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1 Introduction

1.1 A motivation from the physics

Quantum Open System Theory is nowadays a highly developed field which
involves, on the mathematical side, many mathematical concepts such as op-
erator theory, semigroups of operators on certain Banach spaces (algebras),
classical and quantum stochastic differential equations...

Inside Quantum Open System Theory there is the theory of quantum contin-
ual measurements: a quantum system is monitored with continuity in time.
This is surely an open system because, apart from possible interactions with
the external environment like a thermal bath, the system is interacting with
the measuring apparatus. The typical field in which a theory of continual
measurements is needed is quantum optics: when light emitted by some sys-
tem is observed (by counting of photons – direct detection – or through some
interference mechanism – heterodyne and homodyne detection) a continual
measurement is performed.

Balanced heterodyne detection
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The theory needed for such a kind of measurements has been developed, but
with mathematical rigour only in the case in which the system operators in-
volved are bounded. But typical systems in quantum optics are resonant cavi-
ties, with inside matter and modes of the electromagnetic field. This system can
be stimulated by external lasers and emits light in the free space which can be
detected. As soon as modes of the electromagnetic field are involved, creation
and annihilation operators, which are unbounded, enter into play. The present
doctoral thesis is born motivated by the study of the continual measurement
in this type of phenomena.

1.2 Continual Measurements

The theory of Continual Measurements begins with the work of E.B. Davis in
the 70’s and several authors contributed to its development, as A.S. Holevo,
V.P. Belavkin and A. Barchielli. In the work Continual Measurements in Quan-
tum Mechanics and Quantum Stochastic Calculus (Lecture Notes in Mathemat-
ics, Springer, Berlin 2006) a general account of the theory is presented and an
exhaustive study under very general conditions is developed, but always con-
sidering bounded operators for the system under measurement. This work will
serve as a guide for the development of this thesis; my thesis is about recon-
structing the theory in a slightly less general frame (rich enough to contain the
physically interesting observables), but now unbounded system operators are
permitted for.

One of the possible ways of approaching to the study of continuous measure-
ments is through Quantum Stochastic Calculus, whose bases where developed
in the 80’s with the classic works of R.L. Hudson and K.R. Parthasarathy,
where they obtained the fundamental rules of this calculus. In their theory the
coefficients involved in their famous equation (quantum stochastic Schrödinger
equation, or Hudson-Parthasarathy equation) are always bounded operators
and, therefore, this equation is not applicable directly in the case of our interest.
Many authors developed the theory of such an equation to the unbounded case;
in particular F. Fagnola and S.J. Wills published Solving Quantum Stochas-
tic Differential Equations with Unbounded Coefficients (Journal the Functional
Analysis, 2003), giving sufficient conditions to obtain existence, uniqueness and
unitarity of the solution of Hudson-Parthasarathy equations with unbounded
coefficients. Moreover, in Quantum Stochastic Differential Equations and Di-
lation of Completely Positive Semigroup, published in Lecture Notes in Math-
ematics (Springer, Berlin 2006), F. Fagnola builds a Quantum Markov Semi-
group by

〈
U(t)v ⊗ ψ(0)

∣∣(X ⊗ 1)U(t)u ⊗ ψ(0)
〉

and studies its infinitesimal
generator; here, U(t) is the unitary solution of the Hudson-Parthasarthy equa-
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tion with unbounded coefficients and ψ(0) represents the vacuum vector in the
Fock space. They will be the hypotheses given in these two works which we
take as starting point for the development of this thesis. The aim is to combine
these results together with the ideas of the theory of continual measurements.

1.3 The main results

The starting point is a quantum system SH living in a Hilbert space H in
interaction with a Bose field living in a Fock space F ; the unitary evolution is
governed by an Hudson-Parthasarathy equation with unbounded coefficients.

1. We construct and study the reduced dynamics of SH starting from a
coherent state |ψ(f)〉〈ψ(f)| for the field; in other words we study the
evolution

〈
U(t)v ⊗ ψ(f)

∣∣(X ⊗ 1)U(t)u ⊗ ψ(f)
〉
, X ∈ B(H ), u, v ∈ H .

In particular, we consider the case f = constant, for which the previous
quantity gives rise to a Quantum Dynamical Semigroup. Unexpectedly,
we were compelled to add new hypotheses to the Fagnola-Wills ones in
order to obtain a generator with good properties.

2. The reduced dynamics is not a semigroup when f is not constant, but it
is possible to obtain it as a uniform limit of an evolutions made up of a
time-ordered product of semigroups.

3. In the case of a generic f , a time-dependent form-generator of the reduced
dynamics is obtained. Moreover it is shown that the reduced dynamics
satisfies a backward master equation.

4. For what concerns the Continual Measurements, from [3] the notion of

Characteristic Operator Φ̂k(t) is taken; it is the Fourier transform of
a projection valued measure. Then, the quantity

〈
U(t)v ⊗ ψ(f)

∣∣(X ⊗
Φ̂k(t))U(t)u ⊗ ψ(f)

〉
defines a reduced characteristic operator and the

problem is to obtain an evolution equation for it. In the case in which
all the functions involved are constant, again a semigroup of operators
is obtained, which is not a Quantum Dynamical Semigroup because it is
not positive, but it is the Fourier transform of a positive operator-valued
measure.

5. As in the case of the dynamics, also the generic reduced characteristic
operator is proved to be the limit of time-ordered products of semigroups.

6. Again a backward evolution equation with a the time-dependent genera-
tor is obtained for the reduced characteristic operator.
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1.4 Open problems

The main mathematical open problem is the uniqueness of the solution of the
two backward equations quoted above, the one for the reduced dynamics and
the one for the reduced characteristic operator. By construction we know that
both equations have a solution with all the required good properties, but to
show uniqueness seems to be a delicate problem, mainly in the second case,
where positivity cannot be invoked.

In order to have well defined generators of all the semigroups we had to in-
troduced, the Fagnola-Wills hypotheses were strengthened: was this strictly
necessary?

Another natural line of development of the thesis would be the application of
our results to concrete physical models as the ones talked about in Section 1.1.
Here two kind of problems arise: one is to check if the concrete unbounded
operators involved in the model satisfy the abstract hypotheses and the other
is to see how to arrive to compute analytically or numerically some of the
(stochastic) properties of the output of the continual measurement.



Chapter 2

The Hudson-Parthasarathy
Equations

2.1 Fock space and Weyl operators

2.1.1 The symmetric Fock space over L2(R+;Z )

Let Z be a complex separable Hilbert space and let us introduce the space
L2(R+; Z ) of the Z -valued square-integrable functions on R+. For any Hilbert
space K , we denoted for U(K ) the class of the unitary operators. Let Γn be

the n-th tensor product of L2(R+; Z ) with itself, i.e. Γn =

n⊗

k=1

L2(R+; Z ). We

denote by Γnsymm the symmetric part of Γn ([12] p. 106).

We denote by F the symmetric Fock space over L2(R+; Z ):

F = Γ0
symm ⊕ Γ1

symm ⊕ Γ2
symm ⊕ Γ3

symm ⊕ · · · ≡ Γsymm

(
L2(R+; Z )

)
. (2.1)

The n-th direct summand Γnsymm is called the n-particle subspace. When n = 0,
it is called vacuum subspace. Any element of the n-particle subspace is called
an n-particle vector. The vector 1 ⊕ 0 ⊕ 0 · · · is called the vacuum vector.
The elements of the dense linear manifold generated by all n-particle vector,
n = 0, 1, 2, . . . , are called finite particle vectors.

Let us consider f ∈ L2(R+; Z ); we will denote by e(f) and ψ(f) respectively

9
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the Exponential Vector and Coherent Vector defined in the F space by

e(f) := 1⊕ f ⊕ f ⊗ f√
2!
⊕ · · · ⊕ f⊗n√

n!
⊕ · · · and ψ(f) :=

e(f)

‖e(f)‖ . (2.2)

The inner product between two exponential vectors or between two coherent
vectors results to be given by

〈
e(f)

∣∣e(g)
〉

= e〈f |g〉 , 〈ψ(f)|ψ(g)〉 = exp

{
−1

2
‖f − g‖2 + i Im〈f |g〉

}
. (2.3)

If M is a dense linear manifold in L2(R+; Z ), then, the linear span E(M) of
the vectors e(f), with f ∈M, is dense in F .

An important feature of the Fock space F is its structure of continuous tensor
product. For any choice of the times 0 ≤ s ≤ t let us introduce the spaces

F(s,t) = Γsymm(L2((s, t); Z )) and F(t = Γsymm(L2((t,∞); Z ));

they are defined similarly to Γsymm

(
L2(R+; Z )

)
. Then, we have the natural

identifications

F ' F(0,s)⊗F(s,t)⊗F(t and e(f) ' e(f(0,s))⊗e(f(s,t))⊗e(f(t) , (2.4)

where f(s,t)(x) := 1(s,t)(x)f(x) and f(t(x) := 1(t,∞)(x)f(x).

Similarly, if P is any orthogonal projection, one has the factorization

Γ = Γsymm

(
PL2(R+;Z)

)
⊗ Γsymm

(
(1− P )L2(R+;Z)

)
. (2.5)

2.1.2 The Weyl operators

The Weyl operator W (g; U ) is the unique unitary operator defined by

W (g; U )e(f) = exp
{
− 1

2
‖g‖2 − 〈g|U f〉

}
e(U f + g), ∀f ∈ L2(R+; Z ),

(2.6)
with g ∈ L2(R+; Z ) and U an unitary operator over L2(R+; Z ). By using the
coherent vectors, one has, equivalently,

W (g; U )ψ(f) = exp
{

i Im〈U f |g〉
}
ψ(U f + g), ∀f ∈ L2(R+; Z ). (2.7)

From the definition one obtains the relations

W (g; U )−1 = W (g; U )∗ = W (−U ∗g; U ∗) (2.8)
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and the composition law

W (h; V )W (g; U ) = exp
{
− i Im〈h|V g〉

}
W (h+ V g; V U ). (2.9)

We will also use the notation W (f) = W (f ;1) and Υ(U ) = W (0; U ).

Now, for f, g ∈ L2(R+; Z ) and U ,V unitary operators on L2(R+; Z ), we have
the following relations ([12], pg. 136):

(i) = W (f)W (g) = W (g)W (f) exp
{
− 2i Im〈f |g〉

}
, (2.10)

(ii) = W (f)W (g) = exp
{
− i Im〈f |g〉

}
W (f + g), (2.11)

(iii) = Υ(U )Υ(V ) = Υ(U V ), (2.12)

(iv) = Υ(U )W (f)Υ(U )−1 = W (U f), (2.13)

(v) = W (sf)W (tf) = W
(
(s+ t)f

)
, s, t ∈ R. (2.14)

2.2 Field operators

2.2.1 The operator Q(f)

For every element f ∈ L2(R+; Z ) the map k →W (ikf) is a strongly continuous
one parameter unitary group and we denote by Q(f) its Stone generator and
we write

W (ikf) = exp
{

ikQ(f)
}
. (2.15)

The generator Q(f) is a selfadjoint operator and it enjoys the properties ([12],
Prop. 20.4 and Corol. 20.5):

(i) Q(af) = aQ(f), ∀a ∈ R,

(ii) Q(f) is essentially selfadjoint in the exponential domain E(L2(R+; Z )),

(iii) E(L2(R+; Z )) is a core for Q(f), i.e. Q(f)
∣∣
E(L2(R+;Z ))

= Q(f),

(iv) the linear manifold of all finite particle vectors is a core for Q(f),

(v) E(L2(R+; Z )) is included in the domain of the product Q(f1) · · ·Q(fn),
∀n, ∀f1, . . . , fn ∈ L2(R+; Z ),

(vi) [Q(h), Q(g)]e(f) =
{

2iIm〈h|g〉
}
e(f) .
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2.2.2 The operator λ(B)

The operator Υ(U ) is called the second quantization of U . Let e−ikB be a
strongly continuous, one parameter unitary group in L2(R+; Z ) with B a self-
adjoint operator in L2(R+; Z ); its second quantization Υ(e−ikB) is a strongly
continuous, one parameter unitary group too. We denote by λ(B) its Stone
generator:

Υ(e−ikB) = e−ikλ(B). (2.16)

Sometimes λ(B) is called “second quantization of B” and λ “conservation
map”.

Moreover, one has ([12], Theorem 20.7):

(i) E
(
Dom(B)

)
is included in the domain of λ(B),

(ii) E(Dom(B2)) is a core for λ(B),

(iii) if B is bounded, then λ(B) is essentially selfadjoint in the exponential
domain E(L2(R+; Z )),

(iv) i[λ(B1), λ(B2)]e(f) = λ(i[B1, B2])e(f), ∀B1, B2 bounded selfadjoint op-
erators and ∀f ∈ L2(R+; Z ),

(v) E(L2(R+; Z )) is included in the domain of the product λ(B1) · · ·λ(Bn),
where the Bi are bounded selfadjoint operators.

For any h ∈ L2(R+; Z ) and any selfadjoint operator B in L2(R+; Z ) let us set
([12], Prop. 21.6)

λ(B, h) := W (−h)λ(B)W (h). (2.17)

Then, the operator λ(B, h) is the generator of the unitary group

k 7→W (−h)Υ(ikB)W (h)

and it is essentially selfadjoint on the linear manifold generated by
{
e(f − h) :

f ∈ Dom(B2)
}

. When B is also bounded, E(L2(R+; Z )) is a core for λ(B, h)
and, on the exponential domain E(L2(R+; Z )), one has

λ(B, h) = λ(B) + a(Bh) + a†(Bh) + 〈h|Bh〉1, (2.18)

where the creation and annihilation operators a(h) and a†(h) are defined by

a(h) :=
1

2

(
Q(h) + iQ(ih)

)
, a†(h) :=

1

2

(
Q(h)− iQ(ih)

)
.
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2.3 The quantum stochastic integral

Let us fix a complete orthonormal system {zi; i ≥ 1} in Z . We denote by

A†i (t) := a†(zi⊗1(0,t)), Λij(t) := λ
(
(|zi〉〈zj |)⊗1(0,t)

)
, Ai(t) := a(zi⊗1(0,t))

the creation, conservation and annihilation processes respectively ([12], The-
orem 20.10); the maps a†, λ and a have been defined in the previous section.
The following matrix notation is very useful:

Λ = (Λij) =




1t A1 A2 · · ·
A†1 Λ11 Λ12 · · ·
A†2 Λ21 Λ22 · · ·
...

...
...

. . .


 (2.19)

i.e. Λ00 := 1t, Λ0i := Ai and Λi0 := A†i . For these processes one has:

〈
e(g)

∣∣Λij(t)e(f)
〉

=

∫ t

0

gi(s)fj(s) ds 〈e(g)|e(f)〉, ∀ i, j ≥ 0, (2.20)

where we have used the notation

fi(t) :=

{
1 if i = 0

〈zi|f(t)〉 if i ≥ 1

From now on we fix the sets

M =
{
f ∈ L2(R+; Z ) ∩ L∞loc(R+; Z )

∣∣fk(t) ≡ 0 ∀t and

for all but a finite number of k’s
}

and

E =
{

linear span of all the exponential vectors e(f) with f ∈M
}
.

Notice that M is a dense linear manifold in L2(R+; Z ), and, so, E ≡ E(M ) is
dense in F .

Let us introduce now a complex, separable Hilbert space H , which we call
System Space. Its role will be to describe a quantum system interacting with
the Bose fields Λ.

Definition 2.1 (Adapted Process – [12] pg. 180). Let D be a dense manifold
in H . A family {L(t), t ≥ 0} of operators in H ⊗ F is an adapted process
with respect to (D,M ) if
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(i) D⊗E ⊂
⋂

t≥0

Dom(L(t)) (where ⊗ denotes the algebraic tensor product),

(ii) The map t 7→ L(t)u⊗ e(f) is strongly measurable, ∀u ∈ D, f ∈M ,

(iii) L(t)u⊗ e(f(0,t)) ∈H ⊗F(0,t) and L(t)u⊗ e(f) =
(
L(t)u⊗ e(f(0,t))

)
⊗

e(f(t), ∀t ≥ 0, u ∈ D, f ∈M .

If additionally the map t 7→ L(t)u ⊗ e(f) is continuous for every u ∈ D and
f ∈M the process is said to be regular adapted.

By the factorization property (2.4) and the properties of Λ, we have for any
i, j ≥ 0

(
Λij(t)− Λij(s)

)
e(f) = e(f(0,s))⊗

((
Λij(t)− Λij(s)

)
e(f(s,t))

)
⊗ e(f(t)

for all 0 ≤ s < t < ∞ and f ∈ H ; here
(
Λij(t) − Λij(s)

)
e(f(s,t)) ∈ F(s,t).

Notice the similarity with the notion of process with independent increments
in classical probability.

By a partition of R+ we mean a sequence 0 = t0 < t1 < · · · < tn < · · · where
tn → ∞ as n → ∞. Let L(t) be an adapted process in H with respect to
(D,M ), simple with respect to the partition {tn}. Let us define for L the
stochastic integral

IL(t) :=

∫ t

0

L(s)dΛij

by putting Dom(IL(t)) = D⊗E and

IL(t)u⊗ e(f) =
(
L(0)u

)
⊗
(
Λij(t)e(f)

)
, if 0 ≤ t ≤ t1 ,

IL(t)u⊗ e(f) = IL(tn)u⊗ e(f)

+
(
L(tn)u⊗ e(f(0,tn))

)(
Λij(t)− Λij(tn)

)
e(f(tn),

if tn < t ≤ tn+1, n = 1, 2, . . . ,

where the right hand side is determined inductively in n. IL possesses the
following properties:

• IL(t) is independent of the partition with respect to which L is simple.

• The map t→ IL(t)u⊗ e(f) is continuous for any u ∈ D and f ∈M .

• {IL(t), t ≥ 0} is a regular adapted process with respect to (D,M ).
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•
∥∥∥∥
∫ t

0

L(s)dΛij(s)u⊗ e(f)

∥∥∥∥
2

≤
∫ t

0

‖L(s)u⊗ e(f)‖
(
1 + ‖f(s)‖2

)
ds.

Making use of these properties we can extend the notion of stochastic integral to
adapted processes which are not necessarily simple, by the standard procedures
of integration theory.

Definition 2.2 (Stochastically Integrable - [9] Def. 2.1). A family {Li; i ≥ 0}
of (D,M ) adapted process is said to be stochastically integrable if, ∀t ≥ 0, u ∈
D and f ∈M , one has

∑

i≥0

∫ t

0

‖Li(s)u⊗ e(f)‖2ds <∞ . (2.21)

We denote by L(D,M ) the class of the stochastically integrable families of
(D,M ) adapted processes.

Definition 2.3 (Quantum Stochastic Integral). Let I0 be in B(H ) and {Fij ;
i, j ≥ 0} in L(D,M ), then the operator on D⊗E

IF (t) = I0 +
∑

i,j≥0

∫ t

0

Fij(s)dΛij(s)

is called Quantum Stochastic Integral.

The construction of the stochastic integrals is developed in [12] Chapter III
Section 25.

Proposition 2.1 (First fundamental formula of quantum stochastic calculus
– [12] Corollary 27.2). Let IF (t) be as in Definition 2.3, then

〈
v ⊗ e(g)|(IF (t)− I0)u⊗ e(f)

〉

=
∑

i,j≥0

∫ t

0

ds gi(s)
〈
v ⊗ e(g)

∣∣Fij(s)u⊗ e(f)
〉
fj(s) (2.22)

for all v ∈H , u ∈ D, f, g ∈M and t > 0.

Proposition 2.2 (Second fundamental formula of quantum stochastic calculus
– [12] Corollary 27.2). Let IF (t) as in Definition 2.3 and IF̃ (t) defined in similar
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terms. Then

〈
IF̃ (t)v ⊗ e(g)

∣∣IF (t)u⊗ e(f)
〉
−
〈
Ĩ0v ⊗ e(g)

∣∣I0u⊗ e(f)
〉

=
∑

i,j≥0

∫ t

0

ds gi(s)
{〈
IF̃ (s)v ⊗ e(g)

∣∣Fij(s)u⊗ e(f)
〉

+
〈
F̃ji(s)v ⊗ e(g)

∣∣IF (s)u⊗ e(f)
〉

+
∑

k≥1

〈
F̃ki(s)v ⊗ e(g)

∣∣Fkj(s)u⊗ e(f)
〉}
fj(s)

for all u, v ∈ D, f, g ∈M and t > 0.

Proposition 2.3 ([12] Corollary 25.8, Proposition 27.1). The quantum sto-
chastic integral IF (t) is a (D,M ) regular adapted process.

Remark 2.1. All these propositions can be translated in the following practical
rules for manipulating quantum stochastic integrals:

1. dA†i (t),dΛij(t) and dAi(t) commute with adapted processes at time t, so
that they can be shifted towards the right or the left, according to the
convenience.

2. The products of the fundamental differentials satisfy the Itô table:
dΛik(t)dΛlj(t) = δ̂kldΛij(t), i, j, k, l ≥ 0, where the symbol δ̂kl is defined

by δ̂kl = 1 if k = l > 0 and δ̂kl = 0 otherwise.

3. For i, j ≥ 1 we have dAi(t)e(f) = dtfi(t)e(f),

dΛij(t)e(f) = dA†i (t)fj(t)e(f), 〈e(f)|dA†i (t) = fi(t)dt〈e(f)|.

2.4 The Hudson-Parthasarathy equations

Now let K, Ri, Ni, Fij , K̃, R̃i, Ñi and F̃ij , with i, j ≥ 1, be (possi-
bly unbounded) operators on the initial space H , with which we build the
two Quantum Stochastic Differential Equations (QSDE), known as Hudson-
Parthasarathy(H-P) equations [12]:

Right Equation:




dU(t) =
(∑

i≥1

RidA
†
i (t) +

∑

i,j≥1

FijdΛij(t) +
∑

j≥1

NjdAj(t) +Kdt
)
U(t)

U(0) = 1

(2.23)
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Left Equation:




dV (t) = V (t)
(∑

i≥1

ÑidA
†
i (t) +

∑

i,j≥1

F̃ijdΛij(t) +
∑

j≥1

R̃jdAj(t) + K̃dt
)

V (0) = 1

(2.24)

By setting F00 = K, Fi0 = Ri, F0j = Nj , F̃00 = K̃, F̃i0 = Ñi, F̃0j = R̃j , we
can write:

Right Equation:





dU(t) =
∑

i,j≥0

Fij dΛij(t) U(t)

U(0) = 1

Left Equation:





dV (t) = V (t)
∑

i,j≥0

F̃ij dΛij(t)

V (0) = 1

Definition 2.4 (Right Solution - [9] Def. 3.2). Let D be a dense subspace in
H . An operator process U is a solution of the Right QSDE in D⊗E for the
matrix F if:

(i) Each operator Fij ⊗ 1 is closable,

(ii)
⋃

t≥0

U(t)(D⊗E) ⊂
⋂

i,j≥0

Dom(Fij ⊗ 1),

(iii) Each process Fij ⊗ 1 U is stochastically integrable, i.e.

∑

j≥0

∫ t

0

‖
(
Fij ⊗ 1 U(s)

)
(u⊗ e(f))‖2ds <∞ , ∀i ≥ 0, u ∈ D, f ∈M ,

(iv) U(t) = 1+
∑

i,j≥0

∫ t

0

Fij ⊗ 1 U(s)dΛij(s) on D⊗E , ∀t ≥ 0.

Let us recall that, if Fij is closable as an operator in H , then Fij⊗1 is closable
in H ⊗F ([9] pg. 188).

Definition 2.5 (Left Solution - [9] Def. 3.1). Let D̃ be a dense subspace in

H . An operator process V is a solution of the Left QSDE in D̃⊗E for the

matrix F̃ if:

(i) D̃ ⊂
⋂

i,j≥0

Dom(F̃ij),
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(ii) The linear manifold


 ⋃

i,j≥0

F̃ij

(
D̃
)

⊗E is contained in the domain of

V (t), ∀t ≥ 0,

(iii) ∀t ≥ 0, the processes
(
V (t)F̃ij ; t ≥ 0

)
are stochastically integrable, i.e.

∑

j≥0

∫ t

0

‖V (s)F̃ij(u⊗ e(f))‖2ds <∞, ∀i ≥ 0, u ∈ D̃, f ∈M ,

(iv) V (t) = 1+
∑

i,j≥0

∫ t

0

V (s)F̃ij dΛij(s) on D̃⊗E , ∀t ≥ 0.

Remark 2.2. By Proposition 2.3 right and left solutions are regular adapted
processes with respect to (D,M ) or (D̃,M ), respectively (see Definition 2.1).

2.5 The algebraic isometric condition

Let us assume that the process U(t) is a solution of the Right Equation as-
sociated to the matrix F as in Definition 2.4 and that it is isometric, which
means

〈U(t)v⊗e(g)|U(t)u⊗e(f)〉 = 〈v⊗e(g)|u⊗e(f)〉, ∀u, v ∈ D , ∀f, g ∈M .
(2.25)

By using the second fundamental formula (Proposition 2.2) and Eqs. (2.25),
(2.23), we get

∑

i,j≥0

∫ t

0

ds gi(s)
{〈
U(s)v ⊗ e(g)

∣∣Fij ⊗ 1U(s)u⊗ e(f)
〉

+
〈
Fji ⊗ 1U(s)v ⊗ e(g)

∣∣U(s)u⊗ e(f)
〉

+
∑

k≥1

〈
Fki ⊗ 1U(s)v ⊗ e(g)

∣∣Fkj ⊗ 1U(s)u⊗ e(f)
〉}
fj(s) = 0 .

By choosing f(t) and g(t) continuous, by dividing by t and by taking the limit
t ↓ 0, we get, by the arbitrariness of f(0) and g(0), the necessary condition

〈v|Fiju〉+ 〈Fjiv|u〉+
∑

k≥1

〈Fkiv|Fkju〉 = 0, ∀u, v ∈ D, ∀i, j ≥ 0. (2.26)
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Let us assume that the process V (t) is a solution of the Left Equation associated

to the matrix F̃ as in Definition 2.5 and that it is isometric. By going on as
before and recalling that V (t) is an isometry, we get

0 =
∑

i,j≥0

∫ t

0

ds gi(s)
{〈
V (s)v ⊗ e(g)

∣∣V (s)F̃iju⊗ e(f)
〉

+
〈
V (s)F̃jiv ⊗ e(g)

∣∣V (s)u⊗ e(f)
〉

+
∑

k≥1

〈
V (s)F̃kiv ⊗ e(g)

∣∣V (s)F̃kju⊗ e(f)
〉}
fj(s)

=
∑

i,j≥0

∫ t

0

ds gi(s)
{〈
v ⊗ e(g)

∣∣F̃iju⊗ e(f)
〉

+
〈
F̃jiv ⊗ e(g)

∣∣u⊗ e(f)
〉

+
∑

k≥1

〈
F̃kiv ⊗ e(g)

∣∣F̃kju⊗ e(f)
〉}
fj(s) ,

which gives (see Proposition 8.1 of [9])

〈v|F̃iju〉+ 〈F̃jiv|u〉+
∑

k≥1

〈F̃kiv|F̃kju〉 = 0, ∀u, v ∈ D̃, ∀i, j ≥ 0. (2.27)

2.6 The bounded case

Consider F = (Fij) with Fij ∈ B(H ). Let us consider the right equation with

matrix F = (Fij) and the left equation with matrix F̃ = (F̃ij) := (F ∗ji) = F ∗;
then we have:




dU(t) =
(∑

i≥1

RidA
†
i (t) +

∑

i,j≥1

FijdΛij(t) +
∑

j≥1

NidAi(t) +Kdt
)
U(t)

U(0) = 1





dV (t) = V (t)
(∑

i≥1

N∗i dA†i (t) +
∑

i,j≥1

F ∗jidΛij(t) +
∑

j≥1

R∗i dAi(t) +K∗dt
)

V (0) = 1

Let us assume the isometry conditions (2.26), (2.27) with D = D̃ = H , which
become

Fij + F ∗ji +
∑

k≥1

F ∗kiFkj = F ∗ji + Fij +
∑

k≥1

FikF
∗
jk = 0, ∀i, j ≥ 0,
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or, equivalently,

Fij + F ∗ji +
∑

k≥1

F ∗kiFkj = F ∗ji + Fij +
∑

k≥1

FikF
∗
jk = 0, ∀i, j ≥ 1, (2.28)

K +K∗ +
∑

k≥1

R∗kRk = K∗ +K +
∑

k≥1

NkN
∗
k = 0, (2.29)

Ni +R∗i +
∑

k≥1

R∗kFki = R∗i +Ni +
∑

k≥1

FkiN
∗
k = 0, ∀i ≥ 1. (2.30)

Let us define Sij := Fji + δji, for i, j ≥ 1. Then, the conditions above become

∑

k≥1

S∗kiSkj =
∑

k≥1

SikS
∗
jk = δij ,

K = −iH − 1

2

∑

k≥1

R∗kRk, Ni = −
∑

k≥1

R∗kSki,

where H is a bounded selfadjoint operator in B(H ) and
∑
k≥1R

∗
kRk converges

strongly to a bounded operator.

Therefore we can write the Right Equation as





dU(t) =
(∑

i≥1

RidA
†
i (t) +

∑

i,j≥1

(
Sij − δij

)
dΛij(t)−

∑

i,j≥1

R∗i SijdAj(t)

+Kdt
)
U(t)

U(0) = 1

Theorem 2.4 ([12] Prop. 27.5, Theo. 27.8, Coro. 3.2). In the hypotheses
above, there exist a unique adapted process U(t) which solves the right equation
(2.23) and a unique adapted process V (t) which solves the left equation (2.24).
Both processes turn out to be unitary, strongly continuous in t and mutually
adjoint, i.e. V (t) = U∗(t)

2.7 The unbounded case

2.7.1 Some conditions on F

From Eqs. (2.26), (2.27) we expect the operators Fij for i, j ≥ 1 to be related
to unitary operators as in the previous section. So, it is natural to ask them
to be bounded even in the general case. Moreover, in order not to have too
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much analytical complications all together, we ask the space Z to be finite-
dimensional. In Definition 2.4 the operators Fij are needed to be closable and
in what follows only their closures are involved; so, we can ask them to be
closed.

Hypothesis 2.1. Let us assume dim(Z ) = d <∞.
Let F = (Fij) be a (d+ 1)× (d+ 1)-dimensional operator valued matrix with
Fij ∈ B(H ) for all i, j = 1, . . . , d, while Fi0 and F0i, for i ≥ 0 are closed
operators. Moreover, we consider the right H-P equation with matrix F = (Fij)

and the left H-P equation with matrix F̃ = (F̃ij) := (F ∗ji) = F ∗.

We also define Dom(F ) :=
⋂

i,j≥0

Dom(Fij), Dom(F ∗) :=
⋂

i,j≥0

Dom(F ∗ij) and

we assume both Dom(F ) and Dom(F ∗) to be dense in H .

Following [9] pg. 191, we introduce the quadratic form ϑ(F,X), where X ∈
B(H ):

∀u = (ui), v = (vi) ∈
d⊕

k=0

Dom(F ),

ϑ(F,X)(u, v) :=
∑

i,j≥0

〈ui|XFijvj〉+
∑

i,j≥0

〈Fjiui|Xvj〉+
∑

i,j≥0

∑

k≥1

〈Fkiui|XFkjvj〉.

(2.31)
The quadratic form ϑ(F ∗, X) is defined in an analogous way. We define also

ϑ(F ) := ϑ(F,1), ϑ(F ∗) := ϑ(F ∗,1). (2.32)

Note that the isometric condition (2.26) is equivalent to ϑ(F ) = 0 and the
co-isometric condition (2.27) is equivalent to ϑ(F ∗) = 0.

2.7.2 Existence of solutions of the H-P equations

The mathematical treatment of the Right Equation is more complicated and the
sufficient hypotheses for existence and uniqueness of its solution are stronger.
For this reason, we will establish first the conditions for the existence and
uniqueness of the solution of the Left Equation.

Theorem 2.5 ([9] Proposition 8.1, Theorem 8.5). If the matrix F ∗ satisfies
Hypothesis 2.1 and, moreover,
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1. the operator K∗ = F ∗00 is the infinitesimal generator of a strongly contin-

uous contraction semigroup on H and it exists a dense subspace D̃ ⊂H
such that D̃ is a core for K∗ contained in Dom(F ∗),

2. ϑ(F ∗) ≤ 0 in D̃,

then, there exists a unique contractive solution V on D̃⊗E of the left QSDE

(2.24) with F̃ = F ∗.

If, moreover, V is an isometric process, then ϑ(F ∗) = 0 in D̃.

Remark 2.3. By Remark 2.2 and the fact that V (t) is a contraction, we have
that it is strongly continuous in t.

Theorem 2.6 ([9] Theorem 11.1, [10] Theorem 2.3). Let U be a contraction
process and let F be an operator matrix satisfying Hypotheses 2.1. Let us set
V (t) = U(t)∗ and assume that V is the unique contractive solution of the Left

Equation for the matrix F ∗ in D̃⊗E, where D̃ is some dense linear set in H .

Also suppose that C is a positive self-adjoint operator on H , and that δ > 0
and b1, b2 ≥ 0 are constants such that the following properties hold:

1. for each ε ∈ (0, δ), there exists a dense subspace Dε ⊂ D̃ such that

(Cε)
1
2 (Dε) ⊂ D̃ and each operator F ∗ij(Cε)

1
2 |Dε is bounded, where Cε =

C
1+εC ;

2. Dom(C
1
2 ) ⊂ Dom(F );

3. for all 0 < ε < δ, the form ϑ(F,Cε) on Dom(F ) satisfies the inequality:
ϑ(F,Cε) ≤ b1ι(Cε) + b21, where ι(Cε) is the (d + 1) × (d + 1) matrix
diag(Cε) of operators on H .

Then, U is a solution of the right QSDE (2.23) on Dom(C
1
2 )⊗E for the oper-

ator matrix F .



Chapter 3

Unitary Cocycles and QDS

In quantum mechanics the dynamics of a closed system is represented by a
one-parameter group of unitary operators. So, for the applications in quantum
mechanics first of all we need U(t) to be a unitary operator. Then, we have
also to show that it is strictly related with a unitary group. To give sufficient
conditions to guarantee this is the content of this chapter.

3.1 Cocycles

Let us consider now an extension to negative times of the Fock space introduced
in Eq. (2.4):

F̃ := Γsymm(L2(R; Z )) = F0) ⊗F(0 . (3.1)

With the usual convention of not to write the tensor products with the identity,
the solutions U(t) and V (t) of Eqs. (2.23) and (2.24) can be understood as

operators on H ⊗ F̃ .

We introduce the strongly continuous one-parameter unitary group θ of the

shift operators on L2(R; Z ) and its second quantization Θ on F̃ : for every
t ∈ R

(θtf)(x) = f(x+ t) and Θtψ(f) = ψ(θtf), ∀f ∈ L2(R; Z ). (3.2)

Let us note that, for r < s,
(
θt1(r,s)

)
(x) = 1(r,s)(x + t) = 1(r−t,s−t)(x); this

implies
ΘtF(r,s) ⊂ F(r−t,s−t) . (3.3)

23
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We extend Θt to the space H ⊗ F̃ by stipulating that it acts as the identity
on H .

Definition 3.1 (Right Cocycle). A bounded, adapted operator process X(t)

in H ⊗ F̃ is called right cocycle if for every s, t ≥ 0 we have X(t + s) =
Θ∗sX(t)ΘsX(s).

Definition 3.2 (Left Cocycle). A bounded, adapted operator process X(t)

in H ⊗ F̃ is called left cocycle if for every s, t ≥ 0 we have X(t + s) =
X(s)Θ∗sX(t)Θs.

Lemma 3.1 ([9] Lemma 6.2). Let X be a bounded operator process on H ⊗F̃
such that

X(t) =

∫ t

0

M(r) dΛij(r),

for some i, j ≥ 0 and some stochastically integrable operator process M ∈
L(D,M ). Then, for all t, s ≥ 0 we have

Θ∗sX(t)Θs =

∫ t+s

s

Θ∗sM(r − s)Θs dΛij(r) .

The process r 7→ 1(s,+∞)(r)Θ
∗
sM(r − s)Θs belongs to L(D,M ).

Proof. By property (iii) of Definition 2.1 for M , we have for 0 ≤ s ≤ r, u ∈ D,
f ∈M ,

Θ∗sM(r − s)Θs u⊗ e(f)

= Θ∗se
(
(θsf)0)

)
⊗
(
M(r − s)u⊗ e

(
(θsf)(0,r−s)

))
⊗ e

(
(θsf)(r−s

)

= e
(
fs)
)
⊗
(
Θ−sM(r − s)u⊗ e

(
(θsf)(0,r−s)

))
⊗ e

(
f(r

)
.

Together with (3.3), this implies property (iii) of Definition 2.1 for the process
r 7→ 1(s,+∞)(r)Θ

∗
sM(r− s)Θs. Also the other properties in Definitions 2.1 and

2.2 can be shown to hold and the last statement of the Lemma is proved.

By the definition of the shift semigroup Θ and the integral expression of X,
one has also

〈v ⊗ e(g)|Θ∗sX(t)Θsu⊗ e(f)〉 = 〈v ⊗ e(θsg)|X(t)u⊗ e(θsf)〉

=

∫ t

0

(θsg)i(r)〈v ⊗ e(θsg)|M(r)u⊗ e(θsf)〉(θsf)j(r)dr

=

∫ t

0

gi(r + s)〈v ⊗ e(g)|Θ∗sM(r)Θs u⊗ e(f)〉fj(r + s)dr

=
〈
v ⊗ e(g)

∣∣∣
∫ t+s

s

Θ∗sM(r − s)ΘsdΛij(r)u⊗ e(f)
〉
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and this completes the proof.

Theorem 3.2 ([9] Prop. 6.3). Let D be a dense subspace of H and F = (Fij)
a matrix of operators on H . Suppose that there exists a unique bounded process
U solving Eq. (2.23) on D⊗E. Then, U is a right cocycle.

Proof. Fix s > 0 and let X be the bounded processes defined by

X(t) =

{
U(t) if t ≤ s
Θ∗sU(t− s)ΘsU(s) if t > s

By Lemma 3.1 and Eq. (2.23), one has

X(t+ s) = Θ∗sU(t)ΘsU(s)

= U(s) +
∑

i,j≥0

∫ t+s

s

Θ∗sFijU(r − s)ΘsdΛij(r)U(s)

= U(s) +
∑

i,j≥0

∫ t+s

s

FijΘ
∗
sU(r − s)ΘsU(s) dΛij(r)

= U(s) +
∑

i,j≥0

∫ t+s

s

FijX(r) dΛij(r)

= 1+
∑

i,j≥0

∫ t+s

0

FijX(r) dΛij(r) .

Therefore X(t) and U(t) are bounded solutions of the right equation (2.23) and
by uniqueness they are equal.

Theorem 3.3 ([9] Prop. 6.3). Let D̃ be a dense subspace of H and F̃ = (F̃ij)
a matrix of operators on H . Suppose that there exists a unique bounded process
V solving the equation (2.24) on D̃⊗E. Then, V is a left cocycle.

Theorems 3.2 and 3.3 can be modified in a obvious way when the solution is
unique among the contractions or among the isometries.

Proposition 3.4. Let U(t) be a unitary right cocycle and set

Ut =

{
ΘtU(t) if t ≥ 0

U(|t|)∗Θt if t ≤ 0
(3.4)

Then, the family of operators Ut is a one-parameter group.

If, moreover, U(t) is strongly continuous, Ut is a strongly continuous one-
parameter group of unitary operators.
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Proof. Let us observe that Θ∗t = Θ−t and Θt−s = ΘtΘ
∗
s.

From the definition one has

U ∗t = U−t , ∀t ∈ R . (3.5)

From the cocycle property and the fact that Θ is a group one gets, ∀t, s ≥ 0,

UtUs = ΘtU(t)ΘsU(s) = Θt+sΘ
∗
sU(t)ΘsU(s) = Θt+sU(t+ s) = Ut+s . (3.6)

All the other combinations of positive and negative times can be examinated
and give the same result.

Being U a unitary group, it is enough to prove its strong continuity in 0, which
follows from the unitarity and the strong continuity of U and Θ. For t ≥ 0 and

Υ ∈H ⊗ F̃ we have

∥∥(Ut − 1
)
Υ
∥∥ =

∥∥(ΘtU(t)− 1
)
Υ
∥∥ ≤

∥∥Θt

(
U(t)− 1

)
Υ
∥∥+

∥∥(Θt − 1
)
Υ
∥∥

=
∥∥(U(t)− 1

)
Υ
∥∥+

∥∥(Θt − 1
)
Υ
∥∥→ 0 as t ↓ 0 .

For t ≤ 0, we have

∥∥(Ut − 1
)
Υ
∥∥ =

∥∥(U(|t|)∗Θt − 1
)
Υ
∥∥

≤
∥∥U(|t|)∗

(
Θt − 1

)
Υ
∥∥+

∥∥(U(|t|)∗ − 1
)
Υ
∥∥

=
∥∥(Θt − 1

)
Υ
∥∥+

∥∥(U(|t|)− 1
)
Υ
∥∥→ 0 as t ↑ 0 .

Definition 3.3. Let U(t) be a unitary right cocycle and Ut be the unitary
group defined by Eq. (3.4). For s ≤ t we define the two-parameter family of
unitary operators

U(t, s) := Θ∗tUt−sΘs ≡ Θ∗sU(t− s)Θs . (3.7)

Proposition 3.5. The two-parameter family of unitary operators defined above
satisfies the composition law

U(t, r) = U(t, s)U(s, r), r ≤ s ≤ t .

If, moreover, U(t) is strongly continuous, U(t, s) is strongly continuous in t
and s.
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Proof.

U(t, r) = Θ∗rU(t− r)Θr

= Θ∗rU
(
(t− s) + (s− r)

)
Θr by the cocycle property

= Θ∗rΘ
∗
s−rU(t− s)Θs−rU(s− r)Θr

= Θ∗sU(t− s)Θs︸ ︷︷ ︸Θ∗rU(s− r)Θr︸ ︷︷ ︸

= U(t, s) U(s, r).

The proof of the strong continuity in t and s is similar to the one of the strong
continuity of U . It follows from the unitarity and strong continuity of Θ and
U and the decompositions

U(t+ ε, s)− U(t, s) = Θ∗t (Θ−εUε −Θ−ε + Θ−ε − 1) Ut−sΘs ,

U(t, s+ ε)− U(t, s) = Θ∗tUt−s (U−εΘε −U−ε + U−ε − 1) Θs .

Remark 3.1 ([3] - pg. 220). Let U(t, s) be as defined in Proposition 3.5.

1. From the definition we have immediately U(t, 0) = U(t), ∀t ≥ 0.

2. The operator U(t, s) is adapted to H ⊗F(s,t) in the sense that it acts as
the identity on Fs) ⊗F(t and leaves H ⊗F(s,t) invariant. This follows
from Eq. (3.3) and the fact that U(t) is adapted to H ⊗F(0,t) by the
definition of cocycle.

3. From the definition of U(t, s) and the cocycle property we get immediately

U(t, s) = U(t)U(s)∗, ∀s, t 0 ≤ s ≤ t . (3.8)

4. If, moreover, U(t) is a solution of the right H-P equation (2.23), then,
U(t, s) with respect to t satisfies the same equation with initial condition
U(s, s) = 1, i.e.

U(t, s) = 1+
∑

i,j≥0

∫ t

s

FijU(r, s)dΛij(r). (3.9)
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Indeed, from Eq. (2.23) and Lemma 3.1 we get

U(t, s) = Θ∗sU(t− s)Θs

= 1+ Θ∗s
∑

i,j≥0

∫ t−s

0

FijU(r)dΛij(r) Θs

= 1+
∑

i,j≥0

∫ t

s

Θ∗sFijU(r − s)Θs dΛij(r) ,

which gives (3.9).

3.2 Quantum dynamical semigroups

Definition 3.4 (Quantum Dynamical Semigroup). Let us consider a family
{T (t), t ≥ 0} of bounded operators on B(H ) with the following properties:

1. T (0) = 1;

2. T (t+ s) = T (t)T (s), ∀s, t ≥ 0;

3. T (t) is completely positive, ∀t ≥ 0;

4. T (t) is a σ-weakly continuous operator on B(H ), ∀t ≥ 0;

5. For each X ∈ B(H ) the map t 7→ T (t)[X] is continuous with respect to
the σ-weak topology of B(H ).

Then, the family of operators T (t) is called a quantum dynamical semigroup
(QDS).

Definition 3.5 (Quantum Markov semigroup). A QDS T (t) is said to be
Markov or conservative if T (t)[1] = 1.

Definition 3.6 (Infinitesimal Generator). The infinitesimal generator of the
quantum dynamical semigroup T is the operator L defined as

L[X] = lim
t→0+

T (t)[X]−X
t

with

Dom(L) =
{
X ∈ B(H ) : lim

t→0+

T (t)[X]−X
t

exits in the σ-weak topology
}
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Hypothesis 3.1. Let A and Bk, k = 1, . . . , d, be operators in H that satisfy
the following conditions.

• The operator A is the infinitesimal generator of a strongly continuous
contraction semigroup P (t) in H .

• The domain of each operator Bk contains the domain of A and for every
u ∈ Dom(A) we have

〈u|Au〉+ 〈Au|u〉+
∑

k≥1

〈Bku|Bku〉 = 0 . (3.10)

For all X ∈ B(H ), let us consider the quadratic form L [X] in H with domain
Dom(A)×Dom(A) given by

〈v|L [X]u〉 = 〈v|XAu〉+ 〈Av|Xu〉+
∑

k≥1

〈Bkv|XBku〉. (3.11)

We want to construct a QDS satisfying the equation

〈v|T (t)[X]u〉 = 〈v|Xu〉+

∫ t

0

〈
v
∣∣L
[
T (s)[X]

]
u
〉
ds. (3.12)

Theorem 3.6 ([8] - Theorem 3.22). Suppose that Hypothesis 3.1 holds. Then,
there exists a QDS T (t) solving Eq. (3.12) with generator (3.11) and such that

• T (t)[1] ≤ 1, ∀t ≥ 0;

• for every σ-weakly continuous family T (t) of positive maps on B(H )
satisfying Eqs. (3.11) and (3.12) we have T (t)[X] ≤ T (t)[X], ∀t ≥ 0,
for all positive X ∈ B(H ).

The QDS T (t) defined in Theorem 3.6 is called the Minimal Quantum Dynam-
ical Semigroup generated by A and Bk.

Proposition 3.7 ([8] - Cor. 3.23). Suppose that Hypothesis 3.1 holds and that
the minimal QDS T (t) is Markov. Then, it is the unique σ-weakly continuous
family of positive maps on B(H ) satisfying Eq. (3.12).

Theorem 3.8 (Conservativeness conditions – [8] Proposition 3.24, Theorem
3.28, Proposition 3.31). Suppose that Hypothesis 3.1 holds and define the linear
positive map Qλ[X] : B(H )→ B(H ) for λ > 0 by

〈v|Qλ[X]u〉 :=
∑

k≥1

∫ ∞

0

e−λs〈BkP (s)v|XBkP (s)u〉ds , ∀u, v ∈ Dom(A).
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Then, Qλ is a normal, completely positive contraction. Moreover, the following
conditions are equivalent (λ > 0 is fixed):

1. the minimal QDS T (t) generated by A and Bk is Markov,

2. it does not exist X 6= 0 in B(H ) such that Qλ[X] = X,

3. it does not exist X 6= 0 in B(H ) such that L [X] = λX (L is defined
in (3.11)).

3.3 Unitary solutions of H-P equations

Let F = (Fij : i, j ≥ 0) be a matrix of operators satisfying Hypothesis 2.1,
ϑ(F ) = 0, ϑ(F ∗) = 0, and such that the operators A = F ∗00 = K∗, Bk = F ∗0k =
N∗k satisfy Hypothesis 3.1. Then, the hypotheses of Theorem 2.5 hold; let V be

the unique contractive solution of the left QSDE (2.24) with F̃ = F ∗ on D̃⊗E
as defined in Theorem 2.5. By Remark 2.3 V (t) is strongly continuous in t and
by Theorem 3.3 it is a left cocycle.

We define the maps T̃ 0(t), t ≥ 0, on B(H ) by

〈v|T̃ 0(t)[X]u〉 = 〈V (t)v ⊗ e(0)|(X ⊗ 1)V (t)u⊗ e(0)〉, (3.13)

∀u, v ∈H , ∀X ∈ B(H ) .

It is easy to see that T̃ 0(t) is a completely positive, bounded, linear map.

Moreover, the cocycle property of V implies that T̃ 0 is a semigroup [1, 8].

By the second fundamental formula of QSC (Proposition 2.2), we get, ∀u, v ∈
D̃,

〈
V (t)v ⊗ e(0)

∣∣(X ⊗ 1)V (t)u⊗ e(0)
〉
− 〈v|Xu〉

=

∫ t

0

ds
{〈
V (s)v ⊗ e(0)

∣∣(X ⊗ 1)F ∗00V (s)u⊗ e(0)
〉

+
〈
F ∗00V (s)v ⊗ e(0)

∣∣(X ⊗ 1)V (s)u⊗ e(0)
〉

+
∑

k≥1

〈
F ∗0kV (s)v ⊗ e(0)

∣∣(X ⊗ 1)F0kV (s)u⊗ e(0)
〉}

and this says that the formal generator of T̃ 0(t) is

〈v|L̃ [X]u〉 = 〈F ∗00v|Xu〉+
∑

k≥1

〈F ∗0kv|XF ∗0ku〉+ 〈v|XF ∗00u〉.
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Theorem 3.9 ([9] - Theorems 10.2 and 10.3). Let F = (Fij : i, j ≥ 0) be
a matrix of operators such that F ∗ satisfies the hypotheses of Theorem 2.5,
Dom(F ∗00) ⊂ Dom(F ∗0k), ∀k ≥ 1, and ϑ(F ∗) = 0 on D̃. Then, the unique
contraction V solving (2.24) is a strongly continuous left cocycle such that

the family of operators T̃ 0(t) defined by Eq. (3.13) is the minimal quantum
dynamical semigroup generated by F ∗00 and F ∗0k.

Moreover, the following conditions are equivalent:

(i) The process V is an isometry;

(ii) The minimal QDS associated with F ∗00 and F ∗0k is Markov.

As we take U = V ∗, if V is an isometry process, U is a coisometry process
and vice versa. The following Proposition is a small variation of Corollary 2.4
of [10] or of Corollary 11.2 of [9]. Let us recall that in our hypotheses all the
operators Fij are closed.

Proposition 3.10. Let F = (Fij : i, j ≥ 0) be a matrix of operators such that
F satisfies the hypotheses of Theorem 2.6 and ϑ(F ) = 0 on Dom(F ). Then,
the contractive solution U of the right HP equation introduced in Theorem 2.6
is an isometry process. Moreover, if U is unitary, it is the unique bounded
solution on Dom(C1/2)⊗E of such an equation.

Proof. Let Ũ be another bounded solution and apply the second fundamental
formula of QSC to U, Ũ . We get, ∀f, g ∈M , ∀u, v ∈ Dom(C1/2),

〈
Ũ(t)v ⊗ e(g)

∣∣U(t)u⊗ e(f)
〉
−
〈
v ⊗ e(g)

∣∣u⊗ e(f)
〉

=
∑

i,j≥0

∫ t

0

ds gi(s)
{〈
Ũ(s)v ⊗ e(g)

∣∣Fij ⊗ 1U(s)u⊗ e(f)
〉

+
〈
Fji ⊗ 1 Ũ(s)v ⊗ e(g)

∣∣U(s)u⊗ e(f)
〉

+
∑

k≥1

〈
Fki ⊗ 1 Ũ(s)v ⊗ e(g)

∣∣Fkj ⊗ 1U(s)u⊗ e(f)
〉}
fj(s) .

But U and Ũ are solutions on Dom(C1/2)⊗E ; by point (ii) of Definition 2.4
and ϑ(F ) = 0, we have that the integrand vanishes. Therefore, ∀f, g ∈ M ,

∀u, v ∈ Dom(C1/2),
〈
Ũ(t)v⊗e(g)

∣∣U(t)u⊗e(f)
〉

=
〈
v⊗e(g)

∣∣u⊗e(f)
〉

and this

is equivalent to Ũ(t)∗U(t) = 1. This equation for Ũ = U gives the fact that

U(t) is isometric, while for U unitary gives Ũ(t)∗ = U(t)∗.
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Therefore, if the conditions of Theorems 3.9 and 3.10 hold and the minimal

QDS T̃ 0 is Markov, then the processes U and V are unitary.

3.4 A summary

3.4.1 Unitarity: the conditions ϑ(F ) = 0, ϑ(F ∗) = 0

Let us examine more closely the necessary conditions (2.26) and (2.27) found
in Section 2.5.

Let Hypothesis 2.1 be satisfied and recall that we use the notation

F00 = K , Fi0 = Ri , F0j = Nj . (3.14)

We assume also ϑ(F ) = 0 on a dense set D ⊂ Dom(F ) and ϑ(F ∗) = 0 on a

dense set D̃ ⊂ Dom(F ∗). Moreover, we want all the operators to be determined

by their actions on D or D̃. So, we take D to be a core for all the operators
Fij and D̃ to be a core for all the operators F ∗ij ; recall that all the operators
Fij , F

∗
ij are closed.

When both indices are different from 0, the operators Fij are asked to be
bounded; by continuity, Eq. (2.26) holds ∀u, v ∈H and it is equivalent to the
first of Eqs. (2.28). Analogously, from (2.27), we arrive to the second of Eqs.
(2.28). As in the bounded case, conditions (2.28) give

Fij = Sij − δij , Sij ∈ B(H ) , ∀i, j ≥ 1 , (3.15a)

∑

k≥1

S∗kiSkj = δij ,
∑

k≥1

SikS
∗
jk = δij , ∀i, j ≥ 1 . (3.15b)

Let us consider now Eq. (2.26) for i = j = 0. Without loss of generality, we
can take v = u; by (3.14) we get

2Re〈Ku|u〉 = −
∑

k≥1

‖Rku‖2 , ∀u ∈ D . (3.16)

Analogously, from Eq. (2.27) we get

2Re〈K∗v|v〉 = −
∑

k≥1

‖N∗kv‖2 , ∀v ∈ D̃ . (3.17)

Therefore, K
∣∣
D

and K∗
∣∣
D̃

are densely defined dissipative operators and, by
Theorem A.8, their closures K and K∗ are dissipative. By Corollary A.14
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K and K∗ are infinitesimal generators of strongly continuous semigroups of
contractions.

By taking into account Eqs. (3.15), when only one index is different from 0,
Eq. (2.26) reduces to

〈v|Niu〉 = −
∑

k≥1

〈Rkv|Skiu〉, ∀i ≥ 1, ∀u, v ∈ D . (3.18)

Similarly, Eq. (2.27) gives

〈v|R∗i u〉 = −
∑

k≥1

〈N∗kv|S∗iku〉, ∀i ≥ 1, ∀u, v ∈ D̃ . (3.19)

Let us write Gi = −∑k≥1 S
∗
kiRk; because all operators S∗ki are bounded

we have Dom(Gi) =
⋂

k≥1

Dom(Rk) and being D a core for all the operators

Ri we get Dom(Gi) ⊃ D. Then, Eq. (3.18) becomes 〈v|Niu〉 = 〈Giv|u〉,
∀u, v ∈ D, ∀i ≥ 1. By Remark A.2, point 1, we get Dom(N∗i ) ⊃ D, N∗i u =
−∑k≥1 S

∗
kiRku, ∀i ≥ 1, ∀u ∈ D.

Similarly, by recalling that in our assumptions
(
R∗i

∣∣∣
D̃

)∗
= R∗∗i = Ri, we get

from Eq. (3.19) Dom(Ri) ⊃ D̃ and Riv = −∑k≥1 SikN
∗
kv, ∀i ≥ 1, ∀v ∈ D̃.

But, by using Eq. (3.15b), we get N∗ in terms of R on D̃. Together with the
previous result we have

Dom(N∗i ) ⊃ D ∪ D̃ , Dom(Ri) ⊃ D ∪ D̃ , ∀i ≥ 1 , (3.20)

N∗i u = −
∑

k≥1

S∗kiRku , ∀u ∈ D ∪ D̃ , ∀i ≥ 1 . (3.21)

The last equation is equivalent to

Riu = −
∑

k≥1

SikN
∗
ku , ∀u ∈ D ∪ D̃ , ∀i ≥ 1 . (3.22)

These two equations can be written also as

Ni = −




∑

k≥1

S∗kiRk



∣∣∣∣
D∪D̃



∗

, (3.23)

R∗i = −




∑

k≥1

SikN
∗
k



∣∣∣∣
D∪D̃



∗

. (3.24)
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3.4.2 The assumptions and the main statements

Let us collect here the main assumptions introduced up to now.

Hypothesis 3.2 (Hilbert spaces). The Fock space F = Γsymm

(
L2(R+; Z )

)

has multiplicity space Z finite dimensional: dim(Z ) = d ∈ N. The initial
Hilbert space H is separable. All the Hilbert spaces are complex.

• Vectors in Z are identified with their components with respect to the
privileged c.o.n.s. {zi, i = 1, . . . , d}.

• Fock spaces, some notations:

F̃ = Γsymm

(
L2(R; Z )

)
, F(s,t) = Γsymm

(
L2((s, t); Z )

)
,

Ft) = Γsymm

(
L2((−∞, t); Z )

)
, F(t = Γsymm

(
L2((t,+∞); Z )

)
,

• The exponential domain:

M =
{
f ∈ L2(R+; Z ) ∩ L∞loc(R+; Z )

}

E =
{

linear span of all the exponential vectors e(f) with f ∈M
}
.

Hypothesis 3.3 (U is a cocycle). U(t), t ≥ 0, is a strongly continuous unitary

right cocycle on H ⊗ F̃ (see Def. 3.1).

Remark 3.2. Let Hypothesis 3.3 holds and set

Ut :=

{
ΘtU(t) if t ≥ 0

U(|t|)∗Θt if t ≤ 0

U(t, s) := Θ∗tUt−sΘs ≡ Θ∗sU(t− s)Θs , t ≥ s .
By Propositions 3.4, 3.5 and Remark 3.1 we have:

1. Ut, t ∈ R, is a strongly continuous one-parameter group of unitary oper-
ators.

2. U(t, s), t ≥ s, is a two-parameter family of unitary operators, strongly
continuous in t and s, satisfying the composition law

U(t, r) = U(t, s)U(s, r), r ≤ s ≤ t .

3. U(t, 0) = U(t), ∀t ≥ 0; U(t, s) = U(t)U(s)∗, ∀s, t : 0 ≤ s ≤ t.
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4. The operator U(t, s) is adapted to H ⊗F(s,t) in the sense that it acts as
the identity on Fs) ⊗F(t and leaves H ⊗F(s,t) invariant.

5. U(t)∗ is a strongly continuous unitary left cocycle.

Hypothesis 3.4 (The matrix F ). 1. F = (Fij ; 0 ≤ i, j ≤ d) is a matrix of
closed operators in the initial space H . By F ∗ we denote the adjoint
matrix, defined by (F ∗)ij = F ∗ji. We use the notation F00 = K and
Fk0 = Rk, F0k = Nk for k ≥ 1.

2. For 1 ≤ i, j ≤ d, we have Fij = Sij − δij , where the Sij are bounded

operators on H satisfying

d∑

k=1

S∗kiSkj =

d∑

k=1

SikS
∗
jk = δij .

3. There exist a dense subspace D which is a core for K, Ri, Ni, i = 1, . . . , d,
and a dense subspace D̃ which is a core for K∗, R∗i , N

∗
i , i = 1, . . . , d.

Moreover, Dom(N∗i ) ⊃ D ∪ D̃, Dom(Ri) ⊃ D ∪ D̃, ∀i ≥ 1.

4. The operators K and K∗ are the infinitesimal generators of two strongly
continuous contraction semigroups on H . Moreover,

2Re〈Ku|u〉 = −
∑

k≥1

‖Rku‖2 , ∀u ∈ D ;

2Re〈K∗v|v〉 = −
∑

k≥1

‖N∗kv‖2 , ∀v ∈ D̃ .

5. N∗i u = −
∑

k≥1

S∗kiRku , ∀u ∈ D ∪ D̃ , ∀i ≥ 1.

6. There exists a positive self-adjoint operator C on H and the constants
δ > 0 and b1, b2 ≥ 0 such that the following properties hold:

(a) for each ε ∈ (0, δ), there exists a dense subspace Dε ⊂ D̃ such

that C
1
2
ε Dε ⊂ D̃ and each operator F ∗ijC

1
2
ε |Dε is bounded, where

Cε = C
1+εC ;

(b) D = Dom(C
1
2 ) ⊂ Dom(F ).

(c) For all 0 < ε < δ, the form ϑ(F,Cε) on Dom(F ) satisfies the inequal-
ity: ϑ(F,Cε) ≤ b1ι(Cε) + b21, where ι(Cε) is the (d+ 1)× (d+ 1)
matrix diag(Cε) of operators on H .

7. The minimal QDS T̃ 0 associated with K∗ and N∗k is Markov.
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Recall that Dom(F ) :=
⋂

i,j≥0

Dom(Fij) and Dom(F ∗) :=
⋂

i,j≥0

Dom(F ∗ij).

Remark 3.3. Let us assume that Hypotheses 3.2 and 3.4 hold true.

1. The left Hudson-Parthasarathy equation with operator matrix F̃ = F ∗

admits a unique contractive solution on D̃⊗E . Let V be such a solution.

2. V is a strongly continuous unitary left cocycle.

3. The semigroup defined by Eq. (3.13) is the minimal QDS T̃ 0 associated
with K∗ and N∗k and it is identity preserving by assumption.

4. Let us define U(t) := V (t)∗, ∀t ≥ 0. The process U is a strongly contin-
uous unitary right cocycle. This is Hypothesis 3.3.

5. The process U is the unique bounded solution of the right Hudson-
Parthasarathy equation with operator matrix F on Dom(C1/2)⊗E .

6. The unitary group Ut and the evolution U(t, s) can be constructed and
all the points in Remark 3.2 hold true.

7. U(t, s) with respect to t satisfies the right Hudson-Parthasarathy equation
with initial condition U(s, s) = 1, i.e.

U(t, s) = 1+
∑

i,j≥0

∫ t

s

FijU(r, s)dΛij(r).

Some more consequences.

Proposition 3.11. Under Hypotheses 3.4 also the following properties hold.

1. Dom(Rk) ⊃ Dom(K) ∪ Dom(K∗), Dom(N∗k ) ⊃ Dom(K) ∪ Dom(K∗),
k = 1, . . . , d.

2.

2Re〈Ku|u〉 = −
∑

k≥1

‖Rku‖2 , ∀u ∈ Dom(K) ; (3.25)

2Re〈K∗v|v〉 = −
∑

k≥1

‖Rkv‖2 , ∀v ∈ Dom(K∗) . (3.26)

3. ∀u ∈ Dom(K) ∪Dom(K∗), ∀i, k ≥ 1,

N∗i u = −
∑

k≥1

S∗kiRku , Rku = −
∑

i≥1

SkiN
∗
i u .
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Proof. By the first equation in Hypothesis 4 we get, ∀φ ∈ D, ‖Rkφ‖ ≤ |〈Kφ|φ〉|.
For any u ∈ Dom(K) we can find a sequence un ∈ D converging to u; moreover,
‖Kun‖ ≤ c by Proposition A.1. Then, we have

‖Rk(un − um)‖2 ≤ 2|〈K(un − um)|un − um〉| ≤ 4c‖un − um‖.

Therefore, Rkun is a Cauchy sequence. Being Rk closed, by Remark A.1 we get
u ∈ Dom(Rk) and, so, Dom(Rk) ⊃ Dom(K). Again by Remark A.1 we get that
the first equation in point 4 can be extended to the whole Dom(K). Similarly,
from the second equation in Hypothesis 4 we get that it can be extended to
the whole Dom(K∗) and that Dom(N∗k ) ⊃ Dom(K∗).

Once again by Remark A.1 and by the unitarity of the operator matrix S, we
get that point 5 can be extended to Dom(K) ∪ Dom(K∗). Therefore, on the
same domain,

∑
k≥1 ‖Rku‖2 =

∑
k≥1 ‖N∗ku‖2.

By exchanging Rk and N∗k in the two equations in Hypothesis 4 we get also
Dom(Rk) ⊃ Dom(K∗) e Dom(N∗k ) ⊃ Dom(K).



38 CHAPTER 3. UNITARY COCYCLES AND QDS



Chapter 4

The Reduced Dynamics

4.1 Reduced dynamics and system-field state

The quantum system described in H and the fields described in the Fock

space F̃ form a closed system whose dynamics is given by the unitary group
Ut (3.4). Let us consider as initial state of this composed system φ ⊗ ψ(f),
φ ∈ H with ‖φ‖ = 1, f ∈ L2(R+; Z ). This means that the system and the
fields are initially fully uncorrelated and that the fields are in a coherent state;
f represents the action of lasers, for instance.

If we are interested in the dynamics of the system in H we have to study
the quantity

〈
Utφ⊗ ψ(f)

∣∣ (X ⊗ 1) Utφ⊗ ψ(f)
〉

for f fixed, but ∀φ ∈H with
‖φ‖ = 1, ∀X ∈ B(H ), ∀t ≥ 0. This means that we are considering only
“system observables” X: only direct measurements on the system in H are
permitted, the fields are ignored. But Θt commutes with X ⊗ 1 and we have
Θ∗tUt = U(t); so,

〈
Utφ⊗ ψ(f)

∣∣ (X ⊗ 1) Utφ⊗ ψ(f)
〉

=
〈
U(t)φ⊗ ψ(f)

∣∣ (X ⊗ 1)U(t)φ⊗ ψ(f)
〉
.

If the initial state of the subsystem is not a pure one, we need the notion of
statistical operator.

Definition 4.1. For any separable Hilbert space K, we shall denote by T (K)
the trace-class on K, i.e.

T (K) =
{
τ ∈ B(K) : Tr

{√
τ∗τ
}
< +∞

}
,

39
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where Tr{a} is the trace of a. Moreover, the set of statistical operators is
denoted by

S(K) = {ρ ∈ T (K) : ρ ≥ 0, Tr{ρ} = 1} .

When the initial time is not 0, but a generic one, say s ≥ 0, the initial state of
the system is ρ ∈ S(H ) and the state of the field is coherent, say

η(f) := |ψ(f)〉〈ψ(f)| ∈ S(F), f ∈ L2(R+; Z ), (4.1)

we have to study the expression

TrH ⊗F {(X ⊗ 1)U(t, s) (ρ⊗ η(f))U(t, s)∗} .

The map defined by the partial trace

ρ 7→ TrF {U(t, s) (ρ⊗ η(f))U(t, s)∗}

is called the reduced dynamics of the subsystem living in H . In this chapter
we study such a dynamics or, better, its adjoint action on B(H ), in the case
in which we only know that U(t) is a unitary cocycle and in the case we know
that it is a unitary solution of the Hudson-Parthasarathy equation.

4.2 General properties of the reduced dynamics

Let us assume that U(t) is a strongly continuous unitary cocycle (Hypothesis
3.3) and define Ut and U(t, s) by Eqs. (3.4) and (3.7). Then, all the statements
of Remark 3.2 hold.

4.2.1 The case of a coherent vector with a generic func-
tion

Definition 4.2. Let f ∈ L2(R+; Z ) be fixed. The reduced dynamics in the
Heisenberg picture T f (s, t), 0 ≤ s ≤ t, is the linear map from B(H ) into itself
uniquely defined by

〈
v
∣∣T f (s, t)[X]u

〉
:=
〈
U(t, s)v ⊗ ψ(f)

∣∣(X ⊗ 1)U(t, s)u⊗ ψ(f)
〉
, (4.2)

∀u, v ∈H , ∀X ∈ B(H ).

Theorem 4.1. In the hypotheses above, the family of linear maps T f (s, t),
t ≥ s ≥ 0 has the following properties:
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1. T f (s, t)[1] = 1;

2. T f (s, s) = 1;

3. T f (s, t) is completely positive;

4. T f (s, t) has a pre-adjoint acting on the trace class on H ;

5. T f (s, t) is a σ-weakly continuous operator on B(H );

6. For each X ∈ B(H ) the maps t 7→ T f (s, t)[X] and s 7→ T f (s, t)[X] are
continuous with respect to the σ-weak topology of B(H );

7. ∀u, v ∈H , ∀X ∈ B(H ),

〈
v
∣∣T f (s, t)[X]u

〉
=
〈
U(t, s)v ⊗ ψ(f(s,t))

∣∣(X ⊗ 1)U(t, s)u⊗ ψ(f(s,t))
〉
;

(4.3)

8. T f (r, s)T f (s, t) = T f (r, t), for t ≥ s ≥ r ≥ 0.

Proof. 1. Let u, v ∈H

〈
v
∣∣T f (s, t)[1]u

〉
=
〈
U(t, s)v ⊗ ψ(f)

∣∣(1⊗ 1
)
U(t, s)u⊗ ψ(f)

〉

=
〈
U(t, s)v ⊗ ψ(f)

∣∣U(t, s)u⊗ ψ(f)
〉

= 〈v ⊗ ψ(f)|u⊗ ψ(f)〉
= 〈v|u〉‖ψ(f)‖2 = 〈v|u〉

∴ T f (s, t)[1] = 1

2. Let u, v ∈H and X ∈ B(H )

〈
v
∣∣T f (s, s)[X]u

〉
=
〈
U(s, s)v ⊗ ψ(f)

∣∣(X ⊗ 1
)
U(s, s)u⊗ ψ(f)

〉

=
〈
v ⊗ ψ(f)

∣∣(X ⊗ 1
)
u⊗ ψ(f)

〉
= 〈u|Xv〉‖ψ(f)‖2 = 〈v|Xu〉

∴ T f (s, s)[X] = X

3. Let n ∈ N and ui ∈H , Xi ∈ B(H ) for all i = 1, . . . , n. Now
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n∑

i,j=1

〈
ui
∣∣T f (s, t)[X∗i Xj ]uj

〉

=

n∑

i,j=1

〈
U(t, s)ui ⊗ ψ(f)

∣∣(X∗i Xj

)
⊗ 1

)
U(t, s)uj ⊗ ψ(f)

〉

=

n∑

i,j=1

〈(
Xi ⊗ 1

)
U(t, s)ui ⊗ ψ(f)

∣∣(Xj ⊗ 1
)
U(t, s)uj ⊗ ψ(f)

〉

=

〈 n∑

i=1

(
Xi ⊗ 1

)
U(t, s)ui ⊗ ψ(f)

∣∣∣∣
n∑

j=1

(
Xj ⊗ 1

)
U(t, s)uj ⊗ ψ(f)

〉

=

∥∥∥∥
n∑

i=1

(
Xi ⊗ 1

)
U(t, s)ui ⊗ ψ(f)

∥∥∥∥
2

≥ 0.

4. Let us remember that we say that A ∈ L
(
B(H ))

)
admits a pre-adjoint

if it exists an operator A∗ ∈ L
(
T (H )

)
and

TrH {A[X]τ} = TrH {A∗[τ ]X} , ∀X ∈ B(H ), ∀τ ∈ T (H ).

For u, v ∈ H , we can write 〈v|T f (s, t)[X]u〉 = TrH

[
T f (s, t)[X]|u〉〈v|

]
.

Let us take τ =
∑

n

|un〉〈vn| ∈ T (H ) and η(f) = |ψ(f)〉〈ψ(f)|. First we

have

TrH [T f (s, t)[X]τ ]

=
∑

n

〈
vn ⊗ ψ(f)

∣∣U(t, s)∗(X ⊗ 1)U(t, s)un ⊗ ψ(f)
〉

=
∑

n

TrH ⊗F

[
U(t, s)∗(X ⊗ 1)U(t, s)|un ⊗ ψ(f)〉〈vn ⊗ ψ(f)|

]

= TrH ⊗F

[
(X ⊗ 1)U(t, s)τ ⊗ η(f)U(t, s)∗

]

(by the definition of partial trace)

= TrH

[
XTrF

[
U(t, s)τ ⊗ η(f)U(t, s)∗

]]
;

then

TrH

[
T f (s, t)[X]τ

]
= TrH

[
X TrF

[
U(t, s)τ ⊗ η(f)U(t, s)∗

]]
.
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Let us set T f (t, s)∗ := TrF

[
U(t, s)τ⊗η(f)U(t, s)∗

]
; this structure defines

a positive operator and it is easy to check that it is bounded. Therefore,
T f (t, s)∗ is the pre-adjoint of the operator T f (s, t).

5. The existence of the pre-adjoint of T f (s, t) implies its σ-weak continuity
(Corollary of Theorem 1.13.2 in [15], page 29).

6. Note that if τ ≥ 0, then T f (s, t)∗[τ ] ≥ 0, by properties 3 and 4. Moreover,

any positive trace-class operator can be written as τ =
∑

n

|un〉〈un|, by

Corollary 1.15.4 p. 39 of [15]. Then, we have

Tr
[
T f (t, s)∗[τ ]

]
=
∑

n

〈un ⊗ ψ(f)|un ⊗ ψ(f)〉 =
∑

n

|un|2 = Tr[τ ].

Now, if X ≥ 0, τ ≥ 0 and t > s ≥ 0, we have

TrH

[
T f (s, t)[X]τ

]

= TrH ⊗F

[
U(t, s) (τ ⊗ |ψ(f)〉〈ψ(f)|)U(t, s)∗(X ⊗ 1)

]

≤ ‖X‖TrH ⊗F

[
U(t, s)τ ⊗ |ψ(f)〉〈ψ(f)|U(t, s)∗

]

= ‖X‖ ‖τ ⊗ |ψ(f)〉〈ψ(f)| ‖1 = ‖X‖ ‖τ‖1 .

This implies that T f (s, t)[X] is bounded uniformly in t and s. By the
fact that the σ-weak continuity is equivalent to the weak continuity on
the bounded spheres, it is enough to prove the weak continuity.

By setting Ψ := U(t, s)v and Φ := U(t, s)u, we have

∣∣∣
〈
v
∣∣T f (s, t+ ε)[X]u

〉
−
〈
v
∣∣T f (s, t)[X]u

〉∣∣∣

=
∣∣∣
〈
U(t+ ε, s)v ⊗ ψ(f)

∣∣(X ⊗ 1)U(t+ ε, s)u⊗ ψ(f)
〉

−
∑

n

〈
U(t, s)v ⊗ ψ(f)

∣∣(X ⊗ 1)U(t, s)u⊗ ψ(f)
〉∣∣∣

=
∣∣∣
〈
U(t+ ε, t)Ψ

∣∣(X ⊗ 1)U(t+ ε, t)Φ
〉
−
〈
Ψ
∣∣(X ⊗ 1)Φ

〉∣∣∣

=
∣∣∣
〈
U(t+ ε, t)Ψ

∣∣(X ⊗ 1)
(
U(t+ ε, t)− 1

)
Φ
〉

+
〈(
U(t+ ε, t)− 1

)
Ψ
∣∣(X ⊗ 1)Φ

〉∣∣∣

≤ ‖X‖
(∥∥(U(t+ ε, t)− 1

)
Ψ
∥∥‖v‖+

∥∥(U(t+ ε, t)− 1
)
Φ
∥∥‖u‖

)
→ 0

as ε ↓ 0, due to the strong continuity in t of U(t, s).
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By setting Y := U(t, s)∗ (X ⊗ 1)U(t, s) we get in a similar way

∣∣∣
〈
v
∣∣T f (s, t)[X]u

〉
−
〈
v
∣∣T f (s− ε, t)[X]u

〉∣∣∣

=
∣∣∣
〈
U(s, s− ε)v ⊗ ψ(f)

∣∣Y
(
1− U(s, s− ε)

)
u⊗ ψ(f)

〉

+
〈(
1− U(s, s− ε)

)
v ⊗ ψ(f)

∣∣Y u⊗ ψ(f)
〉∣∣∣

≤ ‖X‖
(∥∥(1− U(s, s− ε)

)
u⊗ ψ(f)

∥∥‖u‖

+
∥∥(1− U(s, s− ε)

)
v ⊗ ψ(f)

∥∥‖v‖
)
→ 0

as ε ↓ 0, due to the strong continuity in s of U(t, s).

7. For f ∈ L2(R+; Z )) we can write

ψ(f) ≈ ψ(f(0,s))⊗ ψ(f(s,t))⊗ ψ(f(t) ∈ F(0,s) ⊗F(s,t) ⊗F(t ≈ F

and correspondingly 1F ≈ 1F(0,s)
⊗ 1F(s,t)

⊗ 1F(t
.

Due to the fact that U(t, s) is adapted to F(s,t) one has that, ∀u, v ∈H ,

U(t, s)v ⊗ ψ(f)︸ ︷︷ ︸ = U(t, s)
(
v ⊗ ψ(f(0,s))⊗ ψ(f(s,t))⊗ ψ(f(t)

)

∈H ⊗F =

(
U(t, s)v ⊗ ψ(f(s,t))︸ ︷︷ ︸

)
⊗ ψ(f(0,s)︸ ︷︷ ︸

)⊗ ψ(f(t)︸ ︷︷ ︸
∈H ⊗F(s,t) ∈ F(0,s) ∈ F(t

and

(X ⊗ 1)U(t, s)u⊗ ψ(f)

=
((
X ⊗ 1F(s,t)

)
U(t, s)u⊗ ψ(f(s,t))

)
⊗ ψ(f(0,s))⊗ ψ(f(t)

Therefore, we have
〈
v
∣∣T f (s, t)[X]u

〉
=
〈
U(t, s)

(
v ⊗ ψ(f)

)∣∣(X ⊗ 1)U(t, s)
(
u⊗ ψ(f)

)〉

=
〈
U(t, s)

(
v ⊗ ψ(f(s,t))

)
⊗ ψ(f(0,s))⊗ ψ(f(t)

∣∣
(X ⊗ 1F(s,t)

)U(t, s)
(
u⊗ ψ(f(s,t))

)
⊗ ψ(f(0,s))⊗ ψ(f(t)

〉

=
〈
U(t, s)v ⊗ ψ(f(s,t))

∣∣(X ⊗ 1F(s,t)
)U(t, s)u⊗ ψ(f(s,t))

〉
·

‖ψ(f(0,s))‖2 · ‖ψ(f(t)‖2

=
〈
U(t, s)v ⊗ ψ(f(s,t))

∣∣(X ⊗ 1F(s,t)
)U(t, s)u⊗ ψ(f(s,t))

〉

Then, T f (s, t) is the unique linear operator on B(H ) satisfying (4.3).
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8. Let us take µ, ν ∈ H ⊗ F(r,s), f ∈ L2 ((0, r) ∪ (s,∞) ; Z ) and χ ∈
B(H ⊗ F(r,s)) and define the operator T f (s, t) : B(H ⊗ F(r,s)) →
B(H ⊗F(r,s)) by

〈
ν|T f (s, t)[χ]µ

〉
:=
〈
U(t, s)ν ⊗ ψ(f)|(χ⊗ 1)U(t, s)µ⊗ ψ(f)

〉
. (4.4)

By the localization property we get

〈
ν|T f (s, t)[χ]µ

〉
=
〈
U(t, s)ν ⊗ ψ(f(s,t))|(χ⊗ 1(s,t))U(t, s)µ⊗ ψ(f(s,t))

〉
.

(4.5)

Let us verify the following relation between T f (s, t) and T f (s, t)

T f (s, t)[X ⊗ 1(r,s)] = T f (s, t)[X]⊗ 1(r,s). (4.6)

Let u, v ∈H , X ∈ B(H ) and g, h ∈ L2
(
(r, s); Z )

)
, then for (4.5)

〈
v ⊗ ψ(g)

∣∣T f (s, t)[X ⊗ 1(r,s)]u⊗ ψ(h)
〉

=
〈
U(t, s)v ⊗ ψ(g)⊗ ψ(f(s,t))

∣∣(
(X ⊗ 1(r,s))⊗ 1(s,t)

)
U(t, s)u⊗ ψ(h)⊗ ψ(f(s,t))

〉

=
〈
U(t, s)v ⊗ ψ(f(s,t))⊗ ψ(g)

∣∣(
X ⊗ 1(s,t)

)
U(t, s)u⊗ ψ(f(s,t))⊗ ψ(h)〉

=
〈
U(t, s)v ⊗ ψ(f(s,t))

∣∣(
X ⊗ 1(s,t)

)
U(t, s)u⊗ ψ(f(s,t))

〉
〈ψ(g)|ψ(h)〉 for (4.3)

=
〈
v
∣∣T f (s, t)[X]u

〉
〈ψ(g)|ψ(h)〉

= 〈v ⊗ ψ(g)|(T f (s, t)[X]⊗ 1(r,s))u⊗ ψ(h)〉

∴ T (s, t)[X ⊗ 1(r,s)] = T (s, t)[X]⊗ 1(r,s)

Now we can verify the composition law for T f (s, t):

T f (r, t) = T f (r, s)T f (s, t) with r ≤ s ≤ t
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Let us take u, v ∈H , X ∈ B(H ) and f ∈ L2(R; Z ), then:

〈
v
∣∣T f (r, s)

[
T f (s, t)[X]

]
u
〉

=
〈
U(s, r)v ⊗ ψ(f(r,s))

∣∣(T f (s, t)[X]⊗ 1(r,s)

)
U(s, r)u⊗ ψ(f(r,s))

〉

=
〈
U(s, r)v ⊗ ψ(f(r,s))︸ ︷︷ ︸

ν∈H ⊗F(r,s)

∣∣T f (s, t)

[
X ⊗ 1(r,s)︸ ︷︷ ︸

χ∈B(H ⊗F(r,s))

]
U(s, r)u⊗ ψ(f(r,s))︸ ︷︷ ︸

µ∈H ⊗F(r,s)

〉
for (4.6)

=
〈
U(t, s)U(s, r)v ⊗ ψ(f(r,s))︸ ︷︷ ︸

⊗ψ(f(s,t)

∣∣

ν(
(X ⊗ 1(r,s)

)
︸ ︷︷ ︸

⊗1(s,t))U(t, s)U(s, r)u⊗ ψ(f(r,s))︸ ︷︷ ︸
⊗ψ(f(s,t)

〉

χ µ

=
〈
U(t, r)v ⊗ ψ(f(r,t))

∣∣(X ⊗ 1(r,t))U(t, r)u⊗ ψ(f(r,t))
〉

by Proposition 3.5

= 〈v|T f (r, t)[X]u〉

∴ T f (r, t) = T f (r, s)T f (s, t)

Remark 4.1. Let us collect here some simple consequences of Definition 4.2 and
Theorem 4.1.

1.
∥∥T f (s, t)[X]

∥∥ ≤ ‖X‖, ‖T f (s, t)‖ = 1.

2. T f (s, t) is normal.

3. If f(x) = g(x) for all x ∈ (s, t), then T f (s, t) = T g(s, t).

4. T f (s, t) is well defined for all f ∈ L2
loc(R; Z ).

5. If g(ξ) = f(ξ + s) for all ξ ∈ (0, t), with s, t ≥ 0, then T f (s, s + t) =
T g(0, t).

Proof. 1. Let X ≥ 0, then X ≤ ‖X‖1 and by the positivity of T f (s, t) we
have T f (s, t)[X] ≤ T f (s, t)

[
‖X‖1

]
= ‖X‖T f (s, t)[1] = ‖X‖1.
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Let X ∈ B(H); by the positivity of T f (s, t) the following Schwarz in-
equality holds: T f (s, t)[X∗X] ≥ T f (s, t)[X∗]T f (s, t)[X]; moreover,
T f (s, t)[X]∗ = T f (s, t)[X∗] and T f (s, t)[1] = 1. Then,

∥∥T f (s, t)[X]u
∥∥2

= 〈u|T f (s, t)[X∗]T f (s, t)[X]u〉
≤ 〈u|T f (s, t)[X∗X]u〉 ≤ ‖u‖2‖X‖2,

which gives the statements.

2. By Theorem 1.13.2 in [15], for positive operators the σ-weak continuity
and the normality are equivalent.

3. Immediate by point 7 of Theorem 4.1.

4. Immediate by point 7 of Theorem 4.1 and of the previous point.

5. Notice that
(
θsf(s,t)

)
(ξ) = (θf)(0,t−s)(ξ), for any f , and that from Eqs.

(3.7) and (4.3) and the fact that Θt commutes with X ⊗ 1 we obtain:

〈v|T f (s, t)[X]u〉
= 〈U(t− s)v ⊗ ψ(θsf(s,t))|(X ⊗ 1(0,t−s))U(t− s)u⊗ ψ(θsf(s,t))〉

which gives point 5.

4.2.2 The quantum Markov semigroup associated to a co-
herent vector with a constant function

Always in Hypothesis 3.3, let us define the family
{
T λ(t), t ≥ 0

}
of bounded

linear maps on B(H ), where λ ∈ Z , fixed, by

T λ(t) = T f (0, t) with f(x) = 1(0,T )(x)λ , T ≥ t . (4.7)

By point 3 in Remark 4.1, T λ(t) does not depend on T .

Proposition 4.2. In the hypothesis above,
{
T λ(t), t ≥ 0

}
is a quantum

Markov semigroup.

Proof. All the properties of Quantum Dynamical Semigroup are contained in
Theorem 4.1 with exception of the semigroup property. Without loss of gener-
ality we can suppose that 0 ≤ t+ s ≤ T ; then
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f(0,t) = f(s,t+s) = λ and by point 3 in Remark 4.1 T f (0, t) = T f (s, t+ s).

By point 7 in Theorem 4.1 and point 5 in Remark 4.1 we obtain T λ(t + s) =
T f (0, t+ s) = T f (0, s)T f (s, t+ s) = T f (0, s)T f (0, t) = T λ(s)T λ(t).

4.2.3 Approximation of a generic reduced evolution by
quantum Markov semigroups

Now we want to show how any dynamics T f (s, t) can be approximated by time
ordered products of quantum Markov semigroups.

Let us consider a coherent vector with a constant function up to some time T ,
say f(x) = 1(0,T )(x)λ. By applying points 5 and 7 of Theorem 4.1 and point
3 of Remark 4.1, for 0 ≤ s ≤ t, we get

T f (s, t) =





T λ(t− s) if t ≤ T
T 0(t− s) if s ≥ T
T λ(T − s)T 0(t− T ) if s ≤ T ≤ t

(4.8)

In an analogous way we can consider the step function

f(x) =

n∑

k=1

1[tk−1,tk)(x)λk , λk ∈ Z , 0 = t0 < t1 < · · · < tn .

Then, with the convention that tn+1 = +∞, λn+1 = 0, we have that our
evolution T f (0, t) for t ∈ [tj , tj+1) is given by the time-ordered product

T f (0, t) = T λ1(t1 − t0) T λ2(t2 − t1) · · · T λj (tj − tj−1) T λj+1(t− tj) . (4.9)

Proposition 4.3. For f, g ∈ L2(R; Z ) we have the estimate

∥∥T g(s, t)− T f (s, t)
∥∥

≤
√

8

(
1− exp

{
−1

2

∥∥g(s,t) − f(s,t)

∥∥
}

cos
(
Im〈g(s,t)|f(s,t)〉

))1/2

. (4.10)
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Proof. We have

∣∣〈v|
(
T g(s, t)− T f (s, t)

)
[X]u〉

∣∣
=
∣∣〈U(t, s)v ⊗ ψ(g(s,t))|(X ⊗ 1)U(t, s)u⊗ ψ(g(s,t))〉

− 〈U(t, s)v ⊗ ψ(f(s,t))|(X ⊗ 1)U(t, s)u⊗ ψ(f(s,t))〉
∣∣

=
∣∣〈U(t, s)v ⊗ ψ(g(s,t))|(X ⊗ 1)U(t, s)u⊗

(
ψ(g(s,t))− ψ(f(s,t))

)
〉

+ 〈U(t, s)v ⊗
(
ψ(g(s,t))− ψ(f(s,t))

)
|X ⊗ 1U(t, s)u⊗ ψ(f(s,t))〉

∣∣
≤
∣∣〈U(t, s)v ⊗ ψ(g(s,t))|(X ⊗ 1)U(t, s)u⊗

(
ψ(g(s,t))− ψ(f(s,t))

)
〉
∣∣

+
∣∣〈U(t, s)v ⊗

(
ψ(g(s,t))− ψ(f(s,t))

)
|(X ⊗ 1)U(t, s)u⊗ ψ(f(s,t))〉

∣∣
≤ 2 ‖v‖ ‖u‖ ‖X‖

∥∥ψ(g(s,t))− ψ(f(s,t))
∥∥ .

By Eq. (2.3) we have

∥∥ψ(g(s,t))− ψ(f(s,t))
∥∥2

=
∥∥ψ(g(s,t))

∥∥2
+
∥∥ψ(f(s,t))

∥∥2−2 Re〈ψ(g(s,t))|ψ(f(s,t))〉

= 2− 2 exp

{
−1

2

∥∥g(s,t) − f(s,t)

∥∥
}

cos
(
Im〈g(s,t)|f(s,t)〉

)
.

The result follows by recalling that the norm of a linear operator T from B(H )
into itself is

‖T ‖ = sup
X∈B(H )
‖X‖=1

sup
u,v∈H
‖u‖=‖v‖=1

|〈v|T [X]u〉|.

An immediate consequence of the estimate above is that the L2-convergence of
the functions implies the uniform convergence of the reduced dynamics.

Corollary 4.4. For f, f (n) ∈ L2(R; Z ) we have

lim
n→∞

∥∥∥f (n)
(s,t) − f(s,t)

∥∥∥ = 0 ⇒ lim
n→∞

∥∥∥T f(n)

(s, t)− T f (s, t)
∥∥∥ = 0 .

By taking into account that step functions are dense in L2, we have that for any
f we can find a sequence of step functions converging to f in L2

(
(s, t); Z

)
and,

so, any T f (s, t) can be approximated in the uniform topology by a sequence of
products of quantum Markov semigroups of the kind of Eq. (4.9).
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4.3 Some contraction semigroups in H

4.3.1 The contraction semigroups P λ
γ (t) and P λ∗

γ (t)

In order to study the generator of the semigroup T λ(t), it is useful to introduce
some related semigroups of contractions in H .

Let us introduce a notation for the coherent vectors with a constant function
up to a certain time:

φ(λ; t) := ψ
(
1[0,t] λ

)
, λ ∈ Z , t ≥ 0 . (4.11)

Note that by (2.3) we have

〈φ(γ; t)|φ(λ; t)〉 = exp

{
− t

2

(
‖γ − λ‖2 − 2i Im〈γ|λ〉

)}
=: h(−t). (4.12)

Theorem 4.5 ([9] pp. 204–205). For any t ≥ 0, define the operator Pλγ (t) on
H by: ∀v, u ∈H

〈
v|Pλγ (t)u

〉
=
〈
v ⊗ φ(γ; t)

∣∣U(t)u⊗ φ(λ; t)
〉
. (4.13)

Then, {Pλγ (t), t ≥ 0} and {Pλγ (t)∗, t ≥ 0} are strongly continuous semigroups
of contractions on H .

Proof. By the normalization of φ(γ; t), φ(λ; t), and the unitarity of U(t), we
have

∣∣〈v|Pλγ (t)u
〉∣∣ ≤ ‖v‖‖u‖; this implies that Pλγ (t) is a contraction.

By U(0) = 1, φ(γ; 0) = φ(λ; 0) = e(0), we get from the definition the property
Pλγ (0) = 1.

Being U a right cocycle, for s, t ≥ 0 we have

〈v|Pλγ (t+ s)u〉 = 〈v ⊗ φ(γ; t+ s)|Θ∗sU(t)ΘsU(s) (u⊗ φ(λ; t+ s))〉
= 〈Θ∗sU(t)∗

(
v ⊗ ψ(1(−s,t)γ)

)
|U(s) (u⊗ φ(λ; t+ s))〉

= 〈φ(γ; s)⊗Θ∗sU(t)∗ (v ⊗ φ(γ; t)) | (U(s) (u⊗ φ(λ; s)))⊗ ψ(1(s,s+t)λ)〉
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Let uj be a c.o.n.s. in H ; we get

〈v|Pλγ (t+ s)u〉 =
∑

j

〈Θ∗sU(t)∗ (v ⊗ φ(γ; t)) |uj ⊗ ψ(1(s,s+t)λ)〉

× 〈uj ⊗ φ(γ; s)|U(s) (u⊗ φ(λ; s))〉
=
∑

j

〈v ⊗ φ(γ; t)|U(t) (uj ⊗ φ(λ; t))〉〈uj ⊗ φ(γ; s)|U(s) (u⊗ φ(λ; s))〉

=
∑

j

〈v|Pλγ (t)uj〉〈uj |Pλγ (s)u〉 = 〈v|Pλγ (t)Pλγ (s)u〉,

which is the semigroup property.

Being Pλγ (t) a semigroup, it is enough to prove its strong continuity in 0. By
using the function h(t) defined in (4.12) and taking T > t, we have

∣∣〈v|Pλγ (t)u− u〉
∣∣ = |〈v ⊗ φ(γ; t)|U(t) (u⊗ φ(λ; t))〉 − 〈v|u〉|

= |h(T − t)〈v ⊗ φ(γ;T )|U(t) (u⊗ φ(λ;T ))〉 − h(T )〈v ⊗ φ(γ;T )|u⊗ φ(λ;T )〉|
=
∣∣ (h(T − t)− h(T )) 〈v ⊗ φ(γ;T )|U(t) (u⊗ φ(λ;T ))〉

+ h(T )〈v ⊗ φ(γ;T )| (U(t)− 1)u⊗ φ(λ;T )〉
∣∣

≤ |h(T − t)− h(T )| ‖v‖ ‖u‖+ |h(T )| ‖v‖ ‖(U(t)− 1)u⊗ φ(λ;T )‖ .

By the strong continuity of U and the expression of h, we get the strong con-
tinuity of Pλγ .

By Remark A.7, also Pλγ (t)∗ is a strongly continuous semigroup of contractions.

Remark 4.2. From Eq. (4.13) we get easily
〈
v|P γλ (t)∗u

〉
=
〈
v ⊗ φ(γ; t)

∣∣U(t)∗u⊗ φ(λ; t)
〉
. (4.14)

4.3.2 The infinitesimal generator of the contraction semi-
group P λ∗

γ

As we shall see in Section 4.4, it is natural to think the semigroup T λ(t) as a
perturbation of Pλ0 (t)∗ • Pλ0 (t); so, we start by studying the generators of Pλ∗γ
and Pλγ .

Now Hypotheses 3.2, 3.3, 3.4 are assumed to hold. As for Z -valued functions,
we use the convention λ0 = γ0 = 1. The two dense sets D and D̃ are introduced
in Hypothesis 3.4.
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Theorem 4.6. Let us denote by Kλ∗
γ the infinitesimal generator of the strongly

continuous semigroup of contractions Pλγ (t)∗. Then, Dom(Kλ∗
γ ) ⊃ D̃ and ∀v ∈

D̃ we have

Kλ∗
γ v =

∑

i,j≥0

λjF
∗
ijγiv + 〈λ|γ〉v − 1

2
(‖γ‖2 + ‖λ‖2)v

= K∗v +
∑

k≥1

(R∗kγk − ζ∗kRk + ζ∗kγk) v − 1

2

(
‖λ‖2 + ‖γ‖2

)
v (4.15)

and

−2 Re〈Kλ∗
γ v|v〉 =

∑

k≥1

‖(Rk + ζk − γk) v‖2 , (4.16)

where

ζk =
∑

i≥1

Skiλi , k = 1, . . . , d. (4.17)

Proof. Let us take any u ∈H and any v ∈ D̃. By recalling that U(t)∗ satisfies
the left H-P-equation, we get

〈v|Pλγ (t)u〉 = 〈v ⊗ φ(γ; t)|U(t)u⊗ φ(λ; t)〉

= 〈v ⊗ φ(γ; t)|u⊗ φ(λ; t)〉+
∑

i,j≥0

∫ t

0

γi〈F ∗ij v ⊗ φ(γ; t)|U(s)u⊗ φ(λ; t)〉λj ds

= h(−t)〈v|u〉+

∫ t

0

h(s− t)〈Av|Pλγ (s)u〉ds ,

where A :=
∑

i,j≥0

λjF
∗
ijγi.

In the previous formula h is differentiable and the integrand is continuous; so,
we can take the time derivative of both sides:

d

dt
〈v|Pλγ (t)u〉 = −1

2

(
‖γ‖2 + ‖λ‖2 − 2〈γ|λ〉

)(
h(−t)〈v|u〉

+

∫ t

0

h(s− t)〈Av|Pλγ (s)u〉ds
)

+ 〈Av|Pλγ (t)u〉 = 〈Bv|Pλγ (t)u〉,

where B := A− 1

2

(
‖γ‖2 + ‖λ‖2

)
+ 〈λ|γ〉.



4.3. SOME CONTRACTION SEMIGROUPS IN H 53

Let us show that on D̃ the operator B is the generator of Pλγ (t)∗. By the
previous equation we have

〈v|Pλγ (t)u〉 − 〈v|u〉 =

∫ t

0

〈Bv|Pλγ (s)u〉ds

and
1

t
〈
(
Pλγ (t)∗ − 1

)
v|u〉 − 〈Bv|u〉 =

1

t

∫ t

0

〈Bv|
(
Pλγ (s)− 1

)
u〉ds.

Then, we have

∥∥∥∥
1

t

(
Pλγ (t)∗v − v

)
−Bv

∥∥∥∥ = sup
‖u‖=1

1

t

∣∣∣∣
∫ t

0

〈Bv|
(
Pλγ (s)− 1

)
u〉ds

∣∣∣∣

≤ sup
‖u‖=1

1

t

∫ t

0

∥∥(Pλγ (s)∗ − 1
)
Bv
∥∥ds

and the last term goes to zero as t goes to zero by the strong continuity of
Pλγ (s)∗. This gives Dom(Kλ∗

γ ) ⊃ D̃ and Kλ∗
γ v = Bv for v ∈ D̃. By using the

explicit expressions of B and Fij we get formula (4.15).

By explicit calculations and Eq. (3.26), we get Eq. (4.16).

By definition Kλ∗
γ is the generator of the strongly continuous semigroup of

contractions Pλ∗γ , but we do not know if D̃ is a core for Kλ∗
γ , in general. We

can say something when γ = 0, which, after all, is the case of main interest for
our construction.

Proposition 4.7. In the hypotheses above, we have Dom(Kλ∗
0 ) = Dom(K∗)

and, on this domain,

Kλ∗
0 = K∗ −

∑

k≥1

ζ∗kRk −
1

2
‖λ‖2,

where ζk =
∑
i≥1 Skiλi, k = 1, . . . , d. Moreover, D̃ is a core for Kλ∗

0 and

−2 Re〈Kλ∗
0 v|v〉 =

∑

k≥1

‖(Rk + ζk) v‖2 , ∀v ∈ Dom(K∗).

Proof. By following [9] p. 204, we can write

∥∥∥∥∥
∑

ik

λiS
∗
kiRkv

∥∥∥∥∥ ≤ ‖λ‖


∑

i

∥∥∥∥∥
∑

k

S ∗kiRkv

∥∥∥∥∥

2



1/2

= ‖λ‖
(∑

i

‖Riv‖2
)1/2

= ‖λ‖ |2 Re〈K∗v|v〉|1/2 ≤ 2 ‖λ‖ ‖v‖1/2 ‖K∗v‖1/2 ≤ ε ‖K∗v‖+ ε−1 ‖λ‖ ‖v‖ .
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This holds for all ε ∈ (0, 1).

Let us set B := −
∑

k≥1

ζ∗kRk−
1

2
‖λ‖2. By recalling that Dom(Rk) ⊃ Dom(K∗),

we have that Dom(B) ⊃ Dom(K∗) and, by the inequality above, B is relatively
bounded with respect to K∗, with relative bound less than 1. By Proposition
A.10 and Theorem A.11 the operatorA := K∗+B defined on Dom(K∗) is closed
and maximally dissipative and, therefore, it generates a strongly continuous
contraction semigroup. Being B relatively bounded with respect to K∗ and
being D̃ a core for K∗, by Remark (a), p. 205, in [9], D̃ is a core for A.

But Kλ∗
0 is closed and on D̃ it is equal to A; so it is an extension of A. Being

Kλ∗
0 too a generator, by point 2 in Remark A.6, A and Kλ∗

0 coincide.

The last statement follows by taking Eq. (4.16) for γ = 0 and by extending
it.

Obviously, we have Kλ
0 = Kλ∗∗

0 , but it seems difficult to say something about
Dom(Kλ

0 ). A way to overcome this difficulty is to make some more hypotheses
on R∗k, similar to the ones on Rk, as done in the next section.

4.3.3 Additional hypotheses on R∗
k and Nk

Hypothesis 4.1. Let us consider the following additional hypotheses:

1. Dom(Nk) ⊃ Dom(K) ∀k ≥ 1.

2. ∀k ≥ 1, ∀u ∈ Dom(K): Skiu ∈ Dom(R∗k), ∀i ≥ 1.

3. For all z ∈ Cd,
∑

k≥1

zkNk is relatively bounded with respect to K with

relative bound less than 1.

From now on all Hypotheses 3.2, 3.3, 3.4, 4.1 are assumed to hold.

Proposition 4.8. We have that

Niu = −
∑

k≥1

R∗kSkiu , ∀u ∈ Dom(K), ∀i = 1, . . . , d.

Proof. By point 3 in Proposition 3.4 we have, ∀i ≥ 1,∀v ∈ Dom(K)∪Dom(K∗),

N∗i v = −
∑

k≥1

S∗kiRkv, ∀v ∈ D. By using Hypothesis 4.1 we have, ∀u ∈ Dom(K),
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∀v ∈ Dom(K) ∪Dom(K∗),

〈v|Niu〉 = 〈N∗i v|u〉
= −

∑

k≥1

〈
S∗kiRkv

∣∣∣u
〉

= −
∑

k≥1

〈
Rkv

∣∣∣Skiu
〉

= −
∑

k≥1

〈
v
∣∣∣R∗kSkiu

〉
.

By the density in H of Dom(K) ∪Dom(K∗) we have the statement.

Proposition 4.9. We have Dom(Kλ
0 ) = Dom(K) and on this domain

Kλ
0 = K −

∑

k≥1

R∗kζk −
1

2
‖λ‖2,

where ζk =
∑
i≥1 Skiλi, k = 1, . . . , d. Moreover, D is a core for Kλ

0 and

−2 Re〈Kλ
0 u|u〉 =

∑

k≥1

‖(Rk + ζk)u‖2 , ∀u ∈ Dom(K). (4.18)

Proof. Let us set B := −
∑

k≥1

R∗kζk−
1

2
‖λ‖2 =

∑

i≥1

Niλi−
1

2
‖λ‖2; then, we have

that Dom(B) ⊃ Dom(K) and B is relatively bounded with respect to K with
relative bounded less then 1. By Proposition A.10 K+B is closed in Dom(K).

Moreover, we have ∀u ∈ Dom(K),∀t ∈ [0, 1]

2Re〈u|(K + tB)u〉 = −
∑

k≥1

‖Rku‖2 + 2tRe〈u|Bu〉

= −
∑

k≥1

‖(Rk + t
∑

i≥1

Skiλi)u‖2 − t(1− t)‖λ‖2‖u‖2

≤ 0,

and K+tB is dissipative. Being K m-dissipative, by Theorem A.11, also K+B
is m-dissipative and by point 2 in Remark A.6 the first statement is proved.

As in Proposition 4.7 we get the other statements.

4.4 The generator of the reduced dynamics

4.4.1 The form-generator

Let us consider now the quantum Markov semigroup T λ, defined in Eq. (4.7).
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Theorem 4.10. Let us set ζk :=
∑

j≥1

λjSkj and Bk = Rk+ζk. Then, ∀u, v ∈ D,

lim
t↓0

1

t

(〈
v
∣∣T λ(t)[X]u

〉
−
〈
v
∣∣Xu

〉)

=
〈
v
∣∣XKλ

0 u
〉

+
〈
Kλ

0 v
∣∣Xu

〉
+
∑

k≥1

〈
Bkv

∣∣XBku
〉
. (4.19)

Moreover, the operators Kλ
0 and Bk satisfy the Hypothesis 3.1.

Proof. From Definition 4.2 and Eq. (4.7) we obtain

〈
v
∣∣T λ(t)[X]u

〉
−
〈
v
∣∣Xu

〉
=
〈
U(t)v ⊗ ψ(f)

∣∣(X ⊗ 1)U(t)u⊗ ψ(f)
〉

−
〈
v ⊗ ψ(f)

∣∣(X ⊗ 1)u⊗ ψ(f)
〉

where f(x) = 1(0,T )(x)λ and U(t) satisfies the right HP-equation (2.23)

U(t)− 1 =

∫ t

0

(∑

i≥1

RidA
†
i (s) +

∑

i,j≥1

(Sij − δij)dΛij(s)

+
∑

j≥1

NjdAj(s) +Kds

)
U(s).

By the second fundamental formula of quantum stochastic calculus (Proposi-
tion 2.2) and Proposition 4.8, we get, ∀u, v ∈ D,

lim
t↓0

1

t

(〈
v
∣∣T λ(t)[X]u

〉
−
〈
v
∣∣Xu

〉)

= 〈v|XKu〉+
∑

i≥1

λi〈v|XRiu〉+
∑

j≥1

λj〈v|XNju〉+

+
∑

i,j≥1

λiλj〈v|X(Sij − δij)u〉+ 〈Kv|Xu〉+
∑

j≥1

λj〈Njv|Xu〉

+
∑

j≥1

λj〈Rjv|Xu〉+
∑

i,j≥1

λiλj〈(Sji − δji)v|Xu〉

+
∑

i≥1

〈Riv|XRiu〉+
∑

ij≥1

λi〈(Sij − δij)v|XRju〉+

+
∑

ij≥1

λj〈Riv|X(Sij − δij)u〉+
∑

i,j,k≥1

λiλj〈(Ski − δki)v|X(Skj − δkj)u〉
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=
〈
v
∣∣∣X
(
K +

∑

i≥1

λiRi −
∑

ij≥1

λjR
∗
i Sij +

∑

ij

λiλj(Sij − δij)
)
u
〉

+
〈(
K +

∑

i≥1

λiRi −
∑

ij≥1

λjR
∗
i Sij +

∑

ij

λiλj(Sij − δij)
)
v
∣∣∣Xu

〉

+
∑

k≥1

〈(
Rk +

∑

i≥1

λi(Ski − δki)
)
v
∣∣∣X
(
Rk +

∑

j≥1

λj(Skj − δkj)
)
u
〉

=
〈
v
∣∣XKλ

0 u
〉

+
〈
Kλ

0 v
∣∣Xu

〉
+
∑

k≥1

〈(
Rk+

∑

i≥1

λiSki

)
v
∣∣∣X
(
Rk+

∑

j≥1

λjSkj

)
u
〉
.

So, we have Eq. (4.19).

We already know that the operator Kλ
0 is the generator of the strongly continu-

ous contraction semigroup Pλ0 defined in Eq. (4.13). So, the first of Hypotheses
3.1 holds.

By Eq. (4.18) also the second of Hypotheses 3.1 holds.

For all X ∈ B(H ), let us consider the quadratic form L λ[X] in H with
domain Dom(K)×Dom(K) defined by

〈v|L λ[X]u〉 =
〈
v
∣∣XKλ

0 u
〉

+
〈
Kλ

0 v
∣∣Xu

〉
+
∑

k≥1

〈
Bλk v

∣∣XBλku
〉
, (4.20)

Bλk = Rk +
∑

j≥1

λjSjk . (4.21)

From Theorem 4.10 we have, ∀u, v ∈ D,

lim
t↓0

1

t

(〈
v
∣∣T λ(t)[X]u

〉
−
〈
v
∣∣Xu

〉)
= 〈v|L λ[X]u〉. (4.22)

By the semigroup property and the and continuity properties we get that T λ(t)
satisfies the equation

〈v|T λ(t)[X]u〉 = 〈v|Xu〉+

∫ t

0

〈
v
∣∣L λ

[
T λ(s)[X]

]
u
〉
ds, (4.23)

∀u, v ∈ Dom(K), ∀X ∈ B(H ).

If the minimal QDS generated by Kλ
0 , Rk + ζk is Markov, then it coincides

with T λ (Proposition 3.7) and T λis the unique σ-weakly continuous positive
solution of Eq. (4.23).
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4.4.2 The evolution equation for the reduced dynamics

Theorem 4.11. Under Hypotheses 3.4 and 4.1 and f ∈ L2(R+; Z ), the re-
duced dynamics T f (s, t) introduced in Definition 4.2 satisfies the evolution
equation: ∀u, v ∈ D, ∀X ∈ B(H ),

〈
v
∣∣T f (s, t)[X]u

〉
= 〈v|Xu〉+

∫ t

s

〈
v
∣∣L f (r)

[
T f (r, t)[X]

]
u
〉
dr , (4.24)

where

L f (r) := L f(r) (4.25)

and L λ is defined by the quadratic form introduced in Eq. (4.20).

Proof. We make the demonstration in two parts, firstly for a step function f
and then for a generic one.

Let us consider the sequence of times 0 = t0 < t1 < · · · < tn = T and the step
function f(x) =

∑n
i=1 1[ti−1,ti)(x)λi with λi ∈ Z . Let us take now s and s1

such that 0 ≤ s < s1 ≤ t and ti ≤ s < s1 ≤ ti+1 for some i. Then

〈
v
∣∣T f (s, t)[X]u

〉
=
〈
v
∣∣T f (s, s1)T f (s1, t)[X]u

〉

=
〈
v
∣∣T λi(s1 − s)T f (s1, t)[X]u

〉
.

To abbreviate the writing let us set T1 = T λi and L1 = L λi . Now, from here
and Eq.(4.23) we get

〈
v
∣∣T f (s, t)[X]u

〉

=
〈
v
∣∣T f (s1, t)[X]u

〉
+

∫ s1−s

0

dr
〈
v
∣∣L1

[
T1(r)T f (s1, t)[X]

]
u
〉
,

=
〈
v
∣∣T f (s1, t)[X]u

〉
+

∫ s1

s

dx
〈
v
∣∣L1

[
T f (x, t)[X]

]
u
〉
;

similarly, we have

〈
v
∣∣T f (s1, t)[X]u

〉
=
〈
v
∣∣T f (s2, t)[X]u

〉
+

∫ s2

s1

dx
〈
v
∣∣L2

(
T f (x, t)[X]

)
u
〉
.

Let q be such that ti+q−1 < t ≤ ti+q and let us set s0 = s, sq = t, sj = ti+j for
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1 ≤ j ≤ q − 1. By induction we arrive to

〈
v
∣∣T f (s, t)[X]u

〉
=
〈
v
∣∣Xu

〉
+

q∑

j=1

∫ sj

sj−1

dx
〈
v
∣∣Lj

[
T f (x, t)[X]

]
u
〉

=
〈
v
∣∣Xu

〉
+

∫ t

s

dx
〈
v
∣∣L f (x)

[
T f (x, t)[X]

]
u
〉
.

Let us stress that, being f a step function, then

L f (x) =

q∑

j=1

1[sj−1,sj)(x)L λj .

Let now f (n) be a sequence of step functions approximating f ∈ L2(R+; Z ):

lim
n→∞

‖f (n) − f‖2 = 0. To simplify the notation we write T f(n)

= Tn and

L f(n)

= Ln. By Corollary 4.4 lim
n→∞

Tn(s, t) = T f (s, t) uniformly.

Now, for u, v ∈ D we have

∫ t

s

dx
〈
v
∣∣Ln(x)Tn(x, t)[X]u

〉
−
∫ t

s

dx
〈
v
∣∣L f (x)T f (x, t)[X]u

〉

=

∫ t

s

dx〈v
∣∣(Ln(x)−L f (x)

)
Tn(x, t)[X]u

〉

+

∫ t

s

dx
〈
v
∣∣L f (x)

(
Tn(x, t)− T f (x)

)
[X]u

〉
.

The first term gives

∫ t

s

dx〈v
∣∣(Ln(x)−L f (x)

)
Tn(x, t)[X]u

〉

=

∫ t

s

dx

(〈
v
∣∣Tn(x, t)[X]

(
K
f(n)(x)
0 −Kf(x)

0

)
u
〉

+
〈 (
K
f(n)(x)
0 −Kf(x)

0

)
v
∣∣Tn(x, t)[X]u

〉

+
∑

k≥1

(〈
B
f(n)(x)
k v

∣∣Tn(x, t)[X]B
f(n)(x)
k u

〉)
−
〈
B
f(x)
k v

∣∣T (x, t)[X]B
f(x)
k u

〉))
.
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We have on the domain D

K
f(n)(x)
0 −Kf(x)

0 =
1

2

(
‖f(x)‖2 − ‖f (n)(x)‖2

)

+
∑

k,j≥1

(
f

(n)
j (x)− fj(x)

)
R∗kSkj ;

therefore

∣∣∣∣
∫ t

s

dx
〈
v
∣∣Tn(x, t)[X]

(
K
f(n)(x)
0 −Kf(x)

0

)
u
〉∣∣∣∣

≤ 1

2

∫ t

s

dx
∣∣∣‖f(x)‖2 − ‖f (n)(x)‖2

∣∣∣
∣∣∣
〈
v
∣∣Tn(x, t)[X]u

〉∣∣∣

+

∫ t

s

dx
∑

k,j≥1

∣∣∣f (n)
j (x)− fj(x)

∣∣∣
∣∣∣
〈
v
∣∣Tn(x, t)[X]R∗kSkju

〉∣∣∣.

We know from Remark 4.1 point 1 that
∣∣∣
〈
v
∣∣Tn(x, t)[X]u

〉∣∣∣ ≤
∣∣〈v|Xu〉

∣∣; by using

also
∣∣∣‖f(x)‖2 − ‖f (n)(x)‖2

∣∣∣ ≤
∥∥∥f(x)− f (n)(x)

∥∥∥
2

we get

∫ t

s

dx
∣∣∣‖f(x)‖2 − ‖f (n)(x)‖2

∣∣∣
∣∣∣
〈
v
∣∣Tn(x, t)[X]u

〉∣∣∣

≤
∣∣〈v
∣∣Xu

〉∣∣
∫ t

s

dx
∥∥f(x)− f (n)(x)

∥∥2 n→+∞−−−−−→ 0.

Obviously,
∣∣∣f (n)
j (x)− fj(x)

∣∣∣ ≤
∥∥∥f (n)(x)− f(x)

∥∥∥; by Hölder inequality, we have

∫ t

s

dx
∑

k,j≥1

∣∣∣f (n)
j (x)− fj(x)

∣∣∣
∣∣∣
〈
v
∣∣Tn(x, t)[X]R∗kSkju

〉∣∣∣

≤
∑

k,j≥1

〈
v|XR∗kSkju

〉(
(t− s)

∫ t

s

dx
∥∥f(x)− f (n)(x)

∥∥2
) 1

2
n→+∞−−−−−→ 0.

All the involved terms are analyzed in the same way. Therefore

∫ t

s

dx
〈
v
∣∣Ln(x)Tn(x, t)[X]u

〉 n→+∞−−−−−→
∫ t

s

dx
〈
v
∣∣L f (x)T f (x, t)[X]u

〉

and this implies the result.
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Remark 4.3. Equation (4.24) is the integral form of a backward differential
equation. Indeed, at least when f is a continuous function, the r.h.s. is differ-
entiable with respect to s and we get

d

ds

〈
v
∣∣T f (s, t)[X]u

〉
= −

〈
v
∣∣L f (s)

[
T f (s, t)[X]

]
u
〉
, (4.26)

with final condition
〈
v
∣∣T f (t, t)[X]u

〉
=
〈
v
∣∣Xu

〉
.
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Chapter 5

The Continual
Measurement

When the fields represent pure noise, it is natural to consider system observ-
ables as in Section 4.1; then, the reduced dynamics comes out. In other situ-
ations, as when the fields are intended to represent the electromagnetic field,
the natural observables are field quantities, from which inferences are done on
the sub-system in H; let us call the sub-system SH. We are interested in the
behaviour of the system SH, but we measure field observables; this scheme is
known as indirect measurement.

Another way to think to this situation is the following one. We cannot act
directly on our system SH, but any action is mediated by some quantum input
and output channel. We can think of an atom driven by a laser (input) and
emitting fluorescence light (output) or of the light entering (input) and leaving
(output) an optical cavity. In these examples the role of input and output chan-
nels is played by the electromagnetic field and we can think of approximating
it by the Bose fields on which QSC is based.

So, we have to identify the main field observables, which eventually we want
to take under measurement with continuity in time. But before to introduce
continual measurements we have to recall some notions on commuting self-
adjoint operators, projection valued measures and their Fourier transforms.

63
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5.1 Characteristic functional

Let X be a selfadjoint operator and eikX be the group generated by X. Then,
there exists a unique projection-valued measure (pvm) ξ on

(
R,B(R)

)
such

that

eikX =

∫

R
eikxξ(dx), ∀k ∈ R. (5.1)

Let X ≡ (X1, . . . , Xd) be a set of d mutually commuting selfadjoint operators,
in the sense that the groups generated by them commute or that the associated
pvm ξj commute. Then, there exists a unique pvm ξ on

(
Rd,B(Rd)

)
such that

eik·X ≡
∏

j≥1

eikjXj =

∫

Rd
eik·xξ(dx), ∀k ∈ Rd. (5.2)

Moreover, in the state %, the characteristic function (Fourier transform) of the
probability law

PX% (dx) = Tr
{
%ξ(dx)

}
(5.3)

of the observable associated to X is∫

Rd
eik·xPX% (dx) = Tr

{
%eik·X}. (5.4)

These results extend to “infinitely many” commuting selfadjoint operators; only
uniqueness is lost.

Proposition 5.1 ([12] p. 59, [3] Proposition 3.1). Let {ξt, t ∈ I} be a family
of commuting pvm on

(
R,B(R)

)
and Xt be the selfadjoint operator associated

with ξt. Then, there exist a measurable space (Ω,F), a pvm ξ on (Ω,F) and a

family of real valued measurable functions
{
X̃t, t ∈ I

}
on Ω such that

eikXt =

∫

R
eikxξt(dx) =

∫

R
eikX̃t(ω)ξ(dω), ∀k ∈ R, ∀t ∈ I. (5.5)

In the situation described in this proposition, if % is a fixed state and we set

P%(dω) := Tr {%ξ(dω)} ,

we have that (Ω,F ,P%) is a classical probability space and
{
X̃t(·), t ∈ I

}

becomes a classical stochastic process. The characteristic functions of the finite
dimensional distributions of the process are given by

∫

Ω

exp

(
i

n∑

j=1

kjX̃tj (ω)

)
P%(dω) = Tr

{
% exp

(
i

n∑

j=1

kjXtj

)}
. (5.6)
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Let us consider now the case in which the index becomes time plus a discrete
label: I = {(i, t) : i = 1, . . . , d, 0 < t ≤ T}. Then, we denote the process by

X̃i(t;ω), the operators by Xi(t) and we assume, for simplicity, X̃i(0;ω) = 0,
Xi(0) = 0. Instead of considering the finite-dimensional distributions of the

process X̃i(t), it is equivalent and simpler to introduce the finite-dimensional
distributions of the increments of the original process, whose characteristic
functions are

∫

Ω

exp

(
i

d∑

i=1

n∑

j=1

ki(tj)
(
X̃i(tj ;ω)− X̃i(tj−1;ω)

))
P%(dω)

= Tr

{
% exp

(
i

d∑

i=1

n∑

j=1

ki(tj)
(
Xi(tj)−Xi(tj−1)

))}
, (5.7)

0 = t0 < t1 < · · · < tn ≤ T.

5.2 The output fields

The fields we have introduced are expressed in the interaction picture. How-
ever, in order to construct a theory of continual measurements, based on the
usual rules of quantum mechanics, which require the existence of joint spectral
measures, we need observables commuting at different times in the Heisenberg
picture.

Let us call “input fields” the fields before the interaction with the system SH,
i.e. the fields Ak(t), A†k(t), Λkl(t) and let us call “output fields” the fields
after the interaction with the system SH or, in other words, the fields in the
Heisenberg picture. We have

Aout
j (t) := U(t)∗Aj(t)U(t) (5.8)

and similar definitions for Aout †
j (t), Λout

ij (t). Note that, if D is the domain of

Aj(t), then U(t)∗D is the domain of Aout
j (t).

By Proposition 3.5 we have

U(T ) = U(T, t)U(t) , ∀T ≥ t , (5.9)

with U(T, t) adapted to H ⊗ F(t,T ) and, so, commuting with Aj(t), A
†
j(t),

Λij(t), . . . Therefore, we have

Aout
j (t) = U(T )∗Aj(t)U(T ) , ∀T ≥ t . (5.10)
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This implies immediately that the output fields satisfy the same canonical
commutation rules of the input fields: the output fields remain Bose free fields.

As the output fields are Bose free fields the set of operators (field quadratures)

Aout
j (t) +A† out

j (t), t ≥ 0, j = 1, . . . , d,

are commuting selfadjoint operators and can be jointly observed. The same is
true for families of number operators such that

Λout
jj (t), t ≥ 0, j = 1, . . . , d.

By applying the formal rules of QSC we can express the output fields as the
quantum stochastic integrals [2]

Aout
j (t) =

∫ t

0

{∑

k

U(s)∗SjkU(s)dAk(s) + U(s)∗RjU(s) ds

}
, (5.11a)

Aout †
j (t) =

∫ t

0

{∑

k

U(s)∗S ∗jkU(s)dA†k(s) + U(s)∗R∗jU(s) ds

}
, (5.11b)

Λout
ij (t) =

∫ t

0

{∑

kl

U(s)∗S ∗ikSjlU(s) dΛkl(s) +
∑

k

U(s)∗S ∗ikRjU(s) dA†k(s)

+
∑

l

U(s)∗R∗i SjlU(s) dAl(s) + U(s)∗R∗iRjU(s) ds

}
. (5.11c)

From these equations one explicitly sees that the output fields carry information
on system SH: the quantities Rk, Skl are the system operators appearing in
the system–field interaction.

What we have to do now is to put in a rigorous basis the joint observation of the
commuting families above, to generalize to other similar families of operators,
and to show how to reduce the theory to some “tractable” expressions and
evolution equations.

5.3 Characteristic operator and observables

5.3.1 The characteristic operator

In order to construct the joint field observables we start from the Fourier trans-
form of their joint projection valued measure (characteristic operator); this
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approach has the advantage of giving rise to unitary operators which can be
handled with quantum stochastic calculus. We use here a simplified version
of the structure given in [3], Theorem 3.1, but rich enough to contain the
physically interesting observables.

1. Let P =
(
P1, P2, . . . , Pm

)
be a vector of mutually orthogonal projections

in Z , i.e.

Pα = P ∗α, PαPβ = δαβ Pα , ∀α, β = 1, . . . ,m;

Some of the projections can be zero or the identity.

2. Let us take h = (h1, h2 . . . , hm) with hα ∈ L2
loc(R+; Z ), α = 1, . . . ,m,

such that ∀t ≥ 0, ∀α, β = 1, . . . ,m,

Im〈hα(t)|hβ(t)〉 = 0, Pαh
β(t) = 0.

3. For any test function k =
(
k1, k2, . . . , km

)
∈ L∞(R+;Rm) let us define

• S
(
k(s)

)
=

m∏

α=1

eikα(s)Pα ,

• ∀f ∈ L2(R+; Z ),

(
St(k)f

)
(s) = 1(0,t)(s)S

(
k(s)

)
f(s) + 1[t,+∞)(s)f(s)

= 1(0,t)(s)

m∑

α=1

(
eikα(s) − 1

)
Pαf(s) + f(s), (5.12)

• rt(k)(s) = 1(0,t)(s)ik(s) · h(s).

Note that St(k) ∈ U
(
L2(R+; Z )

)
and rt(k) ∈ L2(R+; Z ).

4. Let us define the Characteristic Operator as the Weyl operator

Φ̂k(t) := W
(
rt(k);St(k)

)
. (5.13)

Theorem 5.2 ([3] - Theorem. 3.1). The characteristic operator (5.13) has the
following properties

1. Localization property: for 0 ≤ r < s ≤ t
Φ̂k(r,s)

(t) = Φ̂k(r,s)
(s) ∈ U(F(r,s)), k(r,s)(t) := 1(r,s)(t)k(t).

2. Group property:
Φ̂k1

(t)Φ̂k2
(t) = Φ̂k1+k2

(t), ∀ k1, k2 ∈ L∞(R+;Rd).
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3. Matrix elements:

〈e(g)|Φ̂k(t)e(f)〉 = 〈e(g)|e(f)〉

× exp

{ m∑

α=1

∫ t

0

ds

(
− 1

2

m∑

β=1

kα(s)〈hα(s)|hβ(s)〉kβ(s)

+ ikα(s)
(
〈hα(s)|f(s)〉+ 〈g(s)|hα(s)〉

)

+
(

eikα(s) − 1
)
〈g(s)|Pαf(s)〉

)}
. (5.14)

4.
∥∥∥
(

Φ̂k′(t)− Φ̂k′′(t)
)
e(f)

∥∥∥
2

= 2 ‖e(f)‖2 (1− ea cos b),

a = −1

2

m∑

α,β=1

∫ t

0

kα(s)〈hα(s)|hβ(s)〉kβ(s) ds

+

m∑

α=1

∫ t

0

(cos kα(s)− 1) 〈f(s)|Pαf(s)〉ds,

b = 2

m∑

α=1

∫ t

0

kα(s) Re〈hα(s)|f(s)〉ds+

m∑

α=1

∫ t

0

sin kα(s) 〈f(s)|Pαf(s)〉ds,

k = k′ − k′′.

5. Continuity:
Φ̂κk(t) is strongly continuous in κ ∈ R and in t ≥ 0.

6. Given the initial condition Φ̂k(0) = 1, Φ̂k(t) is the unique unitary solu-
tion of the QSDE of Hudson-Parthasarathy left type

dΦ̂k(t) = Φ̂k(t)

(∑

i≥1

Gi0(t)dA†i (t) +
∑

i,j≥1

Gij(t)dΛij(t)

+
∑

j≥1

G0j(t)dAj(t) +G00(t)dt

)
(5.15)
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with

Gi0(t) = i

m∑

α=1

kα(t)〈zi|hα(t)〉, for i ≥ 1

Gij(t) =

m∑

α=1

(
eikα(t) − 1

)
〈zi|Pαzj〉, for i, j ≥ 1

G0j(t) = −i

m∑

α=1

kα(t)
〈
hα(t)

∣∣zj
〉
, for j ≥ 1

G00(t) = −1

2

m∑

α,β=1

kα(t)〈hα(t)|hβ(t)〉kβ(t).

7. Given the initial condition Φ̂k(0) = 1, Φ̂k(t) is the unique unitary solu-
tion of the QSDE of Hudson-Parthasarathy right type

dΦ̂k(t) =

(∑

i≥1

Gi0(t)dA†i (t) +
∑

i,j≥1

Gij(t)dΛij(t)

+
∑

j≥1

G0j(t)dAj(t) +G00(t)dt

)
Φ̂k(t) (5.16)

with the same coefficients as above.

8. There exist a measurable space
(
Ω,F

)
, a pvm ξ on

(
Ω,F

)
, a family

of real valued measurable functions
{
Ỹα(t; ·), α = 1, . . . ,m, t ≥ 0

}
on

Ω, a family of commuting and adapted selfadjoint operator
{
Yα(t), α =

1, . . . ,m, t ≥ 0
}

such that Ỹα(0;ω) = 0, Yα(0) = 0 and, for any choice
of n, 0 = t0, < . . . , < tn = t, καj ∈ R,

Φ̂k(t) = exp

(
i

n∑

j=1

m∑

α=1

καj

(
Yα(tj)− Yα(tj−1)

))

=

∫

Ω

exp

(
i

n∑

j=1

m∑

α=1

καj

(
Ỹα(tj ;ω)− Ỹα(tj−1;ω)

))
ξ(dω), (5.17)

where kα(s) =

n∑

j=1

1(tj−1,tj)(s)καj.
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9. On the exponential domain one has

Yα(t) =
∑

k≥1

∫ t

0

(
〈hα(t)|zk〉dAk(s) + 〈zk|hα(s)〉dA†k(s)

)

+
∑

l,k≥1

∫ t

0

〈zl|Pαzk〉dΛlk(s). (5.18)

Proof. By the definitions of characteristic operator (5.13) and of Weyl operator
(2.6) one has

Φ̂k(t)e(f) = exp

{
−1

2
‖rt(k)‖2 − 〈rt(k)|St(k)f〉

}
e
(
St(k)f + rt(k)

)
(5.19)

and, from the properties of the various quantities involved, one gets

‖rt(k)‖2 =
∑

α,β=1

∫ t

0

kα(s)〈hα(s)|hβ(s)〉kβ(s) ds , (5.20)

−〈rt(k)|St(k)f〉 = i
∑

α=1

∫ t

0

kα(s)〈hα(s)|f(s)〉ds , (5.21)

(
St(k)f + rt(k)

)
(s) = 1(0,t)(s)

[
S
(
k(s)

)
f(s) + ik(s) · h(s)

]
+ 1[t,+∞)(s)f(s)

= 1(0,t)(s)

m∑

α=1

[(
eikα(s) − 1

)
Pαf(s) + ikα(s)hα(s)

]
+ f(s). (5.22)

From here one gets immediately the localization property 1 and the matrix
elements (5.14).

One can check that the definitions of St(k) and rt(k) are such that

St(k1)St(k2) = St(k1 + k2) , St(k)−1 = St(k)∗ = St(−k) , (5.23)

rt(k1) + St(k1)rt(k2) = rt(k1 + k2) . (5.24)

Together with (2.8), these equations imply the group property 2.

Point 4 follows from the group property and the expression of the matrix ele-
ments (5.14).

By the unitarity of Φ̂k(t) and the fact that the exponential vectors are total,
it is enough to prove the strong continuity on the exponential vectors. By the
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unitarity and the localization and group properties, the strong continuity on
the exponential vectors reduces to the check of the continuity of the matrix
elements (5.14).

By checking that the conditions of Definition 2.2 are satisfied, one has that the
r.h.s. of (5.15) is well defined. By differentiating the matrix elements (5.14)
one gets the QSDE (5.15); by passing to the equation for the matrix elements,
which turns out to be a closed ordinary differential equation, one obtains the
uniqueness of the solution. Exactly in the same way, the statement in point 7
is proved.

By the group and continuity properties, for any test function k,
{

Φ̂κk(t), κ ∈
R
}

is a strongly continuous one-parameter group of unitary operators; so, it is

the Fourier transform of a pvm ξk on R. Any two of such pvm’s ξk1 and ξk2

commute, again by the group property. Then, the statement in point 8 is an
application of Proposition 5.1 to the present case.

From Eq. (5.17) with k → κk, kβ(s) = δαβ , we get Φ̂κk(t) = exp {iκX(α, t)}.
By using the matrix elements (5.14) and taking −i times the derivative with
respect to κ in κ = 0, we get the statement of point 9.

5.3.2 Continual measurements and infinite divisibility

It is important to realize that in a coherent state ψ(f) the process Ỹα(t) has in-
dependent increments; here we are not considering the interaction with system
SH . Indeed, by Eqs. (5.14), (5.17) and (2.4), one obtains

〈
ψ(f)

∣∣Φ̂k(t)ψ(f)
〉

=

n∏

j=1

〈
ψ
(
1(tj−1,tj)f

)∣∣∣ exp

(
i

m∑

α=1

καj
(
Yα(tj)

− Yα(tj−1)
))
ψ
(
1tj−1,tj)f

)〉
. (5.25)

By the localization properties, we can reintroduce ψ(f) in every factor and we
obtain, again by Eq. (5.17), the independence of the increments

∫

Ω

exp

(
i

n∑

j=1

m∑

α=1

καj

(
Ỹα(tj ;ω)− Ỹα(tj−1;ω)

))〈
ψ(f)

∣∣ξ(dω)ψ(f)
〉

=

n∏

j=1

∫

Ω

exp

(
i

m∑

α=1

καj

(
Ỹα(tj ;ω)− Ỹα(tj−1;ω)

))〈
ψ(f)

∣∣ξ(dω)ψ(f)
〉
. (5.26)
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This fact implies that the increments follow an infinitely divisible law. The
connection between continual measurements and infinitely divisible laws can be
used as starting point to arrive to more general expressions for the characteristic
operator [3].

5.3.3 The characteristic functional and the finite dimen-
sional laws

Let us consider now the interaction between system SH and the fields; let s
be the system-field state. The characteristic functional of the process Ỹ (the
“Fourier transform” of its probability law) is given by

Φk(t) = Tr
{

Φ̂k(t)U(t)sU(t)∗
}

= Tr
{

Φ̂out
k (t)s

}
, (5.27)

where

Φ̂out
k (t) = U(t)∗Φ̂k(t)U(t) . (5.28)

All the probabilities describing the continual measurement of the observables
Y (α, t) are contained in Φk(t); let us give explicitly the construction of the
joint probabilities for a finite number of increments.

The measurable functions
{
Ỹα(t; ·) , α = 1, . . . ,m, t ≥ 0

}
, introduced in

Theorem 5.2, represent the output signal of the continual measurements. Let

us denote by ∆Y (t1, t2) =
(
Ỹ1(t2)− Ỹ1(t1), . . . , Ỹm(t2)− Ỹm(t1)

)
the vector of

the increments of the output in the time interval (t1, t2) and by ξ(dx; t1, t2) the
joint pvm on Rm of the increments Yα(t2) − Yα(t1), α = 1, . . . ,m. Note that,
because of the properties of the characteristic operator, not only the different
components of an increment are commuting, but also increments related to
different time intervals; this implies that the pvm related to different time
intervals commute. Moreover, the localization properties of the characteristic
operator give

ξ(A; t1, t2) ∈ B(F(t1,t2)) , for any Borel set A ⊂ Rm . (5.29)

As in point 8 of Theorem 5.2, let us consider 0 = t0 < t1 < · · · < tn ≤ t,
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kα(s) =

n∑

j=1

1(tj−1,tj)(s)καj , κj = (κ1j , . . . , κmj); then we can write

Φk(t) = Tr

{
exp

(
i

n∑

j=1

m∑

α=1

καj
[
Yα(tj)− Yα(tj−1)

])
U(t)sU(t)∗

}

=

∫

Rnm

( n∏

j=1

eiκ·j ·x·j
)
Ps

[
∆Y (t0, t1) ∈ dx·1, . . . ,∆Y (tn−1, tn) ∈ dxn

]
,

(5.30)

where the physical probabilities are given by

Ps

[
∆Y (t0, t1) ∈ A1, . . . ,∆Y (tn−1, tn) ∈ An

]

= Tr

{( n∏

j=1

ξ(Aj ; tj−1, tj)

)
U(t)sU(t)∗

}
. (5.31)

Obviously, Φk(t) is the characteristic function of the physical probabilities
Ps

[
∆Y (t0, t1) ∈ A1, . . . ,∆Y (tn−1, tn) ∈ An

]
and it uniquely determines them.

5.4 The reduced description of the continual
measurement

5.4.1 The reduced characteristic operator

Now, we trace out the fields in a way similar to the construction of the reduced
dynamics in Chapter 4.

Let U(t) a unitary, strongly continuous right cocycle (Hypothesis 3.3), and let
us define U(t, s) by Eq. (3.7).

Definition 5.1. Let us take f ∈ L2(R+; Z ) and 0 ≤ s ≤ t.
Let G f

k (s, t) : B(H ) → B(H ) be the unique operator that satisfies, ∀u, v ∈
H , ∀X ∈ B(H ),

〈
v
∣∣G f
k (s, t)[X]u

〉
:=
〈
U(t, s)v ⊗ ψ(f)

∣∣(X ⊗ Φ̂k(t, s)
)
U(t, s)u⊗ ψ(f)

〉
,

where Φ̂k(t, s) is defined by

Φ̂k(t, s) := Φ̂k(s
(t), k(s(r) = 1(s,+∞)(r)k(r). (5.32)
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Remark 5.1. For any s < t we have

1. Φ̂k(s, s) = 1,

2. Φ̂k(t, s) = Φ̂k(s,t)
(t, s),

3. ΘsΦ̂k(t, s)Θ∗s = Φ̂θsk(t− s, 0)
∣∣∣
h→θsh

.

Proof.

1. A trivial consequence of the definition of the characteristic operator and
of rs

(
k(s

)
= 0 and Ss

(
k(s

)
= 1.

2. By writing k(s = k(s,t) + k(t, the group property (Theorem 5.2, point 2)
and the previous point give the statement.

3. It is easy to check that θsSt
(
k(s,t)

)
θ−s = St−s(θsk) and θsrt

(
k(s,t)

)
(x) =

1(0,t−s)(x)ik(x + s) · h(x + s) = rt−s
(
θsk
)∣∣∣
h→θsh

. Then, the statement

follows.

Theorem 5.3. In the hypotheses above, the family of linear maps G f
k (s, t),

t ≥ s ≥ 0 has the following properties:

1. G f
0 (s, t) = T f (s, t);

2. G f
k (s, s) = 1;

3. G f
• (s, t) is completely positive definite, i.e., for all integers n, test func-

tions ki, vectors φi and operators Xi, one has

n∑

i,j=1

〈
φi
∣∣G f
ki−kj (s, t)[X

∗
i Xj ]φj

〉
≥ 0 ;

4.
∥∥∥G f
k (s, t)

∥∥∥ ≤ 1;

5. G f
k (s, t) is a σ-weakly continuous operator on B(H ) and it has a pre-

adjoint G f
k (s, t)∗ acting on the trace class on H ;
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6. For each X ∈ B(H ) the maps t 7→ G f
k (s, t)[X] and s 7→ G f

k (s, t)[X] are
continuous with respect to the σ-weak topology of B(H );

7. G f
k (r, s)G f

k (s, t) = G f
k (r, t), 0 ≤ r ≤ s ≤ t;

8. ∀u, v ∈H , ∀X ∈ B(H ),
〈
v
∣∣G f
k (s, t)[X]u

〉
=

=
〈
U(t, s)v ⊗ ψ(f(s,t))

∣∣(X ⊗ Φ̂k(t, s)
)
U(t, s)u⊗ ψ(f(s,t))

〉
; (5.33)

9. If f(x) = g(x) for all x ∈ (s, t), then G f
k (s, t) = G g

k (s, t);

10. G f
k (s, t) is well defined for all f ∈ L2

loc(R; Z );

11. If fs(x) = f(x+s), ks(x) = k(x+s), hs(x) = h(x+s); for all x ∈ (0, t),

with s, t ≥ 0, then G f
k (s, s+ t) = G fs

ks
(0, t)

∣∣∣
h→hs

.

Proof.

1. Immediate from the fact that Φ̂0(t) = 1.

2. Immediate from the fact that Φ̂k(s, s) = 1.

3. By using Φ̂ki−kj (t, s) = Φ̂−ki(t, s)
∗Φ̂−kj (t, s) and the definition of G f

k ,
one gets immediately

n∑

i,j=1

〈
φi
∣∣G f
ki−kj (s, t)[X

∗
i Xj ]φj

〉

=

∥∥∥∥∥∥

n∑

j=1

Xj ⊗ Φ̂−kj (t, s)U(t, s)φj ⊗ ψ(f)

∥∥∥∥∥∥

2

.

4. One has
∥∥∥G f
k (s, t)[X]

∥∥∥ ≤
∥∥∥X ⊗ Φ̂k(t, s)

∥∥∥ = ‖X‖; the first step is proved

exactly as point 1 in Remark 4.1, while the second step is due to the
unitarity of the characteristic operator. Then, the statement follows.

5. For u, v ∈ H , we can write 〈v|G f
k (s, t)[X]u〉 = TrH

[
G f
k (s, t)[X]|u〉〈v|

]
.
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Let us take τ =
∑

n

|un〉〈vn| ∈ T (H ). First we have

TrH [G f
k (s, t)[X]τ ]

=
∑

n

〈
vn ⊗ ψ(f)

∣∣U(t, s)∗(X ⊗ Φ̂k(s, t))U(t, s)un ⊗ ψ(f)
〉

=
∑

n

TrH ⊗F

[
U(t, s)∗(X ⊗ Φ̂k(s, t))U(t, s)|un ⊗ ψ(f)〉〈vn ⊗ ψ(f)|

]

= TrH ⊗F

[
(X ⊗ 1)(1⊗ Φ̂k(s, t))U(t, s)τ ⊗ |ψ(f)〉〈ψ(f)|U(t, s)∗

]

(by the definition of partial trace)

= TrH

[
XTrF

[
(1⊗ Φ̂k(s, t))U(t, s)τ ⊗ |ψ(f)〉〈ψ(f)|U(t, s)∗

]]
;

then

TrH

[
G f
k (s, t)[X]τ

]

= TrH

[
X TrF

[
(1⊗ Φ̂k(s, t))U(t, s)τ ⊗ |ψ(f)〉〈ψ(f)|U(t, s)∗

]]
.

Then, we have

G f
k (s, t)∗[τ ] = TrF

[
(1⊗ Φ̂k(s, t))U(t, s)τ ⊗ |ψ(f)〉〈ψ(f)|U(t, s)∗

]
.

The existence of the pre-adjoint of G f
k (s, t) implies its σ-weak continuity

(Corollary of Theorem 1.13.2 in [15], page 29).

6. By point 4, G f
k (s, t) is bounded uniformly in s and t. Then, the proof

of the present statement is a straightforward modification of the proof of
point 6 of Theorem 4.1. One has to use the strong continuity in s and t
and the unitarity of U(t, s) and Φ̂k(t, s).

7. By point 1 in Theorem 5.2, Φ̂k(t, s) is adapted to F(s,t) i.e. Φ̂k(t, s)ψ(f)

= ψ(f(0,s))⊗ Φ̂k(t, s)ψ(f(s,t))⊗ ψ(f(t). Then, the proof is similar to the
one of point 8 in Theorem 4.1. We have only to take into account that
the identity on Fock space has to be substituted by Φ̂k(t, s) and that one
has to use the identifications

Φ̂k(s, r) ' 1(0,r) ⊗ Φ̂k(s, r)⊗ 1(s,+∞) ,

1(0,r) ⊗ Φ̂k(s, r)⊗ Φ̂k(t, s)⊗ 1(t,+∞) ' Φ̂k(t, r) .
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8. Immediate by using the definition and the identifications introduced in
the proof of the previous point.

9. Immediate by the previous point.

10. Immediate by the two previous points.

11. By Definition 3.3, Definition 5.1 and Remark 5.1 item 3 we have

〈
v
∣∣G f
k (s, s+ t)[X]u

〉

=
〈
U(s+ t, s)v ⊗ ψ(f)

∣∣(X ⊗ Φ̂k(s, s+ t)
)
U(s+ t, s)u⊗ ψ(f)

〉

=
〈
Θ∗sU(t)Θsv ⊗ ψ(f)

∣∣(X ⊗ Φ̂k(s, s+ t)
)
Θ∗sU(t)Θsu⊗ ψ(f)

〉

=
〈
U(t)v ⊗ ψ(fs)

∣∣Θs

(
X ⊗ Φ̂k(s, s+ t)

)
Θ∗sU(t)u⊗ ψ(fs)

〉

=
〈
U(t, 0)v ⊗ ψ(fs)

∣∣
(
X ⊗ Φ̂ks(t, 0)

∣∣∣
h→hs

)
U(t, 0)u⊗ ψ(fs)

〉
.

A semigroup associated to G

Let us define the family
{

G λ
κ,`(t), t ≥ 0

}
of bounded linear maps on B(H ),

for λ ∈ Z , κ = (κ1, . . . , κm) ∈ Rm and ` = (`1, . . . , `m) ∈ Z m fixed, by

G λ
κ,`(t) = G f

k (0, t)
∣∣∣
h(•)=`

with f(x) = λ and k(x) = κ .
(5.34)

By point 10 in Theorem 5.3 G λ
κ,`(t) is well defined because a constant f is in

L2
loc(R; Z ).

Proposition 5.4. In the hypotheses above,
{

G λ
κ,`(t), t ≥ 0

}
is a one-para-

meter σ-weakly continuous semigroup of bounded linear operators on B(H ).

Moreover, G λ
0,`(t) = T λ(t), G λ

κ,`(0) = 1,
∥∥∥G λ
κ,`(t)

∥∥∥ ≤ 1, G λ
κ,`(t) has a pre-

adjoint acting on the trace class on H , G λ
•,`(t) is completely positive definite.
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Proof. All the functions are constants and from point 11 of Theorem 5.3 we
get G f

k (0, t) = G f
k (s, t+ s). By point 7 in Theorem 5.3 we obtain

G λ
κ,`(t+ s) = G f

k (0, t+ s) = G f
k (0, s)G f

k (s, t+ s)

= G f
k (0, s)G f

k (0, t) = G λ
κ,`(s)G

λ
κ,`(t).

All the other statements follow from the properties 1-6 of Theorem 5.3.

5.4.2 The infinitesimal generator of G λ
κ,`(t)

Up to now, we have only made use of the cocycle properties of U(t), but we
are interested in finding the infinitesimal generator of the semigroup G λ

κ,` and

for that we need also the QSDE for U(t). The semigroup G λ
κ,` is the product

of three terms: the operators X ⊗ Φ̂k(t), U(t) and U∗(t). To compute the
differential of this product we have to use two times the second fundamental
formula of quantum stochastic calculus (Proposition 2.2).

Let U(t) be the unitary solution of the right H-P equation (2.23), whose matrix
of coefficients F = (Fij) satisfies Hypotheses 3.4 and 4.1. Moreover, we take

k = 1(0,T )κ and h = 1(0,T )`; then, by Theorem 5.2 Φ̂k(t) satisfies both the left
and the right H-P equations with

G00 = −1

2

m∑

α,β=1

κα〈`α|`β〉κβ , Gi0 = i

m∑

α=1

κα〈zi|`α〉 = −G0i, for i ≥ 1

Gij =

m∑

α=1

(
eiκα − 1

)
〈zi|Pαzj〉, for i, j ≥ 1.

Our first step will be to differentiate the quantity

P`κ[X](t) :=
(
X ⊗ Φ̂k(t)

)
U(t), X ∈ B(H ). (5.35)

Lemma 5.5. In the hypotheses above, P`κ[X](t) can be expressed as the quan-
tum stochastic integral on D⊗E

P`κ[X](t) = X ⊗ 1 +
∑

i,j≥0

∫ t

0

(
X ⊗ Φ̂k(s)

)
MijU(s)dΛij(s), (5.36)
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where

M00 = K + i

m∑

α=1

∑

r≥1

κα〈`α|zr〉Rr −
1

2

m∑

α,β=1

κα〈`α|`β〉κβ , (5.37a)

M0j = Nj + i

m∑

α=1

∑

r≥1

κα〈`α|zr〉Srj , j ≥ 1 , (5.37b)

Mi0 =
∑

r≥1

〈
zi

∣∣∣
m∏

α=1

eiκαPα zr

〉
Rr + i

m∑

α=1

κα〈zi|`α〉, i ≥ 1 , (5.37c)

Mij =
∑

r≥1

〈
zi

∣∣∣
m∏

α=1

eiκαPα zr

〉
Srj − δij , i, j ≥ 1 . (5.37d)

Moreover, ∀f, g ∈ L2(R+; Z ) and ∀u, v ∈ D, one has

〈U(t)v ⊗ ψ(g)|P`κ[X](t)u⊗ ψ(f)〉 = 〈v|Xu〉〈ψ(g)|ψ(f)〉

+
∑

i,j≥0

∫ t

0

ds gi(s)
{〈
U(s)v ⊗ ψ(g)

∣∣(X ⊗ Φ̂k(s)
)
MijU(s)u⊗ ψ(f)

〉

+ 〈FjiU(s)v ⊗ ψ(g)|P`κ[X](s)u⊗ ψ(f)〉
+
∑

l≥1

〈
FliU(s)v ⊗ ψ(g)

∣∣(X ⊗ Φ̂k(s)
)
MljU(s)u⊗ ψ(f)

〉}
fj(s). (5.38)

Let us recall the convention f0(s) = g0(s) = 1.

Proof. By Proposition 2.2 and the fact that Φ̂k(t)∗ = Φ̂−k(t), we get for f, g ∈
L2(R+; Z ) and u, v ∈ D

〈v ⊗ ψ(g)|P`κ[X](t)u⊗ ψ(f)〉 − 〈v|Xu〉〈ψ(g)|ψ(f)〉
=
〈
X∗v ⊗ Φ̂k(t)∗ψ(g)

∣∣U(t)u⊗ ψ(f)
〉
− 〈v|Xu〉〈ψ(g)|ψ(f)〉

=
∑

i,j≥0

∫ t

0

ds gi(s)〈X∗v ⊗ Φ̂k(t)∗ψ(g)|MijU(s)u⊗ ψ(f)〉fj(s), (5.39)

where

Mij := Fij +Gij1+
∑

r≥1

GirFrj . (5.40)

By inserting the explicit expressions of the elements of the matrices F and G
into Eq. (5.40) we get Eqs. (5.37).
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Being the processes FijU(s) stochastically integrable by hypothesis, then it is

easy to check that also the processes
(
X ⊗ Φ̂k(s)

)
MijU(s) are stochastically

integrable in the sense of Definition 2.2. Now Eq. (5.36) follows from Eq. (5.39)
and the first fundamental formula of quantum stochastic calculus (Proposition
2.1).

By the second fundamental formula of quantum stochastic calculus (Proposi-
tion 2.2) we get immediately Eq. (5.38).

Definition 5.2. We define K λ
κ,` to be the quadratic form:

∀u, v ∈ D, ∀X ∈ B(H ),

〈
v
∣∣K λ

κ,`[X]u
〉

=
〈
v
∣∣L λ[X]u

〉
− 1

2

m∑

α,β=1

κα〈`α|`β〉κβ〈v|Xu〉

+ i

m∑

α=1

κα
(
〈v|XLαu〉+ 〈Lαv|Xu〉

)

+
∑

l,r≥1

m∑

α=1

(
eiκα − 1

)
〈zr|Pαzl〉〈(Rr + ζr) v|X (Rl + ζl)u

〉
, (5.41)

where L λ is given by Eq. (4.20), Proposition 4.9 and Theorem 4.10, and

ζr =
∑

l≥1

Srlλl , Lα =
∑

r≥1

〈`α|zr〉 (Rr + ζr) . (5.42)

Theorem 5.6. Under Hypotheses 3.4 and 4.1, the semigroup defined by Eq.
(5.34) satisfies the equation: ∀u, v ∈ D, ∀X ∈ B(H ),

〈
v
∣∣G λ
κ,`(t)[X]u

〉
= 〈v|Xu〉+

∫ t

0

〈
v
∣∣K λ

κ,`

[
G λ
κ,`(s)[X]

]
u
〉
ds . (5.43)

Proof. From Lemma 5.5 with f(x) = g(x) = 1[0,T ](x)λ we obtain

lim
t↓0

〈v|G λ
κ,`(t)[X]u〉 − 〈v|Xu〉

t

=
∑

i,j≥0

λi

{
〈v|XMiju〉+ 〈Fjiv|Xu〉+

∑

l≥1

〈
Fliv|XMlju〉

}
λj

and by inserting the explicit expressions of the coefficients we get

lim
t↓0

〈v|G λ
κ,`(t)[X]u〉 − 〈v|Xu〉

t
= 〈v|K λ

κ,`[X]u〉.
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By this and the semigroup property we get

d

ds
〈v|G λ

κ,`(s)[X]u〉 =
〈
v
∣∣K λ

κ,`

[
G λ
κ,`(s)[X]

]
u
〉

and, then, we have the statement of the theorem.

5.4.3 Approximation of a generic reduced characteristic
operator by a time-ordered product of semigroups

Similarly to what has been done in Section 4.2.3, we want to approximate a
generic characteristic operator G f

k (t) by a time-ordered product of terms like
G λ
κ,`(t).

Let us consider the sequence of times 0 = t0 < t1 < · · · < tn = T and the step
functions

f(x) =
∑n
i=1 1[ti−1,ti)(x)λi , λi ∈ Z ,

k(x) =
∑n
i=1 1[ti−1,ti)(x)κi , κi ∈ Rm ,

h(x) =
∑n
i=1 1[ti−1,ti)(x)`i , `i ∈ Z m .

(5.44)

By point 11 of Theorem 5.3 we have G f
k (s, t) = G λi

κi,`i
(t − s) when ti−1 ≤

s ≤ t ≤ ti. From the composition property (point 9, Theorem 5.3) we get for
t ∈ [ti−1, ti)

G f
k (0, t) = G λ1

κ1,`1
(t1 − t0)G λ2

κ2,`2
(t2 − t1) · · ·G λi

κi,`i
(t− ti−1). (5.45)

By using step functions we can approximate any f , k, h and the following
theorem shows that in this way it is possible to approximate G f

k by time ordered
products of the type (5.45).

Theorem 5.7. Let f, f (n), hα, hα (n) ∈ L2(R+; Z ), α = 1, . . . ,m, such that

lim
n→∞

∥∥∥f (n)
(s,t) − f(s,t)

∥∥∥
2

= 0, lim
n→∞

∥∥∥hα (n)
(s,t) − hα(s,t)

∥∥∥
2

= 0, k,k(n) ∈ L∞(R+;Rm)

such that lim
n→∞

∥∥∥k(n)
(s,t) − k(s,t)

∥∥∥
∞

= 0, h and h(n) satisfy the conditions 2 in

Section 5.3.1. Then, we have

lim
n→∞

G f(n)

k(n) (s, t)
∣∣∣
h→h(n)

[X] = G f
k (s, t)[X], ∀X ∈ B(H ),

in the weak* topology and in the strong operator topology.
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Proof. Let the functions k,h and k′,h′ satisfy the conditions needed in order to

have a characteristic operator; we set G ′(s, t) := G f ′

k′ (s, t)
∣∣∣
h→h′

and Φ̂′(s, t) :=

Φ̂k′(s, t)
∣∣∣
h→h′

. Then, by point 8 of Theorem 5.3 we have

∣∣〈v
∣∣(G ′(s, t)− G f

k (s, t)
)
[X]u

〉∣∣

=
∣∣∣
〈
U(t, s)v ⊗ ψ(f ′(s,t))

∣∣(X ⊗ Φ̂′(s, t)
)
U(t, s)u⊗ ψ(f ′(s,t))

〉

−
〈
U(t, s)v ⊗ ψ(f(s,t))

∣∣(X ⊗ Φ̂k(s, t)
)
U(t, s)u⊗ ψ(f(s,t))

〉∣∣∣

=
∣∣∣
〈
U(t, s)v ⊗

(
ψ(f ′(s,t))− ψ(f(s,t))

) ∣∣(X ⊗ Φ̂′(s, t)
)
U(t, s)u⊗ ψ(f ′(s,t))

〉

+
〈
U(t, s)v ⊗ ψ(f(s,t))

∣∣(X ⊗ Φ̂′(s, t)
)
U(t, s)u⊗

(
ψ(f ′(s,t))− ψ(f(s,t))

) 〉

+
〈
U(t, s)v ⊗ ψ(f(s,t))

∣∣
(
X ⊗

(
Φ̂′(s, t)− Φ̂k(s, t)

))
U(t, s)u⊗ ψ(f(s,t))

〉∣∣∣

≤ 2 ‖v‖ ‖u‖ ‖X‖
∥∥∥ψ(f ′(s,t))− ψ(f(s,t))

∥∥∥

+ ‖v‖ ‖X‖
∥∥∥
(
1⊗

(
Φ̂′(s, t)− Φ̂k(s, t)

))
U(t, s)u⊗ ψ(f(s,t))

〉∥∥∥ . (5.46)

The inequality is obtained as in the proof of Proposition 4.3. We have also

∣∣〈v
∣∣(G ′(s, t)− G f

k (s, t)
)
[X]u

〉∣∣ ≤ ‖v‖ ‖u‖ ‖X‖
×
(

2
∥∥∥ψ(f ′(s,t))− ψ(f(s,t))

∥∥∥+
∥∥∥Φ̂′(s, t)− Φ̂k(s, t)

∥∥∥
)
≤ 6 ‖v‖ ‖u‖ ‖X‖ . (5.47)

Firstly, we have

∥∥∥ψ(f ′(s,t))− ψ(f(s,t))
∥∥∥

2

= 2− 2 exp

{
−1

2

∥∥∥f ′(s,t) − f(s,t)

∥∥∥
}

cos
(

Im〈f ′(s,t)|f(s,t)〉
)

and this term goes to zero when f ′ tends to f .

About the second term in the inequality, we have

∥∥∥
(
Φ̂′(s, t)− Φ̂k(s, t)

)
ψ(g)

∥∥∥
2

= 2− 2 exp

{
−1

2
‖g1 − g2‖

}
cos (Im〈g2|g1〉) ,

g1(x) := 1(s,t)(x)

[
P0g(x) + ik(x) · h(x) +

m∑

α=1

eikα(x)Pαg(x)

]
,
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g2(x) := 1(s,t)(x)

[
P0g(x) + ik′(x) · h′(x) +

m∑

α=1

eik′α(x)Pαg(x)

]
,

P0 := 1−
m∑

α=1

Pα .

By standard estimates we have also

‖g1 − g2‖2 ≤ 3
∥∥∥k(s,t) − k′(s,t)

∥∥∥
2

∞

∥∥∥∥∥
∑

α

hα(s,t)

∥∥∥∥∥

2

+ 3
∥∥∥k′(s,t)

∥∥∥
2

∞

∥∥∥∥∥
∑

α

(
hα(s,t) − hα′(s,t)

)∥∥∥∥∥

2

+ 3
∑

α

∥∥∥∥
(

ei(kα−k′α) − 1
)

(s,t)

∥∥∥∥
2

∞

∥∥Pαg(s,t)

∥∥2
,

Im〈g2|g1〉 =
∑

α,β

∫ t

s

kα(x)k′β(x) Im〈hβ′(x)|hα(x)〉dx

+
∑

α

∫ t

s

sin
(
kα(x)− k′α(x)

)
〈g(x)|Pαg(x)〉dx .

Due to the fact that Im〈hα(x)|hβ(x)〉 = Im〈hα′(x)|hβ′(x)〉 = 0, we have

∣∣∣∣∣∣
∑

αβ

∫ t

s

kα(x)k′β(x) Im〈hβ′(x)|hα(x)〉dx

∣∣∣∣∣∣
=
∣∣Im〈k′ · h′|k · h〉(s,t)

∣∣

=
∣∣Im〈k′ ·

(
h′ − h

)
|k · h〉(s,t)

∣∣

≤
∥∥(k · h)(s,t)

∥∥∑

α

∥∥(kα)(s,t)

∥∥
∞
∥∥(h′α − hα)(s,t)

∥∥ .

Moreover, we have

∣∣∣∣∣
∑

α

∫ t

s

sin
(
kα(x)− k′α(x)

)
〈g(x)|Pαg(x)〉dx

∣∣∣∣∣ ≤ ‖k − k
′‖∞‖g‖2.

From all these inequalities one deduces that, when the primed quantities go

to the unprimed ones, ∀g ∈ L2(R+; Z ) one has
∥∥∥
(
Φ̂′(s, t)− Φ̂k(s, t)

)
ψ(g)

∥∥∥
2

→
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0. By the fact that the exponential vectors are total, this implies the strong
convergence of

(
Φ̂′(s, t)−Φ̂k(s, t)

)
to zero. Therefore, from the inequality (5.46)

we get

lim
n→∞

G f(n)

k(n) (s, t)
∣∣∣
h→h(n)

[X] = G f
k (s, t)[X]

in the strong operator topology. By the bound (5.47) and Proposition B.4 we
get also the weak* convergence.

5.4.4 The evolution equation for the reduced character-
istic operator

Theorem 5.8. Under Hypotheses 3.4 and 4.1 and f ∈ L2(R+; Z ), k ∈
L∞(R+;Rm), h as in point 2 of Section 5.3.1, the reduced characteristic oper-
ator introduced in Definition 5.1 satisfies the evolution equation: ∀u, v ∈ D,
∀X ∈ B(H ),

〈
v
∣∣G f
k (s, t)[X]u

〉
= 〈v|Xu〉+

∫ t

s

〈
v
∣∣K f

k,h(r)
[
G f
k (r, t)[X]

]
u
〉
dr , (5.48)

where
K f
k,h(r) := K

f(r)
k(r),h(r) . (5.49)

Proof. The proof of the this theorem will follow the same strategy of the The-
orem 4.11.

Let us consider the sequence of times 0 = t0 < t1 < · · · < tn = T and the step
functions of equations (5.44). Let us take now s and s1 such that 0 ≤ s < s1 ≤ t
and ti ≤ s < s1 ≤ ti+1 for some i. Then

〈
v
∣∣G f
k (s, t)[X]u

〉
=
〈
v
∣∣G f
k (s, s1)G f

k (s1, t)[X]u
〉

=
〈
v
∣∣G λi
κi,`i

(s1 − s)G f
k (s1, t)[X]u

〉
.

To abbreviate the writing let us set G1 = G λi
κi,`i

and K1 = K λi
κi,`i

. Now, from
here and from Eq. (5.43) we get

〈
v
∣∣G f
k (s, t)[X]u

〉

=
〈
v
∣∣G f
k (s1, t)[X]u

〉
+

∫ s1−s

0

dr
〈
v
∣∣K1

[
G1(r)G f

k (s1, t)[X]
]
u
〉
,

=
〈
v
∣∣G f
k (s1, t)[X]u

〉
+

∫ s1

s

dx
〈
v
∣∣K1

[
G f
k (x, t)[X]

]
u
〉
.
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Similarly, we have

〈
v
∣∣G f
k (s1, t)[X]u

〉
=
〈
v
∣∣G f
k (s2, t)[X]u

〉
+

∫ s2

s1

dx
〈
v
∣∣K2

(
G f
k (x, t)[X]

)
u
〉
.

Let q be such that ti+q−1 < t ≤ ti+q and let us set s0 = s, sq = t, sj = ti+j for
1 ≤ j ≤ q − 1. By induction we arrive to

〈
v
∣∣G f
k (s, t)[X]u

〉
=
〈
v
∣∣Xu

〉
+

q∑

j=1

∫ sj

sj−1

dx
〈
v
∣∣Kj

[
G f
k (x, t)[X]

]
u
〉

=
〈
v
∣∣Xu

〉
+

∫ t

s

dx
〈
v
∣∣K f

k,h(x)
[
G f
k (x, t)[X]

]
u
〉
.

Let us stress that, being f , k, h step functions, then

K f
k,h(x) =

q∑

j=1

1[sj−1,sj)(x)K
λj
κj ,`j

.

Let now f (n), h(n) and k(n) be three sequences of step functions approximating
f ∈ L2(R+; Z ), h ∈ L2(R+; Z m), k ∈ L∞(R+;Rm) respectively. To simplify

the notation we write G f(n)

k(n) (s, t)
∣∣∣
h→h(n)

= Gn(s, t), K f(n)

k(n),h(n)(x) = Kn(x),

L f(n)

(x) = Ln(x).

By Theorem 5.7, ∀X ∈ B(H ), lim
n→∞

Gn(s, t)[X] = G f
k (s, t)[X] weakly* and

strongly and by Theorem 5.3, point 4, ‖Gn(s, t)[X]‖ ≤ ‖X‖.

Now, for u, v ∈ D we have

∫ t

s

dx
〈
v
∣∣Kn(x)Gn(x, t)[X]u

〉
−
∫ t

s

dx
〈
v
∣∣K f

k,h(x)G f
k (x, t)[X]u

〉

=

∫ t

s

dx
〈
v
∣∣K f

k,h(x)
(
Gn(x, t)− G f

k (x)
)
[X]u

〉

+

∫ t

s

dx〈v
∣∣(Ln(x)−L f (x)

)
Gn(x, t)[X]u

〉

+

∫ t

s

dx〈v
∣∣(Kn(x)−Ln(x)−K f

k,h(x) + L f (x)
)
Gn(x, t)[X]u

〉
.

The first term goes to zero by Theorem 5.7. The proof that the second term
goes to zero is similar to the one of Theorem 4.11; one has to use Theorem
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5.3, point 4. It remains to check the last term, which is composed by various
sub-terms, for which the same techniques apply. Therefore we analyze only the
most interesting terms.

About the first term we have

∣∣∣∣
∫ t

s

dx

m∑

α,β=1

k(n)
α (x)

〈
h(n)α(x)

∣∣h(n)β(x)
〉
k

(n)
β (x)〈v|Gn(x, t)[X]u〉

−
∫ t

s

dx

m∑

α,β=1

kα(x)
〈
hα(x)

∣∣hβ(x)
〉
kβ(x)

〈
v|Gn(x, t)[X]u

〉∣∣∣∣

≤
∫ t

s

dx
∥∥∥k(n)(x) · h(n)(x)− k(x) · h(x)

∥∥∥
2 ∣∣∣
〈
v|Gn(x, t)[X]u

〉∣∣∣

≤ ‖v‖ ‖X‖ ‖u‖
∫ t

s

dx
∥∥∥k(n)(x) · h(n)(x)− k(x) · h(x)

∥∥∥
2 n→+∞−−−−−→ 0

by the uniform-convergence of k(n) to k and L2-convergence of h(n) to h.
Another interesting term is

m∑

α=1

knα(x)
〈
v
∣∣Gn(x, t)[X]Lαn(x)u

〉
−

m∑

α=1

kα(x)
〈
v
∣∣Gn(x, t)[X]Lαu

〉
,

where Lαn =
∑

r≥1

〈
hn,α(x)

∣∣zr
〉(
Rr +

∑

j≥1

f
(n)
j (x)Srj

)
; let us consider only the

contribution of the term with the sums over j. Now
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∣∣∣∣
∫ t

s

dx

m∑

α=1

k(n)
α (x)

∑

r,j≥1

〈
h(n)α(x)

∣∣zr
〉
〈v|Gn(x, t)[X]Srju〉f (n)

j (x)

−
∫ t

s

dx

m∑

α=1

kα(x)
∑

r,j≥1

〈
hα(x)

∣∣zr
〉
〈v|G f

k (x, t)[X]Srju〉fj(x)

∣∣∣∣

≤
∫ t

s

dx
∑

r,j≥1

∣∣∣∣
〈
k(n)(x) · h(n)(x)

∣∣zr
〉
f

(n)
j (x)−

〈
k(x) · h(x)

∣∣zr
〉
fj(x)

∣∣∣∣

×
∣∣〈v
∣∣Gn(x, t)[X]Srju

〉∣∣

≤
∑

r,j≥1

‖v‖ ‖X‖ ‖Srju‖

×
∫ t

s

dx
∣∣∣
〈
k(n)(x) · h(n)(x)

∣∣zr
〉
f

(n)
j (x)−

〈
k(x) · h(x)

∣∣zr
〉
fj(x)

∣∣∣

≤
∑

r,j≥1

‖v‖ ‖X‖ ‖Srju‖
∫ t

s

dx
∣∣∣
〈
k(n)(x) · h(n)(x)− k(x) · h(x)

∣∣zr
〉
f

(n)
j (x)

∣∣∣

+
∑

r,j≥1

‖v‖ ‖X‖ ‖Srju‖
∫ t

s

dx
∣∣〈k(x) · h(x)

∣∣zr
〉∣∣
∣∣∣
〈
zj
∣∣f (n)(x)− f(x)

〉∣∣∣ .

By Hölder’s inequality these two terms go to zero.

All the remaining terms can be analyzed in a similar way; therefore
∫ t

s

dx
〈
v
∣∣Kn(x)Gn(x, t)[X]u

〉 n→+∞−−−−−→
∫ t

s

dx
〈
v
∣∣K f

k,h(x)G f
k (x, t)[X]u

〉
,

which gives Eq. (5.43).

Remark 5.2. Equation (5.48) is the integral form of a backward differential
equation. Indeed, at least when f,k and h are continuous function, the r.h.s.
is differentiable with respect to s and we get

d

ds

〈
v
∣∣G f
k (s, t)[X]u

〉
= −

〈
v
∣∣K f

k,h(s)
[
G f
k (s, t)[X]

]
u
〉
, (5.50)

with final condition
〈
v
∣∣G f
k (t, t)[X]u

〉
=
〈
v
∣∣Xu

〉
.

5.5 Instruments and finite-dimensional laws

In the quantum theory of measurement an important notion is that of instru-
ment and the operational approach to continual measurements, mentioned in
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the Introduction, is based on such a notion. Here we recall a few facts, without
developing in full this side of the theory.

By using the joint pvm ξ(dx; s, t) of the increments Yα(t)−Yα(s), α = 1, . . . ,m,
we define the map–valued measure If (s, t; ·), 0 ≤ s < t, f ∈ L2(R+; Z ), by:
∀X ∈ B(H ), ∀% ∈ T (H ),

TrH

{
% If (s, t;A)[X]

}
= TrH ⊗F {X ⊗ ξ(A; s, t)U(t, s) %⊗ η(f)U(t, s)∗} ,

(5.51)

where A is a Borel set in Rd; by the factorization properties of Γ and η(f),
only f(s,t), the part of f in (s, t), is relevant for the definition of If (s, t;A).

The family of maps If (s, t; ·) is a completely positive instrument [5, 11], whose
characterizing properties are

1. If (s, t;A) ∈ B(H )

2. Tr
{
% If (s, t;Rm)[1]

}
= Tr {%}, ∀% ∈ T (H );

3.

n∑

i,j=1

〈
ψi
∣∣If (s, t;A)[X∗i Xj ]ψj

〉
≥ 0, ∀n, ∀ψj ∈H , ∀Xj ∈ B(H );

4. for any finite or countable (Borel) partition A1, A2, . . . of a Borel set A
one has

∑
j Tr

{
% If (s, t;Aj)[X]

}
= Tr

{
% If (s, t;A)[X]

}
, ∀% ∈ T (H ),

∀X ∈ B(H ).

Let us consider now a constant test function k(t) = κ; we have

∫

Rm
eiκ·x TrH

{
% If (s, t; dx)[X]

}

= TrH ⊗F

{
X ⊗ Φ̂k(t, s)U(t, s)%⊗ η(f)U(t, s)∗

}

= TrH

{
%G f

k (s, t)[X]
}
. (5.52)

Therefore, G f
k (s, t) with a constant test function, is the Fourier transform of

the instrument If (s, t; dx) and this instrument is the anti-Fourier transform of

the reduced characteristic operator G f
k (s, t).

Let us note that the finite dimensional laws of Section 5.3.3, with initial state
s = ρ0 ⊗ η(f) at time t0, can be written as

Pρ0
[
∆Y (t0, t1) ∈ A1, . . . ,∆Y (tn−1, tn) ∈ An

]

= TrH

{
ρ0If (t0, t1;A1) ◦ · · · ◦ If (tn−1, tn;An)[1]

}
. (5.53)
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5.6 Field Observables

Let us finish by particularizing our characteristic operator to two cases of ob-
servables typical of what can be continually observed in quantum optics.

Counts of quanta

Let P ∈ B(Z) be an orthogonal projection; for any t ≥ 0, we introduce the
operator

N(P ; t) := λ
(
P ⊗ 1(0,t)

)
=
∑

kl

〈zk|Pzl〉Λkl(t) . (5.54)

By propriety of the equation (2.15), this operator is essentially selfadjoint on
E and its domain includes also the finite particle number vectors. From point
3 in Remark 2.1 we have

〈e(g)|N(P ; t)e(f)〉 = exp
{
〈g(0,t)|(1− P )f(0,t)〉+ 〈g(t|f(t〉

}

×
∞∑

n=0

n

n!

(
〈g(0,t)|Pf(0,t)〉

)n
; (5.55)

by taking into account the factorization (2.5), one sees that the eigenvalues
of N(P ; t) are the integers n = 0, 1, . . . and that the eigenspace correspond-
ing to n is the “n-particle sector of Γsymm

(
(PZ) ⊗

(
1(0,t)L

2(R+)
) )

” tensor

Γsymm

( (
1− P ⊗ 1(0,t)

) (
Z ⊗ L2(R+)

) )
. Therefore, we can interpret N(P ; t)

as the number operator which counts the quanta injected in the system up to
time t with state in PZ. Another way to see that N(P ; t) is a number operator
is to use the heuristic rules of QSC; by (5.54), point 2 in Remark 2.1 and the
fact that P is a projection, we have immediately

(
dN(P ; t)

)2
= dN(P ; t) , (5.56)

which shows that an infinitesimal increment has eigenvalues 0 and 1.

By (2.16) and (5.54), we have

exp{iκN(P ; t)} = W
(
0; exp{iκP ⊗ 1(0,t)}

)
(5.57)

and by (2.9) one sees that the unitary groups generated by N(P ; t) and N(P ; s)
commute; therefore, {N(P ; t), t ≥ 0} is a set of jointly diagonalizable selfadjoint
operators, or, in physical terms, of compatible observables. The same is true
for
{
N(Pα; t) t ≥ 0 , α = 1, 2, . . .

}
with PαPβ = δαβ Pα = δαβ P

∗
α , (5.58)



90 CHAPTER 5. THE CONTINUAL MEASUREMENT

i.e. P1, P2, . . . are mutually orthogonal projections.

In the case of photons the measurement of number operators can be experi-
mentally realized through the so called direct detection.

Let us consider the family of compatible observables {N(Pα; t), t ≥ 0, α =
1, 2, . . . ,m}; P1, . . . , Pd are mutually orthogonal projections on Z. Accord-
ing to the discussion above and Proposition 5.1, we can handle the stochastic
process associated to these operators by means of the finite–dimensional char-
acteristic functions for the increments, which in turn can be summarized in a
characteristic functional, which is suggested by the structure of equation (5.7)
and which now we construct.

Let us introduce the test functions k ∈ L∞ (R+;Rm), the unitary operators
St(k) on L2(R+; Z ) by

St(k) := exp

[
i

m∑

α=1

Pα ⊗ 1(0,t)kα

]
(5.59a)

or by

(
St(k)f

)
(s) = exp

[
i1(0,t)(s)

m∑

α=1

kα(s)Pα

]
f(s)

≡ 1(0,t)(s)

m∑

α=1

[
expikα(s)−1

]
Pαf(s) + f(s). (5.59b)

Then the characteristic operator

Φ̂k(t) = W
(
0;St(k)

)
. (5.60)

By (2.16) and (5.59a) the generator of the unitary group, κ 7→ Φ̂κk(t) is

λ

(∑

α

Pα ⊗ 1(0,t)kα

)
=
∑

kl

∫ t

0

〈
zk
∣∣∑

α

kα(s)Pαzl
〉
dΛkl(s)

≡
∑

α

∫ t

0

kα(s) dN(Pα; s) (5.61)

and, so, we can write





dΦ̂k(t) = Φ̂k(t)
∑

i,j,α≥1

(
eikα(t) − 1

)
〈zi|Pαzj〉dΛij

Φ̂k(0) = 1



5.6. FIELD OBSERVABLES 91

and

Φ̂k(t) = exp

[
i
∑

α

∫ t

0

kα(s) dN(Pα; s)

]
. (5.62)

Measurements of field quadratures

Let us consider now the field quadratures

Q(h; t) := Q
(
h(0,t)

)
=
∑

k

{∫ t

0

hk(s) dAk(s) +

∫ t

0

hk(s) dA†k(s)

}
, (5.63)

which are essentially selfadjoint operators on E (propriety of the equation
(2.15)). The spectrum of Q(h; t) is the whole real axis, because (

√
2 ‖h‖)−1

× Q(h; t) and (
√

2 ‖h‖)−1 Q(ih; t) form a couple of canonically conjugated
selfadjoint operators (the commutator gives i). By (2.10), (2.15), we have that
{
Q(hα; t) , t ≥ 0 , α = 1, 2, . . .

}
, with 〈hα(s)|hβ(s)〉 = δαβ ‖hα(s)‖2 ,

(5.64)
is a family of compatible observables.

In the case of photons the measurement of field quadratures can be experimen-
tally realized through the so called heterodyne or homodyne detection schemes.

Let us consider the family of compatible observables {Q(hα; t), t ≥ 0, α =

1, 2, . . . ,m}, with 〈hα(s)|hβ(s)〉 = δαβ ‖hα(s)‖2; we can repeat the construction
of the previous subsection. By (5.63) we have

m∑

α=1

∫ t

0

kα(s) dQ(hα; s) = Q
(∑

α

kαhα; t
)

(5.65)

and, by taking into account (2.15), we can write the characteristic operator as
an adapted Weyl operator again:

Φ̂k(t) = exp

{
i

m∑

α=1

∫ t

0

kα(s) dQ(hα; s)

}

= exp

{
iQ
(∑

α

kαhα; t
)}

= W
(

i
∑

α

kαhα1(0,t);1
)
. (5.66)

Then, the characteristic functional of the process Q̃α(s) associated with the
selfadjoint operators Q(hα; s) is given by (5.27) again or by

Φk(t) = Tr

{
exp

[
i
∑

α

∫ t

0

kα(s) dQout(hα; s)

]
s

}
. (5.67)



92 CHAPTER 5. THE CONTINUAL MEASUREMENT



Appendix A

Some notions of operator
theory

Here we collect a few facts from operator theory and some notions on semi-
groups of operators.

A first useful result is the following one.

Proposition A.1 ([14] p. 112). In a Banach space every weakly convergent
sequence is bounded.

For a linear operator T we denote by Dom(T ) its domain, by Ker(T ) its kernel,
i.e. the set of vectors x ∈ Dom(T ) such that Tx = 0, and by Ran(T ) its range.

A.1 Properties of single operators

A.1.1 Closed operators

Here X is a complex Banach space. This material is taken mainly from [14]
pp. 250–252.

Let T be a linear operator in X with domain Dom(T ).

Definition A.1 (Closed operator). The graph of T is the set of pairs Γ(T ) =
{(x, Tx) : x ∈ Dom(T )} ⊂ X ×X . The operator T is said to be closed if Γ(T )

93
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is a closed subset of X × X .

Remark A.1 ([7] Definition B.1 p. 515). The operator T is closed if and only if

xn ∈ Dom(T ), lim
n→∞

xn = x, lim
n→∞

Txn = y

⇓
x ∈ Dom(T ) and Tx = y .

Definition A.2 (Extension of an operator). The operator T1 is said to be an
extension of T if Dom(T1) ⊃ Dom(T ) and T1x = Tx for all x ∈ Dom(T ). In
this case we write T1 ⊃ T .

Definition A.3 (Closable operator). An operator T is closable if it has a closed
extension. Every closable operator has a smallest closed extension, called its
closure, which we denote by T .

Proposition A.2. If T is closable, then Γ
(
T
)

= Γ(T ).

Definition A.4 (Core of an operator). Let T be a closed linear operator in
X , D ⊂ Dom(T ) be a linear manifold and T |D be the restriction of T to D. If
the closure of T |D is T , then D is called a core for T .

Definition A.5 (Resolvent). Let T be a closed operator on X . A complex
number λ is in the resolvent set ρ(T ) if λ1− T is a bijection of Dom(T ) onto
X with a bounded inverse. If λ ∈ ρ(T ), the operator R(λ;A) := (λ1− T )−1 is
called the resolvent of T at λ.

A.1.2 The adjoint

Here H is a complex separable Hilbert space. This material is taken from [14]
pp. 252–256.

Definition A.6 (Adjoint operator). Let T be a densely defined linear operator
in H . Let Dom(T ∗) be the set of φ ∈ H for which there is an η ∈ H with
〈φ|Tψ〉 = 〈η|ψ〉 for all ψ ∈ Dom(T ). For each such φ ∈ Dom(T ∗), we define
T ∗φ = η. The operator T ∗ is called the adjoint of T .

Remark A.2. 1. By the Riesz lemma, φ ∈ Dom(T ∗) if and only if |〈φ|Tψ〉| ≤
C‖ψ‖ for all ψ ∈ Dom(T ).

2. S ⊂ T implies T ∗ ⊂ S∗.

3. T ∗ is closed.

4. T is closable if and only if Dom(T ∗) is dense in which case T = T ∗∗.
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5. If T is closable, then
(
T
)∗

= T ∗.

Definition A.7 (Symmetric and selfadjoint operators). A densely defined op-
erator T in H is called symmetric if T ⊂ T ∗, that is, if Dom(T ) ⊂ Dom(T ∗)
and Tφ = T ∗φ for all φ ∈ Dom(T ).

T is called selfadjoint if T = T ∗, that is, if and only if T is symmetric and
Dom(T ) = Dom(T ∗).

Remark A.3. 1. A symmetric operator T is closable and T ⊂ T = T ∗∗ ⊂ T ∗.
2. For a closed symmetric operator T we have T = T ∗∗ ⊂ T ∗.
3. For a selfadjoint operator T we have T = T ∗∗ = T ∗.

Definition A.8 (Essentially selfadjoint operator). A symmetric operator T is
called essentially selfadjoint if its closure is selfadjoint.

Remark A.4. An essentially selfadjoint operator has one and only one self-
adjoint extension and, conversely, an operator possessing one and only one
selfadjoint extension is essentially selfadjoint. The operator T is essentially
selfadjoint if and only if T ⊂ T ∗∗ = T ∗.

A.1.3 Isometries

[14] pp. 197, 297–298.

Definition A.9. An operator U ∈ B(H ) is called an isometry if ‖Ux‖ = ‖x‖
for all x ∈H . U is called a partial isometry if U is an isometry when restricted
to the closed subspace Ker(U)⊥.

If U is a partial isometry, H can be written as H = Ker(U) ⊕ Ker(U)⊥ and
as H = Ran(U)⊕ Ran(U)⊥; then, U is a unitary operator between Ker(U)⊥,
the initial subspace of U , and Ran(U), the final subspace of U . Moreover, U∗

is a partial isometry from Ran(U) to Ker(U)⊥ which acts as the inverse of the
map U : Ker(U)⊥ → Ran(U).

Proposition A.3. Let U be a partial isometry. Then, Pi = U∗U and Pf =
UU∗ are respectively the projections onto the initial and the final subspaces of
U . Conversely, if U ∈ B(H ) with U∗U and UU∗ projections, then U is a
partial isometry.

Theorem A.4 (The polar decomposition). Let T be an arbitrary closed oper-
ator on a Hilbert space H . Then, there is a positive self-adjoint operator |T |,
with Dom(|T |) = Dom(T ) and a partial isometry U with initial space Ker(T )⊥,
and final space Ran(T ), so that T = U |T |. |T | and U are uniquely determined
by these properties together with the additional condition Ker(|T |) = Ker(T ).
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A.2 Strongly continuous semigroups of opera-
tors

We take this material mainly from [13] pp. 1–16, 81–82. Here X is a complex
Banach space.

Definition A.10. A one-parameter family T (t), 0 ≤ t < +∞, of bounded
linear operators from X into X is a semigroup of bounded linear operators on
X if (i) T (0) = 1, (ii) T (t+ s) = T (t)T (s), ∀t, s ≥ 0.

A semigroup T (t) of bounded linear operators is uniformly continuous if
limt↓0 ‖T (t)− 1‖ = 0.

A semigroup T (t) of bounded linear operators is strongly continuous if
limt↓0 T (t)x = x, ∀x ∈ X .

Remark A.5. For a semigroup, uniform or strong continuity in 0 implies the
same continuity for all t. Moreover, for a semigroup strong continuity is equiv-
alent to weak continuity ([7] Theorem 5.8).

The linear operator A defined by

Dom(A) =

{
x ∈ X : lim

t↓0
T (t)x− x

t
exists

}

and

Ax = lim
t↓0

T (t)x− x
t

≡ d+T (t)x

dt

∣∣∣
t=0

for x ∈ Dom(A)

is the infinitesimal generator of the semigroup T (t); Dom(A) is the domain of
A.

Theorem A.5. A linear operator A is the infinitesimal generator of a uni-
formly continuous semigroup if and only if A is a bounded linear operator.
Moreover, a uniformly continuous semigroup is uniquely determined by its gen-
erator.

Theorem A.6. Let A be the infinitesimal generator of a strongly continuous
semigroup T (t) of bounded linear operators, then A is a densely defined, closed
linear operator. Moreover, the semigroup T (t) is uniquely determined by its
generator A.

When ‖T (t)‖ ≤ 1 we have a semigroup of contractions.

Theorem A.7 (Hille-Yosida). A linear (unbounded) operator A is the infinites-
imal generator of a strongly continuous semigroup of contractions T (t), t ≥ 0,
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if and only if (i) A is densely defined and closed, (ii) the resolvent set ρ(A) of
A contains R+ and for every λ > 0 one has ‖R(λ;A)‖ ≤ 1/λ.

Definition A.11. A linear operator A is dissipative if ‖(λ1 − A)x‖ ≥ λ‖x‖
for all x ∈ Dom(A) and λ > 0.

Theorem A.8. Let A be a dissipative operator.

1. If for some λ0 > 0 one has Ran(λ01 − A) = X , then Ran(λ1 − A) = X
for all λ > 0.

2. If A is closable, also its closure A is dissipative.

3. If Dom(A) = X , then A is closable.

Theorem A.9 (Lumer-Phillips). Let A be a linear operator with dense domain
Dom(A) in X .

1. If A is dissipative and there is a λ0 > 0 such that Ran(λ01 − A) = X ,
then A is the infinitesimal generator of a strongly continuous semigroup
of contractions on X .

2. If A is the infinitesimal generator of a strongly continuous semigroup
of contractions on X , then Ran(λ1 − A) = X for all λ > 0 and A is
dissipative.

Definition A.12 (Maximally dissipative operators). A dissipative operator A
for which Ran(1−A) = X is called m-dissipative.

Remark A.6. 1. The closure of a densely defined operator A is the infinites-
imal generator of a strongly continuous semigroup of contractions if and
only if A is m-dissipative.

2. Let A and B be the generators of two strongly continuous contraction
semigroups with Ax = Bx, ∀x ∈ Dom(A) ⊂ Dom(B). Then, Dom(B) =
Dom(A) and B = A. See [7] p. 75.

Definition A.13 ([7] Definition 2.1 p. 169). Let A and B be two operators in
X . The operator B is said to be (relatively) A-bounded if Dom(A) ⊂ Dom(B)
and if there exist two non-negative constants α and β such that

‖Bx‖ ≤ α‖Ax‖+ β‖x‖, ∀x ∈ Dom(A). (A.1)

The A-bound of B is α0 := inf{α ≥ 0: there exists β ≥ 0 such that (A.1)
holds}.
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Proposition A.10 ([7] Lemma 2.4 p. 171). If
(
A,Dom(A)

)
is closed and

(
B,

Dom(B)
)

is A-bounded with A-bound α0 < 1, then
(
A+B,Dom(A)

)
is a closed

operator.

Theorem A.11. Let A and B be linear operators in X such that Dom(B) ⊃
Dom(A) and A + tB is dissipative for 0 ≤ t ≤ 1. If B is A-bounded with
A-bound α0 < 1 and for some t0 ∈ [0, 1] the operator A+ t0B is m-dissipative,
then A+ tB is m-dissipative for all t ∈ [0, 1].

Particularization to the Hilbert space case.

Remark A.7. By Remark A.5, if P (t) is a strongly continuous semigroup of
contractions in H , then also P (t)∗ is a strongly continuous semigroup of con-
tractions in H .

Theorem A.12. A linear operator A in H is dissipative if and only if

Re〈φ|Aφ〉 ≤ 0 , ∀φ ∈ Dom(A).

Theorem A.13. Let A be a dissipative operator. If Ran(1 − A) = H , then
Dom(A) = H .

Proposition A.14. Let A be a densely defined closed linear operator in H .
If both A and A∗ are dissipative, then A is the infinitesimal generator of a
strongly continuous semigroup of contractions.



Appendix B

The algebra of bounded
operators on H

B.1 Basic Definition

Definition B.1 (Involution). Let A be a Banach algebra. A mapping x→ x∗

of A into itself is called an involution if the following conditions are satisfied

1. (x∗)∗ = x,

2. (x+ y)∗ = x∗ + y∗,

3. (xy)∗ = y∗x∗,

4. (λx)∗ = λx∗, λ ∈ C.

A Banach algebra with an involution * is called a Banach *-algebra.

Definition B.2 (C*-algebra ). A Banach *-algebra A is called a C*-algebra
if it satisfies ‖x∗x‖ = ‖x‖2 for all x ∈ A .

Definition B.3 (W*-algebra ). A C*-algebra M is called a W*-algebra (or
Von Neumann algebra) if it is a dual space as a Banach space (i.e if there exists
a Banach space M∗ such that (M∗)∗ = M , where (M∗)∗ is the dual Banach
space of M∗). We shall call such a Banach space M∗ the predual of M .

Definition B.4 (Uniform topology). The topology defined by the norm ‖ ‖
on a Banach space C ∗ −algebra A is called the uniform topology.
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Definition B.5 (σ-topology). The weak*-topology σ(M ,M∗) on a W*-alge-
bra M is called weak topology or σ-topology on M .

Let us recall the meaning of the weak*-topology: the sequence {an} ⊂ M
converges in the weak* sense to a if limn→+∞〈an, x〉 = 〈a, x〉 for all x ∈M∗.

Definition B.6 (C*-subalgebra). A subset V of a C*-algebra A is called
selfadjoint if x ∈ V implies x∗ ∈ V . A selfadjoint uniformly closed subalgebra
of A is also a C*-algebra and it is called a C*-subalgebra of A .

Definition B.7 (W*-subalgebra). A selfadjoint σ-closed subalgebra N of a
W*-algebra M is also a W*-algebra and it is called a W*-subalgebra.

Definition B.8 (Positivity). An element a in a C*-algebra A is said to be
positive if a = b∗b for some b ∈ A . A linear functional ϕ on a A is called
positive if φ(a∗a) ≥ 0 for all a ∈ A .

Definition B.9 (Normal). A positive linear functional ϕ on a W*-algebra M
is said to be normal if it satisfies ϕ(l.u.b. xα) = l.u.b. ϕ(aα) for every uniformly
bounded increasing directed set {aα} of positive elements in M .

Definition B.10 (Completely positive linear maps). Let A and B be two
*-algebras with unit. The linear map T : A → B is called

1. n-positive if for every family a1, . . . , an of element of A and every family
b1, . . . , bn of elements of B we have

n∑

i,j=1

b∗i T (a∗i aj)bj ≥ 0

2. completely positive if it is n-positive for every integer n ≥ 1.

Theorem B.1 (Theorem 1.13.2. in [15]). Let ϕ be a positive linear functional
on a W*-algebra M . Then the following conditions are equivalent:

1. ϕ is normal,

2. ϕ is σ(M ,M∗)-continuous.

Let H be a complex Hilbert space and let B(H ) be the algebra of all bounded
linear operators on H . We can define various topologies in B(H ).

Theorem B.2 (Proposition 2.9 in [8], page 18). Let A be a C*-algebra and T
a linear map from A to B(H ). T is completely positive if and only if for any
n ≥ 1, a1, . . . an ∈ A , u1, . . . , un ∈H , one has

∑

1≤i,j≤n

〈
ui
∣∣T [a∗i aj ]uj

〉
≥ 0.



B.2. TOPOLOGIES IN B(H ) 101

B.2 Topologies in B(H )

1. The uniform topology in B(H ). The uniform topology in B(H ) is
given by the operator norm ‖a‖ (a ∈ B(H )), where ‖a‖ = sup

‖ξ‖≤1

‖aξ‖.

B(H ) is a Banach algebra with this norm. We shall take the adjoint
operation a → a∗ as involution ∗ on B(H ) (i.e., 〈aξ|η〉 = 〈ξ|a∗η〉 ) for
ξ, η ∈H where 〈 | 〉 is the scalar product of H . Then

‖a‖2 = sup
‖ξ‖=1

‖aξ‖2 = sup
‖ξ‖=1

〈aξ|aξ〉 = sup
‖ξ‖=1

〈a∗aξ|ξ〉 ≤ ‖a∗a‖.

Since ‖a∗‖ = ‖a‖, then ‖a‖2 = ‖a∗a‖. Therefore, B(H ) is a C*-algebra,
and so any uniformly closed selfadjoint subalgebra of B(H ) is also a
C*-algebra.

2. The strong operator topology in B(H ). Let ξ ∈ B(H ). The
function a → ‖aξ‖ is a semi-norm on B(H ). The set of all such semi-
norms {‖aξ‖ | ξ ∈ B(H )} defines a Hausdorff locally convex topology in
B(H ). This is the strong operator topology.

3. The strongest operator topology. Let (ξi) ⊂ H be any sequence of

elements in H such that

∞∑

i=1

‖ξi‖2 < +∞. The function

( ∞∑

i=1

‖aξi‖2
) 1

2

a ∈ B(H )

defines a semi-norm on B(H ). The set of all such semi-norms




( ∞∑

i=1

‖aξi‖2
) 1

2 ∣∣∣(ξi) ⊂H ,

∞∑

i=1

‖ξi‖2 < +∞





defines a Hausdorff locally convex topology in B(H ). This is the strong-
est operators topology.

4. The weak operator topology. For ξ, η ∈ H , the function |〈aξ|η〉| is
a semi-norm on B(H ). The set of all semi-norms {|〈aξ|η〉|

∣∣ξ, η ∈ H }
defines a Hausdorff locally convex topology. This is the weak operator
topology.

5. The σ-weak operator topology. For (ξn), (ηn) ⊂ H such that
∞∑

i=1

‖ξn‖2 < +∞,

∞∑

i=1

‖ηn‖2 < +∞, consider the semi-norm

∣∣∣∣∣
∞∑

i=1

〈aξn|ηn〉
∣∣∣∣∣
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on B(H ). The set of all such semi-norms will defined a Hausdorff locally
convex topology, the σ-weak operator topology on B(H ).

Let C(H ) be the linear space of all continuous linear functionals on B(H )
with respect to the weak operator topology. Then the weak operator topology
is equivalent to the σ

(
B(H ), C(H )

)
topology. One can easily see that the

unit sphere S of B(H ) is σ
(
B(H ), C(H )

)
-compact.

Proposition B.3 (Proposition 1.15.1 in [15]). Let N be a selfadjoint subal-
gebra of B(H ). Then following condition are equivalent. N is closed in

1. the weak operator topology,

2. the σ-weak operator topology,

3. the stronger operator topology,

4. the strongest operator topology and

5. σ
(
B(H ),B(H )∗

)
.

Proposition B.4 (proposition 1.15.2 in [15]). Let N be a weakly closed self-
adjoint subalgebra of B(H ), and let N∗ be the predual of N . Then

1. the weak operator topology, the σ-weak operator topology and σ
(
N ,N∗

)

are equivalent on bounded spheres;

2. the strong operator topology, the strongest operators topology and the
s
(
N ,N∗

)
topology are equivalent on bounded spheres.

B.3 Operators of trace class

Definition B.11 (Trace of an operator). Let (ξα) be a complete orthonormal

system of H . For h(≥ 0) ∈ B(H ), put Tr(h) =
∑

α

〈hξα|ξα〉; then Tr(h)

does not depend on the choice of (ξα). We will call trace of the operator h the
quantity Tr(h).

Definition B.12 (The trace class of H ). An element a ∈ B(H ) is called
an operator of the trace class if Tr(|a|) ≡ Tr

{√
a∗a
}
< +∞. The set of all

operators of the trace class is called the trace class of H and we will denote it
by T (H ).
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Now, for a ∈ T (H ) let us put ‖a‖1 = Tr(|a|), then T (H ) is a normed linear
space under ‖ ‖1, moreover T (H ) is a Banach space.

Theorem B.5 (Theorem 1.15.3. in [15]). The predual B(H )∗ of B(H ) may
be identified with the Banach space of all trace class operators on H under the
isometric linear mapping a→ ϕa, where ϕa(x) = Tr(xa), with x ∈ B(H ) and
a ∈ T (H ). Moreover, under this identification, positive elements in B(H )∗
are identified with positive elements in T (H ).

Corollary B.6 (Corollary 1.15.5. in [15]). Let f be a linear functional on
B(H ). Then the following conditions are equivalent:

1. f ∈ B(H )∗;

2. There exist two sequences (ξn), (ηn) of elements in H such that for all
x ∈ B(H )
∞∑

n=1

‖ξn‖2 <∞,

∞∑

n=1

‖ηn‖2 <∞ and f(x) =

∞∑

n=1

〈xξn|ηn〉 <∞.

Corollary B.7 (Corollary 1.15.6. in [15]). The strongest operator topology
in B(H ) is equivalent to the s

(
B(H ),B(H )∗

)
one. The σ-weak operator

topology on B(H ) is equivalent to σ
(
B(H ),B(H )∗

)
.

Let C (H ) the algebra of all compact linear operators on H . T (H ) can be
identified with the predual B(H )∗ of B(H ). For x ∈ C (H ) and a ∈ T (H ),
let ψa(x) = Tr(xa). Then ψa is bounded linear functional on C (H ).

Theorem B.8 (Proposition 1-19.1 in [15]). The mapping a → ψa of T (H )
into C (H )

∗
is an isometric linear mapping of T (H ) onto C (H )

∗
. Therefore,

under the mapping a→ ψa, T (H ) can be identified with C (H )
∗
. Hence, we

have C (H )
∗

= T (H ) and T (H )
∗

= B(H ).
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