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Introduction

The present PhD thesis mainly concerns the construction and the properties of axially
symmetric traveling wave solutions for the heat flow of harmonic maps from an infinitely
long vertical cylinder of radius R, Q = {(x1, 22, 73) : 7 + 25 < R?*} C R?, to the unit
sphere S? in R3:

uy = Au+ |Vul>u  in Q x R. (1)
Here u = u(z,t)is amap from QxR in S?, Au is the vector field given by (Auy, Aug, Aug)
and
3 1 9y |2
2 7

i, j=1
where 11, ug, uz are the three scalar components of the director field w.

Equation (1) can be viewed as the simplest possible one within a class of evolution
equations for director fields which naturally arise in applications (see for example [30]
and [5] for a list of references). Equations similar to (1) naturally appear in the study of
the orientation of nematic liquid crystals and of microscopic magnetic dipoles composing
ferromagnetic materials, where the director field u represents the orientation of the par-
ticles or microscopic dipoles. But even the simplest mathematical models used in these
applications do not reduce to (1): in each of them (1) is part of a system of PDEs and the
equation itself contains additional terms. These additional terms, so as the other equa-
tions forming the model, are important for the global dynamics of the system which the
model refers to. Equation (1) can be viewed as the “heat equation for director fields” in
the sense that its nonlinearity merely reflects the constraint |u| = 1. Surprisingly enough,
the fundamental mathematical issues which make this class of evolution equations so in-
teresting, in particular the formation of defects in the vector field u and nonuniqueness
phenomena for the associated initial-boundary value problems, can be already observed
for this “simple” equation. A detailed study of the properties of (1) should lead to better
insight in the possible local behavior of a solution around its defects and its relation with
the nonuniqueness phenomena of the flow.

We observe that equation (1) can also be used to solve an interesting problem in
Differential Geometry. Given two riemannian manifolds M and N, with N compact and
dim(M) = dim(N), and a continuous map wuy : M — N, one can ask whether there
exists or not a harmonic map from M to N which is homotopic to ug. For instance, if
N = §? C R? and M = B?, where B? is the unit ball of R?, one could associate to (1)
the initial and boundary conditions

{u(x,O) = up(r) in B2
u(x,t) = up(z) in OB% x RT.
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If there exists a solution u of this differential problem which is continuous up to t = oo
and u; — 0 for t — oo, then the limit map u(x, 00) is both harmonic, since it solves the
equation

Aw + |[Vw*w = 0, (2)

and homotopic to ug (see [28] for more details).
In cylindrical coordinates (r, 6, x3), axially symmetric solutions of (1) can be repre-
sented in the form

u(r, 0, z3,t) = (cos@sinh,sinfsinh, cosh), (3)

where h = h(r,z3,t), the so-called angle function, satisfies the scalar equation (see

[12],[13])

h,  sin(2h)
ht - hrr + hx3x3 + 7 - 972

forO<r<R,z3 e R teR. (4)

It is well known (see [28] for instance) that the initial and boundary value problem
for the harmonic map flow:

uy—Au = [VulPu in QxR
u(z,0) = up(z) in Q2 (5)
u(z,t) = up(x) in 00 x Rt

(here © must be understood as a smooth bounded domain in R?, for instance the unit ball
B? ) may not have a global classical solution even if the initial and boundary data ug is a
smooth function. For = B3 this is true even in the class of axially symmetric solutions
of (5) when the initial and boundary data uy is itself axially symmetric, as shown in [12].
Actually, the smoothness of u only ensures local existence and uniqueness (with respect
to time) of the classical solution of (5): it may happen that there exists a finite time
T > 0 such that a classical solution u = u(x,t) is defined in all the time interval [0,7)
but

lim sup (sup |Vu(z, t)|> = 0.

t—T— z€QN
When this blow-up phenomenon actually happens the time T is called first time of blow-
up . For t > T it does not make sense to look for classical solutions of (5), but only for
weak ones. However, for these last ones there is no uniqueness (see [28]).

For axially symmetric solutions of harmonic map flow the singularities can only occur
along the xs-axis, as follows from equation (4) and standard regularity theory. Moreover,
due to the axial symmetry, in the points of continuity along the x3-axis only two values can
be attained: the north pole N = (0,0, 1) and the south pole S = (0,0, —1), corresponding
to values of the angle function which are even integer multiples and odd integer multiples
of m respectively. Then, until the first blow-up time the vector solution, unique and
smooth, must be identically equal to N or to S on the x3-axis and its angle function must
be equal to a fixed integer multiple of . At the first blow-up time there is the formation of
point singularities along this axis. In each of them the angle function of the vector solution
u suddenly switches from an integer multiple of © to another one. Then around such a
point the vector u rapidly changes its orientation performing one or more half revolutions



on the unit sphere S?. Recently ([2], [27]) it has been shown that nonuniqueness of
axially symmetric solutions of harmonic map flow is directly related to the occurrence of
point singularities in the solutions: in the special case of the unit ball in R? as spatial
domain and the function z/|x| as initial and boundary condition, the evolution of the
point singularity on the vertical axis of the ball can be prescribed, i.e. given any function
Co(t) : [0,00) —> (—1,1) there exists an axially symmetric solution of the heat flow (with
the same initial and boundary condition!) which is regular in its domain except of the
set {(x1, 29, 23,t) = (0,0,(o(t),t),t > 0}. The proof of this nonuniqueness phenomenon
is based on the construction of quite complicated comparison functions for equation (4).
This construction strongly uses the fact that the angle function associated to x/|z|, i.e.

ho(r,x3) = arccos <%> , (6)
VT4t a3

takes values only in the interval [0, 7], and it cannot be used to study nonuniqueness
phenomena when the angle function hy of the data wuy does not satisfy the condition
krm < hy < (k+ 1)7 for some k € Z. Unfortunately the latter condition is usually not
satisfied in the cases in which the initial function is smooth and the first time of blow-up
is finite.

For more general axially symmetric initial functions nonuniqueness results can still be
obtained, but it is much harder to find appropriate comparison functions. In this context
it turns out to be useful to construct axially symmetric traveling wave solutions of (1)
with a point singularity on the x3-axis: at least in some cases, these traveling waves are
the appropriate comparison functions, as we shall see in Chapter 3.

In the case of axially symmetric traveling wave solutions the angle function h takes
the form:

h(r,z3,t) = ¥(r, x5 — ct),

where ¢ € R is known as wave speed and 1) = 9(r, 2), the so-called shape function, is a
solution to the scalar equation:

wrr + wzz + % + sz - Sln(iw)
r 2r

=0 for0<r<R,zeR. (7)

These traveling waves are interesting mathematical objects themselves. They offer an
example of solutions of the harmonic map flow having a point singularity moving along
an axis with constant speed. Moreover, it is possible to construct these traveling wave
solutions so that the point singularity has either topological degree 1 or 0. In the first
case, at any time the vector solution u rapidly switches around the point singularity from
the direction S to N (or viceversa) by performing an half revolution on S?. In the second
case, the vector solution u rapidly performs a complete revolution on S?, starting from
the initial orientation N to come back to it (see figure on the top of the next page).

We used several different constructions to obtain traveling wave solutions of (1). A
first construction of variational type is exposed in the first chapter and is similar to
that one introduced by Lucia, Muratov and Novaga in the context of Ginzburg-Landau
problems in cylinders [25, 23, 24]. Just as in [23], the constructed traveling wave attains
a value independent of z on the lateral surface of the cylinder {2 and connects two locally
stable and axially symmetric steady states at x3 = 4+00. Assuming that the associated
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Figure 1: Behavior near a point singularity of degree 1 (a) and 0 (b)

“energy” at x3 = 400 is greater than the one at x3 = —oo (the energy is the Dirichlet
integral on the disk of radius R, [5. |[Vu|*dz; dzs, evaluated at 23 = £00), the speed ¢
R

of the wave is positive and determined by the radius of the cylinder €2 and the boundary
value. The shape function of the wave has a unique singular point on the x3-axis of
topological degree 1. By the translation invariance along the x3-axis, we may assume
that the singular point is the origin 0 = (0,0,0). We shall prove that the limit behavior
around O is given by the field x/|z|, a result similar to the one proved in [1] for harmonic
maps from B® C R? in S? C R® minimizing the Dirichlet energy under a suitable boundary
condition.
Since the Ginzburg-Landau heat flow:

(1= JuP),

uy = Au + 2

can be seen as a “penalty approximation” of the harmonic map flow (see [28]), it may
not be surprising that a variational technique used in the Ginzburg-Landau context can
be adjusted to work also in the harmonic maps context. In view of the bistable character
of the Dirichlet integral, what is really surprising is the fact that for our problem it is
possible to construct a traveling wave for every value of the wave speed, a result which
will be proved in Chapter 4. Naturally, waves with different speeds also have different
shape functions, even if the boundary data, the limit states at 3 = 00 and the position
of the point singularity are always the same.

This remarkable phenomenon is intrinsically connected to the nonuniqueness of the
general solution of the harmonic heat flow, as highlighted by the proof of the nonunique-
ness of the traveling waves. If ug = ug(x1, 22, x3) denotes the wave which we obtain by
the variational construction and ¢y > 0 its speed, the function wug(z1,xe, 3 — cot) is a



solution to (5) which at any time ¢ has a singularity of degree 1 at the point (0,0, cot). If
now c¢ is a given value, positive or negative, with ¢ # ¢g, we shall prove that (5) admits
a solution wu,. which, at any time ¢, has a (unique) singularity of degree 1 at the point
(0,0, ct). In other words, for our special choice of g, it is possible to construct for every
prescribed value ¢ € R a solution of (5) which moves the point singularity of uq along the
rz-axis with constant speed c.

For t — oo, the time evolution of u, resembles more and more to a traveling wave
and actually it is possible to prove that

Ve(1, T2, T3) 1= tlgilo Ue(21, Ta, T3 + ct, t)

is the shape function of a traveling wave with speed c¢. We remark that

Ve = Uo’

[2/9] [2/9]

and that v, has a unique point singularity of degree 1 in O.

Of course the traveling waves with speed ¢ # ¢ can be distinguished from wug by their
construction, which is not variational, and by their wave speeds. We conjecture though
that there is a different way to distinguish them: we believe that for ¢ # ¢y the tangent
map of v, at the origin is not z/|x|. If so, it is natural to ask whether the structure of the
nonuniqueness phenomena of problem (5) is the following: nonuniqueness is caused by a
certain freedom to prescribe the speed of a point singularity, as suggested by the results
in [27] which we have discussed before, but the choice of the speed is intrinsically related
to the local behavior of the solution near the singularity. In particular, one may wonder
whether there is a unique solution of (5) whose local behavior near a singularity xo(t)
satisfies the symmetry properties obtained for minimizers in [1] (for example, behavior
of the type \ﬁ:ig& etc.).

Also in Chapter 2 we shall use a variational technique to obtain axially symmetric
traveling wave solutions to (1) whose angle function on the lateral surface of the cylinder
Q) is a given decreasing function of the variable x3. Apparently, the construction is very
similar to that one of the first chapter. But, while in the first chapter the existence
of a traveling wave relies on the bistable character of the Dirichlet integral and on the
different nature of the two steady states at x3 = 400, the method used in the second
chapter actually works thanks to the boundary condition, which forces solutions of (7) to
move in the x3-direction with a given speed ¢ > 0. At first sight, this construction may
seem a bit artificial but it allows us to construct traveling wave solutions to (1) whose
point singularity, located on the x3-axis, can also have topological degree 0, other than
1. For this purpose, it is necessary to add a relazation term to the target functional.

Below we briefly resume the contents and the organization of the thesis.

In Chapter 1 we construct axially symmetric traveling wave solutions of (1) with a
given constant angle function at the boundary and a unique point singularity of degree
1 on the vertical axis of the cylinder 2. In addition we describe the limit behavior of the
waves as the radius of the cylinder €2 tends to co, and determine the limit behavior near
the point singularity.

The second chapter concerns the construction of axially symmetric traveling wave
solutions to (1) whose angle function on the lateral surface of the cylinder €2 is a prescribed




decreasing function of the variable x3. Each of these traveling waves has a unique point
singularity on the x3-axis whose topological degree can be either 0 or 1.

The third chapter describes a simple application of the traveling waves constructed
in the first two chapters. They are used as comparison functions in the study of the
nonuniqueness properties of (4) for a suitable smooth initial and boundary data.

In the last chapter we shall show that the traveling wave problem considered in Chap-
ter 1 has a solution for every prescribed wave speed ¢ € R.

Finally, the appendix collects some technical propositions and results often used be-
fore.

Part of Chapter 1 is contained in the preprint “Traveling wave solutions of harmonic
heat flow” coauthored by M. Bertsch and C. Muratov, which will appear in “Calculus
of Variations and Partial Differential Equations” The results of Chapters 2 and 4 are
contained in two preprints with M. Bertsch, “Traveling wave solutions of the heat flow of
director fields” and “Nonuniqueness of the traveling wave speed for harmonic heat flow”.
In addition the results of Chapter 3 will be contained in a preprint which I am preparing.
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Chapter 1

Traveling wave solutions of the
harmonic heat flow

Let u be a unit vector in R? defined on the disk Dp C R? of radius R. Considering the
Dirichlet integral |, D |Vul?dx for u € HY(Dg;S?), the corresponding Euler-Lagrange
equation is (see [28])

Au+|VulPu=0 in Dg:= {(z1,29) : 2] + 23 < R*}. (1.1)
Given a constant b > %, we associate to equation (1.1) the boundary condition

) 2()1'1 QbZL‘Q 1 —b2R2
u(@, 22) =up(1, 22) = 1+0?R?* 14+02R?7 1+ R?

) for (l’l,l’z)eaDR. (12)

Setting r := /2% 4+ a3, the following two functions are solutions of (1.1)-(1.2):

' 2bxq 2bzy 1 — b7
U+(l'1,l'2) = 1+ bQTQ’ 1 + b27“27 1 + b27“2 ’

[ 2bR?x;  2bR%z, 1 —0°R
u_ (21, 1) = 2 2R P2 D2RA P2 L 2R4 )

Observe that |uy| = |u_| =1, and that, since bR > 1,

8w SV’ R*w
2 2
_fder = ——— \Y% der = ———. 1.
/R|§7u | x TENEYE </R\ U | T s ( 3)

More precisely, u_ is a global minimizer of the Dirichlet integral in H'(Dpg;S?) subject
to the boundary condition (1.2), while u, is a local minimizer.
In the present chapter we consider traveling wave solutions of the equation

uy = Au+ |Vul®u (1.4)

in Qp x R, where Qg = D x R = {(21, 22, 23) : 23 + 22 < R?}, which connect u_ at
T3 = —00 to uy at x5 = oo:

u(wy, xe, x3,t) = v(x1, T2, w3 — Ct) € S?,



where ¢ € R and the function v = v(z1, x9, 2) is a solution of the problem

Av+cv, + |Vo|P’v=0and [v|] =1 in D xR
v(x1, 29, £00) = ug (21, T2) for (z1,79) € Dg (1.5)
V= Up on 0Dg x R.

In other words, the traveling wave is a connecting orbit between the two harmonic maps
u_ and uy.

In view of the energy inequality (1.3) and the bistable character of the Dirichlet
integral, we expect that there exists a solution v for a certain positive wave speed, cg.
Actually, a similar result holds for bistable Ginzburg-Landau systems ([23]), which can
be considered as approximations of our problem (see [28]). In the present chapter we shall
construct a traveling wave with speed cg > 0. In the fourth chapter we shall use this
construction to prove the existence of a traveling wave for all wave speeds ¢ € R, a most
surprising result which is undoubtfully counterintuitive, in particular if ¢ < 0. As we
already explained in the introduction, this result is intimately related to a nonuniqueness
property of initial-boundary value problems for equation (1.4) (see also [3], [2], [27]).

Before stating the main results of this chapter we observe that the asymptotic states
uy are axially symmetric and can be written as

us(xy, 20) = (ﬂ sin 04 (r), 22 Gin 0+ (r), cos Qi(r)) ,

r r
where
0. (r) := 2arctan(br) for 0 <r <R,
0_(r) = 2arctan [ 22 ) = 7 — 2arct (L)f0< <R
-(r) =2arctan { —— | = arctan { - or r < R.
Therefore it is natural to consider axially symmetric traveling waves:
v(xy, 29,2) = <ﬂ sinf(r, z), 2 Gin O(r, z), cos O(r, z)) ) (1.6)
r r
where the angle function 6 is a solution of the problem
1 in(2
Opr + =0, + 0. + B, — S”;( f) =0 in(0,R) xR
r r
(Ie,) O(R, z) = 2arctan(bR) for z e R
O(r, £o00) = 0.(r) for 0 <r < R.

The axial symmetry implies that v(0,0,z) = (0,0,+£1). Since v(0,0, £00) = u+(0,0) =
(0,0,=£1), we expect that any solution of problem I. r has at least one singular point at
the cylinder axis (although, in principle, the singularity could also occur at z = +00).
This is confirmed by the following result:

Theorem 1.1. Let b, R > 0 be such that bR > 1. Then there exists cg > 0 such that
Problem I., r has a solution, Or, which satisfies:

(i) Or is real analytic in [0, R] x R\ {(0,0)};

(i1) 0r(0,2) =1 if 2 <0, 6r(0,2) =0 if z > 0;

(7i) Og is strictly decreasing with respect to z in (0, R) x R;

(iv) the limits of Or to 0+ as z — ‘oo are uniform with respect to r.
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Figure 1.1: Qualitative form of the traveling wave solution from Theorem 1.1. In (a),
the angle variable 6 as a function of z and r is shown as a density plot, with black
corresponding to @ = 0 and white to § = 7. In (b), the corresponding vector field is
plotted. The wave is moving from left to right.

The translation invariance of Problem I,z with respect to z implies that 6z belongs
to a one-parameter family of solutions of Problem I.z. If bR < 1, the energy inequality
(1.3) is reversed and, due to the symmetry of the problem, Theorem 1.1 continues to hold
with cg < 0.

The second main result of this chapter concerns the limit problem as R — oo:

1 in(2
0rr+_0r+ezz+cez_$r;(726):0 in R* xR
r r
(Le,oo) O(r,00) = 2 arctan(br) for r >0
O(r,—o0) =m for r > 0.

Observe that in this case the equilibrium solution 2 arctan(br) is no longer isolated and
belongs to the continuum {2 arctan(ar) : a > 0}.

Theorem 1.2. Let b > 0 and let cg be defined by Theorem 1.1 for all R > % Then
CR = Coo a8 R — 00 for some coy € RT and Problem I._ o has a solution, O, which
satisfies:

(i) Os is real analytic in RT x R\ {(0,0)};

(1) 055(0,2) = m if 2 <0, 05(0,2) =0 if z > 0;

(111) O is strictly decreasing with respect to z in RT x R;

(iv) the limits of O as z — 00 are uniform with respect to r.

The last main result of the chapter is related to the behavior of the traveling wave
0r in a neighborhood of the origin. In terms of the vector function vg defined by (1.6)
for 6 = g, the statement of the next theorem can be formulated by saying that, in the
neighborhood of its point singularity, vg(z) =~ x/|z|.

10



Theorem 1.3. Given b, R > 0 such that bR > 1, let cg and Og be defined as in Theorem
1.1. Then as p — 0"

On(pcosd, psing) = 7 — 6
loc. uniformly in [—m/2,7/2].

Let us note that the problem of existence of traveling wave solutions for scalar reaction-
diffusion equations has been studied in great detail (see, e.g. [4, 32]). In particular,
problems in infinite cylinders with Dirichlet boundary data were treated in [11, 17, 31].
In our case, the situation is complicated by the fact that the nonlinearity in Problem
L., r becomes singular as » — 0. This is why a variational approach to this problem can
be particularly useful. It is also worth mentioning that a result similar to Theorem 1.3
has been proved in [1] for minimizing harmonic maps.

The proof of Theorem 1.1 is based on the solution of a constrained minimization
problem which is similar to one introduced by Lucia, Muratov and Novaga in the context
of Ginzburg-Landau problems in cylinders [25, 23, 24] (see also the work [17] of Heinze
for a related approach). Methods illustrated in the appendix will be used to handle some
specific technicalities related to director fields and axial symmetry. In section 1.1 we
introduce and solve the constrained minimization problem, and in section 1.2 we prove
Theorem 1.1. In section 1.3 we consider the limit R — oo and prove Theorem 1.2. Finally,
in section 1.4 we determine the behavior of the traveling wave 6z in a neighborhood of
the origin.

1.1 The constrained minimization problem

In the following, we follow closely the arguments of [24]. Formally the equation for 0(r, z),

sin(26)

1
91"1" _er ezz ez -
+ . + 0., +c¢C 52

=0 in (0,R) xR, (1.7)

is the Euler-Lagrange equation of the functional

Rl : 20 : 20
/dz/ irecz (93+9§+SI;12 —(9;)2—&)@".
R 0

r2

The terms of the integrand containing 6, (r) = 2arctan(br) have been added to make
the functional finite for certain functions 6 behaving like 6, as z — oo. More precisely,
setting f = 6 — 6, and denoting by L2 ,.((0, R) x (—oo, M)), with —oo < M < oo, the
set of Lebesgue measurable functions f on (0, R) x (—oo, M) such that

M R
/ dz/ re” f2dr < oo,
—00 0

sin f

we define the sets

}/::{\14% = {fELg’r((O,R)X(—OO,M)); frafza GLE,T((()?R)X(_OO’M))a

r
f(R,z) =0 for a.e. z € (—oo, M)},
Yor={f € L?((0,R)xR); f e Y for all M < oo} .

11



For all f € Y, g we define the functional

M—o0 M—oo

O, z(f):= lim ®}(f):= lim dz/ e (f2+ f2+V(r, f)>

where N
Vi(r, f) = (sm (04 + f) — fsin(264) —sin®6,) .

It follows from the following prop081t10n that ®. g : Y. gp — (—00, o0] is well-defined. Be-
fore stating it we recall an auxiliary result which we shall use several times (see Appendix,
Lemma A.1 and Corollary A.3).

Lemma 1.4. For allw € HL_(0,00) C C((0,00)) and 0 < p; < py

/ ; (wf T w) dr > [ cos(w(pa)) — cos(w(p))]

If k€ Z, a €R and w(r) = kn + 2arctan(ar), then, for all 0 < p; < pa,

P2 p sin? w 1—a%p? 1—a%p?
2 2 1
_ dr = _ _
/pl 2 (wr + 3 ) r = |cos(w(pz)) — cos(w(p))| = ’1 PP SRy

Proposition 1.5. Let f € Y. p and 0 = f+0,. Then
(i) for a.e. z € R

R 2 R 2 L2
1 B / r(,, sin“f , o sin“0. .
/0 (2 +V(r,f) | dr = 3 ;. + - ) = dr;

(i1) there exists C' > 0 such that for all 0 < M < oo and b > +

£M(f) / Czdz/ (92 Sme—( 2 _ S 9*)d7«z—0b2||f||2, (1.8)

where || - || is the norm in the weighted space L? .((0, R) X R);
(111) X p(f) = Nl{lm YM.(f) exists, and C’Z)2||f||2 <Y r(f) < o0.
—00 ’

Proof: (i) For a.e. z € R, f(-,2) € C([0,R]) N H}(0, R) and M € L2(0, R) (see
[30]). Here the subscript r in L? and H! indicates that the usual LP or Sobolev spaces
are to be considered with the weight function r. Since (-, z) € C([0, R]) N H}(0, R) and
Sme(r 2 ¢ L2(0, R) for a.e. z € R, integration by parts yields that

f R sin(26
/ rf.(r,2)0, dr = —/ sin(26,) f dr fora.e. z € R.
0 0 2r

Hence (i) follows from the definition of § and V.
(ii) Since bR > 1, 0(R, z) = 2arctan(bR) > 5. Let p, € (0, R) be such that 6, (py) = 3.
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For every z € R we define A, = {r € [37"/2py, ps] ; |f(r,2)| > %} and, denoting by p the
1-dimensional Lebesgue measure,

B = {zeR : M(AZ)ZPb(l—%)}I{ZER : /L(Az)zpb(l—%)}.

A simple computation shows that ||f||* > %(1 —3712) [,e** dz, where || - || is the

norm in L2,((0, R) x R). Hence [,e®* dz < Kb?| f|]* for some K > 0. On the other

hand, if z & B there exists p(z) € [p,37"/%, py] such that |f(p(z), 2)| < %, and therefore

0(p(2),2)] < %. Since O(R, z) > 7, there exists r(z) € [0, R] such that 0(r(z),2) = 3.
For a.e. z € R, f(0, z) is a multiple of = ([30]), and, using Lemma 1.4 and computing the

following integral separately over (0,7(z)) and (r(z), R), we obtain that

R .2 o2 R2
/ g(é’f(r,z)—kw)dr > R for a.e. z€ R\ B.
0

r2 1+ 02R?
By Lemma 1.4
By sin?(6(r, z)) sin?
s(e)i= [ (00 + TR g - R Y
0
By (o sin?(0(r, 2)) 20° R?
/0 5 <0T(T,Z)+T)dr—m fOI' a.e.zER.
Hence ¥(z) > 0 for a.e. z € B, and, for every M > 0,
SM(f) > / S(2)e” dz > ﬂ/ e dz > —2KP||f|
SR [ T 1+ R J o - '

(ili) For every M > 0 we have that

= [ see e [ (a0 ) e s
’ (—o0,M]\B (—o0,M]NB 1+ bR

where G(z) = fOR 2 (62(r, z) 4 sin®(6(r, z))r~2) dr. Since G is nonnegative, ¥ is nonneg-
ative in R\ B, and [e” dz < Kb || f||* < oo, the result follows at once. O

Observe that, reasoning as in the proof of (ii), we obtain that

S r(f) = VR(F) = Ser(f) = SR(f) = y
(SX(F) = BR(1) = —CPIIf|1 (1.9)

lim
N—oo

Corollary 1.6. The functional ®.p : Yorp — (—00,00] is well defined and ®.r(f) >
—CVU||f||? for all f € Ye g, where || || is the norm in LZ,.((0, R) xR). If 0 = f+6., then

i in? 0 in? ¢
. r(f) = /Reczdz/o g(ef+9§+ - 0L - = *) dr. (1.10)

r2
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Setting

By
f) :/dz/ iecszdr,
R 0

Corollary 1.6 and the following result imply that ®. z is bounded from below on the set

XC,R = {f € }/C,R; Fc,R(f) = ]'}

Lemma 1.7. For all f € Y, p such that f. € L2, ((0,R) x R)

Loal) = S,

where || - || is the norm in L2 ((0, R) x R). Moreover, for all z € R

/R ) 9 e—C?
rfé(r,z) dr < . Lo r(f). (1.11)
0

Proof: For a.e. r € (0, R) the function f(r,z)e? belongs to H'(R) and hence vanishes
as z — £oo. Therefore, integrating by parts and using Holder’s inequality, we obtain

that SI|fI1> < |[f]l - Izl = [If[[\/2Tc,r(f). The proof of (1.11) is equally simple: given
any z € R, from the inequality

/:oecydy/ORr(ﬁf+%)2 dr >0

o0 R 1 [e'¢) R
c/ dy/ recnydT—i-E/ dy/ rev f2dr >
z 0 z 0
R 00 R
/ dy/ re® f2 dr —/ reCZfQ(r,z)dr—l—c/ dy/ re? f2dr
0 z 0

and this last inequality 1mphes (1.11). O

we derive that

In the remainder of this section we shall solve the following constrained minimization
problem for all ¢ > 0:

(MP) Find h € X, g such that ®.g(h) =7 g := flgf Q. r(f)-
€Ac,R

Lemma 1.8. There exists My = My(b, c) such that for any M > My and f € X, g

D r(f) > PR(f).

Proof: Given any f € X, g, we define p, A,,%(2) (¢ € R) and B as in the proof of
Proposition 1.5. It follows from (1.11) that

2 .2 Pb 2 —cz
0% < rf2(r,z)dr < °
108 b c

V3
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for z € B. Since p, = ﬁ, this implies that there exists My = My(b,c) such that

B C (—o0, Mp]. At the same time, for any z € R\ B we have that X(z) > 0 (see proof
of Proposition 1.5). So, if M > M, then

Denlf) = OM(f) = Son(f) — BM(f) = / T ey ds > 0.

M

O

Proposition 1.9. Let {h,} be a minimizing sequence for ®. g in X. . Then there exist
h € Y. r and a subsequence, which we denote again by {hy,}, such that h, — h a.e. in
(0, R) x R and, for every M > 0,

sin(h, +64)  sin(h+64)
r r

in L2,((0,R) x (=00, M)) as n — oo, and ®. r(h) < I.g.

hTZT’ - hT7 h/TLZ - hZ)

(1.12)

Proof: Since I'c g(h,) = 1, the functions h,, and, by Lemma 1.7, h,, are uniformly
bounded in LZ,((0, R) x R). Fixing M > 0, we claim that

sin(h, +64)
T

By (1.9) and Lemma 1.7,
IRV

(2 in?
®, p(h +K1+/ dz/ (h sin 9+)+Slr;r6+)dr,

where K is a constant depending only on b and c. Observe that }“‘5112171@” = h, (7’0;),

By, and are uniformly bounded in L2 ((0, R) x (—oc0, M)). (1.13)

M R
sodr = Zé‘fR(hn)—/ dz/ re“Vr,h,) dr <

and the L2(0, R)-norm of % and 9; are bounded by 2. Hence, integrating by parts
and applying Holder’s inequality, we obtain that

M R
/ dz/ reh? dr < Cp |1+ / dz/ re* hZ, ,
—00 0

where Cy depends on b, ¢, M and Z. .
Similarly, it follows from the equality

h 6 M
/ dz/ - sin” ++)d 5 (h, M) — / dz/ re® b2 dr+

R 9 M R _:..2
/ e“d 2 / Sll’l( 9+>hn dT—f-/ eczdz/ S (9+) d?”,
o 0 2r oo 0 2r
0

that also w is uniformly bonded in L? ((0, R) x (—oo, M)), and we have proved
(1.13).
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In view of the uniform bounds on h,,, it follows from a standard diagonal procedure
that, up to a subsequence, there exists a limit function h € Y,y (observe that, by the
compactness of the usual trace operator, h vanishes at r = R for a.e. z € R). If for every
M > 0 we define the functional

oo = [emas [ (0r o g2 Y 0

2 2
0o T r

M cz Rr 2 2 Sil’l2(') 20 R? e
= [Ceas [ (e e ) ar- ZHEE

0o 0

then, by Proposition 1.5, ®Yz(h) = & (k4 61) and ®Yy(hy,) = E % (hn + 6.4) for every
n € N. By Fatou’s Lemma
O} (h) < liminf @Yo (h,)  for all M > 0,

n—0o0

and, by Lemma 1.8, for all M > M,

@) (h) < liminf @, g(h,) = I g.

n—oQ

The thesis follows then from the definition of ®, p. O

Since I'c g(h) < 1, we don’t know whether h is a solution of Problem (MP). The
following result provides a criterium for the existence of a minimizer.

Lemma 1.10. If &, zr(w) < 0 (resp. < 0) and I g(w) > 0 for some w € Y. g, then
Zor <0 (Z.r <0) and Problem (MP) has a solution.

Proof: Reasoning along the lines of [24], we set a := —c ' log(T'. g(w)) and w,(r, 2) :=
w(r,z—a). Then I'. gp(w,) = e I'.gr(w) =1 and ¢, gr(w,) = e P, g(w) <0 (resp. < 0).
Hence w, € X, gr and Z. g <0 (resp. Z. g < 0).

If 7. p = 0, w, itself is a minimizer.

If 7. p < 0, we use the function h defined by Proposition 1.9 to construct a minimizer:
since 0 < T r(h) <1, d:=—c tlog(T.r(h)) > 0; setting hq(r, 2) := h(r,z — d) we have
that . g(hq) = 1 and . g(hg) = ¢ @, g(h) < &, r(h) < .. Hence hy is a solution of
Problem (MP). O

Proposition 1.11. Let b, R > 0 be such that bR > 1. Then there exists cj; = c(b) such
that for every c € (0,cy,) Problem (MP) has a solution and Z. p < 0.

Proof: In view of Lemma 1.10, it is enough to prove that there exists cj > 0 such
that for all 0 < ¢ < c}; there exists f € Y, g such that ®. g(f) < 0 and I'c g(f) > 0.
We define the function

9(r, 2) = max (2 arctan(br), 2 arctan (@)) for (r,2) € [0, R] x R,

where
0 if2>1
A(z) = ¢bR*(1—2)? if0<z<1
bR? if 2 <0.
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Observe that ¥(r, z) = 2arctan(br) if z > 1, ¥(r, z) = 2arctan(bR?*r~!) if 2 < 0, and, for
z € (0,1),

2 arctan(AfnZ)) r< Agz)
I(r,z) =

2arctan(br)  r > Agf).
Since (A")2A~! = 4bR? in (0, 1), one easily checks that the function f := ¢ — 2 arctan(br)
belongs to Y, g. It follows from (1.10) that

0 1 — b*R? ! 1 —bA(z)
d = 2% ———d 2e% —— "2 (
«rlf) /OO Cirem T /O CTreae T

A?“A@VO%O+M¢Q—1+&@QdZS§Gi§§+&—0

L@E? 2 (1-PR :
+Ae M@‘“ZzCﬁﬁﬁ+@‘m“”Ro'

Hence there exists ¢}, = ¢j(b) > 0 such that &, z(f) < 0 for all ¢ € (0, c},). O

Now we are ready to prove the main result of this section:

Theorem 1.12. Let b, R > 0 be such that bR > 1.
(i) For all ¢ > 0 the constrained minimization problem (MP) has a solution, h.g.
(ii) There exists cg = cg(b) > 0 such that Z., r =0, and

2
Ierp=1- (C—R) for all ¢ > 0. (1.14)
c

Proof: Let ¢,¢ > 0 and let T' : Xz g —> AL g be the map defined by T'(f)(r,z) =
f(r, 52+ B), where 8 = %log ( E) One easily verifies that T is well-defined and bijective,
and that
¢

O(T(f)) =1+ ( ) (®a(f) —1) forall f € Xzp. (1.15)

Let c¢}(b) be defined by Proposition 1.11, let ¢ € (0, c}) and let hz g be a minimizer of
®; p on Xz p. Since T is bijective, relation (1.15) implies that T'(hs ) is a minimizer of
®. r on X, g, and that

C

1
hC,R(ra Z) = hsr (7“, SZ + —log (S)) if ¢ > 0.
c c c

In particular

N\ 2
Tor=1+ (9) (Ton —1). (1.16)
c
Since Z; g < 0, it follows from (1.16) that there exists cg > ¢ such that Z., p = 0.
Replacing ¢ by cg in (1.16), we obtain (1.14). O

Corollary 1.13. Let cg be defined by Theorem 1.12. Then ®., r(w) > 0 for all w €
Yerr

The proof is immediate: if ®.,, g(w) < 0 for some w € Y, g, then I'., gr(w) > 0 and,
by Lemma 1.10, Z., r < 0. On the other hand, by definition, Z., g = 0 and we have
found a contradiction.
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1.2 Proof of Theorem 1.1

In this section we shall prove our first main result:

Theorem 1.14. Let bR > 1 and let cr and h. g be defined by Theorem 1.12. Then there
erists zr € R such that the function

Or(r,2z) == 0.(r) + hepr(r, 2+ 21)
satisfies all properties listed in Theorem 1.1.

We shall often omit the subscripts of cg, hep, r, Iepr and ., g.
The proof of Theorem 1.14 consists of several steps. First we introduce some function
spaces. Let V' be the Hilbert space

n

r

V= {n € Le,.((0, R)xR);ny,m: € L (0, R)xR); (R, z) = 0 for a.c. Z}

with scalar product

R uv
(u,v)y = /dz/ re®” (—2+urvr+uzvz>dr.
R 0 r

We remark that if n € V, then n(0,2) = 0 for a.e. z € R (see [30]). For each M > 0
let Sy be the subspace of V' containing the functions n € C'([0, R] x R) such that
supp(n) C [0, R] x (—oo, M], n(R,z) = 0 for z € R, and ||n|ly < oco. Let Vjs be the
closure of Sy; in V. Then V), is a Hilbert space with scalar product (-, -)y.

Lemma 1.15. Let ¢ = cg and h = h., r. For alle € (0,1) there exist M > 0 andn € Vy
such that (h,, n.) > 2(1 —&)['(h) and ||n.||> < (1+¢)?||h.||*, where (-, ) and || -|| are the
scalar product and norm in L2 ((0, R) x R).

Proof: Since ||h.||* = 2T'(h), we have that 2(1 — e)T'(h) — (h,, n,) = (h., h, —n.) —
ellh.)|* < ||h.|| (J|he — n.|| — €||h.]]). Hence it is sufficient to show that for all € € (0,1)
there exist M > 0 and 7 € Vi, such that ||h, — n,|| < e||h.||. Let {g.} € C3((0, R) x R)
be a sequence such that g, — h. in L2 ((0, R) x R). For every n € N we define

(T, 2) == — /00 gn(r,t)dt (r,z) € [0,R] x R.

For all n € N there exists M,, > 0 such that n, = 0 in [0, R] x (M,,00). Moreover,
M(R,z) = 0 for z € R and ||n,]lv < oo. Therefore 7, € Vi, for all n, and, since
(Mm). = gn, the proof is complete. O

Proposition 1.16. Let ¢ = cg and h = he, r. Then h is a distributional solution of the
equation

h.  sin(2h + 260,) — sin(26..)

Bz + cha o+ iy + T = 5 =0 in(0,R) xR (1.17)
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Proof: For M > 0 we define the following functionals on V);:
Fu(n) = ®(h+n) and Gu(n) = T(h+n).

Gy is locally Lipschitz continuous on V), Frechet differentiable in zero and its differential
in 0is VG (n) = (h.,n,). By Lemma 1.15, VG, # 0 on V), if M is large enough.
Also F); is differentiable in 0 and its differential in 0 is

R in(2h + 26..) — sin(26
VFu(n) = /dz/ r e (thn+51n( + 21)2 sin( +)77) dr.
R 0

Let Gy :={n € Vi : Gu(n) = Gu(0)} = {n € Viy : T'(h+n) = 1}. Since n+h € X, g for
all n € Gyr, we have that ®(h) < ®(h+n) if n € Gyr. By the Lagrange’s multiplier theorem
and the inclusion Vy; C Vi for M’ > M, there exists A € R such that VFy, = AVGy
on Vi for all M > 0. In particular, for all n € C3((0, R) x R) we have that

R in(2h + 20.) — sin(26
/dz/ re®” (hmr +(1—=MNh.n, + sin(2h + 2;)2 sin +)77) dr =0, (1.18)
R 0

i.e. h is a distributional solution of the equation

o 4 90.) — sin(2
(1 = A)(hay + chy) + hyp + h,  sin(2h + 9;)2 sin(26)
" r

=0 in(0,R) xR

It remains to prove that A = 0. By Lemma 1.15, applied with ¢ = %, there exist
M > 0 and n € Vy such that (h.,n,) > T'(h) = 1 and ||n.| < 3||h.|| = %, where the
scalar product and the norm are taken in L? .((0, R) x R).

First we suppose that A > 0. Let a < 0 and 7, := an. Then

VEy(M.) = AVGu(1.) = Aalh,,n,) < Aa <0,

whence
O(h+n,) <P(h)+ Xa+||n|lvola) asa—0".

Since ®(h) = 0, we can choose a < 0 so small that ®(h + 7,) < 0. On the other hand,
since h+ 1, € Y, g it follows from Corollary 1.13 that ®(h +1,) > 0 and we have found
a contradiction.

Hence A < 0. Arguing by contradiction we suppose that A < 0. Reasoning as before,
with a > 0 instead of a < 0, the result follows at once. O

Standard regularity theory (see [22]) implies

Corollary 1.17. Let ¢ = cg and h = he, r. Then h is real analytic in (0, R] X R, h is a
classical solution of (1.17) in (0, R] x R, and h(R,z) = 0 for every z € R.

Proposition 1.18. Let h = h., r. Then
0 < h(r,z) < ¢(r) :=m — 2arctan <bLRQ> — 2arctan(br) (1.19)
for0<r <R and z € R.
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Proof: Let fi(r,z) = max(0, h(r, z)), fo(r,z) = min(fi(r, 2),o(r)), 01(r,2) = fi(r,z)+
0. (r) and Oy(r,z) = fo(r,z) + 04 (r). Then we have trivially f; € Y., g (¢ = 1,2) and
|(f2):] <|(f1):] < |h| = T'(f2) <T(f1) <T'(h). Thanks to Proposition 1.5, we can prove
the inequality X(f;) < X(h) by showing that for every z € R

/RH(T,Z;Qi)dT—/RH(T,Z;Q)SO (1.20)
where 6(r, z) = h(r, z) + 6, (r) and
H(r,z;u) = g (uf(r, 2) + SHI(ZM) .

We fix z € R arbitrarily. Since h(r, z) is real analytic in (0, R), we may write

E_(2) = {re(0,R);0(r,2) < 6.(r)} = |J (am,Bn), (1.21)

neTCZ
where 0 < a,, < B, < py1 < Bni1 < Rforn,n+1 € T. We observe that, for alln € T,
0(Bn,z) = 0.(B,) and, if oy, > 0, O(vy, 2) = 04 (). Then fOR(H(T, 2;01)—H(r,z;0))dr=
Jo o H(r,z:0,) —H(r,z;0))dr :n;ff:(H(r, 20,)—H(r,z;0))dr. By Corollary A.3

ﬁn
/ (H(r,z0,) — H(r,z0)dr <0 if a, > 0. (1.22)

We observe that a,, = 0 may happen for at most one value of n, and if so we may assume
without loss of generality that ay = 0. In this case 6(0,z) = k7 with k € Z,k < 0 and
by Corollary A.3 we obtain

Bo
/ (H(r,z;04) — H(r,z;0))dr <0 if op = 0. (1.23)
0

Since (1.22) and (1.23) imply (1.20) for i = 1, we get X(f1) < X(h) = ®(f1) < P(h) = 0.
At the same time I'(f;) > 0, since I'(f;) = 0 would imply f; = 0 and then we would
have 0 = X(f1) < ¥(h) = ®(h) — I'(h) = —1, which is clearly absurd. Arguing as
in the first part of the proof of Lemma 1.10, there exists a constant k£ such that the
function fi(r, z — k) belongs to X, g and is a minimizer of Problem (MP). By standard
regularity theory fi(r, z—k) is smooth in (0, R) xR and, by the strong maximum principle,
fi(r,z—k) > 0 for all (r,z) € (0, R) x R. Hence f; = h in (0, R) x R and we have proved
the first inequality in (1.19).

Now we can say that fo = min(h(r, 2),¢(r)) = 62 = min(6(r, 2),0_(r)). Arguing as
before, with E_(z) replaced by E,(z) = {r € (0,R); 6(r,z) > 6_(r)}, only the proof of
inequality (1.23) needs to be slightly modified. So we suppose that there exist z € R and
Bo € (0, R] such that

O(r,z)>0_(r) for 0O<r<pfy and 6(5y,z)=0_(F). (1.24)

Since bR > 1, by applying Theorem (A.6) to the function §_(r) = 7 — 2 arctan(r/(bR?))
we find that (1.23) is still true. Since (1.22) and (1.23) imply (1.20) for i = 2, we get
Y(f2) < 2(h) = O(f2) < ®(h) = 0. Arguing in the same way we did for f; we deduce
the existence of k& € R such that fy(r,z — k) < ¢(r) for all (r,z) € (0,R) x R. Hence
fo="hin (0, R) x R and (1.19) is completely proved. O
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Lemma 1.19. Let h = he, g. Then h(-,z) — 0 in C}

loc

((0,R]) as z — oc.

Proof: Let p € (0,R) be fixed and let W,( f h*(r,z) dr. Tt follows from
Lemma 1.7 that [, e W,(z) dz < CQp, whence fo p( ) dz < oo. Standard Schauder
estimates (see [15]) imply that there exists K = K(c, b, A, p) > 0 such that

1l cap.rxr) < K. (1.25)

Hence W, is uniformly Lipschitz continuous in R and h(-,2) — 0 in L?*(p, R) as z — oc.
The convergence in C?([p, R] x R) follows from (1.25) and the arbitrariness of p completes
the proof. O

Our next step will be showing that we can choose the minimizing sequence {h,}
such that its limit h is strictly decreasing with respect to z in (0, R) x R. To do it, we
have to apply a one-dimensional rearrangement technique (with respect to z) to 0(r, z) =
h(r,z) 4+ 0.(r), or, equivalently, to h. Actually, since it is not possible to work directly
with z, we shall apply the rearrangement to the variable x = e“2*. To this end we consider
the transformation

CRZ

r=e >O<—>z:clf3110gx

and the associated bijective map
T: DCR,R —> SCR,R
f(r,z) = f(r.cg'log)
whose domain is given by the set

Depr=19€Yer|I'(g) < o0}

and the image by

Son = {g € L2((0, R) x RY) ] 0.9 ¢ 120, 1) % (0.0)) va >0,

/Ooodg;/o ra?g? dr < oo and g(R, x)_()(ae)} (1.26)

For every f € D., r the equalities
O(f) = W(T(f)) = QUT(f) +04(r)) (1.27)

2
U(g) = — lim dx/ (CR % 4+ +V(r,g)) dr

CR a—r00 2
and 2(9)
1 9 999 5 sin?(V B
Q) = e alggo dx/ r (cRx vy + U, + 2 Gb(r)) dr
where V' is the same functlon as in section 1.1, and
sin2(0+(r)) d 2
Golr) = 4 1 20, ) (1.28)
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Lemma 1.20. Let h = h., g. Then h, <0 in (0,R) x R.

Proof: Let
h=T(h), 9=h+0.(r). (1.29)

Then, thanks to Corollary 1.17, to Proposition 1.18 and to Lemma 1.19 we can say that h
and ¥ satisfies properties (P1)-(P4) of Appendix B, with ¢(r) = 0 and ¢(r) = 2 arctan(br)
respectively. If we denote by h*,9* the onedimensional decreasing rearrangements of h
and ¥ with respect to the variable x (see Appendix B for the exact definition), then it
follows at once from Propositions B.9, B.10, and B.13 that the norms of h* and xh} in
L%((0,R) x RT) are both finite and Q(9*) < Q(v¥). Hence, by (1.27), ®(T~(h*)) <
®(h). If we define h = T-'(h*), then h € Y,, g, is nondecreasing with respect to z
and satisfies 0 < T'(h) < 1 and ®(h) < ®(h) = 0. The inequality (k) < 1 follows
from Proposition B.10 and definition of 7', and T'(h) > 0 follows from the observation
that Vr € (0, R) sup,ep h(r, 2) = sup,p h(r, z) > 0, since T'(h) = 0 would imply A = 0.
Arguing as in the proof of Lemma 1.10, a suitable translation of h with respect to z yields
a minimizer of Problem (MP) which is decreasing in z. The strict monotonicity follows

from the strong maximum principle. O

Remark 1.21. The validity of Proposition B.8 relies on Proposition B.3, for which it is
crucial that the function F' does not depend on x. This explains why we cannot apply
the rearrangement technique directly to the functional ® in the original z variable. On
the other hand, the form of the functional ) and the key inequality (B.9) applied to the
function P(x) = x? make the method work in the x variable.

Proposition 1.22. Let h = h¢, g. Then there exists zp € R such that h(0,z) = 7 if
z < zr and h(0,2) =0 if z > zg.

Proof: Since h(0,z) = lim, o+ h(r, z) = k(z)7 for some k(z) € Z for a.e. z € R ([30]),
Theorem 1.18 implies that k(z) is either 0 or 1. Hence, by Lemma 1.20, there are three
possibilities for the behavior of h(0, z):

(A) he C(]0,R] x R) and h(0,z) =0 for all z € R;
(B) there exists zg €R such that h(0,2) = 7 if z<zg and h(0,z) = 0 if 2> zg;
(C) heC([0,R] xR) and h(0,z) == for all z € R.

We have to prove that cases (A) and (C) do not occur.

Arguing by contradiction, we first suppose that case (C) occurs. Let 6 = h+60,,a > b
and 0 < p < 1. By Lemma 1.19, there exists z, such that 0 < 6(2, z) < 2arctan p for all
z > z,. Since 0(0,z) = 7 for all z € R, it follows from Lemma 1.4 that

e Ry sin’ @ 5 sin’#
czd o 02 . 0/ . + d
[l [P (T - 0 - 0

P
fo'e) 1_ 2

Z/ 2 (7p2) e““dz = oo.
z L+p

Hence ®(h) = co and we have found a contradiction.
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It remains to exclude case A: suppose that h € C([0, R] xR) and h(0,z) = 6(0,2) =0
for all z € R. Then, by Lemma 1.4,

/OR (%I’%\Q +V(r, h)) dr— /OR (93 L I00) e sz#) dr >0

72 r

for a.e. z € R. Hence ®(h) > I'(h) = 1. But ®(h) = 0 and we have found a contradiction.
U

Proposition 1.23. Let h = h., r. Then

h(-,2) — {O as z — 00

Y asz —» —00

)
n Cf.

((0, R]) and uniformly in [0, R], where ©(r) is defined by (1.19).

Proof: The convergence to 0 as z — oo is an immediate consequence of Proposi-
tion 1.22 and Lemma’s 1.19 and 1.20.

Since h, < 0, the limit H(r) := lim,, . h(r, ) is well-defined for all » € [0, R] and
satisfies 0 < H < ¢ and H(R) = 0. By (1.25), h(-,2) — H in C2_.((0, R]) as z — —o0,

and, for all r € (0, R], h.(r,2) and h..(r, z) vanish as 2 — —oo. Hence H € C?*((0, R])

and satisfies i . (9H 428 (99
H,, + o Sln( + +) B SlIl( +) —0 in (O,R)
r

2r2
It follows from Proposition 1.22 and Lemma 1.20 that H is continuous down to r = 0
and H(0) = w. Setting #_ = H + 60, we have that 6_ is a classical solution of

R e - in (0, R)
Y(0) =m, Y(R)=2arctan(bR) (1.30)
0.(r) < () < p(r) +6,() i [0,R].

This problem has a unique solution, 7 — 2 arctan(b~*R™?r), and hence H = ¢ in (0, R).
As before, the uniform convergence to ¢ in [0, R] follows from Proposition 1.22 and
Lemma 1.20. O

Proposition 1.24. Let 6 be the function given by
O(r,z) = 04.(r) + hepr(r, 2+ 2R)

let I be an open nonempty interval and k € 7 a constant such that 6(0,z) = krn for
z € 1. Then 6 is real analytic in [0,1) x I.

Proof: 1t is enough to prove that 6 is real analytic in a neighborhood of (0, z) for all
z € I. The monotonicity with respect to z implies that € is continuous in [0,1) x I. Then
the function

(g, e, 2) 1= <ﬂ sinf(r, z), 2 sin O(r, z), cos O(r, z)) . r=/x}+ 13,
r

r
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is a continuous weak solution of Au + |Vul*u + cu, = 0 in D x I. Tt is well known
(see [19] and [16]) that weak solutions are real analytic in open sets in which they are
continuous, and hence u is analytic in D x I. Since the first component of u, uy, vanishes
in {(0,0)} x I and uy(r,0,2) = sin(6(r, z)), the analyticity of the function arcsin in a
neighborhood of the origin implies that, given z € I, 8 is real analytic in a neighborhood
of (0, 2). O

Theorem 1.14 follows almost at once from Propositions 1.22 and 1.23, Corollary 1.17,
Lemma 1.20 and Proposition 1.24.

1.3 Proof of Theorem 1.2

In this section we consider the limit of h., r as R — oo to construct a solution of

Problem I._ o, where cy is the limit of cg as R — co. Here cg and h,, r are defined by

Theorem 1.12 (throughout this section we shall assume that b > 0 is fixed and bR > 1).
We first prove the existence of the limit speed c,.

Lemma 1.25. The wave speed cgr is nondecreasing with respect to R and

Coo = lim cp < 0.
R—o00

Proof: Let 0 < p < R and

(r.2) he,p(r,z) ifO0<r<pzeR
w(r, z) =
0 ifp<r<R,zeR

Since w € Y., g and ®., gr(w) = P, ,(hc,,) = 0, it follows from Lemma 1.10 that
7., r(w) <0. Hence, by (1.14), ¢, < cg.

It remains to show that cgp < C' for a constant C' which does not depend on R. By
Proposition 1.5, there exists a constant K such that

0= (I)CR,R(hCR,R> = ECR,R(hCR,R> +1> _sz”hCRﬂ”Q +1

for all b and R, and by Lemma 1.7,

—8Kb? —
CRr
O
The following result can be viewed as a stronger version of Proposition 1.22.
Lemma 1.26. There erist 2% ,27 € R and 0 <7r* < % such that for all R > %
hen+0: > 5 in [0, B] x (=00,2") (1.31)
and -
hepr+0+ <5 in [0, 7] x (2%, 00) (1.32)
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Proof: To prove (1.31) we argue by contradiction and suppose that for all n € N there
exist R,, > %, rn € [0, R,] and 2, — —o0 as n — oo such that

v
6)n ny ~“n <_7
(s 2n) < 2

where 60, = hc, g, + 04. The monotonicity with respect to z implies that

™

On (10, 2) < for z > z,.

2o |

Setting

Zn R, CRp 2 : 2071 : 20
An:/_ dz/o 7"62 ((en),%+51“2 —(e;)Q—SmQ*)dr,

T r

it follows from Lemma 1.4, applied in the intervals (0,r,) and (r,, R,) for z > z,, that
0= @cRn,Rn(hn) Z FcRn,Rn(hn) + An =1+ An

Hence A,, < —1. On the other hand, using again Lemma 1.4,

- c zl_bQRzL - CR, 2
A, >2 eiin mdzZ—Q efn*dz —-0 asn— oo,

—0o0 — 00

where we have used that z, — —oo and cg, is uniformly bounded (by Lemma 1.25).
Hence we have found a contradiction.

It remains to prove (1.32). Let a > band p > 0 be such that ap < 1,1i.e. 2arctan(ap) <
7. It follows from the proof of Lemma 1.19 that the convergence of he, r to 0 in C([p, R])
as z — oo is uniform with respect to R. Hence, setting 6., r = h¢, r + 0+ there exists
z, € R such that for all R > ;

0. < 2arctan(ar) in [p, R] X (z,,00).

We claim that there exists 2z > z, such that (1.32) holds with r* = p. Arguing by
contradiction we suppose that there exists z, — oo, r, € (0,p) and R,, > % such that,
setting 0, = 0., R,

T
en nycn) — 5~
() =
Hence T
On(rn, z) > B if z < z,.
Applying, for z, < z < z,, Lemma 1.4 to the intervals (0,r,), (r,, p) and (p, R,,), we find
that n ) )
n mor sin“ 0 2 sin“ 6,
CRn? — | (6,)? (0 — d
R A e e
Zn 1 _ 2
Z/ Q(M)emnzdz%oo as z, — 00,
5 \1+(ap)?

since cp, is uniformly bounded. Hence 0 = ®., g, (hey, ,r,) — 00 as n — 0o and we
have found a contradiction. O
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For any M > 0 we define L}, as the Hilbert space formed by all the functions f which
are measurable on Rt x (—oo, M) and for which

M fe'e)
| fllaz+ ::/ dz/ recRZ|f|2dT<oo,
—00 0

with the natural scalar product. Similarly we define the Hilbert space LT, with the norm

1 oot :=/dz/ re |fI2 dr
R 0

In what follows we shall denote by hgr the function

he(r,z) = {hCR’R(T’ 2) ir<R

0 otherwise.

Proposition 1.27. For any R > % and M > 0 we have

L% . = V2
V8

2' ||hR||oo,+ S CR

H Ohgr sin(hg)

<

M,+

s =
where @ and Q' are constants depending only on b,cr and M.

Proof: Tt is sufficient to prove the estimates for the functions h., r. Given any
R > 1/b, we can repeat for h., p the same arguments used in the proof of Proposi-
tion 1.9 to obtain the estimates for a generic element h,, of a minimizing sequence. Since
.. r(hepr) = ZLepr = 0, the constants Q and Q' only depend on b, cg and M. O

Theorem 1.28. There erist zo, € R and a function ho, € C*((0,00) x R) N C°([0, 00) x
R\ {(0,25)}) such that:
(i) hoo solves the differential equation

h.  sin(2h + 260,) — sin(26, )

h., + Coohy + hypp + g 52 =0 in(0,00) xR (1.33)

(71) hoo(r,2) = 0 as z — +00 and h(r,z) — m— 04 as z — —oo uniformly with respect
to r;

(71) hoo(0,2) = T if 2 < Zoo, hoo(0,2) =0 if 2 > 205

(iv) heo is strictly decreasing with respect to z in RT x R;

(v) heo is Teal analytic in [0,00) x R\ {(0, 250)}-

Proof: Thanks to the Lemma 1.25 and to the uniform bounds 0 < hy < 7, through
Schauder estimates we can get to say that for any p > 0 there exists a constant K =
K(p,b) such that for all R > 1/b || hg|/ca(p,rxr) < K. By using the previous estimate
and Proposition 1.27 together with Lemma 1.25, we deduce the existence of a sequence
R,, — oo and of a function h € C*(R* x R) such that
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A1) hg, — hin C?*([p, p'] x R) for any 0 < p < p';

A2) hh, € Loo + and h,,sin(h)r= € Ly for any M > 0;
A3) 0<h<m—04

A4) h, <0.

From (A1) follows that h is a solution of (1.33). From (A2) follows (see [30]) that for a.e.
z € R there exists h(0, z) = ll_r)r(l) h(r,z) = k(z)m with k(z) € Z. In view of (A3) and (A4)
only one of the following cases can occur:

(A) h(0,z) =0 for all z € R;

(B) h(0,z2) =« for all z € R;

(C) there exists ¢ € R such that h(0,2) =0 for z > ¢, h(0,z) = 7 for z < (. Since both
(A) and (B) are excluded by Lemma 1.26, we conclude that (C) must occur.

The monotonicity of h with respect to z implies that h € C°([0,00) x R\ {(0,¢)}).
By reasoning as in the proof of Proposition 1.24 it easily follows that 6 := h + 6, is real
analytic on the set [0,00) x R\ {(0,¢)}. So, the same is true for h.

By the strong maximum principle, h, < 0 and 0 < h < 7 — 6, in the set RT x R.

It follows from (A1) and Proposition 1.23 that h(r,z) — 0 as z — 400 and h(r, z) —
T — 0, as z — —oo uniformly in [p, p], for any 0 < p < p/. Then, (A3) and (A4) imply
that in both cases the convergence is actually uniform with respect to r € [0,00). Setting
Zoo = My and h., = h the proof is complete. O

One easily checks that co, and 0. (7, 2) = hoo(7, 2 + 200) + 04 (1) satisfy Theorem 1.2.

1.4 Behavior near the point of singularity

Let b, R > 0 be such that bR > 1. To simplify the notations, in what follows we
shall denote by ¢ the value cg > 0 and by 6 the function 6 of Theorem 1.1. By h
we shall denote the function h(r,z) = 0(r,z) — 0, (r) where 0,(r) = 2arctan(br). Let
Dy = {(r,2) € (0,4+00) x R | r? + 2% < 1}. For any ¢ € (0, R) we define the function

(952 D1 — R
(r,z) —> 0O(er,ez)

We shall determine the limit behavior of 6 in the neighborhood of the origin by studying
the convergence properties of the sequence {0.}.cor as ¢ — 0. To this aim some
preliminary results are required.

For every p € (0, R] we define

D, = {(r,2) € (0,400) xR | r*+2* < p}, 0D, = D, N {r > 0},

sin w

H,= {w € L*(D,) | 3w,,w, € L*(D,),

-,

€ D)}

and for v € H,:

z 2
r; (v + v —I—Sm v)drdz.
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Lemma 1.29. For every p € (0, R]
E,(8) = inf E,(v)

UEHP7U|8+D,]:0‘8+DP

Proof: By contradiction, let v € H, be such that v|y+p, = 0|y+p, and E,(v) < E,(0).
If we define, for (r, z) € [0, R] x R,

Br.2) = v(r,z) ifr? 4+ 2% < p?
6, 2) if 2422 > p?

and h(r,z) = O(r, z) — 0, (r), then we have that h € Y, g (see section 1.1) and I', g(h) <
co. Moreover, by using Proposition (1.5) we find that

5 R cz B B . 2@ ) . 20
cpc,R(h):/dz/ = <9§+0§+Sm2 — (0 - T +>dr -
R 0 r

,
2 2
(674 , 9
// re (UE+U§+SIHQU—(9+)2—SIH2+)drdz
{r2422<p2?} 2 r r

cz -2 0 ) ) 0
—I—// re (03+0§+Sm2 —(0+)2—Sm2+>drdz:
{r2+22>p2}N[0,R] xR 2 r r

O, (h) — e p(h) = E,(v) — E,(0) < 0.

Thanks to Proposition 1.14 we have that, for a suitable zg € R, h(r, z — zg) is a solution
to problem (MP) with ¢ = cg and then ®.(h) = 0. From the previous inequality we
derive ®, z(h) < 0, while from Corollary 1.13 we know that @, z(h) > 0. Hence we have
found a contradiction. O

In the following we shall denote by v and 7 the following vector fields defined in

R%\ {0}:

v z) = (\/r2r+ 22 \/r2z+ 22>’ T(r7) = (\/r;jr 22’ \/7“2T+ 22>.

From lemma 1.29 we derive that

Lemma 1.30. For every p € (0, R]

cz 12
re 5 .o sin“f
//Dp(l+cz) 5 (9r+92+ 2 )drdz:
re* (., ., sin*f o 2
p 5 0, +0.+—— ) — re”|Vo - v (1.34)
d+tD, r o+tD,

Proof: The idea of this proof comes from [10], pag. 102 (even if the author works
with vector fields instead of angle functions). For every p € (0, R) and k& > 0 such that
[p,p+ k] C (0, R) we define

1 its<p
bor(s) = §1 =52 ifse(pp+k)
0 ifs>p+k.
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We now freeze the values of p and k. Then we may simplify the notations by Writing o)
in place of ¢, k. Let 6 = d(p, k) € (0,1) be a positive number such that § < 7% —1 and
let I be the open interval (—6,0). For every ¢t € I and (7, 2) € D,4i we set

Ar,z,t) = 1+tp(Vr2 +22),  0(r,z) = O(N(r, 2, t)r, A(r, 2, 1) 2) .

We remark that A is bounded together with its first derivatives. A simple computation
shows that Vt € I:

1 1 29
E,(6) // ret (93+9§+Sm2 )drdz<oo
Dt)p r

while E,,1(0;) — E,(6;) < C < oo, where C is a constant depending on p and k. The
last inequality comes from the regularity of 6 outside the origin. Then, for every ¢t € [
0 € Hyp and Oo+p,,, = 0lo+p,,,. Thanks to Lemma 1.29 we have that V¢ € [

Epix(0) < Epi(6:).
We want to show now that F(t) = E,(6;) is differentiable in ¢ = 0. Since F(t) =

p(9t> +G1( )"—GQ( )-'-Gg( ) with
drdz, Gy(t) // re
p+k\Dp 2

I,
Dp+k\Dp 2

20
and  G3(t) // re”sin Ldrdz
p-Hc\Dp T

we are led to prove that F, G, Gy and (3 are differentiable in 0. Since A is bounded and
Lipschitz continuous with A € [1 — 4,1+ 6] C (0,2) and 6 is smooth outside the origin,
the differentiability of G; (i = 1,2,3) in 0 is obvious and a straightforward computation

shows that
) //
Dp+k\Dp

—|—<b,(*/7"2 I z2)w> } drdz,

0, |?

or

g, 12
% drdz

- {29r ((b(\/rQ +22) (0, + 10, + 20,.,)

// e {29 ((b(\/rz +22) (0, + 10, + 20.,)
p+k\DP

+¢ (\/m)(re— %)}drdz

// Sm(%) (rf, +20,)drdz.
p+k\Dp r

V2 4 22)
On the other hand, if we define

and

cz

_rew s o sin?f
f(raz7t)_2(1+t) (9 _'_9 7"2 )7
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then for every t € 1

Ep(et):// f(r,z,t)drdz+/ f(ryz,t)drdz
D44),\Dp Dy
and therefore, if t € T\ {0}:

E,(0,) — E,(6) 1 [(0+0e /2
o (0:) t »(60) :g/ do‘/ of(ocosp,osing, t)de+
o —7/2

+% </Dpf(r,z,t)drdz—/Dpf(r,z,O)drdz> )

Since I = (—9,d) with 6 € (0,1), f(ocosg,osing,t) is continuous in ¢ € I uniformly
with respect to o € [(1 —0)p, (14 0)p] and ¢ € [—7/2,7/2]. Then

1 [O+0n /2
}ti—{% ;/p da/ﬂﬂaf(acosgp,asincp,t)dcp =

' 1 [+ B
2ltg% (;/p (/I%Dgf(r,z,O))da) —p/9+Dpf(r,z,O).

At the same time, the function

t—>/ f(r,z,t)drdz
Dy

can be derived under the integral thanks to the Lebesgue’s theorem. Therefore

hm( (/ frztdrdz—/ frz())drdz))z

t—0 D, D,

// (r,z,0)drdz = — // (93—1—93 sin 6)>d7“dz.
D, r?

The differentiability of F in 0 together with the inequality F(t) = E,;(6;) >
E,.x(0) = F(0) for any t € I implies that

dF / / /
0= —-(0) = G1(0: k) + G (0; k) + Gy (0 )+

_//Dp(l 22 (92 + 62 + 229)drdz+p/a+[)p f(r, z,0). (1.35)

Here we have written G;(0; k) in place of G;(0) to highlight the parametric dependence
of these quantities on k. If we leave p fixed and we consider k as an independent variable
varying in an interval (0, K(p)), we can pass to the limit in (1.35) as & — 0". Since
limy_,o+ G3(0; k) = 0 and

lim G (O;k:):—/ r?e”0,Vo - v,
o+D,

k—0t+
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lim G, (0; k) = —/ rze“0,Vo - v
k—0t 8+Dp

we obtain the identity (1.34) for p € (0, R). But, thanks to the continuity of 0, (1.34)
holds true for p = R. O

Thanks to the previous lemma we can now prove an adaptation to our traveling waves
of the classical monotonicity formula for stationary harmonic maps. From this formula
we shall derive that the quantity Fi(6.) is a bounded function of ¢ for ¢ — 07. To
simplify the statement of the next result we define the following functions of p € (0, R]:

rec? sin? 0 rec?
= 62 + 62 , N(p) = / )7,

=/pg(a)dg, /N

Remark 1.31. Tt is easy to check that for every p € (0, R]:

r eP* sin? 6
o) = [ TG (1 TR
8+Dy r

T eP?
Ny = [ 5198, o
ot Dy

T eP* sin? 6
Fo) = Es0) = [[ 75 (1908 + 5 ) ara,
cz cpz
://D 7"; |V9-u\2drdz:p//D TZ VO, -v|*drdz.
P 1

Lemma 1.32. One has that:
cpf

) & ( ze) >,

(ii) 22 s 4 bounded function,

(111) EI lim,+ = F) < 10, 00),

(P) =0.

(1) lim, o+

Proof: Since (ii) and (iii) easily follow from (i), we only have to prove (i) and (iv).
From (1.34) we derive that for every p € (0, R]:
Fp Fp
2 > 6 - 20 = (1- T2

(1+cp)
Since G = F' we get

F'(p)>(1 —cp)@ = d% (f;m) +cff)p) >0,

and (i) follows. Let K > 0 such that Z2 < K. We have that
Flp
G(p) — 2N () > (1 - c,o>% vpe (0, =
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o

M_l/pmdg+CKp>2M(p)
P Jo

p
Because of (i) the function @ can be extended to a bounded continuous function over

[0, R]. Then
i (55 [ ) -0

and, thanks to (1.36), we obtain (iv).
In the remainder of this section we shall denote by £ the following functional defined

for v € Hy:
// (v + 02 + S U) drdz (1.37)
D1

Lemma (1.32) and Remark (1.31) imply that

f(p>—/0p@da+c/opf(a)daz 2M(p) =

>0. 1.36
o 2 p ( )

Proposition 1.33. (i) There exists K € R" such that £(0.) < K Ve € (0, R).

(#)
. r 2
hm// —|VO.-v|"drdz=0.
e—0t Dy 2

Moreover, we can easily prove that

Proposition 1.34. For every p € (0, R) there exists C' = C(p) such that ||0: | cs(p,r)xr) <
C foralle € (0,1).

Proof: For all € € (0,1) we have 0 < 0. < 7 in [0, R/e] x R. Moreover, 6. solves the
equation

o + ¢y sin(2y)
r 2r2
in (0,R/e) x R. At last, 6.(R/e,z) = 2arctan(bR). By using classical Schauder type
estimates and the invariance of the previous equation with respect to z-translations we
obtain the thesis. O
In order to state the first important theorem of this section, concerning the behavior
of the sequence {6.} for € approaching to zero, we need a last lemma:

+ wzz + ng)z =0

Lemma 1.35. Let H? be the closed subspace of Hy given by
{U € H, |U|3+D1 = O} .
For every f € HY and ¢ € (0, R)

|E(f +0.) = E(f +0)| < cce“Q(f),

E// re (’U —|—'U +Sm U)drdz
Dy

forv e Hy and Q(f) > 0 is a constant depending only on f.

where
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Proof: By using the standard inequality | e“* —1| < e |cez| we get |E.(f+0.)—E(f+
0.) <e“ceE(f+0.) <2e“ce(E(f)+E(0:)) and the thesis follows then from Proposition
(1.33). O

Theorem 1.36. There exist ) € Hy and a decreasing sequence {e,}neny C (0, min{l, R})
with €, — 0 as n — 0o such that:
()

sinf.,  sing

Ve, = Vi,

r r
m L%(Dl),
(i) for every p € (0,1)

Oc,, — 1

in C*(Dy N {r > p}).
Moreover, if {e,} is any sequence converging to 0 for which (i) and (ii) are true, then
the limit function ¢ € Hy and satisfies:
(i4i) ¥ (Dy N {r > 0}) C [0, 7] and v, < 0;

()
// f\Vz/wu\Qd?“dz:O;
Dy 2

EW) = inf EW).

{veH: | U‘8+D1 :w‘frkpl}

Proof: (i) and (ii) easily follow from Propositions (1.33) and (1.34).
(iii) follows from the inequalities:

(v)

2arctan(ber) < 0.(r, z) = f(er,ez) < m — 2arctan (bg—};)
and %= (r, z) < 0 for (r,z) € (0,£) x R. (iv) is a consequence of Proposition (1.33). To
conclude we only need to prove that £(v) < E(v) for every v € Hy with v|g+p, = ¥|a+p,-
If we write v = f + 1, then f € HY and

E() —£() = IV +(VF,V) //D sin’ f“” =S e (138)

where the norm || - || and the scalar product (-, -) are those ones of L(D;). Similarly, for
every n € N

E(f+0.)—& (€n>:_uwu2 (Y, V0. // sin” f+9€" —s 0 4 (1.39)
Dy

Thanks to simple trigonometric identities, we can write

a2
// sin? f—l—@/} SmwdrdZ:Il—l—Ig
Dy

and, for each n € N,

.9 _ «in?
// s (f"‘esn) sin 95"drd2211n+]2n
by 2r ’ |
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where

)
[1:// sin” feosy) 4
Dy 2r

[2:// smfsmd)cosfcosd)drdz’
D1 r

;2
L, = // sin / 05(26e,) drdz and
Dy 2r

Iy — // sin f sin 0., cos f cosf,, drds.
Dy r

Thanks to (ii) we have [;,, — I; for n — oo. (ii) also implies that

sin f cos f cosf., sin f cos f cos Y
Jr r

in L?(Dy) as n — oo. On the other hand, (i) implies that

sinf,, __ sing
VG
in L?(D;). Therefore, I, — I, for n — co. But then from (i), (1.38) and (1.39) we get

that E(f +0.,) — £(0,) — E(v) — E(Y) when n — oco. On the other hand, for every
neN

S(f + esn) - 5((95”) =
5(f + eén) - gen(f + een) + 5€n(f + een) - gen(een) + EEn(eén) - g(eén) Z

S(f + 9€n> - Ssn(f + esn) + Ssn(9€n> - g(een) (1'40)

since Lemma (1.29) implies &, (f + 6.,) > &.,(0.,). Then E(v) > £(1) immediately
follows from Lemma (1.35).

In the following we shall denote by {e,},en C (0, R) a sequence converging to 0 for
which the corresponding sequence {6, } satisfies the statements (i) and (ii) of Theorem
1.36. Our purpose now is to show that

Claim 1.37. The limit function v is given by the formula

U(r,z) = g — arctan (E> :

r

The first step in this direction is given by
Proposition 1.38. The following three cases can occur:
A) ¥ =0,
B) ¥ = or
C) ¢ € C°(Dy\ {(0,0)}) and



In addition v is a function attaining values in [0, 7], which is smooth in Dy N {r > 0},
non increasing with respect to z and constant along each radius coming out of the origin.

Proof: The last part of the statement is a direct consequence of Theorem 1.36. Since
¢ € Hy and 0 < ¢ < 7 we have that for a.e. z € (—1,1) exists (0, 2) = lim, o+ ¥(r, 2) €
{0,7}. Since 1, < 0, we can have (0, z) = 0 for all z € (—1,1), or ¥(0, z) = 7 for all

z€e (—1,1), or
0 ifz>z
0,2) =
v(0.2) {7? if 2z <2

for a suitable z € (0, 7). In the first case, being 1 smooth in Dy N {r > 0} with v, <0,
one has ¢ € C°(D,). Then, since 1) must be constant along each radius coming out of
the origin, we get 1 = 0.

The same argument allows to say that in the second case ¥ = 7.

In the last case the smoothness of ¢ in D;N{r > 0} and its monotonicity with respect
to z permit to deduce that ¢ € C°(D; \ {(0, 2)}). Then, since ¢ must be constant along
each radius coming out of the origin, z > 0 would imply ¢ = 7 while z < 0 would imply
1 = 0. Therefore z = 0. O

To prove Claim 1.37 we first need to exclude the cases v» = 0 and ¥ = 7. Since the
arguments needed to prove that ¢ Z 0 are similar to the ones used to show that ¢ # 7,
we shall only prove the latter assertion.

Proposition 1.39. ¢ # 7.

Proof: By contradiction we assume ¢ = 7. Let 0 < p < 1 be a fixed value and let
o, be two positive numbers such that ¢ = %, ¢ < 102%2 and o + ¢ < /1 — p?. For every
z € (—( —0,( + o) we define:

o*o+(—2)? ifze[(,(+o0)
alz) =<1 if z € [-(, (]
o?(c+C+2)? ifze(—(—o0,—(]

and for (r,z) € [0, p] x [-1,1]:

0 ifz>(+o0o
w(r,z) =< ™ —2arctan(a(z)r) if z € (= —0,( +0)
0 if2<—C—0.

Thanks to Theorem 1.36 we know that, for a suitable decreasing sequence {e,} which
converges to zero as n — oo, we have 0, — 7 in C?(D; N {r > p}) for every p > 0.
Therefore, if we take p € (0,p) C (0,1), we can say that there exists v = v(p) € N such
that Vn > v(p)

w >0, (r,z) > m—2arctan p

for all (r,2) € Dy N {r > p}. Then for every n > v(p)

m >0, (p,z) >m—2arctan p (1.41)
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Vz € [—/1—p2,4/1 — p?. For every p € (0,p) and n > v(p) we define a function v, ,
in the followmg way:

vpnlr, 2) = max{w(r, z), 0., (r,2)} %f r<p
0., (r,2) ifr>p
at each point (r,z) € D;. Thanks to (1.41) we can say that v, , is a continuous function
out of {r = 0}. Moreover, Vr € (0,p) we have w(r,v/1—1r2) = 0, since V1 —1712 >
V1—p2>/1-p>>0+(, and

Up,n|8+D1 - 96n|8+D1 N

At last, it is easy to check that w,w,,w,, S8¢

T

< L%([Uaﬁ] X [_1’ 1]):

1. 0w <,
2. Vp € (0, 7]
) . 0 if |z| >0+
/ g(wg_l_smzw) dr = 1%:’; if z € (—(, Q)
0 r a?(2)p® -
? 11012((%;,2 if z € (_g - 0, _C) U (gv C + U) )
3. Vp € (0, 7]
/ﬂr 2, 2)d 0 if |2 >(+oor|z] <(
-w T, 2)ar = o ()2 o202 .
0 2 e (log<1+cv2p2>—ﬁ) if 2 € (—¢C—0,-Q)U((,(+0).

We remark that, thanks to the inequality log(1 + z) < \/x:

o () (101 %7 - a?p? ) SO

at(z) 1+ a2p? ad(z ) 0%

Thanks to the properties of w we can say that Vp € (0, p) and n > v(p) the function
Vpn € Hy and

CERZ 2
0p)x(~C-0C+a) 2 r
CERnZ 05
_// re (|V95n‘2 sin n>drdz<J1+J2+J3,
0p)x(~C-0C+a) 2 r?
P CERZ
Jy = / dz / re (
_/Cdz/precanz ’30
—C 0 2 87"
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0V,

2 sin?v
N
+ L dr—
r2

2 .. 92
sin” 0
+ ;”)dr,
r




Jy = C+Udz Py een® Wt sin? w dr+ reCE"Z W2+ sin? w dr
¢ o 2 r?
and o
o P CceEnz
J3 = / dz / e widr.
0 2
It is easy to check that

(to p ceno _
J3 < 2/ eCE"Zdz/ iw dr < = 8p ecens e 1
¢ 0 2

o2 ceEn

and
cend _q

(+o e
Jy < 4 / e 4z = 4e%n¢
¢ an

To estimate J; we need to put together several arguments. First of all, since

0=, (p,2) > w(p,2) Vz €[—V1—p?\/1—p?

and

lim 6, =7=1
i Gealr2) = = Ji i 2)

for every z € (—(,0), it is possible to apply Corollary A.3 and deduce that Vz € (—(,0)

/p r 2 n sin? Upm dr < /p r (|00, 2 n sin? 6.,
J— ’]“ J—
0 2 72 —Jo 2 or 72

On the other hand, if z € (0, (), then it is possible to define

0V, 1,

> dr. (1.42)

z

p(z) =inf{r € [0, p] | 0., (r,2) > w(r,z)}

and say that p(z) € (0,p] (due to the properties of 6 and w), 0., (r,2z) < w(r,z) for
r €0, 5(2)), bz, (p(2), 2) = w(p(2), 2) and, since 0O, (p, z) = w(p, 2),

/p r ? n sin® v,,., d /p r (106, |’ n sin? 6.,
— /r" — J—
0 2 72 . o 2\| or 72 .
/ﬁ(z) "2 sin? w d / r (|00, + sin® 0.,
o 2\ " 72 0 2 87“ 72

as follows if we apply Corollary A.3 to the interval [p(z), p]. By using this same Corollary
together with Lemma A.1 we derive that the right hand side of (1.43) is less or equal to

Ovpn
or

dr <

dr (1.43)

|cosw(p(z), z) — cosw(0, z)| — | cosb., (p(z), z) — cosb., (0,z)] =

1+ cosw(p(z),2) — (1 —cosb., (p(2),2)) =2cosw(p(z), 2) =

4p
14 p?

2

—2cos(2arctan(p(z))) < —2cos(2arctan p) = —2 + < -2+ 4p%.
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Putting together (1.42) and this last estimate we get that

¢ ecan -1
Jp < / (=2 +4p*)e“*dz = (=2 +4p%) ( > )
0

CEn

From the estimates just obtained for Ji, J; and J3 we finally derive that Vp € (0, p) and
n=v(p)

ecz—:nC -1 efno _1 Sp efno 1
& n) =& (0:,) < (—2+4p fetnt — — 4 Tt (144
()= Ea0.) < (2 (S e S B SES
Since o, ( < 102%2 the following inequalities are true:
CERO __ cenG _
o< oy (< o
CEn Cen
At the same time o = (/8 and we obtain from (1.44)
9 128p
Eers(Wpn) = &, (0:,) < =20+ 8p"C + (1 + 2ce,()C + T(l + 2cen() <
128
(—1+41og2)¢ + 8p*C + Tp(l +log 2).

with p € (0,p) and n > v(p). But log2 < 1 and taking p sufficiently small and n > v(p),
we deduce that &, (v,,) — &:,(0,) < 0. Since from Lemma 1.29 we know that for every
neN

8571 (een) =

= 1mn
{veH1 | v\8+D1 =0c,, |8+D1}

&, (v) (1.45)

we have just obtained the desired contradiction. O
After excluding the cases (A) and (B) of Proposition 1.38 we obtain:

Proposition 1.40. There exists a positive constant A such that the limit function i is

gien by
Y(r, z) = 2arctan (A tan (% _ %@/T)))

for (r,z) € Dyn{r >0} and

5(0,2) = {0 if >0

m if 2<0.

Proof: From Proposition 1.38 we know that v is constant along each radius coming
out of the origin. Then for every p € (0,1] and ¢ € [—7/2,7/2]

w(pcosp, psin p) = 1(cos @, sin )
and to prove the result it is enough to show that the function
9(p) = (cos @, sin )
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is given by

g(p) = 2arctan (A tan (Z — g)) (1.46)

for a suitable A > 0. We remark that, due to Proposition 1.38, g € C°([—7/2,7/2]). By
Theorem 1.36, statement (v), we know that 1 is a smooth solution to the Euler-Lagrange
equation of the functional (1.37), i.e.

10 sin(2v)
wzz + ;EO"?M) — 27702 )
in D;N{r > 0}. Since 1 is constant along each radius coming out of the origin, r),+z1), =
0, and therefore 1) solves
sin(24))
2r2

z
wzz - _wzr =
r
This implies that Yy € (—7/2,7/2)

g//( )_ Sln(2g)

= t !
2 cos? + tan(p)g'(¢)

and therefore g solves the following differential problem

%(COS(@)Q’(@)) = 2L2{3 Vo € (—m/2,7/2)
g(p) = e < Yy e (—1/2,7/2) (1.47)
g(m/2) =0, g(—m/2)=T.

If we multiply the differential equation of g by cos(¢)g’(¢) we obtain that
d d
L (s o) = L ().

and there exists a constant C' such that cos®p|g'(p)|> — sin®g = C for every ¢ €
(—7/2,m/2).

If C < 0, then sin?g > —C > 0, which cannot be true since g is continuous in
[—7/2,7/2] and g(7/2) = 0,9(—m/2) = m. On the other hand, if C' > 0 then |¢'(p)| >
= ¢'(p) < _co€¢ , which cannot be true since g is bounded. Hence C' = 0 and

cos ¢
cos plg'(¢)] = |sing| = —cos(p)g'(¢) =sing

since 0 < g < w and ¢’ < 0. By integrating the latter differential equation and taking
into account that 0 < g <, g # 0 and g # 7, we obtain (1.46) with A > 0. O

Remark 1.41. From Proposition 1.40 we derive that
1. v is smooth on D; \ {(0,0)},
2. 1 is a strictly decreasing function of the angle ¢ := arctan(z/r),
3. () = 2.

To prove Claim 1.37 we only need to show that:
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Figure 1.2: The value of v, in P is equal to the value of ¢ in R

Proposition 1.42. The constant A of Proposition 1.40 is actually 1.

Proof: Given any a € (—1,1), let (I,3) be the polar coordinates of the plan r-z

centered at the point (0, a):
r=1cospf
z=a+lsinp.

Given any point P = (r, z), [ = I(P) is its distance from the point @ = (0, a):
l=+r?+(z—a)?

and § = [(P) is the angle formed by the vector @ with the direction 7 = (1,0). It
is simple to verify that the point (r, z) belongs to D; if and only if its polar coordinates
(1, B) satisfy the constraints § € [—m/2,7/2], 0 <1 < L(f3), where

L(B)=+/1—a?cos?f —asinf.

In particular, the points of 9" D; are those ones having polar coordinates (L(f), 3) for
B € (—n/2,7/2). We remark that for a = 0 [ and 3 are the usual polar coordinates.
Let v, = v,(r, z) be the function defined on D; by

va(lcos B,a+ Isin B) = 1p(L(B) cos 5, a+ L(/3) sin 5)

for 8 € [-7/2,7/2], 0 <1 < L(B). We remark that the value of v, in a point P € D; is
given by the value of ¥ in the intersection of the line passing through P and @ = (0, a)
with 0T D; (see figure). Since 1 is constant along each radius coming out of (0,0), for
a = 0 we have v, = 1. If we denote by g = ¢(/3) the function defined by

q(B) = Y(L(B) cos f,a + L(F) sin ) ,
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we have

[Vva|?(Lcos B,a + Isin ) = W(lifw

/2 L(B) .2
e(w) = [ /2dﬁ/0 o (\q’<ﬁ>|2+j;22§)dl=

/2 202
5[ s (IdE)F + 24 ) a5,

)2 cos? 8

and

Since for 8 € [—7/2,7/2]
L*(B) cos® B+ (a+ L(B)sin )* =1,
for every B € [—m/2,7/2] there exists () € [~m/2,7/2] such that
{cosso(ﬁ) = L(B) cos 3
sinp(8) = a+ L(f3) sin 3.
©(f) is a smooth function of 8 and

cos® p(B)

cos? B 1+a” —2asing(B), ¢'(B) = L—2asinp()

1 —asinp(f)

By the definition of ¢(5), ¢(5) = g(¢(B)), where g = g(i) is the same function as in the
proof of Proposition 1.40, and Then

> 0.

—7/2

w/2
e =5 [ cose(s) (Ig’(w(ﬁ))|2|s0’(ﬁ)|2+

sin® g((5))

2 P+ a? — 2asi dB =

g e~ 2asing() | ds

1 /2 1—9 : 2 202

—/ cos ¢ (IQ’(sD)I2 QM TE I asinso)) dy < oo
2 J np 1 —asing cos? p

If we think a as a variable in (—1,1), the formula just obtained tells us that £(v,) is a
smooth function of a and

< (e(wa))

Since v,|g+p, = ¥|o+p, for each a € (—1,1), it follows from Theorem 1.36 that &(v,) >
E(Y) = E(vp) for every a € (—1,1). Therefore formula (1.48) implies that

1 w/2 s 2
—5/ sin ¢ cos ¢ <|g’(¢)\2+w) dp=0. (1.49)

2
—n/2 cos? ¢

1 w/2 i 2
——/ sin  cos ¢ (|g'(<p)\2 + M) de. (1.48)

{a:O}: 2 ) cos? p
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On the other hand, if we use the formula for ¢/ given by Proposition 1.40, we obtain that

1 w/2 2
—5/ sin ¢ cos ¢ (Ig’(<ﬁ)l2+ M) dy =

—/2 cos? p
/2 4 A% cos® ¢ ! 4A%x
— t dp=— dx. (1.50
[ amsa i = | e a e 050

If A =1, the last term in the previous identity is equal to

1
—/ zdx=0.
1

In the case A # 1 we can perform the substitution u = 1+ A? + (1 — A%)z so finding that
the last term of (1.50) is equal to

S Pu—(1+4%) o 2f(A)
(1- A2)2 /2,42 ez du= (1 A2)2

with f(A) = A*—1—2A%log A. Since f(A) # 0 for A # 1, we deduce that (1.49) cannot
be satisfied for A # 1. Therefore A = 1. O

Remark 1.43. The argument used in the proof of the previous Proposition is an adaptation
to the axially symmetric case of a similar argument found in [1].

As a direct consequence of Propositions 1.33, 1.34, Theorem 1.36 and Claim 1.37 we
obtain that:

Proposition 1.44. If v s the function:

W(r, z) = g — arctan (E> ,

r

then, as e — 0,
(1) ‘ ,
sin 0, __sing

V. = Vi, in L2(D1);

r
(i) for every p € (0,1)

0. = in C*(DyN{r > p}).
If we denote by G = G(p, ¢) the function defined by
G(p,p) = B(pcos g, psinp)

for p € (0, R] and ¢ € [—m/2,7/2], then it follows from the previous Proposition that for
every o € (0,7/2)

G(p,p) — g - (1.51)

in C?([-7/2 + a,7/2 — a]) as p — 0". In particular, the convergence is locally uniform
and Theorem 1.3 is proved.
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Chapter 2

Traveling wave solutions of the heat
flow of director fields having a zero
degree singularity

In this chapter we shall construct axially symmetric traveling wave solutions of (1) having
a point singularity of degree zero on the axis of the cylinder Q = {(z1, x9, z3) |23 +23 < 1}.
If h(r,z3,t) = 1(r,x3 — ct) is the angle function of a such traveling wave, then, as told
in the introduction, 1 satisfies the singular elliptic equation (7) (2 = x3 — ct). To this
equation we add a boundary condition at r = 1:

(L, 2) = g(2), (2.1)
where ¢ is a given function which satisfies, for some 2y < z; and 0 < B < A,
geC*R), ¢ <0inR, g=Ain (—00,2), g= B in (z,00). (2.2)

To ensure that the traveling waves have a point singularity, we shall always choose A > 7
and 0 < B < 7/2.

At first glance condition (2.1) may seem artificial. In a way it forces solutions to move
in the x3-direction with prescribed speed ¢ > 0, and one could argue that this trivially
imposes the existence of traveling wave solutions with the same velocity. On the other
hand, condition (2.1) enables us to construct traveling waves with a point singularity of
topological degree 0, which turn out to be useful as comparison functions for solutions of
initial-boundary value problems, as we shall in Chapter 3 (actually we shall also construct
waves with a degree-1 singularity).

As in chapter 1, we shall construct axially symmetric traveling waves which are non-
increasing with respect to z, this means that point singularities, which necessarily belong
to the z-axis due to the axial symmetry, occur at points (r,z) = (0,2) at which ¢ is
discontinuous. Moreover, ¥(0, z) is necessarily a multiple of 7 whenever (0, z) is a point
of continuity.

In what follows we shall denote (with abuse of notation) the function ¢ (r, z) by h(r, z).
The main theorems of the chapter show that it is possible to have both singular points
at which h jumps from 7 to 0 (Theorem 2.1) and ones at which A jumps from 27 to 0
(Theorem 2.2). In the first case the topological degree of the point singularity is 1, in the
latter case it is 0.
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Theorem 2.1. Let ¢ > 0 and let g(z) be a given function satisfying (2.2) with
T<A<37/2 and 0< B<m7/2. (2.3)

Then there exists a function hy : [0,1] x R — R which is smooth in (0, 1] x R and satisfies
equations (7) and (2.1). In addition the following properties are satisfied:

(i) there exists z; such that hy is continuous in {(0,z2) : z # z1}, h1(0,2) =0 if 2 > %
and hi(0,2) =7 if 2 < Z;

(i) hq(r, z) is nonincreasing with respect to z;

(#ii) hy(r,z) — 2arctan(br) uniformly with respect to r € [0,1] as z — oo, where b is
defined by 2 arctanb = B;

(iv) hy(r,z) — ©+ 2arctan(a;r) uniformly with respect to r € [0,1] as z — —oo, where
ay 1s defined by ™+ 2 arctana; = A;

(v) hy is real analytic in [0,1) x R\ {(0,2)}.

Theorem 2.2. Let ¢ > 0 and let g(z) be a given function satisfying (2.2) with
T<A<3tm and 0< B <m7/2. (2.4)

Then there exists a function hy : [0, 1] xR — R which satisfies Theorem 2.1 with properties
(i), (iv) and (v) replaced by:

(i) there exists Zy such that hy is continuous in {(0,2) : z # Z2}, he(0,2) =0 if z > z
and hy(0,2) = 27 if z < Zy;

(iv) ha(r, z) — 27 + 2 arctan(agr) uniformly with respect to r € [0,1] as z — —oo, where
as 1s defined by 27 + 2 arctana, = A;

(v) hy is real analytic in [0,1) x R\ {(0, Z2)}.

As in the previous chapter, our approach will be variational, but in the case of Theo-
rem 2.2 the minimization problem involves a variant of the relaxed energy introduced by
Bethuel, Brezis and Coron in [6] and used by Hardt, Poon and Lin in [18] to construct
axially symmetric harmonic maps with zero-degree singularities. In addition, due to the
boundary condition (2.1) which prescribes the wave speed ¢, we do not introduce a con-
straint in the minimization problem. The proof of the monotonicity of the solutions with
respect to z relies again on a rearrangement technique.

The chapter is organized as follows. In section 2.1 we introduce the two minimization
problems. In section 2.2 we collect some preliminary results. In section 2.3 we prove the
existence of minimizers and in section 2.4 we show their monotonicity with respect to z.
In section 2.5 we prove that the minimizers have a singularity. In section 2.6 we discuss
the behavior of the singularities as ¢ — oo.

2.1 Variational formulation

Let ¢ > 0. Equation (7) is the Euler-Lagrange equation of the functional

Bo(f) = /Rdz/oldr{ge“ (ff+f,?+81if —Gb(r)>} | (2.5)

The function Gy(r) is chosen in such a way that ®.(f) is convergent as z — oo for
all functions f belonging to a suitable class which contains the function 2 arctan(br),
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describing the desired behavior of the traveling waves as z — oo (see point (iii) of
Theorems 2.1 and 2.2):

sin?(2 arctan(br)) 2

d
Gb(T): + d_

72 r

(2 arctan(br)) (2.6)

A straightforward calculation shows that

/O1 LGy(r )dr—Q—b2. (2.7)

On the other hand, it is well-known (see also Theorem A.6 in the Appendix) that, if
0<b<1,

1 .9 2 9
/0 g (ff—i*silgf) dr > 1 fbg if f€H}.((0,1]) and f(1)=2arctanb. (2.8)

We define the class of functions

Sin v

loc

W {o e MER O N L& 10.1): 2 e @ o)}

r

where the subscript r (in L2, H} etc.) indicates that the usual L? or Sobolev spaces are
to be considered with the weight function r. If f € W, then for a.e. z € R the function
(-, 2) is defined almost everywhere in (0,1), f(-,2) € H}0,1), and 22t sSnfC2) ¢ 12(0,1).
This implies (see [30]) that, for almost every z € R, f(-,z) € C°([0, 1]) and

f(0,z) = k(z)r for some k(z) € Z. (2.9)

If f €W, the trace of f at r = 1 is well-defined. If f(1,2) = g(2) for a.e. z € R, it
follows from (2.2), (2.7), (2.8) and the monotone convergence theorem that

o.(f) :alimw/a dz/ dr{—e (f + 12 +Sm Gy ))}

B—00

is well-defined and attains values in (—o00,00]. More precisely, for such functions f we

have that o1 o
d — e Gy = 2.10
>/ / O dr =y (2.10)

We define, for each ¢ > 0,

We=A{feW; f(1,2) = g(2), Pf) < o0}

(observe that W¢ = (); it contains the function 2 arctan(br) + (g(z) — 2 arctanb)r). Since
(2.10) holds in W¢° we can formulate our first minimization problem:

First variational problem: find ~2; € W*° which minimizes &, in W°.

Its solution will be the traveling wave of Theorem 2.1.
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In order to prove Theorem 2.2 we need a suitable variant of the concept of relaxed
energy, introduced in [6]. Let

¢={¢eC'([0,1] x R); supp(§) C [0,1] x [-M,M] for some M >0}

and

¢ ={{e;|Vi(r,2)] <e” in[0,1] x R}.
We define for every f € W and € € €,

L(f,&) = %/Rdz/olsinf(fzé} — &) dr — %/Rcos(f(l,z))fz(l,z) dz. (2.11)
We observe that L(f,€) is well-defined and L(f, —¢) = —L(f,¢). Hence

Lo(f) == sup L(f,€) € [0,00] for f € W,

cees
It turns out that L. < oo in W¢:

Theorem 2.3. Let f € W° and let Py = {z € R; cos(f(0,2)) = —1}. Then

Lc(f)I/Peczdz < 0.
f

We observe that, by (2.9), Py is well-defined and Lebesgue-measurable. We shall
prove Theorem 2.3 in section 2.2.
Theorem 2.2 corresponds to the following minimization problem:

Second variational problem: find hy € W¢ which minimizes ®. + 2L, in W°.

2.2 Preliminaries, proof of Theorem 2.3
We introduce the following coordinate transformation:
r=e">0 z=c 'logu. (2.12)

It transforms equation (7) into

sin(2h)

hrr 2 2hzz_
(rh.)r + cr(x*hy) 5

=0 in(0,1) x R*,

which is the Euler-Lagrange equation of the functional

00 1 2
U.(f) = 2%/0 dx/o r<c2x2f§+ff+smzf —Gb(r))dr.

r

Transformation (2.12) induces naturally a bijective map 7' : W — T'(W), f(r,z) —
f(r,c tlogz), and
sinw

(RS H0,1)) 2 € 12, (RS 120, 1)}

loc

TOW)={feW:*(R*;L*0,1)) N L}

loc loc
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In particular

TW) = {f € TW); f(1,2) = g(c " log(x)), Te(f) < oo},

B 1 .2
U.(f) = %hjcg%c /a dx/o r <c2x2f§ + 2+ sn;zf — Gb(r)) dr. (2.13)
We observe that
D.(f) = WAT(f)) for f €W, (2.14)

We set

‘C(fa 5):%/R+dx/0 Sln(f)(fxgr - frﬁx)dr - %/RCOS(f(l,l'))fm(l,l')dl'

+

for every f € T(W) and £ € T(€). It follows easily that

T(¢) = {¢ € C'([0,1] x RT) : supp(&) C [0,1] x [M~", M] for some M > 1},

T(€) = {g eT(C) : %gﬁ + 22 <1in [0,1] x R*} ,
and L(T(f),T(&)) = L(f,€) for each £ € € and f € W. Hence, defining

L(f) = sup L(f,§) =0 for feT(W),

§ET ()

we obtain that
L.(f) = L(T(f)) forall feW. (2.15)

In order to prove Theorem 2.3 we need the following result.

Proposition 2.4. For all f € T(W)

£01.) = =3 [ cos(f0.0)&(0.0) da for € € T(@).

and

L= s ([ (0,08 ax)

{AeCo(®RF); [N |<1/c}

Proof: The first statement implies at once the second one. If £ is sufficiently smooth,
the first statement follows from an integration by parts in (2.11) (observe that for all
f € W we have, in addition to (2.9), that cos f(-, z) is absolutely continuous in [0, 1] for
a.e. z € R, and cos f(r,-) is locally absolutely continuous in R for a.e. » € (0, 1)). A
standard approximation argument completes the proof of the first statement. O

Proposition 2.5. Let w € T(W¢), let E, = {x € R"; cos(w(0,z)) = —1} and let p
denote the 1-dimensional Lebesgue measure. Then



Proof: First we prove that u(E,) < co. Arguing by contradiction we suppose that
w(E,) = oo. Let z; be defined by (2.2) and set x; = e®*. Then u(E, N (z1,00)) = oo.
For all z € E, N (z1,00) we have that w(0,z) = k(x)r, with k(z) odd, and w(l,z) =
2arctanb. Hence it follows from (2.7) and Lemma A.1 that for any = € E,, N (21, 00)

1 i 02 2 2

T 9 9 9 o siDw 2 2b 1-0

= -G dr > — =2 .
/0 2 (C vatt s ”(r)) TETER 14 1R

On the other hand, by (2.8), the same integral is nonnegative if x > z; and uniformly
bounded from below if 0 < z < x;. Since u(E, N (z1,00)) = oo and 1 — b* > 0, this
implies that ¥.(w) = co. Hence w ¢ T (W) and we have found a contradiction.

Let A € Cj(R") such that |\'| < ¢™'. Then —1 o, cos(w(0,2))N(z) dz = —3 Jorig, V(@) da
+ %wa N(z)de = —5 [, N(z) dz + wa N(z)dx = wa N(z)dx < p(FEy,)/c and
hence, by Proposition 2.4, L.(w) < u(Ey)/c.

It remains to prove that L.(w) > u(E,)/c. Let € > 0. Then there exists z. > 0 such
that (. = p(F, N (0,2.)) > u(E,) —e. Let A: be the function

z if z € (0, x.]
A(z) = 25”56*5” if x € (x.,2z.]
0 if v > 2z, .

It follows from Proposition 2.4 and a straightforward approximation argument that
Lo(w)>—1 [, cos(w(0,2))\.(x) dz. Hence

Lo(w) > —% /]R+ cos(w(0,z))\.(z) do = —2% 0% cos(w(0,x)) da +
+2ic / cos(w(0, 7)) dz = —Qic(u((o,xg)\Ew) — ((0,2:) N Ey) )+
1

5 <u((x€, 22.) \ Ey) — pl(we, 22.) N Ew)> > —%(% —2) + %(xe — %),

since p((ze, 22:) N Ey) < p(Ew \ (0,20)) = p(Ew\ (BN (0,2:))) = u(Ey) — L < cand
w((ze,22.) \ Ey) = zo — p((ze,22.) N Ey) > x. —e. Hence L.(w) > (u(Ey) — 2¢)/c and
since € > (0 can be chosen arbitrarily small the proof is complete. O

Theorem 2.3 follows at once from (2.15), Proposition 2.5, and the relation

1

1
/ eCZdZ:—/ d:p:—u(ET(f)).
Py € JBr) ¢

We conclude this section with a technical result which we shall use in section 2.5 .

Proposition 2.6. Let 0 <b <1, w e TW°), k€ Z\ {0} and 0 < o < gy, where

302 —1
—= ar _ .
Op = arccos T2

p({x>0;w(0,z)=kr}) = lim pu({z>0;kr—o<w(r,z)<kr+o}) < co.

r—0t

Then
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Proof: Let n €¢ Nand 0 < r < 1, and set

S, ={0<z<n;w0,x) = kr}
Sen ={0<z<n;krn—o<w(rz) <kr+o})
Fo,={x>n;kr—o<w(rz) <kr+o}).

Since, for a.e. > 0, w(-,z) € C°([0,1]) and w(0,z) = j(z)r for some j(z) € Z, the
characteristic function of the set {z > 0; km — o < w(r,x) < kw4 0})} converges a.e. to
the characteristic function of {z > 0; w(0,2) = kn} (here we have used that o < 7).
Hence, by Lebesgue’s theorem p(S,.,) — u(S,) as r — 0 for all n € N,

It is easy to complete the proof if we show that for all € > 0 there exists v € N such
that p(F.,) <eforaln>vand 0 <r <1

Arguing by contradiction we suppose that there exists € > 0 such that for every v € N
there exist n = n(v) > v and 0 < r, < 1such that u(F,, ,) > e. Choosing v > z; = e,
w(l,z) = 2arctanb for every x € F,, . On the other hand, since k # 0, w(r,,z) > 1—0
or w(ry,x) < —m+oif x € F,, ,,. Hence, by Lemma A.1, for all n =n(v) and x € F, ,

r

1 . 9
/r g (’wf(ﬁ r) + w> dr >|cos(2arctanb) + cos(o)].

In view of (2.7) it is natural to require that the right hand side is larger than %, which

leads at once to the condition o < g,. Hence there exists C'=C(b, o) > 0 such that for
n=n(v) and v > 14

00 1 102
/ dx/ % (wf(r, ZE)-I—W—GI)(T)) dr > Cu(F,, ) > Ce.
n 0

r2

On the other hand, since w € T'(W¢), the latter integral vanishes as n — oo, and we have
found a contradiction. 0

2.3 Existence of minimizers

In this section we prove the following result:

Theorem 2.7. Let g satisfy (2.2), with 0 < B < % and A > B, and let b € (0,1)

be defined by 2arctanb = B. Then the first and the second variational problem have a
solution, hiand hy respectively, which satisfy the following properties:

(i) hy and hy are real analytic in (0,1) x R and continuous up to r = 1, and satisfy
equations (7) and (2.1).

(it) If m < A < 3, then 2 arctan(br) < hi(r,z) < m+ 2arctan(air) for (r,z) € (0,1) x R,
where a; € (0,1) is defined by ™+ 2arctana; = A.

(iii) If 1 < A < 3w, then 2 arctan(br) < ho(r, 2) < 2m+2 arctan(aqr) for (r,z) € (0,1)xR,
where as € R is defined by 27 + 2 arctanay = A.

(iv) hi(r,z) — 2arctan(br), (i = 1,2), uniformly with respect to r € [0,1] as z — oc.
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Proof: We only sketch the proof in case of the second variational problem. Since great
parts of it are standard, we omit all details except of the less standard ones. We set

= inf{®.(h) + 2L.(h); h € W°}.

By (2.10), Z > —%. Let {h,} be a minimizing sequence and let ¢ > 0. We set, for

all f € W2((0,1) x (—0,0)),

_ /idz/oldr{g (rpemsd f)}
verl) = Beol) = [0z [Lar (3o ).

Then ., (hy) is uniformly bounded with respect to both ¢ and n. In addition, {h,} is
bounded in W?((0,1) x (—0o,0)) for all ¢, and, by a standard diagonal procedure, there
exist h, belonging to W?((0,1) x (—o,0)) for all ¢ > 0, and a subsequence of {h,},
which we shall denote again by {h,}, such that

h(1l,z) = g(z) fora.e. z€R,

b, —h in W'((0,1) x (—0,0)) and h, —h ae. in (0,1) x R,

and ) .
sin h,, sin h
—\

in LQ((_U’ U); Lg(oa 1))

r

(indeed, #2= js uniformly bounded in L*((—o,0); L?(0,1)) and the weak convergence
follows from Dominated Convergence Theorem applied to the sequence {fsinh,} =

Setting f, = hy, — h, the identity E.,(h,) = E.,(fn) + Eco(h) + R, with

o 1 : - inh hn
:/ dz/ {recz (fnrhr+fnzhz+S1nf 31:2 cos )} ar.
—0 0

E.,(hy,) = E.o(h)+ E.o(h, —h)+0(1) asn — oo. (2.16)
We fix ¢ > 0 and ¢ € €° such that supp(§) C [0, 1] x [—0o, 0]. We claim that

implies that

2L(h,, &) —2L(h,&) > —E.,(h, —h) +0(1) asn — oo. (2.17)

This inequality follows easily from the decomposition 2L(h,,,&) —2L(h,§) = L1 n+ lon+
Is,, + 14, , where

= [7 dz [y dr{sin f cos h(fa:bs — fur&:)},

= ffadzfol dr{sin h(COS fn - 1)(fnz£r - fnrgz)}7
Ly, = [ dz [ dr{sinh(fab — ful.)},
Ly, =—[° dzfoldr{ sin i — sin hy) (hobr — he€2)};

1] < f dzfo r{‘smfn‘|an| V¢ dr <f dzfo P ec* [ S f"+\an| rdr=E..(fa),
and[l7n—>0asn—>oof0r2—2 3,4.
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Combining (2.16) and (2.17) and taking o and ¢ as before, we have that
D g(h) +2L(h, &) < Peg(hn) + 2L(hn, §) + 0(1) < Ceg(hn) + 2Le(hn) +0(1). (2.18)

Arguing as in the proof of (2.10), we obtain that ®.(h,) > ., (h,)— ”ﬁ% forall o > 2.
Since ®.(hy,) + 2L.(h,) — Z as n — oo, it follows from (2.18) that ®.,(h) + 2L(h,§) <
T+ 2’21;);0 for all £ € €¢ and o > z; such that supp(§) C [0, 1] x [—0, 0. Letting 0 — oo
we find that ®.(h)+2L(h, &) < Z for all £ € €°, and hence h solves the second variational

problem.

It remains to prove points (i)-(iv) of Theorem 2.7. The proof of (i) is standard. The
proofs of (ii) and (iii) are similar and we omit the one of (ii).

Proof of (iii). Let fi(r,z) =max{2 arctan(br) hao(r,z)}. Then fi € W, fi(1,2) = ¢g(z)
for a.e. z € R, | fir| < max(|har|, 535 —2 ), and |f1.| < |ho.|. We fix z € R arbitrarily.
Since ho(r, z) — 2 arctan(br) is real analytic in (0, 1), we may write

E_(z) = {re(0,1); hao(r,z) < 2arctan(br)} = U (Qtny Bn), (2.19)

neT CZ

where 0 < a, < B, < api1 < Bppr < 1forn,n+1€ T. We observe that, for all n € T,
ha(By, z) = 2 arctan(bB,) and, if a,, > 0, ho(a,, z) = 2arctan(ba,). We set

<2
Hoz) = § (1209 4109+ 2402,

r2

Then

/o (H(r,z; f1) —H(r, z; hg))dr:/E ( )(H(T, z;2arctan(br)) —H(r, z; hy)) dr

= Z/ (r, z;2arctan(br))— H(r, z; hy)) dr.

neT
By Corollary A.3

ﬁn
/ (H(r,z;2arctan(br)) — H(r,z;he))dr <0 if o, > 0. (2.20)

We observe that a,, = 0 may happen for at most one value of n, and if so we may assume
without loss of generality that ag = 0. Since 0 < b < 1, it follows in this case from
Theorem A.6 that also

Bo
/ (H(r,z;2arctan(br)) — H(r,z; he))dr <0 if ag = 0. (2.21)
0

Hence, by (2.20) and (2.21),
1 1
/ H(r,z; fi)dr — / H(r,z;he)dr <0. (2.22)
0 0
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Since (2.22) holds for a.e. z € R we conclude that ®.(f1) < ®.(hg). In particular
fi € We. In addition it follows from Theorem 2.3 that L.(f;) < L.(hy). This implies
that f; is a solution of the second variational problem. By standard regularity theory f;
is smooth in (0,1) x R and, by the strong maximum principle, f;(r, z) > 2arctan(br) for
all (r,z) € (0,1) x R. Hence f; = hs in (0,1) x R and we have proved the first inequality
in (iii).

Similarly we define f, = min{27 + 2 arctan(agr), ho(r, z)}. Arguing as before, with
E_(z) replaced by E,(z) = {r € (0,1); ho(r,z) > 27 + 2arctan(ayr)}, only the in-
equality (2.21) needs to be slightly modified. So we suppose that there exist z € R and
Bo € (0,1] such that

ho(r, z) >2m+2 arctan(agr) for 0<r<pfy and ha(fo, 2) = 2w + 2arctan(a2fy). (2.23)

In view of (2.9) we may assume without loss of generality that hy(0, 2) = ko(2)7 for some
ko(z) € Z. By (2.23) we have that ko(z) > 2. If ky(2) = 2 or if ky(2) > 4, we obtain from
Lemma A.1 that (2.21) still holds, with 2 arctan(br) replaced by 27 + 2 arctan(asr). In
the remaining case, ko(z) = 3, (2.21) is replaced by the inequality

Bo
/ (H(r,z;2m 4+ 2arctan(agr)) — H(r,z;hy))dr <2 if hy(0,2) = 3m,
0

which follows easily from Lemma A.1. This means that the inequality ®.(f2) < P.(h2)
is not necessarily valid, but since cos(hq(0, z)) = —1 if ko(z) = 3, it follows easily from
Theorem 2.3 that the inequality ®.(f2) + 2L.(f2) < ®.(ha) + 2L.(h2) holds.

Proof of (iv). We only prove the result for hy, which we shall denote by h. It follows
from (2.7) and (2.8) that

Uz) = /Olg (hz + Sir;zh - Gb(r))

where 2, is defined by (2.2). Since [ e U(z) dz < @.(h) + ié’fi;l) < 00, there exists a

sequence z, — 0o such that U(z,) — 0 as n — oco. Hence, by Theorem A.7, h(r, z,) —
2 arctan(br) uniformly with respect to r € [0,1] as n — oo.

dr >0 if z > z,

z

By standard Schauder estimates, for any p > 0 the function V,(z) = fpl R2(r,z) dr is
Lipschitz continuous in R.

On the other hand, the inequality f;o dz fol re; h*dr < ®.(h)+ f?fj;l) implies

/ Vy(2)e” dz < o0

z1

and then V,(z)e2* — 0 as z — oo.
By Schauder estimates, from here follows the existence of K, > 0 such that ||h. (-, 2)|| Lo (p,1) <

Ke . Hence lim h(r,z) exists for all » € (0,1] and it is equal to lim h(r,z,) =
z—00 n—oo

2 arctan(br). Obviously, for any p > 0,
lim h(r,z) = 2arctan(br) uniformly with respect to r € [p, 1]. (2.24)

Z—00

It remains to show that the limit is uniform with respect to r € (0,1]. In the next
section we shall show that we may assume that h is decreasing with respect to z (in
the proof we shall use (2.24)). Hence the uniform convergence follows at once from the
uniform convergence along the subsequence {z,}. O
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2.4 Monotonicity properties of minimizers

In this section we shall show that our two variational problems have solutions which
are decreasing with respect to z. We use a onedimensional monotone rearrangement
technique (][20]) applied to the variable x = e.

Let T be the operator induced by the transformation x = e“ as introduced in sec-
tion 2.2 . If f; and fy are the functions defined by

fi=T(h) and fo=T(hs), (2.25)

then, in view of Theorem 2.7, (2.24) and standard Schauder estimates applied to equa-
tion (7), fi1 and f, satisfy properties (P1)-(P4) of Appendix B, with ¢(r) = 2 arctan(br).
If we denote by f; and f; the one-dimensional decreasing rearrangements of f; and fo
with respect to the x variable (see Appendix B for the exact definition), then by using
some results collected in Appendix B we can prove that

Theorem 2.8. The functions T~ (f7) and T~ (f3) are solutions of, respectively, the first
and second variational problem.

Proof: 1t follows at once from Propositions B.7 and B.8 that W .(f) < W (f;), and
hence, by (2.14), (T (f})) < ®.(h;) for i =1,2.

In view of (2.15) it remains to prove that L.(f5) = L.(f2). By Theorem 2.7(iii) and
Propositions 2.5 and 2.6, this is equivalent to proving that, for ¢ > 0 small enough,

lim p({x>0;7r—c<fi(r,z)<m+o}) = lim p({x>0;7r—c < fo(r,z)<m+o}).
r—0t r—0+

The latter equality follows at once from (B.1). O

Corollary 2.9. We may assume that the functions hy and hsy, defined in Theorem 2.7,
are strictly decreasing with respect to z in (0,1) x R, and that for all p > 0

hi(r,z) — m+ 2arctan(a,r) uniformly with respect to r € [p,1] as z — —oo.  (2.26)

The first part of Corollary 2.9 follows at once from Theorem 2.8 and the monotonicity
of the rearranged functions. The monotonicity of h; implies the existence of the limit
in (2.26), which we denote by v(r). It easily follows that v is a solution of the equation
Upp + 10, — % = 0 in the interval (0,1), with boundary condition v(1) = g(—o0) =
7+ 2arctana;. In addition it follows from Theorem 2.7(ii) that 2 arctan(br) < v(r) <
7w + 2arctan(a;r) in (0,1). The only function v satisfying all these conditions is the
function m+2 arctan(a;r). It follows at once from Schauder estimates that the convergence
is uniform in the sets [p, 1] for p > 0, which completes the proof of Corollary 2.9.

We observe that, arguing as before, we need the condition that a; > 0 to obtain a

result similar to (2.26) for the function hy:
ho(r, z) — 2w + 2 arctan(agr) uniformly with respect to r € [p, 1] as z — —oo.  (2.27)

Indeed, if as < 0 the same procedure leads to two possible limit functions in (2.27):
27 + 2 arctan(agr) and m — 2 arctan (;—2> Only in section 2.5 we shall be able to exclude

the latter possibility.
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2.5 Existence of a point singularity

By Theorems 2.7 and 2.8, both variational problems have a minimizer which is strictly
decreasing with respect to z in (0,1) x R. In this section we complete the proofs of
Theorems 2.1 and 2.2. In particular we shall prove that both minimizers have exactly
one singular point at the axis r = 0 and we shall determine the behavior of the minimizers
as z — —00.

Theorem 2.10. Let hy and he be a minimizer of, respectively, the first and second vari-
ational problem which is strictly decreasing with respect to z for all 0 < r < 1.

(i) There exists Zy € R such that hy(0,2) =7 if 2 <z and hy(0,2) =0 if z > 7.

(ii) hi(r,z) — 7+ 2arctan(ayr) uniformly with respect to r € [0,1] as z — —oo, where
ay 1s defined by ™+ 2 arctana; = A.

(iii) There ezists zo € R such that ha(0,2) = 21 if 2 < Zy and hy(0,2) =0 if 2 > Z,.

(1v) ha(r, z) — 27 + 2 arctan(agr) uniformly with respect to r € [0,1] as z — —oo, where
as 1s defined by 2w + 2 arctanay = A.

(v) h; is continuous in [0, 1] xR\ {(0, z;) } and real analytic in [0,1)xR\{(0,2;)} (i = 1,2).

The proof of (i) is based on the following lemma. We omit its proof, which is based
on straightforward computations and estimates.

Lemma 2.11. Let p < q and o € C'((p, q]) be such that

"2 /
2 ¢ L'(p,q), a(z) — oo and ()

+
o3 az(z)—>0asz—>p.

a>0in (p,ql,

Then the function v € C*((0,1] x (p,q)), defined by

a(z)r?

r+1

v(r,z) = 2arctan ( > for (r,z) € (0,1] x (p, ql,

satz’sﬁes

(i) fo rv3(r,z) dr < 12, fl sin® q;” dr <6, fo rv?(r,z) dr < 8(d/(2))?a™3(2) for p <
2= q;

(it) v, € LQ((pa q); L%(Oa 1));

(i) for all0 < p < 1, v(r,z) = 7 and v.(r, 2),v,(r, 2) = 0 uniformly in [p, 1] as z — p*.

Proof of Theorem 2.10(i). By (2.9), h1(0, z) = k(z)7 for some integer k(z) for a.e. z. By
Theorem 2.7(ii) and (iv), k(z) = 0 or k(z) = 1 for a.e. z, and k(z) = 0 for z large enough.
Since hq, and hence also k, is nonincreasing with respect to z, it remains to show that
k # 0 in R. We argue by contradiction and suppose that h(0,z) = 0 for all z € R.
Given n € N and 0 < r,, < 1, by (2.26) there exists g, < zy such that hy(r, z) > 7 for

z < gy and 7 € [ry, 1]. We define p, = ¢, — +, an(2) = (2 —p,) 2 and
hl(ra 2) z > Adn
hyn(r,z) = § max{hy(r,2),v,(r,2)} 2 € (Pn, qn)
max{m, hy(r, 2)} Z2 < Pn,
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where

2
v, (7, 2) = 2 arctan (Oén(j—’)lr > .
r

Choosing r,, = —, which is a root of the equation v,(r,¢,) = 2arctan(br), it follows
easily from Lemma 2.11 and the definition of p,, and g, that hy, € W°.

We claim that ®.(h;,,) < ®.(h;) for n large enough, which is a contradiction since h;
is a minimizer of ®, in W°.

Given a measurable set S C (0,1) x R and f € W, we set

.
Es(f) = //S%ecz (ff-l—ff-l—sn;f)drdz.

Then (I)c(hl,n) — q)c(hl) = ]17" — [277“ where

[1,TL = E[Ovl}x(pn:Qn)(hlyTJ - E[Ovl]x(pm‘Zn)(hl)?

Ly = Eio1x(—oopn) (P1.n) = Eo1]x(—o0,pn) (1)

By Lemma 2.11, I1 ;, < Ejo.1]x (pn,qn) (Un) < Q—Eec””(e% —1).
We define p(z) = inf{r € (0,1];h1(r,z) > 7} for z < z5. Then 0 < p(z) < 1, since
h1(0,2) =0 and hy(1,2) = 7+ 2arctana, if z < z5. We set

A, = {(r,2);0<r<p(z),z<p,}and B, = {(r,2);p(z) <r <1,z < p,}.
Since hy, = 7 in A,, it follows from Lemma A.1 that

Pn 2
Ea,(h1n) — Ea,(h) = —Ea, (h) < —2/ e“dz = ——eP.

C

—00

Since [(h1,)r] < |hir|, [(hin):] < |h12| and |sinhy,| < |sinhy| in B, this implies that
Ig’n < —% ePr,

We conclude that ®,(hy,) — P(hy) < (25 en —25—2) < 0 for n large enough, and
we have proved our claim. O

Proof of Theorem 2.10(ii). The uniform convergence follows at once from (2.26), Theo-
rem 2.10(i), the monotonicity in z and the upper bound in Theorem 2.7(ii). O

In the proof of part (iii) we shall use an auxiliary lemma which is based on the following
proposition.

Proposition 2.12. Let h; be as in Theorem 2.10, I be an open nonempty interval and
k € Z a constant such that h;(0,z) = km for z € I. Then h; is real analytic in [0,1) x I.

Proof: The argument proving the thesis is the same as for Proposition 1.24 (replace

Lemma 2.13. Let h;, I and k be as in Proposition 2.12. Then there exists z € I such
that (h;)-(0,2) # 0.
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Proof: Omitting the subscript ¢ and arguing by contradiction we suppose that h,.(0, z) =
0 for all z € I. We claim that for all positive integers a
0%h
Z20,2)=0 forzel. 2.28
Sra (0, 2) or z ( )
This leads immediately to a contradiction: by Proposition 2.12 and (2.28) h is constant in
(0,1) x I, which is impossible since h is strictly decreasing with respect to z in (0,1) x R.
In order to prove (2.28) we argue by induction. We know that (2.28) is true for a = 1.
Suppose that it is true for « = 1,..., 8 for some § > 1. Using a Taylor expansion we
obtain that forall z€  and a =1,....

H8+1
=0 and W(sin@h))

OPR

aOé
W(O’ z),

%<Sin(2h)) — 9

r=0

r=0

1 9%ty
(B = 1) ot

1 9°+1h
~ Bl orpHl
1 9%h
(B4 1) ors+t

h.(r,z) = O™, h..(r,2) = O@"™).

Substituting these equalities in equation (7), we find that (2.28) holds fora = g+1. O

Proof of Theorem 2.10(i1i). The proof consists of two steps. In the first one we exclude
the possibility that he(0, z) = 0 for all z € R. In the second one we show that hs(0, z) # 7
for a.e. z € R. Since hy is nonincreasing with respect to z, the proof is then completed
by Theorem 2.7(iii).

Step 1. We only give the proof in the case that as < 0 (if ag > 0 the proof can
be considerably simplified). As in the proof of part (i) we argue by contradiction and
suppose that hy(0,z) =0 for all z € R.

Given n € N and p, = -, the statement which follows formula (2.27) (which treats

the case as < 0) implies that there exists g, < 2z such that

(0, z)rﬁfl + O(rﬁ),

he(r, 2)r ™! (0, 2)r" "+ O(r7),

% sin(2h(r, 2))r 2 = (0,2)r" 1 +0(r7),

ho(r, z) > 7+ 2 arctan (2|T |> if 2 <gq, and p, <r < 1. (2.29)
a2
We set 1
Pn=04n — —, Zn:pn_]-7 T € [pnal]a
n
and we define for all 0 <r <1
v (r z)z?arctan<M> pn<z<gq
n ) T'Jrl ) n f— nH
wy(r, 2) = 7+ 2arctan(B,(2)r), 2 < 2 < py,

wp(r, 2) :max{Qﬁ—Q arctan(y, (2)r), m+2 arctan(ﬁ)} s =T <z <z,

Xn(r) = Wn(ra Zn — Tn)a

56



where
2|as|

(2n — Z)Q.

Tn(z) =

1 DPn — 2
v = G PO

Finally, we set, for 0 <r <1,

ho(r, 2) if 2 > g,
max{ho(r, z),v,(r,2)} if 2 € (pn, @]
hon(r,z) = ¢ max{hs }oif 2 € [z, pa
r,z)} if 2 € [z — 1, 20)

)} if 2 < zp, — 7y

\

It is easy to show that hg,, is locally Lipschitz continuous in (0,1] x R and belongs to
We. To obtain a contradiction it is enough to show that

O.(hon) + 2Lc(hon) < Pe(h2) + 2L.(he) for n large enough. (2.30)
Defining Es(f) as in the proof of part (i), we write
(I)c(h2,n> - (I)c(h2> = [1,n + IQ,n + [3,n + [4,n7

where
L = E1)x(pn.a0) (P20) = E0.1)x(n.g) (h2),
I2,n = E(O,l)x(zn pn)(h2 Tl) E(O,l)x(zn,pn)(h2)a
IB,n = E(O,l)x(zn TnyZn) (hZ n) E(O,l)x(znfrn,zn)(hZ)a
I4,n = E(O,l)x( 00,2n—Tn) (hZ,n) - E(O,l)x(foo,znfrn)(hQ)-

By Lemma 2.11,

25 c
[1,TL S E(071)X(pn7Qn) (UTL> S ? eCp" (en _1) : (231)

Since w,,(r, z) < m+ 2arctan(r/(2]as])) if 0 < r < 1 and z, < z < p,, it follows from
(2.29) that

[277" S E(O,pn)X(zn,pn)(hZ,n> - E(Ovpn)x(znypn) (hQ)
Hence, by Corollary A.3 and a straightforward calculation,

gfz’jje“( 2+ [ ir(hoy)?dr)dz
:fi"ecz (—2—|—< E;) (10g(1+6npn)—1—|—1+522))dz,

and there exists a constant C'y > 0 which does not depend on n such that

—2 4 Copy

[2,n S
C

(P —em). (2.32)
Since v, (2)r > 2|ag|/ry, for all ¥ > r,(> p,), it follows from (2.29) that
21 — 2arctan(vy,(z)r) < 7+ 2arctan( |7" |) < hg(r,z) ifr>mr,.
2|as
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Hence
[3,n = E(O,rn)x(zn—rn,zn)(hln) - E(O,Tn)X(Zn—T’n,Zn)(h2>7
and, by Corollary A.3,

Lo <[00, eFdz [i7 3r((hew)? = (he)?) dr

— Jzp—rn 0 2

< [P et d s for" r(arctan(vy,(z)r))?dr

Zn—Tn , )
= Znn_rn ec? (3%&23) (log(l + ’)/7217"721) -1+ m) dz.

Since log(1 + s%) < 44/s for s > 0, it follows easily that there exists a constant C3 > 0
which does not depend on n such that

I3, < Car2\/1, e . (2.33)
Since x,,(r) = 7 + 2arctan(r/(2]as|)) for r > r, > pp,

I4,n = E(O,rn)x(foo,znfrn)(hln) - E(O,rn)x(foo,znfrn)(hQ)-

On the other hand, x,(r) = 27 — 2arctan(2|as|r/r?) for r < r,, and hence, setting
S_:={(r,z) € (0,r,) X (=00, 2, — T0); ha(r,2) < xn(r)},

Iiw < Jfo 3o ()2 + 2522 ) = ((hop)? + 2502 ) ) drd 2
< I e (Ninl(z) = Jan(2)) d 7,

| sin? 272
Jin(2) = — ) “ldr=2—- —2>
1, (Z) \/0 27” ((X )r + r2 ) r 'I"% + 4|a2|2

r(z) 1 in2h "
N ((hQ,n>,%+Sln 2 )dr

r2

where

and

with p(z) := inf{r € [0,7,]; ha(r,2) > w}. By Lemma A.1 J;,(2) > 2, and hence there
exists a constant Cy > 0 which does not depend on n such that

Iy < —Cyr2 el (2.34)

Since Le(ha,) = =" (by Theorem 2.3), it follows from (2.32), (2.33) and (2.34)
that there exists 0 > 0 such that if p, <7, < ¢ then

1
Iy + Tsp + i + 2Lo(hon) < =5 Cirg 7).

Hence, by (2.31), we can choose n so large that
@c(hZ,n) + 2Lc(h2,n) < ch(hZ)a

and (2.30) follows.

Step 2. We argue by contradiction and suppose that there exist p < ¢ such that
ha(0,2) = mif p < z < ¢q. In view of Lemma 2.13 and the monotonicity of hy with respect
to z, we may assume, without loss of generality, that for some ky > 0 either

(h2)r(072) Z (h2)r(0aQ) > kO >0 ifz< q (235)
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or

(h2)-(0,2) < (h2),(0,p) < —ko <0 ifp<z. (2.36)

One way to obtain a contradiction is to modify the proof of a more general result in
[18]. Alternatively, we can use the approach used in the proof of part (iii): if (2.35) holds,
we can construct a function hj such that h3(0,z) = 27 if z < ¢ and ®.(h}) + 2L.(h}) <
®.(ha) + 2L.(hs); if (2.36) holds, a similar function hj exists such that h3(0,z) = 0 if
z > p. For example, in the first case we can choose h} of the type

ho(r, 2) if0<r<l,z>qorr*<r<l,z<gq
hy(r, z) = ¢ max{ha(r, z),w(r, z)} if0<r<r*zelg—z"q)
max{hq(r, z),w(r,q — z*)} if 0<r<r* z<q—2z*,

where w(r, z) = 2r—2arctan(y(2)r), v,(2) = C*(¢—2)2, and r*, z* and C* are constants
to be chosen appropriately. We leave the details to the interested reader. O

Proof of Theorem 2.10(iv). The uniform convergence follows at once from formula (2.27)
(which holds only if a; > 0) and the sentence immediately after (2.27) (which holds if ay <
0), Theorem 2.10(iii), the monotonicity in z and the upper bound in Theorem 2.7(iii). O

Proof of Theorem 2.10(v). The proof is an immediate consequence of Proposition 2.12.
U

2.6 Position of the singularity when ¢ — oo

Let ¢ > 0 and let h; and hy be the solutions given by, respectively, Theorems 2.1 and
2.2 with a point singularity in (0, z;) and (0, Z3). In this section we consider the behavior
of zZ; as ¢ — oo. We shall often add the subscript ¢ and use the notation h;. and z; .
(1=1,2).

We first give a heuristic argument and set

T=-2 Ti.= e and Gio(r,7) = hio(r,—cT). (2.37)
c
Then ¢; . is smooth in [0,1] x R\ {(0,7;.)} and is a solution of the equation

sy g sin(2q)
(:I’T - C2 + q7’7’ + 2’]"2

in (0,1) x R. (2.38)

In addition g; . satisfies the properties:

lqm(r, o0) = im 4 2arctan(a;r) 1 € [0,1]

ic(r,—00) = 2arctan(br) r € [0,1]

Gic(1,7) = g(—cT) TER (2.39)
¢i.c(0,7) =0 T < Tic

| Gi.c(0,7) =im T > Tic.

If ¢; . converges to some limit function ¢; as ¢ — o0, it is plausible that ¢, satisfies the
parabolic equation

g sin(g)
qr = Qrr + r 22

in (0,1) xR (2.40)
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with the following conditions at 7 = —oco and r = 1:

¢;(r, —o0) = 2arctan(br) r € [0,1]
¢i(1,7) = g(oo) =B T<0 (2.41)
¢(1,7) = g(—o0)=A 17>0.

So ¢; is a solution of the harmonic map flow on the unit disk, with 7 playing the role of

time. The problem for ¢; can be easily split up in two separate problems: one for 7 < 0,
with the trivial solution

gi(r,7) = 2arctan(br) if0<r<1,7 <0, (2.42)

and the other one for 7 > 0 with an initial condition at 7 = 0 inherited from (2.42):

G = G+ -2 g<r <1750
q(r,0) =2arctan(br) 0<r<1 (2.43)

q(1,7) = g(—oc0)=A 7>0.

Since A > 7 it is known (see [7]) that (2.43) has a classical solution ¢ which blows up
after finite time 7 > 0, satisfying

q(0,7) =0if 7 < 7 and ¢(0,7) = 7. (2.44)

In [3],]29] it has been shown that this solution can be continued for 7 > 7 in at least
2 different ways: for 7 > 7, ¢ satisfies either ¢(0,7) = 7 or ¢(0,7) = 27. The latter
property explains the difference between the limit functions ¢; and ¢,. In particular we
claim that z; . and %, have the same limiting behavior as ¢ — oo:

Theorem 2.14. Let hy. and hy . be the solutions constructed in Theorems 2.1 and 2.2,
and let (0,z..) and (0, Z2..) be their singularities. Then

Zie=—Tc(l4+0(1)) » —00 asc—o0 (i=1,2), (2.45)
where T > 0 is defined by (2.44).

The rigorous proof of this result is quite lengthy, and below we only sketch its struc-
ture.

It is not difficult to show that for all compact subsets © of (0,1) x R there exists a
constant K = K (Q2) which does not depend on ¢ such that such that for all ¢ > 1

SR

Hence there exist ¢; € HL_((0,1) x R) such that, up to subsequences,

aqi,c 2
or

)der < K.

Gie— ¢ in Hp.((0,1) xR) as ¢ — oo,

By standard regularity theory, ¢; is a smooth solution of equation (2.40) in (0,1) x R.
In addition ¢; is increasing with respect to 7 and satisfies 2 arctan(br) < ¢;(r,7) < im +
2 arctan(a;r).
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Using that

K
c

cz1
€

D.(h;.) < P (2arctan(br) + (g(z) — 2arctanb)r) <

for some K which does not depend on ¢ one can prove that, for any M > 0 and ¢ > 0,

M K 201
io(m)dr < —=e*7 " =50 asc— oo, 2.46
; 2

_ c

M—e

where X L,
fie(T) = / i ((qzc)z + SmT# — Gb(r)) dr.
0

By Lemma A.6 f;.(7) > 0 in (—oo,—2). Using the monotonicity with respect to 7,
it follows easily from (2.46) and Theorem A.7 that ¢;. — 2arctan(br) uniformly in
0,1] x (—o0, —M] for all M > 0, and (2.42) follows.

The rest of the proof is based on some detailed information about the minimal solution,
Gmin(r,T) (T > 0), of (2.43). In particular g, satisfies (2.44), ¢nin(0,7) = 7w if 7 > 7,
and @ is increasing with respect to 7 (since the initial function is a subsolution). Lap-
number theory (see [26]) implies that for all 0 < 7 < 7 there exists a unique r(7) such
that gmin(r(7),7) = 7. In addition r(7) is decreasing with respect to 7 and r(7) — 0 as
7 — 7. Finally ¢ > 7 in (0,1) x (7, 00) and (¢min)-(0,7) > 0if 7 > 7.

Arguing by contradiction, we use these properties and the fact that h; is a minimizer
to prove that
(1) ¢ = @min in (0,1) x (0,7) and for all € > 0 there exists ¢, ; such that —z; . > (T —¢)c
for all ¢ > c.1;

(ii) for all € > 0 there exists c. » such that —Z; . < (T +¢)c for all ¢ > c. 5.

The proofs of (i) and (ii) are based on the construction of functions which are similar
to the ones used in the previous section (the functions hy, and hy,). We omit their
construction, which is rather delicate and lengthy:.
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Chapter 3

A simple application

In this chapter we shall use our traveling waves to study nonuniqueness properties for
axially symmetric solutions of

uy— Au = |Vul*’u in QxRF
u(z,0) = up(z) in
u(z,t) = up(x) in 00 x R*

when Q = {(x1, 29, 73) : 22 + 23 < 1} C R3, the initial-boundary data ug is itself axially
symmetric:

uo(x1, 9, x3) = (E sin ho(r, 3), 22 Gin ho(r, x3), cos hy(r, ZL‘3)) (T =/a? + x%)
T T

and the function h( satisfies suitable conditions, which we shall specify later. We know
that, if we denote by h = h(r, x3,t) the angle function of an axially symmetric solution

I . T2 .
u(wy, xe, x3,t) = (7 smh,7smh, cosh)

of the previous problem, then h is a solution to the scalar problem

ht:hw—i—hzmjt%—% for0<r<1l,z3€eR,teR"
h(r,x3,0) = ho(r,x3) for0<r<l,z3 € R (3.1)
h(1,z3,t) = ho(1,z3) for z3 € R,t > 0.

If hg is bounded and smooth in the strip [0, 1] x R with ho(0, z3) = 0, then Problem (3.1)
has a unique bounded classical solution h in the maximal time interval [0,7"), where
T € (0,00] is a value depending on hg, which satisfies the condition h(0,x3,t) = 0 for
every t € [0,7). In this chapter we show that, by choosing as hy a suitable subsolution
of

h,  sin(2h)
hrr + h:):gzg + 7 - 2’1"2

T is finite and the classical solution h blows up at ¢t =T, that is to say

=0 forO<r<l1,z3€R,

limsup |[VA(-, -, t)]|ec = 00.

t—T—
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Of course, for ¢ > T it does not make sense to look for classical solutions of Problem (3.1),
but only for weak ones. We shall prove that, with our choice of hg, there is no uniqueness
of weak solutions, but there exist infinitely many weak solutions of Problem (3.1) attaining
different values on the line {r = 0}.

After introducing some preliminary technical results, the chapter starts by specifying
how the subsolution ko > 0 must be chosen to make the classical solution of (3.1) blow up
in finite time. Then, it continues with the construction of a non-negative weak solution
h,, such that

0 if |xs| > ((¥)

, if¢>T),
i Jxs| < (%)

hm(0,23,8) =0 ift < T, hm(0, x3,t) = {

where ( : [T,00) — R™ is an increasing function having the property that
¢(7) = lim ¢(t)
t—7t
for every 7 > T'. Afterwards, for every M > 0 we construct a different non-negative weak
solution hy; > hy, such that, for a suitable constant S > 0 independent of M,
1. hp(0,23,t) = 7 for every ¢ > 0 and |z3] < M,
2. hp(0,23,t) =0 for every t > 0 and |z3| > S+ M +t.

This construction proves the existence of infinitely many weak solutions to Problem (3.1),
which are distinguished by attaining different values on the line {r = 0}. In the last
section we briefly discuss the results obtained in this Chapter.

In what follows we shall always use z in place of 3.

3.1 Some technical results

Let Hy, Hy be the functions defined by

Hi(r, z,t) = 2arctan ( ) ,  Hs(r)= Br® rel0,1,ze Rt >0, (3.2)

A(z,t)

where B€ R, o € R" and A: Rx [0,7) — R* is a smooth function (here T € (0, oc]).
We shall prove that

Lemma 3.1. If B> 0 and o € (v/2,3], then there exists a constant
C(a) € [(a® —2)/2,a* — 2]
such that if A satisfies the differential inequality
A — A, > —BCOXY inRx (0,7), (3.3)
then H(r,z,t) := Hi(r,z,t) + Ho(r) is a subsolution to

in(2
ht - hrr + hzz + & - Sln( h)
r 2r2

in the open set (0,1) x R x (0,7).
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Proof: A straightforward computation shows that

Hﬁ_{_&_sin(QH) _ (rH,), sin(2H) 10 <7’(H1)r) 1d (T(Hg)r)

sin(2H1 + 2H2)

2r2 r 22 ror dr 2r2
_ sin(2H;) + a?*2H, — sin(2H, + 2H,)
B 272
_ sin(2H;)(1 — cos(2H,)) + a?2H; — cos(2H, ) sin(2H,)
B 272
H, (. sin? H, 5 Cos(2H)sin(2H,) Hy,, , w2, 9
== <s1n(2H1) T +a” — o, > ﬁ(a —2)=Br* *(a® —2)
(3.5)
due to the inequality |sinx /x| <1 forall z # 0. At the same time
in H A2 in H
H — H.. — _SmA ! (At ~ Ao+ (1 + cos Hl)f) < —SmA L = Au) (3.6)
since sin H; > 0. From the inequalities (3.5) and (3.6) we deduce that
in H
Bro~2(a? —2) > —SmA L v — \u) (3.7)
is a sufficient condition in order that H is a subsolution of (3.4). Since
. 27
sin H, = m >0
in (0,1) x R x (0,7, we can rewrite (3.7) as
)\2 2
M—A.>—Bla®—2)> " (3.8)

r3—a '

Thanks to Lemma 4.5 (replace B with A and set § = 2 — « for a € (v/2,
a € (2,3]) we have that

2743701 2743701/\0171 La a
e

with C'(a) € [1,2]. Then

A2+ r? < —B(a? - 2)

a—1
2r3—a = (C(a) A

—B(a® —2)

2], =a—2for

and, up to redefining C'(«a) as (a?—2)/C(«a), from (3.8) we obtain that (3.3) is a sufficient

condition in order that H is a subsolution of (3.4).
Let Hy, Hy be the same function as before with A : ((,00) x (0,7
and positive (here ¢ € [—00,00) and T" € (0, o]).
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Lemma 3.2. If B <0 and o € (\/2,3], then there exists a constant
C(a) € [(0® =2)/2,0" - 2]
such that if A satisfies the differential inequality
)\2
A — AZZ+27Z < |BjOX>! (3.9)
in (¢,00) x (0,T), then H(r,z,t) := Hy(r, z,t) + Ho(r) is a supersolution to

h in(2h
ht = hrr—f_hzz—f__r_snl( )
r 2r2

in the open set (0,1) x (¢,00) x (0,T).
Proof: Just as in the proof of Lemma 3.1 we have that

H, sin(2H) H,
rr - = 5
+ 272 72

(Sin(QHl)siriIHg ot cos(QH;i;in(QHg)) .
2 2

Since the expression within parentheses is always greater or equal than o? — 2 and % =
Bro=% < 0, we deduce that

H,— H., > (a® — 2)Bro? (3.10)

is a sufficient condition in order that H is a supersolution of (3.4). But

in H A2
Ho_H. - _SIH)\ 1 ()\t — A + (1 + cos H1)72)

and (3.10) can be rewritten as

A2 A
At — Asx + (1 + cos Hl)f < S I (a® = 2)|BJr*2.
Since \ 22
+r
2 _9)Blr*2 = 2_2)|B
@Bt = S 0 - 2B
and, as in the proof of Lemma 3.1,
2r3—a e
g = ol
for a suitable constant C'(«) € [1,2], we deduce that
)\2 a—1
At — Az + (14 cos H1)7Z < mw\((xz —2)
implies (3.10). The thesis then follows up to redefining C(«) as (a? —2)/C(a). O

Remark 3.3. By comparing the proofs of Lemma 3.1 and Lemma 3.2 the reader can easily
verify that the constant C'(«) appearing in their statements is the same.
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If we look for a subsolution £ = £(r, z,t) of equation (3.4) in the form

&(r, z,t) = 2arctan ()\(; t)) + Br®,

where B > 0,a € (v/2,3] are given constants and A : R x [0,7) — R* is a smooth
function, then, due to Lemma 3.1, we can reduce the problem to construct a such sub-

solution to the choice of a suitable function A. In particular we want to choose A such
that

r—0+ \t—T- 0 if|z| >0

i <
£(0,2,t) =0 Vt € [0,T),z€ R and lim < lim 5(7’,2,75)) = {7T izl <o (3.11)

for a suitable 0 > 0 and a finite time 71" > 0.
Let ¢ = ¢(t) € C*=([0,T]) be a function such that ¢(0) = ¢ > 0, ¢(T) = 0 and
¢'(t) < 01in [0,T]. For every o > 0 we set

|z —olt fz>0
Uo(2) =<0 if z € [—0, 0]
|z + o]t ifz<—0.

Lemma 3.4. Let B > 0, € (v/2,2) and let X be the function
Az, t) = K 70w z€eR,t€0,T]

with K, Q) and o positive constants. There exists Q = Q(B,K,a,||¢'|) > 0, where
¢/l = max |¢'(t)|, such that if Q > Q, then X\ satisfies (3.3) for any o > 0.

t€[0,T]

Proof: A straightforward computation shows that

M = A = KQ oot ( O = pg(z) | 2e(3)*  Qlug(2))” > .

(1) + 1o(2))? — (0(1) + 16(2))* (B(1) + 1o (2))*

Since
1o (2)] = 4pe (), pg(2) = 120,(2)"
and ¢ > 0 in [0, 7], we deduce that

/\ /\zz > KQ e¢(t)+# (gb/( ) — 12MU(Z)1/2 . 16@”0(2)3/2 ) >

(1) + 1o (2))2 (6(8) + 1o (2))*

¢/l _ 12 B 16Q )
(0(t) + 1o (2))*  (6(1) + 1o (2))*? (B(1) + o (2))>2 )

-Q
KQ eds®+u=) (_

Then

2—a ¢/l 12 16Q
O (G4 W GO R G @) S5O 612
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is a sufficient condition in order that (3.3) is true. From the elementary inequality

B
Vi, >0 afe k< (kﬁ) Ve >0
(6]

follows that (take k = Q(2 — a) and = = (¢(t) + py(z))~1) the left-hand side of (3.12) is

less than or equal to

K*Q <||¢'|| (ﬁ) 12 (%)/ e (ﬁ)/> )

_ 2—« ||¢/|| 1 >
K* %€ («) ( 0 + JO
where % () is a positive constant depending on a.. Since the constant C'in (3.12) depends
on « too, we obtain the thesis. O
As a direct consequence of Lemma 3.1 and Lemma 3.4 we obtain the following

Proposition 3.5. Let B,T,0,Q,K >0, a € (v/2,2) and let & be the function
r Q
&(r, z,t) = 2arctan <E eT*fﬂw(Z)) + Bre.

There exists Q = Q(B,a, K) > 0 such that if Q > Q then & is a subsolution of (3.4)
satisfying the conditions (3.11).

Remark 3.6. From the proof of Lemma 3.4 it follows that
1. Q@ — oo when K — o0,
2. @ is a decreasing function of B.

Lemma 3.7. Let B <0, a € (v/2, 2) and let v = v(z,t) be a function of z € (¢,00) and
€ (0,7) (C e R, T >0) such that

Y > 07 |’7t| S Mla |’72| S M27 h/zz‘ S M22 mn (Ca OO) X (07T> (313)

for some constants My, My, Mz > 0. There exists Q = Q(a, |B|, My, My, Mss) > 0 such
that for every QQ > Q) the function

Az, t) = 87%
satisfies (3.9) in (¢, 00) x (0,7T).

Proof: A straightforward computation shows that

A2 A 2
Y 8 8

and then (3.9) is equivalent to

Q)\Q—a
72

2
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Due to (3.13) and since
3 B
Vk, 8 >0 P e h < (—> Ve >0,

we have that

A\Ee 2 _e-we (M M. IMZ 2M3
Q2 G%ﬂ%+%ﬁ+—ﬁ)§e 3 <]§+ fQ+Q42+ §Q)§
v v g g v
<g (M1 + Moo n 3]\4222)
Q Q
for a suitable constant G depending on «. Here we have used that (2 — a)@Q > 0. The
thesis then follows from (3.14) since C' is a constant depending on «. O

As a direct consequence of Lemma 3.2 and Lemma 3.7 we obtain the following asser-
tion:

Proposition 3.8. Let ¢ € C([0,T)) (T € [0,00)) and p € C*([¢,00)) (€ € R) be two
functions satisfying the conditions:

1. ¢>0in (0,7),

2. there exist Ay, A1 > 0 such that |p| < Ay and |¢'| < Ay in [0,T),

3. >0 1n (¢,00),

4. there exist My, My, My > 0 such that |p| < My, [¢'| < My and |p"| < My in [(, 00).

If o € (v2,2) and B <0, then there exists Q = Q(a, |B|, Ao, A1, My, My, M) > 0 such
that for every QQ > Q) the function

Q
@/)(7“, Z, t) = 2arctan (re¢(t)u(2)> + Br®
s a supersolution to the equation

h, in(2h
ht = hrr_'_hzz_'___snl( )
r 21?2

in the open set (0,1) x (¢,00) x (0,T).

We conclude this section with a proposition which will be used at the end of the
chapter. Its proof requires two lemmas.

Lemma 3.9. Let a € (v/2,3], B € R* and let h be the function
Az, t
h(r,t) = 2arctan (M> + Br®
r

with A : (=(,¢) x (0,T) — R* regular function (¢, T > 0).
There exists C'(a) € [(a? —2)/2,a? — 2] such that if \ is a solution of

2

At — Az + 2% < BOX\*! in (—¢, ¢) x (0,7), (3.15)
then h is a subsolution of (3.4) in (0,1) x (—=¢, ¢) x (0,T).
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Proof: Let H be the function defined by

H(r, z,t) = 2arctan ()\(; t)) — Br®

for r € [0,1], z € (=¢,¢) and ¢t € (0,T). Since a € (v/2,3] and —B < 0, by the
same arguments used in the proof of Lemma 3.2 we can show that there exists C(a) €
[(a® —2)/2,a* — 2] such that if ) is a solution of (3.9), then H is a supersolution of (3.4)
n (0,1) x (—=¢, ¢) x(0,7). On the other hand, for every (r, z,t) € (0,1) x (—=¢,¢) x (0,T)
we have trivially that

h(r,z,t) = m — 2 arctan (ﬁ) +Br*=m—H(r, z1t).

Hence the thesis. O

Lemma 3.10. Let o € (v/2,2), B,(,T > 0 and let v : (—(,¢) x (0,T) — R be a
positive function of z € (—(,() and t € (0,T) such that

|yel < My, 7. < Mo, |7..] < Mo in(—¢,¢) x (0,T)

for some constants My, My, Moy > 0. There exists Q = Q(oz,B, My, My, M) > 0 such
that for every @ > @ the function

Q

Y

Ai=e
satisfies (3.15).
Proof: The proof is formally identical to that one of Lemma 3.7 and can be omitted.
Let {7v¢}es0 € C(R) be a family of functions such that -
Y(2) =v(=2), w(2) =1 V2€[0,(], 7(2) =0 V2= (+1,

d2’}/4

dz?

dry¢ dyc |?
-1

—Nl_E<O, E ’}/C SNQ’ and

where the constants Ny, N, N3 € R™ do not depend on (. We remark that for every

(20 7%(2) € (0, 1) if z € (¢, ¢+ 1).

Proposition 3.11. Let a € (v/2,2), B,T € R*. There exists Q = Q(a, B,T) > 0 such
that for every QQ > Q and for every ¢ > 0 the function

< N3 Vze((,(+1) (3.16)

__Q
ty¢ (2)

2arctan | & +Bre re(0,1,te (0,T], |z <¢+1
h(r,z,t) = "

Bre re (0,1, [z2| >C(+1ort=0

is a subsolution of (3.4) in (0,1) x R x (0,7).
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Proof: We can write h as

Mz, t
2 arctan ( (= )) + Br®

r

where

__Q
sy [ e <
’ 0 |z2| >C(+1ort=0.

Since A € C*°(R x (0,7)) we have that h € C*°((0,1) x R x (0,7")) and so is for

h, sin(2h
g(h)::ht—hm«—hzz—7+ 2502>

If |2| > ( + 1 then

sin(2h) — a?2h < sin(2h) — 2h <
272 - 272 -

while, by Lemma 3.9 and Lemma 3.10, .Z(h) < 0 in the open set (0,1) x (—¢,¢) x (0,7
provided that ) > Q for a suitable constant Q = Q(«, B, T). I

Z(h) = 0

3.2 Assumptions on hy and construction of h,,

Let a € (v/2,2),B € (0,7/2), T > 0 three constants arbitrarily chosen. Let Z €
[VT,00), K € [8/(m —2B),00) and let Q > 0 be a constant such that

e% B—
P = arctan (—) + > 0

K 2
and Q > Q(%,a,K) > Q(B, o, K). If we define
ro__Q
5(7’72,75) = 2 arctan <§eﬁt+uz(z)> + Br®

and, for & = Z — VT,

. Q
&(r, z,t) = 2arctan <% eT—”“%"(z)) + Br*,

then, thanks to Proposition 3.5, we have that {,é are subsolutions of (3.4) satisfying
conditions (3.11) for 7' =T and 0 = Z, 2 respectively. Since B > 2% and Z > %,
which implies pz < pg, it is obvious that

£(r,z,0) > E(r,2,0) + Bre  Y(r,z) € [0,1] x R. (3.17)
Moreover we have that

Lemma 3.12. .
£(1,2,0) > &(1, 2,t) + B, VzeR,t€[0,7). (3.18)
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Proof: For every z € [—Z, Z] we have that
o :
£(1,2,0) = 2arctan (f) +B=n+4+2%>c1,2,t)+B  Vte|0,T)

by definition of Z and €. On the other hand, if z > Z then
pe(2)=(-2) ==+ (Z-2)'2(=-2+(Z-2) = pz(x) + T

and if 2 < —Z px(z) = pe(z]) > pz(|z]) + T = pz(z) + T. Therefore, for every
ze€R\[-Z,Z] and t € [0,T)

Q . _Q
T—t+tpzr(z) = pz(z) +T

which, together with B > 24, implies £(1, z,t) + # < £(1, 2, 0). O
At last, since K > 8/(m — 2B), it turns out that

Lemma 3.13. There exist z=2(Z,Q) >0 and b =b(r/2 — B) € (0,1) such that
&(r,z,0) < 2arctan(br) Vre[0,1], 2| > Z
Proof: Let z = z(Z,Q) > 0 be a constant such that for every z € (—o0, —z] U [Z, 00)
_Q
TTHE < 3/2.

Therefore, for every z € (—oo, —z] U [Z,00) and r € [0, 1]

3r 2—B
&(r, 2,0) < 2arctan (2[() +Br* < (3/K+ B)r < (7?/2 — W/T) T
Since A :=7/2 — (7/2— B)/4 € (0,7/2), Ar < 2arctan(2Ar/x) for all r € [0,1]. Then
we can obtain the thesis by defining b = %. O

If g is the function defined by ¢(r, z) = £(r, 2,0), then

1.

Q
r sin(2 2KreTtuz(
QM‘—}_CJZZ—'—% - ( q> Z £t(rvza0) Q

>0
272 K2_+_r2e7’+uz (7—"‘,UZ( ))

n (0,1 x R,
2. q(0,2) =0 VzeR,

3. 2arctan(r/K) < q(r,z) < w4+ 2arctan(ar) for some a > 0, and there exist z >
0, b € (0,1) such that ¢(r, z) < 2arctan(br) if |z| > Z,

4. q(r,—z) = q(r,2), q.(r,z) <0 for r € [0,1],z > 0, and

5. (7" 2) > &(r,2,0) + Bre, q(1,2) > &(1,z,t) + B for all r € [0,1], z € R and

€0, 7).

71



Since the function 6,(r) := 2arctan(br) is a subsolution of (3.4) and the maximum
of two subsolutions is itself a subsolution, up to a regularization we can find a function
ho € C*((0,1] x R), Lipschitz continuous on [0, 1] x R, such that

(P1)
(hO)r Sil’l(Qho) .
— 50 >0 in (0,1) x R,

(ho)rr + (hO)zz +

(P2) ho(0,2) =0 VzeR,

(P3) 2arctan(br) < ho(r,z) < m + 2arctan(ar) for some a > 0, b € (0,1), and there
exists Z > 0 such that ho(r, z) = 2arctan(br) if |z| > Z,

(P4) ho(r,—z) = ho(r, 2), (ho).(r,z) <0 for r € [0,1],2 > 0, and
(P5) ho(r,z) > £(r, 2,0), ho(1,2) > £(1,2,t) for all r € [0,1], z € R and t € [0, T).

In order to construct the weak solution h,, of (3.1), for every n € N, n > 2 we consider
the domain A,, = (1/n, 1) x (—n,n) and the differential problem

sin(2h)

(By = hyy + Ty + 22— SO () € A, >0
h(r,z,0) = ho(r, 2) (r,2) € A,

(P) h(1,z,t) = ho(1, 2) z € [-n,n], t>0

h(1/n,z,t) = ho(1/n, 2) z€[-n,n],t>0

h(r,4n,t) = ho(r,£n) re[l/n,1],t>0

\

By standard solvability, comparison and regularity results for parabolic problems (see
[21]), by properties (P1),(P3),(P4) and since the functions 6,(r) = 2 arctan(br), 0,(r) :=
7 + 2arctan(ar) both solve (3.4), we can say that for every n € N Problem (F,) has a
unique classical solution h,, € C*(A, x R*) N C%(A, x [0,00)) and, for (r,2) € A,, t' >
t>0:

ho(r, —2,t) = ho(r, 2,t),  (ha)z(r, <
(hn)r, (hy), are Holder continuous in (7, 2,t), hyy1(r, 2,t) > h,(r, 2, 1) .

Moreover, if we define
.2
_ r( e o2 sint()
B0 = [[ g0z =) ez,

Proposition 3.14. For everyn > 2 andT > 0

we have that

E.(hy(-,-,T))+ ///AnX[O,T]T(hn)?deZdt = E,(ho).
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Proof: Let n be an arbitrary integer value with n > 2. For sake of simplicity, we shall
denote by h the function h,,, so omitting the subscript n. Given 0 < 7 < T, if we multiply
by rh; the differential equation of h and then we integrate the resulting equation over
A, X [r,T], we find that

in(2h
/// Thfdrdzdtz/// ((Thr)r+(7“hz)z—sm( ))htdrdzdt.
AnX[7,T] Anx[r.T] 2r

Since h € C*1(A, x [r,T]) we may integrate by parts and obtain that

. 2h
/// rhfdrdzdt:—/// (f (h3+h§+sm2 )> drdzdt
Anx[r,T] Anx[rT] \2 r t

which we can rewrite as

///AM[TT] rhfdrdzdt—i—En(h(., 1)) = By(h(-, -, 7).

Since (hy,), and (h,). are Holder continuous in r, z and ¢, from the last equality we obtain
the thesis by simply letting 7 — 0. O
Thanks to properties (3.19) we can define the function

B (1, 2,t) :== Hm hy,(r, 2,t) = sup hy,(r, 2, t) (r,z,t) € (0,1] x R x [0, 00)

n—o0 n>2
and say that, for (r,z) € (0,1] xR, ¢ >t >0

0(r)<h (r,
hun (1, =2, 1)

By standard regularity results, h,, € C*°((0,1] x R x RT)NC?((0,1] xR x [0, 00)) and
it is a classical solution of (3.1). Actually, h,, is a “minimal” solution for Problem (3.1),
in the sense specified by the next statement:

Z,

0,(r), ho(r,z) < hp(r,z,t) < hy(r, z,t),

t) < m\T's 2
h(ry 2, t), hp(r, 2/, 1) < hy(r,2,t) if 2/ > 2> 0. (3.20)

Proposition 3.15. Let h € L*>((0,1) x R x RT) be a weak solution of (8.1) with h > hy.
Then h > h,,

Proof: Due to parabolic Schauder-type estimates, h is smooth out of {r = 0} and is
a supersolution of problem (P,) for every n > 2. Then the thesis directly follows from
the parabolic maximum principle and the definition of h,,. O
Proposition 3.16. For every ( >z and T > 0

¢ 1 in%(h
[a: f((hm>3+<hm>§+w) ar+ [f] () drd zdt <
—¢ 0 2 r i (0,1)xRX[0,T]

/dz/ ( (ho)? + Slnigh°)>dr<oo.
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Proof: For every ( >0, n € N with n > 2, let E,, - be the functional defined by

= [Las [ G (ereeze 2 ar,

In particular, E, , coincides with the energy functional £, previously defined. Let ¢ > Z
and T" > 0 be two values arbitrarily chosen. Due to Proposition 3.14, for every n > 2

By (ha /// 2drdzdt = E,(ho). (3.21)
An X[ OT

Since ho(r, z) = 0y(r) if |z| > Z, when |z| > Z we have that

/11n§ ((ho)z - (ho) + %) dr = /112 ((9,,),% + Smi&) dr

At the same time, given any n > Z, if |z| > z then h,(1/n,z,T) = ho(1/n,z) = 6,(1/n),
hn(1,2,T) = ho(1, z) = 0,(1), and by Corollary A.3,

/ T ((hn)z(r, 2 T)+ ()2, 2 T) 4 50 rulr, 2, 1) > dr> / 1 5 ((9,,),% + Si“iggb) > dr.

1/n2 r 1/n

So, for every n > (

En( /// deZdt<EnC(h0)
An ><0T
+ 2 h
< " ((ho)2 + (ho)2 + S0 qpa .
2 r?
[0,1]x[=¢ (]

Passing to the limit as n — oo and using the Fatou’s Lemma we obtain the thesis. [

The previous proposition allows to say that h,, is a weak solution of (3.1), since

sin A,

(hm>t S L?((Oa 1) X R x R+)7 , Vi, € LOO(RJr; Lz((oa 1) X (_<7<))>

for every ¢ > 0. Hence (see [30]) for all £ > 0 and for a.e. z € R there exists

him(0, 2,t) == lim hp,(r, 2, t) = kn for some k = k(z,t) € Z.

r—0t

Due to the inequality 6y(r) < h,,(r, z,t) < 6,(r), we can say that, if
Ip(t) == {z € R | hyn(0, 2,t) = 0} and I1(t) := {z € R | hy,,(0,2,t) = 7} for t > 0,

then for every t > 0 R\ (Io(t) U I;(t)) is a set of zero Lebesgue measure. We remark
that, since hy,(r, —z,t) = hy(r, z,t) and h,,(r, 2/, t) < hy,(r, 2,t) for r € (0,1],¢ > 0 and
2 > 2z >0, for every t > 0 there exists ((t) € [0, oo] such that

L(t) = (=C(1), ¢(#)), To(t) = (=00, =((1)) U (¢(t), ),

up to the values +((¢). Moreover, for every t' > ¢ > 0 one has ((t') > ((t), because h,,
is an increasing function of ¢.
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Theorem 3.17. (i) There exists a constant S € RY such that

Ct)< S+t Vt>0.

(ii) There exists a time T > 0 such that for every t € [0,T) Iy(t) =R = ((t) =0.
(iii) If T > 0 is a value such that Io(T) = R, then there exist p > 0 and C > 0 such that

hon(r, 2, t) < 2arctan(Cr) Vr e [0,p],z € Rt €[0,7].

(iv) If T > 0 is a value such that Iy(T) # R, then for every ¢ > 0 there exist p € (0,1)
and C >0 (both p and C' depend on €) such that

B (1, 2,t) < 2arctan(Cr) r € [0,p],]z] > ((1)+¢e,t€]0,7].
Proof: (i) Let g = g(y) € C*°(R) a function such that
gly)=2m ify<—1, g(y)=2arctand ify >1, ¢ <0.

Thanks to Theorem 2.2, there exists a function ¥ = ¢(r, y) which is smooth in (0, 1] x R,
satisfies ¥(1,y) = g(y) for all y € R and

Uy

r

sin(21))

22 =0

¢r7~+ +¢yy+¢y_

in the open set (0,1) x R. Moreover, there exists y§ € R such that 1 is real analytic in
[0,1) xR\ {(0,9)}, ¥(0,y) =0ify > g, ¥(0,y) = 2w if y < y. At last, ¢ is non increasing
with respect to y and

U(r,y) — Oy(r) as y — oo, Y(r,y) = 21 asy — —o0

uniformly with respect to r € [0,1]. Therefore, since hy < 7 + 2arctan(a) < 27 and
ho(r, z) = 0,(r) for z > Z, there exists ¢ > 0 such that

(rz—0) > ho(r,2).
(it is sufficient to take o > 0 such that ¢(r,z — ) > 7w + 2 arctan(a)). If we define
h(r,z,t) =¢(r,z—t —o0),
then h solves equation (3.4) and for all (r,z,t) € (0,1] x R x [0, c0)
h(r,z,t) > h(r,z,0) = ¢(r,z — ) > ho(r, 2).

So, h is a supersolution of Problem (P,) for every n > 2 and, by parabolic comparison
principle, h > h,,. Consequently h > h,, and, given any t > 0, one has that

0 < hn(0,2,t) <YP(0,z—t—0)=0 ifz>y+o+t.

Hence the thesis by taking S =y + o.
(i1) Let L > 0 be a constant such that 0 < hy(r,0) < Lr for all r € [0,1]. A such value
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surely exists because ho(0,0) = 0 and hg is Lipschitz continuous in [0,1] x R. If p € (0,1)

is a value less or equal to 57, then from the trivial inequality

2
xr < 2arctan (—:p) z € [0,7/2] (3.22)
m
follows that for every r € [0, p]

2
Lr < 2arctan (—Lr)

s
and therefore, in view of property (P4),
ho(r,z) < 2arctan(Cr)  Vr €[0,p], z € R, (3.23)

if C'=2L.

Since hpm is continuous in (0, 1] xR x [0, 00) and h,,(p, 0,0) = ho(p,0) < 2arctan(Cp) <
7/2, there must be a value 7" > 0 such that A := h,,(p,0,7T) < 7, whence, due to (3.20),
we deduce that h,,(p, z,t) < A< forall z€ Rand ¢t € [0,T]. Up to redefining C' as the
maximum between 2L/ and tan(A/2)p~!, we can say that for all n > 1/p, z € [—n, n|
and ¢t € [0, 7]

ho(p, 2,t) < him(p, 2,t) < 2arctan(Cp) . (3.24)

Since the function 2 arctan(Cr) is a solution of (3.4), by (3.23), (3.24) and the parabolic
maximum principle we obtain that for all n > 1/p

hy(r, z,t) < 2arctan(Cr) re€[l/n,pl,z€[—n,n],tel0,T].
Passing to the limit as n — oo, it follows that for all z € R, ¢t € [0, 7]

hin(r, 2,t) < 2arctan(Cr) Vr € (0,p] = hn(0,2,t) =0.

(ii) As in the proof of (i), if p € (0,1) is a value less or equal to 5= and C' = 2L, then

inequality (3.23) is satisfied. Since lim h,,(r,0,7) = 0, up to redefining the constant p,

r—0t

we may always assume that h,,(p,0,7) < A < 7 and then, in view of (3.20), hy,(p, 2, 1) <
A <7 forall z€ Randt € [0,7]. Up to redefining C' as the maximum between 2L/m
and tan(A/2)p~!, we can say that for all n > 1/p, z € [-n,n] and ¢ € [0, 7] inequality
(3.24) is satisfied. Since the function 2 arctan(C'r) is a solution of (3.4), by (3.23), (3.24)
and the parabolic maximum principle we obtain that for all n > 1/p

hy(r, z,t) < 2arctan(Cr) re[l/n,p],z € [—n,n],te0,7]
Passing to the limit as n — oo, it follows that for all » € (0, p], z € R, t € [0, 7]
h(r, z,t) < 2arctan(Cr) ,

whence the thesis follows.
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(iv) Given any € > 0, let Z = ((7) + ¢/2 and let u = p(z) be the function defined by

z— 2z

= €|z .
W) =13,—3 B
If ¢ is the function
Q
2arctan<rem)—r3/2 2>Z,t>0
W(r, z,t) ==
T — 73?2 z=Zort=0,

where @) is a value greater or equal to the constant Q(T + 1, i) of Proposition 3.8, then
1 is a supersolution of (3.4) in the open set (0,1) x (2,00) x (0,7 + 1). As in the proof
of (ii), let L > 0 be a value such that ho(r,0) < Lr =

ho(r,z) + 132 < (L+1)r Vre[0,1],z€R.

If p € (0,1) is a value less or equal to /(2L + 2), then, as in the proof of (ii), we have
that for every r € [0,p] (L + 1)r < 2arctan (2(L + 1)r), whence we deduce that

ho(r, z) + r*/? < 2 arctan(Cr) rel0,p], z€eR (3.25)
if C = (2L +2)/7. Since Tlllr(r)lJr hm(r,Z,7) = 0, up to redefining p as a smaller positive
value, we may always assume that h,,(r, 2, 7) < 7/2 for all r € [0, p] and hence, by (3.20),

B (r, 2, t) < /2 rel0,p, z>2tel0,7].
At the same time, ¢(r,2,t) =7 — 132> 7 —r > 71/2 and et > C,
Y(p, z,t) > 2arctan <pe%) — > /2 z>Z,tel0,7]

if we choose @ sufficiently large (so, the final value of @ also depends on L and p).
Therefore, we can say that

ho(r, z) < 2arctan(Cr)—r3/? <2 arctan(r e%)—rg/2 <i(r,z,t) rel0,p,z>z1tel0,7],
(3.26)
and
W(r,Z,t) > hpy(r, 2, 1) rel0,p],tel0,7],

¢(Pa Zat) > hm(/oa 2 t) z 2> gat € [077—] : (327)

Since h, < h,, in A4, x [0,00) for every integer n > 2, by (3.26), (3.27) and parabolic
maximum principle we obtain that for every n > 1/p

hn(r727t> < w(r727t> re [1/nap]7 S [gan]a te [077-] :
Passing to the limit as n — oo, we deduce that
B (1, 2,t) < (r,2,t)  re(0,p],z>2tel0,7].

In particular, for every r € [0,p], 2 > ((7) + e =2 +¢/2

Q(2te)
h(r, 2z, 7) < 2arctan (re e ) :

The thesis then follows in view of (3.20). O
The first interesting consequence of the previous Theorem, namely of its points (i)
and (iv), is given by the following
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Corollary 3.18. For every T' > 0
hon(r, 2, t) = Op(r) as |z| — oo
uniformly with respect to r € [0,1] and t € [0,T].
Proof: By parabolic Schauder-type estimates, there exists a function hy = hoo(r, )
such that for every o € (0,1), 7 > 0:
hm(r, z,t) = hoo(r, ) as |z| — oo

in C%1([o,1] x [1,00)) other than in C°([o, 1] x [0,00)). Fixed arbitrarily a value T' > 0,
by (i) and (iv) of Theorem 3.17, there exist ¢ € R, p € (0,1) and C' > 0 such that for all
re0,p], z€ R\ (—=¢,{)and t € [0,T] 0 < hp(r,2z,t) < 2arctan(Cr) . Hence we deduce
that hoo(0,t) = 0 for all ¢ € [0, 7] and h(r, z,t) — hoo(r, 1), as |z| — oo, uniformly with
respect to r € [0,1] and ¢ € [0, T]. Therefore, ho, € C*1((0,1) x R*) N C°([0, 1] x [0, 0))
and solves the problem

h = Ry + e — 220 re(0,1),t>0
h(r,0) = ‘l‘im ho(r,z) = 0p(r) 1€ (0,1)

Z|—00
h(0,t) =0, h(1,t) =6,(1) t>0.

Since the unique classical solution of this problem is 6,(r), we find out that ho, = 6,. O
Let T € [0, 0] be the first time of blow-up for h,,, i.e.

T :=sup{t > 0| h,(0,2,t) =0 Vz € R}.

By Theorem 3.17, (ii), T" is greater than zero. Moreover, in view of the point (iii) of the
same theorem, if 7" < oo, then Iy(T) # R. By contradiction, if Io(T") = R, then there
exist p > 0 and C' > 0 such that

B (1, 2,t) < 2arctan(Cr)  Vr e [0,p],z € Rt €[0,T].
Since hy, is smooth in (0,1] x R x RT, there must be § > 0 and A € (0, 7) such that
h(p,z,t) <A VzeRte[0,T+4].

At the same time, since ho(r, z) < Lr for a suitable L > 0 and in view of (3.22), up to
redefining p as a smaller positive value, we may always assume that

2L
ho(r, z) < 2arctan (—r) Vr e [0,p],z € R.

T
If now we take D = max(2L/m, tan(A/2)p~ "), then
ho(r, z) < 2arctan(Dr),  hy(p, z,t) < 2arctan(Dp)

for all 7 € [0, p], 2z € R, ¢t € [0,T + J]. By the same argument used to conclude the proof
of the statement (iii) of Theorem 3.17 we obtain that

B (1, 2,t) < 2arctan(Dr) r€(0,p,z € Rt €[0,T+ 0]
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and therefore for all ¢ € [0,T + ]

lim A, (r,z,t) =0 VzeR

r—0+t

But this implies that Io(T' + §) = R, which is clearly absurd by definition of 7'

Let us suppose that T" < oo. Since Iy(T") # R, one of the two following cases occurs:

(A) limsup Ay, (r,0,7) > 0 while h,,(0,2,7) =0 for z # 0,
r—0t

(B) there exists ¢ € (0, 00) such that h,,(0,2,7) = 7 for |z| < ¢ and h,,(0,2,T) = 0 for
2| > ¢

In both cases, if Vh,, = ((hm)r, (him).) is the gradient of h,, with respect to the variables
r and z, and

IVhnllo(t) = sup  |Vhy|(r, zt) t>0,

(r,2)€(0,1] xR

we have that
[Vhm||oo(T) = o0

On the other hand, if 7 < T, then Iy(7) = R and, due to the regularity of h out of {r = 0}
and to Theorem 3.17, (iii),

sup [|Vhnm|leo(t) < oo.
te(0,7]

This explains why T is called first time of blow-up for the function h,,.
In view of what is already known, it could also occur that 7" = oo. In the next section
we prove that actually 7" < co and the function

¢: [T,o) — [0,00)

i — |L)/2, (3.28)

where |I;(t)| is the one-dimensional Lebesgue measure of the interval I;(¢), is right con-
tinuous (in addition to being sublinear, according to Theorem 3.17, (i)).

3.3 Blow up of h,, in finite time

We start this section with a comparison principle which has been obtained by slightly
modifying a similar result contained in [14].

Lemma 3.19. Let ¢, & be respectively a reqular super- and subsolution to Problem (3.1)
on a time interval [0,.7) (7 > 0). If, for every T € (0,.7),

(h1)
E(r,z,t) ,(r,z,t) — 0 asr — 0"
uniformly with respect to z € R and t € [0, 7], and
(h2)

hmsup sup (E(Ta Zat) —1/1(7"72#5)) <0,

|z|] =00 r€[0,1],t€[0,7]
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then & <1 on [0,1] x R x [0, 7).

Proof: Let n:=¢—1. Thenn < 0on [0,1] x Rx {0} and on {0,1} x R x [0,.7). At
the same time, 7 satisfies the differential inequality

m o f

nt—An——+22n_0 (3.29)

n (0,1) x R x (0,.7), where A = 25 S £ is the Laplacian in (r, z) coordinates, and

flr,z,t) = /0 cos(2(s&(r, z,t) + (1 — s)i(r, 2,t))) d s

is bounded on [0, 1] x R x [0, 7). If the thesis is false, then there exists a time 7 € (0, .7)
such that

sup 1 >0. (3.30)
[0,1] xR x[0,7]

In view of (h1) there exists p € (0,1) such that for every r € [0,p], z € R and ¢ € [0, 7]

§(r, 2, )], [0 (r, 2, 1) < 7/4 (3.31)

and therefore f > 0 in [0 p] x R x [0,7]. Let M > 0 be a constant such that |f| < M.
Multiplying (3.29) by e 3% and introducing
Mt

h(r,z,t) :==e 2?7

we have that h ; v
hy —Ah— —+h|—+—]<0. .32
¢ . + <2r2+2p) 0 (3.32)

Mt

Since e 2> n < h <non [0,1] x R x [0, 7], from (3.30) we deduce that

s:= sup h>0,
[0,1]xRx[0,7]
from (h2) that
limsup sup  h(r,z,t) <O0. (3.33)

|z]—=oc0 r€[0,1],t€[0,7]
But (3.33) implies the existence of ¢ > 0 such that

sup h(r,z,t) < s/2
re(0,1], |z[>¢, t€[0,7]

and then
5= max h,
[0,1]x[=¢,¢]x[0,7]
i.e. h attains a positive maximum on [0, 1] x R x [0,7]. On the other hand, just like 7,
h is non positive on {0,1} x R x [0,7] and on (0,1) x R x {0}. Therefore, the positive
maximum is achieved on (0,1) x R x (0,7], say at (7, z,). By the regularity of h we
obtain that
hi(7,z,t) >0, Ah(T,2,t) <0, h.(F,z,t) =0,

80



and, using (3.32), that

frzt) M
— L+ — <0. 3.34
272 + 2p% — (3:34)
But if 7 < p, then f(7,Z,t) > 0 and the previous inequality is false. Otherwise, if 7 > p,
then
frzy M
272 2p?
and (3.34) is again false. O

Remark 3.20. The hypothesis (h1) in the statement of the previous lemma can be replaced
by

(h3) £ >0o0n [0,1] xR x [0,.7) and for every 7 € (0,.7)

limsup sup ¢(r, z,t) <0.

r—0t  z€R,t€(0,7]

Actually (h1) is only used to establish (3.31) on a strip [0,p] x R x [0,7] (p € (0,1))
and we can obtain these inequalities also starting from (3.30), (h2) and (h3). First from
(3.30) and (h2) we derive that

S = su = max >0
[0,1] XRE [0,7] 7 [0,1]x[=2*, 2] x[0,7] 1

for some z* > 0. Since 7 is uniformly continuous in [0, 1] x [—z*, 2*] x [0, 7], the function

t) =
MO= 1 2% 00
is continuous on [0, 7] with M(7) = S, M(0) < 0. Then, we can always assume that
S < 5. Hence
E—1 <m/8 on0,1] x Rx[0,7]. (3.35)
On the other hand, (h3) implies the existence of p € (0,1) such that for every r € [0, p],

z€Rand t €0, 7]
W(r,z,t) <m/8. (3.36)

Putting together £ > 0, (3.35) and (3.36) we deduce that
Wl <7/8, [{|<7/d = f=0

on [0, p] x R x [0,7]. Once obtained this inequality the proof continues in the same way
we have already shown.

Theorem 3.21. The first time of blow up of h,, is less than or equal to T .

Proof: 'We know that h,, is a solution (smooth in (0,1) x R x R* and continuous

in [0,1] x R x [0,7)) of Problem (3.1). At the same time, ¢ is a subsolution of (3.4) in
the open set (0,1) x R x (0,7). Hence, by property (P5) of hgy, £ is a subsolution of
Problem (3.1) in the time interval [0, 7). By contradiction, let T'> T. Then, Io(7) =0

and, by Theorem 3.17, (iii), there exist p > 0 and C' > 0 such that

B (1, 2,t) < 2arctan(Cr) Vre0,pl,z€e R, t€[0,7].
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Therefore, given any 7 € (0,7), the functions h,, and ¢ satisfy the hypothesis (h1) of
Lemma 3.19. Due to (P5) and to (3.20), for every r € [0,1],z € R and t € [0, 7] we have
that

g(r,z,t) — hp(r, 2,t) = g(r,z,t) — é(r, z,0) + g(r, 2,0) — hp(r, 2,t) < é(r, z,t) — g(r, 2,0)

and, if we denote by A the function defined by

1 e
Az, t) = — e T trraG)

E(r, z,t) — £(r, 2,0) = 2arctan(rA(z, t)) — 2arctan(r(z,0)) < 2r(\(z,t) — A(z,0)) <
< 2(M\(z,7) — A(2,0)).
Since this last function goes to 0 as |z| — oo, hy, and € also satisfy the hypothesis (h2)
of Lemma 3.19. Then must be

€ <hy in[0,1] x R x[0,7).

Since h,, is continuous in (0, 1] x R x [0, c0), the previous inequality implies that for every

re (0,1, 2 € [-Z, %]

T+ Bre = lim £(r,z,t) < hp(r, 2, T).
=T~

Then, for every z € [-%, %] must be h,,(0,2,7) =7 = Iy(T) # R, which contradicts
the assumption 7" > T. O

Now we have to show that the function ¢ defined by (3.28) is right continuous. In order
to do this, we need a generalization of Theorem 2.2. By repeating the same construction
of chapter 2 in the strip (0, R) x R (R > 0) rather than in (0,1) x R, it is possible to
show that

Theorem 3.22. Given ¢ > 0 and a function g = g(z) satisfying
geC'(R), ¢ <0inR, g=Ain(—00,2), g= B in (z1,00).

for some zy < 2 and
T<A<3m and 0< B<7/2,

there exists a function ¢ : [0, R] x R — R which is smooth in (0, R] x R and satisfies
equations (7) and

(R, 2) = g(2) .
In addition the following properties are satisfied:
(i) there exists 2 such that v is continuous in {(0,z) : z # 2}, ¥(0,2) =0 if z > 2 and
¥(0,2) =2m if z < Z;
(ii) ¥ (r, z) is nonincreasing with respect to z;
(7ii) V¥ (r, z) — 2arctan(Sr/R) uniformly with respect to r € [0, R] as z — oo, where 3 is
defined by 2 arctan § = B;
() ¥(r,z) — 2w + 2arctan(ar/R) uniformly with respect to r € [0, R] as z — —o0,
where a is defined by 27 + 2arctana = A;
(v) ¥ is real analytic in [0, R) x R\ {(0,2)}.
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We remark that, up to a translation in the z variable, it is always possible to make
z=0.

Since h,, is monotone increasing with respect to the time variable ¢ and so is (, to
prove the right-continuity of ( is sufficient to show that

Theorem 3.23. For every T € [T, 0)

limsup ¢(t) < (7).

t—7t

Proof: Let T be a value greater or equal to 7. Thanks to Theorem 3.17,(iv), for every
e > 0 there exist p € (0,1) and C' > 0 (both p and C depend on ¢) such that

B (1, 2,t) < 2 arctan(C'r) rel0,pl,|z] > {(r)+e,tel0,7].

Hence, given any ¢ > 0, there exists R € (0, p| such that
b
hm(r, z,7) < arctan (é) Vrel0,R], V2> ((1)+¢ (3.37)

(it is sufficient to take R = min(p,b/(4C)) ). By Theorem 3.22, there exists a function

v [0,R] xR\ {(0,0)} — R
(r,y) — (1Y)

which satisfies all the following properties:
(pl) v is smooth (C*°) in its domain,
(p2) % is non increasing with respect to y,

(p3) ¥ — 2arctan(br/R) as y — oo, and 1) — 27 as y — —oo uniformly with respect to
r € [0, R],

(p4) 9 solves the problem
@Z)yy—f_qu)y—l—wrr"'%_% =0 (O,R) x R

0 ify>0
0,y) =
v(0.9) {2 ify<0

V(R y) = g(y)

T
for a suitable function g € C*°(R) such that ¢’ < 0, g(y) = 2arctan(b) for every
y > 1 and g(y) = 27 for every y < —1.

yeR

In view of (pl), (p2), (p4) and of inequality h,,(r, z,t) < 6,(r), we obtain that, for a
suitable R € (0, R],

Y(r,y) >37/2> hy(r, 2, t) +7/4 Vre[0,R], y < —c and V(z,t) € Rx RT. (3.38)
At the same time, from (3.37) follows that

h(r, 2z, T)+arctan(br/R) < 2arctan(br/R) < ¢(r,y) Vr € [0,R], 2> ((1)+¢, y € R.
(3.39)
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Let C' = ((7) 4+ 2¢ — 7 and let w be the function
w(r,z,t) =¢Y(r,z—t—C) rel0,R],zeR;t>0.
w is a solution of equation (3.4) which satisfies the following properties:
1. thanks to (3.39), Vr € [0, R], Vz > ((7) + ¢

hm(r, z, 7) + arctan(br/R) < w(r, z,T),

2.Vre[0,R], z<({(r)+e¢
w(r,z,7) =¢Y(r,z—7—C) > Y(r,{(1)+e—7—C) =(r,—¢) > hp(r,z,7) +7/4
by the monotonicity of ¢ and (3.38).
Therefore, Vr € [0,R] and z € R
w(r, z,7) — hy(r, z,7) > min(7 /4, arctan(br/R)) = arctan(br/R) .
Hence follows that
w(R,z,7) — hp(R, z,7) > arctan(bR/R) >0  VzeR

and then, since w is increasing with respect to t and, by parabolic Schauder-type esti-
mates, h,,(R, z,t) is continuous in ¢ € J uniformly with respect to z € R for a suitable
neighborhood J of 7, there exists § > 0 such that

w(R, z,t) > hn(R, 2, t) VzeR, te[r,7+4].
Since w is increasing with respect to t and Vn € N, n > 2
ho(r,2) < hy(r, 2,t) < hp(r, 2, 1) V(r,z) € A,, t >0,

we deduce that for every n € N with n > 1/R the function w is a supersolution of the
differential problem

(B = Byp 4 oy + 2 — 220 iy (1/0, R) x (—n,n) X (7, 00)

22
h(r,z,7) = hy(r,z,7) for1/n<r<R,ze€(—n,n)
h(r,+n,t) = ho(r, £n) forre[l/n,R],t>T1
h(1/n,z,t) = ho(1/n, 2) for z € [-n,n|,t > 7
h(R,zt) = ho(R, z,t) for z € [-n,n|,t > 7.

\

in the time interval [7, 7 + J].
Since h,, is the solution of the previous problem, we then obtain that

w(r, z,t) > h,(r, z,t) Vre[l/n,R], z € [-n,n], t € [1,7+].
Passing to the limit as n — oo we deduce that

w(r, z,t) > hy(r, z,t) Vre (0,R], zeR, t € [r,7+].
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Hence for every t € [7,7 4 0] and for all z >t + ((7) +2c — 7

0 < lim hy(r,z,t) <90, z—t—((1) =2+ 1) =0.

r—0t

Therefore, for every t € [, 7 + §]

C(t)=inf{z € R | hyn(0,2,t) =0} <t + (1) + 2 — 7T

and so
limsup ¢(¢) < ¢(7) + 2¢.
t—7t
The thesis then follows from the arbitrariness of € > 0. O

3.4 Construction of h),

This last section is devoted to the construction of a weak solution hj; of Problem (3.1)
such that hy; > h,, and, for every ¢t > 0,

lim hp(r, z,t) = 7 if |2| < M, lim hy(ryz,t) = 0 if [z] > S+ M + ¢,
r—0

r—0t

where M is a non-negative value arbitrarily chosen and S > 0 is a constant independent
from M. For every n € N;n > 2 let w,, be the function defined as

T r=0,|z|<M+2
wn(r,z) =140 r=0,|z| >M+2
2 arctan <i—fg”ﬁ7ﬁ2(z)> re (0,1, z € R,

where 7,741 belongs to the family of functions given in (3.16). Then the following assertion
results to be true:

Proposition 3.24. There exists a constant C > 0 such that

5 (s e+ 2 g < 0

r2
for every n € N,n > 2 and for every z € R.

Proof: For sake of simplicity we fix n € N, n > 2 and we denote by w the function w,
and by 7 the function

1 +bym+1
1—b n
so that _ 2(2)
sin w ~v(z)r
= 2 t 2 =
w(r, z) arctan(y(z)/r?), " 12 (2)
and

—45(2)r o 2v'(2)r?

TR T )
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Therefore, for every fixed z € R

1 2 1 2,.3 14++2
r{ o sin“w 10y*r 5 2/ ds 5
[a(e )= [ =2 [ @ = amem =¥

If |2l < M+1or|z| > M+ 2, then

else
1 2 e 5 2 142
1|d 4 1|d s — 72
/zwgdrz—l /747422d7":——7 / 7827d8§
0 2 2\dz| Jo (r*+9?) 2|dz| J, s
2 14q? 2 2
ld_V / 7873/2(18:77105_7 \/1+72—’Y§771d_7 _
21dz| J, dz V1+72 dz
1+b1 _ |dyyal® 140
= — < N
1—bn Mg, | =1 _p 2
where Nj is the constant of (3.16). O

For every n € N,n > 2 we consider the differential problem

(By = Ry 4 oy + 20 =30 ) € A, x RY
h(r,z,0) = hou(r, 2) (r,2) € A,
(Z,) < h(1/n, z,t) = hon(1/n, 2) (2,t) € [-n,n] x RT
h(1,z,t) = ho,(1, 2) (z,t) € [-n,n] x RT
A7, 0, t) = hon(r, £n) (r,t) € [1/n,1] x Rt

where A, is the rectangle (1/n, 1) x (—n,n) and hg, = max(w,, ho).
The functions hg, (n € N, n > 2) satisfy the following properties:

L. 0y(r) < hon(r, 2) < 0,(r), hon(r, 2) = Oy(r) if |2| > max(z, M + 2),

2. There exists a constant C' = C(hy) > 0 such that for every fixed z € R

b sin?(hon,
/O . ((hom? + (how)? + %) dr <.

r

3. hon > ho, hon(r, —2) = hon(r, 2), (hon)-(r,2) <0 for r € [0,1],2 > 0 and
4. for every n > 2 the function hy, is Lipschitz continuous in [1/n, 1] x R.

Moreover, up to a regularization, we can also assume that hg, € C*([1/n,1] x R).
By standard solvability, comparison and regularity results for parabolic problems (see
[21]) and since the functions 6(r) = 2arctan(br), 0,(r) := © + 2 arctan(ar) both solve
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(3.4), we can say that for every n € N Problem (£,) has a unique classical solution
H, € C*(A, x R")NC°A, x [0,00)) and

2arctan(br) < H,(r, z,t) < m + 2arctan(ar),
H,(r,—z,t) = H,(r, z,1), (3.40)
(H,), (H,), are Holder continuous in (r, z,t).

Moreover, due to property (P1) and because hg, > hg, we have that hg is a subsolution

of Problem (£2,,) and then
H,(r,z,t) > ho(r, 2) Y(r,z,t) € A, x [0, 00). (3.41)

At last, in view of (3.40) and properties of hg,, for every n € N with n > max(z, M + 2)
the function (H,), is a subsolution of the problem

(Y = Uy +1pee + 2 = By (r21) € (1/n,1) x (0,n) x RY
P(r,z,0) =0 (r,z) € [1/n,1] x [0,n]
Y(1/n,z,t) =0 (z,t) € [0,n] x RT
(1, 2,t) =0 (z,t) € [0,n] x RT
Y(r,0,t) =0 (r,t) € [1/n,1] x Rt
(Y(r,n,t) =0 (r,t) € [1/n, 1] x R*

From the parabolic comparison principle follows that for every n € N with n > max(z, M+
2)
(Hp).(r,z,t) <0 if 2>0. (3.42)

If we define the functional E,, just as in section 3.2, then

Proposition 3.25. For everyn > 2 andT > 0

E.(H, /// Yidrdzdt = E,(ho) -
An><0T

Proof: The proof is formally identical to that one of Proposition 3.14 and so it can
be omitted. 0J

Let E,¢ (n € N,n > 2, ( > 0) be the functional defined in the proof of Proposi-
tion 3.16. Then

Proposition 3.26. There exists a constant C = C(hg) > 0 such that for every ( >
max(z, M +2) and T >0

B c(H,( ///AMOT 2drdzdt < 2C(ho)C

Proof: Let T > 0, ¢ > max(z, M + 2) be arbitrarily fixed. From Proposition 3.25
follows that Vn € N,n > ¢

An X[ OT
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Since ho,(r, 2) = Op(r) if |2| > max(Z, M + 2), when |z| > max(z, M + 2) we have that

Loy 9 9 sinQ(h()n) Loy 9 sinQ(Qb)
/m5 ((h0n>r+<h0n)z+T>dr_/ln§ ((9b>r+ : )dr

At the same time, if |z| > max(z, M + 2) then H,(1/n,2,T) = ho,(1/n,2) = 6,(1/n),
H,(1,2,T) = hon(1,2) = 6,(1), and by Corollary A.3,

/1 g ((Hn),%(r,z,TH(Hn)i(n z,T)+Sin2 Holr Z’T)> drz/1 g ((eb)’% " %) "

2
1/n r 1/n

Therefore from (3.43) follows that Vn € N;n > ¢

An ><[OT]

.2
< // - ((hOn)i + (how)? + w) drdz < 20¢,
0,1]x[~¢,¢] 2 r

where C'= C(hg) > 0 is the constant such that
1 .9
hon
/ r ((hOn)i 4 (how)? + W) dr<C
0 2 T
for every n € N and every fixed z € R. O
By parabolic Schauder type estimates (see [21]), we can say that, up to a subsequence,
as n — 0o

H, — hy in C*([p,1] xR x [o,7]) N C°([p,1] x R x [0, 7])

for every p € (0,1),0 < o < 7. Thanks to Proposition 3.26 and Fatou’s Lemma, we can
say that
(hM)t < Lz((()) 1) X R x RJr)a

and ok
=L Vhy € LX(RY L(0.1) x (.0)))

for every ¢ > 0. Then hys is a weak solution of Problem (3.1) and, by (3.40), (3.42), it

satisfies

(91,(7“) < hM(T,Z,t) < ea(r>7 hM(Ta _Zat> = hM(T,Z,t),
ha(ry 2/, t) < hp(ry 2z, t) if 2/ > 2 > 0. (3.44)

Moreover, passing to the limit in (3.41) as n — oo, we obtain that hy; > hg and therefore,
by Proposition 3.15, hps > hy,.
By using Proposition 3.11 we can prove that

Theorem 3.27. For allt >0 and z € [—M, M|

lm hp(r, z,t) =
r—0+
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Proof: Let ¢ be the function defined by

__Q
H(r, 2,t) = 2 arctan (e tw;um) L322 pe (0,1], ¢t € (0, 7], |2| < M +1
br/? re (0,1, |z >M+1ort=0,

where 7, belongs to the family of functions given in (3.16) and () > 0 is a positive
constant satisfying a condition that we shall specify later. Since b € (0, 1), for every
n € N, n> M + 1 we have that

(*) H(r,2,0) = br3/? < br < 2arctan(br) < hop(r, 2) V(r,z) € (0,1] x R,
(**) A (r,£n,t) = br3/? < br < 2arctan(br) < hg,(r, £) V(r,t) € (0,1] x R*,
(***) for every t > 0, if |z| > M + 1 then
H(1/n, z,t) = b(1/n)** < b/n < 2arctan(b/n) < hon(1/n, 2),
else

__Q
H(1/n, z,1) = 2arctan <ne ”MW) +bn~%? < 2arctan(n) + 2 arctan(b/n) =

b 140
= 2 arctan (n;L Z/)n) < 2arctan (1—1_6 n) = wn(1/n,2) < hou(1/n, 2) .

Therefore, 7(1/n, z,t) < hon(1/n,2) V2 € R, t > 0.

We remark that the identity

b
2arctan(n) + 2 arctan(b/n) = 2 arctan (nl-I—_ {)n)

follows from the elementary one

tan(z) + tan(y)
1 — tan(x) tan(y)

x—i—y:arctan( ) Vz,y > 0 such that x +y < 7/2.

Let T be a positive value arbitrarily fixed. For every ¢ € (0,77, we have that if |z| > M +1
then (1, z,t) = b < 2arctan(b) < ho,(1, 2), else

(1, z,t) = 2arctan (e_%) + b < 2arctan <e_%) +b < 2arctan(b) < hg,(1, 2)
(3.45)
provided that @) > K, where K > 0 is a suitable constant depending on b and T'. If we
take @) > max(Q, K), where Q is the same constant as in Proposition 3.11, whose value
only depends on b and 7', then, due to (*), (**), (***), (3.45) and to Proposition 3.11,
A is a subsolution of (Z2,) in the time interval [0, T) for every n € N,n > M + 1. Hence
follows that

S < H, in A, x [0,T)

by the parabolic comparison principle, and, passing to the limit as n — oo, that

(1, z,t) < hp(r, 2, 1) Vre (0,1, zeRand t € [0,7).
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Together with the inequality hy; < 6, this implies

lm hp(r, z,t) =7
r—0t

for every z € [—M, M] and ¢t € (0, 7). The thesis then follows from the arbitrariness of
T > 0. U

Theorem 3.28. There exists a constant S > 0 such that

lim A (r, z,t) =0

r—0t

for everyt >0 and |z| > S + M +1t.

Proof: Let 1» = 9(r,y) the same function as in proof of Theorem 3.17, (i), and let
Z > 0 be a value such that

7+ 2arctan(a) < 9(r, 2) Vrelo,1], 2 < —Z.

We remark that, due to properties of ¢, it must be —2 < g, i.e. y + Z > 0. Since
hon, < 7+ 2arctan(a) and ho,(r, z) = 0,(r) for z > max(z, M + 2), if we take

o =max(z, M +2)+ Z,
so that ¢ (r,max(z, M 4+ 2) — o) = ¢(r,—Z) > m + 2 arctan(a), then
W(r,z — o) > hop(r, 2)
for all n € N, n > 2. If we define
h(r,z,t) =v(r,z—t—o0),
then h solves equation (3.4) and for every (r, z,t) € (0,1] x R x [0, 00)
h(r,z,t) > h(r,z,0) = ¥(r,z — o) > hon(r, 2)

for all n € N, n > 2. So, h is a supersolution of Problem (Z2,) for every n > 2 and, by
parabolic comparison principle, h > H,,. Consequently h > hj; and, given any ¢ > 0, one
has that

0 <hp(0,2,t) <(0,z—t—0)=0 ifz>y+o+t.

Therefore, taking into account that hy(r, —z,t) = hy (7, 2,t), the thesis is verified by
choosing
S=§+242+7Z = S+M>j+o.

O

Remark 3.29. Let My > M; > 0. From the definition of w,, follows that the initial and
boundary data of Problem (&,) when M = M, is less than the data corresponding to
the choice M = M. By parabolic comparison principle we then obtain A, < hag,.
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Remark 3.30. Since for every M > 0 the function hy, is a weak solution of Problem (3.1)
satisfying (3.44), by the same arguments used for h,, it is possible to prove that if we
define

1'(t) :={z € R | has(0,2,t) = 0} and I} (¢) :={z € R | hyy(0,2,t) =7} for t > 0,
then for every ¢ > 0 there exists (y(t) € [0, 00| such that
L(t) = (=Cu(t), Cu(t), Iy" () = (=00, —Car(t)) U (Car(t), 00),

up to the values +(y/(t). In terms of the function (j; the last two theorems can be
restated by saying that

35 > 0 (not depending on M) such that M < (p(t) < S+ M+t vVt >0.

3.5 Concluding remarks

The results we have proved in this chapter confirm the connection between nonuniqueness
of axially symmetric solutions for the harmonic map heat flow and occurrence of point
singularities in the solutions. We have shown that, by choosing as initial and boundary
data a suitable smooth function hg, identically equal to 0 on the z3-axis, Problem (3.1)
has a “minimal” solution h,, which is regular until a time 7" > 0. In addition there
exist infinitely many weak solutions that, at any positive time ¢, attain the value 7 on
segments of the xz-axis which can be chosen arbitrarily large. If we argue in terms of
vector fields rather than in terms of angle functions, i.e. returning from Problem (3.1) to
its original formulation, Problem (5), we have found an axially symmetric director field
up, smooth and identically equal to the north pole N = (0,0, 1) on the vertical axis of the
cylinder Q = {(x1, 29, 73) : 3 + 23 < 1} C R3, for which Problem (5) does not possess a
global classical solution. At the same time, for this special choice of uy Problem (5) has
infinitely many weak solutions: a weak solution wu,,, corresponding to the angle function
B, which is smooth in a finite time interval [0,T"), and infinitely many weak solutions
that, immediately after the initial time, are attaining the value S = (0,0, —1) on segments
of the vertical axis of {2 which can be chosen arbitrarily large.

Roughly speaking we can speed up the natural development of singularities which can
be observed in the vector field u,,, meaning that there is quite an amount of freedom to
prescribe the actual position of the singular points along the vertical axis.

A similar remark can be found in [2] and in [27], where the same Problem (5) is studied
when the spatial domain € is given by the unit ball in R3. In particular, if ug(z) = z/|z|,
then for every function (y(¢) : [0,00) — (—1, 1) there exists an axially symmetric solution
of (5) which is regular in Q except of the set {(x1, x2, x3,t) = (0,0, (o(t),t),t > 0}. Thus,
for every point P = (0,0,2) € 2\ {0,0,0} one can find a solution u of Problem (5) that
instantaneously moves its singular point, at the initial time located in the origin, in the
point P. This implies that it is possible both to expand and shrink the region of the
vertical axis where the value S is attained.

With respect to this situation of “total” freedom to prescribe the position of the
singularities, at first sight it could seem that in our context there is less degree of freedom.
Indeed, the minimality of h,, and the finiteness of the blow-up time 7" mean that h(0, z, t)
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cannot keep the value 0 for all z and ¢. We should not forget however that also the value
27 for h corresponds to N and we could imagine that for almost every ¢ > 0 it is possible
to prescribe the values u = N and u = S in almost every point of the vertical axis. This
problem is completely open and the results obtained in this chapter only indicate that
the use of traveling wave solutions as barrier functions may be useful to shed some light
on this question.
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Chapter 4

Nonuniqueness of the wave speed

In this final chapter we reconsider the traveling wave problem

1 in(2
Opr + —0, + 0., + O, — S”;( 2‘9) =0 in(0,R) xR
r r
(Ie,r) 0(R, z) = 2arctan(bR) for e R
O(r, £o00) = 0L(r) forO<r <R

where b > 0, R > 0 and bR > 1. In Chapter 1 we have used a variational technique
to show that for a certain wave speed cg > 0 Problem (I., z) has a solution 0y with a
singular point at (0,0). In the present chapter we use an entirely different technique to
show that Problem (I.r) has a solution for any ¢ € R. For this purpose, if ¢ # cg is a
prescribed value and 0 is the solution of (., g) defined by Theorem 1.1, we consider the
initial-boundary value problem

Oy = 0,0+ 0, + Uy + 22— FED i (0, R) x R x RT

W(r, z,0) = Og(r, 2) in [0, R] x R (4.1)

Y(R,z,t) =0,(R) VzeR,t>0.

Since the initial function 0z solves the equation

in(2
6.+ cnf, 16, 1 O sn(20)
T 2r2

=0,
a “trivial” solution of Problem 4.1 is given by

I(r,z,t) = O0r(r,z — (cp — C)t) .
Obviously this solution satisfies

VE>0  9(0,2,t) = {O ifz> (er— o)t

m if z < (cgr — o),
i.e. ¥ has, at time ¢, a singularity at the point (0, (cg —c)t). But the nonuniqueness results
in [2] and [27] suggest there may be different solutions of the same initial-boundary value
problem 4.1 corresponding to different evolutions of the singular point. In this chapter
we shall prove that we may keep the singular point fixed at the origin:
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Theorem 4.1. Let b > 0, R > 0 and bR > 1. Let O be the solution of problem (1., r)
defined by Theorem 1.1, and let ¢ # cg. Then Problem 4.1 has a solution 9. = U.(r, z,t) €
C*((0, R] x R x [0,00)) such that

1. 9.(-, -, t) € C°([0, R] x R\ {(0,0)}) uniformly with respect to t > 0,

2.Vt >0
9(0, 2, 1) = {2 2: Z 8 (4.2)
3.
le)rfoo e(r, z,t) = 0,(r), Zli)r_n()() Ve(r,z,t) = 0_(r)
uniformly with respect to r € [0, R] and t > 0,

4. Y. is decreasing with respect to z,
5. 4. is monotone with respect to t, decreasing if ¢ > cg, increasing if ¢ < cg,
6. V.(r, z,t) is decreasing with respect to ¢ for (r,z,t) € (0, R] x R x [0, 00).
By Theorem 4.1, point 5, we may define

0.(r,z) := tlgglo De(r, 2, 1) if (r,z) € [0,R] x R\ {(0,0)}. (4.3)

We shall prove that 6. is actually a solution of Problem (1. g):

Theorem 4.2. Let the hypotheses of Theorem 4.1 be satisfied, and let 6. be defined by
(4.8). Then 6. is a solution of Problem (I.r) which satisfies:

1.0, € C=([0, R x R\ {(0,0)}),

2. .
0.(0,2) = {O if 2> 0

™ if 2 <0,
3. (6.). <0 in (0, R) x R,
4. 0.(r, 2) is strictly decreasing with respect to ¢ for (r,z) € (0, R) X R, and
5. 0.(r,z) = 0.(r) as z — +oo uniformly with respect to r € [0, R].

As we shall see in section 4.1, Theorem 4.1 is based on a rather straightforward
construction of barrier functions, and in this sense it supplies a relatively simple example
of nonuniqueness for the flow of director fields:

Corollary 4.3. Let ug be the director field defined by

uo(z1, T2, T3) = <ﬂ sin Og(r, x3), ﬁsin@B(r, x3), cos Og(r, xg)) (7" =/ 2% +x%) )
r r
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for (z1, 2, 23) € Q= {(x1, 22, 73) : 21 + 25 < R*} C R? and consider the initial-boundary
value problem

w— Au = |Vul’u in QxR

u(z,0) = up(z) in Q (4.5)

u(z,t) = up(x) in 09 x RT .
Then (4.5) has infinitely many solutions, defined by

(ﬂ sin Og(r, x3 — cgt), 2 gin Or(r,x3 — cgt),cos Og(r, x5 — th)> if c=cg
r r

uc(xla T2, T3, t) =

(ﬂ sind.(r, x3 — ct,t), 2 sin Ve(r, x3 — ct,t), cos O.(r, z3 — ct, t)) if c# cp.
r r

In addition, u. converges to a traveling wave of speed ¢ as t — 0o, in the sense that for

all (xq, 29, x3) # (0,0,0)

ue(T1, T2, T3 + Ct, ) —> (E sin 0.(r, z3), 2 Gin 0.(r,x3), cosO.(r, xg))
r T

ast — 00.

We shall conclude this chapter with a discussion of these results. In particular, in
the last section we shall formulate and explain a conjecture about the local behavior of
0. near the point singularity for ¢ # cr and we shall discuss its possible consequences
concerning the nonuniqueness of the flow of director fields.

4.1 Proof of Theorems 4.1 and 4.2

Proof of Theorem 4.1:
For every p € (0, R), we consider the problem

Oy =0, + e, + Oy + 22 — 2B iy (p R) x R x RY

2r2
(P.) ¥(r, z,0) = Og(r, 2) in [p, R] xR
LY (R, 2,t) = 0, (R) for z € R, t > 0
Ip,z,t) = Or(p, 2) for ze Rt >0.

Since Or(R, z) = 0,.(R), it is obvious that this problem has a unique classical solution
Ve, € C((p, R] x R x [0,00)) NC°([p, R] x R x [0,00)). It is easy to check that

(al) 04 and 6_ are, respectively, a sub- and a supersolution to (P, ,).

(a2) Since (fr). < 0 in (0,R) x R, O is a supersolution of (P.,) if ¢ > cp and a
subsolution if ¢ < cpg.

(a3) The inequality (Ag), < 0 in (0, R) x R also implies that % is a subsolution of the

differential problem ’

Vi = oy + by + Wy + L — SBerdyy iy (p R) x R x RY
¥(r,z,0) =0 forr € (0,R),z€ R (4.6)
w(pazat>:w(Razat>:O fOI‘ZGR,t>O

and therefore % <0.
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(ad) If ¢ > cg, then U, ,(:, -, t) < 0 for all t > 0 and therefore % is a subsolution of
(4.6). Hence, ag?p <0 if ¢ > cg. Analogously, 81;;"’ > 0if c < cp.

(ab) Let 0 < p1 < p2 < R. If ¢ > cp then, in view of (a2), ¥, ,, is a subsolution of (P, ,,)
and therefore ¥, ,, <9, ,,. Analogously, ¥, ,, > U, if ¢ < cg.

(a6) In view of (a3), given ¢, c2 € R\ {cg}, if ¢ > ¢1, then for every p € (0, R) ¥, , is
a supersolution of (P, ,) and therefore 9., , > 9, ,.

Assertions (al) and (ab) imply that for every (r, z,t) € (0, R] x R x [0, 00) there exists

Ve(r, z,t) = lm O, ,(r, 2, t) € [04(r),0_(r)]. (4.7)

p—0+

We shall prove Theorem 4.1 by showing that this function has all the desired prop-
erties. Assertions (a2) and (a6) directly imply point 6 of Theorem 4.1. By parabolic
Schauder-type estimates, for every d € (0, R) there exists C' = C(6,¢) > 0 such that for
every p € (0,0/2)

[9c,pllca2(is, Rxrx0,00)) < C'

Hence 9, is smooth in (0, R] xR x [0, c0) and solves the differential equation of problem 4.1.
Moreover, we have trivially (9.), < 0, (¥.); < 01if ¢ > ¢g and (¥.); > 0 if ¢ < cp,
Ve(r, 2,0) = Og(r, 2) for all (r,z) € (0, R] xR, J.(R, 2z,t) =0, (R) forall z€ R and ¢t > 0,
and we have obtained points 4 and 5 of Theorem 4.1.

We claim that for all £ > 0

if
lim 9.(r, 2,t) = {O iHz>0 (4.8)

r—0t T ifz<0.

The proof is based on the construction of appropriate barrier functions:

Lemma 4.4. (i) If ¢ > cg, for every € > 0 there exists a smooth function
o.:[0,R| x R\ {(0,—¢)} — R

such that:

(p1) o. is a subsolution of problem (P.,) for every p € (0, R),

(p2) 0-(0,2) =7 for every z < —¢.

(i) If ¢ < cg, for every e > 0 there exists a smooth function
Y : [0,R] x R\ {(0,e)} — R

such that:

(p3) X is a supersolution of problem (FP.,) for every p € (0, R),

(p4) 2:(0,2) =0 for every z > €.
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We postpone the proof of this key result to section 4.2 and complete the proof of
Theorem 4.1.
If ¢ > cg, we obtain from Lemma 4.4 the inequalities

0'5(7”, Z) S ﬁc,p(ra Zat) S QR(Ta 2)

which are satisfied for every p € (0, R) and every (r, z,t) € [p, R] Xx R x [0,00). Passing
to the limit p — 0 we obtain that

o.(r,z) < Vu(r, z,t) < Og(r, 2) (4.9)

and hence Claim 4.8 follows from property (p2), Theorem 1.1, (ii) and the arbitrariness of
e > 0. Analogously, if ¢ < cg, Claim 4.8 follows from Lemma 4.4, (ii) with (4.9) replaced
by

Or(r,z) < O.(r, z,t) < X (r, 2) (4.10)

The monotonicity of 9. with respect to ¢t and the definition of . imply the inequalities

0.(r,2) < Ve(r,z,t) < Ogr(r,z) ifc>cp
Or(r,z) < O.(r,z,t) < 0.(r,z) if ¢ < cg,

Assuming that 6. satisfies Theorem 4.2, as we shall prove below, we obtain points 1 and
3 of Theorem 4.1. This completes the proof of Theorem 4.1. O

Proof of Theorem 4.2: By (4.3) and parabolic Schauder-type estimates, the function
0. is smooth out of {r = 0}, solves

sin(26)
272

and satisfies the condition 0(R, z) = 0. (R). It follows at once from (4.3), (4.9), (4.10)
and Lemma 4.4 that

0
err+7”+9u+cez— =0 in (0,R) xR

if
lim 6, (r, z) = {O iHz>0 (4.11)

r—0t T ifz<0.

Obviously 6. satisfies (6.), < 0 and 0, (r) < 0.(r,z) < 6_(r), and it follows from (4.11)
that 6, € C°([0,R] x R\ {(0,0)}). By the strong maximum principle, (6.). < 0 in
(0, R) x R. Since 04 (r) < V.(r, z,t) < Ogr(r, z) if ¢ > cg, and Og(r, 2) < I (r,z,t) < 6_(r)
if ¢ < cg, it follows from the strong maximum principle that

0, <0.<0g if c> cp,
Or<0.<0_ ifc<cp

in the open set (0, R) x R. Using the same argument as in the proof of Proposition 2.12,
the continuity of . in [0, R] x R\ {(0,0)} implies that 6, is C* in this set.
Since 0. is strictly decreasing with respect to z and bounded, there exist

O.4+(r) = zgrfoo O.(r,2), O._(r):= Zgrjloo .(r, z).
Standard Schauder type estimates imply that 6. ., 6. € C?((0, R]) and solve the problem

Uy + L D — 0 in (0, R)
Y(R) =0.(R).

(4.12)
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Because of the bounds 6_(r) < 0.(r,-) <0, (r) for r € [0, R], 0.,60._ € C°([0, R]) and
0.+(0)=0,0._(0)=m.

A straightforward computation implies that 6. = 0, and 6. = 0_. We remark that
by Schauder estimates, monotonicity in z and the bounds 6_(r) < 6.(r,-) < 6, (r), the
convergence of . to L when z — +o0 is uniform with respect to r € [0, R]. Finally, by
point 6 of Theorem 4.1, 0.(r, z) is decreasing with respect to ¢ for (r, z) € (0, R] xR. Since
(0:.). < 0in (0,R) x R for every ¢ € R, it follows from the strong maximum principle
that, given ¢1,c2 € R, 0., <, in (0, R) X R if ¢ > ¢;. We conclude that 6, is a solution
of problem (I, ) satisfing properties 1-4 of Theorem 4.2. O

4.2 Barrier functions

In this section we prove Lemma 4.4. We need the following trivial result.

Lemma 4.5. Let B > 0,0 € [0,1]. If

2B1-0p1+0

() =5

forr >0,

then for every r € R

1—-8)2"(1+6)% ifsel0,1)

qu(mg{z ifo=1.

For every C, D > 0 we define the functions

Cel’s if 2 <0
B =
c(2) {0 if2>0,

0 if z<0
Aplz) = {Del/z ifz>0.

It is well known that B¢, Ap € C*°(R).
In the following we consider ¢ as prescribed.

Lemma 4.6. For every p € (0,1) there exists C = C(n) € (0, R] such that for every
C € (0,C] the function

oo(r, z) = 2 arctan (BCT(Z)) + 2arctan (u (%)3/2) , (r2) €[0,R] xR,

satisfies the differential inequality

L(o) =0, +co, + 0, +— —
r
in the open set (0, R) x R.
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Proof: Let p € (0,1) arbitrarily fixed. For sake of simplicity, we shall denote o¢ by
o. In the open set (0, R) x (0, 00) o(r, z) = y(r), where v(r) := 2arctan(u(r/R)*?), and

ZL(o)(r,z) =7"(r) +

v(r) sin(2y)  5sin(27y)
— == > 4.1
r 2r2 4 2r2 = 0 (4.13)
because y(r) < 2arctan(u) € (0,7/2). Since £(0) is continuous in (0, R) x R, (4.13)
holds up to z = 0,r € (0, R).
A straightforward computation shows that in the open set (0, R) x (—o0,0)

sin(2f)
2

sin(2f) + 9/4sin(2y) — sin(2f + 2v)
2r2

Z(0) = ¢/(2)sin(f) +¢*(2)

+cg(2)sin(f) +

where §(z) = 223 = —(1/2)? and f = f(r, 2) = 2arctan( %),

If we take C' € (0, R], we have

0<Be(z)<C, 0<u<R/C

and then

o(r,z) = f(r,z) +v(r) < 7m— 2arctan (Bc(Z)) + 2 arctan <,u§) <

< 7 — 2arctan (BCT(Z)) + 2 arctan (%) <.

Of course also 0 < v < ¢. Therefore, by using standard trigonometric identities we find
sin(2f) 4+ 9/4sin(27y) — sin(2f + 27v) = 9/4sin(2v) — 2 cos(2f + ) sin(y) =

= 2sin(y)(5/4 cos() + 2sin(o) sin(f)) > 5/4sin(2y) =

2(0) 2 sin(f)( + 6% cos(f) +0) + 2 2o

n (0, R) x (—00,0). Since u € (0,1) we have

2 3 2
pr/R)” 11— p

5 sin(27y)

> sin(f)(¢/— ¢*+|elo) + 55

(4.14)

= 0
R N T
and, at the same time,
sin(y) = 2u(r/RP? 2 <L>3/ ?
14+ p?(r/R)?® ~— 1+ p?2 \R '

Since ¢(z) = —(1/2)?, it turns out that ¢’ — ¢? + |c|¢ < 0. Finally, substituting 6 = 1/2

in Lemma 4.5,
) 2Bc(z \/ Be(z 5
Sin(f(r,2)) = BC P <2, B
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It follows from (4.14) that in (0, R) x (—o0,0)

5r—1/2

ZL(o) > 1

((45’ 6+ 1)V Bo + Mwﬂ) |

(15 )
Since there exists @ = Q(c¢) > 0 such that
(¢ = 6"+ [clo) /B > —QVC

we obtain that in the open set (0, R) X (—o0,0)

Srol/? 20(1 = 1) 50
202 2 (Ve S

Therefore, there exists C' = C(u, ¢, R) € (0, R] such that by choosing C' € (0,C] £ (o) >0
in (0, R) x R. O

Remark 4.7. As shown by the proof of Lemma 4.6, C' depends also on ¢ and R. However,
since these are given constants, we have made explicit only the dependence on pu.

We omit the proof of the next result, which is formally identical to the previous one.

Lemma 4.8. For every yu > 1 there exists D = D(u) € (0,R] such that for every
D € (0, D] the function

Sp(r, ) = 2arctan (u<§>3/z) — 2arctan (AD(Z)) . (r,2)€[0,R xR,

r

satisfies the differential inequality

X, sin(2E
LX) =, + S+ 2+ — sin(2%)
r

<0

2r2 —
in the open set (0, R) x R.

We now assume ¢ > cg to show how to construct the family of functions o. for £ > 0.
From the properties of 0 (see Theorem 1.1) we know that for every £ > 0 there exist
C(e) > 0 and ji(e) € (0, 1) such that for every C' € (0,C(e)] and p € (0, fi(¢)]

2arctan(C/r) 4+ 2arctan(u(r/R)*?) < Or(r,—¢), Vr € [0,R].

Given e > 0, if we take p = f(e), C € (0,min{C(u),C(e)}] and define o.(r,z) =
oc(r, z + €), then we have

1. o, is a subsolution of

in(2
ﬁt:ﬁzz—l_crﬁz—'_ﬁrr_}_&_snl( 19>a
r 2r2

2. for every z < —g,r € [0, R]
o-(r, z) < 2arctan(C/r) + 2arctan(u(r/R)>?) < Ox(r, 2),

since A is decreasing with respect to z, and
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3. for every z > —e,r € [0, R]
o.(r, z) = 2arctan(u(r/R)*?) < 2arctan(u(r/R)) < 0,(r) < O(r, 2)
since p < 1 < bR.

Since 0¢(0,2) = 0 for z > 0, 0¢(0, z) = 7 for z < 0, we conclude that o, satisfies property
(p1) and (p2).

Analogously, if ¢ < cg, we construct the family {¥.}.~o. From the properties of 0
(see Theorem 1.1) we know that for every ¢ > 0 there exist D(e) > 0 and fi(e) > 1 such

that for every D € (0, D()] and p > fi(e)
2arctan(u(R/r)>/?) — 2arctan(D/r) > Og(r,e), Yre [0, R)].

Given ¢ > 0, if we take p = ji(¢), D € (0,min{D(u), D(¢)}] and define X.(r,2) =
Yp(r,z —¢), then X, satisfies (p3) and (p4).

4.3 A conjecture

In Chapter 1 we have shown that the “variational” solution 6 behaves near its singular

I ( ? ) S
2 C .

Equivalently, the corresponding traveling wave solution for the director field, u.,, behaves
near its singular point x(t) := (0,0, cgt) as

x — xg(t)
|z —ar(t)]

which, for each fixed ¢t > 0, is a harmonic map from R? to S?. A straightforward com-
putation shows that this harmonic map is an element of a 1-parameter family of axially
symmetric harmonic maps with a given singular point at the vertical axis. To fix the ideas,
if this singular point is the origin, the corresponding angle function of the harmonic map

is of the form
0(r, z) = 2arctan (A tan (% — %(Z/T))) ’

where A € R" represents the parameter. Observe that, if A = 1, we obtain the local
behavior of the variational solution 6p.

Conjecture. Let ¢ € R and let . be the solution defined by Theorem 4.2. Then
there exists a continuous and strictly decreasing map from R to R, ¢ — A,, such that
6. behaves near the origin as

2 arctan (AC tan (% — M)) :

A., =1, and

{O as ¢ — 400
A, —
+00 asc¢c— —00.
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In particular, the conjecture implies that

Ac{<1 if c > cp (4.15)

>1 ife<ecp.

In order to understand the basis for our conjecture, below we give a heuristic expla-
nation for the inequalities (4.15). For this purpose, we introduce the functions

tan(0r(e” cos p, e sin ) /2)
tan(mw/4 — p/2)

fr(z,0) = log( ) z € (—o0,log(R)], ¢ € (—g g)

and

tan(v.(e” cos p, e’ sin @, t)/2)
tan(m/4 — p/2)

where ¥, is the solution defined by Theorem 4.1. We emphasize that f. < fr if ¢ > cp,
fe > fr if ¢ < cg, and, by Theorem 1.3, fr(x,¢) — 0 as z — —oo loc. uniformly in
[—7/2,7/2]. Moreover, we know from Theorem 4.1, point (5) that there exists f. =
limy o0 fo(+,+, t) and

felz, ¢, t) = log ( ) z € (—o0,log(R)], ¢ € <—7T E),t >0

279

tan(f.(e” cos ¢, e* sin ) /2)
tan(mw/4 — ¢/2)

feoo(T, ) =log ( > for x € (—o0,log(R)|, ¢ € (—W 7T) .

272
(4.16)
By the given definitions,

G, (x,p,1) = D.(e” cos @, e® sin @, t) = 2arctan(e/@?Y tan(r/4 — ¢ /2)),

Gr(x, ) = Op(e” cos p, e sin ) = 2arctan(eZ@9) tan(r /4 — ¢ /2)),

and f., fr respectively solve the differential equation

— (05" ¢ f,), o )
e fr = foat fot cos® +vefo+cos(4) |V fIF+ce(fosinp+ f,cos p—1) (4.17)
and
(Cosg(pfcp)cp 2 x :
fzz+fx+w+’ny<p+cos(%R)\Vf\ +cpe”(fosing+ focosp—1) =0 (4.18)
where ) g . @
o _ oSing —cos o _ oSing —cosGp

cos ¢ cos ¢
Since 0r € C=([0, R] x R\ {(0,0)}) and, as one can easily show, J. € C*°([0, R] x R x
R*T\ {(0,0)} x RT), it follows from Taylor expansion that f., fr can be extended up to
¢ = +m/2 and

afc 8fR

—Lc = —= = — > 0. .
9 (x,xm/2,t) =0, r (x,£7/2) =0 for x € (—o0,log(R)], t >0 (4.19)
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Therefore, given an arbitrary M € (—oo,log(R)), if we consider the differential prob-
lem

(2% f, = foo + fo + MjL%f@chos( G| V> + ce™(fesing + focosp — 1)

n (—M,log(R)) x (—7/2,7/2) x RT
f(2,0,0) = [r ( ) in [=M, log(R)] x [-7/2,7/2]
fo(z, :l:7T/2 t) = for x € [-M,log(R)],t >0
f(M,p,t) = fR(Ma ) for p € (=7/2,7/2),t >0
([(log(R), ¢,t) = [fr(log(R), ) for p € (=m/2,7/2),t >0,

(4.20)

fe is a subsolution of this problem if ¢ > cg, a supersolution if ¢ < cg. We conjecture
that, by using properties of Og, from (4.18) and (4.19) follows that

fr(z, ) = e® as © — —o0. (4.21)
If this is true, then, under the assumption ¢ > cg, we are able to prove that:

1. for every M € (—oo,log(R)) problem 4.20 has a supersolution Fj; which is decreas-
ing with respect to t,

2. the sequence F); is decreasing with respect to M and, denoted by F' its limit as
M — —o0,

lim sup tllm fe(z,o,t) <limsup lim F(z,p,t) < —K

r——00 00 z——o00 0

where K > 0 is a constant (the first inequality follows from the maximum principle).

Then, if (4.21) is true and ¢ > cg, limsup f. (z,¢) < —K for every ¢ € (—n/2,7/2),
T——00

which, together with (4.16), explains the inequality (4.15) in the case ¢ > cg. Of course,

there exists an analogous argument for the case ¢ < cp.

If our conjecture turns out to be true, it suggests that, at least in the class of axially
symmetric solutions, the nonuniqueness phenomena for several initial value problems are
directly related to the local structure of the solution in a neighborhood of its singularities.
The structure of the traveling waves suggests that in a neighborhood of each singularity,
the solution behaves as a harmonic map from R? to S?, but the instantaneous speed of
the singular point is related to which harmonic map represents the local behavior. So it
is natural to ask whether the sort of nonuniqueness observed in [27] and [2], caused by
the degree of freedom to prescribe the evolution of a singular point, could be explained,
alternatively, by the degree of freedom to prescribe the harmonic map which describes
the local behavior of the solution near a singular point.
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Appendix A

Some energetic inequalities
concerning harmonic maps

Lemma A.1. For all w € H}

loc
/ P2 [ gin® w N dw
o 2 72 dr

| cos(w(pz)) = cos(w(pr))| =

(0,00) € C°((0,00)) and 0 < p1 < p2

) dr > | cos(w(pa)) — cos(w(py))] -

Proof:
<

p2 d
/ — sin(w) ar
o dr

P2 sinw| | dw P2 [ sin?w dw |?
< =12 — | Jdr < = s— 5| |dr
o 2 r dr o 2 r dr
O
Lemma A.2. For all W € H} (—7/2,7/2) C C°((—7/2,7/2)) and —7/2 < 1 < g <
/2
“2 cos(y) ’dW 2 sin(W)
+ dp > | cos(W(p2)) — cos(W(¢1))] -
/m 2 ( dy cos?(¢p)
Proof:

| cos(W(p2)) — cos(W (1)) =

¥ aw
—sin(W)— dgp' <
/m dip

/902 cos(y) <2 'dW | SiIl(W)|) Qo< /V’Q cos(yp) 'dW 2 . Sin22(W) do .
o1 2 dp | cos(p) o1 2 dp cos?(p)
U
A straightforward calculation leads to the following consequences:
Corollary A.3. Let0 < a < B,k € Z and b e R. Let
B d 2 )
Ef(w) = /a g (d—f 5”;2“’) dr forw e H'(a,p). (A1)
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Then
2 2

1+ 1+06232
for allw € H'(«a, B) satisfying w(a) = kr+2arctan(ba) and w(B) = km+2arctan(bf).
Corollary A.4. Let —n/2 <a < p<7/2, k€ Z and A€ R. Let

Fi(W) = /f COSQ(()O) (' dip |

Then Ff(W) > FB <k7T + 2 arctan (Atan <7T - g)))
(
(

Ef(w) > E?(kn + 2arctan(br)) =

sin?(W)
o2()

) do forW e HY(a, B). (A.2)

_1-A+sin(B)(1 + A7) 1- A% +sin(a)(1+ 4%

T 14+ A2 +sin(B)(1— A2) 1+ A% +sin(a)(1 — A2)
for all W € HY(a, B) satisfying W(a) = km + 2arctan(A tan(r/4 — «/2)) and W(B) =
km + 2 arctan(A tan(mw/4 — 3/2)).

Lemma A.5. Let 0 < a < 3, w € HY(a, 8) and let EZ(w) be defined by (A.1). If ky, ky
are integers satisfying w(a) € [kym, (k1 + 1)m), w(B) € [kam, (ke + 1)7), then

ks~ — 1)+ cos(w(B)) — (~1)%2 | +|(— 1)+ —cos(w(@))] if ko> by
EP(w) >4 | cos(w(B)) — cos(w(a))| if ko = ky
2(ky—ky — 1)+ cos(w(a))— (=1)k |4 |(— 1) —cos(w(B))| if ko <k

Proof: 1f ks = ki the conclusion follows directly from Lemma A.1. If ks > k; and
so w(fB) > w(«), it is sufficient to apply Lemma A.1 to the partition o < Ry < ... <
Riy—ty—1 < B of [, B], where w(R;) = (k1 + 14 j)m for all j =0,1,...,ky —k; — 1. The
case ko < kp is similar. O

Theorem A.6. Let R>0,0<b<1 andw € H._((0,R]). If w(R) = 2arctanb then

R .2 2
R B r [ sin”w dw R br 20
Ef(w) = /o 3 ( = + o ) dr > E, (2 arctan (E)) =15
Proof: The latter equality is trivial. To prove the inequality, we observe that, since
0 <b<1,if lim,,o+r w(p) = kr for sorme k € Z, Lemma A.1 implies that El*(w) >

2 . .
H%b? > % if kis odd, and Eff(w) > 1+b2
other cases Eff(w) = oco. Indeed, if lim, o+ w(p) exists and is finite but not equal to a

Slrl2 w

if k is even. It is easy to prove that in all

multiple of 7, then is not integrable at r = 0; if lim,_,o+ w(p) is infinite or does not
exist it is enough to apply (repeatedly in the latter case) Lemma A.5. O
Setting

sin w

Sy(R) = {w € H'(0,R); € L*(0,R),w(R) = Qarctanb},

r
Theorem A.6 implies that if 0 < b < 1 the function 2 arctan (%) is a minimum of the
functional El{(w) on Sy(R). Since any minimum satisfies the Euler-Lagrange equation
Wy + %wr 5”12(22“}) = (0, it is easy to show that 2 arctan ( R) is the unique minimum. Using
the estimates obtained in this appendix it is very easy to show a slightly sharper result,

of which we omit the proof:

i
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Theorem A.7. Let R >0, 0<b <1 and let {w,} be a minimizing sequence for E(w)
on Sy(R). Then w,(0) = 0 for n large enough and wy,(r) — 2arctan (%) uniformly in
[0, R] as n — co.
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Appendix B

Onedimensional monotone
rearrangements

Throughout this section f(r, z) will denote a C'-function defined in (0, 1) x RT satisfying
the following four properties:

(P1) for all r € (0,1), C € Rand 0 < a < 8 the sets {z € [a, f]; f(r,z) = C} and
{z €|, B]; fu(r,z) = 0} are finite;

(P2) f. € L>®((p,1) x RY) and f, € L>=((p,1) x (p,0)) for all p > 0;
(P3) fe L>*((0,1) x RT) and

lUr) = ir;%f(r,x) < L(r) = sup f(r,z) for0<r <1
z x>0

(P4) for any p > 0, :vlggo f(r,x) = £(r) uniformly with respect to r € [p, 1).
Given f, we set
Qur={x>0; f(r,x) >d} fordeR,0<r<1,
ff(ryx) = sup{d e R|z < p(Q,)} for0<r<1l,z>0,

where v is the onedimensional Lebesgue measure. By construction, the rearrangement
f* of f is nonincreasing with respect to z, for every r € (0,1) sup f*(r,xz) = L(r),
x>0

lim f*(r,xz) = £(r) uniformly with respect to r € [p,1) for p > 0, and for all 0 < r < 1,
T—00
d1 < d2

p{z>0;d < ff(r,z) <ds}) = pu({x >0; dy < f(r,x) < da}). (B.1)

We define, for 0 <r <1,d € R, and 0 < o < 7, the sets
Qoar ={v>0; f(r,x) >d}, Q. ={r€(0,7]; f(r,z) > d},
W ar =Lz €lo7]; flr,x) = d},

o,d,r

and, in (0,1) x RT, the rearranged functions

f*a('l" ) _ Sup{d € R; u(Qo,d,r> > O} if © S g
T \sup{d €Ry 2 — 0 < p(Qay)}t iz >0,
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ey - {PlIERI T <@} i<
T sup{d € R; 7 < pu(Q,)}  ifz>T,

sup{d € R; u(Q27 ,,) > 0} ifr <o
f7(re) = {sup{d € R:x—0 < u(,)} 12 € (0.7]
supld e R; 7 — o < pu(Q7,,)} ifz>7.

It follows at once from the previous definitions that f*°, f* and f*? are non increasing
with respect to x and

1. lim f*(r,xz) =4(r),

T—00

2. forallz <o

f*"(r,x) = La,r ‘= sup f(r,x), f:"(r,x) = Sup f(?“, :L‘),

x>0 z€[o,7]

3. sup f*(r,z) = sup f(r,z) and for all z > 7
z>0 z€(0,7]

fr(rx) = inf}f(hiv), [0 x) = inf f(r,z).

ze(0,7 z€|o,T7]

The proofs of the following propositions are based on standard techniques for onedi-
mensional rearrangements (see [20]). In particular we remind the reader that it is well-
known that f*, f*?, f* and f*’ are continuous and a.e. differentiable in (0,1) x R, and
that, forall 0 < p<land 7 >0 >0,

1) ll oo o) 1) el oo (o) s 1CFE) el oo (o) s 127 Vel ooy < M frll oo (r, )
1)l Rpo)s (el oo ry)s 17 )l ooy oy s 1(F77) el Lo (o) S fall o (o)

where R, = (p,1) x R, R,, = (p,1) x (0,00) and R , = (p,1) x (0,7 — 7).
Proposition B.1. Forall0 <o < T
ffiryz) < f(ryx) < f"(r,e—o) if0<r<landxz>o,
fi(ryx) < fX(ryx) < fi(r,e—o) if0<r<lando <z<T.

In particular f** — f* uniformly on [a, 1) X [o,00) (v > 0) as 0 — 0, and f7 — f*
in Cloe((0,1) x (0,7)) as o — 0F.

Proposition B.2. Forany p € (0,1/2) and M > 0 there ezists 7(p, M) such that f = f*
in[p,1 —p| x (0,M] if 7> 71(p,M). Then f*— f* and (), — (f*), locally uniformly
on (0,1) x RT

Proof: The thesis follows easily from property (P4), which holds true for f*. O

Proposition B.3. Let F' : (0,1) x R — R be continuous and nonnegative, and let
G : [0,00) = [0,00) be conver and nondecreasing (and hence continuous). Then, for all
O<o<Tand0<p<l,

/ o, 127 (p.0)G (£ (p.2)]) d < / Flo, fo. )G (f (g o)) da.  (B2)
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For the proof it is sufficient to apply lemma 2.6 and remark 2.22 of [20] to the function
f(p,x), with € [o,7]. However, for convenience of the reader we sketch the proof of
this proposition.

Proof: Fixed any p € (0,1), we denote by G and A the sets:

G = {x € [0, 7] such that f.(p,x) =0}, A={f(p,x)|x€G}.

If A=0 and so G =0, then f(p,-) is monotone, decreasing or increasing, and equality
holds in (B.2): if f(p,z) is a decreasing function of x, then f*?(p,x) = f(p,z), else if
f(p,x) is an increasing function of z, then f?(p,x) = f(p, 0 + 7 — x). Therefore, we
may assume

A={ay,...,an}
with a; > a; 41 for every e =1,..., N — 1. We define

Dy = {x € lo,7]| flp2) € (al, sup f(/%@)} ,

z€[o,7]

Dy = {x € o,7] | f(p,z) € (xér[(lff’ﬂf(p,x),a]O}

and
D ={z € lo,7] | f(p,7) € (ai1,0:)}

fori=1,..., N — 1. Analogously are defined Dg, D7, ..., Dy with f replaced by f:7. It
is obvious that

o Dj =04 a1 =sup,cp f(p,x) & Do =0
o Dy =0 ay = infoeoq f(p, ) & Dy =0

e Dy, Dy,..., Dy are disjoint open (i.e. relatively open in [0, 7]) sets and
, N
[ 10506 e = 3 [ 1050001 )
e Dj,Di,..., Dy are disjoint open sets and
. N
Lmemmwwwmmw:gfﬁmwmmwwwmmm

Therefore, we can obtain the thesis by showing that for any

| Pt GUE s < [ Pl fpa)GU (s (B3)

i (3

We shall limit to prove the previous inequality for ¢ = 1,..., N — 1, since the proofs for
i =0and i = N (when Dy or/and Dy are not empty) are simple adaptations of the
following general argumentation.
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We remark that VA € [inf.cio- f(p, ), 5up,e(r. f(p,7)] there exists one and only
one z*(p, \) such that f*7(p,z*(p,\)) = A. Actually, z* is a function defined for every
r € (0,1) and every A € [infcipr f(r,T), SUD,e(p, f(r,7)] and by construction

a'(r,A) =0+ pu(Q,,) =0+ p({z €lo,7]| f(r,z) 2 A}), (B.4)
x* is strictly decreasing with respect to A and z*(p, A) € Df if ;1 < A < a;.
Fixed any i =1,..., N — 1, we can write
D; = |_| Vij
j=1
where i1, ..., Vin(i) are subintervals of [0, 7], relatively open in [, 7], where f, is always

positive or negative. If we denote by 7,1 the subinterval closest to o and then we enumerate
the 7;;’s depending on their distance from o, then we have that Vj =1,...,n(i)

) = (1) sign(fulp, )], ) -

sign(fa(p; -],
Naturally, for any A € (a;41,a;) there exists one and only one z;; = z;;(p,\) € vij
such that f(p,z;j(p,\)) = A. By using some theorems of elementary analysis (mainly
the implicit function theorem) it is easy to see that there exists an open neighborhood
I of p x (ait1,a;) such that all the x;; are defined and smooth over I and V(r,\) € I
f(r,z;j(r,\)) = A. Moreover, by using formula (B.4) one easily sees that V(r,\) € I

'%2—%1 + Tig — Tz + 0+ T =Ting) if fu(r,zi1(r,A)) >0,
n(i) odd
Tio— T + Tig — Tig + -+ Tine)—Tim@)—1  if fo(r,za(r, X)) >0,
(o \) = n(i) even
’ Tl —0 + Tig — Tig + -+ T—Tin) if fo(r,xi(r,\)) <0,
n(i) even

T —0 4+ Tig — Tig+ -+ Tin) —Tin@—1 A fa(r, za(r, A)) <0,
n(i) odd

\

In any case x* is a smooth function over I and

n(i)

or* 00Xy

— I RV eV}
o) ISy (B.5)
oN| |~ oX | '

Some simple computations show that
(@) (f77)alp, 2" (p, A)) = (3(p, A) 75
(b) (£77)e(p, 2" (p, A)) = =27 (p, M) (@3 (p, A) ™5
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(0) fulpswii(p, M) = (S(p, )7

(@) frlpy i (o, M) = =G (0, MG (0, M)
for any A € (a;41,a;) and 7 =1,...,n(i). Then for any j =1,...,n(i) and X € (a;11, a;)

sign (%A (o) A>) — sign (fa(p, 3350, \))) =

= (=1 sign (.l ) = (1) s (G520,

and so from (B.6) we deduce that

or*
a—)\(f)a )\)’ =

;A” (p, )\)’ . (B.7)

By using (B.5), (B.7) and (a)-(c) we obtain through a change of variable (x = z*(p, ) or
x = x;;(p, A)) that

Dy
j 0z
—1)79%i .
/ F(p, NG A il O] ) g
= P,
ait1 W O j=1 oA
2. |
7j=1

and

[ 500060 = S [ Fo S5, 0)GH )

j=1"v"7ij
@i il ) 85? ox;;
Gt / Y

J=1

Of course the partial derivatives of z* and x;; are all computed in (p, A). Since F' is
non-negative, in order to prove (B.3) it is sufficient to show that for any A € (a;41, ;)

> (~1)i %

5

o 2 S [%el) < (ol [5e]) - e
n(t) o — = Ozij O\ ' '
> | - o
k=1
If for every 7 =1,...,n(i) we set
O
oA
aj - n(7 ’
(@) }83%
oA
k=1




then we have that o; > 0 and Z;Lg a; = 1 at any point A € (a;41,a;). By using the
monotonicity and the convexity of G we find that

(o) 81” n(i) 9%
2::( 1)7= Zl o n(i) 3;;1
G G <@g =G Ll
n . n(i . — i
5 o ) NS
k=1 k=1
n(i) 8;”
S Z ajG Ox;; !
J=1 X
and (B.8) follows from the definition of «;. This completes the proof. O

Proposition B.4. Let P(x) be a nonnegative and nondecreasing function defined for
x> 0. Then, forallc >0 and 0 < p <1,

| P@ e de< [P0 d. (B.9)
0 0
Proof: We fix 0 > 0 and 0 < p < 1 and set

A= {f(p,z); >0 and f,(p,x) = 0}.

In view of the properties of f the set A is either finite or countable. We give the proof
only in the latter case. So we assume that A = {a,}, where a,, > a,4; for all n > 0 and
le a, = {(p). Of course, supa,, = ap < L, , = supf(p, x).
n—oo neN

We define the open sets D, = {z > 0; ap1 < f(p,z) < a,} and D} = {x >
05 any1 < f*(p,x) < a,}. For each n we can decompose D, in a finite number, k,, of
disjoint open intervals 7, ; (7 = 1, ..., k,) on each of which f,(p, -) is either strictly positive
or strictly negative. We label these intervals according to their distance to the origin by
taking 7,1 as the farthest one. Then sgn(f.(p,)) = (=1) on v, for all j = 1,..., k,,
and there exists for all j = 1,...,k, and X € (ap+1,a,) a unique z; = x;(p, \) € v,; such
that f(p,z;(p,A)) = A. By the implicit function theorem, x; can be thought as a smooth
function defined in an open set containing {p} X (@41, a,). Similarly there exists for all
A € (U(p), L,,p) a unique z*(p, \) > o such that f*(p,z*(p,A\)) = A. By construction,
*(p, A) = Qo) + 0, x* is strictly decreasing with respect to A, and z*(p, \) € D} if
apt1 < A < ay,. It is easy to check that

(pa)‘ U + Z ]+1x] pa )7 (BlO)

j=1

where p(k,) = 0 if k,, is odd and p(k,) = 1 if k,, even. A simple computation yields that
for every n and for almost all A € (a1, a,)

(£)a(p, 2" (p, A (ZM (. A ) ,
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[felps (o, )] = 1@a(o N7 = 1 K
These equalities imply that for every n

kn

/nP( slpa)de= Z/%] ) dr= /a:1<;1|(9€jh(/)a)\)

J

P (p, \) )dA B.11)
‘ |

and
voy2 o Plt(p, )
P(x yr)dx = -
/z RORE ant1 D0 [(25)a(0, )]

On the other hand we know that z*(p, ) = pu(Qr,) + 0 < z1(p, A), since Q,, C
[0, z1(p, A)] by the definition of z1(p, A). Hence it follows from (B.11) and (B.12) that

(B.12)

| p@Uuinae < [ p@spde, (B.13)

We remind that ag = malg]( a, and L, , = sup f(p,z). If ag = L, ,, then we have that

>0

(c,00)\ |JDn and  (0,00)\ | D;; (B.14)

neN neN

are sets of zero Lebesgue measure, and the inequality (B.9) follows at once from (B.13)
(we have used that f*?(p,-) is constant for z € (0, g]).

It remains to consider the case in which ag < L, ,. Then there exists > o such that
{r >0; a0 < flp,x) < Lsp)} = (0,7) and fy(p,-) < 0in (0,z). Hence f*7(p,z) =
f(p,x) for all 0 <z < Z. Arguing now as in (B.14) with (o, 00) replaced by (Z,c0), we
obtain (B.9). O

Remark B.5. Even if we stated all the properties and the results of this chapter for

functions defined in (0,1) x RT, it is simple to check that all of them can be reformulated
for functions defined in (0, R) x RT, where R is an arbitrary positive value.

In what follows we shall denote by f; and f, the functions defined in (2.25) and by xq
and x; the values e and e® respectively, where 2y and z; are the same as in (2.2). We
remark that f; and f; satisfy properties (P1)-(P4) with ¢(r) = 2 arctan(br) for a suitable
constant b € (0, 1).

Proposition B.6. Fori=1,2 and 7 > x,

fi-(L ) = f7 (L x) = fi(1,2) = g(log(x)/c) -

Proof: We omit the subscript i, since the argument is the same for f; and f5. Since
f is Lipschitz continuous in r uniformly with respect to x in [p, 1] x RT with p € (0, 1),
we can say that for every x € RT there exists

fF(Lx) = lim f2(r, )

r—1—

and

Fa) = sup({d € Rz < p(Q7,)}) if 2 € (0,7]
T sup({d € R|7 < u(2)}) ifox>r7
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where Q) ; = {z € (0,7]| f(1,7) > d}. We know that f(1,z) is smooth, strictly decreas-
ing in (xg,z1), identically equal to A in (0,z0] and to B in [x1,00), where A, B are the
constant values in (2.2). Therefore, for every 7 > z; and d € R

0 if d> A

ar (0, o] ifd=A
5 (0.(/0,) )] ifde (B, A)

(0, 7] ifd<B

and f(1,2) = f(1,z). A similar argumentation can be used to show that f*(1,z)

f(1,z).
From (B.2) and (B.9) we deduce the following results.

Ol

Proposition B.7. Fori=1,2,

1 1
/ dx/ ra®(f)2dr §/ dx/ re?(f;)2dr < oo.
R+ 0 R+ 0

Proof: Since h; = T~!(f;) is a minimizer (see Chapter 2, section 2.1), it follows from
(2.14) that the latter integral is finite. We omit the subscript 7. It is sufficient to prove
that for any p € (0,1)

/W 2*(f)z(p ) da < /w 2’ fz(p.x) d . (B.15)

Without loss of generality we may assume that the right hand side is finite, i.e. xf, €
L*(RT). Let 0, — 0. By (B.9) (with P(z) = 2?) the sequence {x(f*"),} is bounded
in L?(R") and, up to a subsequence, there exists v € L*(R") such that x(f*"), — v

weakly in L?(RT). It follows easily from Proposition B.1 and the regularity properties
of f** and f* that v(p,z) = x(f*).(p,x) for a.e. x € RT. Hence (B.15) follows from
(B.9). O

Proposition B.8. Let G, = Gy(r) be the function given by (2.6). Fori = 1,2 and for
every M > xq,

M ((f?‘)? NREL Gb(r)> dr <
Jo dxfo1 T <(fi)12~ + S",i# - Gb(r)) dr < oo.

Proof: Since h; = T~'(f;) is a minimizer (see Chapter 2, section 2.1), it follows from
(2.14) that the latter integral is finite. We omit the subscript 7. For any 7 > 0 we set

o) = [ 1r(<f:>$<r,x>+w—ab<r>)dr for @ > 0.

r2

Observe that ¢, is a measurable function with values in R U {oo} and that, by Proposi-
tion B.6 and Theorem A.6, ¢-(x) > 0 for a.e. © > xq if 7 > 2. Similarly, the function

q(z) = /01 r ((f*)f(?", x)+ M — Gb(r)) dr forz >0

r2
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is nonnegative a.e. in (x1,00). By Proposition B.2 and by Fatou’s lemma, ¢(z) <
liminf ¢, (z) for all x > 0. In particular
T—00

/ qg(z)da < liminf/ ¢-(z) dz.
0 0

T—00

Since ¢, ¢, > 0 a.e. in [z1,00) if 7 > 24, it follows again from Fatou’s lemma that for all
M > T

/Mq(:c)dx < /Ooq(x)d:c < liminf/m:qT(x) dz.

o 1 T—00

The proof is complete if we show that, for every 7 > 0,

T 1 .2 prx T 1 .2
/ dx/ Smderg/ dx/ o fd?", (B.16)
0 0 r 0 o T
T 1 T 1
/ dx/ r(f:)fdrg/ dx/ rfZdr. (B.17)
0 0 0 0

Inequality (B.16) follows at once from (B.2), with G =1 and F = sin®(f)r~!, Proposi-
tion B.1 and Fatou’s lemma. Applying (B.2) with /' = r and G(v) = v* we find that

forall0 <o < . .
/ / r(f*r)2dzdr < / / rfidx dr. (B.18)
0 o 0 o

Letting 0 — oo and arguing as in the previous proof we easily obtain (B.17). O

Now, let h and ¥ be the functions defined in (1.29). Then h,? : (0, R) x R* — R
satisfy properties (P1)-(P4) with ¢(r) = 0 and ¢(r) = 2 arctan(br), for a suitable constant
b > 0, respectively. Since ¥ is Lipschitz continuous in r uniformly with respect to = in
[p, R] x RT with p € (0, R), we can say that for every z € R there exist

V(R z) = lim Vi(r,z), U(R,z)= lim 9*(r,z).

r—R~ r—R~

Moreover, since (R, x) = 2arctan(bR), it is immediate to conclude that ¥ (R, x) =
U*(R,z) = 2arctan(bR) (7 > 0 is arbitrary).

From (B.2), applied with G = 1 and F(r, f) = rf?, and Propositions B.1, B.2 follows
that

Proposition B.9.

;L*

R 2 B
/ dx/ r drg/ dx/ r}h’ dr < oo
R+ 0 R+ 0

Moreover, arguing as in the proof of Proposition B.7 one can prove that

Proposition B.10.

R R
/ dx/ mc2(19;)2d7“§/ dx/ re?¥2dr < oo.
R+ 0 R+ 0

The analogue of Proposition B.8 requires however a slightly different proof.
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Lemma B.11. Let

B
M = dx/ r}h’ dr.
R+ 0

There ezist a constant C(M) > 0 and B C RY such that Vo € RT \ B ¥*(r(z),z) = 7/2
for some r(z) € (0,R) and u(B) < C(M), where p is the onedimensional Lebesque
measure.

Proof: Since bR > 1 (see chapter 1), ¥*(R,x) = 2arctan(bR) > Z. Let p, E (0, R) be
such that 0, (py) = Z. For every z € RT we define A, = {7“ €| 1/22,01;,,01) h*(r,x)| >
&} and

B:{xeRJF:M(Ax)Zpb (1- )} {o e utan-n (1- )}

A simple computation shows that ||h*]| > %(1 —37Y2)u(B), where || - || is the norm in

L2((0, R) x RT). Thanks to Lemma B.9 we deduce that u(B) < Kb* M for some K > 0.

On the other hand, if z ¢ B there exists p(z) € [py37'/%, py] such that [h*(p(z),z)| < %

and therefore |9*(p(x), )| < m/2. Since V*(R,z) > 7/2, there exists r(z) € [0, R] such

that V*(r(z),z) = w/2. O
In the following we shall denote by X a fixed value greater than C'(M).

Proposition B.12. There ezists p € (0, R) such that for allz € [ X, 00) V% (p, ), 0" (p, z) <
/2 4if 7> X.

Proof: Since X > C'(M), there exists £ € (0, X ) such that £ ¢ B and then 9*(r(¢),¢) =
7/2 for some 7(§) € (0, R). Since for every 7 > 0 one has ¥:(r,z) < 9*(r,z) for every
€ (0,R) and = < 7, must be ¥5(r(£),&) < n/2if 7 > X. If we define p = r (), then the
thesis follows from the monotonicity of ¥* and ¥ with respect to . O

Proposition B.13. Let Gy, = Gy(r) be the function given by (1.28). For every M > xq,

f dfffo ) st(ﬂ*) — G, (7“)) dr <
I dxfo T 193 sin ('9 — Gy(r ))dr < 0.

Proof: Since h = T~ — 6,) is a minimizer to problem (MP) (see chapter 1), it
follows from (1.27) that the latter integral is finite. For any 7 > X we set

¢-(z) = /ORT ((ﬁi)i(r, ) + w - Gb(r)> dr for x> 0.

r

Observe that ¢, is a measurable function with values in RU{oo} and that, by Lemma A.1,
Proposition B.12 and identity 9% (R, z) = 2arctan(bR), ¢,(x) > 0 for x > X. Similarly,
the function

o(z) = /ORr ((19;:)2(7«, g+ S D) Gb(r)> dr forz >0

r
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is nonnegative for x € [X,00). By Proposition B.2 and by Fatou’s lemma, ¢(z) <
liminf ¢, (z) for all x > 0. In particular
T—00

X X
/ q(z)dz <lim inf/ ¢-(x) dz.
0 0

T—00

Since ¢,q; > 0 in [X,00) if 7 > X, it follows again from Fatou’s lemma that for all
M>X

/Mq(:c)dx < /Ooq(x)d:c < liminf/TqT(x) dz.

X X T—00 X

The proof is complete if we show that, for every 7 > 0,

T R _:. 2/.0x% T R :. 2
/ dx/ Sln7(197)dr§/ dx/ sin”(¥) dr, (B.19)
0 0 r 0 0 r

T R T R
/ dx/ r(95)2dr g/ dx/ rd2dr. (B.20)
0 0 0 0

Inequality (B.19) follows at once from (B.2), with G = 1 and F(r, f) = sin®(f)r !,
Proposition B.1 and Fatou’s lemma. Applying (B.2) with F' = r and G(v) = v? we find

that forall 0 <o < 7
R T R T
/ / r(9*):dr dr < / / V2dax dr. (B.21)
0 o 0 o

Letting ¢ — oo and arguing as in the proof of Proposition B.7 we easily obtain (B.20). O
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