
TESI DI DOTTORATO

Sara Di Ruzza

Some results on the dynamics of conservative and dissipative
systems with applications to Celestial Mechanics

Dottorato in Matematica, Roma «La Sapienza» (2010).

<http://www.bdim.eu/item?id=tesi_2010_DiRuzzaSara_1>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non
è consentito l’utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare
questo avvertimento.

bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI

http://www.bdim.eu/

http://www.bdim.eu/item?id=tesi_2010_DiRuzzaSara_1
http://www.bdim.eu/
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Introduction

This thesis concerns the study of some Dynamical Systems which

are related to interesting problems in Celestial Mechanics. For exam-

ple, a really fascinating subject of Celestial Mechanics is the occurrence

of resonances in the solar system, which are particular configurations

of celestial bodies, that recur periodically in the time. In particular, we

will be interested in the so–called spin–orbit resonances, which can be

studied through the analysis of the dynamics of the dissipative standard

map, a discrete system strictly related to the spin–orbit problem. The

existence of periodic solutions of the dissipative standard map as well

as the presence of invariant tori and cantori can be very useful to under-

stand the real physical phenomena occurring in the solar system and,

more generally, in the Universe. The existence of periodic orbits can

be proved within their Arnold’s tongues, which are particular struc-

tures involving the parameters which define the dissipative standard

map; the existence of cantori is proved by means of the Aubry–Mather

theory for twist maps. In this thesis we deal also with the Sitnikov’s

problem, which is a particular case of restricted three–body problem

where two massive bodies (primaries) move in Keplerian orbits around

a common barycenter, while a third body moves perpendicularly to the

plane of the primaries. The motion of the third body strictly depends

on the eccentricity of the Keplerian ellipses in which the primaries

move; it is of great interest the study of the dynamics as the eccentric-

ity varies. KAM and Nekhoroshev’s theory can be suitably applied in

order to analyze the dynamics of this model.
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4 INTRODUCTION

In the following, we start with a short background of Dynamical

Systems and a description of the most important problems of Celestial

Mechanics; then, we explain in detail the content of the thesis.

0.1. Background and notation

A dynamical system can be described by a real function H =

H(I, φ, t) called Hamiltonian, where the variables (I, φ) ∈ Rn × Tn

represent the action–angle variables which are related, through a sym-

plectic transformation, to the position and the velocity of the system.

If the Hamiltonian depends only on the action variables I, namely

H(I, φ, t) = H(I), the system is integrable and the solution can be writ-

ten explicitly. Thus, the motion of an integrable system is completely

known. The 2n–dimensional phase–space is fibrated by invariant tori,

namely n–dimensional surfaces invariant with respect to the motion:

if the initial condition is on such surface, the motion will remain on it

for all times.

The motion of integrable systems is fully characterized by periodic

and quasi–periodic motions. We have a periodic motion when there

exists a quantity T , such that the system at time t = T is again in the

same configuration in which it was at time t = 0. This kind of motion

occurs when the frequency of the motion, given by ω = ∂H/∂I, is

rationally dependent, i.e. ω · k = 0 for some k ∈ Zn \ {0}, where the

dot stands for the scalar product. In this case, the trajectories are

closed. On the contrary, we have a quasi–periodic motion when the

frequency ω is rationally independent, namely when ω · k = 0 implies

k = 0 with k ∈ Zn. In this case the trajectory on an invariant torus

is not closed, but it fills densely the whole torus and any point never

comes back to itself.
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Let us see what happens when we modify an integrable system by

adding a small perturbation. The system, eventually, becomes non–

integrable, but it is close to an integrable one. We refer to these systems

as nearly–integrable systems. The Hamiltonian of a nearly–integrable

system can be written as:

H(I, φ, t) = H0(I) + εH(I, φ, t) , (0.1)

meaning that, the Hamiltonian can be split into two parts, one depend-

ing only on the action variables I and another part, which is in norm

very small, depending also on the angle variables φ and, eventually,

also on the time t. The quantity ε represents a small real parameter

greater than zero, which measures the size of the perturbation.

The dynamics of a nearly–integrable system changes a lot from the

dynamics of an integrable system, but starting from the latter, we

can deduce many properties of the former. The dynamics of a nearly–

integrable system is described by regular and bounded motions as in the

case of an integrable system; in addition we can find chaotic motions,

showing a deep sensitivity to the initial conditions. Nearly–integrable

systems show also cantori, which are totally disconnected invariant

sets and they are graphs of a Cantor set. A cantorus arises from the

break–down of a KAM torus. Let us explain better this concept. If we

consider an integrable system, the phase–space is foliated by invariant

tori on which periodic and quasi–periodic motions take place. When

the system is perturbed, some of the quasi–periodic tori do not persist

under the perturbation and they give rise to cantori. The determination

of cantori is far from be trivial as well as the proof of their existence.

Most important theories, as KAM, Aubry–Mather or Nekhoroshev’s

theory, concern the study of the behavior of the dynamics when, in

a nearly–integrable system, the tori deform and break–down as the

perturbing parameter ε increases.
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Let us also remark that Dynamical Systems can be conservative or

dissipative. A system is conservative if the total energy is preserved.

A system is dissipative if it exchanges and disperses energy. A conser-

vative system is characterized by a set of equations which preserve the

volume of the phase–space, and it is said to be area–preserving. In a

conservative system, the determinant of the Jacobian of the equations

of motion must be equal to one. On the contrary in a dissipative system

the volume of the phase–space is not preserved and the determinant

of the Jacobian of the equations of motion turns out to be different

from one; in particular, it can be less than one (contractive system) or

greater than one (expansive system). We will see that the dissipation

plays a very important role in the explanation of models describing real

phenomena.

0.2. Some problems of Celestial Mechanics

We describe three important problems of Celestial Mechanics, in

particular the three–body problem, the spin–orbit problem, and the Sit-

nikov’s problem, which is a special case of the restricted 3–body prob-

lem.

The 3–body–problem will allows us to define the orbital resonances

of Chapter 1; the spin–orbit problem will provide a physical motivation

of the dissipative standard map studied in Chapter 3; the Sitnikov’s

problem will be extensively analyzed in Chapter 4.

0.2.1. Three–body–problem. One of the most important prob-

lems of Celestial Mechanics is the three–body problem or, more generally,

the n–body problem. Let us take two bodies (for example the Sun and

a planet, or a planet and a satellite) interacting by the gravitational

law; it is well known that such problem is integrable and it admits an

explicit solution provided by Kepler’s laws, which fully describe the
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motion of the two bodies. Let us add a third body interacting gravi-

tationally with the first two. Let us consider, for example, the model

Sun–Earth and the interaction with Jupiter, which has a mass much

bigger than the mass of the Earth. The system formed by the three bod-

ies is non–integrable. In 1889, H. Poincaré proved that the three–body

problem, and more generally the n–body problem, does not admit a for-

mal mathematical solution. This model is a nearly–integrable system

(since the mass of Jupiter is small compared to that of the Sun) and the

Hamiltonian describing the model can be split into two parts: the first

part is integrable and the other part represents the perturbation due

to Jupiter. The integrable part is the Keplerian interaction between

the two bodies (Sun–Earth); the non–integrable part is a perturbation

and it represents the interaction with the third body (Jupiter); the per-

turbing parameter, measuring the size of the perturbation, is the ratio

between the two primaries’ mass. In the Sun–Earth–Jupiter system,

the perturbing parameter is given by mG/mS, where mG is the mass

of Jupiter, mS is the mass of the Sun; such ratio amounts approxima-

tively to 10−3. Since the three–body–problem is non–integrable, the

dynamics of such model is very difficult to predict. In fact, we can

have regular motions, like periodic and quasi–periodic motions, as well

as chaotic motions.

The model turns out to be more realistic if we add some dissipa-

tions as the radiation pressure (which is exerted on any surface subject

to electromagnetic radiation), or the solar wind which is caused by

charged particles originating from the Sun, or the Poynting–Robertson

effect due to the absorption and re–emission of the solar radiation. The

dissipation is very useful in the study of the formation and the evolu-

tion of the Solar System. For example, if we consider a protoplanetary
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disk, the motion of a particle orbiting around the Sun can be well de-

scribed by the three–body–problem with dissipation (compare with [2],

[3]).

0.2.2. Spin–orbit problem. We introduce an important model

of interest in Celestial Mechanics, which goes under the name of spin–

orbit problem. Let us consider two bodies (a planet and a satellite)

interacting by the gravitational law; let us introduce the following hy-

potheses: (i) the satellite is a triaxial body (it is an ellipsoid), orbiting

on a Keplerian ellipse around the planet (we neglect the perturbations

due to other bodies); (ii) the direction of the spin–axis coincides with

that of the smallest physical axis of the ellipsoid; iii) the spin–axis is

perpendicular to the orbital plane; iv) dissipative effects are neglected

(in the case of the conservative model). This is a nearly–integrable

system, where the perturbation is due to the equatorial oblateness of

the satellite. In the Earth–Moon system, the perturbing parameter is

about equal to 10−4. In this model, we can consider a dissipation if

the hypothesis iv) is removed; for example we can introduce a dissipa-

tive force, like the tidal torque due to the non-rigidity of planets and

satellites. Also in this case, the dissipation plays a very important role

in the formation of the Solar System; in particular, the capture into

a spin–orbit resonance increases as the dissipation gets stronger, thus

suggesting that the dissipative contribution allowed for a selection of

the resonances during the formation of the Solar System (compare with

[18]).

0.2.3. Sitnikov’s problem. A very simple but not trivial exam-

ple of three–body–problem, is provided by the Sitnikov’s problem. It

is an example in which we can find oscillatory motions, quasi–periodic

motions as well as chaotic motions. Two bodies (the primaries) orbit
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in the same plane and move on Keplerian orbits in an antisymmet-

ric way. A third body with negligible mass moves perpendicularly to

the primaries through their common barycenter. The study concerns

the motion of the third body under the influence of the primaries. It

could be thought as a model describing the motion of a small body

interacting with a pair of binary stars.

0.3. Content of the thesis

The present thesis is formed by four Chapters. Chapter 1 concerns

a review of orbital and spin–orbit resonances occurring in the Solar

System; the content of this Chapter is part of a review paper written

in collaboration with A. Celletti (see [16]). In Chapter 2 we review the

Aubry–Mather theory with special emphasis to the dissipative setting.

In Chapter 3, the dissipative standard map is described; some new

results about the existence of periodic orbits and about the relation

between periodic and quasi–periodic orbits are presented. The new

results are provided in an original paper written in collaboration with

A. Celletti (see [15]). Chapter 4 concerns the Sitnikov’s problem. A

new formulation of the problem and new results about the stability of

the system are presented. The content of this Chapter is contained in

an original paper written in collaboration with C. Lhotka (see [29]).

0.3.1. Resonances. In the first Chapter of the thesis, we intro-

duce the resonances which can be observed in many objects of the Solar

System. Let us consider some quantities characterizing the motion of

two or more celestial bodies; a resonance in Celestial Mechanics occurs

when the relation between these quantities is the ratio of two small

integers. In particular, a celestial body has two fundamental motions:

the revolution around a central body and the rotation around its spin–

axis; thus, we find two important resonances in our Solar System: the
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orbital resonances and the spin–orbit resonances. The first is related

to the three–body–problem and concerns the motion of two bodies or-

biting around the Sun (for example two planets). We consider the two

periods of revolution T1 and T2 of the two bodies around the Sun. If

their ratio is a rational number which can be written as the ratio of

two small integers, then we will say that the two bodies are in an or-

bital resonance. The second resonance concerns the motion of the two

bodies (for example a satellite orbiting around the host planet). Let

Trev and Trot be, respectively, the period of revolution of the satellite

around the planet, and the period of rotation of the satellite around

itself. Then, we will say that a spin–orbit resonance occurs if the ratio

between Trev and Trot can be written as the ratio of two small integers.

There is an important link between the resonances and the models

described before. Let us consider the equations of motion of the three–

body–problem and of the spin–orbit model; then, it is easy to show that

periodic solutions of these models correspond to the orbital and spin–

orbit resonances, respectively. Periodic orbits play a fundamental role

in the explanation of real phenomena appearing in the Solar System. In

fact, resonances are periodic configurations that recur in time, placing

the celestial bodies involved always in the same location. Periodic

solutions of the equations of motion describe exactly these events.

0.3.2. Aubry–Mather theory. In the last decades, many theo-

ries about non–integrable systems have been developed. In the second

Chapter, a detailed description of the Aubry–Mather theory is pre-

sented. It provides many information about the sets appearing in the

phase–space. Let us consider an invariant torus on which the dynamics

of an unperturbed system takes place. If we introduce a perturbation,

KAM theory ensures that, under suitable conditions on the system, the

torus persists provided the perturbing parameter is sufficiently small.
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If the size of the perturbation is greater than a critical value, then the

torus breaks-down and Aubry–Mather theory ensures that in conser-

vative systems, the torus is replaced by a cantorus. As we have already

said, this set is totally disconnected and it provides an important prop-

erty of the dynamics, allowing diffusion of the trajectories.

Periodic orbits are very important in the study of quasi–periodic

motions. In fact, given an irrational frequency ω, we can find a sequence

{pn/qn} of rational numbers converging to ω as n goes to infinity. Thus,

if we know the periodic solutions of periods pn/qn, we can write the

approximate solution of the quasi–periodic orbit with frequency ω and

in the same way we can approximate a cantorus. Periodic orbits are,

therefore, a very interesting object of study, since, through them, we

can obtain information about the whole dynamics.

The Aubry–Mather theory is well known in the conservative setting,

but in dissipative systems the existence of cantori is not obvious and

it is quite difficult to extend it. In Chapter 2, we review many results

about the Aubry–Mather theory for dissipative twist maps, like the

works by A. Katok (see [44]) and M. Casdagli (see [9]). We collect

these results in order to have a global view on the state–of–art about

the existence of cantori in dissipative systems.

0.3.3. The dissipative standard map. An interesting model

within the class of discrete nearly–integrable systems with dissipation

is the so–called dissipative standard map. The study of attractors of

such map is particularly relevant in Celestial Mechanics, since the dis-

sipative standard map is the Poincaré map of a suitable integration of

the spin–orbit problem with dissipation. The equations defining the

mapping can be written as
{

yn+1 = byn + c+ ε sinxn

xn+1 = xn + yn+1 ,
(0.2)
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where xn ∈ T = R/(2πZ), yn ∈ R, ε > 0 is the perturbing parameter,

0 < b < 1 is the dissipative parameter and c > 0 is a drift param-

eter. The dynamics of the dissipative standard map admits periodic,

quasi–periodic and chaotic motions. We study the dynamics with great

emphasis to the existence of periodic orbits. To this end, we develop a

suitable parameterization for periodic orbits apt to provide an analyt-

ical approximation of invariant attractors.

We see that the drift c plays a very important role for the existence

of periodic orbits. A quasi–periodic orbit with frequency ω exists for

a specific value of the drift, namely c = c(ω). On the contrary, the

existence of a periodic orbit with frequency 2πp/q, for some p, q ∈ Z+,

is ensured if the drift c belongs to a whole connected interval Ipq ⊆
R. The existence and determination of such interval can be found

through an implementation of the implicit function theorem or through

a suitable parametric representation.

If we consider a sequence of rational numbers {pn/qn} converging

to an irrational number ω, we have numerical evidence, corroborated

by the analytical expansion, that the intervals Ipnqn tend to the con-

stant c(ω) related to the quasi–periodic orbit with frequency ω. In the

same way, we have numerical evidence that periodic orbits of period

pn/qn tend to the quasi–periodic orbit with frequency ω. Thus, the

parametric representation allows us to relate the solutions of the peri-

odic and quasi–periodic orbits. Through the parametric representation

of periodic orbits, we are also able to determine the Arnold’s tongues,

which provide the region of existence of periodic orbits; they are found

through the study of the behavior of the drift c as a function of the

perturbing parameter ε. For a given periodic orbit the amplitude of the

drift interval decreases as the perturbing parameter gets smaller; the



0.3. CONTENT OF THE THESIS 13

variation of the drift as a function of the perturbing parameter defines

the Arnold’s tongues.

The analysis of the dissipative standard map provides interesting

results concerning the spin–orbit resonances occurring in the Solar Sys-

tem. In particular, we are able to prove the existence of periodic orbits

provided that the drift belongs to a given interval. From a physical

point of view, this is very important because the drift is strictly re-

lated to the eccentricity of the Keplerian ellipse of the satellite around

the planet; thus, it can be proved that spin–orbit resonances occur just

for suitable values of the eccentricity.

0.3.4. Sitnikov’s problem. In the last Chapter, we want to im-

plement KAM and Nekhoroshev’s theorems to an astronomical prob-

lem. If the system and the frequency of the motion satisfy suitable

conditions, then, KAM theorem provides a strong stability property.

Strong stability means that we can follow the motion and have infor-

mation about it for all the times. In a similar way, the Nekhoroshev’s

theorem provides long stability properties of the system. In the last

Chapter we show some applications of the two theorems to the Sit-

nikov’s problem. Our aim is to provide new results about the sta-

bility properties of such problem by using constructive formulations

of the two theorems. The Sitnikov’s problem is one–dimensional and

time dependent; we consider the equation of motion and we rewrite

the problem in a Hamiltonian formulation by introducing action–angle

variables. We construct a Birkhoff’s normal form, which allows us

to implement Nekhoroshev’s and KAM theories. One aim is to pro-

vide Nekhoroshev’s exponential stability estimates; this task has been

achieved through the Pöschel formulation of Nekhoroshev’s theorem

([56]). Then we show the existence of KAM tori around the elliptic

fixed point through a suitable parametric representation of the torus.
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The formulation of the problem that we have introduced depends

on two small parameters, namely the eccentricity e of the two massive

bodies and a rescaling parameter η measuring the distance of the elliptic

fixed point placed in the origin of the phase–space. In our work, we

provide the domains, in terms of the two small parameters e and η, in

which the two theorems can be applied.

Let us remark that we have introduced a new formulation of in-

tegrability of the Sitnikov’s problem. In fact, in classical literature,

the problem is integrable by taking the eccentricity e = 0 and it is

non–integrable for e 6= 0; in particular,the eccentricity measures the

perturbation. On the contrary, we consider a Hamiltonian formula-

tion such that the size of the perturbation is not measured only by

the eccentricity, but also by another parameter, namely the distance

from the elliptic fixed point η. Therefore, we remove the dependence

of the angle variables to higher orders in such a way that the problem

becomes integrable also for values of e 6= 0.



CHAPTER 1

Resonances in the Solar System

This Chapter is almost entirely the reproduction of the review pa-

per “Resonances in the solar system” written in collaboration with

Alessandra Celletti; it will appear in the proceedings of the meeting

“Astronomia: storia e cultura” held in Campobasso (Italy) on May

21st, 2009 (see [16]).

In this Chapter, we describe how the resonances work and we pro-

vide several examples of resonant bodies in the solar system. We de-

scribe the orbital resonances showing which effects they can have on

the bodies involved and then we show many examples of them. Then,

we describe the spin–orbit resonance and we provide a model which

describes the problem. Successively, we provide some examples of the

occurrence of the spin–orbit resonance.

1.1. Introduction

A resonance in Celestial Mechanics occurs when some of the quanti-

ties characterizing the motion of two or more celestial bodies are related

in such a way that their ratio amounts to that of two small integers.

Two main kinds of resonances are present in the solar system: orbital

resonances and spin–orbit resonances. For the first kind we consider

three bodies, for example Sun, Jupiter and an asteroid. We measure

the orbital period of Jupiter and of the asteroid around the Sun; an or-

bital resonance occurs whenever the ratio of these periods is a rational

number. In the case of the spin–orbit resonance, we consider a satellite

moving around a central planet. We measure the period of revolution

15
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of the satellite around the planet, and the period of rotation of the

satellite around itself; whenever the ratio of the two periods is a ratio-

nal number, one speaks of a spin–orbit resonance. To have a physical

meaning, the integers whose ratio provides the rational number must

be typically small.

The solar system is plenty of resonances, both of orbital and rota-

tional type. Once we will accumulate enough data concerning extra–

solar planetary systems, it will be very interesting to see whether res-

onances within exoplanets are as frequent as in the solar system.

1.2. Orbital resonances

The most frequent resonance in the solar system is the orbital res-

onance, or mean motion resonance. It involves the orbital periods of

two objects orbiting around a common primary. In particular, an or-

bital resonance occurs when the periods of revolution of two planets

(satellites) orbiting around the Sun (the host planet) are such that

their ratio is close to an integer fraction ([53]). Of course, in physical

situations the ratio cannot be exactly equal to a rational number, but

often a precision to the third or fourth decimal digit suffices. Let T1

and T2 be the orbital periods of the two celestial bodies. Let p ,q ∈ Z
with q 6= 0. The two bodies are said to satisfy an orbital resonance of

order p : q, whenever it is

T1

T2

=
p

q
.

Therefore, an orbital resonance implies a periodic repetition of certain

geometrical configurations between the two bodies, so that the recip-

rocal gravitational influence has a periodic character: their attraction

increases when the two bodies approach each other, and it decreases

when the two bodies are faraway. The periodic occurrence of the same

dynamical configuration can contribute to stabilize or destabilize the
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orbit: one has stabilization whenever the two bodies move in a syn-

chronized way so that they never approach too much, thus avoiding

drastic changes of the orbits; viceversa, if the bodies approach closely,

one orbit might slowly change, thus providing a modification of the

trajectory which can become quite consistent over long time scales.

We will show different cases of orbital resonances in the solar sys-

tem. Jupiter and Saturn are close to a 2:5 resonance: while Jupiter (the

inner planet) completes five orbits around the Sun, Saturn (the outer

planet) has made exactly two turns. Other examples are given by the

Galilean satellites of Jupiter: Io–Europa and Europa–Ganymede are

both in a 1:2 resonance (the Laplace resonance), Ganymede–Callisto

are in a 1:4 resonance; concerning the satellites of Saturn, we find that

Titan–Hyperion satisfy a 3:4 resonance, Mimas–Tethys and Enceladus–

Dione are both in a 1:2 resonance, Titan–Iapetus are in a 1:5 reso-

nance. Another very important resonance occurs between Neptune and

Pluto, which satisfy a 2:3 resonance. Many other orbital resonances are

present in the solar system; some of them are discussed below.

1.2.1. A zoo of resonant planets and satellites. Neptune–

Pluto. As remarked before, orbital resonances can be extremely stable

and self protecting: this is the case, for example, of the Neptune–Pluto

pair. Pluto moves on a so highly eccentric orbit, that it crosses the orbit

of the giant Neptune, which moves on an almost circular trajectory.

Nevertheless the orbital resonance keeps Pluto away from Neptune,

and it prevents the two planets from a collision as well as from a close

encounter.

The orbital periods of Neptune and Pluto are, respectively, TN =

164.8 years and TP = 247.9 years: thus, their ratio is

TP

TN

= 1.5042 ≈ 3

2
,
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namely, while Pluto completes 2 orbits around the Sun, Neptune has

made 3 revolutions. Let us assume that Neptune moves in a circular

orbit and that the initial position of Pluto is at aphelion (namely, when

the distance between the planet and the Sun is maximum). With ref-

erence to Figure 1.1, the alignments between Sun, Neptune and Pluto

(namely the positions at which the gravitational interaction between

the three bodies is stronger) take place at the initial position (marked

by index 0), after 1 revolution of Pluto and 1.5 orbits of Neptune

(marked by index 3), and again when the initial condition is restored

(marked by index 6). In these configurations, Pluto is always at the

aphelion and the distance from Neptune is maximum, so that Pluto is

not strongly influenced by the gravitational attraction of Neptune.

Figure 1.1. The resonance between Neptune and Pluto

(after [16]).

Plutinos. There are many other objects, called Plutinos, sharing

with Pluto the 2:3 resonance ([53]); their large number provides an

indication of the importance of this resonance in shaping the dynamical

structure of the Transneptunian Belt. Other orbital resonances can be

found in the Kuiper Belt (which is a part of the Transneptunian Belt),
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like those of order 1:1 (Neptune Trojans), 1:2 (the Twotinos), as well

as 3:5, 4:7 and 2:5.

After the discovery of the Plutinos, the official status of Pluto as a

planet became controversial. Many scientists wondered whether Pluto

should be considered as a separate body or just part of the Plutinos

population. In 2006, a resolution of the IAU (International Astronom-

ical Union) provided the official definition of a planet. According to

this resolution, there are three main requirements needed to acquire

the status of a planet:

1) the object must be in orbit around the Sun;

2) the object must be massive enough, so that it becomes a sphere in

hydrostatic equilibrium under its own gravitational force;

3) the object must have cleared the neighborhood around its orbit.

Due to the presence of the Plutinos, Pluto does not satisfy the third

requirement; for this reason, in 2006 the IAU assembly downgraded

Pluto to the status of a “dwarf planet ”, a celestial body satisfying the

first two conditions, but not the third one.

Asteroid belt. We have mentioned that orbital resonances can

also act to drastically change the trajectories. An important example

can be found in the Asteroid Belt, the big region populated by small

bodies in heliocentric orbits between Mars and Jupiter. If the number

of asteroids is plotted as a function of their semimajor axis (recall that

semimajor axis and orbital period are related by the third Kepler’s law),

one immediately notices a certain number of empty zones, the Kirkwood

gaps ([53]). These gaps correspond to orbital resonances of order 1:2,

1:3, 2:5, 7:3 (compare with Figure 1.2). Asteroids once populating

these regions have been ejected thanks to repeated perturbations due

to Jupiter.
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There are also populations of asteroids temporarily trapped in a

resonance, like the Alinda family (close to the 1:3 resonance) and the

Griqua family (corresponding to the 1:2 resonance). These groups are

characterized by a very high eccentricity, which steadily increases due

to the interaction with Jupiter, until some objects eventually have a

close encounter with an inner planet that provokes their ejection from

the resonance. In particular, chaotic mechanisms seem to be at the

basis at the depletion of the 1:3 resonance ([60]).

On the contrary, there are regions in which the concentration of

asteroids is very high; they correspond to specific resonances, like the

Hilda asteroids in a 2:3 resonance with Jupiter, the Thule asteroids in

a 3:4 resonance and the Trojan asteroids in a 1:1 resonance.

Figure 1.2. Asteroids histogram showing the number

of asteroids versus their semimajor axis (after [16]).
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Saturn’s ring. The occurrence of orbital resonances is also found

within planetary rings. For example, some depletions which are ob-

served within Saturn’s rings seem to be strictly related to orbital res-

onances with Saturn’s moons ([52], [53]). In particular, the Cassini’s

division is a gap within Saturn’s rings; a potential particle within the

Cassini’s division would be at a distance from the planet correspond-

ing to a 1:2 resonance with Mimas (one of the satellites of Saturn).

This means that the particles which would be located in the Cassini’s

division make two orbits, while Mimas completes one trajectory. This

resonance causes Mimas’ pulls on the ring particles to accumulate,

destabilizing their orbits and leading to a sharp cutoff in the ring den-

sity. We also remark that some ringlets seem to be maintained by the

gravitational effects of some small satellites, like Pandora, Prometheus

and Janus.

Lagrangian points. A very peculiar resonance is that of order 1:1,

namely the synchronous resonance. It occurs when the bodies share

the same orbit. By definition a planet clears the neighborhood around

its orbit by ejecting everything else around. Nevertheless, an excep-

tional case is represented by the 1:1 resonance and in particular by the

triangular Lagrangian points ([11], [52], [53]). These positions corre-

spond to the stationary solutions of the equations of motion describing

the circular, restricted, three–body problem. This model is composed

by three bodies of masses m1, m2, m3, orbiting under their mutual

gravitational influence. In the restricted framework, we assume that

the third body has negligible mass with respect to the two primaries

with masses m1, m2. Moreover, we suppose that the primaries move

in circular orbits around their common center of mass.

The Lagrangian points correspond to five equilibrium positions of

the equations of motion. In a rotating frame, at the Lagrangian points
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the gravitational attraction of the two primaries is counter–balanced by

the centrifugal force, so that the third body is stationary with respect

to the primaries (see Figure 1.3).

The first three solutions, found by L. Euler, are called L1, L2, L3;

they lie on the line defined by the two primaries (respectively, between

them, beyond the smaller, beyond the larger). For this reason they are

called collinear equilibrium points (see Figure 1.3). The other two solu-

tions are L4, L5 and they were found by J. L. Lagrange. These points

are located at the corners of two equilateral triangles, whose common

base is defined by the line between the primaries (see Figure 1.3). Due

to their particular configuration, these equilibrium positions are called

triangular Lagrangian points.

When Lagrange studied these solutions, he did not know about any

celestial body orbiting near the triangular positions; in fact, he assumed

that such solutions were just a mathematical construction, without any

physical relevance. It was only in 1906 that the first asteroid orbiting

in a triangular Lagrangian point was observed; it was named Achilles.

Since then, astronomers discovered a multitude of asteroids sharing the

orbit of Jupiter, behind and ahead the planet, which are located very

close to the triangular equilibrium solutions with Jupiter and the Sun

(see Figure 1.4).

The asteroids located around the triangular Lagrangian positions

on Jupiters orbit are denoted as the Greek asteroids (being the winners,

they precede triumphantly the god Jupiter) and the Trojan asteroids

(sadly lagging behind). However, Hector and Patroclus appear in the

enemys camp, since they were discovered before the convention of nam-

ing Greeks those in L4 and Trojans those in L5 was invented. In many

cases such distinction is not adopted and the two groups are generically

referred to with the name Trojans.
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Beside Jupiter, there exist other planets having small bodies lo-

cated at their triangular Lagrangian points. For example, we observed

asteroids in the triangular Lagrangian points of the Sun-Mars and Sun-

Neptune systems. We can find small natural moons in the triangular

Lagrangian positions of the system composed by Saturn and some of

its satellites, like Tethys and Dione; finally, the triangular Lagrangian

positions of the Earth-Sun system are populated by clouds of inter-

planetary dust ([53]).

We conclude by mentioning that the triangular Lagrangian points

are stable equilibria provided that the primaries mass ratio satisfies a

mathematical inequality, which is widely fulfilled by the Jupiter-Sun

system ([52]).

Figure 1.3. The Lagrangian triangular and collinear

points (after [16]).

Laplace resonances. Another particular example of orbital reso-

nance in the solar system is the Laplace resonance. It occurs when the
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Figure 1.4. Greek and Trojan asteroids on Jupiter’s

orbit are spread around the triangular Lagrangian points

(courtesy NASA).

frequencies (which are proportional to the inverse of the orbital peri-

ods) of three or more bodies satisfy a linear combination with integer

coefficients. A concrete example can be found within Jupiters moons:

the frequencies of Ganymede, Europa, Io are in a 1:2:4 orbital reso-

nance. The pairs Io–Europa and Europa–Ganymede are both found in

a 1:2 resonance: thus, the periods of revolution of Io and Ganymede

are in the ratio 1:4. This peculiar resonance prevents the occurrence

of triple conjunctions of the three satellites.

Titan–Hyperion. An interesting example of orbital resonance is

provided by Titan and Hyperion (satellites of Saturn), which satisfy a

resonance of order 3:4. Thanks to this dynamical configuration, Hyper-

ion, a small and irregularly shaped satellite, is protected from a disrup-

tive perturbing action of Saturn’s largest moon, Titan. Being closer to

the planet and moving faster, Titan periodically overtakes Hyperion;

when this happens, the two bodies experience a minimum approach
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distance, while their mutual gravitational perturbation reaches a max-

imum. The existence of a resonance allows the conjunctions to take

place only when Hyperion is at the apocenter of its orbit, which cor-

responds to the largest possible distance from Saturn, and therefore

from Titan. As a consequence, the attraction due to Titan does not

contribute to an ejection of Hyperion from Saturn’s system.

1.3. Spin–orbit resonances

The table of “Physical and Photometric Data” published by the

Astronomical Almanac provides an astonishing scenario (see Table 1):

the biggest satellites of all planets always show the same face to their

host planet. This situation is known for the Moon since antiquity;

indeed, humankind have been able to observe the hidden face of the

Moon only thanks to the Russian Lunik spacecraft, which circumnav-

igated the Moon in 1959. The physical reason behind the fact that

the satellite always points the same hemisphere is the following: the

period of revolution of the satellite around the planet is the same as the

period of rotation of the satellite around its spin–axis. In this case one

speaks of a synchronous or 1:1 spin–orbit resonance. More generally,

one has a spin–orbit resonance of order p : q for some integers p, q with

q non–zero, whenever the ratio of the revolutional (Trev) to rotational

(Trot) periods amounts to p/q:

Trev

Trot

=
p

q
, p, q ∈ Z , q 6= 0 .

In the solar system, the only exception to the synchronous resonance

is provided by Mercury ([27]), which is observed to move in a 3:2 spin–

orbit resonance, since twice the orbital period around the Sun equals

three times its rotational period within an error of the order of 10−4.

In other words, within a very good approximation, during two orbital
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revolutions around the Sun, Mercury makes three rotations about its

spin–axis.

TABLE 1. Physical data of the satellites: the satellite–to–planet

mass ratio, the radius, the sidereal period of rotation P with S meaning

synchronous with the orbital period and C meaning chaotic rotation

(reproduced from The Astronomical Almanac Online and produced by

the U.S. Naval Observatory and H.M. Nautical Almanac Office).

1.3.1. A model for the spin–orbit resonance. In order to

write the equations of motion of the spin–orbit coupling between a

satellite S and a planet P , we can introduce a simplified model, based

on the following assumptions:

(i) the satellite is a triaxial body, orbiting on a Keplerian ellipse around

the planet;

(ii) the direction of the spin–axis coincides with that of the smallest

physical axis of the ellipsoid;

iii) the spin–axis is perpendicular to the orbital plane;

iv) dissipative effects as well as perturbations due to other bodies are

neglected.

Let us denote by a, e, r, f , respectively, the semimajor axis, ec-

centricity, orbital radius, true anomaly of the Keplerian orbit of the

satellite. In particular, the quantities r and f are known functions

of the time; for circular orbits the orbital radius is constant and the

true anomaly is a linear function of the time. By a proper choice of the

units of measure, let us normalize to one the gravitational constant and

the period of revolution. Under the assumptions (i)–(iv), the equation

of motion describing the spin–orbit problem takes the form (see, e.g.,

[10]):

ẍ+ ε
(a
r

)3

sin(2x− 2f) = 0 , (1.1)
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Planet Satellite Mass ratio Radius (km) P

Earth Moon 0.0123 1737.4 S

Mars Phobos 1.672 · 10−8 13.4× 11.2× 9.2 S

Deimos 2.43 · 10−9 7.5× 6.1× 5.2 S

Jupiter Io 4.704 · 10−5 1829× 1819× 1816 S

Europa 2.528 · 10−5 1562 S

Ganymede 7.805 · 10−5 2632 S

Callisto 5.667 · 10−5 2409 S

Amalthea 1.10 · 10−9 125× 73× 64 S

Himalia 2.2 · 10−9 85 0.4

Thebe 58x49x42 S

Saturn Dione 1.92 · 10−6 562 S

Rhea 4.06 · 10−6 764 S

Titan 2.366 · 10−4 2575 S

Hyperion 1.00 · 10−8 164× 130× 107 S

Iapetus 3.177 · 10−6 736 S

Phoebe 1.454 · 10−8 107 0.4

Janus 3.363 · 10−9 97× 95× 77 S

Epimetheus 9.33 · 10−10 69× 55× 55 S

Prometheus 2.75 · 10−10 74× 50× 34 S

Pandora 2.39 · 10−10 55× 44× 31 S

Uranus Ariel 1.56 · 10−5 581× 578× 578 S

Umbriel 1.35 · 10−5 585 S

Titania 4.06 · 10−5 789 S

Oberon 3.47 · 10−5 761 S

Miranda 0.08 · 10−5 240× 234× 233 S

Neptune Triton 2.089 · 10−4 1353 S

Proteus 218× 208× 201 S

Pluto Charon 0.1165 605 S

Table 1.
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where the quantity x denotes the angle formed by the direction of the

largest physical axis – belonging to the orbital plane – with a reference

axis, say the perihelion line (see Figure 1.5) and the parameter ε is

defined as ε = 3
2
I2−I1
I3

, where I1 < I2 < I3 denote the principal moments

of inertia.

We remark that the equation of motion is integrable in case of

equatorial symmetry, say I1 = I2, such that ε = 0. For the Moon or

Mercury the parameter ε is of the order of 10−4. There exists a close

relation between equation (1.1) and a standard pendulum equation,

once (1.1) is averaged over a resonant angle.

The Fourier series expansion of equation (1.1) reads as

ẍ + ε

+∞∑

m6=0,m=−∞
W

(m
2
, e
)

sin(2x−mt) = 0 , (1.2)

where the first few coefficients W (m
2
, e) are reported in Table 2; the co-

efficients have been expanded in power series of the orbital eccentricity

as W
(

m
2
, e
)
≡ Wm

0 (e) +Wm
1 (e) +Wm

2 (e) + ..., being Wm
j (e) = O(ej).

Let us now concentrate on a given resonance of order p : 2 for some

p ∈ Z. We introduce the resonant angle as γ ≡ x− p
2
t; we can express

equation (1.2) in terms of γ equation as

γ̈+εW
(p
2
, e
)
sin 2γ+ε

+∞∑

m6=0,p, m=−∞
W

(m
2
, e
)

sin(2γ+(p−m)t) = 0 .

Averaging over the time, one obtains a pendulum–like equation

γ̈ + εW
(p
2
, e
)

sin 2γ = 0 ,

which admits the energy integral

1

2
γ̇2 − ε

2
W

(p
2
, e
)
cos 2γ = E ,

being E the total mechanical energy. The equilibrium points corre-

spond to γ = 0 and γ = π
2
(modulus π). If W (p

2
, e) > 0 then γ = 0
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is stable, while γ = π
2
is unstable. The equilibrium correspond to the

exact resonance and the librations correspond to small displacements

around the resonance.

Figure 1.5. The geometry of the spin–orbit problem

(after [16]).

1.3.2. Resonant planets and satellites. In this Section we re-

view the main cases of bodies of the solar system trapped in a spin–

orbit resonance. The survey starts from the inner body, Mercury, to

the outermost Pluto.

Mercury. Around the middle of the XX century the general belief

was that Mercury was rotating synchronously with the Sun. In that

case Mercury should have shown a very hot hemisphere, permanently

exposed to the Sun. Astronomical measurement did not agree with

such assumption; around 1965 Giuseppe Colombo ([26], [27]) conjec-

tured that Mercury was not rotating synchronously with the Sun. As a
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m
2

Wm
0 (e) Wm

1 (e) Wm
2 (e) Wm

3 (e) Wm
4 (e) Wm

5 (e) Wm
6 (e)

−1 e4

24
7e6

240

−1
2

e3

48
11e5

768

1
2

− e
2

e3

16
− 5e5

384

1 1 −5e2

2
13e4

16
−35e6

288

3
2

7e
2

−123e3

16
489e5

128

2 17e2

2
−115e4

6
601e6

48

5
2

845e3

48
−32525e5

768

3 533e4

16
−13827e6

160

Table 2. Expansion in powers of e of the coefficients

W (m
2
, e) appearing in (1.2).

consequence of the action of the solar torques on the permanent asym-

metry of Mercury’s equatorial plane, Colombo suggested that the ratio

between the period of revolution and the period of rotation of Mer-

cury was 3/2. The theoretical expectation was later confirmed by the

observations performed by Mariner 10, a spacecraft launched in 1973

toward the inner planet.

Moon. The period of rotation of the Moon amounts to about 27.3

days and it coincides with the period of revolution around the Earth.

As a consequence the Moon always points the same face to the Earth.

Observers on the Earth can never see the far–side of the Moon. The

hidden hemisphere was disclosed to humankind only in 1959, thanks

to the images provided by the Russian spacecraft Lunik III. Indeed,

due to lunar librations an Earth’s observer can see about 59% of the

Moon’s surface.

Hyperion. The population of satellites around Saturn is very rich and

one can find satellites of any size and shape. Among them, one of the
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most intriguing satellites is Hyperion, a small body orbiting between

Titan and Iapetus on an almost circular and planar orbit. Its shape is

rather irregular, as witnessed by its asymmetric dimensions (see Table

1). Hyperion’s period of revolution amounts to about 21.28 days; J.

Wisdom ([61]) conjectured that Hyperion was tumbling chaotically,

due to its peculiar shape. Ground–based observations confirmed the

prediction ([45]); as a consequence Hyperion became the first concrete

example of chaos in the solar system.

Charon. The dwarf planet Pluto has three satellites; while two of

them, Nix and Hydra, are very small, the closest satellite, Charon,

has the peculiarity of being quite big in comparison to its planet (the

radius amounts to about 604 km, while Pluto’s mean radius is about

1151 km). Charon’s orbital period amounts to about 6.387 days and

it coincides with its rotational period; moreover, such period coincides

also with the period of rotation of Pluto around its spin–axis. This

situation is called complete spin–orbit resonance and it implies that

both Pluto and Charon never turn their backs to each other.





CHAPTER 2

Aubry–Mather theory for twist maps

Let us consider an integrable system, namely a system for which

a sufficient number of first integrals is available; if we add a small

perturbation to the system we get a new system very close to the first

one to which we refer as a nearly–integrable system.

The solution of a nearly–integrable system can not be written in

an explicit way; but, if we know the dynamics of the integrable one,

from the KAM theory and from the Aubry–Mather theory we can have

many information about the dynamics of the perturbed system.

For this reason we want to describe some results about these the-

ories. In the first Section we provide a short description of the KAM

theory in the conservative setting for a time–dependent Hamiltonian

in an n–dimensional space. The theory can be extended also to dis-

sipative systems. In the second Section we provide a more detailed

review about the Aubry–Mather theory, focusing on twist maps and in

particular on dissipative twist maps.

2.1. The KAM theory

The KAM theory (acronym of the three mathematicians A. N. Kol-

mogorov, V. I. Arnold and J. Moser who developed the theory) provides

many information about the dynamics of systems close to an integrable

one. If we consider an integrable system described by the Hamilton-

ian H(I, φ, t) = H(I) with I ∈ Rn and φ, t ∈ Tn, we know that

the dynamics is ruled by regular bounded and quasi–periodic motions;

33
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the phase–space is 2n–dimensional and if we fix a level of energy for

the system we can find some invariant sets of dimension n given by

I = const. These sets are tori and on them quasi–periodic motions

take place. The frequency ω ∈ Rn of such motion is given by

φ̇ =
∂H

∂I
= ω .

Let us add in the Hamiltonian a small perturbation depending also on

the angle variables, say

H(I, φ, t) = H0(I) + εH1(I, φ, t) , (2.1)

where ε ≥ 0 is the perturbing parameter and H0, H1 are smooth func-

tions; we wonder how the dynamics changes under the perturbation.

From KAM theory we know that “most” of the invariant tori which fo-

liate the phase–space of the integrable system obtained by taking ε = 0

survive under a “small” perturbation (meaning a “small” value of ε).

“Most” of them means that a set of tori with full Lebesgue measure can

be found: in particular the KAM theorem states that given an Hamil-

tonian of the form (2.1) satisfying a non-degeneracy assumption, then,

all the tori with frequency satisfying the Diophantine condition sur-

vive under a small perturbation provided the size of the perturbation

is sufficiently small. We recall that an irrational number ω satisfies the

Diophantine condition if there exist suitable constants γ, τ > 0 such

that

|ω ·m+ n| ≥ 1

γ|m|τ
for any m, n ∈ Zn \ {0}. This condition is necessary in order to

guarantee the convergence of the series describing the equation of the

torus. In fact, from perturbation theory, some terms of the form |ω ·
m+ n| come out; they are at the denominator, they can be very small

and for this reason they are called small divisors. If the Diophantine

condition holds, the convergence of the series in which the small divisors
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appear, is guaranteed. It can be shown that in the sense of Lebesgue

measure, almost all ω ∈ Rn satisfy the Diophantine condition. From

the KAM theory we also know that invariant tori surviving under the

perturbation are just a little deformed and displaced with respect to

the integrable ones and they are called KAM tori. Moreover, we know

that the motions taking place on the KAM tori are quasi–periodic with

the same frequency of the corresponding motion of the unperturbed

system.

We know that the perturbed system is not integrable, therefore

we can not find an explicit solution of the equations of motion but

the persistence of KAM tori provides important properties about the

stability of the dynamics: in fact, in low dimension (n ≤ 2), the KAM

tori constitute obstructions for the dynamics and confine the motions

in bounded regions. If the number of degrees of freedom is n = 2, the

phase–space is 4–dimensional and an energy level is a 3–dimensional

space, while the KAM tori are 2–dimensional surfaces; this means that

such tori separate the energy levels in bounded regions and a generic

orbit either lie on an invariant torus or it is trapped between two of

them for all times. In both cases the motion is confined and it will be

very close to its initial conditions.

2.2. The Aubry–Mather theory

KAM theory ensures that the most of the invariant circles survive

in systems that are small perturbation of integrable systems. Now we

wonder what happens to those circles which do not persist under the

perturbation and therefore break-down. The Aubry–Mather theory

gives some answers: it claims that when an invariant circle breaks–

down, it is replaced by an invariant set on which the orbits preserve

many features of those they have before the break–down. From the
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point of view of the Aubry–Mather theory, all the invariant sets in

which the dynamics takes place, are called Aubry–Mather sets (in the

following we will provide a rigorous definition), apart from the nature of

the rotation number and from the size of the perturbation. According

to whether the rotation number associated to the set is a rational or

an irrational number, the nature of the set can vary. If the rotation

number is rational it can be formed by periodic orbits; if it is irrational

the Aubry–Mather set can be an invariant circle on which a quasi–

periodic orbit takes place or it can be a particular set occurring when

the invariant circle with that given irrational rotation number does not

persist. This particular set is a Cantor set and it is called Cantorus.

Let us define a Cantor set (see [1]):

Definition 2.1. A Cantor set is a set which is perfect and nowhere

dense.

A set is perfect if it is equal to its set of accumulation points and

it is nowhere dense if its closure has an empty interior. Let S1 be the

unit circle and let us suppose that f : S1 → S1 is a homeomorphism

with irrational rotation number, and let E(x), with x ∈ S1, be the set

of accumulation points of the sequence {fn(x)}∞n=1 where f
n is the nth

iteration of f . Then we can state the following:

Proposition 2.2. The set E(x) is independent of x. Moreover,

E = E(x) is the unique, minimal closed invariant set of f .

Moreover the following Proposition can be proved (see [1]);

Proposition 2.3. The set E is either the whole of S1 or it is a

Cantor set.

The existence of Cantori is based on this proposition and of course

on the Aubry–Mather theorem.
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2.2.1. Area–preserving twist maps. Let us provide some defi-

nitions and notations. Let Ã be the unit cylinder S1 × R. The lift to

R2 of a set B̃ ⊂ Ã is denoted by B, and the lift to R2 of a function f̃

on the cylinder is denoted by f .

Definition 2.4. A diffeomorphism f : R2 → R2, f = f(θ, r) is

called twist map if:

1) f commutes with T where T : R2 → R2 is the unit translation

T (θ, r) = (θ + 1, r),

2) f is orientation preserving,

3) there exists δ > 0 such that for all (θ, r) ∈ R2 one has

∂(π1f(θ, r))

∂r
> δ (2.2)

where π1 : R2 → R2 is the projection π1(θ, r) = θ.

From condition 1), it follows that f is the lift of a unique map

f̃ : Ã → Ã of the cylinder; from 2) it follows that f̃ is end preserving

(namely it preserves the orientation of the boundary of an annular

region contained into the cylinder); finally, from 3) it follows that the

image under f of a vertical line is the graph of a continuous function

(i.e. the vertical line is necessarily deviated, see Figure 2.1).

Figure 2.1. Geometrically, the twist condition states

that the image of a segment x = const forms a graph

over the x axis (after [50]).
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Let us define the rotation number of a set as follows:

Definition 2.5. Let f : A → A be a twist map and z ∈ A; then

the rotation number of f in z is

ρ(f, z) = lim
n→∞

π1(f
n(z))

n
, (2.3)

if it exists.

Let C̃ be a curve belonging to the cylinder and homeomorphic in

S1; then, if we consider f̃ restricted to C̃, it can be proved that the limit

exists and it does not depend on the point z ∈ C̃ (see [?]); therefore

we can associate the rotation number to the curve C̃.

Definition 2.6. A point (θ, r) ∈ R2 is called p/q–periodic if there

exist p ∈ Z and q ∈ Z+ with (p, q) = 1, such that f q(θ, r) = (θ + p, r),

where f q is the qth iteration of the map f .

Using the same notation of Definition 2.4, we can provide the fol-

lowing:

Definition 2.7. An Aubry–Mather set for the twist map f , is a

minimal closed set M , invariant under f and under T , on which the

projection π1 is injective and f is order preserving, i.e. for all x1,

x2 ∈ M

π1(x1) < π1(x2) ⇒ π1(f(x1)) < π1(f(x2)) . (2.4)

The sets satisfying equation (2.4) are called f–ordered. In Fig-

ure 2.2 we show two examples of sets, the former is an f–ordered set

and the latter is a non–f–ordered set. All points of an f–ordered set

have the same rotation number (see [1], [5], [38]): this means that a

unique rotation number is associated with any Aubry–Mather set M .
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a) b)

Figure 2.2. a) Example of a f–ordered set: the set

{x1, x2} satisfies (2.4); b) example of a non–f–ordered

set: the set {x1, x2} does not satisfy (2.4).

As already said before, this number can be rational and in this case

the set M can be formed by an ordered collection of periodic orbits,

otherwise the number can be irrational and M could be a Cantor set.

It could be that M is an invariant circle both if the rotation number is

rational or irrational (see [38]).

Definition 2.8. Let us define the orbit under f of a point z =

(θ, r) ∈ A as the set given by O(f, z) = {fk(z) + (l, 0) : k, l ∈ Z}; we
will say that z is a Birkhoff p/q–periodic point if it is p/q–periodic and

if its orbit O(f, z) is f–ordered.

This means that the orbit of a Birkhoff p/q–periodic point belongs

to an Aubry–Mather set; in fact, it is minimal if p, q are relatively

prime and it is closed; being formed by a finite number of points.

Let us see some steps leading to the statement of the Aubry–Mather

theorem, whose results are obtained independently by the two mathe-

maticians.

The first step is the well–known so called “last geometric Poincaré

theorem”. Let us see a simple version (see []):
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Theorem 2.9. Let f be an area–preserving map on the compact an-

nulus moving two points on the boundary circles on opposite directions

(twist condition). Then f has at least two fixed points.

In 1912, Poincaré just enounces the theorem, but he does not prove

it. One year later, Birkhoff proves an analogous result with a weaker

thesis in the statement, namely “at least one fixed point”. In 1925,

Birkhoff provides a new version of the theorem that is named as the

Poincaré–Birkhoff theorem. Let us consider a map f : A → A not twist,

but such that it satisfies the twist condition on the boundary, namely,

said ρ0 and ρ1 the two rotation numbers of f restricted respectively

to R × {0} and R × {1}, it must be ρ0 < ρ1. The Poincaré–Birkhoff

theorem states the following (compare with [38]):

Theorem 2.10. Let f be the lift of an area–preserving map on the

cylinder such that it satisfies the boundary twist condition. If p/q ∈
[ρ0, ρ1] and (p, q) = 1, then f has at least two p/q–periodic orbits.

Moreover if ρ0 < 0 < ρ1, then f has at least two fixed points.

Birkhoff does not say what happens to the orbits with different

rotation numbers and he does not provide any information about the

nature of periodic orbits he speaks about. Aubry and Mather prove

that the orbits of theorem 2.10 are ordered orbits (they are Birkhoff

orbits) and moreover they prove the existence of quasi–periodic orbits.

In an integrable system, the orbits of a twist map f have the fol-

lowing properties:

1) they lie on invariant circles;

2) they are cycle ordered;

3) they exist for any rotation number in (−∞,+∞);

4) they minimize the action.
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If we perturb the system, KAM theorem ensures that “most part”

(i.e. a set of full measure) of invariant circles survive under a small

perturbation provided the small perturbation is sufficiently small and

the rotation numbers of such invariant circles satisfy the Diophantine

condition.

The Aubry–Mather theory states that the circles that do not sur-

vive and that break–down are replaced by invariant sets on which the

orbits keep some of the properties they have in the unperturbed case.

These sets are the Aubry–Mather sets. Let us state the Aubry–Mather

theorem (see []) after the following definition:

Definition 2.11. Consider a twist map f : A → A; consider f

restricted to C0 = R× {0} and C1 = R× {1}; let ρ0 and ρ1 be the two

rotation numbers associated to C0 and C1, respectively; then ρ1 > ρ0

and [ρ0, ρ1] is called twist or rotation interval.

Theorem 2.12. Let f be the lift of an area–preserving twist map

on the cylinder. Then f has Aubry–Mather sets with rotation number

ω for all ω ∈ [ρ0, ρ1].

Moreover, the theorem provides some properties of such sets:

Theorem 2.13. Let M be an Aubry–Mather set for the lift f of an

area–preserving twist map on the cylinder. Then

1) M forms a graph on its projection π1(M); this projection is Lipschitz

with Lipschitz constant L depending just on the twist constant given by

L = inf
(θ,r)∈M

∂(π1f(θ, r))

∂r
;

2) all the orbits in M are f–ordered and all of them have the same

rotation number. It is called rotation number of M and it is noted by

ρ(M);
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3) the projection π1(M) is a closed invariant set for the lift of a home-

omorphism on the circle and f restricted to M is conjugated to the lift

of a homeomorphism through π1.

From Proposition 2.3 and from Theorem 2.12, we can deduce that,

if ω is a rational number, then the Aubry–Mather set is a collection

of periodic orbits, while, if ω is irrational, then the Aubry–Mather set

could be either an invariant circle or a Cantorus.

2.2.2. Katok’s results. In [44], A. Katok gives more informa-

tion about the properties of Aubry–Mather sets; in particular, quasi–

periodic sets and Cantori can be obtained as limit of Birkhoff periodic

orbits. Its proof holds for area–preserving twist maps, and more gen-

eral, he replaces the hypothesis of area–preserving twist maps with

twist maps which preserve a positive measure.

He proves a new version of Aubry–Mather theorem and he provides

a proof based on two different steps: the first one is valid for any twist

homeomorphism f : A → A, independently of the fact that it is area–

preserving. It is stated in the following theorem (compare with [44]):

Theorem 2.14. (Katok) Let f be a twist homeomorphism. If f

has a Birkhoff p/q–periodic orbit for any rational number p/q in the

twist interval [ρ0, ρ1], then f also possesses a minimal Aubry–Mather

set with any irrational rotation number in the twist interval.

The Theorem 2.14 tells us that if f has a Birkhoff p/q–periodic orbit

for any p/q ∈ [ρ0, ρ1], then f has Aubry–Mather sets with rotation

numbers ω for any ω ∈ [ρ0, ρ1].

This means that invariant Cantor sets are possible in non–area–

preserving systems provided appropriate Birkhoff periodic points are

present.
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In order to prove the Aubry–Mather theorem from theorem 2.14,

we need a result ensuring the existence of Birkhoff p/q–periodic orbits.

Such existence is provided by a generalized version of Poincaré-Birkhoff

theorem (see [44]):

Theorem 2.15. Let f be a twist homeomorphism preserving a posi-

tive measure on open sets and let p/q belong to the twist interval. Then,

f has a Birkhoff p/q–periodic orbit.

If in addition f is a C1 diffeomorphism then, under the same as-

sumptions, f has two different Birkhoff p/q–periodic orbits which form

together an Aubry–Mather set.

To summarize, the previous two theorems provide the result ob-

tained by Aubry and Mather for a twist map which preserves a positive

measure:

Theorem 2.16. Let f be a twist homeomorphism on the cylinder,

preserving a positive measure on open sets, with twist interval [ρ0, ρ1].

Then for any ρ ∈ [ρ0, ρ1], f has an Aubry–Mather set with rotation

number ρ.

Katok proves another important property about Aubry–Mather

sets, namely, he proves that they can be obtained as limit of Birkhoff

periodic orbits. It follows from the following proposition:

Proposition 2.17. Let f be a twist homeomorphism. Then

a) the set of all Aubry–Mather sets for a twist homeomorphism is closed

in Hausdorff topology;

b) the rotation number ρ(M) for an Aubry-Mather set M is continuous

in Hausdorff topology.

The Theorem 2.14 ensures the existence of Aubry–Mather sets for

any rotation number in the twist interval and the Proposition 2.17
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guarantees that, given a sequence of rational numbers {pn
qn
} converging

to an irrational number ω, the pn/qn–periodic orbits converge to the

quasi–periodic orbit with rotation number ω.

2.2.3. Dissipative twist maps. We wonder if in dissipative sys-

tems some sets similar to the Aubry–Mather sets can appear and if we

can extend the Aubry–Mather theorem for dissipative twist maps.

Let us start by defining a dissipative twist map.

Definition 2.18. Let f : R2 → R2 be a diffeomorphism satisfying

conditions 1), 2) and 3) of definition 2.4. We will say that f is dissi-

pative if it satisfies the following conditions:

4) there exists λ ∈ (0, 1) such that for any x ∈ R2 we have 0 <

detDf(x) ≤ λ, where Df(x) is the Jacobian of the map f ;

5) there exists an M ∈ R+ such that for any N ≥ M , S1 × [−N,N ] is

a trapping region for f (B is a trapping region for f if it is an annular

region such that its image under f belongs to the interior of B).

Condition 5) is not really necessary to have a dissipative map, but

it is a requirement for some theorems we will see in the following.

Let us start with some remarks.

Remark 2.1. i) In a dissipative system only one invariant circle

can exist (if there are two invariant circles, the area between them would

be preserved under the action of the map and this cannot happen, due

to the fact that the system is dissipative).

ii) Birkhoff periodic orbits can persist under a small dissipative pertur-

bation (see [1]).

iii) Given the existence of Birkhoff periodic orbits, Katok theorem 2.14

allows us to conclude that Aubry–Mather sets exist for any irrational

number in the twist interval.
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Let us suppose the existence of Birkhoff periodic orbits; then, Katok

theorem allows us to claim that Aubry–Mather sets with irrational

rotation numbers must occur. Remark i) tells us that at most one

invariant circle can exist; on the other hands, Katok theorem states

that Aubry–Mather sets must occur for any irrational number within

the twist interval; this means that some of these Aubry–Mather sets

should be Cantor sets.

Let us recall the requirements of Theorem 2.14:

• Existence of a twist homeomorphism with not trivial rotation

interval (if the rotation interval is just a number, the theorem

has no relevance).

• Existence of Birkhoff p/q–periodic orbits for any rational num-

ber belonging to this interval.

We also note that stable points of area–preserving maps should

become asymptotically stable if we add a dissipation. This means that,

if Birkhoff periodic points exist, they should appear on attractive sets

of the dissipative twist map. We want to recall the definition of an

attractive set:

Definition 2.19. We will say that an f–invariant set Γ is weakly

attractive if, for any neighborhood N of Γ, there exists a neighborhood

M of Γ in N such that f(M) ⊂ M . If, moreover, M can be chosen

such that Γ =
⋂∞

n=0 f
n(M), then we will say that Γ is attractive. If

an attractive set contains a dense orbit of f , we will say that it is an

attractor.

Casdagli [9] and Le Calvez [46] extend the Aubry–Mather theory

to dissipative twist maps. They generalize the Aubry–Mather theo-

rem when the attractive set of the whole cylinder lies in a compact

subcylinder for which the map has a non–trivial rotation interval.
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Let us see how the rotation interval for an attractive set of a dis-

sipative twist map can be defined, namely how its endpoints ρi and

ρe can be defined. Let H be the set of compact connected sets sep-

arating the cylinder, and let Γ ∈ H be an invariant set for f . Let

us associate with Γ (compare with [5], [9]), two real numbers that

are respectively, the internal rotation number ρi and the external ro-

tation number ρe, as follows. Let us start with the definition of ρe:

let L = {(x, y) ∈ R2|x ∈ R, y = y0} be a horizontal line lying above

Γ (see Figure 2.3). Let us denote by Γ′ those points belonging to Γ

such that their vertical projection on L is bijective (the marked line

in Figure 2.3). Let π : L → Γ′ be the vertical projection from L to

Γ′. Then ρe is defined by −ρ(g) where ρ(g) is the rotation number

of the map g : L → L defined as g(θ) = π−1 ◦ f−1 ◦ π(θ). It can be

shown that f−1(Γ′) ⊂ Γ′ so that g is well defined. Moreover, ρ(g) is

well defined since g is the lift of a circle map and it is monotonic (see

[?]). Similarly, we can define ρi considering the horizontal line lying

below Γ. Figure 2.3 shows an invariant set Γ ∈ H and how the map g

can be defined.

Figure 2.3. The Figure shows the projections defining

the external rotation number for an invariant set Γ ∈ H.
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Casdagli proves that a dissipative twist map with a trapping region (i.e.

which satisfies condition 5) of Definition 2.18), has a unique Birkhoff

attractive set. The Birkhoff set is defined as follows:

Definition 2.20. Let B be a compact connected f–invariant set

which separates the cylinder S1×R and such that it is a trapping region

for f . Let Λ(B) =
⋂∞

n=0 f
n(B). Then, we will call Birkhoff set, the set

B(f) = ∂(Λ(B))inf ∩ ∂(Λ(B))sup

We recall that if Λ is a compact connected set which separates

the cylinder C, we denote with Λinf and with Λsup the two unlimited

components, respectively, inferior and superior of C \ Λ.
The set B(f) is sometimes wrongly called “attractor”: actually,

it is not necessary an attractor because it could not contain dense

orbits. More precisely, we can state that B(f) is an attractive set and

it separates the cylinder in two connected components. Figures 2.4 and

2.5 show two examples of invariant attractive sets.

In some cases B(f) is simply an invariant circle which runs around

the cylinder (invariant rotational circle) and in this case its rotation

interval is trivial because it is reduced to only one point. In this case

we can find periodic points which lie outside the Birkhoff set, and it

happens because B(f) does not describe the whole dynamics of f .

However, when B(f) is an invariant rotational circle, it can contain

Birkhoff periodic points, whenever the rotation number is a rational

number. On the contrary, if we do not know anything about the nature

of B(f), we can not guarantee the existence of Birkhoff periodic points
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Figure 2.4. Schematic illustration of the top and bot-

tom of a Birkhoff attracting set. The circles r = R1 and

r = R2 allows us to define the rotation interval. Observe

that the top and the bottom of an attracting set are not

necessarily continuous curves (after [1]).

on B(f). For this reason the following result by Casdagli (absolutely

not trivial) is the key to apply Katok Theorem 2.14.

Theorem 2.21. Let the Birkhoff set B(f) have internal and ex-

ternal rotation numbers ρi and ρe, with ρi ≤ ρe. Then B(f) contains

Birkhoff p/q–periodic orbits for all p/q ∈ [ρi, ρe].

We recall that, when the twist map considered is area–preserving,

rotational circles must necessary intersect their images under the map.

This topological property of area–preserving twist maps plays a very

important role in the occurrence of their Birkhoff periodic points. In

non–area–preserving twist maps, it can be proved that the Birkhoff

set B(f) has an analogous property, more precisely the intersection

property which we define as follows:
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Figure 2.5. In the Figure the line AB and A′B′ are

identified. It is shown an invariant circle C such that

ρ(f|C) = α; a focus and a saddle point x∗. The union

of C and the unstable manifolds of the saddle is an at-

tractive set A for f . The top of A is C, while its bottom

set is a segment of the unstable manifolds of x∗. Thus

ρi = 0 and ρe = α, so that A has a non–trivial rotation

interval. However the Birkhoff set B(f) is simply the

circle C which as a trivial rotation interval (after [1]).

Definition 2.22. We say that an f–invariant set Γ ∈ H has the

intersection property if given any set C ∈ H with C ∩ Γ 6= ∅, then

C ∩ f(C) 6= ∅.

In [9] the author easily proves that the set B(f) satisfies this prop-

erty and he explicitly uses the property to prove Theorem 2.21. Then,

an analogue of Aubry–Mather theorem follows from Katok’s result 2.14.

Theorem 2.23. Let B(f) be a Birkhoff set with non–trivial rota-

tion interval [ρi, ρe], with ρi < ρe. Then, for every rational number
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p/q ∈ [ρi, ρe], B(f) contains a Birkhoff p/q–periodic orbit and, for ev-

ery irrational number ω ∈ [ρi, ρe], B(f) contains an Aubry–Mather set

with rotation number ω.

Let us remark that the trapping hypothesis does not guarantee that

the Birkhoff set has a non–trivial rotation interval (see [1]). In par-

ticular, the existence of a non–trivial rotation interval for the Birkhoff

set is not obvious and in [9], the author does not prove such existence.

Such proof can be provided through the Shadowing Lemma and from

some properties of the stable and unstable manifolds of the periodic

points belonging to the attractive set of the map f .

Let f be a C`–diffemorphism on R2 with a hyperbolic invariant set

Λ and recall that the orbit of a point x0 ∈ R2 under f is the sequence

of points {xi}, where xi = f i(x0), so that xi+1 = f(xi). Let W s(x, f)

and W u(x, f) be, respectively, the stable and unstable manifolds of a

given point x ∈ Λ under f . Let f : R2 → R2 have also an annular

trapping region T , and let A be the attractive set A =
⋂

n∈Z+ fn(T ).

Our aim is to prove that there exists orbits in Λ with a range of

rotation numbers and we will do it by making use of the Shadowing

Lemma. We omit the intermediate steps and we states the following

theorem which guarantees that there exists a non trivial rotation in-

terval for a Birkhoff set, namely for the attractive set A defined above.

Theorem 2.24. Let y ∈ A be a periodic point of f of period q

and rotation number p/q where p, q are relatively prime. Suppose that

W u(y, f q) intersect W s(fk(y), f q) transversely for some 0 < k < q.

Then there exists a non–trivial interval I containing p/q such that, for

every α ∈ I, there is a point with polar coordinates (θ, r) ∈ A with

rotation number ρ(θ, r) = α. Furthermore, there are points in A for

which the rotation number does not exist.
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This theorem gives sufficient conditions for the existence of a non–

trivial rotation interval associated with a given attractive set A, and it

completes the results about the possibility of the existence of cantori

in dissipative twist maps.





CHAPTER 3

On the dynamics of the dissipative standard map

The evolution of a physical problem can be described through some

continuous functions of the time or through functions defined at dis-

crete intervals of the time. In the first case we refer to a continuous

dynamical system, while in the second case we refer to a discrete dy-

namical system.

The evolution of an `–dimensional discrete system is described by

a mapping represented by a set of equations of the form

xn+1 = f(xn) , n ∈ N , (3.1)

where x = (x1, . . . , x`) ∈ R` and f = (f1, . . . , f`) ∈ R`. Such equations

describe the dynamics at the discrete time n + 1 as a function of the

solution at the time n; this means that the solution xn of (3.1) at

the time n with initial datum x0 is obtained by iterating the mapping

starting from x0. In this Chapter we will describe the dynamics of a

particular discrete mapping, namely the dissipative standard map which

is related to the spin–orbit problem through a suitable integration.

First we characterize the conservative mapping showing which kinds

of motion take place and then we compare the conservative mapping

with the dissipative one. Successively, we present some new results

about the existence of periodic orbits in the dissipative standard map.

We prove, through a suitable parameterization and through the imple-

mentation of the implicit function theorem, the existence of periodic

orbits within an interval of a drift parameter involved in the equa-

tion of the dissipative standard map; moreover, through the study of

53
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the behavior of the drift as function of the perturbing parameter, we

define explicitly the Arnold’s tongues in which periodic orbits with a

given period can be found. Arnold’s tongues are well–known structures

(compare with [6], [59]); from a physical point of view, our results allow

as to connect the occurrence of the spin–orbit resonances (associated

with periodic solutions) to the eccentricity of the Keplerian orbit of the

satellite (corresponding to the drift parameter).

Furthermore, the parametric representation of the solution allows us

to write the solution of rotational tori and, therefore, to relate periodic

orbits to quasi–periodic orbits.

The content of this Chapter is included in a paper written in col-

laboration with A. Celletti (see [15]).

3.1. The conservative standard map

Let us introduce the well–known discrete dynamical system called

standard map introduced by B.V. Chirikov in [25] and defined by the

equations
{

yn+1 = yn + εf(xn)

xn+1 = xn + yn+1 ,
(3.2)

where xn ∈ T = R/(2πZ), yn ∈ R, ε is a positive real parameter, called

perturbing parameter and f = f(x) is an analytic, periodic function.

In particular the classical standard map is obtained by setting f(x) =

sin(x):
{

yn+1 = yn + ε sinxn

xn+1 = xn + yn+1 ,
(3.3)

In the following, we will refer to the standard map, with the formulation

given in equation (3.3). We will show some properties of the standard

map and of its dynamics.
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The mapping (3.3) is conservative because the phase space area is

preserved under the action of the map. Indeed, we can show that the

determinant of the corresponding Jacobian associated to the map is

equal to one: setting fx(xn) ≡ ∂f(xn)
∂x

= cos(xn), we have

det

(
∂yn
∂y

∂yn
∂x

∂xn

∂y
∂xn

∂x

)
= det

(
1 εfx(xn)

1 1 + εfx(xn)

)
= 1 .

Another important property of the standard map is its integrability

for ε = 0. If we neglect the perturbation taking ε = 0, the mapping

(3.3) reduces to {
yn+1 = yn

xn+1 = xn + yn+1 ,
(3.4)

so that, the map is integrable and the solution can be written in a very

simple way because, as we can see, yn is constantly equal to the initial

value y0, and xn = x0 + ny0 for any n ≥ 0.

In this case the coordinate yn is fixed while xn varies as xn = x0 +

ny0; in the case in which the initial condition y0 is equal to a rational

multiple of 2π, the trajectory is a periodic orbit: if the initial datum is

of the form (y0, x0) = (2π p
q
, x0) with p, q positive coprime integers and

x0 ∈ T, the successive iterations of the x coordinate are given by the

following sequence: x0+2π · p
q
, x0+2π ·2 · p

q
, · · · , x0+2π ·q · p

q
= x0+2π;

since x0 varies on the torus, after q iterations it comes back to its initial

position: therefore, we get a periodic orbit of period q. The quantity

p measures how many times the interval [0, 2π) is run before coming

back to the starting position.

The situation is completely different if we consider an irrational

initial condition y0: fixed the initial value y0, the y coordinate re-

mains always constant under any number of iterations, while, since

xn = x0 + ny0, the x coordinate fills densely the line y = y0 as the

number of iterations increases. The orbit, given by a straight line, is a
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quasi–periodic invariant curve (see Figure 3.1a): on this curve a quasi–

periodic motion takes place, and any point of the x coordinate never

comes back on itself.

In order to distinguish between periodic and quasi–periodic orbits

we introduce the rotation number ω defined by the quantity

ω = lim
n→∞

xn − x0

n
.

The rotation number, when it exists, is the frequency of the motion:

as we have already seen, in the unperturbed case (ε = 0) the equations

of the standard map reduce to the system (3.4) that can be written as

{
yn = y0

xn = x0 + ny0 ,

where (x0, y0) is the initial condition. If the rotation number can be

written as ω = 2π p
q
with p, q positive coprime integers, then yq = y0,

xq = x0 + 2πq = x0 and the motion is periodic with frequency ω; if ω

and 2π are incommensurable, i.e. ω
2π

is an irrational number, then the

dynamics associated to (3.4) is quasi–periodic.

As we have shown, in the unperturbed case, the dynamics of the

standard map is completely known and it is fully described by periodic

and quasi–periodic motions. Let us show how the dynamics changes

when we introduce the perturbation: for ε 6= 0 the mapping becomes

non–integrable, in fact it is not possible to find an explicit solution and

chaotic motions might appear. For ε not zero but sufficiently small, the

quasi–periodic invariant curves, called rotational invariant curves, are

slightly displaced and deformed with respect to the integrable case. The

periodic orbits are surrounded by closed trajectories, called librational

curves. As ε increases the librational curves increase their amplitude,

the rotational invariant curves are more and more deformed and dis-

torted, and for a given value of ε they break–down, leaving place to the
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cantori, which are still invariant sets, but they are graphs of a Cantor

set (for a more detailed description of cantori, we refer to Chapter 2);

moreover, chaotic motions start to appear and they fill an increasing

region. These phenomenons are shown in Figure 3.1, which shows the

evolution of the classical standard map as the perturbing parameter

ε varies: we can see how the invariant curves are deformed, how they

break–down as ε increases, or how they are destroyed and they do not

exist for a critical value of ε.

The existence of the rotational invariant curves provides an impor-

tant property of stability: a solution with a given initial value can not

cross a rotational invariant curve, so if we take an initial condition

between two different rotational invariant curves, the solution starting

from that initial condition will be trapped between the two curves for

all times. On the contrary, their break–down, starting with the appear-

ance of cantori, allows the solution to diffuse in an extended region of

the phase space.

3.2. The dissipative standard map

The equations (3.3), can be modified in order to introduce a dissi-

pation. In particular, we can define the dissipative standard map as

{
yn+1 = byn + c+ ε sinxn

xn+1 = xn + yn+1 ,
(3.5)

where xn ∈ T = R/(2πZ), yn ∈ R, ε > 0 is the perturbing parameter,

b ∈ R+ is the dissipative parameter and c > 0 is a drift parameter. It

is easy to show that the parameter b is the determinant of the Jaco-

bian associated to (3.5); in fact, with the same notation used in the
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Figure 3.1. Dynamics of the classical standard map,

starting with x0 = π and varying 100 initial conditions

y0 within the interval [−3, 3] as ε increases: a) ε = 0, b)

ε = 0.5, c) ε = 0.97, d) ε = 1.

conservative case, one has:

det

(
∂yn
∂y

∂yn
∂x

∂xn

∂y
∂xn

∂x

)
= det

(
b εfx(xn)

b 1 + εfx(xn)

)
= b .

We can distinguish four different cases as b varies.

• If b = 1 and c = 0, the map is the conservative standard

mapping (3.3).
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• If b = 0, one obtains the one-dimensional mapping xn+1 =

xn+ c+ ε sinxn; moreover, if ε = 0 one obtains the circle map

xn+1 = xn + c.

• If 0 < b < 1 the mapping is dissipative and in particular it is

contractive.

• If b > 1 the mapping is expansive.

In the following, when we speak about dissipative standard map, we

will always refer to the third case of contractive mapping.

Let us show some properties about the dynamics of the dissipative

standard map. We can find attracting periodic orbits, invariant curves

and strange attractors: we can see that stable periodic orbits become

attractive, and that periodic orbits and an invariant curve can coexist.

In particular, a big difference with the conservative standard map is

that in the dissipative case, only one invariant curve can exist: in fact,

if we have two invariant curves, the area between them is preserved,

contrary to the assumption that the system is dissipative. Finally,

strange attractors are very complicate geometrical structures and they

are shown to have a non–integer dimension, namely a fractal dimension.

If we define

α ≡ c

1− b

we can see that for ε = 0 the trajectory {yn = α} × T is invariant; in

fact, the invariance relation

yn+1 = yn = byn + c ,

admits the solution yn = α with α being given by

α = bα + c ⇒ α ≡ c

1− b
.

From the last relation we can see that the drift c can be written as

c = α(1−b) and therefore it becomes zero as b = 1 as in the conservative

case.
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3.3. A parametric representation of periodic orbits in the

conservative case

The existence of periodic orbits is very important to understand the

dynamics of the perturbed standard map as the perturbing parameter

ε varies. We have seen for the conservative case that an invariant curve

is deformed as ε increases and it is destroyed at a certain value of ε.

Moreover, periodic orbits with very large period can approximate very

well the dynamics of an invariant curve. So, we can study the properties

of an invariant curve (for example the break–down threshold (compare

with [39]) of an invariant curve with irrational rotation number ω),

using the stability properties of periodic orbits with frequencies given

by the rational approximants to ω.

We would like to show some results about the existence of periodic

orbits for the conservative standard map; in this Section we will present

the results given in [17]. Let us consider the mapping defined by the

equation (3.3); considering that xn+1 − xn = yn+1 and xn − xn−1 = yn,

one obtains

xn+1 − 2xn + xn−1 = ε sinxn . (3.6)

We look for a periodic solution with rational frequency ω = 2πp/q for

some p, q ∈ Z+, with p, q coprime, such that it satisfies the periodicity

condition
{

xn+q = xn + 2πp

yn+q = yn .
(3.7)

Then we parameterize the solution as

xn = θn + u(θn) , θn ∈ T , (3.8)

where u(θn) is a continuous, 2πp–periodic function and the linear flow

θn is such that θn+1 = θn + ω. Then we expand the function u in



3.3. PERIODIC ORBITS IN THE CONSERVATIVE CASE 61

Fourier–Taylor series as

u(θn) ≡
∞∑

j=1

εjuj(θn) =
∞∑

j=1

εj
min(j,q)∑

`=1

a`j sin(`θn) , (3.9)

where the real coefficients a`j will be determined as follows. Inserting

the parameterization (3.8) in (3.6), it follows that the function u must

satisfy the equation

u(θn + 2π
p

q
)− 2u(θn) + u(θn − 2π

p

q
) = ε sin(θn + u(θn)) . (3.10)

Inserting (3.9) in the previous equation and equating the same orders

of ε, after a suitable expansion of the right hand side ε sin(θn + u(θn))

around ε, one obtains the expression of the coefficients a`j. We omit

the computations (for more details see [17]), but we just want to re-

mark that when we equate terms of order εq (where q is the period of

the periodic orbit we are considering), one has to choose θn such that

sin(qθn) = 0. Such choice compensates the zero term cos(2πq p
q
−1) oc-

curring at the qth order and it fixes the value of θ0, since θn = θ0+2πnp
q

for the linearity of the flow θn. Therefore, one has two solutions (mod-

ulus 2π):

θ0 =
π

q
and θ0 =

2π

q
.

It is possible to show that the orbit starting at θ0 = π
q
is stable for q

odd and unstable for q even, while the one starting at θ0 =
2π
q
is stable

for q even and unstable for q odd (see [17]).

As written before, the coefficients a`j can be computed recursively

from the previous equations: by the computations, we can see that the

coefficient aqq appearing in the function uq(θn) =
∑q

`=1 a`q sin(`θn) is

not determined because it disappears from the equations. But it has

no consequences because this term does not contribute to the general
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solution: in fact we can see that

uq(θ0) =

q∑

`=1

a`q sin(`θ0) =

q−1∑

`=1

a`q sin(`θ0)

since the choice of θ0 is such that sin(qθ0) = 0.

Remark 3.1. In the next Section, we will see that in the dissipative

case, the problem about the disappearance of the coefficients of the qth

order can not be avoided, and it leads to a completely different solution.

3.4. Periodic orbits in the dissipative standard map

In this Section we extend the results about the existence of peri-

odic orbits to the dissipative standard map; we could see that there are

many differences with respect to the conservative case: for example in

the dissipative case, there exist many periodic orbits of a given period,

while in the conservative case we have just two periodic orbits, one sta-

ble and the other one unstable; stable periodic orbits in the dissipative

case are attractive. Another difference is that in the conservative case

we are able to write the full expression of the equation defining the

periodic orbit through the parameterization, while in the dissipative

case we can not find the full expression, but just an approximation to

the order of the period.

We will see that in the dissipative case, the drift c plays a very

important role for the existence of periodic orbits: we will show that

periodic orbits of frequency 2πp/q, for some p, q ∈ Z+, can be found

within a whole interval of the drift, say Ipq.

Let us summarize the main results obtained about the parameter-

ization of periodic orbits. We define again the dissipative standard

mapping as {
yn+1 = byn + c+ ε sinxn

xn+1 = xn + yn+1 ,
(3.11)
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where xn ∈ T = R/(2πZ), yn ∈ R, 0 < b < 1, ε > 0, c > 0. A

parametric representation of the solution is obtained by setting

xn = θn + u(θn) , θn ∈ T , (3.12)

where u(θn) is a continuous, periodic function and the parametric co-

ordinate θn evolves linearly. The function u can be written as a series

expansion in ε, say u(θn) =
∑∞

j=1 uj(θn)ε
j, where the terms uj(θn) can

be determined by solving suitable recursive equations. The drift c can

be also expanded in Taylor series as c =
∑∞

j=0 cjε
j for some real quan-

tities cj. We will show that in the periodic case the series expansion

for u can be determined up to the order j = q − 1. Moreover, the

terms c1, ..., cq−1 defining the Taylor series of the drift up to the order

q− 1 are real numbers, while the quantity cq (coming out from the qth

order) is a continuous periodic function of θn, namely cq = cq(θn). As

a consequence, for θn ∈ [0, 2π) the drift is constrained to belong to an

interval, say c ∈ Ipq. In the following, we will see that the determina-

tion of such interval can be also found through an implementation of

the implicit function theorem.

3.4.1. A parametric representation of periodic orbits in the

dissipative case. Let us show in detail the results about the parame-

terization. We parameterize a solution with frequency ω ∈ R associated

to the dissipative standard map (3.11) as in equation (3.12), where the

parametric coordinate θn evolves linearly as θn+1 = θn + ω. Then the

unknown function u = u(θn) is the solution of equation (3.14) given in

the following Lemma.

Lemma 3.1. Defining the quantity

γ ≡ (1− b)ω − c , (3.13)
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then the function u = u(θn) associated to the solution (3.12) of the

dissipative standard map (3.11) must satisfy the equation

u(θn + ω)− (1 + b)u(θn) + bu(θn − ω) + γ = ε sin(θn + u(θn)) . (3.14)

Proof.

From (3.11) we get

xn+1 − xn = yn+1 = byn + c+ ε sinxn

= b(xn − xn−1) + c+ ε sinxn ,

which provides the following equation:

xn+1 − (1 + b)xn + bxn−1 − c− ε sinxn = 0 . (3.15)

Inserting the parameterization (3.12) in (3.15) and using (3.13), we can

easily see that the function u(θn) must satisfy (3.14). ¤

Equation (3.14) is valid both for invariant attractors and for peri-

odic orbits. In this Section we are interested in the parameterization

of periodic orbits; to this end we set ω = 2πp/q for some p, q ∈ Z+

coprime. A periodic solution (xn, yn) of frequency ω for the mapping

(3.11), must satisfy the following periodicity condition

{
xn+q = xn + 2πp

yn+q = yn .

We want to prove the following important result about the existence

of periodic orbits for the dissipative standard map:

Proposition 3.2. Let M : R × T → R × T be the map defined

in (3.11) and let p, q ∈ Z+ coprime. Then, for fixed values of b, ε,

say b = b̄, ε = ε̄, one can find an interval Ipq ⊂ R, such that for any

c ∈ Ipq, the map M admits at least a periodic orbit of period p/q.



3.4. PERIODIC ORBITS IN THE DISSIPATIVE STANDARD MAP 65

To prove the above statement we start by finding a parameterization

of the form (3.12) for the periodic orbit with frequency ω; to this end,

we look for a solution of equation (3.14). We define the function u for

any θ ∈ [0, 2π), although the periodic orbit consist of q points. The

first point x0 = θ0+u(θ0) is obtained from an initial datum θ = θ0 and

the other q − 1 points are computed iterating the initial datum by the

law of evolution of the flow θn, namely θn = θ0+2πnp/q. Then, to find

the solution u of (3.14), we expand the function u(θn) in Taylor series

as

u(θn) =
+∞∑

j=1

uj(θn)ε
j , (3.16)

for some real functions uj which can be expanded in Fourier series as

uj(θn) =
+∞∑

`=1

(
a`j sin(`θn) + b`j cos(`θn)

)
, (3.17)

where the unknown real coefficients a`j, b`j will be explicitly computed.

We also expand the drift c in Taylor series as

c =
∞∑

j=0

cjε
j ,

with cj ∈ R where we fix c0 = (1 − b)ω, which corresponds to the

solution with y0 = ω for the unperturbed system with ε = 0. Similarly

we expand γ defined in (3.13) as

γ =
∞∑

j=1

γjε
j , (3.18)

where γj are suitable real coefficients.

Proposition 3.3. Consider a periodic orbit of frequency 2πp/q

with p, q ∈ Z+; given the parameterization (3.12) and the expansions
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(3.16), (3.17), (3.18), the following equation holds for any j > 0:

∞∑

j=1

εj
∞∑

`=1

{
sin(`θn)

[
(1 + b)a`jα

(p,q)
` − (1− b)b`jβ

(p,q)
`

]

+cos(`θn)
[
(1− b)a`jβ

(p,q)
` + (1 + b)b`jα

(p,q)
`

]
+ γj

}

=
∞∑

j=1

εj
{ j∑

`=1

[
S
(p,q)
`j sin(`θn) + C

(p,q)
`j cos(`θn)

]

+D
(p,q)
j

}
, (3.19)

for some unknown real coefficients a`j, b`j, γj. The real constants α
(p,q)
` ,

β
(p,q)
` are given by

α
(p,q)
` = cos(2π` · p

q
)− 1

β
(p,q)
` = sin(2π` · p

q
) ,

(3.20)

while the quantities S
(p,q)
`j , C

(p,q)
`j and D

(p,q)
j depend on the terms a`i, b`,i

for i = 1, · · · , j − 1.

Proof.

The equation (3.19) is obtained by inserting the Taylor–Fourier expan-

sions (3.16), (3.17), (3.18) in the parametric equation (3.14). In fact,
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the left hand side of (3.14) can be written as

+∞∑

j=1

εj
{ +∞∑

`=1

[
a`j sin(`θn + 2π

p

q
) + b`j cos(`θn + 2π

p

q
)
]

−(1 + b)
[
a`j sin(`θn) + b`j cos(`θn)

]}

+b

+∞∑

j=1

εj
+∞∑

`=1

{
a`j sin(`θn − 2π

p

q
) + b`j cos(`θn − 2π

p

q
)
}
+ γ

=
+∞∑

j=1

εj
∞∑

`=1

{
(1 + b)a`j sin(`θn) cos(2π`

p

q
)

+(1− b)a`j cos(`θn) sin(2π`
p

q
) + (1 + b)b`j cos(`θn) cos(2π`

p

q
)

−(1− b)b`j sin(`θn) sin(2π`
p

q
)

−(1 + b)(a`j sin(`θn) + b`j cos(`θn))
}
+

+∞∑

j=1

γjε
j ,

which coincides with the left hand side of (3.19), recalling that α
(p,q)
` ,

β
(p,q)
` are defined in (3.20).

The right hand side of equation (3.19) is obtained as follows. Let us

consider a generic function g(θn), then the function g(θn + u) with u

as in (3.16) can be expanded as

g(θn + u) =
∞∑

j=1

εj
∑

k∈Kj

(
∂k1+···+kj
x g

) j∏

`=1

(u`)
kj

kj!
+ g(θn) ,

where k = (k1, · · · , kj) ∈ Nj and Kj ≡ {k :
∑j

`=1 `k` = j}; the order

j of the ε-expansion of the function g(θn + u) is written as the sum

of products of the u` with ` = 1, · · · , j, which corresponds to a sum

of products of the derivatives of g and of the functions u`(θn) for ` =

1, ..., j. In the specific case g(θn) ≡ sin θn, by some computations,

such products can be written as a linear combination of the functions

sin(`θn) and cos(`θn) for ` = 0, ..., j; the coefficients of these linear
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combinations are functions depending on the coefficients a`i, b`i with

` = 1, · · · , i and i = 1, · · · , j − 1, and they will define S
(p,q)
`j , C

(p,q)
`j ,

D
(p,q)
j .

In the case g(θn) ≡ sin θn, the quantities S
(p,q)
`j , C

(p,q)
`j , D

(p,q)
j can be

computed explicitly in a recursive way. By (3.16) and (3.17), we have

ε sin(θ + u) = ε sin(θ +
∞∑

j=1

εjuj(θ))

= ε sin

(
θ +

∞∑

j=1

εj
j∑

`=1

(a`j sin(`θn) + b`j cos(`θn))

)

≡
∞∑

j=1

εj
[ j∑

`=1

(S`j sin(`θn) + C`j cos(`θn)) +Dj

]
,(3.21)

where we impose the last equality. Let us define the complex functions

dk = dk(θn) such that

ei(θn+u(θn)) =
∞∑

k=0

dk(θn)ε
k . (3.22)

Differentiating (3.22) with respect to ε, we obtain

i

∞∑

j=1

dj(θn)ε
j

∞∑

`=1

`u`ε
`−1 =

∞∑

k=1

kdk(θn)ε
k−1 .

Equating same powers of ε, we obtain the recursive relations defining

dk in terms of u1, ..., uk, d0,..., dk−1:

d0(θn) = eiθn

dk(θn) =
i

k

k∑

j=1

juj(θn)dk−j(θn) .

Denoting by d̄ the complex conjugate of d, we can easily show by

induction that the function (dk(θn) − d̄k(θn))/(2i) can be expressed
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in the form

dk(θn)− d̄k(θn)

2i
=

k+1∑

`=1

(A`k sin(`θn) +B`k cos(`θn)) + Ek , k ≥ 0

(3.23)

for suitable A`k, B`k (` = 1, ..., k+1) and Ek. For k = 0 we obtain that

d0(θn)− d̄0(θn)

2i
= sin θn .

Assuming that (3.23) holds for k − 1, we have

dk(θn)− d̄k(θn)

2i
=

i

k

k∑

j=1

juj(θn)
[dk−j(θn)− d̄k−j(θn)

2i

]

=
i

k

k∑

j=1

j

j∑

`=1

(a`j sin(`θn) + b`j cos(`θn))

{ k−j+1∑

`=1

[
A`,k−j sin(`θn) + B`,k−j cos(`θn)

]

+Ek−j

}
, (3.24)

which is of the form (3.23) for suitable coefficients A`k, B`k, Ek, de-

pending on a`j, b`j for j = 1, ..., k, ` = 1, ..., j. Notice that (3.24)

provides a recursive formula for computing A`k, B`k, Ek. Recalling the

first and the last term in (3.21) and equating same powers of ε, we get

1

2i

(
dj−1(θn)− d̄j−1(θn)

)
=

j∑

`=1

(S`j sin(`θn) + C`j cos(`θn)) +Dj ,

for j ≥ 1, where S`j ≡ A`,j−1, C`j ≡ B`,j−1, Dj ≡ Ej−1 (namely S
(p,q)
`j ,

C
(p,q)
`j are functions depending on a`i, b`i for i = 1, · · · , j − 1) ¤

Finding the solution u(θn) of the parametric equation (3.14) is

equivalent to solve the main equation (3.19). In concrete computa-

tions, where S
(p,q)
`j , C

(p,q)
`j , D

(p,q)
j are determined explicitly, we equate

same orders of ε, so to obtain some equations which allow us to deter-

mine the unknowns a`j, b`j and γj.
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Remark 3.2. For the specific case of the standard map (3.11), con-

taining just one harmonic, the following properties hold:

i) in (3.21) the index ` runs from 0 to j; therefore, the unknowns a`j

and b`j are zero for all ` > j;

ii) for j even, only ` even appears in (3.21); therefore, if j is even, all

a`j’s and b`j’s are zero for ` odd;

iii) similarly, if j is odd, all a`j’s and b`j’s are zero for ` even.

In order to solve (3.19) we proceed as follows. Equating same orders

of ε in (3.19), we obtain three different cases according to whether j is

less, equal or greater than q. We start by considering j < q; then, for

all ` = 1, ..., j, we get the following linear system in the unknowns a`j,

b`j and γj:





(1 + b)α
(p,q)
` a`j − (1− b)β

(p,q)
` b`j = S

(p,q)
`j ,

(1− b)β
(p,q)
` a`j + (1 + b)α

(p,q)
` b`j = C

(p,q)
`j ,

γj = D
(p,q)
j for j even ,

γj = 0 for j odd .

(3.25)

We remark that S
(p,q)
`j , C

(p,q)
`j and D

(p,q)
j depend on the a`i, b`i for i =

1, · · · , j − 1, so that they are known whenever the functions ui at

the previous orders are known. The solution of (3.25) provides the

unknowns a`j, b`j and γj for ` = 1, · · · , j and j = 1, · · · , q − 1.

We are now able to determine the function u(θn) and the quantity

γ up to the order q − 1 of their Taylor expansions. Let us denote

by u(q−1)(θn) and γ(q−1) the truncations to the order q − 1 of the ε-

expansions of u(θn) and γ, namely

u(q−1)(θn) =

q−1∑

j=1

uj(θn)ε
j , γ(q−1) ≡

q−1∑

j=1

γjε
j ,
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where the functions uj(θn) are given as in (3.17). From the expansion

of γ, we compute the expansion of the drift as

c(q−1) ≡
q−1∑

j=0

cjε
j ,

where we recall that the relation between c and γ is given by the equa-

tion (3.13) and therefore c0 = (1− b)ω and cj = −γj.

When we equate terms of the same order j = q, we see that the

coefficients α
(p,q)
q and β

(p,q)
q are equal to zero, being

α
(p,q)
q = cos(2πq · p

q
)− 1 = 0

β
(p,q)
q = sin(2πq · p

q
) = 0 .

(3.26)

As a consequence, the unknowns aqq and bqq disappear from the left

hand side of equation (3.19) and they cannot be determined. Therefore,

the Taylor coefficient uq(θn) remains undetermined. On the other hand,

using (3.26), the order q of the right hand side of (3.19) is not zero, so

that such equation holds provided

γq = S(p,q)
qq sin(qθn) + C(p,q)

qq cos(qθn) +D(p,q)
q . (3.27)

The consequence of the previous equation is very important since it

shows that γq depends on θ0, namely γq = γq(θ0) (we recall that the

relation between θn and θ0 is given by θn = θ0+2πnp/q); in particular,

being γq(θ0) a bounded periodic function, for θ0 varying in [0, 2π),

the quantity γq varies within an interval of the form [γ−, γ+] for some

endpoints γ−, γ+ ∈ R.
For j > q all the uj’s and γj’s remain undetermined, since they

depend on uq(θn) which is undetermined.

Up to now we have obtained the following result: the solution u(θn)

associated to a periodic orbit of frequency 2πp/q is given up to the order

q − 1, and the orders equal or greater than q remain undetermined; as

we have stressed in Remark 3.1 in Section 3.3, the problem can not
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be avoided because, in the dissipative case, the Fourier coefficients aqq

and bqq contribute both to the general solution u. Regarding the drift,

the existence of the periodic orbit is ensured whenever γq belongs to

the interval [γ−, γ+]. In particular, we can write the expansion of the

drift c up to the order q as

c(q) ≡ c(q)(θn) = c0 + εc1 + ε2c2 + · · ·+ εq−1cq−1 + εqcq(θn) , (3.28)

where c0, . . . , cq−1 are constants (depending on b̄, p, q), while cq = cq(θn)

belongs to an interval Ĩpq ≡ [c
(p,q)
− , c

(p,q)
+ ] whose endpoints are given by

the minimum and the maximum of the function (3.27) (depending on

b̄, p, q too). In order to make this computation explicit, we provide in

the next Section, the determination of the parametric representation

for the specific case p = 1, q = 3.

Remark 3.3. In Section 3.5 we will deal with quasi–periodic at-

tractors with an irrational frequency ω and we will see that in the para-

metric representation, the difference with the periodic case relies on the

fact that the series expansions (3.16), (3.17), (3.18) can be computed

recursively at any order; concerning the drift, the quantities γj (equiv-

alently cj) are always constants and they are identically zero at odd

orders.

3.4.2. The parametric representation of the 2π/3–periodic

orbit. In this Section we show a concrete example for the parametric

representation of the periodic orbit with frequency 2π/3. We start by

writing the Taylor expansion of the term ε sin(θn + u(θn)) up to the

order q = 3 with u(θn) as in (3.16):

ε sin(θn +
2∑

j=1

εjuj(θn))

= ε sin θn + ε2u1 cos θn + ε3
(
u2 cos θn −

1

2
(u1)

2 sin θn
)
. (3.29)
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Let

α
(1,3)
` ≡ α` = cos(2π` · 1

3
)− 1

β
(1,3)
` ≡ β` = sin(2π` · 1

3
) .

(3.30)

Then, we equate same orders of ε in equation (3.19), taking into account

the expansion (3.29). For j = 1 we have:

sin θn

[
α1(1 + b)a11 − β1(1− b)b11

]

+ cos θn

[
β1(1− b)a11 + α1(1 + b)b11

]
+ γj = sin θn ,

which is equivalent to the following linear system in the unknowns a11,

b11 and γ1: 



α1(1 + b)a11 − β1(1− b)b11 = 1

β1(1− b)a11 + α1(1 + b)b11 = 0

γ1 = 0 .

As we have seen in Remark 3.2, we stress that the coefficients a`1 and

b`1 are zero for ` > 1. The first two equations of the previous system

allow us to determine the two unknowns a11 and b11. Recalling (3.30),

we get: 



a11 = − 1+b
2(1+b+b2)

b11 = − 1−b
2
√
3(1+b+b2)

.
(3.31)

The function u1 is therefore determined as u1(θn) = a11 sin θn+b11 cos θn

with γ1 = 0.

Let us continue with the computation of the solution of (3.19) to

the second order. Using the above expression for u1(θn) and taking the

second order in ε of equation (3.19), we get the expression:

sin 2θn

[
α2(1 + b)a22 − β2(1− b)b22

]

+ cos 2θn

[
β2(1− b)a22 + α2(1 + b)b22

]
+ γ2

=
1

2
a11 sin 2θn +

1

2
b11 cos 2θn +

1

2
b11 ,
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from which we obtain the following linear system in the unknowns a22,

b22 and γ2: 



α2(1 + b)a22 − β2(1− b)b22 =
1
2
a11

β2(1− b)a22 + α2(1 + b)b22 =
1
2
b11

γ2 =
1
2
b11 .

From (3.30) we have α2 = −3
2
, β2 = −

√
3
2
, so that we determine a22,

b22, γ2 as 



a22 = − 1
6(1+b+b2)

b22 = 0

γ2 = − 1−b
4
√
3(1+b+b2)

.

(3.32)

Since the coefficients a`2 and b`2 are zero for ` = 1 and ` > 2 (see

Remark 3.2), the function u2 is given by u2 = a22 sin 2θn.

Let us conclude with the computation of the third order, which

corresponds to the case j = q. Considering the third order of (3.29) and

inserting the known functions u1 and u2, we get a linear combination

of sines and cosines with known coefficients. Taking the third order in

ε of equation (3.19), we get the following expression:

sin θn

[
α1(1 + b)a13 − β1(1− b)b13

]

+ cos θn

[
β1(1− b)a13 + α1(1 + b)b13

]

+ sin 3θn

[
α3(1 + b)a33 − β3(1− b)b33

]

+ cos 3θn

[
β3(1− b)a33 + α3(1 + b)b33

]
+ γ3

= sin θn

[1
2
a22 −

3

8
a211 −

1

8
b211

]
+ cos θn

[
− 1

4
a11b11

]

+ sin 3θn

[1
2
a22 +

1

8
a211 −

1

8
b211

]
+ cos 3θn

[1
4
a11b11

]
. (3.33)

First we note that the coefficients α3 and β3 are zero; therefore in the

left hand side of (3.33) the coefficients of sin 3θn and cos 3θn are zero. As

a consequence, the unknowns a33 and b33 disappear from the previous

equation and they cannot be determined. Equating the coefficients of
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sin θn, cos θn, we determine a13, b13. Moreover, equation (3.33) holds

provided

γ3 = S
(1,3)
33 sin(3θn) + C

(1,3)
33 cos(3θn) ,

with

S
(1,3)
33 =

1

2
a22 +

1

8
a211 −

1

8
b211 , C

(1,3)
33 =

1

4
a11b11 .

so that we have an expression of γ3 as a function of θn (namely θ0).

In conclusion, the truncation of the function u(θn) up to the second

order is given by

u(2)(θn) = ε(a11 sin θn + b11 cos θn) + ε2a22 sin 2θn

with a11, b11, a22 as in (3.31), (3.32). The approximation to the third

order in ε of the drift is given by

c(3) = c0 + ε2c2 + ε3c3 ,

where c0, c2, c3 take the expressions

c0 = 2π
1

3
(1− b) , c2 =

1− b

4
√
3(1 + b+ b2)

,

c3(θn) = −(S
(1,3)
33 sin 3θn + C

(1,3)
33 cos 3θn) .

The term c3 varies within the interval [c−, c+] with endpoints given by

the minimum and the maximum of c3 as θn varies in [0, 2π); therefore,

the whole drift c(3) belongs to an interval, say I13, in which the existence

of the periodic orbit of period 3 is ensured.

We provide a concrete example of the interval I13 that varies as the

parameters b and ε vary. For example, we fix b = 0.5, ε = 0.5; then, the

drift parameter c can vary within the interval I13 = (1.04872, 1.06629).

In Figure 3.2 we consider four different values of c within and outside

I13. Figures 3.2a, 3.2d show that outside the interval, the parameter-

ization does not correspond to a periodic orbit, while a periodic orbit

of period 3 is found in the interval I13 as shown in Figures 3.2b, 3.2c.
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Figure 3.2. The evolution of the parametric represen-

tation of the 2π/3–periodic orbit has been computed for

b = 0.5 and ε = 0.5; the figures show four different orbits

for different values of the drift c: a) c = 1.04, b) c = 1.05,

c) c = 1.06, d) c = 1.07.

3.4.3. An implementation of the Implicit Function Theo-

rem. As written before, the existence of periodic orbits for the map-

ping (3.11) can be obtained analytically by implementing the Implicit
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Function Theorem in the following way. Let us define the vector func-

tion F = (F1, F2) as:

F (x0, y0; b, ε, c) = M q(x0, y0; b, ε, c)− (x0, y0)− (2πp, 0) , (3.34)

where (x0, y0) are the initial conditions and M q is the qth iteration of

the mapping (3.11). Then, the following theorem holds:

Theorem 3.4. (Implicit Function Theorem) Let z = (x, y) and for

some b, ε, c > 0 introduce the parameters ρb, ρε, ρc, ρz0 ∈ R+; define

the domains D =
{
(b, ε, c) ∈ R3 : |b− b| < ρb, |ε− ε| < ρε, |c− c| <

ρc

}
, B ≡ {z ∈ R2 : |z − z0| < ρz0}. Let us consider the function

F : (z, b, ε, c) ∈ B×D → F (z; b, ε, c) ∈ R2 defined as in (3.34). Having

fixed the initial condition z0 = (x0, y0), assume that

F (z0; b, ε, c) = 0

and that

det
(∂F
∂z

)
|(z0,b,ε,c)

6= 0 .

If ρz0, ρb, ρε, ρc ∈ R+ satisfy a smallness condition, defined by some

function C of the form

C = C(ρz0 , ρb, ρε, ρc) < 1 , (3.35)

then there exists a unique, continuous vector function f = f(b, ε, c),

such that f(b, ε, c) = z0 and F (f(b, ε, c); b, ε, c) = 0 for any (b, ε, c) ∈
D.

We want to provide an explicit expression for condition (3.35) and

we do it by writing the function F ≡ (F1, F2) in (3.34) in an explicit
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form as





F1(x0, y0) = y0(b
q − 1) +

q−1∑

j=0

bjc+ ε

q−1∑

j=0

bq−1−j sinxj

F2(x0, y0) =

q∑

j=1

yj − 2πp ,

(3.36)

where xj and yj can be recursively written as a function of the initial

conditions (x0, y0):





yj(x0, y0) = bjy0 +

j−1∑

k=0

bkc+ ε

j−1∑

k=0

bj−1−k sinxk

xj(x0, y0) = x0 +

j∑

k=1

yk .

(3.37)

If the function F (x0, y0; b, ε, c) = 0, then the point (x0, y0) belongs

to a periodic orbit of frequency 2πp/q for some b, ε, c. Let us fix the

parameters as b = b̄, ε = ε̄, c = c̄ for some b̄, ε̄, c̄ > 0; through an

implementation of the implicit function theorem we can to determine a

neighborhood of the parameters b, ε, c in which there exists a periodic

orbit of frequency 2πp/q with initial conditions in a neighborhood of

(x0, y0).

Let z ≡ (x0, y0); we immediately remark that for ε = 0 the Jacobian

associated to (3.36) is zero, being

(∂F
∂z

(z0)
)
=




bq − 1 0
q∑

j=1

bj 0


 .

For this reason we need to consider a value of ε different from zero and

then we compute the Jacobian matrix as follows. Let

(∂F
∂z

(z0; b, ε, c)
)
=

(
α β

γ δ

)
,
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where α, β, γ, δ depend on b, ε, c, and they can be written as follows:




α =
∂F1

∂y0
(x0, y0; b, ε, c) = bq − 1 + ε

q−1∑

j=1

bq−1−j cosxj
∂xj

∂y0

β =
∂F1

∂x0

(x0, y0; b, ε, c) = ε

q−1∑

j=0

bq−1−j cosxj
∂xj

∂x0

γ =
∂F2

∂y0
(x0, y0; b, ε, c) =

q∑

j=1

∂yj
∂y0

=
∂xq

∂y0

δ =
∂F2

∂x0

(x0, y0; b, ε, c) =

q∑

j=1

∂yj
∂x0

,

with xj, yj defined in (3.37). Let us introduce the positive parameters

ρz0 , ρb, ρε, ρc; consider the domains D and B defined in Theorem 3.4.

According to [13], the values ρz0 , ρb, ρε, ρc must satisfy the following

condition:

C = 4m2 · ‖F (z0; b, ε, c)‖ ·
∥∥∥∂

2F

∂z2

∥∥∥ < 1 , (3.38)

where m is the norm of the inverse of the Jacobian matrix, which can

be written as

m =
∣∣∣
(∂F
∂z

(z0; b, ε, c)
)−1∣∣∣ = sup

(b,ε,c)∈D

∣∣∣ 1

αδ − βγ

∣∣∣· sup
(b,ε,c)∈D

(|β|+|δ|, |α|+|γ|) .

(3.39)

We remark that the norm of the function F can be evaluated as

‖F‖ = sup
(b,ε,c)∈D

(|F1|, |F2|) , (3.40)

and finally the norm of the second derivatives of F can be defined as

∥∥∥∂
2F

∂z2

∥∥∥ = sup
{z∈B, (b,ε,c)∈D}

(∥∥∥∂
2F1

∂y2

∥∥∥+
∥∥∥∂

2F1

∂x2

∥∥∥+ 2
∥∥∥ ∂2F1

∂y∂x

∥∥∥,

∥∥∥∂
2F2

∂y2

∥∥∥+
∥∥∥∂

2F2

∂x2

∥∥∥+ 2
∥∥∥ ∂2F2

∂y∂x

∥∥∥
)
. (3.41)

If we put together (3.39), (3.40), (3.41) we can explicitly evaluate

(3.38), which is indeed of the form (3.35).
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If we fix ρz0 , ρb, ρε, then the condition (3.35) depends only on ρc,

say

C = C(ρc) < 1 . (3.42)

If we solve the inequality (3.42), considering the explicit form given

above, we find that the parameter c is again constrained to an interval

in agreement with what was found using the parametric representa-

tion. The size of this interval depends on the values of ρz0 , ρb, ρε: if

such values increase, then ρc decreases and if they overcome a critical

value, then the inequality (3.42) has no solution. In Table 1, we re-

port a comparison of the size of the intervals of c found numerically,

denoted by ∆cNum, with those found through an implementation of

the Implicit Function Theorem, denoted by ∆cIFT . We focus on orbits

of frequency 2π/3, having fixed the values of the parameters b, ε, ρ,

where ρ = max(ρz0 , ρb, ρε). Moreover, we take the initial conditions

using the first–order parameterization: we can set x0 = θ0 + εu1(θ0),

y0 = ω+εu1(θ0)−εu1(θ0−ω), where, in principle, θ0 can be arbitrarily

chosen. An optimal choice for θ0 can be taken as one of the solutions

corresponding to the average value of c within the interval for which

the periodic orbit exists. To be sure that the initial datum belongs to

the periodic orbit, we perform a sufficient number of iterations to reach

the attractor; we also check that such initial condition is well inside the

basin of attraction of the periodic orbit.

From Table 1, we can note that the size of the interval ∆cIFT is

always consistently less than the size of the interval ∆cNum. Moreover,

if we compare the three values for b = 0.5 and ε = 0.8 we can see how

the size ∆cIFT decreases whenever ρ increases. Table 1 shows that

in general the agreement between the analytical and numerical values

is quite good; closer values could be obtained through a more refined

version of the Implicit Function Theorem.
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b ε ρ ∆cIFT ∆cNum

0.5 0.5 10−3 2.89 · 10−3 1.71 · 10−2

0.5 0.8 10−4 6.18 · 10−2 6.74 · 10−2

0.5 0.8 10−3 6.15 · 10−2 6.74 · 10−2

0.5 0.8 10−2 3.54 · 10−2 6.74 · 10−2

0.8 0.5 10−3 1.10 · 10−3 1.25 · 10−2

0.8 0.8 10−3 3.06 · 10−2 4.83 · 10−2

Table 1. Comparison between the amplitudes of the

intervals of c found numerically (∆cNum) and by an im-

plementation of the implicit function theorem (∆cIFT )

for orbits of frequency 2π/3.

3.5. Invariant attractors by a Newton’s method.

The aim of the parameterization of periodic orbits is to find the

link between periodic orbits and invariant attractors. In fact, the para-

metric representation allow us to relate the solutions of periodic and

quasi–periodic attractors.

To this end, in this Section, we want to find a solution of the para-

metric equation (3.14) for an invariant attractor with irrational dio-

phantine frequency ω ∈ R. We recall that an irrational number ω is

called diophantine if it satisfies the diophantine condition, i.e. it is

such that | ω
2π

n+m|−1 ≤ C|n|τ , for any n ∈ Z+, m ∈ Z and for some

positive constants C, τ with τ ≥ 1. Let us define the operators D1 and

Db as

D1u(θn) ≡ u(θn+
ω

2
)−u(θn−

ω

2
) , Dbu(θn) ≡ u(θn+

ω

2
)−bu(θn−

ω

2
)

and let ∆b ≡ DbD1 = D1Db. Then, equation (3.14) can be written as

∆bu(θn)− ε sin(θn + u(θn)) + γ = 0 . (3.43)
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The solution of (3.43) can be found provided the constant γ satisfies

γ = −〈uθ∆bu〉 , (3.44)

where uθ ≡ ∂u(θ)
∂θ

and 〈·〉 denotes the average over θn ∈ T. In fact,

if we multiply (3.43) by 1 + uθ, we compute the average over θn ∈
T and if we take into account that 〈uθ〉 = 0, 〈∆bu〉 = 0 and that

〈(1 + uθ) sin(θn + u)〉 = 0, we obtain (3.44)

As in Section 3.4.1, we expand the function u and the quantity γ in

Taylor series around ε = 0 as in (3.16) and (3.18); then we insert these

expansions in (3.43)–(3.44) and equating same orders of ε we obtain

an explicit expression for the terms uj, γj. Then, by (3.14), it is easy

to show that the first order term u1 must satisfy the equation

u1(θn + ω)− (1 + b)u1(θn) + bu1(θn − ω) = sin θn ; (3.45)

inserting in (3.45) the Fourier expansion of u1 given by

u1(θn) =
∑

k∈Z
û
(1)
k eikθn ,

we obtain the Fourier coefficients

û
(1)
±1 = ± 1

2i(e±iω − (1 + b) + be∓iω)
,

which provide the (real) solution

u1(θn) =
(b− 1) cos θn cot

ω
2
− (b+ 1) sin θn

2(1 + b2 − 2b cosω)
.

This solution can be compared with that found in the periodic case

to see that they are analogous. Through similar computations we can

determine higher order terms. Notice that for 0 < b < 1 the above

function does not contain zero divisors (as it may happen in the con-

servative case b = 1), though the divisors can be arbitrarily small. By

(3.44) one obtains γ1 = 0 and it can be shown that γ2k+1 = 0, while

γ2k 6= 0 for any k ∈ Z+.
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We remark that in the irrational case the Taylor–expansions of the

function u and the term γ can be computed explicitly to any finite

order N . Moreover, we can associate a specific value of the drift c

with a rotational torus. More precisely, a quasi–periodic orbit with

an irrational frequency ω there exists for a specific value of the drift,

namely c = c(ω).

In order to find a better approximate solution of (3.43), one can

implement a Newton’s procedure starting from an approximate solution

given by a finite truncation up to a given integer order N , of the power

series expansions (3.16), (3.18). More precisely, we can start with an

initial approximate solution of the form

u(N)(θn) =
N∑

j=1

uj(θn)ε
j , γ(N) =

N∑

j=1

γjε
j . (3.46)

The functions u(N)(θn) and γ(N) satisfy (3.43) up to an error term

e(N)(θn), namely

∆bu
(N)(θn)− ε sin(θn + u(N)(θn)) + γ(N) = e(N)(θn) ,

where e(N)(θn) is of order O(εN+1). Then we can implement a New-

ton’s method as described in [14] adapted to the case of the standard

map: we start from an initial approximate solution (u(N)(θn), γ
(N)) with

associated error term e(N), and then we define a new solution which

satisfies (3.43) with an error term quadratically smaller than e(N)(θn).

More precisely, we define the quadratic approximation as

u(2N)(θn) ≡ u(N)(θn) + u(c)(θn) , γ(2N) ≡ γ(N) + γ(c) , (3.47)

where the corrections u(c)(θn) and γ(c) are given by the following formu-

lae (see [14] for complete details) after having introduced the following
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auxiliary quantities

V ≡ 1 +
∂u(N)

∂θ
, W ≡ V (θn +

ω

2
)V (θn −

ω

2
) ,

E ≡ V e(N) , Ē ≡ 〈E〉 , Ẽ ≡ E − Ē ,

a ≡ 〈W−1D−1
b Ẽ〉 − Ē〈W−1D−1

b u
(N)
θ 〉

〈W−1〉 − (b− 1)〈W−1D−1
b u

(N)
θ 〉

,

E1 ≡ D−1
b Ẽ + a(−1 + (b− 1)D−1

b u
(N)
θ )− ĒD−1

b u
(N)
θ ,

ŵ ≡ −V D−1
1 (W−1E1) ; (3.48)

then, the corrections introduced in (3.47) are given by:

u(c) ≡ ŵ − V 〈ŵ〉 , γ(c) ≡ γ(N) − Ē + (b− 1)a .

In this way, a solution provided by the implementation of the for-

mulae (3.48) is such that the associated error term is of order ε2N ;

therefore, larger is N , closer is the approximation to the real solution.

As an example, we compute the explicit solution (3.46) up to N = 7

and then we implement the formulae (3.48) to determine u(14). Let ũ(k)

denote the truncation of the ε–expansion of u(14) to the order k. An

approximate solution (x̃, ỹ) of the invariant attractor with frequency ω

is given by the following expression:

{
x̃ = θn + ũ(k)(θn)

ỹ = ω + ũ(k)(θn)− ũ(k)(θn − ω) .
(3.49)

In order to evaluate how such approximation is good we present a

concrete example provided by the invariant attractor with frequency

2πωg, where ωg ≡
√
5−1
2

is the golden ratio.

We compute the analytical solution using equation (3.49), setting

k = 14, fixing b = 0.9 and taking different values of the perturbing pa-

rameter, i.e. ε = 0.8, 0.9, 0.98; each solution is obtained using a grid of

3 000 values of θn ∈ [0, 2π). We also computed the numerical solution,
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iterating the mapping (3.11) starting from the initial point of the an-

alytical approximation. Let (x
(a)
j , y

(a)
j ) and (x

(n)
j , y

(n)
j ), j = 1, ..., 3000,

be, respectively, the analytical and the numerical trajectories. Fig-

ure 3.3 reports the graphs obtained computing the distance between

the analytical and numerical solutions, namely the graph over 3 000

iterations of the error quantity

√√√√ (x
(a)
j − x

(n)
j )2 + (y

(a)
j − y

(n)
j )2

1
2
[(x

(n)
j )2 + (y

(n)
j )2 + (x

(a)
j )2 + (y

(a)
j )2]

, j = 1, ..., 3000 . (3.50)

The agreement between the two approximations is good as far as ε

is small; when the perturbing parameter increases, the graphs show

a larger discrepancy between the analytical and numerical approxi-

mations, until the breakdown threshold is reached (in this case the

breakdown threshold amounts to about 0.972, see [?]). It is obvious

that, for higher values of the perturbing parameter, a refined descrip-

tion requires an approximation to larger orders (and consequently a

much higher computational effort).
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Figure 3.3. Graphs of the error quantity (3.50), mea-

suring the distance between the analytical and the nu-

merical approximation (see (3.49)) of the invariant at-

tractor with frequency 2πωg for b = 0.9, k = 14 and a)

ε = 0.8, b) ε = 0.9, c) ε = 0.98 (after [15]).
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3.6. Drift convergence and Arnold’s tongues

3.6.1. Arnold’s tongues. The parametric representation of peri-

odic orbits shown in Section 3.4.1 tells us that for each rational number

p/q, the existence of a periodic orbit of period p/q is ensured if the drift

parameter varies within an interval. By equation (3.28) it is obvious

that the interval depends on the perturbing and dissipative parameters.

More precisely for a given period p/q and for a fixed value of the dissi-

pation b, the amplitude of the drift interval decreases as the perturbing

parameter gets smaller. Indeed, Figure 3.4 shows the variation of the

drift as a function of the perturbing parameter for three periodic orbits

with frequency 2π · 1/3, 2π · 1/2, 2π · 2/3 and for two values of the dis-

sipative parameter, i.e. b = 0.5 and b = 0.8 (respectively, Figure 3.4a

and Figure 3.4b). If we plot the drift parameter versus the perturbing

parameter we can recognize the typical structures of Arnold’s tongues

(compare with [6], [59]). Within each Arnold’s tongue the periodic

orbit is stable, where the stability is evaluated by computing the eigen-

values of the monodromy matrix along a full cycle of the periodic orbit.

The stable periodic orbits become unstable through a saddle–node bi-

furcation, when approaching the boundary of the Arnold tongue.

3.6.2. Drift convergence. The parametric representation (Sec-

tion 3.4.1) of the periodic orbits and the construction of quasi–periodic

attractors (Section 3.5) provide many information about the relation

between periodic and invariant attractors. In particular, we recall that

a whole interval Ipq of the drift is associated with a periodic orbit

of period p/q, while a unique constant c = c(ω) is associated with a

quasi–periodic orbit of frequency ω.
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Figure 3.4. Arnold’s tongues providing the drift c as a

function of ε. Each plot shows the tongues associated to

three different periodic orbits, precisely with frequencies

2π ·1/3 (left), 2π ·1/2 (center), 2π ·2/3 (right). a) b = 0.5,

b) b = 0.8 (after [15]).

If we consider a sequence of rational numbers pj/qj converging to

an irrational number ω, we have numerical evidence, corroborated by

the analytical expansion, that the sequence of the intervals Ipj/qj tends

to the constant c related to the orbit with frequency ω. Moreover,

by equation (3.28), we can see that the size of the interval Ipj/qj de-

creases as q increases. In the same way we have numerical evidence

that periodic orbits of period pj/qj tend to the quasi–periodic orbit

with frequency ω. Let us show a concrete example: we explicitly deter-

mine the functions uj = uj(θn) up to the order 6. Then, we evaluate an

approximation to the 6th order of the expansion of the drift (see (3.18))

for the periodic orbits with frequencies 2πpj/qj, where pj/qj is equal

to a rational approximant to the golden number ωg ≡
√
5−1
2

. Let us

denote by γ
(6)
pj/qj

and γ
(6)
ωg the approximate drifts, respectively, of peri-

odic orbits and the orbit associated to the golden frequency. Figure 3.5

provides the logarithm of the difference |γ(6)
pj/qj

−γ
(6)
ωg | as j increases; the

plot shows a fast convergence of the periodic drifts associated to the

Fibonacci numbers pj/qj to that of the invariant attractor. However,
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this approximation to the 6th order is valid only for small values of ε.

For higher values of ε, we need a higher order expansion or a numeri-

cal evaluation to obtain more refined results. In Table 2 we report an

average value of the drift within each interval Ipj/qj found through a

numerical evaluation to show how the average value of the drift tends

to the drift of the invariant attractor with frequency 2πωg.
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Figure 3.5. Plot of the logarithm of the absolute value

of the difference of γpj/qj minus γωg versus qj for b = 0.9,

ε = 0.5 (after [15]).
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p/q c p/q c

1/2 0.322143 21/34 0.385862

2/3 0.421515 34/55 0.386159

3/5 0.375734 55/89 0.386046

5/8 0.390044 89/144 0.386089

8/13 0.384586 144/233 0.386072

13/21 0.386640 233/377 0.386079

Table 2. The drift parameter for several periodic orbits

approximating the golden ratio for b = 0.9, ε = 0.9. The

value of the drift for the golden ratio amounts to c =

0.386077.





CHAPTER 4

Some new results on the Sitnikov’s problem

The problem we are going to introduce is one of the most sim-

ple applications of the three–body–problem, but not trivial; it is an

example of a non–integrable dynamical system in which chaos could

appear. In particular, in such problem we can find oscillatory motions,

quasi–periodic and chaotic motions.

In this Chapter we derive the model in terms of the Hamiltonian

formulation of the system. Then, we introduce the action–angle vari-

ables and we approximate the system by a perturbed harmonic oscil-

lator. Through suitable transformations, we remove the perturbation

to higher orders and we construct the Birkhoff normal form. Normal

forms are crucial to understand the dynamical behavior on long time

scales. It is possible to implement theories, like Nekhoroshev’s theorem

using the Pöschel formulation ([56]). We apply this theorem in order

to find the Nekhoroshev’s domain of the parameters involved in which

Nekhoroshev exponential stability estimates can be found. To this end,

we show the existence of KAM tori using a suitable parameterization

in order to write an approximate representation of KAM tori around

the elliptic fixed point of the system.

Some results of this Chapter are taken from an original research in

collaboration with C. Lhotka [29].

91
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4.1. A brief history of the Sitnikov’s problem

The Sitnikov’s problem was introduced by K. A. Sitnikov in 1960;

he treated this problem in order to show the existence of oscillatory

motions for the three–body–problem ([57]). The model describes the

motion of a massless body moving on a straight line perpendicular to

the plane of two primaries which move on Keplerian orbits with eccen-

tricity e (compare with Figure 4.1 and with Section 4.2). The problem

has 1 and 1/2 degrees of freedom, due to the explicit dependence of

the time and moreover it depends on the parameter e. A simplified

problem was treated by W. D. MacMillan in 1913 (see [48]) who stud-

ied the case of zero eccentricity of the primaries’ orbits and he solved

analytically the problems in terms of elliptic functions. J. Moser in

1973 (compare with [51]) showed that the problem is not globally inte-

grable and chaotic orbits exist for a certain set of initial conditions. In

2002, S. B. Faruque (see [37]) provided analytical approximations to

the MacMillan problem in terms of series expansions in the parameters

of the system.

Concerning the elliptic case (eccentricity different from zero), the

first derivation of some analytic expressions in terms of initial condi-

tions and primaries’ eccentricity have been introduced by J. Liu and

Y.S. Sun in 1990 (see [47]). They replaced the periodic differential

equations by an autonomous mapping representing a surface of section

over one primary revolution. Later, in 1992 (see [41]), J. Hagel, using

perturbation theory, obtained a solution of the linearized equation of

motion and then he extended the problem by including nonlinear forces:

the solution gives a good approximation for small oscillations of the

third body. In 1993, R. Dvorak (see [30]) using numerical integrations

showed that invariant curves exist for small oscillations centering on

the barycenter. In 2005, J. Hagel and C. Lhotka (see [42]) derived an
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analytical approximated solution using Floquet and Courant–Snyder

theories.

In recent years the problem has been extended to the case in which

the third body has a non–negligible mass, and therefore it influences the

motion of the primaries (extended Sitnikov’s problem). It was treated

by R. Dvorak and Y. S. Sun in 1997 (see [32]) and by P. Soulis, T.

Bountis and R. Dvorak in 2007 (see [58]); in the latter paper the au-

thors also treated the case in which the third body is not constrained to

be on a straight line and it can move off the z–axis (generalized extended

Sitnikov’s problem). Finally the extended problem was treated by J.

Hagel in 2009 (see [40]) to show perihelion motion of the primaries’

orbits in the circular limit.

4.2. Mathematical formulation

Two bodies of equal mass m1 = m2 (called primeries) move under

Newton’s law of attraction on Keplerian orbits; they orbit on a plane

around the common barycenter, moving in an antisymmetrical way

(r1 = −r2). A third massless point is constrained to move on a straight

line L perpendicular to the plane of the primaries and passing through

the barycenter of the primaries (see Figure 4.1). Since the mass of

the third body can be neglected, the motion of the first two bodies

is not affected by the third body. Moreover, due to the symmetric

configuration of the model, the third body will remain on the line

L. The problem consists in the study of the dynamical evolution of

the third body, which is periodically subjected to the action of the

primaries.

We normalize the time so that the period of the primaries is 2π, and the

mass unit so that the total mass is one, i.e. we consider m1 = m2 = 1/2
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Figure 4.1. The Sitnikov’s model (after [51]).

and the length unit so that the gravitational constant G is equal to one.

Let z be the coordinate describing the motion of the third body. The

Hamiltonian describing the system is given by

H(y, z, t) =
1

2
y2 − 1√

r(t)2 + z2
, (4.1)

where y = ż and r(t) is the distance between one of the primaries and

the barycenter. If the eccentricity is zero, the motion of the primaries

is circular; then r(t) is a constant (r = 1/2) and we get an integrable

system (MacMillan problem). If the eccentricity is different from zero,

then r(t) is a known function of the time and it can be expanded in

Taylor series around e = 0. It can be written as (compare with [7]):

r(t) =
1

2

(
1 +

∞∑

n=1

rn(t)e
n
)
, (4.2)
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where the terms rn are trigonometric polynomials in the time t. Up to

the fourth order we have:

r1(t) = − cos t ,

r2(t) =
1

2
(1− cos 2t) ,

r3(t) =
3

8
(cos t− cos 3t) ,

r4(t) =
1

3
(cos 2t− cos 4t) .

We can also rewrite the fractional term of the Hamiltonian as

1√
r(t)2 + z2

=
1

r

1√
1 + ( z

r
)2

=
1

r

∞∑

k=0

(
−1

2

k

)(z
r

)2k

, (4.3)

where the brackets are the binomial coefficient and the convergence of

the series is guaranteed provided |z(t)/r(t)| < 1.

By setting

ż = y

ẏ = −∂H

∂z
,

the equation of motion derived from (4.1) is given by

z̈ = − z√
(r(t)2 + z2)3

. (4.4)

Inserting (4.3), the equation of motion takes the form:

z̈ =
∞∑

k=0

(
−3

2

k

)(
z2k+1

r(t)2k+3

)
. (4.5)

Expanding it up to a finite order N , we get the equation of motion

in the following polynomial way:

z̈ = −8z −
N∑

β=0

β∑

α=0

(
cα,β−α eαzβ−α cos(kt) + dα,β eαzβ−α

)
, (4.6)

where cm,n ∈ R, dm,n ∈ R, k ∈ Z are suitable constants.
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For the integrable approximation e = 0 and small oscillations, i.e.

z << 1 the approximate equation of motion (4.6) turns out to be the

equation of the harmonic oscillator with natural frequency ω =
√
8.

In this assumption, the massless body performs small oscillations with

frequency ω around an elliptic fixed point centered at the origin (see

Figure 4.2). We provide the expansion of (4.6) up to the order N = 4:

z̈ + [8 + 24e cos t+ e2(12 + 36 cos 2t) + e3(27 cos t+ 53 cos 3t)]z

+ (−48− 240e cos t)z3 = 0 . (4.7)

The double sum in (4.6) is therefore, the perturbation of an har-

monic oscillator. We can see that it also contains of non zero average

terms (the part given by the dm,n coefficients). In the next Section, we

will perform canonical transformations in order to remove this pertur-

bation to higher orders and to obtain a Birkhoff normal form.

In Figure 4.2 we show a phase portrait (with the Poincaré section

condition r(t) = rmin) for the value of the eccentricity e = 0.1. We can

observe the elliptic fixed point at the origin; close to the linear prob-

lem, for very small oscillations around the barycenter, we can observe

closed invariant curves; these closed curves exist up to a certain value

of the initial conditions; moving away for the barycenter the curves

break–down and unbounded and chaotic motions are possible. In the

domain of closed invariant curves we can observe islands which exist

around stable periodic orbits of the problem. It is known (compare

with [28]) that in between such islands we can have hyperbolic points,

separatrices and sometimes only thin layers of chaotic motions. Never-

theless, these motions are bounded and never lead to escape. Outside

the “main island” we see two islands of invariant curves around a stable

point which correspond to the 2:1 resonance, where the primaries make

two compete revolutions whereas the third body completes exactly one
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oscillation (for a more detailed description of the phase–space of the

Sitnikov’s problem as the eccentricity e varies, see [30], [31]).

Figure 4.2. Phase portrait of the Sitnikov’s model for

the eccentricity e = 0.1 (after [31]).

To understand the nonlinear and time dependent effects close to the

center z = 0, we perform a canonical transformation to action–angle

variables of the harmonic oscillator and, doing this, we also rescale the

action variable by some η > 0, obtaining the following transformation:




y =
√
2ωηJ1 cosϕ

z =
√

2
ω
ηJ1 sinϕ

, ω =
√
8 . (4.8)

In this way the new action J1 becomes of order unity and the param-

eter η measures the distance from the origin. We note that, in order

to obtain a symplectic transformation, we have to multiply the result-

ing Hamiltonian by η−1. Taking into account the equation (4.6), the

transformation (4.8) allows us to rewrite the Hamiltonian into a more
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suitable form to apply canonical perturbation theory. Furthermore,

before rewriting the new Hamiltonian, we want to introduce a new

set of variables (J2, φ2 = t) to extend the phase–space; then, the new

Hamiltonian takes the form:

H = ωJ1 + J2 +
N∑

k=1

pk(J1; e, η)

+
∑

(k,l)∈Z2
qk,l(J1; e, η) · cos(kφ1 + lφ2), (4.9)

where pk and qk,l are polynomials in J1, e, η (for easier notation we

denote the new Hamiltonian with the same symbol H). Note that,

the sums represent the perturbation of the system; it is again split into

non–zero and zero average contributions, like in the formulations of the

equations of motion (4.6).

For the ongoing analysis it is important to estimate the region of

convergence of the series in e and η. For this reason it is preferable to

reorder the terms in the Hamiltonian (4.9) such that the Hamiltonian

can be written into the form:

H = h0(J1, J2) +
N∑

k=1

hk , (4.10)

such that the following holds for any k:

∣∣∣hk+1

hk

∣∣∣ < 1 , (4.11)

so that the D’Alambert criterion can be applied. Since the terms hk

in general will depend on both the eccentricity e and the parameter η,

being J1 and J2 of order O(1), the criterion (4.11) has to be fulfilled

in the whole domain of interest of e and η. Thus, up to order N = 16

(which is the machine precision limit), we found the critical values

ecrit ' 0.612 and ηcrit ' 0.4. Therefore, we have to limit the domain

for the ongoing analysis to (e, η) ∈ (0, ecrit)× (0, ηcrit).
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Up to 5th order the Hamiltonian written in terms of hk is given by:

h0 =
√
8J1 + J2 ,

h1 = 0 ,

h2 = 0 ,

h3 =
3
√
2

2
eJ1 cos(2φ1 − φ2)+3

√
2eJ1 cosφ2+

3
√
2

2
eJ1 cos(2φ1 + φ2) ,

h4 =
3
√
2

2
e2J1 −

9

4
ηJ2

1 +
3

2
e2J1 cos 2φ1 +

9
√
2

2
e2J1 cos 2φ2

+
9
√
2

4
e2J1 cos(2φ1 + 2φ2) +

9
√
2

4
e2J1 cos(2φ1 − 2φ2)

−3ηJ2
1 cos 2φ1 −

3

4
ηJ2

1 cos 4φ1 ,

h5 =
27
√
2

16
e3J1 cos(2φ1 − φ2)+

27
√
2

8
e3J1 cosφ2+

53
√
2

8
e3J1 cos 3φ2

+
27
√
2

16
e3J1 cos(2φ1 + φ2) +

53
√
2

16
e3J1 cos(2φ1 + 3φ2)

+
53
√
2

16
e3J1 cos(2φ1 − 3φ2)−

15

2
eJ2

1η cos(2φ1 − φ2)

−15

8
cos(4φ1 − φ2)−

45

4
eJ2

1η cos(φ2)

−15

2
eJ2

1η cos(2φ1 + φ2)−
15

8
eJ2

1η cos(4φ1 + φ2) . (4.12)

4.3. New formulation of the problem

In this Sections we perform a suitable sequence of canonical trans-

formations in order to obtain a new Hamiltonian close to an integrable

one starting from (4.12), namely we will remove the perturbation to

higher orders. The implementation of the algorithm is performed by

standard Lie–transformation theory by using a sequence of near–to–

identity transformations. This allows us to find a new set of variables
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(J
(r)
k , φ

(r)
k ), k = 1, 2 in which the Hamiltonian (4.12) takes the form:

H(r)(J
(r)
1 , J

(r)
2 , φ

(r)
1 , φ

(r)
2 ; e, η) = Z(r)(J

(r)
1 , J

(r)
2 ; e, η)

+R(r+1)(J
(r)
1 , J

(r)
2 , φ

(r)
1 , φ

(r)
2 ; e, η) ,(4.13)

which define the Birkhoff normal form of a nearly–integrable Hamil-

tonian system. The upper index (r) labels the variables at the rth

normalization step, Z(r) is called the normal form term, R(r) the re-

mainder of the Birkhoff normal form, which is at the basis to introduce

the concept of the optimal order of truncation and exponential sta-

bility (this is strongly connected to Nekhoroshev’s theory [54]). In

fact, we will see that the size of the remainder provides the size of

the perturbation. Next, we will use the normal form of the approxi-

mate Hamiltonian formulation (4.12) at order r closest to the optimal

order of truncation; we will find a parameterization of a torus persist-

ing under the perturbation of the remainder, and we will perform the

Nekhoroshev’s estimates around it.

4.3.1. The Birkhoff normal form. In this Section we present an

algorithm which allows us to rewrite the Hamiltonian (4.12) in a more

suitable way in which the perturbation is removed to higher orders;

the explicit computations are based on a program developed by C.

Efthymiopoulos (compare with [33]). Let us consider equation (4.10);

the equations of motion are given by

φ̇k =
∂H

∂Jk

= ωk(J) +
N∑

k=1

∂hk

∂Jk
(J, φ)

J̇k = − ∂H

∂φk

= −
N∑

k=1

∂hk

∂φk

(J, φ) , (4.14)

for k = 1, 2, where ωk = ∂h0/∂Jk is the frequency of the unperturbed

system, J = (J1, J2), φ = (φ1, φ2).
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The idea is to find a canonical transformation (J, φ) → (J ′, φ′) from

old to new variables, such that the nonlinear effects become negligible:

φ̇′
k =

∂H ′

∂J ′
k

= ω′
k(J

′) +Or(J
′, φ′)

J̇ ′
k = −∂H ′

∂φ′
k

= Or(J
′, φ′) , (4.15)

where H ′ is the Hamiltonian in the new variables, ω′ denotes the new

frequency in terms of the new variables and Or(J
′, φ′) is the non–normal

form contribution. The equations (4.15) define the normal form of

the dynamical system; the new Hamiltonian H ′ is called the Birkhoff

normal form.

The transformation is obtained using the method of Lie–series. We

summarize the computational algorithm, which is needed in the calcu-

lations. Given an Hamiltonian of the form H = H0+ εH1, let us define

the Lie–derivative as

lW = {·,W} ,

where the curly brackets stand for the Poisson brackets; then, the Lie–

operator can be defined as its exponential as:

LW = exp lW .

This operator has many properties; in particular we need two of them:

i) we use the fundamental result that the time–evolution of the action–

angle variables of a Hamiltonian systemH(J, φ) can be written in terms

of

J(t) = exp{tlHJ(0)}

φ(t) = exp{tlHφ(0)} ,

which generates a symplectic transformation in phase space. The idea

is to use this property to construct a symplectic transformation in

order to remove the perturbation to higher orders of ε. Therefore, an
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ε–close canonical transformation (where ε is a small parameter) from

old (J (0), φ(0)) to new (J (1), φ(1)) variables can be implemented using

the Lie–operator:

J (1) = exp{εlW1J
(0)}

φ(1) = exp{εlW1φ
(0)} ,

where we have replaced the Hamiltonian through a generating function

W1 and the time flow in t through the parameter flow in ε.

ii) The Lie–operator is flat, i.e. given a function f , then

f(LWJ, LWφ) = LW (J, φ) ;

this means that under a change of variables, the Hamiltonian trans-

forms as follows

H(1)(J (1), φ(1)) = exp{εlW1H
(0)(J (0), φ(0))} .

Expanding the exponential and the perturbing part into Taylor se-

ries in ε as

H(1) = (1 + εlW1 + . . .)(h0(J) + h1(J, φ) + . . .) ,

we get order by order the following terms: at ε0 we get h0, at ε1 we

get lW1h0 + h1, and similar for higher orders. Our aim is to remove

the dependence of the angles to higher orders. To this end, we write

the generating function W (that removes the perturbation) as W =
∑

k Wk; then we implement the Poisson brackets to obtain:

{h0,W1}+ h1 = 0 , (4.16)

which is called homological equation. Let us consider the Fourier ex-

pansion of h1 as

h1 =
∑

k∈Z
ĥ1,k(J) exp{i · k · φ} ,
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then, the homological equation can be solved, provided that the gen-

erating function W1 itself has the form

W̃1 =
∑

k∈Z
w1,k(J) exp{i · k · φ} .

The coefficients w1,k can be found by implementing the Poisson brack-

ets, calculating the derivatives and comparing coefficients of the same

Fourier orders. We obtain an explicit expression for the coefficients

given by

w1,k =
ĥ1,k

i · k · ω . (4.17)

In (4.17), the terms of the form k · ω appear at the denominator. It is

therefore necessary to exclude Fourier terms containing zero divisors.

We can do it in the assumption to be far away from the resonances.

This completes one iteration of the Lie–transformation method. In a

similar way, we can eliminate terms of second and higher orders up to

r so to obtain the Hamiltonian in normal form as in (4.13), namely

H(r)(J (r), φ(r); e, η) = Z(r)(J (r); e, η) +R(r+1)(J (r), φ(r); e, η) , (4.18)

where Z(r) and R(r+1) are, respectively, the normal form and remainder

at order r. If we fix an order of truncation r = r0, the frequency is fixed

as ω′
k(J) = ∂Z(r0)/∂J

′(r0)
k while the higher order terms can be bounded

by the norm of the remainder, namely ∂R(r0+1)/∂φ
′(r0)
k .

4.3.2. Application to the Sitnikov’s problem. In the case of

the Sitnikov’s problem, we aim to transform the Hamiltonian (4.10),

given up to rth order through (4.12), into the form (4.18) by the method

of Lie–transformations described above. The Hamiltonian is already

in a proper form, therefore we implement the homological equations

(4.16) and we solve it for suitable generating functions. We will show

the explicit calculation up to the order 4.
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At the 0th order, the solution, as already indicated, is the identity

given by k0 =
√
8J1 + J2. We omit the 1st and 2nd order; in fact, since

h1 = h2 = 0 we get from straightforward arguments that k1 = k2 = 0

with the generating functions W1 = W2 = 0. At the 3rd order, the

homological equation takes the form:

∂W3

∂φ2

+
√
8
∂W3

∂φ1

− 3
√
2eJ1 cosφ2 −

3
√
2

2
eJ1 cos(2φ1 − φ2)

− 3
√
2

2
eJ1 cos(2φ1 + φ2) = 0 , (4.19)

from which we determine W3 as:

W3 =
3
√
2eJ1 sin(2φ1 − φ2)

4
√
8− 2

+ 3
√
2eJ1 sin(φ2)

+
3
√
2eJ1 sin(2φ1 + φ2)

4
√
8 + 2

; (4.20)

from this equation we get k3 = 0. Repeating the procedure we get at

4th order the homological equation

∂W4

∂φ2

+
√
8
∂W4

∂φ1

− 3
√
2

2
e2J1 cos 2φ1 −

9
√
2

2
e2J1 cos 2φ2

− 9
√
2

4
e2J1 cos(2φ1 + 2φ2)−

9
√
2

4
e2J1 cos(2φ1 − 2φ2)

− 3
√
2

2
e2J1 + 3J2

1η cos 2φ1 +
3

4
J2
1η cos 4φ1

+
9

4
J2
1η = 0 ; (4.21)

the function W4 is therefore given explicitly by solving (4.21). We

obtain the term k4 as follows:

k4 =
1

4

(
6
√
2e2J1 − 9ηJ2

1

)
. (4.22)

With the help of the algebraic manipulator Mathematica we have

obtained the non resonant normal form up to order 16. We omit the
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calculations and we write the normalized Hamiltonian as:

H(16) = Z(16) +R(17)

where

Z(16) =
315

64
√
2
e8J1 −

945

16
e6J2

1η −
364575

11408
√
2
e6J1

+
4725

16
√
2
e4J3

1η
2 +

443745

3472
e4J2

1η +
48087

√
2

6727
e4J1

− 14559

1736
√
2
e4J1 −

11025

64
e2J4

1η
3 − 2511345

15748
√
2
e2J3

1η
2

−8919

7688
e2J2

1η +
1

4

(
6
√
2e2J1 − 9J2

1η
)
− 36

31

√
2e2J1

+
3969

128
√
2
J5
1η

4 +
625

64
J4
1η

3 +
47

32
√
2
J3
1η

2

+
√
8J1 + J2 . (4.23)

As we can see the normal form depends explicitly on the action vari-

ables J and on the parameters e and η.

For the Nekhoroshev’s estimates the remainder plays a very impor-

tant role because the estimates are derived from it, and it represents

the perturbation. To get optimal results, it is necessary to reach the

optimal order of truncation, such to render the perturbation exponen-

tially small, i.e. we are looking for a normal form of order r = ropt,

such that the norm of the remainder ‖R(r+1)(J1, J2, φ1, φ2; e, η)‖ be-

comes minimal. In our case, the norm of the remainder depends on the

parameters e and η (note that we require J1, J2 being of order unity).

We calculated the normal form for fixed e = e0 and η = η0 up to or-

der r = 40 (by using a program developed by C. Efthymiopoulos [33])

and we see as the norms of the remainder depend on r. We found

three different behavior according to different values of (e, η). We give

specific examples of the behavior of the norms in Figure 4.3, which
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demonstrates the dependence on the optimal order of truncation by

the parameters e and η.

5 10 15 20 25 30 35 40
r

0.0001

0.0002

0.0005

0.001

0.002

0.005

0.01

È
R
È

aL

5 10 15 20 25 30 35 40
r

0.03

0.05

0.07

È
R
È

bL

5 10 15 20 25 30 35 40
r

1

10

100

È
R
È

cL

Figure 4.3. The remainder R as function of the order

of truncation r is plotted as e and η vary. a) In the case

e = 0.02, η = 0.01 the norm is a decreasing function of

the order r; b) In the case e = 0.04, η = 0.03 the norm

has a minimum between the order 5 and the order 40; c)

In the case e = 0.04, η = 0.09 the norm is an increasing

function of the order r (after [29]).
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4.4. Nekhoroshev’s estimates

In this Section we first show a short description of the Nekhoro-

shev’s theorem, which provides information about the long term stabil-

ity properties of nearly–integrable systems. The original statement of

the theorem (see [54]) concerns Hamiltonians having a property called

steepness, but this concept can be replaced by other more familiar hy-

potheses. The theorem was reformulated by many authors (compare

with [4], [34], [35], [36], [56]), who replaced the steepness condition

with other conditions as the convexity, or quasi–convexity or the three

jet condition. In particular we will use the Pöschel version given in

[56].

4.4.1. Nekhoroshev’s theorem. Let us consider the Hamilton-

ian given by

H = h0(J) + hε(J, φ) , (4.24)

(compare it with equation (4.18)), where h0 is the integrable part,

hε is the perturbation depending on a small parameter ε ∈ R and

J ⊆ U ⊂ R2. Let us define the norm |u|s of a function u with Fourier

expansion
∑

k∈Z2
uk(J) exp{ikθ} as

|u|s = sup
J∈U

∑

k∈Z2
|uk(J)| · exp{|k|s} ,

for some s ∈ R+, where |k| = |k1| + |k2|. Let ω(J) = ∂Jh0(J) be the

frequency and let Q(J) = ∂2
Jh0(J) be the Hessian of the unperturbed

part, which is assumed to be uniformly bounded with respect to the

operator norm induced by the Euclidian norm. Let M be a bound of

the norm of Q(J). We will say that the integrable Hamiltonian h0 is

l,m–quasi–convex if there exist constants l,m > 0 such that h0 satisfies
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at least one of the following conditions in the whole domain of J ∈ U :

|〈ω(J), ξ〉| > l‖ξ‖

〈Q(J)ξ, ξ〉 ≥ m‖ξ‖2, (4.25)

for all ξ ∈ R2, where 〈·, ·〉 stands for the scalar product. We can now

state the Nekhoroshev’s theorem as stated by Pöschel [56]:

Theorem 4.1. Suppose h0 is l,m–quasi–convex, and

|hε|s ≤ ε < ε0 =
mr0

210A2n
, (4.26)

where r0 = 4l/m, A = 11M/m, n is the dimension of the system (in

our case n = 2). Then for every orbit with initial position (J0, φ0) ∈
U × T2 one has

‖J(t)− J0‖ ≤ R0

( ε

ε0

)a

(4.27)

for

|t| ≤ T0 exp
(s0
6

(ε0
ε

)a)
, (4.28)

where a = 1/2n, R0 = r0/A, T0 = A2s/Ω0,

with Ω0 = sup‖J−J0‖≤R0
‖ω(J)|.

Nekhoroshev’s theorem is very important because it provides a

property of stability for very long times, and it is applicable to real

physical systems because sometimes the life–time of the system is

shorter than the stability time derived from the theorem.

The theorem in its present form is constructive, meaning that it

can be directly used to derive the stability time for a given dynamical

system. The parameters l,m and M and the dimension n are given

from the unperturbed part of the Hamiltonian. The Nekhoroshev’s

regime can be derived from the inequality (4.26) together with an upper

bound for ε, which is the norm of the perturbing part hε. The variation

in action space follows from (4.27) and finally the stability time from
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(4.28). The free parameter s can be set such that the stability time

becomes optimal.

In order to apply this theorem to the Sitnikov’s problem, we have

to check that the system satisfies the required conditions. Actually, the

unperturbed Hamiltonian turns out to be concave, namely the Hessian

of h0 is negative definite. So, the second of condition (4.25), is satisfied

for some m > 0 provided that we introduce the absolute value, namely

|〈Q(J)ξ, ξ〉| ≥ m‖ξ‖2 .

It can be done because Nekhoroshev’s theorem can be proved also in

the concave case. It is sufficient to consider the Hamiltonian given by

−h0 − hε, whose motions are conjugated to the Hamiltonian h0 + hε

through an inversion of the time [62].

Therefore, we can find an explicit stability time for the system

through (4.28); moreover, through (4.26), we can provide the conditions

that the system has to satisfy in order to apply the theorem. In fact,

the size of the remainder provides a value of the perturbation, and it

explicitly depends on the two parameters e and η; for any value of

them the optimal order of truncation ropt changes and the norm can

be computed through an easy algorithm. In particular, we can find a

domain of the eccentricity e and the rescaling parameter η for which

the condition (4.26) is satisfied.

Figure 4.4 shows the domain of e and η for which condition (4.26) is

satisfied. It is a grid of discrete values of e and η; the continuous border

of the domain is not easy to compute. Table 1 shows the Nekhoroshev’s

time corresponding to some values of (e, η) such that condition (4.26)

is satisfied.
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0 0.005 0.01 0.015 0.02
e

0

0.002

0.004

0.006

0.008

0.01

Η

Figure 4.4. The Figure shows the domain of e and η:

the red triangles define those points (e, η) such that con-

dition (4.26) is satisfied; the blue triangles those points

for which the condition is not satisfied.

e η time

0.001 0.001 2.22844 · 1041

0.001 0.005 2.53508 · 106

0.005 0.002 1.3257 · 106

0.01 0.002 399216

0.015 0.001 136643

0.02 0.001 91556

0.02 0.0001 4.03721 · 109

Table 1. The Table shows the Nekhoroshev’s stability

time using formula (4.28) provided by [56] for some val-

ues of e and η such that the condition (4.26) is satisfied.
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4.5. Parameterization of invariant tori in the Sitnikov’s

problem

In this Section we want to provide an explicit parameterization of

invariant tori for the Sitnikov’s problem, which is a nearly–integrable

system. Let us consider the normalized Hamiltonian (4.18) truncated

up to the optimal order ropt. We want to introduce a new parameter ε

being of the same order as the remainder. We rewrite the Hamiltonian

omitting the index r to simplify the notation as

H(J1, J2, φ1, φ2; e, η) = Z(J1, J2; e, η) + εR(J1, φ1, φ2; e, η) . (4.29)

Provided that the eccentricity e and the rescaling parameter η are in

the Nekhoroshev’s domain, the remainder will be small too. We will

consider e and η as fixed parameters and we will take as perturbation

the size of the remainder (which is exponentially small as we have seen

in the previous Section).

In this case the concept of integrability is different from the concept

used in classical literature of the Sitnikov’s problem; in fact, usually

the eccentricity measures the size of the perturbation and the inte-

grable case is considered when the eccentricity is taken equal to zero

(see [48]). In the Hamiltonian formulation used in our work, the per-

turbation depends on more parameters and after the normalization,

the unperturbed Hamiltonian turns out to be dependent on the eccen-

tricity, so that some values of e 6= 0 can be considered to be part of

the integrable case. In fact, if the remainder is equal to zero, which is

the integrable case, we have φ̇ = ω(J ; e, η) (the unperturbed frequency

depends on e).

We introduce the following parameterization of the action–angle

variables in order to find a representation of an invariant torus for

the Sitnikov’s problem with frequency Ω = (ω1, ω2). Let us write the
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variables in the following way:

φ1 = θ1 + u1(θ1, θ2)

φ2 = θ2

J1 = v1(θ1, θ2)

J2 = v2(θ1, θ2) , (4.30)

where θ1, θ2 ∈ T and u1, v1, v2 are real, analytical functions. In par-

ticular, θ1, θ2 are functions of the time and they are such that their

derivatives with respect to the time are equal to the frequency of the

torus: {
θ̇1 = ω1

θ̇2 = ω2 .

From the equations of motion derived from (4.29), we can derive

some conditions about the frequency Ω = (ω1, ω2). In fact, let us denote

by Rx(x, y) the partial derivative of R with respect to the variable x;

then if we derive the equations of motion from the Hamiltonian (4.29),

we obtain:




φ̇1 =
∂H
∂J1

= ω(J1; e, η) + εRJ1(J1, φ1, φ2; e, η)

φ̇2 =
∂H
∂J2

= 1

J̇1 =
∂H
∂φ1

= −εRφ1(J1, φ1, φ2; e, η)

J̇2 =
∂H
∂φ2

= −εRφ2(J1, φ1, φ2; e, η) .

(4.31)

Let us define the operatorD asD ≡ ω ∂
∂θ1

+ ∂
∂θ2

. Then, if we differentiate

the parametric equations (4.30) with respect to the time, we obtain





φ̇1 = ω1 +Du1(θ1, θ2)

φ̇2 = ω2

J̇1 = Dv1(θ1, θ2)

J̇2 = Dv2(θ1, θ2) .

(4.32)
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If we equate equations (4.31) and (4.32) we obtain the following equal-

ities:

ω1 +Du1(θ1, θ2) = ω(J1; e, η) + εRJ1(J1, φ1, φ2; e, η)

ω2 = 1

Dv1(θ1, θ2) = −εRφ1(J1, φ1, φ2; e, η)

Dv2(θ1, θ2) = −εRφ2(J1, φ1, φ2; e, η) , (4.33)

that provide the following relations:

ω1 = ω(J1; e, η) =
∂Z

∂J1

ω2 = 1

Du1(θ1, θ2; e, η) = εRJ1(J1, φ1, φ2; e, η)

Dv1(θ1, θ2; e, η) = −εRφ1(J1, φ1, φ2; e, η)

Dv2(θ1, θ2; e, η) = −εRφ2(J1, φ1, φ2; e, η) . (4.34)

As the reader can see, we have introduced the dependence on e and η

in the functions u1, v1, v2 as it comes out from (4.33).

We can use the above equalities in order to find the parameteriza-

tion of the torus with frequency (ω1, ω2) = (ω, 1); we recall that we are

in the extended phase–space where the angle variable φ2 is the time t;

in fact, from ω2 = 1 we get θ2 = t, since θ̇2 = ω2 = 1. Then we note

that, in the right hand side of (4.34), if we insert the parameterization

(4.30), we obtain some equations in the unknown functions u1, v1, v2

as follows:

ω +Du1(θ1, θ2; e, η) = ω(v1; e, η) + εRJ1(v1, θ1 + u1, θ2; e, η)

Dv1(θ1, θ2; e, η) = −εRφ1(v1, θ1 + u1, θ2; e, η)

Dv2(θ1, θ2; e, η) = −εRφ2(v1, θ1 + u1, θ2; e, η) . (4.35)
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We can note that the first and the second equations are uncoupled from

the remaining one; therefore, from those we can find the functions

u1 and v1, and successively from the third equation we can find the

solution v2. In order to find an explicit solution of the system (4.35),

we want to expand the function u1, v1, v2 in Taylor series as follows:

u1(θ1, θ2; e, η) =
+∞∑

j=1

εju1j(θ1, θ2; e, η)

v1(θ1, θ2; e, η) =
+∞∑

j=0

εjv1j(θ1, θ2; e, η)

v2(θ1, θ2; e, η) =
+∞∑

j=0

εjv2j(θ1, θ2; e, η) , (4.36)

for some real functions u1j, u1j, u1j. In order to have the convergence of

the Taylor–series (4.36), we should require some convergence conditions

about the Taylor coefficients u1j, v1j, v2j, namely we will require that∣∣∣u1j+1

u1j

∣∣∣ < 1, and the same requirement is done for v1j and v2j. Inserting

(4.36) in (4.35) we obtain some equations, which allows us to compute

explicitly the Taylor coefficients. In fact, if we equate same orders of ε

we obtain recursive equations that, step by step (labelled by the index

j), provide the solutions u1j, v1j, v2j.

We will show how to compute the Taylor coefficients u1j, v1j explic-

itly for the first three steps, namely for the orders j = 0, 1, 2. Let us

consider the first two equations of (4.35); if we insert the Taylor series

(4.36) and if we expand the functions RJ1 and Rφ1 around ε, we get

the following equations (for easier notations we omit the dependence
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on θ1, θ2, e, η):

ω + εDu11 + ε2Du12 + · · · = ω(v10) + εf1(v10, v11)

+ε2f2(v10, v11, v12, u11) + · · ·

Dv10 + εDv11 + ε2Dv12 + · · · = εg1(v10) + ε2g2(v10, v11, u11) + · · ·

(4.37)

where the functions fj and gj are obtained from the expansion of RJ1

and Rφ1 , and the dependence on the v1js and the u1js is written explic-

itly. In the following we will denote by a) the first equation of (4.37)

and by b) the second one. We start by equating the order j = 0 of

(4.37): from a) we get an expression of ω in the unknown v10:

ω = ω(v10) , (4.38)

and from b) we get

Dv10 = ω
∂v10
∂θ1

+
∂v10
∂θ2

= 0 (4.39)

from which v10 turns out to be equal to a constant (for the moment it

is unknown).

When we equate terms of order j = 1 in (4.37) we get the two

following equations in the three unknowns v10, v11, u11:

Du11 = ω
∂u11

∂θ1
+

∂u11

∂θ2
= f1(v10, v11)

Dv11 = ω
∂v11
∂θ1

+
∂v11
∂θ2

= g1(v10) (4.40)

In order to find a solution we introduce a new notation: we split the

function v10 (and the same will be done for the other unknown func-

tions) as sum of two parts: one is the average of v10, the other one is

the part with zero average of v10. We will denote by v̄10 the average

and by ṽ10 the zero average part. We recall that the average h̄ =< h >
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over Tn of a function h(x) with x ∈ Tn is defined as

h̄ =
1

(2π)n

∫

Tn

h(x)dx .

Let us consider the equation Dz = w where z and w are smooth func-

tions; in order to guarantee the existence of the solution of such equa-

tion, we must require that z is a zero average function (see [12]). In

this case, from (4.40) we can get two more equations given by

< f1(v10, v11) > = 0

< g1(v10) > = 0 . (4.41)

If we insert the expression v10 = v̄10 + ṽ10 in the last equation, we see

that the constant v̄10 disappears, because it multiplies terms with zero

average, so that any constant satisfies the equation: we can choose it

to be equal to any constant. On the contrary, v̄11 does not disappear

from the equation and it turns out to be equal to zero.

Remark 4.1. From equation (4.38), if we fix v̄10 = const, we are

fixing the frequency of the torus we are looking for.

Now we insert v10 = const in (4.40) b) and we write v11 = v̄11+ ṽ11;

then, equation (4.40) b) depends only on ṽ11 so that, from it, we can

determine explicitly ṽ11 (it turns out to be different from zero). Then,

we insert v11 in (4.40) a) in order to obtain an explicit expression for

ũ11. So, at the end of the order j = 1, we have the explicit form of v10,

v11, ũ11.

We can proceed to the second step, namely equating terms of order

j = 2 in (4.37). We have the following equations

Du12 = ω
∂u12

∂θ1
+

∂u12

∂θ2
= f2(v10, v11, v12, u11)

Dv12 = ω
∂v12
∂θ1

+
∂v12
∂θ2

= g2(v10, v11, u11) , (4.42)
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and

< f2(v10, v11, v12, u11) > = 0

< g2(v10, v11, u11) > = 0 . (4.43)

From the last equation, in which the only unknown is ū11, we get again

that ū11 disappears, so that we choose, for example, ū11 = 0. Then,

coming back to equation (4.42) b), we can easily see that it depends

only on ṽ12 which we can explicitly determine. Successively, we consider

the first equation of (4.43) that depends only on v̄12, so that it can be

explicitly determined.

To summarize the recursive algorithm, at each step we have four

equations given by

Du1j = ω
∂u1j

∂θ1
+

∂u1j

∂θ2
= fj(v10, · · · , v1j, u11, · · · , u1(j−1))

Dv1j = ω
∂v1j
∂θ1

+
∂v1j
∂θ2

= gj(v10, · · · , v1(j−1), u11, · · · , u1(j−1))

< fj(v10, · · · , v1j, u11, · · · , u1(j−1)) >= 0

< gj(v10, · · · , v1(j−1), u11, · · · , u1(j−1)) >= 0 ,

(4.44)

and four unknowns, namely ū1(j−1), ũ1j, v̄1j, ṽ1j, so that we are able to

determine explicitly all of them.

Remark 4.2. i) At any order the term ū1j disappears from the

equations, so that the constant can be arbitrarily chosen, and it will be

taken always equal to zero (while it does not happen for v̄1j that, as we

can see in the following, it can turn out to be different from zero).

ii) The functions Du1j and Dv1j always depend, respectively, on ũ1j

and ṽ1j, being ū1j and v̄1j constants, and therefore, such that their

derivatives with respect to θ1 and θ2 are equal to zero.

We want to show some real calculations of the functions u1j and v1j

for j = 0, 1, 2. To make easier and, above all, faster the computations

we do not take the normalized Hamiltonian up to the optimal order
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of truncation, but we consider the normalized Hamiltonian up to the

order 10. From the previous Remark, we consider the functions ū11

and ū12 equal to zero from the beginning (always to make more clear

the notations of the formulae).

We start by equating the order j = 0; from (4.37) b), we get

ω
∂ṽ10
∂θ1

(θ1, θ2) +
∂ṽ10
∂θ2

(θ1, θ2) = 0 ,

that says to us that the function ṽ10 must be equal to zero. From (4.37)

a) we can fix the frequency ω as

ω =
1

2

(
4
√
2 + 3

√
2e2 − 9η

)
. (4.45)

At this step, actually, the frequency depends on v̄10, which is equal to

a constant. It can be chosen equal to one in order to obtain the action

J1 of the order unity.

Remark 4.3. We must guarantee that the frequency written in

(4.45) is a diophantine number. Let us show the following argument: we

consider ω as a continuous function of e, i.e. ω = ω(e) with e ∈ [0, e0]

for some e0. We know that there exists a set of full measure of dio-

phantine numbers ω; it implies that there exists a subset E ⊂ [0, e0] of

full measure, such that for any e ∈ E, ω(e) is diophantine. Now we can

fix e such that ω(e) is a diophantine number. We also note that if we

consider the Hamiltonian (4.29) truncated to another order, we obtain

different dependence on e. In particular, if we consider the Hamilton-

ian truncated to a higher order, we get an expression of ω in which

more terms in e appear, but they turn out to be of higher order of e.

Therefore, when we fix an order of truncation of the Hamiltonian, we

can consider the frequency ω we find, as a truncation of the frequency

given by considering the Hamiltonian truncated up to the optimal order

[63].
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Then, we can proceed with the order j = 1; equating the first order

of ε of equation (4.37) we get the following:

ω
∂ũ11

∂θ1
+

∂ũ11

∂θ2
= cos θ2a0,1 + cos 3θ2a0,3 + cos(2θ1 − 3θ2)a2,−3

+cos(2θ1 − θ2)a2,−1 + cos(2θ1 + θ2)a2,1

+cos(2θ1 + 3θ2)a2,3 + cos(4θ1 − θ2)a4,−1

+cos(4θ1 + θ2)a4,1 +
9

2
ηv̄11

ω
∂ṽ11
∂θ1

+
∂ṽ11
∂θ2

= sin(2θ1 − 3θ2)b2,−3 + sin(2θ1 − θ2)b2,−1

+sin(θ1 + θ2)b2,1 + sin(2θ1 + 3θ2)b2,3

+sin(4θ1 − θ2)b4,−1 + sin(4θ1 + θ2)b4,1 , (4.46)

where the terms ai,j and bi,j (related to the coefficients i and j of sin

and cos) are known polynomials in the variables e and η. We recall

that we have to solve equations (4.44), namely we have to equate to

zero the average of the right hand side of the previous equations; when

we solve them, we obtain that v̄11 must be equal to zero.Furthermore,

we obtain the following expression for ũ11 and ṽ11:

ũ11(θ1, θ2) = sin(θ2) + sin 3(θ2)c0,3 + sin(2θ1 − 3θ2)c2,−3 +

sin(2θ1 − θ2)c2,−1 + sin(2θ1 + θ2)c2,1 + sin(2θ1 + 3θ2)c2,3

+sin(4θ1 − θ2)c4,−1 + sin(4θ1 + θ2)c4,1

ṽ11(θ1, θ2) = cos(2θ1 − θ2)d2,−3 + cos(2θ1 − θ2)d2,−1

+cos(2θ1 + θ2)d2,1 + cos(2θ1 + 3θ2)d2,3

+cos(4θ1 − θ2)d4,−1 + cos(4θ1 + θ2)d4,1 . (4.47)
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Then, equating terms of order j = 2 we obtain the equations of the

form:

ω
∂ũ12

∂θ1
+

∂ũ12

∂θ2
=

∑

(k1,k2)∈K

(
p(e, η) cos(k1θ1 + k2θ2)

+q(e, η) sin(k1θ1 + k2θ2)
)
+ r(e, η) , (4.48)

ω
∂ṽ12
∂θ1

+
∂ṽ12
∂θ2

=
∑

(k1,k2)∈K

(
s(e, η) cos(k1θ1+k2θ2)+t(e, η) sin(k1θ1+k2θ2)

)
,

(4.49)

where K ⊂ Z2 \ {0}, p, q, r, s, t are suitable polynomials in e and η.

Let us point out something about these equations. If we focus on the

right hand side of (4.48), we can see that some constant terms given by

r(e, η) appear so that, setting the average of the right hand side equal

to zero, we obtain a solution of v̄12 different from zero; in particular we

get:

v̄12 =
1

72η

(
120eηa2,−1 + 120eηa2,1 − 30eηa4,−1 − 30eηa4,1

+53
√
2e3b2,−3 + 27

√
2e3b2,−1 − 240eηb2,−1 + 27

√
2e3b2,1

−240eηb2,1 + 53
√
2e3b2,3 + 120eηb4,−1 + 120eηb4,1

)
, (4.50)

where aij, bij are again polynomials in e and η. Moreover we are able

to compute explicitly ũ12 and ṽ12 that we can write as:

ũ12(θ1, θ2) =
∑

(k1,k2)∈K

( p(e, η)

ωk1 + k2
sin(k1θ1 + k2θ2)

+
q(e, η)

ωk1 + k2
cos(k1θ1 + k2θ2)

)
, (4.51)

ṽ12(θ1, θ2) =
∑

(k1,k2)∈K

( s(e, η)

ωk1 + k2
sin(k1θ1 + k2θ2)

+
t(e, η)

ωk1 + k2
cos(k1θ1 + k2θ2)

)
. (4.52)
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We remark that we are far from the resonances so that, the denomina-

tors turn out to be different from zero.

Formally, we could go on to any order, but the computations be-

come more and more difficult. Furthermore, we need to check the the

series that we are constructing converge and it can be proved that there

exists a domain of e and η such that the series converge.

The outlook is to improve the estimates of the previous Section,

(namely extend the estimates to larger values of the parameters) by

expanding the Hamiltonian around one of the invariant tori and per-

forming the normalization to higher orders.





Conclusions and perspective

The study of the problems treated in this thesis can provide many

information about real phenomena observed in our Solar System. For

example, the analysis of the dissipative standard map provides inter-

esting results concerning the spin–orbit resonances; further studies on

these models could enlighten us on the evolutional history of the ro-

tation of Solar System bodies. The results obtained for the dissipa-

tive standard map can be generalized for the corresponding continuous

spin–orbit problem. In order to obtain new information it would be

interesting to extend the results to higher dimensional models.

A further step would be to prove the existence of cantori for the

dissipative standard map by using the Aubry–Mather theory for dis-

sipative twist maps and to use the parameterization to construct a

cantorus with an irrational frequency ω as limit of periodic orbits of

period pn/qn.

Concerning the Sitnikov’s problem, it would be very interesting to

improve the estimates provided by applying the Nekhoroshev’s theorem

in a neighborhood of a KAM torus. Moreover, it could be interesting

to extend the problem to the case in which the third body is not con-

strained to be on a straight line, but it can move in the whole space,

or to the case in which the third body has non–negligible mass, so

that it perturbs the motion of the primaries. Furthermore, we can add

some kinds of dissipation as, for example, a linear drag or a Poynting–

Robertson drag or a loss of mass of the third body.
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