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In this thesis we establish some properties of complete symmetric varieties.
Let G be an adjoint semisimple group over C and let § be an involution of G. We
define H as the subgroup of the elements fixed by 6 and we will say that G/H is
a homogeneous symmetric variety. De Concini and Procesi [CSV I] have defined
a wonderful completion of G/H and this is the unique wonderful completion of
G/H. They [CSV II] have also classified the complete symmetric varieties, i.e.
the G-varieties with a dense open orbit isomorphic to G/H and a G-equivariant
map Y — X extending the identity of G/H. Indeed they showed that there is an
equivalence of categories between the category of complete symmetric varieties
and the category of toric varieties over an affine space A' considered as a (C*)!
variety in the obvious way, where [ is the rank of G/H. Moreover there is a
one-to-one correspondence between the completion Y of G/H which lie over X
and the elements of a special class of complete toric varieties. One can show that
the complete toric variety Z¢ corresponding to a complete symmetric variety Y
is a subvariety of Y and the open toric variety Z corresponding to Y is open
subvariety of Z°¢.

In this thesis, unless explicitly stated, we shall always assume that the com-
plete symmetric variety Y is smooth. Recall that by [CSV II] it then follows
that: 1) any orbit closure in Y is also smooth; 2) the associated toric varieties
Z and Z¢ are both smooth. Our first result is a classification of the projec-
tive complete symmetric varieties. In particular we will prove that a complete
symmetric variety is projective if and only if the corresponding complete toric
variety is projective. Therefore we can use results for the classification of the
projective toric varieties.

Next we will study the projective normality of the complete symmetric vari-
eties. Chirivi and Maffei [CM II] have proved that, given any two line bundles,
say L; and Lo, generated by global sections on the wonderful complete sym-
metric variety X, the product of sections

HO(X7L1) ®H0(X7L1) — HO(XaLl ®L2)

is surjective. This result implies easily the projective normality of X with
respect to any projective embedding by a complete linear system. We will try
to generalize this results to any complete symmetric variety. First we will prove
that the surjectivity of the product of sections of two ample line bundles on a
complete symmetric variety is equivalent to the surjectivity of the product of
sections of the restrictions of the line bundles to the corresponding complete toric
variety. Thus we will have reduced the problem to a problem on toric varieties.
But it is very difficult to verify the surjectivity of the product of sections of
any two ample line bundles on a generic complete toric variety. However, we
can simplify the problem for the special class of complete toric varieties which
we are considering. Indeed we will prove that the surjectivity of the product
of sections of two ample line bundle on Z¢, say L1 and Lo, is equivalent to the
surjectivity of the product of sections of the restrictions of the line bundles to



Z. This problem is much simpler, because H(Z, L1|Z) and H°(Z, Ly|Z) are
infinite dimensional vector spaces and it is sufficient to prove that the a suitable
finite dimensional subspace of H%(Z, (L1 ® Ls)|Z) is contained in the image of
the product of sections. Indeed we will prove that, given any ample line bundle
Lon Z¢, H°(Z,L|Z) is generated by H°(Z¢, L|Z¢) as an Oz(Z)-module. Next
we will find a infinite number of varieties of every dimension such that, for any
ample line bundle L on a such variety Z, the product of sections of L

H*(Z,L)® H(Z,L) — H°(Z,L ® L)

is surjective. In particular we will prove that all the smooth toric varieties
proper over A? have this property.

In the last part of this work we will study the Fano complete symmetric
varieties. A variety is called a Fano variety if its anticanonical bundle is ample.
It easy to show that the anticanonical bundle of the wonderful symmetric va-
riety is always generated by global sections. We will classify the homogeneous
symmetric varieties G /H whose wonderful completion is a Fano variety. In par-
ticular we will show that the wonderful completion of G/H is usually Fano, for
example if the involution on the root system is different from —id, but there are
cases for which the wonderful completion of G/H is not Fano, for example the
homogeneous symmetric varieties associated to the involutions of type C1.

More generally, we want to know which complete symmetric varieties are
Fano varieties. Bifet [Bi] has shown that there is a deep relation between the
line bundles on a complete symmetric variety and the line bundles on the cor-
responding toric variety. It is known that there are only a finite number of
complete toric Fano varieties of every fixed dimension (see [VK]), up to isomor-
phisms, and they are classified in low dimension. Thus we can expect that the
same facts are true for the complete symmetric varieties. We will prove that
there are only a finite number of Fano complete symmetric varieties for every
G/H. We will classify them for every G/H whose rank is 2. More generally
we will classify, for every G/H, the Fano complete varieties obtainable through
a sequence of blow-ups along closed orbits from the wonderful variety. We will
show that there are at most two Fano complete symmetric varieties with such
property. Unluckily, if the rank of G/H is strictly greater than 2, this condition
is very restrictive. If the rank of G/H is 3 we can say a bit more. In this case
we will classify the Fano complete symmetric varieties obtainable from the won-
derful variety through a sequence of blow-ups along G stable subvarieties. This
condition is not much restrictive. Indeed it is easy to construct example of vari-
eties that does not satisfy these hypothesis, but usually they are not projective,
so a fortiori they are not Fano varieties. We will prove that there are at most
eleven Fano complete symmetric varieties with such property. The most impor-
tant part of the proof of the previous classifications will be the classifications of
the corresponding open toric varieties with ample anticanonical bundle.

We will also classify the complete symmetric varieties of rank 2 whose anti-
canonical bundle is generated by global sections. We will show that there is only
a finite number of complete symmetric varieties with such property for every
G/H of rank 2, but this number is arbitrarily large.



Part 1
Introduction

1 Homogeneous symmetric varieties

First of all, we will describe some preliminary results and we will fix the nota-
tions. In this section we want to describe some properties of the homogeneous
symmetric varieties. For details on the homogeneous symmetric varieties see
[He], [A], [Bu], [K] or [W]. Let G be a connected and simply-connected semi-
simple algebraic group over C and let 6 be an involution of G, we define H as
the normalizer of the subgroup of invariants G?.

Definition 1.1 We will say that G/H is a (homogeneous) symmetric variety.

Sometimes we will say that G/H is the symmetric variety associated to
(G,0). We shall denote by G the adjoint group associated to G, i.e. the quo-
tient of G by the center Z(G). One can show that there is an one-to-one
correspondence between the involutions of G and the involutions of G. More-
over an involution of G' and the corresponding involution of G induce the same
involution of the Lie algebra g of G (and G). One can show that G/H is isomor-

phic to the quotient of G by the subgroup ée of invariants with respect to the
involution associated to 6. Observe that there is an one-to-one correspondence
between the involutions of G and the involutions of g because G is connected
and simply-connected. By abuse of notation, we call 8 also the involution on g
associated to 6.

As example of a symmetric variety we can consider any adjoint group G
considered as a G X G homogeneous space. Here the involution is (G x G, 6)
with 0((z,y)) = (y, z) for each x,y € G.

Definition 1.2 We will say that G/H is simple if either G is a simple semi-
simple group or G/H is a simple adjoint group.

If G/H is not simple then there are two connected and simply-connected
semi-simple group G and G such that G = G; x G3. Moreover there are an
involution 8; on G; and an involution 63 on G such that 8((x,y)) = (8(x), 6(y)),
so G/H = G1/H; XG5/ H,. In this case we will write (G, 0) = (G1,01) x (G2, 02).

f acts diagonally on g and it has two eigenvalues, namely 1 and —1. The
1-eigenspace b is the Lie algebra of H. Observe that b is also the Lie algebra
of the subgroup of 6 fix-points. Moreover H is the largest subgroup of G whose
Lie algebra is h. Notice that the (-1)-eigenspace is isomorphic to the tangent
space of the symmetric variety G/H at H. We want to describe it explicitly,
but first we have to choose a suitable maximal torus of G and a suitable Borel



subgroup of G. We will say that a stable torus is split if §(t) = t~! for each
element ¢ of the torus.

Definition 1.3 Let T* C G be a split torus of maximal dimension I. We will
say that 1 is the rank of the symmetric variety G/H.

Choose any maximal torus 7' which contains 7", one can show that T is
f-stable.

Notation 1 Let T be the identity component of the subgroup TNG? of invari-
ants of T, we will define S as the quotient T* /(T *NTC) of T by the intersection
of T* with TV.

Observe that T' N TP consists of elements of order two, namely elements ¢
such that t = ¢t=1. The Lie algebra t of T is #-stable, so we can write t = to @ t;
where tj is the 1-eigenspace and t; is the (-1)-eigenspace. ty is the Lie algebra
of T? and t; is the Lie algebra of 7. Since t is 6 stable, # induces an involution
on t* that we call again . Moreover this involution of t* stabilizes the root
system ¢ of G and it preserves the Killing form. Observe that we can identify
t* with the complexification x*(T") ®z C of the group of characters x*(T") of T'.
Moreover x*(7T') is the lattice of integral weights of the root system of g and it
is stabilized by #. We have the maps

T

T ——= S,

where the vertical map is the inclusion and the horizontal one is the quotient
map. These maps induce maps on the corresponding groups of characters.

X*(T)

|

XH(S) = x*(T").
If we extend by linearity these maps to maps of real vector spaces, then
the map x*(S)~——= x*(T"') becomes an isomorphism, so we have a surjec-

tive map x*(T)r — x*(S)r . Moreover the restriction of this map to the

(-1)-eigenspace is an isomorphism, so we can identify x*(S) with a lattice M
contained in x*(T)r. (Given an abelian group A we set Ag := AQR).

Definition 1.4 Let N be the dual Hom(M, Z) of M, where M is identified to
the group of characters of S. Thus N is the group of 1-parameter subgroups of
S.

Notice that S = N ®z C*.



Notation 2 We call ¢g the subset {a € ¢|0(c) = a} of ¢ formed by the roots
fized by 6. Moreover we set ¢1 = ¢ — ¢g.

One can show that the maximality of dim (T) is equivalent to the fact that
0lgo = idg, for each a € ¢g (here g, is the root space corresponding to a). We
can choose a Borel subgroup such that the associated set ¢T of positive roots
has the following property: if we set ¢f = ¢1 N ¢* and ¢ = do N ¢+ then
0(¢1) = —¢7, namely the image of any positive root « by 6 is either « itself or
is a negative root. Finally we can give an explicitly description of b.

Proposition 1.1 h =ty &P 4, 9o © Gaaedﬁ’ C(zo+0(xy)), where xo is any
fized not zero element of g, .

This proposition implies the Iwasawa decomposition: the (-1)-eigenspace of
¢ is isomorphic to t; P, st O Indeed this space is isomorphically projected
onto the tangent space of G/H at H. In particular the dimension of G/H
is dimt; + 1/2|¢1]. Observe that BH C G is dense in G because Lie(B) D
t @ Gaaeﬁ Cz,. Thus G/H has a dense B orbit, namely G/H is a spherical
variety.

We can associate a possibly non reduced root system to the involution 6.
This root system is usually called the restricted root system of (G,#) (or the
relative root system of (G, 6)). ¢ is sometimes called the absolute root system of
(G, 0). Let T be the set of simple roots of ¢, we set T'o = 'N¢g and 'y = T'Nepy.
For any root o we set a® = a — 6(«). If @® is not zero, we say that it is a
restricted root. Observe that o is not zero if and only if a belongs to ¢;.

Proposition 1.2 The set 5 = {a’|a € ¢1} is a possibly not reduced root system
of rank I in Mp. We call it the restricted root system.

Sometimes the restricted root system is defined as {a*/2 |« € ¢1}, because
(a®/2)(t) = (a)(t) for each t € t;. Moreover (a®/2)(t) = (a®)(t) = 0 for each
t € ty. A basis of the restricted root system is the set I' = {a* |a € I';} (notice
that I'y C ¢1 so a® # 0 for each « € I'1). Moreover we can choose an order of
the simple roots such that I'y = {1, ..., a1, @41, ..., - } and the af are distinct
fori=1,..,1,s0 T = {af, e

Now we want to describe the Weyl group of 25 and the lattice of integral
weights of ¢.

Proposition 1.3 (See proposition 1.1.3.3 in [W]) One can identify the Weyl
group W1 of the restricted root system with the group {w € W : w-t; C t;}/ W,
where W is the Weyl group of ¢ and Wy is the Weyl group of the root system

do (in x*(T°)r).

Notation 3 By A we denote the lattice of integral weights of ¢ and by AT the
set of dominant weights.



Let w, be the fundamental weight corresponding to the simple root o and
let <, > be the scalar product of Ag. Observe that < , > induces the scalar
product of Mg, so we denote this last scalar product again by < , >. Given
a dominant weight A, let V), be the irreducible representation of G of highest
weight A.

Definition 1.5 We will say that a dominant weight A is a spherical weight if
there is a not zero vector k € Vy fived by b, namely h -k =0 for each h € .

If A is a spherical weight then k is unique up to a scalar and we call it k.
Definition 1.6 We will say that a dominant weight X\ is special if O(\) = —A.

Observe that if A is a special weight then it belongs to Mg. One can show
that the spherical weights are special. Viceversa given a special weight A then
2] is spherical. One can show:

Proposition 1.4 (Lemma 2.1 in [CM 1I]) Let Q% be the set of spherical
weights and let Q be the lattice generated by the spherical weights, then QNAT =
Qt.

Notice that 2 contains M. We want to describe more explicitly the relation
between spherical weights and special weights. The involution 6 induce an
involution @ of the set I'; of the simple roots not fixed by #. Indeed, given
any o € I'; there is an (unique) 6(a) in T'y such that 6(a) = —0(a) — Ba,
where [, is a positive linear combination of simple roots fixed by #. Moreover
O(wa) = —wp, for each a in T'y. Observe that, given a weight A, 6(A) = —\ if
and only if A\ =%

if 0(ci;) = a; and let ©; = wq, + Wh(a) if 0(;;) # a;. Thus a dominant weight

r, NaWa With Ng(a) = Na for each o in I'1. Let &; = wq,

A is special if and only A = 22:1 n;w; for suitable positive integers nq, ..., n;.
Moreover w1, ...,w; are free generators of the lattice generated by the special
weights, namely {A € A : §(\) = —A}. We will say that a special weight A is
regular if n; > 0 for each i = 1, ...,]. Now we can describe €2 explicitly.

Proposition 1.5 (Theorem 2.3 in [CM I]) Q = @2:1 Za;w; where a; €
{1,2} for each i. a; is equal to 2 if O(ay;) = —ay, while it is equal to 1 if
0(c;) # —a;. In particular a; = 1 if 0(cy) # ;. Moreover, for each i and j
we have < a;@;, ()Y >= b;id; ; where ()Y is the coroot associated to o and
bi € {1,2}. b; = 2 if and only if 205 € é. In particular, if ¢ is reduced then
a1, ...,y are the fundamental weights dual to (af)Y, ..., (af)V.

Given a weight A we define the Q-support of A as the set suppo () = {a® €
I'| (\,a®) # 0}. Observe that a special weight A is regular if and only if
suppo(A) =T

Notation 4 Let CT be the positive Weyl chamber of the restricted root system.

Observe that C*T = Af N Mg.



2 The wonderful symmetric variety

Now we want to describe the wonderful compactification of G/H. Let A be
a spherical weight such that suppo(\) = I and let V be a finite dimensional
representation of g such that V = V) & V' for a suitable representation V'. Let
kv, € V' be a vector fixed by b, so also k = ky + ky- is fixed by . Suppose
that each weight of ky has the form A — 22:1 n;a; where the n; are positive
integers and they are not all zero. Let [k] be the class of k in P(V), we define
X as the closure of G[k] in P(V). The maps g — g[k] induce an embedding
G/H — X that is called the "minimal compactification” of G/H. Moreover
this construction is independent from the choice of the weight A and of the
representation V.

We can give another description of the minimal compactification of X. Let
A1, ... Am be spherical weights whose (-supports are disjoint and such that
suppa (A1) U ... U suppa (M) =T If we define xq as the point

([har]s oo [Pr,]) € P(Vay) x o x P(Vy,),

then we can extend the map G/H > gH — gxo € P(Vy,) X ... x P(V}) to an
isomorphism X — Gxg.

We will need a local description of X. Let V be as before and choose a
basis of weight vectors. We define A as the affine open set of P(V') where the
coordinate corresponding to the highest weight vy is not zero. Let A = AnX
and observe that A is U~ stable, where U~ is the unipotent group associated
to — 1+7 namely U™ = H_aed);r U, as a variety. One can show that the closure

of T[k] in A is an affine space A' with coordinates —a, ..., —aj. Moreover the
map ¢ : U™ X Al 5 A given by ¢(g,v) = g - v is an isomorphism. For each
i, let X_4: be the divisor of X whose intersection with U™ x Al is the locus
of zeroes of —a?. Notice that there is an unique closed orbit in P(V) and it
is contained in X. This implies that X is covered by the G-translates open
sets of A. Let P be the parabolic subgroup of G associated to I'g, namely the
parabolic subgroup whose Lie algebra is t® @a€¢ro Ug+ Ba where ¢r, is the root
system generated by I'g. The previous observations allow ourselves to prove the
following theorem.

Theorem 2.1 (Theorem 3.1 in [CSV 1) Let X be the minimal compactifi-
cation G/H, then:

1. X is a smooth projective G-variety;

2. X\(G - [k]) is a divisor with normal crossings. It has irreducible compo-
nents X a3, ..., X—a; and they are smooth subvarieties of X.

3. the G-orbits of X correspond to the subset of {1,2,...,1} so that the orbit
closures are the intersections Xoa; NN X_a.;k .

4. there is an unique closed orbit ﬂi:l X_as and it is isomorphic to G/P.



This proposition shows that X is a wonderful variety according to the defini-
tion of Luna [L]. Moreover it is the unique wonderful compactification of G/H,
so we will often call it the wonderful symmetric variety.

3 Line bundles on the wonderful symmetric va-
riety

We want to study the Picard group of X. First of all we consider some properties
which are valid on a much more general class of varieties.

Proposition 3.1 Let G be a connected and simply-connected semi-simple al-
gebraic group and let V' be a smooth complete G-variety. Suppose that G acts
trivially on Pic(V'). Then, given any line bundle L on V, there is a (canonical)
linearization of L and H'(V, L) is a G representation for each i. Thus Pic(V)
is isomorphic to the group Picg(V) of the G-linearized line bundles.

It easy to see that if V' is a spherical G-variety then our assumption are
satisfied and we can say more.

Proposition 3.2 Let G a connected reductive group and let V' be a spherical
G-variety, namely a (smooth) G-variety with a dense orbit with respect to a fized
Borel subgroup of G. If L is any linearized line bundle on V then H°(V, L) is
a multiplicity-free é—representation, namely every G irreducible representation
appears in HO(V, L) with multiplicity at most 1.

The following proposition implies that we can identify Pic(X) with a sub-
lattice Ax of the lattice of weights.

Proposition 3.3 (Proposition 8.1 in [CSV 1)) The map Pic(X) — Pic(G/P)
induced by the canonical inclusion is injective.

Remember that we can identify Pic(G/P) with a sublattice of the lattice
of weights. Indeed Pic(G/P) = Picg(G/P) because G/P is a spherical variety
and a linearized line bundle L € Picg(G/P) corresponds to the opposite A of
the character —\ with which T" acts on the fibre over P € G/P. Explicitly we
can define L as follows. We can extent A to a one-dimensional representation
V of P. We define L as the quotient of of G x V by the action of P defined
as follows: p(g,v) = (gp~1, A(p)v) for each p € P and (g,v) € G x V. The
projection L — G/P is induced by the projection G x V. — G — G/P and G
acts on L by h[(g,v)] = [(hg,v)] for each h,g € G and v € V.

Because of the previous proposition, we denote a line bundle on X with
L, if its image is the weight A\. Let A be a dominant weight such that P(V})
contains a line r fixed by H, for example A € QT. One can show that the map
G/H > gH — gr can be extended to a morphism ¢ : X — P(V}). The line
bundle ¥50(1) is L. Indeed if we restrict 3O(1) to G/P we obtain the line
bundle that correspond to A (in the previous correspondence between Pic(G/P)
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and a sublattice of A). If L, is a line bundle on X such that p is dominant,
then there is a sub-representation of H°(X,L,) isomorphic to V,;, obtained
by pullback of H°(P(V,,),O(1)) to X. Moreover this representation is unique
because H°(X, L,,) is multiplicity free. So we can call it V,; without ambiguity.
Moreover

Lemma 3.1 (Lemma 4.6 in [CS]) Pic(X) is the lattice generated by the dom-
inant weights \ such that P(Vy\)¥ is not trivial. Moreover if P(Vy\)H is not
trivial then it is a point.

We want give a more explicit description of Pic(X). Remember that there
is an involution 6 of I';.

Definition 3.1 We will say that a root o € T'y is an exceptional root if 0(a) # «
and < a,0(a) ># 0. Moreover we will say that G/H is exceptional if there is
an exceptional root. We will say that a compactification of G/H is exceptional
if G/H is exceptional.

Observe that 6(a) is exceptional if and only if a is. Moreover one can show
that, if G/H is exceptional, then the restricted root system ¢ is not reduced.

Theorem 3.1 (Theorem 4.8 in [CS]) Pic(X) is generated by the spherical
weights and by the fundamental weights corresponding to the exceptional roots.

@)

Notice that, given an exceptional root « € T'y, O(wy) = —Wh(a and wa—i-w@i
es

is a spherical weight. We will need the following lemma on the line bund
corresponding to the opposite of the simple restricted roots.

Proposition 3.4 (Corollary 8.2 in [CSV I]) There is a G-invariant section
S—as € HO(X, O(X_as)) whose divisor is X_o:. Moreover this section is unique
up to a non zero scalar.

In the first part of this work we want to generalize the following theorem.

Theorem 3.2 (Theorem A in [CM II]) Let Ly and L, be two line bundles
generated by global sections on X. Then the product of sections

My, H'(X,L\) x H*(X,L,) — H°(X, Lx+,)
18 surjective.

In [CM II] the previous theorem is stated with the hypothesis that A and p
are dominants. But we will prove that a line bundle L) is generated by global
sections if and only if A is dominant, so our assumptions are equivalent to those
ones in [CM II]. As a consequence of the previous theorem we have (see for
example [Ha] Exercise 11.5.14):

Corollary 3.1 Let L be a line bundle on X generated by global sections and
consider the map X — P(H®(X,L)*) defined by L. Then the cone over the
1mmage of X is normal.

11



4 Toric varieties

In this section we want to collect some results about toric varieties. For details
on toric varieties see [F], [O] or [Da]. See [G] for more results about polytopes
and see [R] for more results about convex functions.

It is known that there is an equivalence of categories between the category
of embeddings of G/H over X and the the category of embeddings of S over Al
This suggests to describe the toric varieties before describing the embeddings
of G/H over X. Moreover this description will be useful to understand the
combinatorial constructions that we will do on the embeddings of G/H over
X. Indeed these constructions are very similar to the ones used in the theory of
toric varieties, but are more difficult to describe geometrically. For these reasons
we will be very detailed in this section.

4.1 First definitions

Let S be the torus N ®z C* = Spec(C[M]) where M is a finitely generated
free abelian group and N is the dual Hom(M,Z) of M. We can identify M
with the character group of S and N with group of 1-parameter subgroups of
S. Given m € M we call x" the associated function on S, so Xm+m/ = xm~xm/
for all m,m’ € M. The x™ form a basis of semi-invariant vectors for the S-
representation C[M]. We want to remark that we define the action of the torus
on his ring of coordinate as follows: (t- f)(t') = f(t~! -t) for each f € C[M]
and t,¢' € T. Thus x™ is a seminvariant function with weight —m. Usually the
action is defined as follows: (¢ - f)(t') = f(¢-t); so that x™ is a seminvariant
function with weight m. This is possible because T is an abelian group, but
we will need to study torus which are subgroup of not abelian group, so we do
not use the second definition. We want to describe the S-toric varieties. These
are the normal S-varieties which contain an open orbit isomorphic to S. Every
toric varieties is associated to a fan in N, so we have to define fans. First of all
we introduce the notion of a convex rational polyhedral cone.

Definition 4.1 o is a conver rational polyhedral cone in Ng if there are vec-
tors vi,...,v, in N such that o is the cone generated by vy, ...,v,, namely
o= Y1 Rtv. We wil denote o by o(v1,...,v,). o is a strongly convex
rational polyhedral cone if, moreover, it contains no line.

In what follows we are going to tacitly assume that all cones contained in
Ngr are strongly convex rational polyhedral cones.

Definition 4.2 The cone 0¥ = {x € Mg | x(y) > 0 Vy € o} in Mg is called
the dual cone of o. Let o~ = {x € Mg|z(y) = 0 Yy € o} be the subspace of
Mpg of vectors vanishing on o.

Observe that o is a convex rational polyhedral cone and that ¥ +(—c") =
Mg, but it may be not strongly convex. Indeed ot is the largest vector space
contained in ¢v. The dimension of ¢ is the dimension of smallest subspace of
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Ngr containing o, namely o 4+ (—c). A not empty subset 7 of ¢ is a face of o if
there is a m € o such that 7 = o N {m}+ = {y € o|m(y) = 0}. This means
that there is semi-space V' = {& € Ngr : m(z) > 0} such that o is contained
in V and 7 is the intersection of o and of the border {x € Ng : m(z) = 0}
of V. Notice that {0} is a face of every cone, so we usually do not mention it.
Indeed {0} corresponds to any vector m in oV\o® (this is true because we have
assumed that o is strongly convex). If o = o(vy,...,v,) then its faces are the
cones o(v;,,...,v;, ). A face 7 of o is a strongly convex rational polyhedral cone.
Moreover, given v and v’ in o, v + v’ belongs to 7 if and only if both v and v’
belong to .

Definition 4.3 A fan A in N is a set of (strongly convex rational polyhedral)
cones with the following two properties:

e 1)ifo € A and T is a face of o then T € A;
e 2)if 0,0’ € A then the intersection o Na’ is a face both of o and o’.

The union |Al = |J,ea 0 is called the support of A. Let A(i) be the subset of
A formed by the cones of dimension 1.

Usually we will not mention the cone 0 that belongs to each fan. Observe
that a fan is uniquely determined by its maximal elements. Now we will de-
scribe the toric variety Z associated to a fan A. Z has an open cover {U, },ea
formed by open sets stabilized by the action of S. The open set U, is iso-
morphic to Spec C[M N ¢V] and the intersection of two of these open sets,
say U, and U,s, is the open set U,n, associated to the intersection of the
associated cones. In particular, if 6/ C o then U, C U,. Notice that S cor-
responds to the cone {0}. For example C" is the toric variety associated to
the fan formed by the faces of o(v1,...,v;), where {vy,...,v;} is a basis of N.
We can identify S with (C*)™ and it acts on C" by (t1,...,t;) - (1, ...,7;) =
(t121,...,t1z1) for each (t1,....t) € (C*)™ and (z1,...,2;) € C". The stable
open sets of C™ are the sets {(z1,....,21) : @, # 0,...,z;. # 0} for each subset
of {1,...,1}. Let {m1,...,m;} be the basis of M dual to {v1,...,v;}. We have
C[M] =C[x™, x~ ™, ..., x™,x ™] and Oc»(C") = C[x™,...,x"]. Observe
that o(v1,...,v)Y = o(m1,...,m;). The ring of coordinates of {(z1,...,x;) :
iy # 0,m. # 0} is CI™, .o, X™, x ™1, ..., X ™ir], so this is the open
set associated to o(vy,..., Ui, ..., Ui, ...,v;). The action of S on C[M] is such
that ¢ - x™ = —m(t)x™ for each t € S and m € M, so C[M N¢"] is a sub-
representation. Thus S acts on U,. Moreover the U, are the only S-stable open
sets of Z. Observe that the dimension of the variety Z is equal to the rank of
N.

Now we give some example of geometric properties of a toric variety and of
the equivalent conditions on the associated fan: 1) a toric variety Z is affine if
and only if its fan consists of all the faces of a single cone; 2) a toric variety Z is
complete if and only if the support of the associated fan is the whole of space,
namely |A| = Ngr; 3) Z is smooth if and only if for each o € A there is a subset
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{v1,..., v} of a basis of N such that ¢ = o(vy,...,v,). These facts imply that
the only affine smooth toric variety associated to a cone of maximal dimension
is the affine space.

Let S; = N; ®z C* and S; = N, ®z C* be two tori, then every map
S1 — Sy corresponds to a map ¢ : N1 — No. We call ¢ also the extension of
o by linearity to a map N1 ®z R — Ny ®z R. Let Z; be a S;-toric variety for
each 7 and let A; be the fan of Z; for each i. There is at most one map Z; — Z»
extending . It exists if and only if for each o € A; there is a cone ¢’ € Ay
such that ¢(o) C o’. Suppose that there is a such map, then it is proper if and
only if for each ¢/ € Ay we have p~1(0) = Usea,p(o)cor o In particular if
S1 = S5 and ¢ is the identity then Z; — Z5 is proper if and only if |A;| = |As].

Let Z be a S-toric variety and let A be its fan. We want to describe the
bijective correspondence between the orbits of Z and the cones in A. Before
we need to describe the quotients of S. Observe that S = Homz(M,C*) and
U, = Homgg(M NoY,C”) for each 0 € A (here Homgy( , ) means morphisms
of semigroups). Let o be a cone in Ng, then the torus S’ = Homgz(M Naot, C*)
is a quotient of S, where the quotient map

S = Homgz(M,C*) — S" = Homsy(M N o+, C*)

is given by restriction and it is associated to the inclusion C[M Not] < C[M].
Let N, be the sublattice of N generated by o (as a group) and let N(o) = N/N,,
then S' = N(0) ®z C* and the quotient map S ——= S’ is obtained tensoring

the quotient map N ——= N (o) by C*.

Proposition 4.1 (See proposition 1.6 in [O] or page 54 in [F]) For each
o € A we can regard the quotient algebraic torus o, := Homz(M No*, C*) of
S as a S-orbit in Z. Every S-orbit is of this form and, in this way, A is in
one-to-one correspondence with the set of S-orbits in Z. Moreover the following
holds:

1. O0{0} = U{o} =S5.

2. for each o € A, the dimension of o, is equal to the codimension [ — dim (o)
of o in Ng.

3. Foro,7 € A, T is a face of o if and only if o, is contained in the closure
of or.

4. For o € A, o, is the unique closed S-orbit in U, and we have U, =
U,co 0r (observe that o, may not be closed in Z).

5. There is a one-to-one correspondence between A and the closed subvari-
eties of Z stabilized by the action of S: every o € A correspond to closure
Zy of 05. Moreover Z, = o)

TD0 °T°

6. Let n € N and let o € A. Then we have n € o if and only if the one-
parameter subgroup v, corresponding to n has the property that limy_oyn (t)
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exists in Uy. In this case, the limit coincides with the identity element of
o, regarded as an algebraic torus, where T is the face of o which contains
n in its relative interior.

For example if Z = C' then the orbit Oc (v, ,....vs,) associated to (Vg ey V5,)
is the set {(z1,...,2;) : ®; = Oifand only if ¢ € {iy,...,ir}}. Its closure is
the set {(x1,...,2;) : z; = 0ifé € {i1,...,3,}}. The ring of coordinates of
Oc (vi, ,.oyvi,) 18 C[x™, X_mi]ig{il i} while the ring of coordinates of its closure

is C[Xmi]i¢{7;hm’ir}
point which we call z,,.

The inclusion o, = Homz(M No+,C*) — U, = Homz(M NoV,C*) is
given by extension by zero. The extension by zero of a group homomorphism
is a semigroup homomorphism because o is a face of ¢V, so given u,u’ € ",
u + u’ belongs to o if and only if both u and u’ belong to o=.

We want to describe the stable closed subvarieties of Z more closely. For
each 7 € A, Z, is a toric variety with respect to the torus o,. The fan of
Z; in N(1) is {oc + N; ®z R/N; @z R : 0 € Aand 7 C o}. Observe that
Z, intersects U, if and only if o D 7. In this case Z,. N U, is isomorphic to
Spec CIMN7tNoV] = Homg,(MNTtNoV,C). We want to describe the closed
immersion Z, < Z. Z, is covered by the U, with ¢ D 7. The closed immersion
Z; NU, = Homgy(M N7t NoV,C) < U, = Homsy(M No¥,C) is given
by extension by zero. The extension by zero of a semigroup homomorphism
is a semigroup homomorphism because 7+ N ¢V is a face of V. The closed
immersion Z, N U, = Homsy(M N7+ NoV,C) = U, = Homsy(M NcV,C)
corresponds to the projection C[M NoY] —== C[M N7+ NcV] that takes m

. If 0 has dimension equal to dim N, then o, is a S stable

tomif m € MN7ttNoY and it takes m to 0 otherwise. This projection is a ring
homomorphism because 7+ N oV is a face of ¢¥. These maps are compatible,
namely if 7 C o C o', then the following diagram commutes

Z.NU,“~— Z.NU,

U,———U,.

Indeed we can rewrite this diagram as

Homg (M N7tnoY,C)~—— Hom, (M N7+n(')¥,C)

| |

Homgy(M NoV,C)————— Homgs,(M N (c')V,C)

where the vertical maps are extensions by zero and the horizontal ones are
restrictions. Notice that o C ¢’ implies oV D (0/)V.
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4.2 Line bundles

In the following we will consider only smooth toric varieties such that the maxi-
mal cones of the associated fan have all dimension equal to dim S. Moreover we
call | the dimension of S. In this case Z is covered by the open sets associated
to the I-dimensional cones, namely Z = J, . AQ) U,. Moreover U, is isomorphic
to C" for each o € A(l). Observe that this hypotheses are satisfied by every
smooth complete toric variety.

Now we want to study the line bundles on Z, but it is easier to describe
the equivariant line bundles. We want to observe that, without the previous
hypothesis on the maximal cones of A, most of the following facts are false.

Definition 4.4 A real valued function h : |A| — R on the support of A is called
a (A, M)-linear function if it is Z-valued on N N |A| and it is linear on each
o€ A. Let SF(A, M) be the additive group of the (A, M)-linear functions.

Remark. We can think h as function h : Ng — R U {—o00} such that h(x) is
finite if and only if = € |A|.

Definition 4.5 Let h be a (A, M)-linear function and let o be a cone in A(l).
We set hlo as the unique linear function which coincides with h on o.

Notice that h|o € M for each h and o.

Definition 4.6 Let h: Np — RU{—oc0}. We say that h is M -piecewise linear
if there is a fan A for which h is (A, M)-linear.

We have a natural map M ——— SF(A, M) that takes m € M to the
restriction of m to |A|. This map is injective, so we can think M as a subset of
SF(A,M). An equivariant line bundle on Z is a line bundle 7 : L — V with
an algebraic action of S on L such that 7 is equivariant (namely 7 (tz) = tn(z)
for each t € S and z € L) and the action of each t € S on L induces a
linear map from 7~ !(z) to 7~ (tx) for each x € V. Let Pics(V) be the set
of isomorphism classes of equivariant line bundles on V. Let Divg(V) be the
subgroup of Div(V') generated by the S-stable divisors. By proposition 4.1 we
have Divs(V) = €, ca1)ZZ-. The following theorem relates the previous
groups. We will say that a vector v € M is primitive if there is no v’ € M such
that v = av’ for a suitable integer a > 1. Given a cone 7 € A(1) there is an
unique primitive vector o(7) contained in 7. Moreover, given any cone o € A,

o= ZTEA(l),TCO’ R+Q(T>'

Theorem 4.1 (See proposition 2.1 and proposition 2.4 in [O] or pages

1. We have an isomorphism SF (A, M) = Pics(Z) which associates an
equivariant line bundle Ly to each A-linear function h.
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2. Suppose that h € SF(A, M). If m € M satisfies

m(n) > h(n) for alln € |A|,

then we have a semi-invariant section ¢ : Z — Ly of Ly of weight —m,
namely p(tx) = m(t)(tp(x)) for each x € Z.

3. We have an isomorphism SF(A, M) = Divg(Z) which takes h to the
divisor

D= Y —h(e(r))Z.

TEA(1)

In particular D, is the principal divisor associated to the rational function
x ™ on Z.

4. For h € SF(A, M) the sheaf of germs of sections of Ly, coincides with
the invertible sheaf Oz (Zp,) associated to the S-invariant divisor Zp,. This
sheaf has an action of S and it can be regarded naturally as a S-stable

Oz-submodule of the direct image j7,.Og with respect to the embedding j :
S—=Z.

5. We have the short exact sequence:
0 — M — Pics(Z) = Pic(Z) =0
Moreover Pic(Z) is free abelian.

The map M — Pics(Z) is the composition of the injection M — SF (A, M)
and the isomorphism SF(A, M) — Picg(Z). We want to give some ideas
of the proof. Let o and 7 be two cones in A(l). Observe that (h|o)(n) =
(h|y)(n) = h(n) for each n € 0N+, so hlo — hly is contained in M N (e N~y)*t C
M N (o Nv)Y. Thus hlo — hly and h|ly — h|o are regular functions on Uyny.
Remember that Z is covered by the open sets U, associated to the maximal
cones o € A(l). Hence we can define a line bundle L, = U,caq)(Us x C)
over Z by gluing U, x C and U, x C along Uyny X C by the isomorphism

@0 Uy X CD Uypy X C—> Uy x C C Uy x C defined by @ o (2,c) =

(z, X"~ (2)c) for (x,¢) € Uyny x C. The projections to the first factors
glue themselves together to give a map Ly, — Z. S acts on Ly by t(x,¢) =
(tz, x ™M (t)c) for each t € S and each (z,c) € U, x C.

If h is linear and equal to m then obviously L,, is the trivial bundle Z x C,
because m|oc = m|y for each o and v in A(l). In this case S acts on L,, by
t(z,c) = (tz,x ™(t)c).

Let m € M be such that m(n) > h(n) for all n € |A|, then m — hlo €
M NoV for each o € A(l) and x™ 17 is a regular function on U,. Hence there
is a section ¢ : Z — Lj; whose restriction ¢|U, : U, — U, x C is defined
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by (¢|Uy)(z) = (x,x™ "M(x)). This section is obviously semi-invariant with
weight —m.

For the third point observe that h is determined by his values on the primitive
vectors o(7) with T € A(1), because 0 = > A1) pco R*o(7) for each o € A.
Notice that, for each o € A(l), the restriction of Oz(Dy) to the open set U,
is O, - x"lo and —h|o is the character with which S acts on the fibre over the
S-stable point z, associated to o. It is easily seen that Oz(D},) is the sheaf of
germs of sections of L, and that it is a S-stable O z-submodule of j,Og. Notice
that Ly is uniquely determined by the characters h|o. This fact will be true
also for the complete symmetric varieties.

We now want to describe the canonical bundle of a smooth toric variety.

Proposition 4.2 (see page 70 in [O]) Let Z be any smooth toric variety with
fan A and let k be the (A, M) linear function such that k(o(t) = 1 for each
T € A(1). Then Dy, is a canonical divisor.

Now we want to describe the space of the sections of L as an S-module.

Proposition 4.3 (See lemma 2.3 in [O] or page 66 in [F] ) Foreachh €
SFE(A, M),

Qn={me€ Mg :m(n) > h(n) VnelAl}

is a (possibly empty) convex polyhedron. Moreover

H(Z;Ln) = @ Cx™,
meQnNM

where X™ is a semi-invariant section of weight —m.

Proof. Observe that H°(U,, j.Os) = H°(S,0s) = C[M]. Moreover
H°(U,, L) = H*(Uy,O0z(Dy,)) is a subspace of H(U,, j.Og) for each o € A(l)
and {x™ : m € (h|lo) + M NcV} is a basis of semi-invariant sections because
Oz(Dp)|Uy = Oy - X"?. Moreover H°(Z, L) = Noeaq H*(Us, Ly). The
proposition follows because (h|lo) + M No¥ = {m € M : m(n) > (hl|o)(n) =
h(n)Vneo}. O

We will see that we can recover L; from @ if L, is generated by global
sections. We can consider also higher cohomology groups. In this case we
suppose that Z is complete for simplicity.

Proposition 4.4 (See theorem 2.6 in [O] or lemma on page 75 in [F])
Let Z be a complete variety. For each h € SF(A, M) and each positive integer
q, S acts on the cohomology group HY(Z, Ly). For each m € M, the eigenspace
HY(Z, Lp)m with respect to the character m is HY{(Ngr, Ng\Z(h,m), C) where
Z(h,m) ={n € Ng:m(n) > h(n)}. Thus we have a direct sum decomposition

HY(Z,Ln) = @ H'(Ng, Ne\Z(h,m), C)x™.

meM
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Now we want to describe the line bundles generated by global sections, re-
spectively the ample line bundles. To do this we need the definition of a convex
function.

Definition 4.7 Let h be a M -piecewise linear function. We will say that h is
(upper) convez if h(n) + h(n') < h(n+n') for all n,n’ € Ng.

If h is A-linear, then it is convex if and only if h(n)+h(n') < h(n+n’) for all
n,n’ € |A| (this definition is the reason why we have chosen —oo instead of 00).
The convexity of h means that the graph of h lies under the graph of h|o for
each o € A(l). Sometimes the function identically equal to —oco is considered a
convex function, but we prefer to exclude it because it does not correspond to
any line bundle on a toric variety.

Definition 4.8 Given a conver h € SF(A, M) we will say that h is strictly
convex on A if hlo # h|y for each o € A(l) and v € A(l) distinct.

This condition means that, for each o € A(l), the graph of h on the com-
plement of o lies strictly under the graph of hlo. Observe that this condition
depends on the fan A, while the convexity is a condition that depends only on
h. We will use the fact that these definitions can be stated without assuming
that h has integral values on N N |A]|.

Proposition 4.5 (See theorem 2.7 in [O] or lemma on page 68 in [F])
Let h € SF(A,M). Ly, is generated by global sections if and only if h is convex.

The necessity of the condition is easy to show. Let o € A(l) then U, is an
affine space and x, is the unique S-stable point in U,. We have O(Lp)|U, =
C[M N oV]x"?, so x"? is the unique section, up to a not zero scalar, which
does not vanish on z,. Thus, if Lj, is generated by global sections, then hloc > h
for each o € A(l). This means that h is convex.

Proposition 4.6 (See corollary 2.4 in [O] or pages 70ff in [F]) Let Z be
a (possibly singular) complete toric variety and let h € SF(A, M). Then Ly, is
ample if and only if h is strictly convex on A.

Proposition 4.7 (Demazure) (See corollary 2.5 in [O] or [De]) Let Z
be a smooth complete toric variety and let h € SF(A, M). Then Ly, is ample if
and only if it is very ample. In particular Ly is very ample if and only if h is
strictly convex on A.

We will extend the last two theorems to the case of toric varieties proper on
the affine space.

Proposition 4.8 Suppose that Z is a (possibly singular) toric variety proper
over Al and let h € SF(A,M). Then Ly, is ample if and only if h is strictly
conver on A. If Z is smooth, then Ly, is ample if and only if it is very ample.
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Let Lj be a very ample line bundle on a smooth toric variety Z. Given
o € A(l), the description following the theorem 4.1 implies that the only sem-
invariant section which does not vanish on x, is the seminvariant section with
weight hlo. Thus there are not cones 0,0’ € A(l) such that ¢ # o’ and
hloc = h|o’, otherwise z, and x, would have the same image through any
immersion ¢ : Z — P(V) such that L, = ¢*(O(1)). This is in particular true
if Z is as in proposition 4.8. The fact the Lj is ample if h is strictly convex on
A will be a consequence of a more precise statement. More precisely we will
define a complete toric variety Z¢ and an ample line bundle L on Z¢ such that
Z is an open subvariety of Z¢ and Ly, is the restriction of L to Z.

We now mention some properties of convex functions and convex sets. Re-
member that a set Q is convex if, for each p,p’ € Q, Q) contains the segment
with endpoints p and p’. Moreover Q) is a polyhedron, or polyhedral convex set,
if it is the intersection of a finite number of semi-spaces (in general a convex
set is the intersection of an infinite number of semi-spaces). If a polyhedron is
compact then it is the convex hull of a finite number of points and we will say
that it is a polytope. We will say that a polyhedron is rational if all its vertices
belong to M.

Theorem 4.2 (See theorem 13.2 in [R] or theorem A.18 in [O])

Let C(MEg) be the set of not-empty convex sets in Mg and let SF(Ng) be the set
of functions h : Mp — R U {—o00} which are positively homogeneous and upper
conver, namely h(av) = ah(v) and h(v +v') > h(v) + h(v') for each a € RT
and v,v" € Ng.

1. We have mutually inverse maps C(Mgr) — SF(Ng) and SF(Ng) —
C(MRg), which respectively send Q to hg and h to Qp, defined as follows:

ho() =inf{m(v); m e Q} forveE Ng

Qn={m € Mg : m(v) > h(v), Y v e Ng.}

2. Under the map above, the sum Q + Q' and a positive multiple a@Q cor-
respond respectively to the sum function h + h' and the positive multiple
ah.

3. Q is compact if and only if hg has finite value everywhere.

This theorem implies that, given a line bundle L; generated by global sec-
tions, we can recover h from the polyhedron @Qj, so we can recover Lj from Q.
hx is called the support function for K.

Proposition 4.9 (See theorem A.18 in [O]) The following conditions are
equivalent:

e h € SF(Ng) is the support function for a convex polyhedral set under the
correspondence of the theorem 4.2;
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e there exists a finite decomposition of h~*(R) into a union of convex poly-
hedral cones, such that the restriction of h to each convez polyhedral cone
in the decomposition is a linear function. These cones do not intersect in
their relative interiors.

Moreover for any given polyhedron Q, there exists the coarsest such decom-
position A, which satisfies the following properties:

e Define
Pt = {v € Ng:m(v) = h(v) Vo € P}

for each nonempty face P of Q. Then the map sending P to PT gives rise
to a bijection {nonempty faces of Q} — A

e dimP + dimPt = dim Ng for each nonempty face P of Q
o if P, O Py for nonempty faces Py and Ps, then PlT C P2T
o Ify€ A and vy = P', then

P={meQ:m)=nh(v)Vme~} e {nonempty faces of Q}

Notice that h is a M-piecewise linear function if and only if @), is a rational
polyhedron. Indeed the vertices of @, are the hlo with o in A(l). We want to
remark that the cones in the previous proposition may be not strongly convex.
Indeed, they are all strongly convex if and only if Q)5 has dimension equal to
the dimension of Nr. In this case the set of the previous cones and their faces
is a fan A in N. If moreover |A| = Ng, then h is the piecewise linear function
associated to an ample line bundle on the complete toric variety corresponding
to A.

This proposition implies easily the following corollaries.

Corollary 4.1 Let Z be a complete toric variety and let Ly, be a line bundle on
Z generated by global sections. Suppose that Qp, has dimension equal to the rank
of N, then there is a complete (possibly singular) toric variety Z' dominated by
Z and an ample line bundle L' on Z' such that Ly, is the pullback of L'.

Corollary 4.2 Let Z be a toric variety proper over A' and let L;, be a line
bundle on Z generated by global sections. Then there is a (possibly singular)
toric variety Z' dominated by Z and an ample line bundle L' on Z' such that
Ly, is the pullback of L'. Moreover Z' is proper over A'.

Now we want to describe the projective toric varieties. Before we need to
define the polar convex set and the gauge function of a convex set containing 0.

Definition 4.9 Let Q be a convex set in Mg containing 0, then the set Q° :=
{n € Np: m(n) > =1 Ym € Q} is called the polar convex set of Q. Let
h: Mg — RU{—o0} be the function such that h(0) =0 and h(u) = —inf{r €
R": werQ} ifu#0. his called the gauge function of Q.
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Proposition 4.10 (see p. 28, 125, 174 on [R]) Let Q be a convex set in
Mp containing 0, then Q° is a convex set. Moreover:

e Q° contains 0 and (Q°)° = Q;
e ( is a polyhedral convex set if and only if Q° is a polyhedral convex set;

e ( is limited if and only if 0 is contained in the interior of Q°. Dually, 0
is contained in the interior of Q if and only if Q° is limited;

e the gauge function h of Q is the support function of Q° and Q = {m €
MR : h(m) Z —1}

One can show the following proposition using the proposition 4.6, the theo-
rem 4.2, the proposition 4.9 and the proposition 4.10.

Proposition 4.11 Let A be the fan of a complete toric variety and let h be a
(A, M) linear function. The following conditions are equivalent:

e h is strictly convex on A;

e Qy, is a rational polytope in Mg with vertices {h|o : o € A(l)}. Moreover
hlo # hl|o’ for each o,0" € A(l) different, i.e. the number of vertices of
Qn is equal to the cardinality of A(1);

e Q5 is a rational polytope in Ng with vertices {—mmﬂ T e A1)}

If one of this condition is verified then the cones of A are generated by the faces

of Q7.

Corollary 4.3 Let A be the fan of a complete toric variety Z. Then Z is
projective if and only if there is rational polytope P in Ng containing 0 as an
internal point and such that the faces of A are generated by the faces of P.

We have similar properties for the smooth toric varieties Z proper over Al.

Proposition 4.12 Let Z a smooth toric variety proper over Al let A be the
fan of Z and let Ly, be a linearized line bundle on Z. Ly, is ample if and only if
Q5. is a rational polytope in Ng with vertices {fmp(ﬂ e A(1)Fu{0}.
In this case the cones of A are generated by the faces of Q7 not containing 0.

Recall that there is a basis {v1,...v;} of N such that the fan of A’ is formed
by the faces of o(vy,...v;).

Corollary 4.4 Z is quasiprojective if and only if there is a rational polytope @
in Ng with the following properties: 1) @Q is contained in o(vy,...v;); 2) there
are positive constants ay, ..., a; such that 0,ajv1, ..., ajv; are vertices of Q and 3)
the cones of A are generated by the faces of Q7 not containing 0.

Observe that ) may have other vertices besides 0, ajv1, ..., a;v;.
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4.3 S-toric varieties and étale coverings of S

Let S’ be a torus and suppose that it is an étale covering of S, i.e. there is
a morphism of algebraic group 7 : S’ — S with finite kernel and such that S
is the quotient group of S’ by kerm. If Z is a S-toric variety then we have a
canonical action of S’ on Z. Indeed, for each t € S’ and 2z € Z we can set
t-z:=mx(t) 2. We want to study the S’ linearized line bundles on Z. In the
following we recollect some results which are easily implied by the results of the
previous section about the S linearized line bundles. Recall that we consider
only smooth toric varieties such that all the maximal cones of the associated
fan have dimension equal to dim S.

Let L be a line bundle on Z. First of all, a S-linearization of L induces
canonically a S’-linearization of L. This action is defined as follows: ¢ - x :=
7(t) -« for each ¢ € S’ and x € L. Notice that there are S’-linearized line
bundles whose linearization is not induced by a S-linearization. We now define
some examples. Let M’ be the character group of S’, we have an injective
map 7 : M < M’. For each m € M’ we can define a S’-linearization of the
trivial bundle Z x C as follows: ¢ - (z,¢) = (¢t - z, —m(t)c) for each t € S’ and
(z,¢) € Z x C. We call L,, the S’-linearized line bundle given by the trivial
bundle with the previous S’ linearization. Observe that if m does not belong to
M then the S’ linearization of L, is not induced by a S linearization.

The following proposition is implied by the proposition 4.1

Proposition 4.13 We have the following commutative diagram with exact rows
and injective columns

0 —> M’ — Picg/(Z) — Pic(Z) — 0

T

00— M —— Pics(Z) —— Pic(Z) —— 0.
In particular Picg/ (Z) = Pics(Z) + M'.

We want to remark that one can prove that ker(Pics/ (Z) —— Pic(Z)) is
isomorphic to M’ using the fact that the character group of S’ is discrete. We
want to define a group similar to SF(A, M). Notice that M has finite index
in M’, so we can think M’ as a lattice in Mg containing M. Moreover given
any lattice with such properties, say M, there is a étale covering of S, namely
Spec[M ], whose character group is the given lattice.

Definition 4.10 A real valued function h : |A] — R on the support of A is
called a (A, M')-linear function if h is linear on each o € A. Let hlo be the
unique linear function which coincide with h on o. We request moreover that
hlo belongs to M’ and that hloy — hlog belongs to M for each o, o1 and o9 in
A(l). Let SF(A, M) be the additive group of the (M', A)-linear functions.
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Sometimes we say that an element h of SF(A, M’) is a A linear function. We
can again think a A-linear function as a function h : Ng — RU{—00}. As before
we say that a (A, M) linear function h is convex if h(v +v') > h(v) + h(v') for
each v,v" € |A]. We say that h is strictly convex on A if moreover hlo # hlo’ for
each 0,0’ € A(l). Observe that, given any h € SF(A, M'), there is a positive
integer n such that nh is (A, M)-linear function.

Definition 4.11 Let h: Ng — RU{—o0}. We say that h is piecewise linear
if there is a fan A and a lattice M for which h is a (A, M')-linear function.

We can associate a S’-linearized line bundle L;, on Z to each h € SF(A, M’)
in a similar way to the S-linearized line bundles associated to an elements of
SF(A, M) (see theorem 4.1). The line bundle Ly, is associated to the Cartier
divisor {U,, X_h“’}UEA(l) and the S’-linearization is defined as follows: ¢-(z,c) =
(t-x,x M7(t)c) for each t € S’ and (z,¢) € U, x C.

Notation 5 Suppose that we have fized a lattice M’ and a fan A associated to
a S-toric variety Z. Let o be an arbitrarily fized cone in A(l). For each (A, M")
linear function h we denote with vy, the linear function hlo.

Given two (A, M')-piecewise linear function, say h and k, we have vp1g =
vp + vg. The definitions immediately imply that, given any (A, M’) linear
function h, the function ' = h — vy, is a (A, M) linear function. Moreover h
is strictly convex on A (respectively convex) if and only h is. Given a (A, M")
linear function h, the S’-linearized line bundle Ly on Z is the product of Ly,
and of L,,. Observe that the S’-linearization of Lp_,, is induced by a S-
linearization and that L,, is trivial as a line bundle. The following proposition
is immediately implied by the theorem 4.1 and by the propositions 4.5, 4.7, 4.8
and 4.13.

Proposition 4.14 The map SF(A,M') — Pics/(Z) the takes h in Ly, is an
isomorphism. Moreover:

e L is generated by global sections if and only if h is convex;

e Suppose that |A| is Ng or o(vi,...,v;). Then Ly, is ample if and only if
h s strictly convex on A. Moreover Ly, is very ample if and only if it is
ample.

Given any h € SF(A,M"), H%(Z, Ly,) is a S’ representation. Moreover this
representation has a basis of seminvariant sections because S’ is a torus. The
set of the weights of these sections is obviously contained in M’. If we change
the linearization of Ly, i.e. if we multiply L; by a linearized line bundle L,,,
then this set of weights is translated with respect to the vector m. Because
of the proposition 4.3 there is an one-to-one correspondence between a basis of
seminvariant sections of H°(Z, L) and the set of the rational points of Qp—y, -
Hence, we have the following proposition:
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Proposition 4.15 For each h € SF(A, M),
HY(zZ;Ly)= @ cx™
meQrN(M+wvp)
where x™ is a semi-invariant section of weight —m.
Notice that any piecewise linear function h corresponds to a translate of

a suitable rational polyhedron under the correspondence of the theorem 4.2.
Indeed Qp — vy, is the rational polyhedron Qp—,, -

5 Complete symmetric varieties

A G/H embedding is a complete irreducible G-variety with a G-equivariant
open embedding ¢ : G/H — Y. We say that Y is a smooth G/H-embedding if
Y is a smooth variety.

Definition 5.1 Let Y be a G/H-embedding. We will say that'Y is a complete
symmetric variety if there is a commutative diagram

G/H(—>Y

!

G/H——= X,
where w:Y — X is a G-equivariant proper map.

First of all, we want to describe the relation between the complete symmetric
varieties and the toric varieties proper over A!. Let P be the S-principal fibre
bundle on X associated to the vector bundle @221 O(X_qas). Remember that
the X —ag are the stable divisors of X and that for each ¢ there is a G-invariant
section s; € HY(X,0(X_4:)) with divisor X_,.. Moreover s; is unique up to
a not zero scalar. The section @221 s; of @221 O(X_q;) defines an embedding
X — P xg A' because P xg A is isomorphic to @221 O(X-a:). fZ — Alis
a toric variety over Al, we define Y = Xz as the fibre product of

PXSZ

|

X ——= pxg Al

Theorem 5.1 (Proposition 5.1, theorem 5.2 and theorem 5.3 in [CSV II])
Let Z be any toric variety over Al and let Xz be as before.

1. G acts on'Y and the projection w:Y — X is equivariant.
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2. If Zy — Zy is an S-equivariant map then the induced map Xz, — Xz, is
G-equivariant.

3. The G orbits of Y are in one-to-one correspondence with the S-orbits of Z.
Moreover the codimension of an orbit O in'Y is equal to the codimension
of corresponding orbit o in Z, so it is equal to the dimension of the cone
associated to o.

4. 7T_1(Al) is the closure in 7= (U~ x Al) of the open S-orbit in 7T_1(Al).
5. LU~ x Al) ~U" x 7T_1(Al) m a U™ x T equivariant way.

6. The mapY — 7r_1(Al) s an equivalence between the category of complete
symmetric varieties and the category of toric varieties proper over Al
Moreover Y is smooth, if and only if 7=1(A") is smooth.

7. The closure of S in X is the toric variety Z§ associated to the fan formed
by the Weyl chambers and their faces.

8. There is an one to one correspondence between complete symmetric vari-
eties and complete toric S-varieties over Z§ whose fan is W' invariant.

In this thesis, unless explicitly stated, we shall always assume that the com-
plete symmetric variety Y is smooth. In this case it follows that: 1) any orbit
closure in Y is also smooth; 2) the complete toric variety corresponding to Y is
smooth. We now introduce some notations that we will often use.

Notation 6 Let X be the wonderful complete variety and let Y be the complete
symmetric variety over X associated to a toric variety Z over AL, We will
denote by Z¢ the closure of Z in'Y . Observe that Z°¢ is the closure of S in Y.
We will call A the fan of Z and A€ the fan of Z¢. We shall denote the fan of
Zo = Al by Ag and the fan of Z§ by AG. Remember that o is the S-orbit of
Z associated to v € A. We will call O, the G-orbit of Y corresponding to o.
We shall denote by Z., the stable subvariety of Z associated to v € A, by Z% the
stable subvariety of Z¢ associated to v € A® and by Y, the stable subvariety of
Y associated to v € A.

Observe that, given v € A, Z, may be properly included in Z5.

Definition 5.2 We define {f1,..., fi} as the basis of M such that f; = —af

for each i. Moreover we define {e1,...,e;} as the basis of N dual to the basis

{fl» "'7fl}'

Observe that e; is a negative multiple of w;, so it is a negative multiple of
the i-th fundamental weight of the restricted root system.
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6 Line bundles on a complete symmetric variety

Now we want to describe the Picard group of Y following [Bi]. Remember that
the closed orbits O, of Y are in one-to-one correspondence with the maximal
cones of A. Moreover they are all isomorphic to the unique closed orbit of
X through the restriction of the projection, so we can identify Pic(O,) with
Pic(G/P) for each o € A(l). Remember that we can identify Pic(X) with a sub-
lattice Ax of the lattice A of integral weights. One can easily show that C1(Z)
is freely generated by the divisors Z, associated to the cones 7 € A(1)\Ap(1).
Remember that CI(Z) is the divisor class group of Z, i.e. the quotient of the
divisor group of Z by the group of principal divisors. Notice that CI(Z) is
isomorphic to Pic(Z). The following theorem gives a complete description of
Pic(Y).

Theorem 6.1 (Theorem 2.4 in [Bi]) Let Y = Xz be a complete symmetric
variety. Then

1. The maps 7ty — "o X induce the split exact sequence

0 — Pic(X) ——= Pic(Y) ——= Pic(Z) — 0,
so Pic(Y) is (not canonically) isomorphic to Pic(X) & Pic(Z).
2. A section Cl(Z) — CU(Y) of the split short exact sequence
0——Cl(X)——=Cl(Y) ——=Cl(Z) —=0

is given by sending the free generators [Z;], with T € A(1)\Ao(1), to [Y7].
Thus
cay)=rcix)e @ 2yl
TEA(1)\Ap(1)
3. The morphism given by the restriction to the closed orbits
o : Pic(Y) = [] Pic(O,)
oeA(l)

is injective and its image can be identified with the lattice

Ay ={h=(hlo)e J] Axc J[ A: hlo—hle’e Mn(ono)*
geA(l) aeA(l)

Vo, o €Al).}
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We will indicate with L, the line bundle whose image is h. Using the propo-
sition 3.1, we get that Pic(Y) is isomorphic to the group of equivariant line
bundles Picg(Y'). Given a line bundle Lj,, —h, is the character of the action of
T on the fibre over the T-stable point O, N Z.

Definition 6.1 Let h be in Ay. We will say that h is almost spherical if h|lo € Q
for each o € A(l). Moreover we will say that h is spherical if h|o is a spherical
weight for each o € A(l).

Remember that h|o is spherical if and only if it is dominant and it belongs to
Q.

We define also h¢ as the set (h|o) where o varies in A°(l) and —h|o is the
character of the action of T" on the fibre over the T-stable point xz, € Z¢. We
say that h¢ is (almost) spherical if h is. Notice that h¢ is almost spherical if
and only if h|o €  for each o € A¢(l). The proof of the following proposition
is trivial.

Proposition 6.1 If h is almost spherical, then we can think h as a (A, Ax) lin-
ear function and h¢ as a (A°, Ax) linear function. Moreover h¢ is W' invariant,
thus, if w € Wl and v € |A|, then h¢(w - v) = h(v).

Now we want to do some remarks on the h that are not almost spherical. Let
I+ s be the rank of Pic(X), we can order the simple roots of ¢ so that a1, ..., ay
are exceptional roots and Pic(X) is generated by the spherical weights and
by the fundamental weights wy,,, ..., wq, corresponding respectively to aq, ..., as.
Thus Pic(Y) = Pic(Z)®QO@;_ | Zw,,. Therefore, given any dominant weight
i in Ay, there are integers a; and a spherical weight ' such that p = u' +
> aiWa,. Observe that wa, — 0(wa,;) = Wa, + Wy(a,) 18 a spherical weight. Thus
we can suppose that the a; are positive up to exchange some «a; with 0(a;).
We will say that u is reqular if p' is reqular or, equivalently, if the restriction
of the line bundle L, to the closed orbit of X is ample. Given any h € Ay
there are integers a; and an almost spherical A-linear function h’ such that
h=h +3 awas, (given two maximal cones o and o', h|o — h|o’ is a integral
combination of restricted simple roots). If h|o is dominant (respectively regular)
for each o € A(l) then we can assume that the h'|c are dominant (respectively
regular). Moreover we can assume that the a; are positive up to exchange some
a; with 6(a;). We will say that h is convex, respectively strictly convex on
A, if b’ is. Moreover, given any h € Ay and o € A(l), h — h|o is a (A, Ax)
linear function and h® — hlo is a (A°, Ax) linear function. We will say by abuse
of notation that h is a (A, Ax)-linear function and h® is a (A°, Ax)-linear
Sfunction.

Let L be any line bundle on Y. We want to describe the space of sections
of L on Y. We will describe also the space of sections of the restriction of
L to Z, respectively to Z¢. Remember that H°(Y, L) is a multiplicity free
representation of G, because Y is a spherical variety (see proposition 3.2). In the
same way H°(Z, L|Z) and H°(Z¢, L|Z¢) are multiplicity-free T-representations
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because Z and Z°¢ have a dense T-orbit. We need a proposition that generalizes
proposition 3.4. Remember that Y, is the divisor associated to 7 € A(1).

Lemma 6.1 (Lemma 2.7 in [Bi]) Let d" be the A-linear function c§(Y;) as-
sociated to Yy. Then d”(o(1")) = =67/, in particular d” is Z-valued on |A|NN.
Moreover there is a unique, up to scalar, G-invariant section s, in H(Y, L4r)
whose divisor is Y.

Now we want to define sets in bijective correspondence with bases respec-
tively of HY(Y, L), H°(Z,L|Z) and H°(Z¢, L|Z¢).

Definition 6.2 Given h € Ay let

(Zh)={pe [ (hlo+(Mna))},
oceA(l)

N(zem ={ue () (lo+(Mna))
oceAc(l)

and
I(Y,h) =1I(Z,h) N AT.

Before we describe the sections of Lj, we want to rewrite the conditions for
a weight to belongs to II(Z, h), respectively to II(Z¢, h).

Lemma 6.2 Let A be a weight in Ax and let h be in Ay. Then the following
conditions are equivalent:

1. XeII(Z, h)
2. X > h as functions on |A]
S h=X+3 caq)ard” where ar is a positive integer for each T € A(1).

Lemma 6.3 Let A be a weight in Ax and let h be in T'y. Then the following
conditions are equivalent:

1. NeII(Z°h)
2. A > h° as functions on Ng

Notice that II(Y; h) is contained in Ax.

Theorem 6.2 (Theorem 3.4 in [Bi]) Let L, be a line bundle on Y. Then

‘L= @ V.

pETI(Y,h)

In particular H°(Y, Ly) # 0 if and only if II(Y, h) is not empty.

29



We want to give an idea of one build of H°(Y, Ly,). Let A € II(Y,h). Re-
member that H(X, L)) contains Vy¥. Moreover H°(X,L)) C H(Y,n*L)),
so HO(Y,n*Ly) contains a lowest weight vector v_, of weight —\. There
are positive constants a, such that h — A = ZTEA(l) ard” because of the
lemma 6.2. Thus v_, - [[s%" is a not-zero section of H°(Y, L;,) with weight
—A because the sections s, are G-invariant. Moreover v_y - [] s¢" is invari-
ant by the unipotent part of the opposite B~ of the fixed Borel group of G.
Thus H°(Y, L) 2 ®D,.cri(v,n) Vi - Because of the previous theorem we give the
following definition:

Definition 6.3 Given hin Ay and X inI1(Y, h), we write h = A+3__c 7 (1) ard”
for suitable a, € Z*. We define s"=* as the section [ s of HO(Y, Ly,_»).

More generally, let L and Ly, be two line bundles on Y such that h' > h,
namely h — h' = > x4y a-d” for positive a;. Then the product by the G-
invariant section [] s of Lj_j defines an injective G-equivariant linear map
from HO(Y, Ly/) to HO(Y, Ly,).

The following proposition is immediately implied by the proposition 4.15.
Indeed the T linearization of Lj, induces a T linearization of L.

Proposition 6.2 Let L; be a line bundle on'Y. Then

[ )
H(Z,Li|2)= €@ ©Cx",
WETL(Z,h)

where x* is a T-seminvariant section of weight —u. In particular H°(Z, Ly|2)
# 0 if and only if II(Z, h) is not empty.

H(z°, L2y = @ Cx*
peI(Z<,h)
In particular H°(Z¢, L,|Z¢) # 0 if and only if II(Z¢, h) is not empty.
Remark. Let m : Y — Y’ be an G-equivariant morphism between two
complete symmetric varieties and let L, be a line bundle on Y’. Then the
pullback 7*(Ly) is the line bundle on Y associated to h because of the last
point of the theorem 6.1. Moreover H°(Y,7*(Ly)) = H°(Y’, Lj,) because of the

lemma 6.2.
Now we want to explain some relations between the previous sets.

Corollary 6.1 (Corollary 4.1 in [Bi]) Given h € T'y, we have the equality

TI(Y, h) = I1(Z°, h) N A™.

In particular the sections of Ly, over Z¢ (or over Z) determine the sections

of Ly overY.
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Proof. Remember that TI(Y, h) = TI(Z,h) N AT, so it is sufficient to prove
that II(Y, h) C TI(Z°, h). Let p € II(Y, h), then there is a lowest weight section
s_, € HY(Y, Ly) of weight —u. It is U~ invariant, so it cannot vanish on Z¢,
for otherwise it would vanish on the dense open set U~ x Z¢ thus on Y. O

If h is almost spherical, we can say more.

Proposition 6.3 (Proposition 4.2 and theorem 4.2 in [Bi]) Ifh € Ay is
almost spherical, then

m(zeh) = |J w-T(Y,h).
wewl

Moreover the restriction map H°(Y, L) — H°(Z¢, L,|Z¢) is surjective.

We prove only the second part of the proposition. Let w - u € TI(Z¢, h) with
peII(Y,h). Let s € Vi C HO(Y, L) be a section of weight —w - 1, then we can
choose another basis of the root system such that s is a lowest weight vector.
Observe that we have already proved that a such section cannot vanish on Z°¢.

Remember that there is a polyhedron associated to every linearized line
bundle on a toric variety. We want to do the same with the line bundles on a
complete symmetric variety.

Definition 6.4 Let Y be a complete symmetric variety and let Ly be a line
bundle on'Y such that h is almost spherical i.e. hlo € Q for each o € A(l). We
define the polytope associated to h (and Ly ) as the polytope

P, ={m e Mg :m(v) > h¢(v) Yv € |A°|}.

Moreover we define the polyhedron associated to h as the polyhedral convex
set

Qn ={m € Mg : m(v) > h(v) Vv € |A|}.

Observe that P, = {m € Mgr : m(o(r)) > h%o(7)) V 7 € A°(1)} and
Qn ={m € Mg : m(o(1)) > h(o(7)) Y7 € A(1)}. P is the polytope associated
to h¢ in the correspondence of the theorem 4.2. Under such correspondence,
Qp, is associated to h (here we think h as a function h : Ng — R U {—00} such
that it has finite value exactly on |A|). Notice that II(Z¢, h) = P, N (M + vy),
(Z,h) = QN (M +wvp) and TI(Y, h) = P,NCT N (M +vp). (In the figure we
draw an example for the wonderful variety corresponding to an involution such
that the restricted root system has type As).
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We now study an example. Take the wonderful symmetric variety X and
let Ly be a line bundle on X. In this case p € II(X,\) if and only if A is
greater than p in the dominant order, i.e. A — p is a linear combination of the
roots with positive integral coefficients (theorem 8.3 in [CSV I]). Remember
that p € II(X, A) if and only if ;1 > A as functions on o(ey, ..., ¢;) (lemma 6.2).
Observe that in this case @y, is the polyhedron {m € Mg : m(e;) > A(e;)}. If
we write m = Y m;af and A = > \;af then the inequalities of @y, are m; < A;.
The proof of the following lemma is trivial.

Lemma 6.4 Let A and p be two weights in Q. Then the following conditions
are equivalent.

1. u > X as functions o(eq,...,e;) = R;

2. X = pin the dominant order, i.e. A\ — p =Y a;af where a; is a positive
integer for each i.

Thus we have shown that for the wonderful variety X the theorem 6.2 is a
restatement of the theorem 8.3 in [CSV I]. Given two weights X\ and p (in )
we will say that X > p if X — p has positive values everywhere on o(ey, ..., e;).

Part 11
Multiplication of sections

7 Ample line bundles and line bundles gener-
ated by global sections

Brion [Br] has found a characterization of the ample line bundles (respectively
the line bundles generated by global sections) on a spherical variety. Now we
want to find different conditions for a line bundle on a complete symmetric
variety to be generated by global sections, respectively to be ample.

Proposition 7.1 Let Ly be a line bundle on'Y. Then
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1. Ly, is generated by global sections if and only if h is conver and h|o is
dominant for each o € A(l).

2. Ly, is very ample if and only if h is strictly convex on A and hlo is a
reqular weight for each o € A(l).

8. Ly is ample if and only if it is very ample.

Proof. The necessity of the conditions in the first two points is easy to show.
Indeed, if Lj, is generated by global sections, then also the restriction of Lj, to Z
is generated by global sections, so h is convex. Moreover, L |O, is generated by
global sections for each closed orbit O,, so h|o is dominant for each o € A(l).
One can show the necessity of the condition in the second point in the same
way.

We want prove the sufficiency of the condition in the first point, but before
we will prove a lemma.

Lemma 7.1 If h is convex and h|o is dominant then the restriction map to the
closed orbit O,
H°(Y, Ly) = H°(Os., Ln|O)

18 surjective.

Proof. Since h|o is dominant, L,|O, is generated by global sections and
H°(O,, L1|O,) is the irreducible G-representation hjo Moreover h|o belongs
to II(Y, h) because of the convexity of h. Thus there is a lowest weight vector
o € HO(Y,Ly) of weight —h|o. Hence, because of the reductivity of G, it
is sufficient to prove that the restriction of ¢ to O, is not zero. Observe that
o = ¢'-]] 5% where ¢’ is a lowest weight vector of Vi C HO(Y, Ly);) and a; > 0
only if 7; is not contained in o. Remember that the line bundle on Y associated
to h|o is the pull-back of the line bundle on X associated to hloc and that
HO(Y, Lys) = HO(X, Ly),). Moreover ¢'|O, # 0 because of the observations
following the proposition 3.3. Hence ¢|O, # 0 because s,, vanishes exactly on
Y., for each ;. O

Now we can prove the sufficiency of the condition in the first point. Observe
that the locus of base points is closed and stable for the action of G. So, either
it is empty or it contains a closed orbit O,. Since h|o is dominant, Lj|O,
is generated by global sections. Hence, given any y € O, there is a section
5 € H°O,,Ly|Oy) such that 5(y) # 0. Thus, because of the previous lemma,
there is a section s € H(Y, L) such that its restriction to O, is 3, so s(y) # 0.
This is a contradiction.

Now we want to show the sufficiency of the condition in the second point
if h|o is a spherical weight for each o € A(l). First of all we want to show
that Lp|Z is very ample. We will prove a stronger result, namely that L|Z¢ is
very ample. This fact is equivalent to the strictly convexity of h¢ on A€. h¢ is
convex because of the first point of the proposition. Suppose by contradiction
that there are two distinct maximal cones o and ¢’ such that hlo = hlo’. We
can suppose that o belongs to A because of the symmetry of A° with respect to
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the Weyl group. Thus ¢’ cannot belong to A because h is strictly convex on A.
Let v be the locus of the points v such that h(v) = (h|o)(v). We know that - is
a convex cone by the corollary 4.9. By hypothesis there is an hyperplane H such
that it is secant to v and its intersection with o (e, ..., ¢;) is a face of o(eq, ..., €;).
There is an unique % such that e; does not belong to this hyperplane. For each j
let s; be the orthogonal reflection with respect to the hyperplane generated by
€1,...;€5,...,e;. There is a vector v € YN |A| such that also s;v belongs to v and
we can suppose that v belongs to the interior of |A|. Indeed there is a vector v’
that belongs to v N|A|N H because of the convexity of « (there is a vector of ~
in the interior of o, a fortiori in the interior of |A| and there is another vector
of v in the interior of ¢’ and a fortiori outside of |A]). So we can choose v in a
suitable neighborhood of v'.

H

By hypothesis we know that h¢(v) = h(v) = (h|o)(v) and that h°(s;v) =
(hlo)(siv) = (s; - (h|o))(v), so (hlo)(v) = (s;(h|o))(v) because of the invariance
of h¢ by W'. Observe that h|o — s; - h|o is a multiple of o because of the
definition of s;. It is a strictly positive multiple of o because h|o is a regular
weight (this implies that hlo is a strongly dominant weight with respect to the
restricted root system). Thus ((h|o) — s;(h|o))(v) is strictly positive because v
is in the interior of |Al; this is a contradiction. Observe that we have proved a
more general statement. Let Z be a possibly singular toric variety proper over
Al and let Lje be a line bundle on Z¢ such that A€ is invariant for the action
of WL. If h¢|o is a regular weight for each o € A(l), h¢ is a convex function
and h is strictly convex on the fan of Z, then L. is ample. Moreover one can
easily prove that h® is convex if its restriction to o(eq, ..., €;) is convex and h¢|o
is a dominant weight for each o € A(l). Indeed h¢ defines a line bundle on the
completion (Z')¢ of a resolution of singularities Z’ of Z and this line bundle is
generated by global sections by the first part of the proposition. We will use
this facts to prove the proposition 4.8.

Since Ly is generated by global sections, we have an equivariant morphism
0 :Y — P(V) with V.= HYY,L)*. Let U be the locus where ¢ is not an
immersion. We could try to prove this point like the previous one, namely
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using the fact that the restriction of Ly to Z, respectively to any closed orbit is
very ample. Instead we will use the stronger fact that L;|Z¢ is ample and the
proposition 6.3, namely the surjectivity of the restriction of the sections from Y
to Z¢. Observe that the restriction of the sections to Z is clearly not surjective.
Now we want to show that U is stable and closed in the Euclidean topology.
U is the union of two loci: the locus U; of the points where the differential of ¢
is not injective and the locus Uy of the points where ¢ is not injective. U; and
U, are G-stable because ¢ is equivariant. U; is closed because it is the locus of
the zeroes of the jacobian of ¢. Now we want to prove that the closure of Us is
contained in U. Let {x,} be any sequence in Uy and suppose that it converges
to x € Y. We have to show that = belongs to U. By hypothesis there is a
sequence {y,} in Uy such that z, # y, and ¢(x,) = ¢(y,) for each n. Since
Y is compact, we can suppose, up to take sub-sequences, that {y,} has limit
y in Y. Moreover we have p(z) = lim,—oo(p(xn)) = limp—oo(©(yn)) = ©(y)
because of the continuity of ¢. If x # y then x € U,. Hence we can suppose
that x = y. Suppose by contradiction that = does not belong to U, so it does
not belong to U;. Because of the Dini theorem there is a open neighborhood
W of x such that ¢|W is a diffecomorphism onto the image ¢(W). This is a
contradiction because there is an integer ng such that z, and y, belong to W
for each n > ng. Observe that if U is empty then z must be different from .
Suppose that U is not empty. First suppose that U; is not empty, so it
contains a closed orbit O,. Let x, be the intersection of Z and O,, so z, is

a point fixed by T. The map HY(Z¢ L,|Z¢)* —— H°(Y,L;)* dual to the
restriction map is injective because of the proposition 6.3. Thus we have a
commutative diagram

Y ——— % S P(H(Y, L))

]

ze L P(HO(Z°, Ly|Z°)") .

¢’ is an immersion because h° is strictly convex on A€ so ¢(Z°) is isomorphic
to Z¢. Let [h] be the image ¢(H) of H € G/H and let [v},] be the image of 2.
Observe that [vy|,] is the class of a highest weight vector of Vj,, € H(Y, Ly)*.
We can write HO(Y, Lj,)* = Vije © V' for a suitable representation V'. We can
choose h = vy, + D v; where the v; are weight vectors with weights contained
in hlo + M. Indeed the weights of the highest weight vectors of HO(Y, L)*
are contained in h|o + M because of the theorem 6.2. The other weight are
contained in hlo + M because they are contained in II(Y,h) + €D e, Z"(—a)

and they are special (¢ - v; = v; for each t € T?). Let A be the affine open set
of P(H®(Y, Ly,)*) where a lowest weight vector s € H°(Y, Ly,) of weight —h|o is
not zero, i.e. A= U)o + V,:‘a © V'’ where V|, = Cvpjo @ Vfila in a T-equivariant
way. The intersection A of A and »(Y) is B~ stable. Moreover the intersection
of p(Z°) and A is ¢(U,), in particular ¢(z,) belongs to A. Indeed the set of
points {x € Z¢: s(x) = 0} is the union of the divisor Z¢ for 7 ¢ o.
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We want to study the restriction of ¢ to U™ - U,, where U~ is the unipo-
tent group whose Lie algebra is P, _ of Ga- Every irreducible component of

HO(Y, Ly)* is isomorphic to its dual in a 6 linear way (see lemma 1.6 [CSV I]),
so HO(Y, Ly)* is isomorphic to its dual in a € linear way. Thus there is a
not degenerate bilinear form (,) on H(Y, L;)* with following properties: 1)
given any two distinct irreducible component V; and V, of HY(Y, Ly)*, they
are orthogonal; 2) (gu,v) = (u,0(g~1)v) for each g € G, u,v € H°(Y,Ly,)*; 3)
(zu,v) = (u, —0(x)v) for each x € g, u,v € H°(Y, Ly)*. Let Y’ be the tangent
space in vy,|, to the orbit U~ vy, and let T the space generated by Y’ and vy,
One can show that the restriction of (, ) to T is non-degenerate, T is stable
under P and the orthogonal Y+ is stable under 6(P) (see lemma 2.4 [CSV TJ).
A fundamental part of the proof is the following lemma:

Lemma 7.2 (see lemma 2.5 in [CSV I]) U, C vy, + T+,

Proof. Remember that h = v, + > v; where the weight of v; belongs
to h|o 4+ M for each i. We have to show that each v; belongs to Y+. Given
weight vectors vy, vo € HO(Y, Ly )* with weights respectively A; and Ay, we have
)\1(15)(’[]1#)2) = (t’l)l,'l)g) = (1)1,9(15’1)1)2) = —9()\2)(15)(7)1,1)2). Thus )\1 = —9()\2)
if (vi,v2) # 0. So it is sufficient to study the v; contained in Vj|, and with
weight h|o — 3" n;af equal to h|o — « for a suitable a € 7. Notice that in this
case the n; are all positive. Let h’ be the orthogonal projection of h to V|,
and let v;, a such vector, we have (x, + 0(zo))h’ = 0 because h is H stable.
(o + 0(za))h — 240, is a sum of weight vectors with weights different from
hlo, so zqv;, = 0. Given weight vectors vi,vy € V3, with weights respectively
A1 and Ay, we have Ai(t)(v1,v2) = —0(X\2)(¢)(v1,v2). Thus Ay = —0(A2) if
(v1,v2) # 0, so the only possibly non zero scalar product between v;, and
a vector of the basis of T is the one with zg(4)vy|s. In this case we have
(To(0)Uh|os Vig) = —(Vh|os O(To(a))Viy) = 0. Indeed O(xq(,)) is a multiple of z,.
O

Let 7 be the projection of H(Z¢, Lj,|Z¢)* onto H(Z¢, L,|Z¢)*/Y+. U~ C
O(P), so U~ acts on H°(Z¢, Ly,|Z¢)* /Y and the projection is equivariant. The
affine hyperplane m(A) in HO(Z¢, Ly|Z¢)* /T is stable by the action of U~.
We have the following lemma.

Lemma 7.3 (see lemma 2.6 in [CSV 1]) The map j : U~ — w(A) defined
by j(u) = m(uvy,) is an U™ equivariant isomorphism.

Proof. Y’ is the tangent space of U~ wp|, at vy, S0 j is smooth at the iden-
tity. Thus j is everywhere smooth because it is U~ equivariant. j is an open
immersion because dimU~ = dimn(A) and U~ has not finite subgroups. Now
it is sufficient to observe that an open immersion between two affine space of
the same dimension is an isomorphism. [

Thus the tangent space to U, at vy, is orthogonal to T and the differential
of ¢ is injective in x,. Hence we have proved that U; = (), so Uy is equal to U
and it is closed.
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Now suppose that Us is not empty, so it contains a closed orbit O,. Given
x € O, there is y # x such that p(z) = ¢(y). We want to show that we can
choose x and y such that also y belongs to a closed orbit O,/. First of all, we
can suppose that y belongs to Z. Indeed there is g € G such that gy belongs
to Z. Moreover gz € O, gr # gy and ¢(gr) = ¢(gy) = gp(r). Now observe
that there is an one parameter subgroup 7 of T such that ya = lim:—07v(t)gy
is a point of Z fixed by T, so yo belongs to a closed orbit (see the last point of
the proposition 4.1). Moreover xo = lim;—07(t)gz belongs to O, and p(x2) =
©(y2). By the previous part of the proof x4 is different by ys.

The closed orbits O, and O, are different because the restriction of L to O,
is very ample. We known that H°(O,, L|O,) = Vj|o- Because of the lemma 7.1
there is a global section s, lowest weight vector of weight —h|o, which does not
vanish on O,. Up to a translation we can suppose that s(x) # 0. Because h is
strictly convex on A, s vanishes on the divisor Z, of Z associated to a cone 7
contained in o’ (h|o’ — h|o € & — o+). Therefore s vanishes on the divisor Y, of
Y because s is U~ invariant. In particular s vanishes on O,/, so p(z) # ¢(y),
a contradiction.

Finally we can consider the exceptional case. First of all we want to recall
some facts. Let Y be a complete exceptional symmetric variety and let X be
the corresponding wonderful variety. We have chosen an order of the simple
roots of ¢ such that aq, ..., as are exceptional roots with the following property:
Pic(X) is generated by the spherical weights and by the fundamental weights
Way s ---» Wa, corresponding respectively to a, ..., as. Moreover, given a piecewise
function h in Ay such that hlo is dominant for each o € A(l), there are integers
a; and a spherical piecewise linear function A’ such that h = A’ + > a;w,,. We
can suppose that a; is positive up to exchange o; with 8(a;).

If L, satisfies the hypotheses of the second point, then Ly is very ample
because h' is spherical. Moreover, Lj,_; is generated by global sections because
h —h' =" a;w,,. Thus Ly, is the product of a very ample bundle Ly and a
bundle Lj_p, generated by global sections, so it is very ample.

The third point is obvious. [

Now, we can prove that a S-linearizated line bundle L;, on Z is ample if and
only if h is strictly convex on A.

Proposition 4.8 Suppose that Z is a (possibly singular) toric variety proper
over A" and let h € SF(A,M). Then Ly, is ample if and only if h is strictly
conver on A. If Z is smooth then Ly, is ample if and only if it is very ample.

Proof. Suppose that Ly is ample, then there is an integer n such that L,
is very ample, so L, is generated by global sections and nh is convex. Hence
L,y is the pullback of a line bundle generated by global sections on a variety
Z' dominated by Z with the property that the fan A’ of Z’ has the same
support of the fan of Z and nh is strictly convex on A’. (Notice that if a cone
is contained in o(eq,...,e;) then it contains no line). Let ¢ : Z — P(V) be
an immersion such that L, = ¢*O(1), then ¢ factorizes through Z’ because
H°(Z' L) = H°(Z,Ly). Since ¢ is an immersion, Z' must be Z and nh is
strictly convex on A, so h is strictly convex on A. To prove the viceversa will
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be sufficient to prove the following lemma.

Lemma 7.4 Let Z be is a (possibly singular) toric variety proper over Al and
let L be a line bundle on Z generated by global sections. Given any homogeneous
symmetric variety G/H of rank 1, let Z¢ be the complete toric variety associated
to Z. Then there is a linearized line bundle Lp. on Z¢ generated by global
sections and such that the restriction of Lye to Z is L as line bundle. Moreover
we can suppose that: 1) h¢ is invariant by W; 2) h¢lo is a regular weight for
each o € A(l).

We can suppose that Z is smooth. Otherwise there is a resolution of singu-
larities Z' of Z. Moreover if Lj. is a linearized line bundle on (Z’)¢ such that
h¢ is W1 invariant and L}.|Z’ is the pullback of L, then L}. is the pullback of
the line bundle Lje on Z¢. Now it is sufficient to prove the following lemma.

Lemma 7.5 Let Z be any smooth toric variety proper over Al and let L be
any line bundle on Z generated by global sections (respectively any ample line
bundle on Z). Given any homogeneous symmetric variety G/H of rank 1, let Y
be the complete symmetric variety associated to Z. Then there is a line bundle
L' on'Y generated by global sections (respectively an ample line bundle L' on
Y ) whose restriction to Z is L. Moreover we can suppose that the restriction of
L' to any closed orbit O, of Y is ample even if L is not ample.

Proof. By theorem 6.1 there is a line bundle L; on Y whose restriction to Z
is L, but it may have base points. Moreover, we can suppose that h is almost
spherical. Let A be a regular spherical weight. Observe that the restriction of
Ly to Z is trivial. Moreover there is a positive integer n such that (h + n\)|o
is a regular weight for each o € A(l), so L' = Ly, satisfies ours requests. .

Observe that the line bundle L’ is not unique unless Z is a point. We now
can conclude the proof the proposition 4.8. Let h be a strictly convex function
on A, we can suppose, up to exchange the linearization of Ly, that L. is ample
on Z°. Indeed we can suppose by the lemma 7.4 that h¢ is W' invariant and
that h¢|o is a regular weight for each o € A(l). Thus h° is strictly convex on A°
by the proof of the proposition 7.1. The last point of the proposition is implied
by the Demazure theorem. [J

Remark. We have proved that the line bundle Ly of the lemma 7.4 is ample
if L is ample.

Theorem 7.1 LetY be a complete symmetric variety. The following conditions
are equivalent:

1. 'Y is projective;
2. Z€ is projective;

3. Z is quasiprojective.
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Proof. 1t is sufficient to prove that the third condition implies the first one.
If Z is quasiprojective then there is ample line bundle L on Z. Moreover L is
the restriction of an ample line bundle on Y because of the lemma 7.5, so Y is
projective. [J

Now we want to reformulate the proposition 7.1 using h¢ instead of h. It
is immediately implied from proposition 1.5 that a spherical weight is regular
if and only if it is a strongly dominant weight for the restricted root system.
Given a spherical A-linear function h we can easily show that h is convex if and
only if h¢ is convex. Indeed if h is convex then the corresponding line bundle
Ly on Y is generated by global sections. In particular its restriction to Z¢ is
generated by global sections, thus A€ is convex. The viceversa is trivial. We
have already proved that, given h such that h|o is a regular spherical weight
for each o € A(l), h is strictly convex on A if and only if h¢ is strictly convex
on A¢. We want to show that if h° is an almost spherical convex A€ linear
function then A is a spherical A-linear function. If A€ is also strictly convex on
A°, then h|o is regular for each o € A(l). Given o € A(l), there is an element
w € W such that w - h|o is a dominant weight. Observe that hlo —w - h|o is a
function with positive values on |A|. Moreover w - h|o is the restriction of h¢ to
w™! - 0. Let v be a vector in the interior of o, so it is a fortiori in the interior
of |A|. Because of the convexity of h¢, we have (w - h|o)(v) > h(v) = (h|o)(v),
so (w - hlo)(v) = (h|o)(v). We have w - hlo = h|o because v is a vector inside
the Weyl chamber |A|. Thus h|o is dominant. If A is strictly dominant on A€,
then h|o is different from w - h|o for each w € W', so hlo is regular. We have
proved the following proposition.

Proposition 7.2 Let h be an almost spherical A-linear function, then

1. h¢ is convex on A° if and only if h is convex on A and h|o is dominant
for each o € A(l).

2. h¢ is strictly convex on A° if and only if h is strictly convex on A and h|o
is a reqular weight for each o € A(l).

8 Reduction to the complete toric variety

In the following we will always suppose that h is an almost spherical (A, Ax)
linear function, unless we will explicitly say otherwise. We start to study the
multiplication of sections of two line bundles on Y. First of all, we want to
show that this problem is equivalent to the similar problem on the complete
toric variety Z¢ associated to Y. Let Lj and Ly be any two line bundles on Y
generated by global sections. Let

My, : HO(Y, L) @ H(Y, L) — H°(Y, Ly k)

be the product of sections on Y and let

mj, p + HO(Z°, Ly| Z¢) ® H%(Z°, L,| Z¢) — H°(Z°, Lp1x|2°)
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be the product of sections of the restrictions to Z¢ of these line bundles.

Theorem 8.1 Suppose that h and k are two convex spherical A-linear function.
Then My is surjective if and only if my, ;. is surjective.

Proof. The necessity of the condition is implied by the surjectivity of the
restriction maps from Y to Z¢. Indeed if ¢ : Z¢ — Y is the canonic inclusion
then mj ; o (i* ®4*) = i* o Mj, .

My, 1,
HO(Y,Ly) © H(Y, Ly) — H(Y, Lp11)
i@ L
M, 1

HOY(Z¢, Ly|ze) ® HY(Z¢, Ly z¢)  —>  H(Z° Lpik|ze)

Now suppose that mj, ;. is surjective. It is sufficient to show that the image
of Mp 1 contains a basis of semi-invariant sections. If h and £ are linear then
they are the pullbacks of two line bundles generated by global sections on the
wonderful variety X, so M}, is surjective by the theorem 3.2. In general,
given v € II(Y,h + k) there are A € II(Z° h) and p € II(Z° k) such that
v = A+ p. Moreover there are elements w; and ws in the Weyl group W' such
that wy - A and ws - p are dominant weights. Observe that v > wy - A+ wa -
on |A]. Moreover wy - A > h and ws - u > k because h® and k¢ are convex
and invariant for the action of W'. Thus s"~*tAHO(Y, L,,.») € H(Y, L) and
sk=wzt HO(Y, Lyy,.,.) C HO(Y, Lg) (remember that if h —wy - A = > reaq ard”
then s"~v1* € HO(Y, Lj_y,.») is the section [ s, where the s, € H(Y, Lg-)
are the sections of the lemma 6.1). Let ¢ € HO(Y, Ly, rtw,.u) be a lowest
weight vector of weight —v. We know that ¢ is contained in Im My, . wy-p-
Thus shTr=wi-A=w2't ig contained in s"HE=wrA=w2 kI N,y o © Im My,
and it is not zero. O

We can prove the following proposition without assuming the surjectivity of
mj, - Given two convex spherical A-linear function, say h and k, let II(Y, h, k)
be the set of the weights of the lowest weight vectors contained in ImMy, .

Proposition 8.1 II(Y, h, k) is saturated with respect to the dominant order of
the roots in ¢.

Proof. TI(Y, h + k) is saturated because —ca; has positive values on |A| for
each ¢ = 1,...,1. Indeed, given a spherical weight ;1 dominated by a spherical
weight A in II(Y, h + k) then u = A — > a;af where a; is a positive integer for
each i. So u > X > h and u belongs to II(Y, h + k).

Given v € II(Y, h, k) there are two weights A € II(Y, h) and p € I(Y, k) such
that v = A + p. (By hypothesis there are sections s} € HO(Y, L) and sections
st € HO(Y,Ly) such that s, := M (Y s% ® sb) is a semi-invariant section
of weight v. We define A as the weight of s{ and p as the weight of sg for a
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suitable j). Moreover there are element wy, ws in the Weyl group W' such that
wi - A and ws - p are dominant weights. Observe that v > wy - A + ws - p on
|Al, so v e [[(Y,wy - A+ wa - ). Let v/ be a spherical weight dominated by v,
then v/ € TI(Y, w1 - A + wa - ) because this set is saturated. Let ¢ be a lowest
weight vector of weight 1/. Because of the surjectivity of My, . w,., We have
€ shthmwrd=wa i Iy VL g © M, g O

9 Reduction to the open toric variety

In this section we want to show that, given two ample line bundles, the product
of sections on Z¢ is surjective if and only if the product of sections on Z is
surjective. Moreover we will study the relation between the sections of L|Z and
the sections of L|Z¢ for any ample line bundle L on Y. Remember that we have
fixed a 0 € A(l) and we have set vj, = h|o for each h € SF(A,Ax). Moreover
[I(Z,h) = Qn N (M 4 vy) and II(Z¢, h) = P, N (M + vp,).

Now we want to prove some relations between P, and ), but before we
have to define some notations. Recall that {e1,...,e;} is the basis of Ng dual
to the basis {f1,..., fi} of Mr. We have to define a second basis {g1, ..., g1} of
Mg because the fundamental Weyl chamber C'T is more easily defined using
the basis the fundamental weights than the basis of the simple roots. g; is a
positive multiple of —w;. Remember that there are positive constants a; such
a;w; is the i-th fundamental weight of ¢. If ¢ is reduced we define g; as —a;w;,
while if the type of ¢ is BC; then —g; is the i-th fundamental weight of the
root system of type B; contained in q~5 In general —g; is the i-th fundamental
weight of the unique reduced root system contained in ¢ which share a basis
with ¢. ¢1,..., g1 generate a lattice which contains M. Let {gi1,...,q:} be the
dual basis of {g1,...,q:}. We will seldom use this last basis. Given a point p
in Mg we will use the following notations: p = > x;f; = >_4;9;, using the
"normal” coordinates for the basis {f1, ..., fi} and the ”dotted” coordinates for
the basis {g1,...,gi}. (In the following figures we consider the case in which the
restricted root system is of type Ay and Z is A?).

f

92
g1
A

f1

Observe that CT = {3 4;9; : 4; < 0Vi}, namely C* = o(—g1, ..., —q)-

The equations of @, are of the form > b;z; > b where the b; are positive
constants. So, given any m € Qj, we have m + @R (f;) C Qp, ie. Q is
stable by translation with respect to vectors in o(f1, ..., f1).
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Let H; be the hyperplane of Mg generated by ¢1, ..., g, ..., g1, so the inter-
section of H; and Ct is a Weyl wall. Let s; be the orthogonal reflection with
respect to H;. Observe that, if P, contains a point p, then it contains all the
translates of p by W'. Moreover, given any point p € P,, Pj, contains the
orthogonal projection %(p + s;p) of p to Hj for each j. Because h® is strictly
convex on A€, there is no vertex of P, contained in H;. Indeed, given a vertex
hlo of Py, then s; - hlo is different from h|o.

Proposition 9.1 Let h be a spherical A-linear function such that h€ is strictly
convezr on A°. Then Q,NCT =P, NC"T and Qn, = P, NCT +0o(f1,..., f1)-

ct A
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Remember that the function associated to a polyhedron K is the piecewise
linear function hg such that hg(n) := inf{m(n);m € K} for each n € Ng, so
hg has values in RU—o0. Moreover it has always finite values if and only if K is
compact. There is a decomposition in convex cones of the convex set {n € Ng :
hx(n) € R} such that there is an one-to-one correspondence between the cones
of such decomposition and the faces of K. In particular there is an one-to-one
correspondence between the 1-dimensional cones of such decomposition and the
(I—1)-dimensional faces of K. This faces are in one-to-one correspondence with
the semi-spaces that define K. Given a such cone 7 the associated semi-space
is {m € Mg : m(o(7)) > hx(o(7))}.

First of all we will show that P, N CT = @, N CT. The function hg,
associated to @y, is equal to h on |A] and it has value —oo on the complementary
set. The semi-spaces defining Q, N Ct are {m € Mg : m(o(7)) > h(o(7))} for
each 7 € A(1) and {m € Mg : m(g;) < 0} for each i. It is evident that
P,NnCT C QN CT, so it is sufficient to show that Q, N CT C P,. As a
matter of fact it is sufficient to show that Q, N CT N Mq C P, because P,
is closed. The semi-spaces defining Pj, are {m € Mg : m(o(7)) > h%(o(7))}
for each 7 € A°(1). Given any m € Q, N CT U Mg and any 7 € A°(1)
we have to show that m(o(7)) > h¢(o(7)). Because of the symmetry of A€
there are w € W' and 7/ € A(1) such that o(7) = w - o(7"). Observe that

w~!-m —m is a linear combination 3 ¢;f; of the f; with positive coefficients,

so m(o(r) = m(w - o(r)) = (wt-m)(e(r)) = m(e(r)) + X cifile(r')) >
m(o(r')) = hlo(r')) = he(o(r)).

Now we want to show that Qn, = P,NCT +o(f1, ..., fi). The decomposition
in cones of Ngr associated to hp, nc+ has 1-dimensional cones {c(§1), ..., o(g1) }U
A(1). hp,nc+ has finite values on all Ng, it is equal to h on |A| and vanishes
on the vectors gy, ..., §;. The function associated to o(f1,..., fi) vanishes on |A|
and has value —oo on the complementary set. Thus their sum is the function
associated to @p. So the claim follows by the theorem 4.2, namely by the fact
that hg + hqg' = hgyq for each polyhedrons @ and Q’.
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|
We can prove a stronger statement on the ”rational” points of @)y, and Pj,.

Proposition 9.2 Let h be a spherical A-linear function such that h¢ is strictly
convex on A°. Then QN (v, + M) = P,NCT N (v, + M) + 22:1 Z" ;.

Remark Observe that H°(Z, L|Z) is a Oz:(Z¢)-module through the restric-
tion map Oz:(Z¢) — Oz(Z) and H°(Z¢,L|Z°) is a Oz:(Z¢)-submodule of
H°(Z,L|Z). This proposition imply that H°(Z, L|Z) is generated by H°(Z¢, L|Z°¢)
as an Oz(Z)-module.

Proof. We need some lemmas. Recall that s; is the orthogonal reflection
with respect to H;. Observe that f; is orthogonal to H; and let ﬁ = %(fi-i—sifj)

for each i # j. Observe that f; € H; for each i # j. Moreover {ﬁ}i;ﬁj is a basis
of H;. —f; and —f; are distinct simple restricted roots, so they form an obtuse
angle. Hence ﬁ = fi + d;f; for a suitable positive integer d;. We have the
following easy consequence of the proposition 9.1.

Lemma 9.1 Q,NH; =P, NH;NC* + D, ; R*f.

Proof. Let p = p' + Y rifi € QN H; with p’ € P, N C" and r; positive
constants. Then p = 2(p' + s;p') + Y ris(f; + s;fi). Hence is sufficient to
observe that % (p’ + s;p’) belongs to P, N H; N C™T (it is the projection of p’ to
H;). O

Let R = {p+af; |p€ Q,NH; and —1/2 < a < 1/2}. First of all we
want to describe the conditions for a point m € Mg to belong to R;. Fixed
any j, we define another basis u1, ..., u; of Mg such that u; = f; and u; = g; if
i # j. The conditions for a point p = " y,u; to belong to Q, N H; are y; =0
plus conditions of the form ), 2; iy = n. Thus the conditions for a point
p =Y y;u; to belong to R; are the inequalities of the form Zi# n;y; > n that
define @, N H; plus the inequalities —1/2 < y; < 1/2. A fundamental part of
the proof is the following lemma on the R;. This lemma is the unique part of
the proof in which we will use the strictly convexity of h€.

Lemma 9.2 R; is contained in Q for each j.
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Proof. Observe that it is sufficient to show that P,NH,;NCt+[—1/2,1/2]f; C
@1, because of the previous lemma.

Because of the convexity of @y, it is sufficient to show that @} contains the
points p’ & (1/2) f; for each vertex p’ of P, N Hj.
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Observe that the vertices of P, N H; are orthogonal projections to H; of
suitable vertices of P,. Indeed let p’ a vertex of P, N H; and let p be the
endpoint different by p’ of the segment intersection of P, with the semi-line
outgoing from p’ and parallel to f;. If p is not a vertex of Pj, then p is an
interior point of a segment I contained in P,. Thus p’ is an interior point of the
projection of I to H; and this segment is contained in P}, by the symmetry of
P, a contradiction.

If ¢ +af; with ¢ € Q, N H; belongs to M +vy,, then s;(¢' +af;) = ¢ —afj,
so 2a € Z. Observe that if ¢ is a vertex of P, N Hj, then there is a constant a
such that ¢+af; is a vertex of Py, so it is sufficient to show that the intersection
of P, with the line parallel to f; and passing through any vertex of P, N H;
is not a point. If there is a vertex p of P, N H; without such property, then
p is vertex of P, belonging to H;, a contradiction. Indeed there is no segment
contained in P, that contains p as an internal point. (If I is a such segment
then the projection to H; of I would be contained in P, N H; and would contain
P, so it has to be p because p is a vertex of P, N H;. Hence I is parallel to f;).
O

Now, we can conclude the proof of the proposition 9.2 (look to the following
figure). Let p be a point contained in @ N (M + vp) and suppose that p =
Saifi = 4595 If #; <0 for each 4, then p € P, N CT. Otherwise there is an
index j such that &; > 0. We know that p = p’+ 3 a, f; where p’ € PNC™ and
the a; are positive constants, but the a; may not be integers. If ; > 2 then a; >
1. Indeed the j-th coordinate of f; with respect to {g1,..., g1} is 2 if i = j and it
is negative otherwise. Thus the point p —[a;]f; = P’ + (a; — [a;]) f; + 32125 aifi
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belongs to Qp N (M + vp) and it has j-th coordinate with respect to {g1, ..., g}
strictly less than 2 ([a,] is the integral part of a;). Moreover, this coordinate
can be at most 1 because p — [a;]f; is a weight. We can suppose that it is
exactly 1, so p — [a;]f; — (1/2) f; belongs to Q5 N H; and it is the projection of
p — la;]f; to H;. Thus p — [a;]f; belong to R;, so also p — [a;]f; — f; belongs
to R; and its j-th coordinate with respect to {¢1,..., ¢/} is negative. Moreover
p—(p—laj]lf; — f;) = ([a;] + 1) f; is a linear combination of the f; with positive
integral coefficients. If there is an index k such that p — [a;]f; — f; has negative
k-th coordinate with respect to {g1, ..., g}, then we reiterate the process. The
process has to end in a finite number of steps because @y, is contained in the
semi-space {>_ x; > h(e1 + ... +¢)}. O

Now we want to show a combinatorial condition equivalent to the suriectivity
of the product of sections.

Lemma 9.3 Let h and k be two spherical A-linear functions such that h® and
k¢ are strictly convex on A°. Then my,j, is surjective if and only

Qn N (vp + M)+ Qr N (v + M) = Qnyk N (Vnyr + M).
Moreover my, ;. is surjective if and only
PN (vp+ M)+ PN (vp + M) = Pryg N (Vpar + M).

Proof. We prove only the first part of lemma because the proof of the second
one is very similar. Suppose that my, j is surjective and let v € Qp4x N (Vh4k +
M). Hence there is a seminvariant section s € H(Z, Ly 41| Z) of weight v and
there are seminvariant sections t; € H(Z, L,|Z) and u; € H°(Z, Lx|Z) such
that mp s (O" ¢ ® u;) = s. Let A; be the weight of ¢; and let p; be the weight
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of u;, we can suppose that A\; + p1 = v up to exchange the indices. Moreover
A € QN (v, + M) and py € Qi N (v + M). Viceversa suppose that

Qrnn(vp+ M)+ QrN (v + M) = Qpir N (Vpyr + M).

It sufficient to prove that the image of myj ; contains a basis of seminvariant
sections. Given any seminvariant section s of weight v, there are A € Qp, N (vy, +
M) and p € Qi N (vp + M) such that A+ p = v. Let t € H°(Z,L,|Z) be a
seminvariant section of weight A and let u € H°(Z, L;|Z) be a seminvariant
section of weight p, we known that my, 1 (t ® u) is a not zero multiple of s. O
Now we can prove the most important theorem on the product of sections.

Theorem 9.1 Let h and k be two spherical A-linear functions such that h¢
and k¢ are strictly convex on A°. Then my, i is surjectie if and only if mj, ;. is
surjective.

We have shown that the theorem is equivalent to the following more combi-
natorial statement:

QrnN(vp+ M)+ QrN(vp+ M) =Qpir N (Vhyr + M)
if and only if

Phﬂ(vh+M)+Pkﬁ(vk+M) :Ph+kﬁ(vh+k+M).

Proof. The sufficiency of the condition is easy. Given a point p € Qp4x N
(M + vp1) we know that p =p’ + > ¢; f; where p’ € Phyyy NCT N (M + vpig)
and the ¢; are positive integers. Moreover there are p, € P, N (M + vy) and
pr € P, N (M + vg) such that p’ = pp + pi. Thus p = (pp, + > ¢ fi) + pr and
pn + > ¢ fi belongs to Qp N (M + vp,).

Suppose now that Qp N (v + M)+ QrN (vk+ M) = Qrtr N (Vhtr +M). Let
m =Y zfi = 2g; be apoint in Prix N (M 4 vp4+r). We can suppose that
m belongs to C* by the symmetry of the polytopes P, and P,. By hypothesis
there are two points pj, € Qr N (M + vp) and ¢ € Q N (M + vi) such that
b + gb = m. First, we will show that we can choose p{, and ¢, such that pj
belongs to Pj,. Indeed we know that p{, = po +w where pj, € P,NCT N (M +vy,)
and w € @ Z7 fi, so m = po + qo where qq := g} +w belongs to Qx N (M + vg).

Proceeding as in the proposition 9.2, we can define a sequence of pairs of
points {(p:, ¢;)}i=o,....» With the following properties: 1) p; € Qp N (M + vy)
for each i; 2) ¢; € Qr N (M + vy) for each i; 3) m = p; + ¢; for each i; 4)
(Po; qo) is as before; 5) (pit1,qi+1) = (pi + fj., ¢ — fj,) for a suitable j; and 6)
qr € Py. Indeed we can define the {g¢;} as in the proposition 9.2 and then we
set p; = m — ¢;. Now it is sufficient to show by induction that we can choose
the indices j; so that p; belongs to Pj for each i. We known that pg € Pj.
Now suppose that p, belongs to P, by inductive hypothesis. Suppose that
Pn = Y xifi = > @igi and ¢, = Y uifi = > 9igi- If ¢u € Pr we define
r = n and there is nothing to prove. Otherwise there is an index j, such that
Y5, > 0 and it is sufficient to prove that p, + f;, belongs to P,. Observe that
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—&i, = — (&, +9i;) +¥i;, > 0, 50 —i;; > 1 because it is an integer. Moreover
8juPn = Pn— (2 <Pn; fi, > [ < fins fi. >) 5. = Pn — 25, f5, belongs to Py. Py
is convex and it contains the points p,, and s;, pn, so it contains p, + f;,. Thus
we can choose pp1 =pn + f;,. O

Remark. 1) The previous theorem is valid with the weaker hypotheses that h,
k are convex and that h|o, k|o are regular spherical weights for each o € A(l).
Indeed these hypotheses implies that no vertex of P}, (respectively of Py) is
contained in a Weyl wall.

2) Suppose that h = k is convex and that h|o is a regular spherical weights
for each o € A(l). By the corollary 4.2 we have reduced ourselves to study the
product of sections of an ample line bundle on a possibly singular toric variety
Z' over A'. This suggests to consider only ample line bundles.

3) It is sufficient to consider the case in which hlo and k|o belongs to the
lattice of roots for each o € A(l). Indeed if f is any spherical convex A-linear
function, then the weights f|o are all contained in the orbit vy + M of the
lattice © with respect to the action of M. For each f € SF(A,Ax) let ay be a
positive integer such that (ay + 1)vs belongs to the lattice M generated by the
restricted roots. Recall that h|o and k|o are regular for each o € A(l). Then
' = h+apvy, and k' = k+ayvy, are convex spherical A-linear function such that
h'|o and k'|o are regular weights contained in M for each o € A(l). Moreover
B’ (respectively k') is strictly convex on A if and only if h (respectively k) is
strictly convex on A. Because of the previous theorem, the surjectivity of My, j
is equivalent to the surjectivity of Mj . Indeed the restriction of L,, to Z is
trivial for each f.

4) Because of the previous proposition we can reduce ourselves to consider
only completions of [[ PSL(2).

10 Stable subvarieties

In some case we can reduce the study of the product of sections of two ample
line bundles Lj, and L on Z to the study of the product of sections of the
restrictions of these line bundles to stable closed subvarieties. Indeed we will
prove the following fact. Let s be a global section of Ly which does not vanish
on a divisor Z,. If s|Z; is in the image of the product of sections of L,|Z, and
Li|Z,, then s is in the image of the product of sections of Lj, and L. Before
we will prove a proposition of independent importance, namely the surjectivity
of the restriction of sections from a smooth complete toric variety Z¢ to any
closed S-stable subvariety. In this sections we will allow Z¢ to be any smooth
complete toric variety, unless we say otherwise.

Proposition 10.1 Let Z° any smooth complete S-toric variety and let L be
any ample line bundle on Z¢. Given two cones v C ' in A°, the restriction

H(ZS,L|Z5) — H°(Z5,, L|Z5)

18 surjective.
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Proof. The fundamental part of the proof is the following lemma.

Lemma 10.1 Let v be a cone in A€ and let Ly be any linearizated ample line
bundle on Z°, then Hi(Z§7Lk—ZTGIdT|Z$) =0 for each i > 0 and each subset
Iof{r: 1€ A°(1), 7 ¢y and 7+ v € A°}.

Proof. d™ is the A¢-linear function such that d"(7') = =, .+ for each 7/ €
A¢(1). Observe that the lemma does not depend by the linearization of the line
bundle Ly. Let J, = {r: 7 € A°(1), 7 ¢y and 7 + v € A°}. Notice that
there is an one-to-one correspondence between J, and the S-stable divisors of
Z5. 1f z belongs to the open orbit of Z5, namely Z5 = S - x, then Zf is a toric
variety with respect to the torus S’ = S/Stab(z). Observe that Stab(x) does
not depend on the choice of x because S is abelian. Let N, be the sublattice of
N generated by v, then N(y) = N/N, is the group of one parameter subgroups
of 5" and M N~ is the character group of S’. Moreover the fan of Z¢ in N(v)
is composed of the cones (o + N, ®R)/N, ® R where o varies in the set of cones
in A° which contain v. We can choose a S-linearization of Ly such that the
induced S-linearization of Lk\Zﬁ is compatible with a unique S’-linearization of
Lk|Z§ through the quotient map S ~ S’. This is equivalent to choose k that
vanishes on . Indeed the character k|o, with which S acts on any S-fixed point
Zg, is induced by a character of S” if and only if k|o vanishes on ~, namely
klo € M Nyt = x*(S"). In this case k induces a piecewise linear function on
N(v) ® R, which is associated to the previous S’-linearization of Ly|ZS, so we
call it k by abuse of notation. Let 7 be the dimension of ZY or, equivalently,
the dimension of N(v) ® R. Observe that dim v =1 —r.

We want to show the lemma by decreasing induction on the dimension of
~ and on the cardinality |I| of I. If dim v = [ then Z5 is a point and the
proposition is trivial. In the following we will suppose that dim v < I. Let K =
(L-s,c,,ar)|Z5 be the canonical bundle of Z§ and let L' = (Ly—sx, ., a7 )|Z5. By
the Serre duality we have H(ZS, L) = 0 for each i > 0 if H'(ZS,(L') ' @ K) =
0 for each i < dim Z5. (L)™' @ K)~' = Ly|zc is very ample, so the Kodaira
vanishing theorem implies that H*(ZS,(L')~' ® K) = 0 for each i < dim Z¢.

Thus we have showed the basis of induction. Finally we can suppose that
there is ¢ € J, — I, so we have the following short exact sequence

S¢
00— Lk_zdﬂ'_ds |Z,$ E— Lk—Ed‘f |Z$ E— Lk_EdT |ZC

v —0

where the second map is the restriction and the first one is the product by
an invariant section s. of Lgs (observe that 0 > d° over Ng, so there is a
seminvariant section of weight 0, namely an invariant section). The proposition
is true on the first term by induction on |I| and is true on the third one by
induction on the dimension of -, so it is true also on the second term. [J

Now we can prove the proposition. By induction we can suppose that
dim Z$ = dim ZS, + 1, so there is 7 € A(1) such that v =7+71. We
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choose a linearization associated to a function k. There is the following short
exact sequence

00— Li—ar |28 “7s Ly| 25— Li| 25, ——0

The proposition is implied by H'(Z¢, Ly_¢-) = 0. O
Now we want to prove a corollary about complete symmetric varieties, but
we do not need it in the following sections.

Corollary 10.1 Let Ly, be an ample line bundle on'Y such that h is spherical.
Given two cones v C ' in A, the restriction

HO(Yy, Ly|Ys) — HO (Yo, Ly |Yy)
18 surjective.

Proof. Tt is sufficient to show that all the lowest weight vectors belong to the
image. Let v' € H°(Y,/, L,|Y,/) be any lowest weight vector and let —u be the
weight of v'. Let Z¢ be the complete toric variety associate to Y. We know that
v' does not vanish on Z5, because Y,/ has a dense U~ x T orbit. Thus there
is a seminvariant section s € H%(ZS, Ly|ZS) whose restriction to Z5, s ' Z5,.
Because p is dominant, there is a lowest weight vector v € H°(Y,, L,|Y,,) whose
restriction to Zf is equal to s. Thus the restriction of v to ZJ, coincides with
the restriction of v’ to Z%,, so the restriction of v to Y,/ is v’ because we are
studying multiplicity-free representations. [

Now we want to prove a proposition that in some case allows ourselves to
reduce the study of the product of sections of two lines bundles on Z to the
study of the product of sections of the restrictions of the previous lines bundles
to a suitable divisor. Before we prove a similar proposition on any complete
smooth toric variety Z°.

Proposition 10.2 Let Z¢ be a smooth complete toric variety and let L; and
Ly, be two ample linearizated line bundles on Z¢. Let T be a cone in A°(1) and
let s be a global section of Ly which does not vanish on ZS. If s|ZE belongs
to the image of the product mS of sections of the restrictions of Ly and Ly to
Z<, then s belongs to the image of the product m¢ of sections of Ly, and Ly.

Proof. We can suppose that s is a semi-invariant section because there
is a basis of semi-invariant sections. Indeed we can write s = Y s,, where
Sy, 1s a semi-invariant section of weight v; for each i. Suppose that s|Z¢ =
m$ (D tx; ® ry;) where ty; is a semi-invariant section of weight \; for each j
and r,, is a semi-invariant section of weight pu; for each j. Then s,,|Z¢ =
M jx, = Dy @ Tiy), 80 5,,|Z¢ belongs to the image of mg for each .
Moreover, if s,, belongs to the image of m¢ for each ¢, then s belongs to the
image of m.

Let s be a semi-invariant section of weight ;1 that does not vanish on Z¢, so

w(o(1)) = (h+k)(o(7)). Suppose that s|Z¢ belongs to the image of m¢. Because
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of the previous proposition, there are sections s; € I'(Z¢, Ly,) and s/ € T'(Z¢, Ly,)

such that m&(3 4128 @ s Z¢) is the restriction of s to ZE. Thus mS(d s; ®

s!) = s because the space of sections is a multiplicity-free representation. O]
Now we can prove the proposition on Z.

Proposition 10.3 Let Z be a smooth toric variety over A'. Let Ly, and Ly, be
any two ample line bundles on Z. Let 7 € A(1) and let s be a section of Ly
that does not vanish on Z.. If s|Z. belongs to the image of the product my, . of
sections of Lp|Z; and Li|Z., then s belongs to the image of the product my,
of sections of Ly and Ly.

Proof. We can proceed as in the previous proposition if we show that the
restriction map is surjective.

Proposition 10.4 Let Z be a smooth toric variety over Al and let L be an
ample line bundles on Z. Given any two cones v, in A with v’ C -y, then the
restriction map

HY(Zy, L|Z) = H*(Z,, L| Z,))
18 surjective.

Proof. It is clearly sufficient to consider the case in which 4/ = {0}, i.e.
Z = Z,. We want to use the proposition 10.1, so we will define a completion
Z¢ of Z and an ample line bundle on Z° whose restriction to Z is L. We
can think A as an open subvariety of Hézl P'. We define a scalar product
on Ng such that {ej,...,e;} is an orthonormal basis. Let W' be the group
generated by the reflections with respect to the coordinate hyperplanes; it is
isomorphic to Hé:l Z/2Z. The fan A§ of H,li:l P! is invariant by W' and we
can suppose that the fan Ag of A! is the intersection A§Nnoler,...,e) :={o €
A§: 0 Coler,...,e)}. Let Z¢ be the toric variety over Hizl P! whose fan A°
is WHA={w-v: weW?! veA} (here A is the fan of Z). Notice that W?
acts on M by duality.

Let h be the A-linear function associated to a linearization of L and let h¢
be the A€ linear function defined as follows: h¢(w - v) = h(v) for each w € W
and v € o(ey,...,e;). Because of the lemma 7.4 we can choose h such that the
line bundle Ly is ample on Z°€.

We need a lemma that relates the sections over Z, with the sections over ZJ.
Before we will introduce some notations and we will do some observations on the
fans corresponding respectively to Z$ and Z,. Let A°(7) (respectively A(y))
be the set of cones in A€ (respectively in A) which contain v and let A¢(n)(v)
(respectively A(n)(y)) be the set of n-dimensional cones in A° (respectively in
A) which contain . Write vy = Y1 | Z7" o(7;), where the 7; are opportune cones
in A(1).

Z~ and Zf are toric varieties with respect to the torus S’ associated to
@._, Ze;) X" Zo(r;). The fan of Z, is {0 + Ry/Ry : 0 € A(r)} and the
fan of Z¢ is {o + Ry/Ry : ¢ € A°(7)}. Up to reordering the indices we can
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suppose that v is contained in o(eq41,...,€;), but it is not contained in any

face of o(ey41,...,e;). Thus, for each i, we can write o(7;) = Z;:TH alej

where the ag are positive integers. For each i let ¢; be the class of e; mod-

ulo R#y. Up to exchange the indices, we can suppose that {€1,...,€;_,} is a

basis of @Z 1 Re; /Ry and that the support of the fan corresponding to Z, is
(61, .. el ms 6T+1, el m)

For each j let s; € VV1 be the orthogonal reflection corresponding to e;. Let
W1 be the subgroup of W' generated by s1, ..., s Wl fixes o(7;) for each i, so it
acts on @Z 1Ze; /> Zo(T;). We have A(y) = A(y )ﬁa(el,.. €l—ms —Cril,

y—€l—m) = {0 € A°(y) : a—i—R'y/Rfy C (€1, ey €1y —€pg1y ey —€1—m)}
and we will prove that A¢(y) = W'-A(7). Indeed for each o in A¢({)(7) there is
w € W1 such that w-o belong to A(l)(y). Moreover s;o contains s;o(7;) = o(:)
for each j < r and for each i; instead, given w € W' — spany1(s1, ..., 8,.), there
is 7 such that wo(7;) is not contained in o(eq, ..., e,), so w - o does not contain
o(7;) because Z¢ dominates Hi: P!

One can show that H%(Z,, Lj|Z.) has a basis of semi-invariant sections for
the action of S. The weights of such sections are opposite to the elements of
I(Zy,h) == {m € Nyean) ) hlo+Mny*ns}. Also HO(ZS, Lye| Z$) has a basis
of semi-invariant sections for the action of S and the weights of such sections
are opposite to the elements of II(Z5, h) := {m € N, cac (4 h|a+M07 N}

Up to change h° by an element of @i:rﬂ Zf;, we can suppose that h¢(o(7;))
= 0 for each 4, so that there is an action of S’ on Lje|Z¢ compatible with the
action of S through the quotient map. In this case h® induces a piecewise
linear function h¢ on (€ Re;)/R~y and h induces a piecewise linear function h

on (€1, .., €l—my, —€rt1,--ry —€l—m). hS is W invariant, so he is W invariant.
Observe that now h° may be not W! invariant. Moreover the restriction of h¢
to U(El, ooy €1y —Cotiry ey —€1_ m) is equal to h. Let Qh be the polyhedron in

(MnyH) @R corresponding to h and let P, be the polytope in(MNyH) e R
corresponding to h¢. Notice that II(Zy,h) = Qn N M N~+ and (Z5,h) =
Pyn M Nyt

We now want to prove some relations like the ones stated in the propo-
sitions 9.1 and 9.2. The proof will be much simpler because {ey,...,e;} is
an orthonormal basis. For each j in {r +1,...,1 — m} there is fj in f; +

U(_fl—m~+17 ..., —fi) such that {fl,. ,fT,fT_H,. ,fl m} is a basis of (M Ny1)®
R' Let C+ = U(_fla cery _fT7 fT+1a (X3} fl mva+17 . 7fl m)

Lemma 10.2 1. @h =PNCt+ o(f1yeee, [r);
2. I(Zy,h) =T(ZS, W) NCH+ @i_, Z" fi.

Proof. Notice that, if r is equal to 0, then Z, is equal to Z¢ and there is
nothing to prove. Thus we can suppose that r > 1.
For each j < r let H be the hyperplane of (M N v+) ® R generated by

eers ooy fra1, .-, f1—m and notice that the border of C+ is the union of
LyeeenJgoees ) +1y .-

53



the H;. s; acts on (M N~+) ® R as the orthogonal reflection with respect to
H;. Observe that, if ]5h contains a point p, then it contains all the translates
of p by W1 because h°¢ is W invariant. Moreover, given any point p € ﬁh, P,
contains the orthogonal projection (p + s;p) of p to H; for each j. Since he is
strictly convex on A€ there is no vertex of P, contained in H ;. Indeed, given
a vertex h¢|o of P, then s - h¢|o is different from he|o.

The equations of @h are of the form Zi;q” d;x; > d where the d; with 1 < r

are positive constants. So, given any m € @;“ we have m 4+ o(f1,..., fr) C @h,
ie. Qh is stable by translation with respect to vectors in (T(fl, . ,fr)

We now show that P,NC+ = QhﬂC+ Tt is evident that B,NC*+ C QpnCTH,
so it is sufficient to show that Qh ne+ - Ph As a matter of fact it is sufficient

to show that Qh ﬂC*ﬂ(Mﬂ’y 1®Q C P, because P, is closed. The semi-spaces
defining P, are {p € (M N~+1) @R : p(o o(1) + Ry) = h¢(o(7) + Ry)} for each
7 € A°(vy)(1). Thus, given any p € QhﬂC+ﬂ(M07 )q and any 7 € A()(1),
we have to show that p( (r )—I—Rfy) > hC( (7)4+R~y). Because of the symmetry of
A°(v), there are w € W' and 7/ € A(1)(y) such that o(7) = w - g(7'). Observe
that w - p — p belongs to o(fi,..., fr). Write w-p —p = > ¢;fi, so we have
p(o() + Ry) = p(w - o(7') + Ry) = (w-p)(e() + Ry) = p(o(7’) + Ry) +
> cifilo(r’) + Ry) = ple(r’) + Ry) = h(e(r') + Ry) = h¥(o(7) + Ry).

We can now show the first point of the lemma. The decomposition in cones
of (N(v))r associated to hp & has 1-dimensional cones {o(—&1),...,0(—€)}U

A(1)(7y). hp, g+ has finite values on all (N(7))r, it is equal to hon o(éy, ...,
€l—my —C€r41, ..., —€1—m) and vanishes on the vectors —e, ..., —¢,. The function
associated to o(f1,..., f) vanishes on o(é,...,€6;-1,—€p41,...,—€;—1) and has
value —oo on the complementary set. Thus their sum is the function associated
to Qpn, so the claim follows by the theorem 4.2.

Now, we can conclude the proof of the lemma. Let p be a point contained
in II(Z,, h). We know that p = p' + >_/_, a;f; where p’ € P, N C* and the a;
are positive constants, but the a; may be not integers. Now it is sufficient to
observe that p’ + Y7, (a; — [ai]) fi belongs to II(ZS, h) N C™* (here [a;] is the
integral part of a;). Indeed, for each j < r, the j-th coordinate of p’ is negative,
(aj —[a;]) <land p' + >\ (a; — [a;]) fi =p — Y_i_,|a;] fi is a rational point.
O

Now we can conclude the proof of the propositions 10.4 and thus also the
proof of the proposition 10.3. Clearly it is sufficient to show that the image of the
restriction contains all the semi-invariant sections. Let s be any semi-invariant
section of L on Z., and let p be its weight; we can write p = p/ —&—Z:Zl a; f; where
p' is the weight of a section s’ of L on Z and the a; are positive integers. Observe
that p(a(r:) + Ry) = h(o(rs) + R7) = hla(r;) for each i, so p/(o(r:) + R7) =
h(o(m:)+R~) = h(o(7;)) for each i. There is a section s” on Z¢ whose restriction
on Z¢ is s’ by the proposition 10.1. Thus p’ € Qpe N M, so p € Qn N M and
there is a semi-invariant section ¢ of Lj on Z with weight p. This section does
not vanish on Z, because p(o(7)) = h(o(7)), so ¢|Z, is a not zero multiple of

54



s.

11 Line bundles on an exceptional complete sym-
metric variety

Let Y be an exceptional complete symmetric variety, let Z be the associated
open toric variety and let A be the fan of Z. Let h be a spherical strictly convex
(A, Ax)-linear function such that h|o is regular for each o € A(l). We know
that the multiplication M} j, of sections on Y is surjective if and only if the
multiplication my, j, of sections on Z is surjective. In this section we want to
generalize this fact to the h which are not spherical.

Remember that Pic(X) is generated by the spherical weights and by the fun-
damental weights wq,, ...,wq, corresponding to the exceptional roots oy, ..., as.

Proposition 11.1 Let L, be an ample line bundle on Y such that My ps is
surjective and let aq,...,a; be positive integers. If we define h = h' + > a;wa,
then the product My, 5, of sections of Ly overY is surjective.

Proof. Observe that Ly is an ample bundle on Y. We will prove the propo-
sition by induction on " a;. My p is trivially surjective if Y a; = 0. We need a
lemma on the maps Mh,wai~

Lemma 11.1 Let Ly, be an ample line bundle on'Y and let w € {way, -y Wa, |-
Then My, is surjective.

Proof. In the following V' is the unique subrepresentation of H°(Y, L)
which contains a lowest weight vector vy of weight —\. We have H(Y, L) =
Drenym 8"V H (Y, Litw) = @uenyinrw 5TV = @Orenivn
sh*)‘V‘jJr/\ and H(Y,L,) = V*. The last equality is implied by the fact that
w is a minuscule weight i.e. it is non zero and there is no dominant weight
A such w — A € At (see lemma 4.3 in [CS], proposition 1.12 in [S], pages 532
and following ones in [He]). The lemma is implied by the fact that, for each
A € (Y, h), My o(s"Puy ®w,) is a lowest weight vector of weight —\ — w. [J

We now go back to the proposition. Let j be an index such that a; > 0 and
define h = h — w;j. We have the following commutative diagram

HO(Y, Ly) © HO(Y, L) © H(Y, Ly,) @ HO(Y, Ly,,) —= HO(Y, Ly) ® HO(Y, L)

lml

HO(Y,L,;)® H(Y, L,,) ® H'(Y, L.,) M
lm2
0 0 M271+wj,wj 0
HO(Y, Ly, ) © H'(Y, Ly,) HO(Y, Lay,).
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my is surjective by induction, mg and M,; are surjective because of the

h+wj,wj
previous lemma, so My, j, is surjective. O

Theorem 11.1 Let Ly be an ample line bundle on Y. If my p is surjective
then My p, is surjective.

Proof. We know that, up to exchange o; with 8(a;) for some i in {1,...,1},
there are positive integers aq,...,a; such that b’ = h — > a;w; is a spherical
piecewise linear function and Ly is ample. The restriction of L, to Z is iso-
morphic to the restriction of Ly to Z, so my, p is surjective. Thus My 5 is
surjective because of the theorem 9.1. Hence M), 5, is surjective by the previous
proposition. [

12 Open projectively normal toric varieties

Now we want to describe some families of open toric varieties such that, if L,
is an ample line bundle on a such variety, then the product my , of sections
is surjective. One family is formed by all the varieties of dimension 2 proper
over A2. Moreover we will find an infinite number of varieties that have such
property for every given dimension. In some cases we will prove that, given any
two ample line bundles Lj, and Lj on a fixed variety, then the product my, ; is
surjective. In the following we will identify M with Z.

12.1 Blow-ups of A’

Now we study the class of varieties that are blow-ups of Al along a stable closed
subvariety. This is the unique case in which we will prove that given any two
line bundles Lj, and L generated by global sections then the product of sections
is surjective.

Proposition 12.1 Let Z be the blow-up of Al along the stable closed subvariety
associated to o(ey, ...,e.). Let Ly and Ly, be two line bundles generated by global
sections on Z, then the product of sections my, ) s surjective.

The inequalities for Qp, are z; > a; foreachi =1,..,l and z1+...+2, > b. The
inequalities for QQy are z; > ¢; foreach ¢ = 1,..,1l and z1 +...+ 2, > d. Here a;, b,
¢; and d are suitable integers. Let m be any point in Qp4r N M, then there are
my1 € Qp and mo € Qg such that my +my = m, but they may have not integral
coordinates. We want to move m; and s a little, so that we will obtain two
points with integral coordinates that belong respectively to @ and to Q. More
precisely we will move m by a vector v whose coordinates have values between
—1 and 1, so we will have to move ms by the vector —v whose coordinates have
again values between —1 and 1. If my = (21, ...,2;) then x; > a;. Let [z;] be

the integral part of x; and let ¢; = —[([x;] — x;)] (€ is 0 if x; is an integer and
it is 1 otherwise). [z;] + €; > [x;] > a; because the a; are integers. Likewise,
if my = (y1,...,y) then [y;] + € = [y;] = d; (observe that e; = —[([yi] — vi)])-
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If ([y ] . [y1]) belongs to Qk, then we define my = ([x1] + €1, ..., [z] + €) and

ma = ([y1], .., [w1]). Clearly these points satisfy our requests. In the same
way, if ([x1],...,[zi]) belongs to Qp, then we define m; = ([z1],..., [x;]) and
me = ([y1] + €1,..., [u] + &). Thus we can suppose that > ._,[z;] < b and
Yoisily] < d. We define mqy = ([#1] + €1, ..., [xs] + €, [s41], -, [21]) for an

index s lesser than r and such that b= h(e; +...+e;) = >\ 1[1:1] +Y 6=
mi(e1 + ... + e,). There is a such s because Y ;_, [x;] — b is a negative integer,
S (wi]+e)>b+d—>_ ([yi]) > band ¢ € {0,1} for each i. Moreover
we define mg = m —my = ([va], -, [Us)s [Ys+1] + €st1, s [Ui] + €1). To verify
that my € Qy it is sufficient to show that Y7 [yi] + > i, 1 ([we] + &) >
d = k(er + ... + e-). This is implied by the inequality ma(e; + ... + €,) =
(m—my)ler+...+e)>(h+k)es+..+e)—hlexr+...+e). O

Now we study a similar family of varieties, but we require that the two line
bundles Lj and Ly are equal.

Corollary 12.1 Let Z be the open toric variety obtained from Al through the
sequence of blow-ups along the subvarieties associated respectively to o(e,es),
o(ea,e€3),..., o(er—1,e.). Let Ly, be any line bundle generated by global sections
on Z, then the product of sections my,j, is surjective.

Proof. The inequalities for @}, are: z; > a; foreachi =1,..,l and z;_1+2; >
b; for each ¢ = 2,...,r, where the a; and the b; are suitable integers. Let m =
(21, .0y1) € Qapn N M =2QrN M. Observe that m’ = (x1/2,...,2;/2) € Qp and
m'+m’ = m. Wedefine ¢; = —[([x;/2]—x;/2)], m1 = ([x1/2]+€1, [22/2], [£3/2]+
€3y ey [T5/2] + €5, [Ts41/2], ..., [11/2]) and ma = m — my for a suitable s. If r is
odd then we choose s = r, otherwise we define s = r — 1. These points belong
to Qn N M because [x;,—1/2] + [x;/2] + (€,-1 + €;)/2 > b; for each 4. O

12.2 Open toric varieties of dimension 2 and a singular
family in dimension 3

Now we consider the family of smooth toric varieties proper over AZ.

Theorem 12.1 Let Z be any smooth toric variety proper over A% Let Ly,
and Lp, be two linearized line bundles generated by global sections and suppose
that hy and ho are strictly convex on the same fan, then the product of sections
Mhp, by 1S SUTjECtIVE.

The hypotheses mean that there is a variety Z’ and two ample line bundle
L} and L) over Z’ such that L is the pullback of Lj and Ly is the pullback of
Lj.. We want to remark that Z’ may be singular.

Proof. Let hg = hy + ho and let A be the fan of Z. It is obviously sufficient
to prove that the image of my, , contains a basis of semi-invariant sections, so
it is sufficient to prove that

Qny "M = Qn, N M + Qpn, N M.
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We want to decompose each 5, in more simple polyhedrons. More precisely
we will decompose each @, in two types of polyhedrons with vertices in M: 1)
cones of form p+o( f1, f2) for a suitable point p and 2) triangles. These triangles
will have a very particular form, indeed we require that the fan associated to
any such triangle T has 1-dimensional cones generated respectively by —vy, —vs
and v1 + vy. Moreover we require that {v1,vs} is a basis of M and that vy
and vy are contained in o(e,es). This mean that Tisa rectangular isosceles
triangle with respect to the scalar product for which {vq, v} is an orthonormal
basis. Observe that in general the other triangles are not rectangular isosceles
triangles with respect to this scalar product.

Let m = (z1,22) be any point in Qn, N M. If there is a vertex p3 of Qp,
whose coordinates are both lesser than the corresponding coordinates of m then
m is contained in the polyhedron p® + o(f1, f2), so we are reduce ourselves to
study two polyhedrons associated to the pullbacks of two line bundles on A2.
Indeed there is a maximal cone o € A such that p* = hs|o, so p> = hy|o + ha|o
where hy|o is a vertex of Qp, and ho|o is a vertex of Qp,. Thus p® +o(f1, fo) =
(hilo +a(f1, f2)) + (ha|lo + o(f1, f2)) where hj|o 4+ o(f1, f2) is the polyhedron
associated to the linearized line bundle Ly |,. Observe that Ly |, is the pullback
of a linearized line bundle on A? because hjlo is linear.

Otherwise for each j there are vertices p{, p% of Qp, with the following
properties. Write pg = (zij,zéj) for each 7 and j and define pé = (y%’j,y%’j)
for each j. m belongs to the triangle T2 with vertices p3, p3 and p3. Moreover
T3 = T' + T? where T7 is the triangle with vertices p/, p} and p? for each j.

. 1,3 1 23 2 .
Indeed we can define p?, p3 as the two vertices (217, z3°), (27, 25°) of a side

of Qn, such that z%73 <z < zf’g, S0 To < z;’g because otherwise m belongs
to (217, 23°) 4+ o (f1, f2). If p? = hs|oy and p3 = hs|oy then we set p! = hjloi
and pg = hj|o, for each j. Observe that pé belongs to Qp; for each j, so T7 is
contained in Qp; for each j. Moreover the fans associated to these triangles are
equal to the fan with 1-dimensional cones o(—e1),0(—e1) and o(aje; +aqes) for
suitable integers a; and as. This means that, given ¢ and j in {1, 2, 3}, for each
side of T there is a side of T7 parallel to the previous one. We remark that this
last fact is true because we have supposed that h; and he are strictly convex on
the same fan. (In the pictures we consider the case in which hy = hs).
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We need the following easy consequence of the proposition 12.1. Define a
scalar product (, ) such that {f1, fo} is a orthonormal basis. In this proof, when
we will say that a side L of a polytope P is orthogonal to a vector v, we will
always suppose that (p,v) > 0 for each p € P (and (z,v) = 0 for each z € L).
Notice that a plane H is the locus of zeroes of x1e; + x2e5 € N if and only if it
is orthogonal to =1 f1 + x2 fs.

Lemma 12.1 Let T' and T? be two triangles with sides orthogonal respectively
to —vy, —ve and vy +ve. If {v1,v2} is a bases of M then

(T1 +o(vy,v2)) N M+ (T2 +o(vy,v))NM = (T1 +7T?+ o(v1,v2)) N M

Proof. Tt is sufficient to observe that, for each j, T + o(vy, v2) is the poly-
hedron associated to a linearized ample line bundle on the blow-up of A? in the
stable point. (Here we think A? as the toric variety associated to o(v1,vs)). O

In general, we want decompose the triangles 77 in triangles that satisfy
the hypothesis of the lemma. Moreover we require that, if T and o(vy,vs) are
as in the lemma, then o(vy,v9) is contained in o(f1, f2). Thus if T C TV then
T+o(v1,v2) is contained in TV +0( f1, f2). Notice that T7+a(f1, f2) is contained
in Qp;. Thus it is sufficient to define such decompositions.

We will define a sequence of open toric varieties Z, — Z,._1 — ... = Z such
that: 1) they are toric varieties with respect to the torus SpecC[N], 2) Z; is the
blow-up of Z;_; in a stable point, 3) Zy = A% and 4) Z, dominates the toric
variety whose fan is {o(f1, a1 f1+a2f2), 0(f2, a1 fi+azf2), 0(f1), o(f2), 0(a1 fr +
azfa)}. We need these varieties only to define some triangles, but we are not
interested to study line bundles on such varieties. Let A; be the fan of Z; and
suppose that we have already defined Z;_;. We can assume that there is an
unique maximal cone o;_1 € A;_; which contains a; fi + asfo (otherwise we
define r = i —1). Let Z; be the blow-up of Z;_1 in the stable point associated to
o;_1. For each i let u;_1 and w;_1 be the two primitive vectors that generated
0;—1. If alfl + a2f2 = Q;j_1U;—1 + bifl’wifl, then we claim that a; S A;—1,
b; <bj_1and 0 < a;+b; < a;_1+0b;_1. Hence the process has to stop in a finite
number of steps and a, + b, = 1. Now we prove the claim. We can suppose,up
to exchange u; and w;, that aifi + asfe € o(ui—1,ui—1 + w;—1). We define
U; = Uj—1 and w; = Uj—1 + Wi—1, SO A; = Aj—1 — bi—l < Qj—1 and bl = bi—l-
Observe that a; > 0 because a; f1 + asfa € o(u;—1,ui—1 + w;i—1).
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We want to decompose the triangles 77 in r triangles Tij with integral ver-
tices. TZ-j will have sides orthogonal respectively to —u;_1, —w;—1 and u;—1 +
w;—1. For each j we define Tg = TJ. We define recursively 77 ;_1 as the set
T’ i —Tij+1. We will prove inductively that T! ; is a triangle with sides orthogonal
respectively to —u;, —w; and a1 f1 + as fo. For each j and for each i < r — 2 we
decompose T , in the two triangles 7; fH and T7 ;_1- Moreover, for each j we
decompose T7 12 i the two triangles TLl and T7. We want that T2 = T} +T7
for each i. Moreover T}, T? and T will be associated to the same fan for each
. Let p{ﬂ-, p%l and p?,” be the vertices of Tﬂz We suppose that péz does not
belong to the side of TZ ; orthogonal to a1 f1 + asfo. (In the figure we consider
the case in which hy = hg, so T5 = 271 = 2T5).
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We decompose T , in two triangles by intersecting T’ , With a line rf orthog-
onal to v; —|—w1 and passing for a vertex pi y for a suitable k € {1, 2} independent
by j. Let T; z+1 be the trlangle that contains p3 ;, and let T4 ¥ ,_1 be the other tri-
angle Obberve that r}, 77 and r} are parallel, so the fans associated to 17 ;,
T2, and T2, (respectively to T%,_;, T2, , and T?,_,) are equal. Observe that
the convex function associated to T] ", 1 is uniquely determined by the knowledge
of the fan associated to Tj /., and by the knowledge of any two vertices of T}, ;

(indeed the three 1-dimensional cones of the fan associated to T/ 71 are contained
in the union of any two dlfferent two-dimensional cones of the fan associated to
Tz+1) Thus TJrl = T}H T?, , because each T+1 share two vertices with TJ

In the same way we can prove that Tfi_l = Tii_l + T—i—l' We have to prove
that T/, , = T/, , for each i and j.
We can suppose that a;f1 + azfo € o(u; + wy,u;) up to exchange u; and
. Let p}. P = (21, 23) be the vertex T7, not contained in the side orthogonal

to u;, let p2 i be the vertex of T] not contalned in the side orthogonal to —w;

and let p} = (z{, 22) be the vertex of T] - not contained in the side orthogonal

to a1 f1 + asfz. Let rj be the line orthogonal to u; +w; and passmg along p] i

Observe that 7 intersects the side orthogonal to —u; in the point ¢/ = (z{7 2+

2 —2]) and this point has integral coordinates. We have decomposed T ; in two

triangles: 1) the triangle TJ 1 with sides orthogonal respectively to —u;, —w,
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u; +w; and with vertices p{, pg, ¢’; 2) the triangle T’ ,_1 With sides orthogonal
respectively to —u;, —u; — w;, a1 f1 + asfo and with vertices p{, ¢, p%. For the
case of TLQ it is sufficient to observe that a1 f1 + asfo = wpr—1 + (up—1 + wr_q),
up to exchange u,_1 and w,_1. O

Now we consider a class of line bundles on varieties of dimension 3. This line
bundles are the pullbacks of ample lines bundles on varieties which are usually
singular.

Proposition 12.2 Let h be a piecewise linear function which is strictly convex
on the fan A with mazimal cones (e, e2,ae1+aes+e3), o(er, es, ae; +aes+e3)
and o (e, e3,ae1taea+tes). Here a is a strictly positive integer. Then QopNM =
QnNM+QnNM.

Remember that h defines a line bundle generated by global sections on every
toric variety proper over the toric variety associated to A. Moreover the toric
variety associated to A is proper over A% and it is smooth if and only if a = 1.
(Look to the figure for an example of Q).

Qn

Proof. We want to proceed as in the previous theorem. We can again
decompose Q2 in a simplex P and some cones p + o(f1, fo, f3). So we can
reduce ourselves to prove that (2P+o(f1, f2, f3))NM = (P+o(f1, f2, f3))NM+
(P+0(f1, f2, f3)) N M. We again define a scalar product such that {f1, fo, f3}
is an orthonormal basis.
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P has three faces parallel to the coordinate planes and the fourth is orthogo-
nal to afi +afo+ f3. We can suppose, up to a translation, that the origin 0 is the
vertex of P which does not belong to the face orthogonal to ae; + aes + e3. Let
(=b,0,0), (0,—b,0) and (0,0, —c) be the other vertices of P. We have ¢ = ba,
so ¢ > b. We want to decompose P in simplices with rational vertices. Let
R be a such simplex. We suppose that there is a basis {v1,ve,v3} of M such
that R is intersection of the semispaces {z | (x,v;) < b;} with ¢ = 1,2,3 and
{z | (x,v1 + vy + v3) > b} where by,bs, b3, b are opportune integers. Moreover
we require that o(vy,ve,v3) is contained in o(fy, fa, f3). It is again sufficient
to define such decomposition because of the proposition 12.1. For simplicity we
consider only the first step of the decomposition of P.
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We decompose P intersecting it with the plane orthogonal to fi + fo + f3
and passing through the vertices (—b,0,0) and (0, —b,0). This plane intersects
the side of P parallel to R f5 in (0,0, —b). We obtain two simplices with integral
vertices. The first one has faces orthogonal respectively to —f1, —f2, —f3 and
f1+ fo+ f3. This simplex has vertices (0,0, 0), (=b,0,0), (0, —b,0) and (0,0, —b).
The second simplex has faces orthogonal respectively to — f1, —fo, —f1 — fo— f3
and afy + afs + f3. This simplex T has vertices (—b,0,0), (0,—b,0), (0,0, —b)
and (0,0, —c). Observe that o(f1, f2, f1+ f2+ f3) is contained in o (f1, f2, f3), so
T+o(f1, f2, fi+ fo+[f3) is contained in P+o(f1, fa, f3). Moreover T'is a simplex
of the same type of P and af) +afa+ fs = (a—1)f1+(a—1)fo+ (f1 + fa+ f3),
i.e. the coordinate with respect to the new basis are decreased. We will reiterate
the process until we obtain a basis with respect to which af; + afs + f3 has all
coordinate equal to 1, so that we can use the proposition 12.1. [J

12.3 Two families of open toric varieties of dimension at
least 3

Now we want to show that there is an infinite number of open toric varieties of
any fixed dimension (greater than 2) such that the product of sections of any two
ample line bundles is surjective. The principal instrument in what follows is the
proposition 10.3. We will consider a very special class of varieties. Let L; and
Lj, be any two ample line bundles on a variety of this family. Let s be a semi-
invariant section of the product Lpij such that its weight p has the following
property: there is not a weight p’ in [[(Z, h + k) such that p € p' + o (f1, ..., f1)-
Then s does not vanish on a suitable divisor. This means that H(Z, Ly 1) is
generated as a Oz(Z) module by the seminvariant sections that do not vanish
on a suitable divisor.

Proposition 12.3 Let Z be the open toric variety obtained from Al through
the sequence of blow-ups alon[g the stable subvarieties associated respectively to
oler,....er), oler, ...,e—1, (El;i e;))ter), oler,...,e—1, Q(Zi: e;)ter),...,o(er,
ey €11, Z(Zi: e;))ter),...,oler, ...,ei—1, (nfl)(Zi: e;)+e;). Let Ly, and Ly, be
any two ample line bundles on Z, then the product of sections my, i, is surjective.

Let A be the fan of Z. The [-dimensional cones in A are the following:
T(e1y s Gy eyl ooy €i) with j = 1, I=1; (€1, ey &y oy i1, (1 — 1)(X0) €)
+€z,i(22;1 ei)+e) withj=1,...,l-landi=2,..n; o(e1, ..., €11, n(Zi;} ei)+

e1). (In the figure we have drawn the 3-dimensional variety with n = 3).
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Proof. Observe that we have already considered the case n = 1 in propo-
sition 12.1, so we can suppose n > 2. Up to changing the linearizations of
the line bundles we can suppose that h(e;) = k(e;) = 0 for each j. Observe
that, if (Qn N M) + (Qr N M) contains a weight p, then it contains any weight
p+ > a;f; where the a; are positive integers. So we can consider only the ”min-
imal” weights. Let p € Qp+r N M be any "minimal” weight, we claim that there
is a cone 7 € A(1) such that p(o(7)) = (h + k)(o(7)). This means that any
semi-invariant section of weight p does not vanish on the divisor of Z associated
to 7. This claim will allows ourselves to use the proposition 10.3. Thus will be
sufficient to prove the surjectivity of the product of sections of the restrictions
of Ly and Ly to any divisor of Z.

Claim 12.1 Let p be any weight in Qp+r N M and suppose that there is not a
weight p' in Qpir N M such that p € p' + o(f1,..., f1i). Then there is a cone
7 € A(1) such that p(o(7)) = (h+ k)(o(7)).

Proof. The hypotheses imply that p — f; does not belong to Q1. Hence
there is an ¢ such that (p — fl)(z(Zi;i e;)+e) = p(z(Zi: ei)+e)—1<
(h+ B)(i(S') e) + ) becanse (p — fi)(es) = ple;) > (h + k)(e;) for each
j=1,.,1—1. So p(z(Zi;} ei)+e)=(h+ k)(z(Zi;} e;) + e;) and we have
proved the claim. [J

Now it is sufficient to prove the surjectivity of the product of sections of
the restrictions of Ly and Ly to the divisor Z; associated to U(Z(Zi;; ej) +er)
for each ¢ = 0,...,n. Z; is a toric variety with respect to the torus whose
group of 1-parameter subgroups is (@;:1 Ze;)/Z(i Z;;ll ej +e;). Observe that
(@221 Ze;)/Z(i Zé;ll ej+e;) is freely generated by €1, ..., €1, where, for each j,
€; is the class of e; modulo zZé;ll ej +e;. We have three possibilities: 1) if i = 0
then the fan associated to Zy has 1-dimensional cones o(€1), ...,0(€;-1),0(>_ &)
and Z; is the blow-up of A'~! in the stable point; ii) if i = n then the fan
associated to Z,, has 1-dimensional cones o(€1),...,0(€;-1), o(—>_¢€;) and Z,, is
the projective space of dimension [ — 1; iii) if 0 < ¢ < n then the fan associated

65



to Zp has 1-dimensional cones o(€1),...,0(€1—1),0(>.€;), o(=>_¢€;) and Z; is
the blow-up of the (I — 1)-dimensional projective space in a stable point. We
want to do some remark. Observe that we have already considered the variety
Zy in proposition 12.1. The varieties Z; with 0 < ¢ < n are all isomorphic.
Because Z; dominates Z,, it is sufficient to study the product of sections of any
two line bundles Lj, and Ly generated by global sections on Z.

Lemma 12.2 Let Ly and Ly be any two line bundles on Z1 generated by global
sections. Then the multiplication of sections is surjective.

Proof. We can suppose that h'(¢;) = k'(€;) = 0 for each 4, thus Ly is
the pullback of a line bundle on Z, if and only if h’(Zi: ¢;) = 0. In the
following we identify Z'~! with the character group of the torus contained in
Z1. We proceed as in the proof of the proposition 12.1. Let m be any point in
Qn/+x with integral coordinates. There are My € Qpns and Mo € Qi such that

m1 +me = m but they may not have integral coordinates. Let a = h’(Zi;} €;),

b=—h'(—=Y'21&), c=k(XZ1&) and d = =K/ (= X2'Z1 &). The inequalities
for Qps are u; > 0 foreach i = 1...,I—1 and a < Y u; < b, while the inequalities
for Qs are u; > 0 for each i = 1....,1 — 1 and ¢ < > u; < d. Suppose that
my = (T1,...,&1—1), Mo = (Y1, -, y1—1) and m = (z1,...,2;-1), so z; > 0, a <
da; <b,y; > 0and ¢ <> y; <d. Let [x;] be the integral part of z; and let
€ = —[([x;] — =;)] (€ is 0 if z; is an integer and it is 1 otherwise). Because 0
is an integer we have [x;] +¢; > [2;] > 0 for each i = 1,...,1; likewise we have
[y:] + € > |yi] = 0 for each i =1, ..., 1.

We define my = ([z1] + €1, ..., [7] + €7, [Trt1], -y [21-1]) and ma = ([11], .-,
[yr], [yrs+1] + €741y, [Y1-1] + €1—1) for a suitable 7. Now we want to simplify
the notation. In partlcular we will be evident that the problem does not depend
on the dimension. Let t = Zi 161, r=3"_ €, (2] = Zi }[ml] = ZZ 1T
ly] = Zi:[%] and y = Zi: y;. We known the following inequalities: 1)
] <z <[z]+t, [y <y<[yl+tand 0 <r <tii)a <z <band ¢ <y <d;

iii) a+c¢ < [zl + [yl +t =2 +y < b+ d. Observe that ﬁ@l(Zi;} &) = z,
mi(X1e) = o]+, me(X01 @) =y and mo(X/21 &) = [y] +t — . Tt is

sufficient to show that there is r such that 0 < r < ¢, a < [z] + 7 < b and
¢ <[yl +t—r <d. Observe that r takes all the value between 0 and ¢t when 7
varies between 0 and [ — 1.

1) If ¢ + [x] < b we define r as min{[y] + ¢t — ¢, t}. If [y] > ¢ then r = ¢, so
b>[z]+t=[z]+r>z>aand c<[y] <y <d. Ifc>[y] then b > [z] +t >
(2] +7 = [2]+]g]+t—c > ate—c = a and ¢ = [y +1—([g] +t—c) = [yl +1—r < d

2) Suppose now that [y] + [z] +t < b+ ¢. If ¢ — [y] is positive then we
define r = t+ [y —¢,s0t—r=c—[y (t+[y >y >csor >0). In
thiscasec=[y]+t—r§danda<[x]—i—[ —c=lz]+r <b I
¢ — [y] is negative then we define r = ¢, so ¢ [yl +t —r < d and
a<z<[z]+t=[z]+r<c+b-—y ]Sb

3) Finally suppose that ¢t + [x] > b and [y] + [z] +t > b+ c. We define
r=b—lz],s0oa<[z]+r=band d> [y ] []+t—b=[y]+t—r>c O

]
]+t
<y =
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We have proved that the ”minimal” weights of [[(Z, h + k) come from semi-
invariant sections that do not vanish on a suitable divisor. Moreover we have
not explicitly used the strictly convexity of L, and Ly, indeed we have used
it only to prove proposition 10.3. This fact are no longer true if we consider
varieties whose fan is a little less symmetric. Notice that the fans of the varieties
considered in this proposition are invariant for any automorphism of N which
permutes the vectors of the basis, fixing e;. In the following we define a class
of varieties without such symmetry and obtained by blow-ups from varieties of
the previous family.

Theorem 12.2 Let Z be the open toric variety obtained from A through the
sequence of blow-ups along the stable subvarieties associated respectively to
o(er, o er), oler, e 1, (ot e) + e, alen, e 1,i(X_)e) + e,
olery....e—1, (n — 1)(21;1 e;) +e) and U(Z;zl €j,€2,...,er). Let Ly be any
ample line bundles on Z, then the product of sections my,j, is surjective.

The fan of Z has maximal cones: o(eq, ..., €, ...,61,22:1 e;) for each j =
2l =15 0(e1, oy Gy oy er1, (i — 1) (21 €i) + e, i(\21 €5) + €;) for each j =
1,..,l-landi=2,..n;o(e, ...,el,l,n(Zi;} ei)ter); o(ea, ..., €, ..., e, Zé:l €,
e; + 22222 e;) for each j = 2,...,1; o(ea,...,e1, e1 + 22222 e;) (In the figure
we have drawn the case in which [ = 3 and n = 3).

€3

el €2
Proof. Observe that Z is the blow-up of a variety Z’ of the previous propo-

sition. Z’ is obtained from A! through the sequence of blow-ups along the sta-

ble subvarieties associated respectively to o(eq, ..., e;), o(eq, ..., e;—1, (Zi;} ei)+

P -

€1),--, oleq, ...,el_l,z(zi:i e;)+ e, oler,...,ei—1, (n — 1)(Zl:} e;)te) Z

is the blow-up of Z’ along the subvariety associated to J(Zizl €iy€2,...,€]).
We introduce some notation to simplify the counts: w :=e; +2 2222 e; and

v; = Z(Zi: e;) + ¢; for each i. In the proof we allow Ly, to be the pullback of
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an ample linearized line bundle on Z’. In this case h(w) = h(vy) + Zi:z h(e;),
while if Lj, is ample on Z then h(w) > h(vy) + Zi:z h(e;). We want to prove
the proposition by induction on h(w) and on the dimension of Z. Observe that
if h(w) = h(v1) + 22:2 h(e;) then my, p, is surjective because of the previous
proposition. If the dimension of Z is 2, then my; is surjective because of
the theorem 12.1, so the basis of the induction is proved. Suppose now that
h(w) > h(v1) +Zé:2 h(e;). We want to proceed in a similar way to the previous
proposition. We can suppose that h(ej) = 0 for each j. Let a; = h(v;) and
b = h(w). It is sufficient to show that any m € Q2 N M belongs to (Q, N M) +
(Qn N M). As before, if p belongs to (Qn N M) + (Qn N M) then p + P Z™ f;
is contained in (Qn, N M) + (Qn N M). Thus we can suppose that m — f;
does not belong to (Q25 N M), so either there is an i such that m(v;) = a; or
m(w) — 2h(w) € {0,1}.

In the first case we have reduced ourselves to study a divisor because of
proposition 10.3. If m(w) = 2b we again have to study a divisor. We have the
following possibilities for the divisor Z, associated to a cone 7: i) if o(7) = v;
with 1 <4 < n, then Z, is isomorphic to a divisor of Z’, more precisely it is the
blow-up of the projective space in a stable point; ii) if o(7) is equal to w or to
Un, then Z, is the projective space; iii) if o(7) is equal to e; or to e, then Z,
is a variety considered in the previous proposition; iv) if o(7) = e; with ¢ # 1,1,
then Z, is variety as in the hypotheses of this proposition, but with dimension
Il —1; v) if o(7) = vy, then Z, is the blow-up of the projective space in two S-
stable points. If the fan of the projective space has maximal cones o (u, ..., u;—1)
and o(— > w;, Uy, .oy U,y ..oy yy—1) for each ¢ =1,...;0 — 1, then {uy,..,u;_1} is a
basis of the lattice and Z(,,) is the blow-up centered in the points associated
respectively to o(u1,...,u;—1) and o(— > u;, ug,...,u;—1). The l-dimensional
cones of the fan of Z,,, are generated respectively by wy, ..., ui—1, > ui, — Y u;
and —u1. The unique case which we have not already examined is the last one.
Let M’ be the character group of the torus contained in Z,(,,) and let P be
the polytope associated to any ample linearized line bundle on Z,,,), we have
to show that 2PN M = PN M’ + PN M’'. P has inequalities: 0 < z; < q;
0 < z; for each j; b < > z; < ¢ (a, b and c are suitable integers). Let m =
(21, ...,21-1) be an integral point in 2P. We can proceed as done in the previous
proposition for the divisor Z] , ) of the varieties Z’. Indeed m = m/2 +m/2,
m/2 = (x1/2,...,2;-1/2) isin P and 0 < [21/2] < 21/2 < [21/2] + €1 < a. Let
P’ be the polytope with equations 0 < z; for each j and b < )" z; < ¢, then
m € 2P’ and m/2 € P’. Notice that P’ is the polytope corresponding to an

ample line bundle on the divisor Z/ (1) of Z’, thus we can use the lemma 12.2.

Moreover any point (z1/2 4 €1, ..., 2,/2 + €4, py1/2, ..., x;—1/2) belongs to P if
and only if it belongs to P’ ([x1/2] + €1 is the least integer greater of z1/2).

Thus we can suppose that m(w) = 2b + 1. We now want to write some
necessary conditions to the strictly convexity of h on the fan A associated to Z.
The condition (h|o(v1,w, ez, ...,e1—1))(vi) > h(v;) implies

a; + (’L — 1)b < (22 — 1)&1
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for each 7 > 1. The conditions h|o(w, ea, ..., e;)(v1) > h(v1), hlo(v1, €1, €3, ..., €1)
(e2) > hle2), hlo(vi,er,e3,...;e))(w) > h(w) and hlo(vy,e1,es,...,e)(vi) >
h(v;) imply:

b>a, >0, 2a;>0b

and

a1 > a;
(Indeed v; = (2i — vy — (i — w4+ (i—1)(ea+ ...+ €1-1), v1 =w—e3— ... — €,
ea = v —e; —eg —...—e, w=2v; —ey and v; = vy — (i — 1)e;). These

inequalities imply b > 1 and b > a;.
Let A’ be the fan of Z’ and let i/ be the piecewise linear function on A such
that h'(e;) = 0, h'(v;) = h(v;) and h'(w) = h(w) — 1. We need the following

lemma on h'.
Lemma 12.3 I/ is conver on A and is strictly convex either on A or on A’.

Proof. Observe that h > h'.

i) Let o be a I-dimensional cone which does not contain w and let 7 be
an 1-dimensional cone not contained in o, then (h'|o)(o(7)) = (hlo)(o(T)) >
ho(r)) = ' (o(r)).

We now consider the maximal cones that contain w.

ii) Consider o(ea, ..., e;, w). We have h/|o(ea, ..., e, w) = (b—1) f1, so (h'|o (e,
vy e, w)) (v;) = 4(b—1) > day > a; for each i > 1, (W|o(eq, ..., e, w))(vy) =
b—12>a; and (h'|o(eq,....,e;,w))(e1) =b—1>0.

iii) Consider the cone o(es, ..., e;_1,v1, w). We have h'|o (e, ..., €1_1,v1,w) =
hlo(ea,...,e1—1,v1,w) — @ where ¢ is the linear function such that p(w) = 1
and ¢(e;) = ¢(v1) = 0 for each j = 2,...,1 — 1, namely ¢ = f; — fi. Thus
(R |o(ea, ..., e1—1,v1,w))(v;) = (hlo(ea, ..., e1—1,v1,w))(v;) — p(v;) = (hlo(ea, ...,
ei—1, vi,w)) (v;) +i—1> h(v;) +7—1 > h'(v;) for each ¢ > 1. Moreover
(Wlo(ez, ..., e1-1, vi,w))(e1) = (hlo(ez, ..., e1-1,v1,vi))(e1) —p(e1) = (hlo(ez, ...,
ei—1,v1,w))(e1) +1 >0 and (h'|o(es,...,e;—1,v1,w)) (&) = (h|o(ea, ..., e1-1, V1,
w)) (er) — p(er) = (hlo(ea, ..., ei—1,v1,w)) () —1 > 0.

iv) Finally we have to consider the cones o; = o(ea, ..., €, ..., €1-1, V1, €, W)
for each j = 2,...,1 — 1. We have h'|o; = h|o; — 1¢; where 1); is the linear
function such that ¢;(w) = 1 and ¥(e;) = ¢¥(v1) = 0 for each i # 1, j, namely
Y; = f; — fi. For each ¢ > 1 we have (h'|o;)(v;) = (h|oj)(vi) — ¥j(vi) =
(hloj)(vi) > h(v;) = h'(v;). Moreover (h'|oj)(e1) = (hloj)(e1) +1 > 0 and
(hloj)(e;) = (h'|oj)(ej) —1 > 0. O

By induction we can suppose that my p is surjective, so we can suppose that
there are two points mq1 € Q, N M and mo € Qp N M such that m; +mo =m
(at least one point must belongs to @, because otherwise m does not belong
to Qap). If ma belong to Qp, then m € @, N M + Qp N M. Otherwise we have
ma(w) =b—1and my(w) = b+ 2. Write my = (21, ...,2;) and ma = (y1, ..., Y1)
(we have identified M with Z').

We can suppose that m; — f; ¢ Q, because mg + f; € Q. Thus there is ¢
such that mq(v;) = a;. Moreover we can suppose that (mi+ f1 — f;, ma— f1+f;)
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does not belong to @, x Qp for any j = 2,...,1 —1,s0z; =0or y; =0. If
y1 = 0 then 2a; —1 > b—1=ma(w) =2 y; = 2ma(v1) > 2a1, so we have
obtained a contradiction. Hence y; # 0 and x; = 0 for each j = 2,...,] — 1.
Suppose that there is ¢ > 1 such that mq(v;) = ix1 + x; = a;, then we have

(20 — Dag < (26 — 1)(x1 +27) = ma(v;) + (1 — Dmy(w) =
:ai+(i71)(b+2) S (21'71)(114’21'72,

500 < (2i—1)(z1+ 2z —a1) < 20 —2 (remember that a; + (i —1)b < (20 — 1)ay).
We have x1 + x; = a; because 1 + x; — a7 is an integer. Observe that we have
showed that mq(v1) = 14+ 2; = a3 or my(e;) = z; = 0. In the last case we have
x9 =...=x; =0 and ; = b+ 2. We can suppose that (m; — f1,ms + f1) does
not belong to Qp X Qp, so there is s > 0 such that mq(vs) — as < s. Observe
that my(vs) = sx1 = sb+ 2s, s0 a5 < sb =mq(vs) — 25 < ag — s < ag, SO We
have obtained a contradiction. (The inequality as < sb is one of the inequalities
that we have obtained by the strictly convexity of h).

Finally we can suppose that z; = 0 for each j = 2,...,1 =1, z1 + 2, = a3
and x1 +2x; = b+ 2,80 1 =2a; —b—2 and x; = b+ 2 — a;. Moreover we
can suppose that (m1 + f1 — fi,m2 — f1 + f1) does not belong to Q;, X Qp/, so
x; =0, y1 = 0 or there is ¢ > 1 such that & := ms(v;) — a; < i. Observe that we
have already considered the first two cases.

We have a; < my(v;) = o1 + 2 = (20 — 1)ag — (i — 1)b — 2(: — 1), so
(2i — 1)ay > a; + (i — 1)b+ 2(i — 1). Finally

(20— Dar < (20~ 1)(3 ;) < (20— Do+ (3i —2) 3 gy + (26— Ly =
J#L,

=ma(v;) + (i — )me(w)=(t—1)(b—1)4+a;+e =
=(i—Dbta;+206—1)—3(—1)+e< (2 —ay —3(i — 1) +¢,

s0 3(i — 1) < e <i—1, a contradiction. [J

Part 111
Fano varieties

Now we want to study the Fano complete symmetric variety. The Fano toric
variety are already studied. See [VK] for a finiteness theorem of smooth toric va-
riety of arbitrarily fixed dimension. See [Ba2] and [WW] for the classification of
Fano toric variety of dimension at most 3. See [Ba3] and [Sa] for a classification
of Fano toric 4-folds. See also [Bal], [Bo], [Re], [Cal] and [Ca2].
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13 Wonderful Fano symmetric varieties

We will say that a variety whose anticanonical bundle is generated by global
sections is an almost Fano variety. We now want to show that the wonderful
symmetric varieties are almost Fano varieties. Moreover we will classify the
Fano wonderful symmetric varieties. Before we will explain the combinatorial
conditions implying that a complete symmetric variety is an (almost) Fano
variety. Let Y be a complete symmetric variety and let Ly, be the anticanonical
bundle of Y, i.e. L_j, is the maximal exterior power of the tangent bundle of
Y. Let Z and Z€ be respectively the open toric variety and the complete toric
variety associated to Y. If there is no confusion we will use the notation k
instead of ky. We want to write k as a sum of two functions ”associated”
respectively to the anticanonical bundle of Z and to the anticanonical bundles
of the closed orbits.

Lemma 13.1 Let k1 = Zae¢l+ a and let ko = k — k1, then ko is the unique
A-linear function such that ka(p(7)) = —1 for each cone T € A(1).

Proof. Let k' be the unique A-linear function such that &'(p(7)) = 1 for
each cones 7 € A(1). For example, if Y is wonderful then &’ is the restriction
of —Zézl af to |A]l. We want to show that ks = —k’. We observe that the
restriction of Ly to Z¢ is the canonical bundle of Z¢ (see page 70 in [O]) and the
restriction of L_j, to any closed orbit O is the canonical bundle of O. Moreover
k' and k; are characterized by such proprieties. For k; it follows because of the
theorem 6.1. For k' it is true because k' is the unique A linear function such
that the associated A¢-linear function (k)¢ is, up to a linear function, the A°
function with value 1 on p(7) for each 7 € A°(1) (actually (k') is exactly equal
to such function). Moreover, given a T-fixed point z, in Z, the restriction of
Ly to U™ X 4 is the normal bundle of U™ X x, in U~ X Z. Remember that the
T-fixed points of Z¢ are the translates of the T-fixed points of Z by the action
of Ngo(T), so Ly is characterized by this property. It follows that k' = —ko
because the restriction of L_g, to any closed G-orbit O is the normal bundle of
0.0

Remark. 1) Observe that we can write ky = 26 — 2dp where 0 = >
the sum of all the positive roots of ¢ and dy is the sum of the roots in ¢¢ i.e. it
is the sum of all the positive roots of the root system ¢¢ in Ra (recall
that ¢g is the set of the roots fixed by ).

2) We want to point out that k; depends only on the open orbit G/H of
Y, while ko depends only on the (open) toric variety Z. Moreover k is always
almost spherical.

3) The restriction of Ly to Z is the anticanonical bundle of Z, indeed the
restriction of Ly, to Z is trivial. Instead the restriction of L; to Z¢ is not the
anticanonical bundle of Z¢, except in the case in which the involution is trivial,
i.e. Y is a point. Indeed, this is the unique case in which k; = 0.

Usually one asks that a Fano variety should be complete, but in order to use
the following proposition (whose proof is trivial), we shall also consider the not

Weq 18
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complete case extending the definition in the obvious way.
Proposition 13.1 IfY is a Fano variety, then Z is a Fano variety.

We now can consider the wonderful symmetric varieties. In this case the as-
sociated open toric variety is Al7 so k is linear and strictly convex on o(eq, ..., ;).
Therefore we have only to verify if the weight 26 — 26 + 22:1 af is (strongly)
dominant. We can suppose that the variety is simple, because the product of
two complete symmetric varieties is an (almost) Fano variety if and only if each
factor is an (almost) Fano variety.

Remember that the lattice {2 generated by the spherical weights is the lattice
of the integral weights of the root system ¢. Moreover, the fundamental weights
w; of ¢ are such that W = a;(Wa,; + Wy(a,)) Where a; € {0,1} for any i. More
precisely w; = (Wa; + Wy(a,)) if O(ai) # —a; and W; = 2(wa, + wy(a,)) if
O(a;) = —ay;. Observe that k is a special weight, so < k, 8 >= 0 for any simple
root 8 fixed by 0. For each i € {1,...I} we want to show that < k,af > > 0.

Notice that < k,af >=2 < k,a; >=2 < k, gy > We can write k1 as the

- aj; el w‘lj and _250 =2 ZaJGI‘U
260. Observe that < —2dp,a; >=2 < QZajel“o Wa; — 200, 0 >=4 < —dp, a; >
> 0 because dg is a positive sum of simple roots fixed by 6 and < 8, «; > < 0 for
any simple root 3 fixed by . Moreover we can prove that 2 < 23:1 asi,af > / <
af,af >> —1 by looking to the Cartan matrix of . Therefore, if 0(a;) # —a;
we have 2 < k,af > / < af,a >> 240—1 = 1. Suppose now that 0(a;) = —ay,
so af = 2¢y; and W, = 2w;. In this case 2 < 25 — 2go,af >/ <aj,af >=1+

2 < —200,05 >/ <af,af >>1,50 (2<k,af >/ <af ai>) >0. Therefore
the anticanonical bundle of any wonderful symmetric variety is without base
points. Moreover if the anticanonical bundle of a wonderful symmetric variety X
is not ample, then there is an (unique) j such that 6(a;) = —a;, < do,aj >=0

sum of the two spherical weights 20 =2 > Way; —

and < Zézl aj,aj >= —1. This implies that < §,aj >= 0 for any simple
root [ fixed by 6 and that the restricted root system is reduced and different
from A, and B,. We have three possibilities: 1) there are i; e iy such that
ai ,af, af, generate a root system of type Cs; 2) there are 41,42 e i3 such that
ai o, of o generate a root system of type Dy and 3) there is 41 such that
aj ;o] generate a root system of type Go. Moreover G is simple, Le. the
wonderful symmetric variety is not the completion of a group. Studying the

Satake diagram we obtain the following theorem.

Theorem 13.1 Let X be a wonderful symmetric variety. Then:
e The anticanonical bundle of X is generated by global sections.
e X is a Fano variety if and only if its simple factors are Fano varieties.

e A simple wonderful symmetric variety is not a Fano variety if and only if
the involution induced on Mg is —id and the (restricted) root system is
different from A, and B,
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o Explicitly, the simple wonderful symmetric varieties whose anticanonical
bundle is not ample are associated to:

1. the involution of type C1;

o

the involution of type DI, such the rank of the restricted root system
¢ is equal to the rank of the root system ¢;

the involution of type EI;
the involution of type EV ;
the involution of type EVIII;
the involution of type F1;

NS S o

the involution of type G.

14 A finiteness theorem for Fano complete sym-
metric varieties

Now we want to show that there is only a finite number of Fano complete
symmetric varieties for each homogeneous symmetric variety.

Theorem 14.1 For each G/H there is only a finite number of Fano complete
symmetric varieties whose open orbit is isomorphic to G/H.

Proof. Let Y be a Fano complete symmetric variety and let & be the A
linear function associated to the anticanonical bundle of Y, then k is strictly
convex on A and Z is a Fano variety. Thus the polar polyhedron @f of Q) is
the convex hull of the points {o(7) : 7 € A(1)} U {0} and A consists of the
cones generated by the faces of Q7 which does not contain 0.

First of all, we want to show that there is an upper bound C' to the number
of l-cones in A and this bound depends only on G/H. Because ks is strictly
convex on A, there is a injective map A(l) — Ax that takes o to kz|o. Thus
it is sufficient to show that there are only a finite number of possibilities for
these weights. Because ko is strictly convex on A, we have the inequality
(ko|o)(e;) > —1 for each i. Moreover k|o is dominant, so (k|lo)(—e;) > 0 for
each i. Thus (k2|o)(e;) < (20 — 2d¢)(—e;) for each i. Therefore the ks|o belong
to the intersection of a fixed polytope and a lattice, so there is only a finite
number of them.

Now we want to prove that the volume of Q¥ is bounded. (We can define a
measure such that , given a basis {v1,...,v;} of M, the parallelepiped {>_ z;v; :
0 < z; < 1 Vi} has volume one). Q% has at most C' faces of codimension 1
not containing 0, so the volume of QY is at most C/I!. Indeed a simplex with
vertices {vy,...,v;,0} has volume 1/1! if {vq,...,v;} is a basis of M.

Now we can prove that there is only a finite number of possible 1-dimensional
cones. Let P be the convex hull of 0,e1,...,¢;. Let 7 be any such 1-cone, then
the convex hull of P and p(7) is contained in @Y, so its volume is smaller than
C/U'. The set of the vectors v, such that the volume of the convex hull of
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P and v is smaller than C/l’, is a bounded set. Since the p(7) belong to N,
the number of the possible 7 is finite. Hence there is only a finite number of
complete symmetric varieties. [J

Remark 1) We have not proved that there is a finite number of open Fano
toric varieties.

2) We have proved that the rank of the Picard group of a Fano complete
symmetric variety is lesser than [+ s+1 Hll((26 —20p)(—e;) +2) where 2s is the
number of exceptional roots. Thus we have proved the following proposition.

Proposition 14.1 Let G/H be a (homogeneous) symmetric variety, then there
is a constant C such that the rank of Pic(Y') is lesser of C for each Fano
complete symmetric variety Y whose open orbit is isomorphic to G/H.

15 (Almost) Fano open toric varieties of dimen-
sion 2

Now we want to classify the toric varieties proper over A% with anticanonical
bundle ample, respectively without base points. We start with a lemma which
is false in higher dimension.

Lemma 15.1 Let Z and Z' be any two (smooth) toric varieties of dimension
2. Suppose that the mazimal cones of the fan Z are 2-dimensional and that Z'
is proper over Z. If Z is not a Fano variety, then Z' is not a Fano variety.

Proof. Let A and A’ be the fans respectively of Z and Z’. Let k and k' be
the functions associated to the anticanonical bundles respectively of Z and Z'.
k is not strictly convex on A, so there are cones 7 € A(1) and o € A(2) such
that (k|lo)(p(7)) < k(p(7)) = —1 and 7 is not contained in o. We know that Z’
is obtained from Z through a sequence of blow-ups (see theorem 1.28 in [O]),
thus we can suppose, by the inductive hypothesis, that Z’ is the blow-up of Z
along the fixed point associated to a cone o’/ € A(2). Observe that 7 belongs
to the fan A’ of Z’. If ¢/ # o then o € A’ and (K'|o)(p(7)) = (k|o)(p(7)) <
—1 = K'(p(7)). Suppose now that ¢/ = o = o(v1,v2) and let & = (¢1, p2)
be the dual cone, so ¢;(v;) = d;; and klo = —(p1 + ¢2). We know that
A'(2) = (A@2)\{o})U{o(v1,v1+v2),0(va,v1+v2)}. If K is strictly convex on A’
then (K'|o(v1, v1 +v2))(p(7)) = (=¢1)(p(7)) = 0 and (K'|o (v, 01+ v2))(p(7)) =
(=p2)(p(1)) =0, s0 (k|lo)(p(7)) = (—p1 — @2)(p(T)) > 0, a contradiction. [J.

Now we can classify the Fano toric varieties proper over AZ.

Proposition 15.1 Let Z be a Fano toric variety proper over A?, then Z is A?
or it is the blow-up of A? in the unique fized point.

Proof. A? is clearly a Fano variety. Let Z; be the blow-up of A% in the
unique fixed point, let Ay be its fan and let k1 be the function associated to its
anticanonical bundle.
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Al .
R+61
We have A1(2) = {o(e1,e1+e2),0(ea,e1+e2)}. Thus kilo(er,e14e2) = —f1
and kilo(ea,e1 + €2) = —fa, so (ki|o(e1,e1 + e2))(e2) = —fi(e2) = 0 and

(k1|lo(e2,e1 +ea))(e1) = —fa(e1) = 0. Therefore Z; is a Fano variety.

Now we show that these are the only Fano varieties using the previous lemma.
Let Z5 be a blow-up of Z;. We can suppose, up to isomorphisms, that Z5 is the
blow-up of Z; in the point associated to o(ez,e1 + €3).

RT (61 + 262)

R'tes R (e; +e2)

AQ:

R+€1
Let Ag be the fan of Zs, so Ay(2) = {o(e1,e1+e2),0(e1+ea, e1+2e2),0(e1+
2eq,e3)}. Let ko be the function associated to the anticanonical bundle of Zs,
we have ka|o(e1,e1 + e2) = ka|o(e1 + ea,e1 + 2e2) = —f1, so ko is not strictly
convex on Ay and Zs is not a Fano variety. The proposition is implied by the
previous lemma. [
Now we want to classify the almost Fano toric varieties proper over AZ.

Proposition 15.2 The almost-Fano toric varieties proper over A* are, up to
isomorphisms, A? and the varieties Z,, whose fan A, is such that AL(2) =
{o(e1,e1+e2),0(e1+ea,e14+2e3),...,0(e1+ (n—1)ea, e1 +nes),o(e; +nea,ea)}.
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Proof. First of all we will show that the varieties Z,, are almost-Fano. Let
k, be the function associated to the anticanonical bundle of Z,,. k,, is linear
on o(er,e; + ney) and ky|o(er,e; + nes) = —f1; indeed (—f1)(e; + mes) =
—1 for any m (observe that o(e1,e; + nez) does not belong to A, if n > 1).
Moreover (—f1)(e2) = 0 > —1. We have k,|o(e1 +nes,e2) = (n—1)f1 — f2 and
(kn|o(er + neg,e))(er +rea) = ((n—1)f1 — fa)(ex +res) =n—1—7r>—1if
r < n. Therefore k is convex and Z,, is almost-Fano.

Now we want to show the viceversa. Let Z be an almost-Fano toric variety
proper over A% and let A be its fan. (Recall that Z is obtained from AZ
through a sequence of blow-ups). We can suppose that Z is different from A?
and Z;, so 7 = R¥(e; + e3) belongs to the fan A. We want to show that, up
to isomorphisms, A contains the cones o(ej,e; + e2) and o(e1 + eq, e1 + 2e2).
First of all we will determine the restrictions of k£ to the cones containing 7 and
afterwards we will determine the cones themselves. Let o € A(2) be a maximal
cone containing 7 and write ko = ay f1 +aa f2, so (k|o)(e1+e2) = a1 +a2 = —1,
(klo)(e1) = a1 > —1 and (k|o)(e2) = as > —1. This implies that the unique
possibilities for k|o are —f; and —fy. If k|o = —f; and 0 = o(ey1 + ea,b1e1 +
boes), then —1 = (k|o)(bie1 + baes) = —by and 0 = o(e1 + e, €1 + baez). In the
same way, if A = — f» then we have 0 = o(ej +e2, b1e1 +e2). Because of the non-
singularity of o the only possibilities for o are o(e1 +e3,€1), o(e1+ea,€2), o(e1+
es,e1+2e3) and o(ey +es,2e1 +e3). (b — by is the determinant of the matrix of
the change of basis from the basis {e; +e2, b1e1 +baea} to the basis {eq, ex}). We
have to show that A cannot contain both o(e; +eq, e1+2e3) and o(e; +ea, 2e1 +
e2). This would imply that (k|o(e1 +e2,e1+2e2))(2e1+e2) = (—f1)(2e1 +e2) =
—2 > —1, a contradiction. Observe that if A contains o(e; + €2, 2e1 + €2), then
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Z is isomorphic to a variety whose fan contains o (e + ez, €1 + 2e2) through the
isomorphism induced by the automorphism of N that exchanges e; and es. So
we can suppose that A contains o(e; + ez, e1) and o(e; + ea, e1 + 2e3). Notice
that A contains either o(e; + ea, €1 + 2e2) or o(e1 + ea,2e1 + e3) because Z is
not 7.

Because of the non-singularity of Z, A contains a cone o = o(ey + neg, es)
for a suitable integer n; we want to show that Z is Z,. (In the following figures
we have drawn the rest of the proof in the case n = 4).

€2 €1 j_ 4624 e1 + 2es e1+ e

€1

Let Z' be the open subvariety of Z whose fan A’ is A\{o(e1+nes, e2),0(e2)}.
Z is an almost-Fano variety, so also Z’ is an almost Fano variety.

€1 j— 46241 e + 2es e1 + eg

€1

We claim that, for all m > 1, there is an unique variety Z’n with the two
following properties: 1) the fan &;n of Z’n has support o(ey, e1 + meg); 2) Z’n
is an open subvariety of an almost Fano variety Zm whose fan A,, has support
o(e1, ez). Notice that the hypotheses imply that Z/, is an almost-Fano variety.
The open subvariety Z! of Z,, whose fan is A, \{o(e1 +mez, e2),c(e2)}, satis-
fies these properties. Observe that also Z’ satisfies such properties with m = n,

(s



so it is sufficient to prove the claim. Indeed if the claim is true then Z' = Z,
and A" = A, \{o(e1 + nes,ez),0(ez)}. Therefore A = A, so Z is Z,,.

We show the claim for induction on m. We have already verified the basis
of induction. Let Z;n be a variety that satisfies the hypotheses of the claim and
let ¢’ be the unique cone in E;n (2) which contains e; + mes. Because of the
inductive hypothesis it is sufficient to show that ¢’ = o(e1 +mea, 1+ (m—1)eq).
In this case the fan K;n\{a(el +meg, e1 + (m—1)ea), (e +mes)} has support
o(ey,e1 +(m—1)ez) and the corresponding variety is an open subvariety of the
almost-Fano toric variety Zm, so it is Z’n_l by the inductive hypothesis. There-
fore A’ \{o(e1+mez, e1+(m—1)ez), o(er+mez)} = Ap\{o(e1+mez, e2),0(e1+
mes, e1+(m—1)es), o(ez),o(e;+mes)}, so AL = A \{o(e1 +mezes), o(e2))}.

er -+ 364? e + 2es €1 +es A

€1

Let %k be the function associated to the anticanonical bundle of a fixed Zm.
Notice that the restriction of k to the support of the fan A/ of Z! is the function
associated to the anticanonical bundle of Z, . Let (k|o”) = ay f1 + as f2, we have
—1 = (k|lo’)(e1 + me2) = a1 + mag, (klo')(e1) = a1 > —1 and (k|o')(e2) =
as > —1, so the unique possibilities for (k|lo’) are —f; and (m — 1)f1 — fa.
We have to determine the constants ¢ and d such that ¢’/ = o(e; + mes, ce; +
des). Suppose that (k|lo’) = —f1, then ¢ = —(k|o’)(ce1 + dez) = 1. Because
of the smoothness of ¢’ we have d — m = £1 (d — m is the determinant of
the matrix of change of basis from {e; 4+ mea,e; + dea} to {ej,ea}). Thus
we have two possibilities: either ¢/ = o(e; + mes,eq + (m — 1)es) or o/ =
o(er +mea,e; + (m + 1)ez). We exclude the last one because e; + (m + 1)ey
does not belong to a(ey + mes, e1) = |AL|. If (klo’) = (m — 1)f; — fa, then
d = (m —1)c+ 1 because ((m — 1)f1 — f2)(cer + deg) = —1. Because of the
non-singularity of ¢’ we have ¢ — 1 = %1, so there are two possibilities: either
o' = o(e; + meg,ez) or o’ = o(eg + meg,2e; + (2m — 1)es). Again we exclude
the first one because es does not belong to o(e; + mea,eq). We exclude also
the second one because —1 = k(ce; + des) < (k|o(e1,e1 + e2))(cer + de2) and
(klo(er,e1 + e2))(2e1 + (2m — 1)ea) = (—f1)(2e1 + (2m — 1)es) = —2 < —1.
Thus we have proved that ce; + des = e; + (m — 1)es. O

78



16 Fano toric varieties of dimension at least 3

We want to prove a generalization of the lemma 15.1. For example, we could
try to prove that given a Fano toric variety Z, which is the blow-up of a toric
variety Z’, then also Z’ is a Fano variety. Unluckily this is already false in
dimension three. Let Z be the toric variety of dimension three whose fan A has
maximal cones o(eq,eq,e3) and o(ey, ez, e; + ea — e3). The function associated
to the anticanonical bundle of Z is the restriction of —f; — fo — f3 to |A[, so
the anticanonical bundle is the trivial bundle and it is not ample. But the
blow-up 7 of Z along the closed subvariety Zc,(ehez) associated to o(eq,ez) is

a Fano variety. Indeed the fan A of Z has maximal cones o(er,es,e1 + ez),
o(eg, 3,1+ €3), oler,er +ea,e1 +ea —ez) and o(ea,e1 + ea —e3,e1 + e2)}.

€2
olen.e2) ‘k
€1+ éex—e3 €3 — el ‘7 ;
€1

€1

€2

Let % be the function associated to the anticanonical bundle of Z'. We have
(klo(e1,e3,e1 +e2))(e2) = (—f1 — f3)(e2) =0 > —1, (k|o(e1,es,e1 + e2))(e1 +
€9 — 63) = (—f1 — fg)(el + €2 — 63) =0> —1, (k\a(eg,eg,el + 62))(61) =
(=fa = fz)(er) = 0> —1, (klo(ea, e3,e1 + e))(e1 + €2 —e3) = (—fa — f3)(e1 +
€y — 63) =0> —1, (k|0(61,€1 + e2,e1 + €3 — 63))(62) = (—fl)(eg) =0> -1,
(k|0'(61761 +eg,e1 + €2 — 63))(63) = (—fl)(eg) =0> —1, (k‘o’(€27€1 +eg,e1 +
ea —e3))(e1) = (—f2)(e1) = 0 > —1 and (k|o(ea,e1 + ea,e1 + e2 — e3))(e3) =
(=f2)(e3) = 0 > —1. Therefore k is strictly convex on A and 7' is a Fano
variety. It is easy to make higher dimensional example like Z, for example we
can take Z x A'™% and its blow-up along 7(,(61)62) x A'72. In these examples
we always have considered blow-ups along subvarieties of positive dimension.
This observation suggests to consider only blow-ups in S-fixed points. Indeed,
we will classify the Fano toric variety obtained from A through a sequence of
blow-ups in S-fixed points. Notice that in the lemma 15.1 the variety 7' is
always obtained from Z through a sequence of blow-ups in fixed points.

In this section we will prove a generalization of the lemma 15.1 on a particular
class of varieties of arbitrarily fixed dimension [. We consider the class of the
smooth toric varieties whose fan contains two cones o and ¢’ with the following
properties: 1) the intersection o N ¢’ is a cone of dimension | — 1, so we can
suppose 0 = o(v1,...,v_1,v;) and o’ = o(vy,...,v—1,w); 2) v; + w belongs to
the intersection o N ¢’ and it is not zero. Now we want to show that this class
contains "many” varieties. First of all it is not empty, for example it contains
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the blow-up of A! along a stable subvariety of codimension 2. (In the following
figure we draw a 3 dimensional example).

€3

€1 e1 + es €2

Observe that the hypotheses imply that w is not a multiple of v;. We can
show that the first hypothesis is a very weak request, for example it is satisfied
by all varieties proper over A! and different from A'. Indeed, let Z be any
toric variety whose fan A contains a (I — 1)-dimensional cone 7 which is not
contained in the border of |Al, then there are exactly two cones o and ¢’ in A
which contain 7.

Moreover, given two cones o = o(vy,...,vi—1,v;) and ¢’ = o(v1, ..., 01, W)
with w = >~ a;v;, we have a; = 1 because of the smoothness of Z (q; is the
determinant of the matrix of basis change from the basis {vq,...,v,_1,w} to
the basis {v1,...,v;—1,v}). If @y = 1, then o and ¢’ are contained in the same
semi-space V with border R(o N¢’). Thus, given any vector u is in the relative
interior of o N o', w is in the interior of o (respectively of o’) respect to the
relative topology of V. Hence o N¢’ contains an open set of V', a contradiction.
Therefore a; = —1.

Observe that a; = —1 implies that v; + w is contained in the vector space
generated by o N o’ and the second hypothesis is equivalent to the request that
a; > 0 for any ¢ different from [. This hypothesis is more restrictive, indeed
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o U’ is convex if and only if v; + w € 0 U ¢’. Notice that all the smooth toric
varieties proper over A? and different from A? belong to our class. In higher
dimension it is easy to construct varieties whose cones do not satisfy the second
hypothesis, for example it is not satisfied by the blow-up of Al in the fixed
point.

€3

¢2 t+e3

€1 €2

The hypotheses imply that o U o’/ = o(v1,v2,v3,w) and o N o’ = o(vy, v2).
Moreover this class of varieties is stable by blow-ups centered in fixed points.
Indeed, let Z be a variety which satisfies the hypotheses with respect to o and
o’ and let Z’' be a blow-up of Z in a S-fixed point. Then the fan of Z’ contain
two cones ¢ C o and ¢’ C ¢’ of dimension [ such that ¢ N¢’ = 0 No’. These
cones are univocally defined by these conditions and they satisfy our request, so
Z' belongs to our class. Now we can prove a generalization of the lemma 15.1.

Lemma 16.1 Let Z be a toric variety with fan A and let k be the function
associated to the anticanonical bundle of Z. Let Z' be any toric variety obtained
from Z through a sequence of blow-ups centred in S-fived points. Suppose that
there are two cones ¢ = o(vy,...,v—1,v;) and o' = o(vy,...,v_1,w) in A(l)
such that v +w belongs to the intersection o No’ = o (v, ...,v;—1) and v # —w.
If (klo(v1, ..oy vi—1,v1))(w) < =1, then Z' is not a Fano variety.

Observe that (k|o(v1,...,ui—1,v))(w) < —1 implies that Z is not a Fano

-1 L
i—1 @iv; — vy where the a; are positive

variety. Moreover, we know that w =
integers.

Proof. We can suppose | > 3 because of the lemma 15.1. We will show
the lemma by induction, so we can suppose that Z’ is the blow-up of Z cen-
tred in the fixed point associated to a cone & in A(l). Let &’ be the function
associated to the anticanonical bundle of Z’. If & is different from o(vy, ...,
vi—1, v;) and o(vy, ...,v—1,w), then Z’ satisfies the hypotheses of the lemma for

o(vy,...,vi—1,v;) and o(vy, ..., v;—1,w). Suppose that ¢ = o(vy,...,v1_1,v;),
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then o(vy, ...,vl_l,Zizl v;) and o(vy,...,v—1,w) belong to the fan of Z’. For
each jin {1,...,1}, let ¢; be the linear function such that ¢;(v;) = 6; ;. We have
w+ (XL v) = X021 (a; + Dy, klo(vr, oy vi1,0) = — 3 i and (K| (v, ..,
i1, Sig v) () = (= 2] @it (1= 2)) (w) = (klo (v, 01, 00)) (w) + (I
Di(w) = (k|o)(w) — (I — 1) < —1, so Z’ satisfies the hypotheses of the lemma
for o (v, ..., vj—1, Zi'=1 v;) and o(vy, ..., v;—1,w). Finally we suppose o = ¢’.

U1

/ *
w

V2

The fan of Z’ contains the cones o (v1, ..., v;—1,v;) and o (v1, ..., v;_1, Zi;i v;+
w). We have v; + (Zi: v +w) = Zi:(ai + Dv; and (k|o(vi,...,vi—1,07))
(Zi: v; +w) = (klo(vy,...,vi—1,v))(w) — (I = 1) < =1, so Z' satisfy the hy-
potheses of the lemma for o(vy,...,v;-1,v;) and o(vy,...,v;_1, Zi;} v; +w). O

Now we can classify the Fano toric varieties obtained from A' through a
sequence of blow-ups centred in S-fixed points.

Proposition 16.1 Let Z be a Fano toric variety obtained from Al through a
sequence of blow-ups centred in S-fized points, then either Z is Al or Z is the
blow-up of A' in the origin. Moreover these varieties are Fano.

Proof. Let Z; be the blow-up of A! in the S-stable point, let A; be the
fan of Z; and let ki be the function associated to the anticanonical bundle of
Zy. The maximal cones in Ay are {o(eq, ..., €;,...,e1, . €;)} where j varies in
{1,...,1}, while the 1-dimensional cones are o(e;),...,o(e;) and (> e;). We
have (k|o(e1, ..., €5, ...,e1, 3 €:))(e5) = (= 2oizy [i + (1 —2) f5)(e5) =1—2> —1.
R+ej is the unique 1-dimensional cone not contained in (e, ..., €, ...,e1, Y €;),
so ky is strictly convex on A; and Z; is a Fano variety.
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The blow-ups of Z; in a S fixed point are all isomorphic to the blow-up
Zy of Z; in the point associated to o(ey,...,e;—1, Y. ¢€;). Let Ag be the fan of
Z5 and let ko be the function associated to the anticanonical bundle of Zs.
The maximal cones in Ay are: o(eq, ..., €5, ...761,2221 €i), o(et, ..., €, .0, €11,
22:1 €, ZZi;i e;+e) withj=1,....,1—1and o(ey,...,e;-1,2 Zi: e; +ep). Tt
is sufficient to show that Z, satisfies the hypotheses of the lemma 16.1 respect
to o(ea, ..., e1—1, Zi:l ei,e) and o(eg, ..., e_1, Z,lizl €, 2 Zi;i e;+e;). We have

2 eite) e =2(31, e;) and (kalo(ea, .., er—1, Y5y eq ) (2300 ) eit+
e)= (-2 -\ fi—f)(2er+23 L eite) =2(1—2)—2(1-2)—1 = —1.
O

17 Introduction to the open Fano toric varieties
of dimension 3

For varieties of dimension 3 we can consider also blow-ups along varieties of
positive dimension. The proof will be similar to the previous one, but much
more difficult. We study again the class of varieties of the previous section and
we will prove a lemma similar to the lemma 16.1, but with stronger hypotheses
on the beginning variety Z. Thus we consider the class of varieties Z whose
fans A contain two 3-dimensional cones o (v, vq,v3) and o(v1, ve, w) with w =
a1v1 + asve — v3. We suppose that a; and as are positive integers such that
a1 + ae > 0. Up to reordering the indices we can suppose that a; > as. Recall
that o(vq,va,v3) U o(v1,v2,w) is the convex cone o(vy,v2,v3,w) (but it does
not belong to A).

Let Z be the open subvariety of Z whose fan A has maximal cones o(vy,va,v3)
and o(vy,v2,w). We want to find the conditions for Z to be an (almost)
Fano variety. The function associated to the anticanonical bundle of 7 is
the restriction to the support |A| of the function k associated to the anti-
canonical bundle of Z. For each j, let ¢; be the linear function such that
wj(v;) = 6;4, so (klo(vi,v2,v3)) = —p1 — w2 — 3. If 7 is a Fano variety then
—a;—as+1 = (klo(vy,va,v3))(w) > 0,0 a3 +as = 1. Therefore v3+w = vy and
Z is the blow up of A® along a stable subvariety of dimension 1. This is a Fano
variety, indeed we have (k|o(v1, va, v3)(w) = (—p1 — w2 —p3)(v1 —v3) =0 > —1
and (k|o(v1, v, w)(vs) = (—1 — @2)(v3) = 0 > —1. If Z is an almost Fano
variety then either Z is a Fano variety or k is linear on |A|. If k is linear then
—a1 —ag + 1 = (klo(v1,v2,v3)(w) = —1, s0 a1 + az = 2. We have two possi-
bilities: either w = vy + v9 — v3 or w = 2v; — v3. In the first case we obtain a
variety isomorphic to the variety Z of the previous paragraph. This is the case
in which we will have more problems, so we will study it in a second time.

Lemma 17.1 Let Z be a toric variety which contains an open toric subvariety
Z whose fan has maximal cones o(v1,ve,v3) and o(vy, v, w). Write w + v3 =
a1v1 + asvy where ay and as are positive integers with ay > as. We suppose
that:
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1. a1 +ag > 2,
2. v3+w # v + va.

Let Z' be a toric variety obtained from Z through a sequence of blow-ups, then
7' is not a Fano variety.

Proof. First of all we want to do some considerations on the hypotheses. i)
The inequality a; + az > 2 is equivalent to the condition (k|o(v1,v2,v3))(w) <
-1, s0 Z and Z are not Fano varieties. ii) Because of the previous observations
the two hypotheses a1 + a2 > 2 and vs + w # v; + vy are equivalent to the
inequality a; > 2. An useful observation is that the inequality a; + as > 2
implies a; > 2. We will say that a variety satisfies the hypotheses of the lemma
weakly if either it satisfies the hypotheses of the lemma or it contains a variety
Z isomorphic to Z, while we will sometimes say that a variety satisfies the
hypotheses properly if it satisfies the hypotheses. We could try to prove this
lemma as the lemma 16.1 by induction. Indeed we will prove that any blow-
up of Z satisfies the hypotheses of the lemma weakly, but unluckily we cannot
prove that vs +w # v; + vo. However, first we consider the case in which Z’ is
a blow up of Z along a closed subvariety and afterwards we try to resolve the
problem. We will demonstrate that if Z’ is a blow up of Z along the subvariety
associated to a cone 7, then Z’ satisfies always the hypotheses weakly and it
satisfies the hypotheses of the lemma properly if 7 # o(v1,v2). In general we
have a sequence Z = Zg < Z1 < ... & Z;j < ... < Z, = Z' where Z; 1 is the
blow-up of Z; along the stable subvariety associated to a suitable cone 7;. If
Z; satisfies the hypotheses, then Z;,; will satisfies the hypotheses weakly, in
particular Z;;, is not a Fano variety. If Z;,, satisfies the hypotheses properly
we can proceed by induction. Otherwise Z;41 contains a variety isomorphic to
Z. Let A be the fan of such variety. In this case we have two possibilities:
either this fan A is contained in the fan of Z; for all 4 > j or there are j < h < r
such that A is not contained in the fan of Z,11, but it is contained in the fan
of Z; for all j < i < h. In the first case Z; satisfies the hypotheses weakly for
all ¢ > j, in particular Z’ is not a Fano variety. In the second case we will prove
that Z; ;1 satisfies the hypotheses of the lemma.

Now we suppose that Z’ is the blow-up of Z along the closed subvariety asso-
ciated to a cone 7. Let A’ be the fan of Z’. If 7 is not contained in o (vy, v, v3, w)
then there is nothing to prove because o(v1,v2,v3) and o(vy,ve, w) belong to
A’. We now suppose that 7 is contained in o(v1,v9,v3, w) but it is not con-
tained in o(vy,vs). Observe that the hypotheses are symmetric in the two cones
o(v1,v2,v3) and o(vy,ve,w), so we can suppose that 7 C o(v1,v2, w). We have
three possibilities: 7 = o(v1,w), 7 = o(v2,w) and 7 = o (v, Ve, ).
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V] +w

Vg + W

U1
/ "
w
V2

We always have A’(1) = A(1) U {R" (w + byvy + bavg)} with by, by € {0,1}.
A’ contains the cones o(vy,v2,v3) and o(vy,ve,w + byvy + bavs). We have
(w + b1 + bz?]g) +wv3 = (a1 + bl)Ul + (CLQ + b2)’U1 with (al + bl) + (Clg + b2) > 2,
so 7' satisfies the hypotheses of the lemma. We want to remark that this part
of the prove does not require the last hypothesis.

Finally let 7 = o(v1, v2).
U1
k
w /

The fan of Z’' contains the cones o(v1,v1 + ve2,v3) and o(vy,v1 + vy, w). We
have vs + w = (a1 — ag)v1 + az(vy + vg) with (a1 — az) + as = a; > 2. So Z’
satisfies the hypotheses of the lemma weakly. We want to emphasize that this
is the first case in which we have used the last hypothesis.

Now we can consider the general case. We have a sequence Z = Zy < 21 <
w4 Zi < ...+ Z. = 7' where Z;1 is the blow-up of Z; along the subvariety
associated to a suitable cone 7;. Let A; be the fan of Z; for each i. Sup-
pose that Z; satisfies the hypotheses of the lemma with respect to o(v], v}, v3)
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and o(v], v}, w?). If 7; # o(v],v}) then Z;;, satisfies the hypotheses of the
lemma, in particular it is not a Fano variety. Hence we can suppose that
T = 0(1}1,1)2) Let o0l ™ o3 wd™) and o (v ™, w3 wit1) in Ajy be two
cones with respect to which Z;; satisfies the hypotheses weakly. If Z;; satis-
fies the hypotheses with respect to o(v] ™ vj*, v%“) and o(v] T v T with),
then we can proceed by induction. Othervvlse Z is isomorphic to the variety
whose fan has maximal cones o(v] ™', v3 ™! 04T and o (vt VT Wi tY). If

o] vt ud™) and o(v] T w3 T wit) belong to the fan of Z', then Z’
is not a Fano variety. Otherwise there is a h such that: 0) j < h < 7; 1)

o] vt ud ™) and o (vl vl witt) belong to A; for all j+1 < i < h;

2) either o(v]™ w3t v or J(u{“,vgﬂ,wjﬂ) does not belong to Apy1.
We can suppose that o (v] ™", 03" v does not belong to Ay 1, otherwise we
exchange o(v/ T, 0]t U%H) with o (0]t v%“, wiT1). In the first part of the
proof we have proved that, if 7, # o(vI ™! 3™, then Z),, satisfies the hy-

potheses of the lemma, so we can suppose that Th = o(U{Jrl U%H) Moreover we

can suppose o] vt ul ™) = o(v], 0] + vl v)) and o(v]T V)T Wit =

(vl,vl + vz,w] ). Let Z be the toric variety whose fan has maximal cones

(v{,vzws) and o(v], v, w?); it is an open subvariety of Z;. The inverse im-
age Z; 41 of Z; in Z;4, is the blow-up of Z along the subvariety associated
to o(v],v). (Observe that the closed subvariety of Z; associated to o(v],v3)
is contained in the open subvariety 7 ;). In the same way the inverse image
Zthl in Zpyq of Zj+1 is the blow-up of ZjJrl along the subvariety associated
to o(v], v 4+ v}). We want to show that Z,, satisfies the hypotheses of the
lemma with respect to two suitable cones, so Z, 11 satisfies the hypotheses of
the lemma with respect to the same cones.

J J J
2v] + vy — vy

Observe that w! = 20 +-v} —vé, because Z is isomorphic to the variety whose
fan has maximal cones O’(’U{,’Ui + v, v3) and O’(’Ul-,’Ul. + vé, 7). The fan of Z
has maximal cones a(vl, vy, 113) and J(v17 v2, 21}1 +v2 - v3) The fan of ZJH has
maximal cones 0’(1)1,'[)1 + 1)2,1)3) o(v], v 4+ v}, v), (vl,vl + ), 207 4+ v} — )
and a(v2,v1 + vy, 201 +vj — 113) Flnally the fan of Z, 41 has maximal cones

(1)2,’1)1 + 'UZ’Ué) (1)2,1)1 + U2a2v1 + U2 Ué)? O—(U{ + ”U%,21){ + v%,vg), U(U{ +

86



J 9,0 J J J J o J J J J J J
v, 201 + vy, 2v1 + 02 — v3), 0(v1, 201 + vy, v3) and o (vy, 201 + vy, 2v] + vy — v3).

Observe that Z,., satisfies the hypotheses of the lemma with respect to o(v] +
v}, 03, 207 +03) and o (v}, v, v] +v}); indeed we have (2v] +v3) +v} = 2(v] +v)).
O

Now we want to study the varieties which contain an open subvariety iso-
morphic to Z. Observe that these varieties are never Fano varieties. Let Z be
a such variety and let Z’ be the blow-up of Z along the subvariety isomorphic
to the subvariety of Z associated to o(eq,e2). We will show that, if Z’ satisfies
the hypotheses of the lemma 17.1, then there are not Fano varieties obtainable

from Z through a sequence of blow-ups.

Lemma 17.2 Let Z be a 8 dimensional toric variety whose fan contains two
cones a(vy,va,v3) and o(vy, ve, v1+ve—v3). Let Z' be the blow-up of Z along the
stable subvariety associated to o(vy,ve2) and let Z" be a toric variety obtained
from Z through a sequence of blow-ups. If Z" is a Fano variety, then Z' is
obtainable from Z' through a sequence of blow-ups.

Proof. We cannot proceed as in the previous lemma, because we do not
know the other cones of Z. We have a sequence Z = Zy < Z1 < ... + Z; +
o &= Zyp = Z" where w11 2 Zin1 — Z; is the blow-up along the subvariety of Z;
associated to a suitable cone 7;11. Let A; be the fan of Z; for each i. First of all
we want to show that there is a cone 7; equal to o(v1,vs). If 7; is not contained
in o(v1, ve, v3,v1 +ve —v3) for any 4, then o (v, ve,vs) and o(v1, v, v1 +ve — v3)
belong to A; for all . Thus Z” is not a Fano variety, a contradiction. Let j
be the first index such that 7; is contained in o(vy, v2,vs3,v1 + v — v3), SO T; SZ
o(v1,v2,v3,v1 +v2 —w3) for all i < j. If 7; # o(v1,v2) we know that Z; satisfies
the hypotheses of the lemma 17.1, so Z” is not a Fano variety, a contradiction.
Therefore there is j such that 7; = o(vy,v2) and 7 € o(v1,v2,v3,v1 + v2 — v3)
for all 7+ < 5. We want to reorder the cones associated to the subvarieties along
which we are blowing-up. Observe that this is not possible in general. We will
show that Z" is obtainable from Z’ through the sequence of blow-ups along the
subvarieties associated to the cones 7,...,7j,..., Th.

We want to consider the following sequence of blow-ups: Z = Z[ < Z] «
o & 2] 4 .. & Z, where ) 1 Z] — Z; is the blow-up along the subvariety of
Z), associated to 7; and 7}, : Zj ; — Z] is the blow up along the subvariety
of Z! associated to 7; for each ¢ > 1. Let A} be the fan of Z. We want to
show that these blow-ups are well defined and that Z ; = Z;. For the first point
we have to show that 7; belongs to A} for each i < j. Because 7; = o(v1, v2)
the elements of Af(3) not contained in o(vy,ve, v3,v1 + v2 — v3) are exactly the
elements of Ag(3) not contained in o(vy,ve, v3, v1 + v2 — v3), i.e. the elements
of Ay (3) different from o(v1,ve,vs) and o(v1,va,v1 + va — v3).
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P

The first claim follows because 7; is contained in |A[\o (v, va, v3, V1 +v3 —v3)
for each i < j. Recall that, given ¢ € A(l), U, is the open subvariety of Z
associated to the cone ¢. Z is the union of the open sets U; and Us defined
as follows: Uj is the union of Uy(y, vy,vs) a0d Ug (o, vg,0,4vs—vy), While Us is
the union of the U, where the ¢ varies in all the other maximal cones. The
blow-up 7] induces an isomorphism between Us and its inverse image, because
the subvariety of Z associated to o(v1,v2) does not intersect any U, with ¢ #
o(v1,v2,v3),0(v1, V2,01 +v2 —v3). In the same way 7; induces an isomorphism
between the inverse image of Us in Z;_; and its inverse image in Z;. So the
inverse image of Uy in Z; is isomorphic to the the inverse image of U, in Zj‘.
Moreover m%o...om) induces an isomorphism between (m7)~!(U1) and its inverse
image. In the same way m;_;0...om; induces an isomorphism between U; and its
inverse image. So the inverse image of U in Z; is isomorphic to the the inverse
image of Uy in Z}. Observe that the restrictions of these isomorphisms to the
torus are always the identity. Thus the second claim follows because there is
at most a morphism between two toric varieties such that its restriction to the
torus is the identity.

It is now sufficient to observe that Z] = Z'. O

18 Open Fano toric varieties of dimension 3

Now we have the instruments to classify, up to isomorphisms, the toric Fano
varieties obtainable from A® through a sequence of blow-ups. We want to find
a finite number of varieties satisfying the lemma 17.1 and such that there are
only a finite number of toric varieties obtainable from A® through a sequence
of blow-ups, but not obtainable from any of the previous varieties through a
sequence of blow-ups. We will proceed as follows: A® is a Fano variety, so
we consider all the possible blow-ups of A®. Let Z be a blow-up of A3: 1)
if Z satisfies the hypothesis of lemma 17.1 we know that there are not Fano
variety obtainable from Z through a sequence of blow-ups; 2) if Z satisfies the
hypotheses of the lemma 17.2 we will study the variety Z’ of that lemma; 3)
finally if Z is a Fano variety we reiterate the procedure. It is a priori possible
that Z belongs to none of the previous cases, but this will not happen for the
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varieties which we will study. In the following, if two blow-up of a given variety
are isomorphic we will examine only one of them. In our cases the isomorphism
will be induced by an isomorphism of N that exchanges the vector of the basis
{e1,e2,e3}. We want to observe that, in this paragraph, we include a variety
in the class of varieties obtainable from the variety itself through a sequence of
blow-ups. We want to remember how verify that a toric variety Z is a Fano
variety. Let A be its fan, let & be the function associated to its anticanonical
bundle and suppose that all the maximal cones in A are 3-dimensional. Then Z
is a Fano variety if and only if, given any cone o € A(3) and any cone 7 € A(1)
with 7 & o, (k|o)(p(7)) > —1 (here p(7) is the primitive vector of 7).

A? is a Fano variety. Up to isomorphisms there are two blow-ups of A?: i)
the variety 71”7 which is the blow-up of A® along the subvariety associated to
o(ey,ez)

€3

7 177

€1 e1 + ez €2

and ii) the variety ”2” which is the blow-up of A? along the subvariety
associated to o(eq, ez, e3).

€3

b2 277

¢2 + €3

€1 €2
Now we study the variety ”1”. Its fan has maximal cones o(eq, e3,e1 + e3)
and o(eq,es,e1 + e2). The 1-dimensional cones are generated respectively by
e1,e2,e3 and e; + es. Let ki be the function associated to its anticanonical
bundle. We have (k1|o(e1,es,e1 + e2))(e2) = (—f1 — f3)(e2) = 0 > —1 and
(ki|lo(ez,es,e1 + e2))(e1) = (—f2 — f3)(e1) = 0 > —1, so this variety is a Fano
variety.
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The blow-ups of the variety 717 are, up to isomorphisms: i) the variety
”3” which is the blow-up of the variety ”1” along the subvariety associated to
o(e1,e3);

€3

7 377

e1 +es3 0',

el e1 + eg €2

ii) the variety ”4” which is the blow-up of the variety ”1” along the subvariety
associated to o(e, e1 + e2);

€3

” 477

q\
Q

€1 261 + e9 e1 + es €9

iii) the variety ”5” which is the blow-up of the variety ”1” along the subva-
riety associated to o(e; + e, g, €3);

€3
” 5?7
!
g + 262 + €3
o
el e1 + ez €2

and iv) the variety ”6” which is the blow-up of the variety ”1” along the
subvariety associated to o(e; + e, e3).
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€3

b2 677

x + e3

e1 €] + es €2

The fan of the variety ”3” has maximal cones o(e1, e; +e9,e1+e3), o(es, e1+
ea,e1+e3) and o(eq, e3,e1 +e3). We have (e +e3)+ea = es+ (e +e3), so this
variety satisfies the hypotheses of the lemma 17.2 for o(es, e1 + e2,e1 + e3) and
o(eq, e3,e1 + e3). Hence we have to study the variety ”7” obtained blowing-up
73" along the subvariety associated to o(es, eq + e3).

€3
b2 777
1o er+% +es
o.l
(o)
€1 €1+ es €2

The fan of ”7” has maximal cones o(ej,e; + ea,e1 + e3), o(e; + ea,e1 +
es,e1+eates), o(es,er +es,e1+eates), o(ea, es,e1 +ex+es) and o(es, e1 +
es,e1 + ea + e3). We have (eq + e2 + e3) +e1 = (e1 + e2) + (e1 + e3), so this
variety satisfies the hypotheses of the lemma 17.2 for (e, e1 + e2,e1 + e3) and
o(e1+ea,e1+es3,e1+ex+e3). Hence we have to study the variety ”8” obtained
blowing-up ”7” along the subvariety associated to o(e; + ez, e1 + e3).
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” 87’

e1 + e3

e1 €1+ es €2

The fan of this variety has maximal cones o (e, e; +e3,2e; +ea+e3), oe; +
e3,e1 + ex + e3,2e; + ex + e3), o(er,e1 + ez,2e; + ex + e3), o(er + ez, 2e1 +
e+ e3,e1+e2+e3), o(ea,e1 +ea,e1 +ea+e3), oles, e + ez, e + ea + e3) and
o(eq, e3,e1+ea+tes). We have (2e1+ea+e3)+ea = (e14e2)+(e1+ea+es), so this
variety satisfies the hypotheses of the lemma 17.2 for o(eq, €1 + €3, €1 + €3 + €3)
and o(ey +ea,e1+ea+e3,2e1 +ea+e3). Hence we have to study the variety ”79”
obtained blowing-up ”8” along the subvariety associated to o(e1+ea, e1+ea+e3).

€3

b2 977

61—|—€3

ey €1 + es €2

The fan of this variety has maximal cones o(es,e1 + ea,2e1 + 2e5 + e3),
o(ea,2e1+2ex+es,e1+ea+es), oles, ea,e1+eates), o(es,er+es, e;+ex+tes),
0'(61 —+ €3, €1 + () —+ 63,261 —+ €9 —+ 63), 0(61 —+ €9 + 63,261 + €9 —+ 63,261 + 262 —+
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es), o(er + e9,2e1 + ex + e3,2e1 + 2e2 + e3), o(er,er + e2,2e1 + ex + e3) and
o(er,e1 + e3,2e1 + ea + e3). We have (2e1 + 2e2 + e3) + e3 = 2(e1 + €3 + e3),
s0 79” satisfies the hypotheses of the lemma 17.1 for o(es, e2,e1 + €2 + e3) and
o(ea, €1 + ea + e3,2e1 + 2e2 + e3). Thus there are not Fano varieties obtained
from ”3” through a sequence of blow-ups.

Now we examine the variety ”4”. Its fan has maximal cones o(eq, e3, 2e1+¢3),
o(es,2e1+e9,e1+e2) and o(ea, €1+ €9, e3). We have (2e1+e2)+ea = 2(e1 +e2),
so 747 satisfies the hypotheses of the lemma 17.1 for o(es, 2e; + €2, e1 + €2) and
0(62, e + €2, 63).

Now we examine the variety ”5”. Its fan has maximal cones o (e, e3, e1+e3),
o(e1+2ex+e3,e1+ea, e3), o(e1+ea,ea,e1+2ea+e3) and o(e1 +2e2+e3, €2, €3).
We have (e1 +2e2 +e3) +e1 = 2(e1 +e2) + e3, so 75”7 satisfies the hypotheses of
the lemma 17.1 with respect to o(e1, e1 + €2, e3) and o(es, e1 + €2, €1 +2e2 +€3).

Observe that we have demonstrate that if a toric Fano variety is obtained
from the variety ”1” through a sequence of blow-ups, then either it is the variety
”1” or it is obtained from the variety ”76” through a sequence of blow-ups.
Now we want to show that the variety ”6” is a Fano variety. Let kg be the
function associated to the anticanonical bundle of ”6” and let Ag be the fan
associated to ”76”. We have Ag(3) = {o(e1+ea,e1,e1+ea+e3),0(e1,es,e1+ea+
e3),0(ea,e3,e1+es+e3),o(e1+ez,ea,e1+ea+es)}t and Ag(1) = {o(er),o(ea),
o(es),o(e1 + e2),0(e1 + e2 + e3)}. So (kglo(er + e2,e1,e1 + ea + e3))(e2) =
(=f1)(e2) = 0> —1, (ke|o(e1 +ea,e1,e1 4+ ez +e3))(e3) = (—f1)(e3) = 0> —1,
(kﬁ‘g(el, €3,€1 + e+ 63))(62) = (—f1 + fo— fg)(eg) =1>-1, (k6|0'(€1, e3,e1 +
ex +e3))(er +e2) = (—fi+ fo— f3)(e1 +e2) = 0> —1, (kg|o(ez, e3,e1 + €2 +
e3))(e1) = (f1 — f2 — f3)(e1) = 1 > —1, (ke|o(ez, e3,e1 + €2 +e3))(e1 + e2) =
(fi=fa—f3)(e1+e2) = 0> —1, (ke|o(e1+ez, €2, e1+ea+e3))(e1) = (—f2)(e1) =
0> —1 and (kg|o(e1 +e2,ea,e1 +ea+e3))(e3) = (—f2)(e3) =0 > —1, s0 76" is
a Fano variety.

The blow-ups of the variety ”6” are, up to isomorphisms: i) the variety
”10” which is the blow-up of the variety ”6” along the subvariety associated to
o(er,e1 + e2);

€3

” 1077

e1 2e1+ey el +es €2

ii) the variety ”11” which is the blow-up of the variety ”6” along the subva-
riety associated to o(e; + e2,e1 + e2 + e3);
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7 11”

iii) the variety ”12” which is the blow-up of the variety ”6” along the sub-
variety associated to o(es, e1 + ea + e3);

€3

”197 + ez + 263

ep + €3

e1 e1 + eo €2

iv) the variety ”13” which is the blow-up of the variety ”6” along the sub-
variety associated to o(es,es,e1 + e + e3);

€3

7 13’7

ey €1+ es €2

v) the variety ”14” which is the blow-up of the variety ”6” along the subva-
riety associated to o(eq, e1 + ez, €1 + €2 + €3);
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€3

+e3
es
‘ o

€1 e1 + ez

R 1477

vi) the variety ”15” which is the blow-up of the variety ”6” along the sub-
variety associated to o(eq, e3);

€3
2 1577
ey+ es
e1 +ex+es
0_/
€1 e] + ez €2

and vii) the variety ”16” which is the blow-up of the variety ”6” along the
subvariety associated to o(e1,e1 + €2 + e3).

” 1677

We begin studying the variety ”10”. Its fan has maximal cones o(es, €1 +
es,e1 + ex + e3), oles, ez, e1 + e + e3), o(er,es,er + ea + e3), o(er,er + ez +
es,2e1 + e2) and o(2e1 + ea,e1 + ea,e1 + €3 + e3). We have (2e; + e2) + €9 =
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2(e1 + e2), so 710”7 satisfies the hypotheses of the lemma 17.1 with respect to
o(ea,e1 +ea,e1 + ex+e3) and o(2e; + eg, €1 + ea,e1 + ea + e3).

Now we examine the variety ”11”7. Its fan has maximal cones o(ey,e; +
627261 + 262 + 63), 0'(617261 + 262 + e3,€1 + es + 63), 0'(61763,61 + es + 63),
o(ea,e3,e1 +ea+e3), o(ea, 2e1 +2e5+e3,e1 +ea+e3) and o(ea, e1 + €3, 2e; +
2e9 + e3). We have (2e1 +2e3 +e3) +e3 = 2(e1 + e2 + e3), so "11” satisfies the
hypotheses of the lemma 17.1 with respect to o(e1,2e1 + 2e2 + e3,e1 + €3 + e3)
and o(ey,es,e; + es + e3).

The fan of the variety ”12” has maximal cones o(e1,e; + ea,e1 + e + €3),
oler,e1 +ea+es e +ex+2e3), oler, ez, e1 +ex+2e3), o(ea, es, e1 + ea + 2e3),
o(ea,e1 + ea + e3,e1 + ea + 2e3) and o(ez,e1 + ea,e1 + e3 + e3). We have
(e1 +ea+2e3) + (e1 +e2) = 2(eq + e2 + e3), so 7127 satisfies the hypotheses of
the lemma 17.1 with respect to o(ey,e1 + ea,e1 + ea + e3) and o(er,e1 + ex +
e3,e1 + €2 + 263).

The fan of the variety ”13” has maximal cones o(ey,e; + e2,e1 + e + e3),
o(eg,e1+eq, e1+eates), o(ea, e1+eates, e1+2ea+2e3), o(ea, es, e1+2e2+2e3),
o(es,e1 +ea+ez,e1+2ex+2e3) and (e, e3,e1 +es+e3). We have (eg +2es +
2e3) + €1 = 2(e1 + ex + e3), so 7137 satisfies the hypotheses of the lemma 17.1
with respect to o(e1,es,e1 + ex + e3) and o(es, e1 + e2 + e3, e1 + 2ea + 2e3).

The fan of the variety ”14” has maximal cones o(e1,e; + ea,e1 + e + €3),
o(er,es,e1 + e+ e3), o(ea, e3,e1 +ea+e3), o(ea, €1 + €2 + e3, 2e1 + 3es + e3),
o(e1+ea,e1 +ea+es,2e1 +3ex+e3) and o(eq, e1 + e2,2e1 + 3ex + e3). We have
(2e1 + 3ex + e3) + e3 = 2(e1 + e + e3) + ea, so 7147 satisfies the hypotheses of
the lemma 17.1 with respect to (e, e2,e1+e2+e3) and o(eq, e1 +e3+e3,2e1 +
362 + 63).

The fan of the variety ”15” has maximal cones o(es,e; + e2,e1 + e + e3),
o(ea,e3,e1 + ea + e3), o(es,e1 + ez, e1 + ea + e3), o(er,e1 + es,eq + e + e3)
and o(ej,eq + ea,e1 + ex + e3). We have (e1 + e2) + (e1 +e3) = e1 + (e1 +
es + e3), so "15” satisfies the hypotheses of the lemma 17.2 with respect to
o(e,e1 +es,e1 + e2 + e3) and o(er,e; + eg,e1 + €2 + e3). Hence we have to
study the variety obtained blowing-up ”15” along the subvariety associated to
o(e1, e1+ea+es), but this one is the variety that we have called ”8”. So there are
not Fano varieties obtained from ”15” through a sequence of blow-ups, because
78" satisfies the hypotheses of the lemma 17.1.

The fan of the variety ”16” has maximal cones o(e; + ez, €1 + ea + e3,2e1 +
es + 63), 0'(61,61 + 62,261 + e + 63), 0'(61763,261 + ey + 63)7 0'(63,61 + e +
e3,2e1 +ea+e3), o(ea, e3,e1+ea+e3) and o(eq, e1 +ea,e1 +e2+e3). We have
(2e1+ex+e3)+ex = (e1+ea)+(e1+ea+es), so 16”7 satisfies the hypotheses of
the lemma 17.2 with respect to o(es, €1 +ea,e1+e3+e3) and o(e; +ea,e1+ea+
es,2e1 +es +e3). Hence we have to study the variety ”17” obtained blowing-up
716” along the subvariety associated to o(e; + ea,e1 + ea + e3).

96



R 1 7”

+ e2 +

€1 €1 + €2 €2

The fan of this variety has maximal cones o(eq,e1 + ea,2e1 + 2e2 + e3),
o(ea,e1+eates,2e1+2ex+e3), o(ea, e3,e1+ea+es), o(es, e;+eates, 2e;+ea+
e3), o(e1+eates, 2e1+eates, 2e1+2ea+e3), o(e1+eq, 2e1+ea+e3, 2e1+2ea+e€3),
o(er,er + e2,2e1 + ea + e3) and o(ey, es,2e1 + ex + e3). We have (2e; + 2eo +
e3) +e3 = 2(e1 + ez + e3), so 17”7 satisfies the hypotheses of the lemma 17.1
with respect to o(eq,es,e1 + €2 + e3) and o(eq,e1 + ea + e3,2e1 + 2e2 + e3).
Observe that we have classified the toric Fano varieties obtainable form the
variety ”1” through a sequence of blow-ups, so we have only to study the varieties
dominating the variety ”2”.

Let k3 be the function associated to the anticanonical bundle of 72” and
let Ag be the fan associated to ”2”. We have Aq(3) = {o(es,e3,€1 + €2 +
e3),0(e1,es,e1+eates),o(er, e, e1+ea+es)} and Ay(1) = {o(e1),o(e2),o(es),
o(er + e + e3)}. We have already showed that this variety is a Fano vari-
ety. Indeed, we have (ka|o(e2,e3,e1 + €2 + e3))(e1) = (fr — fa — f3)(e1) =
1> -1, (k2|0'(61,63,€1 + es + 63))(62) = (7f1 + f2 — f3)(62) =1> —1 and
(k2lo(e1, e2,e1+ea+e3))(e3) = (—f1 — fa+ f3)(e3) = 1 > —1. This inequalities
prove again that ”2” is a Fano variety.

The blow-up of the variety ”2” are, up to isomorphisms: i) the variety ”6”
that we have already examined;

ii) the variety ”18” which is the blow-up of the variety ”72” along the subva-
riety associated to o(ey,eq, e1 + e + e3);
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” 187’

€1

and iii) the variety ”19” which is the blow-up of the variety ”6” along the
subvariety associated to o(es, e1 + ez + e3).

€3

7197 s + 263

t €3

€1 €2

The fan of the variety ”18” has maximal cones o(eq,es,2e1 + 2e2 + €3),
o(e1,e1+ea+es, 2e1+2ea+e3), o(er, e3,e1+ea+es), o(ea, e3,e1+ez+e3) and
o(es,e1 + ea + es,2e1 + 2e5 + e3). Observe that the blow-up of 718" along the
subvariety associated to o(eq, e3) is isomorphic to the variety ”13” through the
isomorphism ¢ given by the action of (1,2,3) €Syms on {e1,es,e3}. We have
showed that such variety satisfies the hypotheses of the lemma 17.1. Indeed we
have (2e1 + 2e5 + e3) + e = 2(e; + e2 + e3), so ”18” satisfies the hypotheses of
the lemma 17.1 with respect to o(ez, e5,e1 +ea+e3) and o(eq, e1 +e3+e3,2e1 +
2e9 + 63).

Now we want to show that the variety ”719” is a Fano variety. Let k19 be the
function associated to the anticanonical bundle of 719” and let A9 be the fan
associated to 719”. We have A19(3) = {o(e1,e3,e1 + ea + 2e3),0(e1,e1 + ex +
e3,e1+ea+2e3),0(eq1, ea, e1+ea+es),0(ea, e1+ea+es,e1+ea+2e3)o(ea, e3,e1+
ea+2e3)} and A19(1) = {o(e1),0(e2),0(e3),o(e1+ea+es),o(er+ea+2e3)}. We
have (k'19|0'(61, €3,€1 +e2 +2€3))(61 +eg +63) = (7.](.1 +2f2 — fg)(el +e9 +63) =
0 > —1, (kiglo(er, e3,e1 + €2 + 2e3))(e2) = (—f1 +2f2 — fs)(e2) = 2 > —1,
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(k19|0'(€1,61 +eg+e3,e1 + €2 —|—2€3))(€2) = (—f1)(62) =0> -1, (k19|0'(€1,61 +
€2+€3761+62+263))(63) = (7]01)(63) =0 > 71, (k19|0'(61,62,61+€2+€3))(61+
e +2e3) = (—fi — fa+ f3)(e1 + e2 +2e3) = 0 > —1, (kig|o(e1,e2,e1 +ex +
e3))(es) = (=fr — fa + f3)(ez) = 1 > —1, (kiglo(e2,e1 + ez + e3,e1 + ez +
2e3))(e2) = (—f2)(e1) = 0 > —1, (kiglo(ez, e1 + €2 + e3,e1 + ez + 2e3))(e3) =
(=f2)(e3) = 0 > —1, (kiglo(ez,e3,e1 + ea + 2e3))(e1 + €2 + e3) = (2f1 — fo —
f3)(61 + €2 + 63) =0>—-1and (k19|0'(€2,63,€1 + e + 263))(61) = (2f1 — fo—
f3)(e1) =2 > —1, so this variety is a Fano variety.

The blow-up of the variety ”19” are, up to isomorphisms: i) the variety ”12”
which satisfies the hypotheses of the lemma 17.1; ii) the variety ”20” which is the
blow-up of the variety ”19” along the subvariety associated to o(es, e1+ea+2e3);

€3

ey + e2 + 3es

R 2077

€1 €2

iii) the variety ”21” which is the blow-up of the variety ”19” along the
subvariety associated to o(e1 + ea + e3,e1 + ea + 2e3);

€3

€9 + 263
N2es + 3es

b2 2177

ey €2

iv) the variety ”22” which is the blow-up of the variety ”19” along the
subvariety associated to o(e1,e1 + ez + 2e3);

99



€3

” 99 e + 263

y + e3
2e1 + e + 2e4

€1 €2

v) the variety 723" which is the blow-up of the variety ”719” along the sub-
variety associated to o(e1, e3);

ki 2377

€1 €2

vi) the variety ”24” which is the blow-up of the variety ”19” along the
subvariety associated to o(eq,e; + es + e3);

” 24”

€2

vii) the variety ”25” which is the blow-up of the variety ”19” along the
subvariety associated to o(ey,es, e; + ea + 2e3);
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” 257’

€1 €2

viii) the variety ”26” which is the blow-up of the variety ”19” along the
subvariety associated to o(e1, e1 + es + e3,e1 + ea + 2e3);

” 2677

€1 €2

and ix) the variety ”27” which is the blow-up of the variety 719” along the
subvariety associated to o(e1,ea,e1 + €2 + e3).
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” 277’

€1 €2

The fan of the variety ”720” has maximal cones o(ey,e3,e; + es + 3e3),
o(er,e1 +ea+3es,e1 +ea+2e3), o(er, e +ea+es,e1 +ea+2e3), oer,es,e1 +
es + e3), o(ea,e1 + ea + es,e1 + ea + 2e3), o(ea,e1 + €2 + 2es,e1 + ea + 3es)
and o(es,es,e1 + e2 + 3e3). We have (e; + e2 + e3) + (e1 + e2 + 3e3) =
2(e1 + ea + 2e3), so 720" satisfies the hypotheses of the lemma 17.1 with re-
spect to o(e1,e1 + e2 + e3,e1 + e2 + 2e3) and o(eq, e1 + e + 2e3, 1 + ez + 3e3).

The fan of the variety 7217 has maximal cones o(ey,e3,e; + es + 2e3),
0'(61, €1 +62+263, 261 +262+363), 0'(61, €1 +62+63, 261 +262+363)7 0(61, €9, €1 +
eates), o(ea, e1+ea+tes, 2e1+2e2+3e3), o(ea, e1+ea+2e3, 2e1 +2e2+3e3) and
o(eq, e3,e1+e2+2e3). We have (2e1 4 2e2+ 3e3) +e3 = 2(e1 +ex+2e3), so 7217
satisfies the hypotheses of the lemma 17.1 with respect to o (e, e3, €1 +ea+2e3)
and (e, e1 + ex + 2e3,2e1 + 2es + 3e3).

The fan of the variety ”722” has maximal cones o(eg,e3,€e1 + ex + 2e3),
o(ea,e1+ea+es,e1+ea+2es), oer,ea,e1+ea+es), o(er,er+ea+es,2er+ea+
2e3), o(e1+ea+es,e1+ea+2es,2e1 +ex+2e3), o(es, e1+e2+2es,2e1 +ea+2e3)
and o(eq, e3,2e1 + e + 2e3). We have (2e; +ea + 2e3) + e2 = 2(e1 +e2 +e3), so
7227 satisfies the hypotheses of the lemma 17.1 with respect to o(ea,e1 + es +
es,e1 + ex + 2e3) and o(e; + ex + e3,e1 + ea + 2e3,2e1 + eo + 2e3).

The fan of the variety ”23” has maximal cones o(es, e1 + e3,e1 + ea + 2e3),
0'(61,61 +es, €1 +62+263), 0(61,61 +62+63,61+62+263), 0’(61,62,61 +€2+€3),
o(eq,e1+ea+tes, e1+ex+2e3) and o(eq, e, e1+ea+2e3). We have (e1+ex+e3)+
(e14e3) = (e1+ea+2e3)+e1, so ”23” satisfies the hypotheses of the lemma 17.2
with respect to o(ey, e1 + e+ e3,e1 +es +2e3) and o(eq, e1 +e3,e1 + e + 2e3).
Hence we have to study the variety ”28” obtained blowing-up ”23” along the
subvariety associated to o(e1,e1 + ea + 2e3).
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” 28”

€2

The fan of this variety has maximal cones o(e1, e, e1+ea+e3), o(eq, e1+ea+
es,e1+ea+2es), o(eq, e, e1+ea+2e3), o(es, e1+es,e1+ea+2es), o(er+es, er+
ea+2es,2e1+ea+2e3), o(er, e1+es, 2e1+ea+2e3), o(er, e1+ea+es, 2e1+ex+2e3)
and o(e; +ex+es, e1 +e2+2e3,2e1 +ea+ 2e3). We have (2e1 +e2+2e3) +eg =
2(e1 + e+ e3), so 728 satisfies the hypotheses of the lemma 17.1 with respect
to o(e1, ez, e1 + ex + e3) and o(er, e + ez + e3,2e1 + ex + 2e3).

The fan of the variety ”724” has maximal cones o(ea,e3,e1 + ex + 2e3),
o(ea, €1 +ea+es,e1+ex+2e3), o(ea,e1 +ea2+es,2e1 +ea+e3), o(er, e2,2e; +
eates), o(er,2e;+ea+es, e1+ea+2es3), o(er+eates, e1+ea+2es,2e; +ex+e3)
and o(ey, es, e +ea+2e3). We have (2e1 +e2 +e3) +e3 = (e1 +e2 + 2e3) + 1,
so 7247 satisfies the hypotheses of the lemma 17.2 with respect to o(ey,2e; +
es + e3,e1 + ea + 2e3) and o(eq,es, e1 + ea + 2e3). Hence we have to study
the variety ”729” obtained blowing-up ”24” along the subvariety associated to
oler,e1 + ex + 2e3).

” 2977

€1 €2

This variety has maximal cones o(eq, 3, e1 +ea+2e3), o(ea, e1+e2+e3,e1+
ez +2e3), o(ez,e1+ea+e3,2e; +exte3), oler, ez, 261 +ea+e3), o(er, 2e; +ea+
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es,2e1+ex+2e3), 0(2e1+ea+2es,2e1+ea+e3, e1+ea+2e3), o(e; +ea+es, 2e1+
estes,e1t+eat2es), o(es, e1+ea+2es3,2e1+ea+2e3) and o(ey, es, 2e1+ex+2e3).
We have (2e1 + ex + 2e3) + (e1 + €2 + e3) = (2e1 + e2 + e3) + (e1 + e2 + 2e3),
so 729" satisfies the hypotheses of the lemma 17.2 with respect to o(e; + es +
€3,2e1 +ex +e3,e1 +ea+2e3) and o(2e1 + e + 2e3,2e1 + €2+ e3, €1 + €2 + 2e3).
Hence we have to study the variety ”30” obtained blowing-up ”29” along the
subvariety associated to o(2e1 + e3 + e3, €1 + €2 + 2e3).

2 30”

€1 €2

The fan of this variety has maximal cones o (e, €3, e1 + ez + 2e3), o(ea, €1 +
es +e3,e1 +ex+ 2e3), oes, €1 +ea +e3,2e1 + ea + e3), o(er, ea,2e1 + e + e3),
o(er,2e1+eg+es, 2e;+ea+2e3), 0(2e1 +ex+2e3,2e1 +ea+es,3e1 +2e2+ 3e3),
0'(61 +€2+€3, 261 +€2+63, 3€1+262+363), 0(361 +262+363, €1 +€2+2€3, €1 +62+
e3), o(e1+ea+2es3,2e1+ea+2e3, 3e1+2e5+3e3), o(es, e1+ea+2e3, 2e1 +ea+2e3)
and o(eq, e3,2e1 +e3+ 2e3). We have (3e; +2e5 4 3e3) +e2 = 3(e; +ea+e3), so
7307 satisfies the hypotheses of the lemma 17.1 with respect to o(ea, e + es +
es,e1 + ex + 2e3) and o(e; + eg + e3,e1 + e2 + 2e3, 3e1 + 2ea + 3es).

The fan of the variety ”25” has maximal cones o(eq, €2, e1+ea+e3), o(ea, €1+
es + €3,€1 +eo+ 263), 0'(62, €3,€1 +eo+ 263), 0'(63, e1+e2 +263, 261 +eo +3€3),
o(e1,es,2e; + es + 3es), oler,e1 + ex + 2e3,2e1 + ex + 3es) and o(ej,eq +ex +
e3,e1+ea+2e3). We have (2e; +ea+3e3)+(e1+ea+e3) = 2(e1 +e2+2e3) +eq,
so 7257 satisfies the hypotheses of the lemma 17.1 with respect to o(ej,e; +
es + €3, €1 + e9 + 263) and 0'(61, e1 +eg + 263, 261 + e + 363).

The fan of the variety ”726” has maximal cones o(ea,e3,e1 + ex + 2e3),
o(eq,e1+eates, e1+ea+2e3), oler, ea,e1+ea+es), o(er,e;+ea+es, 3e;+2es+
3es), o(e1, e1+ea+2es, 3e1+2e2+3e3), 0(3e1+2e2+3e3, 1 +ex+e3, e1+e2+2e3)
and o(ey, e3,e1 + €2 + 2e3). We have (3e; + 2eo + 3e3) + ea = 3(e1 +e2 + e3), s0
726”7 satisfies the hypotheses of the lemma 17.1 with respect to o(ea,e1 + ea +
es,e1 + ea + 2e3) and o(e; + ea + e3,e1 + e2 + 2e3, 3e1 + 2ea + 3es).
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The fan of the variety 7277 has maximal cones o(ey,e3,e; + ex + 2e3),
o(er,e1+ea+es,er+ea+2es), o(er,er +ea+es, 2e; +2es+e3), o(er, ea,2e1 +
262 + 63), 0(62, e; + e + €3, 261 + 262 —+ 63), 0(62,61 + €2 + €3, €1 + e + 263)
and o(ey,es,e1 + ea + 2e3). We have (e1 + e + 2e3) + (2e1 + 2e2 + e3) =
3(e1 + ea + e3), so 7277 satisfies the hypotheses of the lemma 17.1 with respect
to o(e1,e1 + e2 +e3,e1 + e2 + 2e3) and o(ey, e1 + ea + e3,2e1 + 2ea + e3).

Therefore we have proved the following theorem.

Proposition 18.1 The Fano toric varieties obtainable from A® through a se-
quence of blow-up are, up to isomorphisms:

1.

e b

€1

€1

A3
a 2-blow-up of A®
the 3-blow-up of A®

the variety whose fan has mazimal cones o(ey,e; + ez, e1 + ea + e3),
o(e1,es,e1+ea+es), o(ea,e3,e1+ea+e3) and o(ea,e1 +e2,e1 +ea+e3).
This variety is obtainable from A® through two consecutive blow-ups along
subvarieties of codimension 2,

the variety whose fan has mazimal cones o(ey, ez, e1+ea+2e3), o(er,e1 +
ea+es, e1+es+2e3), o(er, e, e1+eates), o(ez, e1+ex+es, e1+ea+2es3)
and o(es, e3,e1 + €2 + 2e3). This variety is obtainable from A3 through a
3-blow up followed by a 2-blow up.

e3 €3 €3
€9 —+ €3
€2 €1 €1 + €3 €2 €1 €2
€3 €3
es + 2es
€2 + e3 co + €3
e1 + e €2 e €2

We now want to explain why is too difficult to generalize the proof to 3-
dimensional almost Fano varieties or to Fano varieties of arbitrary dimension.
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It is likely that one can prove a lemma similar to the lemma 17.1 for the almost
Fano varieties. We suppose that we have to replace the hypothesis a; > 2 with
the hypothesis a; > 3. Unluckily, it is too difficult to generalize the explicit
part of the proof that we have done in this paragraph, because there are too
much varieties to study. Indeed we know that there are an infinite number of
almost Fano variety of dimension 3, for example the varieties A' x Z,, where
the Z,, are the varieties of the proposition 15.2. Moreover, most of the varieties
that we have explicitly studied in this section are quasi-Fano varieties, so it is
difficult to find a family of varieties that hopefully contains all the almost-Fano
varieties.

We have two problem to generalize the proof to Fano varieties of arbitrary
dimension. First, it is difficult to generalize lemma 17.1. Observe that we have
used that there is only one troublesome variety, namely Z, and there is only
one "bad” blow-up of Z. But this is false in higher dimension. For example,
in dimension 4 we have to consider two varieties: i) the variety whose fan has
maximal cones o(vy,v2,v3,v4) and o(vy,v2,v3,v1 + v2 + v3 — vg) and ii) the
variety whose fan has maximal cones o(v1, ve, vs,v4) and o(vy,vg, v3,v1 + Vg —
v4). Moreover we have to consider the blow-ups of any of such varieties along
the subvarieties associated to any cone of dimension at least 2 contained in
o(v1,v2,v3). So we have to consider five case up to isomorphisms. Second, we
cannot reiterate the explicit part of the proof for every dimension.

19 Complete symmetric varieties of rank at least
3

In this section we begin to classify the Fano complete symmetric varieties of
rank at least 3 which are obtained from the wonderful variety by a sequence
of blow ups along closed orbits. Let Y be a such variety, then either Y is the
wonderful variety X or it is the blow-up of X along the closed orbit because
of the proposition 16.1. Recall that we have already classified the wonderful
Fano symmetric varieties in the theorem 13.1. We will use again the notation
used in the proof of that theorem. We want to prove that the blow-up of the
wonderful varieties along the closed orbit is not Fano if G/H has a simple factor
of rank at least 3. Remember that the weights associated to the anti-canonical
bundle are \; = 20 — 200 — (I — 2)af + >, ; oF with i =1,...,[. It is sufficient
to prove that there is always an index ¢ such that < \;, (af)Y > is negative.
Recall that (af)Y = (2/ < af,af >)af € Mg is the coroot corresponding to
as. Suppose that G/H is not simple and let G'/H' be a simple factor of rank I’
at least 3. Let \; be the weights of G’ defined in a similar way to the A;, then
Ai = A, — (I = I")af + w where w is a spherical weight which vanishes on the
restricted roots of G'. Thus < \;, ()Y > < < A, (af)Y >, so it is sufficient to
consider the simple symmetric varieties of rank at least 3.

We consider two cases. First, suppose that there is an ¢ € {1,...,1} such that
we have < 8, a; >= 0 for each root S fixed by 6, so < 3,0(c;) >= 0. In this case
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<25, (af)Y >< 2, < 269, (af)Y >=0, < af, (af)" >=2 and < af, (af)¥ >< 0
for each j # i. Hence < \;, (af)¥ ><2+0—2—0=0. Observe that this case
include the compactifications of a group. Moreover, the only simple involutions
of rank at least 3 which are not include in this case are: 1) the involutions of
type AIT; 2) the involutions of type CIT; 3) the involutions of type DIIT if the
rank of G is odd.

Second, we suppose that there are simple roots oy, as, as, f1 and B2 with
the following properties: 1) aq, ag, az € ¢1 and 51, B2 € ¢o; 2) < B, Bi >=<
aj,aj > for each i and j; 3) < 1,82 >= 0 and < ;, (az)¥ >=< af, (a3)" >=
—1 for each i and for each j different from 2; 4) o = 2a9 + 1 + B2. For
simplicity we suppose that < as,as >= 2. Observe that for each § € T'y we
have < §,a5 >=< 0(8),0(a3) >= — < 8,05 >, so < ,a5 >= 0. Moreover
we have < 20,0 >=< 26,01 >=< 24,02 >= 2, so < 20 — 20p,05 >=<
26,05 >= 8. Observe that < a3, aj >=< a3,2as >= 4, so (a3)¥ = 103 and
< 28 — 200, (a5)Y >= 4. Hence < A, ()Y ><< 26 — 25y — (I — 2)a5 + af +
aj, (a3)Y ><4-2(1—2)—1—1 < 0. Thus we have proved the following lemma.

Lemma 19.1 Suppose that (G, 0) = (G1, 01) x (G2, 02), where (G1, 61) is simple
of rank at least 3. IfY is a Fano complete symmetric variety then it is wonderful.

20 Complete Fano symmetric varieties I

Now we want conclude the classification of the (almost) Fano complete sym-
metric varieties (with the suitable hypotheses). We have already classified the
associated Fano toric varieties, so we have only to calculate some weights. First
of all we will do some remark on the not simple symmetric variety and we will
introduce some notations. Suppose that (G, 0) = (G1,601) x (G2,02) and let ¢;
be the root system of G;, so ¢ = ¢1 U pa. Let €; be the lattice generated by the
spherical weights of G;, so 2 = ; & Q. Given a weight A in ), we can write
A = A1 + A2 where \; belongs to ;. Observe that A is (strongly) dominant if
and only if both A; and Ay are (strongly) dominant. Thus we can reduce our-
selves to study some weights of simple symmetric varieties, even if the complete
symmetric variety may not be the product of a completion of G1/H; and of a
completion of G2/ Hs. Because of the previous section we can suppose that the
rank of G;/H; is at most 3 for each i.

Now we list all the weights which we have to determine. If | = 3 we have to
study the weights

Ao = 26 — 200
A1 =20 — 260 + a3
Ao = 20 — 200 + o5
Az = 20 — 200 + o
A =20 — 260+ af + a3
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As =20 — 260+ af + aj

A6 =20 — 260 + a5 + a3
A7 =20 — 260 — o] + a5 + o3
Ag =28 — 200 + af — a5 + a5
Ag =20 —260+af +a5—a3
A0 =20 — 200 — 2a] + a5 + a3
A1 =28 — 260 + o] — 205 + a3

and
/\12 =20 — 250 —|—a§ +Oz§ — 2oz§.

If [ = 2 we have to determine the weights

tn =25 — 250 — (n — 1)aj + a5
Vp =20 — 250 + o — (n—1)a3
n =26 — 2d
for each n > 0. Observe that g = vy.
If | = 1 we have to study the weights ¢, = 20 — 2§y — (n — 1) for each
n > 0.

Suppose that [ = 3 and (G, 0) = (G1,01) X (Ga, 03) where the rank of (G, 61)
is 2 and the rank of (Gg,62) is 1. Then

Ao =1+
A =v1+ Y
Ay = p1 +
Az =1+ o
Ag = pio + 1
As =1+ o
Aé = p1 + %o
A7 = p2 + %o
As =12 + 1o
Ag = po + P2
Ao = pg + o
A1 = vz + o
and
A12 = po + 3.
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Suppose that (G,0) = (G1,61) x (G2, 62) x (G3,03) where the rank of (G;, 0;)
is 1 for each i. Let 1], be the weights of G; defined as before. We have
Xo =1 +¢F + 4}
A =g +9F + 97
Ao =+ + ¥
As = Y1 + 9T + 5
As =1 + 5 + 97
As = o + 9T + %5
Ao =i+ + U
A =+ + U
As =g + 5 + 15
Ao = 1hp + 15 + 15
Ao = 3 + 15 + ¥
M1 = + U5 +
and
A1z = g + U5 + 3.

Suppose [ = 2 and (G,0) = (G1,601) x (Ga,02) where the rank of (G;,0;) is
1 for each i. Let ¢ be the weights of G; defined as before. We have

anlﬁ}ﬁ-wg
=11 + 47

Now we will write the weights of each complete symmetric variety whose
associated toric variety is Fano, respectively almost Fano.

Let Y be a complete symmetric variety of rank 2 such that the fan of asso-
ciated toric variety has 1-dimensional cones generated respectively by ej,e; +
eo,e1+2e9,...,e1+1iea, ...,e1+Mmes, e3. The weights associated to the anticanon-
ical bundle of Y are v; and pi,.

Let Y be a complete symmetric variety of rank 2 such that the fan of asso-
ciated toric variety has 1-dimensional cones generated respectively by e;, me; +
ea, (m — 1l)e; + eq,...,ie1 + eg,...,e1 + ea,e2. The weights associated to the
anticanonical bundle of Y are p; and vy,.

Let Y be the complete symmetric variety of rank 3 which is the the blow-up
of X along X, (e, e,)- The weights associated to the anticanonical bundle of Y’
are A5 and Ag.
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Let Y be the complete symmetric variety of rank 3 which is the the blow-up
of X along X The weights associated to the anticanonical bundle of Y
are A4 and Ag.

Let Y be the complete symmetric variety of rank 3 which is the the blow-up
of X along X The weights associated to the anticanonical bundle of Y’
are A4 and As.

Let Y be the complete symmetric variety of rank 3 which is the the blow-up
of X along X, (¢, e,,e;)- The weights associated to the anticanonical bundle of
Y are A7, Ag and Ag.

Let Y be the complete symmetric variety of rank 3 which is obtained by
a blow-up of X along X, c,.,) followed by a blow-up along Y,(, c,)- The
weights associated to the anticanonical bundle of Y are A1, Ao, A7 and As.

Let Y be the complete symmetric variety of rank 3 which is obtained by
a blow-up of X along X, e, ;) followed by a blow-up along Y,(, c,). The
weights associated to the anticanonical bundle of Y are A1, Az, A7 and Ag.

Let Y be the complete symmetric variety of rank 3 which is obtained by
a blow-up of X along X, c,.e,) followed by a blow-up along Y, c,)- The
weights associated to the anticanonical bundle of Y are As, A3, Ag and Ag.

Let Y be the complete symmetric variety of rank 3 which is obtained by
a blow-up of X along X (e, e,,e,) followed by a blow-up along Y (e, e, 4estes)-
The weights associated to the anticanonical bundle of Y are Ao, A3, A7, A1; and
Alo.

Let Y be the complete symmetric variety of rank 3 which is obtained by
a blow-up of X along X (¢, e,,e,;) followed by a blow-up along Y (e, e, 4estes)-
The weights associated to the anticanonical bundle of Y are A1, A3, Ag, A1p and
Alg.

Let Y be the complete symmetric variety of rank 3 which is obtained by
a blow-up of X along X (¢, e,,e,) followed by a blow-up along Y (e, e, 4es4es)-
The weights associated to the anticanonical bundle of Y are A1, Az, Ag, A1p and
All-

Finally let Y be a complete symmetric variety of rank [ at least 3 which is
the blow-up of X along Xy, ... Let (G',0') be a simple factor of (G,0). By
the lemma 19.1 we can suppose that the rank I’ of (G',6’) is at most 2. If I’ = 2
we are interested to the weights pg, -1, vi—1. If I’ = 1 we are interested to
the weights 1y and ¥;_1.

Observe that it is not necessary to determine \g, but its knowledge is useful
to determine the other weights.

To calculate these weights is useful to use another notation for the roots in
¢. We define {81, ..., 5} as a reordering of the basis {a1,...,a,} of ¢ with the
same notation of [Hu|. Let w] be the fundamental weight dual to 8 and let
wW; = w, — 0(w}). Remember that § = > ;" wi. To calculate dp, it is useful to
write Y w} as a linear combination of roots {01, ..., 8} for each root system of
a classic Lie algebra. We have

e1,e3)"

e2,e3)"
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Zz (m+ 1 —19)q; if the type of ¢ is A,,,
=1

§ = i(2m —i)a; if the type of ¢ is B,
=1

— 1
Z 2m+1—1 az—l—%am if the type of ¢ is Cyy,

and
m—2

20 =Y i(2m —1—i)o; +
i=1
if the type of ¢ is Dy,

Now we want to write the simple restricted roots and the previous weights
respect to the ;. In the first column we indicate the type of the involution
while, if the homogeneous symmetric variety is a group, we write the type of
its root system. In the second one we will write the rank m of G. In the third
column we write the o as a linear combination of the {33, ..., 52} and as a linear
combination of the {wy,...,w,}. In the forth one we write the weights that we
have defined in the begin of this section. Afterwards we will write a table in
which we indicated what weights are dominant, respectively regular. First we
consider the case in which [ = 1.

m(m — 1)

2 (am—l +am)

A1 2 Ol“{ = Bf = 2@1 ’(/Jn = (4 — 2n)§1
Al 1 of =5 =4w; | Yn = (6 — 4n)w;
AIT | 3 | of =5 =2w2 | ¢, = (6 —2n)ws
AIV |m | of =5 =w1 | ¢Yn=(m+1—n)w;
BIT | m | af=p{=2w; | ¥n=02m—2n+1)w;
CII |m | of=05=w2 | ¢¥y=2m—n)w,
DII | m | of =ff=2w; | ¥, =(2m — 2n)w;
FIT |4 | =08, =w1 | ¥n=(12-n)m

Ay 2 | Y, ifn<2 P ifn <1

Al 1 | ¢,ifn<1 Y ifn <1

AIT |3 | Y, ifn<3 Py ifn <2

AIV | m | Y, ifn<m+1| ¢, ifn<m

BII | m | ¢,ifn<m P ifn<m

CII | m | ¢, ifn<2m Y ifn <2m—1
DII | m | ¢, ifn<m Ypifn<m-—1
FIT |4 |, ifn<12 U ifn < 11

Observe that ¥y and 1, are always regular. We now consider the case in
which [ = 2.
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As 4 of = fB] =2w; —wy n = 2w + 2w,
as = 5 = —w1 + 2ws tn = (3 —2n)wy + (3 + n)ws
vp = (3+n)wr + (3 —2n)ws
B2 4 Oéf: f:2w1—2@2 77:2@14-2@2
as = 5 = —w1 + 2ws tn = (3 —2n)w; + (2 + 2n)ws
Vp = (34+n)wy + (2 — 2n)ws
Go 4 Oé“;: ‘f:2wl—wg n = 2w + 2ws
as = 35 = —3w; + 2w, pn = (1 —=2n)wy + (3 +n)ws
Vp = (14 3n)w; + (3 — 2n)ws
Al 2 of = f:4wl—2wg n = 2w + 2ws
af = 5 = —2w; + 4w, tn = (4 —4n)w1 + (4 + 2n)ws
Vp = (44 2n)w; + (4 — 4n)ws
AIT 5 of = B85 = 2wy — Wy n = 4wy + 4y
ay = B = —wa + 2wy tn = (5 —2n)wa + (5 + n)wy
vp = (54 n)ws + (5 — 2n)wy
AIIT m24 0[‘{: f:261—52 n:2wl+(m—2)wg
oy =f3 =—W1 + w2 tn = (3 = 2n)w1 + (m — 2+ n)ws
vn =B+ n)w; + (m—2—n)wsy
AITT 3 O[i: f:2@1—2@2 7]22@14-2@2
aj = 5 = —2w; + 4w, tn = (2 = 2n)w1 + (4 + 2n)w
Up = (24 2n)w1 + (4 — 4n)ws
BI m>3 | af =] = 4w, — 2w n=2w; + (2m+ 1),
ol = 5 = —2wq + 2w, tn = (4 —4n)w1 + (2m + 2n + 1),
Up = (44 2n)w; + (2m — 2n + 1)ws
BI 2 Oéf: f:4wlf4w2 17:251+2w2
as = f5 = —2w, + 4w, tn = (4 —4n)w; + (2 + 4n)ws
Vp = (44 2n)wq + (2 — 4n)ws
CII m>5 | of =P5 = 2wy —wy n = 4wy + (2m — 5)wy
ay = ] = —wg + Wy tn = (5 —2n)wa + (2m +n — 5)wy
Vp = (5+n)wz + (2m —n — 5)w,
CcIlI 4 af: 52252—54 n = 4y + 3wy
ad = B5 = —2wy + 2y tn = (4 —2n)ws + (4 + n)wy
Vp = (44 2n)wy + (4 — 2n)wy
DI m of = B] = 4w — 2w, n = 2w; + (2m - 4)@2
ad = 5 = —2wy + 2wy tn = (4 —4n)w; + (2m + 2n — 4)w,
vp = (44 2n)wy + (2m — 2n — 4)w,
DIIT | 4 o = B3 = 2wy — 2w, N = 4wy + 20,
af = B = —2wy + 4wy tn = (4 —2n)ws + (4 + 2n)wy
Vp = (44 2n)wy + (4 — 4n)wy
DIIT |5 o = B] = 2w, —wy n = 4wy + 3wy
ay =05 = -1 +wy tn = (5 —2n)w1 + (3 + n)wy

vp = (54 n)w; + (3 —n)wy
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FEIIT | 6 Oé‘fz 5:2@2—51 n = 6wa + bw;
a5 = ] = —ws + w1 pn = (7 —2n)wa + (5 + n)wy
Up = (T4 n)wz + (5 — n)w;
EIV 6 Oé‘f: ‘1":2@1—56 n = 8w + 8wg
af =08 =—w1 +2ws | pn = (9—2n)w1 + (9 + n)ws
vn = (9+n)wr + (9 — 2n)ws
G 2 Oéf: f:4wl—2w2 n = 2w + 2w
af = P35 = —6wy + 4wy | pn = —4nw; + (4 + 2n)ws
Vp = 60y + (4 — 4n)ws
Ay 4 tn ifn <1 o ifn <1
v, ifn<l1 v, ifn<l1
n n
By 4 e ifn <1 tn ifn <1
v,ifn<l1 o
n n
Gs 4 Ho Ho
v, ifn <1 v, ifn <1
n n
Al 2 n ifn <1 140
v,ifn<l1 Vo
n n
AIl |5 U ifn <2 o ifn <2
v, ifn <2 v, ifn <2
n n
AIITl | m>4 | upifn <1 tn ifn <1
vpifn<m—2 v, ifn<m-—3
n n
AIIT | 3 e ifn <1 1o
vy ifn <1 )
n n
BI m>3 | pu,ifn<1 1o
vy ifn<m v, if n<m
n n
BI 2 Uy ifn <1 140
o IZ0)
n n
CII |m>5| p,ifn<2 W ifn <2
v, fn<2m-5|v,ifn<2m-=6
n n
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CII 4 | pnifn<2 tn ifn <1
vy if n <2 v, ifn <1
n n

DI m | p,ifn<1 Lo
vpoifn<m-—2| v, ifn<m-—3
n n

DIIT | 4 | ppifn<2 n ifn <1
v, ifn<l1 )
n n

DIIT | 5 | ppifn <2 tn ifn <2
v, ifn <3 v, ifn <2
n n

EIIT | 6 | ppifn<3 W ifn <3
v, ifn <5 v, ifn <4
n n

EIV |6 | pupifn<4 e ifn <4
v, ifn <4 v, ifn <4
n n

G 2 Mo
v, ifn<l1
n n

Finally we can consider the case of rank [ = 3.

Ag 6 Oli == Bf = 2@1 — W2 )\0 = 2@1 +2w2 +2wg
a§:55:—61+2@2—wg )\1:4wl+52+2wg
af = 3 = —wa + 2W3 A2 = Wy + 4wz + w3

A3 = 2w + wa + 4ws

Ay = 3w + 3wy + W3

A5 = 4w + 4ws

Ae = W1 + w2 + 3W3

A7 = —wy + 4w, + 3ws
As = by — 2ws + Hws
g = 3w + 4wy — W3
Ao = — 3wy + bws + 33
A1 = 6w — 4ws + 63
A2 = 3w + bwy — 3ws
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B3 af =0 =20, —ws Ao = 2w71 + 2ws + 2w
Oég = 52‘; = —Ww7 + 2wy — 2ws A1 = 4w + Wa + 2w3
agzﬁg_—wg—Fsz; Ao = Wy + 4oy

A3 = 2Ww1 + Wy + 4W3

Ay = 3w + 3Wo

A5 = 4oy + 43

¢ = W1 + 3wz + 2W3

A7 = —wy + 4wy + 23
Mg = Do — 2wy + 63
No = 301 + 4wy — 2003
Ao = —3wW1 + 5wy + 2ws3
A1 = 6w — 4w, + 8ws
A2 = 3wq + bog — 4ws

Cs of =] =2w; —wy Ao = 2w + 2ws + 203
o5 = 85 = —w; + 2wy — w3 A1 = 4wy + e + 2W3
o3 = g_—ng—f—ng, Ao = Wy + 4wy + w3

A3 = 2001 + 43

Ay = 3w + 3w + W3

A5 = 4wy — Wy + 43

¢ = W1 + 2w05 + 3wWs

A7 = —wy + 3ws + 3ws
Mg = b — 3wy + bws
Ao = 3wy + bws — W3
Ao = —3wy + 4ws + 33
A11 = 6w — bwy + 6ws
A2 = 3wy + Twy — 3wW3

Al of = pB] = 4w, — 2w, Ao = 2w + 2ws + 203
Oég = 5 = —2@1 +4wg — 2@3 )\1 = 6@1 + 2@3
af = 35 = —2wy + 4 Ay = 6o

A3 = 271 + 63
Ay = 4801 + 4o

A5 = 6l — 2o + 63

¢ = 4wy + 4ws

A7 = —4w; + 6wy + 4ws
Ag = 8wy — 6wy + 8ws

Ao = 4w + 6w — 4003

Ao = —8w1 + 8wy + 4ws
A11 = 10w, — 10w, + 1003
A2 = 4w, + 8wy — 8ws
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AIT 7 Oé‘f = 55 = 2W9 — Wy Ao = 4o + 404 + 4ig
Qy = 227524*2@47@6 )\1:6@2+354+466
Oé§ = ﬂg = —Wwy + 2w Ao = 3wy + 64 + 3we
A3 = 4wy + 3wy + 6w
Ay = bWy + by + 3we
A5 = 6wy + 2004 + 6Wg
A = 3wz + by + Hwg
A7 =Wy + 6W4 + 5wg
s = Tas + T

Ag = by + 6oy + Wg
A9 = —Wws + Twy + 5wg
A1 = 8wy — 2wy + 8wg
A2 = bWy + Ty — W

AIIT | m>6 | of = 5 = 2w, — Wo Ao = 2w + 25 + (m — 4)ws
a;: 5:—514—2@2—@3 A1:4wl+w2+(m_4)w3
af = P5 = —way +ws Ao = w1 + 4wy + (m — 5)ws

A3 = 207 + Wy + (m — 3)@3

Ay = 3w + 3ws + (m — 5)@3
As = 4wy + (m — 3)ws

A = w1 + 3wy + (m — 4)ws

A7 = —w1 + 4wy + (m — 4)ws
)\8 = 5@1 - 2@2 + (m - 2)@3
Ag = 3wy + 4w, + (m — 6)@3
Ao = —3w1 + bws + (m — 4)53
A1 = 6wy — 4w, + (m — 1)@3
A2 = 3w; + by + (m — 7)@3

AITT 5 a{: f:2@1—wg )\0:2@1+2wg+2@3
O[E: 5:—@14—2@2—253 )\1 :451 +w2+2w3
of = 35 = —2wy + 4 Ao = w1 + 4ws

A3 = 2w + 6Wws

Ay = 3w + 3ws

A5 = 4w — Wy + 63

A = W1 + 2wy + 4ws

A7 = —wy + 3ws + 4ws
Ag = by — 3wy + 8ws
Ag = 3w + Sy — 4iws
Ao = —3W7 + 4wo + 4is
A1 = 6wy — bws + 10w;3
A2 = 3w + Twy — 8ws
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BI | m>4| o =05 = 4w, — 2w Ao = 201 + 2ws + (2m + 1)ws
Oég = 5 = 72@1 + 4@2 — 2@3 Al = 6&1 + (2m + 1)@3
Oég = /3§ = 72@2 + 2@3 )\2 = 6@2 + (2m — 1)@3
Ay = 4071 + 4w + (2m — 1)ws
A5 = 61 — 2W2 + (2m + 3)ws
¢ = 4o + (2m + 1)@3
A7 = —4wq + 6y + (2m + 1)@3
)\8 = 8@1 — 6@2 + (2m + 5)@3
Ag = 4w + 6ws + (2m - 3)@3
Ao = —8wy + 8wy + (2m + 1)ws
A11 = 10wy — 10wy + (2m + 7)@3
)\12 == 4@1 + 8&2 + (2m - 5)@3
BI 3 of = f] = 4w — 2ws Ao = 27 + 2ws + 2w3
043 = 5 = —2001 + 4wy — 4ws | A\ = 61 + 2w3
Oég = ﬁ; = —2ws + 43 Ao = 6oy — 2003
A3 = 2001 + 63
Ay = 4wy + 4wy — 2w
A5 = 6y — 29 + 63
g = 4o + 23
A7 = —4w + 6y + 2W3
s = 85, — 6@ + 100
Ag = 4w, + 6wy — 6Ws
A9 = —8w1 + 8wy + 2ws
A11 = 10w, — 104 + 14ws
Ao = 4wy + 8wy — 103
CI 3 Oé‘lq = f = 4@1 - 2@2 )\0 = 2@1 + 2@2 + 2@3
a5 = f5 = —2w; + 4wg — 2wz | A\ = 6wy + 2ws
Oég = ﬁg = —4ws + 43 Ao = 6oy

A3 = 2001 — 29y + 63

Ay = 401 + 409

A5 = 601 — 4y + 63

g = 2wy + 43

A7 = —4w1 + 4wy + 43
Ag = 81 — 8wsy + 83

Ag = 4wy + 8wy — 4ws

A9 = —8W1 + 6wy + 43
A1 = 10w, — 12w + 10ws
A2 = 4wy + 12w — 83
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CII | m>7| af =05 =2wy —wy Ao = 4ws + 4wy + (2m — 9)wg
a5 = BZ = —W9y + 24 — Wg A1 = 6wy + 3wy + (2m — 9)@6
af =P = —wWs + s A2 = 3Ws + 6wy + (2m — 10)ws

)\3 = 4@2 + 3@4 + (2m - 8)@6
Ay = 5wy + 5wy + (2m — 10)ws
A5 = 6w + 24 + (2m — 8)ws

A = 3w2 + 5wy + (2m — 9)wg
A7 = Wa + 6wy + (2m — 9)wg

>\8 = 7@2 + (2m - 7)@6

A9 = 5wy + 6wy + (2m — 11)ws
Ao = —Wwa + Twy + (2m — 9)@6
A1 = 8wg — 204 + (2777, — 6)@6
)\12 = 5@2 + 7@4 + (2m - 12)@6

CII | 6 of = 5:2@2—54 Ao = 4w + 4wy + 3wg
a;zﬁzz—wg+2@4—wﬁ A1 = 6y + 34 + 3wg
Oé§ = ,Bg = —2Wwy + 2wg Ao = 3Ws + 6y + 2g

A3 = 4wy + 2wy + 5w
Ay = bWy + 5wy + 2wg
A5 = 6wy + Wy + Hwg
e = 3o + 4oy + 4ig
A7 = Wy + by + 4w
Mg = Ty — Wy + 6l
)\9 == 5@2 + 7@4

Ao = —Ws + 6,4 + 4
A1 = 8wy — 3wy + Twg
A2 = bws + 9wy — 2w

DI m a{ = f = 4w, — 2wy Ao = 2w + 2ws + (Qm - 6)53
a5 = f5 = —2w; + 4we — 2wz | A = 6wy + (2m - 6)@3
af = B3 = — 2w + 2s Ag = 60 4 (2m — 8)w3

Az = 2w1 + (2m — 4)ws

Ay = 4w; + dws + (2m — 8)ws
)\5 = 6@1 - 252 + (2m - 4)@3
e = 4ty + (2m - 6)@3

A7 = —4w; + 6W2 + (2m — 6)ws3
Mg = 8wy — 6y + (2m — 2)53
Ag = 4wy + 6ws + (2m — 10)ws
Ao = —8wq + 8ws + (2m - 6)@3
A1 = 10w — 10w + 2mios

A2 = 4wq + 8ws + (2m — 12)@3
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DIIT of = 35 = 2wy — Wy Ao = 4wa + 4wy + 2ws
ol = 35 = —wy + 2wy — 2w | A\ = 6wy + 3wy + 2w
ag = 58 = —2W4 + 4 Ao = 3wa + 6y

A3 = 4wy + 2wy + 6w
)\4 = 552 + 5@4

A5 = 6wa + Wy + 6w

Ag = 3wo + 4wy + 4t
A7 = Wa + by + 4ws

Ag = Two — Wy + 8w

Ao = By + Twy — 4ig
)\10 = —52 + 6@4 + 456
A1 = 8wy — 3wy + 10w
A2 = bws + 9wy — 8w

DIIT af = B3 = 2w, — Wy Ao = 4w + 4wy + 3Wg
ay =5 = —ws + 2wy —wWg | A\ = 6ws + 3wy + 3wg
of = B85 = —wy + e Ao = 3wy + 6wy + 2w

A3 = 4o + 34 + 4ig
Ay = Doy + By + 2w
A5 = 6y + 24 + 4g
Ag = 3ws + bWy + 3w
A7 = Wy + 64 + 3w
Ag = Twy + 5wg

Ag = dwo + 6y + We
Ao = —wa + 7wy + 3w
A11 = 8wa — 2wy + 6g
A12 = B + Twy

EVII O['{ = f = 2@1 — Weg )\(] = 8@1 + 856 + 257
o = B8 = —w1 + 2wg — 27 | A\ = 10w, + Twg + 27
af = B8 = —2we + 4wy A2 = Twy + 10w

A3 = 8wy + 6wg + 67
A = 9, + 90

A5 = 100 + 5wg + 67
)\6 = 7@1 =+ 8@6 + 457
A7 = dwy + Ywe + 4wy
As = 11wy + 3w + 8wy
Ag = 9wy + 11wg — 47
A0 = 3wy + 10wg + 4w7
A1 = 1207 + wg + 10w7
)\12 = 951 + 13@6 - 857
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A3 6 AO, A17 A27 )\3 AO’ Al, A27 )\3
A1, A5, A6 A1, A6
Bs 6 Ao, AL, A2, Az | Ao, Aty As
A4, Asy A6 A6
Cs 6 Aoy A1, A2, Az Aoy A1, Ag
A4, Ao A1, A6
Al 3 Ao, A1, A2, Ag Ao
A, Ag
AlT 7 Ao, A1, Ao, Ag Ao, A1, Ag, Ag
A4, Asy A6 A4, Asy Ag
A7, A8, Ag A7, Ag
AIII m26 )\0, )\1,)\2, )\3 )\0, )\1, )\2,)\3
A4, Asy A6 A4, Ag
)\g )\9 if m Z 7
)\12if’/ﬂ27 )\121fm28
AIIT | 5 Ao, A1, A2, Ag Ao, A1
A4, Mg A6
BI m 2 4 )\0, A17 )\2, )\3 )\0
)‘4; )\Ga )‘97 >\12 )\43 )‘Qa )\12
BI 3 Aoy A1, A3, Ag Ao
CI 3 Ao, A1, Ao, Ag Ao
A6
CII m Z 7 )\0, /\17 )\27 )\3 )\0, /\1, /\27 )\3
)\4; A5a )‘6 )\43 )‘5;)‘6
A7, Agy Ag A7, Ag
A12 A12
CcII 6 Aoy A1, A2, Az Aoy A1, Az, Az
A4, Asy A6 A1, A5,06
A7, Ag A7
DI m )\0, /\17 )\27 )\3 )\0
)\4, AG )\4 lf m Z 5
)\12ifm26 )\12ifm27
DIIT | 6 Aoy A1, A2, Az Ao, A1, A3
A1, A5, A6 As, A6
A7 A7
DIIT |7 Aoy A1, A2, Az Aoy A1, Az, Az
)\4; A57 )\6 )\43 )‘5; )\6
A7, Agy Ag A7, Ag
A12
EVII |7 Aos A1, A2, Az Ao, A1, A3
A1, A5, A6 As, A6
A7, Ag A7, Ag
A10, A1l A10, A1l
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21 Complete Fano symmetric varieties I1

Now we can conclude the classification. In this section we always suppose that
{ai,...,aq} is ordered so that {cf,...,a]} is a basis of ¢° with the notations
of [Hu]. We have to introduce some definitions. Let Y be a complete sym-
metric variety of rank 2. We will say that the type of Y is V(n) if the fan of
the associated toric variety has 1-dimensional cones generated respectively by
e1,e1 + eg,e1 + 2e9,...,e1 + ieg, ..., €1 + neg, es.

V.

Instead we will say that the type of Y is W (n) if the fan of the associated
toric variety has 1-dimensional cones generated rebpectively by e1,ney +ea, (n

1)61 + 262, ...,iel + €2,...,€1 + €2, €9.
62[ ;
€1

Observe that Y is of type V; if and only if it is of type W (1). We will say
that the type of Y is O if Y is wonderful. Finally, if Y has not type V(n), W(n)
or O, we will say that the type of Y is P.

Let Y be a complete symmetric variety of rank 3. We will say that the type
of Y is O if Y is the wonderful variety X

” 077 / \

We will say that the type of Y is Q(1,2) 1f Y is the blow-up of X along

(e1,e2)-
’7Q 1 2 / \

We will say that the type of Y is Q (1, 3 if Y is the blow-up of X along

Xs

X

o(e1,es)
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€1
We will say that the type of Y is Q(2,3) if Y is the blow-up of X along

(e2,e3)"

Xo

"Q(2,3)

e2 +e3

e

€1 €2
We will say that the type of Y is Rif Y is the blow-up of X along X (¢, e, es)-
£3
9 R77
€2 + e3

)

€1 €2

We will say that the type of Y is S(1,2) if Y is the blow-up of the variety
Y’ of type R along Y/

(e1,e2)"

775(1’2)77
€2 =+ €3

N

€1 el 2 €2

We will say that the type of Y is S(1,3) if Y is the blow-up of the variety
Y’ of type R along Y/

(e1,e3)”

775(1’3)77 63

61+63 62+€3

\)

€1 €2

We will say that the type of Y is S(2,3) if YV is the blow-up of the variety
Y’ of type R along Y/

(e2,e3)"



75(2,3)”

L+ k
+ €3

We will say that the type of Y is T'(1) if Y is the blow-up of the variety Y’
of type R along Y’

o(e1,e1+ex+tes)”

77T ‘

We will say that the type of Y is T(2) is the blow—up of the variety Y’ of
type R along Y;(

ez,e1+eztes)’

€3

» T(2)”

€1 €2
We will say that the type of Y is T'(3) if Y is the blow-up of the variety Y’

of type R along Y’ 7(es,e1+eates)”

”T(3)” + es + 2es

€1 €2
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Finally, if Y is none of previous ones, we will say that the type of Y is P.
Now we can write the classification.

Theorem 21.1 Let Y be a complete symmetric variety associated to an open
toric variety Z. Suppose that'Y is a completion of the symmetric variety G/H
associated to an involution (G,0) of rank 2.

1.

IfY is a Fano variety then either it is the wonderful symmetric variety X
or it is the blow-up of X along the closed orbit, so there at most two Fano
completions of G/H.

. If (G, 0) is not simple then Y is a Fano variety if and only if it is the

wonderful symmetric variety X or it is the blow-up of X along the closed
orbit.

. If Y is a wonderful simple variety then it is Fano if and only if (G, 0) has

not type G.

. IfY is a simple Fano variety and it is not wonderful, we have exactly the

following possibilities for (G,0) (let m be the rank of G):

e G/H is the adjoint group of type As.
e (G,0) has type AII and m = 5;

has type AIII and m > 4;
has type CI1;

has type DIII and m = 5;
has type EII1;

has type EIV ;

(G,0
(G,0

.(9
(G,0
(

— — — — — —

IfY is almost-Fano then it has type O, V(n) or W(n) for a suitable n.

There is a finite number of almost Fano complete symmetric varieties, but
this number can be arbitrarily large.

Given an (almost) Fano toric variety Z proper over A2, there is an invo-
lution (G, 0) such that the associated complete symmetric variety Y = X,
is an (almost) Fano variety.

The classification of the simple almost-Fano varieties Y is as in the fig-
ure 1.

Suppose that G/H = G1/Hy X Go/Hs. Then the completion of G1/Hy %
Go/Hy of type V(n) is an almost Fano variety if and only if the completion
of Go/Hs x G1/Hy of type W(n) is an almost Fano variety. Moreover, if
Y has type V(n), then the property of being almost Fano depends only on
Gy (and not on Gg). Likewise if Y has type W(n) then the property of
being almost Fano depends only on Go (and not on Gy ).
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[ (G,0) | rank G | type of Y

A, |4 0, Vi) =w()

B, |14 0, V(1) =W(1)

Go 4 @)

Al 2 0,V(1)=W(1)

AIT |5 o,V(1)=w(1), V(2), W(2)

AIIT |m>4 | OV(1)=W(Q), W(n)ifn<m-—2

ATIT |3 O, VI =W()

BI m>3 | 0, V(1) =W(1)
W(n)ifn<m

BI 2 (0]

CIT |m=5 |0, V() =W(Q), V(2
W(n)ifn<2m-5

CII |4 0,V(1)=W(1), V(2), W(2)

DI | m 0, V() =w(1)
W(n)ifn<m-—2

DIIT | 4 0, V) =wW(), V(2

DIIT | 5 0, V) = W), V(2), W(2), W)

EIIT | 6 0, V() =W(1), V(2), V(3),
W(n)ifn<5

EIV |6 OV =W(Q),Vin) ifn<4
Wi(n)ifn <4

G 2 @]

Figure 1: Simple almost Fano varieties

10. Suppose that (G,0) = (G1,01) x (Ga,02). If Y is wonderful then it is
almost-Fano, while the classification of the almost-Fano'Y of type V(n) is
as in the figure 2.

For the case of rank 3 we need a definition to simplify the notations.

Definition 21.1 Let (G, 0) be an involution of rank 1. We will say that (G, 0)
is of type 2 if 1o is reqular, while we will say that (G, 60) is of type 3 if V3 is
reqular. If (G, 0) is not of type 2 then we will say that (G, 0) is of type 0.

We have the following classification:

Lemma 21.1 Let (G,0) be an involution of rank 1.
1. If (G, 0) is of type 3 then it is of type 2.
2. The involutions of type 0 are the following:

e (G,0) such that G/H is the adjoint group of type A;.
o (G,0) of type AI with m = 1.
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’ (G1,01) \ rank Gy \ type of Y

A 2 V),V (2)

Al 1 V(1)

AIT 3 Vn)ifn<3
AIV m V(n)ifn<m+1
BII m Vin)iftn<m
CIlI m V(n)if n <2m
DIT m Vin)iftn<m
FII (4,1) V(n)ifn <12

Figure 2: Not-simple almost Fano varieties

8. The involutions of type 2 are the following:

of type AII with m = 3;
of type AIV;

of type BII;

of type CII;

of type DII;

0) of type FII.

7

b

G,0
G,0
G,0
G,0

b

)

(G
(
(
(
(
(G

vvvvvv

4. The involutions of type 3 are the following:

° of type AIV with m > 3;
of type BII with m > 3;

0)
)
) of type CII;
)
)

b

(G
* (
* (
* (

(

of type DII;
of type FII.

288 an
DD DD DD D

Theorem 21.2 LetY be a complete symmetric variety obtained from the won-
derful variety X by a sequence of blow-ups along stable subvarieties. Suppose
that Y is a completion of the symmetric variety G/H associated to an involution
(G, 0) of rank 3.

1. If Y is a Fano variety then it has type O, Q(1,2), Q(1,3), Q(2,3), R,
S5(1,2), S(1,3), 5(2,3), T(1), T(2) or T(3). Thus there are at most eleven
Fano completions of G/H.

2. There is an involution (G,0) such that'Y is a Fano variety if and only if
it is of type O, Q(1,2), Q(1,3), Q(2,3), R, S(1,2), S(1,3), S(2,3), T(1),
T(2) or T(3).

3. If'Y is simple and Fano then it is of type O, Q(1,2), Q(1,3), Q(2,3) or
S(1,3).
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4. The classification of the simple Fano varieties Y is as in the figure 3.

5. Suppose that (G, 0) = (G1,01) X (Ga, 02), where (G1, 61) is a simple involu-
tion of rank 2 and (G, 03) is a involution of rank 1, then the classification
of the Fano varieties Y is as in the figure 4 (let r be the type of (Ga,03)).

6. Suppose that (G,0) = (G1,01) X (Ga2,02) x (Gs,03) where (G;,0;) is a
involution of rank 1 for each i. Let r be the number of (G, 0;) of type 2
and let s be the number of (G;,0;) of type 3, so 3 > 1 > s> 0. Then the
classification of the Fano varieties Y is as follows:

o [fr <1, thenY is a Fano variety if and only if it is of type O, Q(1,2),
Q(1,3) or Q(2,3). In particular there are four Fano varieties.

e [fr =2, then there are five Fano varieties. Let i and j be the indices
such that G and G; are of type 2. We can suppose that i < j. Y is
a Fano variety if and only if it is of type O, Q(1,2), Q(1,3), Q(2,3)
or S(i,j).

o If (r,s) is equal to (3,0) or to (3,1), then there are eight Fano va-
rieties. Y is a Fano variety if and only if it is of type O, Q(1,2),
Q(L,3), Q(2,3), R, 5(1,2), S(1,3) or 5(2,3).

o If(r,s) = (3,2), then there are nine Fano varieties. Suppose that G;
is not of type 3, then Y is a Fano variety if and only if it is of type
0, Q(1,2), Q(1,3), Q(2,3), R, S(1,2), S(1,3), S(2,3) or T(i).

o If (r,s) = (3,3), then there are eleven Fano varieties. Y is a Fano
variety if and only if it is of type O, Q(1,2), Q(1,3), Q(2,3), R,
S(1,2), S(1,3), S(2,3), T(1), T(2) or T(3).

Theorem 21.3 Let Y be a complete symmetric variety obtained from the won-
derful variety X by a sequence of blow-ups along closed orbits. Suppose that
Y is a completion of the symmetric variety G/H associated to the involution

(G,0) of rank 1 (1 >1).

1. IfY is a Fano variety then either it is the wonderful variety X or it is the
blow-up of X along the closed orbit.

2. If there is a simple factor of (G,0) of rank at least 3 and Y is a Fano
variety, then Y is wonderful.

3. Suppose that 1 > 6. If there is a simple factor of (G,0) of rank at least 2
and Y is a Fano variety, then Y is wonderful.

4. Suppose that Y is a Fano variety and it is not wonderful then we have the
following possibilities for a simple factor (G',0") of (G,0) of rank 2 (let m
be the rank of G'):

e G/H is the adjoint group of type Ay and | = 2;

127



[ (G,0) | rank G | type of Y

A, 6 0, Q(L,3)

Bs 6 0]

Cs 6 0, Q(1,3)

Al 3 0]

AIT | 7 0, Q(1,2), Q(L,3), Q(2,3), S(1,3)
AIIT | m>6 | O,Q(1,3)

AIIT |5 0

BI m>3 | O

CI 3 A

CIT |m>7 |0, Q(,2), Q(1,3), Q2,3), 5(1,3)
CIT |6 0, Q(1,2), Q(1,3), Q(2,3)

DI m o

DIIT | 6 0, Q(1,2)

DIIT | 7 0, Q(1,2), Q(1,3), Q(2,3), 5(1,3)
EVII |7 0, Q(1,2)

Figure 3: Simple Fano varieties of rank 3

of type AII, m =5 andl < 3;
of type AIII, m >4 and | = 2;
of type CII, m >5 and [ < 3;

(G",¢') is
(', 0') is
(G, 0') is
o (G',0) is of type CII, m =4 and | = 2;
(G",0') is
(G, 0) is
( s

is of type DIIT, m =5 and | < 3;
of type EIII, m =6 and | < 4;
of type EIV, m =6 and l < 5;

L 2

G0 i

5. Suppose that Y is a Fano variety and it is not wonderful then we have the
following possibilities for a simple factor (G',0") of (G,0) of rank 1 (let m
be the rank of G'):
e G/H is the adjoint group of type Ay and | = 2;
o (G',0") is of type AI and | = 2;

o (G',0) is of type AII, m =3 and | < 3;
o (G',0) is of type AIV andl <m+1;

o (G',0") is of type BII andl <m+1;

o (G',0) is of type CII andl < 2m;

o (G',0") is of type DIT and ! < m;

o (G',0) is of type FII andl < 12;

6. Let (G;,0;) be involutions as in the previous two points, then the blow-up
of the wonderful completion of [[ G;/H; along the closed orbit is a Fano
variety.
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\ type of Y

’ (Gl,ﬂl) ‘ rank G1 ‘ type r of (Gg,ag)
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Figure 4: Not simple Fano varieties of rank 3
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