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A l'issue d'une immense réunion tenue au bal Bullier (six millepersonnes s'y trouvaient entassées) un ordre du jour fut adoptéenourageant les orateurs et les organisateurs de ette manifesta-tion à se rendre auprès des itoyens Painlevé et Herriot, ministresde Poinaré, pour leur demander [...℄ si, dans un sursaut de vrairépublianisme, ils ne rieraient pas un "Non!" à l'Espagne, vial'Argentine. Painlevé est gêné. Il bredouille: "Oui..., assuré-ment..." Nous pouvons ompter sur lui omme sur une planhepourrie.Henry Torrès (lawyer of Asaso, Durruti and Jover), in "Theshort summer of anarhy" by H.M. Enzensberger
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Chapter 1Introdution1.1 Painlevé-I and the Cubi OsillatorThis Thesis is based on four papers [Mas10a℄, [Mas10b℄, [Mas10℄, [Mas10d℄.It deals mainly with the monodromy problem of the ubi osillator
ψ′′ = V (λ; a, b)ψ , V (λ; a, b) = 4λ3 − aλ− b , a, b, λ ∈ C , (1.1)and its relation with the distribution of poles of solutions of the Painlevé�rst equation (P-I)

y′′(z) = 6y2 − z , z ∈ C . (1.2)In partiular we are interested in studying the poles of the tritronquée solu-tion of P-I (also alled intégrale tritronquée) and the ubi osillators relatedto them.Painlevé-I It is well-known that any loal solution of P-I extends to aglobal meromorphi funtion y(z), z ∈ C, with an essential singularity atin�nity [GLS00℄. Global solutions of P-I are alled Painlevé-I transendents,sine they annot be expressed via elementary funtions or lassial spe-ial funtions [In56℄. The intégrale tritronquée is a speial P-I transen-dent, whih was disovered by Boutroux in his lassial paper [Bou13℄ (see[JK88℄ and [Kit94℄ for a modern review). Boutroux haraterized the inté-grale tritronquée as the unique solution of P-I with the following asymptotibehaviour at in�nity
y(z) ∼ −

√
z

6
, if | arg z| < 4π

5
.Nowadays P-I is studied in many areas of mathematis and physis. Indeed,it is remarkable that speial solutions of P-I desribe saling asymptotis ofa wealth of di�erent important problems.For example, let us onsider the n× n Hermitean random matrix modelwith a polynomial potential. In 1989 three groups of researhers [DS90℄,iv



[BK90℄, [GM90℄ showed that these matrix models are extremely importantin nonperturbative string-theory and 2d gravity. They also disovered that,if the polynomial is quarti, in the large n-limit the singular part of thesuseptibility is a solution of P-I.Indeed, it turns out [IKF90℄ that the partition funtion of the matrixmodel is the τ -funtion of a di�erene analogue (i.e. a disretization) of P-I.The authors of [IKF90℄ proved that in the appropriate ontinuous limit (thathere is the large n-limit) solutions of the di�erene analogue of P-I onvergeto solutions of P-I.In the framework of the random matrix approah to string theory, it isalso important to represent P-I as a "quantization" of �nite-gap potentialsof KdV. This view-point was developed in [Moo90℄ [Nov90℄ [GN94℄.It has been shown reently [Dub08℄[CG09℄ that Painlevé equations playa big role also in the theory of nonlinear waves and dispersive equations. Inpartiular, reently [DGK09℄ Dubrovin, Grava and Klein disovered that theintégrale tritronquée provides the universal orretion to the semilassiallimit of solutions to the fousing nonlinear Shrödinger equation.This elegant desription of the semilassial limit is e�etive for relativelybig values of the semilassial parameter ε if the intégrale tritronquée doesnot have any large pole in the setor | argα | < 4π
5 . In this diretion, theo-retial and numerial evidenes led the authors of [DGK09℄ to the followingConjeture. [DGK09℄ If α ∈ C is a pole of the intégrale tritronquée then

| argα |≥ 4π
5 .This onjeture has been a major soure of inspiration for our work.The Cubi Osillator The ubi osillator is a prototype for the generalanharmoni osillator (or Shrödinger equation with a polynomial potential).In this thesis we deal only with the ubi anharmoni osillator (1.1);in partiular we are interested in the monodromy problem for the ubiosillator. As most good mathematial problems, it is simple to state andhard to solve. We introdue it brie�y here.We let Sk = {λ :

∣∣arg λ− 2πk
5

∣∣ < π
5

}
, k ∈ Z5. We all Sk the k-th Stokessetor. Here, and for the rest of the thesis, Z5 is the group of the integersmodulo �ve. We will often hoose as representatives of Z5 the numbers

−2,−1, 0, 1, 2.For any Stokes setor, there is a unique (up to a multipliative onstant)solution of the ubi osillator that deays exponentially inside Sk. We allsuh solution the k-th subdominant solution and let ψk(λ; a, b) denote it.The asymptoti behaviour of ψk is known expliitely in a bigger setorof the omplex plane, namely Sk−1 ∪ Sk ∪ Sk+1:
lim
λ→∞

|arg λ− 2πk
5 |< 3π

5
−ε

ψk(λ; a, b)

λ−
3
4 exp

{
−4

5λ
5
2 + a

2λ
1
2

} → 1, ∀ε > 0 .v



Here the branh of λ 1
2 is hosen suh that ψk is exponentially small in Sk.Sine ψk−1 grows exponentially in Sk, then ψk−1 and ψk are linearlyindependent. Then {ψk−1, ψk} is a basis of solutions, whose asymptotibehaviours is known in Sk−1 ∪ Sk.Fixed k∗ ∈ Z5, we know the asymptoti behaviour of {ψk∗−1, ψk∗} onlyin Sk∗−1 ∪ Sk∗. If we want to know the asymptoti behaviours of this basisin all the omplex plane, it is su�ient to know the linear transformationfrom basis {ψk−1, ψk} to basis {ψk, ψk+1} for any k ∈ Z5.From the asymptoti behaviours, it follows that these hanges of basisare triangular matries: for any k, ψk−1 = ψk+1 + σkψk for some omplexnumber σk, alled Stokes multiplier. The quintuplet of Stokes multipliers

σk, k ∈ Z5 is alled the monodromy data of the ubi osillator.It is well-known (see Chapter 2) that the Stokes multipliers satisfy thefollowing system of quadrati relations
−iσk+3(a, b) = 1 + σk(a, b)σk+1(a, b) , ∀k ∈ Z5 , ∀a, b ∈ C . (1.3)Hene, it turns out that the monodromy data of any ubi osillator isa point of a two-dimensional smooth algebrai subvariety of C5, alled spaeof monodromy data, whih we denote by V5.The monodromy problem is two-fold: on one side we have the diret mon-odromy problem, namely the problem of omputing the Stokes multipliers ofa given ubi osillator; on the other side we have the inverse monodromyproblem, viz, the problem of omputing whih ubi polynomials are suhthat the orresponding ubi osillators have a given set of Stokes multipli-ers.The monodromy problem an be easily generalized to anharmoni os-illators of any order. It has been deeply studied in mathematis and inquantum physis and a huge literature is devoted to it.From the very beginning of quantum mehanis, physiists studied an-harmoni osillators as perturbations of the harmoni osillator

d2ψ(x)

dx2
=
(
x2 − E

)
ψ(x) , x ∈ R .To this regard the reader may onsult [BW68℄,[Sim70℄, [BB98℄.In early thirties Nevanlinna [Nev32℄ showed that anharmoni osillatorslassify overings of the sphere with a �nite number of logarithmi branhpoints. In partiular the ubi osillators lassify overings with �ve loga-rithmi branh points. Reently [EG09a℄ Eremenko and Gabrielov appliedNevanlinna's theory to studying the surfaes Γk = {(a, b) ∈ C2||σk(a, b) = 0

}.They sueeded in giving a omplete ombinatorial desription of the (branhed)overing map π : Γk → C, π(a, b) = a.In late nineties, Dorey and Tateo [DDT01℄ and Bazhanov, Lukyanov andZamolodhikov [BLZ01℄ disovered a remarkable link between anharmonivi



osillator (with a potential λn−E) and integrable models of Statistial FieldTheory, that has been alled 'ODE/IM Correspondene'. The 'ODE/IM'orrespondene has been widely generalized (see for example [DDM+09℄)and it is now a very ative �eld of researh.Poles of Solutions of P-I and the Cubi Osillator As it was men-tioned before, the ubi osillator (1.1) is stritly related to P-I. Suh aorrespondene will be thoroughly studied in Chapter 3. Here we explain itbrie�y.It is well-known, and it will be important in the rest of the thesis, thatP-I an be represented as the equation of isomonodromy deformation of anauxiliary linear equation; the hoie of the linear equation is not unique, seefor example [KT05℄, [Kap04℄, [FMZ92℄.Here we follow [KT05℄ and hoose the following auxiliary equation
d2ψ(λ)

dλ2
= Q(λ; y, y′, z)ψ(λ) , λ, y, y′, z ∈ C (1.4)

Q(λ; y, y′, z) = 4λ3 − 2λz + 2zy − 4y3 + y′2 +
y′

λ− y
+

3

4(λ− y)2
.We all suh equation the perturbed ubi osillator.It turns out (see Chapter 2) that one an de�ne subdominant solutions

ψk, and Stokes multipliers σk, k ∈ Z5 also for the perturbed ubi osillator.Moreover, also the Stokes multipliers of the perturbed osillator satisfy thesystem of quadrati relations (1.3); hene, the quintuplet of Stokes multipli-ers of any perturbed ubi osillator is a point of the spae of monodromydata V5.Sine P-I is the equation of isomonodromy deformation of the perturbedubi osillator 1 we an de�ne a map M from the set of solutions of P-I tothe spae of monodromy data; �xed a solution y∗, M(y∗) is the monodromydata of the perturbed ubi osillator with potential Q(y∗(z), y∗ ′(z), z), forany z suh that y∗ is not singular. It is well-known that the map M is aspeial ase of Riemann-Hilbert orrespondene [Kap04℄, [FMZ92℄.In this thesis we are mainly interested in studying poles of solutions ofP-I; we annot use diretly the perturbed osillator in this study beause thepotential Q(λ; y, y′, z) is not de�ned at poles, i.e. when y = y′ = ∞.However, inspired by a brilliant idea of Its et al. [IN86℄ about the Painlevéseond equation, we study the auxiliary equation in the proximity of a poleof a solution y of P-I. We show that it has a well-de�ned limit and the limitis a ubi osillator. More preisely, we will prove the following1Let the parameters y = y(z), y′ = dy(z)
dz

of the potential Q(λ; y, y′, z) be funtions of
z; then y(z) solves P-I if and only if the Stokes multipliers of the perturbed osillator donot depend on z vii



Lemma (4.5). Let a be a pole of a �xed solution y∗(z) of P-I and let ψk(λ; z)denote the k-th subdominant solution of the perturbed ubi osillator (1.4)with potential Q(λ; y∗(z), y′∗(z), z). In the limit z → a, ψk(λ; z) onverges(uniformly on ompats) to the k-th subdominant solution ψk(λ; 2a, 28b) ofthe ubi osillator
ψ′′ =

(
4λ3 − 2aλ− 28b

)
ψ . (1.5)Here the parameter b is the oe�ient of the (z − a)4 term in the Laurentexpansion of y∗: y∗ = 1

(z−a)2 + a(z−a)2
10 + (z−a)3

6 + b(z − a)4 +O((z − a)5).Lemma 4.5 is one of the most important tehnial parts of the thesis andSetion 4.5 is entirely devoted to its proof.Fixed arbitray Cauhy data ψ(λ0), ψ′(λ0), it is rather easy to prove thatthe solution of the perturbed ubi osillator (1.4) onverges, as z → a, tothe solution of the ubi osillator (1.5) with the same Cauhy data.It is far more di�ult, but it is neessary to show that the monodromydoes not hange in the limit, to prove the onvergene of the subdominantsolutions. This is due to the fat that subdominant solutions are not de�nedby a Cauhy problem but by an asymptoti behaviour, and (in some senselari�ed in the proof of the Lemma) the limits λ → ∞ and z → a do notommute .In Chapter 3 we will be able to prove the following important onse-quenes of Lemma 4.5, whih de�ne preisely the relation between P-I andthe ubi osillator; they are, therefore, the starting point of our researh 2.Theorem 3.2 Fix a solution y∗ and all σ∗k, k ∈ Z5 its Stokes multipliers: M(y∗) ={
σ∗−2, . . . , σ

∗
2

}.The point a ∈ C is a pole of y∗ if and only if there exists b ∈ C suhthat σ∗k, k ∈ Z5 are the monodromy data of the ubi osillator
ψ′′ =

(
4λ3 − 2aλ− 28b

)
ψ .The parameter b turns out to be the oe�ient of the (z− a)4 term inthe Laurent expansion of y∗.Theorem 3.3 Poles of intégrale tritronquée are in bijetion with ubi osillators suhthat σ2 = σ−2 = 0. In physial terminology, these ubi osillators aresaid to satisfy two "quantization onditions".Theorem 3.4 The Riemann-Hilbert orrespondene M is bijetive. In other words,

V5 is the moduli spae of solutions of P-I.2Even though the statement of Theorems 3.2 and 3.3 already appeared in [CC94℄ byD. Chudnovsky and G. Chudnovsky, in [Mas10a℄ we gave (perhaps the �rst) a rigorousproof. Theorem 3.4 an be proven also by other means (see for example [KK93℄, [Kit94℄).viii



1.2 Aimsfor the miserable and unhappy are those whose impulse to ationis found in its reward.in Bhagavadgita 2.49, translated by W. Q. JudgeInitially, our researh was foused on the study of the distribution ofpoles of the intégrale tritronquée using the relation between P-I and theubi osillator.Our �rst task was to obtain a qualitative piture of the distribution ofpoles. In this regard, we sueeded (see Chapter 5) in giving a very preiseasymptoti desription by means of the omplex WKB methods, that wedeveloped (see Chapter 4) following Fedoryuk [Fed93℄.Eventually, it beame lear that it was neessary to turn our attentionto the general monodromy problem of the ubi osillator in order to obtainmore preise information on the poles of solutions of P-I lose to the origin.Hene, the broader aim has been to give an e�etive solution to the mon-odromy problem of the ubi osillator, a satisfatory solution both from thetheoretial and from the omputational view point.Hene, after having developed the omplex WKB method as a tool toompute approximately the monodromy problem (see Chapter 4), we de-ided to investigate the monodromy problem exatly generalizing the ap-proah of Dorey and Tateo; they showed [DDT01℄ that if a = 0, the Stokesmultiplier σk(0, b) satisfy a nonlinear integral equation, alled Thermody-nami Bethe Ansatz. We were able to extend their onstrution in the ase
a 6= 0. We proved (see Chapter 6) that if a is �xed and small enough, thenthe Stokes multipliers σk(a, b) satisfy a deformation of the ThermodynamiBethe Ansatz, that we alled Deformed Thermodynami Bethe Ansatz.We have also foused our attention on the numerial solution of the mon-odromy problem, beause this is one of the major tasks in view of possibleappliations.On one side, in ollaboration with A. Moro, we are studying the numer-ial solution the Deformed TBA (see Chapter 6 for preliminary results). Onthe other side, we invented a new numerial algorithm (see Chapter 7) toompute the Stokes multiplier without solving diretly the ubi osillator,but an assoiated nonlinear di�erential equation (2.11). This algorithm isbased on an expliit relation (see Theorem 2.4), that we have disovered, be-tween Stokes multipliers and the Nevanlinna's theory of the ubi osillator.1.3 Main ResultsWe now outline the main results, that we have ahieved after having rig-orously established the relation between poles of solution of P-I and ubiosillators. ix



WKB Analysis of the Cubi Osillator The omplex WKB methodis a rather powerful and well-known tool for the approximate solution ofthe monodromy problem of anharmoni osillators. There are many possibleapproahes to it, see for example [Fed93℄, [BW68℄, [Sib75℄, [Vor83℄. In ourresearh we followed the Fedoryuk's approah.The omplex WKB method is essentially a method of steepest desent;indeed, a entral role is played by the lines of steepest desent of the imagi-nary part of the ation
S(λ; a, b) =

∫ λ

λ∗

√
V (µ; a, b)dµ , V (λ; a, b) = 4λ3 − aλ− b . (1.6)These lines of steepest desent are alled Stokes lines; the union of the Stokeslines is alled the Stokes omplex of the potential V (λ; a, b). The Fedoryuk'sapproah learly shows that the asymptoti behaviour of the Stokes multi-pliers depends on the topology of the Stokes omplex.In the huge literature devoted to the omplex WKB analysis, the mainappliation has been the study of the eigenvalues distribution for large valueof the "energy"; in our notation, most authors studied the surfaes Γk ={

(a, b) ∈ C2||σk(2a, 28b) = 0
} in the limit b→ ∞ with a bounded.Aording to the above-mentioned Theorem 3.3, the set of poles of theintégrale tritronquée is exatly the intersetion Γ2∩Γ−2; however (see Lemma4.5), suh intersetion is eventually empty in the limit b → ∞ with a �xed,even though the intégrale tritronquée has an in�nite number of poles: thesaling b → ∞ with a �xed annot be used to study the poles of theintégrale tritronquée or of any given solution of P-I3. Therefore there wereno results in the literature that ould be readily used to study the poles ofthe intégrale tritronquée.Indeed, it had been a hallenging task to develop a fully rigorous omplexWKBmethod up to the point that we ould orretly desribe the asymptotidistribution of the poles of the intégrale tritronquée. We ahieved this goalthrough the following steps.1. We obtained (see Theorem 4.2) a omplete topologial lassi�ationof the Stokes omplexes of the general ubi potential. Aording toour lassi�ation, there are (modulo the ation of Z5) seven of suhtopologies.2. We identi�ed (see Setion 4.2.3) one topology, that we alled "Boutroux"graph, as the unique topology ompatible with the system of "quanti-3This should not ome as a surprise; no meromorphi funtion an be approximated bya sequene of funtions, that have a pole (the parameter a of the potential V (λ; 2a, 28b))inside some bounded set of the omplex plane but suh that a term (the parameter b) oftheir Laurent expansions diverges. Indeed, as we explain below, solutions of the system

σ±2(2a, 28b) = 0 have asymptotially the following saling behaviour a
b
→ 0, a3

b2
bounded.x



zation onditions" σ±2(2a, 28b) = 0, whih desribes the poles of theintégrale tritronquée.3. We omputed in the WKB approximation the Stokes multipliers σk(a, b)for all the potentials V (λ; a, b) whose Stokes omplex is the Boutrouxgraph. In this way, we eventually derive the WKB analogue of thesystem σ±2(2a, 28b) = 0. It is the following pair of Bohr-Sommerfeldquantization onditions, that we have alled Bohr-Sommerfeld-Boutroux(B-S-B) system4
∮

a1

√
V (λ; 2a, 28b)dλ = iπ(2n − 1)

∮

a−1

√
V (λ; 2a, 28b)dλ = −iπ(2m− 1)Here m,n are positive natural numbers and the paths of integrationare shown in Figure 1.1.

λ1

λ−1

λ0

−π
5

π

π
5

Σ0

Σ1

Σ2

Σ−2

Σ−1

a−1

a1

branh uts de�ning thesquare root of the potential
(320)

3π
5

− 3π
5Figure 1.1: Riemann surfae µ2 = V (λ; 2a, 28b)B-S-B System and the Poles of Tritronquée After having derivedthe B-S-B system, we showed (see Chapter 5) that the poles of intégraletritronquée are well approximated by solutions of B-S-B system: the distanebetween a pole and the orresponding solution of the Bohr-Sommerfeld-Boutroux system vanishes asymptotially. Let us introdue preisely ourresult.Solutions of the B-S-B system have a simple lassi�ation; they are inorrespondene with ordered pairs (q, k), where q = 2n−1

2m−1 is a positive ra-tional number and k a positive integer. Here (aqk, b
q
k) denotes the general4The B-S-B system reprodues the desription of the poles of the intégrale tritronquéeobtained by Boutroux [Bou13℄ through a ompletely di�erent approah (for similar results,see also [JK88℄ [KK93℄ [Kit94℄). xi



solution of B-S-B. Fixed q, the sequene of solutions {(aqk, bqk)}k∈N∗ has amultipliative struture:
(aqk, b

q
k) = ((2k + 1)

4
5aq1, (2k + 1)

6
5 bq1) .We were able to prove the following theorem.Theorem (5.2). Let ε be an arbitrary positive number. If 1

5 < µ < 6
5 , thenit exists K ∈ N∗ suh that for any k ≥ K inside the dis ∣∣a− aqk

∣∣ < k−µεthere is one and only one pole of the intégrale tritronquée.Deformed Thermodynami Bethe Ansatz In a seminal paper [DDT01℄Dorey and Tateo proved that the Stokes multipliers σk(0, b) satisfy the Ther-modynami Bethe Ansatz equation, introdued by Zamolodhikov [Zam90℄to desribe the thermodynamis of the 3-state Potts model and of the Lee-Yang model. We sueeded in generalizing Dorey and Tateo approah to thegeneral ubi potential.Fix a ∈ C and de�ne εk(ϑ) = ln
(
iσ0(e

−k 2πi
5 a, e

6ϑ
5 )
). Following the on-vention of Statistial Field Theory we all pseudo-energies the funtions εk.We proved that the pseudo-energies satisfy the nonlinear nonloal Riemann-Hilbert problem(6.11), whih is equivalent (at least for small value of theparameter a) to the following system of nonlinear integral equations that wealled Deformed Thermodynami Bethe Ansatz:

χl(σ) =

∫ +∞

−∞
ϕl(σ − σ′)Λl(σ

′)dσ′ , σ, σ′ ∈ R , l ∈ Z5 = {−2, . . . , 2} .Here
Λl(σ) =

∑

k∈Z5

ei
2lkπ
5 Lk(σ) , Lk(σ) = ln

(
1 + e−εk(σ)

)
,

εk(σ)=
1

5

∑

l∈Z5

e−i
2lkπ
5 χl(σ) +

√
π
3Γ(1/3)

2
5
3Γ(11/6)

eσ+a

√
3πΓ(2/3)

4
2
3Γ(1/6)

e
σ
5
−i 2kπ

5 ,

ϕ0(σ) =

√
3

π

2 cosh(2σ)

1 + 2 cosh(2σ)
, ϕ1(σ) = −

√
3

π

e−
9
5
σ

1 + 2 cosh(2σ)

ϕ2(σ) = −
√
3

π

e−
3
5
σ

1 + 2 cosh(2σ)
, ϕ−1(σ) = ϕ1(−σ) , ϕ−2(σ) = ϕ2(−σ) .A Numerial Algorithm We have developed a new algorithm to omputethe Stokes multipliers of the ubi osillator (1.1) and of the perturbed ubixii



osillator (1.4). The algorithm is based on the formula 5 (1.8) below, thatwe disovered in [Mas10d℄.Consider the following Shwarzian equation
{f(λ), λ} = −2V (λ; a, b) . (1.7)Here {f(λ), λ} = f ′′′(λ)

f ′(λ) − 3
2

(
f ′′(λ)
f ′(λ)

)2 is the Shwarzian derivative.For every solution of the Shwarzian equation (1.7) the following limitexists
wk(f) = lim

λ →∞ ,λ∈Sk

f(λ) ∈ C ∪∞ ,provided the limit is taken along a urve non-tangential to the boundary of
Sk. In Chapter 2, we will prove that the following formula holds for anysolution of the Shwarzian equation (1.7)

σk(a, b) = i (w1+k(f), w−2+k(f);w−1+k(f), w2+k(f)) . (1.8)Here (a, b; c, d) = (a−c)(b−d)
(a−d)(b−c) is the ross ratio of four points on the sphere.1.4 Struture of the ThesisThe Thesis onsists of six hapters other than the Introdution.Chapter 2 Chapter 2 is introdutory. In this Chapter we deal with thebasi asymptoti theory of ubi osillators and we set the notation that wewill use throughout the thesis. We de�ne preisely the Stokes multipliers,the spae of monodromy data and the monodromy problem. We then intro-due the geometri theory of the ubi osillator and present some originalontributions whih are mainly drawn from [Mas10d℄[Mas10℄.Chapter 3 In Chapter 3 we study the relation among poles of solutionsof P-I and the ubi osillator. The major soure, but with some impor-tant modi�ations, is [Mas10a℄. The main tool used is the isomonodromydeformation method.As it was already explained, Painlevé-I is represented as the equation ofisomonodromy deformation of the auxiliary Shrödinger equation

d2ψ(λ)

dλ2
= Q(λ; y(z), y′(z), z)ψ(λ) ,

Q(λ; y, y′, z) = 4λ3 − 2λz + 2zy − 4y3 + y′2 +
y′

λ− y
+

3

4(λ− y)2
.5For simpliity of notation we present here the theory for the ubi osillator. Anystatement remains valid if one substitutes V (λ; a, b) with Q(λ; y, y′, z).xiii



We study the auxiliary equation in the proximity of a pole of a solution y ofP-I and we prove the above-mentioned Theorems 3.2, 3.3, 3.4.We warn the reader that the proof of the main tehnial Lemma of theChapter, namely Lemma 3.6, is postponed at the end of Chapter 4 beausethe proof depends heavily on the WKB analysis.Chapter 4 The fourth Chapter is devoted to the WKB analysis of the u-bi osillator. Again, the major soure is [Mas10a℄. We develop the omplexWKB method by Fedoryuk [Fed93℄ and give a omplete topologial lassi�-ation of Stokes omplexes for the ubi osillator, an algorithmi onstru-tion of the Maximal Domains and we introdue the small parameter of theapproximation. After that, we show by examples how to ompute approx-imately asymptoti values (hene Stokes multipliers) of the ubi osillatorand eventually derive the Bohr-Sommerfeld-Boutroux system.Chapter 5 The �fth Chapter deals with the approximation of poles ofthe intégrale tritronquée by the solutions of the Bohr-Sommerfeld-Boutrouxsystem. The material of this Chapter is taken from [Mas10a℄ and [Mas10b℄.A setion of the Chapter is devoted to the study of the poles of the tritronquéeon the real axis.Chapter 6 In the sixth Chapter we derive the Deformed ThermodynamiBethe Ansatz equation following [Mas10d℄. We also show a numerial solu-tion of the equation. This Chapter is, to a great extent, independent on allother hapters, but Chapter 2.Chapter 7 Chapter 7 is devoted to desribe an algorithm for solving thediret monodromy problem for the perturbed and unperturbed ubi osil-lator. The algorithm is based on the geometri theory of the ubi osillatordeveloped in Setion 2.2. It also ontains a numerial experiment. Thisshows that the WKB approximation is astonishingly preise. The algorithmoriginally appeared in [Mas10℄.AknowledgmentsI am indebted to Prof. B. Dubrovin who introdued me to the problemand onstantly gave me suggestions and advie.I thank A. Moro for ollaborating with me in developing an algorithmfor solving the Deformed Thermodynami Bethe Ansatz. I also thank B.Fantehi, T. Grava, M. Mazzoo, C. Moneta, A. Raimondo, J. Suzuki andespeially R. Tateo for helpful disussions.During my PhD I visited the department of mathematis in Napoli, thedepartment of theoretial physis in Torino and RIMS, Kyoto. I thank myxiv
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Chapter 2The Cubi OsillatorThe present Chapter is introdutory. In this Chapter we deal with the ba-si asymptoti theory of ubi osillators and we set the notation that wewill use throughout the thesis. We de�ne preisely the Stokes multipliers,the spae of monodromy data and the monodromy problem. We then intro-due the geometri theory of the ubi osillator and present some originalontributions whih are mainly drawn from [Mas10d℄[Mas10℄.The monodromy problem for the anharmoni osillators (in partiularthe ubi one) is a fundamental and rather interesting problem in itself anda large literature is devoted to it. The interested reader may onsult thefollowing papers [BW68℄, [Sim70℄, [Vor83℄, [BB98℄, [DT99℄, [BLZ01℄, [EG09a℄and the monograph [Sib75℄.Here we do not review all the literature but introdue the elements of thetheory that are needed in order to study the relation of the ubi osillatorwith the Painlevé �rst equation; this relation will be explained thoroughlyin Chapter 3.The ubi osillator is the following linear di�erential equation in theomplex plane
d2ψ(λ)

dλ2
= V (λ; a, b)ψ(λ) , V (λ; a, b) = 4λ3 − aλ− b , a, b, λ ∈ C . (2.1)Sine it will be useful in the study of Painlevé-I equation, together withthe ubi osillator we will study also its following perturbation

d2ψ(λ)

dλ2
= Q(λ; y, y′, z)ψ(λ) , (2.2)

Q(λ; y, y′, z) = 4λ3 − 2λz + 2zy − 4y3 + y′2 +
y′

λ− y
+

3

4(λ− y)2
.Here y, y′, z are omplex parameters.Remarkably, in some limit relevant for studying the poles of the solutionsof Painlevé-I equation (2.2) beomes the ubi osillator (2.1) (see Lemma4.10). 1



De�nition 2.1. We all any ubi polynomial of the form V (λ; a, b) = 4λ3−
aλ − b a ubi potential. The above formula identi�es the spae of ubipotentials with C2 � (a, b). We all Q(λ; y, y′, z) a deformed ubi potential.The Chapter deals is divided in two Setions. The �rst one is devotedto the analyti theory in the spirit of Sibuya [Sib75℄. In the seond one weintrodue the geometri or Nevanlinna's theory of the ubi osillator.2.1 Analyti TheoryHere we introdue the onepts of subdominant solutions, of Stokes multi-pliers and of eigenvalue problems.2.1.1 Subdominant SolutionsIn this subsetion we introdue the subdominant solutions of the perturbedand unperturbed ubi osillators (2.2,2.1).We de�ne the Stokes Setor Sk as

Sk =

{
λ :

∣∣∣∣arg λ− 2πk

5

∣∣∣∣ <
π

5

}
, k ∈ Z5 . (2.3)We remark that in Chapter 4 we will name Stokes setor and denote it Σk aslightly di�erent objet.Lemma 2.1. Fix k ∈ Z5 = {−2, . . . , 2}, de�ne the branh of λ 1

2 by requiring
lim
λ→∞

arg λ= 2πk
5

Reλ
5
2 = +∞and hoose one of the branh of λ 1

4 . Then there exists a unique solution
ψk(λ; a, b) of equation (2.1) suh that

lim
λ→∞

|argλ− 2πk
5 |< 3π

5
−ε

ψk(λ; a, b)

λ−
3
4 e−

4
5
λ

5
2 + a

2
λ

1
2

→ 1, ∀ε > 0 . (2.4)Proof. The proof an be found in Setion 4.4 or in Sibuya's monograph[Sib75℄.A very similar Lemma is valid also for the pertubed osillator.Lemma 2.2. Fix k ∈ Z5 = {−2, . . . , 2} and de�ne a ut in the C planeonneting λ = y with λ = ∞ suh that its points eventually do not belongto Sk−1 ∪ Sk ∪ Sk+1. Choose the branh of λ 1
2 by requiring

lim
λ→∞

arg λ= 2πk
5

Reλ
5
2 = +∞ ,2



while hoose arbitrarily one of the branh of λ 1
4 . Then there exists a uniquesolution ψk(λ; y, y′, z) of equation (2.2) suh that

lim
λ→∞

|argλ− 2πk
5 |< 3π

5
−ε

ψk(λ; y, y
′, z)

λ−
3
4 e−

4
5
λ

5
2 + z

2
λ

1
2

→ 1, ∀ε > 0 . (2.5)Proof. The proof an be found in Setion 4.5.Remark. Equation (2.2) has a fuhsian singularity at the pole λ = y of thepotential Q(λ; y, y′, z). However this is an apparent singularity (see Lemma3.1): the monodromy around the singularity of any solution is −1.Aording to the previous Lemmas, ψk(λ; y, y′, z) (or ψk(λ; a, b))) is ex-ponentially small inside the Stokes setor Sk and exponentially big inside
Sk±1. Due to their di�erent asymptotis ψk and ψk+1 are linearly indepen-dent for any k ∈ Z5. Hene, ψk is, modulo a multipliative onstant, theunique exponentially small solution in the k-th setor Sk.De�nition 2.2. We denote ψk(λ; a, b) the solution of equation (2.1) uniquelyde�ned by (2.4). We denote ψk(λ; y, y

′, z) the solution of equation (2.2)uniquely de�ned by (2.5). We all them k-th subdominant solutions.2.1.2 The monodromy problemIf one �xes the same branh of λ 1
4 in the asymptotis (2.4) of ψk−1, ψk, ψk+1then the following equation hold true

ψk−1(λ; a, b) = ψk+1(λ; a, b) + σk(a, b)ψk(λ; a, b) . (2.6)Moreover the Stokes multipliers σk satisfy the following system of quadratiequation
−iσk+3 = 1 + σkσk+1 , ∀k ∈ Z5 . (2.7)We an introdue Stokes multipliers also for the perturbed ubi osillator(2.2). De�ne a ut in the C plane onneting λ = y with λ = ∞ suh thatits points eventually do not belong to Sk−1∪Sk∪Sk+1. If one �xes the samebranh of λ 1

4 in the asymptotis (2.5) of ψk−1, ψk, ψk+1 then the followingequation hold true
ψk−1(λ; y, y

′, z)
ψk(λ; y, y′, z)

=
ψk+1(λ; y, y

′, z)
ψk(λ; y, y′, z)

+ σk(y, y
′, z) . (2.8)The Stokes multipliers σk(y, y′, z) satisfy the same system of quadrati equa-tions (2.7). The reader should notie the ratio of two solutions of the per-turbed osillator is a single-valued meromorphi funtion.3



De�nition 2.3. The funtions σk(a, b), σk(y, y′, z) are alled Stokes multipli-ers. The quintuplet of Stokes multipliers σk(a, b), k ∈ Z5 (resp. σk(y, y′, z))are alled the monodromy data of equation (2.1) (resp. of equation (2.2)).Observe that only 3 of the algebrai equations (2.7) are independent.De�nition 2.4. We denote V5 the smooth algebrai variety of quintupletsof omplex numbers satisfying (2.7) and all admissible monodromy data theelements of V5.The Stokes multipliers of the ubi osillator are entire funtions of thetwo parameters (a, b) of the potential. Hene we de�ne the following mon-odromy map
T : C2 → V5 , (2.9)

T (a, b) = (σ−2(a, b), . . . , σ2(a, b)) .Theorem 2.1. The map T is surjetive. The preimage of any admissiblemonodromy data is a ountable in�nite subset of the spae of ubi potentials.Proof. See [Nev32℄.We have olleted all the elements to state the diret and inverse mon-odromy problem for the ubi osillatorProblem. We all Diret Monodromy Problem the problem of omputingthe monodromy map T . We all Inverse Monodromy Problem the problem ofomputing the inverse of the monodromy map.Until now, neither of the problems have been satisfatorily solved. How-ever, we have made substantial progress towards the solution. For whatonerns the inverse problem, we will show in Chapter 3 that to any ad-missible monodromy data v there orresponds one and only one solution
y of the Painleve-I equation, suh that T −1(v) = {(2αi, 28βi)}i∈N, where
{(2αi, 28βi)}i∈N is the set of poles of y Here αi is the loation of a pole of y,
βi is a oe�ient of the Laurent expansion of y around αi.We have also made many progress in the understanding of the diretproblem: we have developed the asymptoti theory of the Stokes multipli-ers (see Chapter 4), and we have built an analyti of tool alled DeformedThermodynami Bethe Ansatz (see Chapter 6) and a numerial algorithm(see Chapter 7) to solve the monodromy problem.Eigenvalue ProblemsThe surfaes {σk(a, b) = 0, k ∈ Z5} are partiularly important in the theoryof the ubi osillator. Indeed, σk(a, b) = 0 if and only if there exists a4



solution of the following boundary value problem
d2ψ(λ)

dλ2
= V (λ; a, b)ψ(λ) , lim

λ→∞,λ∈γk−1∪γk+1

ψ(λ) = 0 .Here γk±1 is any ray ontained in the (k±1)-th Stokes setor. The boundaryvalue problem is also alled lateral onnetion problem.Fixed a, the boundary value problem is equivalent to the eigenvalue prob-lem for the Shrödinger operator − d2

dλ2
+ 4λ3 − aλ de�ned on L2(γ1 ∪ γ2).Sine the eingevalues are a disrete set, the equation σk(a, b) is often alleda quantization ondition.The eigenvalues problems are invariant under an anti-holomorphi invo-lution: let ω = ei

2π
5 , then σk(a, b) = 0 ⇔ σk(ω

4ka, ω6kb) = 0; here standsfor the omplex onjugation.If a is a �xed point of the involution a → ω4ka, i.e. if ω2ka is real, thenthe eigenvalue problem is said to be PT symmetri, beause b is an eigenvalueif and only if ω6kb is (the study of PT symmetri osillators began in theseminal paper [BB98℄).It is natural to ask if all the eigenvalues b of a PT symmetri operatorare invariant under the involution b→ ω6kb. This is not the ase in general(see for example [BB98℄). However, in [BB98℄ the authors onjetured thatif ω2ka is real and non-negative then all the eigenvalues b are suh that ω3kbis real and negative.Dorey, Dunning, Tateo [DDT01℄ proved the onjeture in the ase a = 0and Shin [Shi02℄ extended the result to the general ase.This theorem will be fundamental in Chapter 6 for deriving the DeformedThermodynami Bethe Ansatz.Theorem 2.2. Fix k ∈ Z5. Suppose σk(a, b) = 0 and ω2ka is real and nonnegative. Then ω3kb is real and negative.Proof. See [Shi02℄ (see also [DDT01℄ for the ase a = 0).2.2 Geometri TheoryIn the analyti theory, the monodromy data of equation (2.1) are expressedin terms of Stokes multipliers, whih are de�ned by means of a speial set ofsolutions of the equation. In this setion, following Nevanlinna [Nev32℄ andauthor's paper [Mas10d℄, we study the monodromy data from a geometri(hene invariant) viewpoint. Eventually, we realize the Stokes multipliers ofthe ubi osillators as natural oordinates on the quotient W5/PSL(2,C),where W5 is a dense open subset of (P1
)5 (the Cartesian produt of �veopies of P1). The ore of Nevanlinna theory is based on the interrelationamong anharmoni osillators and branhed overings of the sphere. We willnot introdue the orrespondene here. The interested reader may onsult5



the original works of Nevanlinna [Nev32℄ [Nev70℄ and Elfving [Elf34℄ or theremarkable reent papers of Gabrielov and Eremenko [EG09a℄,[EG09b℄.In the present Setion we onsider the ubi osillator (2.1) and the ubipotential V (λ; a, b) as partiular ases of the perturbed osillator (2.2) andof the potential Q(λ; y, y′, z). We use the onvention that the ubi osillatoris the partiular ase of the perturbed ubi osillator determined by y = ∞.2.2.1 Asymptoti ValuesThe main geometri objet of Nevanlinna's theory is the Shwarzian deriva-tive of a (non onstant) meromorphi funtion f(λ)
{f(λ), λ} =

f ′′′(λ)
f ′(λ)

− 3

2

(
f ′′(λ)
f ′(λ)

)2

. (2.10)The Shwarzian derivative is stritly related to the Shrödinger equation(2.2). Indeed, the following Lemma is true.Lemma 2.3. The (non onstant) meromorphi funtion f : C → C solvesthe Shwarzian di�erential equation
{f(λ), λ} = −2Q(λ; y, y′, z) . (2.11)i� f(λ) = φ(λ)

χ(λ) where φ(λ) and χ(λ) are two linearly independent solutionsof the Shrödinger equation (2.2).Every solution of the Shwarzian equation (2.11) has limit for λ → ∞,
λ ∈ Sk. More preisely we have the followingLemma 2.4 (Nevanlinna). (i) Let f(λ) = φ(λ)

χ(λ) be a solution of (2.11)then for all k ∈ Z5 the following limit exists
wk(f) = lim

λ →∞ ,λ∈Sk

f(λ) ∈ C ∪∞ , (2.12)provided the limit is taken along a urve non-tangential to the boundaryof Sk.(ii) wk+1(f) 6= wk(f) , ∀k ∈ Z5.(iii) Let g(λ) = af(λ)+b
cf(λ)+d = aφ(λ)+bχ(λ)

cφ(λ)+dχ(λ) , (a b
c d

)
∈ Gl(2,C). Then

wk(g) =
awk(f) + b

cwk(f) + d
. (2.13)(iv) If the funtion f is evaluated along a ray ontained in Sk, the onver-gene to wk(f) is super-exponential.6



Proof. (i-iii) Let ψk be the solution of equation (2.1) subdominant in Skand ψk+1 be the one subdominant in Sk+1. We have that f(λ) =

αψk(λ)+βψk+1(λ)
γψk(λ)+δψk+1(λ)

, for some (α β
γ δ

)
∈ Gl(2,C). Hene wk(f) = β

δ if
δ 6= 0, wk(f) = ∞ if δ = 0. Similarly wk+1(f) =

α
γ . Sine (α β

γ δ

)
∈

Gl(2,C) then wk(f) 6= wk+1(f)(iv) From equation (2.4) we know that inside Sk,
∣∣∣∣
ψk(λ)

ψk+1(λ)

∣∣∣∣ ∼ e
−Re

“

8
5
λ

5
2−aλ 1

2

”

,where the branh of λ 1
2 is hosen suh that the exponential is deaying.De�nition 2.5. Let f(λ) be a solution of the Shwarzian equation (2.11)and wk(f) be de�ned as in (2.12). We all wk(f) the k-th asymptoti valueof f .2.2.2 Spae of Monodromy DataDe�nition 2.6. We de�ne

W5 = {(z−2, z−1, z0, z1, z2), zk ∈ C ∪∞, zk 6= zk+1 , z2 6= z−2} .The group of automorphism of the Riemann sphere, alled Möbius groupor PSL(2,C), has the following natural free ation onW5: let T =

(
a b
c d

)
∈

PSL(2,C) then
T (z−2, . . . , z2) = (

az−2 + b

cz−2 + d
, . . . ,

az2 + b

cz2 + d
) .After De�nition 2.5 and Lemma 2.4(iii) every basis of solution of (2.2) de-termines a point inW5. After the transformation law (2.13), the Shrödingerequation (2.2) determines an orbit of the PSL(2,C) ation.Below we prove that the quotient W5/PSL(2,C) is isomorphi, as aomplex manifold, to the spae of monodromy data V5 de�ned by the systemof quadrati equations (2.7) (see De�nition 2.4). To this aim we introduethe following R funtions

Rk :W5 → C , k ∈ Z5 ,

Rk(z−2, . . . , z2) = (z1+k, z−2+k; z−1+k, z2+k) , (2.14)where (a, b; c, d) = (a−c)(b−d)
(a−d)(b−c) is the ross ratio of four points on the sphere.Funtions R will be studied in details in Chapter 6. We ollet here theirmain properties 7



Lemma 2.5. [Mas10d℄(i) The funtions Rk are invariant under the PSL(2,C) ation. Henethey are well de�ned on V5: with a small abuse of notation we let Rkdenote also the funtions de�ned on V5.(ii) They satisfy the following set of quadrati relation
Rk−2Rk+2 = 1−Rk , ∀k ∈ Z5 . (2.15)(iii) The pair Rk, Rk+1 is a oordinate system of W5/PSL(2C) on the opensubset Rk−2 6= 0. The pair of oordinate systems (Rk, Rk+1) and

(Rk+2, Rk−2) form an atlas of W5/PSL(2,C).(iv)
Rk(z−2, . . . , z2) 6= ∞ , ∀(z−2, . . . , z2) ∈W5 ,

Rk(z−2, . . . , z2) = 0 i� zk−1 = zk+1 , (2.16)
Rk(z−2, . . . , z2) = 1 i� zk−1 = zk+2 or zk+1 = zk−2 .We an now prove the followingTheorem 2.3. [Mas10d℄ The spae of monodromy data V5 is isomorphi asa omplex manifold to the quotient W5/PSL(2,C).Proof. De�ne the map ϕ :W5/PSL(2,C) → V5, ϕ(·) = i(R−2(·), . . . , R2(·)).Due to Lemma 2.5(i-iii) ϕ is bi-holomorphi.Remark. From the onstrution of V5 as a quotient spae it is evidentthat M0,5 ⊂ V5 ⊂ M0,5. Here M0,5 is the moduli spae of genus 0 urveswith �ve marked points and M0,5 is its ompati�ation (see [Knu83℄ for thede�nition of M0,5).With a slight abuse of notation we all Rk(a, b) the value of Rk when theasymptoti values are alulated via the Shwarzian equation with potential

V (λ; a, b). It is easily seen that Rk is an entire funtion of two variables.Moreover, it oinides essentially with the Stokes multiplier σk(a, b) de�nedpreviously.Theorem 2.4. [Mas10d℄ For any a, b ∈ C2,
σk(a, b) = iRk(a, b). (2.17)Proof. Let ψk+1 be the solution of (2.1) subdominant in Sk+1 and ψk+2 bethe one subdominant in Sk+2 (see the Appendix for the preise de�nition).By hoosing f(λ) =

ψk+1(λ)
ψk+2(λ)

, one veri�es easily that the identity (2.17) issatis�ed.Remark. Aording to previous Theorem and Lemma 2.5 (iv) the k-th lat-eral onnetion problem, i.e. σk(a, b) = 0, is solved if and only if for anysolution f of the Shwarzian equation wk−1(f) = wk+1(f).8



Singularities We end the Chapter with an observation whih will be usedlater on in Chapter 7. Sine the Shwarzian di�erential equation is linearized(see Lemma 2.3) by the Shrödinger equation, any solution is a meromorphifuntion and has an in�nite number of poles [Nev70℄. The poles, however,are loalized near the boundaries of the Stokes setors Sk, k ∈ Z5. Indeed,using the omplex WKB theory one an prove the followingLemma 2.6. Let f(λ) be any solution of the Shwarzian equation (2.11).Fix ε > 0 and de�ne S̃k =
{
λ :
∣∣arg λ− 2πk

5

∣∣ ≤ π
5 − ε

}
, k ∈ Z5 . Then,

∀w ∈ C
⋃∞, f(λ) = w has a �nite number of solutions inside S̃k. Inpartiular, there are a �nite number of rays inside S̃k on whih f(λ) has apole.

9



Chapter 3Painlevé First EquationIn this hapter we study the relation among poles of solutions y = y(z) ofPainlevé �rst equation (P-I)
y′′ = 6y2 − z , z ∈ C , (3.1)and the ubi osillator (2.1).In partiular we introdue the speial solution alled intégrale tritronquéeand we show that its poles are desribed by ubi osillators that admit thesimultaneous solution of two quantization onditions.As it is well-known, any loal solution of P-I extends to a global meromor-phi funtion y(z), z ∈ C, with an essential singularity at in�nity [GLS00℄.Global solutions of P-I are alled Painlevé-I transendents, sine they annotbe expressed via elementary funtions or lassial speial funtions [In56℄.The intégrale tritronquée is a speial P-I transendent, whih was disov-ered by Boutroux in his lassial paper [Bou13℄ (see [JK88℄ and [Kit94℄ fora modern review). Boutroux haraterized the intégrale tritronquée as theunique solution of P-I with the following asymptoti behaviour at in�nity

y(z) ∼ −
√
z

6
, if | arg z| < 4π

5
.We summarize hereafter the ontent of the Chapter.Let us reall from Chapter 2 that the spae of monodromy data (seeDe�nition 2.4) is the variety of points in (z−2, . . . , z2) ∈ C5 satisfying thesystem of quadrati equations −izk+3 = 1 + zkzk+1 , ∀k ∈ Z5.The monodromy map T (see equation (2.9)) is a holomorphi surjetionof C2 into C5. T (a, b) are the Stokes multipliers (σ−2(a, b), . . . , σ2(a, b)) ofthe ubi osillator (2.1)

d2ψ(λ)

dλ2
= V (λ; a, b)ψ(λ) , V (λ; a, b) = 4λ3 − aλ− b .The main results of the present Chapter are enumerated here below 1 .1For what onerns the originality of these results see the Introdution10



Theorem 3.2 Fix a solution y∗ and all σ∗k, k ∈ Z5 its Stokes multipliers: M(y∗) ={
σ∗−2, . . . , σ

∗
2

}.The point a ∈ C is a pole of y∗ if and only if there exists b ∈ C suhthat σ∗k, k ∈ Z5 are the monodromy data of the ubi osillator
ψ′′ =

(
4λ3 − 2aλ− 28b

)
ψ .The parameter b turns out to be the oe�ient of the (z− a)4 term inthe Laurent expansion of y∗.Theorem 3.3 Poles of intégrale tritronquée are in bijetion with ubi osillators suhthat σ2 = σ−2 = 0. In physial terminology, these ubi osillators aresaid to satisfy two "quantization onditions".Theorem 3.4 The Riemann-Hilbert orrespondene M is bijetive. In other words,

V5 is the moduli spae of solutions of P-I.The rest of the Chapter is devoted to the proof of these three results.3.1 P-I as an Isomonodromi DeformationIn this setion we show that any solution y of the Painlevé-I equation givesrise to an isomonodromi deformation of equation of the perturbed ubiosillator (2.2)
d2ψ(λ)

dλ2
= Q(λ; y, y′, z)ψ(λ) ,

Q(λ; y, y′, z) = 4λ3 − 2λz + 2zy − 4y3 + y′2 +
y′

λ− y
+

3

4(λ− y)2
.Even though this fat is well-known in the literature about P-I (see forexample [KT05℄ and [Mas10a℄), we disuss it for onveniene of the reader.Lemma 3.1. The perturbed ubi osillator is Gauge-equivalent to the fol-lowing ODE

−→
Φ λ(λ; y, y

′, z) =
(

y′ 2λ2 + 2λy − z + 2y2

2(λ− y) −y′
)−→

Φ(λ; y, y′, z) . (3.2)Moreover, the point λ = y of the perturbed osillator (2.2) is an apparentsingularity: the monodromy around λ = y of any solution is −1.Proof. De�ne the following Gauge transform
G(λ; y, y′, z) =




y′+ 1
2(λ−y)√
2(λ−y)

1√
2(λ−y)

√
2(λ− y) 0


 . (3.3)11



Then −→
Φ(λ; z) = G(λ; y, y′, z)

−→
Ψ(λ, z) satis�es (3.2) if and only if −→Ψ(λ; z)satis�es the following equation

Ψλ(λ, z) =

(
0 1

Q(λ; y, y′, z) 0

)
Ψ(λ, z) .Let ψ denote the �rst omponent of −→Ψ . Then ψ satis�es the perturbed ubiosillator equation.The unique singular point of equation (3.2) is λ = ∞; therefore anysolution of (3.2) is an entire funtion. The Gauge transform itself has a squareroot singularity at λ = y, hene any solution of the perturbed osillator istwo-valued.Lemma 3.2. For any Stokes setor Sk, there exists a unique normalizedsubdominant solution of equation 3.2. We all it −→Φ k(λ; y, y

′, z). The sub-dominant solutions satisfy the following monodromy relations
−→
Φ k−1(λ; y, y

′, z) =
−→
Φ k+1(λ; y, y

′, z) + σk(y, y
′, z)

−→
Φ k(λ; y, y

′, z) ,where σk(y, y′, z) is the k-th Stokes multiplier of the perturbed ubi osillator2.2 (see De�nition 2.3).Proof. Choose−→Φ k(λ; y, y
′, z) as the (inverse) gauge transform of ψk(λ; y, y′, z),the k-th subdominant solution of (2.2). From WKB analysis (see Setions4.4 and 4.5) we know that also ψ′

k(λ; y, y
′, z) is subdominant; more preisely

ψ′
k(λ)

λ
3
2 ψk(λ)

→ −1 in Sk−1∪Sk ∪Sk+1. Sine G(λ; y, y′, z) is algebrai in λ, then
−→
Φ k(λ; y, y

′, z) deays exponentially in Sk and grows exponentially in Sk±1.Hene it is the unique (up to normalization) k-th subdominant solution of(3.2).The equation for the Stokes multiplier is unhanged sine the gauge trans-form is a linear operation.Lemma 3.3. Let y = y(z) be a holomorphi funtion of z ∈ U ⊂ C, let y′(z)be its derivative and let σk(z) = σk(y(z), y
′(z), z), k ∈ Z5 be the Stokes mul-tipliers (2.6) of the perturbed ubi osillator. If y(z) satis�es the Painlevé-Iequation (3.1) then dσk(z)

dz = 0.Proof. We prove the statement using equation (3.2), and not diretly equa-tion (2.2). A straightforward omputation shows y(z) satisfy P-I if and onlyif the following system admits a non trivial solution
−→
Φ λ(λ, z) =

(
y′(z) 2λ2 + 2λy(z)− z + 2y2(z)

2(λ− y(z)) −y′(z)

)−→
Φ(λ, z) ,

−→
Φ z(λ, z) = −

(
0 2y(z) + λ
1 0

)−→
Φ(λ, z) .12



Obviously the �rst equation of above system is equation (3.2), with y =
y(z), y′ = y′(z).Let z0 belong to U . Consider the solution −→

Φ(λ; z) of the system of linearequation with the following Cauhy data −→
Φ(λ; z0) =

−→
Φk(λ; y(z0), y

′(z0), z0).A simple alulation shows that loally 2 −→
Φ(λ; z) =

−→
Φ k(λ; y(z), y

′(z), z).Therefore
−→
Φ k−1(λ; y(z), y

′(z), z) =
−→
Φ k+1(λ; y(z), y

′(z), z)+σk(z)
−→
Φ k(λ; y(z), y

′(z), z) .Di�erentiating by z, we obtain the thesis.De�nition 3.1. Aording to Lemma 3.3, to any solution y of P-I we anassoiate a set of Stokes multipliers, i.e. a point of the spae of monodromydata V5. We denote this map M

M : {P-I transendents} → V5 .We say that M(y) are the Stokes multipliers of y.The map M is a speial ase of a Riemann-Hilbert orrespondene. Inpartiular the following lemma is valid.Lemma 3.4. M is injetive.Proof. See [Kap04℄.The Stokes multipliers of the tritronquée solution are well-known. In-deed, the following Theorem holds true.Theorem 3.1. (Kapaev) The image under M of the intégrale tritronquéeare the monodromy data uniquely haraterized by the following equalities
σ2 = σ−2 = 0 . (3.4)Proof. See [Kap04℄. The Theorem was already stated, without proof, in[CC94℄.3.2 Poles and the Cubi OsillatorHere we suppose that we have �xed a solution y of P-I. In the previous setionwe have shown that if we restrit y to a domain U where it is regular, then itgives rise to an isomonodromi deformation of the perturbed ubi osillator(2.2).2hene globally; indeed −→

Φ k(λ; y(z), y
′(z), z) is a single-valued funtion sine y(z) issingle-valued. 13



In the present setion we study the behaviour of solutions of the per-turbed ubi osillator (2.2) in a neighborhood of a pole of a solution y ofP-I. Let a denote a pole of a �xed solution y∗(z) of P-I. We prove that, inthe limit z → a, the perturbed ubi osillator turns (without hanging themonodromy) into the ubi osillator (2.1) with potential V (λ; 2a, 28b) (here
b is the oe�ient of the (z− a)4 term in the Laurent expansion of y around
a). We then analyze some important onsequenes of this fat.In order to be able to desribe the behaviour of solution to the perturbedubi osillator near a pole a of y(z), we have to know the loal behavior of
y(z) lose to the same point a.Lemma 3.5 (Painlevé). Let a ∈ C be a pole of y. Then in a neighborhoodof a, y has the following onvergent Laurent expansion
y(z)=

1

(z − a)2
+
a(z − a)2

10
+
(z − a)3

6
+b(z−a)4+

∑

j≥5

cj(a, b)(z−a)j . (3.5)Here b is some omplex number and cj(·, ·) are polynomials with real oe�-ients, whih are independent on the partiular solution y.Conversely, �xed arbitrary a, b ∈ C, the above expansion has a non zeroradius of onvergene and solves P-I.Proof. See [GLS00℄.De�nition 3.2. We de�ne the Laurent map
L : C2 → {P-I transendents} .

L(a, b) is the unique analyti ontinuation of the Laurent expansion (3.5).We have already olleted all elements neessary to formulate the impor-tantLemma 3.6. Fix a solution y of P-I and let M(y) = (σ−2, . . . , σ2) be itsStokes multipliers. Let a be a pole of y and b be suh that the Laurentexpansion (3.5) is valid. Then (σ−2, . . . , σ2) are the monodromy data of theubi osillator (2.1) with potential 4λ3 − 2a− 28b.In other words, T (2a, 28b) = M ◦ L(a, b). Here T is the monodromymap of the ubi osillator (see equation 2.9), M is the Riemann-Hilbertorrespondene for P-I (see De�nition 3.1) and L is the Laurent map (seeDe�nition 3.2).Proof. Reall the de�nition of the k-th subdominant solutions ψk(λ; y, y′, z)and ψk(λ; a, b) of the perturbed and unperturbed ubi osillator (see De�ni-tion 2.2). Here y, y′ are funtions of z, hene we write ψk(λ; z) = ψk(λ; y, y
′, z).To prove the Lemma it is su�ient to show that

lim
z→a

ψk+1(λ; z)

ψk(λ; z)
=
ψk+1(λ; 2a, 28b)

ψk(λ; 2a, 28b)
.14



Sine the proof of the desired limit requires some knowledge of WKBanalysis, we postpone it in Setion 4.5.The previous Lemma has many important onsequenes.Theorem 3.2. Let y be any solution of P-I. Then a ∈ C is a pole of y i�there exists b ∈ C suh that M(y) = T (2a, 28b).Proof. One impliation is exatly the ontent of Lemma 3.6. Converselysuppose that M(y) = T (2a, 28b) for some a, b. Consider the solution ỹ =
L(a, b) of P-I given by the Laurent expansion (3.5). As a onsequene ofLemma 3.6, M(y) = M(ỹ). Due to the fat that M is injetive (see Lemma3.4) we have that y = ỹ.As a orollary of Theorem 3.1 and Theorem 3.2, we an haraterize thepoles of the intégrale tritronquée as very partiular ubi potentials.Theorem 3.3. The point a ∈ C is a pole of the intégrale tritronquée if andonly if there exists b ∈ C suh that the Shrödinger equation with the u-bi potential V (λ; 2a, 28b) admits the simultaneous solution of two di�erentquantization onditions, namely σ±2(2a, 28b) = 0. Equivalently, the asymp-toti values assoiated to the tritronquée intégrale an be hosen to be

w0 = 0, w1 = w−2 = 1, w2 = w−1 = ∞ . (3.6)As a onsequene of Theorem 3.2, we an show that the Riemann-Hilbertorrespondene M is bijetive.Theorem 3.4 (stated in [KK93℄). The map M is bijetive: solutions of P-Iare in 1-to-1 orrespondene with admissible monodromy data.Proof. We already know (see Lemma 3.4) that M is injetive. Aording toLemma 3.6, T (2a, 28b) = M ◦ L(a, b). Sine T is surjetive (see Theorem2.1) then M is surjetive too.
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Chapter 4WKB Analysis of the CubiOsillatorThe present Chapter is devoted to the omplex WKB analysis of the ubiosillator
d2ψ(λ)

dλ2
= V (λ; a, b)ψ(λ) , V (λ; a, b) = 4λ3 − aλ− b .We develop the omplex WKB analysis beause it is an e�ient methodto solve approximately the diret monodromy problem for the ubi osilla-tor.Indeed, our purpose is to ompute the poles of the intégrale tritronquéeafter having haraterized them as ubi osillators that admit the simul-taneous solutions of two quantization onditions (see Theorem 3.3). Wesueed in our goal and we eventually show (see Setion 4.2 and Chapter 5)that poles of intégrale tritronquée are desribed approximately by the solu-tions of a pair of Bohr-Sommerfeld quantization onditions, namely system(4.7,4.8) (more intelligibly rewritten as system (5.2)).We remark that the theory developed here has a muh wider range ofappliations than the study of poles of the tritronquée; for example, we willuse the WKB analysis also in Chapter 6 in the derivation of the DeformedThermodynami Bethe Ansatz.The Chapter is organized as follows. Setion 4.1 is devoted to the topo-logial lassi�ation of Stokes omplexes. In Setion 4.2 we alulate themonodromy data of the ubi osillator in WKB approximation, and we de-rive the orret Bohr-Sommerfeld onditions for the poles of the tritronquéesolution of P-I. In Setion 4.3 we introdue the "small parameter" of theapproximation. Setion 4.4 and 4.5 deal with the proofs of Theorem 4.2 andLemma 3.6.Remark. Most of the present Chapter an be read independently of theother Chapters of the thesis. However, the reader must at least reall from16



Chapter 2 the de�nitions of Stokes multipliers (see De�nition 2.3) and ofasymptoti values (see De�nition 2.5). We warn the reader that in the presentChapter we all Stokes setor and denote it Σk a rather di�erent objet thanthe Stokes Setor Sk de�ned in Chapter 2.4.1 Stokes ComplexesIn the omplex WKB method a prominent role is played by the Stokes andanti-Stokes lines, and in partiular by the topology of the Stokes omplex,whih is the union of the Stokes lines.The main result of this setion is the Classi�ation Theorem, where weshow that the topologial lassi�ation of Stokes omplexes divides the spaeof ubi potentials into seven disjoint subsets.Even though Stokes and anti-Stokes lines are well-known objets, thereis no standard onvention about their de�nitions, so that some authors allStokes lines what others all anti-Stokes lines. We follow here the notationof Fedoryuk [Fed93℄.Remark. To simplify the notation and avoid repetitions, we study theStokes lines only. Every single statement in the following setion remainstrue if the word Stokes is replaed with the word anti-Stokes, provided inequation (4.1) the angles ϕk are replaed with the angles ϕk + π
5 .De�nition 4.1. A simple (resp. double, resp. triple) zero λi of V (λ) =

V (λ; a, b) is alled a simple (resp. double, resp. triple) turning point. Allother points are alled generi.Fix a generi point λ0 and a hoie of the sign of√V (λ0). We all ationthe analyti funtion
S(λ0, λ) =

∫ λ

λ0

√
V (u)dude�ned on the universal overing of λ-plane minus the turning points.Let ĩλ0 be the level urve of the real part of the ation passing througha lift of λ0. Call its projetion to the puntured plane iλ0 . Sine iλ0 is aone dimensional manifold, it is di�eomorphi to a irle or to a line. If iλ0is di�eomorphi to the real line, we hoose one di�eomorphism iλ0(x), x ∈ Rin suh a way that the ontinuation along the urve of the imaginary part ofthe ation is a monotone inreasing funtion of x ∈ R.Lemma 4.1. Let λ0 be a generi point. Then iλ0 is di�eomorphi to the realline, the limit limx→+∞ iλ0(x) exists (as a point in C

⋃∞) and it satis�esthe following dihotomy:
17



(i) Either limx→+∞ iλ0(x) = ∞ and the urve is asymptoti to one of thefollowing rays of the omplex plane
λ = ρeiϕk , ϕk =

(2k + 1)π

5
, ρ ∈ R+, k ∈ Z5 , (4.1)(ii) or limx→+∞ iλ0(x) = λi, where λi is a turning point.Furthermore,(iii) if limx→±∞ iλ0(x) = ∞ then the asymptoti ray in the positive diretionis di�erent from the asymptoti ray in the negative diretion.(iv) Let ϕk, k ∈ Z5 be de�ned as in equation (4.1). Then ∀ε > 0,∃K ∈

R+ suh that if ϕk−1 + ε < arg λ0 < ϕk − ε and |λ0| > K, then
limx→±∞ iλ0(x) = ∞. Moreover the asymptoti rays of iλ0 are theones with arguments ϕk and ϕk−1.Proof. See [Str84℄.De�nition 4.2. We all Stokes line the trajetory of any urve iλ0 suh thatthere exists at least one turning point belonging to its boundary.We all a Stokes line internal if ∞ does not belong to its boundary.We all Stokes omplex the union of all the Stokes lines together with theturning points.We state all important properties of the Stokes lines in the followingTheorem 4.1. The following statements hold true(i) The Stokes omplex is simply onneted. In partiular, the boundaryof any internal Stokes line is the union of two di�erent turning points.(ii) Any simple (resp. double, resp. triple) turning point belongs to theboundary of 3 (resp. 4, resp 5) Stokes lines.(iii) If a turning point belongs to the boundary of two di�erent non-internalStokes lines then these lines have di�erent asymptoti rays.(iv) For any ray with the argument ϕk as in equation (4.1), there exists aStokes line asymptoti to it.Proof. See [Str84℄.
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4.1.1 Topology of Stokes omplexesIn what follows, we give a omplete lassi�ation of the Stokes omplexes,with respet to the orientation preserving homeomorphisms of the plane.We de�ne the map L from the λ-plane to the interior of the unit dis as
L : C → D1

L(ρeiϕ) =
2

π
eiϕ arctan ρ. (4.2)The image under the map L of the Stokes omplex is naturally a deo-rated graph embedded in the losed unit dis. The verties are the imagesof the turning points and the �ve points on the boundary of the unit diswith arguments ϕk, with ϕk as in equation (4.1). The bonds are obviouslythe images of the Stokes lines. We all the �rst set of verties internal andthe seond set of verties external. External verties are deorated with thenumbers k ∈ Z5. We denote S the deorated embedded graph just desribed.Notie that due to Theorem 4.1 (iii), there exists not more than one bondonneting two verties.The ombinatorial properties of S are desribed in the followingLemma 4.2. S possesses the following properties(i) the sub-graph spanned by the internal verties has no yles.(ii) Any simple (resp. double, resp. triple) turning point has valeny 3(resp. 4, resp. 5).(iii) The valeny of any external vertex is at least one.Proof. (i) Theorem 4.1 part (i)(ii) Theorem 4.1 part (ii)(iii) Theorem 4.1 part (iv)De�nition 4.3. We all an admissible graph any deorated simple graphembedded in the losure of the unit dis, with three internal verties and�ve deorated external verties, suh that (i) the yli-order inherited fromthe deoration oinides with the one inherited from the ounter-lokwiseorientation of the boundary, and (ii) it satis�es all the properties of Lemma4.2. We all two admissible graphs equivalent if there exists an orientation-preserving homeomorphism of the disk mapping one graph into the other.Theorem 4.2. Classi�ation TheoremAll equivalene lasses of admissible maps are, modulo a shift k → k +

m,m ∈ Z5 of the deoration, the ones depited in Figure 4.1.19



"Boutroux Graph":(320)
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Figure 4.1: All the equivalene lasses of admissible graphs.
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Proof. Let us start analyzing the admissible graphs with three internal ver-ties and no internal edges.Any internal vertex is adjaent to a triplet of external verties. Due tothe Jordan urve theorem, there exists an internal vertex, say λ0, adjaentto a triplet of non onseutive external verties. Performing a shift, theyan be hosen to be the ones labelled by 0, 2,−1. Call the respetive edges
e0, e−1, e2.The disk is ut in three disjoint domains by those three edges. No internalverties an belong to the domain ut by e0 and e4, sine it ould be adjaentonly to two external verties, namely the ones labelled with 0 and −1. Bysimilar reasoning it is easy to show that one and only one vertex belong toeah remaining domains.Suh embedded graph is equivalent to the graph (300).Classi�ations for all other ases may proved by similar methods.The equivalene lasses are enoded by a triplet of numbers (a b ): ais the number of simple turning points, b is the number of internal Stokeslines, while c is a progressive number, distinguishing non-equivalent graphswith same a and b. Some additional information shown Figure 4.1 will beexplained in the next setion.Remark. For any admissible graph there exists a real polynomial with anequivalent Stokes omplex.Remark. Notie that the automorphism group of every graph in Figure 4.1is trivial. Therefore the unlabelled verties an be labelled. In the followingwe will label the turning points as in �gure 4.1. We denote "Boutroux graph"the graph (320)4.1.2 Stokes SetorsRemark. We warn the reader that in the present Setion and for the restof the Chapter we all Stokes Setor and denote it by Σk a rather di�erentobjet than the Stokes Setor Sk de�ned in Chapter 2.In the λ-plane the omplement of the Stokes omplex is the disjoint unionof a �nite number of onneted and simply-onneted domains, eah of themalled a setor.Combining Theorem 4.1 and the Classi�ation Theorem we obtain thefollowingLemma 4.3. All the urves iλ0 , with λ0 belonging to a given setor, havethe same two asymptoti rays. Moreover, two di�erent setors have di�erentpairs of asymptoti rays. 21



For any k ∈ Z5 there is a setor, alled the k-th Stokes setors, whoseasymptoti rays have arguments ϕk−1 and ϕk. This setor will be denoted
Σk. The boundary ∂Σk of eah Σk is onneted.Any other setor has asymptoti rays with arguments ϕk−1 and ϕk+1, forsome k. We all suh a setor the k-th setor of band type, and we denote it
Bk. The boundary ∂Bk of eah Bk has two onneted omponents.Choose a setor and a point λ0 belonging to it. The funtion S(λ0, λ) iseasily seen to be bi-holomorphi into the image of this setor. In partiular,with one hoie of the sign of √V it maps a Stokes setor into the half plane
ReS > c, for some −∞ < c < 0 while it maps a Bk setor in the vertialstrip c < ReS < d, for some −∞ < c < 0 < d < +∞.De�nition 4.4. We all a di�erentiable urve γ : [0, 1] → C an admissiblepath provided γ is injetive on [0, 1[, λi /∈ γ([0, 1]), for all turning points λi,and ReS(γ(0), γ(t)) is a monotone funtion of t ∈ [0, 1].We say that Σj ⇆ Σk if there exist µj ∈ Σj, µk ∈ Σk and an admissiblepath suh that γ(0) = µj, γ(1) = µk.The relation ⇆ is obviously re�exive and symmetri but it is not ingeneral transitive.Notie that Σj ⇆ Σk if and only if for every point µj ∈ Σj and everypoint µk ∈ Σk an admissible path exists.Lemma 4.4. The relation ⇆ depends only on the equivalene lass of theStokes omplex S.Proof. Consider an admissible path from Σj to Σk, j 6= k. The path isnaturally assoiated to the sequene of Stokes lines that it rosses. We denotethe sequene ln, n = 0, . . . , N , for some N ∈ N. We ontinue analytially
S(µj , ·) to a overing of the union of the Stokes setors rossed by the pathtogether with the Stokes lines belonging to the sequene. Sine S(µj, ·) isonstant along eah onneted omponent of the boundary of every lift of asetor rossed by the path, then eah of suh onneted omponents annotbe rossed twie by the path. Hene, due to the lassi�ation theorem noadmissible path is a loop. Therefore, the union of the Stokes setors rossedby the path together with the Stokes lines belonging to the sequene is simplyonneted.Conversely, given any injetive sequene of Stokes lines ln, n = 0 . . . ,Nsuh that for any 0 ≤ n ≤ N − 1, ln and ln+1 belong to two di�erentonneted omponents of the boundary of a same setor, there exists anadmissible path with that assoiated sequene. This last observation impliesthat the relation ⇆ depends only on the topology of the graph S. Moreover,if the sequene exists it is unique; indeed, if there existed two admissiblepaths, joining the same µj and µk but with di�erent sequenes, then therewould be an admissible loop. 22



Map Pairs of non onseutive Setors not satisfying the relation ⇆300 None310 (Σ0,Σ2), (Σ0,Σ−2)311 (Σ1,Σ−1)320 (Σ1,Σ−1), (Σ1,Σ−2), (Σ−1,Σ2)100 (Σ1,Σ−1), (Σ0,Σ−2), (Σ0,Σ2)110 All but (Σ1,Σ−1)000 AllTable 4.1: Computation of the relation ⇆With the help of Lemma 4.4 and of the Classi�ation Theorem, relation
⇆ an be easily omputed, as it is shown in Table 4.1. As it is evident fromFigure 4.1, for any graph type we have that Σk ⇆ Σk+1, ∀k ∈ Z5.4.2 Complex WKB Method and Asymptoti Val-uesIn this setion we introdue the WKB funtions jk, k ∈ Z5 and use them toevaluate the asymptoti values of equation (2.1). The topology of the Stokesomplex will show all its importane in these omputations.On any Stokes setor Σk, we de�ne the funtions

Sk(λ) = S(λ∗, λ) , (4.3)
Lk(λ) = −1

4

∫ λ

λ∗

V ′(u)
V (u)

du , (4.4)
jk(λ) = e−Sk(λ)+Lk(λ) . (4.5)Here λ∗ is an arbitrary point belonging to Σk and the branh of √V issuh that ReSk(λ) is bounded from below.We all jk the k-th WKB funtion.4.2.1 Maximal DomainsIn this subsetion we onstrut the k-th maximal domain, that we denote

Dk. This is the domain of the omplex plane where the k-th WKB funtionapproximates a solution of equation (2.1).The onstrution is done for any k in a few steps (see Figure 4.2 for theexample of the Stokes omplex of type (300)):(i) for every Σl suh that Σl ⇆ Σk, denote Dk,l the union of the setorsand of the Stokes lines rossed by any admissible path onneting Σland Σk. 23



(ii) Let D̂k =
⋃
lDl,k. Hene D̂k is a onneted and simply onnetedsubset of the omplex plane whose boundary ∂D̂k is the union of someStokes lines.(iii) Remove a δ-tubular neighborhood of the boundary ∂D̂k, for an arbi-trarily small δ > 0, suh that the resulting domain is still onneted.(iii) For all l 6= k, l 6= k − 1, remove from D̂k an angle λ = ρeiϕ, |ϕ− ϕl| <

ǫ, ρ > R, for ε arbitrarily small and R arbitrarily big, in suh a waythat the resulting domain is still onneted. The remaining domain is
Dk.4.2.2 Main Theorem of WKB ApproximationWe an now state the main theorem of the WKB approximation. Our The-orem is a slight improvement of a Theorem by F. Olver [Olv74℄, but whoseorigin goes bak to G. D. Birkho� [Bir33℄.Theorem 4.3. Continue the WKB funtion jk to Dk. Then there exists asolution ψk(λ) of (2.1), suh that for all λ ∈ Dk

∣∣∣∣
ψk(λ)

jk(λ)
− 1

∣∣∣∣ ≤ g(λ)
(
e2ρ(λ) − 1

)

∣∣∣∣∣
ψ′
k(λ)

jk(λ)
√
V (λ)

+ 1

∣∣∣∣∣ ≤
∣∣∣∣∣
V ′(λ)

4V (λ)
3
2

∣∣∣∣∣+ (1 +

∣∣∣∣∣
V ′(λ)

4V (λ)
3
2

∣∣∣∣∣)g(λ)(e
2ρ(λ) − 1)Here ρk is a bounded positive ontinuous funtion, alled the error fun-tion, satisfying

lim
λ→∞

ϕk−1<argλ<ϕk+1

ρk(λ) = 0 ,and g(λ) is a positive funtion suh that g(λ) ≤ 1 and
lim
λ→∞

λ∈Dk∩Σk±2

g(λ) =
1

2
.Proof. The proof is in the appendix 4.4.Notie that jk is sub-dominant (i.e. it deays exponentially) in Σk anddominant (i.e. it grows exponentially) in Σl,∀l 6= k.For the properties of the error funtion, ψk is subdominant in Σk anddominant in Σk±1. Therefore, in any Stokes setor Σk there exists a sub-dominant solution, whih is de�ned uniquely up to multipliation by a nonzero onstant. 24
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Figure 4.2: In the drawings, the onstrution of D0 for a graph of type (300)is depited.
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4.2.3 Computations of Asymptoti Values in WKB Approx-imationThe aim of this paragraph is to ompute the asymptoti values for theShrödinger equation (2.1) in WKB approximation. We expliitely workout the example of the Stokes omplex of type (320), relevant to the studyof poles of the intégrale tritronquée.De�nition 4.5. De�ne the relative errors
ρkl =





lim
λ→∞

λ∈Σk∩Dl

ρl(λ), if Σl ⇆ Σk

∞, otherwiseand the asymptoti values (reall De�nition 2.5)
wk(l,m)

def
= wk(

ψl
ψm

). (4.6)We say that Σk ∼ Σl provided ρkl < log 3
2 . The relation ∼ is a sub-relation of

⇆. Notie that ρl+1
l = 0 and ρml = ρlm (see Appendix 4.4).In order to ompute the asymptoti value wk(l,m), we have to know theasymptoti behavior of ψl and ψm in Σk. By Theorem 4.3,

lim
λ→∞

λ∈Σk∩Dl

ψl(λ)

jl(λ)
6= 0 , if 1

2
(e2ρ

l
k − 1) < 1 .Hene the asymptoti behavior of ψl in Σk an be related to the asymptotibehavior of jl in Σk if the relative error ρkl is so small that the above inequalityholds true, i.e. if Σk ∼ Σl.Remark. Depending on the type of the graph S, there may not exist twoindies k 6= l suh that all the relative errors ρnl , ρnk , n ∈ Z5 are small. How-ever it is often possible to ompute an approximation of all the asymptotivalues wn(l, k) using the strategy below.(i) We selet a pair of non onseutive Stokes setors Σl, Σl+2, with thehypothesis that the funtions ψl and ψl+2 are linearly independent, sothat wl(l, l + 2) = 0, wl+2(l, l + 2) = ∞. Sine ρl+1

l = ρl+1
l+2 = 0 then

wl+1(l, l + 2) = lim
λ→∞

λ∈Σl+1∩Dl∩Dl+2

jl(λ)

jl+2(λ)
.Therefore, we �nd three exat and distint asymptoti values.26



(ii) For any k 6= l, l+ 1, l+ 2 suh that Σl ∼ Σk and Σl+2 ∼ Σk, we de�nethe approximate asymptoti value
ŵk(l,m) = lim

λ→∞
λ∈Σk∩Dl∩Dl+2

jl(z)

jm(z)
.The spherial distane between wk(l,m) and ŵk(l,m) may be easilyestimated from above knowing the relative errors ρlk and ρl+2

k .If for any k 6= l, l + 1, l + 2, Σl ∼ Σk and Σl+2 ∼ Σk, then the wean ompute, approximately, all Stokes multipliers using formula 2.14and Theorem 2.4. In the sequel we let σ̂k denote the approximate k-thStokes multipliers.(iii) If for some pair (l, l + 2) the assumption Σl ∼ Σk, Σl+1 ∼ Σk failsto be true for just one value of the index k = k∗, and, for anotherpair (l′, l′ + 2) the assumption Σl′ ∼ Σk′, Σl′+2 ∼ Σk′ fails to be truefor just one valued of the index k′ = k′∗, with k′∗ 6= k∗, then we anomplete our alulations. Indeed we an ompute both σ̂k∗ and σ̂k′∗using formula 2.14 and Theorem 2.4. After that we alulate all otherStokes multipliers using the quadrati relations 2.7.Remark. As shown in Table 4.1, the relation ⇆ is uniquely haraterizedby the graph type. For the sake of omputing the asymptoti values the im-portant relation is ∼ and not ⇆. Indeed, the alulations for a given graphtype, say (a b c), are valid for (and only for) all the potentials whose relation
∼ is equivalent to the relation ⇆ haraterizing the graph type (a b c).Due to the above remark, in what follows we suppose that the relation
∼ is equivalent to the relation ⇆. We have the followingLemma 4.5. Let V (λ; a, b) suh that the type of the Stokes omplex is (300),
(310), (311); moreover, suppose that the ∼ relation oinides with ⇆. Thenall the asymptoti values of equation (2.1) are pairwise distint, but for atmost one pair.Proof. For a graph of type (300) or (311) the thesis is trivial. For a graphof type (320), it may be that w0 = w2 or w0 = w−2. Sine w2 6= w−2 thethesis follows.We ompletely work out the ase of Stokes omplex of type (320), whilefor the other ases we present the results only. Due to Lemma 4.5, we omitthe results for potentials whose graph type is (300), (310) and (311).
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Boutroux Graph = 320 We suppose that Σ0 ∼ Σ±2.Let us onsider �rst the pair Σ0 and Σ−2. In Figure 4.3 the maximal do-mains D0 ansD−2 are depited by olouring the Stokes lines not belonging tothem blue and red respeitvely. In partiular S0, L0, j0 (resp. S−2, L−2, j−2)an be extended to all D0 (resp. D−2) along any urve that does not intersetany blue (resp. red) Stokes line.
λ−1

λ1

λ0

−π
5

π

π
5

Σ0

Σ1

Σ2

Σ−2

Σ−1

Stokes line not belonging to D0

Stokes line not belonging to D−2

λ∗

µ−1

µ2

3π
5

− 3π
5

(320)

Figure 4.3: Calulation of w−1(0,−2) and of ŵ2(0,−2)We �x a point λ∗ ∈ Σ0 suh that S0(λ∗) = S−2(λ
∗) = L0(λ

∗) =
L−2(λ

∗) = 0.By de�nition
ŵk(0,−2) = lim

λ→∞k

j0(λ)

j−2(λ)

= lim
λ→∞k

e−S0(λ)+S−2(λ)eL0(λ)−L−2(λ) ,Here λ → ∞k is a short-hand notation for λ → ∞, λ ∈ Σk ∩D0 ∩D−2. Wealulate ŵk(0,−2) for k = −1, 2.We �rst alulate limλ→∞k
e−S0(λ)+S−2(λ).Notie that ∂S0

∂λ = ∂S−2

∂λ in Σk. Hene
lim

λ→∞k

−S0(λ) + S−2(λ) = −S0(µk) + S−2(µk) , k = −1, 2 ,where µk is any point belonging to Σk (in Figure 4.3, the paths of integrationde�ning S0(µk) and S−2(µk) are oloured blue and red respetively).On the other hand, sine ∂S0
∂λ = −∂S−2

∂λ in Σ0
⋃

Σ−2, we have that
−S0(µk) + S−2(µk) = −2S0(λs) , s = −1 if k = −1 and s = 0 if k = 2 .We now ompute limλ→∞k

eL0(λ)−L−2(λ). Sine ∂L0
∂λ = ∂L−2

∂λ in D0
⋂
D−2,28



we have that
lim

λ→∞k

L0(λ)− L−2(λ) = L0(µk)− L−2(µk) ,

L0(µk)− L−2(µk) = −1

4

∮

ck

V ′(µ)
V (µ)

dµ , k = −1, 2 .Here ck is the blue path onneting λ∗ with µk omposed with the inverseof the red path onneting λ∗ with µk (see Figure 4.3).Therefore, we have
lim

λ→∞k

L0(λ)− L−2(λ) = −σ2πi
4
, σ = −1 if k = −1 and σ = +1 if k = 2 .Combining the above omputations and formulas (2.14,2.17) , we get

w−1(0,−2) = i e−2S0(λ−1) , ŵ2(0,−2) = −i e−2S0(λ0) ,

σ̂1 = −ie−2(S0(λ0)−S0(λ−1)) .We stress that w−1(0,−2) is exat while ŵ2(0,−2) is an approximation.Performing the same omputations for the pair Σ0 and Σ2, we obtain
w1(0, 2) = −i e−2S0(λ1) , ŵ−2(0, 2) = i e−2S0(λ0) ,

σ̂−1 = −ie−2(S0(λ0)−S0(λ1)) .Using the quadrati relation (2.7) among Stokes multipliers, we eventuallyompute all other Stokes multipliers
σ̂±2 = −i1 + e−2(S0(λ0)−S0(λ±1))

e−2(S0(λ0)−S0(λ∓1))
, σ̂0 = i (1 + σ̂2σ̂−2) .Quantization Conditions The omputations above provides us withthe following quantization onditions:

σ̂2 = 0 ⇔ e−2(S0(λ1)−S0(λ0)) = −1 (4.7)
σ̂−2 = 0 ⇔ e−2(S0(λ−1)−S0(λ0)) = −1 (4.8)
σ̂0 = 0 ⇔ e−2(2S0(λ0)−S0(λ−1)−S0(λ1)) =

−(1 + e−2(S0(λ0)−S0(λ1)))(1 + e−2(S0(λ0)−S0(λ−1))) (4.9)We notie that equation (4.9) is inompatible both with (4.7) and (4.8).Equations (4.7) and (4.8) are Bohr-Sommerfeld quantizations.As was shown in equation (3.6), the poles of the integràle tritronquèeare related to the polynomials suh that w1 = w−2 and w−1 = w2. Sineequations (4.7) and (4.8) an be simultaneously solved, solutions of sys-tem (4.7,4.8) desribe, in WKB approximation, polynomials related to the29



intégrale tritronquée. System (4.7,4.8) was found by Boutroux in [Bou13℄(through a ompletely di�erent analysis), to haraterize the asymptoti dis-tribution of the poles of the integràle tritronquèe. Therefore we all (4.7,4.8)the Bohr-Sommerfeld-Boutroux system.Equation (4.9) will not be studied in this thesis, even though is quiteremarkable. Indeed, it desribes the breaking of the PT symmetry (see[DT00℄ and [BBM+01℄).Case (100)

w0(1,−1) = −1

ŵ−2(1,−1) = ŵ2(1,−1) = 1Sine w0 6= ŵ±2 and w2 6= w−2, if the error ρ−2
1 or ρ2−1 is small enough,then all the asymptoti values are pairwise distint.Case (110)

ŵ−1(1,−2) = 1

w2(1,−2) = −1In this ase, it is impossible to alulate w0 with the WKB method thathas been here developed. Hene it may be that either w0 = w2 or w0 = w−2.Notie, however, that (110) is the graph only of a very restrited lass ofpotentials namely V (λ) = (λ+ λ0)
2(λ− 2λ0), where λ0 is real and positive.Sine the potential is real then w0 6= w±2.Case (000) In this ase, no asymptoti values an be alulated. Notie,however, that V (λ) = λ3 is the only potential with graph (000). For thispotential the asymptoti values an be omputed exatly, simply using sym-metry onsiderations. Indeed one an hoose wk = e

2kπ
5
i , k ∈ Z5.4.3 The Small ParameterThe WKB method normally applies to problem with an external small pa-rameter, usually denoted ~ or ε. In the study of the distributions of poles ofa given solution y of P-I there is no external small parameter and we haveto explore the whole spae of ubi potentials. The aim of this setion isto introdue an internal small parameter in the spae of ubi potentials,that greatly simpli�es our study. The results of the present Setion will beextremely important when studying the poles of the intégrale tritronquée(see Chapter 5). 30



On the linear spae of ubi potentials in anonial form
V (λ; a, b) = 4λ3 − aλ− b,we de�ne the following ation of the group R+ × Z5 (similar to what isalled Symanzik resaling in [Sim70℄)

(x,m)[V (λ; a, b)] = V (λ; Ω2mx2a,Ω3mx3b), x ∈ R+, m ∈ Z5, Ω = e
2π
5
i.(4.10)The indued ation on the graph S, on the relative error ρml , and on thedi�erene Si(λj)− Si(λk) is desribed in the followingLemma 4.6. Let the ation of the group R+×Z5 be de�ned as above. Then(i) (x,m) leaves the graph S invariant, but for a shift of the labels k →

k +m of the external verties.(ii) (x,m)[Si(λj)− Si(λk)] = x
5
2 (Si(λj)− Si(λk)) .(iii) (x,m)[ρkl ] = x−

5
2 ρkl .Proof. The proof of (i) and (ii) follows from the following equality

√
V (λ; Ω2kx2a,Ω3kx3b)dλ = x

5
2

√
V (λ′; a, b)dλ′ , λ = xλ′ .The proof of point (iii) follows from a similar saling law of the 1-form

α(λ)dλ (see equation (4.16) in Appendix 4.4).Due to Lemma 4.6(iii), ε =
∣∣a
b

∣∣ plays the role of the small parameter.Indeed, along any orbit of the ation of the group R × Z5, all the (�nite)relative errors go to zero uniformly as ∣∣ab ∣∣→ 0.Sine all the relevant information is enoded in the quotient of the spaeof ubi potentials with respet to the group ation, we de�ne the followinghange of variable
ν(a, b) =

b

a
, µ(a, b) =

b2

a3
. (4.11)The indued ation on these oordinates is simple, namely

(x,m)[µ(a, b)] = µ(a, b) and (x,m)[ν(a, b)] = Ωmx ν(a, b) .Moreover, the orbit of the set {(ν, µ) ∈ C2 s.t. | ν | = 1, | arg ν | < π
5 , µ 6= 0

}is a dense open subset of the spae of ubi potentials.31



4.4 Proof of the Main Theorem of WKB AnalysisThe aim of this appendix is to prove Theorem 4.3. Our approah is similarto the approah of Fedoryuk [Fed93℄.Notations are as in setions 4.1 and 4.2, exept for ∞k. In what follows,we suppose to have �xed a ertain ubi potential V (λ; a, b) and a maximaldomain Dk. To simplify the notation we write V (λ) instead of V (λ; a, b).4.4.1 Gauge Transform to an L-Diagonal SystemThe strategy is to �nd a suitable gauge transform of equation (2.1) suh thatfor large λ it simpli�es. We rewrite the Shrödinger equation
−ψ′′(λ) + V (λ)ψ(λ) = 0 , (4.12)in �rst order form:

Ψ′(λ) = E(λ)Ψ(λ) ,

E(λ) =

(
0 1

V (λ) 0

)
. (4.13)Lemma 4.7 (Fedoryuk). In Dk(i) the gauge transform

Y (λ) = A(λ)U(λ) ,

A(λ) = jk(λ)

(
1 1√

V (λ)− V ′(λ)
4V (λ) −

√
V (λ)− V ′(λ)

4V (λ)

)
, (4.14)is non singular and(ii) the system (4.13) is transformed into the following one

U ′(λ) = F (λ)U(λ) =
(
A−1EA−A−1A′)U ,

F (λ) = 2
√
V (λ)

(
1 0
0 0

)
+ α(z)

(
1 1
−1 −1

)
, (4.15)

α(λ) =
1

32
√
V (λ)

5 (4V (λ)V ′′(λ)− 5V ′2(λ)) . (4.16)Proof. (i) Indeed detA(λ) = 2j2k(λ)
√
V (λ) 6= 0, ∀λ ∈ Dk, by onstru-tion of jk and Dk.(ii) It is proven by a simple alulation.32



4.4.2 Some Tehnial LemmasBefore we an begin the proof of Theorem 4.3, we have to introdue theompati�ation of Dk and the preparatory Lemmas 4.8 and 4.9.Compati�ation of DK Sine Dk is simply onneted, it is onformallyequivalent to the interior of the unit disk D. We denote U the uniformisationmap, U : D → Dk.By onstrution, the boundary of Dk is the union of n free Jordan urves,all interseting at ∞. Here n is equal to the number of setors Σl suh that
Σl ⇆ Σk minus 2.Due to an extension of Carathéodory's Theorem ([Car℄, �134-138), themap U extends to a ontinuous map from the losure of the unit irle tothe losure of Dk. The map is injetive on the losure of D minus the
n ounterimages of ∞. Hene, the uniformisation map realizes a n pointompati�ation of Dk, that we all Dk. In Dk there are n points at ∞: ∞kdenotes the point at ∞ belonging to the losure of U (Σk−1 ∪Σk ∪ Σk+1);
∞l denotes the eventual point at ∞ belonging to the losure of U(Σl) (here
λ = k ± 2, and Σl ⇆ Σk).De�nition 4.6. Let H be the spae of funtion holomorphi in Dk andontinuous in Dk. H endowed with the sup norm is a Banah spae (H,
‖·‖H).Let Γ(λ), λ ∈ Dk − ∞k be the set of injetive pieewise di�erentiableurves γ : [0, 1] → Dk, suh that1. γ(0) = λ, γ(1) = ∞k,2. ReSk(γ(0), γ(t)) is eventually non dereasing,3. there is an ε > 0 suh that eventually ∣∣arg γ(t)− 2πk

5

∣∣ < π
5 − ε,4. the length of the urve restrited to [0, T ] is O (|γ(T )|) , as t→ 1.Let Γ̃(λ) be the subset of Γ(λ) of the paths along whih ReSk(γ(0), γ(t))is non dereasing.Let K1 : H → H and K2 : H → H be de�ned (for the moment formally)

K1[h](λ) = −
∫

γ∈Γ(λ)
e2Sk(µ,λ)α(µ)h(µ)dµ , (4.17)

K2[h](λ) =

∫

γ∈Γ(λ)
α(µ)h(µ)dµ . (4.18)Let ρ : Dk → Dk:

ρ(λ) =





inf
γ∈Γ̃(λ)

∫ 1

0

∣∣∣∣α(γ(t))
dγ(t)

dt

∣∣∣∣ dt, if λ 6= ∞k

0 , if λ = ∞k .33



Remark. Sine along rays of �xed argument ϕ, with ∣∣ϕ− 2πk
5

∣∣ < π
5 − ε,

ReSk is eventually inreasing, there are paths satisfying point (1) through(4) of the above de�nition. Moreover, by onstrution of Dk, Γ̃(λ) is nonempty for any λ.Before beginning the proof of the theorem, we need two preparatorylemmas.Lemma 4.8. Fix ε > 0, an angle ∣∣argϕ− 2πl
5

∣∣ < π
5 − ε, and let Ω =

Σl ∩
{
λ ∈ C,

∣∣λ− 2πl
5

∣∣ < π
5 − ε

}. Denote i(R) = iReiϕ ∩ Ω, R ∈ R+, andlet L(R) be the length with respet to the eulidean metri of i(R). Then
L(R) = O(R) and infλ′∈i(R) |λ′| = O(R).Let r be any level urve of Sl(λ∗, ·) asymptoti to the ray of argument 2πl

5 ,
Ω(R) =

{
λ ∈ Ω, ReSl(λ,Re

iϕ) ≥ 0
}, and M(R) be the length of r ∩ Ω(R).Then M(R) = O(R).Proof. [Str84℄, hapter 3.Lemma 4.9. (i) ρ is a ontinuous funtion.(ii) K1 and K2 are well-de�ned bounded operator. In partiular

|Ki[h](λ)| ≤ ρ(λ)‖h‖H , i = 1, 2 (4.19)(iii) K2[h](∞k) = K1[h](∞k) = K1(∞k±2) = 0,∀h ∈ HProof. (i)Sine α(λ)dλ = O(|λ|− 7
2 ), then α(λ)dλ is integrable along anyurve γ ∈ Γ̃(λ). Therefore ρ is a ontinuous funtion on Dk.(ii)We �rst prove that (a) Ki[h](λ) does not depend on the integrationpath for any λ ∈ Dk minus the points at in�nity. A result that easily impliesthat Ki[h](·) is an analyti funtion on Dk, ontinuous on λ ∈ Dk minus thepoints at ∞. We then prove (b) the estimates (4.19) and () the existeneof the limits Ki[h](∞l), l = ∞k,∞k±2.To simplify the notation, we prove the theorem for the operator K1. Theproof for K2 is almost idential .(a)Let γa, γb ∈ Γ(λ). The urve iγa(T ), where T = 1 − ε for somesmall ε > 0 interset γb at some γb(T

′). Therefore we an deompose
−γb ◦ γa into two di�erent paths with the help of a segment of iγa(T ),∫
−γb◦γa e

2Sk(µ,λ)α(µ)h(µ)dµ =
∫
γ1

+
∫
γ2
e2Sk(µ,λ)α(µ)h(µ)dµ. One path γ1is the loop based at λ and the other γ2 is the loop based at ∞k. Sine

γ1 ⊂ Dk, then ∫γ1 e2Sk(µ,λ)α(µ)h(µ)dµ = 0. Along γ2, e2Sk(γ2(t),λ) ≤ 1 there-fore the integrand an be estimated just by |α(γ2(t))|. Due to lemma 4.8,∫
γ2
|α(µ)h(µ)dµ| = O(|γa(T )|−

5
2 ). Sine ε is arbitrary, then K1[h](λ) doesnot depend on the integration path.(b)Clearly for any path γ ∈ Γ̃(λ), |K1[h](λ)| ≤

∫ 1
0 |α(λ)h(λ)dλ| dt. Sine

K1[h](λ) does not depend on γ, then estimate (4.19) follows.34



() Let λn be a sequene onverging to ∞l, l = k + 2 or l = k − 2;without losing any generality we suppose that the sequene is ordered suhthat ReSk(λn) ≤ ReSk(λn+1). Fix a urve r, as de�ned in Lemma 4.8.By onstrution of Dk, it is always possible to onnet two points λn and
λn+m with a union of segments of the urves iλn , iλn+m and of r. We de-note by γ the union of this three segment. By onstrution of Dk (seeSubsetion 4.2.1 (iii)), there exists ε > 0 suh that ∣∣arg λn − 2πl

5

∣∣ < π
5 −

ε,∀n. Therefore, due to Lemma 4.8, γ has length of order |λn| + |λn+m|.Hene |K1[h](λn)−K1[h](λn+m)| ≤
∫
γ |h(λ)α(λ)dλ| = O(|λn|−

5
2 ). Then

K1[h](λn) is a Cauhy sequene and the limit is well de�ned.We now prove that this limit is zero by alulating it along a �xed ray
λ = xeiϕ inside Σk±2. Let us �x a point x∗ on this ray in suh a way that thefuntion ReSk(x∗, x) is monotone dereasing in the interval [x∗,+∞[. Alongthe ray we have

K1[h](x) = −
∫ x∗
x e2Sk(y,x

∗)α(y)h(y)dy + g(x∗)

e2Sk(x∗,x)
,where g(x∗) is a onstant, namely ∫γ∈Γ(x∗) e2Sk(µ,x

∗)α(µ)h(µ)dµ. Hene
limx→∞K1[h](x) = limx→∞

α(x)h(x)√
V (x)

= 0.With similar methods the reader an prove that the limit K1[h](∞k)exists and is zero.We are now ready to prove Theorem 4.3.Theorem 4.4. Extend the WKB funtion jk to Dk. There exists a uniquesolution ψk of (2.1) suh that for all λ ∈ Dk
∣∣∣∣
ψk(λ)

jk(λ)
− 1

∣∣∣∣ ≤ g(λ)(e2ρ(λ) − 1) ,

∣∣∣∣∣
ψ′
k(λ)

jk(λ)
√
V (λ)

+ 1

∣∣∣∣∣ ≤
∣∣∣∣∣
V ′(λ)

4V (λ)
3
2

∣∣∣∣∣+ (1 +

∣∣∣∣∣
V ′(λ)

4V (λ)
3
2

∣∣∣∣∣)g(λ)(e
2ρ(λ) − 1) ,where g(λ) is a positive funtion, g(λ) ≤ 1 and g(∞k±2) =
1
2 .Proof. We seek a partiular solution to the linear system (4.15) via suessiveapproximation.If U(λ) = U (1) ⊕ U (2) ∈ H ⊕H satis�es the following integral equationof Volterra type

U(λ) = U0 +K[U ](λ) , U0 ≡
(
0
1

)
,

K[U ](λ) =

(
K1[U

(1) + U (2)](λ)

K2[U
(1) + U (2)](λ)

)
, (4.20)35



then U(λ) restrited to Dk satis�es (4.15).We de�ne the the Neumann series as follows
Un+1 = U0 +K[Un] , Un+1 =

n+1∑

i=0

Ki[U0] . (4.21)More expliitly,
Kn[U0](λ) =

(∫ ∞k

λ
dµ1

∫ ∞k

µ1

dµ2 . . .

∫ ∞k

µn−1

dµn
−e2S(µ1,z)α(µ1) ×

α(µ1) ×
α(µ2)(1 − e2S(µ2,µ1)) . . . α(µn)(1− e2S(µn,µn−1))

α(µ2)(1 − e2S(µ2,µ1)) . . . α(µn)(1− e2S(µn,µn−1))

)
.Here the integration path γ belong to Γ(λ). For any γ ∈ Γ̃(λ) and any

n ≥ 1

∣∣∣Kn[U0]
(i)(λ)

∣∣∣≤ 1

2

∫ ∞k

λ

∫ ∞k

µ1

. . .

∫ ∞k

µn−1

n∏

i=1

|2α(µi)dµi|=
2n−1

n!

(∫

γ
dµ1|α(µ1)|

)n
,where Kn[U0]

(i) is the i-th omponent of Kn[U0]. Hene
|Kn[U ]i(λ)| ≤

1

2

1

n!
(2ρ(λ))n (4.22)Thus the sequene Un onverges in H and is a solution to (4.20); all Uits limit. Due to Lemma 4.9, U (1)(∞k±2) = 0.Let Ψk be the solution to (4.13) whose gauge transform is U restritedto Dk; The �rst omponent ψk of Ψk satis�es equation (4.12).From the gauge transform (4.14), we obtain

ψk(λ)

jk(λ)
− 1 = U1(λ) + U2(λ)− 1 ,

ψ′
k(λ)

jk(λ)
√
V (λ)

+ 1 = U1(λ)(1 −
V ′(λ)

4V (λ)
3
2

)− (U2(λ)− 1)(1 +
V ′(λ)

4V (λ)
3
2

) +

− V ′(λ)

4V (λ)
3
2

,The thesis follows from these formulas, inequality (4.22) and from thefat that U1(∞k±2) = 0.
36



Remark. The solution ψk(λ) of equation (2.1) desribed in Theorem 4.3may be extended from Dk to the whole omplex plane, sine the equation islinear with entire oe�ients. The ontinuation is onstruted in the follow-ing Corollary.Corollary 4.1. For any λ ∈ C, λ not a turning point, we de�ne Γ(λ) as inDe�nition 4.6. Fixed any γ ∈ Γ(λ) and h a ontinuous funtion on γ, wede�ne the funtionals Ki[h](λ) as in equations (4.17) and (4.18). We de�nethe Neumann series as in equations (4.20) and (4.21), and we ontinue jkalong γ.Then then Neumann series onverges and we all U (1)(λ) and U (2)(λ)the �rst and seond omponent of its limit.Moreover, ψk(λ) =
(
U (1)(λ) + U (2)(λ)

)
jk(λ) solves equation (2.1) andfor any ε > 0

lim
|λ|→∞ , |argλ− 2πk

5 |< 3π
5
−ε

(
U (1)(λ) + U (2)(λ)

)
= 1The reader should notie that if λ /∈ Dk, then Γ̃(λ) is empty and weannot estimate ψk(λ)

jk(λ)
.4.5 Proof of Lemma 3.6In this Setion we suppose to have �xed a solution y = y(z) of P-I and apole a of y. The Laurent expansion of y around a is as follows (see Lemma3.5)

y(z)=
1

(z − a)2
+
a(z − a)2

10
+

(z − a)3

6
+ b(z − a)4 + higher order ,for some b ∈ C.Here we denote ψk(λ; z) (see De�nition 2.2) the subdominant solution ofthe perturbed osillator

d2ψ(λ)

dλ2
= Q(λ; y, y′, z)ψ(λ) , (4.23)

Q(λ; z) = 4λ3−2λz +2zy(z)−4y3(z)+y′2(z)+
y′(z)

λ− y(z)
+

3

4(λ− y(z))2
.(4.24)Similarly, ψk(λ; 2a, 28b) is the subdominant solution of the ubi osillator

d2ψ(λ)

dλ2
=
(
4λ3 − 2aλ− 28b

)
ψ(λ) .In the present Setion we omplete the proof of Lemma 3.6. As wasshown in Chapter 3, it is su�ient to show

lim
z→a

ψk+1(λ; z)

ψk(λ; z)
=
ψk+1(λ; 2a, 28b)

ψk(λ; 2a, 28b)
.37



This is the ontent of Lemma 4.5 below.To ahieve our goal we use the expliit onstrution of the subdominantsolutions by means of Neumann series of the some funtionals: we showthat, as z → a, the funtionals de�ning ψk(λ; z) onverge in norm to thefuntionals de�ning ψk(λ; 2a, 28b).Preliminary Lemmas We summarize some property of the perturbedpotential, whih an be easily veri�ed using the Laurent expansion of y.Lemma 4.10. Let ε2 = 1
y(z) = (z − a)2 +O((z − a)6) then(i) Q(λ; z) has a double pole at λ = 1

ε2
. It is an apparent fuhsian singu-larity for equation (4.23): the loal monodromy around it is −1.(ii) Q(λ; z) has two zeros at λ = 1

ε2 +O(ε2)(iii) Q(λ; z) = 4λ3 − 2(a+ ε)λ− 28b+ c(ε)− 2λε−1

λ−ε−2 +
3

4(λ−ε−2)2 , where c(ε)is a O(ε) onstant.Equation (4.23) is a perturbation of the ubi Shrödinger equation (2.1)and the asymptoti behaviours of solutions to the two equations are very sim-ilar. Indeed the terms 4λ3 and−2zλ3 are the only relevant in the asymptotisof the subdominant solutions.More preisely, the equivalent of Corollary 4.1 in Lemma 4.4 is valid alsofor the perturbed Shrödinger equation.De�nition 4.7. For any z, de�ne a ut from λ = y(z) to ∞ suh that iteventually does not belong to the the angular setor ∣∣arg λ− 2πk
5

∣∣ ≤ 3π
5 .Fix λ∗ in the ut plane. Sk(λ; z) =

∫ λ
λ∗
√
Q(µ; z)dµ is well-de�ned for∣∣arg λ− 2kπ

5

∣∣ < 3π
5 and λ ≫ 0. Here the branh of √Q is hosen so that

ReSk(λ) → +∞ as |λ| → ∞ , argλ = 2πk
5 . We de�ne the "WKB funtions"

jk(λ; z) as in equation (4.5).For any λ in the ut plane, let Γ(λ) be the set of pieewise di�erentiableurves γ : [0, 1] to the ut plane, γ(0) = λ, γ(1) = ∞, satisfying properties(2)(3) and (4) of De�nition 4.6.We de�ne α(λ; z), z 6= a as in equation (4.16), but replaing V (λ) with
Q(λ; z). For any γ ∈ Γ(λ), let H be the Banah spae of ontinuous fun-tions on γ that have a �nite limit as t → 1. Formulae (4.17) and (4.18)de�ne two bounded funtionals on H. We all suh funtionals K1(λ; z) and
K2(λ; z). K1(λ; a) and K2(λ; a) are de�ned similarly substituting Q(λ; z)with V (λ; 2a, 28b).Following the proof of Theorem 4.3, the reader an prove the following

38



Lemma 4.11. Let λ belong to the ut plane, λ not a zero of Q(·; z). Fixedany γ ∈ Γ(λ), we de�ne the Neumann series as in equations (4.20) and(4.21), and we ontinue jk along γ.Then the Neumann series onverges and ψ̃k(λ) = (U1(λ) + U2(λ)) jk(λ)solves equation (4.23). Moreover, for any ε > 0

lim
|λ|→∞ , |argλ− 2πk

5 |< 3π
5
−ε

(
U (1)(λ) + U (2)(λ)

)
= 1Remark. We notie that if the uts are ontinuous in z, then ψ̃k(λ, z) =

c(z)ψk(λ; z), where ψk(λ) is the solution onstruted in Lemma 4.11 and c(z)is a bounded holomorphi funtion.Theorem 4.5.
lim
z→a

ψk+1(λ; z)

ψk(λ; z)
=
ψk+1(λ; 2a, 28b)

ψk(λ; 2a, 28b)
, uniformly on ompat subsets .Proof. To keep notation simple, we prove the pointwise onvergene; uniformonvergene is a straightforward orollary of our proof, that we leave to thereader.Let λ be any point in the omplex plane whih is not a zero of V (λ; a, b).For any sequene εn onverging to zero, we hoose two �xed rays r1 and r2of di�erent argument ϕ1 and ϕ2, ∣∣ϕi − 2kπ

5

∣∣ < π
5 . We denote DR,ε a disk ofradius R with enter λ = y(a + ε) ≈ 1

ε2 and we split the sequene εn intotwo subsequenes εin suh that ri ∩DR,εin
= ∅ for any n big enough.For i = 1, 2, we hoose the uts de�ned in De�nition 4.7 in suh a waythat there exists a di�erentiable urve γi : [0, 1] → C, γi(0) = λ, γi(1) = ∞with the following properties: (i)γi avoids the zeroes of Q(λ, εin) and a �xed,arbitrarily small, neighborhood of the zeroes of V (λ; 2a, 28b), (ii)γi does notinterset any ut, and (iii) γi eventually lies on ri.The proof of the thesis relies on the following estimates:

supλ∈C−DR,ε

∣∣∣λ−δ
∣∣∣ |Q(λ; a+ ε)− V (λ; 2a, 28b) | = O(ε2δ−3) , (4.25)

supλ∈C−DR,ε

∣∣∣λ−δ
∣∣∣ |Qλ(λ; a+ ε)− Vλ(λ; 2a, 28b) | = O(ε2δ−3) ,

supλ∈C−DR,ε

∣∣∣λ−δ
∣∣∣ |Qλλ(λ; a+ ε)− Vλλ(λ; 2a, 28b) | = O(ε2δ−3) .Due the above estimates it is easily seen that γi ∈ Γ(λ), ∀εin. Due toLemma 4.11 and Corollary 4.1, to prove the thesis it is su�ient to showthat the funtionals K1(λ; a + εin) and K2(λ; a + εin) onverge in norm to

K1(λ; a) and K2(λ; a). We notie that the norm of the funtionals are justthe L1(γi) norm of their integral kernels.We �rst onsider the funtionals K2(λ; a + εin). Due to the above esti-mates
λ

7
2α(µ; a + εin) → λ

7
2α(µ; 2a, 28b), uniformly on γi([0, 1]) as n→ ∞ .39



Hene the sequene α(µ; a+εin) onverges in norm L1(γi) to α(µ; 2a, 28b)and the sequene K2(λ; a+ ein) onverges in operator norm to K2(λ; a).We onsider now the sequene K1(λ; a+ εin).To prove the onvergene of the above sequene of operators, it is su�-ient to prove that
eSk(λ;a+ε

i
n)−Sk(µ;a+ε

i
n) → eSk(λ;2a,28b)−Sk(µ;2a,28b) ,uniformly on γi([0, 1]) � µ as n→ ∞.We �rst note that

eSk(λ;2a,28b)−Sk(µ;2a,28b) − eSk(λ;a+ε
i
n)−Sk(µ;a+ε

i
n) =

eSk(λ;2a,28b)−Sk(µ;2a,28b)
(
1− eg(µ;ε)

)
,

g(µ, ε) =

∫ µ

λ,γi

Q(ν, ε)− V (ν; a, 28b)√
Q(ν, ε) +

√
V (ν; 2a, 28b)

dν .Using estimate (4.25), it is easy to show that g(µ; ε) = f(ε)O(µδ), where
f(ε) → 0 as ε→ 0 and 0 < δ ≪ 1. Therefore the di�erene of the exponen-tial funtions onverges uniformly to 0.
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Chapter 5Poles of Intégrale TritronquéeThe aim of the present Chapter is to study the distribution of poles of the in-tégrale tritronquée using the WKB analysis of the ubi osillator developedin Chapter 4.The reader should reall from Chapter 3 that the intégrale tritronquée isthe unique solution of P-I with the following asymptoti behaviour at in�nity
y(z) ∼ −

√
z

6
, if | arg z| < 4π

5
.In Chapter 3, it was shown that the point a ∈ C is a pole of the tritron-quée solution if and only if there exists b ∈ C suh that the followingShrödinger equation

d2ψ(λ)

dλ2
= V (λ; 2a, 28b)ψ(λ) , V (λ; a, b) = 4λ3 − aλ− b , (5.1)admits the simultaneous solutions of two di�erent quantization onditions,namely σ±2(2a, 28b) = 0.In Setion 4.2.3, we studied this system of quantization onditions usingthe WKB approximation. We showed that the WKB analogue of the sys-tem σ±2(2a, 28b) = 0 is a pair of Bohr-Sommerfeld quantization onditions(4.7,4.8)1, that we have alled Bohr-Sommerfeld-Boutroux (B-S-B) system.We rewrite it in the following equivalent form :
∮

a1

√
V (λ; 2a, 28b)dλ = iπ(2n − 1) , (5.2)∮

a−1

√
V (λ; 2a, 28b)dλ = −iπ(2m− 1) .Here m,n are positive natural numbers and the paths of integration areshown in �gure 5.1. It is natural to suppose that poles of intégrale tritronquée1if we make the hange of variable a → 2a, b → 28b41
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−π
5

π

π
5

Σ0
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Σ2

Σ−2

Σ−1

a−1

a1

branh uts de�ning thesquare root of the potential
(320)

3π
5

− 3π
5Figure 5.1: Riemann surfae µ2 = V (λ; 2a, 28b)are in bijetion with solution of B-S-B system. We are not yet able toprove this but we will prove (see Theorem 5.1 and 5.2 below) that poles areasymptotially lose to solution of the B-S-B system.Let us introdue preisely our result.For any pair of quantum numbers there is one and only one solution to theBohr-Sommerfeld-Boutroux system; this is proven for example in [Kap03℄.Solutions of B-S-B system have naturally a multipliative struture.De�nition 5.1. Let (a∗, b∗) be a solution of the B-S-B system with quantumnumbers n,m suh that 2n − 1 and 2m − 1 are oprime. We all (a∗, b∗) aprimitive solution of the system and denote it (aq, bq), where q = 2n−1

2m−1 ∈ Q.Due to Lemma 4.6, we have that
(aqk, b

q
k) = ((2k + 1)

4
5 aq, (2k + 1)

6
5 bq), k ∈ N ,is another solution of the B-S-B system. We all it a desendant solution.We all {(aqk, bqk)}k∈N the q-sequene of solutions.De�nition 5.2. Let D(a′,b′)

ǫ,δ = {|a− a′| < ε, |b− b′| < δ, ε, δ 6= 0} denote thepolydis entered at (a′, b′).Our main result onerning the poles of the intégrale tritronquée is thefollowingTheorem 5.1. Let ε, δ be arbitrary positive numbers. Let 1
5 < µ < 6

5 ,
−1

5 < ν < 4
5 , then it exists a K ∈ N∗ suh that for any k ≥ K, insidethe polydis D

(aqk,b
q
k)

k−µε,k−νδ
there is one and only one solution of the system

σ±2(2a, 28b) = 0.Proof. The proof is in setion 5.2 below.42



As a orollary of above Theorem, we have the following asymptoti har-aterization of the loation of poles of the intégrale tritronquée:Theorem 5.2. Let ε be an arbitrary positive number. If 1
5 < µ < 6

5 , then itexists K ∈ N∗ suh that for any k ≥ K inside the dis ∣∣a− aqk
∣∣ < k−µε thereis one and only one pole of the intégrale tritronquée.5.1 Real PolesIn this setion, we ompute all the real solutions of system (5.2) and omparethem with some numerial results from [JK01℄. We note that the auray ofthe WKB method is astonishing also for small a and b (see Table 5.1 below).In the paper [JK01℄, the authors showed that the intégrale tritronquée hasno poles on the real positive axis. The real poles are a dereasing sequeneof negative numbers αn and some of them are evaluated numerially in thesame paper.For the subset of real potentials, we have

∮

a1

√
V (λ; a, b)dλ =

∮

a−1

√
V (λ; a, b)dλ ,where stands for omplex onjugation.Therefore system (5.2) redues to one equation and the real poles oftritronquée are approximated by the 1-sequene of solution of the B-S-Bsystem (see De�nition 5.1). The real primitive solution is omputed numeri-ally as a1 ∼= −2, 34, b1 ∼= −0, 064. Hene real solutions of the B-S-B systemare the following sequene

(a1k, b
1
k) = (−2, 34(2k + 1)

4
5 ,−0, 064(2k + 1)−

6
5 ), k ∈ N .After Theorem 5.1, above sequene approximates the sequene of realpoles of the intégrale tritronquée, if k is big enough. However, it turns outthat the approximation is very good already for the �rst real poles (a1, b1).In Table 5.1 below, we ompare the �rst two real solutions to system(5.2) with the numerial evaluation of the �rst two poles of the intégraletritronquée in [JK01℄.5.2 Proof of Theorem 5.1Multidimensional Rouhe Theorem The main tehnial tool of theproof is the following generalization of the lassial Rouhé theorem.Theorem 5.3 ([AY83℄). Let D,E be bounded domains in Cn, D ⊂ E , andlet f(z), g(z) be holomorphi maps E → Cn suh that

• f(z) 6= 0, ∀z ∈ ∂D, 43



WKB estimate Numeri [JK01℄ Error %
α1 −2, 34 −2, 38 1, 5

β1 −0, 064 −0, 062 2

α2 −5, 65 −5, 66 0, 2

β2 −0, 23 unknown unknownTable 5.1: Comparison between numerial and WKB evaluation of the �rsttwo real poles of the intégrale tritronquée.
• |g(z)| < |f(z)| , ∀z ∈ ∂D,then w(z) = f(z) + g(z) and f(z) have the same number (ounted withmultipliities) of zeroes inside D. Here |f(z)| is any norm on Cn.A funtion whose zeroes are the pole of tritronquée solution Thereader should reall the de�nition of k-th subdominant funtion ψk(λ; a, b)(see De�nition 2.2), of k-th asymptoti values wk(l,m) and of the relativeerrors ρkl (see De�nition 4.5).The reader should also remember that, if ψl and ψl+2 are linearly inde-pendent then wk−1(l, l + 2) = wk+1(l, l + 2) if and only if σk = 0.De�nition 5.3. Let E be the (open) subset of the (a, b) plane suh that

ψ0(λ; a, b) and ψ±2(λ; a, b) are linearly independent (its omplement in the
(a, b) plane is the union of two smooth surfaes [EG09a℄). On E we de�nethe following funtions

u2(a, b) =
w2(0,−2)

w−1(0,−2)
(5.3)

u2(a, b) =
w−2(0, 2)

w1(0, 2)
(5.4)

U(a, b) =

(
u2(a, b)− 1
u−2(a, b) − 1

)
. (5.5)All the funtions are well de�ned and holomorphi. Indeed, due to WKBtheory we have that wl+1(l, l + 2) is always di�erent from 0 and ∞.The fundamental result of Chapter 3 is the following haraterization ofthe poles of the intégrale tritronquée, whih is indeed equivalent to Theorem3.3Lemma 5.1. The point α ∈ C is a pole of the intégrale tritronquée if andonly if there exists β ∈ C suh that (α, β) belongs to the domain of U and

U(2α, 28β) = 0. In other words ψ−1(λ; 2α, 28β) and ψ2(λ; 2α, 28β) are lin-early dependent and ψ1(λ; 2α, 28β) and ψ−2(λ; 2α, 28β) are linearly depen-dent. 44



We reall from Chapter 3 that the omplex number β in previous lemma isthe oe�ient of the quarti term in the Laurent expansion of the tritronquéesolution around α.The WKB Approximation of U We want to de�ne a funtion Ũ onthe spae of ubi potentials that approximates U . Then we ompare thezeroes of U and Ũ using Rouhe Theorem. However, due to the nature ofWKB approximation, we annot build suh a funtion globally but only inneighborhoods of potential whose Stokes graph is of type "320" (see Figure5.2).
Stokes line   

"320"

λi: turning point
λ1

λ−1

3π
5

λ0

−π
5

π

π
5

− 3π
5

Σ0

Σ1

Σ2

Σ−2

Σ−1

Σk: Stokes setor

Figure 5.2: Graph "320": dots on the irle represents asymptoti diretionsin the omplex planeDe�nition 5.4. Let (a∗, b∗) be a point suh that the Stokes graph of V (.; 2a∗, 28b∗)is of type "320". On a su�iently small neighborhood of (a∗, b∗) we de�nethe following analyti funtions
χ±2(a, b) =

∮

c∓1

√
V (λ; 2a, 28b)dλ , (5.6)

ũ±2(a, b) = −eχ±2(a,b) , (5.7)
Ũ(a, b) =

(
ũ2(a, b)− 1
ũ−2(a, b) − 1

)
. (5.8)The yles c±1 are depited in Figure 1 and the branh of √V is hosensuh that Re√V (λ) → +∞ as λ → ∞ along the positive semi-axis in theut plane.From above De�nition it is lear that the B-S-B system is equivalent tothe vanishing ondition of funtion Ũ .Lemma 5.2. The B-S-B system (5.2) system is equivalent to the equation

Ũ(a, b) = 0. 45



In [Kap03℄ the following lemma was proven.Lemma 5.3. For any pair of quantum numbers n,m ∈ N − 0 there existsone and only one solution of the B-S-B system.We an ompare the funtions U and Ũ de�ned above using Theorem 4.3and the omputations of Setion 4.2.3. Indeed, they imply the followingLemma 5.4. Let (a, b) be suh that the Stokes graph is of type "320". Thereexists a neighborhood of (a, b) and two ontinuous positive funtions ρ±2 suhthat χ±2 are holomorphi and
|ũ±2 − u±2| ≤

1

2
(e2ρ±2 − 1) . (5.9)Moreover if ρ±2 <

ln 3
2 then ψ0 and ψ±2 are linearly independent.To simplify the notation we have denoted ρ±2 what was denoted ρ0±2 inthe previous Chapter.Using lassial relations of the theory of ellipti funtions we have thefollowingLemma 5.5. The map Ũ de�ned in (5.8) is always loally invertible (heneits zeroes are always simple) and

∂χ2

∂a
(a, b)

∂χ−2

∂b
(a, b)− ∂χ−2

∂a
(a, b)

∂χ2

∂b
(a, b) = −28πi .Proof. On the ompati�ed ellipti urve µ2 = V (λ; a, b), onsider the dif-ferentials ωa = −λdλ

µ and ωb = −dλ
µ .It is easily seen that

∂χ±2

∂a
(a, b) =

∮

c∓1

ωa ,
∂χ±2

∂b
(a, b) = 14

∮

c∓1

ωb .Moreover we have that
JŨ =

(
∂χ2

∂a
(a, b)

∂χ−2

∂b
(a, b)− ∂χ−2

∂a
(a, b)

∂χ2

∂b
(a, b)

)
ũ2ũ−2 ,where JŨ is the Jaobian of the map Ũ .The statement of the lemma follows from the lassial Legendre relationbetween omplete ellipti periods of the �rst and seond kind [EMOT53℄.Our aim is to loate the zeroes of U (the poles of the intégrale tritronquéeafter Theorem 5.1) knowing the loation of zeroes of Ũ(the solutions of theB-S-B system). We want to �nd a neighborhood of a given solution of the B-S-B system inside whih there is one and only one zero of U . Due to estimate(5.9) and Rouhé theorem, it is su�ient to �nd a domain on whose boundarythe following inequality holds

1

2

(
e2ρ2 − 1

)
|u2|+

1

2

(
e2ρ−2 − 1

)
|u−2| < |1− ũ2|+ |1− ũ−2| . (5.10)46



Saling Law In order to analyze the important inequality (5.10), we takeadvantage of the saling laws introdued in Setion 4.3 (the "small parame-ter").Lemma 5.6. Let (a∗, b∗) be suh that the Stokes graph is of type "320" and Ebe a neighborhood of (a∗, b∗) suh that the estimates (5.9) are satis�ed. Then,for any real positive x the point (x2a∗, x3b∗) is suh that the Stokes graph isof type "320" and in the neighborhood EX =
{
(x2a, x3b) : (a, b) ∈ E

} the es-timates (5.9) are satis�ed. Moreover for any (a, b) ∈ E the following salinglaws are valid
• χ±2(x

2a, x3b) = x
5
2χ±2(a, b).

• ∂(n+m)χ±2

∂an∂bm (x2a, x3b) = x
5−4n−6m

5
∂(n+m)χ±2

∂an∂bm (a, b).
• ρ±2(x

2a, x3b) = x−
5
2 ρ±2(a, b).Proof. It is a orollary of Lemma 4.6.Proof From Lemma 5.6 we an extrat the leading behaviour of Ũ aroundsolutions of the B-S-B system.Lemma 5.7. Let z = (2k + 1)µ(a − aqk), c±2 = ∂χ±2

∂a (aq, bq), w = (2k +

1)ν(b− bqk), and d±2 =
∂χ±2

∂b (aq, bq). If µ > 1
5 and ν > −1

5 , then
ũ2(z,w) = 1 + c2(2k + 1)

1
5
−µz + d2(2k + 1)−

1
5
−νw +O((2k + 1)−γ

′
) ,(5.11)

ũ−2(z,w) = 1 + c−2(2k + 1)
1
5
−µz + d−2(2k + 1)−

1
5
−νw +O((2k + 1)−γ

′
) ,

γ′ > −1

5
+ µ, γ′ >

1

5
+ ν .Proof. It follows from Lemma 5.6.For onveniene of the reader, we reall here the de�nition of polydisDe�nition. We denote D(a′,b′)

ǫ,δ = {|a− a′| < ε, |b− b′| < δ, ε, δ 6= 0} the poly-dis entered at (a′, b′).Theorem 5.1 is a orollary of the followingLemma 5.8. Let ε, δ be arbitrary positive numbers. If 1
5 < µ < 6

5 , −1
5 <

ν < 4
5 , then there exists a K ∈ N∗ suh that for any k ≥ K, U and Ũare well-de�ned and holomorphi on D(aqk,b

q
k)

k−µε,k−νδ
and the following inequalityholds true

∣∣∣U(a, b) − Ũ(a, b)
∣∣∣ <

∣∣∣Ũ(a, b)
∣∣∣ ,∀(a, b) ∈ ∂D(ak ,bk)

k−µε,k−νδ
. (5.12)47



Proof. The polydis D(aqk ,b
q
k)

k−µε,k−νδ
is the image under resaling a→ (2k+1)

4
5 a,

b→ (2k+1)
6
5 b of a shrinking polydis entered at (aq, bq); all it D̃k. Henedue to Lemma 5.4, for k ≥ K ′ D̃k is suh that ρ±2 are bounded, χ±2 areholomorphi and the estimates (5.9) hold. Call ρ∗ the supremum of ρ±2 on

DK ′ . Due to saling property, for all k ≥ K ′ ρ±2 is bounded from above by
(2k + 1)−1ρ∗ on D(ak ,bk)

k−µε,k−νδ
; suh a bound is eventually smaller than ln 3

2 .Then for a su�iently large k, D(ak ,bk)
k−µε,k−νδ

is a subset of the domain of Uand inside it U and Ũ satisfy (5.9) and (5.11).We divide the boundary in two subsets: ∂D(aqk ,b
q
k)

k−µε,k−νδ
= D0 ∪D1,

D0 =
{
|a− aqk| = k−µε;

∣∣b− bqk
∣∣ ≤ k−νδ

}
,

D1 =
{
|a− ak| ≤ k−µε; |b− bk| = k−νδ

}
.Inequality (5.12) will be analyzed separately on D0 and D1.If |d2| ≤ |d−2|, denote d2 = d, d−2 = D, c = c2, C = c−2; in the oppositease |d2| > |d−2|, denote d−2 = d, d2 = D, c = c−2, C = c2. By the triangleinequality and expansion (5.11), we have that

∣∣∣Ũ(a, b)
∣∣∣ ≥ (2k + 1)

1
5
−µε

∣∣∣∣(c−
Cd

D
)

∣∣∣∣+ higher order terms , (a, b) ∈ D0.Similarly, if |c2| ≤ |c−2| denote d2 = d, d−2 = D, c = c2, C = c−2; in theopposite ase |c2| > |c−2|, denote d−2 = d, d2 = D, c = c−2, C = c2. By thetriangle inequality and expansion (5.11), we have that
∣∣∣Ũ(a, b)

∣∣∣ ≥ (2k + 1)−
1
5
−νδ

∣∣∣∣(d−
Dc

C
)

∣∣∣∣+ higher order terms , (a, b) ∈ D1.We observe that (c − Cd
D ) 6= 0 and (d − Dc

C ) 6= 0, sine (see Lemma 5.5)
c2d−2−c−2d2 = −28πi. By hypothesis −1 < 1

5−µ < 0 and −1 < −1
5−ν < 0.Conversely, ∣∣∣U(a, b) − Ũ(a, b)

∣∣∣ ≤ ρ∗
2k+1+ higher order terms, for all (a, b) ∈

D0 ∪D1.The Lemma is proven.Remark. Using the proof of Lemma 5.8, we an alternatively prove Theo-rem 5.1 invoking the Banah-Caioppoli ontration mapping priniple in-stead of the multidimensional Rouhé theorem.
48



Chapter 6Deformed ThermodynamiBethe AnsatzIn Chapters 4 and 5 we have developed the omplex WKB method, in orderto solve approximately the monodromy problem of the ubi osillator
d2ψ(λ)

dλ2
= V (λ; a, b)ψ(λ) , V (λ; a, b) = 4λ3 − aλ− b .The main purpose of the present Chapter is to introdue a novel in-strument of analysis, that we all Deformed Thermodynami Bethe Ansatz(Deformed TBA), to solve exatly the diret monodromy problem.The �rst breakthrough towards an exat evaluation of the monodromyproblem is the work of Dorey and Tateo [DT99℄: they analyze anharmoniosillators with a monomial potential λn − E (n not neessarily 3) via theThermodynami Bethe Ansatz and other nonlinear integral equations (alledsometimes Destri - de Vega equations). Subsequently Bazhanov, Lukyanovand Zamolodhikov generalized the Dorey-Tateo analysis to monomial poten-tials with a entrifugal term [BLZ01℄. In the present Chapter we generalizeDorey and Tateo approah to the general ubi potential.Here we summarize the main result of the present Chapter. Let us reallfrom Chapter 2 the de�nition of the R funtions.

Rk : C2 → C , (6.1)
Rk(a, b) = (w1+k(f), w−2+k(f);w−1+k(f), w2+k(f)) .Here (a, b; c, d) = (a−c)(b−d)

(a−d)(b−c) is the ross ratios of four points on the sphere,
f = ϕ

χ with {ϕ,χ} an arbitrary basis of solutions of the ubi osillator and
wk(f) is the k-th asymptoti value of f (see De�nition 2.5).They satisfy the following system of quadrati relations

Rk−2(a, b)Rk+2(a, b) = 1−Rk(a, b) , ∀k ∈ Z5 , (6.2)49



and, aording to Theorem 2.4, we have that σk(a, b) = iRk(a, b).Fix a ∈ C and denote εk(ϑ) = ln
(
−R0(e

−k 2πi
5 a, e

6ϑ
5 )
). Following theonvention of Statistial Field Theory we all pseudo-energies the funtions

εk. In Theorem 6.2 below, we show that the pseudo-energies satisfy a non-linear nonloal Riemann-Hilbert problem, whih is equivalent (at least forsmall value of the parameter a) to the following system of nonlinear integralequations that we all Deformed Thermodynami Bethe Ansatz:
χl(σ) =

∫ +∞

−∞
ϕl(σ− σ′)Λl(σ

′)dσ′ , σ, σ′ ∈ R , l ∈ Z5 = {−2, . . . , 2} . (6.3)Here
Λl(σ) =

∑

k∈Z5

ei
2lkπ
5 Lk(σ) , Lk(σ) = ln

(
1 + e−εk(σ)

)
,

εk(σ)=
1

5

∑

l∈Z5

e−i
2lkπ
5 χl(σ) +

√
π
3Γ(1/3)

2
5
3Γ(11/6)

eσ+a

√
3πΓ(2/3)

4
2
3Γ(1/6)

e
σ
5
−i 2kπ

5 ,

ϕ0(σ) =

√
3

π

2 cosh(2σ)

1 + 2 cosh(2σ)
, ϕ1(σ) = −

√
3

π

e−
9
5
σ

1 + 2 cosh(2σ)

ϕ2(σ) = −
√
3

π

e−
3
5
σ

1 + 2 cosh(2σ)
, ϕ−1(σ) = ϕ1(−σ) , ϕ−2(σ) = ϕ2(−σ) .For a = 0 equations (6.3) redue to the Thermodynami Bethe Ansatz,introdued by Zamolodhikov [Zam90℄ to desribe the thermodynamis ofthe 3-state Potts model and of the Lee-Yang model. We will disuss suhredution in Subsetion 6.2.1.The Chapter is divided in two Setions. The �rst is devoted to theintrodution of the Y funtions and of the Deformed Y -system. In the seondwe derive the Deformed TBA equations.6.1 Y-systemHere we introdue the Y-system (6.7), whih is a fundamental step in thederivation of the Deformed TBA.We begin with an observation due to Sibuya ([Sib75℄):Lemma 6.1. Let ω = ei

2π
5 . Then
Rk(ω

−1a, ωb) = Rk−2(a, b) (6.4)Proof. Denote ϕ(λ; a, b) a solution of (2.1) whose Cauhy data do not de-pend on a, b. It is an entire funtion of three omplex variables with some50



remarkable properties. It is a simple alulation to verify that for any
k ∈ Z5 ϕ(ω

kλ;ω2ka, ω3kb) satis�es the same Shrödinger equation (2.1). Fix
ϕ(λ; a, b), χ(λ; a, b) linearly independent solutions and de�ne the asymptotivalues

wk(a, b) = wk(
ϕ(λ; a, b)

χ(λ; a, b)
) ,

w̄k(a, b) = wk

(
ϕ(ωlλ;ω2la, ω3lb)

χ(ωlλ;ω2la, ω3lb)

)
.Obviously wk(ω2la, ω3lb) = w̄k−l(a, b). Choose l = 2 and use the de�nitionof the funtions R (see equation (6.1)) to obtain the thesis.Due to equations (6.2) and relations (6.4), the holomorphi funtions

Rk(a, b) satisfy the following system of funtional equations, �rst studied bySibuya [Sib75℄
Rk(ω

−1a, ωb)Rk(ωa, ω
−1b) = 1−Rk(a, b) , ∀k ∈ Z5. (6.5)We have olleted all the elements to introdue the important Y-funtionsand Y-system.We �x a ∈ C and de�ne

Yk(ϑ) = −R0(ω
−ka, e

6
5
ϑ) , k ∈ Z5 . (6.6)Sibuya's equation (6.5) is equivalent to the following system of funtionalequations, that we all Deformed Y-system:

Yk−1(ϑ − i
π

3
)Yk+1(ϑ+ i

π

3
) = 1 + Yk(ϑ) . (6.7)Remark. If a = 0, Yk = Y0,∀k and the system (6.7) redues to just oneequation, alled Y -system, whih was introdued by Zamolodhikov [Zam91℄in relation with the Lee-Yang and 3-state Potts models. Dorey and Tateo[DT99℄ studied the Zamolodhikov Y -system in relation with the Shrödingerequation with potential V (λ; 0, b) = 4λ3 − b.6.1.1 Analyti Properties of YkIn the following theorem we summarize the analyti properties of the Y-funtions. For all a and k, Yk(ϑ) is periodi with period i5π3 . Hene, fromnow on we restrit it to the strip {|Imϑ| ≤ 5π
6

}.Theorem 6.1. (i) For any a ∈ C and k ∈ Z5, Yk is analyti and i5π3periodi. If a is real then Yk(ϑ) = Y−k(ϑ), where stands for omplexonjugation. 51



(ii) For any a ∈ C and k ∈ Z5, on the strip |Imϑ| ≤ π
2 − ε

∣∣∣∣
Yk(ϑ)

Ỹk(ϑ)
− 1

∣∣∣∣ = O(e−Reϑ), as Reϑ→ +∞ ,

Ỹk(ϑ) = exp
(
Aeϑ +Bae

ϑ
5
−i 2kπ

5

)
. (6.8)Here A =

√
π
3
Γ(1/3)

2
2
3 Γ(11/6)

and B =
√
3πΓ(2/3)

4
2
3 Γ(1/6)

.(iii) For any a ∈ C and any K ∈ R, Yk(ϑ) is bounded on Reϑ ≤ K. If
a = 0, limϑ→−∞ Yk(ϑ) =

1+
√
5

2 .(iv) If ei 2kπ5 a is real non negative then Yk(ϑ) = 0 implies Imϑ = ±5π
6 . If

a = 0 then Yk(ϑ) = −1 implies ϑ = ±iπ2(v) Fix ε > 0. If a is small enough, then for any k ∈ Z5, Yk(ϑ) 6= 0,−1for any ϑ ∈
{
|Imϑ| ≤ π

2 − ε
}.Proof. (i) Trivial.(ii) These "WKB-like" estimates an be derived from Chapter 4 or an befound in [Sib75℄. Due to Theorem 2.4, these "WKB-like" estimates areequivalent to those derived in [Shi05℄ Setion 4 for the Stokes multipli-ers.However, for onveniene of the reader we brie�y sketh an alternativeproof here.Using the tools developed in Setions 4.2.1 and 4.3, it is easily shownthat the following asymptoti is valid

R0(a, x
6
5 eiφ) = − exp

{
x

∮ √
V (λ; ax−

4
5 , eiφ)dλ

}
(1 +O(x−1)) ,if x ≫ 0 and |φ| ≤ 3π

5 − ε. Here the integration is taken along a pathenirling the ut joining the roots λ± = e±i
2π
3
+φ

3 + O(x−
2
5 ) of theubi potential and the sign of the square root is hosen in suh a waythat Re{∮ √V (λ; ax−

4
5 , eiφ)dλ

}
> 0 for x big enough.A straightforward omputation shows that

x

∮ √
V (λ; ax−

4
5 , eiφ) = xei

5φ
6

∮ √
4λ3 − 1dλ+

− x
1
5 ei

φ
6 a

2

∮
λ√

4λ3 − 1
dλ+O(x−

3
5 ) .If we let x 6

5 eiφ = e
6ϑ
5 we obtain the thesis.52



(iii) The boundedness follows diretly from the fat that Rk(a, b) is entirein (a, b) and, in partiular, analyti at b = 0. If a = b = 0, then forsymmetry reasons one an hoose ϕ,χ suh that wk(ϕχ ) = ei
2kπ
5 . Thisimplies the thesis.(iv) The statement is equivalent to Theorem 2.2.(v) Sine Yk depends analytially on the parameter a, it follows from (iv).6.2 Deformed TBAThis setion is devoted to the derivation of the Deformed ThermodynamiBethe Ansatz equations (6.3) 1.In what follows we always make the followingAssumptions 6.1. We assume that there exists an ε > 0 suh that(i) every branh of lnYk is holomorphi on |Imϑ| ≤ π

3 + ε, and boundedfor ϑ→ −∞. And(ii) every branh of ln (1 + 1
Yk
) is holomorphi on |Imϑ| ≤ +ε, and boundedfor ϑ→ −∞.From Theorem 6.1(iii, v) we know that the assumptions are valid if ais small enough. We brie�y disuss what happens if the assumptions fail inSubsetion 6.2.2 below.We de�ne the following bounded analyti funtions on the physial strip

|Imϑ| ≤ π
3

εk(ϑ) = lnYk(ϑ), (6.9)
δk(ϑ) = εk(ϑ)−

√
π
3Γ(1/3)

2
2
3Γ(11/6)

eϑ − a

√
3πΓ(2/3)

4
2
3Γ(1/6)

e
ϑ
5
−i 2kπ

5 ,

Lk(ϑ) = ln(1 + e−εk(ϑ)) .Here the branhes of logarithms are �xed by requiring
lim

σ→+∞
δk(σ + iτ) = lim

σ→+∞
Lk(σ + iτ) = 0 , ∀ |τ | ≤ π

3
. (6.10)We remark that by Theorem 6.1(ii), this hoie is always possible.Due to the Y-system (6.7), the funtions δk satisfy the following nonlinearnonloal Riemann-Hilbert (R-H) problem

δk−1(ϑ− i
π

3
) + δk+1(ϑ+ i

π

3
)− δk(ϑ) = Lk(ϑ) , |Imϑ| ≤ ε . (6.11)1The reader who wants to repeat all the omputations below, should remember that

Pn−1
l=0 ei

2πl
n = 0. 53



Here the boundary onditions are given by asymptotis (6.10).The system (6.11) is Z5 invariant. Hene we diagonalize its linear part(the left hand side) by taking its disrete Fourier transform (also alledWannier transform):
χl(ϑ) =

∑

k∈Z5

ei
2klπ
5 δk(ϑ) , δk(ϑ) =

1

5

∑

l∈Z5

e−i
2klπ
5 χl(ϑ) , (6.12)

Λl(ϑ) =
∑

k∈Z5

ei
2lπ
5 Lk(ϑ) , Lk(ϑ) =

1

5

∑

l∈Z5

e−i
2klπ
5 Λl(ϑ) .The above de�ned funtions satisfy the following Riemann-Hilbert prob-lem

e−i
2lπ
5 χl(ϑ+ i

π

3
) + ei

2lπ
5 χl(ϑ− i

π

3
) − χl(ϑ) = Λl(ϑ) , (6.13)

lim
σ→+∞

χl(σ + iτ) = 0 , ∀ |τ | ≤ π

3
. (6.14)The system of funtional equation (6.13), may be rewritten in the on-venient form of a system of oupled integral equations (6.3).Theorem 6.2. If a is small enough, the funtions χl satisfy the DeformedThermodynami Bethe Ansatz

χl(σ) =

∫ +∞

−∞
ϕl(σ − σ′)Λl(σ

′)dσ′ , σ, σ′ ∈ R . (6.3)Here Λl are de�ned as in (6.9,6.12) and
ϕ0(σ) =

√
3

π

2 cosh(σ)

1 + 2 cosh(2σ)

ϕ1(σ) = −
√
3

π

e−
9
5
σ

1 + 2 cosh(2σ)

ϕ2(σ) = −
√
3

π

e−
3
5
σ

1 + 2 cosh(2σ)
(6.15)

ϕ−1(σ) = −
√
3

π

e
9
5
σ

1 + 2 cosh(2σ)

ϕ−2(σ) = −
√
3

π

e
3
5
σ

1 + 2 cosh(2σ)
.Proof. If a is small enough then the Assumptions 6.1 are valid. Hene thethesis follows from system (6.13) and the tehnial Lemma 6.2 below.54



Lemma 6.2. Let f : {|Imϑ| ≤ ε} → C be a bounded analyti funtion.Then for any l ∈ Z5 there exists a unique funtion F analyti and boundedon |Imϑ| ≤ π
3 + ε, suh that

e−i
2πl
5 F (ϑ+ i

π

3
) + ei

2πl
5 F (ϑ− i

π

3
)− F (ϑ) = f(ϑ) ,∀ |Imϑ| ≤ ε .Moreover, F is expressed through the following integral transform

F (ϑ+ iτ) =

∫ +∞

−∞
ϕl(ϑ + iτ − ϑ′)f(ϑ′)dσ′ , ∀ |Imϑ| ≤ ε, |τ | ≤ π

3
, (6.16)provided |Im(ϑ + iτ − ϑ′)| < π

3 and the integration path belongs to the strip
|Imϑ′| ≤ ε. Here ϕl is de�ned by formula (6.15).Proof. Uniqueness: let F1, F2 be bounded solution of the funtional equation
e−i

2πl
5 Fj(ϑ + i

π

3
) + ei

2πl
5 Fj(ϑ − i

π

3
)− Fj(ϑ) = f(σ) , j = 1, 2, |Imϑ| ≤ ε .Their di�erene G = F1 − F2 satis�es

e−i
2πl
5 G(ϑ + i

π

3
) + ei

2πl
5 G(ϑ − i

π

3
)−G(ϑ) = 0 .Then G extends to an entire funtion suh that G(ϑ + 2iπ) = ei

2πl
5 G(ϑ).Therefore G is bounded, hene a onstant. The only onstant satisfying thefuntional relation is zero.Existene: one noties that if θ 6= ±inπ3 , n ∈ Z then

e−i
2πl
5 ϕl(θ + i

π

3
) + ei

2πl
5 ϕl(θ − i

π

3
)− ϕl(θ) = 0 , ∀l ∈ Z5 .Then a rather standard omputation shows that the funtion F de�nedthrough formula (6.16) satis�es all the desired properties.Remark. One the system of integral equations (6.3) is solved for σ ∈ R,one an use the same set of integral equations as expliit formulas to extendthe funtions χl(θ) on |Imθ| ≤ π

3 . Then one an use the Y-system (6.7) toextend the Y funtions on the entire fundamental strip |Imϑ| ≤ 5π
6 .Remark. While the Y-system equations do not depend on the parameter

a (the oe�ient of the linear term of the potential 4λ3 − aλ − b), on theontrary the Deformed TBA equations depend on it sine it enters expliitelyinto the de�nition of funtions Λl.
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6.2.1 The ase a = 0If a = 0 then δk = δ0, Lk = L0 for any k. Therefore, δ0 satisfy the singlefuntional equation
δ0(ϑ− i

π

3
) + δ0(ϑ+ i

π

3
)− δ0(ϑ) = L0(ϑ) , |Imϑ| ≤ ε . (6.17)Similar reasoning as in Theorem 6.2 shows that δ0 satis�es the followingnonlinear integral equation (as it was �rstly disovered by Dorey and Tateo[DT99℄)

δ0(σ) =

∫ +∞

−∞
ϕ0(σ − σ′) ln (1 + exp (−(δ0(σ

′) +Aeσ
′
))dσ′, σ, σ′ ∈ R .(6.18)Here ϕ0 is de�ned as in formula (6.15) and A =

√
π
3
Γ(1/3)

2
2
3 Γ(11/6)

.Equation (6.18) is alled Thermodynami Bethe Ansatz and was intro-dued by Zamolodhikov [Zam90℄ to desribe the Thermodynamis of the3-state Potts and Lee-Yang models.6.2.2 Zeros of Y in the physal stripIn ase the Assumptions 6.1 are not satis�ed, the funtions εk and Lk (seeequation (6.9)) are not well-de�ned on the physial strip |Imϑ| ≤ π
3 . There-fore we annot transform the Y-system into a Riemann-Hilbert problem(6.11) using the same proedure shown above.However, one an get a well-posed Riemann-Hilbert problem for the fun-tions Yk simply fatorizing out their zeroes (this approah was developed forthe Thermodynami Bethe Ansatz in [BLZ97℄). In this way, one eventu-ally obtains a system of nonlinear integral equation similar to the DeformedTBA equation for the funtions Yk and an (essentially) algebrai system ofequations for the loation of their zeroes.We postpone to a subsequent publiation the disussion of these moregeneral Deformed TBA equations, beause we have not yet reahed a satis-fatorily knowledge about the region in the a-plane where the Assumptions6.1 fail.6.3 The First Numerial ExperimentIn ollaboration with A. Moro we are studying the numerial solution of theDeformed TBA equations (6.3). The work is still in progress but we anpresent some preliminary results. In Figure 6.3 below, we show the Stokesmultiplier σ0(0, b) for |b| ≤ 15 as omputed by means of the numerial so-lution of the Thermodynami Bethe Ansatz equation (6.18). More preiselywe plot the funtion F (z) = ˛

˛

˛

1
1+iσ0(z)

˛

˛

˛

1+
˛

˛

˛

1
1+iσ0(z)

˛

˛

˛

, with z = |b| 56 ei arg b.56



The green plateau orresponds to the setor of the z plane where theStokes multiplier is exponentially small, the blue plateau to the setor wherethe Stokes multiplier is exponentially big (see Setion 7.2 for the expliitformulas). The peaks orrespond to the zeroes of iσ0 + 1, whih are, due toequation (2.7), the zeroes of σ2 × σ−2. Aording to Theorem 2.2 there aretwo in�nite series of suh peaks along the rays with angles ±3π
5 . σ0 has anosillatory behaviour along these two rays.In the next Chapter we present an alternative algorithm for omputingStokes multipliers and we ompare the results furnished by the two methods.

Figure 6.1: F (z) =
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˛
, with z = |b| 56 ei arg b
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Chapter 7A Numerial AlgorithmThe aim of the present Chapter is to introdue a new algorithm for omputingthe Stokes multipliers of the perturbed ubi osillator
d2ψ(λ)

dλ2
= Q(λ; y, y′, z)ψ(λ) ,

Q(λ; y, y′, z) = 4λ3 − 2λz + 2zy − 4y3 + y′2 +
y′

λ− y
+

3

4(λ− y)2
.As it was shown in Lemma 4.10, in some limit relevant for studying thepoles of the solutions of P-I the perturbed ubi osillator beomes the ubiosillator

d2ψ(λ)

dλ2
= V (λ; a, b)ψ(λ) , V (λ; a, b) = 4λ3 − aλ− b .In the present Chapter we onsider the ubi osillator as a partiular ase ofthe perturbed ubi osillator. We set the onvention that the ubi osillatoris the partiular ase of the perturbed ubi osillator determined by y = ∞.As it was explained in Chapter 3, solutions of Painlevé-I give rise toisomonodromi deformations of the perturbed ubi osillator. Hene, ouralgorithm gives a numerial solution of the diret monodromy problem for thePainleve �rst equation: given the Cauhy data y(z), y′(z), z of a partiularsolution of P-I we are able to ompute the orresponding Stokes multipliers,even when z is a pole of that solution. In the latter ase we have to onsiderthe ubi osillator with potential V (λ; 2α, 28β), where z = α is the poleand β is the oe�ient of the (z −α)4 term in the Laurent expanion of y(z)(see Lemma 3.6).The Chapter is divided in two Setions. The �rst is devoted to thedesription of the Algorithm. In the seond we test our algorithm againstthe WKB predition and the Deformed TBA equations.Remark. The algorithm we present here depends heavily on the theorydeveloped in Chapter 2 and espeially in Setion 2.2. We refer to that Chapterfor any de�nitions and theorems. 58



7.1 The AlgorithmIn Chapter 2 we have proved the following remarkable fats
• Along any ray ontained in the Stokes Setor Sk, any solution f to theShwarzian di�erential equation (2.11) onverges super-exponentiallyto the asymptoti value wk(f). See Lemma 2.4 (iv).
• The Stokes multipliers of the perturbed ubi osillator (2.2) are rossratios of the asymptoti values wk(f). See Theorem (2.4).
• Inside any losed subsetor of Sk, f has a �nite number of poles. SeeLemma 2.6.Hene the Simple Algorithm for Computing Stokes Multipliers goes asfollows:1. Set k=-2.2. Fix arbitrary Cauhy data of f : f(λ∗), f ′(λ∗), f ′′(λ∗), with the ondi-tions λ∗ 6= y, f ′(λ∗) 6= 0 1.3. Choose an angle α inside Sk, suh that the singular point λ = y doesnot belong to the orresponding ray, i.e. α 6= arg y. De�ne t : R+∪0 →

C, t(x) = f(eiαx + λ∗). The funtion t satis�es the following Cauhyproblem
{

{t(x), x} = e2iαQ(eiαx+ λ∗; y, y′, z),

t(0) = f(λ∗), t′(0) = eiαf ′(λ∗), t′′(0) = e2iαf ′′(λ∗) .
(7.1)4. Integrate equation (7.1) either diretly 2 or by linearization (see Re-mark below), and ompute wk(f) with the desired auray and pre-ision.5. If k < 2, k++, return to point 3.6. Compute σl using formula (2.17) for all l ∈ Z5.Remark. As was shown in Lemma 2.3, any solution f of the Shwarzianequation is the ratio of two solutions of the Shrödinger equation. Hene, onean solve the nonlinear Cauhy problem (7.1) by solving two linear Cauhyproblems.Whether the linearization is more e�ient than the diret integration of(7.1) will not be investigated here.1Indeed, the derivative f ′(λ) of any solution of the Shwarzian equation never vanishesif λ 6= λ∗2Integrating equation (7.1) diretly, one an hit a singularity x∗ of y. To ontinue thesolution past the pole, starting from x∗ − ε one an integrate the funtion ỹ = 1

y
, whihsatis�es the same Shwarzian di�erential equation.59



7.2 The Seond Numerial ExperimentWe have implemented our algorithm using MATHEMATICA's ODE solverNDSOLVE. We have hosen to integrate equation (7.1) with steps of length0.1. We deided the integrator to stop at step n if
|t(0.1n)− t(0.1(n − 1))| < 10−13 and∣∣∣∣
t(0.1n)− t(0.1(n − 1))

t(0.1n)

∣∣∣∣ < 10−13 .To test our algorithm we omputed the Stokes multiplier σ0(b) of theequation
d2ψ(λ)

dλ2
= (4λ3 − b)ψ(λ) . (7.2)Using the WKB theory developed in Chapter 4, one an easily show thatthe Stokes multiplier σ0(b) has the following asymptotis

σ0(b) ∼





−ie
√

π
3 Γ(1/3)

22/3Γ(11/6)
b
5
6

, if b > 0

−2ie
−

√
πΓ(1/3)

2
5
3 Γ(11/6)

(−b) 56
cos

( √
π
3Γ(1/3)

25/3Γ(11/6)
(−b) 5

6

)
, if b < 0 .

(7.3)Our omputations (see Figure 1 and 2 below) shows learly that theWKB approximation is very e�ient also for small value of the parameter b.We also tested our results against the numerial solution (due to A.Moro) of the Deformed Thermodynami Bethe Ansatz equations (DeformedTBA), whih has been introdued in Chapter 6. The numerial solution ofthe Deformed TBA equations enable to a-priori set the absolute error in theevaluation of the Stokes multiplier σ0(b) resaled with respet to the WKBexponentials (7.3). Hene, in the range of −20 ≤ b ≤ 20 we ould verify thatwe had omputed the resaled σ0(b) with an absolute error less than 10−8.
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