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A Tissue d’'une immense réunion tenue au bal Bullier (six mille
personnes s’y trouvaient entassées) un ordre du jour fut adopté
encourageant les orateurs et les organisateurs de cette manifesta-
tion & se rendre aupreés des citoyens Painlevé et Herriot, ministres
de Poincaré, pour leur demander |...] si, dans un sursaut de vrai
républicanisme, ils ne crieraient pas un "Non!" & I'Espagne, via
I’Argentine. Painlevé est géné. Il bredouille: "Oui..., assuré-
ment..." Nous pouvons compter sur lui comme sur une planche
pourrie.

Henry Torrés (lawyer of Ascaso, Durruti and Jover), in "The
short summer of anarchy" by H.M. Enzensberger
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Chapter 1

Introduction

1.1 Painlevé-1 and the Cubic Oscillator

This Thesis is based on four papers [Mas10a], [Mas10b]|, [Mas10c|, [Mas10d].
It deals mainly with the monodromy problem of the cubic oscillator

V' =V (N\a, b)Y, V(Na,b) =4X% —a\—b, a,b,A € C, (1.1)

and its relation with the distribution of poles of solutions of the Painlevé
first equation (P-I)
y'(2) =6y*— 2, 2€C . (1.2)

In particular we are interested in studying the poles of the tritronquée solu-
tion of P-I (also called intégrale tritronquée) and the cubic oscillators related
to them.

Painlevé-1 It is well-known that any local solution of P-I extends to a
global meromorphic function y(z),z € C, with an essential singularity at
infinity [GLS00]. Global solutions of P-I are called Painlevé-I transcendents,
since they cannot be expressed via elementary functions or classical spe-
cial functions [Inc56]. The intégrale tritronquée is a special P-I transcen-
dent, which was discovered by Boutroux in his classical paper [Boul3] (see
[JK88| and [Kit94] for a modern review). Boutroux characterized the inté-
grale tritronquée as the unique solution of P-I with the following asymptotic
behaviour at infinity

4
y(z) ~ — ST ]argz\<%.

Nowadays P-I is studied in many areas of mathematics and physics. Indeed,
it is remarkable that special solutions of P-I describe scaling asymptotics of
a wealth of different important problems.

For example, let us consider the n x n Hermitean random matrix model
with a polynomial potential. In 1989 three groups of researchers [DS90],
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[BK90], [GM90] showed that these matrix models are extremely important
in nonperturbative string-theory and 2d gravity. They also discovered that,
if the polynomial is quartic, in the large n-limit the singular part of the
susceptibility is a solution of P-I.

Indeed, it turns out [IKF90] that the partition function of the matrix
model is the 7-function of a difference analogue (i.e. a discretization) of P-I.
The authors of [IKF90] proved that in the appropriate continuous limit (that
here is the large n-limit) solutions of the difference analogue of P-I converge
to solutions of P-I.

In the framework of the random matrix approach to string theory, it is
also important to represent P-I as a "quantization" of finite-gap potentials
of KdV. This view-point was developed in [M0090] [Nov90] [GN94].

It has been shown recently [Dub08][CG09| that Painlevé equations play
a big role also in the theory of nonlinear waves and dispersive equations. In
particular, recently [DGK09| Dubrovin, Grava and Klein discovered that the
intégrale tritronquée provides the universal correction to the semiclassical
limit of solutions to the focusing nonlinear Schrédinger equation.

This elegant description of the semiclassical limit is effective for relatively
big values of the semiclassical parameter ¢ if the intégrale tritronquée does
not have any large pole in the sector |arga| < %’T. In this direction, theo-
retical and numerical evidences led the authors of [DGK09] to the following

CONJECTURE. [DGK09] If a« € C is a pole of the intégrale tritronquée then
|arg a | > 4%.

This conjecture has been a major source of inspiration for our work.

The Cubic Oscillator The cubic oscillator is a prototype for the general
anharmonic oscillator (or Schrédinger equation with a polynomial potential).

In this thesis we deal only with the cubic anharmonic oscillator (1.1);
in particular we are interested in the monodromy problem for the cubic
oscillator. As most good mathematical problems, it is simple to state and
hard to solve. We introduce it briefly here.

We let Sy = {)\ : ‘arg)\ - %‘ < %} .k € Zs. We call Si, the k-th Stokes
sector. Here, and for the rest of the thesis, Z5 is the group of the integers
modulo five. We will often choose as representatives of Zs the numbers
~2,-1,0,1,2.

For any Stokes sector, there is a unique (up to a multiplicative constant)
solution of the cubic oscillator that decays exponentially inside S;. We call
such solution the k-th subdominant solution and let 1 (A; a,b) denote it.

The asymptotic behaviour of 1 is known explicitely in a bigger sector
of the complex plane, namely Si_1 U Si U Sgy1:

im (A a,0)
Aop E)F% exp{—g)\g+%)\%}

jarg 22 <22 -




Here the branch of A is chosen such that 1 is exponentially small in S.

Since 1 grows exponentially in S, then ;1 and 1t are linearly
independent. Then {u_1,%y} is a basis of solutions, whose asymptotic
behaviours is known in Sy_1 U Sj.

Fixed k* € Zs, we know the asymptotic behaviour of {tg_1, %~} only
in Sg«_1 U Sg+. If we want to know the asymptotic behaviours of this basis
in all the complex plane, it is sufficient to know the linear transformation
from basis {1x_1, ¥} to basis {¢, Y1} for any k € Zs.

From the asymptotic behaviours, it follows that these changes of basis
are triangular matrices: for any k, ¥p_1 = ¥py1 + ok, for some complex
number oy, called Stokes multiplier. The quintuplet of Stokes multipliers
ok, k € Zs5 is called the monodromy data of the cubic oscillator.

It is well-known (see Chapter 2) that the Stokes multipliers satisfy the
following system of quadratic relations

—ioky3(a,b) =1+ o(a,b)ogy1(a,b), Vk € Zs, Va,be C. (1.3)

Hence, it turns out that the monodromy data of any cubic oscillator is
a point of a two-dimensional smooth algebraic subvariety of C?, called space
of monodromy data, which we denote by V.

The monodromy problem is two-fold: on one side we have the direct mon-
odromy problem, namely the problem of computing the Stokes multipliers of
a given cubic oscillator; on the other side we have the inverse monodromy
problem, viz, the problem of computing which cubic polynomials are such
that the corresponding cubic oscillators have a given set of Stokes multipli-
ers.

The monodromy problem can be easily generalized to anharmonic os-
cillators of any order. It has been deeply studied in mathematics and in
quantum physics and a huge literature is devoted to it.

From the very beginning of quantum mechanics, physicists studied an-
harmonic oscillators as perturbations of the harmonic oscillator

d*y(x)

dx?

To this regard the reader may consult [BW68],[Sim70|, [BB9S|.

In early thirties Nevanlinna [Nev32| showed that anharmonic oscillators
classify coverings of the sphere with a finite number of logarithmic branch
points. In particular the cubic oscillators classify coverings with five loga-
rithmic branch points. Recently [EG09a] Eremenko and Gabrielov applied
Nevanlinna’s theory to studying the surfaces I'y, = {(a,b) € C?||oy(a,b) = 0}.
They succeeded in giving a complete combinatorial description of the (branched)
covering map 7 : I'y — C, 7(a,b) = a.

In late nineties, Dorey and Tateo [DDT01] and Bazhanov, Lukyanov and
Zamolodchikov [BLZ01| discovered a remarkable link between anharmonic

= (2 —E)¢(z) .z €R.
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oscillator (with a potential A — E) and integrable models of Statistical Field
Theory, that has been called 'ODE/IM Correspondence’. The 'ODE/IM’
correspondence has been widely generalized (see for example [DDM109])
and it is now a very active field of research.

Poles of Solutions of P-I and the Cubic Oscillator As it was men-
tioned before, the cubic oscillator (1.1) is strictly related to P-I. Such a
correspondence will be thoroughly studied in Chapter 3. Here we explain it
briefly.

It is well-known, and it will be important in the rest of the thesis, that
P-I can be represented as the equation of isomonodromy deformation of an
auxiliary linear equation; the choice of the linear equation is not unique, see
for example [KT05]|, [Kap04]|, [FMZ92].

Here we follow [KT05] and choose the following auxiliary equation

d?h(N)
N2
QNy, Y 2) = 4N — 20z + 22y —4y° + Y +

= Q()‘a yaylaz)w()‘) 1)‘7y7y/az cC (14)
y 3
Xy A0y

We call such equation the perturbed cubic oscillator.

It turns out (see Chapter 2) that one can define subdominant solutions
Y, and Stokes multipliers o, k € Zs also for the perturbed cubic oscillator.
Moreover, also the Stokes multipliers of the perturbed oscillator satisfy the
system of quadratic relations (1.3); hence, the quintuplet of Stokes multipli-
ers of any perturbed cubic oscillator is a point of the space of monodromy
data V.

Since P-I is the equation of isomonodromy deformation of the perturbed
cubic oscillator ! we can define a map M from the set of solutions of P-I to
the space of monodromy data; fixed a solution y*, M(y*) is the monodromy
data of the perturbed cubic oscillator with potential Q(y*(2),y* '(2), 2), for
any z such that y* is not singular. It is well-known that the map M is a
special case of Riemann-Hilbert correspondence [Kap04|, [FMZ92].

In this thesis we are mainly interested in studying poles of solutions of
P-I; we cannot use directly the perturbed oscillator in this study because the
potential Q(\;y,v’, z) is not defined at poles, i.e. when y =y = oo.

However, inspired by a brilliant idea of Its et al. [IN86] about the Painlevée
second equation, we study the auxiliary equation in the proximity of a pole
of a solution y of P-I. We show that it has a well-defined limit and the limit
is a cubic oscillator. More precisely, we will prove the following

'Let the parameters y = y(z),y’ = di’i—(zz) of the potential Q()\;y,%’,2) be functions of
z; then y(z) solves P-I if and only if the Stokes multipliers of the perturbed oscillator do

not depend on z
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LEMMA (4.5). Let a be a pole of a fized solution y*(z) of P-I and let ¥y(X; z)
denote the k-th subdominant solution of the perturbed cubic oscillator (1.4)
with potential Q(N;y*(2),y™*(2),2). In the limit = — a, ¥r(X\;2) converges
(uniformly on compacts) to the k-th subdominant solution Vi (X;2a,28b) of

the cubic oscillator
" = (4\° — 2aX — 28b) 1) . (1.5)

Here the parameter b is the coefficient of the (z — a)* term in the Laurent
2 3
expansion of y*: y* = (Z_la)Q + a(zl_oa) + (Z_Ga) +b(z —a)t + O((z — a)®).

Lemma 4.5 is one of the most important technical parts of the thesis and
Section 4.5 is entirely devoted to its proof.

Fixed arbitray Cauchy data 1)(\g), %’ (N\g), it is rather easy to prove that
the solution of the perturbed cubic oscillator (1.4) converges, as z — a, to
the solution of the cubic oscillator (1.5) with the same Cauchy data.

It is far more difficult, but it is necessary to show that the monodromy
does not change in the limit, to prove the convergence of the subdominant
solutions. This is due to the fact that subdominant solutions are not defined
by a Cauchy problem but by an asymptotic behaviour, and (in some sense
clarified in the proof of the Lemma) the limits A — oo and z — a do not
commute .

In Chapter 3 we will be able to prove the following important conse-
quences of Lemma 4.5, which define precisely the relation between P-I and
the cubic oscillator; they are, therefore, the starting point of our research 2.

Theorem 3.2 Fix a solution y* and call o}, k € Zs its Stokes multipliers: M(y*) =
{o%,,....05}.

The point a € C is a pole of y* if and only if there exists b € C such
that o}, k € Zs are the monodromy data of the cubic oscillator

" = (4X* — 2aX — 28b) ¥ .

The parameter b turns out to be the coefficient of the (z — a)* term in
the Laurent expansion of y*.

Theorem 3.3 Poles of intégrale tritronquée are in bijection with cubic oscillators such
that 09 = 0_9 = 0. In physical terminology, these cubic oscillators are
said to satisfy two "quantization conditions".

Theorem 3.4 The Riemann-Hilbert correspondence M is bijective. In other words,
V5 is the moduli space of solutions of P-I.

’Even though the statement of Theorems 3.2 and 3.3 already appeared in [CC94| by
D. Chudnovsky and G. Chudnovsky, in [Masl0a] we gave (perhaps the first) a rigorous
proof. Theorem 3.4 can be proven also by other means (see for example [KK93]|, [Kit94]).
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1.2 Aims

for the miserable and unhappy are those whose impulse to action
is found in its reward.

in Bhagavadgita 2.49, translated by W. Q. Judge

Initially, our research was focused on the study of the distribution of
poles of the intégrale tritronquée using the relation between P-I and the
cubic oscillator.

Our first task was to obtain a qualitative picture of the distribution of
poles. In this regard, we succeeded (see Chapter 5) in giving a very precise
asymptotic description by means of the complex WKB methods, that we
developed (see Chapter 4) following Fedoryuk [Fed93].

Eventually, it became clear that it was necessary to turn our attention
to the general monodromy problem of the cubic oscillator in order to obtain
more precise information on the poles of solutions of P-I close to the origin.
Hence, the broader aim has been to give an effective solution to the mon-
odromy problem of the cubic oscillator, a satisfactory solution both from the
theoretical and from the computational view point.

Hence, after having developed the complex WKB method as a tool to
compute approximately the monodromy problem (see Chapter 4), we de-
cided to investigate the monodromy problem exactly generalizing the ap-
proach of Dorey and Tateo; they showed [DDTO01] that if a = 0, the Stokes
multiplier o (0,b) satisfy a nonlinear integral equation, called Thermody-
namic Bethe Ansatz. We were able to extend their construction in the case
a # 0. We proved (see Chapter 6) that if a is fixed and small enough, then
the Stokes multipliers oy(a,b) satisfy a deformation of the Thermodynamic
Bethe Ansatz, that we called Deformed Thermodynamic Bethe Ansatz.

We have also focused our attention on the numerical solution of the mon-
odromy problem, because this is one of the major tasks in view of possible
applications.

On one side, in collaboration with A. Moro, we are studying the numer-
ical solution the Deformed TBA (see Chapter 6 for preliminary results). On
the other side, we invented a new numerical algorithm (see Chapter 7) to
compute the Stokes multiplier without solving directly the cubic oscillator,
but an associated nonlinear differential equation (2.11). This algorithm is
based on an explicit relation (see Theorem 2.4), that we have discovered, be-
tween Stokes multipliers and the Nevanlinna’s theory of the cubic oscillator.

1.3 Main Results

We now outline the main results, that we have achieved after having rig-
orously established the relation between poles of solution of P-I and cubic
oscillators.

X



WKB Analysis of the Cubic Oscillator The complex WKB method
is a rather powerful and well-known tool for the approximate solution of
the monodromy problem of anharmonic oscillators. There are many possible
approaches to it, see for example [Fed93|, [BW68|, [Sib75], [Vor83|. In our
research we followed the Fedoryuk’s approach.

The complex WKB method is essentially a method of steepest descent;
indeed, a central role is played by the lines of steepest descent of the imagi-
nary part of the action

A
S(\;a,b) = / VV (s a,b)dp, V(A a,b) =423 —a\—b. (1.6)

These lines of steepest descent are called Stokes lines; the union of the Stokes
lines is called the Stokes complex of the potential V(A;a,b). The Fedoryuk’s
approach clearly shows that the asymptotic behaviour of the Stokes multi-
pliers depends on the topology of the Stokes complex.

In the huge literature devoted to the complex WKB analysis, the main
application has been the study of the eigenvalues distribution for large value
of the "energy"; in our notation, most authors studied the surfaces I'y =
{(a,b) € C*|ox(2a,28b) = 0} in the limit b — oo with a bounded.

According to the above-mentioned Theorem 3.3, the set of poles of the
intégrale tritronquée is exactly the intersection I'oNI'_o; however (see Lemma
4.5), such intersection is eventually empty in the limit b — oo with a fixed,
even though the intégrale tritronquée has an infinite number of poles: the
scaling b — oo with a fixed cannot be used to study the poles of the
intégrale tritronquée or of any given solution of P-I3. Therefore there were
no results in the literature that could be readily used to study the poles of
the intégrale tritronquée.

Indeed, it had been a challenging task to develop a fully rigorous complex
WKB method up to the point that we could correctly describe the asymptotic
distribution of the poles of the intégrale tritronquée. We achieved this goal
through the following steps.

1. We obtained (see Theorem 4.2) a complete topological classification
of the Stokes complexes of the general cubic potential. According to
our classification, there are (modulo the action of Zs) seven of such
topologies.

2. We identified (see Section 4.2.3) one topology, that we called "Boutroux"
graph, as the unique topology compatible with the system of "quanti-

3This should not come as a surprise; no meromorphic function can be approximated by
a sequence of functions, that have a pole (the parameter a of the potential V' ()\; 2a, 28b))
inside some bounded set of the complex plane but such that a term (the parameter b) of
their Laurent expansions diverges. Indeed, as we explain below, solutions of the system

0+2(2a,28b) = 0 have asymptotically the following scaling behaviour § — 0, ‘;—; bounded.



zation conditions" o19(2a,28b) = 0, which describes the poles of the
intégrale tritronquée.

3. We computed in the WKB approximation the Stokes multipliers o (a, b)
for all the potentials V(A;a,b) whose Stokes complex is the Boutroux
graph. In this way, we eventually derive the WKB analogue of the
system o19(2a,28b) = 0. It is the following pair of Bohr-Sommerfeld
quantization conditions, that we have called Bohr-Sommerfeld-Boutroux
(B-S-B) system*

7{\/‘/()\;2@,28b)d)\ = im(2n—1)
a1

7{ VV (A 2a,280)dN = —in(2m —1)
a—1

Here m,n are positive natural numbers and the paths of integration
are shown in Figure 1.1.

branch cuts defining the
square root of the potential

3w
5

(320)

Figure 1.1: Riemann surface u? = V(); 2a, 28b)

B-S-B System and the Poles of Tritronquée After having derived
the B-S-B system, we showed (see Chapter 5) that the poles of intégrale
tritronquée are well approximated by solutions of B-S-B system: the distance
between a pole and the corresponding solution of the Bohr-Sommerfeld-
Boutroux system vanishes asymptotically. Let us introduce precisely our
result.

Solutions of the B-S-B system have a simple classification; they are in
correspondence with ordered pairs (g, k), where ¢ = 22;:;11
tional number and k a positive integer. Here (a},b]) denotes the general

is a positive ra-

“The B-S-B system reproduces the description of the poles of the intégrale tritronquée
obtained by Boutroux [Boul3] through a completely different approach (for similar results,
see also [JK88] [KK93] [Kit94]).
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solution of B-S-B. Fixed ¢, the sequence of solutions {(af,b]) has a

multiplicative structure:

Fren

(af,b8) = ((2k +1)5ad, (2k + 1)58]) .
We were able to prove the following theorem.

THEOREM (5.2). Let ¢ be an arbitrary positive number. ]f% <p< g, then
it exists K € N* such that for any k > K inside the disc {a — aZ{ < kTHe
there is one and only one pole of the intégrale tritronquée.

Deformed Thermodynamic Bethe Ansatz In aseminal paper [DDT01]
Dorey and Tateo proved that the Stokes multipliers oy (0, b) satisfy the Ther-
modynamic Bethe Ansatz equation, introduced by Zamolodchikov [Zam90]
to describe the thermodynamics of the 3-state Potts model and of the Lee-
Yang model. We succeeded in generalizing Dorey and Tateo approach to the

general cubic potential.
2mi 69

Fix a € C and define ¢, () = In (iao(e_kTa, e?)>. Following the con-
vention of Statistical Field Theory we call pseudo-energies the functions ey.
We proved that the pseudo-energies satisfy the nonlinear nonlocal Riemann-
Hilbert problem(6.11), which is equivalent (at least for small value of the
parameter a) to the following system of nonlinear integral equations that we
called Deformed Thermodynamic Bethe Ansatz:

400
xi(o) = / oi(c — " )\(o')do", 0,0 €R, 1 € Zs ={-2,...,2} .

Here
= Z ei%Lk(U) , Lig(o)=1In (1 + 675’“(")) ,
k€Zs
(o) = % S B () + f /3) o s \/%r(z/g) e
leZs 2 I'( 11/6) 43F(1/6)
(o) = V3 _2cosh(20) (o) = ,\/_gi
PO = 1+ 2cosh(20) ' L 1 + 2 cosh(20)
V3 e 57
p2(0) = —— 7 p-1(0) = p1(—=0) ,p-2(0) = p2(~0).

m 14 2cosh(20

A Numerical Algorithm We have developed a new algorithm to compute
the Stokes multipliers of the cubic oscillator (1.1) and of the perturbed cubic
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oscillator (1.4). The algorithm is based on the formula ® (1.8) below, that
we discovered in [Mas10d].
Consider the following Schwarzian equation

{f(A), A} = —2V(X;a,b). (1.7)

" 1 2
Here {f(\),A\} = ]},(%) -3 (?,&‘3) is the Schwarzian derivative.

For every solution of the Schwarzian equation (1.7) the following limit
exists

we(f) = lm_ f(N) € CU,

provided the limit is taken along a curve non-tangential to the boundary of
Sk

In Chapter 2, we will prove that the following formula holds for any
solution of the Schwarzian equation (1.7)

ok(a,b) = i (wik(f), w24k (f); w14k (f) w2k (f)) - (1.8)

Here (a,b;c,d) = % is the cross ratio of four points on the sphere.

1.4 Structure of the Thesis

The Thesis consists of six chapters other than the Introduction.

Chapter 2 Chapter 2 is introductory. In this Chapter we deal with the
basic asymptotic theory of cubic oscillators and we set the notation that we
will use throughout the thesis. We define precisely the Stokes multipliers,
the space of monodromy data and the monodromy problem. We then intro-
duce the geometric theory of the cubic oscillator and present some original
contributions which are mainly drawn from [Mas10d|[Mas10c].

Chapter 3 In Chapter 3 we study the relation among poles of solutions
of P-I and the cubic oscillator. The major source, but with some impor-
tant modifications, is [Masl0a]. The main tool used is the isomonodromy
deformation method.

As it was already explained, Painlevé-I is represented as the equation of
isomonodromy deformation of the auxiliary Schrodinger equation

A2\
P~ Qw2
/
3
Nyt z) = AN — 2z 4 22y — Ay 4o 4+ 2 .
Q( ayayaz) z+2zy Y~ +y —|—)\7y—|-4()\7y)2

SFor simplicity of notation we present here the theory for the cubic oscillator. Any
statement remains valid if one substitutes V()\; a,b) with Q(\;y,y’, 2).
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We study the auxiliary equation in the proximity of a pole of a solution y of
P-I and we prove the above-mentioned Theorems 3.2, 3.3, 3.4.

We warn the reader that the proof of the main technical Lemma of the
Chapter, namely Lemma 3.6, is postponed at the end of Chapter 4 because
the proof depends heavily on the WKB analysis.

Chapter 4 The fourth Chapter is devoted to the WKB analysis of the cu-
bic oscillator. Again, the major source is [Masl0al. We develop the complex
WKB method by Fedoryuk [Fed93] and give a complete topological classifi-
cation of Stokes complexes for the cubic oscillator, an algorithmic construc-
tion of the Maximal Domains and we introduce the small parameter of the
approximation. After that, we show by examples how to compute approx-
imately asymptotic values (hence Stokes multipliers) of the cubic oscillator
and eventually derive the Bohr-Sommerfeld-Boutroux system.

Chapter 5 The fifth Chapter deals with the approximation of poles of
the intégrale tritronquée by the solutions of the Bohr-Sommerfeld-Boutroux
system. The material of this Chapter is taken from [Masl0a| and [Mas10b].
A section of the Chapter is devoted to the study of the poles of the tritronquée
on the real axis.

Chapter 6 In the sixth Chapter we derive the Deformed Thermodynamic
Bethe Ansatz equation following [Mas10d|. We also show a numerical solu-
tion of the equation. This Chapter is, to a great extent, independent on all
other chapters, but Chapter 2.

Chapter 7 Chapter 7 is devoted to describe an algorithm for solving the
direct monodromy problem for the perturbed and unperturbed cubic oscil-
lator. The algorithm is based on the geometric theory of the cubic oscillator
developed in Section 2.2. It also contains a numerical experiment. This
shows that the WKB approximation is astonishingly precise. The algorithm
originally appeared in [Mas10c].
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Chapter 2

The Cubic Oscillator

The present Chapter is introductory. In this Chapter we deal with the ba-
sic asymptotic theory of cubic oscillators and we set the notation that we
will use throughout the thesis. We define precisely the Stokes multipliers,
the space of monodromy data and the monodromy problem. We then intro-
duce the geometric theory of the cubic oscillator and present some original
contributions which are mainly drawn from [Mas10d|[Mas10c].

The monodromy problem for the anharmonic oscillators (in particular
the cubic one) is a fundamental and rather interesting problem in itself and
a large literature is devoted to it. The interested reader may consult the
following papers [BW68|, [Sim70], [Vor83], [BB98|, [DT99]|, [BLZ01|, [EG09a]
and the monograph [Sib75].

Here we do not review all the literature but introduce the elements of the
theory that are needed in order to study the relation of the cubic oscillator
with the Painlevé first equation; this relation will be explained thoroughly
in Chapter 3.

The cubic oscillator is the following linear differential equation in the
complex plane

d*p(N)
d\?
Since it will be useful in the study of Painlevé-1 equation, together with
the cubic oscillator we will study also its following perturbation

2
TN~ Qw2 2.2)
! 3

Nyt ) = AN — 2hz + 22y — 4yd + 42 + 2 .
QNy, Y, 2) 2+ 2zy — 4y’ +y +)_y+4(/\7y)2

=VAa, b\, V(Aia,b) =4\ —aX—b, a,b,A € C. (2.1)

Here y,y/, z are complex parameters.

Remarkably, in some limit relevant for studying the poles of the solutions
of Painlevé-I equation (2.2) becomes the cubic oscillator (2.1) (see Lemma
4.10).



Definition 2.1. We call any cubic polynomial of the form V (\; a,b) = 4\3 —
aX — b a cubic potential. The above formula identifies the space of cubic
potentials with Cy 5 (a,b). We call Q(\;y,v', 2) a deformed cubic potential.

The Chapter deals is divided in two Sections. The first one is devoted
to the analytic theory in the spirit of Sibuya [Sib75]. In the second one we
introduce the geometric or Nevanlinna’s theory of the cubic oscillator.

2.1 Analytic Theory

Here we introduce the concepts of subdominant solutions, of Stokes multi-
pliers and of eigenvalue problems.
2.1.1 Subdominant Solutions

In this subsection we introduce the subdominant solutions of the perturbed
and unperturbed cubic oscillators (2.2,2.1).
We define the Stokes Sector S) as

2
Sk:{)\: mk

N\ 22
arg 5
We remark that in Chapter 4 we will name Stokes sector and denote it ¥ a
slightly different object.

<g},k€Z5. (2.3)

Lemma 2.1. Fiz k € Zs = {-2,...,2}, define the branch of A3 by requiring

. 5
lim Rel2 =400
A—00
argAz%

and choose one of the branch of Ai. Then there eists a unique solution
Yi(X;a,b) of equation (2.1) such that

Asa,b
lim Ui & ) — 1, Ve >0. (2.4)
‘ A /\2~>ko’0 3 )\_%e_%>‘j+%>‘j
arg \— =57 | < —¢

Proof. The proof can be found in Section 4.4 or in Sibuya’s monograph
[Sib75]. O

A very similar Lemma is valid also for the pertubed oscillator.

Lemma 2.2. Fiz k € Zs = {-2,...,2} and define a cut in the C plane
connecting A =y with A = oo such that its glaoz'nts eventually do not belong
to Sp—1 U S U Sks1. Choose the branch of A2 by requiring

. 5
lim Relz = +o0,
A—00
arg Az%



while choose arbitrarily one of the branch of \i. Then there exists a unique
solution VY (N;y,y', 2) of equation (2.2) such that

(N Y.y, 2)

lim PR — — 1, Ve > 0. (2.5)
|arg)\f)\2?Tkor<%”f€ )‘_Ze_gAQ-i_E)\Q
Proof. The proof can be found in Section 4.5. U

REMARK. Equation (2.2) has a fuchsian singularity at the pole X\ =y of the
potential Q(\;y,y, z). However this is an apparent singularity (see Lemma
3.1): the monodromy around the singularity of any solution is —1.

According to the previous Lemmas, ¥ (\;y, 9/, 2) (or ¥r(\;a,b))) is ex-
ponentially small inside the Stokes sector Sj; and exponentially big inside
Sk+1. Due to their different asymptotics ¢ and ¢y, 1 are linearly indepen-
dent for any k € Zs. Hence, ¢ is, modulo a multiplicative constant, the
unique exponentially small solution in the k-th sector Sy.

Definition 2.2. We denote 1y (X; a,b) the solution of equation (2.1) uniquely
defined by (2.4). We denote ¥r(N;y,y',2) the solution of equation (2.2)
uniquely defined by (2.5). We call them k-th subdominant solutions.

2.1.2 The monodromy problem

If one fixes the same branch of AT in the asymptotics (2.4) of Yx_1, ¥V, Ypi1
then the following equation hold true

Yr—1(Aia,b) = Yrr1(X;a,b) + op(a, b)r(X;a,b) . (2.6)

Moreover the Stokes multipliers oy, satisfy the following system of quadratic
equation
—i0py3 =1+ 0k0K41, Vk € Zs . (27)

We can introduce Stokes multipliers also for the perturbed cubic oscillator
(2.2). Define a cut in the C plane connecting A = y with A = oo such that
its points eventually do not belong to Sj_1 U Sy U Sk41. If one fixes the same
branch of A1 in the asymptotics (2.5) of x_1, Yk, VY11 then the following
equation hold true

Vo1 (9,9, 2) - e (MY 2)
Ve(Xsy, 9/, 2) Ve(X Y,y 2)
The Stokes multipliers oy (y, ', z) satisfy the same system of quadratic equa-

tions (2.7). The reader should notice the ratio of two solutions of the per-
turbed oscillator is a single-valued meromorphic function.

+ow(y.y,2) - (2.8)




Definition 2.3. The functions op(a,b),or(y,y', z) are called Stokes multipli-
ers. The quintuplet of Stokes multipliers op(a,b),k € Zs (resp. or(y,y',2))
are called the monodromy data of equation (2.1) (resp. of equation (2.2)).

Observe that only 3 of the algebraic equations (2.7) are independent.

Definition 2.4. We denote Vi the smooth algebraic variety of quintuplets
of complex numbers satisfying (2.7) and call admissible monodromy data the
elements of Vs.

The Stokes multipliers of the cubic oscillator are entire functions of the
two parameters (a,b) of the potential. Hence we define the following mon-
odromy map

C? = Vs, (2.9)
T(a,b) = (0-2(a,b),...,02(a,b)).

Theorem 2.1. The map T is surjective. The preimage of any admissible
monodromy data is a countable infinite subset of the space of cubic potentials.

Proof. See |Nev32|. O

We have collected all the elements to state the direct and inverse mon-
odromy problem for the cubic oscillator

PrROBLEM. We call Direct Monodromy Problem the problem of computing
the monodromy map T . We call Inverse Monodromy Problem the problem of
computing the inverse of the monodromy map.

Until now, neither of the problems have been satisfactorily solved. How-
ever, we have made substantial progress towards the solution. For what
concerns the inverse problem, we will show in Chapter 3 that to any ad-
missible monodromy data v there corresponds one and only one solution
y of the Painleve-I equation, such that 7 '(v) = {(204,285;)},cn, Where
{(20v;,2803;) };cy s the set of poles of y Here «; is the location of a pole of y,
B; is a coefficient of the Laurent expansion of y around «;.

We have also made many progress in the understanding of the direct
problem: we have developed the asymptotic theory of the Stokes multipli-
ers (see Chapter 4), and we have built an analytic of tool called Deformed
Thermodynamic Bethe Ansatz (see Chapter 6) and a numerical algorithm
(see Chapter 7) to solve the monodromy problem.

Eigenvalue Problems

The surfaces {oy(a,b) = 0,k € Zs} are particularly important in the theory
of the cubic oscillator. Indeed, oj(a,b) = 0 if and only if there exists a



solution of the following boundary value problem

d*p(N) m
2 ( ;a, )lb( ) ) )\ﬁoo,/\EI’kalufykJrl w( )

Here ;41 is any ray contained in the (k+1)-th Stokes sector. The boundary
value problem is also called lateral connection problem.

Fixed a, the boundary value problem is equivalent to the eigenvalue prob-
lem for the Schrodinger operator —% + 423 — a defined on L%(vy; U y2).
Since the eingevalues are a discrete set, the equation oy(a,b) is often called
a quantization condition.

The eigenvaluzes problems are invariant under an anti-holomorphic invo-
lution: let w = €5 , then oy (a,b) = 0 & o} (w*a@, W) = 0; here ~ stands
for the complex conjugation.

If a is a fixed point of the involution a — w?
the eigenvalue problem is said to be PT symmetric, because b is an eigenvalue
if and only if w%b is (the study of PT symmetric oscillators began in the
seminal paper [BB98]).

It is natural to ask if all the eigenvalues b of a PT symmetric operator
are invariant under the involution b — w5%b. This is not the case in general
(see for example [BB98]). However, in [BB98| the authors conjectured that
if w?*q is real and non-negative then all the eigenvalues b are such that w3*b
is real and negative.

Dorey, Dunning, Tateo [DDT01] proved the conjecture in the case a =0
and Shin [Shi02] extended the result to the general case.

This theorem will be fundamental in Chapter 6 for deriving the Deformed
Thermodynamic Bethe Ansatz.

k@, i.e. if w?*a is real, then

Theorem 2.2. Fiz k € Zs. Suppose op(a,b) = 0 and w?*a is real and non
negative. Then w3*b is real and negative.

Proof. See [Shi02] (see also [DDTO01] for the case a = 0). O

2.2 Geometric Theory

In the analytic theory, the monodromy data of equation (2.1) are expressed
in terms of Stokes multipliers, which are defined by means of a special set of
solutions of the equation. In this section, following Nevanlinna [Nev32| and
author’s paper [Masl0d|, we study the monodromy data from a geometric
(hence invariant) viewpoint. Eventually, we realize the Stokes multipliers of
the cubic oscillators as natural coordinates on the quotient W5/PSL(2,C),
where W5 is a dense open subset of (P1)5 (the Cartesian product of five
copies of P!). The core of Nevanlinna theory is based on the interrelation
among anharmonic oscillators and branched coverings of the sphere. We will
not introduce the correspondence here. The interested reader may consult



the original works of Nevanlinna [Nev32] [Nev70] and Elfving [Elf34] or the
remarkable recent papers of Gabrielov and Eremenko [EG09a|,[EG09b].

In the present Section we consider the cubic oscillator (2.1) and the cubic
potential V(A;a,b) as particular cases of the perturbed oscillator (2.2) and
of the potential Q(\;y,v’, z). We use the convention that the cubic oscillator
is the particular case of the perturbed cubic oscillator determined by y = oc.

2.2.1 Asymptotic Values

The main geometric object of Nevanlinna’s theory is the Schwarzian deriva-
tive of a (non constant) meromorphic function f(\)

s =EW B o

The Schwarzian derivative is strictly related to the Schrodinger equation
(2.2). Indeed, the following Lemma is true.

Lemma 2.3. The (non constant) meromorphic function f : C — C solves
the Schwarzian differential equation

{F(N), A} =—2Q(\; 9.9/, 2). (2.11)

iff f(\) = % where ¢(A) and x(\) are two linearly independent solutions
of the Schrodinger equation (2.2).

Every solution of the Schwarzian equation (2.11) has limit for A\ — oo,
A € Si. More precisely we have the following
Lemma 2.4 (Nevanlinna). (i) Let f(\) = 2N b ¢ solution of (2.11)

&Y
then for all k € Zs the following limit ezis)sfs

wi(f) =

= i
A =00, \ES)

f(A) e CUoo, (2.12)

provided the limit is taken along a curve non-tangential to the boundary

of Sk.
(i) w1 (f) # wi(f), Yk € Zs.

a a a b
(111) Let g(\) = cj:((;))is = ci&;jﬁigg, <c d) € Gl(2,C). Then

awg(f)+0b

PNGET (2.13)

w(g) =

(1v) If the function f is evaluated along a ray contained in Sy, the conver-
gence to wg(f) is super-exponential.



Proof. (i-iii) Let 1; be the solution of equation (2.1) subdominant in Sy
and 41 be the one subdominant in Sky;. We have that f(A

ag (A A @
Wm, for some <’y g) € GI(2,C). Hence wi(f) =

0 # 0, wi(f) = o0 if § = 0. Similarly wi41(f) = 5. Since (?; g) €
Gl(2,C) then wi(f) # wr41(f)

(iv) From equation (2.4) we know that inside S,

Yr(N) ‘ N e*R@(%/\%fa/\%>
Yrr1(N)

where the branch of A2 is chosen such that the exponential is decaying.
O

)
glf

)

Definition 2.5. Let f()\) be a solution of the Schwarzian equation (2.11)
and wi(f) be defined as in (2.12). We call wi(f) the k-th asymptotic value

of f.
2.2.2 Space of Monodromy Data
Definition 2.6. We define

Ws = {(2-2,2_1, 20,21, 22), 2t € CUO00, 2, # 2411, 22 # 2_2} .
The group of automorphism of the Riemann sphere, called M&bius group
or PSL(2,C), has the following natural free action on Ws: let T = (CCL Z) €
PSL(2,C) then

az_o+b azo +b
cz_o+d " cz+d

T(Z_Q,...,Zg):( )

After Definition 2.5 and Lemma 2.4(iii) every basis of solution of (2.2) de-
termines a point in Ws. After the transformation law (2.13), the Schrodinger
equation (2.2) determines an orbit of the PSL(2,C) action.

Below we prove that the quotient W5/PSL(2,C) is isomorphic, as a
complex manifold, to the space of monodromy data V5 defined by the system
of quadratic equations (2.7) (see Definition 2.4). To this aim we introduce
the following R functions

Rk:W5 — (C,kGZ5,

Ri(z—2,...,20) = (Z14k> 221k} 2—14k> 224k) (2.14)

where (a,b;c,d) = EZ:%% is the cross ratio of four points on the sphere.

Functions R will be studied in details in Chapter 6. We collect here their
main properties



Lemma 2.5. [Mas10d]

(1) The functions Ry are invariant under the PSL(2,C) action. Hence
they are well defined on Vs: with a small abuse of notation we let Ry,
denote also the functions defined on V.

(11) They satisfy the following set of quadratic relation
Rk,QRkJrQ =1—Ry, Vk €Zs. (2.15)

(11i) The pair Ry, Ri+1 is a coordinate system of W5/ PSL(2C) on the open
subset Ri_o # 0. The pair of coordinate systems (Ry, Rpi1) and
(Rg42, Ri—2) form an atlas of W5/PSL(2,C).

(i)
Rp(z—2,...,22) # o0, ¥(z-2,...,22) € W,
Rk(z_g, ce ,22) = 0 fo Zk—1 = Rk+1 » (2.16)

Ri(z—2,...,20) = 1iff zp_1 = 2p12 07 2p11 = 22 -

We can now prove the following

Theorem 2.3. [Mas10d] The space of monodromy data Vs is isomorphic as
a complex manifold to the quotient W5/PSL(2,C).

Proof. Define the map ¢ : W5/PSL(2,C) — Vs, p(-) = i(R—-2(:), ..., Ra(")).
Due to Lemma 2.5(i-iii) ¢ is bi-holomorphic. O

REMARK. From the construction of Vs as a quotient space it is evident
that Mos C V5 C ./\/l—o,5. Here My 5 ts the moduli space of genus 0 curves
with five marked points and Mo 5 is its compactification (see [Knu83| for the
definition of Moys).

With a slight abuse of notation we call Ry(a,b) the value of Ry when the
asymptotic values are calculated via the Schwarzian equation with potential
V(A;a,b). It is easily seen that Ry is an entire function of two variables.
Moreover, it coincides essentially with the Stokes multiplier oy(a,b) defined
previously.

Theorem 2.4. [Mas10d] For any a,b € C?,

or(a,b) = iRy (a,b). (2.17)
Proof. Let 11 be the solution of (2.1) subdominant in Sj1 and ;o be
the one subdominant in Sk, o (see the Appendix for the precise definition).
By choosing f(\) = M, one verifies easily that the identity (2.17) is

T Yrg2(N)
satisfied. O

REMARK. According to previous Theorem and Lemma 2.5 (iv) the k-th lat-
eral connection problem, i.e. op(a,b) = 0, is solved if and only if for any
solution f of the Schwarzian equation wi_1(f) = wr41(f).



Singularities We end the Chapter with an observation which will be used
later on in Chapter 7. Since the Schwarzian differential equation is linearized
(see Lemma 2.3) by the Schrodinger equation, any solution is a meromorphic
function and has an infinite number of poles [Nev70]. The poles, however,
are localized near the boundaries of the Stokes sectors Si,k € Zs. Indeed,
using the complex WKB theory one can prove the following

Lemma 2.6. Let f(\) be any solution of the Schwarzian equation (2.11).
Fiz ¢ > 0 and define Sy = {)\: ‘arg)\f 275”“‘ g%fe} ,k € Zs . Then,
Vw € CJoo, f(A) = w has a finite number of solutions inside Sy. In
particular, there are a finite number of rays inside Sy on which f(X) has a
pole.



Chapter 3

Painlevé First Equation

In this chapter we study the relation among poles of solutions y = y(z) of
Painlevé first equation (P-I)

y' =6y -z, 2€C (3.1)

and the cubic oscillator (2.1).

In particular we introduce the special solution called intégrale tritronquée
and we show that its poles are described by cubic oscillators that admit the
simultaneous solution of two quantization conditions.

As it is well-known, any local solution of P-I extends to a global meromor-
phic function y(z),z € C, with an essential singularity at infinity [GLS00].
Global solutions of P-I are called Painlevé-I transcendents, since they cannot
be expressed via elementary functions or classical special functions [Inc56].

The intégrale tritronquée is a special P-I transcendent, which was discov-
ered by Boutroux in his classical paper [Boul3| (see [JK88] and [Kit94] for
a modern review). Boutroux characterized the intégrale tritronquée as the
unique solution of P-I with the following asymptotic behaviour at infinity

4
y(z) ~ —\/g, if |argz| < % .

We summarize hereafter the content of the Chapter.

Let us recall from Chapter 2 that the space of monodromy data (see
Definition 2.4) is the variety of points in (z_o,...,22) € C® satisfying the
system of quadratic equations —izg13 = 1 + 2241, Vk € Zs.

The monodromy map 7 (see equation (2.9)) is a holomorphic surjection
of C% into C°. T(a,b) are the Stokes multipliers (o_2(a,b),...,02(a,b)) of
the cubic oscillator (2.1)

d*p(\)
dN?

The main results of the present Chapter are enumerated here below ' .

=V(N\a,b)v(\), V(Aa,b) =423 —a\—b .

!For what concerns the originality of these results see the Introduction

10



Theorem 3.2 Fix a solution y* and call o}, k € Zs its Stokes multipliers: M(y*) =
{o%,,....05}.
The point a € C is a pole of y* if and only if there exists b € C such
that o}, k € Zs are the monodromy data of the cubic oscillator

P = (4\° — 2a\ — 28b) 1) .

The parameter b turns out to be the coefficient of the (z — a)* term in
the Laurent expansion of y*.

Theorem 3.3 Poles of intégrale tritronquée are in bijection with cubic oscillators such
that 09 = 0_5 = 0. In physical terminology, these cubic oscillators are
said to satisfy two "quantization conditions".

Theorem 3.4 The Riemann-Hilbert correspondence M is bijective. In other words,
V5 is the moduli space of solutions of P-I.

The rest of the Chapter is devoted to the proof of these three results.

3.1 P-I as an Isomonodromic Deformation

In this section we show that any solution y of the Painlevé-1 equation gives
rise to an isomonodromic deformation of equation of the perturbed cubic
oscillator (2.2)

d> (N
d}\(Q ) - QN 2)Y(N)
!
3
Nty z) = AN3 —2Xz 4 22y — 4y 2+ Y .
Q\iy. Y, 2) S kA weerh s

Even though this fact is well-known in the literature about P-I (see for
example [KT05] and [Mas10a]), we discuss it for convenience of the reader.

Lemma 3.1. The perturbed cubic oscillator is Gauge-equivalent to the fol-
lowing ODE

— Y 202 4+ 2y — z + 212
P A )‘7 ) /7 Z) = (

Moreover, the point X\ =y of the perturbed oscillator (2.2) is an apparent
singularity: the monodromy around A =y of any solution is —1.

) 8()\; v,y 2) . (3.2)

Proof. Define the following Gauge transform

1
y,+2(/\—y)

1
V20-y) V20 -y)

Gy, 9, 2) = (3.3)

2N —vy) 0

11



Then g()\;z) = G()\;y,y’,z)E}()\,z) satisfies (3.2) if and only if @()\;z)
satisfies the following equation

Wy(\,2) = (Q(A;iy,’z) (1)) W\, ) .

Let 1) denote the first component of E) Then 1 satisfies the perturbed cubic
oscillator equation.

The unique singular point of equation (3.2) is A = oo; therefore any
solution of (3.2) is an entire function. The Gauge transform itself has a square
root singularity at A = y, hence any solution of the perturbed oscillator is
two-valued. O

Lemma 3.2. For any Stokes sector Sy, there ea:ii;fs a unique normalized
subdominant solution of equation 3.2. We call it ®(\;y,y',2). The sub-
dominant solutions satisfy the following monodromy relations

- -
Br 1Nyt 2) = BNy 2) + ony ' 2) Ba(hiy, v 2) |

where ok (y,y', ) is the k-th Stokes multiplier of the perturbed cubic oscillator
2.2 (see Definition 2.3).

%
Proof. Choose @ ()\;y,y', 2) as the (inverse) gauge transform of 1 (\; y, v/, 2),
the k-th subdominant solution of (2.2). From WKB analysis (see Sections

4.4 and 4.5) we know that also ¢} (\;y,v’, 2) is subdominant; more precisely

#()‘()A) — —1in Sp_1US,USky1. Since G(\;y,/, 2) is algebraic in A, then
k

t(\;y,9, 2) decays exponentially in Sy and grows exponentially in Sk;.

Hence it is the unique (up to normalization) k-th subdominant solution of

(3.2).
The equation for the Stokes multiplier is unchanged since the gauge trans-
form is a linear operation. O

Lemma 3.3. Let y = y(2) be a holomorphic function of z € U C C, let y'(2)
be its derivative and let oy (z) = or(y(2),vy'(2),2), k € Zs be the Stokes mul-
tipliers (2.6) of the perturbed cubic oscillator. If y(z) satisfies the Painlevé-I
equation (3.1) then dac’l“—z(z) = 0.

Proof. We prove the statement using equation (3.2), and not directly equa-
tion (2.2). A straightforward computation shows y(z) satisfy P-I if and only
if the following system admits a non trivial solution

"z 2 z) —z 2(z
Boa = (05 PTG ) B0,
B.\z) = (‘1) 29(23“) BN, 2)

12



Obviously the first equation of above system is equation (3.2), with y =

y(2),y" =9 (2).

Let zp belong to U. Consider the solut1on i (A 2) if; the system of linear
equation with the following Cauchy data <I>()\ 20) _CI; (N y(20), 9 (20), 20)-
=&

kA y(2), 9/ (2), 2).

A simple calculation shows that locally 2 ® (); 2)
Therefore

— — —
1N y(2),9(2), 2) = Prar(Nsy(2), 9/ (2), 2) +0w(2) Pr(Ny(2), 9 (2), 2) -
Differentiating by z, we obtain the thesis. O

Definition 3.1. According to Lemma 3.3, to any solution y of P-I we can
associate a set of Stokes multipliers, i.e. a point of the space of monodromy
data V. We denote this map M

M : {P-I transcendents} — V5 .

We say that M(y) are the Stokes multipliers of y.

The map M is a special case of a Riemann-Hilbert correspondence. In
particular the following lemma is valid.

Lemma 3.4. M is injective.
Proof. See |Kap04]. O

The Stokes multipliers of the tritronquée solution are well-known. In-
deed, the following Theorem holds true.

Theorem 3.1. (Kapaev) The image under M of the intégrale tritronquée
are the monodromy data uniquely characterized by the following equalities

o9 =0_9=0. (3.4)

Proof. See [Kap04]. The Theorem was already stated, without proof, in
[CC94]. O

3.2 Poles and the Cubic Oscillator

Here we suppose that we have fixed a solution y of P-I. In the previous section
we have shown that if we restrict y to a domain U where it is regular, then it
gives rise to an isomonodromic deformation of the perturbed cubic oscillator
(2.2).

2hence globally; indeed gk()\;y(z),y/(z),z) is a single-valued function since y(z) is
single-valued.
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In the present section we study the behaviour of solutions of the per-
turbed cubic oscillator (2.2) in a neighborhood of a pole of a solution y of
P-1. Let a denote a pole of a fixed solution y*(z) of P-I. We prove that, in
the limit z — a, the perturbed cubic oscillator turns (without changing the
monodromy) into the cubic oscillator (2.1) with potential V' (\; 2a, 28b) (here
b is the coefficient of the (z —a)* term in the Laurent expansion of y around
a). We then analyze some important consequences of this fact.

In order to be able to describe the behaviour of solution to the perturbed
cubic oscillator near a pole a of y(z), we have to know the local behavior of
y(z) close to the same point a.

Lemma 3.5 (Painlevé). Let a € C be a pole of y. Then in a neighborhood
of a, y has the following convergent Laurent erpansion
1 a(z—a)?> (z—a)?
IR N Cary
z—a) 10 6

+b(z—a)*+> cjla,b)(z—a)l. (3.5)

J=5

y(z)= (

Here b is some complex number and c;j(-,-) are polynomials with real coeffi-
cients, which are independent on the particular solution y.

Conwversely, fized arbitrary a,b € C, the above expansion has a non zero
radius of convergence and solves P-1.

Proof. See |GLS00]. O
Definition 3.2. We define the Laurent map
L : C% — {P-I transcendents} .

L(a,b) is the unique analytic continuation of the Laurent expansion (3.5).

We have already collected all elements necessary to formulate the impor-
tant

Lemma 3.6. Fiz a solution y of P-I and let M(y) = (0_2,...,02) be its
Stokes multipliers. Let a be a pole of y and b be such that the Laurent
expansion (3.5) is valid. Then (o_a,...,02) are the monodromy data of the
cubic oscillator (2.1) with potential 4\3 — 2a — 28b.

In other words, T (2a,28b) = M o L(a,b). Here T is the monodromy
map of the cubic oscillator (see equation 2.9), M is the Riemann-Hilbert
correspondence for P-I (see Definition 3.1) and L is the Laurent map (see
Definition 3.2).

Proof. Recall the definition of the k-th subdominant solutions ¥ (\;y, v/, 2)
and ¥, (A; a,b) of the perturbed and unperturbed cubic oscillator (see Defini-
tion 2.2). Here y,y are functions of z, hence we write ¢, (X; 2) = Yp(X; y, v/, 2).
To prove the Lemma it is sufficient to show that

i D15 2) P (A 2a, 28)
z=a Pr(A;2) Ur(\; 2a,28b)
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Since the proof of the desired limit requires some knowledge of WKB
analysis, we postpone it in Section 4.5. U

The previous Lemma has many important consequences.

Theorem 3.2. Let y be any solution of P-I. Then a € C is a pole of y iff
there exists b € C such that M(y) = T (2a,28b).

Proof. One implication is exactly the content of Lemma 3.6. Conversely
suppose that M(y) = T (2a,28b) for some a,b. Consider the solution § =
L(a,b) of P-I given by the Laurent expansion (3.5). As a consequence of
Lemma 3.6, M(y) = M(g). Due to the fact that M is injective (see Lemma
3.4) we have that y = 7. O

As a corollary of Theorem 3.1 and Theorem 3.2, we can characterize the
poles of the intégrale tritronquée as very particular cubic potentials.

Theorem 3.3. The point a € C is a pole of the intégrale tritronquée if and
only if there exists b € C such that the Schrodinger equation with the cu-
bic potential V(X;2a,28b) admits the simultaneous solution of two different
quantization conditions, namely o12(2a,28b) = 0. Equivalently, the asymp-
totic values associated to the tritronquée intégrale can be chosen to be

wo=0,w1 =w_o=1,w9 =w_1 =00. (3.6)

As a consequence of Theorem 3.2, we can show that the Riemann-Hilbert
correspondence M is bijective.

Theorem 3.4 (stated in [KK93|). The map M is bijective: solutions of P-I
are in 1-to-1 correspondence with admissible monodromy data.

Proof. We already know (see Lemma 3.4) that M is injective. According to
Lemma 3.6, 7(2a,28b) = M o L(a,b). Since T is surjective (see Theorem
2.1) then M is surjective too. O
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Chapter 4

WKB Analysis of the Cubic
Oscillator

The present Chapter is devoted to the complex WKB analysis of the cubic
oscillator

d*p(\)
N2

=V(\a,b)w(\), V(Xa,b) =4X% —aX—b.

We develop the complex WKB analysis because it is an efficient method
to solve approximately the direct monodromy problem for the cubic oscilla-
tor.

Indeed, our purpose is to compute the poles of the intégrale tritronquée
after having characterized them as cubic oscillators that admit the simul-
taneous solutions of two quantization conditions (see Theorem 3.3). We
succeed in our goal and we eventually show (see Section 4.2 and Chapter 5)
that poles of intégrale tritronquée are described approximately by the solu-
tions of a pair of Bohr-Sommerfeld quantization conditions, namely system
(4.7,4.8) (more intelligibly rewritten as system (5.2)).

We remark that the theory developed here has a much wider range of
applications than the study of poles of the tritronquée; for example, we will
use the WKB analysis also in Chapter 6 in the derivation of the Deformed
Thermodynamic Bethe Ansatz.

The Chapter is organized as follows. Section 4.1 is devoted to the topo-
logical classification of Stokes complexes. In Section 4.2 we calculate the
monodromy data of the cubic oscillator in WKB approximation, and we de-
rive the correct Bohr-Sommerfeld conditions for the poles of the tritronquée
solution of P-I. In Section 4.3 we introduce the "small parameter" of the
approximation. Section 4.4 and 4.5 deal with the proofs of Theorem 4.2 and
Lemma 3.6.

REMARK. Most of the present Chapter can be read independently of the
other Chapters of the thesis. However, the reader must at least recall from
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Chapter 2 the definitions of Stokes multipliers (see Definition 2.3) and of
asymptotic values (see Definition 2.5). We warn the reader that in the present

Chapter we call Stokes sector and denote it ¥ a rather different object than
the Stokes Sector Sy defined in Chapter 2.

4.1 Stokes Complexes

In the complex WKB method a prominent role is played by the Stokes and
anti-Stokes lines, and in particular by the topology of the Stokes complex,
which is the union of the Stokes lines.

The main result of this section is the Classification Theorem, where we
show that the topological classification of Stokes complexes divides the space
of cubic potentials into seven disjoint subsets.

Even though Stokes and anti-Stokes lines are well-known objects, there
is no standard convention about their definitions, so that some authors call
Stokes lines what others call anti-Stokes lines. We follow here the notation
of Fedoryuk [Fed93].

REMARK. To simplify the notation and avoid repetitions, we study the
Stokes lines only. FEvery single statement in the following section remains
true if the word Stokes is replaced with the word anti-Stokes, provided in
equation (4.1) the angles yy. are replaced with the angles oy, + %.

Definition 4.1. A simple (resp. double, resp. triple) zero \; of V(\) =
V(A;a,b) is called a simple (resp. double, resp. triple) turning point. All
other points are called generic.

Fiz a generic point \g and a choice of the sign of \/V (\o). We call action
the analytic function

A
S(No, ) = A VvV (u)du

defined on the universal covering of \-plane minus the turning points.

Let E,\O be the level curve of the real part of the action passing through
a lift of Ag. Call its projection to the punctured plane 7),. Since 7y, is a
one dimensional manifold, it is diffeomorphic to a circle or to a line. If 7y,
is diffeomorphic to the real line, we choose one diffeomorphism iy, (z),z € R
in such a way that the continuation along the curve of the imaginary part of
the action is a monotone increasing function of x € R.

Lemma 4.1. Let Ay be a generic point. Then iy, is diffeomorphic to the real
line, the limit limy_, iy, (z) exists (as a point in C|Joo) and it satisfies
the following dichotomy:

17



(1) Either lim,_, 1 iy, (z) = 00 and the curve is asymptotic to one of the
following rays of the complex plane

(2k+ 1)

5 pERT keZs, (4.1)

A= peicpk’ Pr =

(11) or limg_, o0 ix, () = Ni, where \; is a turning point.
Furthermore,

(111) iflimg_y 400 ix, () = 00 then the asymptotic ray in the positive direction
18 different from the asymptotic ray in the negative direction.

(iv) Let o,k € Zs be defined as in equation (4.1). Then Ve > 0,3K €
R such that if o1 + ¢ < argho < @pr — € and |Xo| > K, then
lim, y1000x, () = 00. Moreover the asymptotic rays of iy, are the
ones with arguments pi and pi_1.

Proof. See [Str84].
O

Definition 4.2. We call Stokes line the trajectory of any curve iy, such that
there exists at least one turning point belonging to its boundary.

We call a Stokes line internal if oo does not belong to its boundary.

We call Stokes complex the union of all the Stokes lines together with the
turning points.

We state all important properties of the Stokes lines in the following
Theorem 4.1. The following statements hold true

(i) The Stokes complex is simply connected. In particular, the boundary
of any internal Stokes line is the union of two different turning points.

(1) Any simple (resp. double, resp. triple) turning point belongs to the
boundary of 3 (resp. 4, resp 5) Stokes lines.

(14i) If a turning point belongs to the boundary of two different non-internal
Stokes lines then these lines have different asymptotic rays.

(iv) For any ray with the argument py as in equation (4.1), there exists a
Stokes line asymptotic to it.

Proof. See |Str84]. O
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4.1.1 Topology of Stokes complexes

In what follows, we give a complete classification of the Stokes complexes,
with respect to the orientation preserving homeomorphisms of the plane.
We define the map L from the A-plane to the interior of the unit disc as

L : C— D1
, 2 .
L(pe'¥) = —e'?arctanp. (4.2)
T

The image under the map L of the Stokes complex is naturally a deco-
rated graph embedded in the closed unit disc. The vertices are the images
of the turning points and the five points on the boundary of the unit disc
with arguments ¢, with ¢ as in equation (4.1). The bonds are obviously
the images of the Stokes lines. We call the first set of vertices internal and
the second set of vertices exzternal. External vertices are decorated with the
numbers k € Zs. We denote S the decorated embedded graph just described.
Notice that due to Theorem 4.1 (iii), there exists not more than one bond
connecting two vertices.

The combinatorial properties of S are described in the following

Lemma 4.2. S possesses the following properties
(1) the sub-graph spanned by the internal vertices has no cycles.

(11) Any simple (resp. double, resp. triple) turning point has valency 3
(resp. 4, resp. 5).

(13i) The valency of any external vertex is at least one.
Proof. (i) Theorem 4.1 part (i)
(ii) Theorem 4.1 part (ii)

(iii) Theorem 4.1 part (iv)
U

Definition 4.3. We call an admissible graph any decorated simple graph
embedded in the closure of the unit disc, with three internal vertices and
five decorated external vertices, such that (i) the cyclic-order inherited from
the decoration coincides with the one inherited from the counter-clockwise
orientation of the boundary, and (ii) it satisfies all the properties of Lemma
4.2. We call two admissible graphs equivalent if there exists an orientation-
preserving homeomorphism of the disk mapping one graph into the other.

Theorem 4.2. Classification Theorem
All equivalence classes of admissible maps are, modulo a shift k — k +
m, m € Zs of the decoration, the ones depicted in Figure J.1.
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"Boutroux Graph

Figure 4.1: All the equivalence classes of admissible graphs.
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Proof. Let us start analyzing the admissible graphs with three internal ver-
tices and no internal edges.

Any internal vertex is adjacent to a triplet of external vertices. Due to
the Jordan curve theorem, there exists an internal vertex, say Ao, adjacent
to a triplet of non consecutive external vertices. Performing a shift, they
can be chosen to be the ones labelled by 0,2, —1. Call the respective edges
€p,€-1,€2.

The disk is cut in three disjoint domains by those three edges. No internal
vertices can belong to the domain cut by ey and ey, since it could be adjacent
only to two external vertices, namely the ones labelled with 0 and —1. By
similar reasoning it is easy to show that one and only one vertex belong to
each remaining domains.

Such embedded graph is equivalent to the graph (300).

Classifications for all other cases may proved by similar methods.

O

The equivalence classes are encoded by a triplet of numbers (a b ¢): a
is the number of simple turning points, b is the number of internal Stokes
lines, while ¢ is a progressive number, distinguishing non-equivalent graphs
with same a and b. Some additional information shown Figure 4.1 will be
explained in the next section.

REMARK. For any admissible graph there exists a real polynomial with an
equivalent Stokes complex.

REMARK. Notice that the automorphism group of every graph in Figure 4.1
1s trivial. Therefore the unlabelled vertices can be labelled. In the following
we will label the turning points as in figure 4.1. We denote "Boutrouz graph”
the graph (320)

4.1.2 Stokes Sectors

REMARK. We warn the reader that in the present Section and for the rest
of the Chapter we call Stokes Sector and denote it by Xy a rather different
object than the Stokes Sector Sy, defined in Chapter 2.

In the A-plane the complement of the Stokes complex is the disjoint union
of a finite number of connected and simply-connected domains, each of them
called a sector.

Combining Theorem 4.1 and the Classification Theorem we obtain the
following

Lemma 4.3. All the curves iy,, with Ao belonging to a given sector, have
the same two asymptotic rays. Moreover, two different sectors have different
pairs of asymptotic rays.
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For any k € Zs there is a sector, called the k-th Stokes sectors, whose
asymptotic rays have arguments pr_1 and @. This sector will be denoted
Y. The boundary 0%y of each Xy is connected.

Any other sector has asymptotic rays with arguments i1 and Y41, for
some k. We call such a sector the k-th sector of band type, and we denote it
Bi. The boundary 0By, of each By has two connected components.

Choose a sector and a point A\g belonging to it. The function S(\g, A) is
easily seen to be bi-holomorphic into the image of this sector. In particular,
with one choice of the sign of v/V it maps a Stokes sector into the half plane
ReS > ¢, for some —oo < ¢ < 0 while it maps a By sector in the vertical
strip ¢ < ReS < d, for some —co < ¢ < 0 < d < +00.

Definition 4.4. We call a differentiable curve v : [0,1] — C an admissible
path provided v is injective on [0,1[, A\; ¢ v([0,1]), for all turning points \;,
and ReS(v(0),v(t)) is a monotone function of t € [0, 1].

We say that 3; = Xy, if there exist pj € X;, up € Xp and an admissible
path such that v(0) = pj,v(1) = .

The relation < is obviously reflexive and symmetric but it is not in
general transitive.

Notice that ¥; < X if and only if for every point p; € X, and every
point up € X an admissible path exists.

Lemma 4.4. The relation < depends only on the equivalence class of the
Stokes complex S.

Proof. Consider an admissible path from X; to X3, j # k. The path is
naturally associated to the sequence of Stokes lines that it crosses. We denote
the sequence l,,n = 0,..., N, for some N € N. We continue analytically
S(pj,-) to a covering of the union of the Stokes sectors crossed by the path
together with the Stokes lines belonging to the sequence. Since S(pu;,-) is
constant along each connected component of the boundary of every lift of a
sector crossed by the path, then each of such connected components cannot
be crossed twice by the path. Hence, due to the classification theorem no
admissible path is a loop. Therefore, the union of the Stokes sectors crossed
by the path together with the Stokes lines belonging to the sequence is simply
connected.

Conversely, given any injective sequence of Stokes lines [,, n =0..., N
such that for any 0 < n < N — 1, [, and l,4+1 belong to two different
connected components of the boundary of a same sector, there exists an
admissible path with that associated sequence. This last observation implies
that the relation < depends only on the topology of the graph S. Moreover,
if the sequence exists it is unique; indeed, if there existed two admissible
paths, joining the same p; and py but with different sequences, then there
would be an admissible loop. O
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Map | Pairs of non consecutive Sectors not satisfying the relation <=
300 None

310 (30, X2), (Xo0,%-2)

311 (X1,%-9)

320 (X1,X1), (81,28 _9), (X_1,%9)

100 (Z1,51), (B, X2), (30, 22)

110 All but (21, 2_1)

000 All

Table 4.1: Computation of the relation =

With the help of Lemma 4.4 and of the Classification Theorem, relation
£ can be easily computed, as it is shown in Table 4.1. As it is evident from
Figure 4.1, for any graph type we have that ¥ < X511, Vk € Zs.

4.2 Complex WKB Method and Asymptotic Val-
ues

In this section we introduce the WKB functions jp,k € Zs and use them to
evaluate the asymptotic values of equation (2.1). The topology of the Stokes
complex will show all its importance in these computations.

On any Stokes sector ¥, we define the functions

1 V()
Lp(\) = ~1 /* V) du , (4.4)
k() = e~ Sk +Lr(A) (4.5)

Here A\* is an arbitrary point belonging to X5 and the branch of v/V is
such that ReSk(A) is bounded from below.
We call ji the k-th WKB function.

4.2.1 Maximal Domains

In this subsection we construct the k-th mazimal domain, that we denote
Dy. This is the domain of the complex plane where the k-th WKB function
approximates a solution of equation (2.1).

The construction is done for any k in a few steps (see Figure 4.2 for the
example of the Stokes complex of type (300)):

(i) for every 3 such that ¥; < X, denote Dy the union of the sectors
and of the Stokes lines crossed by any admissible path connecting ¥
and Ek.
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(ii) Let l/)\k. = |J; Dix- Hence l/?\k. is a connected and simply connected

subset of the complex plane whose boundary 81/77C is the union of some
Stokes lines.

(iii) Remove a d-tubular neighborhood of the boundary 61/);, for an arbi-
trarily small § > 0, such that the resulting domain is still connected.

(iii) For all I # k,l # k — 1, remove from Dy, an angle A = pe'?. |p — @] <
€,p > R, for € arbitrarily small and R arbitrarily big, in such a way
that the resulting domain is still connected. The remaining domain is
Dy,.

4.2.2 Main Theorem of WKB Approximation

We can now state the main theorem of the WKB approximation. Our The-
orem is a slight improvement of a Theorem by F. Olver [Olv74], but whose
origin goes back to G. D. Birkhoff [Bir33].

Theorem 4.3. Continue the WKB function j to Dy. Then there exists a
solution (X)) of (2.1), such that for all X € Dy,

Yk(A) 1‘ < o) <e2p(/\) _ 1)

Je(A)
) V') V) [
) VU)H‘ wont| T v Y

Here pi is a bounded positive continuous function, called the error func-
tion, satisfying

A—00
Pr—1<argA<@pi1

and g(\) is a positive function such that g(\) <1 and
lim g\ =

A—00
AEDRNE 42

DO =

Proof. The proof is in the appendix 4.4. O

Notice that ji is sub-dominant (i.e. it decays exponentially) in ¥; and
dominant (i.e. it grows exponentially) in X;, VI # k.

For the properties of the error function, v is subdominant in ¥j; and
dominant in ¥pyq. Therefore, in any Stokes sector ¥ there exists a sub-
dominant solution, which is defined uniquely up to multiplication by a non
zero constant.
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The shaded area is D_1 0 The shaded area is D_2 o

~—x Admissible path from X_; to %o ~— Admissible path from X_5 to X

3m

The shaded area is D10 The shaded area is D2 o
—x Admissible path from 3; to %o ——x Admissible path from X5 to Xg
5 o \‘\\\Xi\i\\\\\\\\
A\«
A B

The shaded area is Do The shaded area is Do

wnanm Stokes’ line belonging to Do = Boundary of Dg

Figure 4.2: In the drawings, the construction of Dy for a graph of type (300)
is depicted.
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4.2.3 Computations of Asymptotic Values in WKB Approx-
imation

The aim of this paragraph is to compute the asymptotic values for the
Schrédinger equation (2.1) in WKB approximation. We explicitely work
out the example of the Stokes complex of type (320), relevant to the study
of poles of the intégrale tritronquée.

Definition 4.5. Define the relative errors

lim pl()\), ’Lf El — Ek
k iy
pl = )\szﬂDl

00, otherwise

and the asymptotic values (recall Definition 2.5)

will,m) S (L), (4.6)
Um
We say that ¥y, ~ X provided ,of < 1053. The relation ~ is a sub-relation of
-
=.

Notice that pf“ =0 and p" = pl,, (see Appendix 4.4).
In order to compute the asymptotic value wy (I, m), we have to know the
asymptotic behavior of ¢; and ), in ¥;. By Theorem 4.3,

im 2 L if L2k 1) <1,
A—+00 jl()\) 2
AEXLNDy

Hence the asymptotic behavior of 4; in X; can be related to the asymptotic
behavior of j; in ¥, if the relative error pf is so small that the above inequality
holds true, i.e. if ¥ ~ X.

REMARK. Depending on the type of the graph S, there may not exist two
indices k # | such that all the relative errors pi', pit,n € Zs are small. How-
ever it is often possible to compute an approximation of all the asymptotic
values wy (1, k) using the strategy below.

(i) We select a pair of non consecutive Stokes sectors ¥;, ¥ o, with the
hypothesis that the functions v; and ;5 are linearly independent, so
that w;(l,1 +2) = 0,w;2(l,] +2) = co. Since pit! = pfi; =0 then

N
Jraa(N)

UJl+1(l,l + 2) = )\hﬁm
o)
)\GEZ+1leﬂDl+2

Therefore, we find three exact and distinct asymptotic values.
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(i1) For any k # 1,14 1,1+ 2 such that X; ~ X and ¥, 19 ~ 3, we define
the approximate asymptotic value

Ji(2)
im(2)

We(lym) = lim
AeXNDINDy 4o m

The spherical distance between wg(l,m) and @w(l,m) may be easily

estimated from above knowing the relative errors ,of,C and ,02”.

If for any k # [,I+ 1,1+ 2, ¥ ~ X} and X439 ~ Yy, then the we
can compute, approximately, all Stokes multipliers using formula 2.14
and Theorem 2.4. In the sequel we let 7, denote the approximate k-th
Stokes multipliers.

(iii) If for some pair (I,I + 2) the assumption ¥; ~ X, 311 ~ X fails
to be true for just one value of the index k = k*, and, for another
pair (I,1' + 2) the assumption Xy ~ Xg/, Bpio ~ X fails to be true
for just one valued of the index k' = k', with k’* # k*, then we can
complete our calculations. Indeed we can compute both o+ and o+
using formula 2.14 and Theorem 2.4. After that we calculate all other
Stokes multipliers using the quadratic relations 2.7.

REMARK. As shown in Table 4.1, the relation = is uniquely characterized
by the graph type. For the sake of computing the asymptotic values the im-
portant relation is ~ and not . Indeed, the calculations for a given graph
type, say (a b c), are valid for (and only for) all the potentials whose relation
~ 1is equivalent to the relation = characterizing the graph type (a b c).

Due to the above remark, in what follows we suppose that the relation
~ is equivalent to the relation <. We have the following

Lemma 4.5. Let V(X;a,b) such that the type of the Stokes complex is (300),
(310), (311); moreover, suppose that the ~ relation coincides with <. Then
all the asymptotic values of equation (2.1) are pairwise distinct, but for at
most one pair.

Proof. For a graph of type (300) or (311) the thesis is trivial. For a graph
of type (320), it may be that wyg = we or wy = w_g. Since wy # w_o the
thesis follows. O

We completely work out the case of Stokes complex of type (320), while
for the other cases we present the results only. Due to Lemma 4.5, we omit
the results for potentials whose graph type is (300), (310) and (311).

i
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Boutroux Graph = 320 We suppose that Yy ~ 4.

Let us consider first the pair 3 and ¥_5. In Figure 4.3 the maximal do-
mains Dy ans D_o are depicted by colouring the Stokes lines not belonging to
them blue and red respecitvely. In particular Sy, Lo, jo (resp. S_o, L_2,j_2)
can be extended to all Dy (resp. D_s) along any curve that does not intersect
any blue (resp. red) Stokes line.

,,,,,, Stokes line not belonging to D_o
,,,,,, Stokes line not belonging to Dg

3m
5

Figure 4.3: Calculation of w_1(0,—2) and of wy(0, —2)

We fix a point \* € Xy such that Sp(A*) = S_o(A*) = Lo(\*) =
L_s(A*)=0
By definition

D (10
o0 = T
—  lim e S0MN+S-2(A) gLo(A)—L-2(X)

)
A—00p

Here A — ooy, is a short-hand notation for A — co, A € ¥ N Dy N D_5. We
calculate wy (0, —2) for k = —1,2.

We first calculate limy_,o,, e~ 50N +5-2(0),

Notice that % = a‘gf in ¥;. Hence

lim —So(A) + S—2(A) = —So(uk) + S—2(px) . k= —1,2,
A—00
where py is any point belonging to Xy, (in Figure 4.3, the paths of integration
defining So(ux) and S_o(py) are coloured blue and red respectively).

On the other hand, since % = —agf in 3o JX_2, we have that

—S()(,U,k) + S_Q(Mk) = —250()\5),8 =—lifk=—-1land s=0if k=2.

We now compute limy_, o, eLo)=L-2(N)  Gince % = 85;2 in Dy () D—a,
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we have that

lim Lo(A\) — L_2(A) = Lo(pk) — L_a(pk) »

)\*}OO]C

Lo(u) ~ Loalin) = 7 § ik =-1.2.

Here ¢ is the blue path connecting A* with u, composed with the inverse
of the red path connecting A* with uy (see Figure 4.3).
Therefore, we have
. 211 . .
lim Lo(A\) — Lo A\)=—0—,0=—-1ifk=—-lando=+1ifk=2.

A—00p 4

Combining the above computations and formulas (2.14,2.17) |, we get

w_1(0,-2) = ie 2001 G,(0,-2) = —je 25000
o1 = —ie A50(0)=50(A-1))

We stress that w_1(0, —2) is exact while wy(0, —2) is an approximation.
Performing the same computations for the pair ¥y and 39, we obtain

wl(o’ 2) =—1 67250()\1) ’ 71)\72(05 2) = i672SO()\O) ’
o, = fi6*2(50(/\0)750(>\1)) ]

Using the quadratic relation (2.7) among Stokes multipliers, we eventually
compute all other Stokes multipliers

o 1 4 e 2(50(X0)=So(A+1))
T2 T TV (S0 (o) 50 (1)

, 00 :’L(l +6'\28,2) .

Quantization Conditions The computations above provides us with
the following quantization conditions:

Gy = 0o e—2(So(A1)=S0(R0)) — _q (4.7)
G5 = 0o e 2AoA-1)=50) = 1
Gy = 0& e—2(250(A0)—=So(A-1)=So(M)) —

—(1+ 6*2(50(/\0)*50()\1)))(1 + 6*2(50(/\0)*50()\—1))) (4.9)

We notice that equation (4.9) is incompatible both with (4.7) and (4.8).
Equations (4.7) and (4.8) are Bohr-Sommerfeld quantizations.

As was shown in equation (3.6), the poles of the integrale tritronquée
are related to the polynomials such that wy = w_o and w_1 = ws. Since
equations (4.7) and (4.8) can be simultaneously solved, solutions of sys-
tem (4.7,4.8) describe, in WKB approximation, polynomials related to the
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intégrale tritronquée. System (4.7,4.8) was found by Boutroux in [Boul3]
(through a completely different analysis), to characterize the asymptotic dis-
tribution of the poles of the integrale tritronquée. Therefore we call (4.7,4.8)
the Bohr-Sommerfeld-Boutrouz system.

Equation (4.9) will not be studied in this thesis, even though is quite
remarkable. Indeed, it describes the breaking of the PT symmetry (see
[DT00| and [BBMT01]).

Case (100)

wo(l,—1) = —1
@—2(17_1) = ﬁ1\2(17_1):1

Since wg # W42 and wy # w_s, if the error p1_2 or p?, is small enough,
then all the asymptotic values are pairwise distinct.

Case (110)

@_1(1,-2) = 1
wo(1,-2) = —1

In this case, it is impossible to calculate wy with the WKB method that
has been here developed. Hence it may be that either wy = wy or wg = w_os.

Notice, however, that (110) is the graph only of a very restricted class of
potentials namely V/(\) = (A + Xg)?(A — 2)g), where ) is real and positive.
Since the potential is real then wg # wis.

Case (000) In this case, no asymptotic values can be calculated. Notice,
however, that V()\) = A3 is the only potential with graph (000). For this
potential the asymptotic values can be computed exactly, simply using sym-
metry considerations. Indeed one can choose wy = e%T”, k € Zs.

4.3 The Small Parameter

The WKB method normally applies to problem with an external small pa-
rameter, usually denoted h or €. In the study of the distributions of poles of
a given solution y of P-I there is no external small parameter and we have
to explore the whole space of cubic potentials. The aim of this section is
to introduce an internal small parameter in the space of cubic potentials,
that greatly simplifies our study. The results of the present Section will be
extremely important when studying the poles of the intégrale tritronquée
(see Chapter 5).

30



On the linear space of cubic potentials in canonical form
V(N a,b) = 4X3 — a\ — b,

we define the following action of the group RT x Zs (similar to what is
called Symanzik rescaling in [Sim70])

(z,m)[V(X\;a,b)] = V(N Q*22a, B¥"23b), x € RT, m € Zs, Q = ez?wi(.4.10)

The induced action on the graph S, on the relative error p;, and on the
difference S;(A\j) — Si(Ag) is described in the following

Lemma 4.6. Let the action of the group RY x Zs be defined as above. Then

(i) (x,m) leaves the graph S invariant, but for a shift of the labels k —
k +m of the external vertices.

(ii) (2,m)[Si(\j) — Si(A)] = 22 (Si(\y) — Si(Mw)) -
(i) (z,m)[pf] = 23 pf .

Proof. The proof of (i) and (ii) follows from the following equality

\/V()\; Q% x2a, Q3Er3b)dN\ = s VV(Nia,b)dN , A=az).

The proof of point (iii) follows from a similar scaling law of the 1-form
a(N)d\ (see equation (4.16) in Appendix 4.4). O

Due to Lemma 4.6(iii), ¢ = {%{ plays the role of the small parameter.
Indeed, along any orbit of the action of the group R x Zs, all the (finite)
relative errors go to zero uniformly as ‘%{ — 0.

Since all the relevant information is encoded in the quotient of the space
of cubic potentials with respect to the group action, we define the following
change of variable

b b?
v(a, b) = a’ :U'(a7 b) = PR (4.11)

The induced action on these coordinates is simple, namely
(2, m)[pa.b)) = pi(a,b) and (z,m)[v(a,b)] = X"z v(a,b) .

Moreover, the orbit of the set {(v,u) € C*s.t. |v|=1,largv| < E, p#0}
is a dense open subset of the space of cubic potentials.
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4.4 Proof of the Main Theorem of WKB Analysis

The aim of this appendix is to prove Theorem 4.3. Our approach is similar
to the approach of Fedoryuk [Fed93].

Notations are as in sections 4.1 and 4.2, except for cog. In what follows,
we suppose to have fixed a certain cubic potential V()\;a,b) and a maximal
domain Dy. To simplify the notation we write V() instead of V(X;a,b).

4.4.1 Gauge Transform to an L-Diagonal System

The strategy is to find a suitable gauge transform of equation (2.1) such that
for large A it simplifies. We rewrite the Schrodinger equation

—"(N\) + V(A)p(\) =0, (4.12)
in first order form:
=EM\NY((N),
0 1
(V()\ 0) . (4.13)

Lemma 4.7 (Fedoryuk). In Dy

(i) the gauge transform

18 non singular and

(ii) the system (4.13) is transformed into the following one

U'(N) = FOUWN) = (A'"BA-ATTA)U,

FO) = 20VOY ((1) 8)+a(2) (_11 _11> (4.15)
o) = m(4V(A)V”(A)5V’2(A))- (4.16)

Proof. (i) Indeed det A(\) = 2j2(A)\/V()\) # 0, VA € Dy, by construc-
tion of jr and Dy.

(ii) It is proven by a simple calculation.
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4.4.2 Some Technical Lemmas

Before we can begin the proof of Theorem 4.3, we have to introduce the
compactification of Dy and the preparatory Lemmas 4.8 and 4.9.

Compactification of Dy Since Dy, is simply connected, it is conformally
equivalent to the interior of the unit disk D. We denote U the uniformisation
map, U : D — Dy.

By construction, the boundary of Dy, is the union of n free Jordan curves,
all intersecting at co. Here n is equal to the number of sectors ¥; such that
¥ S ¥ minus 2.

Due to an extension of Carathéodory’s Theorem (|Car|, §134-138), the
map U extends to a continuous map from the closure of the unit circle to
the closure of Dp. The map is injective on the closure of D minus the
n counterimages of co. Hence, the uniformisation map realizes a n point
compactification of Dy, that we call Dy. In Dy, there are n points at co: ooy,
denotes the point at co belonging to the closure of U (Xj_1 UXg U Xg11);
oo; denotes the eventual point at oo belonging to the closure of U(X;) (here
)\:kj:Q, and El:Ek).

Definition 4.6. Let H be the space of function holomorphic in Dy and
continuous in Dy,. H endowed with the sup norm is a Banach space (H,
-l 22)- -

Let T(A\),\ € Dy — oo be the set of injective piecewise differentiable

curves 7 : [0,1] — Dy, such that

1. 4(0) = A, y(1) = ooy,
2. ReSk(7(0),7(t)) is eventually non decreasing,
3. there is an € > 0 such that eventually ‘arg ~y(t) — %{ < E-—g

4. the length of the curve restricted to [0,T] is O (|v(T)|),as t — 1.

Let T(N) be the subset of T'(X\) of the paths along which ReSk(v(0),~(t))
18 mon decreasing.
Let Ky : H— H and Ky : H — H be defined (for the moment formally)

Koy = - [ o (4.17)

Kl = [ oy (4.18)

Let,o:D_k%D_k:

1
iI}f/
p(A) = < vel(n) Jo




REMARK. Since along rays of fized argument @, with |<p — ¥| < 5 g
ReSy, is eventually increasing, there are paths satisfying point (1) through
(4) of the above definition. Moreover, by construction of Dy, T'(\) is non
empty for any A.

Before beginning the proof of the theorem, we need two preparatory
lemmas.

™

Lemma 4.8. Fiz ¢ > 0, an angle |argg0— %’ﬂ < T —¢, and let Q =
SNn{AeC |A- %ﬂ‘ < I —¢}. Denote i(R) = ipue NQ,R € RT, and
let L(R) be the length with respect to the euclidean metric of i(R). Then
L(R) = O(R) and infy¢;gr) [N = O(R).

Let r be any level curve of Sj(\*,-) asymptotic to the ray of argument %’rl,
Q(R) = {X € Q, ReSi(\, Re’¢) > 0}, and M(R) be the length of r N Q(R).
Then M(R) = O(R).

Proof. [Str84], chapter 3. O
Lemma 4.9. (i) p is a continuous function.
(11) Ky and Ky are well-defined bounded operator. In particular
GBI < pRlla s i = 1,2 (4.19)

(iii) Kg[h](ook) =K [h](ook.) = Kl(ookig) =0,Yhe H

Proof. (i)Since a(A)d\ = O(|)\|7%), then a(A)d\ is integrable along any
curve v € D(\). Therefore p is a continuous function on Dy,.

(ii)We first prove that (a) K;[h](A) does not depend on the integration
path for any A € Dj, minus the points at infinity. A result that easily implies
that K;[h](-) is an analytic function on Dy, continuous on A € Dy minus the
points at co. We then prove (b) the estimates (4.19) and (c) the existence
of the limits Kl[h](ool), [ = o0k, 00k49.

To simplify the notation, we prove the theorem for the operator K. The
proof for K is almost identical .

(a)Let 74,7 € T'(A). The curve i, ), where T = 1 — ¢ for some
small ¢ > 0 intersect ~, at some 7,(7”). Therefore we can decompose
—Y © Ve into two different paths with the help of a segment of i, (1),
Sy €SN a(uh(w)dp = [, + [, BN a(u)h(p)dp. One path
is the loop based at A and the other 5 is the loop based at oog. Since
v1 C Dy, then f% 23N () h(p)dp = 0. Along 7y, e25+002(0:0) < 1 there-
fore the integrand can be estimated just by |a(y2(t))|. Due to lemma 4.8,

fw la(u)h(p)du| = O(]’ya(T)]_%). Since € is arbitrary, then Ki[h](\) does
not depend on the integration path.

(b)Clearly for any path v € T(A), |K1[h](A)] < [ [a(\)h(X)d\| dt. Since
K[h](A) does not depend on ~, then estimate (4.19) follows.
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(c) Let A\, be a sequence converging to oo;,l = k+2orl = k — 2;
without losing any generality we suppose that the sequence is ordered such
that ReSi(\,) < ReSk(An+1). Fix a curve r, as defined in Lemma 4.8.
By construction of Dy, it is always possible to connect two points A, and
Antm With a union of segments of the curves iy, ,4z,,,, and of 7. We de-
note by ~ the union of this three segment. By construction of Dy (see
Subsection 4.2.1 (iii)), there exists € > 0 such that ‘arg An — %”l{ < 5 -
g,Vn. Therefore, due to Lemma 4.8, v has length of order |A,| + [Atml-
Hence |K1[h](An) — Ki[h](An+m)] < fw\h()\)a()\)d)\] = O(])\nr%). Then
Ki[h](A\) is a Cauchy sequence and the limit is well defined.

We now prove that this limit is zero by calculating it along a fixed ray
A\ = ze'? inside Xj49. Let us fix a point * on this ray in such a way that the
function ReSy(x*,x) is monotone decreasing in the interval [z*,400[. Along
the ray we have

[5e25ka) a(y)h(y)dy + g(a*)
2S5k (z*,x) ’

K [h)(x) = —

where g(x*) is a constant, namely f’yEF(z*)62Sk(u’$*)a(u)h(’u)du' Hence

limg 00 K1 [h)(7) = limy—00 04(17/‘)/11(_5:)) =0.

With similar methods the reader can prove that the limit K [h](ook)

exists and is zero.

O

We are now ready to prove Theorem 4.3.

Theorem 4.4. Extend the WKB function ji to Dy. There exists a unique
solution vy of (2.1) such that for all X € Dy,

ff&; —1) < g -,
) Vi) V(N 2000 _
I VWH' wor| T [T o

where g(\) is a positive function, g(A\) < 1 and g(cogs2) = 3.

Proof. We seek a particular solution to the linear system (4.15) via successive
approximation.

If U\ =UY @U®? e H H satisfies the following integral equation
of Volterra type

KU\ = (Kl[U(1)+U(2)](A)), (4.20)



then U(\) restricted to Dy, satisfies (4.15).
We define the the Neumann series as follows

n+1
Upi1 = U+ K[U,],Upiy = ZKZUO (4.21)

More explicitly,

Here the integration path v belong to I'(\). For any v € T'(\) and any
n>1

%"[Uo]@(x)\s%/f’“/:k.../ TT 12000 @z|—£<ldu1la(ﬂ1)0n,

Hn—1 ;—1

where K"[Up] is the i-th component of K™[Up]. Hence

11
K UL < £ @) (4.22)
Thus the sequence U™ converges in H and is a solution to (4.20); call U
its limit. Due to Lemma 4.9, UM (coj14) = 0.
Let Uy be the solution to (4.13) whose gauge transform is U restricted
to Dg; The first component v, of Wy, satisfies equation (4.12).

From the gauge transform (4.14), we obtain

ve(N)
oy LT Ur(A) + Uz(N)
Wi (A) V) B V/(\)
v T 1L 4m>%) (v ”“Um)g)*
A
NN

The thesis follows from these formulas, inequality (4.22) and from the
fact that U;(cogta) = 0.
O
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REMARK. The solution () of equation (2.1) described in Theorem 4.3
may be extended from Dy to the whole complex plane, since the equation is
linear with entire coefficients. The continuation is constructed in the follow-
ing Corollary.

Corollary 4.1. For any A € C, X\ not a turning point, we define T'(\) as in
Definition 4.6. Fized any v € T'(A) and h a continuous function on -y, we
define the functionals K;[h|()\) as in equations (4.17) and (4.18). We define
the Neumann series as in equations (4.20) and (4.21), and we continue j
along 7.

Then then Neumann series converges and we call UM (X) and UP(X)
the first and second component of its limit.

Moreover, ¥p(\) = (UM (N) +U(2)()\)) Jk(A) solves equation (2.1) and
for any e >0

lim (U(l)()\) + U<2>(A)) —1

[A]—=o0, ‘argk—% ’<3?7r—5

The reader should notice that if A ¢ Dy, then I'(\) is empty and we
Yr(N)
Je(A)

cannot estimate

4.5 Proof of Lemma 3.6

In this Section we suppose to have fixed a solution y = y(z) of P-I and a
pole a of y. The Laurent expansion of y around a is as follows (see Lemma
3.5)

1 _ 2 o 3
y(z)= G—ap + a(zloa) + < 6a) +b(z — a)4 + higher order ,
for some b € C.
Here we denote ¢ (A; z) (see Definition 2.2) the subdominant solution of

the perturbed oscillator

d*yp(N)

d\2
Qi) = 4N -2 +29(2) 47 () 420+ L 2oy

’ A—y(z) 40 —y(2))?

Similarly, 1 (\; 2a, 28b) is the subdominant solution of the cubic oscillator
d*y(N)

d\2
In the present Section we complete the proof of Lemma 3.6. As was

shown in Chapter 3, it is sufficient to show

i D15 2) P (A 2a, 28)
z=a Pr(A;2) U (\; 2a, 28D)

= QX\u.y (N, (4.23)

= (4)\* — 2a\ — 28b) P(N) .
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This is the content of Lemma 4.5 below.

To achieve our goal we use the explicit construction of the subdominant
solutions by means of Neumann series of the some functionals: we show
that, as z — a, the functionals defining ¥ (\; z) converge in norm to the
functionals defining ¥y (\; 2a, 28b).

Preliminary Lemmas We summarize some property of the perturbed
potential, which can be easily verified using the Laurent expansion of y.

Lemma 4.10. Let ¢2 = y(lz) =(z2—a)’+0((z — a)%) then

(i) Q(X;2) has a double pole at X = E% It is an apparent fuchsian singu-
larity for equation (4.23): the local monodromy around it is —1.

(i1) Q(A;z) has two zeros at A = Eig + 0(£?)

(iii) Q(X;z) = 423 —2(a + &)\ — 28b + c(e) — fi@’_é + 4(/\:2_2)2 , where c(¢)
is a O(g) constant.

Equation (4.23) is a perturbation of the cubic Schrodinger equation (2.1)
and the asymptotic behaviours of solutions to the two equations are very sim-
ilar. Indeed the terms 43 and —22)3 are the only relevant in the asymptotics
of the subdominant solutions.

More precisely, the equivalent of Corollary 4.1 in Lemma 4.4 is valid also
for the perturbed Schrédinger equation.

Definition 4.7. For any z, define a cut from A = y(z) to oo such that it
eventually does not belong to the the angular sector ‘arg)\ — %‘ < 3?”

Fiz \* in the cut plane. Sip(X\;z) = f/\)‘* VQ(u; z)dp is well-defined for
!arg)\ — %T’T| < %’T and X\ > 0. Here the branch of \/Q is chosen so that
ReSk(A) — +00 as |A| = o0, arg A = % We define the "WKB functions”
Jk(A; 2) as in equation (4.5).

For any X in the cut plane, let T'(\) be the set of piecewise differentiable
curves 7y : [0,1] to the cut plane, v(0) = X, v(1) = oo, satisfying properties
(2)(3) and (4) of Definition 4.6.

We define a(X; z),z # a as in equation (4.16), but replacing V(X\) with
Q(X\;2). For any v € T'(X\), let H be the Banach space of continuous func-
tions on vy that have a finite limit as t — 1. Formulae (4.17) and (4.18)
define two bounded functionals on H. We call such functionals Ky (\;z) and
Ko(A;2). Ki(X;a) and Ka(X;a) are defined similarly substituting Q(\; z)
with V(X; 2a, 28D).

Following the proof of Theorem 4.3, the reader can prove the following
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Lemma 4.11. Let X belong to the cut plane, A not a zero of Q(+;2). Fized
any v € I'(\), we define the Neumann series as in equations (4.20) and
(4.21), and we continue ji along .

Then, the Neumann series converges and ¥(\) = (Ur(X) + Uz(N)) jx(N)
solves equation (4.23). Moreover, for any e > 0

lim (U(l)()\) + U(2>(A)) —1

[A| =00, ‘argk—% ’<3?7r—5

REMARK. We notice that if the cuts are continuous in z, then 1&;9()\,2) =
c(2)Yr(\; 2), where 1y () is the solution constructed in Lemma 4.11 and c(z)
18 a bounded holomorphic function.

Theorem 4.5.

lim Yrt1(A;2) _ Yr11(A; 2a, 28b)
z=a (A 2) U (\; 2a, 28D)

Proof. To keep notation simple, we prove the pointwise convergence; uniform
convergence is a straightforward corollary of our proof, that we leave to the
reader.

Let A be any point in the complex plane which is not a zero of V' (A;a, b).
For any sequence &, converging to zero, we choose two fixed rays r; and 79
of different argument ¢ and s, !gpl- — 2’%! < %. We denote Dg. a disk of
radius R with center A = y(a +¢) ~ E% and we split the sequence &, into
two subsequences ¢;, such that r; N Dp i = () for any n big enough.

For ¢ = 1,2, we choose the cuts defined in Definition 4.7 in such a way
that there exists a differentiable curve 7; : [0,1] — C, 7;(0) = X, %(1) =
with the following properties: (i)y; avoids the zeroes of Q(\, €!,) and a fixed,
arbitrarily small, neighborhood of the zeroes of V'(\; 2a, 28b), (ii)y; does not
intersect any cut, and (iii) 7; eventually lies on r;.

The proof of the thesis relies on the following estimates:

, uniformly on compact subsets .

SUP)eC-Dg . ‘)\*5‘ |Q(N;a+¢€) — V(A;2a,28b) | = 0(52573) . (4.25)
SUP\eC—Dp ‘A_‘S‘ | Qx(N;a+¢€) — Va(\;2a,28b) | = O(273) |
SUPAeC-Dg,. ‘)‘76‘ |Qxx( N a+¢€) — Vaa(A;2a,28b) | = 0(525’3) .

Due the above estimates it is easily seen that 7; € I'(\), Ve!,. Due to
Lemma 4.11 and Corollary 4.1, to prove the thesis it is sufficient to show
that the functionals Kj(\;a + &%) and Ks(A;a + €%) converge in norm to
K1(X;a) and Ka(A;a). We notice that the norm of the functionals are just
the L!(7;) norm of their integral kernels.

We first consider the functionals Ka()\;a + ¢!). Due to the above esti-
mates

)\%a(u; a+e)— )\%a(u; 2a,28b), uniformly on v;([0,1]) as n — oo .
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Hence the sequence a(u; a+¢t)) converges in norm L' (v;) to a(u; 2a, 28b)
and the sequence Ko(\;a + ef) converges in operator norm to Ka(\;a).

We consider now the sequence Ki(\;a + €%).

To prove the convergence of the above sequence of operators, it is suffi-
cient to prove that

esk(A;aJre;)—Sk(u;aJre;) N eSk()\;Za,ZSb)—Sk(u;2a,28b)’
uniformly on v;([0, 1]) > i as n — oo.
We first note that
oSk (X;20,280)— Sk (1;2a,28b) esk(,\;a+ag)—sk(u;a+e;) _
Sk (A;20,28b) =S}, (11;20,28b) (1 - eg(u;s)) ’
H Q(v,e) — V(v;a,28b)
N i VQW,e) + 1/ V (v;2a,28b)

Using estimate (4.25), it is easy to show that g(u;e) = f(£)O(u?), where
f(e) > 0ase — 0and 0 < § < 1. Therefore the difference of the exponen-
tial functions converges uniformly to 0. O

9(p,€)
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Chapter 5

Poles of Intégrale Tritronquée

The aim of the present Chapter is to study the distribution of poles of the in-
tégrale tritronquée using the WKB analysis of the cubic oscillator developed
in Chapter 4.

The reader should recall from Chapter 3 that the intégrale tritronquée is
the unique solution of P-I with the following asymptotic behaviour at infinity

z 47
~—y/=, if < —.
yo) ~ 2 i Jage] < 3
In Chapter 3, it was shown that the point a € C is a pole of the tritron-
quée solution if and only if there exists b € C such that the following

Schriodinger equation

*p(N)
2

admits the simultaneous solutions of two different quantization conditions,
namely o19(2a,28b) = 0.

In Section 4.2.3, we studied this system of quantization conditions using
the WKB approximation. We showed that the WKB analogue of the sys-
tem o49(2a,28b) = 0 is a pair of Bohr-Sommerfeld quantization conditions
(4.7,4.8)!, that we have called Bohr-Sommerfeld-Boutroux (B-S-B) system.

We rewrite it in the following equivalent form :

= V(\;2a,280)0(N) , V(Na,b) =4\3 —a\—b, (5.1)

y{ VvV (A 2a,280)dN = in(2n—1),
1 (5.2)
j{ VV (X 2a,280)dN = —im(2m —1).

Here m,n are positive natural numbers and the paths of integration are
shown in figure 5.1. It is natural to suppose that poles of intégrale tritronquée

!if we make the change of variable a — 2a, b — 28b
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branch cuts defining the
square root of the potential

3

ST
5

Figure 5.1: Riemann surface u? = V(X;2a, 28b)

are in bijection with solution of B-S-B system. We are not yet able to
prove this but we will prove (see Theorem 5.1 and 5.2 below) that poles are
asymptotically close to solution of the B-S-B system.

Let us introduce precisely our result.

For any pair of quantum numbers there is one and only one solution to the
Bohr-Sommerfeld-Boutroux system; this is proven for example in [Kap03].

Solutions of B-S-B system have naturally a multiplicative structure.

Definition 5.1. Let (a*,b*) be a solution of the B-S-B system with quantum
numbers n,m such that 2n — 1 and 2m — 1 are coprime. We call (a*,b*) a
primitive solution of the system and denote it (a?,b?), where ¢ = 57— € Q.
Due to Lemma 4.6, we have that

(a?,b1) = ((2k +1)5a%, (2k +1)309), k €N,

s another solution of the B-S-B system. We call it a descendant solution.
We call {(aZ’bZ)}keN the q-sequence of solutions.

Definition 5.2. Let D%’b,) ={la—d|<e|b=0V| <9, e d#0} denote the
polydisc centered at (a’,b').

Our main result concerning the poles of the intégrale tritronquée is the
following

Theorem 5.1. Let €, § be arbitrary positive numbers. Let é < < g,
f% <v < %, then it exists a K € N* such that for any k > K, inside
. (af,b])
the polydisc Dk_kﬂelfk_”(s
0+2(2a,28b) = 0.

there is one and only one solution of the system

Proof. The proof is in section 5.2 below. O
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As a corollary of above Theorem, we have the following asymptotic char-
acterization of the location of poles of the intégrale tritronquée:

Theorem 5.2. Let € be an arbitrary positive number. If% <p< g, then it
exists K € N* such that for any k > K inside the disc ‘a — aZ‘ < k™Fe there
15 one and only one pole of the intégrale tritronquée.

5.1 Real Poles

In this section, we compute all the real solutions of system (5.2) and compare
them with some numerical results from [JK01|. We note that the accuracy of
the WKB method is astonishing also for small a and b (see Table 5.1 below).

In the paper [JKO01], the authors showed that the intégrale tritronquée has
no poles on the real positive axis. The real poles are a decreasing sequence
of negative numbers «a,, and some of them are evaluated numerically in the
same paper.

For the subset of real potentials, we have

§ VVaha = § e

where — stands for complex conjugation.

Therefore system (5.2) reduces to one equation and the real poles of
tritronquée are approximated by the 1-sequence of solution of the B-S-B
system (see Definition 5.1). The real primitive solution is computed numeri-
cally as a' = —2,34,b" = —0,064. Hence real solutions of the B-S-B system
are the following sequence

(ab,bl) = (—2,34(2k +1)5,—0,064(2k +1)75),k € N .

After Theorem 5.1, above sequence approximates the sequence of real
poles of the intégrale tritronquée, if k is big enough. However, it turns out
that the approximation is very good already for the first real poles (a',b!).

In Table 5.1 below, we compare the first two real solutions to system
(5.2) with the numerical evaluation of the first two poles of the intégrale
tritronquée in [JKO1].

5.2 Proof of Theorem 5.1

Multidimensional Rouche Theorem The main technical tool of the
proof is the following generalization of the classical Rouché theorem.

Theorem 5.3 ([AY83]). Let D, E be bounded domains in C*, D C E , and
let f(z),g(z) be holomorphic maps E — C"™ such that

e f(2)#0, Vz € 0D,
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WKB estimate | Numeric [JKO01]| | Error %
ar | —2,34 9,38 1,5
£ | —0,064 —0,062 2
as | —5,65 ~5.66 0,2
Bo | —0,23 unknown unknown

Table 5.1: Comparison between numerical and WKB evaluation of the first
two real poles of the intégrale tritronquée.

e l9(2)| <|f(2)|, vz €D,

then w(z) = f(z) + g(z) and f(z) have the same number (counted with
multiplicities) of zeroes inside D. Here |f(z)| is any norm on C™.

A function whose zeroes are the pole of tritronquée solution The
reader should recall the definition of k-th subdominant function ¥y (X\;a, b)
(see Definition 2.2), of k-th asymptotic values wy(l,m) and of the relative
errors pf (see Definition 4.5).

The reader should also remember that, if ¢; and ;1o are linearly inde-
pendent then wy_1(l,1 +2) = wi1(l,1 4+ 2) if and only if o, = 0.

Definition 5.3. Let E be the (open) subset of the (a,b) plane such that
Yo(A;a,b) and Yio(X;a,b) are linearly independent (its complement in the
(a,b) plane is the union of two smooth surfaces [EG09a]). On E we define
the following functions

wg(O, —2)

ug(a,b) = w1(0-2) (5.3)
ug(a,b) = % (5.4)

o u2(a'7 b) -1
U(a,b) = <u2(a, b) — 1) . (5.5)
All the functions are well defined and holomorphic. Indeed, due to WKB
theory we have that wii1(l,1 + 2) is always different from 0 and co.

The fundamental result of Chapter 3 is the following characterization of
the poles of the intégrale tritronquée, which is indeed equivalent to Theorem
3.3

Lemma 5.1. The point o € C is a pole of the intégrale tritronquée if and
only if there exists B € C such that (o, 8) belongs to the domain of U and
U(2a,283) = 0. In other words ¥—1(\;2c, 283) and 2(\; 2, 2803) are lin-
early dependent and 1 (X\;2a,2803) and 1p_o(\; 2, 283) are linearly depen-
dent.
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We recall from Chapter 3 that the complex number  in previous lemma is
the coefficient of the quartic term in the Laurent expansion of the tritronquée
solution around a.

The WKB Approximation of U We want to define a function U on
the space of cubic potentials that approximates U. Then we compare the
zeroes of U and U using Rouche Theorem. However, due to the nature of
WKB approximation, we cannot build such a function globally but only in
neighborhoods of potential whose Stokes graph is of type "320" (see Figure
5.2).

Stokesline ® X;: turning point Xj: Stokes sector
3m

Figure 5.2: Graph "320": dots on the circle represents asymptotic directions
in the complex plane

Definition 5.4. Let (a*,b*) be a point such that the Stokes graph of V (;2a*,28b*)
is of type "320". On a sufficiently small neighborhood of (a*,b*) we define
the following analytic functions

Yao(a,b) = f{ V20, 285)d (5.6)
Giio(a,b) = —exz2(@b) (5.7)
() — (;22(&52)_11). (5.8)

The cycles c41 are depicted in Figure 1 and the branch of \/V is chosen
such that Re\/V(\) — +00 as A\ — oo along the positive semi-azis in the
cut plane.

From above Definition it is clear that the B-S-B system is equivalent to
the vanishing condition of function U.

Lemma 5.2. The B-S-B system (5.2) system is equivalent to the equation

U(a,b) = 0.
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In [Kap03] the following lemma was proven.

Lemma 5.3. For any pair of quantum numbers n,m € N — 0 there exists
one and only one solution of the B-S-B system.

We can compare the functions U and U defined above using Theorem 4.3
and the computations of Section 4.2.3. Indeed, they imply the following

Lemma 5.4. Let (a,b) be such that the Stokes graph is of type "320". There
exists a neighborhood of (a,b) and two continuous positive functions pyo such
that x+2 are holomorphic and

B 1
|tieo — ugo| < 5(62’&2 -1). (5.9)

Moreover if pio < 1“73 then 1o and 19 are linearly independent.

To simplify the notation we have denoted p4o what was denoted pl, in
the previous Chapter.

Using classical relations of the theory of elliptic functions we have the
following

Lemma 5.5. The map U defined in (5.8) is always locally invertible (hence
its zeroes are always simple) and

22 0,0 222 (0,8) - B2, ) X2 (0, 1)

= —2871 .
oa " " ob da ab ”2
Proof. On the compactified elliptic curve u? = V(\;a,b), consider the dif-
ferentials w, = —% and wp = — 22,

It is easily seen that

OX 42 OX 42
@m:% %,——@m:mf .
da ex1 ob 1

Moreover we have that

JU = <%(a, b) OX—2 (a,b) — Ox—2 (a, b)%(m b)) Uoli_sy |

Oa 0b Ja 0b

where JU is the Jacobian of the map U.
The statement of the lemma follows from the classical Legendre relation
between complete elliptic periods of the first and second kind [EMOT53]. O

Our aim is to locate the zeroes of U (the poles of the intégrale tritronquée
after Theorem 5.1) knowing the location of zeroes of U (the solutions of the
B-S-B system). We want to find a neighborhood of a given solution of the B-
S-B system inside which there is one and only one zero of U. Due to estimate
(5.9) and Rouché theorem, it is sufficient to find a domain on whose boundary
the following inequality holds

1 1 - -
3 (€22 — 1) Jug| + 3 (€2 = 1) Ju_s| < |1 — fig| + |1 — Gi_g] . (5.10)
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Scaling Law In order to analyze the important inequality (5.10), we take
advantage of the scaling laws introduced in Section 4.3 (the "small parame-
ter").

Lemma 5.6. Let (a*,b*) be such that the Stokes graph is of type "320" and E
be a neighborhood of (a*,b*) such that the estimates (5.9) are satisfied. Then,
for any real positive x the point (x2a*,23b*) is such that the Stokes graph is
of type "320" and in the neighborhood Ex = {(z%a,x3b) : (a,b) € E} the es-
timates (5.9) are satisfied. Moreover for any (a,b) € E the following scaling
laws are valid

° Xi2($2a/7x3b) = ngig(a, b).

8(n+m)Xi2 2 3 N 5—4n—6m a(ner)Xi2
* o (z%a,z°b) =x > “saann (@ b).

o pia(a?a,2b) = 272 pia(a,b).

Proof. 1t is a corollary of Lemma 4.6. O

Proof From Lemma 5.6 we can extract the leading behaviour of U around
solutions of the B-S-B system.

Lemma 5.7. Let z = (2k + 1)"(a — a}), c12 = agf(aq,bq), w = (2k +
1)”(b—b}), and dyo = 82%2 (a%,0%). If p> £ and v > —%, then

Gg(z,w) = 1+4co(2k+1)5 "2+ dy(2k + 1) 5w+ O(2k + 1)),
(5.11)
Gg(z,w) = 14co(Zk+1)5 2z +d o2k +1)75 Yw+O((2k + 1)),

B ey
gl Ftmy > tv.

Proof. Tt follows from Lemma 5.6. O
For convenience of the reader, we recall here the definition of polydisc

Definition. We denote D ={la—d|<e|b=0| <9, e d#0} the poly-
disc centered at (a',V').

Theorem 5.1 is a corollary of the following

Lemma 5.8. Let €, § be arbitrary positive numbers. If% <p < g, f% <

v < %, then there exists a K € N* such that for any k > K, U and U

- (ab})
are well-defined and holomorphic on D, ', " _,

holds true

and the following inequality

)| ,V(a,b) € 9D\ %)

) s (5.12)

Ula,b) — Ula, b)‘ <
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q 19
Proof. The polydisc Déﬁﬁgi,ua is the image under rescaling a — (2k+ 1)%0,,

b— (2k+ 1)%1) of a shrinking polydisc centered at (a?,b?); call it Dy. Hence
due to Lemma 5.4, for k > K’ f)k is such that pio are bounded, yio are
holomorphic and the estimates (5.9) hold. Call p* the supremum of pis on
Dy. Due to scaling property, for all £k > K’ p4o is bounded from above by

(2k +1)"1p* on Dé‘ik;:kg_yé; such a bound is eventually smaller than 23
(ak,br)

© k—he ks
and inside it U and U satisfy (5.9) and (5.11).

qa 9
We divide the boundary in two subsets: oD ) s = DoU Dx,

k—He k—V

Then for a sufficiently large k, D is a subset of the domain of U

Do = {|a—al| =k "e;|b— bZ| <k7V8},

Dy ={|a—ag| < ke |b—by| = k7V6} .

Inequality (5.12) will be analyzed separately on Dy and D;.

If |do| < |d—2|, denote do = d,d_9 = D,c = ¢3,C = c_3; in the opposite
case |da| > |d_3|, denote d_g = d,dy = D,c = c_3,C = co. By the triangle
inequality and expansion (5.11), we have that

(U(a, b)‘ > (2 + 1)5 e

(c— %)‘ + higher order terms , (a,b) € Dy.

Similarly, if |co| < |c_2| denote do = d,d_9 = D,c = c9,C = c_9; in the
opposite case |ca| > |c_2|, denote d_9 = d,dy = D,c = c_9,C = cy. By the
triangle inequality and expansion (5.11), we have that

(ff(a, b)( > (2k+1)7370

D
(d— FC)‘ + higher order terms , (a,b) € D;.

We observe that (¢ — %) # 0 and (d — 2¢) # 0, since (see Lemma 5.5)

¢

cad_g—c_ody = —287i. By hypothesis =1 < t—p < 0and -1 < —1—v < 0.
Conversely, ‘U(a7 b) — Ula, b)‘ < #‘F higher order terms, for all (a,b) €
Dy U D;.

The Lemma is proven.
O

REMARK. Using the proof of Lemma 5.8, we can alternatively prove Theo-
rem 5.1 invoking the Banach-Caccioppoli contraction mapping principle in-
stead of the multidimensional Rouché theorem.
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Chapter 6

Deformed Thermodynamic
Bethe Ansatz

In Chapters 4 and 5 we have developed the complex WKB method, in order
to solve approrimately the monodromy problem of the cubic oscillator

P\

—r = Vi b)p(), V(ha,b) =43 —ar—b.

The main purpose of the present Chapter is to introduce a novel in-
strument of analysis, that we call Deformed Thermodynamic Bethe Ansatz
(Deformed TBA), to solve ezactly the direct monodromy problem.

The first breakthrough towards an exact evaluation of the monodromy
problem is the work of Dorey and Tateo [DT99]: they analyze anharmonic
oscillators with a monomial potential A — E' (n not necessarily 3) via the
Thermodynamic Bethe Ansatz and other nonlinear integral equations (called
sometimes Destri - de Vega equations). Subsequently Bazhanov, Lukyanov
and Zamolodchikov generalized the Dorey-Tateo analysis to monomial poten-
tials with a centrifugal term [BLZ01]. In the present Chapter we generalize
Dorey and Tateo approach to the general cubic potential.

Here we summarize the main result of the present Chapter. Let us recall
from Chapter 2 the definition of the R functions.

R, : C*=C, (6.1)

Ri(a,b) = (wisk(f)s woork(f);w_14x(f), wask(f)) -
Here (a,b;c,d) = % is the cross ratios of four points on the sphere,
= J;i with {¢, x} an arbitrary basis of solutions of the cubic oscillator and

w(f) is the k-th asymptotic value of f (see Definition 2.5).
They satisfy the following system of quadratic relations

Rk_g(a, b)Rk+2(a, b) =1- Rk(a, b) , Vk € Zs, (62)
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and, according to Theorem 2.4, we have that oy(a,b) = iRk(a, b).

_2mi 2mi

Fix a € C and denote e;(¥) = In (—Ro( Sae )) Following the

convention of Statistical Field Theory we call pseudo-energies the functions
€. In Theorem 6.2 below, we show that the pseudo-energies satisfy a non-
linear nonlocal Riemann-Hilbert problem, which is equivalent (at least for
small value of the parameter a) to the following system of nonlinear integral
equations that we call Deformed Thermodynamic Bethe Ansatz:

+o0
xi(o) = / oi(c—ad)\(d)do', 0,0 €R, 1€ Zs={-2,...,2} . (6.3)

— 00

Here

Ai(o) = Z ei%Lk(O‘) , Li(oc)=1In (1 + B*Ek(d)) ,

k€Zs
Z e—z% \/_F 1/3 e’ + \/%F(2/3) %—%T”
leZs 23 F(11/6) 43F(1/6)
B V3 2cosh(20) B V3 ¢80
#o(0) = ‘7w 1+2cosh(20) #1(o) = 7 1+ 2cosh(20)
p2(0) = _Y3__ e s p-1(0) = p1(=0) ,p-2(0) = p2(—0).

7 1+ 2cosh(20)

For a = 0 equations (6.3) reduce to the Thermodynamic Bethe Ansatz,
introduced by Zamolodchikov [Zam90] to describe the thermodynamics of
the 3-state Potts model and of the Lee-Yang model. We will discuss such
reduction in Subsection 6.2.1.

The Chapter is divided in two Sections. The first is devoted to the
introduction of the Y functions and of the Deformed Y -system. In the second
we derive the Deformed TBA equations.

6.1 Y-system

Here we introduce the Y-system (6.7), which is a fundamental step in the
derivation of the Deformed TBA.
We begin with an observation due to Sibuya ([Sib75]):

Lemma 6.1. Let w = eiz?w. Then
Ri(w™ta,wb) = Ry_s(a,b) (6.4)

Proof. Denote ¢(A;a,b) a solution of (2.1) whose Cauchy data do not de-
pend on a,b. It is an entire function of three complex variables with some
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remarkable properties. It is a simple calculation to verify that for any
k € Zs p(wh); w?*a,w3b) satisfies the same Schrodinger equation (2.1). Fix
©(A;a,b), x(\;a,b) linearly independent solutions and define the asymptotic
values

©(A;a,b) )
x(X;a,0)””

se(a,b) = o(wW; w?a, w?b)
CR\S O, = Wk X (WhA; w?la, w3lb)

wi(a,b) = wg(

Obviously wy(w?a,w3b) = wy_;(a,b). Choose | = 2 and use the definition

of the functions R (see equation (6.1)) to obtain the thesis. O

Due to equations (6.2) and relations (6.4), the holomorphic functions

Ry(a,b) satisfy the following system of functional equations, first studied by
Sibuya [Sib75]

Ry(wta,wb) Ry (wa,w b)) = 1 — Ri(a,b), Vk € Zs. (6.5)

We have collected all the elements to introduce the important Y-functions
and Y-system.
We fix a € C and define

Yie(¥) = —Ro(w *a,e5?), k € Zs . (6.6)

Sibuya’s equation (6.5) is equivalent to the following system of functional
equations, that we call Deformed Y-system:

Yk,l(ﬁ—i%)YkH(ﬁJrig) =1+ Y (9). (6.7)
REMARK. If a =0, Y = Yy, Vk and the system (6.7) reduces to just one
equation, called Y -system, which was introduced by Zamolodchikov [Zam91]
in relation with the Lee-Yang and 3-state Potts models. Dorey and Tateo
[DT99] studied the Zamolodchikov Y -system in relation with the Schrodinger
equation with potential V (X\;0,b) = 4\3 —b.

6.1.1 Analytic Properties of Y},

In the following theorem we summarize the analytic properties of the Y-
functions. For all @ and k, Y3 (¥) is periodic with period z%’r Hence, from
now on we restrict it to the strip {|Imy| < 3},

Theorem 6.1. (i) For any a € C and k € Zs, Yy is analytic and 2%”

periodic. If a is real then Y (9) = Y_ (), where — stands for complex
conjugation.
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1) For any a € C and k € Zs, on the strip [Im¥| < I —¢
(it) y , P 5

‘Yk(ﬁ) - 1‘ = O(e_Re’g), as Red — 400,
Yi(9)
V,(9) = exp (Ae’g + Baeg_i%Tw) . (6.8)

Here A = VELU/3) and B = V3TL(2/3)

231(11/6) 431(1/6)
(i1i) For any a € C and any K € R, Yi(9) is bounded on Rev < K. If
a =0, limy, o Yi(9) = 175,

(iv) If ¢*5" a is real non negative then Yi(9) = 0 implies Imd = :i:%’r. If
a =0 then Y,(9) = —1 implies ¥ = £iF

(v) Fiz e > 0. If a is small enough, then for any k € Zs, Yi(9) # 0,—1
for any ¥ € {|Imy| < § —¢}.

Proof. (i) Trivial.

(ii) These "WKB-like" estimates can be derived from Chapter 4 or can be
found in [Sib75]. Due to Theorem 2.4, these "WKB-like" estimates are
equivalent to those derived in [Shi05] Section 4 for the Stokes multipli-
ers.

However, for convenience of the reader we briefly sketch an alternative
proof here.

Using the tools developed in Sections 4.2.1 and 4.3, it is easily shown
that the following asymptotic is valid

Ro(a,z5¢) = — exp {xjf\/V(A;ax‘é,ew)dA} (1+0(@=zh),

if x> 0 and |¢p| < 3?” — £. Here the integration is taken along a path
encircling the cut joining the roots Ay = eEEHE 4 O(az*%) of the
cubic potential and the sign of the square root is chosen in such a way

that Re {f \/V()\; ax_g,ei¢)dA} > 0 for = big enough.

A straightforward computation shows that

xj{\/V()\;ax_%,ei‘f’) = et j{ VAN — 1d\ +

1 ¢
r5e'sa A 3
d\ +O0(x735).
2 7{\/4/\3—1 (@72)

If we let xgew = e% we obtain the thesis.
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(iii) The boundedness follows directly from the fact that Ry(a,b) is entire
in (a,b) and, in particular, analytic at b = 0. If @ = b = 0, then for
symmetry reasons one can choose @, x such that wk(ﬁ) — %", This

implies the thesis.
(iv) The statement is equivalent to Theorem 2.2.

(v) Since Y} depends analytically on the parameter a, it follows from (iv).
O

6.2 Deformed TBA

This section is devoted to the derivation of the Deformed Thermodynamic
Bethe Ansatz equations (6.3) !.
In what follows we always make the following

ASSUMPTIONS 6.1. We assume that there exists an € > 0 such that

(i) every branch of InYy is holomorphic on [Imd| < § + ¢, and bounded
for 9 — —oco. And

(ii) every branch of In (1 + Yik) is holomorphic on |Im¥| < +e, and bounded
for ¥ — —oc.

From Theorem 6.1(iii, v) we know that the assumptions are valid if a
is small enough. We briefly discuss what happens if the assumptions fail in
Subsection 6.2.2 below.

We define the following bounded analytic functions on the physical strip
[Imy| < %

er(¥9) = InYy(9), (6.9)
5u() = en) - YILUD) o VAT g
231°(11/6) 43T(1/6)

Li(®) = In(1+4e @),
Here the branches of logarithms are fixed by requiring

. . . . ™
Ugrfooék(a—i—w) —UEIEOOLk(J—i—ZT) =0, V|| < 3 (6.10)
We remark that by Theorem 6.1(ii), this choice is always possible.
Due to the Y-system (6.7), the functions Jj, satisfy the following nonlinear
nonlocal Riemann-Hilbert (R-H) problem
K
— z_

St (9 3)+5k+1(79+ig)—5k(79) = L), [Im¥| <e.  (6.11)

'The reader who wants to repeat all the computations below, should remember that
n—1 42l
=0 ¢ " =0.
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Here the boundary conditions are given by asymptotics (6.10).

The system (6.11) is Zs invariant. Hence we diagonalize its linear part
(the left hand side) by taking its discrete Fourier transform (also called
Wannier transform):

.2kl 1 —i klm
@) =Y e 0 w) | (D)= D e @),  (6.12)
k€Zs l€Zs

2kl

M) = Y eF L) L) = % S e A ).

k€Zs l€Zs

The above defined functions satisfy the following Riemann-Hilbert prob-
lem

_j2m LT G 2ln LT
e s Xl(79+1§) +e'75 (v — zg) - xi(0) =N(9), (6.13)
T
li ) = < — . .14
Uﬁlrfooxl(a—i-w) 0, V|r| < 3 (6.14)

The system of functional equation (6.13), may be rewritten in the con-
venient form of a system of coupled integral equations (6.3).

Theorem 6.2. If a is small enough, the functions x; satisfy the Deformed
Thermodynamic Bethe Ansatz

+oo
xi(o) = / oo — o YAy(o)do', o,0' eR. (6.3)

—00

Here A; are defined as in (6.9,6.12) and

\/_§ 2 cosh(o)
m 14 2cosh(20)
V3 e 5
o T 2cosh(30)
V3 e

walo) = 7 1+ 2cosh(20) (6.15)

0 = VB
p-1g) = m 14 2cosh(20)

V3 e
7 1+42cosh(20)

wo(o) =

p1(0) =

Proof. If @ is small enough then the Assumptions 6.1 are valid. Hence the
thesis follows from system (6.13) and the technical Lemma 6.2 below. O
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Lemma 6.2. Let f : {|Imd¥| <e} — C be a bounded analytic function.
Then for any | € Zs there exists a unique function F analytic and bounded
on [Imd| < § + ¢, such that

m

e_i%F(ﬁwLig) + B R 723) —F@) = f(¥),Y[Imd] <e.

Moreover, F is expressed through the following integral transform
+oo

F(9+ir) :/ o0 + it — ) f(I)do', V|ImI| < e, |7] <

—00

, (6.16)

wl

provided |[Im(0 + it —1')| < § and the integration path belongs to the strip
|[Im'| < e. Here ¢ is defined by formula (6.15).

Proof. Uniqueness: let Fp, F5 be bounded solution of the functional equation

- 27 27l

TS0 +ig) + 0 - ig) ~ Fi(0) = [(0), j=1.2|Imd| <e.

Their difference G = F; — F satisfies

2ml 2ml

e 5 GO + ig) e G — ig) — G =0.

Then G extends to an entire function such that G(¢ + 2im) = ei%G(ﬁ).
Therefore GG is bounded, hence a constant. The only constant satisfying the
functional relation is zero.
Existence: one notices that if § # +in%, n € Z then
e 0 + Zg) +e5 (0~ Zg) —@(0) =0, Vi€ Zs .
Then a rather standard computation shows that the function F defined
through formula (6.16) satisfies all the desired properties. U

REMARK. Once the system of integral equations (6.3) is solved for o € R,
one can use the same set of integral equations as explicit formulas to extend
the functions x;(6) on [Im6| < 5. Then one can use the Y-system (6.7) to
extend the Y functions on the entire fundamental strip |[Imd| < %’T.

REMARK. While the Y-system equations do not depend on the parameter
a (the coefficient of the linear term of the potential 4X3 — aX\ —b), on the
contrary the Deformed TBA equations depend on it since it enters explicitely
into the definition of functions A;.
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6.2.1 The case a =0
If a = 0 then 6, = dg, L = Lo for any k. Therefore, §g satisfy the single

functional equation

8o (9

—ig)—kéo(?ﬂ—mg) — 60(0) = Lo(9), |[Im¥| < ¢ . (6.17)
Similar reasoning as in Theorem 6.2 shows that &y satisfies the following

nonlinear integral equation (as it was firstly discovered by Dorey and Tateo
[DT99])

+o0
So(0) = / oo — o) In (1 + exp (— (6o(0”) + A ))do', 0,0" € R .

—00
(6.18)
and A = 7\/5“1/3)
231(11/6)
Equation (6.18) is called Thermodynamic Bethe Ansatz and was intro-
duced by Zamolodchikov [Zam90| to describe the Thermodynamics of the
3-state Potts and Lee-Yang models.

Here ¢ is defined as in formula (6.15)

6.2.2 Zeros of Y in the physcal strip

In case the Assumptions 6.1 are not satisfied, the functions e, and Ly (see
equation (6.9)) are not well-defined on the physical strip [Imd| < §. There-
fore we cannot transform the Y-system into a Riemann-Hilbert problem
(6.11) using the same procedure shown above.

However, one can get a well-posed Riemann-Hilbert problem for the func-
tions Yy simply factorizing out their zeroes (this approach was developed for
the Thermodynamic Bethe Ansatz in [BLZ97]). In this way, one eventu-
ally obtains a system of nonlinear integral equation similar to the Deformed
TBA equation for the functions Y3 and an (essentially) algebraic system of
equations for the location of their zeroes.

We postpone to a subsequent publication the discussion of these more
general Deformed TBA equations, because we have not yet reached a satis-
factorily knowledge about the region in the a-plane where the Assumptions
6.1 fail.

6.3 The First Numerical Experiment

In collaboration with A. Moro we are studying the numerical solution of the
Deformed TBA equations (6.3). The work is still in progress but we can
present some preliminary results. In Figure 6.3 below, we show the Stokes
multiplier o¢(0,b) for |b| < 15 as computed by means of the numerical so-
lution of the Thermodynamic Bethe Ansatz equation (6.18). More precisely

1
‘ TFiog(2)
1

5 .
with = = [p[§ efareb.
1+‘

we plot the function F(z) =

1+iog(2)
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The green plateau corresponds to the sector of the z plane where the
Stokes multiplier is exponentially small, the blue plateau to the sector where
the Stokes multiplier is exponentially big (see Section 7.2 for the explicit
formulas). The peaks correspond to the zeroes of iy + 1, which are, due to
equation (2.7), the zeroes of o9 X 0_5. According to Theorem 2.2 there are
two infinite series of such peaks along the rays with angles :t%”. oo has an
oscillatory behaviour along these two rays.

In the next Chapter we present an alternative algorithm for computing
Stokes multipliers and we compare the results furnished by the two methods.

with z = [b[6 e?@re?

Figure 6.1: F(z) = hﬂiy

T ke
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Chapter 7

A Numerical Algorithm

The aim of the present Chapter is to introduce a new algorithm for computing
the Stokes multipliers of the perturbed cubic oscillator

d*p(N)
e = QN9 2)v(N)
/
3
Ny, 2) = AN3 —2Xz 4 22y — dyB £ y2 4 Y :
QX Y.y, 2) S Ak R  wevh s s

As it was shown in Lemma 4.10, in some limit relevant for studying the
poles of the solutions of P-I the perturbed cubic oscillator becomes the cubic
oscillator

d*y(N)
d\?
In the present Chapter we consider the cubic oscillator as a particular case of
the perturbed cubic oscillator. We set the convention that the cubic oscillator
is the particular case of the perturbed cubic oscillator determined by y = oc.
As it was explained in Chapter 3, solutions of Painlevé-1 give rise to
isomonodromic deformations of the perturbed cubic oscillator. Hence, our
algorithm gives a numerical solution of the direct monodromy problem for the
Painleve first equation: given the Cauchy data y(z),4'(z),z of a particular
solution of P-I we are able to compute the corresponding Stokes multipliers,
even when z is a pole of that solution. In the latter case we have to consider
the cubic oscillator with potential V' (\;2«,2853), where z = « is the pole
and J is the coefficient of the (z — a)* term in the Laurent expanion of y(z)
(see Lemma 3.6).
The Chapter is divided in two Sections. The first is devoted to the
description of the Algorithm. In the second we test our algorithm against
the WKB prediction and the Deformed TBA equations.

=V(Xa,b)y(\), V(ha,b) =4\ —aX—b.

REMARK. The algorithm we present here depends heavily on the theory
developed in Chapter 2 and especially in Section 2.2. We refer to that Chapter
for any definitions and theorems.
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7.1 The Algorithm

In Chapter 2 we have proved the following remarkable facts

e Along any ray contained in the Stokes Sector Sj, any solution f to the

Schwarzian differential equation (2.11) converges super-exponentially
to the asymptotic value wy(f). See Lemma 2.4 (iv).

e The Stokes multipliers of the perturbed cubic oscillator (2.2) are cross

ratios of the asymptotic values wy(f). See Theorem (2.4).

e Inside any closed subsector of Sg, f has a finite number of poles. See

Lemma 2.6.

Hence the Simple Algorithm for Computing Stokes Multipliers goes as

follows:
1. Set k=-2.
2. Fix arbitrary Cauchy data of f: f(\*), f/(A*), f”(\*), with the condi-

D.
6.

tions \* £y, f/(\*) #0 L,

. Choose an angle « inside Si, such that the singular point A = y does

not belong to the corresponding ray, i.e. a # argy. Define t : RTU0 —
C, t(z) = f(e®x + X\*). The function t satisfies the following Cauchy
problem

{t(z), 2} = Q" x + N1y, 9/, 2),
t(0)

N i gl kY Qicv g1y * (7.1)
= f(A"),1(0) = e f1(X7), 7(0) = e f7(XY) .

Integrate equation (7.1) either directly 2 or by linearization (see Re-
mark below), and compute wg(f) with the desired accuracy and pre-
cision.

If £ < 2,k+-+, return to point 3.

Compute o7 using formula (2.17) for all [ € Zs.

REMARK. As was shown in Lemma 2.3, any solution f of the Schwarzian
equation is the ratio of two solutions of the Schrédinger equation. Hence, one
can solve the nonlinear Cauchy problem (7.1) by solving two linear Cauchy
problems.

Whether the linearization is more efficient than the direct integration of

(7.1) will not be investigated here.

'Tndeed, the derivative f'()\) of any solution of the Schwarzian equation never vanishes
i\ £ A"

*Integrating equation (7.1) directly, one can hit a singularity =* of y. To continue the
solution past the pole, starting from z* — ¢ one can integrate the function § = %, which
satisfies the same Schwarzian differential equation.

29



7.2 The Second Numerical Experiment

We have implemented our algorithm using MATHEMATICA’s ODE solver
NDSOLVE. We have chosen to integrate equation (7.1) with steps of length
0.1. We decided the integrator to stop at step n if

t(0.1n) — t(0.1(n —1))] < 107" and
£(0.1n) — ¢(0.1(n — 1))
t(0.1n)

< 1071,

To test our algorithm we computed the Stokes multiplier og(b) of the
equation

d*y(N\)
d\?
Using the WKB theory developed in Chapter 4, one can easily show that
the Stokes multiplier o((b) has the following asymptotics

= (4X3 = b)p(N) . (7.2)

\/5T(1/3) b3

—je2%/3ra1/6) , if b>0
ao(b) ~ ) 72?;(111//32)(4))% JET(1/3) e - (7.3)
—zile COS W(* )6 , 1 <0.

Our computations (see Figure 1 and 2 below) shows clearly that the
WKB approximation is very efficient also for small value of the parameter b.

We also tested our results against the numerical solution (due to A.
Moro) of the Deformed Thermodynamic Bethe Ansatz equations (Deformed
TBA), which has been introduced in Chapter 6. The numerical solution of
the Deformed TBA equations enable to a-priori set the absolute error in the
evaluation of the Stokes multiplier oo(b) rescaled with respect to the WKB
exponentials (7.3). Hence, in the range of —20 < b < 20 we could verify that
we had computed the rescaled o¢(b) with an absolute error less than 1075,
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VEL(A/3) ()
Figure 7.1: Thick dotted line: the rescaled Stokes multiplier £e23r@1/6) oo(b)

evaluated with our algorithm; thin continuous line: cos <2\5//_%((111//3£)(7b)%), i.e. the WKB

prediction for the rescaled Stokes multiplier.

2.0

15

T Te® P T T T T

[

0.5

B %1"(1/3) b%
Figure 7.2: Thick dotted line: the rescaled Stokes multiplier e 2°/°r(11/6) " 5¢(b) eval-
uated with our algorithm; thin continuous line: 1, the WKB prediction for the rescaled
Stokes multiplier.
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