Tesi di Dottorato

Daniele D'Angeli
 Groups, Probability and Combinatorics: different aspects in Gelfand Pairs Theory

Dottorato in Matematica, Roma «La Sapienza»(2007).
http://www.bdim.eu/item?id=tesi_2007_DAngeliDaniele_1

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Università Degli Studi di Roma "La SAPIENZA"
Facoltà di Scienze Matematiche Fisiche e Naturali Dottorato di Ricerca in Matematica
XIX Ciclo

Groups, Probability and Combinatorics: different aspects
 in Gelfand Pairs Theory

Dottorando
Daniele D'Angeli

Relatori
Prof. Tullio Ceccherini-Silberstein
Prof. Fabio Scarabotti

Contents

Introduction 3
Chapter 1. Gelfand pairs 9

1. First definitions 9
2. Decomposition of the space $L(X)$ 11
3. Spherical functions 13
4. Irreducible submodules 16
5. The spherical Fourier formula and Garsia theorem 16
6. The case of the full automorphisms group 17
7. Some constructions 21
Chapter 2. Self-similar groups and generalized wreath products 27
8. General settings 27
9. The Basilica group 30
10. The Grigorchuk group 33
11. $\quad I=I M G\left\{z^{2}+i\right\}$ 35
12. The Hanoi Tower group H 37
13. Generalized wreath products of permutation groups 39
14. Substructures 46
Chapter 3. Markov Chains 49
15. General properties 49
16. Insect Markov chain 53
17. Cut-off phenomenon 55
18. Orthogonal block structures 58
19. First and Second crested product 68
Appendix: Association schemes 99
20. First definition 99
21. Second definition 100
22. Third definition 101
23. The Bose-Mesner algebra 103
24. Crossed and nested product of association schemes 104
25. Crested product of association schemes 105
26. Examples 109
Bibliography 117

Introduction

This thesis concerns with essentially various and different aspects linked to the general and huge theory of the finite Gelfand Pairs.

More precisely we will explore this theory from different points of view: the algebraic approach enriched by the introduction of the class of self-similar groups acting on trees that show very interesting and surprising properties, the probabilistic approach suggested by the introduction of some particular Markov chains and the combinatoric approach linked mainly to the classical theory of the association schemes and to the introduction of poset block structures on which the generalized wreath products act.

The theory of the Gelfand pairs has found fundamental relations with many mathematical fields as group theory, representation theory, harmonic analysis, coding theory, combinatorics, the theory of special functions, probability and statistics.

Clearly, there exists also a very huge literature about Gelfan Pairs theory (finite and infinite). We can mention among them the works by Ceccherini-Silberstein, Tolli and Scarabotti [CST1, CST2] for general settings, Letac [Let1, Let2], Delsarte [Del1, Del2] with an approach also to coding theory , Dunkl [Dun1, Dun2, Dun4] using special and orthogonal functions, Faraut [Far] for the infinite case, Figà-Talamanca [F-T2, F-T1] linked to Markov chains, Stanton [Stan] and the pioneering book by Diaconis [Dia2] that associates the theory to probabilistic and statistical themes.

After a brief introduction in which general settings of the theory are discussed the thesis proposes to approach some topics to which the Gelfand pairs theory can be applied: the theory of self-similar groups and the Markov chains theory.

This frame contains as integrated part the theory of the association schemes that are strictly linked to Gelfand pairs and to which we have dedicated a small Appendix (see also [Bai] for mare details).

Given a group G (that in this thesis we suppose finite) and a subgroup K, we denote $L(K \backslash G / K)$ the space of the bi- K-invariant functions which has a structure of algebra with respect to the operation of convolution. We will say that (G, K) is a Gelfand pair, if $L(K \backslash G / K)$ is commutative. Equivalently if one considers the homogeneous space $X=G / K$ and the action of G on the space of functions on X (denoted $L(X))$ defined as follows: $g f(x):=f\left(g^{-1} x\right)$ for every $x \in X, g \in G$ and
$f \in L(X)$ we get a representation of G in $L(X)$ (the regular representation $\left.\lambda_{G}\right)$. This will admit a decomposition into irreducible submodules, then (G, K) is a Gelfand pair if this decomposition is multiplicity free (i.e. if V_{i} and V_{j} are two distinct irreducible subspaces of $L(X)$ under the action of G then V_{i} is not isomorphic to V_{j}). Each module contains a special function, the spherical function that is an eigenvalue of the action by convolution. The set of all spherical functions (whose number equals the number of irreducible submodules) constitutes a basis for the space of K-invariant functions.

A special case of Gelfand pairs is the case of symmetric Gelfand pairs. This is the case when for each $g \in G$ the inverse g^{-1} belongs to the double K-cosets $K g K$. This yields many examples of Gelfand pairs, also in the case that X has a metric structure. In effect, we get a symmetric Gelfand pair when the action of G on X is 2-points homogeneous, namely any two pairs of points in X with same distance can be overlapped by the action of G. This criterion allows to treat the case of the action of the full automorphism group of a rooted tree $\operatorname{Aut}\left(T_{n}\right)$ on the $n-$ th level $L_{n}\left(=\operatorname{Aut}\left(T_{n}\right) / K\right.$, where K is the stabilizer of a fixed vertex belonging to the n-th level), that presents the structure of an ultrametric space. In effect the richness of the automorphism that such a group presents, produces an action 2-points homogeneous on L_{n} (see for example [CST2] Cap. 7).

The first idea developed in this thesis is to see if this construction can be generalized to some families of finitely generated, non dense discrete subgroups of $\operatorname{Aut}(T)$.
R. I. Grigorchuk in [BHG] has proven an analogous result for is celebrated group, looking to the action restricted to each level of the binary rooted tree (see, for example [Gri1] and [Gri2]), showing, in particular, that the parabolic subgroup K acts transitively on each sphere around the fixed vertex in L_{n}. For an approach to the infinite case for groups acting on trees (the action on the bound ∂T of the tree) see $[\mathbf{B G 2}]$ and $[\mathbf{B G 1}]$.

We have given the same results ([DD1]) for three interesting examples of self-similar groups: the Basilica group, introduced by Grigorchuk and Żuk in [GrŻu], the Hanoi Tower Group introduced with a self-similar presentation by Grigorchuk and Šunik in $[\mathbf{G r S ̌} 1]$ and the group $\operatorname{IM} G\left(z^{2}+i\right)$ introduced by Grigorchuk, Savchuk and Šunik in [GSŠ].

These groups have the important property to be Iterated Monodromy Group of complex valued functions. This relation has led to many spectacular results due to V. Nekrashevych and linked to the theory of dynamical systems, Julia sets and limit spaces (see [Nek2] and $[\mathbf{B G N}]$).

For two of these groups we have found a non standard proof of the fact that they give rise to Gelfand pairs, namely that the rigid vertex
stabilizer of the vertices of the first level (i.e. the set of the automorphisms acting non trivially only on the subtree rooted in a vertex) acts transitively on the respective subtrees. This yields a proof analogue to that given in the case of $\operatorname{Aut}\left(T_{n}\right)$ and for Grigorchuk group, for example, does not work. Moreover the decomposition into irreducible submodules given by the action of these groups on $L\left(L_{n}\right)$ is the same that the decomposition gotten by $\operatorname{Aut}\left(T_{n}\right)$ (easy consequence of Wielandt Lemma). These groups have the property of being weakly branch. Can be this result true for every weakly branch group?

The decomposition obtained is constituted by irreducible modules that are the eigenspaces of a particular Markov operator on $L\left(L_{n}\right)$ associated with a Markov chain on L_{n} introduced by Figà-Talamanca called Insect (see [F-T1]). Each state of this chain is given when an insect starting from the leftmost vertex of L_{n} (by homogeneity this is not important) and moving a simple random walk on the tree reaches again the level L_{n}. Effectively this Markov chain is invariant under the action of $\operatorname{Aut}\left(T_{n}\right)$ and this fact produces the correspondence of the subspaces.

In this thesis we have shown that in this Markov chain does not appear the cut-off phenomenon (see [Dia1] and [DD4]), this means that the distance of the probability measure associated with the Insect Markov chain from the stationary distribution does not decay in an exponentially fast way.

On the other hand, we have generalized this Markov chain to some more general and complicate structures, namely the poset and the orthogonal block structures.

This structures constitute a generalization of the tree, i.e. given a poset (I, \leq), we can associate to it a combinatoric structure and a relative group of automorphisms. In the case of the tree the poset I becomes a vertical line and the associated automorphisms group is naturally given by the wreath product of symmetric groups.

In the general case the mentioned group has a more complicate form, something that is between the direct product and the wreath product. This group is the generalized wreath product F introduced by R. A. Bailey, Cheryl E. Praeger, C. A. Rowley and T. P. Speed in [B\&al].

These groups act on the space of functions given by the product of finite spaces indexed by the vertices of the poset I. This space is the homogeneous space obtained by considering the action of the whole group F and a relative subgroup K fixing a singleton.

The pair (F, K) is effectively a Gelfand pair. This result can be directly proven by $[\mathbf{B} \& \mathbf{a l}]$, but we have used a more general method, valid in a more general context. The Markov chain that generalizes the Insect can be defined in structures that are not linked to group theory (the orthogonal blocks) but in the case of the action of F (the
poset blocks) we have the correspondence of the relative irreducible submodules and eigenspaces (see [DD2]).

We have already said that a Gelfand pair (G, K) produces a decomposition in irreducible submodules given by the action of G on the space of function $L(G / K)$.

The last part of the third chapter moves completely from an algebraic to a probabilistic point of view. The decompositions of the permutation representation λ_{G} can be totally derived using particular convex combinations of Markov chains on finite sets. Starting from the case of the direct and wreath products we can construct Markov chains which are the crossed and nested products of single Markov chains whose decompositions are the same of those given by the groups (the terminology comes from association schemes, that showing an combinatorial analog of this situation).

Generalizing this construction, for any partition $\{1,2, \ldots, n\}=C \sqcup$ N and any Markov chain P_{i} on a finite space X_{i}, with $i \in\{1,2, \ldots, n\}$ we can define a new Markov chain on the product $X=X_{1} \times \cdots \times X_{n}$ whose behaviour is crossed for the indices belonging to C and nested for the indices belonging to N. First crested product is the name that we have given to this intermediate Markov chain P (see [DD3]). The name has been inspired by a similar product introduced in $[\mathbf{B a C a}]$ for association schemes.

We have given an explicit description of the eigenspaces and the eigenvalues of P. For example, choosing $\{1,2, \ldots, n\}=N$ and every P_{i} the uniform operator (every element in X_{i} can be reached in one step with same probability) gets the Insect Markov chain.

Many topics that we have treated concern with the study of a rooted tree with some branching indices.

The idea developed in the last section of chapter 3, has been inspired by the work by Ceccherini-Silberstein, Scarabotti and Tolli [CST3]: every vertex in the n-th level of a rooted tree can be regarded as a subtree with branching indices equal to 1 inside the whole tree T. Then one can consider, in general, the variety $\mathcal{V}(r, s)$ of the subtrees with branching indices $r=\left(r_{1}, \ldots, r_{n}\right)$ inside a tree with branching indices $s=\left(s_{1}, \ldots, s_{n}\right)$, where $r_{i} \leq s_{i}$ for each $i=1, \ldots, n$. This space is the quotient of the group $\operatorname{Aut}\left(T_{n}\right)$ on the stabilizer $K(r, s)$ of a particular substructure. It is known that $\left(\operatorname{Aut}\left(T_{n}\right), K(r, s)\right)$ is a Gelfand pair and the irreducible submodules and the relative spherical functions are given (see [CST3]). Our starting point has been the following question: can we deduce the analogous decomposition using as before only Markov chains? That is what we have proved in a more general contest in which for the space we can forget the ultrametric structure.

Generalizing more and more, there exists an analogous construction in poset block structures (with the tree as particular case). Do they
give rise to Gelfand pairs? What is the decomposition associated? And what are the relative spherical functions?

To the first question we have given a positive answer, the others are still open.

The thesis is structured in the following order.
The first chapter constitutes a sort of survey to the general theory, where some basic theorems and fundamental tools occurring many times in the following are introduced. In Section 6 we present the Gelfand Pairs associated with the full automorphism group of the q-ary rooted tree of depth n and the stabilizer of a single leaf, namely $\left(\operatorname{Aut}\left(T_{n}\right), K\right)$.

The second chapter gives an overview of the groups acting on rooted trees, and shows that one can get Gelfand pairs by considering particular (and well known in literature) examples of $\operatorname{Aut}(T)$, whose action is restricted to finite levels. On the other hand, sections 4 and 5 introduce a generalization of the standard crossed and wreath products (the last one corresponds to $\operatorname{Aut}\left(T_{n}\right)$), the generalized wreath product linked to more complicated structure (poset blocks). Also in this case we show that we get Gelfand pairs.

The third chapter studies the so called Insect and shows that what we have obtained by using group actions can be derived from Markov chains. Here we define a very general Markov chain on some combinatoric structures called orthogonal blocks. Section 5 reflects essentially the article [DD3].

CHAPTER 1

Gelfand pairs

In this chapter we introduce the general theory of finite Gelfand pairs. More precisely we give the classical definition and a characterization in terms of representation theory. Spherical functions and their interesting properties will be investigated. When it will not be specified G will denote a finite group. The source is [CST2].

1. First definitions

Let G be a finite group and $K \leq G$ a subgroup, denote $X=G / K$ the corresponding homogeneous space constituted by the right cosets of K in G. Then G acts on X as follows: given $g \in G$ and $h K \in X$, $g \cdot h K=g h K$, i.e. G acts by left translation on X. Equivalently, if X is a finite space on which G acts transitively and $x \in X$ is a fixed element, then we can naturally identify X with the quotient group G / K, where $K=\operatorname{Stab}_{G}(x)$ is the subgroup of G that stabilizes the element x, via the map $g \rightarrow g x$.

We set $L(G)=\{f: G \rightarrow \mathbb{C}\}$ the vector space of the complex functions defined on G. Actually this space has a richer structure, in fact it is an algebra with respect the following operation $*$ of convolution: if $f_{1}, f_{2} \in L(G)$ then

$$
f_{1} * f_{2}(g)=\sum_{h \in G} f_{1}(g h) f_{2}\left(h^{-1}\right) .
$$

We denote $L(X)=L(G / K)$ the set of functions defined on X (i.e. K-invariant on the right) and $L(K \backslash G / K)$ the set of functions defined on G that are bi- K-invariant, i.e.

$$
L(K \backslash G / K)=\left\{f \in L(G): f\left(k g k^{\prime}\right)=f(g) \forall g \in G \text { and } \forall k, k^{\prime} \in K\right\}
$$

Both $L(X)$ and $L(K \backslash G / K)$ are algebras with the convolution $*$.
Definition 1.1. Let G be a finite group and $K \leq G$. The pair (G, K) is a Gelfand pair if the algebra $L(K \backslash G / K)$ is commutative with respect to the operation of convolution.

The following lemma is very easy.
Lemma 1.2. If G is commutative and $K \leq G$, then (G, K) is a Gelfand pair.

Proof. By definition

$$
\begin{aligned}
f_{1} * f_{2}(g) & =\sum_{h \in G} f_{1}(g h) f_{2}\left(h^{-1}\right)= \\
& =\sum_{h \in G} f_{1}(g h) f_{2}\left(g h^{-1} g^{-1}\right)= \\
& =\sum_{t \in G} f_{1}\left(t^{-1}\right) f_{2}(g t)= \\
& =\sum_{t \in G} f_{2}(g t) f_{1}\left(t^{-1}\right)=f_{2} * f_{1}(g) .
\end{aligned}
$$

Suppose that for each $g \in G$ we get $g^{-1} \in K g K$, then for any $f \in L(K \backslash G / K)$ one has $f\left(g^{-1}\right)=f(g)$ and

$$
\begin{aligned}
f_{1} * f_{2}(g) & =\sum_{h \in G} f_{1}(g h) f_{2}\left(h^{-1}\right)= \\
& =\sum_{h \in G} f_{1}(g h) f_{2}(h)= \\
& =\sum_{t \in G} f_{1}(t) f_{2}\left(g^{-1} t\right)= \\
& =\sum_{t \in G} f_{2}\left(g^{-1} t\right) f_{1}(t)= \\
& =\sum_{t \in G} f_{2}\left(g^{-1} t\right) f_{1}\left(t^{-1}\right)= \\
& =f_{2} * f_{1}\left(g^{-1}\right)=f_{2} * f_{1}(g),
\end{aligned}
$$

that implies the commutativity of the algebra $L(K \backslash G / K)$.
Definition 1.3. Let G be a finite group and $K \leq G$ such that for any $g \in G$ one has $g^{-1} \in K g K$, then the Gelfand pair (G, K) is called symmetric Gelfand pair.

The following lemma will give an interesting characterization of symmetric Gelfand pairs, this will be useful later. Observe that G acts on the space $X \times X$ by diagonal action (i.e. $g \cdot(x, y)=(g x, g y)$ for all $x, y \in X$ and $g \in G)$.

Lemma 1.4 (Gelfand Condition). Let $X \simeq G / K$ be a finite space with a transitive action of G and $K=\operatorname{Stab}_{G}\left(x_{0}\right)$, where $x_{0} \in X$. The pair (G, K) is a symmetric Gelfand pair if and only if for all $x, y \in X$ there exists $g \in G$ such that $g(x, y)=(y, x)$.

Proof. We use the notation $(x, y) \sim(y, x)$ for $g(x, y)=(y, x)$. If (G, K) is symmetric, let $t, s \in G$ such that $x=t x_{0}$ and $y=t s x_{0}$ and
let $k_{1}, k_{2} \in K$ such that $s^{-1}=k_{1} s k_{2}$. Then

$$
(x, y)=t\left(x_{0}, t^{-1} y\right) \sim\left(x_{0}, t^{-1} y\right)=\left(x_{0}, s x_{0}\right)
$$

Moreover

$$
(x, y)=s\left(s^{-1} x_{0}, x_{0}\right) \sim\left(s^{-1} x_{0}, x_{0}\right)=\left(k_{1} s k_{2} x_{0}, x_{0}\right)
$$

But $k_{1}, k_{2} \in K$, so

$$
\left(k_{1} s k_{2} x_{0}, x_{0}\right)=k_{1}\left(s x_{0}, x_{0}\right) \sim\left(s x_{0}, x_{0}\right)=\left(t^{-1} y, x_{0}\right) \sim(y, x)
$$

On the other hand, as $\left(x_{0}, g^{-1} x_{0}\right) \sim\left(x_{0}, g x_{0}\right)$ there exists $k \in G$ such that $k\left(x_{0}, g^{-1} x_{0}\right)=\left(x_{0}, g x_{0}\right)$. I.e. $k x_{0}=x=0$ and $k g^{-1} x_{0}=g x_{0}$. This implies $k \in K$ and $g^{-1} \mathrm{~kg}^{-1} \in K$.

Example 1.5.

Let G be a finite group acting by isometries on a metric space (X, d). The action of G is said 2-points homogeneous if for all $x_{1}, x_{2}, y_{1}, y_{2} \in X$ such that $d\left(x_{1}, x_{2}\right)=d\left(y_{1}, y_{2}\right)$ there exists $g \in G$ such that $g\left(x_{1}, x_{2}\right)=$ $\left(y_{1}, y_{2}\right)$. Then, if the action of G on a metric space (X, d) is 2-points homogeneous and $K=\operatorname{Stab}_{G}\left(x_{0}\right)$, with $x_{0} \in X$ fixed, (G, K) is a symmetric Gelfand pair. In this case it easy to show that the K-orbits of K on X are the spheres of center x_{0} and a function $f \in L(X)$ is K-invariant (i.e. bi- K-invariant) if and only if it is constant on the spheres.

2. Decomposition of the space $L(X)$

We have already introduced the space $L(X)$ of the complex functions on X. This space (as well as $L(G)$) is an Hilbert space with respect to the inner product \langle,$\rangle defined by setting, for every f_{1}, f_{2} \in$ $L(X)$:

$$
\left\langle f_{1}, f_{2}\right\rangle=\sum_{x \in X} f_{1}(x) \overline{f_{2}}(x)
$$

This space is so endowed by the usual metric $\|\cdot\|_{2}$. The group G acts on the space $L(X)$ as follows: if $f \in L(X)$ and $g \in G$, we set $g \cdot f(x)=f\left(g^{-1} x\right)$. It is easy to verify that this is effectively an action. One can ask what is the decomposition into irreducible submodules of this representation. The answer will give a characterization of the Gelfand pairs in terms of representation of groups theory.

First of all we want to recall the following celebrate lemma
Lemma 2.1 (Schur). Let U and V irreducible representations of a group G. Then the space $\operatorname{Hom}_{G}(U, V)$ of the homomorphisms G-invariant intertwining U and V is trivial if U is not equivalent to V and is $\mathbb{C} u$ if U is equivalent to V by the homomorphism u.

The first step connecting representation theory to Gelfand pairs theory is given by the following proposition

Proposition 2.2. $\operatorname{Hom}_{G}(L(X), L(X)) \simeq L(K \backslash G / K)$.
Proof. Each operator $T: L(X) \longrightarrow L(X)$ can be represented by a matrix $(r(x, y))_{x, y \in X}$ such that $T f(x)=\sum_{x \in X} r(x, y) f(y)$. The G-invariance of T implies that $r(g x, g y)=r(x, y)$ for every $g \in G$. If x_{0} is the point stabilized by K, there exist $g, h \in G$ such that $x=$ $g x_{0}$ and $y=h x_{0}$. Set $z=h^{-1} g x_{0} \in X$, we note that $z=z(x, y)$ is well defined modulo its K-orbit. In fact it is easy to verify that $z \in K h^{-1} g x_{0}$. Called $\varrho(z)=r(x, y), \varrho$ is K-invariant. Moreover

$$
\begin{aligned}
T f(x) & =\frac{1}{|K|} \sum_{h \in G} r\left(x, h x_{0}\right) f\left(h x_{0}\right)= \\
& =\frac{1}{|K|} \sum_{h \in G} r\left(h^{-1} g x_{0}, x_{0}\right) f\left(h x_{0}\right)= \\
& =\frac{1}{|K|} \sum_{h \in G} \varrho\left(h^{-1} g x_{0}\right) f\left(h x_{0}\right) .
\end{aligned}
$$

Then the correspondence is given by $\varrho \longleftrightarrow(r(x, y))_{x \cdot y \in X}$ that is algebra homomorphism.

This allows us to give an analogous definition of Gelfand pairs in terms of the representation of the group G onto the space $L(X)$.

Theorem 2.3. Let G be a finite group, $K \leq G$ and $X=G / K$. Suppose that $L(X)=\oplus_{i=1}^{n} V_{i}$ is the decomposition of the space into irreducible submodules under the action of G. Then $V_{i} \not \equiv V_{j}$ for $i \neq j$ (multiplicity free) if and only if (G, K) is a Gelfand pair.

Proof. From Proposition 2.2 we have to show the commutativity of the algebra $\operatorname{Hom}_{G}(L(X), L(X))$. But in this case Schur's Lemma implies that an homomorphism T that is G-invariant has the form $T=\oplus_{i=1}^{n} T_{i}$, where $T_{i}=c_{i} I d_{V_{i}}$. This gives the assertion.

The previous criterion is very useful for studying Gelfand pairs.
For each representation V of the group G, denote $V^{K}=\{v \in V$: $k \cdot v=v\}$ the space of K-invariant vectors in V.

Proposition 2.4. $\operatorname{Hom}_{G}(V, L(X)) \simeq \operatorname{Hom}_{K}(V, \mathbb{C}) \simeq V^{K}$.
Proof. It suffices, for the first isomorphism, to define an operator $\Theta: \operatorname{Hom}_{G}(V, L(X)) \longrightarrow \operatorname{Hom}_{K}(V, \mathbb{C})$ as $\Theta(T)(v)=T(v)\left(x_{0}\right)$, where x_{0} is the point stabilized by K. For the second one set Υ : $\operatorname{Hom}_{K}(V, \mathbb{C}) \longrightarrow V^{K}$ such that $\Upsilon(S)=v_{0}$ where, $S(v)=\left\langle v, v_{0}\right\rangle$ for every $v \in V$.

We have a new characterization.
Theorem 2.5. (G, K) is a Gelfand pairs if and only if, given an irreducible representation V of $G, \operatorname{dim}\left(V^{K}\right) \leq 1$.

Proof. (G, K) is a Gelfand pair if and only if $L(X)$ has a multiplicity free decomposition. Now $\operatorname{Hom}_{G}(V, L(X)) \simeq V^{K}$ is the multiplicity of the representation V in $L(X)$.

3. Spherical functions

In this section we want to study some particular bi- K-invariant functions called spherical functions.

Definition 3.1. A spherical function ϕ is a bi-K-invariant function satisfying

- $f * \phi=\left[(\phi * f)\left(1_{G}\right)\right] \phi$ for every $f \in L(K \backslash G / K)$;
- $\phi\left(1_{G}\right)=1$.

It is clear from definition that the constant function $\phi \equiv 1$ on G is spherical. Actually, the number of the spherical functions is the number of the irreducible representations in the decomposition of the space $L(X)$ under the action of G. More precisely there exists a spherical functions in each of such a space.

Suppose to have different spherical functions, the following lemma specifies their mutual properties.

Lemma 3.2. Let ϕ and φ two distinct spherical functions. Then
(1) $\phi\left(g^{-1}\right)=\overline{\phi(g)}$ for all $g \in G$;
(2) $\langle\phi, \varphi\rangle=0$;

Proof.
(1) Set $\phi^{*}(g)=\overline{\phi\left(g^{-1}\right)}$ and observe that $\phi^{*} * \phi=\phi^{*} * \phi\left(1_{G}\right) \phi=$ $\|\phi\|_{2}^{2} \phi$. Since $\phi^{*} * \phi\left(g^{-1}\right)=\overline{\phi^{*} * \phi(g)}$ we get the thesis.
(2) $\phi * \varphi(g)=\phi * \varphi\left(1_{G}\right) \phi(g)$. On the other hand it must be equal to $\varphi * \phi(g)=\varphi * \phi\left(1_{G}\right) \varphi(g)$. This implies the equality of the coefficients that must be trivial, that implies the ortogonality.

The following property will be useful later.
Proposition 3.3. A bi- K-invariant non trivial function is spherical if and only if

$$
\begin{equation*}
\frac{1}{|K|} \sum_{k \in K} \phi(g k h)=\phi(g) \phi(h), \tag{1}
\end{equation*}
$$

for all $g, h \in G$.

Proof. Suppose that (1) is satisfied by a function ϕ. First of all $\phi\left(1_{G}\right)=1$ as one can verify taking $h=1$. Moreover if $f \in L(K \backslash G / K)$ and $k \in K$

$$
\begin{aligned}
\phi * f(g) & =\sum_{h \in G} \phi(g h) f\left(h^{-1}\right)= \\
& =\sum_{h \in G} \phi(g h) f\left(h^{-1} k\right)= \\
& =\sum_{t \in G} \phi(g k t) f\left(t^{-1}\right)= \\
& =\frac{1}{|K|} \sum_{t \in G} \sum_{k \in K} \phi(g k t) f\left(t^{-1}\right)= \\
& =\phi(g) \sum_{t \in G} \phi(t) f\left(t^{-1}\right)= \\
& =\left(\phi * f\left(1_{G}\right)\right) \phi(g) .
\end{aligned}
$$

Viceversa suppose that ϕ is a spherical function and g and h elements of G. Set

$$
F_{g}(h)=\sum_{k \in K} \phi(g k h) .
$$

Then, if $f \in L(K \backslash G / K)$ and $g^{\prime} \in G$ we have

$$
\begin{aligned}
F_{g} * f\left(g^{\prime}\right) & =\sum_{h \in G} \sum_{k \in K} \phi\left(g k g^{\prime} h\right) f\left(h^{-1}\right)= \\
& =\sum_{k \in K} \sum_{h \in G} \phi\left(g k g^{\prime} h\right) f\left(h^{-1}\right)= \\
& =\sum_{k \in K} \phi * f\left(g k g^{\prime}\right)= \\
& =(\phi * f)\left(1_{G}\right) \sum_{k \in K} \phi\left(g k g^{\prime}\right)= \\
& =(\phi * f)\left(1_{G}\right) F_{g}\left(g^{\prime}\right) .
\end{aligned}
$$

Analogously, if

$$
G_{g}(h)=\sum_{k \in K} f(h k g)
$$

we get

$$
\begin{aligned}
F_{g} * f\left(g^{\prime}\right) & =\sum_{h \in G} \sum_{k \in K} \phi\left(g k g^{\prime} h\right) f\left(h^{-1}\right)= \\
& =\sum_{h \in G} \sum_{k \in K} \phi(g h) f\left(h^{-1} k g^{\prime}\right)= \\
& =\phi * G_{g^{\prime}}(g)= \\
& =\phi * G_{g^{\prime}}\left(1_{G}\right) \phi(g)= \\
& =|K|(\phi * f)\left(g^{\prime}\right) \phi(g)= \\
& =|K|(\phi * f)\left(1_{G}\right) \phi\left(g^{\prime}\right) \phi(g) .
\end{aligned}
$$

This implies $\phi * f\left(1_{G}\right) \neq 0$ and $F_{g}\left(g^{\prime}\right)=|K| \phi\left(g^{\prime}\right) \phi(g)$, that is the thesis.
Now we can prove the following
Theorem 3.4. Let $X=G / K$ and $L(X)=\oplus_{i=0}^{n} V_{i}$ be the decomposition in irreducible submodules. Each V_{i} contains a spherical function ϕ_{i}, and coincides with the space spanned by ϕ_{i}.

Proof. The space V_{i} contains a K-invariant vector v_{i}. Assume that $\left\|v_{i}\right\|_{2}=1$. Set $\phi(g)=\left\langle\lambda(g) v_{i}, v_{i}\right\rangle$, where λ is the representation associated with G. By definition $\phi\left(1_{G}\right)=1$ and so we have to prove that

$$
\sum_{k \in K} \phi(g k h)=\phi(g) \phi(h) .
$$

We have

$$
\begin{aligned}
\sum_{k \in K} \phi(g k h) & =\sum_{k \in K}\left\langle\lambda(g k h) v_{i}, v_{i}\right\rangle= \\
& =\sum_{k \in K}\left\langle\lambda(g) v_{i}, \lambda\left(h^{-1} k^{-1}\right) v_{i}\right\rangle= \\
& =\left\langle\lambda(g) v_{i}, \sum_{k \in K} \lambda\left(h^{-1} k^{-1}\right) v_{i}\right\rangle= \\
& =\left\langle\lambda(g) v_{i}, v_{i}(h)\right\rangle .
\end{aligned}
$$

Since v_{i}^{\prime} is K-invariant $v_{i}(h)=c(h) v_{i}$ we get

$$
\sum_{k \in K} \phi(g k h)=\phi(g) c(h) .
$$

Set $g=1_{g}$ it follows $c(h)=\phi(h)$.
We call S_{i} the space spanned by ϕ_{i} under the action of G. Evidently, $L(X) \leq \oplus_{i=0}^{n} S_{i}$. But S_{i} is a sub-representation of $L(X)$ and so we have the assert.

Observe that we can now define a spherical function ϕ as a function in $L(X)$ that is K-invariant, belonging to an irreducible G-invariant subspace and such that $\phi\left(x_{0}\right)=1$.

4. Irreducible submodules

The following fundamental fact is well known
Lemma 4.1 (Wielandt). Let G be a finite group, $K \leq G$ and $X=$ G / K the corresponding homogeneous space. If $L(X)=\oplus_{i=0}^{n} m_{i} V_{i}$ is the decomposition into irreducible submodules and m_{i} the multiplicity of the representation V_{i}, then $\sum_{i=0}^{n} m_{i}^{2}$ equals the number of K-orbits on X.

Corollary 4.2. Suppose G, K and X as before. If $L(X)=\oplus_{i=0}^{m} V_{i}$ and $m+1$ is the number of the K-orbits on X, then the V_{i} 's are irreducible and (G, K) is a Gelfand pair.

Proof. Considering the decomposition into irreducible submodules we have $m+1 \leq \sum_{i=0}^{n} m_{i} \leq \sum_{i=0}^{n} m_{i}^{2}$. Then by Wielandt's Lemma $m=n$ and $m_{i}=1$ for each i.

5. The spherical Fourier formula and Garsia theorem

Let ϕ_{i} be the spherical function belonging to V_{i} and set $\operatorname{dim} V_{i}=d_{i}$.
Definition 5.1. The spherical transform $\mathcal{F} f$ of a K-invariant function in $L(X)$ is the function

$$
(\mathcal{F} f)(i)=\sum_{x \in X} f(x) \overline{\phi_{i}(x)}=\left\langle\mathcal{F} f, \phi_{i}\right\rangle .
$$

If one knows the spherical Fourier transform of a function can find the function by the following inverse formula

$$
f(x)=\frac{1}{|X|} \sum_{i=0}^{n} d_{i}(\mathcal{F} f)(i) \phi_{i}(x) .
$$

This notion is connected to the spectral analysis of a G-invariant operator defined on $L(X)$

Definition 5.2. Let $T: L(X) \longrightarrow L(X)$ be an operator and $T(f)=\frac{1}{|K|} f^{\prime} * \psi^{\prime}$, where f^{\prime} and ψ^{\prime} are the lifting function on G corresponding to f and ψ. Then $\psi: X \longrightarrow \mathbb{C}$ is called convolution kernel.

Proposition 5.3. Suppose $T \in \operatorname{Hom}(L(X), L(X))$ with corresponding convolution kernel ψ. Then V_{i} is an eigenspace of T with associated eigenvalue $(\mathcal{F} \psi)(i)$.

Proof. From Schur's Lemma T has V_{i} as eigenspace, moreover

$$
\left(T \phi_{i}\right)\left(g x_{0}\right)=\frac{1}{|K|}\left(\phi_{i}^{\prime} * \psi^{\prime}\right)(g)=\frac{1}{|K|}\left(\phi_{i}^{\prime} * \psi^{\prime}\right)\left(1_{G}\right) \phi_{i}^{\prime}(g)=(\mathcal{F} \psi)(i) \phi_{i}\left(g x_{0}\right) .
$$

The spherical Fourier transform allows to characterize symmetric Gelfand pairs in terms of spherical functions

Theorem 5.4 (Garcia). A Gelfand pair (G, K) is symmetric if and only if the sparical functions are real valued.

Proof. Let $\chi_{K g K}$ the characteristic function of the set $K g K$. Then

$$
\mathcal{F}\left(\chi_{K g K}\right)(i) \sum_{x \in K g K} \overline{\phi_{i}(x)}=|K g K| \overline{\phi_{i}(g)} .
$$

On the other hand

$$
\mathcal{F}\left(\chi_{K g^{-1} K}\right)(i) \sum_{x \in K g^{-1} K} \overline{\phi_{i}(x)}=\left|K^{g}-1 K\right| \overline{\phi_{i}\left(g^{-1}\right)}=|K g K| \phi_{i}(g) .
$$

This implies from inversion formula that (G, K) is symmetric ($K g K=$ $K g^{-1} K$ for every $\left.g \in G\right)$ if and only if ϕ_{i} is real valued.

6. The case of the full automorphisms group

In this section we study the group of the automorphisms of a q-ary rooted tree in relation with the theory of Gelfand pair.

Consider the infinite q-ary rooted tree, i.e. the rooted tree in which each vertex has q children. We will denote this tree by T. If $X=\{0,1, \ldots, q-1\}$ is an alphabet of q elements, X^{*} is the set of all finite words in X. Moreover, we can identify the set of infinite words in X with the elements of the boundary of T. Each vertex in the n-th level L_{n} of T will be identified with a word of length n in the alphabet X.

Fig.1. The ternary rooted tree of depth 3 .

The set L_{n} has a particular metric structure.
Definition 6.1. Let X be a set and $d: X \times X \longrightarrow[0,+\infty) a$ function. Then (X, d) is an ultrametric space if
(1) $d(x, y)=0$ if and only if $x=y$;
(2) $d(x, y)=d(y, x)$, for every $x, y \in X$;
(3) $d(x, z) \leq \max d(x, y), d(y, z)$, for every $x, y, z \in X$.

Observe that each ultrametric space is, in particular, a metric space.
The set L_{n} can be endowed with an ultrametric distance d, defined in the following way: if $x=x_{0} \ldots x_{n-1}$ and $y=y_{0} \ldots y_{n-1}$, then

$$
d(x, y)=n-\max \left\{i: x_{k}=y_{k}, \forall k \leq i\right\} .
$$

We observe that $d=d^{\prime} / 2$, where d^{\prime} denotes the usual geodesic distance. Moreover it is clear that T is a poset with respect to the relation $>$ of being ancestor.

Definition 6.2. An automorphism g of T, is a bijection $g: T \longrightarrow$ T such that if $x>y$ then $g(x)>g(y)$, for every $x, y \in T$.

The whole group of the automorphisms of T will be denoted by $\operatorname{Aut}(T)$. From the definition it is clear that $\operatorname{Aut}(T)$ preserves each level L_{n}.

In this way $\left(L_{n}, d\right)$ becomes an ultrametric space on which the automorphisms group $\operatorname{Aut}(T)$ acts isometrically. Note that the diameter of $\left(L_{n}, d\right)$ is exactly n.

To indicate the action of an automorphism $g \in \operatorname{Aut}(T)$ on a vertex x, we will use also the notation x^{g}.

Every automorphism $g \in \operatorname{Aut}(T)$ can be represented by its labelling. The labelling of $g \in \operatorname{Aut}(T)$ is realized as follows: given a vertex $x=x_{0} \ldots x_{n-1} \in T$, we associate with x a permutation $g_{x} \in S_{q}$ giving the action of g on the children of x. Formally, the action of g on the vertex labelled by the word $x=x_{0} \ldots x_{n-1}$ is

$$
x^{g}=x_{0}^{g_{0}} y_{1}^{g_{x_{0}}} \ldots x_{n-1}^{g_{x_{0} \ldots x_{n-2}}} .
$$

The group $\operatorname{Stab}_{\operatorname{Aut}(T)}(n)$ denotes the subgroup of the automorphism fixing all the vertices of the n-th level (and so of the levels L_{k}, with $k \leq n$). If one considers the action of the full automorphisms group of the q-ary rooted tree

$$
\operatorname{Aut}\left(T_{n}\right)=\operatorname{Aut}(T) / \operatorname{Stab}_{\operatorname{Aut}(T)}(n)
$$

on L_{n} one gets, for every n, a 2-points homogeneous action, giving rise to the symmetric Gelfand pair $\left(\operatorname{Aut}\left(T_{n}\right), K_{n}\right)$, with $K_{n}=\operatorname{Stab}_{A u t\left(T_{n}\right)}\left(0^{n}\right)$ is, as usual, the subgroup stabilizing the vertex 0^{n}. Observe that the K_{n} orbits coincide, in this case, with the sets $\Lambda_{k}=\left\{x \in L_{n}: d\left(x_{0}, x\right)=k\right\}$, for $k=0,1, \ldots, n$, i.e. the spheres of center x_{0} of ray k.

Theorem 6.3. The action of $\operatorname{Aut}\left(T_{n}\right)$ on $\left(L_{n}, d\right)$ is 2-points homogeneous.

Proof. We use induction on the depth n of the tree T.
$n=1$. The assertion follows from the 2-transitivity of the group S_{q}.
$n>1$. Let (x, y) and ($\left.x^{\prime}, y^{\prime}\right)$ be pairs of vertices in L_{n} with $d(x, y)=$ $d\left(x^{\prime}, y^{\prime}\right)$. If $d(x, y)<n$, then vertices x and y belong to the same subtree of T and so $x_{1}=y_{1}$. Analogously for x^{\prime} and y^{\prime}. Applying, if necessary, the transposition $\left(x_{1} x_{1}^{\prime}\right) \in S_{q}$, we can suppose $x_{1}=y_{1}=x_{1}^{\prime}=y_{1}^{\prime}$, so that x, x^{\prime}, y and y^{\prime} belong to the same subtree of depth less or equal to $n-1$, and then induction works.

Finally, consider the case $d(x, y)=d\left(x^{\prime}, y^{\prime}\right)=n$. Consider the automorphism $g \in \operatorname{Aut}(T)$ such that $g\left(x_{1}\right)=x_{1}^{\prime}$ and $g\left(y_{1}\right)=y_{1}^{\prime}$ and which acts trivially on the other vertices of L_{1}. Now we have that x and x^{\prime} belong to the same subtree T^{\prime}. Analogously y and y^{\prime} belong to the same subtree $T^{\prime \prime}$, with $T^{\prime} \neq T^{\prime \prime}$. The restriction of $\operatorname{Aut}\left(T_{n}\right)$ to T^{\prime} and $T^{\prime \prime}$ respectively acts transitively on each level. So there is an automorphism g^{\prime} of T^{\prime} carrying x to x^{\prime} and acting trivially on $T^{\prime \prime}$ and analogously there is an automorphism $g^{\prime \prime}$ of $T^{\prime \prime}$ carrying y to y^{\prime} and trivial on T^{\prime}. The assertion is proved.

The decomposition of the space $L\left(L_{n}\right)$ under the action of $\operatorname{Aut}\left(T_{n}\right)$ is known.

Denote $W_{0} \cong \mathbb{C}$ the space of the constant functions and for every $j=1, \ldots, n$, define the following subspace

$$
W_{j}=\left\{f \in L\left(L_{n}\right): f=f\left(x_{1}, \ldots, x_{j}\right), \quad \sum_{x=0}^{q-1} f\left(x_{1}, x_{2}, \ldots, x_{j-1}, x\right) \equiv 0\right\}
$$

of dimension $q^{j-1}(q-1)$.
Proposition 6.4. The spaces W_{j} 's are $\operatorname{Aut}\left(T_{n}\right)$-invariant, pairwise orthogonal and the following decomposition holds

$$
L\left(L_{n}\right)=\bigoplus_{j=0}^{n} W_{j} .
$$

Proof. First of all we prove that if $f \in W_{j}$ then $g \cdot f \in W_{j}$. In effect

$$
g \cdot f\left(x_{1}, \ldots, x_{n}\right)=f\left(g_{\emptyset}^{-1}\left(x_{1}\right), \ldots, g_{x_{1}, \ldots, x_{n-1}}^{-1}\left(x_{n}\right)\right)
$$

and so

$$
\begin{aligned}
\sum_{x \in X} g \cdot f\left(x_{1}, \ldots, x_{j-1}, x\right) & =\sum_{x \in X} f\left(g_{\emptyset}^{-1}\left(x_{1}\right), \ldots, g_{x_{1}, \ldots, x_{j-2}}^{-1}\left(x_{j-1}\right), g_{x_{1}, \ldots, x_{j-1}}^{-1}(x)\right)= \\
& =\sum_{y \in X} f\left(g_{\emptyset}^{-1}\left(x_{1}\right), \ldots, g_{x_{1}, \ldots, x_{j-2}}^{-1}\left(x_{j-1}\right), y\right)=0 .
\end{aligned}
$$

Let f be in W_{j} and f^{\prime} in $W_{j^{\prime}}$, with $j<j^{\prime}$.

$$
\begin{aligned}
\left\langle f, f^{\prime}\right\rangle & =\sum_{x_{1}=0}^{q-1} \cdots \sum_{x_{n}=0}^{q-1} f\left(x_{1}, \ldots, x_{n}\right) \overline{f^{\prime}\left(x_{1}, \ldots, x_{n}\right)}= \\
& =q^{n-j^{\prime}} \sum_{x_{1}=0}^{q-1} \cdots \sum_{x_{j^{\prime}-1}=0}^{q-1} f\left(x_{1}, \ldots, x_{j}\right) \sum_{k=0}^{q-1} \overline{f^{\prime}\left(x_{1}, \ldots, x_{j^{\prime}-1}, k\right)}=0 .
\end{aligned}
$$

This gives that the W_{j} 's are orthogonal. Moreover

$$
\operatorname{dim} L_{n}=q^{n}=\sum_{j=0}^{n} q^{j-1}(q-1)
$$

and so these spaces fill all $L\left(L_{n}\right)$.

Since the spheres centered at $x_{0}=0^{n}$ (and so the K_{n}-orbits) are exactly $n+1$, we have from Lemma 4.2 that the subspaces W_{j} 's are irreducible.

There exists a complete description of the corresponding spherical functions.

Proposition 6.5. For every $j=0, \ldots, n$ we the spherical function ϕ_{j} in the space W_{j} is given by

$$
\phi_{j}(x)= \begin{cases}1 & d\left(x, x_{0}\right)<n-j+1 \\ \frac{1}{1-q} & d\left(x, x_{0}\right)=n-j+1 \\ 0 & d\left(x, x_{0}\right)>n-j+1\end{cases}
$$

Proof. Since each ϕ_{j} is defined in terms of distance and the spheres of center x_{0} and ray k are the K_{n}-orbits we have that the ϕ_{j} 's are K_{n}-invariant. Moreover $\phi_{j}\left(x_{0}\right)=1$ by definition. We have to prove that $\phi_{j} \in W_{j}$. But $\phi_{j}\left(x_{1}, \ldots, x_{j}, x\right)=\phi_{j}\left(x_{1}, \ldots, x_{j}, y\right)$, for every \underline{x} and y words of length $n-j-1$, because the condition $d\left(x, x_{0}\right)<n-j+1$ is equivalent to $x_{1}=\ldots=x_{j}=0, d\left(x, x_{0}\right)=n-j+1$ to $x_{1}=\ldots=$ $x_{j-1}=0, x_{j} \neq 0$ and $d\left(x, x_{0}\right)>n-j+1$ to the resting cases. Moreover

$$
\sum_{x \in X} \phi_{j}\left(x_{1}, \ldots, x_{j-1}, x\right)=\sum_{i=0}^{j-1}\left|\Lambda_{i}\right|-\frac{1}{q-1}\left|\Lambda_{j}\right|=0 .
$$

7. Some constructions

Let (G, K) and (F, H) be finite Gelfand pairs on the homogeneous spaces $X \simeq G / K$ and $Y=F / H$, we can ask if it is possible to combine the two constructions to get another Gelfand pair.

The following constructions are well known.
If we denote $G \times F$ the direct product of G and F, and $K \times H$ the direct product of the respective stabilizers subgroups, it is easy to prove that $(G \times F, K \times H)$ is a Gelfand pair.

The decomposition associated with the action of \mathcal{G} on $L(X \times Y)$ is

$$
L(X \times Y)=\left(\bigoplus_{i=0}^{n} V_{i}\right) \otimes\left(\bigoplus_{j=0}^{m} W_{j}\right),
$$

where $L(X)=\oplus_{i=0}^{n} V_{i}$ and $L(Y)=\oplus_{j=0}^{m} W_{j}$ are the decompositions into irreducibles submodules under the actions of G and F respectively. The spherical functions will be given by the tensorial product of the spherical functions of each pair. This construction is called direct product of Gelfand pairs.

Analogously, if we perform the wreath product of the groups G and F we get a the pair $(G \imath F, J)$, where

$$
J=\left\{(k, f) \in G \imath F: k \in K, f\left(x_{0}\right) \in H\right\}
$$

is the stabilizer of the vertex $\left(x_{0}, y_{0}\right) \in X \times Y$ under the action of $G \imath F$. Recall that $G \imath F=G \ltimes F^{X}=\{(g, f): f: X \longrightarrow F, g \in G\}$.

Lemma 7.1. The orbits of $X \times Y$ under the action of J are

$$
X \times Y=\left[\bigsqcup_{i=1}^{n}\left(\Lambda_{i} \times Y\right)\right] \sqcup\left[\bigsqcup_{j=0}^{m}\left\{x_{0}\right\} \times \Upsilon_{j}\right],
$$

where $X=\left\{x_{0}\right\} \sqcup_{i=1}^{n} \Lambda_{i}$ and $Y=\left\{y_{0}\right\} \sqcup_{J=1}^{m} \Upsilon_{j}$ are the decompositions of X and Y under K and H respectively.

Proof. We have $J\left(x_{0}, y\right)=\left\{\left(x_{0}, f\left(x_{0}\right) y\right), f\left(x_{0}\right) \in H\right\}=\left\{x_{0}\right\} \times$ Υ_{j}. Analogously if $x \neq x_{0}$, we have $J(x, y)=\{(k x, f(x) y), k \in$ K and $\left.f\left(x_{0}\right) \in F\right\}=\Lambda_{i} \times Y$.

We have the following theorem
Theorem 7.2. (1) The decomposition into irreducibles submodules is

$$
L(X \times Y)=\left[\bigoplus_{i=0}^{n}\left(V_{i} \otimes W_{0}\right)\right] \oplus\left[\bigoplus_{j=1}^{m}\left(L(X) \otimes W_{j}\right)\right] ;
$$

(2) the spherical functions have the form

$$
\left\{\phi_{i} \otimes \psi_{0}, \delta_{x_{0}} \otimes \psi_{j}: i=0,1, \ldots, n ; j=1, \ldots, m\right\}
$$

where ϕ_{i} and ψ_{j} are the spherical functions of the initial Gelfand pairs and $\delta_{x_{0}}$ is the Dirac function at the vertex x_{0}.

Proof. 1) Consider the element $(g, f) \in G \imath F$ acting on the function $\mathcal{G} \otimes \mathcal{F} \in L(X \times Y)$ as

$$
\mathcal{G} \otimes \mathcal{F}(x, y)=\mathcal{G}(x) \mathcal{F}(y) .
$$

Then

$$
\begin{aligned}
(g, f)(\mathcal{G} \otimes \mathcal{F})(x, y) & =(\mathcal{G} \otimes \mathcal{F})\left[(g, f)^{-1}(x, y)\right]= \\
& =(g \mathcal{G})(x)[f(x) \mathcal{F}](y) .
\end{aligned}
$$

Now let $v \otimes \mathbf{1} \in V_{i} \otimes W_{0}$, then $(g, f)(v \otimes \mathbf{1})=(g v \otimes \mathbf{1}) \in V_{i} \otimes W_{0}$.
Let $\delta_{x} \otimes w \in L(X) \otimes W_{j}$, then $(g, f)\left(\delta_{x} \otimes w\right)=\delta_{g x} \otimes f(x) w \in$ $L(X) \otimes W_{j}$. This implies the invariance of the subspaces. Their number coincides with the number on the J-orbits on $X \times Y$, so these spaces are irreducibles.
2) Follows from the trivial J-invariance of the functions in the statement.

We observe that $(x, y) \in X \times Y$ can be identified with a leaf of the tree of depth 2 . We have already considered the Gelfand pair associated with the action of the wreath product on a vertex of the tree.

One can consider the following generalizing construction (generalized Johnson scheme) due to Ceccherini-Silberstein, Scarabotti and Tolli in [CST3]: let Y be an homogeneous space associated with a Gelfand pair (F, H). The space X is finite of cardinality n, say
$X=\{1,2, \ldots, n\}$. For every $h=1, \ldots, n$, denote by Ω_{h} the set of h-subsets of X, so that $\left|\Omega_{h}\right|=\binom{n}{h}$.

The decomposition of $L(Y)$ into irreducible submodules, under the action F is

$$
L(Y)=\bigoplus_{j=0}^{m} W_{j}
$$

For every $h=1, \ldots, n$, consider the space

$$
\Theta_{h}=\left\{(A, \theta): A \in \Omega_{h} \text { and } \theta \in Y^{A}\right\},
$$

i.e. the space of functions whose domain is a k-subset of X and which take values in Y.

On Θ_{h} acts the group $S_{n} \prec F$. Given $\theta \in \Theta_{h}$ and $(\pi, f) \in S_{n} \prec F$ we have

$$
[(\pi, f) \theta](j)=f(j) \theta\left(\pi^{-1} j\right)
$$

for every $j \in \pi d o m \theta$.
Let us denote $C(h, m+1)$ the set of the weak $(m+1)$-composition of h, i.e. the elements $\mathbf{a}=\left(a_{0}, a_{1}, \ldots, a_{m}\right)$ such that $a_{0}+\cdots+a_{m}=h$.

In order to get a basis for the space $L\left(Y^{A}\right)$, for every $A \in \Omega_{h}$, we introduce some special functions that we will call fundamental functions.

Definition 7.3. Suppose that $A \in \Omega_{h}$ and that $\mathcal{F}^{j} \in L(Y)$ for every $j \in A$. Suppose also that each \mathcal{F}^{j} belongs to an irreducible submodules of the action of F and set $a_{i}=\left|\left\{j \in A: \mathcal{F}^{j} \in W_{i}\right\}\right|$. Then the tensor product $\bigotimes_{j \in A} \mathcal{F}^{j}$ will be called a fundamental function of type $\underline{a}=\left(a_{0}, a_{1}, \ldots, a_{m}\right)$ in $L\left(Y^{A}\right)$.

In other words, we have

$$
\left(\bigotimes_{j \in A} \mathcal{F}^{j}\right)(\theta)=\prod_{j \in A} \mathcal{F}^{j}(\theta(j)),
$$

for every $\theta \in Y^{A}$. We also set $\ell(\underline{a})=a_{1}+\cdots+a_{m}=h-a_{0}$.
Given $\mathbf{a} \in C(h, m+1)$ and $A \in \Omega_{h}$ a composition of A of type a is a sequence $\mathbf{A}=\left(A_{0}, A_{1}, \ldots, A_{m}\right)$ of subsets that are a partitions of A and such that $\left|A_{i}\right|=a_{i}$ for every $i=0,1, \ldots, m$. The set of the compositions of type \mathbf{a} is denoted $\Omega_{\mathbf{a}}(A)$.

It is known that the action of $S_{n} 乙 F$ on $L\left(\Theta_{h}\right)$ gives rise to a Gelfand pair. To give the associated decomposition we need the following definitions.

The subspace of $L\left(Y^{A}\right)$ spanned by the tensor products $\bigotimes_{j \in A} \mathcal{F}^{j}$ such that $\mathcal{F}^{j} \in W_{i}$ for every $j \in A_{i}, i=0,1, \ldots, m$ is denoted by $W_{\mathbf{a}}(\mathbf{A})$.

Define

$$
W_{h, \mathbf{a}}=\bigoplus_{A \in \Omega_{h}} \bigoplus_{\mathbf{A} \in \Omega_{\mathbf{a}}(A)} W_{\mathbf{a}}(\mathbf{A})
$$

We denote $S^{n-h, h}$ the irreducible representation of the symmetric group S_{n} acting on the space $L\left(\Omega_{h}\right)$, given by

$$
S^{n-k, k}=L\left(\Omega_{k}\right) \cap k e r d
$$

where $d: L\left(\Omega_{h}\right) \longrightarrow L\left(\Omega_{h-1}\right)$ is the Radon transform defined as

$$
(d \gamma)(B)=\sum_{A \in \Omega_{h}: A=B \cup\{j\}} \gamma(A) .
$$

Definition 7.4. For $0 \leq k \leq \frac{n-\ell(a)}{2}$ define

$$
W_{h, a, k}=\operatorname{Ind}_{S_{n-\ell(a)}^{S_{n} \imath F}}
$$

In [CST3] is proven the following theorem
Theorem 7.5. The decomposition of $L\left(\Theta_{h}\right)$ into irreducible representations under the action $S_{n} \prec F$ is given by

$$
L\left(\Theta_{h}\right)=\bigoplus_{\boldsymbol{a} \in C(h, m+1)} \bigoplus_{k=0}^{\min \{n-h, h-\ell(\boldsymbol{a})\}} W_{h, a, k}
$$

Remark 7.6.

The starting point for the previous version is the consideration of substructures in a discrete space, i.e. consider subtrees with assigned ramification indices in a rooted homogeneous tree (see [CST3]). In effect if we work on the $n-$ th level L_{n} of a rooted tree, we can identify each vertex $x \in L_{n}$ with the geodesic path that connects it to the root. This is a subtree with branching indices $(1,1, \ldots, 1)$ in the whole tree.

If we choose different branching indices $r=\left(r_{1}, \ldots, r_{n}\right)$ in a rooted tree with branching indices $m=\left(m_{1}, \ldots, m_{n}\right)$, where $0<r_{i} \leq m_{i}$ for every $i=1, \ldots, n$ we can consider the variety $\mathcal{V}(m, r)$ of such a subtrees.

This space is the quotient of the full automorphism group $\operatorname{Aut}\left(T_{n}\right)$ by the stabilizer $K(m, r)$ of a fixed subtree \mathcal{T}.

This is a Gelfand pair. But, looking on the first level, we can think each of the s_{1}^{\prime} s indices in the subtree as the domain of a function whose image is a subtree. This means that in this case Θ is defined on all the r_{1} subsets of m_{1} and the image of every vertex is a subtree again.

This recurrence justifies the utilization of the space Y, that has, in this case, the same ultrametric structure.

Fig. 2: A tree of type $(3,3,3)$ with a subtree of type $(2,2,1)$.

There exists a generalization of that, considering different structures that have the ultrametric space as particular case. The idea developed in the end of the following chapter is to study this structures in relation with the Gelfand pairs.

CHAPTER 2

Self-similar groups and generalized wreath products

In this chapter we will study a particular class of subgroups of the whole automorphism group of the rooted tree: the class of selfsimlar groups. The famous Grigorchuk group, for example, belongs to this class as well as other groups having interesting and exotic properties. A new course is the realization of such a groups as Iterated Monodromy Groups (IMG) of some complex rational functions (see [Nek1] or [Nek2] for further suggestions).

1. General settings

If we consider a countable subgroup of $\operatorname{Aut}(T)$ and the relative action on L_{n}, we can ask if it is possible to find the same results about Gelfand pairs obtained for the full automorphisms group. In some cases the answer is positive. In what follows we will investigate this problem.

Recall that a group G is spherically transitive on the rooted tree T if it is transitive on each level L_{n} of T.

The fundamental tool will be the following easy lemma.
Lemma 1.1. Let G act spherically transitively on T. Denote by G_{n} the quotient group $G / \operatorname{Stab}_{G}(n)$ and by K_{n} the stabilizer in G_{n} of a fixed leaf $x_{0} \in L_{n}$. Then the action on L_{n} is 2-points homogeneous if and only if K_{n} acts transitively on each sphere of L_{n}.

Proof. Suppose that K_{n} acts transitively on each sphere of L_{n} and consider the elements x, y, x^{\prime} and y^{\prime} such that $d(x, y)=d\left(x^{\prime}, y^{\prime}\right)$. Since the action of G_{n} is transitive, there exists an automorphism $g \in G_{n}$ such that $g(x)=x^{\prime}$. Now $d\left(x^{\prime}, g(y)\right)=d\left(x^{\prime}, y^{\prime}\right)$ and so $g(y)$ and y^{\prime} are in the same sphere of center x^{\prime} and radius $d\left(x^{\prime}, y^{\prime}\right)$. But K_{n} is conjugate with $\operatorname{Stab}_{G_{n}}\left(x^{\prime}\right)$ and so there exists an automorphism $g^{\prime} \in$ $\operatorname{Stab}_{G_{n}}\left(x^{\prime}\right)$ carrying $g(y)$ to y^{\prime}. The composition of g and g^{\prime} is the required automorphism.

Suppose now that the action of G_{n} on L_{n} is 2-points homogeneous and consider two elements x and y in the sphere of center x_{0} and radius i. Then $d\left(x_{0}, x\right)=d\left(x_{0}, y\right)=i$. So there exists an automorphism $g \in \operatorname{Stab}_{G_{n}}\left(x_{0}\right)$ such that $g(x)=y$. This completes the proof.

We introduce some definitions for the rest of the theory. Recall that if $G \leq \operatorname{Aut}(T)$ acts on the tree T, we can study the action on the first level L_{1} and consider the action of G restricted to each subtree $T_{x}, x \in X$ (rooted at x). The automorphism induced on T_{x} can be regarded as an automorphism of the whole tree, via the identification of T_{x} with T. Is this restricted automorphism still in G ?

Definition 1.2. A group G acting on T is self-similar if for every $g \in G, x \in X$, there exist $g_{x} \in G, x^{\prime} \in X$ such that $g(x w)=x^{\prime} g_{x}(w)$ for all $w \in X^{*}$.

Moreover, a self-similar group G can be embedded into the wreath product $G \imath X=\left(G^{q}\right) \rtimes S_{q}$, where S_{q} is the symmetric group on q elements.

The self-similar groups are strictly linked to the theory of automata, see [Nek2]

We recall now that, for an automorphisms group $G \leq \operatorname{Aut}(T)$, the stabilizer of the vertex $x \in T$ is the subgroup of G defined as $\operatorname{Stab}_{G}(x)=\{g \in G: g(x)=x\}$ and the stabilizer of the n-th level is $\operatorname{Stab}_{G}(n)=\bigcap_{x \in L_{n}} \operatorname{Stab}_{G}(x)$. Observe that $\operatorname{Stab}_{G}(n)$ is a normal subgroup of G of finite index for all $n \geq 1$. In particular, an automorphism $g \in \operatorname{Stab}_{G}(1)$ can be identified with the elements $g_{i}, i=0,1, \ldots, q-1$ that describe the action of g on the respective subtrees T_{i} rooted at the vertex i of the first level. So we get the following embedding

$$
\varphi: \operatorname{Stab}_{G}(1) \longrightarrow \underbrace{\operatorname{Aut}(T) \times \operatorname{Aut}(T) \times \cdots \times \operatorname{Aut}(T)}_{q \text { times }}
$$

that associates with g the q-ple $\left(g_{0}, g_{1}, \ldots, g_{q-1}\right)$.
Definition 1.3. G is said to be fractal if the map

$$
\varphi: \operatorname{Stab}_{G}(1) \longrightarrow G \times G \times \cdots \times G
$$

is a subdirect embedding, that is it is surjective on each factor.
Lemma 1.4. If G is transitive on L_{1} and fractal then G is spherically transitive (i.e. it acts transitively on each level).

Proof. Suppose that T is the q-ary rooted tree. We can switch the subtrees T_{0}, \ldots, T_{q-1}. The restriction of $\operatorname{Stab}_{G}(1)$ on T_{i} is G and so by an inductive recurrence we have the claim.

In what follows we will often use the notion of rigid stabilizer. For a group G acting on T and a vertex $x \in T$, the rigid vertex stabilizer $\operatorname{Rist}_{G}(x)$ is the subgroup of $\operatorname{Stab}_{G}(x)$ consisting of the automorphisms acting trivially on the complement of the subtree T_{x} rooted at x. Equivalently, they have a trivial labelling at each vertex outside T_{x}. The rigid stabilizer of the n-th level is defined as $\operatorname{Rist}_{G}(n)=\prod_{x \in L_{n}} \operatorname{Rist}_{G}(x)$.

In contrast to the level stabilizers, the rigid level stabilizers may have infinite index and may even be trivial. We observe that if the action of G on T is spherically transitive, then the subgroups $\operatorname{Stab}_{G}(x), x \in L_{n}$ are all conjugate, as well as the subgroups $\operatorname{Rist}_{G}(x), x \in L_{n}$.

We recall the following definitions for spherically transitive groups (see, for more details, $[\mathbf{B G S}]$).

Definition 1.5. G is regular weakly branch on K if there exists a normal subgroup $K \neq\{1\}$ in G, with $K \leq \operatorname{Stab}_{G}(1)$, such that $\varphi(K)>K \times K \times \cdots \times K$. In particular G is regular branch on K if it is regular weakly branch on K and K has finite index in G.

We observe that this property for the subgroup K is stronger than fractalness, since the map φ is surjective on the whole product $K \times$ $K \times \cdots \times K$.

Definition 1.6. G is weakly branch if $\operatorname{Rist}_{G}(x) \neq\{1\}$, for every $x \in T$ (this automatically implies $\left|\operatorname{Rist}_{G}(x)\right|=\infty$ for every x). In particular, G is branch if $\left[G: \operatorname{Rist}_{G}(n)\right]<\infty$ for every $n \geq 1$.

Example 1.7 (Adding Machine).
Let G be the self-similar group acting on the binary rooted tree generated by the automorphism $a=(a, 1) \varepsilon$, where ε denotes the nontrivial permutation of the group S_{2}.

It is easy to check that the following identities hold:

$$
\begin{equation*}
a^{2 k}=\left(a^{k}, a^{k}\right), \quad a^{2 k+1}=\left(a^{k}, a^{k+1}\right) \varepsilon . \tag{2}
\end{equation*}
$$

In particular, the first level stabilizer is given by $\operatorname{Stab}_{G}(1)=<a^{2}>$, with $a^{2}=(a, a)$.

From (2) it follows that

$$
\operatorname{Stab}_{G}(n)=<a^{2^{n}}>.
$$

Moreover, since G is abelian, one has $\operatorname{Stab}_{G}(n)=\operatorname{Stab}_{G}(x)$ for all $x \in L_{n}$. Formulas (2) tells us that the element $a^{2^{n}}$ has the labelling $g_{x}=\varepsilon$ at each vertex $x \in L_{n}$ and the labelling $g_{y}=1$ at each vertex $y \in L_{i}$, for $i<n$. Therefore $a^{2^{n}} \notin \operatorname{Rist}_{G}(n)$ and all its powers do not belong to $\operatorname{Rist}_{G}(n)$ too. So $\operatorname{Rist}_{G}(n)=\{1\}$ for every $n \geq 1$. So this is an example where the subgroups $\operatorname{Stab}_{G}(n)$ and $\operatorname{Rist}_{G}(n)$ do not coincide, showing that $\operatorname{Rist}_{G}(n)$ can also be trivial.
G is fractal, in fact $\operatorname{Stab}_{G}(1)=<a^{2}>$, where $a^{2}=(a, a) i d$ and so the application from $\operatorname{Stab}_{G}(1)$ to $G \times G$ is surjective on each factor. This implies that G is spherically transitive. Observe that, for each $n \in \mathbb{N}$, we have $\left[G: \operatorname{Stab}_{G}(n)\right]=2^{n}$, on the other hand $\left[G: \operatorname{Rist}_{G}(n)\right]=\infty$.

Fig.3. Labelling of a.

From this we can deduce the isomorphism $G \simeq \mathbb{Z}$. The group quotient $G / \operatorname{Stab}_{G}(n) \simeq \mathbb{Z}_{2^{n}}$. In this case the parabolic group K_{n} is trivial, since $\left|L_{n}\right|=2^{n}$ and so we get for every n a Gelfand pair ($\mathbb{Z}_{2^{n}}, 1$) (the group is commutative) that is not symmetric (the spherical functions correspond to the characters that, in general, are not real).

2. The Basilica group

The Basilica group B was introduced by R. I. Grigorchuk and A. $\dot{Z} \mathbf{u k}$ in $[\mathbf{G r} \dot{\mathbf{Z}} \mathbf{u}]$ This group was the first example of an amenable group of exponential growth that cannot be obtained as limit of groups of sub-exponential groups (see [BaVi] or the interesting paper [Kai]).

The Basilica group is generated by the automorphisms a and b having the following self-similar form:

$$
a=(b, 1), \quad b=(a, 1) \varepsilon
$$

where ε denotes the nontrivial permutation of the group S_{2}. In the following figure the labelling of the automorphisms a and b are presented. Observe that the labelling of each vertex not contained in the leftmost branch of the tree is trivial.

Fig.4. Labelling of the generators a and b.

Example 2.1.

Consider $x_{0}=000 \ldots$ and let us study the action of the generators of B on x_{0} :

$$
a(000 \ldots)=0 b(00 \ldots)=01 a(0 \ldots)=010 \ldots
$$

and

$$
b(000 \ldots)=1 a(00 \ldots)=10 b(0 \ldots)=101 \ldots
$$

The product can be performed in according with the embedding into the wreath product as:

$$
a b=(b, 1) i d(a, 1) \varepsilon=(b a, 1) \varepsilon=((a, b) \varepsilon,(1,1) i d) \varepsilon=. . .
$$

and

$$
b a=(a, 1) \varepsilon(b, 1) i d=(a, b) \varepsilon=((b, 1) i d,(a, 1) \varepsilon) \varepsilon \ldots
$$

So

$$
a b(000 \ldots)=110 \ldots=b(a(000 \ldots)),
$$

i.e. the action is at right (we can use the exponential action x_{0}^{g}).

It is a remarkable fact due to V. Nekrashevich that B can be obtained as Iterated Monodromy Group (IMG) of the complex polynomial $f(z)=z^{2}-1$. The same author found interesting links between fractal sets viewed as Julia set of such a polynomials and Schrier graphs of the action of the corresponding groups on the levels of the tree. See [Nek1].

It can be easily proved that the Basilica group is a fractal group. In fact, the stabilizer of the first level is

$$
\operatorname{Stab}_{B}(1)=<a, a^{b}, b^{2}>,
$$

with $a=(b, 1), a^{b}=\left(1, b^{a}\right)$ and $b^{2}=(a, a)$.

It is obvious that the action of the Basilica group on the first level of T is transitive. Since this group is fractal, it easily follows that the action is also spherically transitive, i.e. transitive on each level of the tree. Moreover, it is known (see [Gr$\dot{\mathbf{Z}} \mathbf{u}]$) that the Basilica group is weakly regular branch over its commutator subgroup B^{\prime}.

Theorem 2.2. The action of the Basilica group B on L_{n} is 2-points homogeneous for all n.

Proof. From Lemma 1.1 it suffices to show that the action of the parabolic subgroup $K_{n}=\operatorname{Stab}_{B_{n}}\left(0^{n}\right)$ is transitive on each sphere.

Denote by u_{j} the vertex $0^{j-1} 1$ for every $j=1, \ldots, n$. Observe that the automorphisms

$$
\left(b^{2}\right)^{a}=a^{-1} b^{2} a=\left(b^{-1}, 1\right)(a, a)(b, 1)=\left(a^{b}, a\right)=\left(\left(1, b^{a}\right), a\right)
$$

and

$$
b^{a} b^{-1} a=\left(b^{-1}, 1\right)(a, 1) \varepsilon(b, 1)\left(1, a^{-1}\right) \varepsilon(b, 1)=(1, b)
$$

belong to K_{n} for each n. Moreover, using the fractalness of B, it is possible to find elements $g_{j} \in K_{n}$ such that the restriction $g_{j} \mid T_{0^{j-1}}$ is $\left(b^{2}\right)^{a}=\left(\left(1, b^{a}\right), a\right)$ or $b^{a} b^{-1} a=(1, b)$. So, the action of such automorphisms on the subtree $T_{u_{j}}$ corresponds to the action of the whole group $B=<a, b>$ on T. We can regard this action as the action of K_{n} on the spheres of center $x_{0}=0^{n}$, and so we get that K_{n} acts transitively on these spheres. This implies that the action of B is 2-points homogeneous on L_{n}.

Corollary 2.3. For every $n \geq 1,\left(B_{n}, K_{n}\right)$ is a symmetric Gelfand pair.

The number of K_{n}-orbits is exactly the number of the irreducible submodules occurring in the decomposition of $L\left(L_{n}\right)$ under the action of B_{n}. Since the submodules W_{j} 's described in the previous section are $n+1$ as the K_{n}-orbits, it follows that the Basilica group admits the same decomposition into irreducible submodules and the same spherical functions that we get for $\operatorname{Aut}\left(T_{n}\right)$.

We can observe that in the proof of the Theorem 6.3 of Chapter 1 the fundamental tool is that the automorphisms g^{\prime} and $g^{\prime \prime}$ act transitively on the subtrees T^{\prime} and $T^{\prime \prime}$, respectively, and trivially elsewhere. Moreover, the only fractalness does not guarantee that the action is 2points homogeneous, as one can easily verify in the case of the Adding Machine, for which one gets symmetric Gelfand pairs only for $n=1,2$. On the other hand, if a fractal group G acts 2-transitively on L_{1} and if it has the property that the rigid stabilizers of the vertices of the first level $\operatorname{Rist}_{G}(i), i=0,1, \ldots, q-1$ are spherically transitive for each i, the proof of the Theorem 6.3 of Chapter 1 works again by taking the automorphisms g^{\prime} and $g^{\prime \prime}$ in the rigid vertex stabilizers. But this is not a necessary condition, as the example of the Grigorchuk group shows.

In fact, one can verify (see $[\mathbf{B G 2}])$ that, in this case, $\operatorname{Rist}_{G}(0)=<$ $d^{a}, d^{a c}>$, with $d^{a}=(b, 1)$ and $d^{a c}=\left(b^{a}, 1\right)$. So $\operatorname{Rist}_{G}(0)$ fixes the vertices 00 and 01 , and then it does not act transitively on the subtree T_{0}. This shows, for instance, that a fractal regular branch group could not have this property, which appears to be very strong.

On the other hand, a direct computation shows that Basilica group has this property, what gives another proof that the action on each level L_{n} is 2-points homogeneous.

Theorem 2.4. Let B be the Basilica group. Then the rigid vertex stabilizers $\operatorname{Rist}_{B}(i), i=0,1$, act spherically transitively on the corresponding subtrees T_{i}.

Proof. Since B is spherically transitive and so $\operatorname{Rist}_{B}(0) \simeq \operatorname{Rist}_{B}(1)$, it suffices to prove the assertion only for $\operatorname{Rist}_{B}(0)$. Consider the automorphisms $a=(b, 1)$ and $a^{b^{2}}=\left(b^{a}, 1\right)$ in $\operatorname{Rist}_{B}(0)$. We want to show that the subgroup $<a, a^{b^{2}}>$ is spherically transitive on T_{0}, equivalently we will prove that the group $<b, b^{a}>$ is spherically transitive on T.

The latter is clearly transitive on the first level. To complete it suffices to prove its fractalness. We have

$$
b^{-1} b^{a}=\left(1, a^{-1}\right) \varepsilon\left(b^{-1}, 1\right)(a, 1) \varepsilon(b, 1)=\left(1, a^{-1} b^{-1}\right) \varepsilon(a, b) \varepsilon=\left(b,\left(b^{-1}\right)^{a}\right)
$$

and

$$
\left(b^{-1} b^{a}\right)^{b^{2}}=\left(a^{-1}, a^{-1}\right)\left(b,\left(b^{-1}\right)^{a}\right)(a, a)=\left(b^{a},\left(b^{-1}\right)^{a^{2}}\right),
$$

and so the projection on the first factor gives both the generators b and b^{a}. The elements

$$
\left(b^{-1} b^{a}\right)^{-1}=\left(b^{-1}, b^{a}\right), \quad\left(\left(b^{-1} b^{a}\right)^{-1}\right)^{b^{-2}}=\left(\left(b^{-1}\right)^{a^{-1}}, b\right)
$$

fulfill the requirements for the projection on the second factor and this completes the proof.

3. The Grigorchuk group

The Grigorchuk group G was introduced by R. I. Grigorchuk in 1980 (see [Gri1]) to solve the problem of the existence of groups of intermediate growth. This group acts on the rooted binary tree and it is a fractal, regular branch group, generated by the automorphisms

$$
a=(1,1) \varepsilon, \quad b=(a, c), \quad c=(a, d), \quad d=(1, b) .
$$

Lemma 3.1. G is regular branch on the normal subgroup

$$
P=<(a b)^{2}>^{G} .
$$

Proof. We have $(a b)^{2}=(c a, a c)$. From direct computation we get

$$
\begin{align*}
{\left[(a b)^{-2}, d\right] } & =(a b)^{2} d^{-1}(a b)^{-2} d=(c a, a c)(1, b)(a c, c a)(1, b)= \tag{3}\\
& =\left(1, a b^{c} a b\right)=\left(1,(a b)^{2}\right) . \tag{4}
\end{align*}
$$

Analogously $\left[(a b)^{-2}, d\right]^{a}=\left((a b)^{2}, 1\right)$. By performing conjugations we conclude $P>P \times P$.

Lemma 3.2. For every $n \geq 1$, the action of P on L_{n} has two orbits given by the sets

$$
\left\{x=x_{1} \ldots x_{n} \in L_{n}: x_{1}=0\right\} \text { and }\left\{x=x_{1} \ldots x_{n} \in L_{n}: x_{1}=1\right\}
$$

Proof. The subgroup $M=\left.\operatorname{Stab}_{K}(0)\right|_{T_{0}}$ is generated by the elements $c a$ and $(a b)^{2}$, analogously $M^{\prime}=\left.\operatorname{Stab}_{K}(1)\right|_{T_{1}}$ is generated by $a c$ and $(a b)^{2}$. This implies that $M=M^{\prime}$ since $a c=(c a)^{-1}$. The thesis follows if we show that M is transitive on L_{n} for each $n \geq 1$.

First of all observe that M is transitive on L_{1} because $c a \in M$. Consider the subgroup $\operatorname{Stab}_{M}(0)$. This group contains the elements $(a b)^{2}=(c a, a c), c a(a b)^{2} a c=(c a, b a d)$ and $(c a)^{2}=(a d, d a)$ that generate it. Let N and N^{\prime} be the restrictions of $\operatorname{Stab}_{M}(0)$ to T_{0} and T_{1} respectively. Then

$$
N=\langle c a, a d\rangle=\langle c a, b\rangle \text { and } N^{\prime}=\langle a c, b a d, d a\rangle=N .
$$

This implies that M is transitive on L_{2} because N contains $c a$. Moreover $\operatorname{Stab}_{N}(0)$ contains the elements $(c a)^{2}=(a d, d a), c a b a c=(a c a, d a d)$ and $b=(a d)$. This implies that the restriction of $\operatorname{Stab}_{N}(0)$ and $\operatorname{Stab}_{N}(1)$ to T_{0} and T_{1} is isomorphic to G. From this M is transitive on L_{n}, for $n \geq 3$ since G is transitive on each level.

Theorem 3.3 (Grigorchuk). The action of the Grigorchuk group G on L_{n} is $2-$ points homogeneos for every $n \in \mathbb{N}$.

Proof. Set $\omega_{j}=1^{j} \in L_{j}$ and denote $u_{j}=1^{j-1} 0$ for every $j \leq n$. Since G is fractal, there exists an element $g_{j} \in G$ such that $\left.g_{j}\right|_{T_{\omega_{j-1}}}=b$. Observe that $g_{j} \in K_{n}$ for each n, as one can check considering the labelling of $b=(a, c)$. This implies $g_{j}\left(u_{j}\right)=u_{j}$ and $\left.g_{j}\right|_{T_{u_{j}}}=a$. Since G is regular branch on P, we get that K_{n} contains, for every $j \geq 1$, a subgroup P_{j} such that $\left.P_{j}\right|_{T_{u_{j}}}=P$. This gives that $\left\langle P_{j}, g_{j}\right\rangle$ acts on $T_{u_{j}}$ as $\langle P, a\rangle$ and, we have seen that the action of K_{n} is transitive on each level of $T_{u_{j}}$. But, for every n, the vertices of L_{n} belonging to $T_{u_{j}}$ constitute the elements of the sphere of distance $n-j+1$ from the center ω_{n}. The transitivity of K_{n} on the spheres implies that the action is 2-points homogeneous.

Corollary 3.4. $\left(G_{n}, K_{n}\right)$ is a symmetric Gelfand pair.
As a consequence, the decomposition of $L\left(L_{n}\right)$ under the action of this group into irreducible submodules is still $L\left(L_{n}\right)=\bigoplus_{j=0}^{n} W_{j}$, where the W_{j} 's are the subspaces defined above. See [Gri2] and $[\mathbf{B H G}]$ for more details.
4. $I=I M G\left\{z^{2}+i\right\}$

Consider now the group $I=\operatorname{IMG}\left(z^{2}+i\right)$, i.e. the iterated monodromy group defined by the map $f: \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{C}}$ given by $f(z)=z^{2}+i$. The generators of this group have the following self-similar form:

$$
a=(1,1) \varepsilon, \quad b=(a, c), \quad c=(b, 1)
$$

where ε denotes, as usual, the nontrivial permutation in S_{2}. In the following figure we present the corresponding labellings.

Fig.5. Labelling of the generators a, b and c.

One can easily prove the following relations:

$$
a^{2}=b^{2}=c^{2}=(a c)^{4}=(a b)^{8}=(b c)^{8}=1
$$

Moreover, the stabilizer of the first level is $\operatorname{Stab}_{I}(1)=<b, c, b^{a}, c^{a}>$. In particular, since

$$
b^{a}=(c, a), \quad c^{a}=(1, b),
$$

I is a fractal group. It is obvious that I acts transitively on the first level of the rooted binary tree. Since this group is fractal, it follows that this action is also spherically transitive.

Moreover, it is known (see [GSŠ]) that I is a regular branch group over its subgroup N defined by

$$
N=<[a, b],[b, c]>^{I} .
$$

Also for the group I it is possible to prove the same result proven for the Basilica group in Theorem 2.4. So consider the $n-$ th level L_{n} of the tree and the group $I_{n}=I / \operatorname{Stab}_{I}(n)$. In order to get an easy computation, we choose the vertex $x_{0}=1^{n} \in L_{n}$ and we set $K_{n}=\operatorname{Stab}_{I_{n}}\left(1^{n}\right)$. In the following theorem we will prove that the action of the parabolic subgroup K_{n} is transitive on each sphere.

Theorem 4.1. The action of the group I on L_{n} is 2-points homogeneous for all n.

Proof. Denote by u_{j} the vertex $1^{j-1} 0$ for every $j=1, \ldots, n$. Using the fractalness of I, it is possible to find an element $g_{j} \in K_{n}$ such that the restriction $g_{j} \mid T_{1^{j-1}}$ is b and an element $h_{j} \in K_{n}$ such that the restriction $h_{j} \mid T_{1^{j-1}}$ is c. Consider now the automorphism $b^{a} b b^{a}=(c, a)(a, c)(c, a)=\left(a^{c}, c^{a}\right)$. By fractalness it is possible to find an element $k_{j} \in K_{n}$ such that the restriction $k_{j} \mid T_{1^{j-1}}$ is $b^{a} b b^{a}$. The action of the subgroup generated by the automorphisms g_{j}, h_{j}, k_{j} on the subtree $T_{u_{j}}$ corresponds to the action of the subgroup $H=<a, b, a^{c}>$ on T. It is easy to prove that this action is spherically transitive. In fact it is obvious that H acts transitively on the first level, so it suffices to show that H is fractal. To show this consider, for instance, the elements

$$
b=(a, c), \quad a^{c} a=(b, b), \quad b^{a} b b^{a}=\left(a^{c}, c^{a}\right)
$$

and

$$
b^{a}=(c, a), \quad a^{c} a=(b, b), \quad b b^{a} b=\left(c^{a}, a^{c}\right)
$$

Now, the action of H on $T_{u_{j}}$ can be regarded as the action of K_{n} on the spheres of center x_{0}, and so we get that K_{n} acts transitively on these spheres. This implies that the action of I on L_{n} is 2-points homogeneous, as required.

Corollary 4.2. For every $n \geq 1,\left(I_{n}, K_{n}\right)$ is a symmetric Gelfand pair.

As in the case of the Basilica group, it follows that the group I_{n} admits the same decomposition into irreducible submodules and the same spherical functions that we get for $\operatorname{Aut}\left(T_{n}\right)$.

It is possible to show that the rigid stabilizers of the vertices of the first level of T do not act spherically transitively on the corresponding subtrees T_{0} and T_{1}. In fact, the rigid stabilizer of the first level is $\operatorname{Rist}_{I}(1)=<c>^{G}$, so every automorphism in $\operatorname{Rist}_{I}(1)$ is the product of elements of the form c^{g}, where $g=w(a, b, c)$ is a word in a, b and c, and of their inverses. Set $\varphi\left(c^{g}\right)=\left(g_{0}, g_{1}\right)$. We want to show, by induction on the length of the word $w(a, b, c)$, that we suppose reduced, that in both g_{0} and g_{1} the number of occurrences of a is even. This will imply that the action of $\operatorname{Rist}_{I}(1)$ on the first level of the subtrees T_{0} and T_{1} cannot be transitive and will prove the assertion.

If $|w(a, b, c)|=0$, then $c^{g}=c=(b, 1)$. If $|w(a, b, c)|=1$, then we can have $c^{a}=(1, b), c^{b}=\left(b^{a}, 1\right)$ or $c^{c}=c=(b, 1)$. Let us suppose the result to be true for $\left|w^{\prime}(a, b, c)\right|=n-1$. Then we have $c^{w(a, b, c)}=$ $c^{w^{\prime}(a, b, c) x}$, with $x \in\{a, b, c\}$ and $c^{w^{\prime}(a, b, c)}=\left(g_{0}^{\prime}, g_{1}^{\prime}\right)$ such that in both g_{0}^{\prime} and g_{1}^{\prime} the number of occurrences of a is even. If $x=a$, we get $c^{w(a, b, c)}=$ $\left(g_{1}^{\prime}, g_{0}^{\prime}\right)$, if $x=b$, we get $c^{w(a, b, c)}=\left(\left(g_{0}^{\prime}\right)^{a},\left(g_{1}^{\prime}\right)^{b}\right)$ and if $x=c$ then we get $c^{w(a, b, c)}=\left(\left(g_{0}^{\prime}\right)^{b}, g_{1}^{\prime}\right)$. In all cases, we get a pair $\left(g_{0}, g_{1}\right)$ satisfying the condition that in both g_{0} and g_{1} the number of occurrences of a is even, as required.

5. The Hanoi Tower group H

The Hanoi Towers group H is a group of automorphisms of the rooted ternary tree. For the rooted ternary tree all the definitions of level stabilizer, rigid level stabilizer, fractalness, spherically transitive action, given in the binary case, hold.

The generators of H have the following self-similar form:

$$
a=(1,1, a)(01), \quad b=(1, b, 1)(02), \quad c=(c, 1,1)(12),
$$

where (01), (02) and (12) are transpositions in S_{3}. In the following figures we present the corresponding labellings.

Fig.6. Labelling of the generators a and b.

Fig.7. Labelling of the generator c.

From the definition it easily follows that $a^{2}=b^{2}=c^{2}=1$.
Considering the following elements belonging to $\operatorname{Stab}_{H}(1)$

$$
\begin{gathered}
a c a b=(a, c b, a), \quad b c b a=(b, b, c a), \quad c a c b=(c, a b, c), \\
c a b a=(c b, a, a), \quad(a c)^{2} b a=(a b, c, c), \quad c b a b=(c a, b, b),
\end{gathered}
$$

one can deduce that H is a fractal group. It is obvious that H acts transitively on the first level of the rooted ternary tree. Since this group is fractal, it follows that this action is also spherically transitive.

Moreover, it is known (see [GrŠ1]) that H is a regular branch group over its commutator subgroup H^{\prime}. We observe that we have not the inclusion $H^{\prime} \leq \operatorname{Stab}_{H}(1)$ that we have in the case of the Basilica group and in the case of $\operatorname{IMG}\left(z^{2}+i\right)$.

Also for the group H it is possible to prove that its action on L_{n}, $n \geq 1$, gives rise to symmetric Gelfand pairs as it has been proven for B and I. So consider the $n-$ th level L_{n} of the tree and the group $H_{n}=$ $H / \operatorname{Stab}_{H}(n)$. Fix the vertex $x_{0}=0^{n} \in L_{n}$ and set $K_{n}=\operatorname{Stab}_{H_{n}}\left(x_{0}\right)$. In the following theorem we will prove that the action of the parabolic subgroup K_{n} is transitive on each sphere.

THEOREM 5.1. The action of the group H on L_{n} is 2-points homogeneous for all n.

Proof. Denote by u_{j} the vertex $0^{j-1} 1$ and by v_{j} the vertex $0^{j-1} 2$, for every $j=1, \ldots, n$. Consider the element

$$
a c b=(1, c, a b)(12) .
$$

Using the fractalness of H, it is possible to find an element $g_{j} \in K_{n}$ such that the restriction $g_{j} \mid T_{0^{j-1}}$ is $a c b$. Since H is regular branch over H^{\prime}, there exists a subgroup H_{j} of K_{n} such that $\left.H_{j}\right|_{T_{u_{j}}}=H^{\prime}$ and which fixes any vertex of the tree whose u_{j} is not an ancestor. Let us prove that the action of H^{\prime} on the whole tree is spherically transitive. Considering, for example, the element $[c, b]=c b c b=(c b, c, b)(012)$, one gets that this action is transitive on the first level. Since $H^{\prime} \geq H^{\prime} \times H^{\prime} \times H^{\prime}$, the action is transitive on each level of the tree. So the action of the subgroup $K=<H_{j}, g_{j}>$ on the subtree $T_{0^{j-1}}$ is transitive on the vertices of L_{n} belonging to the subtrees $T_{u_{j}}$ and $T_{v_{j}}$. This action can be regarded as the action of K_{n} on the spheres of center x_{0}, and so we get that K_{n} acts transitively on these spheres. This implies that the action of H is 2-points homogeneous on L_{n}, as required.

Corollary 5.2. For every $n \geq 1,\left(H_{n}, K_{n}\right)$ is a symmetric Gelfand pair.

As in the case of the Basilica group and of $\operatorname{IMG}\left(z^{2}+i\right)$, the group H_{n} admits the same decomposition into irreducible submodules and the same spherical functions that we get for $\operatorname{Aut}\left(T_{n}\right)$.

Now we want to prove that the action of the rigid vertex stabilizers $\operatorname{Rist}_{H}(0), \operatorname{Rist}_{H}(1)$ and $\operatorname{Rist}_{H}(2)$ is spherically transitive on the subtrees T_{0}, T_{1} and T_{2}, respectively. Since these subgroups are conjugate, is suffices to prove the result for $\operatorname{Rist}_{H}(0)$. We use again the fact that H is regular branch over its commutator subgroup H^{\prime}. So there exists
a subgroup $L \leq H^{\prime}$ such that $\left.L\right|_{T_{0}}=H^{\prime}$ and $\left.L\right|_{T_{1}}=\left.L\right|_{T_{2}}=1$. In particular, L is a subgroup of $\operatorname{Rist}_{H}(0)$. Since H^{\prime} is spherically transitive on T, it follows that $\operatorname{Rist}_{H}(0)$ is spherically transitive on T_{0}, as required.

This property of the rigid vertex stabilizers, together with the fractalness of H and with the fact that the action of H on the first level is 2-transitive, gives a second proof of the fact that the action of H_{n} on L_{n} is 2-points homogeneous, following the same idea that we used for the Basilica group.

6. Generalized wreath products of permutation groups

The generalized wreath product has been introduced by R. A. Bailey, Cheryl E. Praeger, C. A. Rowley and T. P. Speed in [B\&al]. This is a construction that generalizes the classical direct and wreath product of groups. On the obtained structure one can apply the theory of Gelfand pairs.
6.1. Preliminaries. Let (I, \leq) be a finite poset, with $|I|=n$. First of all, we need some definitions (see, for example, $[\mathbf{B} \& \mathbf{a l}]$).

Definition 6.1. A subset $J \subseteq I$ is said

- ancestral $i f$, whenever $i>j$ and $j \in J$, then $i \in J$;
- hereditary if, whenever $i<j$ and $j \in J$, then $i \in J$;
- a chain $i f$, whenever $i, j \in J$, then either $i \leq j$ or $j \leq i$;
- an antichain $i f$, whenever $i, j \in J$ and $i \neq j$, then neither $i \leq j$ nor $j \leq i$.

In particular, for every $i \in I$, the following subsets of I are ancestral:

$$
A(i)=\{j \in I: j>i\} \text { and } A[i]=\{j \in I: j \geq i\}
$$

and the following subsets of I are hereditary:

$$
H(i)=\{j \in I: j<i\} \text { and } H[i]=\{j \in I: j \leq i\}
$$

Given a subset $J \subseteq I$, we set

- $A(J)=\bigcup_{i \in J} A(i) ;$
- $A[J]=\bigcup_{i \in J} A[i]$;
- $H(J)=\bigcup_{i \in J} H(i)$;
- $H[J]=\bigcup_{i \in J} H[i]$.

In what follows we will use the notation in $[\mathbf{B} \& \mathbf{a l}]$.
For each $i \in I$, let $\Delta_{i}=\left\{\delta_{0}^{i}, \ldots, \delta_{m-1}^{i}\right\}$ be a finite set, with $m \geq 2$. For $J \subseteq I$, put $\Delta_{J}=\prod_{i \in J} \Delta_{i}$. In particular, we put $\Delta=\Delta_{I}$.

If $K \subseteq J \subseteq I$, let π_{K}^{J} denote the natural projection from Δ_{J} onto Δ_{K}. In particular, we set $\pi_{J}=\pi_{J}^{I}$ and $\delta_{J}=\delta \pi_{J}$. Moreover, we will use Δ^{i} for $\Delta_{A(i)}$ and π^{i} for $\pi_{A(i)}$.

Let \mathcal{A} be the set of ancestral subsets of I. If $J \in \mathcal{A}$, then the equivalence relation \sim_{J} on Δ associated with J is defined as

$$
\delta \sim_{J} \epsilon \Leftrightarrow \delta_{J}=\epsilon_{J}
$$

for each $\delta, \epsilon \in \Delta$. We denote $\left|\sim_{J}\right|$ the cardinality of an equivalence class of \sim_{J}.

Definition 6.2. A poset block structure is a pair $\left(\Delta, \sim_{\mathcal{A}}\right)$, where
(1) $\Delta=\prod_{(I, \leq)} \Delta_{i}$, with (I, \leq) a finite poset and $\left|\Delta_{i}\right| \geq 2$, for each $i \in I$;
(2) $\sim_{\mathcal{A}}$ denotes the set of equivalence relations on Δ defined by the ancestral subsets of I.

Remark 6.3.

Observe that the set $\sim_{\mathcal{A}}$ is a poset and $\sim_{J} \leq \sim_{K}$ if and only if $J \supseteq K$. We will call it the ancestral poset associated with I. Moreover, all the maximal chains in $\sim_{\mathcal{A}}$ have the same length n. In fact, the empty set is always ancestral. A singleton $\{i\}$ constituted by a maximal element in I is still an ancestral set. Inductively, if $J \in \mathcal{A}$ is an ancestral set, then $J \sqcup\{i\}$ is an ancestral set if i is a maximal element in $I \backslash J$. So every maximal chain in the poset of ancestral subsets has length n.

To have a representation of a poset block structure, we can perform the following construction (see [DD3]). Let $C=\left\{\sim_{I}, \sim_{J}, \ldots, \sim_{\emptyset}\right\}$ be a maximal chain of ancestral relations such that $\sim_{J_{i}} \leq \sim_{J_{i+1}}$ for all $i=0, \ldots, n-1$. Let us define a rooted tree of depth n as follows: the n-th level is constituted by $|\Delta|$ vertices; the $(n-1)$-st by $\frac{|\Delta|}{\left|\sim J_{1}\right|}$ vertices. Each of these vertices is a father of $\left|\sim_{J_{1}}\right|$ sons that are in the same $\sim_{J_{1}}$-class. Inductively, at the i-th level there are $\frac{|\Delta|}{\left|\sim_{J_{n-i}}\right|}$ vertices fathers of $\left|\sim_{J_{n-i}}\right|$ vertices of the $(i+1)$-st level belonging to the same $\sim_{J_{n-i}}$-class.

We can perform the same construction for every maximal chain C in $\sim_{\mathcal{A}}$. The next step is to glue the different structures identifying the vertices associated with the same equivalence. The resulting structure is the poset block structure associated with I.

Example 6.4.
Consider the case of the following poset (I, \leq) :

One can easily check that, in this case, the ancestral poset $\left(\sim_{\mathcal{A}}, \leq\right)$ is the following:

Suppose $m=2$ and $\Delta_{1}=\Delta_{2}=\Delta_{3}=\{0,1\}$, so that we can think of Δ as the set of words of length 3 in the alphabet $\{0,1\}$. The partitions of Δ given by the equivalences \sim_{J}, with $J \subseteq I$ ancestral, are:

- $\Delta=\{000,001,010,011,100,101,110,111\}$ by the equivalence $\sim \nsim$
- $\Delta=\{000,001,010,011\} \coprod\{100,101,110,111\}$ by the equivalence $\sim_{\{1\}}$;
- $\Delta=\{000,001\} \amalg\{010,011\} \amalg\{100,101\} \amalg\{110,111\}$ by the equivalence $\sim_{\{1,2\}}$;
- $\Delta=\{000,010\} \amalg\{001,011\} \amalg\{100,110\} \amalg\{101,111\}$ by the equivalence $\sim_{\{1,3\}}$;
- $\Delta=\{000\} \amalg\{001\} \amalg\{010\} \amalg\{011\} \amalg\{100\} \amalg\{101\} \amalg\{110\}$ $\amalg\{111\}$ by the equivalence \sim_{I}.

Consider the chains $C_{1}=\left\{\sim_{I}, \sim_{\{1,2\}}, \sim_{\{1\}}, \sim_{\emptyset}\right\}$ and $C_{2}=\left\{\sim_{I}\right.$ $\left., \sim_{\{1,3\}}, \sim_{\{1\}}, \sim_{\emptyset}\right\}$ in $\left(\sim_{\mathcal{A}}, \leq\right)$. The associated trees T_{1} and T_{2} are, respectively,

Assembling these trees, we get the following poset block structure.

Fig. 8. The poset block structure
6.2. The generalized wreath product. We present here the definition of generalized wreath product given in $[\mathbf{B} \& \mathbf{a l}]$. We will follow the same notation of the action to the right presented there. For each $i \in I$, let G_{i} be a permutation group on Δ_{i} and let F_{i} be the set of all functions from Δ^{i} into G_{i}. For $J \subseteq I$, we put $F_{J}=\prod_{i \in J} F_{i}$ and set $F=F_{I}$. An element of F will be denoted $f=\left(f_{i}\right)$, with $f_{i} \in F_{i}$.

Definition 6.5. For each $f \in F$, the action of f on Δ is defined as follows: if $\delta=\left(\delta_{i}\right) \in \Delta$, then

$$
\begin{equation*}
\delta f=\varepsilon, \quad \text { where } \varepsilon=\left(\varepsilon_{i}\right) \in \Delta \text { and } \varepsilon_{i}=\delta_{i}\left(\delta \pi^{i} f_{i}\right) . \tag{6}
\end{equation*}
$$

It is easy to verify that this is a faithful action of F on Δ. If (I, \leq) is a finite poset, then (F, Δ) is a permutation group, which is called the generalized wreath product of the permutation groups $\left(G_{i}, \Delta_{i}\right)_{i \in I}$ and denoted $\prod_{(I, \leq)}\left(G_{i}, \Delta_{i}\right)$.

Definition 6.6. An automorphism of a poset block structure ($\Delta, \sim_{\mathcal{A}}$) is a permutation σ of Δ such that, for every equivalence \sim_{J} in $\sim_{\mathcal{A}}$,

$$
\delta \sim_{J} \varepsilon \quad \Leftrightarrow \quad(\delta \sigma) \sim_{J}(\varepsilon \sigma),
$$

for all $\delta, \varepsilon \in \Delta$.
The following fundamental theorems are proven in $[\mathbf{B} \& \mathbf{a l}]$. We denote by $\operatorname{Sym}\left(\Delta_{i}\right)$ the symmetric group acting on the set Δ_{i}. Sometimes we denote it by $\operatorname{Sym}(m)$, where $m=\left|\Delta_{i}\right|$.

TheOrem 6.7. The generalized wreath product of the permutation groups $\left(G_{i}, \Delta_{i}\right)_{i \in I}$ is transitive on Δ if and only if $\left(G_{i}, \Delta_{i}\right)$ is transitive for each $i \in I$.

Theorem 6.8. Let $\left(\Delta, \sim_{\mathcal{A}}\right)$ be a poset block structure with associated poset (I, \leq). Let F be the generalized wreath product $\prod_{(I, \leq)} \operatorname{Sym}\left(\Delta_{i}\right)$. Then F is the group of automorphisms of $\left(\Delta, \sim_{\mathcal{A}}\right)$.

Remark. If (I, \leq) is a finite poset, with \leq the identity relation, then the generalized wreath product becomes the permutation direct product.

$$
\begin{array}{llll}
\mathrm{i} & \dot{2} & \dot{3} & \cdots
\end{array}
$$

In this case, we have $A(i)=\emptyset$ for each $i \in I$ and so an element f of F is given by $f=\left(f_{i}\right)_{i \in I}$, where f_{i} is a function from a singleton $\{*\}$ into G_{i} and so its action on δ_{i} does not depend from any other components of δ.

Remark. If (I, \leq) is a finite chain, then the generalized wreath product becomes the permutation wreath product

In this case, we have $A(i)=\{1,2, \ldots, i-1\}$ for each $i \in I$ and so an element f of F is given by $f=\left(f_{i}\right)_{i \in I}$, with

$$
f_{i}: \Delta_{1} \times \cdots \times \Delta_{i-1} \longrightarrow G_{i}
$$

and so its action on δ_{i} depends on all the previous components of δ.
6.3. Gelfand pairs. In what follows we suppose $G_{i}=\operatorname{Sym}(m)$ where $m=\left|\Delta_{i}\right|$. Fixed an element $\delta_{0}=\left(\delta_{0}^{1}, \ldots, \delta_{0}^{n}\right)$ in Δ, the stabilizer $\operatorname{Stab}_{F}\left(\delta_{0}\right)$ is the subgroup of F acting trivially on δ_{0}. If we represent
$f \in F$ as the n-tuple $\left(f_{1}, \ldots, f_{n}\right)$, with $f_{i}: \Delta^{i} \longrightarrow \operatorname{Sym}(m)$ and set $\Delta_{0}^{i}=\prod_{j \in A(i)} \delta_{0}^{j}$, we have the following lemma.

Lemma 6.9. The stabilizer of $\delta_{0}=\left(\delta_{0}^{1}, \ldots, \delta_{0}^{n}\right) \in \Delta$ in F is the subgroup

$$
\begin{aligned}
K:=\operatorname{Stab}_{F}\left(\delta_{0}\right)= & \left\{g=\left(f_{1}, \ldots, f_{n}\right) \in G:\left.f_{i}\right|_{\Delta_{0}^{i}} \in \operatorname{Stab}_{\operatorname{Sym}(m)}\left(\delta_{0}^{i}\right)\right. \\
& \text { whenever } \left.\Delta^{i}=\Delta_{0}^{i} \text { or } A(i)=\emptyset\right\} .
\end{aligned}
$$

Proof. One can easily verify that K is a subgroup of F. If $i \in I$ is such that $A(i)=\emptyset$ then, by definition of generalized wreath product, it must be $f_{i} \in \operatorname{Stab}_{\operatorname{Sym}(m)}\left(\delta_{0}^{i}\right)$. For all i we have

$$
\begin{aligned}
\delta_{0}^{i} f=\delta_{0}^{i} & \Longleftrightarrow \delta_{0}^{i}\left(\delta_{0}^{A(i)}\right) f_{i}=\delta_{0}^{i} \\
& \Longleftrightarrow\left(\delta_{0}^{A(i)}\right) f_{i} \in \operatorname{Stab}_{\operatorname{Sym}(m)}\left(\delta_{0}^{i}\right) \\
& \left.\Longleftrightarrow f_{i}\right|_{\Delta_{0}^{i}} \in \operatorname{Stab}_{\operatorname{Sym}(m)}\left(\delta_{0}^{i}\right) .
\end{aligned}
$$

Now we want to study the K-orbits on Δ. We recall that the action of $\operatorname{Sym}(m-1) \equiv \operatorname{Stab}_{\operatorname{Sym}(m)}\left(\delta_{0}^{i}\right)$ on Δ_{i} has two orbits, i.e. $\Delta_{i}=\left\{\delta_{0}^{i}\right\} \amalg\left(\Delta_{i} \backslash\left\{\delta_{0}^{i}\right\}\right)$. Set $\Delta_{i}^{0}=\left\{\delta_{0}^{i}\right\}$ and $\Delta_{i}^{1}=\Delta_{i} \backslash\left\{\delta_{0}^{i}\right\}$.

Lemma 6.10. The K-orbits on Δ have the following form:

$$
\left(\prod_{i \in I \backslash H[S]} \Delta_{i}^{0}\right) \times\left(\prod_{i \in S} \Delta_{i}^{1}\right) \times\left(\prod_{i \in H(S)} \Delta_{i}\right)
$$

where S is any antichain in I.
Proof. First of all suppose that $\delta, \epsilon \in\left(\prod_{i \in I \backslash H[S]} \Delta_{i}^{0}\right) \times\left(\prod_{i \in S} \Delta_{i}^{1}\right) \times$ $\left(\prod_{i \in H(S)} \Delta_{i}\right)$, for some antichain S. Then $\delta_{I \backslash H[S]}=\epsilon_{I \backslash H[S]}=\delta_{0}^{I \backslash H[S]}$. If $s \in S$ we have $A(s) \subseteq I \backslash H[S]$ and this implies $(A(s)) f_{s} \in \operatorname{Stab}_{\text {Sym }(m)}\left(\delta_{0}^{s}\right)$. So $\epsilon_{s}=\delta_{s}\left(\delta_{0}^{A(s)} f_{s}\right.$. If $i \in H(S)$ then $A(i) \neq \emptyset$ and $\Delta^{i} \neq \Delta_{0}^{i}$. This implies $(A(i)) f_{i} \in \operatorname{Sym}(m)$ and so $\epsilon_{i}=\delta_{i}\left(\delta_{0}^{A(i)} f_{i}\right)$. This shows that K acts transitively on each orbit.

On the other hand, let $S \neq S^{\prime}$ be two distinct antichains and $\delta \in$ $\left(\prod_{i \in I \backslash H[S]} \Delta_{i}^{0}\right) \times\left(\prod_{i \in S} \Delta_{i}^{1}\right) \times\left(\prod_{i \in H(S)} \Delta_{i}\right)$ and $\epsilon \in\left(\prod_{i \in I \backslash H\left[S^{\prime}\right]} \Delta_{i}^{0}\right) \times$ $\left(\prod_{i \in S^{\prime}} \Delta_{i}^{1}\right) \times\left(\prod_{i \in H\left(S^{\prime}\right)} \Delta_{i}\right)$. Suppose $s \in S \backslash\left(S \cap S^{\prime}\right)$ and so $I \backslash$ $H[S] \neq I \backslash H\left[S^{\prime}\right]$. If $s \in I \backslash H\left[S^{\prime}\right]$ then $\delta_{s} \neq \delta_{0}^{s}=\epsilon_{s}$. But $(A(S)) f_{s} \in$ $\operatorname{Stab}_{S y m(m)}\left(\delta_{0}^{s}\right)$ and so $\delta_{s}\left(A(S) f_{s}\right) \neq \epsilon_{s}$. If $s \in H\left(S^{\prime}\right)$ there exists $s^{\prime} \in S^{\prime} \backslash\left(S \cap S^{\prime}\right)$ such that $s<s^{\prime}$. This implies that $s^{\prime} \in I \backslash H[S]$ and we can proceed as above.

The proof follows from the fact that the orbits are effectively a partition of Δ.

Finally, we want to prove that the group $F=\prod_{i \in I} G_{i}$ acting on Δ and the stabilizer K of the element $\delta_{0}=\left(\delta_{0}^{1}, \ldots, \delta_{0}^{n}\right)$ yield a Gelfand pair. To show this, we use the Gelfand condition.

Proposition 6.11. Given $\delta, \epsilon \in \Delta$, there exists an element $g \in F$ such that $\delta g=\epsilon$ and $\epsilon g=\delta$.

Proof. Let i be in I such that $A(i)=\emptyset$. Then, by the m-transitivity of the symmetric group, there exists $g_{i} \in \operatorname{Sym}\left(\Delta_{i}\right)$ such that $\delta_{i} g_{i}=\epsilon_{i}$ and $\epsilon_{i} g_{i}=\delta_{i}$. For every index i such that $A(i) \neq \emptyset$ define $f_{i}: \Delta^{i} \longrightarrow$ $\operatorname{Sym}\left(\Delta_{i}\right)$ as $\delta_{\Delta^{i}} f_{i}=\epsilon_{\Delta^{i}} f_{i}=\sigma_{i}$ where $\sigma_{i} \in \operatorname{Sym}\left(\Delta_{i}\right)$ is a permutation such that $\delta_{i} \sigma_{i}=\epsilon_{i}$ and $\epsilon_{i} \sigma_{i}=\delta_{i}$. So the element $g \in F$ that we get is the requested automorphism.

From this we get the following corollary.
Corollary 6.12. (G, K) is a symmetric Gelfand pair.
Set $L(\Delta)=\{f: \Delta \longrightarrow \mathbb{C}\}$. It is known $([\mathbf{B} \& \mathbf{a l}])$ that the decomposition of $L(\Delta)$ into G-irreducible submodules is given by

$$
L(\Delta)=\bigoplus_{S \subseteq I} \text { antichain } W_{S}
$$

with

$$
\begin{equation*}
W_{S}=\left(\bigotimes_{i \in A(S)} L\left(\Delta_{i}\right)\right) \otimes\left(\bigotimes_{i \in S} V_{i}^{1}\right) \otimes\left(\bigotimes_{i \in I \backslash A[S]} V_{i}^{0}\right) \tag{7}
\end{equation*}
$$

where, for each $i=1, \ldots, n$, we denote $L\left(\Delta_{i}\right)$ the space of the real valued functions on Δ_{i}, whose decomposition into G_{i}-irreducible submodules is

$$
L\left(\Delta_{i}\right)=V_{i}^{0} \bigoplus V_{i}^{1}
$$

with V_{i}^{0} the subspace of the constant functions on Δ_{i} and $V_{i}^{1}=\{f$: $\left.\Delta_{i} \rightarrow \mathbb{C}: \sum_{x \in \Delta_{i}} f(x)=0\right\}$.

Proposition 6.13. The spherical function associated with W_{S} is

$$
\begin{equation*}
\phi_{S}=\bigotimes_{i \in A(S)} \varphi_{i} \bigotimes_{i \in S} \psi_{i} \bigotimes_{i \in I \backslash A[S]} \varrho_{i} \tag{8}
\end{equation*}
$$

where φ_{i} is the function defined on Δ_{i} as

$$
\varphi_{i}(x)= \begin{cases}1 & x=\delta_{0}^{i} \\ 0 & \text { otherwise }\end{cases}
$$

and ψ_{i} is the function defined on Δ_{i} as

$$
\psi_{i}(x)= \begin{cases}1 & x=\delta_{0}^{i} \\ -\frac{1}{m-1} & \text { otherwise }\end{cases}
$$

and ϱ_{i} is the function on Δ_{i} such that $\varrho_{i}(x)=1$ for every $x \in \Delta_{i}$.
Proof. It is clear that $\phi_{S} \in W_{S}$ and $\left(\delta_{0}\right) \phi_{S}=1$, so we have to show that each ϕ_{S} is K-invariant.

Set $B_{1}=\{i \in A(S): A(i)=\emptyset\}$. If there exists $i \in B_{1}$ such that $\delta_{i} \neq \delta_{0}^{i}$ then $(\delta) \phi_{S}=(\delta) \phi_{S}^{k}=0$ for every $k \in K$, since $\delta_{i} \varphi_{i}=$ $\left(\delta_{i} k^{-1}\right) \varphi_{i}=0$. Hence ϕ and ϕ^{k} coincide on $\delta \in \Delta$ satisfying this property. So we can suppose that $\delta_{i}=\delta_{0}^{i}$ for each $i \in B_{1}$.

Let B_{2} be the set of maximal elements in $A(S) \backslash B_{1}$. If there exists $j \in B_{2}$ such that $\delta_{j} \neq \delta_{0}^{j}$ then $(\delta) \phi_{S}=(\delta) \phi_{S}^{k}=0$ for every $k \in K$, since $\delta_{j} \varphi_{j}=\left(\delta_{j} k^{-1}\right) \varphi_{j}=0$. Hence ϕ and ϕ^{k} coincide on $\delta \in \Delta$ satisfying this property. So we can suppose that $\delta_{j}=\delta_{0}^{j}$ for each $j \in B_{2}$. Inductively it remains to show that $(\delta) \phi_{S}=(\delta) \phi_{S}^{k}$ only for the elements δ such that $\delta_{A(S)}=\delta_{0}^{A(S)}$, i.e. $\left(\delta_{i}\right) \psi_{i}=\left(\delta_{i}\right) \psi_{i}^{k}$ for every $i \in S$. This easily follows from the definition of K and of the function ψ_{i}.

Remark 6.14.
In $[\mathbf{B} \& \mathbf{a l}]$ the authors give the decomposition of the space $L(\Delta)$ into irreducible submodules under the action of F and they prove that W_{S} is not isomorphic to W_{T} if $S \neq T$ and so this decomposition is multiplicity-free. Although this implies that one gets a Gelfand pair, they do not deal with Gelfand pairs theory. Actually, Proposition 6.11 is a stronger result, valid in the more general case of more complex substructures of the poset block structure, that implies that the Gelfand pair is also symmetric.

7. Substructures

Consider the rooted tree of depth n denoted by T_{n}, with ramification indices $\left(m_{1}, \ldots, m_{n}\right)$, we have associated with it the homogeneous space obtained by considering its full automorphism group and the stabilizer of a fixed vertex (a leaf) of the n-th level. But fixing new indices $\left(r_{1}, \ldots, r_{n}\right)$ such that $r_{i} \leq m_{i}$ fer every $i=1, \ldots, n$ we can consider the variety of the subtrees in the whole tree T_{n}. The full automorphism group $\operatorname{Aut}\left(T_{n}\right)$ acts transitively on the variety of subtrees and associated with the stabilizer of a particular subtree gives rise to a Gelfand pair as shown in [CST3].

We have noted that the tree and its group of automorphisms are a specific case in the theory of the poset block structures (as well as the case of the direct product). Then we can ask: is this result in general true in the context of poset block structures? I.e. if we choose a r_{i} - subset of elements in the sets Δ_{i} with $i \in I$ according with the
structure of the poset and its group of automorphisms, we can get a Gelfand pairs considering the subgroup stabilizer a particular one?

Consider the poset block structure associated with the poset (I, \leq), with $|I|=n$.

For each $i \in I$, let $\Delta_{i}=\left\{\delta_{0}^{i}, \ldots, \delta_{m_{i}-1}^{i}\right\}$ be a finite set, with $m_{i} \geq 2$ for all $i=1, \ldots, n$.

We can represent Δ by a rooted tree of depth n and whose branch indices are $\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right)$.

Consider the indices $\mathbf{r}=\left(r_{1}, \ldots, r_{n}\right)$ as the indices of the substructure that we want to define. If $i \in\{1, \ldots, n\}$ is an index such that $A(i)=\emptyset$, then the choice of r_{i} elements in Δ_{i} does not depend from any other index.

If $i \in\{1, \ldots, n\}$ is an index such that $\emptyset \neq A(i)=\left\{i_{1}, \ldots, i_{k}\right\}$, then the choice of r_{i} elements in Δ_{i} depends on the choose performed for the indices i_{1}, \ldots, i_{k}. In other words, the $i-$ th choice is the same for those substructures that coincide on the chooses given for the indices belonging to the anchestral set $A(i)$.

It is easy to check that the number of the substructures defined above is exactly

$$
\prod_{i \in I: A(i)=\emptyset}\binom{m_{i}}{r_{i}} \cdot \prod_{i \in I: A(i) \neq \emptyset}\binom{m_{i}}{r_{i}}^{\prod_{j \in A(i)} r_{j}}
$$

In fact, for those indices $i \in I$ such that $A(i)=\emptyset$, we have $\binom{m_{i}}{r_{i}}$ possible choices; for those indices $i \in I$ such that $A(i) \neq \emptyset$, we have $\binom{m_{i}}{r_{i}}$ possible choices for each of the $\prod_{j \in A(i)} r_{j}$ vertices corresponding to (eventually) different choices for the coordinates in $A(i)$.

It is not difficult to verify that the action of the generalized wreath product F of the symmetric groups of the sets Δ_{i} transitively acts on the variety of the substructures of a poset block structure.

We can also prove, using Gelfand's Condition (Lemma 1.4 Chapter 1), that (F, K) is a symmetric Gelfand pair, where K denotes the stabilizer of a fixed substructure. In fact, the following theorem holds.

Theorem 7.1. Let (I, \leq) be a finite poset and let Δ be the associated poset block structure. Let F be the respective generalized wreath product, with $\left|\Delta_{i}\right|=m_{i} \geq 2$ for all $i \in I$. Let $\boldsymbol{r}=\left(r_{1}, \ldots, r_{n}\right)$ be an n-tuple of integers such that $1 \leq r_{i} \leq m_{i}$. If A and B are two substructures of type \boldsymbol{r} in Δ, then there exists an automorphism $f \in F$ of Δ such that $f(A)=B$ and $f(B)=A$.

Proof. We can suppose, without loss of generality, that $A(1)=\emptyset$. We want to get an automorphism $f=\left(f_{i}\right)_{i \in I} \in F$ such that $f(A)=B$ and $f(B)=A$. We will proceed by induction on the depth of the substructure.

Set $\pi_{1}(A)=\left\{i_{1}^{A}, \ldots, i_{r_{1}}^{A}\right\}$ and $\pi_{1}(B)=\left\{i_{1}^{B}, \ldots, i_{r_{1}}^{B}\right\}$.
By the m_{1}-transitivity of $\operatorname{Sym}\left(\Delta_{1}\right)$, we can choose a permutation $f_{1} \in \operatorname{Sym}\left(\Delta_{1}\right)$ fixing $\pi_{1}(A) \cap \pi_{1}(B)$ such that $f_{1}\left(\pi_{1}(A) \backslash\left(\pi_{1}(A) \cap\right.\right.$ $\left.\left.\pi_{1}(B)\right)\right)=\pi_{1}(B) \backslash\left(\pi_{1}(A) \cap \pi_{1}(B)\right)$ and $f_{1}\left(\pi_{1}(B) \backslash\left(\pi_{1}(A) \cap \pi_{1}(B)\right)\right)=$ $\pi_{1}(A) \backslash\left(\pi_{1}(A) \cap \pi_{1}(B)\right)$.

Now let $2 \leq j \leq n$ and $A(j)=\left\{j_{1}, \ldots, j_{k}\right\}$, with $j_{1}<\ldots<$ $j_{k}<j$ in \mathbb{N}. Suppose that we have found an automorphism $f^{\prime} \in$ F such that $f^{\prime}\left(\pi_{\{1, \ldots, j-1\}}(A)\right)=\pi_{\{1, \ldots, j-1\}}(B)$ and $f^{\prime}\left(\pi_{\{1, \ldots, j-1\}}(B)\right)=$ $\pi_{\{1, \ldots, j-1\}}(A)$. We want to show that this result can be extended to the $j-$ th level. For both A and B, the vertices at the $(j-1)-$ st level are exactly $r_{1} r_{2} \cdots r_{j-1}$. Moreover f^{\prime} maps vertices of the $(j-1)-$ st level having the same choices for the coordinates in $A(j)$ into vertices that still have the same choices for the coordinates in $A(j)$, since f^{\prime} is an automorphism of the poset block structure. Now for each possible ancestral situation $a_{j} \in \Delta^{j}$ for the vertices of the $(j-1)$-st level of A, we put $f_{j}\left(a_{j}\right)=g_{j}^{A} \in \operatorname{Sym}\left(\Delta_{j}\right)$, where g_{j}^{A} maps the r_{j} elements starting from those vertices into the r_{j} elements in B starting from the image of those vertices by f^{\prime}.

Analogously for each possible ancestral situation $b_{j} \in \Delta^{j}$ for the vertices of the $(j-1)-$ st level of B.

If $a_{j}=b_{j}$, then f_{j} has to be defined has $f_{j}\left(a_{j}\right)=g_{j}^{A B} \in \operatorname{Sym}\left(\Delta_{j}\right)$, where $g_{j}^{A B}$ maps the r_{j} elements in A into the r_{j} elements of B and viceversa.

If we put $f^{\prime \prime}=\left(1, \ldots, 1, f_{j}, 1, \ldots, 1\right)$, then the composition of f^{\prime} and $f^{\prime \prime}$ gives the automorphism f required.

Now let K be the stabilizer of a fixed substructure. We get the following corollary.

Corollary 7.2. (F, K) is a symmetric Gelfand pair.
The question about the decompositions into irreducible submodules, and the corresponding spherical functions is still open.

CHAPTER 3

Markov Chains

This chapter is devoted to the study of particular Markov chains linked with the theory of Gelfand Pairs. The Insect is studied in relation with the cut-off theory and it is generalized as Markov chain on more general posets. Finally the first and the second crested products are defined, as a generalization giving the same decomposition obtained by the group theory.

1. General properties

The following topics about finite Markov chains can be found in [CST2].

Consider a finite set X, with $|X|=m$. Let P be a stochastic matrix of size m whose rows and columns are indexed by the elements of X, so that

$$
\sum_{x \in X} p\left(x_{0}, x\right)=1
$$

for every $x_{0} \in X$. Consider the Markov chain on X with transition matrix P.

Definition 1.1. The Markov chain P is reversible if there exists a strict probability measure π on X such that

$$
\pi(x) p(x, y)=\pi(y) p(y, x)
$$

for all $x, y \in X$.
We will say that P and π are in detailed balance. For a complete treatment about these and related topics see [AlFi].

Define on $L(X)=\{f: X \longrightarrow \mathbb{C}\}$ a scalar product in the following way:

$$
\left\langle f_{1}, f_{2}\right\rangle_{\pi}=\sum_{x \in X} f_{1}(x) \overline{f_{2}(x)} \pi(x)
$$

for all $f_{1}, f_{2} \in L(X)$ and the linear operator $P: L(X) \longrightarrow L(X)$ by

$$
(P f)(x)=\sum_{y \in X} p(x, y) f(y)
$$

It is easy to verify that π and P are in detailed balance if and only if P is self-adjoint with respect to the scalar product $\langle\cdot, \cdot\rangle_{\pi}$. Under these hypothesis, it is known that the matrix P can be diagonalized over the reals. Moreover 1 is always an eigenvalue of P and, if λ is another
eigenvalue, one has $|\lambda| \leq 1$.
Let λ_{z} be the eigenvalues of the matrix P, for every $z \in X$, with $\lambda_{z_{0}}=1$. Then there exists an invertible unitary real matrix $U=$ $(u(x, y))_{x, y \in X}$ such that $P U=U \Delta$, where $\Delta=\left(\lambda_{x} \delta_{x}(y)\right)_{x, y \in X}$ is the diagonal matrix whose entries are the eigenvalues of P. This equation gives, for all $x, z \in X$,

$$
\begin{equation*}
\sum_{y \in X} p(x, y) u(y, z)=u(x, z) \lambda_{z} . \tag{9}
\end{equation*}
$$

Moreover, we have $U^{T} D U=I$, where $D=\left(\pi(x) \delta_{x}(y)\right)_{x, y \in X}$ is the diagonal matrix of coefficients of π. This second equation gives, for all $y, z \in X$,

$$
\begin{equation*}
\sum_{x \in X} u(x, y) u(x, z) \pi(x)=\delta_{y}(z) . \tag{10}
\end{equation*}
$$

Hence, the first equation tells us that each column of U is an eigenvector of P, the second one tells us that these columns are orthogonal with respect to the product $\langle\cdot, \cdot\rangle_{\pi}$.

Let μ and ν two probability distributions on X. Then their total variation distance is defined as

$$
\|\mu-\nu\|_{T V}=\max _{A \subseteq X}\left|\sum_{x \in A} \mu(x)-\nu(x)\right| \equiv \max _{A \subseteq X}|\mu(A)-\nu(A)| .
$$

It is easy to prove that $\|\mu-\nu\|_{T V}=\frac{1}{2}\|\mu-\nu\|_{L^{1}}$, where

$$
\|\mu-\nu\|_{L^{1}}=\sum_{x \in X}|\mu(x)-\nu(x)| .
$$

Proposition 1.2. The k-th step transition probability is given by

$$
\begin{equation*}
p^{(k)}(x, y)=\pi(y) \sum_{z \in X} u(x, z) \lambda_{z}^{k} u(y, z), \tag{11}
\end{equation*}
$$

for all $x, y \in X$.
Proof. The proof is a consequence of (9) and (10). In fact, the matrix $U^{T} D$ is the inverse of U, so that $U U^{T} D=I$. In formulæ, we have

$$
\sum_{y \in X} u(x, y) u(z, y)=\frac{1}{\pi(z)} \Delta_{z}(x)
$$

From the equation $P U=U \Delta$ we get $P=U \Delta U^{T} D$, which gives

$$
p(x, y)=\pi(y) \sum_{z \in X} u(x, z) \lambda_{z} u(y, z) .
$$

Iterating this argument we get

$$
P^{k}=U \Delta^{k} U^{T} D
$$

which is the assertion.

Recall that there exists a correspondence between reversible Markov chains and weighted graphs.

Definition 1.3. A weight on a graph $\mathcal{G}=(X, E)$ is a function $w: X \times X \longrightarrow[0,+\infty)$ such that
(1) $w(x, y)=w(y, x)$;
(2) $w(x, y)>0$ if and only if $x \sim y$.

If \mathcal{G} is a weighted graph, it is possible associate with w a stochastic matrix $P=(P(x, y))_{x, y \in X}$ on X by setting

$$
p(x, y)=\frac{w(x, y)}{W(x)}
$$

with $W(x)=\sum_{z \in X} w(x, z)$. The corresponding Markov chain is called the random walk on \mathcal{G}. It is easy to prove that the matrix P is in detailed balance with the distribution π defined, for every $x \in X$, as

$$
\pi(x)=\frac{W(x)}{W}
$$

with $W=\sum_{z \in X} W(z)$. Moreover, π is strictly positive if X does not contain isolated vertices. The inverse construction can be done. So, if we have a transition matrix P on X which is in detailed balance with the probability π, then we can define a weight w as $w(x, y)=$ $\pi(x) p(x, y)$. This definition guarantees the symmetry of w and, by setting $E=\{\{x, y\}: w(x, y)>0\}$, we get a weighted graph.

There are some important relations between the weighted graph associated with a transition matrix P and its spectrum. In fact, it is easy to prove that the multiplicity of the eigenvalue 1 of P equals the number of connected components of \mathcal{G}. Moreover, the following propositions hold.

Proposition 1.4. Let $\mathcal{G}=(X, E, w)$ be a finite connected weighted graph and denote P the corresponding transition matrix. Then the following are equivalent:
(1) \mathcal{G} is bipartite;
(2) the spectrum $\sigma(P)$ is symmetric;
(3) $-1 \in \sigma(P)$.

Proof. 1) \Rightarrow 2) Suppose that $P f=\lambda f$, we have to show that exists $f^{\prime} \in L(X)$ such that $P f^{\prime}=-\lambda f^{\prime}$. Since \mathcal{G} is bipartite we can
write $X=X_{0} \sqcup X_{1}$. If $x \in X_{j}$ set $f^{\prime}(x)=(-1)^{j} f(x)$. So

$$
\begin{aligned}
P f^{\prime}(x) & =\sum_{y \sim x} p(x, y) f^{\prime}(y)= \\
& =\sum_{y \sim x}(-1)^{j+1} p(x, y) f(y)= \\
& =(-1)^{j+1} \lambda f(x)=-\lambda f^{\prime}(x) .
\end{aligned}
$$

2) \Rightarrow 3) Trivial.
3) $\Rightarrow 1)$ There exists $f \in L(X)$ such that $P f=-f$. Suppose that $x_{0} \in X$ is a point of maximum for $|f|$ and that $f\left(x_{0}\right)>0$. From $-f\left(x_{0}\right)=\sum_{y \sim x_{0}} p\left(x_{0}, y\right) f(y)$ we get $f\left(x_{0}\right)=-f(y)$ for each $y \sim x_{0}$. Set $X_{j}=\left\{y \in X: f(y)=(-1)^{j} f\left(x_{0}\right)\right\}$ for $j=0,1$. This gives the bipartition of the graph \mathcal{G}.

Definition 1.5. Let P be a stochastic matrix. P is ergodic if there exists $n_{0} \in \mathbb{N}$ such that

$$
p^{\left(n_{0}\right)}(x, y)>0, \quad \text { for all } x, y \in X
$$

Proposition 1.6. Let $\mathcal{G}=(X, E)$ be a finite graph. Then the following conditions are equivalent:
(1) \mathcal{G} is connected and not bipartite;
(2) for every weight function on X, the associated transition matrix P is ergodic.

Proof. 2) $\Rightarrow 1$) By hypothesis there exists k_{0} such that $p^{\left(k_{0}\right)}(x, y)>$ 0 for every $x, y \in X$. This implies that, for $k>k_{0}$ we get $p^{k}(x, y)=$ $\sum_{z \in X} p^{\left(n-n_{0}\right)}(x, z) p^{k_{0}}(z, y)>0$. This assures the existence of paths of even and odd length from x and y, i.e. X is not bipartite.
$1) \Rightarrow 2$) It is clear that \mathcal{G} is bipartite if and only if the length of a path connecting a vertex x with itself is even. This implies that there exists a path of odd length from x to x. For every $x \in X$ denote it $l(x)$. Set $2 M+1=\max _{x \in X}|l(x)|$. We can construct paths starting and ending at x of length $\geq 2 M$. If m is even we choose $z \sim x$ and the path $q_{2 t}=(x, z, x, \ldots, z, x)$, if m is odd we consider $l(x)$ composed with $q_{2 t}$. Set $\delta=\max _{x, y \in X} d(x, y)$. We can conclude from this that for any $x, y \in X$ there exists a path joining them after n steps, where $n \geq 2 M+\delta$. In fact, denote $l(x, y)$ the minimal path connecting x and y and choose $m=n-d(x, y) \geq 2 M$. We have seen that we can construct a path starting and ending at x of length $\geq 2 M$, compose it with $l(x, y)$ of length $\leq \delta$ and this gives the path connecting x and y in n steps.

So we can conclude that a reversible transition matrix P is ergodic if and only if the eigenvalue 1 has multiplicity one and -1 is not an
eigenvalue.
This allows to prove the following fundamental theorem that is true in a more general settings.

Theorem 1.7. Let P a probability on X in detailed balance with the distribution π, then

$$
\lim _{k \rightarrow \infty} p^{(k)}(x, y)=\pi(y), \quad \forall x, y \in X
$$

Proof. We have from Proposition 1.2
$p^{(k)}(x, y)=\pi(y) \sum_{z \in X} u(x, z) \lambda_{z}^{k} u(y, z)=\pi(y)\left(1+\sum_{z \neq z_{0}} u(x, z) \lambda_{z}^{k} u(y, z)\right)$,
the second summand goes to 0 since $\left|\lambda_{z}\right|_{z \neq z_{0}}<1$.

In what follows we always suppose that the eigenvalue 1 has multiplicity one, so that the graph associated with the probability P is connected. This is equivalent to require that the probability P is irreducible, according with the following definition.

Definition 1.8. A stochastic matrix P on a set X is irreducible if, for every $x_{1}, x_{2} \in X$, there exists $n=n\left(x_{1}, x_{2}\right)$ such that $p^{(n)}\left(x_{1}, x_{2}\right)>$ 0.

2. Insect Markov chain

In [F-T1] the following Markov chain on the space L_{n} is defined. Suppose that at time zero we start from the vertex $x_{0}=0^{n} \in L_{n}$. Let ξ_{i} denote the vertex 0^{n-i} and α_{i} the probability to reach ξ_{i+1} from staying at ξ_{i}. It is clear that $\alpha_{0}=1, \alpha_{1}=\frac{1}{q+1}$ and $\alpha_{n}=0$. This leads to the following recursive expression

$$
\alpha_{j}=\frac{1}{q+1}+\alpha_{j-1} \alpha_{j} \frac{1}{q+1} .
$$

Solving the equation we get

$$
\alpha_{j}=\frac{q^{j}-1}{q^{j+1}-1}, \quad 1 \leq j \leq n-1
$$

Hence we can define $P=(p(x, y))_{x, y \in L_{n}}$, as the stochastic matrix whose entry $p(x, y)$ is the probability that y is the first vertex in L_{n} reached from x in the Markov chain defined above. It is clear that if $d(x, y)=d(x, z)$ (i.e. y and z are in the same sphere of center x) we have $p(x, y)=p(x, z)$. Fixed the vertex $x_{0}=0^{n}$, we can compute, recalling the significance of the α_{j} 's

$$
\begin{aligned}
p\left(x_{0}, x_{0}\right) & =q^{-1}\left(1-\alpha_{1}\right)+q^{-2} \alpha_{1}\left(1-\alpha_{2}\right)+\cdots+ \\
& +q^{-n+1} \alpha_{1} \alpha_{2} \cdots \alpha_{n-2}\left(1-\alpha_{n-1}\right)+q^{-n} \alpha_{1} \alpha_{2} \cdots \alpha_{n-1} .
\end{aligned}
$$

It is clear that, if $d\left(x_{0}, x\right)=1$, then $p\left(x_{0}, x\right)=p\left(x_{0}, x_{0}\right)$.
More generally, if $d\left(x_{0}, x\right)=j>1$, we have

$$
\begin{aligned}
p\left(x_{0}, x\right) & =q^{-j} \alpha_{1} \alpha_{2} \cdots \alpha_{j-1}\left(1-\alpha_{j}\right)+\cdots+ \\
& +q^{-n+1} \alpha_{1} \alpha_{2} \cdots \alpha_{n-2}\left(1-\alpha_{n-1}\right)+q^{-n} \alpha_{1} \alpha_{2} \cdots \alpha_{n-1} .
\end{aligned}
$$

In order to compute the eigenvalues $\lambda_{j}, j=0,1, \ldots, n$ of the associated operator P one can observe that by equivalence between $\operatorname{Aut}\left(T_{q, n}\right)-$ invariant operators and bi- $K_{q, n}$-invariant functions it is enough to consider the spherical Fourier transform of the convolver representing P (see [CST1]), namely

$$
\lambda_{j}=\sum_{x \in L_{n}} p\left(x_{0}, x\right) \phi_{j}(x), \quad j=0,1, \ldots, n .
$$

Using the expressions given for P and the ϕ_{j} 's we get the following eigenvalues.

For $j=0$, we get

$$
\lambda_{0}=\sum_{x \in L_{n}} p\left(x_{0}, x\right)=1 .
$$

For $j=n$, we have

$$
\lambda_{n}=p\left(x_{0}, x_{0}\right) \cdot 1+p\left(x_{0}, x\right)\left(-\frac{1}{q-1}\right) \cdot(q-1)=0 .
$$

For $1 \leq j<n$, we get

$$
\begin{aligned}
\lambda_{j} & =q p\left(x_{0}, x_{1}\right)+\left(q^{2}-q\right) p\left(x_{0}, x_{2}\right)+\cdots+\left(q^{n-j}-q^{n-j-1}\right) p\left(x_{0}, x_{n-j}\right) \\
& +(1-q)^{-1}\left(q^{n-j+1}-q^{n-j}\right) p\left(x_{0}, x_{n-j+1}\right) \\
& =q\left(p\left(x_{0}, x_{1}\right)-p\left(x_{0}, x_{2}\right)\right)+q^{2}\left(p\left(x_{0}, x_{2}\right)-p\left(x_{0}, x_{3}\right)\right)+\cdots \\
& +q^{n-j-1}\left(p\left(x_{0}, x_{n-j-1}\right)-p\left(x_{0}, x_{n-j}\right)\right)+q^{n-j} p\left(x_{0}, x_{n-j}\right) \\
& +(1-q)^{-1}\left(q^{n-j+1}-q^{n-j}\right) p\left(x_{0}, x_{n-j+1}\right) \\
& =\sum_{h=1}^{n-j} q^{h}\left(p\left(x_{0}, x_{h}\right)-p\left(x_{0}, x_{h+1}\right)\right) \\
& =\left(1-\alpha_{1}\right)+\alpha_{1}\left(1-\alpha_{2}\right)+\cdots+\alpha_{1} \alpha_{2} \cdots \alpha_{n-j-1}\left(1-\alpha_{n-j}\right) \\
& =1-\alpha_{1} \alpha_{2} \cdots \alpha_{n-j} \\
& =1-\frac{q-1}{q^{n-j+1}-1} .
\end{aligned}
$$

Observe that, by Proposition 1.6 of this section, the Insect Markov chain is ergodic. Moreover, it is clear that P is in detailed balance with the uniform distribution π on L_{n} given by $\pi(x)=\frac{1}{q^{n}}$ for all $x \in L_{n}$.

3. Cut-off phenomenon

Let $m_{x}^{(k)}(y)=p^{(k)}(x, y)$ be the distribution probability after k steps. The total variation distance allows to estimate how $m^{(k)}$ converges to the stationary distribution π.

There are interesting cases in which the total variation distance remains close to 1 for a long time and then tends to 0 in a very fast way (see, for some examples, [Dia1] and [DSC2]). This suggests the following definition (see [CST2]).

Suppose that X_{n} is a sequence of finite sets. Let m_{n} and p_{n} be a probability measure on X_{n} and an ergodic transition probability on X_{n}, respectively. Denote π_{n} the corresponding stationary measure and $m_{n}^{(k)}$ the distribution of $\left(X_{n}, m_{n}, p_{n}\right)$ after k steps.

Now let $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$ be two sequences of positive real numbers such that

$$
\lim _{n \rightarrow \infty} \frac{b_{n}}{a_{n}}=0
$$

Definition 3.1. The sequence of Markov chains $\left(X_{n}, m_{n}, p_{n}\right)$ has $a\left(a_{n}, b_{n}\right)$-cut-off if there exist two functions $f_{1}, f_{2}:[0,+\infty) \longrightarrow \mathbb{R}$ with

- $\lim _{c \rightarrow+\infty} f_{1}(c)=0$
- $\lim _{c \rightarrow+\infty} f_{2}(c)=1$
such that, for any fixed $c>0$, one has

$$
\left\|m_{n}^{\left(a_{n}+c b_{n}\right)}-\pi_{n}\right\|_{T V} \leq f_{1}(c) \text { and }\left\|m_{n}^{\left(a_{n}-c b_{n}\right)}-\pi_{n}\right\|_{T V} \geq f_{2}(c)
$$

for sufficiently large n.
The following proposition gives a necessary condition for the cut-off phenomenon.

Proposition 3.2. If $\left(X_{n}, m_{n}, p_{n}\right)$ has an $\left(a_{n}, b_{n}\right)$-cut-off, then for any $0<\epsilon_{1}<\epsilon_{2}<1$ there exist $k_{2}(n) \leq k_{1}(n)$ such that
(1) $k_{2}(n) \leq a_{n} \leq k_{1}(n)$;
(2) for n large, $k \geq k_{1}(n) \Rightarrow\left\|m_{n}^{(k)}-\pi_{n}\right\|_{T V} \leq \epsilon_{1}$;
(3) for n large, $k \leq k_{2}(n) \Rightarrow\left\|m_{n}^{(k)}-\pi_{n}\right\|_{T V} \geq \epsilon_{2}$;
(4) $\lim _{n \rightarrow \infty} \frac{k_{1}(n)-k_{2}(n)}{a_{n}}=0$.

Proof. By definition there exist c_{1} and c_{2} such that $f_{2}(c) \geq \epsilon_{2}$ for $c \geq c_{2}$ and $f_{1}(c) \leq \epsilon_{1}$ for $c \geq c_{1}$. So it suffices to take $k_{1}(n)=a_{n}+c_{1} b_{n}$ and $k_{2}(n)=a_{n}-c_{2} b_{n}$ to get the assertion.

Fig.9: The cut-off phenomenon

The cut-off phenomenon occurs in several examples of Markov chains. In general it can be detected thanks to a careful spectral analysis, as we will do in the proof of the following theorem. In what follows suppose $n \geq 2$.

Theorem 3.3. The probability measure associated with the Insect Markov chain converges to the stationary distribution without a cut-off behavior.

Proof. We want to give an expression for $m^{(k)}(x)=p^{(k)}\left(x_{0}, x\right)$. We get

- If $x=x_{0}$, then

$$
m^{(k)}\left(x_{0}\right)=\frac{1}{q^{n}}\left\{1+\sum_{j=1}^{n} q^{j-1}(q-1)\left[1-\frac{q-1}{q^{n-j+1}-1}\right]^{k}\right\} .
$$

- If $d\left(x_{0}, x\right)=h$, with $1 \leq h \leq n-1$, then

$$
\begin{aligned}
m^{(k)}(x) & =\frac{1}{q^{n}}\left\{1+\sum_{j=1}^{n-h+1} q^{j-1}(q-1)\left[1-\frac{q-1}{q^{n-j+1}-1}\right]^{k} \phi_{j}(x)\right\} \\
& =\frac{1}{q^{n}}\left\{1+\sum_{j=1}^{n-h} q^{j-1}(q-1)\left[1-\frac{q-1}{q^{n-j+1}-1}\right]^{k}-q^{n-h}\left[1-\frac{q-1}{q^{h}-1}\right]^{k}\right\}
\end{aligned}
$$

- If $d\left(x_{0}, x\right)=n$, then

$$
m^{(k)}(x)=\frac{1}{q^{n}}\left\{1-\left[1-\frac{q-1}{q^{n}-1}\right]^{k}\right\}
$$

Let π be the uniform distribution on L_{n}. Then we have

$$
\begin{aligned}
\left\|m^{(k)}-\pi\right\|_{L^{1}} & =\frac{1}{q^{n}}\left\{\sum_{j=1}^{n} q^{j-1}(q-1) \lambda_{j}^{k}\right. \\
& +\sum_{h=1}^{n-1}\left(q^{h}-q^{h-1}\right)\left|\sum_{j=1}^{n-h} q^{j-1}(q-1) \lambda_{j}^{k}-q^{n-h} \lambda_{n-h+1}^{k}\right| \\
& \left.+q^{n-1}(q-1) \lambda_{1}^{k}\right\} .
\end{aligned}
$$

Now observe that

$$
\begin{gathered}
\frac{1}{q^{n}} \sum_{h=1}^{n-1}\left(q^{h}-q^{h-1}\right) \sum_{j=1}^{n-h} q^{j-1}(q-1) \lambda_{j}^{k}+\frac{1}{q^{n}} \sum_{j=1}^{n} q^{j-1}(q-1) \lambda_{j}^{k}= \\
\frac{1}{q^{n}} \sum_{j=1}^{n-1}\left[1+(q-1)+\left(q^{2}-q\right)+\cdots+\left(q^{n-j}-q^{n-j-1}\right)\right] \cdot q^{j-1}(q-1) \lambda_{j}^{k}= \\
\frac{1}{q^{n}} \sum_{j=1}^{n-1} q^{n-1}(q-1) \lambda_{j}^{k}=\frac{q-1}{q} \sum_{j=1}^{n-1} \lambda_{j}^{k}
\end{gathered}
$$

and

$$
\frac{1}{q^{n}} \sum_{h=1}^{n-1}\left(q^{h}-q^{h-1}\right) q^{n-h} \lambda_{n-h+1}^{k}+\frac{1}{q^{n}}\left(q^{n}-q^{n-1}\right) \lambda_{1}^{k}=\frac{q-1}{q} \sum_{j=1}^{n-1} \lambda_{j}^{k}
$$

Using the trivial fact that $\sum_{j}\left|a_{j}-b_{j}\right| \leq \sum_{j}\left(\left|a_{j}\right|+\left|b_{j}\right|\right)$, we conclude

$$
\left\|m^{(k)}-\pi\right\|_{L^{1}} \leq \frac{2(q-1)}{q} \sum_{j=1}^{n-1} \lambda_{j}^{k}
$$

On the other hand

$$
\begin{aligned}
\left\|m^{(k)}-\pi\right\|_{L^{1}} & \geq \sum_{x: d\left(x_{0}, x\right)=n}\left|m^{(k)}(x)-\pi(x)\right| \\
& =\frac{1}{q^{n}}\left(q^{n}-q^{n-1}\right) \lambda_{1}^{k}=\frac{q-1}{q} \lambda_{1}^{k} .
\end{aligned}
$$

So we get the following estimate:

$$
\frac{q-1}{q} \lambda_{1}^{k} \leq\left\|m^{(k)}-\pi\right\|_{L^{1}} \leq \frac{2(q-1)}{q} \sum_{j=1}^{n-1} \lambda_{j}^{k},
$$

or, equivalently,

$$
\frac{q-1}{2 q} \lambda_{1}^{k} \leq\left\|m^{(k)}-\pi\right\|_{T V} \leq \frac{(q-1)}{q} \sum_{j=1}^{n-1} \lambda_{j}^{k} .
$$

In what follows the following inequalities will be used:
(1) $(1-x)^{k} \leq \exp (-k x)$ if $x \leq 1$.
(2) $\frac{q^{n}-1}{q^{n-j+1}-1} \geq q^{j-1}$, for $j \geq 1$.
(3) $q^{j-1} \geq j$, for $q \geq 2$ and $j \geq 1$.

Choose $k_{2}(n)=\frac{q^{n}-1}{q-1}$, then

$$
\begin{aligned}
\frac{q-1}{q} \sum_{j=1}^{n-1} \lambda_{j}^{k} & \leq \frac{q-1}{q} \sum_{j=1}^{n-1} \exp \left(-\frac{q-1}{q^{n-j+1}-1} k\right) \leq\left(\text { if } k \geq k_{2}(n)\right) \\
& \leq \frac{q-1}{q} \sum_{j=1}^{n-1} \exp \left(-\frac{q-1}{q^{n-j+1}-1} k_{2}(n)\right) \\
& \leq \frac{q-1}{q} \sum_{j=1}^{n-1} \exp \left(-q^{j-1}\right) \leq \frac{(q-1)}{q} \sum_{j=1}^{n-1}\left(e^{-j}\right) \\
& \leq \frac{(q-1)}{q} \sum_{j=1}^{\infty}\left(e^{-1}\right)^{j}=\frac{q-1}{q} \cdot \frac{1}{e-1}:=\epsilon_{2} .
\end{aligned}
$$

On the other hand, if $k_{1}(n)=2 \frac{q^{n}-1}{q-1}$, we get

$$
\begin{aligned}
\frac{q-1}{2 q} \lambda_{1}^{k} & =\frac{q-1}{2 q}\left[1-\frac{q-1}{q^{n}-1}\right]^{k} \geq\left(\text { if } k \leq k_{1}(n)\right) \\
& \geq \frac{q-1}{2 q}\left[1-\frac{q-1}{q^{n}-1}\right]^{2 \frac{q^{n}-1}{q-1}}:=\epsilon_{1}
\end{aligned}
$$

Now $k_{1}(n)>k_{2}(n), \epsilon_{1}<\epsilon_{2}$ and

- for $k \geq k_{2}(n)$ we have $\left\|m^{(k)}-\pi\right\|_{T V} \leq \epsilon_{2}$,
- for $k \leq k_{1}(n)$ we have $\left\|m^{(k)}-\pi\right\|_{T V} \geq \epsilon_{1}$.

This implies that cut-off phenomenon does not occur in this case by Proposition 3.2. In fact, the sequences $k_{1}(n)$ and $k_{2}(n)$ cannot satisfy condition (4) of Proposition 3.2. This gives the assertion.

Remark 3.4.
Using the same strategy of Theorem 3.3 one can easily check that cut-off phenomenon does not occur also if we fix n and let $q \rightarrow+\infty$.

Remark 3.5.

If $n=1$ we get the simple random walk on the complete graph K_{q} on q vertices, in which each vertex has a loop. It is straightforward that the first is performed choosing equiprobably one of the q vertices and so the probability measure $m^{(1)}$ equals the uniform distribution π on the set of the vertices.

4. Orthogonal block structures

This section is devoted to introduce a Markov chain in a general structure. One can observe the similitude with the construction performed in Chapter 2 Section 6.

In effect here, we consider partitions and not anchestral relations. This is a generalization that does not require group theory.
4.1. Preliminaries. The following definitions can be found in $[\mathbf{B a C a}]$. Given a partition F of a finite set Ω, let R_{F} be the relation matrix of F, i.e.

$$
R_{F}(\alpha, \beta)= \begin{cases}1 & \text { if } \alpha \text { and } \beta \text { are in the same part of } F \\ 0 & \text { otherwise }\end{cases}
$$

If $R_{F}(\alpha, \beta)=1$, we usually write $\alpha \sim_{F} \beta$.
Definition 4.1. A partition F of Ω is uniform if all its parts have the same size. This number is denoted k_{F}.

The trivial partitions of Ω are the universal partition U, which has a single part and whose relation matrix is J_{Ω}, and the equality partition E, all of whose parts are singletons and whose relation matrix is I_{Ω}.

The partitions of Ω constitute a poset with respect to the relation \preccurlyeq, where $F \preccurlyeq G$ if every part of F is contained in a part of G. We use $F \triangleleft G$ if $F \preccurlyeq G$ and $F \preccurlyeq H \preccurlyeq G$ implies $H=F$ or $H=G$. Given any two partitions F and G, their infimum is denoted $F \wedge G$ and is the partition whose parts are intersections of F-parts with G-parts; their supremum is denoted $F \vee G$ and is the partition whose parts are minimal subject to being unions of F-parts and G-parts.

Definition 4.2. A set \mathcal{F} of uniform partitions of Ω is an orthogonal block structure if:
(1) \mathcal{F} contains U and E;
(2) for all F and $G \in \mathcal{F}$, \mathcal{F} contains $F \wedge G$ and $F \vee G$;
(3) for all F and $G \in \mathcal{F}$, the matrices R_{F} and R_{G} commute with each other.
4.2. Probability. Let \mathcal{F} be an orthogonal block structure on the finite set Ω. We want to associate with \mathcal{F} a Markov chain on Ω. To perform this, we have to define a new poset (P, \leq) starting from the partitions in \mathcal{F}.

Let $C=\left\{E=F_{0}, F_{1}, \ldots, F_{n}=U\right\}$ a maximal chain of partitions such that $F_{i} \triangleleft F_{i+1}$ for all $i=0, \ldots, n-1$. Let us design a rooted tree of depth n as follows: the n-th level is constituted by $|\Omega|$ vertices; the $(n-1)$-th by $\frac{|\Omega|}{k_{F_{1}}}$ vertices. Each of these vertices is a father of $k_{F_{1}}$ sons that are in the same F_{1}-class. Inductively, at the i-th level there are $\frac{|\Omega|}{k_{F_{n-i}}}$ vertices fathers of $k_{F_{n-i}}$ vertices of the $(i+1)$-th level belonging to the same F_{n-i}-class.

We can perform the same construction for every maximal chain C in \mathcal{F}. The next step is to glue the different structures identifying the vertices associated with the same partition. The resulting structure is the poset (P, \leq).

Example 4.3.

Consider the set $\Omega=\{000,001,010,011,100,101,110,111\}$ and the set of partitions of Ω given by $\mathcal{F}=\left\{E, F_{1}, F_{2}, F_{3}, U\right\}$ where, as usually, E denotes the equality partition and U the universal partition of Ω. The nontrivial partitions are defined as:

- $F_{1}=\{000,001,010,011\} \amalg\{100,101,110,111\} ;$
- $F_{2}=\{000,001\} \coprod\{010,011\} \coprod\{100,101\} \coprod\{110,111\} ;$
- $F_{3}=\{000,010\} \amalg\{001,011\} \amalg\{100,110\} \amalg\{101,111\}$.

So the orthogonal block structure \mathcal{F} can be represented as the following poset:

Fig.10. The orthogonal block structure $\mathcal{F}=\left\{E, F_{1}, F_{2}, F_{3}, U\right\}$.

The maximal chains in \mathcal{F} have length 3 and they are:

- $C_{1}=\left\{E, F_{2}, F_{1}, U\right\} ;$
- $C_{2}=\left\{E, F_{3}, F_{1}, U\right\}$.

The associated rooted trees T_{1} and T_{2} have depth 3 and they are, respectively,

Fig.11. The rooted trees associated with C_{1} and C_{2}.

So the poset (P, \leq) associated with \mathcal{F} is

Fig.12. The poset (P, \leq) associated with $\mathcal{F}=\left\{E, F_{1}, F_{2}, F_{3}, U\right\}$.

Observe that, if $F_{1} \triangleleft F_{2}$, then the number of F_{1}-classes contained in a F_{2}-class is $k_{F_{2}} / k_{F_{1}}$.

The Markov chain that we want to describe is performed on the last level of the poset (P, \leq) associated with the set \mathcal{F}. We can think of an insect which lies at the starting time on a fixed element ω_{0} of Ω (this corresponds to the identity relation E, i.e. each element is in relation only with itself). The insect randomly moves reaching an adjacent site in (P, \leq) (this corresponds, in the orthogonal block structure \mathcal{F}, to move from E to another relation F such that $E \triangleleft F$, i.e. ω_{0} is identified with all the elements in the same F-class) and so on. At each step in (P, \leq) (that does not correspond necessarily to a step in the Markov chain on Ω) the insect could randomly move from the $i-$ th level of (P, \leq) either to the $(i-1)$-th level or to the $(i+1)-$ th level. Going up means to pass in \mathcal{F} from a partition F to a partition L such that $F \triangleleft L$ (these are $|\{L \in \mathcal{F}: F \triangleleft L\}|$ possibilities in (P, \leq)), going down means to pass in \mathcal{F} to a partition J such that $J \triangleleft F$ (these are $\sum_{J \in \mathcal{F}: J \triangleleft F} \frac{k_{F}}{k_{J}}$ possibilities in (P, \leq)). The random walk on Ω stops whenever the insect reaches once again the last level in (P, \leq). In order to describe this idea let us introduce the following definitions.

Let $\alpha_{F, G}$ the probability of moving from the partition F to the partition G. So the following relation is satisfied:

$$
\begin{align*}
\alpha_{F, G} & =\frac{1}{\sum_{J \in \mathcal{F}: J \triangleleft F}\left(k_{F}: k_{J}\right)+|\{L \in \mathcal{F}: F \triangleleft L\}|} \tag{12}\\
& +\sum_{J \in \mathcal{F}: J \triangleleft F} \frac{\left(k_{F}: k_{J}\right) \alpha_{J, F} \alpha_{F, G}}{\sum_{J \in \mathcal{F}: J \triangleleft F}\left(k_{F}: k_{J}\right)+|\{L \in \mathcal{F}: F \triangleleft L\}|} .
\end{align*}
$$

In fact, the insect can directly pass from F to G with probability $\alpha_{F, G}$ or go down to any J such that $J \triangleleft F$ and then come back to F with probability $\alpha_{J, F}$ and one starts the recursive argument. From direct
computations one gets

$$
\begin{equation*}
\alpha_{E, F}=\frac{1}{|\{L \in \mathcal{F}: E \triangleleft L\}|} \tag{13}
\end{equation*}
$$

Moreover, if $\alpha_{E, F}=1$ we have, for all G such that $F \triangleleft G$

$$
\begin{equation*}
\alpha_{F, G}=\frac{1}{\sum_{J \in \mathcal{F}: J \triangleleft F}\left(k_{F}: k_{J}\right)+|\{L \in \mathcal{F}: F<L\}|} \tag{14}
\end{equation*}
$$

if $\alpha_{E, F} \neq 1$, the coefficient $\alpha_{F, G}$ is defined as in (12).
Definition 4.4. For every $\omega \in \Omega$, define

$$
p\left(\omega_{0}, \omega\right)=\sum_{\substack{E \neq F \in \mathcal{F} \\ \omega_{0} \sim_{F} \omega}} \sum_{\substack{C \subseteq \mathcal{F} \text { chain } \\ C=\left\{E, F_{1}, \ldots, F^{\prime}, F\right\}}} \frac{\alpha_{E, F_{1}} \cdots \alpha_{F^{\prime}, F}\left(1-\sum_{F \triangleleft L} \alpha_{F, L}\right)}{k_{F}} .
$$

The fact that p is effectively a transition probability on Ω will follow from Theorem 4.7. First define the following numbers:

$$
\begin{equation*}
p_{F}=\sum_{\substack{C \subseteq \mathcal{F} \text { chain } \\ C=\left\{E, F_{1}, \ldots, F^{\prime}, F\right\}}} \alpha_{E, F_{1}} \cdots \alpha_{F^{\prime}, F}\left(1-\sum_{F \triangleleft L} \alpha_{F, L}\right) \tag{15}
\end{equation*}
$$

Observe that the coefficient p_{F} expresses the probability of reaching the partition F but no partition L such that $F \prec L$ in \mathcal{F}.

Lemma 4.5. The coefficients p_{F} 's defined in (15) satisfy the following identity:

$$
\sum_{E \neq F \in \mathcal{F}} p_{F}=1
$$

Proof. Using the definitions we have

$$
\begin{aligned}
\sum_{E \neq F \in \mathcal{F}} p_{F} & =\sum_{E \neq F \in \mathcal{F}} \sum_{\substack{C \subseteq \mathcal{F} \text { chain } \\
C=\left\{E, F_{1}, \ldots, F^{\prime}, F\right\}}} \alpha_{E, F_{1}} \cdots \alpha_{F^{\prime}, F}\left(1-\sum_{F \triangleleft L} \alpha_{F, L}\right) \\
& =\sum_{E \triangleleft F} \alpha_{E, F}=1 .
\end{aligned}
$$

In fact, for every $F \in \mathcal{F}$ such that $E \nrightarrow F$, given a chain $C=$ $\left\{E, F_{1}, \ldots, F^{\prime}, F\right\}$ we get the terms $\alpha_{E, F_{1}} \cdots \alpha_{F^{\prime}, F}\left(1-\sum_{F \triangleleft L} \alpha_{F, L}\right)$. Since $C=\left\{E, F_{1}, \ldots, F^{\prime}, F, L\right\}$ is still a term of the sum one can check that only the summands $\sum_{E \triangleleft F} \alpha_{E, F}$ are not cancelled. The thesis follows from (13).

For every $F \in \mathcal{F}, F \neq E$ define M_{F} as the Markov operator whose transition matrix is

$$
\begin{equation*}
M_{F}=\frac{1}{k_{F}} R_{F} . \tag{16}
\end{equation*}
$$

Definition 4.6. Given the operators M_{F} 's as in (16) and the coefficients p_{F} 's as in (15), set

$$
\begin{equation*}
M=\sum_{E \neq F \in \mathcal{F}} p_{F} M_{F} . \tag{17}
\end{equation*}
$$

By abuse of notation, we denote M the stochastic matrix associated with the Markov operator M.

Theorem 4.7. M coincides with the transition matrix of p.
Proof. By computation we get:

$$
\begin{aligned}
M\left(\omega_{0}, \omega\right) & =\sum_{E \neq F \in \mathcal{F}} p_{F} M_{F}\left(\omega_{0}, \omega\right)=\sum_{\substack{E \neq F \in \mathcal{F} \\
\omega_{0} \sim_{F} \omega}} p_{F} \cdot \frac{1}{k_{F}} \\
& =\sum_{\substack{E \neq F \in \mathcal{F} \\
\omega_{0} \sim_{F} \omega}} \sum_{\substack{C \subseteq \mathcal{F} \text { chain } \\
C=\left\{E, F_{1}, \ldots, F^{\prime}, F\right\}}} \frac{\alpha_{E, F_{1}} \cdots \alpha_{F^{\prime}, F}\left(1-\sum_{F \triangleleft L} \alpha_{F, L}\right)}{k_{F}} \\
& =p\left(\omega_{0}, \omega\right) .
\end{aligned}
$$

4.3. Spectral analysis of M. We want to give the spectral analysis of the operator M acting on the space $L(\Omega)$ of the complex functions defined on the set Ω. First of all introduce (see, for example, [Bai]), for every $F \in \mathcal{F}$, the following subspaces of $L(\Omega)$:

$$
V_{F}=\left\{f \in L(\Omega): f(\alpha)=f(\beta) \text { if } \alpha \sim_{F} \beta\right\} .
$$

It is easy to show that the operator M_{F} defined in (16) is the projector onto V_{F}. In fact if $f \in L(\Omega)$, then $M_{F} f\left(\omega_{0}\right)$ is the average of the values that f takes on the elements ω such that $\omega \sim_{F} \omega_{0}$ and so $M_{F} f=f$ if $f \in V_{F}$ and $M_{F} f=0$ if $f \in V_{F}^{\perp}$.

Set

$$
W_{G}=V_{G} \cap\left(\sum_{G \prec F} V_{F}\right)^{\perp} .
$$

In [Bai] is proven that $L(\Omega)=\bigoplus_{G \in \mathcal{F}} W_{G}$. We can deduce the following proposition.

Proposition 4.8. The W_{G} 's are eigenspaces for the operator M with associated eigenvalue

$$
\begin{equation*}
\lambda_{G}=\sum_{\substack{E \neq F \in \mathcal{F} \\ F \preccurlyeq G}} p_{F} . \tag{18}
\end{equation*}
$$

Proof. By definition, $W_{G} \subseteq V_{G}$. This implies that, if $f \in W_{G}$,

$$
M_{F} f= \begin{cases}f & \text { if } F \preccurlyeq G \\ 0 & \text { otherwise }\end{cases}
$$

So we get

$$
\begin{aligned}
M \cdot W_{G} & =\sum_{E \neq F \in \mathcal{F}} p_{F} M_{F} \cdot W_{G} \\
& =\left(\sum_{\substack{E \neq F \in \mathcal{F} \\
F<G}} p_{F}\right) \cdot W_{G} .
\end{aligned}
$$

Hence the eigenvalue λ_{G} associated with the eigenspace W_{G} is

$$
\lambda_{G}=\sum_{\substack{E \neq F \in \mathcal{F} \\ F \preccurlyeq G}} p_{F} .
$$

and the assertion follows.
Example 4.9.
We want to study the transition probability p in the case of the orthogonal block structure of the Example 4.3. One can easily verify that we have:

- $\alpha_{E, F_{2}}=\alpha_{E, F_{3}}=\alpha_{F_{2}, F_{1}}=\alpha_{F_{3}, F_{1}}=\frac{1}{2} ;$
- $\alpha_{F_{1}, U}=\frac{1}{3}$.

Let us compute the transition probability p on the last level of (P, \leq) :

We have:

$$
\begin{aligned}
p(000,000) & =\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}+2 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{1}{4}+2 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{8}=\frac{17}{48} ; \\
p(000,001) & =p(000,010) \\
& =\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}+2 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{1}{4}+2 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{8}=\frac{11}{48} ; \\
p(000,011) & =2 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{1}{4}+2 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{8}=\frac{5}{48} \\
p(000,100) & =p(000,101)=p(000,110)=p(000,111) \\
& =2 \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{8}=\frac{1}{48} .
\end{aligned}
$$

The corresponding transition matrix is given by

$$
P=\frac{1}{48}\left(\begin{array}{cccccccc}
17 & 11 & 11 & 5 & 1 & 1 & 1 & 1 \\
11 & 17 & 5 & 11 & 1 & 1 & 1 & 1 \\
11 & 5 & 17 & 11 & 1 & 1 & 1 & 1 \\
5 & 11 & 11 & 17 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 17 & 11 & 11 & 5 \\
1 & 1 & 1 & 1 & 11 & 17 & 5 & 11 \\
1 & 1 & 1 & 1 & 11 & 5 & 17 & 11 \\
1 & 1 & 1 & 1 & 5 & 11 & 11 & 17
\end{array}\right)
$$

The coefficients P_{F}, with $E \neq F$, are the following (see (15)):

- $p_{U}=2 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{3}=\frac{1}{6}$;
- $p_{F_{1}}=2 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{2}{3}=\frac{1}{3}$;
- $p_{F_{2}}=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}$;
- $p_{F_{3}}=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}$.

The Markov operator M is given by (see (17) and (16)):

$$
M=\frac{1}{4} M_{F_{2}}+\frac{1}{4} M_{F_{3}}+\frac{1}{3} M_{F_{1}}+\frac{1}{6} M_{U}
$$

and its eigenvalues are from formula (18) the following:

- $\lambda_{U}=1$;
- $\lambda_{F_{1}}=\frac{5}{6}$;
- $\lambda_{F_{2}}=\frac{1}{4}$;
- $\lambda_{F_{3}}=\frac{1}{4}$;
- $\lambda_{E}=0$;

In the case of poset block structure, that is a particular case of the orthogonal block structure, we get the same decomposition using the following easy lemmas.

Lemma 4.10. There exists a one-to-one correspondence between antichains and ancestral subsets of I.

Proof. First of all, we prove that given an antichain S the set $A_{S}=I \backslash H[S]$ is ancestral. Suppose $i \in A_{S}$ and $j>i$, then it must
be $j \in A_{S}$. In fact, if $j \in H[S]$, then we should have $i \in H(S)$, since $i<j$; this is absurd.

Now let us show that this correspondence is injective. Suppose that, given two antichains S_{1} and S_{2}, with $S_{1} \neq S_{2}$, one gets $A_{S_{1}}=A_{S_{2}}$. This implies that $H\left[S_{1}\right]=H\left[S_{2}\right]$. By hypothesis we can suppose without loss of generality that there exists $s_{1} \in S_{1} \backslash\left(S_{1} \cap S_{2}\right)$. Hence $s_{1} \in H\left(S_{2}\right)$ and there exists $s_{2} \in S_{2}$ such that $s_{1}<s_{2}$. So $s_{2} \in H\left[S_{1}\right]$. In particular, if $s_{2} \in S_{1}$ we have an absurd because S_{1} is an antichain, if $s_{2} \in H\left(S_{1}\right)$ there exists $s_{1}^{\prime} \in S_{1}$ such that $s_{1}^{\prime}>s_{2}>s_{1}$, absurd again.

So the application $S \longrightarrow I \backslash H[S]$, for each S antichain, is injective.
Given an ancestral set J, define the set of the maximal elements in $I \backslash J$ as $S_{J}=\{i \in I \backslash J: A(i) \cap(I \backslash J)=\emptyset\}$. It is easy to prove that S_{J} is an antichain. In fact, if $i, j \in S_{J}$ then if $i<j$ or $i>j$ one of i or j is not maximal.

Now we want to show that $J=I \backslash H\left[S_{J}\right]$, that is equivalent to show that $I \backslash J=H\left[S_{J}\right]$. First we have that $I \backslash J \subseteq H\left[S_{J}\right]$ because if i is maximal in $I \backslash J$ than it belongs to S_{J}, otherwise there exists j in S_{J} such that $i<j$, and so $i \in H\left[S_{J}\right]$. On the other hand, let i be in $H\left[S_{J}\right]$. If i is in S_{J}, then it is in $I \backslash J$ by definition. If i is in $H\left(S_{J}\right)$ there exists j in S_{J} such that $i<j$. Now if i is an element of J then j has the same property since J is ancestral and this is absurd and so $H\left[S_{J}\right] \subseteq I \backslash J$. This shows that $J=I \backslash H\left[S_{J}\right]$.

From this we have the equivalence $S \longleftrightarrow I \backslash H[S]$ between antichains and ancestral sets.

Remark 4.11.
Observe that, for $S=\emptyset$, one gets $A_{S}=I$.

Remark 4.12.

Observe that all the maximal chains in \mathcal{A} have the same length n. In fact, the empty set is always ancestral. A singleton $\{i\}$ constituted by a maximal element in I is still an ancestral set. Inductively, if $J \in \mathcal{A}$ is an ancestral set, then $J \sqcup\{i\}$ is an ancestral set if i is a maximal element in $I \backslash J$. So every maximal chain in the poset of ancestral subsets has length n. In particular, the empty set \emptyset corresponds to the universal partition U and I to the equality partition E in $\sim_{\mathcal{A}}$.

Remark 4.13.

Observe that the operator $M_{\sim_{J}}=: M_{J}$ can be obtained as follows:

$$
\begin{equation*}
M_{J}=\left(\bigotimes_{i \in I \backslash H\left[S_{J}\right]} I_{i}\right) \otimes\left(\bigotimes_{i \in H\left[S_{J}\right]} U_{i}\right) \tag{19}
\end{equation*}
$$

where I_{i} denotes the identity operator on Δ_{i} and U_{i} is the uniform operator on Δ_{i}, whose adjacency matrix is $\frac{1}{m} J_{i}$, where

$$
J_{i}=\frac{1}{m_{i}}\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
1 & \cdots & \cdots & 1
\end{array}\right) .
$$

Considering the action of M on the spherical function ϕ_{S} (given in Proposition 6.13 Section 6 of Chapter 2) we get the following eigenvalue λ_{S} for ϕ_{S} :

$$
\begin{equation*}
\lambda_{S}=\sum_{\emptyset \neq S_{J}: S \subseteq I \backslash H\left[S_{J}\right]} p_{\sim_{J}} . \tag{20}
\end{equation*}
$$

Remark 4.14.
One can observe that the eigenspaces and the corresponding eigenvalues have been indexed by the antichains of the poset I in (7) and in (20); instead in the first part they are indexed by the relations of the orthogonal poset block \mathcal{F}. The correspondence is the following.

Given a relation $G \in \mathcal{F}$, it can be regarded as an ancestral relation \sim_{J}, for some ancestral subset $J \subseteq I$. Set

$$
S=\{i \in J: H(i) \cap J=\emptyset\} .
$$

It is clear that S is an antichain of I. From the definition it follows that

$$
A(S)=J \backslash S \text { and } I \backslash A[S]=I \backslash J .
$$

The corresponding eigenspace W_{S} becomes:

$$
W_{S}=\left(\bigotimes_{i \in J \backslash S} L\left(\Delta_{i}\right)\right) \otimes\left(\bigotimes_{i \in S} V_{i}^{1}\right) \otimes\left(\bigotimes_{i \in I \backslash J} V_{i}^{0}\right)
$$

It is easy to check that the functions in W_{S} are constant on the equivalence classes of the relation \sim_{J}. Moreover, these functions are orthogonal to the functions which are constant on the equivalence classes of the relation $\sim_{J^{\prime}}$, with $\sim_{J^{\prime}} \triangleright \sim_{J}$ (where J^{\prime} is obtained from J deleting an element of S). Since the orthogonality with the functions constant on $\sim_{J^{\prime}}$ implies the orthogonality with all functions constant on \sim_{L}, where $\sim_{L} \succ \sim_{J}$, then we have $W_{S} \subseteq W_{G}$. On the other hand, it is easy to verify that

$$
\operatorname{dim}\left(W_{S}\right)=\operatorname{dim}\left(W_{G}\right)=m^{|J \backslash S|} \cdot(m-1)^{|S|},
$$

and so we have $W_{S}=W_{G}$.

Analogously, if $G=\sim_{J}$, from (20) we get

$$
\lambda_{S}=\sum_{\emptyset \neq S_{K}: S \subseteq I \backslash H\left[S_{K}\right]} p_{\sim_{K}}=\sum_{I \neq K: S \subseteq K} p_{\sim_{K}},
$$

since $S_{K}=\{i \in I \backslash K: A(i)=\emptyset\}$ and $H\left[S_{K}\right]=I \backslash K$ whose consequence is $I \backslash H\left[S_{K}\right]=K$. Moreover, since $S \subseteq K$ if and only if $J \subseteq K$, we get

$$
\lambda_{S}=\sum_{I \neq K: J \subseteq K} p_{\sim_{K}}=\sum_{E \neq \sim_{K}: \sim_{K} \preccurlyeq \sim_{J}} p_{\sim_{K}}=\lambda_{G} .
$$

5. First and Second crested product

In this section we introduce a particular product of Markov chains defined on different sets. This idea is inspired to the definition of crested product for association schemes given in $[\mathbf{B a C a}]$.
5.1. The First Crested Product. In this subsection we introduce a particular product of Markov chains defined on different sets. This idea is inspired to the definition of crested product for association schemes given in $[\mathrm{BaCa}]$.

Let X_{i} be a finite set, with $\left|X_{i}\right|=m_{i}$, for every $i=1, \ldots, n$, so that we can identify X_{i} with the set $\left\{0,1, \ldots, m_{i}-1\right\}$. Let P_{i} be an irreducible Markov chain on X_{i} and let p_{i} be the transition probability associated with P_{i}. Moreover, assume that p_{i} is in detailed balance with the strict probability measure σ_{i} on X_{i}, i.e.

$$
\sigma_{i}(x) p_{i}(x, y)=\sigma_{i}(y) p_{i}(y, x)
$$

for all $x, y \in X_{i}$.
Consider the product $X_{1} \times \cdots \times X_{n}$. Let $\{1, \ldots, n\}=C \amalg N$ be a partition of the set $\{1, \ldots, n\}$ and let $p_{1}^{0}, p_{2}^{0}, \ldots, p_{n}^{0}$ a probability distribution on $\{1, \ldots, n\}$, i.e. $p_{i}^{0}>0$ for every $i=1, \ldots, n$ and $\sum_{i=1}^{n} p_{i}^{0}=1$.

Definition 5.1. The first crested product of Markov chains P_{i} 's with respect to the partition $\{1, \ldots, n\}=C \coprod N$ is the Markov chain on the product $X_{1} \times \cdots \times X_{n}$ whose transition matrix is

$$
\begin{aligned}
P & =\sum_{i \in C} p_{i}^{0}\left(I_{1} \otimes \cdots \otimes I_{i-1} \otimes P_{i} \otimes I_{i+1} \otimes \cdots \otimes I_{n}\right) \\
& +\sum_{i \in N} p_{i}^{0}\left(I_{1} \otimes \cdots \otimes I_{i-1} \otimes P_{i} \otimes J_{i+1} \otimes \cdots \otimes J_{n}\right),
\end{aligned}
$$

where I_{i} denotes the identity matrix of size m_{i} and J_{i} denotes the uniform matrix on X_{i}.

In other words, we choose an index i in $\{1, \ldots, n\}$ following the distribution $p_{1}^{0}, \ldots, p_{n}^{0}$. If $i \in C$, then P acts on the $i-$ th coordinate by the matrix P_{i} and fixes the remaining coordinates; if $i \in N$, then P fixes the coordinates $\{1, \ldots, i-1\}$, acts on the $i-$ th coordinate by the matrix P_{i} and changes uniformly the remaining ones.

For all $\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right) \in X_{1} \times \cdots \times X_{n}$, the transition probability p associated with P is given by

$$
\begin{gathered}
p\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)= \\
\sum_{i \in C} p_{i}^{0}\left(\delta_{1}\left(x_{1}, y_{1}\right) \cdots \delta_{i-1}\left(x_{i-1}, y_{i-1}\right) p_{i}\left(x_{i}, y_{i}\right) \delta_{i+1}\left(x_{i+1}, y_{i+1}\right) \cdots \delta_{n}\left(x_{n}, y_{n}\right)\right) \\
+\sum_{i \in N} p_{i}^{0}\left(\frac{\delta_{1}\left(x_{1}, y_{1}\right) \cdots \delta_{i-1}\left(x_{i-1}, y_{i-1}\right) p_{i}\left(x_{i}, y_{i}\right)}{\prod_{j=i+1}^{n} m_{j}}\right)
\end{gathered}
$$

where δ_{i} is defined by

$$
\delta_{i}\left(x_{i}, y_{i}\right)= \begin{cases}1 & \text { if } x_{i}=y_{i} \\ 0 & \text { otherwise }\end{cases}
$$

We want to study the spectral theory of the operator P. We recall that the following isomorphism holds:

$$
L\left(X_{1} \times \cdots \times X_{n}\right) \cong \bigotimes_{i=1}^{n} L\left(X_{i}\right)
$$

with $\left(f_{1} \otimes \cdots \otimes f_{n}\right)\left(x_{1}, \ldots, x_{n}\right):=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \cdots f_{n}\left(x_{n}\right)$.
Assume that, for every $i=1, \ldots, n$, the following spectral decomposition holds:

$$
L\left(X_{i}\right)=\bigoplus_{j_{i}=0}^{r_{i}} V_{j_{i}}^{i}
$$

i.e. $V_{j_{i}}$ is an eigenspace for P_{i} with associated eigenvalue $\lambda_{j_{i}}$ and whose dimension is $m_{j_{i}}$.

Now set $N=\left\{i_{1}, \ldots, i_{l}\right\}$ and $C=\left\{c_{1}, \ldots, c_{h}\right\}$, with $h+l=n$ and such that $i_{1}<\ldots<i_{l}$ and $c_{1}<\ldots<c_{h}$.

Theorem 5.2. The probability P defined above is reversible if and only if P_{k} is symmetric for every $k>i_{1}$. If this is the case, P is in detailed balance with the strict probability measure π on $X_{1} \times \cdots \times X_{n}$ given by

$$
\pi\left(x_{1}, \ldots, x_{n}\right)=\frac{\sigma_{1}\left(x_{1}\right) \sigma_{2}\left(x_{2}\right) \cdots \sigma_{i_{1}}\left(x_{i_{1}}\right)}{m_{i_{1}+1} \cdots m_{n}}
$$

Proof. Consider the elements $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ belonging to $X_{1} \times \cdots \times X_{n}$. First, we want to prove that the condition $\sigma_{k}=\frac{1}{m_{k}}$, for every $k>i_{1}$, is sufficient. Let $k \in\{1, \ldots, n\}$ such that $x_{i}=y_{i}$ for every $i=1, \ldots, k-1$ and $x_{k} \neq y_{k}$. Suppose $k<i_{1}$. Then we have

$$
p(x, y)=p_{k}^{0}\left(p_{k}\left(x_{k}, y_{k}\right) \delta_{k+1}\left(x_{k+1}, y_{k+1}\right) \cdots \delta_{n}\left(x_{n}, y_{n}\right)\right)
$$

If $x_{i}=y_{i}$ for every $i=k+1, \ldots, n$, we get

$$
\begin{aligned}
\pi(x) p(x, y) & =\sigma_{1}\left(x_{1}\right) \cdots \sigma_{k}\left(x_{k}\right) \cdots \sigma_{i_{1}}\left(x_{i_{1}}\right) p_{k}^{0} \frac{p_{k}\left(x_{k}, y_{k}\right)}{m_{i_{1}+1} \cdots m_{n}} \\
& =\sigma_{1}\left(y_{1}\right) \cdots \sigma_{k}\left(y_{k}\right) \cdots \sigma_{i_{1}}\left(y_{i_{1}}\right) p_{k}^{0} \frac{p_{k}\left(y_{k}, x_{k}\right)}{m_{i_{1}+1} \cdots m_{n}} \\
& =\pi(y) p(y, x)
\end{aligned}
$$

since $\sigma_{k}\left(x_{k}\right) p_{k}\left(x_{k}, y_{k}\right)=\sigma_{k}\left(y_{k}\right) p_{k}\left(y_{k}, x_{k}\right)$. If the condition $x_{i}=y_{i}$ is not satisfied for every $i=k+1, \ldots, n$, then the equality $\pi(x) p(x, y)=$ $\pi(y) p(y, x)=0$ easily follows.

If $k=i_{1}$, then we get

$$
p(x, y)=p_{i_{1}}^{0}\left(p_{i_{1}}\left(x_{i_{1}}, y_{i_{1}}\right) \frac{1}{m_{i_{1}+1} \cdots m_{n}}\right)
$$

and so

$$
\begin{aligned}
\pi(x) p(x, y) & =\sigma_{1}\left(x_{1}\right) \cdots \sigma_{i_{1}}\left(x_{i_{1}}\right) p_{i_{1}}^{0} \frac{p_{i_{1}}\left(x_{i_{1}}, y_{i_{1}}\right)}{m_{i_{1}+1}^{2} \cdots m_{n}^{2}} \\
& =\sigma_{1}\left(y_{1}\right) \cdots \cdots \sigma_{i_{1}}\left(y_{i_{1}}\right) p_{i_{1}}^{0} \frac{p_{i_{1}}\left(y_{i_{1}}, x_{i_{1}}\right)}{m_{i_{1}+1}^{2} \cdots m_{n}^{2}} \\
& =\pi(y) p(y, x)
\end{aligned}
$$

since $\sigma_{i_{1}}\left(x_{i_{1}}\right) p_{i_{1}}\left(x_{i_{1}}, y_{i_{1}}\right)=\sigma_{i_{1}}\left(y_{i_{1}}\right) p_{i_{1}}\left(y_{i_{1}}, x_{i_{1}}\right)$.
In the case $k>i_{1}$, we have

$$
p(x, y)=\sum_{i \in N, i \leq k} p_{i}^{0} \frac{p_{i}\left(x_{i}, y_{i}\right)}{m_{i+1} \cdots m_{n}}
$$

and so

$$
\begin{aligned}
\pi(x) p(x, y) & =\frac{\sigma_{1}\left(x_{1}\right) \cdots \sigma_{i_{1}}\left(x_{i_{1}}\right)}{m_{i_{1}+1} \cdots m_{n}} \sum_{i \in N, i \leq k} p_{i}^{0} \frac{p_{i}\left(x_{i}, y_{i}\right)}{m_{i+1} \cdots m_{n}} \\
& =\frac{\sigma_{1}\left(y_{1}\right) \cdots \sigma_{i_{1}}\left(y_{i_{1}}\right)}{m_{i_{1}+1} \cdots m_{n}} \sum_{i \in N, i \leq k} p_{i}^{0} \frac{p_{i}\left(y_{i}, x_{i}\right)}{m_{i+1} \cdots m_{n}} \\
& =\pi(y) p(y, x) .
\end{aligned}
$$

In fact, the terms corresponding to an index $i<k$ satisfy $p_{i}\left(x_{i}, y_{i}\right)=$ $p_{i}\left(y_{i}, x_{i}\right)$ since $x_{i}=y_{i}$, the term corresponding to the index k satisfies $p_{k}\left(x_{k}, y_{k}\right)=p_{k}\left(y_{k}, x_{k}\right)$ since the equality

$$
p_{k}\left(x_{k}, y_{k}\right)=p_{k}\left(y_{k}, x_{k}\right)
$$

holds by hypothesis.
Now we want to prove that the condition $\sigma_{k}=\frac{1}{m_{k}}$, for every $k>i_{1}$, is also necessary. Suppose that the equality $\pi(x) p(x, y)=\pi(y) p(y, x)$ holds. By the hypothesis of irreducibility we can consider two elements
$x^{0}, y^{0} \in X_{1} \times \cdots \times X_{n}$ such that $x_{i_{1}}^{0} \neq y_{i_{1}}^{0}$ and with the property that $p_{i_{1}}\left(x_{i_{1}}^{0}, y_{i_{1}}^{0}\right) \neq 0$. Now we have

$$
\pi\left(x^{0}\right) p\left(x^{0}, y^{0}\right)=\pi\left(y^{0}\right) p\left(y^{0}, x^{0}\right) \Leftrightarrow \pi\left(x^{0}\right) p_{i_{1}}\left(x_{i_{1}}^{0}, y_{i_{1}}^{0}\right)=\pi\left(y^{0}\right) p_{i_{1}}\left(y_{i_{1}}^{0}, x_{i_{1}}^{0}\right) .
$$

This gives

$$
\frac{\pi\left(x^{0}\right)}{\pi\left(y^{0}\right)}=\frac{p_{i_{1}}\left(y_{i_{1}}^{0}, x_{i_{1}}^{0}\right)}{p_{i_{1}}\left(x_{i_{1}}^{0}, y_{i_{1}}^{0}\right)}=\frac{\sigma_{i_{1}}\left(x_{i_{1}}^{0}\right)}{\sigma_{i_{1}}\left(y_{i_{1}}^{0}\right)} .
$$

Consider now the element $x=\left(x_{1}^{0}, \ldots, x_{i_{1}}^{0}, y_{i_{1}+1}^{0}, \ldots, y_{n}^{0}\right)$. The equality $\pi(x) p\left(x, y^{0}\right)=\pi\left(y^{0}\right) p\left(y^{0}, x\right)$ implies

$$
\frac{\pi(x)}{\pi\left(y^{0}\right)}=\frac{p_{i_{1}}\left(y_{i_{1}}^{0}, x_{i_{1}}^{0}\right)}{p_{i_{1}}\left(x_{i_{1}}^{0}, y_{i_{1}}^{0}\right)}=\frac{\sigma_{i_{1}}\left(x_{i_{1}}^{0}\right)}{\sigma_{i_{1}}\left(y_{i_{1}}^{0}\right)} .
$$

So we get $\pi\left(x^{0}\right)=\pi(x)$, i.e. the probability π does not depend from the coordinates $i_{1}+1, \ldots, n$. Set now $x^{\prime}=\left(x_{1}^{0}, \ldots, x_{i_{1}}^{0}, \ldots, x_{k-1}^{0}, x_{k}, \ldots, x_{n}\right)$. The equality $\pi\left(x^{0}\right) p\left(x^{0}, x^{\prime}\right)=\pi\left(x^{\prime}\right) p\left(x^{\prime}, x^{0}\right)$ gives

$$
\pi\left(x^{0}\right)\left(\sum_{j \in N, j \leq k} p_{j}^{0}\left(p_{j}\left(x_{j}^{0}, x_{j}^{\prime}\right)\right)\right)=\pi\left(x^{\prime}\right)\left(\sum_{j \in N, j \leq k} p_{j}^{0}\left(p_{j}\left(x_{j}^{\prime}, x_{j}^{0}\right)\right)\right) .
$$

Since the probability π does not depend from the coordinates $i_{1}+$ $1, \ldots, n$, we get $p_{k}\left(x_{k}^{0}, x_{k}^{\prime}\right)=p_{k}\left(x_{k}^{\prime}, x_{k}^{0}\right)$. This implies $\sigma_{k}\left(x_{k}^{\prime}\right)=\sigma_{k}\left(x_{k}^{0}\right)$ and so the hypothesis of irreducibility guarantees that σ_{k} is uniform on X_{k}. This completes the proof.

Theorem 5.3. The eigenspaces of the operator P are given by

- $W^{1} \otimes \cdots \otimes W^{k-1} \otimes V_{j_{k}}^{k} \otimes V_{0}^{k+1} \otimes V_{0}^{k+2} \otimes \cdots \otimes V_{0}^{n}$, with $j_{k} \neq 0$, for $k \in\left\{i_{1}+1, \ldots, n\right\}$ and where

$$
W^{i}= \begin{cases}L\left(X_{i}\right) & \text { if } i \in N, \\ V_{j_{i}}^{i}, \quad j_{i}=0, \ldots, r_{i} & \text { if } i \in C,\end{cases}
$$

with eigenvalue

$$
\sum_{i \in C: i<k} p_{i}^{0} \lambda_{j_{i}}+p_{k}^{0} \lambda_{j_{k}}+\sum_{i>k} p_{i}^{0} .
$$

- $V_{j_{1}}^{1} \otimes \cdots \otimes V_{j_{i_{1}-1}}^{i_{1}-1} \otimes V_{j_{i_{1}}}^{i_{1}} \otimes V_{0}^{i_{1}+1} \otimes \cdots \otimes V_{0}^{n}$, with $j_{t}=0, \ldots, r_{t}$, for every $t=1, \ldots, i_{1}$, with eigenvalue

$$
\sum_{i=1}^{i_{1}} p_{i}^{0} \lambda_{j_{i}}+\sum_{i=i_{1}+1}^{n} p_{i}^{0}
$$

Proof. Fix an index $k \in\left\{i_{1}+1, i_{1}+2, \ldots, n\right\}$ and consider the function φ in the space

$$
W^{1} \otimes \cdots \otimes W^{k-1} \otimes V_{j_{k}}^{k} \otimes V_{0}^{k+1} \otimes V_{0}^{k+2} \otimes \cdots \otimes V_{0}^{n}
$$

with $j_{k} \neq 0$ and

$$
W^{i}= \begin{cases}L\left(X_{i}\right) & \text { if } i \in N, \\ V_{j_{i}}^{i}, \quad j_{i}=0, \ldots, r_{i} & \text { if } i \in C,\end{cases}
$$

so that $\varphi=\varphi_{1} \otimes \cdots \otimes \varphi_{k-1} \otimes \varphi_{k} \otimes \varphi_{k+1} \otimes \cdots \otimes \varphi_{n}$ with $\varphi_{i} \in W^{i}$ for $i=1, \ldots, k-1, \varphi_{k} \in V_{j_{k}}^{k}$ and $\varphi_{l} \in V_{0}^{l}$ for $l=k+1, \ldots, n$. Set $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$, then

$$
\begin{aligned}
(P \varphi)(x) & =\sum_{y} p(x, y) \varphi(y) \\
& =\sum_{y}\left(\sum_{i \in C} p_{i}^{0} \delta_{1}\left(x_{1}, y_{1}\right) \cdots \delta_{i-1}\left(x_{i-1}, y_{i-1}\right) p_{i}\left(x_{i}, y_{i}\right) \delta_{i+1}\left(x_{i+1}, y_{i+1}\right) \cdots \delta_{n}\left(x_{n}, y_{n}\right)\right. \\
& \left.+\sum_{i \in N} p_{i}^{0} \delta_{1}\left(x_{1}, y_{1}\right) \cdots \delta_{i-1}\left(x_{i-1}, y_{i-1}\right) p_{i}\left(x_{i}, y_{i}\right) \frac{1}{m_{i+1}} \cdots \frac{1}{m_{n}}\right) \\
& \times \varphi_{1}\left(y_{1}\right) \cdots \varphi_{k-1}\left(y_{k-1}\right) \varphi_{k}\left(y_{k}\right) \varphi_{k+1}\left(y_{k+1}\right) \cdots \varphi_{n}\left(y_{n}\right) \\
& =\sum_{i \in C, i \leq k}\left(\sum_{y_{i}} p_{i}^{0} p_{i}\left(x_{i}, y_{i}\right) \varphi_{i}\left(y_{i}\right)\right) \varphi_{1}\left(x_{1}\right) \cdots \varphi_{i-1}\left(x_{i-1}\right) \varphi_{i+1}\left(x_{i+1}\right) \cdots \varphi_{n}\left(x_{n}\right) \\
& +\sum_{i \in C, i>k}\left(\sum_{y_{i}} p_{i}^{0} p_{i}\left(x_{i}, y_{i}\right) \varphi_{i}\left(y_{i}\right)\right) \varphi_{1}\left(x_{1}\right) \cdots \varphi_{i-1}\left(x_{i-1}\right) \varphi_{i+1}\left(x_{i+1}\right) \cdots \varphi_{n}\left(x_{n}\right) \\
& +\sum_{i \in N, i>k}\left(\sum_{y_{i}, \ldots, y_{n}} p_{i}^{0} p_{i}\left(x_{i}, y_{i}\right) \frac{1}{m_{i+1}} \cdots \frac{1}{m_{n}} \varphi_{i}\left(y_{i}\right) \cdots \varphi_{n}\left(y_{n}\right)\right) \varphi_{1}\left(x_{1}\right) \cdots \varphi_{i-1}\left(x_{i-1}\right) \\
& +\chi_{N}(k) \sum_{y_{k}, \cdots, y_{n}} p_{k}^{0} p_{k}\left(x_{k}, y_{k}\right) \frac{1}{m_{k+1}} \cdots \frac{1}{m_{n}} \varphi_{1}\left(x_{1}\right) \cdots \varphi_{k-1}\left(x_{k-1}\right) \varphi_{k}\left(y_{k}\right) \cdots \varphi_{n}\left(y_{n}\right) \\
& =\sum_{i \in C,, i \leq k} p_{i}^{0} \lambda_{j_{i}} \varphi(x)+\sum_{i \in C, i>k} p_{i}^{0} \cdot 1 \cdot \varphi(x) \\
& +\sum_{i \in N, i>k}\left(\sum_{y_{i}} p_{i}^{0} p_{i}\left(x_{i}, y_{i}\right) \varphi_{i}\left(y_{i}\right)\right) \varphi_{1}\left(x_{1}\right) \cdots \varphi_{i-1}\left(x_{i-1}\right) \varphi_{i+1}\left(x_{i+1}\right) \cdots \varphi_{n}\left(x_{n}\right) \\
& +\chi_{N}(k) \sum_{y_{k}} p_{k}^{0} p_{k}\left(x_{k}, y_{k}\right) \varphi_{1}\left(x_{1}\right) \cdots \varphi_{k-1}\left(x_{k-1}\right) \varphi_{k}\left(y_{k}\right) \varphi_{k+1}\left(x_{k+1}\right) \cdots \varphi_{n}\left(x_{n}\right) \\
& =\sum_{i \in C, i \leq k} p_{i}^{0} \lambda_{j_{i}} \varphi(x)+\sum_{i \in C, i>k} p_{i}^{0} \varphi(x)+\sum_{i \in N, i>k} p_{i}^{0} \varphi(x)+\chi_{N}(k) p_{k}^{0} \lambda_{j_{k}} \varphi(x) \\
= & \left.\sum_{i \in C, i<k} p_{i}^{0} \lambda_{j_{i}}+p_{k}^{0} \lambda_{j_{k}}+\sum_{i>k} p_{i}^{0}\right) \varphi(x),
\end{aligned}
$$

where χ_{N} is the characteristic function of N. Note that in this case the addends corresponding to the indices $i<k, i \in N$, are equal to 0 since we have supposed $j_{k} \neq 0$.

Consider now the function φ in the space

$$
V_{j_{1}}^{1} \otimes \cdots V_{j_{i_{1}-1}}^{i_{1}-1} \otimes V_{j_{i_{1}}}^{i_{1}} \otimes V_{0}^{i_{1}+1} \otimes \cdots \otimes V_{0}^{n}
$$

with $j_{t}=0, \ldots, r_{t}$, for every $t=1, \ldots, i_{1}$. In this case we have

$$
\begin{aligned}
(P \varphi)(x) & =\sum_{y} p(x, y) \varphi(y) \\
& =\sum_{i \in C, i<i_{1}}\left(\sum_{y_{i}} p_{i}^{0} p_{i}\left(x_{i}, y_{i}\right) \varphi_{i}\left(y_{i}\right)\right) \varphi_{1}\left(x_{1}\right) \cdots \varphi_{i-1}\left(x_{i-1}\right) \varphi_{i+1}\left(x_{i+1}\right) \cdots \varphi_{n}\left(x_{n}\right) \\
& +\sum_{i \in C, i>i_{1}}\left(\sum_{y_{i}} p_{i}^{0} p_{i}\left(x_{i}, y_{i}\right) \varphi_{i}\left(y_{i}\right)\right) \varphi_{1}\left(x_{1}\right) \cdots \varphi_{i-1}\left(x_{i-1}\right) \varphi_{i+1}\left(x_{i+1}\right) \cdots \varphi_{n}\left(x_{n}\right) \\
& +\sum_{i \in N, i>i_{1}}\left(\sum_{y_{i}, \ldots, y_{n}} p_{i}^{0} p_{i}\left(x_{i}, y_{i}\right) \frac{1}{m_{i+1}} \cdots \frac{1}{m_{n}} \varphi_{i}\left(y_{i}\right) \cdots \varphi_{n}\left(x_{n}\right)\right) \varphi_{1}\left(x_{1}\right) \cdots \varphi_{i-1}\left(x_{i-1}\right) \\
& +\sum_{y_{i_{1}}, \ldots, y_{n}}\left(p_{i_{1}}^{0} p_{i_{1}}\left(x_{i_{1}}, y_{i_{1}}\right) \frac{1}{m_{i_{1}+1}} \cdots \frac{1}{m_{n}} \varphi_{i_{1}}\left(y_{i_{1}}\right) \cdots \varphi_{n}\left(x_{n}\right)\right) \varphi_{1}\left(x_{1}\right) \cdots \varphi_{i_{1}-1}\left(x_{i_{1}-1}\right) \\
& =\sum_{i \in C, i<i_{1}} p_{i}^{0} \lambda_{j_{i}} \varphi(x)+\sum_{i \in C, i>i_{1}} p_{i}^{0} \varphi(x)+\sum_{i \in N, i>i_{1}} p_{i}^{0} \varphi(x)+p_{i_{1}}^{0} \lambda_{j_{i_{1}}} \varphi(x) \\
& =\left(\sum_{i=1}^{i_{1}} p_{i}^{0} \lambda_{j_{i}}+\sum_{i=i_{1}+1}^{n} p_{i}^{0}\right) \varphi(x) .
\end{aligned}
$$

Observe that, by computing the sum of the dimensions of these eigenspaces, we get

$$
\sum_{k=i_{1}+1}^{n} m_{1} \cdots m_{k-1}\left(m_{k}-1\right)+m_{1} m_{2} \cdots m_{i_{1}}=m_{1} m_{2} \cdots m_{n}
$$

which is just the dimension of the space $X_{1} \times \cdots \times X_{n}$.

Remark 5.4.

The expression of the eigenvalues of P given in the previous theorem tells us that if P_{i} is ergodic for every $i=1, \ldots, n$, then also P is ergodic, since the eigenvalue 1 is obtained with multiplicity one and the eigenvalue -1 can never be obtained.

We can give now the matrices U, D and Δ associated with P. For every i, let U_{i}, D_{i} and Δ_{i} be the matrices of eigenvectors, of the coefficients of σ_{i} and of eigenvalues for the probability P_{i}, respectively. The expression of the matrix U, whose columns are an orthonormal basis of eigenvectors for P, easily follows from Theorem 5.3. In order to get the diagonal matrix D, whose entries are the coefficients of π,
it suffices to consider the tensor product of the corresponding matrices associated with the probability P_{i}, for every $i=1, \ldots, n$, as it follows from Theorem 5.2. Finally, to get the matrix Δ of eigenvalues of P it suffices to replace, in the expression of the matrix P, the matrix P_{i} by Δ_{i} and the matrix J_{i} by the corresponding diagonal matrix $J_{i}^{\text {diag }}$, which has the eigenvalue 1 with multiplicity one and the eigenvalue 0 with multiplicity $m_{i}-1$. So we have the following proposition.

Proposition 5.5. Let P be the crested product of the Markov chains P_{i}, with $i=1, \ldots, n$. Then we have:

- $U=\sum_{k=i_{1}+1}^{n} M_{1} \otimes \cdots \otimes M_{k-1} \otimes\left(U_{k}-A_{k}\right) \otimes A_{k+1} \otimes \cdots \otimes A_{n}$ $+U_{1} \otimes U_{2} \otimes \cdots \otimes U_{i_{1}} \otimes A_{i_{1}+1} \otimes \cdots \otimes A_{n}$, with

$$
M_{i}= \begin{cases}I_{i}^{\sigma_{i}-\text { norm }} & \text { if } i \in N \\ U_{i} & \text { if } i \in C\end{cases}
$$

where

$$
I_{i}^{\sigma_{i}-n o r m}=\left(\begin{array}{cccc}
\frac{1}{\sqrt{\sigma_{i}(0)}} & & & \\
& \frac{1}{\sqrt{\sigma_{i}(1)}} & & \\
& & \ddots & \\
& & & \frac{1}{\sqrt{\sigma_{i}\left(m_{i}-1\right)}}
\end{array}\right)
$$

By A_{i} we denote the matrix of size m_{i} whose entries on the first column are all 1 and the remaining ones are 0 .

- $D=\bigotimes_{i=1}^{n} D_{i}$.
- $\Delta=\sum_{i \in C} p_{i}^{0}\left(I_{1} \otimes \cdots \otimes I_{i-1} \otimes \Delta_{i} \otimes I_{i+1} \otimes \cdots \otimes I_{n}\right)$ $+\sum_{i \in N} p_{i}^{0}\left(I_{1} \otimes \cdots \otimes I_{i-1} \otimes \Delta_{i} \otimes J_{i+1}^{\text {diag }} \otimes \cdots \otimes J_{n}^{\text {diag }}\right)$.

Observe that another matrix U^{\prime} of eigenvectors for P is given by $U^{\prime}=\bigotimes_{i=1}^{n} U_{i}$. The matrix U that we have given above seems to be more useful whenever one wants to compute the k-th step transition probability $p^{(k)}(0, x)$ using the formula (11), since it contains a greater number of 0 in the first row with respect to U^{\prime} and so a small number of terms in the sum are nonzero.

Suppose $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ elements in $X=$ $X_{1} \times \cdots \times X_{n}$. From (11) and Proposition 5.5, we have

$$
\begin{aligned}
p^{(k)}(x, y) & =\pi(y)\left[\sum _ { z \in X } \left(\sum_{r=i_{1}+1}^{n} m_{1}\left(x_{1}, z_{1}\right) \cdots m_{r-1}\left(x_{r-1}, z_{r-1}\right)\left(u_{r}-a_{r}\right)\left(x_{r}, z_{r}\right)\right.\right. \\
& \times a_{r+1}\left(x_{r+1}, z_{r+1}\right) \cdots a_{n}\left(x_{n}, z_{n}\right) \\
& \left.+u_{1}\left(x_{1}, z_{1}\right) \cdots u_{i_{1}}\left(x_{i_{1}}, z_{i_{1}}\right) a_{i_{1}+1}\left(x_{i_{1}+1}, z_{i_{1}+1}\right) \cdots a_{n}\left(x_{n}, z_{n}\right)\right) \lambda_{z}^{k} \\
& \times\left(\sum_{r=i_{1}+1}^{n} m_{1}\left(y_{1}, z_{1}\right) \cdots m_{r-1}\left(y_{r-1}, z_{r-1}\right)\left(u_{r}-a_{r}\right)\left(y_{r}, z_{r}\right)\right. \\
& \times a_{r+1}\left(y_{r+1}, z_{r+1}\right) \cdots a_{n}\left(y_{n}, z_{n}\right) \\
& \left.\left.+u_{1}\left(y_{1}, z_{1}\right) \cdots u_{i_{1}}\left(y_{i_{1}}, z_{i_{1}}\right) a_{i_{1}+1}\left(y_{i_{1}+1}, z_{i_{1}+1}\right) \cdots a_{n}\left(y_{n}, z_{n}\right)\right)\right],
\end{aligned}
$$

where m_{i}, u_{i}, a_{i} are the probabilities associated with the matrices M_{i}, U_{i}, A_{i} occurring in Proposition 5.5.
5.2. The crossed product. The crossed product of the Markov chains P_{i} 's can be obtained as a particular case of the crested product, by setting $C=\{1, \ldots, n\}$ and it is also called direct product. The analogous case for product of groups has been studied in [DSC1].

In this case, we get the following transition probability:

$$
p\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=\sum_{i=1}^{n} p_{i}^{0} \delta\left(x_{1}, y_{1}\right) \cdots p_{i}\left(x_{i}, y_{i}\right) \cdots \delta\left(x_{n}, y_{n}\right)
$$

This corresponds to choose the $i-$ th coordinate with probability p_{i}^{0} and to change it according with the probability transition P_{i}. So we get

$$
\begin{gathered}
p\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)= \\
\begin{cases}p_{i}^{0} p_{i}\left(x_{i}, y_{i}\right) & \text { if } x_{j}=y_{j} \text { for all } j \neq i \\
0 & \text { otherwise } .\end{cases}
\end{gathered}
$$

So, for $X_{1}=\cdots=X_{n}=: X$ and $p_{0}^{1}=\cdots=p_{n}^{0}=\frac{1}{n}$, the probability p defines an analogous of the Ehrenfest model, where n is the number of balls and $|X|=m$ is the number of urns. In order to obtain a new configuration, we choose a ball with probability $1 / n$ (let it be the $i-$ th ball in the urn x_{i}) and with probability $p_{i}\left(x_{i}, y_{i}\right)$ we put it in the urn y_{i}.

As a consequence of Theorem 5.2, we get that if P_{i} is in detailed balance with π_{i}, then P is in detailed balance with the strict probability measure π on $X_{1} \times \cdots \times X_{n}$ defined as

$$
\pi\left(x_{1}, \ldots, x_{n}\right)=\pi_{1}\left(x_{1}\right) \pi_{2}\left(x_{2}\right) \cdots \pi_{n}\left(x_{n}\right)
$$

The matrix P associated with the probability p is given by

$$
\begin{equation*}
P=\sum_{i=1}^{n} p_{i}^{0}\left(I_{1} \otimes \cdots \otimes P_{i} \otimes \cdots \otimes I_{n}\right) . \tag{21}
\end{equation*}
$$

The following proposition studies the spectral theory of the operator P and it is a straightforward consequence of Theorem 5.3.

Proposition 5.6. Let $\varphi_{0}^{i}=1_{X_{i}}, \varphi_{1}^{i}, \ldots, \varphi_{m_{i}-1}^{i}$ be the eigenfunctions of P_{i} associated with the eigenvalues $\lambda_{0}^{i}=1, \lambda_{1}^{i}, \cdots, \lambda_{m_{i}-1}^{i}$, respectively. Then the eigenvalues of P are the $m_{1} m_{2} \cdots m_{n}$ numbers

$$
\lambda_{I}=\sum_{k=1}^{n} p_{k}^{0} \lambda_{i_{k}}^{k},
$$

with $I=\left(i_{1}, \ldots, i_{n}\right) \in\left\{0, \ldots, m_{1}-1\right\} \times \cdots \times\left\{0, \ldots, m_{n}-1\right\}$. The corresponding eigenfunctions are defined as

$$
\varphi_{I}\left(\left(x_{1}, \ldots, x_{n}\right)\right)=\varphi_{i_{1}}^{1}\left(x_{1}\right) \cdots \varphi_{i_{n}}^{n}\left(x_{n}\right) .
$$

As a consequence of Proposition 5.5, in order to get the matrices U, D and Δ associated with P, it suffices to consider the tensor product of the corresponding matrices associated with the probability P_{i}, for every $i=1, \ldots, n$. For every i, let U_{i}, D_{i} and Δ_{i} be the matrices of eigenvectors, of the coefficients of π_{i} and of eigenvalues for the probability P_{i}, respectively. We have the following corollary.

Corollary 5.7. Let P be the probability defined in (21). Then we have

$$
\left\{\begin{array}{l}
P U=U \Delta \\
U^{T} D U=I,
\end{array}\right.
$$

where $U=\bigotimes_{i=1}^{n} U_{i}, \Delta=\bigotimes_{i=1}^{n} \Delta_{i}$ and $D=\bigotimes_{i=1}^{n} D_{i}$.
In particular, we can express the k-th step transition probability matrix as

$$
P^{k}=\left(\bigotimes_{i=1}^{n} U_{i}\right)\left(\bigotimes_{i=1}^{n} \Delta_{i}\right)^{k}\left(\bigotimes_{i=1}^{n} U_{i}\right)^{T}\left(\bigotimes_{i=1}^{n} D_{i}\right)
$$

Let $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$. Then we get

$$
\begin{aligned}
& \qquad p^{(k)}(x, y)=\pi(y) \sum_{I} \varphi_{I}(x) \lambda_{I}^{k} \varphi_{I}(y)= \\
& \pi_{1}\left(y_{1}\right) \cdots \pi_{n}\left(y_{n}\right) \sum_{I} \varphi_{i_{1}}^{1}\left(x_{1}\right) \cdots \varphi_{i_{n}}^{n}\left(x_{n}\right)\left(p_{1}^{0} \lambda_{i_{1}}^{1}+\cdots+p_{n}^{0} \lambda_{i_{n}}^{n}\right)^{k} \varphi_{i_{1}}^{1}\left(y_{1}\right) \cdots \varphi_{i_{n}}^{n}\left(y_{n}\right), \\
& \text { with } I=\left(i_{1}, \ldots, i_{n}\right) .
\end{aligned}
$$

As we said in Remark 5.4, if the matrix P_{i} is ergodic for every $i=1, \ldots, n$, then also the matrix P is ergodic, since the eigenvalue 1 can be obtained only by choosing $I=0^{n}$ and the eigenvalue -1 can never be obtained.

Remarks 5.8.

Put $n=1$ and set $X=\{0,1, \ldots, m-1\}$. Consider the action of the symmetric group S_{m} on X. The stabilizer of a fixed element $x_{0}=0$ is isomorphic to the symmetric group S_{m-1}. It is well known (see [?]) that $\left(S_{m}, S_{m-1}\right)$ is a Gelfand pair and the following decomposition of $L(X)$ into irreducible representations holds:

$$
L(X)=V_{0} \oplus V_{1},
$$

where $V_{0} \cong \mathbb{C}$ is the space of constant functions on X and $V_{1}=\{f$: $\left.X \longrightarrow \mathbb{C}: \sum_{i=0}^{m-1} f(i)=0\right\}$. So we have $\operatorname{dim} V_{0}=1$ and $\operatorname{dim} V_{1}=m-1$.

Analogously, one can consider the action of the wreath product $S_{m} \imath S_{n}$ on $X^{n}=X \times \cdots \times X$, defined in the natural way, and then one can study the decomposition of $L\left(X^{n}\right)$. We have

$$
L\left(X^{n}\right) \cong L(X)^{\otimes^{n}} \cong \bigoplus_{j=0}^{n} W_{j},
$$

with

$$
W_{j}=\bigoplus_{w\left(i_{1}, \ldots, i_{n}\right)=j} V_{i_{1}} \otimes V_{i_{2}} \otimes \cdots \otimes V_{i_{n}},
$$

where $w\left(i_{1}, \ldots, i_{n}\right)=\sharp\left\{k: i_{k}=1\right\}$. So we have $\operatorname{dim} W_{j}=\binom{n}{j}(m-1)^{j}$.

If we define on X the uniform transition probability, i.e. $p_{u}(x, y)=$ $\frac{1}{m}$ for all $x, y \in X$, then the matrix P_{u} is the matrix J of size m.

The eigenvalues of this matrix are 1 (with multiplicity 1) and 0 (with multiplicity $m-1$). The corresponding eigenspaces in $L(X)$ are, respectively, $V_{0} \cong \mathbb{C}$ and $V_{1}=\left\{f: X \longrightarrow \mathbb{C}: \sum_{i=0}^{m-1} f(i)=0\right\}$.

This means that, by choosing the uniform transition probability on X, one gets again the results obtained by considering the Gelfand pair $\left(S_{m}, S_{m-1}\right)$.

Also in the case of X^{n} we can find again the results obtained (see [?]) by considering the Gelfand pair $\left(S_{m} 2 S_{n}, S_{m-1} 2 S_{n}\right)$. For $P_{u}=J$ we have $\lambda_{0}=1, \lambda_{1}=\ldots=\lambda_{m-1}=0$. Consider now the transition probability on X^{n} defined in (21), with $p_{1}^{0}=\cdots=p_{n}^{0}=\frac{1}{n}$. The eigenfunctions φ_{I} associated with the eigenvalue $\frac{1}{n}(n-j)$, with $j=0, \ldots, n$, are in number of $\binom{n}{j}(m-1)^{j}$. Moreover

$$
\sum_{j=0}^{n}\binom{n}{j}(m-1)^{j}=\sum_{j=0}^{n}\binom{n}{j}(m-1)^{j} 1^{n-j}=m^{n}=\operatorname{dim} L\left(X^{n}\right)
$$

For every $j=0, \ldots, n$, these functions belong to W_{j} and they are a basis for W_{j}. So W_{j} is the eigenspace associated with the eigenvalue $\frac{1}{n}(n-j)$.

More generally, consider the case of any reversible transition probability p on X. Let $\lambda_{0}=1, \lambda_{1}, \ldots, \lambda_{k}$ be the distinct eigenvalues of P and $V_{0} \cong \mathbb{C}, V_{1}, \ldots, V_{k}$ the corresponding eigenspaces. We get

$$
L\left(X^{n}\right) \cong\left(V_{0} \oplus V_{1} \oplus \cdots \oplus V_{k}\right)^{\otimes^{n}} .
$$

The eigenfunctions φ_{I} associated with the eigenvalue $\frac{1}{n} \sum_{i=0}^{k} r_{i} \lambda_{i}$, with $\sum_{i=0}^{k} r_{i}=n$, are

$$
\binom{r_{0}+r_{1}+\cdots+r_{k}}{r_{0}, \ldots, r_{k}} \prod_{i=0}^{k}\left(\operatorname{dim} V_{i}\right)^{r_{i}}
$$

and the corresponding eigenspaces are the tensor products in which r_{i} copies of V_{i}, for $i=0,1, \ldots, k$, appear. Moreover, the number of different eigenspaces is equal to the number of integer solutions of the equation

$$
r_{0}+r_{1}+\cdots+r_{k}=n, \quad r_{i} \geq 0,
$$

so it is $\binom{k+n}{n}$.
The definition of multinomial coefficient as $\binom{r_{0}+r_{1}+\cdots+r_{k}}{r_{0}, \ldots, r_{k}}=\frac{\left(r_{0}+\cdots+r_{k}\right)!}{r_{0}!r_{1}!\cdots r_{k}!}$ guarantees that

$$
\begin{aligned}
\sum_{r_{0}+\cdots+r_{k}=n}\binom{n}{r_{0}, \ldots, r_{k}}\left(\operatorname{dim} V_{0}\right)^{r_{0}} \cdots\left(\operatorname{dim} V_{k}\right)^{r_{k}} & =\left(\operatorname{dim} V_{0}+\cdots+\operatorname{dim} V_{k}\right)^{n} \\
& =m^{n}
\end{aligned}
$$

as we wanted.
5.3. The nested product. The nested product of the Markov chains P_{i} 's can be obtained as a particular case of the crested product, by setting $N=\{1, \ldots, n\}$. The term nested comes from the association schemes theory (see [Bai]).

Consider the product

$$
X_{1} \times \cdots \times X_{n}
$$

and let P_{i} be a transition probability on X_{i}. We assume that p_{i} is in detailed balance with the strict probability measure π_{i}, for all $i=$ $1, \ldots, n$.

The formula of crested product becomes, in this case,

$$
\begin{equation*}
P=\sum_{i=1}^{n} p_{i}^{0}\left(I_{1} \otimes \cdots \otimes P_{i} \otimes J_{i+1} \otimes J_{i+2} \otimes \cdots \otimes J_{n}\right) . \tag{22}
\end{equation*}
$$

Theorem 5.2 tells us that P is reversible if and only if P_{k} is symmetric, for every $k>1$, i.e. $\pi_{i}=\frac{1}{m_{i}}$ for every $i=2, \ldots, n$. In this
case, P is in detailed balance with the strict probability measure π on $X_{1} \times \cdots \times X_{n}$ given by

$$
\pi\left(x_{1} \ldots, x_{n}\right)=\frac{\pi_{1}\left(x_{1}\right)}{\prod_{i=2}^{n} m_{i}} .
$$

So let us assume π_{i} to be uniform for every $i=2, \ldots, n$. The transition probability associated with P is

$$
\begin{aligned}
p\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right) & =\frac{p_{1}^{0} p_{1}\left(x_{1}, y_{1}\right)}{m_{2} m_{3} \cdots m_{n}} \\
& +\sum_{j=2}^{n-1} \frac{\delta\left(\left(x_{1}, \ldots, x_{j-1}\right),\left(y_{1}, \ldots, y_{j-1}\right)\right) p_{j}^{0} p_{j}\left(x_{j}, y_{j}\right)}{m_{j+1} \cdots m_{n}} \\
& +\delta\left(\left(x_{1}, \ldots, x_{n-1}\right),\left(y_{1}, \ldots, y_{n-1}\right)\right) p_{n}^{0} p_{n}\left(x_{n}, y_{n}\right) .
\end{aligned}
$$

As we did in the case of the crossed product, we want to study the spectral theory of the operator P defined in (22).

Let

$$
L\left(X_{i}\right)=\bigoplus_{k_{i}=0}^{r_{i}} W_{k_{i}}^{i}
$$

be the spectral decomposition of $L\left(X_{i}\right)$, for all $i=1, \ldots, n$ and let $\lambda_{0}^{i}=1, \lambda_{1}^{i}, \ldots, \lambda_{r_{i}}^{i}$ the distinct eigenvalues of P_{i} associated with these eigenspaces. From Theorem 5.3 we get the following proposition.

Proposition 5.9. The eigenspaces of $L\left(X_{1} \times \cdots \times X_{n}\right)$ are

- $L\left(X_{1}\right) \otimes \cdots \otimes L\left(X_{n-1}\right) \otimes W_{k_{n}}^{n}$, of eigenvalue $p_{n}^{0} \lambda_{k_{n}}^{n}$, for $k_{n}=$ $1, \ldots, r_{n}$, with multiplicity $m_{1} \cdots m_{n-1} \operatorname{dim}\left(W_{k_{n}}^{n}\right)$;
- $L\left(X_{1}\right) \otimes \cdots \otimes L\left(X_{j}\right) \otimes W_{k_{j+1}}^{j+1} \otimes W_{0}^{j+2} \otimes \cdots \otimes W_{0}^{n}$, of eigenvalue $p_{j+1}^{0} \lambda_{k_{j+1}}^{j+1}+p_{j+2}^{0}+\cdots+p_{n}^{0}$, with $k_{j+1}=1, \ldots, r_{j+1}$ and for $j=1, \ldots, n-2$, with multiplicity $m_{1} \cdots m_{j} \operatorname{dim}\left(W_{k_{j+1}}^{j+1}\right)$;
- $W_{k_{1}}^{1} \otimes W_{0}^{2} \otimes \cdots \otimes W_{0}^{n}$, of eigenvalue $p_{1}^{0} \lambda_{k_{1}}^{1}+p_{2}^{0}+\cdots+p_{n}^{0}$, for $k_{1}=0,1, \ldots, r_{1}$, with multiplicity $\operatorname{dim}\left(W_{k_{1}}^{1}\right)$.

Moreover, as in the general case, one can verify that, under the hypothesis that the operators P_{i} are ergodic, for $i=1, \ldots, n$, then also the operator P is ergodic.

The application of Proposition 5.5 to the case of the nested product yields the following corollary.

Corollary 5.10. Let P be the nested product of the probabilities P_{i}, with $i=1, \ldots, n$. Then we have:

- $U=U_{1} \otimes A_{2} \otimes \cdots \otimes A_{n}$ $+\sum_{k=2}^{n} I_{1}^{\sigma_{1}-\text { norm }} \otimes \cdots \otimes I_{k-1}^{\sigma_{k-1}-\text { norm }} \otimes\left(U_{k}-A_{k}\right) \otimes A_{k+1} \otimes \cdots \otimes A_{n}$.
- $D=\bigotimes_{i=1}^{n} D_{i}$.
- $\Delta=\sum_{i=1}^{n} p_{i}^{0}\left(I_{1} \otimes \cdots \otimes I_{i-1} \otimes \Delta_{i} \otimes J_{i+1}^{\text {diag }} \otimes \cdots \otimes J_{n}^{\text {diag }}\right)$.
5.4. k-steps transition probability. The formula that describes the transition probability after k steps in the case of nested product can be simplified using the base of eigenvectors given in Corollary 5.10 and supposing that the starting point is $0=(0, \ldots, 0)$.

From the general formula, with the usual notations, we get

$$
\begin{aligned}
p^{(k)}(0, y) & =\pi(y)\left[\sum _ { z \in X } \left(\sum_{r=2}^{n} \delta_{\sigma_{1}}\left(0, z_{1}\right) \cdots \delta_{\sigma_{r-1}}\left(0, z_{r-1}\right)\left(u_{r}-a_{r}\right)\left(0, z_{r}\right)\right.\right. \\
& \left.\times a_{r+1}\left(0, z_{r+1}\right) \cdots a_{n}\left(0, z_{n}\right)+u_{1}\left(0, z_{1}\right) a_{2}\left(0, z_{2}\right) \cdots a_{n}\left(0, z_{n}\right)\right) \lambda_{z}^{k} \\
& \times\left(\sum_{r=2}^{n} \delta_{\sigma_{1}}\left(y_{1}, z_{1}\right) \cdots \delta_{\sigma_{r-1}}\left(y_{r-1}, z_{r-1}\right)\left(u_{r}-a_{r}\right)\left(y_{r}, z_{r}\right)\right. \\
& \times a_{r+1}\left(y_{r+1}, z_{r+1}\right) \cdots a_{n}\left(y_{n}, z_{n}\right) \\
& \left.\left.+u_{1}\left(y_{1}, z_{1}\right) a_{2}\left(y_{2}, z_{2}\right) \cdots a_{n}\left(y_{n}, z_{n}\right)\right)\right] \\
& =\pi(y)\left[1+\sum_{j=2}^{n} \sum_{z_{j} \neq 0}\left(\sum_{r=j}^{n} \frac{1}{\sqrt{\sigma_{1}(0)} \cdots \sqrt{\sigma_{r-1}(0)}}\left(u_{r}-a_{r}\right)\left(0, z_{r}\right)\right)\right. \\
& \times\left(p_{r}^{0} \lambda_{z_{r}}^{r}+\sum_{m>r} p_{m}^{0}\right)^{k}\left(\sum_{r=j}^{n} \delta_{\sigma_{1}}\left(y_{1}, 0\right) \delta_{\sigma_{2}}\left(y_{2}, z_{2}\right) \cdots \delta_{\sigma_{r-1}}\left(y_{r-1}, z_{r-1}\right)\right. \\
& \left.\times\left(u_{r}-a_{r}\right)\left(y_{r}, z_{r}\right) a_{r+1}\left(y_{r+1}, z_{r+1}\right) \cdots a_{n}\left(y_{n}, z_{n}\right)\right) \\
& \left.+\sum_{z_{1} \neq 0} u_{1}\left(0, z_{1}\right)\left(p_{1}^{0} \lambda_{z_{1}}^{1}+\sum_{m=2}^{n} p_{m}^{0}\right)^{k} u_{1}\left(y_{1}, z_{1}\right)\right] .
\end{aligned}
$$

Observe that in this case the sum consists of no more than

$$
\left|X_{1}\right|+\sum_{i=2}^{n}\left(\left|X_{i}\right|-1\right)=\sum_{i=1}^{n}\left|X_{i}\right|-n+1
$$

nonzero terms.

Example 5.11.

We want to express the k-th step transition probability in the case $n=2$. So consider the product $X \times Y$, with $X=\{0,1, \ldots, m\}$ and
$Y=\{0,1, \ldots, n\}$. Let

$$
L(X)=\bigoplus_{j=0}^{r} V_{j} \text { and } \quad L(Y)=\bigoplus_{i=0}^{s} W_{i}
$$

be the spectral decomposition of the spaces $L(X)$ and $L(Y)$, respectively. Let $\lambda_{0}=1, \lambda_{1}, \ldots, \lambda_{r}$ and $\mu_{0}=1, \mu_{1}, \ldots, \mu_{s}$ be the distinct eigenvalues of P_{X} and P_{Y}, respectively. Then the eigenspaces of $L(X \times$ $Y)$ are $L(X) \otimes W_{i}$, for $i=1, \ldots, s$, with dimension $(m+1) \operatorname{dim} W_{i}$ and associated eigenvalue $p_{Y}^{0} \mu_{i}$, and $V_{j} \otimes W_{0}$, for $j=0, \ldots, r$, with dimension $\operatorname{dim} V_{j}$ and associated eigenvalue $p_{X}^{0} \lambda_{j}+p_{Y}^{0}$.

The expression of U becomes

$$
U=I_{X}^{\sigma_{X}-\text { norm }} \otimes\left(U_{Y}-A_{Y}\right)+U_{X} \otimes A_{Y}
$$

In particular, let $\left\{v^{0}, v_{1}^{1}, \ldots, v_{\operatorname{dim}\left(V_{1}\right)}^{1}, \ldots, v_{1}^{r}, \ldots, v_{\operatorname{dim}\left(V_{r}\right)}^{r}\right\}$ and $\left\{w^{0}, w_{1}^{1}, \ldots, w_{\operatorname{dim}\left(W_{1}\right)}^{1}, \ldots, w_{1}^{s}, \ldots, w_{\operatorname{dim}\left(W_{s}\right)}^{s}\right\}$ be the eigenvectors of P_{X} and P_{Y}, respectively, i.e. they represent the columns of the matrices U_{X} and U_{Y}.

Then, the columns of the matrix U corresponding to the elements $(i, 0) \in\{0, \ldots, m\} \times\{0, \ldots, n\}$ are the eigenvectors $v^{i} \otimes(1, \ldots, 1)$ with eigenvalue $p_{X}^{0} \lambda_{i}+p_{Y}^{0}$. On the other hand, the columns corresponding to the elements $(i, j) \in\{0, \ldots, m\} \times\{0, \ldots, n\}$, with $j=1, \ldots, n$, are the eigenvectors $(0, \ldots, 0, \underbrace{\frac{1}{\sqrt{\sigma_{X}(i)}}}_{i-\text { th place }}, 0, \ldots, 0) \otimes w^{j}$ whose eigenvalue is $p_{Y}^{0} \mu_{j}$. As a consequence, only $m+1+n$ of these eigenvectors can be nonzero in the first coordinate, so the probability $p^{(k)}((0,0),(x, y))$ can be expressed as a sum of $m+1+n$ nonzero terms: moreover, these terms become $m+1$ if $x \neq 0$. We have

$$
\begin{aligned}
p^{(k)}((0,0),(x, y)) & =\pi((x, y))\left(\sum_{i=0}^{m} v^{i}(0) v^{i}(x)\left(p_{X}^{0} \lambda_{i}+p_{Y}^{0}\right)^{k}\right. \\
& \left.+\frac{1}{\sqrt{\sigma_{X}(0) \sigma_{X}(x)}} \sum_{j=1}^{n} w^{j}(0) \delta_{0}(x) w^{j}(y)\left(p_{Y}^{0} \mu_{j}\right)^{k}\right) \\
& =\frac{\sigma_{X}(x)}{n+1}\left[\sum_{i=0}^{r}\left(\sum_{a=1}^{\operatorname{dim}\left(V_{i}\right)} v_{a}^{i}(0) v_{a}^{i}(x)\right)\left(p_{X}^{0} \lambda_{i}+p_{Y}^{0}\right)^{k}\right. \\
& \left.+\sum_{j=1}^{s}\left(\frac{1}{\sqrt{\sigma_{X}(0) \sigma_{X}(x)}} \sum_{b=1}^{\operatorname{dim}\left(W_{j}\right)} w_{b}^{j}(0) \delta_{0}(x) w_{b}^{j}(y)\right)\left(p_{Y}^{0} \mu_{j}\right)^{k}\right] .
\end{aligned}
$$

5.5. The insect. It is clear that the product $X_{1} \times \cdots \times X_{n}$ can be regarded as the rooted tree T of depth n, such that the root has degree m_{1}, each vertex of the first level has m_{2} children and in general
each vertex of the i-th level of the tree has m_{i+1} children, for every $i=1, \ldots, n-1$. We denote the $i-$ th level of the tree by L_{i}. In this way, every vertex $x \in L_{i}$ can be regarded as a word $x=x_{1} \cdots x_{i}$, where $x_{j} \in\left\{0,1, \ldots, m_{j}-1\right\}$.

We want to show that the nested product of Markov chains is the generalization of the "insect problem" studied by A. Figà-Talamanca in $[\mathbf{F}-\mathbf{T 1}]$ and that we have described in Section 2 (in this case we generalize to the non-homogeneous case).

Let us imagine that an insect lives in a leaf $x \in L_{n}$ and that it performs a simple random walk on the graph T starting from x.

Then there exists a probability distribution μ_{x} on L_{n} such that, for every $y \in L_{n}, \mu_{x}(y)$ is the probability that y is the first point in L_{n} visited by the insect in the random walk. If we put $\bar{p}(x, y)=\mu_{x}(y)$, then we get a stochastic matrix $\bar{P}=(\bar{p}(x, y))_{x, y \in L_{n}}$. Since the random walk is $\operatorname{Aut}(T)$-invariant, we can suppose that the random walk starts at the leftmost vertex, that we will call $x_{0}=(0, \ldots, 0)$. We recall that $\operatorname{Aut}(T)$ is the group of all automorphisms of T, given by the iterated wreath product $S_{m_{n}}$ \ $S_{m_{n-1}} \backslash \cdots \imath S_{m_{1}}$. We want to study this Markov chain defined on L_{n}.

Set $\xi_{n}=\emptyset$ and $\xi_{i}=00 \ldots 0(n-i$ times $)$. For $j \geq 0$, let α_{j} be the probability that the insect reaches ξ_{j+1} given that ξ_{j} is reached at least once. This definition implies $\alpha_{0}=1$ and $\alpha_{1}=\frac{1}{m_{n}+1}$. In fact, with probability 1 , the insect reaches the vertex ξ_{1} at the first step and, starting from ξ_{1}, with probability $\frac{1}{m_{n}+1}$ it reaches ξ_{2}, while with probability $\frac{m_{n}}{m_{n}+1}$ it returns to L_{n}. Finally, we have $\alpha_{n}=0$. For $1<j<n$, there is the following recursive relation:

$$
\alpha_{j}=\frac{1}{m_{n+1-j}+1}+\alpha_{j-1} \alpha_{j} \frac{m_{n+1-j}}{m_{n+1-j}+1} .
$$

In fact, starting at ξ_{j}, with probability $\frac{1}{m_{n+1-j+1}}$ the insect reaches in one step ξ_{j+1}, otherwise with probability $\frac{m_{n+1-j}}{m_{n+1-j+1}}$ it reaches ξ_{j-1} or one of its brothers; then, with probability α_{j-1} it reaches again ξ_{j} and one starts the recursive argument.

The solution, for $1 \leq j \leq n-1$, is given by

$$
\begin{aligned}
\alpha_{j} & =\frac{1+m_{n}+m_{n} m_{n-1}+m_{n} m_{n-1} m_{n-2}+\cdots+m_{n} m_{n-1} m_{n-2} \cdots m_{n-j+2}}{1+m_{n}+m_{n} m_{n-1}+m_{n} m_{n-1} m_{n-2}+\cdots+m_{n} m_{n-1} m_{n-2} \cdots m_{n-j+1}} \\
& =1-\frac{m_{n} m_{n-1} m_{n-2} \cdots m_{n-j+1}}{1+m_{n}+m_{n} m_{n-1}+m_{n} m_{n-1} m_{n-2}+\cdots+m_{n} m_{n-1} m_{n-2} \cdots m_{n-j+1}} .
\end{aligned}
$$

Moreover, we have

$$
\begin{aligned}
\bar{p}\left(x_{0}, x_{0}\right) & =\frac{1}{m_{n}}\left(1-\alpha_{1}\right)+\frac{1}{m_{n} m_{n-1}} \alpha_{1}\left(1-\alpha_{2}\right)+\cdots \\
& +\frac{1}{m_{n} m_{n-1} \cdots m_{2}} \alpha_{1} \alpha_{2} \cdots \alpha_{n-2}\left(1-\alpha_{n-1}\right)+\frac{1}{m_{n} \cdots m_{1}} \alpha_{1} \cdots \alpha_{n-1}
\end{aligned}
$$

Indeed the j-th summand is the probability of returning back to x_{0} if the corresponding random walk in T reaches ξ_{j} but not ξ_{j+1}. It is not difficult to compute $\bar{p}\left(x_{0}, x\right)$, where x is a point at distance j from x_{0}. For $j=1$, we clearly have $\bar{p}\left(x_{0}, x_{0}\right)=\bar{p}\left(x_{0}, x\right)$. We observe that, for $j>1$, to reach x one is forced to first reach ξ_{j}, so that we have

$$
\begin{aligned}
\bar{p}\left(x_{0}, x\right) & =\frac{1}{m_{n} \cdots m_{n-j+1}} \alpha_{1} \alpha_{2} \cdots \alpha_{j-1}\left(1-\alpha_{j}\right)+\cdots \\
& +\frac{1}{m_{n} \cdots m_{2}} \alpha_{1} \alpha_{2} \cdots \alpha_{n-2}\left(1-\alpha_{n-1}\right)+\frac{1}{m_{n} \cdots m_{1}} \alpha_{1} \alpha_{2} \cdots \alpha_{n-1} .
\end{aligned}
$$

Since the random walk is invariant with respect to the action of $\operatorname{Aut}(T)$, which acts isometrically on the tree, we get the same formula for any pair of vertices $x, y \in L_{n}$ such that $d(x, y)=j$.

Proposition 5.12. The stochastic matrix

$$
\begin{aligned}
p\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right) & =\frac{p_{1}^{0} p_{1}\left(x_{1}, y_{1}\right)}{m_{2} m_{3} \cdots m_{n}} \\
& +\sum_{j=2}^{n-1} \frac{\delta\left(\left(x_{1}, \ldots, x_{j-1}\right),\left(y_{1}, \ldots, y_{j-1}\right)\right) p_{j}^{0} p_{j}\left(x_{j}, y_{j}\right)}{m_{j+1} \cdots m_{n}} \\
& +\delta\left(\left(x_{1}, \ldots, x_{n-1}\right),\left(y_{1}, \ldots, y_{n-1}\right)\right) p_{n}^{0} p_{n}\left(x_{n}, y_{n}\right),
\end{aligned}
$$

defined in (22), gives rise to the Insect Markov chain on L_{n}, regarded as $X_{1} \times \cdots \times X_{n}$, choosing $p_{i}^{0}=\alpha_{1} \alpha_{2} \cdots \alpha_{n-i}\left(1-\alpha_{n-i+1}\right)$ for $i=1, \ldots, n-1$ and $p_{n}^{0}=1-\alpha_{1}$ and the transitions probabilities $p_{j}^{\prime} s$ to be uniform for all $j=1, \ldots, n$.

Proof. Set, for every $i=1, \ldots, n-1$,

$$
p_{i}^{0}=\alpha_{1} \alpha_{2} \cdots \alpha_{n-i}\left(1-\alpha_{n-i+1}\right)
$$

and $p_{n}^{0}=1-\alpha_{1}$. Moreover, assume that the probability p_{i} on X_{i} is uniform, i.e.

$$
P_{i}=J_{i} .
$$

If $d\left(x_{0}, x\right)=n$, then we get

$$
p\left(x_{0}, x\right)=\frac{\alpha_{1} \alpha_{2} \cdots \alpha_{n-1}}{m_{1} m_{2} \cdots m_{n}}
$$

If $d\left(x_{0}, x\right)=j>1$, i.e. $x_{i}^{0}=x_{i}$ for all $i=1, \ldots, n-j$, then

$$
p\left(x_{0}, x\right)=\frac{\alpha_{1} \alpha_{2} \cdots \alpha_{n-1}}{m_{1} m_{2} \cdots m_{n}}+\sum_{i=1}^{n-j} \frac{\alpha_{1} \cdots \alpha_{n-i-1}\left(1-\alpha_{n-i}\right)}{m_{n} \cdots m_{i+2} m_{i+1}} .
$$

Finally, if $x=x_{0}$, we get

$$
p\left(x_{0}, x_{0}\right)=\frac{\alpha_{1} \alpha_{2} \cdots \alpha_{n-1}}{m_{1} m_{2} \cdots m_{n}}+\sum_{i=1}^{n-2} \frac{\alpha_{1} \cdots \alpha_{n-i-1}\left(1-\alpha_{n-i}\right)}{m_{n} \cdots m_{i+2} m_{i+1}}+\frac{\left(1-\alpha_{1}\right)}{m_{n}} .
$$

This completes the proof.

The decomposition of the space $L\left(L_{n}\right)=L\left(X_{1} \times \cdots \times X_{n}\right)$ under the action of $\operatorname{Aut}(T)$ is known (see [CST2]). Denote $Z_{0} \cong \mathbb{C}$ the trivial representation and, for every $j=1, \ldots, n$, define the following subspace

$$
Z_{j}=\left\{f \in L\left(L_{n}\right): f=f\left(x_{1}, \ldots, x_{j}\right), \sum_{i=0}^{m_{j}-1} f\left(x_{1}, \ldots, x_{j-1}, i\right) \equiv 0\right\}
$$

of dimension $m_{1} \cdots m_{j-1}\left(m_{j}-1\right)$. In virtue of the correspondence between $\operatorname{Aut}(T)$-invariant operators and bi- $\operatorname{Stab}_{\operatorname{Aut}(T)}\left(0^{n}\right)$-invariant functions, the corresponding eigenvalues are given by the spherical Fourier transform of the convolver that represents \bar{P}, namely

$$
\lambda_{j}=\sum_{x \in L_{n}} \bar{P}\left(x_{0}, x\right) \phi_{j}(x),
$$

where ϕ_{j} is the j-th spherical function, for all $j=0,1, \ldots, n$. It is easy verify that one get

- $\lambda_{0}=1$;
- $\lambda_{j}=1-\alpha_{1} \alpha_{2} \cdots \alpha_{n-j}$, for every $j=1, \ldots, n-1$;
- $\lambda_{n}=0$.

In particular, if we set

$$
p_{i}^{0}=\alpha_{1} \alpha_{2} \cdots \alpha_{n-i}\left(1-\alpha_{n-i+1}\right)
$$

for every $i=1, \ldots, n-1$, with $p_{n}^{0}=1-\alpha_{1}$ and $P_{i}=J_{i}$ for every $i=1, \ldots, n$, the eigenspaces given for $L\left(X_{1} \times \cdots \times X_{n}\right)$ in Proposition 5.9 are exactly the Z_{j} 's with the corresponding eigenvalues.

Let us prove that the eigenvalues that we have obtained in Proposition 5.9 coincide with the eigenvalues corresponding to the eigenspaces $Z_{0}, Z_{1}, \ldots, Z_{n}$.

We want to get these eigenvalues by using the formulas given in Proposition 5.9 for the eigenvalues of the nested product P by setting $P_{i}=J_{i}$, then $p_{i}^{0}=\alpha_{1} \alpha_{2} \cdots \alpha_{n-i}\left(1-\alpha_{n-i+1}\right)$ for $i=1, \ldots, n-1$ and $p_{n}^{0}=1-\alpha_{1}$. First of all, we observe that the eigenvalues of the operator P_{i} are 1 , with multiplicity one and 0 , with multiplicity $m_{i}-1$. So we
get $L\left(X_{i}\right)=W_{0}^{i} \oplus W_{1}^{i}$, with $\operatorname{dim}\left(W_{1}^{i}\right)=m_{i}-1$, for all $i=1, \ldots, n$. Following the formulas that we have given, the eigenspaces of P are:

- $L\left(X_{1}\right) \otimes L\left(X_{2}\right) \otimes \cdots \otimes L\left(X_{n-1}\right) \otimes W_{1}^{n}$;
- $L\left(X_{1}\right) \otimes L\left(X_{2}\right) \otimes \cdots \otimes L\left(X_{n-j-1}\right) \otimes W_{1}^{n-j} \otimes W_{0}^{n-j+1} \otimes \cdots \otimes W_{0}^{n}$, for every $j=1, \ldots, n-1$;
- $W_{0}^{1} \otimes W_{0}^{2} \otimes \cdots \otimes W_{0}^{n}$.

The corresponding eigenvalues are:

- $p_{n}^{0} \lambda_{1}^{n}=0$;
- $\sum_{i=n-j+1}^{n} p_{i}^{0}$, for every $j=1, \ldots, n-1$;
- $\sum_{i=1}^{n} p_{i}^{0}=1$.

We need to prove that, for every $j=1, \ldots, n-1$, the eigenvalue $\sum_{i=n-j+1}^{n} p_{i}^{0}$ is equal to $1-\alpha_{1} \alpha_{2} \cdots \alpha_{j}$. We prove the assertion by induction on j.

If $j=1$, we have $p_{n}^{0}=1-\alpha_{1}$. Now suppose the assertion to be true for j and show that it holds also for $j+1$. We get

$$
\begin{aligned}
\sum_{i=n-j}^{n} p_{i}^{0} & =\sum_{i=n-j+1}^{n} p_{i}^{0}+p_{n-j}^{0}=1-\alpha_{1} \alpha_{2} \cdots \alpha_{j}+\alpha_{1} \cdots \alpha_{j}\left(1-\alpha_{j+1}\right) \\
& =1-\alpha_{1} \cdots \alpha_{j} \alpha_{j+1}
\end{aligned}
$$

5.6. The Second Crested Product. In this subsection we define a different kind of product of two spaces X and Y, that we will call the second crested product. In fact it contains, as particular cases, the crossed product and the nested product described in Section 5.2 and Section 5.3, respectively. We will study a Markov chain P on the set Θ_{k} of functions from X to Y whose domains are k-subsets of X, giving the spectrum and the relative eigenspaces.

Let X be a finite set of cardinality n, say $X=\{1,2, \ldots, n\}$. For every $k=1, \ldots, n$, denote by Ω_{k} the set of k-subsets of X, so that $\left|\Omega_{k}\right|=\binom{n}{k}$.

Now let Y be a finite set and let Q be a transition matrix on Y, which is in detailed balance with the strict probability τ. Let $\lambda_{0}=1, \lambda_{1}, \ldots, \lambda_{m}$ be the distinct eigenvalues of Q and denote by W_{j} the corresponding eigenspaces, for every $j=0,1, \ldots, m$, so that the following spectral decomposition holds:

$$
L(Y)=\bigoplus_{j=0}^{m} W_{j} .
$$

Moreover, assume that the dimension of the eigenspace associated with the eigenvalue 1 is one and set $\operatorname{dim}\left(W_{j}\right)=m_{j}$, for every $j=1, \ldots, m$.

Recall that the eigenspace W_{0} is generated by the vector $(\underbrace{1, \ldots, 1}_{|Y| \text { times }})$ and that W_{j} is orthogonal to W_{0} with respect to the scalar product $\langle\cdot, \cdot\rangle_{\tau}$, for every $j=1, \ldots, m$.

For every $k=1, \ldots, n$, consider the space

$$
\Theta_{k}=\left\{(A, \theta): A \in \Omega_{k} \text { and } \theta \in Y^{A}\right\},
$$

i.e. the space of functions whose domain is a k-subset of X and which take values in Y.

The set $\Theta=\coprod_{k=0}^{n} \Theta_{k}$ is a poset with respect to the relation \subseteq defined in the following way:

$$
\varphi \subseteq \chi \text { if } \operatorname{dom}(\varphi) \subseteq \operatorname{dom}(\chi) \text { and } \varphi=\left.\chi\right|_{\operatorname{dom}(\varphi)}
$$

The Markov chain P on Θ_{k} that we are going to define can be regarded as follows. Let $0<p_{0}<1$ a real number. Then, starting from a function $\theta \in \Theta_{k}$, with probability p_{0} we can reach a function $\varphi \in \Theta_{k}$ having the same domain as θ and that can differ from θ at most in one image, according with the probability Q on Y.

On the other hand, with probability $1-p_{0}$ we can reach in one step a function $\varphi \in \Theta_{k}$ whose domain intersects the domain of θ in $k-1$ elements (on which the functions coincide), and in such a way that the image of the k-th element of the domain of φ is uniformly chosen.

Note that P defines a Markovian operator on the space $L\left(\Theta_{k}\right)$ of all complex functions defined on Θ_{k}.

When Y is the ultrametric space, the Markov chain P represents the so called multi-insect, which generalizes the insect Markov chain already studied. In particular if $|X|=n$, we consider k insects living in k different subtrees and moving only one per each step in such a way that their distance is preserved, giving rise to a Markov chain on the space of all possible configurations of k insects having this property.

In fact each element in Θ_{k} can be ragarded as a configuration of k insects and viceversa. For example, let $\theta \in \Theta_{k}$ be a function such that $\operatorname{dom}(\theta)=\left\{x_{1}, \ldots, x_{k}\right\}$ and $\theta\left(x_{i}\right)=y_{i}$, with $x_{i} \in X$ and $y_{i} \in Y$ for all $i=1, \ldots, k$. Then the corresponding configuration of k insects has an insect at each leaf $\left(x_{i}, y_{i}\right)$. They live in all different subtrees since $x_{i} \neq x_{j}$ for $i \neq j$.

We observe that the cardinality of this space is $\binom{n}{k}|Y|^{k}$. This space can be regarded as the variety of subtrees (see [CST3]) of branch indices $(k, 1)$ in the rooted tree $(n,|Y|)$.

If $\theta, \varphi \in \Theta_{k}$, with domains A and B respectively, then define the matrix Δ, indexed by Θ_{k}, whose entries are

$$
\Delta_{\theta, \varphi}= \begin{cases}1 & \text { if }|A \cap B|=k-1 \text { and }\left.\theta\right|_{A \cap B}=\left.\varphi\right|_{A \cap B} \\ 0 & \text { otherwise }\end{cases}
$$

Observe that the matrix Δ is symmetric.

The operator P can be expressed in terms of the operator associated with Δ and of another operator M as

$$
\begin{equation*}
P=p_{0} M+\left(1-p_{0}\right) \frac{\Delta}{\operatorname{norm}(\Delta)}, \tag{23}
\end{equation*}
$$

where M describes the situation in which the domain is not changed and only one of the images of the function $\theta \in \Theta_{k}$ is changed according with the probability Q on Y. An analytic expression for M will be presented below. On the other hand, Δ describes the situation in which we pass from a function whose domain is A to a function whose domain is $A \sqcup\{i\} \backslash\{j\}$, with $i \notin A$ and $j \in A$, and we choose uniformly the image in Y of the element i. So the action of Δ on Ω_{k} is an analogous of the Laplace-Bernoulli diffusion model. By norm (Δ) we indicate the number of non zero entries in each row of the matrix associated with Δ.

It is easy to check that M is in detailed balance with the strict probability measure defined as

$$
\tau_{M}(\theta)=\frac{1}{\binom{n}{k}} \prod_{i \in A} \tau(\theta(i))
$$

where $\theta \in \Theta_{k}$ and $\operatorname{dom}(\theta)=A$. On the other hand, it follows from the definition of the Markov chain Δ that the weighted graph associated with Δ is connected. From this and from the fact that the nonzero entries of Δ are all equal to 1 , we can deduce that Δ is reversible and in detailed balance with a uniform probability measure. This forces τ_{M} to be uniform and so we have to assume that τ is uniform on Y and the matrix Q is symmetric.

In this way, P is in detailed balance with the uniform probability measure π such that $\pi(\theta)=\frac{1}{\left(\left.\begin{array}{l}n \\ k\end{array} \right\rvert\, Y\right\rceil^{k}}$, for every $\theta \in \Theta_{k}$. This choice of τ guarantees that, if f is any function in W_{j}, with $j=1, \ldots, m$, then $\sum_{y \in Y} f(y)=0$.

The spectral theory of the operator M has been studied in Section 5.2. In fact, it corresponds to choose, with probability $\frac{1}{k}$, only one element of the domain and to change the corresponding image with respect to the probability Q on Y, fixing the remaining ones. So we focus our attention to investigate the spectral theory of the operator Δ.

Let us introduce two differential operators.

Definition 5.13. (1) For every $k=2, \ldots, n$ the operator D_{k} : $L\left(\Theta_{k}\right) \longrightarrow L\left(\Theta_{k-1}\right)$ is defined by

$$
\left(D_{k} F\right)(\varphi)=\sum_{\theta \in \Theta_{k}: \varphi \subseteq \theta} F(\theta),
$$

for every $F \in L\left(\Theta_{k}\right)$ and $\varphi \in \Theta_{k-1}$.
(2) For $k=1, \ldots, n$ the operator $D_{k}^{*}: L\left(\Theta_{k-1}\right) \longrightarrow L\left(\Theta_{k}\right)$ is defined by

$$
\left(D_{k}^{*} F\right)(\theta)=\sum_{\varphi \in \Theta_{k-1}: \varphi \subseteq \theta} F(\varphi),
$$

for every $F \in L\left(\Theta_{k-1}\right)$ and $\theta \in \Theta_{k}$.
Observe that the operator D_{k}^{*} is adjoint to D_{k}.
The following decomposition holds

$$
L\left(\Theta_{k}\right)=L\left(\coprod_{A \in \Omega_{k}} Y^{A}\right)=\bigoplus_{A \in \Omega_{k}} L\left(Y^{A}\right)
$$

In order to get a basis for the space $L\left(Y^{A}\right)$, for every $A \in \Omega_{k}$, we introduce some special functions that we will call fundamental functions.

Definition 5.14. Suppose that $A \in \Omega_{k}$ and that $F^{j} \in L(Y)$ for every $j \in A$. Suppose also that each F^{j} belongs to an eigenspace of Q and set $a_{i}=\left|\left\{j \in A: F^{j} \in W_{i}\right\}\right|$. Then the tensor product $\bigotimes_{j \in A} F^{j}$ will be called a fundamental function of type $\underline{a}=\left(a_{0}, a_{1}, \ldots, a_{m}\right)$ in $L\left(Y^{A}\right)$.

In other words, we have

$$
\left(\bigotimes_{j \in A} F^{j}\right)(\theta)=\prod_{j \in A} F^{j}(\theta(j))
$$

for every $\theta \in Y^{A}$. We also set $\ell(\underline{a})=a_{1}+\cdots+a_{m}=k-a_{0}$.
The introduction of the fundamental functions allows to give a useful expression for the operators M and Δ.

If $F \in L\left(Y^{A}\right) \subseteq L\left(\Theta_{k}\right)$ is the fundamental function $F=\bigotimes_{j \in A} F^{j}$, with $|A|=k$ and $F^{j}: Y \longrightarrow \mathbb{C}$, then $M F=\frac{1}{k} \sum_{j \in A}\left[\left(\bigotimes_{i \in A, i \neq j} F^{i}\right) \otimes Q F^{j}\right]$. So, if $\theta \in \Theta_{k}$ and $\operatorname{dom}(\theta)=A$, we get

$$
(M F)(\theta)=\frac{1}{k} \sum_{j \in A}\left[\prod_{i \in A, i \neq j} F^{i}(\theta(i))\left(\sum_{y \in Y} q(\theta(j), y) F^{j}(y)\right)\right] .
$$

Analogously one has $(\Delta F)(\theta)=\sum_{\varphi} F(\varphi)$, where the sum is over all $\varphi \in \Theta_{k}$ such that $\operatorname{dom}(\varphi) \cap \operatorname{dom}(\theta)=k-1$ and $\varphi \equiv \theta$ on $\operatorname{dom}(\varphi) \cap$
$\operatorname{dom}(\theta)$. If $A=(\operatorname{dom}(\theta) \cap A) \sqcup\{i\}$ (we denote by \sqcup the disjoint union), then

$$
\left(\Delta\left(\otimes_{j \in A} F^{j}\right)\right)(\theta)=\sum_{\varphi} \bigotimes_{j \in A} F^{j}(\varphi)=\prod_{j \in \operatorname{dom}(\varphi) \cap A} F^{j}(\theta(j))\left(\sum_{y \in Y} F^{i}(y)\right)
$$

Denote $P_{k, \underline{a}, A}$ the subspace of $L\left(Y^{A}\right)$ spanned by the fundamental functions of type \underline{a} and

$$
P_{k, \underline{,}}=\bigoplus_{A \in \Omega_{k}} P_{k, \underline{a}, A} .
$$

Lemma 5.15. D_{k} maps $P_{k, \underline{\underline{a}}}$ to $P_{k-1, \underline{q}^{\prime}}$, where $\underline{a}^{\prime}=\left(a_{0}-1, a_{1}, \ldots, a_{m}\right)$. Conversely D_{k}^{*} maps $P_{k-1, \underline{a}^{\prime}}$ to $P_{k, \underline{a}}$.
Proof. Let F be a fundamental function of type \underline{a} in $L\left(Y^{A}\right)$ and let $B \subset A$ such that $A=B \sqcup\{i\}$. Then for every $\varphi \in Y^{B}$, we have

$$
\begin{aligned}
\left(D_{k} F\right)(\varphi) & =\sum_{\theta \in Y^{A}: \varphi \subseteq \theta} F(\theta) \\
& =\sum_{\theta \in Y^{A}: \varphi \subseteq \theta} \prod_{j \in A} F^{j}(\theta(j)) \\
& =\left(\sum_{y \in Y} F^{i}(y)\right) \prod_{j \in B} F^{j}(\varphi(j)) .
\end{aligned}
$$

The value of $\sum_{y \in Y} F^{i}(y)$ is zero if $F^{i} \in W_{j}$ for $j=1, \ldots, m$ and so $D_{k} F \equiv 0$ if $a_{0}=0$. If $F^{i} \in W_{0}$, then $D_{k} F \in P_{k-1, \underline{,}^{\prime}}$.

Analogously, let $F \in P_{k-1, a^{\prime}, B}$ with $B \in \Omega_{k-1}$. Then for every $\theta \in Y^{A}, A=B \sqcup\{i\}$, one has

$$
\begin{aligned}
\left(D_{k}^{*} F\right)(\theta) & =\sum_{\varphi \in Y^{B}: \varphi \subseteq \theta} F(\varphi) \\
& =\prod_{j \in B} F^{j}(\varphi(j)) \\
& =F^{i}(\theta(i)) \prod_{j \in B} F^{j}(\theta(j)),
\end{aligned}
$$

where by setting $F^{i} \equiv 1$ on Y (and so $F^{i} \in W_{0}$).
The restriction of D_{k} to $P_{k, \underline{a}}$ will be denoted by $D_{k, \underline{\underline{a}}}$ and the restriction of D_{k}^{*} to $P_{k-1, \underline{\underline{a}}^{\prime}}$ by $D_{k, \underline{a}}^{*}$.

The study of the compositions of the operators $D_{k, \underline{,}}$ and $D_{k, a}^{*}$ plays a central role. In fact it will be shown that the eigenspaces of these operators are also eigenspaces for Δ. Consider, for example, $D_{k+1} D_{k+1}^{*}$
applied to a function $F \in L\left(\Theta_{k}\right)$ and calculated on $\theta \in \Theta_{k}$. The functions $\varphi \in \Theta_{k+1}$ such that $\varphi \supseteq \theta$ are in number of $|Y|(n-k)$. Each of them covers $k+1$ functions in Θ_{k}, one of them is the function θ, the other ones are functions in Θ_{k} whose domains differ by the domain of θ of an element and coincide on their intersection. These functions are in number of $|Y|(n-k) k$ and they correspond to functions that one can reach starting from θ in the Markov chain described by Δ. From this it follows that $\operatorname{norm}(\Delta)=|Y|(n-k) k$.

Lemma 5.16. Let $F \in P_{k, \underline{a}, A}$, with $A \in \Omega_{k}$. Then

$$
D_{k, \underline{a}}^{*} D_{k, \underline{a}}=|Y|(k-\ell(\underline{a})) I+Q_{k, \underline{a}},
$$

where $Q_{k, \underline{a}}$ is defined by setting

$$
\left(Q_{k, \underline{a}} F\right)(\theta)= \begin{cases}0 & \text { if } F^{i} \notin W_{0}, \tag{24}\\ |Y| F(\bar{\theta}) & \text { if } F^{i} \in W_{0}\end{cases}
$$

for every $\theta \in \Theta_{k}$ such that $|\operatorname{dom}(\theta) \cap A|=k-1$ and $A \backslash \operatorname{dom}(\theta)=\{i\}$. We denote by $\bar{\theta}$ the function in Θ_{k} whose domain is A and such that $\left.\bar{\theta}\right|_{A \backslash\{i\}}=\theta$ and $\bar{\theta}(i)=\theta\left(i_{0}\right)$, where $\operatorname{dom}(\theta) \backslash A=\left\{i_{0}\right\}$.

Proof. Take $F \in P_{k, \underline{a}, A}$ and $\theta \in \Theta_{k}$. We have

$$
\begin{aligned}
\left(D_{k, \underline{\underline{a}}}^{*} D_{k, \underline{a}} F\right)(\theta) & =\sum_{\varphi \in \Theta_{k-1}: \varphi \subseteq \theta}\left(D_{k, \underline{a}} F\right)(\varphi) \\
& =\sum_{\varphi \in \Theta_{k-1}: \varphi \subseteq \theta \theta} \sum_{\substack{\omega \in \Theta_{k}: \omega \supseteq \varphi, \operatorname{dom}(\omega)=A}} F(\omega) .
\end{aligned}
$$

If $\operatorname{dom}(\theta)=A$, then we get

$$
\begin{aligned}
\left(D_{k, \underline{a}}^{*} D_{k, \underline{\underline{a}}} F\right)(\theta) & =\sum_{j \in A}\left(\sum_{y \in Y} F^{j}(y)\right) \prod_{t \in A \backslash\{j\}} F^{t}(\theta(t)) \\
& =|Y|(k-\ell(\underline{a})) \prod_{t \in A} F^{t}(\theta(t)) \\
& =|Y|(k-\ell(\underline{a})) F(\theta),
\end{aligned}
$$

where the second equality follows from the fact that $\sum_{y \in Y} F^{j}(y)=|Y|$ if $F^{j} \in W_{0}$ and $\sum_{y \in Y} F^{j}(y)=0$ whenever $F^{j} \notin W_{0}$.

On the other hand, if $|\operatorname{dom}(\theta) \cap A|=k-1$, with $A \backslash \operatorname{dom}(\theta)=\{i\}$, then

$$
\begin{aligned}
\left(D_{k, \underline{a}}^{*} D_{k, \underline{a}} F\right)(\theta) & =\left(\sum_{y \in Y} F^{i}(y)\right) \prod_{j \in A \backslash\{i\}} F^{j}(\theta(j)) \\
& = \begin{cases}0 & \text { if } F^{i} \notin W_{0}, \\
|Y| F(\bar{\theta}) & \text { if } F^{i} \in W_{0}\end{cases}
\end{aligned}
$$

which is just the definition of $Q_{k, \underline{,} \underline{ }}$.
Lemma 5.17. Let $F \in P_{k, a^{\prime}, A}$, with $A \in \Omega_{k}$. Then

$$
D_{k+1, \underline{a}} D_{k+1, \underline{a}}^{*}=|Y|(n-k) I+Q_{k, \underline{a},},
$$

where $Q_{k, \underline{a}}$ is defined as in (24).
Proof. Take $F \in P_{k, \underline{a}^{\prime}, A}$ and $\theta \in \Theta_{k}$. We have

$$
\begin{aligned}
\left(D_{k+1, \underline{a}} D_{k+1, \underline{\underline{G}}}^{*} F\right)(\theta) & =\sum_{\varphi \in \Theta_{k+1}: \theta \subseteq \varphi}\left(D_{k+1, \underline{\underline{L}}}^{*} F\right)(\varphi) \\
& =\sum_{\varphi \in \Theta_{k+1}: \theta \subseteq \varphi} \sum_{\substack{\omega \in \Theta_{k}: \omega \supseteq \varphi, \operatorname{dom}(\omega)=A}} F(\omega) .
\end{aligned}
$$

If $\operatorname{dom}(\theta)=A$, then we get

$$
\begin{aligned}
\left(D_{k+1, \underline{\underline{a}}} D_{k+1, \underline{\underline{a}}}^{*} F\right)(\theta) & =\sum_{j \in A^{C}} \sum_{y \in Y} F(\theta) \\
& =|Y|(n-k) F(\theta) .
\end{aligned}
$$

On the other hand, if $|\operatorname{dom}(\theta) \cap A|=k-1$, with $A \backslash \operatorname{dom}(\theta)=\{i\}$, then

$$
\begin{aligned}
\left(D_{k+1, \underline{a}} D_{k+1, \underline{\underline{a}}}^{*} F\right)(\theta) & =\left(\sum_{y \in Y} F^{i}(y)\right) \prod_{j \in A \backslash\{i\}} F^{j}(\theta(j)) \\
& = \begin{cases}0 & \text { if } F^{i} \notin W_{0}, \\
|Y| F(\bar{\theta}) & \text { if } F^{i} \in W_{0}\end{cases} \\
& =\left(Q_{k, \underline{a}} F\right)(\theta) .
\end{aligned}
$$

This completes the proof.
The following corollary easily follows.
Corollary 5.18. Let $F \in P_{k, \underline{a}^{\prime}, A}$, with $A \in \Omega_{k}$. Then

$$
D_{k+1, \underline{\underline{a}}} D_{k+1, \underline{\underline{a}}}^{*}-D_{k, \underline{a}^{\prime}}^{*} D_{k, \underline{a}^{\prime}}=|Y|(n+\ell(\underline{a})-2 k) I .
$$

Consider now the operator $D_{k, \underline{a}}: P_{k, \underline{,}} \longrightarrow P_{k-1, \underline{a^{\prime}}}$.
Definition 5.19. For $0 \leq \ell(\underline{a}) \leq k \leq n$, set

$$
P_{k, \underline{a}, k}=\operatorname{Ker}\left(D_{k, \underline{a}}\right)
$$

and inductively, for $k \leq h \leq n$, set

$$
P_{h, \underline{a}, k}=D_{h, \underline{a}}^{*} P_{h-1, \underline{a}^{\prime}, k} .
$$

These spaces have a fundamental importance because they exactly constitute the eigenspaces of the operator Δ. This will be a consequence of the following proposition.

Proposition 5.20. $P_{h, \underline{a}^{\prime}, k}$ is an eigenspace for the operator $D_{h+1, \underline{a}} D_{h+1, \underline{a}}^{*}$ and the corresponding eigenvalue is $|Y|(n+\ell(\underline{a})-k-h)(h-k+1)$.

Proof. We prove the assertion by induction on h. If $h=k$, from the last corollary we get $\left.D_{k+1, a} D_{k+1, \underline{a}}^{*}\right|_{P_{k, a^{\prime}, k}}=|Y|(n+\ell(\underline{a})-2 k) I$, since $D_{k, \underline{a}^{\prime}} P_{k, \underline{a}^{\prime}, k}=0$ by definition of $P_{k, \underline{a}^{\prime}, k}$.

Now suppose the lemma to be true for $k \leq t \leq h$ and recall that, by definition, we have $P_{h+1, \underline{a}^{\prime}, k}=D_{h+1, \underline{a}^{\prime}}^{*} P_{h, \underline{\underline{a}}^{\prime \prime}, k}$. Moreover, Corollary 5.18 gives

$$
D_{h+2, \underline{a}} D_{h+2, \underline{a}}^{*}-D_{h+1, \underline{a}^{\prime}}^{*} D_{h+1, \underline{a}^{\prime}}=|Y|(n+\ell(\underline{a})-2(h+1)) I .
$$

So we get

$$
\begin{aligned}
\left.D_{h+2, \underline{a}} D_{h+2, \underline{a}}^{*}\right|_{P_{h+1, \underline{a}^{\prime}, k}} & =\left.D_{h+1, \underline{a}^{\prime}}^{*}\right|_{D_{h+1, \underline{a^{\prime}}} D_{h+1, \underline{a}^{\prime}}^{*} P_{h, \underline{q}^{\prime \prime}, k}} \\
& +|Y|(n+\ell(\underline{a})-2(h+1)) P_{h+1, \underline{a}^{\prime}, k} \\
& =|Y|(n+\ell(\underline{a})-k-h)(h-k+1) D_{h+1, \underline{a}^{\prime}}^{*} P_{h, \underline{a}^{\prime \prime}, k} \\
& +|Y|(n+\ell(\underline{a})-2(h+1)) P_{h+1, \underline{a}^{\prime}, k} \\
& =|Y|(n+\ell(\underline{a})-k-h-1)(h-k+2) P_{h+1, \underline{a}^{\prime}, k},
\end{aligned}
$$

where the second equality follows from the inductive hypothesis and the third one from an easy computation. This completes the proof.

Corollary 5.21. $P_{h, \underline{a^{\prime}}, k}$ is an eigenspace for Δ of eigenvalue $|Y|(n+$ $\ell(\underline{a})-k-h)(h-k+1)-|Y|(n-h)$.

Proof. It suffices to observe that the operator $Q_{h, \underline{a}}$ defined in (24) coincides with the operator Δ on the space $P_{h, \underline{a}}$ and then the assertion follows from Lemma 5.17 and Proposition 5.20.

In particular, after normalizing the matrix Δ we obtain $\frac{\Delta}{\operatorname{norm(\Delta)}}$ and the corresponding eigenvalue is $\frac{1}{|Y|(n-h) h}(|Y|(n+\ell(\underline{a})-k-h)(h-k+$ 1) $-|Y|(n-h))$.

The following lemma holds.
Lemma 5.22. Given $\ell(\underline{a})$ and h then, for $\ell(\underline{a}) \leq k \leq \min \left\{h, \frac{n+\ell(a)}{2}\right\}$, the spaces $P_{h, \underline{a}^{\prime}, k}$ are mutually orthogonal.

Proof. Each $P_{h, a^{\prime}, k}$ is an eigenspace for the self-adjoint operator $D_{h+1, \underline{a}} D_{h+1, a}^{*}$. Since the eigenvalue $|Y|(n+\ell(\underline{a})-k-h)(h-k+1)$ is a strictly decreasing function of k for $k \leq \frac{n+\ell(a)}{2}$, then to different values of k correspond different eigenvalues. This proves the assertion.

Recall that, if $\underline{a}=\left(a_{0}, a_{1}, \ldots, a_{m}\right)$, we set $\underline{a}^{\prime}=\left(a_{0}-1, a_{1}, \ldots, a_{m}\right)$ and, inductively, $\underline{a}^{h+1}=\underline{a}^{h}-(1,0, \ldots, 0)$.

Proposition 5.23. Let F be a function in $P_{k, \underline{a}^{h-k}, k}$. Then, for $\ell(\underline{a}) \leq k \leq \frac{n+\ell(\underline{a})}{2}$ and $k \leq h \leq n+\ell(\underline{a})-k$, we have
$\left\|D_{h, \underline{\underline{a}}}^{*} D_{h-1, \underline{\underline{a}}^{\prime}}^{*} \cdots D_{k+1, \underline{a}^{h-k-1}}^{*} F\right\|^{2}=\frac{(n+\ell(\underline{a})-2 k)!(h-k)!}{(n+\ell(\underline{a})-k-h)!}|Y|^{h-k}\|F\|^{2}$.
In particular, $D_{h, \underline{a}}^{*} D_{h-1, \underline{a}^{\prime}}^{*} \cdots D_{k+1, a^{h-k-1}}^{*}$ is an isomorphism of $P_{k, \underline{\underline{a}}^{h-k}, k}$ onto $P_{h, a, k}$.

Proof. We prove the assertion by induction on h. For $h=k+1$ and $F \in P_{k, a^{\prime}, k}$, we have

$$
\begin{aligned}
\left\|D_{k+1, \underline{\underline{a}}}^{*} F\right\|^{2} & =<D_{k+1, \underline{a}}^{*} F, D_{k+1, \underline{a}}^{*} F> \\
& =<D_{k+1, \underline{a}}^{*} D_{k+1, \underline{\underline{a}}}^{*} F, \quad F> \\
& =|Y|(n+\ell(\underline{a})-2 k)\|F\|^{2}
\end{aligned}
$$

by Proposition 5.20, so the assertion is true. For $h>k+1$, applying Proposition 5.20 to $D_{h, \underline{\underline{a}}} D_{h, \underline{a}}^{*}$, we get

$$
\begin{gathered}
\left\|D_{h, \underline{\underline{a}}}^{*} D_{h-1, \underline{\underline{\prime}}^{\prime}}^{*} \cdots D_{k+1, \underline{\underline{q}}^{h-k-1}}^{*} F\right\|^{2} \\
=<D_{h, \underline{\underline{a}}} D_{h, \underline{a}}^{*} D_{h-1, \underline{a}^{\prime}}^{*} \cdots D_{k+1, \underline{a}^{h-k-1}}^{*} F, D_{h-1, \underline{a}^{\prime}}^{*} \cdots D_{k+1, \underline{a}^{h-k-1}}^{*} F> \\
=|Y|(n+\ell(\underline{a})-k-h+1)(h-k)\left\|D_{h-1, \underline{a}^{\prime}}^{*} \cdots D_{k+1, \underline{a}^{h-k-1}}^{*} F\right\|^{2} .
\end{gathered}
$$

Now the proposition follows by induction.
Proposition 5.24. Assume $\ell(\underline{a}) \leq h \leq \frac{n+\ell(a)}{2}$. Then
(1) $P_{h, \underline{a}}=\bigoplus_{k=\ell(\underline{a})}^{\min \{h, n+\ell(\underline{a})-h\}} P_{h, \underline{a}, k}$;
(2) $D_{h+1, \underline{\underline{a}}}^{*}: P_{h, \underline{a}^{\prime}} \longrightarrow P_{h+1, \underline{\underline{a}}}$ is an injective map.

Proof. We prove the assertion by induction on h.
Assume that (1) and (2) are true for $\ell(\underline{a})-1 \leq h \leq t \leq \frac{n+\ell(\underline{a})-1}{2}$. For $h=\ell(\underline{a})-1$ we have $P_{\ell(\underline{a})-1, \underline{a}}=0$ and so the proposition trivially holds.

Since the operator $D_{h, \underline{a}}^{*}$ is the adjoint of $D_{h, \underline{a}}$ we have the following decomposition:

$$
\begin{aligned}
P_{h, \underline{a}} & =\operatorname{Ker}\left(D_{h, \underline{a}}\right) \oplus D_{h, \underline{\underline{,}}}^{*} P_{h-1, \underline{a}^{\prime}} \\
& =P_{h, \underline{a}, h} \oplus D_{h, \underline{,}}^{*} P_{h-1, \underline{a}^{\prime}} .
\end{aligned}
$$

In particular

$$
P_{t+1, \underline{a}}=P_{t+1, \underline{a}, t+1} \oplus D_{t+1, \underline{a}}^{*} P_{t, \underline{\underline{q}}^{\prime}} .
$$

By induction

$$
P_{t, \underline{a}^{\prime}}=\bigoplus_{k=\ell(\underline{a})}^{t} P_{t, \underline{a}^{\prime}, k}
$$

and so

$$
\begin{aligned}
P_{t+1, \underline{a}} & =P_{t+1, \underline{a}, t+1} \oplus D_{t+1, \underline{a}}^{*}\left(\bigoplus_{k=\ell(\underline{a})}^{t} P_{t, \underline{\underline{q}}^{\prime}, k}\right) \\
& =\bigoplus_{k=\ell(\underline{a})}^{t+1} P_{t+1, \underline{a}, k} .
\end{aligned}
$$

This proves (1), while (2) follows from (1) and Proposition 5.23.
Corollary 5.25. The dimension of the spaces $P_{h, a, k}$ that appear in decomposition of $P_{h, \underline{a}}$ is

$$
\frac{n+\ell(\underline{a})+1-2 k}{n-k+1}\binom{n}{k}\binom{k}{\ell(\underline{a})}\binom{\ell(\underline{a})}{a_{1}, \ldots, a_{m}} \prod_{j=1}^{m}\left(\operatorname{dim}\left(W_{j}\right)\right)^{a_{j}} .
$$

Proof. From the previous proposition it follows

$$
\operatorname{dim}\left(P_{t+1, \underline{a}, t+1}\right)=\operatorname{dim}\left(P_{t+1, \underline{a}}\right)-\operatorname{dim}\left(P_{t, \underline{a}^{\prime}}\right) .
$$

Now

$$
\operatorname{dim}\left(P_{t+1, \underline{a}}\right)=\binom{n}{t+1}\binom{t+1}{a_{0}, a_{1}, \ldots, a_{m}} \prod_{j=1}^{m}\left(\operatorname{dim}\left(W_{j}\right)\right)^{a_{j}} .
$$

In fact, $\binom{n}{t+1}$ represents the number of $(t+1)$-subsets in X and $\binom{t+1}{a_{0}, a_{1}, \ldots, a_{m}} \prod_{j=1}^{m}\left(\operatorname{dim}\left(W_{j}\right)\right)^{a_{j}}$ represents the number of possible choices in the fundamental function $F=\prod_{r \in A} F^{r}$ of a_{i} functions belonging to the eigenspace W_{i} of $L(Y)$. Thus

$$
\begin{aligned}
\operatorname{dim}\left(P_{t+1, a, t+1}\right) & =\binom{n}{t+1}\binom{t+1}{a_{0}, a_{1}, \ldots, a_{m}} \prod_{j=1}^{m}\left(\operatorname{dim}\left(W_{j}\right)\right)^{a_{j}} \\
& -\binom{n}{t}\binom{t}{a_{0}-1, a_{1}, \ldots, a_{m}} \prod_{j=1}^{m}\left(\operatorname{dim}\left(W_{j}\right)\right)^{a_{j}} \\
& =\frac{n-t-a_{0}}{n-t}\binom{n}{t+1}\binom{t+1}{a_{0}, a_{1}, \ldots, a_{m}} \prod_{j=1}^{m}\left(\operatorname{dim}\left(W_{j}\right)\right)^{a_{j}} .
\end{aligned}
$$

Since, by Proposition 5.23, $\operatorname{dim}\left(P_{h, a, k}\right)=\operatorname{dim}\left(P_{k, \underline{a}^{h-k}, k}\right)$ one can obtain the result replacing t by $k-1$ and \underline{a} by \underline{a}^{h-k}.

We want to find now the eigenvector of $\frac{\Delta}{\text { norm(} \Delta)}$ associated with the eigenvalue 1. Consider in $P_{1,(1,0, \ldots, 0)}$ the function

$$
f=\sum_{i=1}^{n} f_{i},
$$

where f_{i} is the fundamental function of type $(1,0, \ldots, 0)$ whose domain is $\{i\}$. Set

$$
<f>=P_{1,(1,0, \ldots, 0), 0}=: D_{1,(1,0, \ldots, 0)}^{*} P_{0,(0, \ldots, 0), 0}
$$

So the element $F_{0}=D_{h,(h, 0, \ldots, 0)}^{*} \ldots D_{3,(3,0, \ldots, 0)}^{*} D_{2,(2,0, \ldots, 0)}^{*} f$ is the generator of the space $P_{h,(h, 0, \ldots, 0), 0}$, which has dimension 1. Corollary $5.21 \mathrm{im}-$ plies that $P_{h,(h, 0, \ldots, 0), 0}$ is an eigenspace for $\frac{\Delta}{\text { norm }(\Delta)}$ and the corresponding eigenvalue is 1 . Moreover, the connectedness of the graph associated with Δ implies that this is the unique (up to constant) eigenvector of eigenvalue 1. We denote by $P_{1,(1,0, \ldots, 0), 1}$ the orthogonal subspace to $P_{1,(1,0, \ldots, 0), 0}$ in $P_{1,(1,0, \ldots, 0)}$. It has dimension $n-1$.

Observe that the definition of fundamental functions is strictly linked to the spectral theory of the operator Q and so of the operator M restricted to each domain. In fact, if F is a fundamental function in $P_{h, a, A}$, with $\underline{a}=\left(a_{0}, a_{1}, \ldots, a_{m}\right)$ and $A \in \Omega_{h}$, then it is an eigenvector for the operator M and the corresponding eigenvalue is $\frac{1}{h} \sum_{j=0}^{m} a_{j} \lambda_{j}$. So the set of the eigenvalues of M is given by $\binom{n}{h}$ copies of these values. In particular, the eigenspace $P_{h, a, k}$ of $\frac{\Delta}{\text { norm(} \Delta)}$ is also an eigenspace for M and an eigenvector in this space has eigenvalue $\frac{1}{h} \sum_{j=0}^{m} a_{j} \lambda_{j}$. So, by Corollary 5.21 and definition (23) of P, we get the following theorem.

Theorem 5.26. $P_{h, \underline{a}, k}$ is an eigenspace for P with eigenvalue

$$
p_{0} \cdot \frac{1}{h} \sum_{j=0}^{m} a_{j} \lambda_{j}+\left(1-p_{0}\right) \frac{(n+\ell(\underline{a})-k-h)(h-k+1)-(n-h)}{h(n-h)} .
$$

Remark 5.27.

It is easy to check that the operator M is not ergodic. In fact its associated graph contains $\binom{n}{h}$ connected components and so the multiplicity of the eigenvalue 1 for M is $\binom{n}{h}$.

On the other hand we already observed that the operator $\frac{\Delta}{\text { norm(} \Delta)}$ has the eigenvalue 1 with multiplicity one. To conclude that it is ergodic it suffices to show that -1 is not an eigenvalue, i.e. the associated graph is not bipartite. In fact consider $\theta \in \Theta_{h}$ with domain $\left\{i_{1}, \ldots, i_{h}\right\}$ and $\theta\left(i_{j}\right)=y_{j}$, for every $j=1, \ldots, h$. By definition of Δ we can connect θ with φ, whose domain is $\left\{i_{1}, \ldots, i_{h-1}, i_{t}\right\}, i_{h} \neq i_{t}$ and such that $\varphi\left(i_{j}\right)=y_{j}=\theta\left(i_{j}\right)$ for all $j=1, \ldots, h-1$ and $\varphi\left(i_{t}\right)=y_{t}$. Moreover θ can also be connected with ϱ whose domain is $\left\{i_{1}, \ldots, i_{h-2}, i_{h}, i_{t}\right\}$ and such that $\varrho\left(i_{j}\right)=y_{j}=\theta\left(i_{j}\right)$ for all $j=1, \ldots, h-2, h$ and $\varrho\left(i_{t}\right)=y_{t}=\varphi\left(i_{t}\right)$. On the other hand φ and ϱ are connected as well and this proves that the graph is not bipartite.

From Theorem 5.26 we can deduce the ergodicity for the operator P, since the multiplicity of the eigenvalue 1 is one and the eigenvalue -1 does not appear in the spectrum of P.

Remark 5.28.

The second crested product reduces to the crossed product if $k=n$ and to the nested product if $k=1$.

In fact, if $k=n$, the domain of a function $\theta \in \Theta_{n}$ cannot be changed and θ can be identified with the n-tuple $\left(y_{1}, \ldots, y_{n}\right) \in Y^{n}$ of its images. The operator P becomes

$$
P=\frac{1}{n} \sum_{i=1}^{n} I_{1} \otimes \cdots \otimes I_{i-1} \otimes Q \otimes I_{i+1} \otimes \cdots \otimes I_{n}
$$

which is the crossed product on the space Y^{n}.
If $k=1$, then Δ has the following expression:

$$
\Delta=\left(\begin{array}{ccccc}
0 & 1 & \cdots & \cdots & 1 \\
1 & 0 & 1 & & \vdots \\
\vdots & 1 & \ddots & & \vdots \\
\vdots & & & \ddots & 1 \\
1 & \cdots & \cdots & 1 & 0
\end{array}\right)
$$

and $\operatorname{norm}(\Delta)=n-1$. So we get

$$
P=p_{0}\left(I_{X} \otimes Q\right)+\left(1-p_{0}\right)\left(\frac{\Delta}{\operatorname{norm}(\Delta)} \otimes J_{Y}\right)
$$

which is just the nested product of X and Y, with $P_{X}=\frac{\Delta}{\text { norm(} \Delta)}$ and $P_{Y}=Q$.
5.7. Bi-insect. In what follows, we take Y as a homogeneous rooted tree of degree q and depth $m-1$ and we give an explicit description of the spectrum of the operator $P=p_{0} M+\left(1-p_{0}\right) \frac{\Delta}{\operatorname{norm}(\Delta)}$ acting on the space $L\left(\Theta_{2}\right)$. Therefore we are considering functions in Θ_{2} such that the image of each element of the domain is an insect. Suppose X to be a set of cardinality n and let $m \geq 3$. Recall that we have the decomposition

$$
L(Y)=\bigoplus_{j=0}^{m-1} W_{j}
$$

where $W_{0} \cong \mathbb{C}$ and

$$
W_{j}=\left\{f \in L\left(L_{m-1}\right): f=f\left(x_{1}, \ldots, x_{j}\right), \sum_{i=0}^{q-1} f\left(x_{1}, \ldots, x_{j-1}, i\right) \equiv 0\right\},
$$

for every $j=1, \ldots, m-1$. Observe that $\operatorname{dim}\left(W_{j}\right)=q^{j-1}(q-1)$.

The eigenspaces relative to the operator $\Delta / \operatorname{norm}(\Delta)$ are the subspaces of the form $P_{2,\left(a_{0}, a_{1}, \ldots, a_{m-1}\right), k}$, with $k=0,1,2$. The corresponding eigenvalue is

$$
\frac{1}{q^{m-1}(n-2) 2}\left[q^{m-1}(n+\ell(\underline{a})-k-2)(2-k+1)-q^{m-1}(n-2)\right] .
$$

So, by dependence of $\ell(\underline{a})$, we get the following eigenspaces:

- $P_{2,\left(a_{0}, a_{1}, \ldots, a_{m-1}\right), 2} \begin{cases}a_{0}=0 & \text { with eigenvalue } \lambda=0, \\ a_{0}=1 & \text { with eigenvalue } \lambda=-\frac{1}{2(n-2)}, \\ a_{0}=2 & \text { with eigenvalue } \lambda=-\frac{1}{n-2} .\end{cases}$
- $P_{2,\left(a_{0}, a_{1}, \ldots, a_{m-1}\right), 1} \begin{cases}a_{0}=1 & \text { with eigenvalue } \lambda=\frac{1}{2}, \\ a_{0}=2 & \text { with eigenvalue } \lambda=\frac{n-4}{2(n-2)} .\end{cases}$
- $P_{2,(2,0, \ldots, 0), 0} \Rightarrow a_{0}=2$ with eigenvalue $\lambda=1$.

Now we describe the eigenvalues of these eigenspaces with respect to the operator M and to join the results.

If F is a fundamental function of type $\left(a_{0}, a_{1}, \ldots, a_{m-1}\right)$, then it has eigenvalue $\frac{1}{2} \sum_{j=0}^{m-1} a_{j} \lambda_{j}$, where $\lambda_{j}=1-\frac{q-1}{q^{m-j}-1}$ is the eigenvalue of the eigenspace W_{j}, of dimension $q^{j-1}(q-1)$, occurring in the spectral decomposition of $L(Y)$. From this we can fill the following tabular in which we give the eigenspaces, together with the corresponding eigenvalue and dimension.

- $P_{2,\left(a_{0}, a_{1}, \ldots, a_{m-1}\right), 2}$. We have three different cases:
(1) if $a_{0}=0$, the corresponding eigenspace is

$$
P_{2,(0, \ldots, 0,}, \underbrace{1}_{i-\text { th place }}, 0, \ldots, 0, \underbrace{1}_{j-\text { th place }}, 0, \ldots, 0), 2
$$

of dimension $n(n-1)(q-1)^{2} q^{i-1} q^{j-1}$, with eigenvalue $\frac{p_{0}}{2}\left(\lambda_{i}+\lambda_{j}\right) ;$
(2) if $a_{0}=1$, the corresponding eigenspace is

$$
P_{2,(1, \ldots, 0,} \underbrace{1}_{i-\text { th place }}, 0, \ldots, 0), 2
$$

of dimension $n(n-2)(q-1) q^{i-1}$, with eigenvalue $p_{0} \frac{1+\lambda_{i}}{2}+$ $\left(1-p_{0}\right) \frac{-1}{2(n-2)}$;
(3) if $a_{0}=2$, the corresponding eigenspace is $P_{2,(2,0, \ldots, 0), 2}$ of dimension $\frac{n(n-3)}{2}$ with eigenvalue $p_{0}+\left(1-p_{0}\right) \frac{-1}{n-2}$.

- $P_{2,\left(a_{0}, a_{1}, \ldots, a_{m-1}\right), 1}$. We have two different cases:
(1) if $a_{0}=1$, the corresponding eigenspace is

$$
P_{2,(1, \ldots, 0,} \underbrace{1}_{i-\text { th place }}, 0, \ldots, 0), 1
$$

of dimension $n(q-1) q^{i-1}$, with eigenvalue $p_{0} \frac{1+\lambda_{i}}{2}+\frac{1-p_{0}}{2}$;
(2) if $a_{0}=2$, the corresponding eigenspace is $P_{2,(2,0, \ldots, 0), 1}$ of dimension $n-1$, with eigenvalue $p_{0}+\left(1-p_{0}\right) \frac{n-4}{2(n-2)}$

- $P_{2,(2,0, \ldots, 0), 0}$. In this case, the dimension of the eigenspace is 1 with eigenvalue 1 .

Appendix: Association schemes

The theory of the Association Schemes is strictly linked to the theory of Gelfand pairs. It is a combinatorial tool that gives an equivalent description of the theory developed for groups and for Markov chains.

Association schemes are about relations between pairs of elements of a set Ω, that we suppose to be finite. Three equivalent definitions of association scheme can be given: in terms of partitions, graphs and matrices, respectively. A complete theory is developed in [Bai].

6. First definition

Definition 6.1. An association scheme with s associate classes on a finite set Ω is a partition of $\Omega \times \Omega$ into nonempty sets $\mathfrak{C}_{0}, \mathfrak{C}_{1}, \ldots, \mathfrak{C}_{s}$, called the associate classes, such that
(1) $\mathcal{C}_{0}=\operatorname{Diag}(\Omega)=\{(\omega, \omega): \omega \in \Omega\}$.
(2) \mathfrak{C}_{i} is symmetric for every $i=1, \ldots$, s, i.e. $\mathfrak{C}_{i}=\mathfrak{C}_{i}^{\prime}$, where $\mathfrak{C}_{i}^{\prime}$ denotes the dual of \mathfrak{C}_{i} defined as $\mathfrak{C}_{i}^{\prime}=\left\{(\beta, \alpha):(\alpha, \beta) \in \mathfrak{C}_{i}\right\}$.
(3) For all $i, j, k \in\{0,1, \ldots, s\}$ there exists an integer $p_{i j}^{k}$ such that, for all $(\alpha, \beta) \in \mathcal{C}_{k}$,

$$
\mid\left\{\gamma \in \Omega:(\alpha, \gamma) \in \mathcal{C}_{i} \text { and }(\gamma, \beta) \in \mathcal{C}_{j}\right\} \mid=p_{i j}^{k} .
$$

We will say that the rank of this association scheme is $s+1$. Observe that the conditions (2) and (3) imply $p_{i j}^{k}=p_{j i}^{k}$. The elements α and β are called i-th associates if $(\alpha, \beta) \in \mathcal{C}_{i}$. In particular, the set of $i-$ th associates of α is denoted by

$$
\mathcal{C}_{i}(\alpha)=\left\{\beta \in \Omega:(\alpha, \beta) \in \mathcal{C}_{i}\right\} .
$$

Condition (2) implies $p_{i j}^{0}=0$ if $i \neq j$. Similarly, $p_{0 j}^{k}=0$ if $j \neq k$ and $p_{i 0}^{k}=0$ if $i \neq k$, while $p_{0 j}^{j}=p_{i 0}^{i}=1$. Moreover, the condition (3) implies that each element of Ω has $p_{i i}^{0}=a_{i} i-$ th associates.

Example 6.2.
Let Ω be a finite set, with $|\Omega|=n$. Let \mathcal{C}_{0} be the diagonal subset and set

$$
\mathfrak{C}_{1}=\{(\alpha, \beta) \in \Omega \times \Omega: \alpha \neq \beta\}=(\Omega \times \Omega) \backslash \mathfrak{C}_{0} .
$$

This is the trivial association scheme, the only scheme on Ω having only one associate class. It has $a_{1}=n-1$ and it is denoted by $\underline{\underline{n}}$.

Example 6.3.

Let Ω an $m \times n$ rectangular array, with $m, n \geq 2$. Set

- $\mathfrak{C}_{1}=\{(\alpha, \beta): \alpha, \beta$ are in the same row but $\alpha \neq \beta\} ;$
- $\mathcal{C}_{2}=\{(\alpha, \beta): \alpha, \beta$ are in the same column but $\alpha \neq \beta\}$;
- $\mathcal{C}_{3}=\{(\alpha, \beta): \alpha, \beta$ are in different rows and columns $\}$.

It is clear that $\mathcal{C}_{3}=(\Omega \times \Omega) \backslash \mathcal{C}_{0} \backslash \mathcal{C}_{1} \backslash \mathcal{C}_{2}$. This is an association scheme with three associate classes and $a_{1}=n-1, a_{2}=m-1$, $a_{3}=(m-1)(n-1)$. It is called the rectangular association scheme $R(m, n)$ and is also denoted by $\underline{\underline{m}} \times \underline{\underline{n}}$.

Example 6.4.
Consider the partition $\Omega=\Delta_{1} \sqcup \ldots \sqcup \Delta_{m}$ of the set Ω into m subsets of size n. These subsets are traditionally called groups. We declare α and β to be:

- first associates if they are in the same groups but $\alpha \neq \beta$;
- second associates if they are in different groups.

It is easy to verify that, if $\omega \in \Omega$, then it has $n-1$ first associates and $(m-1) n$ second associates. So this is an association scheme with $s=2$ and $a_{1}=n-1, a_{2}=(m-1) n$. It is called the group-divisible association scheme, denoted by $G D(m, n)$ or also $\underline{\underline{m}} / \underline{\underline{n}}$.

7. Second definition

Definition 7.1. An association scheme with s associate classes on a finite set Ω is a colouring of the edges of the complete undirected graph, whose vertices are indexed by Ω, by s colours such that:
(1) for all $i, j, k \in\{1, \ldots, s\}$ there exists an integer $p_{i j}^{k}$ such that, if $\{\alpha, \beta\}$ is an edge of colour k, then
$\mid\{\gamma \in \Omega:\{\alpha, \gamma\}$ has colour i and $\{\gamma, \beta\}$ has colour $j\} \mid=p_{i j}^{k}$;
(2) every colour is used at least once;
(3) there exist integers a_{i}, for $i=1, \ldots, s$, such that each vertex is contained in exactly a_{i} edges of colour i.

We do not need an analogous of the conditions (1) and (2) of the first definition. In fact, every edge consists of two distinct vertices and the graph is supposed to be undirected. The new condition (1) says that if we consider any two different vertices α and β and fix two colours i and j, then the number of triangles consisting of the edge $\{\alpha, \beta\}$ and an i-coloured edge through α and a j-coloured edge through β is exactly $p_{i j}^{k}$, where k is the colour of $\{\alpha, \beta\}$. The new condition (2) has not an analogous in the partition definition, since we specified that the subsets in the partition are nonempty. Finally, since the condition (1) of the graph definition does not deal with the analogue of the diagonal subset, this is explicitly given in condition (3).

If an association scheme has two associate classes, the two colours can be regarded as "visible" and "invisible". The corresponding graph is strongly regular, according with the following definition.

Definition 7.2. A finite graph is strongly regular if:

- it is regular, i.e. each vertex is contained in the same number of edges;
- every edge is contained in the same number of triangles;
- every non-edge is contained in the same number of configurations like

- it is neither complete (all pairs are edges) nor null (no pairs are edges).

8. Third definition

Given an association scheme with associate classes $\mathfrak{C}_{0}, \mathfrak{C}_{1}, \ldots, \mathfrak{C}_{s}$, we can associate to each class \mathfrak{C}_{i} its adjacency matrix A_{i}, i.e. the matrix of size $|\Omega|$ defined as

$$
\left(A_{i}\right)_{\alpha \beta}= \begin{cases}1 & \text { if }(\alpha, \beta) \in \mathfrak{C}_{i} \\ 0 & \text { otherwise }\end{cases}
$$

The following lemma holds.
Lemma 8.1. Given an association scheme with associate classes $\mathfrak{C}_{0}, \mathfrak{C}_{1}, \ldots, \mathfrak{C}_{s}$, let A_{i} be the corresponding adjacency matrices. Then

$$
\begin{equation*}
A_{i} A_{j}=\sum_{k=0}^{s} p_{i j}^{k} A_{k} . \tag{25}
\end{equation*}
$$

Proof. Suppose $(\alpha, \beta) \in \mathcal{C}_{k}$. Then the (α, β)-entry of the righthand side of (25) is equal to $p_{i j}^{k}$, while the (α, β)-entry of the left-hand side is equal to

$$
\begin{aligned}
\left(A_{i} A_{j}\right) & =\sum_{\gamma \in \Omega} A_{i}(\alpha, \gamma) A_{j}(\gamma, \beta) \\
& =\mid\left\{\gamma:(\alpha, \gamma) \in \mathcal{C}_{i} \text { and }(\gamma, \beta) \in \mathcal{C}_{j}\right\} \mid \\
& =p_{i j}^{k}
\end{aligned}
$$

because the product $A_{i}(\alpha, \gamma) A_{j}(\gamma, \beta)$ is zero unless $(\alpha, \gamma) \in \mathcal{C}_{i}$ and $(\gamma, \beta) \in \mathcal{C}_{j}$, in which case it is 1 .

This lemma leads us to the third definition of association schemes, in terms of adjacency matrices.

Definition 8.2. An association scheme with s associate classes on a finite set Ω is a set of nonzero matrices $A_{0}, A_{1}, \ldots, A_{s}$, with rows and columns indexed by Ω, whose entries are equal to 0 or 1 and such that:
(1) $A_{0}=I_{\Omega}$, where I_{Ω} denotes the identity matrix of size $|\Omega|$;
(2) A_{i} is symmetric for every $i=1, \ldots, s$;
(3) for all $i, j \in\{1, \ldots, s\}$, the product $A_{i} A_{j}$ is a linear combination of $A_{0}, A_{1}, \ldots, A_{s}$;
(4) $\sum_{i=0}^{s} A_{i}=J_{\Omega}$, where J_{Ω} denotes the all-1 matrix of size $|\Omega|$.

Observe that the condition (4) of this definition gives an analogue of the fact that the subsets $\mathcal{C}_{0}, \mathcal{C}_{1}, \ldots, \mathfrak{C}_{s}$ constitute a partition of $\Omega \times \Omega$.

Proposition 8.3. If $A_{0}, A_{1}, \ldots, A_{s}$ are the adjacency matrices of an association scheme, then $A_{i} A_{j}=A_{j} A_{i}$ for all $i, j \in\{0,1, \ldots, s\}$.

Proof. We have

$$
\begin{aligned}
A_{j} A_{i} & =A_{j}^{T} A_{i}^{T}, \quad \text { because the adjacency matrices are symmetric, } \\
& =\left(A_{i} A_{j}\right)^{T} \\
& =\left(\sum_{k} p_{i j}^{k} A_{k}\right)^{T}, \quad \text { by Equation (25), } \\
& =\sum_{k} p_{i j}^{k} A_{k}^{T} \\
& =\sum_{k} p_{i j}^{k} A_{k}, \quad \text { because the adjacency matrices are symmetric, } \\
& =A_{i} A_{j} . \quad \square
\end{aligned}
$$

Example 8.4.

Let Π be a Latin square of size n, i.e. an $n \times n$ array filled with n letters in such a way that each letter occurs once in each row and once in each column.

a	d	b	c
c	a	d	b
b	c	a	d
d	b	c	a

Fig.13. A Latin square of size 4.
Let Ω be the set of n^{2} cells of the array. Consider $\alpha, \beta \in \Omega$, with $\alpha \neq \beta$. We declare α and β to be first associates if they are in the same row or in the same column or have the same letter. Otherwise, they are second associates. It is easy to check that so we get an association scheme on Ω, with two associate classes.

9. The Bose-Mesner algebra

Consider an association scheme with adjacency matrices A_{0}, \ldots, A_{s}. Let \mathcal{A} be the space of all real linear combinations of $A_{0}, A_{1}, \ldots, A_{s}$. This is a real vector space of dimension $s+1$. In fact, the matrices $A_{0}, A_{1}, \ldots, A_{s}$ are linearly independent because, given α and β in Ω, there exists only one index i such that $A_{i}(\alpha, \beta) \neq 0$. It follows from Lemma 8.1 that \mathcal{A} is closed under multiplication and so it is an algebra. Proposition 8.3 tells us that \mathcal{A} is a commutative algebra, called the Bose-Mesner algebra.

Since every adjacency matrix is symmetric, a matrix $M \in \mathcal{A}$ is symmetric and so it is diagonalizable on \mathbb{R}, i.e. it has distinct real eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$ such that:

- $L(\Omega)=\bigoplus_{i=1}^{r} V_{i}$, where V_{i} is the eigenspace associated with the eigenvalue λ_{i};
- the eigenspaces V_{i} and V_{j} are orthogonal, for $i \neq j$.

The orthogonality of eigenspaces is with respect to the inner product on $L(\Omega)$ defined as

$$
\langle f, g\rangle=\sum_{\omega \in \Omega} f(\omega) g(\omega), \quad \text { for all } f, g \in L(\Omega)
$$

Definition 9.1. The orthogonal projector P on a subspace W is the map $P: L(\Omega) \longrightarrow L(\Omega)$ defined by

$$
P v \in W \quad \text { and } \quad v-P v \in W^{\perp} .
$$

Now put

$$
P_{1}=\frac{\left(M-\lambda_{2} I\right) \cdots\left(M-\lambda_{r} I\right)}{\left(\lambda_{1}-\lambda_{2}\right) \cdots\left(\lambda_{1}-\lambda_{r}\right)} .
$$

It is easy to check that, if $v \in V_{1}$, then $P_{1} v=v$, while if $M v=\lambda_{i} v$ for $i>1$, then $P_{1} v=0$. So P_{1} is the orthogonal projector onto V_{1}. Analogously for V_{i}, with $i>1$.

Now let M_{1} and M_{2} be two matrices in \mathcal{A} and let P_{1}, \ldots, P_{r} and Q_{1}, \ldots, Q_{m} be the respective eigenprojectors. They commute with each other, since they are polynomials in M_{1} and M_{2}, respectively. The following properties of $P_{i} Q_{j}$'s hold:

- they are orthogonal, in fact $P_{i} Q_{j} P_{i^{\prime}} Q_{j^{\prime}}=P_{i} P_{i^{\prime}} Q_{j} Q_{j^{\prime}}$, which is zero unless $i=i^{\prime}$ and $j=j^{\prime}$;
- they are idempotents, in fact $P_{i} Q_{j} P_{i} Q_{j}=P_{i} P_{i} Q_{j} Q_{j}=P_{i} Q_{j}$;
- $\sum_{i} \sum_{j} P_{i} Q_{j}=\left(\sum_{i} P_{i}\right)\left(\sum_{j} Q_{j}\right)=I^{2}=I$;
- the subspaces which they project onto are contained in eigenspaces of both M_{1} and M_{2}.
If we apply this argument to $A_{0}, A_{1}, \ldots, A_{s}$, we deduce that there exist mutually orthogonal subspaces $W_{0}, W_{1}, \ldots, W_{r}$, with orthogonal projectors $S_{0}, S_{1}, \ldots, S_{r}$, such that
- $L(\Omega)=W_{0} \oplus W_{1} \oplus \cdots \oplus W_{r} ;$
- each W_{i} is contained in an eigenspace of every A_{j};
- each S_{i} is a polynomial in A_{1}, \ldots, A_{s} and so in \mathcal{A}.

Thus there are unique constant $D(e, i)$ such that

$$
S_{e}=\sum_{i} D(e, i) A_{i}
$$

On the other hand, if $C(i, e)$ is the eigenvalue of A_{i} on W_{e}, then

$$
A_{i}=\sum_{e=0}^{r} C(i, e) S_{e} .
$$

Moreover, the projectors S_{0}, \ldots, S_{r} are linearly independent because $S_{e} S_{f}=\delta_{e f} S_{e}$ and so they constitute another basis for \mathcal{A}. Therefore we have $r=s$ and $D=C^{-1}$.

The subspaces W_{e} are called strata, while the matrices S_{e} are called stratum projectors. The matrix C is the character table of the association scheme.

10. Crossed and nested product of association schemes

Definition 10.1. Let Ω_{1} be an association scheme on Ω_{1} with classes \mathcal{C}_{i}, for $i \in \mathcal{K}_{1}$ and let Q_{2} be an association scheme on Ω_{2} with classes \mathcal{D}_{j}, for $j \in \mathcal{K}_{2}$. Then Ω_{1} is isomorphic to Ω_{2} if there exist bijections

$$
\phi: \Omega_{1} \longrightarrow \Omega_{2} \quad \text { and } \quad \pi: \mathcal{K}_{1} \longrightarrow \mathcal{K}_{2}
$$

such that

$$
(\alpha, \beta) \in \mathcal{C}_{i} \Leftrightarrow(\phi(\alpha), \phi(\beta)) \in \mathcal{D}_{\pi(i)}
$$

In this case, we say that the pair (ϕ, π) is an isomorphism between association schemes and write $Q_{1} \cong \Omega_{2}$.

We can now introduce two special product of association schemes, called the crossed product and the nested product, respectively.

So let Q_{1} be an association scheme on the finite set Ω_{1} with adjacency matrices $A_{0}, A_{1}, \ldots, A_{m}$, and let Ω_{2} be an association scheme on the finite set Ω_{2} with adjacency matrices $B_{0}, B_{1}, \ldots, B_{r}$.

Definition 10.2. The crossed product of Q_{1} and Q_{2} is the association scheme $\Omega_{1} \times \Omega_{2}$ on $\Omega_{1} \times \Omega_{2}$ whose adjacency matrices are

$$
A_{i} \otimes B_{j}
$$

for $i=0, \ldots, m$ and $j=0, \ldots, r$.
The crossed product of two association schemes is also called direct product. For example, one can easily verify that the rectangular association scheme $R(m, n)$ can be obtained as the crossed product of the schemes $\underline{\underline{m}}$ and $\underline{\underline{n}}$.

Definition 10.3. The nested product of Q_{1} and Q_{2} is the association scheme Ω_{1} / Q_{2} on $\Omega_{1} \times \Omega_{2}$ whose adjacency matrices are

- $A_{i} \otimes J_{\Omega_{2}}$, with $i \neq 0$;
- $I_{\Omega_{1}} \otimes B_{j}$, for every $j=0,1, \ldots, r$.

The nested product of two association schemes is also called wreath product. For example, one can easily verify that the group-divisible association scheme $G D(m, n)$ can be obtained as the nested product of the schemes $\underline{\underline{m}}$ and $\underline{\underline{n}}$.

Proposition 10.4. The following properties of crossed and nested product hold:
(1) crossing is commutative, in the sense that $Q_{1} \times Q_{2} \cong Q_{2} \times Q_{1}$;
(2) crossing is associative, in the sense that $Q_{1} \times\left(Q_{2} \times Q_{3}\right) \cong$ $\left(Q_{1} \times Q_{2}\right) \times Q_{3} ;$
(3) nesting is associative, in the sense that $\mathcal{Q}_{1} /\left(\mathcal{Q}_{2} / Q_{3}\right) \cong\left(Q_{1} / Q_{2}\right) / Q_{3}$.

11. Crested product of association schemes

In this section we introduce the crested product of two association schemes Ω_{1} and Ω_{2}, giving a new association scheme on the space $\Omega_{1} \times$ Ω_{2} that has both crossed and nested products as special cases. Our main source is $[\mathrm{BaCa}]$.
11.1. Orthogonal block structures. Given a partition F of a finite set Ω, let R_{F} be the $|\Omega| \times|\Omega|$ relation matrix of F, i.e.

$$
R_{F}(\alpha, \beta)= \begin{cases}1 & \text { if } \alpha \text { and } \beta \text { are in the same part of } F \\ 0 & \text { otherwise }\end{cases}
$$

Definition 11.1. A partition of Ω is uniform if all its parts have the same size.

The trivial partitions of Ω are the universal partition U, which has a single part and whose relation matrix is J_{Ω}, and the equality partition E, all of whose parts are singletons and whose relation matrix is I_{Ω}.

The partitions of Ω constitute a poset with respect to the relation \preccurlyeq, where $F \preccurlyeq G$ if every part of F is contained in a part of G. Given any two partitions F and G, their infimum is denoted $F \wedge G$ and is the partition whose parts are intersections of F-parts with G-parts; their supremum is denoted $F \vee G$ and is the partition whose parts are minimal subject to being unions of F-parts and G-parts.

Definition 11.2. A set \mathcal{F} of uniform partitions of Ω is an orthogonal block structure if:
(1) \mathcal{F} contains U and E;
(2) for all F and $G \in \mathcal{F}$, \mathcal{F} contains $F \wedge G$ and $F \vee G$;
(3) for all F and $G \in \mathcal{F}$, the matrices R_{F} and R_{G} commute with each other.

Given a partition F belonging to an orthogonal block structure \mathcal{F} on Ω, we define the adjacency matrix A_{F} as

$$
A_{F}(\alpha, \beta)= \begin{cases}1 & \text { if } F=\bigwedge\left\{G \in \mathcal{F}: R_{G}(\alpha, \beta)=1\right\} \\ 0 & \text { otherwise }\end{cases}
$$

One can verify that the set $\left\{A_{F}: F \in \mathcal{F}, A_{F} \neq 0\right\}$ is an association scheme on Ω.

Given two partitions F and G of two sets Ω_{1} and Ω_{2}, respectively, denote $F \times G$ the partition of $\Omega_{1} \times \Omega_{2}$ whose relation matrix is $R_{F} \otimes R_{G}$.

Now let \mathcal{F} and \mathcal{G} be two orthogonal block structures on Ω_{1} and Ω_{2}, respectively. Then their crossed product is given by

$$
\mathcal{F} \times \mathcal{G}=\{F \times G: F \in \mathcal{F}, G \in \mathcal{G}\}
$$

and their nested product is given by

$$
\mathcal{F} / \mathcal{G}=\left\{F \times U_{2}: F \in \mathcal{F}\right\} \cup\left\{E_{1} \times G: G \in \mathcal{G}\right\}
$$

where E_{i} and U_{i} are the trivial partitions of Ω_{i}. One can show that the operation of deriving the association scheme from the orthogonal block structure commutes with both crossing and nesting.

Definition 11.3. For $i=1,2$, let \mathcal{F}_{i} be an orthogonal block structure on a set Ω_{i} and choose $F_{i} \in \mathcal{F}_{i}$. The crested product of \mathcal{F}_{1} and \mathcal{F}_{2} with respect to F_{1} and F_{2} is the set \mathcal{G} of partitions of $\Omega_{1} \times \Omega_{2}$ given by

$$
\begin{equation*}
\mathcal{G}=\left\{G_{1} \times G_{2}: G_{1} \in \mathcal{F}_{1}, G_{2} \in \mathcal{F}_{2}, G_{1} \preccurlyeq F_{1} \text { or } G_{2} \succcurlyeq F_{2}\right\} \tag{26}
\end{equation*}
$$

The following theorem holds (see $[\mathbf{B a C a}]$ for the proof).
Theorem 11.4. The crested product defined in (26) is an orthogonal block structure on $\Omega_{1} \times \Omega_{2}$.

Observe that:

- if $F_{1}=U_{1}$ or $F_{2}=E_{2}$, then \mathcal{G} is the crossed product $\mathcal{F}_{1} \times \mathcal{F}_{2}$;
- if $F_{1}=E_{1}$ and $F_{2}=U_{2}$, then \mathcal{G} is the nested product $\mathcal{F}_{1} / \mathcal{F}_{2}$.

11.2. Partitions in association schemes.

Definition 11.5. Let Q be an association scheme on Ω with adjacency matrices A_{i}, for $i \in \mathcal{K}$. Then a partition F of Ω is inherent in Q if its relation matrix R_{F} is in the Bose-Mesner algebra of Q, i.e. if there exists a subset \mathcal{L} of \mathcal{K} such that $R_{F}=\sum_{i \in \mathcal{L}} A_{i}$.

It is easy to check that the trivial partitions E and U are inherent in every association scheme.

Example 11.6.

Consider the 12 edges of the cube and define an association scheme on the set Ω of these edges in the following way:

- two edges α and β are 1 -st associates if they meet at a vertex;
- two edges α and β are $2-$ nd associates if they are diagonally opposite;
- two edges α and β are $3-$ rd associates if they are parallel but not opposite;
- two edges α and β are 4-th associates if they are skew.

The partitions inherent in this scheme have relation matrices $A_{0}=$ $I_{\Omega}, A_{0}+A_{2}, A_{0}+A_{2}+A_{3}$ and $A_{0}+A_{1}+A_{2}+A_{3}+A_{4}=J_{\Omega}$

Theorem 11.7. If Q is an association scheme on Ω, then the set \mathcal{F} of partitions of Ω which are inherent in Q is an orthogonal block structure on Ω.

See $[\mathbf{B a C a}]$ for the proof.

Now let \mathcal{P} be a partition of $\Omega \times \Omega$ and let $V(\mathcal{P})$ be the real span of the adjacency matrices of its classes. It is clear that

$$
Q \preccurlyeq \mathcal{P} \quad \Longleftrightarrow \quad V(\mathcal{P}) \leq \mathcal{A},
$$

where \mathcal{A} is the Bose-Mesner algebra of Q.
Definition 11.8. Let Q be an association scheme on Ω. A partition \mathcal{P} of $\Omega \times \Omega$ is ideal for \mathfrak{Q} if $V(\mathcal{P})$ is an ideal of \mathcal{A}, i.e. $V(\mathcal{P}) \leq \mathcal{A}$ and $A D \in V(\mathcal{P})$ whenever $A \in \mathcal{A}$ and $D \in V(\mathcal{P})$.

Theorem 11.9. Let \mathcal{Q} be an association scheme with adjacency matrices A_{i}, for $i \in \mathcal{K}$. If \mathcal{Q} has an inherent partition F with relation matrix R_{F}, then there exists an ideal partition $\vartheta(F)$ of Q whose adjacency matrices are scalar multiples of $A_{i} R$, for $i \in \mathcal{K}$.

Proof. (Sketch) Let \mathcal{L} be the subset of \mathcal{K} such that $R_{F}=\sum_{i \in \mathcal{L}} A_{i}$. So there exist positive integers $m_{i j}$ such that

$$
R_{F} A_{i}=A_{i} R_{F}=\sum_{j \in \mathscr{K}} m_{i j} A_{j} .
$$

It follows from the definition that

$$
m_{i j}=\left(A_{i} R_{F}\right)(\alpha, \beta)=\left|\mathcal{C}_{i}(\alpha) \cap F(\beta)\right|,
$$

where $F(\beta)$ denotes the F-class containing β. Put $i \sim j$ if $m_{i j} \neq 0$. One can check that \sim is an equivalence relation. Define $[i]=\{j \in \mathcal{K}$: $j \sim i\}$ and $B_{[i]}=\sum_{j \sim i} A_{j}$. Then the distinct $B_{[i]}$ are the adjacency matrices of a partition \mathcal{P} of $\Omega \times \Omega$ such that $Q \preccurlyeq \mathcal{P}$. Moreover, it is easy to verify that $A_{j} B_{[i]} \in V(\mathcal{P})$.

Indeed, the inverse construction can be done, as the following theorem shows (see [BaCa]).

Theorem 11.10. Let \mathcal{P} be an ideal partition for \mathcal{Q}. Let A_{i} be the adjacency matrices of \mathcal{Q}, for $i \in \mathcal{K}$, and let D_{m} be the adjacency matrices of \mathcal{P}, for $m \in \mathcal{M}$. Denote by σ the surjection from \mathcal{K} to \mathcal{M} such that class i of \mathcal{Q} is contained in class $\sigma(i)$ of \mathcal{P}. Put $R=D_{\sigma(0)}$. Then R is the relation matrix of an inherent partition in \mathbf{Q}. Moreover, for all $i \in \mathcal{K}$, the matrix $A_{i} R$ is an integer multiple of $D_{\sigma(i)}$.
11.3. Crested product of association schemes. Let F be a partition in an orthogonal block structure \mathcal{F}, so that $R_{F}=\sum_{G \in \mathcal{L}} A_{G}$, where $\mathcal{L}=\{G \in \mathcal{F}: G \preccurlyeq F\}$. This implies that F is inherent in the association scheme derived from \mathcal{F}. Then $\left\{A_{G}: G \in \mathcal{L}\right\}$ and $\left\{R_{G}: G \in \mathcal{L}\right\}$ span the same subspace $\left.\mathcal{A}\right|_{F}$ of \mathcal{A}, which is closed under matrix multiplication.

Let \mathcal{P} be the ideal partition $\vartheta(F)$. For $G \in \mathcal{F}, R_{G}$ is in the ideal of \mathcal{A} generated by R_{F} if and only if $F \preccurlyeq G$, so $V(\mathcal{P})$ is the span of $\left\{R_{G}: G \in \mathcal{F}, G \succcurlyeq F\right\}$. We denote $V(\vartheta(F))$ by $\left.A\right|^{F}$.

Consider now the crested product \mathcal{G} of the orthogonal block structures \mathcal{F}_{1} and \mathcal{F}_{2} with respect to the partitions F_{1} and F_{2}. The span of the relation matrices of the partitions in \mathcal{G} is

$$
\left(\left.\mathcal{A}_{1}\right|_{F_{1}} \otimes \mathcal{A}_{2}\right)+\left(\left.\mathcal{A}_{1} \otimes \mathcal{A}_{2}\right|^{F_{2}}\right)
$$

where \mathcal{A}_{1} and \mathcal{A}_{2} are the Bose-Mesner algebra of the association schemes derived by \mathcal{F}_{1} and \mathcal{F}_{2}, respectively. The adjacency matrices of the association scheme derived by \mathcal{G} are:

- $A_{G} \otimes A_{H}$, for $G \in \mathcal{L}$ and $H \in \mathcal{F}_{2}$;
- $A_{G} \otimes D$, for $G \in \mathcal{F}_{1} \backslash \mathcal{L}$ and D an adjacency matrix of \mathcal{P},
where $\mathcal{L}=\left\{G \in \mathcal{F}_{1}: G \preccurlyeq F_{1}\right\}$ and $\mathcal{P}=\vartheta\left(F_{2}\right)$. This leads to the following definition.

Definition 11.11. For $r=1,2$, let Q_{r} be an association scheme on a set Ω_{r} and let F_{r} be an inherent partition in Q_{r}. Put $\mathcal{P}=\vartheta\left(F_{2}\right)$ and $\Omega=\Omega_{1} \times \Omega_{2}$. Let the adjacency matrices of Q_{1}, Q_{2} and \mathcal{P} be A_{i}, for $i \in \mathcal{K}_{1}, B_{j}$, for $j \in \mathcal{K}_{2}$ and D_{m}, for $m \in \mathcal{M}$, respectively. Let \mathcal{L} be the subset of \mathcal{K}_{1} such that $R_{F_{1}}=\sum_{i \in \mathcal{L}} A_{i}$. The crested product of \mathcal{Q}_{1} and \mathcal{Q}_{2} with respect to F_{1} and F_{2} is the association scheme \mathcal{Q} on Ω whose adjacency matrices are

- $A_{i} \otimes B_{j}$, for $i \in \mathcal{L}$ and $j \in \mathcal{K}_{2}$;
- $A_{i} \otimes D_{m}$, for $i \in \mathcal{K}_{1} \backslash \mathcal{L}$ and $m \in \mathcal{M}$.

Observe that the crested product reduces to the crossed product if $F_{1}=U_{1}$ or $F_{2}=E_{2}$ (in which case $\mathcal{P}=\Omega_{2}$) and it reduces to the nested product if $F_{1}=E_{1}$ and $F_{2}=U_{2}$ (in which case $\mathcal{P}=U_{\Omega_{2} \times \Omega_{2}}$).

Moreover, the interesting fact is that the character table of the crested product Q can be described using the character table of Q_{1} and Q_{2}. See $[\mathbf{B a C a}]$ for more details.

12. Examples

Let Q be an association scheme on a finite set Ω and let $A_{0}=$ $I_{\Omega}, A_{1}, \ldots, A_{m}$ the adjacency matrices associated with Q. Consider also an association scheme Q^{\prime} on a second finite set Ω^{\prime}, whose adjacency matrices are $A_{0}^{\prime}=I_{\Omega^{\prime}}, A_{1}^{\prime}, \ldots, A_{m}^{\prime}$.

The nested product Q / Q^{\prime} of the schemes Q and Q^{\prime} is well defined: it is the association scheme on the set $\Omega \times \Omega^{\prime}$ whose adjacency matrices are

- $A_{i} \otimes J_{\Omega^{\prime}}$, for $i \neq 0 ;$
- $I_{\Omega} \otimes A_{j}^{\prime}$, for $j=0,1, \ldots, m^{\prime}$.

Consider now the inherent partition F of $\Omega \times \Omega^{\prime}$ whose relation matrix is

$$
R_{F}=\sum_{j=0}^{m^{\prime}}\left(I_{\Omega} \otimes A_{j}^{\prime}\right)=I_{\Omega} \otimes J_{\Omega^{\prime}}
$$

i.e. the partition $\Omega \times \Omega^{\prime}=\bigsqcup_{\alpha \in \Omega}\left\{\left(\alpha, \alpha^{\prime}\right): \alpha^{\prime} \in \Omega^{\prime}\right\}$. We can ask which is the ideal partition associated with F.

In general, if Q is an association scheme on the set X with matrices $A_{0}, A_{1}, \ldots, A_{m}$ and F is an inherent partition of X with relation matrix $R_{F}=\sum_{i \in \mathcal{L}} A_{i}$, then the adjacency matrices of the ideal partition \mathcal{P} of $X \times X$ associated with F are $D_{i}=\sum_{i \sim j} A_{j}$, where \sim is the equivalence relation defined by $i \sim j$ if $m_{i j} \neq 0$ and the $m_{i j}$'s are defined by

$$
m_{i j}=\left|\mathcal{C}_{i}(\alpha) \cap F(\beta)\right|, \quad \text { for all }(\alpha, \beta) \in \mathcal{C}_{j} .
$$

So, if $m_{i j} \neq 0$ and $(\alpha, \beta) \in \mathcal{C}_{j}$, then there exists some $\gamma \in \mathcal{C}_{i}(\alpha)$ such that $F(\beta)=F(\gamma)$. One can easily check that $[0]=\mathcal{L}$. We will use also the notation $A_{i} \sim A_{j}$ to indicate $i \sim j$.

In our case we have $I_{\Omega} \otimes A_{j}^{\prime} \sim I_{\Omega} \otimes A_{k}^{\prime}$ for every $j, k=0,1, \ldots, m^{\prime}$. Moreover, it is easy to verify that, for $i, j \neq 0$, one has $A_{i} \otimes J_{\Omega^{\prime}} \nsim$ $A_{j} \otimes J_{\Omega^{\prime}}$ for $i \neq j$. So the adjacency matrices of the ideal partition \mathcal{P} associated with F are

$$
A_{i} \otimes J_{\Omega^{\prime}}, \quad \text { for } i=0,1, \ldots, m
$$

Consider now an association scheme S on a finite set Θ with adjacency matrices $B_{0}=I_{\Theta}, B_{1}, \ldots, B_{n}$ and an association scheme S^{\prime} on a finite set Θ^{\prime} whose adjacency matrices are $B_{0}^{\prime}=I_{\Theta^{\prime}}, B_{1}^{\prime}, \ldots, B_{n}^{\prime}$. Take now the nested product S / S^{\prime} defined on the product $\Theta \times \Theta^{\prime}$, i.e. the association scheme on $\Theta \times \Theta^{\prime}$ whose adjacency matrices are

- $B_{i} \otimes J_{\Theta^{\prime}}$, for $i \neq 0$;
- $I_{\Theta} \otimes B_{j}^{\prime}$, for $j=0,1, \ldots, n^{\prime}$.

We can consider the inherent partition G of $\Theta \times \Theta^{\prime}$ defined as in the previous case, so that its relation matrix is

$$
R_{G}=\sum_{j=0}^{n^{\prime}} I_{\Theta} \otimes B_{j}^{\prime}=I_{\Theta} \otimes J_{\Theta^{\prime}},
$$

i.e. we have the partition $\Theta \times \Theta^{\prime}=\coprod_{\theta \in \Theta}\left\{\left(\theta, \theta^{\prime}\right): \theta^{\prime} \in \Theta^{\prime}\right\}$.

We can now consider the crested product of the schemes S / S^{\prime} and Q / Q^{\prime} with respect to the inherent partition G and F defined above. So we get a new association scheme on the set

$$
\Theta \times \Theta^{\prime} \times \Omega \times \Omega^{\prime}
$$

whose adjacency matrices are

- $\left(I_{\Theta} \otimes B_{j}^{\prime}\right) \otimes\left(A_{i} \otimes J_{\Omega^{\prime}}\right)$, with $j=0,1, \ldots, n^{\prime}$ and $i \neq 0$;
- $\left(I_{\Theta} \otimes B_{j}^{\prime}\right) \otimes\left(I_{\Omega} \otimes A_{k}^{\prime}\right)$, with $j=0,1, \ldots, n^{\prime}$ and $k=0,1, \ldots, m^{\prime}$;
- $\left(B_{i} \otimes J_{\Theta^{\prime}}\right) \otimes\left(A_{j} \otimes J_{\Omega^{\prime}}\right)$, with $i \neq 0$ and $j=0,1, \ldots, m$.

Moreover, by choosing the inherent partition G for $\Theta \times \Theta^{\prime}$ and the universal partition $U_{\Omega \times \Omega^{\prime}}$ for $\Omega \times \Omega^{\prime}$, i.e. the partition whose relation matrix is $R_{U_{\Omega \times \Omega^{\prime}}}=J_{\Omega} \otimes J_{\Omega^{\prime}}$, we can get a different crested product of the schemes S / S^{\prime} and Q / Q^{\prime}. Observe that the only adjacency matrix of the ideal partition \mathcal{P} associated with $U_{\Omega \times \Omega^{\prime}}$ is $J_{\Omega} \otimes J_{\Omega^{\prime}}$. So the adjacency matrices of the crested product of the schemes S / S^{\prime} and Q / Q^{\prime} are

- $\left(I_{\Theta} \otimes B_{j}^{\prime}\right) \otimes\left(A_{i} \otimes J_{\Omega^{\prime}}\right)$, with $j=0,1, \ldots, n^{\prime}$ and $i \neq 0$;
- $\left(I_{\Theta} \otimes B_{j}^{\prime}\right) \otimes\left(I_{\Omega} \otimes A_{k}^{\prime}\right)$, with $j=0,1, \ldots, n^{\prime}$ and $k=0,1, \ldots, m^{\prime}$;
- $\left(B_{i} \otimes J_{\Theta^{\prime}}\right) \otimes\left(J_{\Omega} \otimes J_{\Omega^{\prime}}\right)$, with $i \neq 0$.

Finally, by choosing the identity partition $E_{\Theta \times \Theta^{\prime}}$ for $\Theta \times \Theta^{\prime}$ and the inherent partition F for $\Omega \times \Omega^{\prime}$, we can get again a different crested product of the schemes S / S^{\prime} and Q / Q^{\prime}, whose adjacency matrices are

- $\left(I_{\Theta} \otimes I_{\Theta^{\prime}}\right) \otimes\left(A_{i} \otimes J_{\Omega^{\prime}}\right)$, with $i \neq 0$;
- $\left(I_{\Theta} \otimes I_{\Theta^{\prime}}\right) \otimes\left(I_{\Omega} \otimes A_{k}^{\prime}\right)$, with $k=0,1, \ldots, m^{\prime}$;
- $\left(I_{\Theta} \otimes B_{k}^{\prime}\right) \otimes\left(A_{i} \otimes J_{\Omega^{\prime}}\right)$, with $i=0,1, \ldots, m$ and $k \neq 0$;
- $\left(B_{j} \otimes J_{\Theta^{\prime}}\right) \otimes\left(A_{i} \otimes J_{\Omega^{\prime}}\right)$, with $j \neq 0$ and $i=0,1, \ldots, m$.

This completes the description of the nontrivial crested products that we can get from the schemes S / S^{\prime} and Q / Q^{\prime}. By choosing the identity partition $E_{\Theta \times \Theta^{\prime}}$ as inherent partition of $\Theta \times \Theta^{\prime}$ and the universal partition $U_{\Omega \times \Omega^{\prime}}$ as inherent partition of $\Omega \times \Omega^{\prime}$, we get the nested product

$$
S / S^{\prime} / Q / Q^{\prime} .
$$

This notation is correct because of the associativity of iterating the nested product of association schemes. The adjacency matrices of the scheme $S / S^{\prime} / Q / Q^{\prime}$ are

- $\left(I_{\Theta} \otimes I_{\Theta^{\prime}}\right) \otimes\left(A_{i} \otimes J_{\Omega^{\prime}}\right)$, with $i \neq 0 ;$
- $\left(I_{\Theta} \otimes I_{\Theta^{\prime}}\right) \otimes\left(I_{\Omega} \otimes A_{k}^{\prime}\right)$, with $k=0,1, \ldots, m^{\prime} ;$
- $\left(I_{\Theta} \otimes B_{k}^{\prime}\right) \otimes\left(J_{\Omega} \otimes J_{\Omega^{\prime}}\right)$, with $k \neq 0$;
- $\left(B_{j} \otimes J_{\Theta^{\prime}}\right) \otimes\left(J_{\Omega} \otimes J_{\Omega^{\prime}}\right)$, with $j \neq 0$.

The remaining choices for the inherent partitions of $\Theta \times \Theta^{\prime}$ and $\Omega \times \Omega^{\prime}$ give rise to the crossed product

$$
\left(S / S^{\prime}\right) \times\left(Q / Q^{\prime}\right)
$$

i.e. the association scheme on $\Theta \times \Theta^{\prime} \times \Omega \times \Omega^{\prime}$ whose adjacency matrices are

- $\left(I_{\Theta} \otimes B_{j}^{\prime}\right) \otimes\left(I_{\Omega} \otimes A_{k}^{\prime}\right)$, with $j=0,1, \ldots, n^{\prime}$ and $k=0,1, \ldots, m^{\prime}$;
- $\left(I_{\Theta} \otimes B_{j}^{\prime}\right) \otimes\left(A_{i} \otimes J_{\Omega^{\prime}}\right)$, with $j=0,1, \ldots, n^{\prime}$ and $i \neq 0$;
- $\left(B_{i} \otimes J_{\Theta^{\prime}}\right) \otimes\left(I_{\Omega} \otimes A_{k}^{\prime}\right)$, with $i \neq 0$ and $k=0,1, \ldots, m^{\prime}$;
- $\left(B_{i} \otimes J_{\Theta^{\prime}}\right) \otimes\left(A_{k} \otimes J_{\Omega^{\prime}}\right)$, with $i, k \neq 0$.

As an easy example, we can consider the case when $\Theta=\Theta^{\prime}=\Omega=$ $\Omega^{\prime}=\{1,2\}$ and $S=S^{\prime}=Q=Q^{\prime}=\underline{\underline{2}}$. We recall that $\underline{\underline{2}}$ denotes the trivial association scheme on two elements, whose adjacency matrices are

$$
M_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad M_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Let us call these matrices B_{0} and B_{1} in the case of S, B_{0}^{\prime} and B_{1}^{\prime} in the case of S^{\prime}, A_{0} and A_{1} in the case of Q, A_{0}^{\prime} and A_{1}^{\prime} in the case of Q^{\prime}, respectively.

So the adjacency matrices of the nested product Q / Q^{\prime} are

- $A_{1} \otimes J_{\Omega^{\prime}}$;
- $I_{\Omega} \otimes I_{\Omega^{\prime}} ;$
- $I_{\Omega} \otimes A_{1}^{\prime}$.

Consider now the inherent partition F of $\Omega \times \Omega^{\prime}$ whose relation matrix is

$$
R_{F}=I_{\Omega} \otimes I_{\Omega^{\prime}}+I_{\Omega} \otimes A_{1}^{\prime}=I_{\Omega} \otimes J_{\Omega^{\prime}},
$$

i.e. the partition $\Omega \times \Omega^{\prime}=\{(1,1),(1,2)\} \coprod\{(2,1),(2,2)\}$.

The adjacency matrices of the ideal partition \mathcal{P} associated with F are

- $I_{\Omega} \otimes J_{\Omega^{\prime}} ;$
- $A_{1} \otimes J_{\Omega^{\prime}}$.

Analogously, the adjacency matrices associated with the nested product S / S^{\prime} defined on the product $\Theta \times \Theta^{\prime}$ are

- $B_{1} \otimes J_{\Theta^{\prime}}$;
- $I_{\Theta} \otimes I_{\Theta^{\prime}} ;$
- $I_{\Theta} \otimes B_{1}^{\prime}$.

We can consider the inherent partition G of $\Theta \times \Theta^{\prime}$ defined as in the previous case, so that its relation matrix is

$$
R_{G}=I_{\Theta} \otimes I_{\Theta^{\prime}}+I_{\Theta} \otimes B_{1}^{\prime}=I_{\Theta} \otimes J_{\Theta^{\prime}},
$$

corresponding to the partition $\Theta \times \Theta^{\prime}=\{(1,1),(1,2)\} \amalg\{(2,1),(2,2)\}$.

We can now consider the crested product of the schemes $\underline{\underline{2}} \underline{\underline{2}}$ and $\underline{\underline{2}} / \underline{\underline{2}}$ with respect to the inherent partition G and F defined above. So we get the association scheme on the set

$$
\Theta \times \Theta^{\prime} \times \Omega \times \Omega^{\prime}
$$

whose adjacency matrices are

- $\left(I_{\Theta} \otimes I_{\Theta^{\prime}}\right) \otimes\left(A_{1} \otimes J_{\Omega^{\prime}}\right) ;$
- $\left(I_{\Theta} \otimes B_{1}^{\prime}\right) \otimes\left(A_{1} \otimes J_{\Omega^{\prime}}\right) ;$
- $\left(I_{\Theta} \otimes I_{\Theta^{\prime}}\right) \otimes\left(I_{\Omega} \otimes I_{\Omega^{\prime}}\right) ;$
- $\left(I_{\Theta} \otimes I_{\Theta^{\prime}}\right) \otimes\left(I_{\Omega} \otimes A_{1}^{\prime}\right) ;$
- $\left(I_{\Theta} \otimes B_{1}^{\prime}\right) \otimes\left(I_{\Omega} \otimes I_{\Omega^{\prime}}\right) ;$
- $\left(I_{\Theta} \otimes B_{1}^{\prime}\right) \otimes\left(I_{\Omega} \otimes A_{1}^{\prime}\right) ;$
- $\left(B_{1} \otimes J_{\Theta^{\prime}}\right) \otimes\left(I_{\Omega} \otimes J_{\Omega^{\prime}}\right) ;$
- $\left(B_{1} \otimes J_{\Theta^{\prime}}\right) \otimes\left(A_{1} \otimes J_{\Omega^{\prime}}\right)$.

By choosing the inherent partition G for $\Theta \times \Theta^{\prime}$ and the universal partition $U_{\Omega \times \Omega^{\prime}}$ for $\Omega \times \Omega^{\prime}$, i.e. the partition whose relation matrix is $R_{U_{\Omega \times \Omega^{\prime}}}=J_{\Omega} \otimes J_{\Omega^{\prime}}$, we get a different crested product of the schemes $\underline{\underline{2}} / \underline{\underline{2}}$ and $\underline{\underline{2}} / \underline{\underline{2}}$. The only adjacency matrix of the ideal partition \mathcal{P} associated with $U_{\Omega \times \Omega^{\prime}}$ is $J_{\Omega} \otimes J_{\Omega^{\prime}}$. So the adjacency matrices of the crested product of the schemes $\underline{\underline{2}} \underline{\underline{2}}$ and $\underline{\underline{2}} / \underline{\underline{2}}$ are

- $\left(I_{\Theta} \otimes I_{\Theta^{\prime}}\right) \otimes\left(A_{1} \otimes J_{\Omega^{\prime}}\right) ;$
- $\left(I_{\Theta} \otimes B_{1}^{\prime}\right) \otimes\left(A_{1} \otimes J_{\Omega^{\prime}}\right) ;$
- $\left(I_{\Theta} \otimes I_{\Theta^{\prime}}\right) \otimes\left(I_{\Omega} \otimes I_{\Omega^{\prime}}\right) ;$
- $\left(I_{\Theta} \otimes I_{\Theta^{\prime}}\right) \otimes\left(I_{\Omega} \otimes A_{1}^{\prime}\right) ;$
- $\left(I_{\Theta} \otimes B_{1}^{\prime}\right) \otimes\left(I_{\Omega} \otimes I_{\Omega^{\prime}}\right) ;$
- $\left(I_{\Theta} \otimes B_{1}^{\prime}\right) \otimes\left(I_{\Omega} \otimes A_{1}^{\prime}\right) ;$
- $\left(B_{1} \otimes J_{\Theta^{\prime}}\right) \otimes\left(J_{\Omega} \otimes J_{\Omega^{\prime}}\right)$.

Finally, by choosing the identity partition $E_{\Theta \times \Theta^{\prime}}$ for $\Theta \times \Theta^{\prime}$ and the inherent partition F for $\Omega \times \Omega^{\prime}$, we get again a different crested product of the schemes $\underline{\underline{2}} / \underline{\underline{2}}$ and $\underline{\underline{2}} / \underline{\underline{2}}$, whose adjacency matrices are

- $\left(I_{\Theta} \otimes I_{\Theta^{\prime}}\right) \otimes\left(A_{1} \otimes J_{\Omega^{\prime}}\right) ;$
- $\left(I_{\Theta} \otimes I_{\Theta^{\prime}}\right) \otimes\left(I_{\Omega} \otimes I_{\Omega^{\prime}}\right) ;$
- $\left(I_{\Theta} \otimes I_{\Theta^{\prime}}\right) \otimes\left(I_{\Omega} \otimes A_{1}^{\prime}\right) ;$
- $\left(I_{\Theta} \otimes B_{1}^{\prime}\right) \otimes\left(I_{\Omega} \otimes J_{\Omega^{\prime}}\right) ;$
- $\left(I_{\Theta} \otimes B_{1}^{\prime}\right) \otimes\left(A_{1} \otimes J_{\Omega^{\prime}}\right) ;$
- $\left(B_{1} \otimes J_{\Theta^{\prime}}\right) \otimes\left(I_{\Omega} \otimes J_{\Omega^{\prime}}\right) ;$
- $\left(B_{1} \otimes J_{\Theta^{\prime}}\right) \otimes\left(A_{1} \otimes J_{\Omega^{\prime}}\right)$.

This completes the description of the nontrivial crested products that we can get from the schemes $\underline{\underline{2}} / \underline{\underline{2}}$ and $\underline{\underline{2}} / \underline{\underline{2}}$. By choosing the identity partition $E_{\Theta \times \Theta^{\prime}}$ as inherent partition of $\bar{\Theta} \times \Theta^{\prime}$ and the universal partition $U_{\Omega \times \Omega^{\prime}}$ as inherent partition of $\Omega \times \Omega^{\prime}$, we get the nested product

$$
\underline{\underline{2}} / \underline{\underline{2}} / \underline{\underline{2}} / \underline{\underline{2}} .
$$

The adjacency matrices of this scheme are

- $\left(I_{\Theta} \otimes I_{\Theta^{\prime}}\right) \otimes\left(A_{1} \otimes J_{\Omega^{\prime}}\right) ;$
- $\left(I_{\Theta} \otimes I_{\Theta^{\prime}}\right) \otimes\left(I_{\Omega} \otimes I_{\Omega^{\prime}}\right) ;$
- $\left(I_{\Theta} \otimes I_{\Theta^{\prime}}\right) \otimes\left(I_{\Omega} \otimes A_{1}^{\prime}\right) ;$
- $\left(I_{\Theta} \otimes B_{1}^{\prime}\right) \otimes\left(J_{\Omega} \otimes J_{\Omega^{\prime}}\right) ;$
- $\left(B_{1} \otimes J_{\Theta^{\prime}}\right) \otimes\left(J_{\Omega} \otimes J_{\Omega^{\prime}}\right)$.

The remaining choices of inherent partitions of $\Theta \times \Theta^{\prime}$ and $\Omega \times \Omega^{\prime}$ give rise to the crossed product

$$
(\underline{\underline{2}} / \underline{\underline{2}}) \times(\underline{\underline{2}} / \underline{\underline{2}}),
$$

whose adjacency matrices are

- $\left(I_{\Theta} \otimes I_{\Theta^{\prime}}\right) \otimes\left(I_{\Omega} \otimes I_{\Omega^{\prime}}\right) ;$
- $\left(I_{\Theta} \otimes I_{\Theta^{\prime}}\right) \otimes\left(I_{\Omega} \otimes A_{1}^{\prime}\right) ;$
- $\left(I_{\Theta} \otimes I_{\Theta^{\prime}}\right) \otimes\left(A_{1} \otimes J_{\Omega^{\prime}}\right) ;$
- $\left(I_{\Theta} \otimes B_{1}^{\prime}\right) \otimes\left(I_{\Omega} \otimes I_{\Omega^{\prime}}\right) ;$
- $\left(I_{\Theta} \otimes B_{1}^{\prime}\right) \otimes\left(I_{\Omega} \otimes A_{1}^{\prime}\right) ;$
- $\left(I_{\Theta} \otimes B_{1}^{\prime}\right) \otimes\left(A_{1} \otimes J_{\Omega^{\prime}}\right) ;$
- $\left(B_{1} \otimes J_{\Theta^{\prime}}\right) \otimes\left(I_{\Omega} \otimes I_{\Omega^{\prime}}\right) ;$
- $\left(B_{1} \otimes J_{\Theta^{\prime}}\right) \otimes\left(I_{\Omega} \otimes A_{1}^{\prime}\right) ;$
- $\left(B_{1} \otimes J_{\Theta^{\prime}}\right) \otimes\left(A_{1} \otimes J_{\Omega^{\prime}}\right)$.

These products have also another interpretation from the orthogonal block structures point of view.

Remark 12.1.
A ultrametric space has in a natural way an orthogonal block structure: if we fix a level of the tree, this level induces a partition in spheres. Considering this partition in spheres for each level, we get an orthogonal block structure.

Take now two rooted trees of depth 2 with branch indices (m, n) and (p, q), respectively. Consider the corresponding orthogonal block structures: each block consists of three partitions with sizes $1, n, m n$ and $1, q, p q$, respectively. We denote these partitions by F_{0}, F_{1}, F_{2} for the first tree and by G_{0}, G_{1}, G_{2} for the second tree. So the relation matrices in the case of the first tree are

- $R_{0}=I_{m} \otimes I_{n}$;
- $R_{1}=I_{m} \otimes J_{n}$;
- $R_{2}=J_{m} \otimes J_{n}$
and in the case of the second tree are
- $S_{0}=I_{p} \otimes I_{q}$;
- $S_{1}=I_{p} \otimes J_{q}$;
- $S_{2}=J_{p} \otimes J_{q}$.

The corresponding association schemes that we can get considering the matrices A_{F} defined above are Q, with adjacency matrices

- $A_{0}=I_{m} \otimes I_{n} ;$
- $A_{1}=I_{m} \otimes\left(J_{n}-I_{n}\right)$;
- $A_{2}=\left(J_{m}-I_{m}\right) \otimes J_{n}$
and Q^{\prime}, with adjacency matrices
- $A_{0}^{\prime}=I_{p} \otimes I_{q} ;$
- $A_{1}^{\prime}=I_{p} \otimes\left(J_{q}-I_{q}\right)$;
- $A_{2}^{\prime}=\left(J_{p}-I_{p}\right) \otimes J_{q}$.

So we can observe that the association scheme Q is just the scheme $\underline{\underline{m}} / \underline{\underline{n}}$ and the association scheme Q^{\prime} is just the scheme $\underline{\underline{p}} / \underline{\underline{q}}$. We can do the crested product of these schemes with respect to the possible inherent partitions, whose relation matrices are R_{0} or S_{0} in the case of the equality partition, then R_{1} or S_{1} and finally R_{2} or S_{2} in the case of the universal partition.

We can also do the crested product of orthogonal block structures and then we can associate to the block obtained a new association scheme by using the matrices A_{F}. Actually, we can show that the operation of deriving the association scheme from the orthogonal block structure commutes with cresting. Let us verify it in all cases.

The relation matrices of the block obtained by the crest product with respect to the partition F_{1} and G_{1} are

- $R_{0} \otimes S_{0}$, with associated adjacency matrix $A_{0,0}=I_{m} \otimes I_{n} \otimes$ $I_{p} \otimes I_{q} ;$
- $R_{0} \otimes S_{1}$, with $A_{0,1}=I_{m} \otimes I_{n} \otimes I_{p} \otimes\left(J_{q}-I_{q}\right)$;
- $R_{0} \otimes S_{2}$, with $A_{0,2}=I_{m} \otimes I_{n} \otimes\left(J_{p}-I_{p}\right) \otimes J_{q}$;
- $R_{1} \otimes S_{0}$, with $A_{1,0}=I_{m} \otimes\left(J_{n}-I_{n}\right) \otimes I_{p} \otimes I_{q}$;
- $R_{1} \otimes S_{1}$, with $A_{1,1}=I_{m} \otimes\left(J_{n}-I_{n}\right) \otimes I_{p} \otimes\left(J_{q}-I_{q}\right)$;
- $R_{1} \otimes S_{2}$, with $A_{1,2}=I_{m} \otimes\left(J_{n}-I_{n}\right) \otimes\left(J_{p}-I_{p}\right) \otimes J_{q} ;$
- $R_{2} \otimes S_{1}$, with $A_{2,1}=\left(J_{m}-I_{m}\right) \otimes J_{n} \otimes I_{p} \otimes J_{q}$;
- $R_{2} \otimes S_{2}$, with $A_{2,2}=\left(J_{m}-I_{m}\right) \otimes J_{n} \otimes\left(J_{p}-I_{p}\right) \otimes J_{q}$
and these matrices $A_{i, j}$'s are just the adjacency matrices of the association scheme obtained by the crested product of the association schemes Q and Q^{\prime} by choosing the partitions F_{1} and G_{1} as inherent partitions, respectively.

The relation matrices of the block obtained with the crest product with respect to the partition F_{1} and G_{2} are

- $R_{0} \otimes S_{0}$, with associated adjacency matrix $A_{0,0}=I_{m} \otimes I_{n} \otimes$ $I_{p} \otimes I_{q} ;$
- $R_{0} \otimes S_{1}$, with $A_{0,1}=I_{m} \otimes I_{n} \otimes I_{p} \otimes\left(J_{q}-I_{q}\right)$;
- $R_{0} \otimes S_{2}$, with $A_{0,2}=I_{m} \otimes I_{n} \otimes\left(J_{p}-I_{p}\right) \otimes J_{q}$;
- $R_{1} \otimes S_{0}$, with $A_{1,0}=I_{m} \otimes\left(J_{n}-I_{n}\right) \otimes I_{p} \otimes I_{q} ;$
- $R_{1} \otimes S_{1}$, with $A_{1,1}=I_{m} \otimes\left(J_{n}-I_{n}\right) \otimes I_{p} \otimes\left(J_{q}-I_{q}\right)$;
- $R_{1} \otimes S_{2}$, with $A_{1,2}=I_{m} \otimes\left(J_{n}-I_{n}\right) \otimes\left(J_{p}-I_{p}\right) \otimes J_{q} ;$
- $R_{2} \otimes S_{2}$, with $A_{2,2}=\left(J_{m}-I_{m}\right) \otimes J_{n} \otimes J_{p} \otimes J_{q}$
and these matrices $A_{i, j}$'s are just the adjacency matrices of the association scheme obtained by the crested product of the association schemes Q and Q^{\prime} by choosing the partitions F_{1} and G_{2} as inherent partitions, respectively.

The relation matrices of the block obtained with the crest product with respect to the partition F_{0} and G_{1} are

- $R_{0} \otimes S_{0}$, with associated adjacency matrix $A_{0,0}=I_{m} \otimes I_{n} \otimes$ $I_{p} \otimes I_{q} ;$
- $R_{0} \otimes S_{1}$, with $A_{0,1}=I_{m} \otimes I_{n} \otimes I_{p} \otimes\left(J_{q}-I_{q}\right)$;
- $R_{0} \otimes S_{2}$, with $A_{0,2}=I_{m} \otimes I_{n} \otimes\left(J_{p}-I_{p}\right) \otimes J_{q}$;
- $R_{1} \otimes S_{1}$, with $A_{1,1}=I_{m} \otimes\left(J_{n}-I_{n}\right) \otimes I_{p} \otimes J_{q}$;
- $R_{2} \otimes S_{1}$, with $A_{2,1}=\left(J_{m}-I_{m}\right) \otimes J_{n} \otimes I_{p} \otimes J_{q}$
- $R_{1} \otimes S_{2}$, with $A_{1,2}=I_{m} \otimes\left(J_{n}-I_{n}\right) \otimes\left(J_{p}-I_{p}\right) \otimes J_{q}$;
- $R_{2} \otimes S_{2}$, with $A_{2,2}=\left(J_{m}-I_{m}\right) \otimes J_{n} \otimes\left(J_{p}-I_{p}\right) \otimes J_{q}$
and these matrices $A_{i, j}$'s are just the adjacency matrices of the association scheme obtained by the crested product of the association schemes Q and Q^{\prime} by choosing the partitions F_{0} and G_{1} as inherent partitions, respectively.

The same result can be obtained by considering the crossed product and the nested product.

In fact, the relation matrices of the block obtained with the crest product with respect to the partition F_{0} and G_{2} are

- $R_{0} \otimes S_{0}$, with associated adjacency matrix $A_{0,0}=I_{m} \otimes I_{n} \otimes$ $I_{p} \otimes I_{q} ;$
- $R_{0} \otimes S_{1}$, with $A_{0,1}=I_{m} \otimes I_{n} \otimes I_{p} \otimes\left(J_{q}-I_{q}\right)$;
- $R_{0} \otimes S_{2}$, with $A_{0,2}=I_{m} \otimes I_{n} \otimes\left(J_{p}-I_{p}\right) \otimes J_{q} ;$
- $R_{1} \otimes S_{2}$, with $A_{1,2}=I_{m} \otimes\left(J_{n}-I_{n}\right) \otimes J_{p} \otimes J_{q}$;
- $R_{2} \otimes S_{2}$, with $A_{2,2}=\left(J_{m}-I_{m}\right) \otimes J_{n} \otimes J_{p} \otimes J_{q}$
and these matrices $A_{i, j}$'s are just the adjacency matrices of the association scheme obtained by the crested product of the association schemes Q and Q^{\prime} by choosing the partitions F_{0} and G_{2} as inherent partitions, respectively. The remaining choices for the partitions give rise to the crossed product. The relation matrices of the block obtained with the crossed product are
- $R_{0} \otimes S_{0}$, with associated adjacency matrix $A_{0,0}=I_{m} \otimes I_{n} \otimes$ $I_{p} \otimes I_{q} ;$
- $R_{0} \otimes S_{1}$, with $A_{0,1}=I_{m} \otimes I_{n} \otimes I_{p} \otimes\left(J_{q}-I_{q}\right) ;$
- $R_{0} \otimes S_{2}$, with $A_{0,2}=I_{m} \otimes I_{n} \otimes\left(J_{p}-I_{p}\right) \otimes J_{q}$;
- $R_{1} \otimes S_{0}$, with $A_{1,0}=I_{m} \otimes\left(J_{n}-I_{n}\right) \otimes I_{p} \otimes I_{q}$;
- $R_{1} \otimes S_{1}$, with $A_{1,1}=I_{m} \otimes\left(J_{n}-I_{n}\right) \otimes I_{p} \otimes\left(J_{q}-I_{q}\right)$;
- $R_{1} \otimes S_{2}$, with $A_{1,2}=I_{m} \otimes\left(J_{n}-I_{n}\right) \otimes\left(J_{p}-I_{p}\right) \otimes J_{q}$;
- $R_{2} \otimes S_{0}$, with $A_{2,0}=\left(J_{m}-I_{m}\right) \otimes J_{n} \otimes I_{p} \otimes I_{q}$;
- $R_{2} \otimes S_{1}$, with $A_{2,1}=\left(J_{m}-I_{m}\right) \otimes J_{n} \otimes I_{p} \otimes\left(J_{q}-I_{q}\right)$;
- $R_{2} \otimes S_{2}$, with $A_{2,2}=\left(J_{m}-I_{m}\right) \otimes J_{n} \otimes\left(J_{p}-I_{p}\right) \otimes J_{q}$.

The interesting fact is that the nested product of the two original blocks gives an orthogonal block structure on a set with mnpq elements, which is exactly the block of spherical partitions of the fourth level of the rooted tree of depth 4 and branch indices (m, n, p, q). The remaining crested product give other orthogonal block structures corresponding to different partitions which are not induced by the spheres of the trees.

Bibliography

[AlDi] D. Aldous and P. Diaconis, Shuffling cards and stopping times, Amer. Math. Monthly, 93, (1986), 333-348.
[AlFi] D. Aldous and J. Fill, Reversible Markov Chains and Random Walk on Graphs, in preparation (http://statwww.berkeley.edu/users/aldous/RWG/book.html).
[Bai] R. A. Bailey, Association Schemes, Designed Experiments, Algebra and Combinatorics, Cambridge Stud. Adv. Math., vol. 84, Cambridge Univ. Press, 2004.
[BaCa] R. A. Bailey and P. J. Cameron, Crested product of association schemes, J. London Math. Soc., no. 72, (2005), 1-24.
[B\&al] R. A. Bailey, Cheryl E. Praeger, C. A. Rowley and T. P. Speed, Generalized wreath products of permutation groups. Proc. London Math. Soc. (3), 47 (1983), 69-82.
[BG1] L. Bartholdi and R.I. Grigorchuk, On the spectrum of Hecke type operators related to some fractal groups. Trudy Mat. Inst. Steklov 231 (2000), 5-45.
[BG2] L. Bartholdi and R.I. Grigorchuk, On parabolic subgroups and Hecke algebras of some fractal groups. Serdica Math. J. 28 (2002), 47-90.
[BGN] L. Bartholdi, R.I. Grigorchuk and V. Nekrashevych, From fractal groups to fractal sets. In Fractals in Graz, 2001, Trends Math., Birkhäuser, Basel (2003), 25-118.
[BGŠ] L. Bartholdi, R. Grigorchuk and Z. Šunić, Branch groups. In Handbook of algebra, Vol. 3, 989-1112. North-Holland, Amsterdam, 2003.
[BaŠu] L. Bartholdi and Z. Šunić, Some solvable automaton groups, in Topological and asymptotic aspects of group theory, Contemp. Math., 394, (2006), 1130.
[BaVi] L. Bartholdi and B. Virág, Amenability via random walks. Duke Math Journal. 130 (2005), no. 1, 39-56.
[BaSo] G. Baumslag and D. Solitar, Some two-generator, one relator non-Hopfian groups, Bull. Amer. Math. Soc., 68, (1962), 199-201.
[BHG] M. B. Bekka and P. de la Harpe, Irreducibility of unitary group representations and reproducing kernels Hilbert spaces. Appendix by the authors in collaboration with R.I. Grigorchuk Expo. Math. 21 (2003), no. 2, 115-149.
[BuPe] K.-U. Bux and R. Pérez, On the growth of iterated monodromy groups, accepted in Proceedings of AMS Conference: probabilistic and asymptotic aspects of group theory.
[CST1] T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli, Finite Gelfand pairs and their applications to probability and statistics, J. Math. Sci. N. Y., 141 (2007) no. 2, 1182-1229.
[CST2] T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli, Harmonic Analysis on Finite Groups: Representation Theory, Gelfand Pairs and Markov Chains, Cambridge Studies in Advanced Mathematics, Cambridge University Press, to appear.
[CST3] T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli, Trees, wreath products and finite Gelfand pairs, Advances in Mathematics, no. 206, 2006, 503-537.
[DD1] D. D'Angeli and A. Donno, Self-similar groups and finite Gelfand pairs, to appear in Algebra and Discrete Mathematics.
[DD2] D. D'Angeli and A. Donno, Markov chains in orthogonal block structures, submitted to J. London Math. Soc.
[DD3] D. D'Angeli and A. Donno, Crested products of Markov chains, sumitted to Ann. of Appl. Prob.
[DD4] D. D'Angeli and A. Donno, No cut-off phenomenon for the Insect Markov chains, submitted to Monatshefte Math.
[Del1] Ph. Delsarte, An algebaric approach to the association schemes of coding theory, Philips Res. Rep. Suppl. 10 (1973). Available at:http://users.wpi.edu/~martin/RESEARCH/philips.pdf
[Del2] Ph. Delsarte, Hahn polynomials, discrete harmonics and t-designs, SIAM J. Appl. Math. 34 (1978), 154-166.
[Dia1] P. Diaconis, The cut-off phenomenon in finite Markov chains. Proc. Nacl. Acad. Sci. USA, 93, (1996), 1659-1664.
[Dia2] P. Diaconis, Group Representations in Probability and Statistics, IMS Hayward, CA, 1988.
[DSC1] P. Diaconis and L. Saloff-Coste, Comparison techniques for random walk on finite groups, Ann. Prob., vol. 21, 2131-2156.
[DSC2] P. Diaconis and L. Saloff-Coste, Separation cut-offs for Birth and Death Chains, submitted to Annals of Applied Probability, (2006).
[Dun1] Ch. F. Dunkl. A Krawtchouk polynomial addition theorem and wreath products of symmetric groups,
Indiana Univ. Math. J. 25 (1976), 335-358.
[Dun2] Ch. F. Dunkl, An addition theorem for Hahn polynomials: the spherical functions, SIAM J. Math. Anal. 9 (1978), 627-637.
[Dun4] Ch. F. Dunkl, Orthogonal functions on some permutation groups, Proc. Symp. Pure Math. 34, Amer. Math. Soc., Providence, RI, (1979), 129-147.
[Far] J. Faraut, Analyse Harmonique sur les paires de Gelfand et les espaces hyperboliques, in Analyse harmonique, J.L. Clerc, P. Eymard, J. Faraut, M. Raés, R. Takahasi, Eds. (École d'été d'analyse harmonique, Université de Nancy I, Septembre 15 au Octobre 3, 1980). C.I.M.P.A. V, 1983.
[F-T1] A. Figà-Talamanca, An application of Gelfand pairs to a problem of diffusion in compact ultrametric spaces, in: Topics in Probability and Lie Groups: Boundary Theory, in: CRM Proc. Lecture Notes, vol. 28, Amer. Math. Soc., Providence, RI, 2001, 51-67.
[F-T2] A.Figà-Talamanca, Note del Seminario di Analisi Armonica, a.a. 1992, Università di Roma "La Sapienza".
[Gri1] R. I. Grigorchuk, Symmetrical random walks on discrete groups. Multicomponent random system, Adv. Prob. Related Topics, 6, Dekker New York, (1980), 285-325
[Gri2] R.I. Grigorchuk, Solved and unsolved problems around one group, in Infinite Groups: Geometric, Combinatorial and Dynamical Aspects, L. Bartholdi et al.Eds., 117-218. Progress in Math. 248. Birkäuser 2005.
[GrŠ1] R. Grigorchuk and Z. Šunić, Self-similarity and branching in group theory, accepted in London Mathematical Society Lecture Note Series, 2006.
[GrŠ2] R. Grigorchuk and Z. Šunić, Asymptotic aspects of Schreier graphs and Hanoi Towers groups, accepted in Comptes Rendus Mathématiques, Académie des Sciences Paris, 342 (2006), no. 8, 545-550.
[GSŠ] R. Grigorchuk, D. Savchuk and Z. Šunić, The spectral problem, substitutions and iterated monodromy, submitted.
[GrŻu] R.I. Grigorchuk and A. Żuk, On a torsion-free weakly branch group defined by a three-state automaton. International J. Algebra Comput. 12 (2002), no. 1, 223-246.
[Kai] Vadim A. Kaimanovich, "Münchhausen Trick" and Amenability of Selfsimilar Groups, IJAC 15 (5-6), (2005), 907-938
[Let1] G. Letac, Problemes classiques de probabilité sur un couple de Gelfand in "Analytical problems in probability", Lecture Notes in Math., 861, Springer Verlag, New York, 1981.
[Let2] G. Letac, Les fonctions spheriques d'un couple de Gelfand symmetriqueet les chaines de Markov. Advances Appl. Prob., 14 (1982), 272-294.
[Nek1] V. Nekrashevych, Iterated monodromy groups, preprint.
[Nek2] V. Nekrashevych, Self-Similar Groups. Mathematical Surveys and Monographs, 117. American Math. Soc, 2005.
[SpBa] T. P. Speed and R. A. Bailey, On a class of association schemes derived from lattices of equivalence relations, Algebraic Structures and Applications, (eds. P. Schultz, C. E. Praeger and R. P. Sullivan), (Marcel Dekker, New York, 1982), 55-74.
[Stan] D. Stanton, Harmonics on Posets, J. Comb. Theory Ser. A 40 (1985), 136149.

