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CHAPTER 1

Large Deviations via I'-convergence

1.1. Motivations

1.1.1. Interacting particles systems. The focus of this thesis is to pro-
vide an asymptotic analysis for some stochastic and variational models de-
scribing the evolution of “large” physical systems. The analysis of a system
with a large number of degrees of freedom cannot in general be addressed by
Newton-like differential models. Since the seminal works of Boltzmann in the
XIX century, a statistical approach to the problem has been considered. While
a mathematical framework to study systems at equilibrium has been provided
in the last decades [16], a rigorous setting for the analysis of systems out of
equilibrium is still missing. Several different approaches have been purposed,
both stochastic and deterministic.

In the stochastic approach, a much used framework to understand Statis-
tical Mechanics out of equilibrium is the one of stochastic interacting particles
systems [12, 13]. Roughly speaking, a bunch of N particles jumping randomly
on a countable lattice is considered. The dynamics is in general determined
by assigning the jump rates of these particles. One is generally interested
in analyzing the asymptotic behavior of the particles, when their number N
diverges to infinity (hydrodynamical limit). This task is carried out by ap-
propriately scaling the system, then identifying its characteristic quantities for
each finite N, and finally evaluating the limit of these quantities as N diverges.
A widely considered simplification consists in focusing on the density of the
particles. In several models it has been shown that, in the hydrodynamical
limit, the behavior of the density is deterministic, and it satisfies a differential
evolution equation, usually called the hydrodynamical equation. By the way,
the understanding of the properties of the system generally requires a much
finer analysis of the involved quantities. In particular, it is well known that
establishing large deviations principles for these quantities is a main step to
provide a deeper insight into the system. However, while several techniques
and results are available concerning large deviations of systems under the so
called diffusive scaling, there is a little literature about large deviations for
systems under Fuler scaling, see [11, 21, 3] where some important partial
results have been established for specific models.
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1.1.2. Introducing the model. In this thesis we are concerned with a
slightly different approach. Instead of dealing with discrete models, we focus
on a continuous description of physical systems, and thus consider a “density”
u = u(t,x) as a real valued function, depending on the time variable ¢ and the
space variable x. Hopefully, a continuous model may inherit the key properties
of the physical system, while allowing a more general investigation than a
model-by-model based analysis.

In many situations, that is whenever the number of particles is conserved
by the dynamics, it is natural to assume that the density u satisfies a continuity
equation

By + div(J) = 0 (1.1.1)

In several models, the current J takes into account the basic phenomena occur-
ring in conservative physical systems: transport, diffusion, fluctuation, which
in general appear as nonlinear terms in (1.1.1). We thus come with the crucial
assumption

J = f(u) — %D(u)gradu +o(u)a (1.1.2)

where f represents the so called fluz (related to transport phenomena), D is
an elliptical matrix governing diffusion, and o is a fluctuation matrix acting
on the stochastic noise a.

Motivated by the stochastic particles systems setting, and in particular
by the limiting behavior of systems under Euler scaling, we are interested in
the asymptotic properties of the solution to (1.1.1) when the diffusion and
fluctuation terms in (1.1.2) vanish simultaneously. Moreover, still motivated
by particle systems and by quite general physical systems heuristics, we assume
a natural hypotheses on the noise a. Namely, we suppose a to be white in
time and to have a small (i.e. vanishing) correlation in space.

In a more precise mathematical framework, we come up the following
Cauchy problem related to a stochastic partial differential equation, which
has to be interpreted in the Itd sense [8]

du= | =V f(u)+ 5V - [D@)Vu] | dt + 7V - [o(u) dW<]

1.1.3
u(0,x) = up(x) ( )

Here the parameter € plays the role of the inverse number of particles, so that
we are interested in the limit ¢ — 0. For a given sequence of smooth mollifiers
{s*} on T and a cylindrical Brownian motion W, the trace-class Brownian
motion W€ is defined as W¢ := 5 *x W, where % denotes convolution on T.
Moreover ug is a bounded measurable function on T and 7 is a real parameter
v > 1/2, so that, as ¢ — 0, the diffusion coefficient, the noise and the space-
correlation of the noise itself vanish. The rate at which these quantities vanish
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depends on the (quite) arbitrary choices of v and {j)°}. See Chapter 3 for a
precise definition of (1.1.3) and the assumptions concerning f, D, o and j°.

1.1.3. The asymptotic ¢ — 0. Existence and uniqueness results for
(1.1.3) are established in the Appendix A of Chapter 3. There are quite a
little results for fully nonlinear stochastic partial differential equations in the
literature; in particular a problem similar to (1.1.3) is addressed in [14, 15|
in a Hamilton-Jacobi context, although these papers deal with a finite dimen-
sional noise. Let P° the law of the process u® satisfying (1.1.3). We will see in
Chapter 3 that the sequence {P*} converges weakly (in a suitable topology) to
the so called entropic solution (see Section 1.4 below) to the limiting equation
obtained by informally setting ¢ = 0 in (1.1.3).

We are then left with the key issue of investigating large deviations princi-
ples for {P°}. Note that u° is a diffusion It6 process in a infinite dimensional
Banach space, with a drift term —V - f(u) + £V - [D(u)Vu] and a stochastic
diffusion term 7V - [J(u) dWE] which have a nontrivial behavior in the limit
e — 0. We recall that, even in the finite dimensional case, large deviations
techniques for Ito diffusions have been widely investigated in the “small noise”
asymptotic. However, at our knowledge, there are no general results address-
ing the problem of large deviations for Ito diffusion processes with drift and
diffusion coefficients depending arbitrarily on a parameter €. In Section 1.3
we show that, even in the finite dimensional case, large deviations principles
for diffusions processes are closely related to variational problems. Indeed, we
first establish in Section 1.2.3 a general equivalence between large deviations
principles for sequence of probability measures on a Polish space, and a so
called I'-convergence problem (see Section 1.2.2) for a corresponding sequence
of “relative entropy” functionals. Then in Section 1.2.3, we show that a I'-
convergence result is also necessary to establish a large deviation principles for
finite dimensional It6 diffusions. While the corresponding I'-convergence prob-
lem is trivial in the classical “small noise” asymptotic, it can be a challenging
issue in more general cases.

We are then left with the idea that, given a sequence of Ito diffusions, a
['-convergence result should be investigated in order to understand the large
deviations asymptotic. Roughly speaking, we may say that the main result of
this thesis is to prove that this heuristic idea holds true not only in the finite
dimensional case, but in the infinite dimensional case as well, at least as far as
the laws of the solutions to (1.1.3) are concerned.

We thus address a I'-convergence result related to (1.1.3) in Chapter 2. We
study this problem in a slightly different setting than the one introduced in
(1.1.3). This variational problem may have an independent interest by itself
as, for instance, it allows a variational characterization of measure-valued and
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entropic, respectively viscosity, solutions to conservations laws, respectively
Hamilton-Jacobi equations.

In Chapter 3 we then use the results of Chapter 2 to establish large devia-
tions principles for {P¢}. The main difference w.r.t. the finite dimensional case
is that the drift and diffusion coefficients involve derivatives w.r.t. the space
variable z, and thus have no regularity properties in the natural topologies in
which the convergence has to analyzed. Roughly speaking, this difficulty is
solved by using the fact that the higher order part §V - [D(U)Vu] of the drift
term has indeed a regularizing effect, which sharply compensates the “bad”
noise effect. Once this is understood, everything cools down to investigate the
stability of (1.1.3) w.r.t. small deterministic perturbations.

Before stating the main results of this thesis, we introduce some prelim-
inary notions. In Section 1.2 we recall the main definitions concerning large
deviations theory and I'-convergence. We next state and prove two results
connecting the two theories both from a theoretical and “operational” point
of view. In particular we apply these results to investigate large deviations
principles for finite dimensional It6 diffusions. In Section 1.4 we recall some
basic statements concerning inviscous conservation laws; we also introduce a
so called kinetic formulation for entropy-measures solutions to a conservation
law, which is proved in Chapter 2. These results are used to link the main
results stated in Section 1.5, and should help the understanding of the strategy
of their proofs. There are a few minor results that are obtained as byprod-
ucts from the proofs of the I'-convergence and large deviations principles. We
briefly sketch some of them in Section 1.5.3

1.2. Large deviations theory and its variational counterpart

In this section we recall the basic definitions concerning large deviations
and I'-convergence theories, see [10] and [4, 6]. We next establish a connec-
tion between the two theories, showing that large deviations principles are
equivalent to the I'-convergence of relative entropies. Then we introduce some
techniques to prove large deviations principles via I'-convergence in a Markov
processes framework. In particular, we prove a large deviations upper bound
and lower bound for a wide class of finite-dimensional 1t6 diffusions.

Hereafter, for X a Polish space (that is a completely metrizable separable
space), P(X) denotes the set of Borel probability measures on X, equipped
with the vague topology. Recall that P(X) is a Polish space itself.

1.2.1. Large deviations. Let {a.} be a sequence of positive reals such
that lim._,ga. = 0; let X be a Polish space and {P} C P(X) a sequence of
Borel probability measures on X; let I : X — [0, 400] be a lower semicontin-
uous functional on X. The sequence {P¢} is said to satisfy a large deviations
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weak upper bound with speed {a-'} and rate I iff for each compact set K C X
lima, logP*(K) < — in[f(](v) (1.2.1)
£ veE

{P°} satisfies a large deviations (full) upper bound with speed {aZ'} and rate
I iff for each closed set C C X
lim a. logP*(C) < — inf I(v) (1.2.2)

veC

{P=} satisfies a large deviations lower bound iff for each open set O C X
lima. logP*(O) > — in(f9 I(v) (1.2.3)
e vE

{P=} satisfies a large deviation principle iff an upper bound and a lower bound
hold with the same speeds and rates. {IP?} is called ezponentially tight iff for
each ¢ > 0 there exist an gy > 0 and compact K C X such that P*(K}) <
exp( — E/aa) for each ¢ < gy. Note that an exponentially tight family of
probability measures satisfies a large deviations upper bound iff it satisfies a
large deviations weak upper bound.

1.2.2. T'-convergence. Let {I.} be a sequence of functionals I. : X —
[0, +00]. We define two functionals I*lim_ /., I*lim, I, : X — [0, +o0] as

(Mim, I.)(z) := inf { lim_ ., F.(xf), 2° — x}
(F—mgﬁo FS) (x) := inf { lim._,o F.(2°), 2° — x}

Whenever [“lim_I.(z) = Ilim. I.(z) = I(z) we say that I. T-converges to
I in z, and that I'-convergence holds in X iff this equality holds true for all
x € X. The sequence {I.} is called equicoercive iff for each N there exists an
g0 > 0 and a compact K C X such that U.<.,{r € X : I.(z) < N} C K.
Note that Tlim. I. > [“lim_ /., and that these functionals are lower-
semicontinuous [6]. We recall that, for I : X — [0, +00] a lower semicontinuous
functional
— (THim, 1) (z) > I(x) iff for any sequence z° — z we have lim_ I, (2°) >
I(z) (I-liminf inequality);
~ (P lim. I.)(z) > I(z) iff there exists a sequence 2° — z such that
lim, I.(2°) < I(x) (D-limsup inequality).
Moreover for each compact set K C X and each open set O C X

PP T 5
inf (IMlim, [.)(z) < lim inf I.(x) (1.2.4a)
NP o 9

inf (I lim, [o)(«) > lim inf I.(x) (1.2.4b)
inf (T-lim, 1.)(z) > lim inf I_(2) (1.2.4c)

zeO e z€0
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Note that if {I.} is equicoercive, then the inequality (1.2.4a) also holds for
closed sets C C X.

1.2.3. Large deviations as I'-convergence of relative entropies. We
establish a preliminary lemma that will be used in the following. For X a Polish
space, and ¢ a map ¢ : X — R, we denote by ¢T, resp. ¢, the positive, resp.
negative, part of ¢.

LEMMA 1.2.1. Let {Q°} C P(X) and Q € P(z). The following are equiv-
alent:

(i) @ = Q inP(X). )
(ii) For each sequence {p.} of Borel measurable functions p. : X — R
such that limp;_, 4o lim_ QE((% + M)_) =0

lim Q%(¢.) = Q(Iim, )

where we understand Q(I'-lim, ¢.) = 400 wheneverQ((Fﬁli_m,E g05)+) =
~+00.
(iii) For each sequence {¢.} of Borel measurable functions . : X — R

such that limp;_, oo lim, QE((QQE + M)*) =0
EQE(@E> > Q(Ffme 906)

where we understand Q(I1im. ¢.) = +oo whenever Q((Ilim. ¢.)*) =
+00.

PRrROOF. The implication (ii) = (i) and (iii) = (i) are trivial. We next
show (i) = (ii); the implication (i) = (iii) follows analogously. Let {K,}2,
be an increasing sequence of compacts K, C X such that lim, Q(K,) = 0. It
is not difficult to see that for each ¢, n € N, there exists a finite family of
pairwise disjoint Borel measurable sets {E,gl}fvgl", such that U1 B}, D K,
and for i = 1,..., Nyy, Q(OE,) = 0, diameter(E}, ,) < 1/n. We also set

E} ;= X \U;i»1E, ,. By a refinement procedure, we can assume the partition
. : N1 o
{E}M}f\]:”df to be finer than {E], ,},"y" for n > n" and £ > ¢'.
Let {¢.} be as in the statement of the lemma. For ¢ > 0 and n, £ € N,
define g X = R by @epne(x) = infyeE};L’g ¢e(y) for v € E}, ,, and @, 4(z) =
lim_ .., ¢(x). Note that ¢, ¢(x) increases pointwise to I-lim_ . (x) as n — +oo
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and ¢ — +o00, so that for each M > 0
Q((IHlim, ¢.) V (=M)) = Q( I lim, (. V (—M)))
= limlim Q(¢n ¢ V (= M))

= hm hm Z [ ) lim inf (@a;n,ﬁ(w) v (_M))]

15 JEEEZ
Nn,
= limlimlim Y " Q*(E},,) inf @epe(x) Vv (—M) < hmQ (p. V (—M))
£on g A= S e

where in the first equality of the last line we used the required Q-regularity of
the sets E ,. The statement then follows by taking the limit M — +o0 on
both sides. O

Recall that, given P, Q € P(X), the relative entropy H(Q|P) of Q w.r.t. P

is defined as

H(QIP) := sup {Q(p) — log (P(exp(p)), ¢ € Cu(X)} (1.2.5)

As well known, the relative entropy admits an explicit representation in terms
of the Radon-Nykodim derivative dQ

[ Q(dz) log (2(z)) if Q is absolutely continuous w.r.t. P
H(QIP) = and log(42) € L,(dQ)

400 otherwise
(1.2.6)
We also recall a basic inequality involving the relative entropy. For each mea-
surable set A C X H(QIP) + log 2
O < e+ B
Given {a.} C RT and {P°} C P(X), let us introduce the sequence {H.} of
functionals H. : P(X) — [0, 4+00] by defining

H.(Q) := a.H(Q|P?) (1.2.8)
Note that H. is convex, since H(Q|P) is a supremum of linear functionals in
Q.

It is well known that large deviations principles are deeply connected with
convergence properties of relative entropies, see [9, 11]. The following propo-
sitions show that the I'-convergence provides a suitable framework to exploit
this connection.

In the remaining of this section, for Q € P(X) and E a Borel set such
that Q(£) > 0, we denote by Qg € P(X) the probability measure defined by
Qr(E') :=Q(ENE)/Q(FE), for each Borel set E'.

(1.2.7)
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PROPOSITION 1.2.2. Let {a.} C RY be such that lim.a. = 0, and let
{P} C P(X). The following are equivalent:

(A1) {P¢} is ezponentially tight w.r.t. {a.}.

(A2) {H.} is equicoercive.

PROPOSITION 1.2.3. Let {a.} C R" be such that lim.a. = 0, and let
{Pe} C P(X). Let furthermore I : X — [0,400] be a lower semicontinuous
functional. The following are equivalent:

(B1) {P¢} satisfies a large deviations weak upper bound with speed {aZ'}
and rate I.
(B2) For each v € X, (IMim, H.)(0,) > I(z), where §, € P(X) is the
Dirac mass concentrated at x.
(B3) For each Q € P(X), (IMim, H.)(Q) > Q(I).
(B4) For each sequence {p.} of measurable maps ¢. : X — R, such that
(1) limps_ 400 lim, Pe(exp[(goa + M)*/ag]) =0.
(ii) There exists an increasing sequence {K,;} of compact subsets
of X such that lim, lim, S, P (dz) efe@)/as = (),
the following inequality holds

lim a. log P*(exp(—¢:/ac)) < sup { = (T lim, ¢.) () — I(x)}

provided we read —(Tim, ¢.)(z) — I(z) := —oco whenever I(z) =
+00.
Assume furthermore that {P°} satisfies the equivalent conditions (Al) — (A2)
of Proposition 1.2.2. Then (B1) — (B4) are also equivalent to
(B5) {P°} satisfies a large deviations upper bound with speed {aZ'} and rate
I

(B6) For each sequence {p.} of measurable maps ¢. : X — R, such that
condition (i) in (B4) holds:

lim a. log P (exp(—¢:/ac)) < sup { = (T lim, ¢.) (2) — I(x)}

provided we read —(Ilim, ¢.)(z) — I(z) := —oco whenever I(z) =
+00.

PROPOSITION 1.2.4. Let {a.} C R be such that lim.a. = 0, and let
{P} C P(X). Let furthermore I : X — [0,4+00] be a lower semicontinuous
functional. The following are equivalent:

(C1) {P¢} satisfies a large deviations lower bound with speed {a-'} and rate
1.

(C2) For each x € X, (I im. H.)(8,) < I(z).

(C3) For each Q € P(X), (IMim. H.)(Q) < Q(I).
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(C4) For each sequence {p.} of measurable maps p. : X — R
lim a. log P* (exp(y./a.)) > sup { (Him, ¢.)(z) — I(z)}
€ zeX

provided we read (T-lim, ¢.)(z) — I(z) = —oo whenever I(z) = +o0.

PROOF OF PROPOSITION 1.2.2. (Al) = (A2). For ¢ > 0, let K, be a
compact subset of X such that P*(K§) < e~/ By (1.2.7), for each Q € P(X)

. a.H(Q|P?) 4 a. log 2 H.(Q) + a.log?2
a:log (14 P=(K§)~1) 1
Let g be such that a. <1 for ¢ < gy. For each N > 0 and ¢ < gy we get

Ueee {Q € P(X) : H(Q) < N} € {Q € P(X) : W0 > 0, Q(KF) < N%bgz}

which is a tight set, and thus precompact in P(X).
(A2) = (Al). By (1.2.6), for Q € P(X) and a Borel set E such that
Q(E) > 0, H(Qg|Q) = —log (Q(E)). Therefore for each &g, £ > 0

Qeor = U< {P%., K C X is compact and P*(K¢) > e/}
C UnlQEP(X): HAQ) < 0}

By the equicoercivity assumption on H,, for each ¢ > 0 there exists g¢(¥)
such that Q. (), is precompact in P(X), and thus tight. Therefore for each
¢ > 0 there exists a compact set K, C X such that P5.(K,°) < 1/2 for each
e < go(f) and each compact K such that P*(K¢) > e~/ Since P5.(K¢) =1
for each K with P*(K°) > 0, we necessarily have K, # K for each K such that
Pe(K°¢) > e~/ for some e < gy(¢). Namely P*(K¢) < e~*/% for each ¢ > (
and € < go({). O

PROOF OF PROPOSITION 1.2.3. (Bl) = (B2). Let x € X and {Q°} C
P(X) be such that lim.,cQ° = ¢, in P(X). Multiplying (1.2.7) by a., for
each Borel set £ C X

1
HA(Q) = a.Q*(E)log (1+ o) —a.log? 1.2,
(Q°) > a.Q°(E) log +P€<E) a. log (1.2.9)
Let 0 > 0, and Bs(x) be the closed ball of radius § centered at x. Since
lim. Q°(Bs(z)) = 1, taking £ = Bjs(z) in (1.2.9) and passing to the liminf
. £ . 1
lim, H:(Q) > lm, a.log (1 + peziy)
> —lim, log (IF’E(B(;(x)) > infycp; () I(y)
where we used the (B1) hypotheses in the last inequality. Taking the limit
d — 0, and recalling that I is lower-semicontinuous, we get (B2).

(B2) = (B3). Let Q € P(X) and let {K,};2, be an increasing sequence
of compacts K, C X such that lim, Q(K,) = 0. It is not difficult to see
that for each ¢, n € N, there exists a finite family of pairwise disjoint Borel
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measurable sets {E Z}z i¢, such that U E?! ¢ D Ky and fori=1,..., Nyy,
Q(0E;,) =0, dlameter(E;L 2) < 1/n. We also set E) , := X \ U1>1E ¢ Bya
refinement procedure, we can assume the partition {Efw}iz”oé to be finer than
{E;%,}ZZ’L[;’W forn >n'and ¢ > 0.

Let {Q°} be a sequence converging to Q in P(X). We want to show
lim H.(Q%) > [Q(dx)I(z). Let € >0, for i = 0,..., N, such that Q°(E}, ,) >

0 define the probability measures QZ’Z = %Z € P(X). We have Q° =

Z QB Z)Qn > where we understand that the terms in this sum vanish
Whenever Qe (E" z) = 0. By (1.2.5), for each n, £ > 0

H(QP) = S5 Q(EL ) H(QGP) + Q°(E}, ) log Q°(E}, )
> —log Nog+ X% Qa(EZz) (Q%IP9)
where we meant 0log (0 = 0. Multiplying by a. and taking the liminf
lim, HL(Q7) = 307 N, [Q°(, ) He (@f{%)]
= Y% QEL ) lim, HA(QS) = [ Q(dw) In,e(x)

where we used the Q-regularity of the sets E) ,, and I, () := lim, aEH(@ffe)
forx € E! e Note that I, is 1ncreasmg both in n and ¢, since H. is convex and

(1.2.10)

we assumed the partitions {E j} to be increasing. Therefore, by monotone
convergence lim_ H.(Q%) > [ Q(dz) sup, ;I ¢(z). On the other hand by (B2)
lim, lim,, I, /() > I(x) pointwise.

(B3) = (B4). We prove that statement for a sequence {p.} of functions
uniformly bounded from below. The general case is then easily obtained by the
requirement (i). Consider the sequence {Q°} C P(X) of probability measures
defined as

ldp) e XD Pe/C) e
= B lexppufa)

By (1.2.6)
a. log ]P’E(exp(—goe/ae)) = @5( — goe) — H.(QF)

By requirement (ii), {Q°} is tight and thus precompact in P(X). Let Q be
an arbitrary limit point of {Q}; taking the limsup, using Lemma 1.2.1 and
(B3)

ma a. log ]P’E(exp(—gpe/ag)) < - li_mg Q* (905) - h_mg HE(QE)
—Q(I'im, ¢.) — Q(I) < sup,ey { — (Mlim, o) (z) — I(z)}

(B4) = (B1). Let K be a compact in X, and for e, M > 0 consider the
statement (B4) for p. = Mge. {p.} is lower semicontinuous and satisfies (i)
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and (ii) in (B4). Therefore

lim a. log P*(K) < lim a. log P* (exp(—M 1< /a.)) < sup{—MIg(z) — I(z)}
e € zeX
and we get (B1) letting M — +o0.
The implications (B5) = (B1), (B6) = (B5), and {(Al), (B1)} = (B5)
are trivial. On the other hand, once (A1) is assumed, the implication (B4) =
(B6) follows from a standard cut-off argument. U

PROOF OF PROPOSITION 1.2.4. (C1) = (C2). Let x € X, and for 6 > 0
let Bs(z) the open ball of radius § centered at z. For ¢, § > 0, define Q*° €
P(X) as

0 — Py if P*(Bs(x)) >0
Oy otherwise
and note H(Q|P) = —logP*(Bs(z)), where we understand — log(0) = +oc.
By (C1) we thus get for each § >0

lim H.(Q**) = — limlog P*(Bs(x)) < dnf I(y) < I()

On the other hand limslim. Q*° = 4, in P(X), so that we there exists a
sequence {d.} C (0, 1) such that lim. Q% = 6, and lim. H.(Q%%) < I(z).
(C2) = (C3). By the convexity of H., ['lim H. is also convex, and by
(C2) we have (I“lim H.)(d,) < [ 6.(dy) I(y). (C3) follows by convexification.
(C3) = (C4). Let Y := {z € X : (Iim,¢.)(z) > —oo}. By the
definition of the I'-liminf, for each z € Y there exists (x) and 6(z) > 0 such
that infyep, @) Pe(y) > —o0, for each e < gg(x). For z € Y, let {Q*} be a
sequence converging to &, in P(X) and such that lim H.(Q**) < I(x). Such
a sequence exists by (C3). Note that by (1.2.10) the sequence QEZI)( ) enjoys

these properties as well, so that we can assume Q%" to be concentrated on
Bjs(z)(z). By the definition (1.2.5), for each ¢ € Cy(X)

T

log P*(c?) > —H(Q""|P) + Q*"(¢) (1.2.11)

By a limiting argument, this inequality holds true for each measurable p : X —
[—00, +00], provided we read the r.h.s. as —oo whenever H(Q%*|P) = +o0 or
Q**(¢~) = 4o00. Evaluating (1.2.11) for ¢ = ¢°/a., taking the liminf and
optimizing on x € Y we thus obtain

lim a. log P* (exp(i*/a.)) > sup { — T Q") + lim @ () }

zeY
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Since we assumed Q% concentrated on Bs,y(x), and since ¢° is bounded from
below on this ball, we can apply Lemma 1.2.1, so that

lim_ a. log P*(exp(¢°/a.)) > sup,ey { — I(z) + Tlim, ¢°) () }
= sup,ex { — 1(2) + (Flim, ¢°)(2) }

(C4) = (C1). For a Borel set O C X and € >0

a:logPe(0) = a.log [%] + a. log]P’s(exp(]i—f))

1.2.12

> —1+a510g]P’5(eXp(]i—‘:)) ( )
Take now O an open set, and consider the statement (C'4) with ¢° = 1. Since
T is lower semicontinuous, I-lim ¢° = T, so that taking the liminf (1.2.12)

lim a. log P*(0) > —1 + sup (Ip — I(x)) > — inf I(z)
€ zeX zcO

g

As a byproduct, we get that, if {P°} is exponentially tight, there exist two
“optimal” rate functionals for the large deviations upper and lower bounds, and
they are given by (Ilim_ H,)(8.) and (I"lim, H.)(6.) respectively. In particular,
by well known compactness properties of I'-convergence [6], we also have that,
given a sequence {a.} as above and an exponentially tight family {P°} C P(X),
there exists a subsequence {P°*} satisfying a large deviations principle with
speed {a_'}.

1.2.4. A large deviations bound for Feller processes. Beyond sug-
gesting a general framework to fit large deviations theory in I'-convergence
theory, Propositions 1.2.2, 1.2.3, 1.2.4 do not provide any concrete tool to
understand large deviations principles for a given family {P°} of probability
measures. We next establish a more operative connection between large devia-
tions and I'-convergence in the setting of Feller processes, by proving a general
large deviations upper bound for an arbitrary sequence of Feller processes. Al-
though a more general treatment in the setting of cadlag Feller processes is
possible, we restrict to the case of continuous processes. We refer to [19] for
basic definitions concerning Markov generators and Feller processes.

Let X be a Polish space, let T > 0, and for L a Markov pregenerator on
C(X), let D(L) C Cy(X) be the domain of L, ©;, C Cy([0,7] x X) be the
domain of 9, + L and

Dr2:={0€Cp([0.T) x X) : ¢ €Dy, ¢*(t,-) € D(L) for each t € [0,T]}
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For ug € X, we introduce the functional Iy, ,,, : C([0,T]; X)x® 9 — [—00, +00]
as

BT, u(T)) = $(0, uo) — [dt | (9 + L)3) (¢, u(t))
Iu(u;9) = ¢ —1(L(¢)) (t, u(t)) + o(t, u(t)) (Le)(t, u(t))] if u(0) = ug

+00 otherwise

The integral in the r.h.s. of this formula is well defined, since for ¢ € ©, 5 and

te [07 T]? (L((er))(t’ U(t)) - 2¢(t7 u(t>> (L¢) (tv u(t>> > 0.

PROPOSITION 1.2.5. Let X be a Polish space, let T > 0, and {L.} be a
sequence of Markov pregenerators on C(X). For a given ug € X, and for
each € > 0 suppose that there exists a solution P° € P(C’([O,T];X)) to the
martingale problem for L. with initial datum ug. For ® = {¢.} € 1I.Dy_o,
namely for a sequence ® = {¢.} such that ¢. € Dy_o, define the functional
I up0 : C([0,T]; X) = (—00,4+00] as

]a,uo;é(u) =€ ILE,uo (U; ¢6) (1213)
and I, : C([0,T]; X) — [0, 4+00] as
Iy(u):==  sup (IMim, 1. 4.0)(w) (1.2.14)
@GHEQL&Q

Then {P¢} satisfies a weak large deviations upper bound with rate I, in the
uniform topology of C([0,T]; X).

PROOF. For each ¢ > 0 and ¢ € ©_o, the map
M, : [O,T]XC([O,T];X>—>R
M¢(t’ u) = gb(t? u(t)) - ¢(07 U(O)) - f[ojt}ds ((as + L)¢) (87 U(S))

is a continuous P°-martingale with quadratic variation
[My(-,u), My(-,w)], = /[Ot]ds (L(6%)) (s, u(s)) — 20(s, u(s)) (L) (s, u(s))

Therefore its stochastic exponential
E, . [0,7] x C([0,T]; X) — (0, +00)
Ey(t,u) = exp {(b(t,u(t)) — ¢(0,u(0)) — f[w}ds [((35 + L)¢) (s, u(s))
— 3 (L(¢%)) (s, uls)) + o(s,u(s)) (Lo) (s, U(S))}

is a continuous P supermartingale, with E4(0,u) = 1.
Recall that P¢ is concentrated on the closed set A,, := {u € C([0,T]; X) :
u(0) = up}. For each e > 0, ¢ € Dp_, and each Borel set K C C([0,7T]; X)

we



18 1. LARGE DEVIATIONS VIA I'-CONVERGENCE

then have
P*(K) P(K N Ayy) =P (E; (T, ) Eg(T, ) kna,, (-))
SUPy e, Bo(Ts0) P (Ey(T, ) k()

SqueKﬂAuO E¢(T, U)_l = — invaK ]Le,uo (U, ¢)

VAVANI

Taking the logarithm, optimizing over ¢ € D_»
elogP*(K) < — sup inf elj_,,(v,¢)

$ED, 2 VE
Therefore for each sequence ® € II.D_»
limelogP*(K) < — lim in}f( I w0 (V)
e VE
For K a compact set, by (1.2.4a)
limelogP*(K) < —lim inf I 0 (v) < — inf (Plim, L uye ) (0)

S

We then conclude by optimizing on ® and using the minimax lemma [15]. O

1.3. Large deviations for finite dimensional diffusion processes

In this section we prove some results concerning finite dimensional Ito
processes. For sake if simplicity, we develop the one dimensional case, although
it is immediate to extend the results to the the finite dimensional setting.

Let {b°}, {d°} € C(R). Consider the stochastic differential equation in the
[t6 sense

dr = b°(z)dt + d°(x)dW

z(0) = xg
where W is a one dimensional Brownian motion and zy € R. Suppose that
there exists a sequence {P°} C P(C([0,T])) such that, for each ¢ > 0, P is
a martingale solution to (1.3.1). We are here interested in establishing large
deviations principles for {PP°}. The classical Freidlin-Wentcell computation
[10] deals with the case in which b* = b does not depend on ¢, and d° = /zd.
In such a case, under suitable hypotheses on b and d, {P°} satisfies a large
deviations principle with speed € and rate

x(t 7b x(t 2 .
17W () e L3 Jomd et it e € HY(D,T1) and #(0) =
oo otherwise

(1.3.1)

Back to the general case (1.3.1), define I : C([0,7]) x C*([0,7] x R) — R as

(ST o(1) = 6(0,20) = [ dt [Dr6(t. (1))
F(@:d) = —b(a()'(t2(t) - 3d(@(®)¢'(t,a()?| } if 2(0) = zg

+00 otherwise
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Then by Proposition 1.2.5, {P¢}, satisfies a weak large deviations upper bound
with speed e71 and rate

1:= sup Him_ I°(+; ¢%) (1.3.2)
{¢=}cC>=([0,T]xR)
Note that in the Friedlin-Wentcell case, I(-) = sup,, I°(-;¢) = 17V (-).
While it is not difficult to give conditions on {6} and {d°} that guarantee
exponential tightness of {P°} and thus a full large deviations upper bound,
here we focus on a technique to establish a lower bound.

PROPOSITION 1.3.1. Assume

(a) There exists C' > 0 such that |b°(x) — 0°(y)| < Clz — y| for each
z,y € R.
(b) Let a. be defined by o? := sup,cg |d°(x)|*>. Then lim. o, = 0.
(c) Let o as in (b). Then for each C' > 0
€ 2 € 2
ey TW @
¢ Jz—y|<C’a. d=(x)?

and define I : C([0,T]) — [0, +00] as

€ (t)—b° ((x(t))|? .
I*(z) := {Ef[o’ﬂdt Gt i e € HY([0,T1) and (0) = z

=0

+00 otherwise

1

Then {P°} satisfies a large deviations lower bound with speed €' and rate

[ :=T"1limI°.

Note that I > I, where [ is defined in (1.3.2), and that in the Friedlin-
Wentcell case [ = [V =T

PROOF. Let us fix y € C([0,T]) such that I(y) < +oo. We will exhibit a
sequence {Q°} € P(C([0,T1)) such that Q° — &, and such that lim. H.(Q¢) <
1(y), where H. is defined as in (1.2.8) with a. = . We then conclude by
Proposition 1.2.4.

Recall that there exists a standard filtered probability space (Q, S, {8t Feep IP’)
on which a Brownian motion W generating the filtration §; is defined. More-
over there exists an adapted process ¢ : Q — C([0, T) such the P* = Po(z°)~!,
see [20]. As usual, in this proof, we denote by w the generic element of €2, and
for a process ¢ : [0, 7] x Q2 — R we use the equivalent notations z(t,w) = z;(w),
depending on which aspect of the process we want to emphasize.

By the definition of the I-limsup, for each y € C([0,7]) there exists a
sequence {y°} C C([0,T]) such that y° — y in C([0,7]) and lim I°(y°) <
(T-lim, I%)(y). With no loss of generality we can assume I¢(y°) < +oo for
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each € small enough, so that y° € H'([0,T]). We define the {§;}-adapted
measurable map ¢ : [0,7] x Q@ — R as

ge(t) = b°(y(t))
de (28 (t,w))

For ¢ > 0 we also define the {F;} stopping time

75%(w) := inf IfST:E ds [¢°(s,w)]* < L(y°) +
@) =int <7 3 [ dsle o) < L) + )

We also introduce the P-martingale { M} on Q as

@E(t’ w) ==

tATES
M= [ s)aw,
0

We have that [M=¢, M=¢] < 27 !(I.(y°) 4 ¢) is bounded uniformly on Q.
Therefore the process E=¢ on ) defined as

1
EFC = exp (M; — 5 [M=<, ME’CL)

is also a P-martingale. We define Q‘* on P(Q) by Q°¢(dw) = E5 (w)P(dw),
and Q¢ on P(C([0,T7)) as Q¢ := Q¢o(z°)~'. By definition (1.2.8), applying
the change of variable Q 3 w — z.(w) € C([0,T])

HA(Q%) = eH(Q®IP) = e [, Q¢ (dw) (Mf(w )—%[ME Ma} < )
< e fo Q7 (dw) (M (w) — [M*®, M?] (w)) + I*(y°
< IF(y°) +¢

(1.3.3)
where in the last line we used [;, Q°(dw) (Mg(w) — [M*, M?] (w)) = 0 since,
by Girsanov theorem, Mg — [M¢, M¢], is a Q*¢-martingale.

Still by Girsanov Theorem, there exists a Q*¢ Brownian motion W#< such
that

B ATE) g (EATE) = [ qds [F(a(s)) — (5 ()
ey (2 () AIVES

Squaring, and using (a), (b) and Doob maximal inequality
Q C(8uPypen [25(8) =47 (OPP) < 2C°T? QC(supyerec |2°(1) — y7 (1))
—f—ClOé?
for some constant C; > 0. With no loss of generality, we can assume 7" small

enough, namely such that C'T < 1/2, by standard iterative disintegration
arguments. We gather

Q¢( sup |a®(t) — £ (D)) < 2C10? (1.3.4)

t<re¢
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Note that

€ c 9 . . de(ys)2 _ de(iﬁe(t,w))2
5/[0,7“][%0 (s,w)]* < L(y°) + I.(y )titjgc (L w)?

I.(y%) is uniformly bounded, since I(y) < +oo. Therefore, by assumption (c),
for each C” > 0 there exists €9 = £¢(C") such that for each ¢ < g

Q¢ (1 < T) < @8’<( sup |z°(t) — y°(t)| < C'a.)
t<re:¢
Therefore for each £, C' > 0 and & small enough

Q¢ (supyg [2°(t) — ¥ (t)] > €) )
< Q7 (SUpepec [2°() — 7 ()] > €) + Q¢ (75 < T)
< Q¢ (supyeyec [25(t) — 17 (8)] > €)
+ Q% (suppeyec [2°(1) — ¥ (1)] < C'arc)
< 20 (supycrec [25() — y7(8)] < C'a) < 2%

where in the last line we used (1.3.4) and Tchebyshev inequality. Taking the
limit € — 0 and then sending C" — +00, we obtain that, for each ¢ > 0, 2° — y
in Q¢ probability, since y* — y in C([0,T]). Thus Q¢ — §, in P(C([0,T]))
for each ¢ > 0. Since (1.3.3) holds, we can extract a subsequence (. — 0, such
that Q% — 4, and lim. H.(Q>%) < lim I.(y°)+ (. < (Tim L)(y) = I(y). O

1.4. Conservation Laws

In this section we introduce some basics notions concerning the limiting
equation of (1.1.3), obtained by informally setting e = 0. As we restrict
our analysis to the 1+ 1 dimensional case, we denote space derivatives with a
subscript . We think of x as a variable on the one-dimensional torus, although
the results in this section can be straightforwardly stated also in the case z € R,
that is also considered in Chapter 2. The time variable ¢ is restricted to a finite
time horizon ¢ € [0, T for some T' > 0.

We refer to [5, 18] for the precise statements and proofs concerning con-
servation laws. Consider the Cauchy problem

O+ fu)y =0

(0.2} (@) (1.4.1)

where we assume f to be smooth and ug bounded. As well known, even if the
initial datum ug is smooth, the flow (1.4.1) may develop singularities for some
positive time. In general, these singularities appear as discontinuities of u and
are called shocks. It is then natural to interpret (1.4.1) in weak sense. In this
weak formulation an additional condition is needed to guarantee uniqueness of
the solutions to (1.4.1).



22 1. LARGE DEVIATIONS VIA I'-CONVERGENCE

More precisely, a bounded measurable map w : [0,7] x T — R is a weak
solution to (1.4.1) iff for each smooth ¢ : [0,7] x T — R such that ¢(T,z) =0

—(uo,(0,-)) — {{u, 0p)) — ({f(u),s)) =0

Here (-, ) denotes duality in Lo(T) and ((-,-)) duality in Lo([0,7] x T). Given
a differentiable function 7, called entropy, the conjugated entropy flur q is
defined up to an additive constant by ¢’ =1’ f’. A weak solution to (1.4.1) is
called entropic iff for each entropy — entropy flux pair (7, ¢) with 7 convex, the
inequality n(u); + g(u), < 0 holds in distribution sense. Note that the entropy
condition is always satisfied for smooth solutions to (1.4.1). The classical
theory, see e.g. [18], shows existence and uniqueness in C([0,T]; L;(T)) of the
entropic solution @ to the Cauchy problem associated to (1.4.1). @ is also
called the Kruzkov solution with initial datum u. While the flow (1.4.1) is
invariant w.r.t. (¢,z) — (—t, —x), the entropy condition breaks such invariance
and selects the “physical” direction of time.

In this section we are concerned with various classes of solutions to (1.4.1).
For sake of simplicity, let us assume that g takes values in [0, 1], and that
we restrict our attention to [0, 1]-valued solution to (1.4.1). We introduce the
space M of Young measures as follows. Let P([0, 1]) be the set of probability
measures on [0, 1], ¢ : [0,1] — [0,1] the identity map, and U the set of mea-
surable functions v : T — [0,1]. U is a (metrizable) space if regarded as a
subset of the set of measures on T equipped with the x-weak topology. We
define M the set of maps p: [0, 7] x T — P([0,1]), p: (t,2) — pe.(dN), such
that p..(2) € C([0,T];U). Hereafter for a Borel measure p and a continuous
function F' on some Polish space X, u(F) denotes the integral of F' w.r.t. pu.
A p e M is a measure-valued solution to (1.4.1) iff for each smooth function
pon [0,7] xT

<:LL<Z)T,-7 QO(T, )> - <u07 90(07 >> - <<M<Z)7at90>> - <<:u(f)7 Som>> =0

If u is a weak solution to (1.4.1), then p;,(d)\) = Oy (dA) is a measure-
valued solution; on the other hand there exist measure-valued solutions that
do not have this form.

Let u a [0, 1]-valued weak solution to (1.4.1), n : [0,1] — R a twice differ-
entiable map, and ¢ its conjugated flux. We introduce the distribution g, ,,
acting on C2°((0,T) x T) as

Onul(@) = —=((n(u), 0p)) — ({q(u), va))

Note that a weak solution u to (1.4.1) is entropic iff @, , < 0 for each convex
n. We say that a [0, 1]-valued weak solution u to (1.4.1) is an entropy-measure
solution iff p, ,, can be extended to a Radon measure on (0,7") x T. In Chapter 2
we show that entropy-measure solutions have some regularity properties, and
in particular we establish a so called kinetic formulation for these solutions.
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Namely, suppose that u is an entropy-measure solution to (1.4.1), then there
exists a Radon measure P, on [0, 1] x [0, 7] X T such that for each n € C*(]0, 1]),
¢ € C>((0,T) xT)

Onu(p) = Pu(n” ¢) (1.4.2)

1.5. A sketch of the main results

In this Section we roughly sketch the main results concerning large de-
viations principles for the probability laws of the solution u® to the Cauchy
problem (1.1.3), see also the discussion in Section 1.1.3.

1.5.1. Statements of the results. We recall that U denotes the set
of measurable maps v : T — [0, 1] equipped with the (metrizable) relative
topology it inherits from the weak™ topology of measures on T. There are
two metrics that we will consider on C([0,77;U). The first one is its natural
uniform topology; if C([0,T];U) is equipped with this metric we denote it by
U and by dy, the metric itself. Since C([0,T];U) can be regarded as a suitable
set of measurable maps w : [0, 7] x T — [0, 1], it can also be equipped with the
strong Ly ([0, T] x T) distance, and we denote by dy the distance given by the
sum of d; and the L; distance; when endowed with dy, we denote C([0,7]; U)
by X.

We also recall that the set of Young measures M has been defined in
Section 1.4. We endow M with the metric

Aa (1) = (11, 0) + g (1(2). ()

where d,,, is a distance generating the relative topology on M regarded as a
subset of the finite measures on [0,7] x T x [0, 1] equipped with the vague
topology. (U, dy), (X,dx), (M,dr) are Polish spaces. We remark in par-
ticular that X can be regarded as a subset of M endowed with the relative
topology.

In Section 3.5 it is shown, under suitable general hypotheses on f, D, o
and j°, that for each ¢ > 0 small enough there exists a unique solution u® €
C([0,T}; U) N Ly ([0, T]; H(T)) to (1.1.3). A first result states that, as ¢ — 0,
the process u® converges in probability on X to the unique entropic solution to
(1.4.1). We thus turn our focus to large deviations principles for the probability
law P¢ of u°.

We want to regard u® as a process on M. We thus introduce an M-valued
random process p° := d,s, and with a little abuse of notation we denote by
{P¢} the law of u® on M. The following statement is proved in Chapter 3,
under suitable hypotheses on »*

THEOREM 1.5.1. {P¢} is exponentially tight on M on the scale =, and
satisfies a large deviations principle with speed e=* and rate T : M — [0, +0o0]
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defined by

T(11) i= SUDpecm o m) { 1. 2T, ) = G, 9(0,)) = ({4(0), De)
= {(u(F), 2a)) = {(a(0)as 02 |

As it will be clearer in the following, Z(u) represents a suitable Hilbert
norm of Oyu(1) + u(f)., and Z(pn) = 0 iff p is a measure-valued solution to
(1.4.1).

We know that P° converges in probability to the deterministic entropic
solution to (1.4.1); on the other hand in general there exists infinitely many
measure-valued solutions to (1.4.1), namely infinitely many zeros of Z. It
is then natural to study the large deviations of P° on a finer scale, which
roughly speaking correspond to the analysis of the I'-development, see [4], of
the functional H. as defined in (1.2.8). We are thus concerned with a large
deviations principle on the scale e727*!, for which we can only prove partial
results. We show that the sequence {P} is exponentially tight on X’ w.r.t. the
scale e727*1, In particular, since the topology of X coincides with the relative
topology induced by the immersion of X in M via the map X > u + §; € M,
once a large deviations principle is established for {P°} on X, it is immediate
to get a large deviations principle for {P<} on M.

Recall that if u is an entropy-measure solution to (1.4.1), then there exists
a Radon measure P, on [0,1] x [0,7] x T such that (1.4.2) holds. We denote
by P its positive part. We define H : X — [0, +00] by

/Pj(dv; dt, dx) fé:))

400 otherwise

if is an entropy measure solution to (1.4.1)

H(u) =

In Chapter 3 we also define a suitable set S of “entropy-splittable” solutions,
which are entropy-measure solutions to (1.4.1), such that the supports of the
positive and negative part of P, have some nice properties. Then we set
H(u) := inf H
(W)= o 2ats # 1)
O open

THEOREM 1.5.2. {P°} is exponentially tight on X on the scale 71, and
satisfies a large deviations upper bound with rate H and speed e~ and a
large deviations lower bound with rate H and speed e=27*1.

In order to prove the full large deviations principle, one would need to
show that H = H. While it is easy to see H > H, the converse inequality is
equivalent to the so called H-density of § in X'. This issue is briefly discussed
in Section 3.2 below and appears to be linked to much hard open problems.

The physical interpretation of H and its connections with Einstein diffusion-
fluctuation relation is described in Section 2.2.
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1.5.2. Outline of the proofs. Exponential tightness of {P°} on M is
easy, due to strong compactness properties of the space itself. Exponential
tightness of P° on X is obtained via a compensated compactness argument,
once a sharp estimate for the behavior of Vu® is obtained.

Both the large deviations upper bounds are gathered by building on the
result in Proposition 1.2.5, and the I'-convergence results proved in Chapter 3.

Both the large deviations lower bounds are obtained following a strategy
similar to the one used to prove Proposition 1.3.1, and the computation of the
[-limits in Chapter 2. Additional stability estimate for (1.1.3) are then needed
to conclude.

1.5.3. Other results. The results obtained in this paper have been mo-
tivated by the investigation of large deviations principles for the solution to
(1.1.3). However we believe that some these results may have an independent
interest. Here we list some results that are quite independent from the large
deviations problem; they are discussed in more generality in Chapters 2 and
3.

The I'-convergence problem investigated in Chapter 2 is largely indepen-
dent of the large deviations issue. It provides a variational characterization of
measure-valued and entropic solutions to (1.4.1). In particular it gives a sharp
stability bound for the viscous approximation to conservation laws under H -
like perturbations. In Appendix B of Chapter 2 a similar I'-convergence results
is also established for Hamilton-Jacobi equations, providing the correspondent
variational characterization of measure-valued and viscosity solutions.

Corollary 2.2.2 can be regarded as a negative-Sobolev version of classical
results, see [6, Chap. 3], for the relaxation of integral functionals in weak L,
spaces.

In Lemma 3.2.2 a generalization of the classical Bernestein inequality [17]
is provided. We remark that it is possible to generalize this inequality to the
cadlag case.

The correspondence between large deviations and ['-convergence estab-
lished in Proposition 1.2.2, 1.2.3, 1.2.4 suggests various connections between
the two theories. For instance, in Proposition 2.4.6 we prove the I'-convergence
analogous statement to the so called contraction principle for large deviations
(indeed, the contraction principle is a straightforward consequence of Propo-
sitions 2.4.6, 1.2.2, 1.2.3, 1.2.4).

1.5.4. Open problems and developments. As mentioned above, the
H-density of S in X is open. As discussed in Chapter 2, this issue is related
to fine structure analysis of entropy-measure solutions to (1.4.1). In partic-
ular it seems that an important step in proving the H-density is to provide
a chain rule formula for divergence-measure field. Chain rule formulas out of
the BV setting are subject of recent research investigation; in particular, as far
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as divergence-measure fields are concerned, the attempt to understand their
differential properties can be tracked back to De Giorgi and Anzellotti [2], and
more recently to [7].

We believe that the variational techniques introduced in this paper are a
useful tool to provide large deviations principle in other settings. In particular
we mention the possibility to apply this methods to other classes of stochastic
partial differential equations (like degenerate parabolic diffusion equations and
the 2D Navier-Stokes equation).

As better explained in Section 2.2, the functional H comes as a natural
generalization of the large deviations functional introduced in [11, 21]. We
thus hope it is possible to extend the variational techniques here introduced to
establish large deviations principles for various classes of asymmetric particles
systems.

Finally, an enhanced investigation of large deviations principles for the
general finite dimensional diffusion (1.3.1) may be interesting.
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CHAPTER 2

['-entropy cost functional for scalar conservation laws

The results in this chapter have been obtained jointly with G. Bellettini,
L. Bertini, and M. Novaga, see also [3].

2.1. Introduction

We are concerned with the scalar one-dimensional conservation law
u+ f(u), =0 (2.1.1)

where, given 7' > 0, u = u(t,x), (t,z) € [0,7] x R, subscripts denote partial
derivatives, and the flux f is a Lipschitz function. As well known, even if the
initial datum «(0) = u(0, -) is smooth, the flow (2.1.1) may develop singularities
for some positive time. In general, these singularities appear as discontinuities
of uw and are called shocks. It is therefore natural to interpret (2.1.1) weakly; in
the weak formulation uniqueness is however lost, if no further conditions are
imposed. Given a function 7, called entropy, the conjugated entropy flux q is
defined up to an additive constant as q(u) = [“dvn/(v) f'(v). A weak solution
to (2.1.1) is called entropic iff for each entropy — entropy flux pair (7, q¢) with
n convex, the inequality n(u); + q¢(u), < 0 holds in the sense of distributions.
Note that the entropy condition is always satisfied for smooth solutions to
(2.1.1). The classical theory, see e.g. [6, 16], shows existence and uniqueness in
C ([0, Ty, L1,1OC(R)) of the entropic solution to the Cauchy problem associated
to (2.1.1). While the flow (2.1.1) is invariant w.r.t. (¢,z) — (—t,—x), the
entropy condition breaks such invariance and selects the “physical” direction
of time.

In the conservation law (2.1.1) the viscosity effects are neglected. This
approximation is no longer valid if the gradients become large as it happens
when shocks appear. A more accurate description is then given by the para-
bolic equation

u + fu), = g(D(u)u:ﬂ):C (2.1.2)

in which (¢,z) € [0,7] x R, D, assumed uniformly positive, is the diffusion
coefficient and € > 0 is the viscosity. In this context of scalar conservation
laws, it is also well known that, as ¢ — 0, equibounded solutions to (2.1.2)
converge in Lj10.([0,T] x R) to entropic solutions to (2.1.1), see e.g. [6, 16].
This approximation result shows that the entropy condition is relevant.

29
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Perhaps less well known, at least in the hyperbolic literature, is the fact
that entropic solutions to (2.1.1) can be obtained as scaling limit of discrete
stochastic models of lattice gases, see e.g. [12, Ch. 8]. In a little more detail,
consider particles living on a one-dimensional lattice and randomly jumping
to their neighboring sites. It is then proved that, under hyperbolic scaling, the
empirical density of particles converges in probability to entropic solutions to
(2.1.1). A much studied example is the totally asymmetric simple exclusion
process, where there is at most one particle in each site and only jumps heading
to the right are allowed. In this case, the empirical density takes values in [0, 1]
and its scaling limit is given by (2.1.1) with flux f(u) = «(1 — u). In this sto-
chastic framework, it is also worth looking at the large deviations asymptotic
associated to the aforementioned law of large numbers. Basically, this amounts
to estimate the probability that the empirical density lies in a neighborhood of
a given trajectory. In general this probability is exponentially small, and the
corresponding decay rate is called the large deviations rate functional. For the
totally asymmetric simple exclusion process, this issue has been analyzed in
(10, 18]. Tt is there shown that the large deviations rate functional is infinite
off the set of weak solutions to (2.1.1); on such solutions the rate functional is
given by the total positive mass of the entropy production h(u); + g(u), where
h is the Bernoulli entropy, i.e. h(u) = —ulogu — (1 —u)log(l — u) and g is its
conjugated entropy flux.

A stochastic framework can also be naturally introduced in a partial differ-
ential equations’ setting by adding to (2.1.2) a random perturbation, namely

w4 fu), = %(D(u)ux)m +VA(Vo@a,)  (tx) € (0,T) xR (2.1.3)

where o(u) > 0 is a conductivity coefficient and ., is a Gaussian random forc-
ing term white in time and with spatial correlations on a scale much smaller
than ~. Let u®" be the corresponding solution; if v < e then u®7 still con-
verges in probability to the entropic solution to (2.1.1) and the large deviations
asymptotic becomes a relevant issue. Referring to [14] for this analysis, here
we formulate the problem from a purely variational point of view quantifying,
in terms of the parabolic problem (2.1.2), the asymptotic cost of non-entropic
solutions to (2.1.1). Introducing in (2.1.2) a control E = E(t,z) we get

w + fu)y = g(D(u)ux)x —(o(WE). (L)€ (0,T) xR (2.1.4)

If we think of u as a density of charge, then F can be naturally interpreted as
the ‘controlling’ external electric field and o(u) > 0 as the conductivity. The
flow (2.1.4) conserves the total charge [dxu(t,z), whenever it is well defined.
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The cost functional 1. associated with (2.1.2) can be now informally defined
as the work done by the optimal controlling field F in (2.1.4), namely

o1 9 . o1 2
I.(u) = 1%f = /[Oﬂdt dro(u)E* = 1%f 3 /[Oﬂdt HEHLQ(R’U(H)M) (2.1.5)
where the infimum is taken over the controls F such that (2.1.4) holds. For a
suitable choice of the random perturbation o, I. is the large deviations rate
functional of the process u®" solution to (2.1.3), when ¢ is fixed and v — 0.
To avoid the technical problems connected to the possible unboundedness of
the density u, we assume that the conductivity ¢ has compact support. In
this case, if u is such that I.(u) < 400 then u takes values in the support of o,
see Proposition 2.3.4 for the precise statement. For the sake of simplicity, we
assume that o is supported by [0, 1]. The case of strictly positive o also fits in
the description below, provided however that the analysis is a priori restricted
to equibounded densities u.

In this chapter we analyze the variational convergence of I. as ¢ — 0. Our
first result holds for a Lipschitz flux f, and identifies the so called I'-limit of
I, which is naturally studied in a Young measures setting. The limiting cost
of a Young measure p = iy ,(d)\) is

760 = 3 [t I, + s,

where, for F € C([0,1]), [W(F(\)](t,2) = [pe.(dX) F(X\) and, with a little

1/2

2

H1(R,u(0(N)dx)

abuse of notation, ||| -1 ;.. (o(x)dz) i the dual norm to [ [da iy, (0(N)) 2]

Note that Z(u) vanishes iff p is a measure-valued solution to (2.1.1). Hence
we can obtain such solutions as limits of solutions to (2.1.4) with a suitable
sequence F. with vanishing cost. On the other hand, if we set in (2.1.4) E' =0
we obtain, in the limit € — 0, an entropic solution to (2.1.1). If the flux f is
nonlinear, the set of measure-valued solutions to (2.1.1) is larger than the set of
entropic solutions; it is thus natural to study the I'-convergence of the rescaled
cost functional H, := e 'I., which formally corresponds to the scaling in
[10, 18]. Our second result concerns the I'-convergence of H. which is studied
under the additional hypotheses that the flux f is smooth and such that there
are no intervals in which f is affine. A compensated compactness argument
shows that H. has enough coercivity properties to force its convergence in a
functions setting and not in a Young measures’ one.

To informally define the candidate I'-limit of H., we first introduce some
preliminary notions. We say that a weak solution u to (2.1.1) is entropy-
measure iff for each smooth entropy n the distribution n(u); + q(u), is a
Radon measure on (0,7") x R. If u is an entropy-measure solution to (2.1.1),
then there exists a measurable map g, from [0,1] to the set of Radon mea-
sures on (0,7) x R, such that for each n € C?*([0,1]) and ¢ € C((0,T) x
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R), — [dtdx [n(u)e: + q(u)p.] = [dvo,(v;dt, dz)n"(v)p(t, z), see Proposi-
tion 2.2.3. The candidate I'-limit of H, is the functional H defined as follows.
If u is not an entropy-measure solution to (2.1.1) then H(u) = +o00. Other-
wise H(u) = [ dv g} (v;dt,dx)D(v)/o(v), where g, denotes the positive part
of p,. Note that while I, and Z are nonlocal functionals, H is local. On the
other hand, while I., resp. Z, quantifies in a suitable squared Hilbert norm
the violation of equation (2.1.2), resp. (2.1.1), this quadratic structure is lost
in H. In Proposition 2.2.6 we show that H is a coercive lower semicontin-
uous functional, this matching the necessary properties for being the I'-limit
of a sequence of equicoercive functionals. Note also that H depends on the
diffusion coefficient D and the conductibility coefficient o only through their
ratio, which is an expected property of well-behaving driven diffusive systems,
in hydrodynamical-like limits. We discuss this issue in Remark 2.2.11, where
a link between the functional H and the large deviations rate functional in-
troduced in [10, 18] is also investigated. In particular, H comes as a natural
generalization of the functional introduced in [10, 18], whenever the flux f is
neither convex nor concave.

In this chapter we prove that for each sequence u® — u in Ly 10c([0,7] X R)
we have lim_H,(u®) > H(u), namely I*lim H, > H. Since the functional H
vanishes only on entropic solutions to (2.1.1), its zero-level set coincides with
the limit points of the minima of I.. Concerning the I'-limsup inequality, for
each weak solution u to (2.1.1) in a suitable set S,, see Definition 2.2.4, we
construct a sequence u® — u such that H.(u®) — H(u). The above statements
imply (Ilim H.)(u) = H(u) for v € S,. To complete the proof of the I'-
convergence of H. to H on the whole set of entropy-measure solutions, an
additional density argument is needed. This seems to be a difficult problem,
as Varadhan [18] puts it: “...one does not see at the moment how to produce
a ‘general’ non-entropic solution, partly because one does not know what it
is.”

The above results show in particular that if u° solves (2.1.4) for some control
E® such that e [ 1dt | E¥||7, (g (e yar) Vanishes as e — 0, then any limit point
of u® is an entropic solution to (2.1.1). This statement is sharp in the sense
that there are sequences {E°} with lim_ ™" [ 11dt [|E°|17, @ o (ueyar) > O such
that any limit point of the corresponding u® is not an entropic solutions to
(2.1.1). More generally, the variational description of conservation laws here
introduced allows the following point of view. Measure-valued solutions to
(2.1.1) are the points in the zero-level set of the I'-limit of I., while entropic
weak solutions are the points in the zero-level set of the I'-limit of e 'I.. In
Appendix 2.7 we introduce a sequence {.J. } of functionals related to the viscous
approximation of Hamilton-Jacobi equations. In [15] a [-limsup inequality
for a related family of functionals has been independently investigated in a
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BV setting. Following closely the proofs of the I'-convergence of {I.}, we
establish the corresponding I'-convergence results, thus obtaining a variational
characterization of measure-valued and viscosity solutions to Hamilton-Jacobi
equations. Although this “variational” point of view is consistent with the
standard concepts of solution in the current setting of scalar conservation laws
and Hamilton-Jacobi equations, it might be helpful for less understood model
equations.

2.2. Notation and results

Hereafter in this chapter, we assume that f is a Lipschitz function on [0, 1],
D and o are continuous functions on [0, 1], with D uniformly positive and o
strictly positive on (0,1). We understand that these assumptions are supposed
to hold in every statement below.

We also let (-, -) denote the inner product in Ly(R), for 7" > 0 ((-, -)) stands
for the inner product in Ly ([0, 7] x R), and for O an open subset of R", C°(0)
denotes the collection of compactly supported infinitely differentiable functions
on O.

Scalar conservation law

Our analysis will be restricted to equibounded densities u that take values
in [0,1]. Let U denote the compact separable metric space of measurable
functions u : R — [0, 1], equipped with the following H,_.-like metric dy;. For
L >0, set

||U’||—1,L ‘= sup {(U, 90>7 NS O?((—L,L)), <90$7 pr> = 1}
and define the metric diy in U by

do(uv) =S 2y = vl 9221
o, 0) —=7 1 lu—vflw (22.1)
Given T > 0, let U be the set C([0,7];U) endowed with the uniform metric
dy(u,v) == sup dy(u(t),v(t)) (2.2.2)
te[0,T

An element u € U is a weak solution to (2.1.1) iff for each ¢ € C2°((0,T) x R)
(in particular ¢(0) = ¢(T") = 0) it satisfies

((u, 00)) 4+ ((f(u), a)) = 0

We also introduce a suitable space M of Young measures and recall the
notion of measure-valued solution to (2.1.1). Consider the set N of measurable
maps £ from [0,77] x R to the set P([0,1]) of Borel probability measures on
[0,1]. The set N can be identified with the set of positive Radon measures p
on [0, 1] x [0, 7] x R such that u([0,1], dt, dx) = dt dz. Indeed, by existence of
a regular version of conditional probabilities, for such measures p there exists a
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measurable kernel yi; ,(d\) € P([0, 1]) such that pu(dA, dt, de) = dt dx p . (dN).
For 2 : [0,1] — [0, 1] the identity map, we set

M:={peN : themap [0,7] >t p.(2) isinU} (2.2.3)

in which, for a bounded measurable function F' : [0,1] — R, the notation

pr.(F') stands for f[o 1]ut,x(d)\)F()\). We endow M with the metric

At V) = dyag (1, ) + dy (p(2), v(2)) (2.2.4)

where dy,g is a distance generating the relative topology on N regarded as a
subset of the finite Borel measures on [0, 1] x [0,7] x R equipped with the
vague topology. (M, d) is a complete separable metric space.

An element p € M is a measure-valued solution to (2.1.1) iff for each
p € CX((0,T) x R) it satisfies

({u(0), 00)) + ({u(f), x)) = O

If u € U is a weak solution to (2.1.1), then 0y ) (d\) € M is a measure-valued
solution. On the other hand, there exist measure-valued solutions which do
not have this form.

Parabolic cost functional

We next give the definition of the parabolic cost functional informally in-
troduced in (2.1.5). Given u € U we write u, € Lajoc([0,7] x R) iff v admits
a locally square integrable weak x-derivative. For ¢ > 0, v € U such that

Uy € Lojoc([0,T] X R), and ¢ € C((0,7T) x R) we set

" €

e(p) = =((u, ) = ({f(u) pa)) + SUD (W, ) (2.2.5)
and define I, : Y — [0, 4+o00] by

1 .
sup | 2(p) = 5 {(o(w)¢z, ¢a)) if uy € Lpjoc([0, ] X R)
[E(u) — peC((0,T)xR)
+00 otherwise

(2.2.6)
I.(u) vanishes iff u € U is a weak solution to (2.1.2); more generally, by Riesz
representation theorem, it is not difficult to prove the connection of I, with
the perturbed parabolic problem (2.1.4), see Lemma 2.3.1 below for the precise
statement.
In order to discuss the behavior of I. as € — 0 we lift it to the space of Young
measures (M, dp), see (2.2.3), (2.2.4). We thus define Z. : M — [0, +o0] by

(2.2.7)

I(n) = I(u) if  puz = duge) for some v e U
A 400 otherwise
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Asymptotic parabolic cost

As well known, a most useful notion of variational convergence is the so
called I'-convergence which, together with some compactness estimates, implies
convergence of the minima. Let X be a complete separable metrizable space;
recall that a sequence of functionals F. : X — [—o00, +00] is equicoercive on X
iff for each M > 0 there exists a compact set K, such that for any e € (0, 1]
we have {z € X : F.(x) < M} C Kj. We briefly recall the basic definitions
of the I'-convergence theory, see e.g. [4, 7]. Given z € X we define

(Tlim, o FL) () := inf { lim_,, Fo(2%), {z°} C X : 2° — =z}
(MHim._o FL) (2) := inf { lim.0 FL(2%), {27} C X : 2° — z}

Whenever I'lim F. = I'lim F. = F we say that F. I'-converges to F in X.
Equivalently, F. I'-converges to F' iff for each x € X we have:
— for any sequence z° — x we have lim_F.(z°) > F(x) (D-liminf in-
equality);
— there exists a sequence z° — z such that lim. F.(2°) < F(z) (T-
limsup inequality).

Equicoercivity and I'-convergence of a sequence {F.} imply an upper bound of
infima over open sets, and a lower bound of infima over closed sets, see e.g. [4,
Prop. 1.18], and therefore it is the relevant notion of variational convergence
in the control setting introduced above.

THEOREM 2.2.1. The sequence {Z.} defined in (2.2.6), (2.2.7) is equicoer-
cive on M and, as ¢ — 0, I'-converges in M to

I = s () o)~ nlh), o) —

PeCe((0,T)xR)

(o) s, sox>)} (2.2.8)

Z(p) = 0 iff p is a measure-valued solution to (2.1.1).
From Theorem 2.2.1 we deduce the T-limit of I., see (2.2.6), on U by
projection.

COROLLARY 2.2.2. The sequence of functionals {I.} is equicoercive on U
and, as € — 0, T'-converges in U to the functional I : U — [0,+0o0] defined by

I(u) := inf { [dt dz Ry (u(t, z), (¢, 7)),
Q€ Lojoc([0,T] xR) : &, = —1yy weak‘ly}
where Ry : [0,1] x R — [0, +00] is defined by
Ry o(w,c) :=inf{(v(f) — 0)2/1/(0), veP(0,1]) : v(2) = w}

in which we understand (c — c)?/0 = 0.
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From the proof of Corollary 2.2.2 it follows I(-) < Z(4.), and the equality
holds iff f is linear. If we restrict to stationary u’s, namely to the case u; =
0, Corollary 2.2.2 can be regarded as a negative-Sobolev version of classical
relaxation results for integral functionals in weak topology. More precisely,
from the proofs of Theorem 2.4.1 and Corollary 2.2.2 it follows that if we
define the functional F : U — [0, 4+00] by

S G 14C1C)) Bt
F(u) = inf /d o (u(2))

then its lower semicontinuous envelope w.r.t. the dy-distance (2.2.1) is given
by

F(u) := ilel]lg /d:z: Ry (u(z),c)

Note also that R, can be explicitly calculated in some cases. Let f,f :
[0,1] — R be respectively the convex and concave envelope of f. Then, in
the case o = 1, we have Ry;(w,c) = [distance(c, [i(w),f(w)])}2 In the case
f = o (which include the example mentioned in the introduction f(u) =
o(u) = u(l —u)) then

2(el =) if ] € [f(w), f(w)]

f(w)—c)? . T
Ryy(w,e) = ¢ 5 i |e] > 7(w)
L if [c] < f(w)

Entropy-measure solutions
Recalling (2.2.2), we let X be the same set C([0,T];U) endowed with the

metric
o0

1
d(u,v) == o e = vl o) + du(u, v) (2.2.9)
N=1
Convergence in X' is equivalent to convergence in U and in Ly ,.([0, 7] x R)
for p € [1, +00).

Let C*([0,1]) be the set of twice differentiable functions on (0,1) whose
derivatives are continuous up to the boundary. A function, resp. a con-
vex function, n € C?([0,1]) is called an entropy, resp. a convex entropy,
and its conjugated entropy flux q € C([0,1]) is defined up to a constant by
q(u) := [“dvn'(v)f'(v). For u a weak solution to (2.1.1), for (1, q) an entropy
— entropy flux pair, the n-entropy production is the distribution @, ,, acting on

C((0,T) x R) as

Pnulp) == —((n(u), o)) — ((q(u), ¥z)) (2.2.10)

Let C’CZ’OO([O, 1] x (0,T) x R) be the set of compactly supported maps ¥ :
0,1] x (0,T) x R o (v,t,z) — d(v,t,x) € R, that are twice differentiable
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in the v variable, with derivatives continuous up to the boundary of [0, 1] x
(0,7) x R, and that are infinitely differentiable in the (¢,z) variables. For
¥ € C2([0,1] x (0,7) x R) we denote by ¥ and ¢ its partial derivatives
w.r.t. the v variable. We say that a function ¥ € C>*([0,1] x (0,T) x R) is an
entropy sampler, and its conjugated entropy flux sampler @ : [0, 1] x (0, T) xR is
defined up to an additive function of (¢, z) by Q(u, t,x) := [“dvd'(v,t,z)f (v).
Finally, given a weak solution u to (2.1.1), the ¥-sampled entropy production
Py ,, is the real number

Py, = — /dt dx [(3t19)(u(t,x),t,x) + (0,Q) (u(t,:v),t,x)} (2.2.11)

If 9(v,t,2) = n(v)p(t, ) for some entropy n and some ¢ € C((0,T) x R),
then Py, = ©pu(¢).

The next proposition introduces a suitable class of solutions to (2.1.1) which
will be needed in the following. We denote by M ((0,T') x R) the set of Radon
measures on (0,7") x R that we consider equipped with the vague topology. In
the following, for o € M ((0, T) x R) we denote by o the positive and negative
part of p. For u a weak solution to (2.1.1) and 1 an entropy, recalling (2.2.10)
we set

lonullrv.e = sup {pnu(e), ¢ € CZ((0,T) x (=L, L)), [¢] <1} (2.2.12)
o ullrv.z == sup {pg.u(e), ¢ € CE((0,T) x (=L, L)), 0 < o < 1}

PROPOSITION 2.2.3. Letu € X be a weak solution to (2.1.1). The following
statements are equivalent:

(i) There exists ¢ > 0 such that ||p;,|ltv. < 400 for each L > 0 and
n € C?([0,1]) with 0 < n" < c.

(ii) For each entropy n, the n-entropy production g,, can be extended to
a Radon measure on (0,T) x R, namely ||pyulrv, < 400 for each
L>0.

(iii) There ezists a bounded measurable map o, : [0,1] 3 v — g, (v;dt,dx) €
M((O, T) x ]R) such that for any entropy sampler ¥

Py, = /dv ou(v;dt,dz) 9" (v, t, ) (2.2.13)

A weak solution v € X that satisfies any of the equivalent conditions in
Proposition 2.2.3 is called an entropy-measure solution to (2.1.1). We denote
by £ C X the set of entropy-measure solutions to (2.1.1). Proposition 2.2.3
establishes a so called kinetic formulation for entropy-measure solutions, see
also [8, Prop. 3.1] for a similar result. If f € C?([0,1]) is such that there
are no intervals in which f is affine, using the results in [5] we show that
entropy-measure solutions have some regularity properties, see Lemma 2.5.1.
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A weak solution u € X to (2.1.1) is called an entropic solution iff for each
convex entropy 7 the inequality @, , < 0 holds in distribution sense, namely
|orullrv,. = 0 for each L > 0. In particular entropic solutions are entropy-
measure solutions such that o, (v; dt, dx) is a negative Radon measure for each
v € [0,1]. Tt is well known, see e.g. [6, 16|, that for each ug € U there exists a
unique entropic solution @ € C([0, T; L110c(R)) to (2.1.1) such that @(0) = uy.
Such a solution w is called the Kruzkov solution with initial datum w,.

["-entropy cost of non-entropic solutions

We next introduce a rescaled cost functional and prove in particular that
entropic solutions are the only ones with vanishing rescaled asymptotic cost.
Recalling that I. has been introduced in (2.2.6), the rescaled cost functional
H.: X — [0, +00] is defined by

H_(u) = ¢ I (u) (2.2.14)

In the I'-convergence theory, the asymptotic behavior of the rescaled functional
H. is usually referred to as the development by I'-convergence of I, see e.g.
(4, §1.10]. In our case, while we lifted I. to the space of Young measures M,
we can consider the rescaled cost functional H, on X. In fact, as shown below,
H_ has much better compactness properties than I. and it is equicoercive on
X. Therefore the I'-convergence of the lift of H. to M can be immediately
retrieved from the I'-convergence of H. on X'. Indeed, since 9,, — 9, in M
implies u. — u in X, the metric (2.2.9) generates the relative topology of X
regarded as a subset of M.

Recall that £ C X denotes the set of entropy-measure solutions to (2.1.1),
and that for u € & there exists a bounded measurable map o, : [0,1] —
M ((0,T) x R) such that (2.2.13) holds. Let g be the positive part of g,, and
define H : X — [0, 4+00] by

- D(v) .
Hu) = /dv 04 (v;dt, dx) ) ifueé& (2.2.15)

+00 otherwise

As shown in the proof of Theorem 2.2.5, if u is a weak solution to (2.1.1) and
H(u) < 400, then H(u) = supy Py, where the supremum is taken over the
entropy samplers ¥ such that 0 < o(v)Y"(v,t,x) < D(v), for each (v,t,x) €
0,1] x [0,7] x R.

DEFINITION 2.2.4. An entropy-measure solution u € £ is entropy-splittable
iff there exist two closed sets EY, E~ C [0,T] x R such that

(i) For a.e. v € |0, 1], the support of o (v;dt,dx) is contained in E*, and
the support of o (v;dt,dx) is contained in E~.
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(ii) For each L > 0, the set {t €0,7] : ({t} x[-L,L)NETNE™ # @}
is nowhere dense in [0, T].

The set of entropy-splittable solutions to (2.1.1) is denoted by S. An entropy-
splittable solution uw € S such that H(u) < +oo and

(iii) For each L > 0 there exists 65, > 0 such that o(u(t,x)) > 6L for a.e.
(t,x) € [0,T] x [— L, L].
is called nice w.r.t. . The set of nice (w.r.t. o) solutions to (2.1.1) is denoted

by S, .

Note that S, € § € £ C X, and that, if ¢ is uniformly positive on [0, 1],
then S, = §. In Remark 2.2.9 we exhibit a few classes of entropy-splittable
solutions to (2.1.1).

In the next theorem we state our results concerning the I'-convergence of
the rescaled functional H., see (2.2.6) and (2.2.14), to the functional H defined
in (2.2.15).

THEOREM 2.2.5. (i) The sequence of functionals {H.} satisfies the
I-liminf inequality I'-lim_ H, > H on X.
(ii) Assume that there is no interval where f is affine. Then the sequence
of functionals {H.} is equicoercive on X .
(iii) Assume furthermore that f € C*([0,1]), and D,oc € C*([0,1]) for
some « > 1/2. Define

H(u) := inf { lim H (u,,), {u,} C Sy : up = w in X}

Then the sequence of functionals { H.} satisfies the I'-limsup inequality
I'lim. H. < H on X.

From the lower semicontinuity of H on &', see Proposition 2.2.6, it follows
that H > H on X and H = H on S,, namely the I-convergence of H, to H
holds on S,. To get the full I-convergence on X, the inequality H(u) > H(u)
is required also for u € S,. This amounts to show that S, is H-dense in
X, namely that for u € X such that H(u) < 400 there exists a sequence
{u"} C S, converging to u in X such that H(u") — H(u). As mentioned at the
end of the introduction, this appears to be a difficult problem. A preliminary
step in this direction is to obtain a chain rule formula for bounded vector
fields on [0, 7] x R the divergence of which is a Radon measure (divergence-
measure fields). This is a classical result for locally BV fields [2]. However,
while entropic solutions to (2.1.1) are in BVj,.(]0,7] x R) [1, Corollary 1.3], as
shown in Example 2.2.8 below, the set {u € X : H(u) < 400} is not contained
in BW,c([0,T] x R); see [9] for similar examples including estimates in Besov
norms. Chain rule formulas out of the BV setting have been investigated in
several recent papers; in particular in [8], a chain rule formula for divergence-
measure fields is addressed, providing some partial results. In the remaining
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of this section we discuss some properties of H, and some issues related to the
H-density of S,.

In the following proposition we show that H is lower semicontinuous, and
that it is coercive under the same hypotheses used for the equicoercivity of
{H.}. Moreover, we prove that the minimizers of H are limit points of the
minimizers of I. as ¢ — 0, so that no further rescaling of {/.} has to be
investigated.

PROPOSITION 2.2.6. H is lower semicontinuous on X, and H(u) = 0 iff u
is an entropic solution to (2.1.1).

Assume that there are no intervals where f is affine. Then H is coercive
on X.

Assume furthermore that f € C?([0,1]) and let w € X. Then H(u) = 0 iff
w s a limit point of a sequence {u®} C X such that I.(u®) = 0. In particular
the map that associates to a given uy € U the Kruzkov solution to (2.1.1) with
nitial datum ug 1s bijective on the zero-level set of H.

If u € X is a weak solution with locally bounded variation, Vol'pert chain
rule, see [2], gives a formula for H(u) in terms of the normal traces of u on its
jump set.

REMARK 2.2.7. Let u € X N BVjo([0,T] x R) be a weak solution to (2.1.1).
Denote by J, C [0,T] x R its jump set, by H 'L J, the one-dimensional Haus-
dorff measure restricted to J,, by n = (nt,n”‘*’) a unit normal to J, (which is
well defined H*L_J, a.e.), and by u* the normal traces of u on J, w.r.t. n.
Then the Rankine-Hugoniot condition (u™ — u™)n' + (f(u™) — f(u™))n" =0
holds. In particular we can choose n so that n® is uniformly positive, and thus
u™ is the right trace of uw and u™ is the left trace of u. Then u € € and

dH'LJ, vt )
{(ur — )2+ [flut) = fao)2} 2

where, denoting by u~ Au™ and u~Vu™ respectively the minimum and mazimum
of {u=, u™}, p:[0,1]* = R is defined by

pv,ut u™) = [fu ) (uh—v)+f(uh)(v—u)—f(v) (" —u") | T nut umvat] ()
Hence, denoting by p* the positive part of p

ou(v;dt,dx) =

Hu) = [ di’ [dv p* (v, ut,um) 2Y
M L ettt 2%)/ “ (2.2.16)
= [, dH'|n"| [dv® |u”+3u |>U(

Note p(v,ut,u™) < 0 iff £ v) f(“ ) > (“;2:5(”). This corresponds to the
well known geometmcal secant condltlon for entropic solutions, see e.g. [6, 16].
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D=

0 bl —bg bl _bS bl
F1GURE 1. The values of v in Example 2.2.8 for T = 1.

Therefore H(u) quantifies the violation of the entropy condition along the
non-entropic shocks of u.

In the following Example 2.2.8 we show that neither the domain of H,
neither the H-closure of S, are contained in BVlOC([O, T] x ]R).

EXAMPLE 2.2.8. Let f(u) = u(1l — u) and pick a decreasing sequence {b;}
of positive reals such that by < 1/2, >~.b; = 400 and Y, b} < +oc. Let u be
defined by

12 otherwise

Then H(u) = £, f[O,bi]dU f((ll//gij))v(b@ — v) < +o00. Note that, even if the

initial datum is in BV (R) and f is concave, u & BVi([0,T] x R). However

H(u) = H(u). Indeed the sequence {u"} C S, defined by

Wt ) = u(t,z) ifx+b,t <T(by — bygr)
12 otherwise

is such that u™ — u in X and lim, H(u") = H(u).

In the following remarks we identify some classes of entropy-splittable so-
lutions to (2.1.1), see Definition 2.2.4.

REMARK 2.2.9. Weak solutions to (2.1.1) such that, for each convezr en-
tropy n, onu < 0 (entropic solutions) or ¢,, > 0 (anti-entropic solutions)
are entropy-splittable. Indeed they are entropy-measure solutions (see Proposi-
tion 2.2.6) and they fit in Definition 2.2.4 with the choice E~ = [0,T] xR and
Et =0 (for entropic solutions), and respectively E* = [0,T] xR and E~ = ()
(for anti-entropic solutions).

Letu € BVIOC([O, T) x R) be a weak solution to (2.1.1). In the same setting
of Remark 2.2.7, let us define JFf := Closure({(t,z) € J, : Jv € [0,1]
+o(v;ut,u”) > 0}). Suppose that for each L > 0 the set {t € [0,T] : ({t} x
[—L,L))NJfNJ;} is nowhere dense in [0,T]. Then u is an entropy-splittable
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solution. If f is convex or concave the sign of p(v,u™,u™) does not depend
onv € [u” ANut,u” Vut]. Therefore, under this convexity hypothesis, weak
solutions to (2.1.1) with locally bounded variations and with a jump set J,
consisting of a locally finite number of Lipschitz curves, intersecting each other
at a locally finite number of points are entropy splittable.

For a general (possibly neither convex nor concave) flux f, even piecewise
constant solutions to (2.1.1) may fail to be entropy-splittable. However, in the
following Example 2.2.10 we introduce a family of weak solutions u to (2.1.1)
that are not entropy-splittable, and show that they are in the H-closure of
S,, and thus H(u) = H(u). However, while Example 2.2.10 can be widely
generalized to prove H(u) = H(u) for u in suitable classes of piecewise smooth
solutions, it does not seem that the ideas suggested by this example may work
in the general setting of entropy-measure solutions u € £.

EXAMPLE 2.2.10. Let v : [0,7] — R be a Lipschitz map, let u be a weak
solution of bounded variation to (2.1.1), and suppose that the jump set of u
coincides with v. Let v~ = u™(t) and ut = ut(t) be the traces of u on 7,
and suppose that there exists u® € (0,1) such that u=(t) < u® < u*(t) for each
t and f(vzii(_“_) > f(“;r):f(”) for v € [u=,u"] and f(qu:i(_u_) < f(u;):i(v) for
v € [u™,u’]. Then, if these inequalities are strict at some v and t, u is not
entropy-splittable. However defining u™ € X by

u(t,z+n7t) ifr <qt)—nt
u(t, ) == u ify(t) —nt <z <Ay(t)+n!
w(t,r —nt) ifx <~H(t)+nt

we have that u" € S, u™ — w in X and H(u") = H(u). In particular, if o(u)
is uniformly positive on compact subsets of [0,T] xR, then H(u) = H(u). It is
easy to extend this example to the case in which the jump set of u consists of a
locally finite number of Lipschitz curves non-intersecting each other, provided
that on each curve the quantity f(vgii(_“_) — f(u;zifj(v

number of times for v € [ut Au",ut Vu].

) changes its sign a finite

We next discuss the link between this paper and [10, 18]. In the introduc-
tion we informally described the connection between the problem (2.1.4) and
stochastic particles systems under Euler scaling. It is interesting to note that
such a quantitative connection can also be established for the limiting func-
tionals. The key point is that we expect the functional H defined in (2.2.15) to
coincide with the large deviations rate functional introduced in [10, 18], pro-
vided the functions f, D and ¢ are chosen correspondingly. Unfortunately, we
cannot establish such an identification off the set of weak solutions to (2.1.1)
with locally bounded variation.
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REMARK 2.2.11. Let H' : X — [0, +00] be defined by

H'(u) = sup {||pf7r’u||Tv7L, L>0,neC?[0,1]) : 0<on" < D} ifueé&
' +0o0 otherwise

Then H > H' and H(u) = H'(u) whenever there exists a Borel set ET C
[0,T] X R such that the measure dv o} (v; dt,dx) is concentrated on [0,1] x E*
and dv o, (v;dt,dx) =0 on [0,1] x E*. In particular if f is convex or concave
and u € BVio([0,T] x R), then H(u) = H'(u). If f is neither convex nor
concave, then there exists u € X such that H(u) > H'(u).

A general connection between dynamical transport coefficients and thermo-
dynamic potentials in driven diffusive systems is the so called Finstein relation,
see e.g. [17, I1.2.5]. For a physical model described by (2.1.4), this relation
states that the Einstein entropy h € C*((0,1)) N C([0, 1]; [0, +o0]) defined by

a(v)h"(v) = D(v) ve(0,1)

is a physically relevant entropy in the limit e — 0. We let g(u) := flu/zdv R (v) f'(v)
be the conjugated flux of h. Note that h, g may be unbounded if o vanishes at
the boundary of [0, 1] and that g < C} + Cy h for some constants Cy, Cy > 0.
If w is a weak solution to (2.1.1) such that h(u) € L 10([0, 7] x R) and such
that the distribution h(u); + g(u), acts as a Radon measure on (0,7") x R, we
let H@ZUHTV be the total variation of the positive part of such a measure. By
monotone convergence H'(u) > oy, [lov for such a u, and if f is convex or
concave and u has locally bounded variation, then indeed H'(u) = ||} [lvv. If

[ is convex or concave, we do not know whether H(u) = H'(u) = ||p; ,[lrv for
all u € &X', since a chain rule formula for divergence-measure fields is missing.
The problem investigated in [10, 18] formally corresponds to the case
fu) =0(u) =u(l—wu) and D(u) = 1, so that the Einstein entropy h coincides
with the Bernoulli entropy h(u) = —ulogu—(1—u)log(1—u). The (candidate)
large deviations rate functional H”V introduced in [10, 18] is defined as +oo
off the set of weak solutions to (2.1.1), while H”V (u) = ||o;f , [lvv for u a weak
solution (this is well defined, since h is bounded). We thus have H > H'V,
and in view of the I'-liminf inequality, H comes as a natural generalization of
H’V for diffusive systems with no convexity assumptions on the the flux f.

Outline of the proofs

Standard parabolic a priori estimates on u in terms of I.(u) imply equicoer-
civity of Z. on M. Equicoercivity of H. on X is obtained by the same bounds
and a classical compensated compactness argument.

The I'-liminf inequality in Theorem 2.2.1 follows from the variational defi-
nition (2.2.6) of /.. The I'-liminf inequality in Theorem 2.2.5 still follows from
(2.2.6) by choosing test functions of the form ed(u®(t, x),t, x), with ¢9” < D.
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The I'-limsup inequality in Theorem 2.2.1 is not difficult if ju; ; = 0y (1,2 for
some smooth u; the general result is obtained by taking lower semicontinuous
envelope. The I'-limsup statement in Theorem 2.2.5 is proved by building, for
each u € S,, a recovery sequence {u®} such that a priori H.(u®) — H(u). The
convergence u® — u is then obtained by a stability analysis of the parabolic
equation (2.1.4) w.r.t small variations of the control F.

Eventually, in Appendix 2.7 we apply our results to Hamilton-Jacobi equa-
tions.

2.3. Representation of /. and a priori bounds

Given a bounded measurable function @ > 0 on [0,7] x R let D! be
the Hilbert space obtained by identifying and completing the functions ¢ €
C>([0,T] x R) w.r.t. the seminorm ({0, a,))"/?. Let D! be its dual space.
The corresponding norms are denoted respectively by || - [|p1 and || - [|p-1.

We first establish the connection between the cost functional I. and the
perturbed parabolic problem (2.1.4). The following lemma is a standard tool
in large deviations theory, see e.g. [12, Lemma 10.5.3]. We however detail its
proof for sake of completeness.

LEMMA 2.3.1. Fize >0 and let u € U. Then I.(u) < oo iff there exists
yer e D;(u) such that u is a weak solution to (2.1.4) with E = V" namely

for each p € C=(]0,T] x R) o
(W), (7)) ~{u0) 0 [{f. )+ F () =S Dl () B ) }

In such a case W& is unique and

1
= — || w2 2.3.2
o =3V, (232)

I (u

up + f(u)e — g(D(u)ux)x

=4

PROOF. Fix ¢ > 0 and u € U such that I.(u) < +oo. The functional ¢

defined in (2.2.5) can be extended to a linear functional on C°([0,7] x R) by
setting

() = (u(T),o(T)) — (u(0),0(0)) = ((u, ) — ({f (), a))
+%<< (u)uxa(Px)
(2.3.3)
Since for any ¢ € C([0,7] x R) the map [0,7] > t — (u(t),¢(t)) € R is
continuous, it is easily seen that

L= s )~ lloen o))

peC([0,T1xR)
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We claim that ¢! defines a bounded linear functional on Di_(u). Indeed, since
I.(u) < 400

(p) < () + gl
which shows that ¢%(¢) = 0 whenever ||g0||D(1r(u) =0, as (“(-) is 1-homogeneous.
We also get that ¢! is bounded in D}T(u), and it can therefore be extended
by compatibility and density to a continuous linear functional on D;'(u)' Still
denoting by ¢ such a functional we get

L) = swp {00) ~ S{lo()enpa)) } (23.4)

peD!

o(u)

which is equivalent to the first equality in (2.3.2). By Riesz representation
theorem we now get existence and uniqueness of W** & D;(u) such that (¥ () =

(\Ilavu,go) o1 for any ¢ € D;(u), which implies (2.3.1). Riesz representation
o(u)

also yields I.(u) = 3||¥=*||2,, . The converse statements are obvious. 0O
o(u)

In the following lemma we give some regularity results for u € U with finite
cost, and we prove some a priori bounds.

LEMMA 2.3.2. Let ¢ > 0 and v € U be such that I.(u) < +oo. Then
u € C([O, T, LUOC(R)). Moreover for each entropy — entropy flux pair (n,q),
each ¢ € C*([0,T]) x R), and each t € [0,T]

(1)) 0 = {(0)), £(0)) = i g [0, 05} + () )]
= =5 fouds [0 @D ) + (0 (0D (), )]

o Jiog s [ (")) e, W5 0) + (1 (wr () W3, 0,
(2.3.5)
where W' is as in Lemma 2.3.1. Finally, there exists a constant C' > 0
depending only on f, D and o such that for any e, L > 0

a/dt/ dzul < Cle ' I(u) + L+ 1] (2.3.6)
[7L7L}

PRrROOF. Recall that the linear functional ¢¥ on D;(u) is defined as the
extension of (2.3.3). Let 6 := —f(u) + £D(u) uy — o(u) V5" € Lo joc([0,T] %
R); by (2.3.1) uy = 6, holds weakly. Since I.(u) < +oo we also have u, €
Lg,loc([O,T] X R), so that u € C’([O,T]; Lz,loc(R)) by standard interpolations
arguments, see e.g. [13]. Since u is bounded, this is equivalent to the statement
u € C([0,T]; L10c(R)).

This fact implies that integrations by parts are allowed in the first line
on the r.h.s. of (2.3.3), namely for each measurable compactly supported ¢ :
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0,7] x R — R with ¢, € Ly([0,T] x R)

3

() = (s, 8)) + (f(w)z, 9)) + 5 (D (w)tiz, 62)) (2.3.7)

Since u, is locally square integrable, if n € C?([0,1]) and p € C>([0,T] x R),
then 7'(u)e has compact support and its weak z-derivative is square integrable.
We can thus evaluate (2.3.7) with ¢ replaced by 7' (u)p, and since ¢*(n/ (u)p) =
(\Ifa’“,n’(u)go)pim and u € C’([O,T]; LQJOC(R)) we get (2.3.5).

To prove the last statement, consider an entropy — entropy flux pair (7, q).
By (2.3.4) and (2.3.7)

< — (o (W) (W er, 02)
= 2({o ()" () (W), 0 02) |

We now choose 1 > 0, uniformly convex and such that on” < D, and for such
a n we let o := max, [D(v)n'(v)?/n"(v)], so that o ()* < . By Cauchy-
Schwarz inequality

2| (o (w)n" (w)n' (w)us, ¢ ¢a))] (o (w)n" (u)*uy, %)) + ({o (W (W), @ops))

<
< (D" (wuz, ) + a{{pa, ¢x))

[\

Letting ¢ : [0,1] — R be such that ¢’ = 1 D, and integrating by parts we get
(' (u)D(u)ty, @r) = —(C(u), Prz). Collecting all the bounds

We now choose ¢ independent of ¢ and such that ¢(z) = 1/4 for |z| < L,
0 < px) <1/4for L < |z| < L+1, p(x) = 0 for || > L + 1, and
(D, Pz) + {(Pae, Prz) < 2. Since ¢, ¢ are bounded and n > 0, estimate (2.3.6)
easily follows. U

LEMMA 2.3.3. The sequence of functionals {I.} is equicoercive on U.

PROOF. Let u € U be such that I.(u) < +o00 and ¥&* be as in Lemma 2.3.1.
By (2.3.1), (2.3.2) and the bound (2.3.6), for each s,t € [0,7], each L > 0,
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each ¢ € C*(R) supported by [—L, L]
[(u(t) = u(s), )| = | fi,qdr (F(w) = $D()us + ()", 22)
< {2 e de [70 + £ DG22] )l = slir. 0]
[ fgdriotwwse, v [ = slio(len 0]
<t Lt L)l = o2, 002

for a suitable constant C' depending only on f, D, and ¢. Since (U, dy) is com-
pact, see (2.2.1), recalling (2.2.2) and the Ascoli-Arzeld theorem, the equico-
ercivity of {I.} on U follows. O

As mentioned in the introduction, the assumption that o is supported
by [0,1] allows us to consider only functions u that take values in [0, 1].
More precisely, consider a cost functional I analogous to I. but defined on
L110¢([0, 7] x R). We next prove that, if u € Ly 0.([0,7] x R) is such that

I.(u) < 400 and satisfies some growth conditions, then u takes values in [0, 1].

ProrosITION 2.3.4. Let f, D, o : R — R; assume f Lipschitz, o and
D continuous and bounded, with o > 0 and D uniformly positive. Let fe :
L110c([0, T]xR) — [0, +00] be defined as follows. If f(u) € Laoc([0, T]xR), we
define I.(u) as in (2.2.6), and we set I.(u) = +oo otherwise. Suppose that u €
Li10c([0, T]xR) is such that I.(u) < +oo. Thenu € C([0,T); L10c(R)). More-
over, if o is supported by [0, 1], and u is such that uw(0) € U and [dt dx |u(t, z)|e~"1*l <
+00o for some r > 0, then u takes values in [0, 1], hence u € U.

PROOF. Let 1 € Lyi([0,T] x R) be such that I.(u) < +oco. By the
same arguments of Lemma 2.3.2, since f(u) € Lajoc([0,7] x R), uy = 0,
holds weakly for some 6 € Lsjo.([0,7] x R). Hence, as in Lemma 2.3.2, u €
C’([O, TY); L1 joc (R)) Suppose now that o is supported by [0, 1]. Pick a sequence
of positive entropies 7, € C?*(R) such that: |n/,(u)|, ni(u) < C, for some
C, > 0; for u € (0,1), n,(u) does not depend on n and satisfies 0 < ¢ <
i (u) < D(u)/o(u); for u ¢ [0, 1] the sequence {n,(u)} increases pointwise to
+00 as n — oo. Still following the proof of Lemma 2.3.2, for ¢t € [0,7] and
¢ € C(R)

(mn(u(8)), ) + 5 fig.qds (D) (w)ud, ¢ — 20%) < e (u)
F1(00)), ) + S 3| (0 (1), P2} + 5 (o), @) + 2 (92, 0)|

where ¢,, and ¢, are defined (up to a constant) by g,(v) = [“dwn],(w) f'(w)
and ¢/, = 7, D, and « := maxepo,1) D(uw)n), (v)?/n)(u) is a constant independent
of n, since o is supported by [0, 1]. Since f is Lipschitz and D is bounded, it
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is possible to choose the arbitrary constants in the definition of ¢, and (,, such
that |g,|, |¢.| < Cny, for some constant C' > 0 independent of n. In particular
Gy Gn € L110c([0,T] x R); for each ¢ € CX(R) such that 0 < p(z) < 1/2

((m(w),9)) < Te () + T (5,(u(0)), )
+ f[o,T]dt f[oﬂs]ds [(qn(u)7 QOI> + %(CTL(u)? QO:mc> +ea <80m7 @x)
(

Let now 7 be such that [dtdz e "*l|u(t,z)| < +oo. By a limiting procedure,
the above bound holds for any ¢ € C*(R) such that 0 < ¢ < 1/2 and
sup,ep € [|o(2)] + |¢u(x)| + | ()|] < +oo. For such ¢, by the choice of
Gns Cn

#{(m(u),9)) < e (u) + (0a(u(0)), 0)
+8%<9017S0x> + C{(Mn(u), [pz| + %"Pm‘»
It is easy to verify that, given L > 0 large enough, we can choose ¢ such
that o(z) = 1/2 for |z| < L, p(z) = te7™*=Ll for |z] > 2L and |p..(z)| <
rlpz(z)] < rtp(z) < r?/2 for |z| > L. Moreover, with no loss of generality,
we can assume that % — C (r+ 5r?) > 0, otherwise we can suppose 7" small
enough and iterate this proof. Therefore

[% — C’(r + %7‘2)} f[O,T]X[fL,L]dt dx np,(u)
< e e(u) + (0 (u(0)), @) + £ (s #a)
If w(0) € U the r.h.s. of this formula is finite and independent of n, and

therefore the 1.h.s. is bounded uniformly in n. Taking the limit n — oo, by
the choice of 7, necessarily u(t,z) € [0,1] for a.e. (t,z) € [0,T] x R. O

The following result is not used in the sequel, but together with Lemma 2.3.1

and Proposition 2.3.4, motivates the choice of I. as the cost functional related
to (2.1.2).

PROPOSITION 2.3.5. For each € > 0 the functional 1. : U — [0, +o0] is
lower semicontinuous.

ProOOF. Let {u"} C U be a sequence converging to u in U, and such
that I.(u™) is bounded uniformly in n. By (2.3.6), for each L > 0 we have
that [i, 1y, ¢ dz (ug)? is also bounded uniformly in . Therefore, recalling

definition (2.2.6), the lower semicontinuity of I. is established once we show
that u" converges to u strongly in Lj,([0,7] x R). Fix L > 0 and pick
xr € CX(R) such that 0 < x, < 1 with xz(z) = 1 for v € [-L,L]. We
show that u™L := u" yp converges to ul := uxy in Ly([0,T] x R). Choose a
sequence of mollifiers g : R — R* with [dz jx(z) = 1, then

||U"’L - uLHLz([O,T]XR) < H“nL Ik * umLHLz([O,T}XR)

gk umt = g% U’LHLQ([O,T]XR) + [lge  u — ULHLQ([O:T]XR)
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where the convolution is only in the space variable. For each k the second
term on the r.h.s. above vanishes as n — oo by the convergence u"™ — u in U.
Since the third term vanishes as k — oo it remains to show that the first one
vanishes as k& — oo uniformly in n. Integration by parts and Young inequality
for convolutions yield

n,L

o = e gy < [ oo = | s, o 1

The uniform boundedness of [, ., ,dtdz (u})?, (2.3.6) and the choice of
Xz imply that the second term on the r.h.s. is bounded uniformly in n, while

the first term vanishes as k — oo. O

2.4. I'-convergence of 7.

In this section we prove the I'-convergence of the parabolic cost functional
Z. as € — 0, see Theorem 2.2.1. Some technical steps are postponed in Ap-
pendix 2.6.

PROOF OF THEOREM 2.2.1: EQUICOERCIVITY OF Z.. Recall that (M, d )
has been defined in (2.2.3), (2.2.4) and note that (N, d,.e) is compact. By
Lemma 2.3.3, for each C' > 0 there exists a compact Ko C U, such that
for any e small enough {y € M : Z.(un) < C} C {p € M : . =
Ou(z for some u € Ko} =: Ko, In order to prove that K¢ is compact in
(M, dpr), consider a sequence {u" = dn} C K. Then there exists a sub-
sequence {u™} such that, for some p € N and v € U, ™ — pin (N, dyag),
and p" (1) = u™ — w in Y, hence u(2) = u. Therefore p € M and ™ — p in
(M, dpm). O

PROOF OF THEOREM 2.2.1: I-LIMINF INEQUALITY. Let {if} C M be a
sequence converging to p in M. In order to prove lim_ ., Z.(u%) > Z(p), it is

e—0 €
not restrictive to assume Z.(u°) < +o0o, and therefore fif , = dye (1) for some

u® € U. For each p € C*((0,7) x R), recalling definition (2.2.6)

L) = () = sleln, .
= (@, 0y = (W (), 0e)) = 3 ({7 (0) s p2)) + SUD (W), 2)
Let d € C'(]0,1]) be such that d'(u) = D(u). Then D(u)ué = d(uf),, and

an integration by parts shows that the last term on the r.h.s. of the previous
formula vanishes as ¢ — 0. Hence

B T, () > —((u0), ) — () 0e)) — = ((41(0) s 02))

e—0 2

By optimizing over ¢ € C°((0,7) x R) the I'-liminf inequality follows. O
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PROOF OF THEOREM 2.2.1: I'-LIMSUP INEQUALITY. Let
M, = {,u eEM : I(p) < +oo, Ir, L >0, s € P([0,1]) such that
l0), 50) 2 7, it = pioofor 2] > L}

My = {u e M, : p=249, for some u € C’l([O,T] x R; [0, 1])} (2.4.2)
and define Z : M — [0, +0oc] by

F() {I(N) if pe My

A : 24.3
(1) +00  otherwise ( )

We claim that for p € My, a recovery sequence is simply given by p® = pu.
Indeed, if p = 6, for some u € C*([0,T] x R; [0, 1]), we have

L) = L(w) = fu+ fw). — §(D()us),

2

D)

1 -1
_1 + % %(D(U)U,m) p-1
o (u) o (u)
As 1 € My, uis constant for |z| large enough, in particular u, € Ly([0, 7] xR).
Since we have also o(u) > r > 0, the last term in the above formula vanishes
as e — 0. Hence I'-lim. Z. < Z. As well known, see e.g. [4, Prop. 1.28], any I'-
limsup is lower semicontinuous; the proof is then completed by Theorem 2.4.1
below. O

The relaxation of the functional Z on M defined in (2.4.3) might have an
independent interest; in the following result we show it coincides with Z, as
defined in (2.2.8).

2

1+e
s 2

THEOREM 2.4.1. Z is the lower semicontinuous envelope Off.
The following representation of Z is proved similarly to Lemma 2.3.1.
LEMMA 2.4.2. Let p € M. Then Z(n) < +oo iff there exists V" € D,

such that p is a measure-valued solution to uy + f(u), = — (o (u)U4) , namely

p()e + p(fa = —(ulo) k), (2.4.4)

holds weakly. In such a case V* is unique and

() = g[luthe+ u)|, = Sheii

( )

Furthermore, suppose that u(c) > r for some constant r > 0. Then Z(u) <
+o00 iff there exists G* € Ly([0,T] x R) such that

1(2)e + p(f)e = —GY (2.4.5)
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holds weakly. In such a case ¥ can be identified with a function in Ls([0, T] %
R), and

G' = (o) UE, () = % / dt dx% (2.4.6)

The following remark is a consequence of Lemma 2.4.2.

REMARK 2.4.3. Let {u*} € M be such that pif — pu in M, T(pu*) < +o00
and p*(o) > r for some r > 0. Let also GH* be defined as in Lemma 2.4.2. If
1* (o) — p(o) strongly in Ly oc([0,T] X R) and {GH*Y is strongly precompact
in Ly([0,T] x R), then Z(u¥) — Z(p).

Throughout the proof of Theorem 2.4.1, approximation of Young measures
by piecewise smooth measures is a much used procedure. In particular we will
refer repeatedly to the following result, which is a simple restatement of the
Rankine-Hugoniot condition for the divergence-free vector field (u(2), u(f) +
G") on (0,T) x R.

LEMMA 2.4.4. Let~:(0,T) — R be a Lipschitz map with a.e. derivative 7,
and let OF C (0,T) xR be a left, resp. a right, open neighborhood of the graph
of v; namely Graph(~y) C Closure(O~) N Closure(O™), and for all (t,z) € O™,
resp. (t,x) € OT, the inequality x < ~(t), resp. x > ~(t), holds. Let also
O := O" UO~ UGraph(y). Suppose that a Young measure p € M is such
that, for each continuous function F' € C([0,1]) the map (t,z) — . (F) is
continuously differentiable in O~ U O%, and denote by puT(F) the respective
traces of u(F') on the graph of v. Then there exists a map G : O — R, defined
up to an additive measurable function of the t wvariable, which is continuous
in O~ UO™, and such that (2.4.5) holds weakly in O. Moreover the Rankine-
Hugoniot condition holds for a.e. t € [0,T], namely

G" =G = [u()" — @) |5 = ()" — ()] (24.7)
where GT are the traces of G on ~y evaluated on the neighborhoods OF of ~.

PROOF OF THEOREM 2.4.1. Since Z is lower semicontinuous, it is enough
to prove that My, as defined in (2.4.2), is Z-dense in M, namely that for each
@ € M with Z(11) < 400, there exists a sequence {u*} C My such that p* — u
in M and limy, Z(p*) < Z(p) (we will also say that p* Z-converges to ). We
split the proof in several steps.

Step 1. Here we show that M, is Z-dense in the set of Young measures which
are a finite convex combination of Dirac masses for a.e. (t,x). More precisely,
recalling definition (2.4.1), we set

T= {u EM,y : p=>3 ", a", for some o' € Lo ([0,T] x R; [0,1])
with 7 o =1 and v’ € L ([0,7] x R; [0, 1])}
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and
o
M1 = U M?
n=1
In this step, we prove that M is Z-dense in M. We proceed by induction on
n; to this aim, for n > 1, we introduce the auxiliary sets

M = {u eEM,: Ir>0:pu=>", 0a%,, for some
o' € Loo([0,T) x R; [r, 1]) with 7 o =1 and u’ € C°([0,T] x R; [0, 1])}

ni= {,u EMy: Ir>0: p=3" 0, for some o’ € C*([0,T] x R;[r, 1])
with 37" o' =1 and u* € C'([0,T] x R; [r, 1 —r]), such that v > v’ + r}

Note that .//\/lv?f c M; € M7, and .//\/lv% C M. We claim that for each n > 1,
N’f is Z-dense in M, that M, is Z-dense in M7, and that M? is Z-dense in
JK/lv’f“. The Z-density of M in M then follows by induction. The previous
claims are proved in Appendix 2.6.

Step 2. In this step we prove that M; is Z-dense in M, see (2.4.1). We use
the following elementary extension of the mean value theorem.

LEMMA 2.4.5. Let X be a connected compact separable metric space, Fy,. . .,
F; € C(X) be continuous functions on X, and P € P(X) be a Borel probability
measure on X . Then there ezisto*, ... a0 > 0 withY ., o' =1,2',..., 2 € X
such that P(F") = 2?21 Q& Fi(z?), i = 1,...,d. Furthermore there exists a
sequence {P"} C P(X) converging weakly® to P, such that each P™ is a finite
convex combination of Dirac masses, P*(F') = P(F") fori=1,...,d, and for
each n the map P(X) > P — P" € P(X) is Borel measurable w.r.t. the weak™
topology.

PROOF. It is easy to see that the point P(F) := (P(F}),..., P(F,)) € R?
belongs to the closed convex hull of the set B := {(Fi(z),..., Fy(z)), z €
X} c R% Since B is compact and connected, Caratheodory theorem im-
plies that P(F') is a convex combination of at most d points in B, namely
the first statement of the lemma holds. Since X is compact, for each inte-
ger n > 1, there exist an integer k = k(n) and pairwise disjoint measur-
able sets A7,..., A? C X, such that P(X \ U A?) = 0, P(A}) > 0, and
diameter(A?) < n ', Il =1,..., k. Forl =1,...,k, let P(-|A?") € P(X) be
defined by P(B|A}") := P(A} N B)/P(A}') for any Borel set B C X. By the
first part of the lemma, there exists a probability measure P} € P(X), which
is a convex combination of d Dirac masses, such that P}'(F;) = P(F;|A}). The
sequence {P"} defined as P*(-) := S_F  P(A?)Pp(-) satisfies the requirements
of the lemma. U
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Let 4 € M,. By Lemma 2.4.5, there exists a sequence {y"} C M converg-
ing to p in M such that i, , is a convex combination of Dirac masses (¢, z) for

a.e. (t,x), and p" (1) = p(e), p"(f) = p(f), p" (o) = (o). Hence Z(pu") = Z(p)
and u" € M.

Step 3. Recall Lemma 2.4.2 and set
Ms = {u €M : I(n) < +oo, Ir > 0 such that pu(z), p(o) >,
Gt e C'([0,T] x R) N Lo ([0, T] x R),
for each F € C([0,1]) pu(F) € C*([0,T] x R)}

In this step we prove that M, is Z-dense in M.

Let p € Mj, and choose a constant us, > 0 such that pu(z) — us > 6 for
some & > 0. Define the maps 7§ € C([0,T]) N C'((0,T)) as the solutions to
the Cauchy problems

. _ GRy () +pey ) (F) = f(too)
{V(t) - Ht,fy(t)(z)*uoo

7v(0) = £k

7% are well-defined by the smoothness hypotheses on p and G*. On the other
hand, since we assumed G* to be uniformly bounded, |7% () Fk| < C, for some
constant C' > 0 not depending on k. We define, for k > C, u* by uﬁw = fy o if
YE(t) <z <~5(t) and pif, = 0y, otherwise. Clearly p* — pin M as k — oo.
We also let G (t,x) = GH(t,x) if ¥*(t) < = < 4%(t), and G*(t,z) = 0
otherwise. By (2.4.7) and the definition of 4%, the equation p*(2); + pu*(f). =
—G*"* holds weakly in (0, T) xR. In particular, by Lemma 2.4.2, T(3*) < Z(p).

Step 4. Here we prove that M3 is Z-dense in
My :={peM: I(u) <+4oo, Ir > 0 such that u(1), u(e) > r}

Let € My and {9"}1>1 C C®(R x R) be a sequence of smooth mollifiers
supported by [-T/k,T/k] x [—1,1]. For k > 1, let us define the rescaled
time-space variables v* : [0,7] x R — R x R by

t+T/k x
br(t =
(t,2) (1+2T/k’1+2T/lc

For k > 1 we also define the Young measure u* by setting for £/ € C([0,1])
and (t,z) € [0,T] x R

Wb L(F) = / dyds 15 (t — 5,2 — )ty (o.) (F)

) (2.4.8)

It is immediate to see that % € Ms. Moreover, as k — oo, u* — pin M and
pF(F) — p(F) strongly in Ly 0c([0, 7] x R) for each F € C([0,1]).
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Let us also define G** € Ly([0,T] x R) by
Gfl; = /dy dsg*(t — s,z — y)G“(bk(s,y))

Then 1*(2); + p*(f)e = —G=" holds weakly, and G** — G* in L,([0,T] x R)
as k — 0o. The proof is then achieved by Remark 2.4.3.

Step 5. My is Z-dense in M. For p € M with Z(p) < 400, we define
pFoi= (1 = k™Yp + k7612. Clearly ¥ — pin M, and pf(z) > k71/2,
pk(o) > k7lo(1/2). Therefore pu* € My From (2.2.8) it follows that Z is
convex, and since Z(d1/2) = 0, we have Z(p*) < (1 — k™) Z(p). O

The following proposition is easily proved, and will be used in the proof of
Corollary 2.2.2

PROPOSITION 2.4.6. Let X, Y be complete separable metrizable spaces,
and let w : X — Y be continuous. Let also {F.} be a family of functionals
F. Y — [—o00,400|. Let us define F. : X — [—00, +00] by

F.(z)= inf F.(y)

yEw=1(x)

Then

yEw=1(z)

(DI, F)(2) < inf (Dlim. F.)(y)

Furthermore if {F.} is equicoercive on'Y then {F_.} is equicoercive on X. In
such a case

(Dlim, F.)(z) < inf (T lim, F.)(y)

T yewHx)

PROOF OF COROLLARY 2.2.2. Since the map M > p — u(i) € U is
continuous, by Proposition 2.4.6 we have that I, is equicoercive on U (which

we already knew from Lemma 2.3.3) and I-converges to I : U — [0, +o0]
defined by

I(u) = inf 7
( ) BEM : pu(2)=u (M)

Recall that, if Z(u) < 400, U4 has been defined in Lemma 2.4.2. Equality
(2.4.4) yields

I(u) = inf {<<u(0)wg, e, & € Ly loc([O,T] X R), g €M :
T() < +00, pl2) = u, O, = —p(2), weakly, (o) Wh = @ — u(f) }

The corollary then follows by direct computation. O
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2.5. T'-convergence of H.

PROOF OF PROPOSITION 2.2.3. (i) = (ii). We first show that ||©y.|Tv,L
is finite for each n such that 0 < n” < ¢. It is easily seen that for each
¢ € C((0,T) x (=L, L);[0,1]) there exists ¢ € C((0,T) x (~L, L);[0,1])
such that ¢ > ¢ and |||@¢| + |@z|||lL, < 2(2L + T'). Therefore

= 9@ = ¢) = 9nu(®) < llogullrve + ((n(w), &) + (a(u), ¢2))
< llpgullrve +2(1nllse + llallec) (2L +T)

Onu(—%)

and thus [y .ullTv.c < 2[log,lrv.L + 200l + llglle) (2L + T).

Let now 77(v) := cv?/2, and for n € C*([0, 1]) arbitrary, let o := ¢~! max, |n"(v)].
Then @, = —aP;-y/au+ ;.. Since both 7—n/a and 7 are convex with sec-
ond derivative bounded by ¢, @, is a linear combination of Radon measures,
and thus a Radon measure itself.

(i) = (iii). Throughout this proof, we say that n, 7o € C*([0,1]) are
equivalent, and we write 1, ~ 1o, iff 7y = nj. We identify C?([0,1])/ ~
with C'([0, 1]), which we equip with the topology of uniform convergence. For
u € X a weak solution to (2.1.1), for ¢ € C((0,T) x R), the linear mapping
C*([0,1]) 2 n = p,u(p) € R is compatible with ~, and it thus defines a linear
mapping P,, : C([0,1]) — R. It is immediate to see that P,, is continuous,
and by (ii) for each n € C?([0,1]) and L > 0

sup {P%U(n”)a p e C::)O((OaT) X (_La L))’ ’90‘ < 1} = Hpﬂ,uHTVlz < +00

By Banach-Steinhaus theorem
sup { P,u(e), ¢ € CZ((0,T)x (=L, L)), || <1, e € C([0,1]), |e] <1} < +oo

Therefore the linear mapping PF : C([0,1]) x C=((0,T) x (—L,L)) — R,
PE(e,p) := P,,(e) can be extended to a finite Borel measure on [0,1] x
(0,T) x (=L, L). The collection {PL}; defines a unique Radon measure P,
on [0,1] x (0,7) x R, since two elements of this collection coincide on the
intersection of their domains. Recalling (2.2.10), we thus gather for each n €
C?([0,1]), for each ¢ € C2°((0,T) xR) and for some constant C' > 0 depending
only on f

| / Py(do. it dx) ' (), )| =

oa(9)] £ Ol (1705 [ 0100

P, thus defines a linear continuous functional on L;([0,1]) x CL((0,T) x
R). This implies that the Radon measure P, can be disintegrated as P, =
dv o, (v; dt, dx), for some bounded measurable map o, : [0, 1] — M((O, T) x R).
From the definition of P,, we obtain for n € C?([0,1]), ¢ € C2*((0,T) x R)
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and ¥(v,t,x) = n(v)p(t, )

Pﬁ,u = pn,u(gp) = /Pu(dv, dt, d%’)ﬁ”(v)@(t: $> = /dv Qu(v3 dt, dl‘) 79”(7]’ t, l’)

By linearity and density (2.2.13) holds for each entropy sampler ¥.

(iii) = (i). It follows by choosing ¥(v,t,x) = n(v)p(t,z) in equation
(2.2.13) for ¢ € C=((0,T) x R;[0,1]) and n € C2([0,1]) with 0 < " < ¢
for an arbitrary ¢ > 0. U

PROOF OF THEOREM 2.2.5 ITEM (II): EQUICOERCIVITY OF H.. The equico-
ercivity of H. w.r.t. the topology generated by the di-distance (2.2.2) follows
from Lemma 2.3.3. It remains to show that, if u° is such that H.(u?) is bounded
uniformly in ¢, then {u®} is precompact in Ly 10.([0, 7] x R). By equicoerciv-
ity of {Z.}, the sequence {y°} defined by pi, = dus(12) is precompact in M.
Therefore we have only to show that any limit point p € M of {u°} has the
form fiy, = Out0) for some u € X, to obtain the existence of limit points for
{v} in X. This is implied by a compensated compactness argument due to
Tartar, see [16, Ch. 9|, provided that there is no interval where f is affine, and
that, for any entropy - entropy flux pair (7, q), the sequence {n(u®); + q(u®).}
is precompact in Hy}([0,7] x R). Let us show the latter. By (2.3.5), there
exists C' > 0 such that for each ¢ € C((0,T) x (—L, L))

[{n(u)e + a(w)a o)) < §[{0" (u) D(u g, )| + 5[ (07 (u) D(uf)us, 04)) |
(0" (u)or(u) ug, o)) | + [((n' (u?) o (u) U5, 0a)) |
(

< Ot Holwd)] |2 Sy rpyt do ()2 ] ol oy

1/2
+C[e () + € fiy e (5] Iallzaoren

By the bound (2.3.6), n(u®);+q(u®), is the sum of a term bounded in Ly 1,c([0, 7] X
R) and a term vanishing in H ! ([0,T] x R) as € — 0. By Sobolev compact
embedding and boundedness of 7, g, the sequence {n(u®); + q(u®),} is compact
in H_!([0,T] x R). O

loc

PROOF OF THEOREM 2.2.5 ITEM (I): I'-LIMINF INEQUALITY. Let {u®} be
a sequence converging to u in X'. If u is not a weak solution to (2.1.1), by The-
orem 2.2.1 we have lim__, I.(u*) > Z(d,) > 0, and therefore lim__,, H.(u°) =
+00. Let now u be a weak solution to (2.1.1). With no loss of generality we
can suppose H.(u?) < Cy. We now consider an entropy sampler — entropy

sampler flux pair (¢, @) such that
0 <o()d (v, t,x) < D(v), (v, t,2) € 10,1] x (0,T) x R (2.5.1)
We also let ¢ (t,x) = et (u(t, x),t, x), and introduce the short hand notation

(V' () (t,2) = ' (v (t, x), t, ), (0" (u))(t, ) = " (u(t, 2), t,2), ((0,0)(uf)) (¢, z) =

(0:.9) (wf(t,z),t,x). As we assumed H.(u®) < oo, uS is locally square
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integrable, see (2.2.6), and since ¥ is compactly supported we have ¢f =

e (uf) us, +e(0,9") (uf) € Lo([0, T] X R). The representation (2.3.7) of £*"(¢°)
thus holds, and recalling (2 2.11) we get

Ho(w) > e (%) = S5 llee s, = {Cuf, 0'(u)
+3 (D (u)us, 9" (u)u >> +5((D (i) Jug, (9:9") (u) :
{0 (s (D) () — 5 ({0 () (90 (), (9,0") (w?))
= — [dtdx [(@19)( “(t,x),t,z) + (0:Q) ua(t,:r;),t,x)}
H5{(D () = o(u)d" (w), 0" (u) (u))) + 5{(D(u)u, (0:0") (u)))
—e{{o(u )" (W), (9:0") (u))) — 5 ({0 (u) (Du?)') (u7), (0x0") (u)))
By the bound (2.3.6), the last three terms in the above formula vanish as e — 0,
while (([D(u®) — o(u®)V"(u®)]us, V" (uf)u)) > 0 for each entropy sampler )
satisfying (2.5.1). Therefore, taking the limit ¢ — 0 and optimizing over

lim H.(u®) > suplim — [ dtdx [(8t19)(u5(t, x),t, :c)—i—(@xQ) (ug(t, x),t, x)} = sup Py,
e—0 ¥ =0 ¥
where the supremum is taken on the ¥ € C2*([0,1] x (0,7T') x R) satisfying
(2.5.1). Recalling that we assumed the Lh.s. of this formula to be finite, we

next show that this inequality implies that u € £, and that the r.h.s. is equal

to H(u). By taking 9(v,t,z) = n(v)e(t,z) for some ¢ € C°([0,T] x R; [0,1])

and entropy n such that 0 < o(v)n"(v) < D(v), we get ©,.(¢) < lim_ H. (u).
Optimizing over ¢ it follows that u fulfills condition (i) in Proposition 2.2.3

with ¢ = min, D(v)/o(v) > 0, and thus v € €. By (iii) in Proposition 2.2.3

and monotone convergence we then get

H.(u®) > supy Py, =supy [dvo,(v;dt,dx) 9" (v,t, x)
= [dv o} (v;dt,dx) 2 = H(u)

hms%O

(2.5.2)

g

LEMMA 2.5.1. Let f € C*([0,1]), and assume that there is no interval where
f is affine. Then entropy-measure solutions to (2.1.1) are in C([O, T}, L1,1oc(R))-
Let furthermore

V= ! V; := min f’ 2.5.3
f g[gflc]f(w f Uren[(lﬁ]f(v) (2.5.3)

Then for eachu e &, € R, V > VfJr orV.<V;
lim [dtju(t,z+(+ Vi) —u(t,z+ Vi) =0 (2.5.4)

¢—0

ProOOF. With the same hypotheses of this lemma, in [5, Sect. 4] it is shown
that if a weak solution u to (2.1.1) is such that gy, is a Radon measure,
then, for each L > 0 and ¢ € [0,7), limy, [;_; ,lu(s,z) — u(t, z)|dz = 0.
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Therefore, by item (ii) in Proposition 2.2.3, entropy-measure solutions enjoy
this property. Since the set £ of entropy-measure solutions is invariant under
the symmetry (¢,z) — (—t, —x), the same holds true also for s 1 ¢, and thus
E C C([0,T]; L1 oc(R)).

If u is an entropy-measure solution to the conservation law (2.1.1), then
uVE(t, 2) := u(£t, x & Vt) is an entropy-measure solution to the conservation
law with flux f*, where f*(w) = f(w) F Vw. With no loss of generality, we
can thus prove (2.5.4) only in the case V' = 0 with the assumption V;” > 0.
In this case f is invertible on its range [a,b], and we let g € C?([a,b]) be its
inverse. We define v : R x [0,7] — a,b] by v(z,t) = f(u(t,z)). Then v
satisfies

vz +g(v)y =0 (2.5.5)
Furthermore, if I,m € C?%([a,b]) satisfy m’ = l'¢’, then by chain rule I(v), +
m(v); = @y, where n(w) := [“dzl'(f(z)). Therefore v is an entropy-measure
solution to (2.5.5), and by the first part of this lemma

lim [ ds|v(z+(,s) —v(z,s)| =0
¢—0

The result then follows by recalling u(t, x) = g(v(z,1t)). O

PROOF OF THEOREM 2.2.5 ITEM (II1): [-LIMSUP INEQUALITY. Given an
nice (w.r.t. o) solution @ € S,, let E* be as in Definition 2.2.4. We want to
construct a recovery sequence {u®} C X that converges to u in X as ¢ — 0,
and such that lim, H.(u?) < H(@). We split the proof in four steps. In Step
1 we build a suitable family of rectangles contained in [0,7] x R. In Step 2,
for e, §, L > 1, we introduce two collections {v=%L*} of auxiliary functions on
[0,T] x R. In Step 3, for N € N we define a collection {u®*Mt} C X, and we
prove

lim lim H, (u>*N1) < H (@) (2.5.6)

6—0e—0

In particular {us%"-F} is precompact in X. In Step 4 we show that any limit
point of {us*ME} coincides with @ in &, provided we consider the limit in
g, 0, N, L in a suitable order. More precisely we show

lim lim lim lim u®%™F = ¢ (2.5.7)

L—00 N—o0 §—0e—0
By (2.5.6) and (2.5.7) it follows that there exist subsequences {6}, {L°} C
(0, +00) and {N¢} C N such that u® := u°""L* provides the required recov-
ery sequence for .

Throughout this proof, we assume f’ to be uniformly positive in [0, 1],
namely that V", as defined in (2.5.3), is positive. As noted in the proof of
Lemma 2.5.1, this assumption is not restrictive. Note also that the calculations
carried out below make sense also if Bt =0 or £~ = 0.
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Step 1. For each t such that ({t} x [-L,L]) N ET N E~ =, the compact
sets ({t} x [~L,L]) N E* are disjoint, hence strictly separated. By (ii) in
Definition 2.2.4, there exists a countable collection of pairwise disjoint time
intervals {(s; ,tZL)}ZeN, with (sF,tF) € (0,T) such that 75 := U; (st tF) is dense
n [0, 7], and for each i € N the two sets B = ((s! ,tZL) x [-L,L]) N E*
are strictly separated. By splitting each of these intervals in a finite number
of intervals, with no loss of generality we can assume

1
tf — SZ-L < m dlStaIlCG(EL + E ) (258)
where V;r is defined in (2.5.3), and it coincides with the Lipschitz constant of

[ since we supposed V™ > 0.
For i € N let nF € N be such that
L 1

T < me{l dlstance(EL+ EF I} (2.5.9)

and consider the rectangles RF; := (sF,tF) x (L, 22 L), for j = —nF, —nk+

1,...,nf — 1. By the definition (2.5.9) of n¥ and condition (2.5.8), for each
gl <ni—1

1
diameter(Rf 4 U RL U P%L]H) < §distance(EiL’+, Ef_) (2.5.10)

In particular each R has nonempty intersection with at most one of the sets
E*, E-. We define

L+
Ri — U RiL,j (2.5.11)
j:lil<ny -1,
(Rf;_|UR]; uRZLHI)mE*:@
and for N € N
RN,L,:‘: - Ui\ilR@Ld: RL7:|: = UNRN’L’:t (2512)

Note that by (2.5.8) and (2.5.9)

—1 +1
Rfj C {(r,x) : SZ-L <r <tf, L+Vf r<z < L — Vf } (2.5.13)
’ nk

(2 Z

and by (2.5.10)

n; -1
RURY =) |J RY (2.5.14)

i j=—nF+1
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Step 2. For L > 1 and ¢ € (0,1/2), let %L € X be defined by
a(t,z) if |z] < L and a(t,z) € [0,1 — 0]

J if |x] < L and a(t,z) < 4§

1-¢6 if|z|<Landa(t,z)>1—-0

1/2 if |z| > L

aL(t, x) = (2.5.15)

For ¢ > 0, i € N, we define v7" : (sF t£) x R — R as the solution to the
forward-parabolic Cauchy problem

v+ f(v)e = £(D(v)vy)
@ 2.5.16
{v<s£> — @ (sh) (2510
and v“””L : (sktf) x R — R as the solution to the backward-parabolic

Cauchy problem

v+ f(v), = —%(D(U)Uw)
v 2.5.17
{ (t) = @(th) (2247
We also define v=%5% : 7L x R — R by requiring v*%5%(r, 2) = v2%"%(r, z)

for r € (s, tF). Note that v*L* € C(r;U) and v=*L%(t,z) € [0,1 — 4]
by maximum principle. Furthermore v2%5% € Lyjo.(75 x R), and indeed by

standard parabolic estimates

N
5/ drdzx (v EMi(r,w))QSZS/ drdzx (v E‘SLi(r,yc))QSCN’L
RN.L,*® i—1 [sFtlx[—L,L]
(2.5.18)
for some constant C™* > 0 independent of € and 4.
We claim
lim lim dr dx ‘UE’J’L’i (r,z) —a(r,z)| =0 (2.5.19)

d—=0e—0 RN,L+

We show (2.5.19) for v5%5~. The analogous statement for v=%L* follows by the
fact that the set S, is invariant w.r.t. the symmetry (¢, z) — (—t, —z), while
the supports of g are exchanged under this symmetry. By the well known
results of convergence of the vanishing viscosity approximations to conservation
laws (and as it also follows from the [-liminf inequality in Theorem 2.2.5 item

(i)
lim dr dx |v5’§’L’_(r, z) — it (r — st z)| =0 (2.5.20)
e20 JIsL ¢L]x [~ L,L]

where @ is the Kruzkov solution to (2.1.1) with initial Condition a2 (0,-) =
@ (sk,-). On the other hand, by the definition (2.5.11) of R, if j is such
that Rfj C RP™, then @ is entropic in the rectangle (sF,tF) x (JnLlL, Jni_LlL),
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namely @, a(¢) < 0 for each convex entropy n and each positive test function ¢
compactly supported in (s¥, &) x (Jn;,LlL’ JniLlL) Therefore, by Kruzkov theorem
{16] k2 T

vy
T nl f dil gt L ~
M0 SUPSL <<t L fgm_‘ﬁ x|uz (r— sy x) —a(r, x)‘
i =" =" n.L f T
itlr ’ jtip

< Tmgoo [, daal (0, 2) — a(sh, x)| = Tmsoo [,
nk nk
and thus, fixed N € N, by (2.5.13) the convergence claimed in (2.5.19) holds
on each RiLJ- for each ¢« < N and each j such that Rfj - RZ-L ', and therefore
on RME~ itself.
Next we claim that for each L > 1, N € N and ¢ € C° (RN [0,1])

de|ﬂ5’L(s-L z) —a(sk,z)| =0

7 7

Tim Tim < (D (v Lt )y Lot QDMUMH» < H(a) (2.5.21)
5050 2 T T g(vshlt) - o

Note that the Lh.s. of this formula is well defined, since § < v>%5&+ < 1—§ and
thus o (v>*%*) is uniformly positive. For each ¢ € C(([0,T]xR)\ E~;[0,1])
and 1 € C%([0,1]) such that on” < D we have

H(D) 2 [ dw ostwsdt.de) ' (w)o(t.2) = 0yal) (2.5.22)
By (2.5.17) and (2.5.18) for each n € C*([0,1]), N € N and ¢ € C°(RM5)

lim lim £ (D@E0E 20 o (o205 bbby — () (25.23)
—0e—0

This implies (2.5.21) if ¢ is uniformly positive on [0, 1], since we can evaluate
(2.5.23) on an entropy 1 such that n” = D /o and use the trivial bound (2.5.22).
On the other hand, if ¢(0) = 0, resp. if o(1) = 0, then by condition (iii) in
Definition 2.2.4, we have that a(t,z) > (g, resp. u(t,z) < 1 — (g, for a.e.
(t,x) € (0,T) x (=L, L) and for some (;, > 0. By the definition of %L
and maximum principle, we have also v>%%+ > (;, resp. v®%bt < 1 — (g,
and thus (2.5.19) follows by evaluating (2.5.23) on an entropy 7 such that
n"(w) = D(w)/o(w) for all w > (g, resp. w < 1 — (.

Step 3. In this step, with a little abuse of notation, we denote by f and D
two bounded continuous functions on R, such they their restrictions to [0, 1]
coincide with f and D, and f is uniformly Lipschitz and D uniformly positive.
We also let ¢° € C%([0,1]) be such that ¢°(w) = o(w) for w € [4,1 — 4],
o’(w) < o(w) for w € [0, 1], and ¢°(w) = 0 for w < §/2 or w > 1 — §/2.
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For L > 1 and N € N, let Z¥'F € C°(RM";[0,1]), and define
PNLA = Interior ( {(t,z) € RNE+ + ENE(¢z) =1}

N ' NL—  —NL (2.5.24)
PN-L= = Interior ( { (¢, ) € RVE « ENE(t,2) =0}

For each fixed L > 1, we require the sequence {EM1} to be increasing in N
and such that
Uy PVET = RET (2.5.25)
For 6, L > 1 and N € N define v : [0,T] x R — R as the solution to
the Cauchy problem

u + f(u)e = %(D(u)ux)x —€ [EN’LﬂD(ve"s’L*)v;"s’L’*]

o(veo LT .

u(0,7) = u5£(0, x) z€eR
(2.5.26)
Note that the term in square brackets in (2.5.26) is well-defined since v=%L+ is
well-defined on the support of Z¥*, and since § < v5%5+ <1 —§, o(v5o5T)
is uniformly positive.

It is easily seen that the problem (2.5.26) admits at least a solution u
Loo ([0, T] x R) with us®ME € Ly 10 ([0,7] x R). By (2.5.26) we also gather

Hu?&N,L + f(ua,(i,N,L)x . %(D(ua,é,N,L>ui,5,N,L)

€,0,N,L c

I
z 1Dt

0-6 u
(Ueyé,L#) ()

— €2<<D<Us,6,L,+>U;,6,L,+, (EN,L)2%U;,5,L,+>> < 400

Therefore, replacing o with ¢? in the statement of Proposition 2.3.4, we have
§ < usONE <1 —§ and usONt € X, Since (EVE)? € C®(RNEF;(0,1]), by
the same estimate and (2.5.21)

T T, . (usV1)

—_— — 8 (y,:8,N,L 8, L+
— Timy lim, %<<D(UE,J,L,+)U§,5,L,+’ (:N,L)2 Z((qﬁ&N»L)) i)((::ﬁl#)) U;,&,L,+>>

< Ty T, 5 ((D(ue 0t sl (EN0)2 DR 2oty < H ()

so that (2.5.6) holds.

Step 4. Since {H.} is equicoercive on X and (2.5.6) holds, there exist &y, g9 =
£0(dp) small enough and a compact set Ky C X such that usONL ¢ IC, for each
£<¢gg,0<dy, NeNand L > 1. In this step we show that any limit point u
of {us*N-L} coincide with @, provided the limits in &, §, N and L are taken in
a suitable order, see (2.5.7). This will conclude the proof.

Let 250Nt 7L x R — [—1,1], 290Nt 1= 20N L —g2dlE ) By (2.3.6),
(2.5.6) and (2.5.18), for each N € N

£ / dt do (20N15)2 < ONL (2.5.27)
RN,L,:t
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for some constant C¥'L > ( independent of ¢ and 4.

Since we will first perform the limit ¢ — 0, we now fix §, N, L as above, and
we drop for a few lines these indexes, thus writing u® = u®%VL poF = ¢o0Lt,
2oF = p20NLE = = ENL Recalling the definition (2.5.24), by (2.5.26) and
(2.5.16), we have weakly on PN-1—

7+ (fw) = f(077)), =
Let now [ € C*([—1,1]) and ¢ € C°(PNL7). It follows

((f (W) = f(0=7), (257 )pa))
) I"(z7) 227 9))

[
N
N
- =
—

2 %
Y S
~ |
| -
Kﬁﬁ
—~

= —5((D() =, 1"(5) 7)) — §DW) (= )ga))
— S((|D(wf) = D(v=7) |v5~, 1"(257) 257 )
— 5(([D() = D7) |7, 1'(257 ) @a))

(2.5.28)
In the same fashion, by (2.5.17), weakly on PM.L+

A0 () = ), = 5(D@)z), +5([D) = D )]i),
(Voo ) — Vol (u) ),

Since v=* takes values in [6, 1 — 6], we have o°(v5F) = o(v®*) and thus, in the
same fashion as above, for each | € C*([—1,1]) and ¢ € C*(PN-LT)

—(U(z=7) o)) = ((f(w°) = F(057), V(25T )pa)) — ({f (uF) — f(0=7), 1"(z57) 25T ))
= =5 (D)2 ", 1"(z57) 25T )) — 5D ()25, 1'(257)epa))
— ([ D(uwf) = D7) |z ™, 1" (25T) 257 )
= 5({[D() = D) vz, U= )gu)
— 5(([\/05(v5’+) _ \/0-6(us)] Di?v;,j)vi’Jra Ol (25)25H))
— (Vo) — Vo W] S (=5 )e,)

(2.5.29)
For [ convex and ¢ nonnegative, the first term in the second lines of (2.5.28)
and (2.5.29) is nonpositive. With these assumptions on [ and ¢ we thus define

B = Bz’i’N’L’i = [((D(uf)257%, 1" (25%) 2% )] 1/2, and let for F' € C([0,1])

Cy i=max{l"(z)|[F(v+z)—F)]* : ve[5,1-4], z € [-1,1], v+ 2z € [0, 1]}
(2.5.30)
Since voE, 25% € Lajoe (PN ’L’i), by Cauchy-Schwarz inequality and the fact

that D is uniformly positive, we have for each nonnegative ¢* € C (PN ’L’i),
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and for some constant C' = Ca’j’N L independent of [
’<<f(u5) o f( ei) l"( ei)z; |+} [D(uesz)_ D(Ug’i)}vi’i,l”(za’i)z;’igoi»‘
+He(([Vot (vs) = oo (u) ]ﬁvi’+a¢+l"(25’+)zi’+>>|
< C /O3 +4/Ch + C%J 1B

We also let C; := max.c—117|/'(2)| and note that, in view of (2.5.18) and
(2.5.27), for any nonnegative ¢* € C°(PN**) and for some constant C' =

C’Z’iv - independent of € and [

SUD0), (= )pi] + [5K(D0) - Dlw
V7T ol e SRE

() o)

Patching all together, for each nonnegative p* € C2°(PN-5*) we gather

—{({U==5), 0)) — ((f(u) = f(05%),U(="F)e7))
< 5B} +C[/CO +4/Ch, +, /C%,Z}Bl + CCp\/e
< 2CPCh, + O+ Cém,z] +CC/2
(2.5.31)
It is then easily seen that we can take a sequence of convex smooth functions
{l,} € C*([—1,1]) such that |I/,(2)] < 1, l,(2) = |z|, 2l/,(2) — |z| uniformly
n [—1,1], and such that, by the Holder continuity hypotheses on D and o
lim (C’fl —I—C'%l +C\ﬁl )=0

n—oo

Evaluating (2.5.31) for | = [,,, taking the limit n — oo, and recalling that
we assumed f’ to be positive on [0, 1], we gather for each nonnegative p* €

Cé)o (PN,L,:E)

—({Ju® = v"F], i) = (S (@) = fo™ )] 02)) < C'VE (2.5.32)

We now reintroduce the dropped indexes 0, N, L, and recall that for § < 4y,
e < (dg), N € Nand L > 1 we have u=*"L € K, for some compact
Ko € X. Let u™MF € Ky be a generic limit point of {u®*MF} in X as e — 0
and successively § — 0. By (2.5.19) and (2.5.32), for each nonnegative ¢ €
Cgo (PN,L,f U PN,L,+)

(™ —al, @) = (| F@™F) = f(@)],¢.)) <0 (2.5.33)

Since u™Nt € Ky, there exist u € X and a subsequence {N,} C N such that
uNel — uf in X as k — +o0o. By (2.5.25) and (2.5.33), it follows that for
each nonnegative ¢ € C° (RL” U RL’+)

—{{Ju" —al, ) — (| f(w") = f(@)],

) <0 (2.5.34)
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Since 7 is dense in [0,7], by (2.5.14) and (2.5.9) we have that, for L > 1,
REFURE™ is dense in [0,T] x [ — L+ 2, L — -]. Note also that & € S, C 5
by hypotheses. Furthermore, since u” is a limit point of a sequence with
uniformly bounded H.-cost, we also have u” € £ by item (ii) in Theorem 2.2.5,
namely @ and u” are entropy-measure solutions to (2.1.1). By Lemma 2.5.1,
@, u* € C([0,T]; L110c(R)). By the same Lemma 2.5.1 and the assumption
V; > 0 we have that the maps = — 4(t,z) and = +— u*(t,z) are continuous
from R to Ly ([0,77]). Therefore, since the boundaries of R*" and R~ \ RM"
are countable unions of segments parallel to the x and ¢ axes, we have that

(2.5.34) holds for each nonnegative ¢ € C°((0,7) x (=L + 1=, L — 1-)).

Recalling {ul} C Ko, let u be a limit point of {ul} along a subsequence
Ly, — co. From (2.5.34) we get for each nonnegative ¢ € C((0,T) x R)

—({Ju = al, ) = (| () = F(@)],2)) <0 (2.5.35)

Reasoning as above, we also have u € &, and thus setting z := u — u, by
Lemma 2.5.1, u, 4, z € C([O,T]; Ll,loc(R))- By (2.5.35), it is then easily seen
that for each bounded nonnegative Lipschitz function ¢ on [0, 7] x R such that
[dtdz[|¢] + |¢i| + |¢a]] < +oo, and for each ¢ € [0, T

(lz(®)], () = {[2(0 )I (0)) = Jio ydr [ Z|( ) r(r )>
|f [(T)) R )] <0 (2.5.36)

Fixed L > 1, we evaluate the inequality (2.5. 36) for o(t, z) = pl(x) defined as

e~ =) ifr < —L
eh(r) =<1 if —L<z<L
e~@=L) if x> L

so that setting ZL(t) := (|z(t)|, p’) we have

240 - 240 <V [ dr (el et < vy [ drzt)
[0,¢] [0,¢]
By Gronwall inequality, for each L gel and t € [0, T], Z*(r) < exp[V;" t]Z2%(0).
Note that u(0,z) = @(0,x) by (2.5.15) and the definition of convergence in X'
Therefore ZL(0) = 0, and thus ZL(t) = 0 for each ¢t € [0, 7] and L > 1. Hence
U = 1u. U

PRrROOF OF PROPOSITION 2.2.6. In order to show that H is lower semi-
continuous, first note that the set of weak solutions is closed in X'. Moreover
for each entropy sampler ¥ the map X > v — Py, € R is continuous. On
the other hand, if u is a weak solution to (2.1.1) then the equalities in (2.5.2)
holds, and thus H is a supremum of continuous maps.
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Since D(:)/o(+) is uniformly positive on [0,1], H(u) = 0 iff v € £ and
of =0, thus u is entropic. Conversely, entropic solutions u are in £ by item
(i) in Proposition 2.2.3, and the entropic condition is thus equivalent to g} =

The coercivity of H follows from the Tartar’s method of compensated
compactness, that we already applied in the proof of Theorem 2.2.5 item
(ii). Suppose indeed that we are given a sequence {u"} C X such that
H(u") < Cy < 400 for each n. Then each u™ is an entropy-measure solu-
tion to (2.1.1) by the definition of H. For each entropy 7, each n, L > 0, by
the same bound in the proof of Proposition 2.2.3, |[@y.un|ltv,e < 2/|@) un llTv,c+
2 (Inllso + lgllec) (2L +T). On the other hand, for each n € C?%(]0,1]) such that
on" < D, |) unllrv,e < H(u™) and therefore ||y n [y, 1, is bounded uniformly
in n. Since 1 and ¢ are bounded, we have that {n(u");+q(u"),} is precompact
in H_!([0,T] x R). As we already noted in the proof of Theorem 2.2.5 item
(i), see [16, Ch. 9], this yields the compactness of {u"} in X.

The last statement follows by the first part of proposition, Lemma 2.5.1
and Kruzkov uniqueness in C'([0,77; L1 10c(IR)) of entropic solutions to (2.1.1),
see e.g. [6, 16]. O

Proor oF REMARK 2.2.7. By well known properties of functions of lo-
cally bounded variation, for each entropy  and u € X N BVj,([0,T] x R) we
have that p,, is a Radon measure on (0,7") x R. If u is a weak solution to
(2.1.1), by Vol'pert chain rule [2], the absolutely continuous and Cantor parts
of g, w.r.t. the Lebesgue measure on (0,7") x R vanish, and we get

A = { [10*) = n(w)]n' + [g@w*) = q(u)]n* }ar'LJ,

On the other hand the Rankine-Hugoniot condition [u™ — u™|n + [f(u™) —

f(u™)]n" = 0 holds. The statement of the remark follows by direct calculation.
O

PrRoOOF oF REMARK 2.2.11. For v € £ we have
H'(u) = sup { pyu(), ¢ € C((0,T)xR; [0,1]), n € C*([0,1]) : 0 < o < D}

so that the inequality H > H' follows from the equalities in (2.5.2). The same
inequality yields H(u) = H'(u) if there exists a set E1 as in the statement of
the remark. If f is convex or concave and u has locally bounded variation, we
can take BT = {(t,z) € J, : v €[0,1] : p(v,u™,u”) > 0}, where J,, u* and
p are defined as in Remark 2.2.7.

If f is neither convex nor concave, then there exist u~, ut, v/, v" € (0, 1)
such that p(v/,u™,u™) > 0 and p(v”,u™,u”) < 0, where p is defined as in
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Remark 2.2.7. Let V := £&0=/0) and define u : [0,7] x R — [0, 1] by

ut—u

{qu forz < V't

u(t,z) =<

u- forxz >Vt

Then u € £ and by direct computation H(u) > H'(u). O

2.6. Appendix A: Z-approximation of atomic Young measures

Here we prove the claims stated in the proof of Theorem 2.4.1, Step 1,
where the sets M}, ML /W:l are defined.

Claim 1: M? is I-dense in M. Forn > 1, let u € M, let G* be defined as
in Lemma 2.4.2. Let also 7, o/, u’ be as in the definition of M} and L, ji. be
as in the definition (2.4.1) of M,. With no loss of generality, we can assume
that u'™ > u' i =1,...,n — 1, since we can reorder the u'(¢,x) for all (¢, z)
preserving continuity of the u’ and measurability of the a’. Analogously it is
not restrictive to assume, for |z| > L, u'(t,z) = u’_, a'(t,r) = o’ for some
constants u’ € (0, 1] in particular pieo = Y, & (5%0 :

Let now { jk} C C(R x R) be a sequence of smooth mollifiers supported
by [T /k,T/k] x [ — 1,1], and recall the definition (2.4.8) of b*. For i =
1,...,nand h,k > 1 define o € C'([0,T] x R; [, 1]), and u™* € C ([0, T] x
R;[h~1 1 — h_l]) by

't ) = [dyds)*(t — s,x — y)a i(bk(s,y))
AL, ) = ﬁ}
—i—iz,‘z’};z [dyds ¥t — s,z —y) o' (b"(s,y)) u' (b*(s,y))
(2.6.1)

Clearly o¥ and u%"* are smooth, with ¥ > r, > a* =1, and o¥*, u* are
constant for || > L+1. Furthermore fori =1,...,n—1and (t,z) € [0,T] xR

limy oo [ut 05 (1, ) — a1, 2) — 7]

n2

3 i+1;h,k ish,k 1
2 llmkg)oo UH_ (t,.’ll') —ut (t,l‘) - m}

_ [1 _ 3h—1] [uiJrl;h,k(t’ x) _ uz’;h,k(t7 1‘)]
Since the u' are continuous, it is not difficult to see that convergence in the
last line above is uniform on compact subsets of [0, 7] x R. On the other hand,
since the u’ and u%"* are constant for |z| > L + 1, we have that convergence
is indeed uniform on [0,7] x R. It follows that for each h > 1 there exists
K" > 1 such that w'tHmE > 5Pk 4 B=In=2 for each k > K". Therefore,
defining p"* € M by

Mm- Za (t, )0 uzhk(tm)
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we get, for k > K", p* € /W’f provided Z(pu"*) < 4+00. Recalling Lemma 2.4.2,
this follows by the existence of G*"" € Ly([0,T] x R) satisfying weakly on
(0,T) x R:

pE @ (e = =G

Indeed G*™" can be computed explicitly as

G“h’k(t, x) = (1 - 3h*1) [ds dy J*(t — s, 2 — y)G* (bk(s, y))
+(1—=3h7") [dsdy s (x — y,t — ) pr(sy) (f)
—p"F(f) = (1= 3R oo (f) + 1 (f)

where
) =Yl f(h‘l Lokt (1—3h~")u )
: =) « —_— - u
l’[’OO - oo n + Zi/ Z/a’é/o e}
It immediately follows that limj_,o limy_ .o HG”M — G"|| Lo(jo,r1xm) = 0, and it
is also straightforward to see that, for each F' € C([0,1])
lim lim p™*(F) = p(F) strongly in Ly 10.([0, 7] x R)
h—o00 k—00
By Remark 2.4.3, we can extract a subsequence {u*} from {u™*} that Z-
converges to .

Claim 2: M, is T-dense in M?. For n > 1, let u € M%. Let also o, u’ and
L be as in the definition of M} and M,. With no loss of generality, we can
assume that o’ > 0, since we do not require the u* to be distinct. As in Claim
1 above, we can also assume that, for |z| > L, u'(t,z) = u',, o'(t,z) = o’ for
some constants u’_, o’ € [0, 1].

With these assumptions, for h, k > 1and i = 1,...,n, let us define a’* as
in (2.6.1), and u®* by

wi(t,x) = ke [dyds 1 (t—s,x = y)a’ ((s, ) ui (V(s,))

Letting
n
/Lf’x = Z Ozi;k(t, I)(Sui;k(tw)
i=1

we gather p* € ./\_/l? A computation similar to the one carried out in Claim 1
shows that u* Z-converges to u as k — oo.

Claim 3: MY 1s I-dense in M?“. This is the key step in the proof of Theo-
rem 2.4.1. For n > 1, let p € M7 and let G* be defined as in Lemma 2.4.2.

Let also r, o', u’ be as in the definition of /W’f“, and L, jis as in the definition
(2.4.1) of M,. Note that for |z| > L, o'(t,z) = o’ and u'(t, z) = u’, for some
constants o’ € [r,1 —r], u', € [r,1 — 7], with w/}' >u’ +7r,i=1,...,n.
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Let us define the Young measures v, 1% € M7 by

n

1. 0 . O{i(t,l‘)
Vt,x = 5u”+1(t,m) Vt,x = Z T‘Fl(tx)éul(t’z)

i=1

so that, letting 8(¢,z) := "™ (t,z) <1 —7r
pee = B2, x)utlx + (1 - 5(25,3:))1/29&
The basic idea is to build up a sequence {u*} Z-converging to u, as follows:
we first slice up [0,7] x R in small strips, alternating a strip of width Sk~!
with a strip of width (1 — 8)k™'; we then set uf, = v}, for (t,z) in the first
family of strips, and ,uf’x = 1/23: for (¢, x) in the second family of strips. As we
let k — oo, we easily get uF — u; however, to get also Z(u*) — Z(p), we will
have to carefully define these strips.
For j € Z and k € N, let us consider the maps v/ : [0, 7] — R solutions to
5 = o)
O N0 (2.6.2)

¥(0) =%
These equations are well-posed since v*(f), v°(f), v*(2), v°(2) are Lipschitz
functions in the (¢, z) variables, and v'(2)—1°(2) > r, by the definition of M7*+!.
Furthermore, by standard theory for (2.6.2), 7§ € C°([0,T]) N C*((0,T));
15| < 2r ' maxyeoq) [f(0)|; 75 > ) and 4, (8) — 45 () < Ok~ for some
constant C' independent of k, 7 and ¢.
We next define the maps 8} : [0,7] — R by

VE()+85 (1) Vi1 (®)
/ dx [Utlm(z) - ng(z)} = / dx 5(t, ) [l/tlx(z) - Vgx(z)} (2.6.3)
v v

F(t) F(t)
Since v/, (2) — 1, (2) > r > 0, for any fixed ¢ € [0, 7] the Lh.s. of this equation
is increasing in ﬁ]’?(t). Since it vanishes for ﬁ]’?(t) = 0 and it is larger than
the r.h.s. for B¥(t) = ~vF, (t) — 45 (t) (recall (t,x) € [r,1 — r]), there exists
a unique 0 < S¥(t) < A%, (t) — 7¥(t) satisfying (2.6.3). Furthermore, since (3
and the v} are smooth, we have g¥ € C°([0,7]) N C*((0,T)). The mean value
theorem then implies

'Y;?Jrl(t) 9

lﬁf(t) - /k() dx ﬁ(t,x)} < Chia) =) <k (2.6.4)
Y t

for suitable constants C, C’. For h and k two positive integers, we next define

the Young measure u"* € M by

. {yggc it 3j € Z, |j| < hk such that 7% () + B5(t) < & < +¥,, (1)

v}, otherwise
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Since v}, is constant for |z| sufficiently large, we have p"* € M, for h
large enough. Furthermore, since convergence in M is local, (2.6.4) yields
limy, o0 limg oo u™* = p in M, and for each F € C([0,1])

lim lim p"*(F) = p(F) strongly in Ly 10.([0, 7] x R)

h—00 k—o0
We next prove that Z(u"*) < 400 and limy, lim;, G*"" = G in Ly([0,T] x R);
so that, reasoning as in the proof of Claim I, by Remark 2.4.3 we get the
existence of a subsequence {u*} Z-converging to p. For each F' € C([0,1]),
(t,z) — ,uZ *(F) is smooth outside the graph of the curves . Therefore
by Lemma 2.4.4 there exists G"* € Lyj.([0,T] x R), such that u™*(2), +
'k (f), = —G"* holds weakly. First we show that we can choose G"* to be
compactly supported, so that G € Ly([0,T] x R), and thus Z(u™*) < +oo
with G"* = G*"" according to the definition given in Lemma 2.4.2.

Since G"* is defined up to a measurable function of ¢, and G™*(t,z) = 0
for x < v*,,(t) (we are considering h large enough as above), we can assume
GhE(t,2) = GH(t,z) = 0 for x < 4%, (t). Furthermore, by (2.4.7) and (2.6.2),
for each j € Z, G™" is continuous in the regions {(t,z) : ¥(t) + 5(t) <z <
Yra(t) + BF (1)} Let now j € Z with |j] < hk, and t € [0,T]; by (2.4.7) and
(2.6.2)

G ) + BEOL) = G EAED)] = Lo (D) — Vo)

SOEEAD
+f%kj(t) P v, ()],

and
- [Gh’k (ta F}/]k—&-l(t)) - Gh’k (t7 [P)/]k(t> + ﬁ]k(t)]_)} = ngy;?Jrl(t)(f) - Vl?,’yf(t)Jrﬁjk(t) (f)
V() 0 0 1
+ fwj’-“]a;—&-ﬂ;?(t)dx [Vt,x(@ﬂt +[v t,w;-“(t)wf(t)(f )V t,v;-“(t)w;“(t)(f )
0

1 Lk Ok
~ W81 ~ Vereare W] 1150 + 5 (0)]

By (2.6.3) and simple algebraic manipulations

Gk (tv ’VJI‘CH (t)) — Gh* (t, 'le‘g (t)) = - [/Lt,'yjl?+1(t)(f) - Mt,'y;?(t)(f)]
= [ e [ )], = G (t k(1) — G (L5 )

Since GM*(t, 4%, (t)) = G*(t,v*,,.(t)) = 0, we have GM* (¢, fyjk(t)) = GH(t, ’y]’“(t))
for any j € Z. In particular, since G*(t,v¥,(t)) = 0 and G (¢, z) = GH(t,x) =
0 for x > ¥, (t), we have G"*(t,z) = G*(t,z) = 0 for x > () and = <
vk, (t). That is, G"* and G* are compactly supported. Thus Z(u"*) < +oo
and GPF = GH"".
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Finally, by the definition of G* and G*"" | recalling GM*(t, Vi) = G (t,~5 (1))
we have

k
162" = G 3, oy = oot Skl (G (4,2) = Go(t,0))

= OT]dt{ LAV oyl ) = oW+ 1, () = meal(F))]

Fra(t) x 2
e [ S5 oy 02,00 = g Ol + 0, (5) = sy (£ }
Since all the integrands in the are last two lines of this formula are bounded
uniformly in » and &, each term of the sum is bounded by C k=2 for some
constant C' > 0. Therefore the sum itself is bounded by 2 C h k=2, and we get

limy, o0 limy oo Z(pF) = Z(1).

2.7. Appendix B: I'-viscosity cost for scalar Hamilton-Jacobi
equations

In this appendix we establish a I'-convergence result for a sequence of
functionals associated with the Hamilton-Jacobi equation (2.1.1)

by + f(by) =0 (2.7.1)

which is related to (2.1.1) via the transformation v = b,. In (2.7.1) we un-
derstand (¢,x) € [0,7] x R and b(t,z) € R. As usual, we assume f to be a
Lipschitz function on [0, 1], D and o continuous functions on [0, 1], with D
uniformly positive and o strictly positive on (0, 1). We will just sketch most of
the proofs, since they are similar to the proofs of the corresponding statements
for (2.1.1).

We introduce the equivalence ~ on C/([0,T]; Lajoc(R) by setting b' ~ b
iff o' — b* is constant in [0,7] x R. We let B be the set of functions b €
C([0,T); Lajoc(R)/ ~ such that b, € U. The requirement b, € U is clearly
compatible with ~, so that B is well defined. We equip B with the metric

132y . L p2) L — b2(t. -
dg(b',b%) := dy (b, b;) +(1:2f t:{l(l)pT Z —|b" (¢ b(t, >+CHL2([—N,N])

(2.7.2)
Note that the second term in the r.h.s. of (2.7.2) is the projection of the
C([0,T]; Lajoc(R))-distance w.r.t. the ~ equivalence. (B,dp) is a complete
separable metric space.
For b € B such that b, € Lojoc([0,7] X R) and € > 0 we next define the
linear functional a2 on C2°((0,7") x R) by
3

al(p) = —{{b,e)) + ({f(be), 0)) — 5 (D (bs)baa, ) (2.7.3)



72 2. I-ENTROPY COST FUNCTIONAL FOR SCALAR CONSERVATION LAWS

and the functional J. : B +— [0, +o00] by
1 .
sup al(p) = 5((0(0)e)9))]  if b € Losoel[0,T] X R)
J€<b> = @GC?((O,T)XR)

+00 otherwise

(2.7.4)
We want to study the I'-convergence of {J.}. As shown below, this problem
is strictly related to the I'-convergence of {I.} defined in (2.2.6).
We introduce the set A := {(b, ) € B x M : b, = p(2)} which we equip
with the metric

da((b', u'), (0%, 1%)) = dp(b', %) + dp(p', %) (2.7.5)

We say that (b, 1) € A is a measure-valued solution to (2.7.1) iff b, + u(f) =0
weakly in (0,7) x R. We lift J. to a functional J. : A — [0, +0o0] by setting

(b, ) = {Jg(b) e = ) (2.7.6)

400 otherwise

THEOREM 2.7.1. The sequence {J.} is equicoercive on A and I'-converges
to

T(om) = s Lt o)+ ) o) — 5 e o} 277)

PeCe((0,T)xR)

Note that J ((b, 1)) = 0 iff (b, ) is a measure-valued solution to (2.7.1).
On the set B we next introduce the metric dy

dy(b*,0%) := dx(bL,b2) + inf sup Z NHbl —bQ(t)JrcHLz([_MN}) (2.7.8)

c€R efo,1] i

and denote by (), dy) the complete separable metric space consisting of the
same set B equipped with the distance dy. We say that b € ) is a weak solution
0 (2.7.1) iff —((b, p1)) + ((f(bs),)) = 0 for each ¢ € C((0,T) x R). We
denote by W C ) the set of weak solutions to (2.7.1). We rescale the functional
J. defining K. : Y — [0, 00| as

K.:=¢1J.

THEOREM 2.7.2. (i) The sequence of functionals {K.} satisfies the
I'-liminf inequality

(T tim, ) () > {H(bz) ifbew

+00 otherwise

(ii) Assume there is no interval where f is affine. Then the sequence { K.}
18 equicoercive on Y.
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(iii) Suppose furthermore f € C*([0,1]) and D,o € C*([0,1]) for some
a>1/2. Then

H(b,) ifbeWw

+00 otherwise

(T lim. K2) (b) < {

Since b(0, -) is bounded and Lipschitz, by a well known connection between
entropic solutions to (2.1.1) and viscosity solutions to (2.7.1), see e.g. [11,
Theorem 1.1], we gather (I'lim_ K.)(b) = 0 iff b is a viscosity solutions to
(2.7.1). It follows that if b° satisfies the equation

bt f(b2) = SD(b2)bes — o(br) EF (2.7.9)

for some E° € Ly ([0, T)xR, o(b,)dt dz) such that lim. €||E€||2

2 (107T1xR,0 (b )dt dz )
0, then limit points of {b°} are viscosity solutions to (2.7.1). On the other

hand if b° solves (2.7.9) for some E° with 5||EE||2 uniformly
2 ([0,7)xR o (b dt de)

bounded, then limit points b of {b°} are such that b, € £.

In order to prove Theorem 2.7.1 and Theorem 2.7.2 we first establish some
preliminary results. Given a measurable map a : [0,7] x R — [0, +o00], we
let £, be the Hilbert space obtained by identifying and completing the set
{o € Cx((0,T) xR) : ({ap,¢)) < 00} w.r.t. the seminorm ({ayp, ©)).

LEMMA 2.7.3. Let € > 0 and b € B be such that J.(b) < +oco. Then there
exists B € Lsw,) such that

b+ f(by) = gD(bx) bey — o(by) E= (2.7.10)
holds weakly on (0, T) xR and J.(b) = ;HE”H%W - Furthermore I.(by) < 400

and there exists v € Lop,)-1 such that v = 0 and o(by) E=* = o(b,)¥=b* +

& where W s s deﬁned as i Lemma 2.3.1. In particular

I L. 1 S e
Je(b) = 5 II¥ ’b““%;(bz) +5lv Nz, = L(bs) + 5 {{o(b2) 150 (2.7.11)

PROOF. The existence of E=?, (2.7.10) and the equality J.(b) = 5[ E=||%

are achieved as in Lemma 2.3.1. We also have
JE(b) SUPyeCo0((0,T)xR) {a %1<<0(b ) >>}
Sup¢>€C°°(( T)xR) {ab(¢$) - 1§< U( x)¢x7 ¢x>>}

SUP pe20((0,T)xR) {Eb — 3({o(bs) Pu, ¢x>>} = I.(b,)
By (2.3.1) and (2.7.10) there exists \Ifa’b”“ € D}T(bx) such that (o(b,)E*’) =
(a(bx)\lljbz)x, namely o(b,)E* = o(b,) VP + ~*°(¢) for some measurable
map % : [0,T] — [ — 00, +00]. Tt is then easy to check (2.7.11). O

o(bz)

vl
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The following lemma is proved analogously.

LEMMA 2.7.4. Let (b,n) € A be such that J((b,p)) < +oco. Then there
exists EOH ¢ L, ) such that

b+ u(f) = —p(o) B
and J((b,p)) = %HE(b’“)H%#(J). Furthermore I(1) < +oo and there ezists
SO L)1 such that %(Cb’“) =0 and
1 1 1 _
T((b.0) = 1013+ 51U, = T + ()0, 40
(2.7.12)
where W is defined as in Lemma 2.4.2.

LEMMA 2.7.5. The sequence of functional {J.} is equicoercive on (B,dg).

ProoF. Let {b°} C B be such that J.(b°) < C; for some C; < +o0.
By (2.7.11) I.(b5) < Cy, and thus {b5} is precompact in U by Lemma 2.3.3.
We are left with the proof of the compactness of {6°} w.r.t. the second term
on the r.h.s. of (2.7.2). By (2.7.11) and (2.3.6) we have that for any N >
0, &2 f[O’T}X[fN,N]dtdx (b:,)> < C(Cy;+eN + 1) for some constant C' > 0
depending only on f and D. It then follows by (2.7.10) that for each N > 0,
167 || Lo (0,77 x [~ ,n] is bounded uniformly in e. Since b, € U for each b € B,
we also have 0 < b, < 1. Recalling that elements in b are defined up to

a constant, the conclusion follows by these bounds on b7, b and compact
Sobolev embedding. O

The following remark follows by Proposition 2.3.3 and Lemma 2.7.3 and
the definition (2.7.2) of dp.

REMARK 2.7.6. For each € > 0, J¢ is lower semicontinuous on (B, dg).

LEMMA 2.7.7. For each u € U such that I.(u) < +oo there exists b°" € B
such that b5" = u and J.(b°") = I.(u). Furthermore if b € B is such that
by = u and J.(b) < +o0, then by = b + =", where v** € L)1 is defined
as i Lemma 2.7.3. Conversely, given v € Ly with v, = 0, there exists a
unique b € B such that b, = u and by = b + .

PROOF. From the definitions (2.2.6) and (2.7.4), it is not difficult to gather
I.(u) = bemef J:(b)

0=

Since J; is coercive and lower semicontinuous on B, and {b € B : b, = u} is a
closed subset of B, there exists a b* on which the infimum is attained.

If b is such that b, = u and J.(b) < 400, then by the decomposition of £
in Lemma 2.7.3 we have (b — b*); = o(u)(E** — E=?") = 4*?. The converse
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statement follows by choosing b(t,z) = b“(t,z) + [ "ds7(s), which identifies a
unique b € B. O

PROOF OF THEOREM 2.7.1. Equicoercivity follows by (2.7.11), the equico-
ercivity statement in Theorem 2.2.1 and Lemma 2.3.3.

In order to prove the I'-liminf inequality, let {(b%, %)} C A converge to
some (b,u) € A. Tt is not restrictive to assume J.(b°) < +oo, and thus
by € Lajoc([0,T] x R) and pf = 8. Then for each ¢ € C°((0,7T) x R)

€

To((0, 1)) = J.6°) =~ o) HUF (), 20)— (D), )5 (o, (82

As in the proof of the I'-liminf inequality in Theorem 2.2.1, an integration by
parts shows that the third term in the l.h.s. vanishes as ¢ — 0. Hence

1

hTmJa((bE,uE)) > (b)) + {((f): 0)) = 5{l0)e, @)

and the I'-liminf inequality is achieved by optimizing over .

Let (b,u) € A be such that J((b,p)) < +o00. By Lemma 2.7.4 Z(p) <
+o00 and by the I'-limsup inequality in Theorem 2.2.1 there exists a sequence
{uf} C U such that 6, — g in M and lim I (u¥) = limZ.(6,-) < Z(n). By
Corollary 2.7.7 there exists b>*" € B such that b5*" = u® and J.(b5%) = I.(u®).
Letting 7" be defined as in Lemma 2.7.4, it is also easily seen that there exists
a sequence 7° € L,()-1 such that 75 = 0, v° = 7 weakly in L,([0,77),
and [|7¢]| ¢ — [y Recalling Corollary 2.7.7, we define the

o(us)=1 (o)=L

sequence b° by the requirements b5, = u® and b; = bi’us + 7%. We have

me ~7€(b67 5b;)) = me JE(ba’UE) + %<<U(u£)7a776>>

< I(p) + 5{{u(o)y ) O = T ((b, 1)

On the other hand 6,: — p in M, and it is not difficult to check b — b,
weakly. Therefore any limit point in A of {(b%, )} coincides with (b, ). O

PROOF OF THEOREM 2.7.2. If b € Y is such that (b,d,) is a measure-
valued solution to (2.7.1), then b € W. By the I'-liminf inequality in The-
orem 2.7.1 we thus obtain (I*lim_K.)(b) = 400 if b ¢ W. The I'-liminf
inequality on W follows immediately by (i) in Theorem 2.2.5 and (2.7.11).

Equicoercivity is a consequence of (ii) in Theorem 2.2.5 and Lemma 2.7.5.

In order to prove the I'-limsup inequality, let b € W be such that H(b,) <
+oo. By (iii) in Theorem 2.2.5 there exists a sequence {u°} C X converging
to u := b, in X and such that lim H.(u®) < H(u). Let b° := b*"; by Corol-
lary 2.7.7 lim K (b°*") < K(b). Furthermore, by (i) and (ii) proved above,
{b°} is precompact in Y and its limit points are in W. Let b e W be a limit
point of {b°}. Then b, = by, since b = u® — u = b, in X; on the other hand
b+ f(by) =0= b+ f(l;:ﬁ), so that we also gather b, = by. Tt follows b = b. [
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CHAPTER 3

Large Deviations for stochastic conservation laws

In this chapter we are concerned with the asymptotic behaviour of the
solution u® to(1.1.3) as ¢ — 0. The analysis is restricted to the 1+1 dimensional
case. Here we work in the same setting of Chapter 1, namely the space variable
x lives on a torus and the initial data is fixed. Moreover, for technical reasons,
we equip the set U (see (2.2.6)) with a sligtly weaker topology than the one
used in 2. However, the results given in Chapter 2 can be transported to
this case with minor modifications. These modifications require some “extra”
technical hypotheses only for Theorem 3.1.3, as explained in its proof.

3.1. Main results

3.1.1. Basic hypotheses. We let T denote one-dimensional torus, (-, -)
denote the inner product in Ly(T), for T > 0 ((-,-)) stands for the inner
product in Ly([0,7] x T), and for E a closed set, C*°(E) denotes the collec-
tion of infinitely differentiable functions on FE, that are continuous up to the
boundary. Throughout this paper 9, denotes derivative w.r.t. the time vari-
able t, V and V- derivatives w.r.t. the space variable x, 9, derivative w.r.t.
the state variable u. For a function 9 explicitly depending on the x vari-
able, 0, denotes the partial derivative w.r.t. such a variable. Namely, given
the smooth functions v : T — [0,1] and ¥ : [0,1] x T — R, we understand
(Vi(u(x), ) = (0u9)(u(z), 2)Vu(x) + (0:0)(u(z), ).

In the following, when a martingale M : [0,7] x X — C([0,77]) is given,
we write equivalently M, = M(t,v), depending on which aspect of the process
we want to emphasize. For T > 0, B a real Banach space and {M,;}cjo,r)
B-valued martingale, for each ¢ € B* we denote by {(M;, ¢) }ico,r) the real-
valued martingale obtained by the dual action of M; on B. In the following
martingale will always stand for continuous martingale.

In this chapter, the following hypotheses will be always assumed

H1) f:]0,1] — R is a Lipschitz function.

H2) D :[0,1] — R is a uniformly positive Lipschitz function.

H3) a € C*(]0,1]) is such that a(0) = a(1) = 0, and a(v) # 0 for v € (0, 1).

H4) {;}.>0 C H(T) and [dx 5°(z) = 1 is a sequence of positive mollifiers

weakly converging to the Dirac mass centered at 0.

H5) ug: T — [0,1] is a Borel measurable function.

79



80 3. LARGE DEVIATIONS FOR STOCHASTIC CONSERVATION LAWS

3.1.2. Stochastic scalar conservation laws. We refer to [12] for a gen-
eral theory of stochastic equations in infinite dimensions. Let us fix a standard
filtered probability space (Q, S, {8 ho<i<r, ]P), on which an Ly(T)—valued cylin-
drical Brownian motion W is defined. Namely, W is a continuous, Gaussian,
Lo(T)—valued martingales {W;,0 <t < T} with quadratic variation:

[(W,0), (W, 0)], = (6, 0)t (3.1.1)

for each ¢,1) € Ly(T). For £ > 0, we consider the following stochastic Cauchy
problem:
duwf = [ =V fw)+ 5V (DW)Vue) | dt + 7V - [a(u®)(5 * dW)]
u(0, ) = up(x)
(3.1.2)
Here the writing V- [a(u)(j*dW)] stands for the martingale differential acting
on HY(T) as

(V- [a(u) (s = dW)]t, V) = —(dWy, I * [a(u)V]) (3.1.3)

The following theorem is an immediate consequence of Proposition 3.5.7 in
the appendix, where we also recall how solutions to (3.1.2) are defined.

PROPOSITION 3.1.1. Assume lim. €7 ||9°||,(r) = 0. Then there is an g > 0

small enough such that, for each € < &g, there exists a unique {§,;}-adapted
process u : Q0 — U N Ly ([0, T]; H(T)) solving (3.1.2).

Note that the total mass of u® is conserved a.s. by the stochastic flow
(3.1.2), namely for each ¢ € [0,7] we have [dru®(t) = [dxug. Consider the
formal limiting equation for (3.1.2)

Ou+V - f(u)=0

u(0,x) = ug(x)
Recall the notion of Kruzkov solution to (3.1.4) given in Section 1.4. The
following statement follows from item (i) in Theorem 3.1.7 below and by a

simple adaptation of Proposition 2.2.6 to the setting of this chapter, namely
to the case x € T.

PROPOSITION 3.1.2. Assume that f € C*([0,1]) is such that there is no
interval in which f is affine. Assume also y > 1/2 and lim, >0~V [||F[|7, p) +
5||Vf||%2(m} = 0. Let u be the unique Kruzkov solution to (3.1.4). Then

Pe — 6z weakly in probability, w.r.t. both the topology of U and the strong
L,([0,T] x T) topology.

(3.1.4)

Proposition 3.1.2 establishes a convergence result for laws of the processes
u® solutions to (3.1.2), as ¢ — 0. We are then interested in large deviations
principles for these laws. In the next sections, we first introduce some prelim-
inary notions and state a first a large deviations principle. We then introduce
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some additional preliminaries and state the second large deviations principle.
Note that most of the definitions are similar to the ones introduced in Sec-
tion 2.2; however, for convenience of the reader, we next detail the adaptated
versions of these definitions in the current setting.

3.1.3. Scalar conservation laws. Let U denote the compact separable
metric space of measurable functions u : T — [0, 1], equipped with the metric
inherited by the %-weak topology of the finite measures on T. Namely, for
{¢n}nen C C(T) a dense subset in C(T) containing the constant function I,
define the metric dyy on U as

dy(u,v) =Y 27V [ = v, on) (3.1.5)

feat 1+ |[(u— v, on)|

Given T > 0, let U be the set C([0,T];U) endowed with the uniform metric
sup dy (u(t),v(t)) (3.1.6)
t€[0,T]

An element u € U is a weak solution to (3.1.4) iff for each ¢ € C*(]0,7] x T)
it satisfies

(u(T), o(T)) = (uo,(0)) — {{u, D)) — ((f(u),Vp)) =0

We also introduce a suitable space M of Young measures and recall the
notion of measure-valued solution to (3.1.4). Consider the set N of measurable
maps p from [0,7] x T to the set P([0,1]) of Borel probability measures on
[0,1]. The set A can be identified with the set of positive finite Borel measures
pon [0, 7] xTx[0, 1] such that p(dt, dz, [0,1]) = dt dz. Indeed, by existence of
a regular version of conditional probabilities, for such measures u there exists a
measurable kernel yi; ,(dX) € P([0, 1]) such that p(dt, dz, dX) = dt dx p . (dN).
For 2 : [0, 1] — [0, 1] the identity map, we set

M:={peN : themap [0,T] 2t p.(2) isinU} (3.1.7)

dy(u,v) =

in which, for a bounded measurable function F' : [0,1] — R, the notation
e (F') stands for f[o 1]ut,x(d)\)F()\). We endow M with the metric

dpa(11,v) = ds (11, 0) + iy (1(2), v(2)) (3.1.8)

where d,, is a distance generating the relative topology on N regarded as a
subset of the finite Borel measures on [0,7] x T x [0, 1] equipped with the
x-weak topology. (M, dy) is a complete separable metric space.

An element 1 € M is a measure-valued solution to (3.1.4) iff for each
¢ € C>([0,T] x T) it satisfies

(ur. (1), (1)) = (uo, 9(0)) = ((u(2), Bep)) — ((ulf), Vo)) = 0
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If u € U is a weak solution to (3.1.4), then 0y ) (d\) € M is a measure-valued
solution. On the other hand, there exist measure-valued solutions which do
not have this form.

3.1.4. First order large deviations. Recall that we defined the Polish
space (M, dy) in Section 3.1.3, and consider the process p° : 2 — M defined
by 115, = Ous(ta). We let P :=Po (p°)~" € P(M) be the law of 4 on M. In
Section 3.3 we prove

THEOREM 3.1.3. (i) Assume v > 1/2. Then the sequence {P¢} C

P (M) satisfies a large deviations upper bound on M with speed =7
and rate functional  : M — [0, +o0] defined as

(o7e) 10120 £(T)) = (a0, £(0)) = {{u(a). D)

— (), Vo) = § (@) Ve, Vo)) }
(3.1.9)

Z(p) := sup

peC'>

(ii) Assume v > 3/2, lim. [e27Y|VFE|2, + e273||#)I7,] = 0, and that
¢ <wup<1—C for some ( > 0. Then {P} C P(M) satisfies a large
deviations upper bound on M with speed e~ and rate functional .

We denote by P° := Po (u°)~' € P(U) the law of u° on the Polish space
(U, dy). By contraction principle [13] we get

COROLLARY 3.1.4. Under the same hypotheses of Theorem 3.1.3, the se-
quence {P°} C P(U) satisfies a large deviations principle on U with speed e =27
and rate functional I : U — [0, +00] defined as

I(u) :=inf { [dtdz Ry 2 (u(t,z), ®(t, x)),
d e Ly([0,T] xT) : VO =—0u weakly}
where Ry, : [0,1] x R — [0, +00] is defined by
: 2
Ry q(w,c) :==inf{(v(f) —¢)"/v(o), v € P([0,1]) : v(2) = w}
in which we understand (c — ¢)*/0 = 0.

Note that, if Z(;) < 400, then p ,(2) = uo(x) and analogously I(u) < +oo
implies u(0,2) = up(x). On the other hand, if Z(u) = 0 then u is a measure-
valued solution to (3.1.4). However, as it follows from Corollary 3.1.4, if f is
nonlinear in general we have I(u) < Z(d,), so that I vanishes on a set wider
than the set of weak solutions to (3.1.4).

In general there exist infinitely many measure-valued solutions to (3.1.4),

but Proposition 3.1.2 implies that {P} converges in probability on M to the
unique entropic solution @ to (3.1.4) (more precisely, to the Young measure [
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defined by fi;z = 0a(t,2)). We thus expect that other nontrivial large deviations
principles may hold on scales finer than =27,

3.1.5. Entropy-measure solutions to conservation laws. Recalling
(3.1.6), we let X be the same set C'([0,7];U) endowed with the metric

dx(u,v) = ||u—v| L, (o x1) + du(u,v) (3.1.10)

Convergence in X is equivalent to convergence in U and in L,(]0,7] x T) for
p € [1,+00). Note that X' can be identified with the subset {yn € M : Ju €
X, p=6,} of M, and dy is a distance generating the relative topology induced
by daq on X.

Let C?([0,1]) be the set of twice differentiable functions on (0,1) whose
derivatives are continuous up to the boundary. A function, resp. a con-
vex function, n € C?*([0,1]) is called an entropy, resp. a convex entropy,
and its conjugated entropy flur q¢ € C([0,1]) is defined up to a constant by
q(u) == [“dvn/(v)f'(v). For u a weak solution to (3.1.4), for (1, q) an entropy
— entropy flux pair, the n-entropy production is the distribution @, ,, acting on
C([0,T) x T) as

Pnu(p) = —(nuo), 9(0)) = {(n(w), dhp)) = {{a(w), Vo)) (3.1.11)

Let Cf’oo([(), 1) x [0,7] x ’]1") be the set of compactly supported maps ¢ :
0,1] x (0,7) x T > (v,t,z) — Y(v,t,z) € R, that are twice differentiable
in the v variable, with derivatives continuous up to the boundary of [0, 1] x
[0,7) x T, and that are infinitely differentiable in the (t,z) variables. For
¥ € C?*([0,1] x [0,T) x T) we denote by ¢ and ¢ its partial derivatives
w.r.t. the v variable. We say that a function 9 € C2>°([0,1] x [0,T) x T) is an
entropy sampler, and its conjugated entropy flux sampler @ : [0, 1] x [0, 7] x T is
defined up to an additive function of (¢, z) by Q(u,t,z) := [“dvd'(v,t,z)f'(v).
Finally, given a weak solution u to (3.1.4), the ¥-sampled entropy production
Py ,, is the real number

Py, = — [dx ﬁ(uo(x),(),x)}
— [dtdx [(8,519) (u(t,z),t,z) + (8.Q) (u(t,x),t,x)]

If 9(v,t,2) = n(v)p(t,z) for some entropy n and some ¢ € C([0,T) x T),
then Py, = 0y u(¢).

The next proposition introduces a suitable class of solutions to (3.1.4) which
will be needed in the following. We denote by M ([0,T) x T) the set of Radon
measures on [0,7") x T that we consider equipped with the vague topology. In
the following, for p € M ([0, T) x ']I‘) we denote by oF the positive and negative
part of p. For u a weak solution to (3.1.4) and 7 an entropy, recalling (3.1.11)
we set

(3.1.12)

lonaullry = sup {pyu(p), ¢ € CZ([0,T) x T), || <1} (3.1.13)
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H@;—,u TV ‘= Sup {pn,U<90)7 pE Cgo([O’T) X T)? 0< ¥ < 1}

The following result is a restatement of Proposition 2.2.3 in the slightly
different setting of this chapter.

PROPOSITION 3.1.5. Letu € X be a weak solution to (3.1.4). The following
statements are equivalent:

(i) There exists ¢ > 0 such that ||@;,|lrv < +oo for each n € C*([0,1])
with 0 < 0" < ec.

(ii) For each entropy n, the n-entropy production @, can be extended to
a Radon measure on [0,T) x T, namely ||py.|ltv < +oo for each
entropy 7.

(iii) There ezists a bounded measurable map o, : [0,1] 3 v — g, (v;dt, dx) €
M([O, T) x ']I‘) such that for any entropy sampler 9

Py, = /dv o0u(v; dt, dz) 9" (v, t, x) (3.1.14)

A weak solution u € X that satisfies any of the equivalent conditions in
Proposition 3.1.5 is called an entropy-measure solution to (3.1.4). We denote
by € C X the set of entropy-measure solutions to (3.1.4). Recall that in Chap-
ter 2 we have discussed regularity properties of the entropy measure solutions.
In particular, if f € C?([0, 1]) is such that there are no intervals in which f is
affine, then & C C([0,T7; L1(T)).

A weak solution u € X to (3.1.4) is called an entropic solution iff for each
convex entropy 71 the inequality @, , < 0 holds in distribution sense, namely
|9; ullTv = 0. In particular entropic solutions are entropy-measure solutions
such that g, (v;dt, dzx) is a negative Radon measure for each v € [0, 1].

Up to minor adaptations, the following class of solutions have been also
introduced in Section 2.2, where some examples of such solutions are are also
given.

DEFINITION 3.1.6. An entropy-measure solution u € £ is entropy-splittable
iff there exist two closed sets EY, E~ C [0,T] x T such that
(i) For a.e. v € |0, 1], the support of o (v;dt,dx) is contained in E*, and
the support of o, (v;dt,dx) is contained in E~.
(i) For each L > 0, the set {t € [0,T] : ({t} x [-L,L]))NETNE~ # 0}
is nowhere dense in [0,T].
(i) There exists 0 > 0 such that 6§ <u <1—9.

The set of entropy-splittable solutions to (3.1.4) is denoted by S.

Note that S C £ C X, and that we require ug to be uniformly far from
0, 1, so that § is nonempty.
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3.1.6. Second order large deviations. We still denote with P* :=Po
(uf)~' € P(X) the law of u® on the Polish space (X,dx). Since [dx j*(z) =1
(see hypothesis H4)), we have that j° — 1 is the derivative of some smooth
function J on T, defined up to an additive constant. We define |7 — X||yy—1.1(r
as the minimum of ||.J||.,(r) on the set of functions J such that V-J = 5 — 1.
We have the following

THEOREM 3.1.7. (i) Assume that f is such that there is no interval
in which f is affine. Assume alsoy > 1/2 and lim, 201 [||]5||%2(T) +
6HV]5H%2(T)} = 0. Then the sequence {P°} C P(X) satisfies a large

deviations upper bound on (X,dx) with speed e~ and rate func-
tional H : X — [0, +0o0] defined as

H(u) := {fdv of (v dt, dx) ag((z)) ifuce

| (3.1.15)
+00 otherwise

(ii) Assume that f € C*([0,1]) is such that there is no interval in which f
is affine. Assume also lim. e=%/2||*—1||yy-11() = 0 and lim, [e2 7|V |2+
e 73] F112,] = 0. Then the sequence {P°} C P(X) satisfies a large
deviations lower bound on (X,dx) with speed e 27! and rate func-
tional H : X — [0, +o0] defined as
H(u) := sup inf H(v)

O>y VEONS
O open

Since H is lower semicontinuous on X, we have H > H on X and H = H
on &, namely a large deviations principle holds on §. In order to obtain a full
large deviations principle, one needs to show a H(u) > H(u) also for u € S.
This amounts to show that § is H-dense in X, namely that for v € X such
that H(u) < +o0o there exists a sequence {u"} C S converging to u in X’ such
that H(u") — H(u). This issue was briefly discussed in Section 2.2. The
main difficulties arise from the lacking of a chain rule formula connecting the
measures ¢, , to the structure of u itself. If v has bounded variation, Vol’pert
chain rule [3] allows an explicit representation for p,, and thus H(u), see
Remark 2.2.7. On the other hand, there exists u € X with infinite variation
such that H(u) < +o0, see Example 2.2.8. While chain rule formulas out of
the BV setting are subject to current research investigation, see e.g. [11, 2],
only partial results are available.

3.2. Convergence and bounds

In the following we use the notation

o(v) = a(v)?
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LEMMA 3.2.1 (Ito formula). Let (9;Q) be an entropy sampler —entropy
sampler flux pair for the equation (3.1.4). Then (hereafter, for sake of read-
ability, we possibly omit the explicit dependence of 0 w.r.t. the (t,x) variables):

—fdxﬁ(uo(x) — [dtdz [(8:9) (v (t,2), t,2) + (0.Q) (v (t, z),t, z)]
2((19”( w)Vus, D(w)Vur)) = 5{{0:0'(uf), D(u?)Vus))
+ S VEIL o (0" (u)a ( %), a(u)))

S 1y (0" () Vs, [ ()P V7)) + N7

(3.2.1)
where {NF t € [0,T]} is the martingale

NEY = —57/ (7 * [a(u)Y" (u)Vu© + a(u’),0 (u)], dWs) (3.2.2)
[0,2]
Moreover the quadratic variation of N5V is bounded by

[Ns;ﬁ,NE?’?L < 527/ ds <a(u€)[ﬁ”(uE)VuE—l—(?zﬁ’(ug)],ﬁ”(uE)VuE—i—axz?'(uE»
[0,2]
(3.2.3)

PrOOF. Equation (3.2.1) follows, up to minor manipulations, from Ito6 for-
mula [12] for the map

F':U — R
FP:u —  [dtdzd(u(t,z),t,z)

By (3.2.2) and (3.1.1), the quadratic variation of N is given by
[Na~19 N& L 27 f ds
(5 * {a(u®) [¢"(u )Vu + 0,9 (u)] }, 5 * {a(u®)?" (w?) Vus + 9,0 (v¥)})

so that the inequality stated in the lemma follows by Young inequality for
convolutions and hypothesis H4). O

LEMMA 3.2.2. Let ¢, T > 0 and {Xy; t € [0,T]} be a local continuous real-
valued L?-supermartingale starting from 0, and 7 < T a stopping time. Let
F:R — RT be such that:

(x) _ .z
F(QO) = ¢

!

—1, forallz> (. (3.2.4)

Then:

¢ .
P (()SgltlgTXt > (, [X,XL < F(ilSlIT)Xt)) < exp {_QF(C) } ; (3.2.5)




3.2. CONVERGENCE AND BOUNDS 87

PROOF. Hypotheses on F imply that the map G¢ : © — F(C) éF%;P F(x)

has the property G¢(z) > G¢(¢) = T(C) for all > (. Therefore:
P (snpic, Xo 2 G, [X,X], < Flsupis, X))
< P( iy SUPer X F iz Floupe, X0) >e %% X, X]_ < F(sup,<, Xt))

_<¢ 12
<P {Supt<T e X T2 R? [x X}

where in the last line we used maximal inequality for positive supermartingales,
see [17]. O

Note that the hypotheses (3.2.4) on F are satisfied by any nonincreasing
function, and by functions with affine or subaffine behaviour. The lemma is a
generalization of the well known Bernstein inequality [17].

COROLLARY 3.2.3. Assume~y > 1/2, lim. e[ °||7, () = 0 andlim. e[|V 7|2, ) =

0. Then there exists C, eg > 0 depending only on {5}, f, D and o such that
for each € < gy

e((Vu®, Vu)) < C+ Ni. (3.2.6)
where {N{ hiejo,r) @5 a martingale starting from 0 and satisfying
C2
P Ny > () < { — —} 3.2.7
(pNE> O < o2~ g G20

PRrROOF. Let x € C°([0,T)) be a smooth decreasing function such that
x(0) = 1. Evaluating It6 formula (3.2.1) for ¥(u,t,z) = V(u, t,z) := u*x(t)
—(uo, uo) + e((Vus, D(u)Vurx)) — ((u, u0rx)) =
N7+ 7| VE 17 alud), au)x)) + e FII7 o (Vs [0/ ()P Vurx))
By H2), H3) and the hypotheses of this lemma, there exist g > 0 such
that, for each ¢ < g5 and v € [0,1], &2 ||L2(T[ d(v)]? < ieD(v) and
527|]V35H%2(T)0'(U) < 1. Therefore, since also (ug, ug) < 1, ((uf,udx)) <0

%«w, D(w¥)VuEx)) < 2+ N7

As we send y to the indicator function of [0,7") uniformly on compact subsets,
it is not difficult to obtain the inequality

€ I3 (3 g £
§<(Vu , D(uf)Vucy)) <2+ N3? (3.2.8)
where N;*? = f[o 77 [o(u)Vur], dW). Since D is uniformly positive, there

exists C7 > 0 such that o(v) < C1D(v)/8 for each v € [0, 1]. Therefore, apply-
ing again Young inequality for convolutions to bound the quadratic variation
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of the martingale {N;*}, we gather for € < g

[Ne2 N=2], o < 4P ((Vus, o(uf)Vuf))
< SR (Vs D(u) V) < Cre? 12+ N7

Applying Lemma 3.2.2 to the martingale { Nf;a}

e B ¢?
P(ilngpNT > C) < exp[ 201527—1(2—1—()}

Since D is uniformly positive, for a suitable choice of C' we conclude by (3.2.8).
U

LEMMA 3.2.4. There exists an increasing sequence { Ky} of compact subsets
of U such that

li?MeQVP‘E(KE) = —00
PROOF. Let d € C'([0,1]) be a map such that d’'(v) = D(v) for v € [0,1].
Then, integrating twice by parts the diffusive term in the weak formulation of
(3.1.2), for each ¢ € C*°(T) and s,t € [0, 7]

[(w (t) —u(s),0)| < | i, gdr (f(w9), V)|
+5] o dr (dw), V(Ve)| +€7] [, flalu) 7+ Vo, dW,) |
< Cylt = s| + €7 [, yla(u) 7+ Vip, dW,)|

for some constant 7, depending only on f, d and . On the other hand, by
Young inequality for convolutions, the martingale term in the last line of the
above formula enjoys the bound (3.2.3) evaluated for ¥(v,t,z) = v p(t, z), so
that by Bernstein inequality, there exists a constant C7] > 0 depending only
on a and ¢ such that for each £, ( > 0 and s € [0, 7]

P(g’Y sup ‘/{St](a(us)jg *Vgp,dWr>‘ > () < exp( ¢? )

b lt—s|<¢ - Cpene
We thus obtain, for each p € C*(T), ( > 0, s € [0,7] and &, ¢ small enough,
and for some constant C, depending only on ¢, f, D, a
CQ

Co 6275)

P( sup [{u(t) — uls), )| < C) <exp (-

t:ft—s|<¢
Since (U, dy) is compact, this inequality implies the exponential tightness of
{P}onUU = C ([O,T]; U ) by standard tightness arguments for probability
measures on spaces of continuous functions [6]. U
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3.3. Large deviations on the scale =27

We recall a well known method to prove large deviations lower bound, see
e.g. [9, 14], which can be easily restated in terms of I'-convergence. A more
general statement connecting large deviations principle and I'-convergence of
the relative entropy can also be found in the introductive chapter of this thesis,
see Section 1.2.3. In order to avoid confusion between the functional H defined
n (3.1.15), in this chapter, for P, Q two Borel probability measures on a Polish
space, we denote by Ent(Q|P) the relative entropy of Q w.r.t. P (so we will
not use the standard notation H(Q|P) for the same quantity).

LEMMA 3.3.1. Let X be a Polish space, let {a.} C Rt be a sequence such
that lim. a. = 0, and let {P°} C P(X). For e > 0 define the functionals
Ent. : P(X) — [0, 4+00] as

Ent.(Q) := a.Ent(Q|P?)
and the functional I : X — [0,400] as
I(z) := (T-lim, Ent.)(d,)

where 0, denotes the Dirac measure concentrated at x. Then {IP?} satisfies a
large deviations lower bound with speed {a='} and rate I. Conversely, suppose
that {IP<} satisfies a large deviations principle with lower semicontinuous rate
functional I. Then (I'lim. Ent.)(Q) < [, Q(dz) I(x).

LEMMA 3.3.2. There exists an increasing sequence {K¢} of compact subsets
of M such that
lim lim *'P¢(K§) = —oc0 (3.3.1)

l €

PROOF. Let the sequence { K} of compact subsets of U be as in Lemma 3.2.4.
For ¢ > 0 consider the set

Ko :={pneM: pyz=dyu for some u € K;}

Then P*(IC;) = P*(K;) and by Lemma 3.2.4, (3.3.1) holds. On the other hand
IC, is precompact in (M, d ). O

PROOF OF THEOREM 3.1.3: UPPER BOUND. Let d € C?%([0,1]) be such
that d = D. For ¢ > 0 and ¢ € C*([0,T] x T), since P° solves (3.1.2), the

map
Nee [0, T = o0, T7;
NeEw - (t ) < (t)790(t)> - <u0790(0)> - f[(u]ds [<U78590> (332)
+ (f(0), Vo) + 5{d(v). V(Ve))]
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is a P°-martingale. Let M, := {u € M : p = §, for some u € U}. Note that,
by its definition, P¢ is concentrated on M, by definition. Therefore the map
NEe o [0, T x M =R
N=e () = (pr(2), o(T)) — (uo, 9(0))
— Jio.g@s [(1(1), dp) — (u(f), Vi) + 5(u(d), V(V))]

is a P martingale, since N®¥(t,0,) = N=¥(t,v). By the same reason, and by
inequality (3.2.3) the map

Q5% . [0,T]x M =R
Q% (t,1) = exp (NPt ) — 5 [y yds (@) Vo, Vi) |

is a continuous, strictly positive, P¢ supermartingale, with Q%¢(0, u) = 1. For
a compact subset L C M we then have

P(K) = P(Ic(1)Q7(T,)[Q7(T. )] )
< U [QFA (T, )] 1P (L () QF4(T, ) < inflexc[Q7(T, )]~

Since this inequality holds for each ¢, we can evaluate it replacing ¢ with
=% obtaining

log PE(K) < —= W infuerc { (1r, (0), 9(T)) = (o, 9(0)) = {(1u(2), Do)
~({), Vo) = 54(u(d), V (V) = $({u(0)Vep, Vo)) |

< —e Binfue { (r,(0), 9(T)) = (o, 2(0)) = ({pl2), B2))

— (1), Vo)) = (@) Vi, Vo) b + 22710,

for some constant Cy, depending only on the maximum value of d on [0, 1]
and on . Multiplying by €27 and taking the limsup for ¢ — 0, the last term
vanishes. Optimizing on ¢:

lim, 2 log PE(K) < —Sup epo (0.0 infpex {<NT,-<Z)7 ©(T)) — (uo, »(0))
=), ) = ((u(f), Vo)) = 3{u(a) Ve, Vso>>}

Bu minimax lemma we gather that upper bound with rate Z, see (3.1.9), holds
on each compact subset  C M. By Lemma 3.3.2, it holds on each closed
subset of M. O

PrOOF OF THEOREM 3.1.3: LOWER BOUND. We will prove the lower bound
by the means of Lemma 3.3.1. More precisely, consider the set

M = {,uej\/l A >0 p=24, forsomeuEC’Q([O,T] xT;[r,l—T])}

Here we prove that for each p € M, there exists a sequence of probability
measure {Q°} C P(M) such that Q° — §, and lime?Ent(Q°|P°) < Z(u).
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By Lemma 3.3.1 this will yield a large deviations lower bound with rate 7:
M — [0, +00] defined as

+00 otherwise

F._ {I(u) if pe My

By a standard diagonal argument, or as it follows from Proposition 1.2.4, the
lower bound then also holds with the lower semicontinuous envelope of I on
M as rate functional. In Theorem 2.4.1 it is shown, in a slightly different
setting, that the lower semicontinuous envelope of Z is indeed Z. By the
assumption 7 < uy < 1 —r (which is equivalent to the requirement that o (u)
is uniformly positive), it is not difficult to adapt the arguments in the proof
of Theorem 2.4.1, to obtain the analogous result in this case. We are thus left
with the proof of the lower bound on M.

Let p = 6, € Mg be such that Z(1) < oco. Then necessarily u(0, z) = uy(z),
and by the definition of Z and the smoothness of u

T) =T62) = S (g pyer) L~ (05 V- 7)) = § (0(0) Vi Vi) }
2 S () L (O V- ). ) = £ (Ve Vo)) }

where ¢ > 0 is a real constant such that o(u) > ¢ on [0,7] x T. Such a

constant exists, since we assumed u to be uniformly far from the zeros of o.

Note that the supremum in the last line of the above formula is finite iff there
exists U € Ly([0,7]; H*(T)) such that

Bu+V - flu) =~V - [o(u) VD] (3.3.3)

peC>

holds weakly. In such a case
() = ((o(u) V", VI)) (3.3.4)

Note that, as we assumed u smooth and o(u) uniformly positive, ¥* is also
smooth by standard regularity results for (3.3.3), say ¥ € C?([0,T] x T).
Recall the definition (3.3.2) of the martingale N=¥. It is immediate to extend
the definition of N%¥ to the case p € C%*([0,T] x T). For € > 0 we define the
real-valued Pe-martingale M, (v) := e 7 N=¥". Note that

(M, 5], = & () VO], o % [a(u) VU)) < 2021 (4) (3.3.5)

by Young inequality for convolutions and (3.3.4). Since the quadratic variation
of M#" uniformly bounded, its stochastic exponential E;™ := exp (M;™ —
S[M=* M="];) is also a P*-martingale. For ¢ > 0 we define Q" € P(U) by
its derivative as

Q*(dv) = E5 ()P (dv)
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and we let Q%" be the pushforward of Q" w.r.t. the map U > u — 9, € U.
Then

27 Ent(QF[P=)

627Ent(Qs;u|]Ps;u) : 627 f@su )log Ea u<v)
e [ Q7 (dv) (M7 (v) — [M**(v), M= (v)]r)
+5 [ Q7 (do) M= (v), M= (0)]
({7 * [a(u) V], 7° + [a(u) VE"])
{o(w) vV, Vi) = 1(u)

IA I
D00 =

(3.3.6)
where we used the Girsanov theorem, stating that M — [M="*(v), M="(v)],
is a Q%-martingale, and thus has vanishing Q%" expectaction.

By (3.3.6), (3.3.1) and Proposition 1.2.2, the sequence {Q%"}. is tight in
P(M), and in view of (3.3.6) it remains to show that any limit point of {Q%"}
coincides with ¢,. Still by Girsanov theorem, Q%* is the law of a process v°
that takes values in & N Ly ([0,7]; H*(T)) and is a solution to the martingale
problem associated with the stochastic partial differential equation

dv = [— V- f(v)+ 5V - [D)Vo—a(v)((5° = ) * (a(u)V\If“))H dt
+ &7V - [a(v) (5 * dW)]
v(0, ) = up(x)
(3.3.7)

where we used the same notation of (3.1.2). We will use (3.3.7) to show that
J,, Q%*(dv) sup, [dz|v —u| converges to 0 as we send € — 0. In view of (3.3.6)
this will conclude the proof.

Let I € C?([—1,1]). Applying Itd formula to the map [—1,1] x [0,7] x T 3
(v,t,2) — (v — u( x)), and denoting z° = v® — u, some dlrect computations
show that for each ¢ € [0, 7]

[0,
Jda [1(=(t,)) — 1(0)]
_ f[07t}ds{ — S(1"(25)V 2, D)V ) + (I"(25)V2%, fu+ 2°) — f(u)
+ (I’ (ZE)VZE a(v?) (57 * j© * [a(u) VI — a(w) (57 * j° * [a(u) VI]))
= (1'(z%), V{a(u) (5 * j° * [a(w) VI'] — a(u)a(u) VI"]) })
+ SNV Iy (U (=) a(v%), a(v%))
Sy () VR, [0 (09) 2V ) | + N
(3.3.8)
for some square-integrable martingale { N&'}. Let us define B := {v € U :

((Vv,Vv)) < £}. By Corollary 3.2.3, (3.3.6) and the inequality (1.2.7), we
have

lim lim Q¥*(B° %) =1 (3.3.9)

l—+o00 ¢
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Let us now assume [ convex. Then we can define, for e, ¢ > 0, t € [0, 7]

Al’l = maxze[o,l] |l ( )|

AQ’Z . maxze[m |l ( )‘

A3t = /max.eq |I"(2) 22|

REl(t) = \/ Jioqds ("(=)V 2, D(v )st>

Asv = [dtds|V{a(u) (5 * j¢ * [a(u) VY] — a(u)a(u) VI]) }

(3.3.10)
For v¢ € B° ¢, by (3.3.8), Cauchy-Schwarz inequality and using the smooth-
ness of v and U*, there exists a constant C' independent of ¢, such that for
each t € [0, T]
Jda [I( —1(0)] < =£(R%(t))? + CAM R (t) + CAM A=
_|_C«35[27||1Yj |L22(721')A21 + 052772”]5”%2(1?)‘42,1 + Nta;l
3(ASL4 AL A= )20 + 0627||Vj6||%2(T)A2,l + 052%2H]E”%Q(T)A2’l€ + Nts;l

— 2e

Assume now also [(0) = 0. Integrating in dt, taking the Q" expected value
on v, and redefining the constant C'

0 (U 0) filtda o — ()
< C[(A%! 4 Al geyRet
HETIVF Iy + 2 11 )eA]

Note now that, by the smoothness of v and U, since j° % 5 is a sequence of
mollifiers converging to the identity, lim. A%* — 0. By the assumptions of this
theorem, the term in round brackets in the last line of (3.3.11) also vanishes.
It is the easy to see that there exists a sequence {I°} such that the I¢(-) — | - |
uniformly on [—1,1], and the r.h.s. of (3.3.11) vanishes as ¢ — 0. We then
conclude by (3.3.9). O

(3.3.11)

PrROOF OF COROLLARY 3.1.4. The proof is achieved by following closely
Corollary 2.2.2. O

3.4. Large deviations on the scale ¢~27*!

The next proposition is a convenient restatement in this setting of Tartar
compensated compactness method. We refer to [18, Chapter 9] for the proof.

PROPOSITION 3.4.1 (Tartar). Assume that f is such that there are no
intervals where f is affine. Let K C U be a compact w.r.t. dy. Suppose that
for each n € C*([0,1]) there exists a compact (w.r.t. the strong H=*([0,T] x T)
topology) set K,, C H-([0,T] x T) such that yn(u) + V - q(u) € K,, for each
u € K. Then K 1is strongly compact in X.
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LEMMA 3.4.2. Under the same hypotheses of Theorem 3.1.7 item (i), there
exists an increasing sequence {K;} of compact subsets of X such that

liﬁnms_hﬂ logP*(K;) = —o0

PROOF. Let 1 be an entropy, and let g be its conjugated flux. For ¢ €
C>((0,T) x T), by Ito formula (3.2.1) applied to the function J(v,t,z) =
n(v)e(t, )

—((n(u?), 0p)) — ({a(u®), Vo)) = —5((n"(u) Vi, D(uf) Vus))
{01V () Vo))
JHVJ 17, m (" (u)a(w®), alu®)e))
S <<?7"(UE)SDVU @/ (u?)]*Vus)) + Np
(3.4.1)
where { N, t € [0,T]} is the martingale N, := &7 f[O,t] (FF*[o(u)V (' (u)p)], dW).
For ¢, £ > 0 let us define the stopping time 75 : X — [0, 7] as

9 v) == inf {t € [0, 7] : 5/ ds (Vu(s), Vo(s)) > (} (3.4.2)
[0,2]

where we understand (Vu(s), Vu(s)) = +oo if v(s) € H'(T). Note that by

(3.2.3)

[NE;TW’ Nsms@]t < 227 f[o,t}ds[HO-(US(S))n,/(UE(S)) S vus”i -
o [l () (e () Vo 3) [ |

so that, for some constant C; > 0 depending only on ¢ and n

e N < € [ el + N9

By the Sobolev embedding of Li(T) in H~(T), we gather that, for each ¢ >
0, the law of the H*(T)-valued martingale {N%" ¢ € [0,T]} defined as
NES () = NsAmfe for ¢» € H'(T), is exponentially tight in H~'([0,T] x T) as

e — 0, see e.g. [12, Chapter 12].
By (3.4.1) we get for some constant C' depending only on n, f, D and o

[{(n(w), 0up)) + ((a(w?), Vo)) | < eCllll e orxm (Vs Vuur))
+eC((V, Vo) 2((Vus, Vus)) /2 + | NZ™|
+eC) @l Lootioyxmy IV N7,y + 11717,y (Vs Vi) ]

(3.4.3)
Therefore, for u in the set {75¢ > T’} we have

), o) + o), Vo]
< C(€+ € 7HV]{EHLQ(T) t+e WHJEHLQ@))HSDHLoo([O,T}XT)
+CVel| Vo2, qompen + | Jiog AN (p(s))]
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Since the term in square brackets in the first line of the r.h.s. is bounded
uniformly in e, by the compactness result on {N“"} and the the compact
embedding of L;([0,7] x T) in H~([0,T] x T), we get for each ¢ > 0 the
existence of a sequence {Ky,}, of compact subsets of H~1([0,7] x T) such
that

lim lim e®~'P* (n(u), + q(u), € Kf,, 79(u) > T) = —o00

n 3

Since, by Corollary 3.2.3

li?mé@”’l logPé(75 > T') = —oc0

we get that the law of n(u®); + ¢(u), is exponentially tight in H ([0, T] x
T). The statement of the lemma then follows by Lemma 3.2.4 and Proposi-
tion 3.4.1. O

PROOF OF THEOREM 3.1.7: UPPER BOUND. Recall Proposition 1.2.3 proved
in the introduction. Let H : M — [0, 4+00] be the (lower semicontinuous) op-
timal rate functional for the large deviations upper bound principle of {P¢}
with speed e727*1. Such an optimal rate exists, as we characterized it as the
[-liminf of the functional (1.2.8). Since {P¢} satisfies a large deviations upper
bound with speed £727 and with a rate functional Z : M — [0, +-00] which is
strictly positive off the set of measure-valued solutions to (3.1.4), H is infinite
off the set of measure-valued solutions. On the other hand, since the topology
generated by dy on X coincides with topology induced on X by the immersion
map X > u — §, € X, Lemma 3.4.2 implies that H is infinite off the set
M. ={pe M : u=d,for someu € X}. Thus, since P¢ is the pushfor-
ward of P¢ w.r.t. this immersion map, and since a measure-valued solutions
p to (3.1.4) that are in M, have necessarily the form p = ¢, for some weak
solution u € X, the optimal rate functional for the upper bound of {P°} is
infinite off the closed set W of weak solutions to (3.1.4). Therefore, in view of
Lemma 3.4.2, we have to prove the large deviations upper bound inequality for
{P*} with speed e~2'*! only on compact subsets K of X, that are contained
in W.

Let (¥,Q) be an entropy sampler-entropy sampler pair. By Lemma 3.2.1
it is not difficult to see that the map [0,T] 3 t — [dzd(u(t,z),t,x) € R is
continuous. With the same notation of Lemma 3.2.1, consider the exponential
supermartingale obtained as the stochastic exponential of {NF’}. By the
bound (3.2.3) and the just stated continuity property of u, we have that for
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each € > 0 the map
B0 . [0,T] x X — R*
E5Y o (tu) —>exp{fdx19 (t),t,x) — fdxz? ug, 0, )
ot e [(0:0) (165 2),52) + (2.2 05, ). 5.4
+f£0tds[ (9" (u)Vu, D(u ) ) 5(0:0'(u), D(u)Vu)
——||VJ 17,0y (0" (w)a(u), alu))
- 2 -l ”Lg(’]l‘)< "(u)Vu, [a' ()] V)]
f[o t]ds< (w) [¢"(w)Vu + 8,9 (w)], 9" (u) Vu + 0$19’(u)>}

is a continuous strictly positive P*-supermartingale, with EJ = 1, P¢ almost
surely. For ¢ > 0 let B := {u € X N Ly([0,T]; HY(T)) : {(Vu,Vu)) < (}.
Given a compact subset K C X we have, for C, ¢y as in Corollary 3.2.3 and
(>C,e<eg

P=(K) Pe (BT (T, u)[E5 =T (T, u)| " ey e (u)) + PE(BY)

<
< supyegnprs [E7F T (T, 0)] 7! +exp (— 052(5:—10()611))

(3.4.4)
where in the last line we used the supermartingale property of E5Y and
Corollary 3.2.3. On the other hand, by Cauchy-Schwartz inequality, for each
u € BY¢

g2 og E* 271(Tu —fda:ﬁ uo ),0, )
— [dsdz [(0,0) (u(s ,T) +
+5{{0"(w)Vu, D(u ) >> 5((0
—JI\VJ 7m) (0" (W)a(u), alu
1717 oy (0" () Vi, [ (w)]PV
—-(< (u )?9”( )Vu, " (u)Vu)) — 5
({0 (u)?"(u)Vu, 0, (w))
> — [dx9(up(x),0,z)
— [dsdz [(09) (u(s,x), s,z) + (0,Q) (u(s, z), s, z)]
+E((" (W) Vu, (D(u) — o (w)d”(u)) Vu)) — Cov/el
~Coe IV I |17,y — Coe® Ml F |17 m) — Coe — VelCy

for a suitable constant Cy > 0 depending only on ¢, D and o. The key point
now is that, if the entropy sampler 9 satisfies

o(u)?" (u,t,z) < D(u) Vuel0,1,t€[0,T],z€T (3.4.5)
then the term ((0"(u)Vu, (D(u) — o(u)¥”(u))Vu)) is positive, namely the
largest term related to the quadratic variation of N; ¥ is controlled by the

positive parabolic term related to the deterministic diffusion. Therefore, by
the hypotheses assumed on j°, for each entropy sampler ¥ satisfying (3.4.5),
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u € BY¢ and up to redefining the constant Cy, there exists a sequence o, — 0
such that

g2 llog E%m%(T, u) > — [dxd(up(x),0,z) — Cy(1 + 0)a
— [dsdx [(8519)<u(s,m),s,x) + (axQ) (u(s,:p), s,x)}

By (3.4.4), taking the logarithm, multiplying by ¢**~! optimizing on ¢ > 0 and
¥ satisfying (3.4.5), and passing to the limit ¢ — 0

lim. e 'P*(K) < —supy infuex { — [dazd(uo(2),0, z)
— [dsdz [(0s0) (u(s, x), s, x) + (0,Q) (u(s, x), s, x)] }
where the supremum is taken on the entropy samplers ) satisfying (3.4.5). It
is immediate to see that the map X > u — — [dtdz [(80)(u(t, z),t,z) +

((ZEQ) (u(t,x), t,t)} € R is lower semicontinuous in X for each /. Therefore
the minimax lemma yields

lim, e 'P*(K) < —infyer supy { — [dazd(uo(z),0, )
— [dsdx [(8519)(u(s,x),s,x) + (&EQ) (u(s,x), s,x)”
As noted at the beginning of this proof, we need to show the upper bound

only for compact sets K contained in the set of weak solutions to (3.1.4). On
the other hand, for such a K, (3.4.6) reads

lime*~'P*(K) < — inf sup Py,
€ ueK »

(3.4.6)

where, as usual, the supremum is taken over the entropy samplers 1} satisfying
(3.4.5). In the proof of Theorem 2.2.5, it was shown that a weak solution u
to (3.1.4) such that supy Py, < +oo- is indeed an entropy-measure solution
u € &, and supy Py, = H(u). O

PROOF OF THEOREM 3.1.7: LOWER BOUND. We will use the entropy method
suggested by Lemma 3.3.1, as we did in the proof of Theorem 3.1.3 item (ii).
Given u € S, we need to show that there exists a sequence {Q°} C P(X) such
that lim e27~' H(Q°|P°) < H(u) and Q° — 6, weakly™ in P(&X). Still following
the proof of Theorem 3.1.3 item (ii), we can construct such a sequence {Q%"}
using exponential martingales. By the calculation in (3.3.6), everything boils
down to find a sequence of martingales {M="}. such that

82’7—1

lim
g

(M M < H(u) (3.4.7)

and such that any sequence of martingale solutions {v°} to the problem

dg(; [)— V- (f ()v) + <V - (D(v))Vv) — Gir] dt + &V - [a(v)()° * dW)]

(3.4.8)
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converges to w in X. Here Gir stands for the Girsanov term, namely the
cross quadratic variation of the martingale M%" with the martingale term
7V - [a(u®)() * dW)].

With minor adaptations from Theorem 2.2.5, we have that the following
statement holds. For each sequence a. — 0 and each each u € §, there exists
a sequence a {w°} C X and a sequence {U°} C Ly([0,T]; H*(T)) such that:

(a) w® — win X, and w*(0, x) = up(x).

(b) e{(Vws, Vw* >> < C for some C' > 0 independent of .

() T, & ({o(w") VU, V) = H(u).

(d) a((V[a(w) V¥, Via(w*)VE])) < Ce™!, for some C' > 0 indepen-
dent of ¢.

(e) The equation

dwf + V- f(v) — gv - (Df)Vuf) = =V - (o(wf) VIF)

holds weakly.

We let a. := 732 5* — T|ly-1a(1), and let {w}, {¥°} be chosen correspond-
ingly. Note that with this choice and by the assumption on ||5° — Ty -1.1(1),
the quantity

¢
B. = 5_2/ ds||)° * J° * [a(w®) VU] — a(ws)V\If{fH%Q(T) (3.4.9)
0

converges to 0 as ¢ — 0.
We define the martingale M*" as

M = 5_7/ (5° * [a(w®) VU], dWy)
0,

Then by Young inequality for convolutions:
1 € &€ &€
({o(w®) =, ¥7))

5 [Ms;u7 Ma;uL S
so that by property (c) we have that (3.4.7) is satisfied for this choice of M.
Moreover for this choice of M the equation (3.4.8) reads

dv = [ V- fv)+5V- (D(U)VU)}] dt
o, TG o)V 27 o) )

e~

(3.4.10)

For ¢ > 0 let v* € X N Ly([0,T]; H*(T) be the canonical process for a generic
martingal solution to (3.4.10).

For [ € C%*([—1,1]), let us apply It6 formula for the map XNLy ([0, T); H(T) €

v [dtdrl(v —w(t,x)). Direct computation and the equation in (e) above
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yield, denoting 2 =0 —w*

Jde [1(==(t,2)) — 1(0)
- f[o,t]ds{ — ()25, DA )V) + (17(5)V2, (1) — ()
= 5 Jonds(" (=) V=5, [D(v7) = D(w?) V)
+("(2°) V27, a(vf) — a(w)] (5 * j° * [a(w?) VE]))
—_ <l”<Z‘E)VZE, a(wa) (]E *ja % [a(wa)v\ya] _ CL(wE)CL<UJ£)V\I/E])>
+ VIR oy (17 () a(v?), a(v?))
+ SQTVHJEH%Q(T)U//(ZE)VUs’ [a/(vs)]2vvs>} + NtE;l
(3.4.11)
for each ¢t € [0,7]. Here N%! is a square-integrable martingale with vanish-
ing Q%" mean. Recall the definition B := {u € XN Lg([O,T];Hl(T))

({(Vu,Vu)) < £}. With the same notation of (3.3.10), we gather by Cauchy-
Schwartz inequality, for each ¢ > 0 and v° € BY*

Jda [I( —1(0)] < =5(R¥(1))* + CLAMR=L(¢)
+\f Cl[ fods (Vs Vue)] /2 A3 Re (1)
1/2
FO[ fyds [ # 7 [a(w) VU3, )] A RE (1)
1/2
O [ Jods [ » 7 # [a(wf) V] — aw) VE[F, ] VAR R 1)
+Cie? ||V ||L2(11‘ AP+ C'152772||‘7€||%2(1T)AQ’Z£ + Nts;l
(3.4.12)
for some constant C; > 0. The terms in square brackets in the second and
third lines of (3.4.12) are bounded uniformly in € by properties (b) and (c)
respectively. Therefore, recalling (3.4.9), maximizing the r.h.s. of (3.4.12) as

R5(t) runs on R, and assuming / such that 1(0) = 0, we get for v* € BY¢ and
for some Cy > 0

[dzi(25(t,z)) < e 'Cy(A3)? + eCr A%,
+C5 [827*1||Vf||%2m + 827*3||f||2L2(T)€] eA% 4 Ni7

Integrating in dt, taking the expectation w.r.t. Q%"

QEW(]{BE,M ) [da (v — ui(t, x))) < 1O (AB)? 4 £Cy A2IB,
+C3 [ VI NT oy + 2117, oy ] A
(3.4.13)
for some C3 > 0. The term in square brackets in the last line of (3.4.13) van-
ishes by assumption. On the other hand, it is easy to see that there exists a se-

quence {[°} such that {°(-) — |-| uniformly on [—1, 1], and the r.h.s. of (3.4.13)
vanishes as ¢ — 0. By the entropy bound (3.4.7) on €27 ~'Ent(Q%*|P=%), by
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(1.2.7) and Corollary 3.2.3 we have
lim limQ%*(B° ) =1

l—+oo ™ .

so that we can conclude by (3.4.13) and property (a).

3.5. Appendix A: Existence and uniqueness results for fully
nonlinear parabolic SPDEs with conservative noise

In this appendix, we are concerned with existence and uniqueness results
for the Cauchy problem in the unknown u = u(t,z), t € [0,T], v € T

du = [= V- f(u)+3V-(DW)Vu)]dt+ V- [a(u)(y*dWV)]
U(O,l‘) = uO(:C)
(3.5.1)
Although we assume the space-variable z to run on a one-dimensional torus
T, it is not difficult to extend the results given below to the case z € T? or
x € R? for d > 1. The assumptions on the quantities involved in (3.5.1) are

given below.
We assume that a standard filtered probability space (Q, S, 54, IP) is given,
and that W is a cylindrical Brownian motion on this space. Hereafter we set

Q) = [(0ua)(v)]? / 0 |V (2)

We will assume the following hypotheses:

A1) fand D are uniformly Lipschitz on R.

A2) a € C*(R) is uniformly bounded.

A3) y € HY(T) and, with no loss of generality, [dz|j(z)| = 1.

A4) D is uniformly positive, and there exists ¢ > 0 such that D > @ + c.

A5) wug is §o measurable and satisfies E(ug, ug) < +00.

We introduce the Polish space Y := C([0, T]; H*(T)) N Ly ([0, T]; H*(T)) N
Lo ([0,T); Lo(T)). A probability measure P on Y is a martingale solution to
(3.5.1) iff the law of u(0) under P in Lo(T) is the same of the law of ug, and
for each ¢ € C>([0,7] x T)

L) i= (u(t): 9(8) = (w(0),(0)) ~ | ds (u.819) = (f(w) = ; D@V V)

[0,¢]
. (3.5.2)
is a continuous square-integrable martingale (w.r.t. P(du)) with quadratic vari-
ation

[L*(0), L*(9)], = /[ 3l @) T9). 0+ (a) V) (3.5.3)
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We say that an {F;}-adapted process u : @ — Y is a strong solution to
(3.5.1) iff u(0) = ug P-a.s. and for each p € C*([0,7] x T)

Li(p) = /[Oﬂ VE (a(u)Vgp),dW> (3.5.4)

In this appendix we prove

THEOREM 3.5.1. Assume A1)-A5). Then there erxists a unique strong
solution u to (3.5.1). Furthermore, if ug takes values in [0, 1] and a is supported
by [0, 1], then u takes values in [0, 1] a.s..

By compactness estimates we will prove that there exists a solution to the
martingale problem related to (3.5.1). Then we will prove that there exists a
most one strong solution u to (3.5.1) using a stability result similar to the one
used in the proof of Theorem 3.1.7. By Yamada-Watanabe theorem we get
the existence and uniqueness stated in Theorem 3.5.1.

LEMMA 3.5.2. Let 0 <t < t" < T, let v/, v be two §y measurable ran-
dom functions on Lo(T) such that E|||u'| + |v| + |VUH|%Q(T) < 4o00. Then the
stochastic Cauchy problem

dw=[—=V-f(v)+1iV-(DW)Vw)]dt+ V- [a(v)(y*dW)]

w(t',z) =u'(x)

(3.5.5)

admits a unique strong solution u with values in Lo ([t’, t"]; H' (']I')) ﬂC’([t’, t"], H! (’]1")) .
Such a solution u satisfies

(u(t), u(t)) + f[t,’t] ds(D(v)Vu,Vu) = N(t,t') + (u',u')
+ f[t,’ﬂds [(Q(v)Vv, Vv) + [dz S(v)]

(9% (a(v)Vu),dW). Furthermore E sup, ey Hu(t)||%2m <

(3.5.6)
where N (t,t') := 2 f[t, q
+00.

Proor. Existence and uniqueness follows by explicit representation, see
e.g. [12]. Applying It6 formula to the map w +— (w,w) acting o on Ly(T) we
get (3.5.6). Note that by Doob inequality, for a suitable constant C' > 0

Esupyep e IN(41)] < 2E[N(,¢),N(, 1)), y
— 4[f[t,7t,,]ds (7% (a(v)Vu), = (a(v)Vu))}
4[f[t,7t//]ds (a(v)Vu,a(v)Vu)J /

< C [f[t,vt,,]ds (D(v)Vu, Vu>]1

IN

so that the bound on E sup,cp 4 Hu(t)H%Q(T) is easily obtained by (3.5.6). O
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We next introduce a sequence {u"} of adapted Y-valued processes. We will
gather existence of a weak solution to (3.5.1) by tightness of the laws {P"} of
this sequence.

Forn e Nandi=0,...,2"let t! :=i27"T, and let {¢"} be a sequence of
smooth mollifiers on T such that lim,, Q_RHZH?A(T) = 0. We define a process u"
on Y and the auxiliary random functions {v}?", on T as follows. For i = 0
we set

u(0) = ug

vy = 1" * Uy
and for i =1,...,2" — 1 and t € [t,t} ], we let u"(t) be the solution to the
problem (3.5.5) with v’ = w(t}) and v = v}, and we set

277,
UZ . E—
T [tr_z tn}

i—17"%

dsu"(s)

By Lemma 3.5.2, these definitions are recursively well-posed, and indeed u"
takes values in Y. We also define a sequence of D([0,T); Ls(T)) cadlag pro-
cesses {v"} by requiring v"(t) = v} for ¢t € [t?,t!" ).

LEMMA 3.5.3. There exists a constant C' > 0 independent of n such that

E sup (u"(t),u"(t)) + E(Vu",Vu")) <C (3.5.7)

t€[0,T]
and for each ¢ € H'(T) such that (V, V) <1, for each § > 0 and r € (0,1)
P( sup [(u"(t) — u"(s), )| >7r) < Cor (3.5.8)

5,t€[0,T] :|s—t|<d
Furthermore for each § > 0
lim P(((u" — o™, u" —v")) >6) =0 (3.5.9)

n—oo

ProoOF. Writing Ito formula (3.5.6) for u” in the intervals [¢,t}, ] and
summing over i, we get for each ¢ € [0, T

(u" (), u" () + [ 4 ds (D(v")Vu", Vu") = N"(t) + (uo, uo)
+ f[o,t]d8[<Q(U”)Vv”, Vo) + [dx S(v")]

where, by the same means of Lemma 3.5.2, the martingale N"(t) := 2 f[o q (9%

(a(v™)Vu™),dW) enjoys the bound E sup (o 1) [N"(t)] < C1{(D(v™)Vu", Vur))'/?
for some C7 > 0 depending on D and a. Note that, by the definition of the
vl, hypotheses A5) and Young inequality for convolutions

f[07t]d3 Q™) Vu"Vor) < f[O,t]dS (Q(u™)Vu™, Vu™) + Cy L[[()’t?]ds (™ % g, 1" % o)
< f[o’t]ds (D(v™) — c)Vu™, Vu™) + 27T Cy ||z”||%1(m (ug, (uo)
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for some constant C; depending only on a. Patching all together
E sup;ejo 7y (u”(t), u"(t)) + c({D(v")Vu", Vu"))
<A1+ 27T Col™[|7, (1)) E o, uo)
+ CL{({D(v™)Vun, Vur)) 2 + f[o,t}xnrds dx S(v™)
Since S(+) is bounded by a constant depending only on j and a, it is not difficult
to gather (3.5.7).
Since u satisfies (3.5.5) in each interval [¢]', ¢, ]
|<u”(t) —u"(s), g0>| < C’g(l + ((Vu", Vu")>1/2)|t — 5|Y2(Vp, Vip)1/?
+| [l (a0) V), dW)|
for a suitable constant C3 depending only on f and D. (3.5.8) then follows

from the first part of the lemma.
In order to prove (3.5.9), by (3.5.7) it is enough to show that for each ¢ > 0

lim P(((u" — o™, u" —v")) > 6, ((Vu", Vu")) <€) =0

n—oQ

Let x € C°°(T) be such that [ dxr(x) =1, and note
I —id]| 1,1 == sup { [dz| [dy &’ (x — y)p(y) — p(2)],
p € C=(T), sup, |Vep(r)] <1} < +o0
It is easily seen that exists x such that ||k —id||_1; < &, as this quantity
vanishes as we let x converge weakly to the Dirac mass centered at 0. Then

[u" = 0"y rixny < HlJu" = £ u || Ly
H[v" = K 0| Ly 1<y F [E*F U™ — K ™| e 7<)
< = idll s Syt [(Va, V) + (Vor, o)
+ Jigp mydt (5 (w0 =), ko (u — "))

By the definition of v™, f[t" s Vo', Vo) < f[t” 71ds (Vu", Vu™). Moreover
1> 19

f[t§L7T]dt (K x (u™ —nv"), Kx (u" — ™))
=Z o f[t?,tﬁl]dt f[tﬁptﬂds (k* (u"(t) —u"(s)), k * (u"(t) — u™(s)))
< SUPy_gj<g-niap (R (U (t) — u(s)), ko (u(t) — u"(s)))
Therefore
|u™ — ™| Ly(en myxT) < % f[t?’T]dt (Vu"™, Vu")+ (3.5.10)
+ SUP}_ g <o-ntrr |5 * (u(t) — Un(s))H%Q(T) o
so that
E,HOO]P(((u” - u —o")) > ¢ (Vu", Vu')) < €)
< Timyoe P(2 [ — 0" || Laoag)m) > §)
+ P(2/Ju™ — 0| Ly(er 15Ty > %C, (Vur, Vuy) < 0)
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The first term in the r.h.s. of this formula vanishes by the bound on the
Loo([0,T]; Ly(T)) in (3.5.7). By (3.5.10), the second term in the r.h.s. is
bounded by ]P)(Sup\tfs|§2—”+1T [ (u" () — U"(S))||%2(1r)> > C/4)a which also
vanishes by (3.5.8). O

We define P" to be the law of u", considered as a stochastic process on
C([0,T],H*(T)) D Y.

COROLLARY 3.5.4. {P"} is tight, and thus compact, on C([0,T], H*(T))
equipped with the uniform topology. Furthermore each limit point P of {P"} is
concentrated on 'Y and satisfies

Esgp(u(t),u(t» +E{(Vu, Vu)) < +oo (3.5.11)

PROOF. The estimate (3.5.8) implies that for each ¢ € H'(T) the laws of
the processes ¢t — (u"(t), o) are tight in C'([0, T]; R) as n runs on N, see [6, pag.
83]. A standard application of Mitoma’s theorem (see [21, Cap. 6, Corollary
6.16]) implies that {P"} is tight on C([0,T], H*(T)). (3.5.11) follows by
(3.5.7). 0

The following statement is derived following closely the proof of Proposi-
tion 2.3.5.

PROPOSITION 3.5.5. Let K C U be a compact w.r.t. dyy. Suppose that each
u € K has a weak x-derivative Vu € Ly([0,T] x T), and suppose that exists
¢ > 0 such that ((Vu,Vu)) <. Then K is strongly compact in X.

PROPOSITION 3.5.6. Each limit point P of {P"} is concentrated on'Y and
is a weak solution to (3.5.1).

PROOF. Let P be a limit point of {P"} along a subsequence ny. It is easily
seen that the law of «(0) under P coincides with the law of u.
ForueY,ve D([0,T); Ly(T)) and ¢ € C*°([0,T] x T) let

L™ () = (a(0) 9(0)~ (u(0).¢(0)) — [ ds(u.000) = (£(0)~ 3 D)V V)

[0,2]

By (3.5.9), (3.5.7), and Proposition 3.5.5, the law of LY"" () under P" con-
verges, along the subsequence ny, to the law under P of L7:“(p) = L¥(¢).

On the other hand, for each n and ¢, L“"""(¢) is a martingale w.r.t.
P", with quadratic variation [L"*(¢),L""(p)], = f[o’t]ds (7% (a(v™)Vp), 7 *
(a(v™)Vy)). Still by (3.5.9), (3.5.7), and compactness in Ly([0,T] x T), we

have that L"(y) is a martingale under P, with quadratic variation given by
(3.5.3). O

PROPOSITION 3.5.7. There exists at most one strong solution to (3.5.1).
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PROOF. Let u, v be to strong solutions to equation (3.5.1). By Ito formula,
for [ € C*(R) with bounded derivatives

fdxl(u—v)(t) ) & fioqds (D)l (u = v)V (1 =), V(u —v))
+f0td5 l"(u—v) (u—), f(u) = f(v))
2 f[o t]ds (I"(uw —v)V(u — ), [D(u) — D(v)|Vv)
T3 f[),t]ds ("(u =), IVsllZ2 T)( a(u) — a(v))2
+ HQH%%T)((auG)( w)Vu — (0,a)(v )Vv)2)

where, as usual, the quadratic variation of the martingale X (¢) is bounded by
f[(]’t] 11" (w —v)V(u —v) (a(u) — a(v)) ||%2(T). Introducing

R := [E/[Mds (l”(u—v)V(u—v),V(u—v)>] v

and using Holder inequality, assumptions A2) and A5) and the bound (3.5.11),
we get for a suitable constant C' > 0
E sup, < fdm l(u—v)(t) + cR?

< 1(0 )+C[E|””< )|U_U|2||L°°([0,T]x1r)
—i—C’]Ef ds (I"(u —v)|u —v|, |u—v|)

R

]1/2

For any § > 0, we can choose [ so that |z| < l(z) < |z| + 6, I(2) = |z| for
|z| > 8, and |I”(z)| < 3671, Therefore

Esup, |u — vl < Esup, [dol(u—v)(t) <6 —cR2+ CVSR+CH
2
< (£ +0+1)8
Since this holds for any 6 > 0, u = v. U

Proor oF THEOREM 3.5.1. Existence and uniqueness of a strong solu-
tion to (3.5.1) is a g consequence of Proposition 3.5.6, Proposition 3.5.7 and
Yamada-Watanabe theorem [16, Cap. 5, Corollary 3.23]. The fact that u
takes values supported by [0,1] is provided in the same fashion of Corol-
lary 3.2.3. Let {i"} be a sequence of infinitely differentiable convex functions
on R with bounded derivatives. We can choose {l,} such that for v € [0, 1]
((Buuln)(v) < D(v)a™2(v) and L,(v) < Cy(1 + v?) (for some C,, > 0), while
ln(v) T 400 for n — 400 pointwise for v € [0, 1]. By Ito formula (3.2.1)

[dx [L,(u(t)) = L(uo)] + 3 fOtds<(8 uln) (W) D (u) Vu, (Byuln) (u) V)
2f[o,t}d8<( uln) () Vi, Q( Vu) + [ gds [z (Ouuln) () S(u) + Na(t)

where N, (t) is a martingale, and by Young inequality its quadratic variation
bounded by [Ny(-, NaO)], < fiyuy{@(w)(Dule) (w) aw) Vet (Bl () V).
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Following closely the proof of Corollary 3.2.3, we gather for some constant
C independent of n
E sup /dx Lo(u(t)) < E/dxln(uo) +C
t<T
As we let n — o0, the Lh.s. stays bounded, and since [, — +o00 pointwise off
0, 1], necessarily u(t, z) € [0,1] dt dz dP-a.s.. O
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