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Introduction

In the last fifty years the deformations theory has played an impor-
tant role in algebraic and complex geometry.

The study of small deformations of the complex structures of com-
plex manifolds has begun with the works of K. Kodaira and D.C. Spencer
[17] and M. Kuranishi [19].

Then A. Grothendieck [12], M. Schlessinger [32] and M. Artin [1]
formalized this theory translating it into a functorial language. The
idea was that to an infinitesimal deformation of a geometric object we
can associate a deformation functor of Artin rings: that is a functor
from the category Art of local artinian C-algebras (with residue field
C) to the category Set of sets, that satisfies some extra conditions (see
Definition I.1.10).

A modern approach to deformations theory is via differential graded
Lie algebras (DGLA for short).

The guiding principle is the idea due to P. Deligne, V. Drinfeld,
D. Quillen and M. Kontsevich (see [18]) that “in characteristic zero
every deformation problem is governed by a differential graded Lie
algebra”.

Inspired by this principle, the aim of this thesis is to follow the
modern approach to study the infinitesimal deformations of holomor-
phic maps of compact complex manifolds.

More precisely, a DGLA is a differential graded vector space with
a structure of graded Lie algebra, plus some compatibility conditions
between the differential and the bracket (of the Lie structure) (see
Definition I.3.5).

Moreover, using the solutions of the Maurer-Cartan equation dx +
1

2
[x, x] = 0 it is well known how we can associate to a DGLA L a

deformation functor DefL. Written in details:

DefL : Art −→ Set

DefL(A) =
{x ∈ L1 ⊗mA | dx +

1

2
[x, x] = 0}

gauge

3



4 INTRODUCTION

where mA is the maximal ideal of A and the gauge equivalence is in-
duced by the gauge action ∗ of exp(L0 ⊗mA) on the set of solutions of
the Maurer-Cartan equation (see Definition I.3.29).

Then the idea of the principle is that we can define a DGLA L (up
to quasi-isomorphism) from the geometrical data of the problem, such
that the deformation functor DefL is isomorphic to the deformation
functor associated to the geometric problem.

We note that it is easiest to study a deformation functor associated
to a DGLA but, in general, it is not an easy task to find the right
DGLA (up to quasi-isomorphism) associated to the problem.

A first example, in which the associated DGLA is well understood,
is the case of deformations of complex manifolds.

Let X be a compact complex manifold. Then X is obtained gluing
a finite number of polydisks in Cn. The fundamental idea of K. Kodaira
and D.C. Spencer is that “a deformation of X is considered to be the
gluing of the same polydisks via different identifications” (see [16, pag.
182]) .

Translating it into a functorial language we define, for each A ∈
Art, an infinitesimal deformation of X over Spec(A) as a commutative
diagram

X
i //

²²

XA

π
²²

Spec(C)
a // Spec(A)

where π is a proper and flat holomorphic map and X coincides with the
restriction of XA over the closed point of Spec(A) (see Definition I.2.4).
Moreover, we can give the notions of isomorphism and of trivial defor-
mation (XA

∼= X × Spec(A)).
Then we can define the functor associated to the infinitesimal de-

formations of X:

DefX : Art → Set

DefX(A) =





isomorphism classes of
infinitesimal deformations

of X over Spec(A)



 .

Therefore, following the idea of the principle, we are looking for a
DGLA L such that DefL ∼= DefX .

Let ΘX be the holomorphic tangent bundle of X and consider the
sheaf A0,∗

X (ΘX) of the differentials form of (0, ∗)-type, with coefficients
in ΘX .

Then we define the Kodaira-Spencer algebra A0,∗
X (ΘX) of X as the

graded vector space of global sections of the sheaf A0,∗
X (ΘX).
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Considering the (opposite) Dolbeault differential and the bracket
of vector fields, it is possible to endow A0,∗

X (ΘX) of a natural structure
of differential graded Lie algebra (see Definition II.4.1).

The DGLA A0,∗
X (ΘX) governs the problem of infinitesimal deforma-

tions of X (see Theorem II.7.3):

Theorem (A). Let X be a complex compact manifold and A0,∗
X (ΘX)

its Kodaira-Spencer algebra. Then there exists an isomorphism of func-
tors

DefA0,∗
X (ΘX) −→ DefX .

In this case it is well clear the correspondence between the solutions
of the Maurer-Cartan equation and the infinitesimal deformations of
X, such that the gauge equivalence corresponds to the isomorphism of
deformations. In particular a solution of the Maurer-Cartan equation
is gauge equivalent to zero if and only if it induces a trivial deformation
of X.

The next natural problem is to investigate the embedded deforma-
tions of a submanifold in a fixed manifold.

Very recently, M. Manetti in [24] studies this problem using the
approach via DGLA.

In his work, more than to prove the existence of a DGLA that
governs this geometric problem, M. Manetti develops some algebraic
tools related to the DGLA.

More precisely, he describes a general construction to define a new
deformation functor associated to a morphism of DGLA.

Given a morphism of differential graded Lie algebras

h : L −→ M

he defines the functor

Defh : Art −→ Set

Defh(A) =

{(l,m) ∈ (L1 ⊗mA) × (M0 ⊗mA)| dx + 1
2
[x, x] = 0 and em ∗ h(l) = 0}

gauge
,

where this gauge equivalence is a generalization of the previous one
(see Remark III.1.12). This new functor is an extension of the functor
associated to a single DGLA: choosing h = M = 0 Defh reduces to
DefL.

Moreover, using path objects (see Example I.3.12) he shows that for
every choice of L,M and h there exists a DGLA H such that DefH ∼=
Defh.

In particular this implies that if a deformation functor associated
to a geometric problem is isomorphic to Defh, for some h : L −→ M ,
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then automatically we know the existence of a DGLA that governs the
problem and we have an explicit description of it.

This is what M. Manetti does in [24]: choosing opportunely L,M
and h he proves that there exists an isomorphism between the functor
Defh and the functor associated to the infinitesimal deformations of a
submanifold in a fixed manifold. Actually, let X be a compact complex
manifold and Z a submanifold. The infinitesimal emebedded deforma-
tions of Z can be interpreted as the deformations of the inclusion map
i : Z ↪→ X inducing the trivial deformation on X.

Consider the Kodaira-Spencer DGLA A0,∗
X (ΘX) of X and the differ-

ential graded Lie subalgebra A0,∗
X (ΘX(−log Z)) defined by the following

exact sequence

0 −→ A0,∗
X (ΘX(−log Z)) −→ A0,∗

X (ΘX) −→ A0,∗
Z (NZ|X) −→ 0,

where NZ|X is the normal bundle of Z in X (see Section II.5.1).

We have already observed that the DGLA A0,∗
X (ΘX) governs the

infinitesimal deformations of X, while the DGLA A0,∗
X (ΘX(−log Z))

governs the infinitesimal deformations of the couple Z ⊂ X (each so-
lution of the Maurer-Cartan equation in A0,∗

X (ΘX(−log Z)) define a
deformation of Z and of X).

Fix M = A0,∗
X (ΘX), L = A0,∗

X (ΘX(−log Z)) and h the inclusion:

h : A0,∗
X (ΘX(−log Z)) ↪→ A0,∗

X (ΘX).

Then it is clear how we can associate to each element (l,m) ∈ Defh
a deformation of Z in X, with X fixed: the infinitesimal deforma-
tion of Z is the one corresponding to the Maurer-Cartan solution
l ∈ A0,∗

X (ΘX(−log Z)) and it induces a trivial deformation of X, since

we are requiring that h(l) is gauge equivalent to zero in A0,∗
X (ΘX).

These new ideas developed by M. Manetti are of fundamental im-
portance for this thesis that, in some sense, can be considered a gen-
eralization of them. Actually, we extend these techniques to study not
only the deformations of an inclusion but, in general, the deformations
of holomorphic maps.

These deformations has been first studied from the classical point
of view (no DGLA) by E. Horikawa [14] and [15], M. Namba [27] and
by Z. Ran [28].

More precisely, let f : X −→ Y be an holomorphic map of compact
complex manifolds.

There are several aspects of deformations of f : we can deform just
the map f fixing both X and Y , we can allow to deform f and X or Y
or, more in general, we can deform everything: the map f , X and Y .

The infinitesimal deformations of f , with fixed domain and target,
can be interpreted as infinitesimal deformations of the graph of f in
the product X × Y , with X × Y fixed (see Section V.3). Therefore
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we are considering the infinitesimal deformation of a submanifold in
a fixed manifold and so the DGLA approach to this case is implicitly
included in M. Manetti’s work [24].

Then we turn our attention on the general case in which we deform
f , X and Y .

In a functorial language, for each A ∈ Art, we define an infinitesi-
mal deformation of f over Spec(A) as a commutative diagram

XA
F //

π
ÃÃA

AA
AA

AA
A

YA

µ
~~~~

~~
~~

~~

S

where S = Spec(A), (XA, π, S) and (YA, π, S) are infinitesimal defor-
mations of X and Y respectively, and F is a holomorphic map that
restricted to the fibers over the closed point of S coincides with f .

Also in this case we can give the notions of isomorphism and of
trivial deformation.

Then we can define the functor of infinitesimal deformations of a
holomorphic map f : X −→ Y :

Def(f) : Art −→ Set

Def(f)(A) =





isomorphism classes of
infinitesimal deformations of

f over Spec(A)



 .

Let Γ be the graph of f in X × Y . An infinitesimal deformation of
the map f can be interpreted as an infinitesimal deformation of Γ in X×
Y , such that the induced deformation of the product X×Y is a product
of deformations of X and Y . In general not all the deformations of a
product are product of deformations, as it was showed by K. Kodaira
and D.C Spencer (see Remark II.7.5).

Consider the Kodaira-Spencer algebra A0,∗
X×Y (ΘX×Y ) of the product

X×Y and the differential graded Lie subalgebra A0,∗
X×Y (ΘX×Y (−log Γ))

defined by the following exact sequence

0 −→ A0,∗
X×Y (ΘX×Y (−log Γ)) −→ A0,∗

X×Y (ΘX×Y ) −→ A0,∗
Γ (NΓ|X×Y ) −→ 0,

where NΓ|X×Y is the normal bundle of the graph Γ in X × Y (see
Section II.5.1).

As before, we know that A0,∗
X×Y (ΘX×Y ) governs the infinitesimal

deformations of X × Y and A0,∗
X×Y (ΘX×Y (−log Γ)) governs the infini-

tesimal deformations of the couple Γ ⊂ X × Y (each solution of the
Maurer-Cartan equation in A0,∗

X×Y (ΘX×Y (−log Γ)) define a deformation
of Γ and of X × Y ).
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Fix M = A0,∗
X×Y (ΘX×Y ), L = A0,∗

X×Y (ΘX×Y (−log Γ)) and h the in-
clusion:

h : A0,∗
X×Y (ΘX×Y (−log Γ)) ↪→ A0,∗

X×Y (ΘX×Y ).

In the general case, it is not enough to consider just the DGLA L or
the morphism h : L −→ M , since they have no control on the induced
deformations on X × Y .

Therefore we need to define a new functor: the deformation functor
associated to a couple of morphisms.

Given morphisms of differential graded Lie algebras h : L −→ M
and g : N −→ M :

L

h
²²

N
g // M

we define the functor

Def(h,g) : Art −→ Set

Def(h,g)(A) = {(x, y, ep) ∈ (L1 ⊗mA) × (N1 ⊗mA) × exp(M0 ⊗mA)|

dx +
1

2
[x, x] = 0, dy +

1

2
[y, y] = 0, g(y) = ep ∗ h(x)}/gauge,

where this gauge equivalence is an extension of the previous ones (see
Definition III.1.11).

This functor is a generalization of the previous ones: choosing N =
0 and g = 0 then Def(h,g) reduces to Defh; choosing N = M = 0 and
h = g = 0 then Def(h,g) reduces to DefL.

Consider the DGLA A0,∗
X (ΘX) × A0,∗

Y (ΘY ) and the morphism g =

(p∗, q∗) : A0,∗
X (ΘX) × A0,∗

Y (ΘY ) −→ A0,∗
X×Y (ΘX×Y ), where p and q are

the natural projections of the product X×Y on X and Y respectively:
p : X × Y −→ X and q : X × Y −→ Y .

We note that the solutions n = (n1, n2) of the Maurer-Cartan equa-
tion in N = A0,∗

X (ΘX) × A0,∗
Y (ΘY ) are in correspondences with the in-

finitesimal deformations of X (induced by n1) and of Y (induced by
n2). Moreover the image g(n) satisfies the Maurer-Cartan equation in
M = A0,∗

X×Y (ΘX×Y ) and so it is associated to an infinitesimal defor-
mation of X × Y , that is exactly the one obtained as product of the
deformations of X (induced by n1) and of Y (induced by n2).

Therefore this g gives exactly the “control” on the deformations of
the product that we are looking for.

Let M = A0,∗
X×Y (ΘX×Y ), L = A0,∗

X×Y (ΘX×Y (−log Γ)), h : L −→ M

the inclusion, N = A0,∗
X (ΘX) × A0,∗

Y (ΘY ) and g = (p∗, q∗) : N −→ M .
Then we are in the following situation:
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A0,∗
X×Y (ΘX×Y (−log Γ))

� _

h
²²

A0,∗
X (ΘX) × A0,∗

Y (ΘY )
g=(p∗,q∗)

// A0,∗
X×Y (ΘX×Y )

In conclusion, each deformation of the map f corresponds to a Maurer-
Cartan solution l ∈ A0,∗

X×Y (ΘX×Y (−log Γ)), such that h(l) induces a
deformation of X × Y isomorphic to a deformation induced by g(n),
for some Maurer-Cartan solution n ∈ A0,∗

X (ΘX)×A0,∗
Y (ΘY ) (that is h(l)

and g(n) are gauge equivalent in A0,∗
X×Y (ΘX×Y )).

Therefore Def(h,g) encodes all the geometric data of the problem
and the following theorem is clear (see Theorem IV.2.5).

Theorem (B). Let f : X −→ Y be an holomorphic map of com-
pact complex manifold. Then, in the notation above, there exists an
isomorphism of functors

Def(h,g) ∼= Def(f).

This theorem holds for the general case of infinitesimal deformations
of f , the other cases are obtained as specializations of it.

For example, the deformations of f with fixed domain or fixed
target, are obtained considering respectively N = A0,∗

Y (ΘY ) or N =

A0,∗
X (ΘX).

In particular, using path objects, for each choice of h : L −→ M
and g : N −→ M , we are able to find a differential graded Lie algebra
H(h,g) such that DefH(h,g)

∼= Def(h,g) (see Theorem III.2.36).

Therefore we give an explicit description (more than the existence)
of a DGLA that governs the deformations of holomorphic maps (The-
orem IV.2.6).

Finally we apply these techniques to study the obstructions to de-
form holomorphic maps.

The idea is the following: if we have an infinitesimal deformation
of a geometric object, then we want to know if it is possible to extend
it.

More precisely, let F : Art −→ Set be a deformation functor. A
(complete) obstruction space for F is a vector space V , such that for
each surjection B −→ A in Art and each element x ∈ F (A), there
exists an obstruction element vx ∈ V , associated to x, that is zero if
and only if x can be lifted to F (B) (for full details see Section I.1.1).

Therefore we would like to control this obstruction space and know
when the associate obstruction element is zero.

In general, we just know a vector space that contains these ele-
ments but we have no explicitly description of which elements are ef-
fectively obstructions. Among other things if W is another vector space
that contains V , then also W is an obstruction space for F . Then, in



10 INTRODUCTION

some sense we are looking for the “smallest” obstruction space (see
Remark I.1.26).

For example, the obstructions of the functor associated to a DGLA
L are naturally contained in H2(L) (see Section I.3.5), but we don’t
know which classes in H2(L) are really obstructions.

In the case of a complex compact manifold X, an obstruction space
for the deformation functor DefX is the second cohomology vector
space H2(X,ΘX) of the holomorphic tangent bundle ΘX of X (Theo-
rem I.2.9).

If X is also Kähler, then A. Beauville, H. Clemens [5] and Z. Ran
[29] [30] proved that the obstructions are contained in a subspace of
H2(X,ΘX) defined as the kernel of a well defined map. This is the so-
called “Kodaira’s principle” (see for example [5, Theorem 10.1], [22,
Corollary 3.4] or [7, Corollary 12.6], [29, Theorem 0] or [30, Corollary
3.5]).

In the case of embedded deformations of a submanifold Z in a fixed
manifold X, then the obstructions are naturally contained in the first
choomology H1(Z,NZ|X) of the normal bundle NZ|X of Z in X. Also in
this case, if X is Kähler, it is possible to define a map on H1(Z,NZ|X),
called “semiregularity map”, that contains the obstructions in the ker-
nel. The idea of this map is due to S. Bloch [3] and it is also studied,
using the DGLA approach, by M. Manetti [24, Theorem 0.1 and Sec-
tion 9].

In the case of deformations of a holomorphic map f : X −→ Y with
fixed target, it was proved by E. Horikawa in [14] (see Theorem IV.1.10)
that the obstructions are contained in the second hypercohomology

group H2
(
X,O(ΘX)

f∗−→ O(f ∗ΘY )
)
.

Using the approach via DGLA that we have explained, we can give
an easy proof of this theorem (Proposition V.1.1) but above all we can
improve it in the case of Kähler manifolds (Corollary V.1.5).

Actually, let n = dimX, p = dimY − dimX and H be the space
of harmonic forms on Y of type (n + 1, n− 1). By Dolbeault theorem
and Serre duality we obtain the equalities Hν = (Hn−1(Y,Ωn+1

Y ))ν =

Hp+1(Y,Ωp−1
Y ).

Using the contraction y of vector fields with differential forms (see
Sections II.5 and V.1.2), for each ω ∈ H we can define the following
map

A0,∗
X (f ∗ΘY )

yω−→ An,∗+n−1
X

yω(φf ∗χ) = φf ∗(χyω) ∈ An,p+n−1
X ∀ φf ∗χ ∈ A0,p

X (f ∗ΘY ).

Choosing ω such that f ∗ω = 0, we get the following commutative
diagram (see Corollary V.1.5)
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A0,∗
X (f ∗ΘY )

yω // An,∗+n−1
X

A0,∗
X (ΘX)

f∗

OO

// 0

OO

Then, for each ω we get a morphism

H2
(
X,O(ΘX)

f∗−→ O(f ∗ΘY )
)
−→ Hn(X,Ωn

X).

that composed with the integration on X gives

σ : H2
(
X,O(ΘX)

f∗−→ O(f ∗ΘY )
)
−→ Hp+1(Y,Ωp−1

Y ).

Using σ we get the following theorem (see Corollary V.1.5).

Theorem (C). Let f : X −→ Y be an holomorphic map of compact
Kähler manifolds. Let p = dimY − dimX. Then the obstruction space
to the infinitesimal deformations of f with fixed Y is contained in the
kernel of the map

σ : H2
(
X,O(ΘX)

f∗−→ O(f ∗ΘY )
)
−→ Hp+1(Y,Ωp−1

Y ).

The structure of the work is the following.

Chapter I contains the basic material about deformation functors.
In Section I.1 we define the deformation functors of Artin rings, tangent
and obstruction spaces and some related properties.

Section I.2 is devoted to study the deformation functor DefX of the
infinitesimal deformations of a compact complex manifold X.

In the last Section I.3 we introduce the differential graded Lie alge-
bras (DGLA) and two associated functors: the Maurer-Cartan functor
MCL and the deformation functor DefL (for each DGLA L).

In Chapter II we fix the notations about complex manifolds. We
recall the notions of differential forms (Section II.1) of Čech and Dol-
beault cohomology (Section II.3) and some properties of Kähler man-
ifolds (Section II.2). We also study the map f∗ and f ∗ induced by an
holomorphic map f (Section II.6). In particular in Section II.4, we
define the Kodaira-Spencer differential graded Lie algebra A0,∗

X (ΘX)
associated to a complex manifold X.

Section II.7 contains the proof of theorem A (Theorem II.7.3): we
prove the existence of an isomorphism DefA0,∗

X (ΘX)
∼= DefX and so the

Kodaira-Spencer algebra A0,∗
X (ΘX) governs the infinitesimal deforma-

tion of X.

Chapter III is the technical bulk of this thesis. In Section III.1.2 we
define the Maurer-Cartan functor MC(h,g) and the deformation functor
Def(h,g) associated to a couple of morphisms of DGLAs h : L −→ M
and g : N −→ M . Sections III.1.3 and III.1.4 are devoted to study some
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properties of these functors as for example tangent and obstruction
spaces.

In Section III.2 we introduce the extended deformation functors to
prove the existence of a DGLA H(h,g) such that Def(h,g) ∼= DefH(h,g)

(Theorem III.2.36).

In Chapter IV we study the infinitesimal deformations of holomor-
phic maps.

Section IV.1 is devoted to define the deformation functor Def(f)
of infinitesimal deformations of a holomorphic map f : X −→ Y of
compact complex manifolds.

In Section IV.2, we prove theorem B, i.e. the existence of a couple
of morphisms of DGLA h : A0,∗

X×Y (ΘX×Y (−log Γ)) ↪→ A0,∗
X×Y (ΘX×Y )

and g = (p∗, q∗) : A0,∗
X (ΘX) × A0,∗

Y (ΘY ) −→ A0,∗
X×Y (ΘX×Y ), such that

Def(h,g) ∼= Def(f) (see Theorem IV.2.5).

Chapter V contains examples and applications of the technique de-
scribed before. In Section V.1 we study the infinitesimal deformations
of holomorphic maps with fixed target and Section V.1.2 contains the
main result about the semiregularity map (Corollary V.1.5).

Then we study infinitesimal deformations of a holomorphic map
with fixed target and domain (Section V.3) and the infinitesimal de-
formations of an inclusion (Section V.4).
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CHAPTER I

Functors of Artin rings

In this chapter we collect some definitions and main properties of
deformation functors.

In the first section, we introduce the notion of functor of Artin rings,
of deformation functors and we define the tangent and obstruction
spaces.

Section I.2 is devoted to the study of the deformation functor DefX
of infinitesimal deformation of complex manifolds.

In Section I.3 we introduce the fundamental notions of differential
graded Lie algebra (DGLA) L and of deformation functor associated
to a DGLA DefL.

The main references of this chapter are [6], [20], [23], [31] and [32].

I.1. Generalities on functors of Artin rings

Let K be a fixed field of characteristic zero.
Consider the following categories:

• Set: the category of sets in a fixed universe with {∗} a fixed
set of cardinality 1;

• Art = ArtK : the category of local Artinian K-algebras with
residue field K (A/mA = K);

• Ârt = ÂrtK : the category of complete local noetherian K-
algebras with residue field K (A/mA = K).

For each S ∈ Ârt we also consider:
• ArtS : the category of local Artinian S-algebras with residue

field K (for a such element A, the structure morphism S −→ A
induces a trivial extension of residue field K);

• ÂrtS : the category of complete local noetherian S-algebras
with residue field K.

I.1.1. Remark. We note that ArtS ⊂ ÂrtS. Moreover, for mor-
phisms in a category of local object we mean local morphisms and
we often use the notation A ∈ C instead of A ∈ obC), when C is a
category.

If ϕ : B −→ A and ψ : C −→ A are morphisms in ÂrtS (respec-
tively in ArtS), then

B ×A C = {(b, c) ∈ B × C |ϕ(b) = ψ(c)}
13
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is the fiber product of ϕ and ψ and B ×A C ∈ ÂrtS (respectively in
ArtS).

I.1.2. Definition. A small extension in ÂrtS (respectively in
ArtS) is a short exact sequence

e : 0 −→ J −→ B
α−→ A −→ 0,

where α is a morphism in ÂrtS (respectively in ArtS) and the kernel
J is an ideal of B annihilated by the maximal ideal mB, mB · J = (0).
This implies that J is K-vector space.

A small extension is called principal if J is a one dimensional vector
space (J ∼= K).

We will often say that a morphism α : B −→ A is a small extension,
meaning that 0 −→ ker(α) −→ B

α−→ A −→ 0 is a small extension.

I.1.3. Remark. Every surjective morphism in ArtS can be ex-
pressed as a finite composition of small extensions.

Actually, let B −→ A be a surjection with kernel J :

0 −→ J −→ B −→ A −→ 0.

Since B is a local artinian ring, its maximal ideal m is nilpotent: there
exist n0 ∈ N such that mn = 0 for each n ≥ n0; in particular mnJ = 0.

Therefore it is sufficient to consider the sequence of small extensions

0 −→ mnJ/mn+1J −→ B/mn+1J −→ B/mnJ −→ 0.

I.1.4. Remark. In view of the previous Remark I.1.3, it will be
enough to check the surjection for small extensions instead of verify
the surjection for any morphism in ArtS.

I.1.5. Definition. A functor of Artin rings is a covariant functor
F : ArtS −→ Set, such that F (K) = {∗} is the one point set.

The functors of Artin rings F : ArtS −→ Set and their natural
transformations set up a category denoted by FunS. A natural trans-
foration of functors γ : F −→ G is an isomorphism of functors if and
only if γ(A) : F (A) −→ G(A) is bijective for each A ∈ ArtS.

I.1.6. Example. The trivial functor F (A) = {∗}, for every A ∈
ArtS.

I.1.7. Example. Let R ∈ ÂrtS. We define

hR : ArtS −→ Set

such that
hR(A) = HomS(R,A).

F ∈ FunS is called pro-representable if it is isomorphic to hR, for some

R ∈ ÂrtS.
If we can choose R ∈ ArtS then F is called representable.
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Let K[ε], with ε2 = 0, be the ring of dual number over K. K[ε] =
K⊕Kε is a K-vector space of dimension 2 and it has a trivial S-algebra
structure (induced by S −→ K −→ K[ε]).

I.1.8. Definition. The set tF := F (K[ε]) is called the tangent
space of F ∈ FunS.

Let

(1) η : F (B ×A C) −→ F (B) ×F (A) F (C)

be the map induced by the fiber product in ArtS:

B ×A C //

²²

C

²²
B // A.

I.1.9. Definition. A functor F is called homogeneous if η is an
isomorphism whenever B −→ A is surjective.

I.1.10. Definition. A functor F is called a deformation functor if

i) η is surjective whenever B −→ A is surjective;
ii) η is an isomorphism whenever A = K.

I.1.11. Remark. The deformation functors will play an important
role in this work.

In particular we will study the following four deformation functors:

1) the functor DefX of infinitesimal deformation of an algebraic
scheme, in Section I.2;

2) the functor DefL associated to a differential graded Lie algebra
L, in Section I.3;

3) the functor Def(h,g) associated to a couple of morphisms of
differential graded Lie algebras h : L −→ M and g : N −→ M ,
in Section III.1;

4) the functor Deff associated to the infinitesimal deformations
of a holomorphic map f , in Section IV.1.

I.1.12. Example. Let X be an algebraic scheme over K (separated
of finite type over K). Define the following functor

DefX : ArtK −→ Set

where DefX(A) is the set of isomorphism classes of commutative dia-
gram:

X
i //

²²

XA

pA
²²

Spec(K) // Spec(A).

where i is a closed embedding and pA a flat morphism. DefX is a
deformation functor (see [32, Section 3.7] or [31, Prop. III.3.1]).



16 I. FUNCTORS OF ARTIN RINGS

I.1.13. Proposition. Let F be a deformation functor. Then tf has
a natural structure of K-vector space and every natural transformation
of deformation functors η : F −→ G induces a linear map between
tangent spaces.

Proof. Since F (K) is just one point and η is an isomorphism for
A = K, we have F (K[ε]) × F (K[ε]) ∼= F (K[ε] ×K K[ε]).

Consider the map

+ : K[ε] ×K K[ε] −→ K[ε]

(a + bε, a + b′ε) 7−→ a + (b + b′)ε.

Then using the previous isomorphism, the map + induces the sum on
F (K[ε]):

F (K[ε] ×K K[ε])
∼=−→ F (K[ε]) × F (K[ε])

F (+)−→ F (K[ε]).

Analogously for the multiplication by a scalar k ∈ K we consider the
map:

k : K[ε] −→ K[ε]

a + bε 7−→ a + (kb)ε.

¤
I.1.14. Remark. In the previous proposition we just used the fact

that F (K) is one point and that η of (1) is an isomorphism for A = K
and C = K[ε]

I.1.15. Definition. A morphism φ : F −→ G in FunS is:

- unramified if φ : tF −→ tG is injective;
- smooth if the map

F (B) −→ G(B) ×G(A) F (A)

induced by the diagram

F (B) //

φ
²²

F (A)

φ
²²

G(B) // G(A),

is surjective for every surjection B −→ A in ArtS;
- étale if φ is both smooth and unramified.

I.1.16. Remark. If φ : F −→ G is smooth then, taking A = K
in the previous definition, we conclude that φ : F (B) −→ G(B) is
surjective.

I.1.17. Remark. If φ : F −→ G is an étale morphism, then it
induces an isomorphism φ′ : tF −→ tG on tangent spaces. Actually φ
is unramified and so φ′ is injective. By hypothesis φ is also smooth and
so, applying the previous Remark I.1.16 in the special case B = K[ε],
φ′ is surjective.
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I.1.18. Definition. A functor F is smooth if for every surjection
B −→ A of S-algebras F (B) −→ F (A) is surjective (that is the mor-
phism F −→ ∗ is smooth).

I.1.19. Proposition. Let φ : F −→ G be an étale morphism of
deformation functors. If G is homogeneous then φ is an isomorphism.

Proof. Since φ is smooth, φ is surjective. Therefore it is sufficient
to prove the injectivity of φ using that G is homogeneous and φ is un-
ramified.
The proof of this fact is taken from [20, Lemma 2.10] for sake of com-
pleteness.
We prove it by induction on the length of A.

If A = K then F (K) = G(K) = {∗} and so it is obvious.
Let

0 −→ Kε −→ B −→ A −→ 0.

be a principal small extensions (ε·mB = 0). By induction φ : F (A) −→
G(A) is injective.

Consider the following isomorphism of S-algebras:

ϕ : B ×K K[ε] −→ B ×A B

(b, b + βε) 7−→ (b, b + βε).

Since F is a deformation functor, then F (ϕ) : F (B)×tF −→ F (B)×F (A)

F (B) is surjective.
Since G is also homogeneous, then G(ϕ) : G(B)×tG −→ G(B)×G(A)

G(B) is an isomorphism. We note that G(ϕ)(G(B)× {0}) = ∆ diago-
nal.

Now, suppose that φ(ξ) = φ(η) ∈ G(B) for ξ and η ∈ F (B).
Since φ is injective on F (A), then (ξ, η) ∈ F (B) ×F (A) F (B).
Moreover, the surjectivity of F (ϕ) implies the existence of an ele-

ment h ∈ tF such that F (ϕ)(ξ, h) = (ξ, η). Then G(ϕ)(φ(ξ), φ(h)) =
(φ(ξ), φ(η)) ∈ ∆ and so φ(h) = 0 (G is an isomorphism).

By hypothesis φ is unramified, therefore h = 0 and so ξ = η. ¤
I.1.20. Remark. Let F be a deformation functor and f : B −→ A a

surjection with ker f ∼= K. Using the isomorphism B×KK[ε] ∼= B×AB
of the previous Proposition I.1.19, we obtain a commutative diagram

F (B) × tF
π //

τ

²²

F (B)

²²
F (B)

F (f)
// F (A).

π is the projection and τ defines an action of tF on F (B) which restricts
to a transitive action on each fiber of F (f) (see [6, Lemma 2.12]).

I.1.21. Corollary. Let F be a deformation functor, then F = {∗}
if and only if tF = (0).
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Proof. One implication is obvious. Now, let F be a deformation
functor such that tF = (0). We prove that F (A) = {∗} by induction
on dimK(A). If A = K then it is obvious (by definition of functor
of Artin rings). Now, let π : B −→ A be a small extensions and
suppose that F (A) = {∗}. By the previous Remark I.1.20, tF = (0)
acts transitively on the unique fiber F (B) of the map F (π). This
implies F (B) = {∗}. ¤

I.1.1. Obstruction theory.

I.1.22. Definition. Let F be a functor of Artin rings; an obstruc-
tion theory for F is a couple (V, ve) such that:

• V is a K-vector space, called obstruction space;
• for every small extension in ArtS

e : 0 −→ J −→ B
α−→ A −→ 0

ve : F (A) −→ V ⊗K J is an obstruction map, satisfying the
following properties:

– if ξ ∈ F (A) can be lifted to F (B) then ve(ξ) = 0.
– For every morphism φ : e1 −→ e2 of small extension, i.e.

(2) e1 : 0 // J1
//

φJ

²²

B1
//

φB

²²

A1
//

φA

²²

0

e2 : 0 // J2
// B2

// A2
// 0

we have ve2(φA(a)) = (IdV ⊗ φJ)(ve1(a)), for every a ∈
F (A1).

I.1.23. Definition. An obstruction theory for a functor is complete
if the lifting exists if and only if the obstruction vanishes.

I.1.24. Remark. If F has (0) as complete obstruction space then
F is smooth. In Proposition I.1.31 we will prove that the converse is
also true for a deformation functor.

I.1.25. Remark. Let ψ : F −→ G be a natural transformation of
functors and (V, ve) an obstruction theory for G. Then (V, v′e := ve ◦ψ)
is an obstruction theory for F .

Actually, consider the small extension in Art

e : 0 −→ J −→ B
α−→ A −→ 0

and the map

v′e : F (A)
F (ψ)−→ G(A)

ve−→ V ⊗K J.

Let ξ ∈ F (A) and suppose that it can be lifted to ξ̃ ∈ F (B). Therefore

ψ(ξ) ∈ G(A) can be lifted to ψ(ξ̃) ∈ G(B) and so v′e(ξ) = ve(ψ(ξ)) = 0.
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Now, let φ : e1 −→ e2 be a morphism of small extension as in (2).
Then for each a ∈ F (A1) we have

(IdV ⊗ φJ)(v′e1(a)) = (IdV ⊗ φJ)(ve1(ψ(a))) =

ve2(φA(ψ(a))) = ve2(ψ(φA(a))) = v′e2(φA((a))).

Moreover, if the morphism ψ is also smooth and (V, ve) is complete
for G, then (V, v′e) is complete for F .

Actually suppose that ξ ∈ F (A) is such that 0 = v′e(ξ) = ve(ψ(ξ)).
Then there exists η ∈ G(B) that lifts ψ(ξ) ∈ G(A) ((V, ve) is complete
for G). Consider the following diagram

F (B) //

²²

F (A) 3 ξ

²²²²
η ∈ G(B) // G(A) 3 f(ξ).

Since f is smooth, the map F (B) −→ F (A) ×G(A) G(B) is surjective

and so there exists ξ̃ ∈ F (B) that lifts ξ.

I.1.26. Remark. If V is complete obstruction theory for a functor
F , using embedding of vector space we can construct infinitely many
complete obstruction theories. Therefore, the goal is to find a “small-
est” complete obstruction theory. The main results in this context is
the following Theorem I.1.28. First of all we give a definition.

I.1.27. Definition. A morphism of obstruction theories (V, ve) −→
(W,we) is a linear map (of vector space) θ : V −→ W such that
we = θve, for every small extensions e.

An obstruction theory (OF , obe) for F is called universal if for every
obstruction theory (V, ve) there exists a unique morphism (OF , obe) −→
(V, ve).

I.1.28. Theorem. (Fantechi, Manetti) Let F be a deformation
functor. Then there exists a universal obstruction theory (OF , obe) for
F . Moreover the universal obstruction theory is complete and every
element of the vector space OF is of the form obe(ξ) for some principal
extension

e : 0 −→ Kε −→ B −→ A −→ 0.

and some ξ ∈ F (A).

Proof. See [6, Th. 3.2 and Cor. 4.4] ¤

Let φ : F −→ G be a morphism of deformation functors and (V, ve),
(W,we) obstructions theories for F and G respectively. A linear map
φ′ : V −→ W is compatible with φ if weφ = φ′ve for every small
extensions e.



20 I. FUNCTORS OF ARTIN RINGS

I.1.29. Theorem. Let φ : F −→ G be a morphism of deforma-
tion functors and φ′ : (V, ve) −→ (W,we) a compatible morphism of
obstruction theories. If (V, ve) is complete, φ′ injective and tF −→ tG
surjective, then φ is smooth.

Proof. See [20, Proposition 2.17]. We have to prove that the map

F (B) −→ G(B) ×G(A) F (A)

is surjective, for all small extensions

0 −→ Kε −→ B −→ A −→ 0.

Let (b′, a) ∈ G(B) ×G(A) F (A) and a′ ∈ G(A) their common image:
that is b′ ∈ G(B) lifts a′ ∈ G(A) and so we(a

′) = 0.
By hypothesis φ′ is injective and so ve(a) = 0 (0 = we(a

′) =
we(φ(a)) = φ′(ve(a))). Therefore there exists b ∈ F (B) that lifts a:

b ∈ F (B) //

²²

F (A) 3 a

²²²²
b′ ∈ G(B) // G(A) 3 a′.

In general b doesn’t lift b′. Let b′′ = φ(b) ∈ G(B); then (b′′, b′) ∈
G(B) ×G(A) G(B).

As observed in the proof of Proposition I.1.19, we have an isomor-
phism B ×K K[ε] ∼= B ×A B; since G is a deformation functor, there
exists a surjective morphism

α : G(B) × tG = G(B ×A B) −→ G(B) ×G(A) G(B).

Therefore, there exists h ∈ tG such that (b′′, b′′ + h) is a lifting of
(b′′, b′′ + h = b′).

By hypothesis, tF −→ tG is surjective and so there exists a lifting
k ∈ tF of h ∈ tG. Taking k + b ∈ F (B), we produce a lifting of a that
maps on b′.

¤
I.1.30. Remark. Let φ : F −→ G be a morphism of deformation

functors and (OF , ve) and (OG, we) their universal obstruction theo-
ries. Then (OG, we ◦ f) is an obstruction theory for F . Therefore, by
Theorem I.1.28, there exists a morphism o(φ) : (OF , ve) −→ (OG, we).

In conclusion every morphism of deformation functors induces a lin-
ear map both between tangent spaces and universal obstruction spaces.

Now we want to consider some useful properties between these mor-
phisms.

I.1.31. Proposition. Let φ : F −→ G be a morphism of deforma-
tion functors. Then φ is smooth if and only if tF −→ tG is surjective
and o(φ) : OF −→ OG is injective. In particular F is smooth if and
only if OF = 0
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Proof. If tF −→ tG is bijective and o(φ) : OF −→ OG is injective
then φ is smooth by Theorem I.1.29.

Viceversa, suppose that φ is smooth, then by Remark I.1.16, tF =
F (K[ε]) −→ G(K[ε]) = tG is surjective. Let B −→ A be a small
extension and a an element of F (A), with obstruction x ∈ OF such
that o(φ)(x) = 0 ∈ OG. By Theorem I.1.28, OG is complete and so
φ(a) ∈ G(A) can be lifted to b′ ∈ G(B). Again, by Remark I.1.16,
F (B) −→ G(B) is surjective and so there exists b ∈ F (B) that lifts a.
Therefore the obstruction of a is zero (x = 0) and this proves that o(φ)
is injective. ¤

I.1.32. Corollary. A morphism of deformation functors φ : F −→
G is étale if and only if tF −→ tG is bijective and o(φ) : OF −→ OG is
injective.

Proof. If φ is étale, then by Remark I.1.17 tF −→ tG is bijective.
Since φ is also smooth o(φ) : OF −→ OG is injective.

Viceversa, by the Proposition I.1.31 φ is smooth; since by hypoth-
esis tF −→ tG is injective, φ is also unramified. ¤

I.1.33. Corollary. Let φ : F −→ G be a morphism of defor-
mation functor with G homogeneous. If tF −→ tG is bijective and
o(φ) : OF −→ OG is injective then φ is an isomorphism.

Proof. Put together Corollary I.1.32 and Proposition I.1.19. ¤

I.1.34. Remark. When G is not homogeneous, φ could be not an
injection and so we can just conclude the surjectivity of φ. Therefore,
in these cases we prove the injectivity directly. This will happen in
Theorems II.7.3 and IV.2.5.

I.1.35. Corollary. If φ : F −→ G is smooth then o(φ) : OF −→
OG is bijective.

Proof. By Proposition I.1.31, we have just to prove that o(φ) :
OF −→ OG is surjective. Let B −→ A be a small extension and
y ∈ OG the obstruction to lift a′ ∈ G(A) to b′ ∈ G(B). Since φ is
smooth, there exists a ∈ F (A), such that φ(a) = a′, and b ∈ F (B),
such that φ(b) = b′. Therefore the obstruction x ∈ OF to lift a ∈ F (A)
to b ∈ F (B) is a lifting of y ∈ OG.

¤

I.2. Deformation functor of complex manifolds

In this section we study the infinitesimal deformation functor as-
sociated to a compact complex manifold. Then we will work over the
complex number and so K = C and Art = ArtC.

The main references are [16, Chapter 4], [32], [31, Chapter II].
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I.2.1. Definition. Let X be a compact complex manifold and
A ∈ Art. An infinitesimal deformation of X over Spec(A) is a com-
mutative diagram of complex spaces

X
i //

²²

XA

π
²²

Spec(C)
a // Spec(A).

where π is proper and flat holomorphic map, a ∈ Spec(A) is the closed
point, i is a closed immersion and X ∼= XA ×Spec(A) Spec(C).

If A = K[ε] we call it a first order deformation of X.

Sometimes, for an infinitesimal deformation XA over Spec(A), we
also use the short notation (XA, π, Spec(A)).

I.2.2. Remark. Let XA be an infinitesimal deformation of X. We
note that, by definition it can be interpreted as a morphism of sheaves
of algebras OA → OX such that OA is flat over A and OA ⊗AC→ OX

is an isomorphism.

Given another deformation X ′
A of X over Spec(A):

X
i′ //

²²

X ′
A

π′
²²

Spec(C)
a // Spec(A),

we say that XA and X ′
A are isomorphic if there exists an isomorphism

φ : XA −→ X ′
A over Spec(A) that induce the identity on X: that is

the following diagram is commutative

X
i′

$$JJJJJJJJJJ
i

zztttttttttt

XA

φ //

π $$IIIIIIIII
X ′

A

π′zzuuuuuuuuu

Spec(A).

We note that for every X we can always define the infinitesimal
product deformation:

X
i //

²²

X × Spec(A)

²²
Spec(C)

a // Spec(A).

I.2.3. Definition. An infinitesimal deformation of X over Spec(A)
is called trivial if it is isomorphic to the infinitesimal product deforma-
tion.
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X is called rigid if every infinitesimal deformation of X over Spec(A)
(for each A ∈ Art) is trivial.

For every deformation XA of X over Spec(A) and every morphism
A −→ B in Art (Spec(B) −→ Spec(A)), there exists an associated
deformation of X over Spec(B), called pull-back deformation, induced
by base change:

X //

²²

XA ×Spec(A) Spec(B)

²²
Spec(C) // Spec(B).

I.2.4. Definition. The infinitesimal deformation functor DefX of
a complex manifold X is defined as follows:

DefX : Art → Set

A 7−→ DefX(A) =





isomorphism classes of
infinitesimal deformations

of X over Spec(A)





I.2.5. Proposition. DefX satisfies the conditions of Definition I.1.10.

Proof. See [32, Section 3.7] or [31, Prop. III.3.1]. ¤

I.2.1. Tangent and obstruction spaces of DefX . Let X be a
compact complex manifold and ΘX its holomorphic tangent bundle.

In this section we prove that the tangent space of DefX is Ȟ1(X,ΘX)
and that the obstruction space is natural contained in Ȟ2(X,ΘX). First
of all we recall an useful lemma.

I.2.6. Lemma. Let B0 be a C-algebra and

0 −→ J −→ B −→ A −→ 0

a small extension in Art. Then there is a 1-1 correspondence
{

automorphisms of the trivial deformation B0 ⊗C B
inducing the identity on B0 ⊗C A

}
←→ DerC(B0,B0)⊗J

where the identity corresponds to the zero derivation, and the composi-
tion of automorphisms corresponds to the sum of derivations.

Proof. See [31, Lemma II.1.5] ¤
I.2.7. Remark. Let U be a Stein open subset of a complex manifold

X. Then the previous lemma is equivalent to say that the following
sequence is exact:

0 −→ Γ(Ui,ΘX)⊗J −→ Aut(OX(Ui)⊗B) −→ Aut(OX(Ui)⊗A) −→ 0

Moreover, we note that this is a central extension.
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I.2.8. Theorem. Let X be a complex manifold. Then there is a
1-1 correspondence:

k :
{first order deformation of X}

isomorphism
−→ Ȟ1(X,ΘX)

called the Kodaira-Spencer correspondence, where ΘX = Hom(Ω1
X ,OX) =

DerK(OX ,OX), is the hololmorphic tangent bundle of X.
Moreover k(ξ) = 0 if and only if ξ is the trivial deformation class.

Proof. For completeness we take this proof from [31, Proposition
II.1.6] where full details are available.

Let Xε be a first order deformation of X:

X //

²²

Xε

²²
Spec(C) // Spec(C[ε]),

and U = {Ui}i∈I be a Stein open cover of X such that Uij = Ui ∩ Uj

and Uijk = Ui ∩ Uj ∩ Uk are Stein for every i, j and k ∈ I.
For each open Ui the deformations Xε|Ui

are trivial, then for each
i ∈ I there exist isomorphisms of deformations

θi : Ui × Spec(C[ε]) −→ Xε|Ui
.

Therefore, for each i and j ∈ I, the composition

θij = θi
−1θj : Uij × Spec(C[ε]) −→ Uij × Spec(C[ε])

is an automorphism of the trivial deformation Uij × Spec(C[ε]) of the
Stein open subset Uij.

Applying Lemma I.2.6, we conclude that there exists an element
dij ∈ Γ(Uij,ΘX) corresponding to θij, for each i and j ∈ I.

Moreover on each Uijk the following equality holds

θjkθik
−1θ−1

ij = θj
−1θkθk

−1θiθi
−1θj = id|Uijk×Spec(K[ε]).

Therefore, applying again Lemma I.2.6, we have

djk − dik + dij = 0

that is {dij} ia a Čech 1-cocycle and so it define an element in Ȟ1(X,ΘX).
It can be checked that this element doesn’t depend on the choice of the
open cover U .

Let X ′
ε be another first order deformation

X //

²²

X ′
ε

²²
Spec(C) // Spec(C[ε]),
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and φ an isomorphism of deformations: φ : Xε −→ X ′
ε.

Then, for each i ∈ I, there exists an induced automorphism

αi = θ′i
−1◦φ|Ui

◦θi : Ui×Spec(C[ε])
θi−→ Xε|Ui

φ|Ui−→ X ′
ε|Ui

θ′i
−1

−→ Ui×Spec(C[ε])

and so a corresponding element ai ∈ Γ(Ui,ΘX).
Therefore we have θ′iαi = φ|Ui

θi and

(θ′iαi)
−1(θ′jαj) = θi

−1φ−1
|Uij

φ|Uij
θj = θi

−1θj.

This implies

αi
−1θ′ij

−1
αj = θij

or equivalently
d′ij + aj − ai = dij.

In conclusion the Čech cocycle {dij} and {d′ij} are cohomologous and

so they represent the same element in Ȟ1(X,ΘX).

Conversely, let θ ∈ Ȟ1(X,ΘX) and {dij} ∈ Z1(U ,ΘX) be a repre-
sentative of θ with respect to an open Stein cover {U}. By Lemma I.2.6,
we can associate to each dij an automorphism θij of the trivial defor-
mation Uij × Spec(C[ε]). Since the element {dij} satisfies the cocycle
condition, then θij also satisfy this condition:

θjkθik
−1θ−1

ij = id|Uijk×Spec(C[ε]).

Using these automorphisms we can glue together the schemes Ui ×
Spec(C[ε]) (see [13, pag. 69]) to obtain a scheme Xε that is a first
order deformation of X.

At this point the last assertion is clear.
¤

I.2.9. Theorem. Ȟ2(X,ΘX) is complete obstruction space for DefX .

Proof. For completeness we take the proof from [31, Proposition
II.1.8] where full details are available.

Let U = {Ui}i∈I be an open Stein cover of X such that Uij and Uijk

are Stein for every i, j and k ∈ I and

0 −→ J −→ B −→ A −→ 0

be a small extension in Art.
Let XA be an infinitesimal deformation of X over Spec(A). Then

we have isomorphisms

θi : Ui × Spec(A) −→ XA|Ui

such that θij := θi
−1θj are automorphisms of the trivial deformations

Uij × Spec(A) and θjkθik
−1θij = id|Uijk×Spec(A).

To define a deformation XB that lifts the deformation XA is neces-
sary and sufficient to give automorphisms {θ̃ij} of the trivial deforma-
tion Uij × Spec(B) such that
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i) {θ̃ij} glues together: θ̃jkθ̃
−1
ik θ̃ij = id|Uijk×Spec(B),

ii) {θ̃ij} lifts {θij}: θ̃ij restricts to θij on Uij × Spec(A).

Let us choose automorphisms {θ̃ij} that satisfy condition ii). Then
the automorphisms

θ̃ijk = θ̃jkθ̃
−1
ik θ̃ij

are automorphisms of the trivial deformation that restrict to the iden-
tity on Uijk × Spec(A). Applying Lemma I.2.6, there exists {d̃ijk} ∈
Γ(Uijk,ΘX)⊗J that corresponds to θ̃ijk. An easy calculation show that

{d̃ijk} is a Čech cocylce and so {d̃ijk} ∈ Z2(U ,ΘX) ⊗ J .

Now, let {θij} be different automorphisms of the trivial deforma-

tions Uij ×Spec(B) that satisfy condition ii). As above, let dijk be the

derivations corresponding to θijk.

The automorphisms θij θ̃
−1
ij of Uij × Spec(B) restrict to the identity

on Uij × Spec(A) for each Uij and so, again by Lemma I.2.6, they
correspond to some {dij} ∈ Γ(Uij,ΘX) ⊗ J .

Therefore

dijk = d̃ijk + djk − dik + dij.

This implies that the Čech cocycles {d̃ijk} and {dijk} are cohomolo-
gous and so their cohomology classes coincide in a well defined element
ve(XA) in Ȟ2(X,ΘX) ⊗ J :

ve(XA) := [{d̃ijk}] = [{dijk}] ∈ Ȟ2(X,ΘX) ⊗ J.

Moreover the class ve(XA) is zero if and only if the collection of auto-
morphisms also satisfies condition i) and it is equivalent to the existence
of a lifting XB of the deformation XA.

¤

I.3. Differential graded Lie algebras and deformation functor

In this section we study the deformation functor associated to a
differential graded Lie algebra (DGLA).

In particular, we give the fundamental definition of a DGLA (Def-
inition I.3.5).

We also introduce the Maurer-Cartan functor MCL (Definition I.3.16)
and the deformation functor DefL associated to a DGLA L (Defini-
tion I.3.29).

We start defining the differential graded vector spaces.

I.3.1. Differential graded vector spaces. Let K be a fixed field
of characteristic 0. Unless otherwise specified, all vector spaces, linear
maps, tensor products etc. are intended over K.

Every graded vector space is a Z-graded vector space (over K). If
V = ⊕iV

i is a graded vector space and a ∈ V is a homogeneous
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element, then we denote by degV a the degree of a in V ; we will also
use the notation deg a = ā, when V is clear by the context.

The morphisms of graded vector space are the degree preserving
linear maps.

Given two graded vector spaces V and W , we define Homn
K(V,W )

as the vector space of K-linear maps f : V −→ W , such that f(V i) ⊂
W i+n, for each i ∈ Z.

Let V be a graded vector space, then V [n] is the complex V with
degrees shifted by n. More precisely, for K[n] we have

K[n]i =

{
K if i + n = 0,

0 otherwise,

and V [n] = K[n] ⊗ V , that implies V [n]i = V i+n.

I.3.1. Remark. We note that there exist isomorphisms

Homn
K(V,W ) = Hom0

K(V [−n],W ) = Hom0
K(V,W [n]).

A differential graded vector space is a pair (V, d) where V = ⊕V i is
a graded vector space and d is a differential of degree 1 (d : V i −→ V i+1

and d ◦ d = 0).

A morphism of differential graded vector spaces is a degree preserv-
ing linear map that commutes with the differentials.

For every differential graded vector space (V, d) we use the standard
notation Zi(V ) = ker(d : V i → V i+1), Bi(V ) = Im(d : V i−1 → V i) and
H i(V ) = Zi(V )/Bi(V ).

A morphism is a quasi-isomorphism if it induces isomorphisms in
cohomology.

I.3.2. Example. Given (V, d), then for each i ∈ Z, the shifted
differential graded vector space (V [i], d[i]) is defined as:

V [i] =
⊕

j

V [i]j =
⊕

j

V i+j and d[i] = (−1)id.

I.3.3. Example. If (V, dV ) and (W,dW ) are differential graded vec-
tor spaces, then we can define a new differential graded vector space

Hom∗(V,W ) =
⊕

n∈Z
Homn

K(V,W )

with natural differential d′ given by

d′(f) := dWf − (−1)deg(f)f dV .

Moreover, for each i, there exist the following isomorphism s

H i(Hom∗(V,W )) ∼= Homi(H∗(V ), H∗(W )).
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I.3.4. Example. Given (V, dV ) and (W,dW ), we can also define the
following differential graded vector space

Htp(V,W ) = Hom∗(V [1],W ) =
⊕

i

Htpi(V,W ),

with

Htpi(V,W ) = Homi(V [1],W ) = Homi−1(V,W )

and differential δ:

δ(f) = dW (f) − (−1)ifdV [1] = dWf + (−1)ifdV ∀ f ∈ Htpi(V,W ).

We will use these differential graded vector spaces in the last chapter
(Section V.1.1).

I.3.2. Differential graded Lie algebras (DGLA).

I.3.5. Definition. A differential graded Lie algebra (DGLA for

short) is a triple (L, [ , ], d), where (L =
⊕

i∈Z
Li, d) is a differential

graded vector space and [ , ] : L × L → L is a bilinear map, called
bracket, satisfying the following conditions:

1. the bracket [ , ] is homogeneous and graded skewsymmetric;
i.e. [Li, Lj] ⊂ Li+j and [a, b] + (−1)deg(a) deg(b)[b, a] = 0, for
every a and b homogeneous.

2. Every triple of homogeneous elements satisfies the graded Ja-
cobi identity

[a, [b, c]] = [[a, b], c] + (−1)deg(a) deg(b)[b, [a, c]].

3. d(Li) ⊆ Li+1, d ◦ d = 0 and

d[a, b] = [da, b] + (−1)deg(a)[a, db].

The last property is called Leibniz rule and in particular it implies
that the bracket induces a structure of differential graded Lie alge-
bra (with zero differential) on the cohomology H∗(L) = ⊕iH

i(L) of a
DGLA L.

I.3.6. Remark. If the degree of a is even then [a, a] = 0; if the
degree is odd then [[a, a], a] = 0.

I.3.7. Definition. A morphism of differential graded Lie algebras
ϕ : L −→ M is a linear map that preserves degrees and commutes with
brackets and differentials; written in details we have

- ϕ(Li) ⊆ M i, for each i;
- ϕ(dLa) = dM(ϕ(a)), for each a ∈ L;
- ϕ([a, b]) = [ϕ(a), ϕ(b)], for each a, b ∈ L.

A quasi-isomorphism of DGLA is a morphism that induces isomor-
phisms in cohomology. Two DGLA L and M are quasi isomorphic
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if they are equivalent under the equivalent relation ∼ generated by:
L ∼ M if there exists a quasi isomorphism φ : L −→ M .

A DGLA L is formal if it is quasi-isomorphic to its cohomology
H∗(L).

I.3.8. Remark. The following DGLA are isomorphic:

(L, [ , ], d) ∼= (L,−[ , ], d) ∼= (L, [ , ],−d) ∼= (L,−[ , ],−d).

Actually, ϕ = −id gives an isomorphism between (L, [ , ], d) and (L,−[ , ], d),
while ϕ(−) = (−1)deg(−)id is an isomorphism between (L, [ , ], d) and
(L, [ , ],−d).

I.3.9. Example. If L = ⊕Li is a DGLA, then L0 is a Lie algebra
in the usual sense; vice-versa, every Lie algebra is a differential graded
Lie algebra concentrated in degree 0.

I.3.10. Example. Let L be a DLGA and consider the vector space
decomposition L1 = N1 ⊕ B1(L). Then the graded vector space N =
⊕N i with 




N i = 0 for i ≤ 0

N1 = N1 for i = 1

N i = Li for i ≥ 2

is a sub-DGLA of L.

I.3.11. Example. Given a DGLA (L = ⊕Li, [ , ], d) we can asso-
ciate a new DGLA (L′ = ⊕L′i, [ , ]′, d′) where

{
L′i = Li for i 6= 1

L′1 = L1 ⊕K d for i = 1,

[v + ad, w + bd]′ = [v, w] + a d(w) − (−1)deg vb d(v)

and

d′(v + a d) = [d, v + ad]′ = dv,

for each v, w ∈ Li and a, b ∈ K.

I.3.12. Example. Let M be a DGLA. Then M [t, dt] = M⊗K[t, dt]
is a DGLA, where K[t, dt] is the differential graded algebra of polyno-
mial differential forms over the affine line. More exactly, K[t, dt] =
K[t]⊕K[t]dt, where t has degree 0 and dt ha degree 1. As vector space
M [t, dt] is generated by elements of the form mp(t) + nq(t)dt, with
m,n ∈ M and p(t), q(t) ∈ K[t]. The differential and the bracket on
M [t, dt] are defined as follows:

d(mp(t) + nq(t)dt) = (dm)p(t) + (−1)degmmp′(t)dt + (dn)q(t)dt,

[mp(t), nq(t)] = [m,n]p(t)q(t), [mp(t), nq(t)dt] = [m,n]p(t)q(t)dt.
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For every a ∈ K define the evaluation morphism in the following
way

ea : M [t, dt] −→ M ea(
∑

mit
i + nit

idt) =
∑

mia
i.

The evaluation morphism is a morphism of DGLA which is a left inverse
of the inclusion and it is a surjective quasi-isomorphism for each a.

I.3.13. Example. If L is a DGLA and B is a commutative K-
algebra then L⊗B has a natural stucture of DGLA, given by

[l ⊗ a,m⊗ b] = [l,m] ⊗ ab;

d(l ⊗ a) = dl ⊗ a.

If B is also nilpotent (for example B = mA the maximal ideal of a
local artinian K-algebra A) then L⊗B is a nilpotent DGLA. Therefore,
for every a ∈ L0 ⊗ B, we can define an automorphism of the DGLA
L⊗B:

e[a,−] :=
∞∑

n=0

[a,−]n

n!
: L⊗B −→ L⊗B,

where

[a,−] : L⊗B −→ L⊗B

[a,−](b) := [a, b]

is a nilpotent derivation of degree zero (since [a,−]([b, c]) = [[a,−](c), d]+
[c, [a,−](d)]).

I.3.14. Definition. A linear map f : L −→ L is called a derivation
of degree n if f(Li) ⊂ Li+n and it satisfies the graded Leibniz rule:

f([a, b]) = [f(a), b] + (−1)na[a, f(b)].

I.3.15. Example. Let (L, d) be a DGLA and Deri(L,L) the space
of derivations of L of degree i. Then Der∗(L,L) =

⊕
i Deri(L,L) is a

DGLA with bracket

[f, g] = fg − (−1)f ggf,

and differential d′ given by

d′(f) = [d, f ].

I.3.3. Maurer-Cartan functor associated to a DGLA.

I.3.16. Definition. The Maurer-Cartan equation in a DGLA L is

dx +
1

2
[x, x] = 0, x ∈ L1.

The solutions of this equation are called the Maurer-Cartan elements
of a differential graded Lie algebra L.
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I.3.17. Remark. Let x ∈ L1 be an element of degree one in the
DGLA L and consider the operator of degree one

d(−) + [x,−] : L −→ L

(d(−) + [x,−])(a) = da + [x, a] ∀ a ∈ L.

If x satisfies the Maurer-Cartan equation then d(−) + [x,−] is a
differential ((d(−) + [x,−])2 = 0).

I.3.18. Remark. Let L′ be the DGLA of Example I.3.11 (with
L′1 = L1 ⊕K d) then

dx +
1

2
[x, x] = 0 if and only if [x + d, x + d]′ = 0.

The previous definition led to the following definition of the Maurer-
Cartan functor.

I.3.19. Definition. Let L be a DGLA; then the Maurer-Cartan
functor associated to L is

MCL : Art −→ Set

MCL(A) = {x ∈ L1 ⊗mA | dx +
1

2
[x, x] = 0}

I.3.20. Remark. A morphism φ : L −→ M of DGLA preserves
bracket and differential, therefore it induces a morphism of functors
φ : MCL −→ MCM .

I.3.21. Remark. We note that MCL is an homogeneous functor,
since MCL(B ×A C) ∼= MCL(B) ×MCL(A) MCL(C).

I.3.22. Remark. By definition the tangent space of MCL is:

tMCL
:= MCL(K[ε]) = {x ∈ L1 ⊗Kε | dx +

1

2
[x, x] = 0} ∼=

{x ∈ L1 | dx = 0} = Z1(L).

I.3.23. Lemma. H2(L) is a complete obstruction space for MCL.

Proof. Let

e : 0 −→ J −→ B
α−→ A −→ 0

be a small extension in Art and x ∈ MCL(A).
We want to define a map ve : MCL(A) −→ H2(L) ⊗ J .
Let x̃ ∈ L1 ⊗mB be a lifting of x and define

h = dx̃ +
1

2
[x̃, x̃] ∈ L2 ⊗mB.

In general x̃ doesn’t satisfy the Maurer-Cartan equation and so h is in
general different from zero.
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It results that α(h) = dx+
1

2
[x, x] = 0 and so h ∈ L2⊗J . Moreover,

dh = d2x̃ +
1

2
[dx̃, x̃] − 1

2
[x̃, dx̃] = a

= [dx̃, x̃] = [h, x̃] − 1

2
[[x̃, x̃], x̃].

By definition [h, x̃] ∈ [L2 ⊗ J, L1 ⊗ mB] = 0 (e is a small extension)
and, by Remark I.3.6, [[x̃, x̃], x̃] = 0.

In conclusion dh = 0 and so h ∈ H2(L) ⊗ J .
We note that this class doesn’t depend on the choice of the lifting

x̃. In fact, let y ∈ L1 ⊗mB be another lifting of x: α(y) = α(x̃) = x.
Then y = x̃ + t for some t ∈ L1 ⊗ J . Using [L1 ⊗ J, L1 ⊗mB] = 0, we
have

h′ = dy+
1

2
[y, y] = dx̃+ dt+

1

2
[x̃+ t, x̃+ t] = dx̃+

1

2
[x̃, x̃] + dt = h+ dt

and so h and h′ represent the same class in H2(L) ⊗ J .
Therefore, it is well defined the following obstruction map

ve : MCL(A) −→ H2(L) ⊗ J

x 7−→ ve(x) = [h].

If [h] = 0 then h = dq for some q ∈ L1⊗J . This implies that x = x̃− q
is a lifting of x that satisfies the Maurer-Cartan equation, i.e.

dx+
1

2
[x, x] = dx̃−dq+

1

2
[x̃−q, x̃−q] = dx̃−dq+

1

2
[x̃, x̃] = h−dq = 0

Therefore ve satisfies condition 1 of Definition I.1.22 of obstruction
theory. The other property (change of base) is an easy calculation.

If x ∈ MCL(A) can be lifted to x′ ∈ MCL(B) then [h] = 0.
In conclusion (H2(L), ve) is a complete obstruction theory for MCL.

¤

I.3.24. Remark. (About smoothness)
If H2(L) = 0 then MCL is smooth.

If L is abelian then MCL is smooth. Actually, in this case, MCL(A) =
Z1(L) ⊗mA. Moreover, if B ³ A then Z1(L) ⊗mA ³ Z1(L) ⊗mB.

I.3.4. Gauge action.

I.3.25. Definition. Two elements x and y ∈ L1 ⊗mA are said to
be gauge equivalent if there exists a ∈ L0 ⊗mA such that

y = ea ∗ x := x +
∑

n≥0

[a,−]n

(n + 1)!
([a, x] − da)

aWe have −1

2
[x̃, dx̃] = −1

2
(−(−1)2[dx̃, x̃]) =

1

2
[dx̃, x̃].
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The operator ∗ is called the gauge action of the group exp(L0⊗mA)
on L⊗mA, in fact ea ∗eb ∗x = ea•b ∗x, where •b is the Baker-Campbell-
Hausdorff product in the nilpotent DGLA L⊗mA.

I.3.26. Remark. For a better understanding of the gauge action, it
is convenient to consider the DGLA L′ of Example I.3.11 (with L′1 =
L1 ⊕K d) and the affine embedding

φ : L1 −→ L′1 φ(x) = x + d ∀ x ∈ L1.

As already observed dx +
1

2
[x, x] = 0 if and only if [φ(x), φ(x)]′ = 0.

As in Example I.3.13, for each A ∈ Art and a ∈ L′0 ⊗ mA, we
can consider the exponential of the adjoint action e[a, ]′ : L′1 ⊗mA −→
L′1⊗mA. Using the embedding φ this action induce the gauge action of
L0 ⊗mA on L1 ⊗mA. Actually, for each a ∈ L0 ⊗mA and x ∈ L1 ⊗mA

φ−1(e[a, ]′φ(x)) = e[a,]′(x + d) − d =

x +
∑

n≥1

[a,−]′n

(n)!
(x + d) = x +

∑

n≥0

[a,−]′n+1

(n + 1)!
(x + d) =

x +
∑

n≥0

[a,−]′n

(n + 1)!
([a, x] − da) = ea ∗ x

I.3.27. Example. Let J be an ideal of A ∈ Art (J ⊂ mA) such
that J ·mA = 0 (for example J is the kernel of a small extension).

If x ∈ L1 ⊗ J then, for each a ∈ L0 ⊗mA we have

ea∗x = x+
∞∑

n=0

[a,−]n

(n + 1)!
([a, x]−da) = x+

∞∑

n=0

[a,−]n

(n + 1)!
(−da) = x+ea∗0.

or in general, if y ∈ L1 ⊗mA then ea ∗ (x + y) = x + ea ∗ y.
If a ∈ L0 ⊗ J then, for each x ∈ L1 ⊗mA:

ea ∗ x = x +
∞∑

n=0

[a,−]n

(n + 1)!
([a, x] − da) = x− da.

or general, if b ∈ L0 ⊗mA, then ea+b ∗ x = eb ∗ x− da.

We note that

(3) ea ∗ x = x if and only if [a, x] = da.

Actually ea ∗ x = x if and only if 0 =
e[a,−] − id

[a,−]
([a, x]− da). Applying

the inverse of the operator
e[a,−] − id

[a,−]
, we get ea ∗ x = x if and only if

[a, x] − da = 0.

ba • b = a + b +
1

2
[a, b] +

1

12
[a, [a, b]] − 1

12
[b, [b, a]] + · · ·
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I.3.28. Remark. The solutions of the Maurer-Cartan equation are
preserved under the gauge action.

Actually, we have

d(ea ∗ x) = d(e[a, ]′(d+ x)− d) = [d, e[a, ]′(d+ x)− d]′ = [d, e[a, ]′(d+ x)]′

and using Remark I.3.18

[ea ∗ x, ea ∗ x] = [e[a, ]′(d + x) − d, e[a, ]′(d + x) − d]′ =

[e[a, ]′(d + x), e[a, ]′(d + x)]′ − 2[d, e[a, ]′(d + x)]′ =

e[a, ]′ [d + x, d + x]′ − 2[d, e[a, ]′(d + x)]′ = −2[d, e[a, ]′(d + x)]′.

Therefore

d(ea ∗ x) +
1

2
[ea ∗ x, ea ∗ x] = 0.

Finally, for each x ∈ MCL(A), we define the irrelevant stabilizer of
x:

StabA(x) = {edh+[x,h]|h ∈ L−1 ⊗mA} ⊂ exp(L0 ⊗ A).

The name irrelevant stabilizer is due to the fact that edh+[x,h] ∗ x = x.
Actually

[dh + [x, h], x] = [dh, x] + [[x, h], x] = d[h, x] + [h, dx] +
1

2
[h, [x, x]] =

d[h, x] + [h, dx +
1

2
[x, x]] = d[h, x] = d(dh + [x, h]).

Then dh + [x, h] satisfies condition (3).
Moreover, we observe that StabA(x) is a subgroup and that for each

a ∈ L0 ⊗ A

eaStabA(x)e−a = StabA(y) with y = ea ∗ x.

I.3.5. Deformation functor associated to a DGLA.

I.3.29. Definition. The deformation functor associated to a dif-
ferential graded Lie algebra L is:

DefL : Art −→ Set

DefL(A) =
MCL

exp (L0 ⊗mA)
.

Also in this case a morphism of DGLA φ : L −→ M induces a
morphism of the associated functor φ : DefL −→ DefM .

The name deformation functor is justified by the following propo-
sition.

I.3.30. Proposition. DefL satisfies the conditions of Definition I.1.10.
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Proof. If A = K, then it is clear that DefL(B × C) = DefL(B) ×
DefL(C) and so condition ii) of Definition I.1.10 is satisfied.

Now, let β : B −→ A and γ : C −→ A be morphisms in Art with β
surjective. Let (l,m) ∈ DefL(B)×DefL(A)DefL(C) and l̃ ∈ MCL(A) and

m̃ ∈ MCL(C) be lifting of l and m respecively, such that β(l̃) = γ(m̃).

Therefore there exists a ∈ L0 ⊗mA such that ea ∗β(l̃) = γ(m̃). Let b ∈
L0⊗mB be a lifting of a. Replacing l̃ with its gauge equivalent element
l′ = eb ∗ l̃ we can suppose β(l′) = γ(m̃) in MCL(A). By Remark I.3.21
MCL is homogeneous and so there exists n ∈ MCL(B ×A C) that lifts
(l′, m̃). This implies that

DefL(B ×A C) −→ DefL(B) ×DefL(A) DefL(C)

is surjective. Hence condition i) of Definition I.1.10 also holds.
¤

I.3.31. Remark. By definition the tangent space of DefL is:

tDefL := DefL(K[ε]) =
{x ∈ L1 ⊗Kε | dx = 0}

{da |a ∈ L0 ⊗Kε}
∼=

H1(L).

In general, if L⊗mA is abelian then DefL(A) = H1(L) ⊗mA.

I.3.32. Lemma. The projection π : MCL −→ DefL is a smooth
morphism of functors.

Proof. Let α : B −→ A be a surjection in Art and prove that

MCL(B) −→ DefL(B) ×DefL(A) MCL(A)

induced by

MCL(B)
α //

π

²²

MCL(A)

π

²²
DefL(B) α

// DefL(A),

is surjective.
Let (b, a) ∈ DefL(B)×DefL(A) MCL(A) and b̃ ∈ MCL(B) be a lifting

of b. Then α(b̃) and a have a common image in DefL(A) and so α(b̃) =
et ∗ a, for some t ∈ L0 ⊗mA.

Let s ∈ L0 ⊗mB be a lifting of t and define b′ = e−s ∗ b̃ ∈ MCL(B).

Then α(b′) = e−t ∗ α(b̃) = a and b′ lifts b. ¤
Therefore by Corollary I.1.35, π induces an isomorphism between

universal obstruction theory.
In conclusion, Lemma I.3.23 implies that H2(L) is a complete ob-

struction space of DefL.
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I.3.33. Theorem. Let φ : L −→ M be a morphism of DGLA and
denote by

H i(φ) : H i(L) −→ H i(M)

the induced maps in cohomology.

i) If H1(φ) is surjective (resp. bijective) and H2(φ) injective.
Then the morphism DefL −→ DefM is smooth (resp. étale).

ii) If in addition to i) H0(φ) is surjective. Then the morphism
DefL −→ DefM is an isomorphism.

Proof. i) follows from Proposition I.1.31 (resp. Corollary I.1.32).
For a proof of ii) see [20, Theorem 3.1] (it also follows from the inverse
function Theorem III.2.14 of the extended case). ¤

I.3.34. Corollary. Let L −→ M be a quasi-isomorphism of DGLA.
Then the induced morphism DefL −→ DefM is an isomorphism.

I.3.35. Corollary. If H0(L) = 0, then DefL is homogenous.

Proof. Let N be the DGLA introduced in Example I.3.10. Then
the natural inclusion N −→ L gives isomorphisms H i(N) −→ H i(L)
for each i ≥ 1. Since H0(L) = 0, then H0(N) −→ H0(L) is surjec-
tive. Therefore Theorem I.3.33 ii) implies that DefN −→ DefL is an
isomorphism, whit DefN ∼= MCN homogeneous.

¤
I.3.36. Remark. Let F : Art −→ Set be the functor of the in-

finitesimal deformations of some algebro-geometric object defined over
K.

Then the guiding principle of Kontsevich (see [18]) affirms the ex-
istence of a DGLA L such that F ∼= DefL. In spite of previous Corol-
lary I.3.34, it is clear that this DGLA is defined only up to quasiiso-
morphism. In this case we say that L governs the deformation functor
F .

In Section II.7 we will prove the existence of a DGLA that governs
the infinitesimal deformation of X (Theorem II.7.3) and in Section IV.2
the existence of a DGLA that governs the infinitesimal deformations f
an holomorphic map f (Theorem IV.2.6).



CHAPTER II

Deformation of complex manifolds

In the first part of this chapter we fix notations and recall some
known facts about complex manifolds that will be useful in the sequel.

Therefore any book of complex varieties is a good reference for this
chapter (for example [11], [23], [33], etc.).

In particular we decide to recall the Čech cohomology and Leray’s
theorem (Section II.3.1) and some properties of Kähler manifolds (Sec-
tion II.2). We also study the map f∗ and f ∗ induced by an holomorphic
map f (Section II.6).

Moreover, we give the fundamental definition of the Kodaira-Spencer
differential graded Lie algebra KSX associated to a compact complex
manifold X (Definition II.4.1), of the contraction map i and of the
holomorphic Lie derivative l (Section II.5 ).

In the second part (Section II.7) we prove that the functors DefX
of the infinitesimal deformations of a compact complex manifold X
(see Definition I.2.4) is isomorphic the deformation functor DefKSX

associated the Kodaira-Spencer algebra KSX of X (Theorem II.7.3).

Theorem. Let X be a complex compact manifold and KSX its
Kodaira-Spencer algebra. Then there exists an isomorphism of functors

DefKSX
−→ DefX .

Therefore in spite of Remark I.3.36 we can say that the differential
graded Lie algebra of Kodaira-Spencer KSX governs the infinitesimal
deformations of a complex compact manifold X.

This theorem is well known and a proof based on the theorem of
Newlander-Nirenberg can be found in [4], [10] or more recently in [23].
Here we are interested in a simpler proof that avoid the use of this
theorem.

Beware. In this chapter we will work over the complex number
and so K = C.

We also assume that every variety X is smooth (complex) compact
and connected.

37
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II.1. Differential forms

Let X be a such manifold of dimension n and TX,C = T 1,0
X ⊕ T 0,1

X

its complex tangent bundle, with T 1,0
X =: ΘX the holomorphic tangent

bundle and T 0,1
X = T 1,0

X .
This decomposition induces a dual decomposition on the sheaf of

differentiable forms

A1
X = A1,0

X ⊕A0,1
X

with A1,0
X the sheaf of complex differentiable forms of type (1, 0). If

z1, . . . , zn are local holomorphic coordinates on X, then A1,0
X is gen-

erated by the dzi: each α ∈ A1,0
X has the form α =

∑
i αidzi, with

αi ∈ A0,0
X for each i.

In general a (p, q)-form α can be locally written as α =
∑

K,J αK,JdzK∧
dzJ with K = (1 ≤ k1 < k2 < · · · < kp ≤ n) a multi index of length p
and J = (1 ≤ j1 < j2 < · · · < jq ≤ n) a multi index of length q.

If α = f ∈ A0,0
X , then

df =
n∑

h=1

∂f

∂zh
dzh +

n∑

h=1

∂f

∂zh
dzh = ∂f + ∂f,

with ∂f ∈ A1,0
X and ∂f ∈ A0,1

X .
In general, for α =

∑
K,J αK,JdzK ∧ dzJ ∈ Ap,q

X , we have

dα =
∑

K,J

dαK,J ∧ dzK ∧ dzJ = ∂α + ∂α,

with

∂α =
∑

I,J

∂αI,J ∧ dzK ∧ dzJ ∈ Ap+1,q

and

∂α =
∑

I,J

∂αI,J ∧ dzK ∧ dzJ ∈ Ap,q+1.

Obviously, since d2 = 0 we have ∂ 2 = ∂
2

= ∂∂ + ∂∂ = 0.

II.1.1. Proposition. Let α be a form of type (p, q), with q > 0,
such that ∂α = 0. Then there exists, locally on X, a form β of type
(p, q − 1) such that ∂β = α.

Proof. See [33, Proposition 2.31]. ¤
II.1.2. Definition. (A∗,∗

X ,∧) is the sheaf of graded algebras of dif-

ferential forms of X, i.e. if A(p,q)
X is the sheaf of differentiable (p, q)-

forms then

A∗,∗
X :=

⊕

i

Ai
X with Ai

X =
⊕

p+q=i

Ap,q
X .
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We use the notation Ap,q
X = Γ(X,Ap,q

X ) for the vector space of global
sections of Ap,q

X .

II.1.3. Definition. Der∗(A) is the sheaf of C-linear derivation on
A∗,∗

X ; more precisely if Dera,b(A) are the derivations of be-degree (a, b)
then

Der∗(A) :=
⊕

k

⊕

a+b=k

Dera,b(A).

We note that ∂ and ∂ are global section of Der1,0(A) and Der0,1(A)
respectively.

II.1.4. Remark. Der∗(A) is a sheaf of differential graded Lie alge-
bras with bracket and differential given by the following formulas:

[f, g] := f ◦ g − (−1)deg(f) deg(g)g ◦ f
and

d(f) := [∂ + ∂, f ] = ∂f + ∂f − (−1)deg(f)(f∂ + f∂).

In particular, fixing p = 0, (A0,∗
X ,∧) is a sheaf of graded algebras

and Der∗(A0,∗,A0,∗) :=
⊕

p

Derp(A0,∗,A0,∗) is a sheaf of DGLAs (in

this case the differential reduces to d(f) = [∂, f ] = ∂f − (−1)deg(f)f∂).

II.2. Kähler manifolds

This section is devoted to the compact Kähler manifolds. For defi-
nitions and properties of Kähler manifolds see for examples [11], [23]
or [33].

We include this section just to prove an important application
(Lemma II.2.2) of ∂∂-Lemma (Lemma II.2.1) that will be fundamental
in the obstruction calculus of the last chapter of this thesis (Theo-
rem V.1.4).

II.2.1. Lemma (∂∂-Lemma). Let X be a compact Kälher manifold
and consider the operators ∂ and ∂ on AX . Then

Im ∂∂ = ker ∂ ∩ Im ∂ = ker ∂ ∩ Im ∂.

Proof. See for example [23, Theorem 6.37] and [33, Proposition
6.17].

¤
Let f : X −→ Y be an holomorphic map of compact complex

manifolds. Let Γ ⊂ X × Y be the graph of f and p : X × Y −→ X
and q : X × Y −→ Y be the natural projections.

II.2.2. Lemma. If X and Y are compact Kähler, then the sub-
complexes Im(∂) = ∂AX×Y , ∂AΓ, ∂AX×Y ∩ q∗AY and ∂AX×Y ∩ p∗AX

are acyclic.
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Proof. By hypothesis X × Y is Kähler. Then applying the ∂∂-
Lemma II.2.1 to AX×Y we get

ker(∂) ∩ Im(∂) = Im(∂∂)

and so H∗
∂
(∂(AX×Y )) = 0. Γ ⊂ X × Y is also Kähler and so the same

conclusion holds for ∂AΓ: ∂AΓ is acyclic.
Analogously, since Y is Kähler ∂AY and q∗∂AY are acyclic. There-

fore to prove that ∂AX×Y ∩ q∗AY is acyclic it is sufficient to prove that
q∗AY ∩ ∂AX×Y = q∗∂AY .

The inclusion ⊇ is obvious. Let p ∈ q∗AY ∩∂AX×Y , then p = q∗φ =
∂z with φ ∈ AY and z ∈ AX×Y . Therefore ∂p = q∗∂φ = ∂∂z = 0 and
so φ is ∂-closed (φ ∈ H∂(AY )). Moreover q∗ : H∂(AY ) −→ H∂(AX×Y )
is injective and q∗[φ] = [∂z] = 0. Then φ is ∂-exact, that is φ = ∂t
with t ∈ AY . This implies p = q∗∂t ∈ q∗∂AY .

The case ∂AX×Y ∩ p∗AX can be proved in the same way. ¤
II.2.3. Remark. In the previous lemma the Kähler hypothesis on

X and Y can be substitute by the validity of the ∂∂-lemma in AX ,AY ,
AX×Y and AΓ.

II.3. Holomorphic fiber bundle and Dolbeault’s cohomology

Let E be an holomorphic fiber bundle on X. Then the ∂ operator
can be extended to the Dolbeault operator

∂E : Ap,q(E) −→ Ap,q+1(E).

If e1, . . . , en is a local frame for E then

∂E(
∑

i

φiei) =
∑

i

∂(φ)ei.

Since E is an holomorphic fiber bundle this definition doesn’t de-
pend on the choice of the local frame. By definition, ∂E satisfies the

property ∂E
2

= 0.

Let Ap,q
X (E) = Γ(X,Ap,q

X (E)) be the vector space of global sections
of the sheaf Ap,q

X (E). Then we can consider, for each p ≥ 0, the follow-
ing complex:

0 −→ Ap,0
X (E)

∂E−→ Ap,1
X (E)

∂E−→ · · · ∂E−→ Ap,q
X (E)

∂E−→ · · · .
The cohomology of this complex is the Dolbeault’s cohomology Hp,∗

∂E
(X,E)

of E. We note that, for p = 0, ker(∂E : A0,0
X (E) −→ A0,1

X (E)) coincides
with the holomorphic sections of E and

Hq

∂E
(X,E) = H0,q

∂E
(X,E) =

ker(∂E : A0,q
X (E) −→ A0,q+1

X (E))

Im(∂E : A0,q−1
X (E) −→ A0,q

X (E))
.

Also in the case of holomorphic bundle, we have an analogous of
the previous Proposition II.1.1.
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II.3.1. Proposition. Let α be a differential form with coefficient
in E of type (0, q) with q > 0. If ∂Eα = 0, then there exists locally on
X a differential form β of type (0, q − 1), with coefficients in E, such
that ∂Eβ = α.

Proof. See [33, Proposition 2.36]. ¤

II.3.1. Čech cohomology and Leray’s theorem. We follow
[23, Section 1.3].

Let E be an holomorphic bundle on the complex manifold X. Let
U = {Ui}i∈I be a locally finite open covering of X and denote Ui0···ik =
Ui0 ∩ · · · ∩ Uik .

Define the Čech q-chains of E:

Čk(U , E) = {fi0···ik | fi0···ik : Ui0···ik −→ E is an holomorphic section}
and the Čech differential

δ̌ : Čk(U , E) −→ Čk+1(U , E)

(δ̌f)i0···ik+1
=

k+1∑

j=0

(−1)j fi0···bij ···ik+1
.

A simple calculation show that δ̌2 = 0 and so we can define the C-vector
space of Čech cohomology

Ȟk(U , E) =
ker(δ̌ : Čk(U , E) −→ Čk+1(U , E)

Im(δ̌ : Čk−1(U , E) −→ Čk(U , E)
.

Now, define a morphism θ : Ȟk(U , E) −→ H0,k

∂E
(X,E).

Let ti : X −→ C, with i ∈ I, be a partition of unity subordinate to
the cover U : that is supp(ti) ⊂ Ui,

∑
i ti = 1 and

∑
i ∂ti = 0.

For each f ∈ Čk(U , E) and i ∈ I we define

φi(f) =
∑

j1···jk
fij1···jk∂tj1 ∧ · · · ∧ ∂tjk ∈ Γ(Ui,A0,k(E))

and then
φ(f) =

∑

i

tiφi(f) ∈ Γ(X,A0,k(E)).

It is true that φ is a well defined morphism of complexes that induces a
morphism θ in cohomology (for full details see [23, Proposition 1.22]).

II.3.2. Theorem. Let U = {Ui}i∈I be a locally finite countable open
covering of a complex manifold X and E an holomorphic vector bundle.
If Hk−q

∂E
(Ui0···iq , E) = 0 for every q < k and i0 · · · ik, then the morphism

θ is an isomorphism

θ : Ȟk(U , E) −→ Hk
∂E

(X,E).
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Proof. See [23, Theorem 1.24] or [33, Theorem 4.41]. ¤

II.3.3. Remark. If the open Ui of the cover U are biholomorphic to
open convex subset of Cn then U satisfy hypothesis of Theorem II.3.2.

II.3.4. Remark. It is convenient to give an explicit description of
the inverse map of θ, at least for k = 2:

θ−1 : H2
∂E

(X,E) −→ Ȟ2(U , E).

Let h ∈ H2
∂E

(X,E). Applying Proposition II.3.1 for each i ∈ I

there exists τi ∈ Γ(Ui,A0,1(E)) such that h|Ui
= ∂τi.

Define σij = (τi − τj)|Uij
∈ Γ(Uij,A0,1(E)). σij is ∂-closed; actually

∂σij = (∂τi − ∂τj)|Uij
= h|Uij

− h|Uji
= 0.

Therefore for each Uij there exists ρij ∈ Γ(Uij,A0,0(E)), such that

∂ρij = σij.
We observe that (σjk − σik + σij)|Uijk

= 0; indeed

(σjk − σik + σij)|Uijk
=

((τj − τk) − (τi − τk) + (τi − τj))|Uijk
= 0.

Define αijk = (ρjk−ρik +ρij)|Uijk
∈ Γ(Uijk,A0,0(E)). First of all we

have that ∂αijk = 0; actually

∂αijk = (∂ρjk − ∂ρik + ∂ρij)|Uijk
= (σjk − σik + σij)|Uijk

= 0

This implies that αijk ∈ Γ(Uijk, E).

Moreover (δ̌α)ijkl = 0; in fact

(δ̌α)ijkl = (αjkl − αikl + αijl − αijk)|Uijkl
=

((ρkl−ρjl+ρjk)−(ρkl−ρil+ρik)+(ρjl−ρil+ρij)−(ρjk−ρik+ρij))|Uijkl
= 0

This implies that α ∈ Ȟ2(X,E).
α is independent of the choices. Actually, if we choose τ i, such that

h|Ui
= ∂τ i; then τ i = τi + ∂ti and this change doesn’t affect the choice

of αijk.

If we choose ρij ∈ Γ(Uij,A0,0(E)) such that ∂ρij = σij, then ρij =

ρij + sij, with sij ∈ Γ(Uij,A0,0(E)) such that ∂sij = 0. This implies

that sij ∈ Γ(Uij, E). Therefore {αijk} = {αijk} + {δ̌(sij)} and so αijk

and αijk represent the same class in cohomology.
In conclusion we have defined a map

ϑ : H2
∂E

(X,E) −→ Ȟ2(U , E)

[h] 7−→ [α].

Finally it can be proved that this map ϑ is the inverse of θ (for full
details see [23, Theorem 1.24] or [33, Theorem 4.41]).



II.5. CONTRACTION MAP AND HOLOMORPHIC LIE DERIVATIVE 43

II.4. The Kodaira-Spencer algebra KSX

II.4.1. Definition. Let ΘX be the holomorphic tangent bundle of
a complex manifold X. The Kodaira-Spencer (differential graded Lie)
algebra of X is

KSX =
⊕

i

Γ(X,A0,i
X (ΘX)) =

⊕

i

A0,i
X (ΘX).

In particular, KSi
X is the vector space of the global sections of the

sheaf of germs of the differential (0, i)-forms with coefficients in ΘX .

The differential d̃ on KSX is the opposite of Dolbeault differential,
while the bracket is defined in local coordinates as the Ω

∗
-bilinear ex-

tension of the standard bracket on A0,0
X (ΘX) (Ω

∗
= ker(∂ : A0,∗

X −→
A1,∗

X ) is the sheaf of antiholomorphic differential forms).

Explicitly, if z1, . . . , zn are local holomorphic coordinates on X, we
have

d̃(fdzI
∂

∂zi
) = −∂(f) ∧ dzI

∂

∂zi
.

[f
∂

∂zi
dzI , g

∂

∂zj
dzJ ] = (f

∂g

∂zi

∂

∂zj
−g

∂f

∂zj

∂

∂zi
) dzI∧dzJ ∀ f, g ∈ A0,0

X .

(A0,∗
X (TX) is a sheaf of DGLA).

We note that by Dolbeault theorem we have H i(A0,∗
X (ΘX)) ∼= H i(X,ΘX)

for every i then

H∗(KSX) =
ker(∂ : A0,q

X (ΘX) −→ A0,q+1
X (ΘX))

Im(∂ : A0,q−1
X (ΘX) −→ A0,q

X (ΘX))
∼= H∗

∂
(X,ΘX)

In Theorem II.7.3, we will prove that the DGLA KSX governs the
infinitesimal deformations of X.

II.5. Contraction map and holomorphic Lie derivative

In general, for each vector space V and linear functional α : V −→
C, we can define the contraction operator

αy
k∧
V −→

k−1∧
V

αy(v1 ∧ . . . ∧ vk) =
k∑

i=1

(−1)i−1α(vi)(v1 ∧ . . . ∧ v̂i ∧ . . . ∧ vk),

that is a derivation of degree −1 of the graded algebra (
∧k V,∧).

Then considering the contraction y of the differential forms with
vector fields we can define two injective morphisms of sheaves:
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- the contraction map

i : A0,∗
X (ΘX) −→ Der∗(A∗,∗

X )[−1]

a 7−→ ia with ia(ω) = ayω
- the holomorphic Lie derivative

l : A0,∗
X (ΘX) −→ Der∗(A∗,∗

X )

a 7−→ la = [∂, ia] with la(ω) = ∂(ayω) + (−1)deg(a)ay∂ω
for each a ∈ A0,∗

X (ΘX) and ω ∈ A∗,∗
X .

II.5.1. Lemma. In the notation above, for every a, b ∈ A0,∗
X (ΘX) we

have

id̃a = −[∂, ia], i[a,b] = [ia, [∂, ib]] = [[ia, ∂], ib], [ia, ib] = 0.

Proof. See [22, Lemma2.1]. Let z1, z2, . . . , zn be local holomor-

phic coordinates on X. By linearity, we can assume that a = fdzI
∂

∂zi

and b = gdzJ
∂

∂zj
(i 6= j), with f, g ∈ A0,0

X .

All the expressions vanish on A0,∗
X and A∗,∗

X is generated as C-algebra

by A0,0
X ⊕A0,1

X ⊕A1,0
X . Therefore it is sufficient to verify the equalities

on the dzh (that generate A1,0
X ).

Moreover, we note that ∂dzh = ∂dzh = iaibdzh = ibiadzh = 0.
Therefore [ia, ib] = 0 and the other equalities follow from the easy
calculations below.

Let ω = dzh and d̃(a) = −∂(f) ∧ dzI
∂

∂zi
. Then

id̃a(dzh) = d̃aydzh =

{
0 h 6= i,

−∂(f) ∧ dzI h = i.

On the other side

−[∂, ia](ω) = (−∂ia + (−1)a−1ia∂)(dzh) = −∂ia(dzh) =

−∂(aydzh) =

{
0 h 6= i,

−∂(fdzI) h = i.

Then the first equalities holds.
About i[a,b], we have

[a, b] = (f
∂g

∂zi

∂

∂zj
− g

∂f

∂zj

∂

∂zi
) dzI ∧ dzJ

and then

i[a,b](dzh) =





0 h 6= i, j,

f
∂g

∂zi
dzI ∧ dzJ h = j,

− g
∂f

∂zj
dzI ∧ dzJ h = i.
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On the other side

[ia, [∂, ib]] = [ia, ∂ib − (−1)b−1ib∂] =

ia∂ib − (−1)b−1iaib∂ − (−1)(a−1)b(∂ibia − (−1)b−1ib∂ia).

Then

[ia, [∂, ib]](dzh) = ia∂ib(dzh) − (−1)abib∂ia(dzh) =




0 h 6= i, j,

ia∂ib(dzj) = f
∂g

∂zi
dzI ∧ dzJ h = j,

−(−1)abib∂ia(dzi) = −(−1)abg
∂f

∂zj
dzJ ∧ dzI h = i.

¤

The previous set of equalities is called Cartan formulas.

II.5.2. Definition. Let L and M be two differential graded Lie al-
gebras and let d′ be the differential on the graded vector space Hom∗(L,M).
A linear map i ∈ Hom−1(L,M) is called a Cartan homotopy if

i([a, b]) = [i(a), d′i(b)] and [i(a), i(b)] = 0 ∀ a, b ∈ L.

We recall that by definition (see Example I.3.3) we have

d′i(a) = dM(i(a)) + i(dL(a)).

II.5.3. Corollary. i is a Cartan homotopy and the Lie derivative
l is a morphism of sheaves of DGLAs.

Proof. Using Cartan formulas we get d′(ib) = [d, ib] + id̃b = [∂ +

∂, ib] − [∂, ib] = [∂, ib]. Then i[a,b] = [ia, [∂, ib]] = [ia, d
′(ib)]. Moreover,

by Lemma II.5.1 [ia, ib] = 0 and so i is a Cartan homotopy.
As regards l, we have

ld̃a = [∂, id̃a] = −[∂, [∂, ia]].

Moreover

−[∂, [∂, ia]] = −[∂, ∂ia − (−1)deg iaia∂] =

−∂∂ia + (−1)deg ia∂ia∂ − (−1)deg ia∂ia∂ + ia∂∂.

Therefore

[d, la] = [∂ + ∂, la] = [∂, la] + [∂, la] =

= [∂, [∂, ia]] + [∂, [∂, ia]] = −[∂, [∂, ia]] = ld̃a.

Using [ia, ib] = 0 and a very boring calculation, we can also prove that

l[a,b] = [la, lb].

¤
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In particular we have an injective morphism of sheaves

l : A0,∗
X (ΘX) −→ Der∗(A0,∗

X ,A0,∗
X )

(4) a 7−→ la with la(ω) = (−1)degaay∂ω.
Explicitly, in local holomorphic coordinates z1, z2, . . . , zn, if a =

g dzI
∂

∂zi
and ω = fdzJ , then

la(ω) = (−1)dega
∂f

∂zi
g dzI ∧ dzJ .

Using l, for each (A,mA) ∈ Art, we can define the following mor-
phism:

l : A0,∗
X (ΘX) ⊗ A −→ Der∗(A0,∗

X ⊗ A,A0,∗
X ⊗ A).

In particular, for each solution of the Maurer-Cartan equation in KSX

we have the fundamental lemma below.

II.5.4. Lemma. x ∈ MCKSX
(A) if and only if

∂ + lx : A0,∗
X ⊗ A −→ A0,∗+1

X ⊗ A

is a differential of degree 1 on A0,∗
X ⊗ A.

Proof. Since l is a morphism of DGLAs we have

(∂ + lx)
2 = ∂lx + lx∂ + l2x = [∂, lx] +

1

2
[lx, lx] = l(d̃x +

1

2
[x, x]).

¤

Moreover using l, we can also define, for each (A,mA) ∈ Art and
a ∈ A0,0

X (ΘX) ⊗mA, an automorphism ea of A0,∗
X ⊗ A:

(5) ea : A0,∗
X ⊗ A −→ A0,∗

X ⊗ A, ea(f) =
∞∑

n=0

lna
n!

(f).

II.5.5. Lemma. For every local Artinian C-algebra (A,mA), a ∈
A0,0

X (ΘX) ⊗mA and x ∈ MCKSX
(A) we have

(6) ea ◦ (∂ + lx) ◦ e−a = ∂ + ea ∗ lx : A0,0
X ⊗ A −→ A0,1

X ⊗ A.

where ∗ is the gauge action (and ea ∗ lx ∈ A0,1
X (ΘX) ⊗ mA acts on

A0,0
X ⊗ A as defined in (4)). In particular

ker(∂+ea∗lx : A0,0
X ⊗A −→ A0,1

X ⊗A) = ea(ker(∂+lx : A0,0
X ⊗A −→ A0,1

X ⊗A)).

Proof. It follows from definition of gauge action. More precisely,
since ea ◦ eb ◦ e−a = e[a, ](b), we have

ea◦(∂+lx)◦e−a = e[a, ]′(∂+lx) =
∞∑

n=0

[a, ]′

n!
(∂+lx) = ∂+lx+

∞∑

n=1

[a, ]′

n!
(∂+lx) =
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= ∂+ lx +
∞∑

n=0

[a, ]′n+1

(n + 1)!
(∂+ lx) = ∂+ lx +

∞∑

n=0

[a, ]′n

(n + 1)!
([a, ∂]′ +[a, lx]) =

∂ + lx +
∞∑

n=0

[a, ]′n

(n + 1)!
([a, lx] − ∂a) = ∂ + ea ∗ lx

¤
II.5.6. Remark. Let φi be automorphism of the A-module A0,∗

X ⊗A
whose specialization to the residue field C is the identity. Let φ =∑

i φ = id + η with η ∈ Hom0(A0,∗
X ,A0,∗

X ) ⊗ mA. Since we are in
characteristic zero, we can take the logarithm so that φ = ea with
a ∈ Hom0(A0,∗

X ,A0,∗
X ) ⊗mA

II.5.1. The DGLA of a submanifolds. Let X be a complex
manifold and i : X ↪→ Y be the inclusion of a submanifold X. Let
i∗ : A0,∗

X −→ A0,∗
Y be the restriction morphism (of sheaves of DGLAs).

Finally, denote by ΘY the holomorphic tangent bundle of Y and by
NX|Y the normal bundle of X in Y . Define the sheaf L′ = ⊕iL′i such
that

0 −→ L′ −→ A0,∗
Y (ΘY ) −→ A0,∗

X (NX|Y ) −→ 0.

Let z1, . . . , zn be holomorphic coordinates on Y such that Y ⊃ X =

{zt+1 = · · · = zn = 0}. Then η ∈ L′i if and only if η =
n∑

j=1

ωj
∂

∂zj
, with

ωj ∈ A0,i
Y such that ωj ∈ ker i∗ for j ≥ t. In particular L′0 is the sheaf

of differentiable vector field on Y that are tangent to X.

II.5.7. Lemma. L′ is a sheaf of differential graded Lie subalgebras of
A0,∗

Y (ΘY ) such that la(ker i∗) ⊂ ker i∗ if and only if a ∈ L′ ⊂ A0,∗
Y (ΘY ).

Proof. See [24, Section 5]. It is an easy calculation in local holo-
morphic coordinates.

¤
Moreover, consider the automorphism ea of A0,∗

X ⊗A defined in (5):

if a ∈ L′0 ⊗mA then ea(ker(i∗) ⊗ A) = ker(i∗) ⊗ A.
Let L′ be the DGLA of the global section of L′:

0 −→ L′ −→ A0,∗
Y (ΘY )

π′
−→ A0,∗

X (NX|Y ) −→ 0.

In the literature, there also exists the notation L′ = A0,∗
Y (ΘY (−log X)).

In Section V.4 we will prove that L′ governs the embedded defor-
mations of the inclusion i : X ↪→ Y (Corollary V.4.1).

II.6. Induced map f∗ and f ∗ by a holomorphic map f

This section is devoted to study the maps f∗ and f ∗ induced by an
holomorphic map f . In particular we prove a property of these map
(Lemma II.6.1) that will be used in the last chapter (Section V.1.2).
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Let f : X −→ Y be an holomorphic map of compact complex
manifolds.

Let U = {Ui}i∈I and V = {Vi}i∈I be finite Stein open covers of X
and Y , respectively, such that f(Ui) ⊂ Vi (Ui is allowed to be empty).
Then f induces morphisms

f ∗ : Čp(V ,ΘY ) −→ Čp(U , f ∗ΘY ).

and
f∗ : Čp(U ,ΘX) −→ Čp(U , f ∗ΘY )

Explicitly, for each i ∈ I and local holomorphic coordinate systems
z = (z1, z2, . . . , zn) on Ui and w = (w1, w2, . . . wm) on Vi such that
f(z1, z2, . . . , zn) = (f1(z), . . . , fm(z)), we have

f ∗ : Γ(Vi,ΘY ) −→ Γ(Ui, f
∗ΘY )

f ∗(
∑

j

gj(w)
∂

∂wj

) =
∑

j

gj(f(z))
∂

∂wj

and
f∗ : Γ(Ui,ΘX) −→ Γ(Ui, f

∗ΘY )

f∗(
∑

k

hk(z)
∂

∂zk
) =

∑

k,j

hk(z)
∂fj(z)

∂zk

∂

∂wj

Moreover f∗ and f ∗ commute with the Čech differential and they
don’t depend on the choice of the cover. Therefore we get linear maps
in cohomology :

f ∗ : Ȟp(Y,ΘY ) −→ Ȟp(X, f ∗ΘY ).

and
f∗ : Ȟp(X,ΘX) −→ Ȟp(X, f ∗ΘY )

Analogously f induces morphisms

f ∗ : Ap,q
Y (ΘY ) −→ Ap,q

X (f ∗ΘY )

and
f∗ : Ap,q

X (ΘX) −→ Ap,q
X (f ∗ΘY ).

Let U and V be Stein covers and z = (z1, z2, . . . , zn) on Ui and w =
(w1, w2, . . . wm) on Vi local holomorphic coordinate systems as above.
Let K = (1 ≤ k1 < k2 < · · · < kp ≤ n) be a multi index of length p
and J = (1 ≤ j1 < j2 < · · · < jq ≤ n) a multi index of length q. Then

f∗ : Ap,q(Ui,ΘX) −→ Ap,q
X (Ui, f

∗ΘY )

f∗

(
h(z)dzK ∧ dzJ

∂

∂zi

)
= h(z)dzK ∧ dzJ

∑

j

∂fj(z)

∂zi

∂

∂wj

.

and
f ∗ : Ap,q(Vi,ΘY ) −→ Ap,q

X (Ui, f
∗ΘY )
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f ∗
(
g(w)dwK ∧ dwJ

∂

∂wi

)
= g(f(z))∂fK ∧ ∂fJ

∂

∂wi

where

∂fK =
n∑

h=1

∂fk1

∂zh
dzh ∧ · · · ∧

n∑

h=1

∂fkp
∂zh

dzh

and

∂fJ =
n∑

h=1

∂fj1
∂zh

dzh ∧ · · · ∧
n∑

h=1

∂fjq
∂zh

dzh;

We note that f ∗ and f∗ commutes with ∂ and ∂.
Moreover, for each k, there exists the following commutative dia-

grams

Čq(V ,ΘY )
φ //

f∗

²²

A0,q
Y (ΘY )

f∗

²²

Čq(U , f ∗ΘY )
φ // A0,q

X (f ∗ΘY )

and

Čq(U ,ΘX)
φ //

f∗
²²

A0,q
X (ΘX)

f∗
²²

Čq(U , f ∗ΘY )
φ // A0,q

X (f ∗ΘY ),

where φ is the map defined in Section II.3.1. Therefore f∗φ = φf∗ and
f ∗φ = φf ∗.

II.6.1. Lemma. Let f : X −→ Y be an holomorphic map of complex
manifolds. Let χ ∈ A0,∗

Y (ΘY ) and η ∈ A0,∗
X (ΘX) such that f ∗χ = f∗η ∈

A0,∗
X (f ∗ΘY ). Then for each ω ∈ A∗,∗

Y

f ∗(χyω) = ηyf ∗ω.

Proof. Let U = {Ui}i∈I and V = {Vi}i∈I be finite open Stein
covers of X and Y , respectively, as above. For each i ∈ I, let z be
local holomorphic coordinates system on Ui and w on Vi such that
f(z) = (f1(z), . . . , fm(z)).

Let

A0,r
X (ΘX) 3 η =

n∑

i=1

hi(z)dzI
∂

∂zi

and

A0,r
Y (ΘY ) 3 χ =

m∑

h=1

ϕh(w)dwH
∂

∂wh

,

with I = (1 ≤ i1 < i2 < · · · < ir ≤ n) and H = (1 ≤ h1 < h2 < · · · <
hr ≤ n) multi indexes of length r.
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Therefore

f∗η =
n∑

i=1

hi(z)dzI

m∑

h=1

∂fh
∂zi

∂

∂wh

=
m∑

h=1

(
n∑

i=1

hi(z)
∂fh
∂zi

dzI

)
∂

∂wh

and

f ∗χ =
m∑

h=1

ϕh(f(z))∂fH
∂

∂wh

.

By hypothesis f ∗χ = f∗η ∈ A0,∗
X (f ∗ΘY ), then

(7) ϕh(f(z))∂fH =
n∑

i=1

hi(z)
∂fh
∂zi

dzI ∀ h = 1, . . . ,m.

Now, let

Ap,q(Vi) 3 ω = g(w) dwK ∧ dwJ

with K = (1 ≤ k1 < k2 < · · · < kp ≤ n) a multi index of length p and
J = (1 ≤ j1 < j2 < · · · < jq ≤ n) a multi index of length q. Then

f ∗ω = g(f(z)) ∂fK ∧ ∂fJ .

and

χyω =
m∑

h=1

ϕh(w)g(w) dwH ∧
(

∂

∂wh

ydwK

)
∧ dwJ =

p∑

h=1

(−1)p−1ϕkh(w)g(w) dwH ∧ dwK−{kh} ∧ dwJ ,

with dwK−{kh} = dwk1 ∧ . . . ∧ d̂wkh ∧ . . . ∧ dwkp .
Therefore

f ∗(χyω) =

p∑

h=1

(−1)h−1ϕkh(f(z))g(f(z)) ∂fH ∧ ∂fK−{kh} ∧ ∂fJ

and using (7) we get

f ∗(χyω) =

p∑

h=1

(−1)h−1g(f(z))

(
n∑

i=1

hi(z)
∂fkh
∂zi

dzI

)
∧ ∂fK−{kh} ∧ ∂fJ .

On the other and

ηyf ∗ω =
n∑

i=1

hi(z)g(f(z)) dzI

(
∂

∂zi
y∂fK

)
∧ ∂fJ =

n∑

i=1

hi(z)g(f(z)) dzI ∧
(

p∑

h=1

(−1)h−1∂fkh
∂zi

∂fK−{kh}

)
∧ ∂fJ =

f ∗(χyω).

¤
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II.7. Deformations of complex manifolds

In this section we prove that the infinitesimal deformations of a
complex compact manifold X are governed by

the differential graded Lie algebra of Kodaira-Spencer KSX : that
is DefKSX

∼= DefX .
We start with some lemmas and we postpone the proof in subSec-

tion II.7.1 where we also give an explicit description of the isomorphism
(see Theorem II.7.3).

II.7.1. Lemma. Let A ∈ Art and x ∈ MCKSX
(A), then there exists

a cover U = {Ui} of X, such that x|Ui
∼ 0 for each i.

Proof. By Proposition II.3.1, there exists a cover U = {Ui} such
that H1(Ui,ΘX) = 0 for each i. Moreover, by Remark I.3.31, H1(X,ΘX)
is the tangent space of the deformation functor DefKSX

. Therefore by
Corollary I.1.21, DefKSX

is locally trivial and so each x ∈ MCKSX
(A)

is locally gauge equivalent to zero.
¤

In Section II.4 we have defined a morphism of sheaves

l : A0,∗
X (ΘX) ⊗ A −→ Der∗(A0,∗

X ⊗ A,A0,∗
X ⊗ A)

a 7−→ la with la(ω) = (−1)degaay∂ω.
Let x ∈ MCKSX

(A). Explicitly, in local holomorphic coordinates

z1, z2, . . . , zn if x =
∑

i,j

xijdz̄i
∂

∂zj
and ω = fdzJ , then

lx(f) = −
∑

i,j

xij
∂f

∂zj
dz̄i ∧ dzJ .

We also proved that for x ∈ MCKSX
(A)

∂ + lx : A0,∗
X ⊗ A −→ A0,∗+1

X ⊗ A

is a differential (Lemma II.5.4).
Define OA(x) as the kernel of ∂ + lx : A0,0

X ⊗A −→ A0,1
X ⊗A. Then

we have

0 −→ OA(x) −→ A0,0
X ⊗A

∂+lx−−−→ A0,1
X ⊗A

∂+lx−−−→ · · · ∂+lx−−−→ A0,n
X ⊗A −→ 0.

In Section II.4 we have also defined for each s ∈ A0,0
X (ΘX) ⊗ mA an

automorphism es of A0,∗
X ⊗ A.

II.7.2. Lemma. Let F,G : Art −→ Set be the following functors

F (A) := {isomorphisms of complexes es : (A0,∗
X ⊗A, ∂+lx) −→ (A0,∗

X ⊗A, ∂+ly)

with s ∈ A0,0
X (ΘX) ⊗mA that specialize to identity}

G(A) = {isomorphisms of sheaves of A-module ψ : OA(x) −→ OA(y)

that specialize to identity}.
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Then the restriction morphism φ : F −→ G is surjective.

Proof. We proceed by induction on d = dimCA.
If A = C, then G(C) = { identity} and so it can be lifted.
Assume that d ≥ 2 and let

0 −→ J −→ B
α−→ A −→ 0

be a small extension; by induction each element in G(A) can be lifted
to F (A).
Let ψ be an isomorphism between OB(x) and OB(y) (ψ ∈ G(B)); we
want to lift it to an isomorphism es.

α(x) and α(y) are in MCKSX
(A) and ψ induces an isomorphism

of sheaves of A module ψ : OA(α(x)) −→ OA(α(y)). Therefore, by
induction hypothesis we can lift ψ to an isomorphism of complexes es:
i.e es

−1 ◦ (∂ + α(x)) ◦ es = ∂ + α(y) with s ∈ A0,0
X (ΘX) ⊗mA.

Then we can suppose that α(x) = α(y) ∈ A0,1(ΘX) ⊗mA and that
es is the identity.

This implies the existence of an element p ∈ A0,1
X (ΘX) ⊗ J such

that x = y + p. Since x and y satisfy the Maurer-Cartan equation,
then ∂p = 0. In fact

0 = dx +
1

2
[x, x] = d(y + p) +

1

2
[y + p, y + p] = dy + dp +

1

2
[y, y] = dp.

Therefore, by Proposition II.3.1, there exists a Stein cover U = {Ui}i∈I
of X such that p is locally ∂-exact: i.e. for each i ∈ I there exists
ti ∈ A0,0

X (ΘX) ⊗ J such that ∂ti = p|Ui
. Then

y|Ui
= (x− p)|Ui

= x|Ui
− ∂ti = eti ∗ x|Ui

,

where we use the fact that J ·mB = 0 as in Example I.3.27. In particular
by Lemma II.5.5, eti : (A0,∗(Ui) ⊗ B, ∂ + lx) −→ (A0,∗(Ui) ⊗ B, ∂ +
ly) is an isomorphism of complexes, that lifts the isomorphism eti :
OB(x)(Ui) −→ OB(y)(Ui). We note that eti restricts to identity on
OA(x)(Ui).

On the other side, by previous Lemma II.7.1, the Maurer-Cartan
element x is locally gauge equivalent to zero. Then for each i ∈ I
there exists ai ∈ A0,0(Ui,ΘX)⊗mB such that eai ∗ x|Ui

= 0. As before,

Lemma II.5.5 implies that eai : (A0,∗(Ui) ⊗ B, ∂ + lx) −→ (A0,∗(Ui) ⊗
B, ∂) is an isomorphism of complexes, that lifts the isomorphism eai :
OB(x)(Ui) −→ OX(Ui) ⊗B.

Now consider the following isomorphism

ϕ|Ui
: OX(Ui) ⊗B −→ OX(Ui) ⊗B

defined as follows:

ϕ|Ui
= eai ◦ e−ti ◦ ψ|Ui

◦ e−ai :

OX(Ui)⊗B
e−ai−→ OB(x)(Ui)

ψ|Ui−→ OB(y)(Ui)
e−ti−→ OB(x)(Ui)

eai−→ OX(Ui)⊗B.
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Then ϕ|Ui
is an automorphism of OX(Ui)⊗B that restricts to identity

on OX(Ui) ⊗ A. Therefore Lemma I.2.6 implies the existence of qi ∈
Γ(Ui,ΘX)⊗J such that ϕ|Ui

= eqi . In particular eai ◦e−ti ◦ψ|Ui
◦e−ai =

eqi ; by Remark I.2.7, the automorphism eqi commutes with the other
automorphisms and so

ψ|Ui
= eti+qi .

Let si = ti + qi ∈ A0,0(Ui,ΘX) ⊗ J , then esi = ψ|Ui
and so we have

locally lifted the isomorphism ψ.
Now, we prove that the automorphisms esi can be glued together

to obtain an automorphism es of A0,∗
X ⊗ A that lifts ψ. Consider

the intersection Uij, then the isomorphisms coincide on OB(x)(Uij),
i.e esi|Uij

= ψ|Uij
= e

sj
|Uij

: OB(x)(Uij) −→ OB(y)(Uij). Therefore the

isomorphism esi−sj is the identity on OB(x)(Uij). Since the action of

A0,0
X (ΘX) ⊗mB on A0,0

X (Uij) ⊗B is faithful on OX(Uij) ⊗B, it follows
that (si − sj)|Uij

= 0.
¤

II.7.1. KSX governs the infinitesimal deformations of X.
This section is devoted to prove that the Kodaira-Spencer algebra of a
complex manifold X governs the infinitesimal deformations of X.

II.7.3. Theorem. Let X be a complex compact manifold and KSX

its Kodaira-Spencer algebra. Then there exists an isomorphism of func-
tors

γ′ : DefKSX
−→ DefX .

defined in the following way: given a local Artinian C-algebra (A,mA)
and a solution of the Maurer-Cartan equation x ∈ A0,1

X (ΘX) ⊗mA we
set

OA(x) = ker(A0,0
X ⊗ A

∂+lx−−−→ A0,1
X ⊗ A),

and the map OA(x) −→ OX is induced by the projection A0,0
X ⊗ A −→

A0,0
X ⊗ C = A0,0

X .

II.7.4. Remark. As observed in subSection I.2.1, a deformation of
X can be interpreted as a morphism of sheaves of algebras OA −→ OX

such that OA is flat over A and OA ⊗A C −→ OX is an isomorphism.
For this, the first part of the following proof consists of showing the

A-flatness of OA(x) and the isomorphism OA(x) ⊗A C ∼= OX .

Proof. For each (A,mA) ∈ Art and x ∈ MCKSX
(A), we have

defined

OA(x) = ker(A0,0
X ⊗ A

∂+lx−−−→ A0,1
X ⊗ A).

First of all, we observe that the projection π on the residue field
A/mA

∼= C gives the following commutative diagram
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0 // OA(x) //

π

²²

A0,0
X ⊗ A

∂ //

π

²²

· · · ∂ // A0,n
X ⊗ A //

π

²²

0

OA(x) ⊗A C

²²

// A0,0
X

id
²²

∂ // · · · ∂ // A0,n
X

id
²²

// 0

0 // OX
// A0,0

X

∂ // · · · ∂ // A0,n
X

// 0

Then π induces the morphism OA(x) −→ OX .

Using Lemma II.7.1, the Maurer-Cartan solution x is locally gauge
equivalent to zero, therefore there exist a cover U = {Ui} and elements
ai ∈ A0,0(Ui,ΘX) ⊗mA such that eai ∗ x|Ui

= 0, for each i. Therefore,

by Lemma II.5.5, eai ◦(∂+ lx|Ui
)◦e−ai = eai ∗(∂+ lxUi

) = ∂+eai ∗x = ∂
and so we have the following commutative diagram

0 // OA(x)(Ui) //

eai

²²

A0,0
X (Ui) ⊗ A

∂+lx|Ui//

eai

²²

· · ·
∂+lx|Ui// A0,n

X (Ui) ⊗ A //

eai

²²

0

0 // OX(Ui) ⊗ A // A0,0
X (Ui) ⊗ A

∂ // · · · ∂ // A0,n
X (Ui) ⊗ A // 0,

where the vertical arrow are isomorphisms.
This implies that the deformation OA(x) is locally trivial, i.e. OA(x)(Ui) ∼=

OX(Ui) ⊗ A. Since OX(Ui) ⊗ A is flat over A, then OA(x)(Ui) is also
flat. Since flatness is a local property, OA(x) is A-flat.

Using the isomorphism OA(x)(Ui) ∼= OX(Ui) ⊗ A we can also con-
clude that OA(x)(Ui) ⊗A C ∼= OX(Ui) and so OA(x) ⊗A C −→ OX is
an isomorphism.

Then it is well defined the following morphism of functors of Artin
rings

γ : MCKSX
−→ DefX

such that

γ(A) : MCKSX
(A) −→ DefX(A)

x 7−→ OA(x).

Now, we prove that the deformations OA(x) and OA(y) are isomor-
phic if and only if x, y ∈ MCKSX

(A) are gauge equivalent.
Actually, if OA(x) ∼= OA(y), applying Proposition II.7.2, we can lift

the isomorphism
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0 // OA(x) //

∼=
²²

A0,0
X ⊗ A

∂+lx //

es

²²

· · · ∂+lx// A0,n
X ⊗ A //

es

²²

0

0 // OA(y) // A0,0
X ⊗ A

∂+ly // · · · ∂+ly// A0,n
X ⊗ A // 0.

The commutativity of the diagram and Lemma II.5.5 imply that ∂ +
ly = e−s ◦ (∂ + lx) ◦ es = ∂ + es ∗ lx. Therefore es ∗ x = y.

In conclusion, the map γ′, induced by γ on DefKSX
= MCKSX

/gauge,
is a well defined injective morphism:

γ′ : DefKSX
↪→ DefX .

To conclude that γ′ is an isomorphism we prove that γ′ is étale (and
so γ′ is surjective).

Using Corollary I.1.32, we need to prove that:
1) γ′ induces a bijective map on the tangent spaces;
2) γ′ induces an injective map on the obstruction spaces.

As regards DefKSX
, by Remark I.3.31 the tangent space is isomor-

phic to H1
∂
(X,ΘX) and Lemma I.3.23 implies that the obstructions are

naturally contained in H2
∂
(X,ΘX). As regards DefX , Theorems I.2.8

and I.2.9 show that the tangent space is isomorphic to Ȟ1(X,ΘX) and
the obstructions are naturally contained in Ȟ2(X,ΘX).

Then we will prove that the maps induced by γ′ coincide with the
Leray isomorphisms (see Theorem II.3.2 and Remark II.3.4).

1) Tangent Spaces. Let us prove that the map γ′
ε induced by γ′ on

the tangent space

γ′
ε : DefKSX

(C[ε]) −→ DefX(C[ε])

is the Leray isomorphism.
By Remark I.3.31, we have DefKSX

(C[ε]) = H1(X,ΘX). Proceed-
ing as in Remark II.3.4, there exists a Stein cover U = {Ui} so that
we can associate to each x ∈ DefKSX

(C[ε]) an element [σ] = [{σij =

(ai − aj)|Uij
}] ∈ Ȟ1(X,ΘX)⊗Cε, with x|Ui

= ∂ai, that doesn’t depend
on the choice of ai.

Now, let γ(x) = OC[ε](x) be the deformation associated to x, i.e.

0 −→ OC[ε](x) −→ A0,0
X ⊗ C[ε]

∂+lx−−−→ A0,1
X ⊗ C[ε] −→ · · · .

As before, the deformation OC[ε](x) is locally trivial; then there exists
bi ∈ A0,0(Ui,ΘX) ⊗ Cε such that such that ebi ∗ x|Ui

= 0 and so

OC[ε](x)(Ui)
ebi

∼=
// OX(Ui) ⊗ C[ε].
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Proceeding as in the proof of Theorem I.2.8, for each i and j

ϕij := ebi−bj : OX(Uij) ⊗ C[ε] −→ OX(Uij) ⊗ C[ε]

is an automorphism of the trivial deformation A0,0
X (Uij) ⊗ C[ε] that

restricts to the identity.
Applying Lemma I.2.6, the class [{τij}] = [{(bi−bj)|Uij

}] ∈ Ȟ1(X,ΘX)⊗
Cε is the Check 1-cocycle associated to the deformation γ′

ε(x).
Since ebi ∗ x|Ui

= 0, then ∂bi = x|Ui
= ∂ai and so bi = ai + ci with

ci ∈ Γ(Ui,ΘX) ⊗ Cε.
Therefore [τij] = [{(bi− bj)|Uij

}] = [σ]. This shows that γ′
ε coincides

with the Leray isomorphism.

2) Obstruction
Let

0 −→ J −→ B
α−→ A −→ 0

be a small extension.
First we consider the obstruction class [h] of x ∈ DefKSX

.
Let x ∈ DefKSX

(A), and x̃ ∈ KSX
1 ⊗ mB be a lifting of x. The

obstruction class associated to x is [h] ∈ H2(KSX) ⊗ J with

h = ∂x̃ +
1

2
[x̃, x̃]

and this class doesn’t depend on the choice of the lifting x̃ as we show
in Lemma I.3.23.

Proceeding as in Remark II.3.4, there exists a Stein cover U = {Ui}
such that the class [{αijk}] = [{ρjk−ρik +ρij}] ∈ Ȟ2(X,ΘX)⊗J is the

class associated to h by the Leray isomorphism, where h|Ui
= ∂τi and

∂ρij = (τi−τj)|Uij
. In particular we note that ρij ∈ Γ(Uij,A0,0(ΘX))⊗J .

Since h|Ui
= ∂τi, x can be locally lifted to a solution of the Maurer-

Cartan equation

xi = x̃|Ui
− τi ∈ A0,1(Ui,ΘX) ⊗mB.

In fact on Ui, we have

α(x) = α(x̃) = x and ∂x+
1

2
[x, x] = ∂x̃−∂τi+

1

2
[x̃, x̃] = h|Ui

−∂τi = 0.

Moreover, eρij ∗ xj |Uij
= xi|Uij

, in fact (see Example I.3.27) we have

eρij ∗ xj |Uij
= eρij∗(x̃−τj)|Uij

= (−∂ρij+x̃−τj)|Uij
= (x̃−τi)|Uij

= xi|Uij
.

As above, x is locally equivalent to zero therefore for each i there
exists ai ∈ A0,0(Ui,ΘX) ⊗mA, such that eai ∗ x|Ui

= 0.
Analogously, for each i, there exists bi ∈ A0,0(Ui,ΘX) ⊗mB that is

a lifting of ai such that

ebi ∗ xi = 0.
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Now, let γ′(x) = OA(x) be the deformation of X induced by x.
As above the deformation is locally trivial and so there exist a cover
U = {Ui} and ai ∈ A0,0(Ui, TX) ⊗mA such that

OA(x)(Ui)
eai∼= OX(Ui) ⊗ A

Let ϕij the following isomorphism

ϕij : OX(Uij) ⊗ A
e−aj−→ OA(x)(Uij)

eai−→ OX(Uij) ⊗ A.

Now, proceeding as in the proof of Theorem I.2.9, since bi ∈ A0,0(Ui,ΘX)⊗
mB are liftings of ai, then ϕ̃ij = e−bjeρijebi ∈ Aut(OX(Uij)⊗B) defined
as

ϕ̃ij : OX(Uij) ⊗B
e−bj−→ OB(xj)(Uij)

eρij−→ OB(xi)(Uij)
ebi−→ OX(Uij) ⊗B,

is a lifting of ϕij.
By remarkI.2.7 the automorphisms eρij , eρik and eρjk commutes

with the other automorphisms. Then Φijk = ϕ̃jkϕ̃ik
−1ϕ̃ij = eρjk−ρik+ρij

is an automorphism of the trivial deformation that restricts to iden-
tity (Φijk |OX(Uijk)⊗A = id). Therefore by Lemma I.2.6 the element

[{αijk}] = [{ρjk − ρik + ρij}] ∈ Ȟ2(U ,ΘX) ⊗ J is the obstruction class
associated to γ′(x). In conclusion also in the obstruction case, the map
induced by γ′ coincides with the Leray isomorphism.

¤

II.7.2. Deformations of a product. As an application of the
previous Theorem II.7.3 we study the deformation of a product of com-
pact complex manifolds X and Y . The following remark will be used
in Section IV.2.

II.7.5. Remark. In general not all the deformations of the product
X × Y are products of deformations of X and of Y .

The first example in this way was given by Kodaira and Spencer in
their work ([17, pag. 436]) when they showed one of the first example
of obstructed varieties. More precisely, they considered the product of
the projective line and the complex tori of dimension q ≥ 2 P1 ×Cq/G
and they proved that it is obstructed thought the two manifolds are
unobstructed.

A sufficient and necessary condition to have an isomorphism be-
tween products of deformations and deformations of the product is
given by the lemma below.

II.7.6. Lemma. The morphism

F : DefKSX
×DefKSY

−→ DefKSX×Y

is an isomorphism if and only if H1(OX) ⊗ H0(ΘY ) = H1(OY ) ⊗
H0(ΘX) = 0.
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Proof. Let p and q the natural projections of the product X × Y
respectively on X and Y . Consider the morphism of DGLA

F : KSX ×KSY −→ KSX×Y

(n1, n2) 7−→ p∗n1 + q∗n2

and denote by H i(F ) the induced map on cohomology.
By Theorem I.3.33 if H0(F ) is surjective, H1(F ) is bijective and

H2(F ) is injective then F induces an isomorphism of deformation func-
tors.

H0(KSX×Y ) = H0(ΘX×Y ) and so by the Kunneth formula H0(KSX×Y ) =
H0(ΘX) ⊕ H0(ΘY ) = H0(KSX × KSY ). This implies that H0(F ) is
surjective.

Again by Kunneth formula we get

H1(KSX×Y ) ∼= H1(ΘX×Y ) ∼=
H1(ΘX) ⊕H1(ΘY ) ⊕H1(OX) ⊗H0(ΘY ) ⊕H1(OY ) ⊗H0(ΘX),

and
H1(KSX ×KSY ) = H1(ΘX) ⊕H1(ΘY ).

Then the hypothesis imply that H1(F ) is bijective.
Finally, reasoning as above we get that

H2(F ) : H2(ΘX) ⊕H2(ΘY ) −→ H2(ΘX×Y )

is injective. This implies that F induce an isomorphism of deformation
functors.

On the other hand if F is an isomorphism of deformation functors,
then H1(F ) is a bijection on the tangent spaces and so H1(OX) ⊗
H0(ΘY ) = H1(OY ) ⊗H0(ΘX) = 0. ¤



CHAPTER III

Deformation functor of a couple of morphisms of
DGLAs

In this chapter we give the key definition of deformation functor
associated to a couple of morphisms of differential graded Lie algebras.

In the first section we define the (non extended) functors of Artin
rings MC(h,g) (Definition III.1.7) and Def(h,g) (Definition III.1.11) asso-
ciated to a couple h : L −→ M and g : N −→ M . These functor will
play an important role in the infinitesimal deformations of holomorphic
maps of next chapter.

Then Section III.2 is devoted to introduce the extended deforma-
tion functors (Definition III.2.4). In particular we define the functors

M̃C(h,g) and D̃ef(h,g) that are a generalization of the previous MC(h,g)

and Def(h,g).
We introduce the extended functors, since using their properties, we

can show the existence of a DGLA H(h,g) such that DefH(h,g)
∼= Def(h,g)

(Theorem III.2.36).

III.1. Functors MC(h,g) and Def(h,g)

In this section we introduce the functors MC(h,g) and Def(h,g) (Sec-
tion III.1.2) associated to a couple h : L −→ M and g : N −→ M and
we study some properties (Section III.1.3). First of all we recall the
definition of the mapping cone associate to morphisms of complexes.

Beware. In this section, we suppose that M is concentrated in non
negative degree. Since in the main application M will be the Kodaira-
Spencer algebra of a manifold, this extra hypothesis is not restrictive.
Anyway, in Section III.2 we will remove this hypothesis.

III.1.1. The mapping cone of a couple of morphisms. The
suspension of the mapping cone of a morphism of complexes h : (L, d) −→
(M,d) is the differential graded vector space (C ·

h, δ), where

Ci
h = Li ⊕M i−1

and the differential δ is

δ(l,m) = (dl,−dm + h(l)) ∈ Li+1 ⊕M i ∀ (l,m) ∈ Li ⊕M i−1.

Actually δ2(l,m) = δ(dl,−dm+h(l)) = (d2l, d2m−d(h(l))+h(d(l))) =
(0, 0).

59
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III.1.1. Remark. Consider the projection π : M −→ coker(h).
Then there exists a morphism of complexes

ϕ : (C ·
h, δ) −→ (coker(h)[−1], d[−1])

with
ϕ(l,m) = π(m) ∀(l,m) ∈ Ci

h.

Actually

(l,m)
ϕ //

δ
²²

π(m)

d[−1]
²²

(dl,−dm + h(l))
ϕ // −dπ(m).

If h is injective then (C ·
h, δ) and (coker(h)[−1], d[−1]) are quasi isomor-

phic.

Now suppose that h : (L, d) −→ (M,d) and g : (N, d) −→ (M,d)
are morphism of complexes:

L

h
²²

N
g // M.

III.1.2. Definition. The suspension of the mapping cone of a
couple of morphisms (h, g) is the differential graded vector space
(C·

(h,g), D), where

Ci
(h,g) = Li ⊕N i ⊕M i−1

and the differential D is

Li⊕N i⊕M i−1 3 (l, n,m)
D−→ (dl, dn,−dm−g(n)+h(l)) ∈ Li+1⊕N i+1⊕M i.

Actually, D2(l, n,m) = D(dl, dn,−dm−g(n)+h(l)) = (d2l, d2n, d2m+
dg(n) − dh(l) − g(dn) + h(dl)) = (0, 0, 0).

III.1.3. Remark. By definition, (C·
(h,g), D) coincides with the sus-

pended mapping cone associated to the morphism of complexes h− g :
L⊕N −→ M .

Moreover, the projection C·
(h,g) −→ L· ⊕N · is a morphism of com-

plexes and so there exists the following exact sequence

0 // (M ·−1,−d) // (C ·
(h,g), D) // (L· ⊕N ·, d) // 0

that induces
(8)
· · · −→ H i(C·

(h,g)) −→ H i(L·⊕N ·) −→ H i(M ·) −→ H i+1(C·
(h,g)) −→ · · · .

III.1.4. Remark. The complexes C·
(h,g) and C·

(g,h) are isomorphic.
Actually, let γ : C·

(h,g) −→ C·
(g,h) defined as

Ci
(h,g) 3 (l, n,m)

γ7−→ (−l,−n,m) ∈ Ci
(g,h) .



III.1. FUNCTORS MC(h,g) AND Def(h,g) 61

Then

(l, n,m)
γ //

D
²²

(−l,−n,m)

δ
²²

(dl, dn,−dm− g(n) + h(l))
γ // (−dl,−dn,−dm− g(n) + h(l)).

and so γ is a well defined morphism of complexes that is a quasi-
isomorphism (γ2 = id).

III.1.5. Lemma. If h : L −→ M is injective: i.e. there exists the
exact sequence of complexes

0 −→ L
h−→ M

π−→ coker(h) −→ 0.

Then (C·
(h,g), D) is quasi isomorphic to (C ·

π◦g, δ).

Proof. Let γ : C·
(h,g) −→ C ·

π◦g defined as

Ci
(h,g) 3 (l, n,m)

γ7−→ (−n, π(m)) ∈ Ci
π◦g,

then

(l, n,m)
γ //

D
²²

(−n, π(m))

δ
²²

(dl, dn,−dm− g(n) + h(l))
γ // (−dn,−dπ(m) − π(g(n))).

Therefore γ is a well defined morphism of complexes and we denote
by the same γ the map induced in cohomology.

The fact that the induced morphism γ is an isomorphism in coho-
mology is an easy calculation but we state it for completeness.

γ is injective. Suppose that γ[(l, n,m)] = [(−n, π(m))] is zero in
H i(C ·

π◦g). Then dl = dn = −dm − g(n) + l = 0 and there exists

(b, c) ∈ N i−1 × coker(h)i−2 such that −n = db and π(m) = −dc +
π ◦ g(b). Let m′ ∈ M be a lifting of c, i.e. π(m′) = c, n′ = −b
and l′ = m + dm′ + g(n′). Then l′ ∈ L, actually π(l′) = π(m) +
π(dm′) + π ◦ g(n′) = −dc + π ◦ g(b) + dc − π ◦ g(b) = 0. Therefore
D(l′, n′,m′) = (dl′, dn′,−dm′ − g(n′) + l′) = (dm− g(db),−db,−dm′ +
g(b) + (m + dm′ + g(n′))) = (l, n,m).

γ is surjective. Let [(n, t)] ∈ H i(C ·
π◦g); then dn = 0 and −dt +

π ◦ g(n) = 0. Let m ∈ M i−1 be a lifting of t, i.e. π(m) = t and
l = −g(n) + dm ∈ M i. Then l ∈ Li, in fact π(l) = −π ◦ g(n) + dt = 0.
Moreover (l,−n,m) ∈ H i(C·

(h,g)) (dl = dn = 0 and −dm+g(n)+ l = 0)
and γ[(l,−n,m)] = [n, π(m)] = [(n, t)].

¤

III.1.6. Remark. If L,M and N are DGLA and h : L −→ M
and g : N −→ M are morphisms of DGLA. Also in this case we can’t
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define a canonical DGLA structure on C·
(h,g) such that the projection

C·
(h,g) −→ L· ⊕N · is a morphism of DGLA.

III.1.2. Definition of MC(h,g) and Def(h,g).

III.1.7. Definition. Let h : L −→ M and g : N −→ M be
morphisms of differential graded Lie algebras:

L

h
²²

N
g // M.

For each (A,mA) ∈ Art the Maurer-Cartan functor associated to the
couple (h, g) is defined as follows

MC(h,g) : Art −→ Set

MC(h,g)(A) = {(x, y, ep) ∈ (L1 ⊗mA) × (N1 ⊗mA) × exp(M0 ⊗mA)|

dx +
1

2
[x, x] = 0, dy +

1

2
[y, y] = 0, g(y) = ep ∗ h(x)}.

III.1.8. Remark. In [24, Section 2],M. Manetti defined the functor
MCh associated to a morphism h : L −→ M of DGLAs:

MCh : Art −→ Set

MCh(A) =

{(x, ep) ∈ (L1 ⊗mA)× exp(M0 ⊗mA)| dx+
1

2
[x, x] = 0, ep ∗h(x) = 0}.

Therefore if we take N = 0 and g = 0, the new functor MC(h,g) reduce
to the old one MCh.

Choosing N = 0 and h = g = 0, MC(h,g) reduces to the Maurer-
Cartan functor MCL associated to the DGLA L (Definition I.3.16).

III.1.9. Remark. As in the case of a differential graded Lie alge-
bra (see Remark I.3.21), MC (h, g) is an homogeneous functor, since
MC(h,g)(B ×A C) ∼= MC(h,g)(B) ×MC(h,g)(A) MC(h,g)(C).

As in the case of a differential graded Lie algebra (see Defini-
tion I.3.25), we can define for each (A,mA) ∈ Art a gauge action
over MC(h,g)(A).

III.1.10. Definition. The gauge action of exp(L0⊗mA)×exp(N0⊗
mA) over MC(h,g)(A) is given by:

(ea, eb) ∗ (x, y, ep) = (ea ∗ x, eb ∗ y, eg(b)epe−h(a)).

This is well defined since

eg(b)epe−h(a) ∗ h(ea ∗ x) = eg(b)ep ∗ h(x) = eg(b) ∗ g(y) = g(eb ∗ y).
and so (ea, eb) ∗ (x, y, ep) ∈ MC(h,g)(A).

In conclusion, it makes sense to consider the following functor.
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III.1.11. Definition. The deformation functor associated to a cou-
ple (h, g) of morphisms of differential graded Lie algebras is:

Def(h,g) : Art −→ Set

Def(h,g)(A) =
MC(h,g)(A)

exp(L0 ⊗mA) × exp(N0 ⊗mA)

III.1.12. Remark. In [24, Section 2],M. Manetti defined the func-
tor Defh associated to a morphism h : L −→ M of DGLAs:

Defh : Art −→ Set

Defh(A) =
MCh(A)

exp(L0 ⊗mA) × exp(dM−1 ⊗mA)
,

with the gauge action of exp(L0 ⊗ mA) × exp(dM−1 ⊗ mA) given by
the formula

(ea, edm)∗(x, ep) = (ea∗x, edmepe−h(a)) ∀ a ∈ L0⊗mA,m ∈ M−1⊗mA.

Therefore if we take N = 0 and g = 0, the new functor Def(h,g)
reduce to the old one Defh (M is concentrated in non negative degree).

Choosing N = M = 0 and h = g = 0, Def(h,g) reduces to the
Maurer-Cartan functor DefL associated to the DGLA L.

The name deformation functor is justified by the theorem below.

III.1.13. Theorem. Def(h,g) satisfies the conditions of Definition I.1.10.

Proof. If C = K, then Def(h,g)(K) = {one element}; therefore
ii) of Definition I.1.10 holds, i.e. Def(h,g)(A × B) = Def(h,g)(A) ×
Def(h,g)(B).

Let β : B −→ A and γ : C −→ A be morphisms in Art and
(v, w) ∈ Def(h,g)(B) ×Def(h,g)(A) Def(h,g)(C). Then we are looking for a

lifting z ∈ Def(h,g)(B ×A C), whenever β : B −→ A is surjective.
Let (x, y, ep) ∈ MC(h,g)(B) and (s, t, er) ∈ MC(h,g)(C) liftings for v

and w respectively.
By hypothesis β(v) = γ(w) ∈ Def(h,g)(A); therefore β(x, y, ep) and

γ(s, t, er) are gauge equivalent in MC(h,g)(A): i.e. there exist a ∈ L0 ⊗
mA and b ∈ N0 ⊗mA such that

ea ∗ β(x) = γ(s) eb ∗ β(y) = γ(t) eg(b)eβ(p)e−h(a) = eγ(r).

Let c ∈ L0 ⊗ mB such that β(c) = a and d ∈ N0 ⊗ mB such that
β(d) = b.

Up to substitute (x, y, ep) with the gauge equivalent element (ec ∗
x, ed∗y, eg(d)epe−h(c)) (they both lift v), we can assume thata β(x, y, ep) =
γ(s, t, er) ∈ MC(h,g)(A).

aβ(ec ∗ x, ed ∗ y, eg(d)epe−h(c)) = (eβ(c) ∗ β(x), eβ(d) ∗ β(y), eg(β(d))epe−h(β(c))) =
(ea ∗ β(x), eb ∗ β(y), eg(b)eβ(p)e−h(a)) = γ(s, t, er)
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Since MC(h,g)(B ×A C) = MC(h,g)(B) ×MC(h,g)(A) MC(h,g)(C), it is

well defined a lifting z ∈ MC(h,g)(B×AC) and so it is sufficient to take
its class [z] ∈ Def(h,g)(B ×A C).

¤

III.1.14. Remark. Consider the functor Def(h,g). Then the projec-
tion % on the second factor:

% : Def(h,g) −→ DefN

Def(h,g)(A) 3 (x, y, ep)
%−→ y ∈ DefN(A)

is a morphism of deformation functors.

III.1.15. Remark. If the morphism h is injective, then for each
(A,mA) ∈ Art the functor MC(h,g) has the following form:

MC(h,g)(A) = {(x, ep) ∈ (N1 ⊗mA) × exp(M0 ⊗mA)|

dx +
1

2
[x, x] = 0, e−p ∗ g(x) ∈ L1 ⊗mA}.

In this case the gauge equivalence ∼ is given by

(x, ep) ∼ (eb ∗ x, eg(b)epea), with a ∈ L0 ⊗mA and b ∈ N0 ⊗mA.

III.1.16. Lemma. The projection π : MC(h,g) −→ Def(h,g) is a
smooth morphism of functors.

Proof. Let α : B −→ A be a surjection in Art and prove that

MC(h,g)(B) −→ Def(h,g)(B) ×Def(h,g)(A) MC(h,g)(A)

is surjective.
Let ((x, y, ep), (l, n, em)) ∈ Def(h,g)(B)×Def(h,g)(A)MC(h,g)(A), that is

the class of (l, n,m) and α(x, y, ep) are the same element in Def(h,g)(A).
Then there exists (a, b) ∈ exp(L0 ⊗mA)× exp(N0 ⊗mA) such that

(l, n, em) = (ea, eb) ∗ (α(x, y, ep)) = (ea ∗α(x), eb ∗α(y), eg(b)eα(p)e−h(a)).

Let c ∈ L0 ⊗mB be a lifting of a and d ∈ N0 ⊗mB be a lifting of b.
Then

t = (ec ∗ x, ed ∗ y, eg(d)epe−h(c))

lies in MC(h,g)(B) and it is a lifting of ((x, y, ep), (l, n, em)).
Actually, t is gauge equivalent to (x, y, ep) and

α(t) = (eα(c) ∗ α(x), eα(d) ∗ α(y), eg(α(d))eα(p)e−h(α(c))) =

(ea ∗ α(x), eb ∗ α(y), eg(b)eα(p)e−h(a)) = (l, n, em).

¤
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III.1.3. Tangent and obstructions spaces of MC(h,g) and Def(h,g).
By Definition III.1.7, the tangent space of MC(h,g) is

MC(h,g)(K[ε]) =

= {(x, y, ep) ∈ (L1 ⊗Kε) × (N1 ⊗Kε) × exp(M0 ⊗Kε)|
dx = dy = 0, h(x) − g(y) − dp = 0}

∼= {(x, y, p) ∈ L1 ×N1 ×M0| dx = dy = 0, g(y) = h(x) − dp} =

ker(D : C1
(h,g) −→ C2

(h,g)).

By Definition III.1.11, the tangent space of Def(h,g) is

Def(h,g)(K[ε]) =

{(x, y, ep) ∈ (L1 ⊗Kε) × (N1 ⊗Kε) × (expM0 ⊗Kε)|
dx = dy = 0, g(y) = h(x) − dp} /

{(−da,−db, g(b) − h(a))| a ∈ (L0 ⊗K[ε]), b ∈ (N0 ⊗K[ε])}
∼= H1(C·

(h,g))

III.1.17. Remark. In the last equality we use the extra hypothesis
that M−1 = 0.

About the obstruction space of MC(h,g), we prove below that it is
naturally contained in H2(C·

(h,g)). Since π : MC(h,g) −→ Def(h,g) is a
smooth, then Corollary I.1.35 implies that the obstructions space of
Def(h,g) is also contained in H2(C·

(h,g)).

III.1.18. Lemma. H2(C·
(h,g)) is a complete obstruction space for

MC(h,g).

Proof. Let

0 −→ J −→ B
α−→ A −→ 0

be a small extension and (x, y, ep) ∈ MC(h,g)(A).
Since α is surjective there exist x̃ ∈ L1 ⊗ mB that lifts x, ỹ ∈

N1 ⊗mB that lifts y, and q ∈ M0 ⊗mB that lifts p. Let

l = dx̃ +
1

2
[x̃, x̃] ∈ L2 ⊗mB

and

k = dỹ +
1

2
[ỹ, ỹ] ∈ N2 ⊗mB.

As in Lemma I.3.23, we can easily prove that α(l) = α(k) = dl = dk =
0; then l ∈ H2(L) ⊗ J and k ∈ H2(N) ⊗ J .

Let r = −g(ỹ) + eq ∗ h(x̃) ∈ M1 ⊗mB; in particular α(r) = 0 and
so r ∈ M1 ⊗ J .

Now we prove that (l, k, r) ∈ Z2(C·
(h,g)) ⊗ J .

Since dl = dk = 0, it remains to prove that −dr − g(k) + h(l) = 0.
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By definition, h(x̃) = e−q ∗ (g(ỹ) + r) = r + e−q ∗ g(ỹ) (in the last
equalities we use Example I.3.27) and so

h(l) = d(h(x̃))+
1

2
[h(x̃), h(x̃)] = dr+d(e−q∗g(ỹ))+1

2
[e−q∗g(ỹ), e−q∗g(ỹ)].

Let A = d(e−q ∗ g(ỹ)) and B = [e−q ∗ g(ỹ), e−q ∗ g(ỹ)]. Therefore it is

sufficient to prove A +
1

2
B = g(k).

We have

B = [e−q ∗g(ỹ), e−q ∗g(ỹ)] = [e[−q, ]′(d+g(ỹ))−d, e[−q, ]′(d+g(ỹ))−d]′ =

[e[−q, ]′(d+g(ỹ)), e[−q, ]′(d+g(ỹ))]′+[e[−q, ]′(d+g(ỹ)),−d]′+[−d, e[−q, ]′(d+g(ỹ))]′ =

e[−q, ]′ [d + g(ỹ), d + g(ỹ)]′ − 2[d, e[−q, ]′(d + g(ỹ))]′ =

e[−q, ]′(2dg(ỹ)+[g(ỹ), g(ỹ)])−2[d, e[−q, ]′(d+g(ỹ))−d]′ = 2e[−q,](g(k))−2A.

By assumption g(k) ∈ M2 ⊗ J and so e[−q,](g(k)) = g(k).
Therefore

A +
1

2
B = A +

1

2
(2g(k) − 2A) = g(k)

and so [(l, k, r)] ∈ H2(C·
(h,g)) ⊗ J .

This class doesn’t depend on the choice of the liftings.
Actually, let x̃′ ∈ L1⊗mB be another lifting of x. Then x̃′ = x̃+jx,

for some jx ∈ L1 ⊗ J and so

l′ = dx̃′ +
1

2
[x̃′, x̃′] = dx̃ + djx +

1

2
[x̃, x̃] = l + djx.

Analogously, if ỹ′ is another lifting of y then there exists jy ∈ N1 ⊗ J
such that

k′ = k + djy.

Moreover

r′ = −g(ỹ′)+eq∗h(x̃′) = −g(ỹ)−g(jy)+eq∗h(x̃)+h(jx) = r−g(jy)+h(jx).

Therefore [(l′, k′, r′)] = [(l+djx, k+djy, r−g(jy)+h(jx))] = [(l, k, r)] ∈
H2(C·

(h,g)) ⊗ J .

In conclusion, [(l, k, r)] ∈ H2(C·
(h,g)) ⊗ J is the obstruction class

associated to the element (x, y, ep) ∈ MC(h,g)(A).

If this class vanishes, then there exists (u, v, z) ∈ C1
(h,g) ⊗J such that

(du, dv,−dz − g(v) + h(u)) = (l, k, r). In this case, define x = x̃ − u,
y = ỹ − v and z = q − z. Then (x, y, ez) ∈ MC(h,g)(B) and it lifts
(x, y, ep). Actually

dx + [x, x] = dx̃− du + [x̃, x̃] = l − du = 0,

dy + [y, y] = dỹ − dv + [ỹ, ỹ] = k − dv = 0

and

g(y) − ez ∗ h(x) = g(ỹ) − g(v) − eq−z ∗ (h(x̃) − h(u)) = b

bSee Example I.3.27
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g(ỹ) − g(v) − eq−z ∗ h(x̃) + h(u) =

(g(ỹ) − eq ∗ h(x̃)) − dz − g(v) + h(u) = −r + r = 0.

¤

III.1.4. Properties.

III.1.19. Lemma. Let h : L −→ M and g : N −→ M be morphisms
of abelian DGLAs. Then the functor MC(h,g) is smooth.

Proof. We have to prove that for every surjection ϕ : B −→ A ∈
Art the map

MC(h,g)(B) −→ MC(h,g)(A)

is surjective. By hypothesis we have

MC(h,g)(A) = {(x, y, ep) ∈ (L1 ⊗mA) × (N1 ⊗mA) × exp(M0 ⊗mA)|

dx = dy = 0 g(y) = ep ∗ h(x) = h(x) − dp}.
This implies that the Maurer-Cartan equation reduces to the linear
equations dx = dy = 0, g(y) + dp − h(x) = 0; then MC(h,g)(A) =
Z1(C·

(h,g) ⊗mA) = Z1(C)⊗mA and so the lifting exists (Z1(C·
(h,g) ⊗mA) ³

Z1(C·
(h,g) ⊗mB)).

¤

III.1.20. Remark. Every commutative diagram of morphisms of
DGLA

L

h
²²

α′
// P

η

²²
M

α // Q

N

g
>>}}}}}}}}

α′′
// R

µ

>>~~~~~~~~

induces a morphism ϕ· of complexes

Ci
(h,g) 3 (l, n,m)

ϕi

7−→ (α′(l), α′′(n), α(m)) ∈ Ci
(η,µ)

and a natural transformation F of the associated deformation functors:

F : Def(h,g) −→ Def(η,µ) .

Then we obtain the following proposition that is a generalization of
[24, Prop. 2.3].

III.1.21. Proposition. Let
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L

h
²²

α′
// P

η

²²
M

α // Q

N

g
>>}}}}}}}}

α′′
// R

µ

>>~~~~~~~~

be a commutative diagram of differential graded Lie algebras. If the
functor Def(η,µ) is smooth, then the obstruction space of Def(h,g) is
contained in the kernel of the map

H2(C·
(h,g)) −→ H2(C·

(η,µ)).

Proof. The morphism F : Def(h,g) −→ Def(η,µ) induces a linear
map between obstruction spaces. If Def(η,µ) is smooth, then its ob-
struction space is zero (Proposition I.1.31).

¤
III.1.22. Theorem. If ϕ· : C·

(h,g) −→ C·
(η,µ) is a quasi isomorphism

of complexes then F : Def(h,g) −→ Def(η,µ) is an isomorphism of func-
tors.

The proof of this theorem is postponed at the end of Section III.2.4.

Now, let

H

β
²²

α // L

h
²²

N
g // M

be a commutative diagram of morphism of DGLAs. Then it induces a
morphism of complexes

H
ϕ·
−→ C·

(h,g) with ϕ(x) = (α(x), β(x), 0),

and a morphism of functors

DefH
F−→ Def(h,g) with F (x) = (α(x), β(x), 0).

III.1.23. Theorem. In the notation above, if ϕ· is a quasi isomor-
phism then F is an isomorphism of functors.

Also the proof of this theorem is postponed at the end of Sec-
tion III.2.4.

III.2. Extended Deformation Functors

In this section we study the extended deformation functors. In

particular we are interested in the functors M̃C(h,g) and D̃ef(h,g) that
are a generalization of the functors MC(h,g) and Def(h,g) introduced in



III.2. EXTENDED DEFORMATION FUNCTORS 69

Section III.1. Here, we remove the restrictive hypothesis of M concen-
trated in non negative degree.

The main references of this chapter are [21], [23, Sections 5.7 and
5.8] and [24, Sections 6 and 7].

III.2.1. Notations. We denote by:
C the category of nilpotent (associative and commutative) differ-

ential graded algebras which are finite dimensional as K-vector spaces.
C0 the full subcategory of C of algebras with trivial multiplication.

III.2.1. Example. Define the complex (Ω = Ω0 ⊕ Ω1, d), where
Ω0 = K, Ω1 = K[−1] and d : Ω0 −→ Ω1 the canonical linear isomor-
phism d(1[0]) = 1[−1]. Ω ∈ C0 and the projection p : Ω −→ Ω0 = K
and the inclusion Ω1 −→ Ω are morphism in C0.

Moreover Ω[n] = K[n] ⊗ Ω is an acyclic complex in C0, for each
n ∈ N.

III.2.2. Definition of extended functors. Let A ∈ C and J ⊂
A a differential ideal; then J ∈ C and the inclusion J −→ A is a
morphism of differential graded algebras.

III.2.2. Definition. A small extension in C is a short exact se-
quence

0 −→ J −→ B
α−→ A −→ 0

such that α is a morphism in C and J is an ideal of B such that BJ = 0;
in addition it is called acyclic if J is an acyclic complex, or equivalently
α is a quasi-isomorphism.

III.2.3. Definition. A covariant functor F : C −→ Set is called
a predeformation functor if the following conditions are satisfied:

III.2.3.1) F (0) = {∗} is the one point set.
III.2.3.2) For every A,B ∈ C, the natural map

F (A×B) −→ F (A) × F (B)

is bijective.
III.2.3.3) For every surjective morphism α : A −→ C in C, with C

an acyclic complex in C0, the natural morphism

F (ker(α)) = F (A×C 0) −→ F (A) ×F (C) F (0) = F (A)

is bijective.
III.2.3.4) For every pair of morphisms β : B −→ A and γ : C −→ A

in C, with β surjective, the natural map

F (B ×A C) −→ F (B) ×F (A) F (C)

is surjective.
III.2.3.5) For every small acyclic extension

0 −→ J −→ B
α−→ A −→ 0

the induced map F (B) −→ F (A) is surjective.
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III.2.4. Definition. A covariant functor F : C −→ Set is called
deformation functor if it is a predeformation functor and F (J) = 0 for
every acyclic complex J ∈ C0.

III.2.2.1. Examples. Let L be a differential graded Lie algebra and
A ∈ C. Then L⊗A has a natural structure of (nilpotent) DGLA given
by:

(L⊗ A)i =
⊕

j∈Z
Lj ⊗ Ai−j;

d(x⊗ a) = dx⊗ a + (−1)deg(x)x⊗ da;

[x⊗ a, y ⊗ b] = (−1)deg(a)deg(y)[x, y] ⊗ ab.

III.2.5. Definition. The extended Maurer-Cartan functor associ-
ated to a DGLA L is

M̃CL(A) = {(x ∈ (L⊗ A)1| dx +
1

2
[x, x] = 0}

III.2.6. Lemma. M̃CL is a predeformation functor.

Proof. See [21, Lemma 2.15]. We also give a proof in Section III.2.4,
since it is a particular case of Theorem III.2.20. ¤

III.2.7. Remark. We note that, for each C ∈ C0, we have:

M̃CL(C) = {x ∈ (L⊗ C)1| dx = 0} = Z1(L⊗ C).

III.2.8. Definition. The extended deformation functor associated
to a DGLA L is

D̃efL(A) =
{x ∈ (L⊗ A)1| dx + 1

2
[x, x] = 0}

gauge action of exp (L⊗ A)0
,

where the gauge action of a ∈ (L ⊗ A)0 is the analogous of the non
extended case: i.e.

ea ∗ x := x +
∞∑

n=0

[a,−]n

(n + 1)!
([a, x] − da)

III.2.9. Lemma. D̃efL is a deformation functor.

Proof. See [21, Theorem 2.16]. We also give a proof in Sec-
tion III.2.4, since it is a particular case of Theorem III.2.26.

¤

III.2.10. Remark. For each C ∈ C0 we note that:

D̃efL(C) =
{x ∈ (L⊗ C)1| dx = 0}
{da| a ∈ (L⊗ C)0} = H1(L⊗ C).
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III.2.3. Properties. As in the not extended case, for every prede-
formation functor F and every C ∈ C0, there exists a natural structure
of vector space on F (A) with:

- sum given by the map F (C × C) = F (C) × F (C)
+−→ F (C)

induced by C × C
+−→ C;

- scalar multiplication by s given by the map F (C)
·s−→ F (C)

induced by C
·s−→ C.

III.2.11. Remark. 1) For each morphism B −→ A in C0, the
induced map F (B) −→ F (A) is C-linear.

2) For each natural transformation of predeformation functors F −→
G, the induced map F (C) −→ G(C) is C-linear for each C ∈ C0.

III.2.12. Definition. Let F be a predeformation functor, the tan-
gent space of F is the graded vector space TF [1], where

TF =
⊕

n∈Z
T nF, T n+1F = TF [1]n = coker(F (Ω[n])

p−→ F (K[n])), n ∈ Z

and p is the linear map induced by the projection Ω[n] −→ K[n] (see
Example III.2.1).

In particular, if F is a deformation functor then F (Ω[n]) = 0 for
every n. Therefore T n+1F = TF [1]n = F (K[ε]), where ε is an indeter-
minate of degree −n ∈ Z, such that ε2 = 0.

III.2.13. Definition. A natural transformation of predeformation
functors F −→ G is called a quasi-isomorphism if it induces isomor-
phisms on tangent spaces: i.e. T nF ∼= T nG.

III.2.14. Theorem. (Inverse function theorem) A natural transfor-
mation of deformation functors is an isomorphism if and only if it is
a quasi-isomorphism.

Proof. See [21, Corollary 3.2] or [23, Corollary 5.72]. ¤
III.2.15. Theorem. (Manetti) Let F be a predeformation functor,

then there exists a deformation functor F+ and a natural transforma-
tion ν : F −→ F+, that is a quasi isomorphism, such that for every
deformation functor G and every natural transformation φ : F −→ G
there exists a unique natural transformation ψ : F+ −→ G such that
φ = ψν.

Proof. See [21, Th. 2.8]. ¤
III.2.16. Remark. Given a natural transformation of predeforma-

tion functors α : F −→ G, there is a natural transformation of asso-
ciated deformation functors α+ : F+ −→ G+. Actually, let η : G −→
G+. Then by composition we get β = η ◦ α : F −→ G+ and so, by
previous Theorem III.2.15, there exists α+ : F+ −→ G+.
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III.2.17. Theorem. (Manetti) Let S be a complex of vector spaces
and assume that the functor

C0 −→ Set

C 7−→ Z1(S ⊗ C)

is the restriction of a predeformation functor F . Then for every com-
plex C ∈ C0 holds the equality F+(C) = H1(S ⊗ C); in particular
T iF+ = H i(S).

Proof. See [21, Lemma 2.10]. ¤

III.2.18. Corollary. (Manetti) For every differential graded Lie

algebra L there exists a natural isomorphism M̃C
+

L
∼= D̃efL.

Proof. By Remark III.2.7 and Theorem III.2.17, we have that

T iM̃C
+

L = H i(L). Therefore the natural projection M̃CL −→ D̃efL

induces (by Theorem III.2.15) a natural transformation M̃C
+

L −→ D̃efL
which is an isomorphism on tangent spaces. ¤

III.2.4. Extended deformation functor of a couple of mor-
phisms. Let L,M,N be DGLA, and h : L −→ M and g : N −→ M
be morphisms of DGLA:

L

h
²²

N g
// M.

III.2.19. Definition. The extended Maurer-Cartan functor asso-
ciated to the couple (h, g) is

M̃C(h,g) : Art −→ Set

M̃C(h,g)(A) = {(x, y, ep) ∈ (L⊗ A)1 × (N ⊗ A)1 × exp(M ⊗ A)0|

dx +
1

2
[x, x] = 0, dy +

1

2
[y, y] = 0, g(y) = ep ∗ h(x)}.

III.2.20. Theorem. M̃C(h,g) is a predeformation functor.

Proof. M̃C(h,g)(0) = 0 and so (III.2.3.1) is satisfied.
For each pair of morphisms β : B −→ A and γ : C −→ A in C, we
have

M̃C(h,g)(B ×A C) = M̃C(h,g)(B) ×gMC(h,g)(A) M̃C(h,g)(C)

and so M̃C(h,g) satisfies properties (III.2.3.2),(III.2.3.3) and (III.2.3.4).
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Let 0 −→ J −→ B
α−→ A −→ 0 be an acyclic small extension and

(x, y, ep) ∈ M̃C(h,g)(A). We want to prove the existence of a lift-

ing (x, y, ep) ∈ M̃C(h,g)(B) so that the induced map M̃C(h,g)(B) −→
M̃C(h,g)(A) is surjective.
Since α is surjective, there exists (r, s, et) ∈ (L ⊗ B)1 × (N ⊗ B)1 ×
exp(M ⊗B)0 such that α(r) = x, α(s) = y and α(t) = p.

Let l ∈ (L⊗ J)2 and k ∈ (N ⊗ J)2 defined as follows

l = dr +
1

2
[r, r] k = ds +

1

2
[s, s].

Then

dl =
1

2
d[r, r] = [dr, r] = [l, r] − 1

2
[[r, r], r]

and the same holds for k, i.e.

dk = [k, s] − 1

2
[[s, s], s].

Since BJ = 0, we have [l, r] = [k, s] = 0; moreover, using Jacobi
identity (see Remark I.3.6), [[r, r], r] = [[s, s], s] = 0. This implies that
dl = dk = 0.

By hypothesis, J is acyclic and so, by the Künneth formula, the
complexes L ⊗ J and N ⊗ J are acyclic. Therefore there exist w ∈
(L⊗ J)1 and z ∈ (N ⊗ J)1, such that dw = l and dz = k.

Let

x = r − w ∈ (L⊗B)1 and y = s− z ∈ (N ⊗B)1;

We have

α(x) = α(r)−α(w) = α(r) = x, α(y) = α(s)−α(z) = α(s) = y,

dx+
1

2
[x, x] = dr−l+

1

2
[r, r] = 0 and dy+

1

2
[y, y] = 0.

Therefore x and y lift, respectively, x and y and they satisfy the
Maurer-Cartan equation.

Let z = et ∗ h(x)− g(y) ∈ (M ⊗B)1. Since α(z) = eα(t) ∗h(α(x))−
g(α(y)) = ep ∗ h(x) − g(y) = 0, then z ∈ (M ⊗ J)1. Moreover dz = 0;
in fact

2dz = 2d(et ∗ h(x)) − 2d(g(y)) = −[et ∗ h(x), et ∗ h(x)] + [g(y), g(y)] =

−[et ∗h(x), et ∗h(x)] + [g(y), et ∗h(x)]− [g(y), et ∗h(x)] + [g(y), g(y)] =

−[et ∗ h(x) − g(y), et ∗ h(x)] − [g(y), et ∗ h(x) − g(y)] = 0.

(z = et ∗ h(x) − g(y) ∈ (M ⊗ J) and so [et ∗ h(x) − g(y),−] = 0.)
Since M ⊗ J is acyclic, there exist v ∈ (M ⊗ J)0 such that z = dv.

Therefore

et ∗ h(x) = z + g(y) = dv + g(y) = e−v ∗ g(y)
and so

evet ∗ h(x) = g(y).
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This implies that ep = evet lifts ep.

Then the triple (x, y, ep) ∈ M̃C(h,g)(B) lifts (x, y, ep) ∈ M̃C(h,g)(A)
and so (III.2.3.5) holds.

¤
Proof of Lemma III.2.6. It is sufficient to apply the previous

theorem with M = N = 0. ¤

III.2.21. Remark. If the DGLA M is concentrated in non negative

degree, then for every (A,mA) ∈ Art, M̃C(h,g)(mA) = MC(h,g)(A).

Applying Theorem III.2.15, we can conclude the existence of a de-

formation functor M̃C
+

(h,g) associated to M̃C(h,g).

III.2.22. Proposition. T iM̃C
+

(h,g)
∼= H i(C(h,g)).

Proof. For each C ∈ C0 we have

M̃C(h,g)(C) = {(l, n, em) ∈ (L⊗ C)1 × (N ⊗ C)1 × exp(M ⊗ C)0|
dl = dn = 0, g(n) = em ∗ h(l) = h(l) − dm}.

and

Z1(C(h,g) ⊗C) = {(l, n,m) ∈ (L⊗ C)1 × (N ⊗ C)1 × (M ⊗ C)0|
dl = dn = −dm− g(n) + h(l) = 0}.

Therefore M̃C(h,g)(−)|C0 = Z1(C(h,g) ⊗−)|C0 . Then we can apply The-
orem III.2.17 to conclude the proof. ¤

Now, we consider on M̃C(h,g)(A) the following equivalence relation
≈:

(x1, y1, e
p1) ≈ (x2, y2, e

p2)

if and only if there exist a ∈ (L⊗A)0, b ∈ (N⊗A)0 and c ∈ (M⊗A)−1

such that
x2 = ea ∗ x1, y2 = eb ∗ y1

and

ep2 = eg(b)eT ep1e−h(a) with T = dc + [g(y1), c] ∈ StabA(g(y1)).

III.2.23. Lemma. The relation ≈ is an equivalence relation.

Proof. The reflexivity is obvious. As regards the symmetry and
transitivity, we use the following property of the irrelevant stabilizers

StabA(−)(see Section I.3.4): for each x ∈ M̃CM(A), a ∈ (M ⊗A)0 and
T = dc + [x, c] ∈ StabA(x), there exist f ∈ (M ⊗ A)−1 such that

eaeT = eT
′
ea

where T ′ = df + [y, f ] ∈ StabA(y) and y = ea ∗ x.



III.2. EXTENDED DEFORMATION FUNCTORS 75

Symmetry. Let (x1, y1, e
p1) ≈ (x2, y2, e

p2). Therefore there exist
a ∈ (L⊗ A)0, b ∈ (N ⊗ A)0 and c ∈ (M ⊗ A)−1 such that

x2 = ea ∗ x1, y2 = eb ∗ y1

and
ep2 = eg(b)eT ep1e−h(a) with T = dc + [g(y1), c].

This implies the existence of f ∈ (M ⊗ A)−1 such that

ep2 = eT
′
eg(b)ep1e−h(a) with T ′ = df + [g(y2), f ].

Therefore, choosing α = −a ∈ (L ⊗ A)0, β = −b ∈ (N ⊗ A)0 and
γ = −f ∈ (M ⊗ A)−1 we get

x1 = eα ∗ x2, y1 = eβ ∗ y2

and

ep1 = e−g(b)e−T ′
ep2eh(a) = eg(β)eT

′
ep2e−h(α) with T ′ = dγ+[g(y1), γ].

Then (x2, y2, e
p2) ≈ (x1, y1, e

p1).
T ransitivity. Suppose

(x1, y1, e
p1) ≈ (x2, y2, e

p2) and (x2, y2, e
p2) ≈ (x3, y3, e

p3).

Therefore there exist a1, a2 ∈ (L ⊗ A)0, b1, b2 ∈ (N ⊗ A)0 and c1, c2 ∈
(M ⊗ A)−1 such that

x2 = ea1 ∗ x1, y2 = eb1 ∗ y1 ep2 = eg(b1)eT1ep1e−h(a1)

and

x3 = ea2 ∗ x2, y3 = eb2 ∗ y2 ep3 = eg(b2)eT2ep2e−h(a2)

with T1 = dc1 + [g(y1), c1] and T2 = dc2 + [g(y2), c2]. Then

ep3 = eg(b2)eT2eg(b1)eT1ep1e−h(a1)e−h(a2) = eg(b2)eg(b1)eT2
′
eT1ep1e−h(a1)e−h(a2)

for some c′ ∈ (M ⊗ A)−1 and T2
′ = dc′ + [g(y1), c

′].
Since StabA(g(y1)) is a subgroup, there exists c ∈ (M ⊗ A)−1 such

that eT2
′
eT1 = eT with T = dc + [g(y1), c].

Let a = a2•a1 ∈ (L⊗A)0, b = b2•b1 ∈ (N⊗A)0 and c ∈ (M⊗A)−1

as above. Then

x3 = ea ∗ x1, y3 = eb ∗ y3 ep3 = eg(b)eT ep1e−h(a)

and so (x1, y1, e
p1) ≈ (x3, y3, e

p3).
¤

III.2.24. Remark. We note that this equivalence relation gener-
alizes the equivalence relation induced by the gauge action given in
Definition III.1.10, when M is concentrated in non negative degree.

III.2.25. Definition. Define the functor

D̃ef(h,g) : C −→ Set

D̃ef(h,g)(A) = M̃C(h,g)(A)/ ≈ .
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III.2.26. Theorem. D̃ef(h,g) : C −→ Set is a deformation functor

with T iD̃ef(h,g) = H i(C ·
(h,g)).

Proof. We first prove that D̃ef(h,g) is a predeformation functor.

Since D̃ef(h,g) is the quotient of the predeformation functor M̃C(h,g),
then the conditions (III.2.3.1) and (III.2.3.5) are verified.

An easy calculation shows that D̃ef(h,g) satisfies (III.2.3.2).
Now we verify condition (III.2.3.4). Let β : B −→ A and γ :

C −→ A be morphisms in C, with β surjective. We prove that the

natural map D̃ef(h,g)(B ×A C) −→ D̃ef(h,g)(B)×gDef(h,g)(A) D̃ef(h,g)(C) is

surjective.

Let (x1, y1, e
p1) ∈ M̃C(h,g)(B) and (x2, y2, e

p2) ∈ M̃C(h,g)(C), such

that β(x1, y1, e
p1) and γ(x2, y2, e

p2) are the same element in D̃ef(h,g)(A).
Then, there exist a ∈ (L ⊗ A)0, b ∈ (N ⊗ A)0 and c ∈ (M ⊗ A)−1

such that
γ(x2) = ea ∗ β(x1), γ(y2) = eb ∗ β(y1)

and

eγ(p2) = eg(b)eT eβ(p1)e−h(a) with T = dc + [g(β(y1)), c].

Let ã ∈ (L ⊗ B)0 be a lifting of a, b̃ ∈ (N ⊗ B)0 a lifting of b and
c̃ ∈ (M ⊗B)−1 a lifting of c, so that T̃ = dc̃ + [g((β(y1)), c̃] lifts T .

Up to substitute (x1, y1, e
p1) with its equivalent (eã∗x1, e

b̃∗y1, e
g(b̃)eT̃ ep1eh(ã)),

we can suppose thatc β(x1, y1, e
p1) = γ(x2, y2, e

p2) ∈ M̃C(h,g)(A).

Then ((x1, y1, e
p1), (x2, y2, e

p2)) ∈ M̃C(h,g)(B)×gMC(h,g)(A) M̃C(h,g)(C)

and so, since M̃C(h,g) is a predeformation functor, there exists a lifting

in M̃C(h,g)(B ×A C). Now, it is sufficient to take its equivalence class

in D̃ef(h,g).
Finally, we prove that condition (III.2.3.3) is satisfied.
Let α : A −→ C be a surjection with C ∈ C0 an acyclic complex.

Let (x1, y1, e
p1) and (x2, y2, e

p2) ∈ D̃ef(h,g)(kerα) (in particular g(y1) =
ep1 ∗h(x1) and g(y2) = ep2 ∗h(x2)) be such that there exist a ∈ (L⊗A)0,
b ∈ (N ⊗ A)0 and c ∈ (M ⊗ A)−1 with

x2 = ea ∗ x1 y2 = eb ∗ y1

ep2 = eg(b)eT ep1e−h(a) with T = dc + [g(y1), c].

We are looking for a ∈ (L ⊗ kerα)0, b ∈ (N ⊗ kerα)0 and c ∈ (M ⊗
kerα)−1 such that T = dc + [g(y1), c] and

ea ∗ x1 = x2 eb ∗ y1 = y2 eg(b)eT ep1e−h(a) = ep2 .

cβ(eã ∗ x1, e
b̃ ∗ y1, e

g(b)eT̃ ep1eh(ã)) = (eβ(ã) ∗ β(x1), e
β(b̃) ∗

β(y1), e
g(β(b̃))eβ(T̃ )eβ(p1)eh(β(ã))) = (ea ∗ β(x1), e

b ∗ β(y1), e
g(b)eT eβ(p1)e−h(a)) =

(γ(x2), γ(y2), e
γ(p2)) = γ(x2, y2, e

p2)
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Since L⊗C and N ⊗C are abelian DGLAs and α(xi) = α(yi) = 0, for
i = 1, 2, we have

0 = α(x2) = eα(a) ∗ α(x1) = −dα(a)

and

0 = α(y2) = eα(b) ∗ α(y1) = −dα(y).

Moreover, L⊗C and N ⊗C are acyclic; therefore there exist l ∈ (L⊗
A)−1 and k ∈ (N ⊗A)−1 such that dα(l) = −α(a) and dα(k) = −α(b).
This implies dl + a ∈ (L⊗ kerα)0 and dk + b ∈ (N ⊗ kerα)0.

Set w1 = dl+ [x1, l] ∈ StabA(x1), w2 = dk+ [y1, k] ∈ StabA(y1) and
define a = a • w1 and b = b • w2.

We claim that a ∈ (L⊗ kerα)0 and b ∈ (N ⊗ kerα)0. Actually

a = a • w1 ≡ a + w1 ≡ a + dl (mod [L⊗ A,L⊗ A]);

since A · A ⊂ kerα, we conclude a ≡ a + dl ≡ 0 (modL ⊗ kerα). An
analogous calculation implies that b ∈ (N ⊗ kerα)0.

Moreover, we note that

ea ∗ x1 = eaew1 ∗ x1 = x2 and eb ∗ y1 = ebew2 ∗ y1 = y2.

As regard ep1 , since eaStabA(x)e−a = StabA(y) with y = ea∗x, we have

e−g(w2)eT ep1eh(w1) = eSep1

for some S = df + [g(y1), f ] with f ∈ (M ⊗ A)−1.
Therefore

ep2 = eg(b)eT ep1e−h(a) =

eg(b)eg(w2)e−g(w2)eT ep1eh(w1)e−h(w1)e−h(a) = eg(b)eSep1e−h(a)

This implies that eS = e−g(b)ep2eh(a)e−p1 lies in the subgroup exp((M ⊗
kerα)0) or equivalently S = df + [g(y1), f ] ∈ (M ⊗ kerα)0.

Since C is acyclic, the inclusion M ⊗ kerα −→ M ⊗ A is a quasi
isomorphism and it remains a quasi isomorphism if we consider the
deformed differentials d(−) + [g(y1),−] on both M ⊗ kerα and M ⊗A
(g(y1) satisfies the Maurer-Cartan equation and so by Remark I.3.17
d(−) + [g(y1),−] is a differential).

Therefore, since the class of S is trivial in M ⊗ A, it is also trivial
in M ⊗ kerα: i.e. there exist c ∈ (M ⊗ kerα)−1 such that S = T =
dc + [g(y1), c].

In conclusion ep2 = eg(b)eT ep1e−h(a) and so D̃ef(h,g) is a predeforma-
tion functor.

Now, we prove that D̃ef(h,g) is a deformation functor.
Actually, if C ∈ C0 then

M̃C(h,g)(C) = {(l, n, em) ∈ (L⊗ C)1 × (N ⊗ C)1 × exp(M ⊗ C)0|

dl = dn = 0, g(n) = em ∗ h(l) = h(l) − dm} = Z1(C(h,g) ⊗C).
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and

(9) D̃ef(h,g)(C) =

M̃C(h,g)(C) /

{(−da,−db, dc+g(b)−h(a))| a ∈ (L⊗C)0, b ∈ (N⊗C)0, c ∈ (M⊗C)−1}.
Therefore D̃ef(h,g)(C) is isomorphic to the first cohomology group of
the suspended cone of the couple of morphism h : L ⊗ C −→ M ⊗ C
and g : N ⊗ C −→ M ⊗ C.

If C is also acyclic, then D̃ef(h,g)(C) = 0. This implies that D̃ef(h,g)
satisfies the condition of Definition III.2.4 and so it is a deformation
functor.

Finally equation (9) implies also that T iD̃ef(h,g) ∼= H i(C ·
(h,g)).

¤
Proof of Lemma III.2.9. It is sufficient to apply the previous

theorem with M = N = 0. ¤
III.2.27. Theorem. D̃ef(h,g) ∼= M̃C

+

(h,g).

Proof. The projection to the quotient M̃C(h,g) −→ D̃ef(h,g) in-

duces, by Theorem III.2.15, a map M̃C
+

(h,g) −→ D̃ef(h,g) that is a quasi
isomorphism by Proposition III.2.22 and Theorem III.2.26. ¤

III.2.28. Corollary. Let M be concentrated in non negative de-

gree. Then for every (A,mA) ∈ Art we have D̃ef(h,g)(mA) = Def(h,g)(A).

Proof. Evident. ¤
III.2.29. Remark. Every commutative diagram of differential graded

Lie algebras

L

h
²²

α′
// P

η

²²
M

α // Q

N

g
>>}}}}}}}}

α′′
// R

µ

>>~~~~~~~~

induces a natural transformation F̃ of the associated deformation func-
tors:

F̃ : D̃ef(h,g) −→ D̃ef(η,µ)

Moreover the inverse function Theorem III.2.14 implies that F̃ is an
isomorphism if and only if the maps (α′, α, α′′) induces a quasi isomor-
phism of complexes ϕ· : C·

(h,g) −→ C·
(η,µ).

Proof of Theorem III.1.22. It is sufficient to apply the previ-
ous remark and Corollary III.2.28.

¤
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Proof of Theorem III.1.23. It is sufficient to apply the inverse
function Theorem III.2.14 and Corollary III.2.28.

¤

III.2.5. Fibred product. In Example I.3.12, we have defined a
DGLA structure on M [t, dt] = M ⊗C[t, dt] and evaluation morphisms
ea, for each a ∈ C: i.e.

ea : M [t, dt] −→ M ea(
∑

mit
i + nit

idt) =
∑

mia
i.

Define K ⊂ L×N ×M [t, dt] ×M [s, ds] as follows

K = {(l, n,m1(t, dt),m2(s, ds))| h(l) = e1(m2(s, ds)), g(n) = e0(m1(t, dt))}.
K is a DGLA with bracket and differential δ defined as the natural
ones on each component.

Define the following morphisms of DGLAs:

e0 : K −→ M (l, n,m1(t, dt),m2(s, ds)) 7−→ e0(m1(t, dt))

and

e1 : K −→ M (l, n,m1(t, dt),m2(s, ds)) 7−→ e1(m2(s, ds)).

Then we can construct the following simplicial diagram of DGLA

(10) L×N
G //

h

²²

g

²²

K ⊂ L×N ×M [t, dt] ×M [s, ds]

e1

²²

e0

²²
M

id // M

with:

(l, n)
G //

h

²²

g

²²

(l, n, g(n), h(l))

e1

²²

e0

²²
g(n)

id // g(n)

h(l)
id // h(l).

The diagram is commutative in a simplicial meaning and G is a quasi-
isomorphism.

III.2.30. Lemma. The complexes C ·
(e1−e0) and C ·

(h−g) are quasi-
isomorphic.

Proof. Consider the following commutative diagram of complexes
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0 // (M ·−1,−d) //

id
²²

C ·
(h−g)

//

α

²²

(L· ⊕N ·, d)

G

²²

// 0

0 // (M ·−1,−d) // C ·
(e1−e0)

// (K ·, δ) // 0,

with α(l, n,m) = (l, n, g(n), h(l),m), for (l, n,m) ∈ C ·
(h−g). Since id

and G are quasi-isomorphism, then α is a quasi-isomorphism. ¤

III.2.31. Proposition. D̃ef(h,g) ∼= D̃ef(e1,e0).

Proof. Since G is a morphism of DGLAs, using diagram (10), we
can define a morphism of Maurer-Cartan functors:

G : M̃C(h,g) −→ M̃C(e1,e0)

(l, n,m) 7−→ (G(l, n),m), with G(l, n) = (l, n, g(n), h(l)).

It is well-defined since G(l, n) satisfies the Maurer-Cartan equation and

em∗e1(G(l, n)) = em∗e1(h(l)) = em∗h(l) = g(n) = e0(g(n)) = e0(G(l, n)).

Therefore G induces a morphism between the deformation functors

D̃ef(h,g) and D̃ef(e1,e0) that is a quasi-isomorphism by Lemma III.2.30
(and so an isomorphism by Theorem III.2.14). ¤

III.2.5.1. Definition of H(h,g), properties and barycenter subdivision.
Let H ⊂ K defined as follow

H = {(l, n,m1(t, dt),m2(s, ds)) ∈ K| e1(m1(t, dt)) = e0(m2(s, ds))},
or written in more details

H = {(l, n,m1(t, dt),m2(s, ds)) ∈ L×N ×M [t, dt] ×M [s, ds] |
h(l) = e1(m2(s, ds)), g(n) = e0(m1(t, dt)), e1(m1(t, dt)) = e0(m2(s, ds))}.

Let k = (l, n,m1(t, dt),m2(s, ds)) ∈ K. Then the couple m1(t, dt)
and m2(s, ds) have fixed values in one of the extreme of the unit in-
terval. More precisely the value of m1(t, dt) is fixed at the origin and
m2(s, ds) is fixed in 1: i.e.

· ·
0 1t
m1(t, dt) · ·

0 1

e0(m1) = g(n) e1(m2) = h(l)

s
m2(s, ds)

If k also lies in H, then there are conditions on the other extremes: the
value of m1(t, dt) in 1 has to coincide with the value of m2(s, ds) in 0.

Let

(11) H(h,g) =

{(l, n,m(t, dt)) ∈ L×N×M [t, dt] |h(l) = e1(m(t, dt)), g(n) = e0(m(t, dt))}.
Since ei are morphisms of DGLA it is clear that H(h,g) is a DGLA.
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Moreover, considering the barycenter subdivision we get an injective
quasi isomorphism

H(h,g) ↪→ H.

(l, n,m(t, dt)) 7−→ (l, n,m (
1

2
t, dt),m (

s + 1

2
, ds))

III.2.32. Definition. H(h,g) is the differential graded Lie algebra
associated to the couple (h, g).

III.2.33. Proposition. H(h,g) is a quasi isomorphic to the complex
C ·

e1−e0
.

Proof. It is sufficient to consider the following commutative dia-
gram of complexes

H

²²

� � // K

e1−e0
²²

0 // M.

where e1 − e0 is surjective. ¤
III.2.34. Proposition. Let h : L −→ M and g : N −→ M be mor-

phism of DGLAs. If the morphism g − h : N × L −→ M is surjective,

then D̃efL×NM is isomorphic to D̃ef(h,g).

Proof. We recall that by definition

M̃CL×MN(A) =

{(l, n) ∈ (L⊗A)1×(N⊗A)1|dl+1

2
[l, l] = 0, dn+

1

2
[n, n] = 0, h(l) = g(n)},

and

M̃C(h,g)(A) = {(l, n,m) ∈ (L⊗ A)1 × (N ⊗ A)1 × (M ⊗ A)0|

dl +
1

2
[l, l] = 0, dn +

1

2
[n, n] = 0, g(n) = em ∗ h(l)}.

Moreover T iD̃efL×MN
∼= H i(L×M N) and T iD̃ef(h,g) ∼= H i(C ·

(h,g)).
Let

ψ : M̃CL×MN(A) −→ M̃C(h,g)(A)

(l, n) 7−→ (l, n, 0).

and ϕ : D̃efL×NM −→ D̃ef(h,g) the induced map between the associated
extended deformation functors. Then ϕ is a quasi isomorphism.

For completeness we state all details, denoting by the same ϕ the
map induced on cohomology.

ϕ is injective. Suppose that ϕ([(l, n)]) = [(l, n, 0)] = 0 in H i(C ·
(h,g)).

Then [(l, n, 0)] = (dr, ds,−dt−g(s)+h(r)) with r ∈ (L)i−1, s ∈ (N)i−1

and t ∈ (M)i−2.
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Since g−h is surjective, there exists p ∈ Li−2⊗A and q ∈ N i−2⊗A
such that g(q) − h(p) = −t and so g(dq) − h(dp) = −dt. Let (l′, n′) =
(r−dp, s−dq); then h(l′) = h(r)−h(dp) = g(s)+dt−dt−g(dq) = g(n′).

Therefore (l′, n′) ∈ L ×M N and d(l′, n′) = (dr, ds) = (l, n) and so
[(l, n)] = 0 ∈ H i(L×M N).

ϕ is surjective. Let [(l, n,m)] ∈ H i(C ·
(h,g)), i.e. dl = dn = 0 and

−dm − g(n) + h(l) = 0. Since the class [(l, n,m)] coincides with the
class [l+dr, n+ds,m−dt−g(s)+h(r)] ∈ H i(C ·

(h,g)), we are looking for

r ∈ Li−1, s ∈ N i−1 and t ∈ M i−2 such that (l+dr, n+ds) ∈ H i(L×MN)
and m− dt− g(s) + h(r) = 0 (thus [(l, n,m)] ∈ Im(ϕ)).

Since g − h is surjective, there exists r ∈ Li−1 and s ∈ N i−1, such
that g(s) − h(r) = m − dt and so g(ds) − h(dr) = dm. Therefore
h(l+ dr) = h(l) + g(ds)− dm = h(l) + g(ds)− h(l) + g(n) = g(n+ ds),
that is (l+dr, n+ds) ∈ L×MN and ϕ([(l+dr, n+ds)]) = [(l, n,m)]. ¤

III.2.35. Remark. Let α0, α1 : L −→ M be morphisms of DGLAs
with α0 −α1 surjective and T = {t ∈ L|α0(t) = α1(t)} (T is called the
equalizer of α0 and α1). In this particular case the previous proposition

implies D̃efT ∼= D̃ef(α1,α0).

In conclusion we have the following theorem.

III.2.36. Theorem. D̃efH(h,g)
∼= D̃ef(h,g).

Proof. It is sufficient to apply Proposition III.2.34 to e0, e1 :

K −→ M (with e0−e1 surjective) to conclude that D̃efH(h,g)
∼= D̃ef(e1,e0)

and then Proposition III.2.31. ¤



CHAPTER IV

Deformations of holomorphic maps

This chapter is devoted to the main topic of this thesis: infinitesimal
deformations of holomorphic maps of complex compact manifolds.

These deformations were first studied dring the 70s by E. Horikawa
in his works ([14] and [15]) and then by Namba [27] and Ran [28].

Our purpose is to study these deformations using a technique based
on differential graded Lie algebra.

Beware. Unless otherwise specified X and Y are compact complex
connected smooth varieties.

IV.1. Deformations functor Def(f) of holomorphic maps

The main references of this section are [14] and [27, Section 3.6].

IV.1.1. Definition. Let f : X −→ Y be an holomorphic map and
A ∈ Art. An infinitesimal deformation of f with fixed domain and
target over Spec(A) is a commutative diagram

X × S
F //

##FF
FF

FF
FF

F Y × S

{{xx
xx

xx
xx

x

S

where S = Spec(A), the morphism to S are the projections, F is
a holomorphic map and f coincides with the restriction of F to the
fibers over the closed point of S.

If A = K[ε] we have a first order deformation of f with fixed domain
and target.

Two infinitesimal deformations of f with fixed domain and target

X × S
F //

##FF
FF

FF
FF

F Y × S

{{xx
xx

xx
xx

x
and X × S

F ′
//

##FF
FF

FF
FF

F Y × S

{{xx
xx

xx
xx

x

S S

are equivalent if there exist automorphisms φ : X −→ X and ψ : Y −→
Y such that the following diagram is commutative:

83
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X × S
F //

(φ,id)
²²

Y × S

(ψ,id)
²²

X × S
F ′

// Y × S.

IV.1.2. Definition. The infinitesimal deformation functor Def(X
f−→

Y ) of infinitesimal deformation of an holomorphic map f with fixed do-
main and target is defined as follows:

Def(X
f−→ Y ) : Art −→ Set

A 7−→ Def(X
f−→ Y )(A) =





isomorphism classes of
infinitesimal deformations of f
with fixed domain and target

over Spec(A)





IV.1.3. Remark. When the domain and target are fixed, an infin-
itesimal deformation of an holomorphic map f can be interpreted as
an infinitesimal deformation of the graph of the map f in the product
X × Y , with X × Y fixed.

In the previous case, we were just deforming the map f . In general
we can also deform both the domain and the target.

IV.1.4. Definition. Let f : X −→ Y be an holomorphic map
and A ∈ Art. An infinitesimal deformation of f over Spec(A) is a
commutative diagram of complex spaces

XA
F //

π
ÃÃA

AA
AA

AA
A

YA

µ
~~~~

~~
~~

~~

S

where S = Spec(A), (XA, π, S) and (YA, π, S) are infinitesimal defor-
mations of X and Y respectively (Definition I.2.1), F is an holomorphic
map that restricted to the fibers over the closed point of S coincides
with f .

If A = K[ε] we have a first order deformation of f .

IV.1.5. Definition. Let

XA
F //

π
ÃÃA

AA
AA

AA
A

YA

µ
ÄÄ~~

~~
~~

~~
and X ′

A
F ′

//

π′
ÃÃA

AA
AA

AA
A

Y ′
A

µ′
ÄÄ~~

~~
~~

~

S S

two infinitesimal deformations of f . They are equivalent if there exist
bi-holomorphic maps φ : XA −→ X ′

A and ψ : YA −→ Y ′
A (that are

equivalence of infinitesimal deformations of X and Y respectively) such
that the following diagram is commutative:
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XA
F //

φ
²²

YA

ψ
²²

X ′
A

F ′
// Y ′

A.

IV.1.6. Definition. The functor of infinitesimal deformations of
an holomorphic map f : X −→ Y is

Def(f) : Art −→ Set

A 7−→ Def(f)(A) =





isomorphism classes of
infinitesimal deformations of

f over Spec(A)





IV.1.7. Proposition. Def(f) satisfies the conditions of Defini-
tion I.1.10.

Proof. It follows from the fact that the functors DefX and DefY
of infinitesimal deformations of X and Y are deformation functors. ¤

IV.1.8. Remark. In this general case, the infinitesimal deforma-

tions of f can be interpreted as infinitesimal deformations Γ̃ of the
graph Γ of the map f in the product X ×Y , such that the induced de-

formations X̃ × Y of X ×Y are products of infinitesimal deformations
of X and of Y . Since not all the deformations of a product are product
of deformations (see Remark II.7.5), we are not simply considering the
deformations of the graph in the product.

Moreover, with this interpretation, two infinitesimal deformations

Γ̃ ⊂ X̃ × Y and Γ̃′ ⊂ X̃ × Y
′
are equivalent if there exists an isomor-

phism φ : X̃ × Y −→ X̃ × Y
′
of infinitesimal deformations of X × Y

such that φ(Γ̃) = Γ̃′.

IV.1.1. Tangent and obstruction spaces of Def(f). Let U =
{Ui} and W = {Wj} be Stein coves of X and Y respectively, such that
f(Ui) ⊂ Vi for each i. For any integer p ≥ 0, let

Cp(U ,W ,ΘX ,ΘY , f
∗ΘY ) = Čp(U ,ΘX)⊕ Čp(W ,ΘY )⊕ Čp−1(U , f ∗ΘY )

(Č−1(U , f ∗ΘY ) = 0). Define a linear map

Ď : Cp(U ,W ,ΘX ,ΘY , f
∗ΘY ) −→ Cp+1(U ,W ,ΘX ,ΘY , f

∗ΘY )

(x, y, z) 7−→ (δ̌x, δ̌y, δ̌z + (−1)p(f∗x− f ∗y)).

Using the equalities f∗δ̌ = δ̌f∗ and f ∗δ̌ = δ̌f ∗, we conclude that Ď is a
differential (Ď ◦ Ď = 0). Therefore the C-vector spaces of cohomology
Ȟp(U ,W ,ΘX ,ΘY , f

∗ΘY ) are well defined.

IV.1.9. Lemma. Ȟ ·(U ,W ,ΘX ,ΘY , f
∗ΘY ) doesn’t depend on the

choice of the covers and so we denote it Ȟ ·(ΘX ,ΘY , f
∗ΘY ).
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Proof. The following linear maps are well defined:

Ȟp(U ,ΘX) ⊕ Ȟp(V ,ΘY ) −→ Ȟp(U , f ∗ΘY )

({n1}, {n2}) 7−→ {f∗n1 − f ∗n2};

Ȟp(U , f ∗ΘY ) −→ Ȟp+1(U ,W ,ΘX ,ΘY , f
∗ΘY )

{a} 7−→ {(0, 0, a)};

Hp(U ,W ,ΘX ,ΘY , f
∗ΘY ) −→ Ȟp(U ,ΘX) ⊕ Ȟp(V ,ΘY )

{(n1, n2, a)} 7−→ ({n1}, {n2}).
Then the sequence below is exact:

· · · −→ Ȟp(U ,ΘX) ⊕ Ȟp(V ,ΘY ) −→ Ȟp(U , f ∗ΘY ) −→

−→ Ȟp+1(U ,W ,ΘX ,ΘY , f
∗ΘY ) −→

−→ Ȟp+1(U ,ΘX) ⊕ Ȟp+1(V ,ΘY ) −→ Ȟp+1(U , f ∗ΘY ) −→ · · · .
Moreover, Ȟ ·(U ,ΘX), Ȟ ·(U ,ΘX) and Ȟ ·(U , f ∗ΘY ) doesn’t depend on
the choice of the Stein covers U and V . Hence applying the five lemma
, Ȟ ·(U ,W ,ΘX ,ΘY , f

∗ΘY ) doesn’t depend on the choice of the covers.
¤

In [14] E. Horikawa used the vector spaces Ȟ ·(ΘX ,ΘY , f
∗ΘY ) to

describe the tangent and obstruction spaces of the deformation functor
Def(f).

IV.1.10. Theorem. Ȟ1(ΘX ,ΘY , f
∗ΘY ) is in 1-1 correspondence

with the first order deformations of f : X −→ Y .
The obstructions space is naturally contained in Ȟ2(ΘX ,ΘY , f

∗ΘY ).

Proof. See [27, Section 3.6]
¤

IV.1.11. Remark. Consider a first order deformation fε of f : in
particular we are considering a first order deformations Xε and Yε of
X and of Y , respectively. Using Theorem I.2.8, we associate to Xε a
class x ∈ Ȟ1(X,ΘX) and to Yε a class y ∈ Ȟ1(Y,ΘY ).

Therefore the class in Ȟ1(ΘX ,ΘY , f
∗ΘY ) associated to fε is [(x, y, z)]

with z ∈ Č0(U , f ∗ΘY ) such that δ̌z = f∗x− f ∗y.
Analogously, let 0 −→ J −→ B −→ A −→ 0 be a small exten-

sion and fA an infinitesimal deformation of f over Spec(A). If h ∈
Ȟ2(X,ΘX) and k ∈ Ȟ2(Y,ΘY ) are the obstruction class associated to
XA and YA respectively, then the obstruction class in Ȟ2(ΘX ,ΘY , f

∗ΘY )
associated to fA is [(h, k, r)], with r ∈ Č1(U , f ∗ΘY ) such that δ̌r =
−(f∗x− f ∗y).
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IV.1.12. Remark. We have defined the C-vector space Ȟ∗(ΘX ,ΘY , f
∗ΘY )

using the Čech cohomology. For convenience we reinterpret it, using
the Dolbeault cohomology.

Let (B·, D∂) be the complex below

Bp = A
(0,p)
X (ΘX) ⊕ A

(0,p)
Y (ΘY ) ⊕ A

(0,p−1)
X (f ∗ΘY )

and

D∂ : Bp −→ Bp+1 (x, y, z) 7−→ (∂x, ∂y, ∂z + (−1)p(f∗x− f ∗y))

IV.1.13. Lemma. The complexes (B·, D∂) and (C ·(U ,W ,ΘX ,ΘY , f
∗ΘY ), Ď)

are quasi isomorphic.

Proof. Let U = {Ui} and W = {Wj} as above and denote by

φ1 : Č∗(U ,ΘX) −→ A0,∗
X (ΘX), φ2 : Č∗(V ,ΘY ) −→ A0,∗

Y (ΘY ) and φ3 :

Č∗(U , f ∗ΘX) −→ A0,∗
X (f ∗ΘX) the quasi isomorphism of complexes of

Leray’s theorem, defined in Section II.3.1. We recall that φiδ̌ = ∂φi,
f∗φi = φif∗ and f ∗φi = φif

∗, for each i = 1, 2, 3.
Now, define the following morphism

γ : (C ·(U ,W ,ΘX ,ΘY , f
∗ΘY ), Ď) −→ (B·, D∂)

γ(x, y, z) = (φ1(x), φ2(y), φ3(z)).

Then γ is a morphism of complexes: for each (x, y, z) ∈ Cp(U ,W ,ΘX ,ΘY , f
∗ΘY )

(x, y, z)
γ //

Ď
²²

(φ1(x), φ2(y), φ3(z))

D∂

²²
(δ̌x, δ̌y, δ̌z + (−1)p(f∗x− f ∗y)) // b

where b = (∂φ1(x), ∂φ2(y), ∂φ3(z) + (−1)p(f∗φ1(x) − f ∗φ2(y))).
Moreover, we have the following commutative diagram

0 // Č ·−1(U , f ∗ΘY ) //

φ3

²²

C· //

γ

²²

Č ·(U ,ΘX) ⊕ Č ·(W ,ΘY ) //

(φ1,φ2)
²²

0

0 // A
(0,·−1)
X (f ∗ΘY ) // B· // A

(0,·)
X (ΘX) ⊕ A

(0,·)
Y (ΘY ) // 0

where C· stands for C ·(U ,W ,ΘX ,ΘY , f
∗ΘY ).

Since φ3 and (φ1, φ2) are quasi isomorphism, γ is a quasi isomor-
phism.

¤

IV.2. Infinitesimal deformations of holomorphic maps

Let f : X −→ Y be an holomorphic map and Γ its graph in Z :=
X × Y .

Let
F : X −→ Γ ⊆ Z := X × Y
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x 7−→ (x, f(x)).

and p : Z −→ X and q : Z −→ Y the natural projections
Then we have the following commutative diagram:

X
F //

id

$$IIIIIIIIIIIIIIIIIIIII

f

))SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS Z

p

§§¯̄
¯̄
¯̄
¯̄
¯̄
¯̄
¯

q

»»2
22

22
22

22
22

22

X Y.

In particular, F ∗ ◦ p∗ = id and F ∗ ◦ q∗ = f ∗.
Since ΘZ = p∗ΘX ⊕ q∗ΘY , it follows that F ∗(ΘZ) = ΘX ⊕ f ∗ΘY .
Define the morphism γ : ΘZ −→ f ∗ΘY as the composition

ΘZ
F ∗
−→ ΘX ⊕ f ∗ΘY

(f∗,−id)−→ f ∗ΘY .

and let π be the following surjective morphism:

A0,j
Z (ΘZ)

π−→ A0,j
X (f ∗ΘY ) −→ 0

π(ω u) = F ∗(ω)γ(u) ∀ ω ∈ A0,j
Z , u ∈ ΘZ .

Now, since each u ∈ ΘZ can be written as u = p∗v1 + q∗v2, for some
v ∈ ΘX and w ∈ ΘY , we have also

π(ωu) = F ∗(ω)(f∗(v1) − f ∗(v2)).

Since F ∗∂ = ∂F ∗, π is a morphism of complexes.
For convenience we give an explicit description of the map π.
Let U = {Ui}i∈I and V = {Vi}i∈I be finite Stein open covers of X

and Y , respectively, such that f(Ui) ⊂ Vi (Ui is allowed to be empty).
Moreover let z = (z1, z2, . . . , zn) on Ui and w = (w1, w2, . . . wm) on
Vi be local holomorphic coordinate systems for each i ∈ I. As in

Section II.6, if v1 =
n∑

i=1

ϕi(z)
∂

∂zi
and v2 =

m∑

h=1

ψh(w)
∂

∂wh

then f∗v1 =

n∑

i=1

ϕi(z)
m∑

h=1

∂fh
∂zi

∂

∂wh

and f ∗v2 =
m∑

h=1

ψh(f(z))
∂

∂wh

. Let K and J be

multi-indexes of length respectively k and j, and fix ω = Φ(z, w)dzK ∧
dzJ ∈ A0,k+j

Z . Then

π(ωu) = F ∗(ω)(f∗(v1) − f ∗(v2)) =

Φ(z, f(z))dzK ∧ ∂fJ

m∑

h=1

(
n∑

i=1

ϕi(z)
∂fh
∂zi

− ψh(f(z))

)
∂

∂wh

.

Let L be the kernel of π:

0 −→ L h−→ A0,∗
Z (ΘZ)

π−→ A0,∗
X (f ∗ΘY ) −→ 0

and h the inclusion.
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IV.2.1. Lemma. L is a sheaf of differential graded subalgebra of
A0,∗

Z (ΘZ) and h is a morphism of differential graded Lie algebras.

Proof. There is a canonical isomorphism between the normal bun-
dle NΓ|Z of Γ in Z and the pull-back f ∗TY .

Therefore there exists the following exact sequence

0 −→ L h−→ A0,∗
Z (ΘZ)

π−→ A0,∗
Γ (NΓ|Z) −→ 0

Then by Lemma II.5.7, L is a sheaf of differential graded subalge-
bras of KSZ .

¤

Let L be the differential graded Lie algebra of global section of L.
Let M be the Kodaira-Spencer algebra of the product X×Y : M =

KSX×Y = KSZ and h : L −→ M be the inclusion.
Let N be the product of the Kodaira-Spencer algebra: N = KSX×

KSY and g : KSX × KSY −→ KSX×Y be given by g = p∗ + q∗ (for
n = (n1, n2), we use both the notation g(n) and p∗n1 + q∗n2).

Therefore we get a diagram

(12) L� _

h
²²

N = KSX ×KSY

g=(p∗,q∗)
// M = KSX×Y .

IV.2.2. Remark. Given the morphisms of DGLAs h : L −→
KSX×Y and g : KSX×KSY −→ KXX×Y we can consider the complex
(C·

(h,g), D) with Ci
(h,g) = Li ⊕ KSi

X ⊕ KSi
Y ⊕ KSi−1

X×Y and differential

D(l, n1, n2,m) = (∂l, ∂n1, ∂n2,−∂m− p∗n1 − q∗n2 + h(l)).
Using the morphism π : KSX×Y −→ A0,∗

X (f ∗ΘY ) we can define a
morphism

β : (C·
(h,g), D) −→ (B·, D∂)

β(l, n1, n2,m) = (n1, n2, (−1)iπ(m)) ∀ (l, n1, n2,m) ∈ Ci
(h,g) .

IV.2.3. Proposition. β : (C·
(h,g), D) −→ (B·, D∂) is a morphism

of complexes that is a quasi isomorphism.

Proof. β commute with the differentials, i.e β ◦ D = D∂ ◦ β, in
fact for each (l, n1, n2,m) ∈ Ci

(h,g) we have the following commutative
diagram

(l, n1, n2,m)
β //

D

²²

(n1, n2, (−1)iπ(m))

D∂

²²
c

β // b.
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where c stands for (∂l, ∂n1, ∂n2,−∂m − p∗n1 − q∗n2 + h(l)) and b =
β(c) = (∂n1, ∂n2, (−1)i(∂π(m) + f∗n1 − f ∗n2)).

Therefore β induces a map in cohomology that we again call β that
is a quasi isomorphism. The proof is standard but we state it.

β is injective. Let [(l, n1, n2,m)] ∈ H i(C ·
(h,g))

a be such that β([(l, n1, n2,m)]) =

[(n1, n2, (−1)iπ(m))] is zero in H i(B).
Then there exists (a1, a2, b) ∈ Bi−1 such that n1 = ∂a1, n2 = ∂a2,

and (−1)iπ(m) = ∂b+(−1)i−1(f∗a1−f ∗a2), so that π(m) = (−1)i∂b−
f∗a1 + f ∗a2.

Let n′
1 = a1 ∈ KSi−1

X and n′
2 = a2 ∈ KSi−1

Y ; then ∂n′
1 = n1 and

∂n′
2 = n2.
Let z ∈ KSX×Y be a lifting of −b (i.e. π(z) = −b) and l′ =

m+ (−1)i∂z + p∗n′
1 + q∗n′

2 ∈ KSX×Y . Then l′ ∈ (L)i−1, in fact π(l′) =
π(m)−(−1)i∂b+f∗a1−f ∗a2 = 0; moreover ∂l′ = ∂m+p∗n1+q∗n2 = l.
Therefore [(l, n1, n2,m)] = [∂(l′, n′

1, n
′
2, (−1)iz)] is zero in H i(C ·

(h,g)).

β is surjective. Let [(a1, a2, b)] ∈ H i(B). Then ∂a1 = ∂a2 = 0 and
∂b + (−1)i(f∗a1 − f ∗a2) = 0. Let m ∈ KSi−1

X×Y be a lift of (−1)ib,
i.e. π(m) = (−1)ib. Let n1 = a1 ∈ KSi

X and n2 = a2 ∈ KSi
Y .

Finally let l = ∂m + p∗a1 + q∗a2 ∈ KSi
X×Y . Then l ∈ Li, in fact

π(l) = π(∂m) + f∗a1 − f ∗a2 = (−1)i∂b + f∗a1 − f ∗a2 = 0.
Since ∂l = ∂n1 = ∂n2 = 0 and −∂m − p∗n1 − q∗n2 + l = 0,

[(l, n1, n2,m)] ∈ H i(C ·
(h,g)) and β[(l, n1, n2,m)] = [(n1, n2, (−1)iπ(m))] =

[(a1, a2, b)] ∈ H i(B). ¤

IV.2.1. Def(h,g) is isomorphic to Def(f). Using the notation
above and diagram (12), consider the functor Def(h,g). Since h is injec-
tive, by Remark III.1.15 for each (A,mA) ∈ Art we have

Def(h,g)(A) = {(n, em) ∈ (N1 ⊗mA) × exp(M0 ⊗mA)|

dn +
1

2
[n, n] = 0, e−m ∗ g(n) ∈ L1 ⊗mA}/gauge.

IV.2.4. Remark. Let (n, em) ∈ Def(h,g). In particular n = (n1, n2)
satisfies the Maurer-Cartan equation and so n1 ∈ KSX and n2 ∈ KSY .
Therefore, there are associated to n infinitesimals deformations XA of
X (induced by n1) and YA of Y (induced by n2). Moreover, since
g(n) satisfies Maurer-Cartan equation in M = KSX×Y , it defines an
infinitesimal deformation (X × Y )A of X × Y . By construction, the
deformation (X × Y )A is the product of the deformations XA and YA.

Let i∗ : A0,∗
Z −→ A0,∗

Γ be the restriction morphism and let I =
ker i∗ ∩ OZ be the holomorphic ideal sheaf of the graph Γof f in Z.

aIn particular this implies that −∂m− p∗n1 − q∗n2 + l = 0
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Consider an infinitesimal deformation of the holomorphic map f

over Spec(A) as an infinitesimal deformation Γ̃ of Γ over Spec(A) and

Z̃ of Z over Spec(A), with Z̃ product of deformations of X and of Y
over Spec(A).

Applying the previous Remark IV.2.4 and Theorem II.7.3, the con-

dition on the deformation Z̃ is equivalent to require O eZ = OA(g(n)),
for some Maurer-Cartan element n ∈ KSX ×KSY .

The deformation Γ̃ of the graph corresponds to an infinitesimal
deformation IA ⊂ O eZ of the holomorphic ideal sheaf I over Spec(A),
that is IA is a sheaf flat over A such that IA ⊗A C ∼= I.

In conclusion, to give an infinitesimal deformation of f over Spec(A)
(an element in Def(f)(A)) is sufficient to give an ideal sheaf IA ⊂
OA(g(n)) (for some n ∈ MCKSX×KSY

) with IA A-flat and IA⊗AC ∼= I.

IV.2.5. Theorem. Let h, g and i∗ be as above. Then there exists
an isomorphism of functors

γ : Def(h,g) −→ Def(f).

Given a local Artinian C-algebra A and an element (n, em) ∈ MC(h,g)(A),
we define a deformation of f over Spec(A) as a deformation IA(n, em)
of the holomorphic ideal sheaf of the graph in the following way

γ(n, em) = IA(n, em) := (ker(A0,0
Z ⊗A

∂+lg(n)−→ A0,1
Z ⊗A))∩em(ker i∗⊗A) =

= OA(g(n)) ∩ em(ker i∗ ⊗ A),

where OA(g(n)) is the infinitesimal deformation of Z that corresponds
to g(n) ∈ MCKSX×Y

(see Theorem II.7.3).

Proof. For each (n, em) ∈ MC(h,g)(A) we have defined

IA(n, em) = OA(g(n)) ∩ em(ker i∗ ⊗ A).

First of all we verify that this sheaf IA(n, em) ⊂ OA(g(n)) define an in-
finitesimal deformation of f : therefore we need to prove that IA(n, em)
is flat over A and IA⊗AC ∼= I. It is equivalent to verify these properties
for e−mIA(n, em).

Applying Lemma II.5.5, we obtain

e−m(OA(g(n))) = ker(∂ + e−m ∗ g(n) : A0,0
Z ⊗ A −→ A0,1

Z ⊗ A)

and also

e−mIA(n, em) = e−m(OA(g(n))) ∩ (ker i∗ ⊗ A) =

= ker(∂ + e−m ∗ g(n)) ∩ (ker i∗ ⊗ A).

Since flatness is a local property, we can assume that Z is a Stein
manifold. Then H1(Z,ΘZ) = 0 and H0(Z,ΘZ) −→ H0(Z,NΓ|Z) is
surjective. Since the following sequence is exact

· · · −→ H0(Z,ΘZ) −→ H0(Z,NΓ|Z) −→ H1(Z,L) −→ H1(Z,ΘZ) −→ · · · ,
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we conclude that H1(L) = 0 or equivalently that the tangent space of
the functor DefL is trivial. Therefore, by Corollary I.1.21, DefL is the
trivial functor.

This implies the existence of ν ∈ L0 ⊗mA such that e−m ∗ g(n) =
eν ∗ 0 (by hypothesis e−m ∗ g(n) is a solution of Maurer-Cartan in L).
Moreover, we recall that if a ∈ L0⊗mA then ea(ker i∗⊗A) = ker i∗⊗A
(see Section II.5.1).

Therefore

e−mIA(n, em) = ker(∂ + eν ∗ 0)∩ (ker i∗⊗A) = OA(eν ∗ 0)∩ (ker i∗⊗A)

= eν(OA(0)) ∩ eν(ker i∗ ⊗ A) = eν(I ⊗ A).

Then IA(n, em) defines a deformation of f and so it is well defined the
morphism

γ : MC(h,g) −→ Def(f)

such that
γ(A) : MC(h,g)(A) −→ Def(f)(A)

(n, em) 7−→ γ(n, em) = IA(n, em)

Moreover γ is also well defined on Def(h,g)(A) = MC(h,g)(A)/gauge.
Actually, for each a ∈ L0 ⊗mA and b ∈ N0 ⊗mA, we have

γ(eb ∗ n, eg(b)emea) = OA(eg(b) ∗ g(n)) ∩ eg(b)emea(ker i∗ ⊗ A) =

eg(b)OA(g(n)) ∩ eg(b)em(ker i∗ ⊗ A) = eg(b)γ(n, em).

This implies that the deformations γ(n, em) and γ(eb ∗n, eg(b)emea) are
isomorphic (see Remark IV.1.8).

In conclusion γ : Def(f,g) −→ Def(f) is well defined.
In order to prove that γ is an isomorphism of functors it is sufficient

to prove that

i) γ is injective;
ii) γ induces a bijective map on the tangent spaces;
iii) γ induces an injective map on the obstruction spaces.

Actually by Corollary I.1.32, conditions ii) and iii) imply that γ is
étale and so surjective.

i) γ is injective. Suppose that γ(n, em) = γ(r, es), i.e. the de-
formations induced respectively by (n, em) and (r, es) are isomorphic.
We want to conclude that (n, em) is gauge equivalent to (r, es): i.e
there exist a ∈ L0 ⊗ mA and b ∈ N0 ⊗ mA such that eb ∗ r = n and
eg(b)esea = em.

By hypothesis γ(n, em) and γ(r, es) are isomorphic deformations,
then, in particular, the deformations induced on Z are isomorphic.
This implies that there exists b ∈ N0 ⊗mA such that eb ∗ r = n and so
eg(b)(OA(g(r))) = OA(g(n)). Up to substitute (r, es) with its equivalent
(eb ∗ r, eg(b)es) we can assume to be in the following situation

OA(g(n)) ∩ em(ker i∗ ⊗ A) = OA(g(n)) ∩ em
′
(ker i∗ ⊗ A).
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Let ea = e−m′
em, then

ea(e−m(OA(g(n))) ∩ (ker i∗ ⊗ A)) = e−m′
(OA(g(n))) ∩ (ker i∗ ⊗ A).

In particular, ea(e−m(OA(g(n))) ∩ (ker i∗ ⊗ A)) ⊆ ker i∗ ⊗ A.
Now we prove by induction that a ∈ L0 ⊗mA (thus em = em

′
ea =

eg(b)esea).
Let z1, . . . , zn be holomorphic coordinates on Z such that Z ⊃ Γ =

{zt+1 = · · · = zn = 0}. Consider the projection on the residue field

e−m(OA(g(n))) ∩ (ker i∗ ⊗ A) −→ OZ ∩ ker i∗.

Then zi ∈ ker i∗ ∩ OZ , for i > t. Since e−m(OA(g(n))) ∩ (ker i∗ ⊗ A) is
flat over A we can lift zi to z̃i = zi +ϕi ∈ e−m(OA(g(n)))∩ (ker i∗⊗A).
By hypothesis

(13) ea(z̃i) = ea(zi) + ea(ϕi) ∈ ker i∗ ⊗ A.

By Lemma II.5.7, to prove that a ∈ L0 ⊗ mA it is sufficient to verify
that ea(zi) ∈ ker i∗ ⊗ A and so by (13) that ea(ϕi) ∈ ker i∗ ⊗ A.

If A = C[ε], then ϕi ∈ ker i∗ ⊗ Cε, a ∈ A0,0
Z ⊗ Cε, this implies

ea(ϕi) = ϕi ∈ ker i∗ ⊗ Cε.
Now, let 0 −→ J −→ B

α−→ A −→ 0 be a small extension. By
hypothesis α(a) ∈ L0 ⊗ mA, that is α(a) =

∑n
j=1 aj

∂
∂zj

with aj ∈
ker i∗ ⊗mA for j > t.

Let a′j be liftings of aj. Then a′j ∈ ker i∗ ⊗ mB for j > t , a′ =∑n
j=1 a

′
j

∂
∂zj

∈ L0 ⊗mB and ea
′
(ϕi) ∈ ker i∗ ⊗mB. Since α(a) = α(a′),

then a = a′+j with j ∈ M0⊗J . This implies that ea(ϕi) = ea
′+j(ϕi) =

ea
′
(ϕi) ker i∗ ⊗mB.

As regards, tangent and obstruction spaces, by Theorem IV.1.10
and Lemma IV.1.13, the tangent space of Def(f) is isomorphic to
H1(B·) and the obstruction space is naturally contained in H2(B·),

where (B·, D∂) is the complex with Bp = A
(0,p)
X (ΘX) ⊕ A

(0,p)
Y (ΘY ) ⊕

A
(0,p−1)
X (f ∗ΘY ) and D∂(x, y, z) = (∂x, ∂y, ∂z + (−1)p(f∗x − f ∗y)), for

each (x, y, z) ∈ Bp. As regard the functor Def(h,g), in Section III.1.3, we
have proved that the tangent space is H1(C·

(h,g)) and the obstruction

space is naturally contained in H2(C·
(h,g)), where C·

(h,g) is the suspended
come associated to the couple (h, g) (Section III.1.1). Moreover, Propo-
sition IV.2.3 shows the existence of a quasi isomorphism β between the
previous complexes B· and C·

(h,g).

ii) γ induces a bijection on the tangent spaces: we prove that γ
coincides with the isomorphism β of Proposition IV.2.3.

Let (n1, n2,m) ∈ Def(h,g)(C[ε]). Then ∂n1 = ∂n2 = 0, ∂m+ g(n) =

∂m + p∗n1 + q∗n2 ∈ H1(L) and so (n1, n2,m) determines the class
[(g(n) + ∂m, n1, n2,m)] ∈ H1(C(h,g)). Moreover, we note that ∂π(m) +

f∗n1 − f ∗n2 = 0 and β[(g(n) + ∂m, n1, n2,m)] = [(n1, n2,−π(m))].
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Now, consider the image γ(n1, n2,m) = OA(g(n)) ∩ em(ker i∗ ⊗
A). Using Theorem IV.1.10 and Remark IV.1.11, we associate to
γ(n1, n2,m) the class b [(n1, n2, a)] ∈ H1(B·), such that ∂a = f∗n1 −
f ∗n2. Then ∂a = −∂π(m) and so [(n1, n2, a)] = [(n1, n2,−π(m))] =
β([(g(n) + ∂m, n1, n2,m)]) ∈ H1(B·).

This implies that the map induced by γ on the tangent spaces
coincides with the isomorphism β.

iii) γ′ induces an injective map on the obstruction spaces. Also in
this case, we prove that the map induced by γ on the obstruction space
coincides with β and so it is injective.

Actually, let

0 −→ J −→ B
α−→ A −→ 0

a small extension. The obstruction class associated to (n1, n2,m) ∈
Def(h,g)(A) is the class [(k, h1, h2, r)] ∈ H2(C·

(h,g))⊗J defined in III.1.18.

We note that ∂r+ p∗h1 + q∗h2 ∈ H2(L)) and so π(∂r) = −f∗h1 + f ∗h2.
Now, again by Theorem IV.1.10 and Remark IV.1.11, the obstruc-

tion class associated to the image γ(n1, n2,m) is [(h1, h2, a)] ∈ H2(B·)⊗
J with ∂a = −(f∗h1−f ∗h2) and as above [(h1, h2, a)] = β([(k, h1, h2, r)]).

¤

In conclusion, choosing opportunely L,M, and h, g, Theorem IV.2.5
shows that the infinitesimal deformation functor Def(f) of an holomor-
phic map f is isomorphic to the functor Def(h,g).

IV.2.6. Theorem. Let f : X −→ Y be an holomorphic map. Then
the DGLA H(h,g) associated to the above morphisms h : L ↪→ KSX×Y

and g = (p∗, q∗) : KSX × KSY −→ KSX×Y (see Definition III.2.32)
governs the infinitesimal deformation of f :

DefH(h,g)
∼= Def(f).

Proof. It is sufficient to apply the previous Theorem IV.2.5, Corol-
lary III.2.28 and Theorem III.2.36. ¤

This theorem is very interesting from the point of view of “guiding
principle”, since it shows the existence of a DGLA that governs the
geometric problem of infinitesimal deformation of holomorphic maps.

Anyway, in Chapter V we will see that in the applications it is more
convenient to use the functor Def(h,g) than DefH(h,g)

.

IV.2.7. Remark. Consider the diagram

bBy Theorem II.7.3 the class associated to the first order deformation of X
induced by n1 is n1 itself and the class associated to the first order deformation of
Y induced by n2 is n2 itself.
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L

h
²²

KSX ×KSY

g //

π◦g
**

KSX×Y

π

&&NNNNNNNNNNN

A0,∗
X (f ∗TY ).

Since h is injective, Lemma III.1.5 implies the existence of a quasi-
isomorphism of complexes (C·

(h,g), D) and (C ·
π◦g, δ̌).

Therefore we get the following exact sequence
(14)

· · · −→ H1(C ·
π◦g)

%1

−→ H1(X,ΘX) ⊕H1(Y,ΘY ) −→ H1(X, f ∗ΘY ) −→

−→ H2(C ·
π◦g)

%2

−→ H2(X,ΘX)⊕H2(Y,ΘY ) −→ H2(X, f ∗ΘY ) −→ · · ·
where %1 and %2 are the projections on the first factors and are in-
duced by the projection morphism % : Def(h,g) −→ DefN (see Re-
mark III.1.14).

In particular, % : Def(f) −→ DefKSX×KSY
associates to an infin-

itesimal deformation of f the induced infinitesimal deformation of X
and of Y .

Then %1 associates to a first order deformations of f the induced
first order deformations of X and Y and %2 is a morphism of obstruc-
tion theory: the obstruction to deform f is mapped in the induced
obstruction to deform X and Y (see also Remark IV.2.4).

In [28], Z. Ran studied the infinitesimal deformations of holomor-
phic map f : X −→ Y of singular compact complex spaces. He intro-
duced some algebraic objects T i

f , i = 1, 2, that classify the deformations
of a map f , getting the following exact sequence
(15)
T 1
f −→ Ext1

OX
(ΩX ,OX) ⊕ Ext1

OY
(ΩY ,OY ) −→ Ext1

OX
(f ∗ΩY ,OX) −→

−→ T 2
f −→ Ext2

OX
(ΩX ,OX) ⊕ Ext2

OY
(ΩY ,OY ) −→ Ext2

OX
(f ∗ΩY ,OX).

IV.2.8. Lemma. If X and Y are compact complex manifold, then
the exact sequence (15) reduces to (14).

Proof. If X and Y are smooth, then ΩX and ΩY are locally free.
Then applying the spectral sequence associated to Ext (see [9, Lemme
7.4.1]) we get ExtiOX

(ΩX ,OX) ∼= H i(X,ΘX), ExtiOY
(ΩY ,OY ) ∼= H i(Y,ΘY )

and ExtiOX
(f ∗ΩY ,OX) ∼= H i(X, f ∗ΘY ).

¤





CHAPTER V

Semiregularity maps

In the previous chapter we have studied the infinitesimal deforma-
tions of holomorphic maps.

More precisely, let f : X −→ Y be an holomorphic map of compact
complex manifolds and Γ ⊂ X × Y its graph. Let M = KSX×Y ,
N = KSX ×KSY and g = (p∗, q∗) : KSX ×KSY −→ KSX×Y , where p
and q are the projections of X×Y respectively on X and Y . Moreover,
let L = A0,∗

X×Y (−log Γ) be the DGLA defined by the following exact
sequence (see Section IV.2):

0 −→ L
h−→ KSX×Y

π−→ A0,∗
X (f ∗ΘY ) −→ 0.

Then we get the following diagram

(16) L

h
²²

KSX ×KSY

(p∗,q∗)
// KSX×Y .

Theorem IV.2.5 of the previous chapter shows the existence of an
isomorphism between the functor Def(f) of infinitesimal deformations
of f and the functor Def(h,g) associated to the couple of morphism
(h, g):

Def(f) ∼= Def(h,g) (Theorem IV.2.5).

Moreover, Theorem IV.2.6 gives an explicit description of the DGLA
H(h,g) (Definition III.2.32) that governs the infinitesimal deformations
of f :

Def(f) ∼= DefH(h,g) (Theorem IV.2.6).

In particular, if i : X ↪→ Y is an inclusion, we can find an easy de-
scription of the DGLA associated to Def(i) (see Section V.4). Actually
let L′ be the the DGLA L′ introduced in Section II.5.1 (see also [24,
Sect. 5])

0 −→ L′ −→ A0,∗
Y (ΘY )

π′
−→ A0,∗

X (NX|Y ) −→ 0.

Then L′ governs the deformation of i (Corollary V.4.1).

In general, without an easy description of H(h,g) it is convenient to
use the deformations functor associated to the previous diagram (16).

97
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For example, if we want to study the infinitesimal deformations
of f with fixed domain or fixed target, it is sufficient to consider di-
agram (16) after erasing respectively KSX (Section V.2) and KSY

(Section V.1).

Anyway, the main application of the techniques developed in the
previous chapters concerns the study of the obstructions to deforms an
holomorphic map f and the “semiregularity” maps.

In general, we can find a vector space V (most of time a cohomology
vector space) that contains the obstruction space, but we don’t know
an explicit description of the elements that are obstructions.

Then the idea is to restrict the vector space V as for example defin-
ing a map on V , the so called “semiregularity” map, that contains the
obstructions in the kernel.

In particular, let f : X −→ Y be an holomorphic mapand consider
the infinitesimal deformations of f with fixed target Y . Then in [14]
Horikawa proved the following theorem.

V.0.9. Theorem. (Horikawa) Let f : X −→ Y be an holomorphic
map and consider the functor of infinitesimal deformations of f with
fixed target Y . Then the tangent space is isomorphic to the hypercoho-

mology vector space H1
(
X,O(ΘX)

f∗−→ O(f ∗ΘY )
)

and the obstruction

space is contained in H2
(
X,O(ΘX)

f∗−→ O(f ∗ΘY )
)

.

Using the techniques introduced in the previous section, we can
improve this result in the case of Kähler manifolds, defining a map
that contains the obstruction space in the kernel.

Theorem. Let f : X −→ Y be an holomorphic map of compact
Kähler manifolds. Let p = dimY − dimX. Then the obstruction space
of deformations of f (with fixed Y ) is contained in the kernel of a map

σ : H2
(
X,O(ΘX)

f∗−→ O(f ∗ΘY )
)
−→ Hp+1(Y,Ωp−1

Y ).

The previous map is the generalization of the semiregularity map
defined by Bloch (see [3] or [24, Sec. 9]) obtained when f is the
inclusion map X ↪→ Y , i.e.

σ : H1(X,NX|Y ) −→ Hp+1(Y,Ωp+1
Y ).

The proof of this theorem is postponed in the next Section V.1.2
(Corollary V.1.5), where we also give an explicit description of the map
σ.

V.1. Semiregularity for deformations with fixed target

This section is devoted to study infinitesimal deformations of a
holomorphic map f : X −→ Y , with fixed target Y .
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In this case the DGLA N reduces to KSX and so diagram (16)
reduces to

L

h
²²

A0,∗
X (ΘX)

p∗ //

f∗
**

A0,∗
X×Y (ΘX×Y )

π

''PPPPPPPPPPPP

A0,∗
X (f ∗ΘY ).

where f∗ is the composition π ◦ p∗.
Using this diagram and Theorem IV.2.5, we can easily prove the

Theorem V.0.9 of Horikawa.

V.1.1. Proposition. The tangent space of the infinitesimal defor-
mation functor of holomorphic map f : X −→ Y , with Y fixed, is
H1(C ·

f∗) and the obstruction space is naturally contained in H2(C ·
f∗).

Proof. Theorem IV.2.5 implies that the infinitesimal deformations
functor of f , with Y fixed, is isomorphic to Def(h,p∗). Therefore the
tangent space is H1(C ·

(h,p∗)) and the obstruction space is naturally con-

tained in H2(C ·
(h,p∗)).

Since h is injective, Lemma III.1.5 implies that, for each i, H i(C ·
(h,p∗))

∼=
H i(C ·

π◦p∗) = H i(C ·
f∗). ¤

As we already announced in Section V.1.2 we improve this theorem
in the case of Kähler manifolds.

The next section is devoted to some preliminary lemmas.

V.1.1. Preliminaries. Let Z be a complex manifold.
Then KSZ = A0,∗

Z (ΘZ) is the Kodaira-Spencer algebra of Z and in
Section II.5, we have defined the contraction map i:

i : KSZ −→ Hom∗(AZ , AZ)

ia(ω) = ayω
for each a ∈ KSZ and ω ∈ A∗,∗

Z .

Therefore i(A0,j
Z (ΘZ)) ⊂ ⊕h,l Hom0(Ah,l

Z , Ah−1,l+j
Z ) ⊂ Homj−1(AZ , AZ).

To interpret i as a morphism of DGLAs, the key idea due to
M. Manetti [24, Section 8] is to substitute Hom∗(AZ , AZ) with the

graded vector space Htp

(
ker(∂),

AZ

∂AZ

)
=

⊕
i Homi−1

(
ker(∂),

AZ

∂AZ

)

(see Example I.3.4). Consider on Htp

(
ker(∂),

AZ

∂AZ

)
the following

differential δ and bracket { , }:
δ(f) = −∂f − (−1)deg(f)f∂,
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{f, g} = f∂g − (−1)deg(f)deg(g)g∂f.

V.1.2. Proposition. Htp

(
ker(∂),

AZ

∂AZ

)
is a DGLA and the lin-

ear map

i : A0,∗
Z (TZ) −→ Htp

(
ker(∂),

AZ

∂AZ

)

is a morphism of DGLA.

Proof. See [24, Prop. 8.1]. An easy calculation show that the

graded vector space Htp

(
ker(∂),

AZ

∂AZ

)
is a DGLA.

Moreover i is a linear map that preserves degree and commutes
with differential and bracket. Actually, using Cartan fomulas a(see
Lemma II.5.1), we get

id̃a = −[∂, ia] = −∂ia + (−1)a−1ia∂

and by definition of δ

δ(ia) = −∂ia − (−1)aia∂.

As regard the bracket, again by Cartan fomulas, we have

i[a,b] = [ia, [∂, ib]] = [ia, ∂ib − (−1)b−1ib∂] =

ia∂ib − (−1)b−1iaib∂ − (−1)(a−1)b(∂ibia − (−1)b−1ib∂ia) = b

ia∂ib + (−1)ab−1ib∂ia

and by definition of { , }
{ia, ib} = ia∂ib − (−1)a bib∂ia.

¤
Now, let f : X −→ Y be an holomorphic map, fix Z = X×Y and Γ

the graph of f in Z. Let IΓ ⊂ AZ be the space of the differential forms
vanishing on Γ and L ⊂ KSZ be the DGLA defined as in Lemma IV.2.1:

0 −→ L −→ KSZ −→ A0,∗
X (f ∗ΘY ) −→ 0.

We recall that
L ⊂ {a ∈ A0,∗

Z (ΘZ)| ia(IΓ) ⊂ IΓ}
and moreover

p∗A0,∗
X (ΘX) ⊂ {a ∈ A0,∗

Z (ΘZ)| ia(q∗AY ) = 0},
where p and q are the projection of Z on X and Y respectively.

In conclusion, we can define the following commutative diagram of
morphisms of DGLA:

aid̃a = −[∂, ia], i[a,b] = [ia, [∂, ib]] = [[ia, ∂], ib], [ia, ib] = 0.

biaib∂ and ∂ibia are zero in Htp

(
ker(∂),

AZ

∂AZ

)
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(17)

L� _

h

²²

// K =

{
f ∈ Htp

(
ker(∂),

AZ

∂AZ

)
| f(IΓ ∩ ker(∂)) ⊂ IΓ

IΓ ∩ ∂AZ

}

� _

η

²²

A0,∗
Z (ΘZ) // Htp

(
ker(∂),

AZ

∂AZ

)

A0,∗
X (ΘX)

p∗

OO

// J =

{
f ∈ Htp

(
ker(∂),

AZ

∂AZ

)
| f(ker(∂) ∩ q∗AY ) = 0

}
//

?�

µ

OO

where the horizontal morphisms are all given by i.
Therefore diagram (17) induces a morphism of deformation func-

tors:
I : Def(h,p∗) −→ Def(η,µ) .

V.1.3. Lemma. If the differential graded vector spaces (∂AZ , ∂),
(∂AΓ, ∂) and (∂AZ ∩ q∗AY , ∂) are acyclic, then the functor Def(η,µ) is
unobstructed. In particular the obstruction space of Def(h,p∗) is natu-
rally contained in the kernel of the map

H2(C ·
(h,p∗))

I−→ H2(C ·
(η,µ)).

Proof. This proof is an extension of the proof of [24, Lemma 8.2].
The projection ker(∂) → ker(∂)/∂AZ induces a commutative dia-

gram

(18) K

η
²²

{f ∈ K|f(∂AZ) = 0}

η′
²²

α
oo

Htp

(
ker(∂),

AZ

∂AZ

)
Htp

(
ker(∂)

∂AZ

,
AZ

∂AZ

)
β

oo

J

µ
OO

{f ∈ J |f(∂AZ) = 0}

µ′
OO

γ
oo

Since ∂AZ is acyclic, β is a quasi isomorphism of DGLA. Since

coker(α) = {f ∈ Htp

(
∂AZ ,

AZ

∂AZ

)
|f(IΓ ∩ ∂AZ) ⊂ IΓ

IΓ ∩ ∂AZ

},

there exists an exact sequence

0 → Htp

(
∂AZ

IΓ ∩ ∂AZ

,
AZ

∂AZ

)
→ coker(α) → Htp

(
IΓ ∩ ∂AZ ,

IΓ

IΓ ∩ ∂AZ

)
→ 0.
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Moreover, the exact sequence

0 −→ IΓ ∩ AZ −→ ∂AZ −→ ∂AΓ −→ 0

implies that IΓ ∩ AZ and
∂AZ

IΓ ∩ ∂AZ

= ∂AΓ are acyclic. By Exam-

ple I.3.3, this implies that Htp

(
∂AZ

IΓ ∩ ∂AZ

,
AZ

∂AZ

)
and Htp

(
IΓ ∩ ∂AZ ,

IΓ

IΓ ∩ ∂AZ

)

are acyclic and so the same holds for coker(α): i.e. α is a quasiisomor-
phism.

As regard γ, we have

coker(γ) =

{f ∈ Htp

(
∂AZ ,

AZ

∂AZ

)
| f(∂AZ∩q∗AY ) = 0} = Htp

(
∂AZ

∂AZ ∩ q∗AY

,
AZ

∂AZ

)
.

By hypothesis ∂AZ ∩ q∗AY and ∂AZ are acyclic and so the same holds

for
∂AZ

∂AZ ∩ q∗AY

. Then coker(γ) is acyclic: i.e. γ is also a quasiisomor-

phism.
Therefore, Theorem III.1.22 implies the existence of an isomorphism

of functors Def(η,µ)
∼= Def(η′,µ′).

We note that the elements of the three algebras of the second
column of (18) vanish on ∂AZ . Then by definition of the bracket
{ , }, these algebras are abelian. Therefore Lemma III.1.19 implies
that the functor Def(η,µ)

∼= Def(η′,µ′) is smooth. Finally, Proposi-
tion III.1.21 guarantees that the obstruction space lies in the kernel

of H2(C ·
(h,p∗))

I−→ H2(C ·
(η,µ)). ¤

V.1.2. Semiregularity map for deformations with fixed tar-
get. In the notation of the previous section we have the following the-
orem.

V.1.4. Theorem. Let f : X −→ Y be an holomorphic map of com-
pact Kähler manifolds. Then the obstruction space to the infinitesimal
deformations of f with fixed target is contained in the kernel of the
following map

H2(C ·
f∗)

I ′
−→ H1 (Htp(IΓ ∩ ker(∂) ∩ q∗AY , AΓ)) .

Proof. Lemma II.2.2 implies that the complexes (∂AZ , ∂), (∂AΓ, ∂)
and (∂AZ ∩ q∗AY , ∂) are acyclic. Then we can apply Lemma V.1.3 to
conclude that the obstruction space lies in the kernel of the following
map

H2(C ·
(h,p∗))

I−→ H2(C ·
(η,µ)).

Since h is injective, by Lemma III.1.5, H2(C ·
(h,p∗))

∼= H2(C ·
π◦p∗)

∼=
H2(C ·

f∗). Then the obstructions lies in the kernel of I : H2(C ·
f∗) −→

H2(C ·
(η,µ)).
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As regard H2(C ·
(η,µ)), consider

K =

{
f ∈ Htp

(
ker(∂),

AZ

∂AZ

)
| f(IΓ ∩ ker(∂)) ⊂ IΓ

IΓ ∩ ∂AZ

}

and the exact sequence

0 −→ K
η−→ Htp

(
∂AZ ,

AZ

∂AZ

)
π′
−→ coker(η) −→ 0,

with coker(η) = Htp

(
IΓ ∩ ker(∂),

AΓ

∂AΓ

)
.

Applying again Lemma III.1.5, there exists an isomorphism H2(C ·
(η,µ))

∼=
H2(C ·

π′◦µ). By Remark III.1.1 there exists also a map I ′′ : H2(C ·
π′◦µ) −→

H1(coker(π′ ◦ µ)).
Moreover, we note that

J =

{
f ∈ Htp

(
ker(∂),

AZ

∂AZ

)
| f(ker(∂) ∩ q∗AY ) = 0

}
,

π′ ◦ µ : J −→ Htp

(
IΓ ∩ ker(∂),

AΓ

∂AΓ

)

and

coker(π′ ◦ µ) = Htp(IΓ ∩ ker(∂) ∩ q∗AY ,
AΓ

∂AΓ

).

Finally, since the complex ∂AΓ is acyclic, the projection

H1(Htp(IΓ∩ker(∂)∩q∗AY ,
AΓ

∂AΓ

) −→ H1(Htp(IΓ∩ker(∂)∩q∗AY , AΓ))

is an isomorphism.
Therefore, the obstruction space is contained in the kernel of I ′ :

H2(C ·
f∗) −→ H1(Htp(IΓ ∩ ker(∂) ∩ q∗AY , AΓ)): i.e

H2(C ·
(η,µ))

I ′

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
I // H2(C ·

π′◦µ)
I ′′

// H1

(
Htp(IΓ ∩ ker(∂) ∩ q∗AY ,

AΓ

∂AΓ

)

)

∼=
²²

⊕i Hom(H i(IΓ ∩ ker(∂) ∩ q∗AY ), H i(AΓ))

¤

V.1.5. Corollary. Let f : X −→ Y be an holomorphic map of
compact Kähler manifolds. Let p = dimY − dimX. Then the ob-
struction space to the infinitesimal deformations of f with fixed Y is
contained in the kernel of the map

σ : H2
(
X,O(ΘX)

f∗−→ O(f ∗ΘY )
)
−→ Hp+1(Y,Ωp−1

Y ).
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Proof. Let n = dimX, p = dimY − dimX and H be the space
of harmonic forms on Y of type (n + 1, n− 1). By Dolbeault theorem
and Serre duality we obtain the equalities Hν = (Hn−1(Y,Ωn+1

Y ))ν =

Hp+1(Y,Ωp−1
Y ).

Let ω ∈ H such that f ∗ω = 0. Considering the contraction with ω
we define a morphism of complexes

(A0,∗
X (f ∗ΘY ), ∂)

yω−→ (An,∗+n−1
X , ∂)

yω(φf ∗χ) = φf ∗(χyω) ∈ An,p+n−1
X ∀ φf ∗χ ∈ A0,p

X (f ∗ΘY ).

Actually, since ∂ω = 0, then ∂(φf ∗(χyω)) = (∂φ)f ∗(χyω) = yω(∂φf ∗χ).
In particular, since f ∗ω = 0, using the identity of Lemma II.6.1c we

have the following commutative diagram

A0,∗
X (f ∗ΘY )

yω // An,∗+n−1
X

A0,∗
X (ΘX)

f∗

OO

// 0.

α

OO

Then we get a morphism between the second cohomology group of the
cone associated to the morphisms f∗ and α:

H2(C ·
f∗) −→ H2(C ·

α) ∼= Hn(X,Ωn
X).

Composing the previous morphism with the integration on X we get

σ : H2
(
X,O(ΘX)

f∗−→ O(f ∗ΘY )
)
−→ Hp+1(Y,Ωp−1

Y ).

Since q∗H is contained in IΓ ∩ ker ∂ ∩ ker ∂ ∩ q∗AY , we conclude the
proof applying Theorem V.1.4.

¤

V.1.6. Remark. We recall that as already observed in Remark II.2.3,
the Kähler hypothesis is just used to have the ∂∂-lemma on AX ,AY ,
AX×Y and AΓ.

V.2. Deformations of a map with fixed domain

In this section we study infinitesimal deformations of a holomorphic
map f : X −→ Y , with fixed domain X.

In this case the DGLA N reduces to KSY and so diagram (16)
reduces to

cf∗(χyω) = ηyf∗ω, for each ω ∈ A∗,∗
Y , χ ∈ A0,∗

Y (ΘY ) and η ∈ A0,∗
X (ΘX) such

that f∗χ = f∗η.
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L

h
²²

A0,∗
Y (ΘY )

q∗ //

−f∗
**

A0,∗
X×Y (ΘX×Y )

π

''PPPPPPPPPPPP

A0,∗
X (f ∗ΘY ).

where −f ∗ is the composition π ◦ q∗.
Using this diagram and Theorem IV.2.5, analogously to the case of

fixed target we can prove the following proposition

V.2.1. Proposition. The tangent space of the infinitesimal defor-
mation functor of holomorphic map f : X −→ Y , with X fixed, is
H1(C ·

f∗) and the obstruction space is naturally contained in H2(C ·
f∗).

Proof. Analogous of the proof of Proposition V.1.1. ¤

V.3. Semiregularity for deformations with fixed target and
domain

Let f : X −→ Y be an holomorphic map and consider the infin-
itesimal deformations of f with fixed target and domain (see Defini-
tion IV.1.1).

As we have already observed in Remark IV.1.3, these deformations
can be interpreted as infinitesimal deformations of the graph Γ in X×Y ,
with X × Y fixed.

Therefore, in diagram (16), we don’t need to consider the DGLA
N = KSX × KSY and g. Then the functor Def(h,g) reduces to Defh
with

h : L = A0,∗
X×Y (−log Γ) ↪→ M = KSX×Y .

This implies that the previous Theorem IV.2.5 reduces to:

V.3.1. Corollary. Let f : X −→ Y be an holomorphic map.

Then the functor Def(X
f−→ Y ) of infinitesimal deformations of f

with fixed target and domain is isomorphic to Defh:

Defh ∼= Def(X
f−→ Y ).

Proof. Apply Theorem IV.2.5 with N = g = 0. ¤

V.3.2. Remark. This corollary is equivalent to [24, Theorem 5.2].
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V.3.1. Semiregularity map. As regards the obstructions to de-
form a map f fixing both X and Y , Lemma V.1.3 has the form below.

V.3.3. Lemma. If the differential graded vector spaces (∂AZ , ∂) and
(∂AΓ, ∂) are acyclic, then the functor Defη is unobstructed. In partic-
ular the obstruction space of Defh is naturally contained in the kernel
of the map

H2(C ·
h)

I−→ H2(C ·
η)

∼= ⊕i Hom

(
H i(IΓ ∩ ker(∂)), H i(

AZ

∂AZ

)

)
.

Proof. See [24, Lemma 8.2]. It follows from Lemma V.1.3, with
N = J = 0.

¤
We have also an analogue of Theorem V.1.4 and then Corollary V.1.5

becomes:

V.3.4. Corollary. Let f : X −→ Y be an holomorphic map of
compact Kähler manifolds. Let p = dimY − dimX. Then the obstruc-
tion space to the infinitesimal deformations of f , with fixed X and Y ,
is contained in the kernel of the map

σ : H1(X, f ∗ΘY ) −→ Hp+1(Y,Ωp−1
Y ).

Proof. See [24, Corollary 9.2]. It follows from previous Lemma V.3.3
and Corollary V.1.5.

¤

V.4. Semiregularity for the inclusion map

In this section, we focus our attention on the infinitesimal deforma-
tions of an inclusion i : X ↪→ Y of compact complex manifolds. The
DGLA L,M,N and the morphisms g, h and π are as before.

Consider the DGLA L′ introduced in Section II.5.1 (see also [24,
Sect. 5])

0 −→ L′ −→ A0,∗
Y (ΘY )

π′
−→ A0,∗

X (NX|Y ) −→ 0.

V.4.1. Corollary. L′ governs the infinitesimal deformations of
the inclusion i : X ↪→ Y .

The proof is postponed at the end of this section after two prelim-
inary lemmas.

V.4.2. Lemma. If i : X ↪→ Y is the inclusion, then the morphism
g − h : L×N −→ M is surjective.

Proof. We want to prove that for each φ ∈ M = A0,∗
X×Y (ΘX×Y )

there exist n1 ∈ A0,∗
X (ΘX) and n2 ∈ A0,∗

Y (ΘY ) such that g(n1, n2)−φ =

p∗n1 + q∗n2 −φ ∈ L = ker π, that is π(φ) = i∗n1 − i∗n2 ∈ A0,∗
X (i∗ΘY ) =

A0,∗
X (ΘY |X). Then the proof immediately follows from the fact that the

restriction morphism i∗ : A0,∗
Y (ΘY ) −→ A0,∗

X (ΘY |X) is surjective. ¤
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V.4.3. Lemma. In the notation above, L×M N ∼= L′.

Proof. By definition, L×MN = {(l, n1, n2) ∈ L×KSX×KSY | h(l) =
p∗n1 + q∗n2} and so 0 = πh(l) = i∗n1 − i∗n2.

Define γ : L×M N −→ KSY as the projection on KSY .
Then γ is an injective morphism of DGLA with L′ as image.
Actually, suppose that γ(l, n1, n2) = n2 = 0; then i∗n1 = 0 and so

n1 = n2 = l = 0.
About the image, consider the following exact sequences

0 // L′ //

²²

A0,∗
Y (ΘY )

π′
//

i∗

²²

A0,∗
X (NX|Y )

∼=
²²

// 0

0 // A0,∗
X (ΘX)

i∗ // A0,∗
Y (ΘY |X)

β // A0,∗
X (NX|Y ) // 0.

Let γ(l, n1, n2) = n2 ∈ KSY ; then β(i∗n2) = β(i∗n1) = 0 and so
π′(n2) = 0. This implies that γ(l, n1, n2) ∈ L′. ¤

Proof of Corollary V.4.1. By Theorem IV.2.5, the infinites-
imal deformation functor Def(i) is isomorphic to the functor Def(h,g).
By Lemma V.4.2 and Proposition III.2.34, DefL×MN

∼= Def(h,g). Fi-
nally the previous Lemma V.4.3 implies that DefL′ ∼= Def(h,g). Then
Def(i) ∼= DefL′ . ¤

V.4.1. Example. We can generalize the case of one inclusion i :
X ↪→ Y considering more subvarieties.

For example, let X be a manifold of dimension n and D1, . . . , Dm

smooth hypersurfaces, with 0 < m ≤ n − 2. Moreover, assume that
D1, . . . , Dm intersect transversally in a smooth subvariety S.

Define

DefX;D1,...,Dm : Art −→ Set

as the functor of infinitesimal deformations of the holomorphic map

f :
◦⋃
Di −→ X,

where f|Di
is the inclusion. Equivalently, for each A ∈ Art, DefX;D1,...,Dm(A)

is the data of an infinitesimal deformation XA of X over Spec(A) and
of infinitesimal deformations Di ⊂ XA of the Di.

Let ΘX(−log D) ⊂ ΘX be the subsheaf of vector fields that are
tangent to Di, for every i, and NDi|X be the normal bundle of Di in X.

Define L′ := A0,∗
X (ΘX(−log D)) as in Section II.5.1. Then L′ is a

DGLA and we have the following exact sequence

0 −→ L′ −→ A0,∗
X (ΘX)

π′
−→ A0,∗

S (⊕iNDi|X) −→ 0.
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Denoting for convenience D◦ =
◦⋃
Di, we define M = KSD◦×X ,

N = KSD◦ ×KSX and the morphism

g = (p∗, q∗) : N = KSD◦ −→ M = KSD◦×X ,

where p and q are the projections of D◦×X on D◦ and X respectively.
Finally, let L be the DGLA defined, as in Section IV.2, by the

following exact sequence:

0 −→ L
h−→ M

π−→ A0.∗
D◦(f ∗ΘX) −→ 0.

V.4.4. Corollary. L′ governs the functor DefX;D1,...,Dm. In par-
ticular, the tangent space of DefX;D1,...,Dm is H1(X,ΘX(−log D)) and
the obstruction space is naturally contained in H2(X,ΘX(−log D)).

Proof. In the notation above, applying Theorem IV.2.5, there is
an isomorphism of functors DefX;D1,...,Dm

∼= Def(h,g). Then proceeding
as in the case of inclusion it is sufficient to prove the two steps below.

Step 1. The morphism g − h : N × L −→ M is surjective (analogous
of Lemma V.4.2).

Step 2 . L′ ∼= L×M N (analogous of Lemma V.4.3).

Actually, Step 1 and Proposition III.2.34 imply that DefX;D1,...,Dm
∼=

Def(h,g) ∼= DefL×MN . Finally Step 2 implies DefX;D1,...,Dm
∼= DefL′ .

Proof of Step 1. We want to prove that for each φ ∈ M = A0,∗
D◦×X(ΘD◦×X)

there exist n1 ∈ KSD◦ = A0,∗
D◦(ΘD◦) and n2 ∈ A0,∗

X (ΘX) such that
g(n1, n2) − φ = p∗n1 + q∗n2 − φ ∈ L = ker π, or equivalently π(φ) =
f∗n1 − f ∗n2 ∈ A0,∗

D◦(f ∗ΘX). Then we have to prove that (f ∗,−f∗) :

A0,∗
X (ΘX) × A0,∗

D◦(ΘD◦) −→ A0,∗
D◦(f ∗ΘX) is surjective and it follows by

the hypothesis on Di.
Proof of Step 2. By definition, L×M N = {(l, n1, n2) ∈ L×KSD◦ ×

KSX | h(l) = p∗n1 + q∗n2} and so 0 = πh(l) = f∗n1 − f ∗n2.
Define γ : L×M N −→ KSX as the projection on KSX .
Then γ is an injective morphism of DGLAs and its image is L′ =

A0,∗
X (ΘX(−log D)).

Actually, suppose that γ(l, n1, n2) = n2 = 0; then f∗n1 = 0 and so
n1 = n2 = l = 0.

About the image, consider the following exact sequences

0 // L′ //

²²

A0,∗
X (ΘX)

π′
//

f∗

²²

AS(⊕iNDi|X)

∼=
²²

// 0

0 // A0,∗
D◦(ΘD◦)

f∗ // A0,∗
D◦(f ∗ΘX)

β // AS(⊕iNDi|X) // 0.

Let γ(l, n1, n2) = n2 ∈ KSX , then β(f ∗n2) = β(f∗n1) = 0 and so
π′(n2) = 0. This implies that γ(l, n1, n2) ∈ L′.

¤
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V.4.2. Semiregularity map for the inclusion. Let i : X ↪→ Y
be the inclusion of a submanifold X in Y and L′ the DGLA (defined
in Section II.5.1):

0 −→ L′ −→ A0,∗
Y (ΘY )

π′
−→ A0,∗

X (NX|Y ) −→ 0.

In Corollary V.4.1, we proved that L′ govern the infinitesimal deforma-
tions of the inclusion i. In particular this implies that the obstructions
are naturally contained in H2(L′).

Moreover as in Section V.1.1 we can consider the following mor-
phism of DGLAs

i : L′ −→ K ′ =

{
f ∈ Htp

(
ker(∂),

AY

∂AY

)
| f(IX ∩ ker(∂)) ⊂ IX

IX ∩ ∂AY

}
.

Then we get the following corollary, whose proof is essentially con-
tained in Manetti [24, Corollary 9.2].

V.4.5. Corollary. Let i : X −→ Y be the inclusion of a subman-
ifold X in compact Kähler manifold Y . Let p = dimY − dimX. Then
the obstruction space to the infinitesimal deformations of i is contained
in the kernel of the map

σ : H2(L′) −→ Hp−1,p+2(Y, IX)

where IX = ker i∗ ⊂ A∗,∗
Y is the subcomplex of differential forms van-

ishing on X.

Proof. It follows from previous Corollary V.3.4, reminding that
L′ ⊂ {a ∈ A0,∗

Y (ΘY )| ia(IX) ⊂ IX}.
¤
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