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Introduction

This thesis concerns with essentially various and different aspects
linked to the general and huge theory of the finite Gelfand Pairs.

More precisely we will explore this theory from different points of
view: the algebraic approach enriched by the introduction of the class
of self-similar groups acting on trees that show very interesting and
surprising properties, the probabilistic approach suggested by the in-
troduction of some particular Markov chains and the combinatoric ap-
proach linked mainly to the classical theory of the association schemes
and to the introduction of poset block structures on which the gener-
alized wreath products act.

The theory of the Gelfand pairs has found fundamental relations
with many mathematical fields as group theory, representation theory,
harmonic analysis, coding theory, combinatorics, the theory of special
functions, probability and statistics.

Clearly, there exists also a very huge literature about Gelfan Pairs
theory (finite and infinite). We can mention among them the works by
Ceccherini-Silberstein, Tolli and Scarabotti [CST1, CST2] for general
settings, Letac [Let1, Let2], Delsarte [Del1, Del2] with an approach
also to coding theory , Dunkl [Dun1, Dun2, Dun4] using special and
orthogonal functions, Faraut [Far] for the infinite case, Figà-Talamanca
[F-T2, F-T1] linked to Markov chains, Stanton [Stan] and the pio-
neering book by Diaconis [Dia2] that associates the theory to proba-
bilistic and statistical themes.

After a brief introduction in which general settings of the theory
are discussed the thesis proposes to approach some topics to which the
Gelfand pairs theory can be applied: the theory of self-similar groups
and the Markov chains theory.

This frame contains as integrated part the theory of the association
schemes that are strictly linked to Gelfand pairs and to which we have
dedicated a small Appendix (see also [Bai] for mare details).

Given a group G (that in this thesis we suppose finite) and a sub-
groupK, we denote L(K\G/K) the space of the bi−K−invariant func-
tions which has a structure of algebra with respect to the operation of
convolution. We will say that (G,K) is a Gelfand pair, if L(K\G/K)
is commutative. Equivalently if one considers the homogeneous space
X = G/K and the action of G on the space of functions on X (denoted
L(X)) defined as follows: gf(x) := f(g−1x) for every x ∈ X, g ∈ G and
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4 INTRODUCTION

f ∈ L(X) we get a representation of G in L(X) (the regular representa-
tion λG). This will admit a decomposition into irreducible submodules,
then (G,K) is a Gelfand pair if this decomposition is multiplicity free
(i.e. if Vi and Vj are two distinct irreducible subspaces of L(X) under
the action of G then Vi is not isomorphic to Vj). Each module contains
a special function, the spherical function that is an eigenvalue of the
action by convolution. The set of all spherical functions (whose num-
ber equals the number of irreducible submodules) constitutes a basis
for the space of K−invariant functions.

A special case of Gelfand pairs is the case of symmetric Gelfand
pairs. This is the case when for each g ∈ G the inverse g−1 belongs
to the double K−cosets KgK. This yields many examples of Gelfand
pairs, also in the case that X has a metric structure. In effect, we get a
symmetric Gelfand pair when the action of G on X is 2-points homoge-
neous, namely any two pairs of points in X with same distance can be
overlapped by the action of G. This criterion allows to treat the case of
the action of the full automorphism group of a rooted tree Aut(Tn) on
the n−th level Ln (= Aut(Tn)/K, where K is the stabilizer of a fixed
vertex belonging to the n−th level), that presents the structure of an
ultrametric space. In effect the richness of the automorphism that such
a group presents, produces an action 2-points homogeneous on Ln (see
for example [CST2] Cap. 7).

The first idea developed in this thesis is to see if this construction
can be generalized to some families of finitely generated, non dense
discrete subgroups of Aut(T ).

R. I. Grigorchuk in [BHG] has proven an analogous result for is
celebrated group, looking to the action restricted to each level of the
binary rooted tree (see, for example [Gri1] and [Gri2]), showing, in
particular, that the parabolic subgroup K acts transitively on each
sphere around the fixed vertex in Ln. For an approach to the infinite
case for groups acting on trees (the action on the bound ∂T of the tree)
see [BG2] and [BG1].

We have given the same results ([DD1]) for three interesting ex-
amples of self-similar groups: the Basilica group, introduced by Grig-
orchuk and Żuk in [GrŻu], the Hanoi Tower Group introduced with a
self-similar presentation by Grigorchuk and Šunik in [GrŠ1] and the
group IMG(z2 + i) introduced by Grigorchuk, Savchuk and Šunik in
[GSŠ].

These groups have the important property to be Iterated Mon-
odromy Group of complex valued functions. This relation has led to
many spectacular results due to V. Nekrashevych and linked to the
theory of dynamical systems, Julia sets and limit spaces (see [Nek2]
and [BGN]).

For two of these groups we have found a non standard proof of the
fact that they give rise to Gelfand pairs, namely that the rigid vertex
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stabilizer of the vertices of the first level (i.e. the set of the automor-
phisms acting non trivially only on the subtree rooted in a vertex)
acts transitively on the respective subtrees. This yields a proof ana-
logue to that given in the case of Aut(Tn) and for Grigorchuk group,
for example, does not work. Moreover the decomposition into irre-
ducible submodules given by the action of these groups on L(Ln) is
the same that the decomposition gotten by Aut(Tn) (easy consequence
of Wielandt Lemma). These groups have the property of being weakly
branch. Can be this result true for every weakly branch group?

The decomposition obtained is constituted by irreducible modules
that are the eigenspaces of a particular Markov operator on L(Ln)
associated with a Markov chain on Ln introduced by Figà-Talamanca
called Insect (see [F-T1]). Each state of this chain is given when an
insect starting from the leftmost vertex of Ln (by homogeneity this is
not important) and moving a simple random walk on the tree reaches
again the level Ln. Effectively this Markov chain is invariant under
the action of Aut(Tn) and this fact produces the correspondence of the
subspaces.

In this thesis we have shown that in this Markov chain does not
appear the cut-off phenomenon (see [Dia1] and [DD4]), this means
that the distance of the probability measure associated with the Insect
Markov chain from the stationary distribution does not decay in an
exponentially fast way.

On the other hand, we have generalized this Markov chain to some
more general and complicate structures, namely the poset and the or-
thogonal block structures.

This structures constitute a generalization of the tree, i.e. given
a poset (I,≤), we can associate to it a combinatoric structure and a
relative group of automorphisms. In the case of the tree the poset
I becomes a vertical line and the associated automorphisms group is
naturally given by the wreath product of symmetric groups.

In the general case the mentioned group has a more complicate
form, something that is between the direct product and the wreath
product. This group is the generalized wreath product F introduced
by R. A. Bailey, Cheryl E. Praeger, C. A. Rowley and T. P. Speed in
[B&al].

These groups act on the space of functions given by the product
of finite spaces indexed by the vertices of the poset I. This space is
the homogeneous space obtained by considering the action of the whole
group F and a relative subgroup K fixing a singleton.

The pair (F,K) is effectively a Gelfand pair. This result can be
directly proven by [B&al], but we have used a more general method,
valid in a more general context. The Markov chain that generalizes
the Insect can be defined in structures that are not linked to group
theory (the orthogonal blocks) but in the case of the action of F (the
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poset blocks) we have the correspondence of the relative irreducible
submodules and eigenspaces (see [DD2]).

We have already said that a Gelfand pair (G,K) produces a de-
composition in irreducible submodules given by the action of G on the
space of function L(G/K).

The last part of the third chapter moves completely from an alge-
braic to a probabilistic point of view. The decompositions of the permu-
tation representation λG can be totally derived using particular convex
combinations of Markov chains on finite sets. Starting from the case of
the direct and wreath products we can construct Markov chains which
are the crossed and nested products of single Markov chains whose
decompositions are the same of those given by the groups (the termi-
nology comes from association schemes, that showing an combinatorial
analog of this situation).

Generalizing this construction, for any partition {1, 2, . . . , n} = Ct
N and any Markov chain Pi on a finite space Xi, with i ∈ {1, 2, . . . , n}
we can define a new Markov chain on the product X = X1 × · · · ×Xn

whose behaviour is crossed for the indices belonging to C and nested
for the indices belonging to N . First crested product is the name that
we have given to this intermediate Markov chain P (see [DD3]). The
name has been inspired by a similar product introduced in [BaCa] for
association schemes.

We have given an explicit description of the eigenspaces and the
eigenvalues of P . For example, choosing {1, 2, . . . , n} = N and every
Pi the uniform operator (every element in Xi can be reached in one
step with same probability) gets the Insect Markov chain.

Many topics that we have treated concern with the study of a rooted
tree with some branching indices.

The idea developed in the last section of chapter 3, has been inspired
by the work by Ceccherini-Silberstein, Scarabotti and Tolli [CST3]:
every vertex in the n−th level of a rooted tree can be regarded as
a subtree with branching indices equal to 1 inside the whole tree T .
Then one can consider, in general, the variety V(r, s) of the subtrees
with branching indices r = (r1, . . . , rn) inside a tree with branching
indices s = (s1, . . . , sn), where ri ≤ si for each i = 1, . . . , n. This
space is the quotient of the group Aut(Tn) on the stabilizer K(r, s)
of a particular substructure. It is known that (Aut(Tn), K(r, s)) is a
Gelfand pair and the irreducible submodules and the relative spherical
functions are given (see [CST3]). Our starting point has been the
following question: can we deduce the analogous decomposition using
as before only Markov chains? That is what we have proved in a more
general contest in which for the space we can forget the ultrametric
structure.

Generalizing more and more, there exists an analogous construction
in poset block structures (with the tree as particular case). Do they
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give rise to Gelfand pairs? What is the decomposition associated? And
what are the relative spherical functions?

To the first question we have given a positive answer, the others
are still open.

The thesis is structured in the following order.

The first chapter constitutes a sort of survey to the general theory,
where some basic theorems and fundamental tools occurring many
times in the following are introduced. In Section 6 we present the
Gelfand Pairs associated with the full automorphism group of the
q−ary rooted tree of depth n and the stabilizer of a single leaf, namely
(Aut(Tn), K).

The second chapter gives an overview of the groups acting on rooted
trees, and shows that one can get Gelfand pairs by considering particu-
lar (and well known in literature) examples of Aut(T ), whose action is
restricted to finite levels. On the other hand, sections 4 and 5 introduce
a generalization of the standard crossed and wreath products (the last
one corresponds to Aut(Tn)), the generalized wreath product linked to
more complicated structure (poset blocks). Also in this case we show
that we get Gelfand pairs.

The third chapter studies the so called Insect and shows that what
we have obtained by using group actions can be derived from Markov
chains. Here we define a very general Markov chain on some combina-
toric structures called orthogonal blocks. Section 5 reflects essentially
the article [DD3].





CHAPTER 1

Gelfand pairs

In this chapter we introduce the general theory of finite Gelfand
pairs. More precisely we give the classical definition and a characteri-
zation in terms of representation theory. Spherical functions and their
interesting properties will be investigated. When it will not be specified
G will denote a finite group. The source is [CST2].

1. First definitions

Let G be a finite group and K ≤ G a subgroup, denote X = G/K
the corresponding homogeneous space constituted by the right cosets
of K in G. Then G acts on X as follows: given g ∈ G and hK ∈ X,
g ·hK = ghK, i.e. G acts by left translation on X. Equivalently, if X is
a finite space on which G acts transitively and x ∈ X is a fixed element,
then we can naturally identify X with the quotient group G/K, where
K = StabG(x) is the subgroup of G that stabilizes the element x, via
the map g → gx.

We set L(G) = {f : G→ C} the vector space of the complex func-
tions defined on G. Actually this space has a richer structure, in fact
it is an algebra with respect the following operation ∗ of convolution:
if f1, f2 ∈ L(G) then

f1 ∗ f2(g) =
∑

h∈G
f1(gh)f2(h

−1).

We denote L(X) = L(G/K) the set of functions defined on X (i.e.
K−invariant on the right) and L(K\G/K) the set of functions defined
on G that are bi-K−invariant, i.e.
L(K\G/K) = {f ∈ L(G) : f(kgk′) = f(g) ∀g ∈ G and ∀k, k′ ∈ K}.

Both L(X) and L(K\G/K) are algebras with the convolution ∗.
Definition 1.1. Let G be a finite group and K ≤ G. The pair

(G,K) is a Gelfand pair if the algebra L(K\G/K) is commutative
with respect to the operation of convolution.

The following lemma is very easy.

Lemma 1.2. If G is commutative and K ≤ G, then (G,K) is a
Gelfand pair.

9



10 1. GELFAND PAIRS

Proof. By definition

f1 ∗ f2(g) =
∑

h∈G
f1(gh)f2(h

−1) =

=
∑

h∈G
f1(gh)f2(gh

−1g−1) =

=
∑

t∈G
f1(t

−1)f2(gt) =

=
∑

t∈G
f2(gt)f1(t

−1) = f2 ∗ f1(g).

�
Suppose that for each g ∈ G we get g−1 ∈ KgK, then for any

f ∈ L(K\G/K) one has f(g−1) = f(g) and

f1 ∗ f2(g) =
∑

h∈G
f1(gh)f2(h

−1) =

=
∑

h∈G
f1(gh)f2(h) =

=
∑

t∈G
f1(t)f2(g

−1t) =

=
∑

t∈G
f2(g

−1t)f1(t) =

=
∑

t∈G
f2(g

−1t)f1(t
−1) =

= f2 ∗ f1(g−1) = f2 ∗ f1(g),
that implies the commutativity of the algebra L(K\G/K).

Definition 1.3. Let G be a finite group and K ≤ G such that for
any g ∈ G one has g−1 ∈ KgK, then the Gelfand pair (G,K) is called
symmetric Gelfand pair.

The following lemma will give an interesting characterization of
symmetric Gelfand pairs, this will be useful later. Observe that G acts
on the space X ×X by diagonal action (i.e. g · (x, y) = (gx, gy) for all
x, y ∈ X and g ∈ G).

Lemma 1.4 (Gelfand Condition). Let X ' G/K be a finite space
with a transitive action of G and K = StabG(x0), where x0 ∈ X. The
pair (G,K) is a symmetric Gelfand pair if and only if for all x, y ∈ X
there exists g ∈ G such that g(x, y) = (y, x).

Proof. We use the notation (x, y) ∼ (y, x) for g(x, y) = (y, x). If
(G,K) is symmetric, let t, s ∈ G such that x = tx0 and y = tsx0 and
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let k1, k2 ∈ K such that s−1 = k1sk2. Then

(x, y) = t(x0, t
−1y) ∼ (x0, t

−1y) = (x0, sx0).

Moreover

(x, y) = s(s−1x0, x0) ∼ (s−1x0, x0) = (k1sk2x0, x0).

But k1, k2 ∈ K, so

(k1sk2x0, x0) = k1(sx0, x0) ∼ (sx0, x0) = (t−1y, x0) ∼ (y, x).

On the other hand, as (x0, g
−1x0) ∼ (x0, gx0) there exists k ∈ G

such that k(x0, g
−1x0) = (x0, gx0). I.e. kx0 = x = 0 and kg−1x0 = gx0.

This implies k ∈ K and g−1kg−1 ∈ K. �
Example 1.5.

LetG be a finite group acting by isometries on a metric space (X, d).
The action of G is said 2-points homogeneous if for all x1, x2, y1, y2 ∈ X
such that d(x1, x2) = d(y1, y2) there exists g ∈ G such that g(x1, x2) =
(y1, y2). Then, if the action of G on a metric space (X, d) is 2-points
homogeneous and K = StabG(x0), with x0 ∈ X fixed, (G,K) is a
symmetric Gelfand pair. In this case it easy to show that the K−orbits
of K on X are the spheres of center x0 and a function f ∈ L(X) is
K−invariant (i.e. bi−K−invariant) if and only if it is constant on the
spheres.

2. Decomposition of the space L(X)

We have already introduced the space L(X) of the complex func-
tions on X. This space (as well as L(G)) is an Hilbert space with
respect to the inner product 〈 , 〉 defined by setting, for every f1, f2 ∈
L(X):

〈f1, f2〉 =
∑

x∈X
f1(x)f2(x).

This space is so endowed by the usual metric ‖ · ‖2. The group G
acts on the space L(X) as follows: if f ∈ L(X) and g ∈ G, we set
g · f(x) = f(g−1x). It is easy to verify that this is effectively an action.
One can ask what is the decomposition into irreducible submodules
of this representation. The answer will give a characterization of the
Gelfand pairs in terms of representation of groups theory.

First of all we want to recall the following celebrate lemma

Lemma 2.1 (Schur). Let U and V irreducible representations of a
group G. Then the space HomG(U, V ) of the homomorphisms G−invariant
intertwining U and V is trivial if U is not equivalent to V and is Cu
if U is equivalent to V by the homomorphism u.

The first step connecting representation theory to Gelfand pairs
theory is given by the following proposition
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Proposition 2.2. HomG(L(X), L(X)) ' L(K\G/K).

Proof. Each operator T : L(X) −→ L(X) can be represented
by a matrix (r(x, y))x,y∈X such that Tf(x) =

∑
x∈X r(x, y)f(y). The

G−invariance of T implies that r(gx, gy) = r(x, y) for every g ∈ G.
If x0 is the point stabilized by K, there exist g, h ∈ G such that x =
gx0 and y = hx0. Set z = h−1gx0 ∈ X, we note that z = z(x, y)
is well defined modulo its K−orbit. In fact it is easy to verify that
z ∈ Kh−1gx0. Called %(z) = r(x, y), % is K−invariant. Moreover

Tf(x) =
1

|K|
∑

h∈G
r(x, hx0)f(hx0) =

=
1

|K|
∑

h∈G
r(h−1gx0, x0)f(hx0) =

=
1

|K|
∑

h∈G
%(h−1gx0)f(hx0).

Then the correspondence is given by % ←→ (r(x, y))x.y∈X that is
algebra homomorphism. �

This allows us to give an analogous definition of Gelfand pairs in
terms of the representation of the group G onto the space L(X).

Theorem 2.3. Let G be a finite group, K ≤ G and X = G/K.
Suppose that L(X) = ⊕n

i=1Vi is the decomposition of the space into
irreducible submodules under the action of G. Then Vi � Vj for i 6= j
(multiplicity free) if and only if (G,K) is a Gelfand pair.

Proof. From Proposition 2.2 we have to show the commutativity
of the algebra HomG(L(X), L(X)). But in this case Schur’s Lemma
implies that an homomorphism T that is G−invariant has the form
T = ⊕n

i=1Ti, where Ti = ciIdVi
. This gives the assertion. �

The previous criterion is very useful for studying Gelfand pairs.
For each representation V of the group G, denote V K = {v ∈ V :

k · v = v} the space of K−invariant vectors in V .

Proposition 2.4. HomG(V, L(X)) ' HomK(V,C) ' V K.

Proof. It suffices, for the first isomorphism, to define an oper-
ator Θ : HomG(V, L(X)) −→ HomK(V,C) as Θ(T )(v) = T (v)(x0),
where x0 is the point stabilized by K. For the second one set Υ :
HomK(V,C) −→ V K such that Υ(S) = v0 where, S(v) = 〈v, v0〉 for
every v ∈ V . �
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We have a new characterization.

Theorem 2.5. (G,K) is a Gelfand pairs if and only if, given an
irreducible representation V of G, dim(V K) ≤ 1.

Proof. (G,K) is a Gelfand pair if and only if L(X) has a multiplic-
ity free decomposition. Now HomG(V, L(X)) ' V K is the multiplicity
of the representation V in L(X). �

3. Spherical functions

In this section we want to study some particular bi−K−invariant
functions called spherical functions.

Definition 3.1. A spherical function φ is a bi−K−invariant func-
tion satisfying

• f ∗ φ = [(φ ∗ f)(1G)]φ for every f ∈ L(K\G/K);
• φ(1G) = 1.

It is clear from definition that the constant function φ ≡ 1 on G is
spherical. Actually, the number of the spherical functions is the number
of the irreducible representations in the decomposition of the space
L(X) under the action of G. More precisely there exists a spherical
functions in each of such a space.

Suppose to have different spherical functions, the following lemma
specifies their mutual properties.

Lemma 3.2. Let φ and ϕ two distinct spherical functions. Then

(1) φ(g−1) = φ(g) for all g ∈ G;
(2) 〈φ, ϕ〉 = 0;

Proof.

(1) Set φ∗(g) = φ(g−1) and observe that φ∗ ∗ φ = φ∗ ∗ φ(1G)φ =

‖φ‖22φ. Since φ∗ ∗ φ(g−1) = φ∗ ∗ φ(g) we get the thesis.
(2) φ ∗ϕ(g) = φ ∗ϕ(1G)φ(g). On the other hand it must be equal

to ϕ ∗ φ(g) = ϕ ∗ φ(1G)ϕ(g). This implies the equality of the
coefficients that must be trivial, that implies the ortogonality.
�

The following property will be useful later.

Proposition 3.3. A bi−K−invariant non trivial function is spher-
ical if and only if

1

|K|
∑

k∈K
φ(gkh) = φ(g)φ(h),(1)

for all g, h ∈ G.



14 1. GELFAND PAIRS

Proof. Suppose that (1) is satisfied by a function φ. First of all
φ(1G) = 1 as one can verify taking h = 1. Moreover if f ∈ L(K\G/K)
and k ∈ K

φ ∗ f(g) =
∑

h∈G
φ(gh)f(h−1) =

=
∑

h∈G
φ(gh)f(h−1k) =

=
∑

t∈G
φ(gkt)f(t−1) =

=
1

|K|
∑

t∈G

∑

k∈K
φ(gkt)f(t−1) =

= φ(g)
∑

t∈G
φ(t)f(t−1) =

= (φ ∗ f(1G))φ(g).

Viceversa suppose that φ is a spherical function and g and h ele-
ments of G. Set

Fg(h) =
∑

k∈K
φ(gkh).

Then, if f ∈ L(K\G/K) and g′ ∈ G we have

Fg ∗ f(g′) =
∑

h∈G

∑

k∈K
φ(gkg′h)f(h−1) =

=
∑

k∈K

∑

h∈G
φ(gkg′h)f(h−1) =

=
∑

k∈K
φ ∗ f(gkg′) =

= (φ ∗ f)(1G)
∑

k∈K
φ(gkg′) =

= (φ ∗ f)(1G)Fg(g
′).

Analogously, if

Gg(h) =
∑

k∈K
f(hkg)
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we get

Fg ∗ f(g′) =
∑

h∈G

∑

k∈K
φ(gkg′h)f(h−1) =

=
∑

h∈G

∑

k∈K
φ(gh)f(h−1kg′) =

= φ ∗Gg′(g) =

= φ ∗Gg′(1G)φ(g) =

= |K|(φ ∗ f)(g′)φ(g) =
= |K|(φ ∗ f)(1G)φ(g′)φ(g).

This implies φ∗f(1G) 6= 0 and Fg(g
′) = |K|φ(g′)φ(g), that is the thesis.

�.
Now we can prove the following

Theorem 3.4. Let X = G/K and L(X) = ⊕n
i=0Vi be the decompo-

sition in irreducible submodules. Each Vi contains a spherical function
φi, and coincides with the space spanned by φi.

Proof. The space Vi contains a K−invariant vector vi. Assume
that ‖vi‖2 = 1. Set φ(g) = 〈λ(g)vi, vi〉, where λ is the representation
associated with G. By definition φ(1G) = 1 and so we have to prove
that ∑

k∈K
φ(gkh) = φ(g)φ(h).

We have
∑

k∈K
φ(gkh) =

∑

k∈K
〈λ(gkh)vi, vi〉 =

=
∑

k∈K
〈λ(g)vi, λ(h−1k−1)vi〉 =

= 〈λ(g)vi,
∑

k∈K
λ(h−1k−1)vi〉 =

= 〈λ(g)vi, vi(h)〉.
Since v′i is K−invariant vi(h) = c(h)vi we get

∑

k∈K
φ(gkh) = φ(g)c(h).

Set g = 1g it follows c(h) = φ(h).
We call Si the space spanned by φi under the action of G. Evi-

dently, L(X) ≤ ⊕n
i=0Si. But Si is a sub-representation of L(X) and so

we have the assert. �
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Observe that we can now define a spherical function φ as a function
in L(X) that is K−invariant, belonging to an irreducible G−invariant
subspace and such that φ(x0) = 1.

4. Irreducible submodules

The following fundamental fact is well known

Lemma 4.1 (Wielandt). Let G be a finite group, K ≤ G and X =
G/K the corresponding homogeneous space. If L(X) = ⊕n

i=0miVi is
the decomposition into irreducible submodules and mi the multiplicity
of the representation Vi, then

∑n
i=0m

2
i equals the number of K−orbits

on X.

Corollary 4.2. Suppose G,K and X as before. If L(X) = ⊕m
i=0Vi

and m + 1 is the number of the K−orbits on X, then the Vi’s are
irreducible and (G,K) is a Gelfand pair.

Proof. Considering the decomposition into irreducible submodules
we have m + 1 ≤ ∑n

i=0mi ≤
∑n

i=0m
2
i . Then by Wielandt’s Lemma

m = n and mi = 1 for each i. �

5. The spherical Fourier formula and Garsia theorem

Let φi be the spherical function belonging to Vi and set dimVi = di.

Definition 5.1. The spherical transform Ff of a K−invariant
function in L(X) is the function

(Ff)(i) =
∑

x∈X
f(x)φi(x) = 〈Ff, φi〉.

If one knows the spherical Fourier transform of a function can find
the function by the following inverse formula

f(x) =
1

|X|
n∑

i=0

di(Ff)(i)φi(x).

This notion is connected to the spectral analysis of a G−invariant
operator defined on L(X)

Definition 5.2. Let T : L(X) −→ L(X) be an operator and
T (f) = 1

|K|f
′ ∗ ψ′, where f ′ and ψ′ are the lifting function on G corre-

sponding to f and ψ. Then ψ : X −→ C is called convolution kernel.

Proposition 5.3. Suppose T ∈ Hom(L(X), L(X)) with corre-
sponding convolution kernel ψ. Then Vi is an eigenspace of T with
associated eigenvalue (Fψ)(i).

Proof. From Schur’s Lemma T has Vi as eigenspace, moreover

(Tφi)(gx0) =
1

|K|(φ
′
i∗ψ′)(g) =

1

|K|(φ
′
i∗ψ′)(1G)φ

′
i(g) = (Fψ)(i)φi(gx0).
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�
The spherical Fourier transform allows to characterize symmetric

Gelfand pairs in terms of spherical functions

Theorem 5.4 (Garcia). A Gelfand pair (G,K) is symmetric if and
only if the sparical functions are real valued.

Proof. Let χKgK the characteristic function of the set KgK. Then

F(χKgK)(i)
∑

x∈KgK

φi(x) = |KgK|φi(g).

On the other hand

F(χKg−1K)(i)
∑

x∈Kg−1K

φi(x) = |Kg−1K|φi(g−1) = |KgK|φi(g).

This implies from inversion formula that (G,K) is symmetric (KgK =
Kg−1K for every g ∈ G) if and only if φi is real valued. �

6. The case of the full automorphisms group

In this section we study the group of the automorphisms of a q−ary
rooted tree in relation with the theory of Gelfand pair.

Consider the infinite q−ary rooted tree, i.e. the rooted tree in
which each vertex has q children. We will denote this tree by T . If
X = {0, 1, . . . , q − 1} is an alphabet of q elements, X∗ is the set of all
finite words in X. Moreover, we can identify the set of infinite words
in X with the elements of the boundary of T . Each vertex in the n-th
level Ln of T will be identified with a word of length n in the alphabet
X.
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Fig.1. The ternary rooted tree of depth 3.

The set Ln has a particular metric structure.

Definition 6.1. Let X be a set and d : X × X −→ [0,+∞) a
function. Then (X, d) is an ultrametric space if

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x), for every x, y ∈ X;
(3) d(x, z) ≤ max d(x, y), d(y, z), for every x, y, z ∈ X.

Observe that each ultrametric space is, in particular, a metric space.
The set Ln can be endowed with an ultrametric distance d, defined

in the following way: if x = x0 . . . xn−1 and y = y0 . . . yn−1, then

d(x, y) = n−max{i : xk = yk, ∀k ≤ i}.
We observe that d = d′/2, where d′ denotes the usual geodesic distance.
Moreover it is clear that T is a poset with respect to the relation > of
being ancestor.

Definition 6.2. An automorphism g of T , is a bijection g : T −→
T such that if x > y then g(x) > g(y), for every x, y ∈ T .

The whole group of the automorphisms of T will be denoted by
Aut(T ). From the definition it is clear that Aut(T ) preserves each
level Ln.
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In this way (Ln, d) becomes an ultrametric space on which the au-
tomorphisms group Aut(T ) acts isometrically. Note that the diameter
of (Ln, d) is exactly n.

To indicate the action of an automorphism g ∈ Aut(T ) on a vertex
x, we will use also the notation xg.

Every automorphism g ∈ Aut(T ) can be represented by its labelling.
The labelling of g ∈ Aut(T ) is realized as follows: given a vertex
x = x0 . . . xn−1 ∈ T , we associate with x a permutation gx ∈ Sq giving
the action of g on the children of x. Formally, the action of g on the
vertex labelled by the word x = x0 . . . xn−1 is

xg = x
g∅
0 x

gx0
1 . . . x

gx0...xn−2

n−1 .

The group StabAut(T )(n) denotes the subgroup of the automorphism
fixing all the vertices of the n−th level (and so of the levels Lk, with
k ≤ n). If one considers the action of the full automorphisms group of
the q−ary rooted tree

Aut(Tn) = Aut(T )/StabAut(T )(n)

on Ln one gets, for every n, a 2-points homogeneous action, giving rise
to the symmetric Gelfand pair (Aut(Tn), Kn), withKn = StabAut(Tn)(0

n)
is, as usual, the subgroup stabilizing the vertex 0n. Observe that theKn

orbits coincide, in this case, with the sets Λk = {x ∈ Ln : d(x0, x) = k},
for k = 0, 1, . . . , n, i.e. the spheres of center x0 of ray k.

Theorem 6.3. The action of Aut(Tn) on (Ln, d) is 2-points homo-
geneous.

Proof. We use induction on the depth n of the tree T .
n = 1. The assertion follows from the 2-transitivity of the group Sq.
n > 1. Let (x, y) and (x′, y′) be pairs of vertices in Ln with d(x, y) =

d(x′, y′). If d(x, y) < n, then vertices x and y belong to the same subtree
of T and so x1 = y1. Analogously for x′ and y′. Applying, if necessary,
the transposition (x1x

′
1) ∈ Sq, we can suppose x1 = y1 = x′1 = y′1, so

that x, x′, y and y′ belong to the same subtree of depth less or equal to
n− 1, and then induction works.

Finally, consider the case d(x, y) = d(x′, y′) = n. Consider the
automorphism g ∈ Aut(T ) such that g(x1) = x′1 and g(y1) = y′1 and
which acts trivially on the other vertices of L1. Now we have that x
and x′ belong to the same subtree T ′. Analogously y and y′ belong
to the same subtree T ′′, with T ′ 6= T ′′. The restriction of Aut(Tn) to
T ′ and T ′′ respectively acts transitively on each level. So there is an
automorphism g′ of T ′ carrying x to x′ and acting trivially on T ′′ and
analogously there is an automorphism g′′ of T ′′ carrying y to y′ and
trivial on T ′. The assertion is proved. �



20 1. GELFAND PAIRS

The decomposition of the space L(Ln) under the action of Aut(Tn)
is known.

Denote W0
∼= C the space of the constant functions and for every

j = 1, . . . , n, define the following subspace

Wj = {f ∈ L(Ln) : f = f(x1, . . . , xj),

q−1∑

x=0

f(x1, x2, . . . , xj−1, x) ≡ 0}

of dimension qj−1(q − 1).

Proposition 6.4. The spacesWj’s are Aut(Tn)-invariant, pairwise
orthogonal and the following decomposition holds

L(Ln) =
n⊕

j=0

Wj.

Proof. First of all we prove that if f ∈ Wj then g · f ∈ Wj. In
effect

g · f(x1, . . . , xn) = f(g−1
∅ (x1), . . . , g

−1
x1,...,xn−1

(xn))

and so∑

x∈X
g · f(x1, . . . , xj−1, x) =

∑

x∈X
f(g−1

∅ (x1), . . . , g
−1
x1,...,xj−2

(xj−1), g
−1
x1,...,xj−1

(x)) =

=
∑

y∈X
f(g−1

∅ (x1), . . . , g
−1
x1,...,xj−2

(xj−1), y) = 0.

Let f be in Wj and f
′ in Wj′ , with j < j′.

〈f, f ′〉 =

q−1∑

x1=0

· · ·
q−1∑

xn=0

f(x1, . . . , xn)f ′(x1, . . . , xn) =

= qn−j′
q−1∑

x1=0

· · ·
q−1∑

xj′−1=0

f(x1, . . . , xj)

q−1∑

k=0

f ′(x1, . . . , xj′−1, k) = 0.

This gives that the Wj’s are orthogonal. Moreover

dimLn = qn =
n∑

j=0

qj−1(q − 1)

and so these spaces fill all L(Ln). �

Since the spheres centered at x0 = 0n (and so the Kn-orbits) are
exactly n + 1, we have from Lemma 4.2 that the subspaces Wj’s are
irreducible.

There exists a complete description of the corresponding spherical
functions.
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Proposition 6.5. For every j = 0, . . . , n we the spherical function
φj in the space Wj is given by

φj(x) =





1 d(x, x0) < n− j + 1;
1

1−q
d(x, x0) = n− j + 1;

0 d(x, x0) > n− j + 1.

Proof. Since each φj is defined in terms of distance and the spheres
of center x0 and ray k are the Kn−orbits we have that the φj’s are
Kn−invariant. Moreover φj(x0) = 1 by definition. We have to prove
that φj ∈ Wj. But φj(x1, . . . , xj, x) = φj(x1, . . . , xj, y), for every x and
y words of length n− j − 1, because the condition d(x, x0) < n− j +1
is equivalent to x1 = . . . = xj = 0, d(x, x0) = n − j + 1 to x1 = . . . =
xj−1 = 0, xj 6= 0 and d(x, x0) > n−j+1 to the resting cases. Moreover

∑

x∈X
φj(x1, . . . , xj−1, x) =

j−1∑

i=0

|Λi| −
1

q − 1
|Λj| = 0.

�

7. Some constructions

Let (G,K) and (F,H) be finite Gelfand pairs on the homogeneous
spaces X ' G/K and Y = F/H, we can ask if it is possible to combine
the two constructions to get another Gelfand pair.

The following constructions are well known.
If we denote G × F the direct product of G and F , and K × H

the direct product of the respective stabilizers subgroups, it is easy to
prove that (G× F,K ×H) is a Gelfand pair.

The decomposition associated with the action of G on L(X × Y ) is

L(X × Y ) =

(
n⊕

i=0

Vi

)
⊗
(

m⊕

j=0

Wj

)
,

where L(X) = ⊕n
i=0Vi and L(Y ) = ⊕m

j=0Wj are the decompositions into
irreducibles submodules under the actions of G and F respectively. The
spherical functions will be given by the tensorial product of the spher-
ical functions of each pair. This construction is called direct product
of Gelfand pairs.

Analogously, if we perform the wreath product of the groups G and
F we get a the pair (G o F, J), where

J = {(k, f) ∈ G o F : k ∈ K, f(x0) ∈ H}
is the stabilizer of the vertex (x0, y0) ∈ X × Y under the action of

G o F . Recall that G o F = Gn FX = {(g, f) : f : X −→ F, g ∈ G}.
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Lemma 7.1. The orbits of X × Y under the action of J are

X × Y =

[
n⊔

i=1

(Λi × Y )

]
t
[

m⊔

j=0

{x0} ×Υj

]
,

where X = {x0} tni=1 Λi and Y = {y0} tmJ=1 Υj are the decompositions
of X and Y under K and H respectively.

Proof. We have J(x0, y) = {(x0, f(x0)y), f(x0) ∈ H} = {x0} ×
Υj. Analogously if x 6= x0, we have J(x, y) = {(kx, f(x)y), k ∈
K and f(x0) ∈ F} = Λi × Y . �

We have the following theorem

Theorem 7.2. (1) The decomposition into irreducibles submod-
ules is

L(X × Y ) =

[
n⊕

i=0

(Vi ⊗W0)

]
⊕
[

m⊕

j=1

(L(X)⊗Wj)

]
;

(2) the spherical functions have the form

{φi ⊗ ψ0, δx0 ⊗ ψj : i = 0, 1, . . . , n; j = 1, . . . ,m},
where φi and ψj are the spherical functions of the initial Gelfand
pairs and δx0 is the Dirac function at the vertex x0.

Proof. 1) Consider the element (g, f) ∈ GoF acting on the function
G⊗ F ∈ L(X × Y ) as

G⊗ F(x, y) = G(x)F(y).

Then

(g, f)(G⊗ F)(x, y) = (G⊗ F)
[
(g, f)−1(x, y)

]
=

= (gG)(x) [f(x)F] (y).

Now let v ⊗ 1 ∈ Vi ⊗W0, then (g, f)(v ⊗ 1) = (gv ⊗ 1) ∈ Vi ⊗W0.
Let δx ⊗ w ∈ L(X) ⊗ Wj, then (g, f)(δx ⊗ w) = δgx ⊗ f(x)w ∈

L(X)⊗Wj. This implies the invariance of the subspaces. Their number
coincides with the number on the J−orbits on X × Y , so these spaces
are irreducibles.

2) Follows from the trivial J−invariance of the functions in the
statement. �

We observe that (x, y) ∈ X×Y can be identified with a leaf of the tree
of depth 2. We have already considered the Gelfand pair associated
with the action of the wreath product on a vertex of the tree.

One can consider the following generalizing construction (gener-
alized Johnson scheme) due to Ceccherini-Silberstein, Scarabotti and
Tolli in [CST3]: let Y be an homogeneous space associated with
a Gelfand pair (F,H). The space X is finite of cardinality n, say
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X = {1, 2, . . . , n}. For every h = 1, . . . , n, denote by Ωh the set of
h−subsets of X, so that |Ωh| =

(
n
h

)
.

The decomposition of L(Y ) into irreducible submodules, under the
action F is

L(Y ) =
m⊕

j=0

Wj.

For every h = 1, . . . , n, consider the space

Θh = {(A, θ) : A ∈ Ωh and θ ∈ Y A},
i.e. the space of functions whose domain is a k−subset of X and which
take values in Y .

On Θh acts the group Sn o F . Given θ ∈ Θh and (π, f) ∈ Sn o F we
have

[(π, f)θ] (j) = f(j)θ(π−1j),

for every j ∈ πdomθ.
Let us denote C(h,m+1) the set of the weak (m+1)−composition

of h, i.e. the elements a = (a0, a1, . . . , am) such that a0 + · · ·+ am = h.
In order to get a basis for the space L(Y A), for every A ∈ Ωh, we

introduce some special functions that we will call fundamental func-
tions.

Definition 7.3. Suppose that A ∈ Ωh and that Fj ∈ L(Y ) for every
j ∈ A. Suppose also that each Fj belongs to an irreducible submodules
of the action of F and set ai = |{j ∈ A : Fj ∈ Wi}|. Then the
tensor product

⊗
j∈A Fj will be called a fundamental function of type

a = (a0, a1, . . . , am) in L(Y
A).

In other words, we have

(
⊗

j∈A
Fj)(θ) =

∏

j∈A
Fj(θ(j)),

for every θ ∈ Y A. We also set `(a) = a1 + · · ·+ am = h− a0.
Given a ∈ C(h,m + 1) and A ∈ Ωh a composition of A of type a

is a sequence A = (A0, A1, . . . , Am) of subsets that are a partitions of
A and such that |Ai| = ai for every i = 0, 1, . . . ,m. The set of the
compositions of type a is denoted Ωa(A).

It is known that the action of Sn oF on L(Θh) gives rise to a Gelfand
pair. To give the associated decomposition we need the following defi-
nitions.

The subspace of L(Y A) spanned by the tensor products
⊗

j∈A Fj such

that Fj ∈ Wi for every j ∈ Ai, i = 0, 1, . . . ,m is denoted by Wa(A).
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Define

Wh,a =
⊕

A∈Ωh

⊕

A∈Ωa(A)

Wa(A).

We denote Sn−h,h the irreducible representation of the symmetric
group Sn acting on the space L(Ωh), given by

Sn−k,k = L(Ωk) ∩ kerd,

where d : L(Ωh) −→ L(Ωh−1) is the Radon transform defined as

(dγ)(B) =
∑

A∈Ωh:A=B∪{j}
γ(A).

Definition 7.4. For 0 ≤ k ≤ n−`(a)
2

define

Wh,a,k = IndSnoF
Sn−`(a)o×Sa1 oF×...×Sam oFS

n−`(a)−k,k ⊗W⊗a1

1 ⊗ · · · ⊗W⊗am
m .

In [CST3] is proven the following theorem

Theorem 7.5. The decomposition of L(Θh) into irreducible repre-
sentations under the action Sn o F is given by

L(Θh) =
⊕

a∈C(h,m+1)

min{n−h,h−`(a)}⊕

k=0

Wh,a,k.

Remark 7.6.

The starting point for the previous version is the consideration of
substructures in a discrete space, i.e. consider subtrees with assigned
ramification indices in a rooted homogeneous tree (see [CST3]). In
effect if we work on the n−th level Ln of a rooted tree, we can identify
each vertex x ∈ Ln with the geodesic path that connects it to the root.
This is a subtree with branching indices (1, 1, . . . , 1) in the whole tree.

If we choose different branching indices r = (r1, . . . , rn) in a rooted
tree with branching indices m = (m1, . . . ,mn), where 0 < ri ≤ mi

for every i = 1, . . . , n we can consider the variety V(m, r) of such a
subtrees.

This space is the quotient of the full automorphism group Aut(Tn)
by the stabilizer K(m, r) of a fixed subtree T.

This is a Gelfand pair. But, looking on the first level, we can think
each of the s′1s indices in the subtree as the domain of a function whose
image is a subtree. This means that in this case Θ is defined on all the
r1 subsets of m1 and the image of every vertex is a subtree again.

This recurrence justifies the utilization of the space Y , that has, in
this case, the same ultrametric structure.
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Fig. 2: A tree of type (3,3,3) with a subtree of type (2,2,1).

There exists a generalization of that, considering different structures
that have the ultrametric space as particular case. The idea developed
in the end of the following chapter is to study this structures in relation
with the Gelfand pairs.





CHAPTER 2

Self-similar groups and generalized wreath
products

In this chapter we will study a particular class of subgroups of
the whole automorphism group of the rooted tree: the class of self-
simlar groups. The famous Grigorchuk group, for example, belongs to
this class as well as other groups having interesting and exotic prop-
erties. A new course is the realization of such a groups as Iterated
Monodromy Groups (IMG) of some complex rational functions (see
[Nek1] or [Nek2] for further suggestions).

1. General settings

If we consider a countable subgroup of Aut(T ) and the relative
action on Ln, we can ask if it is possible to find the same results about
Gelfand pairs obtained for the full automorphisms group. In some cases
the answer is positive. In what follows we will investigate this problem.

Recall that a group G is spherically transitive on the rooted tree T
if it is transitive on each level Ln of T .

The fundamental tool will be the following easy lemma.

Lemma 1.1. Let G act spherically transitively on T . Denote by Gn

the quotient group G/StabG(n) and by Kn the stabilizer in Gn of a fixed
leaf x0 ∈ Ln. Then the action on Ln is 2-points homogeneous if and
only if Kn acts transitively on each sphere of Ln.

Proof. Suppose that Kn acts transitively on each sphere of Ln and
consider the elements x, y, x′ and y′ such that d(x, y) = d(x′, y′). Since
the action of Gn is transitive, there exists an automorphism g ∈ Gn

such that g(x) = x′. Now d(x′, g(y)) = d(x′, y′) and so g(y) and y′

are in the same sphere of center x′ and radius d(x′, y′). But Kn is
conjugate with StabGn(x

′) and so there exists an automorphism g′ ∈
StabGn(x

′) carrying g(y) to y′. The composition of g and g′ is the
required automorphism.

Suppose now that the action of Gn on Ln is 2-points homogeneous
and consider two elements x and y in the sphere of center x0 and ra-
dius i. Then d(x0, x) = d(x0, y) = i. So there exists an automorphism
g ∈ StabGn(x0) such that g(x) = y. This completes the proof. �

27
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We introduce some definitions for the rest of the theory. Recall
that if G ≤ Aut(T ) acts on the tree T , we can study the action on the
first level L1 and consider the action of G restricted to each subtree
Tx, x ∈ X (rooted at x). The automorphism induced on Tx can be
regarded as an automorphism of the whole tree, via the identification
of Tx with T . Is this restricted automorphism still in G?

Definition 1.2. A group G acting on T is self-similar if for every
g ∈ G, x ∈ X, there exist gx ∈ G, x′ ∈ X such that g(xw) = x′gx(w)
for all w ∈ X∗.

Moreover, a self-similar group G can be embedded into the wreath
product G o X = (Gq) o Sq, where Sq is the symmetric group on q
elements.

The self-similar groups are strictly linked to the theory of automata,
see [Nek2]

We recall now that, for an automorphisms group G ≤ Aut(T ),
the stabilizer of the vertex x ∈ T is the subgroup of G defined as
StabG(x) = {g ∈ G : g(x) = x} and the stabilizer of the n-th level is
StabG(n) =

⋂
x∈Ln

StabG(x). Observe that StabG(n) is a normal sub-
group of G of finite index for all n ≥ 1. In particular, an automorphism
g ∈ StabG(1) can be identified with the elements gi, i = 0, 1, . . . , q − 1
that describe the action of g on the respective subtrees Ti rooted at the
vertex i of the first level. So we get the following embedding

ϕ : StabG(1) −→ Aut(T )× Aut(T )× · · · × Aut(T )︸ ︷︷ ︸
q times

that associates with g the q−ple (g0, g1, . . . , gq−1).

Definition 1.3. G is said to be fractal if the map

ϕ : StabG(1) −→ G×G× · · · ×G
is a subdirect embedding, that is it is surjective on each factor.

Lemma 1.4. If G is transitive on L1 and fractal then G is spheri-
cally transitive (i.e. it acts transitively on each level).

Proof. Suppose that T is the q−ary rooted tree. We can switch
the subtrees T0, . . . , Tq−1. The restriction of StabG(1) on Ti is G and
so by an inductive recurrence we have the claim. �

In what follows we will often use the notion of rigid stabilizer. For
a group G acting on T and a vertex x ∈ T , the rigid vertex stabilizer
RistG(x) is the subgroup of StabG(x) consisting of the automorphisms
acting trivially on the complement of the subtree Tx rooted at x. Equiv-
alently, they have a trivial labelling at each vertex outside Tx. The rigid
stabilizer of the n-th level is defined as RistG(n) =

∏
x∈Ln

RistG(x).
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In contrast to the level stabilizers, the rigid level stabilizers may have
infinite index and may even be trivial. We observe that if the action of
G on T is spherically transitive, then the subgroups StabG(x), x ∈ Ln

are all conjugate, as well as the subgroups RistG(x), x ∈ Ln.

We recall the following definitions for spherically transitive groups
(see, for more details, [BGŠ]).

Definition 1.5. G is regular weakly branch on K if there exists
a normal subgroup K 6= {1} in G, with K ≤ StabG(1), such that
ϕ(K) > K ×K × · · · ×K. In particular G is regular branch on K if
it is regular weakly branch on K and K has finite index in G.

We observe that this property for the subgroup K is stronger than
fractalness, since the map ϕ is surjective on the whole product K ×
K × · · · ×K.

Definition 1.6. G is weakly branch if RistG(x) 6= {1}, for every
x ∈ T (this automatically implies |RistG(x)| = ∞ for every x). In
particular, G is branch if [G : RistG(n)] <∞ for every n ≥ 1.

Example 1.7 (Adding Machine).

Let G be the self-similar group acting on the binary rooted tree gen-
erated by the automorphism a = (a, 1)ε, where ε denotes the nontrivial
permutation of the group S2.

It is easy to check that the following identities hold:

a2k = (ak, ak), a2k+1 = (ak, ak+1)ε.(2)

In particular, the first level stabilizer is given by StabG(1) =< a2 >,
with a2 = (a, a).

From (2) it follows that

StabG(n) =< a2
n

> .

Moreover, since G is abelian, one has StabG(n) = StabG(x) for all
x ∈ Ln. Formulas (2) tells us that the element a2

n
has the labelling

gx = ε at each vertex x ∈ Ln and the labelling gy = 1 at each vertex
y ∈ Li, for i < n. Therefore a2

n 6∈ RistG(n) and all its powers do
not belong to RistG(n) too. So RistG(n) = {1} for every n ≥ 1. So
this is an example where the subgroups StabG(n) and RistG(n) do not
coincide, showing that RistG(n) can also be trivial.

G is fractal, in fact StabG(1) =< a2 >, where a2 = (a, a)id and so
the application from StabG(1) toG×G is surjective on each factor. This
implies that G is spherically transitive. Observe that, for each n ∈ N,
we have [G : StabG(n)] = 2n, on the other hand [G : RistG(n)] =∞.



30 2. SELF-SIMILAR GROUPS AND GENERALIZED WREATH PRODUCTS

q
q q

q q
q q

q q

�
�

�
��

@
@
@

@@
�

�
�

��

@
@
@

@@
�

�
�

��

@
@

@
@@
�

�
�

��

@
@
@

@@

ε

1

1

1

ε1

ε

ε

ε

Fig.3. Labelling of a.

From this we can deduce the isomorphism G ' Z. The group quo-
tient G/StabG(n) ' Z2n . In this case the parabolic group Kn is trivial,
since |Ln| = 2n and so we get for every n a Gelfand pair (Z2n , 1) (the
group is commutative) that is not symmetric (the spherical functions
correspond to the characters that, in general, are not real).

2. The Basilica group

The Basilica group B was introduced by R. I. Grigorchuk and A.
Żuk in [GrŻu] This group was the first example of an amenable group
of exponential growth that cannot be obtained as limit of groups of
sub-exponential groups (see [BaVi] or the interesting paper [Kai]).

The Basilica group is generated by the automorphisms a and b
having the following self-similar form:

a = (b, 1), b = (a, 1)ε

where ε denotes the nontrivial permutation of the group S2. In the fol-
lowing figure the labelling of the automorphisms a and b are presented.
Observe that the labelling of each vertex not contained in the leftmost
branch of the tree is trivial.
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Fig.4. Labelling of the generators a and b.

Example 2.1.

Consider x0 = 000... and let us study the action of the generators
of B on x0:

a(000...) = 0b(00...) = 01a(0...) = 010...

and

b(000...) = 1a(00...) = 10b(0...) = 101...

The product can be performed in according with the embedding into
the wreath product as:

ab = (b, 1)id(a, 1)ε = (ba, 1)ε = ((a, b)ε, (1, 1)id)ε = ..,

and

ba = (a, 1)ε(b, 1)id = (a, b)ε = ((b, 1)id, (a, 1)ε)ε...

So

ab(000...) = 110... = b(a(000...)),

i.e. the action is at right (we can use the exponential action xg0).

It is a remarkable fact due to V. Nekrashevich that B can be ob-
tained as Iterated Monodromy Group (IMG) of the complex polyno-
mial f(z) = z2 − 1. The same author found interesting links between
fractal sets viewed as Julia set of such a polynomials and Schrier graphs
of the action of the corresponding groups on the levels of the tree. See
[Nek1].

It can be easily proved that the Basilica group is a fractal group.
In fact, the stabilizer of the first level is

StabB(1) =< a, ab, b2 >,

with a = (b, 1), ab = (1, ba) and b2 = (a, a).
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It is obvious that the action of the Basilica group on the first level
of T is transitive. Since this group is fractal, it easily follows that the
action is also spherically transitive, i.e. transitive on each level of the
tree. Moreover, it is known (see [GrŻu]) that the Basilica group is
weakly regular branch over its commutator subgroup B′.

Theorem 2.2. The action of the Basilica group B on Ln is 2-points
homogeneous for all n.

Proof. From Lemma 1.1 it suffices to show that the action of the
parabolic subgroup Kn = StabBn(0

n) is transitive on each sphere.
Denote by uj the vertex 0j−11 for every j = 1, . . . , n. Observe that

the automorphisms

(b2)a = a−1b2a = (b−1, 1)(a, a)(b, 1) = (ab, a) = ((1, ba), a)

and
bab−1a = (b−1, 1)(a, 1)ε(b, 1)(1, a−1)ε(b, 1) = (1, b)

belong to Kn for each n. Moreover, using the fractalness of B, it is
possible to find elements gj ∈ Kn such that the restriction gj|T0j−1 is
(b2)a = ((1, ba), a) or bab−1a = (1, b). So, the action of such automor-
phisms on the subtree Tuj

corresponds to the action of the whole group
B =< a, b > on T . We can regard this action as the action of Kn

on the spheres of center x0 = 0n, and so we get that Kn acts transi-
tively on these spheres. This implies that the action of B is 2-points
homogeneous on Ln. �

Corollary 2.3. For every n ≥ 1, (Bn, Kn) is a symmetric Gelfand
pair.

The number of Kn-orbits is exactly the number of the irreducible
submodules occurring in the decomposition of L(Ln) under the action
of Bn. Since the submodules Wj’s described in the previous section are
n + 1 as the Kn-orbits, it follows that the Basilica group admits the
same decomposition into irreducible submodules and the same spheri-
cal functions that we get for Aut(Tn).

We can observe that in the proof of the Theorem 6.3 of Chapter 1
the fundamental tool is that the automorphisms g′ and g′′ act transi-
tively on the subtrees T ′ and T ′′, respectively, and trivially elsewhere.
Moreover, the only fractalness does not guarantee that the action is 2-
points homogeneous, as one can easily verify in the case of the Adding
Machine, for which one gets symmetric Gelfand pairs only for n = 1, 2.
On the other hand, if a fractal group G acts 2-transitively on L1 and if
it has the property that the rigid stabilizers of the vertices of the first
level RistG(i), i = 0, 1, . . . , q − 1 are spherically transitive for each i,
the proof of the Theorem 6.3 of Chapter 1 works again by taking the
automorphisms g′ and g′′ in the rigid vertex stabilizers. But this is not
a necessary condition, as the example of the Grigorchuk group shows.
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In fact, one can verify (see [BG2]) that, in this case, RistG(0) =<
da, dac >, with da = (b, 1) and dac = (ba, 1). So RistG(0) fixes the
vertices 00 and 01, and then it does not act transitively on the subtree
T0. This shows, for instance, that a fractal regular branch group could
not have this property, which appears to be very strong.

On the other hand, a direct computation shows that Basilica group
has this property, what gives another proof that the action on each
level Ln is 2-points homogeneous.

Theorem 2.4. Let B be the Basilica group. Then the rigid vertex
stabilizers RistB(i), i = 0, 1, act spherically transitively on the corre-
sponding subtrees Ti.

Proof. SinceB is spherically transitive and soRistB(0) ' RistB(1),
it suffices to prove the assertion only for RistB(0). Consider the auto-

morphisms a = (b, 1) and ab
2
= (ba, 1) in RistB(0). We want to show

that the subgroup < a, ab
2
> is spherically transitive on T0, equiva-

lently we will prove that the group < b, ba > is spherically transitive
on T .

The latter is clearly transitive on the first level. To complete it
suffices to prove its fractalness. We have

b−1ba = (1, a−1)ε(b−1, 1)(a, 1)ε(b, 1) = (1, a−1b−1)ε(a, b)ε = (b, (b−1)a)

and
(b−1ba)b

2

= (a−1, a−1)(b, (b−1)a)(a, a) = (ba, (b−1)a
2

),

and so the projection on the first factor gives both the generators b and
ba. The elements

(b−1ba)−1 = (b−1, ba), ((b−1ba)−1)b
−2

= ((b−1)a
−1

, b)

fulfill the requirements for the projection on the second factor and this
completes the proof. �

3. The Grigorchuk group

The Grigorchuk group G was introduced by R. I. Grigorchuk in
1980 (see [Gri1]) to solve the problem of the existence of groups of
intermediate growth. This group acts on the rooted binary tree and it
is a fractal, regular branch group, generated by the automorphisms

a = (1, 1)ε, b = (a, c), c = (a, d), d = (1, b).

Lemma 3.1. G is regular branch on the normal subgroup

P =< (ab)2 >G .

Proof. We have (ab)2 = (ca, ac). From direct computation we get

[(ab)−2, d] = (ab)2d−1(ab)−2d = (ca, ac)(1, b)(ac, ca)(1, b) =(3)

= (1, abcab) = (1, (ab)2).(4)

(5)
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Analogously [(ab)−2, d]a = ((ab)2, 1). By performing conjugations we
conclude P > P × P . �

Lemma 3.2. For every n ≥ 1, the action of P on Ln has two orbits
given by the sets

{x = x1 . . . xn ∈ Ln : x1 = 0} and {x = x1 . . . xn ∈ Ln : x1 = 1}
Proof. The subgroup M = StabK(0)|T0 is generated by the ele-

ments ca and (ab)2, analogously M ′ = StabK(1)|T1 is generated by ac
and (ab)2. This implies that M = M ′ since ac = (ca)−1. The thesis
follows if we show that M is transitive on Ln for each n ≥ 1.

First of all observe that M is transitive on L1 because ca ∈ M .
Consider the subgroup StabM(0). This group contains the elements
(ab)2 = (ca, ac), ca(ab)2ac = (ca, bad) and (ca)2 = (ad, da) that gen-
erate it. Let N and N ′ be the restrictions of StabM(0) to T0 and T1
respectively. Then

N = 〈ca, ad〉 = 〈ca, b〉 and N ′ = 〈ac, bad, da〉 = N.

This implies that M is transitive on L2 because N contains ca. More-
over StabN(0) contains the elements (ca)2 = (ad, da), cabac = (aca, dad)
and b = (ad). This implies that the restriction of StabN(0) and
StabN(1) to T0 and T1 is isomorphic to G. From this M is transitive
on Ln, for n ≥ 3 since G is transitive on each level. �

Theorem 3.3 (Grigorchuk). The action of the Grigorchuk group
G on Ln is 2−points homogeneos for every n ∈ N.

Proof. Set ωj = 1j ∈ Lj and denote uj = 1j−10 for every j ≤ n.
Since G is fractal, there exists an element gj ∈ G such that gj|Tωj−1

= b.

Observe that gj ∈ Kn for each n, as one can check considering the
labelling of b = (a, c). This implies gj(uj) = uj and gj|Tuj

= a. Since

G is regular branch on P , we get that Kn contains, for every j ≥ 1, a
subgroup Pj such that Pj|Tuj

= P . This gives that < Pj, gj > acts on

Tuj
as < P, a > and, we have seen that the action of Kn is transitive

on each level of Tuj
. But, for every n, the vertices of Ln belonging to

Tuj
constitute the elements of the sphere of distance n − j + 1 from

the center ωn. The transitivity of Kn on the spheres implies that the
action is 2-points homogeneous. �

Corollary 3.4. (Gn, Kn) is a symmetric Gelfand pair.

As a consequence, the decomposition of L(Ln) under the action of
this group into irreducible submodules is still L(Ln) =

⊕n
j=0Wj, where

the Wj’s are the subspaces defined above. See [Gri2] and [BHG] for
more details.
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4. I = IMG{z2 + i}
Consider now the group I = IMG(z2 + i), i.e. the iterated mon-

odromy group defined by the map f : Ĉ −→ Ĉ given by f(z) = z2 + i.
The generators of this group have the following self-similar form:

a = (1, 1)ε, b = (a, c), c = (b, 1),

where ε denotes, as usual, the nontrivial permutation in S2. In the
following figure we present the corresponding labellings.
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Fig.5. Labelling of the generators a, b and c.

One can easily prove the following relations:

a2 = b2 = c2 = (ac)4 = (ab)8 = (bc)8 = 1.

Moreover, the stabilizer of the first level is StabI(1) =< b, c, ba, ca >.
In particular, since

ba = (c, a), ca = (1, b),

I is a fractal group. It is obvious that I acts transitively on the first
level of the rooted binary tree. Since this group is fractal, it follows
that this action is also spherically transitive.

Moreover, it is known (see [GSŠ]) that I is a regular branch group
over its subgroup N defined by

N =< [a, b], [b, c] >I .

Also for the group I it is possible to prove the same result proven for the
Basilica group in Theorem 2.4. So consider the n−th level Ln of the tree
and the group In = I/StabI(n). In order to get an easy computation,
we choose the vertex x0 = 1n ∈ Ln and we set Kn = StabIn(1

n). In
the following theorem we will prove that the action of the parabolic
subgroup Kn is transitive on each sphere.

Theorem 4.1. The action of the group I on Ln is 2-points homo-
geneous for all n.
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Proof. Denote by uj the vertex 1j−10 for every j = 1, . . . , n. Us-
ing the fractalness of I, it is possible to find an element gj ∈ Kn

such that the restriction gj|T1j−1 is b and an element hj ∈ Kn such
that the restriction hj|T1j−1 is c. Consider now the automorphism
babba = (c, a)(a, c)(c, a) = (ac, ca). By fractalness it is possible to find
an element kj ∈ Kn such that the restriction kj|T1j−1 is babba. The ac-
tion of the subgroup generated by the automorphisms gj, hj, kj on the
subtree Tuj

corresponds to the action of the subgroup H =< a, b, ac >
on T . It is easy to prove that this action is spherically transitive. In
fact it is obvious that H acts transitively on the first level, so it suf-
fices to show that H is fractal. To show this consider, for instance, the
elements

b = (a, c), aca = (b, b), babba = (ac, ca)

and
ba = (c, a), aca = (b, b), bbab = (ca, ac).

Now, the action of H on Tuj
can be regarded as the action of Kn

on the spheres of center x0, and so we get that Kn acts transitively
on these spheres. This implies that the action of I on Ln is 2-points
homogeneous, as required. �

Corollary 4.2. For every n ≥ 1, (In, Kn) is a symmetric Gelfand
pair.

As in the case of the Basilica group, it follows that the group In
admits the same decomposition into irreducible submodules and the
same spherical functions that we get for Aut(Tn).

It is possible to show that the rigid stabilizers of the vertices of the
first level of T do not act spherically transitively on the correspond-
ing subtrees T0 and T1. In fact, the rigid stabilizer of the first level is
RistI(1) =< c >G, so every automorphism in RistI(1) is the product
of elements of the form cg, where g = w(a, b, c) is a word in a, b and
c, and of their inverses. Set ϕ(cg) = (g0, g1). We want to show, by in-
duction on the length of the word w(a, b, c), that we suppose reduced,
that in both g0 and g1 the number of occurrences of a is even. This
will imply that the action of RistI(1) on the first level of the subtrees
T0 and T1 cannot be transitive and will prove the assertion.

If |w(a, b, c)| = 0, then cg = c = (b, 1). If |w(a, b, c)| = 1, then we
can have ca = (1, b), cb = (ba, 1) or cc = c = (b, 1). Let us suppose
the result to be true for |w′(a, b, c)| = n − 1. Then we have cw(a,b,c) =
cw

′(a,b,c)x, with x ∈ {a, b, c} and cw′(a,b,c) = (g′0, g
′
1) such that in both g′0

and g′1 the number of occurrences of a is even. If x = a, we get cw(a,b,c) =
(g′1, g

′
0), if x = b, we get cw(a,b,c) = ((g′0)

a, (g′1)
b) and if x = c then we

get cw(a,b,c) = ((g′0)
b, g′1). In all cases, we get a pair (g0, g1) satisfying

the condition that in both g0 and g1 the number of occurrences of a is
even, as required.
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5. The Hanoi Tower group H

The Hanoi Towers group H is a group of automorphisms of the
rooted ternary tree. For the rooted ternary tree all the definitions of
level stabilizer, rigid level stabilizer, fractalness, spherically transitive
action, given in the binary case, hold.

The generators of H have the following self-similar form:

a = (1, 1, a)(01), b = (1, b, 1)(02), c = (c, 1, 1)(12),

where (01), (02) and (12) are transpositions in S3. In the following
figures we present the corresponding labellings.
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Fig.6. Labelling of the generators a and b.
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Fig.7. Labelling of the generator c.

From the definition it easily follows that a2 = b2 = c2 = 1.
Considering the following elements belonging to StabH(1)

acab = (a, cb, a), bcba = (b, b, ca), cacb = (c, ab, c),

caba = (cb, a, a), (ac)2ba = (ab, c, c), cbab = (ca, b, b),
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one can deduce that H is a fractal group. It is obvious that H acts
transitively on the first level of the rooted ternary tree. Since this
group is fractal, it follows that this action is also spherically transitive.

Moreover, it is known (see [GrŠ1]) thatH is a regular branch group
over its commutator subgroup H ′. We observe that we have not the
inclusion H ′ ≤ StabH(1) that we have in the case of the Basilica group
and in the case of IMG(z2 + i).

Also for the group H it is possible to prove that its action on Ln,
n ≥ 1, gives rise to symmetric Gelfand pairs as it has been proven for
B and I. So consider the n−th level Ln of the tree and the group Hn =
H/StabH(n). Fix the vertex x0 = 0n ∈ Ln and set Kn = StabHn(x0).
In the following theorem we will prove that the action of the parabolic
subgroup Kn is transitive on each sphere.

Theorem 5.1. The action of the group H on Ln is 2-points homo-
geneous for all n.

Proof. Denote by uj the vertex 0j−11 and by vj the vertex 0j−12,
for every j = 1, . . . , n. Consider the element

acb = (1, c, ab)(12).

Using the fractalness ofH, it is possible to find an element gj ∈ Kn such
that the restriction gj|T0j−1 is acb. Since H is regular branch over H ′,
there exists a subgroup Hj of Kn such that Hj|Tuj

= H ′ and which fixes

any vertex of the tree whose uj is not an ancestor. Let us prove that the
action of H ′ on the whole tree is spherically transitive. Considering,
for example, the element [c, b] = cbcb = (cb, c, b)(012), one gets that
this action is transitive on the first level. Since H ′ ≥ H ′ × H ′ × H ′,
the action is transitive on each level of the tree. So the action of the
subgroup K =< Hj, gj > on the subtree T0j−1 is transitive on the
vertices of Ln belonging to the subtrees Tuj

and Tvj . This action can
be regarded as the action of Kn on the spheres of center x0, and so we
get that Kn acts transitively on these spheres. This implies that the
action of H is 2-points homogeneous on Ln, as required. �

Corollary 5.2. For every n ≥ 1, (Hn, Kn) is a symmetric Gelfand
pair.

As in the case of the Basilica group and of IMG(z2 + i), the group
Hn admits the same decomposition into irreducible submodules and
the same spherical functions that we get for Aut(Tn).

Now we want to prove that the action of the rigid vertex stabilizers
RistH(0), RistH(1) and RistH(2) is spherically transitive on the sub-
trees T0, T1 and T2, respectively. Since these subgroups are conjugate,
is suffices to prove the result for RistH(0). We use again the fact that
H is regular branch over its commutator subgroup H ′. So there exists
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a subgroup L ≤ H ′ such that L|T0 = H ′ and L|T1 = L|T2 = 1. In
particular, L is a subgroup of RistH(0). Since H ′ is spherically tran-
sitive on T , it follows that RistH(0) is spherically transitive on T0, as
required.

This property of the rigid vertex stabilizers, together with the frac-
talness of H and with the fact that the action of H on the first level is
2-transitive, gives a second proof of the fact that the action of Hn on
Ln is 2-points homogeneous, following the same idea that we used for
the Basilica group.

6. Generalized wreath products of permutation groups

The generalized wreath product has been introduced by R. A. Bai-
ley, Cheryl E. Praeger, C. A. Rowley and T. P. Speed in [B&al]. This
is a construction that generalizes the classical direct and wreath prod-
uct of groups. On the obtained structure one can apply the theory of
Gelfand pairs.

6.1. Preliminaries. Let (I,≤) be a finite poset, with |I| = n.
First of all, we need some definitions (see, for example, [B&al]).

Definition 6.1. A subset J ⊆ I is said

• ancestral if, whenever i > j and j ∈ J , then i ∈ J ;
• hereditary if, whenever i < j and j ∈ J , then i ∈ J ;
• a chain if, whenever i, j ∈ J , then either i ≤ j or j ≤ i;
• an antichain if, whenever i, j ∈ J and i 6= j, then neither
i ≤ j nor j ≤ i.

In particular, for every i ∈ I, the following subsets of I are ancestral:
A(i) = {j ∈ I : j > i} and A[i] = {j ∈ I : j ≥ i},

and the following subsets of I are hereditary:

H(i) = {j ∈ I : j < i} and H[i] = {j ∈ I : j ≤ i}.
Given a subset J ⊆ I, we set

• A(J) = ⋃i∈J A(i);
• A[J ] = ⋃i∈J A[i];
• H(J) =

⋃
i∈J H(i);

• H[J ] =
⋃

i∈J H[i].

In what follows we will use the notation in [B&al].
For each i ∈ I, let ∆i = {δi0, . . . , δim−1} be a finite set, with m ≥ 2.

For J ⊆ I, put ∆J =
∏

i∈J ∆i. In particular, we put ∆ = ∆I .
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If K ⊆ J ⊆ I, let πJ
K denote the natural projection from ∆J onto

∆K . In particular, we set πJ = πI
J and δJ = δπJ . Moreover, we will

use ∆i for ∆A(i) and π
i for πA(i).

Let A be the set of ancestral subsets of I. If J ∈ A, then the
equivalence relation ∼J on ∆ associated with J is defined as

δ ∼J ε ⇔ δJ = εJ ,

for each δ, ε ∈ ∆. We denote | ∼J | the cardinality of an equivalence
class of ∼J .

Definition 6.2. A poset block structure is a pair (∆,∼A),
where

(1) ∆ =
∏

(I,≤) ∆i, with (I,≤) a finite poset and |∆i| ≥ 2, for
each i ∈ I;

(2) ∼A denotes the set of equivalence relations on ∆ defined by
the ancestral subsets of I.

Remark 6.3.

Observe that the set∼A is a poset and∼J≤∼K if and only if J ⊇ K.
We will call it the ancestral poset associated with I. Moreover, all the
maximal chains in ∼A have the same length n. In fact, the empty set
is always ancestral. A singleton {i} constituted by a maximal element
in I is still an ancestral set. Inductively, if J ∈ A is an ancestral set,
then J t {i} is an ancestral set if i is a maximal element in I \ J . So
every maximal chain in the poset of ancestral subsets has length n.

To have a representation of a poset block structure, we can perform
the following construction (see [DD3]). Let C = {∼I ,∼J , . . . ,∼∅}
be a maximal chain of ancestral relations such that ∼Ji≤∼Ji+1

for all
i = 0, . . . , n − 1. Let us define a rooted tree of depth n as follows:

the n−th level is constituted by |∆| vertices; the (n − 1)−st by |∆|
|∼J1

|
vertices. Each of these vertices is a father of | ∼J1 | sons that are in

the same ∼J1 −class. Inductively, at the i−th level there are |∆|
|∼Jn−i

|
vertices fathers of | ∼Jn−i

| vertices of the (i+ 1)−st level belonging to
the same ∼Jn−i

−class.
We can perform the same construction for every maximal chain C

in ∼A. The next step is to glue the different structures identifying the
vertices associated with the same equivalence. The resulting structure
is the poset block structure associated with I.

Example 6.4.

Consider the case of the following poset (I,≤):
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One can easily check that, in this case, the ancestral poset (∼A,≤) is
the following:
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Supposem = 2 and ∆1 = ∆2 = ∆3 = {0, 1}, so that we can think of
∆ as the set of words of length 3 in the alphabet {0, 1}. The partitions
of ∆ given by the equivalences ∼J , with J ⊆ I ancestral, are:

• ∆ = {000, 001, 010, 011, 100, 101, 110, 111} by the equivalence
∼∅;
• ∆ = {000, 001, 010, 011}∐{100, 101, 110, 111} by the equiva-
lence ∼{1};
• ∆ = {000, 001}∐{010, 011}∐{100, 101}∐{110, 111} by the
equivalence ∼{1,2};
• ∆ = {000, 010}∐{001, 011}∐{100, 110}∐{101, 111} by the
equivalence ∼{1,3};
• ∆ = {000}∐{001}∐{010}∐{011}∐{100}∐{101}∐{110}∐{111} by the equivalence ∼I .

Consider the chains C1 = {∼I ,∼{1,2},∼{1},∼∅} and C2 = {∼I

,∼{1,3},∼{1},∼∅} in (∼A,≤). The associated trees T1 and T2 are, re-
spectively,
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Assembling these trees, we get the following poset block structure.q
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Fig. 8. The poset block structure

6.2. The generalized wreath product. We present here the
definition of generalized wreath product given in [B&al]. We will follow
the same notation of the action to the right presented there. For each
i ∈ I, let Gi be a permutation group on ∆i and let Fi be the set of all
functions from ∆i into Gi. For J ⊆ I, we put FJ =

∏
i∈J Fi and set

F = FI . An element of F will be denoted f = (fi), with fi ∈ Fi.

Definition 6.5. For each f ∈ F , the action of f on ∆ is defined
as follows: if δ = (δi) ∈ ∆, then

δf = ε, where ε = (εi) ∈ ∆ and εi = δi(δπ
ifi).(6)

It is easy to verify that this is a faithful action of F on ∆. If (I,≤) is
a finite poset, then (F,∆) is a permutation group, which is called the
generalized wreath product of the permutation groups (Gi,∆i)i∈I and
denoted

∏
(I,≤)(Gi,∆i).

Definition 6.6. An automorphism of a poset block structure (∆,∼A

) is a permutation σ of ∆ such that, for every equivalence ∼J in ∼A,

δ ∼J ε ⇔ (δσ) ∼J (εσ),
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for all δ, ε ∈ ∆.

The following fundamental theorems are proven in [B&al]. We de-
note by Sym(∆i) the symmetric group acting on the set ∆i. Sometimes
we denote it by Sym(m), where m = |∆i|.

Theorem 6.7. The generalized wreath product of the permutation
groups (Gi,∆i)i∈I is transitive on ∆ if and only if (Gi,∆i) is transitive
for each i ∈ I.

Theorem 6.8. Let (∆,∼A) be a poset block structure with associ-
ated poset (I,≤). Let F be the generalized wreath product

∏
(I,≤) Sym(∆i).

Then F is the group of automorphisms of (∆,∼A).

Remark. If (I,≤) is a finite poset, with ≤ the identity relation,
then the generalized wreath product becomes the permutation direct
product. r r r p p p p r

1 2 3 n

In this case, we have A(i) = ∅ for each i ∈ I and so an element f
of F is given by f = (fi)i∈I , where fi is a function from a singleton
{∗} into Gi and so its action on δi does not depend from any other
components of δ.

Remark. If (I,≤) is a finite chain, then the generalized wreath
product becomes the permutation wreath product

(Gn,∆n) o (Gn−1,∆n−1) o · · · o (G1,∆1).r
r
rppppr
r

1

2

3

n− 1

n

In this case, we have A(i) = {1, 2, . . . , i − 1} for each i ∈ I and so
an element f of F is given by f = (fi)i∈I , with

fi : ∆1 × · · · ×∆i−1 −→ Gi

and so its action on δi depends on all the previous components of δ.

6.3. Gelfand pairs. In what follows we suppose Gi = Sym(m)
where m = |∆i|. Fixed an element δ0 = (δ10, . . . , δ

n
0 ) in ∆, the stabilizer

StabF (δ0) is the subgroup of F acting trivially on δ0. If we represent
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f ∈ F as the n−tuple (f1, . . . , fn), with fi : ∆
i −→ Sym(m) and set

∆i
0 =

∏
j∈A(i) δ

j
0, we have the following lemma.

Lemma 6.9. The stabilizer of δ0 = (δ10, . . . , δ
n
0 ) ∈ ∆ in F is the

subgroup

K := StabF (δ0) = {g = (f1, . . . , fn) ∈ G : fi|∆i
0
∈ StabSym(m)(δ

i
0)

whenever ∆i = ∆i
0 or A(i) = ∅}.

Proof. One can easily verify that K is a subgroup of F . If i ∈ I is
such that A(i) = ∅ then, by definition of generalized wreath product,
it must be fi ∈ StabSym(m)(δ

i
0). For all i we have

δi0f = δi0 ⇐⇒ δi0(δ
A(i)
0 )fi = δi0

⇐⇒ (δ
A(i)
0 )fi ∈ StabSym(m)(δ

i
0)

⇐⇒ fi|∆i
0
∈ StabSym(m)(δ

i
0).

�

Now we want to study the K−orbits on ∆. We recall that the
action of Sym(m − 1) ≡ StabSym(m)(δ

i
0) on ∆i has two orbits, i.e.

∆i = {δi0}
∐
(∆i \ {δi0}). Set ∆0

i = {δi0} and ∆1
i = ∆i \ {δi0}.

Lemma 6.10. The K−orbits on ∆ have the following form:

 ∏

i∈I\H[S]

∆0
i


×

(∏

i∈S
∆1

i

)
×


 ∏

i∈H(S)

∆i


 ,

where S is any antichain in I.

Proof. First of all suppose that δ, ε ∈
(∏

i∈I\H[S] ∆
0
i

)
×
(∏

i∈S ∆
1
i

)
×

(∏
i∈H(S) ∆i

)
, for some antichain S. Then δI\H[S] = εI\H[S] = δ

I\H[S]
0 . If

s ∈ S we haveA(s) ⊆ I\H[S] and this implies (A(s))fs ∈ StabSym(m)(δ
s
0).

So εs = δs(δ
A(s)
0 fs). If i ∈ H(S) then A(i) 6= ∅ and ∆i 6= ∆i

0. This

implies (A(i))fi ∈ Sym(m) and so εi = δi(δ
A(i)
0 fi). This shows that K

acts transitively on each orbit.
On the other hand, let S 6= S ′ be two distinct antichains and δ ∈(∏
i∈I\H[S] ∆

0
i

)
×
(∏

i∈S ∆
1
i

)
×
(∏

i∈H(S) ∆i

)
and ε ∈

(∏
i∈I\H[S′] ∆

0
i

)
×

(∏
i∈S′ ∆1

i

)
×
(∏

i∈H(S′) ∆i

)
. Suppose s ∈ S \ (S ∩ S ′) and so I \

H[S] 6= I \H[S ′]. If s ∈ I \H[S ′] then δs 6= δs0 = εs. But (A(S))fs ∈
StabSym(m)(δ

s
0) and so δs(A(S)fs) 6= εs. If s ∈ H(S ′) there exists

s′ ∈ S ′ \ (S ∩ S ′) such that s < s′. This implies that s′ ∈ I \H[S] and
we can proceed as above.
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The proof follows from the fact that the orbits are effectively a par-
tition of ∆. �

Finally, we want to prove that the group F =
∏

i∈I Gi acting on ∆
and the stabilizer K of the element δ0 = (δ10, . . . , δ

n
0 ) yield a Gelfand

pair. To show this, we use the Gelfand condition.

Proposition 6.11. Given δ, ε ∈ ∆, there exists an element g ∈ F
such that δg = ε and εg = δ.

Proof. Let i be in I such thatA(i) = ∅. Then, by them−transitivity
of the symmetric group, there exists gi ∈ Sym(∆i) such that δigi = εi
and εigi = δi. For every index i such that A(i) 6= ∅ define fi : ∆i −→
Sym(∆i) as δ∆ifi = ε∆ifi = σi where σi ∈ Sym(∆i) is a permutation
such that δiσi = εi and εiσi = δi. So the element g ∈ F that we get is
the requested automorphism. �

From this we get the following corollary.

Corollary 6.12. (G,K) is a symmetric Gelfand pair.

Set L(∆) = {f : ∆ −→ C}. It is known ([B&al]) that the decom-
position of L(∆) into G−irreducible submodules is given by

L(∆) =
⊕

S⊆I antichain

WS

with

WS =


 ⊗

i∈A(S)

L(∆i)


⊗

(⊗

i∈S
V 1
i

)
⊗


 ⊗

i∈I\A[S]

V 0
i


 ,(7)

where, for each i = 1, . . . , n, we denote L(∆i) the space of the real
valued functions on ∆i, whose decomposition into Gi−irreducible sub-
modules is

L(∆i) = V 0
i

⊕
V 1
i ,

with V 0
i the subspace of the constant functions on ∆i and V

1
i = {f :

∆i → C :
∑

x∈∆i
f(x) = 0}.

Proposition 6.13. The spherical function associated with WS is

φS =
⊗

i∈A(S)

ϕi

⊗

i∈S
ψi

⊗

i∈I\A[S]

%i,(8)

where ϕi is the function defined on ∆i as

ϕi(x) =

{
1 x = δi0
0 otherwise
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and ψi is the function defined on ∆i as

ψi(x) =

{
1 x = δi0
− 1

m−1
otherwise

and %i is the function on ∆i such that %i(x) = 1 for every x ∈ ∆i.

Proof. It is clear that φS ∈ WS and (δ0)φS = 1, so we have to
show that each φS is K−invariant.

Set B1 = {i ∈ A(S) : A(i) = ∅}. If there exists i ∈ B1 such
that δi 6= δi0 then (δ)φS = (δ)φk

S = 0 for every k ∈ K, since δiϕi =
(δik

−1)ϕi = 0. Hence φ and φk coincide on δ ∈ ∆ satisfying this
property. So we can suppose that δi = δi0 for each i ∈ B1.

Let B2 be the set of maximal elements in A(S) \B1. If there exists
j ∈ B2 such that δj 6= δj0 then (δ)φS = (δ)φk

S = 0 for every k ∈ K, since
δjϕj = (δjk

−1)ϕj = 0. Hence φ and φk coincide on δ ∈ ∆ satisfying this

property. So we can suppose that δj = δj0 for each j ∈ B2. Inductively
it remains to show that (δ)φS = (δ)φk

S only for the elements δ such that

δA(S) = δ
A(S)
0 , i.e. (δi)ψi = (δi)ψ

k
i for every i ∈ S. This easily follows

from the definition of K and of the function ψi. �
Remark 6.14.

In [B&al] the authors give the decomposition of the space L(∆)
into irreducible submodules under the action of F and they prove that
WS is not isomorphic to WT if S 6= T and so this decomposition is
multiplicity-free. Although this implies that one gets a Gelfand pair,
they do not deal with Gelfand pairs theory. Actually, Proposition 6.11
is a stronger result, valid in the more general case of more complex sub-
structures of the poset block structure, that implies that the Gelfand
pair is also symmetric.

7. Substructures

Consider the rooted tree of depth n denoted by Tn, with ramifica-
tion indices (m1, . . . ,mn), we have associated with it the homogeneous
space obtained by considering its full automorphism group and the
stabilizer of a fixed vertex (a leaf) of the n−th level. But fixing new
indices (r1, . . . , rn) such that ri ≤ mi fer every i = 1, . . . , n we can
consider the variety of the subtrees in the whole tree Tn. The full au-
tomorphism group Aut(Tn) acts transitively on the variety of subtrees
and associated with the stabilizer of a particular subtree gives rise to
a Gelfand pair as shown in [CST3].

We have noted that the tree and its group of automorphisms are
a specific case in the theory of the poset block structures (as well as
the case of the direct product ). Then we can ask: is this result in
general true in the context of poset block structures? I.e. if we choose
a ri − subset of elements in the sets ∆i with i ∈ I according with the
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structure of the poset and its group of automorphisms, we can get a
Gelfand pairs considering the subgroup stabilizer a particular one?

Consider the poset block structure associated with the poset (I,≤),
with |I| = n.

For each i ∈ I, let ∆i = {δi0, . . . , δimi−1} be a finite set, with mi ≥ 2
for all i = 1, . . . , n.

We can represent ∆ by a rooted tree of depth n and whose branch
indices are m = (m1, . . . ,mn).

Consider the indices r = (r1, . . . , rn) as the indices of the substruc-
ture that we want to define. If i ∈ {1, . . . , n} is an index such that
A(i) = ∅, then the choice of ri elements in ∆i does not depend from
any other index.

If i ∈ {1, . . . , n} is an index such that ∅ 6= A(i) = {i1, . . . , ik}, then
the choice of ri elements in ∆i depends on the choose performed for
the indices i1, . . . , ik. In other words, the i−th choice is the same for
those substructures that coincide on the chooses given for the indices
belonging to the anchestral set A(i).

It is easy to check that the number of the substructures defined
above is exactly

∏

i∈I:A(i)=∅

(
mi

ri

)
·

∏

i∈I:A(i) 6=∅

(
mi

ri

)∏
j∈A(i) rj

.

In fact, for those indices i ∈ I such that A(i) = ∅, we have
(
mi

ri

)
possible

choices; for those indices i ∈ I such that A(i) 6= ∅, we have
(
mi

ri

)
possible

choices for each of the
∏

j∈A(i) rj vertices corresponding to (eventually)

different choices for the coordinates in A(i).

It is not difficult to verify that the action of the generalized wreath
product F of the symmetric groups of the sets ∆i transitively acts on
the variety of the substructures of a poset block structure.

We can also prove, using Gelfand’s Condition (Lemma 1.4 Chapter
1), that (F,K) is a symmetric Gelfand pair, where K denotes the
stabilizer of a fixed substructure. In fact, the following theorem holds.

Theorem 7.1. Let (I,≤) be a finite poset and let ∆ be the asso-
ciated poset block structure. Let F be the respective generalized wreath
product, with |∆i| = mi ≥ 2 for all i ∈ I. Let r=(r1, . . . , rn) be an
n−tuple of integers such that 1 ≤ ri ≤ mi. If A and B are two sub-
structures of type r in ∆, then there exists an automorphism f ∈ F of
∆ such that f(A) = B and f(B) = A.
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Proof. We can suppose, without loss of generality, that A(1) = ∅.
We want to get an automorphism f = (fi)i∈I ∈ F such that f(A) = B
and f(B) = A. We will proceed by induction on the depth of the
substructure.

Set π1(A) = {iA1 , . . . , iAr1} and π1(B) = {iB1 , . . . , iBr1}.
By the m1−transitivity of Sym(∆1), we can choose a permutation
f1 ∈ Sym(∆1) fixing π1(A) ∩ π1(B) such that f1(π1(A) \ (π1(A) ∩
π1(B))) = π1(B) \ (π1(A) ∩ π1(B)) and f1(π1(B) \ (π1(A) ∩ π1(B))) =
π1(A) \ (π1(A) ∩ π1(B)).

Now let 2 ≤ j ≤ n and A(j) = {j1, . . . , jk}, with j1 < . . . <
jk < j in N. Suppose that we have found an automorphism f ′ ∈
F such that f ′(π{1,...,j−1}(A)) = π{1,...,j−1}(B) and f ′(π{1,...,j−1}(B)) =
π{1,...,j−1}(A). We want to show that this result can be extended to
the j−th level. For both A and B, the vertices at the (j − 1)−st level
are exactly r1r2 · · · rj−1. Moreover f ′ maps vertices of the (j − 1)−st
level having the same choices for the coordinates in A(j) into vertices
that still have the same choices for the coordinates in A(j), since f ′ is
an automorphism of the poset block structure. Now for each possible
ancestral situation aj ∈ ∆j for the vertices of the (j − 1)−st level of
A, we put fj(aj) = gAj ∈ Sym(∆j), where g

A
j maps the rj elements

starting from those vertices into the rj elements in B starting from the
image of those vertices by f ′.

Analogously for each possible ancestral situation bj ∈ ∆j for the
vertices of the (j − 1)−st level of B.

If aj = bj, then fj has to be defined has fj(aj) = gAB
j ∈ Sym(∆j),

where gAB
j maps the rj elements in A into the rj elements of B and

viceversa.
If we put f ′′ = (1, . . . , 1, fj, 1, . . . , 1), then the composition of f ′

and f ′′ gives the automorphism f required. �

Now let K be the stabilizer of a fixed substructure. We get the
following corollary.

Corollary 7.2. (F,K) is a symmetric Gelfand pair.

The question about the decompositions into irreducible submod-
ules, and the corresponding spherical functions is still open.



CHAPTER 3

Markov Chains

This chapter is devoted to the study of particular Markov chains
linked with the theory of Gelfand Pairs. The Insect is studied in rela-
tion with the cut-off theory and it is generalized as Markov chain on
more general posets. Finally the first and the second crested products
are defined, as a generalization giving the same decomposition obtained
by the group theory.

1. General properties

The following topics about finite Markov chains can be found in
[CST2].

Consider a finite set X, with |X| = m. Let P be a stochastic matrix
of size m whose rows and columns are indexed by the elements of X,
so that ∑

x∈X
p(x0, x) = 1,

for every x0 ∈ X. Consider the Markov chain on X with transition
matrix P .

Definition 1.1. The Markov chain P is reversible if there exists
a strict probability measure π on X such that

π(x)p(x, y) = π(y)p(y, x),

for all x, y ∈ X.

We will say that P and π are in detailed balance. For a complete
treatment about these and related topics see [AlFi].

Define on L(X) = {f : X −→ C} a scalar product in the following
way:

〈f1, f2〉π =
∑

x∈X
f1(x)f2(x)π(x),

for all f1, f2 ∈ L(X) and the linear operator P : L(X) −→ L(X) by

(Pf)(x) =
∑

y∈X
p(x, y)f(y).

It is easy to verify that π and P are in detailed balance if and only if
P is self-adjoint with respect to the scalar product 〈·, ·〉π. Under these
hypothesis, it is known that the matrix P can be diagonalized over the
reals. Moreover 1 is always an eigenvalue of P and, if λ is another

49
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eigenvalue, one has |λ| ≤ 1.

Let λz be the eigenvalues of the matrix P , for every z ∈ X, with
λz0 = 1. Then there exists an invertible unitary real matrix U =
(u(x, y))x,y∈X such that PU = U∆, where ∆ = (λxδx(y))x,y∈X is the
diagonal matrix whose entries are the eigenvalues of P . This equation
gives, for all x, z ∈ X,

(9)
∑

y∈X
p(x, y)u(y, z) = u(x, z)λz.

Moreover, we have UTDU = I, where D = (π(x)δx(y))x,y∈X is the
diagonal matrix of coefficients of π. This second equation gives, for all
y, z ∈ X,

(10)
∑

x∈X
u(x, y)u(x, z)π(x) = δy(z).

Hence, the first equation tells us that each column of U is an eigen-
vector of P , the second one tells us that these columns are orthogonal
with respect to the product 〈·, ·〉π.

Let µ and ν two probability distributions on X. Then their total
variation distance is defined as

‖µ− ν‖TV = max
A⊆X

∣∣∣∣∣
∑

x∈A
µ(x)− ν(x)

∣∣∣∣∣ ≡ max
A⊆X
|µ(A)− ν(A)|.

It is easy to prove that ‖µ− ν‖TV = 1
2
‖µ− ν‖L1 , where

‖µ− ν‖L1 =
∑

x∈X
|µ(x)− ν(x)|.

Proposition 1.2. The k−th step transition probability is given by

(11) p(k)(x, y) = π(y)
∑

z∈X
u(x, z)λkzu(y, z),

for all x, y ∈ X.

Proof. The proof is a consequence of (9) and (10). In fact, the
matrix UTD is the inverse of U , so that UUTD = I. In formulæ, we
have ∑

y∈X
u(x, y)u(z, y) =

1

π(z)
∆z(x).

From the equation PU = U∆ we get P = U∆UTD, which gives

p(x, y) = π(y)
∑

z∈X
u(x, z)λzu(y, z).
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Iterating this argument we get

P k = U∆kUTD,

which is the assertion. �

Recall that there exists a correspondence between reversible Markov
chains and weighted graphs.

Definition 1.3. A weight on a graph G = (X,E) is a function
w : X ×X −→ [0,+∞) such that

(1) w(x, y) = w(y, x);
(2) w(x, y) > 0 if and only if x ∼ y.

If G is a weighted graph, it is possible associate with w a stochastic
matrix P = (P (x, y))x,y∈X on X by setting

p(x, y) =
w(x, y)

W (x)
,

with W (x) =
∑

z∈X w(x, z). The corresponding Markov chain is called
the random walk on G. It is easy to prove that the matrix P is in
detailed balance with the distribution π defined, for every x ∈ X, as

π(x) =
W (x)

W
,

with W =
∑

z∈X W (z). Moreover, π is strictly positive if X does not
contain isolated vertices. The inverse construction can be done. So,
if we have a transition matrix P on X which is in detailed balance
with the probability π, then we can define a weight w as w(x, y) =
π(x)p(x, y). This definition guarantees the symmetry of w and, by
setting E = {{x, y} : w(x, y) > 0}, we get a weighted graph.

There are some important relations between the weighted graph
associated with a transition matrix P and its spectrum. In fact, it
is easy to prove that the multiplicity of the eigenvalue 1 of P equals
the number of connected components of G. Moreover, the following
propositions hold.

Proposition 1.4. Let G = (X,E,w) be a finite connected weighted
graph and denote P the corresponding transition matrix. Then the
following are equivalent:

(1) G is bipartite;
(2) the spectrum σ(P ) is symmetric;
(3) −1 ∈ σ(P ).
Proof. 1) ⇒ 2) Suppose that Pf = λf , we have to show that

exists f ′ ∈ L(X) such that Pf ′ = −λf ′. Since G is bipartite we can
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write X = X0 tX1. If x ∈ Xj set f
′(x) = (−1)jf(x). So

Pf ′(x) =
∑

y∼x

p(x, y)f ′(y) =

=
∑

y∼x

(−1)j+1p(x, y)f(y) =

= (−1)j+1λf(x) = −λf ′(x).

2)⇒ 3) Trivial.
3)⇒ 1) There exists f ∈ L(X) such that Pf = −f . Suppose that

x0 ∈ X is a point of maximum for |f | and that f(x0) > 0 . From
−f(x0) =

∑
y∼x0

p(x0, y)f(y) we get f(x0) = −f(y) for each y ∼ x0.

Set Xj = {y ∈ X : f(y) = (−1)jf(x0)} for j = 0, 1. This gives the
bipartition of the graph G. �

Definition 1.5. Let P be a stochastic matrix. P is ergodic if there
exists n0 ∈ N such that

p(n0)(x, y) > 0, for all x, y ∈ X.
Proposition 1.6. Let G = (X,E) be a finite graph. Then the

following conditions are equivalent:

(1) G is connected and not bipartite;
(2) for every weight function on X, the associated transition ma-

trix P is ergodic.

Proof. 2)⇒ 1) By hypothesis there exists k0 such that p(k0)(x, y) >
0 for every x, y ∈ X. This implies that, for k > k0 we get pk(x, y) =∑

z∈X p
(n−n0)(x, z)pk0(z, y) > 0. This assures the existence of paths of

even and odd length from x and y, i.e. X is not bipartite.
1) ⇒ 2) It is clear that G is bipartite if and only if the length of a

path connecting a vertex x with itself is even. This implies that there
exists a path of odd length from x to x. For every x ∈ X denote it
l(x). Set 2M + 1 = maxx∈X |l(x)|. We can construct paths starting
and ending at x of length ≥ 2M . If m is even we choose z ∼ x and
the path q2t = (x, z, x, . . . , z, x), if m is odd we consider l(x) composed
with q2t. Set δ = maxx,y∈X d(x, y). We can conclude from this that
for any x, y ∈ X there exists a path joining them after n steps, where
n ≥ 2M + δ. In fact, denote l(x, y) the minimal path connecting x
and y and choose m = n − d(x, y) ≥ 2M . We have seen that we can
construct a path starting and ending at x of length ≥ 2M , compose it
with l(x, y) of length ≤ δ and this gives the path connecting x and y
in n steps. �

So we can conclude that a reversible transition matrix P is ergodic
if and only if the eigenvalue 1 has multiplicity one and −1 is not an
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eigenvalue.

This allows to prove the following fundamental theorem that is true
in a more general settings.

Theorem 1.7. Let P a probability on X in detailed balance with
the distribution π, then

lim
k→∞

p(k)(x, y) = π(y), ∀ x, y ∈ X.

Proof. We have from Proposition 1.2

p(k)(x, y) = π(y)
∑

z∈X
u(x, z)λkzu(y, z) = π(y)

(
1 +

∑

z 6=z0

u(x, z)λkzu(y, z)

)
,

the second summand goes to 0 since |λz|z 6=z0 < 1. �

In what follows we always suppose that the eigenvalue 1 has mul-
tiplicity one, so that the graph associated with the probability P is
connected. This is equivalent to require that the probability P is irre-
ducible, according with the following definition.

Definition 1.8. A stochastic matrix P on a set X is irreducible if,
for every x1, x2 ∈ X, there exists n = n(x1, x2) such that p(n)(x1, x2) >
0.

2. Insect Markov chain

In [F-T1] the following Markov chain on the space Ln is defined.
Suppose that at time zero we start from the vertex x0 = 0n ∈ Ln.
Let ξi denote the vertex 0n−i and αi the probability to reach ξi+1 from
staying at ξi. It is clear that α0 = 1, α1 =

1
q+1

and αn = 0. This leads

to the following recursive expression

αj =
1

q + 1
+ αj−1αj

1

q + 1
.

Solving the equation we get

αj =
qj − 1

qj+1 − 1
, 1 ≤ j ≤ n− 1.

Hence we can define P = (p(x, y))x,y∈Ln , as the stochastic matrix
whose entry p(x, y) is the probability that y is the first vertex in Ln

reached from x in the Markov chain defined above. It is clear that if
d(x, y) = d(x, z) (i.e. y and z are in the same sphere of center x) we
have p(x, y) = p(x, z). Fixed the vertex x0 = 0n, we can compute,
recalling the significance of the αj’s

p(x0, x0) = q−1(1− α1) + q−2α1(1− α2) + · · ·+
+ q−n+1α1α2 · · ·αn−2(1− αn−1) + q−nα1α2 · · ·αn−1.
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It is clear that, if d(x0, x) = 1, then p(x0, x) = p(x0, x0).
More generally, if d(x0, x) = j > 1, we have

p(x0, x) = q−jα1α2 · · ·αj−1(1− αj) + · · ·+
+ q−n+1α1α2 · · ·αn−2(1− αn−1) + q−nα1α2 · · ·αn−1.

In order to compute the eigenvalues λj, j = 0, 1, . . . , n of the associ-
ated operator P one can observe that by equivalence betweenAut(Tq,n)−
invariant operators and bi−Kq,n−invariant functions it is enough to
consider the spherical Fourier transform of the convolver representing
P (see [CST1]), namely

λj =
∑

x∈Ln

p(x0, x)φj(x), j = 0, 1, . . . , n.

Using the expressions given for P and the φj’s we get the following
eigenvalues.

For j = 0, we get

λ0 =
∑

x∈Ln

p(x0, x) = 1.

For j = n, we have

λn = p(x0, x0) · 1 + p(x0, x)

(
− 1

q − 1

)
· (q − 1) = 0.

For 1 ≤ j < n, we get

λj = qp(x0, x1) + (q2 − q)p(x0, x2) + · · ·+ (qn−j − qn−j−1)p(x0, xn−j)

+ (1− q)−1(qn−j+1 − qn−j)p(x0, xn−j+1)

= q(p(x0, x1)− p(x0, x2)) + q2(p(x0, x2)− p(x0, x3)) + · · ·
+ qn−j−1(p(x0, xn−j−1)− p(x0, xn−j)) + qn−jp(x0, xn−j)

+ (1− q)−1(qn−j+1 − qn−j)p(x0, xn−j+1)

=

n−j∑

h=1

qh(p(x0, xh)− p(x0, xh+1))

= (1− α1) + α1(1− α2) + · · ·+ α1α2 · · ·αn−j−1(1− αn−j)

= 1− α1α2 · · ·αn−j

= 1− q − 1

qn−j+1 − 1
.

Observe that, by Proposition 1.6 of this section, the Insect Markov
chain is ergodic. Moreover, it is clear that P is in detailed balance with
the uniform distribution π on Ln given by π(x) = 1

qn
for all x ∈ Ln.
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3. Cut-off phenomenon

Letm
(k)
x (y) = p(k)(x, y) be the distribution probability after k steps.

The total variation distance allows to estimate how m(k) converges to
the stationary distribution π.

There are interesting cases in which the total variation distance
remains close to 1 for a long time and then tends to 0 in a very fast
way (see, for some examples, [Dia1] and [DSC2]). This suggests the
following definition (see [CST2]).

Suppose that Xn is a sequence of finite sets. Let mn and pn be
a probability measure on Xn and an ergodic transition probability on
Xn, respectively. Denote πn the corresponding stationary measure and

m
(k)
n the distribution of (Xn,mn, pn) after k steps.
Now let (an)n∈N and (bn)n∈N be two sequences of positive real num-

bers such that

lim
n→∞

bn
an

= 0.

Definition 3.1. The sequence of Markov chains (Xn,mn, pn) has
a (an, bn)−cut-off if there exist two functions f1, f2 : [0,+∞) −→ R
with

• limc→+∞ f1(c) = 0
• limc→+∞ f2(c) = 1

such that, for any fixed c > 0, one has

‖m(an+cbn)
n − πn‖TV ≤ f1(c) and ‖m(an−cbn)

n − πn‖TV ≥ f2(c)

for sufficiently large n.

The following proposition gives a necessary condition for the cut-off
phenomenon.

Proposition 3.2. If (Xn,mn, pn) has an (an, bn)−cut-off, then for
any 0 < ε1 < ε2 < 1 there exist k2(n) ≤ k1(n) such that

(1) k2(n) ≤ an ≤ k1(n);

(2) for n large, k ≥ k1(n)⇒ ‖m(k)
n − πn‖TV ≤ ε1;

(3) for n large, k ≤ k2(n)⇒ ‖m(k)
n − πn‖TV ≥ ε2;

(4) limn→∞
k1(n)−k2(n)

an
= 0.

Proof. By definition there exist c1 and c2 such that f2(c) ≥ ε2 for
c ≥ c2 and f1(c) ≤ ε1 for c ≥ c1. So it suffices to take k1(n) = an+ c1bn
and k2(n) = an − c2bn to get the assertion. �
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r‖µ∗k − π‖TV
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Fig.9: The cut–off phenomenon

The cut-off phenomenon occurs in several examples of Markov chains.
In general it can be detected thanks to a careful spectral analysis, as we
will do in the proof of the following theorem. In what follows suppose
n ≥ 2.

Theorem 3.3. The probability measure associated with the Insect
Markov chain converges to the stationary distribution without a cut-off
behavior.

Proof. We want to give an expression for m(k)(x) = p(k)(x0, x).
We get

• If x = x0, then

m(k)(x0) =
1

qn

{
1 +

n∑

j=1

qj−1(q − 1)

[
1− q − 1

qn−j+1 − 1

]k}
.

• If d(x0, x) = h, with 1 ≤ h ≤ n− 1, then

m(k)(x) =
1

qn

{
1 +

n−h+1∑

j=1

qj−1(q − 1)

[
1− q − 1

qn−j+1 − 1

]k
φj(x)

}

=
1

qn

{
1 +

n−h∑

j=1

qj−1(q − 1)

[
1− q − 1

qn−j+1 − 1

]k
− qn−h

[
1− q − 1

qh − 1

]k}

• If d(x0, x) = n, then

m(k)(x) =
1

qn

{
1−

[
1− q − 1

qn − 1

]k}
.
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Let π be the uniform distribution on Ln. Then we have

‖m(k) − π‖L1 =
1

qn

{
n∑

j=1

qj−1(q − 1)λkj

+
n−1∑

h=1

(qh − qh−1)

∣∣∣∣∣
n−h∑

j=1

qj−1(q − 1)λkj − qn−hλkn−h+1

∣∣∣∣∣

+ qn−1(q − 1)λk1
}
.

Now observe that

1

qn

n−1∑

h=1

(qh − qh−1)
n−h∑

j=1

qj−1(q − 1)λkj +
1

qn

n∑

j=1

qj−1(q − 1)λkj =

1

qn

n−1∑

j=1

[
1 + (q − 1) + (q2 − q) + · · ·+ (qn−j − qn−j−1)

]
·qj−1(q−1)λkj =

1

qn

n−1∑

j=1

qn−1(q − 1)λkj =
q − 1

q

n−1∑

j=1

λkj

and

1

qn

n−1∑

h=1

(qh − qh−1)qn−hλkn−h+1 +
1

qn
(qn − qn−1)λk1 =

q − 1

q

n−1∑

j=1

λkj .

Using the trivial fact that
∑

j |aj−bj| ≤
∑

j(|aj|+|bj|), we conclude

‖m(k) − π‖L1 ≤ 2(q − 1)

q

n−1∑

j=1

λkj .

On the other hand

‖m(k) − π‖L1 ≥
∑

x:d(x0,x)=n

|m(k)(x)− π(x)|

=
1

qn
(qn − qn−1)λk1 =

q − 1

q
λk1.

So we get the following estimate:

q − 1

q
λk1 ≤ ‖m(k) − π‖L1 ≤ 2(q − 1)

q

n−1∑

j=1

λkj ,

or, equivalently,

q − 1

2q
λk1 ≤ ‖m(k) − π‖TV ≤

(q − 1)

q

n−1∑

j=1

λkj .

In what follows the following inequalities will be used:

(1) (1− x)k ≤ exp(−kx) if x ≤ 1.
(2) qn−1

qn−j+1−1
≥ qj−1, for j ≥ 1.
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(3) qj−1 ≥ j, for q ≥ 2 and j ≥ 1.

Choose k2(n) =
qn−1
q−1

, then

q − 1

q

n−1∑

j=1

λkj ≤
q − 1

q

n−1∑

j=1

exp

(
− q − 1

qn−j+1 − 1
k

)
≤ ( if k ≥ k2(n))

≤ q − 1

q

n−1∑

j=1

exp

(
− q − 1

qn−j+1 − 1
k2(n)

)

≤ q − 1

q

n−1∑

j=1

exp(−qj−1) ≤ (q − 1)

q

n−1∑

j=1

(e−j)

≤ (q − 1)

q

∞∑

j=1

(e−1)j =
q − 1

q
· 1

e− 1
:= ε2.

On the other hand, if k1(n) = 2 qn−1
q−1

, we get

q − 1

2q
λk1 =

q − 1

2q

[
1− q − 1

qn − 1

]k
≥ ( if k ≤ k1(n))

≥ q − 1

2q

[
1− q − 1

qn − 1

]2 qn−1
q−1

:= ε1.

Now k1(n) > k2(n), ε1 < ε2 and

• for k ≥ k2(n) we have ‖m(k) − π‖TV ≤ ε2,
• for k ≤ k1(n) we have ‖m(k) − π‖TV ≥ ε1.

This implies that cut-off phenomenon does not occur in this case by
Proposition 3.2. In fact, the sequences k1(n) and k2(n) cannot satisfy
condition (4) of Proposition 3.2. This gives the assertion. �

Remark 3.4.

Using the same strategy of Theorem 3.3 one can easily check that
cut-off phenomenon does not occur also if we fix n and let q → +∞.

Remark 3.5.

If n = 1 we get the simple random walk on the complete graph Kq

on q vertices, in which each vertex has a loop. It is straightforward
that the first is performed choosing equiprobably one of the q vertices
and so the probability measure m(1) equals the uniform distribution π
on the set of the vertices.

4. Orthogonal block structures

This section is devoted to introduce a Markov chain in a general
structure. One can observe the similitude with the construction per-
formed in Chapter 2 Section 6.



4. ORTHOGONAL BLOCK STRUCTURES 59

In effect here, we consider partitions and not anchestral relations.
This is a generalization that does not require group theory.

4.1. Preliminaries. The following definitions can be found in [BaCa].
Given a partition F of a finite set Ω, let RF be the relation matrix of
F , i.e.

RF (α, β) =

{
1 if α and β are in the same part of F

0 otherwise.

If RF (α, β) = 1, we usually write α ∼F β.

Definition 4.1. A partition F of Ω is uniform if all its parts have
the same size. This number is denoted kF .

The trivial partitions of Ω are the universal partition U , which has
a single part and whose relation matrix is JΩ, and the equality partition
E, all of whose parts are singletons and whose relation matrix is IΩ.

The partitions of Ω constitute a poset with respect to the relation
4, where F 4 G if every part of F is contained in a part of G. We use
F � G if F 4 G and F 4 H 4 G implies H = F or H = G. Given
any two partitions F and G, their infimum is denoted F ∧ G and is
the partition whose parts are intersections of F−parts with G−parts;
their supremum is denoted F ∨G and is the partition whose parts are
minimal subject to being unions of F−parts and G−parts.

Definition 4.2. A set F of uniform partitions of Ω is an orthogonal
block structure if:

(1) F contains U and E;
(2) for all F and G ∈ F, F contains F ∧G and F ∨G;
(3) for all F and G ∈ F, the matrices RF and RG commute with

each other.

4.2. Probability. Let F be an orthogonal block structure on the
finite set Ω. We want to associate with F a Markov chain on Ω. To
perform this, we have to define a new poset (P,≤) starting from the
partitions in F.

Let C = {E = F0, F1, . . . , Fn = U} a maximal chain of partitions
such that Fi �Fi+1 for all i = 0, . . . , n− 1. Let us design a rooted tree
of depth n as follows: the n−th level is constituted by |Ω| vertices; the
(n−1)−th by |Ω|

kF1
vertices. Each of these vertices is a father of kF1 sons

that are in the same F1−class. Inductively, at the i−th level there are
|Ω|

kFn−i
vertices fathers of kFn−i

vertices of the (i+1)−th level belonging

to the same Fn−i−class.
We can perform the same construction for every maximal chain C

in F. The next step is to glue the different structures identifying the
vertices associated with the same partition. The resulting structure is
the poset (P,≤).
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Example 4.3.

Consider the set Ω = {000, 001, 010, 011, 100, 101, 110, 111} and the
set of partitions of Ω given by F = {E,F1, F2, F3, U} where, as usually,
E denotes the equality partition and U the universal partition of Ω.
The nontrivial partitions are defined as:

• F1 = {000, 001, 010, 011}
∐{100, 101, 110, 111};

• F2 = {000, 001}
∐{010, 011}∐{100, 101}∐{110, 111};

• F3 = {000, 010}
∐{001, 011}∐{100, 110}∐{101, 111}.

So the orthogonal block structure F can be represented as the following
poset: q

q
q q

q
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Fig.10. The orthogonal block structure F = {E,F1, F2, F3, U}.

The maximal chains in F have length 3 and they are:

• C1 = {E,F2, F1, U};
• C2 = {E,F3, F1, U}.

The associated rooted trees T1 and T2 have depth 3 and they are,
respectively, q
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Fig.11. The rooted trees associated with C1 and C2.

So the poset (P,≤) associated with F is



4. ORTHOGONAL BLOCK STRUCTURES 61
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Fig.12. The poset (P,≤) associated with F = {E,F1, F2, F3, U}.

Observe that, if F1 � F2, then the number of F1−classes contained in
a F2−class is kF2/kF1 .

The Markov chain that we want to describe is performed on the last
level of the poset (P,≤) associated with the set F. We can think of an
insect which lies at the starting time on a fixed element ω0 of Ω (this
corresponds to the identity relation E, i.e. each element is in relation
only with itself). The insect randomly moves reaching an adjacent site
in (P,≤) (this corresponds, in the orthogonal block structure F, to
move from E to another relation F such that E � F , i.e. ω0 is iden-
tified with all the elements in the same F−class) and so on. At each
step in (P,≤) (that does not correspond necessarily to a step in the
Markov chain on Ω) the insect could randomly move from the i−th
level of (P,≤) either to the (i− 1)−th level or to the (i+ 1)−th level.
Going up means to pass in F from a partition F to a partition L such
that F � L (these are |{L ∈ F : F � L}| possibilities in (P,≤)), go-
ing down means to pass in F to a partition J such that J � F (these
are

∑
J∈F:J�F

kF
kJ

possibilities in (P,≤)). The random walk on Ω stops

whenever the insect reaches once again the last level in (P,≤). In order
to describe this idea let us introduce the following definitions.

Let αF,G the probability of moving from the partition F to the
partition G. So the following relation is satisfied:

αF,G =
1∑

J∈F:J�F (kF : kJ) + |{L ∈ F : F � L}|(12)

+
∑

J∈F:J�F

(kF : kJ)αJ,FαF,G∑
J∈F:J�F (kF : kJ) + |{L ∈ F : F � L}| .

In fact, the insect can directly pass from F to G with probability αF,G

or go down to any J such that J � F and then come back to F with
probability αJ,F and one starts the recursive argument. From direct
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computations one gets

αE,F =
1

|{L ∈ F : E � L}| .(13)

Moreover, if αE,F = 1 we have, for all G such that F �G

αF,G =
1∑

J∈F:J�F (kF : kJ) + |{L ∈ F : F � L}| ;(14)

if αE,F 6= 1, the coefficient αF,G is defined as in (12).

Definition 4.4. For every ω ∈ Ω, define

p(ω0, ω) =
∑

E 6=F∈F
ω0∼Fω

∑

C⊆F chain

C={E,F1,...,F ′,F}

αE,F1 · · ·αF ′,F
(
1−∑F�L αF,L

)

kF
.

The fact that p is effectively a transition probability on Ω will follow
from Theorem 4.7. First define the following numbers:

pF =
∑

C⊆F chain

C={E,F1,...,F ′,F}

αE,F1 · · ·αF ′,F

(
1−

∑

F�L

αF,L

)
.(15)

Observe that the coefficient pF expresses the probability of reaching
the partition F but no partition L such that F ≺ L in F.

Lemma 4.5. The coefficients pF ’s defined in (15) satisfy the follow-
ing identity: ∑

E 6=F∈F
pF = 1.

Proof. Using the definitions we have

∑

E 6=F∈F
pF =

∑

E 6=F∈F

∑

C⊆F chain

C={E,F1,...,F ′,F}

αE,F1 · · ·αF ′,F

(
1−

∑

F�L

αF,L

)

=
∑

E�F

αE,F = 1.

In fact, for every F ∈ F such that E 6 F , given a chain C =
{E,F1, . . . , F

′, F} we get the terms αE,F1 · · ·αF ′,F
(
1−∑F�L αF,L

)
.

Since C = {E,F1, . . . , F
′, F, L} is still a term of the sum one can check

that only the summands
∑

E�F αE,F are not cancelled. The thesis fol-
lows from (13). �
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For every F ∈ F, F 6= E define MF as the Markov operator whose
transition matrix is

MF =
1

kF
RF .(16)

Definition 4.6. Given the operators MF ’s as in (16) and the co-
efficients pF ’s as in (15), set

M =
∑

E 6=F∈F
pFMF .(17)

By abuse of notation, we denoteM the stochastic matrix associated
with the Markov operator M .

Theorem 4.7. M coincides with the transition matrix of p.

Proof. By computation we get:

M(ω0, ω) =
∑

E 6=F∈F
pFMF (ω0, ω) =

∑

E 6=F∈F
ω0∼Fω

pF ·
1

kF

=
∑

E 6=F∈F
ω0∼Fω

∑

C⊆F chain

C={E,F1,...,F ′,F}

αE,F1 · · ·αF ′,F
(
1−∑F�L αF,L

)

kF

= p(ω0, ω).

�

4.3. Spectral analysis ofM . We want to give the spectral analy-
sis of the operatorM acting on the space L(Ω) of the complex functions
defined on the set Ω. First of all introduce (see, for example, [Bai]),
for every F ∈ F, the following subspaces of L(Ω):

VF = {f ∈ L(Ω) : f(α) = f(β) if α ∼F β}.

It is easy to show that the operator MF defined in (16) is the projector
onto VF . In fact if f ∈ L(Ω), thenMFf(ω0) is the average of the values
that f takes on the elements ω such that ω ∼F ω0 and so MFf = f if
f ∈ VF and MFf = 0 if f ∈ V ⊥

F .
Set

WG = VG ∩ (
∑

G≺F

VF )
⊥.

In [Bai] is proven that L(Ω) =
⊕

G∈FWG. We can deduce the following
proposition.
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Proposition 4.8. The WG’s are eigenspaces for the operator M
with associated eigenvalue

λG =
∑

E 6=F∈F
F4G

pF .(18)

Proof. By definition, WG ⊆ VG. This implies that, if f ∈ WG,

MFf =

{
f if F 4 G
0 otherwise

So we get

M ·WG =
∑

E 6=F∈F
pFMF ·WG

= (
∑

E 6=F∈F
F4G

pF ) ·WG.

Hence the eigenvalue λG associated with the eigenspace WG is

λG =
∑

E 6=F∈F
F4G

pF .

and the assertion follows. �
Example 4.9.

We want to study the transition probability p in the case of the
orthogonal block structure of the Example 4.3. One can easily verify
that we have:

• αE,F2 = αE,F3 = αF2,F1 = αF3,F1 =
1
2
;

• αF1,U = 1
3
.

Let us compute the transition probability p on the last level of (P,≤):q
q q
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We have:

p(000, 000) =
1

2
· 1
2
· 1
2
+

1

2
· 1
2
· 1
2
+ 2 · 1

2
· 1
2
· 2
3
· 1
4
+ 2 · 1

2
· 1
2
· 1
3
· 1
8
=

17

48
;

p(000, 001) = p(000, 010)

=
1

2
· 1
2
· 1
2
+ 2 · 1

2
· 1
2
· 2
3
· 1
4
+ 2 · 1

2
· 1
2
· 1
3
· 1
8
=

11

48
;

p(000, 011) = 2 · 1
2
· 1
2
· 2
3
· 1
4
+ 2 · 1

2
· 1
2
· 1
3
· 1
8
=

5

48
;

p(000, 100) = p(000, 101) = p(000, 110) = p(000, 111)

= 2
1

2
· 1
2
· 1
3
· 1
8
=

1

48
.

The corresponding transition matrix is given by

P =
1

48




17 11 11 5 1 1 1 1
11 17 5 11 1 1 1 1
11 5 17 11 1 1 1 1
5 11 11 17 1 1 1 1
1 1 1 1 17 11 11 5
1 1 1 1 11 17 5 11
1 1 1 1 11 5 17 11
1 1 1 1 5 11 11 17




The coefficients PF , with E 6= F , are the following (see (15)):

• pU = 2 · 1
2
· 1
2
· 1
3
= 1

6
;

• pF1 = 2 · 1
2
· 1
2
· 2
3
= 1

3
;

• pF2 =
1
2
· 1
2
= 1

4
;

• pF3 =
1
2
· 1
2
= 1

4
.

The Markov operator M is given by (see (17) and (16)):

M =
1

4
MF2 +

1

4
MF3 +

1

3
MF1 +

1

6
MU

and its eigenvalues are from formula (18) the following:

• λU = 1;
• λF1 =

5
6
;

• λF2 =
1
4
;

• λF3 =
1
4
;

• λE = 0;

In the case of poset block structure, that is a particular case of the
orthogonal block structure, we get the same decomposition using the
following easy lemmas.

Lemma 4.10. There exists a one-to-one correspondence between an-
tichains and ancestral subsets of I.

Proof. First of all, we prove that given an antichain S the set
AS = I \ H[S] is ancestral. Suppose i ∈ AS and j > i, then it must
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be j ∈ AS. In fact, if j ∈ H[S], then we should have i ∈ H(S), since
i < j; this is absurd.

Now let us show that this correspondence is injective. Suppose that,
given two antichains S1 and S2, with S1 6= S2, one gets AS1 = AS2 . This
implies thatH[S1] = H[S2]. By hypothesis we can suppose without loss
of generality that there exists s1 ∈ S1\(S1∩S2). Hence s1 ∈ H(S2) and
there exists s2 ∈ S2 such that s1 < s2. So s2 ∈ H[S1]. In particular,
if s2 ∈ S1 we have an absurd because S1 is an antichain, if s2 ∈ H(S1)
there exists s′1 ∈ S1 such that s′1 > s2 > s1, absurd again.

So the application S −→ I \H[S], for each S antichain, is injective.
Given an ancestral set J , define the set of the maximal elements in

I \ J as SJ = {i ∈ I \ J : A(i) ∩ (I \ J) = ∅}. It is easy to prove that
SJ is an antichain. In fact, if i, j ∈ SJ then if i < j or i > j one of i or
j is not maximal.

Now we want to show that J = I \ H[SJ ], that is equivalent to
show that I \ J = H[SJ ]. First we have that I \ J ⊆ H[SJ ] because if
i is maximal in I \ J than it belongs to SJ , otherwise there exists j in
SJ such that i < j, and so i ∈ H[SJ ]. On the other hand, let i be in
H[SJ ]. If i is in SJ , then it is in I \ J by definition. If i is in H(SJ)
there exists j in SJ such that i < j. Now if i is an element of J then
j has the same property since J is ancestral and this is absurd and so
H[SJ ] ⊆ I \ J . This shows that J = I \H[SJ ].

From this we have the equivalence S ←→ I \ H[S] between an-
tichains and ancestral sets. �

Remark 4.11.

Observe that, for S = ∅, one gets AS = I.

Remark 4.12.

Observe that all the maximal chains in A have the same length n.
In fact, the empty set is always ancestral. A singleton {i} constituted
by a maximal element in I is still an ancestral set. Inductively, if J ∈ A

is an ancestral set, then J t {i} is an ancestral set if i is a maximal
element in I \ J . So every maximal chain in the poset of ancestral
subsets has length n. In particular, the empty set ∅ corresponds to the
universal partition U and I to the equality partition E in ∼A.

Remark 4.13.

Observe that the operator M∼J
=:MJ can be obtained as follows:

MJ =


 ⊗

i∈I\H[SJ ]

Ii


⊗


 ⊗

i∈H[SJ ]

Ui


 ,(19)
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where Ii denotes the identity operator on ∆i and Ui is the uniform
operator on ∆i, whose adjacency matrix is 1

m
Ji, where

Ji =
1

mi




1 1 · · · 1

1
. . .

...
...

. . .
...

1 · · · · · · 1


 .

.

Considering the action of M on the spherical function φS (given in
Proposition 6.13 Section 6 of Chapter 2) we get the following eigenvalue
λS for φS:

λS =
∑

∅6=SJ :S⊆I\H[SJ ]

p∼J
.(20)

Remark 4.14.

One can observe that the eigenspaces and the corresponding eigen-
values have been indexed by the antichains of the poset I in (7) and in
(20); instead in the first part they are indexed by the relations of the
orthogonal poset block F. The correspondence is the following.

Given a relation G ∈ F, it can be regarded as an ancestral relation
∼J , for some ancestral subset J ⊆ I. Set

S = {i ∈ J : H(i) ∩ J = ∅}.
It is clear that S is an antichain of I. From the definition it follows
that

A(S) = J \ S and I \ A[S] = I \ J.
The corresponding eigenspace WS becomes:

WS =


⊗

i∈J\S
L(∆i)


⊗

(⊗

i∈S
V 1
i

)
⊗


⊗

i∈I\J
V 0
i


 .

It is easy to check that the functions in WS are constant on the equiva-
lence classes of the relation ∼J . Moreover, these functions are orthog-
onal to the functions which are constant on the equivalence classes of
the relation ∼J ′ , with ∼J ′ � ∼J (where J ′ is obtained from J deleting
an element of S). Since the orthogonality with the functions constant
on ∼J ′ implies the orthogonality with all functions constant on ∼L,
where ∼L�∼J , then we have WS ⊆ WG. On the other hand, it is easy
to verify that

dim(WS) = dim(WG) = m|J\S| · (m− 1)|S|,

and so we have WS = WG.
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Analogously, if G =∼J , from (20) we get

λS =
∑

∅6=SK :S⊆I\H[SK ]

p∼K
=

∑

I 6=K:S⊆K

p∼K
,

since SK = {i ∈ I \ K : A(i) = ∅} and H[SK ] = I \ K whose conse-
quence is I \H[SK ] = K. Moreover, since S ⊆ K if and only if J ⊆ K,
we get

λS =
∑

I 6=K:J⊆K

p∼K
=

∑

E 6=∼K :∼K4∼J

p∼K
= λG.

5. First and Second crested product

In this section we introduce a particular product of Markov chains
defined on different sets. This idea is inspired to the definition of
crested product for association schemes given in [BaCa].

5.1. The First Crested Product. In this subsection we intro-
duce a particular product of Markov chains defined on different sets.
This idea is inspired to the definition of crested product for association
schemes given in [BaCa].

Let Xi be a finite set, with |Xi| = mi, for every i = 1, . . . , n, so
that we can identify Xi with the set {0, 1, . . . ,mi − 1}. Let Pi be an
irreducible Markov chain on Xi and let pi be the transition probability
associated with Pi. Moreover, assume that pi is in detailed balance
with the strict probability measure σi on Xi, i.e.

σi(x)pi(x, y) = σi(y)pi(y, x),

for all x, y ∈ Xi.
Consider the product X1 × · · · ×Xn. Let {1, . . . , n} = C

∐
N be a

partition of the set {1, . . . , n} and let p01, p
0
2, . . . , p

0
n a probability distri-

bution on {1, . . . , n}, i.e. p0i > 0 for every i = 1, . . . , n and
∑n

i=1 p
0
i = 1.

Definition 5.1. The first crested product of Markov chains Pi’s
with respect to the partition {1, . . . , n} = C

∐
N is the Markov chain

on the product X1 × · · · ×Xn whose transition matrix is

P =
∑

i∈C
p0i (I1 ⊗ · · · ⊗ Ii−1 ⊗ Pi ⊗ Ii+1 ⊗ · · · ⊗ In)

+
∑

i∈N
p0i (I1 ⊗ · · · ⊗ Ii−1 ⊗ Pi ⊗ Ji+1 ⊗ · · · ⊗ Jn) ,

where Ii denotes the identity matrix of size mi and Ji denotes the uni-
form matrix on Xi.

In other words, we choose an index i in {1, . . . , n} following the
distribution p01, . . . , p

0
n. If i ∈ C, then P acts on the i−th coordinate

by the matrix Pi and fixes the remaining coordinates; if i ∈ N , then P
fixes the coordinates {1, . . . , i− 1}, acts on the i−th coordinate by the
matrix Pi and changes uniformly the remaining ones.
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For all (x1, . . . , xn), (y1, . . . , yn) ∈ X1 × · · · × Xn, the transition
probability p associated with P is given by

p((x1, . . . , xn), (y1, . . . , yn)) =

∑

i∈C
p0i (δ1(x1, y1) · · · δi−1(xi−1, yi−1)pi(xi, yi)δi+1(xi+1, yi+1) · · · δn(xn, yn))

+
∑

i∈N
p0i

(
δ1(x1, y1) · · · δi−1(xi−1, yi−1)pi(xi, yi)∏n

j=i+1mj

)
,

where δi is defined by

δi(xi, yi) =

{
1 if xi = yi,

0 otherwise.

We want to study the spectral theory of the operator P . We recall
that the following isomorphism holds:

L(X1 × · · · ×Xn) ∼=
n⊗

i=1

L(Xi),

with (f1 ⊗ · · · ⊗ fn)(x1, . . . , xn) := f1(x1)f2(x2) · · · fn(xn).
Assume that, for every i = 1, . . . , n, the following spectral decom-

position holds:

L(Xi) =

ri⊕

ji=0

V i
ji
,

i.e. Vji is an eigenspace for Pi with associated eigenvalue λji and whose
dimension is mji .

Now set N = {i1, . . . , il} and C = {c1, . . . , ch}, with h+ l = n and
such that i1 < . . . < il and c1 < . . . < ch.

Theorem 5.2. The probability P defined above is reversible if and
only if Pk is symmetric for every k > i1. If this is the case, P is in
detailed balance with the strict probability measure π on X1 × · · · ×Xn

given by

π(x1, . . . , xn) =
σ1(x1)σ2(x2) · · ·σi1(xi1)

mi1+1 · · ·mn

.

Proof. Consider the elements x = (x1, . . . , xn) and y = (y1, . . . , yn)
belonging to X1×· · ·×Xn. First, we want to prove that the condition
σk = 1

mk
, for every k > i1, is sufficient. Let k ∈ {1, . . . , n} such that

xi = yi for every i = 1, . . . , k − 1 and xk 6= yk. Suppose k < i1. Then
we have

p(x, y) = p0k (pk(xk, yk)δk+1(xk+1, yk+1) · · · δn(xn, yn)) .
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If xi = yi for every i = k + 1, . . . , n, we get

π(x)p(x, y) = σ1(x1) · · ·σk(xk) · · ·σi1(xi1)p0k
pk(xk, yk)

mi1+1 · · ·mn

= σ1(y1) · · ·σk(yk) · · ·σi1(yi1)p0k
pk(yk, xk)

mi1+1 · · ·mn

= π(y)p(y, x),

since σk(xk)pk(xk, yk) = σk(yk)pk(yk, xk). If the condition xi = yi is
not satisfied for every i = k+1, . . . , n, then the equality π(x)p(x, y) =
π(y)p(y, x) = 0 easily follows.

If k = i1, then we get

p(x, y) = p0i1

(
pi1(xi1 , yi1)

1

mi1+1 · · ·mn

)

and so

π(x)p(x, y) = σ1(x1) · · ·σi1(xi1)p0i1
pi1(xi1 , yi1)

m2
i1+1 · · ·m2

n

= σ1(y1) · · · · · ·σi1(yi1)p0i1
pi1(yi1 , xi1)

m2
i1+1 · · ·m2

n

= π(y)p(y, x),

since σi1(xi1)pi1(xi1 , yi1) = σi1(yi1)pi1(yi1 , xi1).
In the case k > i1, we have

p(x, y) =
∑

i∈N,i≤k

p0i
pi(xi, yi)

mi+1 · · ·mn

and so

π(x)p(x, y) =
σ1(x1) · · ·σi1(xi1)
mi1+1 · · ·mn

∑

i∈N,i≤k

p0i
pi(xi, yi)

mi+1 · · ·mn

=
σ1(y1) · · ·σi1(yi1)
mi1+1 · · ·mn

∑

i∈N,i≤k

p0i
pi(yi, xi)

mi+1 · · ·mn

= π(y)p(y, x).

In fact, the terms corresponding to an index i < k satisfy pi(xi, yi) =
pi(yi, xi) since xi = yi, the term corresponding to the index k satisfies
pk(xk, yk) = pk(yk, xk) since the equality

pk(xk, yk) = pk(yk, xk)

holds by hypothesis.
Now we want to prove that the condition σk =

1
mk

, for every k > i1,

is also necessary. Suppose that the equality π(x)p(x, y) = π(y)p(y, x)
holds. By the hypothesis of irreducibility we can consider two elements
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x0, y0 ∈ X1 × · · · ×Xn such that x0i1 6= y0i1 and with the property that
pi1(x

0
i1
, y0i1) 6= 0. Now we have

π(x0)p(x0, y0) = π(y0)p(y0, x0)⇔ π(x0)pi1(x
0
i1
, y0i1) = π(y0)pi1(y

0
i1
, x0i1).

This gives

π(x0)

π(y0)
=
pi1(y

0
i1
, x0i1)

pi1(x
0
i1
, y0i1)

=
σi1(x

0
i1
)

σi1(y
0
i1
)
.

Consider now the element x = (x01, . . . , x
0
i1
, y0i1+1, . . . , y

0
n). The equality

π(x)p(x, y0) = π(y0)p(y0, x) implies

π(x)

π(y0)
=
pi1(y

0
i1
, x0i1)

pi1(x
0
i1
, y0i1)

=
σi1(x

0
i1
)

σi1(y
0
i1
)
.

So we get π(x0) = π(x), i.e. the probability π does not depend from the
coordinates i1+1, . . . , n. Set now x′ = (x01, . . . , x

0
i1
, . . . , x0k−1, xk, . . . , xn).

The equality π(x0)p(x0, x′) = π(x′)p(x′, x0) gives

π(x0)

( ∑

j∈N,j≤k

p0j(pj(x
0
j , x

′
j))

)
= π(x′)

( ∑

j∈N,j≤k

p0j(pj(x
′
j, x

0
j))

)
.

Since the probability π does not depend from the coordinates i1 +
1, . . . , n, we get pk(x

0
k, x

′
k) = pk(x

′
k, x

0
k). This implies σk(x

′
k) = σk(x

0
k)

and so the hypothesis of irreducibility guarantees that σk is uniform on
Xk. This completes the proof. �

Theorem 5.3. The eigenspaces of the operator P are given by

• W 1 ⊗ · · · ⊗W k−1 ⊗ V k
jk
⊗ V k+1

0 ⊗ V k+2
0 ⊗ · · · ⊗ V n

0 ,
with jk 6= 0, for k ∈ {i1 + 1, . . . , n} and where

W i =

{
L(Xi) if i ∈ N,
V i
ji
, ji = 0, . . . , ri if i ∈ C,

with eigenvalue
∑

i∈C:i<k

p0iλji + p0kλjk +
∑

i>k

p0i .

• V 1
j1
⊗ · · · ⊗ V i1−1

ji1−1
⊗ V i1

ji1
⊗ V i1+1

0 ⊗ · · · ⊗ V n
0 ,

with jt = 0, . . . , rt, for every t = 1, . . . , i1, with eigenvalue

i1∑

i=1

p0iλji +
n∑

i=i1+1

p0i .

Proof. Fix an index k ∈ {i1 + 1, i1 + 2, . . . , n} and consider the
function ϕ in the space

W 1 ⊗ · · · ⊗W k−1 ⊗ V k
jk
⊗ V k+1

0 ⊗ V k+2
0 ⊗ · · · ⊗ V n

0 ,
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with jk 6= 0 and

W i =

{
L(Xi) if i ∈ N,
V i
ji
, ji = 0, . . . , ri if i ∈ C,

so that ϕ = ϕ1 ⊗ · · · ⊗ ϕk−1 ⊗ ϕk ⊗ ϕk+1 ⊗ · · · ⊗ ϕn with ϕi ∈ W i

for i = 1, . . . , k − 1, ϕk ∈ V k
jk

and ϕl ∈ V l
0 for l = k + 1, . . . , n. Set

x = (x1, . . . , xn) and y = (y1, . . . , yn), then

(Pϕ)(x) =
∑

y

p(x, y)ϕ(y)

=
∑

y

(∑

i∈C
p0i δ1(x1, y1) · · · δi−1(xi−1, yi−1)pi(xi, yi)δi+1(xi+1, yi+1) · · · δn(xn, yn)

+
∑

i∈N
p0i δ1(x1, y1) · · · δi−1(xi−1, yi−1)pi(xi, yi)

1

mi+1

· · · 1

mn

)

× ϕ1(y1) · · ·ϕk−1(yk−1)ϕk(yk)ϕk+1(yk+1) · · ·ϕn(yn)

=
∑

i∈C, i≤k

(∑

yi

p0i pi(xi, yi)ϕi(yi)

)
ϕ1(x1) · · ·ϕi−1(xi−1)ϕi+1(xi+1) · · ·ϕn(xn)

+
∑

i∈C, i>k

(∑

yi

p0i pi(xi, yi)ϕi(yi)

)
ϕ1(x1) · · ·ϕi−1(xi−1)ϕi+1(xi+1) · · ·ϕn(xn)

+
∑

i∈N, i>k

( ∑

yi,...,yn

p0i pi(xi, yi)
1

mi+1

· · · 1

mn

ϕi(yi) · · ·ϕn(yn)

)
ϕ1(x1) · · ·ϕi−1(xi−1)

+ χN(k)
∑

yk,...,yn

p0kpk(xk, yk)
1

mk+1

· · · 1

mn

ϕ1(x1) · · ·ϕk−1(xk−1)ϕk(yk) · · ·ϕn(yn)

=
∑

i∈C, i≤k

p0iλjiϕ(x) +
∑

i∈C, i>k

p0i · 1 · ϕ(x)

+
∑

i∈N, i>k

(∑

yi

p0i pi(xi, yi)ϕi(yi)

)
ϕ1(x1) · · ·ϕi−1(xi−1)ϕi+1(xi+1) · · ·ϕn(xn)

+ χN(k)
∑

yk

p0kpk(xk, yk)ϕ1(x1) · · ·ϕk−1(xk−1)ϕk(yk)ϕk+1(xk+1) · · ·ϕn(xn)

=
∑

i∈C, i≤k

p0iλjiϕ(x) +
∑

i∈C, i>k

p0iϕ(x) +
∑

i∈N, i>k

p0iϕ(x) + χN(k)p
0
kλjkϕ(x)

=

( ∑

i∈C, i<k

p0iλji + p0kλjk +
∑

i>k

p0i

)
ϕ(x),

where χN is the characteristic function of N . Note that in this case
the addends corresponding to the indices i < k, i ∈ N , are equal to 0
since we have supposed jk 6= 0.
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Consider now the function ϕ in the space

V 1
j1
⊗ · · ·V i1−1

ji1−1
⊗ V i1

ji1
⊗ V i1+1

0 ⊗ · · · ⊗ V n
0 ,

with jt = 0, . . . , rt, for every t = 1, . . . , i1. In this case we have

(Pϕ)(x) =
∑

y

p(x, y)ϕ(y)

=
∑

i∈C, i<i1

(∑

yi

p0i pi(xi, yi)ϕi(yi)

)
ϕ1(x1) · · ·ϕi−1(xi−1)ϕi+1(xi+1) · · ·ϕn(xn)

+
∑

i∈C, i>i1

(∑

yi

p0i pi(xi, yi)ϕi(yi)

)
ϕ1(x1) · · ·ϕi−1(xi−1)ϕi+1(xi+1) · · ·ϕn(xn)

+
∑

i∈N, i>i1

( ∑

yi,...,yn

p0i pi(xi, yi)
1

mi+1

· · · 1

mn

ϕi(yi) · · ·ϕn(xn)

)
ϕ1(x1) · · ·ϕi−1(xi−1)

+
∑

yi1 ,...,yn

(
p0i1pi1(xi1 , yi1)

1

mi1+1

· · · 1

mn

ϕi1(yi1) · · ·ϕn(xn)

)
ϕ1(x1) · · ·ϕi1−1(xi1−1)

=
∑

i∈C, i<i1

p0iλjiϕ(x) +
∑

i∈C, i>i1

p0iϕ(x) +
∑

i∈N, i>i1

p0iϕ(x) + p0i1λji1ϕ(x)

=

(
i1∑

i=1

p0iλji +
n∑

i=i1+1

p0i

)
ϕ(x).

Observe that, by computing the sum of the dimensions of these eigenspaces,
we get

n∑

k=i1+1

m1 · · ·mk−1(mk − 1) +m1m2 · · ·mi1 = m1m2 · · ·mn,

which is just the dimension of the space X1 × · · · ×Xn.

�
Remark 5.4.

The expression of the eigenvalues of P given in the previous the-
orem tells us that if Pi is ergodic for every i = 1, . . . , n, then also P
is ergodic, since the eigenvalue 1 is obtained with multiplicity one and
the eigenvalue −1 can never be obtained.

We can give now the matrices U,D and ∆ associated with P . For
every i, let Ui, Di and ∆i be the matrices of eigenvectors, of the co-
efficients of σi and of eigenvalues for the probability Pi, respectively.
The expression of the matrix U , whose columns are an orthonormal
basis of eigenvectors for P , easily follows from Theorem 5.3. In order
to get the diagonal matrix D, whose entries are the coefficients of π,
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it suffices to consider the tensor product of the corresponding matrices
associated with the probability Pi, for every i = 1, . . . , n, as it follows
from Theorem 5.2. Finally, to get the matrix ∆ of eigenvalues of P
it suffices to replace, in the expression of the matrix P , the matrix Pi

by ∆i and the matrix Ji by the corresponding diagonal matrix Jdiag
i ,

which has the eigenvalue 1 with multiplicity one and the eigenvalue 0
with multiplicity mi − 1. So we have the following proposition.

Proposition 5.5. Let P be the crested product of the Markov
chains Pi, with i = 1, . . . , n. Then we have:

• U =
∑n

k=i1+1M1 ⊗ · · · ⊗Mk−1 ⊗ (Uk −Ak)⊗Ak+1 ⊗ · · · ⊗An

+U1 ⊗ U2 ⊗ · · · ⊗ Ui1 ⊗ Ai1+1 ⊗ · · · ⊗ An, with

Mi =

{
Iσi−norm
i if i ∈ N
Ui if i ∈ C

where

Iσi−norm
i =




1√
σi(0)

1√
σi(1)

. . .
1√

σi(mi−1)



.

By Ai we denote the matrix of size mi whose entries on the
first column are all 1 and the remaining ones are 0.
• D =

⊗n
i=1Di.

• ∆ =
∑

i∈C p
0
i (I1 ⊗ · · · ⊗ Ii−1 ⊗∆i ⊗ Ii+1 ⊗ · · · ⊗ In)

+
∑

i∈N p
0
i

(
I1 ⊗ · · · ⊗ Ii−1 ⊗∆i ⊗ Jdiag

i+1 ⊗ · · · ⊗ Jdiag
n

)
.

Observe that another matrix U ′ of eigenvectors for P is given by
U ′ =

⊗n
i=1 Ui. The matrix U that we have given above seems to be

more useful whenever one wants to compute the k−th step transition
probability p(k)(0, x) using the formula (11), since it contains a greater
number of 0 in the first row with respect to U ′ and so a small number
of terms in the sum are nonzero.

Suppose x = (x1, . . . , xn) and y = (y1, . . . , yn) elements in X =
X1 × · · · ×Xn. From (11) and Proposition 5.5, we have
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p(k)(x, y) = π(y)

[∑

z∈X

(
n∑

r=i1+1

m1(x1, z1) · · ·mr−1(xr−1, zr−1)(ur − ar)(xr, zr)

× ar+1(xr+1, zr+1) · · · an(xn, zn)
+ u1(x1, z1) · · ·ui1(xi1 , zi1)ai1+1(xi1+1, zi1+1) · · · an(xn, zn))λkz

×
(

n∑

r=i1+1

m1(y1, z1) · · ·mr−1(yr−1, zr−1)(ur − ar)(yr, zr)

× ar+1(yr+1, zr+1) · · · an(yn, zn)
+ u1(y1, z1) · · ·ui1(yi1 , zi1)ai1+1(yi1+1, zi1+1) · · · an(yn, zn))] ,

wheremi, ui, ai are the probabilities associated with the matricesMi, Ui, Ai

occurring in Proposition 5.5.

5.2. The crossed product. The crossed product of the Markov
chains Pi’s can be obtained as a particular case of the crested product,
by setting C = {1, . . . , n} and it is also called direct product. The
analogous case for product of groups has been studied in [DSC1].

In this case, we get the following transition probability:

p((x1, . . . , xn), (y1, . . . , yn)) =
n∑

i=1

p0i δ(x1, y1) · · · pi(xi, yi) · · · δ(xn, yn).

This corresponds to choose the i−th coordinate with probability p0i and
to change it according with the probability transition Pi. So we get

p((x1, . . . , xn), (y1, . . . , yn)) ={
p0i pi(xi, yi) if xj = yj for all j 6= i
0 otherwise.

So, for X1 = · · · = Xn =: X and p10 = · · · = p0n = 1
n
, the probability

p defines an analogous of the Ehrenfest model, where n is the number
of balls and |X| = m is the number of urns. In order to obtain a new
configuration, we choose a ball with probability 1/n (let it be the i−th
ball in the urn xi) and with probability pi(xi, yi) we put it in the urn
yi.

As a consequence of Theorem 5.2, we get that if Pi is in detailed
balance with πi, then P is in detailed balance with the strict probability
measure π on X1 × · · · ×Xn defined as

π(x1, . . . , xn) = π1(x1)π2(x2) · · ·πn(xn).
The matrix P associated with the probability p is given by

(21) P =
n∑

i=1

p0i (I1 ⊗ · · · ⊗ Pi ⊗ · · · ⊗ In) .
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The following proposition studies the spectral theory of the operator
P and it is a straightforward consequence of Theorem 5.3.

Proposition 5.6. Let ϕi
0 = 1Xi

, ϕi
1, . . . , ϕ

i
mi−1 be the eigenfunc-

tions of Pi associated with the eigenvalues λi0 = 1, λi1, · · · , λimi−1, re-
spectively. Then the eigenvalues of P are the m1m2 · · ·mn numbers

λI =
n∑

k=1

p0kλ
k
ik
,

with I = (i1, . . . , in) ∈ {0, . . . ,m1 − 1} × · · · × {0, . . . ,mn − 1}. The
corresponding eigenfunctions are defined as

ϕI((x1, . . . , xn)) = ϕ1
i1
(x1) · · ·ϕn

in(xn).

As a consequence of Proposition 5.5, in order to get the matrices
U,D and ∆ associated with P , it suffices to consider the tensor prod-
uct of the corresponding matrices associated with the probability Pi,
for every i = 1, . . . , n. For every i, let Ui, Di and ∆i be the matri-
ces of eigenvectors, of the coefficients of πi and of eigenvalues for the
probability Pi, respectively. We have the following corollary.

Corollary 5.7. Let P be the probability defined in (21). Then we
have {

PU = U∆

UTDU = I,

where U =
⊗n

i=1 Ui, ∆ =
⊗n

i=1 ∆i and D =
⊗n

i=1Di.

In particular, we can express the k−th step transition probability
matrix as

P k =

(
n⊗

i=1

Ui

)(
n⊗

i=1

∆i

)k( n⊗

i=1

Ui

)T ( n⊗

i=1

Di

)
.

Let x = (x1, . . . , xn) and y = (y1, . . . , yn). Then we get

p(k)(x, y) = π(y)
∑

I

ϕI(x)λ
k
IϕI(y) =

π1(y1) · · ·πn(yn)
∑

I

ϕ1
i1
(x1) · · ·ϕn

in(xn)
(
p01λ

1
i1
+ · · ·+ p0nλ

n
in

)k
ϕ1
i1
(y1) · · ·ϕn

in(yn),

with I = (i1, . . . , in).

As we said in Remark 5.4, if the matrix Pi is ergodic for every
i = 1, . . . , n, then also the matrix P is ergodic, since the eigenvalue 1
can be obtained only by choosing I = 0n and the eigenvalue −1 can
never be obtained.

Remarks 5.8.
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Put n = 1 and set X = {0, 1, . . . ,m − 1}. Consider the action of
the symmetric group Sm on X. The stabilizer of a fixed element x0 = 0
is isomorphic to the symmetric group Sm−1. It is well known (see [?])
that (Sm, Sm−1) is a Gelfand pair and the following decomposition of
L(X) into irreducible representations holds:

L(X) = V0 ⊕ V1,
where V0 ∼= C is the space of constant functions on X and V1 = {f :
X −→ C :

∑m−1
i=0 f(i) = 0}. So we have dimV0 = 1 and dimV1 = m−1.

Analogously, one can consider the action of the wreath product
Sm oSn on Xn = X×· · ·×X, defined in the natural way, and then one
can study the decomposition of L(Xn). We have

L(Xn) ∼= L(X)⊗
n ∼=

n⊕

j=0

Wj,

with

Wj =
⊕

w(i1,...,in)=j

Vi1 ⊗ Vi2 ⊗ · · · ⊗ Vin ,

where w(i1, . . . , in) = ]{k : ik = 1}. So we have dimWj =
(
n
j

)
(m− 1)j.

If we define on X the uniform transition probability, i.e. pu(x, y) =
1
m

for all x, y ∈ X, then the matrix Pu is the matrix J of size m.
The eigenvalues of this matrix are 1 (with multiplicity 1) and 0

(with multiplicity m− 1). The corresponding eigenspaces in L(X) are,
respectively, V0 ∼= C and V1 = {f : X −→ C :

∑m−1
i=0 f(i) = 0}.

This means that, by choosing the uniform transition probability on
X, one gets again the results obtained by considering the Gelfand pair
(Sm, Sm−1).

Also in the case ofXn we can find again the results obtained (see [?])
by considering the Gelfand pair (Sm oSn, Sm−1 oSn). For Pu = J we have
λ0 = 1, λ1 = . . . = λm−1 = 0. Consider now the transition probability
on Xn defined in (21), with p01 = · · · = p0n = 1

n
. The eigenfunctions

ϕI associated with the eigenvalue 1
n
(n − j), with j = 0, . . . , n, are in

number of
(
n
j

)
(m− 1)j. Moreover

n∑

j=0

(
n

j

)
(m− 1)j =

n∑

j=0

(
n

j

)
(m− 1)j1n−j = mn = dimL(Xn).

For every j = 0, . . . , n, these functions belong to Wj and they are
a basis for Wj. So Wj is the eigenspace associated with the eigenvalue
1
n
(n− j).
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More generally, consider the case of any reversible transition prob-
ability p on X. Let λ0 = 1, λ1, . . . , λk be the distinct eigenvalues of P
and V0 ∼= C, V1, . . . , Vk the corresponding eigenspaces. We get

L(Xn) ∼= (V0 ⊕ V1 ⊕ · · · ⊕ Vk)⊗
n

.

The eigenfunctions ϕI associated with the eigenvalue 1
n

∑k
i=0 riλi, with∑k

i=0 ri = n, are

(
r0 + r1 + · · ·+ rk

r0, . . . , rk

) k∏

i=0

(dimVi)
ri

and the corresponding eigenspaces are the tensor products in which
ri copies of Vi, for i = 0, 1, . . . , k, appear. Moreover, the number of
different eigenspaces is equal to the number of integer solutions of the
equation

r0 + r1 + · · ·+ rk = n, ri ≥ 0,

so it is
(
k+n
n

)
.

The definition of multinomial coefficient as
(
r0+r1+···+rk

r0,...,rk

)
= (r0+···+rk)!

r0!r1!···rk!
guarantees that

∑

r0+···+rk=n

(
n

r0, . . . , rk

)
(dimV0)

r0 · · · (dimVk)rk = (dimV0 + · · ·+ dimVk)
n

= mn,

as we wanted.

5.3. The nested product. The nested product of the Markov
chains Pi’s can be obtained as a particular case of the crested product,
by setting N = {1, . . . , n}. The term nested comes from the association
schemes theory (see [Bai]).

Consider the product

X1 × · · · ×Xn

and let Pi be a transition probability on Xi. We assume that pi is
in detailed balance with the strict probability measure πi, for all i =
1, . . . , n.

The formula of crested product becomes, in this case,

(22) P =
n∑

i=1

p0i (I1 ⊗ · · · ⊗ Pi ⊗ Ji+1 ⊗ Ji+2 ⊗ · · · ⊗ Jn) .

Theorem 5.2 tells us that P is reversible if and only if Pk is sym-
metric, for every k > 1, i.e. πi =

1
mi

for every i = 2, . . . , n. In this
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case, P is in detailed balance with the strict probability measure π on
X1 × · · · ×Xn given by

π(x1 . . . , xn) =
π1(x1)∏n
i=2mi

.

So let us assume πi to be uniform for every i = 2, . . . , n. The transition
probability associated with P is

p((x1, . . . , xn), (y1, . . . , yn)) =
p01p1(x1, y1)

m2m3 · · ·mn

+
n−1∑

j=2

δ((x1, . . . , xj−1), (y1, . . . , yj−1))p
0
jpj(xj, yj)

mj+1 · · ·mn

+ δ((x1, . . . , xn−1), (y1, . . . , yn−1))p
0
npn(xn, yn).

As we did in the case of the crossed product, we want to study the
spectral theory of the operator P defined in (22).

Let

L(Xi) =

ri⊕

ki=0

W i
ki

be the spectral decomposition of L(Xi), for all i = 1, . . . , n and let
λi0 = 1, λi1, . . . , λ

i
ri
the distinct eigenvalues of Pi associated with these

eigenspaces. From Theorem 5.3 we get the following proposition.

Proposition 5.9. The eigenspaces of L(X1 × · · · ×Xn) are

• L(X1) ⊗ · · · ⊗ L(Xn−1) ⊗W n
kn
, of eigenvalue p0nλ

n
kn
, for kn =

1, . . . , rn, with multiplicity m1 · · ·mn−1dim(W n
kn
);

• L(X1)⊗· · ·⊗L(Xj)⊗W j+1
kj+1
⊗W j+2

0 ⊗· · ·⊗W n
0 , of eigenvalue

p0j+1λ
j+1
kj+1

+ p0j+2 + · · · + p0n, with kj+1 = 1, . . . , rj+1 and for

j = 1, . . . , n− 2, with multiplicity m1 · · ·mjdim(W j+1
kj+1

);

• W 1
k1
⊗W 2

0 ⊗ · · · ⊗W n
0 , of eigenvalue p

0
1λ

1
k1
+ p02 + · · ·+ p0n, for

k1 = 0, 1, . . . , r1, with multiplicity dim(W 1
k1
).

Moreover, as in the general case, one can verify that, under the
hypothesis that the operators Pi are ergodic, for i = 1, . . . , n, then also
the operator P is ergodic.

The application of Proposition 5.5 to the case of the nested product
yields the following corollary.

Corollary 5.10. Let P be the nested product of the probabilities
Pi, with i = 1, . . . , n. Then we have:

• U = U1 ⊗ A2 ⊗ · · · ⊗ An

+
∑n

k=2 I
σ1−norm
1 ⊗· · ·⊗Iσk−1−norm

k−1 ⊗(Uk−Ak)⊗Ak+1⊗· · ·⊗An.
• D =

⊗n
i=1Di.
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• ∆ =
∑n

i=1 p
0
i

(
I1 ⊗ · · · ⊗ Ii−1 ⊗∆i ⊗ Jdiag

i+1 ⊗ · · · ⊗ Jdiag
n

)
.

5.4. k−steps transition probability. The formula that describes
the transition probability after k steps in the case of nested product
can be simplified using the base of eigenvectors given in Corollary 5.10
and supposing that the starting point is 0 = (0, . . . , 0).

From the general formula, with the usual notations, we get

p(k)(0, y) = π(y)

[∑

z∈X

(
n∑

r=2

δσ1(0, z1) · · · δσr−1(0, zr−1)(ur − ar)(0, zr)

× ar+1(0, zr+1) · · · an(0, zn) + u1(0, z1)a2(0, z2) · · · an(0, zn))λkz

×
(

n∑

r=2

δσ1(y1, z1) · · · δσr−1(yr−1, zr−1)(ur − ar)(yr, zr)

× ar+1(yr+1, zr+1) · · · an(yn, zn)
+ u1(y1, z1)a2(y2, z2) · · · an(yn, zn))]

= π(y)



1 +

n∑

j=2

∑

zj 6=0

zi=0, i6=j

(
n∑

r=j

1√
σ1(0) · · ·

√
σr−1(0)

(ur − ar)(0, zr)
)

×
(
p0rλ

r
zr +

∑

m>r

p0m

)k( n∑

r=j

δσ1(y1, 0)δσ2(y2, z2) · · · δσr−1(yr−1, zr−1)

× (ur − ar)(yr, zr)ar+1(yr+1, zr+1) · · · an(yn, zn))

+
∑

z1 6=0

zi=0, i>1

u1(0, z1)

(
p01λ

1
z1
+

n∑

m=2

p0m

)k

u1(y1, z1)



.

Observe that in this case the sum consists of no more than

|X1|+
n∑

i=2

(|Xi| − 1) =
n∑

i=1

|Xi| − n+ 1

nonzero terms.

Example 5.11.

We want to express the k−th step transition probability in the case
n = 2. So consider the product X × Y , with X = {0, 1, . . . ,m} and
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Y = {0, 1, . . . , n}. Let

L(X) =
r⊕

j=0

Vj and L(Y ) =
s⊕

i=0

Wi

be the spectral decomposition of the spaces L(X) and L(Y ), respec-
tively. Let λ0 = 1, λ1, . . . , λr and µ0 = 1, µ1, . . . , µs be the distinct
eigenvalues of PX and PY , respectively. Then the eigenspaces of L(X×
Y ) are L(X)⊗Wi, for i = 1, . . . , s, with dimension (m+1)dimWi and
associated eigenvalue p0Y µi, and Vj ⊗W0, for j = 0, . . . , r, with dimen-
sion dimVj and associated eigenvalue p0Xλj + p0Y .

The expression of U becomes

U = IσX−norm
X ⊗ (UY − AY ) + UX ⊗ AY .

In particular, let {v0, v11, . . . , v1dim(V1)
, . . . , vr1, . . . , v

r
dim(Vr)

} and
{w0, w1

1, . . . , w
1
dim(W1)

, . . . , ws
1, . . . , w

s
dim(Ws)

} be the eigenvectors of PX

and PY , respectively, i.e. they represent the columns of the matrices
UX and UY .

Then, the columns of the matrix U corresponding to the elements
(i, 0) ∈ {0, . . . ,m}×{0, . . . , n} are the eigenvectors vi⊗ (1, . . . , 1) with
eigenvalue p0Xλi + p0Y . On the other hand, the columns corresponding
to the elements (i, j) ∈ {0, . . . ,m} × {0, . . . , n}, with j = 1, . . . , n, are

the eigenvectors (0, . . . , 0,
1√
σX(i)︸ ︷︷ ︸

i−th place

, 0, . . . , 0) ⊗ wj whose eigenvalue is

p0Y µj. As a consequence, only m + 1 + n of these eigenvectors can be
nonzero in the first coordinate, so the probability p(k)((0, 0), (x, y)) can
be expressed as a sum of m + 1 + n nonzero terms: moreover, these
terms become m+ 1 if x 6= 0. We have

p(k)((0, 0), (x, y)) = π((x, y))

(
m∑

i=0

vi(0)vi(x)(p0Xλi + p0Y )
k

+
1√

σX(0)σX(x)

n∑

j=1

wj(0)δ0(x)w
j(y)(p0Y µj)

k

)

=
σX(x)

n+ 1




r∑

i=0




dim(Vi)∑

a=1

via(0)v
i
a(x)


 (p0Xλi + p0Y )

k

+
s∑

j=1


 1√

σX(0)σX(x)

dim(Wj)∑

b=1

wj
b(0)δ0(x)w

j
b(y)


 (p0Y µj)

k


 .

5.5. The insect. It is clear that the product X1 × · · · × Xn can
be regarded as the rooted tree T of depth n, such that the root has
degree m1, each vertex of the first level has m2 children and in general
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each vertex of the i−th level of the tree has mi+1 children, for every
i = 1, . . . , n − 1. We denote the i−th level of the tree by Li. In this
way, every vertex x ∈ Li can be regarded as a word x = x1 · · ·xi, where
xj ∈ {0, 1, . . . ,mj − 1}.

We want to show that the nested product of Markov chains is the
generalization of the “insect problem” studied by A. Figà-Talamanca
in [F-T1] and that we have described in Section 2 (in this case we
generalize to the non-homogeneous case).

Let us imagine that an insect lives in a leaf x ∈ Ln and that it
performs a simple random walk on the graph T starting from x.

Then there exists a probability distribution µx on Ln such that, for
every y ∈ Ln, µx(y) is the probability that y is the first point in Ln

visited by the insect in the random walk. If we put p(x, y) = µx(y),
then we get a stochastic matrix P = (p(x, y))x,y∈Ln . Since the random
walk is Aut(T )−invariant, we can suppose that the random walk starts
at the leftmost vertex, that we will call x0 = (0, . . . , 0). We recall that
Aut(T ) is the group of all automorphisms of T , given by the iterated
wreath product Smn o Smn−1 o · · · o Sm1 . We want to study this Markov
chain defined on Ln.

Set ξn = ∅ and ξi = 00 . . . 0 (n − i times). For j ≥ 0, let αj be
the probability that the insect reaches ξj+1 given that ξj is reached
at least once. This definition implies α0 = 1 and α1 = 1

mn+1
. In

fact, with probability 1, the insect reaches the vertex ξ1 at the first
step and, starting from ξ1, with probability 1

mn+1
it reaches ξ2, while

with probability mn

mn+1
it returns to Ln. Finally, we have αn = 0. For

1 < j < n, there is the following recursive relation:

αj =
1

mn+1−j + 1
+ αj−1αj

mn+1−j

mn+1−j + 1
.

In fact, starting at ξj, with probability 1
mn+1−j+1

the insect reaches in

one step ξj+1, otherwise with probability
mn+1−j

mn+1−j+1
it reaches ξj−1 or

one of its brothers; then, with probability αj−1 it reaches again ξj and
one starts the recursive argument.

The solution, for 1 ≤ j ≤ n− 1, is given by

αj =
1 +mn +mnmn−1 +mnmn−1mn−2 + · · ·+mnmn−1mn−2 · · ·mn−j+2

1 +mn +mnmn−1 +mnmn−1mn−2 + · · ·+mnmn−1mn−2 · · ·mn−j+1

= 1− mnmn−1mn−2 · · ·mn−j+1

1 +mn +mnmn−1 +mnmn−1mn−2 + · · ·+mnmn−1mn−2 · · ·mn−j+1

.
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Moreover, we have

p(x0, x0) =
1

mn

(1− α1) +
1

mnmn−1

α1(1− α2) + · · ·

+
1

mnmn−1 · · ·m2

α1α2 · · ·αn−2(1− αn−1) +
1

mn · · ·m1

α1 · · ·αn−1.

Indeed the j−th summand is the probability of returning back to
x0 if the corresponding random walk in T reaches ξj but not ξj+1. It is
not difficult to compute p(x0, x), where x is a point at distance j from
x0. For j = 1, we clearly have p(x0, x0) = p(x0, x). We observe that,
for j > 1, to reach x one is forced to first reach ξj, so that we have

p(x0, x) =
1

mn · · ·mn−j+1

α1α2 · · ·αj−1(1− αj) + · · ·

+
1

mn · · ·m2

α1α2 · · ·αn−2(1− αn−1) +
1

mn · · ·m1

α1α2 · · ·αn−1.

Since the random walk is invariant with respect to the action of
Aut(T ), which acts isometrically on the tree, we get the same formula
for any pair of vertices x, y ∈ Ln such that d(x, y) = j.

Proposition 5.12. The stochastic matrix

p((x1, . . . , xn), (y1, . . . , yn)) =
p01p1(x1, y1)

m2m3 · · ·mn

+
n−1∑

j=2

δ((x1, . . . , xj−1), (y1, . . . , yj−1))p
0
jpj(xj, yj)

mj+1 · · ·mn

+ δ((x1, . . . , xn−1), (y1, . . . , yn−1))p
0
npn(xn, yn),

defined in (22), gives rise to the Insect Markov chain on Ln, regarded as
X1×· · ·×Xn, choosing p

0
i = α1α2 · · ·αn−i(1−αn−i+1) for i = 1, . . . , n−1

and p0n = 1− α1 and the transitions probabilities p′js to be uniform for
all j = 1, . . . , n.

Proof. Set, for every i = 1, . . . , n− 1,

p0i = α1α2 · · ·αn−i(1− αn−i+1)

and p0n = 1 − α1. Moreover, assume that the probability pi on Xi is
uniform, i.e.

Pi = Ji.

If d(x0, x) = n, then we get

p(x0, x) =
α1α2 · · ·αn−1

m1m2 · · ·mn

.
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If d(x0, x) = j > 1, i.e. x0i = xi for all i = 1, . . . , n− j, then

p(x0, x) =
α1α2 · · ·αn−1

m1m2 · · ·mn

+

n−j∑

i=1

α1 · · ·αn−i−1(1− αn−i)

mn · · ·mi+2mi+1

.

Finally, if x = x0, we get

p(x0, x0) =
α1α2 · · ·αn−1

m1m2 · · ·mn

+
n−2∑

i=1

α1 · · ·αn−i−1(1− αn−i)

mn · · ·mi+2mi+1

+
(1− α1)

mn

.

This completes the proof. �

The decomposition of the space L(Ln) = L(X1 × · · · × Xn) under
the action of Aut(T ) is known (see [CST2]). Denote Z0

∼= C the
trivial representation and, for every j = 1, . . . , n, define the following
subspace

Zj = {f ∈ L(Ln) : f = f(x1, . . . , xj),

mj−1∑

i=0

f(x1, . . . , xj−1, i) ≡ 0}

of dimension m1 · · ·mj−1(mj − 1). In virtue of the correspondence
between Aut(T )−invariant operators and bi−StabAut(T )(0

n)−invariant
functions, the corresponding eigenvalues are given by the spherical
Fourier transform of the convolver that represents P , namely

λj =
∑

x∈Ln

P (x0, x)φj(x),

where φj is the j−th spherical function, for all j = 0, 1, . . . , n. It is
easy verify that one get

• λ0 = 1;
• λj = 1− α1α2 · · ·αn−j, for every j = 1, . . . , n− 1;
• λn = 0.

In particular, if we set

p0i = α1α2 · · ·αn−i(1− αn−i+1)

for every i = 1, . . . , n − 1, with p0n = 1 − α1 and Pi = Ji for every
i = 1, . . . , n, the eigenspaces given for L(X1× · · · ×Xn) in Proposition
5.9 are exactly the Zj’s with the corresponding eigenvalues.

Let us prove that the eigenvalues that we have obtained in Proposi-
tion 5.9 coincide with the eigenvalues corresponding to the eigenspaces
Z0, Z1, . . . , Zn.

We want to get these eigenvalues by using the formulas given in
Proposition 5.9 for the eigenvalues of the nested product P by setting
Pi = Ji, then p

0
i = α1α2 · · ·αn−i(1 − αn−i+1) for i = 1, . . . , n − 1 and

p0n = 1−α1. First of all, we observe that the eigenvalues of the operator
Pi are 1, with multiplicity one and 0, with multiplicity mi − 1. So we
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get L(Xi) = W i
0 ⊕W i

1, with dim(W i
1) = mi − 1, for all i = 1, . . . , n.

Following the formulas that we have given, the eigenspaces of P are:

• L(X1)⊗ L(X2)⊗ · · · ⊗ L(Xn−1)⊗W n
1 ;

• L(X1)⊗L(X2)⊗· · ·⊗L(Xn−j−1)⊗W n−j
1 ⊗W n−j+1

0 ⊗· · ·⊗W n
0 ,

for every j = 1, . . . , n− 1;
• W 1

0 ⊗W 2
0 ⊗ · · · ⊗W n

0 .

The corresponding eigenvalues are:

• p0nλn1 = 0;
• ∑n

i=n−j+1 p
0
i , for every j = 1, . . . , n− 1;

• ∑n
i=1 p

0
i = 1.

We need to prove that, for every j = 1, . . . , n − 1, the eigenvalue∑n
i=n−j+1 p

0
i is equal to 1 − α1α2 · · ·αj. We prove the assertion by

induction on j.
If j = 1, we have p0n = 1 − α1. Now suppose the assertion to be

true for j and show that it holds also for j + 1. We get
n∑

i=n−j

p0i =
n∑

i=n−j+1

p0i + p0n−j = 1− α1α2 · · ·αj + α1 · · ·αj(1− αj+1)

= 1− α1 · · ·αjαj+1.

5.6. The Second Crested Product. In this subsection we define
a different kind of product of two spaces X and Y , that we will call
the second crested product. In fact it contains, as particular cases, the
crossed product and the nested product described in Section 5.2 and
Section 5.3, respectively. We will study a Markov chain P on the set
Θk of functions from X to Y whose domains are k−subsets of X, giving
the spectrum and the relative eigenspaces.

Let X be a finite set of cardinality n, say X = {1, 2, . . . , n}. For
every k = 1, . . . , n, denote by Ωk the set of k−subsets of X, so that
|Ωk| =

(
n
k

)
.

Now let Y be a finite set and let Q be a transition matrix on
Y , which is in detailed balance with the strict probability τ . Let
λ0 = 1, λ1, . . . , λm be the distinct eigenvalues of Q and denote by Wj

the corresponding eigenspaces, for every j = 0, 1, . . . ,m, so that the
following spectral decomposition holds:

L(Y ) =
m⊕

j=0

Wj.

Moreover, assume that the dimension of the eigenspace associated with
the eigenvalue 1 is one and set dim(Wj) = mj, for every j = 1, . . . ,m.

Recall that the eigenspace W0 is generated by the vector (1, . . . , 1︸ ︷︷ ︸
|Y | times

)

and that Wj is orthogonal to W0 with respect to the scalar product
〈·, ·〉τ , for every j = 1, . . . ,m.
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For every k = 1, . . . , n, consider the space

Θk = {(A, θ) : A ∈ Ωk and θ ∈ Y A},
i.e. the space of functions whose domain is a k−subset of X and which
take values in Y .

The set Θ =
∐n

k=0 Θk is a poset with respect to the relation ⊆
defined in the following way:

ϕ ⊆ χ if dom(ϕ) ⊆ dom(χ) and ϕ = χ|dom(ϕ).

The Markov chain P on Θk that we are going to define can be regarded
as follows. Let 0 < p0 < 1 a real number. Then, starting from a
function θ ∈ Θk, with probability p0 we can reach a function ϕ ∈ Θk

having the same domain as θ and that can differ from θ at most in one
image, according with the probability Q on Y .

On the other hand, with probability 1−p0 we can reach in one step
a function ϕ ∈ Θk whose domain intersects the domain of θ in k − 1
elements (on which the functions coincide), and in such a way that the
image of the k−th element of the domain of ϕ is uniformly chosen.

Note that P defines a Markovian operator on the space L(Θk) of
all complex functions defined on Θk.

When Y is the ultrametric space, the Markov chain P represents
the so called multi-insect, which generalizes the insect Markov chain
already studied. In particular if |X| = n, we consider k insects living
in k different subtrees and moving only one per each step in such a way
that their distance is preserved, giving rise to a Markov chain on the
space of all possible configurations of k insects having this property.

In fact each element in Θk can be ragarded as a configuration of k
insects and viceversa. For example, let θ ∈ Θk be a function such that
dom(θ) = {x1, . . . , xk} and θ(xi) = yi, with xi ∈ X and yi ∈ Y for
all i = 1, . . . , k. Then the corresponding configuration of k insects has
an insect at each leaf (xi, yi). They live in all different subtrees since
xi 6= xj for i 6= j.

We observe that the cardinality of this space is
(
n
k

)
|Y |k. This space

can be regarded as the variety of subtrees (see [CST3]) of branch in-
dices (k, 1) in the rooted tree (n, |Y |).

If θ, ϕ ∈ Θk, with domains A and B respectively, then define the
matrix ∆, indexed by Θk, whose entries are

∆θ,ϕ =

{
1 if |A ∩B| = k − 1 and θ|A∩B = ϕ|A∩B,

0 otherwise.

Observe that the matrix ∆ is symmetric.
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The operator P can be expressed in terms of the operator associated
with ∆ and of another operator M as

(23) P = p0M + (1− p0)
∆

norm(∆)
,

where M describes the situation in which the domain is not changed
and only one of the images of the function θ ∈ Θk is changed according
with the probability Q on Y . An analytic expression forM will be pre-
sented below. On the other hand, ∆ describes the situation in which
we pass from a function whose domain is A to a function whose domain
is A t {i} \ {j}, with i 6∈ A and j ∈ A, and we choose uniformly the
image in Y of the element i. So the action of ∆ on Ωk is an analogous
of the Laplace-Bernoulli diffusion model. By norm(∆) we indicate the
number of non zero entries in each row of the matrix associated with
∆.

It is easy to check that M is in detailed balance with the strict
probability measure defined as

τM(θ) =
1(
n
k

)
∏

i∈A
τ(θ(i)),

where θ ∈ Θk and dom(θ) = A. On the other hand, it follows from the
definition of the Markov chain ∆ that the weighted graph associated
with ∆ is connected. From this and from the fact that the nonzero
entries of ∆ are all equal to 1, we can deduce that ∆ is reversible and
in detailed balance with a uniform probability measure. This forces τM
to be uniform and so we have to assume that τ is uniform on Y and
the matrix Q is symmetric.

In this way, P is in detailed balance with the uniform probability
measure π such that π(θ) = 1

(nk)|Y |k , for every θ ∈ Θk. This choice of

τ guarantees that, if f is any function in Wj, with j = 1, . . . ,m, then∑
y∈Y f(y) = 0.

The spectral theory of the operator M has been studied in Section
5.2. In fact, it corresponds to choose, with probability 1

k
, only one

element of the domain and to change the corresponding image with
respect to the probability Q on Y , fixing the remaining ones. So we
focus our attention to investigate the spectral theory of the operator
∆.

Let us introduce two differential operators.
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Definition 5.13. (1) For every k = 2, . . . , n the operator Dk :
L(Θk) −→ L(Θk−1) is defined by

(DkF )(ϕ) =
∑

θ∈Θk:ϕ⊆θ

F (θ),

for every F ∈ L(Θk) and ϕ ∈ Θk−1.
(2) For k = 1, . . . , n the operator D∗

k : L(Θk−1) −→ L(Θk) is
defined by

(D∗
kF )(θ) =

∑

ϕ∈Θk−1:ϕ⊆θ

F (ϕ),

for every F ∈ L(Θk−1) and θ ∈ Θk.

Observe that the operator D∗
k is adjoint to Dk.

The following decomposition holds

L(Θk) = L

(∐

A∈Ωk

Y A

)
=
⊕

A∈Ωk

L(Y A).

In order to get a basis for the space L(Y A), for every A ∈ Ωk, we
introduce some special functions that we will call fundamental func-
tions.

Definition 5.14. Suppose that A ∈ Ωk and that F j ∈ L(Y ) for
every j ∈ A. Suppose also that each F j belongs to an eigenspace of Q
and set ai = |{j ∈ A : F j ∈ Wi}|. Then the tensor product

⊗
j∈A F

j

will be called a fundamental function of type a = (a0, a1, . . . , am) in
L(Y A).

In other words, we have

(
⊗

j∈A
F j)(θ) =

∏

j∈A
F j(θ(j)),

for every θ ∈ Y A. We also set `(a) = a1 + · · ·+ am = k − a0.
The introduction of the fundamental functions allows to give a use-

ful expression for the operators M and ∆.
If F ∈ L(Y A) ⊆ L(Θk) is the fundamental function F =

⊗
j∈A F

j,

with |A| = k and F j : Y −→ C, thenMF = 1
k

∑
j∈A

[(⊗
i∈A,i6=j F

i
)
⊗QF j

]
.

So, if θ ∈ Θk and dom(θ) = A, we get

(MF )(θ) =
1

k

∑

j∈A

[ ∏

i∈A,i6=j

F i(θ(i))

(∑

y∈Y
q(θ(j), y)F j(y)

)]
.

Analogously one has (∆F )(θ) =
∑

ϕ F (ϕ), where the sum is over

all ϕ ∈ Θk such that dom(ϕ)∩ dom(θ) = k− 1 and ϕ ≡ θ on dom(ϕ)∩
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dom(θ). If A = (dom(θ)∩A)t{i} (we denote by t the disjoint union),
then

(∆(⊗j∈AF
j))(θ) =

∑

ϕ

⊗

j∈A
F j(ϕ) =

∏

j∈dom(ϕ)∩A
F j(θ(j))

(∑

y∈Y
F i(y)

)
.

Denote Pk,a,A the subspace of L(Y A) spanned by the fundamental
functions of type a and

Pk,a =
⊕

A∈Ωk

Pk,a,A.

Lemma 5.15. Dk maps Pk,a to Pk−1,a′, where a
′ = (a0−1, a1, . . . , am).

Conversely D∗
k maps Pk−1,a′ to Pk,a.

Proof. Let F be a fundamental function of type a in L(Y A) and
let B ⊂ A such that A = B t {i}. Then for every ϕ ∈ Y B, we have

(DkF )(ϕ) =
∑

θ∈Y A:ϕ⊆θ

F (θ)

=
∑

θ∈Y A:ϕ⊆θ

∏

j∈A
F j(θ(j))

=

(∑

y∈Y
F i(y)

)∏

j∈B
F j(ϕ(j)).

The value of
∑

y∈Y F
i(y) is zero if F i ∈ Wj for j = 1, . . . ,m and so

DkF ≡ 0 if a0 = 0. If F i ∈ W0, then DkF ∈ Pk−1,a′ .
Analogously, let F ∈ Pk−1,a′,B with B ∈ Ωk−1. Then for every

θ ∈ Y A, A = B t {i}, one has

(D∗
kF )(θ) =

∑

ϕ∈Y B :ϕ⊆θ

F (ϕ)

=
∏

j∈B
F j(ϕ(j))

= F i(θ(i))
∏

j∈B
F j(θ(j)),

where by setting F i ≡ 1 on Y (and so F i ∈ W0). �

The restriction of Dk to Pk,a will be denoted by Dk,a and the restriction
of D∗

k to Pk−1,a′ by D
∗
k,a.

The study of the compositions of the operators Dk,a and D∗
k,a plays

a central role. In fact it will be shown that the eigenspaces of these
operators are also eigenspaces for ∆. Consider, for example, Dk+1D

∗
k+1
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applied to a function F ∈ L(Θk) and calculated on θ ∈ Θk. The
functions ϕ ∈ Θk+1 such that ϕ ⊇ θ are in number of |Y |(n− k). Each
of them covers k+1 functions in Θk, one of them is the function θ, the
other ones are functions in Θk whose domains differ by the domain of
θ of an element and coincide on their intersection. These functions are
in number of |Y |(n − k)k and they correspond to functions that one
can reach starting from θ in the Markov chain described by ∆. From
this it follows that norm(∆) = |Y |(n− k)k.

Lemma 5.16. Let F ∈ Pk,a,A, with A ∈ Ωk. Then

D∗
k,aDk,a = |Y |(k − `(a))I +Qk,a,

where Qk,a is defined by setting

(24) (Qk,aF )(θ) =

{
0 if F i 6∈ W0,

|Y |F (θ) if F i ∈ W0

for every θ ∈ Θk such that |dom(θ)∩A| = k− 1 and A \ dom(θ) = {i}.
We denote by θ the function in Θk whose domain is A and such that
θ|A\{i} = θ and θ(i) = θ(i0), where dom(θ) \ A = {i0}.

Proof. Take F ∈ Pk,a,A and θ ∈ Θk. We have

(D∗
k,aDk,aF )(θ) =

∑

ϕ∈Θk−1:ϕ⊆θ

(Dk,aF )(ϕ)

=
∑

ϕ∈Θk−1:ϕ⊆θ

∑

ω∈Θk:ω⊇ϕ,

dom(ω)=A

F (ω).

If dom(θ) = A, then we get

(D∗
k,aDk,aF )(θ) =

∑

j∈A

(∑

y∈Y
F j(y)

) ∏

t∈A\{j}
F t(θ(t))

= |Y |(k − `(a))
∏

t∈A
F t(θ(t))

= |Y |(k − `(a))F (θ),
where the second equality follows from the fact that

∑
y∈Y F

j(y) = |Y |
if F j ∈ W0 and

∑
y∈Y F

j(y) = 0 whenever F j 6∈ W0.

On the other hand, if |dom(θ)∩A| = k− 1, with A \ dom(θ) = {i},
then

(D∗
k,aDk,aF )(θ) =

(∑

y∈Y
F i(y)

) ∏

j∈A\{i}
F j(θ(j))

=

{
0 if F i 6∈ W0,

|Y |F (θ) if F i ∈ W0
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which is just the definition of Qk,a. �
Lemma 5.17. Let F ∈ Pk,a′,A, with A ∈ Ωk. Then

Dk+1,aD
∗
k+1,a = |Y |(n− k)I +Qk,a,

where Qk,a is defined as in (24).

Proof. Take F ∈ Pk,a′,A and θ ∈ Θk. We have

(Dk+1,aD
∗
k+1,aF )(θ) =

∑

ϕ∈Θk+1:θ⊆ϕ

(D∗
k+1,aF )(ϕ)

=
∑

ϕ∈Θk+1:θ⊆ϕ

∑

ω∈Θk:ω⊇ϕ,

dom(ω)=A

F (ω).

If dom(θ) = A, then we get

(Dk+1,aD
∗
k+1,aF )(θ) =

∑

j∈AC

∑

y∈Y
F (θ)

= |Y |(n− k)F (θ).
On the other hand, if |dom(θ)∩A| = k− 1, with A \ dom(θ) = {i},

then

(Dk+1,aD
∗
k+1,aF )(θ) =

(∑

y∈Y
F i(y)

) ∏

j∈A\{i}
F j(θ(j))

=

{
0 if F i 6∈ W0,

|Y |F (θ) if F i ∈ W0

= (Qk,aF )(θ).

This completes the proof. �

The following corollary easily follows.

Corollary 5.18. Let F ∈ Pk,a′,A, with A ∈ Ωk. Then

Dk+1,aD
∗
k+1,a −D∗

k,a′Dk,a′ = |Y |(n+ `(a)− 2k)I.

Consider now the operator Dk,a : Pk,a −→ Pk−1,a′ .

Definition 5.19. For 0 ≤ `(a) ≤ k ≤ n, set

Pk,a,k = Ker(Dk,a)

and inductively, for k ≤ h ≤ n, set

Ph,a,k = D∗
h,aPh−1,a′,k.

These spaces have a fundamental importance because they exactly
constitute the eigenspaces of the operator ∆. This will be a conse-
quence of the following proposition.
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Proposition 5.20. Ph,a′,k is an eigenspace for the operator Dh+1,aD
∗
h+1,a

and the corresponding eigenvalue is |Y |(n+ `(a)− k − h)(h− k + 1).

Proof. We prove the assertion by induction on h. If h = k, from
the last corollary we get Dk+1,aD

∗
k+1,a|Pk,a′,k = |Y |(n+`(a)−2k)I, since

Dk,a′Pk,a′,k = 0 by definition of Pk,a′,k.
Now suppose the lemma to be true for k ≤ t ≤ h and recall that,

by definition, we have Ph+1,a′,k = D∗
h+1,a′Ph,a′′,k. Moreover, Corollary

5.18 gives

Dh+2,aD
∗
h+2,a −D∗

h+1,a′Dh+1,a′ = |Y |(n+ `(a)− 2(h+ 1))I.

So we get

Dh+2,aD
∗
h+2,a|Ph+1,a′,k = D∗

h+1,a′|Dh+1,a′D
∗
h+1,a′Ph,a′′,k

+ |Y |(n+ `(a)− 2(h+ 1))Ph+1,a′,k

= |Y |(n+ `(a)− k − h)(h− k + 1)D∗
h+1,a′Ph,a′′,k

+ |Y |(n+ `(a)− 2(h+ 1))Ph+1,a′,k

= |Y |(n+ `(a)− k − h− 1)(h− k + 2)Ph+1,a′,k,

where the second equality follows from the inductive hypothesis and
the third one from an easy computation. This completes the proof.
�

Corollary 5.21. Ph,a′,k is an eigenspace for ∆ of eigenvalue |Y |(n+
`(a)− k − h)(h− k + 1)− |Y |(n− h).

Proof. It suffices to observe that the operator Qh,a defined in (24)
coincides with the operator ∆ on the space Ph,a and then the assertion
follows from Lemma 5.17 and Proposition 5.20. �

In particular, after normalizing the matrix ∆ we obtain ∆
norm(∆)

and

the corresponding eigenvalue is 1
|Y |(n−h)h

(|Y |(n+ `(a)− k− h)(h− k+
1)− |Y |(n− h)).

The following lemma holds.

Lemma 5.22. Given `(a) and h then, for `(a) ≤ k ≤ min
{
h, n+`(a)

2

}
,

the spaces Ph,a′,k are mutually orthogonal.

Proof. Each Ph,a′,k is an eigenspace for the self-adjoint operator
Dh+1,aD

∗
h+1,a. Since the eigenvalue |Y |(n+ `(a)− k − h)(h− k + 1) is

a strictly decreasing function of k for k ≤ n+`(a)
2

, then to different val-
ues of k correspond different eigenvalues. This proves the assertion. �

Recall that, if a = (a0, a1, . . . , am), we set a′ = (a0 − 1, a1, . . . , am)
and, inductively, ah+1 = ah − (1, 0, . . . , 0).
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Proposition 5.23. Let F be a function in Pk,ah−k,k. Then, for

`(a) ≤ k ≤ n+`(a)
2

and k ≤ h ≤ n+ `(a)− k, we have

‖D∗
h,aD

∗
h−1,a′ · · ·D∗

k+1,ah−k−1F‖2 = (n+ `(a)− 2k)!(h− k)!
(n+ `(a)− k − h)! |Y |h−k‖F‖2.

In particular, D∗
h,aD

∗
h−1,a′ · · ·D∗

k+1,ah−k−1 is an isomorphism of Pk,ah−k,k

onto Ph,a,k.

Proof. We prove the assertion by induction on h. For h = k + 1
and F ∈ Pk,a′,k, we have

‖D∗
k+1,aF‖2 = < D∗

k+1,aF, D
∗
k+1,aF >

= < Dk+1,aD
∗
k+1,aF, F >

= |Y |(n+ `(a)− 2k)‖F‖2

by Proposition 5.20, so the assertion is true. For h > k + 1, applying
Proposition 5.20 to Dh,aD

∗
h,a, we get

‖D∗
h,aD

∗
h−1,a′ · · ·D∗

k+1,ah−k−1F‖2

=< Dh,aD
∗
h,aD

∗
h−1,a′ · · ·D∗

k+1,ah−k−1F, D
∗
h−1,a′ · · ·D∗

k+1,ah−k−1F >

= |Y |(n+ `(a)− k − h+ 1)(h− k)‖D∗
h−1,a′ · · ·D∗

k+1,ah−k−1F‖2.
Now the proposition follows by induction. �

Proposition 5.24. Assume `(a) ≤ h ≤ n+`(a)
2

. Then

(1) Ph,a =
⊕min{h,n+`(a)−h}

k=`(a) Ph,a,k;

(2) D∗
h+1,a : Ph,a′ −→ Ph+1,a is an injective map.

Proof. We prove the assertion by induction on h.

Assume that (1) and (2) are true for `(a) − 1 ≤ h ≤ t ≤ n+`(a)−1
2

.
For h = `(a)− 1 we have P`(a)−1,a = 0 and so the proposition trivially
holds.

Since the operator D∗
h,a is the adjoint of Dh,a we have the following

decomposition:

Ph,a = Ker(Dh,a)⊕D∗
h,aPh−1,a′

= Ph,a,h ⊕D∗
h,aPh−1,a′ .

In particular

Pt+1,a = Pt+1,a,t+1 ⊕D∗
t+1,aPt,a′ .

By induction

Pt,a′ =
t⊕

k=`(a)

Pt,a′,k
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and so

Pt+1,a = Pt+1,a,t+1 ⊕D∗
t+1,a




t⊕

k=`(a)

Pt,a′,k




=
t+1⊕

k=`(a)

Pt+1,a,k.

This proves (1), while (2) follows from (1) and Proposition 5.23 . �

Corollary 5.25. The dimension of the spaces Ph,a,k that appear
in decomposition of Ph,a is

n+ `(a) + 1− 2k

n− k + 1

(
n

k

)(
k

`(a)

)(
`(a)

a1, . . . , am

) m∏

j=1

(dim(Wj))
aj .

Proof. From the previous proposition it follows

dim(Pt+1,a,t+1) = dim(Pt+1,a)− dim(Pt,a′).

Now

dim(Pt+1,a) =

(
n

t+ 1

)(
t+ 1

a0, a1, . . . , am

) m∏

j=1

(dim(Wj))
aj .

In fact,
(

n
t+1

)
represents the number of (t + 1)−subsets in X and(

t+1
a0,a1,...,am

)∏m
j=1(dim(Wj))

aj represents the number of possible choices

in the fundamental function F =
∏

r∈A F
r of ai functions belonging to

the eigenspace Wi of L(Y ). Thus

dim(Pt+1,a,t+1) =

(
n

t+ 1

)(
t+ 1

a0, a1, . . . , am

) m∏

j=1

(dim(Wj))
aj

−
(
n

t

)(
t

a0 − 1, a1, . . . , am

) m∏

j=1

(dim(Wj))
aj

=
n− t− a0
n− t

(
n

t+ 1

)(
t+ 1

a0, a1, . . . , am

) m∏

j=1

(dim(Wj))
aj .

Since, by Proposition 5.23, dim(Ph,a,k) = dim(Pk,ah−k,k) one can obtain

the result replacing t by k − 1 and a by ah−k. �

We want to find now the eigenvector of ∆
norm(∆)

associated with the

eigenvalue 1. Consider in P1,(1,0,...,0) the function

f =
n∑

i=1

fi,
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where fi is the fundamental function of type (1, 0, . . . , 0) whose domain
is {i}. Set

< f >= P1,(1,0,...,0),0 =: D∗
1,(1,0,...,0)P0,(0,...,0),0.

So the element F0 = D∗
h,(h,0,...,0) . . . D

∗
3,(3,0,...,0)D

∗
2,(2,0,...,0)f is the genera-

tor of the space Ph,(h,0,...,0),0, which has dimension 1. Corollary 5.21 im-

plies that Ph,(h,0,...,0),0 is an eigenspace for ∆
norm(∆)

and the corresponding

eigenvalue is 1. Moreover, the connectedness of the graph associated
with ∆ implies that this is the unique (up to constant) eigenvector
of eigenvalue 1. We denote by P1,(1,0,...,0),1 the orthogonal subspace to
P1,(1,0,...,0),0 in P1,(1,0,...,0). It has dimension n− 1.

Observe that the definition of fundamental functions is strictly linked
to the spectral theory of the operator Q and so of the operator M
restricted to each domain. In fact, if F is a fundamental function in
Ph,a,A, with a = (a0, a1, . . . , am) and A ∈ Ωh, then it is an eigenvector
for the operator M and the corresponding eigenvalue is 1

h

∑m
j=0 ajλj.

So the set of the eigenvalues ofM is given by
(
n
h

)
copies of these values.

In particular, the eigenspace Ph,a,k of ∆
norm(∆)

is also an eigenspace for

M and an eigenvector in this space has eigenvalue 1
h

∑m
j=0 ajλj. So, by

Corollary 5.21 and definition (23) of P , we get the following theorem.

Theorem 5.26. Ph,a,k is an eigenspace for P with eigenvalue

p0 ·
1

h

m∑

j=0

ajλj + (1− p0)
(n+ `(a)− k − h)(h− k + 1)− (n− h)

h(n− h) .

Remark 5.27.

It is easy to check that the operator M is not ergodic. In fact
its associated graph contains

(
n
h

)
connected components and so the

multiplicity of the eigenvalue 1 for M is
(
n
h

)
.

On the other hand we already observed that the operator ∆
norm(∆)

has the eigenvalue 1 with multiplicity one. To conclude that it is ergodic
it suffices to show that−1 is not an eigenvalue, i.e. the associated graph
is not bipartite. In fact consider θ ∈ Θh with domain {i1, . . . , ih} and
θ(ij) = yj, for every j = 1, . . . , h. By definition of ∆ we can connect
θ with ϕ, whose domain is {i1, . . . , ih−1, it}, ih 6= it and such that
ϕ(ij) = yj = θ(ij) for all j = 1, . . . , h−1 and ϕ(it) = yt. Moreover θ can
also be connected with % whose domain is {i1, . . . , ih−2, ih, it} and such
that %(ij) = yj = θ(ij) for all j = 1, . . . , h− 2, h and %(it) = yt = ϕ(it).
On the other hand ϕ and % are connected as well and this proves that
the graph is not bipartite.

From Theorem 5.26 we can deduce the ergodicity for the operator
P , since the multiplicity of the eigenvalue 1 is one and the eigenvalue
−1 does not appear in the spectrum of P .
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Remark 5.28.

The second crested product reduces to the crossed product if k = n
and to the nested product if k = 1.

In fact, if k = n, the domain of a function θ ∈ Θn cannot be
changed and θ can be identified with the n−tuple (y1, . . . , yn) ∈ Y n of
its images. The operator P becomes

P =
1

n

n∑

i=1

I1 ⊗ · · · ⊗ Ii−1 ⊗Q⊗ Ii+1 ⊗ · · · ⊗ In,

which is the crossed product on the space Y n.
If k = 1, then ∆ has the following expression:

∆ =




0 1 · · · · · · 1

1 0 1
...

... 1
. . .

...
...

. . . 1
1 · · · · · · 1 0




and norm(∆) = n− 1. So we get

P = p0(IX ⊗Q) + (1− p0)
(

∆

norm(∆)
⊗ JY

)
,

which is just the nested product of X and Y , with PX = ∆
norm(∆)

and

PY = Q.

5.7. Bi-insect. In what follows, we take Y as a homogeneous
rooted tree of degree q and depth m−1 and we give an explicit descrip-
tion of the spectrum of the operator P = p0M +(1− p0) ∆

norm(∆)
acting

on the space L(Θ2). Therefore we are considering functions in Θ2 such
that the image of each element of the domain is an insect. Suppose X
to be a set of cardinality n and let m ≥ 3. Recall that we have the
decomposition

L(Y ) =
m−1⊕

j=0

Wj,

where W0
∼= C and

Wj = {f ∈ L(Lm−1) : f = f(x1, . . . , xj),

q−1∑

i=0

f(x1, . . . , xj−1, i) ≡ 0},

for every j = 1, . . . ,m− 1. Observe that dim(Wj) = qj−1(q − 1).
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The eigenspaces relative to the operator ∆/norm(∆) are the sub-
spaces of the form P2,(a0,a1,...,am−1),k, with k = 0, 1, 2. The corresponding
eigenvalue is

1

qm−1(n− 2)2

[
qm−1(n+ `(a)− k − 2)(2− k + 1)− qm−1(n− 2)

]
.

So, by dependence of `(a), we get the following eigenspaces:

• P2,(a0,a1,...,am−1),2





a0 = 0 with eigenvalue λ = 0,

a0 = 1 with eigenvalue λ = − 1
2(n−2)

,

a0 = 2 with eigenvalue λ = − 1
n−2

.

• P2,(a0,a1,...,am−1),1

{
a0 = 1 with eigenvalue λ = 1

2
,

a0 = 2 with eigenvalue λ = n−4
2(n−2)

.

• P2,(2,0,...,0),0 ⇒ a0 = 2 with eigenvalue λ = 1.

Now we describe the eigenvalues of these eigenspaces with respect
to the operator M and to join the results.

If F is a fundamental function of type (a0, a1, . . . , am−1), then it
has eigenvalue 1

2

∑m−1
j=0 ajλj, where λj = 1− q−1

qm−j−1
is the eigenvalue of

the eigenspace Wj, of dimension qj−1(q − 1), occurring in the spectral
decomposition of L(Y ). From this we can fill the following tabular in
which we give the eigenspaces, together with the corresponding eigen-
value and dimension.

• P2,(a0,a1,...,am−1),2. We have three different cases:

(1) if a0 = 0, the corresponding eigenspace is

P2,(0,...,0, 1︸︷︷︸
i−th place

,0,...,0, 1︸︷︷︸
j−th place

,0,...,0),2

of dimension n(n − 1)(q − 1)2qi−1qj−1, with eigenvalue
p0
2
(λi + λj);

(2) if a0 = 1, the corresponding eigenspace is

P2,(1,...,0, 1︸︷︷︸
i−th place

,0,...,0),2

of dimension n(n−2)(q−1)qi−1, with eigenvalue p0
1+λi

2
+

(1− p0) −1
2(n−2)

;

(3) if a0 = 2, the corresponding eigenspace is P2,(2,0,...,0),2 of

dimension n(n−3)
2

with eigenvalue p0 + (1− p0) −1
n−2

.
• P2,(a0,a1,...,am−1),1. We have two different cases:
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(1) if a0 = 1, the corresponding eigenspace is

P2,(1,...,0, 1︸︷︷︸
i−th place

,0,...,0),1

of dimension n(q − 1)qi−1, with eigenvalue p0
1+λi

2
+ 1−p0

2
;

(2) if a0 = 2, the corresponding eigenspace is P2,(2,0,...,0),1 of
dimension n− 1, with eigenvalue p0 + (1− p0) n−4

2(n−2)

• P2,(2,0,...,0),0. In this case, the dimension of the eigenspace is 1
with eigenvalue 1.



Appendix: Association schemes

The theory of the Association Schemes is strictly linked to the the-
ory of Gelfand pairs. It is a combinatorial tool that gives an equivalent
description of the theory developed for groups and for Markov chains.

Association schemes are about relations between pairs of elements
of a set Ω, that we suppose to be finite. Three equivalent definitions
of association scheme can be given: in terms of partitions, graphs and
matrices, respectively. A complete theory is developed in [Bai].

6. First definition

Definition 6.1. An association scheme with s associate classes
on a finite set Ω is a partition of Ω×Ω into nonempty sets C0,C1, . . . ,Cs,
called the associate classes, such that

(1) C0 = Diag(Ω) = {(ω, ω) : ω ∈ Ω}.
(2) Ci is symmetric for every i = 1, . . . , s, i.e. Ci = C′

i, where C′
i

denotes the dual of Ci defined as C′
i = {(β, α) : (α, β) ∈ Ci}.

(3) For all i, j, k ∈ {0, 1, . . . , s} there exists an integer pkij such
that, for all (α, β) ∈ Ck,

|{γ ∈ Ω : (α, γ) ∈ Ci and (γ, β) ∈ Cj}| = pkij.

We will say that the rank of this association scheme is s+1. Observe
that the conditions (2) and (3) imply pkij = pkji. The elements α and β
are called i−th associates if (α, β) ∈ Ci. In particular, the set of i−th
associates of α is denoted by

Ci(α) = {β ∈ Ω : (α, β) ∈ Ci}.
Condition (2) implies p0ij = 0 if i 6= j. Similarly, pk0j = 0 if j 6= k and

pki0 = 0 if i 6= k, while pj0j = pii0 = 1. Moreover, the condition (3)

implies that each element of Ω has p0ii = ai i−th associates.

Example 6.2.

Let Ω be a finite set, with |Ω| = n. Let C0 be the diagonal subset
and set

C1 = {(α, β) ∈ Ω× Ω : α 6= β} = (Ω× Ω) \ C0.

This is the trivial association scheme, the only scheme on Ω having
only one associate class. It has a1 = n− 1 and it is denoted by n.

Example 6.3.

99
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Let Ω an m× n rectangular array, with m,n ≥ 2. Set

• C1 = {(α, β) : α, β are in the same row but α 6= β};
• C2 = {(α, β) : α, β are in the same column but α 6= β};
• C3 = {(α, β) : α, β are in different rows and columns}.

It is clear that C3 = (Ω × Ω) \ C0 \ C1 \ C2. This is an association
scheme with three associate classes and a1 = n − 1, a2 = m − 1,
a3 = (m − 1)(n − 1). It is called the rectangular association scheme
R(m,n) and is also denoted by m× n.

Example 6.4.

Consider the partition Ω = ∆1t. . .t∆m of the set Ω intom subsets
of size n. These subsets are traditionally called groups. We declare α
and β to be:

• first associates if they are in the same groups but α 6= β;
• second associates if they are in different groups.

It is easy to verify that, if ω ∈ Ω, then it has n − 1 first associates
and (m− 1)n second associates. So this is an association scheme with
s = 2 and a1 = n− 1, a2 = (m− 1)n. It is called the group-divisible
association scheme, denoted by GD(m,n) or also m/n.

7. Second definition

Definition 7.1. An association scheme with s associate classes
on a finite set Ω is a colouring of the edges of the complete undirected
graph, whose vertices are indexed by Ω, by s colours such that:

(1) for all i, j, k ∈ {1, . . . , s} there exists an integer pkij such that,
if {α, β} is an edge of colour k, then

|{γ ∈ Ω : {α, γ} has colour i and {γ, β} has colour j}| = pkij;

(2) every colour is used at least once;
(3) there exist integers ai, for i = 1, . . . , s, such that each vertex

is contained in exactly ai edges of colour i.

We do not need an analogous of the conditions (1) and (2) of the
first definition. In fact, every edge consists of two distinct vertices and
the graph is supposed to be undirected. The new condition (1) says
that if we consider any two different vertices α and β and fix two colours
i and j, then the number of triangles consisting of the edge {α, β} and
an i−coloured edge through α and a j−coloured edge through β is
exactly pkij, where k is the colour of {α, β}. The new condition (2) has
not an analogous in the partition definition, since we specified that the
subsets in the partition are nonempty. Finally, since the condition (1)
of the graph definition does not deal with the analogue of the diagonal
subset, this is explicitly given in condition (3).
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If an association scheme has two associate classes, the two colours
can be regarded as ”visible” and ”invisible”. The corresponding graph
is strongly regular, according with the following definition.

Definition 7.2. A finite graph is strongly regular if:

• it is regular, i.e. each vertex is contained in the same number
of edges;
• every edge is contained in the same number of triangles;
• every non-edge is contained in the same number of configura-
tions like t

t t
�

�
��

@
@
@@

non-edge

• it is neither complete (all pairs are edges) nor null (no pairs
are edges).

8. Third definition

Given an association scheme with associate classes C0,C1, . . . ,Cs,
we can associate to each class Ci its adjacency matrix Ai, i.e. the
matrix of size |Ω| defined as

(Ai)αβ =

{
1 if (α, β) ∈ Ci

0 otherwise.

The following lemma holds.

Lemma 8.1. Given an association scheme with associate classes
C0,C1, . . . ,Cs, let Ai be the corresponding adjacency matrices. Then

(25) AiAj =
s∑

k=0

pkijAk.

Proof. Suppose (α, β) ∈ Ck. Then the (α, β)−entry of the right-
hand side of (25) is equal to pkij, while the (α, β)−entry of the left-hand
side is equal to

(AiAj) =
∑

γ∈Ω
Ai(α, γ)Aj(γ, β)

= |{γ : (α, γ) ∈ Ci and (γ, β) ∈ Cj}|
= pkij,

because the product Ai(α, γ)Aj(γ, β) is zero unless (α, γ) ∈ Ci and
(γ, β) ∈ Cj, in which case it is 1. �

This lemma leads us to the third definition of association schemes,
in terms of adjacency matrices.
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Definition 8.2. An association scheme with s associate classes on
a finite set Ω is a set of nonzero matrices A0, A1, . . . , As, with rows and
columns indexed by Ω, whose entries are equal to 0 or 1 and such that:

(1) A0 = IΩ, where IΩ denotes the identity matrix of size |Ω|;
(2) Ai is symmetric for every i = 1, . . . , s;
(3) for all i, j ∈ {1, . . . , s}, the product AiAj is a linear combina-

tion of A0, A1, . . . , As;
(4)

∑s
i=0Ai = JΩ, where JΩ denotes the all−1 matrix of size |Ω|.

Observe that the condition (4) of this definition gives an analogue of
the fact that the subsets C0,C1, . . . ,Cs constitute a partition of Ω×Ω.

Proposition 8.3. If A0, A1, . . . , As are the adjacency matrices of
an association scheme, then AiAj = AjAi for all i, j ∈ {0, 1, . . . , s}.

Proof. We have

AjAi = AT
j A

T
i , because the adjacency matrices are symmetric,

= (AiAj)
T

=

(∑

k

pkijAk

)T

, by Equation (25),

=
∑

k

pkijA
T
k

=
∑

k

pkijAk, because the adjacency matrices are symmetric,

= AiAj. �
Example 8.4.

Let
∏

be a Latin square of size n, i.e. an n× n array filled with
n letters in such a way that each letter occurs once in each row and
once in each column.

a d b c

c a d b

b c a d

d b c a

Fig.13. A Latin square of size 4.

Let Ω be the set of n2 cells of the array. Consider α, β ∈ Ω, with
α 6= β. We declare α and β to be first associates if they are in the same
row or in the same column or have the same letter. Otherwise, they
are second associates. It is easy to check that so we get an association
scheme on Ω, with two associate classes.
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9. The Bose-Mesner algebra

Consider an association scheme with adjacency matrices A0, . . . , As.
Let A be the space of all real linear combinations of A0, A1, . . . , As.
This is a real vector space of dimension s + 1. In fact, the matrices
A0, A1, . . . , As are linearly independent because, given α and β in Ω,
there exists only one index i such that Ai(α, β) 6= 0. It follows from
Lemma 8.1 that A is closed under multiplication and so it is an algebra.
Proposition 8.3 tells us that A is a commutative algebra, called the
Bose-Mesner algebra.

Since every adjacency matrix is symmetric, a matrix M ∈ A is
symmetric and so it is diagonalizable on R, i.e. it has distinct real
eigenvalues λ1, . . . , λr such that:

• L(Ω) =
⊕r

i=1 Vi, where Vi is the eigenspace associated with
the eigenvalue λi;
• the eigenspaces Vi and Vj are orthogonal, for i 6= j.

The orthogonality of eigenspaces is with respect to the inner prod-
uct on L(Ω) defined as

〈f, g〉 =
∑

ω∈Ω
f(ω)g(ω), for all f, g ∈ L(Ω).

Definition 9.1. The orthogonal projector P on a subspace W is
the map P : L(Ω) −→ L(Ω) defined by

Pv ∈ W and v − Pv ∈ W⊥.

Now put

P1 =
(M − λ2I) · · · (M − λrI)
(λ1 − λ2) · · · (λ1 − λr)

.

It is easy to check that, if v ∈ V1, then P1v = v, while if Mv = λiv
for i > 1, then P1v = 0. So P1 is the orthogonal projector onto V1.
Analogously for Vi, with i > 1.

Now let M1 and M2 be two matrices in A and let P1, . . . , Pr and
Q1, . . . , Qm be the respective eigenprojectors. They commute with each
other, since they are polynomials in M1 and M2, respectively. The
following properties of PiQj’s hold:

• they are orthogonal, in fact PiQjPi′Qj′ = PiPi′QjQj′ , which is
zero unless i = i′ and j = j′;
• they are idempotents, in fact PiQjPiQj = PiPiQjQj = PiQj;
• ∑i

∑
j PiQj = (

∑
i Pi)(

∑
j Qj) = I2 = I;

• the subspaces which they project onto are contained in eigenspaces
of both M1 and M2.

If we apply this argument to A0, A1, . . . , As, we deduce that there exist
mutually orthogonal subspaces W0,W1, . . . ,Wr, with orthogonal pro-
jectors S0, S1, . . . , Sr, such that

• L(Ω) =W0 ⊕W1 ⊕ · · · ⊕Wr;
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• each Wi is contained in an eigenspace of every Aj;
• each Si is a polynomial in A1, . . . , As and so in A.

Thus there are unique constant D(e, i) such that

Se =
∑

i

D(e, i)Ai.

On the other hand, if C(i, e) is the eigenvalue of Ai on We, then

Ai =
r∑

e=0

C(i, e)Se.

Moreover, the projectors S0, . . . , Sr are linearly independent because
SeSf = δefSe and so they constitute another basis for A. Therefore we
have r = s and D = C−1.

The subspacesWe are called strata, while the matrices Se are called
stratum projectors. The matrix C is the character table of the
association scheme.

10. Crossed and nested product of association schemes

Definition 10.1. Let Q1 be an association scheme on Ω1 with
classes Ci, for i ∈ K1 and let Q2 be an association scheme on Ω2

with classes Dj, for j ∈ K2. Then Q1 is isomorphic to Q2 if there exist
bijections

φ : Ω1 −→ Ω2 and π : K1 −→ K2

such that
(α, β) ∈ Ci ⇔ (φ(α), φ(β)) ∈ Dπ(i).

In this case, we say that the pair (φ, π) is an isomorphism between
association schemes and write Q1

∼= Q2.

We can now introduce two special product of association schemes,
called the crossed product and the nested product, respectively.

So let Q1 be an association scheme on the finite set Ω1 with adja-
cency matrices A0, A1, . . . , Am, and let Q2 be an association scheme on
the finite set Ω2 with adjacency matrices B0, B1, . . . , Br.

Definition 10.2. The crossed product of Q1 and Q2 is the as-
sociation scheme Q1 × Q2 on Ω1 × Ω2 whose adjacency matrices are

Ai ⊗Bj,

for i = 0, . . . ,m and j = 0, . . . , r.

The crossed product of two association schemes is also called direct
product. For example, one can easily verify that the rectangular asso-
ciation scheme R(m,n) can be obtained as the crossed product of the
schemes m and n.
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Definition 10.3. The nested product of Q1 and Q2 is the asso-
ciation scheme Q1/Q2 on Ω1 × Ω2 whose adjacency matrices are

• Ai ⊗ JΩ2, with i 6= 0;
• IΩ1 ⊗Bj, for every j = 0, 1, . . . , r.

The nested product of two association schemes is also called wreath
product. For example, one can easily verify that the group-divisible
association scheme GD(m,n) can be obtained as the nested product of
the schemes m and n.

Proposition 10.4. The following properties of crossed and nested
product hold:

(1) crossing is commutative, in the sense that Q1×Q2
∼= Q2×Q1;

(2) crossing is associative, in the sense that Q1 × (Q2 × Q3) ∼=
(Q1 × Q2)× Q3;

(3) nesting is associative, in the sense that Q1/(Q2/Q3) ∼= (Q1/Q2)/Q3.

11. Crested product of association schemes

In this section we introduce the crested product of two association
schemes Q1 and Q2, giving a new association scheme on the space Ω1×
Ω2 that has both crossed and nested products as special cases. Our
main source is [BaCa].

11.1. Orthogonal block structures. Given a partition F of a
finite set Ω, let RF be the |Ω| × |Ω| relation matrix of F , i.e.

RF (α, β) =

{
1 if α and β are in the same part of F

0 otherwise.

Definition 11.1. A partition of Ω is uniform if all its parts have
the same size.

The trivial partitions of Ω are the universal partition U , which has
a single part and whose relation matrix is JΩ, and the equality par-
tition E, all of whose parts are singletons and whose relation matrix
is IΩ.

The partitions of Ω constitute a poset with respect to the relation
4, where F 4 G if every part of F is contained in a part of G. Given
any two partitions F and G, their infimum is denoted F ∧ G and is
the partition whose parts are intersections of F−parts with G−parts;
their supremum is denoted F ∨G and is the partition whose parts are
minimal subject to being unions of F−parts and G−parts.

Definition 11.2. A set F of uniform partitions of Ω is an orthog-
onal block structure if:

(1) F contains U and E;
(2) for all F and G ∈ F, F contains F ∧G and F ∨G;
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(3) for all F and G ∈ F, the matrices RF and RG commute with
each other.

Given a partition F belonging to an orthogonal block structure F

on Ω, we define the adjacency matrix AF as

AF (α, β) =

{
1 if F =

∧{G ∈ F : RG(α, β) = 1}
0 otherwise.

One can verify that the set {AF : F ∈ F, AF 6= 0} is an association
scheme on Ω.

Given two partitions F and G of two sets Ω1 and Ω2, respectively,
denote F×G the partition of Ω1×Ω2 whose relation matrix is RF⊗RG.

Now let F and G be two orthogonal block structures on Ω1 and Ω2,
respectively. Then their crossed product is given by

F × G = {F ×G : F ∈ F, G ∈ G}
and their nested product is given by

F/G = {F × U2 : F ∈ F} ∪ {E1 ×G : G ∈ G},
where Ei and Ui are the trivial partitions of Ωi. One can show that
the operation of deriving the association scheme from the orthogonal
block structure commutes with both crossing and nesting.

Definition 11.3. For i = 1, 2, let Fi be an orthogonal block struc-
ture on a set Ωi and choose Fi ∈ Fi. The crested product of F1 and
F2 with respect to F1 and F2 is the set G of partitions of Ω1×Ω2 given
by

(26) G = {G1 ×G2 : G1 ∈ F1, G2 ∈ F2, G1 4 F1 or G2 < F2}.
The following theorem holds (see [BaCa] for the proof).

Theorem 11.4. The crested product defined in (26) is an orthogo-
nal block structure on Ω1 × Ω2.

Observe that:

• if F1 = U1 or F2 = E2, then G is the crossed product F1 × F2;
• if F1 = E1 and F2 = U2, then G is the nested product F1/F2.

11.2. Partitions in association schemes.

Definition 11.5. Let Q be an association scheme on Ω with adja-
cency matrices Ai, for i ∈ K. Then a partition F of Ω is inherent in
Q if its relation matrix RF is in the Bose-Mesner algebra of Q, i.e. if
there exists a subset L of K such that RF =

∑
i∈LAi.

It is easy to check that the trivial partitions E and U are inherent
in every association scheme.

Example 11.6.
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Consider the 12 edges of the cube and define an association scheme
on the set Ω of these edges in the following way:

• two edges α and β are 1−st associates if they meet at a vertex;
• two edges α and β are 2−nd associates if they are diagonally
opposite;
• two edges α and β are 3−rd associates if they are parallel but
not opposite;
• two edges α and β are 4−th associates if they are skew.

The partitions inherent in this scheme have relation matrices A0 =
IΩ, A0 + A2, A0 + A2 + A3 and A0 + A1 + A2 + A3 + A4 = JΩ.

Theorem 11.7. If Q is an association scheme on Ω, then the set
F of partitions of Ω which are inherent in Q is an orthogonal block
structure on Ω.

See [BaCa] for the proof.

Now let P be a partition of Ω×Ω and let V (P) be the real span of
the adjacency matrices of its classes. It is clear that

Q 4 P ⇐⇒ V (P) ≤ A,

where A is the Bose-Mesner algebra of Q.

Definition 11.8. Let Q be an association scheme on Ω. A partition
P of Ω×Ω is ideal for Q if V (P) is an ideal of A, i.e. V (P) ≤ A and
AD ∈ V (P) whenever A ∈ A and D ∈ V (P).

Theorem 11.9. Let Q be an association scheme with adjacency
matrices Ai, for i ∈ K. If Q has an inherent partition F with rela-
tion matrix RF , then there exists an ideal partition ϑ(F ) of Q whose
adjacency matrices are scalar multiples of AiR, for i ∈ K.

Proof. (Sketch) Let L be the subset of K such that RF =
∑

i∈LAi.
So there exist positive integers mij such that

RFAi = AiRF =
∑

j∈K
mijAj.

It follows from the definition that

mij = (AiRF )(α, β) = |Ci(α) ∩ F (β)|,
where F (β) denotes the F−class containing β. Put i ∼ j if mij 6= 0.
One can check that ∼ is an equivalence relation. Define [i] = {j ∈ K :
j ∼ i} and B[i] =

∑
j∼iAj. Then the distinct B[i] are the adjacency

matrices of a partition P of Ω × Ω such that Q 4 P. Moreover, it is
easy to verify that AjB[i] ∈ V (P). �

Indeed, the inverse construction can be done, as the following theo-
rem shows (see [BaCa]).
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Theorem 11.10. Let P be an ideal partition for Q. Let Ai be the
adjacency matrices of Q, for i ∈ K, and let Dm be the adjacency ma-
trices of P, for m ∈M. Denote by σ the surjection from K to M such
that class i of Q is contained in class σ(i) of P. Put R = Dσ(0). Then
R is the relation matrix of an inherent partition in Q. Moreover, for
all i ∈ K, the matrix AiR is an integer multiple of Dσ(i).

11.3. Crested product of association schemes. Let F be a
partition in an orthogonal block structure F, so that RF =

∑
G∈LAG,

where L = {G ∈ F : G 4 F}. This implies that F is inherent in
the association scheme derived from F. Then {AG : G ∈ L} and
{RG : G ∈ L} span the same subspace A|F of A, which is closed under
matrix multiplication.

Let P be the ideal partition ϑ(F ). For G ∈ F, RG is in the ideal
of A generated by RF if and only if F 4 G, so V (P) is the span of
{RG : G ∈ F, G < F}. We denote V (ϑ(F )) by A|F .

Consider now the crested product G of the orthogonal block struc-
tures F1 and F2 with respect to the partitions F1 and F2. The span of
the relation matrices of the partitions in G is

(A1|F1 ⊗A2) + (A1 ⊗A2|F2),

whereA1 andA2 are the Bose-Mesner algebra of the association schemes
derived by F1 and F2, respectively. The adjacency matrices of the as-
sociation scheme derived by G are:

• AG ⊗ AH , for G ∈ L and H ∈ F2;
• AG ⊗D, for G ∈ F1 \ L and D an adjacency matrix of P,

where L = {G ∈ F1 : G 4 F1} and P = ϑ(F2). This leads to the
following definition.

Definition 11.11. For r = 1, 2, let Qr be an association scheme
on a set Ωr and let Fr be an inherent partition in Qr. Put P = ϑ(F2)
and Ω = Ω1 × Ω2. Let the adjacency matrices of Q1,Q2 and P be Ai,
for i ∈ K1, Bj, for j ∈ K2 and Dm, for m ∈M, respectively. Let L be
the subset of K1 such that RF1 =

∑
i∈LAi. The crested product of

Q1 and Q2 with respect to F1 and F2 is the association scheme Q on Ω
whose adjacency matrices are

• Ai ⊗Bj, for i ∈ L and j ∈ K2;
• Ai ⊗Dm, for i ∈ K1 \ L and m ∈M.

Observe that the crested product reduces to the crossed product
if F1 = U1 or F2 = E2 (in which case P = Q2) and it reduces to the
nested product if F1 = E1 and F2 = U2 (in which case P = UΩ2×Ω2).

Moreover, the interesting fact is that the character table of the
crested product Q can be described using the character table of Q1 and
Q2. See [BaCa] for more details.



12. EXAMPLES 109

12. Examples

Let Q be an association scheme on a finite set Ω and let A0 =
IΩ, A1, . . . , Am the adjacency matrices associated with Q. Consider
also an association scheme Q′ on a second finite set Ω′, whose adjacency
matrices are A′

0 = IΩ′ , A′
1, . . . , A

′
m.

The nested product Q/Q′ of the schemes Q and Q′ is well defined:
it is the association scheme on the set Ω×Ω′ whose adjacency matrices
are

• Ai ⊗ JΩ′ , for i 6= 0;
• IΩ ⊗ A′

j, for j = 0, 1, . . . ,m′.

Consider now the inherent partition F of Ω × Ω′ whose relation
matrix is

RF =
m′∑

j=0

(IΩ ⊗ A′
j) = IΩ ⊗ JΩ′ ,

i.e. the partition Ω× Ω′ =
⊔

α∈Ω{(α, α′) : α′ ∈ Ω′}. We can ask which
is the ideal partition associated with F .

In general, if Q is an association scheme on the set X with matrices
A0, A1, . . . , Am and F is an inherent partition of X with relation matrix
RF =

∑
i∈LAi, then the adjacency matrices of the ideal partition P of

X×X associated with F are Di =
∑

i∼j Aj, where ∼ is the equivalence
relation defined by i ∼ j if mij 6= 0 and the mij’s are defined by

mij = |Ci(α) ∩ F (β)|, for all (α, β) ∈ Cj.

So, if mij 6= 0 and (α, β) ∈ Cj, then there exists some γ ∈ Ci(α) such
that F (β) = F (γ). One can easily check that [0] = L. We will use also
the notation Ai ∼ Aj to indicate i ∼ j.

In our case we have IΩ⊗A′
j ∼ IΩ⊗A′

k for every j, k = 0, 1, . . . ,m′.
Moreover, it is easy to verify that, for i, j 6= 0, one has Ai ⊗ JΩ′ 6∼
Aj ⊗ JΩ′ for i 6= j. So the adjacency matrices of the ideal partition P

associated with F are

Ai ⊗ JΩ′ , for i = 0, 1, . . . ,m.

Consider now an association scheme S on a finite set Θ with adja-
cency matrices B0 = IΘ, B1, . . . , Bn and an association scheme S ′ on a
finite set Θ′ whose adjacency matrices are B′

0 = IΘ′ , B′
1, . . . , B

′
n. Take

now the nested product S/S ′ defined on the product Θ × Θ′, i.e. the
association scheme on Θ×Θ′ whose adjacency matrices are

• Bi ⊗ JΘ′ , for i 6= 0;
• IΘ ⊗B′

j, for j = 0, 1, . . . , n′.
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We can consider the inherent partition G of Θ × Θ′ defined as in the
previous case, so that its relation matrix is

RG =
n′∑

j=0

IΘ ⊗B′
j = IΘ ⊗ JΘ′ ,

i.e. we have the partition Θ×Θ′ =
∐

θ∈Θ{(θ, θ′) : θ′ ∈ Θ′}.
We can now consider the crested product of the schemes S/S ′ and

Q/Q′ with respect to the inherent partition G and F defined above.
So we get a new association scheme on the set

Θ×Θ′ × Ω× Ω′

whose adjacency matrices are

• (IΘ ⊗B′
j)⊗ (Ai ⊗ JΩ′), with j = 0, 1, . . . , n′ and i 6= 0;

• (IΘ⊗B′
j)⊗(IΩ⊗A′

k), with j = 0, 1, . . . , n′ and k = 0, 1, . . . ,m′;
• (Bi ⊗ JΘ′)⊗ (Aj ⊗ JΩ′), with i 6= 0 and j = 0, 1, . . . ,m.

Moreover, by choosing the inherent partition G for Θ×Θ′ and the
universal partition UΩ×Ω′ for Ω × Ω′, i.e. the partition whose relation
matrix is RUΩ×Ω′ = JΩ ⊗ JΩ′ , we can get a different crested product of
the schemes S/S ′ and Q/Q′. Observe that the only adjacency matrix of
the ideal partition P associated with UΩ×Ω′ is JΩ⊗JΩ′ . So the adjacency
matrices of the crested product of the schemes S/S ′ and Q/Q′ are

• (IΘ ⊗B′
j)⊗ (Ai ⊗ JΩ′), with j = 0, 1, . . . , n′ and i 6= 0;

• (IΘ⊗B′
j)⊗(IΩ⊗A′

k), with j = 0, 1, . . . , n′ and k = 0, 1, . . . ,m′;
• (Bi ⊗ JΘ′)⊗ (JΩ ⊗ JΩ′), with i 6= 0.

Finally, by choosing the identity partition EΘ×Θ′ for Θ×Θ′ and the
inherent partition F for Ω × Ω′, we can get again a different crested
product of the schemes S/S ′ and Q/Q′, whose adjacency matrices are

• (IΘ ⊗ IΘ′)⊗ (Ai ⊗ JΩ′), with i 6= 0;
• (IΘ ⊗ IΘ′)⊗ (IΩ ⊗ A′

k), with k = 0, 1, . . . ,m′;
• (IΘ ⊗B′

k)⊗ (Ai ⊗ JΩ′), with i = 0, 1, . . . ,m and k 6= 0;
• (Bj ⊗ JΘ′)⊗ (Ai ⊗ JΩ′), with j 6= 0 and i = 0, 1, . . . ,m.

This completes the description of the nontrivial crested products
that we can get from the schemes S/S ′ and Q/Q′. By choosing the
identity partition EΘ×Θ′ as inherent partition of Θ × Θ′ and the uni-
versal partition UΩ×Ω′ as inherent partition of Ω×Ω′, we get the nested
product

S/S ′/Q/Q′.

This notation is correct because of the associativity of iterating the
nested product of association schemes. The adjacency matrices of the
scheme S/S ′/Q/Q′ are

• (IΘ ⊗ IΘ′)⊗ (Ai ⊗ JΩ′), with i 6= 0;
• (IΘ ⊗ IΘ′)⊗ (IΩ ⊗ A′

k), with k = 0, 1, . . . ,m′;
• (IΘ ⊗B′

k)⊗ (JΩ ⊗ JΩ′), with k 6= 0;
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• (Bj ⊗ JΘ′)⊗ (JΩ ⊗ JΩ′), with j 6= 0.

The remaining choices for the inherent partitions of Θ × Θ′ and
Ω× Ω′ give rise to the crossed product

(S/S ′)× (Q/Q′),

i.e. the association scheme on Θ×Θ′×Ω×Ω′ whose adjacency matrices
are

• (IΘ⊗B′
j)⊗(IΩ⊗A′

k), with j = 0, 1, . . . , n′ and k = 0, 1, . . . ,m′;
• (IΘ ⊗B′

j)⊗ (Ai ⊗ JΩ′), with j = 0, 1, . . . , n′ and i 6= 0;
• (Bi ⊗ JΘ′)⊗ (IΩ ⊗ A′

k), with i 6= 0 and k = 0, 1, . . . ,m′;
• (Bi ⊗ JΘ′)⊗ (Ak ⊗ JΩ′), with i, k 6= 0.

As an easy example, we can consider the case when Θ = Θ′ = Ω =
Ω′ = {1, 2} and S = S ′ = Q = Q′ = 2. We recall that 2 denotes the
trivial association scheme on two elements, whose adjacency matrices
are

M0 =

(
1 0
0 1

)
and M1 =

(
0 1
1 0

)
.

Let us call these matrices B0 and B1 in the case of S, B′
0 and B′

1 in
the case of S ′, A0 and A1 in the case of Q, A′

0 and A′
1 in the case of

Q′, respectively.
So the adjacency matrices of the nested product Q/Q′ are

• A1 ⊗ JΩ′ ;
• IΩ ⊗ IΩ′ ;
• IΩ ⊗ A′

1.

Consider now the inherent partition F of Ω × Ω′ whose relation
matrix is

RF = IΩ ⊗ IΩ′ + IΩ ⊗ A′
1 = IΩ ⊗ JΩ′ ,

i.e. the partition Ω× Ω′ = {(1, 1), (1, 2)}∐{(2, 1), (2, 2)}.
The adjacency matrices of the ideal partition P associated with F

are

• IΩ ⊗ JΩ′ ;
• A1 ⊗ JΩ′ .

Analogously, the adjacency matrices associated with the nested
product S/S ′ defined on the product Θ×Θ′ are

• B1 ⊗ JΘ′ ;
• IΘ ⊗ IΘ′ ;
• IΘ ⊗B′

1.

We can consider the inherent partition G of Θ × Θ′ defined as in the
previous case, so that its relation matrix is

RG = IΘ ⊗ IΘ′ + IΘ ⊗B′
1 = IΘ ⊗ JΘ′ ,

corresponding to the partition Θ×Θ′ = {(1, 1), (1, 2)}∐{(2, 1), (2, 2)}.
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We can now consider the crested product of the schemes 2/2 and
2/2 with respect to the inherent partition G and F defined above. So
we get the association scheme on the set

Θ×Θ′ × Ω× Ω′

whose adjacency matrices are

• (IΘ ⊗ IΘ′)⊗ (A1 ⊗ JΩ′);
• (IΘ ⊗B′

1)⊗ (A1 ⊗ JΩ′);
• (IΘ ⊗ IΘ′)⊗ (IΩ ⊗ IΩ′);
• (IΘ ⊗ IΘ′)⊗ (IΩ ⊗ A′

1);
• (IΘ ⊗B′

1)⊗ (IΩ ⊗ IΩ′);
• (IΘ ⊗B′

1)⊗ (IΩ ⊗ A′
1);

• (B1 ⊗ JΘ′)⊗ (IΩ ⊗ JΩ′);
• (B1 ⊗ JΘ′)⊗ (A1 ⊗ JΩ′).

By choosing the inherent partition G for Θ×Θ′ and the universal
partition UΩ×Ω′ for Ω × Ω′, i.e. the partition whose relation matrix is
RUΩ×Ω′ = JΩ⊗JΩ′ , we get a different crested product of the schemes 2/2
and 2/2. The only adjacency matrix of the ideal partition P associated
with UΩ×Ω′ is JΩ⊗JΩ′ . So the adjacency matrices of the crested product
of the schemes 2/2 and 2/2 are

• (IΘ ⊗ IΘ′)⊗ (A1 ⊗ JΩ′);
• (IΘ ⊗B′

1)⊗ (A1 ⊗ JΩ′);
• (IΘ ⊗ IΘ′)⊗ (IΩ ⊗ IΩ′);
• (IΘ ⊗ IΘ′)⊗ (IΩ ⊗ A′

1);
• (IΘ ⊗B′

1)⊗ (IΩ ⊗ IΩ′);
• (IΘ ⊗B′

1)⊗ (IΩ ⊗ A′
1);

• (B1 ⊗ JΘ′)⊗ (JΩ ⊗ JΩ′).

Finally, by choosing the identity partition EΘ×Θ′ for Θ × Θ′ and
the inherent partition F for Ω × Ω′, we get again a different crested
product of the schemes 2/2 and 2/2, whose adjacency matrices are

• (IΘ ⊗ IΘ′)⊗ (A1 ⊗ JΩ′);
• (IΘ ⊗ IΘ′)⊗ (IΩ ⊗ IΩ′);
• (IΘ ⊗ IΘ′)⊗ (IΩ ⊗ A′

1);
• (IΘ ⊗B′

1)⊗ (IΩ ⊗ JΩ′);
• (IΘ ⊗B′

1)⊗ (A1 ⊗ JΩ′);
• (B1 ⊗ JΘ′)⊗ (IΩ ⊗ JΩ′);
• (B1 ⊗ JΘ′)⊗ (A1 ⊗ JΩ′).

This completes the description of the nontrivial crested products
that we can get from the schemes 2/2 and 2/2. By choosing the iden-
tity partition EΘ×Θ′ as inherent partition of Θ× Θ′ and the universal
partition UΩ×Ω′ as inherent partition of Ω×Ω′, we get the nested prod-
uct

2/2/2/2.

The adjacency matrices of this scheme are
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• (IΘ ⊗ IΘ′)⊗ (A1 ⊗ JΩ′);
• (IΘ ⊗ IΘ′)⊗ (IΩ ⊗ IΩ′);
• (IΘ ⊗ IΘ′)⊗ (IΩ ⊗ A′

1);
• (IΘ ⊗B′

1)⊗ (JΩ ⊗ JΩ′);
• (B1 ⊗ JΘ′)⊗ (JΩ ⊗ JΩ′).

The remaining choices of inherent partitions of Θ×Θ′ and Ω× Ω′

give rise to the crossed product

(2/2)× (2/2),

whose adjacency matrices are

• (IΘ ⊗ IΘ′)⊗ (IΩ ⊗ IΩ′);
• (IΘ ⊗ IΘ′)⊗ (IΩ ⊗ A′

1);
• (IΘ ⊗ IΘ′)⊗ (A1 ⊗ JΩ′);
• (IΘ ⊗B′

1)⊗ (IΩ ⊗ IΩ′);
• (IΘ ⊗B′

1)⊗ (IΩ ⊗ A′
1);

• (IΘ ⊗B′
1)⊗ (A1 ⊗ JΩ′);

• (B1 ⊗ JΘ′)⊗ (IΩ ⊗ IΩ′);
• (B1 ⊗ JΘ′)⊗ (IΩ ⊗ A′

1);
• (B1 ⊗ JΘ′)⊗ (A1 ⊗ JΩ′).

These products have also another interpretation from the orthogo-
nal block structures point of view.

Remark 12.1.

A ultrametric space has in a natural way an orthogonal block struc-
ture: if we fix a level of the tree, this level induces a partition in spheres.
Considering this partition in spheres for each level, we get an orthogo-
nal block structure.

Take now two rooted trees of depth 2 with branch indices (m,n)
and (p, q), respectively. Consider the corresponding orthogonal block
structures: each block consists of three partitions with sizes 1, n,mn
and 1, q, pq, respectively. We denote these partitions by F0, F1, F2 for
the first tree and by G0, G1, G2 for the second tree. So the relation
matrices in the case of the first tree are

• R0 = Im ⊗ In;
• R1 = Im ⊗ Jn;
• R2 = Jm ⊗ Jn

and in the case of the second tree are

• S0 = Ip ⊗ Iq;
• S1 = Ip ⊗ Jq;
• S2 = Jp ⊗ Jq.

The corresponding association schemes that we can get considering the
matrices AF defined above are Q, with adjacency matrices
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• A0 = Im ⊗ In;
• A1 = Im ⊗ (Jn − In);
• A2 = (Jm − Im)⊗ Jn

and Q′, with adjacency matrices

• A′
0 = Ip ⊗ Iq;

• A′
1 = Ip ⊗ (Jq − Iq);

• A′
2 = (Jp − Ip)⊗ Jq.

So we can observe that the association scheme Q is just the scheme
m/n and the association scheme Q′ is just the scheme p/q. We can

do the crested product of these schemes with respect to the possible
inherent partitions, whose relation matrices are R0 or S0 in the case of
the equality partition, then R1 or S1 and finally R2 or S2 in the case
of the universal partition.

We can also do the crested product of orthogonal block structures
and then we can associate to the block obtained a new association
scheme by using the matrices AF . Actually, we can show that the
operation of deriving the association scheme from the orthogonal block
structure commutes with cresting. Let us verify it in all cases.

The relation matrices of the block obtained by the crest product
with respect to the partition F1 and G1 are

• R0 ⊗ S0, with associated adjacency matrix A0,0 = Im ⊗ In ⊗
Ip ⊗ Iq;
• R0 ⊗ S1, with A0,1 = Im ⊗ In ⊗ Ip ⊗ (Jq − Iq);
• R0 ⊗ S2, with A0,2 = Im ⊗ In ⊗ (Jp − Ip)⊗ Jq;
• R1 ⊗ S0, with A1,0 = Im ⊗ (Jn − In)⊗ Ip ⊗ Iq;
• R1 ⊗ S1, with A1,1 = Im ⊗ (Jn − In)⊗ Ip ⊗ (Jq − Iq);
• R1 ⊗ S2, with A1,2 = Im ⊗ (Jn − In)⊗ (Jp − Ip)⊗ Jq;
• R2 ⊗ S1, with A2,1 = (Jm − Im)⊗ Jn ⊗ Ip ⊗ Jq;
• R2 ⊗ S2, with A2,2 = (Jm − Im)⊗ Jn ⊗ (Jp − Ip)⊗ Jq

and these matrices Ai,j’s are just the adjacency matrices of the associa-
tion scheme obtained by the crested product of the association schemes
Q and Q′ by choosing the partitions F1 and G1 as inherent partitions,
respectively.

The relation matrices of the block obtained with the crest product
with respect to the partition F1 and G2 are

• R0 ⊗ S0, with associated adjacency matrix A0,0 = Im ⊗ In ⊗
Ip ⊗ Iq;
• R0 ⊗ S1, with A0,1 = Im ⊗ In ⊗ Ip ⊗ (Jq − Iq);
• R0 ⊗ S2, with A0,2 = Im ⊗ In ⊗ (Jp − Ip)⊗ Jq;
• R1 ⊗ S0, with A1,0 = Im ⊗ (Jn − In)⊗ Ip ⊗ Iq;
• R1 ⊗ S1, with A1,1 = Im ⊗ (Jn − In)⊗ Ip ⊗ (Jq − Iq);
• R1 ⊗ S2, with A1,2 = Im ⊗ (Jn − In)⊗ (Jp − Ip)⊗ Jq;
• R2 ⊗ S2, with A2,2 = (Jm − Im)⊗ Jn ⊗ Jp ⊗ Jq
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and these matrices Ai,j’s are just the adjacency matrices of the associa-
tion scheme obtained by the crested product of the association schemes
Q and Q′ by choosing the partitions F1 and G2 as inherent partitions,
respectively.

The relation matrices of the block obtained with the crest product
with respect to the partition F0 and G1 are

• R0 ⊗ S0, with associated adjacency matrix A0,0 = Im ⊗ In ⊗
Ip ⊗ Iq;
• R0 ⊗ S1, with A0,1 = Im ⊗ In ⊗ Ip ⊗ (Jq − Iq);
• R0 ⊗ S2, with A0,2 = Im ⊗ In ⊗ (Jp − Ip)⊗ Jq;
• R1 ⊗ S1, with A1,1 = Im ⊗ (Jn − In)⊗ Ip ⊗ Jq;
• R2 ⊗ S1, with A2,1 = (Jm − Im)⊗ Jn ⊗ Ip ⊗ Jq
• R1 ⊗ S2, with A1,2 = Im ⊗ (Jn − In)⊗ (Jp − Ip)⊗ Jq;
• R2 ⊗ S2, with A2,2 = (Jm − Im)⊗ Jn ⊗ (Jp − Ip)⊗ Jq

and these matrices Ai,j’s are just the adjacency matrices of the associa-
tion scheme obtained by the crested product of the association schemes
Q and Q′ by choosing the partitions F0 and G1 as inherent partitions,
respectively.

The same result can be obtained by considering the crossed product
and the nested product.

In fact, the relation matrices of the block obtained with the crest
product with respect to the partition F0 and G2 are

• R0 ⊗ S0, with associated adjacency matrix A0,0 = Im ⊗ In ⊗
Ip ⊗ Iq;
• R0 ⊗ S1, with A0,1 = Im ⊗ In ⊗ Ip ⊗ (Jq − Iq);
• R0 ⊗ S2, with A0,2 = Im ⊗ In ⊗ (Jp − Ip)⊗ Jq;
• R1 ⊗ S2, with A1,2 = Im ⊗ (Jn − In)⊗ Jp ⊗ Jq;
• R2 ⊗ S2, with A2,2 = (Jm − Im)⊗ Jn ⊗ Jp ⊗ Jq

and these matrices Ai,j’s are just the adjacency matrices of the associa-
tion scheme obtained by the crested product of the association schemes
Q and Q′ by choosing the partitions F0 and G2 as inherent partitions,
respectively. The remaining choices for the partitions give rise to the
crossed product. The relation matrices of the block obtained with the
crossed product are

• R0 ⊗ S0, with associated adjacency matrix A0,0 = Im ⊗ In ⊗
Ip ⊗ Iq;
• R0 ⊗ S1, with A0,1 = Im ⊗ In ⊗ Ip ⊗ (Jq − Iq);
• R0 ⊗ S2, with A0,2 = Im ⊗ In ⊗ (Jp − Ip)⊗ Jq;
• R1 ⊗ S0, with A1,0 = Im ⊗ (Jn − In)⊗ Ip ⊗ Iq;
• R1 ⊗ S1, with A1,1 = Im ⊗ (Jn − In)⊗ Ip ⊗ (Jq − Iq);
• R1 ⊗ S2, with A1,2 = Im ⊗ (Jn − In)⊗ (Jp − Ip)⊗ Jq;
• R2 ⊗ S0, with A2,0 = (Jm − Im)⊗ Jn ⊗ Ip ⊗ Iq;
• R2 ⊗ S1, with A2,1 = (Jm − Im)⊗ Jn ⊗ Ip ⊗ (Jq − Iq);
• R2 ⊗ S2, with A2,2 = (Jm − Im)⊗ Jn ⊗ (Jp − Ip)⊗ Jq.
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The interesting fact is that the nested product of the two original blocks
gives an orthogonal block structure on a set withmnpq elements, which
is exactly the block of spherical partitions of the fourth level of the
rooted tree of depth 4 and branch indices (m,n, p, q). The remaining
crested product give other orthogonal block structures corresponding
to different partitions which are not induced by the spheres of the trees.
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