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ABSTRACT 

CONJECTURING IN DYNAMIC GEOMETRY: A MODEL FOR CONJECTURE-

GENERATION THROUGH MAINTAINING DRAGGING 

by 

Anna Baccaglini-Frank 

University of New Hampshire, September, 2010 

The purpose of this research is to study aspects of the impact of Dynamic 

Geometry Systems (DGS) in the process of producing conjectures in Euclidean 

geometry. Previous research has identified and classified a set of dragging schemes 

spontaneously used by students. Building on these findings, the study focuses on 

cognitive processes that arise in correspondence to particular dragging modalities in 

Cabri. Specifically, we have conceived a model describing what seems to occur during a 

process of conjecture-generation that involves the use of a particular dragging modality, 

described in the literature as dummy locus dragging. In order to accomplish this goal, we 

preliminarily introduced participants to specific dragging modalities, re-elaborated with a 

didactic aim from those present in the literature. In particular dummy locus dragging was 

re-elaborated into what we introduced as maintaining dragging (MD). This study aimed 

at developing and testing our model of conjecture-generation through MD by analyzing 

dynamic explorations of open problems in a DGS. The general experimental design was 

articulated in two phases, an introductory lesson on dragging modalities and interview 

sessions in which students were asked to solve conjecturing-open problems. Subjects 

were high school students in Italian “licei scientifici”, a total of 31. Data collected 

included: audio and video recordings, screenshots of the studentsʼ explorations, 



 xvii 

transcriptions of the task-based interviews, and the studentsʼ work on paper that was 

produced during the interviews. The study shows appropriateness of the model, which 

we refer to as the MD-conjecturing Model. Furthermore the study shed light onto a 

relationship between abductive processes and use of MD, and motivated the introduction 

of the notion of instrumented abduction. The study has implications  for the design of 

activities based on the use of maintaining dragging with the educational objective of 

introducing students to conjecturing and proving in geometry. 



 1 

CHAPTER I 
 

 
 

CONTEXTUALIZATION OF THE STUDY WITHIN THE LITERATURE 
 
 
 

 In this chapter we contextualize our study within the literature, describing how it is 

situated within the educational issue of conjecturing and proving in Geometry, and in 

particular how a dynamic geometry system (DGS) might contribute to mathematics 

teaching and learning in this field. Dragging is a characterizing feature of a DGS, 

therefore we focus especially on how it has been studied in the literature. We then 

introduce a general version of the research questions we set out to investigate, and the 

main goals of the study. 

 

1.1 Contextualization of the Research Problem 

This study is situated in the educational context of conjecturing and proving, and 

in particular on how a DGS may contribute to the conjecturing phase of open problem 

activities. Therefore in this section we present literature on conjecture-generation and 

the use of open problems activities in this educational context. Moreover we discuss the 

role of technology in mathematics education and in particular that of computer-based 

learning through a DGS. We then look at how a DGS seems to impact conjecture-

generation in Geometry. 

 

1.1.1 Conjecture-generation and Open Problems 

Research has shown that when a theorem is introduced as a ready-made
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object, the need for justification is totally absent. Furthermore students do not 

seem to be naturally inclined to prove theorems given to them as statements that 

are easy to believe. In particular, studies suggest that surprise, contradiction and 

uncertainty might be key elements in promoting a feeling of necessity to prove 

(Hadas, Hershkowitz, & Schwarz, 2000; Goldenberg, Cuoco & Mark, 1998). The 

terminology “open problem” (Silver, 1995) refers to a problem (or question) 

stated in a form that does not reveal its solution (or answer). When an open 

problem is assigned, the solver not only has to find hypotheses justifying a fact, 

but also has to look for a fact to be justified. In other words open problems can be 

used to foster conjecture-generation. 

In this section we describe studies that suggest how the process of 

developing a conjecture to prove can be beneficial for the subsequent production 

of a proof. Then we discuss how open problems can be used to foster conjecture-

generation. 

 

Conjecturing and Proving. Literature reveals a debate concerning the 

relationships between argumentation, conjecture and proof. First it is useful to define 

argumentation and conjecture (as proof has already been discussed) in the context of 

open problem investigations. Argumentation can be viewed from a structural point of 

view, or from a functional point of view (Pedemonte, 2007a). Within discourse, the role of 

argumentation is to provide a rational justification for a claim (Hanna, 1991; Hoyles & 

Healy, 1999). In this sense proof can be considered as a particular argumentation in 

mathematics (Pedemonte, 2007b). In parallel with the definition of theorem (Mariotti et 

al., 1997; Mariotti, 2000), conjecture can be defined as a triplet (Pedemonte, 2007b): a 
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statement, an argumentation, and a system of conceptions (Balacheff, 2000; Balacheff & 

Margolinas, 2005). 

While argumentation is the process leading to the development of a conjecture, 

the proof is a subsequent product (Pedemonte, 2003, 2007b). Passing from the 

development of a conjecture to the construction of a proof is a delicate process. Some 

authors have underlined that there is a cognitive and epistemological gap between 

argumentation and proof (Duval, 1995), while others stress the existence of a continuity. 

This continuity is referred to as “cognitive unity”, a notion introduced by Boero, Garuti, 

and Mariotti, who described it as follows: 

During the production of the conjecture, the student progressively works out 
his/her statement through an intense argumentative activity functionally 
intermingled with the justification of the plausibility of his/her choices: during the 
subsequent proving stage, the student links up with his process in a coherent 
way, organizing some of the justifications (“arguments”) produced during the 
construction of the statement according to a logical chain (Boero, Garuti & 
Mariotti, 1996, p.113). 
 

In other words, cognitive unity is established when there is continuity between the 

argumentative activity that occurs during the conjecturing stage, and the process of 

formal justification that occurs during the proving stage. 

Pedemonte (2003) has developed hypotheses about what kinds of reasoning 

lead to rupture or cognitive unity between the phase of experimentation-argumentation-

conjecturing, versus the phase of proving. By using Toulminʼs model (1958) to study and 

compare the content and the structures of argumentations and of proofs, she has been 

able to anticipate occasions in which cognitive unity occurs, and cases in which there will 

be rupture. 

 

Open problems. In the context of open problems students are faced with a 

situation in which there are no precise instructions, but rather they are left free to explore 
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the situation and make their own conclusions. More precisely, in Geometry, open 

problems have been characterized in the following way. 

The statement is short, and does not suggest any particular solution method or 
the solution itself. It usually consists of a simple description of a configuration and 
a generic request for a statement about relationships between elements of the 
configuration or properties of the configuration. 
The questions are expressed in the form “which configuration does...assume 
when...?” “which relationship can you find between...?” “What kind of figure 
can...be transformed into?". These requests are different from traditional closed 
expressions such as "prove that...", which present students with an already 
established result. (Mogetta et al., 1999, pp. 91-92) 
 

In some of the previous research, the production of conjectures is an explicit request in 

the text of an open problem (for example, Boero et al., 1996a, 2007; Arzarello et al., 

2002; Olivero, 2001, 2002). When this is the case, we will use the terminology 

conjecturing open problem, to distinguish it from other types of open problems. 

When a conjecturing open problem is assigned, the solution involves elaborating 

a conditional relationship between some premise and a certain fact. This relationship 

may be expressed by means of a conditional statement relating a premise and a 

conclusion. Such conditional statement constitutes the formulation of the conjecture. 

Moreover, as research points out (Boero et al., 1996b, pp. 113-114) the process of 

producing a conjecture may be accompanied by an active recourse to argumentation 

supporting the acceptability of the conjecture according to the solverʼs system of 

conceptions. Assuming this perspective, the production of a conjecture can be related to 

the production of a theorem, conceived as the system of statement, proof and theory 

(Mariotti et al., 1997; Mariotti, 2000). Since research has shown that there can be an 

opposition between argumentation (leading to the development of a conjecture) and 

proof (Pedemonte, 2007b; Duval, 1996, 1998, 2006), a distinction must be made 

between the conjecturing stage and the proving stage of an open problem activity. 
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Often the conjecturing stage requires the generation of conditionality after a 

mental and/or physical exploration of the problem situation (Mariotti et al., 1997). As 

research has pointed out, this process seems to require the “crystallization” of a 

statement from a “dynamic” exploration of a problem to a “static” conditional expression, 

through the focus on a “temporal section” (Boero et al., 1999; Boero et al., 2007).  

…the conditionality of the statement can be the product of a dynamic exploration 
of the problem situation during which the identification of a special regularity 
leads to a temporal section of the exploration process that will be subsequently 
detached from it and then “crystallized” from a logic point of view (“if…then…”). 
(Boero et al., 1996a, p. 121)  

 
This involves the identification, within a dynamic experience, of the two components of a 

(static) conditional statement: a “condition” that will become the premise and a “fact” that 

will become the conclusion. Searching for a “condition” is frequently referred to during 

the explorations as finding “when” (Arzarello, 2000, 2001) something happens. 

Therefore the term “when” becomes particularly significant because it is an element that 

makes explicit an attempt of linking the world of experience, embedded in real time, to 

the crystallized formal world of Euclidean Geometry, organized through conditionality.  

 

1.1.2 The Contribution of Dynamic Geometry Systems 

Mathematics education supervisors and leaders have been encouraging the use of 

technology in the classroom (Noss & Hoyles, 1996; NCTM, 2000, 2006; De Villiers, 2004; 

Mariotti, 2005) to foster mathematical habits of mind (Cuoco, 2008). NCTMʼs document 

Principles and Standards for School Mathematics (2000) states: “Technology is essential in 

teaching and learning mathematics; it influences the mathematics that is taught and 

enhances students' learning.” (p. 11). A means through which the use of technology is 

implemented is computer-based learning. 
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Computer-based learning in the mathematics classroom involves the following 

specific form of interaction between the learner and the computer. The studentʼs interaction 

with the computer requires a process of interpretation, which is typical of the mathematical 

activity. This is described in Balacheff & Kaput (1996, p. 470): “The interaction between a 

learner and a computer is based on a symbolic interpretation and computation of the 

learnerʼs input, and the feedback of the environment is provided in the proper register 

allowing its reading as a mathematical phenomenon.” This is one of the reasons why 

computer-based learning in the mathematics classroom is potentially very powerful. Noss 

and Hoyles (1996) like to think of the computer as a window that should be looked through 

to understand the process of meaning-making, because it allows (or forces) all of its users to 

communicate in the language of the software being used, or of the “microworld” described 

by the software. In other words, the computer is a channel through which communication 

can happen and a window through which this can be seen. In Section 1.2.1 we will illustrate 

how a DGS can be conceived as a microworld. 

Computer-based learning can be useful not only for observing a studentʼs 

mathematical activity, but also for developing approaches for making conjectures and 

solving problems in different mathematical fields (NCTM, 2000). In the next section we will 

introduce issues that arise within a particular type of computer-based learning, that is 

working in a DGS, which is the context in which our study is situated. 

 

Computer-based learning in the context of a DGS. Technology can be integrated 

into the teaching and learning of Geometry through particular software programs referred 

to as Dynamic Geometry Systems (DGS). Several studies in the teaching and learning of 

Euclidean Geometry (for example, Choi-Koh, 1999; Mariotti, 2000; Christou, 

Mousoulides, Pittalis & Pitta-Pantazi, 2004; De Villiers, 2004) have shown that a DGS 
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can foster the learnersʼ constructions and ways of thinking, and it can help students 

overcome some cognitive difficulties that they encounter with conjecturing and proving 

(for example, Noss & Hoyles, 1996; Mariotti, 2000).  

In particular, studies show that a DGS can be motivational for students, because they 

gain a better understanding and visual grasp of the mathematics they are investigating 

(Garry, 1997). Students find the feedback they get from a DGS to be efficient and exciting, 

and they describe computer learning as an alternative style of working which they enjoy 

(Ruthven & Hennessy, 2002). Moreover, a DGS can be used to overcome some of the 

difficulties encountered when approaching proof in Geometry, by providing visual feedback 

and supporting the construction of situations in which “what if” questions can be asked and 

explored (DeVilliers, 1997, 1998).  

In a DGS, it is common for students to use the visual feedback to be convinced of a 

conjectured attribute on a whole class of objects. Such feedback comes through the use of 

the dragging function (Mariotti, 2001; Herrera, Sanchez, 2006). Although some teachers are 

reluctant to use a DGS in the classroom, because they believe that a DGS may prevent 

students from understanding the need and function of proof (Yerushalmy, Chazan & Gordon, 

1993), studies have shown that activities which provide opportunities for the creation of 

uncertainties (Goldenberg, Cuoco & Mark, 1998; Hadas, Hershkowitz & Schwarz, 2000) lead 

students to feel the necessity of elaborating a proof.  

De Villiers (1997, 1998) illustrated how a DGS provides the perfect situation for 

asking ʻWhat if?ʼ questions. These questions enrich investigations, because they lead 

students to generalizations and discoveries. In this sense, he claims that the search for 

proof becomes an intellectual challenge, stemming from the need to understand why. ʻWhat 

if?ʼ questions are also typical of problems that ʻgo somewhereʼ mathematically. 
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Another reason why several studies in the teaching and learning of Geometry, like 

those conducted by Choi-Koh (1999), by Mariotti (2000), by Christou, Mousoulides, Pittalis, 

& Pitta-Pantazi (2004), or by De Villiers (2004), support the use of a DGS in the classroom, 

is that dynamic geometry systems mediate the interaction between teacher and students. 

The studies listed above and other studies have shown that a DGS can foster the learnersʼ 

constructions and ways of thinking, by making tangible the dialogue between learners and 

their constructions (Noss & Hoyles, 1996; Mariotti, 2000). This can occur, because when 

using a DGS, students can generate and examine objects on the computer screen and have 

a common referent for their discussion (NCTM, 2000). For example, research on students 

“playing with Cabri” has shown that the students find themselves constantly using proper 

terminology for the objects that they need. This helps them achieve a correct idea, for 

example, of concepts like “ray”, “polygon”, “perpendicular”, or “parallel” that are otherwise 

not always immediately understood (Brigaglia & Indovina, 2003). 

Finally, a DGS can be used for the exploration of open problems. Research has 

shown that a DGS impacts studentsʼ approach to investigating open problems in 

Euclidean Geometry, contributing particularly to studentsʼ reasoning during the 

conjecturing phase of open problem activities (for example, Goldenberg, 1993, 1998; De 

Villiers, 1998, 2004; Laborde, 2000, 2001; Mariotti, 2000a, 2000b, 2001, 2003,2005; 

Arzarello, 1998a, 1998b, 2002; Olivero, 1999, 2002). The DGSʼs contribution to the 

investigation of open problems is based in dragging, because it allows the solver to be 

guided and supported by interacting with the software, as described by Laborde and 

Laborde: 

... the changes in the solving process brought by the dynamic possibilities of 
Cabri come from an active and reasoning visualisation, from what we call an 
interactive process between inductive and deductive reasoning (Laborde & 
Laborde, 1991, p. 185). 
 



 9 

This brings us to a central feature of explorations in a DGS, that distinguishes this 

environment from any other. The central feature, upon which our study is founded, is 

dragging. Dragging, and the dynamism it induces on DGS objects, is a distinguishing 

feature of a DGS in particular with respect to the static domain of Euclidean Geometry. In 

the following section we describe aspects of the relationship between a DGS, built to 

incorporate aspects of the Theory of Euclidean Geometry (TEG) and the domain of 

Euclidean Geometry itself. Then we present a review of crucial research on various 

aspects of dragging in a DGS. 

 

1.2 Dragging in the Literature 

We find it important to underline the relationship that can exist between a DGS 

built to incorporate particular aspects of the Theory of Euclidean Geometry (TEG) and 

Euclidean Geometry itself. We will underline this relationship by introducing the 

conception of a DGS as a “microworld” (Papert, 1980) and describing how aspects of 

dynamic explorations within a DGS can be put in relationship with the TEG. The most 

delicate aspect of the transition between the two domains has to do with dragging and 

how it can mediate meanings between the two domains. For example, Lopez-Real and 

Leung see dragging as a conceptual tool in the following way: 

It seems that dragging in DGE can open up some kind of semantic space 
(meaning potential) for mathematical concept formation in which dragging 
modalities (strategies) are temporal-dynamic semiotic mediation instruments that 
can create mathematical meanings, that is, a window to enter into a new semiotic 
environment of how geometry can be re-presented (re-shaped). (Lopez-Real & 
Leung, 2005, p. 666). 
 

 

1.2.1 A DGS as a Microworld 

A fundamental concept, when speaking about a DGS, is that of “microworld” 
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(Papert, 1980; Noss & Hoyles, 1996; Mariotti, 2006). A concise and eloquent description 

of the concept of microworld is contained in Balacheff & Kaput (1996, p. 471):  

A microworld consists of the following interrelated essential features: a set of 
primitive objects, and rules expressing the ways the operations can be performed 
and associated, which is the usual structure in the formal system in the 
mathematical sense; a domain of phenomenology that relates objects and 
actions on the underlying objects to phenomena at the ‘surface of the screen’. 
This domain of phenomenology determines the type of feedback the microworld 
produces as a consequence of user actions and decisions. (emphasis in original).  

 
A microworld can be built to resemble a mathematical world, such as Euclidean 

Geometry. This is the case of a DGS like Cabri, which contains “objects” such as points, 

lines, circles, and ways to “manipulate” the objects. These “objects” are made to 

mathematically resemble a set of objects from a mathematical world (the world of 

Euclidean Geometry in the case of the DGS used in this study). In other words, the 

“objects” included offer the opportunity for the user to experiment directly with the 

“mathematical objects” (Mariotti, 2006), because the logical reasoning behind the objects 

in the microworld is designed to be the same as that behind the real mathematical 

objects that they represent. This feature is a key aspect of microworlds in mathematics 

education, because a DGS that embodies the domain of Euclidean Geometry is not the 

only kind of microworld that can be created. For example, mathematicians and 

programmers have constructed microworlds that represent non-Euclidean geometries 

(Noss & Hoyles, 1996), or other systems of axioms in the field of algebra or analysis. 

 

1.2.2 The Spatio-graphical Field and Theoretical Field in Cabri 

The relationship between the physical world (generally referred to as Space) and 

the theoretical domain is complex. Traditionally the move from observation to theory is 

considered “natural,” but the complexity of these connections correspond to the 

complexity of teaching and learning, and they are embodied by the contradiction in 
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curricula, which separates the geometry of observation and the geometry of proof 

(Mariotti, 1993). In particular, geometric concepts are related to spatial properties of 

reality, i.e. they are strictly related to images. On the other hand a geometric concept is 

an active element of thought (Piaget & Inhelder, 1966), which is symbolic from the 

beginning, and the associated image becomes more and more secondary. Therefore a 

geometric figure has a spatio-geometric component (which will be referred to here as 

figural), and a theoretical component (which will be referred to here as conceptual). The 

theoretical component is the domain of relations and operations on the object, as well as 

judgments about it (Laborde, 2002).  

A similar distinction as that brought forth by the spatio-graphical field and 

theoretical field is the distinction between figural and conceptual components of an 

activity within a DGS. These notions are developed by Mariotti (2006) from Fischbein’s 

notion of figural concept (Fischbein, 1993). Fischbein describes how Geometry deals 

with mental entities (the so-called geometrical figures), which possess simultaneously 

conceptual and figural characters.  

A geometrical sphere, for instance, is an abstract ideal, formally determinable 
entity, like every genuine concept. At the same time, it possesses figural 
properties, first of all a certain shape. The ideality, the absolute perfection of a 
geometrical sphere cannot be found in reality. In this symbiosis between concept 
and figure, as it is revealed in geometrical entities, it is the image component 
which stimulates new directions of thought, but there are the logical, conceptual 
constraints which control the formal rigor of the process” (Fischbein, 1993).  

 
The figural component of an activity is its connection to the physical world, its 

concreteness, and the empirical approaches that a student may take when working on it. 

On the other hand, the conceptual component of an activity is its connection to the 

theoretical world in which it is situated. In a DGS like Cabri this theoretical world is the 

Theory of Euclidean Geometry (TEG), with its definitions, axioms and theorems.  
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Research has shown (Bartolini Bussi, 1993) that when dealing with a geometrical 

problem, students need to relate the spatio-graphical field to the theoretical field and vice 

versa in a dialectic process, alternating “experimental moves” (based on actions on the 

mechanism and visual experiments) and “logical moves” (including the production of 

statements deduced from other statements accepted as valid). Cabri embodies both a 

theoretical world, the world of Euclidean Geometry, and a spatio-graphical world, its 

phenomenological domain, characterized by being mechanical and manipulative. 

Therefore, if used appropriately, Cabri can foster an interconnected dialectic between 

the two fields, by providing diagrams whose behavior is controlled by the theory. 

Furthermore, as stated by Laborde,  

the computer not only enlarges the scope of both possible experimentation and 
visualization but modifies the nature of the feedback. The feedback is visual on 
the surface, but it is controlled by the theory underlying the environment 
(Laborde, 2002). 

 
However, we must not make the mistake of “collapsing” the TEG upon the 

phenomenology of a DGS, interpreting as “geometrical” everything that occurs in the 

DGS. For example, studies have shed light onto misleading aspects of DGS that are 

intrinsically linked to being software programs (for example, Noss et al., 1994; Hölzl, 

2001; Strässer, 2001). We will discuss other aspects of a DGS, related to dragging, that 

contribute to highlighting the gap between the phenomenology of a DGS and the TEG in 

Chapter 3 and, more extensively, in Chapter 7. 

 

1.2.3 Dragging: a General Overview 

Different aspects of the potential of dynamic geometry systems (DGSs) have 

been widely documented (for example, Laborde 1995; Mariotti 1997, 2002; Noss & 

Hoyles 1996; Olivero 2002; Hollebrands, 2007). Our study focuses in particular on 
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exploratory activities in which the goal is to produce conjectures, and the main 

contribution of the DGS to this type of exploration is the possibility it offers the solver to 

use the dragging function. Dragging is a characterizing feature of dynamic geometry that 

allows direct manipulation of the figure on the screen (Laborde & Strässer, 1990), 

inducing transformations which can be visualized as movement of these figures. This 

way, exploring a figure in dynamic geometry can become a search for interesting 

properties and relationships between these properties perceived as invariants. The 

identification of such invariants lies at the heart of a dynamic exploration (Laborde, 2005; 

Laborde et al., 2006; Hölzl, 1996; Arzarello et al. 1998a, 1998b, 2002; Olivero 2002; 

Healy & Hoyles 2001; Baccaglini-Frank et al., 2009).  

In this section we will introduce some element from the literature on “dragging”, 

following its evolution, situated within the more general empirical research on use of 

DGSs in the classroom. Gawlick (2002) highlights three stages of such research, that 

are: (1) research concerning the exploration of the various capabilities of a DGS; (2) 

research on the studentsʼ interaction with the software and their construction of 

knowledge with respect to the mathematical structures aimed at; (3) research on the use 

of DGS in the classroom, that investigates both studentsʼ uses of dynamic geometry with 

respect to specific mathematical tasks, and the role of the teacher in the construction of 

mathematical meanings from situated experiences within the DGS. 

 

The First Stage. During the first stage studies focused on potentials of dynamic 

geometry, situating their considerations in the perspective of a DGS as a microworld 

(see also Section 1.2.1). Early studies describe how within a DGS, like Cabri-Géomètre 

(Laborde & Bellemain, 1993-1998), the following two features have impact on the 

learning of geometry: 1) “geometrical knowledge” is embedded in Cabri-Géomètre, and 
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the behavior of the software is controlled by a theory comprising primitives and the drag 

mode; 2) theoretical concepts are reified and can be handled as material entities 

(Laborde & Laborde, 1995, p. 243). A fundamental characterizing feature of a DGS is 

that figures can be constructed starting from a set of basic elements from which other 

objects are constructed according to a set of given properties describing the dependency 

relations between them, and base (or basic) points of the figures can be dragged on the 

screen. During the dragging process the properties according to which the construction 

was made are maintained, and these may be perceived as invariants.  

Various studies address (or contain, even if they are not explicitly focused on it) 

the use of the drag mode (see, for example, Laborde & Strässer, 1990; Laborde & 

Laborde, 1991; Laborde, 1992; Noss et al., 1994; Healy et al., 1994; Goldenberg & 

Cuoco, 1998; Hölzl, 1996, 2001). Most of these studies have underlined the potential of 

dragging with respect to validating a geometrical construction. For example, Healy, 

Hölzl, Hoyles and Noss (1994) elaborated the idea that a figure might or might not be 

“mess up-able”, that revealed to be quite powerful for students. Later, Healy (2000) 

introduced the notions of robust construction and soft construction to explain studentsʼ 

different ways of interacting with a DGS as they identified and induced geometrical 

properties on the figures. Although many studies focused on the potentials of dynamic 

geometry, research also took into consideration some pitfalls (Balacheff, 1993; Healy & 

Hoyles, 2001), leading to reflection upon different ways in which dragging might affect 

the learning of Geometry (Hölzl, 1996). This leads to the second stage of research, 

characterized by a constructivist approach aimed at analyzing studentsʼ construction of 

knowledge as they interacted with the microworld. 
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The Second Stage. Research became focused on the knowledge constructed by 

students during technology-based experiences with respect to potential mathematical 

ideas the technology-based experiences might have contained or been aimed at. Noss 

and Hoylesʼs (1996) studies show that the knowledge students would construct during 

such experiences was tightly linked to the specific environment it was developed within. 

As mentioned above, Hölzl (1996) described how a DGS may subtly interfere with the 

intended understanding of Geometry, leading for example to the perception of “false 

invariants.” These are properties that look like invariants of a dynamic figure even though 

they are not explicitly added as properties during the construction steps nor are they 

consequences of them. These invariants arise from how the software is programmed. As 

a consequence, the drag mode is not “heuristically neutral” (Hölzl, 1996, p.171). 

Researchers and educators thus became aware that this and other features of a DGS 

may change the studentsʼ working style (Healy & Hoyles, 2001) and even their 

conception of Geometry (Balacheff, 1993; Hölzl, 1996). This explains how dynamism 

cannot be conceived per se as a didactical advantage (Hölzl, 1999), but instead as a 

non-neutral feature of dynamic geometry to be used consciously. 

The awareness of non-neutrality of a DGS, in particular due to the dragging 

feature within it, recently led to hypothesizing the possibility of introducing a new 

“grammar” through which statements constructed via dynamic explorations may be 

expressed (for example, Lopez-Real & Leung, 2006, p.666). This of course re-opens the 

issue of potentially conceiving a new theory built upon the “axioms” to be defined. 

 

The Third Stage. More recently research has been concerned with 

implementation of DGS within classroom settings. Among these studies many are 

focused on cognitive aspects of the studentsʼ use of dragging during explorations. These 
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studies provide different ways of analyzing and different interpretations of  studentsʼ 

activity. Some of them reveal studentsʼ difficulties in being aware of the different status of 

elements comprising a dynamic figure. For instance, Talmon and Yerushalmy (2004) 

shed light on the complexity of grasping and controlling hierarchical dependency induced 

on the elements of a figure by the construction  steps. The consciousness of the fact that 

the dragging process may reveal a relationship between geometric properties embedded 

in the Cabri-figure directs the way of transforming and observing the screen image. 

 Other studies, that are particularly significant with respect to our research, 

concern the description of different dragging modalities spontaneously used by students 

during an open problem exploration (for example, Arzarello et al., 1998a, 1998b, 2002; 

Olivero, 2002; Leung, 2003, 2008; Lopez-Real & Leung, 2006). Because of their 

significance for the study presented in this dissertation, they will be presented separately 

at the end of this Section.  

Another group of  studies  focuses on classroom activities that make use of a 

DGS. Some of them overcame the conception of a DGS as a  “visual amplifier” and 

explore how its role in fostering the construction of mathematical meanings. In particular, 

researchers have started investigating how the use of dragging during a dynamic 

exploration can be interpreted in terms of logical dependency (Mariotti, 2006, 2010; 

Laborde, 2003; Gousseau-Coutat, 2003). “Feeling motion dependency”, which can be 

interpreted in terms of logical dependency within the mathematical context is a key 

feature in the development of conjectures originating from the investigation of open 

problems in a DGS. The solver has to be capable of transforming perceptual data into a 

conditional relationship between what will become premise and conclusion of the 

statement of a conjecture (Mariotti, 2006).  
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In the context of these studies, other interesting aspects, differently related to the 

management of classroom activities, have been taken into account: the design of the 

tasks as a DGS in the classroom to make mathematical meanings emerge (for example 

Laborde, 2001, 2003; Gousseau-Coutat, 2003; Healy, 2004; Restrepo, 2009); and the 

role of the teacher in organizing and orchestrating the activities and discussions (for 

example, Bartolini Bussi & Mariotti, 1999, 2008; Mariotti, 2002) .   

As far as the design of the task in concerned, the work by Gousseau-Coutat 

(2003) is particularly significant for our study. The teaching experiment implemented in a 

middle school classroom is aimed at  fostering the understanding of conditionality by 

introducing soft constructions. This mediates the distinction between premise and 

conclusion in a conditional statement.  

Let us give an example, consider the following task (Laborde, 2005, p.32-33): 

“Construct any quadrilateral ABCD , its diagonals and the midpoint of each diagonal. 

Drag any vertex A, B, C or D so that the midpoints are coinciding.” The essence of the 

task consists in imposing a condition  by dragging (here the coincidence of midpoints) 

and consequently inducing  a visible change on the figure (here it becomes a 

parallelogram). A teaching experiment developed by Restrepo (2008) stemmed from a 

similar assumption:  fostering studentsʼ awareness of relative dependency in a DGS with 

the aim of  clarifying the distinction between “drawing and figure” (Laborde & Capponi, 

1994). 

 

Arzarello et al.ʼs Cognitive Analysis of Dragging. In the late 90ʼs a team of 

researchers, Federica Olivero, Ferdinando Arzarello, Domingo Paola, and Ornella 

Robutti, analyzed subjectsʼ spontaneous development of dragging modalities during 

investigations of open problems in dynamic geometry. The investigations centered upon 
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the use of dragging from a cognitive point of view, focusing on the way dragging may 

affect studentsʼ reasoning process. This led to a classification (Arzarello et al., 2002; 

Olivero, 2002) of different dragging modalities that students might use in solving 

problems, which have been referred to as the “dragging schemes”. These dragging 

schemes can be described as particular ways of dragging points of a dynamic figure on 

the screen, that is particular uses of the dragging tool, exploited by the user in order to 

accomplish a task (or sub-task). The classification of the dragging modalities can be 

summarized as follows:  

• Wandering dragging: moving the basic points on the screen randomly, without a 

plan, in order to discover interesting configurations or regularities in the figures.  

• Bound dragging: moving a semi-draggable point (it is already linked to an object). 

• Guided dragging: dragging the basic points of a figure in order to give it a particular 

shape. 

• Dummy Locus (or lieu muet) dragging: moving a basic point so that the figure 

keeps a discovered property; that means you are following a hidden path (lieu muet), 

even without being aware of this. 

• Line dragging: drawing new points on the ones that keep the regularity of the figure. 

• Linked dragging: linking a point to an object and moving it onto that object.  

• Dragging test: moving dragable or semi-dragable points in order to see whether the 

figure keeps the initial properties. If so, then the figure passes the test; if not, then the 

figure was not constructed according to the geometric properties you wanted it to 

have. 

Students showed different uses of dragging according to the different aims that 

direct the solution process: exploring the configuration looking for regularities, making 

conjectures, testing and validating conjectures, justifying conjectures. The research 
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studies carried out by Olivero, Arzarello, Paola, and Robutti (Olivero, 2000; Arzarello, et 

al., 1998a, 1998b, 2002) consider expert solversʼ production of conjectures and propose 

a theoretical model describing the whole process developing from the dynamic 

exploration to the formulation of the conjecture and to its validation. The model is based 

on the theoretical distinction  between “ascending”  and “descending” control (Saada-

Robert, 1989; Gallo, 1994) and hypothesizes the emergence of abduction when a 

passage from “ascending control” to “descending control” occurs.  

Ascending control. This is the modality according to which the solver 'reads' the 

figure in order to make conjectures. The stream of thought goes from the figure to the 

theory, in that the solver tries and finds the bits of theory related to the situation he is 

confronted with. This modality relates to explorations of the given situation. 

Abduction (Peirce, 1960; Magnani, 1997). In the model, abduction means 

choosing 'which rule this is the case of', that is the subject browses his theoretical 

knowledge in order to find the piece of theory that suits this particular situation. 

Explorations are transformed into conjectures.  

Descending control (Gallo, 1994). This modality occurs when a conjecture has 

already been produced and the subject seeks for a validation. S/he refers to the theory in 

order to justify what he has previously 'read' in the figure and validates his conjectures. 

 

The model assumes that abduction plays an essential role in the process of 

transition from ascending to descending control, that is from exploring to conjecturing 

and then to proving. Abduction guides the transition, in that it is the moment in which the 

conjectures are produced and expressed in a conditional form “if…then”. Moreover, 

Arzarello et al.ʼs studies suggest that the abduction occurs in correspondence to use of 
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dummy locus dragging. However the model presented above does not allow to gain 

detailed insight into this delicate transition point that the study refers to. We will illustrate 

how Arzarello et al. analyzed studentsʼ explorations through this model and their 

“dragging schemes” in Chapter 2, as we elaborate the elements of the theoretical 

background of our study. 

 

1.3 Research Questions (General) and Goals of This Study 

Building on the work of Olivero and Arzarello (Olivero, 1999; Arzarello et al, 

1998a, 1998b), we have conceived a model for a cognitive process that can occur during 

the conjecturing stage of open problem investigations in a DGS. We will introduce this 

model in Chapter 2 as part of our theoretical background. The contextualization of the 

problem has led to the following general research questions: 

1. During the conjecturing phase of an open problem in a DGS, what forms of 

reasoning are used and how? 

2. Is it possible to associate particular forms of reasoning to particular uses of the 

dragging tool? If so, how can the association be described? 

3. Is it possible to describe a somewhat “general” process leading to the formulation of 

a conjecture when the solver uses the dragging tool in particular ways? If so how 

might this process be described? 

In Chapter 2 we will introduce the theoretical background we chose and elaborated for 

our study. Once we have described the constructs we use, we will present the detailed 

research questions we set out to investigate during this study.  

Through this qualitative study we potentially seek validation and refinement (if the 

initial model seems to be valid) of the model, through a spiraling process of 

experimentation and revision. The final goal is to give a detailed description of some 
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cognitive processes related to conjecturing when particular dragging modalities are 

adopted in dynamic geometry, thus providing a base for further research and for the 

development of new curricular activities. In particular we proposed to: 

• describe a “general” process of conjecture-generation associated with particular 

uses of the dragging tool; 

• gain insight into cognitive aspects of this process of conjecture-generation, 

describing potential difficulties that might arise for the solvers; 

• and specifically investigate whether there is a relationship between abductive 

reasoning and specific dragging modalities.  



 22 

 
CHAPTER II 

 
 
 

THEORETICAL BACKGROUND 
 

 
 

This chapter contains descriptions of the concepts and tools that other 

researchers have developed and that we will make use of in this study. Moreover, we 

elaborated particular theoretical constructs introduced by other researchers, so that they 

would become appropriate tools for this study. Our theoretical background takes into 

consideration and elaborates on the notion of “dragging” within a phenomenological 

perspective (Section 2.1), basic aspects of the “instrumental approach” (Section 2.2), 

and the notion of “abduction” (Section 2.3). In Section 2.4 we present the first version of 

our model together with a hypothesis on introducing solvers to particular ways of 

dragging. Then we present the dragging modalities we have elaborated from those 

present in the literature, to introduce to solvers (Section 2.5). This theoretical 

background allows us to present our more detailed research questions in Section 2.6. 

 

2.1 Dragging Modalities in Our Theoretical Background 

When analyzing what has changed in the geometry scenario with the advent of 

DGSs we can notice a transition from the traditional graphic environment made of paper 

and pencil, and the classical construction tools like the ruler and compass, to a virtual 

graphic space, made of a computer screen, graphical tools that are available within a 

given software environment and a particular mode, the dragging mode, that allows the
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transformation of images on the screen, giving the effect of “dragging them”. (Mariotti, 

2010). The dragging tool can be activated by the user, through the mouse. It can 

determine the motion of different objects in fundamentally two ways: direct motion, and 

indirect motion. 

The direct motion of a basic element (for instance a point) represents the 

variation of this element in the plane - or within a specific geometrical domain, a line, a 

segment, a circle when “point on an object” is activated. The indirect motion of an 

element can occur after a construction has been accomplished. In this case dragging the 

base points, those from which the construction originates, will determine the motion of 

the new elements obtained through the construction. Therefore, use of dragging can 

allow the user to feel “motion dependency”, which can be interpreted in terms of logical 

dependency within the geometrical context (Mariotti, 2010). In this section we will 

analyze dragging from this phenomenological perspective. 

In particular we will discuss how dragging can be used to perceive invariants 

(Section 2.1.1), and highlight a distinction, described by Mariotti (2010), into two 

fundamental uses of dragging in a DGS: dragging to test a construction (Section 2.1.2) 

and dragging to produce a conditional statement (Section 2.1.3). We focus on this 

second use of dragging and in section 2.1.4 we use an example to analyze some 

differences in conjecture-generation in a DGS with respect to the paper-and pencil 

environment, induced by dragging. In particular this kind of dragging can be further 

separated into exploring the consequences of a certain set of premises (Section 2.1.4.1), 

and into finding the premise of a conditional statement (Section 2.1.4.2). This 

corresponds to identifying under which conditions a given configuration takes on a 

certain property (as in Arzarello et al., 2002; Olivero, 2002). Our study focuses 

particularly on this use of dragging. 
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2.1.1 Dragging and Perceiving Invariants 

The dragging mode allows the transformation of images on the screen by 

producing a sequence of new images. Each image is reconstructed after the userʼs 

choice of a new position for a specific point s/he is dragging, by clicking on it and moving 

the mouse. The high number of images in this sequence and the speed at which they 

are produced on the screen give a visual effect of continuity, analogous to what is seen 

in a movie. The changes in the image on the screen are perceived in contrast to what 

simultaneously remains invariant, and this constitutes the base of the perception of 

“movement of the image” (Mariotti, 2010). 

In general, and this is the case in a DGS like Cabri, the invariants are determined 

both by the geometrical relations defined by the commands used to accomplish the 

construction, and by the relationship of dependence between the original relations of the 

construction and those that are derived as a consequence within the theory of Euclidean 

Geometry (Laborde & Strässer, 1990). All these invariants appear simultaneously as the 

dynamic-figure is acted upon, and therefore “moves”. However there is an a-symmetry 

between the types of invariants, which is fundamental for conceiving logical dependency 

within the DGS. Specifically, the a-symmetry leads to a distinction in direct invariants, 

corresponding to geometrical properties defined during the construction of the dynamic-

figure, and indirect invariants, corresponding to geometrical properties that are 

consequences of the construction. Perceiving and interpreting invariants is a complex 

task for a non-expert geometry student. This has been observed and discussed in 

different studies (Talmon & Yerushalmy, 2004; Restrepo, 2008; Baccaglini-Frank et al., 

2009; Mariotti, 2010). 

We highlight a distinction, proposed by Mariotti (2010), between two fundamental 

uses of dragging in a DGS. The distinction aims at describing two situations that 
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correspond to two different specific goals a user might have in mind when using 

dragging. 

• Use of dragging to test whether an accomplished construction is correct, that is 

dragging that corresponds to check a given goal (for example, if the goal was to 

construct a square, dragging is used to check the correctness of the 

construction); 

• Use of dragging to formulate a conjecture: given a certain construction the goal is 

to produce a conditional statement that expresses the logical dependency 

between properties that can be perceived through dragging the configuration. 

 

2.1.2 Dragging to Test a Construction 

In this case perceiving the figure globally will allow the identification of the 

invariants necessary in order to recognize the correctness of the construction, with 

reference to a particular definition or characterizing property. The reason such invariants 

are present, as a direct effect of the construction commands or as a consequence of 

such commands,  may not be important to the user. Instead the evaluation of the 

correctness of the construction will occur at a global level and it will occur in relation to a 

system of expectations that the solver will have with respect to the final construction. Let 

us consider the following type of activity to be carried out within a DGS. 

Construct a square. Does your figure correctly represent a square? Why? 

This type of activity has been widely described and discussed in various studies (for 

example, Strässer, 2001, pp. 327-329), so we will not analyze particular solutions here. 

Instead we will discuss how dragging can be used during an activity of this sort. First we 

need to consider what it means for a dynamic-figure to “correctly represent” a square. 

This means to create an object that somehow “incorporates” the conceptual properties 
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and characteristics of the geometric shape (NCTM, 2000), so a correct construction 

should lead to a dynamic-figure that has such properties as invariants. Such a 

construction will lead to a dynamic-figure that is “unmess-up-able” (Healy et al., 1994) or 

“robust” (Healy, 2000), that is, when any of its base points are dragged in any way, the 

figure remains a square. In this sense a construction that, for example, incorporates the 

properties (1) angle in A right, (2) angle in B right, (3) segment AD  congruent to AB, (4) 

segment BC congruent to AB will be un-mess-up-able, because these properties are 

also sufficient for obtaining a robust square. On the other hand, a construction that does 

not have the sufficient properties for being a square will get deformed if some of its base 

points are dragged. We will refer to a property that may be induced, but that is not 

robust, as “soft”, in accordance to the terminology introduced by Healy (2000). 

 This was an example of how dragging can be used to test a construction. Of 

course such a task may become a subtask during a more complex activity, or a sub-goal 

developed by a solver whoʼs aim is to solve a more complex problem. We will now 

discuss aspects of the use of dragging in conjecture-generation, that constitute a basis 

for the present study. 

 

2.1.3 Dragging to Produce a Conditional Statement  

The use of Cabri in the generation of conjectures is based on the interpretation of 

the dragging function in terms of logical control. In other words, the subject has to be 

capable of transforming perceptual data into a conditional relationship between a 

premise and a conclusion. The consciousness of the fact that the dragging process may 

reveal a relationship between geometric properties embedded in the Cabri-figure directs 

the way of transforming and observing the screen image (Talmon & Yerushalmy, 2004). 

At the same time, that consciousness is needed to exploit some of the tools offered by 
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the software, like the ʻlocus of pointsʼ or ʻpoint on objectʼ. Such a consciousness is strictly 

related to the possibility of exploiting the heuristic potential of a DGS. 

Dragging for conjecture-generation clearly presents a higher complexity as 

compared to dragging to test a construction, since it involves not only observing the 

figure globally and recognizing characterizing properties but also analyzing and 

decomposing the elements of the figure and the properties they have in order to “see” 

relationships between such properties. In other words, when the goal is to generate the 

statement of a conjecture, the interpretation of perceived invariants in terms of a 

geometric statement is based on the interpretation of dragging in terms of relationships 

between properties of a figure, and more specifically in terms of invariance during 

dragging of such relationships between properties of elements of the figure (Mariotti, 

2010). 

 

2.1.4 Some Differences in Conjecture-generation in a DGS with Respect to the 

Paper-and-pencil Environment, Induced by Dragging 

Let us consider the following construction, and use it as an example to introduce 

particular aspects of conjecture-generation in a DGS when the dragging tool is used. 

ABCD is a quadrilateral in which D is chosen on the parallel line to AB through C, and 

the perpendicular bisectors of AB and CD are constructed.  

 

Figure 2.1.4.1: ABCD as a result of the construction described in the example above. 
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In a paper-and-pencil environment geometrical properties are static and “at the 

same level” with respect to the solverʼs perception. The perpendicular bisectors appear 

to be parallel and segments AB and CD appear to be parallel. It is up to the conjecturer 

to introduce a logical dependence between the properties s/he perceives. If we think 

about the figure the solver is making conjectures on (so a mental construction of the 

solver) as a figural concept (Fischbein, 1993; Mariotti, 1995, p. 112), we may consider its 

figural components and its conceptual components. It is under the conceptual control 

that the solver may imagine certain properties as logically dependent upon others. In this 

case “AB parallel to CD” implies “perpendicular bisectors parallel”. Furthermore, in the 

paper-and-pencil environment, no element of the figure is privileged with respect to 

others, and reasoning on a specific unique drawing that represents a class of figures 

requires a high harmonization between the figural component and the conceptual 

component. 

 On the other hand, in a DGS, properties can be perceived as invariants with 

respect to dragging. In this example, the constructed parallelism and perpendicularity are 

conserved during dragging, but also the parallelism between the two perpendicular 

bisectors. The leap in complexity is constituted by becoming aware of the hierarchy 

induced on the properties of the construction and on the fact that such a hierarchy 

corresponds to logical relationships between the properties of the “geometric figure”. 

Therefore the figural component that the solver deals with may profit from a dynamic 

representation. The distinction between direct and indirect movement may be interpreted 

in terms of a logical dependence of one property upon another of a certain figure. This 

distinction can, in the example we are considering, lead to the following conjecture: “if 

two sides are parallel, then the corresponding perpendicular bisectors are parallel.” The 

interpretation of dragging in terms of conservation of the relationship between invariants 
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corresponds to a logical control over the generality of the relationship between properties 

of a given figure. We use this idea to develop our hypothesis on how the sensation of 

“causality” may occur through dragging in a DGS, as part of the cognitive model we 

describe in Chapter 4. 

 Another factor that needs to be taken into account when describing dragging in 

conjecture-generation is that a dynamic figure depends on its base points, and the 

figureʼs possible movements depend on the steps of the construction that induce 

corresponding invariant properties of the figure. This constitutes an essential aspect of 

the “being dynamic” of a Cabri-figure. In the example above, A, B, and C are base-points 

of the dynamic-figure with two degrees of freedom. Therefore they can be dragged to 

any place on the screen, while D can only be dragged along the parallel line to AB 

through C. Dependent elements of a construction, like the perpendicular bisectors in our 

example, cannot be directly acted upon. The basic and constructed elements of a figure 

are determined by the steps of the construction, and their different status determines 

how the dynamic-figure will behave during dragging. However, it is up to the solver to 

translate “these steps” into geometrical properties, reach other derived properties 

through deductive reasoning, and discover new properties that are logically linked to one 

another. Therefore we have shown how in a DGS the analysis of the status of the 

different elements of a figure, and first of all of points, can support the solver in 

determining and checking properties of figures and relationships between them. 

However the solver still is completely responsible for the non-trivial task of making sense 

of what s/he experiences, and s/he may encounter various difficulties along the way. In 

fact this task of sense-making is neither simple nor spontaneous, and it may take a 

considerable amount of time and training for the solver to be able to conquer it.  
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Moreover, when “exploring” a figure in a paper-and-pencil environment the solver 

may perform mental experiments on the figure and help him/herself by re-drawing the 

figure after having imposed a desired change. In order to do this the solver must keep 

track of the conceptual components of the figure and make sure that these are all 

present in the new drawing. Typically the solver will produce the drawing of a 

“transformed” figure in a position that is “quite a bit” different from the original 

configuration. On the other hand, in a DGS, deformations can be performed 

“continuously” and each new figure will automatically exhibit all the properties according 

to which the original figure was constructed. In this manner the solver does not have to 

keep track of all the conceptual components and reconstruct the figure after each move. 

Instead s/he can observe change and invariance through small perturbations of the 

figure, that is, dragging a base point “only a little” to explore the figure. This allows a 

different type of exploration that involves a “dialogue” with the software: while in the 

paper-and-pencil environment the “moves” have to be conceived mostly in the solversʼ 

head before s/he represents them on the paper, in a DGS the solver may use a trial-and-

error technique using “small moves” and “continuous dragging”.  

This difference may be particularly evident in explorations that involve the search 

for conditions under which a certain property is verified by a figure, as we will describe in 

Section 2.1.4.2. In a paper-and-pencil environment the solver may have to represent a 

sequence of images, each of which is “quite deformed” with respect to the previous one, 

and each image represents the previous figure after one of its elements have changed 

their position (and consequently all the elements that depend on this first one, since the 

conceptual properties of the figure must remain unvaried). In a DGS the sequence 

appears to be continuous and it is obtained by clicking on a base point of the initial 

dynamic-figure and dragging it along the screen. A potential regularity in the movement 
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of the dragged-base-point may become evident to the solver at this point. Vice versa, in 

the paper-and-pencil environment the solver will have had to conceive the property 

corresponding to such regularity before redrawing the figure, in order to produce the 

discrete sequence of images. 

 

2.1.4.1 Dragging to Find The Conclusion of a Conjecture. A key element for the 

interpretation of the Cabri-figure resides in the relationship between the properties 

defined during the construction of the figure, through the commands used and the 

properties that are consequences of these. A conjecture can emerge from the 

observation of the link between the properties that have been constructed and the 

properties that can be observed, but that have not been directly constructed, and that 

can be unexpected. This link can be interpreted as a conditional relationship expressed 

by a statement in which the constructed properties constitute the premise, while the 

“new” invariant properties observed constitute the conclusion. Naturally all this is referred 

to as the conservation of invariants with respect to dragging of any base point. In 

mathematical terms, this is equivalent to exploring the consequences of a certain set of 

premises. The premises are represented by the set of properties established by the 

commands used during the construction of the dynamic figure.  

Although exploring the consequences of a certain set of premises has been the 

main focus of many studies in the literature, it is possible to use dragging for generating 

conjectures in a different way that involves the induction of soft invariants (Laborde, 

2005). This corresponds to identifying under which conditions a given configuration 

takes on a certain property (as in Arzarello et al., 2002; Olivero, 2002). Our study 

focuses particularly on this use of dragging. 
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2.1.4.2 Dragging to Find the Premise of a Conjecture. Base points may be 

dragged in particular ways, for example in order to induce soft properties on a dynamic-

figure (Laborde, 2005). In the example we have been analyzing above (presented in 

Section 2.1.4) it is possible to try to induce a soft invariant like “coinciding perpendicular 

bisectors”. 

 

  a)      b) 
 
Figures 2.1.4.2a - b: The figures show the effect of dragging ABCDʼs base point C while trying to 
maintain the coincidence of the perpendicular bisectors. 
 
In terms of invariants, identifying under which conditions a given configuration takes on a 

certain property means establishing the invariance of a particular property with respect 

to a particular movement, that is inducing a soft invariant. The special movement 

corresponds to the figureʼs assuming a specific condition. This way of dragging was 

initially described as dummy locus dragging (Arzarello et al., 2002). The model we are 

going to introduce aims at describing aspects of a process of conjecture-generation that 

seem to occur when this type of dragging is used. 

 

2.2 The Instrumental Approach 

In Chapter 1 we have discussed how the guiding role of dragging has been 

described in the previous literature and specifically by Arzarello et al., who introduced 

the classification of specific ways of dragging (Arzarello et al., 2002), and by Leung, who 
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has provided an interpretation of dragging through the lens of variation (Leung, 2008). In 

the previous section we described aspects of dragging that are relevant to our theoretical 

framework. Although Arzarelloʼs classification is not explicitly framed in the 

instrumentation approach, it is possible to consider dragging after the instrumentation 

approach (Vérillon & Rabardel, 1995; Rabardel & Samurçay, 2001), as has been done 

fruitfully by other researchers (for example, Leung & Lopez-Real, 2006; Leung, 2008; 

Strässer, 2009). Under the lens of the instrumental approach, dragging may be 

interpreted as an explorative tool that can support the task of conjecture-generation, and 

the use of which may be acquired through a process of instrumental genesis (Rabardel 

& Samurçay, 2001; Rabardel, 2002). This process occurs when an individual is 

confronted with a task and, having an artifact at his/her disposal, s/he develops specific 

utilization schemes. In this section we will introduce the notions of artifact, instrument, 

and utilization scheme, developed within the instrumental approach, (Section 2.2.1) and 

how we use them to interpret dragging (Section 2.2.2). 

 

2.2.1 Artifacts, Instruments, and Utilization Schemes 

The instrumental approach has been developed as a perspective that puts 

forward a psychological conceptualization of artifacts as instruments, with the aim of 

making “the conceptualization equally pertinent in ergonomics and in didactics” 

(Rabardel, 2002, p. 18). Rabardel conceives  

the instrument in the essence of its constituting relation: the subjectʼs use of the 
artifact as a means he/she associates with his/her action. The point of view 
adopted will be that in which machines, technical objects, symbolic objects and 
systems, i.e. artifacts, will be considered as material or symbolic instruments. 
(Rabardel, 2002, p. 18) 

 
In particular the instrumental approach may be used as a perspective through which to 

look at human-computer interactions. The instrumental approach “was developed so the 
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user could have a view of the system in which people, machines, tasks and materials 

are seen as interconnected in a terminology founded in the realm of tasks significant to 

the user” (Rabardel, 2002, p.7). 

Within this perspective a cognitive model is outlined that describes the integration 

of tools in different activities. The model introduces a crucial distinction between the tool 

itself (called artifact) and the combination of this tool and the modalities of its use to 

solve problems. We could give a very concise overview of the model as follows. The 

model assumes that for each subject the use of an artifact gives rise to a mental 

construction, called instrument, that denotes the psychological construct of the user: “a 

whole incorporating an artifact (or a fraction of an artifact) and one or more utilization 

schemes” (Rabardel, 2002, p.65). The user develops procedures and rules of actions 

when using the artifact and so s/he constructs utilization schemes, during a process of 

instrumental genesis. Our study focuses on describing a possible utilization scheme for 

the artifact “dragging” with respect to the task of generating a conjecture, but it will not 

take into consideration the process of development of the utilization schemes (that is the 

process of instrumental genesis). Therefore in the following we are going to focus our 

discussion on  the notions of artifact, instrument, and utilization scheme, as developed 

within an instrumental approach. 

 

Artifact. Different approaches aimed at analyzing human interaction with objects 

(we have called these artifacts until now) have referred to these “objects” of interaction 

as “technical objects”, “material objects”, or “artifacts”. The psychological definition of the 

notion of instrument – that used within Rabardelʼs instrumental approach – replaced the 

term “technical object” with “Fabricated Material Object (FMO)” (Rabardel & Vérillon 

1985), to be able to examine the technical object from other points of view than that of 
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the technique itself (Rabardel, 2002, p. 38-39). The terminology FMO was then replaced 

by the shorter, lighter, and more neutral word artifact: 

The term “fabricated material object” was chosen to allow the most neutral 
possible name and avoid anticipating the analysis perspective to be adopted. 
This undertaking seems even more essential today given the issues at stake in 
technocentric and anthropocentric design. But we feel the term fabricated 
material object, a heavy circumlocution, should now be replaced by that of 
artifact. This word is almost synonymous and its usage is fairly widespread, 
particularly in the field of human sciences (Rabardel, 2002, p.39). 

 
The notion of artifact does not specify a particular type of relation to the object, nor is it 

necessarily a material object; it is “the thing liable to be used and elaborated so as to 

participate in finalized activities” (p. 39). Within the instrumental approach the artifact is 

analyzed in light of its functions, as a means of action, “placed in a finalized activity from 

the viewpoint of the person using it” (p. 41).  

Finally, a central issue is the relations between human activity and artifacts, 

which can be analyzed, thanks to the notion of artifact described above, along two lines: 

design activities, to gain a better understanding of the mechanisms and processes by 

which artifacts are designed to provide designers with real aids that must integrate the 

activity rather than hinder or even prevent it; and usage and utilization activities, 

analyzing and understanding what these activities are from the perspective of the users 

themselves (Rabardel, 2002). Our study is situated within the second line, that of usage 

and utilization activities, since it aims to construct a model for particular utilization 

activities for the artifact “dragging” with respect to the task of generating a conjecture. 

Future studies that might arise from our findings should investigate the line of “design 

activities” for which our study can only provide some experimental hypotheses to be 

further elaborated and tested. We will now describe the notion of utilization scheme. 
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Utilization Scheme. When a person uses an artifact to accomplish a task, s/he 

structures the activity and actions in relatively structured ways. These have been 

referred to as utilization schemes (Rabardel & Vérillon, 1985). This notion makes use of 

the Piagetian construct of action scheme, “a structured group of generalizable features 

of the action that allows the same action to be repeated or applied to new contents” 

(Rabardel, 2002, p.65). Moreover, according to Piaget a scheme is 

a means that allows the subject to assimilate the situations and objects with 
which he/she is confronted They are the structures that prolong biological 
organization and share with the latter an assimilating capacity to incorporate an 
external reality into the subjectʼs organization cycle: everything that meets a need 
is liable to be assimilated. (Rabardel, 2002, p.70).  

 
While Piagetian psychology was centered on logical structures, Vergnaud put forward a 

theory on conceptual fields, placing his reflection within cognitive psychology. He 

describes behavior organizing schemes, in which the subjects' knowledge in act (i.e. the 

cognitive elements that allow the subject's action to be operational) can be recognized. 

In particular, for Vergnaud (Vergnaud, 1990) a scheme comprises 

• anticipations of the goal the subject is aiming for, and of the potential 

intermediate steps in this process; 

• rules of action, like “if...then,” which allow the generation of a sequence of 

actions; 

• inferences (reasoning) that allow the subject to calculate rules and anticipations 

based on information and the operational invariants system he/she disposes of; 

• operational invariant, that allow the subject to recognize the elements pertinent to 

the situation, and to collect information on the situation being analyzed. 

The instrumental approach makes use, in particular, of the notion of operational 

invariant, which “allows us to identify the characteristics of situations that subjects truly 

take into consideration. These may be familiar situations for which operational invariants 
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are already constituted, or situations in which their elaboration is underway” (Rabardel, 

2002, p.79-80). 

 

Instrument. Finally, Rabardel conceives instrument from a psychological point of 

view, as a mixed entity, “a whole incorporating an artifact (or a fraction of an artifact) and 

one or more utilization schemes” (Rabardel, 2002, p.65). The instrumental approach 

sees the instrument as one of the poles engaged in instrument utilization situations. 

These are: the subject (e.g.user, operator, worker, agent), the instrument (e.g. tool, 

machine, system, utensil, product), the object towards which the action, aided by the 

instrument, is directed (e.g. matter, reality, object of the activity). The model of 

Instrumented-mediated Activity Situations (IAS) describes this situation (Rabardel & 

Vérillon, 1985) bringing out the multiplicity and complexity of relations and interactions 

between the different poles. 

As in previous literature, within the instrumental approach, an instrument is 

conceived as an intermediary entity, “a medium term, or even an intermediary world 

between two entities: the subject, actor, user of the instrument and the object of the 

action” (Rabardel, 2002, p.63). Moreover,  

The instrument's intermediary position makes it the mediator of relations between 
subject and object. It constitutes an intermediary world whose main feature is 
being adapted to both subject and object. This adaptation is in terms of material 
as well as cognitive and semiotic properties in line with the type of activity in 
which the instrument is inserted or is destined to be inserted. (Rabardel, 2002, 
p.63). 

 
The mediation may be of an epistemic nature – from the object to the subject, here the 

instrument is a means allowing knowledge of the object – or of a pragmatic nature – from 

the subject to the object, here the instrument is a means of a transforming action 

directed towards the object. Moreover, since instruments are conceived as a means of 
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action, depending on the type of action, they may be material instruments (for a 

transformation of a material object with a hand-held tool), cognitive tools (for cognitive 

decision making, for example in a situation of managing a dynamic environment), 

psychological tools (for the management of oneʼs own activity), or semiotic tools (for a 

semiotic interaction with a semiotic objector with others). 

 Because of the goals of this study we are particularly interested in instruments 

conceived within the instrumental approach, as cognitive tools. In studies that may be 

developed from ours, as consequences and continuations of our research, the notions of 

semiotic instrument and of psychological tool may become essential elements of the new 

theoretical frameworks. For now we will concentrate on the notion of cognitive tool, as a 

last element of this part of our framework. 

 

Cognitive Tool. Some aspects developed in the instrumental approach can be 

recognized in Normanʼs notion of cognitive artifact (Norman, 1991). In particular he 

analyzes approaches to activity distinguishing several dimensions of influence of 

artifacts on the distribution of actions in time (precomputation), the distribution of actions 

among people (distributed cognition) and the changes in actions required by individuals 

in order to perform the activity. Moreover Norman suggests distinguishing between 

passive artifacts such as books and active artifacts such as computers, and he focuses 

on analyzing the objectʼs influence on the tasks the user is facing (Norman, 1991). 

Within Normanʼs perspective, activity is taken into consideration within a triadic 

model, similar to the IAS initially developed by Vérillon and Rabardel (1985). The triadic 

model is composed of a person, a task, and a cognitive artifact. Norman defines a 

cognitive artifact as “a device designed to maintain, display, or operate upon information 

in order to serve a representational function” (Norman, 1991). In particular, according to 
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Norman, a cognitive artifact has the role of changing the nature of the task performed by 

the person. Moreover, he conceives a cognitive artifact as something that expands and 

enhances the cognitive capabilities of its user. 

 The notion of cognitive tool is developed within the instrumental approach which 

goes beyond an approach in terms of tasks, taking into consideration the activity as well 

(Rabardel, 2002). In this sense a cognitive tool is a concept similar to Normanʼs notion of 

cognitive artifact, but enriched with an activity-centered perspective. We will consider the 

artifact “dragging” and describe how it can be conceived as a cognitive tool, and more in 

general as an instrument. 

 

2.2.2 Dragging within the Instrumental Approach  

In this study we consider dragging to be an artifact and place a user in the 

context of solving a problem, in particular of generating a conjecture (task). The solver 

can associate to the dragging artifact a variety of utilization schemes in order to 

accomplish the task of generating a conjecture, thus obtaining an instrument. We would 

like to highlight how the notion of “dragging schemes” developed from the original 

definition by Arzarello et al. (Arzarello et al., 2002) and how we will make use of it in this 

study. The terminology “dragging schemes” was used for the first time by Arzarello and 

his colleagues who gave an a posteriori description and classification of expert solversʼ 

uses of the dragging mode, from a cognitive point of view. We described Arzarello et 

al.ʼs classification in Chapter 1, together with other dragging modalities, also referred to 

as “dragging stratagies” that have been identified by Leung and other researchers 

(Lopez-Real & Leung, 2006; Leung et al., 2006; Leung, 2008). 

In this study we propose to describe, in further depth with respect to the previous 

research, cognitive processes associated to particular ways of dragging. We make a 
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distinction between “ways of dragging” or “dragging modalities/strategies” and “dragging 

schemes” to separate what might be observed externally as a particular way of dragging 

from the description of a utilization scheme (an internal mental construct of the solver) 

associated to a particular way of dragging. In this sense our model proposes the 

description of a potential utilization scheme associated to the dragging modality dummy 

locus dragging or lieu muet dragging, as previous literature has described it (Arzarello et 

al., 2002; Olivero, 2002). 

We mentioned how in the research that led Arzarello et al. to the cognitive 

description of the dragging modalities were determined after the observation of the 

solversʼ exploration. On the contrary, in order to study how the expert use of specific 

dragging modalities may influence the generation of conjectures, in this study we 

decided to introduce students to such modalities in order to observe the use that might 

be made of them. In Section 2.5 we will describe the dragging modalities we adapted 

from previous research and introduced to students through appropriate in-class activities 

that we will describe in the Chapter 3. Here, as far as the theoretical frame is concerned, 

we note that we conceived introducing our dragging modalities to the participants of the 

study as providing them with a cognitive tool, that might enhance their capabilities with 

respect to the task of conjecture-generation in a DGS. Moreover, we interpreted the 

dragging modalities as a potential instrument in the following sense. If the solvers 

developed appropriate utilization schemes – and in particular a utilization scheme 

associated to dummy locus dragging that we intend to describe through a specific model. 
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2.3 Abduction 

In this section we describe the notions of abduction that we chose as theoretical 

tools for this study. A goal of this research is to unravel a possible relationship between 

particular dragging modalities and abduction that previous research has hypothesized 

(Arzarello et al., 2002; Olivero, 1999, 2002). Therefore we will consider the notion of 

abduction introduced by Peirce (1960), which was used by Arzarello, Micheletti, Olivero, 

Paola, and Robutti (Arzarello et al., 1998; Olivero, 2002; Arzarello et al., 2002) to 

analyze solversʼ development of conjectures when their “dragging schemes” were being 

used. This is the notion we initially used to conceive our first hypothetical model. We will 

then highlight some problematic issues of this notion when analyzing abduction in 

conjecture generation, and how we therefore enriched our framework with another 

conception of “abduction”, Magnaniʼs more recent description, which is more in line with 

Peirceʼs description of abduction in the second phase of his work. 

Other researchers have studied various uses of abduction in mathematics 

education (for example, Simon, 1996; Cifarelli, 1999, 2000; Reid, 2003; Ferrando, 2006), 

using different approaches with respect to that of Peirce. In particular, Cifarelli has 

studied relationships between abductive approaches and problem-solving strategies. 

The purpose of his work was to clarify the processes through which learners construct 

new knowledge in mathematical problem solving situations. He focused particularly on 

instances where the learnerʼs emerging abductions or hypotheses help to facilitate novel 

solution activity (Cifarelli, 1999). The basic idea is that an abductive approach may serve 

to organize, reorganize and transform problem solversʼ actions. Specifically, Cifarelli 

analyzed how the cognitive activity of “within-solution posing, in which one reformulates 

a problem as it is being solved” (Silver & Cai, 1996, p.523) may aid the solver to 

consider “hypothesis-based” questions and situations (Silver & Cai, 1996, p.529), and 
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may aid the solvers to abduce novel ideas about problems during the solution process 

(Cifarelli, 1997, 1998, 1999, 2000). Although conjecture-generation in open problem 

situations may be seen as a form of problem solving, we do not analyze abduction with 

respect to solversʼ reformulation of the problem they are solving, as in Cifarelliʼs studies, 

so our perspective is different with respect to that described above. 

After presenting the example of analysis using Peirceʼs first conception of 

abduction (Section 2.3.1), we will present our considerations on abduction in conjecture 

generation that led to our use of the more general notion of abduction introduced by 

Magnani, along the lines of Peirceʼs later conception (Section 2.3.2). Moreover we found 

it useful to consider the distinction between “selective” and “creative” abduction and 

Hoffmannʼs distinction of abduction into six types (Hoffmann, 2007), together with 

Magnaniʼs notion of manipulative abduction (Magnani, 2001). 

 

2.3.1 Arzarello et al.ʼs Use of Abduction as a Tool of Analysis 

Our study is grounded within the research of Arzarello, Micheletti, Olivero, Paola, 

and Robutti (Arzarello et al., 1998; Arzarello et al., 2002; Olivero, 2002), that made use 

of the following notion of abduction developed by Peirce. 

According to Peirce, of the three logic operations, namely deduction, induction, 
abduction (or hypothesis), the last is the only one "which introduces any new 
idea; induction does nothing but determine a value, and deduction merely 
evolves the necessary consequences of a pure hypothesis. Deduction proves 
that something must be; induction shows that something actually is operative; 
abduction merely suggests that something may be." (CP, 5.171). Abduction looks 
at facts and look for a theory to explain them, but it can only say a "might be", 
because it has a probabilistic nature. The general form of an abduction is:  

a fact A is observed  
if C was true, then A would certainly be true 
So, it is reasonable to assume C is true. 

An example illustrates this concept. Suppose I know that a certain bag is full of 
white beans. Consider the following sentences: A) these beans are white; B) the 
beans in that bag are white; C) these beans are from that bag. A deduction is a 
concatenation of the form: B and C, hence A; an induction would be: A and C, 
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hence B; an abduction is: A and B, hence C (Peirce called hypothesis the 
abduction). (Peirce, 1960, p.372). 

 
In this section we will show an example of how this notion of abduction was used in 

these analyses. Our goal was to “zoom into” cognitive processes that occur in 

correspondence to what Arzarello et al. had described as “the most delicate cognitive 

point” of the conjecture generation and that Arzarello et al. characterized by the 

presence of an abduction (Arzarello et al., 1998, p. 30). In doing so, we found that the 

conception of abduction described above did not seem to always provide insight. 

Therefore we enriched our framework with the definition of abduction presented by 

Magnani (2001), which is also more in line with the conception that Peirce reached in the 

second phase of his thinking. We use this second  conception of abduction more as a 

frame of reference to discuss the general nature of a process than as a tool of analysis, 

as we will describe in detail in Chapter 6. 

In the following paragraph is an example of subjectsʼ spontaneous use of 

dragging for investigating a given task. The analysis shows how the notion of abduction 

is used to look at the exploration, and it puts the subjectsʼ use of dragging modalities in 

relationship to changes in cognitive levels of investigation.  

Task: Let ABCD be a quadrilateral. Consider the bisectors of its internal angles and 

their intersection points H, K, L, M of pairwise consecutive bisectors. Drag ABCD, 

considering all its different configurations: what happens to the quadrilateral HKLM? 

What kind of figure does it become?  

 
Episode 1: They use guided dragging in order to get different shapes of ABCD. 
Ascending control is guiding their experiments, as their aim is to get some 
conjectures about the configuration. The last step allows them to see a 
degenerate case: HKLM disappears into one point. 
Episode 2: Now a regularity is discovered; so they use dummy locus dragging. 
They drag ABCD so to keep the property they have just found out. They are still 
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in the stream of ascending control, as they are exploring the situation, but now 
they have a plan in their mind: they look for some common properties to all those 
figures which make HKLM one point. 
Episode 3: Even if the locus is not explicitly recognized by the students, it is this 
kind of dragging that allows them to discover some regularity of the figures. Here 
they make an abduction, because they select 'which rule it is the case of': this is 
the case of circumscribed quadrilaterals. Referring to the example by Peirce, one 
can say that: A is “the sum of two opposite sides equals the sum of the other 
two”, B is “a quadrilateral is circumscribed to a circle if and only if the sum of two 
opposite sides equals the sum of the other two”, i.e. something you know while C 
is “these quadrilateral are circumscribed”. Their reasoning is: A & B, then C. 
Once they have selected the right geometric property, they can 'conclude' that 
this is the case of circumscribed quadrilaterals. The conditional form is virtually 
present: its ingredients are all alive, but their relationships are still reversed, with 
respect to the conditional form; the direction after which the subjects see things is 
still in the stream of the exploration through dragging, the control of the meaning 
is ascending, namely they are looking at what they have explored in the previous 
episodes in an abductive way. The direction of control now changes: here 
students use the construction modality (and the consequent dragging test) to 
check the hypothesis formulated through abduction and at the end they write 
down a sentence in which the way of looking at figures has been reversed. By 
dummy locus dragging, they have seen that when the intersection points are kept 
to coincide the quadrilateral is always circumscribed to a circle. Now they 
formulate the conjecture in a logical way, which reverses the stream of thought: if 
the quadrilateral is circumscribed then the points coincide. 
Episode 4: At the end they check their conjecture. Now they are using the 
dragging test and their actions show descending control. (Arzarello et al., 2002). 

 
We highlight Arzarello et al.ʼs analysis of the abduction: 

Referring to the example by Peirce, one can say that: A is “the sum of two 
opposite sides equals the sum of the other two”, B is “a quadrilateral is 
circumscribed to a circle if and only if the sum of two opposite sides equals the 
sum of the other two”, i.e. something you know while C is “these quadrilateral are 
circumscribed”. Their reasoning is: A & B, then C. 

 
After introducing elements that we used to enrich our framework with respect to the 

notion of abduction, in the next section we will re-analyze the exploration described 

above. This way we hope to show how we inherited the conception of abduction present 

in Arzarello et al.ʼs framework and enriched it with elements that help gain further insight 

into abduction in conjecture-generation. 
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2.3.2 Abduction in the Formulation of Conjectures 

Let us consider the first definition of abduction given by Peirce. 

a fact A is observed  
if C was true, then A would certainly be true 
So, it is reasonable to assume C is true. (Peirce, CP 5.189) 
 

Using Peirceʼs conception of abduction described above, we needed to establish what 

the product of the abduction was in the case of conjecture-generation. Is it what Peirce 

called the “abductive hypothesis” (C with respect to the definition above)? or is it the 

“rule” (B with respect to the definition above), which can be a conditional statement 

containing the abductive hypothesis itself? Peirce discussed this issue in the following 

terms: “The hypothesis cannot be admitted, even as a hypothesis, unless it be supposed 

that it would account for the facts or some of them.” Therefore A can be abductively 

conjectured only when its entire content is already present in the “rule” ʻIf A were true, C 

would be a matter of courseʼ” (CP 5.189), which shows how the phenomenon would be 

produced, come about, or result in case the abductive hypothesis A were true. An 

abduction may “consist in making the observed facts natural chance results, as the 

kinetical theory of gases explain facts; or it may render the fact necessary” (CP 7.220).  

We therefore elaborated our framework taking into consideration another 

description of abduction. Starting from a later characterization provided by Peirce, that is 

abduction as “the process of forming an explanatory hypothesis” (Peirce, CP 5.171), 

Magnani proposed the following conception of abduction: 

the process of inferring certain facts and/or laws and hypotheses that render 
some sentences plausible, that explain or discover some (eventually new) 
phenomenon or observation; it is the process of reasoning in which explanatory 
hypotheses are formed and evaluated. (Magnani, 2001, pp. 17-18). 

  
While using Peirceʼs first definition illustrated by the example of the bag of beans, the 

product is the abductive hypothesis, a fact (these beans are from that bag), while 
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choosing Magnaniʼs conception of abductive process, we may consider the product to be 

the conditional link between the hypothesis and the observation (if these beans are from 

that bag, then they are white, what Peirce called “rule”). The conditional link is by all 

means an “explanatory hypothesis” in Magnaniʼs words, developed to explain a situation 

as a whole. In the context of dynamic geometry, in the process we studied, this rule 

arises from capturing the logical dependence of two (or more) invariants. When solvers 

explore an open problem situation in dynamic geometry and are asked to formulate 

conjectures on a certain geometrical object, they frequently notice invariants, that is, 

properties of the figure that remain constant during the dragging of a point. Through a 

conjecture the students try to logically link two (or more) of such geometrical invariants, 

finding an “explanatory hypothesis” for the observed phenomenon. 

Therefore the solverʼs perceiving one invariant can lead to the observation of 

another, and to the idea that this second one might explain the first. The final product of 

the abductive process, in this case, is the statement of a geometrical conjecture. If we 

describe the process as a whole, from the initial random dragging of points to the 

formulation of a conjecture, and therefore consider the final conjecture to be the final 

product of the process, Magnaniʼs description seems to be appropriate. In fact in an 

open problem what is required as an answer is a statement expressing the conditional 

link between the hypothesis and the observation. If instead we “zoom in” and focus on 

the steps at which the students find a second invariant (that seems to be invariant when 

the first invariant is maintained), and (implicitly) link it to the first, stating, for example: 

“This property is true [the property is the second invariant]” we claim that an abduction 

has occurred and that the statement  “This property is true [the property is the second 

invariant]” is Peirceʼs abductive hypothesis. We note that this statement is not a simple 

observation of another invariant of the figure (which can also occur), but instead a 
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tentative explanation (not yet in the form of a conjecture) of why the first invariant is 

maintained. This can be seen in various protocols when the students express 

themselves using phrases like: “Because/since/every time (Italian: “poiché, ogni 

qualvolta”) this property is true [the property is the second invariant], this property is true 

[the property is the first invariant]”; or like: “In order that (Italian: “affinchè”)/so that 

(Italian: “perché”) this property is true [the property is the first invariant], this property 

is/has to be true [the property is the second invariant].” 

A second issue we took into consideration in analyzing possible abductions was 

the fact that the formulation of a conjecture requires generating the rule itself, and this 

may occur in different ways.  

Selective and Creative Abduction. Generation of the rule in the abduction may 

occur through different modalities. Let us start by considering Peirceʼs bean example, 

again, which seems similar to examples that may be found in Eco (1983; Meyer, 2010), 

such as: I see smoke, I know that when there is smoke there is a fire, so there is a fire. 

Notice that “I know that when there is smoke there is fire” is analogous to “the beans in 

that bag are white” in that these are rules that come from a knowledge set that a 

particular person assumes to be true. In these cases one is finding the rule in oneʼs “bag 

of already-known rules” that fits the initial observation (fire or white beans). On the other 

hand, especially when generating a conjecture, the rule introduced by the solver may not 

belong to his/her “bag of already-known rules”.  

We may phrase the question as whether abduction is the logic of constructing a 

hypothesis, or the logic of selecting a hypothesis from among many possible ones. 

Peirce analyzed this issue, as well, and seemed to treat the logic of constructing a 

hypothesis versus that of selecting a hypothesis as the same question. In fact in some of 

his writings he maintains: “Abduction consists in studying facts and devising a theory to 
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explain them” (CP 5.145); “Abduction is the process of forming an explanatory 

hypothesis” (CP 5.171); or abduction “consists in examining a mass of facts and in 

allowing these facts to suggest a theory” (CP 8.209). However in other writings he 

regards abduction as “the process of choosing a hypothesis” (CP 7.219). We found it 

useful to consider Meyerʼs description of two general patterns of abduction, based on 

Peirceʼs description of abduction as: “The surprising fact, C, is observed; But if A were 

true, C would be a matter of course. Hence, there is reason to suspect that A is true” 

(Peirce, CP 5.189). Meyer describes two general patterns of abduction, that can be 

represented as follows. 

 

Figure 2.3.2.1: Two general patterns of abduction. 
 

The first case represents the cognitive ʻflash of geniusʼ, while the second 

represents abduction as a process of making a hypothesis plausible (Meyer, 2008, p. 2). 

The first form of abduction – when a new rule emerges –  has been described as 

“creative” by Eco (1983, p.207). On the other hand Eco describes “undercoded“ or 

“overcoded” abductions as those in which the explanation of given facts occurs through 

already-known rules. Thus the generation of one discovery can imply a) a new case (all 

kinds of abduction), b) the relationship between the observed facts and the associated or 

the generated rule (all kinds of abduction) and c) a new rule (by a creative abduction). As 

these aspects can only be hypothetical at first place, they have to be verified in the next 

step (Meyer, 2008). Magnani refers to these two forms of abduction as “selective” and 

“creative”: selective abduction is a process through which the right explanatory 
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hypothesis is found from a given set of possible explanations, while creative abduction is 

a process which generates the (right) explanatory hypothesis (Magnani, 2001). 

Moreover, Hoffmann, viewing abduction as the generation of a new idea 

(Hoffmann, 2007), considered two issues that we found relevant with respect to the 

analyses we needed to make. These issues are: (1) whether the ideas we introduce in 

the abduction is only new for us as individuals or new for our civilization, or not new at 

all; (2) whether the idea is the result of a reification, that is something that can be 

represented by a singular concept, or by a symbol, or a new perspective on the same 

data as produced by a theoretical transformation (Hoffmann, 2007, p. 4). Based on 

Peirceʼs work, Hoffmann proposed a distinction of six types of abduction based on 

combining the different issues.  

For our research it was important to focus on the solverʼs perspective. Therefore 

we did not need to take into consideration whether the idea was already part of the 

cultureʼs knowledge or not. We simply considered whether the idea was new or not for 

the solver, and used this distinction to characterize selective versus creative abductions. 

We interpreted Hoffmannʼs theoretical transformation, as a movement between different 

contexts, for example, a change of the theory used to explain certain facts. This can 

change aspects of the explanation, such as the systems of representation used, the 

types of arguments used, and the domain of their validity. We therefore created a 

template, adapted from Hoffmannʼs table (2007, p. 4), aimed at classifying  different 

types of abduction. The template is displayed the following Table (2.3.2.2). 
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 “idea” based on reification 
within a single context 

“idea” based on combining 
different perspectives on 
data (passing between 
different contexts) 

the explanation is possible 
by referring to an idea 
already in the solverʼs mind 
(selective abduction) 

  

the explanation is possible 
by referring to an idea that 
is new for the solver 
(creative abduction) 

  

Table 2.3.2.2: Our template for the analysis of abduction, adapted from Hoffmannʼs table. 
 

Finally, we added a last notion to our theoretical framework, that of Magnaniʼs 

manipulative abduction (Magnani, 2001, 2004): 

Manipulative abduction happens when we are thinking through doing and not 
only, in a pragmatic sense, about doing. It refers to an extra-theoretical behavior 
that aims at creating communicable accounts of new experiences to integrate 
them into previously existing systems of experimental and linguistic (theoretical) 
practices. Gooding (1990) refers to this kind of concrete manipulative reasoning 
when he illustrates the role in science of the so-called “construals” that embody 
tacit inferences in procedures that are often apparatus and machine based. The 
embodiment is of course an expert manipulation of objects in a highly 
constrained experimental environment, and is directed by abductive movements 
that imply the strategic application of old and new templates of behavior mainly 
connected with extratheoretical components, for instance emotional, esthetical, 
ethical, and economic. (Magnani, 2004, p.2). 
 

We then used the framework we constructed to re-analyze some of Arzarello et al.ʼs 

data, before using it for analyzing our own data. In the next section we will show an 

example of what our re-analysis of Arzarello et al.ʼs data led to.  As will be discussed in 

Chapter 6 the interpretation of our results within this framework finally led us to 

conceiving a new form of abduction that we described as instrumented abduction. 
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Analysis of Arzarello et al.ʼs example through our new framework. In the example 

of Arzarello et al.ʼs cognitive analysis of dragging we highlighted their description of the 

abduction: 

Referring to the example by Peirce, one can say that: A is “the sum of two 
opposite sides equals the sum of the other two”, B is “a quadrilateral is 
circumscribed to a circle if and only if the sum of two opposite sides equals the 
sum of the other two”, i.e. something you know while C is “these quadrilateral are 
circumscribed”. Their reasoning is: A & B, then C. (Arzarello et al., 2002) 

 
With respect to Meyerʼs description of the two patterns of abduction, we can classify this 

abduction differently, depending on whether the solvers knew the rule “a quadrilateral is 

circumscribed to a circle if and only if the sum of two opposite sides equals the sum of 

the other two” from their theoretical knowledge or not. In the following diagram the two 

possible classifications are explained. 

Selective abduction Creative abduction 

Result: The sum of two opposite sides is 
equal to the sum of the other two.  
________________________ 
Rule: A quadrilateral can be circumscribed 
if and only if the sum of two opposite sides 
is congruent to the sum of the other two 
Case: These quadrilaterals are 
circumscribable 

Result: The sum of two opposite sides is 
equal to the sum of the other two.  
Rule: A quadrilateral can be circumscribed 
if and only if the sum of two opposite sides 
is congruent to the sum of the other two 
________________________ 
Case: These quadrilaterals are 
circumscribable 

Figure 2.3.2.3: Our template for the analysis of abduction, adapted from Hoffmannʼs table. 
 
Moreover, using the template introduced above, we may place this abduction in one of 

the cells of the first column of our table. This is the case because the idea resides 

entirely in the domain of the Theory of Euclidean Geometry (TEG), that is, in a single 

context. 



 52 

 

 “idea” based on reification 
within a single context 

“idea” based on combining 
different perspectives on 
data (passing between 
different contexts) 

the explanation is possible 
by referring to an idea 
already in the solverʼs mind 
(selective abduction) 

Example: the abduction 
described in Arzarello et 
alʼs analysis (selective 
form) 

 

the explanation is possible 
by referring to an idea that 
is new for the solver 
(creative abduction) 

Example: the abduction 
described in Arzarello et 
alʼs analysis (creative form) 

 

Table 2.3.2.4: Placement of examples in the literature within our template for the analysis of 
abduction. 
 

However, if we continue analyzing the exploration according to our conception of 

abduction in conjecture-generation, we can observe a second inference that we would 

classify as an abduction. In particular, it seems to be the “invention of a rule”.  

• The solvers observe a first fact: the internal quadrilateral “collapses” in these 

cases; 

• they observe a second fact: the sum of two opposite sides is equal to the sum of 

the other two. The two facts occur simultaneously. 

• The solvers introduce a rule (they did not know): if a quadrilateral has the sum of 

two opposite sides congruent to the sum of the other two, the quadrilateral 

formed by the intersections of the internal bisectors collapses. 

If we look at the process of conjecture-generation as a whole, leading to the statement of 

a conjecture as the final product, the process could be illustrated as follows. 
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Figure 2.3.2.5: Description of the process of conjecture-generation as a whole. 
 
If we were to place the conjecture, as the product of an abduction in our table, it would 

go in the cell that represents a creative abduction in which there is a passage between 

contexts. 

 “idea” based on reification 
within a single context 

“idea” based on combining 
different perspectives on 
data (passing between 
different contexts) 

the explanation is possible 
by referring to an idea 
already in the solverʼs mind 
(selective abduction) 

Example: the abduction 
described in Arzarello et 
alʼs analysis  

 

the explanation is possible 
by referring to an idea that 
is new for the solver 
(creative abduction) 

 Example: the product of the 
process described in our re-
analysis of Arzarello et al.ʼs 
example 

Table 2.3.2.6: Placement of the abductions described above within our template. 
 
 The framework we elaborated with respect to the notion of abduction helped us 

analyze this delicate process in the context of conjecture-generation. In this context the 
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framework was enlightening because it allowed us to unravel aspects of a particular 

abductive process involved in conjecture-generation when dummy locus dragging is 

used by the solver. In particular, this framework led us to a new conception of the form of 

abduction used in the complex process analyzed in our study, that of instrumented 

abduction (Chapter 6). 

 

2.4 The Initial Version of the Model 

This section presents our first ideas for a model that could potentially describe a 

process of conjecture-generation when dummy locus dragging is used by the solver. In 

order to test the validity of these initial ideas, we tried to use them to analyze 

descriptions of studentsʼ work contained in the research by Olivero, Arzarello, Paola, and 

Robutti (Olivero, 2000; Arzarello, et al., 2002). This led to an initial version of the model 

that we describe here together with an example of how it can be used to analyze a 

hypothetical exploration of one of the activities we developed for the study. Although 

there are similarities between the analysis of the exploration we present here and 

Arzarello et al.ʼs examples of their cognitive analysis of dragging, a distinguishing feature 

of our research is that it does not attempt to classify studentsʼ activity but instead to 

describe cognitive processes involved in a process of conjecture-generation that are 

associated to particular ways of dragging. In particular we concentrate on the potential 

abductive reasoning that may occur in relation to certain dragging modalities, with 

particular focus on the details of cognitive processes related to dummy locus dragging 

that may occur during this conjecturing stage. We noticed how an elaboration of our 

model could be complementary to Oliveroʼs work, since it could evolve into a refined 

description of a process, which takes place and is present in Oliveroʼs episodes. While 

Olivero focused on studentsʼ different uses of the dragging tool during the development 
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of a conjecture, our model focuses on the mental process that might take place in 

relation to the use of such dragging modalities (especially of dummy locus dragging). 

From the perspective of the instrumental approach, our model attempts to 

describe a utilization scheme for a particular way of dragging, dummy locus dragging. 

Moreover, a difference with respect to previous research is that we preliminarily 

introduce solvers to certain dragging modalities, “giving them as an artifact to be used in 

solving geometrical open problems”. This allows us to study a particular utilization 

scheme associated to the artifact and constructed by the solvers with respect to the 

general task of conjecture-generation. The decision of introducing certain dragging 

schemes to the solvers brought us to reason upon which dragging modalities to 

introduce, and how to introduce them.  

In the following sections we will describe the framework within which we 

constructed our model, discuss our hypothesis on what introducing certain dragging 

modalities would lead to, introduce the first version of our model, and finally describe the 

dragging modalities we decided to introduce and the terminology we used to introduce 

them. 

 

2.4.1 Constructing the Model and Our Hypothesis on Introducing Dragging 

Modalities 

A goal of this study was to describe, from a cognitive point of view, a process of 

conjecture-generation when a particular dragging modality was used by the solver. The 

construction of a model describing such process, if possible, seemed to be the best way 

of finding answers to accomplish this. In this section we will describe our rationale with 

respect to this decision, and then explain our hypothesis on how the introduction of 

certain dragging modalities would facilitate our study.  
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The idea of constructing a model of the structure of thought, or cognitive model, 

can be found in Piagetʼs introductory chapter to The Childʼs Conception of the World 

(1929). Referring to Piagetʼs work, Ginsburg (1981) describes how the investigation of 

activities of the mathematical mind should have three aims: “the discovery of cognitive 

activities (structures, processes, thought patterns, etc.), the identification of cognitive 

activities, and the evaluation of levels of competence” (p. 5). As cognitive activities are 

discovered, a model may be constructed (and successively refined as more is 

discovered), then such model becomes functional to identifying the cognitive activities 

when they occur since it provides a lens through which these can be seen and 

discussed. Moreover, the model may be used by an external 

observer/researcher/teacher to evaluate the solverʼs level of competence in tasks that 

involve cognitive processes described by the model.  

Since we wanted to “zoom into” certain cognitive aspects of the process of 

conjecture-generation we aimed to describe, and these aspects were related to the use 

of dummy locus dragging which in the literature was described as a dragging modality 

spontaneously but rarely used by students (Arzarello et al., 2002), we conceived a 

hypothesis that might allow us to observe more occurrences of this dragging modality. In 

a way our hypothesis would hopefully lead to an “unnatural” experimental setting in 

which we would be able to observe many more occurrences of our desired phenomenon 

than in a “natural setting”. Of course this hypotheses about introducing particular 

dragging modalities not only has consequences with respect to potentially observed 

phenomena, but also, and more importantly, it has potential didactical consequences 

that we will discuss within this thesis, in particular in Chapter 7. 
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In order to introduce our model, let us start with an example  of solversʼ use of 

dragging modalities in conjecture-generation, described by Olivero, Arzarello, Paola, and 

Robutti (Olivero, 2000; Arzarello, et al., 2002).  

Task: Construct two points (A, B) and a third point C so that the angle ACB is 60 

degrees. Are there other choices of C for which this is possible? Make a conjecture.  

You can start to drag C (wandering dragging). You notice that there are other 
places on the screen in which the angle ACB is 60 degrees, so you start to drag 
trying to maintain this property (guided dragging). You start to “see” a path along 
which you can drag C and maintain the property, so you stay along it (lieu muet) 
... You might decide to mark a few points along the path in order to visualize the 
path more explicitly (line dragging). The path looks like two arcs of circles through 
A, B. Now you make a conjecture: “If C is on the greater arc of the two circles 
through A, B (as drawn below), then the angle ACB is 60 degrees.” To draw the 
circles and test your conjecture you need to know more about how to draw the 
circles (Olivero, 2000). 

 

Based on Arzarello et al.ʼs analyses, similar to the one above, and on some preliminary 

observations we carried out, we developed a schematic description, through four steps, 

of what might occur during the conjecturing stage as a solver approaches an open 

problem in the Cabri environment, not having been introduced to the dragging 

modalities.  

Step 1: experimentation with transformational reasoning and discovery of different 

dragging strategies  
↓ 

Step 2: conscious use of different dragging strategies to further investigate  

(in particular dummy locus dragging) 
  ↓ 

Step 3: abduction using the path 
  ↓ 

Step 4: formulation of a conjecture (through an inversion of the abduction) 
Figure 2.4.1.1: Our first schematic description of solversʼ explorations. 
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Our hypothesis about introducing solvers to particular dragging modalities (especially 

dummy locus dragging) is the following: 

By introducing subjects to the dragging strategies during activities before the 

assigned open problems, step 2 can be directly induced. That is, the types of 

reasoning that occur in subjects who spontaneously become familiar with the 

dragging strategies are analogous to those of subjects who have been given the 

dragging strategies “a priori”. 

Preliminary observations and a pilot study seemed to confirm our hypothesis, and the 

initial version of the model we will describe below. Therefore we developed our study 

upon this framework. We will now introduce our initial model and provide an example of 

how it could potentially be used as a tool of analysis.  

 

2.4.2 Our Initial Model and an Example 

We built our initial model making the hypothesis that after being introduced to 

particular dragging modalities, in particular dummy locus dragging, solvers would 

proceed more or less as described in the steps introduced in the previous section. In 

particular, the initial version of our model is described below. 

Step 1: conscious use of different dragging strategies to investigate the situation  

after wandering dragging, in particular dummy locus dragging  to maintain a 

geometrical property of the figure (we name such property intentionally induced 

invariant, or III), and use of the trace tool. 

Step 2: consciousness of the locus that appears through dummy locus dragging 

this marks a shift in control from ascending to descending – and description of a 

second invariance (invariant observed during dragging, or IOD). 



 59 

Step 3: hypothesis of a conditional link between the intentionally induced invariant and 

the invariant observed during dragging, to explain the situation. Other forms of 

dragging may be performed: line dragging, linked dragging, and the dragging test. 

Step 4: the formulation of a conjecture of the form ʻif IOD then IIIʼ emerge as product of 

abduction. 

  

 We used this first version of the model for preliminary observations of solversʼ 

conjecturing process and on hypothetical explorations. These seemed to show that the 

model was indeed appropriate. Below is an example of a hypothetical exploration 

analyzed through our initial model.  

 

The activity is one of the activities we developed for the study. We introduce 

these activities in Chapter 3. 

Activity: Draw three points A, M, K, then construct point B as the symmetric image of A 

with respect to M, and point C as the 

symmetric image of A with respect to K. 

Construct point D as the symmetric 

image of B with respect to K. Drag M 

and make conjectures about ABCD. 

Then try to prove your conjectures. 

A Response: Through wandering 

dragging solvers may notice that ABCD 

can become different types of 

parallelograms. In particular, they might 

Figure 2.4.2.1: Dragging with the trace tool can 
help a student notice a locus (or lieu). 
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notice that in some cases ABCD seems to be a rectangle (they can choose this as the 

III). With the intention of maintaining this property as an invariant, solvers might mark 

some configurations of M for which this seems to be true, and through the trace tool, try 

to drag maintaining the property, as shown in Figure 2.4.2.1. This can lead to noticing 

some regularity (IOD) in the movement of M, which might lead to awareness of an object 

along which to drag (the circle of diameter AK, potentially not yet recognized as “a 

circle”). At this point, when such awareness arises, we can speak of  path with respect to 

the regularity of the movement of M.  

If solvers recognize the path to be a familiar geometrical object, like in this case, 

they might be inclined to constructing it, as shown in Figure 2.4.2.2, and dragging along 

it (line dragging), or even linking the 

free point to it (linked dragging) and 

performing a dragging test. Through 

this abductive process, as an attempt 

at explaining the experienced 

situation, as Magnani (2001) 

describes, solvers may hypothesize a 

conditional link between the III and 

IOD. At this point the abduction leads 

to a hypothesis of the form ʻif IOD 

then IIIʼ, and therefore to a conjecture 

like the following: “If M is on the circle of diameter AK, then ABCD is a rectangle,” or (if 

they discover or derive a property of the base-points which is equivalent to M lying on 

the circle): “If AKM is a right triangle, ABCD is a rectangle.” 

Figure 2.4.2.2: M is being dragged along the path 
(line dragging). 
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In the case of the first conjecture, here is how we hypothesize the abduction 

(creative abduction) might go. 

• III: ABCD is a rectangle. 

• IOD: when M dragged along the path, fact A seems to be true. The path is a 

known geometric figure: the circle of diameter AK. 

• Product of the abduction: If point M lies on the circle of diameter AK, ABCD is a 

rectangle. 

This product of the abduction coincides with a formulation of a conjecture. However, 

solvers might also perform a second abduction (this time a direct abduction) linking the 

property “M belongs to the circle” to a property of the base-points of the construction. In 

this case this may lead to a formulation of the conjecture like: “If the triangle AMK is a 

right triangle (with ∠AMK as the right angle), ABCD is a rectangle.” In this case the 

further elaboration of  the geometrical properties recognized in the path will have led to a 

key idea (Raman, 2003) of a possible proof.  

 

The Notion of Path. The example of Oliveroʼs analysis (2000) we introduced in 

Section 2.4.1 contained a reference to how dummy locus dragging involves dragging 

along a hidden path. Such a path can then be made explicit and it can be used for line 

dragging, linked dragging, and the dragging test. We focused on the role of such path, 

imagining that some pre-conceived notion of it may guide the solversʼ production of the 

conjecture, and though it may play a role in the abduction, it may no longer appear in the 

formulation of the conjecture. However at this preliminary phase of elaboration of the 

model we did not explicitly define the term path, since we wanted to reach a definition as 

a potential result of the study. Here path refers to “what can be made explicit” through 

the trace mark, and we used the terms in informal discussions as a synonym of 
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“trajectory” as used by Arzarello et al. (2002), “set of points with a property”, or “locus of 

validity”, as used by Leung and Lopez-Real (2002). In this section, we will try to 

introduce our initial considerations on the concept of path and its significance for the 

model.  

One of the dragging schemes, dummy locus dragging, involves dragging a point 

with the intention of maintaining a given property of the figure (which becomes the III). 

Some regularity may appear during this dragging stage, leading to the discovery of 

particular constraints that the dragged point has to respect (that can be expressed in the 

IOD). Because of their origin from dragging, such constraints may be interpreted as the 

property of the point to move on a particular trajectory (to belong to a particular figure). In 

mathematical terms, we can speak of a hidden locus (dummy locus). However we note 

that it does not necessarily coincide with the mathematical notion of locus, which would 

be the set of all points of the plane that guarantee verification of the III when the base 

point is chosen from within the set. Instead the path may be a proper subset of the locus 

of points with the characterizing property. The path can be made explicit by the trace 

tool, through which it appears on the screen. During dummy locus dragging the solver 

notices regularities of the pointʼs movement and conceptualizes them as leading to an 

explicit object. We refer to this object as a path when the solver gains consciousness of 

it, as it is generated through dragging, and consciousness of its property that if the 

dragged point is on it, a geometrical property of the Cabri-figure is maintained. In this 

sense a path is the reification (Sfard, 1991) of an abstract idea, similar to that of locus, 

that can be used to “control the figure”, in a “descending control” mode (Arzarello et al., 

2002). Zooming into Step 2, above, we observe that this is the point of the process in 

which the notion of path arises, and we can add a step to indicate the (potential) 
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geometric interpretation of the path, in order to (potentially, after Step 3) perform line 

dragging, linked dragging, and the dragging test along such path. 

We expected the path to play an important role in relation to the abductive 

processes that originate a conjectures in a DGS. In particular, we advanced the 

hypothesis that recognizing a path might be necessary to foster the formulation of a 

conjecture. although it may no longer explicitly appear in the formulation of the 

conjecture.  

 

2.5 Dragging Modalities to Be Introduced in the Classroom 

The hypothesis on the effect of introducing particular ways of dragging implied, at 

a theoretical level, an explicit distinction between dragging schemes and dragging 

modalities in order to be consistent with an instrumental approach (Vérillon & Rabardel, 

1995; Rabardel & Samurçay, 2001; Rabardel, 2002) to dragging. In Section 2.2.2 we 

made a distinction between “ways of dragging” or “dragging modalities” and “dragging 

schemes” to separate what might be observed externally as a particular way of dragging 

from the description of a utilization scheme (an internal mental construct of the solver) 

associated to a particular way of dragging. Moreover, at a practical level, our hypothesis 

implied an elaboration of specific dragging modalities to be introduced. In this section we 

will describe the dragging modalities we chose to introduce solvers to, and the 

terminology we elaborated to do so. 

 

“Our” Dragging Modalities. In order to determine the dragging modalities to be 

introduced to students, we elaborated Arzarello et al.ʼs findings (Arzarello et al., 2002). 

We considered dragging modalities that seemed particularly significant for the 
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investigation for the solution of open problems and that could be easily introduced as 

tools to solve them. The four modalities we elaborated are described below: 

• wandering/random dragging (Italian: “trascinamento libero”): randomly dragging a 

base point on the screen, looking for interesting configurations or regularities of 

the Cabri-figure; 

• maintaining dragging (Italian: “trascinamento di mantenimento”):  dragging a 

base point so that the Cabri-figure maintains a certain property; 

• dragging with trace activated (Italian: “trascinamento con traccia”): dragging a 

base point with the trace activated; 

• dragging test (Italian: “test di trascinamento”): dragging free or semi-free points to 

see whether the constructed figure maintains the desired properties. In this mode 

it can be useful to make a new construction or redefine a point on an object to 

test a formulated conjecture. 

We described wandering dragging to the students as randomly dragging a base point on 

the screen. However we made it explicit that this mode could be used to look for 

interesting configurations or irregularities of the Cabri-figure. In this sense this scheme is 

a sort of fusion between wandering dragging and guided dragging, described by 

Arzarello et al. (2002). Once a particularly interesting potential property of a figure is 

detected, the user can use maintaining dragging (MD) to try to drag a base point and 

maintain the interesting property observed. For example, the solver may notice that a 

certain quadrilateral, part of the Cabri-figure, can “become” a square, and thus attempt to 

drag a base point trying to maintain the quadrilateral a square. In other words, 

maintaining dragging (MD) involves the recognition of a particular configuration as 

interesting, and the userʼs attempt to induce the particular property to become an 
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invariant during dragging. Using Healyʼs terminology (2000) such invariant is a soft 

invariant. 

We chose this terminology as opposed to dummy locus dragging (Arzarello et al., 

2002) because we did not want the name to suggest any particular mathematical idea 

(for instance that of locus) to the students. Moreover, our definition of maintaining 

dragging differs slightly from what in literature has been referred to as dummy locus 

dragging. In literature this dragging modality is described as “wandering dragging that 

has found its path”, a dummy locus that is not yet visible to the subject (Arzarello et al., 

2002, p. 68). Instead, we consider maintaining dragging to be the mode in which a base 

point is dragged with the specific intention of the user to maintain a particular property. 

With dragging with trace activated we intend any form of dragging after the trace 

function has been activated on one or more points of the figure. This tool arises from the 

combination of two Cabri functions, “dragging” plus “trace”, which together constitute a 

new global tool that can be used in the process of conjecture-generation. Combining 

maintaining dragging with the trace activated on the selected base point can be 

particularly useful during certain processes of conjecture-generation. Although during the 

introductory lessons we did not explicitly specify particular points to activate the trace on, 

we only proposed to activate it on the base point selected to be dragged. 

Finally the dragging test refers to a test that a figure can be put through in order 

to verify whether it has been properly constructed or not (Olivero, 2002; Laborde, 2005). 

The dragging test after having reconstructed the figure we were investigating, adding a 

new property (by construction) to it that we had hypothesized might induce the original 

interesting soft invariant to become a robust invariant. Thus the dragging test was 

applied to test whether the originally desired property was actually maintained during 

dragging. An expert might say we were using the dragging test to test a conjecture, even 
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if the statement of such conjecture might not have been explicit at that point. In this 

sense the dragging test we introduced was slightly different from the one introduced in 

literature. We introduced the dragging test in a broader way, without constraining the 

properties to be observed during the test to necessarily being robust (Healy, 2000). In 

fact we consider the dragging test to be the dragging mode in which a base point is 

dragged with the intention of observing two invariant properties (which may be soft) 

simultaneously. We view this dragging mode as distinct from maintaining dragging 

because in this mode the two invariants that the user intends to observe have already 

been explicitly identified.  

 

2.6 The (Specific) Research Questions 

Given the theoretical framework we developed and presented in this Chapter, we 

now introduce the specific research questions we set out to investigate through our 

study. 

1. What relationship do the forms of reasoning used by solvers during the 

conjecturing stage of an open problem in a DGS, have with the ways in which 

solvers use the dragging tool? 

2. When a solver engages in the activities proposed in this study within a DGS there 

seems to be a common process used to generate conjectures through use of 

maintaining dragging (MD). 

a. Does our model describe this process adequately? 

b. How does the model describe the dragging scheme and how can we 

refine the description? 

c. What insight into the process of conjecture-generation can be gained 

when using our model as a tool of analysis for solversʼ explorations? 
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d. What is the role of the path within this model? Moreover is the path, as a 

part of the model, a useful tool of analysis? 

e. How does the model highlight abductive processes involved in conjecture-

generation when MD is used? 

3. In cases where students do not use MD, is it possible to outline how they might 

develop effective use of MD? 
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CHAPTER III 
 
 
 

METHODOLOGY 
 
 

 
In Chapter 1 and Chapter 2 we described the literature in the field with 

respect to the initial problem we were interested in, and developed a theoretical 

background for this study from existing theoretical constructs elaborated in other 

research studies. This allowed us to reach a detailed set of research questions 

focusing on forms of reasoning and associated dragging modalities potentially used 

by solvers during the conjecturing stage of an open problem in a DGS. In particular 

we wanted to focus on a possible process of conjecture-generation that might be 

common to various solvers who use particular dragging modalities, “zooming into” 

solversʼ use of maintaining dragging, and relating it to some cognitive processes 

involved. We decided to do so by constructing and refining a model that describes a 

specific processes of conjecture-generation that may be carried out when the solver 

uses maintaining dragging. We described our initial model in our theoretical 

background (Chapter 2) of this study. In this chapter we will describe our 

methodological choices for the study. 

In particular, in Section 3.1 we will discuss our choice of methodology for the 

study, briefly introducing the methodological tools of clinical interviews and teaching 

experiments, and explain the rationale for our choice. In this section we will also 

illustrate the experimental design of our study. Then, in Section 3.2 , we will explain 

how our data were collected, describing in detail how we made use of the 

methodological tools we chose. This section includes a description of the introductory 

lesson, how we modified it after the pilot study, and how we carried out the 
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semi-structured clinical interviews in the pilot study and in the final study. Finally we 

provide an a priori analysis of an activity proposed during the interviews. In Section 

3.3 we describe the data collected and how they were analyzed, focusing on the 

outcomes of the different ways in which they were analyzed. 

 

3.1 Choosing a Methodology 

Our study aims at investigating and describing particular cognitive processes 

related to dragging and involved in conjecture-generation in dynamic geometry. The 

study achieves this goal by elaborating a model through which such cognitive 

processes can be described and analyzed. Therefore the study has an empirical and 

qualitative nature. In particular, there are two aspects of the study that influenced our 

choice of the methodology to utilize. First we needed to be able to observe solvers 

during open-problem activities in dynamic geometry that involved the development of 

conjectures. We needed to also be able to interact with the solver in cases in which 

external observation did not give sufficient insight. This motivated our choice of using 

clinical interviews. 

 Second, we were particularly interested in cognitive processes associated 

with a specific way of dragging, maintaining dragging, and we knew from previous 

research that this was not usually spontaneously used. Therefore we wanted to be 

able to “provoke” explorations in which this way of dragging occurred. To this end we 

developed an introductory teaching intervention during which a researcher worked 

within a classroom, introducing four “ways of dragging”. The solvers for the interviews 

were then chosen from within the classrooms in which the ways of dragging had 

been introduced. This teaching intervention exhibits characteristics of a very brief 

teaching experiment, however we prefer to not define it as such for reasons we will 

explain in the next section. Instead we will refer to this teaching intervention as the 
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“introductory lesson”. In the next section we will briefly introduce the methodological 

tools of clinical interviews and teaching experiments, explaining why we chose them 

for our study. Then in Section 3.1.2 we will describe the experimental design of our 

study. 

 

3.1.1 Clinical Interviews and Teaching Experiments 

The clinical interview is a research methodology that has its roots in Piagetʼs 

méthode clinique (Piaget, 1929), which was developed as “a flexible method of 

questioning intended to explore the richness of childrenʼs thought, to capture its 

fundamental activities, and to establish the childʼs cognitive competence” (Ginsburg, 

1981, p. 4). This methodology aimed at developing a theory to explain the individual 

cognitions of children and that also takes into account the social context in which 

learning takes place, recognizing the fundamental role of language and the 

importance of clarification of meaning as researchers ask questions and pose 

problems (Hunting, 1997). In this sense it is possible to find some common roots 

between the méthode clinique and in the Vygotskian teaching experiment (Hunting, 

1997, p. 146). Further analogies can be seen in a common aim of the two methods, 

that of building and testing theory about mathematics learning and teaching 

“searching for explanatory patterns and principles, anomalies and alternative ways of 

conceptualizing problems in the field” (Hunting, 1997, p.146). Moreover, both 

methods aim at investigating what might go on in childrenʼs heads and how it might 

go on, by constructing models relative to the childʼs goals-directed mathematical 

activity (Steffe, 1991).  

However the teaching experiment differs from the clinical interview. We will 

briefly discuss some fundamental differences between these methodologies that 

reside at the levels of (1) the time over which they are carried out, (2) the types of 
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interactions they take into consideration, and (3) their design. With respect to the 

issue of time, the teaching experiment “is directed toward understanding the progress 

students make over extended periods” (Steffe & Thompson, 2000), while the clinical 

interview is aimed at describing what might be going on in a childʼs mind at the time 

of the interview. As for the types of interaction involved, a teaching experiment takes 

into consideration interaction between the teacher and the students, and between 

students. Moreover, in a teaching experiment, the interactions (at least some of 

them) are aimed at supporting learning. Instead, a clinical interview can be described 

as “a one-to-one encounter between an interviewer, who has a particular research 

agenda, and a subject” (diSessa, 2007). The focus, in the case of a clinical interview 

is shifted towards the intervieweeʼs words and actions, instead of on his/her 

interaction with the interviewer. The interviewerʼs role could be described as that of 

an “active observer”: his/her aim is to “see” what is in the intervieweeʼs mind, but 

since there is no direct access, s/he must ask appropriate questions and “pry” at the 

intervieweeʼs words and actions to test the model s/he is using to interpret such 

words and actions. 

We now come to the issue of the design of a teaching experiment with 

respect to that of a clinical interview. A teaching experiment “involves 

experimentation with the ways and means of influencing studentsʼ mathematical 

knowledge” (Steffe & Thompson, 2000). Thus it is designed to investigate and 

support studentsʼ learning, potentially describing learning trajectories and elaborating 

tools to help the teacher foster them. The learning process that the teaching 

experiment aims to investigate therefore plays a fundamental role in the design. 

Moreover the role of the teacher is also built into the design and studied explicitly. A 

teaching experiment is not typically limited to a series of problematic situations 
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presented to students who are then asked to engage in solving them while being 

observed. 

On the other hand, during a clinical interview, 

The interviewer proposes usually problematic situations or issues to think 
about and the interviewee is encouraged to engage these as best he/she can. 
The focal issue may be a problem to solve, something to explain, or merely 
something to think about. An interviewer may encourage the subject to talk 
aloud while thinking and to use whatever materials may be at hand to explore 
the issue or explain his/her thinking. (diSessa, 2007, p. 525). 

 
While in a teaching experiment a goal may be to affect studentsʼ learning through 

intervention, during a clinical interview the interviewer may attempt to perform 

minimal intervention, in order to least affect the solversʼ performance (Steffe & 

Thompson, 2000; diSessa, 2007). Instead, the interviewer tries to make inferences, 

constructing and testing a model portraying a cognitive structure to represent what 

might be in the solverʼs mind (Ginsburg, 1981). The inferences are made on solversʼ 

behavior, which includes physical actions and language (Steffe & Thompson, 2000; 

Hunting, 1997; diSessa, 2007) used during the dynamic explorations. The inferences 

the researcher continually makes postulate possible meanings that lie behind 

studentsʼ language and actions (Steffe & Thompson, 2000, p. 277), and s/he does 

this in a flexible way, adapting the inquiry to the solverʼs responses (Ginsburg, 1981; 

diSessa, 2007). Such inferences, together with the observations of the solverʼs 

behavior, can allow the description of the solverʼs “goal-directed action patterns”, 

taking “action” to refer to mental as well as physical action (Steffe, 1991, p.179). 

Important inferences can also be made from the analysis of “essential mistakes” 

(Steffe & Thompson, 2000), since “essential mistakes provide stability in a dynamic 

living model of studentsʼ mathematics” (Steffe & Thompson, 2000, p.278).  

 If on the one hand the interviewer wants to observe as much as possible and 

interfere as little as possible with the intervieweeʼs cognitive processes, in order to 

test and modify his/her inferences, the interviewer needs to interact with the 



 73 

interviewee. Thus s/he can develop a set of questions and prompts ahead of time, to 

use at specific moments of the interview, and that interfere as minimally as possible 

with the intervieweeʼs thought process. In developing our questions and prompts, our 

underlying assumption was that human knowledge and activity patterns are 

“generative” (diSessa, 2007), that is  

People learn much of the time, and a significant part of the knowledge that 
they have will be directed toward generating new knowledge and new ways of 
behaving. Generativity may show in short-term adaptation to a particular 
problem or even to a particular prompt from the interviewer…(diSessa, 2007, 
p. 530). 

 
The clinical interview is designed to investigate the structure of thought by reaching a 

“clear description of mind” (Ginsburg, 1981), and it is particularly appropriate for 

studying specific cognitive processes (Cohen & Manion, 1994). Our main goal as 

researchers was to construct, refine and test a cognitive model describing processes 

that might go on in the mind of a solver engaging in a particular kind of open 

problems. Therefore we chose the clinical interview as the main methodological tool 

for our study.  

Finally, our model may be seen as describing a utilization scheme (Rabardel, 

P., & Samurçay, R., 2001; Vérillon, P., & Rabardel, P.,1995), as described in Chapter 

2, associated to the artifact “maintaining dragging”. Since a scheme is a mental 

construct, it cannot be accessed directly, but only inferred through the activity the 

solver engages in and that can be observed. Furthermore a scheme is difficult to “put 

into words”, but it can emerge from the search for invariant organizations of a 

determined activity (Bourmaud, 2006). In particular a scheme may be inferred from: 

regularities in the solverʼs behavior, the existence of a choice among different 

possible ones, the transformation of the situation knowing the effect of such activity 

on the situation, and from how the activity is carried out (Zanarelli, 2003; Bourmaud, 

2006). In this sense our model aims at describing a scheme by analyzing an invariant 
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organization of the activity of conjecture-generation when maintaining dragging is 

used. In order to make inferences and construct and refine our model, we developed 

various questions and prompts to use during the interviews if the solver exhibited 

certain behaviors. Therefore we refer to our interviews as semi-structured clinical 

interviews. We will describe these questions and prompts in Section 3.2.2. 

 As mentioned in the introductory paragraph to this section, an issue we 

needed to deal with was the fact that according to previous research, maintaining 

dragging was not usually spontaneously used. Therefore in order to be able to 

“provoke” explorations in which this way of dragging occurred, we developed an 

introductory teaching intervention, introducing four “ways of dragging”. The solvers 

for the interviews were then chosen from within the classrooms in which the ways of 

dragging had been introduced. This teaching intervention exhibits characteristics of a 

very brief teaching experiment, however we prefer to not define it as such for reasons 

we will explain in the next section. Instead we will refer to this teaching intervention 

as the introductory lesson, and we will describe it in more detail in Section 3.2.1. 

  

3.1.2 The Experimental Design of the Study 

We first conceived a preliminary model to test and refine during a pilot study, 

using clinical interviews (Ginsburg, 1981; Steffe, 1991; Hunting, 1997; diSessa, 

2007) based on open-problem-activity tasks (Goldin, 2000), as we will describe in 

Section 3.2. Before conducting the clinical interviews with the participants, we had 

them take part in an introductory lesson during which they were introduced to the four 

ways of dragging we had elaborated (these are described in Chapter 2). We used 

every interview to test and refine our model and prompts. This “spiraling process” has 

been successfully used by other researchers in qualitative studies that involve the 

construction and successive re-elaborations of a theoretical framework and/or of a 
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model (Hadas, Hershkowitz, & Schwarz, 2000; Steffe & Thompson, 2000). Once the 

model was sufficiently refined, we used it as a tool of analysis through which to 

interpret the data obtained.  

The DGS we chose to use is “Cabri-Geometry II Plus,” developed by Laborde 

and Bellemain (1993-1998). Both the pilot study and the final study were structured in 

the following general way. Solvers were students from three Italian high schools (licei 

scientifici) between the ages of 15 and 18, who had been using Cabri in the 

classroom for at least one year prior to this study: 9 (3 single students and 3 pairs) 

students for the pilot study and 22 (11 pairs) for the final study. First solvers were 

introduced to the dragging schemes during an introductory lesson that took place 

during their regular school hours. Then we conducted the semi-structured clinical 

interviews with the solvers. Between the pilot study and the final study we applied the 

necessary modifications to the activities proposed during the interviews, to the 

research questions, to our cognitive model, and to the prompts to be used during the 

interviews. 

 

3.2 How Data Were Collected 

As described above, we first had our participants take part in an introductory 

lesson in which they would become familiar with the four ways of dragging we were 

interested in studying. In particular our aim was to help students become somewhat 

comfortable with maintaining dragging, which they do not tend to use spontaneously, 

according to previous research. In Section 3.2.1 we will describe this introductory 

lesson and how we modified it after the pilot study. The rest of this section is 

dedicated to the characteristics of the semi-structured clinical interviews we carried 

out (Section 3.2.2) with a particular focus on how we prepared for the interviews and 
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on how we conducted the interviews, and on a description of the open-problem 

activities we used during the interviews (Section 3.2.2). 

 

3.2.1 The Introductory Lesson 

 The lesson was focused on the dragging schemes: as students explored, 

they were asked to drag points in particular ways and describe their observations and 

perceptions (for example, how they moved their hand while dragging) with respect to 

a particular configuration. Students were asked to share their ideas with the whole 

class, in a discussion guided by the instructor who gave names to specific “ways of 

dragging” while the students explained how they used them. While exploring with the 

four dragging modalities during the introductory lessons, the dragging with trace 

activated scheme was only activated on the base point being dragged. No reference 

to the formulation of a conjecture was made, nor were any indications for using the 

dragging schemes given at this point. Students were told that these ways of dragging 

“may be useful for exploring figures in dynamic geometry”, but that they were free to 

do whatever they felt worked best for them during the interviews. The teaching 

intervention had the limited aim of introducing students to different ways of dragging 

and to new terminology which (we hoped) they could use during the interviews. The 

only “teaching” that occurred had to do with the ways dragging, not with a particular 

process of conjecture-generation. This was important because our goal was to test 

whether our model was appropriate for describing the scheme developed by students 

in correspondence to the ways of dragging and to maintaining dragging in particular. 

During the introductory lessons the interviewer/instructor explained how she 

was interested in understanding a thought process and how solvers could help her 

achieve this goal by speaking out loud and explaining as much as they could to her 

aloud. She also explained that any time she would ask “why?” it did not mean that 
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the solver was wrong (Hunting, 1997; diSessa, 2007), but that she was seeking for 

an explanation with the aim of understanding the solversʼ thought process, thus 

valuing any clarification the interviewee might be able to provide and refraining from 

any type of judgment (Hunting, 1997; Ginsburg, 1981). 

After the pilot study we revised the introductory lesson, and decided to add a 

part aimed at helping students overcome some difficulties related to the control of the 

different status of objects of Cabri-figures. Therefore the lesson was carried out over 

two class periods. The first lesson was developed around recognition of base points 

and dependent points of a Cabri-figure that originated from a step-by-step 

construction the students were asked to make.  

In the final study the intervention consisted of two one-hour lessons with the 

following goals and activities. 

Goals of Lesson 1 

• to distinguish between base points (in general, objects) and dependent points 

(in general, objects) of a Cabri figure that originated from a step-by-step 

construction (given explicitly); 

• to experience how different Cabri figures that can represent “a parallelogram” 

(robustly) can originate from different step-by-step constructions and thus 

have different base points (in general, objects) and dependent points (in 

general, objects); 

• and to experience the different behaviors of such Cabri figures when their 

base points are dragged. 

 

Goals of Lesson 2 

• to explore a Cabri-figure that originated from a given step-by-step 

construction by dragging its base points; 
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• to experience (physically) and describe different ways of dragging base points 

of a Cabri-figure; 

• to learn names for four “ways of dragging”: wandering dragging, maintaining 

dragging, dragging with trace activated, dragging test; 

• to attempt to formulate conjectures on the Cabri figure being explored through 

dragging, but with no guidance from the instructor. 

 

 

3.2.2 The Semi-Structured Clinical Interviews 

As described in Section 3.2.2 and in Section 3.5, the activities proposed were 

open-ended tasks (we will discuss our specific open-problem activities in Section 

3.3.3. This form of activity, being unstructured and open-ended, is designed to give 

the solver the opportunity to display his/her “natural inclination” (Piaget, 1929), and it 

seems to be optimal for providing a window into solversʼ thinking by maximizing the 

opportunity for observation and reflection upon their thought process (Hunting, 1997; 

Ginsburg, 1981). Moreover this type of activity allows detailed follow-up-questions 

(Hunting, 1997), which are appropriate for testing cognitive models. In the following 

paragraphs we will describe the interviewerʼs preparation for the interviews and how 

they were conducted. 

Preparation for the interviews is fundamental in obtaining significant data 

(Hunting, 1997). As interviewers, we kept in mind our developing model, but were 

aware of not knowing whether it was appropriate or not. Therefore we were open to 

different interpretations of the solversʼ activity while formulating questions on-line and 

off-line (Ackermann, 1995; diSessa, 2007), that is during the interviews and between 

one interview and the other. While the materials provided to the solvers (the Cabri 

environment, paper, a pen) and the activities were the same, the interviewerʼs 
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prompts and questions would depend on the solversʼ responses. Typical requests to 

a solver were to explain an action, to describe what s/he was looking at or trying to 

accomplish, or to provide clarification or elaboration of a statement s/he made 

(diSessa, 2007). However subsequent prompts and requests would be formulated 

using the solversʼ language, in an attempt to make confirm an interpretation or test 

an alternative one (Ginsburg, 1981).  

Moreover, we elaborated some questions and prompts that we would use 

when a solver seemed to “get stuck”. We were aware of the fact that certain prompts 

might change the solverʼs processes of thoughts and actions, however we wanted to 

be able to observe certain types of explorations even if they did not occur 

spontaneously. Furthermore we were aware that solvers could make remarkable 

progress with basic assistance (Hunting, 1997), and that they can adapt to a 

particular problem or prompt by generating new knowledge (diSessa, 2007). 

Therefore we also analyzed studentsʼ responses to our prompts, searching for 

potential recurring behaviors that might further shed light onto the process described 

by our model. We kept track of the different types of questions and interventions we 

chose to use during the interviews, and whether they would be asked in recurring 

sequences. These sequences were then analyzed as a second level of findings 

(Chapter 6). 

We will now describe the questions and prompts we prepared for the 

interviews, refining them after the pilot study. We took into consideration different 

difficulties that solvers had encountered during the pilot study and tried to present the 

solvers with new tasks (more or less) implicitly related to the original tasks. We would 

choose to lead solvers to a different interpretation of the activity when the solvers did 

not seem to be making sense of the interviewerʼs inquiries (diSessa, 2007). We also 

developed a series of prompts that could be used interchangeably when the solvers 
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seemed to be experiencing a particular difficulty related to maintaining dragging. Our 

use of the prompts also depended on the solversʼ responses. 

The questions and prompts we prepared were the following: 

• So how can you construct a …[the type of quadrilateral the solver had been 

exploring]…that passes the dragging test and that follows the steps of the initial 

construction? 

The idea behind this intervention is to lead the solvers to further explore the 

interesting configuration, and generate new conjectures. Moreover we expected it 

to help them become aware of the different status of objects of the construction 

and look for “constructable properties” to add to the steps of the construction that 

will induce the desired type of quadrilateral robustly.   

• Are there other ways to obtain a robust…[the type of quadrilateral the solver had 

been exploring]? 

• So how about trying maintaining dragging, do you remember? Like what you tried 

in class.  

or  

You mentioned the property that made ABCD a… Can you try to maintain that? 

or  

Is it not possible to maintain that property? Can you tell me why not? 

With these questions we would try to foster the use of maintaining dragging by 

asking the solvers explicitly, in cases in which they had not used it previously. 

• Ok, I know itʼs difficult, but can you ask your partner to help tell you where to 

move the point? 

We used this prompt if a solver was experiencing difficulties performing 

maintaining dragging. 



 81 

• Do you remember that we used dragging with the trace activated in class? Do 

you want to try that here? 

We used this question if the solvers were not able to describe regularities in the 

movement of the dragged base point during maintaining dragging. 

• Ok, so this …[object in the geometric description of the path (GDP)]…moves as 

you drag. Can you try to describe one that does not move? 

We used this prompt in cases in which the solvers had reached a GDP that was 

not P-invariant (if P was the base point dragged) and they were experiencing 

difficulties performing a robust dragging test. 

• So can you give me a conjecture now? 

or 

How about a conjecture that describes what you have done till now? 

We used these prompts if solvers would not provide a conjecture after an 

exploration, in particular one that might have involved the use of maintaining 

dragging. 

Finally, in preparing for the interviews, we took into consideration the issue of 

length of each interview (Hunting, 1997; diSessa, 2007). After the pilot study we 

decided that the ideal time to optimize the collection of significant data with the 

participants of this study and the type of activities used was one hour and thirty 

minutes per pair of students. 

 

Conducting the interviews. With respect to diSessaʼs description of the clinical 

interview methodology we introduced in Section 3.1, the interviews we conducted in 

our final study differed in that we worked with pairs of students instead of one-on-

one. In the pilot study we experimented with both types of settings, but it became 

clear that students seemed to share their thoughts more openly when interacting 
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principally with a fellow student, as opposed to only with the interviewer. This finding 

is in line with what has been found in other studies (for example, Clements, 2000; 

Hadas, Hershkowitz, Schwarz, 2000; Schoenfeld, 1983). Moreover, a fundamental 

characteristic of clinical interviews is putting the interviewee at ease (Ginsburg, 1981; 

Steffe, 1991; Hunting, 1997; diSessa, 2007), and peer interaction seems to foster this 

(diSessa, 2007, p. 551). 

When conducting the interviews a fundamental goal was to pose questions 

that appeared to be sensible inquiries to the interviewee (diSessa, 2007, pp. 527-

528). The questions posed in our activities came from “the context” of the 

introductory lessons, however a goal of the interviewer during the open-problem-

activity sessions was to uncover the solversʼ understanding of the task and capture 

the sense the interviewees were making of the problems by asking them to help her 

see their ideas (Ginsburg, 1981; diSessa, 2007). The interviewer would have this 

secondary goal in mind when constructing hypotheses and responding on-the-fly 

(Ackermann, 1995), or choosing which prompt to use during the interviews. 

Moreover, the interviewer would try to be flexible in formulating hypotheses on the 

solversʼ behavior (Ginsburg, 1981) and in using the language of the solvers by 

repeating and rephrasing statements that they made (Hunting, 1997; Ginsburg, 

1981).  

Another aspect we considered when conducting the interviews was the 

“redistribution of authority and responsibility” (diSessa, 2007). The interviewer would 

ask questions and prompt the interviewees, but she would not be the “holder of 

knowledge” nor judge the solversʼ responses. However the role of the interviewer 

was asymmetric since the interviewees had met her for the first time during the 

introductory lessons in which she was the instructor. This was another reason why 

being the “observer” of peer interactions was more functional to the study than a one-
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on-one interaction with a single solver. This way the interviewer could remove herself 

from the “action” in the exploration. This was accomplished also by physically 

standing (or sitting) behind the solvers during the final study, and intervening only to 

ask for clarification or to suggest prompts from the guiding sequence. Moreover the 

interviewer explicitly stated that there were no “right or wrong” answers. She would 

repeat this whenever solvers seemed to be looking for confirmation or asking 

whether a particular comment or answer was “right?”. When, during the interviews, 

solvers would hesitate after being asked “why?” they had said or done something, 

the interviewer would explicitly repeat what she had explained during the introductory 

lessons, that is that her intention was not to point out anything “right or wrong” but 

instead to understand what the solver was thinking. 

 

3.2.3 Open-Problem Activities for the Interviews: Step-by-step Construction 

Problems 

As described in Chapter 2, the terminology “open problem” (Arsac et al., 

1988; Silver, 1995) refers to a problem or question stated in a form that does not 

reveal its solution or answer. In the context of open problems students are faced with 

a situation in which there are no precise instructions, but rather they are left free to 

explore the situation and make their own conclusions. In other words, when an open 

problem is assigned, the solution consists in elaborating a conditional relationship 

between some premise and a certain fact. Often the solving process requires the 

generation of conditionality after a mental and/or physical exploration of the problem 

situation (Mariotti et al., 1997). In some of the previous research, the production of 

conjectures is an explicit request in the text of an open problem (for example, Boero, 

1996a, 2007; Arzarello, 2002; Olivero, 2001, 2002). When conjectures are explicitly 
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requested in the text of the problem, we will use the terminology conjecturing open 

problem, to distinguish it from other types of open problems. 

The dynamic nature of the exploration of open problem situations becomes 

particularly evident in the context of a DGS, where the figures can actually be 

explored dynamically through the dragging mode. This makes DGSs an ideal 

environment for posing conjecturing open problems and for observing and 

investigating processes of generation of conjectures. In a DGS, a conjecturing open 

problem typically takes the form of a generic request for a statement about 

relationships between elements of the configuration or between properties of the 

configuration. The questions are expressed in the form “which configuration does… 

assume when…?” “Which relationship can you find between…?” “What kind of figure 

can… be transformed into?” (Olivero, 2001). For example, a conjecturing open 

problem ask: “Construct two points (A, B) and a third point C so that the angle ACB is 

60 degrees. Are there other choices of C for which this is possible? Make a 

conjecture.” 

To explore the validity of our model we constructed conjecturing open 

problems, characterized by a sequence of steps, which students are asked to follow, 

leading to the construction of a dynamic figure, followed by an open question 

explicitly asking for a conjecture. We will refer to this type of conjecturing open 

problems as step-by-step construction problems. We constructed these step-by-step 

construction problems so that explorations in which solvers would search for 

invariants using maintaining dragging would be fruitful, that is it would be possible to 

make a path explicit using the trace mark and observe an invariant during dragging 

(IOD). We developed and used the following step-by-step construction problems for 

the study. 
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Problem 1 

• Draw three points: A, M, K. 

• Construct point B as the symmetric image of A with respect to M 

• and C as the symmetric image of A with respect to K.  

• Construct the parallel line l to BC through A. 

• Construct the perpendicular to l through C, 

• and construct D as the point of intersection of these two lines. 

• Consider the quadrilateral ABCD.  

Make conjectures on the types of quadrilaterals it can become, trying to describe 

all the ways in which it can become a particular type of quadrilateral. 

 

Problem 2 

• Draw a point P 

• and a line r through P. 

• Construct the perpendicular to r through P  

• and construct a point C on this line. 

• Construct the symmetric image of C with respect to P and call it A.  

• r separates the plane in two semi-planes. Choose a point D on the semi-plane 

that contains A. 

• Construct the line through D and P. 

• Construct the circle with center in C and radius CP. 

• Let B be the second intersection of the circle with the line through D and P. 

• Consider the quadrilateral ABCD. 

Make conjectures on the types of quadrilaterals it can become, trying to describe all 

the ways in which it can become a particular type of quadrilateral. 
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Problem 3 

• Draw three points: A, M, K. 

• Construct point B as the symmetric image of A with respect to M 

• and C as the symmetric image of A with respect to K.  

• Construct D as the symmetric image of B with respect to K. 

• Consider the quadrilateral ABCD.  

Make conjectures on the types of quadrilaterals it can become, trying to describe 

all the ways in which it can become a particular type of quadrilateral. 

 

Problem 4 

• Draw three points: A, B, C. 

• Construct the parallel line l to AC through B, 

• and the perpendicular line to l through C. 

• Construct D as the intersection of these two lines. 

• Consider the quadrilateral ABCD.  

Make conjectures on the types of quadrilaterals it can become, trying to describe 

all the ways in which it can become a particular type of quadrilateral. 

 

A-priori Analysis of Problem 4. We developed the step-by-step construction 

problems for the study so that the use of maintaining dragging on certain (if not all) 

base points of each dynamic-figure would potentially lead to the discovery of a new 

invariant, an IOD. In this section we will analyze Problem 4, as an example, to show 

how we thought they might be explored. 

Problem 4 

• Draw three points: A, B, C. 

• Construct the parallel line l to AC through B, 
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• and the perpendicular line to l through C. 

• Construct D as the intersection of these two lines. 

• Consider the quadrilateral ABCD.  

Make conjectures on the types of quadrilaterals it can become, trying to describe 

all the ways in which it can become a particular type of quadrilateral. 

 
Figure 3.3.3.1: the quadrilateral ABCD as a result of the step-by-step construction. 

 
From the steps of the construction, immediate conclusions are: 

1) the angles ACB and CBD are congruent because BD is parallel to AC; 

2) the angle ACD is right, because CD is perpendicular to l, which is parallel to AC; 

3) the triangle BCD is right, and therefore inscribed in a semicircle with diameter BC; 

4) ABCD is a right trapezoid. 

The presence of two right angles implies that the only quadrilaterals it may be 

possible to explore are right trapezoids, rectangles, and squares. 

There are three base points, A, B, C, that can be dragged to explore other possible 

configurations. Dragging any of these base points it is possible to obtain a rectangle. 

The GDPs for each of these base points when maintaining the property “ABCD 

rectangle” are: 

• for A, the circle with diameter BC; 

• for B, the perpendicular line to AC through A; 
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• for C, the perpendicular line to AB through A. 

 
Figure 3.3.3.2: if A is dragged maintaining ABCD rectangle, a GDP is the circle with diameter BC. 

 

Figure 3.3.3.3: if B is dragged maintaining ABCD rectangle, a GDP is the perpendicular line to 
AC through A. 

 

Figure 3.3.3.4: if C is dragged maintaining ABCD rectangle, a GDP is the perpendicular line to 
AB through A. 
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These GDPs are invariant with respect to the base point dragged to determine them, 

and they do not depend in any way from the base point being dragged to determine 

them. Therefore it is possible to redefine the dragged base point upon each of them 

to obtain a robust rectangle. 

• Once A is redefined on the circle, the angle CAB is a robust right angle, 

because inscribed in a semicircle. Therefore three of ABCDʼs angles are right, 

which implies that they are all right and ABCD is a robust rectangle. 

• Once B is redefined on the perpendicular line to AC through A, the angle CAB 

is a robust right angle and therefore we have the same conclusion as in the 

previous case. 

• Once C is redefined on the perpendicular line to AB through A, the angle CAB 

is a robust right angle and therefore we have the same conclusion as in the 

previous case. 

The only other possible configuration to explore is “ABCD square”. This configuration 

can be obtained again dragging any of the base points, but it may not be maintained 

during dragging. A square may be obtained in the following ways: 

• positioning A on one of the intersections of the circle with diameter CB with 

the perpendicular bisector of BC; 

• positioning B on one of the intersections of the circle with radius AC and 

center in A with the perpendicular line to AC through A; 

• positioning C on one intersections of the circle with radius AB and center in A 

with the perpendicular line to AB through A. 
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Figure 3.3.3.5: One of the two positions of A to obtain a square. 
 

 
Figure 3.3.3.6: One of the two positions of B to obtain a square. 
 

 
Figure 3.3.3.7: One of the two positions of C to obtain a square. 
 
 

3.3 The Collected Data and How They Were Analyzed 

The data collected included: audio and video tapes and transcriptions of the 

introductory lessons; Cabri-files worked on by the instructor and the students during 
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the classroom activities; audio and video tapes, screenshots of the studentsʼ 

explorations taken at 1-second intervals with screen-capturing software that would 

run in the background while the students were working in Cabri; transcriptions of the 

task-based interviews, and the studentsʼ work on paper that was produced during the 

interviews. 

We analyzed the data collected through different filters. At one level, we 

looked at how solvers used the dragging tool during the process of conjecture-

generation, searching for recurring behaviors, and trying to link such behaviors to the 

forms of reasoning that might be involved. In particular, we used the data to confirm 

and refine our model by looking for and trying to describe an invariant behavior 

corresponding to the use of maintaining dragging. The final model, as presented in 

Chapter 4 is the outcome of such analysis. Throughout this chapter we also highlight 

the aspects of the model that were added and refined during the study.  

A second level of analysis consisted in using the model itself as a tool of 

analysis of the data generated from the interviews. We interpreted solversʼ behaviors 

through the lens of the model, using it in particular to gain insight into difficulties that 

solvers seemed to be facing. These difficulties that solvers encountered can be 

considered “essential mistakes”, using the terminology of Steffe and Thompson 

(2000). In our case we considered “essential mistakes” the solversʼ difficulties and 

behaviors that deviated from the model that seemed to “fit” for other solvers. This 

second type of analysis allowed us to also advance hypotheses on specific sources 

of difficulties, which we describe in Chapter 5.  

We then used a third filter, that of the model (Chapter 4) together with the 

factors that seemed to contribute to solversʼ difficulties (Chapter 5) to further 

elaborate and refine our conception of “expert behavior” with respect to maintaining 

dragging. This third level of analysis allowed us, in particular, to develop the notion of 
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path and highlight its significance, and to “capture” the abductive process involved in 

conjecture-generation when maintaining dragging is used, according to the 

description provided by our model. Finally, the analysis through this lens of solversʼ 

responses to our prompts and of the order in which the prompts were given, led to 

some insight into a possible process through which solvers would become “experts”. 

We present the findings of this third level of analysis in Chapter 6. 
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CHAPTER IV 
 
 
 

THE MD-CONJECTURING MODEL 
 
 
 

Our main goal was to interpret and describe cognitive processes leading to the 

formulation of a conjecture, when certain dragging schemes are used. In particular we 

wanted to zoom into the crucial point described in Arzarello et al.ʼs model (Arzarello et 

al., 2002), in which dummy locus dragging seemed to be used by the solvers. Therefore 

we focused specifically on developing a new model describing a way in which 

maintaining dragging (MD) may be used to generate conjectures when exploring a step-

by-step open problem. In this chapter we present our model describing “expert use” of 

MD in the process of conjecture-generation. We therefore refer to our model as the MD-

conjecturing Model. 

The MD-conjecturing Model consists of a series of phases characterized by specific 

tasks that the solver accomplishes, and described through novel key concepts and the 

relationships between them. These concepts and relationships seem to be the main 

ingredients that come into play during the conjecturing process and that are elaborated 

into the final conjecture (considered as the product of this process). Our initial 

hypothetical model includes the following notions and the relationships between them: 

intentionally induced invariant (III), invariant observed during dragging (IOD), path, 

geometric description of the path (GDP), conditional link (CL). 

During the study we collected data in order to see whether our model could be 

suitable to describe the process we were interested in. Analyzing the data through the
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lens of the model led to a refinement and later to a redefinition of the model. We would 

like to show examples of how we used the initial model to analyze transcripts, and how 

certain analyses led to refinements of the model itself. Therefore in this chapter we first 

introduce the initial model through a simulated exploration in section 4.1; then sections 

4.2, 4.3, 4.4, and 4.5 introduce the phases of the model, leading to the formulation of a 

conjecture and characterized by the presence of specific elements and their mutual 

relationships. In each of these sections the phase will be described and then exemplified 

through studentsʼ transcripts, analyzed through the lens of the model. In addition, where 

refinements of the model took place we will have such refinements emerge from 

studentsʼ transcripts. The new notions and processes that emerged from the analyses 

include: (basic and derived) construction-invariant, point-invariant, basic property, 

minimum basic property (section 4.2). As mentioned above, the episodes from the 

transcripts of studentsʼ interviews presented in this chapter represent cases that have 

been classified as “expertsʼ use” of the schemes, that is the use made by solvers for 

whom maintaining dragging has become an acquired instrument with respect to the task 

of producing a conjecture.  

Finally, the analysis of the transcripts led us to notice the centrality of invariants, 

of which different types are described in the model, and solversʼ perception of them 

during the explorations. This led to a new conception of the model, which we present in 

section 4.6. Here we re-describe the model through the particular types of invariants the 

solver may treat throughout a dynamic exploration.  

 

4.1 Introduction of the Model through a Simulated Exploration 

In this section we will show how the initial elements of the model come into play 

in an example of a hypothetical exploration based on a step-by-step-construction 
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problem. We briefly recall that we defined a 

step-by-step construction problem as a 

sequence of steps, which students are asked 

to follow, leading to the construction of a 

dynamic figure, followed by an open question 

explicitly asking for a conjecture (for the 

definition see Section 3.2.3). We will use 

Problem 2 introduced in Section 3.2.2. 

- Draw a point P 

- and a line r through P. 

- Construct the perpendicular line to r through P 

- and choose a point C on it.  

- Construct a symmetric point to C with respect to P and call it A. 

- On the semi-plane identified by r containing A, draw a point D. 

- Construct the line through D and P.  

- Construct the circle with center in C and radius CP. 

- Let B be the second intersection of the line through P and D with the circle. 

- Consider the quadrilateral ABCD. 

Make conjectures on the types of quadrilaterals that it can become, describing all the 

possible ways it can become a certain quadrilateral. Write your conjectures and then 

prove them. 

Let us assume we decide to start dragging the base point D. While dragging, we 

see that the quadrilateral ABCD may become something that “looks like” a 

parallelogram. We can try to use maintaining dragging to move point D while trying to 

keep ABCD a parallelogram. 

Figure 4.1.1 ABCD as a result of the step-by-
step construction. 



 96 

With respect to the maintaining dragging 

scheme, we say that the property “ABCD 

parallelogram” that we are inducing is 

called an intentionally induced invariant 

(III). While we drag we can look for some 

regularity to emerge from the movement 

of the point we are dragging (D in this 

case). We are looking for what the model 

refers to as an invariant observed during 

dragging (IOD). In order to make the 

transition from a regularity to an invariant (which can then be interpreted as a geometric 

property), we can look for a path, or a set of points along which we can drag our base 

point in order to maintain (indirectly) the intentionally induced invariant (III). 

 Then we can try to give a 

geometric description of the path (GDP) 

thus potentially obtaining a new 

geometrical property that can be 

applied to the figure. Maintaining 

dragging with the trace activated can 

help us make the path explicit, and help 

us conceive a geometric description of 

the path (GDP).  

In this case we could interpret the trace as something like a circle, providing an 

argumentation like: “as we go down we have to also move over and move like B moves 

on the circle” to reach a description of the path as a symmetric circle to the existing one. 

Figure 4.1.2 Effect of maintaining dragging with the 
trace activated on the dragged base point. 

Figure 4.1.3: A GDP has been constructed and a 
dragging test may now be performed. 
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Continuing the dragging of D we can keep on checking our  geometric description of the 

path (GDP) by looking at the two (assumed) invariants (D on path and ABCD 

parallelogram) occur simultaneously. 

 This is already a soft version of the dragging test. We refine our geometric 

description of the path (GDP) until we reach a constructible one, like a symmetric circle 

with respect to the one  in the steps of the construction, with center in A, and radius PA. 

At this point we can perform a more convincing, but still soft dragging test by dragging D 

along the constructed circle and making sure the two invariants occurred simultaneously. 

We may even want to link D to the circle and obtain two robust invariants that now we 

can observe that now we can observe occurring simultaneously when dragging any base 

point of the construction. The properties we concentrate on now during this robust 

dragging test are: D on the circle and ABCD parallelogram.  

We can now formulate a conjecture taking our invariant observed during dragging 

(IOD) as the premise and our intentionally induced invariant (III) as the conclusion of this 

statement. Since the invariant observed during dragging (IOD) was “D belongs to the 

constructed circle1” and the intentionally induced invariant (III) was “ABCD 

parallelogram” we obtain the following conjecture: If D belongs to the circle centered in A 

with radius AP, then ABCD is a parallelogram. 

We might prefer to describe the IOD in a more “static” way, for example, by 

noticing that “D belongs to the constructed circle” implies “AD congruent to AP”, and vice 

versa. In this case we could decide to substitute the premise expressed in the original 

conjecture with the new one “AD congruent to AP”, obtaining a new  

conjecture: If AD is congruent to AP, then ABCD is a parallelogram. 

                                                 
1 Notice the transition from “D is dragged along the circle” to this crystallized form. We 
will discuss this in more detail in Chapter 7. 
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 In the remainder of this section and in Section 4.2, in order to become 

accustomed to the terminology, we will continue to write each element of the MD-

conjecturing Model completely, including the abbreviation in parentheses. From section 

4.3 on, we will only use the abbreviations. 

We can describe the exploration as a sequence of tasks – or sub-tasks of the 

main task of generating a conjecture – to be accomplished during the process of 

conjecture-generation when the maintaining dragging scheme is used. 

 

• Task 1: Determine a configuration to be explored by inducing it as a (soft) 

intentionally induced invariant (III): through wandering dragging the solver can 

look for interesting configurations and conceive them as potential invariants to be 

intentionally induced. 

• Task 2: Look for a condition that makes the intentionally induced invariant (III) 

visually verified through maintaining dragging. This can occur through  

o a geometric interpretation of the movement of the dragged base point  

o or a geometric interpretation of the trace. 

The “condition” may be considered the movement of the dragged base point 

along a path which can also acquire a geometrical description (GDP). The 

belonging of the dragged base point to a path with a geometric description 

determines the  (IOD). When the two invariants are observed simultaneously, the 

solver will have direct control over the invariant observed during dragging (IOD) 

and indirect control over the intentionally induced invariant (III). This may guide 

the conception of a conditional link (CL) between the two invariants. 

• Task 3: Verify the conditional link (CL) through the dragging test. This requires 
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the accomplishment of at least some of the following subtasks: 

o representing the invariant observed during dragging (IOD) through a 

construction of the proposed geometric description of the path (GDP); 

o performing soft dragging test by dragging the base point along the 

constructed geometric description of the path (GDP); 

o performing a robust dragging test by providing (and constructing) a 

geometric description of the path (GDP) that is not dependent upon the 

dragged base point and redefine the base point on it in order to have a 

robust invariant, then perform the dragging test. 

 

The table below contains the key elements of the model, the abbreviations used to 

denote them, and their definitions. 

 

Intentionally Induced Invariant (III) Property (or configuration) that the solver 
chooses to try to maintain 

Path Set of points with the following property: if the 
dragged-base-point coincides with any of 
these points then the intentionally induced 
invariant (III) is (visually) verified 

Geometric Description of the Path (GDP) Geometric characterization of the path 

Invariant Observed During Dragging (IOD) Property (or configuration) that seems to be 
maintained by the Cabri-figure while an 
intentionally induced invariant (III) is being 
induced through maintaining dragging 

Conditional Link (CL) (implicit) logical connection between the 
invariant observed during dragging (IOD) and 
the intentionally induced invariant (III) 

Conjecture (explicit) statement with a premise and a 
conclusion that expresses the conditional link 
(CL) explicitly. 

Table 4.1.4 Key elements of the MD-conjecturing Model  
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4.2 Intentionally Induced Invariant (III) 

As shown in the previous section, the first task described by our model is the 

determination of an interesting configuration to explore. An “interesting configuration” in 

this case is a configuration in which the solver recognizes a particular property that s/he 

conceives as potentially invariant with respect to some kind of movement. In this case 

the solver may become interested in “when” the Cabri-figure maintains a certain 

property, for example “when it becomes a particular type of geometrical figure”. In other 

words, the solver begins to search for “the conditions under which” the interesting 

property is obtained and maintained, that is conditions under which the property 

becomes an invariant with respect to movement. To accomplish this the solver may 

decide to apply the maintaining dragging scheme. We therefore define the intentionally 

induced invariant (III) as 

a property (or configuration) that the solver finds interesting and chooses to try to 

maintain during dragging. 

After the intentionally induced invariant (III) has been chosen, the solver will concentrate 

on maintaining it, visually, while dragging a base point of the Cabri-figure. This means 

that at this point the intentionally induced invariant (III) is a soft property1 of the Cabri-

figure, and therefore maintaining it approximately while continuously dragging a base 

point may not be a simple task, if it is possible at all, which also depends heavily on the 

manual skills of the solver. 

Moreover, we refer to the intentionally induced invariant (III) as an indirect 

invariant, in that it can only be controlled indirectly, through the dragging of a base point. 

                                                 
1 We recall that a “soft property” is a geometrical property that a Cabri-figure may assume if the 
solver positions its base points appropriately, but it is not a property that can be derived from the 
steps of the construction and therefore it will not automatically be maintained by Cabri during 
dragging. The terminology “soft” and “robust” properties was introduced by Healy (2000) and 
discussed in Chapter 2. 
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In other words, it is a property that is  indirectly related to these base points, and in 

particular to the one being dragged, and can be maintained by dragging a base point in a 

way that is not immediately accessible or obvious. Applying the maintaining dragging 

scheme in this manner guides the search of “the conditions” for which the intentionally 

induced invariant (III) can be maintained, and these conditions are immediately 

controllable by the solver, in that they are described through the solverʼs interpretation of 

the movement s/he is imposing directly on the base point. In this sense, such 

“conditions” can be interpreted as the premise of the statement of the future conjecture. 

While the property maintained as an intentionally induced invariant (III) is already 

expressed geometrically, the invariant observed during dragging is first perceived 

through haptic and visual sensations of movement. Therefore these “conditions” that 

emerge need to be re-elaborated into what will become the premise of the conjecture 

through a non-trivial process. This motivated our separate introduction of the definition of 

geometrical description of the path (GDP) and invariant observed during dragging (IOD). 

The first excerpt below illustrates how a student, J, decides to explore “when” the 

quadrilateral considered is a parallelogram, and how he induces this property as an 

invariant using maintaining dragging. 

Excerpt 4.2.1. This excerpt is from a studentʼs work on Problem 2 and it 

illustrates the initiation of maintaining dragging: an intent to explore “when” ABCD is a 

parallelogram, as a property to induce as an invariant during dragging. 

Episode 

[1] J: So... 

[2] J: parallelogram... 

[3] J: When is it parallelogram? 

Brief Analysis 

The student J chooses the 

property “parallelogram” ([2]) as 

his intentionally induced 
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[4] J: Well, ok, more or less...[dragging P] 

[5] I: Are you trying to make one or to maintain it a 

parallelogram? 

[6] J: To maintain it. 

...[he switches to dragging a different base point] 

[7] J: Here...maybe 

[8] J: Oh dear! 

[9] J: Somewhere over there, anyway... 

[10] J: hmmm 

invariant (III) and tries to 

maintain it ([6]) first dragging the 

base point P ([6]) and then the 

base point D ([7]).  

 

 

J recognizes that there will be 

other good positions “over there” 

([9]). 

Table 4.2.1: Analysis of Excerpt 4.2.1 

 J seems to have conceived the property “ABCD parallelogram” as a potential 

invariant to intentionally induce (III), because he seems to be focusing on it with respect 

to movement. In particular he seems to conceive it as a potential III with respect to the 

movement of different base points (he switches from dragging P to dragging D). Further 

evidence that he has conceived the property with respect to movement (and thus an III 

as described by our model) is that J recognizes that there will be other good positions 

“over there” ([9]). Overall Jʼs manual skills seem good and allow him to coordinate hand 

movement with observation of the intentionally induced invariant (III) ([4]). This will help J 

make the transition to the perception of an invariant observed during dragging (IOD). 

The example we just saw in Excerpt 4.2.1 was an example of a behavior which 

appeared to be perfectly coherent with what our initial model described. Now we would 

like to describe what various studentsʼ transcripts showed as a recurring behavior that 

occurred before the identification and induction of an intentionally induced invariant (III). 

These observations led to an enrichment of our initial model, which we will describe 

through examples below.  
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4.2.1 A Preliminary Phase 

Frequently, the first part of each exploration was characterized by a use of 

wandering dragging, during which solversʼ attention is caught by properties that are 

invariant for random dragging of the base point being considered, and potentially for 

random dragging of the other base points as well. These invariants appear to be “robust” 

(Healy, 2000) or “un-mess-up-able” (Healy et al., 1994), and they seem to capture 

studentsʼ attention before other properties that are not “always verified”, or “soft” 

invariants (Healy, 2000). This is interesting because different behaviors that can precede 

the use of maintaining dragging emerge. In this sense we speak of a “preliminary 

phase”.  

In order to have an appropriate terminology to describe studentsʼ recurring 

behaviors when encountering robust invariants, we coined the notions of “construction-

invariant” and of “point-invariant” (Baccaglini-Frank et al., 2009). We will discuss each of 

these notions in the paragraphs below and give examples of excerpts which led to their 

emergence. Moreover, the investigation of these robust invariants can culminate in a first 

conjecture, which frequently makes use of a characterizing property of the type of 

quadrilateral being investigated (we refer to these ad “basic conjectures” and provide a 

definition and discussion in Chapter 5). 

 

4.2.1.1 Construction-invariants. During this preliminary phase, solvers frequently 

use wandering dragging to move the various base points of the construction. During this 

phase of the exploration, the solver may notice construction-invariants, that is,  

geometrical properties of the figure which are true for any choice of the base 

points.  
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Typically, construction-invariants are described by the solver as “things that are always 

true”, indicating generality with respect to the step-by-step construction. In particular, the 

solver may recognize the geometrical figure s/he is asked to consider as “always being” 

a specific type of geometrical figure. In the initial example in section 4.1, ABCD in 

general is not any specific type of quadrilateral, however, for example, the property “PA 

congruent to PC” is a construction-invariant, and thus students might refer to it as being 

“always” true for any movement of the base points. 

The solver may give an argumentation as to why s/he thinks the property is 

“always” maintained by the considered figure, and in doing this, s/he will link back to the 

description of the step-by-step construction. During this process the steps are 

“translated” into mathematical properties which become the premise of a possible first 

conjecture. These mathematical properties are linked to the construction-invariant, which 

will become the conclusion of the possible conjecture, as the “reasons” why it is true. 

The argumentation may proceed deductively, using theorems from Euclidean geometry, 

from the reinterpretation of the steps as conditions for the interesting property that was 

perceived. 

It is interesting how although various construction-invariants can be perceived, 

the construction-invariant that is typically featured in a conjecture is not explicitly 

expressed in any of the construction steps. Therefore, it seems useful to make a 

distinction between construction-invariants that are explicitly expressed by the steps of 

the construction – we will call these basic construction-invariants – versus construction-

invariants that can be derived from the steps of the construction through deductive 

arguments – we will call these derived construction-invariants. The excerpts below show 

two examples of how students perceive what we have defined derived construction-

invariants, before they even start dragging. 
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Excerpt 4.2.2. This excerpt is from two studentsʼ work on Problem 1, and it shows 

how the property “ABCD is a right trapezoid” is perceived as a derived construction-

invariant. 

 

Figure 4.2.2: A screenshot of V&R's exploration 

Episode 

[1] V: Always a trapezoid...because it's 

constructed so that... 

[2] V:...at least when... 

[3]  R: also always... 

[4] V: ....it becomes a parallelogram 

[5] R: ...always a right trapezoid, because 

this is perpendicular to... 

[6] V: to... 

[7] R: ..the base  

… 

[8] I: Ok. 

[9] V: This one here is perpendicular to this 

Brief Analysis 

V perceives a construction-invariant. 

Recurring use of the word “always”. 

 

 

The justification of why ABCD not only 

appears to be a right trapezoid, but it 

actually “is always” such a figure seems to 

be: line l is constructed as parallel to 

segment BC, and CD is constructed as 

perpendicular to l, and thus to BC. 

 

V makes the deduction explicit. As she 
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one, and so since both are 

[10] R: and so... 

[11] V: these two here parallel, therefore... 

[12] R: Right, and so ok. 

[13] I: ok. 

[Written conjecture: “The quadrilateral 

ABCD is always a trapezoid, because two 

bases are parallel. It is also a right 

trapezoid, because DC ⊥ to CB.”] 

says “this one” ([9]) she points to DC and 

DA. She deduces that since DC is 

perpendicular to l (construction step), and l 

is parallel to BC (construction step), a 

theorem guarantees that CD will also be 

perpendicular to BC. 

Table 4.2.2: Analysis of Excerpt 4.2.2 

The episode occurs before any dragging, immediately after the steps of the 

construction are complete. We interpret this as evidence that the solvers perceive the 

property “ABCD right trapezoid” as a derived construction-invariant, because the 

behavior indicates that they have perceived the property at a theoretical level: the 

students seem to interpret the steps of the construction as premises to start their 

deductive reasoning from. We think the solvers have perceived the property at a 

theoretical level because of Rʼs (and later of Vʼs) argumentation. R feels the need to 

justify the claim that ABCD is a right trapezoid, referring to a fact that he has derived 

from the steps of the construction. 

Further evidence to support our claim that the property is being perceived as a 

derived-construction-invariant comes from the use of the word “always [Italian: 

“sempre”]. In this excerpt “always” seems to refer to a fact that the solver assumes will 

be true no matter what (no matter how or which points one drags, in this case): “always 

a trapezoid” ([1]), “always a right trapezoid” ([5]).  
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Finally, the formulation of the written conjecture shows how properties in steps of 

the construction have become the premise (they follow the “because”), while the 

perceived derived-construction-invariant has become the conclusion of the statement. 

However, this formulation shows traces of steps of the argumentation, and it is written in 

a form that contains the conclusion “ABCD is a trapezoid”, moreover a “right trapezoid”, 

before the premise “the bases are parallel and DC ⊥ to CB”. The facts in the premise are 

still used as justifications in the argumentation and have not been completely elaborated 

into an “if…then statement”. We will deal with the formulation of the conjecture in section 

4.5 of this chapter. What seems to be important for this section is to highlight the 

dominant role of the derived-construction-invariant within the conjecture. This seems to 

strengthen our claim that construction-invariants interest solvers in this preliminary 

phase of the explorations, because they seem to be discoveries, worth spending a 

conjecture to highlight.  

Excerpt 4.2.3. This excerpt is from two studentsʼ work on Problem 3, and it is an 

example of how two students perceived a derived construction-invariant without dragging 

any of the base points. 

 

Figure 4.2.3: A screenshot of Ste & Sim's exploration. 
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Episode 

[1] Ste: Make conjectures on the types of 

quadrilaterals..[rereading the 

assignment]...ok, good. 

[2] Sim: AM equals MB, ... 

[3] Sim: BK...equals KD, no?  

[4] Ste: ehm, wait 

[5] Sim: CK equals KA...it's always a 

parallelogram, therefore. 

[6] Sim: Because the diagonals intersect  

[7] Sim&Ste: at their midpoints. 

[8] Sim: Ok. 

[Written conjecture: “ABCD is always a 

parallelogram.”] 

Brief Analysis 

Ste re-reads the task. 

 

Sim immediately refers to the steps of the 

construction to explain why ABCD is 

“always” a parallelogram ([5]). The 

explanation occurs through a deduction, 

using the theorem: “if the diagonals of a 

quadrilateral intersect at their midpoints, 

the quadrilateral is a parallelogram”, 

together with the fact that BK equals KD 

([3]) and CK equals KA ([5]) from the 

properties contained in the steps of the 

construction.  

Table 4.2.3: Analysis of Excerpt 4.2.3 

The students seem to immediately perceive the property “ABCD parallelogram” a 

derived construction-invariant, because they seem to immediately interpret the property 

at a theoretical level as in Excerpt 4.2.2, without needing to move the figure at all to 

check generality. In fact during the entire excerpt the students do not move the figure. 

Instead they seem to recognize a familiar type of quadrilateral, a parallelogram, and 

recognize it as significant in order to respond to the question they read in the task ([1]). 

This strengthens our claim that construction-invariants interest solvers in this preliminary 

phase of the explorations. 

Further evidence that derived construction-invariants seem to be perceived as 

“discoveries” is that in the final formulation of the written conjecture (“ABCD is always a 
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parallelogram”) the premise (that consists of the steps of the construction) is implicit. The 

only reference to the premise can be seen in the use of “always” which seems to link the 

Cabri-figure to the steps of the construction which the students used as arguments to 

prove the statement. It seems as if the perception of a construction invariant as a 

property of the figure which is “always” true overpowers the need to write a proper 

mathematical “if…then statement”. Although the students perceive various construction 

invariants (AM congruent to MB, BK congruent to KD, CK congruent to KA), the 

construction invariant that is featured in the conjecture (ABCD parallelogram) is not 

explicit from any of the construction steps. It seems likely that the solvers choose to 

make a conjecture having this invariant in it because part of the task is to find which 

types of quadrilaterals ABCD can become. In any case, our distinction between basic 

construction-invariants and derived construction-invariants seems to be insightful for 

describing such behaviors. 

 

4.2.1.2 Point-invariants. When solvers investigate invariant properties of a Cabri-

figure, they may be deceived by properties that seem robust invariants when a certain 

base point is dragged, but that are not robust invariants when a different base point is 

dragged. We therefore conceived a point-invariant as 

a geometrical property that is true for a particular choice of a base-point of the 

construction, while the other base-points are fixed.  

If the particular base-point considered is P, we will call such invariant a P-invariant.  

In the excerpt below we will show how two students can perceive a point-invariant and 

how the notions of point-invariant and (basic and derived) construction-invariant can be a 

useful tool of analysis. 
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Excerpt 4.2.4. This excerpt is from two studentsʼ work on Problem 1. It shows 

how two students notice and describe a point-invariant. The name of the solver who is 

holding the mouse is in bold letters. 

 

Figure 4.2.4: A screenshot of Ale & Pie's exploration 

Episode 

[1] Pie: the segment BC...if it varies what does it 

depend on? 

[2] Pie: So, point B is the symmetric image of A... 

[3] Ale: I think that the segment [pointing to BC] is 

fixed. 

[4] Pie: ...and C is the symmetric image of A with 

respect to K. Therefore if I vary A, C varies too. 

[5] Pie: because...they are...I mean A has 

influence over both B and C. 

[6] Ale: But the distance between B and C always 

Brief Analysis 

The solvers become interested in 

segment BC and how it varies ([1]) 

or is “fixed” ([3]), while dragging the 

base point A.  

 

Ale perceives the length of segment 

BC as fixed. 

Pie perceives the dependence of BC 

on A because, as he says, B and C 

are both symmetric images of A and 



 111 

stays the same. 

[7] Pie: Here there is basically AK and KC are the 

same and AM and BM are always the same. 

[8] Ale: Yes, try to move it? [referring to point A] 

[9] Pie: yes. 

[10] Ale: Hmm... 

[11] I: What are you looking at? 

[12] Ale: No, nothing, just that...I wanted to...now 

we can also put that the distance between B and 

C always stays the same...in any case it does not 

vary. 

[conjecture: As the exploration continues, Aleʼs 

idea is overcome before the students write a 

conjecture. Instead Pie focuses on the derived 

construction-invariant “MK parallel to BC” and 

writes the conjecture: “The segment MK is 

parallel to BC.”] 

therefore varying only A will make 

them both vary ([2], [4], [5]). 

Ale interrupts insisting on the 

invariance of the length of BC ([6]).  

Pie attempts to describe the 

behavior of the figure while dragging 

A. 

 

Ale insists on wanting to see the 

invariance of BC during dragging. 

Pie seems to agree with Aleʼs 

observation on the length of BC, but 

seems less convinced. 

Ale strongly states once again his 

perception of the length of BC being 

invariant. 

  

Table 4.2.4: Analysis of Excerpt 4.2.4 

We propose this excerpt as an example in which our new terminology with 

respect to invariants seems useful for analyzing the solversʼ behavior. Such terminology 

allows us, for example, to interpret Aleʼs insistence on the length of BC being constant 

as his perception of such invariant as a (derived) construction-invariant. We believe this 

because he uses “always” in [6] and in [12], and strengthens his claim by adding that “in 

any case it does not vary” ([12]).  
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Moreover, our terminology allows us to explain Pieʼs behavior, in this excerpt and 

in the continuation of the exploration before the formulation of the written conjecture, as 

his correctly interpreting the length of BC as an A-invariant. We claim this because later, 

after this episode but before writing a conjecture, Pie will show that the length of BC is 

not a construction-invariant, by dragging a different base point, and showing that it 

varies. Moreover, during this excerpt Pie seems to focus more on explaining why the 

invariance might be the case ([7]), referring to point A frequently in his interventions. This 

seems to show that Pie seems more inclined to correctly perceive the property “length 

BC constant” as an A-invariant. However, faced with Aleʼs strong belief in “length BC” as 

a derived construction-invariant, for the moment Pie seems to accept it as such. The 

notions of construction-invariant and point-invariant have revealed themselves to be very 

useful in the analysis of other similar episodes in different solversʼ explorations. 

 

4.2.1.3 Basic Properties and Minimum Basic Properties. We also observed a 

recurring behavior related to the perception and choice of an invariant to induce. When 

looking for particular types of geometrical figures during wandering dragging, the solver 

may either notice that the considered figure can become a different (more particular) 

type of geometrical figure for some positions (or dispositions) of the base points, or s/he 

may try to make the figure into a particular configuration. In this second case the guided 

component (see Section 2.5 on our introduced dragging modalities) of our notion of 

wandering dragging becomes evident. In order to accomplish the task of investigating 

whether a certain type of geometric figure can occur, the solver may choose to substitute 

the whole figure with a characterizing property that may be easier to induce on the Cabri-

figure. For example in the simulated exploration in Section 4.1 the solver could have 

worked with the property “diagonals intersecting at their midpoints” to investigate the 
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case of the parallelogram. This phenomenon of substitution of a property with one that is 

considered “easier” to maintain is recurrent, and led us to introduce the following 

definition of basic property:  

a property immediately taken from a definition or characterization of a type of 

geometrical figure.  

This property is in a logical relation, in this case a double implication, with the type of 

geometrical figure the solver is investigating, and it may serve as a bridge during the rest 

of the exploration. In fact the solver may refer to this property instead of to the type of 

geometrical figure s/he is exploring, because the conclusion, which describes the type of 

geometrical figure, is implied by the basic property being true. In particular, the solver 

may use a basic property of the theoretical geometrical figure s/he is referring to and 

apply it (mentally) to the construction, linking it and comparing it to the premises 

obtained from the steps described in the step-by-step construction. If part of the basic 

property is already in the premise, then the solver may “slim down” this basic property to 

a minimum basic property. Such a minimum basic property, together with the 

hypotheses from the steps of the construction, logically implies the conclusion, which is 

the type of geometrical figure investigated. For example, in the simulated exploration the 

solver could have induced “PD congruent to PA” in order to explore the case of the 

parallelogram. In this case the basic property, which may also be a minimum basic 

property, becomes the intentionally induced invariant (III) that is used during the 

maintaining dragging applied to the figure. 

Sometimes solvers use basic properties, or minimum basic properties, to make 

the task of maintaining dragging easier. In this case, the minimum basic property is not 

conceived until after the maintaining dragging starts with the induction of an intentionally 

induced invariant (III), like “a type of geometrical figure”. If this happens, the initial 
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intentionally induced invariant (III) is substituted with the minimum basic property which 

becomes the new intentionally induced invariant (III) that the solver tried to induce. 

With respect to the formulation of a conjecture, “the case” of a particular 

geometric figure that is recognized will become the conclusion of the future conjecture, 

while the solver proceeds to search for conditions that give such case. The substitution 

of the whole “case” with a basic property or minimum basic property makes this search 

easier. However, once conditions are obtained, through the geometric description of the 

path (GDP) and the invariant observed during dragging (IOD) (see section 4.2 for 

details), the solver skips over the basic property or minimum basic property directly to 

the “case” s/he was interested in initially. Thus we also refer to the basic property or 

minimum basic property as a “bridge property.” 

The following excerpts are taken from various studentsʼ work, and they show 

different occurrences of bridge properties. Excerpt 5 illustrates how solvers notice and 

make use of a minimum basic property, while Excerpt 6 shows how a minimum basic 

property is conceived to help the solvers carry out maintaining dragging. 

Excerpt 4.2.5. This excerpt is taken from two studentsʼ exploration of Problem 2, 

and it exemplifies the identification of a basic property, slimmed down to a minimum 

basic property, which the solvers use to obtain the configuration they are interested in. 

The name of the solver who is performing the dragging is in bold letters. 
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Figure 4.2.5: A screenshot of F & G's exploration 

Episode 

[1] F: wait,  it is a…letʼs try to for 

example make it become a 

parallelogram. 

[2] G: No… yes, go. 

[3] F: Like this. 

[4] G: So, for it to be a parallelogram… 

I think it always is a parallelogram. 

[5] F:  Letʼs try? 

[6] G: No, no, there, itʼs a 

parallelogram… 

[7] F: because like this itʼs… 

[8] G: I understand! so, C… we have 

to have the diagonals that intersect 

each other at their midpoints, right? 

[9] F: Right. 

Brief Analysis 

F proposes to try to make ABCD a 

parallelogram ([1]) and seems to be unsure 

about how to drag the base point D in order to 

do this.  

 

Fʼs initial dragging suggests to G, for an instant, 

that “ABCD parallelogram” might be a 

construction-invariant (notice the use of 

“always” in [4]), but then further movement of 

the base point leads G to quickly discard such 

hypothesis ([6]).  

 

G conceives a basic property that might help F 

make ABCD into a parallelogram, and he 

exclaims: “I understand! [it: ho capito!]” ([8]).   
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[10] G: And we know that CA is 

always divided by P. 

[11] F: exactly, so… 

[12] G:  therefore itʼs enough that PB 

is equal to PD. 

[13] F: exactly. 

[14] G: you see that if you do, like, 

"maintaining dragging"… trying to let 

them more or less be the same 

[15] F: exactly… well, okay. 

 

G proceeds to “slim down” the basic property 

making it into a minimum basic property: “itʼs 

enough that PB is equal to PD” ([12]). Making 

use of the fact “CA is always divided by P” 

([10]) G concludes that a sufficient condition 

(notice the “for it to be” [4] and “itʼs enough that” 

[12]) for ABCD to be a parallelogram is “PB is 

equal to PD” ([12]), and therefore proposes this 

as an intentionally induced invariant (III) ([14]). 

Table 4.2.5: Analysis of Excerpt 4.2.5 

We think that this excerpt is a good example of how a basic property, with 

respect to the initial III that has been conceived, can be “slimmed down” to a minimum 

basic property and used to make maintaining dragging manually easier. Initially F seems 

to be struggling with maintaining dragging, trying to maintain the III “ABCD 

parallelogram”. Then G notices that this is equivalent to maintaining the quadrilateralʼs 

diagonals intersecting at their midpoints (basic property), and “slims down” this property 

to “PB congruent to PD” (minimum basic property). Moreover he recognized that this is a 

sufficient condition in order to maintain the basic property and thus the initial III. 

Therefore the solvers are able to use the property “PB congruent to PD” as a “bridge” to 

their initial III. in order to proposes He proposes to use the property “diagonals that 

intersect at their midpoints” as a basic property, in that its being satisfied will definitely 

imply the desired property to induce (ABCD parallelogram). We speak of a “bridge” 

property because the minimum basic property acts as a bridge to the III both throughout 

the maintaining dragging and when the solvers are ready to formulate the conjecture. In 
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fact, in the written conjecture the solvers produce after finding an invariant observed 

during dragging (IOD) in this exploration, the solvers do not refer to the property “PB 

equal to PD”, but directly to “ABCD parallelogram” as the conclusion of the statement of 

their conjecture. 

Excerpt 4.2.6. This excerpt is from two studentsʼ work on Problem 2, and it shows 

how two students make use of a minimum basic property to make the task of maintaining 

dragging easier to accomplish. 

 

Figure 4.2.6: A screenshot of Giu & Ste's exploration 

Before the moment when this excerpt starts the two students have made conjectures 

about when ABCD is a parallelogram, but they have not been able to drag the base point 

D maintaining such property. This seems to stimulate Giu to come up with the property 

“this thing here” (concurrence of the intersection if the two circles and the line PD) that 

he refers to in [1].  

Episode 

[1] Giu: Try to see...so that [It: “in modo che”]  

this thing here...remains... [concurrence of an 

Brief Analysis 

Giu seems to have thought of the 

minimum basic property ([1]) by using 
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intersection of the two circles and the line 

through P and D]. 

[2] Ste: and let's do trace of D. 

[3] Giu: Actually...I was thinking of the trace...no, 

you're right because B is always on the circle... 

[4] Ste: what a big idiot!... 

[5] Giu: and do the trace of D, exactly. 

[6] Ste: So, let's call this one...B so this way it 

looks nice, there. 

[7] Giu: At least this way we can refer to them 

somehow! 

[8] Ste: Exactly. So... 

[9] Giu: Go, trace... 

[10] Giu: Try to maintain all these things here 

[pointing to the intersection of the two circles and 

line PD, where B is marked] 

[11] Ste: It'll be hard... 

[12] Giu: Try! 

[13] Ste: There... 

[14] Giu: There, more or less...yes, yes, yes, not 

too much, there. 

[written conjecture: “If D ∈ circle with radius PC 

and center P, and PD passes through the 

intersection of the two circles⇒ABCD is a 

the basic property “diagonals that 

intersect at their midpoints”, which he 

refers to earlier during the activity. 

The minimum basic property arises 

because of the desire to drag the 

base point D maintaining ABCD a 

parallelogram, a property that seems 

to be too difficult to maintain without 

a simplification of what to observe 

during maintaining dragging and 

maintaining dragging with trace 

activated ([1], [10]).  

 

The basic property “diagonals that 

intersect at their midpoints” is 

slimmed down to “PB congruent to 

PD” and then to “this thing 

here”/“these things here” ([1]/[10]).  

 

 

To maintain  seems to be easier for S 

than maintaining “ABCD 

parallelogram”. In fact he is afraid it 

will be hard , but then succeeds, with 
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rectangle.”] support from Giu ([14]). 

Table 4.2.6: Analysis of Excerpt 4.2.6 

In this excerpt we focus on how the minimum basic property (“this thing here” 

([1])) is successfully used to make the task of maintaining dragging easier. In fact we 

chose to begin this excerpt with the solversʼ identification if a property to maintain during 

dragging instead of their initial III. This property has been reached through the slimming 

down of the basic property “diagonals intersecting at their midpoints”, reduced to “PD 

congruent to PB”, and highlighted by the concurrence of three objects (two circles and a 

line) in the solversʼ figure. We do not focus on the slimming-down process here, but 

instead on the practical function that this minimum basic property has with respect to the 

task of maintaining dragging. The solvers then succeed to perform maintaining dragging 

and perceive an invariant observed during dragging (IOD), which they use as a premise 

in their final conjecture, in which the conclusion is “ABCD parallelogram”. 

However in this episode the minimum basic property seems to be solely used as 

a tool to overcome a manual difficulty, and thus as a “bridge” for maintaining dragging 

but not for the formulation of the conjecture, which still contains traces of it in its premise. 

This is why in this excerpt we prefer not to refer to the minimum basic property as a 

bridge property; its potential of “bridging” seems to be only partially exploited, in 

particular it does not seem to act as a bridge to the conjecture. 

 

4.3 Invariant Observed During Dragging (IOD), Path, and Geometric Description of 

the Path (GDP) 

According to our model, the exploration process continues with the search for a 

“way” to maintain a certain property invariant during dragging. This “way” to maintain 

may be interpreted as a “condition under which” the III is (visually) verified. Thinking 
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about the DGS, which is the domain of phenomenology in which such interpretation of a 

relationship of conditionality occurs, “conditionality” may be associated to “causality”. 

That is, the connection between direct and indirect movement of objects can have the 

effect of leading the solver to link the idea of “cause of an effect” (direct movement 

“causes” indirect movement) to “condition for…”, and finally to logical dependency 

(“if…then…”). This may happen because while dragging the base point trying to maintain 

the III, the solverʼs attention can shift to the movement of the dragged base point (and 

keep shifting back and forth to and from it). The combination of sight and haptic 

perception may guide the solverʼs interpretation of “some regularity” in the movement of 

the base point. Moreover, an expert will have activated the maintaining dragging scheme 

with the explicit intention of looking for such regularity. In this case the solver is confident 

about the fact that dragging continuously the base point considered and maintaining the 

chosen III is possible. The solver may refer to the “dragging continuously” as a unit, as 

“something,” which can allow him/her to express the regularity of such continuous 

dragging as what s/he is looking for. We call this “something”, which does not yet have 

the regularity expressed but that withholds the potential of being expressed through it, a 

path, and provide the following definition: 

a path is a continuous set of points on the plane with the following property: when 

the dragged-base-point coincides with any point of the path, the III is visually 

verified.  

Summarizing, the characteristics of a path are: 

- being a continuous set of positions for the dragged-base-point, 

-  when the dragged-base-point is in any of the positions of the points of the path the III 

“happens”, 

- it has the potential of making some regularity in the movement become explicit. 
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The possibility of explicitly dealing with the object we define as path seems to be 

fundamental in expert use of maintaining dragging, and it therefore plays a central role in 

the cognitive model. We have further developed the notion of path, as a finding of our 

research, and will focus on such notion in Chapter 6. 

Dragging with trace activated is a tool that the user may choose to use in order to 

have additional guidance in making the potential regularity evident is  on the dragged-

base-point. This may help the solver describe the regularity s/he was looking for, as s/he 

may use it to propose a geometric description of the path (GDP), that is  

a description of the path in terms of a known geometrical object linked to the 

Cabri-figure.  

After the activation of the trace, a set of points – linked to a possible regularity in 

movement – appears on the screen as a trail left by the dragged-base-point. This mark 

may suggest a precise geometrical object which can be described in relation to the rest 

of the Cabri-figure. For instance, in our initial example, it may become clear that a GDP 

is a circle, and more precisely, the circle with center in A and radius AP. From a GDP the 

solver can reach the property s/he was looking for during maintaining dragging, that is 

the invariant observed during dragging (IOD). In the simulated exploration in section 4.1, 

this would be: “D belongs to the circle with center in A and radius AP”. 

We will now show how the path, its expression through the geometrical 

description of the path (GDP), and its elaboration into an invariant observed during 

dragging (IOD) come into play in various excerpts from the transcripts of some studentsʼ 

explorations. The first excerpt is an example of two students searching for a GDP using 

maintaining dragging with the trace activated. Their GDP seems to coincide with how 

they interpret the mark left by the trace. The second excerpt illustrates how two students 

seem to have conceived a GDP, which does not seem to be confirmed by the mark left 
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by the trace during maintaining dragging with the trace activated. In fact in this excerpt 

an initial GDP is rejected thanks to characteristics of the path brought out by the trace. 

The third excerpt shows how an IOD emerges from a GDP obtained by correctly 

interpreting the trace, and how the IOD is then constructed by the solvers. 

 

Excerpt 4.3.1 

This excerpt is taken from two studentsʼ work on Problem 4, and it shows how 

two solvers, who seem to have conceived a path, reach a GDP which they seem 

satisfied with. The bold letters refer to the solver who is dragging. Since the excerpt of 

the transcript is rather long we have divided it into several episodes. 

Episode 1 

[1] Ste: I have to make it so that the... 

[2] Giu: B stays 

[3] Ste: that...uh, B remains on the 

intersection. 

[4] Giu: Exactly. 

[5] Ste: which is...I mean I have to drag this, right? 

[6] I: Maintaining the property rectangle... 

… 

Brief Analysis 

The solvers resort to the bridge 

property (see section 4.2.1.3) “B 

on the intersection” ([3]) to make 

the task of maintaining dragging 

easier. 

The solvers have chosen “ABCD 

is a rectangle” as an III.  

Episode 2 

[12] Ste: Identical...ta-ta-ta-ta...ta-ta-ta 

[13] I: Giu, what are you seeing? 

Brief Analysis 

While Ste is concentrated on 

maintaining the III ([12]-[14]), Giu 

seems to be looking for a GDP, 

and recognizes a continuous curve 
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[14] Giu: Uhm, I don't know...I 

thought it was making a pretty 

precise curve...but it's hard to 

...to understand. We could try 

to do "trace" 

[15] Ste: trace! 

[16] Giu: This way at least we can see if... 

(“pretty precise curve” [14]) 

instead of discrete positions. He 

then wants to better understand 

([14]) and “see” ([16]), so he 

proposes the use of the trace tool 

([14]). 

Episode 3 

[17] Ste: Where is it? 

[18] Giu: Uh, if you ask me... 

[19] Ste: Trace! [they giggle as they search for it in 

the menus] 

[20] Ste: Trace of A... 

… 

Brief Analysis 

 

After the trace is activated ([17]-

[20]) Ste starts maintaining 

dragging again. 

Episode 4 

[28] I: So Ste, what are you 

looking at to maintain it?  

[29] Ste: Uhm, now I am 

basically looking at B to do 

something decent, but... 

[30] I: Are you looking to make sure that the line 

goes through B? 

[31] Ste: Yes, exactly. Otherwise it comes out too 

sloppy... 

Brief Analysis 

 

 

Ste is using the property “the line 

goes through B” as his III ([29], 

[30]). 

 

Both students show the intention 

of uncovering a path by referring 

to “it” ([31], [33], [34]).  
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[32] I: and you, Giu what are you looking at? 

[33] Giu: That it seems to be a circle... 

[34] Ste: I'm not sure if it is a circ... 

[35] Giu: It's an arc of a circle, I think the curvature 

suggests that. 

Giu, in particular concentrates on 

describing the path geometrically 

and he seems to recognize in the 

trace a circle ([33]) or an arc of a 

circle ([35]).  

Episode 5 

[36] Ste: Yes, but.. 

[37] Giu: But passing through B 

[38] Ste: Ah yes, B 

[39] Giu: B because it can also become a line 

[40] Ste: Yes, it could be B. 

[41] Ste: I would dare to say 

with center in C?...no, it 

seems more, no. 

[42] Ste: It seemed like 

[43] Giu: No, the center is more or less over 

there...in any case inside 

[44] Ste: Hmm 

[45] Giu: Ok, do half and then more or less you 

understand it, where it goes through. 

[46] Ste: But C is staying there, so it could be that 

BC is...is 

[47] Giu: right! because considering BC a diameter 

of a circle, 

Brief Analysis 

The solversʼ attention seems to 

shift to the mark left on the screen 

by the trace. Now that a first GDP 

is given, the solvers try to 

ameliorate the description by 

adding properties: “(a circle) 

passing through B” ([37], [38], [39], 

[40]), “with center in C” ([41]), with 

BC as a diameter ([46], [47]). As 

Ste continues to drag, Giu checks 

and confirms the suggested 

properties and tries to justify them 

providing argumentations based 

on visual observations, recognition 

of geometrical properties, and the 

knowledge of particular theorems 

([49], [55]).  
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[48] Ste: Well yes, actually it passes through C also 

because if then I make it collapse, uh,  

[49] Giu: Exactly because CB is...consider it a 

diameter. A...so ABC is a right triangle 

[50] Ste: Aaaaa...because when A 

[51] Giu: B... 

[52] Ste: because when it comes to the point 

when...yes, well, anyway, we understand, then it 

arrives to C. 

[53] Giu: Yes, because this way, since it is right, 

[54] Ste: and this one here is a diameter 

[55] Giu: exactly. Since the angle in A is always 

right, ABC can be inscribed in a semicircle. 

[56] I: Ok. 

[57] Giu: ...which is what is being 

traced by A. 

[58] Ste: Exactly...very theoretically. 

[59] Ste: Well... 

[60] Ste: I wouldn't call this...aaaa...there 

[61] Ste: No, but it jumps, when it's closer it's 

easier. 

For example, he justifies the 

property “BC is a diameter” using 

the theorem “a triangle inscribed in 

a semicircle is right” ([49]) together 

with the consideration that the 

angle in A needs to be right in 

order to have a rectangle, which 

Ste agrees with ([55]).  

 

 

 

 

 

Ste seems to have some difficulty 

dragging as he drags A closer to 

C, but is able to overcome the 

manual difficulty. 

Episode 6 

[62] Ste: It surely can look like a circle. 

[63] Giu: Well, in theory...you can see it goes 

Brief Analysis 

Ste continues to drag and both 

solvers seem to be checking the 
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through B and C. 

[64] I: Ok, are you sure of this? 

[65] Giu and Ste: Yes. 

 

 

proposed GDP, confirming it ([62], 

[63]) with considerable confidence 

([65]).    

Table 4.3.1: Analysis of Excerpt 4.3.1 

In this Excerpt we can see how the GDP arises and is used to conceive an IOD. 

In Episode 1 Ste is using a bridge property (see section 4.2.1.3) to simplify the task of 

performing maintaining dragging, although he still seems to describe it as being difficult 

throughout this episode. In Episode 2 Giu seems to be searching for a GDP and 

identifies some regularity in the movement of the dragged-base-point. In particular this 

suggests that the solvers have conceived a path. Reaching a GDP, however does not 

seem to be a simple task. Steʼs initial hesitation in Episodes 1 and 2 seems to be 

evidence confirming our idea that the coordination of visual and haptic sensations with 

an “overall” view of the figure is not easy to achieve, and it may be aided through the 

trace tool, which Ste immediately proposes to activate.  

The solvers seem to help each other by separating tasks: as Ste concentrates on 

maintaining his bridge property invariant, Giu can focus on recognizing the mark left by 

the trace as “a pretty precise curve” ([14]). Moreover, there seems to be the intention of 

looking for something, which we interpret as making the path explicit, that is searching 

for an IOD though movement of the dragged-base-point along a GDP. In fact the solvers 

seem partially satisfied when they reach a first GDP in Episode 4. However, throughout 

Episode 5 they continue to refine their GDP, helping themselves with other geometric 

properties. These strengthen their argument about the correctness of their suggested 

refinements, and finally the solvers seem to be satisfied in Episode 6.  
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The solvers seem to confirm an IOD as they drag A along the circle with diameter 

BC in Episodes 5 and 6. Overall this Excerpt is a good example of how the GDP can 

arise and be used to develop the IOD, and therefore complete the search for a condition 

for the III to be (visually) verified. 

 

Excerpt 4.3.2 

This excerpt is taken from two studentsʼ work on Problem 2. It shows the solversʼ 

belief in the existence of a path and traces of an implicit idea for the GDP. However the 

conceived GDP doesnʼt seem to correspond to what they observe during the maintaining 

dragging. They want to therefore make the path explicit through activation of the trace, 

and they use the trace to reject an incorrect GDP. The lines of the transcript are marked 

by their times relative to the beginning of the excerpt in order to show the development 

over time of this part of the investigation. In particular we chose not to include parts of 

the exploration in which the solvers were not investigating “the case of the 

parallelogram”, as they refer to it. The bold refers to the solver who is holding the mouse. 

 

Episode 1 

(0:41) F: exactly. [he drags D a bit, in a 

way that looks like he is trying to maintain 

the property parallelogram] 

(0:48) G: you see that if you do, like, 

maintaining dragging … trying to keep 

them more or less the same… 

(0:57) F: exactly [murmuring]… well, okay. 

Brief Analysis 

F and G decide to use maintaining 

dragging to investigate “when ABCD is a 

parallelogram” (intent repeated in (2:41) 

and (3:05)). In a previous episode they 

have noticed that the property “ABCD 

parallelogram” can be substituted with the 

sufficient property “diagonals of ABCD 
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… congruent”, a bridge property (0:48).  

Episode 2 

(2:41) F: For the parallelogram, uh, letʼs try 

to use “trace” to see if we can see 

something. 

G: go, letʼs try [speaking together with 

him]…uh, “trace” is over there. 

… 

[They have a little trouble activating the 

trace] 

 

 

F proposes to activate the trace in order to 

“see something” (2:41). 

 

Episode 3 

(3:05) G: and now what are we doing? Oh 

yes, for the parallelogram?  

(3:07) F: yes, yes, we are trying to see 

when it remains a parallelogram. 

(3:18) G: yes, okay the usual circle comes 

out. 

(3:23) F: wait, because here…oh dear!  

where is it going? 

(3:35) I:  What are you looking at as you 

drag? 

(3:38) F: I am looking at when ABCD is a 

parallelogram. You try [handing the mouse 

to G] 

Brief Analysis 

G reminds himself what their intention was 

and seems to be concentrating on the 

movement of the dragged-base-point, 

while F, who is dragging, concentrates on 

maintaining the property “ABCD 

parallelogram” (3:07). G (too?) quickly 

proposes a GDP (3:18).  It is not clear 

what “usual” refers to: maybe to a previous 

investigation. However what F sees does 

not seem to be the circle he had in mind 

(maybe the circle centered in P with radius 

AC) and he appears unhappy and 

confused when he does not understand 
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… “where it is going” (3:23). After repeating 

his intention of investigating “when ABCD 

is a parallelogram” (3:38) F hands the 

mouse to G, asking him to try.  

Episode 4 

[G tries dragging some other points looking 

for the “draggable” ones, and there is a 

short diversion on “the case of the 

rectangle”. Then G starts dragging point 

D.] 

(4:17) F: …turn it. No, itʼs not necessarily 

the same circle, because, I donʼt know at 

some point I donʼt know, keep going… by 

tomorrow… keep going… careful you are 

making it too long … 

Brief Analysis 

 

 

 

 

F uses what he sees to discuss why his 

initial idea (involving some circle he never 

describes explicitly) does not seem correct. 

He also tries to guide G while he tries to 

perform maintaining dragging with the 

trace activated. 

Table 4.3.2: Analysis of Excerpt 4.3.2 

We consider this Excerpt to contain evidence that the solvers have conceived a 

path, because when using MD in Episodes 1 and 2, the students express their intention 

either in a generic way (“to see something”) or in a more specific way (to see “when” 

ABCD is a parallelogram). That is, the solvers seem to want to find a situation or 

configuration that “happens” simultaneously with the III, because they believe in the 

existence of “something” that will make the “parallelogram happen”. Our model refers to 

this “something” as path. 

In Episodes 3 and 4 the GDP plays a fundamental role in the solversʼ conceiving 

and then rejecting a geometrical object along which the dragging may be thought to 
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occur. Fʼs “same circle” probably refers to the one he has in mind, which didnʼt coincide 

with what he saw in his trace (4:17 and 5:01). This leads to a rejection of the initial GDP. 

Overall the Excerpt seems to be evidence of the fact that the solvers, F in particular, 

have conceived a path and that they seem to know that they will need to describe it 

geometrically. Moreover they seem to be “expecting” it and “looking for it”.  

 

Excerpt 4.3.3 

This excerpt is taken from two studentsʼ work on Problem 4. The solvers activate 

the trace while using maintaining dragging and they are able to reach a GDP and IOD 

that satisfy them, and proceed to construct the IOD. The bold refers to the solver who is 

dragging. 

Episode 1 

[1] F: so... Let's take A. Wait, let's first put 

A so that it is a nice rectangle. It seemed 

too good... 

[2] F: “trace”...A. 

[3] F: to maintain the property rectangle. 

[4] G: you are not maintaining it. 

… 

Brief Analysis 

F wants to perform dragging with trace 

activated to gain insight into when the 

property rectangle is maintained ([3]), and 

starts to perform maintaining dragging, 

dragging the base-point A. 

Episode 2 

[5] G: circle with... 

[6] F: no 

[7] G: eh, no. 

[8] F: look at C. C doesn't move. 

Brief Analysis 

Notice how G, who is not dragging, 

observes both the property to be 

maintained ([4]) and the emergence of a 

GDP ([5] and following). G “sees” a circle 
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[9] G: I see a kind of circle with... 

[10] F:... with radius CB, and center... 

[11] G: No, with diameter AD, I see. 

[12] F: Ah, wait I am... 

[13] G: I see it with diameter AD. like with 

diameter AD. 

([9]), while F (who is dragging) seems to 

be focusing more on what is and is not 

moving. He notices that C does not move 

([8]), and seems to want to use this point to 

enhance the GDP that G has started to 

provide ([5], [9]). G, instead, insists on a 

GDP as the circle with diameter AD. 

Episode 3 

[14] F: wait, no, let's...uhm... 

[15] G: with diameter CB instead, that... as 

a consequence... 

[16] F: I would say that I made it very ugly, 

but... no, I would say... I would trace CB 

and its 

[17] F&G together: midpoint 

[18] G: for the radius 

[19] F: Exactly! 

[20] G: go! Get rid of... 

[21] F: then the radius 

[22] G: get rid of the trace. 

…. 

Brief Analysis 

The solvers briefly discuss which GDP to 

use and by line [17] they both seem to 

agree on what to construct as the GDP 

([17], [18]). The conflict between the GDPs 

is resolved, as F and G agree on the GDP 

as the circle with diameter BC passing 

through B. 

Episode 4 

[23] G: Ok, go. 

[24] F: okay, so let's draw...yes... no first 

Brief Analysis 

The solvers now construct a circle with 

center in the midpoint of BC and passing 
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let's draw 

[25] G: no, it's enough that you do, I think, 

midpoint. 

… 

[26] F: Should we call it? 

[27] G: Circle, do circle. 

[28] G: eh, let's choose... 

[29] F: well, I would say B and C because 

they are the two points that don't 

move...here...yes, because actually now 

we take A. 

[30] G: eh, we did it...cute! 

[31] F: yes, definitely. 

through B which is the GDP they have 

agreed upon.  

 

 

F feels the need to explain again why he 

prefers the diameter BC to AD, basing his 

argument of the fact the former points do 

not move ([29]), as if this gave them a 

different status (which unfortunately he 

does not make more explicit than this).  To 

make sure the constructed GDP is a good 

one, F drags A along it, and the solvers 

seem to be satisfied ([30], [31]). 

Table 4.3.3: Analysis of Excerpt 4.3.3 

During the exploration, before the part this excerpt is taken from, the solvers 

were uncertain whether the interesting configuration “ABCD rectangle” was possible to 

maintain during dragging or not, and therefore whether a (continuous) path existed or 

not. The solvers reached the conviction that there is a path by noticing more and more 

“good positions” for the dragged-base-point. Thus in [1] F demonstrates belief in the 

existence of a path and he wants to perform dragging with trace activated to gain insight 

into such path ([3]). G seems to focus on the mark left by the trace and on trying to 

describe what he sees emerging.  

The conflict that emerges between the two GDPs seems to provide evidence that 

the solvers have conceived a path and are looking for a condition for the III to be 

maintained. They are looking for such condition as “dragging along some regular path” 
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that they expect to be able to describe geometrically. In particular, we notice how in [16] 

F refers to “it” as the mark he “made”. The mark left by the trace seems to be an “object” 

for the solvers, and it seems to have the purpose of making something else visible. This 

something else is the path. 

We interpret Gʼs not wanting to use the trace any longer ([22]) as evidence that 

the solvers make use of the trace solely to make the GDP explicit and to simplify the task 

of providing a GDP, visualizing it through the trace instead of only through the movement 

of the dragged-base-point. Moreover the solvers want to construct the object 

representing their GDP and to try dragging along it. Doing this, both students seem to be 

checking the validity of their final GDP, probably by making sure the III is visually 

maintained while dragging along it. Thus the GDP allows the solvers to have a good 

description of the object-to-drag-along, which can then be interpreted as the IOD, which 

is “A moves on a circle with diameter BC” or “A belongs to a circle with diameter BC”. 

Once the IOD is conceived this checking of the GDP becomes a (soft) dragging test in 

which a conditional link between the IOD and the III is being confirmed, as we will 

discuss in section 4.4 of this chapter. 

 

4.4 Putting Together the III and the IOD: the Conditional Link (CL) 

 At this point of the conjecture-generation process the solver is dealing with two 

invariants that seem to be occurring simultaneously: the one s/he induced intentionally 

(III), and the one observed during dragging (IOD). Although the two invariants may be 

established by now, it is possible that a relationship between them may not have yet 

been established, or that the solver is not even aware that a link between them exists or 

should exist. We will describe these situations of difficulty in Chapter 5. A first link 

between these two invariants may be a link of “mechanical causality”, that is a 
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relationship that arises within the phenomenological realm of the DGS. In this realm one 

invariant, the IOD, is controlled directly, while the III can only be induced indirectly, in a 

“mechanical” way by acting on the IOD. According to the MD-conjecturing Model, this 

mechanical causality needs to be interpreted geometrically, as a conditional link (CL), 

which we define as: 

a relationship of logical dependency between two invariants perceived by a 

solver, and interpreted within the world of geometry. 

A first link between the two perceived invariants is given by their simultaneity, and in 

addition, after discovering the IOD, the solver can directly act on the base point to 

maintain it, and indirectly feel and observe the maintaining of the III, as a consequence. 

This may guide the solver to perceive “mechanical causality” within the DGS, and 

ultimately “conditionality” within the world of geometry. The conditional link will finally be 

explicitly expressed as a conditional statement, the conjecture, in which the IOD can 

become the premise and the III the conclusion of the statement. 

We suggest that a bridge between the experiential field in the phenomenological 

domain of a DGS and the formal world of Euclidean geometry may be established 

through the interpretation that may be summarized briefly as follows:  

simultaneity + control  causality within Cabri  conditionality in Geometry 

simultaneity + direct control → premise of the final statement  

simultaneity + indirect control → conclusion of the final statement.  

Expert users of the maintaining dragging may easily interpret  - almost unconsciously - 

the emergence of simultaneous invariants as a conditional link between the 

corresponding geometrical properties. Therefore the process of conjecture formulation 

may lead, in a straightforward manner, to a successful outcome, that is the formulation of 
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a conjecture linking two perceived invariants. We will describe this behavior in Chapter 6. 

However, in some cases solvers may experience simultaneity and control with 

respect to two invariants, but not conceive a CL between them (at least not in a way that 

can be perceived by an external observer). This may be due to an inability of the solver 

to capture mechanical causality within a DGS, or the inability to make the transition from 

the world of Cabri and the phenomena that occur within it to Geometry and conditional 

links between geometrical properties. As a consequence, a conjecture may not be 

produced. In this case a link between invariants may be perceived in the world of Cabri, 

but no conditional link seems to be conceived. We will discuss these possibilities in 

Chapter 5 and Chapter 6. 

Once the two invariants are identified, we can observe different manifestations of 

the solverʼs belief in a CL between them. These manifestations have to do with different 

ways of dragging with the intention of checking the link. In order to become more 

convinced of the existence of a link between these properties, the solver may behave in 

the following ways. After constructing the object that corresponds to the GDP, s/he may 

drag the base point approximately along this object with the intention of verifying the 

simultaneity of the III and IOD. We refer to this kind of dragging check as a soft dragging 

test. If, instead, s/he constructs the IOD robustly and drags the base point, verifying the 

simultaneity of the III and IOD, s/he has performed a robust dragging test. In particular, 

through a robust construction of the GDP and a re-construction of the Cabri-figure with a 

new property the solver can express the change of both the epistemic and the logical 

value of the IOD. The new property consists in the dragged-base-point now being linked 

robustly to the object representing the GDP: such a property is no longer a possibility, 

but a fact expressing something “true”. After the redefinition of the base point, if the III 

also becomes a robust invariant, the dragging test is passed, establishing a precise 
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logical status of the relationship between the invariants. The robust dragging test is 

extremely convincing: in fact, constructing one property robustly will have led to the 

robustness of another. This not only shows the fact that the IOD and III do occur 

simultaneously, but also that there is a precise conditional relationship between them. At 

this point the solver can express the link of simultaneity (and potentially of mechanical 

causality) between the III and the IOD into a conditional link between the corresponding 

properties, and think something along the lines of: “the robustness of one property 

implied the robustness of another.” 

When a solver performs a dragging test in the ways described above, it shows 

that s/he is aware of a CL. Further evidence is provided by what solvers say, and by their 

effectiveness in checking the behavior of the various elements they are keeping track of. 

It is worth remarking that most evidence of the solverʼs awareness of a CL is indirect, as 

shown in the excerpts below. In particular, the excerpts provide different examples of 

evidence of the solversʼ awareness of a CL. 

In the first excerpt (Excerpt 4.4.1) we will show the smooth emergence of a CL 

described through the evidence of effective use of checking through a form of the 

dragging test. The second excerpt (Excerpt 4.4.2) shows how evidence may be provided 

by the solversʼ realization that a particular GDP and dragging along it do not provide a 

satisfactory IOD, so the solvers make new hypotheses and modify their proposed GDP 

and IOD. The evidence provided by realizing that a particular GDP and moreover an IOD 

are not satisfactory can affect the GDP and the IOD themselves. Sometimes the 

modification is a generalization of the GDP (section 4.4.1). We present an example of 

this in Excerpt 4.4.3. 
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Excerpt 4.4.1 

This excerpt is taken from a studentʼs work on Problem 2, and it shows how the 

student shifts her attention from the movement of the dragged base point to the III she is 

maintaining. Even though she has not constructed the circle that represents her GDP, 

her dragging witnesses that she has established a CL. 

 

Figure 4.4.1: A screenshot of Isa's exploration. 

Episode 

[1] Isa: parallel...here, ok, it collapses...it 

becomes a line, I mean all the points of all 

the lines coincide. 

[2] Isa: and over here...ok…no, no, no, no 

[3] Isa: There it collapses...so... 

[4] I: What is it that you are looking at here 

to do it? 

[5] Isa: I am trying to make a 

parallelogram, uh, to put two sides parallel. 

Brief Analysis 

As Isa drags D she explains that she is 

looking at the sides of the quadrilateral and 

trying to keep them parallel ([1], [5], [6]).  

 

 

 

 

Isaʼs III during this application of MD is the 

“two sides parallel” ([5]). She hesitates 
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[6] Isa: and so AD and BC. 

[7] I: uhm. 

[8] Isa: So now I need to go back a 

second… no, no, no, no… 

[9] I: eh, it's hard when you go close… 

[10] Isa: alright, anyway, here it 

should...how nice!...be here. 

[11] Isa: There… 

[12] I: Let's continue over here… 

[13] Isa: So, like this...uhm...here it 

becomes easier...There, more or less 

[14] I: uhm. 

[15] Isa: So, let's see to try it. So, if I 

construct, uh, if I move D on a circle with 

center in A, and, theoretically, radius AP... 

[16] I:...hmmm 

[17] Isa: ...I find that the quadrilateral is a 

parallelogram, except when, uh, D comes 

to lie on the line CA. 

when the quadrilateral seems to collapse 

([1], [3]), and expresses increasing and 

decreasing levels of difficulty in using 

maintaining dragging ([9], [13]).  

 

Isa seems to have conceived an IOD, 

which she states explicitly in line [15] (“I 

move D on a circle with center in A, and, 

theoretically, radius AP”), because she is 

able to predict what “should” happen ([10]). 

This indicates that she is focusing also on 

the IOD and while she is dragging she is 

establishing a CL between the IOD and the 

III. 

In the conditional statement ([15], [17]), 

which is her first expression of a conjecture 

(see section 4.5) the GDP (circle with 

center in A and radius AP), the IOD 

(moving D on the circle), and a CL (if IOD 

then III) are made explicit. 

Table 4.4.1: Analysis of Excerpt 4.4.1 

Overall this is an example in which the two invariants, the III and the IOD, and the 

CL between them emerge fluidly, almost as if the process of conjecture generation was 

occurring “automatically”. We will return to this idea later in Chapter 6. Moreover, we use 

this Excerpt to highlight Isaʼs use of “when” ([9], [17]). As in other excerpts, the word 
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“when” seems to refer to a time that corresponds to a specific position during the motion, 

which, according to the solver, corresponds to an exceptional phenomenon. In this case 

the exceptional phenomenon seems to be the “collapsing” of ABCD – exceptional with 

respect to the general “being a parallelogram” or even “a quadrilateral”. While in other 

occasions the word “when” seemed to be used to refer to a phenomenon that occurs 

over time (a movement for example), here Isa seems to use it to refer to an instant in 

which something interesting happens.  

What the two uses of the word seem to have in common is that they also refer to 

a second phenomenon noticed by the solver that occurs simultaneously with the first 

exceptional phenomenon. In this case the second phenomenon is “D comes to lie on line 

CA” ([17]). Therefore a relationship of simultaneity is established between the two 

phenomena, expressed in a form such as: “when…occurs, …occurs”. The a-symmetry of 

the statement establishes an order in the simultaneity, which adds to the word “when” a 

causal meaning (within the world of the dynamic geometry) in addition to its temporal 

meaning. This may be the seed that gives origin to a CL that can then become a 

conjecture. 

 

Excerpt 4.4.2 

This excerpt (FS_Ud_F&G_p6_CLparall1 from 9:18 to 12:46) is taken from two 

studentsʼ work on Problem 2. In the excerpt the students try testing a CL between an 

IOD they have conceived and the III. The students seems to be aware of a CL between 

a generic IOD and their III, and through a soft dragging test they reject the initial GDP 

that had led to the IOD and conceive a new GDP and IOD. They test the new CL with a 

soft dragging test. The excerpt is taken from the continuation of the exploration shown in 

Excerpt 4.3.2, thus the lines are labeled with their times relative to the times of that 
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excerpt in order to show the solversʼ progression over time. The bold letters refer to the 

solver who is dragging. 

 

Figure 4.4.2: A screenshot of F & G's exploration 

Episode 

(5:01) F: but you see? This one is always 

longer than that one… itʼs too long, if you 

go, letʼs say, along the circle here, this one 

is too long. So, maybe itʼs not necessarily 

the case that D is on a circle so that 

[Italian: “in modo che”] ABCD is a 

parallelogram. 

… 

(6:36) F: exactly. Now there is this problem 

of the parallelogram in which we canʼt 

exactly find when it is. 

Brief Analysis 

With his argumentation F rejects the 

proposed GDP, and re-launches the 

search for an IOD (6:36). In the 

argumentation a CL emerges between “D 

on a circle” and “ABCD parallelogram” 

(5:01). 

 

 

Restatement of the III. 
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(6:44) G: eh, uh,  we discovered when… 

(6:50) G: Letʼs try to think about it without, 

like…because if when you move this, 

maintaining always the same distance,… 

(7:02) F: because you see, if we then do a 

kind of circle starting from here, like this, 

itʼs good itʼs good itʼs good itʼs good, and 

then here… see, if I go more or less along 

a circle that seemed good, instead itʼs no 

good… Because, you see, in a certain 

sense B, at this point the circle 

(7:24) G: eh, itʼs linked to the circle 

(7:25) F: exactly, and so in a certain sense 

it goes … down along a slope and so… itʼs 

no… no good. So, when is it any good? 

… 

(8:05) G: because I think if you do like, a 

circle with center 

(8:07) F: A, you say… 

(8:09) G:  symmetric with respect to this 

one, you have to make it with center A. 

(8:10) F: uh huh 

(8:11) G: Do it! 

(8:13) F: with center A and radius AP? 

 

G seems to conceive “PB congruent to PD 

as an III.” 

 

Back to his argumentation (7:02) F tries to 

explain why a circle seems to be “no good” 

(he probably still has in mind “his” circle 

described in the analysis above). Although 

such circle is never described 

geometrically, F and G seem to have a 

similar object in mind. Most importantly the 

solvers seem to have in mind a CL 

between the III and a hypothetical IOD that 

they are still searching for (6:36 and 6:44). 

As F discusses why the circle he had in 

mind is no good, Fʼs attention seems to 

shift to the movement of point B (7:02) and 

then to the figure as a whole. At this point 

G has handed the mouse back to F who 

starts using MD without the trace. Now G 

proposes a new GDP and F proceeds to 

construct this geometrical object.  
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(8:14) G: with center A and radius AP. I, I 

think… 

(8:20) F: letʼs move D. more or less… 

(8:24) G: it looks right doesnʼt it? 

(8:27) F: yes. 

(8:29) G: Maybe we found it! 

 

 

When F and G refer to it looking right 

(8:24) and to having found it (8:29) it is 

reasonable to assume that they are 

verifying a CL. 

Table 4.4.2: Analysis of Excerpt 4.4.2 

Overall this excerpt shows how the solvers seem to already start out their search 

for a GPD as if they already knew how to reach their IOD from it. They seem to be 

implicitly assuming that the invariance they will observe will be something like “D is on a 

…[path to be made explicit through a GDP]”. This implicit assumption seems to guide 

their exploration and make all the pieces fall together in an almost “automatic” way. This 

phenomenon will be further discussed in Chapter 6, where we will discuss the process 

underlying expert use of MD for conjecture-generation.  

In this particular Excerpt, in spite of the incorrectness of the specific GDP, we can 

observe Fʼs consciousness of a conditional link between the III and the IOD he had 

hypothesized at time 5:01. In his rejection of the GDP we can see the CL appear 

between D being on a circle and ABCD being a parallelogram through his words: “so that 

[Italian: “in modo che”]”. In other words, the fact that ABCD is (or will become) a 

parallelogram is linked to the movement of D along a hypothetical circle, and linked in a 

way that implies conditionality: the movement is so that the particular configuration 

occurs. Moreover, after the construction of the new GDP (a circle with center in A and 

radius AP (8:17)), the solvers seem to feel the need to check their idea, and they use a 

soft dragging test to become convinced that dragging D on the constructed object 

guarantees the simultaneous appearance of the III. In this case, the soft dragging test 
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seems to have an exploratory nature, and be part of an argumentation that makes use of 

the dragging tool to convince and give confidence in a certain idea. We will discuss 

these types of arguments in further detail in Chapter 6.  

In the following subsection we will present two excerpts in which verifying the CL 

through dragging tests leads to a generalization of the preconceived path. 

 

4.4.1 Generalization of the Preconceived Path 

As the solver tests the validity of a hypothesized IOD, s/he might realize that the 

GDP s/he has provided may be “generalized” to a larger set of points. Frequently the 

GDP that the solver provides is a geometrical figure that s/he may have recognized only 

a “piece” of. In this case the dragging test can show that the III is actually verified along 

the “whole” object. In order to verify “the goodness” of a certain GDP, that is to verify that 

the path is “more than” s/he had initially conceived, the solver needs to be able to 

concentrate on both the III and the IOD simultaneously (or switch quickly and frequently 

from one to the other). Therefore, checking the CL may also lead to what we call 

“generalization of the preconceived path”. We consider this to be a phenomenon that 

provides further evidence of solversʼ awareness of a CL between the IOD and the III, 

and of the relationship between the GDP and the IOD.  

Excerpt 4.4.3 shows an example of this generalization of a preconceived path 

through a soft dragging test, however the process may also occur through a robust 

dragging test, as shown in Excerpt 4.4.4. 

 

Excerpt 4.4.3. This excerpt is from two studentsʼ work on Problem 2. It is the 

continuation of Excerpt 4.4.2, and it shows how checking a CL can lead to the 
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generalization of a preconceived path. The lines are marked with the times relative to the 

beginning of Excerpt 4.3.2 (continued in Excerpt 4.4.2). 

 

Figure 4.4.3: A screenshot of F & G's exploration 

Episode 

(12:50) F: but maybe… maybe only along 

this [pointing to the lower right part of the 

circle, the region in which he had 

performed the maintaining dragging] 

(12:51) G: Letʼs try to 

(12:53) F: letʼs try to, right, go the whole 

way around 

(12:54) G: like this yes, like this yes, like 

this yes 

(12:55) F: yes, yes, yes 

(12:58) G: over here too, I think 

(13:00) F: yes 

Brief Analysis 

The solvers have constructed the circle 

with center in A and radius AP and they 

seem to conceive only part of it as the 

path. This can be inferred from Fʼs words 

in (12:50). The solvers seem to have 

conceived the IOD as “D belonging to the 

path” or “D moving along the path” as 

shown in (12:50), and in (12:51) and 

(12:53) when the solvers want to “try” 

 to see if it works “the whole way around”.   

As F drags D along the circle the solvers 

seem to be checking a CL, and when they 
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(13:01) G: yes. 

(13:02) F: I would definitely say so. 

(13:03) G: okay we found it. 

(13:06) F: Okay, so thatʼs write that… 

reach the upper part of the circle, they 

seem to be quite satisfied with what they 

see [(12:58)-(13:02)].  

Table 4.4.3: Analysis of Excerpt 4.4.3 

We assume that “trying” refers to testing the CL between the IOD (D on the 

object representing the GDP) and the III (ABCD parallelogram, or PB=PD for G who 

seemed to be using the bridge property in previous episodes of this exploration). In this 

sense, the solversʼ actions let us infer their conception of a CL. Further evidence that 

they seem to have conceived a CL is their “checking something” in various instances, as 

marked by the repeating of “yes” rhythmically while watching D move along the circle 

(12:55-(13:01). We can infer that as D moves they are checking that the rest of the circle 

constitutes “good choices” for the dragged base point. That is, positions that guarantee 

the III to be visually verified.  

When F and G finally exclaim: “I would definitely say so” (13:03) and “okay we 

found it” (13:06), they seem to be confirming their hypothesis for what the generalized 

GDP and the IOD might be. This confirmation comes from a very careful check that 

dragging along the “whole” circle (IOD) guaranteed that ABCD remained a parallelogram 

(III), and thus that it was correct to conceive the CL as existing between these two 

properties. The two solvers then have no trouble in immediately making the transition to 

the formulation of the conjecture (even in a written form!) as if it were “automatic” from 

what they experienced. Such automaticity will be further discussed in Chapter 6. 

 

Excerpt 4.4.4. This excerpt (FS_Ud_FG_p1 between time 37:27 and 38:50) is 

taken from two studentsʼ work on Problem 4. It is a continuation of Excerpt 4.3.3, and it 
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shows the process of generalization of a preconceived path through a robust dragging 

test. 

 

Figure 4.4.4: A screenshot of F and G's exploration. 

Episode 

[1] F: so...ah, wait! ehm, so, not exactly all 

the circle... we would have to say that... I 

mean, do you understand? 

[2] G: No… 

[3] F: It's not exactly on all of the circle. 

[4] G: No, it is you who...[unclear] 

[5] F: No, no...wait... here is good. It's 

good, it's good, 

[6] G: it's good... 

[7] F: more or less... it's good 

[8] G: come on...[in a low voice] 

[9] F: let's try... how do we...eh, let's link A 

to the circle, so we can see well. How do 

Brief Analysis 

As in Excerpt 4.4.3, the solvers have 

conceived a path that F thinks is only 

partially described ([1], [3]) by the circle 

they have drawn (with diameter BC), 

because as he manually follows (soft 

dragging test) the circle ([4]-[7]) he is 

unsure of the acceptability of this GDP 

when he approaches points C and B 

(previous part of exploration and here in 

[5], [7]). G, however, seems convinced (but 

not strongly) that it is a F “who is not” 

dragging properly ([4]) and he says he 

does not understand what F is referring to 
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you do link? Wait, wait... 

… 

[10] G: "redefinition of an object" 

[11] F: let's take A... 

[12] G: "point on an object" 

[13] F: wait, let's move A off from 

there..."redefinition of an object"..."this 

point" let's do point... 

[14] G: No, "point on an object" 

[15] F: Point on an object that is on this 

circle. 

[16] G: There. 

[17] F: there, now we can see it well. 

[18] F: Good, here there are no problems... 

[20] G: always! 

[21] F: Yes, it was I who was... 

[22] G: yes... 

[23] F: Yes, it is always, always.  

[24] F: So, write… 

([2]). To get over this indecision F 

proposes to link A to the circle (and thus 

perform a robust dragging test), and does 

this ([9]-[15]) in order to “see it well” ([17]). 

G seems not to be surprised at seeing that 

the III is maintained on what he had 

conceived as the entire GDP ([20]), and F 

realizes it was he who was not being 

precise while dragging ([21]), and agrees 

that the property rectangle (III) is 

maintained along the whole circle ([23]).  

Table 4.4.4: Analysis of Excerpt 4.4.4 

This passage can be read as Fʼs generalization of what he initially conceives as 

the GDP (only some of the circle), and as a verification, for both solvers, of the CL 

between the IOD and III. Now the CL between “when it is a rectangle (III)” (expressed 

previously in the exploration), that led to “A on the circle” (IOD), has been verified, and 

the solvers seem to immediately (almost “automatically”) make the transition to the 
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expression of a conjecture in “static” logic terms, right after line [24]. We will discuss this 

in the next section of this chapter. 

 

4.4.2 Concluding Remarks 

In this section we have presented excerpts that seem to provide evidence that 

the solvers have conceived a conditional link between two invariant properties 

discovered during the exploration. The evidence of such conceptualization is necessarily 

indirect, and expressed through different behaviors that we could observe. In particular, 

we showed how evidence of a CL may be interpreted as an effective use of checking the 

IOD and the III simultaneously through a form of the dragging test, as occurs smoothly in 

Excerpt 4.4.1. We provide a different form of evidence of the conception of a CL in 

Excerpt 4.4.2, by showing how the solversʼ realize that a particular GDP and dragging 

along it do not provide a satisfactory IOD and so they make new hypotheses and modify 

their proposed GDP and IOD. The last two excerpts show how having conceived a CL 

allows the solvers to perform a soft (Excerpt 4.4.3) or robust (Excerpt 4.4.4)  dragging 

test which can lead to a generalization of a GDP and IOD.  

Although evidence of the conception of a conditional link (CL) is necessarily 

indirect, the notion seems to be a useful one, because it sheds light onto the process of 

conjecture-generation when MD is used. Such process can be seen as a slow 

adjustment and falling-into-place, during the exploration, of all the pieces and the 

relations between them that we have described in the MD-conjecturing Model. Once 

everything has been put into place, the conjecture, an explicit statement given by the 

solvers (in written or oral form), can be formulated. We describe this last step in the next 

section, and we remark here that unlike the parts of the model that we have described 

until now, the conjecture is the only element of our model that can be accessed directly. 
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In fact, as we will describe in the next section, in the context of the MD-conjecturing 

Model, we have decided to consider the conjecture to be only the explicit (oral or written) 

statement through which students directly describe the CL between the invariants they 

have observed. We will give our working definition of “conjecture” in the following 

section. 

Before closing the section we would like to discuss the transition from a CL to a 

conjecture. We have defined the CL to be “a relationship of logical dependency” which 

the solver has conceived but not yet expressed. Of course, as discussed above, the 

notion seems to be quite useful, but it cannot be accessed directly by an external 

observer, since it is part of the knowledge the solver is developing and using to carry out 

the process of conjecture formulation. We have decided to describe the CL as a 

relationship of logical dependency, or conditionality, however it is possible that the solver 

needs to first conceive “causality”. We could imagine a “causal link” to be what a solver 

can conceive when s/he interprets the experience still within the Cabri world, or the 

phenomenological world more in general, dominated by time. The point at which a 

“causal link” becomes a “conditional link” is not clear, and, as before, if it occurs, such a 

transition can only be seen indirectly by the observer. All we can see directly is the 

outcome of the process of interpretation of Cabri-phenomena as geometrical objects and 

logical relationships between them, that being, what we refer to as conjecture. In the 

next section we will show how the conjecture can be formulated in a variety of 

acceptable ways. However it is when the final conjecture is expressed as a “static” form 

that we have direct evidence of the transition having occurred completely and 

successfully, a transition that has occurred through the establishment of the CL, and in 

which simultaneity and the solverʼs control seem to play an important role.  
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Previous research has described a similar transition  as a “crystallization” of a 

statement from a “dynamic” exploration of a problem to a “static” logic expression, 

through the focus on a “temporal section” (Boero et al., 1999; Boero et al., 2007) of the 

exploration, also described in Boero et al. (1999) as a PGC1 ( “a time section in a 

dynamic exploration of the problem situation: during the exploration one identifies a 

configuration inside which B happens, then the analysis of that configuration suggests 

the premise A, hence “if A, then B”). We are not sure this description completely 

illustrates the case in our model. However we think that this PGC does describe rather 

accurately some studentsʼ other behaviors that we have observed, that do not involve 

use of the maintaining dragging scheme (MDS) in a DGS. We will discuss the MD-

conjecturing Model with respect to Boero et al.ʼs PGCs in Chapter 7. 

 

 

4.5 Formulating and Testing the Conjecture 

Once the solver has reached a GDP and interpreted dragging along it as an 

invariant, the IOD, and once the solver has conceived a CL between the IOD and the III, 

s/he may want to test the appropriateness of the IOD through a soft dragging test, as 

described in the previous section. For expert users “testing the appropriateness of the 

IOD”  means visually verifying that in fact the direct movement of the dragged-base-point 

along a specific GDP does have the effect of preserving the III. This can be thought of as 

the IOD “causing” the III, or that “it is a condition under which” the III is visually verified. 

In other words this dragging test is verifying the CL that the solver has hypothesized 

between the two invariants that s/he is trying to induce. We have described how in the 

analyses of studentsʼ transcripts the CL can only be captured indirectly, through different 

manifestations (like different forms of the dragging test) that allow us to infer its 
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existence. In a way, we could consider the CL developed between the IOD and the III as 

the seed of a conjecture, or as a non-explicit conjecture. However, for clarity of the 

model and of the analyses that can be obtained through it, we prefer to separate what 

solvers express explicitly from what can be inferred from their behaviors. In particular, 

we separate the moment in which the solvers explicitly formulate their conjectures in an 

oral and/or written form. Therefore, in our model, we consider a conjecture to be  

an explicit statement, that can be written or oral, of the CL, conceived by the 

solver, between the IOD and the III. 

If we refer to the conjecture as stated above, we clearly have an element that can be 

accessed directly. Moreover, it is the only element of our model that we have direct 

access to, since all the elements we introduced until now can only be perceived 

indirectly in the analyses, through studentsʼ words, actions, and, in general, behaviors.  

Our data shows that solversʼ conjectures are not all expressed analogously. In 

the excerpts below we will show the different types of formulations that various solvers 

used, and that we considered consistent with respect to our model. With “consistent” we 

mean that the conjecture seemed to correctly express a CL between the perceived 

invariants, and to yield a proper conceptualization of the premise and the conclusion of 

the conjecture. Such consistency could also be captured through how solvers addressed 

premises and conclusions when they attempted to prove their conjectures, however we 

do not analyze proofs in this study. 

In the following analyses, we will also highlight how the same solvers may 

express their conjecture in successively more geometrical ways. For example, some 

solvers state a conjecture orally before writing it down, and the two formulations of the 

conjecture differ; other solvers give different oral formulations before reaching the one 

they choose to write down. This allows us to capture aspects of the non-trivial transition 
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that solvers using the MDS make from the dynamic Cabri environment to the static world 

of traditional Euclidean geometry. 

Moreover, we have noticed that many solvers choose to perform a robust 

dragging test after they have formulated a conjecture, as a corroborating test of their 

conjecture. This type of dragging test seems to be more efficient than the soft dragging 

test for checking both the IOD and the III at the same time. We advance the hypothesis 

that the consciousness of the reconstruction of the Cabri-figure with a new property 

given by the IOD (now constructed robustly), or the construction of the GDP and 

redefinition of the dragged base point upon it, cognitively replaces the role of the solverʼs 

“direct control” over one of the invariants. The CL between the IOD and the III could be 

verified by consciously  controlling the IOD and watching the III occur simultaneously, as 

a consequence. As we described in section  4.4, the recognition of “a condition” and “a 

consequence” may occur through the type of control exercised over each invariant: 

simultaneity + direct control leads to “a condition”, while simultaneity + indirect control 

leads to “a consequence”. During the transition to the conjecture, these then need to be 

interpreted as a premise and a conclusion. In this sense, when solvers check their 

conjecture with a robust dragging test, the direct (or indirect) control is substituted by 

knowing that the figure has been reconstructed with a specific added property (and not 

with another). Simultaneity can then be perceived in a stronger way than before, since, if 

the conjecture is valid, the IOD and the III will occur simultaneously for the dragging of 

any base point. Therefore the solver can check the separation the two invariants into 

premise and conclusion of the conjecture. 

Some solvers choose to test their conjectures in a different way, without 

dragging. Although this was not introduced during the introductory lessons on the 

dragging modalities, some solvers are aware of the command that we refer to as “ask 
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Cabri”. This is a command that allows the user to select pairs of objects of a Cabri-figure 

and click on an icon (the 8th item on the top command bar in Cabri-Géomètre II Plus) and 

select a question, like “parallel?”, which opens a window that contains the softwareʼs 

answer to the question, such as “the two objects are parallel”. We did not expect 

students to use this command, however we witnessed different occasions in which they 

did in the following way, after they had formulated a conjecture. The solvers would 

robustly construct the property expressed in the premise of the conjecture, and then 

consider a property that characterized the type of quadrilateral described in the 

conclusion of the conjecture. They would use this property to ask Cabri, through the 

appropriate tool in one of the menus in the toolbar, whether such property was verified. 

In this sense we consider this behavior as another way of checking a conjecture, other 

than using the dragging test. One of the excerpts we present in this section shows an 

example of such behavior. For clarity, we have divided the excerpts and examples we 

present into the following subsections: transition to the conjecture (subsection 4.5.1), 

various formulations of conjectures (subsection 4.5.2), and testing the conjecture 

(subsection 4.5.3). 

 

4.5.1 Transition to the Conjecture 

In Section 4.4 we discussed the conditional link (CL) that the solver conceives 

between two invariants of the Cabri-figure s/he is exploring. When the CL is made 

explicit, it can contain traces of the dynamic exploration that gave origin to it. Sometimes 

the process of making the CL explicit can be difficult for the solver to carry out, and it 

may not lead to a conjecture that is coherent with our model. In the following subsection 

we consider the case in which the transition from a CL to a conjecture is successful. 

Such a transition occurs internally, in the solverʼs mind, so once again we can only 
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gather evidence of the process indirectly through what can be observed and inferred 

through studentsʼ behavior, words and actions.  

In this subsection we provide examples that seem to yield evidence of the 

transition from the conception of a CL to the formulation of a conjecture, as anticipated at 

the end of Section 4.4. The first excerpt shows an example of how the transition can 

occur smoothly without any apparent difficulties. The second excerpt is an example of a 

slightly less smooth transition: the solvers first orally give a concise narrative of their 

exploration, and then they provide a written conjecture. 

 

Excerpt 4.5.1.1. The excerpt below shows a smooth transition from the 

construction of a GDP to the formulation of a written conjecture. The two students seem 

satisfied with their proposed GDP, through which they have characterized their IOD. 

Without apparent difficulties, the students express their conjecture orally in a static form, 

and immediately write it down.  The excerpt is the continuation of the exploration carried 

out by the students of Excerpt 1 in section 4.3 of this chapter, in which they had used 

maintaining dragging to induce “ABCD parallelogram” as an III and search for an IOD. 

 

Figure 4.5.1.1: A screenshot of the exploration 
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Episode 1 

[1] Giu: So I was thinking something like this 

[as he constructs the circle centered in A with 

radius AP]. Let's see if it goes, let's see if it 

goes, let's see if it goes... 

[2] Ste: yes 

[3] Giu: Yesss!! 

[4] Ste&Giu: Yes, nice! [laughing] 

… 

[5] Ste: If CP is equal to PA, say by definition 

… 

[10] Giu: We have lots of things. 

[11] Ste: We could say…construct two 

circles…these two. 

[12] I: Well, one you have already 

[13] Giu: Itʼs enough to say that PA has to 

always be the same as AD, because if they 

are the same, it [D] has to necessarily be on 

the same circle, because they are two radii. 

… 

Brief Analysis 

After having conceived a GDP, the circle 

with center in A and radius AP, and an 

IOD (D moving along the circle 

described as the GDP) Giu proposes to 

construct the object representing the 

GDP while leaving the trace visible on 

the screen ([1]). Both solvers seem to 

be quite satisfied ([2]-[4]) in seeing how 

the construction nicely fit the trace.  

 

 

The solvers seem to be discussing ([5]-

[13]) what a sufficient condition in order 

to have “D on the same circle” ([13]) 

might be. They seem to find a condition 

that implies their IOD (D on the circle): 

the congruence of two segments, PA 

and AD which become radii of this 

circle. 

Episode 2 

[14] I: Letʼs write. 

[15] Giu: So letʼs say: if A…so we already 

have that this is equal to this, that this is 

 Brief Analysis 

 Giu proposes the conjecture “If  PA 

equals PD…ABCD is a parallelogram” 

([15]-[17]). 
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equal to this, so if PA equals AD… 

[16] Ste: everything we said… 

[17] Giu: also…well, ABCD is a parallelogram. 

[They write: “ABCD is a parallelogram if PA is 

equal to AD”] 

 

 

 

 

In the written conjecture the conclusion 

precedes the premise. 

Table 4.5.1.1: Analysis of Excerpt 4.5.1.1 

Although the solvers seem to approve of the proposed GDP and of the IOD as “D 

belonging to this object” when they construct the circle that represents their GDP, the 

solvers do not use this IOD directly in the conjecture. Instead they seem to elaborate 

their findings in lines [5]-[13] and express the premise as “PA equals AD” ([15]). The 

argumentation that leads to an oral conjecture seems to go back along some of the 

steps that led to the construction of the second circle ([11]). In order to reach their written 

conjecture, the solvers seem to re-elaborate what they have observed during the 

exploration, starting from some properties of the construction, and searching for a 

sufficient condition (or a chain of such conditions) ultimately implying the III.  

The only difference between the conjecture proposed in lines 15-17 and the one 

they write, is the order of the premise and conclusion, which is reversed in the written 

conjecture. This could indicate a desire to focus on “the case of the parallelogram” which 

is what they had explored until then. However the condition that generates this case is 

still clearly marked by the “if” that makes it the premise of the written statement.  

 

Excerpt 4.5.1.2.  This excerpt contains another example of transition, this time 

from an oral expression of a conjecture in a narrative and dynamic form, to a different 
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written one. The excerpt is taken from two studentsʼ work on Problem 2. The episode 

starts with Raiʼs response to the interviewerʼs insistent request for a conjecture. 

 

Figure 4.5.1.2: A screenshot of the exploration 

Episode 

[1] Rai: Ok. 

[2] Rai: That if, uhm, we want to maintain, 

uhm...PB equal and symmetric to PD,  

[3] Rai: ...we can draw a circle with center in A 

and through P. 

[4] Lo: So if D belongs to the circle with center 

in A  

[5] Rai: and through P 

[6] Lo: and through P, then the polygon ABCD 

is a parallelogram. 

Brief Analysis 

Rai seems to be considering this ([2]) 

as his III. 

Rai seems to propose a geometric 

condition that realizes the invariance of 

the III. He seems to be trying to 

express geometrically what he had 

observed during the exploration, while 

Lo ([4]-[6]) gives an oral conjecture, 

trying to restate Raiʼs idea.  
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[They write: “If D belongs to the circle through 

P and with center in A, ABCD is a 

parallelogram.”]  

[7] Lo: I would say that this is what we said. 

The solvers seem to agree upon such 

reformulation, choosing to write it down 

as their conjecture. 

Table 4.5.1.2: Analysis of Excerpt 4.5.1.2 

The first statement ([2]-[3]) is expressed in an “if…then…” form, however it is still 

embedded in the experience of dragging in the Cabri environment, expressing a 

geometric condition that they used to obtain the invariance of the III. Lo seems to re-

elaborate on Raiʼs description and make the transition to a geometrical description of the 

IOD ([4]). In the first formulation, Raiʼs “premise” contains reference to wanting to 

“maintain” a property, which is they key to the formulation of the written conjecture. This 

in fact occurs instantly after the expression of the oral one, in lines [4]-[6], before the 

solvers decide to move on to a different case. 

 

Concluding Remarks. As mentioned above, the transition to a conjecture is not a 

trivial process and it can constitute a difficulty for some students. In the analyses above 

we tried to capture evidence of the transition from inferences we made based on the 

comparison between certain oral or written statements of the solvers. We have observed 

that frequently, even after having expressed a conjecture, solvers feel the need to 

perform a dragging test to become more convinced of the goodness of their conjecture, 

or to check their conjecture once it has been formulated. In subsection 4.5.3 we provide 

examples of such behavior, however first, in the following subsection, we will present 

different ways in which the statements of the generated-conjectures were formulated by 

different solvers. 
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4.5.2 Various Formulations of Conjectures 

We discussed how conjectures are an explicit expression of a conceived CL 

between invariants. Thus different conjectures may be expressing the same CL. This 

allows us to talk about classes of conjectures, each class expressing a given CL 

between given invariants. For example, there may be differences between an oral and a 

written expression of what the same solver sees as “the same conjecture”. There may 

also be differences among conjectures in a same class expressed by one or the other 

solver, when they are working in pairs and discussing what to write down as their final 

conjecture. In some cases there is negotiation or an argumentation in favor of a 

particular formulation, but frequently some expressions are used interchangeably, which 

we take as indirect evidence of the reference to the same CL.  

 In the subsections below, we identify three characteristics that different 

conjectures from the same class may present: conjectures that contain traces of the 

dynamic exploration (subsection 4.5.2.1), “transitional conjectures” in which “when” and 

“if” seem to be used interchangeably (subsection 4.5.2.2), and conjectures that do not 

contain traces of the dynamic exploration (subsection 4.5.2.3). 

 

4.5.2.1 Conjectures with Traces of the Dynamic Exploration. In this subsection 

we describe some conjectures that contain dynamic aspects. That is, they contain terms 

that seem to refer to the Cabri world, like “move”, “stay on”, “remain”, and so on. In the 

section we consider various formulations of conjectures in which the solvers seem to 

have correctly conceived the premise and the conclusion. Evidence of such 

conceptualization is necessarily indirect. However strong evidence of the correct 

conceptualization can be found in cases in which the solvers transition fluidly to proof, 

making explicit the distinction between premise and conclusion of their conjecture. 
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Although such fluid transition is not necessarily present for all proper conceptualizations 

of the CL, the cases in which it is present definitely suggest that the CL has been 

conceived coherently with respect to our model. Therefore in this section we use 

presence of this fluid transition as a criterion for selecting examples of different 

formulations of conjectures of the same class. 

First we show an example in which the solver states in her written conjecture that 

a point “stays on” a certain intersection point. The second example shows a formulation 

of an oral conjecture in which the solvers use the words “moves” and “remains”. Finally 

we present an excerpt from two studentsʼ exploration, in which they formulate a 

conjecture on a derived-construction invariant as a statement with strong dynamic 

aspects. 

This example is taken from a studentʼs exploration of Problem 2. 

Written conjecture (4.5.2.1.1):  

“If D stays on the point of intersection of the circle with radius 

AP (center A) and the circle with radius PA (center P), then 

ABCD is a rectangle.” [Italian: “Se D sta nel punto 

dʼintersezione tra la circonferenza di raggio AP (centro A) e 

circonferenza di raggio PA (centro P), allora ABCD è un 

rettangolo.”] 

Notice how the expression “D stays on” seems to indicate a 

strong link to the dynamic exploration. However the conjecture 

is expressed as an “if…then…” statement and the solver 

showed no difficulty in recognizing the premises she was to begin with when 

constructing a proof.  

Figure 4.5.2.1.1 
Screenshot of the 
solversʼ exploration when 
they expressed a 
conjecture. 
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The following example 

(PS_Fin_ValeRic_p3_c4) is taken from a 

studentʼs exploration of Problem 3. The student 

gives the following oral conjecture (4.5.2.1.2):   

“If M moves along a line through M and 

perpendicular to segment MK, then the 

figure remains a rectangle.” [Italian: “Se 

M si muove su una retta per M e 

perpendicolare al segmento MK, allora la 

figura rimane un rettangolo.”] 

The dynamic aspects of this oral conjecture are evident in the expressions “move on” 

and “remains”. The solver is expressing the IOD in a dynamic form, as movement along 

the GDP, and the III is also expressed dynamically as ABCD remaining a rectangle. 

Time is still present in the formulation of this conjecture that seems to summarize the 

exploration experience. However the premise and conclusion have been clearly 

separated and the CL correctly established, as the complete “if…then…” statement 

indicates. 

 

Excerpt 4.5.2.1.3. This excerpt is taken from two studentsʼ exploration of Problem 

1. The bold letters refer to the solver who is performing the dragging. 

Figure 4.5.2.1.2 Screenshot of the 
solversʼ exploration when they 
expressed a conjecture. 
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Figure 4.5.2.1.3 Screenshot of the solversʼ exploration 

Episode 1 

[1] F: Good, so we can say, about the 

quadrilateral, that as A varies, uh, we always 

obtain a trapezoid. 

[2] G: a right trapezoid. 

[3] I: Ok. 

[4] F: a right trapezoid. 

[5] I: Ok, a trapezoid that is also a right 

trapezoid. 

[6] F: Yes, a right trapezoid. 

Brief Analysis 

The solvers have been dragging the 

base point A and have conceived the 

property “ABCD is a right trapezoid” 

([1], [2], [4], [5], [6]) as an invariant.  

A first conjecture is stated by F in line 

[1]: “as A varies, uh, we always 

obtain a trapezoid” 

Episode 2 

[7] F: [writing] moving A... 

Brief Analysis 

A second conjecture, in the same 
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[8] F: ...a right 

[9] F: trapezoid. 

[10] F: Yes. 

[11] F: Ok. 

[12] I: So this is a conjecture... 

[13] F: Yes. 

[14] I: on the quadrilateral? 

[15] F&G: Yes. 

They write: “Moving A freely we always get a 

right trapezoid.” It: “Muovendo A liberamente 

otteniamo sempre un trapezio rettangolo.” 

equivalence class as the first, is: 

“Moving A freely we always get a 

right trapezoid.”  

 

 

 

Both conjectures contain dynamic 

elements: a reference to movement 

in the premises, and a temporal 

reference, “always” in the 

conclusions.  

Episode 3 

[16] G: Let's prove this one right away. 

[17] F: So, in the hypotheses we have CD is 

perpendicular to AD. 

[18] I: Yes 

Brief Analysis 

We have evidence that the 

conjectures refer to the same CL 

because F immediately starts the 

proving process by stating the 

premises explicitly ([17] and following 

omitted from the excerpt). 

 Table 4.5.2.1.3: Analysis of Excerpt 4.5.2.1.3 

4.5.2.2 Use of “when” and “if” as synonyms. As mentioned above, we can only 

infer that the terms “when” and “if” are sometimes actually used as synonyms, but some 

behaviors seem to favor such interpretation. In particular, we consider the words to be 

used as synonyms in at least three situations. (1) When the conjecture is expressed 

using “when” but when the solvers start proving the conjecture they use the condition 

expressed through the “when” as the premise, and the other part of the statement as the 
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conclusion, or “what needs to be proved”. An example of this situation is shown in 

Excerpt 4.5.2.2.1. (2) When solvers use one of the expressions orally (usually “when”), 

but they immediately write the conjecture using the other expression (usually “if”), as 

shown in Excerpt 4.5.2.2.2 and in Excerpt 4.5.2.2.3. (3) When one student uses one 

word (“if” or “when”) and the other in a very similar expression, immediately after the first 

statement, as shown in Excerpt 4.5.2.2.4. 

Excerpt 4.5.2.2.1. This excerpt is taken from a studentʼs work on Problem 1.  

Episode 

[1] Ste: written conjecture: “When K coincides with M, the 

quadrilateral 

ABCD 

becomes a 

triangle 

because b and 

c coincide.” [Italian: “Quando K coincide con M, il 

quadrilatero ABCD diventa un triangolo in quanto b e c 

coincidono.”]  

[2] Ste: argumentation in which he uses the premise “K 

coincident with M” to prove “B and C coincide” and so 

“ABCD becomes a triangle.” 

Brief Analysis 

The solver writes down this 

conjecture ([1]). 

 

He immediately delves into 

an argumentation ([2]). 

This shows that what Ste 

refers to after “when” is the 

premise of his conjecture. 

Table 4.5.2.2.1: Analysis of Excerpt 4.5.2.2.1 

In the excerpt above we saw an example of “when” being used, logically, as “if”. 

Sometimes it seems that the use of “when” or “if” can refer to a distinction between the 

phenomenological domain of Cabri and the theoretical world of geometry, that is, a 

reinterpretation in geometrical terms of what has been observed in Cabri. Such 
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reinterpretation seems to frequently culminate with the transition from an oral statement 

to a written statement. Moreover we notice how Ste states his conjecture in a way that 

seems to be “dynamic.” He writes about a quadrilateral becoming a triangle, but then has 

no trouble providing a correct proof of his conjecture. The appearance of dynamic 

elements in conjectures seems to be a recurring phenomenon when conjectures are 

developed as the outcome of explorations in dynamic geometry. 

Excerpt 4.5.2.2.2. This excerpt is taken from two studentsʼ exploration of Problem 1. 

 

Figure 4.5.2.2.2 A screenshot of the solversʼ exploration at the moment of the conjecture. 

Episode 

[1] Vale: When DA is equal to CB, that is, when 

BA is parallel to DC, so also when these here are 

right angles, it is a rectangle. [Italian: “Quando 

DA è uguale a CB, cioè quando BA è parallelo a 

DC, quindi anche quando questi qua son retti è 

un rettangolo.”] 

[2] Vale: [writing] “If DA=CB then rectangle” 

Brief Analysis 

Orally the solvers use the “when” to 

refer to what is written after “if” as 

the premise in the written 

conjecture. The two conjectures are 

expressing the same CL. 

In the written conjecture the 

argumentation chain linked by 
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[Italian: “se DA=CB allora rettangolo”] “when” has disappeared. 

Table 4.5.2.2.2: Analysis of Excerpt 4.5.2.2.2 

Excerpt 4.5.2.2.3. The excerpt below is taken from the student Gʼs work on 

Problem 2. 

 

Figure 4.5.2.2.3 A screenshot of the solverʼs exploration at the moment of the conjecture 

Episode 

[1] G: So when AD is equal to AP... 

[2] I: Ok 

[3] G: ..it could be a parallelogram.  

[4] G: [writing] If...AD is equal to AP 

[5] I: Ok 

[6] G: ABCD is a parallelogram. 

Brief Analysis 

In lines [1]-[3] G expresses her conjecture orally. 

This statement is not in the form “if…then…” 

however the student seems to interpret it as 

such because when she formulates it in writing 

immediately after speaking, she writes: “If AD is 

equal to AP, ABCD is a parallelogram” ([4]-[6]).  

Table 4.5.2.2.3: Analysis of Excerpt 4.5.2.2.3 

The word “when” (Italian: “quando”) is used in the oral statement, in which G also 

expresses a degree of insecurity (“it could be”). “When” seems to mark the transition 

from what is observed on the screen, related to movement, and what can be stated in 

the static formal world of Euclidean geometry. On the screen G can observe a sequence 
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of instances (that may seem continuous) in which the property “AD equal to AP” may 

seem to be satisfied. Therefore a reference to time is appropriate, and “when” seems to 

catch the occurrences of this event. However the word “when” also refers to a CL 

between events (or occurrences of properties in our case) and this may explain the use 

of the term immediately followed by the reformulation in formal language in the written 

conjecture ([4]-[6]). The fluid transition from the oral statement to the written one seems 

to indicate that the terms “when” and “if” are used by the solver as synonyms, or at the 

very least, as two ways of referring to the premise of the conjecture. 

Excerpt 4.5.2.2.4. This excerpt is taken from two studentsʼ work on Problem 2. 

 

Figure 4.5.2.2.4 A screenshot of the solverʼs exploration at the moment of the conjecture. 

Episode 1 

[1] Sim: So, ... 

[2] I: hmmm 

[3] Sim: eh, when AD 

[4] Sim: when D belongs to the circle, we 

have a parallelogram,  

[5] Sim: because...uh, but now... 

Brief Analysis 

In lines [3] and [4] Sim uses the word 

“when” referring first to AD and then to D 

belonging to the circle they have drawn as 

a GDP.  

In line [4] there is a first formulation of a 

conjecture: the CL between the IOD (D 
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[6] Sim: D...because AD, since AP is equal 

to CP, it means that the radii are the same, 

and so also AD equals BC. 

[7] Sim: and since the two circles...are 

tangent... 

[8] Sim: eh, they are...how can we say that 

they are parallel? 

[9] Tom: Wait, first mark them [he murmurs 

something]. 

[10] I: So, what is your conjecture? 

[11] Sim: So, since we constructed the 

circle, AD, uh D...ADCB is a parallelogram 

when D belongs to the circle. 

[12] Tom: So...[writing] 

belongs to the circle) and the III (ABCD 

parallelogram) is made explicit through the 

“when”. Evidence for such interpretation is 

provided in lines [6]-[9] when the solvers 

seem to engage in an argumentation in 

which they attempt to prove their 

conjecture. In particular, in [8] Sim is 

looking for a way to “say that they are 

parallel”, i.e. to prove what is missing in 

order to “say that there is always a 

parallelogram” ([25]). 

Again Sim uses “when” ([11]) to separate 

the condition “D belongs to the circle” from 

“ABCD is a parallelogram” ([11]).  

Episode 2 

[13] Tom: ...if 

[14] Sim: Because these two 

[15] Tom: ...[murmurs as he writes] 

[16] Sim...[murmurs as he thinks and 

draws the segments] 

[17] Tom: [writing] ...with center...and 

radius AP... 

[18] Sim: Now, so... 

[19] Tom: [writing]...the quadrilateral... 

Brief Analysis 

Tom immediately interprets this as an 

“if…then…” statement which he writes 

down ([12]-[28]) as: “If we construct a circle 

with center in A and radius AP the 

quadrilateral ABCD is a parallelogram.”  

 

In the meantime Sim proceeds in his 

attempt at proving his conjecture, but stops 

again at the need to prove the two 
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[20] Sim: these are also radii [marking AD, 

AP, PC, and BC]. 

[21] Sim: and so these two are equal 

[pointing to AD and BC]. 

[22] I: uhm. 

[23] Tom: [writing]...ABCD... 

[24] Sim: so. but now we need to prove 

that they are parallel. 

[25] Sim: because this way we can say that 

there is always a parallelogram. 

[26] I: ok. 

[27] Sim: and so 

[28] Tom: Right? [reading what he wrote] If 

we construct a circle with center in A and 

radius AP the quadrilateral ABCD is a 

parallelogram. 

[29] Sim: Eh, not always...you have to say 

"if D belongs to the circle". 

[30] Tom: [writing]...when 

[31] Sim: when D belongs to the circle. 

opposite sides to be parallel ([24]).  

 

 

 

 

 

 

 

 

 

With respect to the conjecture, when Tom 

reads to Sim what he has written, Sim 

instantly translates his original “when D 

belongs to the circle” ([4]) into “if D belongs 

to the circle” ([29]).  

 

Tom adds the new condition to the written 

conjecture as “when…” ([30]) and Sim 

repeats his original “when D belongs to the 

circle “ ([31]).  

Table 4.5.2.2.4: Analysis of Excerpt 4.5.2.2.4 

This almost unconscious switching the terms with great ease seems to indicate 

interchangeable use of the words “if” and “when”, as synonyms to refer to a condition 

that leads to the conclusion stated in the conjecture. 
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In the next subsection we give examples of conjectures without traces of the 

dynamic exploration, in which the “if…then…” form is used. 

 

4.5.2.3 Conjectures without Traces of the Dynamic Exploration. In this subsection 

we provide some examples of conjectures stated in formal language, and belonging 

completely to the “static” world of Euclidean geometry. These conjectures clearly show 

that the transition from “dynamic” to “static” has successfully occurred through a proper 

interpretation of the Cabri experience in mathematical terms. This subsection contains 

four examples of conjectures formulated in a “static form”, through different techniques: 

use of the logical “if…then…” form (potentially omitting the “then”); use of the symbol of 

logic implication; or separation of the premise from the conclusion through labeling. 

The first example (4.5.2.3.1) is what two students wrote during their exploration 

(PS_Fin_GiuAlb_p6_c2) in Problem 2. 

 

“If D is on the circle with radius PA then the 

quadrilateral ABCD is a parallelogram.” [Italian: “Se D 

è sulla circonferenza di raggio PA allora il quadrilatero 

ABCD è un parallelogramma.”] 

 
Figure 4.5.2.3.1 A 
screenshot of the figure at 
the moment of the 
expression of the 
conjecture. 
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The premise and the conclusion are clearly separated by the “if” and the “then”, and the 

language used does not suggest movement. The only traces of the exploration may be 

found in the words “D is on the circle with radius PA”, in which D plays the main role as 

the acting-element. From “moving along a 

circle” it is now conceived as “being on”. 

Possibly the premise of the conjecture could 

have been expressed in an even more “static” 

form as “D belongs to the circle”. 

The following example (4.5.2.3.2) is 

what two students wrote during their 

exploration (PS_Fin_ValeRic_p3_c5) in 

Problem 1. 

“If K belongs to the perpendicular bisector of AB, 

ABCD rectangle” 

[Italian: “Se K appartiene allʼasse di AB, ABCD 

rettangolo.” ] 

The “then” and the verb in the conclusion of the 

statement are omitted, but the distinction 

between the premise and the conclusion is 

marked clearly by the “if” and the comma after “AB”.  

The statement (4.5.2.3.3) below is what two students wrote during their 

exploration in Problem 1, using the symbol of logic implication. 

“If A belongs to the line ⊥ to l through M  ⇒ ABCD is a rectangle.” 

[Italian: “Se A appartiene alla retta ⊥ ad l passante per M ⇒ ABCD è rettangolo”] 

Figure 4.5.2.3.3 A screenshot of the figure 
at the moment of the expression of the 
conjecture. 

 

Figure 4.5.2.3.2 A screenshot of the figure 
at the moment of the expression of the 
conjecture. 
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This written conjecture is formulated in completely static geometric terms, and it even 

makes use of the symbol of logic implication to link the premise and the conclusion. 

In this example (4.5.2.3.4) two students working on Problem 1 shows how a 

conjecture may be stated by separating explicitly the 

premise from the conclusion. 

 

“hyp: M ∈ circle with center N (midpoint of KA) 

and radius NA. Ths: <ABC=<BCD=<CDA=<DAB” 

[Italian: “hp: M ∈ circonferenza con centro N 

(punto medio di KA) e raggio NA. Ts: 

<ABC=<BCD=<CDA=<DAB.”] 

Here the premise and the conclusion are labeled as such explicitly (“hyp”, “ths”). We can 

infer that the labeling yields meaning for the students because when proving the 

conjecture they start by assuming as true what is described in their “hyp”. 

 

4.5.3 The Last Step of the MD-conjecturing Model: Testing the Conjecture  

We have noticed that some solvers choose to perform a robust dragging test 

once their conjecture is formulated. Through this form of dragging, they seem to be 

checking that a robust construction of the IOD generates a robust III on the Cabri-figure 

they have explored. Excerpts 4.5.3.1 and 4.5.3.2 provide examples of this. In Excerpt 

4.5.3.1 the solver redefines the dragged base point as a point on the object she has 

constructed as her GDP, and then proceeds to drag the linked base point. In Excerpt 

4.5.3.2 the solvers reconstruct the Cabri-figure following the steps of the construction 

and adding a property to one of the bade points in order to construct the IOD robustly 

Figure 4.5.2.3.4 A screenshot of 
the figure at the moment of the 
expression of the conjecture. 
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and proceed with the dragging test. Finally Excerpt 4.5.3.3 is the continuation of Excerpt 

4.5.2.2.3, and it shows how the command “ask Cabri” can be used to test a conjecture.  

 

Excerpt 4.5.3.1. This excerpt shows how a student makes use of the robust 

dragging test to test her conjecture, after having written it down. The excerpt is taken 

from a studentʼs work on Problem 2, and it is the continuation of the exploration from 

which Excerpt 4.4.1 is taken. Through maintaining dragging with the trace activated, Isa 

has conceived a GDP and expressed the IOD as D moving along a circle. She has not 

constructed the GDP or performed a dragging test, and when she writes her conjecture 

(at the beginning of the excerpt below) she does not seem to be convinced enough to 

start proving it, but instead she prefers to test it with a robust dragging test. 

 

Figure 4.5.3.1 A screenshot of the solverʼs exploration during the following episode. 

Episode 

[1]...[she writes: “If I move point P on the 

circle with center in A and radius AP, then 

Brief Analysis 

After Isa writes her conjecture which still 

contains traces of the dynamic exploration 
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the quadrilateral is a parallelogram.”] 

[2] Isa: eh, for now I'll try to construct it… 

[3] I: Ok. 

[4] Isa: So...this, now I need to construct a 

circle [she constructs a circle centered in A 

with radius AP]…where is it [the 

command]? to link D to the circle? 

[5] I: Under the perpendiculars. 

[6] Isa: Ok, now let's try to move... 

[7] [she starts dragging D, now linked to 

the circle]  

[8] Isa: Yes...here it becomes a single 

point...and here again…Now we can also 

turn the trace off. 

[9] I: Now you seem to be pretty convinced. 

[10] Isa: Yes. 

([1]), she proceeds by constructing the IOD 

robustly: she constructs the object that 

represents the GDP she has provided ([4]), 

and she then redefines point D upon it. 

 

 

 

As she does this, Isa does not disactivate 

the trace. 

 

Isa drags D and notices that in certain 

points the quadrilateral “collapses”, but she 

seems to conceive these as special cases 

of the general parallelogram.  

At this point she seems to be looking at 

both the III and the IOD simultaneously 

thus conceiving the Cabri-figure as a 

whole. In fact she even wants to turn off 

the trace as it is of no use any more.   

Table 4.5.3.1: Analysis of Excerpt 4.5.3.1 

The fact that Isa does not disactivate the trace when she first constructs the IOD 

robustly ([4]-[5]) may indicate that she is not completely convinced that her GDP is 

correct. As she drags she seems to get confirmation that the whole circle is actually a 

good GDP ([7]-[8]), and thus is ready to disactivate the trace. Visualizing the two 
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invariants simultaneously being verified and knowing how the construction was modified 

seem to make Isa become convinced of her conjecture, as she confirms in [10]. 

 

Excerpt 4.5.3.2. This excerpt is the continuation of Excerpt 4.5.1.1 (numbering is 

continued), and it shows how the two students test their conjecture (“ABCD is a 

parallelogram if PA is equal to AD”) by reconstructing the Cabri-figure and performing a 

robust dragging test.  

 

Figure 4.5.3.2 A screenshot of the solversʼ exploration during the following episode. 

Episode 

[18] Giu: There 

[19] Giu: Now we need to make all those 

nice circles 

[20] Ste: Yaayy!!! 

[21] Giu: So this...through there 

[22] Ste: This one...yay! 

[23] Giu: So... 

Brief Analysis 

To test their conjecture, the students 

proceed by reconstructing the whole Cabri-

figure, adding the premise of their 

conjecture as a new robust property ([18]-

[28]). They use the IOD (“D on the circle 

with center in A and radius AP”) to construct 

the property “PA equal to AD”. After 
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[24] Giu: Bravo! Wait...that one is B...no, 

no, no don't do it. 

[25] Ste: Yes! 

[26] Giu: No, because...because it 

depends on that one [pointing to D]!! 

[27] Ste: Really? Oh yeah! That's right. 

[28] Giu: Eh!! So draw the circle that goes 

through this one and through this one 

[with center in A and radius AP]. 

[29] [Ste drags point D] 

[smiles from both the solvers] 

constructing point B, the solvers insist on 

constructing the circle centered in P ([28]), 

with radius PB, which probably indicates 

their desire to check the property “PB 

congruent to BD”. This makes sense 

because this was the bridge property they 

used as an III to induce “ABCD 

parallelogram” through maintaining 

dragging.  

They seem quite satisfied with the robust 

dragging test they perform in [29]. 

Table 4.5.3.2: Analysis of Excerpt 4.5.3.2 

As Ste reconstructs the Cabri-figure adding the new condition that they are 

testing, Giu seems to be guiding the choice of which points to use to construct the new 

elements of the figure: in particular the circle representing the GDP, on which D will be 

chosen ([24]-[27]). Although it can lead to the same outcome, the idea of reconstructing 

the whole figure “adding” a new robust property to the properties that descend from the 

steps of the construction is a different technique with respect to simply constructing the 

IOD robustly by constructing the GDP and linking the dragged-base-point to it. As the 

solvers reconstruct the whole quadrilateral they seem to revisit and summarize steps of 

the exploration process. Finally, the robust dragging test allows the solvers to 

simultaneously observe “AD congruent to PA” (or “D on the circle”) and “PD equals PB” 

(or “ABCD parallelogram”), and thus confirm their conjecture. 
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Excerpt 4.5.3.3. This excerpt is the continuation of Excerpt 4.5.2.2.3 (numbering 

is continued), and it shows how the solver used the command “ask Cabri” to test her 

conjecture. 

 

Figure 4.5.3.3 A screenshot of the solverʼs exploration during the following episode. 

Episode 

[7] G: To test it I could draw a circle 

[8] I: yes... 

[9] G: with radius AP 

[10] I: ok 

[11]  G: So then I could put D on this circle 

and then see... 

… 

[17] G: I wanted "redefine object", yes but 

first I wanted to ...ok 

[18] I: Ah, you wanted to do it over.. 

[19] G: Then I do "redefine object"...this 

point...point on an object? 

Brief Analysis 

G has written the conjecture and 

expresses the desire to test the conjecture 

explaining what she intends to do. 

 

 

 

 

 

 

She constructs the circle and links the 

dragged base point D to it successfully 

([19]-[21]).  
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[20] I: yes... 

[21] G: On this circle 

[22] G: Now what should I try, should I ask 

it if they are parallel? 

… 

[27] G: Is this segment is parallel to this? 

[as she clicks on the objects] 

[28] I: There, now it should open. 

[29] G: Ok [murmuring something and she 

seems satisfied] 

[30] I: Ok. 

[31] G: Should I try to move it? I'll try to 

change the position. 

 

 

 

Giu wants to use the command “ask Cabri” 

to see whether the pairs of opposites sides 

of ABCD are in fact parallel ([22]).  

When G uses the command “ask Cabri” 

she inquires about a property which 

defines “parallelogram” and is therefore 

basically the III ([25]-[28]). Reading Cabriʼs 

reply “the two segments are parallel” on 

the screen seems to convince G of her 

conjecture more than dragging the 

redefined point. 

Table 4.5.3.3: Analysis of Excerpt 4.5.3.3   

It seems that for G it is less important to visualize the two invariants simultaneously than 

to be sure that according to Cabri her new construction is a parallelogram. Only after 

having read the answer does G spontaneously propose to “move it” and “change the 

position” ([31]). 

 

Concluding Remarks. At this point we have completed our introduction of the 

main elements of our model and the relationships between them. Our model describes 

the perception of invariants, the search for new invariants, the conceived link between 

them, and how the premise and conclusion of the conjecture fall into place. Below is a 
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visual representation of our model that summarizes the various elements and their 

mutual relationships. 

 

Figure 4.5.1: A representation of the interplay of the elements of the MD-conjecturing Model 

Using the model as a tool of analysis led us to some refinements and new 

notions, many of which related to various types of invariants and how they emerge from 

the exploration. The  central role of these different invariants within our model has led us 

to a new description and partial generalization of the model itself. This new description is 

the main focus of Section 4.6. 

 

4.6 Model as Invariant-Type Phases 

Through the analyses of transcripts and video recordings of studentsʼ work on the 

activities proposed, we have shown how our initial model seems to appropriately 

describe processes that may occur during the explorations. Moreover the model was 
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enriched with new elements that were recognized as recurring in many explorations. In 

particular, with respect to the initial model, we conceived and added new notions, many 

of which were related to a characterization of invariants that seemed to help describe 

studentsʼ work. The types of invariants we added are point-invariants and construction-

invariants (either basic or derived), and additional construction-invariants, that is, 

invariants that are constructed as a robust invariant after having been observed (or 

induced) as a soft invariant, or potential property of the Cabri-figure considered, as 

described in Section 2.1. These new notions and further reflection upon the analyzed 

transcripts led us to focus on the central role played by invariants throughout the 

explorations. Therefore we now provide a new description of our model as phases, each 

characterized by the particular type of invariant investigated. The phases are: (1) the 

point-invariant and construction-invariant phase; (2) the intentionally-induced-invariant 

phase; and the (3) additional-construction-invariant phase. Before delving into the 

descriptions of each phase, we present a second hypothetical exploration of Problem 1, 

in which we highlight the new elements introduced in the preceding sections of this 

chapter with particular attention towards different types of invariants. 

 

4.6.1 The Invariant-type Phases 

Many studentsʼ behaviors during the exploration of Cabri-figures seem to be 

characterized by the perception of invariants of different types. As we have seen in 

Section 4.2.1 many solvers start to drag the base points looking for regularities in the 

behavior of the Cabri-figure (or of subfigures), noticing what we have defined as point-

invariants and construction-invariants (section 4.2.1.1 and 4.2.1.2). Solvers may express 

their first conjectures relating these invariants at this time. Such conjectures do not deal 

with “conditions under which a certain configuration is obtained”, but rather they are 
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“general statements” about the step-by-step-construction, that relate basic and derived 

construction invariants, and potentially point invariants. 

Then solvers may proceed by noticing that a particular property has the potential 

of being induced upon the Cabri-figure, as described in Section 4.2.1.3 and in the rest of 

Section 4.2. Therefore a second phase of the exploration may be characterized by the 

solverʼs attempt to explain (through a conjecture) how to induce a particular III through 

dragging. The conjectures that arise during this phase of the exploration are the ones 

our initial model described in detail. However, we have observed that sometimes the 

discovery of basic properties (section 4.2.1.3) leads to conjectures (basic conjectures, 

which we introduce in Chapter 5) in which they are expressed in the premise instead of 

being overcome by a condition found during MD. We will describe this phenomenon in 

Chapter 5. 

Finally, solvers may construct a new property (typically an IOD) robustly in order 

to continue the exploration within a subset of Cabri-figures of the initial set defined by the 

step-by-step construction. In this case we can define a new class of invariants, 

additional-construction-invariants.  

After having constructed new additional-construction-invariants, the exploration 

may continue, starting from the first phase we described, since the solver is now in front 

of a new figure. During this phase new construction-invariants and point-invariants may 

be noticed (a new phase 1), and successively new IIIs may be induced by the subject 

with the intention of producing new conjectures (a new phase 2). Below is a more 

detailed description of the three phases. 

Phase 1: point-invariant and construction-invariant phase 

The solver uses wondering dragging of the various base points of the construction and 

notices a certain property that seems to always be true (for the dragging of a specific 
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base point or of different base points). Conjectures during this phase may be of the type: 

“the figure is always a …” or “the figure always has the property …”. The premises of 

such conjectures are frequently implicit in the final formulations of these conjectures. 

Such premises are the properties (or a subset of them) assigned to the figure by the 

steps of the construction. 

During this phase it is also possible for the solver to notice two construction (or point) 

invariants in particular and try to link them. The solver may either 

a) link the two invariants through a conditional link (CL) choosing a rule of which they are 

a case of from his/her bag of mathematical knowledge (known theorems); 

b) or he/she links the two invariants through a CL expressed as a conjecture to be 

proved (the conjecture is not a known theorem). 

Phase 2: intentionally-induced-invariant phase 

The solver encounters an interesting configuration (frequently through wondering 

dragging), and decides to investigate “when the initial construction falls into this case” 

using maintaining dragging. Here our cognitive model described in sections 4.1, 4.2, 4.3, 

4.4, and 4.5 applies, leading to a conjecture that links and IOD and an III. 

The exploration of the particular interesting configuration may continue with the repetition 

of the phases described above, when dragging a different base point of the construction. 

Phase 3: additional-construction-invariant phase 

The solver notices (or looks for) a new interesting configuration, which s/he recognize(s) 

as a subcase of a previously explored case. In order to investigate this new case (for 

example the case “square” after having analyzed “rectangle” as an III) the solver 

modifies the initial construction by linking a base point to a curve (the geometrical 

description of a path) that s/he has discovered implies the more general case. The 

solver then proceeds through the phases described above, exploring the new 
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construction. More cycles of exploration of this type may be added depending on the 

possible subcases of a given initial construction. For example, the exploration of a 

quadrilateral may have at most four cycles2: 1) trapezoid; 2) parallelogram; 3) rectangle 

and rhombus; 4) square. 

 

In the following section we provide an example of what an exploration that takes 

into account all the elements of the model we have introduced might look like. We will 

then re-describe the model in terms of tasks and subtasks that the solver can engage in 

during each phase described above, to relate our new description of the model to our 

previous task-based one. 

 

4.6.2 A Complete Hypothetical Exploration 

The step-by-step open construction problem presented in Problem 1 is the 

following. 

- Draw three points: A, M, K; 

- construct point B as the symmetric image of 

A with respect to M; 

- construct point C as the symmetric image of 

A with respect to K; 

- construct the parallel line l to BC through A; 

 - construct point D as the intersection of l with 

the perpendicular to l through C. 

- Consider the quadrilateral ABCD. Make 

                                                 
2 Given a construction with additional constraints like in our activities there are fewer cycles, 
because some cases become coincident under the construction constraints. 

Figure 4.6.2 ABCD as a result of the step-by-
step construction. 
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conjectures on the types of quadrilaterals that it can become, describing all the possible 

ways it can become a certain quadrilateral. Write your conjectures and then prove them.  

We can start by dragging the base point A and noticing that points B, C and D 

move as a consequence of Aʼs movement. The length of segment BC, however, seems 

to remain invariant for any movement imposed on A. This can lead to perceiving the 

length of BC as an A-invariant or as a (derived) construction invariant. At this point we 

could either go back to the steps of the construction and try to get a better grip on the 

nature of the length of BC, or we could drag a different base point to see if it still seems 

to be invariant. Letʼs assume we try to drag point M. As soon as we start dragging this 

point, if we are still focused on the length of BC, we will very likely see that the length is 

not an M-invariant. Therefore the length of CB cannot be a construction-invariant. We 

might now focus on what seems to be another property of ABCD, that it appears to 

“always” be a right trapezoid. Therefore this property is likely to be a construction-

invariant. The observation may lead to a first conjecture: “ABCD is a right trapezoid”, and 

we could provide an argumentation involving basic and derived construction-invariants 

(the right angle in D and thus in C, and the parallel bases BC and l) as to why this might 

be the case.  

At this point we could start looking for other possible types of quadrilaterals that 

ABCD might become. We could have noticed during our previous dragging that the 

configuration “rectangle” seemed to appear sometimes, or we might not have noticed 

this and we can start dragging a base point, say M, to see if this configuration is possible 

to obtain visually. It could help us to use a characterizing property of rectangles like “a 

rectangle is a quadrilateral with four congruent right angles” (basic property), that we can 

slim down to “the angle ABC is right” thanks to the construction-invariants of our figure.  
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Having seen a few different possible rectangle-configurations may help us 

believe in the existence of a path along which dragging the base point M will induce the 

angle ABC to be right (thus our potential III). Therefore, now we can try to use 

maintaining dragging to maintain the III and search for a GDP in order to reach an IOD. 

Activating the trace of M may help us to perceive and describe a GDP, as shown in the 

figure. 

The red mark left by the trace tool together with 

the haptic perception can lead us to a GDP like 

“the circle with diameter AK”. The IOD, therefore, 

could be “M moves along the circle with diameter 

AK”. Once we have reached an idea for an IOD 

we may try to 

focus our 

attention both on the III and on the IOD (or quickly 

alternate or focus from one to the other repeatedly) and 

try to check their simultaneity. At this point we can try to 

check our idea by intentionally dragging along the GDP 

(which we may also decide to construct geometrically) 

and checking that the III is actually maintained. This is a 

soft dragging test that allows us to check the existence of a CL between the IOD and the 

III. 

Figure 4.6.3 ABCD as maintaining 
dragging with the trace activated is 
performed. 

Figure 4.6.4 Soft dragging test 
after having constructed the 
GDP. 
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At this point we may feel convinced enough to formulate a conjecture, but we 

might also decide to construct the IOD robustly, thus creating an additional-construction-

invariant to the Cabri-figure. We can do this by 

linking M to the circle we constructed. Now any 

base point we drag should allow us to perceive our 

original III (angle ABC is right) as a (derived) 

construction-invariant. Moreover, since the III was 

a bridge property, a sufficient condition for ABCD 

to be a rectangle, the property “ABCD rectangle” 

should now appear to be a (derived) construction-

invariant. The verification of these facts occurs during a robust dragging test. 

A possible conjecture we could formulate is: “If M is on the circle of diameter AK, then 

ABCD is a rectangle.” In this case our figure passes the robust dragging test and our 

conjecture seems like a “good one” that we can now try to prove. 

We can decide to continue our exploration by seeing whether ABCD can become 

other types of quadrilaterals. Since we have robustly constructed a rectangle at this 

point, adding a construction-invariant to the 

initial figure produced by the step-by-step 

construction, we might decide to use wandering 

dragging on the new Cabri-figure to try to induce 

types of quadrilaterals that are particular types 

of rectangles, for example squares. 

Once we visually perceive that a new 

particular configuration is possible, we can 4.6.6 The property AM congruent to MK is 
constructed robustly. 

 

 

Figure 4.6.5 Wandering dragging on the 
new Cabri-figure dragging base point 
M. 
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proceed as before, trying to induce this property (or a minimum basic property) as an 

invariant through maintaining dragging. In this case wandering dragging shows us that it 

is not possible to “maintain” continuously the property “ABCD square”, however we can 

find two choices for M along the circle which seem to induce the desired property. We 

can try to characterize these positions (a sort of discrete path) and formulate a new 

conjecture. For example, in both “good positions” the segments KM and AM seem to be 

the same length. We can check the sufficiency of such property by dragging M (a sort of 

soft dragging test). Moreover we can construct the property robustly by constructing the 

perpendicular bisector of KA and redefining M on the intersection of the circle and such 

perpendicular bisector, as shown below. 

We now have a new additional-construction-invariant, which induces a whole 

new set of (derived) construction-invariants on the new Cabri-figure. Performing a 

(robust) dragging test on the new Cabri-figure visually confirms the simultaneity of the 

occurrence of the invariants we are interested in (“ABCD square” and “AM congruent to 

MK”), thus verifying a CL and leading to the formulation (or confirming it) of a conjecture 

like: “If M lies on the circle of diameter AK and AM congruent to MK, then ABCD is a 

square.” 

 

Conclusion. We can generalize the steps introduced in the simulated exploration, as 

we did in section 4.1, adding the new tasks introduced in the simulated exploration 

above. 
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• Task 1: Search for construction invariants. 

o This can occur through a distinction of point-invariants from construction-

invariants. 

o Initial conjectures may be expressed on derived-construction-invariants. 

• Task 2: Determine a configuration to be explored by inducing it as a (soft) 

invariant (III): through wandering dragging the solver can look for interesting 

configurations and conceive them as potential invariants to be intentionally 

induced. It may help to 

o search for a basic property (usually a necessary and sufficient condition) 

that induces the interesting configuration; 

o slim down the basic property to a minimum basic property (sufficient 

condition). 

• Task 3: While maintaining the interesting configuration (or the minimum basic 

property) using maintaining dragging and maintaining dragging with the trace 

activated, look for “a condition” that makes the III be visually verified. This can 

occur through  

o a geometric interpretation of the trace 

o a geometric interpretation of the movement of the dragged base point. 

The “condition” may be considered the movement of the dragged base point 

along a path which can be described geometrically. The belonging of the dragged 

base point to a path with a geometric description (GDP) determines the invariant 
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observed during dragging (IOD), and since this invariant arose as a “cause” for 

the III, a conditional link (CL) between the IOD and III may be also determined. 

• Task 4: Verify the CL through the dragging test. This requires the 

accomplishment of (at least some of) the following subtasks: 

o represent the IOD through a construction of the proposed GDP; 

o perform a soft dragging test by dragging the base point along the 

constructed path; 

o perform a robust dragging test by providing (and constructing) a GDP that 

is not dependent upon the dragged base point and redefine the base 

point on it in order to have a robust invariant, then perform the dragging 

test. 

• Task 5: Construct the additional-construction invariant (the IOD found above) 

robustly (if not already done in previous step) and continue the exploration 

investigating configurations that are subcases of the previously induced 

configuration by repeating tasks 1, 2 and 3. 

Table 4.6.1: A more complete task-based description of the MD-conjecturing Model  

 

(Basic or Derived) Construction-Invariant 

 

Geometrical property of a construction that 
is described explicitly in its steps (basic 
construction-invariant) or that can be 
deductively derived from the basic 
construction invariants (derived 
construction-invariant). A construction 
invariant is property that is true for any 
choice of the base points, and therefore it 
is a robust property. 

Point-Invariant (P-invariant) Geometrical property that is true for any 
choice of base point P of the construction, 
while the others remain fixed. a P-invariant 
is a robust property under dragging of P. 

Basic Property Geometrical property that characterizes the 
interesting configuration that the solver 
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wants to investigate 
Minimum Basic Property Basic property “slimmed down” (thanks to 

the properties derived from the steps of the 
construction) to a sufficient condition to 
induce the interesting configuration. 

Additional-Construction-Invariant Newly added robust property of the Cabri-
figure 

Table 4.6.2: New key elements of the MD-conjecturing Model  

 
 
 

4.7 Concluding Remarks 

Throughout this Chapter we have described our cognitive model for conjecture-

generation, and used it as a tool of analysis for different excerpts of studentsʼ 

explorations. During the exposition we have highlighted some critical moments of the 

process of conjecture-generation described by the model, such as the determination of 

an III, using maintaining dragging to induce it as an invariant, conceiving a path and an 

IOD and conditionally linking it to the III, checking the CL, and formulating a conjecture. 

In Chapter 5 we will describe studentsʼ difficulties that arose with respect to these critical 

moments. Before doing so, we provide a table summarizing the subtasks related to the 

invariant-type phases of the model and the dragging modalities used during each of 

them. 
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Table 4.6.3: Model as invariant-type phases with related subtasks.  

Phase of the Model Subtasks Dragging Schemes 
Used 

distinction of point-
invariants from 
construction-invariants 

wandering dragging point-invariant and construction-
invariant phase 

formulation of initial 
conjectures 

dragging test (robust) 

determine an III wandering dragging 

find a (minimum) basic 
property 

no dragging, wandering 
dragging, dragging test 
(soft) to test sufficiency of 
condition 

maintain the III maintaining dragging 

find a GDP and provide 
an IOD 

maintaining dragging, 
dragging with trace 
activated 

intentionally-induced-invariant 
phase 

verify the CL dragging test (soft and/or 
robust version) 

construct the IOD from 
previous phase robustly 

redefinition of point on 
object 

additional-construction-invariant 
phase 

repeat previous phases 
on new construction 

all the dragging above 
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CHAPTER V 
 
 
 

THE CONJECTURING PROCESS UNDER THE LENS OF THE MD-CONJECTURING 

MODEL: SOME STUDENTSʼ DIFFICULTIES 

 
 
 

In the previous chapter we saw how different solvers seemed to use maintaining 

dragging in an efficient and spontaneous way, after the in-class introduction, and we 

referred to such appropriated use as “expert use”. In this chapter we interpret studentsʼ 

difficulties related to expert use of MD that arose during the activity-based interviews. 

We base such interpretation on what we have identified as four fundamental 

components that a solver seems to need to master in order to use the MD as a tool for 

conjecture-generation. The components seem to be rooted in some of the major 

differences between conjecturing in a paper-and-pencil environment and in a DGS that 

we have described in Chapter 2. In particular, we advance the hypothesis that if a solver 

does not perceive a Cabri-figure dynamically but statically as if s/he were using paper 

and pencil, s/he will encounter difficulties in differentiating geometrical properties of a 

figure (even though this may be a Cabri-figure) from invariants of a dynamic-figure. An 

outcome of this behavior seems to be what we will describe as is a difficulty to overcome 

“basic conjectures” (Section 5.1).  

In addition, the MD-conjecturing Model can be used to highlight difficulties in the 

perception of invariants, especially of soft invariants. In this regard we advance the 

hypothesis that the solver needs to be mentally flexible: as a soft invariant is
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being induced the solver might perceive new induced invariant properties which appear 

simultaneously, but this can occur only if the solver is able to balance his/her 

expectations with mental flexibility in order to not lock onto particular ideas that inhibit the 

formation of new ones. In this chapter we will introduce these and other difficulties that 

have to do specifically with the process of conjecture-generation described by the MD-

conjecturing Model through examples that arose during studentsʼ explorations. 

The first four sections of this chapter are each dedicated to one of these 

components: developing transitional basic conjectures (Section 5.1), conceiving a 

property as an III (Section 5.2), being mentally flexible (Section 5.3), being aware of the 

status of objects (Section 5.4). Finally in the last section of the chapter we introduce 

some spontaneous behaviors that solvers exhibited for overcoming difficulties related to 

maintaining dragging (Section 5.5), and from which we developed prompts to help other 

students address similar difficulties. 

 

5.1 Developing Transitional Basic Conjectures 

Analyzing the data generated from the activity-based interviews, we found that 

many solvers start their explorations with a preliminary phase, before starting to use 

maintaining dragging. During this phase the solvers would develop what we call “basic 

conjectures”. Per se basic conjectures are not “inappropriate” with respect to conjecture-

generation as described by our model, however if not overcome, they may hinder the 

use of maintaining dragging during the rest of the exploration. Moreover, for some 

students basic conjectures seem to dominate the exploration, inhibiting the generation of 

other conjectures that link an III and an IOD even when these invariants have been 

found through use of maintaining dragging. 
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In the introduction to this chapter we highlighted differences in possible 

processes of conjecture-generation in a paper-and-pencil environment and in a DGS. 

We advance the hypothesis that solversʼ inability to perceive such differences can lead 

to difficulties in exploiting the potential of the DGS. In particular, if a solver does not 

perceive a Cabri-figure dynamically but statically as if s/he were using paper and pencil, 

s/he will encounter difficulties in differentiating geometrical properties of a figure (even 

though this may be a Cabri-figure) from invariants of a dynamic-figure. For example, letʼs 

assume a solver has constructed a Cabri-figure corresponding to the steps of an activity, 

and s/he starts dragging and stops when s/he thinks the configuration is “interesting” 

because “it is a parallelogram”. At this point the solver freezes the image and treats the 

figure as if it were in a paper and pencil environment, formulating conjectures about the 

configuration “parallelogram”. Therefore these conjectures will have “the quadrilateral is 

a parallelogram” as a conclusion and some basic property the solver has thought of as a 

premise. In this case the solvers seem to perceive a relationship of logical dependency 

between the basic property and the interesting configuration – treated also as a 

geometrical property – but they do not seem to conceive these properties as invariants 

with respect to dragging, that is with respect to the movement of a particular base point 

or even of any base point at all. It is with respect to such frozen figure and to the 

properties that solvers assign to them that we observe the emergence of what we called 

a basic conjecture: 

a particular type of conditional statement in which the conclusion is an 

“interesting configuration” and the premise is a basic property (or minimum basic 

property) with respect to the interesting configuration described in the conclusion 

of the conjecture itself.  
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Therefore basic conjectures do not lead to the introduction of new information with 

respect to the interesting configuration, however basic conjectures can be held by the 

solver with a strong degree of belief. This seems to be the case because they are based 

on definite knowledge (definitions or theorems, usually, that the solver knows). Therefore 

some solvers seem to be satisfied with them and do not feel the need to continue their 

exploration in a different direction. In subsection 5.1.1 we provide examples of basic 

conjectures developed in a first phase of different solversʼ explorations, and we show 

how sometimes these are spontaneously overcome whereas other times solvers seem 

to “fix on” them and do not spontaneously feel the need to continue their exploration. In 

this case we speak of a “block at a basic conjecture” which needs to be overcome in 

order to proceed with maintaining dragging. Then, in subsection 5.1.2 we show how 

“fixing on” basic conjectures may inhibit the accomplishment of other tasks described in 

the MD-conjecturing Model even when maintaining dragging is performed by the solvers.  

 

5.1.1 Basic Conjectures in the Preliminary Phase 

For various solvers, once a basic conjecture is expressed on a static 

configuration, there does not seem to be a need to go on and further explore the 

particular interesting configuration. Below are some examples of students reaching basic 

conjectures during a preliminary phase of the exploration. The first excerpt (5.1.1.1) 

shows an example of two solvers developing a basic conjecture, but immediately 

overcoming it and initiating maintaining dragging spontaneously. The second (5.1.1.2) 

and third (5.1.1.3) excerpts show examples of solvers feeling satisfied with basic 

conjectures. In these cases the solvers did not initiate maintaining dragging 

spontaneously, and felt they had completed the activity by providing the basic 

conjectures they wrote down. 



 203 

 

Excerpt 5.1.1.1 (same as 4.2.5). Let us now consider this excerpt, from two 

studentsʼ exploration of Problem 2. We used it in Chapter 4 to exemplifies the 

identification of a basic property, slimmed down to a minimum basic property, which the 

solvers use to obtain the configuration they are interested in. We use the excerpt here to 

show how the solvers have actually developed a basic conjecture, but immediately 

overcome it, with the intention of performing maintaining dragging. The name of the 

solver who is performing the dragging is in bold letters. 

 

Figure 5.1.1.1: A screenshot of F & G's exploration 

Episode 

[1] F: wait,  it is a…letʼs try to for 

example make it become a 

parallelogram. 

[2] G: No… yes, go. 

[3] F: Like this. 

… 

[8] G: I understand! so, C… we have 

Brief Analysis 

F proposes to try to make ABCD a 

parallelogram ([1]) and seems to be unsure 

about how to drag the base point D in order to 

do this.  

 

 

G conceives a basic property ([8]), which 



 204 

to have the diagonals that intersect 

each other at their midpoints, right? 

[9] F: Right. 

[10] G: And we know that CA is 

always divided by P. 

[11] F: exactly, so… 

[12] G:  therefore itʼs enough that PB 

is equal to PD. 

[13] F: exactly. 

[14] G: you see that if you do, like, 

"maintaining dragging"… trying to let 

them more or less be the same 

[15] F: exactly… well, okay. 

implies a basic conjecture like: “If the diagonals 

of ABCD intersect at their midpoints, it is a 

parallelogram”. Notice the “have to have” ([8]) 

implying logical dependency with the property 

“ABCD parallelogram”. 

 

G proceeds to “slim down” the basic property 

making it into a minimum basic property, 

leading to a second implied basic conjecture: “If 

PB is equal to PB then ABCD is a 

parallelogram.” The solvers do not stop at this 

basic conjecture, but use its premise as a 

bridge property to pursue maintaining dragging. 

Table 5.1.1.1: Analysis of Excerpt 5.1.1.1 

In this case the solvers do not even seem to be interested in writing down the 

basic conjecture they have developed. Instead they seem to make use of the condition 

expressed in the premise as a bridge property to help induce the III they have chosen 

through maintaining dragging. In other words, the solvers do not consider the basic 

conjecture to be a solution to the initial task, but instead an intermediate step in the 

description of the configuration they are investigating. As we will discuss in further depth 

in Chapter 6, overcoming a basic conjecture seems to become spontaneous in expert 

solvers, and in particular who have developed such scheme as a tool for searching for a 

“cause” of a given invariance – which will be interpreted geometrically as a “condition 

under which” the given invariance occurs. For solvers who intend to “search for a cause” 

of invariance of the III, the premise of a basic conjecture does not provide a satisfactory 
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answer, thus they will spontaneously continue the exploration using maintaining 

dragging. 

We would like to note that these behaviors provide insight into the solversʼ 

interpretation of the task of formulating conjectures. The mathematical meaning of such 

a request is not obvious or simple to capture, nor had it been explicitly clarified. However 

it seems like the development of expert use of maintaining dragging comes together with 

a particular interpretation of the task of formulating conjectures. We will discuss this 

further in Chapter 7. 

 

Excerpt 5.1.1.2. In this excerpt the solvers start from the interesting configuration 

of “rectangle” and find a potential minimum basic property through dragging. They then 

argue why this is enough using a basic property which they then try to make into their 

minimum basic property and justify their choice through an argumentation that does not 

involve any dragging at all. They are satisfied with their conjecture and write it down, 

without wanting to continue the exploration any further. The solvers then explain why 

they are convinced to have answered the question of the activity. 

 

Figure 5.1.1.2: A screenshot of the solversʼ exploration. 
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Episode 1 

[1] Pie: If, uhm, it is a rectangle, M...uhm, AB has to be 

perpendicular to AD...and let's see if only this property, 

that... 

[2] Ale: Yes, 

[3] Pie: that brings along, let's say, all the others. 

[4] Pie&Ale: It looks like yes...[they speak together and it is 

hard to understand] 

[5] Pie: If AB were perpendicular to l, ...it means that... 

[6] Ale: So if it's perpendicular to l it means 

[7] Pie: ..that AD is equal to BC...let's see why 

[whispering]...because BC 

[8] Ale: No, AB is equal to CD. Because AD is equal to BC, 

uh...is by construction, I mean 

we constructed it parallel.  

[9] Ale: If we have, uhm, AB 

perpendicular to l, and CD 

perpendicular to l,  then they 

are both parallel. 

[10] Pie: Well, CD perpendicular to l... 

Brief Analysis 

Pie seems to start from the 

interesting property 

“rectangle” ([1]) and work 

backwards through basic 

properties which he slims 

down through an 

argumentation. 

Pie picks up his minimum 

basic property (“AB 

perpendicular to l” ([5]) 

again and seems to argue 

why it is sufficient, calling 

into the picture properties 

derived from the steps of 

the construction. 

 

Episode 2 

[11] I: Uhm, so the conjecture, excuse me, what is it? 

because I do not know what you are starting from. 

[12] Ale: ...from the rectangle. A rectangle is the figure that 

Brief Analysis 

The interviewer asks for 

the solvers to make their 

conjecture explicit. 
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has two sides...the opposite sides parallel... 

[13] I: uh huh... 

[14] Ale: and all the angles of 90 degrees. 

[15] I: Ok. 

[16] Ale: So, if we know that 

by construction we have AD 

parallel to BC, ...by 

construction...then we made 

CD by construction parallel to 

l... 

… 

[21] I: Yes, perpendicular. 

[22] Pie: Yes, it's right. Yes, because, I mean the segment 

AD is always parallel to BC. 

[23] I: Ok. 

[24] Ale: Yes. 

[25] Pie: CD by construction is perpendicular to AD,  

[26] I: ok... 

[27] Pie: so therefore we have...this way we have one pair 

of parallel sides 

[28] I: Yes... 

[29] Pie: So if we put that AB is perpendicular to l...and 

since CD is perpendicular to l... 

[30] Ale: Then they are... 

 

Ale restates a basic 

property his is starting his 

reasoning with ([12], [14]). 

 

 

 

 

The solvers go over the 

argumentation once again 

leading to the minimum 

basic property they have 

obtained (“AB 

perpendicular to l” ([29]). 

 

The solvers perform no 

dragging in this episode. 
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[31] Pie: two straight lines that are perpendicular to the 

same object are parallel themselves...we could say. 

Episode 3 

[32] I: So...what's the conjecture? 

[33] Pie: That if AB is perpendicular to l, then the 

quadrilateral ABCD is a rectangle. 

… 

Brief Analysis 

Pie states the conjecture, a 

basic conjecture, which the 

solvers are satisfied with. 

Episode 4 

[I has asked whether they feel that they have answered 

the question proposed in the activity] 

[34] Ale: Yes, because they are the only figures that have 

two sides, uh two right angles.. 

[35] Pie: and two parallel sides. 

… 

[38] Pie: Therefore we could do ...some other exploration 

[starting to drag the base point A]. 

[39] Pie: I mean it 

doesn't...[he starts dragging 

K]...see it doesn't 

[40] Pie: without taking 

those types of figures. 

[41] Ale: Uh, we had to ... 

[42] Pie: In this case we have always varied...[he goes 

back to dragging A]. 

Brief Analysis 

The solvers seem to be 

uncertain how to continue 

the exploration, but they 

seem to be satisfied having 

looked at the cases of 

figures with two parallel 

sides and two right angles. 

Pie tries to move different 

base points, but Ale 

interrupts emphasizing the 

fact that they have already 

obtained all possible 

figures. 
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[43] Ale: The only figures that we can obtain are those. 

Episode 5 

[44] I: Ok. So let's try to answer the question "trying to 

describe all the ways in which it is possible to obtain a 

certain type of quadrilateral." 

[45] Ale: so... 

[46] I: You can maybe concentrate on the rectangle? 

[47] Ale: So, first of all we can say that in order to obtain a 

quadrilateral, I mean the quadrilateral that we have to 

obtain has to have to sides, uh two right angles and two 

parallel sides. 

[48] Pie: It always has two, I mean the quadrilateral ABCD 

by construction always has a pair of parallel sides and two 

consecutive right angles, C and D. 

[49] Ale: Ok. Therefore the figures that we can obtain are a 

rectangle, a square, or a right trapezoid... 

[50] I: Ok. 

[51] Ale: We have said...we made the conjectures on each 

of these figures. 

Brief Analysis 

The interviewer prompts 

the solvers to think about 

the initial question and to 

try to respond thoroughly. 

 

The solvers give their 

response and seem to be 

satisfied with having 

provided basic conjectures 

for the different types of 

quadrilaterals that they 

thought it was possible to 

obtain. 

 

The solvers perform no 

dragging in this episode. 

Table 5.1.1.2: Analysis of Excerpt 5.1.1.2 

In Episode 1 the solvers develop the premise of their basic conjecture: “AB 

parallel to l” by slimming down a basic property. They finally state their conjecture and 

write it down when prompted (for the second time) in Episode 3. It seems that they need 

to convince themselves of the conjecture through oral argumentations (Episodes 1 and 

2) and not through dragging. Using oral argumentations seems to be a recurring feature 
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of preliminary phases of explorations in which basic conjectures are developed. 

Moreover we can notice how in the argumentations related to the slimming down of the 

basic property and to the basic conjecture there are all the necessary steps for a formal 

proof of the conjectured-statement. It is possible that the solvers feel satisfied in having 

produced such a convincing argument (very close to a proof) and thus that they feel 

confident they have “explained the case of the rectangle.” 

The solversʼ attention to basic properties seems to inhibit their perception of other 

properties or the relationships between them as invariants with respect to dragging. 

Instead it seems as if they perceive simultaneity of properties and relationships between 

them in a particular instant that they want to freeze. Episodes 4 and 5 show how the 

solvers are not able to overcome their basic conjecture, feeling that they have thoroughly 

answered the question asked in the Problem.  Although Pie starts to drag some base 

points (A and then K) in Episode 4 to “do some other exploration” ([38]), when Ale 

interrupts him and then explains why it is enough to do what they had done, Pie seems 

to become convinced that no more dragging is necessary. So no more conjectures are 

generated and no maintaining dragging is used. 

 

Excerpt 5.1.1.3. This excerpt provides an example of the formulation of a basic 

conjecture in the preliminary phase of an exploration, in terms of “finding conditions to 

add” in order to obtain a particular type of quadrilateral. The solvers seem to be satisfied 

with their basic conjecture, and are not able to overcome it and start using maintaining 

dragging. Up to this point the excerpt is similar to the previous one, however, after a 

destabilizing prompt of the interviewer who asks them to re-read the question in the 

activity, they check which points can be dragged and formulate a new conjecture, though 



 211 

still a basic one. This shows the strength of basic conjectures and the difficulty to 

overcome them. 

Episode 1 

[1] Sa: because it's perpendicular to that other one. 

[2] Gian: Yes. 

[3] Gian: So, if we don't 

add any condition, it's a 

right trapezoid. We have 

two right angles, and 

perpendicularity. 

[4] Gian: Then if we add the condition that also AB is 

perpendicular to l, we have a 

rectangle. 

[5] Sa: uh huh 

[The solvers get involved in 

formulating a basic conjecture for the 

“case of the square”.] 

… 

Brief Analysis 

The solvers seem to 

interpret the task in terms 

of conditions on the base 

points, to add in order to 

obtain particular types of 

quadrilaterals. 

They choose the condition 

“AB perpendicular to l” 

and state their basic 

conjecture ([4]). 

Episode 2 

[15] I: So let's work on the rectangle, like before. 

[16] Gian: Yes. 

[17] I: Try to answer the question to describe all the ways in 

which it is possible to obtain a certain type of quadrilateral. 

[18] Gian: uh huh. So, these cannot be moved, so... 

Brief Analysis 

I prompts the solvers to go 

back to answering the 

question in the activity, 

concentrating on the case 

of the rectangle. 
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[19] Sa: B can't be moved 

[20] Gian: No, and C neither, so only A, M and K. 

[21] Sa: like before. 

[22] Gian: So,  

[23] Gian: when...AB 

is perpendicular to ... 

[24] Sa: when MK is 

perpendicular to 

MA...it is a rectangle. 

[25] Gian: Yes. 

The question leads Gian 

to trying to drag to check 

which points move and 

thus which points are 

base points. This seems 

to lead Sa to finding a new 

condition related to the 

base points, which she 

uses as a new premise to 

the basic conjecture. 

Table 5.1.1.3: Analysis of Excerpt 5.1.1.3 

In Episode 1 the solvers seem to interpret the task of the activity in terms of 

“adding a condition” to a quadrilateral in order to obtain a more particular type of 

quadrilateral. The basic conjecture they formulate is reached through a wandering 

dragging strategy which only allows the solvers to reach a case of the interesting 

configuration and visualize and confirm hypotheses on what a sufficient condition might 

be to obtain the interesting configuration. The conjecture they reach is a basic conjecture 

because the condition expressed in the premise is a minimum basic property. 

In Episode 2 the solvers are prompted to reply to the question in the activity, and 

although this seems to lead Gian to some dragging, it does not lead the solvers to 

overcoming their basic conjecture. The attention to the base points seems to only lead 

Sa to perceiving a new minimum basic property referred to the base points of the Cabri-

figure instead of only to vertices or sides of the quadrilateral ABCD. Although the basic 

conjectures have not been overcome, the new conjecture is a step forward with respect 

to the search for a condition that depends on the base points. 
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5.1.2 Persistence of Basic Conjectures in Later Phases of the Exploration 

As we described in the previous section (5.1.1) we found that the fixity of basic 

conjectures may influence the preliminary phase of explorations in which maintaining 

dragging might otherwise be used. The exploration leads to an interesting configuration 

which the solver freezes and treats as if it were in a paper and pencil environment, 

developing basic conjectures strengthened by arguments based on theorems and 

definitions. At this point solvers feel satisfied and convinced that they have answered the 

question in the activity.  

We have also found that in cases in which an exploration apparently is coherent 

with what we describe in our model – and solvers use maintaining dragging either 

prompted by the interviewer or on their own – some solvers are not able to perceive an 

IOD, or, when they are, they might not be able to (or interested in?) reach(ing) a 

conjecture that links the IOD and the III conditionally, and they resort to a basic 

conjecture. In particular, in this subsection, we will show how persistence of a basic 

conjecture can inhibit the discovery of an IOD in a case in which solvers are prompted to 

use maintaining dragging by the interviewer (Excerpt 5.1.2.1). Moreover, especially 

when maintaining dragging is prompted by the interviewer, we have witnessed different 

cases in which even after the emergence of an IOD, the solvers would resort to their 

basic conjecture instead of linking the III and the IOD at the end of their exploration (see 

Excerpt 6.1.2). What we found even more interesting were cases in which solvers would 

spontaneously use maintaining dragging but then be unable to put together the III and 

the IOD in their final conjecture, ultimately resorting to a previous basic conjecture. We 

will show an example of this in Excerpt 5.1.2.2. 
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Of course probably difficulties in conceiving the invariants in the terms we 

describe in our model will have been present before the final phase of the formulation of 

the conjecture, but as external observers we can only catch such difficulties when they 

arise and lead to behaviors that are not consistent with what our model might predict. 

Thus we say that the fixity of basic conjectures may have influence over the final phase 

of conjecture-formulation, since this is the phase in which such difficulties surface in 

most cases. 

The origin of difficulties which are manifested as resorting to a basic conjecture 

even after what seems to have been appropriate use – in the eyes of an external 

observer –  of maintaining dragging may be different for different solvers. Definitely 

making the final transition from the physical experience and the perception of invariants 

in a dynamic environment to the static world of Euclidean geometry is not a simple 

matter since it involves conceiving the invariants (properties with respect to movement) 

once again as static geometrical properties (as traditionally perceived in a paper-and-

pencil environment, for example). Moreover there may be difficulties in interpreting the 

haptic perception in terms of logical dependency of the geometrical properties 

corresponding to the perceived invariants, that is, in making the transition from 

simultaneity plus direct or indirect control to logical dependency. However we propose 

an explanation as to why solvers might not be able to overcome a basic conjecture even 

after having performed maintaining dragging in a way that seems coherent with our 

model. Such explanation involves the solversʼ interpretation of what is happening during 

the exploration from a meta-level, as a key to most of the difficulties we have witnessed 

at this point of the process of conjecture-generation, as we will describe also in Chapter 

6. The key element that seems to lead solvers to success or non-success in the 

formulation of conjectures as described by our model seems to be the solversʼ 
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understanding of maintaining dragging as a tool to search for a “condition” or a “cause” 

of a certain III to be visually maintained. Moreover such “cause” may be expected as 

dragging a point along some path to be made explicit during the explorations. It seems 

like when there is such an intention in the solversʼ actions, the exploration is easily 

“made sense of” and the pieces of the conjecture seem to naturally fall into place. On the 

other hand, when there does not seem to be such awareness or the intention of 

searching for a cause and conception of a path, maintaining dragging may be performed 

in a technically “correct” manner, but it may not lead to insight in developing a 

meaningful conjecture that links the IOD and the III logically. Thus many solvers seem to 

resort to basic conjectures even after having performed maintaining dragging in a way 

that (in the eyes of an external observer might have) seemed coherent with the model. 

We will discuss this in further detail in Chapter 6 when we introduce the notion of 

instrumented abduction through which we describe the overarching cognitive process 

that seems to be associated with solversʼ use of maintaining dragging as an instrument.  

Once again, we are dealing with indirect evidence, since we cannot directly 

access what is going on in solversʼ minds, but only make inferences based on their 

words and behavior. As described in earlier sections of this chapter and in Section 4.4, it 

is difficult, within the data we have collected, to obtain evidence of the fact that the solver 

has perceived a conditional link, as it can only be observed indirectly through behaviors 

that can be considered “symptoms” of its existence or not in the mind of the solver. The 

relationship between what can be directly seen, the figure, the solversʼ words, and their 

thoughts is very delicate and it may only be inferred through interpretation of the 

observable data. The main evidence we use to infer a difficulties in overcoming basic 

conjectures once maintaining dragging has been performed is a hesitation or block at the 

formulation of a conjecture after an investigation. We also consider evidence of these 
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difficulties to be cases in which solvers seem to use maintaining dragging in a way that 

is apparently coherent with our model, but then formulate conjectures which do not take 

into consideration the IOD or the III they had seemed to be working with. We 

hypothesize that there are difficulties at different levels in this final process, and we will 

analyze some in detail in the excerpts below.  

 

Excerpt 5.1.2.1. This excerpt is taken from two solversʼ exploration of Problem 4. 

The solvers seem to properly perform maintaining dragging with the trace activated, and 

even recognize a circle from the trace, but they do not link this finding to the property 

being maintained. They even explicitly state that maintaining dragging is not possible, 

after having recognized the circle, and explain their experience in terms of a basic 

conjecture. The name of the solver who is holding the mouse is in bold letters. 

Episode 1 

[1] Ila: ...parallel to AB and CA has to always be 

parallel [perpendicular?] to AB. 

[2] I: Alright. And so you are 

saying that there is no way of 

dragging A maintaining this 

property? 

[3] Em: [murmuring]...because 

wait 

[4] Ila: Yes, well, but even if we 

move it in this case...it is as if there were a circle. 

[5] Em: you don't say!! [ironic] 

Brief Analysis 

Ila restates the previous 

conjecture ([1]), in an attempt to 

explain why maintaining 

dragging is not possible in this 

case. The interviewer tries to 

make the explanation explicit by 

asking for confirmation of this 

impossibility of performing 

maintaining dragging ([2]).  

The solvers once again attempt 

to perform maintaining dragging 
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[6] Ila: [murmurs something] 

[7] Ila: Excuse me, do a circum...give me! [she grabs 

the mouse] 

… 

[15] Ila: So, I think there 

is ...in order for it to be a 

rectangle [it: "perchè 

sia"]...well, but ... 

[16] Ila: or... 

[17] Em: Or maybe, I think we have to do, put 

[18] Ila: B there! 

[19] Em: B there...and see when it maintains the 

property, no? 

[20] Ila: When it moves...it forms a circle. 

[21] Em: Yes, but try to see where the center is. I think 

the center... 

… 

 

[The solvers have some 

difficulties constructing 

the circle.] 

with the trace activated. This 

time they seem to be 

successful, and they even 

recognize a circle ([4]) in the 

trace, which they proceed to 

describe and construct ([7]-

[30]).  

Ila seems to repeat how she 

sees a circle and a rectangle, 

but she does not seem able to 

relate them logically ([15], [29], 

[31]). 

Em seems to be attempting to 

make the connection. In 

particular she seems to be 

interested in seeing “when it 

maintains the property” ([19]), 

but she does not seem to see 

“dragging along the circle” to be 

this “when” or even less a 

cause for the maintaining of the 

property.  

The solvers seem to notice the 

circle, but not be able to 
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conceive movement along such 

circle as an IOD. 

Episode 2 

[28] I: What are you looking at while you...? 

[29] Ila: It's that I think a 

circle is being formed. I 

mean... 

[30] Em: Yes. 

[31] Ila: There is a rectangle 

and we can move A... 

… 

Brief Analysis 

The interviewer asks the 

solvers to explain what they are 

“seeing”. 

Ila seems to notice the circle 

([29]) in correspondence with 

the “rectangle” and movement 

of A ([31]) but she does not 

seem to relate these elements 

logically. 

Episode 3 

[37] Ila: and B, too, has to stay on the circle. 

[38] Ila: In order for it to be a rectangle... 

[39] Em: Eh! 

[40] Ila: yes. 

[41] Em: but if I move A. Our intent is that we have to 

start... 

… 

Brief Analysis 

Although an III and an IOD 

seem to be present the solvers 

do not seem to be able to make 

sense of them. 

 

 

 

 

Episode 4 

[46] Em: No, I think it is not possible to move it, 

because we start between...from the instant in which, 

Brief Analysis 

Finally Em states that “it is not 

possible to move it” ([46]), even 
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eh, it is a rectangle. I mean I already say that this is 

perpendicular. 

[47] Ila: Right. 

though she is unable to provide 

a satisfactory argument to this 

claim, and Ila seems to agree. 

Table 5.1.2.1: Analysis of Excerpt 5.1.2.1 

Probably since the solvers are not completely convinced by their argument, they 

once again attempt to perform maintaining dragging with the trace activated. Although 

they proceed to describe and construct this “circle”  ([7]-[30]), it does not seem to be 

related to the properties the solvers are interested in. In other words, they seem to 

dissociate the circle which they observe as an independent object ([4], [29]) from two 

lines remaining perpendicular, which seems to the minimum basic property they want to 

use for their III (“ABCD rectangle”).  Ila seems to repeat how she sees a circle and a 

rectangle, but she does not seem able to relate them logically ([15], [29], [31]). Moreover 

Ila seems to be relating the circle to other parts of the Cabri-figure: point B ([36]), the 

rectangle as a whole being “inside the circle” ([33], [35]); however she is not relating it to 

the movement of A. This further supports our claim that the circle is not conceived as a 

GDP and furthermore a path does not even seem to be conceived at a generic level as a 

“cause” for maintaining the III. 

We found this excerpt to be quite interesting and surprising since to an external 

observer, all the elements seemed to be in place for the solvers to conceive an IOD and 

formulate a conjecture that put the belonging of A to the circle in relationship with ABCD 

being a rectangle. However since in the end the solvers do not even believe it to be 

possible to perform maintaining dragging in this case, we are led to interpret the episode 

as being due to a difficulty in properly conceiving a path. The circle that is recognized 

does not seem to be linked to movement or to the maintaining of the III, thus it is not a 

path according to our model. 
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Excerpt 5.1.2.2. In their exploration, before this excerpt the solvers have found a 

basic conjecture, written it, and then continued their exploration using maintaining 

dragging. They reach what seems to be an IOD and they state a conjecture linking their 

III and IOD. However when they write their conjecture they switch the premise and the 

conclusion, and they mix it with their previous basic conjecture. The dominance of the 

basic conjecture over the new conjecture appears also in the solversʼ answer to the 

interviewerʼs request to repeat the conjecture: the solvers repeat their basic conjecture, 

not the one obtained by linking the IOD and the III that emerged during maintaining 

dragging. The excerpt is taken from two solversʼ exploration of Problem 3. 

 

Figure 5.1.2.2 A screenshot of the solversʼ exploration. 

Episode 1 

[1] Gin: I was thinking [murmurs something] 

[2] Gin: So, therefore, eh yes, for now this part of the 

circle. 

[3] Dav: Eh! 

Brief Analysis 

 

 

The solvers seem have 

conceived a path a provided 
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[4] Gin: We have to say that to construct...that 

[5] Gin: Eh, moving A it always remains a rhombus... 

[6] Gin: if A belongs to a circle with center M and radius 

MK? 

[7] Dav: Yes. 

[8] I: So, write this one... 

… 

[13] Gin: A belongs to the circle with center M [He writes: 

“AC⊥BD ⇒ ABCD rhombus ⇒ A∈ CM”] 

… 

a GDP as the circle with 

center M and radius MK ([6]). 

The first conjecture they 

state is: “ABCD rhombus 

implies A belongs to the 

circle with center M and 

radius MK” ([10]-[15]).  

There is no dragging in this 

episode. 

 

Episode 2 

[18] Gin: Because this way BKA 

[19] Dav: Yes. Yes, because... 

[20] Gin: ..is right... 

[21] Dav: Exactly, to this way ...yes, necessarily because 

it is inscribed in a semicircle... 

[22] Gin: So necessarily also the other three are right... 

[23] Gin: and it necessarily remains a rectangle. 

Brief Analysis 

Argumentation about why the 

conjecture makes sense. It 

seems that the solvers are 

using “A∈ CM” as their 

premise an trying to prove 

that ABCD is a rhombus. 

Episode 3 

[24] I: Wait, what are you starting from to make these 

considerations? 

[25] Gin: Well, so... that ABCD is a parallelogram. 

Brief Analysis 

I asks for a clarification about 

what the solvers are arguing. 

The new argumentation 

provided seems to invert 

premise and conclusion, 
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[26] I: Ok. 

[27] Gin: In order to ...a 

parallelogram with 

perpendicular diagonals is a 

rhombus. 

[28] I: Hmm... 

[29] Gin: Therefore, in order for ABCD to be a rhombus, 

it has to have AC and BD perpendicular. 

[30] I: Ok. 

[31] Dav: So BK... 

[32] Gin: So BKA is 90 degrees. 

[33] Gin: eh, here it happens, here BKA is 90 degrees, in 

this picture, because 

[34] Gin: It is an angle inscribed in a circle, that insists on 

a diameter, which is AB.  

[35] I: Ok. 

[36] Dav: Yes. 

again, showing instability in 

the status of the two 

properties the solvers try to 

link in their conjecture. 

 

There is no dragging in this 

episode. 

Episode 4 

[37] I: and this proves what conjecture? 

[38] Gin: That... 

[39] I: can you repeat the statement? 

[40] Gin: Well, we said that if AC is perpendicular to BD, 

ABCD is a parall, is a rhombus. 

[41] Dav: Yes. 

Brief Analysis 

This leads to the 

interviewerʼs question about 

what the conjecture they 

want to prove in ([37]). 

After a slight hesitation Gin 

gives the original basic 
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conjecture as the answer. 

Table 5.1.2.2: Analysis of Excerpt 5.1.2.2 

Although the solvers seem to have reached a new conjecture through the use of 

maintaining dragging, this conjecture seems to be destabilized by the original basic 

conjecture the solvers have formulated. The instability of the new conjecture can also be 

seen thanks to the following elements of the episode. First we notice that the direction of 

the logical implication in the first conjecture is reversed with respect to what we describe 

in our model. It is not incorrect mathematically, and moreover it is provable, however it 

seems to denote instability in the perception of causality (if in fact there is any). They first 

seem to use “A belongs to a circle with center M and radius MK” as the premise of the 

conjecture ([6]), however then Dav and Gin state the conjecture together using this 

property as the conclusion. This may happen because there is no dragging going on 

during this excerpt. Therefore the haptic sensation of dependent and independent 

objects and properties is completely absent (it could have been present only in the 

sensory memory of the solver who had performed the maintaining dragging) and cannot 

guide the transition to a logical interpretation of the relationship between the perceived 

invariants. 

Moreover the fact that the figure is left static seems to foster the “flattening” of all 

properties onto a same level, as in the paper-and-pencil environment. Through the 

argumentation the solvers use the theorem that any angle inscribed in a semicircle is a 

right angle ([18]-[22]), and then the focus on what property to use in order to prove that 

ABCD is a rhombus ([29]) seems to lead the solvers to no longer take into account any 

experience of movement. Their argumentation also shows instability in the status of the 

two properties the solvers try to link in their conjecture, because once again premise and 

conclusion seem to be reversed.  
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When the interviewer asks what the conjecture they want to prove is ([37]), after 

a slight hesitation Gin restates the original basic conjecture. This shows interference and 

moreover dominance of the basic conjecture over the new conjecture. 

 

 Concluding Remarks. In this section we have introduced basic conjectures and 

discussed how they can interfere with other tasks described in our MD-conjecturing 

Model. In the following section we introduce a second necessary ingredient that solvers 

need to use in order to be able to formulate conjectures according to the MD-

conjecturing Model. In particular we will describe difficulties in conceiving a property of a 

dynamic figure as an III. If such difficulties are present they can inhibit the perception of 

an III and the possibility of continuing the exploration using maintaining dragging. 

 

5.2 Conceiving a Property as an III 

In Section 5.1 we described basic conjectures and how some solvers would feel 

satisfied with such conjectures, instead of using them to transition to conjectures 

developed according to our model, or return to them even after “discovering” properties 

that could have been used to formulate a conjecture according to the process described 

by our model. In this section we will analyze solversʼ behaviors that are not consistent 

with Task 1 of our model (Section 4.1): “Determine a configuration to be explored by 

inducing it as a (soft) invariant intentionally induced invariant (III)”. We describe these 

behaviors as difficulties in conceiving a property as an III. We attempt to provide a fine 

analysis of such difficulties by separating the different factors that need to be considered 

when accomplishing Task 1 of our model. In the paragraph below we highlight each of 

these factors and then use them in the analyses of excerpts from solversʼ work during 

the interviews. 
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In Chapter 4 we define the III as: “a property (or configuration) that the solver 

finds interesting and chooses to try to maintain during dragging” (Section 4.2). The idea 

of “maintaining during dragging” condenses the awareness that the III is a property that 

may become an invariant thanks to some induced continuous movement of a specific 

base point. We can separate out four factors that seem to be condensed in such 

awareness, and that seem to cause the difficulties encountered by solvers at this point of 

the exploration. These factors are described below: 

1) The III is a potential invariant of the dynamic-figure, that is, it does not vary with 

respect to some movement, as described in Section 2.1.1, and such movement is 

produced by dragging a base point in a particular way. Conceiving a property as 

invariant with respect to the movement of a base point occurs through haptic 

perception, a “feeling” that the solver can experience and that is generated by visual 

and manual feedback from the Cabri-figure. Therefore, as illustrated in section 5.1, 

an III is fundamentally different from a “static” property that can be perceived in the 

paper and pencil environment.   

2) The possible movement through which the III may be maintained as a property is 

intimately related to the base point chosen for the dragging. In particular, different 

choices of the base point to drag will imply different movements necessary to 

maintain the selected property. Moreover, for any choice of the base point to drag, 

some points will remain fixed while others will move, depending on their status with 

respect to the construction that generated the Cabri-figure. Difficulties in conceiving a 

property as being induced by the movement of a specific base point seem to occur in 

cases in which solvers lack control over of the status of the various points of the 

Cabri-figure. We will discuss this issue further in section 5.4. Difficulties in conceiving 

this aspect of the III may also arise from a particular configuration of the dynamic-
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figure, in which the trajectory of the movement of the dragged-base-point is difficult to 

distinguish from an element of the figure (for example, if the trajectory is a line that 

seems to “go through” a side of the dynamic-figure). In this case the solver might 

perceive the variation of the element of higher dimension (the side in our example) 

instead of the variation of the dragged-base-point alone (Duval,1995, 1998). 

3) The movement of the dragged-base-point is perceived as continuous, and therefore it 

guarantees the maintaining of the III “always” during the time lapse in which the 

dragging is performed. When trying to determine whether a certain property is 

maintainable, the solver may proceed by making “small perturbations” in order to get 

a feeling for how to carry out the movement, if in fact it is possible, and by searching 

for “good positions”, as described in the analysis of Excerpt 4.2.1. In this case, 

difficulties may arise if the solver does recognize occurrences of the desired property 

in any “close position” and thus interprets the “good position” as being isolated and 

guaranteeing a form of “stable equilibrium” to the Cabri-figure. Even in cases in 

which the solver does recognize a number of discrete “good positions” that give this 

kind of perception of “equilibrium”, s/he may not be inclined to think that it is possible 

to “connect” these positions continuously while maintaining the interesting property, 

which in this case would become the III. 

4) The III is a soft invariant (Section 2.1.2 and Section 4.2), so maintaining the III is 

“controlled” or “caused” by dragging within the DGS, and in particular by the specific 

movement induced by the solver on the base point s/he is dragging. Solvers who 

seem to be aware of this and who want to focus both on the III and on the movement 

of the dragged-base point can encounter difficulties in coordinating haptic perception 

and multiple visual perceptions. In fact some solvers seem to be unable to proceed 

using maintaining dragging if they have not previously envisioned some “way” of 
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carrying out the dragging. These solvers, who need to conceptualize the movement to 

induce on the dragged-base point in order to carry out maintaining dragging, may 

encounter difficulties in conceiving a property as an III, as they may tend not to 

separate the property to induce from the idea of how to move the base point through 

which it can be induced. We have observed that this sort of difficulty arises frequently 

during solversʼ attempts to use maintaining dragging. However it seems to be a 

particular consequence of difficulties arising from a more general factor that comes 

into play in various problem-solving activities, that of being flexible/ having a free 

mind. In this case the solver seems to fix his/her attention on specific properties 

(usually basic properties) of the configuration and tries to link the idea of how to move 

the base point to such properties even though they might not be directly related. We 

discuss other consequences of difficulties related to being flexible/having a free mind 

in section 5.3. 

Each of these aspects of an III seems to potentially be a source of difficulty  for solvers 

attempting to identify an III and perform maintaining dragging. In the excerpts below we 

will show how difficulties emerge during this phase of the exploration, and how they can 

be interpreted with respect to the aspects we separated and described above. Below is a 

brief overview of the Excerpts we present in this section. 

Excerpt 5.2.1: The solver performs maintaining dragging with the trace activated 

in a way that seems successful to the interviewer, but he quickly formulates a conjecture 

that has nothing to do with the trace. The solver seems to not be conceiving the property 

to induce through dragging with respect to movement (aspect 1) and he seems to not 

relate the movement or the induced property to the base point being dragged (aspect 2). 

Excerpt 5.2.2: The two solvers do not seem to conceive the property to induce as 

an III with respect to movement (aspect 1). Moreover, when the solvers try to perform 
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maintaining dragging in response to the interviewerʼs prompting, they seem to recognize 

the regularity in the movement in terms of a basic property (aspect 4). 

Excerpt 5.2.3: The solvers oscillate between acknowledging the possibility of 

using MD or not, unsure whether there are only a few discrete “good positions” (aspect 

3) or whether the induced property can be maintained through a continuous movement. 

Almost “by chance” (and through symmetry of the figure) the solvers notice the first 

“good positions”, and then rapidly more and more, which leads them to treat the induced 

property as an III and perform maintaining dragging. 

Excerpt 5.2.4: The solvers initially conceive only one good position, as a sort of 

stable equilibrium (aspect 3), but then they find more good spots for the point they are 

dragging. Unlike the solvers in Excerpt 5.2.3, these solvers are not able to proceed using 

maintaining dragging, and they resort to their original basic conjecture, probably due to a 

lack of flexibility (aspect 4): the solvers seem to not let go of the property they have 

initially conceived and to not separate it from a potential movement of the dragged base 

point. 

Excerpt 5.2.5: The solvers seem to conceive a property with respect to 

movement, but they do not “let go” of basic properties (aspect 4) which seem to 

dominate their perception and inhibit the proper conception of an III. The solvers limit 

their description of how to maintain the property “ABCD rectangle” to an “up and down” 

movement that they do not clearly define with respect to the dragged-base-point (aspect 

2), and they seem to be satisfied with their original basic conjecture.  

Excerpt 5.2.6: The perception of basic properties seems to inhibit the conception 

of an III (aspect 4). Unlike the previous example in Excerpt 5.2.5 in which the regularity 

in the movement seemed coherent with the basic property (they both involved a “line”), 
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in this case the trace produced during maintaining dragging seems to create a conflict 

with what the solver has in mind, and this seems to generate confusion. 

 

Excerpt 5.2.1 

This excerpt is taken from a studentʼs work on Problem 1; it shows an example in 

which the solver performs maintaining dragging with the trace activated in a way that 

seems successful to the interviewer, but he quickly formulates a conjecture that has 

nothing to do with the trace, as if it was of no importance at all. From this excerpt the 

solver seems to not be conceiving the property to induce through dragging with respect 

to movement (aspect 1) and he seems to not relate the movement or the induced 

property to the base point being dragged (aspect 2). 

In the previous part of this exploration, Sim has fixed points M and K with nails in 

order to concentrate on dragging A. He has become interested in the property “BD 

passes through K”, a property that he seemed to want to use as a minimum basic 

property. 

Episode 

[1] I: You just have to move A...you already have M 

and K fixed, right? 

[2] Sim: Yes. 

[3] I: Ok, so now you move A trying to maintain BD 

passing through K. 

[4] Sim: Yes. 

[5] I: Ok. Let's try to see if we are 

able to say something about it. 

Brief Analysis 

The interviewer proposes to 

use the property “BD passes 

through K” as an III ([3] and 

[4]).  
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[6] I: Uhm [observing the dragging] 

[7] I: If you want, you can help yourself... 

[8] Sim: It looks to me like it is always .... 

[9] I: ...with the trace tool, eh? 

… 

[15] Sim: now...[murmuring] 

[16] I: Ok....yes. 

[17] Sim: no...[murmuring] 

[18] I: there [whispering] 

[19] I: Ok... 

[20] I: Try to go the other way...to the other side, so 

you know that this mark is good... 

[21] I: continue... 

[22] I: uh huh 

[23] Sim: I wanted to 

consider that if K is the 

intersection of the diagonals, it is always a rectangle. 

[24] I: You think that it is always a rectangle 

[25] Sim: Yes. 

[26] I: Yes. 

[27] Sim: because... 

The interviewer is quite 

insistent in trying to prompt 

Sim to use maintaining 

dragging and activate the trace 

([9], [11]), and this seems to 

lead Sim to performing 

maintaining dragging in a 

proper way ([13]-[22]).  

 

 

 

However what Sim seems to 

“see” as an outcome of his 

dragging are the properties “K 

is the intersection of the 

diagonals” and “it is always a 

rectangle” ([23]), which he 

links logically in his conjecture. 

That is, the III basically 

becomes his premise and the 

conclusion is the original 

interesting case “ABCD 

rectangle”.  

Table 5.2.1: Analysis of Excerpt 5.2.1 
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Although the trace appears in a neat manner on the screen and a lot of attention seems 

to be devoted to performing the dragging correctly, Sim does not seem to pay attention 

to it at all, but instead he seems to “use” the dragging to strengthen a conjecture on 

statically-conceived properties (aspect 1). It seems unclear what Sim is trying to maintain 

during the dragging even though the interviewer had suggested trying to maintain “BD 

passing through K” ([3]). From what he states in his conjecture, he seems to transition 

from “BD passing through K” to “K is the intersection of the diagonals”. In any case the 

new premise of the conjecture does not involve A, the base point being dragged, nor the 

trace conceived as any representation of the path, which does not seem to be conceived 

at all.  

Moreover, the fact that Sim had fixed with nails the other base points could have 

helped him relate an object appearing from the movement of the base point to the base 

point being dragged (the only free one), and conceive an III (aspect 2). However this did 

not occur even though the maintaining dragging was carried out precisely, and 

everything seemed to be in place for the solver to proceed according to the model and 

conceive an IOD as “A belonging to a line”.  

We may provide different interpretations and give different hypotheses as to why 

this might be the case. Here we prefer to insist on the lack of conception of an III, 

according to all the aspects described in the introduction of the section. The lack of such 

conception seems to be clearly visible, and it may explain the solverʼs inability to 

perceive properties related to movement of particular points and to make sense of what 

is happening in his DGS experience in the terms described by our model. 

Finally this excerpt shows that it is possible to “provoke” behaviors that are 

coherent with the ones described in our model, but this does not mean that awareness of 

“what maintaining dragging can be used for” has been achieved by the solver. In 



 232 

particular, the solver does not seem to use maintaining dragging to search for a cause of 

the induction of a certain invariant (2). We will describe this in detail in Chapter 6 and 

Chapter 7. Here we argue that this excerpt provides evidence that “performing” 

maintaining dragging does not mean being aware of what it can show. That is, a solver 

can use maintaining dragging as a tool only if s/he has developed a mental scheme 

associated with it that allows the various elements to be identified and geometrically 

interpreted according to our model. 

 

Excerpt 5.2.2 

This excerpt shows how two solvers do not seem to conceive the property to 

induce as an III with respect to movement (aspect 1). Moreover, when the solvers try to 

perform maintaining dragging in response to the interviewerʼs prompting, they seem to 

recognize the regularity in the movement in terms of a basic property (aspect 4). The 

excerpt is taken from the solversʼ exploration of Problem 1. In this excerpt and all of the 

following ones the bold refers to the solver who is using the mouse.  

Before the beginning of this excerpt the solvers had formulated two basic 

conjectures. The oral conjecture was: “If AD is perpendicular to CD, then ABCD is a 

rectangle.” The written conjecture was: “If DA=CB then rectangle.”  

Episode 1 

[1] Vale: …rectangle... 

[2] I: For example...maybe let's try to think about 

other ways in which we can obtain a rectangle... 

[3] I: Uhm 

[4] I: So Ric seems to be dragging M...with the 

Brief Analysis 

The solvers are interested in the 

configuration “rectangle” so the 

interviewer  proposes to look for 

other ways of obtaining a rectangle 

([2]). Ric, who was dragging, states 
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idea of maintaining rectangle?...or not? 

[5] Ric: Well, no, I don't know. 

[6] I: You were dragging 

freely? 

[7] Ric: I was studying the 

figure... 

[8] I: Ok. 

[9] Ric: Ok, yes it is possible... 

[10] I: So you were doing wandering dragging? 

[11] Vale: Maybe ...if...adding the diagonals DB 

and CA. Try adding 

DB and ... 

[12] Ric: 

[murmuring as he 

draws] DB and CA. 

[13] Vale: and putting like rectangle. 

[14] Ric: With M? 

[15] Vale: I don't know [It: "boh"] 

[16] Ric: Whatever [he starts dragging A] 

that he was only “studying the 

figure” ([7]) through wandering 

dragging ([5], [7]), while Vale 

suggests drawing the diagonals 

([11]) and using them to look for a 

new property ([13], [16]).  Ric 

seems to share this perception, as 

can be inferred from his words: 

“Well, no. I donʼt know. I was 

studying the figure.” which he 

states even though the interviewer 

was insisting on prompting the use 

of maintaining dragging ([5], [7]).  

Valeʼs suggestion leads us to infer 

that she is not relating the property 

“ABCD rectangle” to movement in 

any way. 

Ric switches from dragging M to 

dragging A ([14], [16]), and seems 

unsure about any difference this 

choice would make. 

Episode 2 

… 

[24] I: Uhm, is it only possible to choose A like that 

Brief Analysis 

 

When the interviewer asks whether 
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to have a rectangle? 

[25] Vale: I don't think so. 

[26] Ric: Well like this too I can say it is a 

rectangle [as he drags 

A in different "good 

positions"] 

… 

[29] Ric: Yes. 

there might be other positions for A 

in order to have a rectangle, the 

solvers seem to agree that there 

are other positions. 

Episode 3 

[30] Vale: Well more or less I think ... 

[31] Ric: I think all the positions in which AB is 

perpendicular to CB. 

[32] I: ...in which AB... is perpendicular... 

[33] Ric: and as she said DA is congruent to CB. 

[34] I: Ok. Wait, so 

try to tell me the 

conjecture again. 

It seems similar to 

what you had said 

before: AB...ah, 

no, you had said... 

[35] Ric: So,  

[36] I: ...you said DC... 

[37] Ric: If...no I had said before if AD is 

Brief Analysis 

 

These positions do not seem to be 

conceived with respect to a 

trajectory, but more “statically” with 

respect to the basic properties “AB 

perpendicular to CB” ([31]) and “DA 

congruent to CB” ([33]). 

 

For Ric the exploration seems to 

have only strengthened his original 

basic conjecture. Here he seems to 

conceive a new premise, that is 

“AB is perpendicular to CB” ([31]), 

but he recognizes the equivalence 

of the premises (“It is the same 
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perpendicular to CD, then ABCD is ... 

[38] I: Ok. 

[39] Ric: ...a rectangle 

[40] I: Ok, on the other hand now you said: If AB... 

[41] Ric: Well, no, I said the same thing... 

[42] I:...is parallel 

thing” [41]).  

Table 5.2.2: Analysis of Excerpt 5.2.2 

Valeʼs behavior characterized by looking at a static configuration and “guessing” 

at some additional property to use as a premise in the conjecture ([11]) seems to be 

typical of a paper and pencil environment. In fact Valeʼs suggestion leads us to infer that 

she is not relating the property “ABCD rectangle” to movement in any way (aspect 1). 

Instead she seems to perceive it as an interesting configuration with nothing more to it 

than if it had been in a paper and pencil environment. The property “ABCD rectangle” 

never becomes an III, because throughout the excerpt it never seems to be perceived 

with respect to movement (aspect 1). This can also be seen in the ease with which Ric 

switches from dragging M to dragging A ([14], [16]), unsure about any difference this 

choice would make (aspect 2).  

When the interviewer asks whether there might be other positions for A in order to have 

a rectangle, the solvers seem to agree that there are other positions. However these 

positions do not seem to be conceived with respect to a trajectory. Instead they seem to 

be conceived “statically” with respect to the basic properties “AB perpendicular to CB” 

([31]) and “DA congruent to CB” ([33]), that might have easily been perceived this way in 

a paper and pencil environment. The solversʼ perception seems to be dominated by 

basic properties, and the little dragging that Ric does perform seems only to strengthen 

his original basic conjecture. In fact in his new conjecture the only difference is in the 
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premise, that is “AB is perpendicular to CB” ([31]), but he recognizes the equivalence of 

the hypotheses (“It is the same thing” [41]).  

Moreover, the solvers resist using maintaining dragging throughout the 

interviewerʼs prompting and they resort to techniques that are typical of the paper and 

pencil environment, using dragging at most to confirm their statically-developed insights, 

leading to a more robust belief in the original basic conjecture. In Chapter 6 we will 

discuss how this behavior may hinder the development of the notion of path. In 

particular, the solvers might be seeing the vertical movement of the base point A as the 

invariance of “perpendicularity of segment AB to BC” instead of as the movement of A 

along a line. The fact that the figure-specific path in this case is a line on which a whole 

segment (AB) rests when the III is maintained may be leading the solvers to continue 

“seeing” the basic properties of ABCD that led to the original basic conjecture (aspect 4), 

instead of to overcome them and conceive a path with respect to point A. In the next 

excerpts we will show examples in which such interpretation seems to be the most 

convincing. 

 

Excerpt 5.2.3 

In this excerpt the solvers oscillate between acknowledging the possibility of 

using MD or not, unsure whether there are only a few discrete “good positions” (aspect 

3) or whether the induced property can be maintained through a continuous movement. 

Almost “by chance” (and through symmetry of the figure) the solvers notice the first 

“good positions”, and then rapidly more and more, which leads them to treat the induced 

property as an III and perform maintaining dragging. The excerpt is taken from two 

studentsʼ exploration of Problem 4. 
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Episode 

[1] G: and when... do like maintaining dragging 

when it is a rectangle. 

[2] F:  Never... I mean one 

point and that's it. 

[3] G: really? If you move... 

moving A... let's write moving...[G 

starts to write] 

[4] F: Moving A... 

[5] G: Moving A... there is only one 

point... but are you sure, 

even going over there? Can't 

you go over there? 

[6] G: There... Already two... 

[7] F: two... 

[8] G: eh, no. 

[9] F: No, here...no it does funny things. 

[10] G: wait,... no that is the one from before. 

[11] F: Exactly. This is the one from before... 

[12] G: two... 

[13] F: two... I mean, one... 

[14] G: one...two...three, 

four...twenty thousand! 

[15] F:  yes, there are really many of them 

Brief Analysis 

Initially F thinks that the property 

“ABCD rectangle” cannot be 

maintained through dragging, as it is 

verified in “one point and thatʼs it” ([2]).  

 

G seems uncertain and proposes to 

check “over there” ([5]). His idea seems 

to be guided by a sort of perception of 

symmetry, which in fact leads to the 

discovery of another “good point” ([6]).  

 

 

This strengthens his belief that there 

are other good points and Fʼs difficulty 

in dragging is soon overcome: when he 

goes back to start at the original good 

position, he discovers another “good 

position” along the way ([13]) and 

immediately after a whole set of good 

points ([14]).  

This seems to encourage the solvers 

who now propose to perform 

maintaining dragging with the trace 
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[laughing]... let's do trace... we made a 

mistake. There are really too many. 

activated. 

Table 5.2.3: Analysis of Excerpt 5.2.3 

In this excerpt the solvers find discrete “good configurations” that guarantee the 

visual verification of the property “ABCD rectangle” that they are interested in. As they 

discover more and more “good positions”, for the solvers, the property “ABCD rectangle” 

seems to transit from the status of “potential III” to proper III. Evidence of this proper 

conception can be seen in the solversʼ desire to activate the trace and make the path 

explicit. As we will discuss further in Chapter 6, what seems to be guiding the solversʼ 

experience is the “expectation” of being able to induce the property “ABCD rectangle” 

through dragging along a path. This allows them to overcome the initial perception of 

their being only discrete good positions, and expect to describe a regularity in the 

movement of the dragged-base-point by observing the trace mark left during maintaining 

dragging. 

In the following excerpt the solvers use a similar technique to explore the Cabri-

figure and in particular the possibility to maintain a certain property. However the solvers 

will not be able to overcome the block. We think the difference in the behavior resides in 

the expectations developed by the different solvers with respect to maintaining dragging. 

We will describe this theory in further detail in Chapter 7, through the notion of 

maintaining dragging scheme. 

 

Excerpt 5.2.4 

This excerpt from Em and Ilaʼs work on Problem 1, shows an example of solvers 

who attempt to perform maintaining dragging. They start by looking for “good positions”, 

that is choices of the dragged base point that seem to induce the desired property (the 
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potential III). Initially they conceive only one good position, as a sort of stable equilibrium 

(aspect 3), but then they find more good spots for the point they are dragging. This 

technique seems to give them a hint about some regularity in a possible continuous 

movement of the dragged base point, however, unlike the solvers in Excerpt 5.2.3, these 

solvers are not able to proceed using maintaining dragging, and they resort to their 

original basic conjecture. We interpret this second difficulty as related to flexibility 

(aspect 4): the solvers seem to not let go of the property they have initially conceived 

and to not separate it from a potential movement of the dragged base point.  

Episode 1 

[1] Ila: So,  

… 

[5] I: Because you are telling me that it is possible, 

but you are not showing it to me. 

[6] Emi: Uhm. 

[7] I: and so maybe it is not possible. 

[8] Ila: I do not think it is possible, because you see 

that...in any case if I move point A farther away, it is 

never equal to 90! 

[9] Ila: There will never be 

a point equal to 90. There 

is only that point there. 

[10] Emi: Can I try? 

[11] Emi: No, there is no 

point. 

Brief Analysis 

 

 

Ila states that she does not think 

it is possible to perform 

maintaining dragging with point A 

and the property “ABCD 

rectangle” ([8]). As an argument 

she uses her perception that she 

does not think there will ever be 

another “point equal to 90” ([9]).  

 

Emi, too, seems to believe that it 

is not possible to perform 

maintaining dragging, as she tries 

to drag A. 
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Episode 2 

[12] Ila: Yes, there is. See, look. 

[13] Ila: You see? [she murmurs something as she 

takes the mouse back] 

[14] Ila: Excuse me but now let's do something. 

[15] Emi: Uhm. 

[16] Ila: Pointer. 

[17] Ila: This has to be 

90 degrees. 

[18] Ila: Eh...90 

[19] Ila: Uhm...now like 

this. I make a point 

… 

[27] Ila: and I'll call it [she writes "lui" (English: "him") 

on the point she draws] 

[28] I: ...go back and get it...ok. 

[29] Ila: I go get A again 

[30] I: Ok 

[31] Ila: B is 90... 

[32] I: and look for 

another one. 

[33] Ila: But see that...no, 

wait. 

[34] Ila: 90! You always go back THERE. 

Brief Analysis 

However Ila does not seem to be 

completely convinced, and is 

ready to change her mind, 

spotting another “good position”. 

She comes up with a strategy 

([14]) for looking for other “good 

points”. She proceeds by placing 

a free point called “him” ([27]) on 

the “good position” for A ([17]-

[28]) which she recognizes by the 

measure of the angle she has 

marked on the Cabri-figure ([17], 

[18]).  

 

 

Ila, on her own, seems unable to 

find other good positions in the 

vicinity of the point she has 

marked “lui” ([29]-[33]), and 

seems to think there is only one 

good position ([34], [35]).  

 

The interviewer tries to perturb 
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[35] Ila: always there. 

[36] I: Move a lot. Let's see if there is something 

else. There now try to look for... 

[37] Ila: There seems to 

be one here 

too...theeeere! 

[38] Ila: No. 

[39] Val: There! 

[40] Ila: There [she 

labels the point "lui" 

again] 

her belief of there being a single 

good position by asking her to 

“move a lot” ([36]). She still 

seems quite uncertain, but maybe 

seeing the angle measure 

become very close to 90 in a 

place “so far” from her original 

good point leads her to believe 

that there is another good point, 

which she finds and marks “lui” 

again ([40]).  

Episode 3 

[41] Ila: Another 90...there! It's along there. 

[42] Emi: Eh, yes. 

[43] Ila: See? 

[44] Emi: Uhm. 

[45] Emi: Ok. 

[46] Ila: Therefore, 

[47] Ila:...they have to 

...I mean the points ...eh they have to... 

[48] Ila: But then we are ... 

[49] Emi: They have to be on… 

[50] Ila: It's always the same thing as before! 

[51] Emi: Right! 

Brief Analysis 

At this point Ila seems confident 

enough to look for another good 

point and she seems to recognize 

a path when she exclaims “along 

there” ([41]).  

 

The difficulty might have been 

overcome, and Emi seems to 

conceive something the points 

need to be on, as she starts 

murmuring in line 49.  
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[52] Ila: It has to always be, uh, CD has to always 

be parallel to AB 

However Ila interrupts her and 

states that it is “the same thing as 

before” ([50]) and imposes her 

original basic conjecture.  

Table 5.2.4: Analysis of Excerpt 5.2.4 

The technique used by Ila to decide whether maintaining dragging is possible 

seems similar to the one used by F and G in Excerpt 5.2.1, and although it was not a 

strategy presented in class during the introductory lessons, it seems similar to the 

spontaneous scheme described as “line dragging” by Arzarello et al. (2002). However in 

the previous excerpt, the solvers were able to overcome the initial uncertainty, and 

propose to use maintaining dragging with the trace activated. Here the solvers do seem 

to recognize a regularity (“Itʼs along there!” [41]), which suggests a seed of conceiving 

the III as “caused” by dragging (aspect 4), but such regularity does not seem to be 

conceived with respect to the movement of the base point A (aspect 2). Instead it seems 

to be a sort of generalization of a statically-conceived set of good positions, which 

cannot be considered in relation to a movement and, therefore, to the invariance of any 

property with respect to such movement. 

The solvers do not seem to conceive dragging along the discovered “good 

positions” as the “cause” of the invariance (aspect 4) of the induced property (“ABCD 

rectangle”), and they resort back to a basic conjecture to explain the figureʼs behavior. 

This shows how strongly basic conjectures can be rooted and how they can guide other 

perceptions during an exploration. In the end Ilaʼs original basic conjecture appears to be 

strengthened by this episode, and not overcome. We hypothesize that this can occur 

when solvers have not developed an adequate way of thinking with respect to the use of 

maintaining dragging (we will discuss this in further detail in Chapter 6), so, in particular 
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they are not using it to search for a cause of the maintaining of an invariant conceived 

dynamically. Moreover, Ilaʼs perception seems to be dominated by basic properties of 

the class of quadrilaterals she is interested in, and she does not seem to be able to free 

her mind and overcome this view of what she is experiencing (aspect 4).  

Since Ila seems to be unable to conceive “how to move her dragged-base-point” 

(aspect 4), she seems to proceed by “trial and error”. Moreover, she seems to perceive 

the initial “good position” that she has named “lui” as a sort of point of stable equilibrium 

for the dynamic-figure (aspect 3). Ila moves point A very slightly and seems to be using 

“small perturbations” to explore whether a property can be imposed at some level of 

generality on the Cabri-figure, and she keeps returning to what she thinks is her initial 

good position, in which the angle she has marked is 90 (according to the software). Only 

after being prompted in line 36 (I:“Move a lot. Let's see if there is something else. There 

now try to look for...”) does Ila start looking for another good position “far away” from her 

marked point. Again she behaves as if this were another point of stable equilibrium for 

the dynamic-figure. Even after identifying a third good position she does not seem to 

conceive a “good movement” that might connect them. Instead she recognizes the basic 

property she had used in the first conjecture. Therefore we assume Ila has not properly 

conceived a path, nor an III according to our model. 

 

Excerpt 5.2.5 

This excerpt is taken from Val and Ricʼs exploration of Problem 1. The solvers 

seem to conceive a property with respect to movement, but they do not “let go” of basic 

properties (aspect 4) which seem to dominate their perception and inhibit the proper 

conception of an III and of a potential path as an object to drag along in order to induce 

the III.  Instead the solvers limit their description of how to maintain the property “ABCD 
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rectangle” to an “up and down” movement. The solvers seem to be satisfied with their 

original basic conjecture. 

Episode 

[1] I: and it was called "maintaining dragging", and so 

you now are interested in the property rectangle 

[2] Val: Yes, but in the 

end, like moving A up 

and down... 

[3] I: Alright, so you already saw that moving A up and 

down...what is this "up and down"? 

[4] Val: Yes, alright, uh...I mean that in any case, right, 

AB 

[5] Ric: You have to move... 

[6] Val: AB has to remain parallel to DC, or anyway ABC 

has to be right...yes. 

[7] I: uhm. 

[8] Val: Always...and so 

you can do...making, let's 

say, segment AB longer. 

Brief Analysis 

The solvers describe the 

dragging as “moving up and 

down” ([2]). 

 

However they do not seem to 

perceive the movement not 

as a movement of A along 

some object. Instead Val 

seems to recognize it as “AB 

has to remain parallel to DC” 

([6]).  

In her final remark ([8]) Val 

seems to try to describe how 

this dragging occurs, by 

“making, letʼs say, segment 

AB longer”. 

Table 5.2.5: Analysis of Excerpt 5.2.5 

The solvers do not seem able to conceive the property “ABCD rectangle” as an III 

as we describe in our model, because they do not seem to be able to conceive it with 

respect a movement of A alone (aspect 2). In fact Val seems to see the “up and down” 

movement as the “making segment AB longer” instead of A moving along a path. We 

advance the following hypothesis. Val may be unable to conceive the movement of A as 
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independent from that of AB because the trajectory of its movement (a sort of line 

parallel to CD) guides her attention (aspect 4) towards the basic property she “sees” and 

uses as a premise in her basic conjecture: “AB parallel to DC”. The fact that she does 

not seem able to conceive the regularity in the movement of A as the movement along 

an object which is independent from segment AB – a path – seems to inhibit her 

conception of an III and the process of conjecture-generation through maintaining 

dragging in general, as we will describe in Chapter 6.  The fact that Val is able to 

recognize her basic property in the movement of the base point A probably strengthens 

her basic conjecture and definitely it does not seem to create confusion or perplex her in 

any way.  

In the following excerpt we recognize a similar phenomenon: the solverʼs inability 

to properly conceive an III as an invariant with respect to some movement of the 

dragged-base-point which is independent from any basic properties (aspect 4). However 

in the following example the movement of the dragged-base point does not seem to help 

the solver recognize basic properties, instead it seems to create a conflict with what the 

he has in mind, and to create confusion and uncertainty. 

 

Excerpt 5.2.6 

This excerpt is taken from a studentʼs exploration of Problem 1 and it is an 

example of how the perception of basic properties (aspect 4) seems to inhibit the 

conception of an III as an invariant with respect to some movement of the dragged-base-

point. Unlike the previous example in Excerpt 5.2.5 in which the regularity in the 

movement seemed coherent with the basic property (they both involved a “line”), in this 

case the trace produced during maintaining dragging seems to create a conflict with 

what the solver has in mind, and this seems to generate confusion. 
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Before this excerpt, in this exploration, Ste had dragged the base point A, and 

used maintaining dragging to reach a conjecture, which he wrote as: “Maintaining A on 

the line through M and perpendicular to MK, the quadrilateral ABCD is a rectangle.” 

Episode 1 

[1] Ste: M 

[2] I: Ok. 

[3] Ste: Also M has to... 

… 

[12] Ste: So...[he starts to drag M] 

[13] I: Maybe to stay on the screen we could move 

A closer to K... 

[14] Ste: Uhm, yes. 

[15] I: 

Because then 

it's smaller, 

the triangle. 

[16] I: Ok. 

[17] Ste: Theoretically, uh...I always have the 

rectangle 

[18] I: uh huh... 

[19] Ste: Uh, yes, if M, uh...if the line through A and 

M 

[20] I: uh huh... 

Brief Analysis 

Now, once Ste has erased the line 

and repositioned his figure ([1]-

[16]) he tries to use MD dragging 

M and maintaining the property 

“ABCD rectangle”. He proposes a 

first conjecture ([17]-[19]): “I 

always have a rectangle …if the 

line through A and M…”  

 

Even though it is no longer drawn 

on the page, the line from the 

previous conjecture seems to still 

play a main role in Steʼs 

perception of properties of the 

figure. Ste does not seem to see 

M as moving along a path, but 

instead he seems to see a 

“property” that should be satisfied 

by the rectangle he is trying to 

maintain during dragging, 
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conceived as a generic rectangle.  

Episode 2 

[21] Ste: and therefore, eh, yes, it's the same thing 

as before. 

[22] I: The same thing 

as before only 

[23] Ste: M has to 

stay on the line 

[24] I: Wait now you 

are moving M. 

[25] Ste: Yes. 

[26] I: Right? So there is not the line from before 

any more, because the line from before was 

defined by M and K. But now M is moving. 

[27] Ste: Uh huh... 

Brief Analysis 

Ste realizes the conjecture is the 

same as before ([21]). 

Ste does not seem to be able to 

conceive the movement of M 

independently from the basic 

property he has in mind which has 

to do with the perpendicular line to 

MK through M. 

Episode 3 

[28] I: Ok. So maybe try to move very freely with M, 

ok, and try to see if you are able to maintain this 

rectangle. 

[29] I: Ok, now when you move M it leaves the red 

mark. 

[30] Ste: So, maintaining rectangle, 

Brief Analysis 

Ste is using the trace and dragging 

the base point M in a way that the 

interviewer perceives as 

successful maintaining dragging. 

Ste seems to be linking the 

maintained property to movement 

(“Moving M” [34]). However, Ste 

does not seem to be able to 
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[31] I: Go. 

[32] Ste: Eh, only 

in that point 

there... 

[33] I: Uhm. 

[34] Ste: moving M. 

[35] I: Try, try. You are doing it. 

[36] Ste: Ah! I 

understand! 

[37] Ste: I mean, 

...no. 

[38] I: What are you seeing?… 

[39] Ste: Uh, ...no, that... 

[40] I: Keep going, maybe 

go back along there and 

see if you did well and 

keep going on the other side to see...if you can still 

do it. 

perceive regularity in the 

movement, interpret the trace as 

the path becoming explicit, or even 

conceive a path, probably because 

the basic property he has in mind 

is creating a conflict with the trace 

mark that is appearing on the 

screen.  

 

There is a moment in which the 

trace seems to change status (Ah! 

I understand!” [36]), but the 

transition does not seem to occur 

([39]) and Ste ends up not does 

not continuing the investigation in 

this direction. 

Table 5.2.6: Analysis of Excerpt 5.2.6 

Ste seems to be having a conflict between the basic property he has in mind and 

the trace mark left on the screen by the dragged-base-point during maintaining dragging. 

We interpret this excerpt as representative of an improper conception of the III, since Ste 

does not seem to be able to conceive the movement of M independently from the basic 

property (aspect 4), as the movement along a path (Episode 2). While in other cases the 

same lack in conception of the III during maintaining dragging would lead to 
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strengthening of a basic conjecture (for example in Excerpt 5.2.5), in this case it leads to 

a conflict because the trace mark does not resemble any of the basic properties Ste 

seems to be considering while looking at the Cabri-figure. 

 

Concluding Remarks on the Section 

In the analyses of the excerpts above we started to introduce the issue of 

conceiving a path as a source of various difficulties in performing maintaining dragging 

and proceeding coherently with respect to what we describe in our model. In particular, 

in the last excerpt we presented (Excerpt 5.2.6) there seems to be no reference to any 

kind of path: neither at a “general” level, as something (not better described) to drag the 

base point along in order to maintain the desired property; nor at a “figure-specific” level, 

as a particular geometrical curve described in relation to specific points of the figure. In 

line [36] the solver exclaimed: “Ah! I understand!”, but then goes back to his original 

conjecture without interpreting the trace at all. We believe that if the solver had properly 

conceived an III relating the movement of the dragged-base-point to some regularity – 

dragging along a generic trajectory which the trace could have been made figure-specific 

– he probably would have anticipated a path and “seen” the trace mark as an arc of 

circumference (GDP) along which the dragged-base-point was moving. This would have 

allowed him to overcome the conflict with the basic property involving the perpendicular 

line to MK through M, and probably conceive an IOD as M belonging to the figure-

specific curve described through the GDP. 

In Chapter 6 we will explain how we consider the conception of a generic path to 

be at the base of expert use of maintaining dragging. In fact the generic notion of path 

withholds the possibility of maintaining a property as an III through dragging along a 

trajectory – a figure-specific path – and dragging along such trajectory may be 



 250 

interpreted as a regularity in the movement of the dragged-base-point, a new invariant, 

the IOD. Thus the notion of path connects the two invariants and leads to an 

interpretation of the IOD as a cause of the maintaining of the III. 

 

 

5.3 Being Mentally Flexible 

 In the previous sections we have analyzed two factors that seem to be necessary 

for the elaboration of a conjecture according to our model; first the necessity to 

overcome a basic conjecture, and second that of conceiving a property as an invariant to 

intentionally induce. We have identified a third necessary component which we will 

describe in this section: being mentally flexible, that is being able to “let go” of the 

various properties that one might have in mind, in order to perceive “new” properties 

during the exploration. This ability could be described as a particular case of a more 

general problem-solving technique introduced by Polya as a “change in perspective” 

(1988). A change in perspective can help the solver overcome a perceptual block that 

might have occurred because s/he is only seeing what s/he expects to see or because 

s/he is locking on an idea that came to mind previously and is ignoring further ideas. This 

is not to say that a solver should not have expectations. On the contrary, success 

depends on a dynamic tension between the solverʼs expectations and his/her being 

mentally flexible. Mason describes this key problem-solving ability as being able to 

perform a shift in attention, alternatively “seeking for relationships and perceiving or 

applying properties” (Johnston-Wilder & Mason, 2005, p. 251). 

In terms of figural concepts (Fischbein, 1993; Mariotti, 1995, p. 112), we could 

say that what needs to be “let go” are particular aspects of the conceptual component 

evoked in the solver by the Cabri-figure. We consider having in mind a necessary 
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component because it seems that in cases in which the solver is not able to “let go” of a 

property that is pre-conceived with respect to the exploration s/he seems unable to 

perceive new properties that could make continuing the exploration easier or possible at 

all. For example, in Excerpts 5.2.6 and 5.2.7 we saw how pre-conceived basic properties 

can inhibit the conception of an III and/or the performance of maintaining dragging. As 

described in the analyses of these excerpts, when the solver seems to be concentrated 

on a basic property and s/he attempts to perform maintaining dragging, the movement of 

the Cabri-figure seems to either strengthen the solverʼs perception of the pre-conceived 

basic property (as in Excerpt 5.2.6) or create a conflict with it (as in Excerpt 5.2.7). In the 

first case the strengthening of the basic property frequently leads to a basic conjecture 

which the solver tends to be satisfied with, therefore preventing the search for new 

conjectures involving the particular type of quadrilateral. In the second case the conflict 

unfolds into an inability to perform maintaining dragging until the solver is able to be 

mentally flexible and free his/her mind from the property guiding his/her expectations.  

In this section we will show two examples (Excerpt 5.3.1 and Excerpt 5.3.2) of 

how the inability to be mentally flexible and free their mind from a pre-conceived property 

inhibits the performance of maintaining dragging, or the perception of an IOD while 

maintaining dragging is attempted. In particular, in Excerpt 5.3.2 the solvers are not able 

to strike a balance between expectations and being mentally flexible. Their pre-

conceived properties inhibit the development of appropriate expectations with respect to 

maintaining dragging. On the other hand, in Excerpt 5.3.3 the solvers elaborate proper 

expectations with respect to maintaining dragging, but a strong pre-conceived idea for 

the GDP does not allow them to properly interpret the trace mark. In this case the 

resistance to letting go of a previous idea leads to a conflict between the solversʼ 

expectations and the trace mark that appears on the screen. However the conflict does 
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not hinder the solversʼ correct expectations with respect to the possibility of performing 

maintaining dragging. This is a sign of expert behavior, as we will describe later in 

Chapter 6. 

 

Excerpt 5.3.1 

In this excerpt the solver seems to be unable to perform maintaining dragging, 

because of a conflict created between the movement of the dragged-base-point and the 

basic property he has in mind and from which he cannot free his mind. The excerpt is 

taken from a solversʼ exploration of Problem 4. 

Episode 

[1] Gin: I was thinking...I mean, moving A...we 

can't, we can't solve it. 

[2] Gin: It should remain...B... 

[3] I: You think that moving A it does not remain 

a rectangle? 

[4] Gin: I mean, yes... 

[5] I: Try to explain to me why 

[6] Gin: I mean yes, but B would have to anyway 

be on that perpendicular line. 

[7] Gin: Because...uh, since this line 

rotates...with center C, I mean the whole figure 

rotates with center C, 

basically... 

[8] I: Uh huh... 

Brief Analysis 

Gin seems to be trying to maintain 

the property “ABCD rectangle” while 

dragging the base point A, in order to 

“solve it” (line [1]).  The interviewer 

inquires about this in lines [3] and [5], 

which leads to Ginʼs to explain why 

he thinks the property cannot be 

maintained dragging A.  

 

Gin appears to be confused about 

the behavior of the figure when 

dragging A. He first keeps on moving 

A left and right, sort of maintaining 

AC at a constant inclination, as if that 
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[9] Gin: Uh, B on the other hand does not move. 

I mean, it always stays in the same position. 

[10] Gin: Therefore B, uh, I mean in order for this 

figure to be a rectangle, B has to anyway 

[Italian: "comunque"] be on the perpendicular 

line. 

were the only movement possible. 

Moreover, Gin seems to concentrate 

on B, which appears to be fixed ([9]) 

and on the perpendicular line ([10]) 

while he thinks that the rest of the 

figure “rotates with center C” ([7]).  

Table 5.3.1: Analysis of Excerpt 5.3.1 

From what has happened during the exploration, before the beginning of this 

excerpt, we infer that with “solve it” he is probably referring to the problem of maintaining 

the property “ABCD rectangle” while dragging. Gin seems to be considering a minimum 

basic property during dragging, that is “B would have to anyway be on that perpendicular 

line” ([6]), which seems to inhibit his dragging. He does not seem to be able to be 

mentally flexible and free his mind from the property. Moreover this property combined 

with the observation that B “does not move” ([9]) during dragging seems to generate 

confusion, as can be seen when Gin is not able to explain both the “rotation” he 

perceives and the basic property “B on the perpendicular line” at the same time. We 

might infer from Ginʼs attempts to perform maintaining dragging that (at least for some 

time) he also thinks that the only way of maintaining a “general rectangle” is dragging A 

so that the line through AC maintains a constant inclination (see his dragging in lines [1]-

[5]). Such idea together with the inability to “let go” of the property “B belonging to the 

perpendicular line” (which seemed possible only when A was in a particular position) 

seems to lead Gin to the conclusion that maintaining dragging is not possible. However 

Gin does not explicitly state whether maintaining dragging is or is not possible. Instead 

he prefers to state the property he is convinced of ([10]). This property may have such a 

strong appeal to Gin because it seems to come from the conceptual part of the figural 
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concept he has developed (a rectangle has four right angles, in particular <ABD must be 

right, so B must be on the perpendicular line he has constructed), and so it must be 

correct and important. 

Finally, we remark that the solvers in this excerpt, which comes from the first 

exploration they engage in, do not seem to be expert solvers, yet. We consider the fact 

that they do not seem to be expecting a path evidence for such interpretation, as we will 

discuss in Chapter 6. Moreover, the solversʼ resistance to letting go of their previously-

conceived property hinders the development of such expectation, and therefore the 

possibility of using the maintaining dragging scheme. In this episode, the solvers do not 

seem to have perceived any regular movement of the base point being dragged as “a 

cause” for their III to be visually verified, and instead of expecting a path, they seem to 

accept some basic property (B on the perpendicular line) as the “cause” of the III, which 

becomes a condition and the premise in their conjecture. 

 

Excerpt 5.3.2 

This excerpt is taken from two studentsʼ exploration of Problem 4. The solvers 

have formulated a first written conjecture on how ABCD can be a rectangle: “ABCD 

rectangle (when AB is perpendicular to CA and AB ≠ AC).” This Excerpt shows how the 

solversʼ inability to be mentally flexible and free their mind from pre-conceived properties 

inhibits the carrying out of maintaining dragging. In particular, the properties the solvers 

seem to be thinking of involve parallel and perpendicular lines, while an appropriate GDP 

for the dragged-base-point would be a circle. This contributes to making the conflict that 

emerges as the solvers try to interpret the trace mark particularly evident. The student 

who is holding the mouse is marked in bold in the transcript below. 
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Episode 1 

[1] Em: Basically a line [murmuring] 

[2] Ila: Yes 

[3] Ila: Basically the parallel line to CD. 

[4] I: What were... 

[5] Ila: Uhm, it can move along ... 

[6] I:...you looking at while you were moving it? 

[7] Ila: Because basically I was looking at the fact that this 

segment here... 

[8] I: uhm... 

[9] Ila: Has to always be parallel to this 

[pointing to AB and CD]. 

[10] I: Ok. 

[11] Ila: So that the angles are always 90 

and also if I do...I activate trace, for example, I will get the 

parallel line to CD.  

[12] Ila: It will always be a rectangle when I move A and B, 

so on the parallel that I can construct. 

Brief Analysis 

Em and Ila provide a first 

GDP, with respect to the 

movement of A, as a 

“parallel line to CD” ([1], 

[3]). 

 

 

Ila describes the property 

she has in mind, which 

seems to be guiding her 

perception. 

 

She even anticipates 

what the trace mark will 

look like and proposes to 

construct the object 

representing her GDP. 

Episode 2 

… 

[15] Ila: Parallel line through this point ... 

[16] Ila: ...through this...There, now if I move A... 

[17] Ila: Ah no, but I need to fix B too. 

[18] Ila: This 

Brief Analysis 

 

 

Ila realizes that the figure 

does not behave as she 

expected. She tries to 
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[19] Em: [murmurs something] 

[20] Ila: Wait! Right! 

[21] Em: Move it. 

[22] Ila: Wait, no no. 

[23] Ila: No, it's enough to do... 

[24] Ila: No... 

[25] Ila: [murmuring] Theoretically I need "parallel" 

[26] Ila: parallel 

[27] Ila: through this point... 

[28] Ila: No! What the heck! 

take B into consideration 

and she seems to want 

to “fix” it ([17]) in order to 

maintain the parallelism 

she was expecting. 

Episode 3 

[29] Em: Why are you...I don't understand. 

[30] Ila: No, no. I made a mistake. 

[31] Ila: Because. 

[32] Ila: I also need to fix this point ... 

… 

[38] Ila: but this point too has to be fixed 

on the parallel line. So.. 

… 

[42] Ila: It's the same thing as before! I 

mean...A has to always belong to that famous line that we 

put in the hypothesis. 

Brief Analysis 

Both solvers seem 

confused, and Ila returns 

to her idea of wanting to 

have B “fixed to the 

parallel line” ([38]). 

She finally goes back to 

considering either the 

condition expressed in 

the first conjecture AB 

perpendicular to CA or 

AB parallel to CD. 

Episode 4 

[Ila tries to perform MD again] 

Brief Analysis 

The solvers seem unsure 
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… 

[55] Em: Eh, every time that you...the more you make it 

longer, the more you 

[56] Em&Ila: [together] take it down. 

[57] Ila: and the more I go up...no...the more 

[58] Em: the more you shorten the more you raise. 

[59] Ila: It's as if it followed...the line...but 

[60] Em: Raise a little. 

[61] Em: Lower. 

[62] Ila: see that if I...I mean  

[63] I: What are you looking at? 

[64] Ila: I don't know. I am looking 

at the fact that it is as if...I am 

trying to follow this line here, that 

is the parallel to CD, 

[65] I: Uhm... 

[66] Ila: However, even if I follow it [showing the movement], 

B goes farther and farther away. 

[Ila decides to activate the trace] 

… 

[79] Ila: So, trace...this point here. 

[80] Ila: It's as if it is only in that point there. 

[81] Ila: Wait, right. 

[82] Ila: Yes!! Because if I move A,  

whether it is possible or 

not to perform 

maintaining dragging. Em 

tries to guide Ila in her 

attempt to perform 

maintaining dragging. 

 

 

 

 

 

 

Ila describes the property 

she is using to guide her 

attempt at performing 

maintaining dragging. As 

she tries to do this she 

realizes once again that 

the figure, in particular B 

is not behaving as 

expected. 

She decides to activate 

trace on the dragged-

base-point. Once again 
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[83] I: Yes.. 

[84] Ila: B...no, it doesn't stay still...but if I move A 

… 

[87] Ila: No, it's there. 

[88] Ila: See that... 

[89] Em: Try to maintain... 

[90] Ila: ...only in that point, I think. 

[91] Em: Go down! Go further down. 

[92] Em: Lower...ok...keep going down. 

[93] Ila: down...[murmuring]...there 

Em tries to help her 

guiding the movement 

orally.  

Episode 5 

[94] Ila: It has to follow...it has to be...see that it is... 

[95] Em: [murmurs something] 

[96] Ila:...basically the parallel. 

[97] Em: No... 

[98] Ila: Look: if I follow... 

[99] Ila: this parallel line here... 

[100] Ila: See? Look. 

… 

[105] Ila: Point A... 

[106] Em: Bring it up. 

[107] Ila: There! See that ...no. 

[108] Em: No, I don't think...it's a rectangle 

[109] Ila: It's not a rectangle, you're right. 

Brief Analysis 

Again Ila seems to only 

be able to interpret the 

movement of A only in 

terms of “following a 

parallel line” ([96]-[99]). 
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[110] Ila: No, but there is something that ... 

[111] Ila: Because ... 

[112] Ila: It's as if A had to stay fixed there. 

[113] I: Uhm. 

[114] Ila: It has to... 

[115] I: But you were moving it... 

[116] Ila: Eh. 

[117] Ila: I mean, yes, but I'm 

saying in order for it to remain a 

rectangle. 

[118] I: Uhm... 

[119] Ila: It's as if it had to stay fixed there. 

[120] I: "There" where? 

[121] Ila: In, uhm, between the intersection...between the 

line that... 

[122] Ila: Between A..., basically between this line here 

[pointing to AC], and this one here [pointing to AB]. 

 

 

Ila seems to be confused 

again, and decides that 

A, too, needs to be 

“fixed” ([112], [119]) 

between the intersection 

of AB and AC, as she 

indicates to the 

interviewer ([121]-[122]). 

 

Table 5.3.2: Analysis of Excerpt 5.3.2 

Initially the solvers seem to be interested in moving point A and maintaining the 

property “ABCD rectangle” (their III). Then the Ila seems to shift her attention to a 

property she recognized in the Cabri-figure she is exploring ([7], [9]): “the segment 

here…has to always be parallel to this.” We can interpret this as part of the conceptual 

component of the figural concept Ila has built from the Cabri-figure. In other words, Ila 

seems to be interpreting the Cabri-figure as a rectangle, a figural concept, with the 

parallelism between two sides as a property of the conceptual component. She seems to 
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show a desire to relate this property to the trace, and in line 11 she even predicts 

(incorrectly) what the trace would represent if she activated it and dragged A trying to 

maintain her III. 

Ilaʼs prediction leads her to draw the parallel line to CD through A (lines [14] and 

[15]) and to try to move A along it. As doing so she expresses the need to “fix B too” 

([17]), which indicates the beginning of a conflict arising between the predicted and the 

actual behavior of the Cabri-figure. She repeats her intention in lines 32 and 38 while 

she is trying to redraw her line and explain her thinking (unsuccessfully) to Em. Ilaʼs 

argumentation is built around her pre-conceived property which she does not appear to 

want to abandon. Even though Ila does not seem to be able to successfully drag A along 

the line she has conceived, she states again that “A has to always belong to that famous 

line” ([42]). 

The conflict becomes more evident when, trying to perform maintaining dragging 

again and getting help from her partner (we will discuss this collaborative behavior in 

section 5.5), Ila keeps on looking at “this line here, that is the parallel to CD” ([64]) and at 

the behavior of B as well ([50], [66], [84], [122]). Initially Ila seems to be successful at 

performing maintaining dragging, however shifting her attention to the movement of the 

dragged-base-point A, she is not able to overcome her original idea of moving along “the 

parallel” ([96]). Ilaʼs pre-conceived property, AB parallel to CD, leading to her idea of 

having to move A along a parallel line, seems to inhibit the carrying out of maintaining 

dragging, even after Em tries to guide her in an attempt that in the eyes of the 

interviewer seems successful ([49]-[67]). Furthermore, Ila seems to reach the 

conclusion, and be pretty convinced, that it is not possible to perform maintaining 

dragging with this base point and this III ([80], [82], [90], [112]). The conflict is now 

evident and Ila seems to be confused, but still unable to let go of her pre-conceived 
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property. She only seems to be able to let go of the particular parallel line she was 

considering to substitute it with another  (possibly to BD this time) in order to try to 

resolve the conflict when Em prompts her to continue dragging, since she seems not to 

agree with Ila ([97]) and wants to “do all the trace” some other way ([102]). All Ila seems 

to be able to perceive is that dragging along her imaginary parallel line does not induce 

the III ([107]-[109]), which strengthens the conflict. In the end, Ila states that maintaining 

dragging is not possible, since A need to “stay fixed” ([112], [119]) in an intersection 

([121], [122]). Again her reasoning seems to revolve around the pre-conceived property 

which she cannot let go of. 

Ilaʼs attachment to her pre-conceived property leads her to uncertainty and 

difficulties in performing maintaining dragging. Moreover the strength of her belief may 

be augmented by the roots of the pre-conceived property. Again Ila seems to be 

interpreting the Cabri-figure as a rectangle, a figural concept, of which the pre-conceived 

property is part of the conceptual component. The strength of Ilaʼs pre-conceived 

property appears again clearly later in the exploration, which unfolds in the following way 

(see Excerpt 6.2.2 in Ch6). The solvers, prompted by the interviewer, are eventually able 

to perform maintaining dragging in a way that seems consistent with our model, but are 

unable to make sense of the “circle” that appears on the screen when the trace is 

activated (Excerpt 6.2.2). Although all the elements were in place for the solvers to let go 

of their incorrect GDP (the “parallel line” [99], Excerpt 5.3.2) and provide a new one (“the 

circle” [8], Excerpt 6.2.2), they do not do this. Instead they ask themselves “why” a 

couple times and, unable to reach an explanation, settle on a basic conjecture in which 

the premise is “AB parallel to DC, that is when AB is perpendicular to CA”. 

Overall, we seem to have been able to describe the solversʼ difficulties in this 

excerpt in terms of solversʼ reluctance to freeing their mind. We did so by showing that 
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the pre-conceived property inhibited the performance of maintaining dragging and led to 

a conflict that the solvers were not able to resolve. The conflict originated from the 

coexisting idea of parallel and perpendicular lines and the observation and haptic 

perception of the movement of the base point A (circular) during attempts to perform 

maintaining dragging. The inability to be mentally flexible and free the mind from the pre-

conceived property made it impossible for the solvers to reach a harmonic interpretation 

of their experience. In particular it seems like any interpretation of the trace mark was 

linked to the pre-conceived property instead of potentially leading to a new detached 

geometrical object along which to drag.  

Finally, as in Excerpt 5.3.1, the solvers in this excerpt do not seem to be expert 

solvers. We will discuss this aspect in further detail when we discuss issues related to 

the appropriation of the maintaining dragging scheme, in Chapter 6. Although there 

seems to be expectation of a path, the prediction of its geometric description is 

dominated by the strong conceptual components of the figures the solvers seem to be 

dealing with. Moreover, the properties of the conceptual component are conceived 

statically and the solversʼ resistance to letting go of these properties inhibits their 

perception of a regular movement of the base point being dragged as “a cause” for their 

III to be visually verified. As in Excerpt 5.3.1, the solvers seem to accept a basic property 

as the “cause” of the III, which becomes a condition and the premise in their conjecture. 

 

Excerpt 5.3.3 

This Excerpt features two solvers, who we consider “experts” with respect to 

maintaining dragging, but that encounter difficulties performing maintaining dragging 

because they resist letting go of a previously-conceived idea. This leads to a conflict 

between the solversʼ expectations and the trace mark that appears on the screen. 
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Episode 

[1] G: you see that if you do, like, maintaining dragging 

[“trascinamento di mantenimento”]… trying to keep them more 

or less the same 

[2] F: exactly [ murmuring]… well, okay. 

… 

[3] G: Ok, uh, then what had we done? parallelogram. 

[4] F: For the parallelogram, uh, letʼs try to use “trace” to see if 

we can see something. 

[5] G: go, letʼs try [speaking together with him]…uh, “trace” is 

over there. There, no there, there! 

[6] F: Trace, we have to do D,  well for now letʼs do a 

parallelogram like this, okay, so of this point… with respect to 

what? 

[7] G: With respect to what?  [not understanding] only that 

point. 

[8] F: Only this point. Okay so Iʼll take it and go. 

[9] G: and now what are we doing? 

Oh yes, for the parallelogram?

  

[10] F: yes [as he drags D with the 

trace activated]  yes, we are trying 

to see when it remains a parallelogram. 

[11] G: yes, okay the usual circle comes out. 

Brief Analysis 

G has identified a 

minimum basic 

property (PD=PB) to 

use as an III. 

 

F decides to activate 

trace on the base 

point D and maintain 

“ABCD parallelogram” 

as an III. 

 

 

 

 

The solvers seem to 

give a first GDP as a 

circle, however the 

circle they have in 

mind does not seem to 

“fit” what appears on 

the screen as F 

performs maintaining 

dragging. This conflict 
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[12] F: wait, because here…oh dear! [“accidenti”] where is it 

going? 

… 

[13] F: So, maybe itʼs not necessarily 

the case that D is on a circle so that 

[“in modo che”] ABCD is the 

parallelogram. 

leads F to question the 

hypothesis of D being 

on a circle in order to 

maintain the III.  

Table 5.3.3: Analysis of Excerpt 5.3.3  

We consider the solvers in this excerpt to be “experts” since they have 

successfully used maintaining dragging and generated conjectures in a way that was 

coherent with our maintaining dragging scheme in previous explorations. In this 

exploration as well the solvers seem to expect the maintaining of the III to be “caused” 

by the movement of the chosen base point along a path ([4]), which can indicate 

appropriation of the scheme as we will describe in more detail in Chapter 6. However, as 

soon as the idea of “circle” comes to mind – and moreover of a particular circle ([11]) – 

the solvers seem unable to free their mind from such conception and are unable to make 

sense of the trace mark, even doubting that the GDP is a circle at all ([13]). The circle 

they seem to have in mind seems to be the circle centered in P and with radius 2PC. 

This idea seems to inhibit the conception of other circles and even the performance of 

maintaining dragging; the exploration continues with an argumentation about why their 

initial idea does not work, during a second attempt at performing maintaining dragging, 

and eventually with G deciding to “think about it” without the trace or any dragging (we 

will show this in Chapter 6). In other words the idea of movement along a certain circle 

the solvers cannot free their mind from is strong: it inhibits the perception of other 

invariants and even the performance of maintaining dragging since it creates a conflict 
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with what appears on the screen. In the end the conflict is overcome when one of the 

solvers lets go of the idea and thinks about the situation in a different way (Excerpt 

6.2.3). 

 

5.4 Being Aware of the Status of Objects 

As described in Chapter 2, a Cabri-figure is constructed from a set of basic 

objects which the user initially places on the screen as s/he pleases. New objects are 

then constructed from this basic set according to specific geometrical properties. Such 

properties (and all derived properties) are maintained by the Cabri-figure during 

dragging, that is when the user acts upon the figure. The user can act upon the Cabri-

figure by dragging any of the basic objects through which it is defined. In the step-by-

step constructions that lead to the Cabri-figures in our activities, the basic objects 

through which figures can be acted upon are mainly points.  

Awareness of the different status of objects of a Cabri-figure – that is of the basic 

elements, those that can be acted upon directly, as opposed to the elements that are 

dependent from these, and that cannot be directly acted upon – can guide the solver 

when s/he is deciding how to proceed in the exploration. However gaining such general 

awareness is not trivial and many solvers seem to exhibit a lack of it. For example, recall 

Excerpt 5.3.2 from the previous section. Ila constructs the parallel line to CD through A 

(lines [26] and [27]) and then tries to drag A along it, as if the line were independent from 

A. Her hypothesis is that A moves along such line, as she repeatedly expresses (lines: 

[42], [66], [98], [99]). Her lack of general awareness over the status of the different 

objects leads to perplexity ([28]) and a state of confusion when she tries to move A along 

the line and realizing that the line moves with A ([112]-[117]). Moreover, her lack of 

awareness of the status of different objects seems to even lead to an erroneous 
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perception of objects that move or stay still during the dragging she is performing. Ila 

explicitly states that B does not stay still when she tries to move A ([82]-[84]) even 

though it actually does, as shown on the screen and justified by the fact that B is not 

constructed as dependent from A in any way. However Ila does not seem to be able to 

realize this, and instead concludes that the whole figure must basically “stay still” as it is 

good “only in that point” ([90]). 

As described in the example above, a general level of awareness of the different 

status of objects of a Cabri-figure is fundamental for dynamic explorations, whether they 

include the use of maintaining dragging or not. This type of awareness is necessary for 

the solver to be able to act upon the dynamic-figure, either dragging its base points or 

constructing new robust properties to add to the ones inherited from the steps of the 

construction. In particular, being aware of the different status of the geometrical objects 

that the Cabri-figure is made of – which is necessary for having control over the Cabri-

figure – fundamental for generating conjectures according to our model.  

Although general awareness is necessary for exploring and making sense of the 

dynamic-figure, it is not sufficient. There seems to also be a figure-specific level of 

awareness that allows solvers to control the Cabri-figure. When general awareness is 

present, even in cases in which initially the solvers do not seem to have control at a 

figure-specific level, solvers seem to be able to reason about the various elements of the 

dynamic-figure and quickly gain control over their different status. On the other hand, 

when general awareness seems to be lacking, solvers do not seem to be able to 

proceed in the exploration. In the excerpts we present in this section we will provide an 

analysis that takes into consideration the general level and the figure-specific level of 

awareness, to show the roles played by each of them and how they are woven into 

processes of conjecture-generation. 
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First we present two excerpts that show evidence of solversʼ awareness of the 

different status of objects of a dynamic-figure. In particular Excerpts 5.4.1 and 5.4.2 

show respectively how awareness of the dependence of certain objects from other basic 

ones allows solvers to decide how to proceed in an exploration, and how a discussion 

over which points are base points allows the solvers to overcome a block at a basic 

conjecture. We then proceed by analyzing three excerpts shed light onto other 

consequences that the lack of awareness of the different status of objects of a Cabri-

figure either at a general level and/or at a figure-specific level can have on the 

explorations. In particular, for solvers who have general awareness, a lack of figure-

specific control may just make the dragging test manually harder but not hinder the 

process of conjecture generation (Excerpt 5.4.3), while solvers who do not seem to have 

awareness at a general level (Excerpts 5.4.4 and 5.4.5), may experience blocks in the 

process and difficulties in developing the maintaining dragging scheme, the utilization 

scheme associated to maintaining dragging and the task of conjecture-generation, as 

described by our cognitive model. 

 

Excerpt 5.4.1 

 This excerpt shows how general awareness of the different status of objects of 

the Cabri-figure allows the solvers to decide how to proceed in the exploration. The 

solvers are exploring Problem 2. As usual, the name of the solver who is holding the 

mouse is marked in bold letters. 

[1] Giu: So D is independent and it stays on its own... 

[2] Ste: ...however...yes 
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[3] Giu: Yes...exactly. 

[4] Ste: A depends...[they speak 

together] 

… 

[8] Giu: A is dependent from C because it is at the same 

distance to is remains like that. 

[9] Ste: It's an axial symmetry, so I can't do anything about it. 

[10] Giu: Good for you. 

[11] Giu: uh, B is dependent both from C and from D, right? 

[12] Ste: But can I move it?...no 

[13] Giu: Of course not!! [they laugh] 

[14] Ste: right, actually... 

[15] Giu: Because if you move C... 

[16] Ste: if I move C... 

[17] Giu: IF YOU MOVE C... 

[18] Ste: I am moving C! what's wrong? 

… 

[They tease each other 

and Giu takes the mouse] 

[21] Giu: Ok. I am not 

responsible for whatever it is that I am doing...yes...if you move 

C, B also moves...if you move D. 

[22] Ste: It's the same. 

[23] Giu: it moves...so B is dependent from D and from C... 

The solvers refer to 

the steps of the 

construction in which 

C is defined as the 

symmetric image of C 

with respect to P. 

They predict that A is 

not a base point and 

try to drag it, which 

confirms their 

reasoning. 

Referring to how B 

was constructed they 

also conclude that B is 

“dependent” and 

therefore not 

draggable. 

They seem unsure as 

to whether B is 

dependent from C as 

well or not, so they 

test it by dragging. 

They see that C does 

influence B, and 
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[24] Ste: from C and from D. 

[25] Giu: from C and D exactly. [Ste takes the mouse back] 

[26] Giu: Therefore we need to find the way to...so the possible 

conditions are C and D, because only moving C and D we can 

have something that changes. 

[27] Ste: right. 

[28] Giu: Otherwise... 

[29] Ste: right, actually here 

I can't do...oh no, I can... 

[30] Giu: eh, I can chaaange 

[he drags P] yes 

[31] Ste: Yes, because that point too can move this line here, 

so... 

[32] Giu: But it is like changing D. 

decide that the points 

that influence the 

behavior (in order to 

“have something that 

changes”) of the 

Cabri-figure are C and 

D. 

They finally notice that 

P is also a base point, 

but decide not to use it 

for the exploration, 

since they see 

dragging it as “like 

changing D”. 

Table 5.4.1: Analysis of Excerpt 5.4.1 

The excerpt shows how the solvers are aware of the hierarchy of objects of the 

Cabri-figure at a general level. Among the objects that the Cabri-figure is made of, they 

seem to pay particular attention to points, deciding which ones depend on others, thus 

gaining figure-specific awareness. While they figure out which points are base points 

they mix theoretical properties ([8], [9]) derived from the steps of the construction with 

empirical arguments based on trying to move the points with the pointer ([13], [18], [21]). 

The solversʼ reasoning and exploring general awareness of the hierarchy of the various 

points of the Cabri-figure allow them to quickly gain figure-specific control, identifying the 

base points. This is a prerequisite for deciding which base point to choose in order to 
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perform maintaining dragging. They choose to use D as their selected base point and 

the property “ABCD parallelogram” as their III, and proceed according to our model. 

 

Excerpt 5.4.2 

 This excerpt shows how awareness of the different status of objects and of the 

role of the base points in determining the behavior of the Cabri-figure allows the solvers 

to overcome a block at a basic conjecture they had formulated earlier in the exploration. 

The solvers had been working on Activity 3 and had written the following basic 

conjecture: “If AB is perpendicular to l, then ABCD is a rectangle.” Not knowing how to 

continue the exploration, Pie thinks of dragging the base points and tries to explain his 

idea. The solvers then continue the exploration trying to perform maintaining dragging 

with the different base points. 

[1] Ale: [murmurs something about angles.] 

[2] Pie: Let's say this: If it is a rectangle, we can say that AB 

has to be, I mean the only case in which, uh, the quadrilateral 

is a rectangle, is when AB is perpendicular to line l. 

[3] Pie: and that seems to make sense to us. 

[4] Ale: Yes. 

[5] Pie: Now we would need to see if moving the base points 

we can obtain more...I mean in other ways, changing the base 

points, we can obtain AB...perpendicular to l. 

[6] Ale: [murmuring] only in this case... 

[7] Pie: perpendicular to l. Which is what I was saying before, 

that maybe it could be that moving K or M...that is [dragging M]. 

 

Pie repeats the basic 

conjecture they had 

reached earlier in the 

exploration. 

 

He then argues that 

the condition “AB 

perpendicular to l”, 

necessary and 

sufficient for ABCD to 

be a rectangle, may 
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[8] I: Ok, so let's work in this 

direction. 

[9] Ale: Yes, but in any case, uh, 

even if we move M or K...AB has 

to in any case be always 

perpendicular to l in order to have 

a rectangle. 

[10] Pie: Yes, and that we said is OK. Only in that case, in the 

sense that if and only if AB is, uh, perpendicular to l, we have a 

rectangle. 

[11] Pie: But what I'm saying is that maybe having three base 

points... 

[12] Ale: Yes. 

[13] Pie: ...that we can move, it 

could be that moving, in particular 

one of those, [as he drags K] uh 

points, we can obtain that AB is 

a...that AB is, uh, perpendicular. 

be obtained by 

“changing [dragging] 

the base points”.  

 

Although Ale is not 

convinced by this 

argument, Pie – 

maybe encouraged by 

the interviewerʼs 

comment – tries to 

explain again how it 

might be possible to 

obtain the desired 

condition by “moving, 

in particular one of 

those… points”, and 

simultaneously he 

tries dragging them. 

Table 5.4.2: Analysis of Excerpt 5.4.2 

In this excerpt Pie seems to have awareness of the different status of the points 

A, M, and K with respect to the other points of the Cabri-figure both at a generic level 

and at a figure-specific level. This is evident in his argumentation about why there may 

be other ways to explore the case of “ABCD rectangle”. In particular he argues that 

although the condition they had expressed in the first conjecture (AB perpendicular to l) 

is necessary and sufficient for ABCD to be a rectangle ([2], [10]) there may be other 
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ways to “obtain it” by dragging the base points ([5], [11], [13]). This awareness allows Pie 

to conceive the condition of the first conjecture as a bridge property, which can be used 

as a temporary III (see Ch 4), in order to find new conditions under which ABCD might 

be a rectangle. In other words, the awareness at both levels seems to allow Pie to 

overcome a global static apprehension of the figure and of the conceptual relations 

between its elements – which had been used for generating basic conjectures – and 

choose to proceed inducing the property “ABCD rectangle” through movement of the 

base points.  This way the solvers overcome their original (basic) conjecture and 

proceed in the exploration using maintaining dragging. 

 
Excerpt 5.4.3  

The excerpt shows consequences that the lack of figure-specific control over the 

different status of objects of a Cabri-figure can have on the explorations. This excerpt is 

from an exploration of Problem 4 in which the solvers are experts and have performed 

maintaining dragging using the base-point A, activated the trace, and reached a GDP, 

which they describe at the beginning of the excerpt. Instead of constructing an A-

invariant object that represents their GDP, they construct an object that is dependent on 

the dragged-base-point. In doing this they do not seem to be controlling the different 

status of points. Although in this case the decision does not hinder the process of 

conjecture generation, it makes the (soft) dragging test manually more difficult to perform 

and a robust dragging test impossible to perform. 

[1] Gin: So...circle again. 

[2] I: Hmm. 

[3] Gin: Yes. 

[4] Gin: so... 

Gin describes the GDP 

as a circle. 

The solvers 

successively refine the 
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[5] Dav: [murmurs something] 

[6] Gin: Yes...it is  

[7] Dav: ...it is the midpoint of C and 

B 

[8] Gin: It is the midpoint of... 

[9] Dav: It is the intersection of the 

diagonals 

[10] Gin: diagonals 

[11] Dav: of the diagonals. 

[12] Dav: and since it is a rectangle, it is also the...the...uh the 

center of the circumscribed circle. 

[13] Gin: whatever. 

[14] Dav: Eh, they are all on the circle. 

[15] Gin: yes. 

[16] Gin: hmm. 

[17] I: Now, are you sure of this? 

[18] Gin: eh, yes.... 

[19] I: Because you have traced only 

... 

[20] Gin: ...pretty much 

[21] I: a little piece. Hmm. 

[22] Gin: there. 

[23] Gin: Well, we could try to 

continue. 

GDP trying to decide 

where the center of the 

circle might lie. They 

then proceed by 

constructing the circle 

that represents their 

GDP as the circle with 

center the midpoint of 

BC and passing 

through A. 

The solvers seem to be 

describing aspects of 

the new Cabri-figure on 

the screen. 

 

 

 

 

 

The solvers seem 

convinced by their GDP 

and are able to predict 

what the rest of the 

trace mark should look 
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[24] Dav: exactly. 

[25] Gin: So now let's ... 

[26] Gin: more or less along there 

[27] Gin: nooo [as a little circle 

appears when he clicks another 

point on the screen because he had 

not finished using the command "circle"] 

[28] Gin: Good here... 

[29] Dav: No... 

[30] Gin: Yes, alright, it looks like it is 

good [Italian: "sembra di sì"] 

[31] Gin: Yes, good. It could be. 

[32] Dav: Yes, it looks like it is good. 

[33] Gin: yes. 

[34] Dav: Careful you are going out... 

like.  

 

Although the circle they 

have constructed is not 

A-invariant the solvers 

seem convinced that it 

correctly describes their 

observations as they 

perform a soft dragging 

test. 

Table 5.4.3: Analysis of Excerpt 5.4.3 

The solvers have performed maintaining dragging and activated the trace on the 

base point that they are dragging. They seem to notice a circle appearing ([1]). They 

proceed to give further details of their GDP, describing the center of the circle as the 

midpoint of BC ([7]), or the intersection of the diagonals ([9]-[11]). Notice how these 

descriptions do not take into account the status of different objects with respect to the 

construction: defining a circle by its diameter defined by base points that are not being 

dragged (B, C) is fundamentally different – in terms of behavior of the resulting 

construction – than defining the center of the circle as the intersection of the diagonals 

(thus necessarily dependent from the dragged base point and other dependent objects). 
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However they construct the object that represents their GDP as the circle with center the 

midpoint of BC, through A, the base point being dragged. This is a GDP that is not an A-

invariant, and it creates difficulties in performing any type of dragging test, as shown in 

the excerpt. The solvers need to drag point A trying to keep the constructed circle still 

and the III to be visually verified, and at the same time check their IOD. Gin, with some 

difficulty, does seem to be able to perform the dragging and both students seem to have 

conceived the IOD as “A belongs to the circle”.  

The solvers do not seem to be aware of the difficulties that their GDP is creating 

in performing the dragging, and they seem to be able to overcome such difficulties by 

cooperating: Dav seems to check that all vertices of the rectangle are on the circle (a 

bridge property he perceives as an III instead of “ABCD rectangle”), while Gin seems to 

be trying to keep the circle still and drag A “along it”. It seems like this collaboration is 

fundamental given all that the solvers need to keep under control (for more on 

“collaboration” see Section 5.5). Such difficulty would not have arisen if the GDP had 

been an A-invariant object. 

This example shows how the figure-specific control over the different status of 

objects comes into play at different phases of our model.  In Excerpt 5.4.2 we have seen 

how it contributes to the initial phase of a dynamic exploration, and now we have seen 

how it can affect the behavior of the object constructed to represent the GDP, making 

such behavior non-ideal for the dragging test (especially a robust dragging test). The 

solvers in this excerpt did not seem to have difficulty formulating their conjecture even if 

they could only perform a soft dragging test. This seems to be the case because they 

were aware, at a general level, of the hierarchy of constructed elements that determined 

the dependence of certain objects from others. However, for solvers who do not seem to 

have this general awareness this situation might have been puzzling. In the next two 
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excerpts we will show cases in which the solvers do not seem to have awareness at a 

generic level, and how these affects their explorations. 

 

Excerpt 5.4.4 

This excerpt shows how a student provides a GDP for the base point she is 

dragging. However she does not seem to take into account the different status of the 

objects she considers in her description, and does not define an object that is 

independent from the base point she is dragging. The solver does not seem to have 

awareness at a generic level, which seems to make it difficult for her to providing a GDP. 

This interpretation of ours is supported by the fact that she overcomes the difficulties 

only through an intervention of the interviewer aimed at fostering awareness of the base 

points. The excerpt is taken from a studentʼs exploration of Problem 11. 

Episode 1 

[1] I: you are moving A...with the intention of? 

[2] Giu: Of leaving it... 

[3] Giu: of making coincide the line AC 

and ... 

[4] I: uh huh 

[5] Giu: I mean, uh, to make the perpendicular bisector of AB 

go through K. 

[6] I: Ok. 

[7] I: and what are you seeing? 

Brief Analysis 

 

Giu is using a bridge 

property to maintain 

ABCD a rectangle while 

dragging A. 

 

 

 

 

                                                 
1 Since this exploration was part of the pilot study, the interviewer was “more active” than 
in the interviews of the final study. However the solverʼs lack of control over the status of 
objects seems quite apparent, so we chose this excerpt even given this limitation. 
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[8] Giu: Eh, that it moves along the 

perpendicular line. 

[9] I: Uhm 

[10] Giu: I mean. 

[11] I: Ok, so let's try to describe this perpendicular line. 

[12] Giu: Eh...it's the the the 

… 

[16] Giu: Ehm, the perpendicular 

line to AD, that is to the line l that 

we constructed 

[17] I: uh huh... 

[18] Giu: through A. 

[19] I: Ok, let's try. 

[20] Giu: there. 

 

She provides a first GDP 

as “the perpendicular 

line”. 

 

When prompted she tries 

to refine her GDP and 

describes it as the 

perpendicular line to AD 

through A. 

 

She proceeds to 

construct the object that 

represents her GDP. 

Episode 2 

[21] Giu: Eh, B has to be... 

[22] Giu: I would have to fix B. 

[23] I: Hmm...B is a constructed object... 

[24] Giu: Then I have to do the line through... 

[25] Giu: Hmm...so...[she starts 

dragging A again.] 

[26] Giu: So I want A... 

[27] Giu:..here. 

[28] Giu: There...so... 

Brief Analysis 

She seems to realize the 

line she constructed does 

not have all the 

properties she had 

hypothesized, in 

particular it does not 

contain B. She tries to 

find another way of 

describing “the place” to 
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[29] I: Or also in another place, you may want it, right? There 

are a number of places... 

[30] Giu: Yes. 

[31] I: Ok. Also all that [as Giu drags A]..you may want. 

[32] Giu: All that. 

[33] I: So let's try to describe this. 

[34] I: There no [as Giu 

goes "off track"] 

[35] Giu: No. 

[36] I: Ok. 

[37] I: So try to explain 

to Cabri and to me what is the "here yes and here no". 

[38] Giu: [smiling] 

[39] I: Let's define a bit better the "here yes". 

[40] Giu: [sighing] eh, it would be the perpendicular...only I 

have already drawn it! but it doesn't stay... 

put A in order to obtain 

the property she wants. 

 

She describes “the place” 

visually in terms of good 

and bad zones on the 

plane: “here yes” and 

“here no”. 

 

 

 

 

 

However she seems to 

keep on conceiving the 

“here yes” zone as the 

perpendicular line she 

has already constructed. 

Episode 3 

[41] I: Eh, but it moves. Why does it move? 

[42] Giu: Because... 

[43] I: Because who are you moving? 

[44] Giu: Because I move A and so the parallel, uh, the 

perpendicular moves too. 

Brief Analysis 

The interviewer prompts 

her to think about which 

points make other 

objects move. 

Giu does not seem to be 
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[45] I: Yes, because you defined it through A. 

[46] Giu: Ok. 

[47] I: So let's maybe try to define it not using A. 

[48] Giu: [together]...not using A... 

[49] Giu:...but instead...through B. 

[50] Giu: ...through M? 

[51] I: Ok, M does not move, for example, 

[52] Giu: uhm. 

[53] I:...so it might be a good one. 

[54] Giu: was it this one? 

[56] I: That one, yes, we 

don't want it any more. 

[57] Giu: Hmm,...I have to do 

the perpendicular line [as she constructs the line] to this one 

[she selects BC] through this [she selects M]. 

aware of the hierarchy of 

the objects of the Cabri-

figure: she proposes to 

use B to define the line, 

as if she were just 

guessing randomly, and 

finally she decides to use 

M – maybe because of 

the response of the 

interviewer. 

Giu finally constructs an 

object, representing her 

GDP, that is A-invariant. 

Table 5.4.4: Analysis of Excerpt 5.4.4 

The III that Giu seems to be inducing is “the perpendicular bisector of AB goes 

through K” ([5]), a bridge property that she seems to be using to study the case of the 

rectangle (previous episodes of this exploration). She notices that A “moves along the 

perpendicular line” ([11]), but she seems to have trouble describing it geometrically in a 

more precise manner. Giu does not seem be aware (neither at a generic level nor at a 

figure-specific level) of the hierarchy of the various elements of the Cabri-figure she is 

investigating. She constructs a line to represent her GDP which is not an A-invariant: she 

describes it as being “perpendicular to AD” ([16]) and “through A” ([18]), so actually it is 

doubly-dependent on the dragged base point. The object she constructs therefore 
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moves when she tries to drag A along it. This causes difficulties in Giuʼs exploration, 

since she does not seem to be able to distinguish (at a generic level) between a line 

defined through a point versus a point belonging to a line. In dynamic geometry these 

two situations are fundamentally different: while in the second case the point can only be 

dragged along the line (it would be linked to it and therefore dependent from it) and the 

line would not move, in the first case dragging the point makes the whole line move and 

only dragging in a particular way (which Giu was trying to do) can the solver obtain the 

perception of a point moving on a fixed line. Eventually, only after intense prompting 

aimed at fostering awareness of the different status of elements of the dynamic-figure, 

she reaches a GDP which is A-invariant and she formulates the following conjecture: “If 

A lies on the perpendicular line to KM through M, then itʼs a rectangle.”  

We consider the difficulties portrayed in this excerpt to depend on Giuʼs lack of 

generic awareness of the different status of objects of which the Cabri-figure is made. It 

seems as if she were conceiving the figure “statically”, or still very much in paper and 

pencil mode, which leads to construction of an object that she imagines dragging A 

along, and that moves when A is dragged. In other words Giu seems to conceive the 

Cabri-figure as a whole, with properties that are analogous to paper-and-pencil 

properties, which are not related to movement, and thus not invariants according to our 

definition. In a static paper-and-pencil environment the situations “point on a line” or “line 

through a point” are represented in the same way, and therefore in a certain sense 

“equivalent”, however in a DGS they are clearly different situations that the solver needs 

to become aware of. We advance the hypothesis that this might be causing her lack of 

generic awareness of the hierarchy of objects of the Cabri-figure, which of course implies 

not having control over the status of different objects in a Cabri-figure generated through 

the construction steps. 
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Excerpt 5.4.5 

In this excerpt the solvers recognize “a line” in the trace mark left when they 

perform maintaining dragging using the base-point A. However lack of generic 

awareness of the hierarchy of elements of the dynamic-figure seems to block their 

construction of the IOD, since they are not able to provide a GDP which is A-invariant. 

The excerpt is taken from two studentsʼ exploration of Problem 1. 

 

Episode 

[1] Gin: What did you want to do? 

[2] Dav: Eh, we should be able to move A... 

[3] Gin: [murmurs something] 

[4] Gin: you need to move it... 

[5] Dav: eh...hmmm... 

[6] Dav: no, it's not a...[murmurs 

something] 

[7] Dav: Yes, it is a 

rectangle...before it goes out. 

[8] Gin: I see...in the meantime...what movement it makes. 

[9] Dav: Yes, it could be ... 

[10] Dav: Only I think moving 

[11] Gin: Yes. 

[12] I: Eh, Gin, what movement is it 

Brief Analysis 

Dav seems to consider 

A a base point, but he 

wants to check by trying 

to drag it. He tries to 

perform maintaining 

dragging with “ABCD 

rectangle” as his III. 

 

Gin concentrates on the 

movement of the 

dragged-base-point, but 

does not seem to be 

able to describe any 

regularity at first. Then 
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making? 

[13] Gin: Eh, I don't know, I don't 

[14] Dav: Let's try to trace. 

[15] Gin: It looks like a line, but I'm not sure. 

[16] Gin: I mean, I don't understand well. 

[17] Dav: Let's try now...or a very big circle. 

[18] Gin: I was... 

[19] Dav: No, I'm inside 

[murmuring] 

[20] Gin: Ok, now you are. 

[21] Gin: Hmm..out 

[22] Dav: yucky! 

[23] Dav: Let's try on the other side. 

[24] Gin: Yes, it could be a line. 

[25] Dav: Yes, like a line. 

[26] Gin: It is a line ...uh...a line through 

[27] Dav: It looks like a line on AB. 

[28] Gin: Yes. 

[29] Dav: Yes, it looks like a line  

[30] Dav: The extension of AB. 

[31] Dav: why does it disappear? 

[referring to the trace mark disappearing] 

[32] Gin: Yes, but the extension of AB is a particular case. 

[33] Gin: it could be "any" extension of AB. 

he gives a first GDP as 

a line, which Dav 

interprets as potentially 

a “very big circle”. 

 

 

 

Dav continues to 

perform maintaining 

dragging with the trace 

activated. 

 

 

 

 

They refine their GDP 

as a “line on AB” or “the 

extension of AB”. 

 

However the solvers do 

not seem satisfied with 

this GDP. In particular 

Gin doesnʼt think their 

definition is cyclic ([37], 
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[34] Dav: when...eh, yes. 

[35] Dav: eh, when ...AB has to lie on... 

[36] Dav: when it is on the circle. 

[37] Gin: AB has to stay on the extension of AB seems to be 

a bit... 

[38] Gin:...forced [Italian: forzato]. 

[39] [they murmur something] 

[40] Dav: Otherwise what? What else can we say? AB... 

[38]). Instead of refining 

the GDP Dav takes into 

consideration a new 

condition “when it is on 

the circle”, and seems to 

be confused about how 

to give a different 

description of the 

proposed line. 

Table 5.4.5: Analysis of Excerpt 5.4.5 

The solvers seem to be able to perform maintaining dragging, and they perceive 

a regularity in the movement of the dragged-base-point (it moves along a “line” [15] or a 

“very big circle” [17]). The solver also seems to be using a bridge property as an III 

during maintaining dragging: keeping the rectangle inscribed in a circle they have drawn 

([4]-[7]). The solvers spontaneously activate trace ([14]) to see what movement the base 

point is following ([8]), and they seem to recognize “a line” ([15]) or a piece of “a very big 

circle” ([17]). They then proceed to provide a more detailed GDP as a “line through AB” 

([25]-[27]), and then as “the extension of AB” ([30]), which is dependent upon the base 

point being dragged. This seems to create difficulties for the solvers, and in particular 

Gin seems to be unsatisfied with this description ([37]), but is unable to provide an 

alternative one. We attribute this behavior to lack of generic awareness of the different 

status of objects of the Cabri-figure they are exploring. 

What seems to confuse the solvers is the GDP being dependent on the elements 

through which they have defined it. Gin claims such a description is “forced [Italian: 

forzato]” ([38]), and the solvers start looking for different conditions, like all the vertices of 
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the quadrilateral being on the circle ([36]) and are not able to describe an IOD that has to 

do with the regularity of the movement of the dragged-base-point. In this sense we 

consider the solvers to lack awareness of the status of objects at a generic and figure-

specific level. Only through an intervention of the interviewer aimed at fostering such 

awareness will the solvers be able to formulate a conjecture coherently with the 

maintaining dragging scheme model. We will describe this in Chapter 6. 

 

 

5.5 Some Spontaneous Behaviors for Overcoming Difficulties Related to 

Maintaining Dragging 

In the previous sections of this chapter we introduced four components that seem 

to be necessary for expert use of maintaining dragging for conjecture-generation as 

described by our model. We argued that each component seems to be necessary in the 

process of conjecture-generation, and we did this by showing examples in which a lack 

of a specific component hinders or inhibits expert use of MD. In particular this involved 

analyzing cases in which the solversʼ behavior was (completely or in part) not coherent 

with our model. In this section we describe two spontaneous behaviors that solvers 

exhibited in overcoming difficulties related to maintaining dragging. We consider such 

behaviors particularly interesting because they recurred during different solversʼ 

explorations, in other words they were somewhat general. Moreover, after witnessing 

different spontaneous occurrences of the behaviors, we developed prompts to foster the 

behaviors in other solvers experiencing similar difficulties. 

The first behavior, that we show in Excerpts 5.5.1 and 5.2.2, has to do with 

performing maintaining dragging. Let us quickly return to what seems to happen when 

this way of dragging is used. Once a property has been conceived as a potential III, in 
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order to carry out maintaining dragging successfully, the expert solver seems to 

concentrate on the property to maintain and trust that the dragging strategy will allow 

him/her to “see” something. In order for the solver to observe the “something” arising 

from the movement of the dragged-base-point and/or from the trace mark s/he must 

simultaneously exercise haptic control – and therefore deal with the manual aspects this 

task – over the dragged-base-point, checking that the III is maintained at every instant, 

and concentrate on the movement of the dragged-base-point as a whole – and therefore 

deal with theoretical aspects of the task. In various cases we have observed solvers 

unable to drag because they seemed to feel the need to know “how to move” the chosen 

base-point, as if trying to control both the induction of the III and the perception of an 

unknown “way of moving” was too much to manage simultaneously. Some solvers 

spontaneously developed the following strategy: a separation of tasks involved in 

performing maintaining dragging. The solver holding the mouse would concentrate on 

maintaining the III, ignoring potential regularities in the movement of the dragged-base-

point, while the solver watching would concentrate on perceiving regularities in the 

movement of the dragged-base-point. In this manner one solver would conquer the 

manual difficulties of inducing the III while the other solver could identify a GDP.  

The second behavior we observed, and that we show in Excerpt 5.5.3, has to do 

with the construction of an object that represents a particular GDP identified by a solver. 

This behavior consists in constructing the object by “approximate” points that the solver 

marks on the screen “by eye [Italian: a occhio]”. For example, a solver might describe a 

GDP as “a circle” and then approximately mark various points on the screen that s/he 

thinks the circle goes through and construct a circle that seems to go through the 

marked points. This behavior arose particularly in cases in which the solvers would 
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search for a GDP by generalizing from a discrete set of points, as, for example, 

described in Excerpt 5.2.2.  

In Excerpts 5.5.4 and 5.5.5 of this section we show how we used the prompts we 

developed after analyzing the spontaneous behaviors, to help other solvers overcome 

similar difficulties. 

 

Excerpt 5.5.1 

 This excerpt shows how two solvers spontaneously separate tasks involved in 

performing maintaining dragging. 

Episode 

[1] Ste: There. Ok. Itʼll be difficult. [He starts dragging A with 

the trace activated.] 

[2] Ste: umh [murmuring] 

[3] I: So Ste, what are you looking at to try to maintain it? 

[3] Ste: Uhm, now I am basically looking at B to do 

something decent, but… 

[4] I: Are you looking to make sure that 

the line goes through B? 

[5] Ste: Yes, exactly, otherwise it comes 

out too sloppy… 

[6] I: and you, Giu, what are you looking 

at? 

[7] Giu: That is seems to be a circle… 

Brief Analysis 

Ste is trying to maintain 

“ABCD rectangle” as an 

III by dragging the base 

point A. 

Ste explains that he is 

trying to maintain the 

perpendicular line to BD 

through A going through 

B, a bridge property for 

the III. 

Giu, on the other hand, is 

concentrating on the 

trace mark. 

Table 5.5.1: Analysis of Excerpt 5.5.1  
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Before the beginning of this episode the solvers had found a bridge property (“the 

perpendicular line to BD through A passing through B”) for inducing the property “ABCD 

rectangle”, the III they had chosen. In this excerpt the two solvers seem to be carrying 

out very different tasks: Ste is dragging, exercising haptic control over the figure, but 

concentrating on a very local property (the bridge property “the perpendicular line to BD 

through A passing through B”) in order to do so; while Giu can concentrate on the figure 

as a whole and perceive the regularity in the movement of the dragged-base point, 

highlighted by the trace mark. 

 

Excerpt 5.5.2 

 This excerpt is another example of how solvers spontaneously separate tasks 

involved in performing maintaining dragging in order to overcome difficulties related to 

this way of dragging. 

Episode 

[1] Giu: Try to maintain these things here. 

[2] Ste: It'll be hard. 

[3] Giu: You try! 

[4] Ste: eh, what am I doing? 

[5] Giu: There, more or less...yes, yes, yes, not too much, 

there. 

[6] I: In the meantime you, Giu, tell me what you are looking 

at. 

[7] Giu: Come on, come on... 

[8] Giu: Uhm...it seems to be a curve. Unless it's him who is 

Brief Analysis 

Ste is trying to 

simultaneously maintain 

the concurrence of the 

two circles and of the line 

through PD, a bridge 

property for the III “ABCD 

parallelogram”. 

Giu is guiding Ste orally, 

helping him adjust the 

manual movements, and 
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not able to do anything... 

[9] Ste: It's really hard! It moves!! [laughing] 

[10] Giu: I know. 

[11] Giu: I can only 

imagine...but I think 

that is it also, uh, that it 

is a circle...with center 

in A. 

[12] Giu: and maybe with radius P. 

[13] Giu:...exactly... 

[14] Ste: What do you mean with center in A and radius P?! 

[15] Giu: AP! 

[16] Ste: Ah! No, eh, I didn't... 

[17] Giu: Radius a point is impossible! But... 

[18] Ste: No, I think the radius is AD necessarily, in any 

case, you should have AP equal to AD. 

[19] Giu: Maybe I also understand why... 

simultaneously 

concentrating on the 

regularity in the 

movement of the 

dragged-base-point A. 

 

Once Ste has overcome 

some manual difficulties, 

he can shift his attention 

to the trace mark and to 

properties of the circle 

that Ste has proposed as 

a GDP. 

Table 5.5.2: Analysis of Excerpt 5.5.2  

Controlling the simultaneous concurrence of the two circles and the line through PD 

during dragging is a manually-difficult task that seems to require all of Steʼs (the solver 

who is dragging) attention. Spontaneously Giu offers oral guidance during the dragging 

task, as he can concentrate on the figure as a whole, not having to exercise manual 

control over the figure. Moreover Giu takes on the task of interpreting the regularity in the 

movement of the dragged-base-point using the hint of the trace mark left on the screen. 
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Through this collaboration the two solvers are able to overcome difficulties involved in 

performing maintaining dragging and perceiving an IOD. 

 Through first two excerpts we showed how some solvers spontaneously 

developed the strategy of separating some tasks involved in performing maintaining 

dragging. The solver holding the mouse would concentrate on maintaining the III, 

ignoring potential regularities in the movement of the dragged-base-point, while the 

solver watching would concentrate on perceiving regularities in the movement of the 

dragged-base-point. In this manner one solver can conquer the manual difficulties of 

inducing the III while the other solver can identify a GDP. 

 

Excerpt 5.5.3 

This excerpt shows a particular way of providing a  GDP: the solver marks “good 

positions” on the screen and then connects them with a curve that he thinks represents 

the GDP. The constructed GDP therefore is an object that does not depend on the 

dragged base point. 

Episode  

[1] I: Ah, so you clicked the... 

[2] An: Eh, yes. 

[3] I: Ok. 

[4] An: Eh, I got the line instead of taking the... 

[5] I: Ah. 

[6] I: Go on "undo". 

[7] An: Point D. 

Brief Analysis 

 

 

 

 

Giu searchers for 

positions of D in which 

the measures of PB and 

PD seem to be the 
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[8] An: Where are you...there [murmuring] 

[9] [he murmurs as he reads the measures of the segments 

he has marked] 

[10] An: In the end...if I do a nice drawing... 

[11] An: Yes, more or less we have it. 

[12] I: Hmm. 

[13] An: I'll do...a circle [as he 

constructs it] 

[14] An: Yes, that ...I was saying 

[15] An: If it is a parallelogram, the 

side, well, obviously the diagonals 

have to be congruent, they have to 

cut each other at their midpoints. 

[16] An: But even more importantly the opposite sides have to 

be congruent. 

[17] I: Yes. 

[18] An: In this case, if we already know that AC are, uhm, 

well, AC is divided in half, is always divided in half 

[19] An: and we put as condition that AD is congruent to CB, 

so that D 

[20] I: uh huh 

[21] An:..lies on the circle that, uh, centered in A and through 

P 

[22] I: uh huh 

same (up to two 

decimals). 

 

 

He now perceives the 

points as belonging to a 

circle, which he 

proceeds to construct. 

 

 

An perceives a property 

of the parallelogram he 

had not considered 

previously: opposite 

sides being congruent. 

This strengthens his 

belief of having found an 

appropriate condition for 

obtaining a 

parallelogram, that is D 

belonging to a circle 

centered in A and 

through P. 
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[23] An: We know that AD is congruent to CB..always. 

[24] An: And this puts us closer to the, uh 

[25] An: to the parallelogram...now let's see...moving D a bit... 

An then proceeds to 

perform a dragging test. 

 

 

Table 5.5.3: Analysis of Excerpt 5.5.3 

This second behavior seems to potentially help when maintaining dragging is 

difficult to carry out, or when a solver has trouble perceiving regularity in the movement 

of the dragged-base-point during maintaining dragging. Although An describes the circle 

he constructed as the circle centered in A and through P, he constructs it as the circle 

centered in P and through one of the points he had marked as a good position for D. A 

consequence of such choice is that the dragging test can only be performed 

“approximately”. However this does not seem to bother the solver. 

An “approximate” construction of a GDP can help in such cases, by providing 

visual feedback to check an initial idea. The constructed object is “approximate” in the 

sense that it depends on points that were placed “by eye”. However it can provide good 

support for transitioning towards a new GDP that depends on the base points of the 

dynamic-figure that are not being dragged. 

After we had observed solvers spontaneously use these first two behaviors to 

overcome difficulties they encountered when using the maintaining dragging scheme, we 

decided to develop two types of interventions aimed at inducing such behaviors in other 

solvers. We show how through these interventions solvers were able to overcome 

difficulties in the following two excerpts (5.5.4 and 5.5.5). 
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Excerpt 5.5.4 

 This Excerpt shows how prompting aimed at inducing a separation of tasks can 

be used to help solvers succeed in performing maintaining dragging and reaching an 

IOD. The solvers are exploring Problem 2. 

Episode 

[1] V: No 

[2] I: Eh, you Val maybe tell 

her a little more up, down, 

right, left... 

[3] V: Go down...no, no, no 

up...up...up, up. 

[4] V: Go up moving a little 

[3] M: But it's not any more 

[4] V: go up moving a bit to the right... it's still a parallelogram. 

[5] V: Up, no, no, go like in diagonal a little....there. 

[6] V: There, perfect, a bit further down...like that. 

[7] M: Maybe... 

[8] V: a circle 

[together] 

[9] M: ...a circle 

[10] V: With center A and radius AP? 

[11] M: Let's try to do it. 

[12] M: One second... 

[13] M: So, circle...with center in A 

Brief Analysis 

 

The interviewer 

prompts the solvers 

to help each other by 

asking the solver 

who is not dragging 

to orally guide the 

solver dragging. 

The solver who is 

guiding (Val) is able 

to consider the figure 

as a whole, while the 

solver dragging 

seems to 

concentrate locally 

on the point she is 

dragging. The 

solvers seem to 

simultaneously 
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[14] M: center A, are you sure? 

[15] V: uh huh... 

[16] M: and radius AP. 

[17] M: Trace on D...Let's start from 

here and let me go...hey, tell 

me if it remains, ok? 

[18] V: Yes. 

[19] V: Yes, yes yes yes...yes, 

it remains. 

recognize a circle. 

Val is able to provide 

a more precise GDP 

as a circle centered 

in A and with radius 

AP. M constructs the 

GDP and performs a 

dragging test. 

Table 5.5.4: Analysis of Excerpt 5.5.4  

The interviewerʼs prompt seems to induce the appropriate behavior, the same 

that other solvers had spontaneously exhibited. One solver looked at the figure globally 

and was able to guide the other solver, who was dragging and concentrated on local 

properties of the figure. The separation of tasks led to success in conceiving a GDP and 

IOD. The solvers in fact perform a dragging test and formulate the conjecture: “If D 

belongs to the circle with radius AP, then ABCD is a parallelogram.” 

 

Excerpt 5.5.5 

 This Excerpt shows how an intervention that suggests the construction of an 

object that stays fixed during dragging of a certain base point seems to help the solvers 

overcome difficulties in providing a GDP and reaching an IOD for their conjecture. 

Episode 1 

[1] I: There, so you saw that moving A "up and down"...what 

is this "up and down"? 

[2] Val: Yes, well, uh, I mean that in any case... 

Brief Analysis 

The interviewer prompts 

the solvers to describe 

their observations by 
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[3] Ric: it has to move... 

[4] Val: AB has to remain parallel to DC, and yes, well, ABC 

has to be right... 

[5] I: uhm. 

[6] Val: ...always, and so you 

can do...extending segment 

AB. 

[7] I: ...extending AB [thinking to herself]. So you say "drag A 

on the extension of AB"? 

[8] Val: Yes. 

[9] Val: Ah, ok [as she 

constructs a line through M and 

A] 

[10] Val: Eh, but this line here varies when we vary... 

using the same words 

they had used to 

describe the movement 

of the dragged-base-

point, “up and down”. Val  

immediately provides 

basic properties as 

explanations, then she 

suggests “extending AB”. 

She tries to construct the 

object representing her 

GDP, but realizes that it 

moves when dragging A. 

 

Episode 2 

[11] I: So what do we need? An object that does not vary. 

[12] Ric: Yes. 

[13] Val: Eh no, because if you move A... 

[14] Ric: Then let's do... 

[15] Val: ...it is not a rectangle any more, I mean they are not 

right any more, the angles that we move. 

[16] Val: I mean... 

[17] Ric: I know but I wanted to add a point that does not 

move.  

Brief Analysis 

Ric suggests drawing 

points that stay fixed, but 

is not able to carry out 

his suggestion. 

The interviewer then 

suggests drawing an 

object the 

“approximately” 

represents the GDP to 
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[18] Val: like... 

[19] I: ...the line that you drew...maybe for now you could 

draw it approximately [Italian: "a occhio"] and then we can 

see, and ...we'll keep it still and then let's see if we can 

redefine it in a better way. Ok [as Val constructs it]. 

[20] I: You think that it's more or less this line, right? 

[21] Val: More or less. 

[22] I: along which you to 

drag A. Ok. 

[23] Val: More or less it looks like a rectangle. 

[24] I: More or less it seems like a rectangle. 

[25] Val: Yes. 

then redefine it some 

other way. 

Val proceeds with the 

construction of a line 

through M and roughly in 

the “up and down” 

direction. 

The solvers seem 

satisfied. 

 

Episode 3 

[26] I: So how could we describe this line? 

[27] I: Who are the base points? 

[28] Val: A, M, K 

[29] I: uh huh 

[30] Val: Well, yes, it goes through M. 

[31] I: Ok. 

[32] Val: because M is the midpoint of AB. 

[33] I: Great. 

[34] Val: and it should theoretically be parallel to DC, but 

they derive from... 

[35] I: But DC..uhm. 

Brief Analysis 

The interviewer prompts 

the solvers to focus on 

the base points of the 

figure to redefine the 

GDP. 

 

 

Val reaches a refined 

GDP. Although she 

defines the new GDP as 

a line through M and 
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[36] Val: Maybe ...it's perpendicular to KM. 

[37] I: Eh, so try. 

[38] Val: I should do...[while she constructs 

it]...perpendicular to the line I had constructed through M, it 

should go through K. I don't know if it does... 

[39] I: Ok. Yes, well in any case you did it approximately 

[Italian: "a occhio"]. 

[40] Val: Yes, well ok. 

 

perpendicular to KM she 

leaves the approximate 

line and constructs the 

perpendicular line to it 

through M, hoping it will 

go through K. There 

seems to be a lack of 

control over the status of 

objects, which leads to 

the next intervention of 

the interviewer. 

Episode 4 

[41] I: Ok, so try to maybe to the opposite. Construct KM and 

then do the perpendicular and see if it was exactly that one. 

[42] Val: So [constructing the line through KM] 

[43] Val: Through K...and M 

[44] I: Ok. 

[45] Val: Perpendicular to this through M. 

[46] I: Ok. 

[47] Val: Eh, it looks like it 

could do. 

[48] I: It looks like it could... 

[49] Val: So A can be redefined on the line. 

[50] I: Ok and now you are testing the conjecture. 

Brief Analysis 

 

 

 

The solvers seem 

satisfied and they 

redefine the dragged-

base-point on the line 

representing their GDP, 

and test their conjecture 

with a robust dragging 

test. 

The conjecture they 
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[51] I: Right? How was this conjecture? It was: if... 

[52] Val: If, uhm A moves on a line through M and 

perpendicular to ...to the segment KM, 

[53] I: Ok. 

[54] Val: the figure is a 

rectangle, it remains a 

rectangle. 

[55] Ric: Yes. 

[56] I: Ok. 

[57] Val: and also from the measures it looks like it because 

in any case, yes, well, the sides… 

formulate uses the IOD 

they have reached as 

premise and the 

interesting configuration 

(ABCD rectangle) as its 

conclusion, as described 

by our model. 

Table 5.5.5: Analysis of Excerpt 5.5.5  

In Episode 1 the solvers are facing difficulties providing an appropriate GDP, so 

the interviewerʼs first prompt is aimed at guiding the solvers to a new one that does not 

vary as the dragged-base-point moves ([11]) even if it might be constructed 

“approximately” for the time being ([19]). In her second prompt in Episode 2 ([19]), the 

interviewer remarks on how the description of the object the solvers are tying to deal with 

can be refined successively. The solvers seem to be satisfied with the “approximate” 

GDP that they construct in response to the interviewerʼs prompt. Then, in Episode 3 the 

interviewer tries to guide the solvers to re-describing the constructed line in terms of the 

base point of the dynamic-figure. This leads to the construction of a new object, a 

perpendicular line to the one constructed “approximately”, that according to the solvers 

highlights another property that the figure – interpreted as a rectangle – should exhibit: 

this newly constructed line should go through K (and it does “by eye”). 
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 The solvers now are aware of conceptual properties that link the object 

representing the GDP to the base points of the dynamic-figure. Therefore in Episode 4 

they respond to the last prompt by constructing a new object that represents the GDP 

appropriately. Moreover they are able to redefine the dragged-base-point upon it and 

perform a robust dragging test. 

 The prompting sequence used by the interviewer in these episodes is 

representative of the type of intervention that would be carried out during the interviews 

when solvers faced difficulties providing an appropriate GDP. In section 6.3 of Chapter 6 

we will describe the interviewerʼs prompts in greater depth. 
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CHAPTER VI 
 
 
 

A SECOND LEVEL OF FINDINGS: THE MAINTAINING DRAGGING SCHEME 
 
 

 
Throughout the previous chapters we have mentioned “expert use” of maintaining 

dragging (MD), intending cases in which the exploration of the Cabri-figure that emerged 

from the steps of the construction proceeded according to our model. A key element, 

necessary for expert use of MD, seems to be conceiving MD as a tool that can help 

answer the question “what might cause the maintaining of the property I am interested 

in?” by leading to the answer  “dragging a particular base point along a (generic) path 

that I will try to make explicit”. A second key element that seems to be tightly connected 

to expert use of MD and with the response to the question above is the notion of path. In 

Chapter 4 we introduced the notion of path which we had conceived in our first 

description of the MD-conjecturing Model, and now we will present a further elaboration 

of such notion. In particular, we will distinguish two components of the notion of path: a 

“generic path” and a “figure-specific path”.  

In this chapter we will also describe how the becoming conscious of how an 

invariant may be induced by dragging a specific base-point along a generic path seems 

to belong to a meta-cognitive level with respect to the dynamic exploration being carried 

out. This meta-cognitive level seems to influence the interpretation of the phenomena 

that occur on the screen, and to control the whole development of the exploration 

process. Constructing this meta-level knowledge seems to allow some students
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 to transition to using MD during an exploration, and exhibit expert behavior. In other 

words, having focused on searching for a cause for a certain type of quadrilateral to be 

maintained may guide the interpretation of the task in terms of developing conjectures in 

which the condition in the premise may be reached through MD. The description of 

expert behavior requires an extension of the analysis, from the cognitive level to the 

meta-cognitive level. While the figure-specific component of the notion of path resides at 

the cognitive level, the generic component of such notion, conceived as a cause, resides 

at the meta-cognitive level.  

These considerations have led us to a new interpretation of “where” abduction 

may lie within our model. In section 6.2 we therefore introduce a new notion, that of 

instrumented abduction, describing the type of abduction that may be seen in 

explorations leading to conjecture-generation that feature expert use of MD. Moreover 

we describe instrumented abduction as a particular type of instrumented argument, 

which we also introduce in this section. Finally, in Section 6.3, we provide a glimpse into 

recurring aspects of a process of development of expert use of MD. We accomplish this 

by describing a possible sequence of prompts that was used by the interviewer to foster 

solversʼ awareness about the use of MD for producing a conjecture, and that seemed to 

lead solvers to progress in a process of development of expert use of MD. 

 

6.1 Elaborating the Notion of Path 

In Chapter 4 we introduced the notion of path (Section 4.3) that we had 

elaborated during the data analysis we used to confirm and refine our model. New 

considerations about our idea of path, when focusing on expert use of the MD, have led 

us to further elaboration of the notion, that we will present in this section. We will do this 

through an example offered by an excerpt that we have previously introduced, and that 
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we include again in this section for ease of the reader. In particular we will illustrate the 

generic and figure-specific components of the notion of path. For simplicity we will refer 

to these components as generic path and figure-specific path.  

This distinction between “generic” and “figure-specific” has revealed to be very 

effective in the analysis of solversʼ explorations. On one hand the idea of generic path 

seems to play a key role in the development of expert use of MD. While on the other 

hand, the notion of figure-specific path seems to be very helpful when analyzing the 

emergence of elements related to the path in a specific exploration. Moreover, we note 

and recall that this distinction has been quite useful in the description of other factors 

involved in the exploration process leading to the conjecture, that we described in 

Chapter 5. For instance the distinction between generic and figure-specific awareness of 

the status of objects of the Cabri-figure allowed us to analyze and explain different 

difficulties that solvers encountered during their explorations (Section 5.4). 

Let us recall the first two episodes of Excerpt 4.3.2 that we introduced and 

analyzed in Chapter 4.  

Episode 1 

(0:41) F: exactly. [he drags D a bit, in a 

way that looks like he is trying to maintain 

the property parallelogram] 

(0:48) G: you see that if you do, like, 

maintaining dragging … trying to keep 

them [the diagonals] more or less the 

same… 

(0:57) F: exactly [murmuring]… well, okay. 

Brief Analysis 

F and G decide to use maintaining 

dragging to investigate “when ABCD is a 

parallelogram” (intent repeated in (2:41) 

and (3:05)). In a previous episode they 

have noticed that the property “ABCD 

parallelogram” can be substituted with the 

sufficient property “diagonals of ABCD 

congruent”, a bridge property (0:48).  
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… 

Episode 2 

(2:41) F: For the parallelogram, uh, letʼs try 

to use “trace” to see if we can see 

something. 

G: go, letʼs try [speaking together with 

him]…uh, “trace” is over there. 

Brief Analysis 

 

F proposes to activate the trace in order to 

“see something” (2:41). 

 

Table 6.1.1: Analysis of Excerpt 6.1.1 

In Episode 2 F says: “For the parallelogram, uh, letʼs try to use “trace” to see if 

we can see something” (2:41). There seems to be “something” he is referring to that has 

to happen for the parallelogram to happen. At this point it is not important “what” the 

“object” along which dragging will occur is, but that such an object exists in the mind of 

the solver. Moreover, the analyses of this and of other transcripts showed that for 

solvers to apply MD they need to have conceived “something” to look for. We describe 

this behavior as “anticipation of a generic path”, and it seems to occur through an 

objectification of the movement induced on the dragged-base-point. This seems to be a 

key aspect of expert use of MD. 

On one hand this “something” at this point of the exploration is not associated to 

a particular geometric shape (or curve), in this sense it is a generic idea. Therefore it is 

what we have identified as generic path. On the other hand, this generic idea may be 

developed during the solversʼ experience with MD, and it may lead the solvers to 

determine a figure- specific path. The anticipation of a figure-specific path can be seen in 

the excerpt above when the solvers state their intention to use the trace tool to help them 

“see” something (2:41).   
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6.1.1 Generic Path and Figure-Specific Path 

In the previous paragraph we introduced the distinction between “generic” and 

“figure-specific” to describe different components of the notion of path. We now provide 

definitions for these two components. We will refer to generic path as the condensation 

of a complex relation of elements: 

a movement of a base point that is recognized to be regular and causing an 

interesting property to be maintained, the possibility of describing such 

movement through a property of points belonging to a potential trajectory, that is 

positioning the dragged-base-point on any point of such trajectory the III is 

visually verified. 

This characterizing property leads from a dynamic conception to a static one, allowing 

the movement to be objectified into a static whole. We define the figure-specific path to 

be 

the particular set of points that satisfy the characterizing property described 

above, and that is related to the particular Cabri-figure being considered.  

The “figure-specific path” is what may be recognized as a particular geometrical curve 

and described geometrically in the GDP.  

In the example above, the idea of generic path seems to be present since the 

solvers talk about “something” to look for, while the figure-specific path is what becomes 

explicit through the trace mark. The figure-specific path can be described as a 

geometrical object with the property that when the dragged base point D is on “it”, in this 

particular exploration “the parallelogram happens” or the property “ABCD parallelogram” 

is (visually) verified. As the exploration continues, the solvers interpret the trace mark as 

the figure-specific path, providing various GDPs until they reach a satisfactory one as the 

circle with center in A and radius AP. We would like to stress how the trace mark is not 
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the path, but a new image that may provide hints as to what an appropriate geometric 

description of the figure-specific path may be, that is what form the generic path might 

take on in this specific case. 

In Chapter 5 when analyzing solversʼ difficulties in conceiving a property as an III 

(Section 5.2) we frequently referred to the issue of “conceiving a path” and how this 

seemed to influence expert use of MD. We may now look at such difficulties as being 

related to conceiving a generic path. In particular, Excerpt 5.2.4 showed an example of 

behavior that was consistent with various steps of our model, but in which the solver was 

not able to make sense of his findings. Excerpt 6.2.2 will show another example of a 

similar behavior, which we will interpret in terms of difficulties in conceiving a generic 

path. In the following paragraph we discuss conceiving a generic path and contend that it 

is a key notion which is necessary for developing expert use of MD, and a notion that, 

like the necessary component “generic control over the status of objects” resides at a 

meta-level with respect to the specific exploration. This means it has to be developed a 

priori with respect to the exploration in order for the solver to exhibit expert behavior in 

performing MD for generating-conjectures according to our model. On the other hand, 

conceiving a figure-specific path resides at the level of the specific exploration, and 

occurs during the exploration, much like the development of figure-specific awareness of 

the status of different objects of the Cabri-figure. 

 

6.1.2 Conceiving a Generic Path 

We find it useful to view the process of becoming experts in using MD for 

conjecture-generation and making sense of an exploration in terms of the developing the 

notion of generic path as a response to conceiving a new task to solve. This new task 

consists in searching for a cause for the III to be maintained (see Section 4.3). We 
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discuss this idea of searching for a cause and what cognitive processes it leads to more 

in depth in Section 6.2, while here we focus on the necessity of conceiving a generic 

path in order to look for and make sense of the soft invariants that emerge during the 

exploration. Conceiving the idea of generic path is necessary because it “incorporates” 

both the III, since dragging along such object makes the III visually verified, and the 

potentiality of an IOD, since a regularity may emerge as the movement of the dragged-

base-point along a trajectory that may be described geometrically. 

Moreover, the generic path has aspects that belong to the phenomenology of the 

DGS and aspects that belong to the world of Euclidean geometry, so it provides a bridge 

that can guide the interpretation of the experience within the phenomenology of the DGS 

in geometrical terms. Specifically, the generic path has a “dynamic” nature in that it can 

be conceived as a trajectory along which a point can be dragged, and dragging along 

such trajectory “makes something happen”. That is, the generic path is part of an 

“action” that leads to phenomena that occur in particular ways and times: we described 

how the roles of simultaneity and a feeling of “control” are fundamental in making sense 

of the exploration within the phenomenology of the DGS. Therefore within the 

phenomenology of the DGS the generic path withholds the seed of a causal link between 

the invariants perceived during the exploration. However the generic path can also be 

conceived as a continuous set of points that a certain point of the Cabri-figure may 

“belong to”. Such “belonging to” is a geometrical property that may be perceived as “the 

condition” for a second property to be verified, since this is exactly the defining property 

of the points of such continuous set. In other words, the generic path can be considered, 

within the phenomenology of a DGS, as a trajectory with respect to movement, a 

movement that coordinates the dragged-base-point with the III, causing the III to be 

visually verified. In geometry, this trajectory which becomes figure-specific, may be seen 
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as a geometrical object that a point can belong to, a mathematical locus (in the cases in 

which the belonging of the point implies an “if and only if” with the geometrical property 

expressed by the III, otherwise it is a subset of the locus), a condition for a second 

property to be verified.  

As discussed above, in order to develop the idea of generic path, it seems to be 

necessary to have developed awareness of the fact that an answer to the “search for a 

cause” (Section 4.3 and 6.2) for the III to be maintained within the phenomenology of the 

DGS may be found as a regularity in the movement of a base point that can be induced 

by the solver, and that can “make” the III be visually verified. Such awareness is 

dependent upon another form of awareness, that of the dependencies of objects of a 

Cabri-figure from one another, and of how these dependencies influence the behavior of 

the dynamic-figure. Awareness of these dependencies, or of the different status of 

objects of the Cabri-figure, as we called it in Chapter 5, must be previously developed by 

the solver at a generic level. Therefore we now have introduced another reason why the 

component “awareness of the different status of objects of the Cabri-figure”, introduced 

in Chapter 5, is necessary for carrying out an exploration using MD as an expert. 

Moreover, as for generic and figure-specific awareness of the status of objects of the 

Cabri-figure, the figure-specific component of path can be developed “on the spot” and 

fostered easily through prompting if the solver has developed the idea of the generic 

component. On the other hand, the idea of generic path needs to be developed a priori 

with respect to the specific exploration, it is more difficult to foster, and it may take a 

longer time to develop.  
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6.2 Argumentative Processes in the Model: Where is Abduction Situated? The 

Notion of Instrumented Abduction and of Instrumented Argument 

In the previous section we introduced the idea of a meta-level of sense-making, 

necessary for the development of expert use of MD. In particular we discussed the 

necessity of developing the idea of generic path in order to make use of MD in a manner 

that seems to be coherent with our model. As mentioned in the introduction to this 

chapter, another idea that seems to be necessary for the development of expert use of 

MD, leading to making sense of what emerges during an exploration, seems to be 

conceiving MD as a tool that may help answer the question “what might cause the 

property I am interested in to be maintained”. This question paired with the developed 

notion of generic path allows the solver to search for a cause of the maintaining of the III 

as dragging the considered base point along a path which will have a figure-specific 

description in each particular exploration, depending on the construction, the property 

chosen to maintain, and the base point chosen to drag.  

We have introduced the idea of developing the subtask of “searching for a cause” 

in Chapter 4 and used it to analyze transcripts in Chapter 4 and Chapter 5. Here we 

highlight how setting this subtask resides at a meta-level with respect to the particular 

exploration being carried out, and it seems to be a key intuition leading to becoming an 

expert with respect to MD. We may now describe expert solvers as solvers who have 

developed the necessary meta-level knowledge related to the use of MD, specifically the 

notion of generic path and the idea of using MD to “search for a cause”. With this in 

mind, we re-analyzed the solversʼ explorations and conceived the following table 

describing how the explorations could now be classified. The two components we 

considered are the presence of the “meta-level knowledge”, or in other words, whether 

the solvers were experts or not, and how MD was used. We described the use of MD as 
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“use that leads to an III and an IOD”, and “no (or incomplete use of MD”. The first use is 

present in cases in which MD allowed the solvers to behave coherently with our MD-

conjecturing Model up to (at least) what, to an external observer, might have seemed an 

IOD. While we classified as cases with “no (or incomplete) use of MD” cases in which 

the solvers did not use MD or tried to use it but could not reach an IOD and abandoned 

this type of dragging. 

 MD that leads to an III and 
an IOD 

no (or incomplete) use of 
MD 

meta-level not present non-expert use of MD 
Excerpt 6.2.2 in this section 

no use of MD or use 
inhibited by difficulties 

Various cases of non-
appropriation described in 
Chapter 5 

meta-level present expert-use of MD 
Excerpt 6.2.1 in this section 
(which is also Excerpt 4.3.1 
of Chapter 4) 

interiorized MD 
Excerpt 6.2.3 in this section 
(which is the continuation of 
Excerpts 4.2.5 and 4.3.2) 

Table 6.2.1 Different uses of MD together (or not) with the presence of the meta-level. 

In Chapter 5 we have already discussed cases in which the meta-level was not 

present and MD was not carried out thoroughly by the solvers. In Chapter 4 we have 

shown expert use of MD and so we will re-analyze one of these excerpts here (Excerpt 

6.2.1) to show how the presence of meta-level knowledge leads to the formulation of 

conjectures as described by our model. We will use such excerpt to describe how sense 

is made of the elements that emerge during the exploration, and how once solvers 

become experts, use of MD can become “automatic”. We compare such behavior to that 

described in an excerpt in which two solvers were not able to make sense of their 

findings even though these were coherent with the MD- conjecturing Model (Excerpt 

6.2.2). We argue that in this second case the meta-level understanding is not present, in 

other words appropriation is not complete and a conjecture that puts together the 

findings cannot be formulated. Moreover, we use such examples to advance our 
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hypothesis that when considering expert use of MD the abduction that previous research 

has focused on (Arzarello et al., 2002) is “incorporated” into the meta-level knowledge 

and in the utilization scheme developed by the solver with respect to MD, the 

maintaining dragging scheme (MDS), and it no longer occurs at the level of the 

exploration.  

Finally, we take our considerations one step further and describe how a different 

form of “expert use” of MD may occur even when MD is not actually used. That is, we 

have evidence (in Excerpt 6.2.3) that some solvers interiorize the MD-artifact to the point 

that it becomes a psychological tool (Vygotsky, 1978, p. 52 ff.) and no longer needs to 

be supported by the physical enactment of MD. In this case abduction does seem to 

occur at the level of the exploration, allowing the conception of a second invariant 

property which plays the role of the IOD described in the maintaining dragging scheme 

(MDS). 

 

6.2.1 Expert and Non-expert Use of MD 

Let us first analyze a case of expert solvers using MD to reach what, to an 

external observer, seem to be an III and an IOD, consistently with our MD-conjecturing 

Model. Using MD the perception of a second invariant, the IOD, can occur in a rather 

automatic way. As a matter of fact, when MD is possible, the IOD may “automatically” 

become “the regular movement of the dragged-base-point along the curve” recognized 

through the trace mark, and this can be interpreted geometrically as the property 

“dragged-base-point belongs to the curve (described through a GDP)”. In Excerpt 4.3.1, 

which we include below for ease of the reader, we saw how two experts, Giu and Ste, 

reached a conjecture through MD coherently with our model. They seem to behave in an 

“automatic” way, that is, the solvers proceed smoothly through the perception of the III 



 310 

and the IOD and immediately interpret them appropriately, as conclusion and premise 

respectively, in the final conjecture. 

 

Excerpt 6.2.1 (also Excerpt 4.3.1). This Excerpt is taken from Giu and Steʼs 

exploration of Problem 4. The solvers followed the steps that led to the construction of 

ABCD, as shown in Figure 6.2.1, and soon noticed that it could become a rectangle. Ste 

was holding the mouse (as shown by his name being in bold letters in the excerpt 

below), and followed Giuʼs suggestion to use MD to “see what happens” when trying to 

maintain the property “ABCD rectangle” while dragging the base point A. In such 

situation the selected property “ABCD rectangle”. 

Episode 1 

[1] Ste: I have to make it so that the... 

[2] Giu: B stays 

[3] Ste: that...uh, B remains on the 

intersection. 

[4] Giu: Exactly. 

[5] Ste: which is...I mean I have to drag this, right? 

[6] I: Maintaining the property rectangle... 

Brief Analysis 

The solvers resort to the bridge 

property (see section 4.2.1.3) “B 

on the intersection” ([3]) to make 

the task of maintaining dragging 

easier. 

The solvers have chosen “ABCD 

is a rectangle” as an III.  

Episode 2 

[12] Ste: Identical...ta-ta-ta-ta...ta-ta-ta 

[13] I: Giu, what are you 

seeing? 

[14] Giu: Uhm, I don't know...I 

thought it was making a pretty 

Brief Analysis 

While Ste is concentrated on 

maintaining the III ([12]-[14]), Giu 

seems to be looking for a GDP, 

and recognizes a continuous curve 

(“pretty precise curve” [14]) 
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precise curve...but it's hard to ...to understand. We 

could try to do "trace" 

[15] Ste: trace! 

[16] Giu: This way at least we can see if... 

instead of discrete positions. He 

then wants to better understand 

([14]) and “see” ([16]), so he 

proposes the use of the trace tool 

([14]). 

Episode 3 

[17] Ste: Where is it? 

[18] Giu: Uh, if you ask me... 

[19] Ste: Trace! [they giggle as they search for it in 

the menus] 

[20] Ste: Trace of A... 

… 

Brief Analysis 

 

After the trace is activated ([17]-

[20]) Ste starts maintaining 

dragging again. 

Episode 4 

[28] I: So Ste, what are you looking at to maintain 

it?  

[29] Ste: Uhm, now I am 

basically looking at B to do 

something decent, but... 

[30] I: Are you looking to make 

sure that the line goes through B? 

[31] Ste: Yes, exactly. Otherwise it comes out too 

sloppy... 

[32] I: and you, Giu what are you looking at? 

[33] Giu: That it seems to be a circle... 

Brief Analysis 

 

 

Ste is using the property “the line 

goes through B” as his III ([29], 

[30]). 

 

Both students show the intention 

of uncovering a path by referring 

to “it” ([31], [33], [34]).  

Giu, in particular concentrates on 

describing the path geometrically 
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[34] Ste: I'm not sure if it is a cir... 

[35] Giu: It's an arc of a circle, I think the curvature 

suggests that. 

and he seems to recognize in the 

trace a circle ([33]) or an arc of a 

circle ([35]).  

Episode 5 

[36] Ste: Yes, but.. 

[37] Giu: But passing through B 

[38] Ste: Ah yes, B 

[39] Giu: B because it can also become a line 

[40] Ste: Yes, it could be B. 

[41] Ste: I would dare to say with center in C?...no, 

it seems more, no. 

[42] Ste: It seemed like 

[43] Giu: No, the center is 

more or less over there...in 

any case inside 

[44] Ste: Hmm 

[45] Giu: Ok, do half and then more or less you 

understand it, where it goes through. 

[46] Ste: But C is staying there, so it could be that 

BC is...is 

[47] Giu: right! because considering BC a diameter 

of a circle, 

[48] Ste: Well yes, actually it passes through C also 

because if then I make it collapse, uh,  

Brief  Analysis 

The solversʼ attention seems to 

shift to the mark left on the screen 

by the trace. Now that a first GDP 

is given, the solvers try to 

ameliorate the description by 

adding properties: “(a circle) 

passing through B” ([37], [38], [39], 

[40]), “with center in C” ([41]), with 

BC as a diameter ([46], [47]). As 

Ste continues to drag, Giu checks 

and confirms the suggested 

properties and tries to justify them 

providing argumentations based 

on visual observations, recognition 

of geometrical properties, and the 

knowledge of particular theorems 

([49], [55]).  

 

 

Ste seems to have some difficulty 
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… 

[59] Ste: Well... 

[60] Ste: I wouldn't call this...aaaa...there 

[61] Ste: No, but it jumps, when it's closer it's 

easier. 

dragging as he drags A closer to 

C, but is able to overcome the 

manual difficulty. 

Episode 6 

[62] Ste: It surely can look like a circle. 

[63] Giu: Well, in theory...you can see it goes 

through B and C. 

[64] I: Ok, are you sure of this? 

[65] Giu and Ste: Yes. 

… 

[They construct the circle and drag A along it, and 

then they write the conjecture: “ABCD is a 

rectangle when A is on the circle with diameter 

BC.”] 

Brief Analysis 

Ste continues to drag and both 

solvers seem to be checking the 

proposed GDP, confirming it ([62], 

[63]) with considerable confidence 

([65]).    

Table 6.2.2: Analysis of Excerpt 6.2.1 

Giu seems to be looking for something, which he describes for the time being as 

a “pretty precise curve” ([14]). This intention seems to indicate that Giu has conceived a 

generic path. Moreover he is trying to “understand” ([14]) what the figure-specific path 

might be, that is he is searching for a geometric description of the path (GDP). To do this 

he suggests activating the trace tool. Giu then identifies a regularity in the movement of 

the dragged-base-point, “a pretty precise curve” ([14]), then “a circle” ([33], [34]) 

“considering BC a diameter” ([46], [47]). This seems to all occur in a smooth, “automatic” 

way. The solvers have used MD before and exhibit expert behavior which in this case 
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guarantees a transition to the conjecture with no apparent difficulties involved.  

Reaching expert behavior is not trivial, as shown by the fact that many solvers we 

interviewed did not seem able to make sense of their discoveries even when they 

appeared to be using MD in a way that seemed to lead to the perception of an III and an 

IOD. In particular, even when invariants are perceived, it seems that their simultaneous 

perception does not guarantee the interpretation of such phenomenon in causal terms. 

Moreover, putting the geometrical properties which correspond to the III and the IOD in a 

conditional relationship with each other within the world of Euclidean geometry is not 

always straightforward. The excerpt below shows a case in which two non-expert solvers 

have used MD maintaining the property “ABCD rectangle” as their III dragging A, they 

have provided a GDP and perceived the invariant “A on the circle” as an IOD. However 

they do not seem to make sense of what they have discovered. 

 

Excerpt 6.2.2. In this excerpt the solvers carefully carry out maintaining dragging 

with the trace activated and reach a GDP, that they seem to use in constructing an IOD 

and in performing what seems to be a dragging test. However they do not consider the 

IOD in the conjecture that they formulate; instead they go back to a basic conjecture they 

had used previously. One solver even explicitly refers to what she sees now as “like we 

said before”, and seems to completely ignore the circle that has appeared and that was 

constructed. 
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Figure 6.2.2 A Screenshot of the solversʼ exploration 

Episode 1 

[1] Ila: passing through...through...oh my goodness! 

[2] Val: no. 

[3] Ila: Yes, but make it go through, eh, it isn't... 

[4] Ila: I mean you have to ... 

[5] Val: Do "control Z" 

[6] Ila: Nooo! 

[7] Val: But ok, it doesn't matter! 

[8] Ila: Circle... 

[9] Ila: Good! We have seen that it follows. 

[10] Val: Yes, this is the trace...in brief. 

Brief Analysis 

The solvers have 

constructed a circle that 

is not A-invariant and 

seem to be trying to 

compare it to the trace 

mark that they have 

obtained through MD. 

Episode 2 

[11] Ila: But...wait, because there there are points. 

[12] Val: what points do you have to make? 

[13] Ila: Well,...oh dear! No. 

Brief Analysis 

The solvers do not 

seem to be convinced 

of what they have 
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[14] Val: Wait. 

[15] Ila: I am tracing now... 

[16] Val: Yes. 

[17] Val: Move A on the circle. 

[18] Ila: Eh! 

[19] Ila: You look to check that it stays... 

[20] Val: There, it remains, it remains a parallelogram. 

[21] Val: Yes, I mean a parallelo...it remains a rectangle. 

[22] Ila: a rectangle. 

[23] Val: Yes, more or less. 

[24] Ila: Yes, ok. 

[25] Ila: But... 

[26] Val: Ok....why? 

[27] Ila: Because... 

[28] Val: Why? 

found. 

 

Val proposes to try to 

drag A “on the circle” 

even thought the circle 

is not A-invariant. They 

seem to notice that the 

properties “A on circle” 

and “ABCD rectangle” 

occur simultaneously. 

 

However the solvers do 

not seem to be able to 

make sense of this. 

Episode 3 

[29] Val: So...I know that, uh, so 

[30] Ila: But B has to always be in that point there. 

[31] Val: Where? 

[32] Val: So I think...this remains a rectangle 

[33] Val: ...when AB is perpendicular to DC, ok but in this case 

it would also be BA is equ, perpendicular to CA. 

[34] Ila: Basically, uh, it's like we said before 

[35] Val: and... 

Brief Analysis 

Ila tries to make sense 

of the behavior of the 

figure, but she does not 

seem to be able to. Val 

then suggests the 

same property as they 

had used in a previous 

basic conjecture and Ila 
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[36] Ila: No that basically uh DB has to always be parallel to 

CA, and, uh the segments AB, also AB, AB, no we had the 

points... 

[37] Ila: Wait...this was fixed...these two were, right! I mean 

that CA and DB have to always be parall, uh perpendicular to, 

uh... 

[38] Ila: to the line, uh, parallel to DC. 

seems to agree. The 

solvers end up 

“explaining” the 

exploration through a 

basic conjecture 

containing this property 

they had previously 

used. 

Table 6.2.3: Analysis of Excerpt 6.2.2 

The solvers seem to have conceived a figure-specific path, and they even 

manage to provide a GDP which is independent from the base point being dragged ([8]-

[11]). Val suggests to move A on the circle ([17]) and she notices that in this case it 

“remains a rectangle” ([20]-[21]). The solvers seem to agree and we would think they 

have successfully performed a soft dragging test, having proceeded according to our 

model. However when they start asking themselves “why” ([26], [28]) they seem to 

exhibit confusion. Ila starts talking about point B ([30]) and they start discussing 

properties of the figure as a whole, looking at sides of the quadrilateral, and recognizing 

only “what we said before” ([34]), that is a basic conjecture involving DB being parallel to 

CA ([36]). The solvers do not seem able to make sense of what they have discovered in 

terms of what we describe in our model.  

Although they seemed to have used an III and conceived an IOD during the 

exploration, there does not seem to be understanding at the meta-level which allows the 

interpretation of the IOD as a “cause” for the maintaining of the III. In other words, they 

do not seem to have conceived a generic path. This can also be inferred from the 

solversʼ insistence on trying to conceive “why” ([26], [28]). Even though this question 
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might have arisen out of surprise as to “why” a circle (the figure-specific path), it seems 

that it also refers to the meta-level of “why dragging along a path” would guarantee the 

maintaining of an invariant, an important aspect of the generic path. In any case the 

solvers do not seem to be aware of the meta-level relationship between the arising 

invariants. 

The solvers do not seem to be able to establish a connection between the static 

property they were using to characterize the rectangle (AB parallel to CD) and the idea 

of dragging the base point they were considering along a path. In particular they do not 

seem to have developed the idea of generic path, so they are unable to interpret the 

property “A on the circle” as a cause for the property “ABCD rectangle” to occur. 

 

6.2.2 The Notion of Instrumented Abduction 

Unlike Ila and Val, expert solvers seem to withhold the key for “making sense” of 

their findings, which seems to be conceiving the IOD as a cause of the III within the 

phenomenology of the DGS, and then interpreting such cause as a geometrical condition 

for the III to be verified. In other words, the solvers establish a causal relationship 

between the two invariants generating – as Magnani says – an explanatory hypothesis 

(Magnani, 2001) for the observed phenomenon. Moreover, as soon as they decide to 

use MD to explore the construction, experts seem to search for a cause of the III in 

terms of a regular movement of the dragged-base-point. This idea is key; it seems to lie 

at a meta-level with respect to each specific investigation the solvers engage in, and 

possessing it, together with the notion of path, seems to lead to expert behavior with 

respect to MD, culminating in the formulation of the conjecture. If we consider MD to be 

an instrument with respect to the task of conjecture-generation, we can consider the 

utilization scheme associated to it, which we will call the maintaining dragging scheme 
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(MDS). The MDS is described by our model, and we will from now on refer to “expert 

behavior” as exploitation or use of the MDS. 

We mentioned above that the process of conjecture-generation as described by 

our model seems to become “automatic” for expert solvers. Moreover automatic use of 

the MDS seems to condense and hide the abductive process that occurs during the 

process of conjecture-generation in a specific exploration: the solver proceeds through 

steps that lead smoothly to the discovery of invariants and to the generation of a 

conjecture, with no apparent abductive ruptures in the process. Thus our research 

seems to show that, 

 for the expert, the abduction that previous research described as occurring 

within the dynamic exploration occurs at a meta-level and is concealed within the 

MD-instrument.  

We introduce the new notion of instrumented abduction to refer to the inference the 

solver makes when exploiting the MDS to formulate a conjecture. 

 

6.2.3 Interiorization of MD 

We now take our reflections on the MDS one step further. We have found 

evidence that experts may use the MDS as a “way of thinking” freeing it from the 

physical dragging-support. In the following excerpts we will show how the MDS guided 

the process of conjecture-generation of two experts, F and G, even though they were not 

able to reach an IOD through MD.  

Excerpt 6.2.3 

The solvers were working on Problem 2. Excerpts 4.2.5 and 4.3.2 are taken from 

the solversʼ exploration that originated from this Problem. We provide summaries of what 

was is contained in such excepts and we pick up from the end of Excerpt 4.3.2. Then we 
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provide excerpts from how the exploration ended. We refer to the sequence of Excerpt 

4.2.5, Excerpt 4.3.2 and the additional excerpt as Excerpt 6.2.3. In Excerpt 4.2.5 the 

solvers identify a basic property, slim it down to a minimum basic property, which they 

use to obtain the configuration they are interested in. Excerpt 4.3.2 shows the solversʼ 

belief in the existence of a path and traces of an implicit idea for the GDP. However the 

conceived GDP doesnʼt seem to correspond to what they observe during the maintaining 

dragging. The solvers want to therefore make the path explicit through activation of the 

trace, and they use the trace to reject an incorrect GDP. The lines of the transcript are 

marked by their times relative to the beginning of the excerpt in order to show the 

development over time of this part of the investigation. In particular we chose to cut parts 

of the exploration in which the solvers were not investigating “the case of the 

parallelogram”, as they refer to it. The bold refers to the solver who is holding the mouse. 

Episode 1 

[1] (3:05) G: and now what are we doing? Oh 

yes, for the parallelogram?  

[2] (3:07) F: yes, yes, we are trying to see when 

it remains a parallelogram. 

[3] (3:18) G: yes, okay the usual circle comes 

out. 

[4] (3:23) F: wait, because here…oh dear!  

where is it going? 

[5] (3:35) I:  What are you looking at as you 

drag? 

[6] (3:38) F: I am looking at when ABCD is a 

Brief Analysis 

G reminds himself what their intention 

was and seems to be concentrating 

on the movement of the dragged-

base-point, while F, who is dragging, 

concentrates on maintaining the 

property “ABCD parallelogram” (3:07). 

G (too?) quickly proposes a GDP 

(3:18).  It is not clear what “usual” 

refers to: maybe to a previous 

investigation. However what F sees 

does not seem to be the circle he had 
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parallelogram. You try [handing the mouse to 

G] 

… 

[16] F: So, maybe 

itʼs not necessarily 

the case that D is 

on a circle so that 

ABCD is the 

parallelogram. 

…  

[40] F: Because you see, if we then do a kind of 

circle starting from here, like this, itʼs good itʼs 

good itʼs good itʼs good, and then here… see, if 

I go more or less along a circumference that 

seemed good, instead itʼs no good…so when is 

it any good? 

in mind (maybe the circle centered in 

P with radius AC) and he appears 

unhappy and confused when he does 

not understand “where it is going” 

(3:23). After repeating his intention of 

investigating “when ABCD is a 

parallelogram” (3:38) F hands the 

mouse to G, asking him to try.  

F and G seem to have conceived a 

GDP ([3]) that does not coincide with 

the trace mark they see on the screen 

as F performs MD ([4]). This leads the 

solvers to reject the original GDP 

([16]) and search for a new condition 

(“when” [40]).  

Table 6.2.4: Analysis of Excerpt 6.2.3 

The solvers are not able to reach a condition for ABCD to be a rectangle using 

MD because of manual difficulties they encounter as the exploration continues. This 

leads G, who is not holding the mouse, to conceive a condition without external support 

from the MD-instrument as shown in the following excerpt. 

Episode 2 

[43] G: eh, since this is a chord, itʼs a chord right? We 

have to, it means that this has to be an equal chord of 

another circle, in my opinion with center in A. because I 

Brief Analysis 

The solversʼ search for a 

condition as the belonging of D 

to a curve defined through 
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think if you do, like, a 

circle with center 

[44] F: A, you say… 

[45] G: symmetric with 

respect to this one, you 

have to make it with 

center A. 

[46] F: uh huh 

[47] G: Do it! 

[48] F: with center A and radius AP? 

[49] G: with center A and radius AP. I, I think… 

[50] F: letʼs move D. more or less… 

[51] G: it looks right doesnʼt it? 

[52] F: yes. 

[53] G: Maybe we found it! 

other base points of the 

construction is now complete, 

as they construct the circle 

with center in A and radius AP 

and proceed to link D to it in 

order to check the CL. The 

solvers seem quite satisfied 

and formulate their conjecture 

immediately after the dragging 

test, proceeding in accordance 

to the MDS model. 

Table 6.2.5: Analysis of Excerpt 6.2.3 

Although the “search for a cause” through use of MD with the trace activated 

failed, the solvers are able to overcome the technical difficulties and reach a conjecture 

by conceiving a new GDP without help from the MD-instrument. In other words the 

solvers seem to have interiorized the instrument of MD to the extent that it has become a 

psychological tool which no longer needs external support. Moreover the abductive 

process supported by MD in the case of an instrumented abduction now occurs internally 

and is supported by the theory of Euclidean geometry (BP and PD are conceived as 

chords of symmetric circles). Taking a Vygotskian perspective (Vygotsky, 1978, p. 52 
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ff.), we can say that the MD has been internalized and the actual use of the MD-artifact 

has been transformed, becoming internally oriented, into a psychological tool.  

 

Concluding Remarks. Summarizing, we have now seen examples from each of 

the four situations described by our table. In particular, the model of the MDS seems 

appropriate for describing the processes of conjecture-generation when MD is used by 

experts, providing evidence to a correlation between the introduction of the dragging 

schemes, and MD in particular, and a specific new (with respect to those in literature) 

cognitive process described by the model. We have referred to such process as a form 

of instrumented abduction, a new notion that we hope can be generalized to other 

contexts in which abduction is supported by other instruments. Furthermore, we seem to 

have captured the key ideas which may lead to developing and using the MDS, and we 

described how these key ideas reside at a meta-level with respect to each specific 

exploration in which MD is exploited by experts. Finally we described how for expert 

solvers the MDS might be transformed into a way of thinking that can take place when 

MD is not used at all. In this sense it may lead to the construction of fruitful 

“mathematical habits of mind” (Cuoco, 2008) that may be exploited in various 

mathematical explorations leading to the generation of conjectures. We will discuss this 

further in Chapter 7.  

 

6.2.4 The Notion of Instrumented Argument 

Stepping back for a moment we may consider abductive arguments to be 

particular types of arguments within the argumentation that a solver can make during the 

conjecturing phase of his/her exploration. We have developed the notion of instrumented 

abduction to describe a particular type of abductive process of which the reasoning 
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described in the MDS seems to contain an example. At this point it seems reasonable to 

extend the potential of being “instrumented” to other types of arguments, which naturally 

leads to the more general notion of instrumented argument. In this section we would like 

to introduce some examples of what we might call “instrumented arguments”. However 

at this point we will not define the notion in general, since we believe further discussion 

and richness of examples – potentially in which different instruments are used – seems 

to be necessary. For now we discuss characteristics of the notion limited to examples we 

noticed in some of the episodes we analyzed in this study.  

Instrumented arguments seem to be used when the solvers need to convince 

themselves or each other that of a certain idea. For example, in Episode 1 of Excerpt 

6.2.3 F continues his argumentation leading to the rejection of the previous GDP ([40]). 

In such argumentation he uses arguments with visual and haptic characteristics: “kind of 

circle starting from here [as he drags point D showing G what he means]”, “you see”, “in 

a certain sense it goes…down along a slope [mimicking the movement with his hand]”.  

Another example can be found in Excerpt 4.3.3, which showed how checking a 

CL can lead to the generalization of a preconceived path. The solvers provide a GDP 

that they do not seem sure of. In particular F does not seem to be convinced that ABCD 

remains a parallelogram when D is dragged along the whole hypothesized circle. He 

therefore performs a soft dragging test which definitively convinces him and G of the 

GDP. Frequently we have observed that students use the words “try it” with respect to an 

idea (or possibly yet unexpressed conjecture) when they intend to perform a robust 

dragging test. From the transcripts we have so far analyzed within our study, this seems 

to be an even more convincing argument for solvers. 
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The analysis of our protocols highlighted a particular form of argument used by 

the solvers and strictly related to the exploration within the DGS. We called it 

instrumented argument, and see it as  

an argument – thus part of an argumentation supporting a logical step – in which 

the warrants are supported by an instrument, in this case dragging. 

Its goal is to convince oneself or someone else of a specific claim, thus changing its 

epistemic status. In other cases the instrument could be other features of the DGS, the 

DGS itself seen as an instrument, or other types of instruments. Instrumented arguments 

in DGSs seem to be frequently used in conjunction with different versions of the dragging 

test, as in the episodes analyzed above.  

We have also observed other examples of instrumented arguments in solversʼ 

explorations. One example can be seen in the transition from a soft to a robust 

construction before a final (robust) dragging test is performed. Redefining the dragged 

base point to a constructed object that represents the GDP the IOD becomes robust, 

and the solver may subsequently refer to this property, in the argument, as being “true”. 

This may also occur if the solver reconstructs the Cabri-figure in order to add a property, 

with respect to the ones that already originate from the steps, to its base points. These 

are acts that may correspond to geometrical ideas, but that first of all acquire meaning 

(and not necessarily a geometrical meaning) within a DGS.  The (implicit) claim to 

defend is that a CL holds between the IOD and the III, and the instrumented argument 

consists in showing that when the IOD becomes “true”, the III in the new construction 

also becomes a construction-invariant (at a visual and physical perceptual level), thus 

robust, and therefore “true”. The warrants for such claim rely heavily on the software. 

Another example can be found in arguments in favor of a certain GDP. Before 

constructing the geometrical object that hypothetically represents the path, the solver 
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may try to argue that his/her idea is right, speaking about the movement of the dragged 

base point in physical terms and showing what s/he means by physically enacting the 

dragging movement on the screen. Thus, dragging and the feedback provided by the 

software are used as warrants supporting the solverʼs ideas about the GDP. This type of 

instrumented argument is also used to reject a given GDP.  This can be seen in Episode 

1 ([4]) of Excerpt 6.2.3 when the visual feedback seems to provide F with confirmation 

that what he had thought of as the GDP was “no good”. Frequently the instrumented 

arguments used to reject a GDP (in the most convincing way) make use of the dragging 

test after the GDP has been constructed. In this case the solver argues that while 

dragging the base point along (or even having linked it to) the hypothetical object that 

represents the GDP the III is not maintained. 

Moreover, when a solver has found a good candidate for basic property, with 

respect to a certain type of geometrical figure, to use as a bridge property (section 

4.2.1.3) to continue the exploration, s/he may provide an argumentation in defense of 

such candidate. The implicit claim is: “if the (minimum) basic property is true, then the 

interesting type of geometrical figure is obtained.” In the argument s/he may drag a base 

point to visually obtain a configuration (or various configurations) that seems to exhibit 

the candidate property and show him/herself and/or another person that in these cases 

the Cabri-figure seems to also become the geometrical figure s/he was initially interested 

in. In a way we can consider this argument as a kind of soft dragging test: imposing the 

hypothesized property, the solver checks that the original property that s/he was 

interested in is also visually verified. Furthermore, the solver may use what apparently 

looks like maintaining dragging in his/her argument when it is possible to continuously 

drag a base point in a way that the basic property is visually maintained. However, the 

focus of the instrumented argument in this case is the fact that the interesting type of 
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geometrical figure is maintained while the basic property is maintained. Thus we say that 

the instrumented argument makes use of a sort of soft dragging test that gives rise to 

simultaneity, a warrant that is supported by the DGS. 

Below is a flow chart that shows typical occurrences of instrumented arguments 

during explorations in which MD is used. 

 

Figure 6.2.4: Typical occurrences of instrumented arguments during an expert use of MD. 
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We conclude with a last example of what we consider to be an instrumented 

argument of a slightly different nature than the ones described above. 

Excerpt 6.2.4. In this Excerpt two solvers use an instrumented argument in an 

indirect argumentation to decide whether a certain property of a triangle should be 

included in the premise of a conjecture they develop. The excerpt is taken from the 

solversʼ exploration of Problem 1 during the pilot study. This is why the interviewerʼs 

prompts are more frequent than in excerpts from the final study. 

 

Figure 6.2.5 A screenshot of the solversʼ exploration 

Episode 1 

[1] G: Eh, wait. I was thinking...should we try with the square? 

[2] F: Eh, right! Let's try to obtain a square, moving A. 

[3] I: Ok, moving A. 

[4] F: Like this. 

[5] I: Ok. 

[6] G: I think it looks like when AM is equal to MK. 

[7] F: Ah, you mean when AMK is an isosceles right triangle! 

Brief Analysis 

The solvers identify a 

potential III. 

 

G notices a property 

that emerges 

simultaneously with 

the property “ABCD 
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[8] I: Uhm. So how is this conjecture? 

[9] I: If AMK... 

[10] F: Is a right isosceles triangle, then ABCD is a square. 

[11] I: Ok. Write. 

[They write the conjecture: "If AMK is a right isosceles triangle, 

..." then F interrupts G's writing] 

square” and F adds a 

second property. 

The solvers state their 

conjecture, but when 

writing it seem unsure 

about the premise. 

Episode 2 

[12] F: No, we don't know it! 

[13] I: It depends on what you want. 

[14] I:...to put in the premise. 

[15] F: No, we have to say it, because I think if this is not right 

[pointing to the angle AMK]... 

[16] I: Well, try to move and see. 

[17] F: Wait, let's see. 

[18] G: in the meantime... 

[19] F: We have to move M, yes, so I vary AMK. 

[20] I: You were moving A before. 

[21] F: Yes. 

[22] I: But ok. Because you are moving M to try to get rid of the 

right angle? 

[23] F: Exactly, I was verifying that if I get rid of, eh see, if I get 

rid of ... 

[24] G: Eh, but you have to put AM and KM equal. 

[25] F: KM and AM equal... 

Brief Analysis 

 

The solvers start 

investigating whether 

triangle AMK should 

also be “right” or not in 

the premise of their 

conjecture. 

 

F decides to seek an 

answer by varying 

angle AMK. 

 

 

F tries to make angle 

AMK not right, but 

maintain AM equal to 

KM in order to have an 
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[26] G: Yes, because we have already written that AMK is an 

isosceles triangle, we know... 

[27] F: Eh no, wait, let's see. 

isosceles triangle. 

Episode 3 

[28] I: So to maintain an isosceles triangle how should you 

move M? 

[29] G: Eh, along, along the perpendicular bisector of AK. 

[30] I: Ok, so try to move M like that. 

[31] F: Like this. No, what do I have to do? 

[32] I: He wanted to maintain only the property "isosceles 

triangle"... 

[33] G: You have to move, ...that is what we were discussing, 

right? 

[34] F: Yes. 

[35] G: Eh, so more or less like this...eh, yes, see? Here it is 

more or less isosceles. 

[36] F: Ahhhh... 

[37] G: Here it is more or less isosceles... 

[38] F: Yes, but do you see a square? 

[39] G: Exactly, it is not a square, so we need to write that ... 

[40] F: It has to also be right. 

[41] G: Yes. 

[42] F: Eh, you see?! 

[43] G: I was also writing it!! 

Brief Analysis 

In response to the 

interviewerʼs prompt, 

G suggests dragging 

M along the 

perpendicular bisector 

of AK. 

 

F seems to be 

interested in trying to 

maintain “ABCD 

square” but performs 

the dragging along the 

perpendicular bisector 

and notices that his 

property is not 

maintained. 

This leads him to 

conclude, through an 

indirect instrumented 

argumentation, that 
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[They laugh] 

[44] F: Ok, write: "and is also right" 

[45] F:...then ABCD is...a square. 

“AMK right” must also 

be in the premise of 

their conjecture. 

Table 6.2.6: Analysis of Excerpt 6.2.4 

 The argumentation is indirect, because F is trying to convince himself and G that 

if AMK is not right, ABCD is not a square, as he starts to state in line 15: “…because I 

think if this is not right [pointing to the angle AMK]...” That is, that the condition “AMK is 

right” is necessary for ABCD to be a square. Furthermore F wants to convince himself 

that “AMK isosceles” alone is not a sufficient condition for ABCD to be a square. G as 

well seems to engage in trying to convince himself that such condition alone is not 

necessary and proposes to maintain the condition “AMK isosceles” by dragging the base 

point M along the perpendicular bisector of AK. To propose this, G has implicitly used 

the conjecture (or theoretical knowledge) that “if M belongs to the perpendicular bisector 

of AK, AMK is an isosceles triangle (with base AK)”, together with the idea that 

maintaining dragging along the figure-specific path “perpendicular bisector of AK” will 

assure the invariance of the property “AMK isosceles” but not necessarily the property 

“AMK right”. This way the effect of the condition “AMK isosceles but not right” can be 

seen upon the quadrilateral ABCD. The “dragging argument” seems to be decisive in 

convincing the solvers that both conditions need to be included in the premise of the 

conjecture. Since the argumentation relies on the use of the instrument (in particular on a 

form of maintaining dragging, in this case) we claim it is another significant example of 

instrumented argument. 
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6.3 Overcoming Difficulties: Induction of Maintaining Dragging Leading to 

Development of the MDS 

  In Chapter 4 we introduced our cognitive model of the MDS and gave various 

examples of solvers behaving according to such model. In Chapter 5 we then proceeded 

to describe difficulties that various solvers encountered, due to the lack of certain 

fundamental components that we identified. Some of these difficulties would inhibit the 

expert use of MD. Moreover, in the first two sections of this chapter we discussed how 

acquiring the notion of “path” and reaching the idea of “searching for a cause” for the 

maintaining of the III, seen as a phenomenon within the world of the DGS, are key 

aspects of the MDS that lie at a meta-level with respect to the figure-specific elements 

described in our model that emerge during an exploration when MD is used. However 

we have not yet described how solvers might develop the MDS. In this section we would 

like to describe a basic sequence of prompts that the interviewer would use to “guide” 

the development of expert behavior in cases in which the solvers did not exhibit it 

spontaneously during their explorations. The prompting sequence emerged a posteriori 

from the analysis of our interventions and of solversʼ responses. In particular we noticed 

the recurring use of a sequence of prompts that would foster similar patterns of 

responses. Moreover, in many cases, once the solvers had worked through a sequence 

(or two) of prompts, they would proceed in the following explorations using MD by 

themselves, and showing expert behavior. 

 We stress that the prompts were not aimed at leading solvers to behave 

according to the MD-conjecturing Model, but to foster awareness of aspects of the 

exploration that might lead them to overcoming the impasse. In other words, the prompts 

were conceived to act at the meta-cognitive level, to foster development of the MDS. 
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6.3.1 The Prompting Sequence 

Step 1: A first “new” task 

 When solvers would not feel the need to overcome a basic conjecture, the 

interviewer would ask them to consider the particular type of quadrilateral they used in 

their conjecture and try to construct one that passed the dragging test and that respected 

all the steps of the initial construction in the Problem. The idea behind this intervention 

was to lead the solvers to become aware of the different status of objects of the 

construction and look for “constructable properties” to add to the steps of the 

construction that would induce the desired type of quadrilateral robustly. With 

“constructable properties” we intend properties that are compatible with the steps of the 

construction and that can be added to the steps of the construction without altering them. 

Solving this task should not only lead to awareness of the different status of the objects 

of the Cabri-figure, but it should also plant the seed of the idea of needing to “search for 

a cause” for the particular type of quadrilateral to “happen”. Moreover, the property in the 

premise of most solversʼ initial conjecture would be a (minimum) basic property that was 

not immediately constructable, so this new task would lead to the search for a new 

property that could potentially induce the initial property in the premise of the original 

conjecture. In this sense the task would lead the solvers to make their (minimum) basic 

property into a bridge property (defined in section 4.2.1.3). 

 Most solvers would respond by thinking about the construction and the status of 

the different objects of which the Cabri-figure was made. Some would think of a new 

property through an abduction, using known theorems; others would find difficulties and 

not be able to quickly find a way to solve the task; a few thought of using maintaining 

dragging and proceeded according to the MDS model from here. 

 Step 2: Prompting MD 
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 Once the first “new” task had been given, if solvers had not started using MD on 

their own, the interviewer would prompt them to use it, in different ways. If the solvers 

had been able to reconstruct the type of quadrilateral they were considering so that it 

passed the dragging test, the interviewer would ask them whether it was possible to 

obtain that type of quadrilateral robustly “in other ways”, and, shortly after, she would 

explicitly propose using MD. If the solvers were having difficulties with the first task, the 

interviewer would ask if they remembered “maintaining dragging” used in class during 

the introductory lessons, and suggest trying it. 

Step 3: Overcoming difficulties with MD 

Performing MD leads to various conceptual and manual difficulties, and 

frequently solvers who had not decided to use it spontaneously would experience 

various difficulties. In some cases after a first try solvers seemed to decide maintaining 

dragging was not possible for that given base point and III to maintain, so the interviewer 

would explicitly ask them whether they thought it was possible or not, and if it was not 

she would ask for an explanation. When solvers seemed to believe maintaining dragging 

was possible, but still not be able to perform it, the interviewer would ask one solver to 

concentrate on the property to maintain, and the other to “help” their partner by telling 

him/her in which direction to go. Sometimes the interviewer would also guide the solvers 

to use a property they had thought of as a bridge property for the MD. Usually once 

solvers were able to perform maintaining dragging they would perceive some regularity 

in the movement of the dragged base point and try to describe it, or help themselves 

“see” by activating the trace. When solvers didnʼt seem able to “see” and did not think of 

using the trace tool, the interviewer would suggest to activate it. 
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Step 4: Reaching a new conjecture 

In different cases “seeing” the movement of the dragged base point and/or 

“recognizing” the trace mark as some known geometrical object was enough for the 

solvers to spontaneously formulate a new conjecture describing their (guided) 

exploration. However in some cases it did not seem to be. The interviewer at this point 

would explicitly ask for a conjecture. In some cases this would lead to a statement with 

dynamic elements which then the solvers would translate into an “if …then” statement in 

more “static” terms. However in other cases it would lead to uncertainty and to a return 

to the original conjecture or to one containing a new property that had been found and 

used as a bridge property for MD. If the solversʼ conjecture at this point still did not 

include the IOD perceived during MD, the interviewer would try to get the solvers to 

focus on such IOD again and construct it robustly. The interviewer would either ask for 

the solvers to construct the object they “discovered” using MD and try to solve the 

reconstruction task (in Step 1), or she would ask the solvers to formulate a 

“constructable conjecture” from what they had found in their exploration, one that would 

lead to a quadrilateral passing the dragging test. 

Once the solvers had successfully responded to this sequence (or a to a 

subsequence of this sequence) of prompts they tended to then use MD spontaneously in 

later explorations, and with a scheme that was coherent with the MDS.  
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Figure 6.3.1: Sequence of prompts to guide development of expert behavior with respect to MD. 

We would now like to give an example of how this sequence of prompts played 

out. The solversʼ responses to the interviewerʼs prompts in the example we propose 

below were similar to various othersʼ responses. We provide summaries of the various 

episodes from the sequence, and brief excerpts of particularly significant moments. The 

episodes are taken from two solversʼ exploration of problem 1, and they lead to the 

solversʼ 6th conjecture on this Problem. 

Episode 1 (t17:03-t19:57). The first episode starts after the solvers have 

constructed a robust rectangle by linking the base point B to the perpendicular line to AC 

through A, having successfully solved the task posed by the interviewer, as in Step 1 of 
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the prompting sequence. This excerpt begins with the interviewer explicitly prompting the 

use of MD, starting from the initial construction. The solvers seem to still have in mind a 

basic property as they start dragging and then activate trace. They also seem to be 

uncertain which base point to drag. They do not seem to have conceived the idea of 

generic path yet, even though they are able to maintain ABCD a rectangle by dragging 

B. There is a discussion about whether the quadrilateral is or is not a rectangle. 

Episode 1 

… 

[3] I: Can you try to do maintaining dragging? You aren't too used 

to it 

[4] Dav: Yes, ok. 

[5] I: ...so I'll push you a bit to do it. So given the initial 

construction, 

[6] I: So B anywhere...it's enough to just unlink B. 

[7] Dav: So this away...what did we have to do? [rereading the 

steps of the construction] B anywhere... 

[8] I: Yes. 

[they murmur as they remake the construction] 

[9] Dav: Eh, B....parallel...[as he constructs] 

… 

[14] Dav: and then segment AB. Ok now we have to try to drag. 

[15] Gin: Yes...it has to be along, uh the perpendicular to AC 

through A. 

[16] Dav: Ok. 

Brief Analysis 

 

 

Prompting according 

to Step 2. 

 

 

The solvers follow 

the steps in the 

activity and 

construct ABCD. 

 

 

 

They start dragging 

the base point A. Gin 

seems to have in 

mind a basic 
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[17] Gin: Take it, do "trace". 

[18] Gin: Mark an angle of 90. 

[19] Dav: where? "trace" 

[20] Gin: Trace of B. 

[21] Dav: and moving...A, 

[22] Gin: A and B. 

[23] Gin: but we have to...do, wait, do the perpendicular through 

A. 

[23] Gin: a line perpendicular through A. 

[24] Dav: Ah! Ok, now I understand. 

[25] Gin: Yes, good. 

[26] Gin: Yes, but now we are not sure it is a rectangle...we have 

to mark the angle or else we do not know it is a rectangle... 

[27] Dav: Ok...Yes, well, ok that's true. 

[28] Gin: I mean put like DBA, put the angle so it's 90 and we 

know that it is a rectangle. 

[29] Dav: I put DBA 90? eh, it's what we did before. 

[30] Gin: Yes, no, put the measure of the angle. 

[31] Dav: Yes, that is equivalent to putting B on this line, since 

here in any case it would be 90, and here 90. 

[32] Gin: but here you can also move B like this [showing a 

horizontal movement with his hand.] I mean B, in this case you 

can also move it like this. 

[33] Dav: Yes. 

property. 

The solvers activate 

trace on B and drag 

the base point B.  

Dav switches to 

dragging B after Gin 

mentions both 

points. 

Dragging along the 

line described in the 

basic property turns 

out to work. 

Gin seems to 

associate ABCDʼs 

“being a rectangle” 

to it having angle 

DBA being right. 

However Dav 

suggests that that is 

equivalent to having 

B on the line he was 

dragging along. 

 

Gin seems to insist 
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[34] Gin: But if you put this angle here...we know ...when, uh the 

quadrilateral is a rectangle. 

[35] Dav: Yes. 

[36] Gin: Otherwise this way we do not know that it is a rectangle, 

we only hypothesize it. 

[37] Gin:...moving like this.  

[38] Dav: Yes, but we can prove that if B remains on ...on 

the...line there, on the parallel to, perpendicular on A, it is a 

rectangle. 

[39] Dav: We proved it before. 

[40] Gin: Yes. Oh, yes, that's right. 

[41] Dav: If B is on that line, we already know it is a rectangle, in 

theory. 

on marking the 

angle, as if that 

would give the 

quadrilateral the 

status of rectangle. 

Dav, instead argues 

that they can prove 

that if B is on the 

line, ABCD is a 

rectangle. 

Table 6.3.1.1: Analysis of Episode 1  

In Episode 1 the solvers respond to the interviewerʼs prompt by trying to first 

briefly drag the base point A, and then they switch to dragging B as they decide to 

activate the trace. The solversʼ behavior seems to show that they have trouble freeing 

their minds from the minimum basic property (angle DBA right) they had reached earlier 

in the exploration. Dav seems to be uncertain about how to drag A, so as soon as his 

partner mentions B, while he is activating the trace, he switches to dragging B. Before he 

starts dragging, Gin predicts that it will be enough to move B along the perpendicular line 

through A to AC, which they had used to solve the reconstruction task. This suggests 

that Gin has not yet conceived key elements of the concept of generic path: its 

independence with respect to basic properties of the type of quadrilateral being 

considered, and its dynamic nature, as a trajectory. Moreover, Gin worries about not 
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“knowing” that the quadrilateral is a rectangle unless a certain angle is marked and its 

measure reads “90 degrees”. This difficulty might arise from the property “ABCD 

rectangle” not being constructed robustly, unlike in the previous part of the exploration. 

Another hypothesis is that he might be frustrated because he does not think of mentally 

deriving the fact that ABCD is a rectangle “given” that B is on the perpendicular line. He 

seems to be reassured when Dav explains how they had already proved that “if B is on 

that line, we already know it is a rectangle, in theory” ([41]). 

Episode 2 (t19:57- t22:07). The interviewer prompts the solvers to activate the 

trace on the base point A, and seeing that the solvers are having trouble dragging, she 

asks questions from Step 3 of the prompting-sequence. The solvers get confused when 

they redefine B obtaining again a robust rectangle. This does not allow performance of 

maintaining dragging, since the III is no longer a soft property. The solvers realize the 

redefinition of B was not useful and proceed to unlink it spontaneously. 

Episode 2 

[1] I: Ok, let's go back to what you were doing...you wanted 

to activate trace on something else...you were dragging A, 

but I didn't understand ...could you repeat... 

[2] Dav: No, I was thinking about what to do, I mean... 

[3] I: hmm. 

[4] Dav: Thinking about it, I mean moving A...we can't solve 

it...it should stay... 

[5] I: You think that dragging A it does not remain a 

rectangle? 

[6] Dav: I mean... 

Brief Analysis 

Prompt d in Step 3. 

 

 

Dav expresses his 

difficulties in dragging A 

using maintaining 

dragging. 

The interviewer uses 

prompt b from Step 3. 
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[7] I: Ok, then try to explain why. 

[8] Dav: I mean yes, but B would have to in any case stay on 

the perpendicular, because since the line, this line 

rotates...with center in C [as he drags A], I mean all the 

figure rotates with center in C, basically, 

[9] I: uh huh... 

[10] Dav: Eh, instead B does not vary. I mean it always 

remains in the same position. 

[11] Dav: Therefore B, uh, I mean, in order for this figure to 

be a rectangle, B has to in any case be on the 

perpendicular. 

I: Ok. 

[12] Dav: Therefore, uh,... 

[13] I: So it is not possible to move A... 

[14] Dav: So moving A, I mean yes... 

[15] Dav: But we would have to move it like along...a circle? 

maybe... 

[16] Gin: but...no, I don't think so. Try. 

[17] Dav: Maybe so... 

[18] Gin: Link B to ...to the perpendicular... 

[19] Dav: Uh...where is it? "redefinition"? 

… 

[24] Dav: Point on this line. 

[murmuring as he goes back to dragging] 

Dav seems to be mixing 

the preconceived 

property with a GDP for 

A, and seems unable to 

relate the behavior of the 

figure that he perceives 

to conceiving a path for 

A. 

 

The interviewer uses 

prompt b from Step 3 

again. 

Dav seems to conceive a 

possible new GDP 

leading him to believe 

that maintaining dragging 

is possible. 

However Gin seems to 

still be confused by soft 

and robust properties of 

the Cabri-figure and 

proposes to redefine B 

on the perpendicular line, 

again. 
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[25] Gin: You have to do trace...the trace of A [the trace is 

now active on both B and A]...you don't need the trace of B. 

[26] Dav: Yes, but now, I mean, now it always remains a 

rectangle, however you move A! 

[27] Gin: Ah, that's true, right. 

[28] Dav: So it's not good. 

[they murmur as Dav unlinks B] 

After they construct a 

robust rectangle again 

they realize this was not 

helpful and it prevents 

MD from working. 

Table 6.3.1.2: Analysis of Episode 2  

In this episode the interviewerʼs prompts seem to lead to a destabilization of the 

solversʼ belief that performing maintaining dragging using the base point A was not 

possible. Dav seems to perceive a regularity in the movement of the base point he is 

dragging and provides a GDP as “a circle” ([15]). While Dav seems to have developed  a 

proper conception of generic path at this point, Gin does not seem to have developed 

one yet since he again proposes to construct a robust rectangle by linking B to the same 

perpendicular line as in Episode 1. Moreover this shows that Gin has not yet managed to 

free his mind from the preconceived property. However this time both solvers seem to 

realize that this was not a useful move. Overcoming the belief that maintaining dragging 

was not possible seems to be what led to the behavior we will see in Episode 3, which 

was not prompted by the interviewer in any further way.  

 

Episode 3 (t22:17-t26:15). The solvers try to perform maintaining dragging with 

the trace activated on A, again. This time they seem to anticipate a path, and show a 

proper conception of such idea. However they have some difficulties providing a GDP. 

They finally reach a GDP that is not A-invariant but that seems to satisfy them. 
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Episode 3a 

[1] Dav: Let's try to put B like it was before...like... 

…[the solvers unlink B] 

[4] Gin: Yes, so now we can move it 

[5] Dav: yes. 

[6] Dav: So [he starts dragging A] now 

[7] Gin: go back...yes. Ok, now put trace of A. 

[8] Dav: Yes, now we'll do the trace of A and moving A we 

can see how it comes out... 

[9] Dav: So [as he starts dragging]...I'll take it from here. 

[10] Gin: Yes. 

[11] Dav: No, no better if you do it [handing the mouse to Gin] 

[12] Gin: Yes, ok, but it's not like I am better...so wait a 

second let's put it straight. 

[13] I: If now you could tell me what each of you is looking 

at... 

[14] Gin: Eh, I am trying to move A maintaining B on the 

perpendicular... 

[15] I: Ok. 

Brief Analysis 

The solvers unlink B to 

obtain the initial 

construction and try 

maintaining dragging 

once again with trace on 

A. 

Dav shows that he is 

anticipating a figure-

specific path. 

 

 

 

 

 

Gin seems to 

concentrate on a bridge 

property (B on the 

perpendicular line) as he 

is dragging A. 

Table 6.3.1.3: Analysis of Episode 3a 
 
Episode 3b (Excerpt 5.4.3) 

[1] Gin: So...circle again. 

[2] I: Hmm. 

[3] Gin: Yes. 

Brief Analysis 

Gin describes the GDP 

as a circle. 

The solvers 
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[4] Gin: so... 

[5] Dav: [murmurs something] 

[6] Gin: Yes...it is  

[7] Dav: ...it is the midpoint of C 

and B 

[8] Gin: It is the midpoint of... 

[9] Dav: It is the intersection of 

the diagonals 

[10] Gin: diagonals 

[11] Dav: of the diagonals. 

[12] Dav: and since it is a rectangle, it is also the...the...uh the 

center of the circumscribed circle. 

[13] Gin: whatever. 

[14] Dav: Eh, they are all on the circle. 

[15] Gin: yes. 

[16] Gin: hmm. 

[17] I: Now, are you sure of this? 

[18] Gin: eh, yes.... 

[19] I: Because you have traced only 

... 

[20] Gin: ...pretty much 

[21] I: a little piece. Hmm. 

[22] Gin: there. 

[23] Gin: Well, we could try to continue. 

successively refine the 

GDP trying to decide 

where the center of the 

circle might lie. They 

then proceed by 

constructing the circle 

that represents their 

GDP as the circle with 

center the midpoint of 

BC and passing 

through A. 

The solvers seem to be 

describing aspects of 

the new Cabri-figure on 

the screen. 

 

 

 

 

 

The solvers seem 

convinced by their GDP 

and are able to predict 

what the rest of the 
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[24] Dav: exactly. 

[25] Gin: So now let's ... 

[26] Gin: more or less along there 

[27] Gin: nooo [as a little circle 

appears when he clicks another 

point on the screen because he had 

not finished using the command "circle"] 

[28] Gin: Good here... 

[29] Dav: No... 

[30] Gin: Yes, alright, it looks like it 

is good [Italian: "sembra di sì"] 

[31] Gin: Yes, good. It could be. 

[32] Dav: Yes, it looks like it is 

good. 

[33] Gin: yes. 

[34] Dav: Careful you are going out... 

trace mark should look 

like.  

 

Although the circle they 

have constructed is not 

A-invariant the solvers 

seem convinced that it 

correctly describes their 

observations as they 

perform a soft dragging 

test. 

Table 6.3.1.4: Analysis of Episode 3b  

Now the solvers seem to have properly conceived a path: they have anticipated it 

([8]) and seem to be aware that dragging along “something” that can be identified 

through the trace mark and the movement of the dragged-base-point “causes” the 

maintaining of the III (in this case the bridge property that they have already proved to be 

sufficient to obtain a rectangle). The solvers seem to be “convinced” ([31]-[33]) of their 

findings, as they perform a soft dragging test, but have not yet stated a conjecture. 
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Episode 4 (t26:15-t27:58). During this episode I asks the solvers to focus on the 

circle they constructed in the previous episode, questioning its “movement”. The 

intervention is aimed at overcoming the non-A-invariant GDP so that a robust 

construction of the added property might be possible. Although the solvers propose an 

alternative GDP which is A-invariant, they do not spontaneously construct it. 

Episode 4 

[1] I: Why are you talking about "one" circle? I mean, I see that 

it moves... 

[2] Dav: Eh, because... 

[3] Gin: Yes, right because moving A theoretically the circle 

changes... 

[4] Dav: Yes, but...if it gets 

bigger it is not any more...wait, 

move it... 

[5] Dav: Move it up. See, it does 

not stay any more...it is the 

circle through A and B and C 

[6] Dav: I mean they are together 

[7] Gin: Yes, through A and B. 

[8] Dav: Through A, B, and C exactly. I mean a circle through 

A, B, and C because if I assume a circle this one has to be... 

Brief Analysis 

This is prompt c from 

Step 4 of the prompting 

sequence. 

 

 

 

 

 

 

 

The solvers propose 

alternative GDPs. 
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[9] Gin: Yes [as he 

continues dragging] 

[10] Gin: Yes, right it is a 

circle through A, B and C 

[11] Dav: Or else we could 

say it with...eh, center the 

midpoint of BC...and radius 

[12] Gin: [murmurs something] 

[13] Dav: Eh...eh, no. Yes, because you can't say that the 

radius is neither one nor the other, unless you say that they 

are the same. 

[14] Gin: Yes, exactly. 

[15] Gin: I mean it has to be... 

[16] I: So can you repeat what your idea is? 

[17] Dav: That this circle, so... 

[18] Gin: That the quadrilateral is a rectangle...if A 

[19] Dav: Yes... 

[20] Gin: rotates around...the 

circle... 

[21] Dav: it is on the circle with 

center… 

[22] Gin: with center 

[23] together: the midpoint of... 

[24] Gin: between B and C, where, uh 

Dav proposes a new 

GDP which is A-

invariant and the 

solvers seem to agree. 

 

 

 

The interviewer asks 

the solvers to re-

explain their idea, 

prompting for a 

conjecture (Step 4). 

 

 

 

 

 

 

 

The solvers are now 

able to verbally 

describe their new 

GDP. 
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[25] Dav: and radius... 

[26] Gin: and radius...I mean 

[27] Dav: uh 

[28] Gin: OC equal to OA equal to OB. 

[29] Dav: and radius OB, because if you say that it is there... 

Table 6.3.1.5: Analysis of Episode 4 

The interviewerʼs prompting leads to a new GDP which is A-invariant. Moreover, 

by the end of this episode, the solvers are able to verbally formulate what seems to be a 

conjecture linking the III (“the quadrilateral is a rectangle” [18]) with the IOD (“A rotates 

around the circle” [20]). We infer that the solvers have now conceived the idea that 

dragging along a trajectory can induce a configuration to become in invariant property of 

a dynamic-figure. This is a key aspect of the notion of generic path. However they do not 

spontaneously write down the conjecture or try to reconstruct the IOD robustly to perform 

a robust dragging test. Therefore the interviewer prompts such behavior in the following 

Episode. 

 

Episode 5 (t27:58-t29:39). The interviewer asks for a dragging test for the idea 

the solvers had expressed in the previous episode ([18]-[28]). This leads to robust 

construction of the proposed IOD and to further conviction of the appropriateness of the 

conjecture, which the solvers now write down.  

Episode 5 

[1] Dav: Because if you say that it is there...yes, and radius OB. 

[2] Gin: radius OB. 

[3] I: Ok so try to do the dragging test of this that you have just 

told me. 

Brief Analysis 

 

 

 

The interviewer asks 
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[4] Dav: We have to drag...uh [as Gin rereads the text of the 

activity]...yes. 

[5] Dav: Ok, we can, uh... 

[6] Gin: Eh, construct...wait go down, 

erase the line... 

[7] Dav: Yes. 

[8] Dav: We can construct the circle with radius...OB 

[9] together: yes. 

[10] Dav: Let's call this O. 

[11] Dav: and then...[as he drags]...try 

to maintain it on this new circle. 

[12] Gin: but I think you need to link it, 

wait link it. 

[13] Dav: ah, we forgot...right. 

[14] Dav: we need to link it...where is it? here. 

[15] Gin: A. 

[16] Dav: "point on object" 

[17] Gin: ..."object" 

[18] Dav: and then 

[19] Gin: circle 

[20] Dav: erase one. 

[21] Gin: "hide/show" right. 

[22] Dav: "point on object"...A "point on object" 

[23] Gin: and now do circle. 

the solvers to verify  

their idea with a 

dragging test (Step 

4). 

 

 

The solvers 

construct the IOD 

robustly by 

constructing a circle 

that is A-invariant 

and redefining A 

upon it. 
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[24] Dav: circle, ok. 

[25] Dav: [as he drags the newly linked point] Now we can get rid 

of the trace. 

[26] Gin: Yes, ok always a rectangle. 

[27] Dav: Yes. It should be a rectangle, 

yes. 

 

The solvers perform 

a robust dragging 

test and seem to be 

convinced of their 

idea. 

Table 6.3.1.6: Analysis of Episode 5 

The solvers respond positively to the prompt, and are able to construct a robust 

IOD. When the perform the dragging test, they seem to be satisfied and almost relieved 

to see that the figureʼs behavior corresponds to their expectation that after this 

reconstruction the quadrilateral should in fact be a rectangle. The robust dragging test 

seems to be convincing for the solvers, who now write down their conjecture: “ABCD is a 

rectangle when A ∈ CO, with O midpoint of BC and radius OB.”  

 Although through the prompting sequence the solvers proceed coherently with 

our model and reach a conjecture linking the III with the IOD, they do not exhibit 

“automatic” behavior at this point. They seem to still be developing expertise with respect 

to MD during the exploration they engage in after this one, hesitating on providing a GDP 

which is invariant with respect to the dragged-base-point. However after such hesitation 

the solvers seem to exhibit expert behavior in their final explorations. 

 

6.4 Conclusion 

 In this chapter we elaborated the notion of path that we had introduced with our 

model in Chapter 4, emphasizing its centrality in the development of expert use of MD. In 

particular we described how the generic path resides at a meta-cognitive level with 
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respect to the dynamic exploration being carried out. This meta-cognitive level seems to 

influence the interpretation of the phenomena that occur on the screen, and to control 

the whole development of the exploration process. Moreover, constructing this meta-

level knowledge seems to allow some students to transition to using MD during an 

exploration, and exhibit expert behavior. The meta-cognitive level seems to also conceal 

the abduction that previous studies have identified during dynamic exploration that 

involve the use of maintaining dragging (previously known as dummy locus dragging). 

We therefore introduced a new notion, that of instrumented abduction, describing this 

type of abduction, and others that may be supported by an instrument. Finally, in Section 

6.3, we identified recurring aspects of a process of development of expert use of MD by 

describing a possible sequence of prompts that was used by the interviewer to foster 

solversʼ awareness about the use of MD for producing a conjecture, and that seemed to 

lead solvers to progress in a process of development of expert use of MD. 
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CHAPTER VII 
 
 
 

CONCLUSIONS, IMPLICATIONS AND DIRECTIONS FOR FUTURE RESEARCH 
 
 
 
In this concluding chapter we will explicitly explain how the MD-conjecturing 

Model led to significant findings with respect to the research questions we had set out to 

investigate. Concisely, the model provides an adequate description of the process of 

conjecture-generation when maintaining dragging (MD) is used by the solver; it also 

provided a lens through which it was possible to analyze solversʼ explorations and gain 

further insight into cognitive aspects of this particular process of conjecture-generation. 

In particular, it shed light onto the relationship between an abductive process and use of 

the dragging tool, specifically MD.  

As mentioned in the description of the methodology, our findings have no 

statistical ambitions because of the limited number of cases analyzed. However, the fine 

grain qualitative analysis that was carried out for every case provided a richness in detail 

and depth which would not have otherwise been possible. Furthermore, many 

commonalities emerged during the analyses, outlining a common process of conjecture-

generation through MD, thus giving sense to a definition of expert use of MD. All this 

leads us to think that, in a search for more general results, quantitative research can be 

fruitfully grounded upon our findings. 

In this chapter, after answering our research questions, we will contextualize our 

findings within the field of mathematics education. The contextualization of our research
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within the broader perspective of the field as a whole will serve to describe implications 

of this study and directions for further research.  

 

7.1 Answers to The Research Questions 

The research questions we proposed to investigate were: 

1. What relationship do the forms of reasoning used by solvers during the 

conjecturing stage of an open problem in a DGS, have with the ways in which 

solvers use the dragging tool? 

2. When a solver engages in the activities proposed in this study within a DGS there 

seems to be a common process used to generate conjectures through use of 

maintaining dragging.  

a. Does our model describe this process adequately? 

b. How does the model describe the dragging scheme and how can we 

refine the description? 

c. What insight into the process of conjecture-generation can be gained 

when using our model as a tool of analysis for solversʼ explorations? 

d. What is the role of the path within this model? Moreover is the path, as a 

part of the model, a useful tool of analysis? 

e. How does the model highlight abductive processes involved in conjecture 

generation? 

3. In cases where students do not use maintaining dragging (MD), is it possible to 

outline how they might develop effective use of MD? 

In the following paragraphs we will provide answers to each of the questions with 

respect to our findings described in Chapter 4, Chapter 5, and Chapter 6. 
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7.1.1 Answer to Question 1 

The MD-conjecturing Model unravels the delicate point of transition marked by an 

abduction and use of dummy locus dragging (Arzarello et al., 2002). As such, our model 

provides a tool of analysis that allows us to “zoom into” this transition point and look at 

different concurring features that contribute to its complexity. In particular, with our model 

we were able to analyze in further detail the relationship between maintaining dragging 

and particular forms of reasoning, including abduction. The model proposes a 

classification of robust invariants that provides a window through which solversʼ 

reasoning can be viewed and analyzed. In particular our notions of basic and derived 

construction-invariant and of point-invariant have revealed to be insightful tools of 

analysis. They allow us to highlight the solversʼ ability to use theoretical knowledge to 

interpret invariants, and, more importantly, the cognitive process through which solvers 

can link these simultaneously-observed properties together in a conditional relationship. 

Wandering dragging is used to perceive these robust invariants, which can then be used 

in what we have defined as basic conjectures, during a preliminary phase of 

explorations. For example, these notions allow us to interpret exclamations such as 

“always a trapezoid” ([1], Excerpt 4.2.2) and put them in relation with the subsequent 

conjectures generated by solvers. 

 As the exploration proceeds and the solver searches for interesting 

configurations, we can recognize a form of guided dragging (Arzarello et al., 2002) or 

use of a drag-to-fit strategy (Lopez-Real & Leung, 2006), which seems to be a 

manifestation of the solverʼs use of his/her conceptual knowledge to induce a particular 

configuration on the dynamic-figure by acting on its base points. Our model introduces 

the notions of basic property and minimum basic property to describe a particular use of 

theoretical knowledge to reach a desired configuration. These notions are also useful for 
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interpreting solversʼ behavior as they are trying to maintain a desired property, through 

maintaining dragging. For example, when G exclaims: “I understand! so, C… we have to 

have the diagonals that intersect each other at their midpoints, right?” ([8], Excerpt 4.2.5) 

he has conceived a minimum basic property which he uses to make the task of 

maintaining dragging easier. 

Moreover, by identifying two types of soft invariants, intentionally induced 

invariants and invariants observed during dragging, the model allows us to put the 

(potentially) subsequent use of maintaining dragging in relation with the idea of 

“searching for a cause” and, in general, with an abductive cognitive process. We will 

analyze this relationship in depth in our answer to Question 2. Here we highlight an 

aspect of this cognitive process, related to use of maintaining dragging with the trace 

activated as a means to reach a GDP. Recall, for example, episodes like that described 

in Episode 4 of Excerpt 4.3.1, when, activation of the trace on the base point being 

dragged leads to Giuʼs observation: “It's an arc of a circle, I think the curvature suggests 

that….” ([35] Episode 4, Excerpt 4.3.1).  

 The terminology we introduce for soft invariants helps describe reasoning that 

occurs in correspondence with the use of the soft dragging test. If the solver is exploring 

the figure dynamically and has perceived two soft invariants, potentially an III and an 

IOD, that seem to occur simultaneously, s/he might drag a base point to induce one 

property directly and the other one indirectly and check that they are visually verified 

simultaneously. Our model sheds light onto how causality between the invariants in the 

DGS may be interpreted as conditionality between geometrical properties in Euclidean 

Geometry and to how a CL may be established, leading to the formulation of a 

conjecture. For example, we analyzed how the use of the word “when” can mark the 

conception of a CL between soft invariants. We can recall exclamations like: “Now there 



 356 

is this problem of the parallelogram in which we canʼt exactly find when it is” ([6:36], 

Excerpt 4.4.2), or: “I find that the quadrilateral is a parallelogram, except when, uh, D 

comes to lie on the line CA” ([17], Excerpt 4.4.1). 

A similar form of reasoning seems be used in correspondence to the robust 

dragging test. This may be performed by the solver after a redefinition of the dragged-

base-point on the geometrical object s/he constructed to represent the figure-specific 

path. The solver this way can test his/her conjecture in a robust and “general” way. As a 

matter of fact, now the solver can only perceive simultaneity of the two invariants, which, 

if the conjecture is provable, have now become robust invariants, and can be conceived 

as new construction invariants (see also the description of the model in phases, Section 

4.6 and 7.2.2). 

 

7.1.2 Answers to Questions 2a, 2b and 2c 

The data analysis appears to confirm that there is a common process of 

conjecture-generation when maintaining dragging (MD) is used, and this process is well-

described by the MD-conjecturing Model. Moreover, the model provided a lens through 

which we could analyze studentsʼ difficulties, which led to the identification of four 

components that seem to be necessary for expert use of MD. We used these four 

components to describe the solversʼ difficulties in Chapter 5. The analysis of solversʼ 

difficulties allowed us to gain further insight into cognitive aspects of conjecture-

generation that we had set out to study, leading to the identification of a figure-specific 

level and a generic level of the MD-conjecturing Model. These were described in Chapter 

6. In the following paragraphs of this section we will highlight significant aspects of these 

findings. 
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This initial model presented in Chapter 2 was found to be appropriate, but not 

sufficient to describe various aspects of the process we were investigating. Therefore 

this initial model was refined and elaborated into the MD-conjecturing Model which was 

introduced in Chapter 4. We found it useful to present the MD-conjecturing Model as a 

sequence of tasks and sub-tasks that a solver can decide to carry out during his/her 

dynamic exploration. The tasks we identified and described are the following. 

• Task 1: Determine a configuration to be explored by inducing it as a (soft) 

invariant intentionally induced invariant (III); 

• Task 2: Look for a condition that makes the intentionally induced invariant (III) be 

visually verified through maintaining dragging; 

• Task 3: Verify the conditional link (CL) through the dragging test.   

 

Figure 7.1.1: Interplay of the main elements of the MD-conjecturing Model. 
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Throughout Chapter 4 we highlighted the additions that the data analysis led to, and 

broadened our description of the process of conjecture-generation. Although use of MD 

is still central in this new description of the process of conjecture-generation, we added 

the description of a phase that appeared in many explorations, in which solvers seemed 

to explore robust invariants.  

Moreover, with respect to the initial model, we noticed how most of the additions 

to our initial model were related to a characterization of invariants that seemed to help 

describe studentsʼ work. The types of invariants we added are point-invariants and 

construction-invariants (either basic or derived), and additional construction-invariants, 

that is, invariants that are constructed as a robust invariant after having been observed 

(or induced) as a soft invariant, or potential property of the Cabri-figure considered. We 

therefore proposed an alternative description of the process of conjecture-generation 

characterized by the particular type of invariant investigated: (1) the point-invariant and 

construction-invariant phase; (2) the intentionally-induced-invariant phase; and the (3) 

additional-construction-invariant phase. The phases describe how an exploration may be 

carried out over time, through a process that could repeat cyclically. This second way of 

describing the model seems to complement the first description, and the combination of 

the two descriptions revealed to be useful in analyzing solversʼ explorations. Below is a 

table that represents the description of the MD-conjecturing Model as invariant-type 

phases. 
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Table 7.1.2: The MD-conjecturing Model as invariant-type phases with related subtasks.  

As mentioned above, the MD-conjecturing Model also allowed us to gain further 

insight into cognitive aspects of conjecture-generation we had set out to study. If we 

focus specifically on the solverʼs use of MD, the analysis we carried out through the lens 

of the MD-conjecturing model allowed us to describe what we called expert use of MD 

for conjecture-generation. Moving to a meta-cognitive level, it is possible to describe key 

aspects that seem to determine such expert use. In particular, in Chapters 4 and in 

Phase of Model Subtasks Dragging Schemes Used 

distinction of point-
invariants from 
construction-invariants 

wandering dragging point-invariant and construction-
invariant phase 

formulation of initial 
conjectures 

dragging test (robust) 

determine an III wandering dragging 

find a (minimum) basic 
property 

no dragging, wandering 
dragging, dragging test 
(soft) to test sufficiency of 
condition 

maintain the III maintaining dragging 

find a GDP and provide 
an IOD 

maintaining dragging, 
dragging with trace 
activated 

intentionally-induced-invariant 
phase 

verify the CL dragging test (soft and/or 
robust version) 

construct the IOD from 
previous phase robustly 

redefinition of point on 
object 

additional-construction-invariant 
phase 

repeat previous phases 
on new construction 

all the dragging above 
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Chapter 6, we have introduced the idea of developing the subtask of “searching for a 

cause”. We highlighted how expert use of MD seems to be characterized by an open 

and flexible attitude during use of MD. In other words, the expert does not expect 

anything specific, but simply is open to the possibility of perceiving a regularity that might 

be transformed into a geometrical condition for verification of the interesting property 

induced. Conceiving MD as a tool that may help answer the question “what might cause 

the property I am interested in to be maintained” seems to be necessary for the 

development of expert use of MD, leading to making sense of what emerges during an 

exploration. We believe that this question paired with the developed notion of generic 

path (Section 6.1) supports the solver in searching for a cause of the maintaining of the 

III as dragging the considered base point along a path which will have a figure-specific 

description in each particular exploration, depending on the construction, the property 

chosen to maintain, and the base point chosen to drag.  

These considerations allowed us to describe expert solvers as solvers who have 

developed the necessary meta-level knowledge related to the use of MD, specifically the 

notion of generic path and the idea of using MD to “search for a cause”. Combining our 

description of the meta-cognitive level with the elements of the model that illustrate the 

use of MD during the dynamic exploration, leads to what we have defined the 

maintaining dragging scheme (MDS). Taking an instrumental perspective, we can 

characterize expert use of the MD through the description of the utilization scheme that 

solvers seem to build in correspondence to MD with respect to the task of conjecture-

generation in open problems in a DGS. The utilization scheme is the combination of the 

two components we described: the cognitive component at the level of the exploration, 

and the meta-cognitive component that we introduced to describe expert behavior. 
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7.1.3 Answer to Question 2d 

 The role of the path is fundamental within the MD-conjecturing model. Through 

its two components, the figure-specific path and the generic path, it bridges the two 

levels of the MD-conjecturing Model. Moreover, the notion of path was found to be a 

useful tool of analysis, giving an indication of what phase of the model the solver 

seemed to be proceeding through, and providing insight into difficulties when solvers did 

not use MD effectively. In particular, the (re-elaborated) notion of path, and especially its 

generic component described in Chapter 6, allowed us frequently to identify the crucial 

point of many of the difficulties. This is the case, because the notion of generic path 

“incorporates” fundamental aspects of the intentionally induced invariant (III) – since 

dragging along “the path” makes the III visually verified – and the potentiality of an 

invariant observed during dragging (IOD) – since a regularity may emerge as the 

movement of the dragged-base-point along a trajectory that may be described 

geometrically.  

Furthermore, the generic path expresses a link between the phenomenology of 

the DGS and the world of Euclidean Geometry. Conceiving a generic path guides the 

interpretation of the experience within the phenomenology of the DGS in geometrical 

terms. We described how this seems to be the case because within the phenomenology 

of the DGS the generic path withholds both the seed of a causal link between the 

invariants perceived during the exploration and of the conditional link (CL). In particular 

the generic path can be considered, within the phenomenology of a DGS, as a trajectory 

with respect to movement, a movement that coordinates the dragged-base-point with the 

III, causing the III to be visually verified. In Geometry, this trajectory which becomes 

figure-specific, may be seen as a geometrical object that a point can belong to, a 

mathematical locus (or a subset of it), a condition for a second property to be verified. 
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Difficulties can arise in cases in which solvers identify a figure-specific path, but not 

being able to conceive a generic path, they are not able to relate what they experience 

within the phenomenology of the DGS to a geometrical statement expressing a 

conjecture. 

 

7.1.4 Answer to Question 2e 

Through the MD-conjecturing Model we were able to successfully “zoom into” the 

delicate transition point that Arzarello et al. (1998) describe as marked by abduction. 

There seems to be a correspondence between abduction and use of MD, situating the 

abduction at a meta-level with respect to the exploration. We express this idea through 

the notion of instrumented abduction (Section 6.2). When conjectures are generated 

coherently with the MD-conjecturing Model, use of MD seems to become “automatic” for 

expert solvers who exploit the corresponding utilization scheme (MDS). Moreover 

automatic use of the MDS seems to condense and hide the abductive process that 

occurs during the process of conjecture-generation in a specific exploration: the solver 

proceeds through steps that lead smoothly to the discovery of invariants and to the 

generation of a conjecture, with no apparent abductive ruptures in the process. In other 

words, our research seems to show that, 

 for the expert, the abduction that previous research described as occurring 

within the dynamic exploration occurs at a meta-level and is concealed within the 

MD-instrument.  

Instrumented abduction is the main type of abduction that we seemed to find occurring in 

correspondence with MD, and that characterizes the maintaining dragging scheme. 

However, our data seemed to also suggest that if MD is also internalized by 

solvers, thus becoming a psychological tool (Vygostky, 1981, p.162), it may be freed 
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from the physical artifact of dragging within the DGS. When MD is developed into a 

psychological tool, it seems to become a way of thinking that can be used to solve a 

different problem: no longer that of maintaining a property through dragging, but that of 

searching for a cause. We described this case at the end of Section 6.2: although the 

“search for a cause” through use of MD with the trace activated failed, the solvers were 

able to overcome the technical difficulties and reach a conjecture by conceiving a new 

GDP without help from the actual use of the MD. In other words the solvers seem to 

have interiorized the use of the MD to the extent that it has become a psychological tool 

which no longer needs external support. This is also very interesting with respect to the 

abduction involved, because our data suggested that when MD is used as a 

psychological tool, the abduction seems to occur internally and is supported by the 

theory of Euclidean Geometry. This abduction is not an instrumented abduction, but an 

abduction that resides at the level of the dynamic exploration, and that leads to the 

emergence of geometrical properties of the GDP which in the case of an instrumented 

abduction do not emerge. 

 

7.1.5 Answer to Question 3 

 Many solvers did not exhibit expert behavior during their explorations, especially 

during their first explorations. In general, during the study we did not observe the 

possible process of development of expert use of MD, nor did we attempt to describe a 

process of instrumental genesis (Rabardel, 2002). However some of the solvers did 

reach an expert or nearly expert behavior by the end of their interviews. The evolution of 

expert behavior did not seem to be completely spontaneous. In fact we developed a 

number of prompts to use in situations in which solvers seemed to have encountered 

some sort of impasse, or would not be able to proceed. These prompts were not aimed 
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at leading solvers to behave according to the MD-conjecturing Model, but to foster 

awareness of aspects of the exploration that might lead them to overcoming the 

impasse. In other words, the prompts were conceived to act at the meta-cognitive level, 

to foster development of the MDS. 

Somewhat unexpectedly, as we analyzed our interventions and solversʼ 

responses during the interviews, a prompting sequence emerged. In particular we 

noticed the recurring use of a sequence of prompts that would foster similar patterns of 

responses. In Section 6.3 we described the basic sequence of prompts that emerged 

from the analysis of the interventions and the solversʼ responses. From this sequence it 

is possible to identify a series of four steps that seem to outline how solvers might 

develop effective use of MD.  

We stress that this sequence of prompts is not the only one that may foster the 

development of expert use of MD, nor can we state that it is the most effective one. Its 

significance resides in the fact that it emerged from the analyses as a recurrent 

sequence from an otherwise orderless set of prompts we had prepared for the 

interviews. The order in which the prompts were used and the consistency of solversʼ 

responses led us to the considerations above. However the relatively small number of 

cases analyzed in this study does not allow us to make significant claims on the 

“generality” of the process, which may be studied in future research. 

 

7.2 Contextualization of Our Findings 

 In this section we situate our findings within the field of mathematics education. In 

particular we discuss how our results can be considered with respect to Arzarello et al.ʼs 

analysis of dragging in Cabri, to Leungʼs variational analysis of dragging, and to Boeroʼs 

processes of generation of conditionality. 
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7.2.1 Our Findings with Respect to Arzarello et al.ʼs Analysis of Dragging in Cabri 

 Our research has its roots within the research developed by Arzarello, Olivero, 

Paola and Robutti (Arzarello et al., 1998a, 1998b, 2002) that provided a cognitive 

analysis of dragging practices in Cabri environments. Our study advances this line of 

research by explicitly describing in detail certain possible steps of the cognitive 

processes that may occur when students engage in particular dragging practices among 

the ones described by Arzarello et al.ʼs research. More precisely, our model illustrates a 

process of conjecture-generation that can occur when maintaining dragging is used by 

the solver. Maintaining dragging is essentially Arzarello et al.ʼs dummy locus dragging 

(Arzarello et al., 2002), with the essential difference that it is a way of dragging “given” to 

solvers instead of observed and classified a posteriori. While Arzarello et al.ʼs research 

led to a detailed description of dragging practices during the solution of open problems in 

Cabri, our primary goal was to further investigate specific cognitive processes that 

seemed to occur during the phase of conjecture generation in the solution of open 

problems when the use of the specific MD modality is promoted. In this sense our 

research aimed at unraveling what Arzarello et al. had described as the delicate 

transition from ascending to descending control, guided by abduction, and occurring in 

correspondence to use of dummy locus dragging. Through our model we intended to 

“zoom into” this delicate transition point and analyze, in a fine manner, the processes 

involved. Consistently with this goal we took a different approach to studying the use of 

dragging: we chose to introduce particular dragging modalities, and in particular the 

maintaining dragging modality, to the participants.  

This approach to our investigation allowed us to develop and test our model, 

which provided insight into processes that Arzarello et al.ʼs research had hinted at, and 
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in particular it led us to recognize where” abduction seems to lie within this process of 

conjecture-generation. As we described in Chapter 6, when maintaining dragging is used 

by expert solvers in an “automatic” way, no abduction seems to occur at the level of the 

dynamic exploration. Instead it is supported by the instrument of maintaining dragging, 

and concealed within the instrument, in particular at a meta-cognitive level within what 

we described as the maintaining dragging scheme. These considerations led us to 

define the notion of instrumented abduction, a main finding of our research. This way our 

findings are consistent with previous studies carried out by Arzarello et al., but deepen 

them with respect to the use of MD and to the presence of abductive processes that 

become indwelling of the meta-cognitive component of the MD scheme.  

 
 
7.2.2 Our Findings with Respect to Leungʼs Variational Lens 

Similarly to how we developed our model to gain insight into specific processes in 

DGS explorations, Leung has developed a different lens that provides a tool of analysis 

from a cognitive perspective. The lens of variation (Leung, 2008) is introduced to help 

capture and explain cognitive components of experiences involving dragging, as 

described in Chapter 1. Moreover, he used such lens to introduce a discernment 

framework that can mediate geometrical knowledge (Leung, 2008, p.152-153). This 

opens the delicate issue of the relationship between the phenomenological domain of a 

DGS and the world of Euclidean Geometry (EG), introduced in previous research (for 

example Lopez-Real & Leung, 2006; Strässer, 2001). 

The perspective introduced by Leung presents an interesting and complementary 

perspective in respect to our own. Thus in a recent and ongoing research collaboration 

with Leung, we developed the complementarities between our MD-conjecturing Model 

and the lens of variation, constructing a combined-lens that sees elements of the MDS 
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and of the lens of variation fused together. We used the combined-lens to analyze 

studentsʼ work to try to gain insight into aspects of the dynamic relationship between the 

Cabri-world and the world of EG that arise when MD is used. The combined-lens, 

through the elements that constitute it and their relationships, seems to in fact provide 

deeper insight into cognitive processes involved in conjecture-generation when MD is 

used. Moreover, analyzing solversʼ explorations through the combined-lens seems to 

lead to a new perspective on the transition from sense-making within the DGS to 

mathematical interpretation within EG, a transition that is needed to reach the 

formulation of a geometrical conjecture (a conjecture in geometrical terms). 

 

The Combined-lens - We now introduce our combined-lens for describing 

conjecture-generation when MD is used, and summarize it in the table below (Table 

7.2.2.1), which spells out the complexity involved. The table combines the main 

elements that have arisen from our study with those previously developed by Leung 

(Leung, 2008), describing them within the phenomenology of a DGS together with the 

cognitive components involved in their perception (column 1) and illustrating their 

interpretation within EG (column 2). The system of relationships is presented in the table 

through placing corresponding elements in parallel. Accordingly, we describe the 

combined lens following the organization of the table row-by-row, which corresponds to 

separating different key elements of the process of conjecture-generation, expressing 

some of the possible cognitive components involved and how each element of the 

process develops across the two worlds. 
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Phenomenology of a DGS EG Interpretation 
 

Level-1-Invariants (Perceived Invariants): robust invariants 
and induced soft invariants. One of these may be chosen as 
an III. The IOD will later emerge as another of these 
invariants during the process.  
Cognitive components: functions of contrast and separation 

Geometrical 
interpretation of level-1 
invariants as 
geometrical properties 

Level-2-Invariants (Perceived Invariant Relations between 
Invariants): perception of an invariant relation between the III 
and the IOD. 
Cognitive components: coordination between different 
functions of variation and synchronic simultaneity 

Geometrical 
interpretation of level-2-
invariants as  
geometrical relations 
between geometrical 
properties 

Locus of Validity (LoV): a figure-specific path. It can be of 
type I (traced path), type II (soft path), or type III 
(robust/generalized path)  
Cognitive components: functions of separation, diachronic to 
synchronic simultaneity, generalization, fusion 

Geometrical 
interpretation and 
description of the LoV 
(GDLoV) as a 
geometrical object 

Critical Link  1 (CrL1): transition from the first to the second 
level of invariants 
Critical Link 2 (CrL2): interpretation of CrL1 as the answer to 
the “search for a cause” 
Cognitive components: simultaneity together with the 
sensation of direct and indirect control over the III and the 
IOD 

Interpretation of the 
CrL2 as a Conditional 
Link (CL): a relationship 
of logical dependency 
between geometrical 
properties 

Table 7.2.2.1: Elements of our combined-lens with respect to the phenomenology of a DGS and their 
interpretation within the world of EG.  

 

Row 1: A Level-1-invariant is a property of a dynamic-figure that remains invariant while 

other properties change under different dragging modalities. Level-1-invariants may be 

interpreted within the domain of EG as geometrical properties of figures. While some 

invariants are properties that the dynamic-figure maintains for any movement of a 

specific base-point (or all base-points) being dragged, other invariants are properties 

that may be “induced” to be invariant by particular movements of the dragged-base-

point. Using Healyʼs terminology (Healy, 2000), the first type are robust invariants, while 

induced invariants are soft invariants. The solver may choose to use MD, i.e. to drag 
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intentionally trying to induce a property as a (soft) invariant, that is to obtain an 

Intentionally Induced Invariant (III). Other soft invariants may then be perceived. We 

refer to these other invariants as Invariants Observed during Dragging (IODs), as in our 

MDS model. Different functions of variation (Leung, 2008) seem to explain how the 

perception of the different types of invariants may occur. For example, when determining 

and maintaining an III the solver mainly uses the function of contrast to identify a certain 

property which the figure can have “sometimes” but not “always”. 

Row 2: A more complex type of invariant that can be perceived during a dynamic 

exploration is an invariant relation between level-1-invariants, we refer to invariants of 

this type as level-2-invariants. These are perceived within the DGS through awareness 

of synchronic simultaneity between two or more level-1-invariants. In the domain of EG 

these correspond to relations of logical dependency between geometrical properties. 

Row 3: As the solver performs MD, s/he can determine a locus of validity, LoV (Leung & 

Lopez-Real, 2002), that is, a sketch of a trajectory along which to drag the base point in 

order to maintain the III. Coming up with a LoV can be quite difficult, and using the trace 

tool activated on the dragged-base-point may help. This can lead to a geometrical 

description of the LoV (GDLoV). A new invariant may be perceived: the “belonging of the 

dragged-base-point to the LoV”, an IOD.  

Row 4: Within the phenomenological domain of a DGS the transition from perceiving two 

level-1-invariants to perceiving an invariant relation between them is delicate. We can 

describe this transition as follows. A first Critical Link (CrL1) is established as awareness 

of a level-2-invariant between an III and an IOD, such awareness is fostered by 

synchronic simultaneity of the two level-1-invariants. Moreover, a sense of direct/indirect 

control over each invariant may guide the conception of a second critical link (CrL2) 

between the invariants. A CrL2 is established when the solver can interpret the IOD as 
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“causing” the III to occur within the phenomenological domain of the DGS. In the realm of 

Euclidean Geometry, critical links can be interpreted  as a conditional link (CL) between 

the geometrical properties corresponding to the IOD and the III. Such a CL may be 

expressed in the conjecture. Soft or robust dragging tests may be used by the solver to 

test the hypothesized critical link and CL, using the functions of contrast, synchronic 

simultaneity, fusion, and generalization. 

 

7.2.3 Our Findings with Respect to Boeroʼs PGCs 

Through our model we have described how conditionality seems to arise through 

the geometrical interpretation of causality determined by a combination of the perception 

of simultaneity plus direct or indirect control over the invariants observed when MD is 

used (Section 4.4). The complexity of the process can also be seen from a different 

perspective: during the process described by our model it is possible to identify several 

of the processes of generation of conditionality (PGC) introduced by Boero, Garuti and 

Lemut (Boero et al., 1999). In this section we propose a combined analysis to explore 

the consistency of our model with the PGCs described in the literature. During the 

complex process of conjecture-generation described by our model we have identified 

different possible PGCs . We believe that describing complementarities with the PGCs 

present in literature not only serves to contextualize our research, but it also serves as a 

basis for future research on the semiotic potential of  the dragging tool with respect to 

the TEG and mathematics in general. Once we have described how our MD-conjecturing 

Model seems to feature a combination of PGCs, in Section 7.4, we will illustrate the 

mathematical meanings that can emerge from dynamic explorations that involve MD in 

generating conjectures, and that could be featured in future research on semiotic 

potential of dragging. 
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PGC1 in the MD-conjecturing Model - When solvers are exploring a particular 

configuration, focusing on a specific property and asking themselves “when” it might 

occur, they frequently seem to “freeze” the image and suddenly conceive a condition for 

the particular configuration to occur. This seems to occur mostly during the preliminary 

phases of an exploration, when basic conjectures are formulated, or bridge properties for 

MD are conceived. This behavior may be interpreted as an occurrence of a PGC1, that 

is 

a time section in a dynamic exploration of the problem situation: during the 
exploration one identifies a configuration inside which B happens, then the 
analysis of that configuration suggests the condition A, hence “if A then B”. 
(Boero et al., 1999, p.140). 

 
Consider the following example of such behavior. 

Excerpt 7.2.3.1 - The two solvers are working on Problem 1, and they identify an 

interesting configuration: “ABCD rectangle”. They seem to analyze the configuration 

leaving it static, as if frozen, and they provide a condition for this configuration to occur. 

Episode 

[1] F: a rectangle … 

[2] G: A rectangle. 

[2] F: More or less [he moves M so that ABCD looks like a 

rectangle]. 

[3] G: eh, look at the measures…when it comes out to be a 

rectangle. 

[4] F: eh…I donʼt know, well, about like this… 

[5] I: ok. 

[6] F: rectangle when… 

Brief Analysis 

The solvers identify an 

interesting 

configuration for the 

figure being a 

rectangle. 
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[7] G: when…eh, wait…when the perpendicular, I think, when 

the perpendicular to AB through M is also through K… 

[8] F: exactly [together] 

[9] G: …itʼs a hypothesis. 

[10] F: Wait, when the perpendicular…itʼs a conjecture [he gets 

ready to write it] 

[11] G: …through …The 

perpendicular to AB through M is 

also through K. 

[12] F: Ok. 

[13] G: Try to draw it… 

 

They identify a 

condition that they 

consider sufficient for 

the interesting 

configuration to be 

verified. They leave 

the image frozen on 

the screen. 

Table 7.2.3.1: Analysis of Excerpt 7.2.3.1 
 

Once they have placed the base-points in a way that makes ABCD look like a 

rectangle, the solvers do not perform any type of dragging. Instead they seem to freeze 

the configuration and identify a condition A inside which they think B occurs. The 

phenomenon B in this case is “ABCD rectangle” ([1], [2]) and the condition A is “the 

perpendicular to AB through M is also through K” ([7], [11]). The relationship between A 

and B is expressed by the solvers through the word “when” ([17], [10]). This process of 

generation of conditionality has also been eloquently described as follows:  

the conditionality of the statement can be the product of a dynamic exploration of 
the problem situation during which the identification of a special regularity leads 
to a temporal section of the exploration process that will be subsequently 
detached from it and then “crystallize” from a logic point of view (“if…, then…”). 
(Boero et al., 1996). 

 

The word “when”, used by the solvers to express the conditional relationship between A 

and B, seems to mark the “crystallization” described by Boero. 
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PGC2 in the MD-conjecturing Model - When solvers are determining the figure-

specific path by searching for a GDP they frequently use MD (with or without the trace 

activated) and continuously check “when” the desired regularity, B, is maintained, in a 

continuous manner. They seem to do this by generating the condition, A dynamically 

through continuous trials and errors during which they check that “when the dragged-

base-point is not on the hypothesized figure-specific path” (“not A”) the regularity B fails 

to happen. This behavior seems to be well described by a PCG2, that is: 

noticing a regularity B in a given situation then identifying, by exploration 
performed through a transformation of the situation, a condition A, present in 
the original situation, such that B may fail to happen if A is not satisfied. (Boero 
et al., 1999, p.141). 

 
Consider the following example of such behavior. 

Excerpt 7.2.3.2 - The excerpt is taken from the same exploration as in Excerpt 

7.2.3.1. Here the solvers are refining their GDP and they seem to be using a process of 

generation of conditionality of the second type. 

Episode  

[22] F: Ah, it 

looks like a 

curve! 

[23] G: Again 

a nice circle? 

[24] F: Like this… 

[25] F: Itʼs definitely not a straight line. 

[26] I: hmm… 

[27] F: So itʼs a curve… 

Brief Analysis 

GDP1: a curve 

refinement of the GDP1: “a nice circle” 

 

 

 

Here there is a change in the dragging 

mode. 
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[28] F: Letʼs 

go the whole 

way around 

and 

see...what 

happens... 

[29] I: Wait, not you are going around 

without maintaining the property, I think. 

[30] F: Well, more or less…no?...like this?  

[31] G: eh, here, here…here I donʼt think it 

is a rectangle…  

[32] F: No, no...youʼre right youʼre right. 

[33] F: So more or less we were starting 

from here … 

[34] I: eh… 

[35] F: It 

looks like it 

goes through 

A… 

[36] G: …and through K. 

[37] F: Where? 

[38] G: It looks like a circle…with diameter 

AK. 

 

Instead of looking at the III, F seems to 

concentrate on the “circle” and he finishes 

to “go the whole way around”. This is a 

version of the soft dragging test, at least 

for G who seems to also keep on checking 

the III.  

 

 

 

 

 

 

 

 

Now they refine the GDP1 adding the 

property “passing through A” and then 

“through K”. Therefore we now have a 

GDP2: a circle through A and K; and then 

a GDP 3: a circle with diameter AK. 
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[39] F: 

Yes, thatʼs 

what it 

looks like, 

exactly. It looks like a circle with diameter 

AK. 

Table 7.2.3.2: Analysis of Excerpt 7.2.3.2 
 

During this episode the solvers are performing MD, moving the dynamic-figure 

and proposing successively more refined GDPs. Condition A in this case is “M moves (?) 

on a circle” and the regularity B is “ABCD rectangle”. During the refinement of the GDP, 

once F has dragged “the whole way around” but without paying attention to the III, the 

solvers seem to be noticing and describing a regularity A, through the refined GDPs, 

such that “B may fail to happen if A is not satisfied”. In fact the final GDP seems to arise 

dynamically, from a series continuous trials-and-errors, as an object such that if the 

dragged-base-point is not on it the regularity B is not verified. 

 

PGC3 in the MD-conjecturing Model - When determining a GDP the solvers start 

searching for a regularity from the movement (and the trace mark if the trace activated). 

Solvers seem to be associating some perceived regularity to other regularities previously 

discovered in other experiences. Moreover, reasoning through “selection and 

generalization” (Boero et al., 1999) seems to be used by solvers who select a subset of 

positions from the movement (or points from the trace if activated) that have in common 

some property (for example that of being equidistant from an imagined point in the case 

of a circle) and from which a “general rule” can be inferred. We think this process could 
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also be described as a “continuous” case of Boero, Garuti, and Lemutʼs description of 

PGC 3, that is  

a ʻsynthesis and generalizationʼ process starting with an exploration process of a 
meaningful sample of conveniently generated examples (Boero et al., p. 141). 
 

Consider the following example of such behavior. 

Excerpt 7.2.3.3 - This excerpt was presented in Chapter 4 (Excerpt 4.3.1), and 

here we repropose an episode from it to illustrate how PGC of the third type seem to 

take place when the movement of the dragged-base-point and the trace mark are used 

to reach a GDP and an IOD. 

Episode  

[28] I: So Ste, what are you looking at to maintain 

it?  

[29] Ste: Uhm, now I am basically looking at B to 

do something decent, but... 

[30] I: Are you looking to make 

sure that the line goes through 

B? 

[31] Ste: Yes, exactly. 

Otherwise it comes out too sloppy... 

[32] I: and you, Giu what are you looking at? 

[33] Giu: That it seems to be a circle... 

[34] Ste: I'm not sure if it is a circ... 

[35] Giu: It's an arc of a circle, I think the curvature 

suggests that. 

Brief Analysis 

 

 

Ste is using the property “the line 

goes through B” as his III ([29], 

[30]). 

 

Both students show the intention 

of uncovering a path by referring 

to “it” ([31], [33], [34]).  

Giu, in particular concentrates on 

describing the path geometrically 

and he seems to recognize in the 

trace a circle ([33]) or an arc of a 

circle ([35]).  

Table 7.2.3.3: Analysis of Excerpt 7.2.3.3 
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As the solvers look at the trace mark left by the dragged-base-point while they 

perform MD, they conceive an idea about what a GDP might be. They are able to do this 

through an exploration with MD in which they conveniently generate a significant sample 

of examples. From these examples they generalize the perceived regularity, from a 

movement along an arc of a circle to a whole circle ([33]-[35]). 

 The complexity of the process of conjecture-generation described by our MD-

conjecturing Model becomes evident once again, in a new way, if we emphasize the 

presence of various PGCs within it, as we have tried to do. Not only does a combination 

of PGCs seem to be present during the process, but there is also a new element with 

respect to the initial description of the PGCs: continuity that is induced by the specific 

kind of motions that occurs in a DGS. While the examples provided for each of the 

described PGCs in literature have mostly been of a “discrete” nature, the presence of 

dragging, and MD in particular, attributes a new “continuous” nature to the processes. 

Although dynamicity seems to provide support for this particular process of conjecture-

generation, making it more “natural”, it may turn into an obstacle as far as the aim to 

formulate conjectures within the “static” TEG, where it becomes necessary to “eliminate” 

time. We will discuss this issue briefly in Section 7.3.2. 

 

7.3 Implications of the Study and Directions for Future Research 

 In Chapter 1 we introduced the importance within the field of mathematics 

education of ameliorating the teaching and learning of Geometry, and how the use of open 

problems can be a means to achieve this goal. Particular issues within this line of research 

arise when studying the didactic potential of open problems in dynamic geometry. Our 

results specifically address questions in this field that involve dragging and its possible role 
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within the teaching and learning of Geometry. Our results shed light onto possible answers 

and avenues of research that could lead to more complete answers to some questions that 

were posed in different moments by researchers in this field. In particular our MD-

conjecturing Model describes a process for generating conjectures in a way that can 

become “mechanical” as we have described in Chapter 6. Reasoning about the use of MD 

and fostering awareness of the process of conjecture-generation achieved with its support 

can be used  by the teacher to trigger a process of semiotic mediation centered on the use 

of dragging with respect to mathematical meanings like “premise”, “conclusion”, 

“implication”, and “conjecture”. In Section 7.3.1 we will interpret our findings within the frame 

of semiotic mediation and highlight their didactic potential with respect to the construction of 

these specific mathematical meanings. Specifically, we will describe how our model seems 

to support the design of activities that could be used in the classroom to exploit the use of 

MD to mediate these particular mathematical meanings. This didactical implication is 

important since these activities can be used to have the students engage in discussions with 

classmates and the teacher that can foster their development of these mathematical notions 

useful in the overarching context of proof. This is emphasized, for example, in Principles and 

Standards for School Mathematics (NCTM 2000) that states: “Reasoning and proof are not 

special activities reserved for special times or special topics in the curriculum, but should be 

a natural, ongoing part of classroom discussions, no matter what topic is being studied.” (p. 

342). Moreover such activities give students the opportunity to use their prior knowledge as 

they enhance their learning, while engaging in a physical experience within a DGS, to 

actively build new mathematical knowledge. 

However, with respect to the issue of teaching and learning proof, our findings 

suggest different hypotheses to be refined and investigated in future research. We will 

frame our description of these implications considering the theory of reference with 
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respect to which a proof of a particular statement may be constructed. Such a 

conception has been introduced by Mariotti (2000) through the following characterization 

of “theorem”: 

...any mathematical theorem is characterized by a statement and a proof and 
that the relationship between statement and proof makes sense within a 
particular theoretical context, i.e. a system of shared principles and inference 
rules.  Historic-epistemological analysis highlights important aspects of this 
complex link and shows how it has evolved over the centuries. The fact that the 
reference theory often remains implicit leads one to forget or at least to 
underevaluate its role in the construction of the meaning of proof. For this 
reason it seems useful to refer to a 'mathematical theorem' as a system 
consisting of a statement, a proof and a reference theory (Mariotti, 2000, p.29). 
 

Pedemonte has proposed a similar characterization of “conjecture” (2007), as a triplet 

consisting of a statement, a system of conceptions (Balacheff, 2000; Balacheff & 

Margolinas, 2005), and an argumentation. Considering the symmetry between the two 

definitions we will analyze the potential cognitive gap that emerges between an 

argumentation developed within a DGS and a proof, if the theory of reference is the 

Theory of Euclidean Geometry (TEG). Sections 7.3.2 and 7.3.3 are devoted to different 

aspects of this gap: first a description of elements that may make the transition from the 

phenomenology of a DGS to the TEG problematic, and then an interpretation of the 

cognitive gap within the perspective of cognitive unity (Boero, Garuti & Mariotti, 1996). 

Framing the gap between argumentation and proof, when the solversʼ system of 

conceptions is related to the phenomenology of a DGS and the theory of reference is the 

TEG, will serve to outline our hypotheses on how the gap may be (partially) bridged if the 

MDS is used as a psychological tool, freed from the support of the instrument.  

 

7.3.1 Semiotic Potential of Our Findings with Respect to the Elaboration of a 

Statement 
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 We have described how our cognitive model sheds light onto a process leading 

to the formulation of a statement that makes a conditional link (CL) between two 

invariants explicit (Section 4.5). Within our model we have referred to this statement as a 

conjecture. Maintaining this perspective, we can frame our findings within the theory of 

semiotic mediation (TMS) and describe the didactic potential withheld by the 

conjecturing process described by our model with respect to important mathematical 

notions such as premise, conclusion, implication, conjecture, and theorem. We will first 

briefly introduce aspects of the TMS that we will use to frame our findings, and then we 

will describe the specific semiotic potential of dragging highlighted by our findings, and 

our hypotheses on how this semiotic potential might be exploited. These hypotheses can 

be used in future long term teaching experiments that investigate the semiotic potential 

of dragging and of MD specifically. 

 

Brief Introduction to the Theory of Semiotic Mediation (TMS) - Semiotic mediation 

in the field of mathematics education is a form of mediation between students and 

mathematical knowledge that occurs through signs. Researchers have recently adapted 

the idea of semiotic mediation, introduced by Vygotsky (1987), to the context of school 

mathematics (Mariotti, 2001, 2002; Bartolini Bussi, Mariotti & Ferri, 2005; Falcade, 

Laborde, & Mariotti, 2007; Mariotti & Maracci, 2009; Bartolini Bussi & Mariotti, 2008). We 

stress what is intended with semiotic mediation as opposed to mediation tout-court. The 

latter is the mediation that occurs when a tool acts as a prothesis, in that it only serves 

for helping the user accomplish a task. For example, a fishing rod mediates (tout-court) 

the task of fishing. Instead, the former occurs when a tool is used not only to accomplish 

a task, but also to put the user in contact with another “theory/world.” For example Cabri 

not only can be used to help solve a problem, but it also puts the user in touch with the 
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world/theory of Euclidean Geometry, and it can be used purposefully with this intent by 

the teacher. Of course the two kinds of mediation are interrelated; in particular, acting by 

means of a tool may constitute the basis of the subsequent functioning of the same tool 

in the process of semiotic mediation, triggered by the teacher. 

Bartolini Bussi and Mariotti developed the ideas of tool of semiotic mediation and 

of semiotic potential of an artifact: 

...any artifact will be referred to as a tool of semiotic mediation as long as it is (or 
it is conceived to be) intentionally used by the teacher to mediate a mathematical 
content through a designed didactical intervention (Bartolini Bussi & Mariotti, 
2008). 

 
When an artifact is used to mediate meanings, we can speak of its semiotic potential 

(Bartolini Bussi & Mariotti, 2008): 

on the one hand, personal meanings are related to the use of the artifact, in 
particular in relation to the aim of accomplishing the task; on the other hand, 
mathematical meanings may be related to the artifact and its use. This double 
semiotic relationship will be named the semiotic potential of an artifact.” (p. 754). 
  

The analysis of the semiotic potential of an artifact can focus on the possible interaction 

between students and the artifact during appropriately designed activities, the artifact 

and the mathematical meanings evoked during these activities, and on how the teacher 

can guide the development of mathematical meanings from the personal meanings by 

interacting with the students and using the artifact. Computers, in general, and a DGS, in 

particular, can be considered tools of semiotic mediation (Mariotti, 2006; Bartolini Bussi 

& Mariotti, 2008). 

If a goal of education is to have students engage in sense-making and 

argumentation with respect to specific mathematical content (for example, NCTM, 2000), 

teachers need to have a variety of activities available to propose and integrate into the 

Geometry curriculum. This section presents issues to be taken into consideration in 

designing activities that can be used in the Geometry classroom within the perspective of 
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semiotic mediation. When designing and using activities of this sort it is fundamental not 

to forget the complexity involved in mathematical sense-making process, leading 

potentially to a variety of difficulties. These may be analyzed through the lens of our 

model which hopefully will provide useful insight into both understanding and helping 

students overcome their difficulties. Further research involving long term teaching 

experiments in this area is necessary to test our hypotheses and to better describe how 

the semiotic potential of dragging, and maintaining dragging in particular, may be 

exploited. In the next section, considering “dragging” as an artifact, we use our findings 

to highlight the semiotic potential of dragging with respect to particular mathematical 

meanings. 

 

The Semiotic Potential of Dragging from Our Findings - Our model focuses on a 

particular process of conjecture generation that sees the emergence of a premise and a 

conclusion from different invariants perceived 

during a dynamic exploration. In this section 

we will analyze this process of emergence of 

the premise and conclusion of a conditional 

statement, and discuss how these findings 

contribute to the analysis of the semiotic 

potential of MD with respect to particular 

mathematical meanings such as “premise”, 

“conclusion”, “implication”, “conjecture”, and 

“theorem”. Moreover we will describe how our distinction of different types of invariants 

highlights how the potential of MD could be exploited elaborating on the different types of 

invariants. 

Fig 7.3.1.1 ABCD as a result of the step-by-
step construction. 
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 Let us consider an activity like Problem 2 (Section 3.3.3). A step-by-step 

construction is given and the solver is asked to make a conjecture about the possible 

configurations that can occur. If we consider activities like this, or in general, activities 

that contain a series of steps followed by a question like: “what can you say about the 

figure?, or what can you say about…when…?, or under what conditions can the figure 

become a…?”, it is possible to clearly/explicitly distinguish the invariants destined to 

originate the conclusion and the premise of the conjecture that is the outcome of the 

exploration as it can be carried out by the student. In particular the invariant (the III) that 

is destined to become the conclusion of the conjecture has the following characteristics 

that make it clearly recognizable: 

1) it is a first soft invariant that may be induced, 

2) it is induced indirectly and it is a configuration that can be acted-upon by moving 

different base points, 

3) once a second soft invariant is perceived (the IOD) with respect to the dragged-base-

point, the two invariants appear simultaneously but the control over the III is indirect. 

On the other hand the invariant destined to originate the premise has the 

following characteristics: 

1) it is a soft invariant perceived while a first one (the III) is being induced, 

2) it is searched for in response to the question “what might cause the III to be 

maintained?”, 

3) it is related to a specific base point and therefore can be induced directly by dragging 

this base point, 

4) it is perceived simultaneously with the III but differs in the type of control that the 

solver exercises over it. 
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The characterization of the invariants can be used by the teacher during collective 

discussions and in so doing exploiting the semiotic potential of maintaining dragging  

with the aim at developing the mathematical meanings of premise and conclusion of a 

conditional statement. 

Another component of the MD-conjecturing Model that has an important 

counterpart in the development of the idea of conjecture is what we have described as a 

“bridge property” (Section 4.2.1.3), that is a property that implies the property 

corresponding to a previously conceived III, and that therefore can be used during MD in 

substitution of the original III. The emergence of bridge properties, may give the 

opportunity of introducing the idea of implication. As a matter of fact, the relationship that 

links the selected property (III) and these new properties has a counterpart in the theory 

in a logic relationship that may become the aim of the didactic intervention. 

 

The Role of the Task in the Analysis of the Semiotic Potential - Although the 

analysis of soft invariants in step-by-step construction problems seems to have a strong 

semiotic potential with respect to the development of mathematical meanings such as 

premise and conclusion of a conditional statement, analyzing different types of robust 

invariants in step-by-step construction problems also withholds semiotic potential. 

Various activities can be constructed around step-by-step constructions in order to foster 

the development of these mathematical meanings from 

the analysis of robust invariants. In particular, we will 

show that the type of problems we developed for the 

interviews, can be used within a context of semiotic 

mediation to help students construct the meanings of 
Figure 7.3.1.2: ABCD as a result 
of the step-by-step construction. 
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“implication” and more in general of “conjecture” and “theorem”. Let us consider the step-

by-step construction in our Problem 4 (Section 3.3.3): 

• Draw three points: A, B, C. 

• Construct the parallel line l to AC through B, 

• and the perpendicular line to l through C. 

• Construct D as the intersection of these two lines. 

• Consider the quadrilateral ABCD.  

Students can be asked to list all the information about ABCD that they know given the 

steps of the construction. Within such a list different robust invariants will emerge, and 

basic construction invariants and derived construction invariants (Section 4.2.1.1) may 

both be present. For example, a student may produce the following list of properties of 

ABCD: 

• AC parallel to BD, 

• angle ACD right, 

• angle CDB right, 

• ABCD right trapezoid. 

The first two properties in the list are basic construction invariants, while the second two 

are derived construction invariants, since “angle CDB right” is not explicitly contained in 

the steps of the construction, but it can be derived through logical implication from the 

first two properties. Reflection upon differences between these two types of construction 

invariants can help the construction of the meaning of “implication” within a theory. In this 

sense it could be a step towards the construction of the meaning of “theorem” conceived 

as a triplet (statement, theory, proof) in Mariottiʼs terms (2000). 

 Once students have reflected upon the construction invariants, it can be made 

explicit how the geometrical properties that correspond to these invariants will always be 
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part of the premise (although maybe implicitly) of any conjecture developed on ABCD. In 

order to foster awareness of these properties and of their meanings, the teacher can ask 

students to list them explicitly for a number of conjectures, before allowing that these 

properties be used implicitly.  

We showed how the notions of basic and derived construction invariants can be 

used to distinguish between properties of a figure that emerges from a step-by-step 

construction, leading to the development of the meaning of “implication”. The notion of 

point-invariants (Section 4.2.1.2) may also be useful to distinguish between robust 

invariants that correspond to derived-construction invariants as opposed to invariants 

that are robust only for the dragging of particular base points, and that therefore do not 

correspond to general properties of the geometrical figure represented by the product of 

the step-by-step construction. 

 Asking students to compare and discuss their solutions to activities like the ones 

described, designed to foster the emergence of meanings of particular mathematical 

notions, can be useful within a process of semiotic mediation towards notions like 

premise and conclusion of a conditional statement. Moreover, as described, students 

can gain awareness of logical dependencies between geometrical properties by 

constructing and perceiving the corresponding invariants. In particular students can be 

guided to reason about what they perceive, on how a dynamic-construction can be used 

to show relationships between properties, and, more generally, about what a logical 

implication might me, abstracting from the situated context (Noss & Hoyles, 1996). 

During the discussion various issues may arise, such as how the perception of 

simultaneity plus direct or indirect control over an invariant property can be interpreted 

statically as logical dependence of one property from another. A discussion centered 

around the relationship between steps of a construction and geometrical properties 
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explicitly stated in the conjecture may serve to develop further understanding of the 

notions of premise and conclusion of a conditional statement, and of logical implication. 

Moreover, engaging in activities similar to the ones described students will have the 

opportunity of engaging in explorations that require flexibility in recalling and using 

different definitions and representations of the figures involved. 

 

7.3.2 The MD-conjecturing Model with Respect to a Theory 

In the previous section and throughout our study we used the word “conjecture” 

to refer to particular kinds of statements originating from an open problem and still 

requiring a proof. Now we will consider these statements with respect to the solverʼs 

system of conceptions (Balacheff, 2000; Balacheff & Margolinas, 2005) and to the 

argumentation they are generated through, according to Pedemonteʼs definition (2007). 

This conception of conjecture is symmetric with respect to Mariottiʼs definition of theorem 

as the triplet consisting of a statement, a theory of reference, and a proof (Mariotti, 

2000).  Thus this conception of conjecture introduces a correspondence that may be 

used to describe the relationship between the exploration phase, when the conjecture 

statement is produced and the proof phase when such statement is proved, or is to be 

proved.  

Let us consider the case in focus when the production of the conjecture is 

accomplished through the use of MD and the proof is expected in the TEG. The 

cognitive gap that  may arise is potentially quite wide if the argumentation is constructed 

within the solverʼs system of conceptions in the phenomenological domain of a DGS and 

the theory of reference is the Theory of Euclidean Geometry (TEG). Although there might 

be the possibility of bridging such cognitive gap by choosing to introduce a different 

theory of reference that might be constructed upon “axioms of a DGS”, we choose the 
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TEG as the theory of reference. Therefore, we must consider the complex issue of 

transitioning from a dynamic conception in which dynamism (and therefore time) is 

present, to a generalized and static domain, that of the TEG, ordered by logical 

implications and in which time is no longer present. In the following sub-section we will 

discuss the complexity of this task, through a few considerations on the elimination of 

dynamism in order to interpret the findings geometrically and generate a conjecture with 

a statement that is provable within the TEG.  

Here we would like to highlight an interesting feature of our findings. Mechanical 

use of MD can be a powerful tool for generating conjectures: expert use of MD seems to 

lead smoothly to sense-making of the findings of a dynamic exploration in terms of a 

conjecture that could be proved within the TEG. However few elements of the 

argumentation leading to the conjectures are transferrable to the TEG. In fact frequently 

only the invariants corresponding to the premise and the conclusion of the final 

conditional statement are interpreted within the TEG. This contributes to widening a 

discontinuity between argumentation and proof. The phenomenon can be interpreted 

within the perspective of cognitive unity as we will do in Section 7.3.3. 

 

Transitioning from the Phenomenology of a DGS to the Theory of Euclidean 

Geometry: the Elimination of Dynamism - We have described how personal meanings 

concern the idea of dependent movement as it emerges from studentsʼ activities in a 

DGS, characterized by dynamism; while mathematical meanings concern the ideas of 

logical dependence between premise and conclusion of a conjecture in the context of the 

TEG. The dragging tool is the means connecting dynamism to logical statements, in a 

process through which the solver gains theoretical control, moving from personal 

meanings to mathematical meanings of his/her observations. Goldenberg and Cuoco 
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(1998) provide an insightful example of how invariants are such with respect to the 

dragging and therefore to a dynamic perception.  

We hypothesize that when an endpoint of a stretchy segment is moved, and the 
segment is the only object present, the user perceives the movement as a translation 
of the point. That is, dragging A to Aʼ may feel psychologically like a translation. The 
display may also tend to be seen more as a mapping of A (in its various positions) to 
C (the midpoint of AB), than as a mapping of A and C to Aʼ and Cʼ respectively. But 
other situations may lead to very different perceptions. For example consider the 
same construction with a perpendicular to AB at B. A comparable movement of A 
now appears to rotate the system; the sense that A is being translated is now 
considerably diminished…What do students make out of this we donʼt yet fully know 
(p. 352). 

 
A major difficulty is that it is hard to “translate” these dynamic observations into logical 

propositions. The literature indicates that dynamic thinking seems to be useful for 

generating conjectures (for example, Hadamard, 1949; Polya, 1962; Schoenfeld, 1985; 

Thurston, 1995; Simon, 1996; Boero et al., 1996, 1999) long before the advent of 

dynamic geometry. However little is known on how the elimination of the dynamic 

components of processes of conjecture-generation may occur. In the following 

paragraphs we will describe aspects of the complexity of this translation when the 

dynamism is situated within the domain of a DGS. 

Conjectures generated within a DGS can be based on a crucial element, which 

has a dynamic nature, but the dynamic nature of this element can conflict with the static 

nature of the theorems available in the TEG (Mariotti, 2000). The literature is filled with 

cases in which subjects are not able to find compatibility between geometric static 

knowledge and the perceptions of “movement” generated by the software. This can be 

explained as follows. When the figural part is dynamic and the conceptual part is static, 

there is a conflict. For example, it can be very difficult to conceptually control the 

phenomenon of a point moving on a circle through the definition of locus of points in 

Geometry. When using dragging, and in particular movement along a path, it is possible 
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to end up in similar situations because of the simultaneously dynamic and static nature 

of the path, as described in Section 6.1.  

Another aspect of the translation from dynamism within the DGS to staticity within 

the TEG has to do with the perception of generality of a figure accomplished through the 

“condensation of dynamism”. As described by Mariotti (2010), the dynamism of a Cabri-

figure is perceived as change in contrast to what remains simultaneously invariant: the 

interaction between what changes and what does not is at the basis of the perception of 

movement of the image. The invariants, that remain unchanged constitute the identity of 

the figure on the screen, that is they allow recognition of the image on the screen as a 

unitary object “in movement” and perhaps as a particular “geometric figure”, for example 

a trapezoid or a parallelogram. The dialogue between invariants and variation is at the 

basis of the process of conceptualization: it allows us to recognize very different objects 

as belonging to a same class of geometrical objects, or to recognize a personʼs face 

after many years. So in a DGS variation represents generality of a concept. For 

example, a Cabri-figure represents a “general square” because of its potential variation 

during dragging, a variation that maintains the theoretical properties of a square as 

invariants (Mariotti, 2010).  

Dominating generality in dynamic terms is not trivial, because it requires 

“condensing” the dynamism. When does a solver say that a certain figure (or part of a 

figure) “is the same” object, or “is always” something? Let us think a bit more about it 

using an example. Assume that a certain Cabri-figure is constructed so that it is a robust 

parallelogram. What does perceiving a Cabri-figure as a generic parallelogram mean? 

First of all, the perception lies within the mind of the perceiver, in our case the solver, so 

the Cabri-figure will be compared to the solverʼs figural concept of parallelogram 

(Fischbein, 1993; Mariotti, 1995). As the solver moves the Cabri-figure, s/he may 
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recognize various instances that correspond to his/her figural concept of parallelogram, 

and no instances that do not correspond to such image. In this case the solver may 

mentally “condense” the instances and recognize the Cabri-figure as a generic 

parallelogram. However, depending on how it has been constructed, the Cabri-figure 

may only represent a subset of all possible parallelograms. In this case the solver will 

probably recognize it as a “parallelogram”, but is it still a generic parallelogram?  

Difficulties may emerge as the solver compares his/her conception of a figure 

with the dynamic-figure on the screen. For example, the solver may be thinking of a 

specific subset of parallelograms, say all homothetic parallelograms with respect to a 

particular one, and s/he may be identifying “parallelogram” with this conception. In this 

case, if the Cabri-figure is dragged into a configuration that does not belong to the set of 

homothetic parallelograms, the solver may not perceive it as a parallelogram any longer. 

There may be further subtleties in the process of recognizing different screen images as 

instances of something more general. Moreover, when a property is not constructed 

robustly within a Cabri-figure, complications in the process of perceiving generality seem 

to increase. 

 

Concluding Remarks - In conclusion, our model describes how the process of 

conjecture-generation through expert use of MD makes use of dynamism within the 

phenomenological domain of the DGS. This, on one hand seems to facilitate the process 

of conjecture-generation, but, on the other, it makes it necessary to eliminate the 

dynamic component if we choose to work towards a theorem that has the Theory of 

Euclidean Geometry (TEG) as the theory of reference (Mariotti, 2000). Thus there is a 

potential cognitive gap between an argumentation within the phenomenology of a DGS, 

based on a system of conceptions that is dynamic, and a proof within the TEG. The next 



 392 

section is dedicated to a further analysis of this gap, and to some new hypotheses we 

advance with respect to conjectures generated when the MDS is used as a 

psychological tool, freed from the external support of the instrument. 

 

7.3.3 Links to Proof 

In this section, according to Mariottiʼs definition of theorem, we will consider the 

conditional statement of a conjecture as a potential statement of a theorem. Within this 

perspective we will discuss implications and hypotheses that arise from our findings with 

respect to proof. First we will consider different types of conjectures that arose from the 

dynamic explorations our solvers engaged in, characterizing them through the process 

by which they were generated. Then we will advance hypotheses on how the process of 

generation of each conjecture may foster (or not) its proof within the TEG. We will frame 

these considerations within the construct of cognitive unity (Boero, Garuti & Mariotti, 

1996; Pedemonte, 2007b). 

 We described how expert use of MD leads to “automaticity” in the process of 

conjecture-generation in which it is used. On the other hand this automaticity seemed 

not to be present in the case of internalization of MD (Section 6.2.3). If we consider 

conjectures generated in these two ways, the differences do not reside in the statement 

of the conjecture: expert use of MD seems to lead to statements in which the premise 

and the conclusion are “distant”. In other words, conjectures generated through expert 

use of MD seem to exhibit a “gap” between the premise and the conclusion, and no 

bridging geometrical properties emerge from the exploration leading to the statement of 

the conjecture. On the other hand, it seems that internalization of MD leads to 

conjectures accompanied by geometrical arguments bridging the premise and the 

conclusion.  
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 The relatively small amount of data analyzed in our study does not allow us to 

make general statements about the observation we illustrated above. Moreover our 

study was not focused on investigating the internalization of MD and its transformation 

into a psychological tool. These are secondary findings that we briefly introduced in 

Chapter 6. However they can be considered as potentially interesting directions for 

future research. At this point we focus on the two types of conjectures, those with a “gap” 

that emerge through expert use of MD and those that emerge as a product of an 

internalization of MD, and we advance our hypotheses on their respective relationships 

with proof.  

Although proof was not taken into consideration in this study, in some cases 

solvers would proceed to give an oral proof of some of their conjectures. This happened 

after F and G reached their strong conjecture described in Episode 2 of Excerpt 6.2.3. 

We present this episode below for ease of the reader, highlight the geometric properties 

that emerge through an abduction, and then describe the oral proof provided by the 

solvers. 

We remind the reader that F and G in this exploration, before this episode, have 

attempted to use MD having chosen “ABCD parallelogram” as their III and “PB=PD” as a 

bridge property. 

Episode 2 of Excerpt 6.2.3 

[43] G: eh, since this is a chord, itʼs a chord right? 

We have to, it means that this has to be an equal 

chord of another circle, in my opinion with center in 

A. because I think if you do, like, a circle with 

center 

Brief Analysis 

G uses the theory to interpret what 

he is seeing. G seems to focus on 

DP and PB and interpret them as 

chords of symmetric circles. As if 

the movement of these chords (not 
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[44] F: A, you say… 

[45] G: symmetric with respect to this one, you 

have to make it with center A. 

[46] F: uh huh 

[47] G: Do it! 

[48] F: with center A 

and radius AP? 

[49] G: with center A 

and radius AP. I, I 

think… 

[50] F: letʼs move D. more or less… 

[51] G: it looks right doesnʼt it? 

[52] F: yes. 

of D) led him to the second circle. 

The abduction (in Pierceʼs terms) 

seems to proceed as follows: 

• fact: DP=PB (and their 

behavior during maintaining 

dragging) 

• rule: given symmetric circles 

with PB and PD symmetric 

chords, then PB=PD (and 

they would behave like this) 

• abductive hypothesis: there 

exists a symmetric circle with 

center in A and radius AP. 

Table 7.3.3.1: Analysis of Episode 2 of Excerpt 6.2.3 
 

In the brief analysis we presented next to the excerpt we highlighted how the 

abduction (described in Pierceʼs terms) makes use of elements of the TEG, in particular 

geometrical properties that link the circle on which D is assumed to move to the III 

(“ABCD parallelogram”). Once the solvers have tested the conjecture “D belongs to the 

circle centered in A with radius AP implies ABCD parallelogram”, they engage in an oral 

proof. The proof they develop proceeds as follows: 

• the circles are symmetric so AD is congruent to AP which is congruent to PD 

and to therefore to BC; 

• the isosceles triangles APD and PBC are congruent because they have 

congruent angles, since the angle DPA is opposite at its vertex to CPB; 

• therefore PD is congruent to PB, 

 



 395 

• so ABCD has diagonals that intersect at their midpoints and therefore it is a 

parallelogram. 

A key idea (Raman, 2003) in the proof is the interpretation of PD and PB as chords of 

symmetric circles, which emerged in the conjecturing phase of the investigation. The use 

of properties of symmetric circles is fundamental both to the development of the 

conjecture and of the proof. We advance the hypothesis that when MD is internalized 

and used as a psychological tool, reasoning used in the conjecturing phase (and 

abduction in particular) leads to the emergence of geometrical properties that logically 

relate the premise to the conclusion of the conjecture and that can be re-used in the 

proving phase. 

When such a way of thinking is developed the abductive reasoning has the 

advantage of involving geometrical concepts, like in the case of F and G. Our hypothesis 

is that the geometrical concepts that emerge in this case can become “bridging 

elements” with respect to the proving phase, since they can be re-elaborated into the 

deductive steps of a proof. On the other hand, expert use of the MD seems to lead to 

conjectures in which no geometrical elements arise to “bridge the gap” between the 

premise and the conclusion. In other words, although expert use of MD seems to offer 

the possibility of generating “powerful” conjectures that solvers might have trouble 

reaching without support of the dragging-support (since the IOD which becomes the 

premise may be cognitively “quite distant” from the conclusion), generating conjectures 

“automatically” through the MDS supported by the dragging-support, may hinder the 

proving phase in which these “bridging elements” are essential.  

In terms of cognitive unity (Boero, Garuti & Mariotti, 1996), it seems like strong 

conjectures generated through mechanical use of MD will lead to cognitive rupture. This 

seems to be the case because the process of conjecture-generation, or the 
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argumentation phase, is supported by the DGS. In particular we have described 

particular types of arguments that are used by solvers during the conjecturing phase of 

an open problem activity and that are supported by the DGS conceived as an 

instrument. In Section 6.2 we introduced the notion of instrumented abduction as a 

particular type of instrumented argument. Further research is necessary to generalize 

and elaborate these notions, however what we stress here is that the warrants of such 

arguments are supported by an instrument, in our case dragging or the DGS more in 

general. As a consequence the arguments make use of many elements that do not 

directly correspond to geometrical properties and that therefore cannot be re-used in a 

proof residing within the TEG. This leads to a potential strong rupture between the 

conjecturing phase and the proving phase that may be manifested through solversʼ 

potential difficulties with proof of a statement generated through mechanical use of MD. 

On the other hand, we hypothesize that if expert solvers interiorize MD 

transforming it into a psychological tool, or a fruitful “mathematical habit of mind” (Cuoco, 

2008) that may be exploited in various mathematical explorations leading to the 

generation of conjectures, there might be a greater cognitive unity between the 

conjecturing phase and the proving phase. In other words, our hypothesis is that when 

the MDS is used as a psychological tool, the conjecturing phase is characterized by the 

emergence of arguments that the solver can set in chain in a deductive way when 

constructing a proof (Boero et al., 1996). We think this may occur if, as in the case of F 

and G, abduction in which the rules are taken from the domain of TEG is used during the 

conjecturing phase. An abduction of this sort seems to expose key ideas to use in the 

proof, and geometrical properties that bridge the gap between the premise and the 

conclusion. At this point a logical re-ordering of these  properties might be sufficient for 

the construction of the proof. Again, we do not have enough data to support the claims 
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we are making in this section, but our data suggests that these may be important issues 

to study in order to gain insight into how a DGS can be used (or not) in the context of 

proof. 

 

7.3.4 Directions for Future Research 

We would like to conclude this Chapter by introducing some general questions 

that arise from our study, and by outlining two possible directions for future research that 

might be carried on from our study. First, given our findings, a discussion should be 

opened about whether, as a mathematics education community, we are interested in 

fostering a process of conjecture-generation as described by our model, and therefore 

whether specific dragging modalities, and maintaining dragging in particular, should be 

taught as part of the mathematics curriculum. If we decide to add the dragging schemes 

to curricula we must consider issues related to fostering an instrumental genesis of MD. 

In particular, how to develop studentsʼ construction of both components of the MDS, but 

also related to fostering the internalization of MD that might induce use of abduction 

leading to the emergence of bridging elements in sight of proof. Moreover, we would 

need to consider studentsʼ difficulties in developing the maintaining dragging scheme; 

how long a potential teaching sequence should be; which dragging modalities (and 

schemes?) should be taught and how; what (if any) elements of our model should be 

made explicit during the teaching sequence. Moreover, might it be possible, through 

particular teaching strategies, to avoid some of the potential cognitive difficulties that the 

dragging schemes seem to induce? If not, what strategies might be developed to 

overcome such difficulties? Furthermore, it would be beneficial to investigate whether 

there are particular types of students who benefit more (or less) from being introduced to 

the dragging modalities (and schemes). On the other hand, if we choose not to introduce 
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specific dragging modalities at the classroom level, would it be beneficial (and in what 

ways) for teachers to be aware of possible utilization schemes like the one for 

maintaining dragging described by our model, since dynamic geometry is already being 

used in many classrooms? 

As for the two lines of research we outline, one aims at developing research from 

our findings within the theory semiotic mediation, to investigate how the semiotic 

potential of dragging, and maintaining dragging in particular, might be exploited; the 

second investigates our hypotheses with respect to proof and cognitive unity that we 

introduced in Section 7.3.3. 

 

Studies on the Semiotic Potential of Dragging - Studies on the semiotic potential 

of the artifact dragging in a DGS based on the development of precise hypotheses from 

our study, with respect to tasks that involve conjecture-generation. The hypotheses 

would emerge from our reflection on our findings with respect to semiotic mediation, as 

presented in Section 7.3.1, involving the relationship between the use of dragging and in 

particular maintaining dragging and the mathematical meaning of conjecture and the 

related notions of premise, conclusion, conditionality, and implication. An appropriate 

methodology could be a long term teaching experiment to allow a first validation of the 

hypotheses arising for our study.  

In particular a long term teaching experiment could allow to observe the 

hypothesized unfolding of the semiotic potential of the MD and the evolution of personal 

meanings into the mathematical meanings through the semiotic processes triggered and 

orchestrated by the teacher in classroom discussions (Mariotti & Maracci, 2010). 

Our notions of instrumented abduction and instrumented argument could be further 

elaborated in light of the analysis of the effectiveness of the didactical intervention aimed 
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at developing mathematical meanings, from the use of maintaining dragging relative to 

the notion of conjecture.  

 

Studies on Proof in a DGS - A second line of research could investigate the 

hypotheses we advanced in Section 7.3.3 with respect cognitive unity. In particular it 

could be insightful to study the process of generation of conjectures in solvers who have 

interiorized MD and who are using it as a psychological tool. This way it would be 

possible to test out hypothesis on the presence, within this process, of abduction that 

uses rules from the TEG, like in the case of F and G, and of potentially other forms of 

reasoning that lead to geometrical properties that can bridge the gap between the 

premise and the conclusion of the produced conjecture. If this were to be the case, the 

study should then compare the conjecturing phases in which the two types of 

conjectures are developed with the subsequent proving phase. This analysis could be 

used to test our hypothesis on the emergence of geometrical properties during the 

conjecturing phase, in the case of conjectures developed through the use of the MDS as 

a psychological tool that can be used as key ideas in a proof of the statement of the 

conjecture. Confirmation of this hypothesis would be a significant result for designing 

activities in dynamic geometry that foster cognitive unity.  

Of course we acknowledge the difficulty of implementing such a study, since 

finding subjects who have interiorized MD would not be a trivial task. However, some 

possible subjects of this kind might be identified during the teaching experiment carried 

our during the first study we outlined. This could be a viable possibility since during the 

teaching experiment the dragging modalities we introduced in this study would be 

introduced again and in a more thorough way with respect to the task of conjecture-

generation. 
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Finally, if the first line of research we outlined were to give insight into how to 

foster the development of the MDS as a psychological tool, and the second line of 

research confirmed our hypothesis on cognitive unity, we would be able to develop 

activities in a DGS that involve a process of conjecture-generation with strong links to a 

subsequent proving phase. Such activities would be particularly beneficial in the 

teaching and learning of proof. 
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Al Dirigente Scolastico del Liceo Scientifico_________________ 
 
Al fine di attuare lo studio per la tesi di dottorato, la sottoscritta Anna Baccaglini-Frank, 
dottoranda alla University of New Hampshire (USA) sotto la direzione della Prof.ssa 
Maria Alessandra Mariotti, chiede di poter svolgere due lezioni durante ore di 
Matematica della classe ____ ed alcune osservazioni/interviste ad alunni della stessa 
classe in orario pomeridiano, sotto la guida della Prof.ssa _________, nei periodi ottobre-
novembre e febbraio-marzo dell’anno scolastico in corso. 
 
Presentazione 
L’obiettivo della tesi, “Sviluppo di Congetture e Dimostrazioni in Geometria Dinamica,” 
è di confermare ipotesi di ricerca su processi cognitivi che avvengono nelle fasi di 
congettura e di dimostrazione in problemi aperti proposti con lo strumento della 
geometria dinamica. In particolare, il software che verrà utilizzato è Cabri, un software 
didattico usato correntemente dall’insegnante della classe, Prof.ssa __________. 
Le attività proposte saranno costruite appositamente per la classe in cui verranno attuate e 
saranno complementari al regolare percorso didattico della classe. Inoltre le attività 
saranno svolte sotto la sorveglianza e con la collaborazione della Prof.ssa __________. 
Sono previsti due cicli (uno a ottobre–novembre ed uno a febbraio-marzo) composti dai 
seguenti interventi: lezione introduttiva sugli schemi di trascinamento in Cabri (in orario 
di lezione mattutina), e serie di osservazioni di coppie di (o di singoli) studenti che 
lavorano alle attività proposte (in orario pomeridiano). I dati raccolti saranno analizzati 
dalla dott.ssa Anna Baccaglini-Frank e dalla Prof.ssa Maria Alessandra Mariotti con la 
partecipazione attiva dell’insegnante della classe. 

 
Cordialmente, 
 
       La Dottoranda 
       dott.ssa Anna Baccaglini-Frank 
 
       ____________________________ 
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