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Chapter 1

Foreword

“Order out of chaos is our natural striving,
and when we achieve it we treasure it.”

The mathematical experience
By P. J. Davis, R. Hersh, E. Marchisotto

In the past years, dynamical systems have attracted a lot of attentions for their
ability to melt in one framework both the properties of the spaces in which they live
in and the properties of the transformations which define their development. In this
sense, from time to time, solutions came naturally by focusing on one or another of
these two elements. I believe that this in an unavoidable and lucky characteristic of
our field; in fact most methods yields best results once a “correct couple” is found;
moreover, at the end, by studying their interaction one knows more about them even
singularly. To some extent in dynamical system we are particularly lucky since we
can retain eye-naked visible properties (such as the undefined “chaotic” structures)
and at the same time we can hide all the machinery behind the scene.

From this point of view transfer operators have many characteristics which make
their study worthwhile. They bear connections with quantum chaos and statistical
mechanics, they have a deep connection with a class of zeta functions, and their
properties, obtained through spectral theory techniques, often reflect physical be-
haviors of the system, such as decay of correlations.

I structured this thesis to reflect this viewpoint.
The main purpose of the first chapter is to introduce the reader to the relation-

ship between continuous time hyperbolic systems and zeta functions and guide it
through the scattered bibliography available today. To do so I highlighted as much
as possible recent developments as well as connection with other fields.

The next chapter contains the following original result.

Theorem. For any Cr Anosov flow φt with r ≥ 2 on a d-dimensional manifold of
strictly negative curvature, the zeta function ζRuelle(z) is meromorphic in a region

<(z) > du ln(‖Dφ1‖∞)− ln(λ)
2 (r − 1)

1



2 1. Foreword

where λ is the coefficient of the Anosov splitting and du ≤ d is an integer.

As a corollary, one obtains that for a C∞ Anosov flow the Ruelle zeta function
is meromorphic in the entire complex plane. To prove our theorems one studies
directly the transfer operator on suitable Banach spaces of anisotropic currents and
resort to regularized traces of operators which are not of trace class.

In the last chapter I shortly introduced two research problems which I began to
investigate and will be developed during the next years.



Chapter 2

Survey: Zeta Functions and
Continuous Time Dynamics

2.1 A Continuous Time viewpoint

The idea of a survey on the relationship between continuous dynamical systems
and zeta functions arose in two different ways. First it was a necessity in the
preparation of my thesis, second, in several discussions, some colleagues complained
about the lack of an overall references on the topic. In fact this paper addresses
the questions: “What is it known about dynamical zeta function for a continuous
dynamical system? And what it is not known?” In the last twenty years there
were some advances in understanding the theory of zeta functions as invariants of
dynamical systems; while the search for a unifying framework is still not concluded,
we can now recognize few familiar patterns.

Rather then being exhaustive in every possible direction, I will try to guide the
reader, assuming is either a mathematician or a physicist from the classical results to
the most recent ones. In doing so I tried to outline, when possible, the connection
between the dynamical viewpoint and other fields such as hyperbolic geometry,
noncommutative geometry, number theory and quantum chaos. At this stage I
want to remark that while this survey is not the first one to outline the relationship
between dynamical systems and zeta functions, it is perhaps the first one to take
firmly the continuous dynamic viewpoint. In fact if the reader is interested in the
discrete case, he can read through the many excellent introductions available (for
example [6], [7] or [8]) and the references contained therein. Going back to this
survey, its viewpoint allows me to highlight precisely phenomena which cannot be
seen in the other context, since typically the dynamics in the flow direction is neither
expanding nor contracting.

The statements of the theorems includes the necessary, even if sometimes techni-
cal, conditions. For what concerns the proof, I omitted most of them, but sometimes
I included a rough outline of the papers, so that a casual reader could appreciate the
elegance of the ideas, while those who are already acquainted with the techniques

3



4 2. Survey: Zeta Functions and Continuous Time Dynamics

can use this survey as a reference to original papers. On the other side I included,
where possible, examples of how zeta functions were used to solve, with a reason-
able approximation, problems arising from semiclassical analysis. In such context
the use of dynamical zeta functions has been quite successful, since its zeroes are
directly related to underlying physical phenomena. For example, in the study of
how a wave scatters around an obstacle one wants to compute the resonances, and
this turn out to be directly related to the zeroes of dynamical zeta functions. Some
ideas, like looking at averages on phase space as sums over a reasonable set of peri-
odic orbits, are exploited in many different situations, and are recurring “leitmotiv”
in the following.

In many settings, I will show that the properties of the dynamical zeta functions
in considerations become crucial to understand the evolution of densities in the
chosen space, i.e. to understand the “chaotic evolution” of the system. The next
sections are arranged in chronological order. Also within each section I tried to
follow a chronological order, though at some point I did not respect it to show the
links between ideas. The needed definitions are introduced along the way, following
or preceding the discussion of results.

2.2 The framework and the early days
Before moving to the core matter I need to “state the obvious” and setup a bit of
notation. As said before, this survey is about continuous dynamical systems that
is, an action of R on X a compact metric space, we will denote our flows by φt.
The attention here is restricted to metric spaces to simplify the presentation, but
in some occasions one could relax such hypothesis. Throughout the following τ will
be an orbit and τp be the prime orbit associated to it. Moreover λ(τ) indicates the
length of a orbit, and µ(τ) is its multiplicity with respect to its prime orbit so that
λ(τ) = µ(τ)λ(τp). We will use T to indicate the set of orbits and Tp to indicate
the set of prime orbits, γ will be reserved to closed geodesics. Moreover f̂ is used
for the Fourier transform, and C > 0 is a running constant, in particular it could
change value even within the same sentence.

In 1956 Selberg [72] produced a cornerstone of the relationship between the
objects we are interested in. He proved that for a surface of constant negative
curvature one has the following striking theorem

Theorem 2.2.1 (Selberg [72]). Let h : C → C be a suitable test function such
that h(s) = h(−s), h(s) is holomorphic in a strip =(s) ≤ 1

2 + ε for ε > 0 and
|h(s)| ≤ a(1 + |s|2)−1−ε for some a > 0. Then

∞∑

j=0
h(ρj) = Area(M)

4π

∫ ∞

−∞
h(ρ) tanh(πρ)ρdρ+

∑

γ∈Tp

∞∑

n=1

λ(γ)n̂λ(γ)
2 sinh(nλ(γ)/2) (2.2.1)

where ρj are the eigenvalues of the Laplacian (see Marklof [45] for a neat introduc-
tion to the trace formula). This result is achieved by first identifying γ ∈ TP with



2.2 The framework and the early days 5

certain conjugacy class in Γ/H2 where Γ is a Fuchsian group, thus the requirement
on constant curvature and the inability (so far) to generalize the theorem. The for-
mula above is the starting point to prove that ζSelberg is meromorphic in the entire
complex plane.

ζSelberg =
∏

γ

∞∏

k=0

(
1− e−(s+k)λ(γ)

)
(2.2.2)

In fact Selberg was able to show more: each element ∏∞k=0
(
1− e−(s+k)λ(τp)

)
has

zeroes precisely at s = 1
2 + iν 2π

λ(γ) with m ∈ N, ν ∈ Z and their multiplicities can be
computed exactly. Moreover he proved the following
Theorem 2.2.2 (Selberg [72]). ζSelberg can be analytically extended to an entire
function on the whole C. Moreover it satisfies the following functional equation

ζSelberg(s) = ζSelberg(s− 1) exp
(∫ s− 1

2

0
u tan(πu)du

)

He was able to do so by following a pattern which has been fruitful later on
in many different situations. First of all he tried to study the trace of R(z) =
(∆− zI)−1, where ∆ is the Laplacian of the surface. However the test functions h,
with the properties required by the statement of the theorem, do not behave well
with respect to such trace: in fact he was forced to construct an approximated (but
regularized) resolvent which is in trace class. Note that constructing an approximate
trace or an approximate resolvent will always be a fundamental step in many of the
theorems which we will encounter.

Ten years later, the properties of the dynamical zeta functions were discussed
again in the seminal paper of Smale [74] where he asked if given an isolated, compact,
hyperbolic set for a flow on a manifold M , one could find a meromorphic extension
of ζSelberg once the closed geodesics are replaced by closed orbits. In such case he
found that
Theorem 2.2.3 (Smale-Narasimhan [74]). Let φt be a suspension of f : M → M ,
where f is Anosov diffeomorphism with an associated rational Artin-Mazur zeta
function. Then Selberg Zeta (for closed orbits) is meromorphic in an half plane.

This theorem is cited here as an example of reduction from continuous time
dynamics to discrete time dynamics, then the argument relies on counting fixed
points and then using Lefschetz trace formula. This reduction is not always possible
since one has to keep in mind the Anosov alternative [3], which says that either an
Anosov flow has strong stable and strong unstable manifold everywhere dense or
the flow is a suspension of an Anosov diffeomorphism by a constant roof function.
The most studied example of Anosov flow is the geodesic flow on a surface.

In his 1970 thesis, Margulis finds the following asymptotic estimates
Theorem 2.2.4 (Margulis [44]). Given a geodesic flow on a surface of negative
curvature one has for C > 0 and L > 0

{τ ∈ T : λ(τ) < L} ∼ eCL

CL
.
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While Margulis did not openly state so, this implies that there is always an
half-plane of convergence. Note that he obtained up to a constant, the correct
asymptotic estimate, while Sinai [73], few years before, obtained distinct upper and
lower bound for such estimate.

At this stage we recall that an Anosov flow is a flow such that there exists a
Dφt-invariant continuous splitting TM = E0⊕Es⊕Eu, constants C > 0 and λ > 0,
such that for t ≥ 0, E0 is the one-dimensional subspace tangent to the flow and

‖Dφt(v)‖ ≤ C‖v‖e−λt if t ≥ 0, v ∈ Es
‖Dφ−t(v)‖ ≤ C‖v‖e−λt if t ≥ 0, v ∈ Eu.

A major breakthrough in studying dynamical zeta functions was obtained by
Ruelle [65] who introduced the zeta which bears his name after choosing orbits as
characters. That is

ζRuelle =
∏

τp

(
1− e−sλ(τp)

)−1
(2.2.3)

Recall that by real analytic function in a neighborhood of a point we mean that in
such neighborhood the function is infinitely many time differentiable and the Taylor
expansion of f(x) converges to f(x). Thus, a real-analytic manifold is a manifold
such that the charts are real-analytic and a real-analytic foliation is a foliation such
that the map from each leaf to Rn is real-analytic. Ruelle obtained the following

Theorem 2.2.5 (Ruelle [65]). Let φt be a real analytic Anosov flow on a real an-
alytic manifold such that the stable and unstable manifolds form real-analytic folia-
tions. Then ζRuelle extends meromorphically to the whole complex plane. Moreover
is the quotient between two entire functions d1, d2 such that |di(z)− 1| ≤ e−C<(z).

Note that whenever ζRuelle and ζSelberg are both defined we have

ζRuelle = ζSelberg(s)
ζSelberg(s+ 1) ; ζSelberg =

∞∏

k=0
ζRuelle(s+ k) (2.2.4)

To prove his result Ruelle introduced suitable Markov partitions (on how to code an
hyperbolic flow in symbols see [13]), then he constructed dynamical determinants
which can be formally defined as

dl(z) = exp


−

∑

τ

1
µ(τ)

tr
(
∧l(Dτφ)

)
e−zλ(τ)

det (1−Dτφ)


 (2.2.5)

Then he shows (here lies one big novelty) that the properties of (3.2.1) can be
deduced from those of a “transfer operator”.

Definition 2.2.6. Let g : M → R a continuous “weight” function. Let f be a
function in a suitable Banach space. Then the Ruelle transfer operator is defined
as

Lt,gf(x) =
∑

φt(y)=x
eg(y)f(y)
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To understand one of the main ideas behind transfer operators, one should
consider the definition above as a “formal one”, and then struggle to find suitable
spaces on which such operator is well-behaved. The following equation is the key
of the paper, and of many of the works which followed this approach

ζRuelle(z) =
(dimM)−1∏

l=0
dl(z)(−1)l+1

=
(dimM)−1∏

l=0
exp


−

∑

τ∈T

1
µ(τ)

tr
(
∧l(Dhypφλ(τ))

)
λ(τ)ne−zλ(τ)

det
(
1−Dhypφλ(τ)

)




=
(dimM)−1∏

l=0
exp (−Trace(R(z)))

(2.2.6)

where R(z) is the resolvent of the operator Lt,g. Note here that we wrote Trace,
since, a priori, one cannot use the standard trace of a finite rank linear operator.
In fact one has some freedom at this stage, either one constructs a family of ap-
proximated resolvents Rε(z) or one can construct an approximation of the trace.
Moreover, note the presence of tr

(
∧l(Dτφ)

)
and of the weight det(I−Dτφ). Thus,

with respect to the definition of the transfer operator above, along the calculations
one is forced to use spaces of forms and to choose a suitable weight. The spectral
properties of L(l)

t are obtained through Grothendieck theory of nuclear operators,
and then are translated to the dynamical determinants dl(z).

On the other hand, while many people struggled to prove meromorphic exten-
sions of such functions, Gallavotti [29] constructed a suspension flow such that ζRuelle
associated to it has an essential singularity in a negative neighborhood of the origin.
He does so by first considering symbolic dynamics, specifically a full one sided shift.
Then he constructs a suitable roof function inspired by a Fisher potential (for more
details and the droplet model see [25]) of regularity r 6= ∞. For such system, one
can explicitly perform calculations on the associated zeta functions and find that
the constructed mixing Axiom A flow does not have a meromorphic extension to
the entire complex plane.

2.3 Middle age
The years between 1983 and 1990 were very important and produced a serious of
results about zeta functions. The techniques which became available at the time
were related to a better understanding of Markov partitions, and the analysis of the
spectrum of Lt on Hölder functions. I will go rather fast on a remarkable series of
results obtained by Parry and Pollicott in this time frame (either independently or
as joint work) since the interested reader can already find an optimal presentation
of all such results in the monograph [53], written by the authors themselves.

Nevertheless a good starting point for this section is [52], where Parry and
Pollicott show that if a subshift of finite type is weak mixing then one has a non-
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zero analytic extension to <(s) ≥ 1 except for a simple pole at s = 1. Here they
are able to show that if one begins with a weakly mixing flows then one obtains a
prime orbit theorem, that is the number of prime orbits of length less then a given
L > 0 are asymptotically ehL/hL where h is the topological entropy. Recall that

Definition 2.3.1. Let X be a nonempty compact metric space and T a continuous
map. A set A ⊆ X is said to be (n, ε)-separated, if for all x, y ∈ A with x 6= y
the d(T ix, T iy) ≥ ε for some i < n. Let ω(n, ε) be the maximal cardinality of a
(n, ε)-separated set in X. The topological entropy is defined as

htop(T ) = lim
ε→0

lim sup
n→∞

log(ω(n, ε))
n

.

For a discussion on equivalent definitions of topological entropy see Bowen [11].
Note that this result is both a refinement (here the constant is exactly the topological
entropy) and a generalization of that of Margulis cited before. Moreover note that
with the result above allows one to have another equivalent definition of topological
entropy as exactly the constant which satisfies that inequality. This feature can, as
matter of fact, be exploited in the context of zeta functions to actually compute the
topological entropy.

One can also find a more precise result about spatial distribution. In fact one
finds that given a test function f , and with respect to the measure of maximal
entropy (for the definition and the relationship with topological entropy see [44]
and references therein) then we have for x→∞

∑

λ(τ)≤x

∫

τ
fdm ∼ ehx

h

∫
fdm (2.3.1)

One more example of ζRuelle which has an essential singularity around z = 0 was
given by Pollicott in [57]. He constructed a flow starting from a full two symbols
shift by choosing an opportune roof function based on

f(x) =
{
− log p if x = 1
− log q if x = 2

For such system He computed explicitly that ζRuelle has poles at pz + qz = 1.
Following the study of the zeroes and of the poles of the zeta functions one would like
to highlight the interconnection between such entities and the correlation spectrum.

In the same year Ruelle [66] constructed a flow which is mixing but not ex-
ponentially mixing. He did so by constructing a suspension flow starting from an
Anosov diffeomorphism encoded by symbolic dynamic as usual. The key ingredient
is to choose as a roof function for the suspension two different values for the two
symbols. That, in turns, gives only a mixing property. The zeta function for such
a system is computed and its zeroes and poles satisfy the equation eλ0z + eλ1z = 1
where λ0, λ1 are the values chosen for the roof function.
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Settled the fact that not all hyperbolic flows mix exponentially fast, that is, in
our language, that there can be a pole arbitrarily close to 0 one still aims to find
instances of such behaviour. Recall that φt topologically weak mixing if restricted to
a basic set Λ there is a > 0 and a non-trivial function f such that f(φt(x)) = eiaf(x).
In this sense we have the following theorems

Theorem 2.3.2 (Pollicott [58]). Given a weak-mixing Anosov flow, if ζRuelle has
an analytic extension to a domain <(z) > h − ε except for a pole at z = h then
ρ(t)→ 0 exponentially fast for every Hölder continuous function.

Moreover we obtain that if φt is topologically weak mixing then there are no
other poles on the line <(s) = 1. On the other hand if φt is not topologically weak
mixing then it has poles at s = 1 + iak, k ∈ Z and ζRuelle has a meromorphic
extension to C with periodicity s = (s+ iak), for k ∈ Z .

Here we recall that, roughly speaking, an Axiom A flow is a flow such that the
nonwandering set Ω(φ) is hyperbolic and the periodic orbits of φ are dense in Ω(φ).

Theorem 2.3.3 (Pollicott [59]). Let φt be an Axiom A flow of topological entropy
h and contraction coefficient λ. Then ζRuelle is meromorphic on the half plane
<(s) > h − C for an explicit constant C = C(h, λ). Moreover ζRuelle has a simple
zero at s = 1 and has zeros and poles determined by a family of transfer operators.

The proof of this result follows a scheme which was well established at the time.
Pollicott showed that the spectrum of Lt is quasi-compact on the space of Hölder
continuous functions, then constructed a suspended flow and concluded encoding
an Axiom A through symbolic dynamics. Again in the monograph [53] all the
details are nicely included. At the same time Ruelle kept studying the poles of the
correlation function, and called the poles of the Fourier transform resonances. To
make it clearer we have to give some definition. Given C+1 flow we can define the
correlation function for two observables f, g in some reasonable class as

ρt(x) =
∫ ∞

0
f(φt(x))g(x)d(µ) (2.3.2)

Then one can define its Fourier Transform to be

ρ̂(ω) =
∫ +∞

−∞
eiωtρ(t)dt (2.3.3)

He showed in [67] that ρ̂ is meromorphic in a strip |=ω| < δ. The poles of ρ̂
are called resonances and their residues can be understood as some special Gibbs
distribution. From now on we will talk about mixing properties in the following
sense. If ρt(x)→ 0 for t→∞ we say that the flow is mixing. on the other hand if
for α ∈ (0, 1) exists Cα > 0 and σα > 0 such that |ρt(x)| ≤ ‖f‖α‖g‖αe−σαt we say
that the flow is exponentially mixing (again, coherently with the definition of the
transfer operator one has to find some reasonable norm ‖ · ‖α ).

In 1986 Fried published two papers. He relaxed a little the requirement on
analyticity and obtained the following theorem.
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Theorem 2.3.4 (Fried [27]). Let φt be a real analytic Anosov flow on a real analytic
manifold such that the unstable manifolds form a real-analytic foliation. Then ζRuelle
extends meromorphically to the whole complex plane.

This result was used in the same year to connect geodesic flows and torsion. He
shows ([26]) that the value of ζRuelle(0) is equivalent to the value of torsion (either
Reidemeister or Ray-Singer, since they are known to be equivalent) for a closed
oriented hyperbolic manifold.

In the same year Tangerman [80] showed by using heat kernel that if one begins
with σ : M →M a continuous expanding map and construct an opportune semiflow
with cross-section M and return time r(x) , one finds that

Theorem 2.3.5. If (M,σ, r) are of class Ck with a k large with respect to the
dimension of M then ζRuelle is meromorphic in

D(ζRuelle) =
{
s|eP (s) ≤ δk/3d

deg σ

}

where λ is the expansion coefficient of σ and P is the pressure.

Note that the requirement on regularity steams from the fact that the foliations
must be Ck. Tangerman also uses Ruelle’s approach through forms by constructing
suitable exteriors operators and shows that these operator, once normalized, can be
recollected through a product formula.

In [60] Pollicott improves his previous results, here Theorem 2.3.3, and shows
that the extension is analytical and not just meromorphic in the same region, i.e.
<(z) > h − δ. This is obtained by showing that Lt does not allow a sequence of
poles which accumulates near the eigenvalue one but distinct of one.

In the case of expanding maps, which trivially extends to expanding semi-flows,
in [68] Ruelle improved Tangerman estimates by introducing functions close in spirit
to Fredholm determinant (but with finite radius of convergence). With this ap-
proach Ruelle shows that if one starts with f, r ∈ C(k,α)1 where f : M → M is an
expanding map and r : M → R+ then one can construct a semiflow by obviously
suspending f with respect to r. Ruelle’s result says that zeta function associ-
ated to the semiflow admits a meromorphic extension to the half-plane <(s) > η
where η is smaller than the topological entropy and is the unique number such that
P (f,−η ·r) = log θ−(k+α) where P is the topological pressure and θ is the expansion
coefficient. In the same year, it was shown by Baladi [5] that the results of Ruelle
are optimal in the expanding case.

While some authors focused on the relationship between ζRuelle and the phys-
ical properties of the system, some other tried to understand better its algebraic
structure.

Sarnak [71] and Voros [83] in two independent papers, showed that how one can
decompose the ζSelberg into a product formula over its zeroes, as it is usually done

1C(k,α) being the class of function k-times differentiable such that the k-th derivative has Hölder
exponent α.
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in number theory with the Hadamard product for the ζRiemann, provided that we
consider the spectrum of the Laplacian on a surface of constant negative curvature.
In the development of such formulas the main ingredients are the realization of
a functional determinant, which encodes the spectrum of the Laplacian, and the
employment of Barnes double gamma function.

These results add to the expected properties of ζSelberg, and one might argue that
the study of the regularity of the factors of ζSelberg might be easier. Moreover they
might provide insight in how to generalize a Selberg trace in the case of non-constant
curvature.

In the next year Pollicott, following Parry, slightly modified the definition of
ζRuelle and studied the properties of

ζ(s) =
∏

τ∈Tp
1− e−sλu(τ)

where one replaces the least period with the expansion along the unstable manifold
around the flow. He obtains that

Theorem 2.3.6 (Pollicott [61]). Let φt : Λ → Λ be a smooth Axiom A flow re-
stricted to an attractor Λ, for which the unstable bundle is one-dimensional; then
the zeta function above has a meromorphic extension to the entire complex plane.

One finds an interesting application of zeta functions in a joint paper by Katok,
Knieper, Pollicott and Weiss ([40]). There ζRuelle it is used to show that if one has
a real analytic Anosov flow and a real analytic perturbation of it, then also the
topological entropy varies in a real analytic sense. This is achieved by carefully
studying the dependence of the poles of ζRuelle under the action of an external
parameter. Next we need to recall the following definitions. On a real analytic
manifold for a real analytic Anosov flow let Eu(x) = limt→0

1
t log Jac(Dxφt|Eux ) be

the expansion coefficient. Let µ be the SRB measure i.e. the unique φt-invariant
probability measure µ such that there is a set of positive Lebesgue measure such
that for every continuous observable ψ one has

µ(ψ) = lim
t→∞

1
t

∫ t

0
ψ(φt(x))dt

(see [88] for an introduction to SRB measures and reference therein). Then h(φ, µ) =∫
Eu(x)dµ(x) is the metric entropy. In this setup, Pollicott showed in [62] following

the same scheme of studying dependence from an external parameter, that the
metric entropy varies in a real analytic manner.

On a different direction, Mayer develops further the algebraic side of the prob-
lem, in particular we find that given the Gauss map G(x) = x−1 mod 1 on the
unit interval and the geodesic flow of a modular surface i.e. the surface of constant
negative curvature constructed from a modular group one has the following striking
theorem
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Theorem 2.3.7 (Mayer [47]). ζSelberg for the geodesic flow related to the modular
group PSL(2,Z) can be written as ζSelberg(z) = det(1−Lz) det(1 +Lz) with Lz the
transfer operator of the Gauss map. Moreover ζSelberg is meromorphic in the entire
complex plane with (possibly removable) singularities at the points zk = (1 − k)/2,
for k ∈ N.

The importance of studying generalization of zeta functions, such as L-functions
it’s clear in the paper of Katsuda and Sunada [41]. In fact, one construct a dynamical
L-function associated to a unitary character χ : H1(X,Z)→ U(1) as

L(s, χ) =
∏

τp

(
1− χ([τp]e−sλ(τp)

)−1
(2.3.4)

Given this definition, which ties the orbits to be in a specific homology class, Kat-
suda and Sunada prove an equidistribution theorem on orbits, as one is used to see
with primes, by carefully studying the location of poles. First they study the poles
located near the real axis by the means of perturbation theory, then they study the
location of zeroes or poles on and near the line of topological entropy. In this way
they can estimate the number of orbits in an homology class.

Zeta functions, as said before have also been investigated in other context. One
situations where they have proven to be quite successful is in the study of energy
levels of billiards. The eigenenergies of such systems are often calculated through
the boundary element method. In [31] Harayama and Shudo proved that one can
define a zeta function of the type of ζSelberg and that the zeroes of such function
encode the eigenenergies of the system. Their proof is constructive, in the sense that
the zeta function is actually derived from the boundary element method. Thus,
one is allowed to think of zeta functions as a good tool to numerically compute
eigenenergies, since the actual value of the eigenenergies can be computed with
some accuracy even by valuating a small number of orbits.

In a series of paper Ikawa ([34] ,[35] ,[36], [37] and references therein) studied the
relationship between poles of the scattering matrix and zeroes of a dynamical zeta
function for perturbed symbolic flows. Here the main concern is the study of periodic
rays i.e. periodic trajectories which involve a number of bounces on several strictly
convex bodies. Ikawa shows that one can define a suitable dynamical determinants
and shows that gives rises to a “correct” zeta function which has zeroes at the poles
of the scattering matrix.

Our interest in this paper also comes from the fact that, in this situation as
well as in many other, the usual det(I − A)−1 in the expression of the dynamical
determinant, thus also in any trace formula, is substituted by det(I −A)−1/2. This
fact, which is often present in the “semiclassical” systems, is of its own interest and
tell us that, in understanding dynamical zeta functions, one should not constrain
oneself to study transfer operators with a unique weight, even when one restricts
himself to the symbolic setting.

Next I want to mention the work of Cvitanović and Eckhardt [18]. There they
look at the power spectra i.e. the resonances of the auto-correlation for generic
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smooth flows and show that also in such setting the zeta functions can be used
to carry on such computation. In the semiclassical sense Cvitanović and Vattay
([19]) construct a family of multiplicative evolution operators for which the trace is
meaningful and that can be extended meromorphically. They introduce a functional
determinant which is expected to be entire for Anosov flows. In fact they computed
Ruelle resonances for a family of scattering systems and found that such resonances
were better located through the use of dynamical determinants then it would be
with the Guitzwiller Trace formula.

They refrain from constructing an ad hoc zeta function, instead they show nu-
merically that the zeroes of such determinant correspond to those of the Gutzwiller-
Voros zeta function (as in [84]). There, roughly, one looks at a zeta function as a
regularized functional determinant. For example, Voros shows that ζSelberg in the
case of surfaces can be factored into the product of two functional determinants,
one related to the Laplacian of the sphere and one to the Laplacian of the surface
itself.

2.4 Modern age
In [69] Rugh studied a real analytic axiom A flow on a 3-dimensional real ana-
lytic manifold (along with a 2-dimensional diffeomorphism on a surface). By using
Markov partitions he constructed a Fredholm determinant and showed that there
is a cancellation effect so that ζSelberg is entire on the whole C. That is if h(s) is
a complex valued function i.e. a weight, analytic on its hyperbolic set Λ, then one
has

ζSelberg
−1(s) = exp


−

∑

m∈N

1
m

∑

τ∈Tp

emh

| det
(
1−Dτφ−mλ(τ)

)
|




This result was later generalized to arbitrary dimension by [28] by using a mixture of
techniques on negatively curve real analytic manifold and adapted Markov partition.
Grouped together we find that
Theorem 2.4.1 (Rugh [69], Fried [28]). Let φt be a real analytic Anosov flow on a
real analytic three dimensional manifold. Then ζRuelle extends meromorphically to
the whole complex plane.

Following the idea of exploiting analytic flows, and the results of Rugh and
Fried, in [70] Morgado proves a stronger version of the theorem which relates the
torsion with the zeroes of the zeta function already obtained by Fried. With this
new approach he is able to get rid of the requirement of the extra regularity on the
foliations.
Theorem 2.4.2 (Morgado [70] , Fried [26]). Let φt be an analytic transitive Anosov
flow on an orientable closed 3-manifold M . Let ρ : π1(M) → U(n) be an acyclic
representation. Suppose there is a periodic orbit τ such that 1 and the holonomy
of τ are not eigenvalues of ρ(τ). Then the L-function is regular at the origin and
Torsionρ(M) = |Lφ,ρ(0)|.
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While the abstract framework of studying transfer operators for suitable sym-
bolic dynamics through Markov partition had already been exploited at the time,
zeta functions have been kept under investigation for their role in more physical
framework.

Recall that given Ki disjoint compact subsets of R3 with smooth boundary and
given Ω .= R \ (∪iKi) one can consider reflections as the usual geometrical optics.
Let M = Ω× S2 for φt. This dispersing billiard flow is the typical model to which
the result of the following papers apply.

With respect to such construction, Dahlqvist [20] approximates the zeta func-
tions by determinants with different weights and shows that for such family the trace
can be dominated by isolated zeroes or by the continuous spectra. He also notes
that there is a phase transition between exponential decay and polynomial decay
(reflected by the properties of the zeta functions) for different values of the largest
eigenvalue of the weighted operator. Such approach seems numerically stable, he
uses this approximation of the zeta functions to compute topological entropy (recall
the remark after definition 2.3.1) and the method seems adaptable to compute other
interesting features, such as Lyapunov exponents or rate of decay of correlations.
In the same setting Petkov ([54]) studied analytic singularities of dynamical zeta
functions. He showed that the properties of the semiclassical zeta function near
the line of absolute convergence are similar to the properties of the ζRiemann

−1 near
<(s) = 1.

In this sense, Pollner and Vattay [64] begin by observing that is difficult to
compute topological pressure of a dynamical system by first finding an explicit
Markov partition. This problem can be avoided by recurring to transfer operators
and showing that its largest eigenvalue is directly related to the topological pressure.
Thus one is able to compute such pressure by summing over a reasonable number
of orbits.

Recall that the topological pressure is the leading zero of

ζ(z, s)−1 =
∏

τ∈Tp

(
1− ezλ(τ)

Λs

)

where Λ is the largest eigenvalue of Dφt|τ . Note that for s = 0 we recover the
topological entropy, for s = 1 it is the escape rate for open systems and its related
to the metric entropy. This approach allows them to see resonances which were
hidden, if one had to use the Gutzwiller Trace formula. Thus again we see that the
zeroes of zeta functions are intimately related to the properties of the system.

Wirzba and Henseler ([87]) analyze the flow of a scattering particle. and high-
lights relationship between zeta-functions based on semiclassical matrices and the
quantum mechanical counterpart. The zeta functions can be decomposed into the
product of distinct determinants, some of them collect the incoherent data of the
scattering while the others take into consideration the “smooth” scattering problem.
Here again one is led to approximate a determinant by an expansion through trace
class operators.
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In 1998, Chernov ([17]) showed in a remarkable paper, that the rate of mixing
for Anosov flow is, at worst, stretched exponentially. Dolgopyat, as Chernov before
him, did not translate his breakthrough papers (for example [22] [23] [24]) into the
language of dynamical zeta functions. However even if Dolgopyat does not state so
his results can be translated in the language of ζRuelle. In fact his results prove that
ζRuelle is analytic in the half plane to the right of the topological pressure (except for
the pole of at the topological pressure) for C2+ε weak-mixing Anosov flow with C1

stable and unstable foliations. In proving decay of correlations for C∞ weak-mixing
flows, Dolgopyat obtains that the opportunely weighted zeta function is analytic
(except as usual for the point of topological pressure) in a region |<(z) − htop| ≤
|=(z)|−c for some c > 0. That is, there is a small strip free of zeroes at the left of
the half plane of convergence. Moreover, the work of Dolgopyat has been directly
implemented by Pollicott and Sharp ([48], [49]) to improve the result of Margulis
and Parry and Pollicott by estimating the error term, obtaining that

Theorem 2.4.3. Let φt : M →M be a weak-mixing transitive Anosov flow. Then
there exists δ > 0 such that

π(L) = ehT

hT

(
1 +O

( 1
T δ

))

In fact the proofs of this result relies on precise estimates on the location of the
poles of ζRuelle through the means of Dolgopyat calculations.

In Naud [50], one finds that for an open billiard flow in R3 there is a generic
Diophantine condition which grants an analytic extension of ζ on a strip to the left
of entropy of width polynomially decreasing. He define two generic determinants

ZD(s) =
∑

τ∈T
(−1)mτ λ(τp)e−sλ(τ)

| det(I − Pτ )| 12

Z0(s) =
∞∑

m=1

∑

τp∈T
(−1)mrτλ(τp)e−sλ(τp)+δtau

where mτ are the number of reflections, rτ = 0 if λ(τp) has an even number of
reflections, 0 otherwise and δτ = −1

2 log(e1e2) where e1 and e2 are eigenvalues of
Pτ . He defines a dynamical zeta close in spirit to ζRuelle such that Z0(s) = −ζ ′(s) To
show meromorphic continuation of such zeta one then introduces symbolic dynamics
into the billiard flow along with an irrationality condition.

Definition 2.4.4. An irrational number x ∈ R is Diophantine if there exist ν > 0
and M > 0 such that for all (p, q) ∈ Z× N∗ we have

∣∣∣x− p
q

∣∣∣ > M
q2+ν .

Theorem 2.4.5. Assume φt has two primitive orbits τp,1 and τp,2 such that λ(τp,1)
λ(τp,2)

is a Diophantine number. Then there exist C, ρ > 0 such that ZD has an analytic
continuation up to the domain {σ + it ∈ C : |t| ≥ 1, xc − C

|t|ρ ≤ σ ≤ xc}.
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The condition on the orbits is met with ease since can be deduced if we have
three obstacles such that d1,2/d1,3 is Diophantine. Here one estimate the resolvent
of the transfer operator using the regularity of the Gibbs measure, following the
same method of Dolgopyat ([22]). Since the resolvent acts naturally on S1 then one
uses the irrationality condition to prove that (ξI − Lt) is invertible.

In the same time frame, and along the same line of reasoning, one finds Stoyanov
[77] who studies billiard flows in R3 with a visibility condition. In such a case by
using a Dolgopyat estimates they are able to prove exponential decay of correlations
for Holder functions. They prove their results through the use of horocycle foliations,
and requiring them to be smooth jointly non-integrable. In this framework they get
a meromorphic continuation of the dynamical zeta function derived from the billiard
upon <(s) < htop − ε.

In a series of a papers T. Harayama, A. Shudo and S. Tasaki ([79],[32]) studied
zeta functions in semiclassical terms for strongly chaotic billiards. Continuing and
improving the work presented in ([31]), it is possible to define a Fredholm determi-
nant starting from the boundary element method. Here the authors are able to show
that if one chooses the symbolic dynamic for the flow in a opportune manner, than
it is possible to show that such Fredholm determinant agrees completely with the
zeta function defined by Gutzwiller-Voros. Moreover their enquiry shows that, in
some cases, there is a substantial difference between the classical and semiclassical
weight in the resonances uncovered. Numerically the nice computability properties
of such determinant are presented for the case of a concave completely asymmetric
triangle billiard.

One more example of zeta functions which are not meromorphic come from Buzzi
[16]. He studies ζRuelle for a random map i.e. for a family of maps fω with ω ∈ Ω
where (Ω,P) it’s a probability space. Thus one is left to study random orbits. In
fact he proves even more, that ζRuelle cannot be extended outside a disk of obvious
convergence, thus it does not define poles. Moreover, Lyapunov exponents can’t be
determined almost surely for the series defining ζRuelle.

2.5 State of the Art
Following the specialization along the years, at the present moment there are mainly
two line of investigations, one of them regards billiards and their power spectra, the
other one regards distributions and homology classes for orbits.

For what concerns a more physical point of view and billiards we start from the
work of Baillif. There the role of zeta functions is highlighted in [4] where one can
see that it is possible to consider, in some weak sense, the zeta function directly as
a power series of orbits, as the inverse of the determinant of the kneading matrix
(up to a polynomial function) by using results of Kitaev on kneading matrices.

Moreover the Casimir effect, that is the attractive or repulsive effect observed
when two neutral metallic plates are pulled very close to each other, can be com-
puted from quantum-mechanical billiard-type framework [86] hence its strength
can be deduced from the appropriate zeta-functions built starting from suitable dy-
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namical determinants as it is been done before. One in fact find a suitable trace
which only highlights the physically interesting eigenvalues (around an infrared
wavelength) and shows that the operator can be approximated for such a trace.
They show that in principle one could apply such calculations to any length of given
billiards, though good results are obtained only for medium to large separations of
scatterers.

Next I want to mention that in Petkov and Stoyanov ([55]) it is possible to find
an estimate on equidistribution of lengths of periodic orbits in no-eclipse billiards
on the plane. No-eclipse billiards are billiards where the the convex hull of any two
scatterers has empty intersection with any other scatterer. The billiard defined in
this way has many nicer properties. The approach of Petkov and Stoyanov relies
on the same arguments of Pollicott and Sharp, which we will discussed at a later
stage.

Last, for what concerns physical billiards, Stoyanov [78] takes the ideas of Ikawa
and he is able to show that on R3, under suitable hypothesis on the scatterers, the
semiclassical dynamical zeta function shows an infinite number of poles on a strip
near the real axis.

Anantharaman [1] uses a dynamical zeta to construct an asymptotic expansion
of the functions which counts closed geodesics (under cohomological constraint on
surfaces of negative curvature), they are able to do so by using the result of Dol-
gopyat and Chernov-Dolgopyat on standard pairs. The strategy there offers one of
the few examples where the properties of zeta functions are used to obtain results
on the orbits rather than the other way around.

Theorem 2.5.1. Given a manifold M such that dimM = 3 and an Anosov flow on
it. Suppose moreover that the characteristic foliations are of class C1 and uniformly
jointly non integrable. Then there are analytic functions cn for n 6= 0 in D×Rd×R
such that for all n ∈ N we have

π(ξ, α, δ, T ) = eTH(ξT )−〈uT |α〉

T d/2+1

(
c0(ξT , δ) +

N∑

k=i

ck(ξT , α, δ
T k

+O(T 1−n)
)

(2.5.1)

Note that the requirements of foliations are coherent with the Anosov alternative
in the sense that if the characteristic foliations are jointly integrable then the flow
is a suspension of an Anosov diffeomorphism and is not topologically mixing. The
strategy of the proof it involves mainly two ingredient. First of all the regularity
of the foliations cannot be thrown away, and one has to ensure the regularity of
the partitions as Dolgopyat does. Then a zeta function is introduced naturally
as the inverse of the Laplace transform both for λ(τ) − T and for the homology
class of τ . Then the transfer operator is defined and it is shown that suitably
|Z −∑k Lk| ≤ eθ. Hence by proving properties of the transfer operator one can
then estimate the number of orbits and then obtain the required results.

The first paper on Anosov flows where one finds exponential decay of correlation,
without requiring the extraregularity of foliations, restricts the attention to contact
Anosov flow. This result can be found in Liverani ([42]). He builds on the work of
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Dolgopyat, and uses techniques which exploit the existence of invariant dynamical
cones, so he is able to study the transfer operator without passing to the usual
Bowen symbolic coding. Thus again with respect to zeta functions we obtain a
small strip free of zeroes at the left of the half plane of convergence. This approach
has been used again by the same author ([15]) where for generic Anosov flows one
can bound the essential spectrum of the transfer operator according to the regularity
of the flow, shrinking it to zero for smooth flows.

One more application of the work of Dolgopyat is given by Pollicott and Sharp
[63]. Here again the cancellation of oscillatory integrals plays a remarkable role in
proving estimates concerning the distribution on the lengths of closed geodesic on
a compact surface of negative curvature. In fact if one consider the fundamental
group of the surface and its generators, one can write for each closed geodesic an
element of the fundamental group conjugated to it. In their paper they prove that
given two geodesic which are close in the fundamental group (that is they both have
a conjugated element which is the product of the same number of generators ) then
there is an equidistribution theorem with respect to their difference in length.

One important result is that contained in [2] where the authors are able for
a compact hyperbolic surface to show that given eingenfunctions of the Laplacian
there is relation between Wigner distributions and Patterson-Sullivan distributions
i.e. residues of weighted dynamical zeta functions. In fact they show that such
distributions are asymptotically the same, in the region where they are both defined,
on any line parallel to the imaginary axis. Note that from this viewpoint it seems
that invariance under the reasonable wave group can be interpreted as invariance
under the geodesic flow.

Going back to directly studying the transfer operator I would like to mention
two works by Tsujii([81], [82]). In the first one he considers suspension semi-flows of
angle-multiplying maps and in the latter contact Anosov Flows. In both framework
he is able to construct suitable anisotropic Sobolev spaces which for which one can
find optimal bounds for the essential spectral radius of the transfer operator.

Last from the theoretical point of view I want to mention the recent work of
Naud ([51]). Here the fundamental theorem says that one can find infinitely many
resonances for (ρ̂) in a strip {−2h − ε ≤ <(z) ≤ 0} for real analytic suspension
semiflows over uniformly expanding real-analytic map of the interval. Moreover one
has that (ρ̂) extends meromorphically to the whole complex plane.

I don’t think that at this point I need to give any other motivation to persuade
the reader of the general interest of such questions. Nevertheless I would like to
conclude this survey by the following “extraordinary path”. Alain Connes in “Non-
commutative Geometry and the Riemann zeta function” suggests that one could use
a suitable transfer operator to study the action of an opportune “Riemann flow”.
In fact, in his context he is able to define a suitable trace, similar to what we used
so far which coherently relies on what we called dynamical determinant. Next he
guesses that if we could find a replacement for the standard Selberg trace formula
for such Riemann flow, we could probably be on the right track to reformulate the
Riemann hypothesis in dynamical terms.



Chapter 3

Anosov flows and Dynamical
Zeta Functions

3.1 Introduction
In the theory of dynamical zeta functions Selberg defined for a surface of constant
curvature κ = −1 the following zeta function

ζSelberg(z) =
∏

γ

∞∏

n=0

(
1− e−(z+n)l(γ)

)
, z ∈ C (3.1.1)

where we denote by l(γ) the length of a closed geodesic γ. After noticing that it
converges to a non-zero analytic function on the half-plane Re(z) > 1, he showed
that ζSelberg has an analytic extension to the entire complex plane, using the trace
formula which bears his name [72]. He showed that the zeros of ζSelberg encode the
spectral properties of the surface, in the sense that they correspond to eigenvalues
of the Laplacian (λn ∈ Sp(−∆)) and thus can be extracted from the information
provided by the geodesics, their lengths and their distribution. While this formula-
tion of a dynamical zeta function, which arose in the context of a surface of constant
curvature, can be generalized, there are few results, since Selberg’s methods are not
directly exploitable, partly due to the lack of a suitable trace formula.

In 1976, Ruelle [65] proposed a dynamical version, in which the Selberg closed
geodesics were replaced by the closed orbits of an Anosov flow φt : M →M , where
M is a C∞, d-dimensional compact manifold. We recall that an Anosov flow is a flow
such that there exists a Dφt-invariant continuous splitting TM = E0⊕Es⊕Eu and
a constant λ > 0, such that for t ≥ 0, E0 is the one-dimensional subspace tangent
to the flow and1

‖Dφt(v)‖ ≤ ‖v‖e−λt if t ≥ 0, v ∈ Es
‖Dφ−t(v)‖ ≤ ‖v‖e−λt if t ≥ 0, v ∈ Eu.
‖Dφt(v)‖ = ‖v‖ if t ∈ R, v ∈ Ec

(3.1.2)

1The usual definition allows for a constant C on the right hand side of the equations, yet one
can find a Riemannian metric in which C = 1 by the Mather’s construction [46, 65].

19
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For such a flow the zeta function took the form

ζRuelle(z) =
∏

τ∈Tp

(
1− e−zλ(τ)

)−1
, z ∈ C (3.1.3)

where Tp denotes the set of prime2 orbits and λ(τ) denotes the period (length)
a closed orbit τ . Note that ζRuelle converges to a well defined non-zero analytic
function for <(z) > htop, where htop denotes the topological entropy as in [13]. It
is easy to see that we can relate the Ruelle and Selberg zeta functions by

ζRuelle(z) = ζSelberg(z + 1)/ζSelberg(z)

when they are both defined. The basic example being geodesic flows on manifold
of constant curvature, which are special cases of mixing Anosov flows. Note that,
whenever they are both defined, it is possible to reconstruct Selberg’s zeta function
from Ruelle’s through the identity

ζSelberg(z) =
∞∏

i=0
ζRuelle(z + i)−1.

Explicitly, if <(z) > −(n− htop) then

ζSelberg(z) = ζSelberg(z + n)
n−1∏

i=0
ζRuelle(z + i)−1

so that regularity results for one translate to the other. Moreover, we can write
ζSelberg in terms of a sum

ζSelberg(z) = exp
(
−
∑

τ∈T

∞∑

m=1

1
m

e−zmλ(τ)

1− e−mλ(τ)

)
.

However, Ruelle’s definition of a dynamical zeta function is more attractive to us,
since it resembles closer the Riemann zeta function

ζRiemann(z) =
∏

p prime

(
1− p−z)−1

and allows us to expect properties shared by most zeta functions, such as extension
to the whole C, existence of functional equations and tight localization of zeros. To
begin such project for ζRuelle we have that

ζRuelle(z) =
∏

τ∈Tp

(
1− e−zλ(τ))−1 = exp


∑

τ∈Tp

∞∑

m=1

1
m
e−zmλ(τ)




= exp
(∑

τ∈T

1
µ(τ)e

−zλ(τ)
)
,

(3.1.4)

2An orbit τ is a closed curve parametrized with respect to the arch length i.e. τ : [0,∞)→M .
A prime orbit τp is the restriction such that τp

.= τ |[0,λ(τ)] is one-to-one with its image. The
support of τ is indicated by supp(τ) and its the image of τ .



3.2 Statement of Results 21

where µ(τ) is the multiplicity of the associated orbit τ (as in Ruelle [65] and Bowen
[13]) and T is the whole set of periodic orbits on M .

In the very special case of Anosov flows with real analytic stable and unstable
foliations, Ruelle already showed that his zeta function has a meromorphic extension
to C; this result was generalized by Fried ([27],[28]) still assuming strong regularity
conditions on the foliations, particularly analyticity of unstable foliations.

The structure of the paper is as follow: in section 3.2 we will develop the proof of
the main statement assuming few lemmas which will be proved later; in section 3.3,
“Cones and Banach spaces”, we construct the spaces on which our operators we will
act; in section 3.4, “Transfer operators and Resolvents”, we prove our estimates on
the operator; in section 3.5 “Extending the determinants” we produce a relationship
between our operator and a sum over the orbits of the considered flow; last, in section
3.6, “Linearity of extended determinants” we show that our operators behave, with
respect to the standard trace, like linear operators.

3.2 Statement of Results
Our main result is as follow:

Theorem 3.2.1. For any Cr Anosov flow φt with r ≥ 2, the zeta function ζRuelle(z)
is meromorphic in a region

<(z) > du ln(‖Dφ1‖∞)− ln(λ)
2 (r − 1)

where λ is the coefficient of the Anosov splitting and du ≤ d is an integer.

Note that du is given precisely by equation (3.3.7) in the next section. Moreover
it is well known that ζRuelle(z) is analytic and non zero for <(z) ≥ h(φ) apart for a
single pole at z = h(φ), [53, Page 143].3 Hence we have the following corollaries

Corollary 3.2.2. For any C∞ Anosov flow the zeta function ζRuelle(z) is mero-
morphic in the entire complex plane, moreover it is analytic and non zero for
<(z) ≥ h(φ) apart for a single pole at z = h(φ).

Corollary 3.2.3. ζRuelle(z) and ζSelberg(z) are meromorphic in the entire complex
plane for any smooth flow on a compact manifold with variable strictly negative
sectional curvatures.

In our proof we will use dynamical determinants, as it has been done already
starting from Ruelle [65], which arise naturally in the dynamical context and are
formally of the general form

d`(z) = exp


−

∑

τ∈T

1
µ(τ)

tr
(
∧`(Dhypφλ(τ))

)
e−zλ(τ)

det
(
1−Dhypφλ(τ)

)


 . (3.2.1)

3By h(φ) we mean the topological entropy of the flow.
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The above quantity is well defined if <(z) is large enough where the symbolDhypφλ(τ)
indicates, in some orthonormal base, a (d− 1) dimensional matrix associated to the
flow on a local transverse section to the orbit τ at the time λ(τ) (see equation (3.4.16)
for a precise definition and properties). That is we are considering Poincaré maps
and we will show that the quantities we are interested in depend only on the orbit.
We denote by ∧`A the matrix associated to the action of A on the standard `-th
exterior product.

As a direct consequence of the linear algebra identity, for n× n matrices

det(1−A) =
n∑

`=0
(−1)` tr(∧`A) (3.2.2)

(see [85] for more details) one obtains from (3.1.4), (3.2.1) and (3.2.2) a product
formula à la Atiyah-Bott

ζRuelle(z) =
(dimM)−1∏

`=0
d`(z)(−1)`+1

. (3.2.3)

Thus Theorem 3.2.1 follows by the analogous statement on the dynamical determi-
nants d`(z). To prove that d`(z) is meromorphic we will proceed in the following
roundabout manner. First of all we define the following more general object.

Definition 3.2.4. For w sufficiently small, let

d̃`(w, z)
.= exp


−

∞∑

n=1

wn

n!
∑

τ∈T

1
µ(τ)

tr
(
∧`(Dhypφλ(τ))

)
λ(τ)ne−zλ(τ)

det
(
1−Dhypφλ(τ)

)


 (3.2.4)

which converges trivially for |w| sufficiently small and <(z) sufficiently large. Then
we establish a relation between d̃`(w, z) and d`(z) by the following lemma

Lemma 3.2.5. Let 0 ≤ ` ≤ d − 1, ξ, z ∈ C, <(z) sufficiently large and |ξ − z|
sufficiently small. Then we can write

d̃`(ξ − z, ξ) = d`(z)
d`(ξ)

. (3.2.5)

Proof. By a direct calculation we can see that

d̃`(ξ − z, ξ) = exp


−

∞∑

n=1

(ξ − z)n
n!

∑

τ∈T

1
µ(τ)

tr
(
∧`(Dhypφλ(τ))

)
λ(τ)ne−ξλ(τ)

det
(
1−Dhypφλ(τ)

)




= exp


−

∑

τ∈T

1
µ(τ)

tr
(
∧`(Dhypφλ(τ))

)

det
(
1−Dhypφλ(τ)

)
(
e−zλ(τ) − e−ξλ(τ)

)

 = d`(z)

d`(ξ)

since the sum runs from n = 1.
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Hence if all the d̃`(ξ0−z, ξ0) are meromorphic in z for some ξ0, then the meromorphic
extension of ζRuelle is given by the product formula (3.2.3). More precisely, Theorem
3.2.1 follows from the following.

Proposition 3.2.6. For any Cr Anosov flow, with r ≥ 2, the function d̃`(w, z) is
meromorphic, for <(z) sufficiently large, in a region

<(w) > du ln(‖Dφ1‖∞)− ln(λ)
2 (r − 1)

with λ, du as in Theorem 3.2.1.

The rest of the paper is devoted to the proof of such a proposition.
Note that Ruelle’s original definitions and proofs are based on a suitable deter-

minant and its properties are studied through Markov partitions and Grothendieck
theory, hence the requirement of analyticity.

Here instead, to deal with the finite smoothness case, we prove Proposition 3.2.6
using the methods of extending determinants through the choice of suitable Banach
spaces, based on the approach of Liverani-Gouezel [30], Butterley-Liverani [15] and
Liverani-Tsujii [43]. This approach allows us to apply transfer operator methods di-
rectly to the manifoldM by resorting to currents, avoiding the obstructions of other
methods arising from studying the regularity of foliations or the differentiability of
the potential associated to the measure of maximal entropy.

We begin by constructing a family of spaces Bp,q,` as the closure of a proper
subspace Ω`

0,s(M) ⊂ Ω`
s(M) with respect to a suitable anisotropic norm so that the

spaces Bp,q,` are an extension of the spaces in [30]. We start from an opportune
cone structure considering an equivalence relation on TM with respect to a preferred
direction, which will later on play the role of the flow direction. Here Ω`

s(M) is the
space of `-forms on M i.e. the Cs sections of Λl(T ∗M) and Ω`

0,s(M) is a subspace
which only considers forms null with respect to our preferred direction.

In the next section we prove that in such spaces we can define a family of
operators for h ∈ Ω`0, s(M) as

L(`)
t (h) = φ∗−th

where φ∗−th is the pull-back of h with respect to φ−t. This generalize the action of
the transfer operator Lt on the anisotropic Banach spaces Bp,q of [30].

We prove that for each ` the operators L(`)
t form a semigroup. Note that in this

way we mimic the action of standard transfer operators on sections transverse to
the flow, in fact we morally project our forms on a Poincaré section. In this setting
we have that R(`) satisfies

R(`)(z)n = 1
(n− 1)!

∫ ∞

0
tn−1e−ztL(`)

t dt. (3.2.6)

Next we evaluate a trace for an operator A : Λ`(TM/∼) → Λ`(TM/∼). First we
construct a local isomorphism iψ : ΠψBp,q,` → (ΠψBp,q,d)(

d−1
` ) (see lemma 3.3.4 for
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the details) where ψ is a partition if unity which allows the localization. Given
the identification iψ above we can write Aī,j̄ for the elements in a matrix represen-
tation of A with respect to a basis, ordered by the index ī, of the product space
(ΠψBp,q)(

d−1
` ) . Let ψα, ψβ suitable partitions of unity for Bp,q,`. We define an

operator tr(`)(A)(f) : Bp,q → Bp,q by

tr(`)(A)(f) .=
∑

k̄,α,β

(
(iψβΠψβ )B(Πψαi−1

ψα
)
)
k̄,k̄

(3.2.7)

where we note that Aī,̄i = eT
ī

(Aeī) for an element of a basis and its dual. Then we
can define our “flat trace” as

Trace(`)(A) = lim
ε→0

∫

M×M
jx,ε(y)

(
tr(`)(A)

)
(jx,ε)(y)ω(dx)ω(dy) (3.2.8)

by properly choosing the family of approximations jx,ε4. In section 3.5 we show
that for the flat trace defined above on the quotient space just constructed we have
the following remarkable lemma.

Lemma 3.2.7. For <(z) > du ln(‖Dφ1‖∞)− ln(λ)
2 (r − 1) and n ∈ N,

Trace
(
R(`)(z)n

)
<∞. In addition,

Trace
(
R(`)(z)n

)
= 1

(n− 1)!
∑

τ∈T

1
µ(τ)

tr
(
∧`
(
Dhypφλ(τ)

))
λ(τ)ne−zλ(τ)

det
(
1−Dhypφλ(τ)

) . (3.2.9)

Hence, we have that

d̃` (ξ − z, ξ) = exp
(
−
∞∑

n=1

(ξ − z)n
n

Trace(R(`)(ξ)n)
)

(3.2.10)

In section 3.3 and 3.4 we define precisely what we mean by

σ` = λ
min{du,d−1−`}
+ e−λmax{ds−`,0}, σp,q = e−λmin{p,q}.

In section 3.4 we prove the following lemma

Lemma 3.2.8. For ξ ∈ C, <(ξ) > 0, the operator R(`)(ξ) is quasi compact on each
Bp,q,`, p, q ∈ N. Moreover

ρess(R(`)) ≤ c(<(ξ)− ln(σp,q)− ln(σ`)
)−1

The result above will be used together with the following lemma from section
3.6.

4From now on we will abuse of the notation and drop the index ` from Trace(`)(A) since it will
always be clear from the context to which space of `-forms we are referring.
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Lemma 3.2.9. There exists a finite rank operator P (`)
ξ such that

Trace(R(`)(ξ)n) = tr
(
(P (`)(ξ))n

)
+O

([
σp,qσ`<(ξ)−1

]n)
(3.2.11)

where “tr” is the standard trace.

Once we have established these results we can prove theorem 3.2.6.

Proof of Theorem 3.2.6. Let ξ such that a = <(ξ) > du ln(‖Dφ1‖∞) − ln(λ)
2 (r − 1)

is sufficiently large. Let |ξ− z| < (maxi λi,`)−1, λi,`(ξ) be the eigenvalues of P (`)(ξ).
Let ρ`,p,q = ln(σ`)− ln(σp,q). Then λi,` ∈ B

(
ξ, ρ−1

`,p,q

)
for all i we can conclude that

as long as |ξ − z| ≤ c

(du ln(‖Dφ1‖∞)− ln(λ)
2 (r−1)

we have

d̃`(ξ − z, ξ) = exp
( ∞∑

n=1

(ξ − z)n
n

Trace(R(`)(ξ)n)
)

=

= exp



∞∑

n=1

(ξ − z)n
n




∑

λi∈B(ξ,ρ−1
`,p,q

)

1
(ξ − λi)n

+O
([
ρ`,p,q<(ξ)−1

]n)






= exp




∑

λi∈B(ξ,ρ−1
`,p,q

)

log
(

1− ξ − z
ξ − λi

)
+
∞∑

n=1

(ξ − z)n
n

[
ρ`,p,q<(ξ)−1

]n
)




=




∏

λi∈B(ξ,ρ−1
`,p,q

)

ξ − λi
z − λi


ψ(ξ, z)

(3.2.12)

where ψ(w, z) is analytic in B(ξ, ρ−1
`,p,q). Now we can choose ξ where the convergence

of d`(ξ) is granted, as noted after equation (3.2.1), and we can freely move it along a
line parallel to the imaginary axis. Hence we obtain that d̃`(ξ−z, ξ) is meromorphic
in a strip beyond the original region of convergence by using the identity (3.2.5)
which concludes the proof of proposition 3.2.6. It follows that for C∞ flows we found
that d` are analytic for all z ∈ C since B(ξ, ρ−1

`,p,q) can be arbitrarily large.

3.3 Cones and Banach spaces
Our first task is to introduce appropriate Banach spaces in which the various op-
erators we are interested in have the expected spectral properties. It is very con-
venient to outline a general construction of such spaces based only on an abstract
cone structure.

Consider an atlas given by {(Uα,Θα)}α=1,...,N where δ > 0 is fixed (and to be
chosen later) such that

(i) Θα(Uα) = B(0, 4δ)



26 3. Anosov flows and Dynamical Zeta Functions

(ii) ∪αΘ−1
α (B(0, δ)) = M .

Define {ψα}α=1,...,N to be a smooth partition of unity induced by our atlas such
that supp(ψα) ⊆ Uα and ψα|Θ−1

α (B(0,δ)) = 1. Moreover we choose the charts so that
there is a “preferred coordinate”, in the sense that for any two charts Θα, Θβ, given
x̃ ∈ Rd−1 and xd ∈ R we have

Θα ◦Θ−1
β (x̃+ sxd) = Θα ◦Θ−1

β (x̃) + sxd. (3.3.1)

Note that the above is equivalent to saying that there exists a vector field V ,
‖V (x)‖x = 1, such that, for all α, (Θα)∗(∂xd) = V . In other words the Θα are
flow box charts for the flow generated by a vector field V .

Let l ∈ {0, · · · , d} and Λl(T ∗M) be the algebra of the exterior forms on M .
Given two l-forms v1∧· · ·∧vl, w1∧· · ·∧wl ∈ Λl(T ∗xM) we define the scalar product5

〈v1 ∧ · · · ∧ vl, w1 ∧ · · · ∧ wl〉x = det



〈v1, w1〉x . . . 〈v1, wl〉x

... . . . ...
〈vl, w1〉x . . . 〈vl, wl〉x


 , (3.3.2)

which, by linearity, defines a scalar product on each Λ(T ∗xM), x ∈ M , (see [38,
Section 2] for more details).

Let Ωl
s(M) be the space of Cs sections of Λl(T ∗M). It is helpful to introduce,

in each Ω`
s(M), the scalar products

〈h, g〉Ω` =
∫

M
〈h(x), g(x)〉xω(x) (3.3.3)

where ω is the Riemannian volume form.
Let h = ∑

α ψαh
.= ∑

α hα so that hα ∈ Ω`
s(Uα). Let ī = i1 < i2 < . . . < il

belong to the set Il of l-multiindices ordered by the standard lexicographic order.
Also, define the local bases dxα,̄i = (Θα)∗(dxī), eα,̄i = (Θ−1

α )∗(eī) where we have
introduced the notation dxī = dxi1 ∧ · · · ∧ dxil , eī = ∂xi1 ∧ · · · ∧ ∂xil .

6 Given
hα ∈ Ωl

s(Uα) and (Θ−1
α )∗hα ∈ Ωl

s(B(0, 4δ)) we can write them uniquely as

hα =
∑

ī∈Il
hα,̄idxα,̄i and (Θ−1

α )∗hα =
∑

ī∈Il
hα,̄i(Θ−1

α )dxī. (3.3.4)

Let us now introduce the following equivalence relation: for v, w ∈ TxM , v ∼ w
if and only if there exists λ ∈ R such that v = w + λV (x). Let ` ∈ {0, · · · , d − 1},
let Ω`,∼

s (M) be the space of Cs sections of Λ`((TM/∼)∗). Let Ψ : TM → TM/∼ be
defined as Ψ(u) .= [u], hence Ψ∗ : Ω`,∼

s (M)→ Ω`
s(M)

Ψ∗(h)(v1, . . . , v`)
.= h([v1], . . . , [v`]).

5In the following we will drop the subscript x in the scalar product as this does not create any
confusion.

6It is understood that f∗ denotes as usual the pullback and f∗ the pushforward. Moreover
dxα,̄i(eα,j̄) = δī,j̄ .
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Note that Ψ∗(h)(. . . , V, . . .) = 0 by construction, on the other hand any section with
such a property acts naturally on equivalence classes. Hence Ψ∗ is an isomorphism
between Ω`,∼

s (M) and the subspace

Ω`
0,s(M) = {h ∈ Ω`

s(M) : h(. . . , V, . . .) = 0}. (3.3.5)

Remark 3.3.1. From now on we will identify Ω`
0,s(M) and Ω`,∼

s (M) without further
comments.

Moreover, if we consider the usual map iV : Ω`+1
s (M) → Ω`

s(M) defined by
iV (h)(v1, . . . , v`) = h(V, v1, . . . , v`) we have iV : Ω`+1

s (M) su−→ Ω`
0,s(M). Indeed, it is

clear that iV (Ω`+1
s (M)) ⊂ Ω`

0,s(M), while, if h ∈ Ω`
0,s(M), (−1)d−1iV (h ∧ dV ) = h

where dV is any one form such that dV (V ) = 1. In particular, iV is an isomorphism
between Ωd

s(M) and Ωd−1
0,s (M). For further use we set

ω̃ = iV ω, (3.3.6)

where ω is the Riemannian volume.
Next we assume that there exists a continuous family of cones C(x) ⊂ TxM and

sufficiently small ρ > ρ− > 0 such that for each x ∈ Uα we have that

{(s, u) ∈ Rds×Rdu : ‖u‖ ≤ ρ−‖s‖} ⊂ (Θα)∗C(x) ⊂ {(s, u) : ‖u‖ ≤ ρ‖s‖}, (3.3.7)

where ds + du = dim(M).
Given such data we are going to construct several Banach spaces. To do so we

first define norms on smooth forms and then we take the completion of such norms
to define less regular elements in the new spaces. For sufficiently large L > 0,
ξ ∈ B(0, δ) ⊆ Rds and duc = du + 1 let us define

Fr .= {F : B(0, 3δ)→ Rduc : F (0) = 0 ; |F |C1 ≤ ρ ; |F |Cr ≤ L}. (3.3.8)

Moreover for each F ∈ Fr let Gx,F (ξ) .= x + (ξ, F (ξ)). Let us also define Σ̃ .=
{Gx,F : x ∈ B(0, δ), F ∈ Fr}. For each chart, indexed by α, and G ∈ Σ̃ we
associate the leaf Wα,G = {Θ−1

α G(ξ)}ξ∈B(0,2δ), which form our set of stable leaves
Σ (not to be confused with stable manifolds), its reduced and enlarged version
W±α,G = {Θ−1

α G(ξ)}ξ∈B(0,(2±1)δ).
Also, we denote by Γ`,s0 (α,G) the Cs sections of the fiber bundle on Wα,G, with

fibers Λ`(T ∗M), which vanish in a neighborhood of ∂Wα,G.
Let V(α,G) be the set of Cr vector fields defined in a neighborhood of W+

α,G.
Write Lv for the Lie derivative along a vector field v. Next, let d(vol)Wα,G

be the
volume form induced on Wα,G by the Riemannian structure of M . Finally, for all
α, for all Wα,G, and G ∈ Σ̃, g ∈ Γl,00 (α,G), v1, . . . , vp ∈ V(α,G) and h ∈ Ω`,∼

s (M)
we define

α,G,g,v1,...,vp(h) .=
∫

Wα,G

〈g, Lv1 · · ·Lvph〉 d (vol)Wα,G
∈ R. (3.3.9)
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Next, for p ∈ N, q ∈ R+, p+ q < r − 1 let

Up,q,`
.=
{
α,G,g,v1,...,vp

∣∣ 1 ≤ α ≤ N, G ∈ Σ̃, |g|Γl,p+q0 (α,G) ≤ 1, |vj |Cq+p ≤ 1
}

(3.3.10)
where by |vj |Cq+p ≤ 1 we mean that there exists an open set U ′α ⊃ W+

α,G such that
vj is defined on U ′α and |vj |Cq+p(U ′α) ≤ 1.

Finally, given h ∈ Ω`,∼
p+q(M), we define the following norms

‖h‖−p,q,` := sup
∈Up,q,`

(h) ∀ p ∈ N, q ∈ R+

‖h‖p,q,` := sup
n≤p
‖h‖−n,q,` ∀ p ∈ N, q ∈ R+.

(3.3.11)

For each q ∈ R+, p ∈ N, ` ∈ {0, . . . , d − 1} we define the spaces Bp,q,` to be the
closure of Ω`,∼

∞ (M) with respect to the norm ‖ · ‖p,q,`.
The above spaces are the natural extensions of the spaces defined in [30] to the

case of `-forms, the case that we need in the following. There the Banach space Bp,q
was defined for h ∈ Cr(M,R) as7

‖h‖Bp,q = sup
0≤k≤p

sup
W∈Σ̃

sup
v1,...,vk∈V(W )
|vi|Cr≤1

sup
ϕ∈Cq0(W,R)
|ϕ|

Ck+q≤1

∫

W
Lv1 · · ·Lvk(h) · ϕd(vol)W .

Yet, if we define the isomorphism i : Cr(M) → Ωd−1
0,r (M) by i(f) = f · ω̃ one can

verify that i extends to an isomorphism between the Banach space Bp,q in [30] and
the present Banach space Bp,q,d−1.

Remark 3.3.2. From now on, throughout this section and in the following ones as
well, c will be used in multiple situations and will represent a generic nonspecific
constant which could change from time to time, even within the same equation.

Note that any function ψ ∈ C∞(M) is a bounded multiplier on Bp,q,` (hence also
on Bp,q). More precisely we have the following lemma.

Lemma 3.3.3. Let Πψ(h) .= ψ · h. Then

‖Πψh‖Bp,q,` = ‖ψ · h‖Bp,q,` ≤ c‖h‖Bp,q,` .

7In [30] the coordinate charts are chosen with slightly different properties. However for our
purposes they are equivalent.
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Proof. We have the following inequality for ‖ · ‖B1,q,` .

sup
|g|

Γ`,q+1
0 (α,G)

≤1
sup
Wα,G

∫

Wα,G

〈g, Lv(ψ · h)〉 d (vol)Wα,G

= sup
|g|

Γ`,q+1
0 (α,G)

≤1
sup
Wα,G

(
|gLv(ψ)|q+1

∫

Wα,G

〈 g(Lvψ)
|g(Lvψ)|q+1

, h〉 d (vol)Wα,G

+ |gψ|q+1

∫

Wα,G

〈 gψ

|gψ|q+1
, Lvh〉 d (vol)Wα,G

)

≤ c ‖h‖−0,q,l + c ‖h‖−1,q,l ≤ c ‖h‖−1,q,l .

(3.3.12)

Then we can repeat the argument by induction with respect to the several Lie
derivatives Lv1 , . . . , Lvp present in 〈g, Lv1 · · ·Lvpψh〉 thus obtaining our estimates
for ‖ · ‖p,q,`.

The following structure Lemma clarifies the relations between Bp,q,l and Bp,q.

Lemma 3.3.4. There exists an isomorphism iψα : Πψα(Bp,q,`)→ [Πψα(Bp,q)](d−1
` ).

Proof. Let us consider the map jα : Ω`,∼
s (Uα)→ C`(Uα,R(d−1

` )). First we recall that
we have an obvious bijective map s from {1, . . . , (d−1

`

)} to the set I of lexicographic
orderings of i1, . . . , il. Thus, given (3.3.4), we can define

jα(hα) .= (hα,s(1), . . . , hα,s((d−1
` )))

that is, colloquially, we mapped a form to the vector made of its local coefficients.
Then we set iψα(Πψαh) .= jα(ψαh) = jα(hα) ∈ [Πψα(Cl)](d−1

` ). We define a norm in
[Πψα(Bp,q)](d−1

` ) as
‖hα‖

(Bp,q)(
d−1
` )

.=
∑

ī∈I
‖hα,̄i‖Bp,q . (3.3.13)

Then for each |g|Γ`,q+1
0 (α,G) ≤ 1 and Wα,G we have

∫

Wα,G

〈g, Lv1 · · ·Lvphα〉d (vol)Wα,G

=
∑

ī

∫

Wα,G

〈g, Lv1 · · ·Lvp(hα,̄idxα,̄i)〉d (vol)Wα,G

≤
∑

ī

∫

Wα,G

〈g, dxα,̄i〉Lv1 · · ·Lvp(hα,̄i) + c
p−1∑

k=0
‖hα,̄i‖k,q+p−k

≤ c
∑

ī

‖hα,̄i‖p,q
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To prove the opposite inequality chose g = ϕdxα,j̄ , |ϕ|Cp+q ≤ 1,
∫

Wα,G

〈g, Lv1 · · ·Lvphα〉d (vol)Wα,G

≥
∑

ī

∫

Wα,G

ϕLv1 · · ·Lvp(hα,̄i)− c
p−1∑

k=0
‖hα,̄i‖k,q+p−k.

Taking the sup on ϕ and Wα,G, summing on ī and using the previous upper bound
yields

c‖hα‖−p,q,` ≥
∑

i∈I
‖hα,̄i‖p,q − c

p−1∑

k=0
‖hα‖−k,q+p−k.

Hence it follows immediately that there exists C > 0 such that

C−1‖h‖
(Bp,q)(

d−1
` ) ≤ ‖h‖Bp,q,` ≤ C‖h‖(Bp,q)(d−1

` ) ,

which proves the Lemma.

The product structure of our space Bp,q,` will be useful later on in several situa-
tions. Hence most of the theorems obtained in [30] extend to the present situation
by using this identification. For example, the compactness lemma used there can
now be stated in our context.

Lemma 3.3.5. For each ` ∈ {0, . . . , d − 1}, the unit ball of Bp,q,` is relatively
compact in Bp−1,q+1,`.

Proof. Given our atlas (Uα,Θα) with an induced partition of unity we have that
iψα

(
Bp,q,`

)
is relatively compact in (Πψα(Bp−1,q+1))(

d−1
` ) by the results of [30]. Then

Lemma 3.3.4 implies the result.

Given a form h of degree `, we can define a functional

h(g) .= 〈g, h〉Ω` where g ∈ Ω`
s(M) (3.3.14)

The space of such functionals, equipped with the ∗-weak topology of Ω`
s(M)′, gives

rise to the space of currents of regularity s. We indicate the space of currents of
regularity s and degree ` by E`s . In analogy with [30, Proposition 4.1] and [30,
Lemma 2.1] we have the following

Lemma 3.3.6. For each ` ∈ {0, . . . , d− 1}, there is a canonical injection from the
space Bp,q,` to a subspace of E`p+q.

Proof. We begin by recalling that  : Ω`
s(M)→ E`p+q is such that if we foliate locally

M with d-dimensional manifolds with tangent space in the constructed cones it
readily follows that |h(g)| ≤ C‖h‖B0,q,`‖g‖Ω`s(M). Thus  can be extended to a
continuous immersion of Bp,q,` in E`p+q. Consider a sequence {hn} ⊂ Ω`

0,s that
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converges to h in Bp,q,` such that (h) = 0. Then, for each manifold Wα,G ∈ Σ̃ and
test form g = ḡαdxα,̄i we have

∫

Wα,G

〈g, hn〉 =
∫

B(0,δ)
ḡα(ξ, F (ξ))hn,α,̄i(ξ, F (ξ))JF (ξ)dξ

where JF takes into account the change of variables. Now consider a smooth
approximation of the δ at zero, and let Gη,F (ξ) = (ξ, F (ξ) + η) = G(ξ) + (0, η).
Then ∫

Wα,G

〈g, hn〉 = lim
ε→0

∫

Rdu+1

∫

Wα,Gη

〈κε(η)gη, hn〉 = lim
ε→0

hn(ĝε)

where gη(z)
.= g(z − (0, η)) and ĝε(ξ, η) .= κε(η)gη(Gη,F (ξ)). By the above repre-

sentation it follows

|hn(ĝε)− hm(ĝε)| ≤
∫

Rdu+1
dηκε(η)

∣∣∣∣∣

∫

Wα,Gη

〈hn − hm, gη〉
∣∣∣∣∣

≤ ‖gη‖Γ`,q0 (α,Gη)‖hn − hm‖0,q,`
≤ C‖g‖Γ`,q0 (α,G)‖hn − hm‖0,q,` ≤ C‖hn − hm‖0,q,`

Now, given the previous inequality, we can consider the limit for n→∞ i.e. hn → h
and obtain ∫

Wα,G

〈g, h〉 .= lim
n→∞

∫

Wα,G

〈g, hn〉 = lim
ε→0

h(ĝε) = 0.

Thus by taking the sup on α,G, g we obtain ‖h‖0,q,` = 0. By similar computations
(involving the necessary derivatives) it follows ‖h‖p,q,` = 0 . Thus  is injective and
we obtain the statement of the theorem.

3.4 Transfer operators and Resolvents
Let φt : M →M be a Cr flow on a Cr Riemannian d-dimensional compact manifold
with r ≥ 3. Without loss of generality we can take |V (x)| = 1 where V (x) is the
vector field generating the Anosov flow.

Remark 3.4.1. The definition of Anosov flows already implies a suitable "cone"
field structure, in the sense that the Anosov splitting can be used to construct the
required cone fields of the previous section. In fact without loss of generality we
can assume that atlas introduced has the following extra property





D0Θ−1
α {(0, u, 0) : u ∈ Rdu} = Eu(Θ−1

α (0))
D0Θ−1

α {(s, 0, 0) : s ∈ Rds} = Es(Θ−1
α (0))

Θ−1
α ((s, u, t)) = φtΘ−1

α ((s, u, 0))
(3.4.1)

where ds = dimEs, du = dimEu and t ∈ R. Moreover, Cs(x) = {(s, u, t) ∈ TMx :
‖u‖+ ‖t‖ ≤ 1

2‖s‖} is an invariant cone field associated to the stable direction with
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the property that any vector in the cone is strictly expanded by (φ−t)∗. By an
harmless linear change of coordinates we can finally assume that Cs(x) satisfies the
condition (3.3.7) with ρ− = 1. Thus we can use section 3.3 to define a spaces Bp,q,`
in the present context.

Let h ∈ Ω`
0,s(M) as in the previous section. Let h̃ ∈ Ω`+1

s (M) such that iV (h̃) =
h, then

iV (φ∗t h̃)(v1, . . . v`) = φ∗t h̃(V, v1, . . . v`) = h̃(V, (φt)∗v1, . . . , (φt)∗v`)
= φ∗t iV h̃(v1, . . . v`) = φ∗th(v1, . . . v`).

Thus φ∗tΩ`
0,s(M) ⊂ Ω`

0,s(M) for all t ∈ R. We can then define the operators L(`)
t :

Ω`
0,s(M)→ Ω`

0,s(M), t ∈ R+, by

L(`)
t h

.= φ∗−th. (3.4.2)

Hence locally we can write8

(L(`)
t (h))α,j̄(x) = ψα(x)

∑

β,̄i

hβ,̄i(φ−t(x)) · (φ−t)∗(dxβ,̄i)(eα,j̄(x))

= ψα(x)
∑

β,̄i

hβ,̄i(φ−t(x)) det (Dxφ−t)α,βī,j̄
(3.4.3)

where ī = (i1, . . . i`) with i1 < i2 < · · · < i` < d.
In the special case of a d − 1 form, for h ∈ Ωd−1

0,s (Uα) we have h = h̄ω̃ where
h̄ ∈ Cs(M,R) and ω̃ is defined in (3.3.6). Then 9

L(d−1)
t h = h̄ ◦ φ−t det(Dφ−t)ω̃ = (Lth̄)ω̃.

Thus we recover the standard Ruelle-Perron-Frobenius.
Analogously, we can argue in coordinates. Setting φα,βt = Θβ ◦ φt ◦ Θ−1

α and
x = (x̃, xd) ∈ Rd we have φα,βt (x) = (φ̃α,βt (x̃), rα,β(x̃) + t), thus

Dφα,βt =
(
Dx̃φ̃

α,β
t 0

∇x̃rα,β 1

)
.=
(

(D̃xφ)α,βt 0
∇x̃rα,β 1

)
. (3.4.4)

8Here det (Dφ−t)α,βī,j̄ is the determinant of the “minor” matrix obtained by choosing the ī-
columns and the j̄-rows from the matrix Dφ−t with respect to the atlas and the partition of unity
indexed by α, β.

9Note that det(Dφt)ω = φ∗tω. Hence,

φ∗t ω̃(v1, . . . , vd−1) = ω̃((φt)∗v1, . . . , (φt)∗vd−1) = ω((φt)∗V, (φt)∗v1, . . . , (φt)∗vd−1)
= (φ∗tω)(V, v1, . . . vd−1) = det(Dφt)ω(V, v1, . . . vd−1)
= det(Dφt)ω̃(v1, . . . , vd−1).

That is φ∗t ω̃ = det(Dφt)ω̃.
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Note that in equation (3.4.3) if j` = d, then since i` < d, the determinant would
have a zero column and hence be zero. It follows that we can restrict to multiindexes
with values in the set {1, . . . , d− 1} and

(L(`)
t (h))α,j̄(x) = ψα(x)

∑

β,̄i

hβ,̄i(φ−t(x)) · (φ−t)∗(dxβ,̄i)(eα,j̄(x))

= ψα(x)
∑

β,̄i

hβ,̄i(φ−t(x)) det
(
D̃xφ−t

)α,β
ī,j̄

.
(3.4.5)

For further use let us define
λ+ = ‖Dφ1‖∞,
σ` = λ

min{du,d−1−`}
+ e−λmax{ds−`,0},

σp,q = e−λmin{p,q},

(3.4.6)

where λ is the expansion rate in (3.1.2).
We begin with the following Lasota-Yorke type of result for L(`)

t .

Lemma 3.4.2. For each p+ q < r − 1, ` ∈ {0, . . . , d− 1} the linear operators L(`)
t

are bounded in the ‖ · ‖p,q,` norm. Accordingly, they can be uniquely extended to
bounded operators10 L(`)

t : Bp,q,` → Bp,q,`. They satisfy

‖L(`)
t h‖B0,q,` ≤ cσt`‖h‖B0,q,` (3.4.7)

‖L(`)
t h‖Bp,q,` ≤ cσt`‖h‖Bp−1,q+1,` + cσt`σ

t
p,q‖h‖Bp,q,` + cσt`‖Xph‖B0,p+q,` . (3.4.8)

In particular, ‖L(`)
t ‖ ≤ cσt` for all t ∈ R+. Moreover, L(`)

t is strongly continuous
semigroup.

Proof. From the definition (3.4.2) and equation (3.4.5)11

∥∥∥L(`)
t h

∥∥∥
B0,q,l

≤ sup
Wα,G∈Σ̃

sup
|g|

Γl,q0 (α,G)
≤1

∫

Wα,G

∑

β,̄i,j̄

det
(
D̃φ−t

)α,β
ī,j̄

gj̄

det(D̃φ−t)
· hβ,̄i ◦ φ−t

× det(D̃φ−t) d(vol)Wα,G

≤ sup
α,G∈Σ̃

sup
|g|

Γl,q0 (α,G)
≤1

∑

β,̄i

∥∥∥∥∥∥∥∥

det
(
D̃φ−t

)α,β
ī,j̄

gj̄

det(D̃φ−t)

∥∥∥∥∥∥∥∥
Γ`,q0 (α,G)

‖Lthβ,̄i‖B0,q .

(3.4.9)

Note that 12

10That, by an harmless abuse of notation, we still designate by L(`)
t .

11In the last line we identify hβ,̄i with the element hβ,̄iω of B0,p,d, where ω is the Riemannian
volume form.

12We used the fact that, for A ∈ GL(d,R),

det(A)ī,j̄ = (−1)`(d−`)ε(̄i)ε(j̄) det(A) det
(
A−1)

īc,j̄c
, (3.4.10)
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det
(
D̃φ−t

)α,β
ī,j̄
· det(D̃φ−t)−1 = (−1)`(d−`−1)ε(̄i)ε(j̄) det

(
D̃φt

)α,β
j̄c ,̄ic

.

Since
(
D̃φt

)α,β
j̄c ,̄ic

corresponds to the action of the dynamics on the d − 1 − ` forms
it follows that its norm is bounded by cσt`, since σ` clearly bounds the rate of
expansion of ` volumes. Note that Lt is the usual Ruelle transfer operator, the one
which action on the spaces Bp,q (the same as the current Bp,q,d−1) is studied in [15].
Hence, using [15, Lemma 4.1] and Lemma 3.3.4, we obtain

‖L(`)
t h‖B0,q,` ≤ cσt`

∑

β,̄i

‖L(d)
t hβ,̄i‖B0,q,d ≤ cσt`‖h‖B0,q,` .

For the second equation, involving p-derivatives, we consider here the case p = 1
and the other ones can be computed by induction on p. We have that, for all Wα,G

and |g|Γ`,1+q
0

≤ 1,

∫

Wα,G

∑

β,̄i,j̄

〈
gα,j̄dxα,j̄ , Lv

[
(hβ,̄i ◦ φ−t) det

(
D̃φ−t

)α,β
ī,j̄

dxα,̄i

]〉

= ±
∑

β,̄i,j̄

∣∣∣∣
〈
gα,j̄dxα,j̄ , Lv

[
det

(
D̃φ−t

)α,β
īc,j̄c

dxα,̄i

]〉∣∣∣∣
q+1

×
∫

Wα,G

〈
gα,j̄dxα,j̄ , Lv

[
det

(
D̃φ−t

)α,β
īc,j̄c

dxα,̄i

]〉

∣∣∣∣
〈
gα,j̄dxα,j̄ , Lv

[
det

(
D̃φ−t

)α,β
īc,j̄c

dxα,̄i

]〉∣∣∣∣
q+1

Lthβ,̄i

±
∑

β,̄i

∣∣∣∣det
(
D̃φ−t

)α,β
īc ,̄ic

gα,̄i

∣∣∣∣
q+1

∫

Wα,G

det
(
D̃φ−t

)α,β
īc ,̄ic

gα,̄i
∣∣∣∣det

(
D̃φ−t

)α,β
īc ,̄ic

gα,̄i

∣∣∣∣
q+1

× Lv(Lthβ,̄i) d(vol)Wα,G

≤ cσt`‖h‖B0,q+1,` + cσt`


∑

β,̄i

∥∥∥Lv(Lthβ,̄i)
∥∥∥
B1,q




(3.4.11)

where ε(̄i) is the sign of the permutation that sends {1, . . . , d} into {i1, . . . , i`, ic1, . . . , icd−`}. Indeed,
for each ω ∈ Λd(Rd), A∗ω = det(A)ω and for each u ∈ Λ`(Rd) , v ∈ Λd−`(Rd)

A∗u ∧ v = A∗
(
u ∧ (A∗)−1v

)
= det(A)

(
u ∧ (A−1)∗v

)
.

Thus for u = dxi1∧. . .∧dxil and v = dxj1∧. . .∧dxjd−l , where ī = (i1, . . . , i`) and j̄ = (j1, . . . , jd−`)
are ordered multiindexes, we have

ε(j̄) det(A)j̄c ,̄i = det(A) det(A−1)īc,j̄ε(̄i),

the results follows since ε(j̄c) = (−1)`(d−`)ε(j̄).
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where in the last inequality we have used standard distortion estimates. Next, [15,
Lemma 4.1] implies

‖Lv(Lthβ,̄i)‖B1,q ≤ cσt1,qσt`‖h‖B1,q + cσt`‖Xphβ,̄i‖B0,1+q

Thus, from the equation above, Lemma 3.3.4, equation (3.3.13) , equation (3.4.11)
and the induction on p, we obtain

‖L(`)
t h‖Bp,q,` ≤ cσt`‖h‖Bp−1,q+1,` + cσt`σ

t
p,q‖h‖Bp,q,` + cσt`‖Xph‖B0,p+q,` .

The general case follows similarly remembering Lemma 3.3.4. In particular, from
the above estimates, follows ‖L(`)

t ‖p,q,` ≤ cσt`, for all t ≥ 0.
We now need to prove that operators L(`)

t form a strongly continuous semigroup.
It is easy to verify that L(`)

t is strongly continuous on Ω`
s(M). The result follows

then by a standard density argument: let hε be an approximation of h

lim
t→0
L(`)
t h = lim

t→0
L(`)
t hε +O(‖h− hε‖p,q,`) = hε +O(‖h− hε‖p,q,`)

and then considering ε→ 0.

Given the two lemmas above one cannot use directly Hennion result [33] for the
spectral radius of L(`)

t , instead we have to look at their generators X(`) and at the
related resolvent. By standard results, see for example Davies [21], X(`) is a closed
operator on Bp,q,` such that X(`)L(`)

t = d
dtL

(`)
t . Hence we can define the resolvent by

R(`)(z) .=
(
z −X(`)

)−1
, where z lies outside the spectrum of X(`). This is again a

linear operator on Bp,q,`. If we compute X(`)R(`)(z) and R(`)(x)X(`) we obtain the
following identity

R(`)(z) =
∫ ∞

0
e−ztL(`)

t dt

for each z ∈ C and <(z) sufficiently large. This expression is generalized to

Lemma 3.4.3. For n ∈ N we can write

R(`)(z)n = 1
(n− 1)!

∫ ∞

0
tn−1e−ztL(`)

t dt

In particular, for <(z) > ln σ` we have that R(`)(z) is a bounded linear operator.
These two facts, along with the next lemma, are easily obtained arguing as in Lemma
3.4.2 and using [15, Lemma 4.3].

Lemma 3.4.4. Let p, q ∈ R , p+ q ≤ r, z ∈ C, for a = <(z) > σ̂` we have

‖R`(z)n‖B0,q,` ≤ c(a− σ̂`)−n

‖R`(z)nh‖Bp,q,` ≤ c(a− σ̂` − σ̂p,q)−n‖h‖Bp,q,` + c(a− σ̂`)−n|z|‖h‖Bp−1,q+1,` ,

where σ̂` = ln σ` and σ̂p,q = ln σp,q.
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Thus, arguing as in [42, Proposition 2.10, Corollary 2.11].

Lemma 3.4.5. For p+ q ≤ r the spectrum of the generator X(`) of the semigroup
L(`)
t acting on Bp,q,` lies on the left of the line {σ̂` + ib}b∈R and in the strip σ̂` ≥

Re(z) > σ̂` − λmin{p, q} consists of isolated eigenvalues of finite multiplicity.

To conclude this section we define and compute tr(`)L(`)
t . Given a vector space

V d over R and a matrix representation of a linear operator A : V d → V d, we can
naturally construct, by the standard external product, a matrix representation of
ΛlA : Λl(V d) → Λl(V d) of elements aī,j̄ . In this framework, we can define the
following operator tr(`) : L(Λl(V d),Λl(V d))→ L(V d, V d) as

tr(`)(ΛlA) .=
∑

ī

det(Aī,̄i) (3.4.12)

where, again, Aī,̄i is the minor matrix corresponding to the choice of ī-rows and
ī-columns from A. This is due to the fact that aī,j̄ = det(Aī,j̄) (for more details
see [9]). Now given B : Bp,q,` → Bp,q,` we can extend tr(`), with a slight abuse of
notation, to an operator tr(`) : L(Bp,q,`,Bp,q,`) → L(Bp,q,Bp,q). Let α, β be indexes
of two atlas coherently with what has been done so far. Recalling Lemma 3.3.4 we
have

tr(`)(B) =
∑

k̄,α,β

(
(iψβΠψβ )B(Πψαi−1

ψα
)
)
k̄,k̄

(3.4.13)

Let ek̄ be a basis for (Bp,q)(d−1
` ) over Bp,q. Then by using (3.4.2) and (3.4.5) for

f ∈ Bp,q we have that

tr(`)(L(`)
t )f =

∑

k̄,α,β

(
(iψβΠψβ )L(`)

t (Πψαi−1
ψα

)
)
k̄,k̄
f

=
∑

k̄,α,β

(
eT
k̄

(
(iψβΠψβ )φ∗−t(Πψαi−1

ψα
)
)
ek̄

)
f

=
∑

k̄,α,β

(ẽk̄)
T

(
(iψβΠψβ )

∑

n̄

(fα ◦ φ−t)d(φ−t)α,k̄(ẽα,n̄)
)

=
∑

k̄,α,β

(fα,β ◦ φ−t) det(Dφ−t)α,βk̄,k̄ = (f ◦ φ−t) tr(Λl(Dφ−t))

(3.4.14)

Note that tr(`) is invariant with respect to change of coordinates A, since one can
write êk̄ = Aẽk̄ and linearly apply both A and A−1 in the previous computation.
Last we compute tr(Λl(Dφ−t)) in terms of Dhypφ−t where, locally, we have

Dhypφ−t =




∂1φ−t
∂xα,1

· · · ∂1φ−t
∂xα,d−1

...
...

∂d−1φ−t
∂xα,1

· · · ∂d−1φ−t
∂xα,d−1


 (3.4.15)
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Note that locally we have chosen the one forms dx1, . . . , dxd such that dxd(V (x)) =
1, dxd(K(x)) = 0 for K(x) 6= λV (x) and {dxi(V (x)) = 0}i=1,...,d−1. Thus we have

tr(Λl(Dφ−t)) =
∑

k̄

det(Dφ−t)k̄,k̄ =
∑

k̄

det(Dhypφ−t)k̄,k̄

= tr(Λl(Dhypφ−t))
(3.4.16)

3.5 Extending the Determinants
We would like to define something akin to the trace and the determinant for op-
erators which are not of trace class. For example note that the linear operators
A

.= R(d−1)(ξ)−1R(d−1)(z) are bounded, provided z, ξ ∈ C are not in the spectrum
of X(d−1), but not trace class. Recall that in our case A : Bp,q,` → Bp,q,`.

We start by choosing a suitable approximation of δx. For x ∈ M , ε > 0, let
BM,ε(x) .= {y ∈ M : d(x, y) < ε}; let jx,ε ∈ C∞(M,R+) be a family of approxima-
tions to the usual δx supported on BM,ε(x) such that limε→0

∫
M jε,x(y)f(y)ω(dy) =

f(x) for all f ∈ C0, where ω(dx) stands for the Riemannian volume. We recall that
our trace has been defined in Section 3.1 as

Trace(`)(A) = lim
ε→0

∫

M2
jx,ε(y)

(
tr(`)(A)

)
(jx,ε)(y)ω(dx)ω(dy) (3.5.1)

where tr(`)(A) is defined by (3.4.12).
In order to make precise our definition of trace we specify an explicit family

of approximate identities jε,x(y). Let ks ∈ C∞(Rs,R+) such that
∫
Rs ks(ξ)dξ = 1

where supp(ks) ⊂ {x ∈ Rs : ‖x‖ ≤ r} for some appropriate r ∈ (0, 1). Moreover,
we define k ∈ C∞(Rd,R+) as k(x1, . . . xd) = kd−1(x1, . . . , xd−1)k1(xd). Note that
given ε ≥ 0, f, h ∈ C0, one has for ks

lim
ε→0

ε−s
∫

Rs
ks(ε−1(x+ εh(x))f(x)dx = lim

ε→0

∫

Rs
ks(z + h(εz))f(εz)dz

= f(0)
∫

Rs
ks(z + h(0))dz = f(0).

(3.5.2)

Let {Θα, Uα, ψα} be the atlas with the related partition of unity already used in
Section 3.3. Recall that ∃ ε0 > 0 such that if x ∈ supp ψα, then BM,ε0(x) ⊂ Uα for
all α. Let ε < ε0 and define

jε,x(y) .= gε(x)−1∑

α

ε−dk
(
ε−1 (Θα(x)−Θα(y))

)
ψα(x) (3.5.3)

where gε is the normalization factor

gε(x) =
∑

α

∫

Vα
ε−dψα(x)k

(
ε−1(Θα(x)− z)

)
ωα(z)dz. (3.5.4)

such that ωα(z)dz = (Θ−1
α )∗(ω) so that

lim
ε→0

gε(x) =
∑

α

ψα(x)ωα ◦Θα(x).
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Θα(supp(τ) ∩ Uα)

M
Uα

Θα

τ ∈ Tp

Vα ⊆ B(0, 4δ)

Θα(φ−t(Θ−1
α (y)))x

φ−t(y) y y
x

Figure 3.1. The framework of our lemma

After recalling that we used T for the set of orbits for the flow and Tp for the
set of prime orbits, we now establish the following

Lemma 3.5.1. For <(z) sufficiently large and n ∈ N, 0 ≤ ` ≤ d − 1 we have
Trace(`)(R(`)(z)n) <∞. In addition,

Trace(`)(R(`)(z)n) = 1
(n− 1)!

∑

τ∈T

1
µ(τ)

tr
(
∧`(Dhypφλ(τ))

)
λ(τ)ne−zλ(τ)

det
(
1−Dhypφλ(τ)

)

Proof. Recall that by equation (3.3.1), (Θα, Uα) have been chosen such that we can
write x .= Θα(x) = (x̃, xd) ∈ Vα ⊂ Rd−1 × R and Θ−1

α (x̃, xd + s) = φs(Θ−1
α (x̃, xd))

for a neighborhood of x. Let y be in a BM,ε(x), from equation (3.2.8) and Lemma
3.4.3 we can write

Trace(`)(R(`)(z)n) = lim
ε→0

∫

M2
ω(dx)ω(dy) jx,ε(y)

(n− 1)!

× tr(`)
(∫ ∞

0
dt tn−1e−ztL(`)

t

)
(jx,ε)(y)

(3.5.5)

Notice that the integrand is zero when d(x, y) > ε or d(x, φ−t(y)) > ε. Hence, for
any t, integrating on M2 is the same as integrating on (see figure 3.1)

Dε,t
.= {(x, y) ∈M2 : d(x, y) ≤ ε, d(x, φ−t(y)) ≤ ε}.

Now we recall the shadowing theorem for flows as in Bowen [12], with the formu-
lation explicitly given by Plugging in [56] as theorem 1.5.1, adapted to our case.
First of all we define the (ε0, L)-pseudo-orbits tt. Let t(t) : R → M be a map such
that given ε0 > 0, L > 0 for any t′ ∈ R we have d(φt(tt′), t(t + t′)) ≤ ε0 if |t| < L.
Note that we did not require t(t) to be continuous. Then we have the following

Theorem 3.5.2 ([56]). Let M be a smooth manifold and φt a C2 Anosov flow.
There exists positive numbers ε0, c such that given a (ε, c)-pseudo orbit tt with ε < ε0
there is a unique orbit τ , a point p ∈ τ and a reparametrization σ(t) for all t ∈ R,
we have

d(tt, φσ(t)(p)) ≤ cε where |σ(t)− t| ≤ cε|t|.
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Now for each τ ∈ T we define

∆ε,τ
.=
{

(x, y) ∈M2 : d(x, y) < ε, d(φt(y), τ) < cε for t ∈ [0, λ(τ)(1 + cε)]
}

then, by the theorem above for all t, ε > 0 we have that

Dε,t ⊂
⋃

τ∈T :λ(τ)∈[t(1−cε),t(1+cε)]
∆ε,τ . (3.5.6)

Note that we can choose ε so that there are no orbits τ such that λ(τ) ≤ cε, since
there exists a minimum period for the orbits. Now we can establish the following
lemma.

Lemma 3.5.3. For all sufficiently small ε and sufficiently large <(z),

lim
L→∞

sup
ε>0

∣∣∣∣
∫

M2
ω(dx)ω(dy)

∫ ∞

L
dt

jx,ε(y)
(n− 1)! t

n−1e−zttr(`)
(
L(`)
t

)
(jx,ε)(y)

∣∣∣∣ = 0.

Proof. By (3.5.6) we have
{

(x, y, t) ∈M2 × R+ : (x, y) ∈ Dε,t, t ≥ L
}
⊂

⋃

{τ∈T :λ(τ)>L(1−cε)}
∆ε,τ × [λ(τ)(1− cε), λ(τ)(1 + cε)] .

By the definition of the transfer operator and the linearity of tr(`), given σp,q,`
derived from Lemma 3.4.2, we can apply Fubini-Tonelli to obtain13

∣∣∣∣
∫

M2
ω(dx)ω(dy) jx,ε(y)

(n− 1)!

∫ ∞

L
dt tn−1e−zt

(
tr(`)L`t

)
(jx,ε)(y)

∣∣∣∣

≤ c
∑

{τ∈T :λ(τ)>L(1+cε)}

∫ λ(τ̃)(1+cε)

λ(τ̃)(1−cε)
dt

∫

∆ε,τ

ω(dx)ω(dy) ε−2dtn−1e(−<(z)+log(|σp,q,`|))t

≤ c
∑

{τ∈T :λ(τ)>L(1+cε)}

∣∣∣λ(τ)ne(−<(z)+log(|σp,q,`|))λ(τ)
∣∣∣ .

Therefore, since the growth of the number of orbits of periodicity λ(τ) ≤ L for
Anosov flows is at most exponential (see [39]) we can establish absolute convergence,
given <(z) sufficiently large.

If we define

Kε,`,n,z(x, y, t)
.= jx,ε(y)

(n− 1)! t
n−1e−zt

(
tr(`)L`t

)
(jx,ε)(y) (3.5.7)

the equation (3.5.5) can be rewritten by Lemma 3.5.3 as

Trace(R`(z)n) = lim
L→∞

lim
ε→0

∫ L

0
dt

∫

Dε,t
ω(dx)ω(dy) Kε,`,n,z(x, y, t).

13Note that m(∆ε,τ ) is bounded by the measure of a cε neighborhood of τ times the volume of
a ε ball i.e. m(∆ε,τ ) ≤ λ(τ)εd−1εd
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Now let us define

∆̃ε,τ
.= {(x, y, t) ∈M2 × R+ : (x, y) ∈ ∆ε,τ , |t− λ(τ)| ≤ λ(τ)cε|}

Lemma 3.5.4. Let τ1, τ2 ∈ T with λ(τi) < L, i = 1, 2 . There exists εL > 0
such that for all ε < εL if we have ∆̃ε,τ1 ∩ ∆̃ε,τ2 6= ∅ then τ1 = τ2. Moreover⋃
t∈[0,L]Dε,t × {t} ⊂

⋃
{τ∈T :τ<L} ∆̃ε,τ .

Proof. Let (x, y, t) ∈ ∆̃ε,τ1 ∩∆̃ε,τ2 . Then t ∈ [λ(τ1)(1−cε), λ(τ1)(1+cε)]∩ [λ(τ2)(1−
cε), λ(τ2)(1+cε)], thus |λ(τ1)−λ(τ2)| ≤ 2cεL. Now let (x, y) ∈ ∆ε,τ1∩∆ε,τ2 , then by
the previous theorem there exists τ ∈ Tp such that supp(τ) ⊆ (supp(τ1)∩ supp(τ2)).
Thus since both the support and times must coincide we have τ1 = τ2 for ε < εL.
Note that this is granted as soon as εL ≤ νL−1c for ν the minimum period of an
orbit onM . Last, if (x, y, t) ∈ ⋃t∈[0,L]Dε,t×{t} by (3.5.6) we have that there exists
τ ∈ T such that (x, y) ∈ ∆ε,τ and |t−λ(τ)| ≤ λ(τ)(1−cε). Thus (x, y, t) ∈ ∆̃ε,τ .

Hence we obtain

Trace(R(`)(z)n) = lim
L→∞

lim
ε→0

∑

τ∈T
λ(τ)<L

∫

∆̃ε,τ

Kε,`,n,z(x, y, t)ω(dx)ω(dy)dt

Given the definition of L̃(`)
t and passing to coordinate charts we set

Ωα,ε,τ = (Θα ×Θα × 1)
(
(Uα × Uα × R) ∩ ∆̃ε,τ

)

so we can rewrite our integral as

Trace(R(`)(z)n) =
∑

α

lim
L→∞

lim
ε→0

∑

{τ∈T :λ(τ)<L}

∫

Ωα,ε,τ
(gε ◦Θ−1

α (x))−1

× (ψα ◦Θ−1
α (x))ε−dk

(
ε−1(x− y)

) tn−1e−zt

(n− 1)!
×
(
tr(`)L(`)

t

)
(jΘ−1

α (x),ε)(Θ
−1
α (y))ωα(x)ωα(y)dxdydt.

(3.5.8)

Next we compute (tr(`)L(`)
t )(jΘ−1

α (x),ε)(Θ−1
α (y)) for (x, y, t) ∈ Ωα,ε,τ . From the defi-

nition of jΘ−1
α (x),ε, equations (3.4.14), (3.4.16) and (3.5.3), we obtain

(tr(`)L(`)
t )(jΘ−1

α (x),ε)(Θ
−1
α (y)) = (jΘ−1

α (x),ε) ◦ φ−t(Θ−1
α (y))tr(∧l(Dhypφ−t))

= tr
(
∧`(Dhypφ−t)

) (
gε ◦Θ−1

α (x)
)−1∑

β

(
ψβ ◦Θ−1

α (x)
)

ε−dk
(
ε−1

(
Θβ ◦Θ−1

α (x)−Θβ ◦ φ−t ◦Θ−1
α (y)

))
.

For each Vα let Σα = {v = (ṽ, vd) ∈ Vα : vd = 0}. Let τ̄α,i be the connected
components of Θα(supp(τ) ∩ Uα) indexed by i. Let Ωα,ε,τ,i ⊃ τ̄α,i be the related
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neighborhoods such that Ωα,ε,τ = ⋃
i Ωα,ε,τ,i. Furthermore let ηα,i = τα,i ∩ Σα and

|ηα,i−x̃| < cε. Let φ̂α,−t(v) .= Θα◦φ−t◦Θ−1
α (v) where it is well defined. Define rα,τ̄ ,i :

Σα → R+14 as rα,τ̄ ,i(ṽ) .= inf{t ∈ [λ(τ)(1−cε), λ(τ)(1+cε)] : φ̂α,−t◦Θ−1
α (ṽ, 0) ∈ Σα}

and note that rα,τ̄ ,i(η̄α,i) = λ(τ). Let Pα : Vα → Σα as Pα(v) = φ̂α,−vd(v) so that

φ̂α,−t(y) = φ̂α,−t+yd(Pα(y)) = φ̂α,−t+yd+rα,τ̄,i(Pα(y)) ◦ φ̂α,−rα,τ̄,i(Pα(y))(Pα(y))

In particular we have that [φ̂α,−t(y)]d = −t+yd+rα,τ̄ ,i(Pα(y)) provided |t−λ(τ)| ≤
cε.

Let Π : Rd → Rd−1 such that Π(v1, . . . , vd) = (v1, . . . , vd−1) and recall that we
have invertible maps Gα,β : Rd−1 → Rd−1 and maps Fα,β : Rd−1 → R such that

Θβ ◦Θ−1
α (z) = (Gα,β(z1, . . . , zd−1), Fα,β(z1, . . . , zd−1) + zd) .

Hence we have the decomposition

k
(
ε−1

(
Θβ ◦Θ−1

α (x)−Θβ ◦ φ−t ◦Θ−1
α (y)

))

= kd−1
(
ε−1(Gα,β(x̃)−Gα,β ◦Π ◦ φ̂α,−t(y)

))
k1
(
ε−1hα,β,τ̄ ,i(x, y, t)

) (3.5.9)

where we have set

hα,β,τ̄ ,i(x, y, t) =
(
Fα,β(x̃) + xd − Fα,β(Π ◦ φ̂α,−t(y))− yd − rα,τ̄ ,i(Pα(y)) + t

)

For (x, y, t) ∈ Ωα,ε,τ we can define the following transformation Ξ : Ωα,ε,τ,i → R2d+1

as
Ξ(x, y, t) =

(
x̃− ỹ, xd − yd, Gα,β(x̃)−Gα,β ◦Π ◦ φ̂α,−t(y), xd, t

)

= (ξ, ξd, ρ, ρd, t′).
(3.5.10)

Lemma 3.5.5. Ξ is a diffeomorphism between Ωα,ε,τ,i and its image.

Proof. To see that it is a local diffeomorphism we begin by writing explicitly

DΞ =




1 0 −1 0 0
0 1 0 - 1 0

Dx̃Gα,β 0 −DΠ◦φ̂α,−t(y)Gα,β ·Dφ̂α,−t(y)Π ·Dd−1,yφ̂α,−t′ 0 *
0 1 0 0 0
0 0 0 0 1



.

We use Dyf for the standard derivative matrix of f at y. Note that by construction
Gα,β ◦Π ◦ φ̂α,−t(y) does not depend on yd. Moreover

Dφ̂α,−t(y)Π ·Dd−1,yφ̂α,−t =



1 · · · 0 0
... . . . ...

...
0 · · · 1 0







∂1φ̂α,−t(y))
∂y1

· · · ∂1φ̂α,−t(y))
∂yd−1

...
...

∂dφ̂α,−t(y))
∂y1

· · · ∂dφ̂α,−t(y))
∂yd−1


 = Dhypφ̂α,−t

14With a little abuse we write rα,τ̄,i for rα,τ̄α,i , thus avoiding repeated and double subscripts.
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where Dhypφ̂α,−t is an hyperbolic matrix. Hence for this transformation, using the
properties of determinants, we have that

| det(DΞ)| =

∣∣∣∣∣∣∣

1 −1 0
0 0 −1

Dx̃Gα,β −DΠ◦φ̂α,−t(y)Gα,β ·Dhypφ̂α,−t 0

∣∣∣∣∣∣∣

=
∣∣∣∣∣

1 −1
Dx̃Gα,β −DΠ◦φ̂α,−t(y)Gα,β ·Dhypφ̂α,−t

∣∣∣∣∣

=
∣∣∣∣∣

1 0
Dx̃Gα,β Dx̃Gα,β −DΠ◦φ̂α,−t(y)Gα,β ·Dhypφ̂α,−t

∣∣∣∣∣

= |Dx̃Gα,β| ·
∣∣∣1− (Dx̃Gα,β)−1DΠ◦φ̂α,−t(y)Gα,β ·Dhypφ̂α,−t

∣∣∣

Now observe that (Dx̃Gα,β)−1DΠ◦φ̂α,−t(y)Gα,β = 1 + o(ε) so that

1− (Dx̃Gα,β)−1DΠ◦φ̂α,−t(y)Gα,β ·Dhypφ̂α,−t =
(
1−Dhypφ̂α,−t

)
(1− εA)

for some uniformly bounded matrix A. Therefore

|detDΞ| = ωα
ωβ

∣∣∣1−Dhypφ̂α,−t
∣∣∣ |1− εA| 6= 0 (3.5.11)

Now let Ξ(x, y, t) = Ξ(w, z, s) for opportune variables x, y, w, z, t, s. By applying
the transformation we must have trivially t = s, xd = wd and yd = zd. Since our
transformation is defined on Ωα,ε,τ,i we must have t ∼ λ(τ). Moreover x, y arbitrarily
close i.e. |x− y| < ε. Thus |x−w| < ε, |y− z| < ε. Hence x = w, y = z since Ξ is a
local diffeomorphism.

To simplify our expression let

Hα,β,`,ε,τ (x, y, t) = tr
(
∧`(Dhypφ−t)

)
(gε ◦Θ−1

α (x))−2

× (ψα ◦Θ−1
α (x))(ψβ ◦Θ−1

α (x)) t
n−1e−zt

(n− 1)! ωα(x)ωα(y)
(3.5.12)

Given ηα,i, recall that |ηα,i − x̃| < cε then, for all ηα,i we have




Fα,β(x̃) = Fα,β(ηα,i) +Dηα,iFα,β(x̃− ηα,i) + o(ε)
Fα,β(Π ◦ φ̂α,−t(y)) = Fα,β(ηα,i) +Dηα,iFα,β(Π ◦ φ̂α,−t(y)− ηα,i) + o(ε)
rα,τ̄ ,i(Pα(y)) = λ(τ) + (Dηα,irα,τ̄ ,i)(ỹ − ηα,i) + o(ε).

(3.5.13)
Moreover, after recalling that Gα,β are invertible maps of at least class C1 and
recalling the definition of Ξ we also have that ρ = Gα,β(x̃)−Gα,β ◦ Π ◦ φ̂α,−t(y) =
Dηα,iGα,β(x̃−Π◦ φ̂α,−t(y))+o(ε) so that x̃−Π◦ φ̂α,−t(y) = Dηα,iG

−1
α,βρ+o(ε). From

this equality and by (3.5.13) and (3.5.10) we have

ỹ − ηα,i =
(
1−Dηα,i(Π ◦ φ̂α,−t)

)−1 (
Dηα,iG

−1
α,βρ− ξ

)
+ o(ε)
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Hence we can write

k1
(
ε−1hα,β,τ,i(x, y, t)

)
= k1

(
ε−1
(
ξd + t− λ(τ)

+Dηα,irα,τ̄ ,i(1−Dηα,i(Π ◦ φ̂α,−t))−1(Dηα,iG
−1
α,βρ− ξ)

+(Dηα,iFα,β)(Dηα,iG
−1
α,β)ρ+ o(ε)

))

Hence after setting Ωα,ε,τ,i
.= Ξ(Ωα,ε,τ,i) by rewriting equation (3.5.8) our integral

reads

Trace(R(`)(z)n) =
∑

α,β

lim
L→∞

lim
ε→0

∑

{τ∈T :λ(τ)<L}

∫

Ωα,ε,τ,i
ε−2d

×Hα,β,`,ε,τ ◦ Ξ −1(ξ, ξd, ρ, ρd, t) kd−1
(
ε−1ξ

)
k1
(
ε−1ξd

)
kd−1

(
ε−1ρ

)

× k1
(
ε−1

(
ξd + t− λ(τ) +Dηα,irα,τ (1−Dηα,i(Π ◦ φ̂α,−t))−1

× ((Dηα,iG
−1
α,β)ρ− ξ) +(Dηα,iFα,β)(Dηα,iG

−1
α,β)ρ+ o(ε)

))

×
∣∣∣det(DΞ)−1

∣∣∣ dξdξddρdρddt

(3.5.14)

Now we rescale the variables by setting ξ̆ = ε−1ξ, ξ̆d = ε−1ξd, ρ̆ = ε−1ρ, s =
ε−1(t− λ(τ)). We set

h̆α,β,ε,τ,εs+λ(τ),i(ξ̆, ρ̆) .= Dηα,irα,τ (1−Dηα,i(Π ◦ φ̂α,−εs−λ(τ)))−1((Dηα,iG
−1
α,β)ρ̆− ξ̆)

+ (Dηα,iFα,β)(Dηα,iG
−1
α,β)ρ̆+O(ε).

We can take the limit for ε→ 0 and obtain

Trace(R(`)(z)n) =
∑

α,β

lim
L→∞

∑

{τ∈T :λ(τ)<L}

∫

R2d
dξ̆dξ̆ddρ̆dρd

∫ cλ(τ)

−cλ(τ)
ds

Hα,β,`,0,τ ◦ Ξ −1 (0, 0, 0, ρd, λ(τ)) kd−1
(
ξ̆
)
k1
(
ξ̆d
)
kd−1 (ρ̆)

k1
(
s+ ξ̆d + h̆α,β,0,τ,λ(τ),i(ξ̆, ρ̆)

) ∣∣∣det(DΞ)−1
∣∣∣ .

(3.5.15)

Note that h̆ is uniformly bounded for all εs+λ(τ). Thus in the above equation we can
choose the constant c large enough so that all the s for which k1

(
s+ ξ̆d + h̆α,β,0,τ,λ(τ)(ξ̆, ρ̆)

)
6=

0 belongs to [−cλ(τ), cλ(τ)]. Last, we integrate with respect to ds, dξ̆, dξ̆d, dρ̆. Note
that if Ξ(x, y, λ(τ)) = (0, 0, 0, ρd, λ(τ)) then x = y = (ηα,i, ρd). Thus, setting
pα,i = Θ−1

α (η̄α,i, 0), we obtain

Trace(R(`)(z)n) =
∑

α,β,i

lim
L→∞

∑

{τ∈T :λ(τ)<L}

∫ 4δ

−4δ
dρd tr

(
∧`(Dhypφ−λ(τ))

)

× λ(τ)n−1e−zλ(τ)

(n− 1)!
ψα ◦ φρd(pα,i)ψβ ◦ φρd(pα,i)(∑

γ ψγ ◦ φρd(pα,i)ωγ ◦Θγ ◦ φρd(pα,i)
)2

× ωα(Θα ◦ φρd(pα,i))ωβ(Θβ ◦ φρd(pα,i)) det
(
1−Dhypφ−λ(τ)

)−1
.
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We can then choose pτ ∈ supp τ . Then {φt(pτ )}t∈[0,λ(τ)] cross each connected com-
ponent of suppψα ∩ supp τ (and hence each pα,i) exactly µ(τ) times. Accordingly,

Trace(R(`)(z)n) =
∑

α,β

lim
L→∞

∑

{τ∈T :λ(τ)<L}

∫ λ(τ)

0
dρd tr

(
∧`(Dhypφ−λ(τ))

)

× λ(τ)n−1e−zλ(τ)

µ(τ)(n− 1)!
ψα ◦ φρd(pτ )ψβ ◦ φρd(pτ )

(∑
γ ψγ ◦ φρd(pτ )ωγ ◦Θγ ◦ φρd(pτ )

)2

× ωα(Θα ◦ φρd(pτ ))ωβ(Θβ ◦ φρd(pτ )) det
(
1−Dhypφ−λ(τ)

)−1

= lim
L→∞

∑

τ∈T
λ(τ)<L

∫ λ(τ)

0

tr(∧`(Dhypφ−λ(τ)))λ(τ)n−1e−zλ(τ)

(n− 1)!µ(τ) det
(
1−Dhypφ−λ(τ)

) .

By taking the limit for L→∞ we finally obtain

Trace(R(`)(z)n) = 1
(n− 1)!

∑

τ∈T

1
µ(τ)

tr(∧`(Dhypφ−λ(τ)))λ(τ)ne−zλ(τ)

det
(
1−Dhypφ−λ(τ)

) .

3.6 Linearity of extended determinants
We will extend the methods of Liverani-Tsujii [43] to the dynamical determinants
just studied. To do so we first introduce the adjoint operator of L(`)

t , we will compute
its expression and then we will construct a suitable “product” operator. We start
by computing

〈L(`)
t f, g〉Ω`s =

∫

M
〈L(`)

t f, g〉xω(x) =
∫

M
(φ∗−tf)(x) ∧ ∗g(x)

=
∫

M
φ∗−t(f ∧ φ∗t (∗g))(x) =

∫

M
f(x) ∧ φ∗t (∗g)(x)

=
∫

M
(−1)`(d−`)〈f, ∗φ∗t (∗g)〉xω(x) = 〈f,L(`)

t g〉Ω`s

(3.6.1)

where d is the dimension of M , ∗ indicates the Hodge dual and ∗∗g = (−1)`(d−`)g
for each `-from g, see [38, Lemma 2.1.1], and we have defined

L(`)
t g

.= (−1)`(d−`) ∗(φ∗t (∗g)). (3.6.2)

Thus given g ∈ Ω`
0,s(M) we have the local expression15

(L(`)
t g)α,j̄

.= ψα
∑

β,̄i

(
gβ,̄i ◦ φt

)
(−1)`(d−`)ε(̄i)ε(j̄) det(Dφt)α,βj̄c ,̄ic , (3.6.3)

15It follows from (3.4.5) applied to ∗g, with φt instead of φ−t, and noticing that ∗dxī =
(−1)ε(̄i)dxīc , see [38, Section 2] for more details.
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where īc is an ordered (d− `)-multiindex such that (dxī, dxīc ) form a complete base
and ε(̄i) is the sign of the permutation that maps {1, . . . , d} to {i1, . . . , i`, ic1, . . . , icd−1−`}.
Note that, if g ∈ Ω`

0,s(M), then ik < d thus, recalling the representation (3.4.4), it
follows that in (3.6.3) īc has always the last component equal to d. Thus, only the
j̄ such that j` < d contribute to the sum. In other words L(`)

t (Ω`
0,s) ⊂ Ω`

0,s and on
such a subspace we can write

(L(`)
t g)α,j̄

.= ψα
∑

β,̄i

(
gβ,̄i ◦ φt

)
(−1)`(d−`)ε(̄i)ε(j̄) det(D̃φt)α,βj̄c ,̄ic , (3.6.4)

Remark 3.6.1. Note that īc in (3.6.3) is a d − ` ordered multi-index while in
(3.6.4) is a d − 1 − ` multi-index since its components can take value only in the
set {1, . . . , d− 1}. The latter is the situation in the present section, and we will not
warn the reader any further.

Our goal is to use the operators L(`)
t ,L(`)

t to construct an operator that acts
naturally on an appropriate subspace of Ω2`

s (M2). As a first step we define the
subspace of interest.

Consider the projections πi : M2 → M , i ∈ {1, 2}, such that π1(x, y) = x and
π2(x, y) = y. For each pair of `-forms f, g in Ωl

s(M) we have that π∗1f ∧ π∗2g ∈
Ω2l
s (M2). We define then Ω`

2,s(M) = span{π∗1f ∧ π∗2g : f, g ∈ Ω`
0,s(M)}.16

Next, we want to use section 3.3 to define a norm that reflects the relevant
dynamical properties. On M we consider two systems of charts: the one used in
section 3.4, that we will call (Uα,Θ−α ) and the other constructed exactly in the same
way but with respect to the flow φ−t rather than φt, that we will call (Uα,Θ+

α ).17

Also we consider the associated adapted partition of unity {ψα}. We consider then
the atlas, of M2, (Uα ×Uβ,Θ−α ×Θ+

β ), subordinates partitions {ψα,β}, ψα,β(x, y) =
ψα(x)ψβ(y), and the cones C such that

(Θ−α ×Θ+
β )∗C(x, y) .=

{
(ξ, η) ∈ R2d : |ξc|+ |ηc|+ |ξu|+ |ηs| ≤ |ξs|+ |ηu|

}
.

Note that we can assume without loss of generality that C are strictly invariant
cones with respect to the R2

+ action φ−t × φs.
We use the above structure on M2 to define norms ‖ · ‖p,q,`,2 using the construc-

tion in Section 3.3. We define then the Banach space Bp,q,`2 as the closure of Ω`
2,s(M)

with respect to the norm ‖ · ‖p,q,`,2.
We can finally construct operators L(`)

t,s = L(`)
t ⊗ L

(`)
s in analogy with what has

been done in [43] for the case of diffeomorphisms.18

16Locally, the Cs closure of Ω`2,s(M) contains all the forms of the type
∑

ī,j̄
ω(x, y)dxi1∧. . . dxi`∧

dyi1 ∧ . . . dyi` with ω ∈ Cs′(M2), for each s′ ≥ s.
17In particular, the relevant cone is Cu, not Cs, and its representation in chart will contain
{‖s‖+ |t| ≤ ‖u‖}. Note that one can always reduce to this case by eventually refining the covering.

18Note that in the present setting we are forced to introduce a R2
+ action since the product of

two flows has a two dimensional central bundle.
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Given f, g ∈ Ω`
0,s(M) we define

L(`)
t,s(π∗1f ∧ π∗2g) .= (π∗1(L(`)

t f)) ∧ (π∗2(L(`)
t g)) (3.6.5)

which extends by linearity to an operator L(`)
t,s : Ω`

2,s(M)→ Ω`
2,s(M).

To express h ∈ Ω`
2,s(M) locally, we adopt the natural extension of the previous

notation, i.e. hα,β = ψα,βh and

hα,β(x, y) =
∑

ī,j̄∈I`
hα,β,i,j(x, y)dxα,̄i ∧ dyβ,j̄ . (3.6.6)

Accordingly, we can write L(`)
t,sh as

(L(`)
t,sh)α,β,̄i,j̄ =

∑

γ,δ,n̄,m̄

ψα,β · hγ,δ,m̄,n̄ ◦ φ−t × φs

× (−1)`(d−`)ε(j̄)ε(n̄) det(D̃φ−t)α,γn̄,̄i det(D̃φs)β,δj̄c,n̄c .
(3.6.7)

In the case of d − 1-forms, from equation (3.6.1) and setting ω2 = π∗1ω̃ ∧ π∗2ω̃,
we have

L(d)
t,t (fω2) = f ◦ (φ−t × φt) det(Dφ−t)ω2. (3.6.8)

That is, we recover the same type of operator studied in [43].
We can then proceed exactly as in section 3.4 to prove the following Lemma.

Lemma 3.6.2. For each ` ∈ {0, . . . , d − 1}, L(`)
t,s : Bp,q,`2 → Bp,q,`2 are bounded

operators. Furthermore, for each % > 2 there exists C > 0 such that, for <(z) ≥ %σ̂`,
the operator

R
(`)
2 (z)n = 1

(n− 1)!2
∫ ∞

0

∫ ∞

0
(ts)n−1e−z(t+s)L(`)

t,sdtds (3.6.9)

is a linear quasi-compact operator on Bp,q,`2 with spectral radius bounded by C(σ`a−1)2n

and essential spectral radius bounded by C(σ`σp,qa−1)2n.

To follow the scheme of [43] we need to define a suitable delta function in Bp,q,`2 .
For each f, g ∈ Ω`

s(M), let

δ`2(π∗1f ∧ π∗2g) .=
∫

M
〈f, g〉xω(dx).

Such a definition extends by linearity to all sections in Ω`
2,s(M), thus δ`2 ∈ Ω`

2,s(M)′.
Since for h = Ω`

2,s(M) we have the coordinate expression

h =
∑

α,β

∑

ī,j̄

ψα(x)ψβ(y)hα,β
ī,j̄

(x, y)dxα,̄i ∧ dyβ,j̄ , (3.6.10)
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we obtain

δ`2(h) =
∑

α,β

∑

ī,j̄

∫

M
ψα(x)ψβ(x)hα,β

ī,j̄
(x, x)〈dxα,̄i, dxβ,j̄〉ω(dx)

=
∑

α,β

∑

ī

∫

M
ψα(x)ψβ(x)hα,α

ī,̄i
(x, x)ω(dx)

=
∑

α

∑

ī

∫

M
ψα(x)hα,α

ī,̄i
(x, x)ω(dx).

(3.6.11)

Next we need the equivalent of Lemma 3.3.6, the proof is omitted since it is exactly
the same as before starting from the space Ω`

2,s(M).

Lemma 3.6.3. There exists an injective immersion ι : Bp,q,`2 →
(
Ω`

2,s(M)
)′

Next we have the following

Lemma 3.6.4. The current δ`2 extends uniquely to an element of
(
Bp,q,`2

)′
.

Proof. Since Bp,q,`2 is defined by the closure of the sections on which δ`2 is defined,
it suffices to prove that there exists c > 0 such that |δ`2(h)| ≤ c‖h‖p,q,2. This
follows immediately from (3.6.11) since δ`2 corresponds to integrating on the man-
ifold WD := {(x, y) ∈ M2 : x = y}. If x ∈ Uα we can foliate WD, in the
local chart Vα, with the manifolds Wα,Gs ∈ Σ̃ given by the graph of the functions
Gs(xs, yu) = (xs, yu, s, xs, yu, s). Accordingly,

|δ`2(h)| ≤
∑

α

|δ`2(ψαh)| ≤
∑

α,̄i

∫
ds

∣∣∣∣∣

∫

Wα,Gs

〈ψαdxα,̄i ∧ dyα,̄i, h〉
∣∣∣∣∣ ≤ c‖h‖B0,q,`

2
.

Next we want to see that, if <(z) large enough, R2(z)δ`2 can be naturally iden-
tified with an element of Bp,q,`2 . Let us begin with a definition

Jε(x, y) =
∑

α

∑

ī

ψα(x)jε,x(y)dxα,̄i ∧ dyα,̄i. (3.6.12)

Then, Jε ∈ Ω`
2,s(M) and given h ∈ Ω`

2,s(M), remembering the representation
(3.6.10),

〈Jε, h〉Ω(`)
2,s

=
∑

α,̄i

∫

M
ψα(x)jε,x(y)〈dxα,̄i ∧ dyα,̄i, h〉(x,y)ω(x)ω(y)

=
∑

α,̄i

∫

M
ψα(x)jε,x(y)hα,α

ī,̄i
(x, y)ω(x)ω(y).

Thus, for each h ∈ Ω`
2,s(M), limε→0 ι(Jε)(h) = δ`2(h).
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Lemma 3.6.5. There exists n0 ∈ N such that each z ∈ C, <(z) ≥ %σ̂`, we have
that R(`)

2 (z)n0Jε form a Cauchy sequence in Bp,q,`2 . We call δ̄`2(z) the limit of such
a sequence. Moreover, ι(Jε) converges to δ`2 in (Bp,q,`2 )′.

Proof. First of all a direct computation shows

(L(`)
t,sJε)α,β,̄i,j̄ =

∑

γ,n̄

ψα,β · ψγ(φ−t(x))jε,φ−t(x)(φs(y))(−1)`(d−`)ε(j̄)ε(n̄)

× det(D̃xφ−t)α,γn̄,̄i det(D̃yφs)β,γj̄c,n̄c .

Given a d dimensional admissible manifold Wα,β,G
19 test form g ∈ Γ2`

0 (α, β,G) we
can write

〈R(`)
2 (z)n0Jε, g〉 = 1

(n0 − 1)!2
∫

R2
+

ds dt (ts)n0e−z(t+s)
∑

α,β,γ,̄i,j̄,n̄

∫

Wα,β,G

ψγ(φ−t(x))gα,β,̄i,j̄(x, y)

× jε,φ−t(x)(φs(y))(−1)`(d−`)ε(j̄)ε(n̄) det(D̃xφ−t)α,γn̄,̄i det(D̃yφs)β,γj̄c,n̄c

=
∫

R2
+

ds dt
e−z(t+s)(ts)n0

(n− 1)!2
∑

α,β,γ,̄i,j̄,n̄

∫

φ−t×φs(Wα,β,G)
ψγ(x)gα,β,̄i,j̄(φt(x), φ−s(y))

× jε,x(y)(−1)`(d−`)ε(j̄)ε(n̄) det(D̃φt(x)φ−t)α,γn̄,̄i det(D̃φ−s(y)φs)β,γj̄c,n̄c
×Kt,s(x, y),

(3.6.13)

where Kt,s(x, y) is the Jacobian of the change of coordinates. Next, note that
φ−t × φs(Wα,β,G), in coordinates, is a graph of the type

G(xs, yu) = (xs, Gu(xs, yu), G0,1(xs, yu), Gs(xs, yu), yu, G0,2(xs, yu)) ,

where ‖DG‖ < 1. Then we perform the change of variables

(ξ, η) = (xs −Gs(xs, yu), Gu(xs, yu)− yu) .

Such a change of variables is invertible with determinant bounded by (ts)−n0 for
some n0 ∈ N. The B0,q,`

2 norm is uniformly bounded in ε, via a direct computation
in the style of (3.5.10) Section 3.5 . The extension to Bp,q,`2 is treated similarly
after integrating by part p times. Now given ε, ε′ we directly apply our estimates
to ‖R(`)

2 (z)n0Jε −R(`)
2 (z)n0Jε′‖p,q,`,2 to prove the Lemma.

Corollary 3.6.6. For each z ∈ C, <(z) ≥ %σ̂`, ι(δ̄`2(z)) = R`2(z)′δ`2.

Lemma 3.6.7. For each z ∈ C, such that <(z) ≥ %σ̂`, holds true

δ
(`)
2

((
R

(`)
2

)n−n0
δ

(`)
2 (z)

)
= Trace(`)(R(`)(z)2n), (3.6.14)

19To make the following calculations more readable, from now on every time we drop the inte-
gration variables we mean that we are integrating with respect to the volume of the integration
bound.
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Proof. From Lemma 3.6.5 we obtain

δ`2

((
R

(`)
2

)n−n0
δ

(`)
2 (z)

)
= lim

ε1→0
lim
ε2→0

∫

M2
〈Jε,

(
R

(`)
2

)n
Jε〉

= lim
ε1→0
ε2→0

1
(n− 1)!2

∫

M2

∫

R2
+

ds dt(ts)n−1e−z(t+s)〈Jε,L(`)
t,sJε〉.

Next, by (3.6.12), (3.6.7) and remembering footnote 12, we have

〈Jε1 ,L
(`)
t,sJε2〉(x,y) =

∑

α,β,̄i,j̄

ψα(x)jε1,x(y)ψβ(φ−t(x))jε2,φ−t(x)(φs(y))

× det(D̃xφ−t)α,βj̄,̄i det(D̃yφs)α,βīc,j̄cε(̄i)ε(j̄)

=
∑

α,β,̄i,j̄

ψα(x)jε1,x(y)ψβ(φ−t(x))jε2,φ−t(x)(φs(y))

× det(D̃xφ−t)α,βj̄,̄i det(D̃φs(y)φ−s)α,βj̄,̄i det(D̃yφs)

Thus, remembering that the integrals are uniformly convergent with respect to time
(see Lemma 3.5.3),

δ`2

((
R

(`)
2

)n−n0
δ

(`)
2 (z)

)
= 1

(n− 1)!2
∫

R2
+

ds dt(ts)n−1e−z(t+s)

× lim
ε1→0

lim
ε2→0

∫

M2

∑

α,β,̄i,j̄

ψα(x)jε1,x(φ−s(y))ψβ(φ−t(x))jε2,φ−t(x)(y)

× det(D̃xφ−t)α,βj̄,̄i det(D̃yφ−s)α,βj̄,̄i

= lim
ε→0

1
(n− 1)!2

∫

M

∫

R2
+

ds dt(ts)n−1e−z(t+s)

×
∑

α,̄i

ψα(x)jε,x(φ−s−t(x)) det(D̃xφ−t−s)α,αī,̄i .

By changing variables to (t′, s′) .= (t + s, t) and integrating by parts n − 1 times
w.r.t. µ we obtain

δ
(l)
2

(
(R(l)

2 )n−n0δ
(l)
2 (z)

)
= lim

ε→0

1
(n− 1)!2

∫

M

∫ ∞

0
dt

∫ t

0
ds(t− s)n−1sn−1e−zt

×
∑

α,̄i

ψα(x)jε,x(φ−t(x)) det(D̃xφ−t)α,αī,̄i

= lim
ε→0

∫

M

∫ ∞

0
dt

t2n−1

(2n− 1)!e
−ztjε,x(φ−t(x))


∑

α,̄i

ψα(x) det(D̃xφ−t)α,αī,̄i


 .

Note that the integrand is different from zero only for d(x, φ−t(x)) ≤ ε, we can then
use the piece of orbit {φ−s(x)}s∈[0,t] to create an arbitrarily close ε-pseudoorbit.
Then, for ε small enough, Theorem 3.5.2 implies that there exists a unique close
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orbit τ such that d(φ−s(x), τ) ≤ cε for all s ∈ [0, t] and |λ(τ)− t| ≤ cελ(τ). Hence
(x, t) ∈ Ωτ = {(x, t) ∈ M × R+ : |t − λ(τ)| ≤ εcλ(τ), d(φ−s(x), τ) ≤ cε∀s ∈
(0, (1+cε)λ(τ))}.20 That is, setting Fz(x, t) = t2n−1

(2n−1)!e
−zt∑

α,̄i ψα(x) det(Dxφ−t)α,αī,̄i
and M+ = M × R+ we have

∫

M+
jε,x(φ−t(x))Fz(x, t) =

∑

τ∈T

∫

Ωτ
jε,x(φ−t(x))Fz(x, t).

Next, by (3.5.3) we have
∫

M+
jε,x(φ−t(x))Fz(x, t) =

∑

τ∈T ,α

∫

Ωτ
Fz(x, t)gε(x)ψα(x)k(ε−1(Θα(x)−Θα(φ−t(x))).

Note that, for <(z) large enough, the sum is uniformly convergent in ε since the
number of closed orbits grows at most exponentially. It is then convenient to define

Fz,α,ε(ξ, t) = Fz(Θ−1
α (ξ), t)gε(Θ−1

α (ξ))ψα(Θ−1
α (ξ))ω̄α(ξ)

where ω̄α(ξ)dξ is the induced volume form in Vα. We also define φα−t = Θα◦φ−t◦Θ−1
α

and recall that for our adapted charts we have Θα(x, t) = (Θα(x), t). We can then
write
∫

M+
jε,x(φ−t(x))Fz(x, t) =

∑

τ∈T ,α

∫

Θ̄α(Ωτ∩Uα×R)
Fz,α,ε(ξ, t)k(ε−1(ξ − φα−t(ξ))) dξ dt.

Note that Θ̄α(Ωτ ∩ Uα ×R+) consists of ε-neighborhood of a finite number of lines
(the connected pieces of Θα(τ ∪ Uα) ), let us call {Ω̄α,i} the collection of such
connected components. Let us now consider the changes of variables Ξα,i : Ω̄α,i →
Rd+1 defined by

Ξα,i(ξ, t) = (ξ1 − φα−t(ξ)1, . . . , ξd−1 − φα−t(ξ)d−1, ξd, t)
= (ζ1, . . . , ζd−1, ρ, s).

Let us introduce the matrices Λi,j = δi,j − ∂(φα−t)i
∂ξj

, i, j ∈ {1, . . . , d − 1}. Note that
det(DΞα,i) = det(Λ) 6= 0 since φα is hyperbolic. Moreover if Ξα,i(ξ, t) = Ξα,i(ξ′, t′),
then t = t′, ξd = ξ′d, hence ‖ξ − ξ′‖ ≤ cε and thus ξ = ξ′ since Ξα,i is a local
diffeomorphism. Also note that for (ξ, t) ∈ Ω̄α,i, setting ξ = (ξ̃, ξd) we can define
a smooth function rα,i(ξ̃) such that φ−rα,i(ξ̃)(ξ̃, 0)d = 0. By construction, for each
α, i, there exists a unique pα,i ∈ Rd−1 such that (pα,i, 0) ∈ τ and ((pα,i, 0), λ(τ)) ∈
Ωα,i, then rα,i(pα,i) = λ(τ) and φα−t(ξ) = φα−rα,i(ξ̃)(ξ̃, 0) + (0,−t + rα,i + ξd). Then
Ξ(p, 0, t) = (0, 0, t), hence

ξ̃ = p+ Λ−1(p)ζ +O(ζ2)
rα,i(ξ̃) = λ(τ) + ∂ξ̃rα,i(p)Λ

−1(p)ζ +O(ζ2).
20Note that, by Theorem 3.5.2 again, Ωτ ∩ Ωτ ′ 6= ∅ implies τ = τ ′. Hence such sets are all

disjoint.



3.6 Linearity of extended determinants 51

It follows,
∫

M+
jε,x(φ−t(x))Fz(x, t) =

∑

τ∈T ,α

∫

Ξα,i(Ω̄α,i)
Fz,α,ε ◦ Ξ−1

α,i(ζ, ρ, s)

× kd−1(ε−1ζ)k1(ε−1(s− rα,i(ξ̃)) dζ ds dρ.

At this point we make the change of variables η = ε−1ζ, v = ε−1(s−λ(τ)), yielding
∫

M+
jε,x(φ−t(x))Fz(x, t) =

∑

τ∈T ,α

∫

Ξα,i(Ω̄α,i)
Fz,α,ε ◦ Ξ−1

α,i(εη, ρ, λ(τ) + εv)

× kd−1(η)k1(v − ∂ξ̃rα,i(p)Λ−1(p)v +O(εv2)) dη dv dρ.

We can now take the limit for ε → 0 and obtain, after integrating first in v and
then in η,

lim
ε→0

∫

M+
jε,x(φ−t(x))Fz(x, t) =

∑

τ∈T

∑

α,i

∫ δ

−δ
Fz,α,0(φαρ (pα,i, 0), λ(τ))dρ.

Thus,

δ
(`)
2

(
(R(`)

2 )n−n0δ
(`)
2 (z)

)
= 1

(2n− 1)!
∑

τ∈T

1
µ(τ)

tr(∧`(Dhypφ−λ(τ)))λ(τ)2ne−zλ(τ)

det
(
1−Dhypφ−λ(τ)

) .

We obtained an expression only for the traces of even exponents of the resolvent.
Completely analogous computations yields the following Lemma.

Lemma 3.6.8. Let 1 be the identity operator on the space Bp,q,`2

δ
(`)
2

((
R

(`)
2

)n−n0 (
R

(`)
2 (z)× 1

) (
δ

(`)
2 (z)

))
= Trace

(
R(`)(z)2n+1

)
(3.6.15)

Finally we can harvest all the previous results. By Lemma 3.6.2 we have
R

(`)
2 (z) = P

(`)
2 (z)+U (`)

2 (z) where P (`)
2 (z) is a finite rank operator, the spectral radius

of U (`)
2 (z) is bounded by (σ`σp,qa−1)2 and P (`)

2 (z)U (`)
2 (z) = U

(`)
2 (z)P (`)

2 (z) = 0.

Lemma 3.6.9. Let R(`)(z) = P (`)(z) + U (`)(z) be the spectral decompositions of
R(`)(z). Then

δ
(`)
2

((
P

(`)
2

)n−n0
δ

(`)
2 (z)

)
= tr

(
P (`)(z)2n

)
. (3.6.16)

Proof. By the previous lemma we already have that, for h = π∗1f ∧ π∗2g,

δ
(`)
2

(
R

(`)
2 (z)nh

)
=
∫

M
〈R(`)(z)2(f), g〉ω(dx) (3.6.17)
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Now consider the Von Neumann expansion for the operator (ξ1−R(`)
2 (z))−1, a

path Γ outside the essential spectrum of R2(z) and R(`)
2 (z). Thus for h as before

δ
(`)
2

(
U

(`)
2 (z)h

)
= 1

2πi

∫

Γ
δ

(`)
2

((
ξ1−R(`)

2 (z)
)−1

h

)
ξdξ

= 1
2πi

∫

M

∫

Γ
〈
(
ξ1−R(`)(z)2n

)−1
f, g〉ω(dx)dξ

=
∫

M
〈U (`)(z)2f, g〉ω(dx)

(3.6.18)

Hence, by the spectral decomposition P (`)(z) = R(`)(z)− U (`)(z), we obtain

δ
(`)
2

(
P

(`)
2 (z)nh

)
=
∫

M
〈P (`)(z)2nf, g〉ω(dx) (3.6.19)

Next, since P (`) is a finite rank operator, we have P (`)(z)(f) = ∑
k νku

kvk(f). Thus
for a general h we have

δ
(`)
2

(
P

(`)
2 (z)nh

)
=
∑

k

ν2n
n

∑

α,β,̄i,j̄

∫

M2
ukα,̄i(x)vkβ,j̄(y)hα,β

ī,j̄
(x, y)ω(dx)ω(dy)

Finally we have

δ
(`)
2

((
P

(`)
2

)n−n0
δ

(`)
2 (z)

)
= lim

ε→0
δ

(`)
2

(
P (`)(z)2nJε

)
=
∑

k

ν2n
n vk(uk).

The same ideas can be applied to the operator
(
R

(`)
2 (z)n(R(`)(z)× I)

)
. Hence

we can write, regardless if R(`)(z)n is raised to an odd or to an even exponent.

Trace(R(`)(z)n) = tr(P (`)(z)n) +O
([
σ`σp,q<(z)−1

]n)

= 1
(n− 1)!

∑

τ

tr
(
∧l(Dhypφλ(τ))

)
λ(τ)ne−sλ(τ)

det(I −Dhypφλ(τ))

(3.6.20)



Chapter 4

Ongoing and Future Research
Projects

For fifteen days I strove to prove that there could not be any functions like those I
have since called Fuchsian functions. I was then very ignorant; every day I seated

myself at my work table, stayed an hour or two, tried a great number of
combinations and reached no results. One evening, contrary to my custom, I drank
black coffee and could not sleep. Ideas rose in crowds; I felt them collide until pairs

interlocked, so to speak, making a stable combination.
H. Poincaré

In this section I include some of the work that has been done in these years
which lie the foundations for projects which are not yet completed.

4.1 L-functions
Selberg’s and Ruelle zeta functions have been actively studied for their ability to
collect information on the spacial distribution of orbits in the sense of uniformity
and, as shown in the preceding chapters, many results have been obtained from this
point of view. Here we are interested in studying the topological distribution of
orbits. To capture such a behavior is necessary to go beyond the zeta functions and
strive for results on more general L-functions

Let h be an l-form on some anisotropic space, φ is an Anosov flow, ω a closed
1-form, X be the vector field generating the Anosov flow then one could define

L(l,ω)
t h(x) .= (φ∗th) · exp

(
2πi

∫ 0

−t
ω(X(φ−t(x)))dt

)
(4.1.1)

which, in the case of 0-forms, resemble the expected transfer operator

L(ω)
t h(x) .= h ◦ φ−t|det(Dφt)|−1 · exp

(
2πi

∫ 0

−t
ω(X(φ−t))dt

)
(4.1.2)
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Let tr(l) be a suitable trace, in the sense of the previous chapter. Then, by linearity,

tr(l)
(

(φ∗th) · exp
(

2πi
∫ 0

−t
ω(X(φ−t(x)))dt

))
= tr(φ∗th)·exp

(
2πi

∫ 0

−t
ω(X(φ−t(x)))dt

)

Following what we have previously done we can now estimate an approximated
Trace(R(l,ω)

t ) as following

Trace(R(l,ω)
t (z)) =

∑

τ

tr∧l(Dτφ)
det(I −Dτφ) exp

(
−zλ(τ) + 2πi

∫ 0

−t
ω(X(φ−t(x)))dt

)

(4.1.3)
Hence the results obtained in the previous work seems likely to extend to L-

functions in the sense that

L(z, χ) =
∏

τ

det
(
1− χ([τ ])e−zλ(τ)

)−1
(4.1.4)

is meromorphic in the whole complex plane and that by studying this class of
functions one is likely to recollect that L(0, χ) is in some sense the “torsion” of our
space. Thus extending typical torsion result to the case of variable curvature.

4.2 Decay of Correlations in Economical systems
The aim of this research project is to study ergodic properties of economical dynam-
ical systems with the tools of hyperbolic theory. The original proposed project was
partly financed by AMaMeF, and some of the preliminary work has been carried
out. The main focus was, and still is, to outline a strategy to approach the cor-
relation function ρ(t) and analyze how its properties can lead to averaging results
relevant to economic analysis. Here I would like to thank AMaMeF for giving me
the opportunity to start this project. I also would like to thank Prof. Mark Pollicott
for hosting my visit.

In 1998 Stephen Smale prepared a list of mathematical problem as a response
to the International Mathematical Union which included the following:

“Extend the mathematical model of general equilibrium theory to in-
clude price adjustments.”

He believed that the solution, which he looked for in the framework of differentiable
dynamical system ([75],[76]) as well as any major advance towards it, would lead to
new insights both to mathematical knowledge and to economical understanding.

The spirit of this research project is along those lines: define and study a dy-
namical system model, whose states are economics variables, where the macroscopic
overall behavior, compatible with the existing equilibrium theory, is obtained as the
result of a deterministic dynamics. In well-established models the study is concen-
trated on the analysis of excess demand and supply, where convergence it is proven
mainly through fixed point arguments; we identify these variables with standard
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macroscopic observables (as one would do for energy or temperature in physical de-
terministic systems) to related microscopic deterministic behavior. That is we are
trying to set that the rational behavior of single agents produces stable phenomena
at macroscopic level as well as large fluctuations or chaotic motions.

As it happened in nineties for general dynamical systems, shifting to a functional
analysis approach might produce new and interesting results. In this sense equilib-
rium models provide an interesting class of models to which ergodic theories could
be applied, as it is clearly pointed out by Brock and Dechert[14]. This viewpoint
is also supported in literature where the emergence of chaotic behavior has already
been studied in economic growth by Boldrin [10].

The main idea is to model the time evolution of aggregate variables as hyperbolic
flows, and after choosing suitable Banach spaces ([30],[15]), we will study the prop-
erties of weighted transfer operators on such spaces. Note that with this approach,
by studying the evolution of measures we are able to overcome difficulties, typical
of economical analysis, related to choosing a “part” of the population in study. To
be more precise let M be an m-dimensional manifold and φt an hyperbolic flow
which represents the demands for m goods , where Dφt can be modeled to reflect
real demand. Here we are interested in studying the ergodic properties of Lt. One
strives for the standard chain of results, after obtaining the quasi-compactness of
the operator, ergodic properties such as mixing, existence of central limit theorem,
large deviations. Special attention will be posed to the perturbations of such model,
since they have strong impact on applications.

After a suitable framework will be established, particular care will be spent in
translating the features of the systems in understanding the financial implications
of it. First, as it is the most obvious result but still necessary, it will be important
to show that convergence of densities under the action of the operator in the cho-
sen space is equivalent to equilibrium in real life situation. This first step will be
achieved by carefully choosing the hypothesis of the model. Second, one aim will
be to gain better insight in the problem of noisy data series, which is common in
economics. In fact if the dynamics is strong enough, in the hyperbolic sense, noise
will have a short term impact on the system, while if not it will show the impossi-
bility of making forecast: through an explicit estimates of the decay of correlation
of initial states one will be able to find the time span of the validity of the forecast.
Third, it will be noticeable to show that how such flow may highlight resonance
effects between the microscopical agents, a feature which is hard to see in stochastic
models, due to the properties of Brownian motions, but commonly showed by mar-
kets. In particular it will be interesting to investigate the difference in estimates
which come from looking at equilibrium theory using stochastic analysis or by using
differentiable dynamical systems.
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