford Texts in Logic. An in-
troduction to model theory, proof theory, computability, and complexity.
Oxford: Oxford University Press, 2004, pp. xx+431. isbn: 0-19-852981-3.

[Her96] I. N. Herstein. Abstract algebra. Third. With a preface by Barbara
Cortzen and David J. Winter. Upper Saddle River, NJ: Prentice Hall
Inc., 1996, pp. xviii+249. isbn: 0-13-374562-7.

[HR10] M. Humayoun and C. Raffalli. “Mathnat-mathematical text in a con-
trolled natural language”. In: Special issue: Natural Language Processing
and its Applications, Journal on Research in Computing Science 46
(2010), pp. 293–310. issn: 1870-4069.

[KMK92] J. Kotowicz, B. Madras, and M. Korolkiewicz. “Basic notation of uni-
versal algebra”. In: Journal of Formalized Mathematics 4 (1992). issn:
1426-2630.

[Knu97] D. E. Knuth. Art of Computer Programming, Volume 1: Fundamental
Algorithms. Addison-Wesley Professional, 1997. isbn: 0201896834.

[Kor09] A. Korniłowicz. “How to Define Terms in Mizar Effectively”. In: Studies
in Logic, Grammar and Rhetoric 18.31 (2009), pp. 67–77. issn: 0860-
150X.

[KP81] B. W. Kernighan and P. J. Plauger. Software tools in pascal. Addison-
Wesley, 1981. isbn: 0201103427.

[Lot02] M. Lothaire. Algebraic combinatorics on words. Cambridge Univ Pr,
2002. isbn: 0521812208.

[MVW98] A. Mikhajlova and J. Von Wright. “Proving isomorphism of first-order
logic proof systems in HOL”. In: Theorem Proving in Higher Order
Logics. Springer, 1998, pp. 295–314. isbn: 9783540649878.

[NA09] B. Neveln and B. Alps. “ProofCheck: Writing and checking complete
proofs in LATEX”. In: TUGboat 30.2 (2009), pp. 191–195. issn: 0896-3207.

[Nau06] A. Naumowicz. “An example of formalizing recent mathematical results
in Mizar”. In: Journal of Applied Logic 4.4 (2006), pp. 396–413. issn:
1570-8683.

[Nau07] A. Naumowicz. “Evaluating Prospective Built-in Elements of Computer
Algebra in Mizar”. In: Studies in Logic, Grammar and Rhetoric 10.23
(2007), pp. 191–200. issn: 0860-150X.

[NB04] A. Naumowicz and C. Byliński. “Improving Mizar texts with properties
and requirements”. In: Mathematical Knowledge Management. Springer.
2004, pp. 290–301. isbn: 9783540230298.

Bibliography 98

[Nip03] T. Nipkow. “Structured proofs in Isar/HOL”. In: Types for Proofs and
Programs (2003), pp. 619–620. url: http://dx.doi.org/10.1007/3-
540-39185-1.

[NS56] A. Newell and H. Simon. “The logic theory machine–A complex infor-
mation processing system”. In: Information Theory, IRE Transactions
on 2.3 (1956), pp. 61–79.

[RT90] P. Rudnicki and A. Trybulec. “A first order language”. In: Formalized
Mathematics 1.2 (1990), pp. 303–311. issn: 1426-2630.

[RT99] P. Rudnicki and A. Trybulec. “On equivalents of well-foundedness”.
In: Journal of Automated Reasoning 23.3 (1999), pp. 197–234. issn:
0168-7433.

[RU11] P. Rudnicki and J. Urban. “Escape to ATP for Mizar”. In: First Workshop
on Proof eXchange for Theorem Proving. 2011. url: http://pxtp2011.
loria.fr/.

[Sal94] P. Salus. A quarter century of UNIX. Addison-Wesley, 1994. isbn:
0201547775.

[Sch+12] P. Schodl et al. “Towards a Self-reflective, Context-aware Semantic
Representation of Mathematical Specifications”. In: Algebraic Modeling
Systems - Modeling and Solving Real World Optimization Problems.
Springer, to appear. 2012.

[Smu95] R. M. Smullyan. First-order logic. Corrected reprint of the 1968 original.
New York: Dover Publications Inc., 1995, pp. xii+158. isbn: 0-486-68370-
2.

[Tar28] A. Tarski. “On some fundamental concepts of metamathematics”. In:
[Tar56]. 1928, pp. 30–37.

[Tar30] A. Tarski. “Fundamental concepts of the methodology of the deductive
sciences”. In: [Tar56]. 1930, pp. 60–109.

[Tar35] A. Tarski. “Foundations of the calculus of systems”. In: [Tar56]. 1935,
pp. 342–383.

[Tar56] A. Tarski. Logic, semantics, metamathematics: papers from 1923 to 1938.
Oxford At The Clarendon Press, 1956. url: http://www.questia.com/
PM.qst?a=o&d=91287094.

[Tar65] A. Tarski. “A simplified formalization of predicate logic with identity”.
In: Arch. Math. Logik Grundlagenforsch 7 (1965), 61–79 (1965). issn:
0003-9268.

[Try] A. Trybulec. “Revising UPROOTS: Global Choine [sic]”. Message to
the Mizar mailing list, sent on 2008/10/13. url: http://mizar.uwb.
edu.pl/forum/archive/0810/msg00004.html.

[TS96] A. S. Troelstra and H. Schwichtenberg. Basic proof theory. Vol. 43. Cam-
bridge Tracts in Theoretical Computer Science. Cambridge: Cambridge
University Press, 1996, pp. xii+343. isbn: 0-521-57223-1.

[Urb06a] J. Urban. “MizarMode–an integrated proof assistance tool for the Mizar
way of formalizing mathematics”. In: Journal of Applied Logic 4.4 (2006),
pp. 414–427. issn: 1570-8683.

Bibliography 99

[Urb06b] J. Urban. “MoMM-fast interreduction and retrieval in large libraries of
formalized mathematics”. In: International Journal on Artificial Intelli-
gence Tools 15.1 (2006), p. 109. issn: 0218-2130.

[Wie00] F. Wiedijk. “The De Bruijn Factor”. In: preprint (2000). url: http:
//www.cs.ru.nl/~freek/factor/factor.pdf.

[Wie06] F. Wiedijk. “Writing a Mizar article in nine easy steps”. 2006. url:
http://www.cs.ru.nl/~freek/mizar/mizman.pdf.

[Wie07a] F. Wiedijk. “Mizar’s soft type system”. In: Proceedings of the 20th
international conference on Theorem proving in higher order logics.
Springer-Verlag. 2007, pp. 383–399. isbn: 3540745904.

[Wie07b] F. Wiedijk. “The QED manifesto revisited”. In: Studies in Logic, Gram-
mar and Rhetoric 10.23 (2007), pp. 121–133. issn: 0860- 150X.

[Wie09] F. Wiedijk. “Formalizing Arrow’s theorem”. In: Sādhanā 34.1 (2009),
pp. 193–220. issn: 0256-2499. doi: 10.1007/s12046-009-0005-1. url:
http://dx.doi.org/10.1007/s12046-009-0005-1.

