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Introduction

Homogeneous varieties of algebraic groups are an object which arises naturally in
algebraic geometry and in representation theory. Among them, those understood
better are the compact ones, like projective spaces and Grassmannians, which play
a fundamental role in the representation theory of semisimple groups.

When it is given a homogeneous variety G/H for an algebraic group G, it is
natural to study its compactifications, i.e. to construct complete varieties acted by
G and possessing an open orbit isomorphic to G/H. By a theorem of Chevalley,
any closed subgroup H is the stabilizer of a line in a finite dimensional rational
G-module V : hence the homogeneous variety G/H can be realized as an orbit in
the projective space P(V ). Therefore a very natural class of compactifications to
study is the class of those arising as an orbit closure in the projective space of a
finite dimensional rational G-module V : similar compactifications are called linear.

A basic case is that of a compactification possessing a unique closed orbit: such
compactifications are called simple: for instance, if G is connected, by a theorem of
Sumihiro any simple normal compactification of G/H is linear.

If G is a connected and reductive group over an algebraically closed field k
of characteristic zero, D. Luna and Th. Vust developed in [LV 83] a theory for
classifying the normal equivariant compactifications (and more generically the normal
equivariant embeddings) of a given homogeneous variety G/H. An important
invariant attached to G/H which in a certain sense controls the complexity of its
embedding theory is the minimal codimension of an orbit for a Borel subgroup
B ⊂ G, which is called the complexity of G/H.

A homogeneous variety G/H for a connected reductive group G is called spherical
if it has complexity zero. More generally, we will call spherical variety any embedding
of a spherical homogeneous space. In the case of spherical varieties, the theory of
normal equivariant embeddings developed in [LV 83] becomes particularly elegant
and it can be formulated in purely combinatorial terms, generalizing the theory of
normal embeddings of toric varieties which are spherical regarding T = B = G.

However many natural examples of equivariant compactifications (e.g. the linear
ones) of a spherical homogeneous variety need not to be normal. The main object
of the present work will be a special class of simple linear compactifications of a
spherical homogeneous variety, namely those embedded in the projective space of a
simple G-module. For these compactifications, we will study their orbit structure
and that of their normalizations, giving as well necessary and sufficient conditions
for their normalization morphisms to be bijective.
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An important example which we will analyze in details in the last part of this
work is that of the group G itself, regarded as a spherical G × G-variety via the
isomorphism

G ' G×G
/

diag(G),

where diag(G) ⊂ G × G is the diagonal: its sphericity follows from the Bruhat
decomposition of G. In the particular case of a semisimple adjoint group, we will
propose a strategy to classify all its simple linear compactifications and we will
accomplish the aim in the case of an orthogonal group.

Spherical varieties and wonderful varieties.

Spherical homogeneous varieties can be defined by many equivalent properties. Their
most important characterizations are the followings:

– Every Borel subgroup has an open orbit in G/H;

– Every equivariant completion of G/H possesses finitely many G-orbits;

– Given any G-linearized line bundle L ∈ Pic(G/H), its space of global sections
Γ(G/H,L) is a multiplicity free G-module, i.e. every isotypic component is
irreducible.

Because of the latter property, spherical varieties are sometimes calledmultiplicity-
free: as shown by M. Brion in [Bri 87] they can be regarded as the algebraic
counterpart of the multiplicity-free manifolds introduced in Hamiltonian geometry
by V. Guillemin and S. Sternberg in [GS 84].

We will say that a subgroup H ⊂ G is spherical if G/H is so. Spherical
homogeneous varieties include many important examples, e.g.:

– Flag varieties, i.e. the compact homogeneous spaces;

– Tori (i.e. if G is a torus and H is trivial);

– Symmetric varieties, i.e. if H is the set of fixed points of an algebraic involution
of G: we will say then that H is a symmetric subgroup;

– Model varieties, i.e. if G/H is quasi-affine and its coordinate ring contains
every irreducible representation of G exactly once: we will say then that H is
a model subgroup.

A very special class of compactifications of a spherical homogeneous variety
which generalizes the class of flag varieties is that of wonderful varieties, which were
first introduced by C. De Concini and C. Procesi in [DCP 83] in the context of
symmetric varieties and then studied in generality by D. Luna in [Lu 96] and [Lu 01].
A compactification M of a homogeneous space G/H is called wonderful if it has the
following properties:

– M is smooth and projective;

– the complement of the open orbit is a union of smooth prime divisors having
non-empty transversal intersection;
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– any orbit closure in M equals the intersection of the prime divisors containing
it.

If G/H admits a wonderful completionM , then H is spherical andM is maximal
among its simple compactifications: if X is any other simple compactification of
G/H, then it is dominated by M . We will say that a spherical subgroup is wonderful
if it occurs as the generic stabilizer of a wonderful variety.

Not every spherical homogeneous space admits a wonderful completion. However
every self-normalizing spherical subgroup is wonderful and every wonderful subgroup
has finite index in its normalizer.

Wonderful varieties play a fundamental role in the classification of spherical
varieties, which can be reduced to that of wonderful varieties. In [Lu 01], D. Luna
started a program for classifying them via a triple of combinatorial invariants
and developed an appropriate combinatorial and diagrammatic language (spherical
systems and Luna diagrams) for the study of wonderful varieties.

Spherical orbit closures in simple projective spaces.

Consider the simplest case of a linear compactification X of a spherical variety G/H
which is embedded in the projective space of a simple G-module V : we will call then
P(V ) a simple projective space. Since the center of G acts trivially on any simple
projective space, we may assume that G is semisimple.

P. Bravi and D. Luna showed in [BL 08] that any spherical subgroup which
occurs as the stabilizer of a point in a simple projective space is wonderful. Since
P(V ) possesses a unique closed orbit, if M is the wonderful completion of G/H, then
the morphism G/H → X extends to M and, if X̃ → X is the normalization, we get
a commutative diagram

M

&&MMMMMMMMMMMMM // X̃

��
X ⊂ P(V )

Examining such morphisms, in Section 3.2 we will obtain a description of the set
of orbits of X and of X̃ in terms of their spherical systems and spherical diagrams.
Moreover this will lead to a combinatorial criterion to establish whether or not two
orbits in M map on the same orbit in X, which in particular implies that different
orbits in X are never G-equivariantly isomorphic.

Under some assumptions on H (e.g. if it contains a symmetric subgroup or a
model subgroup of G), if the highest weight of V is as regular as possible among
those weights whose associated module possesses a line fixed by H, then X is the
wonderful compactification of G/H. Wonderful varieties admitting an embedding
in a simple projective space are called strict and they have been introduced by
G. Pezzini in [Pe 07]: a wonderful variety M is strict if and only if the isotropy
group of any point x ∈M is self-normalizing.

Our main theorem concerning the closure of a spherical orbit in a simple projective
space is a combinatorial criterion for the normalization X̃ → X to be bijective
(Theorem 3.3.9): this is done under the assumption that M is strict. The condition
of bijectivity involves the double links of the Dynkin diagram of G and is easily read
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off by the Luna diagram of M . In particular it is trivially fulfilled whenever G is of
type ADEG or if H contains a symmetric subgroup of G, while the most significant
examples where bijectivity fails arise if H is the normalizer of a model subgroup:
the general strict case is substantially deduced from this case.

A very paradigmatic case is that of the wonderful model variety Mmod
G , introduced

by D. Luna in [Lu 07]: this is a wonderful variety whose orbits naturally parametrize
up to isomorphism the model varieties for G. More precisely, every orbit of Mmod

G

is of the shape G/NG(H), where G/H is a model variety, and conversely this
correspondence gives a bijection up to isomorphism. In particular, this constructions
highlights a special model subgroup Hmod

G ⊂ G (defined up to conjugation) which
determines every model variety for G, namely that which fixes a point in the open
orbit of Mmod

G .
In order to illustrate the above mentioned criterion of bijectivity in this case,

let’s set up some further notation. Fix a maximal torus T ⊂ G and a Borel subgroup
B ⊃ T , denote S the associated set of simple roots. If Gi ⊂ G is a simple factor
of type B or C, number the associated subset of simple roots Si = {αi1, . . . , αiri}
starting from the extreme of the Dynkin diagram of Gi which contains the double
link; define moreover Seven

i , Sodd
i ⊂ Si as the subsets of those elements whose index

is respectively even and odd. If λ is a dominant weight, define its support as the set
of simple roots non-orthogonal to it and, if they are defined, set

ei(λ) = min{k 6 ri : αik ∈ Supp(λ) ∩ Seven
i }

oi(λ) = min{k 6 ri : αik ∈ Supp(λ) ∩ Sodd
i }

or set ei(λ) = +∞ (resp. oi(λ) = +∞) otherwise. Finally, if Gi is of type F4, number
the simple roots in Si = {αi1, αi2, αi3, αi4} starting from the extreme of the Dynkin
diagram which contains a long root.

Theorem (see Theorem 3.3.9). Suppose that V is a simple G-module of highest
weight λ and suppose that v ∈ V generates a line whose stabilizer is the normalizer
of Hmod

G ; denote X = G[v] ⊂ P(V ). Then the normalization X̃ → X is bijective
if and only if the following conditions are fulfilled, for every connected component
Si ⊂ S:

b) If Si is of type B, then either oi(λ) = 1 or ei(λ) = +∞.

c) If Si is of type C, then oi(λ) > ei(λ)− 1.

f) If Si is of type F4 and αi2 ∈ Supp(λ), then αi3 ∈ Supp(λ) as well.

Simple linear compactifications of semisimple adjoint groups.

Suppose thatG is semisimple and simply connected and denoteGad the corresponding
adjoint group. We will now consider a very special case of the previous situation. Fix
a maximal torus T ⊂ G and a Borel subgroup B ⊃ T and denote S the associated set
of simple roots; denote X (B)+ the set of dominant weights. If λ ∈ X (B)+, denote
V (λ) the simple G-module of highest weight λ and consider the G×G-variety

Xλ = (G×G)[Id] ⊂ P(End(V (λ))
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which is a simple compactification of a quotient of Gad: since End(V (λ)) is a simple
G×G-module, this is a particular case of the situation considered above.

More generally, consider the following situation. Denote 6 the dominance order
on X (B)+, defined by µ 6 λ if and only if λ− µ ∈ NS, and if λ ∈ X (B)+ denote

Π+(λ) = {µ ∈ X (B)+ : µ 6 λ}.

If Π ⊂ X (B)+, call it simple if there exists λ ∈ Π such that Π ⊂ Π+(λ), i.e. if
it possesses a unique maximal element w.r.t. 6. Suppose that this is the case
and denote E(Π) = ⊕

µ∈Π End(Vµ) and IdΠ = (Idµ)µ∈Π ∈ E(Π) and consider the
G×G-variety

XΠ = (G×G)[IdΠ] ⊂ P(E(Π)).
In [Ka 02] S. S. Kannan proved that XΠ+(λ) is projectively normal, while in

[DC 04] C. De Concini proved that XΠ+(λ) = X̃λ is the normalization of Xλ. In
particular, if Π is simple with maximal element λ, we get equivariant morphisms

X̃λ −→ XΠ −→ Xλ

and XΠ is a simple variety with the same normalization of Xλ.
Since any simple linear compactification of a quotient of G is of the shape XΠ

for some simple subset Π, this gives a strategy to classify these varieties, namely by
classifying the simple subsets which give rise to isomorphic compactifications.

In case λ is a regular weight, then Xλ = M is the wonderful compactification
of Gad. Together with P. Bravi, A. Maffei and A. Ruzzi, in [BGMR 10] we studied
the degenerate cases and we gave a complete classification of the normality and of
the smoothness of these varieties. In particular, we proved that Xλ depends only
on the support Supp(λ) and that it is normal if and only if λ satisfies the following
condition

(?)
For every non-simply laced connected component S′ ⊂ S, if Supp(λ) ∩ S′
contains a long root, then it contains also the short root which is adjacent
to a long simple root.

In particular, if the Dynkin diagram of G is simply laced, it follows that Xλ is
always normal and every simple linear compactification of Gad is normal. Otherwise,
if G possesses a non-simply laced simple factor, excepted some very special cases it
possesses a lot of simple linear compactifications which are not normal.

If λ ∈ X (B)+, a weight µ 6 λ is called trivial if X{λ,µ} is equivariantly isomorphic
to Xλ. Denote Πtr(λ) ⊂ Π+(λ) the subset of trivial weights, including there λ as
well.

If G is a simple group of type Br, by using Schur-Weyl duality for orthogonal
groups, we will give a combinatorial description of Πtr(λ) (Theorem 4.2.2). In this
case, we will deduce then the classification of the simple linear compactifications of
SO(2r + 1), classifying as well their linear embeddings.

Suppose that ν 6 µ 6 λ are non-trivial weights. Then it is possible to define a
partial order relation 6λ on Π+(λ)rΠtr(λ) with the following geometrical meaning:

ν 6λ µ if and only if there exists a G×G-morphism
X{λ,µ} −→ X{λ,ν}

This is done as follows.
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Definition. Suppose that G = Spin(2r + 1) and suppose that ν 6 µ 6 λ are
non-trivial weights and set µ − ν = ∑r

i=1 aiαi. Then we say that µ and ν are
λ-comparable and we write ν 6λ µ if following conditions are fulfilled:

(λ-C1) If αp is the first simple root in Supp(λ), then a1 6 a2 6 . . . 6 ap

(λ-C2) If αs, αt ∈ Supp(λ) (s < t) are such that αi 6∈ Supp(λ) for every s < i < t,
then

t−1∑

i=s
|ai − ai+1| 6 as + at

(λ-C3) If αq is the last simple root in Supp(λ) and if Iq = {i > q : ai < ai+1},
then

2
∑

i∈Iq
(ai+1 − ai) 6 ar

Extend trivially 6λ to a partial order relation on Π+(λ) by setting ν 6λ µ if and
only if µ = ν or µ = λ, for all trivial weights ν, µ ∈ Π+(λ). If Π ⊂ X (B)+ is simple
with maximal element λ, denote

Πred = {µ ∈ Π : µ is maximal w.r.t. 6λ}.

If Π = Πred we will say that Π is reduced.
Suppose that Π, Π′ are simple reduced subsets with maximal elements λ and

λ′. Then Π and Π′ are called equivalent if Supp(λ) = Supp(λ′) and if there exists a
bijection µ 7→ µ′ between Π r {λ} and Π′ r {λ′} such that µ′ − µ = λ′ − λ for every
µ ∈ Π.

Theorem (Theorem 4.3.8). Suppose that G = Spin(2r + 1).

i) If Π ⊂ X (B)+ is simple, then XΠ ' XΠred.

ii) Let Π,Π′ ⊂ X (B)+ be simple subsets with the same maximal element λ. Then
XΠ dominates XΠ′ if and only if for every µ′ ∈ Π′ there exists µ ∈ Π such that
µ′ 6λ µ.

Corollary. Simple linear compactifications of SO(2r + 1) are classified by simple
reduced subsets Π ⊂ X (B)+ up to equivalence.

∗ ∗ ∗

We now briefly explain how the work is organized and how the material is divided
into chapters.

In Chapter 1, we overview the theory of spherical varieties and their embeddings.
In order to simplify the exposition, we restrict ourselves to the simple case. Main
references for this chapter are [LV 83], [Kn 91] and [Bri 97].

In the literature, the considered spherical embeddings are generally assumed
to be normal: in this case indeed the combinatorial counterpart of the embedding
theory is simpler and more elegant. However, as normal affine toric varieties can be
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classified by means of cones and non-normal affine toric varieties can be classified
by means of semigroups, it seems to be possible to classify linear simple spherical
varieties by means of colored semigroups as normal simple spherical varieties are
classified by means of colored cones. Indeed, a big part of the theory of normal
spherical embeddings can be deduced by a local structure theorem due to M. Brion,
D. Luna and Th. Vust in [BLV 86], which allows to reduce the geometry of a general
spherical variety to that of an affine spherical variety. Such theorem holds much
more generally than in the normal case: rather than normality, the property which
is really needed is the local linearity of the action.

A detailed investigation on a possible extension of the theory of spherical embed-
dings in the linear case and in the locally linear case goes beyond the aim of this work.
However, in order to clarify the general spherical context of the analysis that we will
develop in Chapter 4 in the particular case of the compactifications of semisimple
adjoint groups, we partially reformulate the theory of spherical embeddings in the
case of a simple linear projective spherical variety. The hypothesis of simpleness is
not really needed and is mainly motivated by a matter of exposition. On the other
hand, the real need to use the hypothesis of compactness of the closed orbit is not
considered in this work and should be analyzed apart.

In Chapter 2, we overview the theory of wonderful varieties. Main references for
this chapter are [Lu 01] and [BL 08].

In Chapter 3, we study the orbit structure of a linear compactification of a
spherical homogeneous space embedded in a simple projective space. In particular,
if the generic stabilizer is a strict subgroup, we prove the mentioned criterion of
bijectivity of the normalization map, while in the non-strict case we give some
necessary/sufficient conditions of bijectivity. However, following the description of
the orbits, it is always possible to state if the normalization of a given orbit closure
is bijective or not.

In Chapter 4, we analyze in details the case of the simple linear compactifications
of semisimple adjoint groups. In the particular case of an odd orthogonal group, we
classify all its simple linear compactifications.
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Notations

Let G be a reductive group over an algebraically closed field k of characteristic
zero. We will denote by T ⊂ G a fixed maximal torus and by B ⊂ G a fixed Borel
subgroup containing T . Moreover we will denote U the unipotent radical of B and by
B− the opposite Borel subgroup of B w.r.t. T . Given any algebraic group denoted
with a caption latin letter, we will denote its Lie algebra with the corresponding
lower-case german letter. Denote R ⊂ t∗ the root system of G associated to T and
S ⊂ R the basis associated to B. Denote Λ ⊂ t∗ the weight lattice of R and Λ+ ⊂ Λ
the semigroup of dominant weights associated to S. If α ∈ S is a simple root, let
ωα ∈ Λ+ be the corresponding fundamental dominant weight and let eα, α∨, fα be
an sl(2)-triple of T -weights α, 0,−α.

If K is any algebraic group, we will denote by X (K) its character group and by
Ku its unipotent radical. If V is a rational K-module, we will denote by V (K) the
set of K-eigenvectors in V (we will call such vectors K-semiinvariants) and by V K

the set of K-invariant vectors. If χ ∈ X (K),

V (K)
χ = {v ∈ V : gv = χ(g)v for all g ∈ K}

will denote the set of K-eigenvectors in V of weight χ.
Denote 6 the dominance order on Λ defined by

µ 6 λ if and only if λ− µ ∈ NS.

If λ ∈ X (B)+ = X (B)∩Λ+, we will denote by V (λ) the simple G-module of highest
weight λ and

Π+(λ) = {µ ∈ Λ+ : µ 6 λ}.

We will denote by ∗ : Λ −→ Λ the involution defined by V (λ∗) ' V (λ)∗ for
λ ∈ X (B)+. Every G-module will be assumed to be rational and finite dimensional.

By a variety we will always mean an irreducible algebraic variety over k. If X is
any variety and Z ⊂ X is a subvariety, Z will denote the closure of Z in X. If G acts
rationally on a variety X, we will say that X is a G-variety. By an embedding of an
homogeneous space G/H we mean a G-variety X together with an open equivariant
embedding G/H ↪→ X. If X is a G-variety, then G acts rationally in the algebra of
regular functions k[X] and in the field of rational functions k(X) by

(gf)(x) = f(g−1x).

If V is a vector space and S ⊂ V is any subset, then 〈S〉 denotes the subspace
generated by S. A subset C ⊂ V is called a convex cone if it is closed under addition
and multiplication by Q+; its dual cone is the convex cone

C∨ = {φ ∈ V ∗ : φ(v) > 0 for all v ∈ C}.

The linear part of a convex cone C is the maximum linear subspace of V contained
in it; C is called strictly convex if its linear part is reduced to zero. A cone C is
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called finitely generated if there are finitely many elements v1, . . . , vn ∈ C such that
C = Q+v1 + . . .+ Q+vn. A face of C is a subset of the form

C ∩ {v ∈ V : φ(v) = 0}

for some φ ∈ C∨; the relative interior of C is the subset C◦ obtained by removing all
its proper faces.

If Ω is a lattice (i. e. a finitely generated free abelian group), then Ω∨ =
HomZ(Ω,Z) denotes the dual lattice and ΩQ = Ω⊗Q denotes the rational vector
space generated by Ω. If Γ ⊂ Ω is a subsemigroup, denote C(Γ) the cone generated
by Γ in ΩQ. The saturation of Γ in Ω is the semigroup Γ = C(Γ) ∩ Ω; we will say
that Γ is saturated in Ω if Γ = Γ.
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Chapter 1

Spherical varieties

Throughout this chapter, G will be a reductive connected algebraic group over
an algebraically closed field k of characteristic zero. Let B ⊂ G be a fixed Borel
subgroup and T ⊂ B a maximal torus. Denote R ⊂ t∗ the root system of G
associated to T and S ⊂ R the basis associated to B.

1.1 First definitions
A G-variety X is called linear if there exists a finite dimensional rational G-module V
such that X is G-equivariantly isomorphic to a G-stable locally closed subvariety of
the projective space P(V ); X is called locally linear if it can be covered by G-stables
linear open subsets. If it possesses a unique closed orbit, then X is called simple.

Theorem 1.1.1 ([Su 74] Thm. 1, [KKLV 89] Thm. 1.1 and Cor. 2.6). If a G-variety
X is normal, then it is locally linear. If moreover X is simple or quasi-projective,
then it is linear.

Definition 1.1.2. A G-variety X is called spherical if it possesses an open B-orbit.
A subgroup H ⊂ G is called spherical if the homogeneous space G/H is spherical.

Usually in the literature spherical varieties are assumed to be normal. We will
not require this property, however all the spherical varieties we will deal with will be
simple and linear: by previous theorem this situation includes every simple normal
spherical variety.

Every spherical variety can be regarded as an embedding of its open orbit: hence
to any spherical variety is naturally attached a spherical subgroup (defined up to
conjugation), namely the stabilizer of a point in the open orbit.

Given a G-variety X, consider the homomorphism k(X)(B) → X (B) which
associate to a rational B-eigenfunction f its character χf . This defines an exact
sequence

0→ k(X)B r {0} → k(X)(B) → ΛX → 0,

where ΛX ⊂ X (B) is a sublattice.

Definition 1.1.3. If X is a G-variety, its rank, denoted by rk(X), is the rank of
the lattice ΛX .
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2 1. Spherical varieties

Suppose that X is spherical: then k(X)B r {0} = k∗ and k(X)(B) depends
only on the open orbit and. Moreover, if Bx0 ⊂ X is the open B-orbit and if
H = Stab(x0), we have a short exact sequence

0→ ΛX → X (B)→ X (B ∩H)→ 0

which identifies ΛX = ΛG/H with the kernel of the restriction X (B)→ X (B ∩H).
Suppose that X is a flag variety: then X possesses a U -open orbit, where U

denotes the unipotent radical of B. Let f ∈ k(X)(B): since f is U -invariant, it
follows that f is costant on the open orbit, hence it is costant on X. Therefore the
rank of a flag varieties is zero. More precisely, rank zero G-varieties are described as
follows:

Theorem 1.1.4 ([Bri 97] Cor.1.4.1). A G-variety X has rank zero if and only if
every G-orbit is compact.

Definition 1.1.5. If X is a G-variety, its complexity, denoted by c(X), is the
minimal codimension of a B-orbit in X.

Therefore the class of spherical varieties coincides with the class of G-varieties of
complexity 0.

Theorem 1.1.6 ([Vi 86]). Let X be a G-variety and let X ′ ⊂ X be a B-stable
closed subvariety. Then c(X ′) 6 c(X) and rk(X ′) 6 rk(X).

Corollary 1.1.7. If a G-variety X is spherical, then it contains finitely many
B-orbits. In particular every G-stable subvariety of X is spherical.

Proof. Suppose that X contains infinitely many B-orbits and take X ′ ⊂ X a
B-stable closed subvariety containing infinitely many B-orbits which is minimal
with these properties. By previous theorem X ′ contains an open B-orbit Bx;
therefore an irreducible component of X ′ r Bx must contain infinitely many B-
orbits, contradicting the minimality of X ′.

It follows that a G-variety is spherical if and only if it contains finitely many
B-orbits. More generally, spherical varieties can be characterized by any of the
following conditions.

Theorem 1.1.8. Let H ⊂ G be a subgroup. The following conditions are equivalent:

i) G/H is spherical.

ii) For any G-variety X and for any fixed point x ∈ XH , the closure Gx contains
finitely many G-orbits.

iii) For any G-variety X and for any fixed point x ∈ XH , the closure Gx contains
finitely many B-orbits.

While the equivalence between i) and iii) stems by previous corollary, the
equivalence between i) and ii) has been shown in [Ak 85].

Another important characterization of spherical subgroups, due to Vinberg and
Kimelfeld [VK 78], can be given in terms of representation theory. We will say that
a G-module is multiplicity-free if every isotypic component is irreducible.
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Theorem 1.1.9. Let H ⊂ G be a subgroup. The following conditions are equivalent:

i) G/H is spherical.

ii) For any λ ∈ X (B)+ the set P(V (λ))H is finite.

iii) For any λ ∈ X (B)+ and for any χ ∈ X (H) it holds dimV (λ)(H)
χ 6 1.

iv) For any G-linearized line bundle L ∈ Pic(G/H), the G-module Γ(G/H,L) is
multiplicity-free.

If moreover G/H is quasi-affine, then iii) and iv) can be weakened as follows:

iii’) For any λ ∈ X (B)+ it holds dimV (λ)H 6 1.

iv’) The G-module k[G/H] is multiplicity-free.

Suppose that G = T is an algebraic torus and let X be a normal toric variety
for T : then by a theorem of Sumihiro [Su 74, Corollary 3.2] X can be covered by
T -stables affine open subsets. This is not true in general for a connected reductive
group G; however, if the considered variety is locally linear, it is always possible to
cover it by translating affine open subsets which are stables for the action of a Borel
subgroup.

Theorem 1.1.10 ([Kn 91] Thm. 2.3). Let X ⊂ P(V ) be a locally linear G-variety
and let Y ⊂ X be an orbit. There exists a B-stable affine open subset X◦ ⊂ X which
intersects Y and such that the restriction

k[X◦](B) −→ k[X◦ ∩ Y ](B)

is surjective.

Let X be a spherical G-variety. If Y ⊂ X is an orbit, then it contains finitely
many B-orbits; we denote YB ⊂ Y the open B-orbit. Denote

∆(X) = {B-stable prime divisors of X which are not G-stable}

its elements are called the colors of X. If Y ⊂ X is any orbit, denote ∆Y (X) the
set of colors which contain Y . Suppose that Bx0 ⊂ X is the open B-orbit and
set H = Stab(x0): since the irreducible components of X r Gx0 are G-stables,
the sets of colors ∆(X) and ∆(G/H) are naturally identified. Moreover, since
BH/H ' B/B∩H is an affine open subset of G/H, the colors of G/H are identified
with the irreducible components of G/H rBH/H.

Finally denote

B(X) = {G-stable prime divisors of X}.

If Y ⊂ X is any orbit, BY (X) denotes the set of G-stable prime divisors which
contain Y .
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Example 1.1.11 (The group G as a spherical G × G-variety). The group
G × G acts transitively on G by (g1, g2)g = g1gg

−1
2 . Since the stabilizer of the

identity is the diagonal diag(G), we get an isomorphism

G ' G×G
/

diag(G).

Denote B− the opposite Borel subgroup to B w.r.t. T . Then B × B− is a Borel
subgroup in G×G and T × T is a maximal torus contained in it. Since BB− ⊂ G
is open, it follows that G is a G×G-spherical variety.

Denote Ĝ the set of irreducible representations of G. As G×G-module, there is
a canonical isomorphism

Ψ :
⊕

V ∈Ĝ
V ∗ ⊗ V ∼−→ k[G]

defined by Ψ(φ⊗ v) = 〈φ, gv〉 where v ∈ V, φ ∈ V ∗ and g ∈ G. It follows that

k[G](B×B−)/
k∗ = {(λ,−λ) : λ ∈ X (B)+}.

Since G is an affine variety, by [VP 94, Theorem 3.3] it follows that any rational B×
B−-semiinvariant function on G is the quotient of two regular B×B−-semiinvariant
functions: hence we get

ΛG = {(λ,−λ) : λ ∈ X (B)} ' X (B)

and the rank of G as a G×G-variety equals the rank of G as an algebraic group.
Denote W the Weyl group associated to T ⊂ G. If α ∈ S is a simple root, denote

sα ∈W the associated simple reflection, by the Bruhat decomposition (see [Sp 98,
Theorem 8.3.8]) it follows that

GrBB− =
⋃

α∈S
BsαB−

and every Dα = BsαB− is a prime divisor: hence we get

∆(G) = {Dα : α ∈ S}.

1.2 The local structure of a spherical variety
Let V be a finite dimensional rational G-module and let Y ⊂ P(V ) be a closed orbit;
let y0 = [v−] ∈ Y B− be the unique fixed point by B− (where v− ∈ V (B−) is a lowest
weight vector) and let η ∈ (V ∗)(B) be a highest weight vector such that 〈η, v−〉 = 1.

If P is the stabilizer of [η], then P and Stab(y) are opposite parabolic subgroups;
denote L = P ∩ Stab(y) the associated Levi subgroup. Denote P(V )η ⊂ P(V ) the
open affine subset defined by the non-vanishing of η: then P(V )η ∩ Y = By0 is the
open B-orbit of Y .

Consider the L-stable affine subvariety Wη defined by

Wη = P(kv− ⊕ (gη)⊥) ∩ P(V )η.
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Proposition 1.2.1 ([BLV 86] Prop. 1.2). The action of P induces a P -equivariant
isomorphism as follows

P u ×Wη −→ P(V )η
(g, s) 7−→ gs

Suppose that X ⊂ P(V ) is a projective spherical variety containing Y and set

X◦Y = X ∩ P(V )η :

then X◦Y is a P -stable affine open subset and by previous proposition we get a
P -equivariant isomorphism

P u ×WY −→ X◦Y
(g, s) 7−→ gs,

where WY = Wη ∩X◦Y is a L-stable affine subvariety of X◦Y .
Since X possesses an open B-orbit, it follows that WY possesses an open (B∩L)-

orbit, hence an open L-orbit; since WY is affine, we get then

k[WY //L] = k[WY ]L = k.

Therefore WY is a L-spherical variety possessing a unique closed L-orbit, namely
the fixed point y.

Theorem 1.2.2 ([BLV 86] Thm. 1.4). Let X be a linear projective spherical variety
and let Y ⊂ X be a closed orbit. In the previous notations, the complement X rX◦Y
is the union of the B-stable (possibly G-stable) prime divisors of X which do not
contain Y . Moreover, it holds the following description:

X◦Y = {x ∈ X : Bx ⊃ Y }.

Proof. Notice that By0 is the unique closed B-orbit in X◦Y . Indeed if Z ⊂ X◦Y is a
closed B-orbit, then Z ∩WY is a closed (B ∩ L)-orbit in WY , thus L(Z ∩WY ) is a
closed L-orbit in WY . Since {y0} ⊂WY is the unique closed L-orbit, it follows then
Z = By0.

Let’s show that X rX◦Y is the union of the B-stable prime divisors of X which
do not contain Y . Since X◦Y is affine, B-stable and intersects the closed orbit Y , the
complement X rX◦Y is a union of B-stable prime divisors which do not contain Y .
Suppose that D is a B-stable prime divisor such that D ∩X◦Y 6= ∅: since it is closed
and B-stable, it follows that D ∩X◦Y contains a closed B-orbit Z. By the remark at
the beginning of the proof, it follows that Z = By0, thus D ⊃ Y .

Set XB
Y = {x ∈ X : Bx ⊃ Y }. Then

X rXB
Y =

⋃

x 6∈XB
Y

Bx :

since X possesses finitely many B-orbits it follows that XB
Y ⊂ X is an open subset.

Let x ∈ XB
Y : then it must be x ∈ X◦Y , since otherwise it would be Y ⊂ P(ker η).

Suppose that the inclusion XB
Y ⊂ X◦Y is proper: since XB

Y is an open subset, it
follows that there exists a closed B-orbit Z ⊂ X◦Y rXB

Y . But this is absurd since by
the remark at the beginning of the proof it follows Z = By0.
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Consider
GX◦Y = {x ∈ X : Gx ⊃ Y } :

since X contains finitely many G-orbits, it is a G-stable open subset of X which is
sperical and which possesses a unique closed orbit, namely Y . Therefore we can
cover X with a finite number of simple spherical varieties, one for each closed orbit
Y ⊂ X.

Suppose now that X is a normal spherical variety (non-necessarily linear). Then
a result of local structure analogous to Theorem 1.2.2 can be stated for any orbit
Z ⊂ X. Indeed denote

X◦Z = {x ∈ X : Bx ⊃ Z}

and denote
P = {g ∈ G : gX◦Z = X◦Z}

the stabilizer of X◦Z , which is a parabolic subgroup of G.

Theorem 1.2.3 ([Bri 89] Thm. 1). Let X be a normal spherical variety and let
Z ⊂ X be an orbit. In the previous notations:

i) X◦Z is a P -stable affine open subset of X which intersects Z in a B-orbit and
it is minimal in X with these properties;

ii) The complement XrX◦Z is the union of the B-stable (possibly G-stable) prime
divisors of X which do not contain Z;

iii) There exists a Levi subgroup L ⊂ P and a closed L-stable subvariety WZ ⊂ X◦Z
such that the P -action induces an isomorphism

P u ×WZ −→ X◦Z
(g, s) 7−→ gs

Proposition 1.2.4 ([BP 87] Prop. 3.5). Let X be a normal spherical variety and
let Z ⊂ X be an orbit. Then the closure Z is normal.

Proof. By previous theorem, we may assume that X is simple and affine. Consider
the algebra of U -invariants k[X]U : by [Gr 97, Theorem 9.6] it is a finitely generated
k-algebra, while by [Vu 76, Theorem 1.1] it is integrally closed; hence X//U =
Spec(k[X]U ) is a normal B/U -toric variety. Let I ⊂ k[X] be the ideal of regular
functions which vanish on Z: then k[Z]U ' k[X]U/IU ; hence Z//U = Spec(k[Z]U ) is
a B/U -orbit closure in X//U and it is normal by [Oda 88, Corollary 1.7]. Therefore
k[Z]U is integrally closed and by [Vu 76, Theorem 1.1] it follows the normality of
Z.

Definition 1.2.5. A spherical variety X is called toroidal if ∆Z(X) = ∅ for every
orbit Z ⊂ X.

Suppose that X is normal and toroidal: for such a variety the local structure
reduces to that of a toric variety.
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Theorem 1.2.6 ([BP 87] Prop. 3.4, [Bri 97] Prop. 2.4.1). Let X be a toroidal
variety; denote

X◦ = X r
⋃

D∈∆(X)
D

and set P the stabilizer of X◦.

i) There exists a Levi subgroup L ⊂ P and a L-stable closed subvariety WX ⊂ X◦
such that the P -action induces an isomorphism as follows

P u ×WX −→ X◦.

ii) The derived subgroup [L,L] acts trivially on WX , which is a toric variety for
a quotient of L/[L,L].

iii) Every G-orbit of X intersects WX in a single L-orbit.

1.3 The G-invariant valuation cone
Consider a spherical homogeneous space G/H. A rational discrete valuation of G/H
is a map ν : k(G/H)∗ → Q with the following properties:

- ν(f1 +f2) > min{ν(f1), ν(f2)} for all f1, f2 ∈ k(G/H)∗ s.t. f1 +f2 ∈ k(G/H)∗;

- ν(f1f2) = ν(f1) + ν(f2) for all f1, f2 ∈ k(G/H)∗;

- ν(f) = 0 for all f ∈ k∗.

Suppose that G/H ↪→ X is an equivariant embedding of G/H and let D ⊂ X
be a prime divisor; denote OD,X ⊂ k(X) the associated one-dimensional local ring.
If f ∈ k(G/H)∗, write f = f1/f2 with f1, f2 ∈ OD,X . Then D defines a discrete
valuation νD of G/H by

νD(f) = l
(
OD,X/(f1)

)
− l

(
OD,X/(f2)

)
,

where l denotes the length of the OD,X -module in parentheses (see [Fu 98, §1.2]).
In case X is a normal variety, then OD,X is a discrete valuation ring and νD

coincides with the usual valuation associated to D. In case X is not normal, for
f ∈ k(G/H)∗, the valuation νD is described as follows, where p : X̃ → X is the
normalization map:

νD(f) =
∑

D̃∈Irr(p−1(D))

[k(D̃) : k(D)] ν
D̃

(f),

where Irr(p−1(D)) denotes the set of irreducible components of p−1(D) and where
[k(D̃) : k(D)] denotes the degree of the field extension.

Any rational discrete valuation ν of G/H defines an element ρ(ν) ∈ (Λ∨G/H)Q by

〈ρ(ν), χ〉 = ν(fχ)

where fχ ∈ k(G/H)(B) is any B-semiinvariant function of weight χ: since G/H
possesses an open B-orbit, the definition does not depend on the function, but only
on the weight.
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If G/H ↪→ X is an equivariant embedding and if D ⊂ X is any B-stable prime
divisor, then by an abuse of notation we will denote ρ(D) = ρ(νD) ∈ Λ∨G/H the
image of the associated valuation νD.

A rational discrete valuation ν of G/H is said G-invariant if ν(g · f) = ν(f), for
every f ∈ k(G/H) and for every g ∈ G. If G/H ↪→ X is an equivariant embedding
and if D ⊂ X is any G-stable prime divisor, then the associated discrete valuation
νD is G-invariant. Denote VG/H the set of G-invariant rational valuations of G/H.

Recall that two roots α, β ∈ R are called strongly orthogonal if α± β 6∈ R ∪ {0}.
Strongly orthogonal roots are always orthogonal: indeed if 〈α, β∨〉 < 0 then α+β ∈ R,
while if 〈α, β∨〉 > 0 then α− β ∈ R.

Theorem 1.3.1 ([LV 83] Prop. 7.4, [BP 87] Cor. 3.2, Cor. 4.1 and Prop. 4.2).

i) The restriction
ρ : VG/H −→ (Λ∨G/H)Q

is injective and identifies VG/H with a finitely generated convex cone which
generates (Λ∨G/H)Q as a vector space.

ii) The dual cone V∨G/H ⊂ (ΛG/H)Q is generated by negative roots and by sums of
two strongly orthogonal negative roots.

Together with such embedding, VG/H is called the G-invariant valuation cone of
G/H.

More precisely, the dual cone V∨G/H can be described as follows. Since BH ⊂ G is
an open subset, up to a scalar factor every eigenfunction f ∈ k[G](B×H) is uniquely
determined by its weight (λ, χ) ∈ X (B) × X (H): we will denote then by fλ,χ the
unique eigenfunction in k[G](B×H) of weight (λ, χ) such that fλ,χ(1) = 1.

Proposition 1.3.2 ([BP 87] Prop. 4.1). The dual cone V∨G/H is the convex hull of
the differences ν − µ− µ′ such that there exist χ, χ′ ∈ X (H) with

fν,χ+χ′ ∈ 〈Gfµ,χ〉〈Gfµ′,χ′〉.

Example 1.3.3 (The group G as a spherical G × G-variety, II). Following
Example 1.1.11, regard G as a spherical G×G-variety and identify the lattice ΛG
with X (B). Up to a finite covering, we may assume that G is the direct product
of a torus by a semisimple simply connected group, i.e. that the algebra k[G] is
factorial (see [Me 98, Proposition 1.10]). Hence, for α ∈ S, the B×B−-stable divisor
Dα = BsαB− has an equation fωα ∈ k[G] which is a B ×B−-eigenvector of weight
(ωα,−ωα). If fλ ∈ k[G] is a B × B−-eigenvector of weight (λ,−λ), it follows then
that νDα(fλ) is the multiplicity of fωα in fλ, i.e. the coefficient of ωα in λ: hence
ρ(Dα) is identified with the simple coroot α∨.

If V is a G-module, define its matrix coefficient cV : V ∗ ⊗ V → k[G] by cV (ψ ⊗
v)(g) = 〈ψ, gv〉. If we multiply functions in k[G] of this type then we get

cV (ψ ⊗ v) · cW (χ⊗ w) = cV⊗W
(
(ψ ⊗ χ)⊗ (v ⊗ w)

)
.

Notice that cV⊗W is a linear combination with positive coefficients of the matrix
coefficients CM , where M is a simple module occurring in the decomposition of



1.3 The G-invariant valuation cone 9

V ⊗W . If we identify End(V ) with V ∗ ⊗ V , then we get that the multiplication
End(V (λ)) End(V (µ)) ⊂ k[G] is the sum of all End(V (ν)) with V (ν) ⊂ V (λ)⊗V (µ).

If α ∈ S, take λ and µ such that 〈λ, α∨〉 6= 0 and 〈µ, α∨〉 6= 0: then by [Bo 75,
§VIII.7, Exercise 17] it follows that V (λ) ⊗ V (µ) contains a simple submodule of
highest weight λ+ µ− α: hence by Proposition 1.3.2 we get −α ∈ V∨G. Therefore
VG is identified with the negative Weyl chamber of X (B)Q.

Example 1.3.4 (Symmetric spaces). Suppose that G is semisimple and let
σ : G → G be an algebraic involution; let H ⊂ G be a subgroup such that
Hσ ⊂ H ⊂ NG(Hσ). Choose a maximal torus T1 such that σ(t) = t−1 for all t ∈ T1
and fix a maximal torus T of G which contains T1. Fix a Borel subgroup B ⊃ T in
such a way that the dimension of σ(B) ∩B is the minimal possible. Then σ fixes
the set of roots R, where we still denote by σ the induced involution on t∗.

Denote R1 = {α ∈ R : σ(α) 6= α} and consider the intersection S1 = S ∩R1. If
α ∈ R, denote α = α− σ(α) and set

R = {α : α ∈ R1} :

this is a (possibly non-reduced) root system in X (T1)R, called the restricted root
system, and S = {α : α ∈ S1} is a basis for R. Moreover, the weight lattice and the
root lattice of R are respectively identified with

X
(
T1
/
T1 ∩Gσ

)
and X

(
T1
/
T1 ∩NG(Gσ)

)
,

which are subgroups of X (T1) of finite index (see [Vu 90, Lemmas 2.2, 2.3 and 3.1]).
If α ∈ R, denote gα ⊂ g the eigenspace of weight α and denote R+

1 = R1 ∩ NS.
Then it holds the Iwasawa decomposition

g = h⊕ t1 ⊕
⊕

α∈R+
1

gα :

in particular it follows that g = h + b, i.e. BH ⊂ G is an open subset and H
is a spherical subgroup (see [DCP 83, Proposition 1.3]). Moreover, restriction of
characters gives an isomorphism

ΛG/H ' X
(
T1
/
T1 ∩H

)
.

Via this identification, the following descriptions hold (see [Vu 90, Propositions 2.1
and 2.2]):

i) The image of ρ : ∆(G/H) → X
(
T1
/
T1 ∩H

)∨
is the set of simple restricted

coroots S∨ and the fibers of ρ contain at most two colors.

ii) The valuation cone VG/H is the negative Weyl chamber in X
(
T1
/
T1 ∩H

)∨
Q
.

This generalizes the case of a semisimple groupG regarded asG×G variety treated
in Example 1.3.3, which is a symmetric variety for the involution σ : G×G→ G×G
defined by σ(g1, g2) = (g2, g1).
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There exists a very tight connection between VG/H and the normalizer of H in G,
which is explained by following theorem. Consider the projection G/H → G/NG(H);
correspondingly we get an embedding ΛG/NG(H) ↪→ ΛG/H . Consider the natural
right action of NG(H) on G/H defined by

g · (g′H) = g′g−1H :

such action identifies the G-equivariant automorphism group AutG(G/H) with the
quotient group NG(H)/H. If g ∈ NG(H) and if λ ∈ ΛG/H , let f ∈ k(G/H)(B) be
a B-eigenfunction of weight λ and consider its translated g · f : since it is still a
B-eigenfunction of weight λ, there exists Θg(λ) ∈ k∗ such that

g · f = Θg(λ)f.

This defines an homomorphism

Θg : ΛG/H −→ k∗

which is trivial restricted to ΛG/NG(H).

Theorem 1.3.5 ([BP 87] §5, [Bri 97] Thm. 4.3). In the previous notations:

i) The map
Θ : NG(H)

/
H −→ Hom

(
ΛG/H

/
ΛG/NG(H)

, k∗
)

defined by Θ(gH) = Θg is an isomorphism of algebraic group. In particular,
NG(H)/H is a diagonalizable group.

ii) The annihilator Λ⊥G/NG(H) ⊂ (Λ∨G/H)Q equals the linear part of VG/H . In
particular, the dimension of NG(H)/H equals the dimension of the linear part
of VG/H .

iii) If H◦ is the identity component of H, then NG(H) = NG(H◦).

iv) If B is any Borel subgroup such that BH is open in G, then NG(H) equals the
right stabilizer of BH.

1.4 Simple normal embeddings and colored cones
We here overview the theory of normal spherical embeddings. Since we are interested
in the simple linear compactifications of a spherical homogeneous space, we will
restrict the exposition of the theory to the simple case. However, if it is not needed, we
will not require that the considered embedding is simple. For a complete exposition
of the theory, see [Kn 91] or [Bri 97].

Let G/H ↪→ X be a normal embedding of a spherical homogeneous space G/H.
If Z ⊂ X is an orbit, denote

X◦Z = X r
⋃

∆(X)r∆Z(X)
D :

following Theorem 1.2.3, if P is the parabolic subgroup of G defined by

P = {g ∈ G : gX◦Z = X◦Z},
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there exist a Levi subgroup L ⊂ P and a L-stable affine subvariety WZ ⊂ X◦Z such
that the P -action induces a P -equivariant isomorphism

X◦Z ' P u ×WZ .

Denote ΩZ(X) ⊂ ΛG/H the semigroup defined by

ΩZ(X) = k[X◦Z ](B)/
k∗ = k[WZ ](B∩L)/

k∗.

Denote CZ(X) ⊂ (Λ∨G/H)Q the cone generated by the images of B-stable (possibly G-
stable) prime divisors ofX containing Z, i.e. by ρ(∆Z(X)) together with ρ(BZ(X)) ⊂
VG/H .

Theorem 1.4.1 ([Kn 91] Thm. 3.5). Suppose that X is a normal embedding of
G/H and let Z ⊂ X an orbit. Then

i) ΩZ(X) = CZ(X)∨ ∩ ΛG/H .

ii) CZ(X) is a strictly convex cone such that CZ(X)◦ ∩ VG/H 6= ∅.

Combining previous theorem with [Oda 88, Proposition 1.1] we get the following
corollary. Later we will see a more general proof which makes use of the local
structure theorem (see Proposition 1.5.4).

Corollary 1.4.2. ΩZ(X) is a finitely generated semigroup which is saturated in
ΛG/H and which generates ΛG/H .

The codimension of the cone CZ(X) has the following geometrical interpretation:
it expresses the rank of the orbit Z. This is the content of following theorem.

Theorem 1.4.3 ([Kn 91] Thm. 7.3). Suppose that X is a normal spherical variety
and let Z ⊂ X be an orbit. Then

ΛZ = ΛX ∩ CZ(X)⊥.

In particular, rk(Z) = rk(X)− dim CZ(X) and ΛZ is saturated in ΛX .

Proof. Let f ∈ k(X)(B). SinceX is normal, both the zero locus and the non-definiton
locus of f are B-stables subvarieties of pure codimension 1. Therefore, if f is zero or
undefined on Z, then there exists a B-stable prime divisor D ∈ ∆Z(X)∪BZ(X) such
that vD(f) 6= 0. This shows the inclusion ΛX ∩ CZ(X)⊥ ⊂ ΛZ , while the surjectivity
follows by Theorem 1.1.10.

If Z ⊂ X is an orbit, consider the couple (CZ(X),∆Z(X)): it is a colored cone
in the sense of following definition.

Definition 1.4.4. A colored cone for G/H is a pair (C,∆2) with C ⊂ (Λ∨G/H)Q and
∆2 ⊂ ∆(G/H) having the following properties:

(CC1) C is a convex cone generated by ρ(∆2) together with finitely many elements
of VG/H .

(CC2) C◦ ∩ VG/H 6= ∅.
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A colored cone is called strictly convex if C is strictly convex and 0 6∈ ρ(∆2); it is
called complete if C contains the G-invariant valuation cone VG/H .

If X is simple with closed orbit Y , denote Cc(X) = (CY (X),∆Y (X)): we will
call Cc(X) the colored cone of X.

Theorem 1.4.5 ([LV 83] Prop. 4.10, [Kn 91] Thm. 4.1). The map X 7→ Cc(X)
defines a bijection between isomorphism classes of simple normal embeddings of G/H
and strictly convex colored cones.

Following the natural identification ΛY = ΛX ∩ CY (X)⊥ of Theorem 1.4.3,
consider the homomorphism ΛY −→ Z[∆(X) r ∆Y (X)] defined by

χ 7−→
∑

∆(X)r∆Y (X)
〈ρ(D), χ〉D.

Since any divisor in the image of previous map is principal, we get an exact sequence

ΛY −→ Z[∆(X) r ∆Y (X)] −→ Pic(X).

Theorem 1.4.6 ([Bri 89] §2). Suppose that X is a simple normal spherical variety
with closed orbit Y .

i) A divisor δ is a Cartier divisor if and only if it is linearly equivalent to a
B-stable divisor δ′ ∈ Z[∆(X)r∆Y (X)]. Moreover, we have an exact sequence

ΛY −→ Z[∆(X) r ∆Y (X)] −→ Pic(X) −→ 0.

ii) A Cartier divisor δ is generated by global sections (resp. ample) if and only
if it is linearly equivalent to a B-stable divisor δ′ ∈ Z[∆(X) r ∆Y (X)] with
non-negative (resp. positive) coefficients.

Combining previous theorem with Theorem 1.1.4 and Theorem 1.4.3, we get the
following corollary.

Corollary 1.4.7. If X is a simple normal spherical variety with compact closed
orbit Y , then

Pic(X) ∼= Z[∆(X) r ∆Y (X)].

Colored cones allow as well to express combinatorially the existence of a morphism
between two given spherical embeddings. Indeed, let H ′ ⊃ H be another spherical
subgroup and denote φ : G/H → G/H ′ the projection. We get then two natural
maps

φ∗ : ΛG/H′ ↪→ ΛG/H and φ∗ : (Λ∨G/H)Q � (Λ∨G/H′)Q
If ∆φ ⊂ ∆(G/H) is the subset of colors which map dominantly on G/H ′, then φ
induces as well a map

φ∗ : ∆(G/H) r ∆φ −→ ∆(G/H ′)

Definition 1.4.8. Suppose that (C,∆2) and (C′,∆′2) are colored cones respectively
for G/H and for G/H ′. Then we say that (C,∆2) maps to (C′,∆′2) if the following
conditions hold:
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(CM1) φ∗(C) ⊂ C′.

(CM2) φ∗(∆2 r ∆φ) ⊂ ∆′2.
If Cc = (C,∆2) is a colored cone for a spherical homogeneous space G/K, define

its support as
Supp Cc = VG/K ∩ C.

Theorem 1.4.9 ([Kn 91] Thm. 5.1 and Thm. 5.2). Suppose H ′ ⊃ H are spheri-
cal subgroups and let X and X ′ be simple normal embeddings of G/H and G/H ′
respectively.

i) The projection φ : G/H → G/H ′ extends to a morphism φ : X → X ′ if and
only if Cc(X) maps to Cc(X ′).

ii) If such an extension exists, then it is proper if and only if

Supp Cc(X) = φ−1
∗ (Supp Cc(X ′)).

In particular, X is complete if and only if Cc(X) is complete.

1.5 Simple linear compactifications and colored semi-
groups

We begin this section with some general remarks about (possibly non-linear) quasi-
projective spherical varieties. Suppose that X is a quasi-projective embedding of a
spherical homogeneous space G/H and denote p : X̃ → X the normalization.
Proposition 1.5.1 ([Ti 03] Prop. 1). If X is a quasi-projective embedding of G/H,
then the normalization X̃ → X is bijective on the set of G-orbits.

If Z ⊂ X is an orbit, denote Z ′ = p−1(Z) its inverse image in X̃. If D ∈ ∆(G/H),
denote D (resp. D̃) its closure in X (resp. in X̃).
Proposition 1.5.2. Let D ∈ ∆(G/H), let Z ⊂ X be an orbit. Then D ⊃ Z if and
only if D̃ ⊃ Z ′.
Proof. By Corollary 1.1.7, every orbit in a spherical variety is spherical. Thus we
may fix base points z0 ∈ Z and z′0 ∈ p−1(z0) such that Bz0 ⊂ Z and Bz′0 ⊂ Z ′

are open. Denote K = Stab(z0) and K ′ = Stab(z′0): since p is a finite morphims,
it follows that [K : K ′] < ∞. Hence K◦ = (K ′)◦ and by Theorem 1.3.5 it follows
K ′ ⊂ NG(K) and BK ′ = BK. Therefore p−1(Bz0) = Bz′0 is open in Z ′.

Suppose that D ⊃ Z: since D̃ is B-stable, by previous discussion we get D̃ ⊃ Bz′0,
thus D̃ ⊃ Z. Suppose conversely that D̃ ⊃ Z ′: then D = p(D̃) ⊃ p(Z ′) = Z.

As in the normal case, if Z ⊂ X is an orbit, denote CZ(X) ⊂ (Λ∨G/H)Q the
cone generated by the images of B-stable (possibly G-stable) prime divisors of X
containing Z, i.e. by ρ(∆Z(X)) together with ρ(BZ(X)) ⊂ VG/H .
Corollary 1.5.3. Let X be a simple quasi-projective embedding of an homogeneous
space G/H and let p : X̃ → X be the normalization. If Z ⊂ X is an orbit and
Z ′ ⊂ X̃ is the corresponding orbit, then

(
CZ(X),∆Z(X)

)
=
(
CZ′(X̃),∆Z′(X̃)

)
.
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Proof. If D ⊂ X is a G-stable prime divisor, by Proposition 1.5.1 it follows that
p−1(D) = D̃ is a G-stable prime divisor of X̃; in particular it follows that the
valuations of G/H defined by D and D̃ are proportional. On the other hand, by
Proposition 1.5.2 it follows that ∆Y (X) = ∆Y ′(X̃) are identified with the same
subset of ∆(G/H). Therefore C(X) and C(X̃) up to proportionality are generated by
the same subset of (Λ∨G/H)Q and, after the identifications ∆(X) = ∆(X̃) = ∆(G/H),
we get the equality.

Consider now the case of a simple linear compactification of a spherical homo-
geneous space G/H and denote Y ⊂ X the compact orbit. Denote p : X̃ → X the
normalization, if Z ⊂ X is an orbit denote Z ′ = p−1(Z) the corresponding orbit in
X̃. As in the normal case, denote

X◦Y = X r
⋃

∆(X)r∆Y (X)
D :

following Theorem 1.2.2 if P is the parabolic subgroup of G defined by

P = {g ∈ G : gX◦Y = X◦Y },

there exist a Levi subgroup L ⊂ P and a L-stable affine subvariety WY ⊂ X◦Y such
that the P -action induces a P -equivariant isomorphism

X◦Y ' P u ×WY .

Consider the semigroup ΩY (X) ⊂ ΛG/H defined by

ΩY (X) = k[X◦Y ](B)/
k∗ = k[WY ](B∩L)/

k∗.

Proposition 1.5.4. ΩY (X) is a finitely generated semigroup which generates ΛG/H .

Proof. Since WY is an affine variety, by [Gr 97, Theorem 9.4] it follows that

k[WY ]U∩L = k[ΩY (X)]

is a finitely generated k-algebra, where the latter denotes the semigroup algebra
of ΩY (X): therefore ΩY (X) ⊂ ΛG/H is a finitely generated semigroup. Since
every B-semiinvariant rational function on X can be written as a quotient of two
B-semiinvariant regular functions on X◦Y , it follows that ΩY (X) generates ΛG/H .

Denote
Ωc(X) =

(
ΩY (X),∆Y (X)

)
:

we will call Ωc(X) the colored semigroup of X. Following previous results together
with the results in previous section, we get that if G/H ↪→ X is a simple normal
embedding or a simple linear compactification, then Ωc(X) is a colored semigroup
in the sense of following definition.

Definition 1.5.5. A colored semigroup for G/H is a pair Ωc = (Ω,∆2) where

(CS1) Ω ⊂ ΛG/H is a finitely generated semigroup which generates ΛG/H .

(CS2) (C(Ω)∨,∆2) is a strictly convex colored cone for G/H.
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We will say that a colored semigroup is complete if Ω ⊂ V∨G/H .

Proposition 1.5.6. Let X be a simple linear compactification of G/H. Then Ωc(X)
is complete and it uniquely determines X among the simple linear compactifications
of G/H.

Proof. The completeness of Ωc(X) follows by Theorem 1.4.9. To show the second
claim, recall the P -equivariant isomorphism X◦Y ' P u×WY of Theorem 1.2.2, where
WY is an affine L-spherical variety with open L-orbit L/L ∩H. Since H ∩ L ⊂ L is
spherical, we get

k[WY ] =
⊕

λ∈ΩY (X)
k[L/L ∩H](λ) ∼=

⊕

λ∈ΩY (X)
VL(λ),

where k[L/L∩H](λ) denotes the isotypic component of weight λ and where VL(λ) is
the simple L-module of highest weight λ. In particular, ΩY (X) uniquely determines
WY . On the other hand, since P is the stabilizer of X◦Y , it is uniquely determined by
∆Y (X), so Ωc(X) uniquely determines X◦Y . Since X = GX◦Y is a simple spherical
variety, it follows that X as well is uniquely determined by Ωc

Y (X).

Following proposition explains the link between ΩY (X) and ΩY ′(X̃).

Proposition 1.5.7. If X is a simple linear compactification of G/H and if X̃ is
its normalization, then ΩY ′(X̃) is the saturation of ΩY (X) in ΛG/H , where Y ⊂ X
and Y ′ ⊂ X̃ are the compact orbits. In particular X is normal if and only if ΩY (X)
is saturated.

Proof. Consider the commutative diagram

X̃◦Y ′
∼ //

p

��

P u × W̃Y ′

Id×p
��

X◦Y
∼ // P u ×WY

Then W̃Y ′ and WY are affine L-spherical varieties and the restriction p : W̃Y ′ →WY

is the normalization map. Set U0 = U ∩ L and denote A = k[WY ] and Ã = k[W̃Y ′ ]:
let’s show that ÃU0 ⊃ AU0 is an integral extension.

Following [Maf 09, Lemma 3], consider the ideal

I = {a ∈ A : aÃ ⊂ A},

which is non-zero since Ã is a finite extension of A, and take a ∈ IU0 . Then
ÃU0 ' aÃU0 as an AU0-module, and the latter is a finitely generated AU0-module
since it is an ideal in AU0 . Therefore ÃU0 ⊃ AU0 is an integral extension.

Let λ ∈ ΩY ′(X̃) r {0} and let fλ ∈ ÃU0 be a B-eigenfunction of weight λ; let

p(t) = tn + fµ1t
n−1 + . . .+ fµn−1t+ fµn ∈ AU0 [t]

be a monic polinomial annihilated by fλ, where fµi is a B-eigenfunction of weight
µi ∈ ΩY (X). We may assume that p(fλ) is T -homogeneous; since ÃU0 is a domain,
take i such that µi 6= 0. Therefore nλ = µi + (n− i)λ, i.e. iλ = µi.

The second claim follows by the first one together with Proposition 1.5.6.
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Following lemma will allow us to establish the link between the lattice of an
orbit Z ⊂ X and that of the corresponding orbit Z ′ ⊂ X̃.

Lemma 1.5.8. Let K ′ ⊂ K be two spherical subgroups of G with K ′ normal in
K; fix a Borel subgroup B such that BK ′ is open in G and consider the projection
π : G/K ′ → G/K. Then π−1(BK/K) = BK ′/K ′ and π∗ : ΛG/K → ΛG/K′ identifies
ΛG/K with a sublattice of ΛG/K′ such that

ΛG/K′
/

ΛG/K ' X
(
K
/
K ′
)
.

Proof. First claim follows by the equality BK ′ = BK, which stems immediately
from Theorem 1.3.5 iv).

If B′ ⊂ B, denote X (B)B′ the kernel of the restriction X (B)→ X (B′), which is
surjective by the following argument: if U ⊂ B is the unipotent radical, then X (B) =
X (B/U) and X (B′) = X (B′/B′ ∩ U) and the restriction X (B/U)→ X (B′/B′ ∩ U)
is surjective since B′/B′ ∩ U ⊂ B/U is a diagonalizable subgroup of the torus B/U .

By definition, we have isomorphisms ΛG/K ' X (B)B∩K and ΛG/K′ ' X (B)B∩K′ ;
thus the restriction gives a surjective homomorphism

ΛG/K′ → X (B ∩K)B∩K′ = X (B ∩K/B ∩K ′
)

whose kernel is ΛG/K . On the other hand BK/K ' B/(B ∩ K) and BK ′/K ′ '
B/(B ∩K ′), hence the equality BK ′ = BK implies

B ∩K/
B ∩K ′ ' K

/
K ′.

Therefore we get

ΛG/K′
/

ΛG/K ' X
(
B ∩K/

B ∩K ′
)
' X (K/K ′

)
.

Proposition 1.5.9. Let X be a linear spherical variety and let p : X̃ → X be the
normalization. Let Z ⊂ X be an orbit and let Z ′ = p−1(Z) be the corresponding
orbit in X̃.

i) Z and Z ′ are isomorphic if and only if ΛZ = ΛZ′.

ii) ΛZ′ is the saturation of ΛZ in ΛG/H .

iii) If Z ' Z ′, then Z ′ ⊂ X̃ is the normalization of Z ⊂ X.

Proof. First claim follows straightforward by previous lemma. By Theorem 1.4.3, we
may identify ΛZ′ with a saturated sublattice of ΛG/H . Thus the second claim follows
from previous lemma together with the fact that p is a finite map. Finally, the
third claim stems from Proposition 1.2.4 together with the fact that the restriction
p : Z ′ → Z is finite and birational.
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1.5.1 Multiplicatively saturated colored semigroups
In this subsection we explain a necessary and sufficient condition so that a colored
semigroup for a spherical homogeneous space G/H is associated to a simple linear
compactification. Actually the condition is not satisfactory since it is not very
expendable from a combinatorial point of view, however it sets the general spherical
context of what will be done in Chapter 4 in the case of the adjoint group Gad. For
simplicity, we will assume that G is semisimple and simply connected.

Regard the coordinate ring k[G] as a G×G-module, where the two factors act
respectively on the left and on the right. If π : G→ G/H is the projection and if
D ∈ ∆(G/H), then every divisor π−1(D) has an equation fD ∈ k[G](B×H), which is
uniquely defined up to a scalar factor since k[G]∗ = k∗. Since BH ⊂ G is open it
must be fD(1) 6= 0, so we may assume fD(1) = 1. Denote ω : k(G)(B×H) → X (B)
and ψ : k(G)(B×H) → X (H) the maps which associate to every eigenfunction the
respective characters.

Lemma 1.5.10 ([Lu 01] Lemma 6.2.2, [Bri 07] Lemma 2.1.1). The multiplicative
group k(G)(B×H)/

k∗ is freely generated by the functions fD with D ∈ ∆(G/H).
Moreover, the commutative diagram

k(G)(B×H)/
k∗

ψ //

ω

��

X (H)

��
X (B) // X (B ∩H)

identifies k(G)(B×H)/
k∗ with the fiber product

X (B)×X (B∩H) X (H) =
{

(λ, χ) ∈ X (B)×X (H) : λ
∣∣
B∩H = χ

∣∣
B∩H

}
.

If (λ, χ) ∈ X (B)×X (B∩H) X (H), we will denote by fλ,χ ∈ k[G](B×H) the eigen-
function of weights λ and χ defined by fλ,χ(1) = 1.

Recall the canonical decompostion as a G×G-module

k[G] '
⊕

λ∈X (B)+

V (λ)∗ ⊗ V (λ)

A dominant weight λ ∈ X (B)+ is called spherical if V (λ)H 6= 0, it is called quasi-
spherical if V (λ)(H) 6= 0. Denote Λ+

G/H the semigroup of spherical weights and Ξ+
G/H

the semigroup of quasi-spherical weights: then we get the decompositions

k[G/H] '
⊕

λ∈Λ+
G/H

V (λ)∗ ⊗ V (λ)H and k[G](H) '
⊕

λ∈Ξ+
G/H

V (λ)∗ ⊗ V (λ)(H).

Definition 1.5.11. Let Ωc = (Ω,∆2) be a colored semigroup for G/H and let
Γ ⊂ Ω be a finite subset. We say that Γ is a set of multiplicative generators for ωc if
there exists

fλ,χ =
( ∏

∆(G/H)r∆2

fD
)N
∈ k[G](B×H)

such that fγ+λ,χ ∈ k[G] for all γ ∈ Γ and such that the following condition holds:



18 1. Spherical varieties

(MS) If µ ∈ X (B)+ and n = ∑
Γ∪{0} nγ (with nγ ∈ N for all γ ∈ Γ ∪ {0}) are such

that
fµ,nχ ∈

∏

γ∈Γ∪{0}
〈Gfγ+λ,χ〉nγ

then µ− nλ ∈ Ω and every ν ∈ Ω arises in this way.

If Ωc admits a set of multiplicative generators, we will say that it is multiplicatively
saturated.

Proposition 1.5.12. If G/H ↪→ X is a simple normal embedding, then the colored
semigroup Ωc(X) is multiplicatively saturated.

Proof. Denote Y ⊂ X the closed orbit and let Γ ⊂ ΩY (X) be a subset which
generates ΩY (X) as a semigroup. Identify ∆Y (X) with a subset of ∆(G/H) and
denote

f =
∏

D∈∆(G/H)r∆Y (X)
fD.

If γ ∈ Γ, let fγ ∈ k(G/H)(B) ⊂ k(G)(B×H) be an eigenfunction of weight γ: by
Theorem 1.4.1 it follows νπ−1(D)(fγ) > 0 for all D ∈ ∆Y (X), thus there exists N > 0
such that fγfN ∈ k[G] for all γ. If fN = fλ,χ, we get then fγ+λ,χ ∈ k[G] for all γ.

To show (MS), suppose that µ and n = ∑
Γ∪{0} nγ are such that

fµ,nχ ∈
∏

γ∈Γ∪{0}
〈Gfγ+λ,χ〉nγ

Write µ− nλ =
(∑

γ∈Γ nγγ
)
− σ, where by Proposition 1.3.2

σ =
∑

γ∈Γ
nγγ + nλ− µ ∈ −V∨G/H .

Suppose that ν ∈ CY (X) ∩ VG/H : then by Theorem 1.4.1 it follows

〈ν, µ− nλ〉 =
∑

γ∈Γ
nγ〈ν, γ〉 − 〈ν, σ〉 >

∑

γ∈Γ
nγ〈ν, γ〉 > 0.

Suppose now that D ∈ ∆(G/H) is such that νD(fµ,nχf−nλ,χ) 6 0: then

νπ−1(D)(fµ,nχf−nλ,χ) 6 0

as well. Since fµ,nχ is regular, by the definition of fλ,χ it follows D ∈ ∆(G/H) r
∆Y (X). Therefore 〈ρ(vD), µ − nλ〉 > 0 for all D ∈ ∆Y (X) ∪ BY (X) and by the
definition of CY (X) we get µ − nλ ∈ CY (X)∨ ∩ ΛG/H . Theorem 1.4.1 shows then
µ− nλ ∈ ΩY (X).

Since G is semisimple and simply connected, every line bundle L ∈ Pic(G/H)
admitsa unique linearization and we have an isomorphism Pic(G/H) ' X (H) (see
[KKV 89, Proposition 3.2]). If L ∈ Pic(G/H) and χ ∈ X (H) is the character of H
acting on the fiber of L over eH, we will write then L = Lχ: notice that there is a
natural isomorphism Γ(G/H,Lχ) ' k[G](H)

χ .
Following the lines of the proof of [Kn 91, Theorem 4.1], we prove the following

theorem.
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Theorem 1.5.13. The map X → Ωc(X) is a bijection between isomorphism classes
of simple linear compactifications of G/H and multiplicatively saturated complete
colored semigroups.

Proof. Suppose that X is a simple linear compactification of G/H with closed
orbit Y and consider the colored semigroup Ωc(X) = (ΩY (X),∆Y (X)). Following
Proposition 1.5.6, Ωc(X) is complete and the correspondence X 7→ Ωc(X) is injective.
Let’s show that Ωc(X) is multiplicatively saturated.

Suppose that X ⊂ P(V ) is an equivariant embedding, by Theorem 1.1.9, we
may assume that V = ⊕m

i=0 V (µi) is multiplicity free. Fix v ∈ V (H) such that
G[v] ⊂ X is the open orbit. If χ ∈ X (H) is such that v ∈ V (H)

χ , then the restriction
of the hyperplane bundle O(1) to G[v] is identified with the linearized line bundle
Lχ ∈ Pic(G/H) ' X (H) and its space of global sections is isomorphic to k[G](H)

χ .
Denote µ∗i the highest weight of V (µi)∗ and let ηi ∈ V (µi)∗ be a highest weight

vector. Regarded as a section of Lχ, ηi is identified with the function

〈ηi, gv〉 = fµ∗i ,χ(g) ∈ k[G](B×H).

Suppose Y ⊂ P(V (µ0)) and consider the associated B-stable affine open subset
X◦Y = X ∩ P(V )η0 . Its coordinate ring is generated as an algebra by the elements of
the shape f ′/fµ∗0,χ, with f

′ ∈ V ∗. Thus every function f ∈ k[X◦Y ] is the restriction
of a quotient of the shape s/fnµ∗0,χ, where s ∈ S

n(V ) is in the n-symmetric power of
V . The inclusion V ⊂ Γ(G/H,L) ' k[G](H)

χ identifies the multiplication in S(V )
with the multiplication in the subalgebra of k[G] generated by k[G](H)

χ . Hence it
follows that Ωc is multiplicatively generated by {µ∗1 − µ∗0, . . . , µ∗m − µ∗0}.

Suppose conversely that Ωc = (Ω,∆2) is a multiplicatively saturated complete
colored semigroup. Let Γ ⊂ Ω be a set of multiplicative generators and let N ∈ N
be as in Definition 1.5.11. Consider the function

fλ,χ =
( ∏

D∈∆(G/H)r∆2

fD
)N
∈ k[G](B×H)

and, for γ ∈ Γ, let fγ ∈ k(G/H)(B) ⊂ k(G)(B×H) be a B-eigenfunction of weight γ:
by the definition of N we get then fγfλ,χ = fγ+λ,χ ∈ k[G](B×H).

Denote W ⊂ k[G] the G-module generated by {fγ+λ,χ}γ∈Γ∪{0} (where G acts on
the left) and denote V = W ∗. Since W ⊂ k[G](H)

χ , we get a morphism

φ : G/H −→ P(V ).

Denote
X◦ = φ(G/H) ∩ P(V )fλ,χ and X = GX◦.

By construction, X is a simple spherical variety and

k[X◦](B)/
k∗ = Ω :

indeed as an algebra k[X◦] is generated by the elements of the shape f ′/fλ,χ, with
f ′ ∈ W . Since Ω generates ΛG/H by (CS1), we get that ΛX = ΛG/H and by
Lemma 1.5.8 it follows that φ : G/H → X is an embedding. Denote p : X̃ → X
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the normalization. If Y ⊂ X the closed orbit, by Proposition 1.5.1 we get that
Y ′ = p−1(Y ) is the closed orbit of X̃. Since Ωc is complete, it follows that CY ′(X̃) =
CY (X) = C(Ω)∨ ⊃ VG/H : therefore Theorem 1.4.9 shows that X̃ and X are complete.
Finally, it follows by the definition of fλ,χ that X rX◦ is the union of the colors in
∆(X) r ∆2: by Theorem 1.2.2 this implies ∆Y (X) = ∆2.

Previous theorem is not satisfactory since, given χ ∈ X (H) and quasi-spherical
weights λ, µ ∈ Ξ+

G/H such that V (λ)(H)
χ 6= 0 and V (µ)(H)

χ 6= 0, it is not at all clear
how to describe combinatorially the multiplication

mχ : V (λ)⊗ V (µ) −→
⊕

ν ∈Ξ+
G/H

: ν6λ+µ

V (ν)

induced by the multiplication in k[G] by the identifications V (λ) ' 〈Gfλ,χ〉 and
V (µ) ' 〈Gfµ,χ〉. In the case of the adjoint group Gad regarded as a spherical G×G
variety, such a description is known (see Example 1.3.3). By using this description,
in Chapter 4 we will see how the correspondence of previous theorem can be made
much more concrete, allowing in principle to give an explicit classification of the
simple linear compactifications of a semisimple adjoint group. In particular, we will
examine in details the case of an odd orthogonal group and we will derive a such
classification in this case.

1.6 Colored subspaces and coconnected inclusions
An inclusion H ⊂ H ′ of spherical subgroups of G is called coconnected if H ′/H is
connected. As simple normal embeddings G/H ↪→ X are classified by strictly convex
colored cones, the set of coconnected inclusions H ⊂ H ′ is classified by a particular
class of colored cones for G/H.

Suppose that H ⊂ H ′ are spherical subgroups. Denote φ : G/H → G/H ′ the
projection and consider the induced maps

φ∗ : ΛG/H′ ↪→ ΛG/H and φ∗ : (Λ∨G/H)Q � (Λ∨G/H′)Q
Denote ∆φ ⊂ ∆(G/H) the subset of colors which map dominantly on G/H ′ and

denote
Cφ = {v ∈ (Λ∨G/H)Q : v(χ) = 0 for all χ ∈ ΛG/H′}.

the annihilator of ΛG/H′ .
Theorem 1.6.1 ([Kn 91] Lemma 5.3). Suppose that H ′/H is connected.

i) The projection φ : G/H → G/H ′ identifies ∆(G/H ′) with ∆(G/H) r ∆φ.
Moreover ΛG/H′ = ΛG/H ∩ C⊥φ is saturated in ΛG/H and VG/H′ is the quotient
of VG/H by Cφ.

ii) (Cφ,∆φ) is a colored cone for G/H.
Definition 1.6.2. A colored subspace for G/H is a colored cone (C,∆2) such that
C ⊂ (Λ∨G/H)Q is a linear subspace.

Theorem 1.6.3 ([Kn 91] Thm. 5.4). Let H be a spherical subgroup. The map
H ′ 7→ (Cφ,∆φ) induces a bijection between the set of subgroups H ′ ⊃ H such that
H ′/H is connected and the set of colored subspaces for G/H.



Chapter 2

Wonderful varieties

Throughout this chapter, G will denote a simply connected semisimple algebraic
group over an algebraically closed field of characteristic zero. The action of the center
of G on any G-variety will be assumed to be trivial: all the considered G-varieties
will be Gad-varieties, where Gad denotes the adjoint group of G.

2.1 Wonderful varieties and spherical systems
Let G/H be a spherical homogeneous space and suppose that VG/H is a strictly
convex cone: then the couple (VG/H ,∅) is a colored cone and by Theorem 1.4.9 it
follows that the associated embedding M(G/H) is simple, complete and toroidal. If
it exists, M(G/H) is called the canonical embedding of G/H. The following corollary
to Theorem 1.3.5 explains when does a canonical embedding for G/H exist.

Corollary 2.1.1. A spherical homogeneous space G/H admits a canonical embedding
if and only if [NG(H) : H] <∞.

A spherical subgroup H is called sober if it has finite index in its normalizer.
Suppose that H is sober; then the canonical embedding M(G/H) satisfies the
following universal property: given any toroidal embedding X ′ and any simple
completion X ′′ of G/H, there exist unique proper birational equivariant morphisms

X ′ −→M(G/H) −→ X ′′

which extend the identity map on G/H.
If a canonical embedding is smooth, then it is called a wonderful embedding. A

sober subgroup H will be called wonderful if the canonical embedding of G/H is
wonderful.

Suppose that M is the canonical embedding of a spherical homogeneous space
G/H; denote Y ⊂ M the closed orbit and y0 ∈ Y B− the unique B− fixed-point.
Following Theorems 1.2.3 and 1.2.6, consider the decomposition

M◦ = P u ×WM ,

where M◦ = M r
⋃

∆(M)D and where WM ⊂ M◦ is an affine toric variety for a
quotient of T with fixed point y0 such that

k[WM ](T )/
k∗ = V∨G/H ∩ ΛG/H = ΩY (M).

21
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Therefore, by [Oda 88, Theorem 1.10], it follows that M is smooth if and only if the
semigroup ΩY (M) is freely generated by a (uniquely defined) basis of ΛG/H , which
is contained in the root lattice since the center of G acts trivially. Moreover, if ΣM

is the opposite of this basis, then Theorem 1.3.1 shows that ΣM ⊂ NS and every
element in ΣM is either a positive root or a sum of two strongly orthogonal positive
roots.

Definition 2.1.2. Suppose thatM is the wonderful embedding of a spherical variety.
An element σ ∈ ΣM is called a spherical root of M (or equivalently of G/H).

Suppose that M is the wonderful embedding of a spherical variety G/H. Then
G-stable divisors of M correspond with T -stable divisors on WM , which are the
coordinate hyperplanes relatively to the basis ΣM . It follows that M r G/H is
the union of r = rk(M) smooth prime divisors having a non-empty transversal
intersection and the following description holds:

ΣM =
{
T -weights of the T -module Ty0M

/
Ty0Y

}
.

If σ ∈ ΣM , denote Mσ the associated G-stable prime divisor of M , defined by

Ty0M
/
Ty0M

σ ∼= VT (σ),

where VT (σ) denotes the one dimensional T -module of weight σ. Equivalently,
Mσ ∩M◦ is the principal divisor defined by a B-eigenfunction f−σ ∈ k[M◦](B) of
weight −σ.
Definition 2.1.3. A wonderful variety (of rank r) is a smooth projective G-variety
having an open orbit which satisfies following properties:

i) the complement of the open orbit is the union of r smooth prime divisors
having a non-empty transversal intersection;

ii) any orbit closure equals the intersection of the prime divisors containing it.

Theorem 2.1.4 ([Lu 96]). A G-variety is wonderful if and only if it is the wonderful
embedding of a spherical homogeneous space.

Example 2.1.5 (The wonderful completion of an adjoint symmetric space).
Following Example 1.3.4, consider the case of an adjoint symmetric space G/H,
where H = NG(Gσ) is the normalizer of the set of the points fixed by an algebraic
involution σ : G→ G. By the isomorphism

ΛG/H ' X
(
T1
/
T1 ∩H

)
= ZS,

since VG/H ⊂ X (T1/T1∩H)∨Q is identified with the negative Weyl chamber, it follows
that VG/H ∩ Λ∨G/H = −NS is a free semigroup. Therefore G/H admits a wonderful
embedding M .

The variety M was first considered by C. De Concini and C. Procesi in [DCP 83].
If λ is any dominant weight such that σ(λ) = −λ and such that 〈λ, α∨〉 6= 0 for
every α ∈ S1, then H fixes (pointwise) a unique line in V (λ): if v0 ∈ V (λ)H is a
non-zero representative of this line, then in [DCP 83] it is shown that Stab[v0] = H
and that G[v0] ⊂ P(V (λ)) is a smooth G-variety which satisfies conditions i) and ii)
of Definition 2.1.3.
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Suppose that M is a wonderful variety. If Σ′ ⊂ ΣM , then the G-stable subvariety

MΣ′ =
⋂

σ∈ΣMrΣ′
Mσ

is a wonderful G-variety whose spherical root set is Σ′: this defines a bijection
between subsets of spherical roots and G-stable irreducible subvarieties of M . We
will call MΣ′ the localization of M at Σ′.

Wonderful varieties of rank one are well known and classified [Ak 83]; in particular,
for any fixed G, they are finitely many. Denote Σ(G) the finite set of all possible
spherical roots of a rank one wonderful G-variety and denote Supp(σ) the set of
simple roots α ∈ S where σ is supported (see Table 2.1).

If M is a wonderful variety, then ΣM is the set of spherical root of all possible
rank one wonderful G-subvarieties of M : therefore ΣM ⊂ Σ(G).

Table 2.1. The set of spherical roots of G.

Type of Supp(σ) Shape of σ Type of σ

A1
α1 AI

1
2α1 AII

1
A1 × A1 α1 + α′1 A1 × A1

Ar, r > 2 α1 + . . .+ αr Ar
Br, r > 2 α1 + . . .+ αr BI

r

2α1 + . . .+ 2αr BII
r

B3 α1 + 2α2 + 3α3 BIII
3

Cr, r > 3 α1 + 2α2 + . . .+ 2αr−1 + αr Cr
Dr, r > 3 2α1 + . . .+ 2αr−2 + αr−1 + αr Dr

F4 α1 + 2α2 + 3α3 + 2α4 F4

G2

2α1 + α2 GI
2

4α1 + 2α2 GII
2

α1 + α2 GIII
2

If α is a simple root, denote Pα the associated minimal parabolic subgroup
containing B and denote

∆(M)(α) = {D ∈ ∆(M) : PαD 6= D}.

If D ∈ ∆(M)(α), we will say that D is moved by α.

Proposition 2.1.6 ([Lu 97] §3.2 and §3.4). For every α ∈ S, the cardinality of
∆(M)(α) is at most 2. Moreover:

a) if ∆(M)(α) = {D+
α , D

−
α } has cardinality 2, then α ∈ ΣM and

ρ(D+
α ) + ρ(D−α ) = α∨

∣∣
ΛM

.

2a) If ∆(M)(α) = {Dα} has cardinality 1 and if 2α ∈ ΣM , then

ρ(Dα) = 1
2α
∨∣∣

ΛM
.
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b) If ∆(M)(α) = {Dα} has cardinality 1 and if 2α 6∈ ΣM , then

ρ(Dα) = α∨
∣∣
ΛM

.

We will say that a simple root α is of type a, 2a or b if it holds respectively the
condition a), 2a) or b) of previous lemma, finally we will say that α is of type p if
∆(M)(α) = ∅. Denote SaM , S2a

M , S
b
M , S

p
M the set of simple roots of type respectively

a, 2a, b and p. Equivalently, SpM coincides with the set of simple roots associated
with the stabilizer of the B−-fixed point y0 in the closed orbit Y and α ∈ SpM if and
only if PαM◦ = M◦.

Denote ∆a(M) (resp. ∆2a(M), ∆b(M)) the union of the ∆(α)’s where α runs in
SaM (resp. in S2a

M , SbM ).

Proposition 2.1.7 ([Lu 01] Prop. 3.2). Let α, β ∈ S; then ∆(M)(α)∩∆(M)(β) 6=
∅ if and only if it holds one of the followings:

i) α, β ∈ SaM and ∆(M)(α) ∪∆(M)(β) has cardinality 3.

ii) α, β ∈ SbM are orthogonal and α+ β ∈ ΣM .

It follows that the union

∆(M) = ∆(M)a ∪∆(M)2a ∪∆(M)b

is disjoint. We will say that a color D ∈ ∆(M) is of type a, 2a or b according as
D ∈ ∆(M)a, D ∈ ∆(M)2a or D ∈ ∆(M)b.

Definition 2.1.8. The natural pairing cM : ∆(M)× ΣM → Z between colors and
spherical roots defined by

cM (D,σ) = 〈ρ(D), σ〉
is called the Cartan pairing of M .

Regarding ∆(M) as a set of functionals (possibly containing some repeated
elements) of the lattice ΛM = ZΣM , it turns out from Lemma 2.1.6 that the subsets
of colors ∆(M)2a and ∆(M)b can be recovered from the set of spherical roots
ΣM together with the set of simple roots SpM . This remark leads to the following
definition.

Definition 2.1.9. The spherical system of M is the triplet

SM =
(
ΣM , S

p
M ,AM

)
,

where AM = ∆(M)a is regarded as a multi-subset of Λ∨M via the map cM : ∆(M)a×
ΣM → Z. If H is any wonderful subgroup, by the spherical system of G/H we will
mean that of its wonderful completion.

Following theorem was conjectured by D. Luna in [Lu 01].

Theorem 2.1.10 ([Lo 09] Thm. 1). Two G-wonderful varieties are equivariantly
isomorphic if and only if they have the same spherical system.

Consider now the case of a rank one wonderful variety: in this case the third
datum of the spherical system is uniquely determined by the other data.
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Definition 2.1.11. A spherical root σ ∈ Σ(G) and a subset Sp ⊂ S are called
compatible if there exists a rank one wonderful variety X such that ΣX = {σ} and
SpX = Sp.

Following the classification of rank one wonderful varieties given in [Ak 83], it
follows that σ and Sp are compatible if and only if

Spp(σ) ⊂ Sp ⊂ Sp(σ)

where Sp(σ) denotes the set of simple roots orthogonal to σ and where

Spp(σ) =





Sp(σ) ∩ Supp(σ) r {αi+r} if σ is of type BI
r

Sp(σ) ∩ Supp(σ) r {αi+1} if σ is of type Cr
Sp(σ) ∩ Supp(σ) otherwise

where Supp(σ) = {αi+1, . . . , αi+r} and simple roots are labelled following Bourbaki
[Bo 75].

2.2 The Picard group of a wonderful variety
From now on, M will denote a wondeful variety with open B-orbit Bx0 and generic
stabilizer H = Stab(x0). If this is not confusing, we will drop the indices relating to
M form all those sets we associated to M in previous section: we will denote the
spherical system of M by S = (Σ, Sp,A) and the set of colors of M by ∆, we will
denote Sa, S2a, Sb the respective sets of simple roots associated to M .

If σ ∈ Σ, consider Mσ ∩M◦: by its definition, it is the principal divisor of M◦
associated to f−1

σ , where fσ ∈ k(G/H)(B) is a B-eigenfunction of weight σ.
Regard k(G/H)(B) as a subgroup of k(G)(B×H) and recall from Lemma 1.5.10

that the latter is the generated by the functions fD with D ∈ ∆. Since G is
semisimple it follows k[G]∗ = k, thus by the definition of the Cartan pairing up to a
scalar factor it holds the equality

fσ =
∏

D∈∆
f
c(D,σ)
D .

By considering the associated divisor, we get then div(fσ) = [Mσ]+∑D∈∆ c(D,σ)[D],
hence

[Mσ] =
∑

D∈∆
c(D,σ)[D] :

thus the Cartan pairing expresses the coefficients of the G-stable divisors with respect
to the basis ∆.

Denote Y ⊂M the closed orbit and let y0 ∈ Y B− be the B−-fixed point. Since
G is semisimple and simply connected, Pic(Y ) is identified with a sublattice of
X (B), while Pic(G/H) is identified with X (H) (see [KKV 89, Proposition 3.2]): if
L ∈ Pic(Y ), then L will be identified with the character of B− acting on the fiber of
L over y0, while if L ∈ Pic(G/H), then L will be identified with the character of H
acting on the fiber over eH.
Proposition 2.2.1 ([Bri 07] Prop. 2.2.1). i) There is an exact sequence

0 −→ ZB −→ Pic(M) −→ Pic(G/H)→ 0,

where B = B(M) is the set of G-stable prime divisors of M .
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ii) Denote ω : Pic(M)→ X (B) and ψ : Pic(M)→ X (H) the restrictions to the
closed and to the open orbit. Then the commutative diagram

Pic(M) ψ //

ω

��

X (H)

��
X (B) // X (B ∩H)

induces isomorphisms

Pic(M) ' X (B)×X (B∩H) X (H) ' k(G)(B×H)/
k∗.

This identifies the exact sequence in i) with

0 −→ X (B)B∩H −→ X (B)×X (B∩H) X (H) −→ X (H)→ 0,

where X (B)B∩H = ΛG/H denotes the group of characters of B which are
invariant under B ∩H.

The isomorphisms of previous proposition can be explicitly described as follows.
Let δ ∈ N∆ be a divisor generated by global sections and denote O(δ) ∈ Pic(M) be
the associated line bundle. Let s ∈ Γ(M,O(δ))(B) be the canonical section: then the
simple G-module 〈Gs〉 ⊂ Γ(M,O(δ)) generated by s is identified with the simple
module V

(
ω(δ)

)
and we get a morphism

φδ : M −→ P(V
(
ω(δ)

)∗).

Take v0 ∈
(
V
(
ω(δ)

)∗)(H) such that [v0] = φδ(x0): then (up to a scalar factor) the
B ×H-eigenfunction fδ ∈ k[G](B×H) associated to δ is

fδ(g) = 〈s, gv0〉.

In particular, the character ψ(δ) ∈ X (H) coincides with the H-weight of v0.
Denote ΞM ⊂ X (B) the image of the restriction ω : Pic(M) → X (B). If ω is

injective, then ΞM ∩ X (B)+ = Ξ+
G/H is the semigroup of quasi-spherical weights of

G/H and ΛM ∩ X (B)+ = Λ+
G/H is the semigroup of spherical weights (see §1.5.1).

Consider the partial order on ΞM defined as follows:

µ 6Σ λ if and only if λ− µ ∈ NΣ.

Theorem 2.2.2 ([DCP 83] Thm. 8.3). Let δ ∈ N∆ be a divisor generated by its
global sections.

i) If Hom
(
V (µ),Γ

(
M,O(δ)

)) 6= 0, then µ 6Σ ω(δ).

ii) If the restriction ω is injective, then the converse also is true:

Γ
(
M,O(δ)

) '
⊕

µ∈X (B)+ :µ6Σω(δ)
V (µ).
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Proof. i). Consider the canonical section sδ ∈ Γ
(
M,O(δ)

)(B): it is a highest weight
vector of weight ω(δ) and it determines a trivialization of the restiction O(δ)

∣∣
M◦ .

If s ∈ Γ
(
M,O(δ)

)(B) is a B-eigenvector, then s = fsδ with f ∈ k[M◦](B); if µ is
the weight of s it holds then

µ = ω(δ)−
∑

σ∈Σ
aσσ,

where aσ is the vanishing order of f = ∏
Σ f
−aσ
σ along the divisor Mσ. Therefore

µ 6Σ ω(δ).
ii). Suppose that ω is injective and that µ ∈ Ξ+

M is of the shape µ = ω(δ)−∑ aσσ.
Consider the B-stable divisor

δ′ = δ −
∑

σ∈Σ
aσM

σ.

Since ω is injective, Ξ+
M is a semigroup which is freely generated by the ω(D)’s,

D ∈ ∆: thus by Theorem 1.4.6 a weight λ ∈ ΞM is dominant if and only if
ω−1(λ) ∈ N∆ is generated by global sections. Therefore δ′ is generated by global
sections.

Let sσ ∈ Γ
(
M,O(Mσ)

)
and sδ′ ∈ Γ

(
M,O(δ′)

)
be the canonical sections: sσ is a

B-semiinvariant eigenvector of weight σ, while sδ′ is a B-semiinvariant eigenvector
of weight µ. Then the claim follows since

s = sδ′
∏

σ

saσσ ∈ Γ
(
M,O(δ)

)
:

is a non-zero B-eigenvector of weight µ.

A combinatorial description of the restriction ω is given by following theorem.

Theorem 2.2.3 ([Fo 98] Thm. 2.2). The map ω : Pic(M)→ X (B) is combinatori-
ally described on colors as follows:

ω(D) =
{ ∑

D∈∆(α) ωα if D ∈ ∆ r ∆2a

2ωα if D = Dα ∈ ∆2a

Corollary 2.2.4. IfM is a wonderful variety which does not possess simple spherical
roots, then the restriction ω : Pic(M) −→ X (B) is injective.

Remark 2.2.5. If Σ′ ⊂ Σ is a subset of spherical roots, consider the associated
localization M ′ = ⋂

σ∈ΣrΣ′M
σ: it is a wonderful variety whose spherical system is

S ′ =
(
Σ′, Sp,A′

)
, where A′ = ⋃

α∈S∩Σ′ A(α) (see [Lu 01, §2.2.3])
Denote ∆′ the set of colors of M ′; if α ∈ S ∩ Σ′ and β ∈ S r (Σ′ ∪ Sp) set

∆′(α) = { ′D+
α ,
′D−α } and ∆′(β) = {D′β}. Consider the commutative diagram

Pic(M) q //

ω
((QQQQQQQQQQQQQQ
Pic(M ′)

ω′

��
X (B)

Then Theorem 2.2.3 shows that:
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– if α ∈ S ∩ Σ′ then q(D+
α ) (resp. q(D−α )) is supported on ′D+

α (resp. on ′D−α )
with multiplicity one, while it is not supported on ′D−α (resp. on ′D+

α );

– if α ∈ S∩(ΣrΣ′) then q(D+
α ) and q(D−α ) are supported onD′α with multiplicity

one;

– if α ∈ S ∩ 1
2Σ′, then q(Dα) = D′α;

– if α ∈ S ∩ 1
2(Σ r Σ′), then q(Dα) = 2D′α;

– if α ∈ Sb, then q(Dα) is supported on D′α with multiplicity one and on at most
one more color.

2.3 The G-equivariant automorphism group
Let H be a spherical subgroup. Then the natural right action of NG(H) on G/H
identifies the G-equivariant automorphism group AutG(G/H) with NG(H)/H and
induces as well an action of NG(H) on ∆(G/H).

Definition 2.3.1. The kernel of the action of NG(H) on ∆ is called the spherical
closure of H. If H coincides with its spherical closure, then it is called spherically
closed.

Denote H the spherical closure of a spherical subgroup H: then H is still a
spherical subgroup of G and the projection G/H → G/H identifies ∆(G/H) with
∆(G/H). Moreover, since the identity component (NG(H)/H)◦ acts trivially on
∆(G/H), spherically closed subgroups are sober.

Theorem 2.3.2 ([Kn 96] Cor. 7.6). A spherically closed subgroup is wonderful.

A wonderful variety (or equivalently a spherical homogeneous space) will be called
spherically closed if its generic stabilizer is so. In particular, every self-normalizing
spherical subgroup is spherically closed, thus wonderful. Following proposition gives
another characterization of spherically closed subgroups. By a simple projective
space we will mean the projective space of a simple G-module.

Proposition 2.3.3 ([BL 08] Cor. 2.4.2). A spherical subgroup is spherically closed
if and only if it occurs as the stabilizer of a point in a simple projective space.

A very special class of spherically closed subgroups arises by requiring that M
can be embedded in a simple projective space. As shown by Example 2.1.5, for
instance this is the case if M is the wonderful completion of an adjoint symmetric
space.

Definition 2.3.4. A wonderful variety is called strict if the stabilizer of any point
x ∈M is self-normalizing. A spherical subgroup is called strict if it occurs as the
generic stabilizer of a strict wonderful variety.

Theorem 2.3.5 ([Pe 07] Thm. 2). Let M be a wonderful variety. Then M is
strict if and only if there exists a simple module V together with a closed embedding
M ↪→ P(V ).
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Theorem 2.3.6 ([Pe 07] Thm. 5 and Lemma 14). Let M be a strict wonderful
variety.

i) If δ ∈ N∆ is any ample divisor, then the associated morphism

φδ : M −→ P
(
V (ω(δ))∗

)

is a closed embedding.

ii) The restriction to the closed orbit ω : Pic(M)→ X (B) is injective.

Let M be a wonderful variety with spherical system S = (Σ, Sp,A). Then the
G-equivariant automorphism group AutG(M) is naturally identified with NG(H)/H.

Definition 2.3.7. A spherical root σ ∈ Σ is called loose if one of the following
conditions holds:

i) σ ∈ Σ r S, 2σ ∈ Σ(G) and the couple (2σ, Sp) is compatible.

ii) σ ∈ S ∩ Σ and c(D+
σ , σ

′) = c(D−σ , σ′) for every σ′ ∈ Σ.

The set of loose spherical roots will be denoted by Σ`.

Following the classification of rank one wonderful varieties [Ak 83], non-simple
loose spherical roots are easily described. They are those of the following types
(where S = {α1, . . . , αn} and simple roots are labelled as in Bourbaki [Bo 75]):

– spherical roots σ = αi+1 + . . .+ αi+r of type BI
r with αi+r ∈ Sp;

– spherical roots σ = 2αi+1 + αi+2 of type GI
2.

Fix a base point x0 ∈M and set H = Stab(x0). Denote M = M(G/NG(H)) the
wonderful completion of G/NG(H) and denote Σ its set of spherical roots; then we
get a morphism M →M which determines an inclusion Σ ⊂ NΣ.

Recall the is isomorphism

Θ : AutG(M) ∼−→ Hom
(
ZΣ
/
ZΣ , k∗

)

defined in Theorem 1.3.5: hence the description of AutG(M) follows from the
description of Σ.

Theorem 2.3.8 ([Lo 09] Thm. 2). Σ is obtained from Σ by doubling loose spherical
roots:

Σ = (Σ r Σ`) ∪ 2Σ`.

As a consequence we get the following description:

AutG(M) '
(
Z
/

2Z
)card(Σ`)

.
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Remark 2.3.9. Let γ ∈ AutG(M) and denote Σ(γ) = {σ ∈ Σ` : Θγ(σ) = −1}.
Consider the quotient variety M/γ: it is a simple, toroidal complete spherical variety
whose weight lattice is described as follows:

ΛM/γ = {λ ∈ ΛM : Θγ(λ) = 1} = Z[Σ r Σ(γ)]⊕ 2ZΣ(γ).

If Y ′ ⊂M/γ is the closed orbit, it follows that

ΩY ′(M/γ) = −
(
N[Σ r Σ(γ)]⊕ 2NΣ(γ)

)
:

hence M/γ is a wonderful variety with spherical system S /γ = (Σ/γ, Sp,A/γ),
where

Σ/γ =
(
Σ r Σ(γ)

) ∪ 2Σ(γ) and A/γ =
⋃

α∈S∩Σ/γ
A(α).

Denote ∆′ the set of colors of M/γ and consider the induced map ∆→ ∆′. Then
Proposition 2.1.6 shows that γ acts transitively on ∆(α) for every α ∈ S ∩ Σ(γ),
while it fixes every color D ∈ ∆(α) with α ∈ S r Σ(γ).

If σ ∈ Σ`, denote γ(σ) ∈ AutG(M) the unique automorphism such that

Θγ(σ)(σ′) =
{

1 if σ′ 6= σ
−1 if σ′ = σ

:

by previous remark, γ(σ) acts trivially on every ∆(α) with α 6= σ, while if σ ∈ S∩Σ`

it exchanges D+
σ and D−σ .

Remark 2.3.10. By the combinatorial description of the equivariant automorphism
group we get the following characterizations:

- H is self-normalizing if and only if Σ` = ∅;

- H is spherically closed if and only if Σ` ⊂ S;

- H is strict if and only if S ∩ Σ = ∅ and Σ` = ∅.

In particular, if S∩Σ = ∅, then H is self-normalizing if and only if it is spherically
closed if and only if it is strict.

Example 2.3.11 (Wonderful model varieties). Besides the wonderful comple-
tions of adjoint symmetric spaces, another remarkable class of strict wonderful
varieties is that of wonderful model varieties, introduced by D. Luna in [Lu 07]. A
quasi-affine homogeneous space G/H is called a model variety for G if its coordinate
ring k[G/H] is a model of the representations of Gin the sense of [BGG 76], i.e. if
it contains each irreducible representation of G exactly once. For instance this is
the case if H = U is a maximal unipotent subgroup of G. If G is a classical group,
several examples of model varieties for G were given in [GZ 84] and [GZ 85].

It follows by Theorem 1.1.9 that model varieties are spherical. If G is a connected
and semisimple group, in [Lu 07] it has been given a classification of the model
varieties for G by means of wonderful varieties. More precisely, there is introduced
a wonderful variety Mmod

G whose orbits parametrize the model varieties for G in
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the following way: every orbit of Mmod
G is of the shape G/NG(H), where G/H is a

model variety for G, and this correspondence gives a bijection up to isomorphism
with the class of model varieties for G.

The spherical system of Mmod
G is described as follows. Denote

Rmod = {α+ β : α, β ∈ S are non-orthogonal }
Sev = {α ∈ S : α∨ is even on S}

and denote by Gα the simple factor of G whose Dynkin diagram contains the vertex
corresponding to a given α ∈ S: notice that if α ∈ Sev then G(α) is either simply
connected and isomorphic to Spin(2r+1) or it is adjoint and isomorphic to SO(2r+1).
Then the spherical system of Mmod

G is S mod
G = (Σmod

G ,∅,∅) where

Σmod
G = Rmod ∪ {2α : α ∈ Sev and G(α) is adjoint }.

Since it possesses no simple spherical roots and no loose spherical roots, it follows
that Mmod

G is a strict wonderful variety. We will call wonderful model variety any
localization of Mmod

G .

2.4 Morphisms between wonderful varieties
Let M be a wonderful variety with base point x0 and set H = Stab(x0). Set
S = (Σ, Sp,A) its spherical system and ∆ = ∆(G/H) its set of colors.

Definition 2.4.1. A subset ∆∗ ⊂ ∆ is called distinguished if there exists δ ∈ N>0[∆∗]
such that c(δ, σ) > 0 for every σ ∈ Σ.

Let ∆∗ ⊂ ∆ be a subset; then the condition to be distinguished is equivalent to

N>0[ρ(∆∗)] ∩ (−VG/H) 6= ∅.

Consider the smallest face F ⊂ VG/H such that N>0ρ(∆∗) ∩ (−F) 6= ∅ and denote
N(∆∗) the cone generated by ρ(∆∗) together with F ; then (N(∆∗),∆∗

)
is a colored

subspace for G/H which intersects the invariant valuation cone VG/H in a face.

Lemma 2.4.2 ([Lu 01] Lemma 3.3.1). A subset ∆∗ ⊂ ∆ is distinguished if and only
if there exists a (uniquely defined) subspace N(∆∗) ⊂ (Λ∨G/H)Q which satisfies the
following conditions:

(DS1) The pair
(
N(∆∗),∆∗

)
is a colored subspace for G/H.

(DS2) The intersection N(∆∗) ∩ VG/H is a face of VG/H .

Proposition 2.4.3 ([Lu 01] Prop. 3.3.2). The application which associate to H ′ ⊃
H the set ∆φ ⊂ ∆ of colors which map dominantly on G/H ′ via the projection
φ : G/H → G/H ′ induces an inclusion-preserving bijection as follows:

{
∆∗ ⊂ ∆ distinguished

}
←→

{
H ′ ⊂ G sober :

H ⊂ H ′ and H ′/H connected

}
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Proof. Let’s show that if H ′ ⊃ H is a sober subgroup and if φ : G/H → G/H ′ is
the projection, then the subset of colors

∆φ = {D ∈ ∆ : φ(D) = G/H ′}

is distinguished. Suppose that H ′/H is connected. By Theorem 1.6.3 the pair
(Cφ,∆φ) is a colored subspace for G/H and the valuation cone VG/H′ is the quotient
cone of VG/H by Cφ. Thus the claim follows since the condition that VG/H′ is strictly
convex (i.e. that H ′ is a sober subgroup) is equivalent to the fact that Cφ ∩ VG/H is
a face.

If H ′/H is not connected, then the claim follows by considering H ′′ = H(H ′)◦,
where (H ′)◦ denotes the identity component of H ′. Indeed φ : G/H → G/H ′

factors through G/H ′′ and, if φ′′ : G/H → G/H ′′ is the projection, then ∆φ = ∆φ′′ ,
Cφ = Cφ′′ and VG/H′ = VG/H′′ .

Suppose conversely that ∆∗ ⊂ ∆ is a distinguished subset. Then by Lemma 2.4.2
together with Theorem 1.6.3 there exists a unique spherical subgroup H ′ ⊃ H with
H ′/H connected such that ∆∗ = ∆φ. Since VG/H′ is the quotient of VG/H by N(∆∗)
and since by (DS2) the intersection N(∆∗)∩VG/H is a face of VG/H , it follows that
VG/H′ is strictly convex, i.e. H ′ is a sober subgroup.

If H ′ ⊃ H is a sober subgroup such that H ′/H is connected, denote M ′ the
canonical embedding of M(G/H ′) and denote ∆′ = ∆(G/H ′). Set (M ′)◦ = M ′ r⋃
D∈∆′ D and consider the projection φ : M →M ′: then

φ−1((M ′)◦) = M r
⋃

∆r∆φ

D.

Since the fibers of φ are complete and connected, it follows that

k[(M ′)◦] = k[φ−1((M ′)◦)].

Considering the B-semiinvariant functions, we get then the identification of semi-
groups

Ω(M ′) = −NΣ/∆φ

where
NΣ/∆φ

= {σ ∈ NΣ : c(D,σ) = 0, ∀D ∈ ∆φ} .

Therefore M ′ is smooth if and only if the semigroup NΣ/∆φ
is free. In [Lu 01, Cor.

5.6.2] it was proved that, in case G is of type A, then such semigroup is necessarily
free; although this was claimed in general in [Lu 07], a general proof appeared only
recently in [Bra 09].

Theorem 2.4.4 ([Bra 09] Thm. 3.3.1). If H ′ ⊂ H is a sober subgroup such that
H ′/H is connected, then H ′ is wonderful.

Actually [Bra 09, Theorem 3.3.1] is a combinatorial version of previous theorem,
which deals with abstract spherical systems and which stems from their classification.

Combining together Theorem 1.6.3, Proposition 2.4.3 and Theorem 2.4.4, we get
the following theorem.
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Theorem 2.4.5. There is an inclusion-preserving bijection as follows

{
∆∗ ⊂ ∆ distinguished

}
←→

{
H ′ ⊂ G wonderful :

H ⊂ H ′ and H ′/H connected

}

Moreover, if H ′ ⊃ H is a wonderful subgroup with H ′/H connected and if ∆∗ ⊂ ∆
is the corresponding distinguished subset, then

i) the projection G/H → G/H ′ identifies ∆(G/H ′) with ∆ r ∆∗;

ii) the spherical system of the wonderful completion of G/H ′ is

S /∆∗ =
(
Σ/∆∗, Sp/∆∗,A/∆∗

)
,

defined as follows:

– Σ/∆∗ is the set of indecomposable elements of the (free) semigroup NΣ/∆∗;
– Sp/∆∗ = Sp ∪ {α ∈ S : ∆(α) ⊂ ∆∗};
– A/∆∗ = ⋃

α∈S∩Σ/∆∗ A(α), and the pairing is obtained by restriction.

In the notations of previous theorem, the wonderful completion of G/H ′ is
denoted M/∆∗ and it is called the quotient wonderful variety of M by ∆∗, while
S /∆∗ is called the quotient spherical system of S by ∆∗.

2.5 Faithful divisors
Let M be a spherically closed wonderful variety; fix a base point x0 and set H =
Stab(x0). Denote S = (Σ, Sp,A) its spherical system and denote ∆ its set of colors.
Let δ = ∑

D∈∆ n(δ,D)D ∈ N∆ be a divisor generated by global sections; define its
support

Supp∆(δ) = {D ∈ ∆ : n(δ,D) > 0}
and denote Vδ = V (ω(δ))∗.

Lemma 2.5.1. Let M be a wonderful variety and let δ ∈ N∆ be a divisor generated
by global sections; consider the associated morphism φδ : M → P(Vδ). Then the
correspondence of Theorem 2.4.5 gives an inclusion-preserving bijection as follows

{
∆∗ ⊂ ∆ distinguished :

∆∗ ∩ Supp∆(δ) = ∅

}
←→





H ′ ⊂ G wonderful :
H ⊂ H ′ ⊂ Stab(φδ(x0))
and H ′/H connected





Proof. Let H ′ ⊃ H be a wonderful subgroup with H ′/H connected and set ∆∗ ⊂ ∆
the corresponding distinguished subset. If M ′ is the wonderful completion of G/H ′,
then the projection G/H → G/H ′ extends to a morphism M → M ′ and pullback
identifies Pic(M ′) with the submodule Z[∆ r ∆∗] ⊂ Z∆ = Pic(M). Thus the map
M → P(Vδ) factors through a mapM ′ → P(Vδ) if and only if Supp∆(δ) ⊂ ∆r∆∗.

Definition 2.5.2. A divisor generated by global sections δ = ∑
n(δ,D)D ∈ N∆ is

called faithful if it satisfies the following conditions:
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(FD1) Every non-empty distinguished subset of ∆ intersects Supp∆(δ).

(FD2) If α ∈ Σ` is a loose spherical root, then n(δ,D+
α ) 6= n(δ,D−α ).

Proposition 2.5.3 ([BL 08] Prop. 2.4.3). Let M be a spherically closed wonderful
variety and let δ ∈ N∆. Then the associated morphism φδ : M → P(Vδ) restricts to
an embedding of the open orbit if and only if δ is faithful.

Proof. Fix v0 ∈ V a representative of the line φδ(x0). Recall the restriction ψ :
Pic(M)→ X (H): then v0 ∈ V (H)

ψ(δ).
Suppose that H = Stab[v0]; then (FD1) holds by Lemma 2.5.1. Suppose by

absurd that (FD2) fails and let α ∈ Σ` ⊂ S ∩ Σ be a loose spherical root such
that n(δ,D+

α ) = n(δ,D−α ). If γ(α) ∈ AutG(M) = NG(H)/H is the corresponding
automorphism, then γ(α) exchanges D+

α and D−α and fixes every other color D ∈
∆ r ∆(α): therefore γ(α) fixes δ. The action of AutG(M) on Pic(M) = Z∆ '
X (B)×X (B∩H)X (H) is defined extending by linearity the right action ofNG(H)/H on
∆, i.e. by the action of NG(H) on X (H). Therefore, if g ∈ NG(H) is a representative
of γ(α), then ψg = ψ(δ), i.e. g moves the line [v0] in a line where H acts by the
same character. By Theorem 1.1.9 such a line is unique, thus g ∈ H = Stab[v0]
which is absurd.

Suppose conversely that δ is a faithful divisor. By (FD1) together with Lemma
2.5.1 it follows that dimH = dim Stab[v0], therefore by Theorem 1.3.5 we get
H ⊂ Stab[v0] ⊂ NG(H). Suppose by absurd that there exists g ∈ Stab[v0] r H.
Then ψ(δ)g = ψ(δ) and the equivariant automorphism corresponding to the coset
gH fixes δ: therefore by (FD2) we get that every color D ∈ Supp∆(δ) is fixed by g.
On the other hand, since H is spherically closed, every element in NG(H) rH acts
non-trivially on ∆. Hence there exists α ∈ S such that g moves D ∈ ∆(α). Therefore
α ∈ Σ` ⊂ S ∩ Σ and ∆(α) = {D,D · g}: it follows n(δ,D) = n(δ,D · g) = 0, which
contradicts (FD2).

Corollary 2.5.4. LetM be a wonderful variety and let δ ∈ N∆ be a divisor generated
by global sections; suppose that every distinguished subset of ∆ intersects Supp∆(δ)
and set

Σ(δ) =
{
α ∈ Σ` : α 6∈ S or n(δ,D+

α ) = n(δ,D−α )
}
.

Consider the morphism φδ : M → P(Vδ); then the spherical system of Stab(φδ(x0))
is S ′ = (Σ′, Sp,A′), where

Σ′ =
(
Σ r Σ(δ)

) ∪ 2Σ(δ) and A′ =
⋃

α∈S∩Σ′
A(α).

Proof. Denote Γδ ⊂ AutG(M) the subgroup generated by the elements γ(σ), with
σ ∈ Σ(δ), and consider the quotient variety M/Γδ: by Remark 2.3.9 it is a wonderful
variety with spherical system S ′. Denote Hδ ⊃ H the generic stabilizer of M/Γδ:
reasoning as in the first part of the proof of Proposition 2.5.3 it follows that Hδ

fixes φδ(x0), thus M/Γδ is a spherically closed wonderful variety endowed with a
faithful divisor whose associated characters are the same of δ and the claim follows
by previous proposition.

In the hypotheses of previous corollary, the assumption that every distinguished
subset of colors intersects Supp∆(δ) (which is equivalent to assume that H and
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Stab(φδ(x0)) have the same dimension) involves no loss of generality: we can
always reduce to that case considering, instead of M , the quotient wonderful variety
M/∆(δ), where ∆(δ) ⊂ ∆ is the maximal distinguished subset which does not
intersect Supp∆(δ).

2.6 Abstract spherical systems and Luna diagrams
We give here the definition due to D. Luna of spherical system as an abstract
combinatorial object.

Definition 2.6.1. A spherical system is a triplet S = (Σ, Sp,A) where

– Σ is a subset of Σ(G) without proportional elements;

– Sp is a subset of S;

– A is a finite abstract set together with a map c : A× Σ→ Z

satisfying the following properties:

(S) Sp is compatible with all σ ∈ Σ;

(A1) For all D ∈ A and σ ∈ Σ, it holds c(D,σ) 6 1 and c(D,σ) = 1 implies
σ ∈ S ∩ Σ

(A2) For all α ∈ S ∩ Σ, the set A(α) = {D ∈ A : c(D,α) = 1} has cardinality 2,
and if A(α) = {D+

α , D
−
α }, then c(D+

α , σ) + c(D−α , σ) = 〈α∨, σ〉 for all σ ∈ Σ;

(A3) A is the union of the A(α)’s, for α ∈ S ∩ Σ;

(Σ1) If 2α ∈ Σ∩ 2S, then 〈α∨, σ〉 is a non-positive even integer for all σ ∈ Σr {2α};

(Σ1) If α+ β ∈ Σ with α, β ∈ S and α orthogonal to β, then 〈α∨, σ〉 = 〈β∨, σ〉 for
all σ ∈ Σ.

If M is a wonderful variety, then the triple SM = (ΣM , S
p
M ,AM ) of Definition

2.1.9 is a spherical system according previous definition.

Conjecture 2.6.2 ([Lu 01]). Wonderful varieties are classified by spherical systems.

While the "uniqueness part" of the conjecture has been proved by I. Losev in
[Lo 09], the "existence part" has been checked directly in many cases by P. Bravi,
S. Cupit-Foutou, D. Luna and G. Pezzini (see [Bra 07], [BC 10], [BL 08], [BPe 05],
[BPe 09], [Lu 01]) and recently a general proof which avoids a case-by-case approach
has been proposed by S. Cupit-Foutou in [Cu 09].

In the classification of spherical G-varieties, the classification of wonderful Gad-
varieties takes a prominent role: indeed the classification of the latter implies the
whole classication of spherical varieties (see [Lu 01, Theorem 3]).

A very useful tool to represent graphically a spherical system starting from the
Dynkin diagram of G are Luna diagrams, introduced by D. Luna in [Lu 01]. We
now briefly explain how to attach such a diagram to a spherical system; for further
details and examples we refer to [BL 08].

Let S = (Σ, Sp,A) be a spherical system.
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Table 2.2. Diagrams of spherical roots.

Type of σ Diagram of σ Shape of σ

AI
1

qee α1

AII
1

qe 2α1

A1 × A1
q qe e α1 + α′1

Ar, r > 2 q q q qq qq q q qe epppppppppppppppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppppppppp α1 + . . .+ αr

BI
r, r > 2 q q q qq q q qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p α1 + . . .+ αr

BII
r , r > 2 q q q qq q q qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p2 2α1 + . . .+ 2αr

BIII
3

q qq qpppppppppp pppppppppp eppp p pp p p pp p pp p p pp p pp p α1 + 2α2 + 3α3

Cr, r > 3 q qq qq qq q qppppppppppppppppppppeppp p pp p p pp p pp p p pp p pp p α1 + 2α2 + . . .+ 2αr−1 + αr

Dr, r > 3 eppp p pp p p pp p pp p p pp p pp pq q q qq q q
q

��
@@

2α1 + . . .+ 2αr−2 + αr−1 + αr

F4 q q q qq qpppppppppp pppppppppp eppp p pp p p pp p pp p p pp p pp p α1 + 2α2 + 3α3 + 2α4

GI
2

q qppppppppppppppppppppeppp p pp p p pp p pp p p pp p pp p 2α1 + α2

GII
2

q qppppppppppppppppppppeppp p pp p p pp p pp p p pp p pp p2 4α1 + 2α2

GIII
2

q qpppppppppppppppppppp eppp p pp p p pp p pp p p pp p pp pe α1 + α2

• Following Table 2.2, represent the spherical roots σ ∈ Σ on the Dynkin diagram
of G.

• Draw a white circle around the simple roots α ∈ Sb = Sr (Σ∪ 1
2Σ∪Sp) which

do not already possess a black circle around. In this way, the set Sp coincides
with the set of simple roots without any circle around, above or below.

• If α ∈ S ∩ Σ, interpret the circles drawn above and below the corresponding
vertex of the Dynkin diagram as the elements of A(α). Denote D+

α the element
corresponding to the circle above the vertex and D−α that one corresponding
to the circle below the vertex: then we may assume that c(D+

α , σ) ∈ {−1, 0, 1}
for every σ ∈ Σ. Join by a line two circles if they correspond to the same
element D ∈ A. Finally, if σ ∈ Σ is such that c(D+

α , σ) = −1 with 〈α∨, σ〉 6= 0,
draw an arrow starting from D+

α and pointing toward σ.

Once the diagram is drawn, the restricted pairing c : A×Σ→ Z can be recovered
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thanks to Axiom (A2).

Example 2.6.3. Consider the Luna diagram

q qq qq qpppppppppp ppppppppppqee qee qee qee
It represents the spherical system for the group of type Spin(9) given by S =
(S,∅,A) where A is described by following table (for simplicity we write Di instead
of Dαi).

α1 α2 α3 α4
D+

1 = D+
3 1 0 1 0

D−1 1 -1 -1 0
D+

2 = D+
4 0 1 -1 1

D−2 -1 1 0 -1
D−3 -1 -1 1 -1
D−4 0 -1 -1 1

As an example, following their combinatorial description given in Example 2.3.11,
in Table 2.3 we draw the Luna diagrams of the wonderful model varieties Mmod

G

where G is any simple group.

Table 2.3. Luna diagrams of wonderful model varieties.

Type of G Diagram of Mmod
G

Ar q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp pppppppppppppq qpppppppppppppppppppp pppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppppppppp
Spin(2r + 1) q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp pppppppppppppq qpppppppppppppppppppp pppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppppppppp q qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p e
SO(2r + 1) q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp pppppppppppppq qpppppppppppppppppppp pppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppppppppp q qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p qe

Cr q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp pppppppppppppq qpppppppppppppppppppp pppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppppppppp qpppppppppppppppppppp eppp p pp p p pp p pp p p pp p pp p
Dr

q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp pppppppppppppq qpppppppppppppppppppp pppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppppppppp q
q

��
@@
e e

q
q

��
@@
e e

E6 q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp pppppppppppppqeepppppppppppppppppppp ppppppp ppppppp pppppppppppppppppppppppppppppppppppppppppppppppp
E7 q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp pppppppppppppqeepppppppppppppppppppp ppppppp ppppppp pppppppppppppppppppppppppppppppppppppppppppppppp
E8 q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp pppppppppppppqeepppppppppppppppppppp ppppppp ppppppp pppppppppppppppppppppppppppppppppppppppppppppppp
F4 q q q qq qpppppppppp ppppppppppq qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp ep pp p pp p p pp p pp p p pp p pp p q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp
G2 q qpppppppppppppppppppp eppp p pp p p pp p pp p p pp p pp pe





Chapter 3

Spherical orbit closures in
simple projective spaces

Throughout this chapter, G will denote a simply connected semisimple algebraic
group over an algebraically closed field of characteristic zero.

3.1 The variety Xδ and its normalization X̃δ

If λ is a dominant weight, define its support as

Supp(λ) = {α ∈ S : 〈λ, α∨〉 6= 0}.

Denote by Lλ the line bundle on G/B whose T -weight in the B−-fixed point is λ:
then Γ(G/B,Lλ) ' V (λ) is an irreducible G-module of highest weight λ.

If λ, µ are dominant weights and n ∈ N, the multiplication of sections defines
maps as follows:

mλ,µ : V (λ)× V (µ)→ V (λ+ µ) and mn
λ : V (λ)→ V (nλ).

We will denote mλ,µ(v, w) by vw and mn
λ(v) by vn. Since G/B is irreducible, mλ,µ

and mn
λ induce the following maps at the level of projective spaces:

ψλ,µ : P(V (λ))× P(V (µ))→ P(V (λ+ µ)) and ψnλ : P(V (λ))→ P(V (nλ)).

Lemma 3.1.1 ([BGMR 10] Lemma 1). Let λ, µ be dominant weights.

i) If Supp(λ) ∩ Supp(µ) = ∅, then the map

ψλ,µ : P(V (λ))× P(V (µ))→ P(V (λ+ µ))

is a closed embedding.

ii) For any n > 0, the map ψnλ : P(V (λ))→ P(V (nλ)) is a closed embedding.

Let M be a wonderful variety with base point x0 and set H = Stab(x0); set
S = (Σ, Sp,A) its spherical system and ∆ = ∆(G/H) its set of colors. Recall the
restrictions ω : Pic(M) → X (B) and ψ : Pic(M) → X (H). If δ ∈ N∆ is a divisor
generated by global sections, denote Vδ = V (ω(δ))∗ and let vδ ∈ (Vδ)(H)

ψ(δ). Define

39
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Xδ = G[vδ] ⊂ P(Vδ): equivalently, Xδ = φδ(M) is the image of M via the morphism
associated to δ.

Let ∆2 = {D1, . . . , Dm} ⊂ ∆ be a subset such that ∆(α) 6⊂ ∆2 for all α ∈ S ∩Σ.
Recall the restriction to the open orbit ψ : Pic(M)→ X (H) and set χi = ψ(Di) ∈
X (H). Fix vectors vi ∈ (VDi)

(H)
χi (uniquely defined up to a scalar factor) and define

X∆2 = G([v1], . . . , [vm]) ⊂ P(VD1)× . . .× P(VDm).

Thanks to the assumtion on ∆2, by Theorem 2.2.3 together with Lemma 3.1.1
we get an embedding

X∆2 ⊂ P(VD1)× . . .× P(VDm) ↪→ P(VD1+...+Dm).

Denote χ = χ1 + . . .+ χm = ψ(D1 + . . .+Dm). Since v1 · · · vm ∈ (VD1+...+Dm)(H)
χ

and since such a line is unique, it follows that the image of the base point of X∆2 is
the base point of XD1+...+Dm . Thus the embedding above induces an isomorphism
of G-varieties

X∆2 ' XD1+...+Dm .

Similarly, Lemma 3.1.1 shows that for every n ∈ N and D ∈ ∆ there is an
isomorphism of G-varieties XnD ' XD. Combinining these remarks together we get
the following lemma.

Lemma 3.1.2. Let δ ∈ N∆ and suppose that ∆(α) 6⊂ Supp∆(δ) for every α ∈ S∩Σ.
Then Xδ ' XSupp∆(δ).

Proposition 3.1.3. Suppose that M is a strict wonderful variety and let δ, δ′ ∈ N∆.
Then there exists a G-equivariant morphism Xδ → Xδ′ if and only if Supp∆(δ′) ⊂
Supp∆(δ). In particular Xδ and Xδ′ are G-equivariantly isomorphic if and only if
Supp∆(δ) = Supp∆(δ′).

Proof. Since a strict wonderful variety has no simple spherical roots, by previous
lemma it follows Xδ ' XSupp∆(δ) and Xδ′ ' XSupp∆(δ′).

By Theorem 2.2.3 the restriction to the closed orbit ω : Pic(M) → X (B) is
injective. In particular by Theorem 2.2.1 this implies that H fixes at most one line
in any simple G-module.

Suppose that Supp∆(δ′) ⊂ Supp∆(δ) and consider the projection
∏

D∈Supp∆(δ)
P(VD) −→

∏

D∈Supp∆(δ′)
P(VD) :

since every P(VD) contain a unique H-fixed point, it follows that the image of the
base point of Xδ is the base point of Xδ′ : thus the restriction to Xδ induces a
G-equivariant morphism Xδ → Xδ′ .

Suppose conversely that Xδ dominates Xδ′ and write δ = ∑
∆ n(δ,D)D and

δ′ = ∑
∆ n(δ′, D)D. Notice that, if H ′ ⊃ H is a wonderful subgroup of G and if Σ′

is the associated set of spherical roots, then

−Σ′ ⊂ V∨G/H′ ∩ ΛG/H′ ⊂ V∨G/H ∩ ΛG/H = −NΣ :

since Σ ∩ S = ∅, Theorem 1.3.1 shows then Σ′ ∩ S = ∅ as well.
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Denote Hδ = Stab(φδ(x0)) and Hδ′ = Stab(φδ′(x0)) the stabilizers of the base
points of Xδ and of X ′δ and consider the projections

G/H −→ G/Hδ −→ G/Hδ′ .

Denote ∆(δ) ⊂ ∆(δ′) the sets of colors of G/H which map dominantly on X∆
and on Xδ′ respectively. Consider the subgroups H∗δ ⊂ Hδ and H∗δ′ ⊂ Hδ′ associated
as in Theorem 2.4.5 to the distinguished subsets ∆(δ) and ∆(δ′): previous remark
together with Corollary 2.5.4 shows then that Hδ is the spherical closure of H∗δ and
Hδ′ is the spherical closure of H∗δ′ . Therefore we may identify the respective sets of
colors and combining with Theorem 2.4.5 we get the following identifications:

∆(Xδ) = ∆(G/Hδ) = ∆(G/H∗δ ) = ∆(G/H) r ∆(δ),
∆(Xδ′) = ∆(G/Hδ′) = ∆(G/H∗δ′) = ∆(G/H) r ∆(δ′).

Under the above identifications, Theorem 1.4.9 shows that

∆Y (Xδ) ∩∆(Xδ′) ⊂ ∆Y ′(Xδ′).

Following, Section 2.2, we may write

fδ =
∏

D∈∆(G/Hδ)
f
n(δ,D)
D and fδ′ =

∏

D∈∆(G/Hδ′ )
f
n(δ,D)
D .

If Y ⊂ Xδ and Y ′ ⊂ Xδ′ are the closed orbits, Theorem 1.2.2 shows then the
identifications

Supp∆(δ) = ∆(Xδ) r ∆Y (Xδ) and Supp∆(δ′) = ∆(Xδ′) r ∆Y ′(Xδ′).

Combining all previous identifications in ∆ it follows

Supp∆(δ′) = ∆(Xδ′) r ∆Y ′(Xδ′) ⊂ ∆(Xδ) r ∆Y (Xδ) = Supp∆(δ).

As will be shown by Corollary 3.4.4, previous proposition is false if M is not
strict.

From now on we will assume that M is spherically closed and that δ ∈ N∆ is
a faithful divisor. Set p : X̃δ → Xδ the normalization, which is bijective on the
G-orbits by Proposition 1.5.1, and consider the commutative diagram

M

φδ &&MMMMMMMMMMMMM
φ̃δ // X̃δ

p

��
Xδ ⊂ P(Vδ)

Consider the ring
Ã(δ) =

⊕

n∈N
Γ(M,O(nδ))

and consider its subring A(δ) ⊂ Ã(δ) generated by V ∗δ : then A(δ) is the projective
coordinate ring of Xδ. Since φδ is birational and since it factors through Proj Ã(δ), it
follows that Proj Ã(δ) and Xδ are birational. Moreover, sinceM is smooth, Proj Ã(δ)
is a normal variety, while following proposition shows that Ã(δ) is integral over A(δ):
therefore Ã(δ) is the projective coordinate ring of X̃δ.
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Proposition 3.1.4 ([CCM 06], Prop. 2.1). Let δ ∈ N∆. Then Ã(δ) is integral over
A(δ).

Proof. Let S(O(δ)) be the symmetric algebra sheaf constructed over O(δ) and let
L = SpecS(O(δ)) be the total space of O(−δ). Denote by L the total space of the
tautological bundle on P(Vδ): by construction, we have a pullback diagram as follows

L

��

i // L

��
Xδ i

// P(Vδ)

where i is the natural inclusion. By definition, Ã(δ) = Γ(L,OL) = Γ(L, i∗OL)
and the image of the natural morphism Γ(L,OL) → Γ(L, i∗OL) is the subring
A(δ). Since i is projective, i∗OL is a coherent sheaf on L: therefore Ã(δ) is a finite
Γ(L,OL)-module, or equivalently a finite A(δ)-module.

If Z ⊂ Xδ is an orbit, set Z ′ = p−1(Z) ⊂ X̃δ the corresponding orbit. Denote
ZB ⊂ Z and Z ′B ⊂ Z ′ the B-open orbits and fix base points z0 ∈ ZB and z′0 ∈ Z ′B
so that we have isomorphisms

Z ′ ' G/K ′, Z ' G/K

with K ′ ⊂ K a subgroup of finite index. Denote Y ⊂ Xδ the closed orbit. Since
parabolic subgroups are self-normalizing, Y and p−1(Y ) are isomorphic; from now
on we will denote both of them with the same letter Y .

Write δ = ∑
∆ n(D, δ)D. If η ∈ (V ∗δ )(B) and if v0 ∈ V (H)

δ is such that [v0] =
φδ(x0), set fδ(g) = 〈η, gv0〉 ∈ k[G](B×H); up to a scalar factor, it holds the equality

fδ =
∏

D∈∆
f
n(δ,D)
D .

Then by Proposition 1.5.2 and Theorem 1.2.2 we get

∆Y (Xδ) = ∆Y (X̃δ) = ∆ r Supp∆(δ).

Since X̃δ is complete, by Theorem 1.4.9 the cone C(X̃δ) contains the G-invariant
valuation cone VG/H : therefore C(Xδ) = C(X̃δ) is the cone generated by VG/H
together with ρ(∆ r Supp∆(δ)).

3.2 Orbits in Xδ and in X̃δ

If W ⊂ M is an orbit, in the following δW ∈ Pic(W ) will denote the pullback of
δ ∈ Pic(M). Notice that if α ∈ S then

Supp∆(δ) ∩∆(α) 6= ∅ ⇐⇒ α 6∈ SpY
⇐⇒ Supp∆(W )(δW ) ∩∆(W )(α) 6= ∅ ∀W ⊂M

where SpY denotes the set of simple roots associated to the closed orbit Y ⊂ Xδ.
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Proposition 3.2.1. Let G/K ' Z ⊂ Xδ be an orbit and let G/K ′ ' Z ′ = p−1(Z);
let G/KW ' W ⊂ M be any orbit which maps on Z and choose the stabilizers so
that KW ⊂ K ′ ⊂ K. Then K ′ is the maximal subgroup such that

KW ⊂ K ′ ⊂ K and K ′/KW is connected.

In particular, Z ' Z ′ if and only if K/KW is connected.

Proof. Set K∗ = KWK
◦ the maximal subgroup of K containing KW such that

K∗/KW is connected. Since KW ⊂ K ′ and since K◦ = (K ′)◦, by Theorem 1.3.5 iii)
we get that K∗ ⊂ K ′ is a normal subgroup; thus by Lemma 1.5.8 it follows that
K∗ = K ′ if and only if ΛG/K∗ = ΛZ′ .

Consider the inclusions ΛZ ⊂ ΛZ′ ⊂ ΛW ⊂ ΛG/H : since ΛW is saturated in
ΛG/H , Proposition 1.5.9 shows that ΛZ′ is the saturation of ΛZ in ΛW . On the
other hand, by Theorem 1.6.3 it follows that ΛG/K∗ is saturated in ΛW : since
[ΛG/K∗ : ΛZ ] = [K : K∗] <∞, we get the equality ΛG/K∗ = ΛZ′ .

Combining previous proposition together with Theorem 2.4.4 and Corollary 2.5.4
we get the following corollary.

Corollary 3.2.2. Let G/K ' Z ⊂ Xδ be an orbit and let p−1(Z) ' G/K ′ with
K ′ ⊂ K. Then K ′ is a wonderful subgroup and the the associated wonderful variety
is the quotient wonderful variety W/∆(δW ), where ∆(δW ) ⊂ ∆(W ) is the maximal
distinguished subset not intersecting Supp∆(W )(δW ). If moreover M is strict, then
K is the spherical closure of K ′.

If Z ⊂ Xδ is an orbit and if Z ′ ⊂ X̃δ is the corresponding orbit, denote
ΣZ ,ΣZ′ ⊂ NΣ the sets of spherical roots of the respective wonderful completions.
By Corollary 2.5.4 there exists a bijection between ΣZ and ΣZ′ , which associates to
γ ∈ ΣZ the unique γ′ ∈ ΣZ′ which is proportional to γ: more precisely, if γ 6= γ′,
then γ = 2γ′.

Consider a spherical root σ ∈ Σ(G) such that 2σ ∈ Σ(G): following Table 2.1,
such a root either is a simple root, or it is of type BI

r or it is of type GI
2. If Z ⊂ Xδ is

any orbit and if Z ′ ⊂ X̃δ is the corresponding orbit, define Σ(δZ′) ⊂ ΣZ′ to be the
subset of spherical roots which have to be doubled to get the spherical roots of Z.

Lemma 3.2.3. An orbit Z ⊂ Xδ is not isomorphic to its corresponding orbit Z ′ ⊂ X̃δ

if and only if Z possesses a spherical root γ of the shape γ = 2σ1 + . . .+ 2σk, where
σ1, . . . , σk ∈ Σ are pairwise distinct elements (and where γ′ = σ1 + . . .+ σk ∈ ΣZ′).

Proof. By Corollary 2.5.4, Z and Z ′ are not isomorphic if and only if Σ(δZ′) 6= ∅;
suppose γ′ ∈ Σ(δZ′). By Proposition 3.2.1 the wonderful completion of Z ′ is the
quotient of a wonderful subvariety M ′ ⊂M . If Σ′ is the set of spherical roots of M ′,
we can write γ′ = a1σ1 + . . .+ akσk with σ1, . . . , σk ∈ Σ′.

Since 2γ′ ∈ Σ(G), by the discussion preceeding the lemma γ′ is either a simple
root, or it is of type BI

r or it is of type GI
2. If γ′ is a simple root or if it is of

type BI
r then it follows immediately that every ai is equal to one. Suppose instead

that γ′ is of type GI
2; in order to show the thesis it is enough to consider the case

where M ′ is a wonderful variety whose spherical roots are all supported on a subset
S′ = {α1, α2} ⊂ S of type G2. An easy computation shows that, if Σ′ = S′ and
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if ∆∗ is any distinguished subset of colors of M ′, then the quotient M ′/∆∗ never
possesses 2α1 + α2 as a spherical root. Therefore, if γ′ = 2α1 + α2, it must be either
Σ′ = {2α1 + α2} or Σ′ = {α1, α1 + α2} and the claim follows.

As exemplified in the following sections (Example 3.3.5 and Example 3.4.2),
Proposition 3.2.1 together with Corollary 2.5.4 allow to compute explicitly the set
of orbits of Xδ and that of X̃δ in terms of their spherical systems. This is further
simplified by the following proposition, which shows that, given an orbit Z ⊂ Xδ,
there exists a minimal orbit WZ ⊂M mapping on Z. If γ = ∑

σ∈Σ nσσ ∈ ΣZ , define

SuppΣ(γ) = {σ ∈ Σ : nσ 6= 0}

its support over Σ; define

Σ(Z) =
⋃

γ∈ΣZ
SuppΣ(γ).

Proposition 3.2.4. Let Z ⊂ Xδ be an orbit and let WZ ⊂ M the orbit whose
closure has Σ(Z) as set of spherical roots. Then WZ maps on Z and and every other
orbit which maps on Z contains WZ in its closure.

Proof. Let W ⊂M be an orbit mapping on Z and let ΣW ⊂ Σ be the associated set
of spherical roots. Since φδ(W ) = Z, we get ΣZ ⊂ NΣW : this shows Σ(Z) ⊂ ΣW ,
i.e. WZ ⊂W . In order to prove the equality φδ(WZ) = Z, notice that

Λφδ(WZ) = ΛWZ
∩ ΛZ = ΛZ :

since φδ(WZ) ⊂ Z by the first part of the proof, this implies the claim.

Unlike the symmetric case (see [Maf 09]), in the general spherical case there
does not need to exist a maximal orbit in M mapping on a fixed orbit Z ⊂ Xδ: for
instance this is shown by Example 3.3.5 and by Example 3.4.2.

Since Σ(Z) depends only on ΣZ (or equivalently on ΣZ′), we get the following
corollaries.

Corollary 3.2.5. Two orbits W1,W2 ⊂M map to the same orbit in Xδ if and only
if

ΣW1
/

∆(δW1) = ΣW2
/

∆(δW2),

where δWi is the pullback of δ to Wi and where ∆(δWi) is the maximal distinguished
subset of colors of Wi not intersecting the support of δWi.

Corollary 3.2.6. Two orbits in Xδ (resp. in X̃δ) have different sets of spherical
roots; in particular two orbits in Xδ (resp. in X̃δ) are never isomorphic.

If S ∩ Σ = ∅, Corollary 2.2.4 shows that the restriction map to the closed orbit
ω : Pic(M) → X (B) is injective: this means that the generic stabilizer H never
fixes two different lines in the same simple module. However, if S ∩ Σ 6= ∅, it could
happen that a simple module P(V ) contains two different orbits both isomorphic to
the open orbit G/H: previous corollary shows then that there does not exist any
spherical orbit in P(V ) containing both of them in its closure. For instance, this
occurs in the following example.
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Example 3.2.7. ConsiderM = P1×P1, which is a wonderful variety for G = SL(2),
and fix the base point ([1, 0], [0, 1]) so that the generic stabilizer is the maximal torus
T of diagonal matrices. Consider the simple module V = k[x, y]5 formed by the
homogeneous polynomials of degree 5: then G[x4y] and G[x3y2] are distinct orbits
in P(V ) both isomorphic to the open orbit G/T .

3.3 Bijectivity in the strict case
Suppose that M is strict. The following is a stronger version of Lemma 3.2.3.
Lemma 3.3.1. Let M be a strict wonderful variety and let δ be a faithful divisor
on it. Let Z ⊂ Xδ be an orbit, then Z 6' Z ′ if and only if there exists a spherical
root γ ∈ ΣZ of type BII

r and a spherical root σ ∈ SuppΣ(γ) of type BI
2.

Proof. By Lemma 3.2.3, we may assume that Z ′ possesses a spherical root γ of
type BI

r or of type GI
2. Since S ∩ Σ = ∅, it is uniquely determined a spherical root

σ ∈ SuppΣ(γ) which is of type BI
s (with 2 6 s 6 r) in the first case and of type GI

2
in the second case. Since M is strict, by Remark 2.3.10 the latter cannot happen;
thus we are in the first case.

Suppose that s > 2 and 2γ ∈ ΣZ ; let β ∈ S be the short root in the support
of σ. Since M is strict, Remark 2.3.10 shows that β moves a color Dβ ∈ ∆, while
s > 2 implies c(Dβ, τ) > 0 for every τ ∈ Σ: therefore {Dβ} is distinguished and by
the faithfulness of δ we get Dβ ∈ Supp∆(δ), which implies β 6∈ SpY . But this is a
contradiction since 2γ ∈ ΣZ implies β ∈ SpZ ⊂ S

p
Y .

If σ ∈ Σ is a spherical root of type BI
2, write σ = α]σ + α[σ, where α]σ, α[σ ∈ S

are respectively the long simple root and the short simple root in the support of σ.
Since M is strict, Remark 2.3.10 shows that both α]σ and α[σ move exactly one color;
set ∆(α]σ) = {D](σ)} and ∆(α[σ) = {D[(σ)}.
Lemma 3.3.2. Let M be a strict wonderful variety and let δ be a faithful divisor
on it; let σ ∈ Σ be a spherical root of type BI

2.
i) If D[(σ) ∈ Supp∆(δ), then no orbit Z ⊂ Xδ possesses a spherical root γ ∈ ΣZ

of type BII
r with σ ∈ SuppΣ(γ).

ii) If Supp∆(δ) ∩ {D](σ), D[(σ)} = {D](σ)}, then there exists an orbit Z ⊂ Xδ

such that 2σ ∈ ΣZ ; in particular Z 6' Z ′ and the normalization p : X̃δ → Xδ

is not bijective.
Proof. i). If Z ⊂ Xδ possesses a spherical root γ of type BII

r supported on σ, then
α[σ ∈ SpZ ⊂ SpY . But this is a contradiction since following the remark at the
beginning of Section 3.2 D[(σ) ∈ Supp∆(δ) implies α[σ 6∈ SpY .

ii). Consider the rank one orbit W ⊂ M whose unique spherical root is σ. If
∆(W )(α[σ) = {′D[(σ)} and ∆(W )(α]σ) = {′D](σ)}, by Remark 2.2.5 we get

Supp∆(W )(δW ) ∩ {′D](σ), ′D[(σ)} = {′D](σ)}.

Set Z = φδ(W ) and Z ′ = p−1(Z); set ∆(δW ) ⊂ ∆(W ) the maximal distinguished
subset not intersecting the support of δW . Since c(′D[(σ), σ) = 0 and since ′D](σ) is
the unique color D ∈ ∆(W ) such that c(D,σ) > 0, we get

′D[(σ) ∈ ∆(δW ) = {D ∈ ∆(W ) : c(D,σ) = 0}r Supp∆(W )(δW ).
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By Corollary 3.2.2, this shows ΣZ′ = {σ}. On the other hand ∆(Z ′)(α[σ) = ∅, thus
σ ∈ ΣZ is a loose spherical root and by Remark 2.3.10 it follows that Z ′ is not
spherically closed, which implies the claim by Proposition 2.3.3.

Corollary 3.3.3. i) If M is a wonderful adjoint symmetric variety and if δ is a
faithful divisor on it, then the normalization p : X̃δ → Xδ is bijective.

ii) Suppose that the Dynkin diagram of G is simply laced. If M is any strict
wonderful variety for G and if δ ∈ Pic(M) is any faithful divisor, then the
normalization p : X̃δ → Xδ is bijective.

iii) If D[(σ) ∈ Supp∆(δ) for every σ ∈ Σ of type BI
2, then the normalization

morphism p : X̃δ → Xδ is bijective.

Proof. By the classification of symmetric varieties (see for instance [Ti 06, Table 5.2]),
we deduce that a wonderful adjoint symmetric variety never possesses a spherical
root of type BI

2. Since such varieties are strict (see Example 2.1.5), all of the claims
above follow by previous lemmas.

Another proof of Corollary 3.3.3 i) was given in [Maf 09]. Following examples
show some cases wherein the conditions of Lemma 3.3.1 are fulfilled:

Example 3.3.4. Consider the wonderful model variety M of Spin(7), whose spheri-
cal system is expressed by the Luna diagram

q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p e
Then the divisor δ = Dα2 is faithful. Consider the codimension one orbit W ⊂M
having spherical root α2 + α3; following Proposition 3.2.1 and Corollary 2.5.4, we
get the following sequence of Luna diagrams

q qe q qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p e φ̃δ q qe q qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p p q qe q qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p2
where the first one represents the orbit W ⊂M , the second one represents the orbit
φ̃δ(W ) ⊂ X̃δ and the third one represents the orbit φδ(W ) ⊂ Xδ.

Example 3.3.5. Consider the wonderful model varietyM of SO(11), whose spherical
system is expressed by the Luna diagram

q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p qe
Then the divisor δ = Dα2 is faithful. See Table 1 for a full list of the orbits in Xδ

and in X̃δ (for simplicity, in the table orbits in M are described by giving a subset
of its spherical root index set).

As illustrated above, examples of strict wonderful varieties possessing a faithful
divisor δ such that the normalization p : X̃δ → Xδ is not bijective arise from the
context of wonderful model varieties (see Example 2.3.11). As will be shown in the
following, the case of a general strict wonderful variety substantially follows from
this special case.
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Table 3.1. Example 3.3.5 , δ = Dα2 .

Maximal Minimal Orbit in X̃δ Orbit in Xδ Σ(δZ′)Orbits Orbit

q qq qq qq qpppppppppp ppppppppppq qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp ep pp p pp p p pp p pp p p pp p pp p qe q qq qq qq qpppppppppp ppppppppppq qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp ep pp p pp p p pp p pp p p pp p pp p qe{1, 2, 3, 4, 5} {1, 2, 3, 4, 5} ∅

q qq qq qq qpppppppppp ppppppppppq qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp ep pp p pp p p pp p pp p p pp p pp p e q qq qq qq qpppppppppp ppppppppppq qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp ep pp p pp p p pp p pp p p pp p pp p e{1, 2, 3, 4} {1, 2, 3, 4} ∅

q qq qq qq qpppppppppp ppppppppppq qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp ep pp p pp p p pp p pp p p pp p pp p q qq qq qq qpppppppppp ppppppppppq qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp ep pp p pp p p pp p pp p p pp p pp p2{1, 2, 4, 5} {1, 2, 4} {α4 + α5}

q qq qq qq qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p e q qq qq qq qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p e{1, 2, 3, 5} {1, 2} ∅

q qq qq qq qpppppppppp ppppppppppe eppp p pp p p pp p pp p p pp p pp p q qq qq qq qpppppppppp ppppppppppe eppp p pp p p pp p pp p p pp p pp p2{2, 3, 4, 5} {2, 4}
{∑5

i=2 αi
}

∅ q qq qq qq qpppppppppp ppppppppppe q qq qq qq qpppppppppp ppppppppppe ∅{1, 3, 4, 5}
{2, 3, 5}

Consider a strict wonderful variety M and let δ be a faithful divisor on it. Let
σ ∈ Σ be a spherical root of type BI

2 and set Γ(σ) the connected component of the
Dynkin diagram of G where σ is supported. If Γ(σ) is of type B or C, number the
simple roots in Γ(σ) which are not in Sp starting from the extreme of the diagram
which contains the double link.

If {D[
σ, D

]
σ} contains a distinguished subset, then by Lemma 3.3.2 we get that

there is no orbit Z ⊂ Xδ possessing a spherical root γ of type BII
r with σ ∈ SuppΣ(γ)

if and only if D[
σ ∈ Supp∆(δ). For instance, this is the case if one of the following

conditions is fulfilled:
- Γ(σ) is of type B or C and σ is the unique spherical root supported on α2;

- Γ(σ) is of type C and 2α2 ∈ Σ.
Suppose that {D[

σ, D
]
σ} does not contain any distinguished subset. If Γ(σ) 6= F4,

then there exists τ ∈ Σ supported on α2 different both from σ and from 2α2; by a
case-by-case check, it turns out that either τ has support of type A2 or Γ(σ) is of
type C and τ has support of type A1 × A1. Thus the Luna diagram of M in Γ(σ)
has one of the following shapes:

(B1) q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp pppppppppppppq qpppppppppppppppppppp pppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppppppppp q qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p qe
(B2) q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp pppppppppppppq qpppppppppppppppppppp pppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qpppppppppp ppppppppppeppp p pp p p pp p pp p p pp p pp p e
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(C1) q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp pppppppppppppq qpppppppppppppppppppp pppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp qpppppppppppppppppppp eppp p pp p p pp p pp p p pp p pp p
(C2) e eq q q qq qe epppppppppppppppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppp ppppppppppppp qpppppppppppppppppppp eppp p pp p p pp p pp p p pp p pp p
(F1) q q q qq qpppppppppp ppppppppppq qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp q qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp pppppppppppppep pp p pp p p pp p pp p p pp p pp p
(F2) q q q qq qpppppppppp ppppppppppe e e eeppp p pp p p pp p pp p p pp p pp p
(F3) q q q qq qpppppppppp ppppppppppq qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp ep pp p pp p p pp p pp p p pp p pp p qe e

Suppose that we are not in case C2 and that Γ(σ) 6= F4: then we are substantially
reduced to the case of a wonderful model variety. Let m(σ) > 3 be the first
integer such that the simple root αm(σ) occurs in the support of one and only one
spherical root with support of type A2. For 1 6 k 6 m(σ), set ∆(αk) = {Dk}. Set
∆(σ) = {D1, . . . , Dm(σ)} and define ∆(σ)even,∆(σ)odd ⊂ ∆(σ) as the subsets whose
element index is respectively even and odd.

Lemma 3.3.6. Let M be a strict wonderful variety possessing a spherical root σ of
type BI

2 such that the Luna diagram of M in Γ(σ) is of type B1 and let δ be a faithful
divisor on M . Then there does not exist any orbit Z ⊂ Xδ possessing a spherical
root γ of type BII

r with σ ∈ SuppΣ(γ) if and only if D1 ∈ Supp∆(δ) or the following
conditions are both fulfilled:

i) Supp∆(δ) ∩∆(σ)even = ∅;

ii) If M possesses a spherical root supported on αm(σ)+1, then m(σ) is odd.

Proof. By Lemma 3.3.2 we may assume that Supp∆(δ) ∩ {D1, D2} = ∅. Notice
that ∆(σ) r {Dm(σ)} is distinguished and that conversely any distinguished subset
which intersects ∆(σ) contains ∆(σ) r {Dm(σ)}. Number the m(σ) spherical roots
supported on {α1, . . . , αm(σ)} from the right to the left: set σ1 = 2α1 and, if
2 6 i 6 m(σ), set σi = αi−1 + αi.

If W ⊂ M is an orbit, denote Σ′ ⊂ Σ its set of spherical roots and ∆′ its set
of colors; for 1 6 i 6 m(σ) set ∆′(αi) = {D′i} and set ∆′(σ) = {D′1, . . . , D′m(σ)}.
Denote q : Pic(M)→ Pic(W ) the pullback map and notice that q induces a bijection
between ∆(σ) and ∆′(σ): indeed following Remark 2.2.5 we get q(Di) = D′i for every
1 < i 6 m(σ), while

q(D1) =
{
D′1 if 2α1 ∈ Σ′
2D′1 if 2α1 6∈ Σ′ :

therefore, if i 6 m(σ), δ is supported on Di if and only if δW = q(δ) is supported on
D′i.

(=⇒) Consider the codimension one orbit W whose set of spherical roots is
Σ′ = Σ r {σ3}; set Z = φδ(W ) and Z ′ = p−1(Z). Denote ∆∗ ⊂ ∆′ the maximal
distinguished subset of colors which does not intersect the support of δW ; since
D′1 6∈ Supp∆′(δW ) and since it is non-negative against any spherical root, we get
D′1 ∈ ∆∗.
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Suppose that i) or ii) fails. Notice that, in order to show that Z 6' Z ′, it is enough
to show that D′2 6∈ ∆∗. Indeed, on one hand by Proposition 3.2.1 together with
Lemma 2.5.1 this implies σ ∈ ΛZ′ : in fact c(D′, σ) = 0 for every D′ ∈ ∆′r {D′2, D′3}
and D′2 6∈ ∆∗ implies D′3 6∈ ∆∗. On the other hand, since D′1 ∈ ∆∗, we get
∆(Z ′)(α1) = ∆(Z)(α1) = ∅: since Z is spherically closed, by Remark 2.3.10 this
implies that σ 6∈ ΛZ . Therefore, if D′2 6∈ ∆∗, then we get σ ∈ ΛZ′ rΛZ and 2σ ∈ ΣZ

and Z 6' Z ′.
Suppose first that i) fails and that D′2 ∈ ∆∗. Then it must be either ∆′(σ)even ⊂

∆∗ or ∆′(σ) r {D′m(σ)} ⊂ ∆∗: this follows by considering the conditions defining
a distinguished subset only for σ1, σ2, σ4, . . . , σm(σ) and noticing that the minimal
subsets with this property which contain D′2 are {D′1} ∪∆′(σ)even and, in case m(σ)
is even, ∆′(σ) r {D′m(σ)}. Since we are supposing that i) fails, the first case is
not possible, while the second case is not possible because δ is faithful: therefore
D′2 ∈ ∆∗ and Z 6' Z ′.

Suppose now that ii) fails and that D′2 ∈ ∆∗: thus m(σ) is even and there exists
a spherical root σ′ supported on αm(σ)+1. Set m1 := m(σ) and notice that σ′ has
necessarily support of type A. Set m2 > m1 +1 the first integer such that αm2 occurs
in the support of exactly one spherical root with support of type A and, proceeding
similarly, define a sequence

m1 < m2 < . . . < mk

until no spherical root is supported on αmk+1. If 1 6 j 6 mk, set ∆(αj) = {Dj}
and ∆′(αj) = {D′j}; if 1 6 i 6 k, set

∆i =
mi⋃

t=mi−1+1
∆(αt), ∆′i =

mi⋃

t=mi−1+1
∆′(αt)

(where m0 := 0). Set moreover ∆even
i ⊂ ∆i and (∆′i)even ⊂ ∆′i the subsets whose

element index t is even. Define k0 ∈ {1, . . . , k} the first integer such that mk0 is
odd or define k0 = k otherwise. Then it is easy to show that D′2 ∈ ∆∗ if and only
if ∆∗ ∩ ∆′i = (∆′i)even for every i 6 k0, which is impossible by following remark.
Indeed notice that ∆even

k0
⊂ ∆ is distinguished, therefore since δ is faithful, it must

be Supp∆(δ) ∩∆even
k0
6= ∅, which implies Supp∆(W )(δW ) ∩ (∆′)even

k0
6= ∅. Therefore

if ii) fails it must be D′2 6∈ ∆∗ and we get Z 6' Z ′.
(⇐=) Set M ′ ⊂M the G-stable prime divisor associated to the spherical root σ1

and set W ⊂M ′ the open orbit. If Z ⊂ Xδ is an orbit possessing a spherical root γ
of type BII

r with σ ∈ SuppΣ(γ), then

σ1 6∈ Σ(Z) =
⋃

γ∈ΣZ
SuppΣ(γ) :

in fact no spherical root supported on α1 is compatible with γ. Therefore by
Proposition 3.2.4 such an orbit is necessarily contained in φδ(M ′) and, in order to
prove the claim, it is enough to show that it is true for any orbit which is contained
in φδ(M ′). Set ∆∗ ⊂ ∆′ the maximal distinguished subset which does not intersect
Supp∆(W )(δW ).

Suppose that both i) and ii) hold. Then ∆′(σ)even is distinguished and by i) it
follows that ∆′(σ)even ⊂ ∆∗. Notice that ∆∗ ∩∆′(σ)odd = ∅: indeed otherwise it
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should be ∆′(σ) r {D′1, D′m(σ)} ⊂ ∆∗, which contradicts the faithfulness of δ since
∆(σ) r {Dm(σ)} ⊂ ∆ is distinguished and D1 6∈ Supp∆(δ) by assumption.

Therefore ∆∗ ∩ ∆′(σ) = ∆′(σ)even and we get σ 6∈ Σ(φδ(W )): indeed, since
D′3 6∈ ∆∗, it follows that α3 6∈ Spφδ(W ), therefore a spherical root γ ∈ Σφδ(W ) with
support of type Br is necessarily a multiple of σ, and this cannot happen since
c(D′2, σ) = 1. To conclude, it is enough to notice that, if Z ⊂ φδ(M ′) is any orbit,
then Σ(Z) ⊂ Σ(φδ(W )).

Corollary 3.3.7. Let M be a strict wonderful variety possessing a spherical root
σ of type BI

2 such that the Luna diagram of M in Γ(σ) is of type B2 and let δ be
a faithful divisor on M . Then there does not exist any orbit Z ⊂ Xδ possessing a
spherical root γ of type BII

r with σ ∈ SuppΣ(γ) if and only if D1 ∈ Supp∆(δ).

Proof. Let M ′ be the wonderful variety whose spherical system is the same one of
M with one further spherical root 2α1: then M is identified with a G-stable prime
divisor of M ′ and the Luna diagram of M ′ in Γ(σ) is of the type considered in
previous lemma. Denote Σ′ and ∆′ respectively the set of spherical roots and the
set of colors of M ′; observe that the pullback map q : Pic(M ′)→ Pic(M) induces
an isomorphism between the sublattices generated by ∆ r {Dα1} and ∆′ r {D′α1}.
If D1 ∈ Supp∆(δ) then the claim follows by Lemma 3.3.2; thus we may assume
D1 6∈ Supp∆(δ) and we may identify δ with a divisor δ′ on M ′ which is still faithful.

If Z ⊂ φδ′(M ′) is an orbit possessing a spherical root γ of type BII
r with σ ∈

SuppΣ(γ), then 2α1 6∈ Σ′(Z) and by Proposition 3.2.4 we get Z ⊂ Xδ = φδ′(M):
therefore such an orbit exists in Xδ if and only if it exists in φδ′(M ′) and we can
apply previous lemma. In order to get the claim it is enough to notice that if
condition ii) of Lemma 3.3.6 holds, then (in the notations of that lemma) ∆(σ)even =
q(∆′(σ)even) ⊂ ∆ is distinguished: thus Supp∆(δ) ∩∆(σ)even 6= ∅ and consequently
i) fails.

If they are defined, set

eσ(δ) = min{k 6 m(σ) : Dk ∈ Supp∆(δ) ∩∆(σ)even},

oσ(δ) = min{k 6 m(σ) : Dk ∈ Supp∆(δ) ∩∆(σ)odd}
or set eσ(δ) = +∞ (resp. oσ(δ) = +∞) otherwise.

Lemma 3.3.8. Let M be a strict wonderful variety possessing a spherical root σ
of type BI

2 such that the Luna diagram of M in Γ(σ) is of type C1 and let δ be a
faithful divisor on M . Then there does not exist any orbit Z ⊂ Xδ possessing 2σ as
a spherical root if and only if oσ(δ) > eσ(δ)− 1.

Proof. Notice that if m(σ) is even then ∆(σ)odd is distinguished, while if m(σ) is odd
then ∆(σ)even is distinguished: thus at least one between eσ(δ) and oσ(δ) is finite.
By Lemma 3.3.2, we may assume min{eσ(δ), oσ(δ)} > 2. Number the m(σ) − 1
spherical roots supported on {α1, . . . , αm(σ)} from the right to left: if i < m(σ), set
σi = αi + αi+1.

If W ⊂ M is an orbit , denote Σ′ ⊂ Σ its set of spherical roots and ∆′ its set
of colors; for 1 6 i 6 m(σ) set ∆′(αi) = {D′i} and set ∆′(σ) = {D′1, . . . , D′m(σ)}.
Denote q : Pic(M) → Pic(W ) the pullback map and observe that q induces a
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bijection between ∆(σ) and ∆′(σ): by Remark 2.2.5 it follows q(Di) = D′i for every
i 6 m(σ), therefore δ is supported on Di if and only if δW = q(δ) is supported on
D′i.

(=⇒) Suppose that oσ(δ) < eσ(δ)− 1. In particular this implies oσ(δ) < m(σ):
indeed by the remark at the beginning of the proof if m(σ) is odd then eσ(δ) < m(σ),
while if m(σ) is even then oσ(δ) < m(σ).

Consider the orbit W ⊂ M whose spherical roots are σ1, . . . , σoσ(δ), set Z =
φδ(W ) and Z ′ = p−1(Z). Then the maximal distinguished subset of ∆′ which does
not intersect the support of δW is

∆∗ = ∆′ r
(
∆′(σ)odd

6oσ(δ)+2 ∪ Supp∆′(δW )
)
,

which by hypothesis contains ∆′(σ)even
6oσ(δ)+1 (where the notations are the obvious

ones); thus ∆∗ ∩ {D′1, D′2, D′3} = {D′2}. Since c(D′, σ) = 0 for every D′ ∈ ∆′ r
{D′1, D′3}, by Proposition 3.2.1 together with Lemma 2.5.1 we get σ ∈ ΛZ′ . On the
other hand, D′2 ∈ ∆∗ implies ∆(Z)(α2) = ∅: since Z is spherically closed, we get
then σ 6∈ ΣZ and 2σ ∈ ΣZ .

(⇐=) Suppose that oσ(δ) > eσ(δ)− 1. Fix an orbit W ⊂M , set Z = φδ(W ) and
Z ′ = p−1(Z). We may assume that σ ∈ Σ′, since otherwise there is nothing to prove.
Set ∆∗ ⊂ ∆′ the maximal distinguished subset which does not intersect the support
of δW and notice that 2σ ∈ ΣZ if and only if ∆∗ ∩ {D′1, D′2, D′3} = {D′2}. Such
condition does not hold if σ2 6∈ Σ′ or if σ3 6∈ Σ′, since then it would be D′1 ∈ ∆∗:
thus we may assume that Σ′ ⊃ {σ1, σ2, σ3}.

Set k < m(σ) the maximum such that σi ∈ Σ′ for every i 6 k. By considering the
conditions defining a distinguished set only for σ1, . . . , σk it follows that, if D′2 ∈ ∆∗,
then either ∆′(σ)6k ⊂ ∆∗ or ∆′(σ)even

6k+1 ⊂ ∆∗. If we are in the first case, then
we are done; suppose we are in the second case. Then it must be eσ(δ) > k + 1
and, by the hypothesis, we get oσ(δ) > k. Since it is distinguished and it does not
intersect the support of δW , we get then ∆′(σ)6k ⊂ ∆∗: therefore the condition
∆∗ ∩ {D′1, D′2, D′3} = {D′2} is not satisfied whenever oσ(δ) > eσ(δ)− 1 and the claim
follows.

Combining together Lemma 3.3.6, Corollary 3.3.7 and Lemma 3.3.8, we get the
following theorem (the cases wherein the Luna diagram of M in Γ(σ) is of type C2,
F1, F2 or F3 are easily treated directly).

Theorem 3.3.9. Let M be a strict wonderful variety and let δ be a faithful divisor
on it. Then the normalization p : X̃δ → Xδ is bijective if and only if the following
conditions are fulfilled, for every spherical root σ ∈ Σ of type BI

2:

i) If the Luna diagram of M in Γ(σ) is of type B1, then D[(σ) ∈ Supp∆(δ) or
the following conditions are both satisfied:

– Supp∆(δ) ∩∆(σ)even = ∅;
– If M possesses a spherical root supported on αm(σ)+1, then m(σ) is odd.

ii) If the Luna diagram of M in Γ(σ) is of type B2, then D[(σ) ∈ Supp∆(δ).

iii) If the Luna diagram of M in Γ(σ) is of type C1, then oσ(δ) > eσ(δ)− 1.

iv) Otherwise, if D](σ) ∈ Supp∆(δ), then D[(σ) ∈ Supp∆(δ) as well.
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3.4 Bijectivity in the non-strict case
In this section we briefly consider the non-strict case giving some sufficient conditions
of bijectivity and non-bijectivity of the normalization map.

Suppose that M is not strict and let δ = ∑
∆ n(δ,D)D be a faithful divisor on

M , suppose that Z ⊂ Xδ is an orbit such that Σ(δZ) contains a non-simple spherical
root γ. Following examples show that, unlike from the strict case (see Lemma 3.3.1),
γ may be as well of type GI

2 and, in case γ is of type BI
r, then it does not necessarily

come from a spherical root of type BI
2.

Example 3.4.1. Consider the wonderful variety M whose spherical system is
expressed by the Luna diagram qee q qppppppppppppppppppppqee eppp p pp p p pp p pp p p pp p pp p
Then the divisor δ = D+

α1 is faithful. Consider the codimension one orbit W ⊂M
whose spherical roots are α2 and α2 + α3; following Proposition 3.2.1 and Corollary
2.5.4, we get the sequence of Luna diagrams

eq q qppppppppppppppppppppqee eppp p pp p p pp p pp p p pp p pp p φ̃δ eq q qppppppppppppppppppppeppp p pp p p pp p pp p p pp p pp p p eq q qppppppppppppppppppppeppp p pp p p pp p pp p p pp p pp p2
where the first one represents the orbitW ⊂M , the second one the orbit φ̃δ(W ) ⊂ X̃δ

and the third one the orbit φδ(W ) ⊂ Xδ.

Example 3.4.2. Consider the wonderful variety M whose spherical system is
expressed by the Luna diagram

q qq qq qpppppppppp ppppppppppqee qee qee qee
Then the divisor δ = D+

α1 is faithful. See Table 2 for a full list of the orbits in X̃δ

and in Xδ (for simplicity, in the table orbits in M are described by giving a subset
of its spherical root index set).

Lemma 3.4.3. Suppose that M is a spherically closed wonderful variety and let
δ = ∑

∆ n(δ,D)D be a faithful divisor on it; let α ∈ S ∩ Σ.

i) If Z ⊂ Xδ is an orbit such that 2α ∈ ΣZ , then n(δ,D+
α ) = n(δ,D−α ).

ii) If n(δ,D+
α ) = n(δ,D−α ) is non-zero, then there exists an orbit Z ⊂ Xδ such

that 2α ∈ ΣZ .

Proof. Suppose that W ⊂M is an orbit with set of spherical roots Σ′ ⊂ Σ and set
of colors ∆′. If α ∈ S ∩ Σ′, set ∆′(α) = { ′D+

α ,
′D−α }; then by the description of the

pullback map q : Pic(M)→ Pic(W ) given in Remark 2.2.5 if δW = q(δ) it follows
that

n
(
δW ,

′D+
α

)
= n(δ,D+

α ), n
(
δW ,

′D−α
)

= n(δ,D−α ).

i). Let Z ⊂ Xδ be an orbit possessing 2α as a spherical root; let Z ′ = p−1(Z)
and let W ⊂ M be an orbit which maps on Z. Then by Proposition 1.5.9 we get
that α ∈ ΣZ′ . By Proposition 3.2.2 together with Theorem 2.4.5 we may identify
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Table 3.2. Example 3.4.2, δ = D+
α1 .

Maximal Minimal Orbit in X̃δ Orbit in Xδ Σ(δZ′)Orbits Orbit

q qq qq qpppppppppp ppppppppppqee qee qee qee q qq qq qpppppppppp ppppppppppqee qee qee qee{1, 2, 3, 4} {1, 2, 3, 4} ∅

q qq qq qpppppppppp ppppppppppqee qee qee e q qq qq qpppppppppp ppppppppppqee qee qee e{1, 2, 3} {1, 2, 3} ∅

q qq qq qpppppppppp ppppppppppqee qeee qee q qq qq qpppppppppp ppppppppppqee qeee qe{1, 3, 4} {1, 3, 4} {α4}

q qq qq qpppppppppp ppppppppppe eq qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp ep pp p pp p p pp p pp p p pp p pp p q qq qq qpppppppppp ppppppppppe eq qe epppppppppppppppppppp ppppppp ppppppp pppppppppppppp ppppppp ppppppp ppppppp ppppppppppppp ep pp p pp p p pp p pp p p pp p pp p{2, 3, 4} {2, 3, 4} ∅

q qq qq qpppppppppp ppppppppppe e e e q qq qq qpppppppppp ppppppppppe e e e{1, 3} {1, 3} ∅

q qq qq qpppppppppp ppppppppppe eppp p pp p p pp p pp p p pp p pp p q qq qq qpppppppppp ppppppppppe eppp p pp p p pp p pp p p pp p pp p2{3, 4} {3, 4} {α3 + α4}

∅ q qq qq qpppppppppp ppppppppppe e q qq qq qpppppppppp ppppppppppe e ∅{1, 2, 4}
{2, 3}

∆(Z ′)(α) with ∆(W )(α). Corollary 2.5.4 shows then n(δW , ′D+
α ) = n(δW , ′D−α ) and

by the remark at the beginning of the proof this implies the thesis.
ii). Consider the rank one orbit W whose unique spherical root is α, set Z =

φδ(W ) and Z ′ = p−1(Z). Then α ∈ ΣZ′ is a loose spherical root and by the remark
at the beginning of the proof we get n(δZ′ , ′D+

α ) = n(δZ′ , ′D−α ), where δZ′ is the
pullback of a hyperplane section of Z and where by Proposition 3.2.2 together with
Theorem 2.4.5 ∆(Z ′)(α) is identified with ∆(W )(α). Then by Corollary 2.5.4 we
get that 2α ∈ ΣZ .

Suppose that α ∈ S∩Σ. As shown by Example 3.4.2, if n(δ,D+
α ) = n(δ,D−α ) = 0,

then it may not exist any orbit Z ⊂ Xδ possessing 2α as a spherical root; conversely,
if there exists such an orbit, it may be as well n(δ,D+

α ) = n(δ,D−α ) = 0.
As a corollary of previous lemma, we get the following sufficient conditions.

Corollary 3.4.4. Suppose that M is a spherically closed wonderful variety and let
δ = ∑

∆ n(δ,D)D be a faithful divisor on it.

i) If there exists α ∈ S ∩ Σ such that n(δ,D+
α ) = n(δ,D−α ) is non-zero, then the

normalization p : X̃δ → Xδ is not bijective.
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ii) If the Dynkin diagram of G is simply laced and if n(δ,D+
α ) 6= n(δ,D−α ) for

every α ∈ S ∩ Σ, then the normalization p : X̃δ → Xδ is bijective.

Reasoning as in Lemma 3.3.2 and in Corollary 3.3.3, other sufficient conditions
of bijectivity can be obtained imposing further conditions on the support of δ on the
multiple links of the Dynkin diagram of G and on the simple spherical roots of M .



Chapter 4

Simple linear compactifications
of semisimple adjoint groups

Otherwise differently stated, throughout this section G will denote a simply connected
semisimple algebraic group over an algebraically closed field of characteristic zero.

4.1 The varieties Xλ and XΠ

Consider the G×G-variety

Xλ = (G×G)[Id] ⊂ P(End(V (λ)∗),

which is a simple compactification of a quotient of the adjoint group Gad; denote
X̃λ → Xλ its normalization. Define the support of λ as the set

Supp(λ) = {α ∈ S : 〈λ, α∨〉 6= 0} :

by Proposition 3.1.3, there exists a G×G-equivariant surjective morphim Xλ → Xλ′

if and only if Supp(λ) ⊃ Supp(λ′); in particular Xλ and Xλ′ are G×G-equivariantly
isomorphic if and only if Supp(λ) = Supp(λ′).

Suppose that λ is regular, i.e. that Supp(λ) = S: then Xλ = M is the wonderful
compactification of the adjoint group Gad (see Example 2.1.5). The closed orbit
of M is isomorphic to G/B × G/B and the restriction of line bundles induces an
homomorphism

ω : Pic(M) −→ X (B)×X (B)

which is injective and identifies Pic(M) with the sublattice {(λ, λ∗) : λ ∈ X (B)}.
Therefore Pic(M) is identified with X (B) and we will denote Lλ ∈ Pic(M) the line
bundle whose image is (λ, λ∗). Via the map ω, the spherical roots ofM are identified
with the simple roots of G, while the colors of M are identified with the fundamental
dominant weights of G. In particular, a line bundle Lλ is generated by its sections if
and only if λ ∈ X (B)+.

By Theorem 2.2.2, it holds the following descripition of Γ(M,Lλ) as a G×G-
module:

Γ(M,Lλ) '
⊕

µ∈X (B)+ :µ6λ
End(V (µ)).

55
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Following Section 3.1, if λ ∈ X (B)+ denote

Ã(λ) =
⊕

n∈N
Γ(M,Lnλ)

and denote A(λ) ⊂ Ã(λ) the subalgebra generated by End(V (λ)) ⊂ Γ(M,Lλ);
consider the natural gradings on Ã(λ) and A(λ) respectively defined by Ãn(λ) =
Γ(M,Lnλ) and An(λ) = Ãn(λ) ∩A(λ). Then

X̃λ = Proj Ã(λ) and Xλ = ProjA(λ).

A set of dominant weights Π ⊂ X (B)+ is said to be simple if it possesses a
unique maximal element with respect to the dominance order. If Π is such a set,
consider the variety

XΠ = (G×G)[IdΠ] ⊂ P
(⊕

ν∈Π
End(V (ν))∗

)
,

where IdΠ = (Idν)ν∈Π. If Π = {µ1, . . . , µm}, sometimes we will denote XΠ simply
by Xµ1,...,µm .

Suppose that Π ⊂ X (B)+ is simple and denote λ ∈ Π the maximal element. By
the description of the space of sections of Lλ, it follows

⊕
ν∈Π End(V (ν)) ⊂ Γ(M,Lλ):

thus we get
X̃λlraXΠ −→ Xλ

and XΠ is a simple variety with the same normalization of Xλ. As in the case
Π = {λ}, denote A(Π) = ⊕

n∈NAn(Π) the projective coordinate ring of XΠ, namely
the subalgebra of Ã(λ) generated by ⊕ν∈Π End(V (ν)). Notice that every simple
linear compactification of a quotient of Gad arises in this way.

Denote φλ ∈ End(Vλ) a highest weight vector and consider the B ×B−-stable
affine open subsets X◦λ ⊂ Xλ and X◦Π ⊂ XΠ defined by the non-vanishing of φλ;
then we get

k[X◦Π] =
{
φ

φnλ
: φ ∈ An(Π)

}
⊃
{
φ

φnλ
: φ ∈ An(λ)

}
= k[X◦λ]

Previous rings are not G×G-module. However, since they are the coordinate ring
of an open subset of a G×G-variety, they are g⊕ g-modules.

Lemma 4.1.1. Suppose that Π ⊂ X (B)+ is simple with maximal element λ. Then,
as a g⊕ g-algebra, the coordinate ring k[X◦Π] is generated by k[X◦λ] together with the
set {φµ/φλ}µ∈Π.

Proof. Since the projective coordinate ring A(Π) is generated in degree one by⊕
µ∈Π End(V (µ)), it follows that k[X◦Π] is generated as an algebra by its subset

B(Π) =




φ

φλ
: φ ∈

⊕

µ∈Π
End(V (µ))



 .

Using the action of the Lie algebra g ⊕ g, let’s show that B(Π) is contained in
the g⊕ g-subalgebra B(Π) ⊂ k[X◦Π] generated by k[X◦λ] together with {φµ/φλ}µ∈Π.
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Suppose indeed that α is a simple root and that φ/φλ ∈ B(Π); then fα(φ)/φλ ∈ B(Π)
as well since

fα(φ)
φλ

= fα

(
φ

φλ

)
+ φ

φλ
· fα(φλ)

φλ
.

Definition 4.1.2. Suppose that Π,Π′ ⊂ X (B)+ are simple with maximal elements
respectively λ and λ′. Then Π and Π′ are called equivalent and we write Π ∼ Π′
if Supp(λ) = Supp(λ′) and if there exists a bijection µ 7→ µ′ between Π r λ and
Π′ r λ′ such that λ′ − µ′ = λ− µ for every µ ∈ Π r {λ}.

It follows by Lemma 4.1.1 that if Π and Π′ are equivalent, then XΠ ' XΠ′ .
Given λ, µ ∈ X (B)+, consider the multiplication map

mλ,µ : Γ(M,Lλ)× Γ(M,Lµ)→ Γ(M,Lλ+µ).

As in [Ka 02] or in [DC 04], it is possible to identify sections of a line bundle on
M with functions on G and use the description of the multiplication of matrix
coefficients. Recall that as a G×G-module it holds the decomposition

k[G] =
⊕

λ∈X (B)+

End(V (λ)) '
⊕

λ∈X (B)+

V (λ)∗ ⊗ V (λ).

More explicitly if V is a G-module, define cV : V ∗ ⊗ V → k[G] as usual by cV (ψ ⊗
v)(g) = 〈ψ, gv〉. If we multiply functions in k[G] of this type then we get

cV (ψ ⊗ v) · cW (χ⊗ w) = cV⊗W
(
(ψ ⊗ χ)⊗ (v ⊗ w)

)
:

in particular we get that the image of the multiplication End(V (λ))⊗End(V (µ))→
k[G] is the sum of all End(V (ν)) with V (ν) ⊂ V (λ)⊗ V (µ).

As a consequence we get the following description of the multiplication map.

Lemma 4.1.3 ([Ka 02] Lemma 3.1, [DC 04] Lemma 3.4). Let λ′ 6 λ and µ′ 6 µ
be dominant weights. Then the image of End(V (λ′))⊗ End(V (µ′)) ⊂ Γ(M,Lλ)⊗
Γ(M,Lµ) in Γ(M,Lλ+µ) via the multiplication map mλ,µ is

⊕

V (ν)⊂V (λ′)⊗V (µ′)
End(V (ν))

Recall the Parthasarathy-Ranga Rao-Varadarajan conjecture, proved indepen-
dently by S. Kumar [Ku 88] and O. Mathieu [Mat 89].

Theorem 4.1.4 (PRV Conjecture). Let λ, µ ∈ X (B)+ be dominant weights and let
ν 6 λ+ µ be a dominant weight of the shape ν = wλ+ w′µ, with w,w′ ∈W . Then
V (ν) ⊂ V (λ)⊗ V (µ).

If λ is a dominant weight, denote Π(λ) the set of weights occurring in the simple
G-module V (λ) and denote

Π+(λ) = Π(λ) ∩ X (B)+ = {µ ∈ X (B)+ : µ 6 λ}.

Using previous theorem together with the description of Lemma 4.1.3, S. S. Kan-
nan proved the surjectivity of mλ,µ.
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Theorem 4.1.5 ([Ka 02] Cor. 3.3). Let λ, µ ∈ X (B)+ be dominant weights. Then
the multiplication map

mλ,µ : Γ(M,Lλ)× Γ(M,Lµ) −→ Γ(M,Lλ+µ).

is surjective.

Proof. Thanks to Theorem 2.2.2 together with Lemma 4.1.3, it is enough to show
that, given any dominant weight ν 6 λ + µ, there exist dominant weights λ′ 6 λ
and µ′ 6 µ such that V (ν) ⊂ V (λ′)⊗ V (µ′).

Let vλ ∈ V (λ) and vµ ∈ V (µ) be highest weights vectors: then vλ ⊗ vµ ∈ V (λ)⊗
V (µ) is a highest weight vector of weight λ+µ, it follows that V (λ+µ) ⊂ V (λ)⊗V (µ).

Suppose that ν 6 λ + µ is a dominant weight. Then ν occurs as weight in
V (λ+ µ) and by previous remark we may write ν = λ′′ + µ′′ with λ′′ ∈ Π(λ) and
µ′′ ∈ Π(µ). If W is the Weyl group of G w.r.t. T , then Π(λ) and Π(µ) are W -stable,
take w,w′ ∈ W such that wλ′′ ∈ Π+(λ) and w′µ′′ ∈ Π+(µ) and set λ′ = wλ′′ and
µ′ = w′µ′′. Then the PRV conjecture implies V (ν) ⊂ V (λ′)⊗ V (µ′).

With completely different techniques, previous theorem was later generalized by
R. Chirivì and A. Maffei to the case of an arbitrary symmetric adjoint wonderful
variety in [CM 04].

Let λ ∈ X (B)+ and consider the ring Ã(λ) = ⊕
n∈N Γ(M,Lnλ): by the surjectiv-

ity of the multiplication, it follows that Ã(λ) is generated in degree one. Therefore,
by the description of Γ(M,Lλ) as a G×G-module it follows that

X̃λ ' XΠ+(λ) ⊂ P
( ⊕

µ∈X (B)+ :µ6λ
End(V (µ))∗

)
.

As a consequence of the description of the multiplication given in Lemma 4.1.3
we get the following characterization of morphisms between simple compactifications
with the same closed orbit.

Lemma 4.1.6. Let Π,Π′ be simple subsets with the same maximal element λ. Then
there exists a G × G-equivariant surjective morphism XΠ → XΠ′ if and only if
for every ν ∈ Π′ there exist µ1, . . . , µm ∈ Π together with non-negative integers
k0, k1, . . . , km such that

V
(
ν + (n− 1)λ

) ⊂ V (µ1)⊗k1 ⊗ . . .⊗ V (µm)⊗km ⊗ V (λ)⊗k0 ,

where n = k0 + . . .+ km.

Proof. Consider the B ×B−-stable affine open subsets X◦Π ⊂ XΠ and X◦Π′ ⊂ XΠ′ :
since they intersect the closed orbit, they intersect every orbit, therefore there exists
a G × G-equivariant morphism XΠ → XΠ′ if and only if there exists a B × B−-
equivariant morphism X◦Π → X◦Π′ .

Let ν ∈ Π′ and consider the B × B−-semiinvariant function φν/φλ ∈ k[X◦Π′ ]:
then φν/φλ ∈ k[X◦Π] if and only if there exists n ∈ N such that

φνφ
n−1
λ ∈ An(Π) =

(⊕

µ∈Π
End(V (µ))

)n
.
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Since such a function is B×B−-semiinvariant of weight
(
ν+(n−1)λ, ν∗+(n−1)λ∗

)
,

by Lemma 4.1.3 this is equivalent to the inclusion

V (ν + (n− 1)λ) ⊂
(⊕

µ∈Π
V (µ)

)⊗n
.

Then the claim follows by Lemma 4.1.1.

If Π is a simple subset with maximal element λ, denote

Ω(Π) =
{
ν − nλ : V (ν) ⊂

(⊕

µ∈Π
V (µ)

)⊗n}
:

it is a semigroup and by previous lemma it is the image of

k[X◦Π](B×B−)/
k∗ ⊂ X (B)×X (B)

in X (B) via the projection on the first factor. If Π = {µ1, . . . , µm}, sometimes we
will denote Ω(Π) simply by Ω(µ1, . . . , µm).

The following is a restatement of Lemma 4.1.6 in terms of the semigroups defined
above.

Lemma 4.1.7. Let Π,Π′ be simple subsets with the same maximal element λ. Then
there exists a G × G-equivariant surjective morphism XΠ → XΠ′ if and only if
Ω(Π′) ⊂ Ω(Π) if and only if ν − λ ∈ Ω(Π) for all ν ∈ Π′.

Definition 4.1.8. A dominant weight µ 6 λ is called trivial if it satisfies one the
following equivalent conditions:

i) Hom
(

End(V (µ)),Γ
(
Xλ,Lλ

)) 6= 0, where Lλ ∈ Pic(Xλ) denotes the restriction
of the hyperplane bundle on P(End(V (λ)).

ii) There exists a G×G-equivariant isomorphism Xλ,µ ' Xλ.

iii) Ω(λ, µ) = Ω(λ).

iv) There exists n ∈ N such that V (µ+ (n− 1)λ) ⊂ V (λ)⊗n.

v) µ− λ ∈ Ω(λ).

Corollary 4.1.9. Let µ 6 λ and µ′ 6 λ′ be non-trivial weights with Supp(λ) =
Supp(λ′); if Xλ,µ dominates Xλ′,µ′, then

λ′ − µ′ > λ− µ.

In particular, Xλ,µ ' Xλ′,µ′ if and only if {λ, µ} and {λ′, µ′} are equivalent.

Proof. By Lemma 4.1.7 it is enough to notice that if Supp(λ) = Supp(λ′) and
Ω(λ′, µ′) ⊂ Ω(λ, µ), then V (µ′ − λ′ + nλ) ⊂ V (µ)⊗k ⊗ V (λ)⊗n−k implies

λ′ − µ′ > k(λ− µ) > λ− µ.
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Suppose that Π is simple with maximal element λ. Then, by the isomorphism
X̃λ ' XΠ+(λ), previous lemma yields as well a criterion of normality for XΠ in terms
of tensor product inclusions: XΠ is normal if and only if, for every dominant weight
ν 6 λ, there exists n ∈ N such that

V (ν + (n− 1)λ) ⊂
(⊕

µ∈Π
V (µ)

)⊗n
.

Together with P. Bravi, A. Maffei and A. Ruzzi, in [BGMR 10] we exploited such
criterion to give a necessary and sufficient combinatorial condition for XΠ to be
normal.

Definition 4.1.10. If S′ ⊂ S is a non-simply laced connected component, order the
simple roots in S′ = {α1, . . . , αr} starting from the extreme of the Dynkin diagram
of S′ which contains a long root and denote αq the first short root in S′. If λ is
a dominant weight such that αq 6∈ Supp(λ) and such that Supp(λ) ∩ S′ contains a
long root, denote αp the last long root which occurs in Supp(λ)∩ S′: for instance, if
S′ is not of type G2, then the numbering is as follows

q qq qq qpppppppppp pppppppppp q q
α1 αp αq αr

The little brother of λ with respect to S′ is the dominant weight

λlb
S′ = λ−

q∑

i=p
αi =

{
λ− ω1 + ω2 if G is of type G2
λ+ ωp−1 − ωp + ωq+1 otherwise

where ωi is the fundamental weight associated to αi if 1 6 i 6 r, while ω0 = ωr+1 = 0.
The set of the little brothers of λ will be denoted by LB(λ), while if S is connected
and non-simply laced set λlb = λlb

S .

Theorem 4.1.11 ([BGMR 10] Thm. 12). Suppose that Π ⊂ X (B)+ is simple with
maximal element λ. Then the variety XΠ is normal if and only if Π ⊃ LB(λ). In
particular, Xλ is normal if and only if λ satisfies the following condition:

(?)
For every non-simply laced connected component S′ ⊂ S, if Supp(λ) ∩ S′
contains a long root, then it contains also the short root which is adjacent
to a long simple root.

We conclude this section with some results on tensor product decompositions
which will be useful in the following. If ν = ∑

nαα ∈ ZS, recall its support over S
defined as follows

SuppS(ν) = {α ∈ S : nα 6= 0}.

Lemma 4.1.12 ([BGMR 10] Lemma 6). Let λ, µ, ν be dominant weights and let
S′ ⊂ S be such that SuppS(λ+µ−ν) ⊂ S′. Let L ⊂ G be the standard Levi subgroup
associated to S′ and, if π ∈ X (B)+, denote by VL(π) the simple L-module of highest
weight π. Then

V (ν) ⊂ V (λ)⊗ V (µ) ⇐⇒ VL(ν) ⊂ VL(λ)⊗ VL(µ).
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Proof. If a is any Lie algebra, denote U(a) the corresponding universal enveloping
algebra.

Suppose that VL(ν) ⊂ VL(λ) ⊗ VL(µ); fix maximal vectors vλ ∈ VL(λ) and
vµ ∈ VL(µ) for the Borel subgroup B ∩ L ⊂ L and fix p ∈ U(l ∩ u−) ⊗ U(l ∩ u−)
such that p (vλ ⊗ vµ) ∈ VL(λ) ⊗ VL(µ) is a maximal vector of weight ν. Since
VL(λ)⊗ VL(µ) ⊂ V (λ)⊗ V (µ), we only need to prove that p (vλ ⊗ vµ) is a maximal
vector for B too. If α ∈ S′ then we have eαp (vλ ⊗ vµ) = 0 by hypothesis. On the
other hand, if α ∈ S r S′, notice that eα commutes with p, since by its definition p
is supported only on the fα’s with α ∈ S′. Since vλ ⊗ vµ is a maximal vector for B,
then we get

eαp (vλ ⊗ vµ) = p eα(vλ ⊗ vµ) = 0;

thus p (vλ ⊗ vµ) generates a simple G-module of highest weight ν.
Assume conversely that V (ν) ⊂ V (λ)⊗V (µ) and fix p ∈ U(u−)⊗U(u−) such that

p (vλ⊗vµ) ∈ V (λ)⊗V (µ) is a maximal vector of weight ν. Since SuppS(λ+µ−ν) ⊂ S′,
we may assume that the only fα’s appearing in p are those with α ∈ S′; therefore
p (vλ ⊗ vµ) ∈ VL(λ)⊗ VL(µ) and it generates a simple L-module of highest weight
ν.

Corollary 4.1.13. Let µ 6 λ be dominant weights and suppose that SuppS(λ− µ)
is simply laced regarded as a subset of the vertices of the Dynkin diagram of G. Then
µ 6 λ is trivial.

Proof. By Theorem 4.1.11 applied to the semisimple part of L, there exists n ∈ N such
that VL(µ+ (n− 1)λ) ⊂ VL(λ)⊗n: by previou lemma, this implies V (µ+ (n− 1)λ) ⊂
V (λ)⊗n and µ 6 λ is trivial.

Another useful lemma is the following.

Lemma 4.1.14 ([BGMR 10] Lemma 7). Fix λ, µ, ν ∈ X (B)+ such that V (ν) ⊂
V (λ)⊗ V (µ). Then, for any ν ′ ∈ X (B)+, it also holds

V (ν + ν ′) ⊂ V (λ+ ν ′)⊗ V (µ).

Proof. If π, π′ ∈ X (B)+, recall the multiplication V (π)⊗V (π′)→ V (π+π′) defined
by identifying V (π) and V (π′) with the global sections of the associated line bundle
on the flag variety G/B. We will denote the image of a tensor v ⊗ w by vw.

Fix a maximal vector vν′ ∈ V (ν ′) and consider the U -equivariant map

φ : V (λ)⊗ V (µ) −→ V (λ+ ν ′)⊗ V (µ)
w1 ⊗ w2 7−→ w1vν′ ⊗ w2

The claim follows since, if vν ∈ V (λ) ⊗ V (µ) is a U -invariant vector of weight ν,
then φ(vν) ∈ V (λ+ ν ′)⊗ V (µ) is a U -invariant vector of weight ν + ν ′.

Corollary 4.1.15. Let ν 6 µ 6 λ be dominant weights such that Supp(λ) ∩
SuppS(µ− ν) 6= ∅ and suppose moreover that µ− ν is the highest long root of the
root subsystem generated by SuppS(µ− ν). Then V (ν + λ) ⊂ V (µ)⊗ V (λ).
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Proof. Denote L the Levi subgroup associated to SuppS(µ− ν) and denote g its Lie
algebra. Consider µ− ν: by the assumption on µ− ν, we have an isomorphism of
l-modules VL(µ− ν) ' l. Therefore the l-action induces a surjective morphism

VL(µ− ν)⊗ VL(λ) −→ VL(λ)

which is non-zero by the assumption on λ: hence we get an inclusion VL(λ) ⊂
VL(µ− ν)⊗ VL(λ). By Lemma 4.1.14 this implies VL(ν + λ) ⊂ VL(µ)⊗ VL(λ), thus
the claim follows by Lemma 4.1.12.

4.2 The odd orthogonal case: the coordinate ring of Xλ

We now describe some more explicit results about tensor products decompositions
which we will use to describe the semigroup Ω(λ) in the case G = Spin(2r + 1).
Unless otherwise stated, we use the numbering of simple roots and fundamental
weights of Bourbaki [Bo 75].

Lemma 4.2.1. Suppose that G = Spin(2r + 1).

i) For every 1 6 i 6 r it holds

V (ωi + ωr) ⊂ V (ωi)⊗ V (ω1 + ωr).

ii) For every 1 6 i < r it holds

V (ωi) ⊂ V (ωi)⊗ V (2ω1).

iii) For every 1 6 i 6 j < r − 1 they hold

V (ωi + ωj) ⊂ V (ωi)⊗ V (ω1 + ωj+1);
V (ωi + ωr−1) ⊂ V (ωi)⊗ V (ω1 + 2ωr).

Proof. The claims can be easily shown with the generalized Littlewood-Richardson
rule [Na 93]. Consider indeed the following semi-standard B-tableau of shape ωi:

T1 =

2

3
...

i

0

T2 =

2

3
...

i

1

T3 =

2

3
...

i

j+1

If λ is a dominant weight, denote Y (λ) the generalized Young diagram of shape λ.
Then the claims are a consequence of following remarks:

i) Y (ω1 + ωr) + T1 is a generalized Young diagram of shape ωi + ωr,

ii) Y (2ω1) + T2 is a generalized Young diagram of shape ωi,
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iii) If j < r − 1 then Y (ω1 + ωj+1) + T3 is a generalized Young diagram of shape
ωi+ωj , while if j = r−1 then Y (ω1 +2ωr)+T3 is a generalized Young diagram
of shape ωi + ωj .

We are going now to prove the following combinatorial characterization of trivial
weights.

Theorem 4.2.2. Suppose that G = Spin(2r+ 1) and let µ 6 λ be dominant weights.
Let q and l be the maximal integers such that αq ∈ Supp(λ) and αl ∈ Supp(µ)
and write λ − µ = ∑r

i=1 aiαi. Then µ 6 λ is trivial if and only if ar is even or
ar > 2 min{r − l, r − q}.

In the notations of the theorem, notice that ai = ar for all i > max{q, l}.
Therefore we may restate the theorem as follows, without referring to the particular
weight λ but only to its support. Given a weight ν we denote

Supp(ν)− = {α ∈ S : 〈ν, α∨〉 < 0}.

Theorem 4.2.3. Suppose that G = Spin(2r + 1) and let λ be a dominant weight,
denote q < r the maximal integer such that αq ∈ Supp(λ). Then it holds the following
description:

Ω(λ) =
{
ν = −

r∑

i=1
aiαi ∈ −NS : Supp(ν)− ⊂ Supp(λ) and

ar is even or ar > 2 min{r − l(ν), r − q}

}

where l(ν) 6 r denotes the maximum such that al(ν)−1 6= al(ν) = al(ν)+1.

If αr ∈ Supp(λ), then the theorem is equivalent to the normality of Xλ (see
Theorem 4.1.11). Therefore we will assume that αr 6∈ Supp(λ).

Exploiting the Schur-Weyl duality, following proposition clarifies the condition
in the theorem.

Proposition 4.2.4. If µ 6 nω1 is a dominant weight, denote nω1 − µ = ∑r
i=1 aiαi.

Denote αl the last simple root in Supp(µ) or set l = 0 if µ = 0. Then V (µ) 6⊂
V (ω1)⊗n if and only if ar < 2(r − l) is odd.

Proof. Regard SO(2r + 1) ⊂ GL(2r + 1) and denote h ⊂ h̃ the respective Cartan
subalgebras of diagonal matrices. Denote ε1, . . . , ε2r+1 the basis of h̃∗ defined by
εi(A) = ai, where A = diag(a1, . . . , a2r+1) ∈ h̃; if λ = ∑r

i=1 λiεi is a weight denote
|λ| = ∑r

i=1 λi. With respect to this basis µ is expressed as follows

µ = (n− a1)ε1 +
r∑

i=2
(ai−1 − ai)εi.

By Schur-Weyl duality for orthogonal groups (see [GW 09, Appendix F]) it follows
that V (µ) ⊂ V (ω1)⊗n if and only if µ extends to a dominant weight λ = ∑2r+1

i=1 λiεi ∈
h̃∗ such that 




|λ| 6 n
|λ| ≡ n mod 2
λt1 + λt2 6 2r + 1
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where λt = (λt1, . . . , λtλ1
) is the transposed of λ = (λ1, . . . , λr) regarded as a partition.

If λ is such a weight, then either λi = 0 for i > r or

λ =
λt2∑

i=1
λiεi +

λt1∑

i=λt2+1
εi

with λi > 2 for i 6 λt2.
Suppose that λ is of the first kind: then ar is even since ar = n− |µ| ≡ 0 mod

2. Suppose conversely that λ is of the second kind: then λt1 + λt2 6 2r + 1 implies
l = 2r + 1− λt1 and we get ar > 2(r − l) since

ar = n− |µ| = n− |λ|+ 2(λt1 − r − 1) + 1 = n− |λ|+ 2(r − l) + 1.

Suppose conversely that ar is even or that ar > 2(r − l), let’s show that V (µ) ⊂
V (ω1)⊗n. Define λ ∈ h̃∗ as follows

λ =
{ ∑l

i=1 µiεi if ar is even∑l
i=1 µiεi +∑2r−l+1

i=l+1 εi if ar > 2(r − l) is odd

Then λ satisfies the conditions given by Schur-Weyl duality and we get the claim.

Lemma 4.2.5. Let λ, π be dominant weights and suppose that λ 6 π is trivial.
Then

k[X◦λ] ⊂ k[X◦π](φλ/φπ).

In particular Ω(λ) ⊂ Ω(π)π−λ, where the latter denotes the semigroup generated by
Ω(π) together with π − λ.

Proof. Since λ − π ∈ Ω(π), it follows that Xπ ' Xπ,λ. Therefore Xπ is endowed
with an ample line bundle with a B ×B−-semiinvariant section sλ of weight (λ, λ∗),
which generates a module isomorphic to End(V (λ)). Correspondingly, we get a
rational application Xπ 99K Xλ which is regular in the affine set

(
X◦π
)
(φλ/φπ) = Xπ r

⋃

α∈Supp(λ+π)
Dα,

where Dα is the color associated to α. Thus we get k[X◦λ] ⊂ k[X◦π](φλ/φπ).

Corollary 4.2.6. Let λ be a dominant weight such that αr 6∈ Supp(λ). Suppose that
µ 6 λ is trivial and denote λ− µ = ∑

aiαi. If αq and αl are the last simple roots
respectively in Supp(λ) and in Supp(µ), then either ar is even or ar > 2 min{r −
l, r − q}.

Proof. Suppose that λ = nω1 and suppose that V (µ + (m − 1)nω1) ⊂ V (nω1)⊗m.
Then we get V (µ+ (m− 1)nω1) ⊂ V (ω1)⊗mn and by previous proposition it follows
that λ− µ = mnω1− µ− (m− 1)nω1 satisfies the condition.

Suppose now that αr 6∈ λ: then there exists n > 0 such that λ 6 nω1 with
SuppS(nω1 − λ) ⊂ {α1, . . . , αq−1}, where αq is the last simple root which occurs in
Supp(λ). Since αr 6∈ SuppS(nω1 − λ), it follows that λ 6 nω1 is trivial: by Lemma
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4.2.5 we get then µ− λ ∈ Ω(λ) ⊂ Ω(ω1)nω1−λ. Therefore there exist k,m ∈ N and a
trivial weight µ′ 6 mω1 such that

µ− λ = µ′ −mω1 + k(nω1 − λ).

If mω1 − µ′ = ∑
a′iαi, then by the definition of n it follows ai = a′i for all i > q.

Therefore by the case treated at the beginning we get that either ar is even or
ar > 2 min{r − 1, r − l′}, where l′ is the maximum such that αl′ ∈ Supp(µ′). If
µ′ = 0, then ar > 2(r − 1) > 2(r − q) and the claim follows. Suppose now µ′ 6= 0
and notice that, if l′ > q, then l′ = l: therefore 2(r − l′) > 2 min{r − l, r − q} and
the claim follows.

We now prove in a constructive way that the condition of the theorem is sufficient.
Suppose that µ 6 λ are dominant weights and denote λ − µ = ∑r

i=1 aiαi, denote
αq and αl the last simple roots respectively in Supp(λ) and in Supp(µ). We will
distinguish three different cases:

i) ar−1 6= ar, i.e. αr ∈ Supp(µ) (Lemma 4.2.7).

ii) ar−1 = ar is even (Lemma 4.2.8).

iii) ar−1 = ar > 2 min{r − l, r − q} is odd (Lemma 4.2.9).

Lemma 4.2.7. Let µ 6 λ be dominant weights and suppose that αr 6∈ Supp(λ). If
αr ∈ Supp(µ), then µ 6 λ is trivial.

Proof. We proceed by induction on ar−1ar. Suppose that either ar−1 = 0 or ar = 0:
then SuppS(λ− µ) has type A and the claim follows by Corollary 4.1.13.

Assume that ar−1 and ar are both non-zero. Denote p < r − 1 the maximum
such that ap−1 = 0 or set p = 1 otherwise and define

µ′ = µ+
r∑

i=p
aiαi = µ− ωp−1 + ωp.

Notice that µ′ 6 λ is dominant: indeed

〈µ, α∨p−1〉 = 〈λ, α∨p−1〉+ ap−2 + ap > ap > 0.

Moreover by Lemma 4.2.1 i) together with Lemma 4.1.14 it holds V (µ + λ) ⊂
V (µ′)⊗ V (λ), thus we get the inclusion Ω(λ, µ) ⊂ Ω(λ, µ′).

Consider µ′ 6 µ and denote λ− µ = ∑
a′iαi: then it still satisfies the hypotheses

of the lemma and a′r−1a
′
r < ar−1ar, therefore by induction we may assume that it

is trivial, i.e. Ω(λ, µ′) = Ω(λ). It follows then Ω(λ, µ) = Ω(λ) as well, i.e. µ 6 λ is
trivial.

Lemma 4.2.8. Let µ 6 λ be dominant weights, suppose that αr 6∈ Supp(λ) and
denote λ− µ = ∑r

i=1 aiαi. If ar−1 = ar is even then µ 6 λ is trivial.

Proof. Denote αq the last simple root in Supp(λ). Up to consider the couple
µ+ ωq 6 λ+ ωq, which is equivalent to µ 6 λ, we may assume that αq ∈ Supp(µ).

We proceed by induction on ar. Suppose that ar = 0: then SuppS(λ− µ) has
type A and the claim follows by Corollary 4.1.13.
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Suppose ar−1 = ar > 2 and notice that since µ is dominant it follows

aq > aq+1 > . . . > ar−1 = ar > 2.

Denote p the maximum such that ap−1 = 0 or set p = 1 otherwise and define

µ′ = µ+
q∑

i=p
αi + 2

r∑

i=q+1
aiαi =

{
µ− ωp−1 + ωp − ωq−1 + ωq if q < r − 2
µ− ωp−1 + ωp − ωr−1 + 2ωq if p = r − 1

Notice that µ′ 6 λ is dominant: indeed αq ∈ Supp(µ) by the assumption at the
beginning of the proof, while

〈µ, α∨p−1〉 = 〈λ, α∨p−1〉+ ap−2 + ap > ap > 0.

Moreover by Lemma 4.2.1 iii) together with Lemma 4.1.14 it holds V (µ + λ) ⊂
V (µ′)⊗ V (λ), thus we get the inclusion Ω(λ, µ) ⊂ Ω(λ, µ′).

Consider µ′ 6 µ and denote λ − µ = ∑
a′iαi: then either q = r − 1 and

αr ∈ Supp(µ′) or a′r−1 = a′r = ar − 2: therefore µ′ 6 λ is trivial, in the first case
by Lemma 4.2.7 and in the second case by inductive hypothesis. Therefore we get
Ω(λ, µ) ⊂ Ω(λ, µ′) = Ω(λ) and µ 6 λ is trivial.

Lemma 4.2.9. Suppose that µ 6 λ are dominant weights and denote λ − µ =∑r
i=1 aiαi. Denote αq and αl the last simple roots respectively in Supp(λ) and in

Supp(µ) and suppose q < r. If ar > 2 min{r − l, r − q} is odd, then µ 6 λ is trivial.
Proof. Up to consider the couple µ+ ωq 6 λ+ ωq, which is equivalent to µ 6 λ, we
may assume that αq ∈ Supp(µ), i.e. q 6 l.

We proceed by induction on r − l, the basis being the case l = r treated in
Lemma 4.2.7. Suppose that l < r. Then the hypothesis ar > 2(r− l) toghether with
the fact that µ is dominant imply

aq > . . . > al = al+1 = . . . = ar > 3.

Denote p the maximum such that ap−1 = 0 or set p = 1 otherwise and define

µ′ = µ+
l∑

i=p
αi + 2

r∑

i=l+1
αi =

{
µ− ωp−1 + ωp − ωl + ωl+1 if l < r − 1
µ− ωp−1 + ωp − ωr−1 + 2ωr if l = r − 1

Notice that µ′ 6 λ is dominant: indeed αl ∈ Supp(µ) by definition, while

〈µ, α∨p−1〉 = 〈λ, α∨p−1〉+ ap−2 + ap > ap > 0.

Moreover by Lemma 4.2.1 iii) together with Lemma 4.1.14 it holds V (µ + λ) ⊂
V (µ′)⊗ V (λ), thus we get the inclusion Ω(λ, µ) ⊂ Ω(λ, µ′).

Consider µ′ 6 µ and denote λ − µ = ∑
a′iαi. If a′r = 1, then ar = 3 and by

ar > 2(r − l) we get l = r − 1: thus αr ∈ Supp(µ′) and µ′ 6 λ is trivial by Lemma
4.2.7. Otherwise l′ = l+ 1 and a′r = ar−2 > 2(r− l−1) = 2(r− l′): thus µ′ 6 λ still
satisfies the hypothesis of the lemma and it is trivial by the inductive hypothesis.
Therefore we get Ω(λ, µ) ⊂ Ω(λ, µ′) = Ω(λ) and µ 6 λ is trivial.

Remark 4.2.10. Suppose that Supp(λ) = {αr−1}. Then, following Theorem 4.2.3,
if X is a G×G-variety such that X̃λ → X → Xλ, then it must be either X ' X̃λ or
X ' Xλ. Indeed if µ = λ −∑r

i=1 aiαi is a dominant weight and if ar−1 = ar = 1,
then it must be a1 = . . . = ar−2 = 0.
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4.3 The odd orthogonal case: morphisms
Suppose that λ is a dominant weight and let Π, Π′ be simple subsets such that

X̃λ

��

// XΠ′

��
XΠ // Xλ

In this section we are going to characterize combinatorially the existence of an
equivariant morphism XΠ → XΠ′ which makes the diagram commute (Theorem
4.3.8). In particular, it will follow a combinatorial criterion to establish if two simple
subsets give rise to isomorphic compactifications.

4.3.1 Remarks on tensor products decompositions
In order to obtain a combinatorial characterization of morphisms, we need first to
describe some explicit results about tensor products decompositions.

Lemma 4.3.1. Suppose that G is a simple group of type Br and let µ be a dominant
weight.

i) Let ν 6 µ+ω1 be such that V (ν) ⊂ V (µ)⊗V (ω1). Then there exists 1 6 k 6 r
such that either

µ+ ω1 − ν =
k−1∑

i=1
αi + 2

r∑

i=k
αi or µ+ ω1 − ν =

k∑

i=1
αi.

ii) Let ν 6 µ+ nω1 be such that V (ν) ⊂ V (µ)⊗ V (ω1)⊗n; denote µ+ nω1 − ν =∑r
i=1 aiαi and set I = {i < r : ai < ai+1}. Then

2
∑

i∈I
(ai+1 − ai) 6 ar.

Proof. Let’s show i), ii) follows by induction. Denote µ = ∑
miωi and ν = ∑

niωi.
By the generalized Littlewood-Richardson rule [Na 93], either ν = µ (i.e. µ+ω1−ν =∑r
i=1 αi) or there exists 1 6 k 6 r such that ni = mi for every i 6∈ {k − 1, k} and

such that:

If k < r then
{
nk−1 = mk−1 − 1
nk = mk + 1 or

{
nk−1 = mk−1 + 1
nk = mk − 1

If k = r then
{
nk−1 = mk−1 − 1
nk = mk + 2 or

{
nk−1 = mk−1 + 1
nk = mk − 2

It follows that

µ+ ω1 − ν =
{ ∑k−1

i=1 αi in the first and in the third case∑k−1
i=1 αi + 2∑r

i=k αi in the second and in the fourth case

Thus we get i).
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Let’s show ii) by induction on n. Suppose V (ν) ⊂ V (µ′)⊗ V (ω1), with V (µ′) ⊂
V (µ)⊗ V (ω1)⊗n−1, write µ+ (n− 1)ω1 − µ′ =

∑
biαi. Set I ′ = {i < r : bi < bi+1},

by induction it holds
2
∑

i∈I′
(bi+1 − bi) 6 br.

Then by i) it follows that either

2
∑

i∈I
(ai+1 − ai) 6 2

∑

i∈I′
(bi+1 − bi) 6 br 6 ar

or
2
∑

i∈I
(ai+1 − ai) 6 2

∑

i∈I′
(bi+1 − bi) + 1 6 br + 2 = ar.

Lemma 4.3.2. Suppose that G is a simple group of type Br and let µ, ν be dominant
weights such that V (ν) ⊂ V (µ)⊗ V (ωr)⊗n. If µ+ ωr − ν = ∑r

i=1 aiαi, then

a1 6 a2 6 . . . 6 ar.

Proof. It’s enough to consider the case n = 1, the general case easily follows by
induction. Denote µ = ∑

miωi and ν = ∑
niωi. By the generalized Littlewood-

Richardson rule [Na 93], there exists a sequence (s1, . . . , sr) with si ∈ {+,−} such
that

ni =





mi + 1 if (si, si+1) = (+,−)
mi if si = si+1
mi − 1 if (si, si+1) = (−,+)

if i < r

and
nr =

{
mr + 1 if sr = +
mr − 1 if sr = −

On the other hand, we have

mi + (ai+1 − ai) = ni + (ai − ai−1) if i < r

and
mr = nr − 1− 2(ar − ar−1).

Let’s show by induction on i that ai − ai−1 > 0. Suppose that i = r. If sr = +,
then it follows mr = nr− 1 and we get ar−ar−1 = 0, while if sr = −, then it follows
mr = nr + 1 and we get ar − ar−1 = 1.

Suppose now that i < r.

- If si = si+1, then ni = mi and we get ai−ai−1 = ai+1−ai > 0 by the inductive
hypothesis.

- If (si, si+1) = (−,+), then ni = mi−1 and we get ai−ai−1 = ai+1−ai+1 > 0
by the inductive hypothesis.

- Finally if (si, si+1) = (+,−), then ni = mi+1 and we get ai−ai−1 = ai+1−ai−1.
If sj = − for every j > i, then we get ai+1 − ai = ar − ar−1 = 1 and the
claim follows. Otherwise, if k > i is the minimum such that sk = +, then we
get ai+1 − ai = ak − ak−1 + 1 > 0 by the inductive hypothesis and the claim
follows.
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Lemma 4.3.3. Suppose that G is a simple group of type Br and let µ, ν be dominant
weights such that V (ν) ⊂ V (µ)⊗ V (ω1)⊗n1 ⊗ V (ωr)⊗n2. If µ+ n1ω1 + nrωr − ν =∑r
i=1 aiαi, then

r−1∑

i=1
|ai+1 − ai| 6 a1 + ar.

Proof. It follows combining Lemma 4.3.1 and Lemma 4.3.2.

Proposition 4.3.4. Suppose that G is a simple group of type Br and let λ be a
dominant weight such that 〈λ, α∨〉 is even. Suppose that µ, ν are dominant weights
such that V (ν) ⊂ V (µ) ⊗ V (λ)⊗n and denote µ + nλ − ν = ∑r

i=1 aiαi. Then the
followings hold:

i) If αp ∈ Supp(λ) is the first simple root, then a1 6 a2 6 . . . 6 ap.

ii) If αs, αt ∈ Supp(λ) (s < t) are such that αi 6∈ Supp(λ) for every s < i < t,
then

t−1∑

i=s
|ai − ai+1| 6 as + at.

iii) If αq ∈ Supp(λ) is the last simple root and if Iq = {i > q : ai < ai+1}, then

2
∑

i∈Iq
(ai+1 − ai) 6 ar.

Proof. It’s enough to consider the case n = 1, the general case easily follows by
induction.

i) We may assume that p > 1. Let N > 0 be such that λ 6 Nωr with
SuppS(Nωr − λ) = {αp+1, . . . , αr}. By Theorem 4.1.11, the variety Xωr is normal;
thus λ 6 Nωr is trivial and there exists m > 0 such that

V (λ+ (m− 1)Nωr) ⊂ V (Nωr)⊗m.

By Lemma 4.1.14 applied to V (ν) ⊂ V (µ)⊗ V (λ) it follows then

V (ν + (m− 1)Nωr) ⊂ V (µ)⊗ V (λ+ (m− 1)Nωr) ⊂ V (µ)⊗ V (ωr)⊗mN .

Denote ∑r
i=1 biαi = µ+Nωr − ν the difference between the highest weight on the

right and the highest weight on the left: then Lemma 4.3.2 shows that b1 6 . . . 6 br.
Since by the choice of N it follows bi = ai for every i 6 p, the claim follows.

ii) Denote λ1 = ∑s
i=1〈λ, α∨i 〉ωi and λ2 = ∑r

i=t〈λ, α∨i 〉ωi. Let N1 > 0 be such
that λ1 6 N1ω1 with SuppS(N1ω1 − λ1) = {α1, . . . , αs−1} and let N2 > 0 be such
that λ2 6 N2ωr with SuppS(N2ωr − λ2) = {αt+1, . . . , αr}. By Theorem 4.1.11, the
variety Xω1+ωr is normal; in particular it follows that λ 6 N1ω1 + N2ωr is trivial
and there exists m > 0 such that

V (λ+ (m− 1)(N1ω1 +N2ωr)) ⊂ V (N1ω1 +N2ωr)⊗m.

By Lemma 4.1.14 applied to V (ν) ⊂ V (µ)⊗ V (λ) it follows then

V (ν + (m− 1)(N1ω1 +N2ωr)) ⊂ V (µ)⊗ V (λ+ (m− 1)(N1ω1 +N2ωr)) ⊂
⊂ V (µ)⊗ V (ω1)⊗mN1 ⊗ V (ωr)⊗mN2 .
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Denote ∑r
i=1 biαi = µ+mωr − ν the difference between the highest weight on

the right and the highest weight on the left: then Lemma 4.3.3 shows

r−1∑

i=1
|bi − bi+1| 6 b1 + br,

which in particular implies

t−1∑

i=s
|bi − bi+1| 6 bs + bt.

Since by the choice of N1 and N2 it follows that bi = ai for every s 6 i 6 t, the
claim follows.

iii) We may assume that q < r, otherwise there is nothing to prove. Since
〈λ, α∨〉 is even, there exists an integer N > 0 such that λ 6 Nω1 with SuppS(Nω1−
λ) = {α1, . . . , αq−1}. Since αr 6∈ SuppS(Nω1 − λ), Proposition 4.2.4 shows that
V (λ) ⊂ V (ω1)⊗N , hence V (ν) ⊂ V (µ)⊗ V (λ) implies

V (ν) ⊂ V (µ)⊗ V (ω1)⊗N .

Denote ∑r
i=1 biαi = µ+Nω1 − ν the difference between the highest weight on the

right and the highest weight on the left: then Lemma 4.3.1 shows that

2
∑

i∈Iq
(bi+1 − bi) 6 br.

Since by the choice of N it follows that bi = ai for every i > q, the claim follows.

4.3.2 Combinatorial characterization of morphisms
We are now ready to state the main theorem of this section. From now on we will
assume that αr 6∈ Supp(λ), i.e. that Xλ is not normal.

Definition 4.3.5. Suppose that G = Spin(2r + 1). Suppose that ν 6 µ 6 λ are
non-trivial weights and set µ − ν = ∑r

i=1 aiαi. Then we say that µ and ν are
λ-comparable and we write ν 6λ µ if following conditions are fulfilled:

(λ-C1) If αp ∈ Supp(λ) is the first simple root, then a1 6 a2 6 . . . 6 ap.

(λ-C2) If αs, αt ∈ Supp(λ) (s < t) are such that αi 6∈ Supp(λ) for every s < i < t,
then

t−1∑

i=s
|ai − ai+1| 6 as + at.

(λ-C3) If αq ∈ Supp(λ) is the last simple root and if Iq = {i > q : ai < ai+1}, then

2
∑

i∈Iq
(ai+1 − ai) 6 ar.

It is easy to see that 6λ is a partial order on the set of non-trivial weights µ 6 λ.
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Theorem 4.3.6. Suppose that G = Spin(2r+ 1) and let Π ⊂ X (B)+ be simple with
maximal element λ. Then Ω(Π) = ⋃m

i=1 Ω(λ, µi), where µ1, . . . , µm ∈ Π r {λ} are
the non-trivial elements which are maximal with respect to the partial order 6λ.

Before to prove the theorem, we deduce some corollaries. Extend trivially 6λ to
a partial order relation on Π+(λ) by setting ν 6λ µ if and only if µ = ν or µ = λ,
for all trivial weights ν, µ ∈ Π+(λ).

Definition 4.3.7. If Π ⊂ X (B)+ is a simple subset with maximal element λ, denote

Πred = {µ ∈ Π : µ is maximal w.r.t. 6λ}.

If Π = Πred, then Π is said to be reduced.

Theorem 4.3.8. Suppose that G = Spin(2r + 1).

i) If Π ⊂ X (B)+ is simple, then XΠ ' XΠred.

ii) Let Π,Π′ ⊂ X (B)+ be simple subsets with the same maximal element λ. Then
XΠ dominates XΠ′ if and only if for every µ′ ∈ Π′ there exists µ ∈ Π such that
µ′ 6λ µ.

In particular we get the following classification of the simple linear compactifica-
tions of SO(2r + 1).

Corollary 4.3.9. Simple linear compactifications of SO(2r + 1) are classified by
simple reduced subsets Π ⊂ X (B)+ up to equivalence.

Let’s prove now Theorem 4.3.6. First we will prove that, if ν 6 λ is a non-trivial
weight such that Ω(λ, ν) ⊂ Ω(Π), then there exists a non-trivial weight µ ∈ Π such
that ν 6λ µ (Proposition 4.3.10). Then by following steps we will prove that if
ν 6λ µ are non trivial then Ω(λ, ν) ⊂ Ω(λ, µ) (Proposition 4.3.11).

Proposition 4.3.10. Suppose that Π ⊂ X (B)+ is simple with maximal element λ
and let ν 6 λ be non-trivial. If Ω(λ, ν) ⊂ Ω(Π) then there exists µ ∈ Π such that
ν 6λ µ.

Proof. Let’s treat the case Π = {λ, µ, µ′}, where µ 6 λ and µ′ 6 λ are non-trivial
dominant weights; the general case is analogous. Let n, k, k′ > 0 with n > k + k′ be
such that

V (ν + (n− 1)λ) ⊂ V (µ)⊗k ⊗ V (µ′)⊗k′ ⊗ V (λ)⊗n−k−k′ . (4.1)

Suppose that k > 0; then ν 6 µ and denote µ − ν = ∑r
i=1 aiαi. Proceeding as in

Proposition 4.3.4, let’s show that ν 6λ µ.
To show (λ-C1), let π = Nωr be such that λ 6 π with SuppS(π − λ) =

{αp+1, . . . , αr}, where αp ∈ Supp(λ) is the first simple root. By Theorem 4.1.11, the
variety Xπ is normal; hence µ 6 π and µ′ 6 π are trivial and there exist m,m′ > 0
such that

V (µ+ (m− 1)π) ⊂ V (π)⊗m and V (µ′ + (m′ − 1)π) ⊂ V (π)⊗m′ .
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By Lemma 4.1.14 applied to (4.1) it follows then

V
(
ν + (n− 1)λ+ (k − 1)(m− 1)π + k′(m′ − 1)π

) ⊂
⊂ V (µ)⊗ V (µ+ (m− 1)π)⊗k−1 ⊗ V (µ′ + (m′ − 1)π)⊗k′ ⊗ V (λ)⊗n−k−k′ ⊂
⊂ V (µ)⊗ V (π)⊗(k−1)m+k′m′ ⊗ V (λ)⊗n−k−k′ .

Denote ∑r
i=1 biαi the difference between the highest weight on the right and the

highest weight on the left: then
r∑

i=1
biαi = µ− ν + (k + k′ − 1)(π − λ)

and Proposition 4.3.4 shows
b1 6 . . . 6 bp.

By the construction of π it follows that bi = ai for every i 6 p, thus we get (λ-C1).
To show (λ-C2), let π = N1ω1 +Nrωr be such that λ 6 π and SuppS(π − λ) =

{α1, . . . , αs−1, αt+1, . . . , αr}, where αs, αt ∈ Supp(λ) are such that αi 6∈ Supp(λ) for
every s < i < t. By Theorem 4.1.11, the variety Xπ is normal; hence µ 6 π and
µ′ 6 π are trivial and there exist m,m′ > 0 such that

V (µ+ (m− 1)π) ⊂ V (π)⊗m and V (µ′ + (m′ − 1)π) ⊂ V (π)⊗m′ .

As in the previous case, by Lemma 4.1.14 applied to (4.1) it follows then

V
(
ν + (n− 1)λ+ (k − 1)(m− 1)π+k′(m′ − 1)π

) ⊂
⊂ V (µ)⊗ V (π)⊗(k−1)m+k′m′ ⊗ V (λ)⊗n−k−k′ .

Denote ∑r
i=1 biαi the difference between the highest weight on the right and the

highest weight on the left: then
r∑

i=1
biαi = µ− ν + (k + k′ − 1)(π − λ)

and Proposition 4.3.4 shows
t−1∑

i=s
|bi − bi+1| 6 bs + bt.

By the construction of π it follows that bi = ai for every s 6 i 6 t, thus we get
(λ-C2).

To show (λ-C3), let N > 0 be such that λ 6 Nω1 with SuppS(Nω1 − λ) =
{α1, . . . , αq−1}, where αq ∈ Supp(λ) is the last simple root. Denote λ − µ =∑r
i=1miαi and λ− µ′ =

∑r
i=1m

′
iαi. Since µ and µ′ are dominant, we get

N > m1 > m2 > . . . > mr and N > m′1 > m′2 > . . . > m′r.

Hence µ 6 (N − mr)ω1 and µ′ 6 (N − m′r)ω1 are trivial. Since ν 6 µ, the
latter is non-zero. As well, if k1 6= 0, we may assume that µ′ is non-zero. Therefore
Proposition 4.2.4 shows

V (µ) ⊂ V (ω1)⊗N−mr and V (µ′) ⊂ V (ω1)⊗N−m′r
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and by (4.1) we get

V
(
ν + (n− 1)λ

) ⊂ V (µ)⊗ V (ω1)⊗(k−1)(N−mr)+k′(N−m′r) ⊗ V (λ)⊗n−k−k′ .

Denote ∑r
i=1 biαi the difference between the highest weight on the right and the

highest weight on the left: then
r∑

i=1
biαi = µ− ν + (k + k′ − 1)(Nω1 − λ)− ((k − 1)mr + k′m′r)ω1

and Proposition 4.3.4 shows

2
∑

i∈Iq
(ai+1 − ai) = 2

∑

i∈Iq
(bi+1 − bi) 6 br 6 ar.

Following proposition shows that it holds as well the converse of Proposition
4.3.10: if ν 6λ µ then Ω(λ, ν) ⊂ Ω(λ, µ). It follows that there exists an equivariant
morphism Xλ,µ → Xλ,ν if and only if ν 6λ µ.

Proposition 4.3.11. Let λ be a dominant weight and suppose ν 6 µ 6 λ are
non-trivial weights. If ν 6λ µ, then Ω(λ, ν) ⊂ Ω(λ, µ).

If I ⊂ S is a set of simple roots, define its border as follows

∂I = {α ∈ S r I : ∃β ∈ I s. t. 〈α, β∨〉 6= 0}.

Define moreover the closure of I as I = I∪∂I and the interior of I as I◦ = IrS r I.
In following lemmas we will prove previous proposition first assuming SuppS(µ−

ν) ∩ Supp(λ) = {αq} and then assuming SuppS(µ− ν) ∩ Supp(λ)◦ = ∅. Then we
will deduce a general proof.

Notice that up to consider simple subsets equivalent to {λ, µ} and to {λ, ν}, we
may assume (and we will assume) that Supp(λ) ⊂ Supp(µ) ∩ Supp(ν).

Lemma 4.3.12. Let λ be a dominant weight and suppose ν 6 µ 6 λ are non-trivial
weights such that SuppS(µ− ν) ∩ Supp(λ) = {αq}, where αq is the last simple root
occurring in Supp(λ). If ν 6λ µ, then Ω(λ, ν) ⊂ Ω(λ, µ).

Proof. Denote µ− ν = ∑r
i=1 aiαi. Since µ 6 λ and ν 6 λ are non trivial, it follows

by Theorem 4.2.2 that ar−1 = ar is an even integer. We will show the claim by
induction on the partial order 6λ.

Case 1. Suppose that ar = 0. In particular it follows ar−1 = 0 as well, and
(λ-C1), (λ-C2) and (λ-C3) imply

a1 6 . . . 6 aq−1 6 aq > aq+1 > . . . > ar−1 = ar = 0.

Denote k0 < q the minimum such that ak0 6= 0 and k1 > q the maximum such that
ak1 6= 0. Set

ν ′ = ν +
k1∑

i=k0

αi = ν − ωk0−1 + ωk0 + ωk1 − ωk1−1.

Notice that ν ′ is dominant and ν < ν ′ 6 µ: indeed by the definitions of k0 and k1 it
follows

〈ν, α∨k0−1〉 = 〈µ, α∨k0−1〉+ ak0 > 0 and 〈ν, α∨k1+1〉 = 〈µ, α∨k1+1〉+ ak1 > 0.
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If L is the Levi subgroup associated to the subset of simple roots {αk0 , . . . , αk1},
since ν ′ − ν is the highest long root, Corollary 4.1.15 shows that V (ν + λ) ⊂
V (ν ′)⊗ V (λ), thus Ω(ν, λ) ⊂ Ω(ν ′, λ). Therefore ν ′ 6 λ is non-trivial, moreover it is
easily seen that ν 6λ ν ′ 6λ µ. Thereofore by induction on the partial order 6λ we
get Ω(λ, ν ′) ⊂ Ω(λ, µ), which implies the thesis.

Case 2. Suppose that Iq = ∅ and that ar 6= 0. Then (λ-C3) implies

aq > aq+1 > . . . > ar.

Denote k0 < q the minimum such that ak0 6= 0 and set

ν ′ = ν +
q∑

i=k0

αi + 2
r∑

i=q+1
αi =

{
ν − ωk0−1 + ωk0 − ωq + ωq+1 if q < r − 1
ν − ωk0−1 + ωk0 − ωr−1 + 2ωr if q = r

Notice that ν ′ is dominant and ν < ν ′ 6 µ: indeed αq ∈ Supp(λ) ⊂ Supp(ν) and
by the definition of k0 it follows

〈ν, α∨k0−1〉 = 〈µ, α∨k0−1〉+ ak0 > 0.

If L is the Levi subgroup associated to the subset of simple roots {αk0 , . . . , αr},
then by Lemma 4.2.1 iii) we get VL(2ωq) ⊂ VL(ωk0 + ωq+1)⊗ VL(ωq). Lemma 4.1.14
and Lemma 4.1.12 show then V (ν + λ) ⊂ V (ν ′)⊗ V (λ), thus Ω(ν, λ) ⊂ Ω(ν ′, λ) and
ν ′ 6 λ is non-trivial. Moreover it is easily seen that ν 6λ ν ′ 6λ µ. Consider ν ′ 6λ µ:
then either it falls in Case 1 or it still falls in Case 2. Therefore by induction on the
partial order 6λ we get then Ω(λ, ν ′) ⊂ Ω(λ, µ), which implies the thesis.

Case 3. Suppose that Iq 6= ∅; in particular this implies ar > 2. Notice that
aj 6= 0 for every j > q: indeed otherwise (λ-C3) implies ar = 0 since

2ar 6 2
∑

i∈Ij
(ai+1 − ai) 6 2

∑

i∈Iq
(ai+1 − ai) 6 ar.

Let k0 < q the minimum such that ak0 6= 0 and let k1 ∈ Iq be the maximum such
that k1 − 1 6∈ Iq: therefore either k1 = q and

aq < . . . < aj > . . . > ar with q 6 j 6 r

or
ak1−1 > ak1 < . . . < aj > . . . > ar with q < k1 < j 6 r.

Set

ν ′ = ν +
k1∑

i=k0

αi + 2
r∑

i=k1+1
αi = ν − ωk0−1 + ωk0 − ωk1 + ωk1+1.

Notice that ν ′ is dominant and ν < ν ′ 6 µ: indeed αq ∈ Supp(λ) ⊂ Supp(ν) and by
the definition of k0 it follows

〈ν, α∨k0−1〉 = 〈µ, α∨k0−1〉+ ak0 > 0,

while by the definition of k1 it follows that either αk1 = αq ∈ Supp(λ) ⊂ Supp(ν) or
k1 > q and

〈ν, α∨k1〉 = 〈µ, α∨k1〉+ ak1−1 + ak1+1 − 2ak1 > 0.
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If L is the Levi subgroup associated to the subset of simple roots {αk0 , . . . , αr},
then by Lemma 4.2.1 iii) we get VL(ωq + ωk1) ⊂ VL(ωk0 + ωk1+1)⊗ VL(ωq). Lemma
4.1.14 and Lemma 4.1.12 show then V (ν+λ) ⊂ V (ν ′)⊗V (λ), thus Ω(ν, λ) ⊂ Ω(ν ′, λ)
and ν ′ 6 λ is non-trivial.

Notice that ν 6λ ν ′ 6λ µ: indeed, if µ−ν ′ =
∑r
i=1 a

′
iαi and I ′q = {i : a′i < a′i+1},

then we get

2
∑

i∈I′q
(a′i+1 − a′i) = 2


∑

i∈Iq
(ai+1 − ai)


− 2 6 ar − 2 = a′r.

Therefore by induction on the partial order 6λ we reduce to Case 2 and we get
Ω(λ, ν ′) ⊂ Ω(λ, µ), which implies the thesis.

Lemma 4.3.13. Let λ be a dominant weight and suppose ν 6 µ 6 λ are non-trivial
weights such that SuppS(µ− ν) ∩ Supp(λ)◦ = ∅. If ν 6λ µ, then Ω(λ, ν) ⊂ Ω(λ, µ).

Proof. Denote µ− ν = ∑r
i=1 aiαi and denote Supp(λ) = {αi1 , . . . , αin}. Set k0 the

minimum such that ak0 6= 0 and set

j = min{s 6 n : k0 6 is}

If j = n, then SuppS(µ − ν) ∩ Supp(λ) = {αq} and the claim has been proved in
Lemma 4.3.12. Suppose j < n, by induction on the partial order 6λ we will reduce
to the case j = n.

Conditions (λ-C1) and (λ-C2) imply that ak0 6 ak0+1 6 . . . 6 aij . Set

k1 =
{

max{k < ij+1 : ak > ak+1} if as 6= 0 for all ij < s < ij+1
min{k < ij+1 : ak+1 = 0} otherwise

and set
ν ′ = ν + αk0 + . . .+ αk1 = ν − ωk0−1 + ωk0 + ωk1 − ωk1−1.

Notice that ν ′ is dominant and ν < ν ′ 6 µ: indeed by the definitions of k0 and
k1 we get

〈ν, α∨k0−1〉 = 〈µ, α∨k0−1〉+ ak0 > 0,
〈ν, α∨k1+1〉 = 〈µ, α∨k1+1〉+ ak1 + ak1+2 − 2ak1+1 > 0.

If L is the Levi subgroup associated to the subset of simple roots {αk0 , . . . , αk1},
since ν ′ − ν is the highest long root, Corollary 4.1.15 shows that V (ν + λ) ⊂
V (ν ′)⊗ V (λ), thus Ω(ν, λ) ⊂ Ω(ν ′, λ). Therefore ν ′ 6 λ is non-trivial.

Notice that ν 6λ ν ′ 6λ µ: indeed, if µ − ν ′ = ∑r
i=1 aiαi, then (λ-C1) and

(λ-C3) are straightforward, while (λ-C2) follows by

ij+1−1∑

i=ij
|a′i+1 − a′i| =

ij+1−1∑

i=ij
|ai+1 − ai| − 1 6 aij + aij+1 − 1 = a′ij + a′ij+1 .

Therefore proceeding inductively on the partial order 6λ, we reduce to a weight
which satisfies the hypotheses of Lemma 4.3.12.

We are now able to prove Proposition 4.3.11 in full generality.



76 4. Simple linear compactifications of semisimple adjoint groups

Proof of Proposition 4.3.11. If µ− ν = ∑
aiαi, denote

µ0 = ν +
∑

αi∈SrSupp(λ)◦
aiαi.

By construction, if 〈µ0, α∨〉 < 0, then α ∈ Supp(λ) ⊂ Supp(ν): therefore, µ0 is
dominant and ν 6λ µ0 6λ µ.

Since SuppS(µ0−ν)∩Supp(λ)◦ = ∅, by Lemma 4.3.13 we get Ω(λ, ν) ⊂ Ω(λ, µ0).
If α ∈ SuppS(µ−µ0) ⊂ Supp(λ)◦, consider µ1 = µ0+α: up to consider equivalent

subsets, we may assume that µ1 is dominant. Denote L the Levi subgroup whose
unique simple root is α. Since it is the highest root of the associated root system, by
Lemma 4.1.15 we get V (µ0+λ) ⊂ V (µ1)⊗V (λ): in particular this shows the inclusion
Ω(λ, µ0) ⊂ Ω(λ, µ1). Proceeding inductively root by root we get Ω(λ, µ0) ⊂ Ω(λ, µ),
which implies the claim.

4.4 The case G2

Lemma 4.4.1. Suppose that G is a simple group of type G2.

i) V (ω1 + ω2) ⊂ V (2ω1)⊗ V (ω2)

ii) V (4ω1 + 6ω2) ⊂ V (3ω2)⊗3

Proposition 4.4.2. Suppose G is a simple group of type G2 and let λ be a dominant
weight with Supp(λ) = {α2}. Then a dominant weight µ 6 λ is trivial if and only if
λ− µ 6= α1 + α2.

Proof. If λ − µ = α1 + α2, then µ = λlb is the little brother of λ: therefore by
Theorem 4.1.11 µ is non-trivial.

Suppose conversely that µ 6 λ is a dominant weight and that λ− µ 6= α1 + α2;
let’s show that µ− λ ∈ Ω(λ). By Lemma 4.1.12 we may assume that both a1 and
a2 are non-zero.

Case 1. Suppose that a1 = 1; then it follows a2 > 1. Since µ is dominant, it
follows that 〈µ, α∨1 〉 > 3a2 − 2 > 4 and that 〈λ, α∨2 〉 > 2a2 − 1 > 3. Denote

µ′ = µ+ α1 + 2α2 = µ− 4ω1 + 3ω2 :

then by Lemma 4.4.1 ii) together with Lemma 4.1.14 it follows that V (µ+ 2λ) ⊂
V (µ′)⊗ V (λ)⊗2. Since SuppS(λ− µ′) ⊂ {α2}, it follows that µ′ 6 λ is non-trivial
and we get the claim.

Case 2. Suppose that a1 > 1. Denote b1 the maximum integer such that 2b1 6 a1
and denote

µ′ = µ+ b1ω1 = µ+ 2b1α1 + b1α2.

Since µ is dominant we get a2 > b1; therefore µ 6 µ′ 6 λ and by Lemma 4.4.1 i)
together with Lemma 4.1.14 it follows that V (µ+ λ) ⊂ V (µ′)⊗ V (λ).

If a1 is even, then SuppS(λ− µ′) = {α2} and we are done, while if a2 − b1 > 1
then the claim follows since µ′ 6 λ falls in case 1.

Therefore we are reduced to the case λ − µ′ = α1 + α2. Then a1 = 2a2 − 1
and by 〈µ, α∨1 〉 = 3a2 − 2a1 > 0 we get λ − µ = 3α1 + 2α2 = ω2. Since ω2 is
the highest long root, it follows then V (ω2) ⊂ V (ω2)⊗2 and Lemma 4.1.14 implies
V (µ+ λ) ⊂ V (λ)⊗2.
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Corollary 4.4.3. Suppose G is a simple group of type G2. Then the adjoint group
Gad admits a unique non-normal simple projective embedding, namely Xω2.

4.5 The symplectic case: the coordinate ring of Xλ

In the following conjecture we give a description of the coordinate ring k[X◦λ], where
G is a simple group of type Cr. The conjecture has been checked in many cases with
the aid of the software [LiE 07].

Conjecture 4.5.1. Suppose G is a simple group of type Cr. Let λ be a dominant
weight and set αq the last simple root which occurs in Supp(λ) with 0 6 q < r. Let
µ 6 λ be a dominant weight, write λ− µ = ∑r

i=1 aiαi and set a0 = 0. Then µ 6 λ
is non-trivial if and only if

0 < ar < r − q and ar−ar−1 < ar−ar < . . . < ar−1 < 2ar.
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