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Introduction

In modelling a large variety of physical phenomena it happens to deal with families of variational

problems involving small parameters. The notion of Γ-convergence [29, 31, 14] is very well

suited to the variational setting and, starting by those microscopic models, is widely used to

derive limiting “macro” theories not depending on any small parameter. Specifically, this notion

is nearly identical to that of convergence of minimum problems. More precisely, if ε > 0 and

(Fε) is a given family of microscopic energies, from

Fε
Γ−→ F (0)

we deduce that

(i) mε := minFε −→ m(0) := minF (0) as ε→ 0.

Not only: if the Γ-convergence is coupled with some equi-coerciviness condition on the family

(Fε) then

(ii) if for any fixed ε > 0, vε minimizes Fε; i.e., Fε(vε) = mε then, up to an extraction,

vε → v as ε→ 0 and F (0)(v) = m0.

The (ii) property can be sketched as

{limits of minimizers} ⊆ argmin(F (0)), (0.1)

where argmin(F (0)) := {u : F (0)(u) = m(0)} and the inclusion may well be proper, as it can be

seen by very simple and natural examples. Hence, in general, the description given by F (0) can

be too coarse and the (zero order) Γ-limit may fail to completely characterize the asymptotic

behavior of the family (Fε). Then, the idea is that the computation of the Γ-limit F (0) is only

the first step in the description of the asymptotic behavior of (Fε), as it can be necessary to

refine the above limit procedure to select those minimizers of F (0) which are actually limits of

sequences (vε).

The most intuitive refinement procedure of the standard Γ-convergence is the iteration of the

successive Γ-limits [9]. Indeed, once the next meaningful scale λ(1)(ε) (λ(1)(ε) > 0, λ(1)(ε) → 0

as ε→ 0) is conjectured, we may look at the Γ-limit of the scaled family of energies

F (1)
ε (u) :=

Fε(u)−m(0)

λ(1)(ε)
,

and if it exists, we denote it with F (1). Notice that the domain of F (1) is by definition a subset

of the set of minimum points of F (0); i.e.,

dom(F (1)) ⊆ argmin(F (0)).

5
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6 INTRODUCTION

If F (1) is not trivial, then the iterated application of (i) leads to a better development of the

minimum values

mε = m(0) + λ(1)(ε)m(1) + o(λ(1)(ε)), as ε→ 0

with m(1) := minF (1).

It is also clear that the minimizers for F
(1)
ε are exactly those for Fε, then in view of (ii) we

deduce that v not only minimizes F (0) but also F (1). Loosely speaking, we have

{limits of minimizers} ⊆ argmin(F (1)) ⊆ argmin(F (0)),

thus we have actually made a selection among minimum points of F (0).

Finally, the combined computation of the zero and of the first order Γ-limit as above is

formally written as the Γ-development

Fε = F (0) + λ(1)(ε)F (1) + o(λ(1)(ε)),

with o(λ(1)(ε)) meaning that the next interesting scale is of order less than λ(1)(ε), as ε→ 0.

If necessary, this procedure can be iterated obtaining other scales λ(2)(ε), λ(3)(ε), . . . and

consequently other terms in the development. This may provide a considerable improvement of

(0.1) and, in some cases, may give a complete characterization of the asymptotic behavior of

(Fε).

Notice that moreover, since in the applications one would like to construct theories operative

at small but finite ε, a development by Γ-convergence can be also viewed as the simplest way to

bring a small scale back into the problem.

A well-know example of a Γ-development is that of the gradient theory of phase transition

[40, 39].

Consider the family of minimum problems

mε := min

{
Fε(u) : u ∈W 1,2(0, 1),

∫ 1

0
u dx = d

}
, Fε(u) :=

∫ 1

0

(
W (u) + ε2(u′)2

)
dx,

with |d| < 1 and W a double-well potential with wells at ±1 (e.g., W (u) = min{(u − 1)2, (u +

1)2}). Then the Γ-limit of (Fε) computed with respect to the weak L2-convergence is simply

F (0)(u) =





∫ 1

0
W ∗∗(u) dx if u ∈ L2(0, 1) and

∫ 1
0 u dx = d

+∞ otherwise,

where W ∗∗ is the convex envelope of W .

By Jensen’s Inequality minF (0) = W ∗∗(d), moreover W ∗∗(s) = 0 = W ∗∗(d) for every s

such that |s| ≤ 1. Then the zero order Γ-limit only provides the information that sequences of

minimizers (vε) may develop oscillations and their weak limit can be any function v ∈ L2(0, 1)

such that |v| ≤ 1 a.e. and satisfying the volume constraint
∫ 1
0 v dx = d.
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INTRODUCTION 7

A simple scaling argument (see [3, 14]) shows that the next meaningful scale is λ(1)(ε) = ε.

The first-order Γ-limit is given by

F (1)(u) =




CW#S(u) if u ∈ BV ((0, 1); {±1}) and

∫ 1
0 u dx = d

+∞ otherwise,

where S(u) denotes the set of discontinuity points of u and CW := 2
∫ 1
−1

√
W (s) (Modica-

Mortola’s Theorem).

Now, the minimizers of F (1) are only the two functions ±sign(x − 1−d
2 ) and we deduce the

convergence of (vε) to one of this two functions. In this case, the Modica-Mortola Theorem also

improves the convergence to strong L2-convergence.

As the development of minimum values is concerned, we get

mε = εCW + o(ε), as ε→ 0.

On this example, it is also possible to compute the next meaningful scaling that is λ(2)(ε) =

ε e−1/2ε and thus we may further write

mε = εCW + ε e−1/2εC̃W + o(ε e−1/2ε), as ε→ 0.

However, the minimizers being essentially uniquely characterized by the analysis at order ε, this

last information only provides a better approximation of the minimum values mε.

In a general framework one does not encounter problems containing a single parameter but

rather energies depending on different small parameters. In fact a physical model with a varia-

tional structure may well contain, for instance, small parameters of various nature (e.g., consti-

tutive, geometrical).

In this first chapter of this dissertation we investigate the combined effect of small-scale het-

erogeneities (fine microstructures) and singular gradient perturbations on the asymptotic devel-

opment described above. Specifically, we focus on a prototype that is a special, one-dimensional

variant of Modica-Mortola (or van der Waals-Cahn-Hillard) energy as we are mainly interested

in a careful description of the different meaningful scales involved in the Γ-development.

The model we analyze is the following: let k be a real number such that 0 < k < 1; for all

ε, δ > 0 consider the functional F
k(0)
ε,δ : L2(0, 1) −→ (0,+∞] defined by

F
k(0)
ε,δ (u) =





∫ 1

0

(
W k

(x
δ
, u
)
+ ε2(u′)2

)
dx if u ∈W 1,2(0, 1)

+∞ otherwise,

(0.2)

where W k : R× R → [0,+∞) is such that

W k(y, s) :=W (s− ku0(y)) with u0(y) :=
sin 2πy

| sin 2πy|
and W is the double-well potential given by

W (t) = min{(t− 1)2, (t+ 1)2}.
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Figure 1. The double-well potential W .

Then we may interpret this situation as modelling the presence of spatial heterogeneities at a

scale δ, which locally determine the zero set of the potentialW k. Moreover, a simple dimensional

analysis shows that the pre-factor ε2 multiplying the gradient term, introduces ε as a length scale

to the problem. Finally the (fixed) parameter k, which will play an essential role in the creation

of the scales occurring in the development, simply gives the width of the translation of the

potential W k with respect to W , on each period. Notice that in particular for k = 0, W k ≡W

and (0.2) reduces to

Fε(u) =

∫ 1

0
(W (u) + ε2(u′)2) dx.

For the vectorial analogous of the investigated problem, we refer the reader to [34] where, among

other, a complete and very general analysis of the zero order Γ-limit is given.

A similar, though in some aspects more complex, model was recently proposed in [32]. The

authors consider a perturbation of Modica-Mortola energy by a rapidly oscillating field with

zero average. More precisely they consider the functionals
∫

Ω

(
W (u)

ε
+ ε|∇u|2 + 1

εγ
g
( x
εγ

)
u

)
dx,

where g is a 1-periodic function and W a general double-well potential. Then when γ > 0 both

the amplitude and the frequency of g become large (for ε small) and the infimum of the energy

can even tend to −∞ as ε→ 0. Hence, to fit in the framework of Γ-convergence, the introduction

of an additive renormalization is needed. So if on one hand in our model we do not encounter

the difficulty arising from this renormalization (and in particular from the related fact that the

functionals have nonconstant global minimizers whose energy is not uniformly bounded from

below), on the other hand, our particular choice permits to detail an asymptotic expansion that

is not pursued in [32].
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ε
δ

−δ

Bn−1
r (xεi )× {0}

(ω \ ωε,r)× {0}

0

Figure 2. The domain Ωδ
ε,r.

For an ever increasing variety of applications, another interesting (multi-scale) problem to be

explored is to model the debonding of a thin film from a substrate.

If we consider a stretched film bonded to an infinite rigid substrate, the elastic energy of this

film scales as its thickness. If the film debonds from the substrate, on one hand its elastic energy

tends to zero, while on the other hand this creates a new surface and then an interfacial energy

independent of the thickness.

In [11] Bhattacharya, Fonseca and Francfort examine, among other, the asymptotic behavior

of a bilayer thin film allowing for the possibility of a debonding at the interface, but penalizing

it postulating an interfacial energy which scales as the overall thickness of the film to some

exponent. Thus the energy they consider consists of the elastic energy of the two layers and the

interfacial energy with penalized debonding.

The second chapter of this dissertation deals with thin films connected by a hyperplane (sieve

plane) through a periodically distributed contact zone. Thus we see the debonding as the effect

of the weak interaction of the two thin films through this contact zone and we recover the

interfacial energy term by a limit procedure.

Since we are mainly interested in describing the interaction phenomenon due to the presence

of the sieve, we make a simplification choosing two thin films having the same elastic properties

(for a generalization to the case of two different materials interacting, we refer the reader to [5]).

Consider a nonlinear elastic n-dimensional bilayer thin film of thickness 2δ with layers con-

nected through (n−1)-dimensional balls Bn−1
r (xεi ) centered in xεi := iε, i ∈ Zn−1 and with radius

r > 0. Thus the investigated elastic body occupies the reference configuration parametrized as

Ωδ
ε,r := ω+δ ∪ ω−δ ∪

(
ωε,r × {0}

)

where ω is a bounded open subset of Rn−1, ω+δ := ω × (0, δ), ω−δ := ω × (−δ, 0) and ωε,r :=⋃
i∈Zn−1 Bn−1

r (xεi ) ∩ ω (see Figure 1).

In the nonlinear membrane theory setting the (scaled) elastic energy associated to the material

modelled by Ωδ
ε,r is given by

1

δ

∫

Ωδ
ε,r

W (Du) dx, (0.3)

where u : Ωδ
ε,r → Rm is the deformation field and W is the stored energy density.
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10 INTRODUCTION

The Γ-convergence approach has been used successfully in recent years to rigorously obtain

limit models for various dimensional reductional problems (see for example [12, 18, 19, 38, 47]).

We study the multiscale asymptotic behavior of (0.3) via Γ-convergence, as ε, δ and r tend

to zero, assuming that δ = δ(ε), r = r(ε, δ) and with W : Rm×n → [0,+∞), Borel function

satisfying a growth condition of order p, with 1 < p < n− 1.

The case p = n − 1 requires a further appropriate analysis and it cannot be easily derived

from p < n−1 by slight changes. Unfortunately, three dimensional linearized elasticity falls into

this framework.

Since the sieve (ω \ ωε,r) × {0} is not a part of the domain Ωδ
ε,r, for any fixed ε, δ, r > 0

we have no information on the admissible deformation across part of the mid-section ω × {0}.
This possible lack of regularity might produce, in the limit, the above mentioned debonding and

correspondingly an interfacial energy depending on the jump of the limit deformation. Moreover,

we expect that this interfacial energy will depend on the scaling of the radius of the connecting

zones with respect to the period of their distribution and the thickness of the thin film.

The cases δ = 1 and δ = ε have been studied by Ansini [5] who proved that, to recover a

non trivial limit model; i.e., to obtain a limit model remembering the presence of the sieve, the

meaningful radius (or critical size) of the contact zones must be of order ε(n−1)/(n−p) and εn/(n−p),

respectively. In fact a different choice should lead in the limit to two decoupled problems (if

r tends to zero faster than the critical size) or to the same result that is obtained without the

presence of connecting zones in the mid-section (if r tends to zero more slowly than the critical

size).

The proofs of the Γ-convergence results in [5] (see Theorems 3.2 and 8.2 therein) are based

on a technical lemma ([5], Lemma 3.4) that allows to modify a sequence of deformations uε

with equi-bounded energy, on a suitable n-dimensional spherical annuli surrounding the balls

Bn−1
r (xεi ) without essentially changing their energies, and to study the behavior of the energies

along the new modified sequence. Both in the case δ = 1 and δ = ε the Γ-limits consist of

three terms. The first two terms represent the contribution of the new sequence far from the

balls Bn−1
r (xεi ); more precisely, they are the Γ-limits of two problems defined separately on the

upper and lower part (with respect to the ‘sieve plane’) of the considered domain. The third

term describes the contribution near the balls Bn−1
r (xεi ) through a nonlinear capacitary-type

formula that is the same for both δ = 1 and δ = ε. The equality of the two formulas is due to

the fact that the radii of the annuli suitably chosen to separate the two contributions are less

than c ε, with c an arbitrary small positive constant. In fact as a consequence, all constructions

can be performed in the interior of the domain, and the same procedure yielding the nonlinear

capacitary-type formula, applies for δ = 1 and for δ = ε as well. The cases ε ∼ δ and ε≪ δ can

be treated in the same way.

This approach follows the method introduced by Ansini-Braides in [7, 8] where the asymptotic

behavior of periodically perforated nonlinear domains has been studied; in particular, Lemma

3.4 in [5] is a suitable variant, for the sieve problem, of Lemma 3.1 in [7].
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INTRODUCTION 11

For other problems related to this subject, we refer the reader to Attouch-Damlamian-Murat-

Picard [28], [41], [42], Attouch-Picard [10], Conca [23, 24, 25], Del Vecchio [30] and Sanchez-

Palencia [45, 44, 46], among others.

We focus our attention on the case δ = δ(ε) ≪ ε. As in [5], we expect the existence of a

meaningful radius r = r(ε, δ) ≪ ε for which the limit model is nontrivial but now we expect

also to find different limit regimes depending on the mutual vanishing rate of r and δ. Moreover

Lemma 3.4 in [5] cannot be directly applied to our setting since the spherical annuli surrounding

the connecting zones Bn−1
r (xεi ) as above, are well contained in a strip of thickness c ε but not

in Ωδ
ε,r (δ ≪ ε). However, we are able to modify Lemma 3.4 in [5] by considering, instead of

spherical annuli, suitable cylindrical annuli of thickness of order δ (see Lemma 4.2 and Lemma

4.3).

As a consequence, also in this case the asymptotic analysis of (0.3) as ε, δ and r tend to zero

can be carried on studying separately the energy contributions far from and close to Bn−1
r (xεi );

we get three terms in the limit. The first two terms still describe the contribution ‘far’ from the

connecting zones; i.e., they are the Γ-limits of the two dimensional reduction problems defined

by
1

δ

∫

ω+δ

W (Du) dx ,
1

δ

∫

ω−δ

W (Du) dx ;

while the third term, arising in the limit from the energy contribution close to the connecting

zones, represents the asymptotic memory of the sieve: it is the above mentioned interfacial

energy.

The main results of this paper are stated in Theorem 3.3 and Theorem 3.6. In Theorem

3.3 we prove a Γ-convergence result for the sequence of functionals (0.3) while in Theorem

3.6 we give an explicit characterization of the interfacial energy term occurring in the Γ-limit.

More precisely, for every sequence (εj) converging to zero, we set δj := δ(εj), rj := r(εj , δj),

Ωj := Ω
δj
εj,rj and

Fj(u) :=





1

δj

∫

Ωj

W (Du) dx if u ∈W 1,p(Ωj;Rm)

+∞ otherwise .

Up to subsequence we can define

ℓ := lim
j→+∞

rj
δj

and g(F ) := lim
j→+∞

rpj QnW (r−1
j F ).

where QnW is the n-quasiconvexification of W .

If ℓ ∈ (0,+∞] and

0 < R(ℓ) := lim
j→+∞

rn−1−p
j

εn−1
j

< +∞,

then (Fj) Γ-converges to

F (ℓ)(u+, u−) =
∫

ω
Qn−1W (Dαu

+) dxα +

∫

ω
Qn−1W (Dαu

−) dxα +R(ℓ)

∫

ω
ϕ(ℓ)(u+ − u−) dxα
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12 INTRODUCTION

on W 1,p(ω;Rm) × W 1,p(ω;Rm) with respect to the convergence introduced in Definition 3.1,

where W (F ) := inf{W (F |z) : z ∈ Rm}, Qn−1W is the (n − 1)-quasiconvexification of W and

ϕ(ℓ) : Rm → [0,+∞) is a locally Lipschitz continuous function for any ℓ ∈ [0,+∞]. Similarly, if

ℓ = 0 and

0 < R(0) := lim
j→+∞

rn−p
j

δj ε
n−1
j

< +∞,

then we still have Γ-convergence, as above, to

F (0)(u+, u−) =
∫

ω
Qn−1W (Dαu

+) dxα +

∫

ω
Qn−1W (Dαu

−) dxα +R(0)

∫

ω
ϕ(0)(u+ − u−) dxα

on W 1,p(ω;Rm)×W 1,p(ω;Rm).

For any ℓ ∈ [0,+∞], ϕ(ℓ) is described by the following nonlinear capacitary-type formulas:

(1) if ℓ = +∞, then

ϕ(∞)(z) = inf

{∫

Rn−1

(
Qn−1 g(Dαζ

+) +Qn−1 g(Dαζ
−)
)
dxα : ζ± ∈W 1,p

loc (R
n−1;Rm), ,

ζ+ = ζ− in Bn−1
1 (0), Dαζ

± ∈ Lp(Rn−1;Rm×(n−1)),

(ζ+ − z) , ζ− ∈ Lp∗(Rn−1;Rm)

}
,

where again, ḡ(F ) := inf{g(F |z) : z ∈ Rm} and Qn−1ḡ is the (n− 1)-quasiconvexification of ḡ,

(2) if ℓ = 0, then

ϕ(0)(z) = inf

{∫

Rn\C1,∞
g(Dζ) dx : ζ ∈W 1,p

loc (R
n \ C1,∞;Rm), Dζ ∈ Lp(Rn \ C1,∞;Rm×n),

ζ − z ∈ Lp(0,+∞;Lp∗(Rn−1;Rm)) and ζ ∈ Lp(−∞, 0;Lp∗(Rn−1;Rm))

}
,

(3) if ℓ ∈ (0,+∞), then

ϕ(ℓ)(z) = inf

{∫

Rn−1×(−1,1)
g
(
Dαζ|ℓDnζ

)
dx : ζ ∈W 1,p

loc ((R
n−1 × (−1, 1)) \ C1,∞;Rm),

Dζ ∈ Lp(Rn−1 × (−1, 1);Rm), ζ − z ∈ Lp((0, 1);Lp∗ (Rn−1;Rm))

ζ ∈ Lp((−1, 0);Lp∗(Rn−1;Rm))

}
,

where C1,∞ := {(xα, 0) ∈ Rn : 1 ≤ |xα|}.

Before giving a brief heuristic description of each regime, we want to point out that whatever

the value of ℓ is, the interfacial energy density ϕ(ℓ) corresponds to a cohesive interface where

the surface energy increases continuously from zero with the jump in the deformation across the

interface.

Preliminary version – October 30, 2006 – 12:04



INTRODUCTION 13

(1) The case ℓ = +∞ corresponds to δj ≪ rj ≪ εj , thus we expect rj to depend only on

εj . In this case we have a separation of scales effect. We first consider rj and εj as ‘fixed’ and

let δj tend to zero as if we were dealing with two pure dimensional reduction problems stated

separately on the upper and lower part (with respect to the sieve plane) of Ωj . Then this first

limit procedure yields two functionals being both a copy of the functional in [38]. Since the two

corresponding limit deformations u+ and u− must match inside each connecting zone, the above

two terms are not completely decoupled. We are then in a situation quite similar to that of

[7, 8], except that here both periodically ‘perforated’ (n−1)-dimensional bodies are linked each

other through the ‘perforations’; i.e., through the holes of the sieve and not through the sieve

itself. Thus it is coherent to find a critical size of order ε(n−1)/(n−1−p). Moreover this strong

separation between the phenomena of dimension reduction and ‘perforation’ leads to anisotropy

as it can be seen, for instance, also by an inspection of the proof of Lemma 6.2 which shows

that the extra interfacial energy term appears thanks to suitable dilatations having a different

scaling in the in-plane and transverse variables. Finally we note that the formula for ϕ(∞) is

given in terms of a ‘Le Dret-Raoult type’ functional involving the limit of the right capacitary

scaling (that is, involving the function g).

(2) The case ℓ = 0 corresponds to rj ≪ δj ≪ εj . In this case we expect that the critical size

rj depends on both δj and εj . Indeed, as already pointed out, rj is of order δ
1/(n−p)
j ε

(n−1)/(n−p)
j .

Note that for δj = εj we recover εn/(n−p) that is the critical size obtained in [5]; moreover ϕ(0)

turns out to coincide with the function ϕ in [5] (see Remark 7.3). Contrary to the previous case,

now the isotropy is preserved in fact here the dimensional reduction and ‘perforation’ processes

are not completely decoupled: the reduction parameter δj is forced between both parameters rj

and εj . This can be seen also by noticing that now the scaling leading to the interfacial energy is

the same in every direction (see for instance the proof of the Γ-limsup inequality). Moreover now

in ϕ(0) the reduction procedure is not explicit but only witnessed by the boundary conditions

expressed only on the lateral part of the boundary of the considered domain.

(3) The case ℓ ∈ (0,+∞) corresponds to rj ∼ δj ≪ εj . In this case the separation of scales

effect does not take place and the two previous scalings turn out to be equivalent (R(0) = ℓR(∞)).

Moreover we find that the interfacial energy is continuous with respect to ℓ in the extreme

regimes; i.e., R(ℓ)ϕ(ℓ)(z) → R(∞)ϕ(∞)(z) as ℓ → +∞ and R(ℓ)ϕ(ℓ)(z) → R(0)ϕ(0)(z) as ℓ → 0.

Finally, as in the previous case, the lateral boundary conditions are the only mean describing

the dimensional reduction phenomenon in the procedure leading to ϕ(ℓ).
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CHAPTER 1

A model for the interaction between oscillations and surface

energy

1. Zero order Γ-limit

As already observed, our energy is a particular, one-dimensional version of a more general,

multidimensional energy introduced in [34]. Thus, with in mind the idea of a Γ-development

for (0.2), in this section we adapt to our setting the Γ-convergence results of Theorem 2.1 and

Theorem 2.3 in [34].

These two results are summarized in the following theorem.

Theorem 1.1. Let δ = δ(ε) be such that δ → 0 as ε→ 0 and set

ℓ := lim
ε→0

δ(ε)

ε
.

Then the family of functionals F
k(0)
ε := F

k(0)
ε,δ(ε) defined as in (0.2), Γ-converges with respect to

the weak L2-convergence to the homogeneous functional defined on L2(0, 1) by

F
k(0)
ℓ (u) =

∫ 1

0
W k

ℓ (u) dx . (1.1)

Moreover the integrand W k
ℓ depends on ℓ in the following way:

(1) if ℓ = +∞, then

W k
∞(s) = inf

{∫ 1

0
W k(x, v) dx : v ∈ L2(0, 1),

∫ 1

0
v dx = s

}
; (1.2)

(2) if ℓ ∈ (0,+∞), then

W k
ℓ (s) = inf

n∈N
inf

{
−
∫ n

0
(W k(x, v) +

1

ℓ2
(v′)2) dx : v ∈W 1,2(0, n), −

∫ n

0
v dx = s

}
;

(3) if ℓ = 0, then

W k
0 (s) = (W

k
)∗∗(s)

where

W
k
(s) =

∫ 1

0
W k(y, s) dy. (1.3)

Remark 1.2. From the definition of W k, a priori we only know that the family (F
k(0)
ε ) is

equi-coercive with respect to the weak L2-convergence (for any choice of δ = δ(ε)), for this

reason in Theorem 1.1 above, the Γ-limit is computed, in each regime, with respect to that

convergence.

15
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16 1. A MODEL FOR THE INTERACTION BETWEEN OSCILLATIONS AND SURFACE ENERGY

We only give a brief heuristic description of the result stated above while we refer the reader

to [34], for a rigorous proof.

(1) The case ℓ = +∞ corresponds to ε≪ δ; i.e., to the case in which the scale of oscillation

δ is much larger than the scale of the transition layer ε. The result is that we have

a separation of scales effect, indeed we may first regard δ as fixed and let ε → 0 and

subsequently let δ → 0. In this way, we first obtain an inhomogeneous functional which

can be explicitly computed as
∫ 1

0
(W k)∗∗

(x
δ
, u
)
dx

where the convexification ofW k is with respect to the second argument. Then the limit

as δ → 0 falls within the framework of homogenization leading to an integral functional

whose density is the convex, homogenized potential given by the cell formula (1.2).

Hence, we have that in this case the presence of the singular perturbation does not

affect the homogenization process.

(2) The case ℓ ∈ (0,+∞) corresponds to ε ∼ δ; i.e., is the case in which ε and δ are

comparable. Now the two effects cannot be separated and the presence of the singular

perturbation contributes to the definition of W k
ℓ .

(3) The case ℓ = 0 corresponds to ε ≫ δ. In this case we again find a separation of scales

phenomenon: the total effect is that the singular perturbation forces the homogenized

energy to be (the convex envelope of) the average of the microscopic energy over the

period.

1.1. The effective potential W k
ℓ . Since we are interested in describing how the two

different parameters ε and δ interacts in the coming up of the various scales of the Γ-development,

from now on we focus only on the two regimes δ ≫ ε and δ ≪ ε, the regime δ ∼ ε being, somehow,

less interesting than the extreme ones.

The starting point of our analysis consists in a complete characterization of the zero order

Γ-limit. Then, recalling the definition of our given W k, in this section we want to find the

explicit expression of the effective potential W k
ℓ for ℓ = +∞ and ℓ = 0.

If ℓ = +∞, Theorem 1.1 asserts that W k
∞ is given in terms of the cell formula (1.2), that is

equivalent to

W k
∞(s) = min

{∫ 1

0
(W k)∗∗(x, v) dx : v ∈ L2(0, 1),

∫ 1

0
v dx = s

}
,

thus by using Jensen’s inequality it is easy to check that

W k
∞(s) = min

{
1

2
W ∗∗(s1 − k) +

1

2
W ∗∗(s2 + k) : s1 + s2 = 2s

}
.

Finally, a straightforward calculation gives

W k
∞(s) =W ∗∗(s) =

{
0 if |s| ≤ 1

(|s| − 1)2 if |s| > 1.
(1.4)
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2. OPTIMAL SCALINGS 17

If ℓ = 0, then trivially

W
k
(s) =

1

2
(W k(s− k) +W k(s + k)) =




s2 + (1− k)2 if |s| ≤ k

s2 − 2|s|+ k2 + 1 if |s| > k

hence by a direct computation we get

W k
0 (s) =




k2 if |s| ≤ 1

s2 − 2|s|+ k2 + 1 if |s| > 1

for k ≤ 1
2 , while

W k
0 (s) =





s2 + (1− k)2 if |s| ≤ k − 1
2

(2k − 1)|s| − k +
3

4
if k − 1

2 < |s| < k + 1
2

s2 − 2|s|+ k2 + 1 if |s| > k + 1
2

for k > 1
2 .

0 1−1

W k
0 W k

0

W
k

W
k

k2

k2

(1 − k)2

(1 − k)2

s sk − 1
2 k + 1

2−k + 1
2−k − 1

2

Figure 1. The effective potential W k
0 for k < 1

2 and k > 1
2 .

2. Optimal scalings

In the previous section we show that the effective potential W k
ℓ admits “many” minimizers for

both ℓ = +∞ and ℓ = 0, k ≤ 1
2 ; more precisely, W k

ℓ (s) = minW k
ℓ for every s such that |s| ≤ 1.

As a consequence, every function u ∈ L2(0, 1) satisfying |u| ≤ 1 a.e., is a minimum point for

the zero order Γ-limit F
k(0)
ℓ . Hence, if for any fixed ε > 0, vε minimizes F

k(0)
ε (notice that the

existence of a minimizer for F
k(0)
ε over L2(0, 1) can be proved via standard lower semicontinuity

and compactness results) then the fact that every limit point v of (vε) minimizes F
k(0)
ℓ actually

gives few information about v.
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18 1. A MODEL FOR THE INTERACTION BETWEEN OSCILLATIONS AND SURFACE ENERGY

As vε minimizes also

F
k(0)
ε −m

(0)
ℓ

λ(1)(ε)
(2.1)

for every λ(1)(ε) > 0, with m
(0)
ℓ := minF

k(0)
ℓ , information about the limit points of (vε) can

be recovered also by the Γ-limit of the scaled functionals (2.1), which may be less trivial for

a suitable choice of λ(1)(ε). So now the problem arises of finding the optimal scaling ; i.e., the

λ(1)(ε) such that the Γ-limit of (2.1) gives the largest amount of information. Once λ(1)(ε) is

determined, the Γ-limit of the scaled family of functionals (2.1) will be the first order term of

the Γ-development.

At this point some scale analysis must be performed for both ℓ = +∞ and ℓ = 0, k ≤ 1
2 , to

understand what the relevant scaling λ(1)(ε) is. Moreover, we remark that we expect λ(1)(ε) to

depend also on the regime ℓ; to make the dependance explicit, in the sequel we denote this scale

by λ
(1)
ℓ (ε).

If needed, in the following we iterate this analysis to obtain more scales in the development

and consequently a more accurate description of the limit points of (vε).

Finally, referring to the remaining case ℓ = 0, k > 1
2 , we want to point out that the non strict

convexity of W k
0 (see Figure 2) allows us to determine an asymptotic development for F

k(0)
ε in

this case too, as we detail in Section...

3. δ ≫ ε : oscillations on a larger scale than the transition layer

In this section we treat the case when the scale of oscillation δ is much larger than the scale of

the transition layer ε; i.e., the case ℓ = +∞.

In order to guess what the first meaningful scale λ
(1)
∞ (ε) is, we start by performing a prelim-

inary qualitative scale analysis.

Using the same argument proposed to examine Modica-Mortola’s Model [40, 39] we want to

estimate the order of m
k(0)
ε := minF

k(0)
ε , as ε→ 0.

To this aim, we focus our attention on a single δ-interval: say the interval (0, δ). Then, when

we come to minimize F
k(0)
ε , on one hand the term

∫ δ
0 W

k
(
x
δ , u
)
dx favorites those configurations

which takes values “close” to the (varying) zero set of W k; i.e., close to (at least) two different

constant values one chosen in {1 + k,−1 + k} when x ∈
(
0, δ2
)
, while the other chosen in

{1 − k,−1 − k} when x ∈
(
δ
2 , δ
)
. In other words, the potential term in the energy favorites a

phenomenon of phase separation. On the other hand, the gradient term ε2
∫ δ
0 (u

′)2 dx penalizes

spatial inhomogeneities thus inducing a phase transition phenomenon as well. When ε is small

the first term prevails, and the minimum of
∫ δ

0

(
W k
(x
δ
, u
)
+ ε2(u′)2

)
dx

is attained at a function which takes “mainly” values close to the set {1 + k,−1 + k} in
(
0, δ2
)

and close to {1− k,−1− k} in
(
δ
2 , δ
)
, but which also makes a transition on a “thin” layer. Then
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3. δ ≫ ε : OSCILLATIONS ON A LARGER SCALE THAN THE TRANSITION LAYER 19

a well-known scaling argument (see e.g. [3] and [14], Chapter 6) proves that the transition

between two different zeroes chosen as above, actually occurs in a layer of thickness of order ε

(recall that δ ≫ ε) and gives an energy contribution of order ε too.

Clearly the previous heuristics can be repeated on each period δ thus leading to a total energy

contribution of order ε
δ . Finally what we claim is that

λ(1)∞ (ε) =
ε

δ
,

and the proof of this claim will be made rigorous with Theorem 3.2.

3.1. Estimate for the phase transition energy. We now move the first step towards a

rigorous justification of the qualitative argument discussed in the previous section.

In what follows, we make use of some well-known facts related to the so-called optimal

profile problem in Modica-Mortola model. For a detailed and exhaustive treatment of the one

dimensional case, we refer the reader to [3], Section 3a or to [14], Remark 6.1.

We want to find an explicit formula for the phase transition energy; to this purpose we set

W k
1 (s) := W (s− k) W k

2 (s) := W (s+ k),

and for any fixed ε > 0, we let x1, x2 ∈ R be such that x1 < x2, x2 − x1 ≤ δ
2 and δ

2 ∈ (x1, x2).

We start by giving an estimate on the contribution of the integration on (x1, x2) in F
k(0)
ε (u) in

terms of z1 := u(x1) and z2 := u(x2).

We have ∫ x2

x1

(
W k

(x
δ
, u
)
+ ε2(u′)2

)
dx

= ε

(∫ δ
2

x1

(
1

ε
W k

1 (u) + ε(u′)2
)
dx+

∫ x2

δ
2

(
1

ε
W k

2 (u) + ε(u′)2
)
dx

)

= ε

(∫ δ
2ε

x1
ε

(
W k

1 (v) + (v′)2
)
dx+

∫ x2
ε

δ
2ε

(
W k

2 (v) + (v′)2
)
dx

)
, (3.1)

where v is defined as

v(x) := u(εx).

By the change of variable y = x− δ
2ε , (3.1) becomes

ε

(∫ 0

−T1

(W k
1 (z) + (z′)2) dy +

∫ T2

0
(W k

2 (z) + (z′)2) dy
)
,

with

T1 :=
δ − 2x1

2ε
, T2 :=

2x2 − δ

2ε
and z(y) := v

(
y +

δ

2ε

)
.

Hence we find that a lower bound for the energy of a transition between the values z1, z2 is given

by

ε inf
T1,T2>0

inf
{∫ 0

−T1

(W k
1 (z) + (z′)2) dy +

∫ T2

0
(W k

2 (z) + (z′)2) dy :

z ∈W 1,2(−T1, T2), z(−T1) = z1, z(T2) = z2

}
. (3.2)
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20 1. A MODEL FOR THE INTERACTION BETWEEN OSCILLATIONS AND SURFACE ENERGY

Now let Zk
i be the set of the zeroes of W k

i for i = 1, 2; i.e.,

Zk
1 = {−1 + k; 1 + k} Zk

2 = {−1− k;−1 + k},

if zi ∈ Zk
i (i = 1, 2) we know that

inf
T1>0

inf

{∫ 0

−T1

(W k
1 (z) + (z′)2) dy : z ∈W 1,2(−T1, 0), z(−T1) = z1, z(0) = z0

}

= inf

{∫ 0

−∞
(W k

1 (z) + (z′)2) dy : z ∈W 1,2
loc (−∞, 0), z(−∞) = z1, z(0) = z0

}
(3.3)

and

inf
T2>0

inf

{∫ T2

0
(W k

2 (z) + (z′)2) dy : z ∈W 1,2(0, T2), z(0) = z0, z(T2) = z2

}

= inf

{∫ +∞

0
(W k

2 (z) + (z′)2) dy : z ∈W 1,2
loc (0,+∞), z(0) = z0, z(+∞) = z2

}
(3.4)

where z(−∞) and z(+∞) are understood as the existence of the corresponding limits. Then, it

is easy to check that (3.2) can be rewritten in terms of the two optimal profile problems (3.3)

and (3.4), as

ε inf
z0

{
inf
{∫ 0

−∞
(W k

1 (z) + (z′)2) dy : z ∈W 1,2
loc (−∞, 0), z(−∞) = z1, z(0) = z0

}

+ inf
{∫ +∞

0
(W k

2 (z) + (z′)2) dy : z ∈W 1,2
loc (0,+∞), z(0) = z0, z(+∞) = z2,

}}

and finally as

ε inf
z0

{
2

∣∣∣∣
∫ z0

z1

√
W k

1 (s)

∣∣∣∣+ 2

∣∣∣∣
∫ z2

z0

√
W k

2 (s)

∣∣∣∣
}
. (3.5)

Hence, if for every ζ1, ζ2 ∈ R, we set

CW k(ζ1, ζ2) := inf
z0

{
2

∣∣∣∣
∫ z0

ζ1

√
W k

1 (s)

∣∣∣∣+ 2

∣∣∣∣
∫ ζ2

z0

√
W k

2 (s)

∣∣∣∣
}
, (3.6)

we have ∫ x2

x1

(
W k

(x
δ
, u
)
+ ε2(u′)2

)
dx ≥ εCW k(z1, z2). (3.7)

At the end, recalling the definition of the potentialW k, in order to explicitly computeCW k(z1, z2)

we have to distinguish three cases.

Case 1 :

z1 = 1 + k; z2 = 1− k

Ck
1 := CW k(1 + k, 1− k) = inf

z0

{
2

∫ 1+k

z0

√
W k

1 (s) + 2

∫ z0

1−k

√
W k

2 (s)

}

= 2

∫ 1+k

1

√
W k

1 (s) + 2

∫ 1

1−k

√
W k

2 (s)

= 2k2.
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3. δ ≫ ε : OSCILLATIONS ON A LARGER SCALE THAN THE TRANSITION LAYER 21

δ
2

3
2δ

5
2δδ 2δ x

1− k

1 + k

−1− k

−1 + k

0

εCk
1

εCk
1

εCk
2

εCk
3

Figure 2. Different types of transitions with their (minimal) energy contribu-

tion, for k < 1
2 .

Moreover, it is immediate to prove that CW k(−1 + k,−1− k) = Ck
1 .

Case 2 :

z1 = −1 + k; z2 = 1− k

Ck
2 := CW k(−1 + k, 1− k) = inf

z0

{
2

∫ z0

−1+k

√
W k

1 (s) + 2

∫ 1−k

z0

√
W k

2 (s)

}

= 2

∫ 0

−1+k

√
W k

1 (s) + 2

∫ 1−k

0

√
W k

2 (s)

= 2(1− k)2.

Case 3 :

z1 = 1 + k; z2 = −1− k
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22 1. A MODEL FOR THE INTERACTION BETWEEN OSCILLATIONS AND SURFACE ENERGY

Ck
3 := CW k(1 + k,−1− k) = inf

z0

{
2

∫ k+1

z0

√
W k

1 (s) + 2

∫ z0

−1−k

√
W k

2 (s)

}

= 2

∫ k+1

1

√
W k

1 (s) + 2

∫ 1

−k−1

√
W k

2 (s)

= 2(1 + k2).

Remark 3.1. The constant Ck
3 is greater than both of Ck

1 , C
k
2 for every k ∈ (0, 1); i.e., the

transition between the two extreme zeroes 1+ k and −1− k is always energetically unfavorable.

While

Ck
1 < Ck

2 ⇐⇒ k <
1

2
, (3.8)

or in other words, the transition from 1 + k to 1− k (or equivalently from −1 + k to −1− k) is

more convenient than the one from −1 + k to 1− k if and only if k < 1
2 .

3.2. First order Γ-limit. We are now ready to state the Γ-convergence result for the

family of scaled functionals

F k(1)
ε (u) :=

F
k(0)
ε (u)

λ
(1)
ℓ (ε)

=





∫ 1

0

(
δ

ε
W k

(x
δ
, u
)
+ εδ(u′)2

)
dx if u ∈W 1,2(0, 1)

+∞ otherwise.

(3.9)

Notice that to not overburden notation, in F
k(1)
ε we omit its explicit dependence on ℓ.

Theorem 3.2. The family of functionals F
k(1)
ε defined as in (3.9), Γ-converges with respect

to the weak L2-convergence to the integral functional defined on L2(0, 1) by

F k(1)(u) =





∫ 1

0
ψk(u) dx if u ∈ L2(0, 1) and |u| ≤ 1 a.e.

+∞ otherwise ,

where

ψk(s) =




2Ck

1 if k ≤ 1
2

2(Ck
1 − Ck

2 )|s|+ 2Ck
2 if k > 1

2 .

Remark 3.3. A first difference between our model and the Modica-Mortola one is that now

the first order Γ-limit is again a bulk energy (i.e. an integral functional).

Before proving the Γ-convergence result for the functionals F
k(1)
ε we need some preliminary

results.

In the following proposition, η is the “small” positive parameter that we let go to zero in the

Γ-limit procedure.

Proposition 3.4. i) The family of functionals Gk
η defined on L2(−1

4 ,
1
4) by

Gk
η(u) =





∫ 1
4

− 1
4

(
1

η
W k(x, u) + η(u′)2

)
dx if u ∈W 1,2(−1

4 ,
1
4 )

+∞ otherwise
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3. δ ≫ ε : OSCILLATIONS ON A LARGER SCALE THAN THE TRANSITION LAYER 23

Γ-converges with respect to the strong L2-convergence to the functional defined on L2(−1
4 ,

1
4 ) by

Gk(u) =





CW (#(S(u)) − 1) + CW k(u(0+), u(0−))

if u ∈ BV
((
−1

4 ,
1
4

)
;Zk

1 ∪ Zk
2

)
:W k(x, u) = 0 a.e.

+∞ otherwise,

where u(0+), u(0−) are the values taken a.e. by u on (0, r) and (−r, 0), respectively, for r > 0

small enough.

ii)(Compatibility with integral constraint). Let s ∈ R and let Gk,s
η be defined on L2

(
−1

4 ,
1
4

)

by

Gk,s
η (u) =




Gk

η(u) if u ∈W 1,2
(
−1

4 ,
1
4

)
and −

∫ 1
4

− 1
4

u dx = s

+∞ otherwise.

Then the family of functionals Gk,s
η defined as above, Γ-converges with respect to the strong

L2-convergence to the functional defined on L2
(
−1

4 ,
1
4

)
by

Gk,s(u) =




Gk(u) if u ∈ L2

(
−1

4 ,
1
4

)
and −

∫ 1
4

− 1
4

u dx = s

+∞ otherwise.

Proof. The proofs of i) and ii) exactly follows the line of those of Theorem 6.4 and Theorem

6.6 in [14], with the only difference that now the set of the zeroes of the potentialW k varies with

x, being equal to Zk
1 in

(
0, 14
)
and to Zk

2 in
(
− 1

4 , 0
)
, thus forcing sequences with equi-bounded

energy to an additional transition in an η-neighborhood of x = 0. �

Corollary 3.5 (convergence of minimum problems). For any fixed η > 0 and for every

s ∈ R, let ϕk
η be the function defined as

ϕk
η(s) := min

{∫ 1
4

− 1
4

(
1

η
W k(x, u) + η(u′)2

)
dx : u ∈W 1,2

(
−1

4
,
1

4

)
,−
∫ 1

4

− 1
4

u dx = s

}
. (3.10)

Then for every s ∈ R
lim
η→0

ϕk
η(s) = ϕk(s)

where

ϕk(s) =





Ck
1 if s = −1; 1

Ck
2 if s = 0

Ck
3 if 0 < |s| < 1, k ≤ 1

2 ; Ck
2 + CW if 0 < |s| < 1, k > 1

2

+∞ if |s| > 1.

Proof. We preliminary observe that

minGk,±1 = Ck
1 , minGk,0 = Ck

2 , minGk,s =




Ck
1 + CW = Ck

3 if k ≤ 1
2

Ck
2 + CW if k > 1

2

for 0 < |s| < 1,
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24 1. A MODEL FOR THE INTERACTION BETWEEN OSCILLATIONS AND SURFACE ENERGY

while the set of functions u :
(
− 1

4 ,
1
4

)
→ R such that

u ∈ BV
((

0,
1

4

)
;Zk

1

)
, u ∈ BV

((
− 1

4
, 0
)
;Zk

2

)
and −

∫ 1
4

− 1
4

u = s, with |s| > 1

is empty. Then, since Gk,s
η

Γ−→ Gk,s, the desired convergence result immediately follows from

the general property of convergence of minimum values. �

Remark 3.6. By Remark 3.1 and since Ck
2 + CW > Ck

1 , we have that 2 (ϕk)∗∗(s) = ψk(s),

for any s such that |s| ≤ 1, and for every k ∈ (0, 1).

0 0 11−1 −1

(ϕk)∗∗

(ϕk)∗∗

ss

Ck
1

Ck
1

Ck
2

Ck
2

Ck
3 Ck

2 − CW

Figure 3. The functions ϕk and (ϕk)∗∗ for k < 1
2 and k > 1

2 .

Proposition 3.7. Let ϕk
η be the function defined as in (3.10); then

1. ϕk
η(s) ≤ Ck

3 for every s such that |s| ≤ 1;

2. if |s| ≤ 1 and vsη is a test function for ϕk
η(s), then there exists a constant M > 0

(independent of η) such that ||vsη ||∞ ≤M .

Proof. 1. For every s with |s| ≤ 1, we exhibit function vsη such that −
∫ 1

4

− 1
4

vsη dx = s and

whose energy is less then Ck
3 .

Let us start by s = 0; then as v0η we take the function defined by

v0η(x) :=




v0,−η (x) if − 1

4 ≤ x ≤ 0

v0,+η (x) if 0 < x ≤ 1
4 ,

where v0,−η , v0,+η respectively solve

min
v∈W1,2(− 1

4 ,0)

v(0)=0

∫ 0

− 1
4

(1
η
(v − 1 + k)2 + η(v′)2

)
dx, min

v∈W1,2(0, 14 )

v(0)=0

∫ 1
4

0

(1
η
(v + 1− k)2 + η(v′)2

)
dx;

or equivalently, the associated Cauchy problems



η2v′′ − v + 1− k = 0 in

(
− 1

4
, 0
)

v(0) = 0; v′
(
− 1

4

)
= 0

and




η2v′′ − v − 1 + k = 0 in

(
0,

1

4

)

v(0) = 0; v′
(1
4

)
= 0.
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3. δ ≫ ε : OSCILLATIONS ON A LARGER SCALE THAN THE TRANSITION LAYER 25

−1
4

1
4

x

1− k

−1 + k

0

v0η

Figure 4. The function v0η.

Hence, by directly solving the above equations we get

v0η(x) =





1− k + (k − 1) cosh
(x
η

)
+ (k − 1) sinh

(x
η

)
tanh

( 1

4η

)
if − 1

4 ≤ x ≤ 0

−1 + k − (k − 1) cosh
(x
η

)
+ (k − 1) sinh

(x
η

)
tanh

( 1

4η

)
if 0 ≤ x ≤ 1

4

(3.11)

thus immediately
∫ 1

4

− 1
4

v0η dx = 0.

Moreover, a straightforward calculation gives

∫ 1
4

− 1
4

(1
η
W k(x, v0η) + η(v0η

′
)2
)
dx = Ck

2 tanh
( 1

4η

)
,

and finally

ϕk
η(0) ≤ Ck

2 tanh
( 1

4η

)
< Ck

3 .

If s = 1, we proceed as above now taking as a test function for ϕk
η(1), v

1
η defined by

v1η(x) :=




v1,−η (x) if − 1

4 ≤ x ≤ 0

v1,+η (x) if 0 < x ≤ 1
4 ,
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26 1. A MODEL FOR THE INTERACTION BETWEEN OSCILLATIONS AND SURFACE ENERGY

where v1,−η , v1,+η are respectively solutions to

min
v∈W1,2(− 1

4 ,0)

v(0)=1

∫ 0

− 1
4

(1
η
(v − 1 + k)2 + η(v′)2

)
dx, min

v∈W1,2(0, 14 )

v(0)=1

∫ 1
4

0

(1
η
(v − 1− k)2 + η(v′)2

)
dx;

or to


η2v′′ − v + 1− k = 0 in

(
− 1

4
, 0
)

v(0) = 1; v′
(
− 1

4

)
= 0

and




η2v′′ − v + 1 + k = 0 in

(
0,

1

4

)

v(0) = 1; v′
(1
4

)
= 0.

1

−1
4

1
4

v1η

x

1− k

1 + k

0

Figure 5. The function v1η.

Hence, we find

v1η(x) =





1− k + k cosh
(x
η

)
+ k sinh

(x
η

)
tanh

( 1

4η

)
if − 1

4 ≤ x ≤ 0

1 + k − k cosh
(x
η

)
+ k sinh

(x
η

)
tanh

( 1

4η

)
if 0 ≤ x ≤ 1

4 ,

(3.12)

and we check that

−
∫ 1

4

− 1
4

v1η dx = 1.

Then, a direct computation gives

ϕk
η(1) ≤

∫ 1
4

− 1
4

(1
η
W k(x, v1η) + η(v1η

′
)2
)
dx = Ck

1 tanh
( 1

4η

)
< Ck

3 .
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3. δ ≫ ε : OSCILLATIONS ON A LARGER SCALE THAN THE TRANSITION LAYER 27

Notice that if s = −1, we simply take v−1
η := v1η − 2.

We now turn to the case 0 < |s| < 1. Let us start by dealing with s > 0. We show that

in this case a test function vsη can be obtained by suitably modifying and combining v1η and an

“optimal” transition between the two zeroes of W k
1 , 1 + k and −1 + k.

2. Let |s| ≤ 1 and let vsη ∈W 1,2(−1
4 ,

1
4) be a test function for ϕk

η(s).

We argue by contradiction supposing the existence of a point x′ ∈ (−1
4 ,

1
4) such that, for

instance

vsη(x
′) > M ≥ 3(1 + k). (3.13)

To fix the ideas, and without loss of generality, we may additionally assume that x′ ∈ (0, 14).

Now, appealing to 1. we have

ϕk
η(s) =

∫ 1
4

− 1
4

(1
η
W k(x, vsη) + η(vsη

′)2
)
dx ≤ Ck

3

and from it we deduce that (the restriction of) vsη converges in measure to Zk
1 in (0, 14), as η → 0.

In fact, for any fixed σ > 0

∣∣∣
{
x ∈

(
0,

1

4

)
: dist

(
vsη(x), Z

k
1

)
> σ

}∣∣∣min{W (τ) : ||τ | − 1| > η} ≤ Ck
3 η → 0 as η → 0.

Then, for sufficiently small η > 0 there exists x′′ ∈ (0, 14 ) such that

min
{
|vsη(x′′)− (1 + k)|, |vsη(x′′)− (−1 + k)|

}
≤ σ.

Let us suppose that |vsη(x′′)− (1 + k)| ≤ σ, hence in particular

vsη(x
′′) ≤ 2(1 + k), (3.14)

having also chosen σ = 1 + k.

Finally, using the so-called “Modica-Mortola trick” together with (3.13) and (3.14), we get

ϕk
η(s) ≥

∫ 1
4

0

(1
η
W k

1 (v
s
η) + η(vsη

′)2
)
dx ≥ 2

∫ vsη(x
′)

vsη(x
′′)

√
W k

1

>

∫ M

2(1+k)
(s− 1− k) =M2 − 2M(1 + k) ≥ 3 (1 + k)2 > Ck

3

and thus the contradiction.

Notice that if vsη converges in measure to the constant −1 + k, then since −1 + k < 1 + k,

exactly the same argument can be again applied to get the thesis. �

In all that follows, the letter C will stand for a generic strictly-positive constant which may

vary from line to line and expression to expression within the same formula.

Proof of Theorem 3.2. Step 1: Γ-liminf inequality

We have to prove that if uε ⇀ u in L2(0, 1), then F k(1)(u) ≤ lim infε→0 F
k(1)
ε (uε).
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28 1. A MODEL FOR THE INTERACTION BETWEEN OSCILLATIONS AND SURFACE ENERGY

By virtue of the nonnegative character of W k, we have

F k(1)
ε (uε) =

∫ 1

0

(
δ

ε
W k

(x
δ
, uε

)
+ εδ(u′ε)

2

)
dx

≥
[ 2δ−

1
2 ]∑

i=1

∫ (2i+1) δ
4

(2i−1) δ
4

(
δ

ε
W k

(x
δ
, uε

)
+ εδ(u′ε)

2

)
dx ,

then, by the change of variable

x = δt +
δ

2
i,

and setting

viε(t) := uε

(
δ
(
t+

i

2

))
, i = 1, . . . ,

[
2

δ
− 1

2

]

we get

F k(1)
ε (uε) ≥

[ 2δ−
1
2 ]∑

i=1

δ

∫ 1
4

− 1
4

(
δ

ε
W k

(
t+

i

2
, viε

)
+
ε

δ
((viε)

′)2
)
dt

=
∑

i even

δ

∫ 1
4

− 1
4

(
δ

ε
W k

(
t, viε

)
+
ε

δ
((viε)

′)2
)
dt

+
∑

i odd

δ

∫ 3
4

1
4

(
δ

ε
W k

(
t, wi

ε

)
+
ε

δ
((wi

ε)
′)2
)
dt,

where

wi
ε(t) := viε

(
t− 1

2

)
.

We now remark that

min

{∫ 1
4

− 1
4

(
δ

ε
W k(t, v) +

ε

δ
(v′)2

)
dt : −

∫ 1
4

− 1
4

v dt = s

}

= min

{∫ 3
4

1
4

(
δ

ε
W k(t, v) +

ε

δ
(v′)2

)
dt : −

∫ 3
4

1
4

v dt = s

}
,

as a consequence we find

F k(1)
ε (uε) ≥

[ 2δ−
1
2 ]∑

i=1

δmin
{∫ 1

4

− 1
4

(
δ

ε
W k (t, v) +

ε

δ
(v′)2

)
dt : −

∫ 1
4

− 1
4

v dt = −
∫ (2i+1) δ

4

(2i−1) δ
4

uε dt
}
. (3.15)

Hence, by using the notation introduced in Corollary 3.5, (3.15) becomes

F k(1)
ε (uε) ≥ 2

[ 2δ−
1
2 ]∑

i=1

δ

2
ϕk

ε
δ

(
−
∫ (2i+1) δ

4

(2i−1) δ
4

uε dt

)

and if we define ũε : (0, 1) → R as

ũε(x) :=

[ 2δ−
1
2 ]∑

i=1

(
−
∫ (2i+1) δ

4

(2i−1) δ
4

uε dt

)
χ((2i−1) δ

4
,(2i+1) δ

4)
(x),
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3. δ ≫ ε : OSCILLATIONS ON A LARGER SCALE THAN THE TRANSITION LAYER 29

we finally have

lim inf
ε→0

F k(1)
ε (uε) ≥ 2 lim inf

ε→0

∫ 1

0
ϕk

ε
δ
(ũε) dx,

where in the last inequality, we have used the definition of ũε and the fact that ϕk
ε
δ
(0) → Ck

2 , as

ε→ 0.

Notice that moreover, ũε⇀u in L2(0, 1).

Now our goal is to give an estimate from below on the function ϕk
ε
δ
. To this effect we first

consider the case |s| > 1. On one hand (see also (1.4)), for every s ∈ R we have that

ϕk
ε
δ
(s) ≥ inf

{
δ

ε

∫ 1
4

− 1
4

W k(t, v) dt : −
∫ 1

4

− 1
4

v dt = s

}

=
δ

ε
min

{
1

4
W ∗∗(s1 + k) +

1

4
W ∗∗(s2 − k) : s1 + s2 = 2s

}

=
δ

ε

W ∗∗(s)
2

,

so in particular

ϕk
δ
ε

(s) ≥ ε

δ

(|s| − 1)2

2
∀s : |s| > 1. (3.16)

On the other hand, for any fixed η > 0 there exist σ, ε0 > 0 such that

ϕk
ε
δ
(s) ≥ Ck

1 − η2 ∀s ∈ (1, 1 + σ), ∀ε < ε0 (3.17)

and the above inequality can be proved by means of the following contradiction argument. If

(3.17) does not hold true we can find two sequences sn → 1, εn → 0 for which

ϕk
εn

δ(εn)
(sn) < Ck

1 − η20 (3.18)

for every n ∈ N and for some η0 > 0. Appealing to Corollary 3.5 we can also deduce

Ck
1 = ϕk(1) ≤ lim inf

n→+∞
ϕk

εn
δ(εn)

(sn),

and combining it with (3.18) we find the contradiction. Note that, by symmetry, (3.17) also

stands for every s ∈ (−1− σ,−1).

Hence, gathering (3.16) and (3.17) we deduce that for every η > 0 and for any sufficiently

small ε > 0,

ϕk
ε
δ
(s) ≥ (Ck

1 − η2) ∨
(
δ

ε

(|s| − 1)2

2

)
∀s : |s| > 1. (3.19)

Now it remains to give an estimate on ϕk
ε
δ
for |s| ≤ 1. To this purpose, for any fixed η > 0, let

us consider the set

Aε
η :=

{
t ∈

(
−1

4
,
1

4

)
: dist(vsε(t), Z

k(t)) > η

}
,

where vsε is a test function for ϕk
ε
δ
(s) and Zk(t) is defined by

Zk(t) :=

{
Zk
2 if t ∈

(
−1

4 , 0
)

Zk
1 if t ∈

(
0, 14
)
.
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30 1. A MODEL FOR THE INTERACTION BETWEEN OSCILLATIONS AND SURFACE ENERGY

Then, arguing as in the proof of Proposition 3.7-2., we deduce that the measure of Aε
η tends to

zero as ε→ 0. In fact, we have

|Aε
η|min{W (τ) : ||τ | − 1| > η} ≤ ε

δ
Ck
3 → 0 , as ε→ 0.

As a consequence, for any sufficiently small ε > 0 we can find t− ∈ (−1
4 , 0), t

+ ∈ (0, 14) such that

dist(vsε(t
±), Zk(t±)) ≤ η.

Let us suppose for a moment that one of the following inequalities holds true

|vsε(t−)− (−1− k)| ≤ η, |vsε(t+)− (1 + k)| ≤ η, (3.20)

assuming for instance the first, we deduce

ϕk
ε
δ
(s) =

∫ 1
4

− 1
4

(
δ

ε
W k(t, vsε) +

ε

δ
(vsε

′)2
)
dt ≥ CW k(−1− k + η,−1 + k − η),

with CW k(·, ·) as in (3.6); finally

ϕk
ε
δ
(s) ≥ Ck

1 − Cη2. (3.21)

Now our plan is to prove that whenever 4η < |s| ≤ 1 at least one of the inequalities in (3.20)

is fulfilled. Arguing by contradiction we can find a number η0 > 0 and a sequence εn → 0 such

that for every n ∈ N

|vsεn(t)− (−1− k)| > η0 ∀t ∈
(
−1

4
, 0

)
, |vsεn(t)− (1 + k)| > η0 ∀t ∈

(
0,

1

4

)
. (3.22)

If we set

Zk
0 (t) :=

{
1− k if t ∈

(
−1

4 , 0
)

−1 + k if t ∈
(
0, 14
)
,

in view of (3.22), Aεn
η0 can be rewritten as

Aεn
η0 =

{
t ∈

(
−1

4
,
1

4

)
: dist(vsεn(t), Z

k
0 (t)) > η0

}

and again, for the complement of Aεn
η0 we have
(
Aεn

η0

)c
= Bεn,−

η0 ∪Bεn,+
η0 (3.23)

where

Bεn,−
η0 :=

{
t ∈

(
−1

4
, 0

)
: |vsεn(t)− (1− k)| ≤ η0

}
,

Bεn,+
η0 :=

{
t ∈

(
0,

1

4

)
: |vsεn(t)− (−1 + k)| ≤ η0

} (3.24)

and ∣∣Bεn,−
η0

∣∣−
∣∣Bεn,+

η0

∣∣→ 0, as n→ +∞. (3.25)

Without loss of generality, we can suppose s > 0, therefore

2η0 <

∫ 1
4

− 1
4

vsεn dt =

∫

Aεn
η0

vsεn dt+

∫

(Aεn
η0

)c
vsεn dt.
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3. δ ≫ ε : OSCILLATIONS ON A LARGER SCALE THAN THE TRANSITION LAYER 31

Now by (3.23), (3.24) and appealing to Proposition 3.7-2., we deduce

2η0 <

∫

Aεn
η0

vsεn dt+

∫

Bεn,−
η0

vsεn dt+

∫

Bεn,+
η0

vsεn dt

≤ M |Aεn
η0 |+ (η0 + (1− k))|Bεn,−

η0 |+ (η0 + (−1 + k))|Bεn,+
η0 |

≤ M |Aεn
η0 |+

η0
2

+ (1− k)(|Bεn,−
η0 | − |Bεn,+

η0 |),

moreover by (3.25), for any sufficiently large n, we have

|Aεn
η0 | >

η0
M

and from it, the contradiction.

Then, for |s| ≤ 4η it is easy to check that

ϕk
ε
δ
(s) ≥ Ck

2 − Cη2. (3.26)

Finally, combining (3.19), (3.21) and (3.26) we get

ϕk
ε
δ
(s) ≥ ψk

η,ε(s) =





Ck
2 −Cη2 if |s| ≤ η

Ck
1 −Cη2 if η < |s| ≤ 1

(Ck
1 − Cη2) ∨

(
δ
ε
(|s|−1)2

2

)
if |s| > 1

for every s ∈ R and for every 0 < η < 1; hence

lim inf
ε→0

F k(1)
ε (uε) ≥ lim inf

ε→0
2

∫ 1

0
ψk
η,ε(ũε) dx.

00 1 1−1−1

ψk
η,ε ψk

η,ε

s sηη−η −η

Ck
1 − Cη2

Ck
1 − Cη2Ck

2 − Cη2

Ck
2 − Cη2

δ
ε

(s−1)2

2
δ
ε

(s−1)2

2
δ
ε

(s+1)2

2
δ
ε

(s+1)2

2

Figure 6. The function ψk
η,ε for k < 1

2 and k > 1
2 .

To conclude the proof, we note that
(
ψk
η,ε

)
is increasing for ε→ 0, so in particular

ψk
η,ε(s) ≥ ψk

η,ε0(s), ∀ s ∈ R , ∀ ε ≤ ε0.

Then

lim inf
ε→0

∫ 1

0
ψk
η,ε(ũε) dx ≥ lim inf

ε→0

∫ 1

0
ψk
η,ε0(ũε) dx

≥ lim inf
ε→0

∫ 1

0

(
ψk
η,ε0

)∗∗
(ũε) dx ≥

∫ 1

0

(
ψk
η,ε0

)∗∗
(u) dx,
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32 1. A MODEL FOR THE INTERACTION BETWEEN OSCILLATIONS AND SURFACE ENERGY

in the last inequality using the fact that ũε ⇀ u in L2(0, 1) and the L2-weak lower semicontinuity

of u :−→
∫ 1
0

(
ψk
η,ε0

)∗∗
(u) dx. Moreover, by the Monotone Convergence Theorem

lim
ε0→0

∫ 1

0

(
ψk
η,ε0

)∗∗
(u) dx =

∫ 1

0
lim
ε0→0

(
ψk
η,ε0

)∗∗
(u) dx =

∫ 1

0

(
ψk
η

)
(u) dx,

where

ψk
η(s) =




Ck
1 − Cη2 if |s| ≤ 1

+∞ otherwise
if k ≤ 1

2

or

ψk
η(s) =





Ck
2 − Cη2 if |s| ≤ η

Ck
1 − Ck

2

1− η
|s|+ Ck

2 − Ck
1 − Ck

2

1− η
η − Cη2 if η < |s| ≤ 1

+∞ otherwise

if k >
1

2
.

Collecting these inequalities we find that

Γ- lim inf
ε→0

F k(1)
ε (u) ≥ 2

∫ 1

0
ψk
η(u) dx.

and by the arbitrariness of η

Γ- lim inf
ε→0

F k(1)
ε (u) ≥ 2 sup

η>0

∫ 1

0
ψk
η(u) dx.

Hence, again applying the Monotone Convergence Theorem we obtain the desired result for both

k ≤ 1
2 and k > 1

2 .

Step 2: Γ-limsup inequality

To check the limsup inequality for the Γ-limit, it will suffice to deal with the case of a constant

target function u ≡ c (−1 ≤ c ≤ 1), sice by repeating that construction we can easily deal with

the case u piecewise constant and then the general case follows by density.

We start approximating c = 1. Fix η > 0; by (3.2), (3.5) there exist T1, T2 > 0 and

v1 ∈W 1,2(−T1, T2) such that v1(−T1) = 1 + k, v1(T2) = 1− k and

∫ 0

−T1

(
W k

1 (v1) + (v′1)
2
)
dx+

∫ T2

0

(
W k

2 (v1) + (v′1)
2
)
dx ≤ Ck

1 +
η

2
.
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Note that it is not restrictive to suppose T1 = T2 =: T . Then, for instance, as a recovery

sequence, we can take

uε(x) =





1 + k if 0 < x ≤ δ
4

viε,1(x) if (4i − 3) δ4 < x < (4i+ 1) δ4 for i = 1, . . . ,
[
1
δ − 1

4

]

1 + k if
(
4
[
1
δ − 1

4

]
+ 1
)

δ
4 ≤ x < 1

where

viε,1(x) =





1 + k if (4i− 3) δ4 < x < (2i − 1) δ2 − εT

v1

(x− (2i − 1) δ2
ε

)
if (2i− 1) δ2 − εT ≤ x ≤ (2i − 1) δ2 + εT

1− k if (2i− 1) δ2 + εT < x < iδ − εT

v1

( iδ − x

ε

)
if iδ − εT ≤ x ≤ iδ + εT

1 + k if iδ + εT < x < (4i + 1) δ4 .

i ∈ N (3.27)

In fact, recalling that ε≪ δ it is easy to check that uε ⇀ 1 in L2(0, 1), while

lim sup
ε→0

F k(1)
ε (uε) = lim sup

ε→0

[ 1δ−
1
4 ]∑

i=1

∫ (4i+1) δ
4

(4i−3) δ
4

(
δ

ε
W k

(x
δ
, viε,1

)
+ εδ((viε,1)

′)2
)
dx

≤ lim
ε→0

[
1

δ
− 1

4

]
δ(2Ck

1 + η) = 2Ck
1 + η, ∀η > 0

permits to conclude that

lim sup
ε→0

F k(1)
ε (uε) ≤ F k(1)(1).

Replacing 1 ± k with −1± k and v1 with its analogous v−1, a similar construction yields viε,−1

and consequently the Γ-limsup for c ≡ −1.

If −1 < c < 1, it is necessary to make a distinction between the cases k ≤ 1
2 , k >

1
2 .

Let k ≤ 1
2 ; writing c as a convex combination of 1 and −1, we have

c =
c+ 1

2
− 1− c

2
.

Now let (nν1), (n
ν
2) be two sequences of positive integers such that

nν1, n
ν
2 → +∞ and

nν1
nν2

→ c+ 1

1− c
, as ν → 0. (3.28)
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34 1. A MODEL FOR THE INTERACTION BETWEEN OSCILLATIONS AND SURFACE ENERGY

With fixed ν > 0, we choose ε > 0 such that (nν1 + nν2 + 1)δ ≪ 1. With this choice we consider

the (nν1 + nν2 + 1)δ-periodic function Uν
ε , on R+, which on

(
δ
4 , (4(n

ν
1 + nν2) + 5) δ4

)
is defined as:

Uν
ε (x) =





viε,1(x) if x ∈
(
(4i− 3) δ4 , (4i + 1) δ4

)
for i = 1, . . . , nν1

wε(x) if x ∈
(
(4nν1 + 1) δ4 , (4n

ν
1 + 5) δ4

)

viε,−1(x) if x ∈
(
(4i− 3) δ4 , (4i + 1) δ4

)
for i = nν1 + 2, . . . , nν1 + nν2

w̃ε(x) if x ∈
(
(4(nν1 + nν2) + 1) δ4 , (4(n

ν
1 + nν2) + 5) δ4

)

where viε,1 is as in (3.27) and viε,−1 is its analogous. Moreover wε is given by

wε(x) =





v
nν
1+1

ε,1 (x) if (4nν1 + 1) δ4 < x ≤ (2nν1 + 1) δ2 + εT

1− k if (2nν1 + 1) δ2 + εT < x < (nν1 + 1) δ2 − εT ′

v0

(x− (nν1 + 1)δ

ε

)
if (nν1 + 1)δ − εT ′ ≤ x ≤ (nν1 + 1)δ + εT ′

−1 + k if (nν1 + 1)δ + εT ′ < x < (4nν1 + 5) δ4

with T ′ > 0 and v0 ∈W 1,2(−T ′, T ′) such that v0(−T ′) = 1− k, v0(T
′) = −1 + k and

∫ 0

−T ′

(
W k

1 (v0) + (v′0)
2
)
dx+

∫ T ′

0

(
W k

2 (v0) + (v′0)
2
)
dx ≤ Ck

2 +
η

2
,

while w̃ε is defined as

w̃ε(x) =





−1 + k if (4(nν1 + nν2) + 1) δ4 < x < (2(nν1 + nν2) + 1) δ2 − εT ′

v0

(
(2(nν

1+nν
2)+1) δ

2
−x

ε

)
if (2(nν1 + nν2) + 1) δ2 − εT ′ ≤ x ≤ (2(nν1 + nν2) + 1) δ2 + εT ′

1− k if (2(nν1 + nν2) + 1) δ2 + εT ′ < x < (nν1 + nν2 + 1)δ − εT

v
nν
1+nν

2+1
ε,1 (x) if (nν1 + nν2 + 1)δ − εT ≤ x ≤ (4(nν1 + nν2) + 5) δ4 .

Taking uνε := Uν
ε |(0,1), we have

lim sup
ε→0

F k(1)
ε (uνε) ≤ lim

ε→0
((2Ck

1 + η)(nν1 + nν2)δ + (2Ck
2 + η)δ)

[
1

(nν1 + nν2 + 1)δ

]

= (2Ck
1 + η)

nν1 + nν2
nν1 + nν2 + 1

+ (2Ck
2 + η)

1

nν1 + nν2 + 1
=: ak,ν

Moreover,

lim
ν→0

ak,ν = 2Ck
1 + η

then a diagonalization argument (cf. [?], Corollary 1.18) permits to find a positive decreasing

(as ε decrease) function ν = ν(ε) such that ν(ε) → 0 as ε→ 0, for which

lim sup
ε→0

F k(1)
ε (uν(ε)ε ) ≤ 2Ck

1 + η.

Finally, using (3.28) and the fact that ε≪ δ it is easy to check that we also have

uν(ε)ε ⇀ c in L2(0, 1)
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3. δ ≫ ε : OSCILLATIONS ON A LARGER SCALE THAN THE TRANSITION LAYER 35

and hence, the Γ-limsup for −1 < c < 1 and k ≤ 1
2 .

Let k > 1
2 ; now to approximate a constant c, on one hand, it is no more “optimal” to oscillate

between 1 + k, 1 − k and −1 + k, −1 − k, because in this case the most convenient transition

is the one from 1 − k to −1 + k (see Remark 3.1). While on the other hand, using convenient

transitions (following the construction made for c = 1) only permits to approximate c = 0.

Then, for instance, to obtain a recovery sequence for 0 < c < 1 it is necessary to mix, in the

right proportion, oscillation between 1+ k, 1− k with those between 1− k, −1+ k. In this way,

following a procedure which is similar to that of the previous case, but now with

nν1
nν2

→ c

1− c
as ν → 0,

it is possible to construct a sequence uε ⇀ c in L2(0, 1) such that

lim sup
ε→0

F k(1)
ε (uε) ≤ lim

ε→0

(
(2Ck

1 + η)(n
ν(ε)
1 + 1)δ + (2Ck

2 + η)n
ν(ε)
2 δ

)[ 1

(n
ν(ε)
1 + n

ν(ε)
2 + 1)δ

]

= c(2Ck
1 + η) + (1− c)(2Ck

2 + η) = 2(Ck
1 − Ck

2 ) c+ 2Ck
2 + η.

And this concludes the proof of the Γ-limsup inequality. �

3.3. Second order Γ-limit. In the spirit of studying the asymptotic behavior of the family

of functionals (F
k(0)
ε ), Theorem 3.2 suggests that the characterization of the limit points of

sequences of minimizers, as well as the development for the minimum valuesmk
ε , can be improved

for k ≤ 1
2 .

In fact, for k ≤ 1
2 , F

k(1) ≡ 2Ck
1 so that we are again in the condition that the (first order)

Γ-limit only provides the information that the weak limit of sequences of minimizers can be any

function v ∈ L2(0, 1) such that |v| ≤ 1 a.e..

For k > 1
2 , the functional F

k(1) admits the unique minimizer u ≡ 0. Nonetheless, as we show

in Section 3.3.2, the non strict convexity of ψk allows as to consider a further scaling and thus

another term in the Γ-development, in this case too.

Since each of the two cases k ≤ 1
2 , k >

1
2 needs a peculiar investigation, we discuss the second

order asymptotic analysis for (F
k(0)
ε ) in two different sections. The first one, Section 3.3.1, is

devoted to the case k ≤ 1
2 , which is also addressed to as the case of small perturbations; while

the second one, Section 3.3.2, deals with k > 1
2 , the case of large perturbations.

3.3.1. k < 1
2 : small perturbations. In terms of the asymptotic development for the minimum

value mk
ε , the combined computation of the zero order and the first order Γ-limit gives

mk
ε =

ε

δ
2Ck

1 + o
(ε
δ

)
, as ε→ 0.

Then to further improve the above development, we need to quantify the “small” error o( εδ ), and

hence to identify the next meaningful scaling that we denote by λ
(2)
∞ (ε) (not to make confusion

with the scaling for k > 1
2 that we in the sequel denote by λ

(2)
∞ (ε)).
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Once λ
(2)
∞ (ε) is conjectured, we study the Γ-limit of the scaled functionals

F k(2)
ε :=

F
k(0)
ε − ε

δ
2Ck

1

λ
(2)
∞ (ε)

.

So the next step is trying to guess, by means of a heuristics, what the second meaningful scale

λ
(2)
∞ (ε) is.

To this aim, we first observe that in order to keep F
k(0)
ε − ε

δ 2C
k
1 bounded, a minimizing

sequence must oscillate (except possibly on a finite number of δ-intervals) between 1 + k, 1− k

or between −1 + k, −1− k.

Then, we focus on a δ
2 -interval, for instance ( δ4 ,

3
4 δ) and we estimate the contribution of

F
k(0)
ε − ε

δ 2C
k
1 over this interval. We have

∫ 3
4
δ

δ
4

(
W k
(x
δ
, u
)
+ ε2(u′)2

)
dx− εCk

1

= ε
( ∫ 3

4
δ

δ
4

(1
ε
W k
(x
δ
, u
)
+ ε(u′)2

)
dx− Ck

1

)

= ε
( ∫ 1

2

1
4

(δ
ε
W k

1 (u) +
ε

δ
(u′)2

)
dx+

∫ 3
4

1
2

(δ
ε
W k

2 (u) +
ε

δ
(u′)2

)
dx− Ck

1

)
. (3.29)

Then a direct minimization of (3.29) yields

εCk
1

(
tanh

( δ
4ε

)
− 1
)
= O

(
ε e−

δ
2ε

)
, as ε→ 0,

and it is easy to check that the above minimum value is attained, for instance, by the function

v1η (defined by (3.11), Proposition 3.7) with η = ε
δ . Thus, by repeating the previous argument

over each δ
2 -interval (except possibly a finite number of them) we get a first energy contribution

of order ε
δ e

− δ
2ε .

The energy (3.29) is minimized also by v−1
ε
δ

(i.e. by a transition with average −1), hence

the total energy of a minimizing sequence may well be the result of a finite number of passages

from oscillations with average 1 to oscillations with average −1 and viceversa. Since each of

these passages gives an additional contribution of order ε, the total energy contribution of a

minimizing sequence turns out to be of order

ε

δ
e−

δ
2ε + ε.

If we have
ε

δ
e−

δ
2ε ≫ ε ⇐⇒ e−

δ
2ε ≫ δ,

then λ
(2)
∞ (ε) = ε

δ e
− δ

2ε . Loosely speaking, with this choice for the scaling we decide to pay the

error that we make “cutting the tails” of the unbounded number of infinite transitions that we

are gluing one each other. Thus, in this case we expect to find again a constant Γ-limit which

now is given by

lim
ε→0

2Ck
1

(
tanh

(
δ
4ε

)
− 1
)

e−
δ
2ε

= −4Ck
1 .
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If we have

e−
δ
2ε ≪ δ,

then λ
(2)
∞ (ε) = ε and this choice penalizes the passages from the oscillations around 1 to those

around −1 and viceversa. Therefore, if λ
(2)
∞ (ε) = ε we expect that (F

k(2)
ε ) Γ-converges to a

surface energy which penalizes the jumps of the limit configuration, between 1 and −1.

As we are concerned not only with a better development formk
ε but also with an improvement

in the characterization of the asymptotic behavior of sequences of minimizers, we decide to focus

on the case e−
δ
2ε ≪ δ and hence, on the case

λ(2)∞ (ε) = ε.

Then, we look at the scaled functionals

F k(2)
ε (u) =

F
k(0)
ε (u)− ε

δ
2Ck

1

ε

=





∫ 1

0

(
1

ε
W k

(x
δ
, u
)
+ ε(u′)2

)
dx− 2Ck

1

δ
if u ∈W 1,2(0, 1)

+∞ otherwise.

(3.30)

We now come to a rigorous justification of what has been only heuristically conjectured.

First we want to prove that the uniform boundedness of F
k(2)
ε (uε) implies in the limit (ε→ 0)

both the constraint u ∈ {±1} and that u is piecewise constant.

Lemma 3.8. If supε F
k(2)
ε (uε) < +∞ then, up to an extraction, (uε) converges to some

function u ∈ BV ((0, 1); {±1}) with respect to the weak L2-convergence.

Proof. Let u−, u+ be the 1-periodic functions on R+, which on (0, 1) are defined as

u−(t) :=

{
−1 + k if t ∈

(
0, 12
)

−1− k if t ∈
(
1
2 , 1
) u+(t) :=

{
1 + k if t ∈

(
0, 12
)

1− k if t ∈
(
1
2 , 1
)
.

(3.31)

With fixed ε > 0, we partition [0, 1] into subintervals Iδi , i = 1, . . . ,
[
1
δ

]
of length δ (except

possibly the last of length less than δ). Let uε be such that supε F
k(2)
ε (uε) < +∞ and set

u±δ (x) := u±
(
x
δ

)
. The first step of the proof consists in showing that for any fixed η > 0, if Iδ

η

is the set of all the indices i in
{
1, . . . ,

[
1
δ

]}
such that

(
−
∫

Iδi

∣∣uε − u−δ
∣∣ dx

)
∧
(
−
∫

Iδi

∣∣uε − u+δ
∣∣ dx

)
≤ η , (3.32)

then

lim
ε→0

δ#(Iδ
η) = 1. (3.33)

In other words, we are saying that for every η > 0, (3.32) is satisfied on a “large” number of

intervals Iδi (provided that ε is sufficiently small). In order to prove (3.33), we give an estimate

on the cardinality of the family of indices i for which
(
−
∫

Iδi

∣∣uε − u−δ
∣∣ dx

)
∧
(
−
∫

Iδi

∣∣uε − u+δ
∣∣ dx

)
> η.
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Let us call J δ
η such a family. Before starting, we point out that the following statement

there exists M > 0 such that |uε(x)| ≤M, ∀x ∈ Iδi (3.34)

holds true, with the same constant M (e.g. M = 2), except for at most a bounded number of

indices i. In fact, arguing as in the proof of Proposition 3.7-2., the above statement can be easily

deduced by the uniform boundedness of F
k(2)
ε (uε). So from now on, we focus our attention only

on intervals Iδi in which (3.34) is satisfied.

If i ∈ J δ
η we have that

η < −
∫

Iδi

∣∣uε − u+δ
∣∣ dx

=
1

δ

∫

{x∈Iδi : |uε−u+
δ |≤ η

2}
∣∣uε − u+δ

∣∣ dx

+
1

δ

∫

{x∈Iδi : |uε−u+
δ |> η

2}
∣∣uε − u+δ

∣∣ dx

≤ η

2
+
C

δ

∣∣∣
{
x ∈ Iδi :

∣∣uε − u+δ
∣∣ > η

2

}∣∣∣

hence ∣∣∣
{
x ∈ Iδi :

∣∣uε − u+δ
∣∣ > η

2

}∣∣∣ > Cδ.

Notice that the same conclusion also stands replacing u+δ with u−δ . As a consequence
∫

Iδi

W k
(x
δ
, uε

)
dx > Cδ, for every i ∈ J δ

η

and this implies

F k(0)
ε (uε) ≥ #(J δ

η )Cδ. (3.35)

By hypothesis F
k(2)
ε (uε) ≤ C, therefore

F k(0)
ε (uε) ≤ εC +

ε

δ
2Ck

1 = O
(ε
δ

)
as ε→ 0 (3.36)

then, gathering (3.35) and (3.36) we get

δ#(J δ
η ) → 0 as ε→ 0

and hence the desired result.

Let Nε be the overall number of transitions of uε between 1+ k± η and −1− k± η; 1+ k± η

and −1 + k ± η; 1− k ± η and −1− k ± η; 1− k ± η and −1 + k ± η. From now on we refer to

these transitions as the “expensive” transitions. To conclude the proof we notice that the most

convenient of such transitions is the one from −1+ k+ η to 1− k− η and, in terms of F
k(0)
ε (uε),

it costs at least ε(Ck
2 − Cη2). Then, recalling that Ck

2 > Ck
1 , (for η small) from the uniform

boundedness of F
k(2)
ε (uε) we can deduce that Nε ≤ N , for some N ∈ N. As a consequence, (up

to an extraction) uε makes a number of “expensive” transitions which is actually independent

of ε; we call such a number N .
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Let Sε = {tε1, . . . , tεN−1} (with tεn < tεn+1, n = 1, . . . , N − 2) be a set of points dividing (0, 1)

into N subintervals each containing only one expensive transition for uε. Up to eventual, further

extractions we can suppose that

tεn → tn as ε→ 0, for n = 1, . . . , N − 1.

Then, for fixed σ > 0, if we consider the N intervals

Jn
σ = (tn + σ, tn+1 − σ), n = 0, . . . , N − 1 (with t0 = 0, tN = 1)

we have that

Jn
σ ∩ Sε = ∅, (3.37)

for sufficiently small ε and for every n = 0, . . . , N − 1.

By virtue of (3.37), applying to Jn
σ the result established in the first part of the proof, we

have that, for instance,

lim sup
ε→0

∫

Jn
σ

∣∣uε − u+δ
∣∣ dx ≤ Cη. (3.38)

On the other hand, by weak compactness we have uε ⇀ u in L2(Jn
σ ), while from (3.31) u+δ ⇀ 1

in L2(Jn
σ ); thus by the weak lower semicontinuity of the L1-norm we deduce

∫

Jn
σ

|u− 1| dx ≤ lim inf
ε→0

∫

Jn
σ

∣∣uε − u+δ
∣∣ dx,

and combining it with (3.38) we find
∫

Jn
σ

|u− 1| dx ≤ Cη ∀ η, σ > 0.

Finally by the arbitrariness of η and σ it follows that u ≡ 1 on Jn = (tn, tn+1). Thus by repeating

the above argument on all intervals of Jn (n = 0, . . . , N − 1), which determine a partition of

[0, 1], we get the thesis. �

We have the following Γ-convergence result.

Theorem 3.9. Let δ be such that δ ≫ e−
δ
2ε and 1

δ ∈ N. The family of functionals F
k(2)
ε

defined in (3.30) Γ-converges with respect to the weak L2-convergence to the functional defined

on L2(0, 1) by where

F k(2)(u) =




(Ck

2 − Ck
1 )#(S(u)) − Ck

1 if u ∈ BV ((0, 1); {±1})
+∞ otherwise.

Proof. Step 1: Γ-liminf inequality

We have to prove that if uε ⇀ u in L2(0, 1) and supε F
k(2)
ε (uε) < +∞, then F k(2)(u) ≤

lim infε→0 F
k(2)
ε (uε).

By Lemma 3.8 we already know that u ∈ BV ((0, 1); {±1}); let us set N := #(S(u)).

For fixed ε > 0, we consider the partition of the interval
[
δ
4 , 1− δ

4

]
into subintervals Iδi :=
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[
(2i− 1) δ4 , (2i + 1) δ4

]
with i = 1, . . . , 2δ − 1 and we rewrite F

k(2)
ε (uε) as

F k(2)
ε (uε) =

∫ δ
4

0

(
1

ε
W k

1 (uε) + ε(u′ε)
2

)
dx+

2
δ
−1∑

i=1

(
1

ε
F k(0)
ε (uε; I

δ
i )− Ck

1

)
− Ck

1

+

∫ 1

1− δ
4

(
1

ε
W k

2 (uε) + ε(u′ε)
2

)
dx

where

F k(0)
ε (uε; I

δ
i ) :=

∫ (2i+1) δ
4

(2i−1) δ
4

(
W k

(x
δ
, uε

)
+ ε2(u′ε)

2
)
dx.

By a straightforward calculation we find that

min
v∈W 1,2(Iδi )

(
1

ε
F k(0)
ε (v; Iδi )− Ck

1

)
= Ck

1

(
tanh

( δ
4ε

)
− 1
)
= O(e−

δ
2ε ) as ε→ 0,

for every i = 1, . . . , 2δ − 1 and the minimum is attained at

uiε,1(x) =





v1ε

( i
2
− x

δ

)
if i is odd

v1ε

(x
δ
− i

2

)
if i is even

i = 1, . . . ,
2

δ
− 1, (3.39)

where v1ε is as in (3.12) with η = ε.

If N = 0, since

F k(2)
ε (uε) ≥

2
δ
−1∑

i=1

(
1

ε
F k(0)
ε (uε; I

δ
i )− Ck

1

)
− Ck

1 (3.40)

we then obtain the thesis simply taking the minimum of each term on the right hand side of

(3.40) and recalling that by hypothesis

lim
ε→0

e−
δ
2ε

δ
= 0.

If N > 0, let Nε be as in Lemma 3.8, then, as already observed, Nε is bounded and moreover

lim inf
ε→0

Nε ≥ N. (3.41)

To get the liminf inequality for the Γ-limit we need a lower bound for the energy of the expensive

transitions. Then we first give an estimate on the measure of the set where a transition between

two of the zeroes of W k may occur. Let η be a positive number and set

Jδ
i :=

{
t ∈ Iδi : dist(uε, Z

k,δ
i (t)) > η

}
,

where

Zk,δ
i (t) :=





Zk
1 if t ∈

(
(2i− 1) δ4 , i

δ
2

)

Zk
2 if t ∈

(
i δ2 , (2i + 1) δ4

)
if i is odd,
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while

Zk,δ
i (t) :=





Zk
2 if t ∈

(
(2i− 1) δ4 , i

δ
2

)

Zk
1 if t ∈

(
i δ2 , (2i + 1) δ4

)
if i is even.

We have

1

ε
F k(0)
ε (uε; I

δ
i ) ≥

1

ε
F k(0)
ε (uε;J

δ
i ) ≥ Cη2

|Jδ
i |
ε

and from supε F
k(2)
ε (uε) < +∞ we deduce that, for every i, |Jδ

i | = O(ε) as ε tends to zero.

Hence we can conclude that an expensive transition may only be of two different types.

Type 1: the transition entirely occurs in an interval Iδi0 for some i0; in this case we have

1

ε
F k(0)
ε (uε; I

δ
i0) ≥ CW k(1− k − η,−1 + k + η) ≥ Ck

2 − Cη2. (3.42)

Type 2: the transition occurs between two adjacent intervals Iδi0, I
δ
i0+1 for some i0; in this

case we have

1

ε
F k(0)
ε (uε; I

δ
i0) +

1

ε
F k(0)
ε (uε; I

δ
i0+1)

≥ CW k
1
(1 + k − η,−1 + k + η)

(
= CW k

2
(1− k − η,−1− k + η)

)

≥ 2− Cη2. (3.43)

So if we call N j
ε (j = 1, 2) the number of the expensive transitions of type j, then Nε = N1

ε +N
2
ε .

By combining (3.42) and (3.43) we find that (at least)

F k(2)
ε (uε) ≥

(
2

δ
− 1−N1

ε − 2N2
ε

)
Ck
1

(
tanh

( δ
4ε

)
− 1
)

+ N1
ε (C

k
2 − Ck

1 − Cη2) +N2
ε (2− 2Ck

1 − Cη2)− Ck
1

≥ 2

δ
Ck
1

(
tanh

( δ
4ε

)
− 1
)
+Nε(C

k
2 − Ck

1 − Cη2)− Ck
1

in the last inequality using the fact that 2 ≥ Ck
1 +Ck

2 . Finally, passing to the liminf, in view of

(3.41) we get

lim inf
ε→0

F k(2)
ε (uε) ≥ N(Ck

2 − Ck
1 − Cη2)− Ck

1 , ∀ η > 0

and thus letting η go to zero, the Γ-liminf inequality.

Step 2: Γ-limsup inequality

Let x0 ∈ (0, 1), to check the limsup inequality for the Γ-limit, it will suffice to deal with the case

u(x) =




−1 if x < x0

1 if x ≥ x0.
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Let uiε,1 be as in (3.39) and set uiε,−1 := uiε,1 − 2 for i = 1, . . . , 2δ − 1. As a recovery sequence we

can take

uε(x) =





u1ε,1

(
δ
4

)
if x ∈ (0, δ4)

uiε,1(x) if x ∈
(
(2i− 1) δ4 , (2i + 1) δ4

)
for i = 1, . . . , 2

[
x0
δ

]
− 2

ŵε(x) if x ∈
(
(4
[
x0
δ

]
− 3) δ4 , (4

[
x0
δ

]
+ 3) δ4

)

uiε,−1(x) if x ∈
(
(2i− 1) δ4 , (2i + 1) δ4

)
for i = 2

[
x0
δ

]
+ 2, . . . , 2δ − 1

u
2
δ
−1

ε,−1

(
1− δ

4

)
if x ∈ (1− δ

4 , 1)

with

ŵε(x) =





u
2[x0δ ]−1

ε,1 if (4
[
x0
δ

]
− 3) δ4 < x ≤ (4

[
x0
δ

]
− 1) δ4 − ε

lε(x) if (4
[
x0
δ

]
− 1) δ4 − ε < x < (4

[
x0
δ

]
− 1) δ4 + ε

v0ε

(
x
δ −

[
x0
δ

] )
if (4

[
x0
δ

]
− 1) δ4 + ε ≤ (4

[
x0
δ

]
+ 1) δ4 − ε

lε

(
x− δ

2

)
− 2 if (4

[
x0
δ

]
+ 1) δ4 − ε < x ≤ (4

[
x0
δ

]
+ 1) δ4 + ε

u
2[x0δ ]+1

ε,−1 if (4
[
x0
δ

]
+ 1) δ4 + ε < x < (4

[
x0
δ

]
+ 3) δ4

where v0ε , v
1
ε are as in (3.11) and (3.12) respectively and lε is the linear function defined by

lε(x) :=
v0ε

(
ε
δ − 1

4

)
− v1ε

(
ε
δ − 1

4

)

2ε

(
x−

(
4
[x0
δ

]
− 1
)δ
4
+ ε
)
+ v0ε

(ε
δ
− 1

4

)
.

In fact it is easy to check that uε ⇀ u in L2(0, 1) while

lim sup
ε→0

F k(2)
ε (uε) = lim sup

ε→0

(∫ 1− δ
4

δ
4

(
1

ε
W k

(x
δ
, uε

)
+ ε(u′ε)

2

)
dx− 2Ck

1

δ

)

≤ lim sup
ε→0

((2
δ
− 4
)
Ck
1 tanh

( δ
4ε

)
+ 2Ck

1 tanh
( δ
4ε

)
+ Ck

2 tanh
( δ
4ε

)
− 2Ck

1

δ

)

= (Ck
2 − Ck

1 )− Ck
1 = F k(2)(u)

and this completes the proof. �
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`

4
ˆ x0

δ

˜

− 3
´

δ
4

`

4
ˆ x0

δ

˜

− 1
´

δ
4

`

4
ˆ x0

δ

˜

+ 1
´

δ
4

`

4
ˆ x0

δ

˜

+ 3
´

δ
4

x

1

−1

2ε2ε

1− k

1 + k

−1− k

−1 + k

lε

ŵε

Figure 7. The joining transition ŵε.

The Γ-convergence results stated in Theorem 1.1, Theorem 3.2 and Theorem 3.9 are (formally)

summarized by the Γ-development

F k(0)
ε (u) =

∫ 1

0
W ∗∗(u) dx+

ε

δ
2Ck

1 + ε
(
(Ck

2 −Ck
1 )#S(u)−Ck

1

)
− ε

δ
e−

δ
2ε 4Ck

1 + o
(ε
δ
e−

ε
2δ

)
. (3.44)

3.3.2. k > 1
2 : large perturbations. For k > 1

2 Theorem 3.2 asserts that F
k(1)
ε

Γ−→ F k(1) with

F k(1) =

∫ 1

0
ψk(u) dx

where ψk(s) = 2(Ck
1 − Ck

2 )|s|+ 2Ck
2 , for every |s| ≤ 1. Then

min
|s|≤1

ψk(s) = ψk(0) = 2Ck
2

and F k(1) admits the unique minimizer u ≡ 0. Nevertheless, as we will show, the nonstrict

convexity of ψk allows as to consider a further scaling and consequently to recover some more

information on sequences minimizing F
k(0)
ε also in the case of large perturbations (i.e. for k > 1

2).

Let us suppose that we want to study the limit behavior only of those minimizing sequences

satisfying
∫ 1

0
vε = d (3.45)

with d 6= 0, for instance let us fix d ∈ (0, 1).

Remark 3.10. The Γ-convergence result stated in Theorem 3.2 preserves the integral con-

straint (3.45).

Moreover if we consider the family of integral functionals given by

Fk(1)
ε (u) := F k(1)

ε (u) +

∫ 1

0
l(u) dx (3.46)
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where l is a linear function, by virtue of the stability of Γ-convergence under continuous pertur-

bations, we have that (3.46) Γ-converges to

Fk(1)(u) = F k(1)(u) +

∫ 1

0
l(u) dx

for any u ∈ L2(0, 1) such that |u| ≤ 1 a.e. and satisfying the integral constraint (3.45). But

actually Fk(1)
ε differs from F

k(1)
ε by a constant so information on minimizing sequence of F

k(1)
ε

(satisfying (3.45)) can be recovered from information on those minimizing Fk(1)
ε . Now because

of the nonstrict convexity of ψk, it is possible to choose the function l in a way such that

ψk(s) + l(s)

attains its minimum at more than one point. Then for instance, if we set

l(s) = −rk(s) := −2(Ck
1 − Ck

2 )s+ 2Ck
2

we have that

ψk(s)− rk(s) ≥ 0 ∀|s| ≤ 1 and ψk(s)− rk(s) = 0 ∀0 < s < 1

and this means that Fk(1)
ε Γ-converges to a functional having many minimizers so now it becomes

natural to look for a meaningful scaling for (3.46).

00 11 −1−1

ψk

ss

ψk − rk

rk

2Ck
1

2Ck
2

Figure 8. The functions ψk and ψk − rk.

Lemma 3.11. Let L > 0, u ∈W 1,2(0, L) and set Cε :=
∫ L
0 (u2 + ε2(u′)2) dx, then

||u||∞ ≤
√
Cε

L
+
Cε

ε
.

Proof. We start noticing that

|u(x)| ≤
√
Cε

L
for some x ∈ (0, L). (3.47)
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In fact if |u(x)| >
√

Cε
L for every x ∈ (0, L), from

Cε ≥
∫ L

0
u2 dx >

Cε

L
L = Cε

we find a contradiction. If moreover |u(x)| <
√

Cε
L for any x ∈ (0, L), then ||u||∞ ≤

√
Cε
L and

by the positivity of Cε/ε we get the thesis.

Then to complete the proof, we now assume that |u(x)| ≥
√

Cε
L for some x ∈ (0, L). This

combined with (3.47) and in view of the continuity of u, implies the existence of a point x′ ∈ (0, L)

for which

|u(x′)| =
√
Cε

L
.

Starting by the existence of such a point we want to prove the thesis.

We argue by contradiction supposing that ||u||∞ >
√

Cε
L + Cε

ε . Then for instance, we suppose

that there exists x′′ ∈ (0, L) such that

u(x′′) >

√
Cε

L
+
Cε

ε
.

Hence a direct application of the Modica-Mortola trick gives

Cε ≥
∣∣∣∣∣

∫ x′′

x′
(u2 + ε2(u′)2) dx

∣∣∣∣∣ ≥ ε

∫ u(x′′)

(±)
q

Cε
L

2|s| > ε

∫ q

Cε
L

+Cε
ε

(±)
q

Cε
L

2|s|

≥ ε

(
Cε

L
+
Cε

ε
− Cε

L

)
= Cε

and thus the contradiction.

It is immediate to check that the case u(x′′) < −
√

Cε
L + Cε

ε can be treated exactly as above.

�

To determine the next meaningful scale we write

Fk(1)
ε (uε) =

δ

ε
F k(0)(uε)−

∫ 1

0
rk(uε) dx

≥
[ 2δ−

1
2 ]∑

i=1

[∫ (2i+1) δ
4

(2i−1) δ
4

(
δ

ε
W k

(x
δ
, uε

)
+ εδ(u′ε)

2

)
dx−

∫ (2i+1) δ
4

(2i−1) δ
4

rk(uε) dx

]

=

[ 2δ−
1
2 ]∑

i=1

[
δ

2

∫ (2i+1) δ
4

(2i−1) δ
4

2

(
1

ε
W k

(x
δ
, uε

)
+ ε(u′ε)

2

)
dx−−

∫ (2i+1) δ
4

(2i−1) δ
4

rk(uε) dx

]

then arguing as in Theorem 3.2 Step 1 we find

Fk(1)
ε (uε) ≥

[ 2δ−
1
2 ]∑

i=1

δ

2

(
2ϕk

ε
δ
(ũε)− rk(ũε)

)

≃
∫ 1

0
(2ϕk

ε
δ
(ũε)− rk(ũε)) dx,
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where ϕk
ε
δ
and ũε are defined as before. So now we want to estimate from below the function

gkε (s) := ϕk
ε
δ
(s)− rk(s).

Lemma 3.12. Let ϕk
η be defined as in Corollary 3.5; then

ϕk
η(s) =





(s+ 1)2

2 η
+ Ck

1 tanh
( 1

4η

)
if |s+ 1| ≤ c

√
η

s2

2 η
+ Ck

2 tanh
( 1

4η

)
if |s| ≤ c

√
η

(s− 1)2

2 η
+ Ck

1 tanh
( 1

4η

)
if |s− 1| ≤ c

√
η

(3.48)

for some positive constant c.

Proof. We prove the equality (3.48) only for |s| ≤ c
√
η (with c suitably chosen) the proof

of the other two cases being analogous.

Let |s| ≤ c
√
η, with c > 0 to be determined. We start giving an estimate on above on ϕk

η .

By definition, we trivially have

ϕk
η(s) ≤ min

{∫ 1
4

− 1
4

(
1

η
W k(x, u) + η(u′)2

)
dx : u ∈W 1,2

(
−1

4
,
1

4

)
,−
∫ 1

4

− 1
4

u dx = s, ||u||∞ ≤ k

}

= min

{∫ 1
4

− 1
4

(
1

η
Wk(x, u) + η(u′)2

)
dx : u ∈W 1,2

(
−1

4
,
1

4

)
,−
∫ 1

4

− 1
4

u dx = s

}
, (3.49)

where

Wk(x, u) :=




(u− 1 + k)2 if −1

4 ≤ x ≤ 0

(u+ 1− k)2 if 0 ≤ x ≤ 1
4 .

(3.50)

Following the Lagrange Multipliers Method we explicitly determine the minimum value (3.49)

by means of the auxiliary minimum problem

Mk
η (λ) := min

{∫ 1
4

− 1
4

(
1

η
Wk(x, u) + η(u′)2 + λu

)
dx : u ∈W 1,2

(
−1

4
,
1

4

)}
, (3.51)

with λ ∈ R.
Also taking into account the definition of Wk (3.50), it is easy to check that Mk

η (λ) can be

equivalently expressed as

Mk
η (λ) = min

u0





min
u∈W1,2

(
− 1

4 ,0

)
u(0)=u0

∫ 0

− 1
4

(
1

η
(u− 1 + k)2 + η(u′)2 + λu

)
dx

+ min
u∈W1,2

(
0, 14

)
u(0)=u0

∫ 1
4

0

(
1

η
(u+ 1− k)2 + η(u′)2 + λu

)
dx




.
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Then by a straightforward computation we find that the minimum (3.51) is attained at

uλη(x) =





1− k − λ η

2
+ (k − 1) cosh

(1 + 4x

4η

)(
cosh

( 1

4η

))−1
if − 1

4
≤ x ≤ 0

−1 + k − λ η

2
− (k − 1) cosh

(x
η

)
+ (k − 1) sinh

(x
η

)
tanh

( 1

4η

)
if 0 ≤ x ≤ 1

4
.

(3.52)

Moreover, in (3.52) the dependence on λ can be rephrased in terms of s by imposing the integral

constraint
∫ 1

4

− 1
4

uλη(x) dx =
s

2
,

which gives λ = −2s
η .

Finally, evaluating the energy in (3.49) at u
− 2s

η
η , by a direct computation we get

ϕk
η(s) ≤

s2

2η
+ Ck

2 tanh
( 1

4η

)
. (3.53)

Now we want to prove that (3.53) is actually an equality. We show that in particular if vsη is a

test function for ϕk
η(s), then ||vsη||∞ < k. To this effect, we additionally assume that s > 0 (the

case s < 0 being symmetric).

To start we claim that supposing vsη(0) = k, yields to a contradiction. In fact, on one hand

we have

ϕk
η(s) ≥ min

{∫ 0

− 1
4

(
1

η
(u− 1 + k)2 + η(u′)2

)
dx : u ∈W 1,2

(
− 1

4
, 0
)
, u(0) = k

}

+ min

{∫ 1
4

0

(
1

η
(u+ 1− k)2 + η(u′)2

)
dx : u ∈W 1,2

(
0,

1

4

)
, u(0) = k

}

= tanh
( 1

4η

)
+ (2k − 1)2 tanh

( 1

4η

)

= 1 + (2k − 1)2 + (1 + (2k − 1)2)
(
1− tanh

( 1

4η

))
(3.54)

= 2k2 + Ck
2 + o(1), as η → 0. (3.55)

While on the other hand, from (3.53) and since 0 < s < c
√
η, we also find

ϕk
η(s) <

c

2
+ Ck

2 + o(1). (3.56)

As a consequence if we choose c ≤ 4k2, gathering (3.55) and (3.56) we get the contradiction and

thus the claim.

Then it is easy to check that the case vsη(0) = k is actually the most energetically convenient

one among those for which the function vsη does not satisfy ||vsη|| < k. So in particular this

permits to exclude the existence of a point xη ∈
(
− 1

4 ,
1
4

)
such that vsη(xη) ≥ k.
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Moreover, we notice that the additional hypothesis s > 0 combined with the previous argu-

ment also excludes the possibility vsη(xη) ≤ −k for some xη ∈
(
− 1

4 ,
1
4

)
which would clearly be

even more unfavorable. This concludes the proof of the lemma for s > 0. �

Theorem 3.13. Let δ be such that δ ≪ ε2 and 1
δ ∈ N. The family of functionals Fk(2)

ε

Γ-converges with respect to the weak L2-convergence to the functional defined on L2(0, 1) by

Fk(2)(u) =




−(Ck

1 − Ck
2 )

2 if u ∈ L2(0, 1), 0 ≤ u ≤ 1 a.e., and
∫ 1
0 u = d

+∞ otherwise.

On one hand, a straightforward calculation gives

ϕk
ε
δ
(s) =

δ

2ε
s2 +Ck

2 tanh

(
δ

4ε

)
for s ≤ 0

and

ϕk
ε
δ
(s) =

δ

2ε
(s− 1)2 +Ck

1 tanh

(
δ

4ε

)
for s ≥ 1;

on the other hand from Corollary 3.5 we have

ϕk
ε
δ
→ Ck

3 uniformly in (0, 1).

Then we have that for any sufficiently small ε

gkε (s) ≥ fkε (s) :=





δ

ε
s2 − 2(Ck

1 − Ck
2 )s+ 2Ck

2

(
tanh

(
δ

4ε

)
− 1

)
if s ≤ 0

2(Ck
3 − Ck

1 ) if 0 < s < 1

δ

ε
(s − 1)2 − 2(Ck

1 − Ck
2 )(s − 1) + 2Ck

1

(
tanh

(
δ

4ε

)
− 1

)
if s ≥ 1.

Recalling Remark 3.1 we notice that Ck
3 − Ck

1 > 0, while it is immediate to check that the two

parabolas defining fkε for s ≤ 0 and s ≥ 1 have their vertexes respectively in

(
ε

δ
(Ck

1 − Ck
2 ); −

ε

δ
(Ck

1 − Ck
2 )

2 + 2Ck
2

(
tanh

(
δ

4ε

)
− 1

))

and (
ε

δ
(Ck

1 − Ck
2 ) + 1; −ε

δ
(Ck

1 − Ck
2 )

2 + 2Ck
1

(
tanh

(
δ

4ε

)
− 1

))
.

Then, for instance, from

−ε
δ
(Ck

1 − Ck
2 )

2 + 2Ck
2

(
tanh

(
δ

4ε

)
− 1

)
= O

(ε
δ

)
+O

(
e−

δ
2ε

)
= O

(ε
δ

)
, for ε→ 0

we deduce that the next meaningful scaling is
ε

δ
.
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4. δ ≪ ε: oscillations on a finer scale than the transition layer

Theorem 4.1. Let k ≤ 1
2 and let δ be such that

lim
ε→0

δ

ε
√
ε
= 0. (4.1)

Then the functionals Ikε defined on L2(0, 1) by

Ikε (u) :=





∫ 1

0

(
1

ε

(
W k

(x
δ
, u
)
− k2

)
+ ε(u′)2

)
dx if u ∈W 1,2(0, 1)

+∞ otherwise

Γ-converge with respect to the strong L2-convergence to the functional

Ik(u) =





(
2

∫ 1

−1

√
W

k
(s)− k2

)
#(S(u)) if u ∈ BV ((0, 1); {±1})

+∞ otherwise

with W
k
as in (1.3).

Proof. Step 1: Γ-liminf inequality

Let uε → u in L2(0, 1) be such that supε I
k
ε (uε) < +∞; with fixed ε > 0 let us define the set Iδ

and, on Iδ, the function vε respectively as

Iδ :=

[ 1δ ]⋃

i=1

((i− 1)δ, iδ) vε(x) :=

[ 1δ ]∑

i=1

uiεχ((i−1)δ,iδ)(x)

with

uiε := −
∫ iδ

(i−1)δ
uε dt for i = 1, . . . ,

[
1

δ

]
.

By using Jensen’s Inequality it is immediate to check that

||vε||L2(Iδ) ≤ ||uε||L2(Iδ) (4.2)

while from the Poincaré Inequality and its scaling properties we have

||uε − vε||L2(Iδ) ≤ δ||u′ε||L2(Iδ). (4.3)

A first estimate gives

Ikε (uε) ≥
∫

Iδ

(
1

ε

(
W k

(x
δ
, uε

)
− k2

)
+ ε(u′ε)

2

)
dx− k2

ε

∫ 1

δ[ 1δ ]
dx

hence

lim inf
ε→0

Ikε (uε) ≥ lim inf
ε→0

∫

Iδ

(
1

ε

(
W k

(x
δ
, uε

)
− k2

)
+ ε(u′ε)

2

)
dx.

What we want to prove now is that the quantity

1

ε

∫

Iδ

(
W k

(x
δ
, uε

)
−W

k
(uε)

)
dx (4.4)
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tends to 0 as ε → 0. To this purpose we first ramark that W k(y, ·) satisfies the following local

Lipschitz property

|W k(y, s1)−W k(y, s2)| ≤ α(1 + |s1|+ |s2|)|s1 − s2| for a.e. y ∈ R, ∀ s1, s2 ∈ R (4.5)

for some positive α. A simple averaging over (0, 1) demonstrates that (4.5) is satisfied also by

W
k
. Moreover by the definition of vε and the 1-periodicity of W k(·, s) the following string of

equalities holds true

∫

Iδ
W k

(x
δ
, uε

)
dx =

[ 1δ ]∑

i=1

∫ iδ

(i−1)δ
W k

(x
δ
, uiε

)
dx

=

[ 1δ ]∑

i=1

∫ δ

0
W k

(x
δ
, uiε

)
dx

=

[ 1δ ]∑

i=1

δ

∫ 1

0
W k

(
x, uiε

)
dx

=

[ 1δ ]∑

i=1

δW
k
(uiε) =

∫

Iδ
W

k
(vε) dx.

Then by adding and subtracting 1
ε

∫
Iδ W

k
(
x
δ , vε

)
dx in (4.4) and by virtue of (4.5) and the local

Lipschitz continuity of W
k
we have

1

ε

∣∣∣∣
∫

Iδ

(
W k

(x
δ
, uε

)
−W

k
(uε)

)
dx

∣∣∣∣

≤ 1

ε

∫

Iδ

∣∣∣W k
(x
δ
, uε

)
−W k

(x
ε
, vε

)∣∣∣ dx+
1

ε

∫

Iδ

∣∣∣W k
(uε)−W

k
(vε)

∣∣∣ dx

≤ 1

ε

∫

Iδ
2α(1 + |uε|+ |vε|)|uε − vε| dx

≤ 1

ε
C(1 + ||uε||L2(Iδ) + ||vε||L2(Iδ))||uε − vε||L2(Iδ)

≤ C
δ

ε
||u′ε||L2(0,1) (4.6)

in the last inequality having used (4.2) and (4.3).

Recalling that supε I
k
ε,δ(uε) < +∞, in particular implies

||u′ε||L2(0,1) ≤
C√
ε
, (4.7)

by combining (4.6), (4.7) and invoking hypothesis (4.1) we obtain the desired result. At the end

we find that

lim inf
ε→0

Ikε (uε) ≥ lim inf
ε→0

∫ δ[ 1δ ]

0

(
1

ε
(W

k
(uε)− k2) + ε(u′ε)

2

)
dx
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and invoking the Modica-Mortola Theorem

lim inf
ε→0

Ikε (uε) ≥ lim inf
ε→0

∫ a

0

(
1

ε
(W

k
(uε)− k2) + ε(u′ε)

2

)
dx

≥
(
2

∫ 1

−1

√
W

k
(s)− k2

)
#(S(u) ∩ (0, a)),

for any fixed a ∈ (0, 1). Then, passing to the sup on a ∈ (0, 1) in (4.8), we get the Γ-liminf

inequality.

Finally, notice that by supε I
k
ε (uε) < +∞ and the Γ-liminf inequality, we immediately deduce

that u ∈ BV ((0, 1); {±1}).

Step 2: Γ-limsup inequality

We have to construct a recovery sequence for u ∈ PC(0, 1) with u ∈ {±1} a.e.; it will suffice to

approximate

u(x) =




−1 if x < x0

1 if x ≥ x0,
(4.8)

with x0 ∈ (0, 1).

We want to show that the limsup inequality can be easily obtained acting as if we were

studying the convergence of the functionals
∫ 1

0

(
1

ε
(W

k
(u)− k2) + ε(u′)2

)
dx. (4.9)

To this effect, arguing as in Modica-Mortola construction, for any fixed η > 0 we can find a

number T > 0 and a function v ∈W 1,2(−T, T ) such that v(−T ) = −1, v(T ) = 1 and
∫ T

−T
(W

k
(v)− k2 + (v′)2) dx ≤ 2

∫ 1

−1

√
W

k
(s)− k2 + η (4.10)

then, for instance, a recovery sequence for (4.8)-(4.9) is given by

uε(x) =





−1 if x < xδ0 − εT

v
(
x−xδ

0
ε

)
if xδ0 − εT ≤ x ≤ xδ0 + εT

1 if x > xδ0 + εT

with xδ0 =
[
x0
δ

]
δ. We next claim that uε is a recovery sequence also for Ikε,δ. In order to prove

it, testing Ikε,δ on uε, we find

Ikε (uε) =

∫ xδ
0+εT

xδ
0−εT

(
1

ε

(
W k

(x
δ
, uε

)
− k2

)
+ ε(u′ε)

2

)
dx

=

∫ T

−T

(
W k

(ε
δ
x, v
)
− k2 + (v′)2

)
dx.

Then the next step consists in proving that

lim
ε→0

∫ T

−T
W k

(ε
δ
x, v
)
dx =

∫ T

−T
W

k
(v) dx. (4.11)
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Setting

W k
δ
ε

(x) :=W k
(ε
δ
x, v
)

for a.e. x ∈ (−T, T ),
we have

0 ≤W k
δ
ε

≤ β(1 + |v|2) a.e. in (−T, T ) for some positive β,

and from it we deduce:

i) ∃C > 0 such that ||W k
δ
ε

||L1(−T,T ) ≤ C;

ii) (W k
δ
ε

) is equi-integrable on (−T, T );
then by applying Dunford-Pettis criterion, upon passing to a subsequence (not relabelled)

W k
δ
ε

⇀ f in L1(−T, T ). (4.12)

and by Lebesgue Theorem

f(x) = lim
r→0+

−
∫ x+r

x−r
f(y) dy for a.e. x ∈ (−T, T ).

Moreover from (4.12) we have that in particular, for x ∈ (−T, T ) and for sufficiently small r > 0,

lim
ε→0

−
∫ x+r

x−r
W k

δ
ε

(y) dy = −
∫ x+r

x−r
f(y) dy

and consequently

lim
r→0+

lim
ε→0

−
∫ x+r

x−r
W k

δ
ε

(y) dy = f(x) for a.e. x ∈ (−T, T ).

On the other hand, from

−
∫ x+r

x−r
W k

δ
ε

(y) dy = −
∫ x+r

x−r
W k

(ε
δ
y, v
)
dy −−

∫ x+r

x−r
W k

(ε
δ
y, v(x)

)
dy

+−
∫ x+r

x−r
W k

(ε
δ
y, v(x)

)
dy (4.13)

with ∣∣∣∣−
∫ x+r

x−r

(
W k

(ε
δ
y, v
)
−W k

(ε
δ
y, v(x)

))
dy

∣∣∣∣ ≤ α−
∫ x+r

x−r
(1 + |v(x)|+ |v|)|v − v(x)| dy

and

lim
ε→0

−
∫ x+r

x−r
W k

(ε
δ
y, v(x)

)
dy = −

∫ x+r

x−r
W

k
(v(x)) dy =W

k
(v(x)).

Passing to the limit in (4.13) first letting ε, then r go to zero, we obtain

f(x) =W
k
(v(x)) for a.e. x ∈ (−T, T )

hence, from (4.12), (4.11). Finally by combining (4.11) and (4.10) we get

lim sup
ε→0

Ikε (uε) ≤ 2

∫ 1

−1

√
W

k
(s)− k2 + η

= Ik(u) + η

and by the arbitrariness of η, the thesis. �
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Remark 4.2. Since as for the Modica-Mortola functionals, the equi-coercivity at scale ε

improves to strong-L2 equi-coercivity, then we may (a posteriori) compute also the zero order

Γ-limit with respect to the strong L2-convergence, obtaining

F̃
k(0)
0 (u) =

∫ 1

0
W

k
(u) dx.

Thus, for δ ≪ ε, k > 1
2 we have that a Γ-development for F

k(0)
ε with respect to the weak

L2-convergence is given by

F k(0)
ε (u) =

∫ 1

0
(W

k
)
∗∗
(u) dx+ ε

(
2

∫ 1

−1

√
W

k
(s)− k2

)
#(S(u)) + o(ε), (4.14)

while a Γ-development with respect to the strong L2-convergence is

F k(0)
ε (u) =

∫ 1

0
W

k
(u) dx + ε

(
2

∫ 1

−1

√
W

k
(s)− k2

)
#(S(u)) + o(ε). (4.15)

Set

τk(s) := (2k − 1)s − k +
3

4

Theorem 4.3. Let k > 1
2 and choose δ satisfying (4.1). Then the functionals Ik

ε defined on

L2(0, 1) by

Ik
ε (u) :=





∫ 1

0

(
1

ε

(
W k

(x
δ
, u
)
− τk(u)

)
+ ε(u′)2

)
dx if u ∈W 1,2(0, 1)

+∞ otherwise

Γ-converge with respect to the strong L2-convergence to the functional

Ik(u) =





(
2

∫ k+ 1
2

k− 1
2

√
W̃ k(s)

)
#(S(u)) if u ∈ PC((0, 1); {k ± 1

2})

+∞ otherwise

where W̃ k(s) := W
k
(s)− τk(s).
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CHAPTER 2

The Neumann sieve problem and dimensional reduction

1. Plan of the chapter

This chapter is organized as follows: after recalling some useful notation in Section 2, we state

the main results, Theorem 3.3 and Theorem 3.6, in Section 3. Then, in Section 4 we list some

auxiliary results as rescaled Poincaré type inequalities and joining lemmas. Section 5 is devoted

to give a preliminary definition of the interfacial energy density which is in terms of limit of

minimum problems. In Section 6 we prove the Γ-convergence result (Theorem 3.3). It is only

in Section 7 that we compute the explicit expression of the interfacial energy density of each

regime (Theorem 3.6).

2. Notation

Given x ∈ Rn, we set x = (xα, xn) where xα := (x1, . . . , xn−1) is the in-plane variable and

Dα :=
(

∂
∂x1

, . . . , ∂
∂xn−1

)
(resp. Dn) the derivative with respect to xα (resp. xn).

The notation Rm×n stands for the set of m × n real matrices. Given a matrix F ∈ Rm×n,

we write F = (F |Fn) where F = (F1, . . . , Fn−1) and Fi denotes the i-th column of F , 1 ≤ i ≤ n

and F ∈ Rm×(n−1).

The Lebesgue measure in Rn will be denoted by Ln and the Hausdorff (n − 1)-dimensional

measure by Hn−1. Let A be an open subset of Rd (d = n − 1, d = n). If s ∈ [1,+∞], we use

standard notation for Lebesgue and Sobolev spaces Ls(A;Rm) and W 1,s(A;Rm).

Let ω be a bounded open subset of Rn−1 and I = (−1, 1), we define Ω := ω×I. In the sequel,

we will identify Ls(ω;Rm) (resp. W 1,s(ω;Rm)) with the space of functions v ∈ Ls(Ω;Rm) (resp.

W 1,s(Ω;Rm)) such that Dnv = 0 in the sense of distribution.

For every (a, b) ⊂ R with a < b and q1, q2 ≥ 1, Lq1(a, b;Lq2(R(n−1);Rm)) is the space of

measurable m-vectorial functions ζ such that

∫ a

b

(∫

Rn−1

|ζ(xα, xn)|q2 dxα
) q1

q2

dxn < +∞.

Let a ∈ Rn−1 and ρ > 0, we denote by Bn−1
ρ (a) the open ball of Rn−1 of center a and radius ρ

and by Qn−1
ρ (a) the open cube of Rn−1 with center a and length side ρ. We write Bn−1

ρ instead

of Bn−1
ρ (0) not to overburden notation. Let xεi = iε with i ∈ Zn−1, we set Qn−1

i,ε := Qn−1
ε (xεi ).

We define U+a := U × (0, a) and U−a := U × (−a, 0) with U ⊆ Rn−1 and a > 0, while if

a = 1, then U+ = U+1 and U− = U−1.

We set C1,∞ := {(xα, 0) ∈ Rn : 1 ≤ |xα|} and C1,N := {(xα, 0) ∈ Rn : 1 ≤ |xα| < N} for every

N > 1.

55
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56 2. THE NEUMANN SIEVE PROBLEM AND DIMENSIONAL REDUCTION

Let p ≥ 1, we denote by Capp(B
n−1
1 ;A) the p-capacity of Bn−1

1 with respect to A ⊆ Rd:

Capp(B
n−1
1 ;A) = inf

{∫

A
|Dψ|p dx : ψ ∈W 1,p

0 (A) and ψ = 1 on Bn−1
1

}
.

The letter c will stand for a generic strictly-positive constant which may vary from line to line

and expression to expression within the same formula.

3. Statements of the main results

Since we are going to work with varying domains, we have to precise the meaning of ‘converging

sequences’.

Definition 3.1. Let Ωj = ω+δj∪ω−δj∪
(
ωrj ,εj×{0}

)
. Given a sequence (uj) ⊂W 1,p(Ωj ;Rm),

we define ûj(xα, xn) := uj(xα, δj xn). We say that (uj) converges (resp. converges weakly) to

(u+, u−) ∈W 1,p(ω;Rm)×W 1,p(ω;Rm) if we have

û+j := ûj|ω+ → u+ in Lp(ω+;Rm) (resp. weakly in W 1,p(ω+;Rm)),

û−j := ûj|ω− → u− in Lp(ω−;Rm) (resp. weakly in W 1,p(ω−;Rm)).

Similarly if we replace Ωj by ω±δj .

We say that the sequence (|Duj |p/δj) is equi-integrable on ω±δj if
(∣∣(Dαûj | 1δjDnûj

)∣∣p) is

equi-integrable on ω±.

Remark 3.2. By virtue of Definition 3.1, a sequence (uj) ⊂ W 1,p(Ωj;Rm) converges to

(u+, u−) ∈W 1,p(ω;Rm)×W 1,p(ω;Rm) if and only if

lim
j→+∞

1

δj

∫

ω±δj

|uj − u±|p dx = 0, (3.1)

while (3.1) and

sup
j∈N

1

δj

∫

ω±δj

|Duj |p dx = sup
j∈N

∫

ω±

∣∣∣∣
(
Dαûj

∣∣∣ 1
δj
Dnûj

)∣∣∣∣
p

dx < +∞ (3.2)

imply the weak convergence.

Note that Remark 3.2 is still valid if we consider the domain ω+δj ∪ ω−δj in place of Ωj.

The main results of this chapter are the following:

Theorem 3.3 (Γ-convergence). Let 1 < p < n− 1. Let ω be a bounded open subset of Rn−1

satisfying Hn−1(∂ω) = 0 and W : Rm×n → [0,+∞) be a Borel function such that W (0) = 0 and

satisfying a growth condition of order p : there exists a constant β > 0 such that

|F |p − 1 ≤W (F ) ≤ β(|F |p + 1), for every F ∈ Rm×n. (3.3)

Let (εj), (δj) and (rj) be sequences of strictly positive numbers converging to zero such that

lim
j→+∞

δj
εj

= 0
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and set

ℓ := lim
j→+∞

rj
δj
.

If

ℓ ∈ (0,+∞], and 0 < R(ℓ) := lim
j→+∞

rn−1−p
j

εn−1
j

< +∞

or

ℓ = 0, and 0 < R(0) := lim
j→+∞

rn−p
j

δj ε
n−1
j

< +∞ ,

then, up to an extraction, the sequence of functionals Fj : L
p(Ωj ;Rm) → [0,+∞] defined by

Fj(u) :=





1

δj

∫

Ωj

W (Du) dx if u ∈W 1,p(Ωj ;Rm),

+∞ otherwise

Γ-converges to

F (ℓ)(u+, u−) =
∫

ω
Qn−1W (Dαu

+) dxα +

∫

ω
Qn−1W (Dαu

−) dxα +R(ℓ)

∫

ω
ϕ(ℓ)(u+ − u−) dxα

on W 1,p(ω;Rm) × W 1,p(ω;Rm) with respect to the convergence introduced in Definition 3.1,

where W (F ) := inf{W (F |z) : z ∈ Rm}, Qn−1W is the (n − 1)-quasiconvexification of W and

ϕ(ℓ) : Rm → [0,+∞) is a locally Lipschitz continuous function for any ℓ ∈ [0,+∞].

Remark 3.4. Note that if ℓ ∈ (0,+∞] the only meaningful scaling for rj is that of order

ε
(n−1)/(n−1−p)
j ; i.e., for both R(ℓ) = 0 and R(ℓ) = +∞ we loose the asymptotic memory of the

sieve. In fact, if R(ℓ) = 0, we obtain two uncoupled problems in the limit, while if R(ℓ) = +∞,

limit deformations (u+, u−) with finite energy are continuous across the mid-section (u+ = u−

in ω) as in Le Dret-Raoult [38]. Similarly, for ℓ = 0.

Remark 3.5. If ℓ ∈ (0,+∞) then

0 < R(ℓ) = lim
j→+∞

rn−1−p
j

εn−1
j

< +∞ if and only if 0 < R(0) = lim
j→+∞

rn−p
j

δj ε
n−1
j

< +∞ ;

hence, in this case the two meaningful scalings are equivalent.

The following result provides a characterization of the interfacial energy density ϕ(ℓ) for each

ℓ ∈ [0,+∞].

Theorem 3.6 (Representation formulas). Let p∗ = (n−1)p/(n−1−p) be the Sobolev exponent
in dimension (n− 1). Then, upon extracting a subsequence, there exists the limit

g(F ) := lim
j→+∞

rpjQnW (r−1
j F ),
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for all F ∈ Rm×n, where QnW denotes the n-quasiconvexification of W , so that:

if ℓ ∈ (0,+∞),

ϕ(ℓ)(z) := inf

{∫

(Rn−1×I)\C1,∞
g
(
Dαζ|ℓDnζ

)
dx : ζ ∈W 1,p

loc ((R
n−1 × I) \ C1,∞;Rm),

Dζ ∈ Lp((Rn−1 × I) \ C1,∞;Rm×n), ζ − z ∈ Lp(0, 1;Lp∗(Rn−1;Rm))

ζ ∈ Lp(−1, 0;Lp∗(Rn−1;Rm))

}
;

if ℓ = +∞

ϕ(∞)(z) := inf

{∫

Rn−1

(
Qn−1 g(Dαζ

+) +Qn−1 g(Dαζ
−)
)
dxα : ζ± ∈W 1,p

loc (R
n−1;Rm),

ζ+ = ζ− in Bn−1
1 , Dαζ

± ∈ Lp(Rn−1;Rm×(n−1)),

(ζ+ − z) , ζ− ∈ Lp∗(Rn−1;Rm)

}
,

where g(F ) := inf{g(F |z) : z ∈ Rm} and Qn−1g is the (n− 1)-quasiconvexification of g;

if ℓ = 0

ϕ(0)(z) = inf

{∫

Rn\C1,∞
g(Dζ) dx : ζ ∈W 1,p

loc (R
n \ C1,∞;Rm), Dζ ∈ Lp(Rn \ C1,∞;Rm×n),

ζ − z ∈ Lp(0,+∞;Lp∗(Rn−1;Rm)), ζ ∈ Lp(−∞, 0;Lp∗(Rn−1;Rm))

}
,

for all z ∈ Rm.

Remark 3.7. Without loss of generality we may assume that W is quasiconvex (upon first

relaxing the energy); hence, by (3.3), W satisfies the following p-Lipschitz condition (see e.g.

[26]):

|W (F1)−W (F2)| ≤ c (1 + |F1|p−1 + |F2|p−1)|F1 − F2|, for all F1, F2 ∈ Rm×n . (3.4)

4. Preliminary results

4.1. Some rescaled Poincaré Inequalities. Since we deal with varying domains, depend-

ing on different parameters, it is useful to note how the constant in Poincaré type inequalities

rescale with respect to such parameters.

Lemma 4.1. Let A be an open bounded and connected subset of Rn−1 with Lipschitz boundary

and let Aρ := ρA for ρ > 0.

Preliminary version – October 30, 2006 – 12:04



4. PRELIMINARY RESULTS 59

(i) There exists a constant c > 0 (depending only on (A,n, p)) such that for every ρ, δ > 0
∫

A±δ
ρ

|u− uA±δ
ρ
|p dx ≤ c

∫

A±δ
ρ

(ρp|Dαu|p + δp|Dnu|p) dx,

for every u ∈W 1,p(A±δ
ρ ;Rm) where uA±δ

ρ
= −
∫
A±δ

ρ
u dx.

(ii) If B is an open and connected subset of A with Lipschitz boundary and Bρ := ρB

then there exists a constant c > 0 (depending only on (A,B, n, p)) such that for every

ρ, δ > 0
∫

A±δ
ρ

|u− uB±δ
ρ
|p dx ≤ c

∫

A±δ
ρ

(ρp|Dαu|p + δp|Dnu|p) dx,

for every u ∈W 1,p(A±δ
ρ ;Rm) where uB±δ

ρ
= −
∫
B±δ

ρ
u dx.

Proof. Let us define v(xα, xn) := u(ρxα, δxn) then v ∈ W 1,p(A±;Rm). By a change of

variable, we get that u
A±δ

ρ
= vA± . Moreover, by the Poincaré Inequality, there exists a constant

c = c(A,n, p) > 0 such that
∫

A±δ
ρ

|u− uA±δ
ρ
|p dx = δρn−1

∫

A±
|v − vA± |p dy

≤ cδρn−1

∫

A±
|Dv|p dy

= c

∫

A±δ
ρ

(ρp|Dαu|p + δp|Dnu|p) dx

and it completes the proof of (i). Now, if Bρ ⊂ Aρ, we get that
∫

A±δ
ρ

|u− u
B±δ

ρ
|p dx

≤ c
(∫

A±δ
ρ

|u− uA±δ
ρ
|p dx+ δρn−1Hn−1(A)|uA±δ

ρ
− uB±δ

ρ
|p
)

≤ c

∫

A±δ
ρ

|u− uA±δ
ρ
|p dx+ c

Hn−1(A)

Hn−1(B)

(∫

B±δ
ρ

|u− uA±δ
ρ
|p dx+

∫

B±δ
ρ

|u− uB±δ
ρ
|p dx

)

≤ c

∫

A±δ
ρ

(ρp|Dαu|p + δp|Dnu|p) dx.

�

4.2. A joining lemma on varying domains. If not otherwise specified, in all that follows

the convergence of a sequence of functions has to be intended in the sense of Definition 3.1.

The following lemma, is the key tool in the proof of Theorem 3.3. It is a technical result

which allows to modify sequences of functions ‘near’ the sets B
(n−1)
rj (x

εj
i ). It is very close in spirit

to Lemma 3.4 in [5] although now the geometry of the problem yields a different construction

involving suitable cylindrical (instead of spherical) annuli to surround the connecting zones.
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Lemma 4.2. Let (εj), (δj) be sequences of strictly positive numbers converging to 0 and

such that δj ≪ εj . Let (uj) ⊂ W 1,p(ω+δj ∪ ω−δj ;Rm) be a sequence converging to (u+, u−) ∈
W 1,p(ω;Rm)×W 1,p(ω;Rm) satisfying supj Fj(uj) < +∞; let k ∈ N. Set ρj = γεj with γ < 1/2

and

Zj := {i ∈ Zn−1 : dist(x
εj
i ,R

n−1 \ ω) > εj} .
For every i ∈ Zj, there exists ki ∈ {0, . . . , k − 1} such that having set

Ci
j :=

{
xα ∈ ω : 2−ki−1ρj < |xα − x

εj
i | < 2−kiρj

}
,

ui±j := −
∫

(Ci
j)

±δj

uj dx (4.1)

and

ρij :=
3

4
2−kiρj,

there exists a sequence (wj) ⊂W 1,p(ω+δj ∪ ω−δj ;Rm) weakly converging to (u+, u−) such that

wj = uj in
(
ω \

⋃

i∈Zj

Ci
j

)±δj
, (4.2)

wj = ui±j on
(
∂Bn−1

ρij
(x

εj
i )
)±δj (4.3)

and satisfying

lim sup
j→+∞

1

δj

∫

ω±δj

∣∣W (Dwj)−W (Duj)
∣∣ dx ≤ c

k
. (4.4)

Proof. For every j ∈ N, i ∈ Zj, k ∈ N and h ∈ {0, . . . , k − 1}, we define

Ci,h
j :=

{
xα ∈ ω : 2−h−1ρj < |xα − x

εj
i | < 2−hρj

}
,

(ui,hj )± := −
∫

(Ci,h
j )±δj

uj dx

and

ρi,hj :=
3

4
2−hρj. (4.5)

Let φ ≡ φi,hj ∈ C∞
c (Ci,h

j ; [0, 1]) be a cut-off function such that φ = 1 on ∂Bn−1

ρi,hj

(x
εj
i ) and |Dαφ| ≤

c/ρi,hj . In (Ci,h
j )±δj , we set

wi,h
j (x) := φ(xα)(u

i,h
j )± + (1− φ(xα))uj ,

then
∫

(Ci,h
j )±δj

|Dwi,h
j |p dx ≤ c

∫

(Ci,h
j )±δj

(
|Dαφ|p|uj − (ui,hj )±|p + |Duj |p

)
dx

≤ c

∫

(Ci,h
j )±δj

(
|uj − (ui,hj )±|p

(ρi,hj )p
+ |Duj|p

)
dx.

Preliminary version – October 30, 2006 – 12:04



4. PRELIMINARY RESULTS 61

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

.

ω \ ωεj ,rj

ρij

Ci
j

xεi

Bn−1
rj (xεi )

Figure 1. The (n− 1)-dimensional annuli Ci
j .

Applying Lemma 4.1 (i), with ρ = ρi,hj and Aρ = Ci,h
j , we have that

∫

(Ci,h
j )±δj

|Dwi,h
j |p dx

≤ c

∫

(Ci,h
j )±δj

(
|Dαuj |p +

( δj

ρi,hj

)p
|Dnuj |p

)
dx+ c

∫

(Ci,h
j )±δj

|Duj |p dx

≤ mj(k, γ) c

∫

(Ci,h
j )±δj

|Duj |p dx, (4.6)

where by (4.5)

mj(k, γ) := max
{
1,
(2k+1

3γ

)p(δj
εj

)p}

and since δj ≪ εj , mj(k, γ) → 1 as j → +∞. As

k−1∑

h=0

∫

(Ci,h
j )±δj

(1 + |Duj|p) dx ≤
∫

Bn−1
ρj

(x
εj
i )±δj

(1 + |Duj |)p dx,

there exists ki ∈ {0, . . . , k − 1} such that, having set Ci
j := Ci,ki

j , we get

∫

(Ci
j )

±δj

(1 + |Duj |p) dx ≤ 1

k

∫

Bn−1
ρj

(x
εj
i )±δj

(1 + |Duj |p) dx. (4.7)

Hence, if we define the sequence

wj :=





wi,ki
j in (Ci

j)
±δj for i ∈ Zj

uj otherwise ,
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62 2. THE NEUMANN SIEVE PROBLEM AND DIMENSIONAL REDUCTION

by the p-growth condition (3.3), (4.6), (4.7) and Remark 3.2 we have

1

δj

∫

ω±δj

∣∣W (Dwj)−W (Duj)
∣∣ dx =

∑

i∈Zj

1

δj

∫

(Ci
j)

±δj

∣∣W (Dwi,ki
j )−W (Duj)

∣∣ dx

≤ c

k
mj(k, γ)

∑

i∈Zj

1

δj

∫

Bn−1
ρj

(x
εj
i )±δj

(1 + |Duj|p) dx

≤ c

k
mj(k, γ)

(
1 + sup

j∈N

1

δj

∫

ω±δj

|Duj |p dx
)

≤ c

k
mj(k, γ) ,

which concludes the proof of (4.4). Note that, by construction, (wj) satisfies (4.2) and (4.3) and

it converges weakly to (u+, u−). In fact,

1

δj

∫

ω±δj

|wj − u±|p dx =
1

δj

∑

i∈Zj

∫

(Ci
j )

±δj

|φui±j + (1− φ)uj − u±|p dx

+
1

δj

∫

ω±δj \S

i∈Zj
(Ci

j)
±δj

|uj − u±|p dx

≤ c

δj

∫

ω±δj

|uj − u±|p dx+
c

δj

∑

i∈Zj

∫

(Ci
j)

±δj

|uj − ui±j |p dx,

while by Lemma 4.1 (i) applied with ρ = ρij and since δj ≪ εj , ρ
i
j ≤ εj , we get

1

δj

∫

ω±δj

|wj − u±|p dx ≤ c

δj

∫

ω±δj

|uj − u±|p dx+ cεpj
1

δj

∫

ω±δj

|Duj |p dx . (4.8)

Moreover by (4.6) we have

1

δj

∫

ω±δj

|Dwj |p dx ≤ c

δj

∫

ω±δj

|Duj |p dx. (4.9)

Hence (4.8), (4.9), the convergence of (uj) towards (u+, u−), supj
1
δj

∫
ω±δj |Duj |p dx < +∞ to-

gether with Remark 3.2 imply the weak convergence of (wj) towards (u
+, u−). �

Remark 4.1. Note that to prove Lemma 4.2 we essentially use that ρj < εj/2 (but not

necessarily equal to γεj) and limj→+∞(δj/ρj) = 0. Hence, Lemma 4.2 is still true if we replace

the assumptions δj ≪ εj and ρj = γεj by ρj < εj/2 and limj→+∞(δj/ρj) = 0.

Since we will apply Lemma 4.2 when ρj = γεj (γ < 1/2) and δj ≪ εj , we prefer to prove it

directly under these assumptions.

If the sequence (|Duj |p/δj) is equi-integrable on ω±δj (see Definition 3.1), then we do not

have to choose for every i ∈ Zj a suitable annulus Ci
j but we may consider the same radius

independently of i as the following lemma shows.
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Lemma 4.3. Let (uj), (εj), (δj), (ρj) and Zj be as in Lemma 4.2 and suppose that (|Duj |p/δj)
is equi-integrable on ω±δj . Set

Ci
j :=

{
xα ∈ ω :

2

3
ρj < |xα − x

εj
i | < 4

3
ρj

}
and ui±j := −

∫

(Ci
j)

±δj

uj dx

for every i ∈ Zj . Then, there exists a sequence (wj) ⊂W 1,p(ω+δj ∪ω−δj ;Rm) weakly converging

to (u+, u−) such that

wj = uj in
(
ω \

⋃

i∈Zj

Ci
j

)±δj
, (4.10)

wj = ui±j on
(
∂Bn−1

ρj (x
εj
i )
)±δj (4.11)

and

lim sup
j→+∞

1

δj

∫

ω±δj

∣∣W (Dwj)−W (Duj)
∣∣ dx ≤ o(1) as γ → 0+ . (4.12)

Moreover, the sequence (|Dwj |p/δj) is equi-integrable on ω±δj .

Proof. Let φ ≡ φij ∈ C∞
c (Ci

j ; [0, 1]) be a cut-off function such that φ = 1 on ∂Bn−1
ρj (x

εj
i ) and

|Dαφ| ≤ c/ρj . In (Ci
j)

±δj , we define

wi
j := φ(xα)u

i±
j + (1− φ(xα))uj .

Then, reasoning as in the proof of Lemma 4.2, we have that
∫

(Ci
j )

±δj

W (Dwi
j) dx ≤ c

∫

(Ci
j )

±δj

(1 + |Duj |p) dx.

Hence, if we define

wj :=





wi
j in (Ci

j)
±δj for i ∈ Zj ,

uj otherwise,

wj satisfies (4.10) and (4.11). Moreover,

1

δj

∫

ω±δj

∣∣W (Dwj)−W (Duj)
∣∣ dx ≤

∑

i∈Zj

1

δj

∫

(Ci
j)

±δj

∣∣W (Dwi
j)−W (Duj)

∣∣ dx

≤ c
∑

i∈Zj

1

δj

∫

(Bn−1
4ρj/3

(x
εj
i )∩ω)±δj

(1 + |Duj|p) dx.

Since #(Zj) ≤ c/εn−1
j , we get that

Hn−1

( ⋃

i∈Zj

(Bn−1
4ρj/3

(x
εj
i ) ∩ ω)

)
≤ cγn−1

and by the equi-integrability of (|Duj |p/δj) we obtain (4.12). Finally, the weak convergence

of (wj) can be proved as in Lemma 4.2 while the equi-integrability of (|Dwj |p/δj) is just a

consequence of the definition of (wj). �

Preliminary version – October 30, 2006 – 12:04



64 2. THE NEUMANN SIEVE PROBLEM AND DIMENSIONAL REDUCTION

5. A preliminary analysis of the energy contribution ‘close’ to the connecting

zones

For later references, in the following section we study the asymptotic behavior of a sequence

of functions which will turn out to represent the energy contribution ‘close’ to the connecting

zones. The results listed in this section will be applied in Section 6 to prove the Γ-convergence

of (Fj) as well as in Section 7 to compute the explicit formula for ϕ(ℓ).

Before starting, let us recall that we consider the domain Ωj = ω+δj ∪ ω−δj ∪
(
ωrj ,εj × {0}

)

where ωrj ,εj :=
⋃

i∈Zn−1 Bn−1
rj (x

εj
i ) ∩ ω. Our Γ-convergence analysis deals with the case where

the thickness δj of Ωj is much smaller than the period of distribution of the connecting zones

εj ; i.e.,

lim
j→+∞

δj
εj

= 0 .

Moreover, we can exclude that rj ≥ εj/2 otherwise the zones may overlap. More precisely, we

assume that rj ≪ εj ; i.e.,

lim
j→+∞

rj
εj

= 0 . (5.1)

This choice will be justify a posteriori since (5.1) will be the only admissible assumption to get

a non trivial Γ-convergence result (see Remark 3.4).

Finally, it remains to fix the behavior of rj with respect to δj . Let us define

ℓ := lim
j→+∞

rj
δj
.

This yields to consider all the possible scenario, namely to distinguish between the cases: ℓ

finite, infinite or zero.

For any fixed ℓ ∈ [0,+∞], we consider the sequence of functions (ϕ
(ℓ)
γ,j) defined in (5.2) and

(5.13). Propositions 5.1 and 5.2 establish the existence of the function ϕ(ℓ) as the (locally

uniform) limit of (ϕ
(ℓ)
γ,j) as j → +∞ and γ → 0+ while Proposition 5.3 will allow us to prove

that ϕ(ℓ) is actually the interfacial energy density in F (ℓ) (see e.g. Proposition 6.2).

5.1. The case ℓ ∈ (0,+∞]. Setting Nj = εj/rj , we define the space

Xγ
j (z) :=

{
ζ ∈W 1,p((Bn−1

γNj
× I) \ C1,γNj ;R

m) : ζ = z on (∂Bn−1
γNj

)+, ζ = 0 on (∂Bn−1
γNj

)−
}
,

where I = (−1, 1) and we consider the following minimum problem

ϕ
(ℓ)
γ,j(z) := inf





∫

(Bn−1
γNj

×I)\C1,γNj

rpj W
(
r−1
j Dαζ|δ−1

j Dnζ
)
dx : ζ ∈ Xγ

j (z)



 . (5.2)

In the next proposition we study the behavior of (ϕ
(ℓ)
γ,j) as j → +∞ and γ → 0+.
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1

1

−1

00 γNj

B
(n−1)
γNj

× I

C1,γNj

Figure 2. The domain (B
(n−1)
γNj

× I) \ C1,γNj .

Proposition 5.1. Let ℓ ∈ (0,+∞]. If

0 < R(ℓ) := lim
j→+∞

rn−1−p
j

εn−1
j

< +∞ (5.3)

then,

(i) there exists a constant c > 0 (independent of j and γ) such that

0 ≤ ϕ
(ℓ)
γ,j(z) ≤ c

(
|z|p + γn−1

)

for all z ∈ Rm, j ∈ N and γ > 0;

(ii) there exists a constant c > 0 (independent of j and γ) such that

|ϕ(ℓ)
γ,j(z) − ϕ

(ℓ)
γ,j(w)| ≤ c |z − w|

(
γ(n−1)(p−1)/p + rp−1

j + |z|p−1 + |w|p−1
)

(5.4)

for every z,w ∈ Rm, j ∈ N and γ > 0;

(iii) for every fixed γ > 0, up to subsequences, ϕ
(ℓ)
γ,j converges locally uniformly on Rm to ϕ

(ℓ)
γ

as j → +∞ and

|ϕ(ℓ)
γ (z)− ϕ(ℓ)

γ (w)| ≤ c |z − w|
(
γ(n−1)(p−1)/p + |z|p−1 + |w|p−1

)
(5.5)

for every z,w ∈ Rm ;

(iv) up to subsequences, ϕ
(ℓ)
γ converges locally uniformly on Rm, as γ → 0+, to a continuous

function ϕ(ℓ) : Rm → [0,+∞) satisfying

0 ≤ ϕ(ℓ)(z) ≤ c|z|p , |ϕ(ℓ)(z)− ϕ(ℓ)(w)| ≤ c |z −w|
(
|z|p−1 + |w|p−1

)
(5.6)

for every z,w ∈ Rm.

Proof. Fix γ > 0, then γNj > 2 for j large enough.

(i) According to the p-growth condition (3.3),

0 ≤ ϕ
(ℓ)
γ,j(z) ≤ β

(
Cγ,j(z) +Hn−1(Bn−1

1 )γn−1
εn−1
j

rn−1−p
j

)
, (5.7)

where

Cγ,j(z) := inf





∫

(Bn−1
γNj

×I)\C1,γNj

∣∣∣∣
(
Dαζ

∣∣∣rj
δj
Dnζ

)∣∣∣∣
p

dx : ζ ∈ Xγ
j (z)



 .
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Since Cγ,j(z) is invariant by rotations, reasoning as in [5] Section 4.1, we can consider the

minimization problem with respect to a particular class of scalar test functions as follows

Cγ,j(z)
|z|p = inf

{∫

(Bn−1
γNj

×I)\C1,γNj

∣∣∣∣
(
Dαψ

∣∣∣rj
δj
Dnψ

)∣∣∣∣
p

dx : ψ ∈W 1,p((Bn−1
γNj

× I) \ C1,γNj ),

ψ = 1 on
(
∂Bn−1

γNj

)+
and ψ = 0 on

(
∂Bn−1

γNj

)−
}

≤ inf

{∫

Bn−1
γNj

(
|Dαψ

+|p + |Dαψ
−|p
)
dx : (ψ+ − 1) , ψ− ∈W 1,p

0 (Bn−1
γNj

)

and ψ+ = ψ− in Bn−1
1

}
. (5.8)

Let ψ±
1 be the unique minimizer of the strictly convex minimization problem (5.8). It turns

out that ψ±
2 := 1 − ψ∓

1 is also a minimizer. Thus by uniqueness, ψ±
1 = ψ±

2 and in particular,

ψ±
1 = 1/2 in Bn−1

1 . Hence,

Cγ,j(z) ≤ |z|p inf
{∫

Bn−1
γNj

(
|Dαψ

+|p + |Dαψ
−|p
)
dxα : (ψ+ − 1) , ψ− ∈W 1,p

0 (Bn−1
γNj

),

and ψ+ = ψ− =
1

2
in Bn−1

1

}

= 2|z|p inf
{∫

Bn−1
γNj

|Dαψ|p dxα : ψ ∈W 1,p
0 (Bn−1

γNj
) and ψ =

1

2
in Bn−1

1

}

=
|z|p
2p−1

inf

{∫

Bn−1
γNj

|Dαψ|p dxα : ψ ∈W 1,p
0 (Bn−1

γNj
) and ψ = 1 in Bn−1

1

}

=
|z|p
2p−1

Capp
(
Bn−1

1 ;Bn−1
γNj

)
. (5.9)

Since

lim
j→+∞

Capp
(
Bn−1

1 ;Bn−1
γNj

)
= Capp

(
Bn−1

1 ;Rn−1
)
< +∞ ;

hence, by (5.3), (5.7) and (5.9) we conclude the proof of (i).

(ii) For every η > 0, there exists ζγ,j ∈ Xγ
j (z) such that

∫

(Bn−1
γNj

×I)\C1,γNj

rpj W
(
r−1
j Dαζγ,j|δ−1

j Dnζγ,j

)
dx ≤ ϕ

(ℓ)
γ,j(z) + η. (5.10)

We want to modify ζγ,j in order to get an admissible test function for ϕ
(ℓ)
γ,j(w). More precisely,

we just have to modify ζγ,j on a neighborhood of (∂Bn−1
γNj

)+ to change the boundary condition

z into w. To this aim we introduce a cut-off function θ ∈ C∞
c (Rn−1; [0, 1]), independent of xn,
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such that

θ(xα) =





1 if xα ∈ Bn−1
1 ,

0 if xα 6∈ Bn−1
2

and |Dαθ| ≤ c .

Hence, we define ζ̃γ,j ∈ Xγ
j (w) as follows

ζ̃γ,j =





ζγ,j + (1− θ(xα))(w − z) in (Bn−1
γNj

)+

ζγ,j in (Bn−1
γNj

)− ∪
(
Bn−1

1 × {0}
)
.

By (5.10), since ζγ,j = ζ̃γ,j in (Bn−1
γNj

)−, we have that

ϕ
(ℓ)
γ,j(w) − ϕ

(ℓ)
γ,j(z)

≤ rpj

∫

(Bn−1
γNj

×I)\C1,γNj

(
W
(
r−1
j Dαζ̃γ,j|δ−1

j Dnζ̃γ,j
)
−W

(
r−1
j Dαζγ,j|δ−1

j Dnζγ,j
))
dx + η

= rpj

∫

(Bn−1
γNj

)+

(
W
(
r−1
j Dαζ̃γ,j|δ−1

j Dnζ̃γ,j
)
−W

(
r−1
j Dαζγ,j|δ−1

j Dnζγ,j
))
dx + η .

By (3.4) and Hölder’s Inequality, we obtain that

ϕ
(ℓ)
γ,j(w)− ϕ

(ℓ)
γ,j(z) − η

≤ c

∫

(Bn−1
γNj

)+

(
rp−1
j +

∣∣∣∣
(
Dαζγ,j

∣∣∣rj
δj
Dnζγ,j

)∣∣∣∣
p−1

+

∣∣∣∣
(
Dαζ̃γ,j

∣∣∣rj
δj
Dnζ̃γ,j

)∣∣∣∣
p−1

)

×
∣∣∣∣
(
Dαζ̃γ,j −Dαζγ,j

∣∣∣rj
δj
(Dnζ̃γ,j −Dnζγ,j)

)∣∣∣∣ dx

≤ c

∫

(Bn−1
γNj

)+

(
rp−1
j + 2

∣∣∣∣
(
Dαζγ,j

∣∣∣rj
δj
Dnζγ,j

)∣∣∣∣
p−1

+ |Dαθ|p−1 |w − z|p−1

)
|Dαθ| |w − z| dx

≤ c |z − w|p
∫

Bn−1
γNj

|Dαθ|p dxα + c rp−1
j |z − w|

∫

Bn−1
γNj

|Dαθ| dxα

+2c |z − w| ‖Dαθ‖Lp(Bn−1
γNj

;Rn−1)

∥∥∥∥
(
Dαζγ,j

∣∣∣rj
δj
Dnζγ,j

)∥∥∥∥
p−1

Lp
(
(Bn−1

γNj
)+;Rm×n

) .

Since γNj > 2 and Supp(θ) ⊂ Bn−1
2 , we obtain that

ϕ
(ℓ)
γ,j(w)− ϕ

(ℓ)
γ,j(z)

≤ c|z − w|
(
|z − w|p−1 + rp−1

j +

∥∥∥∥
(
Dαζγ,j

∣∣∣rj
δj
Dnζγ,j

)∥∥∥∥
p−1

Lp
(
(Bn−1

γNj
)+;Rm×n

)
)

+ η. (5.11)
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δj
rj

− δj
rj

00 1
γNj

B
(n−1)
γNj

× Ij

C1,γNj

Figure 3. The domain (B
(n−1)
γNj

× Ij) \ C1,γNj .

By the p-growth condition (3.3), (5.10) and (i), we have that

∫

(Bn−1
γNj

)+

∣∣∣∣
(
Dαζγ,j

∣∣∣rj
δj
Dnζγ,j

)∣∣∣∣
p

dx

≤
∫

(Bn−1
γNj

)+
rpj W

(
r−1
j Dαζγ,j|δ−1

j Dnζγ,j

)
dx+ rpj Hn−1

(
Bn−1

γNj

)

≤ ϕ
(ℓ)
γ,j(z) + η + cγn−1

εn−1
j

rn−1−p
j

≤ c(|z|p + γn−1) + η + cγn−1
εn−1
j

rn−1−p
j

. (5.12)

Hence, by (5.11), (5.12) and (5.3) we have that

ϕ
(ℓ)
γ,j(w) − ϕ

(ℓ)
γ,j(z) ≤ c |z − w|

(
|z|p−1 + |w|p−1 + rp−1

j + γ(n−1)(p−1)/p + η(p−1)/p
)
+ η

and (5.4) follows by the arbitrariness of η.

By (ii) and Ascoli-Arzela’s Theorem we have that, up to subsequences, ϕ
(ℓ)
γ,j converges uni-

formly on compact sets of Rm to ϕ
(ℓ)
γ as j → +∞. Moreover, passing to the limit in (5.4) as

j → +∞ we get

|ϕ(ℓ)
γ (w) − ϕ(ℓ)

γ (z)| ≤ c |z − w|
(
|z|p−1 + |w|p−1 + γ(n−1)(p−1)/p

)
.

Hence, we can apply again Ascoli-Arzela’s Theorem to conclude that, up to subsequences, ϕ
(ℓ)
γ

converges uniformly on compact sets of Rm to ϕ(ℓ) as γ → 0+. In particular, ϕ(ℓ) : Rm → [0,+∞)

is a continuous function and

0 ≤ ϕ(ℓ)(z) ≤ c|z|p , |ϕ(ℓ)(z)− ϕ(ℓ)(w)| ≤ c
(
|z|p−1 + |w|p−1

)
|z − w|

for every z,w ∈ Rm. �
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5.2. The case ℓ = 0. In this case we expect that the energy contribution due to the presence

of the sieve is obtained studying the behavior, as j → +∞ and γ → 0+, of the sequence (ϕ
(0)
γ,j)

defined as follows

ϕ
(0)
γ,j(z) :=

δj
rj

inf





∫

(Bn−1
γNj

×I)\C1,γNj

rpj W
(
r−1
j Dαζ|δ−1

j Dnζ
)
dx : ζ ∈ Xγ

j (z)





= inf





∫

(Bn−1
γNj

×Ij)\C1,γNj

rpj W (r−1
j Dζ) dx : ζ ∈ Y γ

j (z)



 (5.13)

where Ij := (−δj/rj , δj/rj) and

Y γ
j (z) =

{
ζ ∈W 1,p((Bn−1

γNj
× Ij) \ C1,γNj ;R

m) : ζ = z on (∂Bn−1
γNj

)+(δj/rj),

ζ = 0 on (∂Bn−1
γNj

)−(δj/rj)
}
.

Note that in this case we are interested in the limit behavior of a sequence that is obtained from

the one corresponding to ℓ ∈ (0,+∞] multiplying it by δj/rj (see (5.13) and recall (5.2)). Let

us try to motivate this choice.

Let ℓ ∈ (0,+∞), then starting from (5.2) by a change of variable it is immediate to check

that

ϕ
(ℓ)
γ,j(z) =

rj
δj

inf





∫

(Bn−1
γNj

×Ij)\C1,γNj

rpj W (r−1
j Dζ) dx : ζ ∈ Y γ

j (z)



 . (5.14)

Now assuming that limj→+∞ rn−p
j /(δj ε

n−1
j ) < +∞ (or equivalently that limj→+∞ rn−1−p

j /εn−1
j <

+∞; see Remark 3.5) we know that the sequence (ϕ
(ℓ)
γ,j) converges to ℓ ϕ̃

(ℓ), for some ϕ̃(ℓ), locally

uniformly in Rm, as j → +∞ and γ → 0+ (Proposition 5.1). Then if ℓ ∈ (0,+∞), studying

the limit behavior of (5.13) is perfectly equivalent to study the limit behavior of (5.2). While

if ℓ = limj→+∞ rj/δj = 0, (5.14) suggests that, to recover nontrivial information in the limit,

we have to study the asymptotic behavior of the sequence obtained from (5.14) dividing it by

rj/δj , that is to study the asymptotic behavior of the sequence given by (5.13).

Following the line of the proof of Proposition 5.1, we want to establish an analogous result

for the sequence (ϕ
(0)
γ,j).

Proposition 5.2. Let ℓ = 0. If

0 < R(0) = lim
j→+∞

rn−p
j

εn−1
j δj

< +∞ (5.15)

then,

(i) there exists a constant c > 0 (independent of j and γ) such that

0 ≤ ϕ
(0)
γ,j(z) ≤ c

(
|z|p + γn−1

)

for all z ∈ Rm, j ∈ N and γ > 0;
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(ii) there exists a constant c > 0 (independent of j and γ) such that

|ϕ(0)
γ,j(z)− ϕ

(0)
γ,j(w)| ≤ c |z − w|

(
γ(n−1)(p−1)/p + rn−1

j + |z|p−1 + |w|p−1
)

(5.16)

for every z,w ∈ Rm, j ∈ N and γ > 0;

(iii) for every fixed γ > 0, up to subsequences, ϕ
(0)
γ,j converges locally uniformly in Rm to ϕ

(0)
γ

as j → +∞, and

|ϕ(0)
γ (z)− ϕ(0)

γ (w)| ≤ c |z − w|
(
γ(n−1)(p−1)/p + |z|p−1 + |w|p−1

)
(5.17)

for every z,w ∈ Rm;

(iv) up to subsequences, ϕ
(0)
γ converges locally uniformly in Rm, as γ → 0+, to a continuous

function ϕ(0) : Rm → [0,+∞) satisfying

0 ≤ ϕ(0)(z) ≤ c|z|p, |ϕ(0)(z)− ϕ(0)(w)| ≤ c |z − w|
(
|z|p−1 + |w|p−1

)
(5.18)

for every z,w ∈ Rm.

Proof. Fix γ > 0, then γNj > 2 and δj/rj > 2 for j large enough.

(i) According to the p-growth condition (3.3),

0 ≤ ϕ
(0)
γ,j(z) ≤ β

(
Cγ,j(z) + 2Hn−1(Bn−1

1 ) γn−1
δj ε

n−1
j

rn−p
j

)
, (5.19)

where

Cγ,j(z) = inf





∫

(Bn−1
γNj

×Ij)\C1,γNj

|Dζ|p dx : ζ ∈ Y γ
j (z)



 .

Arguing similarly than in the proof of Proposition 5.1, we can rewrite

Cγ,j(z)
|z|p = inf

{∫

(Bn−1
γNj

×Ij)\C1,γNj

|Dψ|p dx : ψ ∈W 1,p((Bn−1
γNj

× Ij) \ C1,γNj ),

ψ = 1 on (∂Bn−1
γNj

)+(δj/rj) , ψ = 0 on (∂Bn−1
γNj

)−(δj/rj)

}
. (5.20)

Let ψ1 be the unique minimizer of the strictly convex minimization problem (5.20). It turns out

that ψ2(xα, xn) := 1 − ψ1(xα,−xn) is also a minimizer. Thus by uniqueness, ψ1 = ψ2 and in
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particular, ψ1 = ψ2 = 1/2 on Bn−1
1 × {0}. Thus

Cγ,j(z) = 2|z|p inf
{∫

(Bn−1
γNj

)+(δj/rj)
|Dψ|p dx : ψ ∈W 1,p((Bn−1

γNj
)+(δj/rj)),

ψ = 0 on (∂Bn−1
γNj

)+(δj/rj) and ψ =
1

2
on Bn−1

1 × {0}
}

=
|z|p
2p−1

inf

{∫

(Bn−1
γNj

)+(δj/rj)
|Dψ|p dx : ψ ∈W 1,p((Bn−1

γNj
)+(δj/rj)),

ψ = 0 on (∂Bn−1
γNj

)+(δj/rj) and ψ = 1 on Bn−1
1 × {0}

}

≤ |z|p
2p

Capp
(
Bn−1

1 ;Bn−1
γNj

× Ij
)
. (5.21)

Since

lim
j→+∞

Capp
(
Bn−1

1 ;Bn−1
γNj

× Ij
)
= Capp

(
Bn−1

1 ;Rn
)
< +∞ ;

hence, by (5.15), (5.19) and (5.21) we conclude the proof of (i).

(ii) We can proceed as in the proof of Proposition 5.1 (ii) using a different cut-off function

also depending on xn. Namely, let θ ∈ C∞
c (Rn; [0, 1]) be such that

θ(xα, xn) =





1 if (xα, xn) ∈ Bn−1
1 × (−1, 1),

0 if (xα, xn) 6∈ Bn−1
2 × (−2, 2)

and |Dθ| ≤ c.

Hence, if ζγ,j ∈ Y γ
j (z) is a sequence which ‘almost attains’ the infimum value ϕ

(0)
γ,j , we define

ζ̃γ,j ∈ Y γ
j (w) as follows

ζ̃γ,j =





ζγ,j + (1− θ(x))(w − z) in (Bn−1
γNj

)+(δj/rj),

ζγ,j in
(
(Bn−1

γNj
)−(δj/rj)

)
∪
(
Bn−1

1 × {0}
)
.

By (5.15) we conclude the proof of (ii) reasoning as in the proof of Proposition 5.1 (ii).

The proof of (iii) and (iv) follows the line of the proof of (iii) and (iv) in Proposition 5.1. �
Now we are able to describe the energy contribution close to the connecting zones as j → +∞

and γ → 0+.

Proposition 5.3 (Discrete approximation of the interfacial energy). Let (uj) ⊂W 1,p(Ωj;Rm)∩
L∞(Ωj;Rm) be a sequence converging to (u+, u−) ∈ W 1,p(ω;Rm) × W 1,p(ω;Rm) such that

supj Fj(uj) < +∞ and satisfying supj∈N ‖uj‖L∞(Ωj ;Rm) < +∞. Let (ui±j ) be as in (4.1). If

ℓ ∈ (0,+∞] and 0 < R(ℓ) = lim
j→+∞

rn−1−p
j

εn−1
j

< +∞
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or

ℓ = 0 and 0 < R(0) = lim
j→+∞

rn−p
j

δjε
n−1
j

< +∞

then

lim
γ→0+

lim sup
j→+∞

∫

ω

∣∣∣
∑

i∈Zj

ϕ
(ℓ)
γ,j(u

i+
j − ui−j )χQn−1

i,εj

− ϕ(ℓ)(u+ − u−)
∣∣∣ dxα = 0 , (5.22)

for every ℓ ∈ [0,+∞].

Proof. Since supj∈N ‖uj‖L∞(Ωj ;Rm) < +∞ by Propositions 5.1 or 5.2 we have that

lim sup
j→+∞

∫

ω

∣∣∣
∑

i∈Zj

ϕ
(ℓ)
γ,j(u

i+
j − ui−j )χQn−1

i,εj

− ϕ(ℓ)(u+ − u−)
∣∣∣ dxα

≤ lim sup
j→+∞

∫

ω

∑

i∈Zj

∣∣∣ϕ(ℓ)
γ,j(u

i+
j − ui−j )− ϕ(ℓ)(ui+j − ui−j )

∣∣∣χQn−1
i,εj

dxα

+ lim sup
j→+∞

∫

ω

∣∣∣
∑

i∈Zj

ϕ(ℓ)(ui+j − ui−j )χQn−1
i,εj

− ϕ(ℓ)(u+ − u−)
∣∣∣ dxα

≤ o(1) + lim sup
j→+∞

∫

ω

∣∣∣
∑

i∈Zj

ϕ(ℓ)(ui+j − ui−j )χQn−1
i,εj

− ϕ(ℓ)(u+ − u−)
∣∣∣ dxα,

as γ → 0+. By (5.6) or (5.18) and Hölder’s Inequality we have that

lim sup
j→+∞

∫

ω

∣∣∣
∑

i∈Zj

ϕ(ℓ)(ui+j − ui−j )χQn−1
i,εj

− ϕ(ℓ)(u+ − u−)
∣∣∣ dxα

= lim sup
j→+∞

∑

i∈Zj

∫

Qn−1
i,εj

|ϕ(ℓ)(ui+j − ui−j )− ϕ(ℓ)(u+ − u−)| dxα

≤ c lim sup
j→+∞

(∑

i∈Zj

∫

Qn−1
i,εj

∣∣ui+j − u+|p + |ui−j − u−|p dxα
)1/p

.

Hence, it remains to prove that

lim sup
j→+∞

∑

i∈Zj

∫

Qn−1
i,εj

|u± − ui±j |p dxα = 0 . (5.23)

By Lemma 4.1 (ii) applied with ρ = εj , Bρ = Ci
j and Aρ = Qn−1

i,εj
and since δj ≪ εj , we have

∫

Qn−1
i,εj

|u± − ui±j |p dxα ≤ c

δj

(∫

(Qn−1
i,εj

)±δj

|uj − u±|p dx+

∫

(Qn−1
i,εj

)±δj

|uj − ui±j |p dx
)

≤ c

δj

∫

(Qn−1
i,εj

)±δj

|uj − u±|p dx+
c εpj
δj

∫

(Qn−1
i,εj

)±δj

|Duj |p dx , (5.24)

for all i ∈ Zj; hence, summing up on i ∈ Zj , we find

∑

i∈Zj

∫

Qn−1
i,εj

|uj − ui±j |p dxα ≤ c

δj

∫

ω±δj

|uj − u±|p dx+
c εpj
δj

∫

ω±δj

|Duj |p dx ,
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then passing to the limit as j → +∞ by the convergence of (uj) towards (u
+, u−) and supj Fj(uj) <

+∞ we get (5.23) and then (5.22). �

6. Γ-convergence result

6.1. The liminf inequality. Let (uj) ⊂ W 1,p(Ωj ;Rm) ∩ L∞(Ωj;Rm) be a sequence con-

verging to (u+, u−) ∈W 1,p(ω,Rm)×W 1,p(ω,Rm) such that supj∈N ‖uj‖L∞(Ωj ;Rm) < +∞ and

lim inf
j→+∞

Fj(uj) < +∞ .

By Lemma 4.2, for every fixed k ∈ N, there exists a sequence (wj) ⊂W 1,p(Ωj ;Rm)∩L∞(Ωj ;Rm)

weakly converging to (u+, u−) satisfying (4.2), (4.3) and such that

lim inf
j→+∞

1

δj

(∫

ω+δj

W (Duj) dx+

∫

ω−δj

W (Duj) dx

)

≥ lim inf
j→+∞

1

δj

(∫

ω+δj

W (Dwj) dx+

∫

ω−δj

W (Dwj) dx

)
− c

k

≥ lim inf
j→+∞

1

δj

(∫

(ω\Ej )
+δj

W (Dwj) dx+

∫

(ω\Ej)
−δj

W (Dwj) dx

)

+ lim inf
j→+∞

1

δj

(∫

E
+δj
j

W (Dwj) dx+

∫

E
−δj
j

W (Dwj) dx

)
− c

k
, (6.1)

where Ej :=
⋃

i∈Zj
Bn−1

ρij
(x

εj
i ).

We first consider the energy contribution ‘far’ from the connecting zones. In this case, we suit-

ably modify the sequence (wj) in order to get a constant inside each half cylinder B
(n−1)

ρij
(x

εj
i )±δj .

Then, we apply the classical result of dimensional reduction proved in [38] to ω+δj and ω−δj ,

separately.

Proposition 6.1. We have

lim inf
j→+∞

1

δj

(∫

(ω\Ej)
+δj

W (Dwj) dx+

∫

(ω\Ej)
−δj

W (Dwj) dx

)

≥
∫

ω

(
Qn−1W (Dαu

+) +Qn−1W (Dαu
−)
)
dxα.

Proof. We define

vj :=

{
wj in (ω \ Ej)

±δj ,

ui±j in Bn−1
ρij

(x
εj
i )±δj if i ∈ Zj .

(6.2)

Then (vj) ⊂W 1,p(Ωj;Rm) converges weakly to (u+, u−). In fact,

sup
j∈N

1

δj

∫

ω±δj

|Dvj|p dx ≤ sup
j∈N

1

δj

∫

ω±δj

|Duj|p dx < +∞. (6.3)

Moreover, since ρij < ρj < εj/2, then B
n−1
ρij

(x
εj
i ) ⊂ Qn−1

i,εj
; hence,

∫

ω±δj

|vj − u±|p dx ≤
∫

(ω\Ej )
±δj

|wj − u±|p dx+
∑

i∈Zj

∫

(Qn−1
i,εj

)±δj

|u± − ui±j |p dx
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and, by (5.24), we obtain that

1

δj

∫

ω±δj

|vj − u±|p dx ≤ 1

δj

∫

ω±δj

|wj − u±|p dx+
c

δj

∫

ω±δj

|uj − u±|p dx

+c εpj sup
j∈N

1

δj

∫

ω±δj

|Duj |p dx. (6.4)

Passing to the limit as j → +∞ in (6.4), by (6.3) and Remark 3.2 we get that (vj) converges

weakly to (u+, u−).
Since W (0) = 0, by (6.2) and [38] Theorem 2, we have

lim inf
j→+∞

1

δj

(∫

(ω\Ej )
+δj

W (Dwj) dx+

∫

(ω\Ej)
−δj

W (Dwj) dx

)

= lim inf
j→+∞

1

δj

(∫

(ω\Ej )
+δj

W (Dvj) dx+

∫

(ω\Ej )
−δj

W (Dvj) dx

)

= lim inf
j→+∞

1

δj

(∫

ω+δj

W (Dvj) dx+

∫

ω−δj

W (Dvj) dx

)

≥
∫

ω
Qn−1W (Dαu

+) dxα +

∫

ω
Qn−1W (Dαu

−) dxα .

�

Now let us deal with the contribution ‘near’ the connecting zones. We always work under

the assumption

ℓ ∈ (0,+∞] and 0 < R(ℓ) = lim
j→+∞

r
(n−1−p)
j

εn−1
j

< +∞,

or

ℓ = 0 and 0 < R(0) = lim
j→+∞

r
(n−p)
j

δjε
n−1
j

< +∞.

In the following proposition we suitably modify (wj) in each surrounding cylinder in order to

get an admissible test function for the minimum problem (5.2) or (5.13).

Proposition 6.2. Let ℓ ∈ [0,+∞]. Then

lim inf
j→+∞

1

δj

(∫

E
+δj
j

W (Dwj) dx+

∫

E
−δj
j

W (Dwj) dx

)
≥ R(ℓ)

∫

ω
ϕ(ℓ)(u+ − u−) dxα + o(1) ,

as γ → 0+.
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Proof. Let ℓ ∈ (0,+∞], the case ℓ = 0 can be treated similarly. Let i ∈ Zj and Nj =
εj
rj
. Since

ρij < γεj , we can define

ζij :=





wj(x
εj
i + rj yα, δj yn)− ui−j in

(
Bn−1

ρij/rj
× I
)
\ C1,ρij/rj

(ui+j − ui−j ) in
(
Bn−1

γNj
\Bn−1

ρij/rj

)+

0 in
(
Bn−1

γNj
\Bn−1

ρij/rj

)−
,

where Nj = εj/rj . Then ζij ∈ W 1,p((Bn−1
γNj

× I) \ C1,γNj ;Rm), ζij = (ui+j − ui−j ) on
(
∂Bn−1

γNj

)+

and ζij = 0 on
(
∂Bn−1

γNj

)−
. Since W (0) = 0, changing variable, by (5.2) we get

1

δj



∫

Bn−1

ρi
j

(x
εj
i )+δj

W (Dwj) dx+

∫

Bn−1

ρi
j

(x
εj
i )−δj

W (Dwj) dx




= rn−1
j



∫
(
Bn−1

ρi
j
/rj

)+ W
(
r−1
j Dαζ

i
j |δ−1

j Dnζ
i
j

)
dy +

∫
(
Bn−1

ρi
j
/rj

)− W
(
r−1
j Dαζ

i
j|δ−1

j Dnζ
i
j

)
dy




= rn−1
j

∫

(Bn−1
γNj

×I)\C1,γNj

W
(
r−1
j Dαζ

i
j |δ−1

j Dnζ
i
j

)
dy

≥ rn−1−p
j ϕ

(ℓ)
γ,j(u

i+
j − ui−j ) . (6.5)

Summing up in (6.5), for i ∈ Zj , we get that

1

δj

(∫

E
+δj
j

W (Dwj) dx+

∫

E
−δj
j

W (Dwj) dx

)

=
∑

i∈Zj

1

δj



∫

Bn−1

ρi
j

(x
εj
i )+δj

W (Dwj) dx+

∫

Bn−1

ρi
j

(x
εj
i )−δj

W (Dwj) dx




≥ rn−1−p
j

∑

i∈Zj

ϕ
(ℓ)
γ,j(u

i+
j − ui−j ) =

rn−1−p
j

εn−1
j

∑

i∈Zj

εn−1
j ϕ

(ℓ)
γ,j(u

i+
j − ui−j ) . (6.6)

Passing to the limit as j → +∞ we get, by (5.3) and Proposition 5.3, that

lim inf
j→+∞

1

δj

(∫

E
+δj
j

W (Dwj) dx+

∫

E
−δj
j

W (Dwj) dx

)

≥ R(ℓ)

∫

ω
ϕ(ℓ)(u+ − u−) dxα

+R(ℓ) lim inf
j→+∞

∫

ω

(∑

i∈Zj

ϕ
(ℓ)
γ,j(u

i+
j − ui−j )χQn−1

i,εj

− ϕ(ℓ)(u+ − u−)
)
dxα

= R(ℓ)

∫

ω
ϕ(ℓ)(u+ − u−) dxα + o(1) ,
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as γ → 0+, which completes the proof. �

We now prove the liminf inequality for any arbitrary converging sequence.

Lemma 6.3. Let ℓ ∈ [0,+∞]. For every sequence (uj) converging to (u+, u−) we have

lim inf
j→+∞

Fj(uj) ≥
∫

ω
Qn−1W (Dαu

+) dxα +

∫

ω
Qn−1W (Dαu

−) dxα

+R(ℓ)

∫

ω
ϕ(ℓ)(u+ − u−) dxα .

Proof. Let (uj) → (u+, u−) be such that lim infj→+∞Fj(uj) < +∞. Reasoning as in [5]

Proposition 5.2, by [17] Lemma 3.5, upon passing to a subsequence, for every M > 0 and

η > 0, we have the existence of RM > M and of a Lipschitz function ΦM ∈ C1
c (Rm;Rm) with

Lip(ΦM ) = 1 such that

ΦM (z) =





z if |z| < RM ,

0 if |z| > 2RM

and

lim inf
j→+∞

Fj(uj) ≥ lim inf
j→+∞

Fj(ΦM (uj))− η . (6.7)

Note that (ΦM (uj)) ⊂ W 1,p(Ωj;Rm) ∩ L∞(Ωj ;Rm), supj∈N ‖ΦM (uj)‖L∞(Ωj ;Rm) < RM and it

converges to (ΦM (u+),ΦM (u−)) as j → +∞. Hence, if we apply (6.1), Propositions 6.1 and 6.2

to (ΦM (uj)) in place of (uj), letting γ → 0 and k → +∞, we get that

lim inf
j→+∞

Fj(ΦM (uj)) ≥
∫

ω
Qn−1W (DαΦM (u+)) dxα +

∫

ω
Qn−1W (DαΦM (u−)) dxα

+R(ℓ)

∫

ω
ϕ(ℓ)(ΦM (u+)− ΦM (u−)) dxα. (6.8)

Moreover ΦM (u±) ⇀ u± weakly in W 1,p(ω;Rm) as M → +∞; hence, by (6.7), (6.8), the lower

semicontinuity of
∫
ω Qn−1W (Dαu) dxα with respect to the weak W 1,p(ω;Rm)-convergence, and

(5.6) we have that

lim inf
j→+∞

Fj(uj)

≥
∫

ω
Qn−1W (Dαu

+) dxα +

∫

ω
Qn−1W (Dαu

−) dxα +R(ℓ)

∫

ω
ϕ(ℓ)(u+ − u−) dxα − η ,(6.9)

and by the arbitrariness of η, the thesis. �

6.2. The limsup inequality. For every (u+, u−) ∈W 1,p(ω,Rm)×W 1,p(ω,Rm) the limsup

inequality is obtained by suitably modifying the recovery sequences (u±j ) for the Γ-limits of

1

δj

∫

ω+δj

W (Du) dx and
1

δj

∫

ω−δj

W (Du) dx.
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Lemma 6.4. Let ℓ ∈ [0,+∞] and let ω be an open bounded subset of Rn−1 such that Hn−1(∂ω) =

0. Then, for all (u+, u−) ∈W 1,p(ω,Rm)×W 1,p(ω,Rm) and for all η > 0 there exists a sequence

(ūj) ⊂W 1,p(Ωj;Rm) converging to (u+, u−) such that

lim sup
j→+∞

Fj(ūj) ≤
∫

ω
Qn−1W (Dαu

+) dxα +

∫

ω
Qn−1W (Dαu

−) dxα

+R(ℓ)

∫

ω
ϕ(ℓ)(u+ − u−) dxα + ηR(ℓ)Hn−1(ω) .

Proof. The proof of the limsup is divided into three steps. We first construct a sequence

(ūj) ⊂ W 1,p(Ωj ;Rm) that we expect to be a recovery sequence. In the second step we prove

that (ūj) converges to (u+, u−). Finally, we prove that it satisfies the limsup inequality. We

first deal with the case ℓ ∈ (0,+∞].

Step 1: Definition of a recovery sequence. Let u± ∈W 1,p(ω;Rm)∩L∞(ω;Rm). Accord-

ing to [38] Theorem 2 and [13] Theorem 1.1, there exist two sequences (u±j ) ⊂W 1,p(ω±δj ;Rm)

such that u±j → u±, the sequences of gradients (|Du±j |p/δj) are equi-integrable on ω±δj , respec-

tively, and

lim
j→+∞

1

δj

∫

ω±δj

W (Du±j ) dx =

∫

ω
Qn−1W (Dαu

±) dxα . (6.10)

Moreover, using a truncation argument (as in [7] Lemma 6.1, Step 2) we may assume without

loss of generality that

sup
j∈N

‖u±j ‖L∞(ω±δj ;Rm)
< +∞ .

Let uj := u+j χω+δj + u−j χω−δj ∈ W 1,p(ω+δj ∪ ω−δj ;Rm) and let (wj) be the sequence obtained

from (uj) as in Lemma 4.3, then supj∈N ‖wj‖L∞(ω±δj ;Rm)
< +∞.

We first define (ūj) ‘far’ from the connecting zones; i.e.,

ūj := wj in
(
ω \

⋃

i∈Zn−1

Bn−1
ρj (x

εj
i )
)±δj

. (6.11)

Then we pass to define (ūj) on each Bn−1
ρj (x

εj
i )±δj making a distinction between the indices

i ∈ Zj and i ∈ Zn−1 \ Zj .

If i ∈ Zj , by (5.2), for every η > 0 there exists ζiγ,j ∈ Xγ
j (u

i+
j − ui−j ) such that

∫

(Bn−1
γNj

×I)\C1,γNj

rpj W
(
r−1
j Dαζ

i
γ,j|δ−1

j Dnζ
i
γ,j

)
dx ≤ ϕ

(ℓ)
γ,j(u

i+
j − ui−j ) + η. (6.12)

Then, we define

ūj := ζiγ,j

(
xα − x

εj
i

rj
,
xn
δj

)
+ ui−j in Bn−1

ρj (x
εj
i )±δj , i ∈ Zj . (6.13)

In particular, ūj = ui±j = wj on
(
∂Bn−1

ρj (x
εj
i )
)±δj .
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Let us now deal with the contact zones not well contained in ω; i.e., with the indices i 6∈ Zj.

For fixed γ > 0 and j large enough we have that γNj > 2. Let ψ ∈ W 1,p(Bn−1
2 ; [0, 1]) be such

that ψ = 1 on ∂Bn−1
2 and ψ = 0 in Bn−1

1 and define

ψγ,j(x) :=





0 in (Bn−1
γNj

)−

ψ(xα) in (Bn−1
2 )+

1 in (Bn−1
γNj

\Bn−1
2 )+ .

Then ψγ,j ∈W 1,p((Bn−1
γNj

× I) \C1,γNj ; [0, 1]), ψγ,j = 1 on
(
∂Bn−1

γNj

)+
and ψγ,j = 0 on

(
∂Bn−1

γNj

)−
.

Let w±
j = wj χω±δj , we extend both of them to the whole ω × (−δj , δj) by reflection; i.e., we

define w̃±
j (xα, xn) = w±

j (xα,−xn) for x ∈ ω∓δj and w̃±
j (x) = w±

j (x) for x ∈ ω±δj . Hence, we

define

ūj := ψγ,j

(
xα − x

εj
i

rj
,
xn
δj

)
w̃+
j +

(
1− ψγ,j

(
xα − x

εj
i

rj
,
xn
δj

))
w̃−
j (6.14)

in
(
Bn−1

ρj (x
εj
i ) × (−δj , δj)

)
∩ Ωj and for i ∈ Zn−1 \ Zj. In particular, we have that ūj = wj on(

∂Bn−1
ρj (x

εj
i )× (−δj , δj)

)
∩ Ωj; thus (ūj) ⊂W 1,p(Ωj ;Rm).

Step 2: The sequence (ūj) weakly converges to (u+, u−). Let us check (3.1) and (3.2).

We will only treat the upper cylinder ω+δj , the lower part being analogous. First

1

δj

∫

ω+δj

|ūj − u+|p dx

=
1

δj

∫
“

ω\S

i∈Zn−1 Bn−1
ρj

(x
εj
i )

”+δj
|w+

j − u+|p dx

+
1

δj

∑

i∈Zj

∫

Bn−1
ρj

(x
εj
i )+δj

∣∣∣∣ζiγ,j
(
xα − x

εj
i

rj
,
xn
δj

)
+ ui−j − u+

∣∣∣∣
p

dx

+
1

δj

∑

i∈Zn−1\Zj

∫
(
ω∩Bn−1

ρj
(x

εj
i )
)+δj

∣∣∣∣ψγ,j

(
xα − x

εj
i

rj
,
xn
δj

)
(w+

j − w̃−
j ) + w̃−

j − u+
∣∣∣∣
p

dx

≤ 1

δj

∫

ω+δj

|wj − u+|p dx+ c
∑

i∈Zj

∫

Bn−1
ρj

(x
εj
i )

|u+ − ui+j |p dxα

+
c

δj

∑

i∈Zj

∫

Bn−1
ρj

(x
εj
i )+δj

∣∣∣∣ζiγ,j
(
xα − x

εj
i

rj
,
xn
δj

)
− (ui+j − ui−j )

∣∣∣∣
p

dx

+
c

δj

∫
“

ω∩S

i∈Zn−1\Zj
Bn−1

ρj
(x

εj
i )

”+δj

(
|w+

j |p + |w̃−
j |p + |u+|p

)
dx . (6.15)

Since limj→+∞Hn−1
(
ω ∩ ⋃i∈Zn−1\Zj

Bn−1
ρj (x

εj
i )
)
= 0 and supj∈N ‖w±

j ‖L∞(ω±δj ;Rm)
< +∞, we

have that

lim
j→+∞

c

δj

∫
“

ω∩S

i∈Zn−1\Zj
Bn−1

ρj
(x

εj
i )

”+δj

(
|w+

j |p + |w̃−
j |p + |u+|p

)
dx = 0 . (6.16)
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Moreover, reasoning as in the proof of Proposition 5.3 (see inequality (5.24)), we have that

lim
j→+∞

∑

i∈Zj

∫

Bn−1
ρj

(x
εj
i )

|u+ − ui+j |p dxα = 0 , (6.17)

and, by the convergence wj → (u+, u−), it remains only to prove that

lim
j→+∞

1

δj

∑

i∈Zj

∫

Bn−1
ρj

(x
εj
i )+δj

∣∣∣∣ζiγ,j
(
xα − x

εj
i

rj
,
xn
δj

)
− (ui+j − ui−j )

∣∣∣∣
p

dx = 0 . (6.18)

In fact, changing variable, we get that

1

δj

∑

i∈Zj

∫

Bn−1
ρj

(x
εj
i )+δj

∣∣∣∣ζiγ,j
(
xα − x

εj
i

rj
,
xn
δj

)
− (ui+j − ui−j )

∣∣∣∣
p

dx

= rn−1
j

∑

i∈Zj

∫

(Bn−1
γNj

)+

∣∣∣ζiγ,j(x)− (ui+j − ui−j )
∣∣∣
p
dx ,

and by, Poincaré’s Inequality

∫

Bn−1
γNj

∣∣∣ζiγ,j(xα, xn)− (ui+j − ui−j )
∣∣∣
p
dxα ≤ c (γNj)

p

∫

Bn−1
γNj

|Dαζ
i
γ,j(xα, xn)|p dxα

for a.e. xn ∈ (0, 1). Hence, by the p-growth condition (3.3) and (6.12) if we integrate with

respect to xn and sum up in i ∈ Zj, we get that

1

δj

∑

i∈Zj

∫

Bn−1
ρj

(x
εj
i )+δj

∣∣∣∣ζiγ,j
(
xα − x

εj
i

rj
,
xn
δj

)
− (ui+j − ui−j )

∣∣∣∣
p

dx

≤ c rn−1
j γpNp

j

∑

i∈Zj

∫

(Bn−1
γNj

)+
|Dαζ

i
γ,j|p dx

≤ c rn−1
j γpNp

j

∑

i∈Zj

∫

(Bn−1
γNj

)+

∣∣∣∣
(
Dαζ

i
γ,j

∣∣∣rj
δj
Dnζ

i
γ,j

)∣∣∣∣
p

dx

≤ c rn−1
j γpNp

j

∑

i∈Zj

(
ϕ
(ℓ)
γ,j(u

i+
j − ui−j ) + η + rpj Hn−1(Bn−1

γNj
)
)

≤ c γp εpj
rn−1−p
j

εn−1
j


∑

i∈Zj

εn−1
j ϕ

(ℓ)
γ,j(u

i+
j − ui−j ) +

(
η + c γn−1

εn−1
j

rn−1−p
j

)
Hn−1(ω)


 . (6.19)

By Proposition 5.3 and (5.3), passing to the limit as j → +∞ in (6.19), we get (6.18).
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It remains to prove that (3.2) holds. In fact,

1

δj

∫

ω+δj

|Dūj |p dx

=
1

δj

∫
“

ω\S

i∈Zn−1 Bn−1
ρj

(x
εj
i )

”+δj
|Dw±

j |p dx

+
1

δj

∫
S

i∈Zj
Bn−1

ρj
(x

εj
i )+δj

∣∣∣∣
(
r−1
j Dαζ

i
γ,j

(xα − x
εj
i

rj
,
xn
δj

)∣∣∣δ−1
j Dnζ

i
γ,j

(xα − x
εj
i

rj
,
xn
δj

))∣∣∣∣
p

dx

+
1

δj

∫
“

S

i∈Zn−1\Zj
Bn−1

ρj
(x

εj
i )∩ω

”+δj
|Dūj|p dx . (6.20)

It can be easily shown that

1

δj

∫
S

i∈Zj
Bn−1

ρj
(x

εj
i )+δj

∣∣∣∣
(
r−1
j Dαζ

i
γ,j

(xα − x
εj
i

rj
,
xn
δj

)∣∣∣δ−1
j Dnζ

i
γ,j

(xα − x
εj
i

rj
,
xn
δj

))∣∣∣∣
p

dx

≤
rn−1−p
j

εn−1
j

(∑

i∈Zj

εn−1
j ϕ

(ℓ)
γ,j(u

i+
j − ui−j )

)
+Hn−1(ω)

(
η
rn−1−p
j

εn−1
j

+ γn−1
)
; (6.21)

while,

1

δj

∫
“

S

i∈Zn−1\Zj
Bn−1

ρj
(x

εj
i )∩ω

”+δj
|Dūj|p dx

≤ c
∑

i∈Zn−1\Zj

(
1

rpj δj

∫

(Bn−1
ρj

(x
εj
i )∩ω)+δj

∣∣∣Dαψγ,j

(xα − x
εj
i

rj
,
xn
δj

)∣∣∣
p (

|w+
j |p + |w̃−

j |p
)
dx

+
1

δj

∫

(Bn−1
ρj

(x
εj
i )∩ω)+δj

(|Dw+
j |p + |Dw̃−

j |p) dx
)

≤ c
∑

i∈Zn−1\Zj

(
rn−1−p
j

∫

Bn−1
2

|Dαψ|p dxα +
1

δj

∫

(Bn−1
ρj

(x
εj
i )∩ω)+δj

|Dw+
j |p dx

+
1

δj

∫

(Bn−1
ρj

(x
εj
i )∩ω)−δj

|Dw−
j |p dx

)

≤ c
∑

i∈Zn−1\Zj

(
rn−1−p
j

εn−1
j

Hn−1(Qn−1
i,εj

) +
1

δj

∫

(Bn−1
ρj

(x
εj
i )∩ω)±δj

|Dw±
j |p dx

+
1

δj

∫

(Bn−1
ρj

(x
εj
i )∩ω)−δj

|Dw−
j |p dx

)
. (6.22)

Note that the previous sum can be computed over all i ∈ Zn−1 \Zj such that Qn−1
i,εj

∩ω 6= ∅. Let

ω′
j :=

⋃

i∈Zn−1\Zj , Q
n−1
i,εj

∩ω 6=∅
Qn−1

i,εj
,
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then

∑

i∈Zn−1\Zj , Q
n−1
i,εj

∩ω 6=∅
Hn−1(Qn−1

i,εj
) = Hn−1(ω′

j) → Hn−1(∂ω) = 0. (6.23)

Moreover, by Lemma 4.3 we have that supj
1
δj

∫
ω±δj |Dw±

j |p dx < +∞; hence, by Proposition

5.3, (5.3), (6.20), (6.21) and (6.22) we get (3.2).

Step 3: The sequence (ūj) is a recovery sequence. We now prove the limsup inequality.

lim sup
j→+∞

∫

ω±δj

W (Dūj) dx

= lim sup
j→+∞

1

δj

(∫
“

ω\S

i∈Zn−1 Bn−1
ρj

(x
εj
i )

”±δj
W (Dūj) dx+

∫
S

i∈Zj
Bn−1

ρj
(x

εj
i )±δj

W (Dūj) dx

+

∫
“

ω∩S

i∈Zn−1\Zj
Bn−1

ρj
(x

εj
i )

”±δj
W (Dūj) dx

)
. (6.24)

We deal with the first term in (6.24). The definition of ūj (6.11), Lemma 4.3 and (6.10), yield

lim sup
j→+∞

1

δj

∫
“

ω\S

i∈Zn−1 Bn−1
ρj

(x
εj
i )

”±δj
W (Dūj) dx

= lim sup
j→+∞

1

δj

∫
“

ω\S

i∈Zn−1 Bn−1
ρj

(x
εj
i )

”±δj
W (Dwj) dx

≤ lim sup
j→+∞

1

δj

∫

ω±δj

W (Du±j ) dx+ o(1)

=

∫

ω
Qn−1W (Dαu

±) dxα + o(1) , (6.25)

as γ → 0+. For every i ∈ Zj , by (6.13) and (6.12) we get that

1

δj

(∫

Bn−1
ρj

(x
εj
i )+δj

W (Dūj) dx+

∫

Bn−1
ρj

(x
εj
i )−δj

W (Dūj) dx

)

= rn−1
j

∫

(Bn−1
γNj

×I)\C1,γNj

W
(
r−1
j Dαζ

i
γ,j |δ−1

j Dnζ
i
γ,j

)
dx

≤ rn−1−p
j

(
ϕ
(ℓ)
γ,j(u

i+
j − ui−j ) + η

)
;
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hence, by (5.3) and Proposition 5.3 we get

lim sup
j→+∞

1

δj

(∫
S

i∈Zj
Bn−1

ρj
(x

εj
i )+δj

W (Dūj) dx+

∫
S

i∈Zj
Bn−1

ρj
(x

εj
i )−δj

W (Dūj) dx

)

≤ R(ℓ)

∫

ω
ϕ(ℓ)(u+ − u−) dxα +R(ℓ)Hn−1(ω) η

+ lim sup
j→+∞

∫

ω

∣∣∣
∑

i∈Zj

ϕ
(ℓ)
γ,j(u

i+
j − ui−j )χQn−1

i,εj

− ϕ(ℓ)(u+ − u−)
∣∣∣ dxα

= R(ℓ)

∫

ω
ϕ(ℓ)(u+ − u−) dxα +R(ℓ)Hn−1(ω) η + o(1) , (6.26)

as γ → 0+. Finally, for i 6∈ Zj, by the p-growth condition (3.3) and (6.22), we obtain

1

δj

(∫
“

S

i∈Zn−1\Zj
Bn−1

ρj
(x

εj
i )∩ω

”±δj
W (Dūj) dx

)

≤
∑

i∈Zn−1\Zj

β

δj

(∫

(Bn−1
ρj

(x
εj
i )∩ω)±δj

(1 + |Dūj |p) dx
)

≤ cHn−1
( ⋃

i∈Zn−1\Zj

Bn−1
ρj (x

εj
i ) ∩ ω

)

+c
∑

i∈Zn−1\Zj

(
rn−1−p
j

εn−1
j

Hn−1(Qn−1
i,εj

) +
1

δj

∫

(Bn−1
ρj

(x
εj
i )∩ω)+δj

|Dw+
j |p dx

+
1

δj

∫

(Bn−1
ρj

(x
εj
i )∩ω)−δj

|Dw−
j |p dx

)
.

Since

lim
j→+∞

Hn−1
( ⋃

i∈Zn−1\Zj

Bn−1
ρj (x

εj
i ) ∩ ω

)
= 0 ,

by (5.3), the equi-integrability of (|Dw±
j |p/δj) on ω±δj and (6.23), we deduce

lim sup
j→+∞

1

δj

∫
“

ω∩S

i∈Zn−1\Zj
Bn−1

ρj
(x

εj
i )

”±δj
W (Dūj) dx = 0 . (6.27)

Gathering (6.24)-(6.27) and passing to the limit as γ → 0+ we get the limsup inequality for

every u± ∈W 1,p(ω;Rm) ∩ L∞(ω;Rm).

We remove the boundedness assumption simply noting that any arbitrary W 1,p(ω;Rm) func-

tion can approximated by a sequence of functions belonging to W 1,p(ω;Rm) ∩L∞(ω;Rm), with

respect to the strong W 1,p(ω;Rm)-convergence. Then, by the lower semicontinuity of the Γ-

limsup and the continuity of

(v+, v−) 7→
∫

ω
Qn−1W (Dαv

+) dxα +

∫

ω
Qn−1W (Dαv

−) dxα +R(ℓ)

∫

ω
ϕ(ℓ)(v+ − v−) dxα

with respect to the strong W 1,p(ω;Rm)-convergence we get the thesis for ℓ ∈ (0,+∞].
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If ℓ = 0, we can follow the line of the previous case with slight changes. Let us start by

dealing with Step 1. First, we have to notice that for the definition of (ūj) in B
n−1
ρj (x

εj
i )±δj , for

i ∈ Zj , we have to consider, for any η > 0, a function ζγ,j ∈ Y γ
j (z) such that

∫

(Bn−1
γNj

×Ij)\C1,γNj

rpj W
(
r−1
j Dζγ,j

)
dx ≤ ϕ

(0)
γ,j(z) + η ;

hence,

ūj(xα, xn) := ζiγ,j

(
xα − x

εj
i

rj
,
xn
rj

)
+ ui−j in Bn−1

ρj (x
εj
i )±δj , for i ∈ Zj .

While for the definition of (ūj) in B
n−1
ρj (x

εj
i )±δj , for i ∈ Zn−1\Zj , we have to introduce a suitable

function ψγ,j different from the one used in (6.14). In fact, for a fixed γ > 0 and j large enough

we can always assume that γNj > 2 and δj/rj > 2. Let ψ ∈W 1,p(Bn−1
2 × (0, 2); [0, 1]) such that

ψ = 0 on Bn−1
1 × {0} and ψ = 1 on ∂Bn−1

2 × (0, 2). We then define

ψγ,j(x) :=





0 in (Bn−1
γNj

)−(δj/rj),

ψ(x) in (Bn−1
2 )+2,

1 in (Bn−1
γNj

)+(δj/rj) \ (Bn−1
2 )+2.

The functions ψγ,j belong toW
1,p((Bn−1

γNj
×Ij)\C1,γNj ; [0, 1]) and satisfy ψγ,j = 1 on (∂Bn−1

γNj
)+(δj/rj)

and ψγ,j = 0 in (Bn−1
γNj

)−(δj/rj). Hence, we define

ūj := ψγ,j

(
xα − x

εj
i

rj
,
xn
rj

)
w̃+
j +

(
1− ψγ,j

(
xα − x

εj
i

rj
,
xn
rj

))
w̃−
j

in
(
Bn−1

ρj (x
εj
i ) × (−δj , δj)

)
∩ Ωj and for i ∈ Zn−1 \ Zj. In particular, we have that ūj = wj on(

∂Bn−1
ρj (x

εj
i )× (−δj , δj)

)
∩ Ωj.

Taking into account the definition of (ūj) we can proceed as in Steps 2 and 3 also for ℓ = 0. �

7. Representation formula for the interfacial energy density

This section is devoted to describe explicitly the interfacial energy density ϕ(ℓ) for ℓ ∈ [0,+∞].

As in [5], we expect to find a capacitary type formula for each regime ℓ ∈ (0,+∞), ℓ = +∞ and

ℓ = 0.

We recall that ϕ(ℓ) is the pointwise limit of the sequence (ϕ
(ℓ)
γ,j), as j → +∞ and γ → 0+

where for ℓ ∈ (0,+∞]

ϕ
(ℓ)
γ,j(z) = inf





∫

(Bn−1
γNj

×I)\C1,γNj

rpj W

(
r−1
j

(
Dαζ

∣∣∣rj
δj
Dnζ

))
dx : ζ ∈ Xγ

j (z)



 ,

while for ℓ = 0,

ϕ
(0)
γ,j(z) = inf





∫

(Bn−1
γNj

×Ij)\C1,γNj

rpj W (r−1
j Dζ) dx : ζ ∈ Y γ

j (z)




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(see Section 5). The main difficulty occurring in the description of ϕ(ℓ) is due to the fact that

the above minimum problems are stated on (increasingly) varying domains. This do not permit,

for example, to deal with a direct Γ-convergence approach in order to apply the classical result

on the convergence of associated minimum problems. Thus the proof of the representation

formula will be performed in three main steps: we first prove an auxiliary Γ-convergence result

for a suitable sequence of energies stated on a fixed domain, then we describe the functional

space occurring in the limit capacitary formula, finally, we prove that ϕ(ℓ) is described by a

representation formula of capacitary-type.

We introduce some convenient notation for the sequel. Let gj : Rm×n → [0,+∞) be the

sequence of functions given by

gj(F ) := rpj W (r−1
j F )

for every F ∈ Rm×n. By (3.3) and (3.4) it follows that

|F |p − rpj ≤ gj(F ) ≤ β(rpj + |F |p), for all F ∈ Rm×n (7.1)

and the following p-Lipschitz condition holds:

|gj(F1)− gj(F2)| ≤ c(rp−1
j + |F1|p−1 + |F2|p−1)|F1 − F2|, for all F1, F2 ∈ Rm×n.

Then, according to Ascoli-Arzela’s Theorem, up to subsequences, gj converges locally uniformly

in Rm×n to a function g satisfying:

|F |p ≤ g(F ) ≤ β|F |p, for all F ∈ Rm×n (7.2)

and

|g(F1)− g(F2)| ≤ c(|F1|p−1 + |F2|p−1)|F1 − F2|, for all F1, F2 ∈ Rm×n. (7.3)

7.1. The case ℓ ∈ (0,+∞). We define

XN (z) :=
{
ζ ∈W 1,p((Bn−1

N × I) \ C1,N ;Rm) : ζ = z on (∂Bn−1
N )+

and ζ = 0 on (∂Bn−1
N )−

}

for N > 1 and I = (−1, 1). We recall the following Γ-convergence result.

Proposition 7.1. Let

ℓ = lim
j→+∞

rj
δj

∈ (0,+∞) ,

then the sequence of functionals G
(ℓ)
j : Lp((Bn−1

N × I) \ C1,N ;Rm) → [0,+∞], defined by

G
(ℓ)
j (ζ) :=





∫

(Bn−1
N ×I)\C1,N

gj

(
Dαζ

∣∣∣rj
δj
Dnζ

)
dx if ζ ∈ XN (z)

+∞ otherwise ,
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Γ-converges, with respect to the Lp-convergence, to

G(ℓ)(ζ) :=





∫

(Bn−1
N ×I)\C1,N

g(Dαζ|ℓDnζ) dx if ζ ∈ XN (z)

+∞ otherwise .

Proof. Since ℓ = limj→+∞(rj/δj) ∈ (0,+∞), by the locally uniform convergence of gj to g we

have that the sequence of quasiconvex functions F 7→ gj(F |(rj/δj)Fn) pointwise converges to

F 7→ g(F |ℓFn). Hence the conclusion comes from [16] Propositions 12.8 and 11.7. �

Remark 7.1. We denote by p∗ the Sobolev exponent in dimension (n− 1) i.e.

p∗ :=
(n− 1)p

n− 1− p
.

We recall that if (a, b) ⊂ R, the space Lp(a, b;Lp∗(Rn−1;Rm)) is a reflexive and separable Banach

space (see e.g. [4] or [49]). Hence, by the Banach-Alaoglu-Bourbaki Theorem, any bounded

sequence admits a weakly converging subsequence.

Proposition 7.2 (Limit space). Let

ℓ = lim
j→+∞

rj
δj

∈ (0,+∞) , 0 < R(ℓ) = lim
j→+∞

rn−1−p
j

εn−1
j

< +∞ (7.4)

and let (ζγ,j) ∈ Xγ
j (z) such that, for every fixed γ > 0,

sup
j∈N

∫

(Bn−1
γNj

×I)\C1,γNj

gj

(
Dαζγ,j

∣∣∣rj
δj
Dnζγ,j

)
dx ≤ c . (7.5)

Then, there exists a sequence ζ̃j ∈W 1,p
loc ((R

n−1 × I) \ C1,∞;Rm) such that

ζ̃j = ζγ,j in (Bn−1
γNj

× I) \ C1,γNj

and such that, up to subsequences, it converges weakly to ζ in W 1,p
loc ((R

n−1 × I) \ C1,∞;Rm).

Moreover, the function ζ satisfies the following properties




Dζ ∈ Lp((Rn−1 × I) \ C1,∞;Rm×n),

ζ − z ∈ Lp(0, 1;Lp∗(Rn−1;Rm)),

ζ ∈ Lp(−1, 0;Lp∗(Rn−1;Rm)) .

(7.6)

Proof. By (7.1), (7.4) and (7.5) we deduce that, for every fixed γ > 0,

sup
j∈N

∫

(Bn−1
γNj

×I)\C1,γNj

∣∣∣
(
Dαζγ,j

∣∣∣rj
δj
Dnζγ,j

)∣∣∣
p
dx ≤ c . (7.7)
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We define

ζ̃j :=





z in
(
Rn−1 \Bn−1

γNj

)+
,

ζγ,j in (Bn−1
γNj

× I) \ C1,γNj ,

0 in
(
Rn−1 \Bn−1

γNj

)−
;

hence,

ζ̃j(·, xn)− z ∈W 1,p(Rn−1;Rm) for a.e. xn ∈ (0, 1)

and

ζ̃j(·, xn) ∈W 1,p(Rn−1;Rm) for a.e. xn ∈ (−1, 0) .

Moreover by (7.7) we get that
∫

(Rn−1×I)\C1,∞

∣∣∣
(
Dαζ̃j

∣∣∣rj
δj
Dnζ̃j

)∣∣∣
p
dx =

∫

(Bn−1
γNj

×I)\C1,γNj

∣∣∣
(
Dαζγ,j

∣∣∣rj
δj
Dnζγ,j

)∣∣∣
p
dx ≤ c . (7.8)

Since p < n − 1, according to the Sobolev Inequality (see e.g. [4]), there exists a constant

c = c(n, p) > 0 (independent of xn) such that

(∫

Rn−1

|ζ̃j(xα, xn)− z|p∗ dxα
)p/p∗

≤ c

∫

Rn−1

|Dαζ̃j(xα, xn)|p dxα (7.9)

for a.e. xn ∈ (0, 1), and

(∫

Rn−1

|ζ̃j(xα, xn)|p
∗
dxα

)p/p∗

≤ c

∫

Rn−1

|Dαζ̃j(xα, xn)|p dxα (7.10)

for a.e. xn ∈ (−1, 0). If we integrate (7.9) and (7.10) with respect to xn, by (7.8) and Remark

7.1, we get that there exist ζ1 ∈ Lp(0, 1;Lp∗(Rn−1;Rm)) and ζ2 ∈ Lp(−1, 0;Lp∗(Rn−1;Rm)) such

that, up to subsequences,




ζ̃j − z ⇀ ζ1 in Lp(0, 1;Lp∗(Rn−1;Rm)),

ζ̃j ⇀ ζ2 in Lp(−1, 0;Lp∗(Rn−1;Rm)),

Dζ̃j ⇀ Dζ1 in Lp((Rn−1)+;Rm×n),

Dζ̃j ⇀ Dζ2 in Lp((Rn−1)−;Rm×n).

In particular, we have that




ζ̃j ⇀ ζ1 + z in W 1,p
loc ((R

n−1)+;Rm),

ζ̃j ⇀ ζ2 in W 1,p
loc ((R

n−1)−;Rm) .

Then, since ζ1 + z = ζ2 on Bn−1
1 in the sense of traces, we can define

ζ :=

{
ζ1 + z in (Rn−1)+

ζ2 in (Rn−1)− ∪
(
Bn−1

1 × {0}
)
,

and it satisfies (7.6). �

Preliminary version – October 30, 2006 – 12:04



7. REPRESENTATION FORMULA FOR THE INTERFACIAL ENERGY DENSITY 87

Now we are able to describe the interfacial energy density ϕ(ℓ) as the following nonlinear

capacitary formula.

Proposition 7.3 (Representation formula). We have

ϕ(ℓ)(z) = inf

{∫

(Rn−1×I)\C1,∞
g
(
Dαζ|ℓDnζ

)
dx : ζ ∈W 1,p

loc ((R
n−1 × I) \ C1,∞;Rm),

Dζ ∈ Lp((Rn−1 × I) \ C1,∞;Rm×n), ζ − z ∈ Lp(0, 1;Lp∗(Rn−1;Rm))

and ζ ∈ Lp(−1, 0;Lp∗(Rn−1;Rm))

}

for every z ∈ Rm.

Proof. We define

ψ(ℓ)(z) := inf

{∫

(Rn−1×I)\C1,∞
g
(
Dαζ|ℓDnζ

)
dx : ζ ∈W 1,p

loc ((R
n−1 × I) \ C1,∞;Rm),

Dζ ∈ Lp((Rn−1 × I) \ C1,∞;Rm×n), ζ − z ∈ Lp(0, 1;Lp∗(Rn−1;Rm))

and ζ ∈ Lp(−1, 0;Lp∗(Rn−1;Rm))

}
,

we want to prove that ϕ(ℓ)(z) = ψ(ℓ)(z) for every z ∈ Rm. For every fixed η > 0, by definition

of ϕ
(ℓ)
γ,j(z) (see (5.2)), there exists ζγ,j ∈ Xγ

j (z) such that

∫

(Bn−1
γNj

×I)\C1,γNj

gj

(
Dαζγ,j

∣∣∣rj
δj
Dnζγ,j

)
dx ≤ ϕ

(ℓ)
γ,j(z) + η.

By Proposition 5.1(i) we have that (7.5) is fulfilled, then by Propositions 7.2 and 7.1 we get

lim
j→+∞

ϕ
(ℓ)
γ,j(z) + η ≥ lim inf

j→+∞

∫

(Bn−1
γNj

×I)\C1,γNj

gj

(
Dαζ̃j

∣∣∣rj
δj
Dnζ̃j

)
dx

≥ lim inf
j→+∞

∫

(Bn−1
N ×I)\C1,N

gj

(
Dαζ̃j

∣∣∣rj
δj
Dnζ̃j

)
dx

≥
∫

(Bn−1
N ×I)\C1,N

g(Dαζ|ℓDnζ) dx

with ζ ∈ W 1,p
loc ((R

n−1 × I) \ C1,∞;Rm) satisfying (7.6). Note that for every fixed γ > 0 and j

large enough we can always assume that γNj > N for some fixed N > 2. Hence, passing to the

limit as N → +∞ and γ → 0+, we obtain

ϕ(ℓ)(z) + η ≥
∫

(Rn−1×I)\C1,∞
g(Dαζ|ℓDnζ) dx ≥ ψ(ℓ)(z) (7.11)

and by the arbitrariness of η we get the first inequality.
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We now prove the converse inequality. For every fixed η > 0 there exists ζ ∈ W 1,p
loc ((R

n−1 ×
I) \ C1,∞;Rm) satisfying (7.6) such that

∫

(Rn−1×I)\C1,∞
g(Dαζ|ℓDnζ) dx ≤ ψ(ℓ)(z) + η . (7.12)

Let N > 2, for every fixed γ > 0 and j large enough we have that γNj > N . We consider a

cut-off function θN ∈ C∞
c (Bn−1

N ; [0, 1]) such that θN = 1 in Bn−1
N/2 , |DαθN | ≤ c/N and we define

ζN :=





θN (xα)ζ + (1− θN (xα))z in (Bn−1
N )+,

θN (xα)ζ in (Bn−1
N )− ∪ (Bn−1

1 × {0})

so that ζN ∈ XN (z). By Proposition 7.1, there exists a sequence (ζNj ) ⊂ XN (z) strongly

converging to ζN in Lp((Bn−1
N × I) \ C1,N ;Rm) such that

∫

(Bn−1
N ×I)\C1,N

g(DαζN |ℓDnζN ) dx = lim
j→+∞

∫

(Bn−1
N ×I)\C1,N

gj

(
Dαζ

N
j

∣∣∣rj
δj
Dnζ

N
j

)
dx (7.13)

Let us define ζγ,j ∈ Xγ
j (z) as

ζγ,j :=





z in (Bn−1
γNj

\Bn−1
N )+,

ζNj in (Bn−1
N × I) \ C1,N ,

0 in (Bn−1
γNj

\Bn−1
N )−.

Consequently, ζγ,j is an admissible test function for (5.2) and since gj(0) = 0 we get that

ϕ
(ℓ)
γ,j(z) ≤

∫

(Bn−1
γNj

×I)\C1,γNj

gj

(
Dαζγ,j

∣∣∣rj
δj
Dnζγ,j

)
dx

=

∫

(Bn−1
N ×I)\C1,N

gj

(
Dαζ

j
N

∣∣∣rj
δj
Dnζ

j
N

)
dx.

Passing to the limit as j → +∞, using (7.13) and the p-growth condition (7.2) satisfied by g,

we obtain

lim
j→+∞

ϕ
(ℓ)
γ,j(z) ≤

∫

(Bn−1
N ×I)\C1,N

g(DαζN |ℓDnζN ) dx

≤
∫

(Bn−1
N/2

×I)\C1,N/2

g(Dαζ|ℓDnζ) dx+ c

∫

(Bn−1
N \Bn−1

N/2
)+

|DζN |p dx

+c

∫

(Bn−1
N \Bn−1

N/2
)−

|DζN |p dx . (7.14)
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Let us examine the contribution of the gradient in (7.14),
∫

(Bn−1
N \Bn−1

N/2
)+

|DζN |p dx+

∫

(Bn−1
N \Bn−1

N/2
)−

|DζN |p dx

≤ c

∫

(Bn−1
N \Bn−1

N/2
)+
(|DαθN |p|ζ − z|p + |Dζ|p) dx

+c

∫

(Bn−1
N \Bn−1

N/2
)−
(|DαθN |p|ζ|p + |Dζ|p) dx

≤ c

(∫

(Rn−1\Bn−1
N/2

)+
|Dζ|p dx+

∫

(Rn−1\Bn−1
N/2

)−
|Dζ|p dx

)

+
c

Np

(∫

(Bn−1
N \Bn−1

N/2
)+

|ζ − z|p dx+

∫

(Bn−1
N \Bn−1

N/2
)−

|ζ|p dx
)
. (7.15)

Since p∗ > p we can apply Hölder Inequality with q = p∗/p obtaining

c

Np

(∫

(Bn−1
N \Bn−1

N/2
)+

|ζ − z|p dx+

∫

(Bn−1
N \Bn−1

N/2
)−

|ζ|p
)

≤ c

∫ 1

0

(∫

Bn−1
N \Bn−1

N/2

|ζ − z|p∗ dxα
)p/p∗

dxn

+c

∫ 0

−1

(∫

Bn−1
N \Bn−1

N/2

|ζ|p∗ dxα
)p/p∗

dxn

≤ c

∫ 1

0

(∫

Rn−1\Bn−1
N/2

|ζ − z|p∗ dxα
)p/p∗

dxn

+c

∫ 0

−1

(∫

Rn−1\Bn−1
N/2

|ζ|p∗ dxα
)p/p∗

dxn. (7.16)

Hence by (7.6), (7.15) and (7.16) we have that, for every fixed γ > 0,

lim
N→+∞

∫

(Bn−1
N \Bn−1

N/2
)±

|DζN |p dx = 0

which thanks to (7.12) and (7.14) implies that

lim
j→+∞

ϕ
(ℓ)
γ,j(z) ≤ ψ(ℓ)(z) + η.

Then we get the converse inequality by letting γ → 0+ and by the arbitrariness of η. �

7.2. The case ℓ = +∞. In this case the study leading to the representation formula for

ϕ(∞) involves a dimensional reduction problem stated on a varying domain. As before, we

start proving some Γ-convergence results (see Propositions 7.4 and 7.5) for suitable sequences of

functionals stated on fixed domains. This will allow as to apply some well-known Γ-convergence

and integral representation theorems due to Le Dret-Raoult [38] and Braides-Fonseca-Francfort

[19] respectively.

Preliminary version – October 30, 2006 – 12:04



90 2. THE NEUMANN SIEVE PROBLEM AND DIMENSIONAL REDUCTION

Let G±
j : Lp((Bn−1

N )±;Rm) → [0,+∞] be defined by

G+
j (ζ) :=





∫

(Bn−1
N )+

gj

(
Dαζ

∣∣∣rj
δj
Dnζ

)
dx if

{
ζ ∈W 1,p((Bn−1

N )+;Rm)

ζ = z on (∂Bn−1
N )+

+∞ otherwise

and

G−
j (ζ) :=





∫

(Bn−1
N )−

gj

(
Dαζ

∣∣∣rj
δj
Dnζ

)
dx if

{
ζ ∈W 1,p((Bn−1

N )−;Rm)

ζ = 0 on (∂Bn−1
N )−

+∞ otherwise.

Proposition 7.4. Let

ℓ = lim
j→+∞

rj
δj

= +∞ ,

then, the sequences of functionals (G±
j ) Γ-converge, with respect to the Lp-convergence, to

G+(ζ) :=





∫

Bn−1
N

Qn−1 g(Dαζ) dxα if ζ − z ∈W 1,p
0 (Bn−1

N ;Rm)

+∞ otherwise

and

G−(ζ) :=





∫

Bn−1
N

Qn−1 g(Dαζ) dxα if ζ ∈W 1,p
0 (Bn−1

N ;Rm)

+∞ otherwise ,

respectively, where g(F ) = inf{g(F |Fn) : Fn ∈ Rm} for every F ∈ Rm×(n−1).

Proof. We prove the Γ-convergence result only for (G+
j ), the other one being analogous. Ac-

cording to [19] Theorem 2.5 and Lemma 2.6 there exists a continuous function ĝ : Rm×(n−1) →
[0,+∞) such that, up to subsequence, (G+

j ) Γ-converges to

G+(ζ) :=





∫

Bn−1
N

ĝ(Dαζ) dxα if ζ − z ∈W 1,p
0 (Bn−1

N ;Rm)

+∞ otherwise .

Hence, it remains to show that ĝ = Qn−1 g. By [19] Lemma 2.6, it is enough to consider W 1,p-

functions without boundary condition; hence, it will suffice to deal with affine functions. Let

ζ(xα) := F · xα, by [19] Theorem 2.5, there exists a sequence (ζj) ⊂ W 1,p((Bn−1
N )+;Rm) (the

so-called recovery sequence) converging to ζ in Lp((Bn−1
N )+;Rm), such that

ĝ(F ) cN = G+(ζ) = lim
j→+∞

∫

(Bn−1
N )+

gj

(
Dαζj

∣∣∣rj
δj
Dnζj

)
dx (7.17)
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where cN = Hn−1(Bn−1
N ). Moreover, by [13] Theorem 1.1, we can assume, without loss of

generality, that the sequence
(∣∣(Dαζj| rjδjDnζj

)∣∣p) is equi-integrable. By (7.17) and (7.1), we

have that

sup
j∈N

∫

(Bn−1
N )+

∣∣∣
(
Dαζj

∣∣∣rj
δj
Dnζj

)∣∣∣
p
dx ≤ c ;

hence, for every fixed M > 0, if we define

AM
j :=

{
x ∈ (Bn−1

N )+ :

∣∣∣∣
(
Dαζj(x)

∣∣∣rj
δj
Dnζj(x)

)∣∣∣∣ ≤M

}
,

we get that Ln((Bn−1
N )+ \ AM

j ) ≤ c/Mp for some constant c > 0 independent of j and M . Fix

M > 0, by (7.17), we have

ĝ(F ) cN ≥ lim sup
j→+∞

∫

AM
j

gj

(
Dαζj

∣∣∣rj
δj
Dnζj

)
dx. (7.18)

Moreover, for all x ∈ AM
j ,

∣∣∣∣gj
(
Dαζj(x)

∣∣∣rj
δj
Dnζj(x)

)
− g

(
Dαζj(x)

∣∣∣rj
δj
Dnζj(x)

)∣∣∣∣ ≤ sup
|F |≤M

|gj(F )− g(F )|,

and then,
∫

AM
j

∣∣∣∣gj
(
Dαζj

∣∣∣rj
δj
Dnζj

)
− g

(
Dαζj

∣∣∣rj
δj
Dnζj

)∣∣∣∣ dx

≤ cN sup
|F |≤M

|gj(F )− g(F )|.

Hence, by the local uniform convergence of gj to g, we have that

lim
j→+∞

∫

AM
j

(
gj

(
Dαζj

∣∣∣rj
δj
Dnζj

)
− g

(
Dαζj

∣∣∣rj
δj
Dnζj

))
dx = 0.

By (7.18), we get

ĝ(F ) cN ≥ lim sup
j→+∞

∫

AM
j

g

(
Dαζj

∣∣∣rj
δj
Dnζj

)
dx. (7.19)

Note that, since Ln((Bn−1
N )+ \AM

j ) → 0 as M → +∞, by the p-growth condition (7.2) and the

equi-integrability assumption, we find

lim sup
j→+∞

∫

(Bn−1
N )+\AM

j

g

(
Dαζj

∣∣∣rj
δj
Dnζj

)
dx = o(1) , as M → +∞ . (7.20)

Consequently, (7.19) and (7.20) imply that

ĝ(F ) cN ≥ lim sup
j→+∞

∫

(Bn−1
N )+

g

(
Dαζj

∣∣∣rj
δj
Dnζj

)
dx. (7.21)

Finally, from [38] Theorem 2, we know that

lim inf
j→+∞

∫

(Bn−1
N )+

g

(
Dαζj

∣∣∣rj
δj
Dnζj

)
dx ≥ Qn−1 g(F ) cN ;

hence, by (7.21) we obtain that ĝ(F ) ≥ Qn−1 g(F ).
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We now prove the converse inequality. By [38] Theorem 2, there exists a sequence (ζj)

belonging to W 1,p((Bn−1
N )+;Rm) and converging to ζ in Lp((Bn−1

N )+;Rm) such that

Qn−1g(F ) cN = lim
j→+∞

∫

(Bn−1
N )+

g

(
Dαζj

∣∣∣rj
δj
Dnζj

)
dx . (7.22)

Without loss of generality, we can still assume that the sequence
(∣∣(Dαζj| rjδjDnζj

)∣∣p) is equi-

integrable. Thus arguing as above, from (7.22) we deduce

Qn−1 g(F ) cN ≥ lim sup
j→+∞

∫

(Bn−1
N )+

gj

(
Dαζj

∣∣∣rj
δj
Dnζj

)
dx . (7.23)

Now, by [19] Theorem 2.5, we have that

lim inf
j→+∞

∫

(Bn−1
N )+

gj

(
Dαζj

∣∣∣rj
δj
Dnζj

)
dx ≥ ĝ(F ) cN ;

hence, Qn−1 g(F ) ≥ ĝ(F ), which concludes the proof. �

Remark 7.2. By [38] Theorem 2, for every ζ ∈ W 1,p(Bn−1
N ;Rm) the recovery sequence is

given by ζj(xα, xn) := ζ(xα) + (δj/rj)xn bj(xα) for a suitable sequence of functions (bj) ⊂
C∞
c (Bn−1

N ;Rm). Note that by definition (ζj) keeps the boundary conditions of ζ. Reasoning as

in the proof of Proposition 7.4 we can observed that (ζj) is also a recovery sequence for (G+
j )

(see e.g. (7.23)). The same remark holds for (G−
j ).

Proposition 7.5. Let

ℓ = lim
j→+∞

rj
δj

= +∞ ,

then the sequence of functionals G
(∞)
j : Lp((Bn−1

N × I) \ C1,N ;Rm) → [0,+∞] defined by

G
(∞)
j (ζ) :=





∫

(Bn−1
N ×I)\C1,N

gj

(
Dαζ

∣∣∣rj
δj
Dnζ

)
dx if ζ ∈ XN (z)

+∞ otherwise

Γ-converges, with respect to the Lp-convergence, to

G(∞)(ζ) :=





∫

(Bn−1
N ×I)\C1,N

Qn−1 g(Dαζ) dx if ζ ∈ XN (z) and Dnζ = 0

+∞ otherwise .

Proof. The lim inf inequality is a straightforward consequence of Proposition 7.4.

Dealing with the lim sup inequality, let us consider ζ ∈ XN (z) with Dnζ = 0. We denote

by ζ± ∈ W 1,p(Bn−1
N (0);Rm) the restriction of ζ to (Bn−1

N )+ and (Bn−1
N )−, respectively. By
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Proposition 7.4 and Remark 7.2, there exist two sequences (ζ±j ) ⊂ W 1,p((Bn−1
N )±;Rm) such

that

ζ+j → ζ+ in Lp((Bn−1
N )+;Rm) , ζ+j = z on (∂Bn−1

N )+

ζ−j → ζ− in Lp((Bn−1
N )−;Rm) , ζ−j = 0 on (∂Bn−1

N )−
(7.24)

and

lim
j→+∞

∫

(Bn−1
N )+

gj

(
Dαζ

+
j

∣∣∣rj
δj
Dnζ

+
j

)
dx =

∫

Bn−1
N

Qn−1 g(Dαζ
+) dxα

lim
j→+∞

∫

(Bn−1
N )−

gj

(
Dαζ

−
j

∣∣∣rj
δj
Dnζ

−
j

)
dx =

∫

Bn−1
N

Qn−1 g(Dαζ
−) dxα . (7.25)

Moreover, since ζ ∈W 1,p((Bn−1
N × I) \C1,N ;Rm), by Remark 7.2, (ζ+j ) and (ζ−j ) have the same

trace on Bn−1
1 × {0}; hence, ζ+j = ζ−j = ζ on Bn−1

1 × {0}. Then we can define

ζ̄j :=





ζ+j in (Bn−1
N )+,

ζ on Bn−1
1 × {0},

ζ−j in (Bn−1
N )−,

with ζ̄j ∈ W 1,p((Bn−1
N × I) \ C1,N ;Rm). In particular, by (7.24) we have that ζ̄j ∈ XN (z) and

ζ̄j → ζ in Lp((Bn−1
N × I) \ C1,N ;Rm). Finally, by (7.25) , we have

lim
j→+∞

G
(∞)
j (ζ̄j) = lim

j→+∞

∫

(Bn−1
N ×I)\C1,N

gj

(
Dαζ̄j

∣∣∣rj
δj
Dnζ̄j

)
dx

=

∫

Bn−1
N

Qn−1 g(Dαζ
+) dxα +

∫

Bn−1
N

Qn−1 g(Dαζ
−) dxα

=

∫

(Bn−1
N ×I)\C1,N

Qn−1 g(Dαζ) dx

which completes the proof of the lim sup inequality. �

Proposition 7.6 (Limit space). Let

ℓ = lim
j→+∞

rj
δj

= +∞ , 0 < R(∞) = lim
j→+∞

rn−1−p
j

εn−1
j

< +∞

and let ζγ,j ∈ Xγ
j (z) such that, for every fixed γ > 0,

sup
j∈N

∫

(Bn−1
γNj

×I)\C1,γNj

gj

(
Dαζγ,j

∣∣∣rj
δj
Dnζγ,j

)
dx ≤ c . (7.26)

Then, there exists a sequence ζ̃j ∈W 1,p
loc ((R

n−1 × I) \ C1,∞;Rm) such that

ζ̃j = ζγ,j in (Bn−1
γNj

× I) \ C1,γNj
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and such that, up to subsequences, it converges weakly to ζ+ in W 1,p
loc ((R

n−1)+;Rm) and to ζ−

in W 1,p
loc ((R

n−1)−;Rm). Moreover, the functions ζ± satisfy the following properties




ζ± ∈W 1,p
loc (R

(n−1);Rm),

ζ+ = ζ− in Bn−1
1 ,

Dαζ
± ∈ Lp(Rn−1;Rm×(n−1)),

(ζ+ − z) and ζ− ∈ Lp∗(Rn−1;Rm).

Proof. We can reason as in Proposition 7.2 using the fact that, by (7.26),
∫

(Rn−1)±
|Dnζ̃j|p dx ≤ c

(δj
rj

)p
;

hence, in the limit we have that Dnζ = 0 a.e. in (Rn−1)±. �

Proposition 7.7 (Representation formula). We have

ϕ(∞)(z) = inf

{∫

Rn−1

(
Qn−1 g(Dαζ

+) +Qn−1 g(Dαζ
−)
)
dxα : ζ± ∈W 1,p

loc (R
n−1;Rm),

ζ+ = ζ− in Bn−1
1 , Dαζ

± ∈ Lp(Rn−1;Rm×(n−1)),

(ζ+ − z) and ζ− ∈ Lp∗(Rn−1;Rm)

}

for every z ∈ Rm.

Proof. Reasoning as in the proof of Proposition 7.3, by Propositions 7.5 and 7.6 we get the

representation formula for ϕ(∞). �

7.3. The case ℓ = 0. We first recall the following Γ-convergence result.

Proposition 7.8. The sequence of functionals G
(0)
j : Lp((Bn−1

N × (−N,N)) \ C1,N ;Rm) →
[0,+∞], defined by

G
(0)
j (ζ) :=





∫

(Bn−1
N ×(−N,N))\C1,N

gj(Dζ) dx if ζ ∈W 1,p((Bn−1
N × (−N,N)) \ C1,N ;Rm),

+∞ otherwise ,

Γ-converges, with respect to the Lp-convergence, to

G(0)(ζ) :=





∫

(Bn−1
N ×(−N,N))\C1,N

g(Dζ) dx if ζ ∈W 1,p((Bn−1
N × (−N,N)) \ C1,N ;Rm),

+∞ otherwise .
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Proof. The result is an immediate consequence of the pointwise convergence of the sequence of

quasiconvex functions gj towards g together with Proposition 12.8 in [16]. �

Proposition 7.9 (Limit space). Let

ℓ = lim
j→+∞

rj
δj

= 0 , 0 < R(0) = lim
j→+∞

rn−p
j

εn−1
j δj

< +∞ (7.27)

and let ζγ,j ∈ Y γ
j (z) such that, for every fixed γ > 0,

sup
j∈N

∫

(Bn−1
γNj

×Ij)\C1,γNj

gj(Dζγ,j) dx ≤ c . (7.28)

Then, there exists a sequence ζ̃j ∈W 1,p
loc (R

n \ C1,∞;Rm) such that

ζ̃j = ζγ,j in (Bn−1
γNj

× Ij) \ C1,γNj

and such that, up to subsequences, it converges weakly to ζ in W 1,p
loc (R

n \ C1,∞;Rm). Moreover,

the function ζ satisfies the following properties




Dζ ∈ Lp(Rn \ C1,∞;Rm×n),

ζ − z ∈ Lp(0,+∞;Lp∗(Rn−1;Rm)),

ζ ∈ Lp(−∞, 0;Lp∗(Rn−1;Rm)) .

(7.29)

Proof. By (7.28), (7.1) and (7.27), we deduce that, for every fixed γ > 0,

sup
j∈N

∫

(Bn−1
γNj

×Ij)\C1,γNj

|Dζγ,j |p dx ≤ c . (7.30)

Let us first extend ζγ,j by reflection

ζ̄γ,j(x) =





ζγ,j

(
xα, 2

δj
rj

− xn

)
if xα ∈ Bn−1

γNj
and xn ∈ (δj/rj , 2δj/rj),

ζγ,j(x) if x ∈ (Bn−1
γNj

× Ij) \ C1,γNj ,

ζγ,j

(
xα,−2

δj
rj

− xn

)
if xα ∈ Bn−1

γNj
and xn ∈ (−2δj/rj ,−δj/rj)

(7.31)

and then, we extend it by (2δj/rj)-periodicity in the xn direction. The resulting sequence, still

denoted by ζ̄γ,j, is defined in
(
Bn−1

γNj
×R

)
\ C1,γNj . Hence, we define on Rn \ C1,∞,

ζ̄j(x) :=





z in
(
Rn−1 \Bn−1

γNj

)
× (0,+∞),

ζ̄γ,j(x) in
(
Bn−1

γNj
×R

)
\ C1,γNj ,

0 in
(
Rn−1 \Bn−1

γNj

)
× (−∞, 0) .

(7.32)
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Let us now introduce the cut-off functions φj ∈ C∞
c ((−2δj/rj , 2δj/rj); [0, 1]) such that φj(xn) = 1

if |xn| ≤ δj/rj , φj(xn) = 0 if |xn| ≥ 2δj/rj and |Dnφj| ≤ c(rj/δj). Then, we introduce our last

sequence,

ζ̃j(xα, xn) :=





φj(xn)ζ̄j(xα, xn) + (1− φj(xn))z if (xα, xn) ∈ Rn−1 × (0,+∞),

φj(xn)ζ̄j(xα, xn) if (xα, xn) ∈ Rn−1 × (−∞, 0).

Note that

ζ̃j = ζγ,j in (Bn−1
γNj

× Ij) \ C1,γNj . (7.33)

Moreover, by (7.30)-(7.33) we have that

sup
j∈N

∫

Rn\C1,∞
|Dαζ̃j|p dx ≤ c , (7.34)

while, for every (a, b) ⊂ R, with a < b, we have
∫
(
Rn−1×(a,b)

)
\C1,∞

|Dnζ̃j |p dx ≤ c , (7.35)

for j large enough and c independent of (a, b). Reasoning as in Proposition 7.2, with (0,+∞)

and (−∞, 0) in place of (0, 1) and (−1, 0), respectively, we can conclude that there exist ζ1 ∈
Lp(0,+∞;Lp∗(Rn−1;Rm)) and ζ2 ∈ Lp(−∞, 0;Lp∗(Rn−1;Rm)) such that, up to subsequences,

ζ̃j − z ⇀ ζ1 in Lp(0,+∞;Lp∗(Rn−1;Rm))

and

ζ̃j ⇀ ζ2 in Lp(−∞, 0;Lp∗(Rn−1;Rm)) .

Moreover, by (7.34) and (7.35), we have that, up to subsequences, ζ̃j converges weakly to ζ in

W 1,p
loc (R

n \ C1,∞;Rm) where

ζ =

{
ζ1 + z in Rn−1 × (0,+∞)

ζ2 in (Rn−1 × (−∞, 0)) ∪ (Bn−1
1 × {0}) .

In particular, for any compact set K ⊂ Rn \ C1,∞, we have that
∫

K
|Dζ|p dx ≤ lim inf

j→+∞

∫

K
|Dζ̃j|p dx ≤ c

for some constant c independent of K; hence, we get that Dζ ∈ Lp(Rn \ C1,∞;Rm×n) which

concludes the description of the limit function ζ. �

Proposition 7.10 (Representation formula). We have

ϕ(0)(z) = inf

{∫

Rn\C1,∞
g(Dζ) dx : ζ ∈W 1,p

loc (R
n \ C1,∞;Rm), Dζ ∈ Lp(Rn \ C1,∞;Rm×n),

ζ − z ∈ Lp(0,+∞;Lp∗(Rn−1;Rm)) and ζ ∈ Lp(−∞, 0;Lp∗(Rn−1;Rm))

}

for every z ∈ Rm.
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Proof. We define

ψ(0)(z) := inf

{∫

Rn\C1,∞
g(Dζ) dx : ζ ∈W 1,p

loc (R
n \ C1,∞;Rm), Dζ ∈ Lp(Rn \ C1,∞;Rm×n),

ζ − z ∈ Lp(0,+∞;Lp∗(Rn−1;Rm)) and ζ ∈ Lp(−∞, 0;Lp∗(Rn−1;Rm))

}

and let us prove that ϕ(0)(z) = ψ(0)(z) for every z ∈ Rm.

By definition of ϕ
(0)
γ,j (see (5.13)), for every fixed η > 0, there exists ζγ,j ∈ Y γ

j (z) such that
∫

(Bn−1
γNj

×Ij)\C1,γNj

gj(Dζγ,j) dx ≤ ϕ
(0)
γ,j(z) + η ; (7.36)

hence, by Proposition 5.2 (i), (7.28) is satisfied. Then by Propositions 7.8 and 7.9 we get that

lim
j→+∞

ϕ
(0)
γ,j(z) + η ≥ lim inf

j→+∞

∫

(Bn−1
γNj

×Ij)\C1,γNj

gj(Dζ̃j) dx

≥ lim inf
j→+∞

∫
(
Bn−1

N ×(−N,N)
)
\C1,N

gj(Dζ̃j) dx

≥
∫
(
Bn−1

N ×(−N,N)
)
\C1,N

g(Dζ) dx (7.37)

for some fixed N > 1, where ζ satisfies (7.29). Thus, passing to the limit in (7.37) as N → +∞
and γ → 0+, it follows that

ϕ(0)(z) ≥
∫

Rn\C1,∞
g(Dζ) dx ≥ ψ(0)(z) .

Let us prove the converse inequality. For any fixed η > 0, let ζ ∈W 1,p
loc (R

n \ C1,∞;Rm) be as in

(7.29) and satisfying ∫

Rn\C1,∞
g(Dζ) dx ≤ ψ(0)(z) + η. (7.38)

For every j ∈ N and γ > 0, we consider a cut-off function θγ,j ∈ C∞
c (Bn−1

γNj
; [0, 1]) such that

θγ,j = 1 in Bn−1
(γNj)/2

, |Dαθγ,j| ≤ c/γNj and we define ζγ,j ∈ Y γ
j (z) by

ζγ,j :=





θγ,j(xα)ζ + (1− θγ,j(xα))z in (Bn−1
γNj

)+(δj/rj)

θγ,j(xα)ζ in (Bn−1
γNj

)−(δj/rj) ∪ (Bn−1
1 × {0}) .

Consequently, ζγ,j is an admissible test function for (5.13) and we get that

ϕ
(0)
γ,j(z) ≤

∫

(Bn−1
γNj

×Ij)\C1,γNj

gj(Dζγ,j) dx.

The same kind of computations as those already employed in the proof of Lemma 7.3 now with

gj in place of g and with other obvious replacements (see (7.14)-(7.16)) gives

lim
j→+∞

ϕ
(0)
γ,j(z) ≤ lim sup

j→+∞

∫

(Bn−1
γNj

×Ij)\C1,γNj

gj(Dζ) dx+ o(1) , as γ → 0+ .
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On the other hand, Fatou’s Lemma and (7.1) imply

lim sup
j→+∞

∫

(Bn−1
γNj

×Ij)\C1,γNj

gj(Dζ) dx ≤
∫

Rn\C1,∞
g(Dζ) dx+ o(1) , as γ → 0+.

Hence by (7.38), passing to the limit as γ → 0+, we get that

ϕ(0)(z) ≤ ψ(0)(z) + η

and by the arbitrariness of η, the thesis. �

Remark 7.3. As already recalled, in [5] it is proved that if δj = 1 or δj = εj then the

critical size rj of the contact zones is of order ε
(n−1)/(n−p)
j or ε

n/(n−p)
j , respectively; moreover,

the interfacial energy density is described by the following formula

ϕ(z) = inf
{∫

Rn\C1,∞
g(Dζ) dx : ζ ∈W 1,p

loc (R
n \ C1,∞;Rm)

ζ − z ∈W 1,p(Rn
+;Rm), ζ ∈W 1,p(Rn

−;Rm)
}

where Rn
+ = Rn−1 × (0,+∞), Rn

− = Rn−1 × (−∞, 0) (see [5] Section 7, the case p = q, with

ρεj = rj , Wp = Up =W , Ŵp = Ûp = g and Rn
+,− ∪Bn−1

1 (0) = Rn \ C1,∞).

We want to point out that from the analysis we carried on in the case ℓ = 0 and in particular

from

0 < R(0) = lim
j→+∞

rn−p
j

δjε
n−1
j

we recovered both the critical sizes founded in [5] and correspondent to the two cases δj = 1

and δj = εj .

Moreover we want to show that ϕ = ϕ(0). We have to check only the inequality ϕ ≤ ϕ(0), the

other one being obvious.

For any fixed η > 0 let ζ ∈W 1,p
loc (R

n\C1,∞;Rm) be such that ζ−z ∈ Lp(0,+∞;Lp∗(Rn−1;Rm)),

ζ ∈ Lp(−∞, 0;Lp∗(Rn−1;Rm)), Dζ ∈ Lp(Rn \ C1,∞;Rm×n) and
∫

Rn\C1,∞
g(Dζ) dx ≤ ϕ(0)(z) + η . (7.39)

For every N > 2 we denote by BN the n-dimensional ball of radius N centered in zero and

by B±
N the set of the points x ∈ BN such that ±xn > 0; we consider a cut-off function θN ∈

C∞
c (BN ; [0, 1]) such that θN = 1 in BN/2, |DθN | ≤ c/N and we define

ζ̄ :=





θN (ζ − z) + z in B+
N ,

θNζ in B−
N ∪ (Bn−1

1 × {0})

so that ζ̄ ∈W 1,p(BN \ C1,N ;Rm), ζ̄ = z on ∂B+
N and ζ̄ = 0 on ∂B−

N . Hence,
∫

BN\C1,N

g(Dζ̄) dx =

∫

BN/2\C1,N/2

g(Dζ) dx +

∫

(BN\BN/2)\C1,N

g(Dζ̄) dx ;

Preliminary version – October 30, 2006 – 12:04



7. REPRESENTATION FORMULA FOR THE INTERFACIAL ENERGY DENSITY 99

in particular, by (7.2), we have
∫

(BN\BN/2)\C1,N

g(Dζ̄) dx ≤ β
(∫

B+
N\B+

N/2

|DθN |p|ζ − z|p dx+

∫

B−
N\B−

N/2

|DθN |p|ζ|p dx

+

∫

(BN\BN/2)\C1,N

|Dζ|p dx
)

≤ c

Np

(∫

B+
N\B+

N/2

|ζ − z|p dx+

∫

B−
N\B−

N/2

|ζ|p dx
)

+

∫

(Rn\BN/2)\C1,∞
|Dζ|p dx .

Since ζ − z ∈ Lp(0,+∞;Lp∗(Rn−1;Rm)), ζ ∈ Lp(−∞, 0;Lp∗(Rn−1;Rm)) and Dζ ∈ Lp(Rn \
C1,∞;Rm×n), we can easily conclude that

lim
N→+∞

∫

(BN \BN/2)\C1,N

g(Dζ̄) dx = 0 . (7.40)

Hence, by (7.40), we deduce

ϕ(0)(z) + η ≥
∫

Rn\C1,∞
g(Dζ) dx ≥

∫

BN/2\C1,N/2

g(Dζ) dx

=

∫

BN\C1,N

g(Dζ̄) dx+ o(1)

≥ inf
{∫

BN\C1,N

g(Dζ) dx : ζ ∈W 1,p(BN \ C1,N ;Rm)

ζ = z on ∂B+
N , ζ = 0 on ∂B−

N

}
+ o(1)

as N → +∞. Finally, passing to the limit as N → +∞, by the arbitrariness of η, we get

ϕ(0) ≥ ϕ.

Note that the proof of the explicit formula for ϕ in [5] relies on the fact that δj is of order

εj or bigger than it, while in Proposition 7.9 and Proposition 7.12 we have to take into account

that δj ≪ εj . This is the reason why our proof is different from the one of [5] even if, at the

end, the two representation formulas turn out to coincide.
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APPENDIX A

Equi-integrability in dimension reduction problems

1. A brief overview

A very handy tool in the study of the asymptotic behavior of variational problems defined on

Sobolev spaces is Fonseca, Müller and Pedregal’s equi-integrability Lemma [33] (see Theorem

2.1 below; see also earlier work by Acerbi and Fusco [2] and by Kristensen [36]), which allows

to substitute a sequence (wj) with (∇wj) bounded in Lp by a sequence (zj) with (|∇zj |p) equi-
integrable, such that the two sequences are equal except on a set of vanishing measure. In this

way the asymptotic behavior of integral energies of p-growth involving ∇wj can be computed

using ∇zj and thus avoiding to consider concentration effects. This method is very helpful for

example in the computation of lower bounds for Γ-limits (see, e.g., [14]).

In the framework of dimensional reduction, we encounter sequences of functions (wε) defined

on cylindrical sets with some ‘thin dimension’ ε; e.g., in the physical three-dimensional case

either thin films defined on some set of the type ω × (0, ε) (see, e.g., [38, 19]), or thin wires

defined on εω × (0, 1) (see, e.g., [1, 37]), where ω is some two-dimensional bounded open set.

In order to carry on some asymptotic analysis such functions are usually rescaled to an ε-

independent reference configuration Ω (see Fig. 1), so that a new sequence (uε) is constructed,

satisfying some ‘degenerate’ bounds of the form

∫

Ω

(
|∇αuε|p +

1

εp
|∇βuε|p

)
dx ≤ C < +∞ (1.1)

whenever the sequence of the gradients (∇wε) satisfied some corresponding Lp bound on the

unscaled domain. Here, ∇α represents the gradient with respect to the unscaled coordinates

(denoted by xα) and ∇β represents the gradient with respect to the ‘thin’ coordinate directions

(denoted by xβ). In the case described above of thin films xβ = x3; for thin wires, xβ = (x1, x2).

ε

11

Ω = ω × (0, 1) εω × (0, 1) ω × (0, ε)

Figure 1. Scaled domain, a wire and a thin film.

101
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A theorem by Bocea and Fonseca [13] states that an analog of Fonseca, Müller and Pedregal’s

result still holds in this framework, and an ‘equivalent sequence’ vε can be constructed such that

the sequence (|∇αvε|p + 1
εp |∇βvε|p) is equi-integrable on Ω. In their result they deal specifically

with the case of thin films; i.e., when the space of the xβ is one-dimensional in the notation

above. An earlier mention of the equi-integrability result in this form can be found without

proof in a paper by Shu [47], where it is suggested that the same argument of [33] could be

followed. This path is not pursued by Bocea and Fonseca’s as it would necessitate re-proving a

number of fine results for maximal functions in a periodic context; their proof instead relies on

a direct argument.

This appendix provides an alternative proof to that of Bocea and Fonseca, that we think

worth pointing out since its method could be applied to other types of problems involving

thin structures and extends to a general nD-to-(n − k)D dimensional-reduction framework. Its

argument is essentially the following: we consider the unscaled functions wε defined on some Ωε

(e.g., ω × (0, ε)) on which we have an Lp bound of the gradient and extend them to 2ε-periodic

functions in the xβ directions. These extended functions still satisfy an Lp bound, now on each

fixed Ω (e.g., a cube), so that we may apply Fonseca, Müller and Pedregal’s result to find zε with

the equi-integrability property. This property is quantified by de la Vallée Poussin’s Criterion,

which ensures the existence of a positive Borel function ϕ with superlinear growth such that∫
Ω ϕ(|∇zε|p) dx ≤ C < +∞. By this remark and a simple but careful counting argument we can

choose a set differing from the original Ωε by a 2ε-periodic translation in the xβ directions (and

hence it is not restrictive to suppose that this set is precisely Ωε) such that

1

εk

∫

Ωε

ϕ(|∇zε|p) dx ≤ C < +∞, (1.2)

(k denotes the dimension of the space of the xβ) and still zε equals wε except for a set with

relative measure tending to zero in Ωε. By scaling such zε we conclude the proof since (1.2)

exactly states the desired equi-integrability property.

Since our method does not rely on space dimensions, we state and proof our result in a

general n-dimensional setting. In particular it also comprises the physical case of thin wires

not covered in [13]. Thin wires are generally dealt with by more direct arguments exploiting

their one-dimensional limit nature, but our general equi-integrability result may nevertheless be

useful in the case of thin wires with an unprescribed heterogeneous nature, in order to obtain

general compactness results as for thin films (see [19]).

2. Preliminaries

In this section we recall two results which will be the key tools in the proof of Theorem 3.1. The

first one is Fonseca-Müller-Pedregal’s decomposition Theorem for ‘unscaled gradients’ while the

second is a classical equi-integrability criterion.

In what follows m,n will be two positive integers, Ω a bounded open subset of Rn and p a

real number such that 1 < p < +∞.
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Theorem 2.1 ([33] Lemma 1.2). Let (wj) be a bounded sequence in W 1,p(Ω;Rm). Then there

exists a subsequence of (wj) (not relabelled) and a sequence (zj) in W
1,p(Ω;Rm) such that

Ln({zj 6= wj} ∪ {∇zj 6= ∇wj}) → 0,

as j → +∞, and (|∇zj |p) is equi-integrable on Ω. If Ω is Lipschitz, then each zj can be chosen

to be a Lipschitz function.

Proposition 2.2 (de la Vallée Poussin’s Criterion). Let (wj) be in L1(Ω;Rm); then (wj) is

equi-integrable on Ω if and only if there exists a positive Borel function ϕ : [0,+∞) → [0,+∞]

such that

lim
t→+∞

ϕ(t)

t
= +∞ and sup

j

∫

Ω
ϕ(|wj |) dx < +∞.

A proof of de la Vallée Poussin’s Criterion can be found in Dellacherie-Meyer [31].

3. Statement and proof of the main result

Let k be a positive integer such that k < n. Given x ∈ Rn, we set x = (xα, xβ) where

xα = (x1, . . . , xn−k) and xβ = (xn−k+1, . . . , xn) is the ‘thin variable’; then ∇α =
(
∂x1, . . . , ∂xn−k

)

is the gradient with respect to xα and ∇β =
(
∂xn−k+1

, . . . , ∂xn

)
the gradient with respect to xβ.

Theorem 3.1. Let ωα ⊂ Rn−k, ωβ ⊂ Rk be open bounded sets and assume that ωβ is

connected and with Lipschitz boundary. Let (εj) be a sequence of positive real numbers converging

to zero and let (uj) be a bounded sequence in W 1,p(ωα × ωβ;Rm) satisfying

sup
j

∫

ωα×ωβ

(
|∇αuj|p +

1

εpj
|∇βuj |p

)
dx < +∞. (3.1)

Then there exists a subsequence of (uj) (not relabelled) and a sequence (vj) in W
1,p(ωα×ωβ;Rm)

such that

Ln({vj 6= uj} ∪ {∇vj 6= ∇uj}) → 0, (3.2)

as j → +∞, and

(
|∇αvj |p + 1

εpj
|∇βvj|p

)
is equi-integrable on ωα × ωβ. If ωα is Lipschitz then

each vj can be chosen to be a Lipschitz function.

Proof. Let (uj) be a bounded sequence in W 1,p(ωα × ωβ;Rm) satisfying (3.1). Since ωβ

is connected and with Lipschitz boundary, by applying a standard extension technique (see for

instance Adams [4], Theorems 4.26 and 4.28, and Section 4.29 for details) we may assume to

deal with a W 1,p(ωα ×Qk;Rm)-sequence, for Qk ⊂ Rk open cube containing ωβ, still preserving

the same boundedness properties of (uj). Moreover, up to possible scalings and translations, we

can always suppose that Qk = (0, 1)k .

Set ûj(x) := uj(xα,
xβ

εj
); then (ûj) ⊂W 1,p(ωα × (0, εj)

k;Rm) and by hypothesis

sup
j

1

εkj

∫

ωα×(0,εj)k
|ûj|p dx = sup

j

∫

ωα×(0,1)k
|uj |p dx < +∞, (3.3)
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while

sup
j

1

εkj

∫

ωα×(0,εj)k
(|∇αûj |p + |∇βûj|p) dx

= sup
j

∫

ωα×(0,1)k

(
|∇αuj|p +

1

εpj
|∇βuj |p

)
dx < +∞, (3.4)

and from (3.4) in particular

sup
j

1

εkj

∫

ωα×(0,εj)k
|∇ûj|p dx < +∞. (3.5)

We extend ûj to ωα × (−εj , εj)k by reflection in the k variables xn−k+1, . . . , xn by defining

ũj(x) := ûj(xα, |xn−k+1|, . . . , |xn|) in ωα × (−εj , εj)k.

Note that (ũj) ⊂ W 1,p(ωα × (−εj , εj)k;Rm) and ũj(xα, ·) has the same trace on the opposite

faces of (−εj , εj)k for a.e. xα ∈ ωα. Thus ũj can be extended by (−εj , εj)k-periodicity in xβ, to

the whole ωα × Rk obtaining the W 1,p
loc (ωα × Rk;Rm)-sequence defined as follows

ūj(x) := ũj(xα, xβ − 2εj i) in ωα × (2εj i+ (−εj , εj)k), for i = (i1, . . . , ik) ∈ Zk.

We want to prove that (ūj) is bounded in W 1,p(ωα × (0, 1)k ;Rm). By the periodicity and

symmetry properties of ūj , denoting by [t] the integer part of t ∈ R, we have

∫

ωα×(0,1)k
|ūj |p dx ≤

[1/2εj ]+1∑

i1,...,ik=0

∫

ωα×(2εj i+(−εj ,εj)k)
|ūj |p dx

=
∑

i1,...,ik

∫

ωα×(−εj ,εj)k
|ũj |p dx = 2k

∑

i1,...,ik

∫

ωα×(0,εj)k
|ûj|p dx

= 2k
([

1

2εj

]
+ 2

)k ∫

ωα×(0,εj)k
|ûj |p dx

≤ 2k

εkj

∫

ωα×(0,εj)k
|ûj |p dx (3.6)

for j sufficiently large.

Gathering (3.6) and (3.3) we deduce

sup
j

∫

ωα×(0,1)k
|ūj |p dx < +∞;

an analogous argument combined with (3.5) yields

sup
j

∫

ωα×(0,1)k
|∇ūj |p dx < +∞.

By these estimates (ūj) fulfills the hypothesis of Theorem 2.1, which ensures (up to an extraction)

the existence of a sequence (zj) ⊂W 1,p(ωα × (0, 1)k;Rm) satisfying

Ln(({zj 6= ūj} ∪ {∇zj 6= ∇ūj}) ∩ (ωα × (0, 1)k)) → 0, as j → +∞
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and such that (|∇zj |p) (or equivalently (|∇αzj |p+ |∇βzj |p)) is equi-integrable on ωα×(0, 1)k . As

a consequence, in view of Proposition 2.2, there exists a positive Borel function ϕ : [0,+∞) →
[0,+∞] such that

lim
t→+∞

ϕ(t)

t
= +∞ and sup

j

∫

ωα×(0,1)k
ϕ(|∇αzj |p + |∇βzj |p) dx < +∞.

Hence, (0, [1/εj ]εj)
k ⊂ (0, 1)k and the nonnegative character of ϕ yield

∫

ωα×(0,[1/εj ]εj)k
ϕ(|∇αzj|p + |∇βzj|p) dx ≤

∫

ωα×(0,1)k
ϕ(|∇αzj|p + |∇βzj|p) dx (3.7)

while the monotonicity of the Lebesgue measure implies

Ln(({zj 6= ūj} ∪ {∇zj 6= ∇ūj}) ∩ (ωα × (0, [1/εj ]εj)
k))

≤ Ln(({zj 6= ūj } ∪ {∇zj 6= ∇ūj}) ∩ (ωα × (0, 1)k)). (3.8)

To shorten notation, set

Mj :=

∫

ωα×(0,1)k
ϕ (|∇αzj |p + |∇βzj |p) dx,

mj := Ln(({zj 6= ūj } ∪ {∇zj 6= ∇ūj}) ∩ (ωα × (0, 1)k))

(3.9)

and recall that

(i) sup
j
Mj < +∞, (ii) mj → 0. (3.10)

From (3.9) and (0, [1/εj ]εj)
k =

⋃[1/εj ]−1
i1,...,ik=0(εj i+(0, εj)

k), (3.7)-(3.8) can be rewritten respectively

as
[1/εj ]−1∑

i1,...,ik=0

∫

ωα×(εji+(0,εj)k)
ϕ (|∇αzj |p + |∇βzj |p) dx ≤Mj , (3.11)

and
[1/εj ]−1∑

i1,...,ik=0

Ln(({zj 6= ūj} ∪ {∇zj 6= ∇ūj}) ∩ (ωα × (εj i+ (0, εj)
k))) ≤ mj. (3.12)

For fixed j, we now consider only those cubes εj i + (0, εj)
k with i = 2h for h in Ij := {h ∈

Zk : 0 ≤ h1, . . . , hk ≤ 1
2( [1/εj ] − 1)}. Note that for h ∈ Ij, ūj|ωα×2εjh+(0,εj)k coincide with the

2εjh-translation of ûj in the xβ variable.

By (3.11) and (3.12) we have that in particular

∑

h∈Ij

∫

ωα×(2εjh+(0,εj)k)
ϕ (|∇αzj |p + |∇βzj |p) dx ≤Mj (3.13)

∑

h∈Ij
Ln(({zj 6= ūj} ∪ {∇zj 6= ∇ūj}) ∩ (ωα × (2εj h+ (0, εj)

k))) ≤ mj. (3.14)

Then from (3.13), for at least half of the indices h ∈ Ij (i.e., for [1/2#(Ij)] indices) we must

have ∫

ωα×(2εjh+(0,εj)k)
ϕ (|∇αzj |p + |∇βzj |p) dx ≤ (#(Ij)− [1/2#(Ij)] + 1)−1Mj . (3.15)
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In fact, let otherwise I ′
j := {h ∈ Ij : (3.15) does not hold} be such that

#(I ′
j ) ≥ #(Ij)− [1/2#(Ij)] + 1 (3.16)

then

∑

h∈Ij

∫

ωα×(2εjh+(0,εj)k)
ϕ (|∇αzj |p + |∇βzj |p) dx

≥
∑

h∈I ′
j

∫

ωα×(2εjh+(0,εj)k)
ϕ (|∇αzj |p + |∇βzj |p) dx

> #(I ′
j )(#(Ij)− [1/2#(Ij)] + 1)−1Mj

and combining it with (3.16), by (3.13) we find a contradiction.

Since #(Ij) = ( [12 ( [1/εj ]− 1)] + 1)k it can be easily checked that, for j large enough

#(Ij)− [1/2#(Ij)] + 1 >
1

22k+1εkj
;

therefore from (3.15) we get that for at least [1/2#(Ij)] indices h ∈ Ij
∫

ωα×(2εjh+(0,εj)k)
ϕ (|∇αzj |p + |∇βzj |p) < 22k+1εkjMj , (3.17)

for any sufficiently large j. Moreover, in view of (3.14) we can again use an averaging procedure

to find among those [1/2#(Ij)] indices h satisfying (3.17), an index such that

Ln(({zj 6= ūj} ∪ {∇zj 6= ∇ūj}) ∩ (ωα × (2εj h+ (0, εj)
k)))

≤ [1/2#(Ij)]−1mj ≤ 23k+1εkj mj, (3.18)

for j large enough.

Finally, we have selected an index in Ij for which both (3.17) and (3.18) (definitively) hold

true. Let us call this index h⋆. Then by the (−εj , εj)k-periodicity of ūj in the xβ variable, up to at

most k translations in the xn−k+1, . . . , xn-directions, we can always suppose that h⋆ = (0, . . . , 0).

Abusing notation we denote by zj the restriction of zj to ωα× (0, εj)
k; we show that our (vj)

can be obtained from (zj) just by unscaling. In fact, having set

vj(x) := zj(xα, εjxβ),

then (vj) ⊂W 1,p(ωα × (0, 1)k ;Rm) and by (3.17) with h = h⋆ = (0, . . . , 0) we have that

∫

ωα×(0,1)k
ϕ
(
|∇αvj |p +

1

εpj
|∇βvj |p

)
dx

=
1

εkj

∫

ωα×(0,εj)k
ϕ(|∇αzj |p + |∇βzj |p) dx < 22k+1Mj.
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Thus, by virtue of (3.10)(i), again applying de la Vallée Poussin’s Criterion we get that
(
|∇αvj|p+

1
εpj
|∇βvj|p

)
is equi-integrable on ωα × (0, 1)k. Moreover by (3.18) we deduce

Ln({vj 6= uj} ∪ {∇vj 6= ∇uj})

=
1

εkj
Ln(({zj 6= ūj} ∪ {∇zj 6= ∇ūj}) ∩ (ωα × (0, εj)

k)) ≤ 23k+1mj

and by (3.10)(ii) we find (3.2). Clearly these two conditions can be restricted to ωα×ωβ if such

was the domain of the starting sequence.

Finally, note that if ωα is Lipschitz, by appealing to Theorem 2.1 we can choose any zj to be

a Lipschitz function, then for every x, y ∈ ωα × (0, 1)k

|vj(x)− vj(y)| = |zj(xα, εjxβ)− zj(yα, εjyβ)| ≤ Lipzj |x− y|,
thus vj is still a Lipschitz function and Lipvj ≤ Lipzj . �
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Vol III, 309–325, Res. Notes in Math., 70, Pitman, London (1981).
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