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Introduction

0.1 Radial Loewner theory
Radial Loewner theory in the unit disc D ⊂ C was introduced by C. Loewner in
1923 [19] and developed with contributions of P.P. Kufarev in 1943 [17] and C.
Pommerenke in 1965 [21], and has been since then used to prove several deep results
in geometric function theory [15].

The main motivation which led Loewner to develop his theory was the celebrated
Bieberbach conjecture:

Conjecture 0.1.1 (Bieberbach). Let f : D → C be a univalent mapping given by

f(z) = z +
∞∑

j=2

ajz
j.

Then
|an| ≤ n.

The case n = 2 is a consequence of the Area Theorem and is due to Gronwall.
In his paper Loewner proved the case n = 3 of the conjecture, and it is remarkable
that the proof given by De Branges in 1985 [10] relies in part on Loewner theory.

Among the extensions of radial Loewner theory we recall the chordal Loewner
theory [18], and the theory of Schramm-Loewner evolution [24] introduced in 1999
by Oded Schramm.

We recall the definitions of the three main objects in radial Loewner theory.

Definition 0.1.2. A radial evolution family is a family (ϕt,s)0≤s≤t of holomorphic
self-maps of the unit disc D satisfying

i) ϕs,s = id for all s ≥ 0,

ii) ϕt,s = ϕt,u ◦ ϕu,s for all 0 ≤ s ≤ u ≤ t.

iii) ϕt,s(z) = es−tz +O(|z|2) for all 0 ≤ s ≤ t.
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A radial Herglotz vector field is a function H : D× R+ → C of the form

H(z,t) = −zp(z,t),

where the function t→ p(z,t) is measurable for all fixed z ∈ D and satisfies

i) for a.e. t ≥ 0 the mapping z → p(z,t) is holomorphic and Re p(z,t) ≥ 0 for all
z ∈M ,

ii) for a.e. t ≥ 0 we have p(0,t) = 1.

A radial Loewner chain is a family (fs)0≤s of univalent mappings fs : D → C
satisfying

i) fs(B) ⊂ ft(B) for all 0 ≤ s ≤ t,

ii) fs(z) = esz +O(|z|2).

Among these concepts there are natural one-to-one correspondences. Namely if
H is a radial Herglotz vector field, then the solutions of the Loewner-Kufarev ODE

{
∂ϕt,s

∂t
(z) = H(ϕt,s(z),t) a.e. t ≥ s,

ϕs,s(z) = z,

form a radial evolution family (ϕt,s). Conversely given any radial evolution family
(ϕt,s) there exists an (essentially) unique radial Herglotz vector field H such that
(ϕt,s) is the family of solutions of the associated Loewner-Kufarev ODE.

A radial Loewner chain and a radial evolution family are associated if

fs = ft ◦ ϕt,s, 0 ≤ s ≤ t.

This gives a one-to-one correspondence between radial evolution families and radial
Loewner chain. Namely if (fs) is a radial Loewner chain there is a unique associated
radial evolution family:

ϕt,s
.
= f−1

t ◦ fs, 0 ≤ s ≤ t.

Conversely given a radial evolution family (ϕt,s) there exists a unique associated
radial Loewner chain:

fs
.
= lim

t→∞
etϕt,s.

Composing the two correspondences we obtain a one-to-one correspondence be-
tween Loewner chains and Herglotz vector fields, which is given by the Loewner-
Kufarev PDE

∂fs
∂s

(z) = −∂fs
∂z

(z)H(z,s) a.e. s ≥ 0,∀z ∈M.
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0.2 – Recent developments

0.2 Recent developments
In [5] [6] Bracci, Contreras and Díaz-Madrigal propose a generalization of the radial
(and chordal) Loewner theory. For the sake of clearness we treat the case L∞ but
most of the results apply in the case Ld, with d ∈ [1,∞].

From now on M will be a q-dimensional complete hyperbolic complex manifold
endowed with a Hermitian metric and dM will denote the associate distance. We
further assume that the Kobayashi metric κM ∈ C1(M ×M rDiag).

Definition 0.2.1. A family (ϕt,s)0≤s≤t of holomorphic self mappings of M is an
L∞-evolution family if

i) ϕs,s = id for all s ≥ 0,

ii) ϕt,s = ϕt,u ◦ ϕu,s for all 0 ≤ s ≤ u ≤ t,

iii) for any T > 0 and for any compact set K ⊂M there exists cT,K ≥ 0 such that

sup
z∈K

dM(ϕt,s(z),ϕu,s(z)) ≤ cT,K(t− u),

for all 0 ≤ s ≤ u ≤ t ≤ T.

A L∞-weak holomorphic vector field on M is a function H : M × R+ → TM
with the following properies:

i) for all z ∈M the function t→ H(z,t) is measurable,

ii) for all t ≥ 0 the function z → H(z,t) is holomorphic,

iii) for all compact set K ⊂⊂ M and all T > 0 there exists CK,T ≥ 0 such that
‖H(z,t)‖ ≤ CK,T for all z ∈ K and almost every t ∈ [0,T ].

A L∞-weak holomorphic vector field H(z,t) on M is a L∞-Herglotz vector field if

d(z,w)kM(H(z,t),H(w,t)) ≤ 0, z,w ∈M, z /= w and a.e. t ≥ 0.

They obtain a one-to-one correspondence between L∞-evolution families and
L∞-Herglotz vector fields, given by the Loewner-Kufarev ODE.

In order to completely generalize the classical theory, one has to investigate
Loewner chains in this framework. In [9] Contreras, Díaz-Madrigal and Gumenyuk
define L∞-Loewner chains in the case M = D. A L∞-Loewner chain in D is defined
as a radial Loewner chain with property ii) replaced by

ii’) for any compact set K ⊂ D and any T > 0 there exists kK,T ≥ 0 such that

|fs(z)− ft(z)| ≤ kK,T (t− s)

for all z ∈ K and for all 0 ≤ s ≤ t ≤ T.
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They prove that in the unit disc the functional equation fs = ft ◦ ϕt,s gives (up
to biholomorphisms) a one-to-one correspondence between L∞-Loewner chains and
L∞-evolution families. Moreover, the Loewner-Kufarev PDE provides the correspon-
dence between L∞-Loewner chains and L∞-Herglotz vector fields.

0.3 Abstract viewpoint
To complete the picture one has to define Loewner chains on a complete hyperbolic
complex manifold M . The first chapter of this thesis is devoted to some background
on complex hyperbolic and taut manifolds. In the second chapter we study Loewner
chains from an abstract point of view obtaining existence and uniqueness results, as
well as a generalized Loewner-Kufarev PDE. The results of this chapter are, unless
otherwise stated, a joint work with F. Bracci, H. Hamada and G. Kohr [3].

Since there exist complete hyperbolic complex manifolds (even non-compact
ones) which do not embed as an open set in Cq, requiring each fs to be a uni-
valent mapping from M to Cq would be unnecessarily restrictive. Hence we give the
following definition.

Definition 0.3.1. Let N be a complex manifolds of dimension q endowed with a
Hermitian metric. Let dN denote the induced distance. A family (ft)t≥0 of univalent
mappings ft : M → N is a L∞-Loewner chain if

i) fs(M) ⊂ ft(M) for all 0 ≤ s ≤ t,

ii) for any compact set K ⊂M and any T > 0 there exists kK,T ≥ 0 such that

dN(fs(z),ft(z)) ≤ kK,T (t− s)

for all z ∈ K and for all 0 ≤ s ≤ t ≤ T.

In order to study the functional equation

fs = ft ◦ ϕt,s, 0 ≤ s ≤ t, (0.3.1)

we focus on the algebraic aspects rather than on Ld-estimates.

Definition 0.3.2. A R+-Loewner chain is a family (fs) of univalent mappings from
M to an arbitrary q-dimensional complex manifold N such that fs(M) ⊂ ft(M) for
all 0 ≤ s ≤ t.

A R+-evolution family is a family (ϕt,s) of univalent self-mappings of M such
that ϕs,s = id and ϕt,u ◦ϕu,s = ϕt,s for all 0 ≤ s ≤ u ≤ t. We say that a R+-Loewner
chain and a R+-evolution family are associated if (0.3.1) is satisfied.
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0.3 – Abstract viewpoint

Theorem 0.3.3 ( [3]). If a R+-evolution family (ϕt,s) and a R+-Loewner chain
(ft) on M are associated then (ϕt,s) is a Ld-evolution family if and only if (fs) is a
Ld-Loewner chain.

This result allows us to reduce the study of (0.3.1) beween L∞-evolution families
and L∞-Loewner chains to the study of (0.3.1) between R+-Loewner chains and
R+-evolution families.

Given a R+-Loewner chain (fs) there exists a unique associated R+-evolution
family:

ϕt,s
.
= f−1

t ◦ fs, 0 ≤ s ≤ t.

Conversely we prove the following result.

Theorem 0.3.4. If (ϕt,s) is a R+-evolution family on M , there exists an associated
R+-Loewner chain (fs).

This chain is constructed as the direct limit in the following way. Define an
equivalence relation on the product M × R+:

(x,s) ∼ (y,t) iff ϕt,s(x) = y.

Let π∼ : M×R+ → (M×R+)/∼ be the quotient projection, and let is : M →M×R+

be the injection is(x) = (x,s). The chain is then defined as

fs
.
= π∼ ◦ is, s ≥ 0.

Equation (0.3.1) holds since

π∼ ◦ is = π∼ ◦ it ◦ ϕt,s, 0 ≤ s ≤ t.

It is easy to endow the quotient (M×R+)/∼ =
⋃
s≥0 fs(M) with a complex structure

which makes the mappings fs holomorphic. If (gs) is another R+-Loewner chain
associated with (ϕt,s), then it defines a mapping on M × R+ which is compatible
with the equivalence relation ∼. This mapping passes thus to the quotient defining
a biholomorphism

Ψ:
⋃

s≥0

fs(M) →
⋃

s≥0

gs(M)

such that
gs = Ψ ◦ fs, s ≥ 0.

Hence we can define the Loewner range Lr(ϕt,s) of the R+-evolution family (ϕt,s)
as the biholomorphism class of

⋃
s≥0 fs(M), where (fs) is any associated R+-Loewner

chain.
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If (ϕt,s) is a R+-evolution family on the unit disc D the Loewner range has to
be simply connected and cannot be compact, thus by the uniformization theorem it
has to be either D or C. As noticed in [9], whether we have D or C depends on the
dynamics of (ϕt,s). Generalizing this result we prove that on a complete hyperbolic
complex manifold M , if (fs) and (ϕt,s) are associated, then

f ∗
s κLr(ϕt,s) = lim

t→∞
ϕ∗
t,sκM , s ≥ 0,

where κM and κLr(ϕt,s) are the Kobayashi metrics of M and Lr(ϕt,s) respectively.
If M is a domain in Cq it is natural to investigate whether it is possible to give

conditions on a R+-evolution family (ϕt,s) ensuring the existence of an associated
R+-Loewner chain (fs) with image in Cq. In other words: when is the Loewner range
Lr(ϕt,s) a domain of Cq?

The question has not a trivial answer since we prove the following results.

Proposition 0.3.5. There exists a R+-evolution family (ϕt,s) on Bq such that
Lr(ϕt,s) is not a domain in Cq.

Theorem 0.3.6. Let (ϕt,s) be a R+-evolution family on Bq. Assume that there exist
z ∈ Bq,s ≥ 0 such that

dim{v ∈ TzBq : lim
t→∞

κM(ϕt,s(z),dzϕt,s(v)) = 0} ≤ 1.

Then Lr(ϕt,s) is a domain in Cq.

0.4 Analogies with Schröder equations
In the third chapter we focus on a special type of R+-evolution family on Bq. The
result of this chapter are, unless otherwise stated, in [2].

Definition 0.4.1. A R+-evolution family (ϕt,s) on Bq is a dilation evolution family
if

ϕt,s(z) = eΛ(t−s)(z) +O(|z|)2, 0 ≤ s ≤ t,

where the eigenvalues αi of Λ satisfy Re (αi) < 0.
A R+-Loewner chain (fs) on Bq such that fs(z) = e−Λs(z) +O(|z|2) is normal if

the family given by the mappings

hs
.
= eΛs ◦ fs, s ≥ 0

is normal.
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0.4 – Analogies with Schröder equations

For the sake of clearness we shall assume that Λ is diagonal, even if all results
hold without this assumption.

We investigate the following

Problem 0.4.2. Given a dilation R+-evolution family, does there exist an associated
Loewner chain with values in Cq?

An affirmative answer to Problem 0.4.2 would yield as a consequence that any
Loewner-Kufarev PDE

∂ft
∂t

(z) = −dzft(H(z,t)), a. e. t ≥ 0, z ∈ B, (0.4.1)

where H(z,t) = Λz +O(|z|2), admits global solutions.
Loewner theory in the unit ball Bq has been extensively studied [20] [11] [14].

A partial answer to Problem 0.4.2 is obtained by Graham, Hamada, M.Kohr and
G.Kohr [14, Theorems 2.3, 2.6]:

Theorem 0.4.3. Let (ϕt,s) be a dilation R+-evolution family such that the eigen-
values of Λ satisfy

2Reα1 < ReαN . (0.4.2)
Then there exists a normal R+-Loewner chain (fs) associated with (ϕt,s), such that⋃
s≥0 fs(B) = Cq, hence Lr(ϕt,s) = Cq. This chain is given by

fs = lim
t→+∞

e−Λt ◦ ϕt,s, s ≥ 0, (0.4.3)

and it is the unique normal Loewner chain associated with (ϕt,s).

The main result of this chapter gives an affirmative answer to Problem 0.4.2,
without assuming condition (0.4.2): the Lowner range of a dilation R+-evolution
family is Cq.

Theorem 0.4.4. Let (ϕt,s) be a dilation R+-evolution family. Then there exists
a R+-Loewner chain (fs) associated with (ϕt,s), such that

⋃
s fs(B) = Cq. If no

real resonance occurs among the eigenvalues of Λ, then (fs) is a normal chain, not
necessarily unique.

An analogous result is obtained indepentently with different methods by M.
Voda in his paper “Solution of a Loewner chain equation in several variables”
(arXiv:1006.3286v1 [math.CV], 2010).

Notice that (0.4.2) is a classical condition ensuring the existence of a solution of
the Schröder functional equation. In fact we will see that normal Loewner chains
correspond to solutions of a parametric Schröder equation. Let us first recall some
facts about linearization of germs.
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Let ϕ(z) = eΛ(z) + O(|z|2) be a holomorphic germ at the origin of Cq, where
the eigenvalues αi of Λ satisfy Re (αi) ≤ 0. If h(z) = z +O(|z|2) is a solution of the
Schröder equation

h ◦ ϕ = eΛ ◦ h, (0.4.4)
we say that h linearizes ϕ. It is not always possible to solve this equation, indeed
there can occur complex resonances among the eigenvalues of Λ, that is algebraic
identities

q∑

j=1

kjαj = αl,

where kj ≥ 0 and
∑

j kj ≥ 2, which are obstructions to linearization. Indeed a
celebrated theorem of Poincaré [22] states that if no complex resonance occurs, then
there exists a solution h for (0.4.4). If moreover 2Reα1 < Reαq then h is given by
limn→+∞ e−Λn ◦ ϕ◦n.

The analogy between equation (0.3.1) and the Schröder equation (0.4.4) is illus-
trated by the following remark.
Remark 0.4.5. There exists a normal R+-Loewner chain (fs) associated with the
dilation R+-evolution family (ϕt,s) if and only if there exists a normal family (hs) of
univalent mappings hs(z) = z +O(|z|2) such that

ht ◦ ϕt,s = eΛ(t−s) ◦ hs, 0 ≤ s ≤ t. (0.4.5)

Indeed, (fs) and (hs) are related by

fs = e−Λs ◦ hs, s ≥ 0.

In order to solve equation (0.4.5) we discretize times, obtaining the parametric
Schröder equation:

hm ◦ ϕm,n = eΛ(m−n) ◦ hn, 0 ≤ n ≤ m ∈ N. (0.4.6)

There are surprising differences between the Schröder equation (0.4.4) and the
parametric one (0.4.6). Namely, while in the first complex resonances are obstruc-
tions to the existence of formal solutions, in the latter there always exists the holo-
morphic solution

hn
.
= eΛn ◦ ϕ−1

n,0, n ≥ 0,

but the domain of definition of the mapping hn shrinks as n grows.
If, as we need, we look for a family hn of solutions defined in the unit ball B,

then we find as obstructions the real resonances among the eigenvalues of Λ, that is
algebraic identities

Re (

q∑

j=1

kjαj) = Reαl,
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0.5 – Notations

where kj ≥ 0 and
∑

j kj ≥ 2. If no real resonance occurs we find a normal discrete
Loewner chain associated with (ϕm,n).

If real resonances occur we solve a slightly different equation:

hm ◦ ϕm,n = Tm,n ◦ hn, 0 ≤ n ≤ m

where Tm,n is a suitable triangular discrete evolution family, finding in this way a
non necessarily normal discrete Loewner chain associated with (ϕm,n).

Once we solved the problem for discrete times, it is easy to extend (fn) to all
real positive times obtaining a R+-Loewner chain (fs) and Theorem 3.4.6 above.

We also prove that if the dilation R+-evolution family is periodic (for example
if it is associated with a semigroup), then the only obstructions to the existence of
an associated normal R+-Loewner chain are complex resonances.

We conclude giving examples of

1. a dilation R+-evolution family with no real resonances and several associated
normal R+-Loewner chains,

2. a semigroup-type dilation R+-evolution family with complex resonances which
does not admit any associated normal R+-Loewner chain,

3. a discrete dilation evolution family with pure real resonances (real non-complex
resonances) which does not admit any associated discrete normal Loewner
chain.

0.5 Notations
R+ denotes the set of the real numbers t such that t ≥ 0.

L(V,W ) denotes the set of the C-linear mappings from V to W .

A(V ) denotes the set of the C-linear automorphisms of V .

hol(X,Y ) denotes the set of the holomorphic mappings from X to Y .

aut(X) denotes the set of the holomorphic automorphisms of X.

Mq,p(C) denotes the set of complex (q × p)-matrices.

GLq(C) denotes the set of invertible complex (q × q)-matrices.

Bq (or B) denotes the unit ball in Cq.

‖ · ‖ (or ‖ ·‖2) denotes, unless differently stated, the norm induced by the euclidean
norm on Cq on L(Cq,Cq) and on Mq,q(C).

9



I denotes a multi-index (i1, . . . ,iq). If z = (z1, . . . ,zq) then zI
.
= zi11 . . . z

iq
q .

(ϕβ,α) with 0 ≤ α ≤ β denotes an evolution family. Notice that it is not the same
notation as in [2] [3] [5] [6] [9]. If each ϕβ,α ∈ aut(Cq) for all 0 ≤ α ≤ β then
we denote ϕα,β

.
= ϕ−1

β,α.
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mia famiglia per tutto il resto.

10



Chapter 1

Background on complex
hyperbolic and taut manifolds

A reference for hyperbolic complex manifolds and taut manifolds is [1]. We recall
some basic definitions and results.

Definition 1.0.1. Let X and Y be complex manifolds. A family F is normal if for
every sequence (fn) in hol(X,Y ), either

i) there exists a subsequence (fnk
) converging uniformly on compacta, or

ii) for each compact set K ⊂ X and each compact set L ⊂ Y there exists an
integer N such that

fn(K) ∩ L = ∅

for all n ≥ N .

A complex manifold Y is taut if hol(D,Y ) is normal.

Theorem 1.0.2 ( [1, Theorem 2.1.2]). Let X be a taut manifold. Then hol(Y,X) is
a normal family for every complex manifold Y .

Proposition 1.0.3 ( [1, Corollary 2.1.17]). Let X be a taut manifold. Then the topol-
ogy of pointwise convergence on hol(X,Y ) coincides with the compact-open topology
for every complex manifold Y .

Theorem 1.0.4 ( [1, Theorem 2.4.1]). Let X be a taut manifold, and let f ∈
hol(X,X) with fixed point z0. Then the sequence of iterates (fk) converges to z0 if
and only if

sp(dz0f) ⊂ D.

Definition 1.0.5. A pseudodistance on a set X is a function d : X ×X → R+ such
that

11



1 – Background on complex hyperbolic and taut manifolds

i) d(x,y) = d(y,x) for all x,y ∈ X,

ii) d(x,y) ≤ d(x,y) + d(y,x) for all x,y,z ∈ X,

iii) d(x,x) = 0 for all x ∈ X.

An analytic chain α = {ζ0, . . . ζm; η0, . . . ,ηm;ϕ0, . . . ,ϕm} connecting two points
z0 and w0 in a complex manifold X is a sequence of points ζ0, . . . ζm,η0, . . . ,ηm in
the unit disc D and holomorphic maps ϕ0, . . . ,ϕm ∈ hol(D,X) such that ϕ0(ζ0) =
z0,ϕj(ηj) = ϕj+1(ζj+1) for j = 0, . . . ,m − 1 and ϕm(ηm) = w0. The lenght ω(α) of
the chain is

ω(α) =
m∑

j=0

ω(ζj,ηj).

If z,w ∈ X the Kobayashi pseudodistance kX(z,w) is defined as

kX(z,w) = inf{ω(α)},

where the infimum is taken with respect to all analytic chains connecting z to w.
A complex manifold X is hyperbolic if kX is a distance, and is complete hyper-

bolic if kX is a complete distance.

Proposition 1.0.6 ( [1, Propositions 2.3.10, 2.3.17]). Let X be a complex man-
ifold. The manifold X is hyperbolic if and only if kX induces the topology of X.
The manifold X is complete hyperbolic if and only if every cloded Kobayashi ball is
compact.

Definition 1.0.7. Let X be a complex manifold, and TX its tangent bundle. The
Kobayashi pseudometric κX : TX → R+ is defined as

κX(z,v) = inf{|ζ| s.t. ∃ϕ ∈ hol(D,X) : ϕ(0) = z,d0ϕ(ζ) = v}

for every z ∈ X and v ∈ TzX.

The following properties follow easily from the definitions.

Proposition 1.0.8. Let X,Y be complex manifolds.

i) κX(z,λv) = |λ|κX(z,v), for all z ∈ X, v ∈ TzX and λ ∈ C,

ii) κY (f(z),dzf(v)) ≤ κX(z,v), for all z ∈ X, v ∈ TzX and f ∈ hol(X,Y ).

As the next result shows, the Kobayashi pseudodistance is the integrated form
of the Kobayashi pseudometric.
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Theorem 1.0.9 ( [1, Theorems 2.3.29, 2.3.32]). Let X be a complex manifold. Then
κX is upper semicontinuous, and if z,w ∈ X,

kX(z,w) = inf
γ

∫ b

a

κX(γ(t),γ
′(t))dt,

where γ is any piecewise C1 curve in X such that γ(a) = z and γ(b) = w.

As a consequence hyperbolicity affects the behaviour of the Kobayashi pseudo-
metric.

Theorem 1.0.10 ( [1, Propositions 2.3.33, 2.3.34]). Let X be a hyperbolic manifold.
Then κX(z,v) > 0 for every z ∈ X, v ∈ TzX \ {0}. Let X be complete hyperbolic.
Then κX : TX → R+ is continuous.

Remark 1.0.11. If X is a hyperbolic manifold, we call κX the Kobayashi metric.
Notice however that the function κX(z,·) : TzX → R+ is not a norm, since in general
the triangular inequality κX(z,v + w) ≤ κX(z,v) + κX(z,w) does not hold.

We shall need two results relating hyperbolicity and tautness.

Theorem 1.0.12 ( [1, Theorem 2.3.18]). Every complete hyperbolic manifold X is
taut.

Lemma 1.0.13 ( [13, Lemma 2.1]). Let X be a hyperbolic manifold and assume
that X/aut(X) is compact. Then X is complete hyperbolic and hence taut.

13



1 – Background on complex hyperbolic and taut manifolds
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Chapter 2

An abstract approach to Loewner
chains

2.1 Direct limits of univalent direct systems
Definition 2.1.1. Let (I, ≤) be a directed set. Let (Eα)α∈I be a family of complex
manifolds of the same dimension q indexed by I and let (fβ,α)α≤β be a family of
univalent mappings fβ,α : Eα → Eβ satisfying

i) fα,α = id for any α ∈ I

ii) fγ,α = fγ,β ◦ fβ,α for any α ≤ β ≤ γ in I.

Then we call the pair (Eα,fβ,α) a univalent direct system.

Definition 2.1.2. Let F be a q-dimensional complex manifold and let (uα) be a
family of holomorphic mappings uα : Eα → F. The pair (F,uα) is compatible with
the univalent direct system (Eα,fβ,α) if for all α ≤ β,

uβ ◦ fβ,α = uα.

Definition 2.1.3. A direct limit of (Eα,fβ,α) is a compatible pair lim−→ Eα = (E,fα)

such that if (F,uα) is any other compatible pair then there exists a unique holomor-
phic mapping u : E → F such that for all α ∈ I,

uα = u ◦ fα.

Proposition 2.1.4. Assume that I admits a countable cofinal subset Γ = {γn}n∈N.
Then any univalent direct system (Eα,fβ,α)α∈I admits a direct limit lim−→ Eα = (E,fα).

15



2 – An abstract approach to Loewner chains

Proof. Let
⊔
αEα denote the disjoint union of the family (Eα) and let

iα : Eα →
⊔

α

Eα

be the canonical injection. Consider the following equivalence relation on
⊔
αEα:

iα(x) ∼ iβ(y) iff ∃ γ ≥ α,γ ≥ β s.t. fγ,α(x) = fγ,β(y).

Define E .
=

⊔
αEα/ ∼, let π∼ be the quotient projection, and define fα as

π∼ ◦ iα : Eα → E.

If α ≤ β, then for each x ∈ Eα we have fβ,β(fβ,α(x)) = fβ,α(x) and therefore the
elements iα(x) and iβ(fβ,α(x)) are congruent modulo the relation ∼. Thus

fα = fβ ◦ fβ,α.
Endow E with the quotient topology. The mappings fα are easily seen to be

continuous and open, and are injective since the mappings fβ,α are injective. This
shows that each fα is an homeomorphism on its image. Let ζ,η be two points in
E. Then there exist x ∈ Eα and y ∈ Eβ such that ζ = fα(x) and η = fβ(y).
Let γ ≥ β,γ ≥ α. Then ζ = fγ(fγ,α(x)) and η = fγ(fγ,β(y)). Hence ζ and η are
both contained in the open set fγ(Eγ). This shows that E is arc-connected and
Hausdorff, since fγ(Eγ) is arc-connected and Hausdorff. Moreover if Γ is a countable
cofinal subset of the index set I, we have

E =
⋃

γ∈Γ
fγ(Eγ),

thus E is second countable.
We define a structure of q-dimensional complex manifold on E by means of the

charts (f−1
α ). It is easy to see that we can check compatibility of charts only for

couples of indices α ≤ β. But then f−1
β ◦ fα = ϕβ,α, which is holomorphic.

Now assume that (F,uα) is any other compatible pair. The mappings uα define
a mapping v :

⊔
αEα → F which is compatible with ∼. Hence there exists a unique

mapping u : E → F such that v = u ◦ π∼. On each open set fα(Eα) ⊂ E we have

u = uα ◦ f−1
α , (2.1.1)

hence u is holomorphic.

Remark 2.1.5. It is easy to see that the image of u is
⋃
α uα(Eα), and that u is

univalent if and only if each uα is univalent. If u is a biholomorphism then also
(F,uα) is a direct limit for (Eα,fβ,α). Hence an equivalent characterization of direct
limits can be given as follows: a compatible pair (E,fα) is a direct limit if and only
if

16



2.1 – Direct limits of univalent direct systems

i) (fα)α∈I is univalent,

iii) ∪αfα(Eα) = E.

From now on we assume that I admits a countable cofinal subset Γ = {γn}n∈N.

Definition 2.1.6. Let (Eα,fβ,α) and (Fα,gβ,α) be two univalent direct systems rel-
ative to the same index set I. Let (E,fα) = lim−→ Eα, and (F,gα) = lim−→ Fα. For each
α ∈ I let uα : Eα → Fα be a holomorphic mapping such that if α ≤ β then

gβ,α ◦ uα = uβ ◦ fβ,α.

Then we call (uα) a direct system of holomorphic maps.

Remark 2.1.7. A direct system of holomorphic maps allows us to pull-back compat-
ible pairs. Namely if (uα) is a direct system of holomorphic maps from (Eα,fβ,α) to
(Fα,gβ,α) and (G,hα) is a pair compatible with (Fα,gβ,α), the pair

(G,hα ◦ uα)

is compatible with (Eα,fβ,α). Indeed define vα
.
= hα ◦ uα. If α ≤ β we have

vβ ◦ fβ,α = hβ ◦ uβ ◦ fβ,α = hβ ◦ gβ,α ◦ uα = hα ◦ uα = vα.

Proposition 2.1.8. Given a direct system of holomorphic maps (uα) there exists a
unique holomorphic mapping u : E → F such that for all α ∈ I

gα ◦ uα = u ◦ fα.

Such mapping u is called the direct limit of (uα) and is denoted lim−→ uα. If each uα
is univalent then lim−→ uα is univalent, and if each uα is surjective then lim−→ uα is
surjective.

Proof. The pair (F,gα ◦ uα) is compatible with (Eα,fβ,α) by Remark 2.1.7. By Defi-
nition 2.1.3 there exists a unique holomorphic mapping u : E → F such that

u ◦ fα = vα = gα ◦ uα,

hence u = lim−→ uα.
If each uα is univalent, then vα = gα ◦ uα is univalent, hence by Remark 2.1.5 u

is also univalent. If each uα is surjective

F =
⋃

α

gα(Fα) =
⋃

α

gα(uα(Eα)) =
⋃

α

u(fα(Eα)) = u(
⋃

α

fα(Eα)) = u(E).

17
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Corollary 2.1.9. Let (Eα,fβ,α),(Fα,gβ,α),(Gα,hβ,α) be three univalent direct systems
indexed by I. Let (E,fα),(F,gα),(G,hα) be respective direct limits. If (uα),(vα) are two
direct systems of holomorphic maps uα : Eα → Fα, vα : Fα → Gα, then the maps
vα ◦ uα : Eα → Gα form a direct system of holomorphic maps, and

lim−→ (vα ◦ uα) = (lim−→ vα) ◦ (lim−→ uα).

Proof. Set wα
.
= vα ◦ uα. If α ≤ β then

hβ,α ◦ wα = (hβ,α ◦ vα) ◦ uα = (vβ ◦ gβ,α) ◦ uα = vβ ◦ (uβ ◦ fβ,α) = wβ ◦ fβ,α,

hence (wα) is a direct system of holomorphic mappings. If u = lim−→ uα and v = lim−→ vα
then

(v ◦ u) ◦ fα = v ◦ (gα ◦ uα) = hα ◦ (vα ◦ uα) = hα ◦ wα,
thus lim−→ wα = v ◦ u.

Proposition 2.1.10. Let (Eα,fβ,α) be a univalent direct system indexed by I and
let Γ ⊂ I be a countable cofinal subset. Then if (E,gγ)γ∈Γ is a direct limit for the
univalent direct system restricted to Γ, there exists a unique direct limit (E,fα)α∈I
which extends (E,gγ) in the sense that for all γ ∈ Γ we have fγ = gγ.

Proof. Set for all α ∈ I,
fα

.
= fγ ◦ fγ,α,

where γ is any element in Γ such that α ≤ γ. This is a good definition: indeed if
α ≤ γ ≤ γ′, where α ∈ I and γ,γ′ ∈ Γ, then

fγ′ ◦ fγ′,α = fγ′ ◦ fγ′,γ ◦ fγ,α = fγ ◦ fγ,α.

The family (fα) just defined satisfies fα = fβ ◦ fβ,α for all α,β ∈ I: indeed if
α ≤ β ≤ γ, where α,β ∈ I and γ ∈ Γ, then

fα = fγ ◦ fγ,α = fγ ◦ fγ,β ◦ fβ,α = fβ ◦ fβ,α.

2.2 Evolution families and Loewner chains
Let I be N or R+.

Definition 2.2.1. LetM be a q-dimensional complex manifold. A I-evolution family
is a family (ϕβ,α)α≤β∈I of univalent self-mappings of M such that

18
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i) ϕα,α = id for all α ≥ 0,

ii) ϕβ,α = ϕβ,γ ◦ ϕγ,α for all 0 ≤ α ≤ γ ≤ β.

Remark 2.2.2. If we define Mα = M for α ∈ I, the pair (Mα,ϕβ,α) is a univalent
direct system.

Definition 2.2.3. Let M , N be two complex manifolds of the same dimension.
Given two holomorphic mappings f,g : M → N we say that f is subordinate to g if
there exists a holomorphic mapping v : M →M such that f = g ◦ v. Note that if g
is univalent this is equivalent to f(M) ⊂ g(M).

A I-subordination chain (fα) is a family of holomorphic mappings fα : M → N
such that if 0 ≤ α ≤ β then fα is subordinate to fβ. We denote it also (fα,M,N).

A I-subordination chain is associated with a I-evolution family (ϕβ,α) if for all
0 ≤ α ≤ β we have fα = fβ ◦ ϕβ,α.
Definition 2.2.4. A I-Loewner chain is a univalent I-subordination chain. Equiv-
alently a family (fα) of univalent mappings fα : M → N is a I-Loewner chain if for
all 0 ≤ α ≤ β,

fα(M) ⊂ fβ(M).

A I-Loewner chain is sometimes denoted (fα,M,N).
The range rg (fα) of a I-Loewner chain (fα) is

⋃

α≥0

fα(M).

Proposition 2.2.5. Let (fα,M,N) be a I-Loewner chain. Then there exists a unique
I-evolution family (ϕβ,α) such that (fα) is associated with (ϕβ,α).
Proof. Define

ϕβ,α = f−1
β ◦ fα.

It is easy to see that it is a I-evolution family.

Remark 2.2.6. Let (ϕt,s,M) be a R+-evolution family. Then the pair (M,ϕt,s) is a
univalent direct system with index set I = R+. If (ft,M,N) is an associated R+-
Loewner chain then by Remark 2.1.5 the pair (rg (ft),ft) is a direct limit.

Theorem 2.2.7 ( [3]). Let (ϕβ,α) be a I-evolution family on M . Then there exists
an associated I-Loewner chain (fα,M,N).
Proof. Set Mα = M for α ≥ 0. Then (Mα,ϕβ,α) is a univalent direct system. Let
(E,fα) be a direct limit. The mappings fα : M → E are univalent by Remark 2.1.5
and satisfy for all 0 ≤ α ≤ β

fα = fβ ◦ ϕβ,α.
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2 – An abstract approach to Loewner chains

Theorem 2.2.8 ( [3]). Let (ϕβ,α) be a I-evolution family on M and let (fα,M,N)
be an associated I-Loewner chain. If (gα,M,T ) is a subordination chain associated
with (ϕβ,α) then there exists a holomorphic mapping Ψ: rg (fα) → T such that

gα = Ψ ◦ fα.
The mapping Ψ is univalent if and only if each gα is univalent and its image is⋃
α≥0 gα(M).

Proof. Set Mα = M for α ≥ 0. Then (Mα,ϕβ,α) is a univalent direct system. Since
(rg (fα),fα) is a direct limit, Definition 2.1.3 gives the existence of Ψ. The last state-
ment follows from Remark 2.1.5.

Definition 2.2.9. Let (ϕβ,α) be a I-evolution family on M and (fα,M,N) an asso-
ciated I-Loewner chain. Then rg (fα) is the Loewner range of (ϕβ,α) and is denoted
Lr(ϕβ,α). By Theorem 2.2.8 the Loewner range is well-defined up to biholomor-
phisms.

Corollary 2.2.10. Let (ϕβ,α) be a I-evolution family on the unit disc D. Then
Lr(ϕβ,α) is equal to D or to C.

Proof. Any Loewner range for (ϕβ,α) is a simply connected non-compact Riemann
surface. The result follows from the uniformization theorem.

Definition 2.2.11. Let d ∈ [1,∞]. Let M be a complex manifold endowed with
a Hermitian metric and let dM be the associate distance. A family (ϕt,s)0≤s≤t of
holomorphic self mappings of M is an Ld-evolution family if

i) ϕs,s = id for all s ≥ 0,

ii) ϕt,s = ϕt,u ◦ ϕu,s for all 0 ≤ s ≤ u ≤ t,

iii) for any T > 0 and for any compact set K ⊂M there exists a function cT,K ∈
Ld([0,T ],R+) such that

sup
z∈K

dM(ϕt,s(z),ϕu,s(z)) ≤
∫ t

u

cT,K(ξ)dξ,

for all 0 ≤ s ≤ u ≤ t ≤ T.

Proposition 2.2.12 ( [6, Lemma 2.8]). Let d ∈ [1,+∞]. Let (ϕt,s) be a Ld-evolution
family on a taut manifold M . Let ∆ .

= {(s,t) : 0 ≤ s ≤ t}. Then the mapping

(s,t) → ϕt,s

from ∆ to hol(M,M) endowed with the topology of uniform convergence on compacta
is jointly continuous. Hence the mapping Φ(z,s,t)

.
= ϕt,s(z) from M × ∆ to M is

jointly continuous.
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Remark 2.2.13. The proof of Proposition 2.2.12 relies on Proposition 1.0.3.

Proposition 2.2.14. Let d ∈ [1,+∞]. Let (ϕt,s,M) be a Ld-evolution family. Then
for all 0 ≤ s ≤ t the mapping (ϕt,s) is univalent.

Proof. Suppose that there exists 0 < s0 < t0 and z0 /= w0 in M such that

ϕt0,s0(z0) = ϕt0,s0(w0).

Set
t1
.
= inf{t ∈ [s0,t0] : ϕt,s0(z0) = ϕt,s0(w0)}.

By Proposition 2.2.12 we have

lim
t→s0

ϕt,s0 = ϕs0,s0 = id

uniformly on compacta, thus t1 > s0. If t ∈ (s0,t1),

ϕt1,t(ϕt,s0(z0)) = ϕt1,t(ϕt,s0(w0)),

and since ϕt,s0(z0) /= ϕt,s0(w0), the mapping ϕt1,t is not univalent. By Proposition
2.2.12,

lim
t→t1

ϕt1,t = ϕt1,t1 = id

uniformly on compacta which is a contradiction since the identity mapping is uni-
valent.

Corollary 2.2.15. Let d ∈ [1,+∞]. A Ld-evolution family is a R+-evolution family.

Definition 2.2.16. Let d ∈ [1,+∞]. Let M be a complex manifold and let N be a
complex manifolds of the same dimension endowed with a Hermitian metric. Let dN
denote the induced distance. A R+-Loewner chain (ft,M,N) is a Ld-Loewner chain
if for any compact set K ⊂ M and any T > 0 there exists a kK,T ∈ Ld([0,T ],R+)
such that

dN(fs(z),ft(z)) ≤
∫ t

s

kK,T (ξ)dξ, for all z ∈ K and for all 0 ≤ s ≤ t ≤ T. (2.2.1)

Remark 2.2.17. Condition (2.2.1) implies that if (ft) is a Ld-Loewner chain then
the mapping t→ ft(z) is locally absolutely continuous, uniformly on compacta with
respect to z ∈ M . It is easy to see that the mapping t → ft is continuous with
respect to the topology of uniform convergence on compacta on hol(M,N) and that
the mapping Ψ: M × R+ → N defined as Ψ(z,t) = ft(z) is jointly continuous.
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2.3 Kernels
Proposition 2.3.1. Let U ⊂ Cq be an open set. Let fn : U → N be a sequence
of univalent mappings. Assume that fn → f uniformly on compacta and that f is
univalent. Then for all z ∈ U and 0 < s < r such that B(z0,s) ⊂⊂ B(z0,r) ⊂⊂ U
there exists m = m(z0,s,r) such that if n > m then

f(B(z0,s)) ⊂ fn(B(z0,r)).

Proof. Let K = f
(
B(z0,s)

)
, γ = ∂B(z0,r) and Γ = f(γ). Then K ∩ Γ = ∅ since f

is univalent on U .
Let η be the distance between Γ and K. Then η > 0 and

η = min
w∈K,|z−z0|=r

|f(z)− w|.

If u0 ∈ K then |f(z) − u0| ≥ η for z ∈ γ, and since fn → f uniformly on γ there
exists m > 0 such that if n ≥ m and z ∈ γ then

|f(z)− fn(z)| < |f(z)− u0|.

Rouché theorem in several complex variables yields then that fn(z) − u0 and
f(z) − u0 have the same number of zeros on B(z0,r) counting multiplicities. But
f(z)− u0 has a zero in B(z0,r) since u0 ∈ K, and thus u0 ∈ fn(B(z0,r)) for n ≥ m.
The constant m > 0 does not depend on u0 ∈ K, hence we have the result.

Corollary 2.3.2. Let (fn) be a sequence of holomorphic mappings fn : U → Cq

converging uniformly on compacta to an univalent mapping f . Then any compact
set K ⊂ f(U) is eventually contained in fn(U).

Proof. All the balls B(z,s) ⊂⊂ U give an open cover of U . Since K is compact
there is a finite number of balls B(zi,si) ⊂⊂ U such that K =

⋃
i f(B(zi,si)), hence

Proposition 2.3.1 yields the result.

Definition 2.3.3. Let (Ωn) be a sequence of open subset of a manifold M . The
kernel Ω of (Ωn) is the biggest open set such that for all compact sets K ⊂ Ω there
exists m = m(K) such that if n ≥ m then K ⊂ Ωn.

The kernel might be empty as the following example shows.

Example 2.3.4. Let M = C and fn : D → C defined by fn(z) = 1
n
z. Then (fn) is a

sequence of univalent mappings converging uniformly on compacta to 0. The kernel
of the sequence (fn(D)) is then empty.
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Theorem 2.3.5 ( [3]). Let (fn) be a sequence of univalent mappings from a complete
hyperbolic complex manifold M to a complex manifold N of the same dimension.
Suppose that (fn) converges uniformly on compacta to an univalent mapping f .
Then f(M) is a connected component of the kernel of the sequence (fn(M)), and
(f−1
n |f(M)) converges uniformly on compacta to (f−1|f(M)).

Proof. Let K ⊂ f(M) be a compact set. We want to prove that eventually K ⊂
fn(M). Let U = {Uα} be an open cover of M such that any Uα is biholomorphic
to B, and let H be the open cover of M given by all open subsets H satisfying the
following property: there exists Uα ∈ U such that H ⊂⊂ Uα. Note that f is an open
mapping since M and N have the same dimension, thus f∗U = {f(Uα)}Uα∈U is an
open cover of f(M).

Since K is compact there exist a finite number of open subsets Hi ∈ H such
that K ⊂ ⋃

i f(Hi). Note that on Hi the sequence fn takes eventually values in
some f(Uαi

) thanks to uniform convergence on compacta. By using a partition of
unity it is easy to see that there exist a finite number of compact set Ki such that
Ki ⊂ f(Hi) and K =

⋃
iKi. Thus we can assume M ⊂ Cq and N = Cq, and the

claim follws from corollary 2.3.2.
Thus f(M) is a subset of the kernel of the sequence (fn(M)). This implies that

on any compact set K ⊂ f(M) the sequence f−1
n : K →M is eventually defined. Let

Ω be the connected component of the kernel which contains f(M). We want to prove
that (f−1

n |Ω) admits a subsequence converging uniformly on compacta. Assume that
(f−1
n |Ω) is compactly divergent. Since M is complete hyperbolic, this is equivalent

to assume that for all fixed z0 ∈M and compact sets K ⊂ Ω we have

lim inf
n→∞

(
min
w∈K

kM(f−1
n (w),z0)

)
= +∞. (2.3.1)

Let j ≥ 0 and let
K(j)

.
= {f(z0)} ∪

⋃

n≥j
{fn(z0)}.

Since fn(z0) → f(z0), the set K(j) is compact. Since f(M) is open there exists
m > 0 such that K(m) ⊂ f(M) ⊂ Ω. But

kM
(
f−1
n (fn(z0)),z0

)
= 0,

in contradition with (2.3.1).
Let (f−1

nk
|Ω) be a converging subsequence and let w0 ∈ Ω. The sequence (f−1

nk
(w0))

is eventually defined and converging to some z = g(w0). Thus w0 = fnk
(f−1
nk

(w0)) →
f(z), which implies that Ω = f(M) and that g(w0) = f−1(w0), hence (f−1

n |Ω)
converges to f−1|Ω uniformly on compacta.
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2.4 From Loewner chains to evolution families
Theorem 2.4.1 ( [3]). Let d ∈ [1,+∞] and let (ft,M,N) be an Ld-Loewner chain.
Assume that M is complete hyperbolic. Define for 0 ≤ s ≤ t the mapping ϕt,s

.
=

f−1
t ◦ fs. Then (ϕt,s) is an Ld-evolution family on M associated with (ft).

Proof. We need to prove iii) of Definition 2.2.11. Fix T > 0. Let 0 ≤ t ≤ T and let
H be a compact subset of ft(M). Set

L(H,t)
.
= sup

η,ζ∈H,η /=ζ

dM(f−1
t (ζ),f−1

t (η))

dN(ζ,η)
< +∞

since w → f−1
t (w) is locally Lipschitz.

Given a compact subset K ⊂M define for 0 ≤ t ≤ T

Kt
.
=

⋃

s∈[0,t]
fs(K).

The set Kt is a compact subset of ft(M) by Remark 2.2.17 since Kt = Ψ(K × [0,t]).
We claim that the function L(Kt,t) on 0 ≤ t ≤ T is bounded by a constant C(K,T ) <
+∞. We argue by contradiction. Assume that L(Kt,t) is unbounded. Then there
exists a sequence (tn) ⊂ [0,T ] such that

L(Ktn ,tn) ≥ n+ 1, ∀n ≥ 0.

Hence for any n ≥ 0 there exist ζn,ηn ∈ Ktn such that ζn /= ηn and

dM(f−1
tn (ζn),f

−1
tn (ηn))

dN(ζn,ηn)
≥ n. (2.4.1)

By passing to a subsequence we may assume that the sequence (tn,f
−1
tn (ζn)) in

the compact set [0,T ] × K converges to (t,z) ∈ [0,T ] × K. Hence the sequence
(Ψ(tn,f

−1
tn (ζn))) = (ζn) converges to ζ .

= Ψ(t,z) = ft(z) ∈ Kt. In the same way we
see that ηn → η

.
= Ψ(t,w) = ft(w) ∈ Kt. By (2.4.1) we have η = ζ, since otherwise

dM(f−1
tn (ζn),f

−1
tn (ηn))

dN(ζn,ηn)
→ dM(z,w)

dN(ζ,η)
.

Let U,V be two open subsets of ft(M), both biholomorphic to B such that

ζ ∈ U ⊂⊂ V ⊂⊂ ft(M),

and let (ψ,f−1
t (V )),(ϕ,V ) be charts around z and ζ respectively. Since by Theorem

2.3.5 the sequence (f−1
tn ) converges to f−1

t uniformly on V we have that eventually
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f−1
tn (U) ⊂ f−1

t (V ). Therefore the sequence gtn = ψ ◦ f−1
tn ◦ ϕ−1 is eventually defined

on ϕ(U) and converges uniformly to g = ψ ◦ f−1
t ◦ ϕ−1. Then the sequence (gtn)

is equibounded and by Cauchy estimates it is equi-Lipschitz in a neighborhood of
ϕ(ζ). Since two Hermitian metrics are equivalent on compact sets, this contradicts
(2.4.1) and thus proves the claim.

Let ∆T
.
= {(s,t) : 0 ≤ s ≤ t ≤ T}. Then the mapping (s,t) → f−1

t ◦ fs from
∆T to hol(M,M) endowed with the topology of uniform convergence on compacta
is continuous. Indeed, let (sn,tn) → (s,t). Let K ⊂M be a compact set. By Remark
2.2.17 the set

K(j)
.
= fs(K) ∪

⋃

n≥j
fsn(K) = Ψ(K,{s} ∪

⋃

n≥j
{sn})

is compact. There exists m > 0 such that K(m) ⊂ ft(M). By Theorem 2.3.5 the
sequence (f−1

tn ) converges to f−1
t uniformly onK(m). This proves that (s,t) → f−1

t ◦fs
is continuous.

This implies that the mapping Φ: M ×∆T →M defined as Φ(z,s,t)
.
= ϕt,s(z) is

jointly continuous. Hence if K ⊂M is a compact set,

K̂
.
=

⋃

0≤a≤b≤T
ϕb,a(K) =

⋃

0≤a≤b≤T
f−1
b (fa(K))

is compact in M . Therefore, since

dM(ϕu,s(z),ϕt,s(z)) = dM(ϕu,s(z),ϕt,u(ϕu,s(z))),

in order to estimate dM(ϕu,s(z),ϕt,s(z)) for z ∈ K and 0 ≤ s ≤ u ≤ t ≤ T it is
enough to estimate dM(ζ,ϕt,u(ζ)) for ζ ∈ K̂.

Since

dM(ζ,ϕt,u(ζ)) = dM(f−1
t (ft(ζ)),f

−1
t (fu(ζ))) ≤ L(K̂t,t)dN(ft(ζ),fu(ζ))

≤ C(K̂,T )dN(ft(ζ),fu(ζ))

≤ C(K̂,T )

∫ t

u

kK̂,T (ξ)dξ.

2.5 From evolution families to Loewner chains
Theorem 2.5.1 ( [3]). Let d ∈ [1,+∞]. Let (ϕt,s) be a Ld-evolution family on a taut
manifold M . Then if (E,ft) is a direct limit for (M,ϕt,s) then (ft) is a Ld-Loewner
chain associated with (ϕt,s) with respect to any hermitian metric on E.
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Proof. Endow E with an hermitian metric and denote dE the induced distance.
Since M is taut, for any compact subset K ⊂M and any T > 0 the set

K̂
.
=

⋃

0≤s≤t≤T
ϕt,s(K)

is compact. Indeed by Proposition 2.2.12 the mapping Φ(z,s,t)
.
= ϕt,s(z) is continu-

ous on M ×∆, hence K̂ = Φ(K,∆T ) is compact.
Let K ⊂ M be a compact set. Let T > 0 be fixed. Since fT is locally Lipshitz

there exists C = C(K̂) > 0 such that

dE(fT (z),fT (w)) ≤ CdM(z,w) ∀z,w ∈ K̂.

Moreover there exists C ′ = C(K̂) > 0 such that ∀z,w ∈ K̂,∀t ∈ [0,T ],

dM(ϕT,t(z),ϕT,t(w)) ≤ C ′dM(z,w).

Indeed assume by contradiction that there exist sequences (zn),(wn) in K̂, and (tn)
in [0,T ] such that

dM(ϕT,tn(zn),ϕT,tn(wn))

dM(zn,wn)
≥ n. (2.5.1)

By passing to subsequences we can assume tn → t, zn → z and wn → w, and by
(2.5.1)to see that z = w.

Let U,V be two open subsets of M , both biholomorphic to B such that

z ∈ V ⊂⊂ U ⊂⊂M,

and let (ψ,U),(ν,ϕT,t(U)) be charts around z and ϕT,t(z) respectively. Since the
sequence (ϕT,tn) converges to ϕT,t uniformly on U we have that eventually ϕT,tn(V ) ⊂
ϕT,t(U). Therefore the sequence gtn = ν ◦ ϕT,tn ◦ ψ−1 is eventually defined on ψ(V )
and converges uniformly to g = ν◦ϕT,t◦ψ−1. Then the sequence (gtn) is equibounded
and by Cauchy estimates it is equi-Lipschitz in a neighborhood of ψ(z). Since two
Hermitian metrics are equivalent on compact sets, this contradicts (2.5.1).

Hence for all z ∈ K and 0 ≤ s ≤ t ≤ T we have

dE(fs(z),ft(z)) = dE(fT (ϕT,s(z)),fT (ϕT,t(z))) ≤ CdM(ϕT,s(z),ϕT,t(z))

= CdM(ϕT,t(ϕt,s(z)),ϕT,t(z))

≤ CC ′dM(ϕt,s(z),z)

= CC ′dM(ϕt,s(z),ϕs,s(z))

≤ CC ′
∫ t

s

cK,T (ξ)dξ.
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Corollary 2.5.2. Let (ft,M,N) be a Ld-Loewner chain. Then (ft,M,rg (ft)) is a
Ld-Loewner chain for any hermitian metric on rg (ft).

Proof. Theorem 2.4.1 yields a Ld-evolution family (ϕt,s) associated with (ft,M,N).
Since (rg (ft),ft) is a direct limit for (M,ϕt,s), Theorem 2.5.1 proves that (ft,M,rg (ft))
is a Ld-Loewner chain for any hermitian metric on rg (ft).

2.6 Herglotz vector fields and the Loewner-Kufarev
PDE

Let M be a complex manifold of complex dimension q. Let ‖ · ‖ be a Hermitian
metric along the fibers of TM and let dM be the induced distance on M .

Definition 2.6.1. Let d ∈ [1,∞]. A Ld-weak holomorphic vector field on M is a
function

G : M × R+ → TM

with the following properies:

i) for all z ∈M the function R+ 3 t→ G(z,t) is measurable,

ii) for all t ≥ 0 the function M 3 z → G(z,t) is holomorphic,

iii) for all compact set K ⊂⊂ M and all T > 0 there exists a function CK,T ∈
Ld([0,T ],R+) such that

‖G(z,t)‖ ≤ CK,T (t)

for all z ∈ K and almost every t ∈ [0,T ].

Definition 2.6.2. Let d ∈ [1,∞]. Let M be a complex manifold. Assume that
κM ∈ C1(M × M r Diag). A Ld-weak holomorphic vector field H(z,t) is a Ld-
Herglotz vector field if

d(z,w)kM(H(z,t),H(w,t)) ≤ 0, z,w ∈M, z /= w and a.e. t ≥ 0.

Remark 2.6.3. According to [7], if M = D is a strongly convex domain in Cq with
smooth boundary then H is a Ld-Herglotz vector field if and only if it is a Ld-weak
holomorphic vector field such that for almost every t ≥ 0 the function D 3 z →
H(z,t) is an infinitesimal generator of a semigroup of holomorphic self-maps of D.
See [1] for definitions and properties of semigroups.

The following results are proved in [6].
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2 – An abstract approach to Loewner chains

Theorem 2.6.4 ( [6]). Let d ∈ [1,∞]. Let M be a complete hyperbolic manifold and
assume that κM ∈ C1(M × M r Diag). Then for any Ld-Herglotz vector field H
there exists a unique Ld-evolution family (ϕt,s,M) such that

∂ϕt,s
∂t

(z) = H(ϕt,s(z),t), z ∈M, a.e t ≥ s. (2.6.1)

Definition 2.6.5. Equation (2.6.1) is called the Loewner-Kufarev ODE associated
with H.

Theorem 2.6.6 ( [6]). Let M be a taut manifold. Assume that κM ∈ C1(M ×M r
Diag). Then for any evolution family (ϕt,s,M) there exists a L∞-Herglotz vector field
H such that (ϕt,s) satisfies the Loewner-Kufarev ODE associated with H. Moreover
if G is a weak holomorphic vector field such that (ϕt,s) satisfies the Loewner-Kufarev
ODE associated with G then H(z,t) = G(z,t) for all z ∈M and almost every t ≥ 0.

We can now prove the following results.

Lemma 2.6.7. Let d ∈ [1,+∞], let (ft,M,N) be a Ld-Loewner chain. There exists
a set E ⊂ R+ (independent of z) of zero measure such that for every s ∈ R+ \ E,
the mapping

M 3 z → ∂fs
∂s

(z) ∈ Tfs(z)N

is well-defined and holomorphic on M .

Proof. Let R> denote the set of strictly positive real numbers. The manifold M×R>

has a countable basis B given by products of the type B × I, where B ⊂ M is an
open subset biholomorphic to a ball, and I ⊂ R> is an open interval. Let V be
a countable covering of N by chart domains. The mapping Ψ: M × R> → N is
continuous, hence there exists a covering U of M × R> such that U ⊂ B and such
that U < f−1(V).

We will prove that for each U = B × I ∈ U there exists a set of full measure
I ′ ⊆ I such that B 3 z → ∂fs

∂s
(z) is well defined and holomorphic for all t ∈ I ′.

Hence M 3 z → ∂fs
∂s

(z) will be well defined and holomorphic on
⋂

U I
′ which is a set

of full measure in R+.
We can assume that M = Bq, N = Cq, and that the distances dM ,dN on M,N are

given by the standard Hermitian metric on Cn. Since t→ ft(z) is locally absolutely
continuous on R+ locally uniformly with respect to z ∈ Bn, we deduce that for each
z ∈ Bq, there is a null set E1(z) ⊂ I such that for each t ∈ I \ E1(z), there exists
the limit

∂ft
∂t

(z) = lim
h→0

ft+h(z)− ft(z)

h
.
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By Definition 2.2.16, there exists a function pk ∈ Ldloc(I,R+) such that

‖fs(z)− ft(z)‖ ≤
∫ t

s

pk(ξ)dξ, ‖z‖ ≤ 1− 1

k
, s ≤ t ∈ I. (2.6.2)

Also, since pk ∈ Ldloc(I,R+), we may find a null set E2(k) ⊂ I such that for each
t ∈ I \ E2(k), there exists the limit

pk(t) = lim
h→0

1

h

∫ t+h

t

pk(ξ)dξ, k ∈ N. (2.6.3)

Next, let Q be a countable set of uniqueness for the holomorphic functions on Bq
and let

E =

( ⋃

q∈Q
E1 (q)

)⋃( ∞⋃

k=1

E2(k)

)
.

Then E is a null subset of R+, which does not depend on z ∈ Bn. Arguing as in
the proof of [9, Theorem 4.1(1)(a)], it is not difficult to see that (2.6.2) and (2.6.3)
imply that for each s ∈ I \ E, the family

{(fs+h(z)− fs(z))/h, |h| < dist(s,∂I)}

is relatively compact and has a unique accumulation point for |h| → 0 by Vitali
Theorem in several complex variables, proving the result.

Theorem 2.6.8 ( [3]). Let M be a complete hyperbolic manifold.

i) Let (ft,M,N) be a L∞-Loewner chain on M . Then there exist a L∞-Herglotz
vector field G(z,t) and a set E ⊂ R+ (independent of z) of zero measure such
that for every s ∈ (0,∞) \ E and every z ∈M ,

∂fs
∂s

(z) = −dzfs(G(z,s)).

ii) Let d ∈ [1,∞]. Let G(z,t) be a Ld-Herglotz vector field associated with the Ld-
evolution family (ϕt,s). Assume that (ft) is a family of univalent mappings from
M into a complex manifold N of the same dimension, such that the mapping
t→ ft(z) is locally absolutely continuous on R+ locally uniformly with respect
to z ∈M . In addition, assume that

∂fs
∂s

(z) = −dzfs(G(z,s)) a.e. s ≥ 0,∀z ∈M.

Then (ft,M,N) is a Ld-Loewner chain associated with the Ld-evolution family
(ϕt,s).
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Proof. i) By Theorem 2.4.1, there exists a L∞-evolution family (ϕt,s) associated with
(ft). By Theorem 2.6.6, there exists a L∞-Herglotz vector field G :M ×R+ → TM
such that

∂ϕt,s
∂t

(z) = G(ϕt,s(z),t) a.e. t ≥ s, ∀z ∈M.

Let E1 ⊂ R+ be a null set such that the above equality holds for all t ∈ [s,∞) \ E1

and for all z ∈M . By Lemma 2.6.7, there is a null set E2 ⊂ R+ such that z → ∂fs
∂s

(z)
is well defined and holomorphic for all s ∈ R+ \ E2. The set E = E1 ∪ E2 has also
zero measure. It is clear that the mapping Lt(z) = ft(ϕt,0(z)) is locally absolutely
continuous on R+ locally uniformly with respect to z ∈ M . Also Lt(z) = f0(z) for
z ∈M . Differentiating the last equality with respect to t ∈ (0,∞) \ E we obtain

0 = dϕt,0(z)ft

(
∂ϕt,0
∂t

(z)

)
+
∂ft
∂t

(ϕt,0(z))

= dϕt,0(z)ft(G(ϕt,0(z),t)) +
∂ft
∂t

(ϕt,0(z)),

for all t ∈ (0,∞) \ E and for all z ∈M . Hence

∂ft
∂t

(w) = −dwft(G(w,t)),

for all w in the open set ϕt,0(M) and for all t ∈ (0,∞) \E. The identity theorem for
holomorphic mappings provides the result.
ii) Fix s ≥ 0 and let Lt(z) = ft(ϕt,s(z)) for t ∈ [s,∞) and z ∈ M . In view of the
hypothesis, it is not difficult to deduce that

∂Lt
∂t

(z) = 0, a.e. t ∈ R+, ∀z ∈M.

Hence Lt(z) ≡ Ls(z), i.e.
ft(ϕt,s(z)) = fs(z),

for all z ∈M and t ≥ s. Hence (ft) is a Ld-Loewner chain by Theorem 2.5.1.

Definition 2.6.9. The partial differential equation

∂fs
∂s

(z) = −dzfs(G(z,s)) a.e. s ≥ 0,∀z ∈M

is called the Loewner-Kufarev PDE.
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2.7 Kobayashi metric and complex structure of
the Loewner range

Let (ϕβ,α) be a I-evolution family on a hyperbolic manifold M . Let κM : TM → R+

be the Kobayashi metric of M . For v ∈ TzM we define

βαv (z)
.
= lim

β→∞
κM(ϕβ,α(z),dzϕβ,α(v)). (2.7.1)

Remark 2.7.1. The Kobayashi metric is contracted by holomorpic mappings, hence
if 0 ≤ α ≤ η ≤ β,

κM(ϕβ,α(z),dzϕβ,α(v)) = κM(ϕβ,η(ϕη,α(z)),dϕη,α(z)ϕβ,η ◦ dzϕη,α(v))
≤ κM(ϕη,α(z),dzϕη,α(v)),

thus βαv (z) is well defined.

Proposition 2.7.2. Let (ϕβ,α) be a I-evolution family on a hyperbolic complex man-
ifold M . Let (fα,M,N) be an associated I-Loewner chain with range N . For all
v ∈ TzM

f ∗
ακN(z,v) = βαv (z).

Proof. Since N is the union of the growing sequence of manifolds (fm(M))m∈N it is
easy to see that the Kobayashi metric satisfies

κN(fα(z),dzfα(v)) = lim
m→∞

κfm(M)(fα(z),dzfα(v)).

The result follows from

lim
m→∞

κfm(M)(fα(z),dzfα(v)) = lim
m→∞

κM(f−1
m (fα(z)),dfα(z)f

−1
m ◦ dzfα(v))

= lim
m→∞

κM(ϕm,α(z),dzϕm,α(v)).

As a corollary we find (cf. [9, Theorem 1.6])

Corollary 2.7.3. Let (ϕβ,α) be a I-evolution family in the unit disc D. If there
exists z ∈ D,v ∈ TzD = C,α ≥ 0 such that βαv (z) = 0 then

i) Lr(ϕβ,α) = C,

ii) βαv (z) = 0 for all z ∈ D,v ∈ C,α ≥ 0.

If there exists z ∈ D,v ∈ TzD = C,α ≥ 0 such that βαv (z) /= 0 then
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i) Lr(ϕβ,α) = D,

ii) βαv (z) /= 0 for all z ∈ D,v ∈ C,α ≥ 0.

Proof. Since Lr(ϕt,s) is non-compact and simply connected, by the uniformization
Theorem it has to be biholomorphic either to D or to C. Since

kC(z,v) = 0, z ∈ C,v ∈ C,

kD(z,v) /= 0, z ∈ D,v ∈ C,

the result follows from Proposition 2.7.2.

In order to further study the complex structure and the Kobayashi metric of
the Loewner range we focus on the “union problem”: let N be a complex manifold,
exhausted by a sequence of open submanifolds

M0 ⊂M1 ⊂M2 . . . ,

all biholomorphic to a fixed manifold M . What can be said about the complex
structure of N?

A first answer is as follows. Recall that a complex manifold N is Stein if and
only if

i) the algebra O(N) of holomorphic functions separates points of N ,

ii) N is holomorphically convex, that is for every compact subset K ⊂ N the
O(N)-envelope of K

K̂
.
=

{
x ∈ N : |f(x)| ≤ max

K
|f |, ∀f ∈ O(N)

}

is compact.

Theorem 2.7.4 ( [4]). If the manifold N is an open subset of Cq and M = Bq then
N is Stein.

For a general complex manifold N this is no longer true, indeed there is the
following result.

Theorem 2.7.5 ( [12]). There exists a 3-dimensional complex manifold N enjoying
the following properties:

1. N can be exhausted by open submanifolds B1 ⊂ B2 ⊂ B3 . . . , where each Bi is
biholomorphic to B ⊂ C3.

2. N is not holomorphically convex, hence it is not Stein.
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Definition 2.7.6. Let N be a complex manifold and κN its Kobayashi metric. The
null set NN(z) of κN in z ∈ M is the complex subspace {v ∈ TzM : κN(v) = 0}.
The corank at z is dimNN(z).

Let M be a hyperbolic complex manifold such that M/aut(M) is compact.
Choose a compact set K such that M = aut(M) · K. Then there exist a point
w0 ∈M0 and biholomorphic maps gn : M →Mn such that g−1

n (w0) ∈ K. By Lemma
1.0.13 M is taut, hence by Proposition 1.0.2 the sequence (g−1

n ) converges up to a
subsequence uniformly on compact sets on N to a mapping ψ : N →M .

The maps αn : M →M defined by αn = ψ ◦ gn converge up to a subsequence to
a holomorphic map α : M →M since M is taut and αn(K) contains ψ(w0).

The following results are proved in [13].

Lemma 2.7.7. The following facts hold:

i) If w ∈ N and v ∈ TwN then kN(w,v) = ψ∗kM(w,v), hence NN(w) = ker dwψ.

ii) The map ψ has constant rank k and kN has constant corank q − k.

iii) We have ψ = α ◦ ψ. The set Z .
= {z ∈ M : α(z) = z} is a connected closed

k-dimensional complex submanifold of M and is equal to ψ(M). The mapping
α is a retraction of M to Z.

iv) The fibers of ψ are (q − k)-dimensional complex manifolds and topologically
cells. Moreover for any z ∈ Z, kψ−1(z) ≡ 0.

Theorem 2.7.8 ( [13]). Assume that M is hyperbolic and that M/aut(M) is com-
pact. If there exists z ∈ M such that kN(z,v) /= 0 whenever v /= 0 in TzM , then N
is biholomorphic to M .

Theorem 2.7.9 ( [13]). Assume that M is hyperbolic and that M/aut(M) is com-
pact. If the corank of κN is one, then (N,Z,ψ) is a locally trivial holomorphic fiber
bundle with fiber C.

Corollary 2.7.10. Assume M = Bq and that the corank of κN is one. Then N is
biolomorphic to Bq−1 × C.

Remark 2.7.11. The manifold N in Proposition 2.7.5 has constant corank 2.
Remark 2.7.12. Let (ϕβ,α) be a I-evolution family on a hyperbolic manifold M
such that M/aut(M) is compact, and let (fα,M,N) be an associated I-Loewner
chain such that ∪α≥0fα(M) = N. Assume that (ϕβ,α) admits a relatively compact
trajectory. Then we can assume that fn = gn,ψ = limnk→∞ f−1

nk
, and αn = ψ ◦ fn =

limnk→∞ ϕnk,n.

We want now to investigate the following problem.
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Problem 2.7.13. Give conditions on a I-evolution family (ϕβ,α) on Bq ensuring
the existence of an associated Loewner chain (fα,M,Cq).

Remark 2.7.14. The previous problem can be formulated in the following terms:
when is Lr(ϕβ,α) an open set in Cq?

Using the previous results we give a (partial) answer to Problem 2.7.13.

Theorem 2.7.15 ( [3]). Let (ϕβ,α) be a I-evolution family on Bq. Assume that there
exist z ∈ Bq,α ≥ 0 such that

dim{v ∈ TzBq : βαv (z) = 0} ≤ 1.

Then Lr(ϕβ,α) is an open set in Cq.

Proof. The result follows from Proposition 2.7.2, Theorem 2.7.8 and Corollary
2.7.10.

We have also a negative result.

Proposition 2.7.16. There exists a N-evolution family (ϕm,n) on B3 which does
not admit any associated N-Loewner chain (fn,B3,C3).

Proof. Let N = ∪n≥0Bn given by Proposition 2.7.5. Let fi : B3 → Bi be a biholo-
morphism, and define ϕn+1,n = f−1

n+1 ◦ fn. Assume that there exists a N-Loewner
chain (gn,B3,C3) associated with (ϕm,n). Then since both (N,fn) and (

⋃
n gn(B),gn)

are direct limits for (B3,ϕt,s) we have that N is biholomorphic to
⋃
n gn(B) which

by Proposition 2.7.4 is Stein, contradiction.

Remark 2.7.17. Setting fs
.
= f[s] and ϕt,s

.
= f−1

t ◦fs we obtain a R+-evolution family
(ϕt,s) on B3 which does not admit any associated R+-Loewner chain (fs,B3,C3). It
is not known whether there exists a Ld-evolution family with the same property.

In the next chapter we are going to give an answer to Problem 2.7.13 for a
particular class of I-evolution families proving that they have Loewner range Cq.
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Chapter 3

Resonances in Loewner equations

3.1 Dilation N-evolution families
We begin by studying Problem 2.7.13 in the discrete case.

Definition 3.1.1. Let A ∈ L(Cq,Cq). The spectrum σ(A) of A is the set of its
eigenvalues. The spectral radius ρ(A) is maxλ∈σ(A) |λ|.

Definition 3.1.2. Let D be a domain in Cq containing 0. A N-evolution family
(ϕm,n) on D is a dilation N-evolution family if for all 0 ≤ n,

ϕn+1,n(z) = A(z) +O(|z|2), (3.1.1)

with A ∈ A(Cq) such that ρ(A) < 1. A dilation N-evolution family (ϕm,n,D) is of
semigroup type if for all n ≥ 0,

ϕn+1,n = ϕ1,0.

A N-Loewner chain (fn,D,Cq) is a dilation N-Loewner chain if for all n ≥ 0,

fn(z) = A−n(z) +O(|z|2),

with A ∈ A(Cq) such that ρ(A) < 1. A dilation Loewner chain is normal if (An ◦ fn)
is a normal family.

Remark 3.1.3. Let (ϕm,n,D) be a dilation semigroup type N-evolution family on a
taut manifold D. Then by Poincaré-Dulac Theorem (see for example [23, Appendix])
there exists a univalent mapping h(z) = z+O(|z|2) defined in a neighborhood of the
origin which conjugates ϕ1,0 to a polynomial automorphism Q of Cq. This mapping
h is given by

lim
n→∞

Q−n ◦ k ◦ ϕn,0,
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where k is a well-chosen polynomial mapping k : Cq → Cq.
Since D is a taut manifold, by Theorem 1.0.4 it follows that limn→∞Q−n◦k◦ϕn,0

defines a univalent mapping h on the whole D such that

h ◦ ϕ1,0 = Q ◦ h.

Note that
h ◦ ϕm,n = Qm−n ◦ h

and that
Q−m ◦ h ◦ ϕm,n = Q−n ◦ h.

Thus (Q−n ◦ h,D,Cq) is a N -Loewner chain associated with (ϕm,n).

Motivated by this remark we are going to introduce a notion of conjugacy for
general dilation type N-evolution families.

Definition 3.1.4. Let (ϕm,n,D) be a dilation N-evolution family. An open subset
Ω ⊂ D is invariant if for all 0 ≤ n ≤ m,

ϕm,n(Ω) ⊂ Ω.

Note that (ϕm,n,Ω) defines a dilation N-evolution family, called the restriction of
(ϕm,n,D) to Ω.

Definition 3.1.5. A dilation N-evolution family (ϕm,n) is shrinking if

i) the family (ϕn+1,n) is uniformly bounded on compacta,

ii) limp→∞ ϕn+p,n = 0 uniformly on compacta, uniformly in n ≥ 0.

Remark 3.1.6. A dilation semigroup type N-evolution family (ϕm,n,D) on a taut
manifold D is shrinking by Theorem 1.0.4.
Remark 3.1.7. The property of being shrinking is invariant by biholomorphisms.
Namely, if (ϕm,n,D) is shrinking and Ψ: D → Q ⊂ Cq is a biholomorphism fixing 0,
then

(Ψ ◦ ϕm,n ◦Ψ−1,Q)

is shrinking.
We recall a classic result from matrix analysis.

Lemma 3.1.8 ( [16, Lemma 5.6.10]). Let A ∈ Mq,q(C) and let δ > 0. Then there
exists L ∈ GLq(C) such that

‖LAL−1‖2 ≤ ρ(A) + δ.
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3.1 – Dilation N-evolution families

If I is the set of all matrix norms induced by a norm on Cq, then

ρ(A) = inf
‖·‖∈I

{‖A‖}.

Furthermore if ρ(A) denotes the spectral radius,

lim
k→∞

Ak = 0 if and only if ρ(A) < 1.

Proposition 3.1.9. Let (ϕm,n,B) be a dilation N-evolution family. Then (ϕm,n) is
shrinking.

Proof. Since ρ(A) < 1 we have by Lemma 3.1.8,

lim
k→∞

Ak = 0.

Hence there exists an integer p > 0 such that ‖Ap‖ < 1. Let n ∈ N, let K ⊂ B be
a compact subset and let 0 < t < 1. Consider the family (ϕ(m+1)p+n,mp+n), m ≥ 0.
Lemma A.0.7 gives m > 0 (independent of n) such that ϕpm+n,n(K) ⊂ tB. Thus for
all j ≥ pm+ n,

ϕj,n(K) = ϕj,pm+n ◦ ϕpm+n,n(K) ⊂ tB.

Lemma 3.1.10. Let (ϕm,n,D) be a shrinking N-evolution family. Then for any
neighborhood U of 0 there exists an open invariant set Ω ⊂ U biholomorphic to
B.

Proof. Since ρ(A) < 1, by Lemma 3.1.8 there exists L ∈ A(C) such that

‖L ◦ A ◦ L−1‖ < 1.

The dilation N-evolution family (ψm,n,Q)
.
= (L ◦ ϕm,n ◦ L−1,L(D)) is also shrinking

by Remark 3.1.7, thus in particular the family (ψn+1,n) is uniformly bounded on
compacta. We can hence apply Lemma A.0.6 to (ψm,n,Q) obtaining an invariant
ball sB. Note that any ball rB with 0 < r ≤ s is also invariant by Schwarz Lemma
A.0.4. Thus for all 0 < r ≤ s,

Ωr
.
= L−1(rB)

is invariant for (ϕm,n).

Definition 3.1.11. Two shrinking N-evolution families (ϕm,n,D) and (ψm,n,Q) are
locally conjugate if there exists, on an invariant open set Ω ⊂ D biholomorphic to
B, a family (hn) of holomorphic mappings hn : Ω → Q such that
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3 – Resonances in Loewner equations

i) (hn) is a uniformly bounded family,

ii) hn(z) = z +O(|z|2), n ≥ 0,

iii)
hm ◦ ϕm,n = ψm,n ◦ hn, 0 ≤ n ≤ m. (3.1.2)

The mappings of the family (hn) are called intertwining mappings.

Proposition 3.1.12. Each intertwining mapping hn is univalent.
Proof. Notations are as in previous definition. Assume that there exist z /= w in Ω
and n ≥ 0 such that hn(z) = hn(w). Then by (3.1.2),

hm(ϕm,n(z)) = hm(ϕm,n(w)), 0 ≤ n ≤ m. (3.1.3)

By Lemma A.0.8 there exists a ball sB ⊂ Ω such that for all m ≥ 0 the mapping
hm|sB is univalent. Since (ϕm,n) is shrinking, there exists m ≥ n such that ϕm,n(z)∪
ϕm,n(w) ⊂ sB. But ϕm,n(z) /= ϕm,n(w) since ϕm,n is a univalent mapping, hence
(3.1.3) contradicts the univalence of hm|sB.

Proposition 3.1.13. Local conjugacy is an equivalence relation.
Proof. Notations are as in previous definition.

i) Reflexivity: take hn = id for all n ≥ 0.

ii) Simmetry: by Lemma A.0.8 there exists a ball tB such that tB ⊂ hn(sB) for
all n ≥ 0. Let Ω′ ⊂ tB be the invariant open set for (ψm,n) given by Lemma
3.1.10. On Ω′ the family (h−1

n ) is uniformly bounded by s and satisfies

h−1
m ◦ ψm,n = ϕm,n ◦ h−1

n , 0 ≤ n ≤ m.

iii) Transitivity: follows from Corollary 2.1.9 and the equicontinuity in 0 of the
family (hn).

Proposition 3.1.14. Let (ϕm,n,D) be a shrinking N-evolution family. Let Ω be an
invariant set. Assume that (fn,Ω,F ) is a Loewner chain associated with (ϕm,n,Ω).
Then

f en
.
= lim

m→∞
fm ◦ ϕm,n

defines a Loewner chain (f en,D,F ) associated with (ϕm,n,D), such that

f en|Ω = fn.

Hence we can denote f en by fn.
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3.1 – Dilation N-evolution families

Proof. Fix n ≥ 0 and let K ⊂ D be a compact subset. Since (ϕm,n,D) is shrinking,
there exists k ≥ n such that if m ≥ k then ϕm,n(K) ⊂ Ω. The sequence fm ◦ϕm,n|K
is well defined for m ≥ k and satisfies

fm ◦ ϕm,n|K = fm ◦ ϕm,k ◦ ϕk,n|K = fk ◦ ϕk,n|K ,
hence the uniform convergence on compacta is trivially verified.

The mapping f en is trivially univalent for all n ≥ 0. The sequence (f en,D,F ) is a
Loewner chain associated with (ϕm,n,D). Indeed if 0 ≤ n ≤ m then

f en = lim
j→∞

fj ◦ ϕj,n = lim
j→∞

fj ◦ ϕj,m ◦ ϕm,n = f em ◦ ϕm,n.

For all n ≥ 0 we have f en|Ω = fn. Indeed f en|Ω = limm→∞ fm ◦ ϕm,n|Ω = fn since
(fn,Ω,F ) is a Loewner chain associated with (ϕm,n,Ω).
Proposition 3.1.15. Let (ϕm,n,D) and (ψm,n,Q) be two locally conjugate shrinking
N-evolution families. Then

Lr(ϕm,n) = Lr(ψm,n).

Proof. Let (fn,Q,F ) be a Loewner chain associated with (ψm,n,Q) with range F .
Then by Remark 2.1.7 (fn ◦ hn,Ω,F ) is a Loewner chain associated with (ϕm,n,Ω).

Since (ψm,n) is shrinking we claim that
rg (fn ◦ hn,Ω,F ) = F.

Indeed, by Lemma A.0.8 there exists a ball sB such that
sB ⊂ hn(Ω), n ≥ 0.

Given a point x ∈ Q, since (ψm,n) is shrinking we have ψm,n(x) ∈ sB when m is
large enough. Hence for a fixed n ≥ 0, we have, when m is large enough,

fn(x) = fm(ψm,n(x)) ∈ fm(sB).

Thus ⋃

n≥0

fn(hn(Ω)) ⊃
⋃

n≥0

fn(sB) ⊃
⋃

n≥0

fn(x).

Since ⋃

n≥0

fn(Q) =
⋃

x∈Q

⋃

n≥0

fn(x)

we have rg (fn ◦ hn,Ω,F ) = F.
By previous Proposition we can extend this chain to the whole of D, thus ob-

taining the result.

In order to prove that any dilation N-evolution family (ϕm,n) has Loewner range
Cq we are going to locally conjugate it with a well-behaved evolution family and then
we use Proposition 3.1.15. In the next section we introduce this “special” evolution
families.
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3 – Resonances in Loewner equations

3.2 Triangular N-evolution families
Definition 3.2.1. Let Q be a polynomial mapping from Cq to Cq. The degree degQ
is the maximum of the degree of its components.

A polynomial N-evolution family is a dilation N-evolution family (Qm,n,Cq) such
that each Qn+1,n, and hence every Qm,n, is a polynomial automorphism of Cq.

A polynomial N-evolution family (Qm,n) has uniformly bounded coefficients if
the family (Qn+1,n) has uniformly bounded coefficients. A polynomial N-evolution
family (Qm,n) has uniformly bounded degree if the family (Qn+1,n) has uniformly
bounded degree.

Definition 3.2.2. A triangular mapping is a mapping T : Cq → Cq of the form

T (1)(z) = λ1z1,
T (2)(z) = λ2z2 + t(2)(z1),
T (3)(z) = λ3z3 + t(3)(z1,z2),

...
T (q)(z) = λqzq + t(q)(z1,z2, . . . ,zq−1),

where λi ∈ C and t(i) is a polynomial in i− 1 variables fixing the origin.
If λi /= 0 for all 1 ≤ i ≤ q, the mapping T is called a triangular automorphism.

This is indeed an automorphism, since we can iteratively write its inverse, which is
still a triangular mapping:

z1 = w1/λ1,
z2 = w2/λ2 − (1/λ2)t

(2)(z1),
...

zq = wq/λq − (1/λq)t
(q)(z1,z2, . . . ,zq−1).

(3.2.1)

Triangular automorphisms form a subgroup of aut(Cq).
A triangular N-evolution family is a dilation N-evolution family (Tm,n,Cq) such

that each Tn+1,n, and hence every Tm,n, is a triangular automorphism of Cq.

The following Lemmas are just adaptations of [23, Lemma 1, p.80].

Lemma 3.2.3. If (Tm,n) is a triangular N-evolution family of uniformly bounded
degree, then supn deg Tn,0 <∞.

Proof. Set
µ(j) = max

n
deg T

(j)
n+1,n.

We denote by S(m,k) the property

deg T
(j)
k,0 ≤ µ(1) · · ·µ(j), 1 ≤ j ≤ m.
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3.2 – Triangular N-evolution families

Since Tk+1,0 = Tk+1,k ◦ Tk,0, we have

T
(j)
k+1,0 = λjT

(j)
k,0 + t

(j)
k+1,k(T

(1)
k,0 , . . . ,T

(j−1)
k,0 ), 2 ≤ j ≤ q,

thus S(m,k + 1) follows from S(m,k) and S(m− 1,k). Since S(1,k) and S(m,1) are
obviously true for all k and m (note that µ(1) = 1, e µ(j) ≥ 1, for every j), S(q,k)
follows by induction. Hence

deg Tk,0 ≤ µ(1) · · ·µ(q).

Proposition 3.2.4. Let (Tm,n) be a triangular N-evolution family of uniformly
bounded degree and uniformly bounded coefficients. Let ∆ be the unit polydisc. Then
there exists a constant γ ≥ 0 such that

T0,k(∆) ⊂ γk∆, k ≥ 0.

Proof. The family (Tn,n+1) of inverses of (Tn+1,n) has uniformly bounded coefficients.
Indeed the family (Tn+1,n) has uniformly bounded coefficients, and the assertion
follows by looking at (3.2.1). Likewise, supn deg T0,n <∞, since supn deg Tn,0 <∞.

Hence there exists C ≥ 1 such that |T (j)
n,n+1(z)| ≤ C for z ∈ ∆, 1 ≤ j ≤ q, and

there exists d = maxn deg T0,n. Let M be the number of multi-indices I = (i1, . . . ,iq)
with |I| ≤ d, and set γ =MCd, we claim that

|T (j)
0,k (z)| ≤ γk. (3.2.2)

We proceed by induction on k. Since C ≤ γ, (3.2.2) holds for k = 1. Assume (3.2.2)
for some k ≥ 1, then by Cauchy estimates the coefficients in T

(j)
0,k (z) =

∑
|I|≤d aIz

I

satisfy
|aI | ≤ γk.

Since T0,k+1 = T0,k ◦ Tk,k+1, we have

T
(j)
0,k+1 = T

(j)
0,k (T

(1)
k,k+1, . . . ,T

(q)
k,k+1) =

∑

|I|≤d
aI(T

(1)
k,k+1)

i1 · · · (T (q)
k,k+1)

iq .

Then
|T (j)

0,k+1| ≤MCdγk = γk+1.

Corollary 3.2.5. Let (Tm,n) be a triangular N-evolution family of uniformly bounded
degree and uniformly bounded coefficients. Then there exists β ≥ 0 such that for all
k ≥ 0,

|T0,k(z)− T0,k(z
′)| ≤ βk|z − z′|, z,z′ ∈ (1/2)∆.
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3 – Resonances in Loewner equations

Proof. Recall that ∆ ⊂ √
qB and that if B = (bij) ∈Mq,q(C), then

‖B‖ ≤ qmax
i,j

|bij|.

If z ∈ (1/2)∆, then by Cauchy estimates

‖dzT0,k‖ ≤ 2q
√
qγk.

The result follows setting β .
= 2q

√
qγ.

Proposition 3.2.6. Let (Tm,n) be a triangular N-evolution family, with uniformly
bounded degree and uniformly bounded coefficients, then Tn,0(z) → 0 uniformly on
compacta. Hence for each neighborhood V of 0 we have

∞⋃

n=1

T0,n(V ) = Cq.

Proof. Let K be a compact set in Cq. Notice that T (1)
k,0 (z) = λk1z1, hence if ‖ · ‖

denotes the sup-norm on K, we have ‖T (1)
k,0‖ → 0. Let 1 < i ≤ q and assume that

limk→∞ ‖T (j)
k,0‖ = 0, for 1 ≤ j < i. On K,

lim
k→∞

‖t(i)k+1,k(T
(1)
k,0 , . . . ,T

(i−1)
k,0 )‖ = 0,

since (t
(i)
k+1,k) has uniformly bounded coefficients and uniformly bounded degree.

Notice that

T
(i)
k+1,0 = λiT

(i)
k,0 + t

(i)
k+1,k(T

(1)
k,0 , . . . ,T

(i−1)
k,0 ), 2 ≤ i ≤ q. (3.2.3)

For each ε > 0, |T (i)
k+1,0| ≤ |λi‖T (i)

k,0|+ ε, on K for a large enough k. Therefore

lim sup
k→∞

‖T (i)
k,0‖ ≤ ε

1− |λi|
.

Induction on i yields the Lemma.

Corollary 3.2.7. A triangular N-evolution family (Tm,n) with uniformly bounded
degree and uniformly bounded coefficients is shrinking.

Remark 3.2.8. A triangular N-evolution family (Tm,n) admits as associated N-
Loewner chain (T0,n) and thus Lr(Tm,n) = Cq. In the next sections we will prove
that any dilation N-evolution family is locally conjugate to a triangular N-evolution
family with uniformly bounded degree and uniformly bounded coefficients.
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3.3 – Parametric Poincaré-Dulac method

3.3 Parametric Poincaré-Dulac method
For a detailed exposition of the classical Poincaré-Dulac method, see [23, Appendix].
In the following we identify an automorphism A ∈ A(Cq) with its associated matrix
with respect to the canonical basis. Recall that the ε-Jordan normal form is the
classical lower triangular Jordan normal form with the underdiagonal multiplied by
ε.

Definition 3.3.1. A real multiplicative resonance for A ∈ A(Cq) with eigenvalues
λi is an identity

|λj| = |λi11 . . . λiqq |,
where ij ≥ 0, and

∑
j ij ≥ 2. If for every 1 ≤ j ≤ q we have |λj| < 1, real

multiplicative resonances can occur only in a finite number. Moreover, if 0 < |λq| ≤
· · · ≤ |λ1| < 1 then

|λj| = |λi11 . . . λiqq | ⇒ ij = ij+1 = · · · = iq = 0. (3.3.1)

Definition 3.3.2. An automorphism A ∈ A(Cq) is in optimal form if

i) A is in lower-triangular ε-Jordan normal form for some ε > 0,

ii) if the diagonal of A is (λ1, . . . ,λq) then 1 > |λ1| ≥ · · · ≥ |λq| > 0,

iii) ‖A‖2 < 1.

Note that any linear automorphism can be put in optimal form by a linear change
of coordinates.

Let A ∈ A(Cq) be in optimal form. For 1 ≤ j ≤ q let πj : Cq → C be the
projection to the j-th coordinate. Let i ≥ 2 and let Hi be the vector space of
all holomorphic maps H : Cq → Cq whose components πj ◦ H are homogeneus
polynomials of degree i. A basis for this vector space is easily described: let 1 ≤ j ≤ q,
let I ∈ Nq be a multi-index of absolute value |I| = i, and define

πl ◦Xj
I
.
= δl,jz

I , 1 ≤ l ≤ q.

The set B
.
= {Xj

I : 1 ≤ j ≤ q,|I| = q} is a basis of Hi. Next we define a splitting
of Hi by specifying a partition of the basis B.

We set Xj
I ∈ Br if |λjλ−I | = 1. The real resonant space Ri is the vector subspace

spanned by the vectors in Br.
We set Xj

I ∈ Bs if |λjλ−I | < 1. The stable space Si is the vector subspace
spanned by the vectors in Bs.

We set Xj
I ∈ Bu if |λjλ−I | > 1. The unstable space Ui is the vector subspace

spanned by the vectors in Bu.
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3 – Resonances in Loewner equations

This defines the splitting

Hi = Ri ⊕ Si ⊕ Ui,

with projections πr, πs, and πu. The real resonant part of H ∈ Hi is πr(H). By 3.3.1
the mapping πr(H) is triangular.

If F ∈ L(Cq), then H → H ◦ F and H → F ◦H are endomorphisms of Hi. We
define the linear operator Γ: Hi → Hi as H → A ◦H ◦ A−1.

The next lemma justifies the terms “stable” and “unstable”.

Lemma 3.3.3. The stable space Si is Γ-totally invariant and ρ(Γ|Si
) < 1. Indeed

sp(Γ|Si
) = {λjλ−I : Xj

I ∈ Bs}.

The unstable space Ui is Γ-totally invariant and ρ(Γ−1|Ui
) < 1. Indeed

sp(Γ|Ui
) = {λjλ−I : Xj

I ∈ Bu}.

Proof. Let λ(1), . . . ,λ(p) be the distinct eigenvalues of A, with algebraic multiplicity
mλ(1), . . . ,mλ(p). Consider the splitting Cq = Eλ(1) ⊕ · · · ⊕ Eλ(p), where Eλ(l) is the
generalized eigenspace relative to λ(l). Since A is in ε-Jordan normal form, for all
1 ≤ l ≤ p there exist 0 ≤ hl ≤ kl such that Eλ(l) = Span {ej : hl ≤ j ≤ kl},
kl − hl = mλ(l), and

λj = λ(l), hl ≤ j ≤ kl. (3.3.2)
Hence we identify Eλ(l) ' Cmλ(l) . Since the generalized eigenspaces are A-

invariant, A induces automorphisms Aλ(l) ∈ A(Cmλ(l)).
Let πλ(l) : Cq → Cmλ(l) be the spectral projection, that is

πλ(l) : (z1, . . . zq) → (zhl , . . . ,zkl).

We denote by πλ(l) : Nq → Nmλ(l) also the projection

πλ(l) : (i1, . . . iq) → (ihl , . . . ,ikl)

acting on multi-indices. We have

(A−1(z))I = [A−1
λ(1) ◦ πλ(1)(z)]πλ(1)(I) · · · [A−1

λ(p) ◦ πλ(p)(z)]πλ(p)(I)

= [
∑

α1

c1,α1πλ(1)(z)
J1,α1 ] · · · [

∑

αp

cp,αpπλ(p)(z)
Jp,αp ],

with Jl,αl
∈ Nmλ(l) , |Jl,αl

| = |πλ(l)(I)| for all αl, and with cl,αl
∈ C. Thus (A−1(z))I is

a linear combination of monomials of the type πλ(1)(z)J1,α1 · · ·πλ(p)(z)Jp,αp .
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Assume Xj
I ∈ Bs. Then by definition |λj| < |λI |. Any monomial of the form

πλ(1)(z)
J1,α1 · · ·πλ(p)(z)Jp,αp is in Si. Indeed by (3.3.2),

λ(1)|πλ(1)(I)| · · ·λ(p)|πλ(p)(I)| = λI ,

and
|λj| < |λI | =

∣∣λ(1)|J1,α1 | · · ·λ(p)|Jp,αp |
∣∣ .

The same argument works for Xj
I ∈ Bu. Thus Si and Ui are invariant by the linear

operator H → H ◦ A−1.
Now let Xj

I ∈ B. There exists 1 ≤ l ≤ p such that hl ≤ j ≤ kl. Then

A ◦Xj
I = (c1z

I , . . . ,cqz
I) =

∑

α

cαX
α
I

with cα ∈ C and cα = 0 if α < hl or α > kl.
Assume Xj

I ∈ Bs. Then by definition |λj| < |λI |. Any Xα
I such that hl ≤ α ≤ kl

satisfies Xα
I ∈ Bs. Indeed by (3.3.2), we have

|λα| = |λj| < |λI |, hl ≤ α ≤ kl

The same argument works for Xj
I ∈ Bu. Thus Si and Ui are invariant by the linear

operator H → A ◦H.
Now we want to find the spectrum of Γ|Si

. The automorphism A is conjugate to
any automorphism obtained multiplying the underdiagonal by a positive constant.
Thus there exists a continuous path γ : [0,1] → A(Cq) such that γ(0) = A and
γ(1) = (λ1z1, . . . ,λqzq), with γ0 conjugated to γt for all t ∈ [0,1).

Let M ∈ A(Cq). Define Ξ(M) ∈ A(Si) as H →M ◦H◦M−1. If B =M ◦A◦M−1,
the linear operator Γ|Si

= Ξ(A) is conjugate to the linear operator Ξ(B). Indeed

B ◦H ◦B−1 =M ◦ A ◦M−1 ◦H ◦M ◦ A−1 ◦M−1,

thus Ξ(B) = Ξ(M) ◦ Ξ(A) ◦ Ξ(M)−1.
We have limt→1 Ξ(γ(t)) = Ξ(λ1z1, . . . ,λqzq) and Γ|Si

= Ξ(A) = Ξ(γ(0)) is conju-
gate to Ξ(γ(t)) for all t ∈ [0,1). Thus

sp(Γ|Si
) = sp(Ξ(λ1z1, . . . ,λqzq)).

It is easy to see that the linear operator Ξ(λ1z1, . . . ,λqzq) is diagonalizable and
that the basis Bs is a basis of eigenvectors such that

[Ξ(λ1z1, . . . ,λqzq)](X
j
I ) = λjλ

−IXj
I .

Thus
sp(Γ|Si

) = sp(Ξ(λ1z1, . . . ,λqzq)) = {λjλ−I : Xj
I ∈ Bs}.

The same argument works for the spectrum of Γ|Ui
.

45



3 – Resonances in Loewner equations

Proposition 3.3.4. Let (ϕm,n,D) be a shrinking N-evolution family such that
ϕn+1,n(z) = A(z) +O(|z|2) with A in optimal form. Then for each i ≥ 2 there exist

i) a family (kin) of polynomial maps kn(z) = z +O(|z|2) with uniformly bounded
degree and uniformly bounded coefficients, and

ii) a triangular evolution family (T im,n) with T in+1,n(z) = A(z) +O(|z|2),

deg T in+1,n ≤ i− 1,

and uniformly bounded coefficients such that for all n ≥ 0,

kin+1 ◦ ϕn+1,n − T in+1,n ◦ kin = O(|z|i). (3.3.3)

Proof. For i = 2 set T 2
n,n+1 = A, k2n+1,n = id, and we are done since A is a triangular

mapping. Now assume that (3.3.3) holds for i ≥ 2. We can rewrite (3.3.3) as

kin+1 ◦ ϕn+1,n − T in+1,n ◦ kin = Pn+1,n +O(|z|i+1), (3.3.4)

where (Pn+1,n) is a bounded sequence in Hi. Define Rn+1,n
.
= πr(Pn+1,n), and

Nn+1,n
.
= Pn+1,n −Rn+1,n ∈ Si ⊕ Ui. Set

T i+1
n+1,n

.
= T in+1,n +Rn+1,n,

which is still a triangular N-evolution family with uniformly bounded degree and
uniformly bounded coefficients sinceRn+1,n is a triangular mapping thanks to (3.3.1),
and set

ki+1
n

.
= kin +Hn ◦ kin,

where (Hn) is an unknown bounded sequence in Hi.

ki+1
n+1 ◦ ϕn+1,n − T i+1

n+1,n ◦ ki+1
n =

= (kin+1 +Hn+1 ◦ kin+1) ◦ ϕn+1,n − (T in+1,n +Rn+1,n) ◦ (kin +Hn ◦ kin)
= Pn+1,n −Rn+1,n +Hn+1 ◦ A− A ◦Hn +O(|z|i+1)

= Nn+1,n +Hn+1 ◦ A− A ◦Hn +O(|z|i+1).

Thus to end the proof we need to prove the existence of a bounded sequence (Hn)
of elements of Hi which satisfies

Nn+1,n = A ◦Hn −Hn+1 ◦ A, (3.3.5)

that is a bounded solution (Hn) of the homological difference equation

Hn+1 = A ◦Hn ◦ A−1 −Nn+1,n ◦ A−1.
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3.3 – Parametric Poincaré-Dulac method

Define Bn
.
= −Nn+1,n ◦A−1. In the proof of Lemma 3.3.3 we proved that Si and

Ui are invariant by the linear operator H → H ◦ A−1, thus Bn ∈ Si ⊕ Ui. Define
Bs
n
.
= πs(Bn), B

u
n
.
= πu(Bn). If n ≥ 1 it is easy to prove by induction that

Hn = Γn(H0) +
n−1∑

j=0

Γj(Bn−1−j) = Γn(H0) +
n−1∑

j=0

Γn−1−j(Bj). (3.3.6)

We have

Hn = Γn(H0) +
n−1∑

j=0

Γj(Bs
n−1−j) +

n−1∑

j=0

Γj(Bu
n−1−j)

=
n−1∑

j=0

Γj(Bs
n−1−j) + Γn−1(Γ(H0) +

n−1∑

j=0

Γ−j(Bu
j )).

By Lemma 3.1.8 and Lemma 3.3.3 there exist a norm ‖ · ‖s on Si and a norm
‖ · ‖u on Ui such that ‖Γ|Si

‖s < 1,‖Γ−1|Ui
‖u < 1. Define a norm on Si ⊕ Ui by

‖H‖ .
= ‖πs(H)‖s + ‖πu(H)‖u.

Since (Bs
n) is bounded there exists C > 0 such that

‖
n−1∑

j=0

Γj(Bs
n−1−j)‖ ≤

∞∑

j=0

‖Γj(Bs
n−1−j)‖s ≤ C, n ≥ 0.

Since (Bu
n) is bounded,

∑∞
j=0 ‖Γ−j(Bu

j )‖u < +∞, thus we can define

H0
.
= −Γ−1(

∞∑

j=0

Γ−j(Bu
j )) ∈ Ui.

With this definition,

‖Hn‖ ≤ C + ‖Γn−1(
∞∑

j=n

Γ−j(Bu
j ))‖u = C + ‖

∞∑

j=1

Γ−j(Bu
n−1+j)‖u,

and since

‖
∞∑

j=1

Γ−j(Bu
n−1+j)‖u ≤

∞∑

j=1

‖Γ−j(Bu
n−1+j)‖u ≤ C ′,

we have ‖Hn‖ ≤ C + C ′.
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3 – Resonances in Loewner equations

Remark 3.3.5. Let p ≥ 0 be the smallest integer such that |λp1| < |λq|. Then if i ≥ p
we have πr(Pn+1,n) = 0 in Hi. Hence T in+1,n = T pn+1,n for any i ≥ p.

Theorem 3.3.6 ( [2]). Let (ϕm,n,D) be a shrinking N-evolution family such that
ϕn+1,n(z) = A(z) + O(|z|2) with A in optimal form. Then there exists a triangu-
lar N-evolution family (Tm,n) with uniformly bounded degree and uniformly bounded
coefficients locally conjugate to (ϕm,n).

Proof. Let ‖A‖ < α < 1. Let (T im,n) and (kin) be the families given by Proposition
3.3.4. Let p ≥ 0 be as in previous remark. Define (Tm,n)

.
= (T pm,n). Let β > 0 be the

constant given by Corollary 3.2.5 for (Tm,n). Let l ≥ 0 be an integer such that

αl < 1/β,

and define (kn)
.
= (kln). By Proposition 3.3.4,

kn+1 ◦ ϕn+1,n − Tn+1,n ◦ kn = O(|z|l),

thus
Tn,n+1 ◦ kn+1 ◦ ϕn+1,n − kn = O(|z|l).

Lemma A.0.6 gives us r > 0 (we can assume 0 < r < 1/2) such that on rB we
have |ϕn+1,n(z)| ≤ α|z| and |Tn+1,n(z)| ≤ α|z| for all n ≥ 0.Thus for ζ ∈ rB we have

|ϕm,0(ζ)| < rαm.

Thanks to Lemma A.0.5 we have on rB,

|Tm,m+1 ◦ km+1 ◦ ϕm+1,m(ζ)− km(ζ)| ≤ C|ζ|l.

Hence

|Tm,m+1 ◦ km+1 ◦ ϕm+1,0(ζ)− km ◦ ϕm,0(ζ)| ≤ C|ϕm,0(ζ)|l ≤ Crlαlm.

There exists sB ⊂ rB such that

Tm,m+1 ◦ km+1 ◦ ϕm+1,0(sB) ⊂
1

2
∆

and
km ◦ ϕm,0(sB) ⊂

1

2
∆.

Indeed the families (km) and (Tm,m+1) are uniformly bounded on rB and thus
equicontinuous in 0.

Hence Corollary 3.2.5 can be applied to get on sB,

|T0,m+1 ◦ km+1 ◦ ϕm+1,0(ζ)− T0,m ◦ km ◦ ϕm,0(ζ)| ≤ Crl(βαl)m.
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3.3 – Parametric Poincaré-Dulac method

Likewise it is easy to see that for all m ≥ n ≥ 0,

|Tn,m+1 ◦ km+1 ◦ ϕm+1,n(ζ)− Tn,m ◦ km ◦ ϕm,n(ζ)| ≤ Crl(βαl)m−n.

Since αl < 1/β for all n ≥ 0 there exists a holomorphic mapping hn on sB such
that

hn = lim
m→∞

Tn,m ◦ km ◦ ϕm,n
uniformly on compacta. Each hn is bounded by

|kn|+
∞∑

j=0

Crl(βαl)j,

hence they are uniformly bounded. Moreover

hm ◦ ϕn,m = lim
j→∞

Tm,j ◦ kj ◦ ϕj,m ◦ ϕm,n = lim
j→∞

Tm,n ◦ Tn,j ◦ kj ◦ ϕj,n = Tm,n ◦ hn.

Remark 3.3.7. Theorem 3.3.6 actually generalizes the result in [2] which holds under
the assumption that A is diagonal.
Remark 3.3.8. The sequence Tn,m ◦ km ◦ ϕm,n converges uniformly on compacta on
the whole D for m→ ∞, thus defining the intertwining mappings on the whole D.

Indeed since (ϕm,n) is shrinking, for each n ≥ 0 and each compact set K ⊂ D
there exists u ≥ 0 such that

ϕu,n(K) ⊂ sB.
Then for m ≥ u,

Tn,m ◦ km ◦ ϕm,n|K = Tn,u ◦ (Tu,m ◦ km ◦ ϕm,u) ◦ ϕu,n|K ,
thus

lim
m→∞

Tn,m ◦ km ◦ϕm,n|K = Tn,u ◦ ( lim
m→∞

Tu,m ◦ km ◦ϕm,u) ◦ϕu,n|K = Tn,u ◦ hu ◦ϕu,n|K ,

which gives the uniform convergence on compacta. Define hn
.
= limm→∞ Tn,m ◦

km ◦ ϕm,n. It is easy to see that each hn is univalent and that (hn) is a family of
intertwining mappings.

The family (hn) is normal. Indeed let K ⊂ D be a compact set. On sB the family
is uniformly bounded and since (ϕm,n) is shrinking there exists u ≥ 0 such that if
m− n ≥ u, ϕm,n(K) ⊂ sB. Hence

hn|K = Tn,m ◦ hm ◦ ϕm,n|K
which is uniformly bounded.
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3 – Resonances in Loewner equations

Corollary 3.3.9. Let (ϕm,n,D) be a shrinking N-evolution family. Then there exists
a polynomial N-evolution family (Qm,n) with uniformly bounded degree and uniformly
bounded coefficients locally conjugate to (ϕm,n). If no real resonance occurs, then
(ϕm,n) is locally conjugate to its linear part (Am−n).

Proof. Let L ∈ A(Cq) such that L◦A◦L−1 is in optimal form. By applying Theorem
3.3.6 to the shrinking N-evolution family (L◦ϕm,n◦L−1,L(D)) we get the existence of
a triangular N-evolution family (Tm,n) with bounded degree and bounded coefficients
locally conjugate to (L◦ϕm,n◦L−1), by means of a normal family (hn) of intertwining
mappings defined on L(D).

We have
hm ◦ L ◦ ϕn,m = Tm,n ◦ hn ◦ L,

hence
(L−1 ◦ hm ◦ L) ◦ ϕn,m = L−1 ◦ Tm,n ◦ L ◦ (L−1 ◦ hn ◦ L).

Define (Qm,n)
.
= (L−1 ◦Tm,n ◦L). Then gn

.
= L−1 ◦hn ◦L defines a normal family

on D of intertwining mappings between (ϕm,n) and (Qm,n).
If no real resonance occurs, then Tm,n = L◦Am−n◦L−1, hence Qm,n = Am−n.

As a consequence we get the following result.

Corollary 3.3.10. Let (ϕm,n,D) be a shrinking N-evolution family. Then there exists
an associated N-Loewner chain (fn,D,Cq) with range Cq. Furthermore there exist a
polynomial evolution family (Qm,n) of bounded degree and bounded coefficients and
a family (gn) of polynomial maps gn(z) = z + O(|z|2) of uniformly bounded degree
and uniformly bounded coefficients such that

fn = lim
m→∞

Q0,m ◦ gm ◦ ϕm,n.

If no real resonances occur, then (Qm,n) = (Am−n) and the chain, given by

fn = lim
m→∞

A−m ◦ gm ◦ ϕm,n,

is normal.

Proof. Simply notice that fn
.
= Q0,n ◦gn is an associated N-Loewner chain, and that

gn = lim
m→∞

Qn,m ◦ gm ◦ ϕm,n.
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3.4 Dilation R+-evolution families
Let Hl denote the left half-plane in C.

Definition 3.4.1. Let D be a domain in Cq containing 0. A R+-evolution family
(ϕt,s) on D is a dilation R+-evolution family if for all 0 ≤ s ≤ t,

ϕt,s(z) = eΛ(t−s)(z) +O(|z|2), (3.4.1)

with Λ ∈ L(Cq,Cq) satisfying sp(Λ) ⊂ Hl.
A R+-Loewner chain (ft,D,Cq) is a dilation R+-Loewner chain if for all t ≥ 0,

ft(z) = e−Λt(z) +O(|z|2),

with Λ ∈ L(Cq,Cq) satisfying sp(Λ) ⊂ Hl. A dilation Loewner chain is normal if
(eΛt ◦ ft) is a normal family.

Definition 3.4.2. If we restrict time to integer values in a dilation R+-evolution
family (ϕt,s) we obtain its discretized dilation N-evolution family (ϕm,n). We have

ϕn+1,n(z) = eΛ(z) +O(|z|2).

An additive real resonance is an identity

Re (
N∑

j=1

kjαj) = Reαl,

where kj ≥ 0 and
∑

j kj ≥ 2. Recall that α is an eigenvalue of Λ with algebraic
molteplicity m if and only if eα is an eigenvalue of eΛ with algebraic molteplicity m.
Hence additive real resonances of Λ correspond to multiplicative real resonances of
eΛ.

Lemma 3.4.3. Let D a complete hyperbolic domain containing 0. Let (ϕt,s,D) be
a dilation R+-evolution family, and let (ϕm,n,D) be its discretized evolution family.
Assume there exists a N-Loewner chain (fn) associated with (ϕm,n). Then we can
extend it in a unique way to a R+-Loewner chain associated with (ϕt,s). If (fn) is a
normal N-Loewner chain, then also (fs) is normal.

Proof. By Proposition 2.1.10 there exists a unique R+-Loewner chain (fs) associated
with (ϕt,s) which extends (fn). This chain is defined as

fs = fj ◦ ϕj,s,

where j is an integer such that s ≤ j. Assume (eΛn ◦ fn) is a normal family and
let Ω(0,r) be the ball with respect to kD of radius r > 0 centered in 0. Since D is
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3 – Resonances in Loewner equations

complete hyperbolic, Ω(0,r) is compact by Proposition 1.0.6. The family (eΛn◦fn) is
thus uniformly bounded on Ω(0,r). For each s ≥ 0 define ms as the smallest integer
greater than s. We have

eΛs ◦ fs = eΛs ◦ fms ◦ ϕms,s = eΛ(s−ms) ◦ eΛms ◦ fms ◦ ϕms,s,

which is uniformly bounded on Ω(0,r) since ϕms,s(Ω(0,r)) ⊂ Ω(0,r) and ms − s is
smaller than 1. Hence (eΛs ◦ fs) is a normal family.

Definition 3.4.4. A shrinking domain is a complete hyperbolic domain D contain-
ing 0 such that any dilation N-evolution family on D is shrinking. Notice that since
we assume D to be complete hyperbolic, property i) of Definition 3.1.5 is satisfied
for any N-evolution family on D.

Remark 3.4.5. By Proposition 3.1.9 and Remark 3.1.7 any domain D biholomorphic
to B and containing 0 is a shrinking domain.

The following result generalizes [14, Theorem 2.3 ] and [11, Theorem 3.1].

Theorem 3.4.6 ( [2]). Let D be a shrinking domain. Let (ϕt,s,D) be a dilation
R+-evolution family. Then there exists a dilation R+-Loewner chain (fs,D,Cq) asso-
ciated with (ϕt,s), with range Cq. Furthermore there exist a polynomial N-evolution
family (Qm,n) of uniformly bounded degree and uniformly bounded coefficients and a
family (gn) of polynomial maps gn(z) = z+O(|z|2) of uniformly bounded degree and
uniformly bounded coefficients such that

fs = lim
m→∞

Q0,m ◦ gm ◦ ϕm,s.

If no real resonances occur, then (Qm,n) = (Am−n) and the chain, given by

fs = lim
m→∞

A−m ◦ gm ◦ ϕm,s,

is normal.

Proof. Let (ϕm,n,D) be the discretized of (ϕt,s,D). Since D is a shrinking domain,
(ϕm,n) is a shrinking N-evolution family. Since no additive real resonance occurs in
Λ, no multiplicative real resonance occurs in A = eΛ.

The result follows from Corollary 3.3.10 and Lemma 3.4.3.

Remark 3.4.7. Theorem 3.4.6 actually generalizes the result in [2] which holds under
the assumption that Λ is diagonal.

Definition 3.4.8. A R+-evolution family (ϕt,s,D) is called 1-periodic if for all t ≥
s ≥ 0,

ϕt,s = ϕt+1,s+1.
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Proposition 3.4.9. Let (ϕt,s,D) be a 1-periodic R+-evolution family fixing 0 on a
taut domain D ⊂ Cq, and assume that

ρ(d0ϕ1,0) < 1.

Then there exist an associated R+-Loewner chain (fs), which is normal if no complex
resonance occurs among the eigenvalues of d0ϕ1,0.

Proof. The discretized evolution family (ϕm,n) is of dilation semigroup type. Hence
as in Remark 3.1.3 we have an univalent mapping h(z) = z + O(|z|2) defined on D
and a polynomial automorphism Q such that (fn)

.
= (Q−n ◦h) is a N-Loewner chain

associated with (ϕm,n). If no complex resonance occurs among the eigenvalues of
d0ϕ1,0, then Q = d0ϕ1,0 by Poincaré-Dulac Theorem (see for example [23, Appendix])
and thus the family (fn) = ((d0ϕ1,0)

−n ◦ h) is a normal N-Loewner chain.
Lemma 3.4.3 yields a R+-Loewner chain (fs), which is normal if no complex

resonance occurs.

3.5 Counterexamples
Example 3.5.1. Let Λ ∈ L(C2,C2) given by Diag(α1,α2), with Reα1 < 0 and
Reα2 < 0. If (ϕt,s,B) is a dilation R+-evolution family such that ϕt,s = eΛ(t−s)(z) +
O(|z|2) and

2Reα1 < Reα2,

then by Lemma 2.12 in [11] there exists a unique normal R+-Loewner chain asso-
ciated with (ϕt,s). This is no longer true when 2Reα1 ≥ Reα2. Indeed, consider on
B ⊂ C2 the linear dilation R+-evolution family defined by

ϕt,s(z) = eΛ(t−s)(z) = (eα1(t−s)z1,e
α2(t−s)z2).

The family (e−Λs) is trivially a normal R+-Loewner chain associated with (eΛ(t−s)).
The univalent family

ks(z) = (z1,z2 + e(α2−2α1)sz21),

satisfies kt ◦ eΛ(t−s) = eΛ(t−s) ◦ ks. Since Reα2 ≤ 2Reα1, it is a uniformly bounded
family, thus (e−Λs◦ks) is another normal R+-Loewner chain associated with (eΛ(t−s)).

Example 3.5.2. Let Λ ∈ L(C2,C2) given by Diag(α1,α2), with Reα1 < 0 and
Reα2 < 0, and α2 = 2α1. There exists a dilation R+-evolution family (ϕt,s) such
that ϕt,s = eΛ(t−s)(z) + O(|z|2), which does not admit any associated normal R+-
Loewner chain. Indeed, recall that for c ∈ C∗ small enough, the family (ψt) defined
by

ψt(z) = (eα1tz1,e
α2t(z2 + ctz21))
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3 – Resonances in Loewner equations

is a semigroup on B ⊂ C2. Thus

ϕt,s(z) = ψt−s(z)

defines a dilation R+-evolution family. Let (fs) be a normal R+-Loewner chain as-
sociated with (ϕt,s). The family (hs) = (eΛs ◦ fs) satisfies ht ◦ϕt,s = eΛ(t−s) ◦hs, thus
in particular

ht ◦ ϕt,0 = eΛt ◦ h0. (3.5.1)
Let as be the coefficient of the term z21 in the second component of hs. Then imposing
equality of terms in z21 in equation (3.5.1) we find eα2tct+ ate

2α1t = a0e
α2t, hence

at = e(α2−2α1)t(a0 − ct),

which gives at = a0 − ct, so that (hs) cannot be a normal family.

Example 3.5.3. Let A ∈ A(C2) given by Diag(λ1,λ2), with λ1,λ2 ∈ D r {0} and
|λ1|2 = |λ2|, λ21 /= λ2. There exists a N-dilation evolution family (ϕm,n) such that
ϕn+1,n(z) = A(z)+O(|z|2), which does not admit any associated N-normal Loewner
chain. Indeed, if r > 0 is sufficiently small, given any sequence (an+1,n) in rB there
exist a N-dilation evolution family defined by

ϕn+1,n(z) = (λ1z1,λ2z2 + an+1,nz
2
1).

If (fn) is a normal N-Loewner chain associated with (ϕm,n), then the family (hn) =
(An ◦ fn) satisfies

hn+1 ◦ ϕn+1,n = A ◦ hn. (3.5.2)
Let αn be the coefficient of the term z21 in the second component of hs, and set
ζ = λ21/λ2. Then imposing equality of terms in z21 in equation (3.5.2) we obtain the
recursive formula

αnζ
nλ21 = α0λ

2
1 − a1,0ζ − a2,1ζ

2 − · · · − an,n−1ζ
n.

For 1 ≤ j ≤ 8 define Cj = {ζ ∈ S1 : 2π(j− 1)/8 ≤ arg z ≤ 2πj/8}. There exist a Cj
which contains the images of a subsequence (ζkn). Set

am,m−1 =

{
r/2, if there exist n such that m = kn,

0, else,
(3.5.3)

then the sequence (
∑n

j=0 aj,j−1ζ
j) is not bounded, hence the sequence (αn) is also

not bounded. Thus for (ϕm,n) no normal family (hn) can solve (3.5.2).
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Appendix A

The following is a several variables version of the Schwarz Lemma [15, Lemma
6.1.28].

Lemma A.0.4. Let M > 0 and f : B → Cq a holomorphic mapping fixing the
origin and bounded by M . Then for z in the ball, |f(z)| ≤ M |z|. If there is a point
z0 ∈ B \ {0} such that |f(z0)| = M |z0|, then |f(ζz0)| = M |ζz0| for all |ζ| < 1/|z0|.
Moreover, if f(z) = O(|z|k), k ≥ 2, then for z in the ball, |f(z)| ≤M |z|k.

Lemma A.0.5. Let A ∈ L(Cq,Cq). Let F be a family of holomorphic mappings
f : rB → Cq, bounded by M > 0, and let k ≥ 2 such that

f(z)− A(z) = O(|z|k), ∀f ∈ F .

Then there exists Ck > 0 such that

|f(z)− A(z)| ≤ Ck|z|k, ∀z ∈ rB.

Proof. Set g(z) = f(z)− A(z). Then |g(rw)| ≤M + r‖A‖, hence

|g(rw)| ≤ (M + r‖A‖)|w|k

thanks to previous lemma. Thus if z ∈ rB,

|g(z)| ≤ (M + r‖A‖)|(1/r)z|k ≤ (M + r‖A‖)(1/r)k|z|k.

Lemma A.0.6. Let A ∈ L(Cq,Cq), and let D be a domain containing 0. Let F be
a family of holomorphic mappings f : D → Cq, bounded by M > 0, and satisfying
f(z) = A(z) + O(|z|2). Let α > 0 be such that ‖A‖ < α. Then there exists s > 0
such that

|f(z)| ≤ α|z|, ∀f ∈ F ,|z| ≤ s.
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Proof. We proceed by contradiction: assume there exist a sequence fn ∈ F and a
sequence (zn) converging to the origin verifying |fn(zn)| > α|zn|. The sequence (zn)
is eventually contained in some rB ⊂ D. By Lemma A.0.5 we have that eventually

|fn(zn)| = |A(xn) + fn(zn)− A(zn)| ≤ |A(zn)|+ C|zn|2,
thus

α <
|fn(zn)|
|zn|

≤ |A(zn)|
|zn|

+ C|zn|,

but the right hand term has lim sup less or equal than ‖A‖, which is the desired
contradiction.
Lemma A.0.7. Let A ∈ L(Cq,Cq), and let F be a family of holomorphic self-
mappings of B satisfying f(z) = A(z) +O(|z|2), with ‖A‖ < 1. Let 0 < s < 1. Then
there exists k < 1 such that

|f(z)| ≤ k|z|, ∀f ∈ F ,|z| ≤ s.

Proof. Assume the contrary: suppose there exist a sequence fn ∈ F and a sequence
of points zn in sB verifying |fn(zn)| > (1 − 1/n)|zn|. Up to subsequences we have
zn → z′ for some z′ such that |z′| ≤ s, and fn → f ∈ F uniformly on compacta
since F is a compact family. If z′ /= 0 we have

1− 1

n
<

|fn(zn)|
|zn|

→ |f(z′)|
|z′| < 1,

which is a contradiction. If z′ = 0, using again Lemma A.0.5 we get

1− 1

n
<

|fn(zn)|
|zn|

≤ |A(zn)|
|zn|

+ C|zn|,

and the right hand term has lim sup less or equal ‖A‖, contradiction.
Lemma A.0.8. Let A ∈ A(Cq), and let D be a domain containing 0. Let F be
a family of holomorphic mappings f : D → Cq, bounded by M > 0, and satisfying
f(z) = A(z) + O(|z|2). There exist r > 0 and s > 0 such that if f ∈ F then f is
univalent on rB, and such that sB ⊂ f(rB).
Proof. Suppose there does not exist a ball rB ⊂ B such that every f is univalent
on rB. Since F is a compact family there exists a sequence fn → f ∈ F uniformly
on compacta, and such that there does not exist a ball rB ⊂ B with the property
that every fn is univalent on rB. By the inverse mapping theorem there exists a ball
where f is univalent. We can now apply [15, Theorem 6.1.18], getting a contradiction.
Assume now there does not exist a ball contained in each f(rB). Again there is a
sequence fn → f ∈ F uniformly on compacta, such that there does not exist a ball
sB ⊂ ⋂

fn(rB). The contradiction is then given by Proposition 2.3.1.
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