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Abstract

Let Σ̃ and Σ be closed, connected, and orientable surfaces, and let f : Σ̃ → Σ be
a branched cover. For each branching point x ∈ Σ the set of local degrees of f at
f−1(x) is a partition of the total degree d. The total length of the various partitions
is determined by χ(Σ̃), χ(Σ), d and the number of branching points via the Riemann-
Hurwitz formula. A very old problem asks whether a collection of partitions of d
having the appropriate total length (that we call a candidate cover) always comes
from some branched cover. The answer is known to be in the affirmative whenever
Σ is not the 2-sphere S, while for Σ = S exceptions do occur. A long-standing
conjecture however asserts that when the degree d is a prime number a candidate
cover is always realizable. In the main result of this thesis, proved in Chapter 3,
we provide strong supporting evidence for the conjecture. In particular, we exhibit
three different sequences of candidate covers, indexed by their degree, such that for
each sequence:

• The degrees giving realizable covers have asymptotically zero density in the
naturals;

• Each prime degree gives a realizable cover.

Actually this result is a by-product of an extensive study of realizability of branched
covers between surfaces. using the viewpoint of geometric 2-orbifolds, we split
branched covers in three families, and, fully explointing the mentioned geometry,we
completely solve the problem for two of them. Even if it seems to be very hard to
determine realizability for the last family of covers, using different approaches we
prove other partial results analysing two sub-families (chosen because relevant in
order to understand more about the prime degree conjecture). At the end of this
thesis we also partially extend the geometric approach to the last family.
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Introduction

This thesis deals with the realizability problem of ramified covers between surfaces.
To each such cover one naturally associates a set of data; on the other hand, for
a given set of data, there exist easy necessary conditions it should satisfy to be
associated to an existing ramified cover. A classical problem, first proposed by
Hurwitz in 1891, asks whether these conditions are also sufficient for existence.

Chapter 1 gives the reader all the definitions and classical results about 2-
orbifolds, needed to understand the methods used in the sequel.

Chapter 2 is a syntethic overview of the many different methods used in the
past to face the Hurwitz existence problem. If one has a branched cover between
orientable surfaces, one can assign to it a sort of passport, called its ‘branch datum’.
Branch data can also be defined abstractly, without starting from a branched cover,
as symbols Σ̃

d:199K
Π

Σ, where Σ̃ and Σ are closed surfaces, d ∈ N and Π is a finite
set of partitions of d. However the branch data coming from covers satisfy some
necessary conditions, notably the Riemann-Hurwitz formula. The question now
is: if a branch datum satisfies the Riemann-Hurwitz condition, does there exist
a surface branched cover having it as a branch datum? We address the reader to
Hurwitz [10] himself, who produced an elegant answer to his problem for the special
case of S → S (with S denoting the 2-sphere) when all ramification points but one
are simple, and also to the classical [11, 25, 24, 5, 7, 6, 13, 4, 8, 14, 12], and the
more recent [2, 15, 16, 19, 20, 17, 28]. When a branch datum satisfies the necessary
conditions to come from a branched cover, we call it a candidate branched cover ; if
indeed it comes from a branched cover we call it realizable, and otherwise exceptional.
Considerable energy has been devoted over the time to a general understanding of
the exceptional candidate surface branched covers, and quite some progress has been
made (in particular, it has been shown that exceptions can occur only if Σ is S or
the projective plane; see for instance the survey of known results contained in [19],
together with the later papers [20, 17, 28]), but the global pattern remains elusive.
In particular the following conjecture proposed in [4] appears to be still open:

Conjecture 0.0.1. If Σ̃
d:199K
Π
S is a candidate surface branched cover and the degree

d is a prime number then the candidate is realizable.

We mention in particular that all exceptional candidate surface branched covers
over S with n = 3 and d 6 20 have been determined by computer in [28]. There
are many of them, but none occurs for prime d.

In Chapter 2 we show that each candidate branched cover has an associated
candidate cover between 2-orbifolds, and in Chapter 3 we determine the realizability
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of all candidate surface branched covers having associated candidate covers between
2-orbifold with non-negative Euler characteristic χorb; moreover, in Chapter 4 we
perform a partial analysis of the remaining case of negative χorb. Our approach for
χorb > 0 strongly depends on the geometric properties of 2-orbifolds, whereas for
χorb < 0 we employ more classical techniques. At the end of our work however we
also partially apply the geometric viewpoint to the case of negative χorb.

Main new results Using the geometry of Euclidean 2-orbifolds we will establish
in Chapter 3 (among others) the next three theorems.

Theorem 0.0.2. Suppose d = 4k + 1 for k ∈ N. Then

S
d:199K99K99K99K99K99K

(2,...,2︸︷︷︸
2k

,1),(4,...,4︸︷︷︸
k

,1),(4,...,4︸︷︷︸
k

,1)
S

is a candidate surface branched cover, and it is realizable if and only if d can be
expressed as x2 + y2 for some x, y ∈ N.

Theorem 0.0.3. Suppose d = 6k + 1 for k ∈ N. Then

S
d:199K99K99K99K99K99K

(2,...,2︸︷︷︸
3k

,1),(3,...,3︸︷︷︸
2k

,1),(6,...,6︸︷︷︸
k

,1)
S

is a candidate surface branched cover and it is realizable if and only if d can be
expressed as x2 + xy + y2 for some x, y ∈ N.

Theorem 0.0.4. Suppose d = 3k + 1 for k ∈ N. Then

S
d:199K99K99K99K99K99K

(3,...,3︸︷︷︸
k

,1),(3,...,3︸︷︷︸
k

,1),(3,...,3︸︷︷︸
k

,1)
S

is a candidate surface branched cover and it is realizable if and only if d can be
expressed as x2 + xy + y2 for some x, y ∈ N.

What makes these results remarkable is the link with Conjecture 0.0.1. To make
it clear we recall now the following arithmetic facts:

• A prime number of the form 4k + 1 can always be expressed as x2 + y2 for
x, y ∈ N (Fermat);

• A prime number of the form 6k + 1 (or equivalently 3k + 1) can always be
expressed as x2 + xy + y2 for x, y ∈ N (Gauss);

• The integers that can be expressed as x2 + y2 or as x2 +xy+ y2 with x, y ∈ N
have asymptotically zero density in N.
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Moreover we have:
{
d ∈ N : d = x2 + y2 for x, y ∈ N, x 6≡ y (mod 2)

}

=
{
d ∈ N : d ≡ 1 (mod 4), d = x2 + y2 for x, y ∈ N

}
,

{
d ∈ N : d = x2 + xy + y2 for x, y ∈ N not both even, x 6≡ y (mod 3)

}

=
{
d ∈ N : d ≡ 1 (mod 6), d = x2 + xy + y2 for x, y ∈ N

}
,

{
d ∈ N : d = x2 + xy + y2 for x, y ∈ N, x 6≡ y (mod 3)

}

=
{
d ∈ N : d ≡ 1 (mod 3), d = x2 + xy + y2 for x, y ∈ N

}
.

Now we can conclude that a candidate cover in any of our three statements is
“exceptional with probability 1,” because

lim
n→∞

1
n ·#

{
d ∈ N : d 6 n, d = x2 + y2 for x, y ∈ N

}
= 0,

lim
n→∞

1
n ·#

{
d ∈ N : d 6 n, d = x2 + xy + y2 for x, y ∈ N

}
= 0

even though it is realizable when its degree is prime.

More new results The main idea underlying our results in Chapter 3 is to
analyze the realizability of a given candidate surface branched cover Σ̃

d:199K
Π

Σ using

the associated candidate 2-orbifold cover X̃ d:199KX and the geometries of X̃ and X.
Note that χorb(X̃), a generalization of the classical Euler characteristic, has the
same sign as χorb(X), being d times it. Moreover every orbifold Y with χorb(Y ) > 0
is either ‘bad’ (a technical notion defined below) or it has a spherical geometric
structure, while it has an Euclidean structure if χorb(Y ) = 0, and a hyperbolic one if
χorb(Y ) < 0. We will fully carry out the geometric approach in the case χorb(X) > 0,
but we will also discuss part of the case χorb(X) < 0. In the bad/spherical case the
statement is quite expressive:

Theorem 0.0.5. Let a candidate surface branched cover Σ̃
d:199K
Π

Σ have an associated

candidate 2-orbifold cover X̃ d:199KX with χorb(X) > 0. Then Σ̃
d:199K
Π

Σ is exceptional

if and only if X̃ is bad and X is spherical. All exceptions occur with non-prime
degree.

Turning to the Euclidean case (which leads in particular to Theorems 0.0.2
to 0.0.4) we confine ourselves here to the following informal:

Theorem 0.0.6. Let a candidate surface branched cover Σ̃
d:199K
Π

Σ have an associated

candidate 2-orbifold cover X̃ d:199KX with Euclidean X. Then its realizability can be
decided explicitly in terms of d and Π. More precisely, as in Theorems 0.0.2 to 0.0.4,
given Π the condition on d depends on a congruence and/or an integral quadratic
form. No exceptions occur when d is a prime number.

We conclude with our statements for the hyperbolic case, to which Chapter 4 is
devoted. A 2-orbifold is called triangular if it has the form S(p, q, r).
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Theorem 0.0.7. There exist 9 candidate surface branched covers having an associ-
ated candidate 2-orbifold cover X̃ 99KX with X̃ and X being hyperbolic triangular
orbifolds. All of them but two are realizable. Exceptions occur in degrees 8 and 16
(which are not prime).

Theorem 0.0.8. There exist 141 candidate surface branched covers having an as-
sociated candidate 2-orbifold cover X̃ 99KX with X̃ being the sphere with four cone
points, and X being a hyperbolic triangular orbifold. Among them there are 29
exceptional candidates, and they do not occur in prime degree.

For the case of non-negative χorb, within the proofs of Theorems 0.0.5 and 0.0.6
we will describe explicit geometric constructions of all the realizable covers. The
proofs of Theorems 0.0.7 and 0.0.8 have instead a more combinatorial flavor.
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Chapter 1

Geometric 2-orbifolds

This chapter is devoted to the introduction of the most important objects in our
work: geometric orbifolds and orbifold covers. These objects are a rather natural
extension of differentiable manifolds; for this reason they were defined many times
and studied by several mathematicians.

1.1 Orbifolds

We first meet orbifolds in Satake’s work [23], with the name of V -manifolds. Orb-
ifolds were reintroduced with more success by William P. Thurston during a course
he gave in Princeton in 1978-79. Thurston’s big improvement over Satake’s earlier
version was to show that the theory of cover spaces and fundamental groups works
for orbifolds. One of the many aims of that course was to describe the very strong
connection between geometry and low-dimensional topology. In the last chapter of
the electronic version of the notes Thurston introduces the notion of orbifold: the
idea is to study quotient spaces of Rn under the action of a group that acts properly
discontinuously but not necessarily freely. Orbifolds were defined in great generality,
but in this thesis we use only smooth locally orientable 2-dimensional orbifolds.

Definition 1.1.1. Let X be a Hausdorff space, and let {Ui} be an open covering of
X closed under finite intersections. For each Ui there is an associated finite group
Γi, an action of Γi on an open subset Ũi of Rn, and a homeomorphism ϕi between
Ui and Ũi/Γi. Moreover if Ui ⊂ Uj there should be an injective homomorphism
fij : Γi ↪→ Γj and an embedding ϕ̃ij : Ũi ↪→ Ũj equivariant with respect to fij such
that the following diagram commutes:

1



2 1. Geometric 2-orbifolds

⊂

ϕ̃ij

ϕj

ϕi

Ui

Ũj/Γi
ϕij = ϕ̃ij/Γi

Ũi Ũj

Uj

Ũi/Γi

Ũj/fij(Γi)

A maximal covering of open sets as above is called an orbifold atlas.

Hence, an n-orbifold X is a space that locally looks like Rn/Γ: it is locally
homeomorphic to a quotient of Rn under the action of a finite group of homeo-
morphism. Note that each point x ∈ X has an associated group Γx, well-defined
up to isomorphism: in a local coordinate system U = Ũ/Γ; the group Γx is the
isotropy group of any point in Ũ correspondig to x. The singular locus of X is
the set {x ∈ X |Γx 6= {1}}. Moreover, an orbifold is smooth, or differentiable, if
each Γi acts smoothly on Ũi and if the inclusion maps ϕ̃ij are differentiable. In the
smooth case, taking the average of the Euclidean metric of Rn over the action of
the local group, one can assume without loss of generality that each local group Γ
is a subgroup of the orthogonal group O(n). Hence, for smooth 2-orbifolds, Γ is a
finite subgroup of O(2) and we know that there are only three types of subgroups in
O(2); therefore we can describe all types of singular points. We list the local model
for each of them:

“mirror”: R2/Z2, where Z2 acts by a reflection;

“elliptic points of order n”: R2/Zn, where Zn acts a rotation of angle 2π/n;

“corner reflectors of order n”: R2/Dn, where Dn is the dihedral group of order
2n with presentation 〈a, b : a2 = b2 = (ab)n = 1〉, and a and b are reflections
with respect to lines making an angle of π/n.

Note that if we require a smooth 2-orbifold to be closed and locally orientable (i.e.
for any x, the group Γx consists of preserving orientation homeomorphisms), we can
only have elliptic points.

We say that an orbifold is Riemannian if on each Ũi there is a Riemannian
metric, if each Γi acts isometrically, and if the inclusion maps are isometries.

From now on, when we say 2-orbifold we mean closed, orientable, and smooth
2-dimensional orbifold. Let us state for them an equivalent and simpler definition,
and the notion of orbifold cover:
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Definition 1.1.2. A closed, orientable, locally orientable 2-orbifold X = Σ(p1, . . . , pn)
is a closed orientable surface Σ with n cone points of orders pi > 2, at which X has
the singular differentiable structure given by the quotient C/〈rot(2π/pi)〉.

Definition 1.1.3. A degree d cover f : X̃ → X between closed orientable smooth
2-orbifolds is a map such that f−1(x) generically consists of d points and locally
making a diagram of the following form commutative:

(C, 0)
id−→ (C, 0)

↓ ↓
(X̃, x̃)

f−→ (X,x)

where x̃ and x have cone orders p̃ and p = k · p̃ respectively, and the vertical ar-
rows are the projections corresponding to the actions of 〈rot(2π/p̃)〉 and 〈rot(2π/p)〉,
namely the maps defining the (possibly singular) local differentiable structures at x̃
and x.

The notion of orbifold cover was introduced by Thurston [26], together with the
orbifold Euler characteristic (see the next paragraph for the definition) designed so
that if f : X̃

d:1−→X is an orbifold cover then χorb(X̃) = d · χorb(X). He also gave
the notion of orbifold universal cover and established its existence.

Orbifold Euler Characteristic Here we define the generalization of the classic
Euler characteristic introduced by Thurston for a smooth 2-orbifold X. To this end
we take a cell deconposition of the underlying surface of X such that the group
associated to the interior points of any cell is constant. Then we define the orbifold
Euler characteristic of X as:

χorb(X) :=
∑

c

(−1)dim(c) 1

|Γ(c)|

where c ranges over cells, and Γ(c) is the group associated to each point of the cell
c. It is also called the ‘Euler number’ of X, and it will be useful in the geometric
classification of 2-orbifolds. Now we can give the general formula for the Euler
number of a smooth 2-orbifold X based on Σ with m corner reflectors of orders
k1, . . . , km and n elliptic points of orders p1, . . . , pn:

χorb(X) := χ(Σ)−
n∑

i=1

(
1− 1

pi

)
− 1

2

m∑

j=1

(
1− 1

kj

)
(1.1)

Let us now consider an orbifold cover f : X̃
d:1−→X and show that χorb(X̃) =

d · χorb(X). Note that at any point of x ∈ X we have:

d =
∑

x̃:f(x̃)=x

( |Γx|
|Γx̃|

)
. (1.2)

Now we choose a cell decomposition τ of the surface underlying X, suitable for the
computation of the Euler number; then we pull it back to the cover producing a cell
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decomposition τ̃ of the surface underlying X̃. Finally, we compute the Euler number
for X̃ grouping together those cells cj of τ̃ mapped by f to c, and using( 1.2):

χorb(X̃) =
∑

cj

(−1)dim(cj) 1

|Γ(cj)|
=
∑

c

(−1)dim(c) d

|Γ(c)| = d · χorb(X).

The geometrization theorem Let X be a closed Riemannian 2-orbifold, and
denote by |X| the surface underlying X. Then the curvature K of X is defined on
|X|, except at the cone points and a version of the classical Gauss-Bonnet formula
is valid: ∫

|X|
KdA = 2πχorb(X).

If X has an elliptic, a Euclidean or a hyperbolic structure, this implies that χorb(X)
must be respectively positive, zero or negative; (and the area is A(X) = 2π|χorb(X)|
when X is elliptic or hyperbolic.) Moreover, in the case of connected differentiable
2-orbifolds Thurston showed that:

• If χorb(X) > 0 then X is either bad (not covered by a surface in the sense of
orbifolds) or spherical, namely the quotient of the metric 2-sphere S under a
finite isometric action;

• If χorb(X) = 0 (respectively, χorb(X) < 0) then X is Euclidean (respectively,
hyperbolic), namely the quotient of the Euclidean plane E (respectively, the
hyperbolic plane H) under a discrete isometric action.

Using this fact we easily get the following result that we will need below (where
good means “not bad”):

Lemma 1.1.4. If X̃ is bad and X is good then there cannot exist any orbifold cover
X̃ → X.

The results just stated allow us to give the topological classification of 2-orbifolds
according to theri geometry. We tabulate below all bad, elliptic, and Euclidean
orbifolds:

• Bad: S2(n), S2(n,m), (2 6 n < m);

• Elliptic: S2, S2(n, n), S2(2, 2, n), S2(2, 3, 3), S2(2, 3, 4), S2(2, 3, 5), (n > 2);

• Euclidean: T 2, S2(2, 3, 6), S2(2, 4, 4), S2(3, 3, 3), S2(2, 2, 2, 2).

Orbifolds not listed here are all hyperbolic. Keeping in mind that χorb(Σ(p1, . . . , pn)) 6
χ(Σ), we immediately deduce that the set of hyperbolic 2-orbifolds is infinite.

1.2 Geometric structures

There is one crucial geometric fact underlying the proofs of our main results for the
case of positive and zero Euler characteristic. Namely, in these cases the geometry
(if any) of an orbifold with cone points is rigid (up to rescaling), with the single
exception of S(2, 2, 2, 2), where the space of moduli is easy to compute anyway. The
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case of negative Euler characteristic is however quite different: one knows that a
hyperbolic 2-orbifold is rigid if and only if it is triangular, namely if it is based on
the sphere and it has precisely three cone points. The dimension of the Teichmüller
space of all other hyperbolic orbifolds tells us how difficult their geometric analysis
is.

Teichmüller space of 2-orbifolds Let X be a closed, orientable 2-orbifold, with
negative orbifold Euler characteristic, and let H the set of all hyperbolic metrics on
X. Then the Theichmüller space of X, denoted by τ(X), is defined as H/∼, where
h1 ∼ h2 means that there exists an isometric orbifold diffeomorphism (X,h1) →
(X,h2) that is isotopic to identity.

Thurston proves the following proposition in [26]:

Proposition 1.2.1. The Teichmüller space τ(X) of an orbifold X =
(
Σ(p1, . . . , pn)

)

with χorb(X) < 0 is homeomorphic to a Euclidean space of dimension −3χ(Σ) + 2n.

Exactly as for the Teichmüller space of surfaces, this proposition is a consequence
of the construction of τ(X) as a parameter space, coming from the classical pants
decomposition, suitably modified. As already announced, the only rigid hyperbolic
2-orbifolds based on S2 are those with exactly three cone points; moreover any hy-
perbolic orbifold based on S2 with more than three cone points has a n-dimensional
Teichmüller space with n > 1.

Spherical structures As already mentioned, any closed good 2-orbifold X with
χorb(X) > 0 has a spherical structure, given by the action of some finite group Γ of
isometries on the metric sphere S. We will now explicitly describe each relevant Γ,
thus identifying X with the quotient S/Γ. To this end we will always regard S as
the unit sphere of C× R.

The football The geometry of S(p, p) is very easy, even if for consistency with what
follows we will not give the easiest description. Consider in S a wedge with vertices
at the poles (0,±1) and edges passing through (1, 0) and (eiπ/p, 0), so the width is
π/p. Now define Γ̃(p,p) as the group of isometries of S generated by the reflections
in the edges of the wedge, and Γ(p,p) as the its subgroup of orientation-preserving
isometries. Then Γ(p,p) is generated by the rotation of angle 2π/p around the poles
(0,±1), a fundamental domain for Γ(p,p) is the union of any two wedges sharing an
edge, and S(p, p) = S/Γ(p,p). See Fig. 1.1-left.

Triangular orbifolds The remaining spherical 2-orbifolds S(2, q, p) with either q = 2
or q = 3 and p = 3, 4, 5 are called triangular. The corresponding group Γ(2,q,p)
is the subgroup of orientation-preserving elements of the group Γ̃(2,q,p) generated
by the reflections in the edges of a triangle ∆(2,q,p) with angles π/2, π/q, π/p. A
fundamental domain of Γ(2,q,p) is then the union of ∆(2,q,p) with its image under any
of the reflections in its edges, and Γ(2,q,p) = 〈α, β, γ| α2 = βq = γp = α ·β ·γ = 1〉
where α, β, γ are the rotations centered at the vertices of ∆(2,q,p).

The main point here is of course that the triangles ∆(2,q,p) exist in S. The choice
for q = 2 and arbitrary p is easy: A = (1, 0), B = (eiπ/p, 0) and C = (0, 1), see
Fig. 1.1-right. For q = 3 see Fig. 1.2.
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.  .  .  .  .

.  .  .  .  .

.  .  .  .  .

.  .  .  .  .

C(p)

A(2)

B(2)

Figure 1.1. Tessellations of S by fundamental domains of Γ̃(p,p) and Γ̃(2,2,p)

∗

A(2)
A(2)

A(2)
B(3)

B(3)
B(3)

C(3) C(4)

C(5)

Figure 1.2. Tessellations of S by triangular fundamental domains of Γ̃(2,3,3), Γ̃(2,3,4), and (partial)
Γ̃(2,3,5)

In each case the pictures also show the images of ∆(2, q, p) under the action of
Γ̃(2,q,p). A fundamental domain for the group Γ(2,q,p) giving S(2, q, p) is always the
union of any two triangles sharing an edge. In all the pictures for q = 3 we have
A = (1, 0). Moreover for p = 3 we have B =

(√
1
3 ,
√

2
3

)
and C =

(√
1
3 + i

√
2
3 , 0
)
,

while for p = 4 we have B =
(√

2
3 ,
√

1
3

)
and C =

(√
1
2 + i

√
1
2 , 0
)
; for p = 5 the

exact values of the coordinates of B and C are more complicated.

Remark 1.2.2. Each group Γ̃(2,3,p) is the symmetry group of a Platonic solid
inscribed in S: the tetrahedron for p = 3, the octahedron (or its dual cube) for
p = 4, and the dodecahedron (or its dual icosahedron) for p = 5.

Euclidean structures On each of the three triangular orbifolds S(p, q, r) with
1
p + 1

q + 1
r = 1 the Euclidean structure (unique up to rescaling) is constructed

essentially as in the spherical case. We take a triangle ∆(p, q, r) in E with angles
π/p, π/q, π/r, the group Γ̃(p,q,r) generated by the reflections in the edges of ∆(p, q, r),
and its subgroup Γ(p,q,r) of orientation-preserving isometries. Then S(p, q, r) is the
quotient of E under the action of Γ(p,q,r), which is generated by the rotations of
angles 2π/p, 2π/q, 2π/r around the vertices of ∆(p, q, r), and a fundamental domain
is given by the union of ∆(p, q, r) with any of its reflected copies in one of the edges.
In each case we now make a precise choice for the vertices Ã(p), B̃(q), C̃(r) of ∆(p, q, r)
and determine the resulting area A of S(p, q, r). See also Fig. 1.3.
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Figure 1.3. The fixed fundamental domains for S(2, 4, 4), S(2, 3, 6) and S(3, 3, 3)
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Figure 1.4. The fundamental domains for S(2, 2, 2, 2) for general s, t and for s = t = 1

∆(2, 4, 4) : Ã(2) = 1, B̃(4) = 0, C̃(4) = 1 + i, A(S(2, 4, 4)) = 1,

∆(2, 3, 6) : Ã(2) = 1
2 , B̃

(3) = 0, C̃(6) = 1+i
√

3
2 , A(S(2, 3, 6)) =

√
3

4 ,

∆(3, 3, 3) : Ã(3) = 0, B̃(3) = 1, C̃(3) = 1+i
√

3
2 , A(S(3, 3, 3)) =

√
3

2 .

The situation for S(2, 2, 2, 2) is slightly different, since there is flexibility besides
rescaling. For s, t ∈ R with s > 0 we consider in E the quadrilateral Qs,t with
corners

Ã(2) = 0, B̃(2) =
1

s
+ it, C̃(2) =

1

s
+ i(s+ t), D̃(2) = is

and we define Γs,t(2,2,2,2) as the group generated by the rotations of angle π around
these points. Then the action of Γs,t(2,2,2,2) on E defines on S(2, 2, 2, 2) a Euclidean
structure of area 2, and a fundamental domain is given by the union of Qs,t with any
translate of itself having an edge in common with itself, as shown in Fig. 1.4-left.
When S(2, 2, 2, 2) plays the rôle of X in X̃ 99KX we will endow it with the structure
given by s = t = 1, as shown in Fig. 1.4-right. It is an easy exercise to check that
any other structure with area 2 is defined by Γs,t(2,2,2,2) for some s, t.





Chapter 2

The Hurwitz Problem

In this chapter we describe the Hurwitz existence problem, to which this thesis is
devoted. We start with some preliminary definitions and facts, then we state the
problem, and we conclude by describing diverse viewpoints and different methods
used to attack it, giving also an overview of known results.

Branched covers Let Σ̃ and Σ be closed, connected, and orientable surfaces, and
f : Σ̃ → Σ be a branched cover, i.e. a map locally modeled on functions of the
form (C, 0)

z 7→zk−→ (C, 0) with k > 1. If k > 1 then 0 in the target C is a branching
point, and k is the local degree at 0 in the source C. There is a finite number n
of branching points, and, removing all of them from Σ and their preimages from Σ̃,
we see that f induces a genuine cover of some degree d. The collection (dij)

mi
j=1 of

the local degrees at the preimages of the i-th branching point is a partition Πi of d.
We now define:

• `(Πi) to be the length mi of Πi;

• Π as the set {Π1, . . . ,Πn} of all partitions of d associated to f ;

• `(Π) to be the total length `(Π1) + . . .+ `(Πn) of Π.

The Riemann-Hurwitz formula Once we have defined branched covers, it is
useful to introduce the famous Riemann-Hurwitz formula: it links the number of
branching points, the local degrees at their preimages, and the Euler characteristic
of the surfaces involved in the cover. Its version for unramified covers between
compact orientable surfaces is quite easy. Consider a topological cover between
surfaces (possibly with boundary) M1 → M2 of degree d. Take a sufficient small
triangulation of the base surface, suitable for computing the Euler characteristic,
and lift to the covering surface; it is evident that for each triangle, edge or vertex
in the base, there are d copies in the cover. Hence:

χ(M1) = d · χ(M2).

Now consider a degree d branched cover Σ̃ → Σ, with Π its set of partitions of d;
the Riemann-Hurwitz formula reads:

χ(Σ̃)− `(Π) = d·(χ(Σ)− n). (2.1)

9
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In order to show (2.1), we simply combine the multiplicativity of χ under gen-
uine covers for surfaces with boundary, with the data given by local degrees at
the singularities: in fact, outside an open neighborhood of the singularities, the
branched cover is a topological cover of degree d; while a little disc around the
i-th branching point has only `(Pii) preimages, (and not d, as for nonsingular
points). In the end, we sum up all terms, taking care of these missing preimages:
χ(Σ̃) = d ·χ(Σ) + (`(Π1)− d) + . . .+ (`(Πn)− d). The announced formula descends
immediately.

Candidate branched covers Consider again two closed, connected, and ori-
entable surfaces Σ̃ and Σ, integers d > 2 and n > 1, and a set of partitions
Π = {Π1, . . . ,Πn} of d, with Πi = (dij)

mi
j=1, such that condition (2.1) is satisfied.

We associate to these data the symbol

Σ̃
d:199K99K99K99K99K99K

(d11,...,d1m1 ),...,(dn1,...,dnmn )
Σ

that we will call a candidate surface branched cover. We remark that for candidate
covers of the form S d:199K

Π
S, where S is the 2-sphere, with three branching points, as

most of ours will be, the Riemann-Hurwitz formula (2.1) reads

`(Π) = d+ 2. (2.2)

The Hurwitz existence problem As we already mentioned in the Introduction,
the Hurwitz existence problem asks which candidate surface branched covers are
actually realizable, namely induced by some existent branched cover f : Σ̃→ Σ. A
non-realizable candidate surface branched cover will be called exceptional.

It is still an open problem, but the combined efforts of several mathematicians
led in particular to the following results [11, 4]:

• If χ(Σ) 6 0 then any candidate surface branched cover is realizable, i.e. the
Hurwitz existence problem has a positive solution in this case;

• If χ(Σ) > 0, i.e. if Σ is the 2-sphere S, there exist exceptional candidate
surface branched covers.

We give some more details and references in Section 2 of this chapter.

Generalization A version of the Hurwitz existence problem exists also for possi-
bly non-orientable Σ̃ and Σ. In this case other conditions must be required, for a
branch datum, to be compatible, see [19], and below. We define a branch datum to
be compatible if the following conditions hold:

1. χ(Σ̃)− `(Π) = d(χ(Σ)− n);

2. n · d− `(Π) is even;

3. If Σ is orientable then Σ̃ is also orientable;

4. If Σ is non-orientable and d is odd then Σ̃ is non-orientable;
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5. If Σ is non-orientable and Σ̃ is orientable, then each partition (dij)j=1,...,mi of
d refines the partition (d/2, d/2).

However it has been shown [6, 4] that again this generalized problem always has
a positive solution if χ(Σ) 6 0, and that the case where Σ is the projective plane
reduces to the case where Σ is the S.

According to these facts, in order to face the Hurwitz existence problem, it is
not restrictive to assume the candidate covered surface Σ is the 2-sphere. Quite
some progress has been made (see for instance Section 2 for known results, and the
papers [19, 20, 17, 28]), but the global pattern remains elusive.

2.1 Diverse viewpoints

In its long history, the Hurwitz problem has been studied by several researchers. As
a result, the original topological question has been reformulated in many different
ways. Here we review the most famous and fruitful approaches.

Riemann surfaces Let Σ be a compact and connected Riemann surface, and
M(Σ) be the space of the meromorphic functions on it. It is well known that since
Σ is compact, the zero set and the set of poles are finite. Let us regard anon constant
f ∈ M(Σ) as a map to P1 ∼= Ĉ, mapping poles to ∞. Hence f becomes an analytic
function from Σ to Ĉ. Actually, it is a ramified cover: one can always choose local
coordinates in such a way that f is expressed as z 7→ zd near a nonsingular point,
and z 7→ zm, with m = −νp(f), ( νp(f) is the order of f in p) near p pole; moreover,
it is open and surjective.

It is a very classical fact in Riemann surface theory that if one fixes a finite set
B ⊂ Ĉ, and denote by Rf the branching set in Σ, the following three sets are in 1-1
correspondence with each other:

• Equivalence classes of analytic maps of degree-d of some f : Σ→ Ĉ such that
f(Rf ) ⊂ B

• Equivalence classes of degree d topological connected covers, f0 : Σ\f−1(B)→
Ĉ\B which extend to some f ∈ M(Σ) such that f(Rf ) ⊂ B.

• Equivalence classes of |B|-tuples (σ1, . . . , σ|B|), of elements of Sd generating
a transitive subgroup, and such that σ1 · . . . · σ|B| = 1.

(For the classical theory of Riemann surfaces see [1].)

Permutations It is evident, from the previous paragraph, that the set equiva-
lences described there give us a truly algebraic description of the Hurwitz existence
problem: in fact it establishes a correspondence between transitive subgroups of
permutations in Sd and degree-d branched covers of the sphere. To make it ax-
plicit we recall here a fundamental fact, proved by Hurwitz, Husemoller, Ezell and
Singerman, also reviewed in [19]: a realization of a candidate surface branched
cover

Σ̃
d:199K99K99K99K99K99K

(d11,...,d1m1 ),...,(dn1,...,dnmn )
Σ
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corresponds to the choice of permutations σ1, . . . , σn ∈ Sd such that:
• σi has cycles of lengths (dij)

mi
j=1;

• the product σ1 · · ·σn is the identity;

• the subgroup of Sd generated by σ1, . . . , σn acts transitively on {1, . . . , d}.
Let us also give an example of how to find a realization through permutations.

Consider the case of Σ̃
d:199K99K99K99K99K99K

(d11,...,d1m1 ),...,(d31,...,d3m3 )
S, that is a branched surface cover of

the sphere with three branching points; fix a certain σ1 with cycle lengths (d1j)
m1
j=1,

and let σ2 vary in the conjugacy class of permutations having cycles of lengths
(d2j)

m2
j=1, checking that 〈σ1, σ2〉 is a transitive subgroup, and that σ1 · σ2 has cycle

lengths d3j . Taking σ3 = (σ1 · σ2)−1, we obtain the three permutations, satisfying
the required conditions, and hence realizing the given branch datum. It can be
easily checked, for istance that the permutations

σ1 = (1,12)(2,8)(9,10)(6,7)(3,4)
σ2 = (3,2,1)(6,5,4)(9,8,7)(12,11,10)
σ3 = (1,10,7,4)(2,9,11,12)(3,5,6,8)

realize the compatible branch datum S 12:199K99K99K99K99K99K
(2,...,2,1,1),(3,3,3,3),(4,4,4)

S (with the convention
that (1, 2) · (2, 3) = (1, 2, 3)).

Note that using permutations could take a long time to decide about realizability
of covers with large degree like S 60:199K99K99K99K99K99K

(2,...,2),(3,...,3),(5,...,5)
S: in the following chapter

we prove that also this candidate branch datum is realizable, but using a different
technique.

Dessins d’enfant This is a classical technique, introduced by Grothendieck in [9]
for studying algebraic maps between Riemann surfaces. The main idea is to establish
an association between ramified covers and bipartite graphs. Recall now that a
bipartite graph is a finite 1-complex such that its set of vertices splits as V1 t V2
and each edge has one endpoint in V1 and one in V2.

We introduce Grothendieck’s dessins in their original form, that is valid only for
covers of the sphere with three branching points. We recommend [19] for further
reading, where this classical technique is generalized to an arbitrary number of
branching points.
Definition 2.1.1. A dessins d’enfant on a surface Σ̃ is a bipartite graph D ⊂ Σ̃
such that Σ̃\D consists of open discs. The length of one of these discs is the number
of edges of D along which its boundary passes, counted with multiplicity.

Here we state a proposition that makes it clear how to pass from branched covers
to dessins. (See [19] for the proof.)

Proposition 2.1.2. The realizations of a branch datum Σ̃
d:199K99K99K99K99K99K

(d11,...,d1m1 ),...,(d31,...,d3m3 )
S

correspond to the dessins d’enfant D ⊂ Σ̃ with set of vertices V1 t V2 such that for
i = 1, 2 the vertices in Vi have valences (dij)

mi
j=1, and the discs in Σ̃\D have lengths

(2d3j)
m3
j=1.
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Permutations and dessins Consider a candidate branched cover
Σ̃

d:199K99K99K99K99K99K
(d11,...,d1m1 ),...,(d31,...,d3m3 )

S; we will now describe for the reader’s convenience a cor-
respondence between a dessin d’enfant D realizing the cover, and a suitable choice
of permutations in Sd. Let D have vertices V1 tV2 as usual; to produce a choice of
σ1, σ2 corresponding to the same realization we proceed as follows:

(i) Assign labels from 1 to d to the edges of D;

(ii) Then consider the edge k and the vertex of Vi belonging to it: σi(k) has one
cycle for each vertex v of Vi,the cycle consisting of the labels of the edges
incident to v, arranged as they appear around vin a counter-clockwise order.

On the other hand, given two permutations σ1, σ2 ∈ Sd realizing the given
branch datum, we construct a dessins D(σ1, σ2) in the following way:

(i) Take the set of cycles of σi as the set of vertices Vi;

(ii) Draw an edge labeled k (k = 1, . . . , d) if there are two cycles, one in σ1 and
one in σ2, containing k.

We address the reader to [19] for further details.

Covers between 2-orbifolds vs surface branched covers As pointed out
in [19] and spelled out below, any candidate surface branched cover Σ̃

d:199K
Π

Σ has

a preferred associated candidate 2-orbifold cover X̃ d:199KX satisfying χorb(X̃) = d ·
χorb(X). Moreover Σ̃

d:199K
Π

Σ can be reconstructed from X̃ d:199KX if some additional
cover instructions are provided.

As one easily sees, distinct orbifold covers can induce the same surface branched
cover (in the local model, the two cone orders can be multiplied by one and the
same integer). However a surface branched cover has an “easiest” associated orbifold
cover, i.e., that with the smallest possible cone orders. This carries over to candidate
covers, as we will now spell out. Consider a candidate surface branched cover

Σ̃
d:199K99K99K99K99K99K

(d11,...,d1m1 ),...,(dn1,...,dnmn )
Σ

and define

pi = l.c.m.{dij : j = 1, . . . ,mi}, pij = pi/dij ,

X = Σ(p1, . . . , pn), X̃ = Σ̃
(
(pij)

j=1,...,mi
i=1,...,n

)

where “l.c.m.” stands for “least common multiple.” Then we have a preferred
associated candidate 2-orbifold cover X̃ d:199KX satisfying χorb(X̃) = d·χorb(X). Note
that the original candidate surface branched cover cannot be reconstructed from
X̃,X, d alone, but it can if X̃ d:199KX is complemented with the cover instructions

(p11, . . . , p1m1) 99K p1, . . . (pn1, . . . , pnmn) 99K pn



14 2. The Hurwitz Problem

that we will sometimes include in the symbol X̃ d:199KX itself, omitting the pij ’s
equal to 1. Of course a candidate surface branched cover is realizable if and only
if the associated candidate 2-orbifold cover with appropriate cover instructions is
realizable.
Remark 2.1.3. We must emphasize this passage: going to and coming from 2-
orbifold covers is the key point of our study of surface branched covers.

2.2 Known results

In this section we briefly collect the main partial solutions to the Hurwitz problem
obtained over the time.

Known results for Σ 6= S We outline some results which reduce the general
Hurwitz problem to the case where the base surface is the sphere. The first theorem
first appeared in [6, p. 125], and it is attributed to Shephardson. A proof can be
found in [11, theorem 4] and [4, Prop. 3.3]:
Theorem 2.2.1. A compatible branch datum with orientable base surface Σ and
χ(Σ) 6 0 is realizable.

The next result is proved in [6, Theorem 3.4] and [4, Prop. 3.3]:
Theorem 2.2.2. A compatible branch datum with non-orientable Σ and Σ̃ and
χ(Σ) 6 0 is realizable.

The following easy fact (stated in [4, Prop. 2.7]) together with the previous
results let us complete the case χ(Σ) 6 0, in the affirmative: each compatible
branch datum is realizable.
Proposition 2.2.3. A compatible branch datum with Σ non-orientable and Σ̃ ori-
entable is realizable if and only if it is possible to decompose for all i the partition
Πi into a pair of partitions Π′i and Π′′i of d/2 in such a way that the branch datum

Σ̃
d/2:1

99K99K99K99K
Π′1,Π′′1 ,...,Π′n,Π′′n

Σ′

is realizable, where Σ′ is the orientable double cover of Σ.
Now the aim is to understand what happens when the base has positive Euler

characteristic. The following theorem is due to Edmonds, Kulkarni and Stong, [4,
Theorem 5.1], and deals with the case Σ = P, the projective plane.
Theorem 2.2.4. A compatible branch datum with Σ = P and non-orientable Σ̃ is
realizable.

Hence, the Hurwitz existence problem remains open when
• Σ = S;

• Σ = P and orientable Σ̃.
However, Proposition 2.2.3 tells us that the realizability issue of some Σ̃ 99KP

reduces to the realizability of a suitable Σ̃ 99K S. Then, from now on, we will discuss
only branched covers of the sphere.
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Known results for Σ = S When the base surface is the sphere, we do have
exceptional branched covers. The easiest example is S 4:199K99K99K99K

(3,1),(2,2),(2,2)
S. Here we re-

view only the main existence and non-existence results. One of the most interesting
among non-existence results is the following, in the case of Σ̃ = S and n = 3, [4,
Prop. 5.7]:

Lemma 2.2.5. If d = ab, with a, b > 1, then the partitions

(a, . . . , a), (b+ 1, 1, . . . , 1), (a, a(b− 1))

give a compatible but non-realizable branch datum.

The following result proved in [19] extends the previous one:

Theorem 2.2.6. Let d = h · k, with k, h > 2; let (hj)j=1,...,p be a partition of h
with p > 2. Then the branch datum

S d:199K99K99K99K99K99K
(k,...,k),(h+p−1,1,...,1),(kh1,...,khp)

S

is non-realizable.

In the same paper Pervova and Petronio also establish a theorem which implies
a very efficient criterion to recognize exceptional data:

Theorem 2.2.7. Suppose d and all dij for i = 1, 2 are even. If the branch datum

S d:199K99K99K
Π1,Π2,Π3

S

is realizable, then (d3j) refines the partition (d/2, d/2).

On the other hand, one of the most general existence result was first stated by
Thom (in [25]) in the case of Σ̃ = S, then reproved in [2], and finally generalized to
arbitrary cover by Edmonds, Kulkarni and Stongs in [4];

Theorem 2.2.8. A compatible branch cover is realizable if one of the partitions of
the degree is (d).

A variation on this result is given in [4]: it classifies realizable branch data with
one partition of the form (d− 1, 1).

Because of the prime degree conjecture, discussed in the next section, we are
most interested in covers with exactly three branching points. However there are
also some results relevant to the case where the number of branching points is “large”
compared to degree d. One of the most significant one is due to Edmonds, Kulkarni
and Stong:

Theorem 2.2.9. A branch datum with d 6= 4 and n · d − `(Π) > 3(d − 1) is
realizable. The exceptional data with d = 4 are precisely those with partitions
(2, 2), . . . , (2, 2), (3, 1).
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A consequence of this result is that the number of exceptional branch data for
any fixed d 6= 4 is finite, [4, Corollary 4.4].

Moreover Pervova and Petronio, in [20], studied the branch data in which one
partition is (d− 2, 2), and proved the following three theorems, using an extension
of a geometric criterion for the existence of a branched cover previously introduced
by Baránski in [2], (i.e. the existence of certain families of graphs on the covering
surface, called minimal checkerboard graphs).

Theorem 2.2.10. Let S d:199K99K99K99K
(d−2,2),Π2,Π3

S be a compatible branch datum. If d is odd
then it is realizable. If d = 2k is even then the compatible and non-realizable branch
data are precisely those of the following types:

• S 2k:199K99K99K99K99K
(2k−2,2),(2,...,2),(2,...,2)

S with k > 2;

• S 2k:199K99K99K99K99K99K
(2k−2,2),(2,...,2),(k+1,1,...,1)

S.

Theorem 2.2.11. With the single exception of T 6:199K99K99K99K
(4,2),(3,3),(3,3)

S, every compatible

datum of the form T d:199K99K99K99K
(d−2,2),Π2,Π3

S is realizable.

Theorem 2.2.12. If g > 2, then every compatible branch datum of the form
gT d:199K99K99K99K

(d−2,2),Π2,Π3
S is realizable.

It is worth mentioning that in [17] Pakovich gives an interesting generalization of
Theorem 2.2.10, using an entirely different approach. Pakovich extends the result to
the branch data of the form S d:199K99K99K99K

(d−k,k),Π2,...,Πn
S: he completely answers the problem in

the case of branched covers between spheres with an arbitrary number of branching
points and when Π has at least a “small partition” (it is called small when `(Πi) 6 2).

Here is one more result from [19] about the realizability of covers with three
branchings, the proof of which is based on the idea of composing covers:

Theorem 2.2.13. Let Σ̃
d:199K99K99K99K

Π1,Π2,Π3
S be a compatible branch datum. Let p > 3

be odd and suppose that all dij are divisible by p. Then the datum is realizable.

2.3 The prime degree conjecture

In [4] the Hurwitz existence problem is reduced to the case of branched covers of
the 2-sphere; moreover the paper contains in addition the following interesting:

Conjecture 2.3.1. If Σ̃
d:199K
Π
S is candidate surface branched cover and the degree d

is a prime number then the candidate is realizable.

Sure it has been partially motivated by a lemma they showed in the same paper,
about exceptionality in non-prime degree, already mentioned (Theorem 2.2.5); and
in [19] and [20] there are many other examples of exceptionality of covers in non-
prime degree.
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In order to approach this conjecture, it is important to notice that in [4] the au-
thors stated that establishing Conjecture 0.0.1 in the special case of three branching
points would imply the general case.

We find in [28] some results supporting this conjecture: in fact Zheng lists all
exceptional candidate surface branched covers with n = 3 and d 6 20 (he has been
determined them by computer) and none of them occurs for prime d. We address
the reader to the end of Chapter 3, where the relevance of our results with respect
to this conjecture is explained.





Chapter 3

Orbifold Covers in χorb > 0

This chapter is devoted to the complete analysis of orbifold covers with χorb > 0. It
uses the geometric description of orbifolds given in the Chapter 1, and it ends with
remarks about the prime degree conjecture.

3.1 The geometric approach

To analyze the realizability of a candidate surface branched cover we will switch to
the associated candidate 2-orbifold cover X̃ 99KX and we will use geometry either
to explicitly construct a map f : X̃ → X realizing it, or to show that such an f
cannot exist.

To explain how this works we first note that any 2-orbifold X with a fixed
geometric structure of type X ∈ {S,E,H} has a well-defined distance function. This
is because the structure is given by a quotient map X → X, that for obvious
reasons we will call geometric universal cover of X, defined by an isometric and
discrete (even if not free) action. Therefore a piecewise smooth path α in X has
a well-defined length obtained by lifting it to a path α̃ in X, even if α̃ itself is not
unique (even up to automorphisms of X) when α goes through some cone point of
X. Now we have the following:

Proposition 3.1.1. Let f : X̃ → X be a 2-orbifold cover. Suppose that X has
a fixed geometry with geometric universal cover π : X → X. Then there exists a
geometric structure on X̃ with geometric universal cover π̃ : X→ X̃ and an isometry
f̃ : X→ X such that π ◦ f̃ = f ◦ π̃.

Proof. We define the length of a path in X̃ as the length of its image in X under
f , and we consider the corresponding distance. Analyzing the local model of f ,
one sees that this distance is compatible with a local orbifold geometric structure
also of type X, so there is one global such structure on X̃, with geometric universal
cover π̃ : X → X̃. The properties of the universal cover imply that there is a
map f̃ : X → X such that π ◦ f̃ = f ◦ π̃. By construction f̃ preserves the length of
paths, but X is a manifold, not an orbifold, so f̃ is a local isometry. In particular
it is a cover, but X is simply connected, so f̃ is a homeomorphism and hence an
isometry.

19
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Any spherical 2-orbifold X is rigid, namely the geometric universal cover S→ X
is unique up to automorphisms of S and X, so in the spherical case one is not faced
with any choice while applying Proposition 3.1.1. On the contrary Euclidean 2-
orbifolds are never rigid, since the metric can always be rescaled (and it can also be
changed in more essential ways on the torus T and on S(2, 2, 2, 2), see below). In
this case we will slightly modify the content of Proposition 3.1.1 by rescaling X̃ so
that its area equals that of X, in which case f̃ is no more an isometry but merely
a complex-affine map C→ C, with C identified to E. More precisely:

Proposition 3.1.2. Let f : X̃
d:1−→X be a 2-orbifold cover. Suppose that X has a

fixed Euclidean structure with geometric universal cover π : E → X. Then there
exists a Euclidean structure on X̃ with geometric universal cover π̃ : E → X̃ such
that X and X̃ have the same area, and a map f̃ : E→ E of the form f̃(z) = λ·z+µ,
with λ, µ ∈ C, such that π ◦ f̃ = f ◦ π̃. This implies that d = |λ|2.

Proof. With respect to the structure on X̃ given by Proposition 3.1.1 the area of
X̃ is d times that of X, so the scaling factor is 1/

√
d. After rescaling f̃ is therefore√

d times an isometry, and the conclusion follows.

Remark 3.1.3. The structure of this chapter is the consequence of splitting orbifold
covers with respect to the sign of the Euler characteristic. Despite our efforts the
hyperbolic case is far from been solved, because of the difficulty of improving a
substantial extension to the geometric tool. Then, in the next chapter we restrict
ourselves to the study of hyperbolic 2-orbifold covers relevant for the prime degree
conjecture.

3.2 Positive Euler characteristic

In this section we will establish Theorem 0.0.5. More precisely we will show:

Theorem 3.2.1. A candidate surface branched cover Σ̃ 99K Σ having an associated
candidate 2-orbifold cover X̃ 99KX with χorb(X) > 0 is exceptional if and only if X̃
is bad and X is spherical. This occurs precisely for the following candidate covers,
in none of which the degree is prime:

S
9:199K99K99K99K99K

(2,...,2,1),(3,3,3),(3,3,3)
S S

9:199K99K99K99K99K
(2,...,2,1),(3,3,3),(4,4,1)

S S
10:199K99K99K99K99K

(2,...,2),(3,3,3,1),(4,4,2)
S

S
16:199K99K99K99K99K

(2,...,2),(3,...,3,1),(4,...,4)
S S

16:199K99K99K99K99K
(2,...,2),(3,...,3,1),(5,5,5,1)

S S
18:199K99K99K99K99K

(2,...,2),(3,...,3),(4,...,4,2)
S

S
21:199K99K99K99K99K

(2,...,2,1),(3,...,3),(5,...,5,1)
S S

25:199K99K99K99K99K
(2,...,2,1),(3,...,3,1),(5,...,5)

S S
36:199K99K99K99K99K

(2,...,2),(3,...,3),(5,...,5,1)
S

S
40:199K99K99K99K99K

(2,...,2),(3,...,3,1),(5,...,5)
S S

45:199K99K99K99K99K
(2,...,2,1),(3,...,3),(5,...,5)

S S
2k:199K99K99K99K99K

(2,...,2),(2,...,2),(h,2k−h)
S

(3.1)

with k > h > 1 in the last item.

In addition to proving this result we will describe all Σ̃ 99K Σ having associated
X̃ 99KX with χorb(X) > 0 not listed in the statement, and we will explicitly con-
struct a geometric realization of each such X̃ 99KX. To outline our argument, we
first recall that the 2-orbifolds X with χorb(X) > 0 are

S, S(p), S(p, q), S(2, 2, p), S(2, 3, 3), S(2, 3, 4), S(2, 3, 5).
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In particular for any relevant Σ̃
d:199K
Π

Σ we have Σ̃ = Σ = S. Moreover X is bad if
and only if it is S(p) for p > 1 or S(p, q) for p 6= q > 1, and in all other cases it has
a rigid spherical structure. Our main steps will be as follows:

• We will determine all the candidate surface branched covers having an asso-
ciated candidate X̃ 99KX with positive χorb(X̃) and χorb(X), and the corre-
sponding cover instructions for X̃ 99KX;

• For each spherical X with χorb(X) > 0 we will explicitly describe (and fix)
the geometric universal cover π : S→ X;

• For each X̃ 99KX with χorb(X) > 0 (complemented with its cover instructions)
associated to some candidate surface branched cover, except when X̃ is bad
and X is spherical, we will explicitly describe an isometry f̃ : S→ S such that
there exists f : X̃ → X realizing X̃ 99KX with π ◦ f̃ = f ◦ π̃, where π and π̃
are the geometric universal covers of X̃ and X described in the previous step.

To list all candidate surface branched covers having an associated candidate
X̃ 99KX with positive χorb(X) our steps will be as follows:

• We consider all possible pairs (X̃,X) such that χorb(X̃)/χorb(X) is an integer
d > 1;

• Supposing X has n cone points of orders p1, . . . , pn, we consider all possible
ways of grouping the orders of the cone points of X̃ as

(q11, . . . , q1µ1), . . . , (qn1, . . . , qnµn)

so that qij divides pi for all i and j;

• We determine mi > µi so that, setting qij = 1 for j > µi and dij = pi
qij

, we

have that
mi∑
j=1
dij is equal to d for all i;

• We check that pi is the least common multiple of (dij)
mi
j=1.

This leads to the candidate surface branched cover S d:199K
Π
S with Πi = (dij)

mi
j=1

and Π = (Πi)
n
i=1, having associated candidate X̃ 99KX with cover instructions

(q11, . . . , q1m1) 99K p1, . . . , (qn1, . . . , qnmn) 99K pn.

For the sake of brevity we will group together our statements depending on the
type of X̃. In the proofs it will sometimes be convenient to carry out the steps
outlined above in a different order. In particular, it is often not easy to determine
beforehand when χorb(X̃)/χorb(X) is an integer, so this condition is imposed at the
end. Moreover, whenever X has three cone points, instead of χorb(X̃) = d·χorb(X)
we will use the equivalent formula (2.2), expressed in terms of the data of the
would-be candidate surface branched cover.
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Remark 3.2.2. Suppose some X̃ d:199KX whereX has n > 1 cone points is associated
to some Σ̃

d:199K99K
Π1,...,Πn

Σ. Then each of the n partitions of d in Π has at least one entry

larger than 1, otherwise Σ̃
d:199K
Π

Σ has an “easier” associated candidate Ỹ 99KY , where
Y has less than n cone points. In particular d > 1.

Proposition 3.2.3. The candidate surface branched covers having associated can-
didate X̃ 99KX with bad X̃ are precisely those listed in (3.1).

Proof. We start with X̃ = S(p̃) for p̃ > 2. If X = S or X = S(p) then
χorb(X̃)/χorb(X) < 2, so there is no relevant candidate.

Now suppose X = S(p, q) and p̃ 99K p, so p = k · p̃ for some k, whence µ1 = 1,
µ2 = 0, and d = k + (m1 − 1)·p = m2 ·q. Combining these relations with 1 + 1

p̃
=

d ·
(

1
p + 1

q

)
we get m1 + m2 = 2, so m1 = m2 = 1 and k = q = d, but p is not

l.c.m.(k), so again there is no relevant candidate.
Turning to X = S(2, 2, p) we can have either p̃ 99K 2 or p̃ 99K p. In the first case

we should have Π1 = (2, . . . , 2, 1) and Π2 = (2, . . . , 2), which is impossible because d
should be both even and odd. In the second case we have d = 2k and m1 = m2 = k,
whence m3 = 2, so we get item 12 in (3.1) in the special case where h divides 2k−h
or conversely. Other instances of item 12 will be found below.

Now let X = S(2, 3, 3). If p̃ 99K 2 (or p̃ 99K 3) then p̃ = 2 (or p̃ = 3) and
computing χorb we get d = 9 (or d = 8). In the first case we get item 1 in (3.1),
in the second case we get nothing because Π2 = (3, . . . , 3, 1) which is incompatible
with d = 8.

The discussion for X = S(2, 3, p) with p = 4, 5 is similar. We examine where
p̃ can be mapped to, we deduce what it is (except that both 2 and 4 are possible
when p̃ 99K p = 4), in each case we determine d using χorb and we check that there
exist appropriate partitions of d. For X = S(2, 3, 4) we get items 4 and 6 in (3.1),
with p̃ = 2 99K 4 in 6, while for X = S(2, 3, 5) we get items 9 to 11 in (3.1).

Let us now consider X̃ = S(p̃, q̃) with p̃ 6= q̃ > 1 and again examine the various
X’s, noting first that X cannot be S or S(p) since d > 2. For X = S(p, q) suppose
first p̃, q̃ 99K p. Then p = k · p̃ = h · q̃ and d = k + h + (m1 − 2) ·p = m2 ·q, which
we can combine with 1

p̃
+ 1
q̃

= d·
(

1
p + 1

q

)
easily getting m1 = 2 and m2 = 0, which

is impossible. Now suppose p̃ 99K p and q̃ 99K q, so p = k · p̃ and q = h · q̃ whence
d = k + (m1 − 1)·p = h + (m2 − 1)·q, which leads to m1 = m2 = 1, but then we
cannot have p = l.c.m.(k) or q = l.c.m.(h), so we get nothing.

If X = S(2, 2, p) then we cannot have (p̃, q̃) 99K 2 or p̃ 99K 2, q̃ 99K 2, otherwise X̃
would be good. If p̃ 99K 2 and q̃ 99K p then d should be both even and odd, which is
impossible. So (p̃, q̃) 99K p, d = 2k, m1 = m2 = k, m3 = 2 and we get the last item
in (3.1) with h and 2k − h not multiple of each other.

For X = S(2, 3, p), considering where p̃ and q̃ can be mapped, we again see
what they can be, we determine d using χorb, and we check that three appropriate
partitions exist, getting nothing for p = 3, items 2 and 3 in (3.1) for p = 4, and
items 5, 7, and 8 for p = 5, which completes the proof.

We omit the straight-forward proof of the next result:
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Proposition 3.2.4. The candidate surface branched covers having associated can-
didate S 99KX are

S
p:199K99K99K99K

(p),(p)
S S

2p:199K99K99K99K
(2,...,2),(2,...,2),(p,p)

S S
12:199K99K99K99K

(2,...,2),(3,...,3),(3,...,3)
S

S
24:199K99K99K99K

(2,...,2),(3,...,3),(4,...,4)
S S

60:199K99K99K99K
(2,...,2),(3,...,3),(5,...,5)

S
(3.2)

Proposition 3.2.5. The candidate surface branched covers having associated can-
didate S(p̃, p̃) 99KX with p̃ > 1 are

S
4:199K99K99K99K99K

(2,2),(3,1),(3,1)
S S

6:199K99K99K99K99K
(2,2,1,1),(3,3),(3,3)

S S
6:199K99K99K99K99K

(2,2,2),(3,3),(4,1,1)
S

S
8:199K99K99K99K99K

(2,...,2),(3,3,1,1),(4,4)
S S

12:199K99K99K99K99K
(2,...,2,1,1),(3,3,3,3),(4,4,4)

S S
12:199K99K99K99K99K

(2,...,2),(3,...,3),(4,4,2,2)
S

S
12:199K99K99K99K99K

(2,...,2),(3,...,3),(5,5,1,1)
S S

20:199K99K99K99K99K
(2,...,2),(3,...,3,1,1),(5,...,5)

S S
30:199K99K99K99K99K

(2,...,2,1,1),(3,...,3),(5,...,5)
S

S
2k+1:199K99K99K99K99K

(2,...,2,1),(2,...,2,1),(2k+1)
S S

2k+2:199K99K99K99K99K
(2,...,2,1,1),(2,...,2),(2k+2)

S

(3.3)

with arbitrary k > 1 in the last two items.

Proof. Since χorb(S(p̃, p̃)) = 2
p̃

6 1 and d > 2 we cannot have X = S or X =

S(p). Suppose then X = S(p, q), so 2
p̃

= d
p + d

q . If p̃, p̃ 99K p then p = k · p̃ and
d = 2k+ (m1− 2)·p = m2·q, whence m1 = 2 and m2 = 0, which is absurd. If p̃ 99K p
and p̃ 99K q then p = k ·p̃ and q = h·p̃ whence d = k + (m1 − 1)·p = h+ (m2 − 1)·q
which gives m1 = m2 = 1, but then we cannot have p = l.c.m.(k) or q = l.c.m.(h),
so we get nothing.

Assume now X = S(2, 2, p). If (p̃, p̃) 99K 2 then p̃ = 2 and p = d = 2k+ 2, which
leads to the last item in (3.3). If p̃ 99K 2 and p̃ 99K 2 then p̃ = 2 and p = d = 2k+ 1,
so we get the penultimate item in (3.3). Of course we cannot have p̃ 99K 2 and
p̃ 99K p otherwise d should be both even and odd. If (p̃, p̃) 99K p then p = k · p̃ and
d = 2k, so Π3 = (k, k), but then p 6= l.c.m.(k, k).

If X = S(2, 3, 3) then d·p̃ = 12. Of course we cannot have p̃ 99K 2 and p̃ 99K 3. If
(p̃, p̃) 99K 2 then p̃ = 2 and d = 6, so we get item 2 in (3.3), while if (p̃, p̃) 99K 3 then
p̃ = 3 and d = 4, which is impossible since there would be a partition of 4 consisting
of 3’s only. For p̃ 99K 3 and p̃ 99K 3 again p̃ = 3 and d = 4, whence item 1 in (3.3).

The discussion for X = S(2, 3, p) with p = 4, 5 is similar. We get items 3 to 6
in (3.3) for p = 4 and items 7 to 9 for p = 5.

Proposition 3.2.6. The candidate surface branched covers having associated can-
didate S(2, 2, p̃) 99KX with p̃ > 1 are

S
4:199K99K99K99K99K

(2,1,1),(3,1),(4)
S S

6:199K99K99K99K99K
(2,2,1,1),(3,3),(4,2)

S

S
6:199K99K99K99K99K

(2,2,1,1),(3,3),(5,1)
S S

10:199K99K99K99K99K
(2,...,2,1,1),(3,3,3,1),(5,5)

S

S
15:199K99K99K99K99K

(2,...,2,1,1,1),(3,...,3),(5,5,5)
S.

(3.4)

Proof. Note first that X cannot be S or S(p) since d > 2. If X = S(p, q) we have
the following possibilities:
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• (2, 2, p̃) 99K p. Then p = 2k, so d = k + k + 2k/p̃+ (m1 − 3)2k = m2q;

• p̃ 99K p and (2, 2) 99K q. Then p = kp̃ and q = 2h, so d = k + (m1 − 1)kp̃ =
h+ h+ (m2 − 2)2h;

• (2, p̃) 99K p and 2 99K q. Then p = 2k and q = 2h, so d = k+2k/p̃+(m1−2)2k =
h+ (m2 − 1)2h.

Since 1
p̃

= d
p + d

q , in all cases we deduce that m1 +m2 = 2, which is absurd, so we
do not get any candidate cover.

Now suppose X = S(2, 2, p). We have the following possibilities:

(2, 2, p̃) 99K 2 (2, 2, p̃) 99K p
(2, 2) 99K 2, p̃ 99K 2 (2, 2) 99K 2, p̃ 99K p p̃ 99K 2, (2, 2) 99K p
(2, p̃) 99K 2, 2 99K 2 (2, p̃) 99K 2, 2 99K p 2 99K 2, (2, p̃) 99K p,
2 99K 2, 2 99K 2, p̃ 99K p 2 99K 2, p̃ 99K 2, 2 99K p

and p̃ must actually be 2 in items 1, 3, 5, 6, 7 and 10. Items 1, 3, 5, 6 and 8 are
then impossible because d should be both even and odd. In item 2 we have d = 2k
and m1 = m2 = k, whence m3 = 2, which is impossible. In items 4 and 7 we have
d = 2k, whence m1 = k + 1 and m2 = k, so m3 = 1, which is absurd. In items 9
and 10 we have d = 2k + 1 and m1 = m2 = k + 1, whence m3 = 1, which is absurd.
This shows that there is no candidate cover for X = S(2, 2, p).

The cases where X = S(2, 3, p) for p = 3, 4, 5 are easier to discuss and hence left
to the reader. For p = 3 there is nothing, for p = 4 there are items 1 and 2 in (3.4),
and for p = 5 items 3 to 5.

The candidate surface branched covers having associated candidate covers
S(2, 3, p̃) 99KX for p̃ = 3, 4, 5 are not hard to analyze using the same methods
employed above, so we will not spell out the proofs of the next two results. The
most delicate point is always to exclude the cases X = S(p, q) and X = S(2, 2, p).

Proposition 3.2.7. The only candidate surface branched cover having associated
candidate S(2, 3, 3) 99KX is S 5:199K99K99K

(2,2,1),(3,1,1),(5)
S.

Proposition 3.2.8. There are no candidate surface branched covers having associ-
ated candidate of the form S(2, 3, 4) 99KX or S(2, 3, 5) 99KX.

Proposition 3.2.9. All the candidate surface branched covers of Proposition 3.2.5
are realizable.

Proof. The following list describes the candidate orbifold covers X̃ 99KX and the
cover instructions associated to the items in (3.3), together with the corresponding
isometry f̃ : S → S inducing the desired f via the geometric universal covers
π̃ : S→ X̃ and π : S→ X fixed above.

• S(3, 3)
4:199K99K99K

3 99K 3, 3 99K 3
S(2, 3, 3) and f̃ is the rotation around (±i, 0) sending (0, 1)

to point B of Fig. 1.2-left;

• S(2, 2)
6:199K99K

(2,2) 99K 2
S(2, 3, 3) and f̃ = rot(±i,0)(π/2);
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• S(4, 4)
6:199K99K

(4,4) 99K 4
S(2, 3, 4) and f̃ is the identity;

• S(3, 3)
8:199K99K

(3,3) 99K 3
S(2, 3, 4) and f̃ is the rotation around (±i, 0) sending (0, 1) to

point B of Fig. 1.2-center;

• S(2, 2)
12:199K99K

(2,2) 99K 2
S(2, 3, 4) and f̃ = rot(±i,0)(π/2);

• S(2, 2)
12:199K99K

(2,2) 99K 4
S(2, 3, 4) and f̃ is the identity;

• S(5, 5)
12:199K99K

(5,5) 99K 5
S(2, 3, 5) and f̃ is the rotation around (±i, 0) mapping (0, 1) to

the point labelled ∗ in Fig. 1.2;

• S(3, 3)
20:199K99K

(3,3) 99K 3
S(2, 3, 5) and f̃ is the rotation around (±i, 0) mapping (0, 1) to

point B in Fig. 1.2-right;

• S(2, 2)
30:199K99K

(2,2) 99K 2
S(2, 3, 5) and f̃ is the identity;

• S(2, 2)
2k+1:199K99K99K

2 99K 2, 2 99K 2
S(2, 2, 2k + 1) and f̃ = rot(±i,0)(π/2);

• S(2, 2)
2k+2:199K99K

(2,2) 99K 2
S(2, 2, 2k + 2) and f̃ = rot(±i,0)(π/2).

The proof is complete.

Proposition 3.2.10. All the candidate surface branched covers of Proposition 3.2.6
are realizable.

Proof. The candidate orbifold covers with cover instructions associated to the items
in (3.4), and the corresponding isometries f̃ : S→ S, are as follows:

• S(2, 2, 3)
4:199K99K99K

(2,2) 99K 2, 3 99K 3
S(2, 3, 4) and f̃ is the rotation around (±1, 0) mapping

(0, 1) to point B in Fig. 1.2-center followed by a rotation of angle π/6 around
±B;

• S(2, 2, 2)
6:199K99K99K

(2,2) 99K 2, 2 99K 4
S(2, 3, 4) and f̃ is the identity;

• S(2, 2, 5)
6:199K99K99K

(2,2) 99K 2, 5 99K 5
S(2, 3, 5) and f̃ is the rotation around (±1, 0), sending

(0, 1) to the point of order 5 best visible in the upper hemisphere in Fig. 1.2-
right;

• S(2, 2, 3)
10:199K99K99K

(2,2) 99K 2, 3 99K 3
S(2, 3, 5) and f̃ is the rotation around (±i, 0) that maps

the pole (0, 1) to point B in Fig. 1.2-right followed by a rotation of angle π/6
around ±B;

• S(2, 2, 2)
15:199K99K99K

(2,2,2) 99K 2
S(2, 3, 5) and f̃ is the identity.
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(6) (4)

(3)(2)

(1)

(0)

(0)

(0)

(0)

(0)

(5)

(7)

T

S(3, 3, 3)

S(2, 4, 4)

S(2, 3, 6)

S(2, 2, 2, 2)

Figure 3.1. Possible covers between Euclidean orbifolds

The proof is complete.

Proposition 3.2.11. The candidate surface branched cover of Proposition 3.2.7 is
realizable.

Proof. The candidate orbifold cover is in this case

S(2, 3, 3)
5:199K99K99K

2 99K 2, (3,3) 99K 3
S(2, 3, 5)

and the isometry f̃ : S → S inducing its realization is the rotation of angle π/4
around (±1, 0).

3.3 The Euclidean case

In this section we investigate realizability of candidate surface branched covers hav-
ing associated candidate orbifold covers X̃ 99KX with χorb(X̃) = χorb(X) = 0. This
means that X̃ and X must belong to the list

T, S(2, 4, 4), S(2, 3, 6), S(3, 3, 3), S(2, 2, 2, 2)

where T is the torus. Recalling that the orders of the cone points of X̃ must divide
those of X, we see that the only possibilities are the cases (0) to (7) shown in
Fig. 3.1, that we will analyze using Euclidean geometry. Namely:

• We will fix on X a Euclidean structure given by some π : E→ X;
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i

2

i

1

Figure 3.2. Tessellations of E induced by the geometric structures fixed on S(2, 4, 4) and
S(2, 2, 2, 2).

• We will assume that X̃ d:199KX is realized by some map f , we will use Lemma 3.1.2
to deduce there is a corresponding affine map f̃ : E→ E, and we will analyze
f̃ to show that d must satisfy certain conditions;

• We will employ the calculations of the previous point to show that if d satisfies
the conditions then f̃ , whence f , exists.

General geometric tools Our analysis of the candidate covers (1)-(7) of Fig. 3.1
relies on certain facts that we will use repeatedly. The first is the exact determi-
nation of the lifts of the cone points, that we now describe. For any of our four
Euclidean X’s, with the structure π : E→ X = E/Γ we have fixed, and any vertex
Ṽ (p) of the fundamental domain for Γ described above, we set V (p) = π(Ṽ (p)), so
that its cone order is p. Then π−1(V (p)) will be some set {Ṽ (p)

j } ⊂ E, with j varying
in a suitable set of indices. The exact lists of lifts are as follows:

S(2, 4, 4) : (see Fig. 3.2-left)
Ã

(2)
a,b = a+ ib a, b ∈ Z, a 6≡ b (mod 2)

B̃
(4)
a,b = a+ ib a, b ∈ Z, a ≡ b ≡ 0 (mod 2)

C̃
(4)
a,b = a+ ib a, b ∈ Z, a ≡ b ≡ 1 (mod 2);

(3.5)

S(2, 2, 2, 2) : (see Fig. 3.2-right)
Ã

(2)
a,b = a+ ib a, b ∈ Z, a ≡ b ≡ 0 (mod 2)

B̃
(2)
a,b = a+ ib a, b ∈ Z, a ≡ 1, b ≡ 0 (mod 2)

C̃
(2)
a,b = a+ ib a, b ∈ Z, a ≡ b ≡ 1 (mod 2)

D̃
(2)
a,b = a+ ib a, b ∈ Z, a ≡ 0, b ≡ 1 (mod 2);

(3.6)
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Figure 3.3. Tessellations of E induced by the geometric structure fixed on S(2, 3, 6) and S(3, 3, 3)

S(2, 3, 6) : with ω = 1+i
√

3
2 (see Fig. 3.3-left)

Ã
(2)
a,b = 1

2(a+ ωb) a, b ∈ Z not both even, a− b ≡ 1 (mod 3)

B̃
(3)
a,b = a+ ωb a, b ∈ Z, a− b 6≡ 2 (mod 3)

C̃
(6)
a,b = a+ ωb a, b ∈ Z, a− b ≡ 2 (mod 3);

(3.7)

S(3, 3, 3) : with ω = 1+i
√

3
2 (see Fig. 3.3-right)

Ã
(3)
a,b = a+ ωb, a, b ∈ Z, a− b ≡ 0 (mod 3)

B̃
(3)
a,b = a+ ωb, a, b ∈ Z, a− b ≡ 1 (mod 3)

C̃
(3)
a,b = a+ ωb, a, b ∈ Z, a− b ≡ 2 (mod 3).

(3.8)

Also important for us will be the symmetries of our Euclidean X’s. More pre-
cisely we will use the following facts:

• There exists a symmetry of S(2, 4, 4) switching B(4) and C(4);

• Any permutation of {A(3), B(3), C(3)} is induced by a symmetry of S(3, 3, 3);

• Any permutation of {A(2), B(2), C(2), D(2)} is induced by a symmetry of S(2, 2, 2, 2).

Here is another tool we will use very often. As one sees, if Γ < Isom+(E) defines
a Euclidean structure on a 2-orbifold X = E/Γ then Γ has a maximal torsion-free
subgroup, a rank-2 lattice Λ(Γ). For u ∈ C, let τu denote the translation z 7→ z+u.
Then the lattices for the groups we have fixed are as follows:

Λ(2,4,4) = 〈τ2, τ2i〉, Λs,t(2,2,2,2) =
〈
τ2is, τ2( 1

s
+it)

〉
,

Λ(2,3,6) = Λ(3,3,3) =

〈
τi
√

3, τ 3+i
√

3
2

〉
.

Moreover the following holds:
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Lemma 3.3.1. Let Γ̃,Γ < Isom+(E) define Euclidean orbifolds X̃ = E/Γ̃ and
X = E/Γ. Suppose that Λ(Γ̃) = 〈τũ1

, τũ2
〉 and Λ(Γ) = 〈τu1 , τu2〉. Let f̃ : E → E

given by f̃(z) = λ·z + µ have an associated orbifold cover X̃ → X. Then λ·ũ1 and
λ·ũ2 are integer linear combinations of u1 and u2.

Proof. The map f̃ induces a homomorphism f̃∗ : Γ̃ → Γ given by f̃∗(τu) = τλ·u
which maps Λ(Γ̃) to Λ(Γ), and the conclusion easily follows.

Exceptions and geometric realizations We will now state and prove 8 theo-
rems corresponding to the cases (0)-(7) of Fig. 3.1, thus establishing Theorem 0.0.6.
Cases (1)-(3) imply in particular Theorems 0.0.2, 0.0.3, and 0.0.4.

Theorem 3.3.2 (case (0) in Fig. 3.1). The candidate surface branched covers having
associated candidate T 99KX are

T
k:199KT T

2k:199K99K99K99K99K99K
(2,...,2),(2,...,2),(2,...,2),(2,...,2)

S T
3k:199K99K99K99K99K

(3,...,3),(3,...,3),(3,...,3)
S

T
4k:199K99K99K99K99K

(2,...,2),(4,...,4),(4,...,4)
S T

6k:199K99K99K99K99K99K
(2,...,2),(3,...,3),(6,...,6)

S

with arbitrary k > 1, and they are all realizable.

Proof. The first assertion and realizability of any T k:199KT are easy. For any X 6= T
let X = E/Γ and identify T to E/Λ(Γ). Since Λ(Γ) < Γ we have an associated
orbifold cover T → X, which realizes the relevant T 99KX in the special case k = 1.
The conclusion follows by taking compositions.

Theorem 3.3.3 (case (1) in Fig. 3.1). The candidate surface branched covers having
associated candidate S(2, 4, 4)

d:199KS(2, 4, 4) are

S
4k+1:199K99K99K99K99K

(2,...,2,1),(4,...,4,1),(4,...,4,1)
S S

4k+2:199K99K99K99K99K
(2,...,2),(4,...,4,2),(4,...,4,1,1)

S S
4k+4:199K99K99K99K99K

(2,...,2),(4,...,4),(4,...,4,2,1,1)
S

for k > 1, and they are realizable if and only if, respectively:

• d = x2 + y2 for some x, y ∈ N of different parity;

• d = 2(x2 + y2) for some x, y ∈ N of different parity;

• d = 4(x2 + y2) for some x, y ∈ N not both zero.

Proof. A candidate S(2, 4, 4)
d:199KS(2, 4, 4) can be complemented with any one of

the following cover instructions

2 99K 2, 4 99K 4, 4 99K 4, 2 99K 4, (4, 4) 99K 4, (2, 4, 4) 99K 4,
2 99K 2, (4, 4) 99K 4, (2, 4) 99K 4, 4 99K 4

and it is very easy to see that the first three come from the candidate surface
branched covers of the statement, while the last two do not come from any candidate
cover (recall that the simplified version `(Π) = d+ 2 (2.2) of the Riemann-Hurwitz
formula must be satisfied).
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Now suppose there is a realization f : S(2, 4, 4)
d:1−→S(2, 4, 4) of one of the three

relevant candidate covers. Proposition 3.1.2 implies that there is a geometric univer-
sal cover π̃ : E→ S(2, 4, 4) and an affine map f̃ : E→ E with π ◦ f̃ = f ◦ π̃. But the
Euclidean structure of S(2, 4, 4) is unique up to scaling, so π̃ = π. If f̃(z) = λ·z+µ,
since Λ(2,4,4) = 〈τ2, τ2i〉, Lemma 3.3.1 implies that λ = n + im for some n,m ∈ Z,
whence d = n2 +m2.

We now employ the notation of (3.5) and note that for all three candidates
we can assume, by the symmetry of S(2, 4, 4), that f

(
B(4)

)
= B(4), whence that

f̃
(
B̃

(4)
0,0

)
= B̃

(4)
0,0 , namely µ = 0. We then proceed separately for the three candidates.

For the first one we have f
(
A(2)

)
= A(2) so f̃

(
Ã

(2)
1,0

)
= λ is some Ã(2)

∗ . Therefore
n and m have different parity, and we can set x = |n| and y = |m| getting that
d = x2 + y2 for x, y ∈ N of different parity. Conversely if d has this form we define
f̃(z) = (x+ iy)·z. Then

f̃
(
Ã

(2)
1,0

)
= Ã(2)

x,y, f̃
(
B̃

(4)
0,0

)
= B̃

(4)
0,0 , f̃

(
C̃

(4)
1,1

)
= (x− y) + i(x+ y) = C̃

(4)
x−y,x+y

where the last equality depends on the fact that x − y ≡ x + y ≡ 1 (mod 2). It
easily follows that f̃ induces a realization of the candidate.

For the second candidate f
(
A(2)

)
= C(4), hence f̃

(
Ã

(2)
1,0

)
= λ is some C̃(4)

∗ ,
namely n and m are odd. Setting x = 1

2 |n + m| and y = 1
2 |n − m| we see that

x, y ∈ N have different parity and d = 2(x2 + y2). Conversely if d = 2(x2 + y2) with
x, y of different parity, we define f̃(z) = ((x+ y) + i(x− y))·z. Then

f̃
(
Ã

(2)
1,0

)
= C̃

(4)
x+y,x−y, f̃

(
B̃

(4)
0,0

)
= B̃

(4)
0,0 , f̃

(
C̃

(4)
1,1

)
= B̃

(4)
2y,2x

from which it is easy to see that f̃ induces a realization of the candidate.
For the last candidate f

(
A(2)

)
= B(4) hence f̃

(
Ã

(2)
1,0

)
is some B̃(4)

∗ , so n and m
are even. Setting x = 1

2 |n| and y = 1
2 |m| we see that d = 4(x2 + y2) for x, y ∈ N.

Conversely if d = 4(x2 + y2) and we define f̃(z) = (2x+ 2iy)·z then

f̃
(
Ã

(2)
1,0

)
= B̃

(4)
2x,2y, f̃

(
B̃

(4)
0,0

)
= B̃

(4)
0,0 , f̃

(
C̃

(4)
1,1

)
= B̃

(4)
2(x−y),2(x+y)

therefore f̃ induces a realization of the candidate.

Remark 3.3.4. One feature of the above proof is worth pointing out. After assum-
ing that some degree-d candidate S(2, 4, 4) 99KS(2, 4, 4) is realized by some map,
we have always used only “two thirds” of the branching instruction to show that d
has the appropriate form. The same phenomenon will occur in all the next proofs,
except that of Theorem 3.3.8. Note however that to check that some f̃ defined start-
ing from a degree d with appropriate form induces a realization of the corresponding
candidate, we had to check all three conditions.

As an illustration of the previous proof, we provide in Fig. 3.4 a description of
the map f̃ : E→ E inducing a realization of S 5:199K99K99K

(2,2,1),(4,1),(4,1)
S.
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1

i f̃

Figure 3.4. A map f̃ : E→ E inducing a degree-5 cover of S(2, 4, 4) onto itself

Theorem 3.3.5 (case (2) in Fig. 3.1). The candidate surface branched covers having
associated candidate S(2, 3, 6)

d:199KS(2, 3, 6) are

S
6k+1:199K99K99K99K99K99K

(2,...,2,1),(3,...,3,1),(6,...,6,1)
S S

6k+3:199K99K99K99K99K99K
(2,...,2,1),(3,...,3),(6,...,6,2,1)

S

S
6k+4:199K99K99K99K99K99K

(2,...,2),(3,...,3,1),(6,...,6,3,1)
S S

6k+6:199K99K99K99K99K99K
(2,...,2),(3,...,3),(6,...,6,3,2,1)

S

with k > 1, and they are realizable if and only if, respectively:

• d = x2 + xy + y2 with x, y ∈ N not both even and x 6≡ y (mod 3);

• d = 3(x2 + 3xy + 3y2) with x, y ∈ N not both even;

• d = 12(x2 + 3xy + 3y2) + 16 with x, y ∈ N;

• d = 12(x2 + 3xy + 3y2) with x, y ∈ N.

Proof. A candidate orbifold cover S(2, 3, 6) 99KS(2, 3, 6) can be complemented with
the cover instructions

2 99K 2, 3 99K 3, 6 99K 6 2 99K 2, (3, 6) 99K 6,
3 99K 3, (2, 6) 99K 6, (2, 3, 6) 99K 6

which are associated to the candidate surface branched covers of the statement
(formula (2.2) is always satisfied in this case).

The scheme of the proof is now as for case (1): we consider the universal cover
π : E → S(2, 3, 6) we have fixed, we assume that a map f : S(2, 3, 6)

d:1−→S(2, 3, 6)
realizing some candidate cover exists, we use Proposition 3.1.2 to find f̃ : E → E
with f̃(z) = λ·z+µ and π ◦ f̃ = f ◦π, and we show that d = |λ|2 has the appropriate
form. Moreover essentially the same calculations will also allow us to prove the
converse. We will always use the notation fixed in (3.7), in particular ω = 1+i

√
3

2 .

We first apply Lemma 3.3.1. Since Λ(2,3,6) =

〈
τi
√

3, τ 3+i
√

3
2

〉
we must have

λ·i
√

3 = n·i
√

3 +m· 3 + i
√

3

2
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for some n,m ∈ Z, which easily implies that

λ = n+
m

2
− i
√

3
m

2
= (n+m)− ωm

therefore d = n2 + nm + m2. Notice that Lemma 3.3.1 does not give any other
condition, because λ· 3+i

√
3

2 = (−m)·i
√

3 + (n+m)· 3+i
√

3
2 .

We now analyze our four candidates, starting from the first one. Since

f
(
A(2)

)
= A(2), f

(
B(3)

)
= B(3), f

(
C(6)

)
= C(6)

we can assume f̃
(
B̃

(3)
0,0

)
= B̃

(3)
0,0 , so µ = 0, and f̃

(
Ã

(2)
1,0

)
= Ã

(2)
a,b for some a, b ∈ Z

not both even with a − b ≡ 1 (mod 3). Since a = n +m and b = −m we deduce
that n,m are not both even and n −m ≡ 1 (mod 3). If n,m > 0 or n,m 6 0 we
set x = |n| and y = |m|, getting d = x2 + xy + y2 with x, y ∈ N not both even and
x 6≡ y (mod 3). Otherwise we have n > 0 > m up to permutation. If n > −m we
set x = n+m and y = −m, otherwise x = n and y = −n−m, and again we have
d = x2 + xy + y2 with x, y ∈ N not both even and x 6≡ y (mod 3).

Conversely, assume d = x2 + xy + y2 with x, y ∈ N not both even and x 6≡
y (mod 3). Up to changing sign to both x and y we can suppose that x − y ≡
1 (mod 3) and define f̃(z) = ((x+ y)−ωy)·z. Of course f̃

(
B̃

(3)
0,0

)
= B̃

(3)
0,0 , the above

calculations show that f̃
(
Ã

(2)
1,0

)
= Ã

(2)
x+y,−y, and using the identity ω2 = ω − 1 we

have f̃
(
C̃

(6)
0,1

)
= (x + y − ωy)·ω = y + ωx = C̃

(6)
y,x where the last equality depends

on the fact that y − x ≡ −(x− y) ≡ 2 (mod 3). This easily implies that f̃ induces
a realization of the first candidate.

Let us turn to the second candidate. Since

f
(
A(2)

)
= A(2), f

(
B(3)

)
= C(6), f

(
C(6)

)
= C(6)

we can assume f̃
(
B̃

(3)
0,0

)
= C̃

(6)
0,1 , namely µ = ω. In addition f̃

(
Ã

(2)
1,0

)
= Ã

(2)
a,b for

some a, b ∈ Z not both even with a− b ≡ 1 (mod 3). Since a = n+m and b = 2−m
we deduce that n,m are not both even and n ≡ m (mod 3). Setting x = n and
y = (m − n)/3 we then get d = 3(x2 + 3xy + 3y2) for x, y ∈ Z not both even.
Reducing to the case x, y ∈ N is a routine matter that we leave to the reader.

Conversely, assume d = 3(x2 + 3xy + 3y2) for x, y ∈ N not both even, set n = x
and m = x+ 3y and define

f̃(z) = ((n+m)− ωm)·z + ω.

Then f̃
(
Ã

(2)
1,0

)
is some Ã(2)

∗ by the above calculations, while

f̃
(
C̃

(6)
0,1

)
= f̃(ω) = (x+ 3y) + ω(x+ 1)

which is some C̃(6)
∗ because (x+3y)− (x+1) ≡ 2 (mod 3). It follows that f̃ induces

a realization of the candidate.
For the third candidate we have

f
(
A(2)

)
= C(6), f

(
B(3)

)
= B(3), f

(
C(6)

)
= C(6)
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so we can take µ = 0 and f̃
(
Ã

(2)
1,0

)
= C̃

(6)
a,b for some a, b ∈ Z with a− b ≡ 2 (mod 3).

Since a = (n +m)/2 and b = −m/2 we have that n and m are even and n −m ≡
1 (mod 3). So we can define x = n+4

2 and y = m−n−8
6 and we have d = 12(x2 +

3xy + 3y2) + 16 with x, y ∈ Z. Again it is easy to reduce to the case x, y ∈ N.
Conversely, suppose d = 12(x2 + 3xy+ 3y2) + 16 with x, y ∈ N, set n = 2(x− 2)

and m = 2(x + 3y + 2), and define f̃(z) = ((n + m) − ωm) ·z. Then of course
f̃
(
B̃

(3)
0,0

)
= B̃

(3)
0,0 , the above calculations show that f̃

(
Ã

(2)
1,0

)
is some C̃(6)

∗ , while

f̃
(
C̃

(6)
0,1

)
= f̃(ω) = 2(x+ 3y + 2) + ω2(x− 2)

which is some C̃(6)
∗ because 2(x+ 3y + 2)− 2(x− 2) ≡ 2 (mod 3), hence f̃ induces

a realization of the candidate.
For the last candidate

f
(
A(2)

)
= C(6), f

(
B(3)

)
= C(6), f

(
C(6)

)
= C(6)

so we can assume f̃
(
B̃

(3)
0,0

)
= C̃

(6)
0,1 , namely µ = ω. In addition f̃

(
Ã

(2)
1,0

)
= C̃

(6)
a,b for

some a, b ∈ Z with a − b ≡ 2 (mod 3). Since a = (n + m)/2 and b = (2 − m)/2
we deduce that n,m are both even and n ≡ m (mod 3). Setting x = n/2 and
y = (m − n)/6 we then get d = 12(x2 + 3xy + 3y2) for x, y ∈ Z, and again we can
reduce to x, y ∈ N.

Conversely suppose d = 12(x2 + 3xy + 3y2) for x, y ∈ N, set n = 2x and
m = 2(x+ 3y) and define f̃(z) = ((n+m)−ωm)·z+ω. Then f̃

(
B̃

(3)
0,0

)
= C̃

(6)
1,0 and

f̃
(
Ã

(2)
1,0

)
is some C̃(6)

∗ by the above calculations, while

f̃
(
C̃

(6)
0,1

)
= f̃(ω) = (2x+ 3y) + (2x+ 1)ω

which is some C̃(6)
∗ because (2x + 3y) − (2x + 1) ≡ 2 (mod 3), hence f̃ induces a

realization of the candidate.

Theorem 3.3.6 (case (3) in Fig. 3.1). The candidate surface branched covers in-
ducing S(3, 3, 3)

d:199KS(3, 3, 3) are

S
3k+1:199K99K99K99K99K

(3,...,3,1),(3,...,3,1),(3,...,3,1)
S S

3k+3:199K99K99K99K99K
(3,...,3),(3,...,3),(3,...,3,1,1,1)

S

for k > 1, and they are realizable if and only if, respectively

• d = x2 + xy + y2 with x, y ∈ N and x 6≡ y (mod 3);

• d = 3(x2 + 3xy + 3y2) with x, y ∈ N.

Proof. The possible cover instructions are

3 99K 3, 3 99K 3, 3 99K 3, (3, 3) 99K 3, 3 99K 3, (3, 3, 3) 99K 3.

The second one is not associated to any candidate surface branched cover, and the
other two are associated to the candidates in the statement.
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We follow again the same scheme, using the notation of (3.8). If f̃(z) = λ·z+ µ
realizes a candidate then, as in the previous proof, Lemma 3.3.1 implies that λ =
(n+m)− ωm for n,m ∈ Z, and d = n2 + nm+m2. Moreover from the symmetry
of S(3, 3, 3) we can assume f

(
A(3)

)
= A(3), whence f̃

(
Ã

(3)
0,0

)
= Ã

(3)
0,0, namely µ = 0.

For the first candidate we have f
(
B(3)

)
= B(3) up to symmetry, whence

f̃
(
B̃

(3)
1,0

)
= λ is some B̃(3)

a,b with a − b ≡ 1 (mod 3), therefore n −m ≡ 1 (mod 3).
Exactly as in the previous proof we deduce that d = x2 + xy + y2 with x, y ∈ N
and x 6≡ y (mod 3). The converse is proved as above. Switching signs if necessary
we assume x − y ≡ 1 (mod 3), we set f̃(z) = ((x + y) − ωy) · z and note that
f̃
(
C̃

(3)
0,1

)
= f̃(ω) = y + ωx is C̃(6)

y,x because y − x ≡ 2 (mod 3).
For the second candidate f

(
B(3)

)
= A(3), whence f̃

(
B̃(3)1,0

)
= λ is some Ã(3)

∗ ,
which implies that n ≡ m (mod 3). Setting x = n and y = (m − n)/3 we see that
x, y ∈ Z and d = 3(x2 + 3xy + y2), and the conclusion is as usual.

Theorem 3.3.7 (case (4) in Fig. 3.1). The candidate surface branched covers in-
ducing some S(2, 2, 2, 2)

d:199KS(2, 2, 2, 2) are

S
2k+1:199K99K99K99K99K99K99K

(2,...,2,1),(2,...,2,1),(2,...,2,1),(2,...,2,1)
S

S
2k+2:199K99K99K99K99K99K99K

(2,...,2,1,1),(2,...,2,1,1),(2,...,2),(2,...,2)
S

S
2k+4:199K99K99K99K99K99K99K

(2,...,2,1,1,1,1),(2,...,2),(2,...,2),(2,...,2)
S

for k > 1. The first two are always realizable, the last one is if and only if d is a
multiple of 4.
Proof. The first assertion is easy (but note that now the Riemann-Hurwitz formula
cannot be used in its simplified form (2.2), it reads `(Π) = 2d + 2). The second
assertion is proved as usual, except that we have to deal with the flexibility of
S(2, 2, 2, 2). We assume that a map f : S(2, 2, 2, 2)

d:1−→S(2, 2, 2, 2) realizing some
candidate exists and we put on the target S(2, 2, 2, 2) the structure π defined by
Γ1,1

(2,2,2,2). Then we deduce from Lemma 3.1.2 that there exists a structure π̃ on the
source S(2, 2, 2, 2) also with area 2, and f̃ : E → E, such that f̃(z) = λ·z + µ with
π ◦ f̃ = f ◦ π̃ and d = |λ|2. Then π̃ is defined by some Γs,t(2,2,2,2).

We first note that by the symmetry of S(2, 2, 2, 2) we can assume µ = 0. Then
we apply Lemma 3.3.1. Since

Λ1,1
(2,2,2,2) = 〈τ2, τ2i〉,

〈
τ2is, τ2( 1

s
+it)

〉

there exist m,n, p, q ∈ Z such that
{
λ·is = n+ im

λ·
(

1
s + it

)
= p+ iq

(3.9)

and some easy computations show that all the relevant quantities can be determined
explicitly in terms of n,m, p, q, namely:

s =

√
n2 +m2

pm− qn, t =
sp

n
− m
ns
, λ =

1

s
(m− in)
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so in particular d = |λ|2 = pm− qn. Note also that equations (3.9) already give us
also the images of the lifts of the cone points.

For the first candidate we have d = 4a± 1 for some a > 1, we set n = 2a, m =
1, p = ±1, q = −2, we compute s, t, λ as above and we see that the corresponding
map f̃ induces a realization of the candidate, because

f̃
(
Ã(2)

)
= Ã

(2)
0,0 f̃

(
B̃(2)

)
= B̃

(2)
±1,−2

f̃
(
C̃(2)

)
= C̃

(2)
2a±1,−1 f̃

(
D̃(2)

)
= D̃

(2)
2a,1.

For the second candidate we have d = 4a + 1 ± 1 for some a > 1, we set
n = 2a, m = 1± 1, p = 1, q = −2 we compute s, t, λ as above and we see that the
corresponding map f̃ induces a realization of the candidate, because

f̃
(
Ã(2)

)
= Ã

(2)
0,0 f̃

(
B̃(2)

)
= B̃

(2)
1,−2

f̃
(
C̃(2)

)
= B̃

(2)
2a+1,±1−1 f̃

(
D̃(2)

)
= Ã

(2)
2a,1±1.

For the last candidate each lift of a cone point has some Ã(2)
∗ as its image,

therefore n,m, p, q must all be even, which implies that d is a multiple of 4, as
prescribed in the statement. Conversely if d = 4a for a > 1 we set n = m = q =
2, p = 2(a+ 1) we compute s, t, λ as above and we see that the corresponding map
f̃ induces a realization of the candidate, because

f̃
(
Ã(2)

)
= Ã

(2)
0,0 f̃

(
B̃(2)

)
= Ã

(2)
2(a+1),2

f̃
(
C̃(2)

)
= Ã

(2)
2(a+2),4 f̃

(
D̃(2)

)
= Ã

(2)
2,2.

The proof is complete.

Theorem 3.3.8 (case (5) in Fig. 3.1). The candidate surface branched covers having
associated candidate S(3, 3, 3)

d:199KS(2, 3, 6) are

S
6k:199K99K99K99K99K

(2,...,2),(3,...,3,1,1,1),(6,...,6)
S S

6k+2:199K99K99K99K99K
(2,...,2),(3,...,3,1,1),(6,...,6,2)

S

S
6k+4:199K99K99K99K99K

(2,...,2),(3,...,3,1),(6,...,6,2,2)
S S

6k+6:199K99K99K99K99K
(2,...,2),(3,...,3),(6,...,6,2,2,2)

S

for k > 1, and they are realizable, respectively:

• if and only if d = 6(x2 + 3xy + 3y2) for x, y ∈ N;

• if and only if d = 2(x2 + xy + y2) for x, y ∈ N and x 6≡ y (mod 3);

• never;

• if and only if d = 6(x2 + 3xy + 3y2) for x, y ∈ N.

Proof. The first assertion is easy. For the second one we proceed as above, except
that now the Euclidean structure π̃ on S(3, 3, 3) is not that we have fixed above,
because its area should be

√
3

4 rather than
√

3
2 , so the triangle ∆(3, 3, 3) must be
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rescaled by a factor 1/
√

2. The lattices to which we can apply Lemma 3.3.1 are
therefore

1√
2
· Λ(3,3,3) =

〈
τ
i
√

3
2
, τ 3+i

√
3

2
√

2

〉
, Λ(2,3,6) =

〈
τi
√

3, τ 3+i
√

3
2

〉
.

As in the proof of Theorem 3.3.5 (except for the new factor) we deduce that

λ =
√

2·((n+m)− ωm), d = |λ|2 = 2(n2 + nm+m2).

Therefore f̃ maps the lifts of the cone points of S(3, 3, 3) to

f̃(0) = µ, f̃

(
1√
2

)
= (n+m)− ωm+ µ, f̃

(
ω√
2

)
= m+ nω + µ.

For the first candidate all these points should be some B̃(3)
∗ from (3.7), so we can

assume µ = 0 and

n+m− (−m) 6≡ 2 (mod 3), m− n 6≡ 2 (mod 3) ⇒ n ≡ m (mod 3).

Setting x = n and y = (m − n)/3 we then see that d = 6(x2 + 3xy + 3y2) for
x, y ∈ Z, and as above we can reduce to x, y ∈ N, so d has the appropriate form.
The converse follows from the same computations: if d = 6(x2 + 3xy + 3y2) we set
n = x and m = x+ 3y and we see that the corresponding f̃ realizes the candidate.

For the second candidate again µ = 0 and, by the symmetry of S(3, 3, 3), we can
assume 1/

√
2 is mapped to some C(6)

∗ , namely n−m ≡ 2 (mod 3), so in particular
n 6≡ m (mod 3). Therefore d = 2(x2 +xy+y2) for some x, y ∈ Z with x 6≡ y (mod 3),
and once again restricting to x, y ∈ N makes no difference, so d has the prescribed
form. The construction is easily reversible because if n − m ≡ 2 (mod 3) then
m− n 6≡ 2 (mod 3), which also proves that the third candidate is never realizable.

For the last candidate we can assume µ = ω, and

(n+m)− (1−m) ≡ 2 (mod 3)
m− (n+ 1) ≡ 2 (mod 3)

⇒ n ≡ m (mod 3)

and we conclude as for the first candidate.

Theorem 3.3.9 (case (6) in Fig. 3.1). The candidate surface branched covers having
associated candidate S(2, 2, 2, 2)

d:199KS(2, 4, 4) are

S
4k+4:199K99K99K99K99K99K

(2,...,2,1,1,1,1),(4,...,4),(4,...,4)
S S

4k+4:199K99K99K99K99K99K
(2,...,2,1,1),(4,...,4,2,2),(4,...,4)

S

S
4k+2:199K99K99K99K99K99K

(2,...,2,1,1),(4,...,4,2),(4,...,4,2)
S S

4k+4:199K99K99K99K99K99K
(2,...,2),(4,...,4,2,2),(4,...,4,2,2)

S

S
4k+6:199K99K99K99K99K99K

(2,...,2),(4,...,4,2,2,2),(4,...,4,2)
S S

4k+8:199K99K99K99K99K99K
(2,...,2),(4,...,4,2,2,2,2),(4,...,4)

S

for k > 1. The first four are always realizable, the fifth one is never, and the last
one is if and only if d is a multiple of 8.
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Proof. Again we leave the first assertion to the reader and we proceed with the
customary scheme. Since the area of the structure we have chosen on S(2, 4, 4) is 1,
on S(2, 2, 2, 2) we will have a structure generated by the rotations of angle π around
points

0,
1

2s
+ it,

1

2s
+ i(s+ t), is

with s, t ∈ R and s > 0. The lattices to which we must apply Lemma 3.3.1 are
therefore

〈
τ2is, τ 1

s
+2it

〉
and Λ(2,4,4) = 〈τ2, τ2i〉, so

{
λ·2is = 2(n+ im)
λ·(1
s + 2it) = 2(p+ iq)

for some n,m, p, q ∈ Z. Whence, after easy computations,

s =

√
n2 +m2

2(pm− qn) , t =
sp

n
− m

2sn
, λ =

m− in
s
.

In particular d = 2(pm − qn) and the images of the lifts of the cone points of
S(2, 2, 2, 2) are

f̃(0) = µ f̃
(

1
2s + it

)
= p+ iq + µ

f̃(is) = n+ im+ µ f̃
(

1
2s + i(s+ t)

)
= (p+ n) + i(q +m) + µ.

The first four candidates are realized respectively with the following choices of
n,m, p, q, µ:

n m p q µ

k + 1 k + 1 1 −1 1
k k + 1 2 0 0
k k + 1 1 −1 0
k k + 1 2 0 0

The fifth candidate is always exceptional because we can suppose µ = 0 and
hence we should have that two of the pairs

(p, q), (n,m), (p+ n, q +m)

consist of even numbers and the third one consists of odd numbers, which is impos-
sible.

For the last candidate we have that p, q, n,m must all be even, so d = 2(pm−qn)
is a multiple of 8. Conversely if d = 8h we can realize the candidate with n = q = 0,
m = 2 and p = 2h.

Theorem 3.3.10 (case (7) in Fig. 3.1). The candidate surface branched covers
having associated candidate S(2, 2, 2, 2)

d:199KS(2, 3, 6) are

S
6k:199K99K99K99K99K99K

(2,...,2,1,1,1,1),(3,...,3),(6,...,6)
S S

6k+3:199K99K99K99K99K99K
(2,...,2,1,1,1),(3,...,3),(6,...,6,3)

S

S
6k+6:199K99K99K99K99K99K

(2,...,2,1,1),(3,...,3),(6,...,6,3,3)
S S

6k+9:199K99K99K99K99K99K
(2,...,2,1),(3,...,3),(6,...,6,3,3,3)

S

S
6k+12:199K99K99K99K99K99K

(2,...,2),(3,...,3),(6,...,6,3,3,3,3)
S
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for k > 1. The first three are always realizable, the fourth one is never, and the last
one is if and only if d is a multiple of 12.

Proof. Once again we leave the first assertion to the reader and we follow the usual
scheme. Since the area of S(2, 3, 6) is

√
3/4, on S(2, 2, 2, 2) we will have a structure

generated by the rotations of angle π around points

0,

√
3

8s
+ it,

√
3

8s
+ i(s+ t), is

and we apply Lemma 3.3.1 to
〈
τ2is, τ√3

8s
+2it

〉
and Λ(2,3,6) =

〈
τi
√

3, τ 3+i
√

3
2

〉
, so for

some n,m, p, q ∈ Z we have



λ·2is = ni

√
3 +m3+i

√
3

2
λ·
(√

3
4s + 2it

)
= pi
√

3 + q 3+i
√

3
2

whence, after some calculations

s =
1

2

√
n2 + nm+m2

qn− pm , t =
qs

m
− m+ 2n

8ms
,

λ =

√
3(m+ 2n)− 3im

4s
=

√
3

2s
·((n+m)−mω)

so in particular d = |λ|2 = 3(qn−pm). Moreover the following relations will readily
allow us to determine the images under f̃ of the lifts of the cone points of S(2, 2, 2, 2):

λ·is =
1

2
((m− n) + (m+ 2n)ω),

λ·
(√

3

8s
+ it

)
=

1

2
((q − p) + (q + 2p)ω).

For the first candidate we choose µ = 1
2 , p = q = 2, n = k + 1 and m = 1. The

corresponding f̃ induces a realization because d = 6k = 3(qn− pm) and the images
of the cone points are

1
2(1 + 0ω), 1

2((m− n+ 1) + (m+ 2n)ω),
1
2((q − p+ 1) + (q + 2p)ω), 1

2((m+ q − n− p+ 1) + (m+ q + 2n+ 2p)ω)

which are easily recognized to all have the form 1
2(a + bω) with a, b not both even

and a− b ≡ 1 (mod 3), so they equal some Ã(2)
∗ .

For the second candidate we choose µ = 1
2 , n = 2, m = 1 and

q = k, p = −1 if k ≡ 1 (mod 2), q = k + 1, p = 1 if k ≡ 0 (mod 2).

Then d = 6k + 3 = 3(qn − pm) and the images of the cone points are as before,
but now the first three are some Ã(2)

∗ , while the last one has the form a+ bω with
a, b ∈ Z and a− b ≡ 2 (mod 3), so it is some C̃(6)

∗ , so f̃ induces a realization of the
candidate.
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For the third candidate we choose µ = 1
2 , m = q = 2 and

n = k, p = −1 if k ≡ 0 (mod 2), n = k + 1, p = 1 if k ≡ 1 (mod 2).

Then d = 6k+ 6 = 3(qn− pm) and now the first two images are some Ã(2)
∗ and the

last two are some C̃(6)
∗ , so f̃ induces a realization of the candidate.

For the fourth candidate we can once again suppose µ = 1
2 . Since the images of

the last three cone points must be some C̃(6)
∗ we deduce that m, q,m+ q should be

even and hence n, p, n+ p should be odd, which is impossible.
Turning to the last candidate, we can suppose µ = ω. Then the images of the

cone points are

1 + 0ω, 1
2((m− n) + (m+ 2n+ 2)ω),

1
2((q − p) + (q + 2p+ 2)ω), 1

2((m+ q − n− p) + (m+ q + 2n+ 2p+ 2)ω)

and they must all be some C̃(6)
∗ , so n,m, p, q should all be even. Therefore d =

3(qn− pm) is a multiple of 12. Conversely, if d = 12h+ 12 we realize the candidate
with the choice q = 2h, n = m = 2 and p = −2.

Remark 3.3.11. A geometric interpretation of the results exposed in this chapter
and in the next one is worth pointing out. Let Σ̃ 99K Σ be a candidate surface
branched cover with associated candidate orbifold cover X̃ 99KX, and suppose that
X̃ and X are geometric. Then we have identifications X̃ = X/Γ̃ and X = X/Γ,
where X is one of the model geometries S, E or H (the same for X̃ and X), and
Γ̃,Γ are discrete cocompact groups of isometries of X. A realization of the cover
then corresponds to an identification of Γ̃ to a subgroup of Γ. Our results in the
spherical, Euclidean, and hyperbolic cases therefore yield a classification of the
inclusions, respectively, between finite subgroups of SO(3), between 2-dimensional
crystallographic groups, and between discrete, cocompact subgroups of PSL(2;R)
with no more than three singular orbits.

Congruences and density We close this section explaining the reason why our
main results are remarkable in view of the prime degree conjecture:

• A prime number of the form 4k + 1 can always be expressed as x2 + y2 for
x, y ∈ N (Fermat);

• A prime number of the form 6k + 1 (or equivalently 3k + 1) can always be
expressed as x2 + xy + y2 for x, y ∈ N (Gauss);

• The integers that can be expressed as x2 + y2 or as x2 +xy+ y2 with x, y ∈ N
have asymptotically zero density in N.

This means that a candidate cover in any of our three statements is “exceptional
with probability 1,” even though it is realizable when its degree is prime.
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We close this section explaining in detail why Theorems 0.0.2 to 0.0.4 are implied
by Theorems 3.3.3 to 3.3.6. First of all we have:

{
d ∈ N : d = x2 + y2 for x, y ∈ N, x 6≡ y (mod 2)

}

=
{
d ∈ N : d ≡ 1 (mod 4), d = x2 + y2 for x, y ∈ N

}
,

{
d ∈ N : d = x2 + xy + y2 for x, y ∈ N not both even, x 6≡ y (mod 3)

}

=
{
d ∈ N : d ≡ 1 (mod 6), d = x2 + xy + y2 for x, y ∈ N

}
,

{
d ∈ N : d = x2 + xy + y2 for x, y ∈ N, x 6≡ y (mod 3)

}

=
{
d ∈ N : d ≡ 1 (mod 3), d = x2 + xy + y2 for x, y ∈ N

}
.

Moreover the statement made in the Introduction that in Theorems 0.0.2 to 0.0.4
the realizable degrees have zero asymptotic density means the following:

lim
n→∞

1
n ·#

{
d ∈ N : d 6 n, d = x2 + y2 for x, y ∈ N

}
= 0,

lim
n→∞

1
n ·#

{
d ∈ N : d 6 n, d = x2 + xy + y2 for x, y ∈ N

}
= 0.



Chapter 4

Orbifold Covers in χorb < 0

In order to carry on as far as possible the investigation of the realizability problem
for branched covers also in the case where the associated orbifold cover is hyperbolic,
we restrict our analysis to the family of branched covers of S2 over S2 with three
branching points. More precisely, we stratify this huge family with respect to the
number of singular points in the cover sphere. We call {Cn}, for n > 3 the stratum
of all covers like

S(α1, . . . , αn) 99KS(p, q, r).

This chapter contains the analysis of first two strata C3, C4. Note that after a
long but easy work of enumeration of candidate covers, we provide proofs about
realizability and exceptionality using mainly Grothendieck’s dessins d’enfant [9, 27],
already exploited in [19] and briefly reviewed in chapter 2. However, we conclude
this chapter with a section dedicated to an attempt at understanding more about
how to exploit the geometric viewpoint also in the hyperbolic case.

4.1 Triangular hyperbolic 2-orbifolds: C3

The stratum C3 involves only rigid hyperbolic 2-orbifolds, indeed one knows that a
hyperbolic 2-orbifold is rigid if and only if it is triangular, namely if it is based on
the sphere and it has precisely three cone points. In this section we will show that
only very few candidate surface branched covers have associated candidate covers
between hyperbolic triangular 2-orbifolds:

Theorem 4.1.1. The candidate surface branched covers having associated candidate
covers between triangular hyperbolic 2-orbifolds are precisely:

S
6:199K99K99K99K99K

(5,1),(4,1,1),(2,2,2)
S S

8:199K99K99K99K99K
(5,1,1,1),(4,4),(2,...,2)

S S
8:199K99K99K99K99K

(7,1),(3,3,1,1),(2,...,2)
S

S
9:199K99K99K99K99K

(7,1,1),(3,3,3),(2,...,2,1)
S S

10:199K99K99K99K99K
(8,1,1),(3,3,3,1),(2,...,2)

S S
12:199K99K99K99K99K

(8,2,1,1),(3,...,3),(2,...,2)
S

S
12:199K99K99K99K99K

(9,1,1,1),(3,...,3),(2,...,2)
S S

16:199K99K99K99K99K
(7,7,1,1),(3,...,3,1),(2,...,2)

S S
24:199K99K99K99K99K

(7,7,7,1,1,1),(3,...,3),(2,...,2)
S.

For the candidate covers of Theorem 4.1.1 the geometric approach is not even
necessary, since realizability can be fully analyzed using a completely different tech-
nique, namely Grothendieck’s dessins d’enfant. We will show the following:

41
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Proposition 4.1.2. Among the candidate covers of Theorem 4.1.1, the second and
the eighth are exceptional and all other ones are realizable.

Let us now establish the results we have stated. The first proof requires the
analysis of quite a few cases, some of which we will leave to the reader.
Proof of 4.1.1. Our argument is organized in three steps:

(I) Analysis of the relevant surface candidate covers with degree d 6 11;

(II) Restrictions on the base of the associated candidate cover for d > 12;

(III) More restrictions on the cover and conclusion for d > 12.

Step I. If Π is a partition of an integer d, let us denote by `(Π) its length (as
above), and by c(Π) the number of entries in Π which are different from l.c.m.(Π).
To have an associated candidate cover between triangular 2-orbifolds (regardless of
the geometry), a candidate surface branched cover of degree d > 2 must have the
following properties:

• The number of branching points is 3;

• If the partitions of d are Π1,Π2,Π3 then c(Π1) + c(Π2) + c(Π3) = 3.

To list all such candidate covers for a given d then one has to:

• List all the partitions Π of d with c(Π) 6 3;

• Find all possible triples (Π1,Π2,Π3) of partitions with `(Π1)+`(Π2)+`(Π3) =
d+ 2 and c(Π1) + c(Π2) + c(Π3) = 3.

We have done this for 2 6 d 6 11 and then we have singled out the candidate
covers having associated hyperbolic 2-orbifold covers, getting the first five items of
the statement. To illustrate how this works we will spell out here only the case
d = 8. The partitions Π of 8 with c(Π) 6 3 are those described in Table 4.1, with
the corresponding values of ` and c.

Π (8) (6,1,1) (5,1,1,1) (4,2,2) (3,3,1,1)
` 1 3 4 3 4
c 0 2 3 2 2
Π (7,1) (5,3) (4,4) (4,2,1,1) (2,2,2,2)
` 2 2 2 4 4
c 1 2 0 3 0
Π (6,2) (5,2,1) (4,3,1) (3,3,2) (2,2,2,1,1)
` 2 3 3 3 5
c 1 3 3 3 2

Table 4.1. The partitions Π of 8 with c(Π) 6 3

The triples of such partitions such that ` and c sum up to 10 and 3 respectively
are shown in Table 4.2, together with the associated candidate orbifold cover and
its geometric type. So we get the second and third item in the statement.



4.1 Triangular hyperbolic 2-orbifolds: C3 43

Π1,Π2,Π3 Associated cover Geometry
(2,2,2,2) (4,4) (4,2,1,1) S(2, 4, 4) 99KS(2, 4, 4) E
(2,2,2,2) (4,4) (5,1,1,1) S(5, 5, 5) 99KS(2, 4, 5) H
(2,2,2,2) (3,3,1,1) (6,2) S(3, 3, 3) 99KS(2, 3, 6) E
(2,2,2,2) (3,3,1,1) (7,1) S(3, 3, 7) 99KS(2, 3, 7) H

Table 4.2. Triples of partitions of 8 having associated candidate covers between triangular
orbifolds

Step II. Let us denote by X̃ d:199KX a candidate orbifold cover with d > 12 and
hyperbolic X̃ = S(α, β, γ) and X = S(p, q, r). Since

0 < −χorb(X̃) = 1−
(

1

α
+

1

β
+

1

γ

)
< 1

and χorb(X̃) = d·χorb(X), we deduce that

0 < −χorb(X) = 1−
(

1

p
+

1

q
+

1

r

)
<

1

12
⇒ 11

12
<

(
1

p
+

1

q
+

1

r

)
< 1.

Assuming p 6 q 6 r it is now very easy to check that the last inequality is satisfied
only for p = 2, q = 3, 7 6 r 6 11 and for p = 2, q = 4, r = 5.
Step III. If X̃ 99KX is a candidate 2-orbifold cover with hyperbolic X̃ = S(α, β, γ)
and X = S(p, q, r) then the following must happen:

(a) Each of α, β, γ must be a divisor of some element of {p, q, r};

(b) χ
orb(X̃)
χorb(X) must be an integer d;

(c) There must exist three partitions of d such that associated candidate orbifold
cover is X̃ 99KX.

Successively imposing these conditions with each of the 5 orbifolds X coming from
Step II and restricting to d > 12 we have found the last four items in the statement.
Again we only spell out here one example, leaving the other ones to the reader. Let
X be S(2, 3, 8). Then the relevant hyperbolic X̃’s according to (a), excluding X
itself, are

S(2, 4, 8) S(3, 3, 4) S(2, 8, 8) S(3, 3, 8) S(3, 8, 8)
S(3, 4, 4) S(4, 4, 4) S(4, 4, 8) S(4, 8, 8) S(8, 8, 8)

and d = χorb(X̃)
χorb(X) is always integer in this case, so point (b) is not an issue. However

d 6 11 in all cases but the last two (for instance, the case X̃ = S(3, 8, 8) corresponds
to the fifth item in the statement). For X̃ = S(4, 8, 8) we have d = 12 and taking
the partitions of 12 as the sixth item in the statement we see that the associated
orbifold cover is indeed S(4, 8, 8) 99KS(2, 3, 8). For X̃ = S(8, 8, 8) we have d = 15
and it is impossible to find partitions of 15 having the right associated candidate
orbifold cover, because the cone point of order 2 in X, being covered by ordinary
points of X̃ only, should require a partition consisting of 2’s only, which cannot exist
because 15 is odd.
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(1) (3) (4)

(7)

(5)

(9)(6)

Figure 4.1. Dessins d’enfant for all candidate surfaced branched covers in Theorem 4.1.1 except
the second and the eighth

Figure 4.2. Exceptionality of S
8:1

99K99K99K99K99K
(5,1,1,1),(4,4),(2,...,2)

S

Carrying out the same analysis one gets the last two items in the statement for
X = S(2, 3, 7), the seventh item for X = S(2, 3, 9), and nothing new for the other
X’s. This concludes Step III and the proof. �

As already announced, the next argument is based on a technique different from
those used in the rest of this paper, namely Grothendieck dessins d’enfant, reviewed
in Chapter 2.
Proof of 4.1.2. Dessins d’enfant proving the realizability of all candidate covers
claimed to be realizable can be found in Fig. 4.1. The black vertices always cor-
respond to the elements of the second partition in Theorem 4.1.1, and the white
vertices to the entries of the third partition, while the regions correspond to the
elements of the first partition. However 2-valent white vertices are never shown,
except for the single 1-valent one in case (4).

Exceptionality of S 8:199K99K99K99K
(5,1,1,1),(4,4),(2,...,2)

S is easy: a dessin relative to partitions (4, 4)

and (2, 2, 2, 2) with at least two complementary regions of length 1 must be as shown
in Fig. 4.2, so the third partition is (4, 2, 1, 1), not (5, 1, 1, 1).

For the exceptionality of S 16:199K99K99K99K99K
(7,7,1,1),(3,...,3,1),(2,...,2)

S refer to Fig. 4.3. Since it must
contain two length-1 regions, a dessin realizing it should be as in (a). The two
marked germs of edges cannot be joined together or to the 1-valent vertex, so they
go either to the same 3-valent vertex as in (aa) or to different 3-valent vertices as
in (ab). Case (aa) is impossible because there is a region with 7 vertices, which will
become more than 7 in the complete dessin. In case (ab) we examine where the
marked germ of edge could go, getting cases (aba) to (abd), always redrawn in a
more convenient way. Cases (aba) and (abb) are impossible because of long regions.
In cases (abc) and (abd) we examine where the marked edge could go in order not
to create regions of length 5 or longer than 7, and we see that in both cases there is



4.2 The stratum C4 45
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Figure 4.3. Exceptionality of S
16:1

99K99K99K99K99K99K
(7,7,1,1),(3,...,3,1),(2,...,2)

S

only one possibility, namely (abca) and (abda). In both these cases, because of the
region of length already 6, the two marked germs of edges should go to one and the
same 3-valent vertex, but there are no more available with two free germs of edges,
so again we cannot complete the dessin in order to realize (8). Our argument is
complete. �

As a conclusion we note that Theorem 4.1.1 and Proposition 4.1.2 are very far
from providing a complete analysis of realizability and exceptionality of candidate
covers with associated orbifold candidate of hyperbolic type, because most often the
orbifolds involved are not triangular. For instance the candidate surface branched
cover S 10:199K99K99K99K99K

(4,4,2),(4,2,2,2),(6,1,1,1,1)
S considered in the first column of Table 2 in [28] is

exceptional, and the associated orbifold candidate S(6, 6, 6, 6, 2, 2, 2, 2) 99KS(4, 4, 6)
is hyperbolic but not triangular.

4.2 The stratum C4

In the previous section we have found realizations and exceptions when X̃ is a
hyperbolic triangular orbifold. In this section we increase by one the number of
cone points and consider

S(α, β, γ, δ)→ S(p, q, r).

The results of the complete analysis of the stratum C4 are informally synthetized in
Theorem 0.0.8. Even if it represents a little step towards the full comprehension of
the hyperbolic case, it produces a lot of examples that could be useful to understand
more of the underlying general pattern.

Proposition 4.2.1. There exist 141 candidate surface branched covers having an
associated candidate 2-orbifold cover X̃ 99KX with X̃ being the sphere with four
cone points and X being a hyperbolic triangular orbifold.

Proposition 4.2.2. Among the candidate covers of Theorem 4.2.1 there are 29
exceptions; they do not occur in prime degree.
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Proof of 4.2.1. Our argument is organized in two steps:

(I) Analysis of the relevant surface candidate covers with degree d 6 12;

(II) Analysis of the relevant surface candidate covers with degree d > 13.

Step I. If Π is a partition of an integer d, let us denote by `(Π) its length (as usual),
and by c(Π) the number of entries in Π which are different from l.c.m.(Π). In order
to belong to our family, a candidate surface branched cover of degree d > 2 must
have the following properties:

• The number of branching points is 3;

• If the partitions of d are Π1,Π2,Π3 then c(Π1) + c(Π2) + c(Π3) = 4.

To list all such candidate covers for a given d then one has to:

• List all the partitions Π of d with c(Π) 6 4;

• Find all possible triples (Π1,Π2,Π3) of partitions such that `(Π1) + `(Π2) +
`(Π3) = d+ 2 and c(Π1) + c(Π2) + c(Π3) = 4.

We have done this for 2 6 d 6 12 and then we have singled out the candidate
covers having associated hyperbolic 2-orbifold covers. For the sake of completeness
we have written down all the computations in Appendix A. The 81 candidate covers
found by these computations are described in Tables 4.3 and 4.4.

Step II. Let us denote by X̃ d:199KX a candidate orbifold cover with d > 13 and
hyperbolic X̃ = S(α, β, γ, δ) and X = S(p, q, r). Since

0 < −χorb(X̃) = 2−
(

1

α
+

1

β
+

1

γ
+

1

δ

)
< 2

and χorb(X̃) = d·χorb(X), we deduce that

0 < −χorb(X) = 1−
(

1

p
+

1

q
+

1

r

)
<

2

13
⇒ 11

13
<

(
1

p
+

1

q
+

1

r

)
< 1.

Assuming p 6 q 6 r it is now very easy to check that the last inequality is satisfied
only for (p, q, r) as follows:

A. (3, 3, 4) and (3, 3, 5)

B. (2, 5, 5) and (2, 5, 6)

C. (2, 4, r) where 5 6 r 6 10

D. (2, 3, r) where 7 6 r 6 77

In order to determine the actual candidate covers, especially for group D, the biggest
one, we must take care of other restrictions:

(a) Each of α, β, γ, δ must be a divisor of some element of {p, q, r};



4.2 The stratum C4 47

d Π1,Π2,Π3 Associated cover
5 (2,1,1,1) (4,1) (5) S(2, 2, 2, 4) 99KS(2, 4, 5)

(3,1,1) (3,1,1) (5) S(3, 3, 3, 3) 99KS(3, 3, 5)
(3,1,1) (4,1) (4,1) S(3, 3, 4, 4) 99KS(3, 4, 4)
(2,2,1) (3,2) (4,1) S(2, 2, 3, 4) 99KS(2, 4, 6)

6 (2,2,1,1) (4,1,1) (6) S(2, 2, 4, 4) 99KS(2, 4, 6)
(2,2,1,1) (5,1) (5,1) S(2, 2, 5, 5) 99KS(2, 5, 5)
(2,2,1,1) (4,2) (5,1) S(2, 2, 2, 5) 99KS(2, 4, 5)
(3,1,1,1) (3,3) (5,1) S(3, 3, 3, 5) 99KS(3, 3, 5)
(3,1,1,1) (3,3) (4,2) S(2, 3, 3, 3) 99KS(3, 3, 4)

(3,3) (4,1,1) (4,1,1) S(4, 4, 4, 4) 99KS(3, 4, 4)
(2,2,2) (3,2,1) (5,1) S(2, 3, 5, 6) 99KS(2, 5, 6)
(2,2,2) (3,2,1) (4,2) S(2, 2, 3, 6) 99KS(2, 4, 6)

7 (2,2,1,1,1) (3,3,1) (7) S(2, 2, 2, 3) 99KS(2, 3, 7)
(2,2,2,1) (4,1,1,1) (7) S(2, 4, 4, 4) 99KS(2, 4, 7)
(3,3,1) (3,3,1) (5,1,1) S(3, 3, 5, 5) 99KS(3, 3, 5)
(3,3,1) (3,3,1) (4,2,1) S(2, 3, 3, 4) 99KS(3, 3, 4)

(2,2,2,1) (3,3,1) (5,2) S(2, 2, 3, 5) 99KS(2, 3, 10)
(2,2,2,1) (3,3,1) (4,3) S(2, 3, 3, 4) 99KS(2, 3, 12)
(2,2,2,1) (4,2,1) (6,1) S(2, 2, 4, 6) 99KS(2, 4, 6)
(2,2,2,1) (5,1,1) (6,1) S(2, 5, 5, 6) 99KS(2, 5, 6)

8 (2,2,2,2) (4,1,1,1,1) (8) S(4, 4, 4, 4) 99KS(2, 4, 8)
(2,2,2,1,1) (3,3,1,1) (8) S(2, 2, 3, 3) 99KS(2, 3, 8)
(2,2,2,2) (3,2,2,1) (4,4) *S(2, 3, 3, 6) 99KS(2, 4, 6)
(2,2,2,2) (5,1,1,1) (7,1) S(5, 5, 5, 7) 99KS(2, 5, 7)
(2,2,2,2) (5,1,1,1) (6,2) *S(3, 5, 5, 5) 99KS(2, 5, 6)
(2,2,2,2) (4,2,1,1) (7,1) S(2, 4, 4, 7) 99KS(2, 4, 7)
(2,2,2,2) (4,2,1,1) (6,2) S(4, 4, 4, 4) 99KS(2, 4, 8)
(2,2,2,2) (3,3,1,1) (5,3) *S(3, 3, 3, 5) 99KS(2, 3, 15)
(3,3,1,1) (3,3,1,1) (4,4) S(3, 3, 3, 3) 99KS(3, 3, 4)
(2,2,2,2) (6,1,1) (6,1,1) S(6, 6, 6, 6) 99KS(2, 6, 6)
(2,2,2,2) (4,2,2) (6,1,1) *S(2, 2, 6, 6) 99KS(2, 4, 6)

9 (2,2,2,1,1,1) (3,3,3) (8,1) S(2, 2, 2, 8) 99KS(2, 3, 8)
(2,2,2,2,1) (3,3,1,1,1) (9) S(2, 3, 3, 3) 99KS(2, 3, 9)

(3,3,3) (3,3,3) (5,1,1,1,1) *S(5, 5, 5, 5) 99KS(3, 3, 5)
(3,3,3) (3,3,3) (4,2,1,1,1) *S(2, 4, 4, 4) 99KS(3, 3, 4)

(3,3,1,1,1) (3,3,3) (4,4,1) S(3, 3, 3, 4) 99KS(3, 3, 4)
(2,2,2,2,1) (4,4,1) (7,1,1) S(2, 4, 7, 7) 99KS(2, 4, 7)
(2,2,2,2,1) (4,4,1) (6,2,1) S(2, 3, 4, 6) 99KS(2, 4, 6)
(2,2,2,2,1) (3,3,3) (5,3,1) S(2, 3, 5, 15) 99KS(2, 3, 15)
(2,2,2,2,1) (3,3,3) (5,2,2) *S(2, 2, 5, 5) 99KS(2, 3, 10)
(2,2,2,2,1) (3,3,3) (4,3,2) S(2, 3, 4, 6) 99KS(2, 3, 12)

Table 4.3. Triples of partitions of d 6 9 with hyperbolic associated candidate covers in C4;
asterisks mark exceptional covers, as determined below
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d Π1,Π2,Π3 Associated cover
10 (2,. . . ,2) (3,3,1,1,1,1) (10) S(3, 3, 3, 3) 99KS(2, 3, 10)

(2,2,2,2,1,1) (4,4,1,1) (5,5) S(2, 2, 4, 4) 99KS(2, 4, 5)
(2,2,2,2,1,1) (3,3,3,1) (8,2) S(2, 2, 3, 4) 99KS(2, 3, 8)
(2,2,2,2,1,1) (3,3,3,1) (9,1) S(2, 2, 3, 9) 99KS(3, 3, 9)

(2,. . . ,2) (5,5) (6,1,1,1,1) S(6, 6, 6, 6) 99KS(2, 5, 6)
(2,. . . ,2) (5,5) (4,2,2,1,1) S(2, 2, 4, 4) 99KS(2, 4, 5)
(2,. . . ,2) (4,4,2) (7,1,1,1) *S(2, 7, 7, 7) 99KS(2, 4, 7)
(2,. . . ,2) (4,4,2) (6,2,1,1) *S(2, 3, 6, 6) 99KS(2, 4, 6)
(2,. . . ,2) (4,4,1,1) (8,1,1) S(4, 4, 8, 8) 99KS(2, 4, 8)
(2,. . . ,2) (4,4,1,1) (6,3,1) S(2, 4, 4, 6) 99KS(2, 4, 6)
(2,. . . ,2) (4,4,1,1) (6,2,2) S(3, 3, 4, 4) 99KS(2, 4, 6)
(2,. . . ,2) (3,3,3,1) (7,2,1) S(2, 3, 7, 14) 99KS(2, 3, 14)
(2,. . . ,2) (3,3,3,1) (5,4,1) S(3, 4, 5, 20) 99KS(2, 3, 20)
(2,. . . ,2) (3,3,3,1) (5,3,2) S(3, 6, 10, 15) 99KS(2, 3, 30)
(2,. . . ,2) (3,3,3,1) (4,3,3) *S(3, 3, 4, 4) 99KS(2, 3, 12)
(3,3,3,1) (3,3,3,1) (4,4,1,1) S(3, 3, 4, 4) 99KS(3, 3, 4)

11 (2,. . . ,2,1) (3,3,3,1,1) (10,1) S(2, 3, 3, 10) 99KS(2, 3, 10)
(2,. . . ,2,1) (4,4,2,1) (5,5,1) S(2, 2, 4, 5) 99KS(2, 4, 5)

12 (2,. . . ,2,1,1) (3,3,3,3) (10,1,1) S(2, 2, 10, 10) 99KS(2, 3, 10)
(2,. . . ,2,1,1) (3,3,3,3) (8,2,2) S(2, 2, 4, 4) 99KS(2, 3, 8)
(2,. . . ,2,1,1) (4,4,4) (5,5,1,1) S(2, 2, 5, 5) 99KS(2, 4, 5)

(2,. . . ,2) (4,4,1,1,1,1) (6,6) S(4, 4, 4, 4) 99KS(2, 4, 6)
(2,. . . ,2) (3,3,3,1,1,1) (11,1) S(3, 3, 3, 11) 99KS(2, 3, 11)
(2,. . . ,2) (3,3,3,1,1,1) (10,2) S(3, 3, 3, 5) 99KS(2, 3, 10)
(2,. . . ,2) (3,3,3,1,1,1) (9,3) S(3, 3, 3, 3) 99KS(2, 3, 9)
(2,. . . ,2) (3,3,3,1,1,1) (8,4) S(2, 3, 3, 3) 99KS(2, 3, 8)
(2,. . . ,2) (4,4,4) (8,1,1,1,1) *S(8, 8, 8, 8) 99KS(2, 4, 8)
(2,. . . ,2) (4,4,4) (6,3,1,1,1) S(2, 6, 6, 6) 99KS(2, 4, 6)
(2,. . . ,2) (4,4,4) (6,2,2,1,1) S(3, 3, 6, 6) 99KS(2, 4, 6)
(2,. . . ,2) (3,3,3,3) (7,3,1,1) *S(3, 7, 21, 21) 99KS(2, 3, 21)
(2,. . . ,2) (3,3,3,3) (7,2,2,1) *S(2, 7, 7, 14) 99KS(2, 3, 14)
(2,. . . ,2) (3,3,3,3) (6,4,1,1) *S(2, 3, 12, 12) 99KS(2, 3, 12)
(2,. . . ,2) (3,3,3,3) (5,4,2,1) *S(4, 5, 10, 20) 99KS(2, 3, 20)
(2,. . . ,2) (3,3,3,3) (5,3,3,1) *S(3, 5, 5, 15) 99KS(2, 3, 15)
(2,. . . ,2) (3,3,3,3) (5,3,2,2) *S(6, 10, 15, 15) 99KS(2, 3, 30)
(2,. . . ,2) (3,3,3,3) (4,4,3,1) *S(3, 3, 4, 12) 99KS(2, 3, 12)
(2,. . . ,2) (3,3,3,3) (4,3,3,2) *S(3, 4, 4, 6) 99KS(2, 3, 12)
(3,3,3,3) (3,3,3,3) (4,4,1,1,1,1) S(4, 4, 4, 4) 99KS(3, 3, 4)
(2,. . . ,2) (5,5,1,1) (5,5,1,1) S(5, 5, 5, 5) 99KS(2, 5, 5)
(2,. . . ,2) (4,4,2,2) (5,5,1,1) S(2, 2, 5, 5) 99KS(2, 4, 5)

Table 4.4. Triples of partitions of 10 6 d 6 12 with hyperbolic associated candidate covers in
C4; asterisks mark exceptional covers, as determined below
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(b) χ
orb(X̃)
χorb(X) must be an integer d;

(c) There must exist three partitions of d such that associated candidate orbifold
cover is X̃ 99KX.

We will now carry out our analysis separately for each of the groups A, B, C, D
of triples (p, q, r) as described above.

A. First, we want to study
X̃ 99KS(3, 3, 4).

Note that −χorb(X) = 1
12 and, taking into account divisibility between orders of

cone points, the cover orbifold with maximum area is S(4, 4, 4, 4), because 4 is the
greatest conic order possible for this base. Hence, dmax := max{−χorb(X̃)}

−χorb(X) implies
that the maximum possible degree is 12. And all these cases have already been
considered in Step I.

Similar computations for X̃ 99KS(3, 3, 5) give dmax = 9, and lead to the same
conclusion.

B. Proceeding as just made for group A, we get the results described in Table 4.5.
Then we have no more candidate covers to study.

X −χorb(X) max{−χorb(X̃)} dmax

S(2, 5, 5) 1/10 6/5 12

S(2, 5, 6) 2/15 4/3 10

Table 4.5. Computation of maximal degrees for group B.

C. Also here we collect useful information about maximal possible degree in Ta-
ble 4.6. Now we get something to analyse.

X −χorb(X) max{−χorb(X̃)} dmax

S(2, 4, 5) 1/20 6/5 24

S(2, 4, 6) 1/12 4/3 16

S(2, 4, 7) 3/28 10/7 13

S(2, 4, 8) 1/8 3/2 12

S(2, 4, 9) 5/36 14/9 11

S(2, 4, 10) 3/20 8/5 10

Table 4.6. Computation of maximal degrees for group C.

One can now easily exclude that any interesting cover arises in case X =
S(2, 4, 7). In fact we see that X̃ = S(7, 7, 7, 7) cannot be a cover orbifold, be-
cause the resulting d is not a natural number, and the same happens for the next
(with respect to area) admissible orbifold X̃ = S(4, 7, 7, 7). In this last case, we get
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that for all other cases d is forced to be strictly less than 13. Then, again, no new
covers arises.

For X = S(2, 4, 6) we first enumerate in Table 4.7 all possible cover orbifolds, in
decreasing order with respect to degree. Notice that once you have fixed the base
orbifold, the area of the cover orbifold is proportional to the degree of the would-be
cover. Successively we exclude those cover orbifolds in the list in which d 6 12 (see
Table 4.7), because we have already considered these covers in Step I. Among the
six remaining covers, only the following two are candidate: S(6, 6, 6, 6)

16:199KS(2, 4, 6)

and S(4, 4, 6, 6)
14:199KS(2, 4, 6).

X̃ −χorb(X̃) d

S(6, 6, 6, 6) 4/3 16

S(4, 6, 6, 6) 5/4 15

S(4, 4, 6, 6) 7/6 14

S(3, 6, 6, 6) 7/6 14

S(4, 4, 4, 6) 13/12 13

S(3, 4, 6, 6) 13/12 13

S(4, 4, 4, 4) 1 12

S(3, 3, 6, 6) 1 12

S(3, 4, 4, 6) 1 12

S(2, 6, 6, 6) 1 12

S(3, 3, 4, 6) 11/12 11

S(2, 4, 6, 6) 11/12 11

. . . . . . 6 12

Table 4.7. Reduced list of possible cover orbifolds for X = S(2, 4, 6)

Finally, S(2, 4, 5). We proceed exactly as for X = S(2, 4, 6): first we order
possible cover orbifolds in Table 4.8, then we search among them those that lead to
a candidate cover, and then we describe in Table 4.9 all the candidate covers found.

Summing up, in group C we have found 9 candidate hyperbolic orbifold covers,
and we will show that only one of them is exceptional (that one labeled with * in
Table 4.9).

D. For this last group we must investigate candidate covers having base X =
S(2, 3, r) with 7 6 r 6 77. First of all, we make a preliminary study of the function

dmax(r) :=
−χorb(S(r, r, r, r))

−χorb(S(2, 3, r))
= 12 · r − 2

r − 6
,

used in the previous paragraph, and we describe our results in Table 4.10. Since d
should be an integer and the function dmax(r) is strictly decreasing, for 18 6 r 6 55,
we list in Table 4.10 only those cases in which the maximal degree function takes
an integer value. One clearly sees from this table that it is useless to consider
X̃ = S(2, 3, r) with r > 55, because these cases, if any, should have been studied in
Step I.
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X̃ −χorb(X̃) d

S(5, 5, 5, 5) 6/5 24

S(5, 5, 5, 4) 23/20 23

S(5, 5, 4, 4) 11/10 22

S(5, 4, 4, 4) 21/20 21

S(4, 4, 4, 4) 1 20

S(5, 5, 5, 2) 9/10 18

S(5, 5, 4, 2) 17/20 17

S(5, 4, 4, 2) 4/5 16

S(4, 4, 4, 2) 3/4 15

S(5, 5, 2, 2) 3/5 12

S(5, 4, 2, 2) 11/20 11

. . . . . . 6 12

Table 4.8. Reduced list of possible cover orbifolds for X = S(2, 4, 5)

Π1,Π2,Π3 Associated cover d

(2,. . . ,2),(4,4,4,4),(6,6,1,1,1,1) S(6, 6, 6, 6) 99KS(2, 4, 6) 16
(2,. . . ,2),(4,4,4,1,1),(6,6,1,1) S(4, 4, 6, 6) 99KS(2, 4, 6) 14

(2,. . . ,2),(4,. . . ,4),(5,5,5,5,1,1,1,1) S(5, 5, 5, 5) 99KS(2, 4, 5) 24
(2,. . . ,2),(4,. . . ,4,1,1,),(5,5,5,5,1,1) S(5, 5, 4, 4) 99KS(2, 4, 5) 22
(2,. . . ,2),(4,4,4,4,1,1,1,1),(5,. . . ,5) S(4, 4, 4, 4) 99KS(2, 4, 5) 20
(2,. . . ,2),(4,4,4,4,2),(5,5,5,1,1,1) *S(5, 5, 5, 2) 99KS(2, 4, 5) 18
(2,. . . ,2,1),(4,4,4,4,1),(5,5,5,1,1) S(5, 5, 4, 2) 99KS(2, 4, 5) 17

(2,. . . ,2), (4,4,2,1,1),(5,5,5,1) S(5, 4, 4, 2) 99KS(2, 4, 5) 16
(2,. . . ,2,1), (4,4,1,1,1), (5,5,5) S(4, 4, 4, 2) 99KS(2, 4, 5) 15

Table 4.9. Candidate covers in C4 with base S(2, 4, 5) and S(2, 4, 6)

r 7 8 9 10 11 12 13 14

dmax 60 36 28 24 21, 6 20 14, 6 18

r 15 16 17 18 22 30 54 55

dmax 17, 3 16, 8 16, 36 16 15 14 13 12, 97

Table 4.10. Preliminary data about the maximal degree function

We start our analysis from the easiest cases: those with low dmax(r).
For r = 54, the only interesting degree in which we have to look for candidate

covers is d = 13. From the study of the maximal degree function we see that this is
a very simple case. On the other hand when we consider r = 7, we should look for
candidate covers with 12 6 d 6 60. Hence we need a way to get a better estimation
of the maximal possible degree, in order to reduce the range for d.

We exploit congruences: precisely, we group all possible degrees with respect to
its congruences classes modulo 2 and 3, and for each group we define a new function
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that is always lower than dmax(r) (and obviously greater than d). Just an example:
if we know that a d ≡ 1 (2) we infer that a cover orbifold X̃ should have at least a
conic point of order 2; and −χorb(S(r, r, r, r) > S(2, r, r, r)). Hence we know that
d 6 d2(r) :=

2− 1
2−

3
r

r−6
6r

= 9 · r−2
r−6 . We collect all these auxiliary functions bounding d

in Table 4.11.

d ≡ 0 (2), d ≡ 0 (3) dmax(r) 12 · r−2
r−6

d ≡ 1 (3) d3(r) 2 · 5r−9
r−6

d ≡ 1 (2) d2(r) 9 · r−2
r−6

d ≡ 2 (3) d3,3(r) 4 · 2r−3
r−6

d ≡ 1 (2), d ≡ 1 (3) d2,3(r) 7r−12
r−6

Table 4.11. Auxiliary functions bounding degree (in decreasing order)

r = 54 As previously remarked, there is one case to be considered when the base
orbifold is X = S(2, 3, 54) namely d = 13. Note that d ≡ 1 (2) and d ≡ 1 (3), and
these two conditions imply that there should be at least one singular point of order
2 and one of order 3 in X̃. Then

d 6 d2,3(r) =
2− 1

2 − 1
3 − 2

54
−6−54

6·54
=

7 · 54− 12

54− 6
≈ 7.6

and we immediately conclude that there is nothing to analyse.

31 6 r 6 53 In all these cases we have 13 < dmax(r) < 14, then we should only
consider d = 13 as possible degree. Since 13 ≡ 1 (2), we use d2(r) in Table 4.11 to
reduce the range for d. We get d 6 d2(31) ≈ 10.44 and then we fall in Step I.

All the other proofs about compatibility are long, but not difficult: so we place
them in Appendix B, and here we list in Tables 4.12 and 4.13 the hyperbolic can-
didate covers arising from case D. Together with those arising from C (9 candidate
covers), they are all the hyperbolic candidate covers with d > 13 in the stratum C4.

In conclusion, in degree d 6 12 we have 81 hyperbolic candidate orbifold covers,
while in degree d > 13 we have 60 hyperbolic candidate orbifold covers.

�

Summing up, the compatible data corresponding to a hyperbolic orbifold cover
of the type S(α, β, γ, δ) 99KS(p, q, r) can be described as follows:

• There are 81 of them with d 6 12 as listed in Tables 4.3 and 4.4;

• There are 60 of them with d > 13, of which 9 arise from group C, and are
listed in Table 4.9), and 51 arise from group D and are listed in Tables 4.12
and 4.13).

We will now discuss the realizability of each of the 141 compatible data just men-
tioned. As a matter of fact we have already the information on realizability in the
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Π1,Π2,Π3 Associated cover d

(2,. . . ,2), (3,. . . ,3), (14,1,1,1,1) S(14, 14, 14, 14) 99KS(2, 3, 14) 18

(2,. . . ,2), (3,. . . ,3,1), (13,1,1,1) S(3, 13, 13, 13) 99KS(2, 3, 13) 16

(2,. . . ,2),(3,. . . ,3,1,1),(12,1,1) S(3, 3, 12, 12) 99KS(2, 3, 12) 14
(2,. . . ,2,1),(3,. . . ,3),(12,1,1,1) S(2, 12, 12, 12) 99KS(2, 3, 12) 15
(2,. . . ,2),(3,. . . ,3,1),(12,2,1,1) S(3, 6, 12, 12) 99KS(2, 3, 12) 16
(2,. . . ,2),(3,. . . ,3),(12,2,2,1,1) S(6, 6, 12, 12) 99KS(2, 3, 12) 18
(2,. . . ,2),(3,. . . ,3),(12,3,1,1,1) S(4, 12, 12, 12) 99KS(2, 3, 12) 18

(2,. . . ,2,1),(3,. . . ,3,1),(11,1,1) S(2, 3, 11, 11) 99KS(2, 3, 11) 13

(2,. . . ,2,1),(3,. . . ,3,1),(10,2,1) S(2, 3, 5, 10) 99KS(2, 3, 10) 13
(2,. . . ,2),(3,. . . ,3,1,1),(10,2,2) S(3, 3, 5, 5) 99KS(2, 3, 10) 14
(2,. . . ,2,1),(3,. . . ,3),(10,2,2,1) S(2, 5, 5, 10) 99KS(2, 3, 10) 15
(2,. . . ,2),(3,. . . ,3,1),(10,2,2,2) *S(3, 5, 5, 5) 99KS(2, 3, 10) 16
(2,. . . ,2),(3,. . . ,3),(10,5,1,1,1) S(2, 5, 5, 5) 99KS(2, 3, 10) 18

(2,. . . ,2),(3,. . . ,3),(10,10,1,1,1,1) S(10, 10, 10, 10) 99KS(2, 3, 10) 24

(2,. . . ,2,1),(3,. . . ,3,1),(9,3,1) S(2, 3, 3, 9) 99KS(2, 3, 9) 13
(2,. . . ,2),(3,. . . ,3,1),(9,3,3,1) S(3, 3, 3, 9) 99KS(2, 3, 9) 16

(2,. . . ,2),(3,. . . ,3,1,1),(9,9,1,1) S(3, 3, 9, 9) 99KS(2, 3, 9) 20
(2,. . . ,2,1),(3,. . . ,3),(9,9,1,1,1) S(2, 9, 9, 9) 99KS(2, 3, 9) 21
(2,. . . ,2),(3,. . . ,3),(9,9,3,1,1,1) *S(3, 9, 9, 9) 99KS(2, 3, 9) 24

Table 4.12. Triples of partitions for d > 13 arising from case D, with hyperbolic associated
candidate covers in C4 (there are 51 of them); the label * means that the candidate cover will be
exceptional
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Π1,Π2,Π3 Associated cover d

(2,. . . ,2,1),(3,. . . ,3,1),(8,4,1) S(2, 2, 3, 8) 99KS(2, 3, 8) 13
(2,. . . ,2),(3,. . . ,3,1,1),(8,4,2) S(2, 3, 3, 4) 99KS(2, 3, 8) 14
(2,. . . ,2,1),(3,. . . ,3),(8,4,2,1) S(2, 2, 4, 8) 99KS(2, 3, 8) 15
(2,. . . ,2),(3,. . . ,3,1),(8,4,2,2) *S(2, 3, 4, 4) 99KS(2, 3, 8) 16

(2,. . . ,2),(3,. . . ,3,1,1,1,1),(8,8) S(3, 3, 3, 3) 99KS(2, 3, 8) 16
(2,. . . ,2,1),(3,. . . ,3,1,1),(8,8,1) S(2, 3, 3, 8) 99KS(2, 3, 8) 17
(2,. . . ,2,1,1),(3,. . . ,3),(8,8,1,1) S(2, 2, 8, 8) 99KS(2, 3, 8) 18
(2,. . . ,2),(3,. . . ,3,1,1,1),(8,8,2) S(3, 3, 3, 4) 99KS(2, 3, 8) 18
(2,. . . ,2,1),(3,. . . ,3,1),(8,8,2,1) S(2, 3, 4, 8) 99KS(2, 3, 8) 19
(2,. . . ,2),(3,. . . ,3,1,1),(8,8,2,2) S(3, 3, 4, 4) 99KS(2, 3, 8) 20
(2,. . . ,2,1),(3,. . . ,3),(8,8,2,2,1) *S(2, 4, 4, 8) 99KS(2, 3, 8) 21
(2,. . . ,2),(3,. . . ,3,1),(8,8,4,1,1) *S(2, 3, 8, 8) 99KS(2, 3, 8) 22
(2,. . . ,2),(3,. . . ,3,1),(8,8,2,2,2) *S(3, 4, 4, 4) 99KS(2, 3, 8) 22
(2,. . . ,2),(3,. . . ,3),(8,8,2,2,2,2) S(4, 4, 4, 4) 99KS(2, 3, 8) 24
(2,. . . ,2),(3,. . . ,3),(8,8,4,2,1,1) S(2, 4, 8, 8) 99KS(2, 3, 8) 24

(2,. . . ,2),(3,. . . ,3,1,1),(8,8,8,1,1) S(3, 3, 8, 8) 99KS(2, 3, 8) 26
(2,. . . ,2,1),(3,. . . ,3),(8,8,8,1,1,1) S(2, 8, 8, 8) 99KS(2, 3, 8) 27
(2,. . . ,2),(3,. . . ,3,1),(8,8,8,2,1,1) S(3, 4, 8, 8) 99KS(2, 3, 8) 28
(2,. . . ,2),(3,. . . ,3),(8,8,8,2,2,1,1) S(4, 4, 8, 8) 99KS(2, 3, 8) 30

(2,. . . ,2),(3,. . . ,3),(8,8,8,8,1,1,1,1) S(8, 8, 8, 8) 99KS(2, 3, 8) 36

(2,. . . ,2,1,1),(3,. . . ,3,1,1),(7,7) S(2, 2, 3, 3) 99KS(2, 3, 7) 14
(2,. . . ,2,1),(3,. . . ,3,1,1,1),(7,7,7) S(2, 3, 3, 3) 99KS(2, 3, 7) 21
(2,. . . ,2,1,1),(3,. . . ,3,1),(7,7,7,1) S(2, 2, 3, 7) 99KS(2, 3, 7) 22

(2,. . . ,2),(3,. . . ,3,1,1,1,1),(7,7,7,7) S(3, 3, 3, 3) 99KS(2, 3, 7) 28
(2,. . . ,2,1),(3,. . . ,3,1,1),(7,7,7,7,1) S(2, 3, 3, 7) 99KS(2, 3, 7) 29
(2,. . . ,2,1,1),(3,. . . ,3),(7,7,7,7,1,1) S(2, 2, 7, 7) 99KS(2, 3, 7) 30

(2,. . . ,2),(3,. . . ,3,1,1,1),(7,7,7,7,7,1) S(3, 3, 3, 7) 99KS(2, 3, 7) 36
(2,. . . ,2,1),(3,. . . ,3,1), S(2, 3, 7, 7) 99KS(2, 3, 7) 37

(2,. . . ,2),(3,. . . ,3,1,1),(7,7,7,7,7,7,1,1) *S(3, 3, 7, 7) 99KS(2, 3, 7) 44
(2,. . . ,2,1),(3,. . . ,3),(7,7,7,7,7,7,1,1,1) *S(2, 7, 7, 7) 99KS(2, 3, 7) 45

(2,. . . ,2),(3,. . . ,3,1),(7,7,7,7,7,7,7,1,1,1) *S(3, 7, 7, 7) 99KS(2, 3, 7) 52
(2,. . . ,2),(3,. . . ,3),(7,7,7,7,7,7,7,7,1,1,1,1) S(7, 7, 7, 7) 99KS(2, 3, 7) 60

Table 4.13. Triples of partitions for d > 13 arising from case D, with hyperbolic associated
candidate covers in C4 (there are 51 of them); the label * means that the candidate cover will be
exceptional
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lists of data (Tables 4.9, 4.12, and 4.13), marking with an asterisk ∗ the exceptional
ones. We prove all realizations using Grothendieck’s dessins d’enfant, whereas, in
order to prove exceptionality we employ some results from [19], together with two
new derived techniques that enable us to easily treat the last group of examples.
Proof of 4.1.2. We will draw all the graphs corresponding to exceptions, but not
all for realizations; we example one for each degree d 6 12, and all realizations
occurring for prime d > 13.

Realizations We have chosen to show dessins d’enfant only for the candidate
covers in the data listed in the following table. Generally we assign to white vertices
valences as in Π1, and to black ones valences as in Π3.

Π1,Π2,Π3 Associated cover d

(3,1,1), (4,1), (4,1) S(3, 3, 4, 4) 99KS(3, 4, 4) 5
(2,2,1,1), (5,1), (5,1) S(2, 2, 5, 5) 99KS(2, 5, 5) 6

(3,3,1), (3,3,1), (5,1,1) S(3, 3, 5, 5) 99KS(3, 3, 5) 7
(2,2,2,2), (5,1,1,1), (7,1) S(5, 5, 5, 7) 99KS(2, 5, 7) 8

(2,2,2,1,1,1), (3,3,3), (8,1) S(2, 2, 2, 8) 99KS(2, 3, 8) 9
(2,2,2,2,1,1), (3,3,3,1), (8,2) S(2, 2, 3, 4) 99KS(2, 3, 8) 10
(2,. . . ,2,1), (4,4,2,1), (5,5,1) S(2, 2, 4, 5) 99KS(2, 4, 5) 11

(2,. . . ,2,1,1), (3,3,3,3), (8,2,2) S(2, 2, 4, 4) 99KS(2, 3, 8) 12

(4, 1), (4, 1), (3, 1, 1) (5, 1, 1), (3, 3, 1), (3, 3, 1) (8, 1), (3, 3, 3), (2, 2, 2, 1, 1, 1)

(5, 5, 1), (4, 4, 2, 1), (2, . . . , 2, 1) (8, 2, 2), (3, 3, 3, 3), (2, . . . , 2, 1, 1)

(5, 1), (5, 1), (2, 2, 1, 1) (7, 1), (5, 1, 1, 1), (2, 2, 2, 2)(8, 2), (3, 3, 3, 1), (2, . . . , 2, 1, 1)

Figure 4.4. A sample of dessins d’enfant realizing candidate covers in d 6 12: we assign to black
vertices valences in Π3, and to white ones valences in Π1, and realize the data listed in the table
above

Notice that since there are a lot of candidate covers for d > 13 we decided to
show only those in prime degree, which are listed in Table 4.14. In Fig. 4.6 we draw
their dessins.

Exceptions We list in Table 4.15 all hyperbolic exceptions.
Instead, we will not show exceptionality for all of them through drawings. We

will extensively use two important and efficient tools, both introduced in [19]:
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Π1,Π2,Π3 Associated cover d
(2,. . . ,2,1), (3,. . . ,3,1), (11,1,1) S(2, 3, 11, 11) 99KS(2, 3, 11) 13
(2,. . . ,2,1), (3,. . . ,3,1), (10,2,1) S(2, 3, 5, 10) 99KS(2, 3, 10) 13
(2,. . . ,2,1), (3,. . . ,3,1), (9,3,1) S(2, 3, 3, 9) 99KS(2, 3, 9) 13
(2,. . . ,2,1), (3,. . . ,3,1), (8,4,1) S(2, 2, 3, 8) 99KS(2, 3, 8) 13

(2,. . . ,2,1), (3,. . . ,3,1,1), (8,8,1) S(2, 3, 3, 8) 99KS(2, 3, 8) 17
(2,. . . ,2,1), (3,. . . ,3,1), (8,8,2,1) S(2, 3, 4, 8) 99KS(2, 3, 8) 19

(2,. . . ,2,1),(3,. . . ,3,1,1),(7,7,7,7,1) S(2, 3, 3, 7) 99KS(2, 3, 7) 29
(2,. . . ,2,1),(3,. . . ,3,1),(7,7,7,7,7,1,1) S(2, 3, 7, 7) 99KS(2, 3, 7) 37

Table 4.14. Candidate covers for large, prime degree

(10, 2, 1), (3, 3, 3, 3, 1), (2, . . . , 2, 1)

(11, 1, 1), (3, 3, 3, 1, 1), (2, . . . , 2, 1) (8, 4, 1), (3, 3, 3, 3, 1), (2, . . . , 2, 1)

(9, 3, 1), (3, 3, 3, 3, 1), (2, . . . , 2, 1)

Figure 4.5. Dessins d’enfant realizing the first four candidate surface branched covers with large,
prime degree listed in Table 4.14

VED the ‘Very Even Data’ criterion: let us consider the cover Σ̃
d:199K99K99K

Π1,Π2,Π3
Σ; if d

is even, and each element of Πi is also even for i = 1, 2 then Π3 should refine
the partition (d/2, d/2).

BD [19] Propositions 4.14 and 4.15, the ‘Block Decomposition’ method, for the
exceptions in d = 12.

These two tools apply to many of the candidate covers in Table 4.15. Among the
remaining cases, for three of them it is very easy to deduce exceptionality through
the classical technique of dessins d’enfant. Precisely:

• (2, 2, 2, 2), (3, 2, 2, 1), (4, 4): let us fix 2-valent white vertices as middle points
of four edges, and fix two black vertices; then we join them to form one 6-gon,
two 4-gons, and one bigon. Since the graph has to be connected, the black
vertices should have valence 3 and 5, respectively.

• (3, 3, 3), (3, 3, 3), (5, 1, 1, 1, 1): here we have six vertices, three white and three
black, all 3-valent. Let us start to join them: first form three bigons. While
trying to draw the last bigon, we are forced to make the graph disconnected.
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Π1,Π2,Π3 Associated cover d Exceptionality via
(2,2,2,2), (3,2,2,1), (4,4) S(2, 3, 3, 6) 99KS(2, 4, 6) 8 dessins
(2,2,2,2), (5,1,1,1), (6,2) S(3, 5, 5, 5) 99KS(2, 5, 6) 8 VED
(2,2,2,2), (3,3,1,1), (5,3) S(3, 3, 3, 5) 99KS(2, 3, 15) 8 dessins
(2,2,2,2), (4,2,2), (6,1,1) S(2, 2, 6, 6) 99KS(2, 4, 6) 8 VED

(3,3,3), (3,3,3), (5,1,1,1,1) S(5, 5, 5, 5) 99KS(3, 3, 5) 9 dessins
(3,3,3), (3,3,3), (4,2,1,1,1) S(2, 4, 4, 4) 99KS(3, 3, 4) 9 dessins
(2,2,2,2,1), (3,3,3), (5,2,2) S(2, 2, 5, 5) 99KS(2, 3, 10) 9 dessins
(2,. . . ,2), (4,4,2), (7,1,1,1) S(2, 7, 7, 7) 99KS(2, 4, 7) 10 VED
(2,. . . ,2), (4,4,2), (6,2,1,1) S(2, 3, 6, 6) 99KS(2, 4, 6) 10 VED
(2,. . . ,2), (3,3,3,1), (4,3,3) S(3, 3, 4, 4) 99KS(2, 3, 12) 10 dessins

(2,. . . ,2), (4,4,4), (8,1,1,1,1) S(8, 8, 8, 8) 99KS(2, 4, 8) 12 VED
(2,. . . ,2), (3,3,3,3), (7,3,1,1) S(3, 7, 21, 21) 99KS(2, 3, 21) 12 BD
(2,. . . ,2), (3,3,3,3), (7,2,2,1) S(2, 7, 7, 14) 99KS(2, 3, 14) 12 BD
(2,. . . ,2), (3,3,3,3), (6,4,1,1) S(2, 3, 12, 12) 99KS(2, 3, 12) 12 BD
(2,. . . ,2), (3,3,3,3), (5,4,2,1) S(4, 5, 10, 20) 99KS(2, 3, 20) 12 BD
(2,. . . ,2), (3,3,3,3), (5,3,3,1) S(3, 5, 5, 15) 99KS(2, 3, 15) 12 BD
(2,. . . ,2), (3,3,3,3), (5,3,2,2) S(6, 10, 15, 15) 99KS(2, 3, 30) 12 BD
(2,. . . ,2), (3,3,3,3), (4,4,3,1) S(3, 3, 4, 12) 99KS(2, 3, 12) 12 BD
(2,. . . ,2), (3,3,3,3), (4,3,3,2) S(3, 4, 4, 6) 99KS(2, 3, 12) 12 BD

(2,. . . ,2),(3,. . . ,3,1),(10,2,2,2) S(3, 5, 5, 5) 99KS(2, 3, 10) 16 VED
(2,. . . ,2), (3,. . . ,3,1),(8,4,2,2) S(2, 3, 4, 4) 99KS(2, 3, 8) 16 VED

(2,. . . ,2), (4,4,4,4,2),(5,5,5,1,1,1) S(5, 5, 5, 2) 99KS(2, 4, 5) 18 VED
(2,. . . ,2,1),(3,. . . ,3),(8,8,2,2,1) S(2, 2, 4, 5) 99KS(2, 4, 5) 21 dessins
(2,. . . ,2),(3,. . . ,3,1),(8,8,4,1,1) S(2, 2, 4, 5) 99KS(2, 4, 5) 22 dessins
(2,. . . ,2),(3,. . . ,3,1),(8,8,2,2,2) S(2, 2, 4, 5) 99KS(2, 4, 5) 22 VED
(2,. . . ,2),(3,. . . ,3),(9,9,3,1,1,1) S(2, 2, 4, 5) 99KS(2, 4, 5) 24 dessins

(2,. . . ,2),(3,. . . ,3,1,1),(7,. . . ,7,1,1) S(2, 2, 4, 5) 99KS(2, 4, 5) 44 dessins
(2,. . . ,2,1),(3,. . . ,3),(7,. . . ,7,1,1,1) S(2, 2, 4, 5) 99KS(2, 4, 5) 45 dessins

(2,. . . ,2),(3,. . . ,3,1),(7,. . . ,7,1,1,1,1) S(2, 2, 4, 5) 99KS(2, 4, 5) 52 dessins

Table 4.15. Exceptional covers
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(8, 8, 1), (3, . . . , 3, 1, 1), (2, . . . , 2, 1)

(7, 7, 7, 7, 1), (3, . . . , 3, 1, 1), (2, . . . , 2, 1) (7, . . . , 7, 1, 1), (3, . . . , 3, 1), (2, . . . , 2, 1)

(8, 8, 2, 1), (3, . . . , 3, 1), (2, . . . , 2, 1)

Figure 4.6. Dessins d’enfant realizing the last four candidate surface branched covers with large,
prime degree listed in Table 4.14

• (3, 3, 3), (3, 3, 3), (4, 2, 1, 1, 1): we begin exactly as in the previous case and
when drawing the 8-gon we are forced to make the graph disconnected.

Π1,Π2,Π3 Associated cover d

(2,2,2,2), (3,3,1,1), (5,3) S(3, 3, 3, 5) 99KS(2, 3, 15) 8
(2,2,2,2,1), (3,3,3), (5,2,2) S(2, 2, 5, 5) 99KS(2, 3, 10) 9
(2,. . . ,2), (3,3,3,1), (4,3,3) S(3, 3, 4, 4) 99KS(2, 3, 12) 10

(2,. . . ,2,1),(3,. . . ,3),(8,8,2,2,1) S(2, 4, 4, 8) 99KS(2, 3, 8) 21
(2,. . . ,2),(3,. . . ,3,1),(8,8,4,1,1) S(2, 3, 8, 8) 99KS(2, 3, 8) 22
(2,. . . ,2),(3,. . . ,3),(9,9,3,1,1,1) S(3, 9, 9, 9) 99KS(2, 3, 9) 24

(2,. . . ,2),(3,. . . ,3,1,1),(7,. . . ,7,1,1) S(3, 3, 7, 7) 99KS(2, 3, 7) 44
(2,. . . ,2,1),(3,. . . ,3),(7,. . . ,7,1,1,1) S(2, 7, 7, 7) 99KS(2, 3, 7) 45
(2,. . . ,2),(3,. . . ,3,1),(7,. . . ,7,1,1,1) S(3, 7, 7, 7) 99KS(2, 3, 7) 52

Table 4.16. Hyperbolic covers, whose exceptionality is proved in Appendix C

To conclude the proof of exceptionality of all the data listed in Table 4.15 we are
then only left to consider those in Table 4.16. Since proving via dessins d’enfant that
a candidate cover is exceptional could be very difficult, especially in large degree,
in the next section we expose two more techniques that we employ in the sequel
to show exceptionality of the remaining hyperbolic candidate covers in Table 4.16:
graph moves and geometric gluings.

We address the reader to Appendix C for the details of each exceptionality proof.
�
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4.3 Other techniques: towards a geometric viewpoint

We will now describe two more methods we employ to attack the Hurwitz existence
problem. The former is merely a variation on the idea of dessins d’enfant, but it
has some practical advantages. The latter should in our opinion open the way to a
geometric understanding of the problem in the hyperbolic case too.

Graph moves In order to simplify the discussion of the dessins d’enfant associ-
ated to orbifold covers of S(2, 3, r), we try to exploit to the greatest extent a sort
of rigidity due to the prevalence of 6-gons in all those graphs. In all these cases we
assign to the white vertices the valences as prescribed by the partition of the degree
over the branching point of order 2 and to the black ones we assign those valences
prescribed by the partition over r. The idea is to work locally on these forced situa-
tions, performing some graph moves, that just simplify the whole dessin, or reduce
it to a known case. Note that performing a local move on a dessin corresponds to
changing the associated cover. Moreover, if we can show that a partially constructed
dessin for some datum can be trasformed via some moves to a partially constructed
dessin for another datum that we know to be exceptional, then the original datum
is also exceptional. An example will clarify the exact meaning of this statement.

8 8
a

6 6
b

Figure 4.7. From d to d− 2

Here we provide an example of what we mean: consider the set of partitions
(Π1,Π2,Π3) = ((2, . . . , 2, 1), (3, . . . , 3), (8, 8, 2, 2, 1)), associated to the hyperbolic
candidate cover S(2, 4, 4, 8)

21:199KS(2, 3, 8), listed in Table 4.16. We discuss how a
dessin D realizing it has to be; we assume Π1 be the valences of the white vertices,
and Π3 of the black ones:

• The connectedness required for D prevents the two black vertices of valence
2 from being joined to the same black 8.

• Since there exists one black vertex v of valence 1, and Π2 contains only 3’s, D
must be locally, near v, as in Fig. 4.7a-left; similarly, one can show that near
the white vertex of valence 1 the graph looks like Fig. 4.7a-right.

• Then, the graph will be as in Fig. 4.7b: we delete the three thin edges.

• Now we conclude, because we have obtained a graph corresponding to a new
partition: (2, . . . , 2, 1), (3, . . . , 3), (6, 6, 2, 1); and we proved in Theorem 3.3.5
that this is the partition of an exceptional cover in degree 15.
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In Appendix C we use this technique to show exceptionality for some candidate
covers among those listed in Table 4.15.

Towards a geometric viewpoint via geometric gluings Let D be a funda-
mental domain ofX, namely a hyperbolic 2k-gon with isometries ϕ1, . . . , ϕk between
pairs of its edges, such that X is D modulo {ϕ1, . . . , ϕk}. Notice that only the im-
ages in X of the vertices of D can be cone points of X, and one of them v has order
p if the angles of D at the preimages of v sum up to 2π/p.

Now take d copiesD1, . . . , Dd ofD arranged in H so that their union is a (possibly
non-convex) 2h-gon D̃ and whenever Di ∩Dj contains more than one point then it
consists of an edge of both (that is an isometric gluing along that edge), and upon
identifying Di and Dj with D the superposition of these edges corresponds to one
of the isometries ϕm.

Suppose furthermore that other h isometries η1, . . . , ηh between pairs of edges of
D̃ are given, in such a way that upon to identifying with D the Di’s involved in some
ηn, this isometry corresponds to some ϕm. Then one has an orbifold X̃ obtained as
the quotient of D̃ modulo {η1, . . . , ηh} and an orbifold cover f : X̃ → X of degree d.
The orbifold cover f maps the interior of each Di ⊂ D̃ to the interior of D through
the identity; moreover, by construction both the identifications between edges in
the interior of D̃, and the isometries η1, . . . , ηh on the boundary of D̃ project to
isometries in {ϕ1, . . . , ϕk}. Now we want to recover from f the conic points of X̃
and their orders. As before, only the preimages through f of the singularities of X
can be cone points of X̃. For any ṽ ∈ f−1(v), where v is a conic point of order p in
X, we count how many Di’s contain ṽ in X̃: say q(ṽ) this number; then the order
of ṽ is p/q(ṽ) (possibly 1, and in such a case ṽ must be a regular point of X̃).

On the other hand, consider an orbifold cover f : X̃ → X of degree d, where
X = S(p1, p2, p3), complemented with the following cover instruction:

(p11, . . . , p1m1) 99K p1, . . . (p31, . . . , p3m3) 99K p3.

With these data we are able to recover f as

D̃/{η1,...,ηh} → D/{ϕ1,ϕ2}.

A fundamental domain D of X is the union of two ∆(p1, p2, p3)’s along an edge `,
and without loss of generality we suppose that in both the copies of D the edge `
joins the cone point of order p1 to that of order p2. Then the isometry ϕ1 should
identify isometrically the two edges containing p1 different from `, while ϕ2 identifies
isometrically the remaining two edges. First of all we compute the three partitions
of the degree (dij)j=1,...,n1 for i = 1, 2, 3, over each conic point of X (remind that
dij = pi/pij). From the partitions (dij)

i=1,2,3
j=1,...,n1 we recover how to arrange the

d copies of D in H: we start to glue together d1j copies of D around the j-th
preimage of the point v1 of order p1 in X, and we repeat this procedure for each
point in f−1(v1). At this stage we have d copies of D arranged in n1 connected
components. We continue gluing together this connected components as prescribed
by the partition d2j , paying attention to perform only those gluings that decrease
the number of connected components. And we do the same for the last partition:
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in the end we get one connected component: D̃. All the other gluings not yet
performed correspond to the set of isometries {η1, . . . , ηh}, and finally we have

D̃/{η1,...,ηh} → D/{ϕ1,ϕ2}.

Notice that if in the instruction we omit pij when it is equal to 1, then for each of
these omitted 1’s in X̃ we should count pi copies ofD around the same (non-singular)
point.
Remark 4.3.1. This way of realizing orbifold covers is clearly equivalent to the
dessins d’enfant method: actually, it could be seen as its dual. But once you
have fixed a geometric structure on the base orbifold X, through the choice of a
fundamental domain D and the isometries acting on it, the method just introduced
gives us a pull-back of the geometric structure on the base to a geometric structure
on X̃ that is the right choice for realizing the orbifold cover.

We exhibit in Fig. 4.8 and in Fig. 4.9 four examples of realization, respectively:

• S(2, 2, 2, 4)
5:199K99K99K99K99K

(2,1,1,1),(4,1),(5)
S(2, 4, 5);

• S(4, 4, 4, 4)
6:199K99K99K99K99K

(3,3),(4,1,1),(4,1,1)
S(3, 4, 4);

• S(2, 2, 2, 3)
7:199K99K99K99K99K

(2,2,1,1,1),(3,3,1),(7)
S(2, 3, 7);

• S(5, 5, 5, 5)
24:199K99K99K99K99K99K

(2,...,2),(4,...,4),(5,...,5,1,1,1,1)
S(2, 4, 5).

For each cover we draw D̃ and D, labeling each vertex in D with its order, and each
vertex in D̃ with the order of its image in X. Hence each angle having as vertex a
point labeled with n measures π/n.

This method is effective for proving exceptionality, too. As an easy example we
discuss exceptionality of partition

(4, 4), (3, 2, 2, 1), (2, 2, 2, 2),

associated to the hyperbolic candidate cover S(2, 3, 3, 6)
8:199KS(2, 4, 6). For these

example we refer to Fig. 4.10. We first draw a fundamental domain D of the base
orbifold. Then we note that the preimages of the conic point of order 4 in the base
are all non-singular; consequently we have two congruent regions P1 and P2, as in
part I of Fig. 4.10, which have at the center the point projecting to 4 in the base,
and at the boundary four points projecting to 6 and four to 2, that alternate.

Now, we want to glue P1 and P2 in order to get a sphere, with all points project-
ing to 2 being non-singular, and with only one singular point of order 6. The first
two facts force us to glue these two patches along an edge as in part II of Fig. 4.10;
then, without loss of generality, we can choose one conic point of order 6, and we
fix it to be the singular one. (See part III of Fig. 4.10). As it is clear from the last
group of drawings in Fig. 4.10 the three remaining choices of gluings do not lead to
a realization of S(2, 3, 3, 6)

8:199KS(2, 4, 6). In fact when the edge labeled a is glued
to the edge d we obtain the cover S(2, 2, 6, 6) → S(2, 4, 6); in the other two cases
(when a → b or a → c) we have in X̃ at least a conic point of order 2, and it is
forbidden for a cover associated to the partition ((2, 2, 2, 2), (3, 2, 2, 1), (4, 4)).
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Appendix A

Compatibility I

A.1 Small degree

This appendix contains all detailed computations about compatibility of hyperbolic
covers of type S(α, β, γ, δ) 99KS(p, q, r) with d 6 12, divided with respect to degree,
that are very similar to those made in Section 4.1. We repeat here the definitions
and the scheme used for listing the compatible cases. If Π is a partition of an integer
d, let us denote by `(Π) its length (as usual), and by c(Π) the number of entries in
Π which are different from l.c.m.(Π). In order to belong to our family, a candidate
surface branched cover of degree d > 2 must have the following properties:

• The number of branching points is 3;

• If the partitions of d are Π1,Π2,Π3 then c(Π1) + c(Π2) + c(Π3) = 4.

To list all such candidate covers for a given d then one has to:

• List all the partitions Π of d with c(Π) 6 4;

• Find all possible triples (Π1,Π2,Π3) of partitions such that `(Π1) + `(Π2) +
`(Π3) = d+ 2 and c(Π1) + c(Π2) + c(Π3) = 4.

We have done this for 2 6 d 6 12 and then we have singled out the candidate covers
having associated hyperbolic 2-orbifold covers. The output of these computations
is the list of the 41 hyperbolic candidate covers in Table 4.3 and the 40 in Table 4.4.

2 6 d 6 4 In all these cases, there are no hyperbolic candidate covers.

d = 5 The partitions Π of 5 with c(Π) 6 4 are those described in Table A.1, with
the corresponding values of ` and c.

Π (5) (4,1) (3,2) (3,1,1) (2,2,1) (2,1,1,1)
` 1 2 2 3 3 4
c 0 1 2 2 1 3

Table A.1. The partitions Π of 5 with c(Π) 6 4

65
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The triples of such partitions such that ` and c sum up to 7 and 4 respectively
are shown in Table A.2, together with the associated candidate orbifold cover and
its geometric type.

Π1,Π2,Π3 Associated cover Geometry
(2,1,1,1) (4,1) (5) S(2, 2, 2, 4) 99KS(2, 4, 5) H
(3,1,1) (3,1,1) (5) S(3, 3, 3, 3) 99KS(3, 3, 5) H
(3,1,1) (4,1) (4,1) S(3, 3, 4, 4) 99KS(3, 4, 4) H
(2,2,1) (3,2) (4,1) S(2, 2, 3, 4) 99KS(2, 4, 6) H

Table A.2. Triples of partitions of 5 having associated candidate covers in C4: there are 4 of
them, all hyperbolic

d = 6 The partitions Π of 6 with c(Π) 6 4 are those described in Table A.3, with
the corresponding values of ` and c.

Π (6) (5,1) (4,2) (3,3) (4,1,1)
` 1 2 2 2 3
c 0 1 1 0 2
Π (3,2,1) (2,2,2) (3,1,1,1) (2,2,1,1) (2,1,1,1,1)
` 3 3 4 4 5
c 3 0 3 2 4

Table A.3. The partitions Π of 6 with c(Π) 6 4

Now ` and c should sum up to 8 and 4 respectively. From Table A.4 it is easy
to deduce that there are 7 associated candidate orbifold covers of the family we are
discussing.

Π1,Π2,Π3 Associated cover Geometry
(2,1,1,1,1) (3,3) (6) S(2, 2, 2, 2) 99KS(2, 3, 6) E
(2,1,1,1) (4,1,1) (6) S(2, 2, 4, 4) 99KS(2, 4, 6) H
(2,2,1,1) (5,1) (5,1) S(2, 2, 5, 5) 99KS(2, 5, 5) H
(2,2,1,1) (4,2) (5,1) S(2, 2, 2, 5) 99KS(2, 4, 5) H
(2,2,1,1) (4,2) (4,2) S(2, 2, 2, 2) 99KS(2, 4, 4) E
(3,1,1,1) (3,3) (5,1) S(3, 3, 3, 5) 99KS(3, 3, 5) H
(3,1,1,1) (3,3) (4,2) S(2, 3, 3, 3) 99KS(3, 3, 4) H

(3,3) (4,1,1) (4,1,1) S(4, 4, 4, 4) 99KS(3, 4, 4) H
(2,2,2) (3,2,1) (5,1) S(2, 3, 5, 6) 99KS(2, 5, 6) H
(2,2,2) (3,2,1) (4,2) S(2, 2, 3, 6) 99KS(2, 4, 6) H

Table A.4. Triples of partitions of 6 having associated candidate covers in C4: among them
there are 8 hyperbolic ones
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d = 7 The partitions Π of 7 with c(Π) 6 4 are in Table A.5. As in the previous
case, in Table A.6 we list the associate candidate covers.

Π (7) (6,1) (5,2) (4,3) (5,1,1) (4,2,1) (3,3,1)
` 1 2 2 2 3 3 3
c 0 1 2 2 2 3 1
Π (3,2,2) (4,1,1,1) (3,2,1,1) (2,2,2,1) (3,1,1,1,1) (2,2,1,1,1)
` 3 4 4 4 5 5
c 3 3 4 1 4 3

Table A.5. The partitions Π of 7 with c(Π) 6 4

Π1,Π2,Π3 Associated cover Geometry
(2,2,1,1,1) (3,3,1) (7) S(2, 2, 2, 3) 99KS(2, 3, 7) H
(2,2,2,1) (4,1,1,1) (7) S(2, 4, 4, 4) 99KS(2, 4, 7) H
(3,3,1) (3,3,1) (5,1,1) S(3, 3, 5, 5) 99KS(3, 3, 5) H
(3,3,1) (3,3,1) (4,2,1) S(2, 3, 3, 4) 99KS(3, 3, 4) H

(2,2,2,1) (3,3,1) (5,2) S(2, 2, 3, 5) 99KS(2, 3, 10) H
(2,2,2,1) (3,3,1) (4,3) S(2, 3, 3, 4) 99KS(2, 3, 12) H
(2,2,2,1) (4,2,1) (6,1) S(2, 2, 4, 6) 99KS(2, 4, 6) H
(2,2,2,1) (5,1,1) (6,1) S(2, 5, 5, 6) 99KS(2, 5, 6) H

Table A.6. Triples of partitions of 7 having associated candidate covers in C4: there are 8 of
them, all hyperbolic

From now on we will just put the tables corresponding to each case, with the
only comment on the notation

∗X̃ 99KX

which means that the cover is compatible, but not realizable (as proved indepen-
dently below).

Π (8) (7,1) (6,2) (5,3) (4,4) (6,1,1)
` 1 2 2 2 2 3
c 0 1 1 2 0 2
Π (5,2,1) (4,3,1) (4,2,2) (5,1,1,1) (4,2,1,1) (3,3,1,1)
` 3 3 3 4 4 4
c 3 3 2 3 3 2
Π (3,2,2,1) (2,2,2,2) (4,1,1,1,1) (2,2,2,1,1) (2,2,1,1,1,1)
` 4 4 5 5 6
c 4 0 4 2 4

Table A.7. The partitions Π of 8 with c(Π) 6 4
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Π1,Π2,Π3 Associated cover Geometry
(2,2,1,1,1,1) (4,4) (4,4) S(2, 2, 2, 2) 99KS(2, 4, 4) E

(2,2,2,2) (4,1,1,1,1) (8) S(4, 4, 4, 4) 99KS(2, 4, 8) H
(2,2,2,1,1) (3,3,1,1) (8) S(2, 2, 3, 3) 99KS(2, 3, 8) H
(2,2,2,2) (3,2,2,1) (4,4) *S(2, 3, 3, 6) 99KS(2, 4, 6) H
(2,2,2,2) (5,1,1,1) (7,1) S(5, 5, 5, 7) 99KS(2, 5, 7) H
(2,2,2,2) (5,1,1,1) (6,2) *S(5, 5, 5, 3) 99KS(2, 5, 6) H
(2,2,2,2) (4,2,1,1) (7,1) S(2, 4, 4, 7) 99KS(2, 4, 7) H
(2,2,2,2) (4,2,1,1) (6,2) S(4, 4, 4, 4) 99KS(2, 4, 8) H
(2,2,2,2) (3,3,1,1) (5,3) *S(3, 3, 3, 5) 99KS(2, 3, 15) H
(3,3,1,1) (3,3,1,1) (4,4) S(3, 3, 3, 3) 99KS(3, 3, 4) H
(2,2,2,2) (6,1,1) (6,1,1) S(6, 6, 6, 6) 99KS(2, 6, 6) H
(2,2,2,2) (4,2,2) (6,1,1) *S(2, 2, 6, 6) 99KS(2, 4, 6) H
(2,2,2,2) (4,2,2) (4,2,2) S(2, 2, 2, 2) 99KS(2, 4, 4) E

Table A.8. Triples of partitions of 8 having associated candidate cover in C4: there are 11
hyperbolic ones among them

Π (9) (8,1) (7,2) (6,3) (5,4) (7,1,1)
` 1 2 2 2 2 3
c 0 1 2 1 2 2
Π (6,2,1) (5,3,1) (5,2,2) (4,4,1) (4,3,2) (3,3,3)
` 3 3 3 3 3 3
c 2 3 3 1 3 0
Π (6,1,1,1) (5,2,1,1) (4,3,1,1) (4,2,2,1) (3,3,2,1) (3,2,2,2)
` 4 4 4 4 4 4
c 3 4 4 3 4 4
Π (5,1,1,1,1) (4,2,1,1,1) (3,3,1,1,1) (2,2,2,2,1) (2,2,2,1,1,1)
` 5 5 5 5 6
c 4 4 3 1 3

Table A.9. The partitions Π of 9 with c(Π) 6 4
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Π1,Π2,Π3 Associated cover Geometry
(2,2,2,1,1,1) (3,3,3) (8,1) S(2, 2, 2, 8) 99KS(2, 3, 8) H
(2,2,2,1,1,1) (3,3,3) (6,3) S(2, 2, 2, 2) 99KS(2, 3, 6) E
(2,2,2,2,1) (3,3,1,1,1) (9) S(2, 3, 3, 3) 99KS(2, 3, 9) H

(3,3,3) (3,3,3) (5,1,1,1,1) *S(5, 5, 5, 5) 99KS(3, 3, 5) H
(3,3,3) (3,3,3) (4,2,1,1,1) *S(2, 4, 4, 4) 99KS(3, 3, 4) H

(3,3,1,1,1) (3,3,3) (4,4,1) S(3, 3, 3, 4) 99KS(3, 3, 4) H
(2,2,2,2,1) (4,4,1) (7,1,1) S(2, 4, 7, 7) 99KS(2, 4, 7) H
(2,2,2,2,1) (4,4,1) (6,2,1) S(2, 3, 4, 6) 99KS(2, 4, 6) H
(2,2,2,2,1) (3,3,3) (5,3,1) S(2, 3, 5, 15) 99KS(2, 3, 15) H
(2,2,2,2,1) (3,3,3) (5,2,2) *S(2, 2, 5, 5) 99KS(2, 3, 10) H
(2,2,2,2,1) (3,3,3) (4,3,2) S(2, 3, 4, 6) 99KS(2, 3, 12) H

Table A.10. Triples of partitions of 9 having associated candidate cover in C4: there are 10
hyperbolic ones among them

Π (10) (9,1) (8,2) (7,3) (6,4) (5,5)
` 1 2 2 2 2 2
c 0 1 1 1 2 0
Π (8,1,1) (7,2,1) (6,3,1) (6,2,2) (5,4,1) (5,3,2)
` 3 3 3 3 3 3
c 2 3 2 2 3 3
Π (7,1,1,1) (6,2,1,1) (5,3,1,1) (5,2,2,1) (4,4,1,1) (4,3,2,1)
` 4 4 4 4 4 4
c 3 3 4 4 2 4
Π (4,4,2) (4,3,3) (4,2,2,2) (3,3,3,1) (3,3,2,2) (6,1,1,1,1)
` 3 3 4 3 4 5
c 1 3 3 1 4 4
Π (4,2,2,1,1) (2,. . . ,2) (3,3,1,1,1,1) (2,2,2,2,1,1) (2,2,2,1,1,1,1)
` 5 5 6 6 7
c 4 0 4 2 4

Table A.11. The partitions Π of 10 with c(Π) 6 4
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Π1,Π2,Π3 Associated cover Geometry
(2,. . . ,2) (3,3,1,1,1,1) (10) S(3, 3, 3, 3) 99KS(2, 3, 10) H

(2,2,2,2,1,1) (4,4,1,1) (5,5) S(2, 2, 4, 4) 99KS(2, 4, 5) H
(2,2,2,2,1,1) (3,3,3,1) (8,2) S(2, 2, 3, 4) 99KS(2, 3, 8) H
(2,2,2,2,1,1) (3,3,3,1) (9,1) S(2, 2, 3, 9) 99KS(3, 3, 9) H
(2,2,2,2,1,1) (4,4,2) (4,4,2) S(2, 2, 2, 2) 99KS(2, 4, 4) E

(2,. . . ,2) (5,5) (6,1,1,1,1) S(6, 6, 6, 6) 99KS(2, 5, 6) H
(2,. . . ,2) (5,5) (4,2,2,1,1) S(2, 2, 4, 4) 99KS(2, 4, 5) H
(2,. . . ,2) (4,4,2) (7,1,1,1) *S(2, 7, 7, 7) 99KS(2, 4, 7) H
(2,. . . ,2) (4,4,2) (6,2,1,1) *S(2, 3, 6, 6) 99KS(2, 4, 6) H
(2,. . . ,2) (4,4,2) (4,2,2,2) S(2, 2, 2, 2) 99KS(2, 4, 4) E
(2,. . . ,2) (4,4,1,1) (8,1,1) S(4, 4, 8, 8) 99KS(2, 4, 8) H
(2,. . . ,2) (4,4,1,1) (6,3,1) S(2, 4, 4, 6) 99KS(2, 4, 6) H
(2,. . . ,2) (4,4,1,1) (6,2,2) S(3, 3, 4, 4) 99KS(2, 4, 6) H
(2,. . . ,2) (3,3,3,1) (7,2,1) S(2, 3, 7, 14) 99KS(2, 3, 14) H
(2,. . . ,2) (3,3,3,1) (5,4,1) S(3, 4, 5, 20) 99KS(2, 3, 20) H
(2,. . . ,2) (3,3,3,1) (5,3,2) S(3, 6, 10, 15) 99KS(2, 3, 30) H
(2,. . . ,2) (3,3,3,1) (4,3,3) *S(3, 3, 4, 4) 99KS(2, 3, 12) H
(3,3,3,1) (3,3,3,1) (4,4,1,1) S(3, 3, 4, 4) 99KS(3, 3, 4) H

Table A.12. Triples of partitions of 10 having associated candidate cover in C4: there are 16
hyperbolic ones among them

Π (11) (10,1) (9,2) (8,3) (7,4) (6,5)
` 1 2 2 2 2 2
c 0 1 2 2 2 2
Π (9,1,1) (8,2,1) (7,3,1) (7,2,2) (6,4,1) (6,3,2)
` 3 3 3 3 3 3
c 2 2 3 3 3 2
Π (5,5,1) (5,4,2) (5,3,3) (4,4,3) (8,1,1,1) (7,2,1,1)
` 3 3 3 3 4 4
c 1 3 3 3 3 4
Π (6,3,1,1) (6,2,2,1) (5,4,1,1) (5,3,2,1) (5,2,2,2) (4,4,2,1)
` 4 4 4 4 4 4
c 3 3 4 4 4 3
Π (4,3,3,1) (4,3,2,2) (3,3,3,2) (7,1,1,1,1) (6,2,1,1,1) (4,4,1,1,1)
` 4 4 4 5 5 5
c 4 4 4 4 4 3
Π (4,2,2,2,1) (3,3,3,1,1) (2,. . . ,2,1) (2,2,2,2,1,1,1)
` 5 5 6 7
c 4 3 1 3

Table A.13. The partitions Π of 11 with c(Π) 6 4
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Π1,Π2,Π3 Associated cover Geometry
(2,. . . ,2,1) (3,3,3,1,1) (10,1) S(2, 3, 3, 10) 99KS(2, 3, 10) H
(2,. . . ,2,1) (4,4,2,1) (5,5,1) S(2, 2, 4, 5) 99KS(2, 4, 5) H

Table A.14. Triples of partitions of 11 having associated candidate cover in C4: both hyperbolic

Π (12) (11,1) (10,2) (9,3) (8,4) (7,5)
` 1 2 2 2 2 2
c 0 1 1 1 1 2
Π (6,6) (10,1,1) (9,2,1) (8,3,1) (8,2,2) (7,4,1)
` 2 3 3 3 3 3
c 0 2 3 3 2 3
Π (7,3,2) (6,5,1) (6,4,2) (6,3,3) (5,5,2) (5,4,3)
` 3 3 3 3 3 3
c 3 3 3 2 3 3
Π (4,4,4) (9,1,1,1) (8,2,1,1) (7,3,1,1) (7,2,2,1) (6,4,1,1)
` 3 4 4 4 4 4
c 0 3 3 4 4 4
Π (6,3,2,1) (6,2,2,2) (5,5,1,1) (3,3,3,3) (5,4,2,1) (5,3,3,1)
` 4 4 4 4 4 4
c 3 3 2 0 4 4
Π (5,3,2,2) (4,4,3,1) (4,4,2,2) (4,3,3,2) (8,1,1,1,1) (6,3,1,1,1)
` 4 4 4 4 5 5
c 4 4 2 4 4 4
Π (6,2,2,1,1) (4,4,2,1,1) (4,2,2,2,2) (4,4,1,1,1,1) (3,3,3,1,1,1) (2,. . . ,2)
` 5 5 5 6 6 6
c 4 3 4 4 3 0
Π (2,. . . ,2,1,1) (2,2,2,2,1,1,1,1)
` 7 8
c 2 4

Table A.15. The partitions Π of 12 with c(Π) 6 4
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Π1,Π2,Π3 Associated cover
(2,. . . ,2,1,1) (3,3,3,3) (10,1,1) S(2, 2, 10, 10) 99KS(2, 3, 10)
(2,. . . ,2,1,1) (3,3,3,3) (8,2,2) S(2, 2, 4, 4) 99KS(2, 3, 8)
(2,. . . ,2,1,1) (4,4,4) (5,5,1,1) S(2, 2, 5, 5) 99KS(2, 4, 5)

(2,. . . ,2) (4,4,1,1,1,1) (6,6) S(4, 4, 4, 4) 99KS(2, 4, 6)
(2,. . . ,2) (3,3,3,1,1,1) (11,1) S(3, 3, 3, 11) 99KS(2, 3, 11)
(2,. . . ,2) (3,3,3,1,1,1) (10,2) S(3, 3, 3, 5) 99KS(2, 3, 10)
(2,. . . ,2) (3,3,3,1,1,1) (9,3) S(3, 3, 3, 3) 99KS(2, 3, 9)
(2,. . . ,2) (3,3,3,1,1,1) (8,4) S(2, 3, 3, 3) 99KS(2, 3, 8)
(2,. . . ,2) (4,4,4) (8,1,1,1,1) *S(8, 8, 8, 8) 99KS(2, 4, 8)
(2,. . . ,2) (4,4,4) (6,3,1,1,1) S(2, 6, 6, 6) 99KS(2, 4, 6)
(2,. . . ,2) (4,4,4) (6,2,2,1,1) S(3, 3, 6, 6) 99KS(2, 4, 6)
(2,. . . ,2) (3,3,3,3) (7,3,1,1) *S(3, 7, 21, 21) 99KS(2, 3, 21)
(2,. . . ,2) (3,3,3,3) (7,2,2,1) *S(2, 7, 7, 14) 99KS(2, 3, 14)
(2,. . . ,2) (3,3,3,3) (6,4,1,1) *S(2, 3, 12, 12) 99KS(2, 3, 12)
(2,. . . ,2) (3,3,3,3) (5,4,2,1) *S(4, 5, 10, 20) 99KS(2, 3, 20)
(2,. . . ,2) (3,3,3,3) (5,3,3,1) *S(3, 5, 5, 15) 99KS(2, 3, 15)
(2,. . . ,2) (3,3,3,3) (5,3,2,2) *S(6, 10, 15, 15) 99KS(2, 3, 30)
(2,. . . ,2) (3,3,3,3) (4,4,3,1) *S(3, 3, 4, 12) 99KS(2, 3, 12)
(2,. . . ,2) (3,3,3,3) (4,3,3,2) *S(3, 4, 4, 6) 99KS(2, 3, 12)
(3,3,3,3) (3,3,3,3) (4,4,1,1,1,1) S(4, 4, 4, 4) 99KS(3, 3, 4)
(2,. . . ,2) (5,5,1,1) (5,5,1,1) S(5, 5, 5, 5) 99KS(2, 5, 5)
(2,. . . ,2) (4,4,2,2) (5,5,1,1) S(2, 2, 5, 5) 99KS(2, 4, 5)

Table A.16. In these table we omit the triples of partitions of 12 having an associated candidate
cover, which is not hyperbolic. There are 22 triples of partitions of 12 having a hyperbolic associated
candidate cover in C4.



Appendix B

Compatibility II

B.1 Large degree

This paragraph is devoted to prove that the data reported in Table 4.12 are the
only compatible data for the hyperbolic covers in C4, with degree d > 13. Recall
that within Step II in paragraph D (Chapter 4), we have defined a certain set D of
candidate covers of type S(α, β, γ, δ) 99KS(p, q, r) having base X = S(2, 3, r) with
7 6 r 6 77; there we have already studied all cases where 31 6 r 6 77. Here we
complete the proof of Proposition 4.2.1 by focusing on the cases 7 6 r 6 30, starting
from r = 30.

For the reader’s convenience we reproduce here in Table B.1 the auxiliary func-
tions bounding the degree, originally described in Table 4.11

d ≡ 0 (2), d ≡ 0 (3) dmax(r) 12 r−2
r−6

d ≡ 1 (3) d3(r) 25r−9
r−6

d ≡ 1 (2) d2(r) 9 r−2
r−6

d ≡ 2 (3) d3,3(r) 42r−3
r−6

d ≡ 1 (2), d ≡ 1 (3) d2,3(r) 7r−12
r−6

Table B.1. Auxiliary functions bounding degree, depending on congruences and divisibility

Remark B.1.1. Notice that, regardless of their applicability as an upper bound
for d, the functions defined in Table B.1 satisfy the following inequalities for all r:

dmax(r) > d3(r) > d2(r) > d3,3(r) > d2,3(r).

Just a few words about the notation chosen for these functions of r: when we write
di,j , we want to stress that d is such that we must have in the cover a conic point
of order i and another of order j.

r = 30 Here dmax(30) = 14, then we have to consider d = 13 and d = 14. If
d = 13 ≡ 1 (2), then d 6 d2(30) = 10.5, while if d = 14 ≡ 2 (3), then d 6 d3,3(30) <
d2(30). In both cases we do not have anything to consider.

73
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23 6 r 6 29 In all these cases we have 14 < dmax(r) < 15, then we have d = 13
and d = 14 as possible degrees. As in the previous case, if d = 13, then d 6 d2(23) ≈
11.12, while if d = 14, then d 6 d3,3(23) < d2(23). In both cases we do not have
anything to study.

r = 22 Here dmax(22) = 15, then we get:

d = 13 and d = 15 lead to d 6 d2(22) = 11.25,

d = 14 leads to d 6 d3,3(22) < d2(22) = 11.25.

As before, nothing to do.

19 6 r 6 21 Also here we have to discuss 13 6 d 6 15.

d = 13 and d = 15 lead to d 6 d2(19) ≈ 11.77,

d = 14 leads to d 6 d3,3(19) < d2(19) ≈ 11.77.

Nothing to do.

r = 18 Here dmax(18) = 16, then we get:

d = 13 and d = 15 lead to d 6 d2(18) = 12,

d = 14 leads to d 6 d3,3(18) < d2(18) = 12,

d = 16 leads to d 6 d3(18) = 13.5.

Same conclusion as in the previous cases.

r = 17 Here dmax(17) ≈ 16.36 < 17. As 17 is a prime number, and the orders of
cone points over it should divide 17, they can only be in {1, 17}; then d = x+ y · 17
with x, y non-negative integers, and d < 17 implies y = 0. Hence we should have x
cone points of order 17 in X̃; since d > 13, we conclude we should have too many
cone points in X̃ (in fact x = d > 12). No new cases.

r = 16 dmax(16) = 16, 8, then we get:

d = 13 and d = 15 lead to d 6 d2(16) = 12.6,

d = 14 leads to d 6 d3,3(16) < d2(16) = 12.6,

d = 16 leads to d 6 d3(16) = 14.2.

No interesting items arise.
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r = 15 dmax(15) ≈ 17, 3 < 18 implies d 6 17; so we have:

d = 13, 15, 17 lead to d 6 d2(15) = 13,

d = 14 leads to d 6 d3,3(15) < d2(15) = 13,

d = 16 leads to d 6 d3(15) ≈ 14.6.

The only item that should be analysed is d = 13; for this case we would like to
have `(Π) = 15 and c(π) = 4 (following the notation already used in Chapter 3).
Proceeding in the usual study of the length of possible partitions of d, and the
number of conic points, from Table B.2 we can easily deduce that the partitions of
d associated to the would-be cover with less than five conic points are:

(2, . . . , 2, 1), (3, . . . , 3, 1), (3, 3, 3, 3, 1)
(2, . . . , 2, 1), (3, . . . , 3, 1), (5, 5, 3)

(2, . . . , 2, 1), (3, . . . , 3, 1), (5, 3, 3, 1, 1)

Π (5,5,3) (5,3,3,1,1) (3,. . . ,3,1) (3,. . . ,3,1,1,1,1) (2,. . . ,2,1) (2,. . . ,2,1,1,1)
` 3 5 5 7 7 8
c 3 5 1 4 1 3

Table B.2. The only partitions Π of 13 which can be involved in a cover of S(2, 3, 15)

Notice that we cannot have any candidate orbifold covers in C4.

r = 14 dmax(14) = 18 implies d 6 18; so we must consider:

d = 13, 15, 17 lead to d 6 d2(14) = 13.5,

d = 14 leads to d 6 d3,3(14) = 12.5,

d = 16 leads to d 6 d3(14) = 15.5,

d = 18: no restrictions.

Again, we have to analyse d = 13. Here we order the possible triples of partitions
of 13 with respect to the total number of cone points:

(2, . . . , 2, 1), (3, . . . , 3, 1), (7, 2, 2, 2)
(2, . . . , 2, 1, 1, 1), (3, . . . , 3, 1), (7, 2, 2, 2)

(2, . . . , 2, 1), (3, . . . , 3, 1, 1, 1, 1), (7, 2, 2, 2)

None of these is interesting for us.
Also d = 18 has to be considered. In Table B.3 we list all possible triples of

partitions of 18 having l.c.m. 2, 3, 14 respectively, having less than four conic
points; only three of them could lie in C4. Then we compute the exact degree
via the Euler characteristics, we found that only S(14, 14, 14, 14) 99KS(2, 3, 14) is
candidate.
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Π1,Π2,Π3 c(Π) Associated cover d

(2, . . . , 2), (3, . . . , 3), (14, 2, 2) 2 S(7, 7) 99KS(2, 3, 14)

(2, . . . , 2), (3, . . . , 3), (14, 2, 1, 1) 3 S(7, 14, 14) 99KS(2, 3, 14)

(2, . . . , 2, 1, 1), (3, . . . , 3), (14, 2, 2) 4 *S(2, 2, 7, 7) 99KS(2, 3, 14) 15/2

(2, . . . , 2), (3, . . . , 3), (7, 7, 2, 2) 4 *S(2, 2, 7, 7) 99KS(2, 3, 14) 15/2

(2, . . . , 2), (3, . . . , 3), (14, 1, 1, 1, 1) 4 S(14, 14, 14, 14) 99KS(2, 3, 14) 18

(2, . . . , 2), (3, . . . , 3, 1, 1, 1), (14, 2, 2) 5 S(3, 3, 3, 7, 7) 99KS(2, 3, 14)
Table B.3. Partitions and associated cover rising for r = 14 and d = 18: in those cases labelled
with * the associated orbifold cover is even not compatible.

r = 13 As in the previous case, dmax(13) ≈ 18.8 implies d 6 18. Moreover, as
when we studied the case r = 17, we use the fact that r is a prime number: the
partition of d over 13 should be made of 13’s and 1’s. Then for d 6 18 we have listed
all the possible triples of partitions having the right triple of l.c.m.’s and c(Π) 6 4:

Π1,Π2,Π3 c(Π) d

(2, . . . , 2, 1), (3, . . . , 3, 1), (13) 2 13

(2, . . . , 2, 1, 1, 1), (3, . . . , 3, 1), (13) 4 13

(2, . . . , 2, 1), (3, . . . , 3, 1), (13, 1) 3 14

(2, . . . , 2, 1), (3, . . . , 3), (13, 1, 1) 3 15

(2, . . . , 2), (3, . . . , 3, 1), (13, 1, 1, 1) 4 16

There are only two of them that could be associated to an orbifold cover in C4, but
only the last triple (2, . . . , 2), (3, . . . , 3, 1), (13, 1, 1, 1) is associated to a candidate
cover: S(3, 13, 13, 13) 99KS(2, 3, 13).

r = 12 dmax(12) = 20; so:

d = 13, 19 lead to d 6 d2,3(12) = 12,

d = 14, 17 lead to d 6 d3,3(12) = 14,

d = 15 leads to d 6 d2(12) = 15,

d = 16, 20 lead to d 6 d3(12) = 16,

d = 18: no restrictions.

These conditions let us exclude d = 13, 19, 17, 20; hence we have to discuss the cases
in which d ∈ {14, 15, 16, 18}.
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Π1,Π2,Π3 c(Π) d `(Π)

(2, . . . , 2), (3, . . . , 3, 1, 1), (12, 2) 3 14 15
(2, . . . , 2), (3, . . . , 3, 1, 1), (12, 1, 1) 4 14 16
(2, . . . , 2, 1), (3, . . . , 3), (12, 1, 1, 1) 4 15 17
(2, . . . , 2, 1, 1), (3, . . . , 3, 1), (12, 4) 4 16 17
(2, . . . , 2), (3, . . . , 3, 1), (12, 2, 1, 1) 4 16 18

(2, . . . , 2), (3, . . . , 3, 1), (6, 6, 4) 4 16 17
(2, . . . , 2), (3, . . . , 3), (12, 6) 1 18 17

(2, . . . , 2, 1, 1), (3, . . . , 3), (12, 6) 3 18 18
(2, . . . , 2), (3, . . . , 3, 1, 1, 1), (12, 6) 4 18 19

(2, . . . , 2), (3, . . . , 3), (12, 4, 2) 2 18 18
(2, . . . , 2, 1, 1), (3, . . . , 3), (12, 4, 2) 4 18 19
(2, . . . , 2), (3, . . . , 3), (12, 4, 1, 1) 3 18 19
(2, . . . , 2), (3, . . . , 3), (12, 3, 3) 2 18 18

(2, . . . , 2, 1, 1), (3, . . . , 3), (12, 3, 3) 4 18 19
(2, . . . , 2), (3, . . . , 3), (12, 3, 2, 1) 3 18 19

(2, . . . , 2), (3, . . . , 3), (12, 3, 1, 1, 1) 4 18 20
(2, . . . , 2), (3, . . . , 3), (12, 2, 2, 2) 3 18 19

(2, . . . , 2), (3, . . . , 3), (12, 2, 2, 1, 1) 4 18 20
(2, . . . , 2), (3, . . . , 3), (6, 6, 4, 2) 4 18 19

Here, five of them are associated to a candidate cover:

S(3, 3, 12, 12) 99KS(2, 3, 12);

S(2, 12, 12, 12) 99KS(2, 3, 12);

S(3, 6, 12, 12) 99KS(2, 3, 12);

S(4, 12, 12, 12) 99KS(2, 3, 12);

S(6, 6, 12, 12) 99KS(2, 3, 12).

r = 11 dmax(11) = 21, 6 implies 13 6 d 6 21. Here we use also the fact that 11 is a
prime number: in fact, if we want c(π) 6 4 and d > 13, the possible partitions over
11 could be only made of one 11 and some 1’s, and we list them in the following
table.

Π1,Π2,Π3 c(Π) d `(Π)

(2, . . . , 2, 1), (3, . . . , 3, 1), (11, 1, 1) 4 13 15
(2, . . . , 2), (3, . . . , 3, 1, 1), (11, 1, 1, 1) 5 14 19
(2, . . . , 2, 1), (3, . . . , 3), (11, 1, 1, 1, 1) 5 15 18

Then the only compatible hyperbolic cover of S(2, 3, 11) in degree greater than 13
is that one associated to the first triple of partitions in the table above:

S(2, 3, 11, 11) 99KS(2, 3, 11).
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r = 10 dmax(10) = 24 implies 13 6 d 6 24. Then we analyse the possible degrees:

d = 13, 15, 17, 19 lead to d 6 d2(10) = 18,

d = 14, 17, 20 leads to d 6 d3,3(10) = 17,

d = 16, 19, 22 leads to d 6 d3(10) = 20.5,

d = 18, 24: no restrictions.

Hence we can exclude degrees 19, 20, and 22. As previously done, we start our
discussion on triples of partitions of the possibile degrees, excluding triples not
having the desidered l.c.m.’s, or not having c(Π) = 4.

Π1,Π2,Π3 d `(Π)

(2, . . . , 2, 1), (3, . . . , 3, 1), (10, 2, 1) 13 15
(2, . . . , 2), (3, . . . , 3, 1, 1), (10, 2, 2) 14 16
(2, . . . , 2, 1, 1, 1), (3, . . . , 3), (10, 5) 15 16
(2, . . . , 2, 1), (3, . . . , 3), (10, 2, 2, 1) 15 17
(2, . . . , 2), (3, . . . , 3, 1), (10, 2, 2, 2) 16 18
(2, . . . , 2), (3, . . . , 3), (10, 5, 2, 1) 18 19

(2, . . . , 2), (3, . . . , 3), (10, 5, 1, 1, 1) 18 20
(2, . . . , 2, 1, 1, 1), (3, . . . , 3), (10, 10, 1) 21 22

(2, . . . , 2, 1), (3, . . . , 3), (10, 5, 5, 1) 21 22
(2, . . . , 2), (3, . . . , 3), (10, 10, 1, 1, 1, 1) 24 26
(2, . . . , 2, 1, 1), (3, . . . , 3), (10, 10, 2, 2) 24 25

(2, . . . , 2), (3, . . . , 3), (10, 5, 5, 2, 2) 24 25

And six of them are associated to a candidate cover in C4:

S(2, 3, 5, 10) 99KS(2, 3, 10);

S(3, 3, 5, 5) 99KS(2, 3, 10);

S(2, 5, 5, 10) 99KS(2, 3, 10);

S(3, 5, 5, 5) 99KS(2, 3, 10);

S(2, 5, 5, 5) 99KS(2, 3, 10);

S(10, 10, 10, 10) 99KS(2, 3, 10).

r = 9 dmax(9) = 28; then 13 6 d 6 28. Then we analyse restrictions on the degree:

d ≡ 1 (2)⇒ d 6 d2(9) = 21,

d ≡ 1 (2), d ≡ 1 (3)⇒ d 6 d2,3(9) = 17,

d ≡ 2 (3)⇒ d 6 d3,3(9) = 20,

d ≡ 1 (3)⇒ d 6 d3(9) = 24,

d = 18, 24: no restrictions.
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Consequently, we deduce that the set of possible degrees we have to consider is

{13, 14, 15, 16, 17, 18, 20, 21, 24}.

Proceeding as in the previous case, we are able to list the admissible triples of
partitions of d with c(Π) = 4:

Π1,Π2,Π3 d `(Π)

(2, . . . , 2, 1), (3, . . . , 3, 1), (9, 3, 1) 13 15
(2, . . . , 2), (3, . . . , 3, 1), (9, 3, 3, 1) 16 18

(2, . . . , 2, 1, 1, 1, 1), (3, . . . , 3), (9, 9) 18 19
(2, . . . , 2), (3, . . . , 3, 1, 1), (9, 9, 1, 1) 20 22
(2, . . . , 2, 1, 1, 1), (3, . . . , 3), (9, 9, 3) 21 22
(2, . . . , 2, 1), (3, . . . , 3), (9, 9, 1, 1, 1) 21 23
(2, . . . , 2, 1, 1), (3, . . . , 3), (9, 9, 3, 3) 24 25
(2, . . . , 2), (3, . . . , 3), (9, 9, 3, 1, 1, 1) 24 26

They give the following candidate covers:

S(2, 3, 3, 9) 99KS(2, 3, 9);

S(3, 3, 3, 9) 99KS(2, 3, 9);

S(3, 3, 9, 9) 99KS(2, 3, 9);

S(2, 9, 9, 9) 99KS(2, 3, 9);

S(3, 9, 9, 9) 99KS(2, 3, 9).

r = 8 dmax(8) = 36; then 13 6 d 6 36. Then we analyse the conditions on d:

d ≡ 1 (2)⇒ d 6 d2(8) = 27,

d ≡ 1 (3)⇒ d 6 d3(8) = 31,

d ≡ 2 (3)⇒ d 6 d3,3(8) = 26,

d ≡ 1 (2), d ≡ 1 (3)⇒ d 6 d2,3(8) = 22,

d = 18, 24, 30, 36: no restrictions.

Consequently, the set of possible degrees is

{13, . . . , 22, 24, 26, 27, 28, 30, 36}.

Proceeding as usual, one gets that the possible triples of partitions with the exact
number of cone points are:
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(2, . . . , 2, 1), (3, . . . , 3, 1), (8, 4, 1) (2, . . . , 2), (3, . . . , 3, 1, 1), (8, 4, 2)
(2, . . . , 2, 1), (3, . . . , 3), (8, 4, 2, 1) (2, . . . , 2), (3, . . . , 3, 1), (8, 4, 2, 2)

(2, . . . , 2), (3, . . . , 3, 1, 1, 1, 1), (8, 8) (2, . . . , 2, 1), (3, . . . , 3, 1, 1), (8, 8, 1)
(2, . . . , 2, 1, 1), (3, . . . , 3), (8, 8, 1, 1) (2, . . . , 2), (3, . . . , 3, 1, 1, 1), (8, 8, 2)
(2, . . . , 2, 1), (3, . . . , 3, 1), (8, 8, 2, 1) (2, . . . , 2), (3, . . . , 3, 1, 1), (8, 8, 2, 2)
(2, . . . , 2, 1), (3, . . . , 3), (8, 8, 2, 2, 1) (2, . . . , 2), (3, . . . , 3, 1), (8, 8, 4, 1, 1)
(2, . . . , 2), (3, . . . , 3, 1), (8, 8, 2, 2, 2) *(2, . . . , 2, 1, 1), (3, . . . , 3), (8, 8, 4, 4)
(2, . . . , 2), (3, . . . , 3), (8, 8, 2, 2, 2, 2) (2, . . . , 2), (3, . . . , 3), (8, 8, 4, 2, 1, 1)
*(2, . . . , 2), (3, . . . , 3), (8, 4, 4, 4, 4) (2, . . . , 2), (3, . . . , 3, 1, 1), (8, 8, 8, 1, 1)

(2, . . . , 2, 1), (3, . . . , 3), (8, 8, 8, 1, 1, 1) (2, . . . , 2), (3, . . . , 3, 1), (8, 8, 8, 2, 1, 1)
*(2, . . . , 2, 1, 1), (3, . . . , 3, 1), (8, 8, 8, 4) *(2, . . . , 2), (3, . . . , 3, 1), (8, 8, 4, 4, 4)
(2, . . . , 2), (3, . . . , 3), (8, 8, 8, 2, 2, 1, 1) *(2, . . . , 2), (3, . . . , 3), (8, 8, 4, 4, 4, 2)
*(2, . . . , 2, 1, 1), (3, . . . , 3), (8, 8, 8, 4, 2) (2, . . . , 2), (3, . . . , 3), (8, 8, 8, 8, 1, 1, 1, 1)
*(2, . . . , 2), (3, . . . , 3), (8, 8, 8, 4, 4, 2, 2) *(2, . . . , 2), (3, . . . , 3, 1, 1, 1), (8, 8, 8, 8, 4)

*(2, . . . , 2, 1, 1), (3, . . . , 3), (8, 8, 8, 8, 2, 2)

Except of those labelled with a star *, each of them gives a candidate cover (there
are 20 of them).

r = 7 As noticed in cases r = 17, 11, when r is a prime number, its partitions
should be made of r’s and 1’s; we also require c(Π) = 4. Then we are inter-
ested only in degrees d ≡ a (7), with 0 6 a 6 4. We also see that d ≡ 4
implies that d ≡ 0 (6). Using both these conditions, and the usual ones (or dis-
cussing congruences modulo 2 and 3) we get that the set of all possible degrees is
{14, 21, 22, 28, 29, 30, 36, 37, 44, 45, 52, 60}. As usual, we list the possible triple of
partitions of d:

Π1,Π2,Π3 d

(2, . . . , 2, 1, 1), (3, . . . , 3, 1, 1), (7, 7) 14
(2, . . . , 2, 1), (3, . . . , 3, 1, 1, 1), (7, 7, 7) 21
(2, . . . , 2, 1, 1), (3, . . . , 3, 1), (7, 7, 7, 1) 22

(2, . . . , 2), (3, . . . , 3, 1, 1, 1, 1), (7, 7, 7, 7) 28
(2, . . . , 2, 1), (3, . . . , 3, 1, 1), (7, 7, 7, 7, 1) 29
(2, . . . , 2, 1, 1), (3, . . . , 3), (7, 7, 7, 7, 1, 1) 30
(2, . . . , 2), (3, . . . , 3, 1, 1, 1), (7, . . . , 7, 1) 36
(2, . . . , 2, 1), (3, . . . , 3, 1), (7, . . . , 7, 1, 1) 37
(2, . . . , 2), (3, . . . , 3, 1, 1), (7, . . . , 7, 1, 1) 44
(2, . . . , 2, 1), (3, . . . , 3), (7, . . . , 7, 1, 1, 1) 45
(2, . . . , 2), (3, . . . , 3, 1), (7, . . . , 7, 1, 1, 1) 52
(2, . . . , 2), (3, . . . , 3), (7, . . . , 7, 1, 1, 1, 1) 60

Each of them gives a candidate orbifold cover, listed in Table 4.12.
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Exceptionality

In this appendix we provide alternative proofs of exceptionality for some of the
candidate covers already shown by other means to be non-realizable. The techniques
we will use are:

• GM (Graph Moves): performing moves on partially constructed dessins d’enfant
for a candidate branched cover we reduce the proof that it is exceptional to
the same statement for a candidate in lower degree;

• GG (Geometric Gluings): let a candidate cover f : X̃
d:1−→X be given, where

X is a triangular hyperbolic 2-orbifold; we discuss the realizability of f by
realizing X as a quotient of a hyperbolic polygon D in H2 under the action
of an isometric pairing of the edges, and by discussing how d copies of D
can be glued together to give a fundamental domain of X̃ compatible with
f : X̃ 99KX.

The cases treated and the techniques used to treat them are specified in Table C.1.
When using GM, we take white and black vertices having valences as in Π1 and Π3,
respectively. We discuss the two cases labeled with GG in the last paragraph of this
appendix.

Π1,Π2,Π3 d Fig. Reason
(2,2,2,2), (3,3,1,1),(5,3) 8 C.1a GM - Thm 3.3.5

(2,2,2,2,1), (3,3,3), (5,2,2) 9 C.1b GM - VED
(2,. . . ,2),(3,3,3,1),(4,3,3) 10 C.1a GM - BD

(2,. . . ,2,1),(3,. . . ,3),(8,8,2,2,1) 21 C.2a GM - BD
(2,. . . ,2),(3,. . . ,3,1),(8,8,4,1,1) 22 C.2b GM - BD
(2,. . . ,2),(3,. . . ,3),(9,9,3,1,1,1) 24 GG

(2,. . . ,2),(3,. . . ,3,1,1),(7,. . . ,7,1,1) 44 GG
(2,. . . ,2,1),(3,. . . ,3),(7,. . . ,7,1,1,1) 45 3 times C.3c Thm 3.3.10
(2,. . . ,2),(3,. . . ,3,1),(7,. . . ,7,1,1,1) 52 3 times C.3c, d Thm 3.3.10

Table C.1. Exceptionality proofs

For each of the data listed in Table C.1 we will now describe in greater detailhow
we have establishes realizability or exceptionality.
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(2, 2, 2, 2), (3, 3, 1, 1), (5, 3) In the first candidate cover, we have two 2-gons; at least
one of them is forced to be based at the black vertex of valence 5. Acting on it as
described in Fig. C.1a, we get the new partitions: (2, . . . , 2), (3, 3, 3, 1), (6, 3, 1), giv-
ing a degree-10 candidate cover of Euclidean type, already proved to be exceptional
in Theorem 3.3.5.

(2, 2, 2, 2, 1), (3, 3, 3), (5, 2, 2) Here, we note that there is a white vertex x of valence
1. We can have 6-gons only, which forces x to be joined to the black vertex of valence
5. Then we act on this vertex as indicated in Fig. C.1b, getting the candidate
branch datum (2, ..., 2), (3, 3, 3, 1), (6, 2, 2), which is exceptional thanks to the VED
criterion.

(2, . . . , 2), (3, 3, 3, 1), (4, 3, 3) Also this partition has a forced local setting: the 2-
gon has to be based at the vertex of valence 4, because the graph should be con-
nected. Then we act as indicate in Table C.1 and we get a Π = ((2, . . . , 2), (3, 3, 3, 3), (5, 3, 3, 1)),
that is exceptional because of BD.

x

x

d 99K d+ 2

d 99K d+ 1

x+ 1, 1

x+ 1

a:

b:

Figure C.1. Graph moves a and b

Other cases via GM In the next figures (Fig. C.2 and C.3) we describe how to
do graph moves to prove exceptionality of the remaining covers. More precisely, we
first show on the left the forced situation on which we want to act, and then, on the
right, the piece of graph after the move. Here we list the original partitions, and
the final ones that show exceptionality:

Π d Π after GM
(2,. . . ,2,1),(3,. . . ,3),(8,8,2,2,1) 21 (2,. . . ,2),(3,3,3,3), (6,4,1,1)
(2,. . . ,2),(3,. . . ,3,1),(8,8,4,1,1) 22 (2,. . . ,2),(3,3,3,3),(5,4,2,1)

(2,. . . ,2,1),(3,. . . ,3),(7,. . . ,7,1,1,1) 45 (2,. . . ,2,1),(3,. . . ,3),(6,6,6,3,3,3)
(2,. . . ,2),(3,. . . ,3,1),(7,. . . ,7,1,1,1) 52 (2,. . . ,2,1),(3,. . . ,3),(6,6,6,6,3,3,3)

In degrees 21 and 22 we use again Propositions 4.14 and 4.15 of [19]: in fact,
after performing the graph moves as described in Fig. C.2a and C.2b, we get two
partitions of 12 that were proved to be exceptional in [19].

Also in degrees 45 and 52, the suggested graph moves lead to candidates known
to be exceptional: in fact they are reduced to

S(2, 2, 2, 2)
18:199KS(2, 3, 6) and S(2, 2, 2, 2)

33:199K S(2, 3, 6),



83

which are Euclidean and exceptional, as already proved in Chapter 3, Theorem
3.3.10.

4
2 5

8
4 8

4 68 8
a:

d 99K d− 10
b:

d 99K d− 9

Figure C.2. Other graph moves

d 99K d− 6

7

7

7 7
3 6

d 99K d− 1

c:

d:

6
7

Figure C.3. Other graph moves

Two proofs of exceptionality via GG In Fig. C.4 and Fig. C.5 figures are used
to show exceptionality by means of geometric gluings, introduced in the last section
of Chapter 4. In order to show exceptionality of a candidate cover X̃ 99KX, we will
see that once one has the base orbifold as D/{g1,g2}, it is impossible to produce any
D̃/{f1,...,fh} covering X and representing the cover orbifold X̃.

Let us discuss in detail the remaining cases:

I (9, 9, 3, 1, 1, 1), (3, . . . , 3), (2, . . . , 2) S(3, 9, 9, 9)−→S(2, 3, 9)

II (7, . . . , 7, 1, 1), (3, . . . , 3, 1, 1), (2, . . . , 2) S(3, 3, 7, 7)−→S(2, 3, 7)

In both of them, first of all we fix X as D/{g1,g2}; then we start constructing
D̃, that will have to be homeomorphic to a disc in the plane, by gluing together
the d copies of D and taking into account the partitions of d of the candidate cover.
Notice that taking into account the partitions means that we are obliged to group
together some copies of D: this operation produces a ‘set of tiles’ we have to use to
build D̃.
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Case I Let α = 2
3π. We want to construct a fundamental domain of S(3, 9, 9, 9)

gluing together 24 copies of the fundamental domain of S(2, 3, 9), that is a triangle T
of angles π/3, π/3, 2π/9. At the start level, the partitions (2, . . . , 2), (3, . . . , 3), (9, 9, 3, 1, 1, 1)
tell us that there are some prescribed gluings; e.g. we have two 9-gons, a-tile, made
of 9 copies of T, each one desingularizing a conic point of order 9 (note that each
angle of the two 9-gons is α). In Fig. C.4, first row, we draw the types of tile we
have at this level: the b-tile corresponds to 3 in Π3, and the c-tile corresponds to
1’s in Π3.

complement of a′1

a1

a2

α

α

α

2α

α
2α

α

b

α

α

α

2α

â2

b

2α

2α

α

α

2α

α

α

complement of a′′1

a c

α

Figure C.4. Set of tiles for (2, . . . , 2), (3, . . . , 3), (9, 9, 3, 1, 1, 1)

Consider now a tile of type c, corresponding to a conic singularity of order 9 in
the cover orbifold; we are forced to glue this c-tile on an a-tile, because if we glue a
c-tile with a c-tile, or with a b-tile, we close the orbifold and cannot glue anything
else. Moreover, note that we have three b-tiles (each one with a cone point of order
9) and two a-tiles. Gluing all of them to the same a-tile corresponds to realizing
S

12:199K99K99K99K99K
(2,...,2),(3,...,3),(9,1,1,1)

S; then the only possibility is to glue one of them with an a-tile,
and the remaining two to the other a-tile. Hence we add new tiles to the set with
which we have to build a fundamental domain of S(3, 9, 9, 9); see the second row in
Fig.C.4; at this level the set is: {a1, a2, â2, b}. Then it is important not to forget
those self-gluings not introducing new conic points: there are two of them, namely
a′1 and a′′1, see the last row of Fig.C.4.
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Since we have no other self-gluing to consider, we have reduced the problem to
tile the complement of a b-tile, that is a triangle with each angle 2α, with one a1,
and a2 or â2. Both cases are easily seen to be impossible.

Case II As in the previous case, let α = 2
3π. We want to construct a fundamental

domain of S(3, 3, 7, 7) gluing together 44 copies of a fundamental domain of S(2, 3, 7).
As in the previous case we choose as fundamental domain T, a triangle with angles
π/3, π/3, 2π/7. Even at this level, focusing on the partition of the degree at the
preimages of the conic point of order 7, we see that there are some forced gluings:
we have six copies of a heptagon whose center projects to the conic point of order
7, with each vertex projecting on the conic singularity in the base of order 3. So we
will think of these a-tiles as heptagons, with angles of 2α. Moreover we have two
other tiles, that we call b, that are triangles with angles π/3, π/3, 2π/7, which carry
the conic points of order 7 in S(3, 3, 7, 7), the covering orbifold. In the first row of
Fig. C.5 we draw these tiles. Now we pass to consider where the two conic points
of order 7 could be: when we glue a b-tile on an a-tile, and we make the resulting
identifications (remembering that 3α = 2π), we get a new tile, a7, with 4 vertices
(still projecting to the 3-cone point in the base), and angles {2α, α, α, α}. Note that
gluing another b-tile on this a7-tile is impossible: we cannot keep on gluing any
other tile. Hence we cannot put two b-tiles on the same a-tile.

At the second line of Fig. C.5 we show the tiles we get acting as we perform a
self-gluing (not producing a conic point) or a gluing of two adjacent edges, making
the common vertex one of the two conic points of order 3 in the cover orbifold, and
the same for 7-cone points; in the end, we have tiles of type {a, b, a′, a′′, a7, a3}. At
the third level we introduce one more gluing or self-gluing. After a brief discussion
on each case, we can exclude some of them; for instance double self-gluings, and
tiles like a3,7, namely an a-tile glued with a b-tile and having a 3-conic point. In
the end we have the set {a, b, a′, a7, a3, a3,3}; we have deleted type a′′ because it
introduces a region with two edges, and two angles α and 2α, that cannot be filled
with our tiles.

We have already shown that we have to glue the two b-tiles on two different
a-tiles. Now, taking into account also the two conic points of order 3 in the cover.
It is easy to check that a singularity of order 3 should be a vertex corresponding to
an angle α; since gluing and self-gluing produce 2α, we reduce only to two a3’s or
one a3,3.

Hence, we have to discuss realizability for the two sets of tiles:

• A = {a3, a3, a7, a7, a, a};

• B = {a3,3, a7, a7, a, a, a}.

We remark that to realize the cover, now we have to produce an S(3, 3, 7, 7) only
by gluing different tiles.
Conclusion in case A We have two a-tiles. Then the problem is to fill the
complement of an a-tile (which is a heptagon D′ with all angles 2α) with the other
tiles in A. Consider the other a-tile and its position: it could have no edges on
the boundary of D′, or exactly one, or exactly two. Note first that we cannot glue
two adjacent edges of the a-tile to two adjacent edges of ∂D′, because 2α 6= 2π.
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α
α

2α
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Figure C.5. Set of tiles for (2, . . . , 2), (3, . . . , 3, 1, 1), (7, . . . , 7, 1, 1)

Moreover, we should exclude the cases of three or more edges on the boundary,
because in those cases we are obliged glue the a-tile to two edges at distance one
in ∂D′, and then to create a region between the a-tile and the boundary, made of
2 + n edges with 2 angles α, and n angles 2α (n < 4): it can be easily checked that
this kind of region cannot be filled with the tiles in A.

If the a-tile is in the interior, then with the rest of the set A we have to fill a
region made of 14 edges and 14〈2α〉. We use the brackets 〈·〉 to say that the angle
comes from one angle of a tile and not from the juxtaposition of many. And the set
A can offer 18 edges and 4 angles of type 〈2α〉. Then, to cover the areas nearby the
remaining 10〈2α〉, we need to glue together two 〈α〉 angles. But this requires 10/2
more edges. This is impossible, because we have 18 edges, and we need 14 + 5 = 19
edges.

If the a-tile has exactly one edge on the boundary, then with the rest of the set
A we have to fill a region made of 12 edges, 10〈2α〉, and 〈2α〉. As above, the set
A could offer 18 edges and 4 angles of type 〈2α〉. Repeating the discussion as in
the previous case, we have no contradiction; but we can estimate better the number
of edges required to fill the region. Actually, the existence of many adjacent 〈2α〉
on the boundary and the existence of the tile a3 force us to introduce at least one
vertex in the interior. In this way it is easy to see that we need more than 18 edges.
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If the a-tile has exactly two edges on the boundary, we have two cases to analyze;
the other ones are symmetric. The two edges on the boundary, in common with
the tile, could have in between n other edges, with n = 1, or 2. We have already
discussed at the beginning of this paragraph the case n = 1. The case n = 2 is
slightly more subtle, but also in this case we cannot tile the region in the appropriate
way.
Conclusion in case B This case is very easy: if fact here we have an a3,3-tile; this
tile has two successive 〈2α〉 angles. It can only lie in the interior of D′, and be glued
to an a-tile, forcing it to self-glue. As we carry on gluing we are forced to glue the
other a-tile to this object, producing a region R with three edges, one 〈2α〉 and two
〈α〉 angles. If the whole region is in the interior, the problem reduces to fill R with
10 edges, 9 angles 〈2α〉 and an angle α with only two a7-tiles: this is impossible,
because two a7-tiles offer only 8 edges. If R has one edge on the boundary, there
remains to fill a region of 8 edges, 5〈2α〉 and 〈3α〉 with two a7-tiles, which can only
offer 8 edges, 2〈2α〉 and 6〈α〉. Taking into account that two of the 〈2α〉 at our
disposal to fill R gluing together two pairs of 〈α〉 need 2/2 more edges, we have the
contradiction. In a very similar way we can show that also the case where R has
two edges on the boundary D′ does not yield a realization of X̃ as desired.
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