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PREFACE

This PhD thesis in Pure Mathematics contains both a general overview
and some original research results about one-dimensional local analytically
irreducible rings. The questions investigated in this work concern with canon-
ical ideals, Apèry Basis and the growth of the Hilbert function.

An interesting problem is to find (suitable) characterizations of canoni-
cal ideals. Under various assumptions on the ring, this has been succesfully
achieved. One of the assumptions which is often imposed is residual ratio-
nality, i.e. that the residue class field of the ring coincides with that of its
integral closure. Untill now, the case of residually non (necessarily) rational
rings was somewhat less studied.

One of the main results of this thesis is a generalization of a character-
ization which (previously) regarded the residually rational case, only. This
result is achieved by considering a new construction.

Many questions regarding residually rational rings are answered by con-
sidering their value semigroup, which is a numerical semigroup associated
to the ring. However, this semigroup turns out to reveal much less, when
the assumption of residual rationality is dropped. In order to treat the gen-
eral case, instead of a numerical semigroup, we shall associate to the ring a
so-called generalized semigroup ring.

Apart from results concerning canonical ideals, this newly introduced as-
sociated object can help to generalize other results, too. For example, a
generalization will be given of a construction (originally given in the residu-
ally rational case) of a so-called Apéry Basis.

The last chapter regards a conjecture of Sally about the growth of the
Hilbert function of a one dimensional local CM ring of small embeddding
dimension. In this thesis only the case of a semigroup ring is investigated.
In particular, it will be shown that the conjecture is true for semigroup rings
of embedding dimension three.

The case of embedding dimension three has been already proved in a
somewhat more general context. However, the proof presented in this thesis
is different from the previously known one, and it was found independently.
Moreover, it is also much more “elementary” (but of course it covers only a
less general case).

The result regarding the characterization of canonical ideals forms the
base of a single-author work submitted for publication to the journal “Com-
munications in Algebra”.
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Chapter 1

One dimensional CM rings and
canonical ideals

1.1 Canonical ideals

§1. In this thesis the word “ring” stands for a commutative algebraic struc-
ture with identity satisfying the usual requirements. We shall be mainly oc-
cupied with canonical ideals of one-dimensional Cohen-Macaulay (CM) rings.
A good introduction to one-dimensional (local) CM rings can be found in the
book [M] of Matlis. However, the reference which will appear here most often
is the book [HK] of Kunz and Herzog, which was published some two years
after the other mentioned book. (Both of them are from the beginning of
the 70’s).

The ring R is said to be local if it has a unique maximal ideal m ⊂ R,
and one-dimensional if the maximal length of a chain of prime ideals of
R is one. In this case the CM property simply means that m contains a
nonzero divisor. We shall denote by k = R/m the residue class field and by
Q(R) the total ring of fractions of R.

For two fractional ideals F1, F2 ⊂ Q(R) of R, the quotient is defined by
the formula

(F1 : F2) := {x ∈ Q(R)| xF2 ⊆ F1}. (1.1)

Note that the quotient (F1 : F2) is not necessarily a fractional ideal; e.g.
F : 0 = Q(R). Nevertheless, it is easy to see, that if F2 contains a nonzero
divisor , then (F1 : F2) is again a fractional ideal. (We call nonzero divisor
an element from F such that its product with every nonzero element of R is
again non zero.) Note also that a fractional ideal F of R contains a nonzero
divisor if and only if FQ(R) = Q(R). We shall call regular the fractional
ideals of R which contain a nonzero divisor.
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6 CHAPTER 1. RINGS & CANONICAL IDEALS

From the definition of the quotient operation it follows, that with F and
H (with and without indices) being fractional ideals of R, we have:

1. if F1 ⊆ F2 then (F1 : H) ⊆ (F2 : H) while if H1 ⊆ H2 then we have
the “inverted” relation (F : H1) ⊇ (F : H2),

2. (F : R) = F ,
3. ((F : H1) : H2) = (F : H1H2) where H1H2 is the product of the

two fractional ideals i.e. all possible finite sums of elements of the form h1h2

where h1 ∈ H1 and h2 ∈ H2,
4. H ⊆ (F : (F : H)).

With respect to the last listed property, it is important to mention that easy
examples show, that in general the relation between H and F : (F : H)
is really just an inclusion (and not equality). In connection of sums and
intersections, the quotient of fractional ideals has the following properties:

F :
∑

i∈I
(Fi) = ∩

i∈I
(F : Fi);

F : ∩
i∈I
Fi ⊇

∑

i∈I
(F : Fi) (1.2)

where F and Fi are fractional ideals of R and the index set I ⊂ N is finite.
Certain quotients are of particular interest. For a fractional ideal F of

R, the quotient 0 : F is called the annulator of F , and it is denoted by
Ann(F ). The fractional ideal R : F is called the inverse of F , and it is
denoted by F−1.

For shortening formulae, sometimes we shall use the following notation:

(F1 : F2)M ≡ (F1 : F2) ∩M, (1.3)

where M is a set with or without an algebraic structure. Note that if (F1 : F2)
is a fractional ideal of R, then (F1 : F2)R is actually an ideal (i.e. not only
fractional ideal) of R.

One-dimensional local CM rings are especially “good” in the sense that
we can define for them not only a canonical module but also a canonical ideal
which is a more simple object being a fractional ideal. So following [HK], we
shall introduce the notion of canonical ideal — rather than a special case of
canonical modules — in its own. (See a short explanation how this definition
can be obtained from the general one at paragraph 3 of this section.)

Let R be a one-dimensional (local) CM ring.

Definition 1.1.1. A regular fractional ideal ω ⊂ Q(R) is called a canonical
ideal of R if it plays the role of an ”identity” in the sense that it satisfies
the equality

ω : (ω : F ) = F (1.4)



CHAPTER 1. RINGS & CANONICAL IDEALS 7

for every regular fractional ideal F ⊂ Q(R).

From the definition, it follows easily that if ω is a canonical ideal of R,
then

1. ω : ω = R,

2. For two regular fractional ideals F1 and F2 , F1 = F2 if and only if
ω : F1 = ω : F2,

3. With `R(·) denoting the length (over R) of an R-module,

`R(F1/F2) = `R(ω : F2/ω : F1), (1.5)

for every two regular fractional ideals F1 and F2 such that F2 ⊂ F1.

There are some further interesting properties of canonical ideals that follow
somewhat less directly from definition. Recall that a fractional ideal F ⊂
Q(R) is called irreducible if F = H1 ∩H2 (where H1 and H2 are fractional
ideals) implies that either F = H1 or F = H2. In [HK] there exists the
following proposition:

Proposition 1.1.2 (Herzog). Every canonical ideal of a local ring is irre-
ducible.

Proof. Let ω be a canonical ideal of the local ring R, and suppose that

ω = F1 ∩ F2, (1.6)

where F1 and F2 are two fractional ideals of R. Note that by the definition
of canonical ideals, from the above equation it follows that both F1 and F2

must contain a nonzero divisor i.e. are regular fractional ideals.
Using the mentioned properties of canonical ideals and the property ex-

pressed by equation (1.2) regarding quotients, we have that

ω : ((ω : F1)+(ω : F2)) = (ω : (ω : F1))∩ (ω : (ω : F2)) = F1∩F2 = ω. (1.7)

However, ω : ω = R, and thus

(ω : F1) + (ω : F2) = R. (1.8)

But as R is local, either ω : F1 or ω : F2 must be equal to R, which in turn
is equal to ω : ω. This means that either ω = F1 or ω = F2.

A little observation is that in fact it is possible to show using the same
argument as in the proof of Proposition 1.1.2 that a canonical ideal ω of the
ring R is completely irreducible i.e. if ω = ∩i∈IFi, where {Fi}i∈I is any family
of fractional ideals, then ω = Fj for some j ∈ I.
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§2. In this paragraph the context is more general. Consider a d-dimensional
local Noetherian ring (R,m) and a finitely generated non zero R-module, M .
An M-sequence is a sequence of elements x1, . . . , xs of R, such that
1. (x1, . . . , xs)M 6= M , and
2. xi+1 is a nonzero divisor on the quotient module M/(x1, . . . , xi)M for
0 ≤ i ≤ s− 1.
For M = R an R-sequence is called a regular sequence. For an R-module M
we can define an important invariant, namely the depth of M ,

depthM := length of a maximal M sequence in m (1.9)

A good introduction into the fundamental notions of commutative algebra
is the first Chapter of the book of Bruns and Herzog, [BH]. Depth of an R-
module M can be computed using the next theorem from [BH], which is in
fact a corollary to a theorem of Rees.

Theorem 1.1.3. With the previous notations

depthM = min{i| ExtiR(k,M) 6= 0}. (1.10)

Using this theorem we can define another important invariant of an R-
module M which is the type of M . The type of M refines the information
given by the depth.

Definition 1.1.4. Let M be a non zero finitely generated module of depth t.
The type of M is

type(M) := dimkExttR(k,M). (1.11)

One can prove that

type(M) = dimkSoc(M/xM), (1.12)

where x = {x1, x2, . . . , xt} is a maximal M -sequence in m and the socle of
an R-module M is defined:

Soc(M) := (0 : m)M = {x ∈M | xm = 0} ' HomR(k,M). (1.13)

Add the hypothesis that the ring R is CM. (Here CM-ness means that
dimR = depthR.) One can define also CM modules. An R-module M is
called CM if dimM = depthM , where the dimension of the R-module M is
the dimension of the ring R/AnnR(M), AnnR(M) = (0 : M)R. A maximal
CM R-module is a CM R-module with the property that dimM = dimR.

The CM rings of type 1 have interesting properties. We shall call these
rings Gorenstein. These rings play an important role in our study.

For the ring R a canonical module is defined in the following manner (see
[BH]):
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Definition 1.1.5. A maximal CM module Ω of type 1 and of finite injective
dimension is called a canonical module of R

One can find many details about this topic in [BH]. What interests us
is only the relation between a canonical module and a canonical ideal in the
case of a one-dimensional local CM ring. For investigate this we shall use
the following characterization of a canonical module taken from [BH].

Proposition 1.1.6. Let Ω be an R-module. Then Ω is a canonical module of
R if and only if for all maximal CM R-modules M the natural homomorphism

M → HomR(Hom(M,Ω),Ω) (1.14)

is an isomorphism.

The next theorem whose proof can be find in [HK] gives a sufficient and
necessary condition for which a canonical module is a fractional ideal.

Theorem 1.1.7. For the ring R with the property that it has a canonical
module, Ω, the following conditions are equivalent:

1. For every minimal prime ideal p of R, Rp is a Gorenstein ring;

2. Ω is a fractional ideal of R;

3. Ω is a fractional ideal of R which contains a nonzero divisor of R.

§3. Return to the one-dimensional local CM ring R. In this case a reg-
ular fractional ideal of R is a maximal CM R-module. And we can show
that between the quotient of regular fractional ideals (F1 : F2) defined by
equation 1.1 and HomR(F2, F1), there exists an isomorphism. Let Φ the
R-homomorphism

Φ : (F1 : F2)→ HomR(F2, F1), (1.15)

which sends every x ∈ (F1 : F2) in the multiplication with x in HomR(F2, F1).

Lemma 1.1.8. Φ is an isomorphism of R-modules.

Proof. We shall construct an inverse of Φ. Let ψ ∈ HomR(F2, F1). Because
of the fact that F2Q(R) = Q(R) we can extend ψ to all Q(R), for x ∈ F2

and a nonzero divisor r ∈ R:

ψ(
x

r
) =

1

r
ψ(x) (1.16)
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Consider β = ψ(1). For every x ∈ F2 we have ψ(x) = ψ(x) = xψ(1) = xβ.
(This fact that ψ is taking out the elements from F2 is evident from the
definition of ψ.) Define

Φ′ : HomR(F2, F1)→ (F1 : F2), (1.17)

by

Φ′(ψ) = ψ(1). (1.18)

It is easy to see that Φ′ is the inverse of Φ.

With the same notations as in Lemma 1.1.8 we have the next corollary.

Corollary 1.1.9. The map

Ψ : (F1 : (F1 : F2))→ HomR(HomR(F2, F1), F1), (1.19)

defined as the composition of the two R morphisms:

F1 : (F1 : F2)→ HomR(F1 : F2, F1)→ HomR(HomR(F2, F1), F1), (1.20)

is an isomorphism.

Thus we can conclude that if a one-dimensional (local) CM ring R has
a canonical module which is a fractional ideal (for example if the ring R
satisfies the condition 1 of Theorem 1.1.7) then the canonical module is a
canonical ideal.

§4. We shall see from another point of view why is convenient to work
with one-dimensional local CM rings. Assume that R is such a ring with the
property that has a canonical ideal. We shall give an easy, but useful formula
for computing the type of the ring R and also we shall show a correlation
between the type of R and a canonical ideal ω of R. First we denote by µ(ω)
the number of elements in a minimal set of generators of ω. As a consequence
of Nakayama’s Lemma we have that:

µ(ω) = `R(ω/mω) (1.21)

The next proposition is from [HK].

Proposition 1.1.10.

type(R) = µ(ω) = `R(m−1/R). (1.22)
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Proof. We shall prove that µ(ω) = `R(m−1/R). Using the properties of a
canonical ideal ω of R and those of the quotient of two ideals we have that:

µ(ω) = `R(ω/mω) = `R((ω : mω)/(ω : ω)) =

= `R((ω : ω) : m/(ω : ω)) = `R(R : m/R).

We know that in general type(R) = dimkSoc(R/xR), where x = (x1, . . . , xt)
is a regular sequence in m. Our ring R is one-dimensional and CM then
t = 1. Therefore type(R) = dimRSoc(R/xR) where x is a non zero divisor
of R in m. It is easy to see that

Soc(R/xR) = (0 : m)R/xR ' (xR : m)R/xR. (1.23)

We shall prove that

(xR : m)R/xR ' m−1/R. (1.24)

Consider

µx−1 : (xR : m)R → m−1, µx−1(r) = x−1r. (1.25)

µx−1 is a well defined morphism of R-modules. Let see that it is also surjec-
tive. For this, take y ∈ m−1, then xy = r ∈ R and rm = xym ⊆ (x). Thus
µx−1(r) = y. Therefore we can define µ̃x−1 : (xR : m)R → m−1/R which is
surjective and Ker(µ̃x−1) = xR. Thus we have the isomorphism (1.24). And
this means that

type(R) = dimkSoc(R/xR) = `R(m−1/R). (1.26)

§5. We shall see in this paragraph a characterization of one-dimensional
Gorenstein rings. For showing this we need the next theorem which gives
some properties of a non necessarly one-dimensional. Gorenstein ring. This
theorem and also that about one-dimensional local rings could be find in
[HK].

Theorem 1.1.11. Let R be a CM ring. The following conditions are equiv-
alent:

i) R is a Gorenstein ring.

ii) For every system of parameters x of R we have that

dimkSoc(R/(x)) = 1. (1.27)
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Theorem 1.1.12. Let (R,m) be a one-dimensional local CM ring. Then the
following conditions are equivalent:

1. R is a Gorenstein ring;

2. For every nonzero divisor x ∈ m, `R((xR : m)R/xR) = 1;

3. `R(m−1/R) = 1.

Proof. 1⇐⇒ 2
As we have already seen in the proof of Proposition 1.1.10 there exists an
isomorphism of R-modules:

(xR : m)R/(x) ' (0 : m)R/xR ' HomR/xR(R/m, R/xR) ' Soc(R/xR).
(1.28)

Our ring R is one-dimensional and x ∈ m is a nonzero divisor, thus x is a
system of parameters of R. And we conclude the proof of the equivalence
using the previous theorem.

2⇐⇒ 3
Using again the proof of Proposition 1.1.10 we have that

(xR : m)R/xR ' m−1/R. (1.29)

And the proof for the equivalence is finished as the previous isomorphism
implies that `R(((x) : m)/(x)) = `R(m−1/R).

§6. So far we have said nothing about the existence of canonical ideals. The
natural questions to ask are: does every one-dimensional local ring R has a
canonical ideal? “How many” canonical ideals R may have? Is a canonical
ideal — at least in some weaker sense — unique?

To answer, let us mention that there are examples of one-dimensional
local rings (in fact, even domains!) possessing no canonical ideal, see the
remark at the end of [HK, Sect. 2.3]. However, in most cases of interest the
existence of a canonical ideal can be established. Before citing the relevant
propositions and theorems, recall that the nilradical of a ring R is the ideal
of R defined by:

N := {x ∈ R| ∃ n ∈ N s.t. xn = 0}, (1.30)

i.e. it is the union of all nilpotent elements. Let us now return to the
question of existence.
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Theorem 1.1.13. Let R be a one-dimensional local CM ring which is re-
duced (i.e. N = 0). If there exists a Dedekind ring P ⊆ R such that R
becomes a finitely generated P -module, then there exists a canonical ideal of
R.

Proposition 1.1.14. If a canonical ideal exists for the m-adic completion R̂
of R, then there exists a canonical ideal of R.

For proofs of the above statements, see e.g. [HK, Sect. 2.3].

Definition 1.1.15. R is called analytically unramified if the m-adic com-
pletion, R̂, of R is a reduced ring.

Proposition 1.1.16. If the one-dimensional local CM ring R is analytically
unramified, then there exists a canonical ideal of R.

The proof of the previous proposition relies on an important result of
commutative algebra, namely on the theorem of I.S. Cohen regarding the
structure of complete local rings. His article ([C]) from 1946 “provides a very
thorough insight into the structure of a local ring” (citation from the review
of O.Todd-Taussky), and it is a beatiful and essential work for everyone who
wants to study local rings. Nevertheless, for some further details on the
theorem of Cohen, one may look at the second volume of the book of Zariski
and Samuel ([ZS]), and the book of Matsumura ([Ma]).

Theorem 1.1.17 (Cohen). Every complete local ring is a homomorphic
image of a certain type of complete local rings, namely the ring of all power
series in a given number of variables with coefficient from a field or from a
valuation ring.

Proof. (of Proposition 1.1.16; addopted from the book [HK].) We know that

dimR̂ = dimR = 1. This implies that also R̂ is a one-dimensional local CM
ring which is also reduced. Thus using Proposition 1.1.14 we may reduce
the statement to complete local rings. The Cohen Theorem applied to one-
dimensional complete reduced local rings implies that there exists a DVR
contained in the ring for which the ring is a finitely generated module. Thus
the conclusion follows from Theorem 1.1.13.

A particular type of analytically unramified rings are the analytically
irreducible rings.

Definition 1.1.18. The ring R is called analytically irreducible if the
m-adic completion R̂ of R is an integral domain.
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As an easy consequence of the previous definition we have that an analyt-
ically irreducible ring is itself an integral domain. The new results presented
in this thesis about canonical ideals are concerned with this type of ring. It
is therefore worth to spend some more time on them, which we shall do in
Sect. 1.3.

Let us now turn to the question of uniqueness. First, let us comment,
that if R is Dedekind, then every fractional ideal of R is canonical. This
example immediately shows, that in general, canonical ideals are not unique.
Nevertheless, they are all isomorphic (as modules), and any two of them are
related in a certain, very close way. Let us see now more in particular, what
is known. Assume that the ring R is ane-dimensional local CM.

Proposition 1.1.19. 1. If ω is a canonical ideal of R and a is an invert-
ible element in Q(R) then aω is again a canonical ideal of R.

2. If ω and ω′ are two canonical ideals of the ring R then there exists an
invertible element a ∈ Q(R) such that ω′ = aω.

Proof. 1. For a fractional ideal F of R

aω : (aω : F ) = a(ω : a(ω : F )) = aa−1(ω : (ω : F )) = F. (1.31)

Thus by Definition 1.1.1 aω is again a canonical ideal.

2. ω′ is a canonical ideal then:

ω = ω′ : (ω′ : ω) (1.32)

ω′ : ω is a fractional ideal of R then there exist invertible elements in Q(R)
{ai}i ∈ I (I is a finite set) such that ω′ : ω =

∑
i aiR. Then equation 1.32

becomes:

ω = ω′ :
∑

i

aiR = ∩
i
(ω′ : aiR). (1.33)

By Proposition 1.1.2 ω is irreducible and so

ω = ω′ : aiR, (1.34)

for some i.
Thus

aiω = ai(ω
′ : aiR) = ω′ : R = ω′. (1.35)
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§7. How we have already mentioned an interesting problem is to find char-
acterizations of a a canonical ideal with the purpose of finding those ideals
which are canonical. A characterization of a canonical ideal which will be
used many times in Chapter 2 is presented in [HK, Satz 3.3]. In fact in the
first volume of the book of Zariski and Samuel a similar result is proved (see
[ZS, Theorem 34]) not for canonical ideals but for irreducible ones. We have
seen in 1.1.2 that every canonical ideal is irreducible, now we shall prove the
converse of this fact. The ring R is assumed to be local one-dimensional and
CM.

Proposition 1.1.20. Assume that the ring R has a canonical ideal and let
I be a regular fractional ideal of R. If the ideal I is irreducible then I is a
canonical ideal of R.

Proof. Let ω be a canonical ideal of R. Then

I = ω : (ω : I) = ∩
x∈ω:I

(ω : x). (1.36)

Since I is an irreducible ideal, the above equation implies that there exists
x ∈ Q(R), x invertible such that

I = ω : x = x(ω : R) = xω. (1.37)

Thus from Proposition 1.1.19 the conclusion follows.

Let formulate the result characterizing a canonical ideal from [HK]

Theorem 1.1.21. Assume that the ring R has a canonical ideal. Let ω be a
regular fractional ideal of R. Then the following conditions are equivalent:

i) ω is a canonical ideal of R;

ii) ω is an irreducible ideal;

iii) `R(ω : m/ω) = 1.

We have already proved the equivalence i) ⇐⇒ ii) in Proposition 1.1.2
and in Proposition 1.1.20. For proving the other one we shall use the ideas
from [ZS]. To begin with: we can suppose that our irreducible fractional
ideal ω is a proper ideal of R. The ring (R,m) is one-dimensional and local
then the ideal ω ⊂ R is m-primary, this means that there exists s ≥ 1 such
that ms ⊆ ω. We reduced our problem to prove the next theorem.

Theorem 1.1.22. Let (R,m) be a local Noetherian ring (non necessarily one-
dimensional), and q an m-primary ideal of R. Then the following conditions
are equivalent:
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i) The ideal q is irreducible;

ii) The vector space (q : m)/q is one dimensional.

Proof. i) =⇒ ii): From the fact that q is m-primary we have that q ⊂ q : m
with strict inclusion. (q : m)/q is an R-module and m(q : m) ⊂ q then
(q : m)/q is an R/m module, but k = R/m is a field then (q : m)/q is a
vector space over k. Suppose that

dimk(q : m)/q > 1. (1.38)

We know that in this case there exist two non trivial vector subspaces with
intersection the zero space. Note that the subspaces of the vector space
(q : m)/q correspond to the ideals of R which are between q and q : m. The
existence of the two non trivial subspaces with zero intersection means at the
level of the ring R that q is reducible which is a contradiction.
ii) =⇒ i) First we shall show that condition ii) of Theorem 1.1.22 implies
that the set of all ideals of R properly containing q admits a smallest element
which in this case is q : m. Let I be an ideal of R properly containing q.
Note that

q $ (q : m) ∩ I, (1.39)

because, as q is m-primary there exists s ≥ 1 such that ms ⊆ q, thus Ims ⊆ q
and Ims−1 * q, but Ims−1 ⊆ q : m. Since (q : m)/q is a one-dimensional
vector space there are no ideals between q and q : m. From what we have
shown before we have that:

q $ (q : m) ∩ I ⊆ q : m. (1.40)

Therefore (q : m) ∩ I = q : m, this means that q : m ⊆ I. Then q : m is
the smallest element in the set of all ideals of R properly containing q. We
shall see that the proof is finished using the fact proved before. Consider
q = I1 ∩ I2, where I1, I2 are two ideals of R. Suppose that q $ I1 and
q $ I2. Then applying what we have already proved for I1 and I2 we have
that q : m ⊆ I1 and q : m ⊆ I2. Thus

q : m ⊆ I1 ∩ I2 = q. (1.41)

This means that q : m = q, which is a contradiction. Then either q = I1 or
q = I2.
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§8. We shall see now another characterization of a one-dimensional Goren-
stein ring which shows that for a Gorenstein ring its canonical ideal is trivial.

Theorem 1.1.23. Let R be a one-dimensional local CM ring. The following
conditions are equivalent:

1. R is a Gorenstein ring;

2. R is a canonical ideal of R;

3. For every fractional ideal F of R which contains a nonzero divisor of
R, we have that (F−1)−1 = F .

4. For every ideal I ⊆ R which contains a nonzero divisor of R, we have
that `R(R/I) = `R(I−1/R).

Proof. 1 =⇒ 2 We have already seen in Theorem 1.1.12 that R is Gorestein
implies that `R(m−1/R) = 1 and this means that R is a canonical ideal of R
as we can apply Theorem 1.1.21.

2 =⇒ 1 We know that µ(ω) = type(R) (Proposition 1.1.10). As R is
a canonical ideal of R we have that type(R) = 1, which means that R is
Gorenstein.

2 =⇒ 3 Evident, it is exactly the definition of a canonical ideal.

3 =⇒ 4 Also this is trivial. From condition 3 we have that R is a canonical
ideal of R and we use a simple property of a canonical ideal (see equation
1.5).

4 =⇒ 1 We apply the lengths equality which appears in 4 for the maximal
ideal m. Thus `R(R/m) = `R(m−1/R), but `R(R/m) = dimk(k) = 1. We
obtain that `R(m−1/R) = 1, thus R is Gorenstein.

As a consequence of the previous theorem is the next corrolary.

Corollary 1.1.24. Let R be a local one-dimensional Gorenstein ring and
R : R the conductor of the integral closure R in R. Then

2`R(R/R : R) = `R(R/R : R) (1.42)

Proof. From condition 4 of Theorem 1.1.23 we have that `R(R/R : R) =
`R(R/R). And `R(R/R) = `R(R/R : R) − `R(R/R : R) which finishes the
proof.
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§9. In [BF1] the authors introduce the almost Gorenstein rings a notion
which generalizes Gorenstein rings. Assume that the ring R is like usually
one dimensional local CM. Moreover R has a canonical ideal ω such that
R ⊆ ω ⊆ R.

Definition 1.1.25. R is called almost Gorenstein if

`R(R/R) = `R(R/(R : R)) + type(R)− 1. (1.43)

A particular case of almost Gorestein rings is that one of Kunz rings which
was introduced in [BDoFo]. A ringR is called Kunz if `R(R/R) = `R(R/c)+1.
It is easy to see that Kunz rings are in fact almost Gorenstein rings of type 2.

We shall see some equivalent definitions of these two notions. For this
we need some relations between lengths of some particular modules over R.
These results are from [BF1].

Lemma 1.1.26. 1. `R(R/R) = `(R/(R : R)) + `R(ω/R).

2. `R(R/R) ≥ `R(R/(R : R)) + type(R)− 1.

3. type(R)− 1 ≤ `R(ω/R).

Then we can formulate:

Proposition 1.1.27. The following conditions are equivalent:

1. The ring R is almost Gorenstein.

2. type(R) = `R(ω/R) + 1.

Proposition 1.1.28. The following conditions are equivalent:

1. The ring R is Kunz.

2. `R(ω/R) = 1.

1.2 Free modules over a DVR

§1. Consider R a one-dimensional local CM ring (not necessarily a domain),
with maximal ideal m.

Northcott in a series of articles from the 50’s. introduced the first neigh-
borhood ring. In the more recent papers it is called the blowing-up ring
of the maximal ideal. It is a ring which we shall denote it by B(m) and it
is defined with the following formula:

B(m) = ∪
i∈N

(mi : mi). (1.44)
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One can define the blowing-up ring not only for the maximal ideal, but for
an arbitrary ideal of R, see the article of Lipman [L]. In [BF1] the authors
considered this ring also for an arbitrary fractional ideal, in special for a
canonical ideal ω of R with the property that R ⊆ ω ⊆ R.

Let I be a regular ideal of R or after Lipman’s terminology an open ideal
(equivalently, I contains a nonzero divisor or, equivalently mn ⊆ I for some
n > 0). Define the blowing-up of I to be the ring:

B(I) = ∪
n>0

In : In. (1.45)

(With the Lipman’s notation B(I) = RI .) A characterization of this special
ring is the next proposition from [L].

Proposition 1.2.1. Let I be a regular ideal of R and B(I) its blowing-up.
Then:

1. B(I) is a finitely generated R-module and

B(I) = In : In (1.46)

for all sufficiently large n.

2. IB(I) = xB(I) for some nonzero divisor in B(I).

3. If S is any ring between R and R such that IS is principal ideal in S,
then B(I) ⊆ S.

In the same article the next definition is given:

Definition 1.2.2. An element of the regular ideal I of R is I-transversal
if

xIn = In+1 (1.47)

for some integer n > 0.

Lipman in the same article proved that an element x is I-transversal if
and only if xB(I) = IB(I).

Another important element for the study of one-dimensional local CM
rings is the superficial element of I. We shall use especially the superficial
elements in m, and we shall renunce to write m.

Definition 1.2.3. An element x ∈ ms is called a superficial of degree s
if

mn+s : x = mn (1.48)

for large n.
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Note that x ∈ m is m-transversal if and only if it is superficial of degree
1 and √

xR =
√
m. (1.49)

Equation 1.49 is true for every nonzero divisor x ∈ m. Then we can conclude
with the fact that x ∈ ms is a superficial element of degree s if and only if

xB(m) = B(m)ms. (1.50)

Another interesting property of the blowing-up ring of the maximal ideal
which we shall use it in the next paragraph is:

`R(B(m)/mB(m)) = e(R), (1.51)

where e(R) = e is the multiplicity of the ring R. (cf [N1] or [N2])

§2. We need the next proposition which can be find in [M]

Proposition 1.2.4. Let I and J be two fractional ideals of R, both containing
at least one nonzero divisor of the ring. Further, let a ∈ R be a nonzero
divisor element of R. Then

1. I/aI and J/aJ have finite length and

`R(I/aI) = `R(J/aJ). (1.52)

2. If a is a superficial element of degree 1 the length from equation 1.52 is
equal to the multiplicity e(R) of the ring R. In this case, in particular
we have that `R(R/aR) = e.

Proof. First suppose that I is a integral ideal of R. As I is a m-primary ideal
of R, there exists n ∈ N, n 6= 0 such that mn ⊆ I. Thus

`R(R/I) ≤ `R(R/mn) <∞. (1.53)

The same argument shows that `R(R/aI) < ∞. Therefore also `R(I/aI) <
∞. We have the exact sequences:

0→ I/aI → R/aI → R/I → 0 (1.54)

and
0→ aR/aI → R/aI → R/aR→ 0. (1.55)

The exact sequence (1.54) implies that

`R(R/aI) = `R(I/aI) + `R(R/I) (1.56)
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while the sequence 1.55 implies that

`R(R/aI) = `R(R/aR) + `R(aR/aI). (1.57)

As a is a nonzero divisor, R/I ' aR/aI , thus

`R(I/aI) = `R(R/aR). (1.58)

Similarly
`R(J/aJ) = `R(R/aR). (1.59)

From the two equations we have that

`A(I/aI) = `A(J/aJ). (1.60)

If I is a fractional ideal the rI is an integral ideal for some nonzero divisor
element r ∈ R. Thus

`R(I/aI) = `R(rI/arI). (1.61)

For the second part of the theorem we may assume that I = B(m) using the
first part which we have already proved and choose as a a superficial element
of degree 1. Since a is a superficial element of degree 1, by equation 1.50 we
have that

aB(m) = mB(m). (1.62)

Then we can conclude using (1.51)

`R(B(m)/aB(m)) = `R(B(m)/mB(m)) = e. (1.63)

§3. Assume that the ring R is analytically irreducible and consider an ele-
ment of R of smallest nonzero value in v(R) and denote it by x. As usualy
k is the residue field of the ring R. Then there exists a DVR W which is
included in R, has the maximal ideal generated by x and residue field k. If
we assume that the ring R is complete in the m-adic topology, then we can
take W to be the formal power series ring k[[x]]. Our aim is to prove that
every fractional ideal of R (then also the ring itself) is a free module over W .

The following is a well-known theorem about the finitely generated mod-
ules over PID (see [AuB], [Jac]):

Theorem 1.2.5. A finitely generated torsion free module over a PID is free.

Note that the ring W defined before is a DVR and so in particular a PID.
The next theorem was proved in [E3].
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Proposition 1.2.6. R is a finitely generated, torsion free W -module.

Proof. Evidently R is a torsion free W -module. If I and J are ideals of R,
I ⊂ J , with the property that mJ ⊂ I, then

`R(J/I) = `W (J/I) (1.64)

because R and W have the same residue field k and J/I is a k-vector space.
From the definition of x this is a superficial element of degree 1. Therefore

xmn−1 = mn (1.65)

for some big n ∈ N. We have that:

`R(R/mn) = `R(R/m) + `R(m/m2) + ...+ `R(mn−1/mn)

= `W (R/m) + `W (m/m2) + ...+ `W (mn−1/mn)

= `W (R/mn). (1.66)

We know that `R(R/mn) < ∞, thus also `W (R/mn) < ∞. This means
that R/mn is a W -module of finite length, thus it is a finitely generated W -
module. Putting all these facts together we have that R is a finitely generated
W -module, and so by Theorem 1.2.5, a free W -module.

By the above proposition one can draw the following corollary.

Corollary 1.2.7. All fractional ideals of R, including the ring itself, are free
W -modules.

The natural question is: what is the rank of a fractional ideal or of the
ring R) as a free W -module? To answer this question we shall use Proposition
1.2.4.

Corollary 1.2.8. The rank of a fractional ideal I of R as a free module over
W is equal to e(R). In particular the rank of R over W is equal to e(R)

Proof. rankW (I) = `R(I/xI) and by the definition of x, this is a superficial
element of degree 1. Then we can conclude using Proposition 1.2.4.

1.3 Numerical semigroups

§1. We have already gave a definition for analytical irreducibility. We shall
now discuss a different, but equivalent way of describing the same concept.

It is known (see e.g. [M, Theorem 10.2]) that R is analytically unramified
if and only if R is finitely generated as an R-module. In the work [Ka]
published in 1986, Katz proved, that the integral closure of an analytically
unramified ring is local if and only if the ring is analytically irreducible. Thus
we may conclude the following.
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Theorem 1.3.1. A ring R is analytically irreducible if and only if its integral
closure, R is a DVR and a finitely generated R-module.

This means that we view analytical irreducibility as a condition on the
integral closure. This is of crucial importance for us; in fact, this is how we
shall always use analytical irreducibility.

The above theorem implies that there exists a valutation

v : Q(R)→ Z (1.67)

for which
R = {x ∈ Q(R)| v(x) ≥ 0}. (1.68)

As R ⊆ R, we can define the value set of R as the subset of natural numbers.

v(R) ≡ {v(x) ∈ Z| x ∈ R \ {0}}. (1.69)

The difference set N \ v(R) is finite, it contains the number 0 and it is
closed under addition. Thus v(R) is a so called numerical semigroup
[BF1, BDoFo]. Some authors (see e.g. the book of Rèdei) considere nu-
merical semigroups only those subsemigroups of N which contains 0. In the
next paragraphs we shall give more details about the notion of numerical
semigroups in general.

§2. For a reference on commutative semigroups see e.g. the book of Rèdei
([Re]) or the book of Gilmer treating the semigroup rings ([G]). In Rédei
monography the argument is treated in a very general context. There are
many other newer references on this subject, see e.g. [RG].

Definition 1.3.2. S is a numerical semigroup if S ⊆ N, and S is a
subsemigroup of (N,+) with 0 ∈ S.

Following the terminology from [Re] we shall call a numerical semigroup
prime if its elements are relatively prime i.e. if their greatest common divisor
is 1. The greatest common divisor of an infinitly many elements is defined
in the natural way: set Div(s), the set of all divisors of an element s ∈ S.
Of course, it is a finite set, then also ∩s∈SDiv(s) is a finite set, thus it has a
maximum. This maximum is a greatest common divisor of all elements from
S.

It is clear that all numerical semigroups different from 0 are of the form
S = dS ′ where d is a natural number and S ′ is a prime numerical semigroup.
In fact d is the greatest common divisor of the elements of S. Therefore it
is natural to investigate the properties of prime numerical semigroups. We
shall see some of these properties in the following theorem from [Re].
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Theorem 1.3.3. 1. For every prime numerical semigroup S the differ-
ence set N \ S is finite;

2. Every numerical semigroup S is finitely generated in the sense that
there exists l ≥ 1 elements a1, a2, . . . , al such that

S =< a1, a2, . . . , al >:=

{
l∑

i=1

niai| ni ∈ N
}
. (1.70)

Moreover every numerical semigroup ( 6= 0) has a single minimal gen-
erating system. The natural numbers a1 < · · · < al form the minimal
generating system of S if and only if no ai (i ≥ 2) is representable as

ai = a1x1 + · · ·+ ai−1xi−1 (1.71)

with x1, . . . , xi−1 ∈ N.

Proof. 1. First we shall prove that in the prime numerical semigroup S there
exist two relatively prime elements. An easy consequence of the definition of
a prime numerical semigroup is that there must exist finitely many relatively
prime elements b1, . . . , bk (k ≥ 2) in S. Then the Diophantine equation

b1x1 + · · ·+ bk−1xk−1 = 1 + bkxk (1.72)

has a solution x1, . . . , xk. From this we have that 1 + bkxk ∈ S and of course
bk ∈ S. Thus these two elements are realtively prime in S.

Let a, b denote two relatively primes in S. Then for every i ∈ N the
equation

ax+ by = ab+ i (1.73)

has a solution x, y, non negative integers. This means that ab+ N ⊆ S.
2. It suffices to prove this for a prime numerical semigroup S. From 1. we
have that

c+ N ⊆ S (1.74)

for an integer c > 0. It is evident that c, c+ 1, . . . , 2c− 1 and the elements of
the (finite) difference set S \ (c + N) are generators of S. The last assertion
of the theorem concerning the existence of a minimal generating system is
evident.

§3. For each numerical semigroup S ⊆ N, the set of formal power series
with coefficients in an arbitrary field k:

{
∑

i∈S
ait

i| ai ∈ k} (1.75)
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is in fact an analytically irreducible ring called the semigroup ring associ-
ated to S. It will be denoted by k[[S]]. This allows us to define the concepts
as ideal, canonical ideal, type, irreducibility and many others for a numerical
semigroup, too. We shall see more details in what follows

For references on the development of the theory of numerical semigroups
see articles of Rosales and others or [FGH] and [D’Anna3]. In [BF1], [BDoFo],
[Mat], [D’Anna1] etc. the authors are applying results from this theory in
the study of analytically irreducible rings.

From now on we shall use the word semigroup for numerical semigroup
and we shall furthermore always assume that semigroups have finite comple-
ment in N.

For a semigroup S we define the Frobenius number

g := max(N \ S). (1.76)

In fact g = c− 1, where c is the same number which appears in the proof of
Theorem 1.3.3. c is the smallest element of S with the property that c+N ⊆ S
and we shall call it the conductor of S (as in [J]) or the multiplicity of S
as in [BDoFo]. Others integers associated to S are:

1. The number of elements of a minimal set of generators of S (from
Theorem 1.3.3 this set is unique) which is denoted by e(S) and it is
called the embeding dimension of S,

2. r = n(S) := |S ∩ {0, 1, . . . , g}|, if S 6= N. By convention we put
n(N) = 0. (by |U | we denote the cardinality of the set U)

Following the terminology of Jäger (see [J]) we shall call the following
sets:

H := {s ∈ Z| s /∈ S and g − s ∈ S} (1.77)

and
L := {s ∈ Z| s /∈ S and g − s /∈ S}, (1.78)

the set of first type halls and the set of second type halls, respectively.
How it was explained in the beginning of this paragraph there exists a

relation between the sets of the semigroup S and those of the semigroup ring
k[[S]]. Let U be a set included in the semigroup ring k[[S]]. Consider the
set containing all the orders of nonzero elements of U . As the order is a
valuation of k[[t]], we can denote this set by v(U). It is evident that this set
is included in S.

If F is a fractional ideal of k[[S]], then v(F) satisfies the equality:

v(F ) + S ⊂ v(F ). (1.79)



26 CHAPTER 1. RINGS & CANONICAL IDEALS

Vice versa if E is a subset of Z which is bounded below, and satisfies the
equality S + E ⊂ F then

k[[E]] := {
∑

i∈U
ait

i| ai ∈ k} (1.80)

is a fractional ideal of k[[s]].
After this explanation seems more then opportune to define an ideal of

the semigroup S a subset I of S which satisfies

i+ s ∈ I (1.81)

for every i ∈ I and s ∈ S. A relative ideal of S is a subset F of Z whith
the property that

z + F := {z + j| j ∈ F} (1.82)

is an ideal of the semigroup for some z ∈ S. This it is equivalent to F+S ⊆ F
and F+z ⊆ S for some z ∈ S. The terminology presented here is from [BF1].
In [J] a relative ideal is called an S-ideal, and in this thesis is prefered the
use of this terminology.

If F and F ′ are two S-ideals we can define

F − F ′ := {x ∈ Z| x+ F ′ ⊆ F} (1.83)

which is an S-ideal. For every S-ideal F , S ′ := F −F is a semigroup, and it
is the largest semigroup such that F is an S ′-ideal.

Following our way to explain how one can think to all these concepts
regarding semigroups we shall observe that using the previous notations we
have that

k[[F ]] : k[[F ′]] = k[[F − F ′]], (1.84)

where on the right-hand side of the equality the operation is the quotient of
two fractional ideals defined in the beginning of Section 1.1. Then, as in that
section the next definition is that of a special relative ideal of the semigroup
namely a canonical ideal.

Definition 1.3.4. An S-ideal Ω is called a canonical ideal of the semigroup
S if

Ω− (Ω− F ) = F, (1.85)

for every S-ideal F .

The next proposition from [J] gives an example of such an ideal which is
called the standard canonical ideal of the semigroup.
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Proposition 1.3.5 (Jäger). Ω = S∪L is a canonical ideal of the semigroup
S, where L is the set of 2.nd type halls defined before.

Proof. First we shall show that Ω = S ∪ L is an S-ideal, in fact we shall
prove that L + S ⊆ Ω. For this take z ∈ L and s ∈ S. From the definition
of the set L, g − z = c − 1 − z /∈ S. Thus c − 1 − (z + s) /∈ S. We have
two possibilities either z + s ∈ S ⊆ Ω or z + s /∈ S then z + s ∈ L ⊂ Ω. For
showing that Ω is a canonical ideal of S we will prove that:

Ω− F = {c− 1− z| z /∈ F} (1.86)

for any S-ideal F . Take x ∈ Ω − F and z = c − 1 − x. If z ∈ F then
c − 1 = x + z ∈ Ω which is a contradiction. Thus z /∈ F . Now consider
x /∈ Ω−F . Then there exists a ∈ F with x+a /∈ Ω. This means that x+a is
a 1.st type hall for some a ∈ F . Thus c− 1− (x+ a) ∈ S which means that
c−1−x ∈ a+S ⊆ F . We have proved the equality from equation 1.86. And
it is clear that from this it can be easily obtained that Ω−(Ω−F ) = F which
is equivalent with the fact that Ω is a canonical ideal of the semigroup.

In fact the standard canonical ideal from the previous proposition is ob-
tained by the formula:

Ω = S ∪ L = {z ∈ Z| c− 1− z /∈ S}. (1.87)

Following again the notations from [BF1] we denote M the set {x ∈
S| x > 0} which is an ideal of S called the maximal ideal of S. Let

T := (M −M) \ S (1.88)

which is a finite set. We define the type of S

type(S) := |T |. (1.89)

It is evident that T ⊆ {c− 1} ∪ L.
A semigroup S is called symmetric if for any z ∈ Z we have, z /∈ S

if and only if c − 1 − z ∈ S and pseudo-symmetric if z /∈ S if and only
if c − 1 − z ∈ S or z = c−1

2
. With the above notations it is evident that

S is symmetric if and only if L = ∅ and pseudo-symmetric if and only if
L = { c−1

2
}. Then the symmetric semigroups are the semigroups of type 1

and the pseudo-symmetric ones are particular cases of semigroups of type 2.
In [BF1] it is introduced the notion of almost symmetric. A semigroup is
called almost symmetric if L ⊆ T . An easy implication of this definition
is that S is almost symmetric if and only if T = L∪ {c− 1}. We shall see in
Section 1.4 that every different type of semigroups has a corrispondent type
of rings.
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§4. Another important invariant of the semigroup S is the type sequence
of S introduced in [BDoFo] see also [D’Anna2] and [D’Anna3]. If S is a
semigroup, S 6= N, then S = {0 = s0, s1, . . . , sr−1, sr = c,→}, where si < si+1

(0 ≤ i ≤ r = n(S)) and the arrow means that every integer greater that c
belongs to S. For every i ≥ 0 we can consider the ideal:

Si := {s ∈ S|s ≥ si} (1.90)

and the S-ideal
S(i) := S − Si (1.91)

In fact for every i, S(i) = Si − Si. Thus S(i) is a semigroup. Moreover
S(0) = S, S(1) = M −M and S(n) = N. We observe that if i > n then
Si − Si = N ⊂ S(i), thus S(i) is not anymore a semigroup. We obtain the
following chain:

Sn ⊂ Sn−1 ⊂ · · · ⊂ S1 ⊂ S ⊂ S(1) ⊂ · · · ⊂ S(n− 1) ⊂ S(n) = N. (1.92)

Let ti(S) = |S(i)\S(i−1)| for 1 ≤ i ≤ n. (As S(i)\S(i−1) is a finite set ti(S)
is equal to the number of elements of this set.) Observe that t1(S) = type(S)
is the type of the semigroup S defined above. In this way, it is possible to
associate to every semigroup S a numerical sequence {t1, t2, . . . , tn} which is
called the type sequence of S. Since N \ S is the disjoint union of the sets
S(i) \ S(i− 1) we have that:

c− n =
n∑

i=1

ti(S). (1.93)

This integer is called the degree of singularity of S and it is denoted by
δ(S). Let now see a property of the elements ti which define the type sequence
of the semigroup S, this result can be find in [BDoFo] or in [D’Anna3].

Proposition 1.3.6. Let S be a semigroup, S 6= N. Then for every i ∈
{1, . . . , n}

1 ≤ ti(S) ≤ t1(S). (1.94)

Proof. If s ∈ Si then g−si−1+s ≥ g−si−1+si ≥ c, so g−si−1 ∈ S−Si = S(i).
But g−si−1 /∈ S(i−1) and therefore g−si−1 ∈ S(i)\S(i−1). Thus ti(S ≥ 1).

For proving the other inequality consider the map S(i) \ S(i − 1) →
S(1) \ S(0) given by x → x + si−1. We want to prove that this map is well
defined and it is injective. Consider x ∈ S(i). Then x + si−1 + s ∈ S for
every s ∈ S. This means that x+ si−1 ∈ S(1). The fact that it is injective is
obvious. Thus ti(S) ≤ t1(S).



CHAPTER 1. RINGS & CANONICAL IDEALS 29

§5. With beginning of ’90’s it was built up a theory of Apéry sets for
numerical semigroups in general (cf. the articles of J.C. Rosales and others,
see [R1], [R2], [RB]). We give the definition of the Apéry set that appears in
[R2].

Definition 1.3.7. Let S be a numerical semigroup and n ∈ S \ {0}. The
Apéry set with respect to n of S is the set Apn(S) = {s ∈ S|s− n /∈ S}.

It can be easily proved that there are no two elements of Apn(S) belonging
to the same congruence class modulo n. So it is clear, that |Apn(S)| =
n. A rather straightforward but nevertheless important consequence of the
definition is the following

Lemma 1.3.8. Let S be a numerical semigroup, n ∈ S, and Apn(S) be the
Apéry set of S with respect to n. Then the Frobenius number g of S is

g = max(Apn(S))− n.

We will always consider the Apéry set with respect to the element e ∈ S,
where e is the smallest nonzero element in S. This set is called the Apéry
set of the numerical semigroup.

We shall determine the Apery set of the standard canonical ideal of the
semigroup, Ω = S ∪ L.

Proposition 1.3.9. Let S be a numerical semigroup and let e be the smallest
nonzero element of S. If the Apéry set of S is

Ape(S) = {p0, p1, ..., pe−1}, (1.95)

p0 = 0 < p1 < ... < pe−1, then the Apèry set of Ω is

Ape(Ω) = {pe−1 − pe−1, ..., pe−1 − p1, pe−1 − po}. (1.96)

Proof. By Lemma 1.3.8 pe−1 = g + e. First we shall show that

pe−1 − pi ∈ Ω ∀ 0 ≤ i ≤ e− 1. (1.97)

This is true because g − (pe−1 − pi) = pi − e /∈ S.
Let us fix i. We want to prove that pe−1− pi is the smallest element of Ω

in its congruence class modulo e. Let

pr ≡ pe−1 − pi (mod e). (1.98)

This means that
pe−1 ≡ pr + pi (mod e). (1.99)
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Since pe−1 is the smallest in its congrunce class mod e,

pe−1 ≤ pr + pi ⇔ pe−1 − pi ≤ pr. (1.100)

Is it possible that an element l ∈ L is such that l ≡ pe−1 − pi (mod e) and
l < pe−1−pi? The answer is no because if pe−1−pi− l = me for some m ∈ N
m > 0 then g − l = (m − 1)e + pi ∈ S which is in contradiction with the
definition of L.

1.4 Analytically irreducible and residually ra-

tional rings

§1. So far we have discussed properties of the numerical semigroups. Now
we shall see how the theory of numerical semigroups can be applied to the
theory of rings. Throughout this paragraph R will stand for a local, one-
dimensional, analytically irreducible ring. Let m be its unique maximal ideal,
and R, its integral closure. Under our hypothesis R is a DVR and a finitely
generated R-module. Denote the unique maximal ideal of R by n. Thus there
exists the field extension k := R/m ⊆ R/n =: K. Due to the fact that R is
a finitely generated R-module, we have that this field extension is finite, i.e.
if we denote the degrre of this field extension n := dimkK then n <∞. How
we have already seen in the beginning of Section 1.3 there exists a valuation
v : Q(R)→ Z and to such a ring R we can associate its value semigroup

S := v(R) = {v(x)| x ∈ R \ {0}}. (1.101)

Moreover, here we consider only the rings which are also residually rational
which means that the residue field of R, k is the same with the residue field
of R, K. In terms of the degree this is equivalent to the fact that n = 1.

Up to our knowledge one of the first results is that one of Apèry ([A])
from 1946. In this note it is announced the fact that the local ring of a plane
curve singularity has a symmetric associated semigroup. In 1971 Kunz (see
[K]) generalized the result of Apery. He proves:

Theorem 1.4.1 (Kunz). The ring R is Gorenstein if and only if its value
semigroup v(R) is symmetric.

Jäger gives a characterization of a canonical ideal of the ring R in terms of
the valuation. His result from 1977 (see [J]) is important for us. In fact one
of the new results which we shall present in this thesis is a characterization
of a fractional ideal in order to be canonical for a non residually rational ring
(see Section 2.5) which can be seen as a generalization of the Jäger’s result.
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We can define the value set not only for the ring but also for fractional
ideals of the ring. (In fact Oneto and Zatini define the value set also for
R-modules, see [OZ1].) Let F ⊆ Q(R) be a fractional ideal. The value set
of F is

v(F ) := {v(x)| x ∈ F \ {0}}. (1.102)

Let Ω be the standard ideal of the value semigroup S := v(R), in fact
Ω = S ∪ L (see Section 1.3).

Theorem 1.4.2 (Jäger). Let ω be a fractional ideal of R such that R ⊆
ω ⊆ R. Then ω is a canonical ideal of R if and only if v(ω) = Ω.

Observe that the above theorem does not give a ”universal” way to con-
struct such an ω. However a simple consequence follows. For formulate this
we need a simple observation. Since R is a DVR we have that the maximal
ideal n of R is generated by a single element, denote it by t. We can normal-
ize our valuation and we can assume that v(t) = 1. Then the consequense
of the Theorem of Jäger is that: ω (R ⊆ ω ⊆ R) is a canonical ideal of R if
and only if the Frobenius number g /∈ v(ω) and

ω = R +
∑

l∈L
elt

lR, (1.103)

where el are some particular invertible elements in R. In his article Jäger
emphasizes the fact that usually el are different from the identity 1 of R.

In [OZ1] Oneto and Zatini give a slight generalization of Theorem 1.4.2.
Denote by c (as usually) the conductor of the value semigroup S := v(R).

Theorem 1.4.3 (Oneto, Zatini). Let N be a fnitely generated torsion free
R-module of rank 1 containing tcR. If v(N) ⊂ {z ∈ Z| c− 1− z /∈ S} then
there exists an unit u in R such that uN ⊂ ω.

§2. In an article from 1971 (see [Mat]) Matsuoka introduces another in-
variant of a one-dimensional, local, analytically irreducible and residually
rational ring R, namely the type sequence. The type sequence is one of
the subjects in many article, see [BDoFo], [D’Anna1], [OOZ]. Oneto and
Zatini generalize it for modules (in [OZ2]). In [BDoFo] the authors analyze
the relation between the type sequence of the ring R and that one of the
value semgroup S := v(R). Since S := v(R) is a semigroup, S 6= N, S =
{0 = s0, s1, . . . , sr−1, sr →} (r = n(S)), where 0 < s1 < · · · < sr−1 < sr and
sr is the conductor of the semigroup, with the above notation sr = c = g+1.
Consider the ideals of R:

ai := {x ∈ R| v(x) ≥ si}, (1.104)
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for every 0 ≤ i ≤ r. We have that a0 = R, a1 = m, the maximal ideal of the
ring, and ar = f := R : R, the conductor of R in R.

We may consider the following chain of fractional ideals of the ring R:

f = ar ⊂ ar−1 ⊂ · · · ⊂ a1 ⊂ R ⊂ a−1
1 ⊂ · · · ⊂ a−1

r−1 ⊂ a−1
r . (1.105)

Matsuoka in the obove cited article proves that in fact one has

a−1
r = R. (1.106)

One can observe the analogy between the chain of ai and the chain of Si
considered for a semigroup in Section 1.3. If 1 ≤ i ≤ r define

ti(R) = `R(a−1
i /a−1

i−1). (1.107)

Definition 1.4.4. We call (ti(R), 1 ≤ i ≤ r) the type sequence of R.

Note that t1(R) = `R(m−1/R) which is the type of the ring R as we have
already proved in Section 1.1. Because the chain of a−1

i increases from R to
R, we have that:

`R(R/R) =
r∑

i=1

ti(R). (1.108)

We call `R(R/R) the degree of singularity of R and also denote it by δ(R).
A result from [Mat] is the next proposition about the bounds of the ti:

Proposition 1.4.5 (Matsuoka). 1 ≤ ti(R) ≤ t1(R) = type(R), for 1 ≤
i ≤ r.

In the same article ([Mat]) Matsuoka gives a way to compute the length
of the quotient module of two fractional ideals.

Theorem 1.4.6 (Matsuoka). Let F1, F2 be two fractional ideals of R such
that F2 ⊆ F1. Then:

`R(F1/F2) = |v(F1) \ v(F2)|. (1.109)

§3. We shall present here some results from [BDoFo] and [BF1] caracteriz-
ing different types of analytically irreducible and residually rational rings in
terms of the value semigroup of the ring.

Proposition 1.4.7 (Barucci, Dobbs, Fontana). The ring R is Kunz if
and only if its value semigroup is pseudo-symmetric.
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Proposition 1.4.8 (Barucci, Fröberg). The ring R is almost Gorenstein
if and only if its value semigroup v(R) is almost symmetric and type(R) =
type(v(R)).

In [BF1] the authors emphasize the fact that the condition on the types
of the ring R and of v(R) is necessary, showing an example of a ring R which
is almost Goresntein but its value semigroup is not almost symmetric. In
this example R and v(R) have different types.

§4. We have seen in Section 1.2 that every fractional ideal of a local one-
dimensional CM ring is a free W -module of rank equal to the multiplicity of
the ring, where W is a particular DVR included in the ring.

Recall that we have denoted by x the element of R of smallest nonzero
value in v(R). Denote this value by m. Then the DVR W is defined by the
fact that it has the maximal ideal generated by x. With the assumption that
the ring R is complete in the m-adic topology we can set W = k[[x]].

We would like to know a basis of R (or of an arbitrary fractional ideal of
R) as a free module over the DVR W .

In [BDF] the authors construct a basis for the ring

O = C[[X,Y ]]/(F ) = C[[x, y]], (1.110)

where F (X, Y ) ∈ C[[X,Y ]] is an irreducible formal power series, as a free
C[[x]]- module. The elements of the basis

{y0, y1, . . . , ye−1}, (1.111)

where e = v(x) is the multiplicity of the ring O, are such that

{v(y0), . . . , v(ye−1)} (1.112)

is the Apéry set of v(O) with respect to e. This basis is called an Apéry
basis of O with respect to x.

This can be done also in general for analyticaly irreducible and residually
rational rings. In fact in a recent article of Barucci and Fröberg ([BF2]) the
proof of this fact appears.

We know that in this case of residual rationality the multiplicity of the
ring R is e = e(R) = v(x) = m

Theorem 1.4.9 (Barucci, Fröberg). Let {f0, f1, ..., fe−1} ⊂ R be such
that {v(f0), v(f1), ..., v(fe−1)} is the Apéry set of the value semigroup v(R)
of R with respect to e. Then

{fo, f1, ..., fe−1} (1.113)

is a free basis of R over W .
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Proof. It is evidently true that the elements fi are linearly independent. Let
us denote v(fi) = ri, ri ∈ v(R). To prove that the elements fi form a system
of generators we consider an arbitrary element a ∈ R. Suppose

v(a) ≡ ri (modulo e). (1.114)

Then there exists a0 ∈ W such that

v(a− a0fi) > v(a). (1.115)

Consider now a− a0fi, there exists j such that

v(a− a0fi) ≡ rj (modulo e). (1.116)

Then there exists a1 ∈ W such that

v(a− a0fi − a1fj) > v(a− a0fi). (1.117)

And so on. Then using that R is complete we can conclude that

a = a0fi + a1fj + . . . . (1.118)

Thus a is generated over W by elements fi.

Such a basis {f0, f1, ..., fe−1} is called an Apéry basis of the ring R.
Note that in the same way we can construct Apéry Bases for all fractional
ideals of the ring R.



Chapter 2

New results on the non
residually rational case

2.1 What is a GSR

§1. Throughout this chapter R will stand for a local, one-dimensional an-
alytically irreducible ring and m its (unique) maximal ideal. As it was ex-
plained in Section 1.4, by our conditions, the integral closure of the ring, R is a
DVR (so we have a valuation on the field of fractions v : Q(R) = Q(R)→ Z)
and it is a finitely generated R-module. We shall denote by n the (unique)
maximal ideal of R. Thus we have two fields: k := R/m (the residue field
of R) and K := R/n (the residue field of R) and a natural extension be-
tween them, k ⊆ K. We shall set n for the degree of this extension; that is,
n = dimk(K). As R is finitely generated R-module, n must be finite and R
is in fact a Noetherian ring.

In Section 1.4 some known results were discussed regarding canonical
ideals of R. They all concerned the residually rational case, i.e. when n = 1.
Our aim now is to extend and / or generalize these results so that they would
also cover the non residually rational case, i.e. when n ≥ 1.

Untill now, in many respects — and in particular with respect to canon-
ical ideals — the case of analytically irreducible one-dimensional local rings
without assuming residual rationality, was somewhat less studied. In [CDK]
the authors characterized the Gorenstein property in the slightly more gen-
eral setting of analytically unramified rings. From the results presented in
[BHLP] we can imedialtely obtain a constructive criterion for a canonical
ideal of rings of the form R = k0 + tlk1[[t]], where l 6= 0 is an arbitrary nat-
ural number and k0, k1 are fields such that k0 ⊂ k1, k1 is a finite extension
of k0 and t is trascendental over k1. These rings are in fact generalized semi-

35
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group rings (on short GSR) which are defined and studied in [BF]. One of
the results obtained here is a criterion of Gorensteiness for GSR. The notion
of GSR is the subject of this section.

Before defining what is a GSR we shall explain with more details the
construction of a canonical ideal for rings studied in [BHLP], R = k0+tlk1[[t]].
Note that the ring R is Noetherian, the integral closure of R is R = k1[[t]]
and the maximal ideal m of the ring R is a power of the maximal ideal of the
integral closure R. We shall construct in the next proposition a canonical
ideal of R and we shall give a simple proof different from that given in
[BHLP].

Proposition 2.1.1. Let k0, k1 be two fields such that k0 ⊆ k1 is a finite
extension and t is transcedental over k1 and let R be the ring defined by

R = k0 + tlk1[[t]]. (2.1)

Then the fractional ideal ω defined by

ω = Ra1 +Ra2 +Ra3 + ...+Ram−1, (2.2)

where {a1 = 1, a2, a3, ..., am} is a particular finite system of generators of R
over R, is a canonical ideal of R.

Proof. Let {1, b2, ...bs} be a basis of k1 over k0. Using this basis we can
determine a system of generators of R over R, namely

R = R + b2R + ...+ bsR + tR + b2tRt + ...+ bstR +

+t2R + b2t
2R + ...+ bst

2R + ...+ tl−1R + ...+ bst
l−1R. (2.3)

Note that m = sl. Consider

ω = R + b2R + ...+ bsR + tR + b2tR + ...+ bstR +

+t2R + b2t
2R + ...+ bst

2R + ...+ tn−1R + ...+ bs−1t
n−1R. (2.4)

We have that R ⊂ ω ⊂ R and ω : m = k1[[t]] = R. Then `R(ω : m/ω) = 1
which is equivalent to ω being canonical (see [HK, Satz 3.3] or Theorem
1.1.21).

For the proof of all results in the residually rational case one may use use
the value semigroup of the ring. Looking only at the value semigroup surely
cannot suffice when R is not necessarily residually rational. For example it is
easy to construct two local one-dimensional analytically irreducible rings R1
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and R2 such that their value semigroups will coincide, and yet one of them
is Gorenstein while the other is not. Let

R1 := R[[it3, t5, it10]], (2.5)

and
R2 := R[[it3, t5, it10, it17]], (2.6)

where i ≡
√
−1 ∈ C.

The value semigroups of R1 and R2 are the same, denote this semigroup
by S. In fact S = {0, 3, 5, 6, 8 →} is a symmetric semigroup. Using the
criterion of Gorensteiness from [CDK] it is easy to see that R1 is Gorenstein
while R2 is not. Observe that R1 and R2 are not residually rational. Thus
the result of Kunz (see [K] or Theorem 1.4.1) does not remain true when we
assume that the ring R is not residually rational.

Also the Jäger’s characterization of a canonical ideal (see [J] or Theorem
1.4.2) does not remain true in this case. Consider

R = Q+ t4Q(
√

2)[[t]], (2.7)

a ring as in Proposition 2.1.1. Using this proposition a canonical ideal of R
is

ω = Q(
√

2) + tQ(
√

2) + t2Q(
√

2) + t3Q+ t4Q(
√

2)[[t]] (2.8)

The value semigroup of the ring is S = {0, 4,→}. Using the theory of
the semigroups we have that Ω = {0, 1, 2, 4,→} is a canonical ideal of the
semigroup S. Note that v(ω) = N 6= Ω.
The other implication in the Jäger’s result is evidently not true. Considere

F = Q(
√

2) + tQ(
√

2) + t2Q(
√

2) + t4Q(
√

2)[[t]]. (2.9)

We have that F is a fractional ideal of the ring R, R ⊂ F ⊂ R and v(F ) = Ω,
but F is not a canonical ideal of the ring R. This we can easily see from the
fact that `R(F : m/F ) 6= 1, in fact is equal to 2.

Now we can proceede with presenting the generalized semigroup rings.
The simplest type of a one-dimensional local analytically irreducible ring is
the semigroup ring k[[S]] associated to a numerical semigroup S ⊆ N. If

S = {s0 = 0, s1, . . . , sr →} (n(S) = r), (2.10)

then
R = k[[S]] = k + kts1 + · · ·+ tsrk[[t]]. (2.11)

Observe that such a ring is always residually rational. However, in [BF] the
following generalization was given allowing non residually rational rings, too.
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Definition 2.1.2. Let k ⊆ K be a finite extension of fields with the degree
of the extension denoted by n := dimk(K) <∞. A ring R of the form

R = k + V1t+ ...+ VN−1t
N−1 + tNK[[t]] (2.12)

where Vi (i ∈ {1, .., N − 1}) are k-vector subspaces of K (we allow Vi = {0})
and VN−1 6= K, is called a generalized semigroup ring (or in short: a
GSR). The integer N is said to be the conductor of R.

Frequently we shall use a notation for which we must clarify the meaning
of the symbol

∑
. In this chapter,

∑∞
r=0 Vrt

r where Vr ⊆ K (r ∈ N) shall not
mean the simple (algebraic) sum, but as usual, it will stand for the closure
of ⊕r∈NVrtr in K[[t]]. So, for example by our conventions

∑
r∈N kt

r stands
for k[[t]] and not for k[t], and the above defined ring R may be written as

R =
∑

i∈N
Vit

i (2.13)

where here and all through the rest of this chapter, we have set V0 := k and
Vi := K for all i ≥ N . Let us note now the following simple facts regarding
the above definition of GSR rings.

1. R is a ring means that ViVj ⊆ Vi+j for all 0 ≤ i, j < N .
2. A ring defined in this manner, due to the requirement n <∞, is always

Noetherian.
3. The integral closure of R is K[[t]].
4. R is local and its (unique) maximal ideal is m =

∑N−1
r=1 Vrt

r + tNK[[t]].
5. R is analytically irreducible and furthermore, if k 6= K, then it is not

residually rational, as the residue field of R is exactly k.
6.The conductor ideal of R in R is R : R = tNK[[t]]. This is the motiva-

tion of calling N the conductor of R. Observe that if the Frobenius number
g of the value semigroup v(R) of R equals to N − 1 then N = c is also the
conductor of the value semigroup.

We saw before simple examples of GSR: the rings of the form k0 +tlk1[[t]].
We can generalize this form of rings considering

R =
∞∑

i=0

kit
i, (2.14)

where ki are subfields of a field L such that for every i and j, kikj ⊆ ki+j. Let
K = ∪iki. These rings were considered in [BF] where the authors proved that
R is Noetherian if and only if dimk0K ≤ ∞. It is immediate that the integral
closure of R, R is K[[t]] and the value semigroup of R, v(R) = {i| ki 6= 0}.



CHAPTER 2. THE NON RESIDUALLY RATIONAL CASE 39

2.2 A canonical ideal of a GSR

§1. Let R be a GSR, defined by (2.12),

R = k + V1t+ ...+ VN−1t
N−1 + tNK[[t]] (2.15)

where Vi (i ∈ {1, .., N − 1}) are k-vector subspaces of K, VN−1 6= K.
To deal with such rings we shall first study the structure of k-vector

subspaces of K.

Definition 2.2.1. For two k-vector subspaces V,W of K where k ⊆ K is an
extension of fields we shall set

(V : W ) := {x ∈ K| xW ⊆ V }. (2.16)

Note that (V : W ) is again a k-vector subspace of K and that unlike with
the division of numbers, the definition remains meaningful for W = {0}; in
fact (V : {0}) = K. Some further observations are:

1. If V1 ⊆ V2 then (V1 : W ) ⊆ (V2 : W ) while if W1 ⊆ W2 then we have
the “inverted” relation (V : W1) ⊇ (V : W2),

2. (V : 〈W1W2〉) = ((V : W1) : W2) where 〈W1W2〉 ≡ Span(W1W2),

3. W ⊆ (V : (V : W )).

The third listed property may be a strict inclusion. This is related to another
thing which is worth to comment; namely that in general the dimension of
(V : W ) is not determined by the dimensions of the subspaces V,W and
V ∩W . Indeed, consider the field extension

k := Q ⊂ Q(
√

2,
√

3) =: K, (2.17)

and set V := (
√

2 +
√

3)2Q + (2 +
√

3)
√

6Q, W1 := Q(
√

2) and finally let
W2 := (

√
2 +
√

3)Q+
√

6Q. Then by direct calculation both

dimk(W1) = dimk(W2) = 2 and dimk(V ∩W1) = dimk(V ∩W2) = 0,
(2.18)

but 0 = dimk(V : W1) 6= dimk(V : W2) = 1.
Nevertheless, at least in the special case when the codimension of V in

K is one, it is possible to determine the dimension of (V : W ). This is
due to the existence of a certain (nondegenerate) bilinear form that can be
associated to such a subspace V . The following lemma and its proof is an
adopted version of that of [CDK, Proposition 3.5].
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Lemma 2.2.2. Let k ⊆ K be an extension of fields with n = dimkK < ∞
and V ⊂ K is an (n−1)-dimensional k-vector subspace of K. Then for every
k-vector subspace W ⊆ K we have dim(V : W ) + dim(W ) = n.

Proof. As V ⊂ K is of dimension n − 1, we have that there exists a linear
surjection Φ : K → k such that KerΦ = V . Then define B : K ×K → k by
the formula B(a, b) ≡ Φ(ab). It is clear that B is a nondegenerate bilinear
form and hence

dim(W ) + dim(W⊥B) = dim(K) = n (2.19)

where the B-orthogonal W⊥B = {x ∈ K| B(x, y) = 0,∀y ∈ W}. The proof is
then finished as a trivial check shows that, by its definition, the B-orthogonal
of W is nothing else than the subspace (V : W ).

As we have already remarked, W is always included in (V : (V : W )).
Thus by the above lemma, using dimensional arguments, we can draw the
following conclusion.

Corollary 2.2.3. Let k ⊆ K be an extension of fields with n := dimkK <∞
and V ⊂ K is an n− 1-dimensional k-vector subspace of K. Then for every
k-vector subspace W ⊆ K we have (V : (V : W )) = W .

§2. The above results show that among the k-subspaces of K, the (n− 1)-
dimensional ones play a similar role to that of the canonical ideals among
fractional ideals. It is therefore natural to look for possible ways of exhibiting
a canonical ideal of R starting from an (n− 1)-dimensional subspace of K.

Theorem 2.2.4. Let R be a GSR, R =
∑

r∈N Vrt
r where V0 = k, VN−1 6= K,

and Vr = K for every r ≥ N . Moreover for a k-subspace U ⊆ K setting

ωU :=
∞∑

r=0

(U : VN−1−r)t
r ⊆ K[[t]],

where we have set Vj = {0} for all j < 0. If dimk(U) = dimk(K) − 1, then
ωU is a canonical ideal of R.

Proof. As
〈VN−(s+r)−1Vr〉 ≡ Span(VN−(s+r)−1Vr) ⊆ VN−s−1 (2.20)

for every r, s ∈ N, we have that

(U : VN−s−1) ⊆ (U : 〈VN−(s+r)−1Vr〉) = ((U : VN−(s+r)−1) : Vr). (2.21)
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But (A : B) = C implies that BC ⊆ A, so “multiplying” both sides of the
above containment by Vr we get that for every r, s ∈ N:

Vr(U : VN−s−1) ⊆ (U : VN−(s+r)−1) (2.22)

This shows that RωU ⊆ ωU ; i.e. that ωU is a fractional ideal (as it is clearly
closed under addition). What remains to show is that ωU is canonical which is
equivalent to prove that `R((ωU : m)/ωU) = 1; see [HK, Satz 3.3] or Theorem
1.1.21.

As k ⊂ R, we may view the inclusion ωU ⊆ (ωU : m) as an inclusion of
k-vector spaces. In fact also in a more general case when the residue field of
R is not a subset of the ring we have already seen at the proof of Theorem
1.1.21 that ω : m/ω is a k-vector space.

We shall now calculate the codimension of the inclusion of the k-vector
spaces ωU ⊆ ωU : m. (By codimension of an inclusion U1 ⊆ U2 of vector
spaces over a field k we mean the dimension of the quotient vector space
U2/U1.)

Let now
Ur := (U : VN−1−r). (2.23)

So in particular we have UN−1 = U . Recall that m stands for the maximal
ideal of R; that is, in this case m =

∑∞
r=1 Vrt

r. We shall write ωU : m in the
form

ωU : m =
∑

j∈Z
Wjt

j, (2.24)

where Wj are k-vector subspaces of K. (Not every fractional ideal of R can
be written in this form, but it is an easy exercise to show that if I and J are
two fractional ideals of R of this form then also I : J is of this form.)

By the definition of quotient of ideals, as

∑

j∈Z
Wjt

j =
∞∑

r=0

Urt
r :

∞∑

r=1

Vrt
r (2.25)

we find that
Wj = ∩

r>0
(Ur+j : Vr). (2.26)

We shall now consider the case when j < N −1. Then setting r := N −1− j
we have that r > 0 and r + j = N − 1 resulting

Wj ⊆ (Ur+j : Vr) = (U : VN−1−j) = Uj. (2.27)

But ωU is a fractional ideal so (ωU : m) ⊇ (ωU : R) = ωU and hence Wj ⊇ Uj
for every j ∈ Z. Thus by the above equation Wj actually coincides with Uj
for every j < N − 1.



42 CHAPTER 2. THE NON RESIDUALLY RATIONAL CASE

Let us now consider the remaining case of j ≥ N−1. In this case r+j ≥ N
since r > 0 and so Ur+j = K resulting that

Wj = ∩
r>0

(Ur+j : Vr) = ∩
r>0

(K : Vr) = ∩
r>0

K = K. (2.28)

To summarize: Wj = Uj for every j ∈ Z except for j = N − 1 in which case
Uj = UN−1 = U ⊂ K is a subspace of codimension 1, whereas Wj = WN−1 =
K. It follows that the inclusion ωU ⊆ (ωU : m), as an inclusion of k vector
subspaces, is of codimension 1. But as k ⊂ R, this shows that (ωU : m)/ωU
has no proper R-submodules. Since ωU : m is really bigger than ωU , this
in turn implies that the length `R((ωU : m)/ωU) = 1, which concludes the
proof.

Let us now see same examples of computing a canonical ideal for a GSR.

Example 2.2.5. Let

R := Q+Qt5+Q(
√

2)t10+Q(
√

2)t11+t14Q(
√

2)[[t]]. (2.29)

With the notations of Theorem 2.2.4 k = Q, K = Q(
√

2), N = 14. Note
that N = c, where c is the conductor of S := v(R). Consider U = Q which
is a one-dimensional vector space of Q(

√
2). Then

ωQ = Q(
√

2)+Q(
√

2)t+Q(
√

2)t4+Q(
√

2)t5+Q(
√

2)t6

+Q(
√

2)t7+Qt8+Q(
√

2)t9+Q(
√

2)t10+Q(
√

2)t11

+Q(
√

2)t12 +Qt13+t14Q(
√

2)[[t]] (2.30)

is a canonical ideal of R.

Example 2.2.6. Let

R := R+iRt4+iRt5+iRt6+Ct7+Ct8+Rt9+Rt10+t11C[[t]]. (2.31)

For this ring k = R, K = C and N = 11 (and already with such N it seems
rather difficult to find a canonical ideal by some direct method). However,
we now know that it is enough to find a real subspace of C of codimension
1, which is much more simpler; e.g. R is such a subspace. Then by direct
calculation

ωR=
∑

j

(R : V10−j)t
j = R+ Rt+ iRt4 + iRt5 + iRt6 + t7C[[t]] (2.32)

and by the above theorem this is a canonical ideal.
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We have denoted the canonical ideal constructed in Theorem 2.2.4 by ωU ,
emphasizing the fact that it depends on the subspace U .

Lemma 2.2.7. With the notations of Theorem 2.2.4, R ⊆ ωU if and only if
VN−1 ⊆ U .

Proof. If VN−1 ⊆ U then VjVN−1−j ⊆ VN−1 ⊆ U and so Vj ⊆ (U : VN−1−j) =
Uj. This shows the “if” part; the “only if” part is trivial.

§3. The natural question is: can every canonical ideal of R be written in
the form ωU? The answer in general is no. However, it is known that if ω1, ω2

are two canonical ideals of R then there exists a nonzero element a ∈ Q(R)
such that ω2 = aω1; see [HK] or Proposition 1.1.19.

All notations and assumptions regarding R are those appearing in Theo-
rem 2.2.4, so, R is a GSR,

R =
∑

r∈N
Vrt

r, (2.33)

where V0 = k, VN−1 6= K and Vr = K for all r ≥ N . Moreover for a
k-subspace U of K we consider ωU constructed in Theorem 2.2.4.

Lemma 2.2.8. Suppose that U ⊂ K is of codimension 1 and x ∈ K[[t]]
is such that (1 + tx)ωU is of the form

∑
r∈NWrt

r where Wr (r ∈ N) are
k-subspaces of K. Then (1 + tx) ∈ R and so (1 + tx)ωU = ωU .

Proof. Let r ∈ N and b ∈ (U : VN−1−r). Then (1 + tx)btr ∈ (1 + tx)ωU as
btr ∈ ωU . However, as (1 + tx)ωU is of the form

∑
r∈NWrt

r, if an element
belongs to it, then its lowest order term is also contained in it. It follows that
btr ∈ (1 + tx)ωU and thus by the arbitrariness of r ∈ N and b ∈ (U : VN−1−r)
we have that ωU ⊆ (1 + tx)ωU and hence

R = (ωU : ωU) ⊇ (ωU : (1 + tx)ωU) = (1 + tx)−1(ωU : ωU) = (1 + tx)−1R
(2.34)

where we have used the well-known fact already mentioned after Definition
1.1.1, namely that for a canonical ideal ω one has ω : ω = R. As 1 ∈ R, by
the above containment from equation 2.34, (1 + tx)−1 ∈ R and so actually
(1 + tx) ∈ R. (Indeed, R is a local ring and (1 + tx)−1 is of order 0 and so it
is not in m. This implies that (1 + tx)−1 is invertible in R.)

Proposition 2.2.9. Suppose that

ω =
∑

r∈N
Wrt

r ⊆ K[[t]]

is a canonical ideal of R and W0 6= 0. Then ω = ωU where U = WN−1.
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Proof. Let U ′ ⊂ K be a (dimk(K)−1)-dimensional k-subspace of K. As ωU ′
is a canonical ideal, there exists an a ∈ Q(R) ≡ K((t)), a 6= 0 such that ω =
aωU ′ (see [HK] or Proposition 1.1.19). Since the minimal order of elements
in ω as well as in ωU ′ is zero, a must be of order zero. (As VN−1 6= K, by the
definition of ωU ′ , using Lemma 2.2.2, we have that U ′0 = (U ′ : VN−1) 6= {0}
and thus ωU ′ indeed contains elements of order 0.) So

a = α(1 + tx) (2.35)

for some α ∈ K, α 6= 0 and x ∈ K[[t]]. It is clear that

αωU ′ = ωαU ′ , (2.36)

and so by the previous lemma

ω = aωU ′ = (1 + tx)ωαU ′ = ωαU ′ . (2.37)

Corollary 2.2.10. Let ω =
∑

r∈NWrt
r ⊆ K[[t]] ≡ R be a fractional ideal of

R and assume that W0 6= {0}. Then ω is a canonical ideal of R if and only
if

∀r ∈ N : dimk(Wr) + dimk(VN−1−r) = dimk(K) ≡ n. (2.38)

Proof. First we shall prove the ”only if” part. From Proposition 2.2.9 we have
that ω = ωU , where U = WN−1. Theorem 2.2.4 implies thatWi = U : VN−1−i,
for every i ∈ N and thus equation 2.38 follows from Lemma 2.2.2. For the
”if” part, let us observe that by (2.38) we have that dimk(WN−1) = n − 1.
Moreover, as ω is at least a fractional ideal, we have that VN−r−1Wr ⊆ WN−1

and so Wr ⊆ (WN−1 : VN−r−1). However, by reasons of dimension, using
Lemma 2.2.2 and equation (2.38) we obtain that this inclusion is in fact
an equality and hence ω = ωWN−1

and thus by Theorem 2.2.4 it is indeed
canonical.

Applying Proposition 2.2.9 to the residually rational case we obtain that
if R is the semigroup ring, R = k[[S]], then between R and R there exists a
unique canonical ideal of the form

∑

i∈Ω

kti, (2.39)

where Ω is the standard canonical ideal of the semigroup S. It was already
known that, even between R and R, there are many canonical ideals of k[[S]],
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but not of the previous form. An easy example is the follwing one (appearing
in [D’Anna1]):

R = k[[t3, t5, t7]]. (2.40)

In this case, appart from the ”standard” canonical ideal

ωst = k+kt2+kt3+t5k[[t]], (2.41)

one has that for each a ∈ k the fractional ideal

ωa=k+k(t2+at4)+kt3+t5k[[t]] (2.42)

is a canonical ideal of R. Note that ωst = ω0.
In the non residually rational case the canonical ideals of the GSR R =∑
i∈N Vit

i, which are of the form
∑

i∈N Uit
i are infinitly many. In fact if we

consider one canonical ideal of this form, then it is equal to ωU constructed in
Theorem 2.2.4, for an (n−1)−dimensional k−vector subspace of K. Then all
others canonical ideals of this particular form are in fact ωαU = αωU for an
arbitrary α ∈ K as resulting from the proof of Proposition 2.2.9. Note that
we obtain also the fact that if we have a field extension k ⊆ K of finite degree
n and U is a (n − 1)-dimensional k−vector subspace of K then all (n − 1)-
dimensional k−vector subspaces in K are of the form αU for some α ∈ K.
To show this consider two (n − 1)-dimensional k-vector subspaces of K, U1

and U2. Then by Lemma 2.2.2, dimk(U1 : U2) = 1. Take a ∈ U1 : U2, a 6= 0.
Thus aU2 ⊆ U1. But aU2 ' U2 as k-vector spaces. Therefore aU2 = U1.

Let us see these facts on a concrete example. Consider the field extension
Q ⊂ Q( 3

√
2) of degree 3. Let R be the ring

R = Q+Q(
3
√

2)t3+αQt5+t6Q(
3
√

2), (2.43)

where α is an arbitrary element of Q( 3
√

2). Take U a 2-dimensional Q-vector
subspace of Q( 3

√
2). Then by Theorem 2.2.4 a canonical ideal of R is

ωU = α−1U+Q(
3
√

2)t+Q(
3
√

2)t3+Q(
3
√

2)t4+Ut5+t6Q(
3
√

2)[[t]]. (2.44)

All the others canonical ideals of the special form
∑

i Uit
i are

ωU ′ = α−1βU+Q(
3
√

2)t+Q(
3
√

2)t3+Q(
3
√

2)t4+βUt5+t6Q(
3
√

2)[[t]], (2.45)

where U ′ = βU for some β ∈ Q( 3
√

2).
Note that from Corollary 2.2.10 we obtain that the value set of all canon-

ical ideal of the GSR R with the properties as in Corollary 2.2.10, is the
same. In fact for the residually rational case we have the Jäger’s Theorem
(see [J] or Theorem 1.4.2).
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2.3 Apéry Basis of a GSR

Let R be a GSR,

R =
∑

i∈N
Vit

i, (2.46)

where Vi ⊆ K, k-vector subspaces such that V0 = k, VN−1 6= K and Vr = K
for every r ≥ N . Recall that n is the degree of the field extension k ⊆ K.
For this section we shall assume n ≥ 2. As R ⊆ K[[t]], we have that R is
complete in the m-adic topology.

As we have already seen in Section 1.2 there exists a DVR W ⊆ R for
every R analytically irreducible. In our case i.e. R is a GSR this DVR is in
fact

W = k[[αtm]], (2.47)

where α ∈ K and m ∈ v(R) is the smallest non zero value of elements of R.
With the notation of Section 1.2 x = αtm. We know that every fractional
ideal of R (then also the ring R itself) is a free W -module of rank equal to
the multiplicity of the ring R, e(R) (see [Ma] or Corrolaries 1.2.7 and 1.2.8).
Our aim is to compute a free basis of the ring R as W -module, construction
which can be done also for an arbitrary fractional ideal of R

We consider the elements of R of values congruent to i modulo m, where
i is a natural number 0 ≤ i ≤ m − 1. Consider an element of R of smallest
value among all these and denote it by y

(i)
0 . There exist β

(i)
0 ∈ K and s

(i)
0 ∈ N

such that
y

(i)
0 = β

(i)
0 ts

(i)
0 m+i. (2.48)

We know that there exists N ∈ N such that tNK[[t]] ⊂ R and also n ≥ 2,
then we can find an element

y
(i)
1 = β

(i)
1 ts

(i)
1 m+i, (2.49)

β
(i)
1 ∈ K, s

(i)
1 ∈ N, such that β

(i)
0 /αs

(i)
0 and β

(i)
1 /αs

(i)
1 are elements of K which

are linearly independent over k and y
(i)
1 is of smallest value with this property.

We can do this till the n-th step, then we constructed n elements of R of the
value congruent to i modulo m,

{y(i)
0 , y

(i)
1 , ..., y

(i)
n−1} (2.50)

with
y

(i)
j = β

(i)
j t

s
(i)
j m+i (2.51)

such that
{β(i)

0 /αs
(i)
0 , β

(i)
1 /αs

(i)
1 , ..., β

(i)
n−1/α

s
(i)
n−1} (2.52)
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is a basis of the k-vector space K. We can do this for every i ∈ N, 0 ≤ i ≤
m− 1.

Theorem 2.3.1. The elements

{y(i)
j | i ∈ {0, ...m− 1}, j ∈ {0, ...n− 1}} (2.53)

form a free basis of R over W .

Proof. Denote I = {0, ...m−1} and J = {0, ...n−1}. For prooving that (2.53)
is a linearly independent system of elements we consider a linear combination:

∑

(i,j)∈I×J
w

(i)
j y

(i)
j = 0, (2.54)

where w
(i)
j ∈ W for every i ∈ I and j ∈ J ,and

w
(i)
j = a

(i)
j (αtm)r

(i)
j , (2.55)

a
(i)
j ∈ k and some r

(i)
j ∈ N.

Assume that there exists a non trivial solution of 2.54, namely elements
w

(i)
j ∈ W satisfying equation 2.54 with

F = {(i, j) ∈ I × J | w(i)
j 6= 0} 6= ∅. (2.56)

Then equation 2.54 becomes
∑

(i,j)∈F
w

(i)
j y

(i)
j = 0. (2.57)

Consider
h = min{v(w

(i)
j y

(i)
j ) 6= 0| (i, j) ∈ F}, (2.58)

and let P be the set

P = {(i, j) ∈ F | v(w
(i)
j y

(i)
j ) = h}. (2.59)

Note that from our assumption P 6= ∅. If (i, j) ∈ P then v(w
(i)
j y

(i)
j ) = h

and v(w
(i)
j y

(i)
j ) ≡ i (modulo m). This means that there exists a unique i ∈

{0, ...,m− 1} such that P is of the form P = {i}×P1. Take P1 = {j0, ..., js},
and h = mr + i for some r ∈ N and r

(i)
j = r − s(i)

j . Then the sum which is a
part of equation 2.57 becomes:

∑

j∈{j0,...,js}
w

(i)
j y

(i)
j = (a

(i)
j0
αv

β
(i)
j0

αs
(i)
j0

+ ...+ a
(i)
js
αr
β

(i)
js

αs
(i)
js

)tmr+i. (2.60)
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By equation 2.57 we have that

v(
∑

j∈P1

w
(i)
j y

(i)
j ) > h. (2.61)

Thus

a
(i)
j0
αv

β
(i)
j0

αs
(i)
j0

+ ...+ a
(i)
js
αr
β

(i)
js

αs
(i)
js

= 0, (2.62)

and by the fact that β
(i)
jl
/α

s
(i)
jl with l ∈ {0, ..., s} are linearly independent over

k we have that a
(i)
jl

= 0 for every l, then w
(i)
jl

= 0 which is in contradiction
with our assumption.

Now we shall prove that the elements y
(i)
j form a system of generators for

R as W -module. Take an arbitrary element y ∈ R and suppose that its value
is congruent to i modulo m. There exist γ ∈ K and r ∈ N such that

y = γtmr+i. (2.63)

By the construction of the elements y
(i)
j we have that s

(i)
0 ≤ r. If s

(i)
j ≤ r for

j = 1, 2...l and s
(i)
l+1 > r then by the construction of the elements y

(i)
j we have

that all β
(i)
j /α

s
(i)
j with j = 0, ..., l. and γ/αr are linearly dependent. Suppose

that

γ = αr
l∑

j=0

aj
β

(i)
j

αh−s
(i)
j

, (2.64)

where aj ∈ k for every j = 0, ..., l. We can consider the element x0 ∈ R,

x0 =
l∑

j=0

ajx
r−s(i)j y(i)

j = αr
l∑

j=0

aj
β

(i)
j

αs
(i)
j

tmr+i = γtmr+i. (2.65)

We have that v(y−x0) > v(y) and x0 is generated over W by some elements

from the system y
(i)
j . We can do the same for the element y − x0 and so on,

then we obtain y as a series generated by the elements y
(i)
j , using the fact

that the ring R is complete in the m-adic topology.

Definition 2.3.2. We call a basis {y(i)
j |i ∈ {0, ...,m}, j ∈ {0, ..., n}} con-

structed as in the described way a generalized Apéry basis of the GSR
R.

Example 2.3.3. Let
R = R[[it3, t7, t11, it12]]. (2.66)
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For this ring k = R, K = C. Then the extension field has degree 2. The
DVR included in the ring R is W = R[[it3]]. An Apéry bases of R over W
constructed in the way presented before is:

R = W+it12W+t7W+it19W+t11W+t14W. (2.67)

2.4 Associated GSR

§1. We shall now leave the realm of generalized semigroup rings. We return
to our ring R local one-dimensional analytically irreducible. Recall that we
denoted by n the degree of the field extension k ⊆ K where k := R/m, the
residue field of R and K := R/n, the residue field of the integral closure, R.
By definition n := dimk(K). We shall not assume residual rationality, that
is, we shall not assume n to be 1.

Every ideal of R is principal and is a power of the maximal ideal. Thus
we may fix a t ∈ R such that n = tR and we can normalize our valuation so
that v(t) = 1.

Let F be any fractional ideal of R. Then

F (i) := {x ∈ F |v(x) ≥ i} (2.68)

is a fractional ideal of R for every i ∈ Z and we have F (i) ⊆ F (j) for every
i ≥ j. The R-modules F (i)/F (i + 1) are also vector spaces over k; we shall
denote these by VF (i). For the special case of F = R, these vector spaces
were already considered in the work [CDK] of Campillo, Delgado and Kiyek.

Passing from the ring to its value semigroup is in fact the passage from the
ring of value semigroup S to the semigroup ring k[[S]]. We shall show that
when the ring is not residually rational we can associate to it a GSR which
encodes the information about the ring itself. This GSR may be viewed like
a generalization of the value semigroup in non residually rational case.

For every fractional ideal F of R we can define a linear application

ηFi : VF (i)→ K, ηFi ([z]) = zt−i(mod n), (2.69)

where by [·] we denote the classes modulo F (i + 1). The application ηFi is
well defined and injective. The image ηFi (VF (i)) is a k vector subspace of K,

which we shall denote by ṼF (i). Of course dimK(ṼF (i)) = dimK(VF (i)).
If F is a fractional ideal then F (i)R(j) ⊆ F (i+ j) and for every z ∈ F (i)

and w ∈ R(j) we have the equality:

ηFi ([z])ηRj ([w]) = ηFi+j([zw]) (2.70)
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by which it is not too hard to see that

R̃ :=
∑

i∈N
ṼR(i)ti (2.71)

is a GSR; we shall say that R̃ is the GSR associated to R. The conductor
of R is simply defined to be equal with that of the associated GSR and
throughout the rest of this chapter it will be denoted by N . This is in
agreement with the fact that R : R (or as it is called: the conductor ideal of

R in R) equals to tNR. Note also that in the residually rational case R̃ is
exactly the semigroup ring k[[v(R)]]. Thus in this case, the passage from the
ring to its associated GSR is essentially nothing else than the usual reduction
to numerical semigroups.

In the same way, to every fractional ideal F of R we can associate a
fractional ideal of the GSR R̃ by

F̃ :=
∑

i∈Z
ṼF (i)ti. (2.72)

Example 2.4.1. Consider R := R[[it3 + t4, t5, it10 + t11]]. It is easy to show

that R̃ is exactly the ring R2 = R[[it3, t5, it10, it17]]. Since

(it3+t4)5−(it10+t11)t5+4((it3+t4)t5)2 = −6it17+higher order terms, (2.73)

it17 indeed appears in R̃. Note that the image of the given set that generates
R (as an R-algebra), namely the set

{ηR3 (it3 + t4)t3, ηR5 (t5)t5, ηR10(it10 + t11)t10 = {it3, t5, it10} (2.74)

does not generate R̃ (as an R-algebra); R̃ 6= R[[it3, t5, it10]] = R1. For

example, it17 ∈ R̃ whereas it does not belong to R1.

§2. We have seen in Section 1.4 how to compute lengths in a ring which is
also residually rational, see Theorem 1.4.6 or [Mat]. Let us see now how we
can compute lengths in R which is not residually rational, using the k vector
spaces VF (i) defined above for a fractional ideal F of R by (2.68).

Proposition 2.4.2. Let E, F be two fractional ideals of R such that E ⊆ F .
Then there exist s0, and s1 ∈ N such that

`R(F/E) =

s1−1∑

r=s0

[dimk(VF (r))− dimk(VE(r))]. (2.75)
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Proof. We know that there exist n1 and n2 ∈ Z such that E : R = tn1R =
E(n1) and F : R = tn2R = F (n2). Take s1 := max(n1, n2). We also
know that there exist the integers m1, m2 ≤ 0, m1 ∈ v(E), the smallest
element, and respectively, m2 ∈ v(F ) with the same property. Consider
s0 := min(m1,m2).

It is easy to see that:

`R(F/F (s1)) =

s1−1∑

r=s0

(`R(F (r)/F (r + 1))) =

s1−1∑

r=s0

(dimk(VF (r))). (2.76)

Similarly we have `R(E/E(s1)) =
∑s1−1

r=s0
dimk(VE(s)). But as E(s1) =

ts1R = F (s1), from the chain of inclusions F (s1) = E(s1) ⊆ E ⊆ F we
obtain `R(F/E) = `R(F/F (s1))− `R(E/E(s1)) concluding our proof.

Corollary 2.4.3. Let E and F be two fractional ideals of the ring R such
that E ⊆ F ⊆ R. If dimk(VE(i)) = dimk(VF (i)) for every i ∈ N, then E = F .

Many properties of fractional ideals of R can be reduced to properties of
fractional ideals of the associated GSR. For example, by Proposition 2.4.2 if
E and F are two fractional ideals with E ⊆ F , then

`R(E/F ) = `R̃(Ẽ/F̃ ). (2.77)

§3. It is rather obvious that the passage to the GSR preserves, for example,
the inclusion of fractional ideals (i.e. if F1 ⊆ F2 then F̃1 ⊆ F̃2). It is somewhat
less obvious whether this passage also “commutes” with the quotient of ideals.

Lemma 2.4.4. Let F1, F2 be two fractional ideals of R. Then

F̃1 : F2 ⊆ F̃1 : F̃2. (2.78)

Proof. Both F̃1, F̃2 and F̃1 : F2 are of the form
∑

r∈ZWrt
r where Wr (r ∈ Z)

are k subspaces of K. To be able to distinguish, we shall give an upper

index and introduce W 1
r ,W

2
r and W 3

r , corresponding to F̃1, F̃2 and F̃1 : F2,
respectively.

We have to show that F̃2(F̃1 : F2) ⊆ F̃1 or equivalently, that W 2
rW

3
k ⊆

W 1
r+k for all r, k ∈ Z. So let α ∈ W 2

r and β ∈ W 3
k ; by definition this means

that ∃a, b ∈ K[[t]] such that

αtr + atr+1 ∈ F2 and βtk + btk+1 ∈ F1 : F2. (2.79)

Since F2(F1 : F2) ⊆ F1, we have that (αtr + atr+1)(βtk + btk+1) = (αβtr+k+
higher order terms) is an element of F1 and hence that αβ ∈ W 1

r+k.
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Note that inclusion (2.78) may be strict. For example, with k being a
field with char(k) 6= 2, let R := k[[t4, t6 + t7, t13]]. Then the maximal ideal
m, as a k-algebra, is generated by the set of elements {t4, t6 + t7, t13} and

F := kt+ kt5 + k(t7 + t8) + kt9 + k(t11 + t12) + t13k[[t]] (2.80)

is a fractional ideal of R for which F̃ : m 6= F̃ : m̃. Indeed, by direct calcula-

tions, t3 ∈ F̃ : m̃, but it is not an element of F̃ : m.

§4. Let us now describe the process of associating a GSR to a ring in a
slightly different way. Let the local ring R of maximal ideal m and residue
field k be a subring of the ring of formal series in one variable, K[[t]], where
k ⊂ K is a finite extension of fields. Then the integral closure of R can be
identified with K[[t]], and the total ring of fractions with K((t)). Define the
function

Φ : K((t))→ K((t)), (2.81)

by the formula

Φ(γti + higher degree terms) = γti. (2.82)

In simple words, Φ “cuts” a formal power series, leaving only the first term
of it, and as a function, it takes values in ∪i∈ZKti, the set of all monomials
in K((t)). It is evident that for every f , g ∈ K((t))

Φ(fg) = Φ(f)Φ(g) (2.83)

but in general

Φ(f + g) 6= Φ(f) + Φ(g) (2.84)

unless order(f) = order(g). Thus Φ is not a homomorphism, and in general
the image of a ring or an ideal is not any more a ring or an ideal.

Since k ⊂ R ⊂ K[[t]] ⊂ K((t)), we can think of all these rings as k−vector
spaces, too. The map Φ fails to be a linear map, but we can consider the
linear space generated by the image of a set in K((t)). More precisely, we
shall set

Definition 2.4.5. For every subset F ⊂ K((t)), let

F̃ := Spank(Φ(F )) = {
∑

i∈I
αiΦ(xi)| αi ∈ k, xi ∈ F, |I| <∞}. (2.85)

Some trivial facts are the following:
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1. As R is a ring, R̃ is also ring; in fact it is exactly the (previously
defined) associated GSR.

2. For any fractonal ideal F of R, the set F̃ is fractional ideal of R̃.
3. If F ⊆ H, then F̃ ⊆ H̃.

These observations in fact were already mentioned before this (second) def-
inition of associated objects. The point is, that thinking in this new way
makes certain — already discussed — things much more clear. For example,
as Φ respects the multiplication, we have that

F̃H = Span{F̃ H̃} (2.86)

and so it follows easily that if F,H are two fractional ideals, then — since
(F : H)H ⊆ F —

˜(F : H)H̃ ⊆ ˜(F : H)H ⊆ F̃ (2.87)

and hence that
˜(F : H) ⊆ (F̃ : H̃), (2.88)

which is exactly what was stated at Lemma 2.4.4.

2.5 General case

§1. We shall use the facts proved about GSR till now to deal with the gen-
eral case of an analytically irreducible ring not necessarily residually rational.

For this we shall need the following simple consequence of Lemma 2.2.2
concerning k subspaces of K.

Lemma 2.5.1. Let k ⊆ K be an n-dimensional extension of fields and
U, V ⊆ K two k-vector subspaces. If 〈UV 〉 ≡ Span(UV ) 6= K then dimkU +
dimkV ≤ n.

Proof. Denote the space 〈UV 〉 by W . As dimkW 6= n, there exists a vector
space T ⊂ K of dimension n − 1, such that W ⊆ T . By Lemma 2.2.2,
dimk(T : V ) = n − dimkV . But U ⊆ T : V , and hence we obtain that
dimkV ≤ n− dimKV .

Corollary 2.5.2. Let F ⊆ R be a fractional ideal of R with the property that
F : R = F (N). Then for every r ∈ N :

dimk(VF (r)) + dimk(VR(N − r − 1)) ≤ n. (2.89)



54 CHAPTER 2. THE NON RESIDUALLY RATIONAL CASE

Proof. Clearly, the statement can be reduced to a similar one concerning the
associated fractional ideal F̃ of the GSR R̃, and this is an easy application
of the previous lema.

Now we are ready to prove the main theorem of this chapter.

Theorem 2.5.3. Let ω be a fractional ideal of R with R ⊆ ω ⊆ R. Then
the following conditions are equivalent:

i) ω is a canonical ideal of R.

ii) ω̃ is a canonical ideal of R̃.

iii) ∀j ∈ N : dimk(Vω(j)) + dimk(VR(N − 1− j)) = n.

Proof. The equivalence iii)⇔ ii) was already proved in Corollary 2.2.10. So
let us try to prove the implication ii)⇒ i) and i)⇔ ii).

ii)⇔ i)

Of course ω̃ is of the form
∑

j∈N Ṽω(j)tj where Ṽω(0) ⊇ k (as ω ⊇ R) and

hence Ṽω(0) 6= {0}. Since ω̃ is a canonical ideal of R̃, then by Proposition

2.2.9, ˜Vω(N − 1) is an (n − 1)-dimensional k subspace of K and Ṽω(j) = K
for j ≥ N . It follows that Vω(N − 1) 6= K and Vω(j) = K for j ≥ N and
hence that there exists α ∈ K such that αtN−1 /∈ ω but KtN−1m ⊆ ω. Thus

ω : m 6= ω. (2.90)

In fact ω being a fractional ideal of R, it is a m-primary ideal of R, and the
previous equation is known for these type of ideals.

On the other hand, as ω is a fractional ideal we have also that ω = ω :
R ⊆ ω : m and thus, using Lemma 2.4.4, we have that

ω̃ ⊆ ω̃ : m ⊆ ω̃ : m̃. (2.91)

Then, as by assumption ω̃ is a canonical ideal of R̃,

1 = `R̃(ω̃ : m̃/ω̃) = `R̃(ω̃ : m̃/ω̃ : m) + `R̃(ω̃ : m/ω̃). (2.92)

Therefore we have two possibilities:

`R̃(ω̃ : m̃/ω̃ : m) = 1 and `R̃(ω̃ : m/ω̃) = 0 (2.93)

or
`R̃(ω̃ : m̃/ω̃ : m) = 0 and `R̃(ω̃ : m/ω̃) = 1. (2.94)
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However, (2.93) is not possible. Indeed, this would imply that ω̃ : m = ω̃,
and so that dimk(Vω:m(j)) = dimk(Vω(j)) for every j. But as ω ⊆ ω : m,
by Corollary 2.4.3 this would further imply that ω : m = ω in contradiction
with (2.90).

This leaves us the possibility of (2.94), implying that ω̃ : m = ω̃ : m̃ and
so that 1 = `R̃(ω̃ : m̃/ω̃) = `R̃(ω̃ : m/ω̃) = `R(ω : m/ω) where in the last
equality we have used Proposition 2.4.2 (see the remark before Lemma 2.5.1).
This shows — using again [HK, Satz 3.3] or Theorem 1.1.21 — affirmation
i); that is, that ω is a canonical ideal.

i)⇒ iii)
If ω is a canonical ideal of R such that R ⊆ ω ⊆ R, then we have (see [BF1,
Lemma 19 (c)] or Lemma 1.1.26(1)):

`R(R/R) = `R(R/f) + `R(ω/R), (2.95)

where f = R : R = R(N) is the conductor ideal of R in R. By the inclusion
f ⊆ R ⊆ R we have `R(R/f) + `R(R/R) = `R(R/f). Thus the previous
equation may be rewritten as:

`R(ω/R) + 2`R(R/f) = `R(R/f). (2.96)

Observe, that if ω is a canonical ideal of the ring R for which R : R = R(N) =
tNR, then also ω : R = ω(N) = tNR. Indeed, R : R = (ω : ω) : R = ω : ωR,
and ωR = R. This fact assures that we can apply Corollary 2.5.2 to ω.

As for the rest, we shall follow the idea of the proof of [CDK, Theorem
3.6]. Let us compute the left-hand side of equation (2.96):

`R(ω/R) + 2`R(R/f) =
N−1∑

i=0

(dimk(Vω(i))− dimk(VR(i))) +

+
N−1∑

i=0

dimk(VR(i)) +
N−1∑

i=0

dimk(VR(N − i− 1))

=
N−1∑

i=0

(dimk(Vω(i)) + dimk(VR(N − i− 1))). (2.97)

Corollary 2.5.2 applied to ω, implies that

dimkVω(i) + dimkVR(N − i− 1) ≤ n (i = 0, 1, .., N − 1). (2.98)
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Thus, taking in account equation (2.96), we have that

`R(R/f) = `R(ω/R) + 2`R(R/f)

=
N−1∑

i=0

(dimk(Vω(i)) + dimk(VR(N − i− 1))) ≤
N−1∑

i=0

n

= Nn = `R(R/f), (2.99)

implying that the terms on the two side of the smaller or equal sign (in the
second line) are in fact equal. Moreover, by equation (2.98), each of the
summand in the above equation (appearing in the first sum of the second
line) must take its possible maximum value. In other words,

dimk(Vω(i)) + dimk(VR(N − i− 1)) = n (2.100)

for all i ∈ {0, 1, .., N − 1}.

§2. One may expect to have many interesting properties of R to “survive”
the transport to its GSR. In particular, by showing that i) is equivalent to
ii) in the Theorem 2.5.3, we have just obtained that R is Gorenstein if and

only if R̃ is so. In this paragraph we shall see what happens when the ring
is almost Gorenstein.

Proposition 2.5.4. The ring R is almost Gorenstein if and only the asso-
ciated GSR R̃ is almost Gorenstein and type(R) = type(R̃).

Proof. Recall that R almost Gorenstein means that

`R(R/R) = `R(R/R : R) + type(R)− 1, (2.101)

(see Definition 1.1.25).
As usually let ω be a canonical ideal of R such that R ⊆ ω ⊆ R. The

definition of almost Gorensteiness is equivalent to:

type(R) = `R(ω/R) + 1, (2.102)

see [BF, Definition-Proposition 20] or Proposition 1.1.27. Thus

type(R̃) = type(R) = `R(ω/R) + 1 = `R̃(ω̃/R̃) + 1. (2.103)

Using Theorem 2.5.3 we have that ω̃ is a canonical ideal of R̃. Then the
previous equation is equivalent to the fact that R̃ is almost Gorenstein.

As a Kunz ring is an almost Gorenstein ring of type 2 we obtain the next
corrolary:

Corollary 2.5.5. The ring R is Kunz if and only if R̃ is Kunz.
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§3. We have constructed in Section 2.3 a generalized Apéry basis for a
GSR. We shall see in this paragraph that a generalized Apéry basis there
exists also for an analytically irreducible ring R which is complete in the
m-adic topology. As ujually k is the residue field of R, K is the residue field
of R and n := dimkK.

Since R is complete in the m-adic topology, we can assume that R =
K[[t]], the ring of formal power series in one variable. Set m the smallest
nonzero element of v(R). Let x = αtm+terms of higher degrees ∈ R an
element such that v(x) = m, where α ∈ K. Denote W the DVR included in
R which has its maximal ideal generated by x, in fact

W = k[[αtm + terms of higher degrees]]. (2.104)

We know (see Section 1.2) that R is a free W -module of rank equal to the
multiplicity of the ring e(R).

Recall that we can associate to the ring R a GSR R̃. In the last paragraph
of Section 2.4 we showed how we can give R̃ using the function Φ defined in
that paragraph. Using again the function Φ we have that

W̃ = Spank(Φ(W )) = k[[αtm]], (2.105)

and it is the DVR included in R̃, R̃ being a free W̃ -module of rank equal to
the multiplicity of R̃, e(R̃).

Note that if r̃ ∈ R̃ then Φ−1(r̃) = {r ∈ R| Φ(r) = r̃} is a subset of R
which can have more than one element.

We want to show that if {ỹij| 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1}
is a generalized Apéry basis of R̃ (as a free W̃ -module) then taking some

representants in Φ−1(ỹij), these form a basis of R (as a free W -module). It

would imply that e(R) = e(R̃) = mn. This fact is known, see [ZS, Corollary
1 to Theorem 24].

Let us now give an example to ilustrate these facts.

Example 2.5.6. Let R be the ring

R := R[[it3 + t4, t5, it10 + t11]]. (2.106)

Then the associated GSR of R is

R̃ = R[[it3, t5, it10, it17]], (2.107)

see Example 2.4.1.
An Apéry basis of R̃ over W̃ = k[[it3]] is: {0, t15, t10, it10, t5, it17}. An

Apéry basis for R is {0, t15, t10, it10 + t11, t5, f}, where f is an element of R
of value 17 for which Φ(f) = it17.
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Proposition 2.5.7. Let R be an analytically irreducible non residually ratio-

nal ring. If {ỹij| 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1} is a generalized Apéry basis

of the associated GSR R̃ then fixing for every i, j, one element in Φ−1(ỹij),
denoted by yij,then {yij| 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1} is a basis of R over
the DVR W .

This basis is called generalized Apéry basis of R.

2.6 The type sequence

§1. We have already seen in Section 1.4 that for an analytically irreducible
ring which is also residually rational one can define the type sequence of the
ring. In this section we shall show that, with some care, this can be defined
also for rings not necessarily residually rational. We keep the notation of the
previous sections of this Chapter.

For our ring R consider the value semigroup

v(R) = {s0 = 0, s1, . . . , sr−1, sr = c,→}, (2.108)

which does not give enough information about the ring. We defined in Section
2.4 another invariant of the ring, namely its conductor N , the element of v(R)
such that the ideal conductor of R is R : R = tNR. Note that N ≥ c, thus
we can set N = sr+l = sr + l = c+ l for some l ∈ N.

Consider the ideals of R:

ai = {x ∈ R| v(x) ≥ si}, i ∈ {0, . . . , r + l}. (2.109)

It is evident that a0 = R, a1 = m, ar+l = R : R.
Consider for every i ∈ {0, . . . , r + l} the fractional ideal of R

a−1
i := R : ai. (2.110)

Then we have;

ar+m ⊂ · · · ⊂ a0 = R ⊆ a−1
1 · · · ⊆ a−1

r+l. (2.111)

In fact also a−1
i $ a−1

i+1, for every i ∈ {0, . . . , r + l − 1}. This we shall see in
the next proposition.

Proposition 2.6.1. With the above notations we have that:

1. a−1
r+l = R;
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2. For every i ∈ {0, . . . , r + l} ai is a divisorial ideal in the sense that
R : (R : ai) = ai;

3. `R(a−1
i /a−1

i−1) ≥ 1 for every i ∈ {1, . . . , r + l}.

Proof. 1. ar+l = tnR. Then

a−1
r+l = R : tNR = t−N(R : R)

= t−N tNR = R (2.112)

2. As R = R : a−1
r+l then R is divisorial as fractional ideal of R (because

every fractional ideal which can be written as R : I for some other fractional
ideal I of R is divisorail). Thus we have thR is divisorial for every h ∈ N. We
know that the intersection of fractional divisorial ideals is again a fractional
divisorial ideal. Evidently, we can write

ai = R ∩ tsiR. (2.113)

Thus ai is divisorial.
3. From the fact that ai, for every i, is divisorial we have that:

R : ai−1 $ R : ai, (2.114)

because, if R : ai−1 = R : ai then ai−1 = R : (R : ai−1) = R : (R : ai) = ai
which is impossible. And this also shows that `R(a−1

i /a−1
i−1) ≥ 1

Definition 2.6.2. Set

ti(R) := `R(a−1
i /a−1

i−1), for every i ∈ {1, 2, . . . , r + l}. (2.115)

We call the sequence of numbers (t1, t2, . . . , tr+l) the type sequence of R,
we denote it by t.s.(R).

As in the case of R residually rational we have that t1(R) = `R(m−1/R) =:
type(R). Note that the k-vector space ai−1/ai was already considered in
Section 2.4, with the previous notation this vector space is VR(si−1). It is
evident that VR(si−1) 6= 0, denote dimkVR(si−1) := ni−1 > 0. We shall see in
the next proposition that there exists an upper bound for ti(R). The proof
uses the same argument as that one used by Matsuoka in [Mat].

Proposition 2.6.3. With the above notations

1 ≤ ti(R) ≤ type(R) ni−1, for every i ∈ {1, . . . , r + l}. (2.116)
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Proof. Fix an i ∈ {1, . . . , r + l}. We have the short exact sequence of R-
modules:

0→ ai−1/ai → R/ai → R/ai−1 → 0. (2.117)

This sequence gives rice to the long exact sequence:

· · · → HomR(kni−1 , R)→ Ext1
R(R/ai−1, R)→

Ext1
R(R/ai, R)→ Ext1

R(kni−1 , R)→ . . . . (2.118)

It is evident that HomR(R/aj, R) = 0 for every j. Using Rees Theorem (see
[R]) we have that for a nonzero divisor a ∈ R and for every j ∈ {1, . . . , r+ l}:

Ext1
R(R/aj, R) ' HomR(R/aj, R/aR) ' (aR : aj)/aR. (2.119)

And it is evident that

(aR : aj)/aR ' aa−1
j /aR ' a−1

j /R. (2.120)

It is clear that

HomR(⊕ni−1

m=1k,R) ' ⊕ni−1

m=1HomR(k,R) = 0, (2.121)

and also that

Ext1
R(⊕ni−1

m=1k,R) ' ⊕ni−1

m=1Ext1
R(k,R) ' ⊕ni−1

m=1m
−1/R. (2.122)

Thus the long exact sequence from equation (2.118) becomes:

0→ a−1
i−1/R→ a−1

i /R→ ⊕ni−1

m=1m
−1/R→ . . . , (2.123)

and a−1
i /a−1

i−1 is a submodule of ⊕ni−1

m=1m
−1/R. Then

ti(R) := `R(a−1
i /a−1

i−1) ≤ `R(⊕ni−1

m=1m
−1/R) =

ni−1∑

m=1

type(R) = type(R) ni−1.

(2.124)



Chapter 3

On the Hilbert function of a
semigroup ring

3.1 The Hilbert functions

We shall briefly present the theory of Hilbert Functions and Hilbert Polyno-
mials for general Noetherian graded rings, and only later we shall see how we
can define a Hilbert Function for a one-dimenional CM ring. Every monog-
raphy on commutative algebra (and not only) has a chapter dedicated to
graded rings and Hilbert Function. The Hilbert function is important in the
dimension theory of local (semilocal) rings. One of the possible way to define
the dimension is using a particular graded ring associated to the ring and its
Hilbert Function.

Let R be a Noetherian graded ring,

R =
⊕

n≥0

Rn. (3.1)

Then R0 is Noetherian and R is finitely generated as an R0-algebra. So we
can set:

R = R0[x1, . . . xs], (3.2)

with xi homogeneous of degree di. Moreover, assume that R0 is an Artinian
ring.

Let M be a finitely generated graded R-module,

M =
⊕

n≥0

Mn. (3.3)

One can easily show that Mn is a finitely generated R0-module. From the
fact that R0 is an Artinian ring we have that `R0(Mn) < ∞. The Hilbert

61



62 CHAPTER 3. HILBERT FUNCTION

function of M is defined by:

H(M,n) = `R0(Mn). (3.4)

Define the Hilbert series of M to be the formal power series

P (M, t) =
∞∑

n=0

`R0(Mn)tn ∈ Z[[t]]. (3.5)

Theorem 3.1.1 (Hilbert, Serre). P (M, t) is a rational function of t of
the form

P (M, t) =
f(t)∏s

i=1(1− tdi) , (3.6)

where f(t) is a polynomial of Z[t].

We shall denote by d(M) the order of the pole of P (M, t) at t = 1.
Especially simple is the case d1 = · · · = ds = 1.

Corollary 3.1.2. Id di = 1 for every 1 ≤ i ≤ s, then for all sufficiently
large n, H(M,n) = `R0(Mn) is a polynomial in n with rational coefficients
of degree d− 1, where d = d(M).

The polynomial appearing in 3.1.2 is called the Hilbert polynomial of
the graded R-module M .

Let now R be a local Noetherian ring with m its (unique) maximal ideal
and I an m-primary ideal of R (equivalently I contains a power of m). We
can consider the graded ring:

grI(R) =
⊕

n≥0

In/In+1. (3.7)

An important role in the study of the multiplicity of the ring R and not only
for this is the previous graded ring for I = m, namely

grm(R) =
⊕

n≥0

mn/mn+1. (3.8)

Set as usually k = R/m, the residue field of R. If m is generated by r elements
then

grm(R) = k[X1, . . . Xr]/J, (3.9)

where J is a homogeneous ideal and k[X1, . . . Xr] is the polynomial ring in
r indeterminates. Note that we can apply the Hilbert-Serre Theorem to this
graded ring, because R/m is a field. Then

H(grm(R), n) = `R/m(mn/mn+1) ≤ ∞. (3.10)
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In fact using Nakayama‘s Lemma

H(grm(R), n) = µ(mn), (3.11)

where we denote by µ(I) the minimal number of generators of an ideal I of
R. H(grm(R), n) is a polynomial for large enough n. We obtain that

`R(R/mn) =
n−1∑

j=0

`R(mn/mn+1) ≤ ∞ (3.12)

Moreover it is a polynomial in n of degree equal to dim(R) (the Krull dimen-
sion of R). The coefficient of the leading term of this polynomial is called
the multiplicity of R, denoted by e(R).

A lot of interesting problem appears in the study of Hilbert Function of
grm(R). Sally in [Sa] put some questions:
1. ”When is H(grm(R), n) a non decreasing function?”
2. ”When does H(grm(R), n) become a polynomial?”
A connected problem with the first question is
3. ”Under what necessary and sufficient conditions grm(R) is a CM graded
algebra?”
Here we shall investigate the first problem in the case of the ring R being
one-dimensional.

Assume that dim(R) = 1 and also that m contains a nonzero divisor,
which is equivalent with R being CM. These rings were studied in many
articles at the middle of the last century by Northcott, Kirby and later by
Matlis. Using the general theory, we know that for all large value of n,
`R(R/mn) is a polynomial in n of degree 1 called the Hilbert polynomial of R
(see [M1]). Thus

HR(n) = `R(R/mn) = en− ρ (3.13)

for large n. The pozitive integer e is called the multiplicity of R and ρ was
called by Northcott the reduction number of R (see [N3], [N4]). Denote the
Hilbert function of grm(R), in this case, by H0

R(n) and we shall call it shortly
the Hilbert function of R. Thus

H0
R(n) = `R(mn/mn+1) = µ(mn). (3.14)

Recall that the embedding dimension of a local ring is the minimal number
of generators of the maximal ideal m, µ(m) which is equal to dimk(m/m

2).
Sally in [Sa] stated the next conjecture about the growth of the Hilbert
function of R:
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Conjecture. If R is a one dimensional CM ring with small enough (say at
most three?) embedding dimension, then

H0
R(n) = `R(mn/mn+1) (3.15)

is non-decreasing.
Matlis in [M1] proved that for embedding dimension 2, H0

R is not decreas-
ing.

Theorem 3.1.3 (Matlis). Let R be a one-dimensional CM local ring. as-
sume that the maximal ideal m is generated by two eleements. Then

`R(mn/mn+1) =

{
n+ 1 if n ≤ e− 1
e if n ≥ e− 1.

Two years later than the article of Matlis in 1975 a first example of a ring
R with decreasing Hilbert function was given by Herzog and Waldi ([HW]).
In that example R was a semigroup ring with embedding dimension 10:

R = k[[t30, t35, t42, t47, t148, t153, t157, t169, t181, t193]], (3.16)

for which H0
R(1) = 10 and H0

R(2) = 9. Orecchia proved that for all b ≥ 5
there exists a reduced one-dimensional local ring of emebedding dimension b
with decreasing Hilbert function, see [Or]. Then, only the cases of embedding
dimension 3 and 4 remained open till the beginning of 90’s when Elias ([E2])
solved the case of embedding dimension 3 showing that the Sally’s conjecture
is true assuming also that the one-dimensional CM ring is equicharacteristic.
The case of embedding dimension 4 remains open.

3.2 Semigroup rings generated by 3 elements

§1. Consider the semigroup ring

k[[S]] = k + kts1 + kts2 + · · ·+ tsnk[[t]] ⊆ k[[t]], (3.17)

where
S = {s0 = 0, s1, s2, . . . , sn →} ⊂ N (3.18)

is a numerical semigroup with the conductor c = sn. The semigroup ring
k[[S]] is an analytically irreducible and residually rational ring. We would
like to investigate its Hilbert function

H0
k[[S]](n) = `R(mn/mn+1) = µ(mn). (3.19)
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It is evident that there exist g0 < g1 < . . . gr−1 elements of S such that m
is generated as a ideal of R by {tg0 , tg1 , . . . tgr−1}. In fact the semigroup is
generated by {g0, g1, . . . , gr−1}. To study the Hilbert function of a ring is
exactly to see the number of generators of the powers of the maximal ideal
of the ring. Thus we can reduce the problem of investigating the Hilbert
function of the semigroup ring k[[S]] to the study of the associated semigroup
S. We shall treat the case r = 3, giving for this case a simple proof of the
fact that the Hilbert function is not decreasing.

§2. Let now S ⊆ N be a numerical semigroup. As in Section 1.3, we shall
set

M := S \ {0}, (3.20)

for the maximal ideal of S, and

e := min(M) (3.21)

the smallest nonzero element of S. We have the decreasing chain of ideals of
S:

S ⊃M =: M (1) ⊃M (2) ⊃ · · · ⊃M (k) ⊃ . . . , (3.22)

where M (k) is defined by the recursive formula

M (1) := M, M (n+1) := M (n) +M (n = 1, 2, ..). (3.23)

To put it in another way, M (k) is the set of elements in S that can be written
as a sum of k nonzero elements of S. A more or less trivial, but important
observation is the following.

Lemma 3.2.1. S, as a semigroup, has a unique minimal set of generators;
namely the set

M (1) \M (2). (3.24)

Moreover, this set contains e, and it is finite; in fact

|M (1) \M (2)| ≤ e. (3.25)

We say that an ideal N of a numerical semigroup S is generated (over S)
by the set H ⊆ N , if N = H + S. Another easy observation, similar to the
previous one, but regarding M (k), is the following one.

Lemma 3.2.2. There exists a unique minimal set of generators of M (k) over
S; namely the set

M (k) \M (k+1). (3.26)

Moreover, this set is finite; in fact

|M (k) \M (k+1)| ≤ e. (3.27)
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Definition 3.2.3. Let us define the function

φ : S → N (3.28)

by the formula

∀ s ∈ S, φ(s) = min{k ∈ N| x /∈M (k+1)}. (3.29)

Note the following simple facts about the function φ:

1. φ is well defined, because ∩k∈NM (k) = ∅.

2. φ(s) = k ⇔ s ∈M (k) \M (k+1).

3. For an s ∈ S, s 6= 0, φ(s) is the maximum number n such that s is a
sum of n nonzero elements of S.

4. φ(s+ u) ≥ φ(s) + φ(u).

Some further properties of the function φ is collected into the next statement.

Lemma 3.2.4. Let s ∈ S, n := φ(s) and suppose that s = s1 + . . . sn. Then

1. Each element appearing in the decomposition of s belongs to the set of
minimal generators: sj ∈M (1) \M (2) (j ∈ {1, . . . , n}).

2. s ≤ φ(s) max(M (1) \M (2)).

Proof. 1. By Lemma 3.2.1, if sj /∈M (1) \M (2) then we can write sj as a sum
of (at least two, but possibly more) elements from M (1) \M (2). In turn, it
would imply that also s could be expanded and written as a sum of more
then n = φ(s) nonzero elements, which is in contradiction with the definition
of φ(s).

2. By the previous point, each element appearing in the decomposition
s = s1 + . . . sn, belongs to M (1) \M (2). Thus

s ≤ nmax{sj : j = 1, . . . , n} ≤ nmax(M (1) \M (2)). (3.30)

From now on we shall assume that S is generated by 3 elements. Thus
we may write that

M (1) \M (2) = {e, g2, g3} (3.31)

where the indexing is such that

e < g2 < g3. (3.32)
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We would like to see that the minimal number of generators of M (k+1) is
bigger or equal to the minimal number of generators of M (k). If e + g is a
generator of M (k+1) for every g generator of M (k) the problem is solved. But
how we can see from the next example this does not happen always.

Example 3.2.5. Let S = 〈6, 7, 15〉. In this case e = 6, g2 = 7, g3 = 15. A
minimal set of generators of M (2) = M +M is: {12 = 6 + 6, 13 = 6 + 7, 14 =
7 + 7, 22 = 15 + 7}. Note that 21 = 6 + 15 is not in this set because
21 = 7 + 7 + 7 ∈M (3).

Thus the natural way to continue is to see what happens when an element
of the form e+ g with g generator of M (k) is not a generator of M (k+1). The
answer is contained in the next proposition.

Proposition 3.2.6. Let k ∈ N, s ∈M (k) \M (k+1), and assume that e+ s /∈
M (k+1) \M (k+2), i.e. that φ(e + s) > k + 1. Then there exist a unique pair
ns,ms ∈ N such that

e+ s = nsg2 +msg3, and ns +ms = φ(e+ s). (3.33)

Moreover, if a, b ∈ N, a ≤ ns, b ≤ ms, then

φ(ag2 + bg3) = a+ b. (3.34)

Proof. By what was so far explained, we know that we can write e + s as a
sum φ(e+s) elements (with repetitions); that is, there exist three coefficients
rs, ns,ms ∈ N such that

e+ s = rse+ nsg2 +msg3, and rs + ns +ms = φ(e+ s). (3.35)

At this point there could be more than one way of writting s in the above
way. However, we shall show, that in such a decomposition e cannot appear.
Indeed, assume that this happens; i.e. that in the above decomposition we
have rs > 0. Then (rs − 1) ≥ 0 and so from

s = (rs − 1)e+ nsg2 +msg3 (3.36)

it would follow that

φ(s) ≥ (rs − 1) + ns +ms = φ(e+ s)− 1 > k (3.37)

and so that φ(s) > k, in the contradiction with the condition of the proposi-
tion. So in fact rs = 0, and s = nsg2 +msg3, ns +ms = φ(e) = k. As for the
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unicity, assume that ñs, m̃s ∈ N, ns + ms = k and s = nsg2 + msg3. Then
ñs − ns = ms − m̃s and

0 = s− s = (nsg2 +msg3)− (ñsg2 + m̃sg3) = (ms − m̃s)(g3 − g2) (3.38)

and hence ms − m̃s = 0; that is, m̃s = ms and ñs = ns.
As for the second part of the proposition, consider a subsum of the sum

nsg2 + msg3, namely ag2 + bg3, with a ≤ ns and b ≤ ms. We have to prove
that this is the maximal way in which we can write u := ag2 + bg3. If we can
write u as a sum of more elements, then we can do the same with nsg2+msg3,
and this is impossible.

From Proposition 3.2.6 since e+ s ≤ e+ kg3 we have that

ms < k + 1. (3.39)

As φ(e+ s) = ns +ms > k + 1,

ns > k + 1−ms. (3.40)

We can define
q(s) := ((k + 1)−ms)g2 +msg3. (3.41)

Evidently q(s) ∈ S, and by Proposition 3.2.6, φ(q(s)) = k + 1, so q(s) ∈
M (k+1) \M (k+2).

The aim is to find another element in a minimal set of generators of
M (k+1) for each u = e + s /∈ M (k+1) \ M (k+2), where s ∈ M (k) \ M (k+1),
element which will be different from the others generators from the minimal
set. We shall prove in the next theorem that the element which we look for
is q(s) defined before.

Proposition 3.2.7. Let s, u ∈ M (k) \ M (k+1) and assume that e + s /∈
M (k+1) \M (k+2) while e+ u ∈M (k+1) \M (k+2). Then

q(s) 6= e+ u. (3.42)

Proof. Assume that q(s) = e+ u. By definition of q(s)

e+ s = q(s) + (ns − (k + 1) +ms)g2, (3.43)

and
ns − (k + 1) +ms > 0. (3.44)

Then

e+s = e+u+ (ns− (k+ 1) +ms)g2 ⇔ s = u+ (ns− (k+ 1)+ms)g2. (3.45)
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This means that

φ(s) ≥ φ(u) + (ns − (k + 1) +ms) > k, (3.46)

and this is a contradiction.

Proposition 3.2.8. Let s, u ∈M (k) \M (k+1) and assume that e+ s, e+u /∈
M (k+1) \M (k+2). Then

q(s) = q(u)⇔ s = u. (3.47)

Proof. From the definition of q(s):

q(s) = q(u)⇔ ((k+1)−ms)g2 +msg3 = ((k+1)−mu)g2 +mug3 ⇔ ms = mu.
(3.48)

Assume that ns 6= nu, consider ns ≥ nu. We know that

q(s) = q(u) = e+ u− (nu − (k + 1) +mu)g2 (3.49)

Then

e+ s = q(s) + (ns − (k + 1) +ms)g2 =

= e+ u− (nu − (k + 1) +ms)g2 + (ns − (k + 1) +ms)g2 =

= e+ u+ (ns − nu)g2 (3.50)

And this is equivalent to:

s = u+ (ns − nu)g2, (3.51)

with ns − nu > 0. Therefore

φ(s) ≥ φ(u) + (ns − nu) > k, (3.52)

which is a contradiction with the fact that s ∈ M (k) \M (k+1). We obtain
that ns = nu, this togheter with ms = mu means that e + s = e + u, then
s = u.
The viceversa is evident.

Thus we can conclude:

Corollary 3.2.9. The function

ψ : M (k) \M (k+1) →M (k+1) \M (k+2),

defined by

ψ(s) =

{
e+ s if e+ s ∈M (k+1) \M (k+2)

q(s) otherwise

is an injection.
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Therefore we obtain that that

|M (k) \M (k+1)| ≤ |M (k+1) \M (k+2)|. (3.53)

This in terms of the semigroup ring means that

µ(mk) ≤ µ(mk+1), (3.54)

i.e. the Hilbert function H0
k[[S]] is not decreasing.
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