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A l'issue d'une immense réunion tenue au bal Bullier (six millepersonnes s'y trouvaient entassées) un ordre du jour fut adoptéen
ourageant les orateurs et les organisateurs de 
ette manifesta-tion à se rendre auprès des 
itoyens Painlevé et Herriot, ministresde Poin
aré, pour leur demander [...℄ si, dans un sursaut de vrairépubli
anisme, ils ne 
rieraient pas un "Non!" à l'Espagne, vial'Argentine. Painlevé est gêné. Il bredouille: "Oui..., assuré-ment..." Nous pouvons 
ompter sur lui 
omme sur une plan
hepourrie.Henry Torrès (lawyer of As
aso, Durruti and Jover), in "Theshort summer of anar
hy" by H.M. Enzensberger
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Chapter 1Introdu
tion1.1 Painlevé-I and the Cubi
 Os
illatorThis Thesis is based on four papers [Mas10a℄, [Mas10b℄, [Mas10
℄, [Mas10d℄.It deals mainly with the monodromy problem of the 
ubi
 os
illator
ψ′′ = V (λ; a, b)ψ , V (λ; a, b) = 4λ3 − aλ− b , a, b, λ ∈ C , (1.1)and its relation with the distribution of poles of solutions of the Painlevé�rst equation (P-I)

y′′(z) = 6y2 − z , z ∈ C . (1.2)In parti
ular we are interested in studying the poles of the tritronquée solu-tion of P-I (also 
alled intégrale tritronquée) and the 
ubi
 os
illators relatedto them.Painlevé-I It is well-known that any lo
al solution of P-I extends to aglobal meromorphi
 fun
tion y(z), z ∈ C, with an essential singularity atin�nity [GLS00℄. Global solutions of P-I are 
alled Painlevé-I trans
endents,sin
e they 
annot be expressed via elementary fun
tions or 
lassi
al spe-
ial fun
tions [In
56℄. The intégrale tritronquée is a spe
ial P-I trans
en-dent, whi
h was dis
overed by Boutroux in his 
lassi
al paper [Bou13℄ (see[JK88℄ and [Kit94℄ for a modern review). Boutroux 
hara
terized the inté-grale tritronquée as the unique solution of P-I with the following asymptoti
behaviour at in�nity
y(z) ∼ −

√
z

6
, if | arg z| < 4π

5
.Nowadays P-I is studied in many areas of mathemati
s and physi
s. Indeed,it is remarkable that spe
ial solutions of P-I des
ribe s
aling asymptoti
s ofa wealth of di�erent important problems.For example, let us 
onsider the n× n Hermitean random matrix modelwith a polynomial potential. In 1989 three groups of resear
hers [DS90℄,iv



[BK90℄, [GM90℄ showed that these matrix models are extremely importantin nonperturbative string-theory and 2d gravity. They also dis
overed that,if the polynomial is quarti
, in the large n-limit the singular part of thesus
eptibility is a solution of P-I.Indeed, it turns out [IKF90℄ that the partition fun
tion of the matrixmodel is the τ -fun
tion of a di�eren
e analogue (i.e. a dis
retization) of P-I.The authors of [IKF90℄ proved that in the appropriate 
ontinuous limit (thathere is the large n-limit) solutions of the di�eren
e analogue of P-I 
onvergeto solutions of P-I.In the framework of the random matrix approa
h to string theory, it isalso important to represent P-I as a "quantization" of �nite-gap potentialsof KdV. This view-point was developed in [Moo90℄ [Nov90℄ [GN94℄.It has been shown re
ently [Dub08℄[CG09℄ that Painlevé equations playa big role also in the theory of nonlinear waves and dispersive equations. Inparti
ular, re
ently [DGK09℄ Dubrovin, Grava and Klein dis
overed that theintégrale tritronquée provides the universal 
orre
tion to the semi
lassi
allimit of solutions to the fo
using nonlinear S
hrödinger equation.This elegant des
ription of the semi
lassi
al limit is e�e
tive for relativelybig values of the semi
lassi
al parameter ε if the intégrale tritronquée doesnot have any large pole in the se
tor | argα | < 4π
5 . In this dire
tion, theo-reti
al and numeri
al eviden
es led the authors of [DGK09℄ to the followingConje
ture. [DGK09℄ If α ∈ C is a pole of the intégrale tritronquée then

| argα |≥ 4π
5 .This 
onje
ture has been a major sour
e of inspiration for our work.The Cubi
 Os
illator The 
ubi
 os
illator is a prototype for the generalanharmoni
 os
illator (or S
hrödinger equation with a polynomial potential).In this thesis we deal only with the 
ubi
 anharmoni
 os
illator (1.1);in parti
ular we are interested in the monodromy problem for the 
ubi
os
illator. As most good mathemati
al problems, it is simple to state andhard to solve. We introdu
e it brie�y here.We let Sk = {λ :

∣∣arg λ− 2πk
5

∣∣ < π
5

}
, k ∈ Z5. We 
all Sk the k-th Stokesse
tor. Here, and for the rest of the thesis, Z5 is the group of the integersmodulo �ve. We will often 
hoose as representatives of Z5 the numbers

−2,−1, 0, 1, 2.For any Stokes se
tor, there is a unique (up to a multipli
ative 
onstant)solution of the 
ubi
 os
illator that de
ays exponentially inside Sk. We 
allsu
h solution the k-th subdominant solution and let ψk(λ; a, b) denote it.The asymptoti
 behaviour of ψk is known expli
itely in a bigger se
torof the 
omplex plane, namely Sk−1 ∪ Sk ∪ Sk+1:
lim
λ→∞

|arg λ− 2πk
5 |< 3π

5
−ε

ψk(λ; a, b)

λ−
3
4 exp

{
−4

5λ
5
2 + a

2λ
1
2

} → 1, ∀ε > 0 .v



Here the bran
h of λ 1
2 is 
hosen su
h that ψk is exponentially small in Sk.Sin
e ψk−1 grows exponentially in Sk, then ψk−1 and ψk are linearlyindependent. Then {ψk−1, ψk} is a basis of solutions, whose asymptoti
behaviours is known in Sk−1 ∪ Sk.Fixed k∗ ∈ Z5, we know the asymptoti
 behaviour of {ψk∗−1, ψk∗} onlyin Sk∗−1 ∪ Sk∗. If we want to know the asymptoti
 behaviours of this basisin all the 
omplex plane, it is su�
ient to know the linear transformationfrom basis {ψk−1, ψk} to basis {ψk, ψk+1} for any k ∈ Z5.From the asymptoti
 behaviours, it follows that these 
hanges of basisare triangular matri
es: for any k, ψk−1 = ψk+1 + σkψk for some 
omplexnumber σk, 
alled Stokes multiplier. The quintuplet of Stokes multipliers

σk, k ∈ Z5 is 
alled the monodromy data of the 
ubi
 os
illator.It is well-known (see Chapter 2) that the Stokes multipliers satisfy thefollowing system of quadrati
 relations
−iσk+3(a, b) = 1 + σk(a, b)σk+1(a, b) , ∀k ∈ Z5 , ∀a, b ∈ C . (1.3)Hen
e, it turns out that the monodromy data of any 
ubi
 os
illator isa point of a two-dimensional smooth algebrai
 subvariety of C5, 
alled spa
eof monodromy data, whi
h we denote by V5.The monodromy problem is two-fold: on one side we have the dire
t mon-odromy problem, namely the problem of 
omputing the Stokes multipliers ofa given 
ubi
 os
illator; on the other side we have the inverse monodromyproblem, viz, the problem of 
omputing whi
h 
ubi
 polynomials are su
hthat the 
orresponding 
ubi
 os
illators have a given set of Stokes multipli-ers.The monodromy problem 
an be easily generalized to anharmoni
 os-
illators of any order. It has been deeply studied in mathemati
s and inquantum physi
s and a huge literature is devoted to it.From the very beginning of quantum me
hani
s, physi
ists studied an-harmoni
 os
illators as perturbations of the harmoni
 os
illator

d2ψ(x)

dx2
=
(
x2 − E

)
ψ(x) , x ∈ R .To this regard the reader may 
onsult [BW68℄,[Sim70℄, [BB98℄.In early thirties Nevanlinna [Nev32℄ showed that anharmoni
 os
illators
lassify 
overings of the sphere with a �nite number of logarithmi
 bran
hpoints. In parti
ular the 
ubi
 os
illators 
lassify 
overings with �ve loga-rithmi
 bran
h points. Re
ently [EG09a℄ Eremenko and Gabrielov appliedNevanlinna's theory to studying the surfa
es Γk = {(a, b) ∈ C2||σk(a, b) = 0

}.They su

eeded in giving a 
omplete 
ombinatorial des
ription of the (bran
hed)
overing map π : Γk → C, π(a, b) = a.In late nineties, Dorey and Tateo [DDT01℄ and Bazhanov, Lukyanov andZamolod
hikov [BLZ01℄ dis
overed a remarkable link between anharmoni
vi



os
illator (with a potential λn−E) and integrable models of Statisti
al FieldTheory, that has been 
alled 'ODE/IM Corresponden
e'. The 'ODE/IM'
orresponden
e has been widely generalized (see for example [DDM+09℄)and it is now a very a
tive �eld of resear
h.Poles of Solutions of P-I and the Cubi
 Os
illator As it was men-tioned before, the 
ubi
 os
illator (1.1) is stri
tly related to P-I. Su
h a
orresponden
e will be thoroughly studied in Chapter 3. Here we explain itbrie�y.It is well-known, and it will be important in the rest of the thesis, thatP-I 
an be represented as the equation of isomonodromy deformation of anauxiliary linear equation; the 
hoi
e of the linear equation is not unique, seefor example [KT05℄, [Kap04℄, [FMZ92℄.Here we follow [KT05℄ and 
hoose the following auxiliary equation
d2ψ(λ)

dλ2
= Q(λ; y, y′, z)ψ(λ) , λ, y, y′, z ∈ C (1.4)

Q(λ; y, y′, z) = 4λ3 − 2λz + 2zy − 4y3 + y′2 +
y′

λ− y
+

3

4(λ− y)2
.We 
all su
h equation the perturbed 
ubi
 os
illator.It turns out (see Chapter 2) that one 
an de�ne subdominant solutions

ψk, and Stokes multipliers σk, k ∈ Z5 also for the perturbed 
ubi
 os
illator.Moreover, also the Stokes multipliers of the perturbed os
illator satisfy thesystem of quadrati
 relations (1.3); hen
e, the quintuplet of Stokes multipli-ers of any perturbed 
ubi
 os
illator is a point of the spa
e of monodromydata V5.Sin
e P-I is the equation of isomonodromy deformation of the perturbed
ubi
 os
illator 1 we 
an de�ne a map M from the set of solutions of P-I tothe spa
e of monodromy data; �xed a solution y∗, M(y∗) is the monodromydata of the perturbed 
ubi
 os
illator with potential Q(y∗(z), y∗ ′(z), z), forany z su
h that y∗ is not singular. It is well-known that the map M is aspe
ial 
ase of Riemann-Hilbert 
orresponden
e [Kap04℄, [FMZ92℄.In this thesis we are mainly interested in studying poles of solutions ofP-I; we 
annot use dire
tly the perturbed os
illator in this study be
ause thepotential Q(λ; y, y′, z) is not de�ned at poles, i.e. when y = y′ = ∞.However, inspired by a brilliant idea of Its et al. [IN86℄ about the Painlevése
ond equation, we study the auxiliary equation in the proximity of a poleof a solution y of P-I. We show that it has a well-de�ned limit and the limitis a 
ubi
 os
illator. More pre
isely, we will prove the following1Let the parameters y = y(z), y′ = dy(z)
dz

of the potential Q(λ; y, y′, z) be fun
tions of
z; then y(z) solves P-I if and only if the Stokes multipliers of the perturbed os
illator donot depend on z vii



Lemma (4.5). Let a be a pole of a �xed solution y∗(z) of P-I and let ψk(λ; z)denote the k-th subdominant solution of the perturbed 
ubi
 os
illator (1.4)with potential Q(λ; y∗(z), y′∗(z), z). In the limit z → a, ψk(λ; z) 
onverges(uniformly on 
ompa
ts) to the k-th subdominant solution ψk(λ; 2a, 28b) ofthe 
ubi
 os
illator
ψ′′ =

(
4λ3 − 2aλ− 28b

)
ψ . (1.5)Here the parameter b is the 
oe�
ient of the (z − a)4 term in the Laurentexpansion of y∗: y∗ = 1

(z−a)2 + a(z−a)2
10 + (z−a)3

6 + b(z − a)4 +O((z − a)5).Lemma 4.5 is one of the most important te
hni
al parts of the thesis andSe
tion 4.5 is entirely devoted to its proof.Fixed arbitray Cau
hy data ψ(λ0), ψ′(λ0), it is rather easy to prove thatthe solution of the perturbed 
ubi
 os
illator (1.4) 
onverges, as z → a, tothe solution of the 
ubi
 os
illator (1.5) with the same Cau
hy data.It is far more di�
ult, but it is ne
essary to show that the monodromydoes not 
hange in the limit, to prove the 
onvergen
e of the subdominantsolutions. This is due to the fa
t that subdominant solutions are not de�nedby a Cau
hy problem but by an asymptoti
 behaviour, and (in some sense
lari�ed in the proof of the Lemma) the limits λ → ∞ and z → a do not
ommute .In Chapter 3 we will be able to prove the following important 
onse-quen
es of Lemma 4.5, whi
h de�ne pre
isely the relation between P-I andthe 
ubi
 os
illator; they are, therefore, the starting point of our resear
h 2.Theorem 3.2 Fix a solution y∗ and 
all σ∗k, k ∈ Z5 its Stokes multipliers: M(y∗) ={
σ∗−2, . . . , σ

∗
2

}.The point a ∈ C is a pole of y∗ if and only if there exists b ∈ C su
hthat σ∗k, k ∈ Z5 are the monodromy data of the 
ubi
 os
illator
ψ′′ =

(
4λ3 − 2aλ− 28b

)
ψ .The parameter b turns out to be the 
oe�
ient of the (z− a)4 term inthe Laurent expansion of y∗.Theorem 3.3 Poles of intégrale tritronquée are in bije
tion with 
ubi
 os
illators su
hthat σ2 = σ−2 = 0. In physi
al terminology, these 
ubi
 os
illators aresaid to satisfy two "quantization 
onditions".Theorem 3.4 The Riemann-Hilbert 
orresponden
e M is bije
tive. In other words,

V5 is the moduli spa
e of solutions of P-I.2Even though the statement of Theorems 3.2 and 3.3 already appeared in [CC94℄ byD. Chudnovsky and G. Chudnovsky, in [Mas10a℄ we gave (perhaps the �rst) a rigorousproof. Theorem 3.4 
an be proven also by other means (see for example [KK93℄, [Kit94℄).viii



1.2 Aimsfor the miserable and unhappy are those whose impulse to a
tionis found in its reward.in Bhagavadgita 2.49, translated by W. Q. JudgeInitially, our resear
h was fo
used on the study of the distribution ofpoles of the intégrale tritronquée using the relation between P-I and the
ubi
 os
illator.Our �rst task was to obtain a qualitative pi
ture of the distribution ofpoles. In this regard, we su

eeded (see Chapter 5) in giving a very pre
iseasymptoti
 des
ription by means of the 
omplex WKB methods, that wedeveloped (see Chapter 4) following Fedoryuk [Fed93℄.Eventually, it be
ame 
lear that it was ne
essary to turn our attentionto the general monodromy problem of the 
ubi
 os
illator in order to obtainmore pre
ise information on the poles of solutions of P-I 
lose to the origin.Hen
e, the broader aim has been to give an e�e
tive solution to the mon-odromy problem of the 
ubi
 os
illator, a satisfa
tory solution both from thetheoreti
al and from the 
omputational view point.Hen
e, after having developed the 
omplex WKB method as a tool to
ompute approximately the monodromy problem (see Chapter 4), we de-
ided to investigate the monodromy problem exa
tly generalizing the ap-proa
h of Dorey and Tateo; they showed [DDT01℄ that if a = 0, the Stokesmultiplier σk(0, b) satisfy a nonlinear integral equation, 
alled Thermody-nami
 Bethe Ansatz. We were able to extend their 
onstru
tion in the 
ase
a 6= 0. We proved (see Chapter 6) that if a is �xed and small enough, thenthe Stokes multipliers σk(a, b) satisfy a deformation of the Thermodynami
Bethe Ansatz, that we 
alled Deformed Thermodynami
 Bethe Ansatz.We have also fo
used our attention on the numeri
al solution of the mon-odromy problem, be
ause this is one of the major tasks in view of possibleappli
ations.On one side, in 
ollaboration with A. Moro, we are studying the numer-i
al solution the Deformed TBA (see Chapter 6 for preliminary results). Onthe other side, we invented a new numeri
al algorithm (see Chapter 7) to
ompute the Stokes multiplier without solving dire
tly the 
ubi
 os
illator,but an asso
iated nonlinear di�erential equation (2.11). This algorithm isbased on an expli
it relation (see Theorem 2.4), that we have dis
overed, be-tween Stokes multipliers and the Nevanlinna's theory of the 
ubi
 os
illator.1.3 Main ResultsWe now outline the main results, that we have a
hieved after having rig-orously established the relation between poles of solution of P-I and 
ubi
os
illators. ix



WKB Analysis of the Cubi
 Os
illator The 
omplex WKB methodis a rather powerful and well-known tool for the approximate solution ofthe monodromy problem of anharmoni
 os
illators. There are many possibleapproa
hes to it, see for example [Fed93℄, [BW68℄, [Sib75℄, [Vor83℄. In ourresear
h we followed the Fedoryuk's approa
h.The 
omplex WKB method is essentially a method of steepest des
ent;indeed, a 
entral role is played by the lines of steepest des
ent of the imagi-nary part of the a
tion
S(λ; a, b) =

∫ λ

λ∗

√
V (µ; a, b)dµ , V (λ; a, b) = 4λ3 − aλ− b . (1.6)These lines of steepest des
ent are 
alled Stokes lines; the union of the Stokeslines is 
alled the Stokes 
omplex of the potential V (λ; a, b). The Fedoryuk'sapproa
h 
learly shows that the asymptoti
 behaviour of the Stokes multi-pliers depends on the topology of the Stokes 
omplex.In the huge literature devoted to the 
omplex WKB analysis, the mainappli
ation has been the study of the eigenvalues distribution for large valueof the "energy"; in our notation, most authors studied the surfa
es Γk ={

(a, b) ∈ C2||σk(2a, 28b) = 0
} in the limit b→ ∞ with a bounded.A

ording to the above-mentioned Theorem 3.3, the set of poles of theintégrale tritronquée is exa
tly the interse
tion Γ2∩Γ−2; however (see Lemma4.5), su
h interse
tion is eventually empty in the limit b → ∞ with a �xed,even though the intégrale tritronquée has an in�nite number of poles: thes
aling b → ∞ with a �xed 
annot be used to study the poles of theintégrale tritronquée or of any given solution of P-I3. Therefore there wereno results in the literature that 
ould be readily used to study the poles ofthe intégrale tritronquée.Indeed, it had been a 
hallenging task to develop a fully rigorous 
omplexWKBmethod up to the point that we 
ould 
orre
tly des
ribe the asymptoti
distribution of the poles of the intégrale tritronquée. We a
hieved this goalthrough the following steps.1. We obtained (see Theorem 4.2) a 
omplete topologi
al 
lassi�
ationof the Stokes 
omplexes of the general 
ubi
 potential. A

ording toour 
lassi�
ation, there are (modulo the a
tion of Z5) seven of su
htopologies.2. We identi�ed (see Se
tion 4.2.3) one topology, that we 
alled "Boutroux"graph, as the unique topology 
ompatible with the system of "quanti-3This should not 
ome as a surprise; no meromorphi
 fun
tion 
an be approximated bya sequen
e of fun
tions, that have a pole (the parameter a of the potential V (λ; 2a, 28b))inside some bounded set of the 
omplex plane but su
h that a term (the parameter b) oftheir Laurent expansions diverges. Indeed, as we explain below, solutions of the system

σ±2(2a, 28b) = 0 have asymptoti
ally the following s
aling behaviour a
b
→ 0, a3

b2
bounded.x



zation 
onditions" σ±2(2a, 28b) = 0, whi
h des
ribes the poles of theintégrale tritronquée.3. We 
omputed in the WKB approximation the Stokes multipliers σk(a, b)for all the potentials V (λ; a, b) whose Stokes 
omplex is the Boutrouxgraph. In this way, we eventually derive the WKB analogue of thesystem σ±2(2a, 28b) = 0. It is the following pair of Bohr-Sommerfeldquantization 
onditions, that we have 
alled Bohr-Sommerfeld-Boutroux(B-S-B) system4
∮

a1

√
V (λ; 2a, 28b)dλ = iπ(2n − 1)

∮

a−1

√
V (λ; 2a, 28b)dλ = −iπ(2m− 1)Here m,n are positive natural numbers and the paths of integrationare shown in Figure 1.1.

λ1

λ−1

λ0

−π
5

π

π
5

Σ0

Σ1

Σ2

Σ−2

Σ−1

a−1

a1

bran
h 
uts de�ning thesquare root of the potential
(320)

3π
5

− 3π
5Figure 1.1: Riemann surfa
e µ2 = V (λ; 2a, 28b)B-S-B System and the Poles of Tritronquée After having derivedthe B-S-B system, we showed (see Chapter 5) that the poles of intégraletritronquée are well approximated by solutions of B-S-B system: the distan
ebetween a pole and the 
orresponding solution of the Bohr-Sommerfeld-Boutroux system vanishes asymptoti
ally. Let us introdu
e pre
isely ourresult.Solutions of the B-S-B system have a simple 
lassi�
ation; they are in
orresponden
e with ordered pairs (q, k), where q = 2n−1

2m−1 is a positive ra-tional number and k a positive integer. Here (aqk, b
q
k) denotes the general4The B-S-B system reprodu
es the des
ription of the poles of the intégrale tritronquéeobtained by Boutroux [Bou13℄ through a 
ompletely di�erent approa
h (for similar results,see also [JK88℄ [KK93℄ [Kit94℄). xi



solution of B-S-B. Fixed q, the sequen
e of solutions {(aqk, bqk)}k∈N∗ has amultipli
ative stru
ture:
(aqk, b

q
k) = ((2k + 1)

4
5aq1, (2k + 1)

6
5 bq1) .We were able to prove the following theorem.Theorem (5.2). Let ε be an arbitrary positive number. If 1

5 < µ < 6
5 , thenit exists K ∈ N∗ su
h that for any k ≥ K inside the dis
 ∣∣a− aqk

∣∣ < k−µεthere is one and only one pole of the intégrale tritronquée.Deformed Thermodynami
 Bethe Ansatz In a seminal paper [DDT01℄Dorey and Tateo proved that the Stokes multipliers σk(0, b) satisfy the Ther-modynami
 Bethe Ansatz equation, introdu
ed by Zamolod
hikov [Zam90℄to des
ribe the thermodynami
s of the 3-state Potts model and of the Lee-Yang model. We su

eeded in generalizing Dorey and Tateo approa
h to thegeneral 
ubi
 potential.Fix a ∈ C and de�ne εk(ϑ) = ln
(
iσ0(e

−k 2πi
5 a, e

6ϑ
5 )
). Following the 
on-vention of Statisti
al Field Theory we 
all pseudo-energies the fun
tions εk.We proved that the pseudo-energies satisfy the nonlinear nonlo
al Riemann-Hilbert problem(6.11), whi
h is equivalent (at least for small value of theparameter a) to the following system of nonlinear integral equations that we
alled Deformed Thermodynami
 Bethe Ansatz:

χl(σ) =

∫ +∞

−∞
ϕl(σ − σ′)Λl(σ

′)dσ′ , σ, σ′ ∈ R , l ∈ Z5 = {−2, . . . , 2} .Here
Λl(σ) =

∑

k∈Z5

ei
2lkπ
5 Lk(σ) , Lk(σ) = ln

(
1 + e−εk(σ)

)
,

εk(σ)=
1

5

∑

l∈Z5

e−i
2lkπ
5 χl(σ) +

√
π
3Γ(1/3)

2
5
3Γ(11/6)

eσ+a

√
3πΓ(2/3)

4
2
3Γ(1/6)

e
σ
5
−i 2kπ

5 ,

ϕ0(σ) =

√
3

π

2 cosh(2σ)

1 + 2 cosh(2σ)
, ϕ1(σ) = −

√
3

π

e−
9
5
σ

1 + 2 cosh(2σ)

ϕ2(σ) = −
√
3

π

e−
3
5
σ

1 + 2 cosh(2σ)
, ϕ−1(σ) = ϕ1(−σ) , ϕ−2(σ) = ϕ2(−σ) .A Numeri
al Algorithm We have developed a new algorithm to 
omputethe Stokes multipliers of the 
ubi
 os
illator (1.1) and of the perturbed 
ubi
xii



os
illator (1.4). The algorithm is based on the formula 5 (1.8) below, thatwe dis
overed in [Mas10d℄.Consider the following S
hwarzian equation
{f(λ), λ} = −2V (λ; a, b) . (1.7)Here {f(λ), λ} = f ′′′(λ)

f ′(λ) − 3
2

(
f ′′(λ)
f ′(λ)

)2 is the S
hwarzian derivative.For every solution of the S
hwarzian equation (1.7) the following limitexists
wk(f) = lim

λ →∞ ,λ∈Sk

f(λ) ∈ C ∪∞ ,provided the limit is taken along a 
urve non-tangential to the boundary of
Sk. In Chapter 2, we will prove that the following formula holds for anysolution of the S
hwarzian equation (1.7)

σk(a, b) = i (w1+k(f), w−2+k(f);w−1+k(f), w2+k(f)) . (1.8)Here (a, b; c, d) = (a−c)(b−d)
(a−d)(b−c) is the 
ross ratio of four points on the sphere.1.4 Stru
ture of the ThesisThe Thesis 
onsists of six 
hapters other than the Introdu
tion.Chapter 2 Chapter 2 is introdu
tory. In this Chapter we deal with thebasi
 asymptoti
 theory of 
ubi
 os
illators and we set the notation that wewill use throughout the thesis. We de�ne pre
isely the Stokes multipliers,the spa
e of monodromy data and the monodromy problem. We then intro-du
e the geometri
 theory of the 
ubi
 os
illator and present some original
ontributions whi
h are mainly drawn from [Mas10d℄[Mas10
℄.Chapter 3 In Chapter 3 we study the relation among poles of solutionsof P-I and the 
ubi
 os
illator. The major sour
e, but with some impor-tant modi�
ations, is [Mas10a℄. The main tool used is the isomonodromydeformation method.As it was already explained, Painlevé-I is represented as the equation ofisomonodromy deformation of the auxiliary S
hrödinger equation

d2ψ(λ)

dλ2
= Q(λ; y(z), y′(z), z)ψ(λ) ,

Q(λ; y, y′, z) = 4λ3 − 2λz + 2zy − 4y3 + y′2 +
y′

λ− y
+

3

4(λ− y)2
.5For simpli
ity of notation we present here the theory for the 
ubi
 os
illator. Anystatement remains valid if one substitutes V (λ; a, b) with Q(λ; y, y′, z).xiii



We study the auxiliary equation in the proximity of a pole of a solution y ofP-I and we prove the above-mentioned Theorems 3.2, 3.3, 3.4.We warn the reader that the proof of the main te
hni
al Lemma of theChapter, namely Lemma 3.6, is postponed at the end of Chapter 4 be
ausethe proof depends heavily on the WKB analysis.Chapter 4 The fourth Chapter is devoted to the WKB analysis of the 
u-bi
 os
illator. Again, the major sour
e is [Mas10a℄. We develop the 
omplexWKB method by Fedoryuk [Fed93℄ and give a 
omplete topologi
al 
lassi�-
ation of Stokes 
omplexes for the 
ubi
 os
illator, an algorithmi
 
onstru
-tion of the Maximal Domains and we introdu
e the small parameter of theapproximation. After that, we show by examples how to 
ompute approx-imately asymptoti
 values (hen
e Stokes multipliers) of the 
ubi
 os
illatorand eventually derive the Bohr-Sommerfeld-Boutroux system.Chapter 5 The �fth Chapter deals with the approximation of poles ofthe intégrale tritronquée by the solutions of the Bohr-Sommerfeld-Boutrouxsystem. The material of this Chapter is taken from [Mas10a℄ and [Mas10b℄.A se
tion of the Chapter is devoted to the study of the poles of the tritronquéeon the real axis.Chapter 6 In the sixth Chapter we derive the Deformed Thermodynami
Bethe Ansatz equation following [Mas10d℄. We also show a numeri
al solu-tion of the equation. This Chapter is, to a great extent, independent on allother 
hapters, but Chapter 2.Chapter 7 Chapter 7 is devoted to des
ribe an algorithm for solving thedire
t monodromy problem for the perturbed and unperturbed 
ubi
 os
il-lator. The algorithm is based on the geometri
 theory of the 
ubi
 os
illatordeveloped in Se
tion 2.2. It also 
ontains a numeri
al experiment. Thisshows that the WKB approximation is astonishingly pre
ise. The algorithmoriginally appeared in [Mas10
℄.A
knowledgmentsI am indebted to Prof. B. Dubrovin who introdu
ed me to the problemand 
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Chapter 2The Cubi
 Os
illatorThe present Chapter is introdu
tory. In this Chapter we deal with the ba-si
 asymptoti
 theory of 
ubi
 os
illators and we set the notation that wewill use throughout the thesis. We de�ne pre
isely the Stokes multipliers,the spa
e of monodromy data and the monodromy problem. We then intro-du
e the geometri
 theory of the 
ubi
 os
illator and present some original
ontributions whi
h are mainly drawn from [Mas10d℄[Mas10
℄.The monodromy problem for the anharmoni
 os
illators (in parti
ularthe 
ubi
 one) is a fundamental and rather interesting problem in itself anda large literature is devoted to it. The interested reader may 
onsult thefollowing papers [BW68℄, [Sim70℄, [Vor83℄, [BB98℄, [DT99℄, [BLZ01℄, [EG09a℄and the monograph [Sib75℄.Here we do not review all the literature but introdu
e the elements of thetheory that are needed in order to study the relation of the 
ubi
 os
illatorwith the Painlevé �rst equation; this relation will be explained thoroughlyin Chapter 3.The 
ubi
 os
illator is the following linear di�erential equation in the
omplex plane
d2ψ(λ)

dλ2
= V (λ; a, b)ψ(λ) , V (λ; a, b) = 4λ3 − aλ− b , a, b, λ ∈ C . (2.1)Sin
e it will be useful in the study of Painlevé-I equation, together withthe 
ubi
 os
illator we will study also its following perturbation

d2ψ(λ)

dλ2
= Q(λ; y, y′, z)ψ(λ) , (2.2)

Q(λ; y, y′, z) = 4λ3 − 2λz + 2zy − 4y3 + y′2 +
y′

λ− y
+

3

4(λ− y)2
.Here y, y′, z are 
omplex parameters.Remarkably, in some limit relevant for studying the poles of the solutionsof Painlevé-I equation (2.2) be
omes the 
ubi
 os
illator (2.1) (see Lemma4.10). 1



De�nition 2.1. We 
all any 
ubi
 polynomial of the form V (λ; a, b) = 4λ3−
aλ − b a 
ubi
 potential. The above formula identi�es the spa
e of 
ubi
potentials with C2 � (a, b). We 
all Q(λ; y, y′, z) a deformed 
ubi
 potential.The Chapter deals is divided in two Se
tions. The �rst one is devotedto the analyti
 theory in the spirit of Sibuya [Sib75℄. In the se
ond one weintrodu
e the geometri
 or Nevanlinna's theory of the 
ubi
 os
illator.2.1 Analyti
 TheoryHere we introdu
e the 
on
epts of subdominant solutions, of Stokes multi-pliers and of eigenvalue problems.2.1.1 Subdominant SolutionsIn this subse
tion we introdu
e the subdominant solutions of the perturbedand unperturbed 
ubi
 os
illators (2.2,2.1).We de�ne the Stokes Se
tor Sk as

Sk =

{
λ :

∣∣∣∣arg λ− 2πk

5

∣∣∣∣ <
π

5

}
, k ∈ Z5 . (2.3)We remark that in Chapter 4 we will name Stokes se
tor and denote it Σk aslightly di�erent obje
t.Lemma 2.1. Fix k ∈ Z5 = {−2, . . . , 2}, de�ne the bran
h of λ 1

2 by requiring
lim
λ→∞

arg λ= 2πk
5

Reλ
5
2 = +∞and 
hoose one of the bran
h of λ 1

4 . Then there exists a unique solution
ψk(λ; a, b) of equation (2.1) su
h that

lim
λ→∞

|argλ− 2πk
5 |< 3π

5
−ε

ψk(λ; a, b)

λ−
3
4 e−

4
5
λ

5
2 + a

2
λ

1
2

→ 1, ∀ε > 0 . (2.4)Proof. The proof 
an be found in Se
tion 4.4 or in Sibuya's monograph[Sib75℄.A very similar Lemma is valid also for the pertubed os
illator.Lemma 2.2. Fix k ∈ Z5 = {−2, . . . , 2} and de�ne a 
ut in the C plane
onne
ting λ = y with λ = ∞ su
h that its points eventually do not belongto Sk−1 ∪ Sk ∪ Sk+1. Choose the bran
h of λ 1
2 by requiring

lim
λ→∞

arg λ= 2πk
5

Reλ
5
2 = +∞ ,2



while 
hoose arbitrarily one of the bran
h of λ 1
4 . Then there exists a uniquesolution ψk(λ; y, y′, z) of equation (2.2) su
h that

lim
λ→∞

|argλ− 2πk
5 |< 3π

5
−ε

ψk(λ; y, y
′, z)

λ−
3
4 e−

4
5
λ

5
2 + z

2
λ

1
2

→ 1, ∀ε > 0 . (2.5)Proof. The proof 
an be found in Se
tion 4.5.Remark. Equation (2.2) has a fu
hsian singularity at the pole λ = y of thepotential Q(λ; y, y′, z). However this is an apparent singularity (see Lemma3.1): the monodromy around the singularity of any solution is −1.A

ording to the previous Lemmas, ψk(λ; y, y′, z) (or ψk(λ; a, b))) is ex-ponentially small inside the Stokes se
tor Sk and exponentially big inside
Sk±1. Due to their di�erent asymptoti
s ψk and ψk+1 are linearly indepen-dent for any k ∈ Z5. Hen
e, ψk is, modulo a multipli
ative 
onstant, theunique exponentially small solution in the k-th se
tor Sk.De�nition 2.2. We denote ψk(λ; a, b) the solution of equation (2.1) uniquelyde�ned by (2.4). We denote ψk(λ; y, y

′, z) the solution of equation (2.2)uniquely de�ned by (2.5). We 
all them k-th subdominant solutions.2.1.2 The monodromy problemIf one �xes the same bran
h of λ 1
4 in the asymptoti
s (2.4) of ψk−1, ψk, ψk+1then the following equation hold true

ψk−1(λ; a, b) = ψk+1(λ; a, b) + σk(a, b)ψk(λ; a, b) . (2.6)Moreover the Stokes multipliers σk satisfy the following system of quadrati
equation
−iσk+3 = 1 + σkσk+1 , ∀k ∈ Z5 . (2.7)We 
an introdu
e Stokes multipliers also for the perturbed 
ubi
 os
illator(2.2). De�ne a 
ut in the C plane 
onne
ting λ = y with λ = ∞ su
h thatits points eventually do not belong to Sk−1∪Sk∪Sk+1. If one �xes the samebran
h of λ 1

4 in the asymptoti
s (2.5) of ψk−1, ψk, ψk+1 then the followingequation hold true
ψk−1(λ; y, y

′, z)
ψk(λ; y, y′, z)

=
ψk+1(λ; y, y

′, z)
ψk(λ; y, y′, z)

+ σk(y, y
′, z) . (2.8)The Stokes multipliers σk(y, y′, z) satisfy the same system of quadrati
 equa-tions (2.7). The reader should noti
e the ratio of two solutions of the per-turbed os
illator is a single-valued meromorphi
 fun
tion.3



De�nition 2.3. The fun
tions σk(a, b), σk(y, y′, z) are 
alled Stokes multipli-ers. The quintuplet of Stokes multipliers σk(a, b), k ∈ Z5 (resp. σk(y, y′, z))are 
alled the monodromy data of equation (2.1) (resp. of equation (2.2)).Observe that only 3 of the algebrai
 equations (2.7) are independent.De�nition 2.4. We denote V5 the smooth algebrai
 variety of quintupletsof 
omplex numbers satisfying (2.7) and 
all admissible monodromy data theelements of V5.The Stokes multipliers of the 
ubi
 os
illator are entire fun
tions of thetwo parameters (a, b) of the potential. Hen
e we de�ne the following mon-odromy map
T : C2 → V5 , (2.9)

T (a, b) = (σ−2(a, b), . . . , σ2(a, b)) .Theorem 2.1. The map T is surje
tive. The preimage of any admissiblemonodromy data is a 
ountable in�nite subset of the spa
e of 
ubi
 potentials.Proof. See [Nev32℄.We have 
olle
ted all the elements to state the dire
t and inverse mon-odromy problem for the 
ubi
 os
illatorProblem. We 
all Dire
t Monodromy Problem the problem of 
omputingthe monodromy map T . We 
all Inverse Monodromy Problem the problem of
omputing the inverse of the monodromy map.Until now, neither of the problems have been satisfa
torily solved. How-ever, we have made substantial progress towards the solution. For what
on
erns the inverse problem, we will show in Chapter 3 that to any ad-missible monodromy data v there 
orresponds one and only one solution
y of the Painleve-I equation, su
h that T −1(v) = {(2αi, 28βi)}i∈N, where
{(2αi, 28βi)}i∈N is the set of poles of y Here αi is the lo
ation of a pole of y,
βi is a 
oe�
ient of the Laurent expansion of y around αi.We have also made many progress in the understanding of the dire
tproblem: we have developed the asymptoti
 theory of the Stokes multipli-ers (see Chapter 4), and we have built an analyti
 of tool 
alled DeformedThermodynami
 Bethe Ansatz (see Chapter 6) and a numeri
al algorithm(see Chapter 7) to solve the monodromy problem.Eigenvalue ProblemsThe surfa
es {σk(a, b) = 0, k ∈ Z5} are parti
ularly important in the theoryof the 
ubi
 os
illator. Indeed, σk(a, b) = 0 if and only if there exists a4



solution of the following boundary value problem
d2ψ(λ)

dλ2
= V (λ; a, b)ψ(λ) , lim

λ→∞,λ∈γk−1∪γk+1

ψ(λ) = 0 .Here γk±1 is any ray 
ontained in the (k±1)-th Stokes se
tor. The boundaryvalue problem is also 
alled lateral 
onne
tion problem.Fixed a, the boundary value problem is equivalent to the eigenvalue prob-lem for the S
hrödinger operator − d2

dλ2
+ 4λ3 − aλ de�ned on L2(γ1 ∪ γ2).Sin
e the eingevalues are a dis
rete set, the equation σk(a, b) is often 
alleda quantization 
ondition.The eigenvalues problems are invariant under an anti-holomorphi
 invo-lution: let ω = ei

2π
5 , then σk(a, b) = 0 ⇔ σk(ω

4ka, ω6kb) = 0; here standsfor the 
omplex 
onjugation.If a is a �xed point of the involution a → ω4ka, i.e. if ω2ka is real, thenthe eigenvalue problem is said to be PT symmetri
, be
ause b is an eigenvalueif and only if ω6kb is (the study of PT symmetri
 os
illators began in theseminal paper [BB98℄).It is natural to ask if all the eigenvalues b of a PT symmetri
 operatorare invariant under the involution b→ ω6kb. This is not the 
ase in general(see for example [BB98℄). However, in [BB98℄ the authors 
onje
tured thatif ω2ka is real and non-negative then all the eigenvalues b are su
h that ω3kbis real and negative.Dorey, Dunning, Tateo [DDT01℄ proved the 
onje
ture in the 
ase a = 0and Shin [Shi02℄ extended the result to the general 
ase.This theorem will be fundamental in Chapter 6 for deriving the DeformedThermodynami
 Bethe Ansatz.Theorem 2.2. Fix k ∈ Z5. Suppose σk(a, b) = 0 and ω2ka is real and nonnegative. Then ω3kb is real and negative.Proof. See [Shi02℄ (see also [DDT01℄ for the 
ase a = 0).2.2 Geometri
 TheoryIn the analyti
 theory, the monodromy data of equation (2.1) are expressedin terms of Stokes multipliers, whi
h are de�ned by means of a spe
ial set ofsolutions of the equation. In this se
tion, following Nevanlinna [Nev32℄ andauthor's paper [Mas10d℄, we study the monodromy data from a geometri
(hen
e invariant) viewpoint. Eventually, we realize the Stokes multipliers ofthe 
ubi
 os
illators as natural 
oordinates on the quotient W5/PSL(2,C),where W5 is a dense open subset of (P1
)5 (the Cartesian produ
t of �ve
opies of P1). The 
ore of Nevanlinna theory is based on the interrelationamong anharmoni
 os
illators and bran
hed 
overings of the sphere. We willnot introdu
e the 
orresponden
e here. The interested reader may 
onsult5



the original works of Nevanlinna [Nev32℄ [Nev70℄ and Elfving [Elf34℄ or theremarkable re
ent papers of Gabrielov and Eremenko [EG09a℄,[EG09b℄.In the present Se
tion we 
onsider the 
ubi
 os
illator (2.1) and the 
ubi
potential V (λ; a, b) as parti
ular 
ases of the perturbed os
illator (2.2) andof the potential Q(λ; y, y′, z). We use the 
onvention that the 
ubi
 os
illatoris the parti
ular 
ase of the perturbed 
ubi
 os
illator determined by y = ∞.2.2.1 Asymptoti
 ValuesThe main geometri
 obje
t of Nevanlinna's theory is the S
hwarzian deriva-tive of a (non 
onstant) meromorphi
 fun
tion f(λ)
{f(λ), λ} =

f ′′′(λ)
f ′(λ)

− 3

2

(
f ′′(λ)
f ′(λ)

)2

. (2.10)The S
hwarzian derivative is stri
tly related to the S
hrödinger equation(2.2). Indeed, the following Lemma is true.Lemma 2.3. The (non 
onstant) meromorphi
 fun
tion f : C → C solvesthe S
hwarzian di�erential equation
{f(λ), λ} = −2Q(λ; y, y′, z) . (2.11)i� f(λ) = φ(λ)

χ(λ) where φ(λ) and χ(λ) are two linearly independent solutionsof the S
hrödinger equation (2.2).Every solution of the S
hwarzian equation (2.11) has limit for λ → ∞,
λ ∈ Sk. More pre
isely we have the followingLemma 2.4 (Nevanlinna). (i) Let f(λ) = φ(λ)

χ(λ) be a solution of (2.11)then for all k ∈ Z5 the following limit exists
wk(f) = lim

λ →∞ ,λ∈Sk

f(λ) ∈ C ∪∞ , (2.12)provided the limit is taken along a 
urve non-tangential to the boundaryof Sk.(ii) wk+1(f) 6= wk(f) , ∀k ∈ Z5.(iii) Let g(λ) = af(λ)+b
cf(λ)+d = aφ(λ)+bχ(λ)

cφ(λ)+dχ(λ) , (a b
c d

)
∈ Gl(2,C). Then

wk(g) =
awk(f) + b

cwk(f) + d
. (2.13)(iv) If the fun
tion f is evaluated along a ray 
ontained in Sk, the 
onver-gen
e to wk(f) is super-exponential.6



Proof. (i-iii) Let ψk be the solution of equation (2.1) subdominant in Skand ψk+1 be the one subdominant in Sk+1. We have that f(λ) =

αψk(λ)+βψk+1(λ)
γψk(λ)+δψk+1(λ)

, for some (α β
γ δ

)
∈ Gl(2,C). Hen
e wk(f) = β

δ if
δ 6= 0, wk(f) = ∞ if δ = 0. Similarly wk+1(f) =

α
γ . Sin
e (α β

γ δ

)
∈

Gl(2,C) then wk(f) 6= wk+1(f)(iv) From equation (2.4) we know that inside Sk,
∣∣∣∣
ψk(λ)

ψk+1(λ)

∣∣∣∣ ∼ e
−Re

“

8
5
λ

5
2−aλ 1

2

”

,where the bran
h of λ 1
2 is 
hosen su
h that the exponential is de
aying.De�nition 2.5. Let f(λ) be a solution of the S
hwarzian equation (2.11)and wk(f) be de�ned as in (2.12). We 
all wk(f) the k-th asymptoti
 valueof f .2.2.2 Spa
e of Monodromy DataDe�nition 2.6. We de�ne

W5 = {(z−2, z−1, z0, z1, z2), zk ∈ C ∪∞, zk 6= zk+1 , z2 6= z−2} .The group of automorphism of the Riemann sphere, 
alled Möbius groupor PSL(2,C), has the following natural free a
tion onW5: let T =

(
a b
c d

)
∈

PSL(2,C) then
T (z−2, . . . , z2) = (

az−2 + b

cz−2 + d
, . . . ,

az2 + b

cz2 + d
) .After De�nition 2.5 and Lemma 2.4(iii) every basis of solution of (2.2) de-termines a point inW5. After the transformation law (2.13), the S
hrödingerequation (2.2) determines an orbit of the PSL(2,C) a
tion.Below we prove that the quotient W5/PSL(2,C) is isomorphi
, as a
omplex manifold, to the spa
e of monodromy data V5 de�ned by the systemof quadrati
 equations (2.7) (see De�nition 2.4). To this aim we introdu
ethe following R fun
tions

Rk :W5 → C , k ∈ Z5 ,

Rk(z−2, . . . , z2) = (z1+k, z−2+k; z−1+k, z2+k) , (2.14)where (a, b; c, d) = (a−c)(b−d)
(a−d)(b−c) is the 
ross ratio of four points on the sphere.Fun
tions R will be studied in details in Chapter 6. We 
olle
t here theirmain properties 7



Lemma 2.5. [Mas10d℄(i) The fun
tions Rk are invariant under the PSL(2,C) a
tion. Hen
ethey are well de�ned on V5: with a small abuse of notation we let Rkdenote also the fun
tions de�ned on V5.(ii) They satisfy the following set of quadrati
 relation
Rk−2Rk+2 = 1−Rk , ∀k ∈ Z5 . (2.15)(iii) The pair Rk, Rk+1 is a 
oordinate system of W5/PSL(2C) on the opensubset Rk−2 6= 0. The pair of 
oordinate systems (Rk, Rk+1) and

(Rk+2, Rk−2) form an atlas of W5/PSL(2,C).(iv)
Rk(z−2, . . . , z2) 6= ∞ , ∀(z−2, . . . , z2) ∈W5 ,

Rk(z−2, . . . , z2) = 0 i� zk−1 = zk+1 , (2.16)
Rk(z−2, . . . , z2) = 1 i� zk−1 = zk+2 or zk+1 = zk−2 .We 
an now prove the followingTheorem 2.3. [Mas10d℄ The spa
e of monodromy data V5 is isomorphi
 asa 
omplex manifold to the quotient W5/PSL(2,C).Proof. De�ne the map ϕ :W5/PSL(2,C) → V5, ϕ(·) = i(R−2(·), . . . , R2(·)).Due to Lemma 2.5(i-iii) ϕ is bi-holomorphi
.Remark. From the 
onstru
tion of V5 as a quotient spa
e it is evidentthat M0,5 ⊂ V5 ⊂ M0,5. Here M0,5 is the moduli spa
e of genus 0 
urveswith �ve marked points and M0,5 is its 
ompa
ti�
ation (see [Knu83℄ for thede�nition of M0,5).With a slight abuse of notation we 
all Rk(a, b) the value of Rk when theasymptoti
 values are 
al
ulated via the S
hwarzian equation with potential

V (λ; a, b). It is easily seen that Rk is an entire fun
tion of two variables.Moreover, it 
oin
ides essentially with the Stokes multiplier σk(a, b) de�nedpreviously.Theorem 2.4. [Mas10d℄ For any a, b ∈ C2,
σk(a, b) = iRk(a, b). (2.17)Proof. Let ψk+1 be the solution of (2.1) subdominant in Sk+1 and ψk+2 bethe one subdominant in Sk+2 (see the Appendix for the pre
ise de�nition).By 
hoosing f(λ) =

ψk+1(λ)
ψk+2(λ)

, one veri�es easily that the identity (2.17) issatis�ed.Remark. A

ording to previous Theorem and Lemma 2.5 (iv) the k-th lat-eral 
onne
tion problem, i.e. σk(a, b) = 0, is solved if and only if for anysolution f of the S
hwarzian equation wk−1(f) = wk+1(f).8



Singularities We end the Chapter with an observation whi
h will be usedlater on in Chapter 7. Sin
e the S
hwarzian di�erential equation is linearized(see Lemma 2.3) by the S
hrödinger equation, any solution is a meromorphi
fun
tion and has an in�nite number of poles [Nev70℄. The poles, however,are lo
alized near the boundaries of the Stokes se
tors Sk, k ∈ Z5. Indeed,using the 
omplex WKB theory one 
an prove the followingLemma 2.6. Let f(λ) be any solution of the S
hwarzian equation (2.11).Fix ε > 0 and de�ne S̃k =
{
λ :
∣∣arg λ− 2πk

5

∣∣ ≤ π
5 − ε

}
, k ∈ Z5 . Then,

∀w ∈ C
⋃∞, f(λ) = w has a �nite number of solutions inside S̃k. Inparti
ular, there are a �nite number of rays inside S̃k on whi
h f(λ) has apole.

9



Chapter 3Painlevé First EquationIn this 
hapter we study the relation among poles of solutions y = y(z) ofPainlevé �rst equation (P-I)
y′′ = 6y2 − z , z ∈ C , (3.1)and the 
ubi
 os
illator (2.1).In parti
ular we introdu
e the spe
ial solution 
alled intégrale tritronquéeand we show that its poles are des
ribed by 
ubi
 os
illators that admit thesimultaneous solution of two quantization 
onditions.As it is well-known, any lo
al solution of P-I extends to a global meromor-phi
 fun
tion y(z), z ∈ C, with an essential singularity at in�nity [GLS00℄.Global solutions of P-I are 
alled Painlevé-I trans
endents, sin
e they 
annotbe expressed via elementary fun
tions or 
lassi
al spe
ial fun
tions [In
56℄.The intégrale tritronquée is a spe
ial P-I trans
endent, whi
h was dis
ov-ered by Boutroux in his 
lassi
al paper [Bou13℄ (see [JK88℄ and [Kit94℄ fora modern review). Boutroux 
hara
terized the intégrale tritronquée as theunique solution of P-I with the following asymptoti
 behaviour at in�nity

y(z) ∼ −
√
z

6
, if | arg z| < 4π

5
.We summarize hereafter the 
ontent of the Chapter.Let us re
all from Chapter 2 that the spa
e of monodromy data (seeDe�nition 2.4) is the variety of points in (z−2, . . . , z2) ∈ C5 satisfying thesystem of quadrati
 equations −izk+3 = 1 + zkzk+1 , ∀k ∈ Z5.The monodromy map T (see equation (2.9)) is a holomorphi
 surje
tionof C2 into C5. T (a, b) are the Stokes multipliers (σ−2(a, b), . . . , σ2(a, b)) ofthe 
ubi
 os
illator (2.1)

d2ψ(λ)

dλ2
= V (λ; a, b)ψ(λ) , V (λ; a, b) = 4λ3 − aλ− b .The main results of the present Chapter are enumerated here below 1 .1For what 
on
erns the originality of these results see the Introdu
tion10



Theorem 3.2 Fix a solution y∗ and 
all σ∗k, k ∈ Z5 its Stokes multipliers: M(y∗) ={
σ∗−2, . . . , σ

∗
2

}.The point a ∈ C is a pole of y∗ if and only if there exists b ∈ C su
hthat σ∗k, k ∈ Z5 are the monodromy data of the 
ubi
 os
illator
ψ′′ =

(
4λ3 − 2aλ− 28b

)
ψ .The parameter b turns out to be the 
oe�
ient of the (z− a)4 term inthe Laurent expansion of y∗.Theorem 3.3 Poles of intégrale tritronquée are in bije
tion with 
ubi
 os
illators su
hthat σ2 = σ−2 = 0. In physi
al terminology, these 
ubi
 os
illators aresaid to satisfy two "quantization 
onditions".Theorem 3.4 The Riemann-Hilbert 
orresponden
e M is bije
tive. In other words,

V5 is the moduli spa
e of solutions of P-I.The rest of the Chapter is devoted to the proof of these three results.3.1 P-I as an Isomonodromi
 DeformationIn this se
tion we show that any solution y of the Painlevé-I equation givesrise to an isomonodromi
 deformation of equation of the perturbed 
ubi
os
illator (2.2)
d2ψ(λ)

dλ2
= Q(λ; y, y′, z)ψ(λ) ,

Q(λ; y, y′, z) = 4λ3 − 2λz + 2zy − 4y3 + y′2 +
y′

λ− y
+

3

4(λ− y)2
.Even though this fa
t is well-known in the literature about P-I (see forexample [KT05℄ and [Mas10a℄), we dis
uss it for 
onvenien
e of the reader.Lemma 3.1. The perturbed 
ubi
 os
illator is Gauge-equivalent to the fol-lowing ODE

−→
Φ λ(λ; y, y

′, z) =
(

y′ 2λ2 + 2λy − z + 2y2

2(λ− y) −y′
)−→

Φ(λ; y, y′, z) . (3.2)Moreover, the point λ = y of the perturbed os
illator (2.2) is an apparentsingularity: the monodromy around λ = y of any solution is −1.Proof. De�ne the following Gauge transform
G(λ; y, y′, z) =




y′+ 1
2(λ−y)√
2(λ−y)

1√
2(λ−y)

√
2(λ− y) 0


 . (3.3)11



Then −→
Φ(λ; z) = G(λ; y, y′, z)

−→
Ψ(λ, z) satis�es (3.2) if and only if −→Ψ(λ; z)satis�es the following equation

Ψλ(λ, z) =

(
0 1

Q(λ; y, y′, z) 0

)
Ψ(λ, z) .Let ψ denote the �rst 
omponent of −→Ψ . Then ψ satis�es the perturbed 
ubi
os
illator equation.The unique singular point of equation (3.2) is λ = ∞; therefore anysolution of (3.2) is an entire fun
tion. The Gauge transform itself has a squareroot singularity at λ = y, hen
e any solution of the perturbed os
illator istwo-valued.Lemma 3.2. For any Stokes se
tor Sk, there exists a unique normalizedsubdominant solution of equation 3.2. We 
all it −→Φ k(λ; y, y

′, z). The sub-dominant solutions satisfy the following monodromy relations
−→
Φ k−1(λ; y, y

′, z) =
−→
Φ k+1(λ; y, y

′, z) + σk(y, y
′, z)

−→
Φ k(λ; y, y

′, z) ,where σk(y, y′, z) is the k-th Stokes multiplier of the perturbed 
ubi
 os
illator2.2 (see De�nition 2.3).Proof. Choose−→Φ k(λ; y, y
′, z) as the (inverse) gauge transform of ψk(λ; y, y′, z),the k-th subdominant solution of (2.2). From WKB analysis (see Se
tions4.4 and 4.5) we know that also ψ′

k(λ; y, y
′, z) is subdominant; more pre
isely

ψ′
k(λ)

λ
3
2 ψk(λ)

→ −1 in Sk−1∪Sk ∪Sk+1. Sin
e G(λ; y, y′, z) is algebrai
 in λ, then
−→
Φ k(λ; y, y

′, z) de
ays exponentially in Sk and grows exponentially in Sk±1.Hen
e it is the unique (up to normalization) k-th subdominant solution of(3.2).The equation for the Stokes multiplier is un
hanged sin
e the gauge trans-form is a linear operation.Lemma 3.3. Let y = y(z) be a holomorphi
 fun
tion of z ∈ U ⊂ C, let y′(z)be its derivative and let σk(z) = σk(y(z), y
′(z), z), k ∈ Z5 be the Stokes mul-tipliers (2.6) of the perturbed 
ubi
 os
illator. If y(z) satis�es the Painlevé-Iequation (3.1) then dσk(z)

dz = 0.Proof. We prove the statement using equation (3.2), and not dire
tly equa-tion (2.2). A straightforward 
omputation shows y(z) satisfy P-I if and onlyif the following system admits a non trivial solution
−→
Φ λ(λ, z) =

(
y′(z) 2λ2 + 2λy(z)− z + 2y2(z)

2(λ− y(z)) −y′(z)

)−→
Φ(λ, z) ,

−→
Φ z(λ, z) = −

(
0 2y(z) + λ
1 0

)−→
Φ(λ, z) .12



Obviously the �rst equation of above system is equation (3.2), with y =
y(z), y′ = y′(z).Let z0 belong to U . Consider the solution −→

Φ(λ; z) of the system of linearequation with the following Cau
hy data −→
Φ(λ; z0) =

−→
Φk(λ; y(z0), y

′(z0), z0).A simple 
al
ulation shows that lo
ally 2 −→
Φ(λ; z) =

−→
Φ k(λ; y(z), y

′(z), z).Therefore
−→
Φ k−1(λ; y(z), y

′(z), z) =
−→
Φ k+1(λ; y(z), y

′(z), z)+σk(z)
−→
Φ k(λ; y(z), y

′(z), z) .Di�erentiating by z, we obtain the thesis.De�nition 3.1. A

ording to Lemma 3.3, to any solution y of P-I we 
anasso
iate a set of Stokes multipliers, i.e. a point of the spa
e of monodromydata V5. We denote this map M

M : {P-I trans
endents} → V5 .We say that M(y) are the Stokes multipliers of y.The map M is a spe
ial 
ase of a Riemann-Hilbert 
orresponden
e. Inparti
ular the following lemma is valid.Lemma 3.4. M is inje
tive.Proof. See [Kap04℄.The Stokes multipliers of the tritronquée solution are well-known. In-deed, the following Theorem holds true.Theorem 3.1. (Kapaev) The image under M of the intégrale tritronquéeare the monodromy data uniquely 
hara
terized by the following equalities
σ2 = σ−2 = 0 . (3.4)Proof. See [Kap04℄. The Theorem was already stated, without proof, in[CC94℄.3.2 Poles and the Cubi
 Os
illatorHere we suppose that we have �xed a solution y of P-I. In the previous se
tionwe have shown that if we restri
t y to a domain U where it is regular, then itgives rise to an isomonodromi
 deformation of the perturbed 
ubi
 os
illator(2.2).2hen
e globally; indeed −→

Φ k(λ; y(z), y
′(z), z) is a single-valued fun
tion sin
e y(z) issingle-valued. 13



In the present se
tion we study the behaviour of solutions of the per-turbed 
ubi
 os
illator (2.2) in a neighborhood of a pole of a solution y ofP-I. Let a denote a pole of a �xed solution y∗(z) of P-I. We prove that, inthe limit z → a, the perturbed 
ubi
 os
illator turns (without 
hanging themonodromy) into the 
ubi
 os
illator (2.1) with potential V (λ; 2a, 28b) (here
b is the 
oe�
ient of the (z− a)4 term in the Laurent expansion of y around
a). We then analyze some important 
onsequen
es of this fa
t.In order to be able to des
ribe the behaviour of solution to the perturbed
ubi
 os
illator near a pole a of y(z), we have to know the lo
al behavior of
y(z) 
lose to the same point a.Lemma 3.5 (Painlevé). Let a ∈ C be a pole of y. Then in a neighborhoodof a, y has the following 
onvergent Laurent expansion
y(z)=

1

(z − a)2
+
a(z − a)2

10
+
(z − a)3

6
+b(z−a)4+

∑

j≥5

cj(a, b)(z−a)j . (3.5)Here b is some 
omplex number and cj(·, ·) are polynomials with real 
oe�-
ients, whi
h are independent on the parti
ular solution y.Conversely, �xed arbitrary a, b ∈ C, the above expansion has a non zeroradius of 
onvergen
e and solves P-I.Proof. See [GLS00℄.De�nition 3.2. We de�ne the Laurent map
L : C2 → {P-I trans
endents} .

L(a, b) is the unique analyti
 
ontinuation of the Laurent expansion (3.5).We have already 
olle
ted all elements ne
essary to formulate the impor-tantLemma 3.6. Fix a solution y of P-I and let M(y) = (σ−2, . . . , σ2) be itsStokes multipliers. Let a be a pole of y and b be su
h that the Laurentexpansion (3.5) is valid. Then (σ−2, . . . , σ2) are the monodromy data of the
ubi
 os
illator (2.1) with potential 4λ3 − 2a− 28b.In other words, T (2a, 28b) = M ◦ L(a, b). Here T is the monodromymap of the 
ubi
 os
illator (see equation 2.9), M is the Riemann-Hilbert
orresponden
e for P-I (see De�nition 3.1) and L is the Laurent map (seeDe�nition 3.2).Proof. Re
all the de�nition of the k-th subdominant solutions ψk(λ; y, y′, z)and ψk(λ; a, b) of the perturbed and unperturbed 
ubi
 os
illator (see De�ni-tion 2.2). Here y, y′ are fun
tions of z, hen
e we write ψk(λ; z) = ψk(λ; y, y
′, z).To prove the Lemma it is su�
ient to show that

lim
z→a

ψk+1(λ; z)

ψk(λ; z)
=
ψk+1(λ; 2a, 28b)

ψk(λ; 2a, 28b)
.14



Sin
e the proof of the desired limit requires some knowledge of WKBanalysis, we postpone it in Se
tion 4.5.The previous Lemma has many important 
onsequen
es.Theorem 3.2. Let y be any solution of P-I. Then a ∈ C is a pole of y i�there exists b ∈ C su
h that M(y) = T (2a, 28b).Proof. One impli
ation is exa
tly the 
ontent of Lemma 3.6. Converselysuppose that M(y) = T (2a, 28b) for some a, b. Consider the solution ỹ =
L(a, b) of P-I given by the Laurent expansion (3.5). As a 
onsequen
e ofLemma 3.6, M(y) = M(ỹ). Due to the fa
t that M is inje
tive (see Lemma3.4) we have that y = ỹ.As a 
orollary of Theorem 3.1 and Theorem 3.2, we 
an 
hara
terize thepoles of the intégrale tritronquée as very parti
ular 
ubi
 potentials.Theorem 3.3. The point a ∈ C is a pole of the intégrale tritronquée if andonly if there exists b ∈ C su
h that the S
hrödinger equation with the 
u-bi
 potential V (λ; 2a, 28b) admits the simultaneous solution of two di�erentquantization 
onditions, namely σ±2(2a, 28b) = 0. Equivalently, the asymp-toti
 values asso
iated to the tritronquée intégrale 
an be 
hosen to be

w0 = 0, w1 = w−2 = 1, w2 = w−1 = ∞ . (3.6)As a 
onsequen
e of Theorem 3.2, we 
an show that the Riemann-Hilbert
orresponden
e M is bije
tive.Theorem 3.4 (stated in [KK93℄). The map M is bije
tive: solutions of P-Iare in 1-to-1 
orresponden
e with admissible monodromy data.Proof. We already know (see Lemma 3.4) that M is inje
tive. A

ording toLemma 3.6, T (2a, 28b) = M ◦ L(a, b). Sin
e T is surje
tive (see Theorem2.1) then M is surje
tive too.
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Chapter 4WKB Analysis of the Cubi
Os
illatorThe present Chapter is devoted to the 
omplex WKB analysis of the 
ubi
os
illator
d2ψ(λ)

dλ2
= V (λ; a, b)ψ(λ) , V (λ; a, b) = 4λ3 − aλ− b .We develop the 
omplex WKB analysis be
ause it is an e�
ient methodto solve approximately the dire
t monodromy problem for the 
ubi
 os
illa-tor.Indeed, our purpose is to 
ompute the poles of the intégrale tritronquéeafter having 
hara
terized them as 
ubi
 os
illators that admit the simul-taneous solutions of two quantization 
onditions (see Theorem 3.3). Wesu

eed in our goal and we eventually show (see Se
tion 4.2 and Chapter 5)that poles of intégrale tritronquée are des
ribed approximately by the solu-tions of a pair of Bohr-Sommerfeld quantization 
onditions, namely system(4.7,4.8) (more intelligibly rewritten as system (5.2)).We remark that the theory developed here has a mu
h wider range ofappli
ations than the study of poles of the tritronquée; for example, we willuse the WKB analysis also in Chapter 6 in the derivation of the DeformedThermodynami
 Bethe Ansatz.The Chapter is organized as follows. Se
tion 4.1 is devoted to the topo-logi
al 
lassi�
ation of Stokes 
omplexes. In Se
tion 4.2 we 
al
ulate themonodromy data of the 
ubi
 os
illator in WKB approximation, and we de-rive the 
orre
t Bohr-Sommerfeld 
onditions for the poles of the tritronquéesolution of P-I. In Se
tion 4.3 we introdu
e the "small parameter" of theapproximation. Se
tion 4.4 and 4.5 deal with the proofs of Theorem 4.2 andLemma 3.6.Remark. Most of the present Chapter 
an be read independently of theother Chapters of the thesis. However, the reader must at least re
all from16



Chapter 2 the de�nitions of Stokes multipliers (see De�nition 2.3) and ofasymptoti
 values (see De�nition 2.5). We warn the reader that in the presentChapter we 
all Stokes se
tor and denote it Σk a rather di�erent obje
t thanthe Stokes Se
tor Sk de�ned in Chapter 2.4.1 Stokes ComplexesIn the 
omplex WKB method a prominent role is played by the Stokes andanti-Stokes lines, and in parti
ular by the topology of the Stokes 
omplex,whi
h is the union of the Stokes lines.The main result of this se
tion is the Classi�
ation Theorem, where weshow that the topologi
al 
lassi�
ation of Stokes 
omplexes divides the spa
eof 
ubi
 potentials into seven disjoint subsets.Even though Stokes and anti-Stokes lines are well-known obje
ts, thereis no standard 
onvention about their de�nitions, so that some authors 
allStokes lines what others 
all anti-Stokes lines. We follow here the notationof Fedoryuk [Fed93℄.Remark. To simplify the notation and avoid repetitions, we study theStokes lines only. Every single statement in the following se
tion remainstrue if the word Stokes is repla
ed with the word anti-Stokes, provided inequation (4.1) the angles ϕk are repla
ed with the angles ϕk + π
5 .De�nition 4.1. A simple (resp. double, resp. triple) zero λi of V (λ) =

V (λ; a, b) is 
alled a simple (resp. double, resp. triple) turning point. Allother points are 
alled generi
.Fix a generi
 point λ0 and a 
hoi
e of the sign of√V (λ0). We 
all a
tionthe analyti
 fun
tion
S(λ0, λ) =

∫ λ

λ0

√
V (u)dude�ned on the universal 
overing of λ-plane minus the turning points.Let ĩλ0 be the level 
urve of the real part of the a
tion passing througha lift of λ0. Call its proje
tion to the pun
tured plane iλ0 . Sin
e iλ0 is aone dimensional manifold, it is di�eomorphi
 to a 
ir
le or to a line. If iλ0is di�eomorphi
 to the real line, we 
hoose one di�eomorphism iλ0(x), x ∈ Rin su
h a way that the 
ontinuation along the 
urve of the imaginary part ofthe a
tion is a monotone in
reasing fun
tion of x ∈ R.Lemma 4.1. Let λ0 be a generi
 point. Then iλ0 is di�eomorphi
 to the realline, the limit limx→+∞ iλ0(x) exists (as a point in C

⋃∞) and it satis�esthe following di
hotomy:
17



(i) Either limx→+∞ iλ0(x) = ∞ and the 
urve is asymptoti
 to one of thefollowing rays of the 
omplex plane
λ = ρeiϕk , ϕk =

(2k + 1)π

5
, ρ ∈ R+, k ∈ Z5 , (4.1)(ii) or limx→+∞ iλ0(x) = λi, where λi is a turning point.Furthermore,(iii) if limx→±∞ iλ0(x) = ∞ then the asymptoti
 ray in the positive dire
tionis di�erent from the asymptoti
 ray in the negative dire
tion.(iv) Let ϕk, k ∈ Z5 be de�ned as in equation (4.1). Then ∀ε > 0,∃K ∈

R+ su
h that if ϕk−1 + ε < arg λ0 < ϕk − ε and |λ0| > K, then
limx→±∞ iλ0(x) = ∞. Moreover the asymptoti
 rays of iλ0 are theones with arguments ϕk and ϕk−1.Proof. See [Str84℄.De�nition 4.2. We 
all Stokes line the traje
tory of any 
urve iλ0 su
h thatthere exists at least one turning point belonging to its boundary.We 
all a Stokes line internal if ∞ does not belong to its boundary.We 
all Stokes 
omplex the union of all the Stokes lines together with theturning points.We state all important properties of the Stokes lines in the followingTheorem 4.1. The following statements hold true(i) The Stokes 
omplex is simply 
onne
ted. In parti
ular, the boundaryof any internal Stokes line is the union of two di�erent turning points.(ii) Any simple (resp. double, resp. triple) turning point belongs to theboundary of 3 (resp. 4, resp 5) Stokes lines.(iii) If a turning point belongs to the boundary of two di�erent non-internalStokes lines then these lines have di�erent asymptoti
 rays.(iv) For any ray with the argument ϕk as in equation (4.1), there exists aStokes line asymptoti
 to it.Proof. See [Str84℄.
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4.1.1 Topology of Stokes 
omplexesIn what follows, we give a 
omplete 
lassi�
ation of the Stokes 
omplexes,with respe
t to the orientation preserving homeomorphisms of the plane.We de�ne the map L from the λ-plane to the interior of the unit dis
 as
L : C → D1

L(ρeiϕ) =
2

π
eiϕ arctan ρ. (4.2)The image under the map L of the Stokes 
omplex is naturally a de
o-rated graph embedded in the 
losed unit dis
. The verti
es are the imagesof the turning points and the �ve points on the boundary of the unit dis
with arguments ϕk, with ϕk as in equation (4.1). The bonds are obviouslythe images of the Stokes lines. We 
all the �rst set of verti
es internal andthe se
ond set of verti
es external. External verti
es are de
orated with thenumbers k ∈ Z5. We denote S the de
orated embedded graph just des
ribed.Noti
e that due to Theorem 4.1 (iii), there exists not more than one bond
onne
ting two verti
es.The 
ombinatorial properties of S are des
ribed in the followingLemma 4.2. S possesses the following properties(i) the sub-graph spanned by the internal verti
es has no 
y
les.(ii) Any simple (resp. double, resp. triple) turning point has valen
y 3(resp. 4, resp. 5).(iii) The valen
y of any external vertex is at least one.Proof. (i) Theorem 4.1 part (i)(ii) Theorem 4.1 part (ii)(iii) Theorem 4.1 part (iv)De�nition 4.3. We 
all an admissible graph any de
orated simple graphembedded in the 
losure of the unit dis
, with three internal verti
es and�ve de
orated external verti
es, su
h that (i) the 
y
li
-order inherited fromthe de
oration 
oin
ides with the one inherited from the 
ounter-
lo
kwiseorientation of the boundary, and (ii) it satis�es all the properties of Lemma4.2. We 
all two admissible graphs equivalent if there exists an orientation-preserving homeomorphism of the disk mapping one graph into the other.Theorem 4.2. Classi�
ation TheoremAll equivalen
e 
lasses of admissible maps are, modulo a shift k → k +

m,m ∈ Z5 of the de
oration, the ones depi
ted in Figure 4.1.19



"Boutroux Graph":(320)
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Figure 4.1: All the equivalen
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Proof. Let us start analyzing the admissible graphs with three internal ver-ti
es and no internal edges.Any internal vertex is adja
ent to a triplet of external verti
es. Due tothe Jordan 
urve theorem, there exists an internal vertex, say λ0, adja
entto a triplet of non 
onse
utive external verti
es. Performing a shift, they
an be 
hosen to be the ones labelled by 0, 2,−1. Call the respe
tive edges
e0, e−1, e2.The disk is 
ut in three disjoint domains by those three edges. No internalverti
es 
an belong to the domain 
ut by e0 and e4, sin
e it 
ould be adja
entonly to two external verti
es, namely the ones labelled with 0 and −1. Bysimilar reasoning it is easy to show that one and only one vertex belong toea
h remaining domains.Su
h embedded graph is equivalent to the graph (300).Classi�
ations for all other 
ases may proved by similar methods.The equivalen
e 
lasses are en
oded by a triplet of numbers (a b 
): ais the number of simple turning points, b is the number of internal Stokeslines, while c is a progressive number, distinguishing non-equivalent graphswith same a and b. Some additional information shown Figure 4.1 will beexplained in the next se
tion.Remark. For any admissible graph there exists a real polynomial with anequivalent Stokes 
omplex.Remark. Noti
e that the automorphism group of every graph in Figure 4.1is trivial. Therefore the unlabelled verti
es 
an be labelled. In the followingwe will label the turning points as in �gure 4.1. We denote "Boutroux graph"the graph (320)4.1.2 Stokes Se
torsRemark. We warn the reader that in the present Se
tion and for the restof the Chapter we 
all Stokes Se
tor and denote it by Σk a rather di�erentobje
t than the Stokes Se
tor Sk de�ned in Chapter 2.In the λ-plane the 
omplement of the Stokes 
omplex is the disjoint unionof a �nite number of 
onne
ted and simply-
onne
ted domains, ea
h of them
alled a se
tor.Combining Theorem 4.1 and the Classi�
ation Theorem we obtain thefollowingLemma 4.3. All the 
urves iλ0 , with λ0 belonging to a given se
tor, havethe same two asymptoti
 rays. Moreover, two di�erent se
tors have di�erentpairs of asymptoti
 rays. 21



For any k ∈ Z5 there is a se
tor, 
alled the k-th Stokes se
tors, whoseasymptoti
 rays have arguments ϕk−1 and ϕk. This se
tor will be denoted
Σk. The boundary ∂Σk of ea
h Σk is 
onne
ted.Any other se
tor has asymptoti
 rays with arguments ϕk−1 and ϕk+1, forsome k. We 
all su
h a se
tor the k-th se
tor of band type, and we denote it
Bk. The boundary ∂Bk of ea
h Bk has two 
onne
ted 
omponents.Choose a se
tor and a point λ0 belonging to it. The fun
tion S(λ0, λ) iseasily seen to be bi-holomorphi
 into the image of this se
tor. In parti
ular,with one 
hoi
e of the sign of √V it maps a Stokes se
tor into the half plane
ReS > c, for some −∞ < c < 0 while it maps a Bk se
tor in the verti
alstrip c < ReS < d, for some −∞ < c < 0 < d < +∞.De�nition 4.4. We 
all a di�erentiable 
urve γ : [0, 1] → C an admissiblepath provided γ is inje
tive on [0, 1[, λi /∈ γ([0, 1]), for all turning points λi,and ReS(γ(0), γ(t)) is a monotone fun
tion of t ∈ [0, 1].We say that Σj ⇆ Σk if there exist µj ∈ Σj, µk ∈ Σk and an admissiblepath su
h that γ(0) = µj, γ(1) = µk.The relation ⇆ is obviously re�exive and symmetri
 but it is not ingeneral transitive.Noti
e that Σj ⇆ Σk if and only if for every point µj ∈ Σj and everypoint µk ∈ Σk an admissible path exists.Lemma 4.4. The relation ⇆ depends only on the equivalen
e 
lass of theStokes 
omplex S.Proof. Consider an admissible path from Σj to Σk, j 6= k. The path isnaturally asso
iated to the sequen
e of Stokes lines that it 
rosses. We denotethe sequen
e ln, n = 0, . . . , N , for some N ∈ N. We 
ontinue analyti
ally
S(µj , ·) to a 
overing of the union of the Stokes se
tors 
rossed by the pathtogether with the Stokes lines belonging to the sequen
e. Sin
e S(µj, ·) is
onstant along ea
h 
onne
ted 
omponent of the boundary of every lift of ase
tor 
rossed by the path, then ea
h of su
h 
onne
ted 
omponents 
annotbe 
rossed twi
e by the path. Hen
e, due to the 
lassi�
ation theorem noadmissible path is a loop. Therefore, the union of the Stokes se
tors 
rossedby the path together with the Stokes lines belonging to the sequen
e is simply
onne
ted.Conversely, given any inje
tive sequen
e of Stokes lines ln, n = 0 . . . ,Nsu
h that for any 0 ≤ n ≤ N − 1, ln and ln+1 belong to two di�erent
onne
ted 
omponents of the boundary of a same se
tor, there exists anadmissible path with that asso
iated sequen
e. This last observation impliesthat the relation ⇆ depends only on the topology of the graph S. Moreover,if the sequen
e exists it is unique; indeed, if there existed two admissiblepaths, joining the same µj and µk but with di�erent sequen
es, then therewould be an admissible loop. 22



Map Pairs of non 
onse
utive Se
tors not satisfying the relation ⇆300 None310 (Σ0,Σ2), (Σ0,Σ−2)311 (Σ1,Σ−1)320 (Σ1,Σ−1), (Σ1,Σ−2), (Σ−1,Σ2)100 (Σ1,Σ−1), (Σ0,Σ−2), (Σ0,Σ2)110 All but (Σ1,Σ−1)000 AllTable 4.1: Computation of the relation ⇆With the help of Lemma 4.4 and of the Classi�
ation Theorem, relation
⇆ 
an be easily 
omputed, as it is shown in Table 4.1. As it is evident fromFigure 4.1, for any graph type we have that Σk ⇆ Σk+1, ∀k ∈ Z5.4.2 Complex WKB Method and Asymptoti
 Val-uesIn this se
tion we introdu
e the WKB fun
tions jk, k ∈ Z5 and use them toevaluate the asymptoti
 values of equation (2.1). The topology of the Stokes
omplex will show all its importan
e in these 
omputations.On any Stokes se
tor Σk, we de�ne the fun
tions

Sk(λ) = S(λ∗, λ) , (4.3)
Lk(λ) = −1

4

∫ λ

λ∗

V ′(u)
V (u)

du , (4.4)
jk(λ) = e−Sk(λ)+Lk(λ) . (4.5)Here λ∗ is an arbitrary point belonging to Σk and the bran
h of √V issu
h that ReSk(λ) is bounded from below.We 
all jk the k-th WKB fun
tion.4.2.1 Maximal DomainsIn this subse
tion we 
onstru
t the k-th maximal domain, that we denote

Dk. This is the domain of the 
omplex plane where the k-th WKB fun
tionapproximates a solution of equation (2.1).The 
onstru
tion is done for any k in a few steps (see Figure 4.2 for theexample of the Stokes 
omplex of type (300)):(i) for every Σl su
h that Σl ⇆ Σk, denote Dk,l the union of the se
torsand of the Stokes lines 
rossed by any admissible path 
onne
ting Σland Σk. 23



(ii) Let D̂k =
⋃
lDl,k. Hen
e D̂k is a 
onne
ted and simply 
onne
tedsubset of the 
omplex plane whose boundary ∂D̂k is the union of someStokes lines.(iii) Remove a δ-tubular neighborhood of the boundary ∂D̂k, for an arbi-trarily small δ > 0, su
h that the resulting domain is still 
onne
ted.(iii) For all l 6= k, l 6= k − 1, remove from D̂k an angle λ = ρeiϕ, |ϕ− ϕl| <

ǫ, ρ > R, for ε arbitrarily small and R arbitrarily big, in su
h a waythat the resulting domain is still 
onne
ted. The remaining domain is
Dk.4.2.2 Main Theorem of WKB ApproximationWe 
an now state the main theorem of the WKB approximation. Our The-orem is a slight improvement of a Theorem by F. Olver [Olv74℄, but whoseorigin goes ba
k to G. D. Birkho� [Bir33℄.Theorem 4.3. Continue the WKB fun
tion jk to Dk. Then there exists asolution ψk(λ) of (2.1), su
h that for all λ ∈ Dk

∣∣∣∣
ψk(λ)

jk(λ)
− 1

∣∣∣∣ ≤ g(λ)
(
e2ρ(λ) − 1

)

∣∣∣∣∣
ψ′
k(λ)

jk(λ)
√
V (λ)

+ 1

∣∣∣∣∣ ≤
∣∣∣∣∣
V ′(λ)

4V (λ)
3
2

∣∣∣∣∣+ (1 +

∣∣∣∣∣
V ′(λ)

4V (λ)
3
2

∣∣∣∣∣)g(λ)(e
2ρ(λ) − 1)Here ρk is a bounded positive 
ontinuous fun
tion, 
alled the error fun
-tion, satisfying

lim
λ→∞

ϕk−1<argλ<ϕk+1

ρk(λ) = 0 ,and g(λ) is a positive fun
tion su
h that g(λ) ≤ 1 and
lim
λ→∞

λ∈Dk∩Σk±2

g(λ) =
1

2
.Proof. The proof is in the appendix 4.4.Noti
e that jk is sub-dominant (i.e. it de
ays exponentially) in Σk anddominant (i.e. it grows exponentially) in Σl,∀l 6= k.For the properties of the error fun
tion, ψk is subdominant in Σk anddominant in Σk±1. Therefore, in any Stokes se
tor Σk there exists a sub-dominant solution, whi
h is de�ned uniquely up to multipli
ation by a nonzero 
onstant. 24
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Figure 4.2: In the drawings, the 
onstru
tion of D0 for a graph of type (300)is depi
ted.
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4.2.3 Computations of Asymptoti
 Values in WKB Approx-imationThe aim of this paragraph is to 
ompute the asymptoti
 values for theS
hrödinger equation (2.1) in WKB approximation. We expli
itely workout the example of the Stokes 
omplex of type (320), relevant to the studyof poles of the intégrale tritronquée.De�nition 4.5. De�ne the relative errors
ρkl =





lim
λ→∞

λ∈Σk∩Dl

ρl(λ), if Σl ⇆ Σk

∞, otherwiseand the asymptoti
 values (re
all De�nition 2.5)
wk(l,m)

def
= wk(

ψl
ψm

). (4.6)We say that Σk ∼ Σl provided ρkl < log 3
2 . The relation ∼ is a sub-relation of

⇆. Noti
e that ρl+1
l = 0 and ρml = ρlm (see Appendix 4.4).In order to 
ompute the asymptoti
 value wk(l,m), we have to know theasymptoti
 behavior of ψl and ψm in Σk. By Theorem 4.3,

lim
λ→∞

λ∈Σk∩Dl

ψl(λ)

jl(λ)
6= 0 , if 1

2
(e2ρ

l
k − 1) < 1 .Hen
e the asymptoti
 behavior of ψl in Σk 
an be related to the asymptoti
behavior of jl in Σk if the relative error ρkl is so small that the above inequalityholds true, i.e. if Σk ∼ Σl.Remark. Depending on the type of the graph S, there may not exist twoindi
es k 6= l su
h that all the relative errors ρnl , ρnk , n ∈ Z5 are small. How-ever it is often possible to 
ompute an approximation of all the asymptoti
values wn(l, k) using the strategy below.(i) We sele
t a pair of non 
onse
utive Stokes se
tors Σl, Σl+2, with thehypothesis that the fun
tions ψl and ψl+2 are linearly independent, sothat wl(l, l + 2) = 0, wl+2(l, l + 2) = ∞. Sin
e ρl+1

l = ρl+1
l+2 = 0 then

wl+1(l, l + 2) = lim
λ→∞

λ∈Σl+1∩Dl∩Dl+2

jl(λ)

jl+2(λ)
.Therefore, we �nd three exa
t and distin
t asymptoti
 values.26



(ii) For any k 6= l, l+ 1, l+ 2 su
h that Σl ∼ Σk and Σl+2 ∼ Σk, we de�nethe approximate asymptoti
 value
ŵk(l,m) = lim

λ→∞
λ∈Σk∩Dl∩Dl+2

jl(z)

jm(z)
.The spheri
al distan
e between wk(l,m) and ŵk(l,m) may be easilyestimated from above knowing the relative errors ρlk and ρl+2

k .If for any k 6= l, l + 1, l + 2, Σl ∼ Σk and Σl+2 ∼ Σk, then the we
an 
ompute, approximately, all Stokes multipliers using formula 2.14and Theorem 2.4. In the sequel we let σ̂k denote the approximate k-thStokes multipliers.(iii) If for some pair (l, l + 2) the assumption Σl ∼ Σk, Σl+1 ∼ Σk failsto be true for just one value of the index k = k∗, and, for anotherpair (l′, l′ + 2) the assumption Σl′ ∼ Σk′, Σl′+2 ∼ Σk′ fails to be truefor just one valued of the index k′ = k′∗, with k′∗ 6= k∗, then we 
an
omplete our 
al
ulations. Indeed we 
an 
ompute both σ̂k∗ and σ̂k′∗using formula 2.14 and Theorem 2.4. After that we 
al
ulate all otherStokes multipliers using the quadrati
 relations 2.7.Remark. As shown in Table 4.1, the relation ⇆ is uniquely 
hara
terizedby the graph type. For the sake of 
omputing the asymptoti
 values the im-portant relation is ∼ and not ⇆. Indeed, the 
al
ulations for a given graphtype, say (a b c), are valid for (and only for) all the potentials whose relation
∼ is equivalent to the relation ⇆ 
hara
terizing the graph type (a b c).Due to the above remark, in what follows we suppose that the relation
∼ is equivalent to the relation ⇆. We have the followingLemma 4.5. Let V (λ; a, b) su
h that the type of the Stokes 
omplex is (300),
(310), (311); moreover, suppose that the ∼ relation 
oin
ides with ⇆. Thenall the asymptoti
 values of equation (2.1) are pairwise distin
t, but for atmost one pair.Proof. For a graph of type (300) or (311) the thesis is trivial. For a graphof type (320), it may be that w0 = w2 or w0 = w−2. Sin
e w2 6= w−2 thethesis follows.We 
ompletely work out the 
ase of Stokes 
omplex of type (320), whilefor the other 
ases we present the results only. Due to Lemma 4.5, we omitthe results for potentials whose graph type is (300), (310) and (311).
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Boutroux Graph = 320 We suppose that Σ0 ∼ Σ±2.Let us 
onsider �rst the pair Σ0 and Σ−2. In Figure 4.3 the maximal do-mains D0 ansD−2 are depi
ted by 
olouring the Stokes lines not belonging tothem blue and red respe
itvely. In parti
ular S0, L0, j0 (resp. S−2, L−2, j−2)
an be extended to all D0 (resp. D−2) along any 
urve that does not interse
tany blue (resp. red) Stokes line.
λ−1

λ1

λ0

−π
5

π

π
5

Σ0

Σ1

Σ2

Σ−2

Σ−1

Stokes line not belonging to D0

Stokes line not belonging to D−2

λ∗

µ−1

µ2

3π
5

− 3π
5

(320)

Figure 4.3: Cal
ulation of w−1(0,−2) and of ŵ2(0,−2)We �x a point λ∗ ∈ Σ0 su
h that S0(λ∗) = S−2(λ
∗) = L0(λ

∗) =
L−2(λ

∗) = 0.By de�nition
ŵk(0,−2) = lim

λ→∞k

j0(λ)

j−2(λ)

= lim
λ→∞k

e−S0(λ)+S−2(λ)eL0(λ)−L−2(λ) ,Here λ → ∞k is a short-hand notation for λ → ∞, λ ∈ Σk ∩D0 ∩D−2. We
al
ulate ŵk(0,−2) for k = −1, 2.We �rst 
al
ulate limλ→∞k
e−S0(λ)+S−2(λ).Noti
e that ∂S0

∂λ = ∂S−2

∂λ in Σk. Hen
e
lim

λ→∞k

−S0(λ) + S−2(λ) = −S0(µk) + S−2(µk) , k = −1, 2 ,where µk is any point belonging to Σk (in Figure 4.3, the paths of integrationde�ning S0(µk) and S−2(µk) are 
oloured blue and red respe
tively).On the other hand, sin
e ∂S0
∂λ = −∂S−2

∂λ in Σ0
⋃

Σ−2, we have that
−S0(µk) + S−2(µk) = −2S0(λs) , s = −1 if k = −1 and s = 0 if k = 2 .We now 
ompute limλ→∞k

eL0(λ)−L−2(λ). Sin
e ∂L0
∂λ = ∂L−2

∂λ in D0
⋂
D−2,28



we have that
lim

λ→∞k

L0(λ)− L−2(λ) = L0(µk)− L−2(µk) ,

L0(µk)− L−2(µk) = −1

4

∮

ck

V ′(µ)
V (µ)

dµ , k = −1, 2 .Here ck is the blue path 
onne
ting λ∗ with µk 
omposed with the inverseof the red path 
onne
ting λ∗ with µk (see Figure 4.3).Therefore, we have
lim

λ→∞k

L0(λ)− L−2(λ) = −σ2πi
4
, σ = −1 if k = −1 and σ = +1 if k = 2 .Combining the above 
omputations and formulas (2.14,2.17) , we get

w−1(0,−2) = i e−2S0(λ−1) , ŵ2(0,−2) = −i e−2S0(λ0) ,

σ̂1 = −ie−2(S0(λ0)−S0(λ−1)) .We stress that w−1(0,−2) is exa
t while ŵ2(0,−2) is an approximation.Performing the same 
omputations for the pair Σ0 and Σ2, we obtain
w1(0, 2) = −i e−2S0(λ1) , ŵ−2(0, 2) = i e−2S0(λ0) ,

σ̂−1 = −ie−2(S0(λ0)−S0(λ1)) .Using the quadrati
 relation (2.7) among Stokes multipliers, we eventually
ompute all other Stokes multipliers
σ̂±2 = −i1 + e−2(S0(λ0)−S0(λ±1))

e−2(S0(λ0)−S0(λ∓1))
, σ̂0 = i (1 + σ̂2σ̂−2) .Quantization Conditions The 
omputations above provides us withthe following quantization 
onditions:

σ̂2 = 0 ⇔ e−2(S0(λ1)−S0(λ0)) = −1 (4.7)
σ̂−2 = 0 ⇔ e−2(S0(λ−1)−S0(λ0)) = −1 (4.8)
σ̂0 = 0 ⇔ e−2(2S0(λ0)−S0(λ−1)−S0(λ1)) =

−(1 + e−2(S0(λ0)−S0(λ1)))(1 + e−2(S0(λ0)−S0(λ−1))) (4.9)We noti
e that equation (4.9) is in
ompatible both with (4.7) and (4.8).Equations (4.7) and (4.8) are Bohr-Sommerfeld quantizations.As was shown in equation (3.6), the poles of the integràle tritronquèeare related to the polynomials su
h that w1 = w−2 and w−1 = w2. Sin
eequations (4.7) and (4.8) 
an be simultaneously solved, solutions of sys-tem (4.7,4.8) des
ribe, in WKB approximation, polynomials related to the29



intégrale tritronquée. System (4.7,4.8) was found by Boutroux in [Bou13℄(through a 
ompletely di�erent analysis), to 
hara
terize the asymptoti
 dis-tribution of the poles of the integràle tritronquèe. Therefore we 
all (4.7,4.8)the Bohr-Sommerfeld-Boutroux system.Equation (4.9) will not be studied in this thesis, even though is quiteremarkable. Indeed, it des
ribes the breaking of the PT symmetry (see[DT00℄ and [BBM+01℄).Case (100)

w0(1,−1) = −1

ŵ−2(1,−1) = ŵ2(1,−1) = 1Sin
e w0 6= ŵ±2 and w2 6= w−2, if the error ρ−2
1 or ρ2−1 is small enough,then all the asymptoti
 values are pairwise distin
t.Case (110)

ŵ−1(1,−2) = 1

w2(1,−2) = −1In this 
ase, it is impossible to 
al
ulate w0 with the WKB method thathas been here developed. Hen
e it may be that either w0 = w2 or w0 = w−2.Noti
e, however, that (110) is the graph only of a very restri
ted 
lass ofpotentials namely V (λ) = (λ+ λ0)
2(λ− 2λ0), where λ0 is real and positive.Sin
e the potential is real then w0 6= w±2.Case (000) In this 
ase, no asymptoti
 values 
an be 
al
ulated. Noti
e,however, that V (λ) = λ3 is the only potential with graph (000). For thispotential the asymptoti
 values 
an be 
omputed exa
tly, simply using sym-metry 
onsiderations. Indeed one 
an 
hoose wk = e

2kπ
5
i , k ∈ Z5.4.3 The Small ParameterThe WKB method normally applies to problem with an external small pa-rameter, usually denoted ~ or ε. In the study of the distributions of poles ofa given solution y of P-I there is no external small parameter and we haveto explore the whole spa
e of 
ubi
 potentials. The aim of this se
tion isto introdu
e an internal small parameter in the spa
e of 
ubi
 potentials,that greatly simpli�es our study. The results of the present Se
tion will beextremely important when studying the poles of the intégrale tritronquée(see Chapter 5). 30



On the linear spa
e of 
ubi
 potentials in 
anoni
al form
V (λ; a, b) = 4λ3 − aλ− b,we de�ne the following a
tion of the group R+ × Z5 (similar to what is
alled Symanzik res
aling in [Sim70℄)

(x,m)[V (λ; a, b)] = V (λ; Ω2mx2a,Ω3mx3b), x ∈ R+, m ∈ Z5, Ω = e
2π
5
i.(4.10)The indu
ed a
tion on the graph S, on the relative error ρml , and on thedi�eren
e Si(λj)− Si(λk) is des
ribed in the followingLemma 4.6. Let the a
tion of the group R+×Z5 be de�ned as above. Then(i) (x,m) leaves the graph S invariant, but for a shift of the labels k →

k +m of the external verti
es.(ii) (x,m)[Si(λj)− Si(λk)] = x
5
2 (Si(λj)− Si(λk)) .(iii) (x,m)[ρkl ] = x−

5
2 ρkl .Proof. The proof of (i) and (ii) follows from the following equality

√
V (λ; Ω2kx2a,Ω3kx3b)dλ = x

5
2

√
V (λ′; a, b)dλ′ , λ = xλ′ .The proof of point (iii) follows from a similar s
aling law of the 1-form

α(λ)dλ (see equation (4.16) in Appendix 4.4).Due to Lemma 4.6(iii), ε =
∣∣a
b

∣∣ plays the role of the small parameter.Indeed, along any orbit of the a
tion of the group R × Z5, all the (�nite)relative errors go to zero uniformly as ∣∣ab ∣∣→ 0.Sin
e all the relevant information is en
oded in the quotient of the spa
eof 
ubi
 potentials with respe
t to the group a
tion, we de�ne the following
hange of variable
ν(a, b) =

b

a
, µ(a, b) =

b2

a3
. (4.11)The indu
ed a
tion on these 
oordinates is simple, namely

(x,m)[µ(a, b)] = µ(a, b) and (x,m)[ν(a, b)] = Ωmx ν(a, b) .Moreover, the orbit of the set {(ν, µ) ∈ C2 s.t. | ν | = 1, | arg ν | < π
5 , µ 6= 0

}is a dense open subset of the spa
e of 
ubi
 potentials.31



4.4 Proof of the Main Theorem of WKB AnalysisThe aim of this appendix is to prove Theorem 4.3. Our approa
h is similarto the approa
h of Fedoryuk [Fed93℄.Notations are as in se
tions 4.1 and 4.2, ex
ept for ∞k. In what follows,we suppose to have �xed a 
ertain 
ubi
 potential V (λ; a, b) and a maximaldomain Dk. To simplify the notation we write V (λ) instead of V (λ; a, b).4.4.1 Gauge Transform to an L-Diagonal SystemThe strategy is to �nd a suitable gauge transform of equation (2.1) su
h thatfor large λ it simpli�es. We rewrite the S
hrödinger equation
−ψ′′(λ) + V (λ)ψ(λ) = 0 , (4.12)in �rst order form:

Ψ′(λ) = E(λ)Ψ(λ) ,

E(λ) =

(
0 1

V (λ) 0

)
. (4.13)Lemma 4.7 (Fedoryuk). In Dk(i) the gauge transform

Y (λ) = A(λ)U(λ) ,

A(λ) = jk(λ)

(
1 1√

V (λ)− V ′(λ)
4V (λ) −

√
V (λ)− V ′(λ)

4V (λ)

)
, (4.14)is non singular and(ii) the system (4.13) is transformed into the following one

U ′(λ) = F (λ)U(λ) =
(
A−1EA−A−1A′)U ,

F (λ) = 2
√
V (λ)

(
1 0
0 0

)
+ α(z)

(
1 1
−1 −1

)
, (4.15)

α(λ) =
1

32
√
V (λ)

5 (4V (λ)V ′′(λ)− 5V ′2(λ)) . (4.16)Proof. (i) Indeed detA(λ) = 2j2k(λ)
√
V (λ) 6= 0, ∀λ ∈ Dk, by 
onstru
-tion of jk and Dk.(ii) It is proven by a simple 
al
ulation.32



4.4.2 Some Te
hni
al LemmasBefore we 
an begin the proof of Theorem 4.3, we have to introdu
e the
ompa
ti�
ation of Dk and the preparatory Lemmas 4.8 and 4.9.Compa
ti�
ation of DK Sin
e Dk is simply 
onne
ted, it is 
onformallyequivalent to the interior of the unit disk D. We denote U the uniformisationmap, U : D → Dk.By 
onstru
tion, the boundary of Dk is the union of n free Jordan 
urves,all interse
ting at ∞. Here n is equal to the number of se
tors Σl su
h that
Σl ⇆ Σk minus 2.Due to an extension of Carathéodory's Theorem ([Car℄, �134-138), themap U extends to a 
ontinuous map from the 
losure of the unit 
ir
le tothe 
losure of Dk. The map is inje
tive on the 
losure of D minus the
n 
ounterimages of ∞. Hen
e, the uniformisation map realizes a n point
ompa
ti�
ation of Dk, that we 
all Dk. In Dk there are n points at ∞: ∞kdenotes the point at ∞ belonging to the 
losure of U (Σk−1 ∪Σk ∪ Σk+1);
∞l denotes the eventual point at ∞ belonging to the 
losure of U(Σl) (here
λ = k ± 2, and Σl ⇆ Σk).De�nition 4.6. Let H be the spa
e of fun
tion holomorphi
 in Dk and
ontinuous in Dk. H endowed with the sup norm is a Bana
h spa
e (H,
‖·‖H).Let Γ(λ), λ ∈ Dk − ∞k be the set of inje
tive pie
ewise di�erentiable
urves γ : [0, 1] → Dk, su
h that1. γ(0) = λ, γ(1) = ∞k,2. ReSk(γ(0), γ(t)) is eventually non de
reasing,3. there is an ε > 0 su
h that eventually ∣∣arg γ(t)− 2πk

5

∣∣ < π
5 − ε,4. the length of the 
urve restri
ted to [0, T ] is O (|γ(T )|) , as t→ 1.Let Γ̃(λ) be the subset of Γ(λ) of the paths along whi
h ReSk(γ(0), γ(t))is non de
reasing.Let K1 : H → H and K2 : H → H be de�ned (for the moment formally)

K1[h](λ) = −
∫

γ∈Γ(λ)
e2Sk(µ,λ)α(µ)h(µ)dµ , (4.17)

K2[h](λ) =

∫

γ∈Γ(λ)
α(µ)h(µ)dµ . (4.18)Let ρ : Dk → Dk:

ρ(λ) =





inf
γ∈Γ̃(λ)

∫ 1

0

∣∣∣∣α(γ(t))
dγ(t)

dt

∣∣∣∣ dt, if λ 6= ∞k

0 , if λ = ∞k .33



Remark. Sin
e along rays of �xed argument ϕ, with ∣∣ϕ− 2πk
5

∣∣ < π
5 − ε,

ReSk is eventually in
reasing, there are paths satisfying point (1) through(4) of the above de�nition. Moreover, by 
onstru
tion of Dk, Γ̃(λ) is nonempty for any λ.Before beginning the proof of the theorem, we need two preparatorylemmas.Lemma 4.8. Fix ε > 0, an angle ∣∣argϕ− 2πl
5

∣∣ < π
5 − ε, and let Ω =

Σl ∩
{
λ ∈ C,

∣∣λ− 2πl
5

∣∣ < π
5 − ε

}. Denote i(R) = iReiϕ ∩ Ω, R ∈ R+, andlet L(R) be the length with respe
t to the eu
lidean metri
 of i(R). Then
L(R) = O(R) and infλ′∈i(R) |λ′| = O(R).Let r be any level 
urve of Sl(λ∗, ·) asymptoti
 to the ray of argument 2πl

5 ,
Ω(R) =

{
λ ∈ Ω, ReSl(λ,Re

iϕ) ≥ 0
}, and M(R) be the length of r ∩ Ω(R).Then M(R) = O(R).Proof. [Str84℄, 
hapter 3.Lemma 4.9. (i) ρ is a 
ontinuous fun
tion.(ii) K1 and K2 are well-de�ned bounded operator. In parti
ular

|Ki[h](λ)| ≤ ρ(λ)‖h‖H , i = 1, 2 (4.19)(iii) K2[h](∞k) = K1[h](∞k) = K1(∞k±2) = 0,∀h ∈ HProof. (i)Sin
e α(λ)dλ = O(|λ|− 7
2 ), then α(λ)dλ is integrable along any
urve γ ∈ Γ̃(λ). Therefore ρ is a 
ontinuous fun
tion on Dk.(ii)We �rst prove that (a) Ki[h](λ) does not depend on the integrationpath for any λ ∈ Dk minus the points at in�nity. A result that easily impliesthat Ki[h](·) is an analyti
 fun
tion on Dk, 
ontinuous on λ ∈ Dk minus thepoints at ∞. We then prove (b) the estimates (4.19) and (
) the existen
eof the limits Ki[h](∞l), l = ∞k,∞k±2.To simplify the notation, we prove the theorem for the operator K1. Theproof for K2 is almost identi
al .(a)Let γa, γb ∈ Γ(λ). The 
urve iγa(T ), where T = 1 − ε for somesmall ε > 0 interse
t γb at some γb(T

′). Therefore we 
an de
ompose
−γb ◦ γa into two di�erent paths with the help of a segment of iγa(T ),∫
−γb◦γa e

2Sk(µ,λ)α(µ)h(µ)dµ =
∫
γ1

+
∫
γ2
e2Sk(µ,λ)α(µ)h(µ)dµ. One path γ1is the loop based at λ and the other γ2 is the loop based at ∞k. Sin
e

γ1 ⊂ Dk, then ∫γ1 e2Sk(µ,λ)α(µ)h(µ)dµ = 0. Along γ2, e2Sk(γ2(t),λ) ≤ 1 there-fore the integrand 
an be estimated just by |α(γ2(t))|. Due to lemma 4.8,∫
γ2
|α(µ)h(µ)dµ| = O(|γa(T )|−

5
2 ). Sin
e ε is arbitrary, then K1[h](λ) doesnot depend on the integration path.(b)Clearly for any path γ ∈ Γ̃(λ), |K1[h](λ)| ≤

∫ 1
0 |α(λ)h(λ)dλ| dt. Sin
e

K1[h](λ) does not depend on γ, then estimate (4.19) follows.34



(
) Let λn be a sequen
e 
onverging to ∞l, l = k + 2 or l = k − 2;without losing any generality we suppose that the sequen
e is ordered su
hthat ReSk(λn) ≤ ReSk(λn+1). Fix a 
urve r, as de�ned in Lemma 4.8.By 
onstru
tion of Dk, it is always possible to 
onne
t two points λn and
λn+m with a union of segments of the 
urves iλn , iλn+m and of r. We de-note by γ the union of this three segment. By 
onstru
tion of Dk (seeSubse
tion 4.2.1 (iii)), there exists ε > 0 su
h that ∣∣arg λn − 2πl

5

∣∣ < π
5 −

ε,∀n. Therefore, due to Lemma 4.8, γ has length of order |λn| + |λn+m|.Hen
e |K1[h](λn)−K1[h](λn+m)| ≤
∫
γ |h(λ)α(λ)dλ| = O(|λn|−

5
2 ). Then

K1[h](λn) is a Cau
hy sequen
e and the limit is well de�ned.We now prove that this limit is zero by 
al
ulating it along a �xed ray
λ = xeiϕ inside Σk±2. Let us �x a point x∗ on this ray in su
h a way that thefun
tion ReSk(x∗, x) is monotone de
reasing in the interval [x∗,+∞[. Alongthe ray we have

K1[h](x) = −
∫ x∗
x e2Sk(y,x

∗)α(y)h(y)dy + g(x∗)

e2Sk(x∗,x)
,where g(x∗) is a 
onstant, namely ∫γ∈Γ(x∗) e2Sk(µ,x

∗)α(µ)h(µ)dµ. Hen
e
limx→∞K1[h](x) = limx→∞

α(x)h(x)√
V (x)

= 0.With similar methods the reader 
an prove that the limit K1[h](∞k)exists and is zero.We are now ready to prove Theorem 4.3.Theorem 4.4. Extend the WKB fun
tion jk to Dk. There exists a uniquesolution ψk of (2.1) su
h that for all λ ∈ Dk
∣∣∣∣
ψk(λ)

jk(λ)
− 1

∣∣∣∣ ≤ g(λ)(e2ρ(λ) − 1) ,

∣∣∣∣∣
ψ′
k(λ)

jk(λ)
√
V (λ)

+ 1

∣∣∣∣∣ ≤
∣∣∣∣∣
V ′(λ)

4V (λ)
3
2

∣∣∣∣∣+ (1 +

∣∣∣∣∣
V ′(λ)

4V (λ)
3
2

∣∣∣∣∣)g(λ)(e
2ρ(λ) − 1) ,where g(λ) is a positive fun
tion, g(λ) ≤ 1 and g(∞k±2) =
1
2 .Proof. We seek a parti
ular solution to the linear system (4.15) via su

essiveapproximation.If U(λ) = U (1) ⊕ U (2) ∈ H ⊕H satis�es the following integral equationof Volterra type

U(λ) = U0 +K[U ](λ) , U0 ≡
(
0
1

)
,

K[U ](λ) =

(
K1[U

(1) + U (2)](λ)

K2[U
(1) + U (2)](λ)

)
, (4.20)35



then U(λ) restri
ted to Dk satis�es (4.15).We de�ne the the Neumann series as follows
Un+1 = U0 +K[Un] , Un+1 =

n+1∑

i=0

Ki[U0] . (4.21)More expli
itly,
Kn[U0](λ) =

(∫ ∞k

λ
dµ1

∫ ∞k

µ1

dµ2 . . .

∫ ∞k

µn−1

dµn
−e2S(µ1,z)α(µ1) ×

α(µ1) ×
α(µ2)(1 − e2S(µ2,µ1)) . . . α(µn)(1− e2S(µn,µn−1))

α(µ2)(1 − e2S(µ2,µ1)) . . . α(µn)(1− e2S(µn,µn−1))

)
.Here the integration path γ belong to Γ(λ). For any γ ∈ Γ̃(λ) and any

n ≥ 1

∣∣∣Kn[U0]
(i)(λ)

∣∣∣≤ 1

2

∫ ∞k

λ

∫ ∞k

µ1

. . .

∫ ∞k

µn−1

n∏

i=1

|2α(µi)dµi|=
2n−1

n!

(∫

γ
dµ1|α(µ1)|

)n
,where Kn[U0]

(i) is the i-th 
omponent of Kn[U0]. Hen
e
|Kn[U ]i(λ)| ≤

1

2

1

n!
(2ρ(λ))n (4.22)Thus the sequen
e Un 
onverges in H and is a solution to (4.20); 
all Uits limit. Due to Lemma 4.9, U (1)(∞k±2) = 0.Let Ψk be the solution to (4.13) whose gauge transform is U restri
tedto Dk; The �rst 
omponent ψk of Ψk satis�es equation (4.12).From the gauge transform (4.14), we obtain

ψk(λ)

jk(λ)
− 1 = U1(λ) + U2(λ)− 1 ,

ψ′
k(λ)

jk(λ)
√
V (λ)

+ 1 = U1(λ)(1 −
V ′(λ)

4V (λ)
3
2

)− (U2(λ)− 1)(1 +
V ′(λ)

4V (λ)
3
2

) +

− V ′(λ)

4V (λ)
3
2

,The thesis follows from these formulas, inequality (4.22) and from thefa
t that U1(∞k±2) = 0.
36



Remark. The solution ψk(λ) of equation (2.1) des
ribed in Theorem 4.3may be extended from Dk to the whole 
omplex plane, sin
e the equation islinear with entire 
oe�
ients. The 
ontinuation is 
onstru
ted in the follow-ing Corollary.Corollary 4.1. For any λ ∈ C, λ not a turning point, we de�ne Γ(λ) as inDe�nition 4.6. Fixed any γ ∈ Γ(λ) and h a 
ontinuous fun
tion on γ, wede�ne the fun
tionals Ki[h](λ) as in equations (4.17) and (4.18). We de�nethe Neumann series as in equations (4.20) and (4.21), and we 
ontinue jkalong γ.Then then Neumann series 
onverges and we 
all U (1)(λ) and U (2)(λ)the �rst and se
ond 
omponent of its limit.Moreover, ψk(λ) =
(
U (1)(λ) + U (2)(λ)

)
jk(λ) solves equation (2.1) andfor any ε > 0

lim
|λ|→∞ , |argλ− 2πk

5 |< 3π
5
−ε

(
U (1)(λ) + U (2)(λ)

)
= 1The reader should noti
e that if λ /∈ Dk, then Γ̃(λ) is empty and we
annot estimate ψk(λ)

jk(λ)
.4.5 Proof of Lemma 3.6In this Se
tion we suppose to have �xed a solution y = y(z) of P-I and apole a of y. The Laurent expansion of y around a is as follows (see Lemma3.5)

y(z)=
1

(z − a)2
+
a(z − a)2

10
+

(z − a)3

6
+ b(z − a)4 + higher order ,for some b ∈ C.Here we denote ψk(λ; z) (see De�nition 2.2) the subdominant solution ofthe perturbed os
illator

d2ψ(λ)

dλ2
= Q(λ; y, y′, z)ψ(λ) , (4.23)

Q(λ; z) = 4λ3−2λz +2zy(z)−4y3(z)+y′2(z)+
y′(z)

λ− y(z)
+

3

4(λ− y(z))2
.(4.24)Similarly, ψk(λ; 2a, 28b) is the subdominant solution of the 
ubi
 os
illator

d2ψ(λ)

dλ2
=
(
4λ3 − 2aλ− 28b

)
ψ(λ) .In the present Se
tion we 
omplete the proof of Lemma 3.6. As wasshown in Chapter 3, it is su�
ient to show

lim
z→a

ψk+1(λ; z)

ψk(λ; z)
=
ψk+1(λ; 2a, 28b)

ψk(λ; 2a, 28b)
.37



This is the 
ontent of Lemma 4.5 below.To a
hieve our goal we use the expli
it 
onstru
tion of the subdominantsolutions by means of Neumann series of the some fun
tionals: we showthat, as z → a, the fun
tionals de�ning ψk(λ; z) 
onverge in norm to thefun
tionals de�ning ψk(λ; 2a, 28b).Preliminary Lemmas We summarize some property of the perturbedpotential, whi
h 
an be easily veri�ed using the Laurent expansion of y.Lemma 4.10. Let ε2 = 1
y(z) = (z − a)2 +O((z − a)6) then(i) Q(λ; z) has a double pole at λ = 1

ε2
. It is an apparent fu
hsian singu-larity for equation (4.23): the lo
al monodromy around it is −1.(ii) Q(λ; z) has two zeros at λ = 1

ε2 +O(ε2)(iii) Q(λ; z) = 4λ3 − 2(a+ ε)λ− 28b+ c(ε)− 2λε−1

λ−ε−2 +
3

4(λ−ε−2)2 , where c(ε)is a O(ε) 
onstant.Equation (4.23) is a perturbation of the 
ubi
 S
hrödinger equation (2.1)and the asymptoti
 behaviours of solutions to the two equations are very sim-ilar. Indeed the terms 4λ3 and−2zλ3 are the only relevant in the asymptoti
sof the subdominant solutions.More pre
isely, the equivalent of Corollary 4.1 in Lemma 4.4 is valid alsofor the perturbed S
hrödinger equation.De�nition 4.7. For any z, de�ne a 
ut from λ = y(z) to ∞ su
h that iteventually does not belong to the the angular se
tor ∣∣arg λ− 2πk
5

∣∣ ≤ 3π
5 .Fix λ∗ in the 
ut plane. Sk(λ; z) =

∫ λ
λ∗
√
Q(µ; z)dµ is well-de�ned for∣∣arg λ− 2kπ

5

∣∣ < 3π
5 and λ ≫ 0. Here the bran
h of √Q is 
hosen so that

ReSk(λ) → +∞ as |λ| → ∞ , argλ = 2πk
5 . We de�ne the "WKB fun
tions"

jk(λ; z) as in equation (4.5).For any λ in the 
ut plane, let Γ(λ) be the set of pie
ewise di�erentiable
urves γ : [0, 1] to the 
ut plane, γ(0) = λ, γ(1) = ∞, satisfying properties(2)(3) and (4) of De�nition 4.6.We de�ne α(λ; z), z 6= a as in equation (4.16), but repla
ing V (λ) with
Q(λ; z). For any γ ∈ Γ(λ), let H be the Bana
h spa
e of 
ontinuous fun
-tions on γ that have a �nite limit as t → 1. Formulae (4.17) and (4.18)de�ne two bounded fun
tionals on H. We 
all su
h fun
tionals K1(λ; z) and
K2(λ; z). K1(λ; a) and K2(λ; a) are de�ned similarly substituting Q(λ; z)with V (λ; 2a, 28b).Following the proof of Theorem 4.3, the reader 
an prove the following
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Lemma 4.11. Let λ belong to the 
ut plane, λ not a zero of Q(·; z). Fixedany γ ∈ Γ(λ), we de�ne the Neumann series as in equations (4.20) and(4.21), and we 
ontinue jk along γ.Then the Neumann series 
onverges and ψ̃k(λ) = (U1(λ) + U2(λ)) jk(λ)solves equation (4.23). Moreover, for any ε > 0

lim
|λ|→∞ , |argλ− 2πk

5 |< 3π
5
−ε

(
U (1)(λ) + U (2)(λ)

)
= 1Remark. We noti
e that if the 
uts are 
ontinuous in z, then ψ̃k(λ, z) =

c(z)ψk(λ; z), where ψk(λ) is the solution 
onstru
ted in Lemma 4.11 and c(z)is a bounded holomorphi
 fun
tion.Theorem 4.5.
lim
z→a

ψk+1(λ; z)

ψk(λ; z)
=
ψk+1(λ; 2a, 28b)

ψk(λ; 2a, 28b)
, uniformly on 
ompa
t subsets .Proof. To keep notation simple, we prove the pointwise 
onvergen
e; uniform
onvergen
e is a straightforward 
orollary of our proof, that we leave to thereader.Let λ be any point in the 
omplex plane whi
h is not a zero of V (λ; a, b).For any sequen
e εn 
onverging to zero, we 
hoose two �xed rays r1 and r2of di�erent argument ϕ1 and ϕ2, ∣∣ϕi − 2kπ

5

∣∣ < π
5 . We denote DR,ε a disk ofradius R with 
enter λ = y(a + ε) ≈ 1

ε2 and we split the sequen
e εn intotwo subsequen
es εin su
h that ri ∩DR,εin
= ∅ for any n big enough.For i = 1, 2, we 
hoose the 
uts de�ned in De�nition 4.7 in su
h a waythat there exists a di�erentiable 
urve γi : [0, 1] → C, γi(0) = λ, γi(1) = ∞with the following properties: (i)γi avoids the zeroes of Q(λ, εin) and a �xed,arbitrarily small, neighborhood of the zeroes of V (λ; 2a, 28b), (ii)γi does notinterse
t any 
ut, and (iii) γi eventually lies on ri.The proof of the thesis relies on the following estimates:

supλ∈C−DR,ε

∣∣∣λ−δ
∣∣∣ |Q(λ; a+ ε)− V (λ; 2a, 28b) | = O(ε2δ−3) , (4.25)

supλ∈C−DR,ε

∣∣∣λ−δ
∣∣∣ |Qλ(λ; a+ ε)− Vλ(λ; 2a, 28b) | = O(ε2δ−3) ,

supλ∈C−DR,ε

∣∣∣λ−δ
∣∣∣ |Qλλ(λ; a+ ε)− Vλλ(λ; 2a, 28b) | = O(ε2δ−3) .Due the above estimates it is easily seen that γi ∈ Γ(λ), ∀εin. Due toLemma 4.11 and Corollary 4.1, to prove the thesis it is su�
ient to showthat the fun
tionals K1(λ; a + εin) and K2(λ; a + εin) 
onverge in norm to

K1(λ; a) and K2(λ; a). We noti
e that the norm of the fun
tionals are justthe L1(γi) norm of their integral kernels.We �rst 
onsider the fun
tionals K2(λ; a + εin). Due to the above esti-mates
λ

7
2α(µ; a + εin) → λ

7
2α(µ; 2a, 28b), uniformly on γi([0, 1]) as n→ ∞ .39



Hen
e the sequen
e α(µ; a+εin) 
onverges in norm L1(γi) to α(µ; 2a, 28b)and the sequen
e K2(λ; a+ ein) 
onverges in operator norm to K2(λ; a).We 
onsider now the sequen
e K1(λ; a+ εin).To prove the 
onvergen
e of the above sequen
e of operators, it is su�-
ient to prove that
eSk(λ;a+ε

i
n)−Sk(µ;a+ε

i
n) → eSk(λ;2a,28b)−Sk(µ;2a,28b) ,uniformly on γi([0, 1]) � µ as n→ ∞.We �rst note that

eSk(λ;2a,28b)−Sk(µ;2a,28b) − eSk(λ;a+ε
i
n)−Sk(µ;a+ε

i
n) =

eSk(λ;2a,28b)−Sk(µ;2a,28b)
(
1− eg(µ;ε)

)
,

g(µ, ε) =

∫ µ

λ,γi

Q(ν, ε)− V (ν; a, 28b)√
Q(ν, ε) +

√
V (ν; 2a, 28b)

dν .Using estimate (4.25), it is easy to show that g(µ; ε) = f(ε)O(µδ), where
f(ε) → 0 as ε→ 0 and 0 < δ ≪ 1. Therefore the di�eren
e of the exponen-tial fun
tions 
onverges uniformly to 0.
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Chapter 5Poles of Intégrale TritronquéeThe aim of the present Chapter is to study the distribution of poles of the in-tégrale tritronquée using the WKB analysis of the 
ubi
 os
illator developedin Chapter 4.The reader should re
all from Chapter 3 that the intégrale tritronquée isthe unique solution of P-I with the following asymptoti
 behaviour at in�nity
y(z) ∼ −

√
z

6
, if | arg z| < 4π

5
.In Chapter 3, it was shown that the point a ∈ C is a pole of the tritron-quée solution if and only if there exists b ∈ C su
h that the followingS
hrödinger equation

d2ψ(λ)

dλ2
= V (λ; 2a, 28b)ψ(λ) , V (λ; a, b) = 4λ3 − aλ− b , (5.1)admits the simultaneous solutions of two di�erent quantization 
onditions,namely σ±2(2a, 28b) = 0.In Se
tion 4.2.3, we studied this system of quantization 
onditions usingthe WKB approximation. We showed that the WKB analogue of the sys-tem σ±2(2a, 28b) = 0 is a pair of Bohr-Sommerfeld quantization 
onditions(4.7,4.8)1, that we have 
alled Bohr-Sommerfeld-Boutroux (B-S-B) system.We rewrite it in the following equivalent form :
∮

a1

√
V (λ; 2a, 28b)dλ = iπ(2n − 1) , (5.2)∮

a−1

√
V (λ; 2a, 28b)dλ = −iπ(2m− 1) .Here m,n are positive natural numbers and the paths of integration areshown in �gure 5.1. It is natural to suppose that poles of intégrale tritronquée1if we make the 
hange of variable a → 2a, b → 28b41
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π
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a−1
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bran
h 
uts de�ning thesquare root of the potential
(320)

3π
5

− 3π
5Figure 5.1: Riemann surfa
e µ2 = V (λ; 2a, 28b)are in bije
tion with solution of B-S-B system. We are not yet able toprove this but we will prove (see Theorem 5.1 and 5.2 below) that poles areasymptoti
ally 
lose to solution of the B-S-B system.Let us introdu
e pre
isely our result.For any pair of quantum numbers there is one and only one solution to theBohr-Sommerfeld-Boutroux system; this is proven for example in [Kap03℄.Solutions of B-S-B system have naturally a multipli
ative stru
ture.De�nition 5.1. Let (a∗, b∗) be a solution of the B-S-B system with quantumnumbers n,m su
h that 2n − 1 and 2m − 1 are 
oprime. We 
all (a∗, b∗) aprimitive solution of the system and denote it (aq, bq), where q = 2n−1

2m−1 ∈ Q.Due to Lemma 4.6, we have that
(aqk, b

q
k) = ((2k + 1)

4
5 aq, (2k + 1)

6
5 bq), k ∈ N ,is another solution of the B-S-B system. We 
all it a des
endant solution.We 
all {(aqk, bqk)}k∈N the q-sequen
e of solutions.De�nition 5.2. Let D(a′,b′)

ǫ,δ = {|a− a′| < ε, |b− b′| < δ, ε, δ 6= 0} denote thepolydis
 
entered at (a′, b′).Our main result 
on
erning the poles of the intégrale tritronquée is thefollowingTheorem 5.1. Let ε, δ be arbitrary positive numbers. Let 1
5 < µ < 6

5 ,
−1

5 < ν < 4
5 , then it exists a K ∈ N∗ su
h that for any k ≥ K, insidethe polydis
 D

(aqk,b
q
k)

k−µε,k−νδ
there is one and only one solution of the system

σ±2(2a, 28b) = 0.Proof. The proof is in se
tion 5.2 below.42



As a 
orollary of above Theorem, we have the following asymptoti
 
har-a
terization of the lo
ation of poles of the intégrale tritronquée:Theorem 5.2. Let ε be an arbitrary positive number. If 1
5 < µ < 6

5 , then itexists K ∈ N∗ su
h that for any k ≥ K inside the dis
 ∣∣a− aqk
∣∣ < k−µε thereis one and only one pole of the intégrale tritronquée.5.1 Real PolesIn this se
tion, we 
ompute all the real solutions of system (5.2) and 
omparethem with some numeri
al results from [JK01℄. We note that the a

ura
y ofthe WKB method is astonishing also for small a and b (see Table 5.1 below).In the paper [JK01℄, the authors showed that the intégrale tritronquée hasno poles on the real positive axis. The real poles are a de
reasing sequen
eof negative numbers αn and some of them are evaluated numeri
ally in thesame paper.For the subset of real potentials, we have

∮

a1

√
V (λ; a, b)dλ =

∮

a−1

√
V (λ; a, b)dλ ,where stands for 
omplex 
onjugation.Therefore system (5.2) redu
es to one equation and the real poles oftritronquée are approximated by the 1-sequen
e of solution of the B-S-Bsystem (see De�nition 5.1). The real primitive solution is 
omputed numeri-
ally as a1 ∼= −2, 34, b1 ∼= −0, 064. Hen
e real solutions of the B-S-B systemare the following sequen
e

(a1k, b
1
k) = (−2, 34(2k + 1)

4
5 ,−0, 064(2k + 1)−

6
5 ), k ∈ N .After Theorem 5.1, above sequen
e approximates the sequen
e of realpoles of the intégrale tritronquée, if k is big enough. However, it turns outthat the approximation is very good already for the �rst real poles (a1, b1).In Table 5.1 below, we 
ompare the �rst two real solutions to system(5.2) with the numeri
al evaluation of the �rst two poles of the intégraletritronquée in [JK01℄.5.2 Proof of Theorem 5.1Multidimensional Rou
he Theorem The main te
hni
al tool of theproof is the following generalization of the 
lassi
al Rou
hé theorem.Theorem 5.3 ([AY83℄). Let D,E be bounded domains in Cn, D ⊂ E , andlet f(z), g(z) be holomorphi
 maps E → Cn su
h that

• f(z) 6= 0, ∀z ∈ ∂D, 43



WKB estimate Numeri
 [JK01℄ Error %
α1 −2, 34 −2, 38 1, 5

β1 −0, 064 −0, 062 2

α2 −5, 65 −5, 66 0, 2

β2 −0, 23 unknown unknownTable 5.1: Comparison between numeri
al and WKB evaluation of the �rsttwo real poles of the intégrale tritronquée.
• |g(z)| < |f(z)| , ∀z ∈ ∂D,then w(z) = f(z) + g(z) and f(z) have the same number (
ounted withmultipli
ities) of zeroes inside D. Here |f(z)| is any norm on Cn.A fun
tion whose zeroes are the pole of tritronquée solution Thereader should re
all the de�nition of k-th subdominant fun
tion ψk(λ; a, b)(see De�nition 2.2), of k-th asymptoti
 values wk(l,m) and of the relativeerrors ρkl (see De�nition 4.5).The reader should also remember that, if ψl and ψl+2 are linearly inde-pendent then wk−1(l, l + 2) = wk+1(l, l + 2) if and only if σk = 0.De�nition 5.3. Let E be the (open) subset of the (a, b) plane su
h that

ψ0(λ; a, b) and ψ±2(λ; a, b) are linearly independent (its 
omplement in the
(a, b) plane is the union of two smooth surfa
es [EG09a℄). On E we de�nethe following fun
tions

u2(a, b) =
w2(0,−2)

w−1(0,−2)
(5.3)

u2(a, b) =
w−2(0, 2)

w1(0, 2)
(5.4)

U(a, b) =

(
u2(a, b)− 1
u−2(a, b) − 1

)
. (5.5)All the fun
tions are well de�ned and holomorphi
. Indeed, due to WKBtheory we have that wl+1(l, l + 2) is always di�erent from 0 and ∞.The fundamental result of Chapter 3 is the following 
hara
terization ofthe poles of the intégrale tritronquée, whi
h is indeed equivalent to Theorem3.3Lemma 5.1. The point α ∈ C is a pole of the intégrale tritronquée if andonly if there exists β ∈ C su
h that (α, β) belongs to the domain of U and

U(2α, 28β) = 0. In other words ψ−1(λ; 2α, 28β) and ψ2(λ; 2α, 28β) are lin-early dependent and ψ1(λ; 2α, 28β) and ψ−2(λ; 2α, 28β) are linearly depen-dent. 44



We re
all from Chapter 3 that the 
omplex number β in previous lemma isthe 
oe�
ient of the quarti
 term in the Laurent expansion of the tritronquéesolution around α.The WKB Approximation of U We want to de�ne a fun
tion Ũ onthe spa
e of 
ubi
 potentials that approximates U . Then we 
ompare thezeroes of U and Ũ using Rou
he Theorem. However, due to the nature ofWKB approximation, we 
annot build su
h a fun
tion globally but only inneighborhoods of potential whose Stokes graph is of type "320" (see Figure5.2).
Stokes line   

"320"

λi: turning point
λ1

λ−1

3π
5

λ0

−π
5

π

π
5

− 3π
5

Σ0

Σ1

Σ2

Σ−2

Σ−1

Σk: Stokes se
tor

Figure 5.2: Graph "320": dots on the 
ir
le represents asymptoti
 dire
tionsin the 
omplex planeDe�nition 5.4. Let (a∗, b∗) be a point su
h that the Stokes graph of V (.; 2a∗, 28b∗)is of type "320". On a su�
iently small neighborhood of (a∗, b∗) we de�nethe following analyti
 fun
tions
χ±2(a, b) =

∮

c∓1

√
V (λ; 2a, 28b)dλ , (5.6)

ũ±2(a, b) = −eχ±2(a,b) , (5.7)
Ũ(a, b) =

(
ũ2(a, b)− 1
ũ−2(a, b) − 1

)
. (5.8)The 
y
les c±1 are depi
ted in Figure 1 and the bran
h of √V is 
hosensu
h that Re√V (λ) → +∞ as λ → ∞ along the positive semi-axis in the
ut plane.From above De�nition it is 
lear that the B-S-B system is equivalent tothe vanishing 
ondition of fun
tion Ũ .Lemma 5.2. The B-S-B system (5.2) system is equivalent to the equation

Ũ(a, b) = 0. 45



In [Kap03℄ the following lemma was proven.Lemma 5.3. For any pair of quantum numbers n,m ∈ N − 0 there existsone and only one solution of the B-S-B system.We 
an 
ompare the fun
tions U and Ũ de�ned above using Theorem 4.3and the 
omputations of Se
tion 4.2.3. Indeed, they imply the followingLemma 5.4. Let (a, b) be su
h that the Stokes graph is of type "320". Thereexists a neighborhood of (a, b) and two 
ontinuous positive fun
tions ρ±2 su
hthat χ±2 are holomorphi
 and
|ũ±2 − u±2| ≤

1

2
(e2ρ±2 − 1) . (5.9)Moreover if ρ±2 <

ln 3
2 then ψ0 and ψ±2 are linearly independent.To simplify the notation we have denoted ρ±2 what was denoted ρ0±2 inthe previous Chapter.Using 
lassi
al relations of the theory of ellipti
 fun
tions we have thefollowingLemma 5.5. The map Ũ de�ned in (5.8) is always lo
ally invertible (hen
eits zeroes are always simple) and

∂χ2

∂a
(a, b)

∂χ−2

∂b
(a, b)− ∂χ−2

∂a
(a, b)

∂χ2

∂b
(a, b) = −28πi .Proof. On the 
ompa
ti�ed ellipti
 
urve µ2 = V (λ; a, b), 
onsider the dif-ferentials ωa = −λdλ

µ and ωb = −dλ
µ .It is easily seen that

∂χ±2

∂a
(a, b) =

∮

c∓1

ωa ,
∂χ±2

∂b
(a, b) = 14

∮

c∓1

ωb .Moreover we have that
JŨ =

(
∂χ2

∂a
(a, b)

∂χ−2

∂b
(a, b)− ∂χ−2

∂a
(a, b)

∂χ2

∂b
(a, b)

)
ũ2ũ−2 ,where JŨ is the Ja
obian of the map Ũ .The statement of the lemma follows from the 
lassi
al Legendre relationbetween 
omplete ellipti
 periods of the �rst and se
ond kind [EMOT53℄.Our aim is to lo
ate the zeroes of U (the poles of the intégrale tritronquéeafter Theorem 5.1) knowing the lo
ation of zeroes of Ũ(the solutions of theB-S-B system). We want to �nd a neighborhood of a given solution of the B-S-B system inside whi
h there is one and only one zero of U . Due to estimate(5.9) and Rou
hé theorem, it is su�
ient to �nd a domain on whose boundarythe following inequality holds

1

2

(
e2ρ2 − 1

)
|u2|+

1

2

(
e2ρ−2 − 1

)
|u−2| < |1− ũ2|+ |1− ũ−2| . (5.10)46



S
aling Law In order to analyze the important inequality (5.10), we takeadvantage of the s
aling laws introdu
ed in Se
tion 4.3 (the "small parame-ter").Lemma 5.6. Let (a∗, b∗) be su
h that the Stokes graph is of type "320" and Ebe a neighborhood of (a∗, b∗) su
h that the estimates (5.9) are satis�ed. Then,for any real positive x the point (x2a∗, x3b∗) is su
h that the Stokes graph isof type "320" and in the neighborhood EX =
{
(x2a, x3b) : (a, b) ∈ E

} the es-timates (5.9) are satis�ed. Moreover for any (a, b) ∈ E the following s
alinglaws are valid
• χ±2(x

2a, x3b) = x
5
2χ±2(a, b).

• ∂(n+m)χ±2

∂an∂bm (x2a, x3b) = x
5−4n−6m

5
∂(n+m)χ±2

∂an∂bm (a, b).
• ρ±2(x

2a, x3b) = x−
5
2 ρ±2(a, b).Proof. It is a 
orollary of Lemma 4.6.Proof From Lemma 5.6 we 
an extra
t the leading behaviour of Ũ aroundsolutions of the B-S-B system.Lemma 5.7. Let z = (2k + 1)µ(a − aqk), c±2 = ∂χ±2

∂a (aq, bq), w = (2k +

1)ν(b− bqk), and d±2 =
∂χ±2

∂b (aq, bq). If µ > 1
5 and ν > −1

5 , then
ũ2(z,w) = 1 + c2(2k + 1)

1
5
−µz + d2(2k + 1)−

1
5
−νw +O((2k + 1)−γ

′
) ,(5.11)

ũ−2(z,w) = 1 + c−2(2k + 1)
1
5
−µz + d−2(2k + 1)−

1
5
−νw +O((2k + 1)−γ

′
) ,

γ′ > −1

5
+ µ, γ′ >

1

5
+ ν .Proof. It follows from Lemma 5.6.For 
onvenien
e of the reader, we re
all here the de�nition of polydis
De�nition. We denote D(a′,b′)

ǫ,δ = {|a− a′| < ε, |b− b′| < δ, ε, δ 6= 0} the poly-dis
 
entered at (a′, b′).Theorem 5.1 is a 
orollary of the followingLemma 5.8. Let ε, δ be arbitrary positive numbers. If 1
5 < µ < 6

5 , −1
5 <

ν < 4
5 , then there exists a K ∈ N∗ su
h that for any k ≥ K, U and Ũare well-de�ned and holomorphi
 on D(aqk,b

q
k)

k−µε,k−νδ
and the following inequalityholds true

∣∣∣U(a, b) − Ũ(a, b)
∣∣∣ <

∣∣∣Ũ(a, b)
∣∣∣ ,∀(a, b) ∈ ∂D(ak ,bk)

k−µε,k−νδ
. (5.12)47



Proof. The polydis
 D(aqk ,b
q
k)

k−µε,k−νδ
is the image under res
aling a→ (2k+1)

4
5 a,

b→ (2k+1)
6
5 b of a shrinking polydis
 
entered at (aq, bq); 
all it D̃k. Hen
edue to Lemma 5.4, for k ≥ K ′ D̃k is su
h that ρ±2 are bounded, χ±2 areholomorphi
 and the estimates (5.9) hold. Call ρ∗ the supremum of ρ±2 on

DK ′ . Due to s
aling property, for all k ≥ K ′ ρ±2 is bounded from above by
(2k + 1)−1ρ∗ on D(ak ,bk)

k−µε,k−νδ
; su
h a bound is eventually smaller than ln 3

2 .Then for a su�
iently large k, D(ak ,bk)
k−µε,k−νδ

is a subset of the domain of Uand inside it U and Ũ satisfy (5.9) and (5.11).We divide the boundary in two subsets: ∂D(aqk ,b
q
k)

k−µε,k−νδ
= D0 ∪D1,

D0 =
{
|a− aqk| = k−µε;

∣∣b− bqk
∣∣ ≤ k−νδ

}
,

D1 =
{
|a− ak| ≤ k−µε; |b− bk| = k−νδ

}
.Inequality (5.12) will be analyzed separately on D0 and D1.If |d2| ≤ |d−2|, denote d2 = d, d−2 = D, c = c2, C = c−2; in the opposite
ase |d2| > |d−2|, denote d−2 = d, d2 = D, c = c−2, C = c2. By the triangleinequality and expansion (5.11), we have that

∣∣∣Ũ(a, b)
∣∣∣ ≥ (2k + 1)

1
5
−µε

∣∣∣∣(c−
Cd

D
)

∣∣∣∣+ higher order terms , (a, b) ∈ D0.Similarly, if |c2| ≤ |c−2| denote d2 = d, d−2 = D, c = c2, C = c−2; in theopposite 
ase |c2| > |c−2|, denote d−2 = d, d2 = D, c = c−2, C = c2. By thetriangle inequality and expansion (5.11), we have that
∣∣∣Ũ(a, b)

∣∣∣ ≥ (2k + 1)−
1
5
−νδ

∣∣∣∣(d−
Dc

C
)

∣∣∣∣+ higher order terms , (a, b) ∈ D1.We observe that (c − Cd
D ) 6= 0 and (d − Dc

C ) 6= 0, sin
e (see Lemma 5.5)
c2d−2−c−2d2 = −28πi. By hypothesis −1 < 1

5−µ < 0 and −1 < −1
5−ν < 0.Conversely, ∣∣∣U(a, b) − Ũ(a, b)

∣∣∣ ≤ ρ∗
2k+1+ higher order terms, for all (a, b) ∈

D0 ∪D1.The Lemma is proven.Remark. Using the proof of Lemma 5.8, we 
an alternatively prove Theo-rem 5.1 invoking the Bana
h-Ca

ioppoli 
ontra
tion mapping prin
iple in-stead of the multidimensional Rou
hé theorem.
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Chapter 6Deformed Thermodynami
Bethe AnsatzIn Chapters 4 and 5 we have developed the 
omplex WKB method, in orderto solve approximately the monodromy problem of the 
ubi
 os
illator
d2ψ(λ)

dλ2
= V (λ; a, b)ψ(λ) , V (λ; a, b) = 4λ3 − aλ− b .The main purpose of the present Chapter is to introdu
e a novel in-strument of analysis, that we 
all Deformed Thermodynami
 Bethe Ansatz(Deformed TBA), to solve exa
tly the dire
t monodromy problem.The �rst breakthrough towards an exa
t evaluation of the monodromyproblem is the work of Dorey and Tateo [DT99℄: they analyze anharmoni
os
illators with a monomial potential λn − E (n not ne
essarily 3) via theThermodynami
 Bethe Ansatz and other nonlinear integral equations (
alledsometimes Destri - de Vega equations). Subsequently Bazhanov, Lukyanovand Zamolod
hikov generalized the Dorey-Tateo analysis to monomial poten-tials with a 
entrifugal term [BLZ01℄. In the present Chapter we generalizeDorey and Tateo approa
h to the general 
ubi
 potential.Here we summarize the main result of the present Chapter. Let us re
allfrom Chapter 2 the de�nition of the R fun
tions.

Rk : C2 → C , (6.1)
Rk(a, b) = (w1+k(f), w−2+k(f);w−1+k(f), w2+k(f)) .Here (a, b; c, d) = (a−c)(b−d)

(a−d)(b−c) is the 
ross ratios of four points on the sphere,
f = ϕ

χ with {ϕ,χ} an arbitrary basis of solutions of the 
ubi
 os
illator and
wk(f) is the k-th asymptoti
 value of f (see De�nition 2.5).They satisfy the following system of quadrati
 relations

Rk−2(a, b)Rk+2(a, b) = 1−Rk(a, b) , ∀k ∈ Z5 , (6.2)49



and, a

ording to Theorem 2.4, we have that σk(a, b) = iRk(a, b).Fix a ∈ C and denote εk(ϑ) = ln
(
−R0(e

−k 2πi
5 a, e

6ϑ
5 )
). Following the
onvention of Statisti
al Field Theory we 
all pseudo-energies the fun
tions

εk. In Theorem 6.2 below, we show that the pseudo-energies satisfy a non-linear nonlo
al Riemann-Hilbert problem, whi
h is equivalent (at least forsmall value of the parameter a) to the following system of nonlinear integralequations that we 
all Deformed Thermodynami
 Bethe Ansatz:
χl(σ) =

∫ +∞

−∞
ϕl(σ− σ′)Λl(σ

′)dσ′ , σ, σ′ ∈ R , l ∈ Z5 = {−2, . . . , 2} . (6.3)Here
Λl(σ) =

∑

k∈Z5

ei
2lkπ
5 Lk(σ) , Lk(σ) = ln

(
1 + e−εk(σ)

)
,

εk(σ)=
1

5

∑

l∈Z5

e−i
2lkπ
5 χl(σ) +

√
π
3Γ(1/3)

2
5
3Γ(11/6)

eσ+a

√
3πΓ(2/3)

4
2
3Γ(1/6)

e
σ
5
−i 2kπ

5 ,

ϕ0(σ) =

√
3

π

2 cosh(2σ)

1 + 2 cosh(2σ)
, ϕ1(σ) = −

√
3

π

e−
9
5
σ

1 + 2 cosh(2σ)

ϕ2(σ) = −
√
3

π

e−
3
5
σ

1 + 2 cosh(2σ)
, ϕ−1(σ) = ϕ1(−σ) , ϕ−2(σ) = ϕ2(−σ) .For a = 0 equations (6.3) redu
e to the Thermodynami
 Bethe Ansatz,introdu
ed by Zamolod
hikov [Zam90℄ to des
ribe the thermodynami
s ofthe 3-state Potts model and of the Lee-Yang model. We will dis
uss su
hredu
tion in Subse
tion 6.2.1.The Chapter is divided in two Se
tions. The �rst is devoted to theintrodu
tion of the Y fun
tions and of the Deformed Y -system. In the se
ondwe derive the Deformed TBA equations.6.1 Y-systemHere we introdu
e the Y-system (6.7), whi
h is a fundamental step in thederivation of the Deformed TBA.We begin with an observation due to Sibuya ([Sib75℄):Lemma 6.1. Let ω = ei

2π
5 . Then
Rk(ω

−1a, ωb) = Rk−2(a, b) (6.4)Proof. Denote ϕ(λ; a, b) a solution of (2.1) whose Cau
hy data do not de-pend on a, b. It is an entire fun
tion of three 
omplex variables with some50



remarkable properties. It is a simple 
al
ulation to verify that for any
k ∈ Z5 ϕ(ω

kλ;ω2ka, ω3kb) satis�es the same S
hrödinger equation (2.1). Fix
ϕ(λ; a, b), χ(λ; a, b) linearly independent solutions and de�ne the asymptoti
values

wk(a, b) = wk(
ϕ(λ; a, b)

χ(λ; a, b)
) ,

w̄k(a, b) = wk

(
ϕ(ωlλ;ω2la, ω3lb)

χ(ωlλ;ω2la, ω3lb)

)
.Obviously wk(ω2la, ω3lb) = w̄k−l(a, b). Choose l = 2 and use the de�nitionof the fun
tions R (see equation (6.1)) to obtain the thesis.Due to equations (6.2) and relations (6.4), the holomorphi
 fun
tions

Rk(a, b) satisfy the following system of fun
tional equations, �rst studied bySibuya [Sib75℄
Rk(ω

−1a, ωb)Rk(ωa, ω
−1b) = 1−Rk(a, b) , ∀k ∈ Z5. (6.5)We have 
olle
ted all the elements to introdu
e the important Y-fun
tionsand Y-system.We �x a ∈ C and de�ne

Yk(ϑ) = −R0(ω
−ka, e

6
5
ϑ) , k ∈ Z5 . (6.6)Sibuya's equation (6.5) is equivalent to the following system of fun
tionalequations, that we 
all Deformed Y-system:

Yk−1(ϑ − i
π

3
)Yk+1(ϑ+ i

π

3
) = 1 + Yk(ϑ) . (6.7)Remark. If a = 0, Yk = Y0,∀k and the system (6.7) redu
es to just oneequation, 
alled Y -system, whi
h was introdu
ed by Zamolod
hikov [Zam91℄in relation with the Lee-Yang and 3-state Potts models. Dorey and Tateo[DT99℄ studied the Zamolod
hikov Y -system in relation with the S
hrödingerequation with potential V (λ; 0, b) = 4λ3 − b.6.1.1 Analyti
 Properties of YkIn the following theorem we summarize the analyti
 properties of the Y-fun
tions. For all a and k, Yk(ϑ) is periodi
 with period i5π3 . Hen
e, fromnow on we restri
t it to the strip {|Imϑ| ≤ 5π
6

}.Theorem 6.1. (i) For any a ∈ C and k ∈ Z5, Yk is analyti
 and i5π3periodi
. If a is real then Yk(ϑ) = Y−k(ϑ), where stands for 
omplex
onjugation. 51



(ii) For any a ∈ C and k ∈ Z5, on the strip |Imϑ| ≤ π
2 − ε

∣∣∣∣
Yk(ϑ)

Ỹk(ϑ)
− 1

∣∣∣∣ = O(e−Reϑ), as Reϑ→ +∞ ,

Ỹk(ϑ) = exp
(
Aeϑ +Bae

ϑ
5
−i 2kπ

5

)
. (6.8)Here A =

√
π
3
Γ(1/3)

2
2
3 Γ(11/6)

and B =
√
3πΓ(2/3)

4
2
3 Γ(1/6)

.(iii) For any a ∈ C and any K ∈ R, Yk(ϑ) is bounded on Reϑ ≤ K. If
a = 0, limϑ→−∞ Yk(ϑ) =

1+
√
5

2 .(iv) If ei 2kπ5 a is real non negative then Yk(ϑ) = 0 implies Imϑ = ±5π
6 . If

a = 0 then Yk(ϑ) = −1 implies ϑ = ±iπ2(v) Fix ε > 0. If a is small enough, then for any k ∈ Z5, Yk(ϑ) 6= 0,−1for any ϑ ∈
{
|Imϑ| ≤ π

2 − ε
}.Proof. (i) Trivial.(ii) These "WKB-like" estimates 
an be derived from Chapter 4 or 
an befound in [Sib75℄. Due to Theorem 2.4, these "WKB-like" estimates areequivalent to those derived in [Shi05℄ Se
tion 4 for the Stokes multipli-ers.However, for 
onvenien
e of the reader we brie�y sket
h an alternativeproof here.Using the tools developed in Se
tions 4.2.1 and 4.3, it is easily shownthat the following asymptoti
 is valid

R0(a, x
6
5 eiφ) = − exp

{
x

∮ √
V (λ; ax−

4
5 , eiφ)dλ

}
(1 +O(x−1)) ,if x ≫ 0 and |φ| ≤ 3π

5 − ε. Here the integration is taken along a pathen
ir
ling the 
ut joining the roots λ± = e±i
2π
3
+φ

3 + O(x−
2
5 ) of the
ubi
 potential and the sign of the square root is 
hosen in su
h a waythat Re{∮ √V (λ; ax−

4
5 , eiφ)dλ

}
> 0 for x big enough.A straightforward 
omputation shows that

x

∮ √
V (λ; ax−

4
5 , eiφ) = xei

5φ
6

∮ √
4λ3 − 1dλ+

− x
1
5 ei

φ
6 a

2

∮
λ√

4λ3 − 1
dλ+O(x−

3
5 ) .If we let x 6

5 eiφ = e
6ϑ
5 we obtain the thesis.52



(iii) The boundedness follows dire
tly from the fa
t that Rk(a, b) is entirein (a, b) and, in parti
ular, analyti
 at b = 0. If a = b = 0, then forsymmetry reasons one 
an 
hoose ϕ,χ su
h that wk(ϕχ ) = ei
2kπ
5 . Thisimplies the thesis.(iv) The statement is equivalent to Theorem 2.2.(v) Sin
e Yk depends analyti
ally on the parameter a, it follows from (iv).6.2 Deformed TBAThis se
tion is devoted to the derivation of the Deformed Thermodynami
Bethe Ansatz equations (6.3) 1.In what follows we always make the followingAssumptions 6.1. We assume that there exists an ε > 0 su
h that(i) every bran
h of lnYk is holomorphi
 on |Imϑ| ≤ π

3 + ε, and boundedfor ϑ→ −∞. And(ii) every bran
h of ln (1 + 1
Yk
) is holomorphi
 on |Imϑ| ≤ +ε, and boundedfor ϑ→ −∞.From Theorem 6.1(iii, v) we know that the assumptions are valid if ais small enough. We brie�y dis
uss what happens if the assumptions fail inSubse
tion 6.2.2 below.We de�ne the following bounded analyti
 fun
tions on the physi
al strip

|Imϑ| ≤ π
3

εk(ϑ) = lnYk(ϑ), (6.9)
δk(ϑ) = εk(ϑ)−

√
π
3Γ(1/3)

2
2
3Γ(11/6)

eϑ − a

√
3πΓ(2/3)

4
2
3Γ(1/6)

e
ϑ
5
−i 2kπ

5 ,

Lk(ϑ) = ln(1 + e−εk(ϑ)) .Here the bran
hes of logarithms are �xed by requiring
lim

σ→+∞
δk(σ + iτ) = lim

σ→+∞
Lk(σ + iτ) = 0 , ∀ |τ | ≤ π

3
. (6.10)We remark that by Theorem 6.1(ii), this 
hoi
e is always possible.Due to the Y-system (6.7), the fun
tions δk satisfy the following nonlinearnonlo
al Riemann-Hilbert (R-H) problem

δk−1(ϑ− i
π

3
) + δk+1(ϑ+ i

π

3
)− δk(ϑ) = Lk(ϑ) , |Imϑ| ≤ ε . (6.11)1The reader who wants to repeat all the 
omputations below, should remember that

Pn−1
l=0 ei

2πl
n = 0. 53



Here the boundary 
onditions are given by asymptoti
s (6.10).The system (6.11) is Z5 invariant. Hen
e we diagonalize its linear part(the left hand side) by taking its dis
rete Fourier transform (also 
alledWannier transform):
χl(ϑ) =

∑

k∈Z5

ei
2klπ
5 δk(ϑ) , δk(ϑ) =

1

5

∑

l∈Z5

e−i
2klπ
5 χl(ϑ) , (6.12)

Λl(ϑ) =
∑

k∈Z5

ei
2lπ
5 Lk(ϑ) , Lk(ϑ) =

1

5

∑

l∈Z5

e−i
2klπ
5 Λl(ϑ) .The above de�ned fun
tions satisfy the following Riemann-Hilbert prob-lem

e−i
2lπ
5 χl(ϑ+ i

π

3
) + ei

2lπ
5 χl(ϑ− i

π

3
) − χl(ϑ) = Λl(ϑ) , (6.13)

lim
σ→+∞

χl(σ + iτ) = 0 , ∀ |τ | ≤ π

3
. (6.14)The system of fun
tional equation (6.13), may be rewritten in the 
on-venient form of a system of 
oupled integral equations (6.3).Theorem 6.2. If a is small enough, the fun
tions χl satisfy the DeformedThermodynami
 Bethe Ansatz

χl(σ) =

∫ +∞

−∞
ϕl(σ − σ′)Λl(σ

′)dσ′ , σ, σ′ ∈ R . (6.3)Here Λl are de�ned as in (6.9,6.12) and
ϕ0(σ) =

√
3

π

2 cosh(σ)

1 + 2 cosh(2σ)

ϕ1(σ) = −
√
3

π

e−
9
5
σ

1 + 2 cosh(2σ)

ϕ2(σ) = −
√
3

π

e−
3
5
σ

1 + 2 cosh(2σ)
(6.15)

ϕ−1(σ) = −
√
3

π

e
9
5
σ

1 + 2 cosh(2σ)

ϕ−2(σ) = −
√
3

π

e
3
5
σ

1 + 2 cosh(2σ)
.Proof. If a is small enough then the Assumptions 6.1 are valid. Hen
e thethesis follows from system (6.13) and the te
hni
al Lemma 6.2 below.54



Lemma 6.2. Let f : {|Imϑ| ≤ ε} → C be a bounded analyti
 fun
tion.Then for any l ∈ Z5 there exists a unique fun
tion F analyti
 and boundedon |Imϑ| ≤ π
3 + ε, su
h that

e−i
2πl
5 F (ϑ+ i

π

3
) + ei

2πl
5 F (ϑ− i

π

3
)− F (ϑ) = f(ϑ) ,∀ |Imϑ| ≤ ε .Moreover, F is expressed through the following integral transform

F (ϑ+ iτ) =

∫ +∞

−∞
ϕl(ϑ + iτ − ϑ′)f(ϑ′)dσ′ , ∀ |Imϑ| ≤ ε, |τ | ≤ π

3
, (6.16)provided |Im(ϑ + iτ − ϑ′)| < π

3 and the integration path belongs to the strip
|Imϑ′| ≤ ε. Here ϕl is de�ned by formula (6.15).Proof. Uniqueness: let F1, F2 be bounded solution of the fun
tional equation
e−i

2πl
5 Fj(ϑ + i

π

3
) + ei

2πl
5 Fj(ϑ − i

π

3
)− Fj(ϑ) = f(σ) , j = 1, 2, |Imϑ| ≤ ε .Their di�eren
e G = F1 − F2 satis�es

e−i
2πl
5 G(ϑ + i

π

3
) + ei

2πl
5 G(ϑ − i

π

3
)−G(ϑ) = 0 .Then G extends to an entire fun
tion su
h that G(ϑ + 2iπ) = ei

2πl
5 G(ϑ).Therefore G is bounded, hen
e a 
onstant. The only 
onstant satisfying thefun
tional relation is zero.Existen
e: one noti
es that if θ 6= ±inπ3 , n ∈ Z then

e−i
2πl
5 ϕl(θ + i

π

3
) + ei

2πl
5 ϕl(θ − i

π

3
)− ϕl(θ) = 0 , ∀l ∈ Z5 .Then a rather standard 
omputation shows that the fun
tion F de�nedthrough formula (6.16) satis�es all the desired properties.Remark. On
e the system of integral equations (6.3) is solved for σ ∈ R,one 
an use the same set of integral equations as expli
it formulas to extendthe fun
tions χl(θ) on |Imθ| ≤ π

3 . Then one 
an use the Y-system (6.7) toextend the Y fun
tions on the entire fundamental strip |Imϑ| ≤ 5π
6 .Remark. While the Y-system equations do not depend on the parameter

a (the 
oe�
ient of the linear term of the potential 4λ3 − aλ − b), on the
ontrary the Deformed TBA equations depend on it sin
e it enters expli
itelyinto the de�nition of fun
tions Λl.
55



6.2.1 The 
ase a = 0If a = 0 then δk = δ0, Lk = L0 for any k. Therefore, δ0 satisfy the singlefun
tional equation
δ0(ϑ− i

π

3
) + δ0(ϑ+ i

π

3
)− δ0(ϑ) = L0(ϑ) , |Imϑ| ≤ ε . (6.17)Similar reasoning as in Theorem 6.2 shows that δ0 satis�es the followingnonlinear integral equation (as it was �rstly dis
overed by Dorey and Tateo[DT99℄)

δ0(σ) =

∫ +∞

−∞
ϕ0(σ − σ′) ln (1 + exp (−(δ0(σ

′) +Aeσ
′
))dσ′, σ, σ′ ∈ R .(6.18)Here ϕ0 is de�ned as in formula (6.15) and A =

√
π
3
Γ(1/3)

2
2
3 Γ(11/6)

.Equation (6.18) is 
alled Thermodynami
 Bethe Ansatz and was intro-du
ed by Zamolod
hikov [Zam90℄ to des
ribe the Thermodynami
s of the3-state Potts and Lee-Yang models.6.2.2 Zeros of Y in the phys
al stripIn 
ase the Assumptions 6.1 are not satis�ed, the fun
tions εk and Lk (seeequation (6.9)) are not well-de�ned on the physi
al strip |Imϑ| ≤ π
3 . There-fore we 
annot transform the Y-system into a Riemann-Hilbert problem(6.11) using the same pro
edure shown above.However, one 
an get a well-posed Riemann-Hilbert problem for the fun
-tions Yk simply fa
torizing out their zeroes (this approa
h was developed forthe Thermodynami
 Bethe Ansatz in [BLZ97℄). In this way, one eventu-ally obtains a system of nonlinear integral equation similar to the DeformedTBA equation for the fun
tions Yk and an (essentially) algebrai
 system ofequations for the lo
ation of their zeroes.We postpone to a subsequent publi
ation the dis
ussion of these moregeneral Deformed TBA equations, be
ause we have not yet rea
hed a satis-fa
torily knowledge about the region in the a-plane where the Assumptions6.1 fail.6.3 The First Numeri
al ExperimentIn 
ollaboration with A. Moro we are studying the numeri
al solution of theDeformed TBA equations (6.3). The work is still in progress but we 
anpresent some preliminary results. In Figure 6.3 below, we show the Stokesmultiplier σ0(0, b) for |b| ≤ 15 as 
omputed by means of the numeri
al so-lution of the Thermodynami
 Bethe Ansatz equation (6.18). More pre
iselywe plot the fun
tion F (z) = ˛

˛

˛

1
1+iσ0(z)

˛

˛

˛

1+
˛

˛

˛

1
1+iσ0(z)

˛

˛

˛

, with z = |b| 56 ei arg b.56



The green plateau 
orresponds to the se
tor of the z plane where theStokes multiplier is exponentially small, the blue plateau to the se
tor wherethe Stokes multiplier is exponentially big (see Se
tion 7.2 for the expli
itformulas). The peaks 
orrespond to the zeroes of iσ0 + 1, whi
h are, due toequation (2.7), the zeroes of σ2 × σ−2. A

ording to Theorem 2.2 there aretwo in�nite series of su
h peaks along the rays with angles ±3π
5 . σ0 has anos
illatory behaviour along these two rays.In the next Chapter we present an alternative algorithm for 
omputingStokes multipliers and we 
ompare the results furnished by the two methods.

Figure 6.1: F (z) =

˛̨
˛ 1
1+iσ0(z)

˛̨
˛

1+
˛̨
˛ 1
1+iσ0(z)

˛̨
˛
, with z = |b| 56 ei arg b

57



Chapter 7A Numeri
al AlgorithmThe aim of the present Chapter is to introdu
e a new algorithm for 
omputingthe Stokes multipliers of the perturbed 
ubi
 os
illator
d2ψ(λ)

dλ2
= Q(λ; y, y′, z)ψ(λ) ,

Q(λ; y, y′, z) = 4λ3 − 2λz + 2zy − 4y3 + y′2 +
y′

λ− y
+

3

4(λ− y)2
.As it was shown in Lemma 4.10, in some limit relevant for studying thepoles of the solutions of P-I the perturbed 
ubi
 os
illator be
omes the 
ubi
os
illator

d2ψ(λ)

dλ2
= V (λ; a, b)ψ(λ) , V (λ; a, b) = 4λ3 − aλ− b .In the present Chapter we 
onsider the 
ubi
 os
illator as a parti
ular 
ase ofthe perturbed 
ubi
 os
illator. We set the 
onvention that the 
ubi
 os
illatoris the parti
ular 
ase of the perturbed 
ubi
 os
illator determined by y = ∞.As it was explained in Chapter 3, solutions of Painlevé-I give rise toisomonodromi
 deformations of the perturbed 
ubi
 os
illator. Hen
e, ouralgorithm gives a numeri
al solution of the dire
t monodromy problem for thePainleve �rst equation: given the Cau
hy data y(z), y′(z), z of a parti
ularsolution of P-I we are able to 
ompute the 
orresponding Stokes multipliers,even when z is a pole of that solution. In the latter 
ase we have to 
onsiderthe 
ubi
 os
illator with potential V (λ; 2α, 28β), where z = α is the poleand β is the 
oe�
ient of the (z −α)4 term in the Laurent expanion of y(z)(see Lemma 3.6).The Chapter is divided in two Se
tions. The �rst is devoted to thedes
ription of the Algorithm. In the se
ond we test our algorithm againstthe WKB predi
tion and the Deformed TBA equations.Remark. The algorithm we present here depends heavily on the theorydeveloped in Chapter 2 and espe
ially in Se
tion 2.2. We refer to that Chapterfor any de�nitions and theorems. 58



7.1 The AlgorithmIn Chapter 2 we have proved the following remarkable fa
ts
• Along any ray 
ontained in the Stokes Se
tor Sk, any solution f to theS
hwarzian di�erential equation (2.11) 
onverges super-exponentiallyto the asymptoti
 value wk(f). See Lemma 2.4 (iv).
• The Stokes multipliers of the perturbed 
ubi
 os
illator (2.2) are 
rossratios of the asymptoti
 values wk(f). See Theorem (2.4).
• Inside any 
losed subse
tor of Sk, f has a �nite number of poles. SeeLemma 2.6.Hen
e the Simple Algorithm for Computing Stokes Multipliers goes asfollows:1. Set k=-2.2. Fix arbitrary Cau
hy data of f : f(λ∗), f ′(λ∗), f ′′(λ∗), with the 
ondi-tions λ∗ 6= y, f ′(λ∗) 6= 0 1.3. Choose an angle α inside Sk, su
h that the singular point λ = y doesnot belong to the 
orresponding ray, i.e. α 6= arg y. De�ne t : R+∪0 →

C, t(x) = f(eiαx + λ∗). The fun
tion t satis�es the following Cau
hyproblem
{

{t(x), x} = e2iαQ(eiαx+ λ∗; y, y′, z),

t(0) = f(λ∗), t′(0) = eiαf ′(λ∗), t′′(0) = e2iαf ′′(λ∗) .
(7.1)4. Integrate equation (7.1) either dire
tly 2 or by linearization (see Re-mark below), and 
ompute wk(f) with the desired a

ura
y and pre-
ision.5. If k < 2, k++, return to point 3.6. Compute σl using formula (2.17) for all l ∈ Z5.Remark. As was shown in Lemma 2.3, any solution f of the S
hwarzianequation is the ratio of two solutions of the S
hrödinger equation. Hen
e, one
an solve the nonlinear Cau
hy problem (7.1) by solving two linear Cau
hyproblems.Whether the linearization is more e�
ient than the dire
t integration of(7.1) will not be investigated here.1Indeed, the derivative f ′(λ) of any solution of the S
hwarzian equation never vanishesif λ 6= λ∗2Integrating equation (7.1) dire
tly, one 
an hit a singularity x∗ of y. To 
ontinue thesolution past the pole, starting from x∗ − ε one 
an integrate the fun
tion ỹ = 1

y
, whi
hsatis�es the same S
hwarzian di�erential equation.59



7.2 The Se
ond Numeri
al ExperimentWe have implemented our algorithm using MATHEMATICA's ODE solverNDSOLVE. We have 
hosen to integrate equation (7.1) with steps of length0.1. We de
ided the integrator to stop at step n if
|t(0.1n)− t(0.1(n − 1))| < 10−13 and∣∣∣∣
t(0.1n)− t(0.1(n − 1))

t(0.1n)

∣∣∣∣ < 10−13 .To test our algorithm we 
omputed the Stokes multiplier σ0(b) of theequation
d2ψ(λ)

dλ2
= (4λ3 − b)ψ(λ) . (7.2)Using the WKB theory developed in Chapter 4, one 
an easily show thatthe Stokes multiplier σ0(b) has the following asymptoti
s

σ0(b) ∼





−ie
√

π
3 Γ(1/3)

22/3Γ(11/6)
b
5
6

, if b > 0

−2ie
−

√
πΓ(1/3)

2
5
3 Γ(11/6)

(−b) 56
cos

( √
π
3Γ(1/3)

25/3Γ(11/6)
(−b) 5

6

)
, if b < 0 .

(7.3)Our 
omputations (see Figure 1 and 2 below) shows 
learly that theWKB approximation is very e�
ient also for small value of the parameter b.We also tested our results against the numeri
al solution (due to A.Moro) of the Deformed Thermodynami
 Bethe Ansatz equations (DeformedTBA), whi
h has been introdu
ed in Chapter 6. The numeri
al solution ofthe Deformed TBA equations enable to a-priori set the absolute error in theevaluation of the Stokes multiplier σ0(b) res
aled with respe
t to the WKBexponentials (7.3). Hen
e, in the range of −20 ≤ b ≤ 20 we 
ould verify thatwe had 
omputed the res
aled σ0(b) with an absolute error less than 10−8.
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