
TESI DI DOTTORATO

Concettina Galati

Numero di moduli di famiglie di curve piane con nodi e cuspidi

Dottorato in Matematica, Roma «Tor Vergata» (2005).

<http://www.bdim.eu/item?id=tesi_2005_GalatiConcettina_1>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non
è consentito l’utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare
questo avvertimento.

bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI

http://www.bdim.eu/

http://www.bdim.eu/item?id=tesi_2005_GalatiConcettina_1
http://www.bdim.eu/


Dottorato di Ricerca in Matematica
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Introduction

In this thesis we compute the number of moduli of certain families of plane curves with

nodes and cusps as singularities. Let Σnk,d ⊂ P(H0(P2,OP2(n))) := PN , with N = n(n+3)
2 , be

the closure, in the Zariski’s topology, of the locally closed set of reduced and irreducible plane
curves of degree n with k cusps and d nodes. We recall that, for k = 0, the varieties Vn,g = Σn0,d
are called the Severi varieties of irreducible plane curves of degree n and geometric genus
g =

(n−1
2

)
− d. Let Σ ⊂ Σnk,d be an irreducible component of Σnk,d and let g =

(n−1
2

)
− d− k be

the geometric genus of the plane curve corresponding to the general point of Σ. It is naturally
defined a rational map

ΠΣ : Σ 99KMg,

sending the general point [Γ] ∈ Σ to the isomorphism class of the normalization of the plane
curve Γ corresponding to the point [Γ]. We set

number of moduli of Σ := dim(ΠΣ(Σ)).

We say that Σ has general moduli if ΠΣ is dominant. Otherwise, we say that Σ has special
moduli. It is possible to prove that, if k < 3n, then

(1) dim(ΠΣ(Σ)) ≤ min(dim(Mg), dim(Mg) + ρ− k),
where ρ := ρ(2, g, n) = 3n − 2g − 6 is the Brill-Neother number of the linear series of degree
n and dimension 2 on a smooth curve of genus g. We say that Σ has the expected number of
moduli if the equality holds in (1). By classical Brill-Neother theory when ρ is positive and by a
well know result of Sernesi when ρ ≤ 0 (see [37]), we have that Σn0,d, (which is irreducible), has

the expected number of moduli for every d ≤
(n−1

2

)
. Working out the main ideas and techniques

that Sernesi uses in [37], under the hypothesis 0 ≤ k < 3n, we find sufficient conditions in order
that an irreducible component Σ ⊂ Σnk,d has the expected number of moduli. If Σ verifies these
conditions, then ρ ≤ 0. In particular, we prove the following two results.

Proposition 1 (See proposition 3.1 of chapter 3.). Let Σ ⊂ Σnk,d, with 0 ≤ k < 3n, be an

irreducible component of Σnk,d and let [Γ] ∈ Σ be a general element, corresponding to a plane
curve Γ with normalization map φ : C → Γ. Let H ⊂ Γ be the divisor cut out on Γ from the
general line of P2 and KC the canonical divisor of C. Suppose that:

(1) Γ is geometrically linearly normal, i.e. h0(C,φ∗(H)) = 3,

(2) the Brill-Noether map

µo,C : H0(C,φ∗(H))⊗H0(C,KC − φ∗(H))→ H0(C,KC )

of the pair (C,H), is surjective.

Then Σ has the expected number of moduli equal to 3g − 3 + ρ− k.
5
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Lemma 1 (See lemma 3.8 and corollary 3.9 of chapter 3.). Let Σ ⊂ Σnk,d be an irreducible
component of Σnk,d, with n ≥ 5 and 0 ≤ k < 3n. Suppose that Σ has the expected number of

moduli and that the general element [Γ] ∈ Σ corresponds to a geometrically linearly normal
plane curve Γ of geometric genus g such that, if C → Γ is the normalization of Γ, then the map
µo,C is surjective. Then, for every k′ ≤ k and d′ ≤ d + k − k′, there is at least an irreducible
component Σ′ ⊂ Σnk′,d′, such that Σ ⊂ Σ′, the general element [D] ∈ Σ′ corresponds to a g.l.n.

plane curve D of geometric genus g′ with normalization Dν → D and the Brill-Noether map
µ0,Dν surjective. In particular, also Σ′ has the expected number of moduli.

In the following theorem, by using induction on the degree n and on the genus g of the
general curve of the family, we construct examples of families of plane curves with nodes and
cusps verifying the hypotheses of proposition 1 and so having the expected number of moduli.

Theorem 1 (See theorem 3.11 of chapter 3.11.). Let Σnk,d be the algebraic system of irre-

ducible plane curves of degree n ≥ 4 with k cusps, d nodes and geometric genus g =
(
n−1
2

)
−k−d.

Suppose that:

(2) n− 2 ≤ g equivalently k + d ≤ h0(P2,OP2(n− 4))

and

(3) k ≤ 6 +

[
n− 8

3

]
if 3n − 9 ≤ g and n ≥ 6,

(4) k ≤ 6 otherwise.

Then Σnk,d has at least one irreducible component Σ which is not empty and whose general

element [Γ] ∈ Σ parametrizes a geometrically linearly normal curve Γ such that the Brill-
Noether map of the pair (C,H), where C is the normalization of Γ and H denote the pull-back
to C of the hyperplane section of P2, has maximal rank. In particular, when ρ ≤ 0, the algebraic
system Σ has the expected number of moduli equal to 3g − 3 + ρ− k.

The previous result may be improved, see remark 3.12 of chapter 3. By theorem 1, it follows
that Σn1,d, (which is irreducible), has the expected number of moduli if ρ ≤ 0. Moreover, from
a result of Eisembud and Harris, it follows that Σn1,d has general moduli if ρ ≥ 2. In theorem
3.13 of chapter 3, by using induction on n we find that Σn1,d has general moduli also when

ρ = 1, concluding that Σn1,d has the expected number of moduli for every d ≤
(n−1

2

)
− 1.

We are extending this result to the case k ≤ 3. Finally, we consider the variety Σ6
6,0 of

irreducible sextics with six cusps. It is classically known that Σ6
6,0 is reducible. One of the

irreducible components of Σ6
6,0 is the parameter space Σ1 of the family of plane curves of

equation f32 (x0, x1, x2) + f23 (x0, x1, x2) = 0, where f2 and f3 are homogeneous polynomials
of degree two and three respectively. The general point of Σ1 corresponds to an irreducible
sextic with six cusps on a conic as singularities. Moreover, Σ6

6,0 contains at least an irreducible
component Σ2 whose general element corresponds to a sextic with six cusps not on a conic
as singularities. The results above can’t be useful in order to compute the number of moduli
the irreducible components of Σ6

6,0, because in this case ρ = 4. In section 4 we prove that

Σ1 has the expected number of moduli equal to dim(M4) + 4 − 6 = 7 and that Σ6
6,0 contains

at least an irreducible component having the expected number of moduli and whose general
element corresponds to a sextic with six cusps not on a conic. We don’t still know examples of
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irreducible complete families of plane curves with nodes and cusps having number of moduli
smaller that the expected.

The previous results are contained in chapter three of this thesis. The first chapter of this
thesis is devoted to very basic notions of algebraic geometry. In chapter two we recall some
standard results of deformation theory of plane curves which will need in chapter three and
we prove some little results of deformation of plane singularities. In particular, section 6 of
chapter 2 is devoted to the equigeneric locus of the étale versal deformation space of an ordinary
plane singularity, (see section 5 of chapter 2 for the étale versal deformation space of a plane
singularity). We prove the following result.

Proposition 2. [See proposition 6.1 of chapter 2.] There exists an étale neighborhood U
of 0 ∈ EG ⊂ B in the equigeneric locus EG of the étale versal deformation space B of Γ, such
that every point y ∈ U corresponds to a plane curve with only ordinary multiple points.

This result is very ’natural’ and in all probability it is known, but we have not found in
literature a proof of it. In order to prove the previous proposition, we show the following
lemma.

Lemma 2. [See lemma 6.7 of chapter 2.] Let Cr+1 ⊂ Pr+1 be a rational plane curve of
degree r + 1 and let Λ be a (r − 2)-plane with no intersections with Cr+1 and having finitely
many intersections with the secant variety S(Cr+1) of Cr+1. Then, the projection plane curve
πΛ(Cr+1) := C of Cr+1 from Λ has only ordinary multiple points as singularities if and only
if Λ transversally intersects S(Cr+1) at r(r− 1)/2 points each of which lies on a proper secant
line to the rational normal curve.

Then, by a result of Franchetta and a result of Morelli (see lemma 6.14 and 6.11 of chapter
2) we deduce the following proposition.

Proposition 3. For every integer r there exists an integer R > r such that for every
ordinary plane singularity of multiplicity r of analytic equation g(x, y) = 0, there exists an
irreducible rational plane curve of degree R with an ordinary r-fold point analytically equivalent
to g(x, y) = 0.

By using proposition 3 and the properties of the étale versal deformation space of a plane
singularity, we deduce proposition 2 by lemma 2.

Acknowledgment. I would like to express deep gratitude to my advisor Prof. C. Ciliberto
who initiated me into the subject of algebraic geometry and who provided me many invaluable
suggestions and corrections. I have also enjoyed and benefited form conversation with many
people including F. Flamini, E. Sernesi, L. Caporaso and G. Pareschi.





CHAPTER 1

Preliminaries

The standard results on algebraic systems of plane curves of a given degree with prescribed
singularities, which we shall use in this paper, are collected in chapter 2. In this chapter we recall
some basic results, which we shall use later. First of all we fix some notation and terminology.
Through all this paper a curve X will be a projective separated scheme of finite type over C,
of pure dimension one. We shall say that X is reduced (smooth) if every local ring of X has
no nilpotent element (is regular). We define the geometric genus g(X) of a reduced curve X
to be the arithmetic genus of its normalization. In particular if X has irreducible components
X1, . . . , Xq then g(X) =

∑
i g(Xi)−q+1. A plane curve will be a projective curve X contained

in the projective plane P2(C) := P2. We shall assume as known the correspondence between
base point free linear series on a smooth curve C and morphisms φ : C → Pr from C to a
projective space. Usually we shall work with projective singular curves. If X ⊂ Pr is such a
curve and σ is a linear system on Pr, then the linear series cut out by σ on the normalization
curve φ : X̃ → X ⊂ Pr of X will be the linear series cut out on X̃ by the linear system which
is the pullback to X̃, with respect to φ, of σ.

1. Adjoint curves to a plane curve

Our definition of adjoint plane curve follows that of [6], Appendix A of chapter 1. Let
f(x, y) = 0 be the affine equation of a reduced plane curve Γ ⊂ P2 of degree n with normalization
φ : C → Γ. Let p ∈ Γ be a singular point of Γ and let p1, . . . , ps be the points of C which lie
over p. The adjoint divisor ∆p of p is the divisor on C defined by

∆p =
∑

i

αipi

where

αi = −multpi(φ∗
dx

∂f/∂y
).

We say that a plane curve of affine equation g(x, y) = 0 is adjoint to f(x, y) = 0 at p if, denoting
by (-) the divisor associated to -, we have that

(φ∗g) ≥ ∆p.

The plane curves adjoint to f(x, y) = 0 at p form an ideal which we denote by Ap ⊂ OP2,p,
while the adjoint curves to Γ at p of a given degree form a linear system. Notice that, by
definition, a plane curve g(x, y) = 0 is adjoint to Γ at p if and only if the local form

φ∗
g(x, y)dx

∂f/∂y

is holomorphic at each of the points p1, . . . , ps ∈ C mapping to p. Moreover, we define the num-
ber of adjoint conditions δp at p as the index of the ideal Ap in OP2,p, i.e. δp = dim(OP2,p/Ap)
as vector space over C. Denoting by Sing(Γ) the set of singular points of Γ, the adjoint divisor

9



10 1. PRELIMINARIES

∆ of φ : C → Γ is the divisor ∆ =
∑

p∈Sing(Γ)∆p and the number of adjoint conditions δ of Γ

is defined by δ =
∑

p∈Sing(Γ) δp. A reduced plane curve is adjoint to Γ if it is adjoint to Γ at

every point p ∈ Sing(Γ). The plane curves adjoint to Γ form an ideal, which we shall denote
by A ⊂ OP2 . The notion of adjoint curve is very important in the theory of plane curves for
several reasons, first of all because of the relation with the canonical sheaf ωC which we explain
below. Let (U, z) be an holomorphic chart of C. If we set φ|U (z) = (x(z), y(z)), then the local
form of ω in U is

ω|U =
∂x(z)

∂z

dz

∂f(x(z), y(z))/∂y

and we find that
∆|U = (∂x(z)/∂z) − (∂f(x(z), y(z))/∂y).

We observe that, if π : C → P1 is the composition of the normalization morphism of Γ with the
first projection map, then the divisor (∂x(z)/∂z) is the restriction to U of the ramification divi-
sor Rπ of π, that is the zero divisor of the differential map of π. Denoting by η a meromorphic
one form on P1, we recall that

(π∗η) = Rπ + π∗(η).
From the former two equalities, denoting by KC = (π∗η) a canonical divisor on C and by H
the pullback to C of the divisor cut out on Γ by a general line, we deduce that

∆ ≡ Rπ − (n− 1)H ≡ KC + 2H − (n− 1)H,

or equivalently,

(5) ωC = φ∗(OC(n− 3)(−∆)),

where we set OC(n− 3) = OC((n− 3)H).

Lemma 1.1. The linear system of plane curves of degree n− 3 adjoint to Γ cuts out on C
the complete canonical series, that is

h0(ωC) = H0(P2, A⊗OP2(n− 3)) =

(
n− 1

2

)
− δ.

In particular, for every r ≥ n− 3 the linear system of plane curves of degree r adjoint to Γ has
the expected dimension equal to h0(P2,OP2(r))− δ.

Proof. By the equality (5) it follows that, if g(C) is the geometric genus of C, then

g(C) = h0(ωC) =
(n− 1)(n − 2)

2
− 1/2deg(∆)

and
(n − 1)(n − 2)

2
− 1/2deg(∆) ≥ h0(OC(n− 3)(−∆)) ≥ (n− 1)(n − 2)

2
− δ,

that is

(6) deg(∆) ≤ 2δ.

We want to show that in (6) the equality holds. As before, let p ∈ Γ be a singular point of Γ
and let p1, . . . , pk be the points of C which lie over p. Let V be the (deg∆p)-dimensional vector
space

V = H0(C,OC/OC(−∆p)).

We consider the bilinear pairing
ψ : V × V → C
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defined by

ψ(g, h) =
∑

i

Respi(ghω).

First of all we observe that this pairing is not degenerate. To see this, let g ∈ V be a not zero
element. We still denote by g a meromorphic function on C whose image in V is equal to g ∈ V .
If ri = multpi(gω), then there exist a meromorphic function h on C having order −r2, . . . , −rk
at p2, . . . , pk respectively and order −r1 − 1 at p1. The one form ghω is holomorphic at
p2, . . . , pk and have a simple pole at p1. This proves that ψ is not degenerate. Now we claim
that

(7)
k∑

i=1

Respiφ
∗gω = 0,

for every polynomial g(x, y). We prove the claim by induction on the minimal number blowing-
ups necessary to resolve the singularity of Γ at p. If this number is zero, that is if p is a smooth
point of Γ, thus φ∗gω is holomorphic at p and the claim is true. Now suppose that Γ has a
singular point of multiplicity s at p and that, blowing up the plane at p, the singular points
of the strict transform Γ̃ of Γ which map to p verify (7). Let g(x, y) be a polynomial which
vanishes with multiplicity r at p. If we assume, as we may, that p = (0, 0) and that the line
x = 0 is not tangent to Γ at (0, 0), then, by taking analytic coordinates (x, ỹ) on the blowing-
up of the plane b : BlpP2 → P2, where ỹ = y/x, we have that the strict transforms of Γ and

g(x, y) = 0 have equations f̃(x, ỹ) = 0 and g̃(x, ỹ) = 0 respectively, with

f(x, y) = xsf̃(x, ỹ) = 0

and

g(x, y) = xrg̃(x, ỹ) = 0.

Moreover, all the points of the strict transform of f̃(x, ỹ) = 0 which lie over p have finite
coordinates. Differentiating the previous equalities with respect to y we find that

g(x, y)dx

∂f/∂y
= xr−s+1 g̃(x, ỹ)dx

∂f/∂ỹ
.

Denoting by φ̃ : C → BlpP2 the map such that φ = bφ̃, we find that

k∑

i=1

Respiφ
∗gω =

∑

q∈Γ̃|b(q)=p

∑

pi|φ̃(pi)=q
Respiφ̃

∗(xr−s+1 g̃(x, y)dx

∂f/∂ỹ
) = 0.

The equality (7) follows by inductive hypothesis on Γ̃. This proves that, if W = H0(Γ,OΓ/Ap)

and W̃ is the image of W under the injection

H0(Γ,OΓ/Ap)→ H0(C,OC/OC(−∆p)),

then ψ(W̃ , W̃ ) = 0 and hence W̃ ⊂ Ann(W̃ ). We deduce that

δp = dimW̃ ≤ deg(∆p)− δp,
for every p ∈ Sing(Γ). Hence the equality holds in (6) and

h0(ωC) = H0(P2, A⊗OP2(n− 3)) =

(
n− 1

2

)
− δ.
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In particular, it follows that the evaluation map

H0(P2, OP2(n− 3))→ H0(P2, OP2(n − 3)/A) = Cδ,

which we deduce from the following exact sequence

0→ A⊗OP2(n− 3)→ OP2(n− 3)→ OP2(n− 3)/A→ 0

is surjective. Since for every r ≥ n − 3, we have that H0(P2, OP2(r)) k H0(P2, OP2(n − 3)),
the evaluation map

H0(P2, OP2(r))→ H0(P2, OP2(r)/A) = Cδ

is surjective too and hence h0(A⊗OP2(r)) = h0(OP2(r)− δ. �

We conclude this section by observing that, if the plane curve Γ has only nodes and cusps
as singularities, then the rational one-form ω defined above has simple poles at the points of
C mapping to the singular locus of Γ and hence a plane curve D is adjoint to Γ if and only if
D passes through every singular point of Γ. In this case it is immediate that 2δ = deg(∆).

2. Dualizing sheaf of a curve with nodes and cusps

We refer to [22] for the properties of the dualizing sheaf of a projective variety. In this
paper it will be convenient for us to give the following definition of the dualizing sheaf of a
curve.

Definition 2.1. Let C be a curve with normalization ν : Cν → C. The dualizing sheaf ωC
associates to each U ⊂ C the set of rational one-forms η on ν−1(U) ⊂ Cν such that

(8)
∑

q∈ν−1(p)

Resq(ν
∗fη) = 0

for every p ∈ C and for each f ∈ OC,p.
We compute the dualizing sheaf of a curve C with at most nodes and cusps as singularities.

Let C be such a curve, U ⊂ C an open set of C and η ∈ ωC(U) a local section of the dualizing
sheaf of C on U . If q ∈ U is a smooth point, then, by (8), η has to be holomorphic at q, and
hence, if C is smooth, the dualizing sheaf of C coincides with its canonical sheaf. Suppose
that q is a node of C and let q1 and q2 be the points Cν which lie over q. In this case, by
(8), the one-form η can have at most simple poles at each of the points q1 and q2. In order to
see this, let (U1, z1) and (U2, z2) be disjoint holomorphic charts of q1 and q2 respectively. We
may assume that ν|U1

(z1) = (z1, 0) and ν|U2
(z2) = (0, z2). Now suppose that η|U2

=
∑

i≥r aiz
i
2,

with r ≤ −2 and ar 6= 0. If y : ν(U1) ∩ ν(U2) → C is the second projection map, then
ν∗y−r−1η|U2

(z2) = aiz
−1
2 + f(z2), where f is an holomorphic function, while ν∗y−r−1

|U1
= 0 and

hence

Resq2ν
∗y−r−1η +Resq1ν

∗y−r−1η = ar 6= 0.

That proves that η, as rational form on Cν has at most simple poles at q1 and q2. Moreover,
applying (8) to the case that f is a not zero constant function, we find that

(9) Resq1η +Resq2η = 0.

Viceversa, every rational one-form η ∈ ωCν (ν−1(U)) having at most simple poles at q1 and q2
and verifying (9) is a local form of ωC′ on U . Indeed, if η is such a local rational one form
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and f ∈ OC,p, then, by using the same notation as before, we may set η|U1
= (

∑
i≥−1 ciz

i
1)dz1,

η|U2
= −c−1z

−1
2 dz2 +

∑
i≥0(diz

i
2)dz2, ν

∗f|U1
=

∑
i≥0 aiz

i
1 and ν∗f|U2

= a0 +
∑

i≥0 biz2. Thus

Resq1ν
∗fη +Resq2ν

∗fη = c−1a0 − c−1a0 = 0,

as we wanted. Finally, suppose that C has a cusp at q. Let p be the point of Cν which lies over
q and let (V, z) be a holomorphic chart containing p such that ν|V (z) = (z2, z3). First of all we
notice that if a local rational form on V satisfies (8), then η may have at p a pole of multiplicity
at most equal to two. Indeed, if η|V =

∑
i≥r aiz

i, with r ≤ −3, and x : ν(V ) → C is the first

projection map, then Resp(ν
∗x−r−1η) = ar 6= 0. Moreover, a rational one form with at most a

double pole at p satisfies (8) if and only if respη = 0. Indeed, if f ∈ OC,q is a not zero constant
function then Respν

∗fη = 0 if and only if Respη = 0. On the other hand, if Respη = 0, that is
η|V = a−2z

−2dz +
∑

i≥0 aiz
idz, then, for every f ∈ OC,q such that ν∗f|V =

∑
i≥0 biz

i, we have

that ν∗(f)η|V (z) = f(z2, z3)η(z) = b0a−2z
−2dz+ η′(z)dz, where η′ is an holomorphic function,

and hence Respν
∗fη = 0. This proves the following result.

Lemma 2.2. Let C be a curve with nodes and cusps as singularities. Then, denoting by
Sing(C) the singular locus of C and by setting ν∗(q) = ν−1(q) if q is a node and ν∗(q) = 2ν−1(q)
if q is a cusp, the dualizing sheaf ωC of C is the subsheaf of ν∗(ωCν (

∑
q∈Sing(C) ν

∗(q))) which

associates to each U ⊂ C the set of local section η on ν−1(U) ⊂ Cν such that
∑

q∈ν−1(p)

Resq(η) = 0

for every p ∈ C.

3. Geometric genus in a flat family of curves.

In this section we prove that the geometric genus is a lower semicontinuous function on a
flat family of curves. This is a very basic fact in the theory of curves. All the proofs of this
section have been taken from [13]. From now on, for a flat family family of curves we mean a
proper morphism X → Y which is flat and whose fibres have all dimension one.

Let

X ⊂ Pm × Y
π ↓(10)

Y

be a flat family of projective curves with all fibres reduced and such that X and Y are reduced
separated scheme of finite type over C. Let φπ(y) be the geometric genus of π−1(y), for all
y ∈ Y .

Lemma 3.1. Suppose that Y is a regular curve and let π : X ′ → X be the normalization
map. Then π · f : X ′ → Y is a flat family of projective curves with all fibres reduced.

Proof. By proposition III.9.7 of [22], a family of curves X → Y parametrized by a smooth
curve Y is flat if and only if every component of X dominates Y . We deduce that X and X ′

dominate Y and the family π · f : X ′ → Y is flat. In order to prove that a fibre of π · f cannot
have multiple components, we recall that π is a birational finite map which is invertible at
every smooth point of X. Since all fibres of f are reduced and X is smooth at every smooth
point of any fibre of f , every fibre of π ·f is birational to the corresponding fibre of f , and so it
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cannot have multiple components. To prove that a fibre of π · f has not nonreduced points, it
is enough to prove that on each irreducible component of X ′. Since Y is smooth, every fibre of
π · f is principal. Recalling that in a normal Noetherian domain principal ideals are unmixed,
the lemma is proved. �

Proposition 3.2. Let X → Y be a family like (10). Then φπ is a lower semicontinuous
function in the Zariski topology.

Proof. Suppose that Y is a smooth curve. By using lemma 3.1, we see that the fibres of π·f
are the normalizations or partial normalizations of the corresponding fibres of f . Actually, since
X ′ is normal, it has at most finitely many singular points. Applying the generic smoothness
theorem to the restriction of π ·f to the open set of smooth points of X ′, we find that the general
fibre of π ·f is smooth. We conclude that φπ = φπ·f and φπ·f is constant on the Zariski open set
of Y where all fibres are nonsingular, because the arithmetic genus remains constant in a flat
family. Finally, recalling that the geometric genus of a reduced singular curve is always strictly
less than the arithmetic genus, we have that φπ·f decreases at singular fibres. Suppose now that
Y is a reduced separated scheme of finite type over C. First of all we prove that there is an open
set U of Y on which the function φπ is constant. Let U1 be the open set of regular points of Y .
Let V be the normalization of π−1(U1) and g : V → U1 the induced family of curves. since V is
normal, its singularities points form a closed set A of codimension at least two in V . Since g is
proper, U1−g(A) is a dense open set of U1. By generic smoothness theorem, we find that there
is an open set U ⊂ U1−g(A) on which the morphism g−1(U)→ U is smooth. The fibre of g on
U are just the normalizations of the corresponding fibers of π. Thus φπ is constant on U . Now
if y ∈ Y − U , then φπ(y) ≤ g := φπ(U). To see this, let Z be a general curve in Y through y
whose general points belongs to U . Let Z ′ be the normalization of Z and let h : C → Z ′ be the
pullback family of X → Y to Z ′. From what we proved before, φh is a lower semicontinuous
function. Thus φπ(y) ≤ g. Finally, let n ∈ Z and let B(n) = {y ∈ Y |φπ(y) ≤ n}. We have
to show that B(n) is Zariski closed. Fix n. If B(n) = Y we are done. If not, from what we
proved before, there is a Zariski closed set Y1 $ Y , (Y1 = Y − U) such that B(n) j Y1. If
B(n) = Y1 we are done. If not, arguing as before on the family π−1(Y1) → Y1, we find that
there is a Zariski closed Y2 $ Y1 with B(n) j Y2. Since Y is assumed to be of finite type over
C and hence Noetherian, this process must terminate. So we find a k such that Yk = B(n). �

Finally we need the following result.

Theorem 3.3 ([44], p. 80). Under the general assumptions of proposition 3.2 assume
further that Y is normal and φπ is constant. Let f : X ′ → X be the normalization map. Then
π · f : X ′ → Y is a smooth family of curves and each fiber of π · f is the normalization of the
corresponding fiber of π.

Example (2.6) of [13] shows that there are families of reduced projective curves π : X → Y
with Y non normal, such that φπ is constant and which don’t admit a simultaneous desingu-
larization.

Remark 3.4. Finally, we observe that, if π : X → Y is a flat family like (10) whose fibres
of maximal genus have genus g, then, applying generic smoothness theorem to the regular locus
of the normalization X ′ of X, by functorial properties of the moduli space Mg of curves of
genus g, we get a rational map

Π : Y 99KMg
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which sends the general point y ∈ Y to the isomorphism class of the normalization curve of
π−1(y). In general, even if φπ is constantly equal to g, the map Π doesn’t extends to a regular
map on all Y . By theorem 3.3, under the hypothesis that φπ is constant and denoting by Y ′

the normalization of Y we have that

Y ′

↓ ց
Y 99K Mg

the map Π is defined at the regular locus of Y and it extends to a regular map on Y ′.

4. Deformations of morphisms on a smooth curve

In this section we give the definition of deformation of a morphism on a smooth curve and
we state the two main theorems of Horikawa deformation theory. In section 7 of chapter 2 we
will show some applications of Horikawa deformation theory to the study of families of plane
curves with nodes and cusps. In this section, we shall denote by C a smooth curve of genus g
and by Y a smooth projective algebraic scheme over C. Given two smooth curves C and C ′,
we say that two holomorphic maps φ : C → Y and ψ : C ′ → Y are equivalent if there exists an
isomorphism f : C → C ′ such that φ = ψ · f . We recall the following definition.

Definition 4.1. A deformation (C, φ̃, π, B) of an holomorphic map φ : C → Y is given
by a flat deformation π : C → B, where C and B are separated schemes of finite type over
C, a morphism φ̃ : C → Y and a closed point 0 ∈ B such that the restriction morphism
C0 := π−1(0)→ Y is equivalent to φ.

A deformation of φ is said to be infinitesimal if B = Spec(C[ǫ]) = Spec(C[t]/(t2)) and it is
said to be effective if dim(B) = 1. If we denote by ΘC and ΘY the tangent sheaf to C and Y
respectively, we have the following exact sequence of sheaf on C

0→ ΘC → φ∗ΘY → Nφ → 0

where the map φ∗ : ΘC → φ∗ΘY is the differential map of φ. The cokernel Nφ of φ∗ is called

the normal sheaf to φ. Let (C, φ̃, π, B) be a deformation of φ and let 0 ∈ Y be a closed point
such that the induced morphism C0 := π−1(0) → Y is equivalent to φ. From what has been
proved in [26], there exists a characteristic map

ρ : T0B → H0(C, Nφ),
from the tangent space to B at 0 to the global sections space of the normal sheaf to φ. We
have the following two results.

Theorem 4.2 (Horikawa, theorem 2.1 of [26]). If the characteristic map ρ defined above

is surjective, then the family of morphisms (C, φ̃, π, B) is complete, i.e. for every other defor-
mation (D, F, G, B′) of φ and for every closed point 0′ ∈ B′ such that the induced morphism
D0 → Y is equivalent to φ, there exist an open neighborhood U of 0′ in B′ and a morphism
h : U ′ → B such that h(0′) = 0 and such that the restriction of (D, F, G, B′) to U is equivalent

to the pullback family of (C, φ̃, π, B) with respect to h.

Theorem 4.3 (Horikawa, theorem 3.1 of [26]). If H1(C, Nφ) = 0, then there exists a

deformation (C, φ̃, π, B) of C such that the characteristic map is an isomorphism.
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A family of morphisms (C, φ̃, π, B) satisfying (4.3) is said to be a universal deformation
family of φ, and we will call the parameter space B a universal deformation space of φ.



CHAPTER 2

Families of plane curves with nodes and cusps

1. Introduction

In this chapter we recall some standard results of deformation theory of plane curves which
will need in the next chapter. In particular, we are interested in the scheme Σnk,d ⊂ Pn(n+3)/2

parametrizing irreducible plane curves of degree n and geometric genus g =
(n−1

2

)
−k−d, with

k cusps and d nodes as singularities.
Section 2 is devoted to Severi varieties. We define the Severi variety Vn,g ⊂ Pn(n+3)/2 as

the Zariski closure in the Hilbert scheme of plane curve of degree n of the locally closed subset
parametrizing irreducible plane curves of degree n and genus g. It is well know that Vn,g is

irreducible and the general element of Vn,g corresponds to a plane curve with d =
(n−1

2

)
− g

nodes as singularities, (see [19], [2] and [47]).
In section 3, by following the Zariski’s papers [47], [48] and [49], we introduce classical

techniques used to study algebraic systems. An algebraic system of plane curves of degree
n is a Zariski closed subset of the Hilbert scheme Pn(n+3)/2 of plane curves of degree n. We
give the definition of equivalence between plane singularities and we prove the Dimension
Characterization Theorem of Severi varieties of Zariski, (see theorem 3.12). As corollary of this

theorem, we deduce that every irreducible component Σ of Σnk,d ⊂ Pn(n+3)/2 has dimension at
least equal to 3n+g−1−k and that the equality holds if k < 3n, see corollary 3.13. Moreover,
we prove that, if k < 3n, then nodes and cusps of an irreducible plane curve of degree n with
k cusps and d nodes as singularities, may be smoothed independently, (see section 3 of section
5 for the meaning of this statement). In particular, we prove that for every k′ and d′ such that
k′ ≤ k and d′ ≤ d + k − k′, there exists at least an irreducible component Σ′ of Σnk′,d′ such

that Σ ⊂ Σ′, see lemma 3.17. As corollary of lemma 3.17 we prove that Σnk,d is not empty for
every k ≤ 4. In lemma 3.22 we study the local geometry of the varieties Σn1,0 and Σn0,1 at a
neighborhood of a point parametrizing a plane curve with d nodes and k cusps. Finally, in
the examples 3.15 and 3.20 we give examples of families of plane curves with nodes and cusps
as singularities with dimension bigger that the expected one and we prove that the algebraic
system Σ6

6,0 of sextics with six cusps as singularities is reducible, see [49].
In section 4, by following modern literature and, in particular, the Wahl’s paper [45], we

describe the moduli scheme of irreducible plane curves of degree n with k cusps and d nodes, as
a scheme representing a suitable deformation functor F . When k < 3n, the scheme representing
F is reduced, if it is not empty. When k ≥ 3n are known examples of non reduced moduli
schemes of plane curve with nodes and cusps as singularities.

In section 5, by following essentially [13], we introduce the étale versal deformation family
of a plane curve. We introduce the notions of equigeneric deformation and equisingular defor-
mation of a plane curve and we recall the main properties of the étale versal deformation space
of a plane singularity. Finally, in this section we give a second proof of lemma 3.17.

17



18 2. FAMILIES OF PLANE CURVES WITH NODES AND CUSPS

Section 6 is devoted to the étale versal deformation space of an ordinary plane singularity.
In particular, we prove that, if Γ is an irreducible plane curve with an ordinary r-fold point
and no further singularities, then there exists an étale neighborhood U of 0 ∈ EG ⊂ B in the
equigeneric locus of the étale versal deformation space B of Γ, such that every point y ∈ U
corresponds to a plane curve with only ordinary multiple points, see lemma 6.1. In order to get
this result, in lemma 6.7 we prove that a rational plane curve Γ of degree n has only ordinary
multiple points if and only if it is projection of the rational normal plane curve Cn ⊂ Pn from
an (n− 3)-plane intersecting the secant S(Cn) transversally. By this lemma, by using lemmas
6.11 and 6.14, we deduce lemma 6.1.

Finally, section 7 is devoted to Horikawa deformation theory and to its applications to
the study of families of plane curves with nodes and cusps as singularities. In particular,
in this section we identify the tangent space to an irreducible component Σ of Σnk,d at its

general element [Γ] ∈ Σ with a suitable subspace of the infinitesimal deformations space of
the normalization map φ : C → Γ of Γ. This identification will be very useful in proposition
3.1 of chapter 3. By using this identification and lemma 7.1, we prove a very special case of
lemma 3.17, see lemma 7.5 and remark 7.7. Moreover, we recall some known results on the local
geometry of Σnk,d at a point corresponding to an irreducible plane curve of genus g =

(
n−1
2

)
−k−d

with singularities worst than nodes and cusps, see proposition 7.8 and theorem 7.12. Theorem
7.11 gives a sufficient condition in order that an irreducible plane curve Γ of degree n, genus
g and class c may be obtained as limit of curves of genus g and class c with only nodes and
cusps as singularities. (We recall that the class of a plane curve is equal to the degree of its
dual curve). Finally, our proposition 7.13 is a simple application of Horikawa deformation
theory to the study of the deformations preserving genus and class of a curve with prescribed
singularities.

2. Severi varieties

Let P2 be the complex projective plane. Since a plane curve of degree n is defined by an
homogeneous polynomial up to multiply by a scalar, the set of plane curves of degree n can be

identified with the projective space P(H0(P2,OP2(n))) = P
n(n+3)

2 := PN , whose coordinates are
the coefficients of a general homogeneous polynomial. Notice that PN is the Hilbert scheme of
complex plane curves of degree n and every flat family η : X → Y of projective plane curves
of degree n is the pullback of the tautological family

G := {(P, [C])such that P ∈ C} ⊂ P2 × PN
↓
PN

with respect to the natural morphism π : Y → PN , sending every point y of Y to the point
corresponding to the curve η−1(y). From now on we will denote by [Γ] the point of PN associated
to a curve Γ ⊂ P2 and by Sing(Γ) the singular locus of Γ. By using elimination theory, we
see that the set of smooth plane curves of degree n is parametrized by a Zarisky open subset
of PN . More in general, the set of reduced plane curves of degree n corresponds to a Zariski
open set R ⊂ PN . Indeed, every such curve is defined by an homogeneous polynomial without
multiple components. Then R is the complement of the image in PN of the proper closed set

NR = ∪2a+b=nP(H0(P2,OP2(2a))) × P(H0(P2,OP2(b))) ⊂ PN .
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Moreover, R properly contains the open set I of reduced and irreducible plane curves of degree
n, which is the complement of the image in PN of the closed subset

∪a+b=nP(H0(P2,OP2(a))) × P(H0(P2,OP2(b))) ) NR.

Recalling that the arithmetic genus of a plane curve of degree n is
(
n−1
2

)
, by proposition 3.2 of

chapter 1, for every 0 ≤ g ≤
(n−1

2

)
the locus of points corresponding to curves of genus at most

g is Zariski closed in R.

Definition 2.1. The Severi variety Vn,g ⊂ PN of plane curves of degree n and genus g is

the closure in PN of the locally closed set of reduced and irreducible plane curves of degree n
and geometric genus g.

To compute the expected dimension of Vn,g, we essentially follow [2]. Let V be an irreducible
component of Vn,g and let [Γ] ∈ V be a general element, corresponding to a curve Γ ⊂ P2 with
normalization C → Γ. Let [C] be the point ofMg corresponding to C. There exists a smooth
family of curves of genus g

p : C → S

parametrized by a smooth connected algebraic variety S, such that the canonical morphism
π : S →Mg is finite and dominant and such that [C] ∈ π(S) (see [33]). Let us denote by Picn
the relative Picard variety of the family p and by W2

n the subvariety of Picn whose points are
the pairs (s, γ), with s ∈ S and where γ is a complete linear series of dimension at least two on
the curve p−1(s). Let δ = 0 if g ≥ 2, δ = 1 if g = 1 and δ = 3 if g = 0. Then Picn is a smooth
variety of dimension 4g − 3 + δ, whereas W2

n is a locally determinantal variety, locally defined
by the vanishing of the minors of order m − 2 of an holomorphic matrix of type m × l where
m− l = n− g + 1, (see [3] or [6]). It follows that, when 2 ≥ n− g, the dimension of W2

n is at
least equal to

4g − 3 + δ − [m− (m− 3)][l − (m− 3)] = 4g − 3 + δ − 3(g − n+ 2).

Let G2n the variety whose points are the pairs (s, g2n) where s ∈ S and g2n is a linear series of
dimension two and degree n on p−1(s). In [3] or [6] one can find a construction of G2n. Since is
naturally defined a surjective map G2n →W2

n, always under the hypothesis 2 ≥ n− g, we have
that

(11) dim(G2n) ≥ 4g − 3 + δ − 3(g − n+ 2) = 3n + g − 9 + δ.

If 2 ≤ n − g, then W2
n ≡ Picn, the general fibre of the map G2n → W2

n is the grassmannian of
subspaces of dimension three of a space of dimension n− g+1 and (11) still holds. Let now F2

n

be the variety whose points are the triples (s, g2n, {s0, s1, s2}) where (s, g2n) ∈ G2n and {s0, s1, s2}
is a frame of the three dimensional space associate to the linear series g2n. Since all the fibres of
the projection map F2

n → G2n are isomorphic to Aut(P2), we have that dim(F2
n) ≥ 3n+g−1+δ.

Notice that every point (s, g2n, {s0, s1, s2}) ∈ F2
n determines a morphism p−1(s)→ P2. Let F be

the irreducible component of F2
n containing the point corresponding to the morphism C → Γ.

Sending every point of F to the point of PN parametrizing the image curve of the associates
morphism, we get a rational map

F → V ⊂ PN .
Since two morphisms ψ, φ : C → P2 from a smooth curve C to P2 have the same image if and
only if there is an automorphism A : C → C such that φ ·A = ψ, we deduce that

dim(V ) ≥ 3n+ g − 1.
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Actually, every irreducible component of the Severi variety has the above expected dimension.

Theorem 2.2 (Zariski [47], Arbarello-Cornalba [2]). Let V be an irreducible component of
Vn,g. Then

dim(V ) = 3n + g − 1 =
n(n+ 3)

2
− d = N − d

where d =
(n−1

2

)
− g and the general point of V corresponds to an irreducible plane curve of

degree n with d nodes and no further singularities.

From now on we will denote by V o
n,g the locally closed set of Vn,g parametrizing irreducible

nodal curves of genus g. Notice that the dimension of V o
n,g has been computed first by Severi,

by showing that the tangent space to every irreducible component V o
n,g at the general point

[Γ] is the linear space parametrizing the linear system of the adjoint curves of degree n to
Γ, (see section 1 of chapter 1 and section 3.1). An attempt of proof of the fact that every
irreducible plane curve of degree n and genus g is limit of nodal plane curve of the same degree
and genus, can be found in the paper by Albanese [1]. But, this paper contains a gap which
we have not been able to fill-up. Albanese does not prove that, if Γ ⊂ P2 is an irreducible
plane curve of degree 2n and genus g, with n > g − 1, having three ordinary triple points at
three general points P1, P2 and P3 of the plane and other singularities, then there exists a one
parameter family of plane curves G → ∆ of degree 2n and genus g, whose special fibre G0 is
equal to Γ and whose general fibre has an ordinary triple point at a neighborhood of every Pi,
for i = 1, 2, 3, and nodes as further singularities. As we will see in the next section, in order
to prove the theorem 2.2, Zariski starts from Severi ideas, putting them in a more general and
formal context, see theorem 3.12. Arbarello and Cornalba approach is very different. They
look at the Severi variety as the locus of pairs (C,φ), where C is a smooth curve of genus g
and φ : C → P2 is a morphism from C to P2, and they use Horikawa deformation theory to
prove theorem 2.2, ([2] and [3]). This paper doesn’t contain Arbarello and Cornalba proof of
the theorem 2.2, but we started on their ideas to prove our proposition 7.13. Now we want to
show the following more elementary fact.

Lemma 2.3. The set Sn,d which parametrizes reduced plane curves with at least d singular

points is Zariski closed in PN and every its irreducible component has dimension at least equal
to N − d, if it is not empty. Moreover, let Un,d ⊂ Sn,d be the locus of reduced d-nodal plane
curves of degree n. Every not empty irreducible component U of Un,d is Zariski dense in an
irreducible component S of Sn,d.

Before proving the lemma, we remark that V o
n,g is contained in Un,d and it is the union of

irreducible components of Un,d parametrizing irreducible plane curves. Then, by the former

lemma and by theorem 2.2, we have that if 1 ≤ d ≤
(n−1

2

)
and g =

(n−1
2

)
− d then, the union

of irreducible components of Sn,d, whose general element corresponds to an irreducible curve,
coincides with Vn,g.

Proof of lemma 2.3. Let R be the open set of PN parametrizing reduced curves. Let

S̃n,d ⊂ PN × (P2)d be the closure in PN × (P2)d of the incidence family

{([C], p1, . . . , pd)|pi 6= pj and pi ∈ Sing(C), for 1 ≤ i, j ≤ d} ⊂ R× (P2)d.

Denoting by F (x0, x1, x2) =
∑

i+j+k=n aijkx
i
0x
j
1x
k
2 the general homogeneous polynomial of de-

gree n, then, by Euler’s equality, a point ([F = 0], p) belongs to S̃n,d if and only if it verifies

the following bihomogeneous equations in PN × P2
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F (pi) = 0, i=1,. . . ,d

∂F

∂x0
|pi = 0, i=1,. . . ,d

∂F

∂x1
|pi = 0, i=1,. . . ,d.

Since the projection map p1 : S̃n,d → PN is a closed morphism we get that Sn,d = p1(S̃n,d)

is a Zariski closed subset of PN , for every 0 ≤ d ≤ n(n−1)
2 . Moreover, for every irreducible

component S ⊂ Sn,d, we have that the general fibre of p1 on S is finite and hence we find that

dim(S) ≥ N + 2d− 3d = N − d =
(n+ 3)n

2
− d = 3n+ g − 1,

where g =
(n−1

2

)
− d. Moreover, let Γ ⊂ P2 be a plane curve with exactly d singular points

p1, . . . , pd. If U2 = {[x0 : x1 : x2)]|x2 6= 0} ⊂ P2, up to projective transformations, we can

suppose that pi ∈ U2 for every i. Then, denoting by F (x0, x1, x2) =
∑

i+j+k=n aijkx
i
0x
j
1x
k
2 the

homogeneous polynomial defining Γ, we have that Γ has a node at every point pi if and only if

(
∂F

∂x0∂x1
|pi)2 −

∂F

∂2x0
|pi

∂F

∂2x1
|pi 6= 0.

for every 1 ≤ i ≤ d. This proves the lemma. �
Remark 2.4. Now, let us consider the second projection map

{([C], p1, . . . , pd)|pi 6= pj and pi ∈ Sing(C), for 1 ≤ i, j ≤ d} ⊂ PN × (P2)d

p2 ↓
(P2)d

We want to remark that,in general, is not simple to compute the dimension of the image of

this map. Has been proved in [5] that p2 is dominant when 3d ≤ n(n+3)
2 . Given p1, . . . , pd

different points of P2, then p−1
2 (p1, . . . , pd) parametrizes the linear system of plane curves of

degree n singular at p1, . . . , pd. The problem to compute the dimension of p−1
2 (p1, . . . , pd) is a

classical problem of interpolation theory. We will go back on this topics in section 2 of chapter
3.11. Anyway, when d = 1 it is immediate that p2 is surjective and all its fibres are linear
spaces of dimension exactly N − 3. It follows that Sn,1 = Vn,(n−1

2 )−1 is a not empty irreducible

hypersurface parametrizing singular curves of degree n.

Actually, Severi varieties are always not empty and irreducible.

Theorem 2.5 (Severi, [38]). For any fixed d, such that 0 ≤ d ≤
(n−1

2

)
, there exist irreducible

plane curves of degree n with d nodes and no further singularities. In particular the Severi
varieties are nonempty.

Theorem 2.6 ( Harris, [19]). Vn,g is irreducible for every 0 ≤ g ≤
(
n−1
2

)
.

We shall prove Severi’s theorem 2.5 in a more general form, see corollary 3.18. As it is
well known, theorem 2.6 was stated from Severi in [38], but its proof contains a mistake,
(see [47] for a discussion about it). First of all, Severi shows that Vn,0 is irreducible. By
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using a deformation argument, which we will explain in the next section (see lemma 3.17),

he proves that for every 0 ≤ g ≤
(
n−1
2

)
− 1, there exists at least one irreducible component

of Vn,g containing Vn,0. Moreover, by using a suitable monodromy argument, he shows that
there is only one irreducible component of Vn,g having this property, see lemma 1.1 of [19].
Then Severi would prove that every irreducible component of Vn,g contains Vn,0, deducing
that Vn,g is irreducible. But this part of the proof is not complete. Several mathematicians
attempted to prove the irreducibility of Severi varieties, obtaining sometime a partial result,
see for example [47] or [4]. Finally, in [19], Harris gave a complete proof, by showing that
every irreducible component of Vn,g contains at least one irreducible component of Vn,g−1, for

every 1 ≤ g ≤
(n−1

2

)
. We shall not include the Harris proof of this fact. We prove theorem 2.6

only for the variety Vn,0 of rational plane curves of degree n. In this case the result follows by
elementary projective geometry.

Lemma 2.7. The Severi variety Vn,0 of rational plane curves of degree n is irreducible and
not empty.

Proof. Let Γ ⊂ P2 be a rational plane curve of degree n. Let L ⊂ |OP1(n)| be the
linear series associated to the normalization morphism P1 → Γ. The complete linear series
|OP1(n)| embeds P1 in Pn as a rational normal curve Cn ⊂ Pn. The previous linear series L
corresponds in Pn to a two dimensional space of hyperplanes whose base locus is a linear space
Λ of dimension n− 3 with no intersections with Cn. Since the hyperplanes through Λ cut out
on Cn just the linear series L and since a linear series defines a morphism only up to projective
motion, projecting Cn to P2 from Λ we shall get the curve Γ or one projectively equivalent to
Γ. If U ⊂ G(n−3, n) is the open set parametrizing the hyperplanes which have not intersection
with Cn, all the rational plane curves of degree n can be obtained from Cn by projecting from
an (n − 3)-plane corresponding to a point in U . It follows that there is a rational dominant
map

G(n− 3, n)×Aut(P2) 99K Vn,0
from an irreducible variety to Vn,0, from which we deduce that Vn,0 is not empty and irreducible.
We also notice that the singularities of the projections of the rational normal curve Cn, arise
from the intersections of the (n−3)-space, which is the center of the projection, with the secant
variety S(Cn) of Cn, and by proposition 6.6 of section 6, it follows that the general projection
of Cn is a nodal curve. �

3. Algebraic systems of plane curves of degree n

Definition 3.1. An algebraic system Σ is a set of plane curves of degree n parametrized by
a Zariski closed subset of PN = P(H0(P2,OP2(n))).

We will say that an algebraic system Σ ⊂ PN is irreducible if it is parametrized by an
irreducible Zariski closed subset of PN . Linear systems are examples of algebraic systems
parametrized by linear subspaces of PN . Another example of algebraic system is the hyper-
surface Sn,1 ⊂ PN of singular plane curves of degree n. Consider for example the case n = 3.
Since there exist cubics with only a node as singularity, (take for example x2 + y2 = x3), by
lemma 2.3, the general element of S3,1 corresponds to a cubic with only a node as singularity.
In particular, two general points [Γ] and [D] of S3,1 correspond to two plane curves Γ and D
with the same number of singularities and the singularities of D are analytically equivalent to
the singularities of Γ. The same is not true for all algebraic systems. We recall the following
definition.
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Definition 3.2. Two points p ∈ Γ and q ∈ D of two plane curves Γ and D are analytically
equivalent if the completion ÔΓ,p of the local ring of Γ at p is isomorphic to the completion

ÔD,q of the local ring of D at q.

If p is an ordinary double (triple) point of a plane curve Γ , then the complete local ring ÔΓ,p

is isomorphic to C[[x, y]]/(xy) (C[[x, y]]/(xy(x − y))), (see [22], ex. I.5.14). On the contrary,
ordinary plane curve singularities of multiplicity ≥ 4 are not all analytically equivalent. Indeed,
it is well known that two four-fold points of affine equation

xy(x− y)(x− λy) + g5(x, y) = 0

and
xy(x− y)(x− µy) + h5(x, y) = 0,

where g5 and h5 are two polynomials in x and y of degree at least five, are analytically equivalent
if and only if there exist an automorphism of P1 sending the points 0, ∞, 1, λ to the points
0, ∞, 1, µ, (see, for example, [45]). This happens if and only if

(λ2 − λ+ 1)3

λ2(λ− 1)2
=

(µ2 − µ+ 1)3

µ2(µ− 1)2
,

(see [20], p. 121). It follows that, denoting by Σ4 ⊂ PN the irreducible algebraic system of
plane curves of degree n with a four-fold point, for every given class of analytical equivalence
of four-fold points, the locus of points corresponding to a plane curve with a four-fold point
of that equivalence class, is Zariski closed in Σ4. We expect that it is possible to define a
right notion of equivalence between plane curve singularities in such a way that the property
of parametrizing curves with singularities equivalent to those of the curve corresponding to
the general point of an irreducible algebraic system, is open in such algebraic system. That
has been done by Zariski in [47] and [49]. Let Γ be a reduced plane curve of affine equation
f(x, y) = 0 at a point p = (0, 0) ∈ Γ. By theorems I.5.4A and I.5.5A of [22], the completion of
the local ring OΓ,p of Γ at p is isomorphic to the power series ring

(C[x, y]/(f))(x,y) ⊗C[x,y](x,y) C[[x, y]] ≃
(
(C[x, y])(x,y) ⊗C[x,y] C[x, y]/(f)

)
⊗C[x,y](x,y) C[[x, y]]

≃ C[[x, y]]/(f).
The scheme Spec(C[[x, y]]/(f)) is called the algebroid plane curve associated to Γ at p. The
irreducible components of Spec(C[[x, y]]/(f)) are called the branches of Γ at p. Let Γ and D
be two reduced plane curves with the same number of branches at two points p, q ∈ Γ. We
denote by γ1, . . . , γk the branches of Γ at a point p ∈ Γ and by ν1, . . . , νk the branches of D at
q ∈ D.

Definition 3.3 ([49], p.510). A (1, 1) mapping π of the set of branches of Γ onto the set
of branches of D is said to be a tangentially stable pairing π : Γ→ D between the branches of
Γ and those of D if the following condition is satisfied: given any two branches γi and γj of Γ,
the corresponding branches π(γi) and π(γj) of D have the same tangent line if and only if γi
and γj have the same tangent line.

Now blow-up the plane Spec(C[[x, y]]) at the origin. The proper transforms Γ′ and D′ of
Γ and D will have a certain number of connected components. Now, the proper transforms
of two branches of Γ will be in the same connected component of Γ′ if and only if they have
the same tangent line at p. Since π : Γ → D is tangentially stable, the number of connected
components of Γ′ will be the same as the number of connected component D′. We denote by



24 2. FAMILIES OF PLANE CURVES WITH NODES AND CUSPS

Γ′
j and j = 1, 2, . . . , the connected components of Γ′ and by D′

j and j = 1, 2, . . . , the connected

components of D′. We can suppose to number them in such a way that the pairing π : Γ→ D
between the branches of Γ and the branches of D, induces a pairing πj : Γ′

j → D′
j between

the branches of Γ′
j and the branches of D′

j , for every j = 1, 2, . . . . We now define equivalence
of algebroid plane curves by induction on the number of blow-ups required to resolve the
singularity. If Γ and D are smooth at p and q respectively, we say that a pairing of the unique
branch of Γ with the unique branch of D is an equivalence.

Definition 3.4 ([49], p.511). An equivalence π : Γ→ D is a pairing π between the branches
of Γ and the branches of D having the following properties:
(1) π is tangentially stable,
(2) if νj = π(γi), then multp(γi) = multq(νj),
(3) the pairing πj : Γ

′
j → D′

j is an equivalence, for every j = 1, 2, . . . .

We say that two singularities of plane curves are equivalent if the associated algebroid plane
curves are equivalent.

Remark 3.5. Notice that if two plane singularities are analytically equivalent, then they are
equivalent. Moreover, by remark V.3.9.4 and example V.3.9.5 of [22], it follows that two plane
singularities of multiplicity two are equivalent if and only if they are analytically equivalent. But
equivalence relation is weaker than analytical equivalence. For instance, two ordinary plane
singularities of the same multiplicity are equivalent. But we know that there exist ordinary
plane singularities of multiplicity n ≥ 4 which are not analytically equivalent.

Theorem 3.6 ([47], p. 213-214). Let Σ ⊂ PN be an irreducible algebraic system of reduced
plane curves of degree n. Then there exists a Zariski open set U ⊂ Σ such that, for every
equivalence class of singularity, every plane curve Γ ⊂ P2, corresponding to a point [Γ] ∈ U , has
the same number of singularities of that equivalence class. Moreover, for every point [Γ] ∈ U
and for every closed curve Y ⊂ U with [Γ] ∈ Y , denoting by π : C → Y the tautological
family, we have that for every singular point p of the special fibre C0 = Γ, there is a analytic
neighborhood V ⊂ C of p, such that every fibre of the family V → π(V ) has singular point
equivalent to p and no further singularity, and the locus of singular points of the fibres is a
section of V → π(V ).

We can now introduce the algebraic systems which are the subject of this thesis. We recall
that a cusp, or more precisely an ordinary cusp is a plane singularity which is analytically
equivalent to the plane singularity of equation y2 = x3 while a nonordinary cusp is a plane
singularity of analytic equation y2 = x2s+1, with s ≥ 2.

Definition 3.7. Let Σnk,d be the Zariski closure in PN of the locally closed set of points
corresponding to a reduced and irreducible plane curve of degree n and geometric genus equal to
g =

(
n−1
2

)
− k − d with d nodes and k cusps as singularities. More in general, we shall denote

by Snk,d the Zariski closure of the locus of the reduced plane curves of degree n with k cusps and
d nodes as singularities.

Notice that Snk,d and Σnk,d ⊂ Snk,d are well defined by the theorem 3.6. Our object of studies

is Σnk,d. Observe that, by theorem 2.2, we have that Σn0,d ≃ Vn,g, where g =
(n−1

2

)
− d and

0 ≤ d ≤
(n−1

2

)
, while, for k > 0, Σnk,d is a proper closed subvariety of Vn,g. We shall see later

that, when k > 0, these algebraic systems may be reducible or empty.
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Example 3.8. The simplest example of algebraic system of plane curves with nodes and
cusps which is irreducible and not empty is Σn1,0. With the tools we have available at this point,
we can’t prove that Σ1,0 is not empty. We shall prove this in corollary 3.18. In order to see

that Σn1,0 is irreducible, let Σ̂n1,0 be the incidence family of plane curves with at least a cusp

with assigned tangent line. If U2 = {[x0 : x1 : x2]|x2 6= 0} ⊂ P2 then Σ̂n1,0 is locally defined in

PN × U2 × U∗
2 by the equations

F (q) =
∂F

∂x0
|q =

∂F

∂x1
|q = 0,

A1
∂F

∂2x0
|q −A0

∂F

∂x1∂x0
|q = 0,

A0
∂F

∂2x1
|q −A1

∂F

∂x0∂x1
|q = 0,

where F (x0, x1, x2) = 0 is the equation of the generic homogeneous polynomial of degree n, the
point q lies in U2 and A0 and A1 are the coefficients of a line passing through q. If L is the

incidence family L = {(p, l)|p ∈ l} ⊂ P2 × (P2)∗, then the second projection map p2 : Σ̂
n
1,0 → L

is surjective and all its fibres are linear space of dimension N − 5. It follows that Σ̂n1,0 and Σn1,0
are irreducible of dimension N − 2.

In order to compute the dimension of Σnk,d, we need some further terminology.

Definition 3.9. An algebraic system Σ ⊂ PN of plane curves of degree n is said to be
complete if there does not exist an algebraic system Σ′ ⊂ PN containing Σ such that, for every
equivalence class of singularity, the curve Γ corresponding to the general point [Γ] of Σ has the
same number of singular points of that equivalence type as the curve D ⊂ P2 corresponding to
the general point [D] of Σ′.

By definition 3.7, every irreducible component of Σnk,d is complete. We give an example of
algebraic system which is not complete.

Example 3.10. Let Σo ⊂ P27 be the locally closed set of irreducible plane curves of degree six
with six nodes on a conic. It is the intersection of the locally closed set V o

6,4 of irreducible plane
curves of degree six with six nodes and the closed set which is the projection of the tautological
family

{([Γ], p1, . . . , p6, [C])|pi ∈ Sing(Γ) and pi ∈ C for 1 ≤ i ≤ 6} ⊂ P27 × (P2)6 × P5

where P5 is the parameter space of the conics. In order to see that Σo is not empty, let C ⊂ P3
be a canonical curve of genus 4. By proposition 6.6 of section 6, a general projection Γ ⊂ P2 of
C to P2 is a nodal plane curve of degree six. Moreover, the lines of P2 cut out on C a subseries
of dimension two of the canonical series. On the other hand, the complete canonical series
is cut out on C by the plane curves of degree 3 passing through the node of Γ, see section 1.
By Bezout theorem, we conclude that the nodes of Γ lie on a conic. Likewise every irreducible
plane curve Γ of degree six with six nodes on a conic is a projection of a canonical curve of
genus four, because, denoting by C → Γ the normalization of P2, the lines of P2 cut out on C
a subseries of dimension two of the canonical series. It follows that

dim(Σo) = dim(M4) + dim(Aut(P2)) + dim(G(0, 3)) = 20
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and Σo is irreducible because it is dominated by the irreducible varietyM4×Aut(P2)×P3. The
Zariski closure Σ of Σo is an example of irreducible algebraic system which is not complete.
Indeed, we have that Σo ⊂ V o

6,4 and we proved at the and of the previous section that

dim(V o
6,4) ≥ 27 − 6 = 21.

Actually, we shall see in this section that the equality holds.

A very important result in the theory of algebraic systems is the theorem 3.12 which is
called the dimensional characterization theorem of Severi varieties by Zariski.

Definition 3.11. The characteristic linear system of an algebraic system Σ at a point [Γ]
is the linear system parametrized by the tangent space to Σ at [Γ]. The linear series cut out on
the normalization curve C of Γ by the pull-back, with respect to the normalization morphism,
of the characteristic linear system, is called the characteristic linear series of Σ at [Γ].

Theorem 3.12 ([47], p. 215-226). Let Σ be an irreducible algebraic system whose general
element [Γ] parametrizes a reduced plane curve Γ of degree n and geometric genus g. Then, the
characteristic linear system of Σ at [Γ] is contained in the linear system of adjoint curves to Γ
of degree n. In particular,

dim(Σ) ≤ 3n+ g − 1

and equality holds if and only if Σ is complete and Γ is a nodal curve.

Proof. If dim(Σ) = 0 the theorem is true, hence we assume that dim(Σ) > 0. Let Γ be
the plane curve corresponding to the general element [Γ] of Σnk,d. By generality, we can suppose

that Σ is smooth at [Γ]. Under this hypothesis for every line l ⊂ T[Γ](Σ) passing trough [Γ],
there is a holomorphic arc γ : C→ Σ such that l is tangent to the image of γ at [Γ]. We want
to show that all the plane curves of the pencil corresponding to l are adjoint to Γ. Let p be a
fixed point of Γ. Denoting by f(x, y) = 0 the local affine equation of Γ at p, by

f(x, y) + tf1(x, y) = 0

the equation of the pencil of curves corresponding to l and by φ : C → Γ the normalization of
Γ, we have to prove the following

claim: the pull-back to C of the local form

(12) ω =
f1(x, y)dx
∂f(x,y)
∂y

is regular at each of the finitely many points of C which lie over p.

If Γ is regular at p the claim is true. Let rp be the minimal number of blowing-ups necessary
to resolve the singularity of Γ at p. By induction, we suppose that the claim is true for every
rp such that rp ≤ n and we prove it for rp = n. Let Γ be a holomorphic arc γ : C→ Σ passing
through [Γ] with tangent line at [Γ] equal to l. It corresponds to a one parameter family of
plane curves Γt of degree n of local equation

F (x, y; t) = f(x, y) + f1(x, y)t+
∂F

∂2t
|t=0t

2 + ...

Since [Γ] is general in Σ, by theorem 3.6, for t small, the curve Ct has a singular point pt
which specializes to p, as t specializes to 0, and the singularity that Γ and Γt have at p and
pt respectively are equivalent. Let ξ(t) and η(t) be the x and y coordinates of pt. They are
power series in t with coefficients in C. By blowing-up A2 × A1 along the holomorphic arc
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(ξ(t), η(t), t), we get a monoidal transformation T : Ã2 × A1 → A2 × A1 such that for every
t, the restriction map T−1(A2 × {t}) → A2 × {t} is the blowing-up of the plane at the point
(ξ(t), η(t)). Assuming, as we may, that the line x = 0 is not tangent to Γ at p = (0, 0), it
follows that the line x = ξ(t) is not tangent to Γt and hence, by taking on T−1(A2 × {t}) the
analytic coordinates x and ỹ, where

(13) ỹ = ỹ(t) =
y − η(t)
x− ξ(t) ,

we have that all the points of the strict transform of Γt in T
−1(A2×{t}) have finite ỹ coordinate.

Assuming that pt is an s-fold point of Γt, we will have that

(14) F (x, y; t) = (x− ξ(t))sF̃ (x, ỹ; t),
where F̃ (x, ỹ; t) = 0 is the equation of the strict transform Γ̃t of Γt with respect to the blowing-
up of the plane at pt. Applying our inductive hypothesis to every singular point of the affine
plane curve of equation F̃ (x, ỹ; 0) := f̃(x, ỹ) = 0 mapping to p, we find that the pullback to C
of the local one form

ω̃ =
f̃1(x, ỹ)dx

∂f̃(x,ỹ)
∂ỹ

is regular at each of the finitely many points of C over p, where we set f̃1(x, ỹ) =
∂F̃ (x,ỹ;t)

∂t |0.
Now, by using (14), we get that

∂F (x, y; t)

∂t
= [x− ξ(t)]s[∂F̃ (x, ỹ; t)

∂t
+
∂F̃ (x, ỹ; t)

∂ỹ

∂ỹ

∂t
]

−s[x− ξ(t)]s−1∂ξ(t)

∂t
F̃ (x, ỹ; t).

Moreover, by using (13), we have that

∂ỹ

∂t
= −

∂η(t)
∂t

x− ξ(t) +
∂ξ(t)

∂t

ỹ

(x− ξ(t))
and hence

∂F (x, y; t)

∂t
= [x− ξ(t)]s−1

{(x− ξ(t))∂F̃ (x, ỹ; t)

∂t
+
∂F̃ (x, ỹ; t)

∂ỹ
[
∂ξ(t)

∂t
ỹ − ∂η(t)

∂t
]

s
∂ξ(t)

∂t
F̃ (x, ỹ; t)}.

By dividing the former equality by

∂F (x, y; t)

∂y
= (x− ξ(t))s−1 ∂F̃ (x, ỹ; t)

∂ỹ
,

by setting t = 0 and by using that the pull-back to C of the local form

F̃ (x, ỹ; 0)dx
F̃ (x,ỹ;0)
∂ỹ
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is zero, we deduce the relation

(15) ω = xω̃ + [
∂ξ(0)

∂t
ỹ − ∂η(0)

∂t
]dx.

Since every term of the right hand of this equality is a local one form whose pull-back to C
is regular at every point over p, we conclude that the pull-back of ω to C is regular at every
point of C over p too. This proves that the characteristic linear system LΣ([Γ]) of Σ at [Γ]
is contained in the linear system A[Γ] of the adjoint plane curves of degree n to Γ. We prove
the second part of theorem only when Γ is irreducible and we refer to [47] p. 222-226 for the
general case. Then assume that Γ ⊂ P2 is irreducible. By section 1 of chapter 1, we have that

dim(A[Γ]) =
n(n+ 3)

2
−

(
n− 1

2

)
+ g = 3n+ g − 1,

and hence we find that

(16) dim(Σ) ≤ dim(A[Γ]) = 3n + g − 1.

Now we recall that in the previous section we proved that the locus Un,d of reduced d-nodal

plane curves is locally closed in PN and every its irreducible component has dimension at least
equal to N − d = 3n + g − 1, where g =

(n−1
2

)
− d. It follows that the equality holds in (16)

if Σ is a complete algebraic system whose general element is a nodal irreducible plane curve.
Suppose now that Γ has a singular point p which is not a node. We consider separately the
following three cases.

(1) At least one branch γ of Γ at p has multiplicity s > 1, that is a branch γ of analytic
equation ys = xs+1.

(2) All branches of γ at p are smooth and there exist at least two branches γ1 and γ2
which have distinct tangent lines at p.

(3) All branches of Γ have the same tangent line.

Suppose that (1) holds. Then, denoting by p̃ the point of C over p which corresponds to the
branch γ, we have that φ∗x and d(φ∗x) vanish at p̃ with order s and s− 1 respectively. Thus,
from the equality (15), the pull-back to C of the one form (12) vanishes with order at least s−1
at p̃. It follows that the point (s− 1)p is contained in the base locus of the characteristic linear
series gr−1

3n+2g−2 of Σ at [Γ]. Then, outside of this point, the characteristic linear system LΣ([Γ])
cuts out on C a linear series of degree 3n+2g−2−s+1 = 3n+2g−s−1 and dimension equal to
dim(LΣ([Γ]))− 1 = dim(Σ)− 1, since Γ ∈ LΣ([Γ]). This is a non special series, since s− 1 < n.
Hence, by using Riemann-Roch theorem, we find that dim(Σ) ≤ 3n + g − s < 3n + g − 1,
because s > 1.

Suppose now that (2) holds. Let li : y = aix be the equation of the tangent line to the
branch γi at p, for i = 1, 2, and let p̃1 and p̃2 be the points of C over p corresponding to the
branches γ1 and γ2. If we impose to the curves of the characteristic linear system LΣ([Γ]) of Σ at
[Γ] to be tangent to l1 and l2 at p, we get a subspace S ⊂ LΣ([Γ]) of dimension ρ ≥ dim(Σ)−2,
such that for every plane curve D ∈ S the associated one form φ∗ω on C vanishes on p̃1 and
p̃2. Now, by using that φ∗x vanishes at p̃1 and p̃2, dφ

∗x is not zero at these points because γ1
and γ2 are smooth branches of Γ and φ∗(ỹ)(p̃i) = ai, for i = 1, 2, by looking at the relation
(15), we get that

a1
∂ξ

∂t
|t=0 −

∂η

∂t
|t=0 = a2

∂ξ

∂t
|t=0 −

∂η

∂t
|t=0 = 0.
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Since a1 6= a2, it follows that ∂ξ
∂t |t=0 = ∂η

∂t |t=0 = 0 and, by (15), the one form φ∗ω vanishes at
each of the points p̃1, . . . , p̃s of C which lie over p. It follows that the linear system S cuts out
on C a gρ−1

3n+2g−2−s. By Riemann-Roch theorem, we find that ρ ≤ 3n + g − 1 − s and hence

dim(Σ) ≤ ρ+ 2 ≤ 3n+ g − s+ 1 < 3n+ g − 1 since s ≥ 3.
Finally, suppose that (3) holds. Let t : y = ax be the common tangent line of the s branches

γ1, . . . , γs of Γ at p and let p̃1, . . . , p̃s be the s points of C which lie over p. If we impose to
the curves of the characteristic linear system LΣ([Γ]) to be tangent to t, we get a subspace
S ⊂ LΣ([Γ]) of codimension at most equal to one, such that for every adjoint curve D ∈ S, the
divisor φ∗(D) on C contains all the point p̃1, . . . , p̃s. It follows that S cuts out on C a linear
series of degree 3n+2g − 2− s and dimension dim(S)− 1. Again by using the Riemann-Roch
theorem, we find that dim(Σ) ≤ dim(S) + 1 ≤ 3n+ g − s < 3n + g − 1 since s ≥ 2. �

Proof of theorem 2.2. In the previous section, we proved that every irreducible com-
ponent V ⊂ Vn,g of the Severi variety of reduced and irreducible plane curves of degree n and
geometric genus g has dimension at least equal to 3n+ g − 1. On the other hand, by theorem
3.12 we have that dim(V ) ≤ 3n+ g− 1. Hence dim(V ) = 3n+ g− 1 and, again using theorem
3.12 and theorem 3.6, the general element of V corresponds to an irreducible nodal curve of
genus g and the tangent space to Vn,g at [Γ] parametrizes the linear system of plane curves of
degree n adjoint to Γ, that is the linear system of plane curves of degree n passing through the
nodes of Γ. �

Corollary 3.13. For every irreducible not empty component S of the complete algebraic
system Snk,d of reduced plane curves of degree n with k cusps and d nodes, we have that

dim(S) ≥ N − d− 2k = 3n + g − 1− k.
and, if k < 3n then dim(S) = 3n+ g − 1− k.

Proof. Let S̃nk,d ⊂ PN × (P2)d × (P2)k be the Zariski closure of the locally closed set

{([Γ], p1, . . . , pd, q1, . . . , qk)|Γ is reduced, pi, qj ∈ Sing(Γ)
for 1 ≤ i ≤ d and 1 ≤ j ≤ k and there exists at least a singular branch of

Γ passing through every qj}.

In order to see that every irreducible component S̃ of S̃nk,d has codimension at most 3d + 4k

and the locus

{([C], p1, . . . , pd, q1, . . . , qk)|pi is a node of Γ and qj is a cusp of Γ}
is open in S̃, it is enough to prove it locally. Let F (x0, x1, x2) =

∑
i+j+k=n aijkx

i
0x
j
1x
k
2 be the

equation of the generic homogeneous polynomial of degree n and let U2 be the open set of the

plane U2 = {[x0 : x1 : x2]|x2 6= 0} ⊂ P2. Thus S̃nk,d is defined in PN × (U2)
d × (U2)

k by the

following 3d+ 4k equations

F (pi) =
∂F

∂x0
|pi =

∂F

∂x1
|pi = 0, i=1,. . . ,d

F (qj) =
∂F

∂x0
|qj =

∂F

∂x1
|qj = 0, j=1,. . . ,k

(
∂F

∂x0∂x1
|qj )2 − 4

∂F

∂2x0
|qj

∂F

∂2x1
|qj = 0, , j=1,. . . ,k.
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In the previous section we proved that having a node a each of the points p1, . . . , pd is an open

condition in S̃nd,k. Moreover, a reduced plane curve of degree n of equation

F (x0, x1, x2) =

n∑

i=2

fi(x0, x1)x
n−i
2

with a double branch at the point [0 : 0 : 1], has a cusp at [0 : 0 : 1] if and only if f2(x0, x1) =
(ax0+ bx1)

2 6= 0 6= f3(x0, x1) and ax0+ bx1 does not divide f3(x0, x1). It follows that having a

cusp at each of the points q1, . . . , qk is an open condition in S̃nd,k. We get that, if p1 : S̃nd,k → PN

is the first projection map, then p1(S̃nd,k) = Snd,k and hence, for every irreducible component S,
we have that

dim(S) ≥ N − d− 2k = 3n + g − 1− k.
Moreover, if [Γ] is the general element of S corresponding to a plane curve Γ ⊂ P2 with nodes at
p1, . . . , pd and cusps at q1, . . . , qk, it follows from the case (1) of the proof of the theorem 3.12,
that the characteristic linear system LS([Γ]) of S at [Γ] is contained in the linear system A[Γ]

of plane curves of degree n adjoint to Γ and tangent at every point qj to the cuspidal tangent
line to Γ at qj. Therefore the adjoint curves of degree n cut out on the normalization curve
C of Γ a linear series of dimension dim(A[Γ])− 1 and degree n2 − 2d − 3k = 3n + 2g − 2 − k,
where g =

(n−1
2

)
− d − k. If k < 3n this series is not special and applying the Riemann-Roch

theorem, we get that

dim(S) ≤ dim(A[Γ]) ≤ 3n+ 2g − 2− k − g + 1 = 3n+ g − 1− k.
�

Remark 3.14. Notice that, from the previous corollary it follows that there does not exist
reduced plane curves of degree n with k = 3n − 1 cusps as singularities with geometric genus
g ≤ 7. Indeed, by setting k = 3n− 1 in the statement of the former corollary and by using that
every irreducible not empty algebraic system has dimension at least equal to 8 = dim(Aut(P2)),
we find that

dim(S) = g ≥ 8.

Example 3.15. We give an example of algebraic systems of irreducible plane curves with
nodes and cusps of dimension greater than the expected one. This example has been found by
Segre (see [48]). Let Σm be the parameter space of plane curves of degree 6m of equation

(17) f32m(x0, x1, x2) + f23m(x0, x1, x2) = 0,

where f2m and f3m are homogeneous polynomials of degree 2m and 3m respectively. As the
reader may verify, the general element of Σm corresponds to an irreducible plane curve with
a cusp at every intersection points of f2m = 0 and f3m = 0 and no further singularities. In
particular, in order that a plane curve Γ : f32m(x0, x1, x2) + f23m(x0, x1, x2) = 0 has only 6m
ordinary cusps at the intersections points of f2m = 0 and f3m = 0, it is enough that f2m = 0
and f3m = 0 are smooth and they intersect transversally, (see lemma 4.5 of chapter 3). It
follows that Σm is contained in an irreducible component of Σ6m

6m2,0. On the other hand, Σm is

an irreducible algebraic system of dimension

(2m+ 1)(2m + 2)

2
+

(3m+ 1)(3m + 2)

2
− 1 =

13m2 + 15m

2
+ 1.
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Now, 13m2+15m
2 + 1 ≥ 6m(6m+3)

2 − 12m2 = 6m2 + 9m and the equality holds if and only if

m = 1, 2. We deduce that Σm is an irreducible component of Σ6m
6m2,0 if m = 1, 2 and it there

exists at least an irreducible component of Σ6m
6m2,0, containing Σm and having dimension bigger

than the expected one, if m > 2. Actually, as it follows for instance from [42], we have that
Σm is complete even if m > 2. Finally, we observe that, as we shall see later, Σ6

6,0 contains at
least an irreducible component different from Σ1.

Another consequence of theorem 3.12 is lemma 3.17. In order to show it we need the
following intermediate lemma, whose proof is very elementary.

Lemma 3.16. Let G → B be a one parameter flat family of plane curves. Suppose that
the special fibre Γ := G0 of the family has only singular points of multiplicity two. Then the
general fibre of the family has at most singular points of multiplicity two. Moreover, if Γ has
only nodes and cusps as singularities, the general fibre of the family has at most nodes and
cusps as singularities.

Proof. Let f(x, y; t) = 0 be the equation of a one parameter family of plane curves of
degree n. Suppose that f(x, y; 0) = 0 has only singular points of multiplicity two. Then
also the general curve of the family has at most singular points of multiplicity at most two.
Indeed, if it is not true, then there are power series ξ(t), ζ(t), with coefficients in C, such that
∂f(ξ(t),ζ(t);t)

∂xi∂yj
= 0, for every i, j such that i+ j = s for some s > 1. By specializing t to 0 we get

a contradiction. Similarly, if f(x, y; 0) = 0 has only nodes and ordinary cusps as singularities,
the same is true for the general fibre of the family. Indeed, the plane curve f(x, y; 0) = 0 has
a node at (0, 0) if and only if f(x, y) =

∑
i≥2 fi(x, y), where fi is an homogeneous polynomial

of degree i, and f2 is reduced. This properties is locally closed. Then, if the general fibre of
the family is not smooth at a neighborhood of (0, 0), i.e. if there exist power series ξ(t), ζ(t)
with coefficients in C such that (ξ(0), ζ(0)) = (0, 0) and such that f(x, y; t) = 0 is singular at
(ξ(t), ζ(t)), the degree two homogeneous part of the polynomial f(x− ξ(t), y− ζ(t)) is reduced,
for every t sufficiently small. Finally, the plane curve f(x, y) = 0 has a cusp at the point
(0, 0) if and only if f(x, y) =

∑
i≥2 fi(x, y), f2(x, y) = (ax + by)2 6= 0 6= f3(x, y) and ax + by

doesn’t divide f3(x, y). Also this property is locally closed. Then, if the general fibre of the
family is not smooth or it has not a node at a neighborhood of (0, 0), it must have a cusp at a
neighborhood of (0, 0). �

Lemma 3.17. Let S be an irreducible not empty component of Snk,d (Σnk,d) with k < 3n.

Then, for every k′ and d′ such that k′ ≤ k and d′ ≤ d+k−k′, there exists at least an irreducible
component S ′ of Snk′,d′ (Σnk′,d′) such that S ⊂ S ′.

Proof. Let Γ be a reduced (and irreducible) plane curve Γ with k cusps and d nodes as
singularities. Let

Σ̃n0,1 = {([C], p)|p ∈ Sing(C)} ⊂ PN × P2
π1 ւ ց π2

PN P2

be the incidence family of the hypersurface Σn0,1 ≃ S1 ≃ Vn,(n−1
2 )−1 of singular plane curves of

degree n. Let

Σ̃n1,0 = p−1
1 (Σn1,0) ⊂ Σ̃n0,1
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the incidence family of Σn1,0 ⊂ Σn0,1. We denote by p1, . . . , pd the nodes of Γ and by q1, . . . , qk the
cusps of Γ. Let U1, . . . , Ud and V1, . . . , Vk be analytic neighborhoods of p1, . . . , pd and q1, . . . , qk
respectively, such that Ui ∩ Uj = ∅ = Vi ∩ Vj if i 6= j and Ul ∩ Vm = ∅, for every 1 ≤ l ≤ d and

1 ≤ m ≤ k. We set Npi := π1(π
−1
2 (Ui)), Nqj := π1(π

−1
2 (Vj)) and Cqj := π1(π

−1
2 (Vj) ∩ Σ̃n1,0),

for every 1 ≤ i ≤ d and 1 ≤ j ≤ k. Notice that Npi := π1(π
−1
2 (Ui)) and Nqj := π1(π

−1
2 (Vj))

are analytic neighborhoods of [Γ] in Σn0,1 while Cqj := π1(π
−1
2 (Vj) ∩ Σ̃n1,0) is an analytic open

neighborhood of [Γ] in Σn1,0, for every i and j. Now, choose at pleasure k′ cusp points of

Γ, say q1, . . . , qk′ . Then choose at pleasure k̃ points among the other cusp points of Γ, say
qk′+1, . . . , qk′+k̃ and d̃ points among the nodes of Γ, say p1, . . . , pd̃. If we set d′ = d̃ + k̃, for
every irreducible component V of

∩d̃i=1Npi

⋂
∩k′j=1Cqj

⋂
∩k′+k̃l=k′+1Nql

we have that

dim(V) ≥ N − d′ − 2k′.

Moreover, since [Γ] ∈ V and Γ is reduced (reduced and irreducible) with only double points as
singularities, we deduce that the general element [D] of V, (which we assume to be smooth),
corresponds to a reduced (and irreducible) plane curve with at most singular points of multi-
plicity two. On the other hand, since the analytic open set Ui and Vj are pairwise disjoint, the
point [D] ∈ V corresponds to a plane curve D with at least d′ + k′ distinct singular points. In
particular, by construction, the curve D has k′ cusps r1, . . . , rk′ specializing to q1, . . . , qk′ , as
D specializes to Γ, and d′ double points specializing to the other marked singular points of Γ.
It follows that the geometric genus g(D) of D is at most equal to

(n−1
2

)
− k′ − d′. Moreover,

denoting by r̃1, . . . , r̃k′ the points of the normalization curve D̃ of D which lie over r1, . . . , rk′
respectively, by the proof of theorem 3.12, the points r̃1, . . . , r̃k′ are contained in the base locus
of the characteristic linear series γ of V at [D]. Out of these points, γ has degree equal to
3n+ 2g(D) − 2− k′ and hence

dim(V) ≤ 3n+ g(D)− 1− k′ ≤ 3n+

(
n− 1

2

)
− 2k′ − d′ = N − 2k′ − d′.

It follows that dim(V) = N−2k′−d′ and g(D) =
(
n−1
2

)
−k′−d′. In particular, the curve D has

an ordinary cusp at each point of the points r1, . . . , rk′ , d
′ nodes and no further singularities.

Finally V is an analytic neighborhood [Γ] in an irreducible S of Snk,d (Σnk,d). �

Corollary 3.18. For every k ≤ 4 and 0 ≤ d ≤
(n−1

2

)
− k, the algebraic system Σnk,d is not

empty.

Proof. When d = k = 0 the lemma is trivially true. When n = 3 we may have (k, d) =
(0, 1) or (k, d) = (1, 0). The plane curve of equation xy = x3 + y3 is an example of rational
cubic with a node, while y2 = x3 is an example of rational cubic with a cusp. An irreducible
quartic may have at most three double points. In order to show the statement for n = 4,
by lemma 3.17, it is enough to prove that there exist rational quartics with three cusps. By
Plücker formulas, (see [17], p.280), a rational plane curve of degree 4 with three cusps is the
dual curve of a cubic with a node. Since there exist cubics with a node, there exist too quartics
with three cusps. When n ≥ 5, by lemma 3.17, it is enough to show that there exist rational
plane curves with four cusps and nodes as other singularities. We shall prove this statement
by induction on n. A rational plane curve of degree 5 with four cusps and two nodes is the
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dual curve of a quartic with two nodes and one cusp. Since there exist quartics with two nodes
and one cusp, there exist too quintics with four cusps and two nodes. Let Γ be a rational
plane curve with four cusps and nodes as other singularities. Let R be a line intersecting
transversally the curve Γ and let Γ′ be the union curve of Γ and R. By lemma 3.17, we have
that [Γ′ = Γ ∪ R] ∈ Σn+1

3,(n−1
2 )+n−4

. In particular, for every fixed node p of Γ′ staying of Γ ∩ R,
there exists a family of plane curves C → Y of degree n + 1, with special fibre C0 ∼ Γ′ and
whose general fibre Ct has four cusps and

(n−1
2

)
−3+n−1 =

(n+1
2

)
−3 nodes as singularities, in

such a way the cusps of Ct specialize to the cusps of Γ, the nodes of Ct specialize to the nodes of
Γ′ different from p. The curve Ct can’t be reducible. Indeed, if Ct is reducible then Ct = C′t∪Rt,
where C′t is a plane curve of degree n specializing to Γ, as t specializes to 0, and Rt is a line
specializing to R as t specializes to 0. In particular, Rt intersects C′t at n points specializing
to the intersection points of R and Γ, as t specializes to 0. This is not possible, because, by
construction, the point p ∈ Γ ∩R is not limit of any singular point of Ct. We deduce that Ct is
irreducible and rational. �

Remark 3.19. The bound k ≤ 4 in the statement of the former corollary, is sharp. Indeed,
it is known the there exist irreducible quintics with five cusps as singularities, (see [25], example
6.4.4). But, by Plücker formulas (see [17], p.280), the dual curve of a rational quintic with
five cusps and a node is a cubic with two nodes. Since there are not irreducible cubics with two
nodes, we have that Σ5

5,1 is empty. As far as we know, the existence problem of the varieties
Σnk,d is still open, i.e. there does not exist a complete list of value of d and k such that Σnk,d is
not empty.

Example 3.20. By theorem 2.6, the Severi variety Σn0,d of irreducible plane curves with d
nodes are irreducible. On the contrary, for k > 0, we may found examples of reducible algebraic
systems of irreducible plane curves of degree n with d nodes and k cusps. We proved that Σ6

6,0

contains an irreducible component Σ1, whose general point corresponds to an irreducible sextic
with six cusps on a conic. In order to prove that Σ6

6,0 is reducible, it is enough to prove that
there exists irreducible sextics with six cusps not on a conic as singularities. To do this, let D
be a smooth cubic. By using Plücker formula, we see that the dual curve Γ of D is a sextic
with nine cusps p1, . . . , p9. These points can’t lie on a conic by Bezout’s theorem. If we choose
five points p1, . . . , p5 among p1, . . . , p9, then, by still using Bezout theorem, we find that no four
of these points are aligned, and in particular, there exists an unique conic C2 passing through
p1, . . . , p5. At least one cusp, say p6, among p6, . . . , p9 does not lie on C2. By the proof of lemma
3.17, we have that there exists a one parameter family G → ∆ of sextics such that G0 = Γ and
the general curve Gt of the family has a cusp at a neighborhood of pi, for i = 1, . . . , 6, and no
further singularities. Since p1, . . . , p6 don’t lie on a conic, also the six cusps of Γt don’t lie on
a conic. It follows that there exists at least one irreducible component Σ2 of Σ6

6,0 whose general
point corresponds to a sextic with six cusps not on a conic. This example of reducible complete
algebraic system has been given by Zariski in [48].

The irreducibility problem of Σnk,d is still open. Enough conditions for the irreducibility
or emptiness of Σnk,d, under the hypothesis n ≥ 8 and a list of examples of values of n, k and

d, such that Σnk,d is reducible are in [39], [40] and [28]. The irreducibility if Σn1,d, for every

d ≤
(
n−1
2

)
−1, has been proved by Ziv Ran in [50]. Finally, Kang has proved the irreducibility of

Σnk,d for k ≤ 3, generalizing the Harris proof of the irreducibility of Severi varieties of irreducible
plane curves of degree n and genus g.
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Theorem 3.21 (Kang, [29]). The variety Σnk,d of irreducible plane curves of degree n with
d nodes and k cusps is irreducible if k ≤ 3.

Let now C ⊂ P2 be a reduced plane curve with d nodes, k cusps and possibly other
singularities. By the proof of the lemma 3.17, for every node p ∈ C, the point [C] ∈ PN is
origin of an analytic branch Np of Σn0,1, whose general element corresponds to an irreducible
plane curve of degree n with only a node at a neighborhood of p. Similarly, for every cusp
q ∈ C, the point [C] ∈ PN is origin of an analytic branch Cq of Σn1,0, whose general element
corresponds to an irreducible plane curve of degree n with only a cusp at a neighborhood of q.
Arguing as in [21] on p. 30, we want to prove the following lemma.

Lemma 3.22. For every node p ∈ C, we have that Np is smooth at the point [C] ∈ PN and
the tangent space T[C]Np to Np at [C] corresponds to the linear system of plane curves of degree

n passing through the point p ∈ P2. Similarly, for every cusp q ∈ C, we have that Cq is smooth
at the point [C] ∈ PN and the tangent space T[C]Cq to Cq at [C] parametrizes the plane curves
of degree n passing trough the point q and tangent to q to the cuspidal tangent line to C at q.

Proof. Let p ∈ C be a node of C and let ([C], p) ∈ PN × P2 be the corresponding point

of the incidence family Σ̃n0,1 of Σn0,1. Since Np is the image with respect to the projection map

Σ̃n0,1 → PN of an analytic neighborhood of the point ([C], p), in order to see that Σn0,1 is smooth

at [C], it is enough to prove that Σ̃n0,1 is smooth at ([C], p) and the projection map Σ̃n0,1 → PN
is a local immersion at ([C], p). To prove this, we can assume that p = [0 : 0 : 1]. Thus, if we

fix affine coordinates x and y on U2 = {[x0 : x1 : x2]|x2 6= 0} ⊂ P2, the local equations of Σ̃n0,1
in PN × U2 are

F (x, y) = a00 + a10x+ a01y + a11xy + . . . = 0,

G(x, y) =
∂F

∂x
(x, y) = a10 + a11y + 2a20x+ 3a30x

2 + 2a21xy + a12y
2 + . . . = 0,

H(x, y) =
∂F

∂y
(x, y) = a01 + a11x+ 2a02y + 3a03y

2 + 2a12xy + a21x
2 + . . . = 0,

where F (x, y) =
∑

i+j≤n aijx
iyj is the affine equation of the generic plane curve of degree n.

Denoting by Aij the coefficients of the affine equation of C at p, the first three rows of jacobian

matrix of Σ̃n0,1 at a point ([C], [0 : 0 : 1]) are

F G H
∂
∂x 0 2A20 A11
∂
∂y 0 A11 2A02
∂

∂a00
1 0 0

Since p = [0 : 0 : 1] is a node of C, we have that 4A2,0A0,2 −A2
11 6= 0 and hence Σ̃n0,1 is smooth

at ([C], [0 : 0 : 1]). Moreover the tangent space to Σ̃n0,1 at ([C], [0 : 0 : 1]) is defined by the
equations

a00 = 0,

2A20x+A11y + a10 = 0,

A11x+ 2A02y + a01 = 0,
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and hence, using again that 4A20A02 − A2
11 6= 0, we find that the map PN × P2 → PN is a

local immersion mapping isomorphically the tangent space to Σ̃n0,1 at ([C], [0 : 0 : 1]) to the

hyperplane of PN of equation a00 = 0. This proves the first part of the lemma. Let now q ∈ C
be a cusp of C. As before, since Cq is the image, with respect to the projection map Σ̃n1,0 → PN ,
of an analytic neighborhood of the point ([C], q), in order to see that Σn1,0 is smooth at [C] it

is enough to see that Σ̃n1,0 is smooth at ([C], q). We may assume that q = [0 : 0 : 1]. By using

the same notation as before, Σ̃n1,0 is locally defined in Σ̃n0,1 ∩ (PN × U2) by the equation

K(x, y) = (
∂F

∂x∂y
(x, y))2 − ∂F

∂2x
(x, y)

∂F

∂2y
(x, y) = 0.

If we assume, as we may, that y = 0 is the cuspidal tangent line to C at q, thus the first rows

of the jacobian matrix of Σ̃n1,0 at (C, [0 : 0 : 1]) are

F G H K
∂
∂x 0 0 0 −12A30A02
∂
∂y 0 0 2A02 −4A21A02
∂

∂a00
1 0 0 0

∂
∂a10

0 1 0 0
∂

∂a01
0 0 1 0

∂
∂a20

0 0 0 −4A02

It follows that the jacobian matrix of Σ̃n1,0 at ([C], q) has maximal rank and Σ̃n1,0 is smooth at

([C], q). Moreover, all the missing entries in the matrix above are zero and hence the tangent

space to Σ̃n1,0 at ([C], q) is defined by the equations

a00 = 0,

a10 = 0,

2A02y + a01 = 0,

3A03x− 2A21y − 2a20 = 0.

Since C has an ordinary cusp at q = [0 : 0 : 1] with cuspidal tangent line equal to y = 0, we
have that A03 6= 0 and the map PN×P2 → PN is a local immersion mapping isomorphically the

tangent space to Σ̃n1,0 at ([C], [0 : 0 : 1]) to the (N − 2)-space of PN of equations a00 = a10 = 0.
The lemma is proved. �

Corollary 3.23. Every reduced plane curve Γ ⊂ P2 of degree n with nodes and k < 3n
cusps as singularities, corresponds to a smooth point [Γ] of Snk,d.

Proof. By using lemma 3.22, for every node (resp. cusp) pi (resp. qj), the point [Γ] ∈ PN is
origin of a smooth analytic branch Npi (resp. Cpi) of the variety Σn0,1 (resp. Σ

n
1,0) whose general

point corresponds to a plane curve with only a node (resp. a cusp) at a neighborhood of pi
(resp. qj). Moreover, the tangent space T[[Γ]]Npi to Npi at [Γ] is the linear space parametrizing
the plane curves of degree n passing through pi. Similarly, the tangent space T[[Γ]]Cqj to Cqj
at [Γ] is the linear space parametrizing the plane curves of degree n passing through qj and
tangent at qj to the cuspidal tangent line to Γ at qj, for every 0 ≤ j ≤ k. By the proof of
lemma 3.17, we already know that every irreducible component of

∩di=1Npi

⋂
∩kj=1Cqj ,
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containing [Γ], is an analytic open subset of Snk,d. On the other hand the linear system L
corresponding to

∩d′i=1T[[Γ]]Npi

⋂
∩k′j=1T[[Γ]]Cqj

cuts out on the normalization curve of Γ a linear series of degree n2−3k−2d = 3n+2g−2−k,
where g is the geometric genus of Γ. Since k < 3n, this linear series is not special and
dim(L) = 3n+ g − 1− k. Since

∩di=1T[[Γ]]Npi

⋂
∩kj=1T[[Γ]]Cqj k T[[Γ]](∩di=1Npi

⋂
∩kj=1Cqj),

we conclude that ∩d′i=1Npi

⋂∩k′j=1Cqj is smooth at [Γ] and in particular it is locally irreducible

at [Γ]. �
We conclude this section by proving the so called Enriques’ conjecture. Notice that it is

an easy consequence of Zariski’s Main Theorem, (corollary III.11.4 of [22]). But, following
Albanese in [1], we show it by using the result of this section.

Lemma 3.24 (Enriques’ conjecture). Let Γ be a reduced plane curve of degree n with irre-
ducible components Γ1, . . . ,Γr such that Γi intersects transversally Γj , if i 6= j. Let G → Y be
a one-parameter family of plane curves of degree n with special fibre G0 ≃ Γ and such that the
general fibre Gt is irreducible. Then there exist at least r − 1 singular points p1, . . . , pr−1 of Γ
such that

• each of them is not limit of singular points of the general curve Gt of the family;
• for every 1 ≤ i ≤ r − 1 there exist two irreducible components Γi1 and Γi2 of Γ such
that pi ∈ Γi1 ∩ Γi2 ;
• the partial normalization C → Γ obtained by smoothing all the singular points except
p1, . . . , pr−1, is connected.

Proof. Let us choose s ≤ r irreducible components of Γ, say Γ1, . . . , Γs and let Γ′ =
Γ1 ∪ · · · ∪ Γs and Γ′′ = Γs+1 ∪ · · · ∪ Γr. If every irreducible curve Γi has degree ni, we set
n′ =

∑s
i=1 ni and n

′′ =
∑r

i=s+1 ni. Thus, the curves Γ
′ = Γ1∪· · ·∪Γs and Γ′′ meet transversally

at n′n′′ points p1, . . . , pn′n′′ . By using lemma 3.22, there exist n′n′′ different smooth analytic
open sets U1, . . . , Un′n′′ of Σn0,1 passing through [Γ], such that the general point of every Ui
corresponds to an irreducible plane curve of degree n with a node at in neighborhood of pi
and no further singularities. Moreover, for every 1 ≤ i ≤ n′n′′, the tangent space T[Γ]Ui to

Ui at the point [Γ] ∈ PN parametrizes plane curves of degree n passing through the point
pi ∈ P2. Since the nodes of a reduced plane curve of degree n impose independent linear
conditions to plane curves of degree n, (see section 1 of chapter 1), we have that the linear
spaces T[Γ]Ui for 1 ≤ i ≤ n′n′′ intersects transversally. It follows that U1, . . . , Un′n′′ intersect
in an unique analytic open set of Sn0,n′n′′ , which is smooth at the point [Γ] and whose general

element corresponds to a reduced plane curve D of degree n with n′n′′ nodes specializing to
p1, . . . , pn′n′′ as D specializes to Γ. In particular, we have that

dim(U1 ∩ · · · ∩ Un′n′′) =
n(n+ 3)

2
− n′n′′.

We claim that all the points of U := U1 ∩ · · · ∩ Un′n′′ correspond to reducible curves. Indeed,
U contains the locus R of plane curves of degree n with two irreducible components of degree
n′ and n′′ respectively, which specialize to Γ. But this family is irreducible of

n′(n′ + 3)

2
+
n′′(n′′ + 3)

2
=
n(n+ 3)

2
− n′n′′
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and hence R ≃ U . This proves the claim. Let now G → Y be a one-parameter family of
plane curves of degree n whose special fibre is G0 = Γ and whose general fibre Gt is irreducible.
Applying the previous result to Γ′ = Γ1 and Γ′′ = Γ2 ∪ · · · ∪ Γr, we find that there is at least
a point p1 of connection between Γ1 and Γ′′ which is not limit of any singular point of the
general fibre. Let Γ2 be the other component with contains p1. Repeating the same argument
for Γ′ = Γ1∪Γ2 and Γ′′ = Γ3∪· · ·∪Γr, we find that there exists at least a point p2 of connection
between Γ′ = Γ1 ∪ Γ2 and Γ′′ = Γ3 ∪ · · · ∪ Γr which is not limit of any singular point of the
general fibre of G → Y . Up to rename the irreducible component of Γ we can suppose that
p2 ∈ Γ2 ∩ Γ3. Repeating the same argument finitely many times, we get the statement. �

4. Universal family of plane curves of a degree n with d nodes and k cusps

In the previous sections we essentially followed Zariski’s paper [47] and we introduced
classical techniques used to study and describe the geometry of a family of plane curves with
assigned singularities. Modern literature about families of plane curves differs from the classical
literature not only for the techniques but especially for the way to formulate the problems. By
the definition 3.1, an algebraic system of plane curves of degree n is a Zariski closed subset of
PN and, in particular, it is always reduced. After the work of Kuranishi and Kodaira-Spencer
in the analytic case and Grothendieck, Murford and others in the algebraic case, every moduli
object is defined as the object representing a suitable deformation functor F . In particular, if
F is defined on the category of C-schemes, the scheme representing F , if it there exists, may be
not reduced. In order to define the deformation functor of plane curves with nodes and cusps,
we recall the following definition.

Definition 4.1. A flat morphism of finite type X → S, where S is an algebraic C-scheme,
is a formally locally trivial family at s ∈ S if, denoting by OS,s the local ring of S at s and by
ms the maximal ideal of OS,s, for every n > 0, the induced family

X ← Xn ← X1

↓ ↓ ↓
S ← SpecOS,s/mn

s ← SpecC

is such that Xn is a locally trivial deformation of X1 in the Zariski topology.

From the following proposition, formal locally trivial families of plane curves are families
of plane curves with analytically equivalent singularities.

Proposition 4.2 (Prop. 3.23 of [13]). Let

X ⊂ Y × A2

↓ p = projection

Y

be a flat family of reduced affine plane curves. Assume that X and Y are reduced, separated
and of finite type over C. Let y ∈ Y be a closed point and let x be a singular point of p−1(y).
Then the following two conditions are equivalent:

(1) There exists a Zariski open set U ⊂ Y with y ∈ U such that the restricted family
p : U → p(U) is formally locally trivial.
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(2) For each Zariski open neighborhood U of x in X there exists a Zariski open neigh-
borhood U ′ ⊂ U of x in X such that for all closed points z ∈ p(U ′), we have that
p−1(z)∩U ′ has only one singularity which is analytically isomorphic to the singularity
of p−1(y) at x.

Recalling that plane singularities of multiplicity two are analytically equivalent if and only
if they are equivalent (see definition 3.4 and remark 3.5), if J is the functor on the category of
C-schemes defined by

J(S) = {Relative effective Cartier divisor C ⊂ P2 × S which, as a family of

curves over S, is formally locally trivial at all s ∈ S, and which is such

that the geometric fibres of C → S are reduced plane curves of degree n

with exactly d nodes and k cusps as singularities},
we expect that there exists a scheme X ⊂ PN representing this functor and that the associated
reduced scheme Xred is open in the algebraic system Snk,d defined in the previous sections. This

has been showed by Wahl in [46]. We briefly summarize his results.
Let C be the category of finite local artinian C-algebras.

Definition 4.3. We say that a covariant functor

F : C → Sets

from C to the category of sets is pro-representable if there exists a complete local C-algebra R
with maximal ideal m, such that R/mn ∈ C for every n > 0 and such that there exists an
isomorphism of functors Hom(R,-) ≃ F .

Definition 4.4. Given a covariant functor F : C → Set, a vector space 0(F ), is said to be
an obstruction space of F , if for any A ∈ C and for any element ∆ ∈ F (A) there is a linear
map

ξ∆,A : Ext(A,C)→ 0(F )

from the vector space Ext(A,C) of the extensions

0→ C→ B → A→ 0

in C, to 0(F ), such that B goes to 0 if and only if ∆ ∈ F (A) lifts to an element of F (B), i.e.
∆ lie in the image of the map H(B) → H(A). If the linear map ξ∆,A is zero, we say that the
element ∆ is not obstructed.

Under quite mild conditions, a functor F on C, has an obstruction space, see [15]. All the
functors which we shall define in this section have an obstruction space.

Given a smooth projective variety Y and a divisor Γ ⊂ Y , we consider the functors HΓ and
H ′

Γ on C defined by

HΓ(A) = {Subschemes of Y ×SpecC SpecA, flat over A, inducing Γ on Y }
and

H ′
Γ(A) = {Subschemes C ⊂ Y ×SpecC SpecA, flat over A, inducing Γ on Y

and such that the family C → SpecA is formally locally trivial at

the closed point of SpecA},
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for every A ∈ C. We recall that, for every A ∈ C, the elements of HΓ are called infinitesimal
deformation of Γ. By using the Lichtenbaum-Schlessinger cotangent complex bundle [30], we
define the sheaf N ′

Γ|Y on Γ as the kernel of the map NΓ|Y → T 1 → 0.

Proposition 4.5 (Proposition 3.2.5. of [46]). The functors HΓ and H ′
Γ are pro-representable.

Moreover, denoting by C[ǫ] the artinian algebra C[ǫ]/(ǫ2), we have that

(1) HΓ(C[ǫ]) = H0(C,NΓ|Y ) and the obstruction space of HΓ is contained in the image of

the natural map H1(Γ,OY (Γ))→ H1(Γ,NΓ).
(2) H ′

Γ(C[ǫ]) = H0(Γ,N ′
Γ|Y ) and the obstruction space of H ′

Γ is contained in H1(Γ,N ′
Γ).

Let now Y = P2, let Γ ⊂ P2 be a reduced plane curve of degree n with k cusp and d nodes
as singularities and let J = Jn,k,d be the functor defined before.

Theorem 4.6 (Wahl, theorem 3.3.5 of [46]). There exists a scheme X, which is a disjoint
union of locally closed subschemes of PN , and a family of curves C ∈ J(X), which represents
the functor J . Moreover,

(1) if x is the point corresponding to Γ in X and if R is the complete local ring pro-
representing H ′ = H ′

Γ, then R = OX,x.
(2) Finally, denoting by Xred the reduced scheme associated to X, we have that

r := dim(OXred,x) = dim(R/
√
0) ≤ dim(m/m2)

= dim(H ′(C[ǫ])) = dim(H0(C,N ′
Γ|P2)),

where m is the maximal ideal of R, and the equality holds if and only if X is reduced
and smooth at x.

The difference w = h0(Γ,N ′
Γ|P2)− dim(OXred,x) is said to be the deficiency of X at x. In

order to compute explicitly H0(Γ,N ′
Γ|P2), we recall that, denoting by IΓ the ideal sheaf of Γ,

the normal sheaf of Γ in P2 is defined by NΓ|P2 := HomOΓ
(IΓ/I2Γ,OΓ) ≃ HomOP2 (IΓ,OΓ) ≃

OΓ(Γ). Moreover in this case, all the infinitesimal deformations of Γ are not obstructed because
H1(Γ,NΓ|P2) = H1(Γ,OΓ(Γ)) = 0. Denoting by f the local equation of Γ, by ΘΓ the sheaf of

derivations of OΓ and by ΘP2 the tangent sheaf of P2, in the exact sequence

0→ ΘΓ → φ∗ΘP2
α→ NΓ|P2 → T 1

Γ → 0

the locally free sheaf map ΘP2 |Γ α→ NΓ|P2 is locally given by

∂

∂x
7→ (f 7→ ∂f

∂x
)

∂

∂y
7→ (f 7→ ∂f

∂y
),

and T 1
Γ is a skyscraper sheaf supported at the singular points of Γ, where the map α is zero.

In particular, in a neighborhood of any node P1, . . . , Pd, the curve Γ is analytically equivalent
to xy = 0 and the map αPi , induced by α on the stalks, is defined by

∂

∂x
7→ (xy 7→ y)

∂

∂y
7→ (xy 7→ x),
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In a neighborhood of any cusp Q1, . . . , Qt the curve Γ is analytically equivalent to y2 = x3 and
the map αQj is given by

∂

∂x
7→ (y2 − x3 7→ 3x2)

∂

∂y
7→ (y2 − x3 7→ 2y).

So, at any node P1, . . . , Pd the stalk of T 1
Γ in Pi is

(NΓ|P2)Pi/Im(αPi) ≃ OΓ,Pi/(x, y)Pi ≃ C
and at any cusp Q1, . . . , Qt is

(NΓ|P2)Qi/Im(αQi) ≃ OΓ,Qi/(x
2, y)Qi ≃ C2.

Finally, denoting by I the ideal sheaf of plane curves passing through any singular point of Γ
and tangent at every cusp Qi, for i = 1, ..., t, to the cuspidal tangent line to Γ at Qi, we have
that the image sheaf of α is given by

(18) I ⊗ NΓ|P2 = I ⊗ OΓ(Γ) := N ′
Γ|P2,

as we would expect. Moreover, by the long exact sequence

(19) 0→ H0(Γ,N ′
Γ|P2)→ H0(Γ,NΓ|P2)→ H0(Γ, T 1

Γ)→ H1(Γ,N ′
Γ|P2)→ 0

which we deduce from

0→ N ′
Γ|P2 → NΓ|P2 → T 1

Γ → 0

we find that

χ(N ′
Γ|P2) = h0(N ′

Γ|P2)− h1(N ′
Γ|P2) = N − 2k − d.

Since r = dim(OXred,x) ≥ N − 2d− k, we deduce the upper-bound on the deficiency of X at x

w ≤ h1(N ′
Γ|P2).

Notice that if k < 3n, thus h1(Γ, N ′
Γ|P2) = w = 0 and so H0(Γ, N ′

Γ|P2) has the expected

dimension and X is smooth at the point corresponding to Γ. It follows that when k < 3n,
the scheme X is reduced and smooth at every its point. Always in [46], Wahl proves that
when k = 900, d = 3636 and n = 104 the scheme X representing J is not reduced but Xred

is smooth. Tannenbaum proves in [42] that for every reduced plane curve of degree n = 6m
with m > 2, with k = 6m2 cusps and d = 0 nodes as the only singularities, we have that

h1(Γ, N ′
Γ|P2) =

(m−2)(m−1)
2 but the universal scheme X is smooth at every its point, (see also

p. 25). Recently, it has been given an example of universal scheme X of plane curves with
nodes and cusps which is not reduced and such that the singular locus of Xred is not empty,
see [18].

5. Étale versal deformation family of a plane curve

This section is devoted to the étale versal deformation family of a reduced plane curve. The
existence of such a deformation is a very strong result which follows from [35], [36] and [8].
We briefly summarize main results and properties of étale versal deformation spaces, following
essentially [13].
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Definition 5.1 (Versality). Let

C ⊂ A2 ×B
π ↓
B

be a flat family of reduced affine plane curves and let Γ = π−1(0) be a fibre of π over a closed
point 0 ∈ B. Suppose that C and B are of finite type over C. Then the family π is said to be a
versal deformation of Γ if, given the following data: a flat family of reduced curves f : X → Y ,
where X and Y are of finite type over C, a closed point y ∈ Y , a finite number of closed
points x1, . . . , xn ∈ f−1(y) and an isomorphism of an étale neighborhood of {x1, . . . , xn} in
f−1(y) with an étale neighborhood of a finite set of points p1, . . . , pn in Γ, then there exist étale
neighborhoods V of 0 in B, V ′ of y in Y , W of {p1, . . . , pn} in V ×B C and W ′ of {x1, . . . , xn}
in V ′ ×Y X, a morphism g : V ′ → V and an isomorphism φ : W ′ → W ×V V ′ such that the
following diagram commutes.

(20)

C ← W
p1← W ×V V ′ φ→ W ′ → X

↓ ↓
p2
ց ↓ ↓

B ← V ← V ′ → Y

Definition 5.2 (Miniversality). A flat family like the family C → B in definition 5.1 is
said to be a miniversal deformation of Γ if, for every other étale versal deformation p : E → F
of Γ, the dimension of F is greater than or equal to the dimension of B.

Suppose Γ of affine equation f(x, y) = 0. Let J = (f, ∂f∂x ,
∂f
∂y ) be the jacobian ideal of Γ. Choose

g1, . . . , gm ∈ C[x, y] so that their images in C[x, y]/J form a base for this complex vector space.

Theorem 5.3 ([8], [35] and [36]). The following family of affine complex plane curves

C =: {f +
∑

tigi = 0} ⊂ SpecC[x, y]× SpecC[t1, . . . , tm]
↓ π ւ(21)

B := SpecC[t1, . . . , tm]
is a miniversal deformation of Γ. Moreover, there exists a Zariski open subset U ⊂ B containing
(0, . . . , 0) such that π : C → B is an étale versal deformation of all fibres over closed points of
U .

From now on we shall call the family C → B constructed as before the étale versal defor-
mation of Γ while B will be the étale versal deformation space of Γ.

Example 5.4. Let Γ be the affine plane curve of affine equation xy = 0. The curve Γ has
only a node and the étale versal deformation family is given by

C = {(x, y, a)|xy + a = 0} ⊂ A2 × A1

We see that the étale versal deformation space of Γ is A1 := B and, for every a ∈ A1 − (0, 0),
the corresponding fibre of C is smooth.

Example 5.5. Let Γ be the affine plane curve of equation y2 + x3 = 0. It has a cusp as
singularity. The étale versal deformation space of Γ is given by B := Spec(C[xy]/(x2, y)) ≃
Spec(C[a, b]) = A2 and the étale versal deformation family C ⊂ A2 × A2 of Γ has equation

y2 + x3 + ax+ b = 0.
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By computing the discriminant of the previous equation, we see that the locus S ⊂ A2, parametriz-
ing singular curves, has equation 4a3 − 27b2 = 0. Moreover, the reader can verify that (0, 0)
is the only point of S corresponding to a cuspidal curve and every point (a, b) ∈ S − (0, 0)
corresponds to a plane curve with a node as singularity.

By using versality, from the examples 5.4 and 5.5, we find again lemma 3.16. In particular
we deduce that, if Γ corresponds to a plane curve with only nodes and cusps as singularities and
if x ∈ B is a point of the étale versal deformation space B of Γ corresponding to a singular curve
D, then D has nodes and cusps as singularities. More generally, as it follows by the following
two propositions, in order to describe the singular fibres of the étal versal deformation family
of a reduced affine plane curve Γ with singularities at the points p1, . . . , pr, it is enough to
describe singular fibres of the étale versal deformation family of a reduced affine plane curve
Γi with only a singular point analytically equivalent to that of Γ at pi, for every 1 ≤ i ≤ r.

Proposition 5.6 (Corollary 3.20 of [13]). Let Γ1, . . . ,Γr be reduced curves in P2 and pi ∈ Γi
singular points. Then, for any sufficiently large e, there exists a reduced irreducible curve
E ⊂ P2 of degree e such that E has exactly r singular points q1, . . . , qr and, for each i, an étale
neighborhood of qi in E is isomorphic to an étale neighborhood of pi in Γi.

Let C → B be the étale versal deformation family of an affine plane curve Γ. By the previous
proposition, for every finite set of singular points x1, . . . , xr of π

−1(y), there exist affine reduced
plane curves Γ1, . . . ,Γr so that Γi has an unique singular point at (0, 0) and there is an étale
neighborhood of (0, 0) in Γi which is isomorphic to an étale neighborhood of xi in π

−1(y), for
every i ≤ n. If πi : Ci → Bi is the étale versal deformation of Γi constructed as (21), for every
1 ≤ i ≤ r, by versality, there are étale neighborhoods V ′

i of (0, . . . , 0) in B and Vi of (0, . . . , 0)
in Bi and morphisms gi : V

′
i → Vi making a diagram like (20) commute. This give a morphism

g :
r⋂

i=1

V ′
i →

∏

i

V r
i=1 ⊂

r∏

i=1

Bi

from the intersection
⋂r
i=1 V

′
i ⊂ B to the product

∏r
i=1 Vi ⊂

∏r
i=1Bi.

Proposition 5.7 (See p.439 of [13]). There exists an étale open neighborhood of the point
y ∈ B corresponding to Γ such that, for every y ∈ U , the morphism g :

⋂r
i=1 V

′
i →

∏
i V

r
i=1

constructed before is surjective.

In order to describe the étale versal deformation of a plane singularity, we need the following
definition.

Definition 5.8. Let X → Y be a flat family of affine plane curves parametrized by a
separated scheme Y over C. We say that this family is equisingular if it satisfies the following
properties.

(1) There exists a finite number of disjoint sections of the family, the union of whose
contains the locus of singular points of the fibres, and X is equimultiple along these
sections.

(2) If, in addition, all the singular points of the fibres are ordinary double points, we say
that the family is equisingular. If not, we blow up the sections.

(3) Now we require that in the family of reduced total transforms there exist sections lying
over the former section (at least one over each former sections) satisfying (1). Then
return to (2).
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Moreover, if X and Y are as before, we say that the family p : X → Y is locally equisingular
in the étale topology if for each closed point y ∈ Y and each closed point x ∈ p−1(y) there exist
étale open neighborhoods U of y in Y and V of x in p−1(U) such that the induced family
V → U is equisingular.

Proposition 5.9 (Proposition 3.32 of [13]). Let

X ⊂ Y × S
p ↓
Y

be a flat family of reduced curves on a smooth surface S. Assume that X, Y and S are all
reduced, separated and of finite type over C. Let ∆ be the locus of the singular points of the
fibres of p. Assume that ∆ is proper over Y . Then the following two conditions are equivalent.

(1) The family is locally equisingular in the étale topology.
(2) For each equivalence class of singularity all the fibres over the closed points of Y have

the same number of singularities of that equivalence class, (see definition 3.4).

Now, let Γ ⊂ A2 be an affine plane curve of equation f(x, y) = 0. Assume that (0, 0) = p

is the only singular point of Γ. Let J = (f, ∂f∂x ,
∂f
∂y ) be the jacobian ideal of Γ and let C → B

be the étale versal deformation of Γ.

Theorem 5.10. The étale versal deformation space B of Γ satisfies the following properties:

(1) B is smooth, with tangent space T0B at (0, . . . , 0) naturally identified with the quotient
OΓ, p/J . (See [8], [35] and [36].)

(2) The dimension of B is equal to 2δ−r+1, where δ are the number of adjoint conditions
of Γ : f(x, y) = 0 at p = (0, 0) and r is the number of irreducible branches of Γ at p.
This number is said to be the Milnor number of Γ at p. (See Corollary 6.4.3 of [10].)

(3) There exists a Zariski open subset U of B containing (0, . . . , 0) on which (0, . . . , 0) is
the only point whose fibre has a singularity analytically equivalent to that of Γ. (See
lemma 3.21 of [13]).

(4) There exists a Zariski closed subset ES ⊂ B, which is called the equisingular locus
of B, parametrizing equisingular deformations of Γ. Moreover, ES is smooth at the
point (0, . . . , 0) and there exists an ideal I ⊂ OΓ,p such that I ⊇ J and such that the
tangent space T0ES at (0, . . . , 0) is naturally identified with the quotient I/J . (See
[45].)

Of course, the equisingular locus ES ⊂ B is contained in the locus EG ⊂ B of points cor-
responding to curves having the same geometric genus as Γ. We say that EG is the equigeneric
locus of B. By proposition 3.2 of chapter 1, we deduce that, for every singular plane curve
Γ, the equigeneric locus of the étale versal deformation space B of Γ is Zariski closed in B.
Moreover, we have the following result.

Theorem 5.11 (Lemma 4.4 and Theorem 4.15 of [13]). Let Γ ⊂ P2 be a plane curve, let J
be the jacobian ideal of Γ and let B be the étale versal deformation space of Γ. Then, denoting
by A the adjoint ideal of Γ, the tangent cone to EG at 0 is supported on a linear subspace of
B which, under the identification B = SpecC[x, y]/J , is identified with the quotient A/J .
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Remark 5.12. Notice that, by our definition of adjoint ideal (see section 1 of chapter 1),
the jacobian ideal of a reduced plane curve Γ is contained in the adjoint ideal of Γ. Then, the
quotient A/J is well defined. Moreover, we remark that, as we have seen in the example 5.5, the
equigeneric locus of the étale versal deformation space of a plane curve Γ may be singular at the
point 0 = (0, . . . , 0) ∈ B. More about the equigeneric locus of a plane singularity can be found
in [13], section 4 and 5. An easy consequence of theorem 2.2 is that the general element of
the equigeneric locus of every plane singularity is a plane curve with only nodes as singularity.
In the next section we shall consider the equigeneric locus of an ordinary plane singularity,
proving that it contains only points parametrizing plane curves with ordinary singularities.

Finally we remark that the local result of theorem 5.11 corresponds to the following global
result, proved by Albanese in [1]

Theorem 5.13 (Albanese, section II of [1]). Let Vn,g be the Severi variety of irreducible
plane curves of degree n and genus g. Let [Γ] ∈ Vn,g be a point corresponding to an irreducible
plane curve of genus g. Then the tangent cone to Vn,g at [Γ] is supported on the linear space
parametrizing the linear system of plane curves of degree n adjoint to Γ.

Another proof of the locally irreducibility of the Severi variety Vn,g at the points parametriz-
ing irreducible plane curves of genus g is contained in the more recent paper [4]. We shall go
back on the étale versal deformation B of a plane curve in the last section of this chapter,
defining the equiclassical locus of B. Now we want to use the results of this section to give
another proof of lemma 3.17.

Let Γ ⊂ P2 be a reduced plane curve of degree n with singular points p1, . . . , pr. For every
1 ≤ i ≤ r, let Γi be an affine reduced plane curve with only a singular point at (0, 0) analytically
equivalent to that of Γ at pi. We denote by Bi the étale versal deformation space of Γi ⊂ P2,
for every 1 ≤ i ≤ r. By versality there exist open étale neighborhoods U of [Γ] in PN and Ui
of 0 ∈ Bi and a map

g : U →
r∏

i=1

Ui

such that the tautological family parametrized by U is the pull-back, with respect to g, of the
product of the étale versal families parametrized by the open sets Ui. By recalling the versality
property of every Ui and the property (3) of theorem 5.10, we give the following definition.

Definition 5.14. We say that the singular points of Γ can be smoothed independently if the
map g is surjective.

Lemma 5.15 (Corollary 6.3 of [25]). By using the same notation as before, let J be the
jacobian ideal of Γ. Then, we have that H1(Γ,OΓ(n)⊗J) = 0 if and only if the singular points
of Γ can be smoothed independently.

Proof. Consider the following standard exact sequence

0→ ΘΓ → φ∗ΘP2
α→ NΓ|P2 → T 1

Γ → 0

Exactly as we did in the previous section for a curve with only nodes and cusps, we deduce the
exact sequence

0→ OΓ(n)⊗ J → NΓ|P2 → T 1
Γ → 0

from which it follows the long exact sequence

(22) 0→ H0(Γ,OΓ(n)⊗ J)→ H0(Γ,NΓ|P2)→ H0(Γ, T 1
Γ)→ H1(Γ,OΓ(n)⊗ J)→ 0
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The map H0(Γ,NΓ|P2) → H0(Γ, T 1
Γ) is the differential map of the map g constructed before

and H0(Γ,OΓ(n)⊗ J) is the tangent space to the fibre of g over the point (0× · · · × 0). If we
assume that H1(Γ,OΓ(n)⊗ J) = 0, then

h0(Γ,OΓ(n)⊗ J) =
n(n+ 3)

2
− h0(Γ, T 1

Γ) =
n(n+ 3)

2
−

∑

i

dim(Ui)

and the map g is surjective. For the proof of the second part of the lemma see [25], corollary
6.3. �

Another proof of lemma 3.17. If Γ is a reduced curve of degree n with d nodes and k
cusps as singularities, then, as we have seen in the previous section, the condition k < 3n is a
sufficient condition to the vanishing h1(Γ,OΓ(n)⊗ J) = 0 and hence nodes and cusps of Γ can
be smoothed independently. In particular we have that Snk,d ⊂ Snk′,d′ , for every k′ and d′ such
that k′ ≤ k and d′ ≤ d+ k − k′. �

6. On the equigeneric deformations of an ordinary plane singularity

Let Γ ⊂ A2 be a plane curve with an ordinary singular point of multiplicity r at the point
p = (0, 0) and no further singularities. Let B be the étale versal deformation space of Γ
and let EG ⊂ B be the equigeneric locus of B. In [13], lemma 3.6, it has been proved that
dim(EG) = r − 2. In particular, there exist subvarieties Xi ⊂ EG, with 0 ≤ i ≤ r − 2, such
that dim(Xi) = dim(Xi+1)− 1 and

{0} = X0 ( X1 ( · · · ( Xr−2 = EG

and such that the general element of Xi corresponds to an affine plane curve with an ordinary

singular point of multiplicity r− i and ir− i2+i
2 nodes as singularities. In this section we want

to prove that following result.

Proposition 6.1. There exists an étale neighborhood U of 0 ∈ EG ⊂ B in the equigeneric
locus of the étale versal deformation space B of Γ, such that every point y ∈ U corresponds to
a plane curve with only ordinary multiple points.

To make an example, proposition 6.1 implies that if C → Y is a flat equigeneric family of
plane curves whose general fibre has a tacnode and four nodes as singularities, then, there are
no special fibres of C → Y having a four-fold ordinary point as singularity. More generally, we
give the following definition.

Definition 6.2. Let π : C → Y be a flat family of curves, let y ∈ Y and let p ∈ π−1(y) be a
singular point of π−1(y). We say that C → Y is locally equigeneric at p if there is an analytic
neighborhoods U of p in C such that p is the only singular point of π−1(y) in U and, for every
y′ ∈ π(U), we have that ∑

x∈π−1(y′)∩U
δ(x) = δ(p),

where we denoted by δ(x) the number of adjoint conditions of π−1(y′) at x, (see section 1 of
chapter 1).

By using versality, proposition 6.1 is equivalent to the following proposition.
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Proposition 6.3. Let C → Y be a flat family of plane curves. Let y ∈ Y be a point such
that π−1(y) has an ordinary singularity at x. Suppose that C → Y is equigeneric at a point
x. Then there exists an analytic neighborhood U of x in C such that, for every y′ ∈ π(U), the
curve π−1(y′) has only ordinary singularities in U .

In order to show proposition 6.1, we will show proposition 6.3 in the special case of a family
of rational plane curves and then we shall deduce the general case. To get started, we recall the
basic properties of the secant variety of a non degenerated curve. Let X ⊂ Pm, with m ≥ 3, be
a non degenerate projective curve. Let S(X) and T (X) be the secant variety and the tangent
variety of X.

Lemma 6.4 (Terracini Lemma for curves.). Let x and y be two points of X and let p ∈ S(X)
be a point lying on the secant line < x, y > generated by x and y. Then, denoting by TxX the
tangent line to X at x and by TpS(X) the tangent space to S(X) at p, we have that

(23) < TxX,TyX >⊆ TpS(X),

where we denoted by < TxX,TyX > the subspace generated by TxX and TyX. Moreover, if x
and y are general in X and z is general in < x, y > , the equality holds in (23). In particular,
we have that dim(S(X)) = 3.

We recall that a secant line of X is said to be proper if it schematically intersects X only
at two points. A multisecant is a secant line which is not proper.

Lemma 6.5 (Trisecant lines lemma for curves.). A general point p ∈ S(X) lies on a proper
secant line of X.

By Bertini theorem, it follows that a generic (m− 3)-plane Λ ⊂ Pm transversally intersects
S(X) at deg(S(X)) points each one lying on a proper secant line of X. Projecting X from Λ,
we obtain a plane curve whose singularities arise from the intersection points of Λ with S(X).

Proposition 6.6 ([32]). Let X be a not degenerate curve in Pm. Let Λ ⊂ Pm be an (m−3)-
plane with no intersections with X and intersecting the secant variety in finitely many points,
and let π : X → P2 be the projection morphism from Λ. Then π is birational onto its image
and π(X) has only deg(S(X)) nodes as singularities, if and only if

(1) Λ doesn’t meet any tangent line of X,
(2) Λ doesn’t meet any multisecant of X, and
(3) every (m − 2)-plane passing through Λ contains at most a proper secant line to X.

Moreover, every hyperplane passing through Λ and containing a proper secant line to
X at points P and Q, contains at most one of the tangent lines to X at P and Q.

In particular the general projection of X to P2 is a nodal curve.

We don’t show the former proposition but its proof is rather elementary. The reader can
verify that condition (1) is equivalent to require that the projection from Λ of X is a local
embedding, whereas the conditions (2) and (3) are verified if and only if the projection curve of
X from Λ does not contain a multiple point of order bigger that two, or a multiple point with
at least two branches with the same tangent line. Moreover, the sets of points of G(m− 3,m)
parametrizing the (m−3)-planes of Pm verifying one of the conditions (1), (2) or (3) are locally
closed of codimension at least one.

Lemma 6.7. Let Cr+1 ⊂ Pr+1 be a rational plane curve of degree r + 1 and let Λ be a
(r − 2)-plane with no intersections with Cr+1 and having finitely many intersections with the
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secant variety S(Cr+1) of Cr+1. Then, the projection plane curve πΛ(Cr+1) := C of Cr+1 from
Λ has only ordinary multiple points as singularities if and only if Λ transversally intersects
S(Cr+1) at r(r − 1)/2 points each of which lies on a proper secant line to the rational normal
curve.

Proof. Before proving the lemma, we recall that the secant variety S(Cr+1) ⊂ Pr+1 is
smooth at every point p which does not lie on Cr+1 and which is contained in a proper secant line
of Cr+1. Indeed, if T (Cr+1) is the tangent variety of Cr+1, the open subset S(Cr+1)−T (Cr+1)
is an orbit of the action of PGL2C = Aut(P1) on Pr+1, (see for example section 10 of [20]).
Now, let Λ be a (r− 2)-plane such that the projection πΛ(Cr+1) := C to the plane is a rational
plane curve with an ordinary multiple point of order s ≤ r at a point p ∈ P2. Let p1, . . . , ps
be the points of Cr+1 lying over the point p and let l1, . . . , ls be the tangent lines to C at p.
Denoting by < − > the linear space of Pr+1 generated by −, we have that

< Λ, pi > ∩P2 = p,

and

< Λ, TpiCr+1 > ∩P2 = li,

for every i = 1, . . . , s. In other words, Λ is contained in an (r−1)-plane Ω =< Λ, p >=< Λ, pi >,

for every i = 1, . . . , s, containing s(s−1)
2 proper secant lines pipj to Cr+1, for 1 ≤ i < j ≤ s,

in such a way that neither of the tangent lines TpiCr+1 is contained in Ω and the hyperplanes
< Λ, TpiCr+1 > are all different, for i = 1, . . . , s. In particular, Λ intersects every secant line
pipj at a point Pij , for 1 ≤ i < j ≤ s. Moreover, since r + 2 points over the rational normal
curve Cr+1 generate Pr+1, we have that Pi,j 6= Pl,m if (i, j) 6= (l,m) and

dim(< TpiCr+1, TpjCr+1 >) = 3.

By Terracini lemma,

(24) < TpiCr+1, TpjCr+1 >= TPi,jS(Cr+1).

Moreover,

< TPi,jS(Cr+1),Λ >= Pr+1

and, hence, every point Pi,j is a transversal intersection of Λ with S(Cr+1). The first part of
the lemma is proved. Let, now, Λ be a (r − 2)-plane such that the projection πΛ(Cr+1) to the
plane is a rational plane curve with a singular point at p ∈ P2 containing at least an analytic
branch C1 which is singular at p. Then, denoting by p1 the point of Cr+1 mapping to C1, the
dimension of the linear space < Tp1Cr+1,Λ > is r − 1, because

< Tp1Cr+1,Λ > ∩P2 = p,

and hence Λ intersects the tangent line Tp1Cr+1. Therefore, in this case, Λ has not empty
intersection with the tangent secant variety T (Cr+1) of Cr+1. Finally, let Λ be a (r − 2)-plane
such that the plane projection πΛ(Cr+1) has a multiple point at a point p ∈ P2 with at least
two smooth branches C1 and C2 having the same tangent line l ⊂ P2. We denote by p1 and p2
the points of Cr+1 which lie over p. By using that the linear space

< Tp1Cr+1,Λ >=< Tp2Cr+1,Λ >=< l,Λ >

is an hyperplane, Λ doesn’t intersect the tangent lines Tp2Cr+1 and Tp1Cr+1. Moreover, since
< p1p2,Λ >=< p,Λ > has dimension r−2, the linear space Λ intersects the proper secant p1p2
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to Cr+1 at a point P . Now, since < Tp1Cr+1, Tp2Cr+1 >= TPS(Cr+1) has dimension three, P
is a smooth point of the secant variety of Cr+1. But, since

< TPS(Cr+1),Λ >= Pr

in this case P will not be a transversal intersection point of Λ with S(Cr+1). �

Lemma 6.8. Let Wr ⊂ P
n(n+3)

2 be the closure, in the Zariski topology of the locus of rational
plane curves of degree n with an ordinary plane singularity of multiplicity r. Then, if Wr is
not empty, we have that

dim(Wr) = dim(Vn,0)− r + 2 = 3n− r + 1.

Proof. Let Cn ⊂ Pn be a rational normal curve of degree n. Since, up to projective
transformations, every rational plane curve is a plane projection of Cn, in order to compute
the dimension of Wr, we compute the dimension of the locally closed subset R ⊂ G(n − 3, n)
of (n − 3)-planes Λ such that the plane projection πΛ(Cn) has a ordinary r-fold point. Then,
the dimension of Wr will be equal to dim(Wr) = dim(R) + dim(Aut(P2))− dim(Aut(P1)). To
see that R is locally closed and to compute its dimension, let Symr(Cn) be the r-th symmetric
product of Cn and let U be the open set of G(n − 3, n) of (n − 3)-planes which have not

intersections with Cn. Consider the incidence family R̃ ⊂ Symr(Cn)× U defined by

R̃ = {(q1, . . . , qr; [Λ])|there is q ∈ P2 such that πΛ(qi) = q for i = 1, . . . , r and

the plane projection πΛ(Cn) has an ordinary r-fold point}.
In order to prove that R is locally closed and to compute its dimension, it is sufficient to do

this for R̃. Let R̃(q1, . . . , qr) ⊂ G(n−3, n) be the set of (n−3)-planes Λ ⊂ Pn such that πΛ(Cn)
has an ordinary r-fold point at a point q ∈ P2 and q1, . . . , qr are the points of Cn over q. If

[Λ] ∈ R̃(q1, . . . , qr), then the linear space < Λ, p1, . . . , pr > has dimension n− 2. In particular,

if R̃(q1, . . . , qr) is not empty, then it is an open set in the irreducible subvariety of G(n− 3, n)
parametrizing the (n − 3)-planes Λ, such that there exists a (n− 2)-plane Θ such that Λ ⊂ Θ
and < p1, . . . , pr >⊂ Θ. Then

dim(R̃(q1, . . . , qr)) = dim(G(n−r−2, n−r))+dim(G(n−2, n−3)) = dim(G(n−3, n))−2(r−1).

Finally, R and R̃ are locally closed of dimension

dim(R̃(q1, . . . , qr)) + r = dim(G(n− 3, n)) − r + 2

and

dim(Wr) = dim(R) + dim(Aut(P2))− dim(Aut(P1)) = 3(n − 2)− r + 2 + 8− 3 = 3n− r + 1,

if they are not empty. �

Proposition 6.9. For every integer r there exists an integer R > r such that for every
ordinary plane singularity of multiplicity r of analytic equation g(x, y) = 0, there exists an
irreducible rational plane curve of degree R with an ordinary r-fold point analytically equivalent
to g(x, y) = 0.

In order to show the previous proposition we need the following intermediate results.
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Lemma 6.10. Let z1, . . . , zk be k distinct complex numbers. Then, however we choose
positive integers h1, . . . , hk and constants cil, for 1 ≤ i ≤ k and 0 ≤ l ≤ hi, there exists a
polynomial p(z) of degree equal to

∑
i hi − 1 such that

p(l)(zi) = cil, for 1 ≤ i ≤ k and 0 ≤ l ≤ hi − 1.

Proof. For every fixed i, let pi be the polynomial defined by

pi(z) =
∏

j 6=i
(z − zj)hjfi(z),

where fi(z) = (1/
∏
j 6=i(zi − zj)hj )(ci0 +

∑hi−1
s=1 cil

(z−zi)l
l! ). The polynomial p defined by

p(z) =

k∑

i=1

pi(z)

verifies the desired properties. �
Let ∆ be the open complex disc ∆ = {z ∈ C t.c. | z |< 1} and let

(25)

{
x = t

y =
∑∞

l=1 αilt
l, t ∈ ∆ and i = 1, . . . , r,

be the parameterizations of r smooth analytic branches γ̃1, . . . , γ̃r of plane curve passing through
the origin (0, 0) of the plane and having pairwise distinct tangent lines l1, . . . , lr at (0, 0).

Lemma 6.11 (Morelli, [31]). However we choose positive integers h1, . . . , hr and g, there
exists an irreducible plane curve Γ of genus g having at (0, 0) an ordinary multiple point of
order r with tangent lines l1, . . . , lr in such a way that the branch of Γ, passing through (0, 0)
and tangent to li, approximates the branch γ̃i up to order hi, for every 1 ≤ i ≤ r.

Proof. Fixed positive integers h1, . . . , hr and g, we want to prove that there exists a plane
curve Γ of genus g with an ordinary plane singularity at (0, 0) and such that, if p1 . . . , pr are
the points of the normalization curve C of Γ mapping to (0, 0), then the local expression of the
normalization morphism at every point pi is given by{

x = t

y =
∑∞

l=1 βilt
l, t ∈ ∆

with
βil = αil for every l such that il ≤ hi − 1 and βhi = αhi ,

where αhi is any constant different from αhi . In order to prove this, let Γ′ be an irreducible
plane curve of genus g. Let (ξ, η) be affine coordinates of the plane. We will find a birational
transformation of the plane of equation

(26)

{
x = φ(ξ) = a0ξ

n + a1ξ
n−1 + · · ·+ an

y = ψ(η) = b0η
m + b1η

m−1 + · · ·+ bm,

sending the plane curve Γ′ to a plane curve Γ with the desired properties.
Step 1. Let q′i ≡ (ξi, ηi), for i = 1, . . . , r, be r smooth points of Γ′ such that the tangent line

to Γ′ at every point (ξi, ηi) is not parallel to the ξ-axis or to the η-axis. Suppose, moreover,
that the constants ξ1, . . . , ξr and η1, . . . , ηr are all different. Let φ(ξ) be a polynomial such that

(27) φ(ξi) = 0, for every 1 ≤ i ≤ r.



50 2. FAMILIES OF PLANE CURVES WITH NODES AND CUSPS

Let qi be the image point of q′i with respect to (26), for every i. Let n′ : C ′ → Γ′ be the
normalization of Γ′ and let

t→ (t, ηi(t))

be the local expression of n′ in a neighborhood of qi, for every i = 1, . . . , r. Then, if we set
Ψi(ξ) = ψ(ηi(ξ)), then, the branch γi of Γ passing through qi which is image, with respect to
(26), of the branch of Γ′ passing through qi, has equation

γi :

{
x = φ

(1)
i (ξ − ξi) + · · ·+ φ

(n)
i

(ξ−ξi)n
n!

y −Ψi(ξi) = Ψ
(1)
i (ξ − ξi) + Ψ

(2)
i

(ξ−ξi)2
2! + . . .

(28)

where φ
(l)
i = ∂φ(ξ)

∂lξ
|ξ=ξi and Ψ

(l)
i = ∂Ψi(ξ)

∂lξ
|ξ=ξi . Setting x = τ in the first equality of (28),

let ξ − ξi =
∑

j≥1 λijτ
j be the inverse function of the holomorphic function τ = τ(ξ) =

∑
l φ

(l)
i

(ξ−ξi)l
l! . By substituting in the second equality of (28), we find the local expression

{
x = τ

y −Ψi(ξi) =
∑

i≥1 βilτ
l

of the normalization morphism of γi at qi, for every i = 1, . . . , r. Now we impose the following
conditions 




Ψi(ξi) = 0

βil = αil for every il ≤ hi − 1,

βhi = αhi ,

for every i = 1, . . . , r. By these relations, by using that every βil is a linear combination of the

constants Ψ
(s)
i , with s = 1, . . . , l, we find the value of Ψ

(s)
i , for every s. Then, by the equality

Ψ
(1)
i (ξ) = ψ(1)(ηi)η

(1)
i (ξ), by setting ξ = ξi, we find the value ψ(1)(ηi) := δ1. In a similar way we

go on determining the values ψ(s)(ηi) := δs, for s = 1, . . . , hi. Finally we deduce the following
conditions:

(29)

{
ψ(ηi) = 0,

ψ(s)(ηi) = δs, with s ≤ hi and 1 ≤ i ≤ r.
For every pair of polynomials φ(ξ) and ψ(ξ) verifying the conditions (27) and (29), the image
curve Γ of Γ′, with respect to the transformation (26), has r smooth branches γ1, . . . , γr passing
through (0, 0), such that every branch γi approximates the branch γ̃i defined by (25), up to order
hi, for every 1 ≤ i ≤ r. Notice that the set of polynomials verifying (27) and (29) are not
empty by lemma 6.10.

Step 2. Now we want to find conditions on ψ(ξ) in such a way that the only branches of
Γ passing through the point (0, 0) are the smooth branches γ1, . . . , γr, constructed before. Let
f ′(ξ, η) = 0 be the equation of the plane curve Γ′. Let ξr+1, . . . , ξn′ , with n′ ≤ n, be the roots of
the polynomial φ(ξ) different from ξ1, . . . , ξr. Moreover, let ηr+1, . . . , ησ, be the roots, different
from η1, . . . , ηr, of the polynomials f ′(ξi, η), for i = r+1, . . . , n′. If we choose constants ρi 6= 0,
with i = r + 1, . . . , σ, and if we assume that ψ(η) verifies the further conditions

(30) ψ(ηi) = ρi for every i = r + 1, . . . , σ,

then the plane curve Γ has the desired property. As before, notice that the set of polynomials
verifying conditions (30), (27) and (29) are not empty by lemma 6.10.
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Step 3. Finally, we want to find conditions on ψ(η) in such a way the transformation (26)
of the plane defines a birational transformation between Γ′ and Γ. First of all, we notice that
if ψ(η) is a polynomial which verifies the conditions (29) and (30), then, for every polynomial
χ(η), also the polynomial

(31) ψ(η) = ψ(η) + (η − η1)µ1 . . . (η − ησ)µσχ(η),
with µ1, . . . , µσ large enough, satisfies the conditions (29) and (30). Let (β0, θ0) be a general
point of Γ′, whose image with respect to (26) is the point (x0, y0) ∈ Γ. Let β1, . . . , βn′ , with
n′ ≤ n − 1, be the other roots of the polynomial φ(η) − x0, different from β0. We denote by
θ1, . . . , θπ the roots, different from θ0, of the polynomials f ′(βi, η), for i = 0, . . . , n′. If d1, . . . , dπ
are constants different from zero and if the polynomial χ(η) in (31) satisfies the properties

χ(θ0) = 0

χ(θi) = di, for every i = 1, . . . , π,(32)

then the point (β0, θ0) is the only point of Γ′ sent by (26) to the point (x0, y0) ∈ Γ. As before,
notice that, by lemma 6.10, the set of polynomials verifying the condition (32) is not empty.

We have found conditions on φ(ξ) and ψ(η) in such a way that the image curve Γ of Γ′, with
respect to (26), has at (0, 0) an ordinary r-fold point with the desired properties. Applying
lemma 6.10, we conclude. �

Remark 6.12. By using the same notation as in the proof of lemma 6.11, notice that, by
the proof of lemma 6.10, the degree of the polynomials φ(ξ) and ψ(η) verifying conditions (27),
(29), (30), (31) and (32), in such a way that the regular transformation of equations (26) has
the desired property, does not depend on the analytic class of the ordinary r-fold defined by
(25), but it depends only on r, on the degree of the curve Γ′ and on the constants h1, . . . , hr.

Remark 6.13. For our convenience, we stated and proved lemma 6.11 for an ordinary
plane singularity, but in [31] it is proved that, given any set of plane singularities g1(x, y) = 0,
g2(x, y) = 0,. . . ,gk(x, y) = 0, for any reduced plane curve Γ′, there exists a plane birational
model Γ of Γ′ having k singularities equivalent, but not necessarily analytically equivalent, to
the given plane singularities. (For the definition of equivalent plane singularities see definition
3.4).

Lemma 6.14 (Franchetta, [16]). Let Γ and Γ′ be two reduced plane curves with an ordinary
r-fold point at (0, 0) and let γ1, . . . , γr and γ′1, . . . , γ

′
r be the branches of Γ and Γ′, respectively,

passing through (0, 0). Then, if every branch γi of Γ intersects the corresponding branch γ′i of
Γ′ with multiplicity at least equal to r − 1, then the r-fold point of Γ at (0, 0) is analytically
equivalent to the r-fold point of Γ′ at (0, 0).

Proof. Let (x, y) be analytic coordinates of the plane. We want to construct an analytic
transformation of the plane of equations

(33)

{
x′ = x

y′ = a0(x)y
r−1 + · · ·+ ar−1(x),

where ai(x) are holomorphic functions in a neighborhood of zero, defining an isomorphism
between an analytic neighborhood of (0, 0) in Γ and a neighborhood of (0, 0) in Γ′. Since
we work locally in the analytic topology, we may suppose that the equations of Γ and Γ′

are given by
∏r
i=1 fi(x, y) = 0 and

∏r
i=1 gi(x, y) = 0. Moreover, we may assume that the

x-axis and the y-axis are not tangent to everyone of the branches γi and γ
′
i at the point (0, 0).
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Then, by the Implicit Function Theorem, there exist holomorphic functions yi(x) and y
′
i(x) on

{x ∈ C | 0 <| x |< σ}, with σ small enough, such that (x, yi(x)) ∈ γi and (x, y′i(x)) ∈ γ′i,
for every i = 1, . . . , r. We want to determine the functions ai(x) in such a way that the
transformation (33) sends every point (x, yi(x)) to the corresponding point (x, y′i(x)), for every
i = 1, . . . , r. Now, for every fixed x such that 0 <| x |< σ, we get a linear system of r equations
in r variables a0(x), . . . , ar−1(x)

(34)





y′1(x) = y1(x)
r−1a0(x) + y1(x)

r−2a1(x) + · · ·+ ar−1(x)
...

...

y′r(x) = yr(x)
r−1a0(x) + yr(x)

r−2a1(x) + · · ·+ ar−1(x).

Since yi(x) 6= yj(x), if i 6= j, and the determinant of the matrix A(x) of the coefficients of
the former linear system is the Vandermonde’s determinant relative to y1(x), . . . , yr(x), the
previous system has an unique solution, given by

(35)





a0(x) = det(A(x)1
det(A(x))

...
...

ar−1(x) = det(A(x)r)
det(A(x)) ,

where A(x)i is the matrix obtained from A(x) by substituting the i− th column of A(x) with
the vector (y′1(x), · · · , y′r(x)). Moreover, if A(x)′i is the matrix which we get by substituting
the i− th column of A(x) with the vector (y′1(x)− y1(x), · · · , y′r(x)− yr(x)), then we have that

(36)





a0(x) = det(A(x)1)
det(A(x)) =

det(A(x)′1)
det(A(x))

...
...

ar−2(x) = 1 +
det(A(x)′r−1)

det(A(x))

ar−1(x) = det(A(x)′r)
det(A(x)) .

Now we notice that the determinant det(A(x)) =
∏
i 6=j(yi(x)−yj(x)) is an holomorphic function

at a neighborhood of x = 0. Moreover, by using that fi(x, yi(x)) = 0 and the hypothesis that
the tangent line to γi at (0, 0) does not coincides with the x-axis or the y-axis, we find that
every holomorphic function yi(x) vanishes at zero with order equal to one and, in particular

we find that det(A(x)) =
∑

i≥(r2)
α(x)ix

i, where α(x)i :=
∂ det(A(x))

i!∂ix
and α(x)(r2)

6= 0. Similarly,

if we assume that the multiplicity of intersection between γi and γ
′
i is at least equal to r − 1,

then the Taylor expansion of the holomorphic function det(A(x)′i) at x = 0, begins with a term
of order ≥

(r
2

)
if i = 1 and with a term of order >

(r
2

)
if i 6= 1. Then, under the hypothesis

ord0(yi(x)−y′i(x)) ≥ r−1, the functions ai(x), for i = 0, . . . , r−1 are defined and holomorphic
at zero and the equations (33) define an analytic transformation of a neighborhood U ⊂ A2

of the origin, which restricts, by construction, to an analytic isomorphism between Γ ∩ U and
Γ′ ∩ U . �

From the previous lemma we may deduce the following well-known result.

Corollary 6.15. Ordinary triple points of plane curves are all analytically equivalent.

Proof. Let Γ be a reduced plane curve with an ordinary singularity of multiplicity three at
a point P ∈ P2 and let Γ′ be a reduced plane curve with an ordinary singularity of multiplicity
three at a point P ′ ∈ P2. There exists a projective motion of the plane sending the point P to
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the point P ′ and the tangent cone to Γ at P to the tangent cone to Γ′ at P ′. The statement
follows by lemma 6.14. �

Remark 6.16. Unfortunately, the result of lemma 6.14 is not sharp. Indeed, it is well
know that two ordinary four-point of plane curve are analytically equivalent if and only if they
have projectively equivalent tangent cones, (see [45]). Then, for r = 4, lemma 6.14, gives
only a sufficient conditions in order that Γ and Γ′ have analytically equivalent singularities at
(0, 0). Finally, notice that there exist examples of ordinary plane singularities with projectively
equivalent tangent cones which are not analytically equivalent. For instance, in [34] it is proved
that the plane singularities of equation (x4 − y4)x = 0 and (x4 − y4)(x − y2) = 0 are not
analytically equivalent. Notice that the branch x = 0 intersects the branch x − y2 = 0 with
multiplicity two.

Proof of proposition 6.9. Let g(x, y) = 0 be the analytic equation of an ordinary plane
singularity of multiplicity r and let Γ′ be a rational cubic. By the proof of lemma 6.11, we may
construct a rational transformation of the plane A : P2 99K P2 of affine equations

{
x = φ(ξ) = a0ξ

n + a1ξ
n−1 + · · ·+ an

y = ψ(η) = b0η
m + b1η

m−1 + · · ·+ bm,

which restricts to a birational map on Γ′ and such that the strict transform Γ of Γ′, with respect
to A, has an ordinary r-fold point at (0, 0), with the same tangent cone as g(x, y) = 0 and such
that every branch of Γ′ at (0, 0) intersects the branch of g(x, y) = 0, having the same tangent
line, with multiplicity r − 1. By remark 6.12, the degree of the polynomials ψ and φ does not
depend on the analytic equivalence class of singularity of g(x, y) = 0, but it depends only on r
and the on degree of Γ′. We conclude by using lemma 6.14. �

Proof of proposition 6.1. Let g(x, y) = 0 be the analytic equation of an ordinary plane
singularity of multiplicity r. By the property (2) of the theorem 5.10, the dimension of the
étale versal deformation space B of g(x, y) = 0 is given by

dim(B) = dim(C[x, y]/(
∂g

∂x
,
∂g

∂y
, g) = (r − 1)2.

Moreover, if ES ⊂ B is the equisingular locus of B, then

dim(ES) = (r − 1)2 − r(r + 1)

2
=

(r − 2)(r − 3)

2
.

To see this we recall that, by the proposition 5.6, for any n sufficiently large, there exist plane
curves of degree n with an ordinary r-fold point analytically equivalent to g(x, y) = 0 and no
further singularities. If Γ is such a plane curve of degree n, by versality there exists a morphism
F : U → V from an étale neighborhood U of [Γ] in PN to an étale neighborhood of 0 ∈ B.
By the proof of lemma 5.15 the tangent space to the fibre over 0 of F can be identified with
H0(Γ,OΓ(n) ⊗ J), where J is the jacobian ideal of Γ. Up to consider plane curves of higher
degree, we may assume that H1(Γ,OΓ(n)⊗ J) = 0. Under this hypothesis F is surjective and,
in particular, F−1(ES) is the locus in U of plane curves with an ordinary r-fold point. We
deduce that

dim(ES) =
n(n+ 3)

2
− r(r + 1)

2
+ 2− n(n+ 3)

2
+ (r − 1)2 =

(r − 2)(r − 3)

2
.
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Now, let EG ⊂ B be the equigeneric locus of B. By theorem 5.11, we now that

dim(EG) = (r − 1)2 − (r − 1)r

2
=

(r − 1)(r − 2)

2
.

We want to prove that there exists an étale neighborhood U of 0 ∈ EG ⊂ B such that every
point y ∈ U corresponds to a plane curve with only ordinary multiple points. In order to see this,
we recall that, by proposition 6.9, there exists an integer R such that, for every ordinary plane
singularity of multiplicity r of analytic equation g′(x, y) = 0, there exist irreducible rational
plane curves of degree R with an ordinary R-fold point analytically equivalent to g′(x, y) = 0 .
Then, if Γ is a rational plane curve of degree R with an ordinary r-fold point analytic equivalent
to g(x, y) = 0, then, by versality we have a morphism F : U → V from an étale neighborhood U

of [Γ] in P
R(R+3)

2 to an étale neighborhood V of 0 in B. By construction, if Wr ⊂ P
R(R+3)

2 is the
locus in U of rational plane curves with an ordinary plane singularity of multiplicity r, then F
mapsWr surjectively on ES. By lemma 6.8, we know that dim(Wr) = 3R−1−r+2 = 3R−r+1.
In particular, the general fibre of F on ES has dimension equal to

3R− 1− r + 2− (r − 2)(r − 3)

2
= 3R− 1− r2 − 3r + 2

2
= dim(VR,0)− dim(EG).

We deduce that F maps surjectively the Severi variety VR,0 of rational plane curves of degree
R on the locus in V of equigeneric deformations of g(x, y) = 0. Thus, in order to show the
proposition, it is enough to prove that if G → Y is a one-parameter family of rational plane
curves with special fibre G0 = Γ, then the general fibre Gt of the family has only ordinary
multiple points as singularities. To prove this, we remember that every irreducible rational
plane curve of degree R, is projection of a rational normal curve CR ⊂ PR of degree R from
a linear space Λ of dimension R − 3. Thus there exists a one parameter family Λt, t ∈ Y
of (R − 3)-planes of PR such that for every t the projection curve of CR from Λt is equal to
Gt, up to projective motions. The statement follows by lemma 6.7 by using that transversally
intersecting the secant variety S(CR)) is an open condition in G(R− 3, R). �

7. Families of plane curves with nodes and cusps and Horikawa deformation
theory

In this section we shall assume as known the notion of deformation of a morphism, for which
we refer to section 4 of chapter 1. Let Σ ⊂ Σnk,d be an irreducible component of Σnk,d and let Γ
be the irreducible plane curve of geometric genus g with k cusps and d nodes, corresponding
to the general element [Γ] of Σ. In the next chapter will be convenient for us to identify the
tangent space to Σ at [Γ] with a suitable subspace of the infinitesimal deformations space of
the normalization map φ : C → Γ of Γ. We recall that, if ΘC and ΘP2 are the tangent sheaf of
C and of P2 respectively and

φ∗ : ΘC → φ∗ΘP2

is the differential map of φ, then the cokernel Nφ of φ∗ is called the normal sheaf to φ. If we
denote by Z the ramification divisor of φ, i.e. the zero divisor of φ∗, the normal sheaf to φ is
invertible if and only if φ is not ramified, i.e. Z = 0. On the other hand, φ∗ naturally extends
to a sheaves map ΘC(Z) → φ∗ΘP2 , which we still denote by φ∗ and whose cokernel Nφ′ is an
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invertible sheaf.
0
↓

0 Kφ
↓ ↓

0 → ΘC
φ∗→ φ∗ΘP2 → Nφ → 0

↓ ‖ ↓
0 → ΘC(Z)

φ∗→ φ∗ΘP2 → Nφ′ → 0
↓
0

The normal sheaf Nφ to φ maps surjectively on N ′
φ with kernel Kφ supported on Z. By

the Horikawa deformation theory, (see [26], [27] and page 15 of this paper), the vector space
H0(C,Nφ) parametrizes the infinitesimal deformations of C. Moreover, ifH1(C,Nφ) = 0, every
infinitesimal deformation of φ, corresponding to an element s ∈ H0(C,Nφ), is not obstructed,
i.e. it extends to an effective deformation of φ, which we say to have Horikawa class equal to
s. Now, by the exact sequence which defines N ′

φ, we have that

∧2(φ∗ΘP2) ≃ ΘC(Z)⊗N ′
φ

and then

(37) N ′
φ ≃ OC(φ∗(−KP2))⊗OC(KC)⊗OC(−Z),

whereKP2 andKC are the canonical divisors of P2 and C. From what we proved in the section 1
of chapter 1, denoting by H the pullback to C of the divisor cut out on Γ by the general line and
by ∆ the adjoint divisor of the map φ : C → Γ, we have that OC(KC) = OC((n − 3)H)(−∆).
Hence, by (37) and (18) we find that

N ′
φ ≃ OC(nH)(−∆ − Z) ≃ φ∗N ′

Γ|P2 .

It follows that, if the number k = deg(Z) of cusps of Γ is smaller that 3n, we have that N ′
φ

has degree deg(N ′
φ) = 3d − k + 2g − 2 > 2g − 2, so H1(C, N ′

φ) = H1(C, Nφ) = 0 and, by

Riemann-Roch theorem, h0(C, N ′
φ) = 3n + g − 1 − k. In particular, we find that, if k < 3n,

then

(38) H0(C,N ′
φ) ≃ H0(Γ, N ′

Γ|P2) ≃ T[Γ](Σ),

the space H0(C,Nφ) has the expected dimension equal to 3n + g − 1 and all the infinitesimal
deformations of φ are not obstructed. Going back to the exact sequence

0→ Kφ → Nφ → N ′
φ → 0

we find the exact sequence

0→ H0(C, Kφ)→ H0(C, Nφ)→ H0(C, N ′
φ)→ 0

from what we deduce that, if k < 3n, the tangent space to Σ at [Γ] may be identified with a
subspace of dimension 3n + g − 1 − k of H0(C, Nφ) intersecting H0(C, Kφ) only at zero. In
order to say more about the global sections of the torsion sheaf Kφ, we recall the following
standard definitions. Let D be a smooth curve of genus g, let ψ : D → Pr be a holomorphic
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map and let p ∈ D be a point. We may always choose a holomorphic chart (U, z) of D at p
and affine coordinates of Pr at ψ(p), in such a way the local expression of ψ on U is given by

ψ(z) = (zk1 + gk1(z), . . . , z
kr + gkr(z))

with 1 ≤ k1 < k2 < · · · < kr and k1 ∤ k2 and where gi(z) is a holomorphic function with
vanishing order ≥ ki + 1 at z = 0, for every i = 1, . . . , r. These integers depend only on ψ and
p. The integer k1 − 1 is said to be the ramification index of ψ at p, while the integer k2 − 2
is called the ramification type of ψ at p. The point p is said to be a ramification point of ψ if
k1 ≥ 2 and it is said to be simple if k1 = 2 and k2 = 3. The normalization map of a double
branch of a plane curve of analytic equation y2− x3 = 0 has a simple ramification point at the
point over (0, 0).

Lemma 7.1 (Corollary 6.11 of [3]). Let π : C → B = {t ∈ C :| t |< 1} be a family of
smooth curves of genus g and let ψ : C → Pr, with r ≥ 2, be a holomorphic morphism. Let
us suppose that, for every fixed t, the morphism ψt : Ct = π−1(t) → Pr is birational onto its
image and that number, index and type of ramification points of ψt don’t depend on t. Thus,
the Horikawa class s of the family of morphism (C, ψ, π, P2) at t = 0 is not contained the space
H0(C0, Kψ0), unless s = 0.

Remark 7.2. Actually, it is evident by its proof (see page 27 and 28 of [3]) that the previous
result is local. Therefore it can be generalized as follows. Let C → B be a deformation of a
smooth curve C = C0 parametrized by the open disc B = {t ∈ C :| t |< 1}. Suppose that there
is a holomorphic map ψ : C → Pr such that the restriction to ψ to each fibre is birational onto
its image. Moreover, suppose that there exists a section ρ : B → C such that the ramification
index and type of the restriction morphism ψt : Ct = π−1(t) → Pr at the point ρ(t) ∈ Ct don’t
depend on t. Thus the localization sp at the point p = ρ(0) ∈ C of the Horikawa class s of
(C, ψ, π, P2) at t = 0 is not contained in Kψ0, p, unless sp = 0.

Lemma 7.1 and remark 7.2 allow us to give another proof of lemma 3.17 in a very special
case, (see lemma 7.5 and remark 7.7). In order to do this, let Γ ⊂ P2 be an irreducible
plane curve of degree n and genus g whose normalization map φ : C → Γ has only k simple
ramification points p1, . . . , pk, with k < 3n. Notice that Γ could have singularities worst than
nodes and cusps. By using the same notation as before, we find that deg(N ′

φ) = 3d−k+2g−2 >
2g − 2 and hence H1(C, N ′

φ) = H1(C, Nφ) = 0. By theorem 4.3 of chapter 1 , this vanishing
is a sufficient condition for the existence of a universal deformation

(39)
C φ̃→ P2
π ↓
B

of the normalization map φ, which we denote by (C, φ̃, π, B). The tangent space to B at
the point 0 corresponding to the morphism φ is naturally identified with H0(C, Nφ) and B is
smooth at 0 of dimension 3n + g − 1. If τ is a holomorphic coordinate of B centered at 0, we
set Cτ = π−1(τ) and φ̃τ = φ̃|Cτ . With this notation, it is naturally defined a 1 : 1 map

n : B → Vn,g

from B to an analytic open neighborhood U of [Γ] in Vn,g, sending a point τ ∈ B to the point

of Vn,g corresponding to the plane curve φ̃τ (Cτ ). Now let Bs be the locus of B parametrizing
the morphisms with at least s ramification points. Notice that, if we assume that there exists
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a plane curve Γ as before, then Bs is not empty, for every s ≤ k < 3n, since the point 0 ∈ B
corresponding to φ belongs to Bs.

Lemma 7.3. Under the hypotheses and with the notation introduced before, we have that
Bk is an analytic closed subset of B which is smooth at 0 of codimension equal to k. Similarly,
for every s = 1, . . . , k − 1, we have that Bs has codimension equal to s in B. The general
element of Bs corresponds to a morphism with only s ramification points and Bs is smooth at
every point corresponding to a morphism with only s ramification points.

Proof. Let Ck be the k-th symmetric fibre product over B of C and B̃k ⊂ B×B Ck the set

B̃k = {(τ ; pτ1 , . . . , p
τ
k) | τ ∈ B and p

τ
1 , . . . , p

τ
k ∈ π−1(τ) := Cτ ∈ are ramification points of φ̃|Cτ }.

Since the natural projection B̃k → Bk is a finite map, in order to show that Bk is closed of
dimension 3n+ g− 1− k, it’s enough to show it for B̃k. We may work in a neighborhood U of
the point x = (0; p1, . . . , pk) ∈ B̃k corresponding to φ. We choose local complex parameters zi
on C centered respectively at pi, for i = 1, ..., k, in such a way that the pair (τ , zi) is a local
parameter of C at the point pi, for every i. Moreover, always working locally, we may suppose
that φ̃ maps in to the complex affine plane and we may set φ̃(τ , zi) = (φ̃1(τ , zi), φ̃2(τ , zi)).

Under these assumptions, B̃k is defined by the 2k equations

∂φ̃(τ , zi)

∂zi
|zi = 0, for i = 1, . . . , k.

This proves that B̃k (and hence Bk) is closed and that every its irreducible component has
dimension at least equal to

dim(B ×B Ck)− 2k = dim(B)− k.
Moreover, by lemma 7.1, the tangent space T0Bk ⊂ H0(C, Nφ) to Bk at 0 intersects H0(C, Kφ)
only at zero. Since h0(C, Kφ) = k, it follows that Bk is smooth at 0 of codimension equal to
k in B. Similarly, let τ be a general point Bs, with s < k. By arguing as before, we have
that every irreducible component of Bs has codimension ≤ s in B. Moreover, if φ̃τ : Cτ → P2
is the morphism corresponding to the point τ ∈ Bs and, if q1, . . . , qs ∈ Cτ are ramifications

points of φ̃τ , then, by remark 7.2, the tangent space TτBs to Bs at τ intersects the linear
space W generated by H0(Cτ ,Kφ̃τ ,qi), for i = 1, . . . , s, only at zero. To see that dim(W ) = s

and hence that every irreducible component of Bs has dimension dim(B) − s, observe that,
however we choose s sections s1, . . . , ss, with si ∈ H0(Cτ ,Kφ̃τ ,qi), we have that they are linearly

independent, because every si has support at qi. This proves that there is a stratification

Bk ( Bk−1 ( · · · ( B1 ( B,

from which we deduce that the general point of Bs corresponds to a morphism with only s
ramification points. Finally, by using again lemma 7.1, we see that every point corresponding to
a morphism with only s ramification points, is a smooth point of Bs, for every s = 1, . . . , k. �

Remark 7.4. Notice that, since φ has only simple ramification points, for every s =
1, . . . , k, the general element of Bs corresponds to a morphism with only simple ramification
points.

Lemma 7.5. Let Γ ⊂ P2 be an irreducible plane curve of degree n and genus g whose
normalization map φ : C → Γ has only k simple ramification points p1, . . . , pk, with k < 3n.
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We denote by π : C → B the universal deformation of φ. Then, for any subset of s ≤ k
ramification points of φ, say p1, . . . , ps, there exists a one parameter deformation of φ,

i∗(C) ⊂ C φ̃→ P2
↓ π ↓
∆

i→ B

parametrized by a curve ∆ ⊂ B, such that the general element z of ∆ corresponds to a morphism
φ̃z : Cz → P2 with only s ramifications points which specialize to p1, . . . , ps, as z specializes to
the point 0 ∈ ∆ corresponding to φ = φ̃0.

Proof. Consider the incidence family

B̃1 = {(τ ; pτ ) | τ ∈ B1 and pτ ∈ π−1(τ ) := Cτ is a ramification point of φ̃|Cτ } ⊂ C ×B1 B1

of B1. Let π1 : B̃1 → C and π2 : B̃1 → B1 be the projection maps. We choose pairwise disjoint
analytic open neighborhoods U1,. . . ,Uk of the points p1,. . . ,ps in C. If Vi = π2(π1(Ui)), then, by
construction, the general element τ of ∩iVi corresponds to a morphism with at least s different
ramification points, specializing to p1, . . . , ps, as τ specializes to 0. In particular ∩iVi ⊂ Bs. On
the other hand, every irreducible component of ∩iVi has dimension ≥ dim(B) − s and hence
∩iVi is an analytic neighborhood of 0 in Bs. This proves the lemma. Moreover, we observe
that, by remark 7.2, the tangent space T0(∩iVi) to ∩iVi at 0 intersects the linear space W
generated by H0(C,Kφ,pi), for every i = 1, . . . , s, only at zero. Since dim(W ) = s, we deduce
that ∩iVi is smooth at the point 0 ∈ B corresponding to φ. �

Corollary 7.6. For every s = 1, . . . , k, the variety Bs has an ordinary
(
k
s

)
-fold at the point

0 ∈ Bs corresponding to φ.

Proof. The statement follows from the proof of the previous lemma. �

Remark 7.7. Notice that, if the above plane curve Γ has d nodes and k < 3n cusps as
singularities, then the former lemma says that, for any subset of cusps x1, . . . , xs of Γ, there
exists a one parameter family of plane curves G → ∆, such that G0 = Γ and the general
curve Gt of the family has a cusp in a neighborhood of every point x1, . . . , xs and a node in
a neighborhood of every cusp of Γ, different from x1, . . . , xs. In particular, this proves the
existence of the following stratification

Σnk,d ( Σk−1,d+1 ( · · · ( Σ0,d+k,

which we already know by lemma 3.17 or lemma 5.15.

We have seen how Horikawa deformation theory may be useful to study equigeneric de-
formations of an irreducible plane curve Γ ⊂ P2 of genus g and degree n. Looking at the
universal deformation space B of the normalization map φ : C → Γ of Γ, (when it there exists),
instead of the Severi variety Vn,g, is very convenient if we are interested in the local geometry
of Vn,g at the point [Γ], corresponding to Γ. Without further restrictions on index and type of
ramification points of φ, if we assume that the degree of the ramification divisor of φ is smaller
than 3n, the existence of a universal deformation family of φ like (39) follows from theorem
4.3 of chapter 1. As before, the universal deformation space B of φ is smooth at the point 0
corresponding to φ and it is naturally defined a map

n : B → Vn,g
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from B to Vn,g, sending every point x ∈ B to the image plane curve of the morphism correspond-
ing to x. But, in this case, H0(C,Kφ) is the ’normal space at 0’ to the locus of deformations
of φ preserving number, type and index of the ramification points of φ.

Proposition 7.8 (Arbarello-Cornalba, [4], p. 487). Let [Γ] ∈ Vn,g be a point corresponding
to an irreducible plane curve Γ ⊂ P2 of genus g and degree n. Let Z ⊂ C be the ramification
divisor of the normalization map φ : C → Γ of Γ. Assume that deg(Z) < 3n. Then, if we
denote by B the universal deformation space of φ, by n : B → Vn,g the natural map from
B to Vn,g and if we identify the tangent space to B at the point 0, corresponding to φ, with
H0(C,Nφ), then the kernel of the differential map

dn : T0B → TΓVn,g

of n at 0 coincides with H0(C,Kφ). In particular, Vn,g is smooth at [Γ] if and only if the
normalization map C → Γ is not ramified.

Remark 7.9. If in the previous theorem we have that 0 < k = deg(Z) < 3n, then the Severi
variety Vn,g is singular at [Γ] and, from what we proved before, the map n is a desingularization
of an analytic neighborhood U at [Γ] in Vn,g.

Proposition 7.8 has been generalized to the variety Σnk,d of irreducible plane curves of degree

n with d nodes and k cusps by Diaz in [12]. But, before stating his result, we have to say
something about the boundary of Σnk,d. In section 3 of chapter 1 and in sections 2 and 3.1 of
this chapter, we proved that the genus is a lower semicontinuous function on a flat family of
curves and that d-nodal plane curves of degree n are general in the locally closed family V o

n,g

of irreducible plane curves of degree n and geometric genus equal to g =
(n−1

2

)
− d. Of course,

the degree of the ramification divisor is an upper semicontinuous function on a flat family of
morphisms to P2 on a smooth curve of genus g, and then the set V o

n,g,k ⊂ V o
n,g of irreducible

plane curves Γ of genus g =
(n−1

2

)
− d− k, whose ramification divisor of the normalization map

C → Γ has degree k, is locally closed in the Severi variety Vn,g. Under suitable hypotheses on
k, reduced plane curves with d nodes and k cusps as singularities are general in the Zariski
closure Vn,g,k of V o

n,g,k.

Theorem 7.10 (Diaz-Harris, Theorem (1.2) of [13].). Suppose that k ≤ 2n − 1, then the
general element of every irreducible component of V o

n,g,k corresponds to an irreducible plane

curve with k cusp and d =
(n−1

2

)
− g − k nodes as singularities, i.e. Vn,g,k = Σnk,d.

Notice that in [13] V o
n,g,k is defined as the locus of irreducible plane curves of degree n and

genus g with class equal to c = n(n − 1) − δ − 2k, where δ =
(n−1

2

)
− g, and it is denoted by

V n,g,c. We recall that the class of a plane curve Γ is defined as the degree of the dual curve of
Γ. For a proof of the Plücker formula

(40) c = n(n− 1)− δ − 2k,

see [13]or [10]. By (40) we see that c remain constant if δ and k remain constant and hence the
variety V n,g,c coincides with Vn,g,k. The Diaz and Harris result has been improved by Shustin
in [41].

Theorem 7.11 (Shustin, Theorem 1.1 of [41].). Suppose that k ≤ 3n− 4, then the general
element of every irreducible component of V o

n,g,k corresponds to an irreducible plane curve with

k cusp and d =
(
n−1
2

)
− g − k nodes as singularities, i.e. Vn,g,k = Σnk,d.
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We can now state the following Diaz’s result.

Theorem 7.12 (Diaz, [12].). Suppose that k < 3n and let [Γ] ∈ Vn,g,k be a point corre-
sponding to an irreducible plane curve of degree n and genus g such that the ramification divisor
of the normalization map φ : C → Γ has degree equal to k. Then, the variety Vn,g,k is smooth
at [Γ] if and only if the local expression of φ at each ramification point is φ(z) = (zr, zr+1),
with r ≥ 2.

Outline of the proof. In order to prove the theorem, Diaz looks at the universal de-
formation space B of φ. If we denote by Bk the locus in B of morphisms with at least k
ramification points and by n : B → Vn,g the natural map from B to Vn,g, then n(Bk) ⊂ Vn,g,k.
In [12], Diaz writes explicitly the equations of the tangent space T0Bk to Bk at the point
0 ∈ Bk, corresponding to φ, proving that Bk is smooth at 0. Moreover, in [12] it is proved
that, if φ has local expression φ(z) = (zr, zr+1) at every its singular point, then H0(C,Kφ)
intersects T0Bk only at zero. On the contrary, if p ∈ C is a ramification point such that the
local expression is given by φ(z) = (zk, zr), with r > k + 1 then H0(C,Kφ,p) ⊂ T0Bk. The
theorem follows from proposition 7.8. �

If V is an irreducible component of Vn,g,k and [Γ] is the general point of V , then theorems
7.10 and 7.11 are obtained by studying the tangent space to the locus of equisingular defor-
mations of Γ and by proving that if Γ has singularities different from nodes and cusps, then
the dimension of Vn,g,k is smaller than the expected. We mean that, by using Diaz’s results
contained in [12] and working out the ideas and techniques used by Arbarello and Cornalba
to prove theorem 2.2 (see theorem 3.1 of [2]), it is possible to get an alternative proof of the
Shustin’s result. Unfortunately, we don’t know how to weaken the bound k ≤ 3n−4 in theorem
7.11. Naturally, the hypothesis k ≤ 3n−4 may be weakened under more restrictive hypotheses
on the singularities of the plane curves which we want to prove to be limit of plane curves
with nodes and cusps. In the following proposition, where we use the same techniques of 2.2,
we consider the case of plane curves with nodes, cusps and triple points of analytic equation
(x− y)(y2 − x3) = 0 as singularities.

Proposition 7.13. Let Γ ⊂ P2 be an irreducible and reduced plane curve of degree n of
genus g with d nodes, k cusps and k′ triple points of analytic equation (y − x)(y2 − x3) = 0 as
singularities. If k + k′ < 3n − 2 the curve Γ′ is limit of plane curves of degree n with d + 2k′

nodes and k + k′ cusps.

Proof. Let φ : C → Γ be the normalization of Γ. By the hypothesis about the singularities
of Γ, the map φ has k + k′ simple ramification points and no further ramification points.
Moreover, by the hypothesis k+ k′ < 3n− 2 < 3n, there exists an universal deformation family

C φ̃→ P2
π ↓
B

of φ and the universal deformation space B of φ which is smooth at the point 0 corresponding
to φ. From what we proved before, the locus Bk+k′ , parametrizing the morphisms with k + k′

ramification points, is smooth at 0 of the expected codimension equal to k + k′. In particular,
every infinitesimal deformation of φ, corresponding to a tangent vector in T0(Bk+k′), extends to
an effective deformation of φ parametrized by a curve in Bk+k′ , passing through 0. Moreover, by
lemma 7.1, the tangent space to T0Bk+k′ ⊂ H0(C, Nφ) to Bk+k′ at 0 intersects H0(C, Kφ) only
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at zero. Let now p ∈ Γ be a triple point of Γ and let p1, p2 be the points of the normalization
C of Γ which lie over p. Choose two disjoint holomorphic charts (U1, h1) and (U2, h2) of C
biholomorphic to the open disc ∆ = {z ∈ C t.c. | z |< 1}, with p1 ∈ U1, p2 ∈ U2 and
h1(p1) = 0 = h2(p2). Suppose that φ maps U1 to the singular branch of Γ through p. Denote
by

f i : ∆→ C2

the holomorphic maps defined on ∆ by f i(z) = φ(h−1
i (z)), for i = 1, 2. Note that, from the

hypothesis that φ(U1) is singular at p, we have ∂f1

∂z (0) = 0 6= ∂f2

∂z (0). Now, let s ∈ H0(C,Nφ)
be an infinitesimal deformation of φ such that s(p1) = 0 and s(p2) 6= 0. Let

C ×B E → C → P2
↓ ↓
E → B

be an effective deformation of φ parametrized by a curve E ⊂ B passing trough the point 0
corresponding to φ. Suppose that it has Horikawa class equal to s at t = 0. We claim that
the associated plane deformation of Γ is not equisingular at p. Let us suppose by contradiction
that the previous statement is not true. Thus, assume that for every t there exists a point
z(t) ∈ ∆ such that there exist holomorphic maps f it (z) = f i(t, z) such that f i0(z) = f i(z), for

i = 1, 2,
∂f1t
∂z (z(t)) = 0 6= ∂f2t

∂z (z(t)) and f1t (z(t)) = f2t (z(t)). Since
∂f2t
∂z (z(t)) 6= 0, by using the

Implicit Function theorem, we see that the function t → z(t) is holomorphic. Differentiating
the last equality with respect to t, we find that

∂f1t
∂t
|t (z(t)) +

∂f1t
∂z
|z(t) (

∂z(t)

∂t
)− ∂f2t

∂t
|t (z(t)) −

∂f2t
∂z
|z(t) (

∂z(t)

∂t
) = 0.

Recalling that ∂f1

∂z (z(t)) = 0 and
∂f1t
∂t |t=0 (0) = s(p1) = 0, evaluating the previous equality at

t = 0, we find that

(41)
∂f2t
∂t
|t=0 (0) +

∂f20
∂z

(0)
∂z(t)

∂t
|t=0= 0.

But, by construction
∂f2t
∂t |t=0 (0) = s(p2) 6= 0, while, by (41), s vanishes at p2 as global section

of the sheaf Nφ = φ∗(ΘP2)/φ∗(ΘC), because
∂f20
∂z is the zero section of Nφ. This proves the

claim. Now, via the isomorphism

T0Bk+k′
∼→ H0(C,N ′

φ)

the vector space T0Bk+k′(−p1 − p2) maps injectively to H0(C,N ′
φ(−p2 − p1)). On the other

and, by the hypothesis k+k′+2 < 3n, we find that h0(C ′,N ′
φ(−p2−p1)) = h0(C ′,N ′

φ)−2 and

T0Bk+k′(−p1 − p2) ⋍ H0(C,N ′
φ(−p2 − p1)). It follows that there exist a section s ∈ T0Bk+k′

such that s(p1) = 0 and s(p2) 6= 0. This section extends to an effective deformation of φ
parametrized by a curve contained in Bk+k′. This proves that the general element of the image
locus Vk+k′ of Bk+k′ in Vn,g via the natural map

B → Vn,g,

is not a plane curve D with a triple point of analytic equation (x− y)(x3 − y2) = 0. Of course
D as a node in a neighborhood of every node of Γ and a cusp in a neighborhood of every cusp
and triple point of Γ. Finally, D could have a tacnode and a cusp at a neighborhood of a triple
point of Γ. By arguing exactly as in [2], p. 97-98, and by using the hypothesis 3n− 2 > k+ k′,
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we can exclude this possibility and we may conclude that D has k + k′ cusps and d + 2k′

nodes. �



CHAPTER 3

On the number of moduli of algebraic systems of plane curves
with nodes and cusps

1. Definitions and known results

By using the notation introduced in section 2 and section 3.1 of chapter 2, we denote by

Σnk,d ⊂ P(H0(P2,OP2(n))) := PN , with N = n(n+3)
2 , the closure, in the Zariski’s topology, of

the locally closed set of reduced and irreducible plane curves of degree n with k cusps and d
nodes. Moreover, we still denote by Vn,g = Σn0,d the Severi variety of irreducible plane curves of

degree n and geometric genus g =
(
n−1
2

)
−d. In this chapter we are interested in the number of

moduli of complete irreducible families of reduced and irreducible plane curves with nodes and
cusps. Let Σ ⊂ Σnk,d be an irreducible component of the variety Σnk,d of irreducible plane curves

of degree n with d nodes and k cusps. We denote by Σ0 the open set of Σ of points [Γ] ∈ Σ
such that Σ is smooth at [Γ] and such that [Γ] corresponds to a reduced and irreducible plane
curve of degree n with d nodes, k cusps and no further singularities. Since the tautological
family S0 → Σ0, parametrized by Σ0, is an equigeneric family of curves, by normalizing the
total space and by using the theorem 3.3 on page 14, we get a family

S ′0 → S0 ⊂ P2 × Σ0

ց ւ
Σ0

of smooth curves of genus g =
(n−1

2

)
− t− d. Because of the functorial properties of the moduli

space Mg of smooth curves of genus g, we get a regular map Σ0 → Mg, sending every point
[Γ] ∈ Σ0 to the isomorphism class of the normalization of the plane curve Γ corresponding to
the point [Γ]. This map extends to a rational map

ΠΣ : Σ 99KMg.

We set
number of moduli of Σ := dim(ΠΣ(Σ)).

Notice that, when Σnk,d is reducible, two different irreducible components of Σnk,d can have
different number of moduli. We say that Σ has general moduli if ΠΣ is dominant. Otherwise,
we say that Σ has special moduli. In general, to calculate the number of moduli of these families
of curves, is not simple. But, when k < 3n and g ≥ 2, we may always find an upper-bound for
dim(ΠΣ(Σ)).

Definition 1.1. When 0 ≤ k < 3n and g ≥ 2, we say that Σ has the expected number of
moduli if

dim(ΠΣ(Σ)) = min(dim(Mg), dim(Mg) + ρ− k),
where ρ := ρ(2, g, n) = 3n− 2g − 6 is the number of Brill-Noether of the linear series of degree
n and dimension 2 on a smooth curve of genus g.

63
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In order to understand the previous definition, we have to recall some elements of Brill-
Noether theory. Given a smooth curve C of genus g, the set G2

n(C) of the linear series g2n on
C of dimension 2 and degree n, is a projective variety which is not empty of dimension at least
ρ, if ρ(2, n, g) = 3n − 2g − 6 ≥ 0, (see theorem V.1.1 and proposition IV.4.1 of [6]). More
precisely, let g2n be a given linear series, let H ∈ g2n be a divisor and let W ∈ H0(C,H) be the
three dimensional space corresponding to g2n. Denoting by KC the canonical divisor of C, let

µo,C : W ⊗H0(C,KC −H)→ H0(C,KC)

be the natural multiplication map, also called the Brill-Noether map of the pair (C,W ). The
dimension of the tangent space to G2

n(C) at the point [g2n],corresponding to g2n, is equal to

dim(T[g2n]G
2
n(C)) = ρ+ dim(ker(µ0,C)),

(see [3] or [6] for a proof). Moreover, if C is a curve with general moduli (i.e. if [C] varies
in an open set of Mg), the variety G2

n(C) is empty if ρ < 0, it consists of a finite number
of points if ρ = 0 and it is reduced, irreducible, smooth and not empty variety of dimension
exactly ρ, when ρ ≥ 1. In the latter case, by theorem 2.2 of chapter 2, the general g2n on C
defines a local embedding on C and it maps C to P2 as a nodal curve. We deduce that, the
Severi variety Σn0,d = Vn,g of irreducible plane curves of genus g =

(n−1
2

)
− d, (which we recall

to be not empty and irreducible for 0 ≤ g ≤
(n−1

2

)
), has general moduli when ρ ≥ 1 and has

special moduli when ρ < 0. When ρ ≤ 0, and then g ≥ 2, we expect that the image of Vn,g to
Mg has codimension exactly −ρ. Equivalently, recalling that, in this case,

dim(Vn,g) = 3n+ g − 1 = 3g − 3 + ρ+ 8 = dim(Mg) + ρ+ dim(Aut(P2)),

we expect that on the smooth curve C, obtained normalizing the plane curve corresponding to
the general element of Vn,g, there are only a finite number of g2n mapping C to the plane as a
nodal curve. This is a well known result proved by Sernesi in [37].

Theorem 1.2 (Sernesi, [37]). The Severi variety Vn,g of irreducible plane curves of degree
n and genus g has number of moduli equal to

min(dim(Mg), dim(Mg) + ρ).

What happens when k > 0? By section 7 of chapter 2, we know that an ordinary cusp
P of a plane curve Γ corresponds to a simple ramification point p of the normalization map
φ : C → Γ, i.e. to a simple zero of the differential map dφ. We denote by G2

n,k(C) ⊂ G2
n(C)

the set of g2n on C defining a birational morphism with k ramification points.

Lemma 1.3. G2
n,k(C) is a locally closed subset of G2

n(C) and every irreducible component

G of G2
n,k(C) has dimension at least equal to ρ− k, if it is not empty.

Proof. First of all, we observe that linear series defining a birational morphism on C,
are an open set of G2

n(C). Let F 2
n(C) be the variety whose points correspond to the pairs

([g2n], {s0, s1, s2}) where [g2n] ∈ G2
n(C) and {s0, s1, s2} is a frame of the three dimensional space

associate to the linear series g2n. Since all the fibres of the natural map F 2
n(C) → G2

n(C) are
isomorphic to Aut(P2), we have that dim(F 2

n (C)) ≥ ρ+ 8. Let p1, . . . , pk be fixed points of C.
Let F be the irreducible component of F 2

n(C) mapping to G. We choose a local parameter zi
centered at pi, for every 1 ≤ i ≤ k. The points p1, . . . , pk are ramification points for a g2n on C
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if, given a base {s0, s1, s2} of the three dimensional vector space associated to g2n, we have that
s0(pi) 6= 0, ordpis1 ≤ ordpis2 − 1 and

∂s1
∂zi

(0) = 0,

∂s2
∂zi

(0) = 0,

for every 1 ≤ i ≤ k. It follows that the set of g2n on C with k ramification points at p1, . . . , pk
is locally closed of codimension ≤ 2k in Ck × F , where Ck is the k-symmetric product of C.
This proves the lemma. �

Now we have the tools to understand the definition 1.1. As before, let Σ ⊂ Σnk,d be an

irreducible component, let [Γ] be a smooth point of Σ corresponding to a plane curve Γ ⊂ P2
of genus g ≥ 2 with d nodes and k cusps as singularities, and let C → Γ be the normalization
curve of Γ. By considering the natural map G2

n,k(C) × Aut(P2) → Σnk,d and using that the

image of an irreducible variety is irreducible, we see that, if g2n is the linear series associated
to the normalization map C → Γ, then, every linear series lying in one of the irreducible
components of G2

n,k(C) containing g2n, has to map C to a plane curve lying in Σ. It follows
that the dimension of the general fibre of the moduli of Σ is always at least equal to eight if
ρ − k ≤ 0 and it is at least equal to ρ − k + 8, if ρ − k ≥ 0. Furthermore, if we assume that
k < 3n, then

dim(Σ) = 3n+ g − 1− k = 3g − 3 + 8 + ρ− k = dim(Mg) + ρ− k + dim(Aut(P2)),
and, by definition, Σ has the expected number of moduli if the general fibre of the map of
moduli of Σ has the expected dimension. Hence, if k < 3n then

dim(ΠΣ(Σ)) ≤ min(dim(Mg), dim(Mg) + ρ− k).
On the contrary, when k ≥ 3n, we have not a bound for dim(ΠΣ(Σ)), since the dimension of
the fibre of the moduli map of Σ is always at least equal to ρ−k+8, but Σ may have dimension
bigger than 3n+ g − 1− k. However, from the following result, we may deduce that every not
empty irreducible component of Σnk,d has special moduli if k > 3n.

Proposition 1.4 (Arbarello-Cornalba, [2]). Let C be a general curve of genus g ≥ 2 and
φ : C → P2 be a birational morphism, then the ramification divisor degree of φ is smaller than
ρ. In particular, every irreducible component of Σnk,d has special moduli if ρ = 3n− 2g− 6 < k.

A sufficient condition for the existence of complete irreducible algebraic systems of plane
curves with nodes and cusps with general moduli is given by the following result.

Proposition 1.5 (Kang, [28]). Σnk,d is irreducible, not empty and with general moduli if

n > 2g − 1 + 2k, where g =
(n−1

2

)
− d− k.

Actually, in [28], Kang proves that if n > 2g−1+2k, then Σnk,d is not empty and irreducible.
But from his proof it follows that, under the hypothesis of proposition 1.5, Σnk,d has general
moduli because the general element of Σnk,d corresponds to a curve which is a projection of an

arbitrary smooth curve C of genus g in Pn−g, from a general (n − 3)-plane intersecting the
tangent variety of C in k different points. Another result which may be used to find examples
of families of plane curves with nodes and cusps having general moduli is the following.
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Theorem 1.6 (Corollary 5.43 of [21]). Let C be a general curve of genus g, let p be a
general point on C and let b = (b0, . . . , br) be any ramification sequence. There exists a grn on
C having ramification at least b at p if and only if

r∑

i=0

(bi + g − n+ r)+ ≤ g,

where (−)+ := max(−, 0).
We recall that, if grn is a linear series on C associated to a (r + 1)-space W ⊂ H0(C,L),

where L is an invertible sheaf on C, and if {s0, . . . , sr} is a basis of W , then the ramification
sequence of the grn at p is the sequence b = (b0, . . . , br) where bi = ordpsi− i. Choosing another
basis of W , the ramification sequence of grn at p doesn’t change. We say that the ramification
sequence of the grn at p is at least equal to b = (b0, . . . , br) if bi ≤ ordpsi− i, for every i, and we
write (ordps0, . . . , ordpsr− r) ≥ (b0, . . . , br). From theorem 1.6, we easily deduce the following
result.

Corollary 1.7. Σn1,d has general moduli if ρ = 3n − 2g − 6 ≥ 2, where g =
(
n−1
2

)
− 1− d.

Proof. It has been proved in [29] that Σn1,d is irreducible for every d ≤
(
n−1
2

)
− 1. More-

over, by using the terminology of theorem 1.6, the variety Σn1,d contains every point of PN
corresponding to a plane curve Γ of genus g such that the normalization morphism of Γ has at
least a ramification point with ramification sequence (b0, b1, b2) ≥ (0, 1, 1). Then, by theorem
1.6, if ρ ≥ 2, then moduli map of Σn1,d is surjective. �

In this chapter we construct examples of complete irreducible families of plane curves with
nodes and cusps with the expected number of moduli. Theorems 2.4 and 3.11 and technical
results of sections 2 and 3 are obtained using and working out the main ideas and techniques
that Sernesi uses in [37]. In theorem 2.4 we prove the existence of complete irreducible families
of plane curves with nodes and cusps in sufficiently general position. In proposition 3.1 and
corollary 3.7, we give sufficient conditions in order that a complete irreducible family of plane
curves with nodes and cusps has the expected number of moduli, when ρ ≤ 0. In corollary 3.9
we prove that, if an irreducible component Σ of Σnk,d verifies the conditions of proposition 3.1,

then, for every k′ ≤ k and d′ ≤ d there exists an irreducible component Σ′ of Σnk′,d′ containing
Σ and verifying the conditions of proposition 3.1. In theorem 3.11, by using also theorem
2.4, we prove that if k ≤ 6 and ρ = 3n − 2g − 6 ≤ 0, where g =

(
n−1
2

)
− k − d, then there

exists a non empty irreducible component Σ of Σnk,d verifying the conditions of proposition 3.1
and hence having the expected number of moduli. In theorem 3.13 we prove that if ρ = 1,
then Σn1,d has general moduli. By theorem 3.11 and corollary 1.7, we deduce that Σn1,d has the

expected number of moduli for every d ≤
(n−1

2

)
− 1. Finally, lemma 4.2 proves that, under

the less restrictive hypotheses ρ − k ≤ 0 and g ≥ 2, if Σ is an irreducible component of Σnk,d
with expected number of moduli, then there exist irreducible components Σ′ of Σnk−1,d and Σ′′

of Σnk,d−1, having the expected number of moduli and containing Σ. By using this lemma, we

prove that Σ6
6,0 has at least an irreducible component with expected number of moduli equal to

seven and whose general element corresponds to a sextic with six cusps not on a conic. Finally,
in corollary 4.7 we find that also the irreducible component of Σ6

6,0 parametrizing sextics with
six cusps on a conic has the expected number of moduli. We don’t know examples of complete
irreducible families of plane curves with nodes and cusps with number of moduli smaller than
the expected.
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2. On the existence of certain families of plane curves with nodes and cusps in
sufficiently general position

It is well know that there exist values of n, d and k such that there are no irreducible plane
curves of degree n with d nodes and k cusps, (see for instance remark 3.19 of chapter 2). As
far as we know, the existence problem of Σnk,d is still open. We known that Σnk,d is irreducible

and not empty for k ≤ 3 and k + d ≤
(n−1

2

)
, (see corollary 3.18 and theorem 3.21 of chapter

2). In this section we are interested in a little more specific existence problem. We shall prove
the existence of plane curves with nodes and cusps as singularities whose singular points are
in sufficiently general position to impose independent linear conditions to a linear system of
plane curves of a given degree. Notice that, if we fix a set S of general points of the plane, it
is not always true that there is an irreducible and reduced plane curve with nodes and cusps
only at S. For example, it is classically known that the only sextic with nine nodes P1, ..., P9

in general position in the plane is the double cubic determined by P1, ..., P9, (see [1] and [5]).

On the other hand, it has been proved in [5], that if 3d ≤ n(n+3)
2 , n 6= 6 and d 6= 9, however

we choose d points in general position in the plane, there exists an irreducible plane curve of
degree n with nodes at these points and no further singularities.

Definition 2.1. A projective curve C ⊂ Pr is said to be geometrically t-normal if the linear
series cut out on the normalization curve C̃ of C by the pull-back to C̃ of the linear system of
hypersurfaces of Pr of degree t is complete.

From a geometric point of view, a projective curve C ⊂ Pr is geometrically t- normal if

and only if the image νt,r(C) of C by the Veronese embedding νt,r : Pr → P(
r+t
t ) of degree t, is

not a projection of a not degenerate curve living in a higher dimensional projective space. We
shall say that a curve is geometrically linearly normal (g.l.n. for short) if it is geometrically
1-normal. Every such a curve C is not a projection of a curve lying in a projective space of
bigger dimension.

Lemma 2.2. Let Γ ⊂ P2 be an irreducible and reduced plane curve of degree n and genus g
with at most nodes and cusps as singularities. Let t be an integer such that n− 3− t < 0, then
Γ is geometrically t-normal if and only if it is smooth. On the contrary, if n − 3 − t ≥ 0, the
plane curve Γ is geometrically t-normal if and only if its singular points impose independent
linear conditions to plane curves of degree n− 3− t.

Proof. Let φ : C → Γ be the normalization of Γ and let ∆ be the adjoint divisor of φ. We
denote by H the divisor on C which is the pullback of the divisor cut out on Γ by a general
line. The plane curve Γ is geometrically t-normal if and only if, by definition,

h0(C,OC (tH)) = h0(P2,OP2(t))− h0(P2,IΓ(t))

where IΓ is the ideal sheaf of Γ in P2. By Riemann-Roch theorem, Γ is geometrically t-normal
if and only if

(42) h0(C,OC (KC − tH)) = −nt+ g − 1 +
(t+ 1)(t+ 2)

2
− h0(P2,IΓ(t)),

where g is the geometric genus of Γ and KC is the canonical divisor of C. On the other hand,
from section 1 of chapter 1, we have that H0(C,OC (KC−tH)) = H0(C,OC ((n−3−t)H)(−∆)),
where ∆ is the adjoint divisor of φ. If n− 3− t < 0 then h0(C,OC ((n− 3− t)H) = 0 and Γ is
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geometrically t-normal if and only if

h0(P2,OP2(t))− h0(P2,IΓ(t)) = nt− n2 − 3n

2
− δ,

where δ =
(n−1

2

)
− g = deg(∆)/2. This equality is verified if and only if δ = 0, i.e. Γ is smooth.

If n− 3 ≥ t, h0(P2,IΓ(t)) = 0 and (42) is verified if and only if

h0(C,OC ((n− 3− t)H)(−∆)) = h0(P2,OP2(n− 3− t))− δ.
On the other hand, if φ̃ : S → P2 is the blowing-up of the plane at the singular locus of Γ,
then the strict transform of Γ with respect to φ̃ coincides with the normalization curve C of
Γ. Moreover, still denoting by H the pullback to S of the general line of P2 and denoting by∑

iEi the pullback of the singular locus of Γ with respect to φ̃, we have the following exact
sequence

0→ OS(−(3 + t)H)→ OS(n− 3− t)(−
∑

i

Ei)→ OC(n− 3− t)(−∆)→ 0

from which we deduce that

h0(C,OC ((n − 3− t)H)(−∆)) = h0(S,OS(n− 3− t)(−
∑

i

Ei)) = h0(P2,OP2(n− 3− t)⊗A)

where A is the ideal sheaf of adjoint plane curves to Γ, i.e. the ideal sheaf of the plane curves
passing through the singular points of Γ. �

Remark 2.3. Notice that, if an irreducible and reduced plane curve Γ of degree n with
only nodes and cusps as singularities is geometrically t-normal, with t ≤ n − 3, then it is
geometrically r-normal for every r ≤ t. Indeed, by denoting with A the ideal sheaf of adjoint
plane curves to Γ, if we consider the following exact sequence

0→ OP2(n − t− 3)⊗A→ OP2(n− t− 3)→ OP2/A→ 0,

the plane curve Γ is geometrically t-normal if and only if the induced map

H0(P2,OP2(n− t− 3))→ H0(P2,OP2/A) = Cd+k,

where k+ d =
(
n−1
2

)
− g, is surjective. Since |OP2(n− r− 3)| k |OP2(n− t− 3)| for every r ≤ t,

the valuation map
H0(P2,OP2(n − r − 3))→ H0(P2,OP2/A)

is surjective too, and hence Γ is geometrically r-normal for every r ≤ t.
Theorem 2.4. Let Σnk,d be the variety of irreducible and reduced plane curves of degree n

with d nodes and k cusps. Suppose that d, k, n and t are such that

d+ k ≤ n2 − (3 + 2t)n+ 2 + t2 + 3t

2
= h0(OP2(n − t− 3))(43)

t ≤ n− 3 if k = 0,(44)

k ≤ min
(
6, h0(OP2(n− t− 3))

)
if t = 1, 2 and(45)

k ≤ min
(
6 + [

n− 8

3
], h0(OP2(n− 6))

)
if t = 3,(46)

where [−] is the integer part of −. Then the variety Σnk,d is not empty and there is at least one
irreducible component W ⊂ Σnk,d whose general element parametrizes a geometrically t-normal
plane curve.
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Before proving the previous theorem, we want to consider the example of the algebraic
system of reduced and irreducible plane curves Σ6

6,0 of degree six with six cusps. By example
3.15 and remark 3.20 of chapter 2 we know that it contains at least two irreducible components
Σ1 and Σ2. The general point of Σ1 parametrizes a sextic with six cusps on a conic, whereas
the general element of Σ2 corresponds to a sextic with six cusps not on a conic. Note that, by
the previous lemma the general element of Σ2 parametrizes a geometric linearly normal sextic,
unlike the general element of Σ1. Then, theorem 2.4 could be useful to show the reducibility
of some variety Σnk,d, with k ≤ 6, if one knows the existence of a component whose general
element parametrizes a non geometrically t-normal curve, with t ≤ 3.

In the case of k = 0 and t = 1, theorem 2.4 has been proved by Sernesi in [37], section 4.
The case k = 0 and t ≤ n− 3 is already contained in [7]. To show theorem 2.4, we proceed by
induction on the degree n and on the number of nodes and cusps of the curve. The geometric
idea at the base of the induction on the degree of the curve is, mutatis mutandis, the same as
that of Sernesi.

Proof of the theorem 2.4. First of all, we observe that, if t is an arbitrary positive
integer such that n− 3− t ≥ 0, and if W ⊂ Σnk,d is an irreducible component of Σnk,d such that

there exists a point [C] ∈ W which parametrizes a geometrically t-normal curve with only k
cusps and d nodes as singularities, then this is true for the general element ofW . In fact, under
the hypotheses (43), (45) and (46), every component of Σnk,d has the expected dimension equal

to 3n− k − 1 + g, where g =
(n−1

2

)
− k − d, and every point which parametrizes an irreducible

curve with only k cusps and d nodes as singularities, is a smooth point for Σnk,d, (see corollary

3.13 and corollary 3.23 of chapter 2). Then, let ∆ ⊂ Σnk,d be a general complete curve through

[C]. Consider a local parametrization of ∆ in [C], which we will still denote by ∆. Taking the
restriction to ∆ of the tautological family

{(P, [C]) such that P ∈ C} ⊂ P2 × Σnk,d,

we obtain a family of irreducible plane curves with k cusps and d nodes

φ : C → ∆

parameterized by a smooth curve, whose special fibre is C0 = C. By theorem 3.3 of chapter 1,
normalizing C we obtain a family of smooth curves

φ̃ : C̃ → ∆

of geometric genus g,

C̃ → C ⊂ P2 ×∆

ց ւ
∆

whose fibres are the normalizations the curves of family C. If Hz is the pullback to C̃z := φ̃−1(z)
of a general line H ⊂ P2, by using semicontinuity theorem, we have

h0(C̃z,OC̃z (tHz)) ≤ h0(C̃0,OC̃0(tH0))

= h0(P2,OP2(t)).
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Then Cz := φ−1(z) is geometrically t-normal. Similarly, if the theorem is true for fixed n,
t ≤ n− 3, k as in (45) or in (46) and k+ d as in (43), then the theorem is true for n, t and any
k′ ≤ k and d′ ≤ d+ k − k′. Indeed, by the proof of lemma 3.17 of the section 2, if k ≤ 6 < 3n,
for any subset S of k′ ≤ k cusps of C, there exists a family of plane curves

C ⊂ P2 × Σnk′,d′

φ↓
∆ ⊂ Σnk′,d′

of degree n and geometric genus g, parametrized by a complete curve ∆ ⊂ Σnk′,d′ , with special
fibre C0 = Γ and whose general fibre Cz with a cusp in a neighborhood of any cusp of Γ in S,
and at most a node in a neighborhood of the other singular points of Γ. The curve ∆ may
be not regular at [C]. But this is not a problem. In fact, normalizing ∆ and considering the

pull-back of C over the obtained smooth curve ∆̃, and still normalizing this family, we obtain
a family of curves

φ̃ : C̃ → ∆

whose general fibre is the normalization of the general fibre of C, and whose special fibre C̃0 is a
partial normalization of the original curve C. By the geometric t-normality of C, with obvious
notation, we have that h0(C̃0,OC̃0(t)) = h0(P2,OP2(t)). Applying the semicontinuity theorem

to C̃, we have that the general fibre of C is geometrically t-normal. Finally, it’s enough to show
the theorem when the equality holds in (45), (46) and (43).

First of all we consider the case k = 0. We will show the statement for any fixed t and
by induction on n. Let, then t ≥ 1 and n = t + 3. In this case the equality holds in (43)
if d = 1 = h0(P2,OP2). Since one point imposes independent linear conditions to regular
functions, by using lemma 2.2, we find that every irreducible plane curve of degree n = t + 3
with one node and no more singularities is geometrically t-normal. So, the first step of the
induction is proved. Suppose, now, the theorem is true for n = t + 3 + a and let [Γ] ∈ Vn,g
be a point corresponding to a geometrically t-normal curve with a2+3a+2

2 nodes. Let D be a
line which intersects transversally Γ and let P1, ..., Pt+1 be t + 1 marked points of Γ ∩ D. If
Γ′ = Γ ∪D ⊂ P2, then P1, ..., Pt+1 are nodes for Γ′. Let C → Γ be the normalization of Γ and
C ′ → Γ′ the partial normalization of Γ′, obtained by smoothing all singular points of Γ′, except
P1, ..., Pt+1. We have the following exact sequence of sheaves on C ′,

(47) 0→ OD(tH)(−P1 − ...− Pt+1)→ OC′(tH)→ OC(tH)→ 0,

where H is the pullback by C ′ → Γ′ of the generic line in P2. Since
deg(OD(tH)(−P1 − ...− Pt+1)) < 0,

we get that
h0(D,OD(tH)(−P1 − ...− Pt+1)) = 0

and so

h0(C ′,OC′(tH)) ≤ h0(C,OC(tH))

= h0(P2,OP2(tH)).

But h0(C ′,OC′(tH)) ≥ h0(P2,OP2(tH)) and hence h0(C ′,OC′(tH)) = h0(P2,OP2(tH)). Now,
from the lemma 3.17 of chapter 2, we can obtain Γ′ as the limit of a family of irreducible plane
curves

ψ : C → ∆
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of degree n+ 1 = t+ a+ 4 with

a2 + 3a+ 2

2
+ n− t− 1 =

(a+ 1)2 + 3(a+ 1) + 2

2
= h0(P2,OP2(n + 1− t− 3))

nodes specializing to nodes of Γ′ different from the marked points P1, ..., Pt+1. Normalizing
C, we obtain a family whose special fibre is exactly C ′, and we conclude the induction on the
degree via semicontinuity as before.

Now we consider the case t = 1, 2 or 3 and k as in (45) and in (46). Suppose the theorem
is true for n and let [Γ] ∈ Σnk,d be a general point in one of the irreducible components of Σnk,d.
Then, let D be a smooth plane curve of degree t if t = 1, 2 or an irreducible cubic with a
cusp if t = 3. By the generality of Γ, we may suppose that D transversally intersects Γ. Let
P1, ..., Pt2+1 be t2 + 1 fixed points of Γ ∩D. If Γ′ = Γ ∪D, then P1, ..., Pt2+1 are nodes for Γ′.
Let C → Γ be the normalization of Γ and C ′ → Γ′ the partial normalization of Γ′, obtained
by smoothing all singular points except P1, ..., Pt2+1. We have the following exact sequence of
sheaves on C ′,

0→ OD(tH)(−P1 − ...− Pt2+1)→ OC′(tH)→ OC(tH)→ 0,

where tH is the pullback by C ′ → Γ′ of the general line in P2. Since
deg(OD(tH)(−P1 − ...− Pt2+1)) < 0,

we have that
h0(OD(tH)(−P1 − ...− Pt2+1)) = 0

and so

h0(C ′,OC′(tH)) ≤ h0(C,OC(tH))

= h0(P2,OP2(tH)).

But, h0(C ′,OC′(tH)) ≥ h0(P2,OP2(tH)). So, h0(C ′,OC′(tH)) = h0(P2,OP2(tH). Now, from
what we showed in section 2, we have Γ′ ∈ Σn+t

k+ t2−3t+2
2

,d+nt−t2−1
. In particular, we can obtain

Γ′ as limit of a family of irreducible plane curves

φ : C → ∆

of degree n + t with d + nt − t2 − 1 = (n+t)2+(3+2t)(n+t)+t2+3t+2
2 nodes specializing to nodes

of Γ′ different to P1, ..., Pt2+1, and k + t2−3t+2
2 cusps specializing to cusps of Γ. Normalizing

C, we obtain a family whose special fibre is exactly C ′, and we conclude the inductive step
by semicontinuity theorem, as before. Now we have to show the first step of the induction.
For t = 1 the induction begins with the cases (n, k) = (4, 1), (5, 3), (6, 6). Trivially, if n = 4
and k = 1 one point imposes independent conditions to the linear system of regular functions.
If n = 5 and k = 3 we have to show that there are irreducible quintics with three cusps not
on a line. We already observed that there exist quintics with three cusps as singularities, see
corollary 3.18 of chapter 2. By Bezout theorem the three cusps of such a plane curve can’t
lie on a line. If n = k = 6, we proved that there exist sextics with six cusps which do not
lie on a conic, see example 3.20 of chapter 2. For t = 2 we have to show the theorem for
(n, k) = (5, 1), (6, 3), (7, 6), (8, 6). If n = 5, then k = 1 as before. When n = 6 and k = 3
we have that n − 3 − t = 1. Now, three points impose independent linear conditions to the
lines if and only if they are not collinear. To show that there exists an irreducible sextic with
three cusps not on a line, consider a rational quartic C4 with three cusps, (see corollary 3.18
of chapter 2 for the existence). By Bezout theorem, the three double points of C4 can’t be
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aligned. Then consider a sextic C6 which is union of C4 and a conic C2 which intersects C4

transversally. By lemma 3.17 of chapter 2, there exist a one-parameter family G → ∆ of sextics,
whose special fibre is equal to C6 and whose general fibre Gt is an irreducible sextic with three
cusps at a neighborhood of the cusps of C4 and no further singularities. The three cusps of Gt
are not aligned. For n = 7 and k = 6 we argue in the previous case, by using a sextic C6 with
six cusps not on a conic and a line R with intersects C6 transversally. Similarly for n = 8 and
k = 6. For t = 3 we have to show the theorem for (n, k) = (6, 1), (7, 3), (8, 6), (9, 6), (10, 6).
If n = 6 and k = 1 we argue as in the previous cases. If n = 7 and k = 3, we have to show
the existence of an irreducible plane curve of degree 7 with three cusps not on a line. We
can obtain such a plane curve by a reducible septic which is union of a geometrically linearly
normal quintic with three cusps and an irreducible conic intersecting transversally. If n = 8
and k = 6, we have to show the existence of an irreducible plane curve of degree 8 with six
cusps not on a conic. We can construct this curve as before by using a geometrically linearly
normal sextic and a conic intersecting transversally. The cases (n, k) = (9, 6), (10, 6) can be
showed similarly. �

Remark 2.5. We observe that a result like theorem 2.4 can be found for every fixed t. But
we are not able to find a result which works for every t ≤ n−3 when k > 0. Moreover we notice
that the inequality (43) of the previous theorem can’t be improved. Indeed, if g =

(n−1
2

)
− k− d,

then k + d > h0(P2,OP2(n − 3 − t)) if and only if g < 2tn−t2−3t
2 . On the other hand, by using

the same notation of theorem (2.4), if g < 2tn−t2−3t
2 , then, by Riemann-Roch theorem, we have

that h0(C,OC (t)) ≥ tn − g + 1 > t2+3t
2 + 1 = h0(P2,OP2(t)). On the contrary, the inequalities

(45) and (46) are not sharp. To see this, we can consider the example of curves of degree ten.
Theorem 2.4 ensure the existence of geometrically linearly normal irreducible plane curves of
degree ten with k ≤ 6 cusps and at most nodes as other singularities. But by using the same
ideas of theorem 2.4 it is simple to prove the existence of geometrically linearly normal plane
curves of degree ten with nodes and k ≤ 9 cusps. It is enough to consider a sextic Γ6 with six
cusp not on a conic and a rational quartic Γ4 with three cusps intersecting Γ6 transversally.
We choose five points P1, . . . , P5 of Γ4 ∩ Γ6. If Γ′

6 and Γ′
4 are the normalization curves of Γ6

and Γ4 respectively and C ′ is the partial normalization of Γ6 ∪ Γ4 obtained by normalizing all
its singular points except P1, . . . , P5, by considering the following exact sequence

0→ OΓ′
4
(1)(−P1 − · · · − P5)→ OC′(1)→ OΓ′

6
(1)→ 0

we find that h0(C ′,OC′(1)) = 3. The statement follows by the lemma 3.17 on page 31 and by
semicontinuity theorem, as in the proof of theorem 2.4. The bound on the number of cusps of
theorem 2.4 can be improved also for t = 2 or t = 3. For example, theorem 2.4 ensure the
existence of geometrically three normal curve of degree 12 with k ≤ 6 and nodes as further
singularities. But, by considering a geometrically three normal curve of degree 8 with six cusps
and a quartic with three cusps and arguing as before, we can find geometrically three normal
irreducible plane curve of degree twelve with nodes and k ≤ 9 cusps.

3. Examples of families with expected number of moduli

First of all we find sufficient conditions for the existence of complete families of plane curves
of degree n with d nodes and k cusps with the right number of moduli.

Proposition 3.1. Let Σ ⊂ Σnk,d, with 0 ≤ k < 3n, be an irreducible component of Σnk,d
and let [Γ] ∈ Σ be a general element, corresponding to a plane curve Γ with normalization map
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φ : C → Γ. Let H ⊂ Γ be the divisor cut out on Γ from the general line of P2 and KC the
canonical divisor of C. Suppose that:

(1) Γ is geometrically linearly normal, i.e. h0(C,φ∗(H)) = 3,

(2) the Brill-Noether map

µo,C : H0(C,φ∗(H))⊗H0(C,KC − φ∗(H))→ H0(C,KC )

of the pair (C,H), is surjective.

Then Σ has the expected number of moduli equal to 3g − 3 + ρ− k.
Proof. Let Γ be a plane curve which verifies (1) and (2). We recall that, by the hypothesis

k < 3n, we have that Σ is smooth at [Γ] of dimension 3n+g−1−k. Now, consider the following
exact sequence of sheaves on C

(48) 0→ ΘC
φ∗→ φ∗ΘP2 → Nφ → 0

where ΘC and ΘP2 are respectively the tangent sheaf on C and on P2,
φ∗ : ΘC → φ∗ΘP2

is the differential map associated to φ and Nφ is the normal sheaf to φ. Since k < 3n, we have
that H1(C,Nφ) = 0 and we deduce the following long exact sequence

0→ H0(C,ΘC)→ H0(C,φ∗ΘP2)→ H0(C,Nφ) δC→ H1(C,ΘC)→ H1(C,φ∗ΘP2)→ 0

By theorem 4.3 of chapter 1, the vanishing H1(C,Nφ) = 0 is a sufficient condition for the
existence of a universal deformation family

C φ̃→ P2
π ↓
B

of the normalization map φ. Moreover, denoting by Vn,g = Σn0,d+k the Severi variety of irre-

ducible plane curves of degree n and genus g =
(
n−1
2

)
− d − k, it is naturally defined a 1 : 1

map
n : B → Vn,g

sending every point x ∈ B to the point of Vn,g corresponding to the image curve of the morphism

φ̃|π−1(x). By Horikawa deformation theory, the tangent space to B at the point 0, corresponding

to the normalization map φ : C → Γ, is naturally identified with H0(C, Nφ). In particular B
is smooth at 0. Moreover, if we denote by Bk = n−1(Σ) the locus of points of B corresponding
to a morphism with k ramification points, then, by lemmas 7.1 and 7.3 of chapter 2, under the
isomorphism T0B ⋍ H0(C,Nφ), the tangent space to n−1(Σ) at 0 is identified with a subspace
W of H0(C,Nφ) of codimension k such that W ∩ H0(C,Kφ) = 0, where Kφ is the torsion
subsheaf of Nφ. By proposition 7.8 of chapter 2, we deduce that the Severi variety Vn,g is
singular at [Γ], the universal deformation space B is a desingularization of Vn,g at [Γ] and,
finally, the differential map dn : T0B → T0Vn,g induces an isomorphism between W and the
tangent space T[Γ]Σ to Σ at [Γ]. Going back to the number of moduli of Σ, we recall that the

space H1(C,ΘC) is canonically identified with the tangent space T[C]Mg to Mg at the point

associated to the normalization C of Γ. The coboundary map δC : H0(C,Nφ) → H1(C,ΘC)
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maps the Horikawa class of an infinitesimal deformation of φ to the Kodaira- Spencer class of
the corresponding infinitesimal deformation of C. So, δC |W is the differential map at the point
0 ∈ B of the moduli map ΠΣ n : Bk = n−1(Σ) 99KMg. Since the point [Γ] is general in Σ, and

recalling the isomorphism dn : W
∽→ T[Γ]Σ, the

number of moduli of Σ = dim(δC (W )).

Now, from the exact sequence (48), we have that

dim(δC(H
0(C,Nφ)) = 3g − 3− h1(C,φ∗ΘP2).

Moreover, from the pull-back to C of the Euler exact sequence

(49) 0→ OC → OC(φ∗(H)) ⊗ (H0(C,φ∗(H)))∗ → φ∗ΘP2 → 0

we get a map

· · · → H1(C,OC)
µ∗o,C→ H1(C,φ∗(H))⊗ (H0(C,φ∗(H)))∗ → H1(C,φ∗ΘP2)→ 0

which is the dual of the Brill-Noether map. In particular, we find an isomorphism

H1(C,φ∗ΘP2) ≃ coker(µ∗0,C) ≃ (ker(µ0,C))
∗

and we conclude that

(50) dim(δC(H
0(C,Nφ))) = 3g − 3− dim(ker(µ0,C)).

Notice that the previous equality is always true, also if Γ doesn’t verify (1) or (2) of the
statement. Moreover, if Γ is geometrically linearly normal, i.e. h0(C,φ∗(H)) = 3, we have that

ρ = 3n− 2g − 6 = dim(coker(µo,C))− dim(ker(µo,C)).

When µo,C is surjective, ρ = −dim(ker(µo,C)) and

(51) dim(δC(H
0(C,Nφ)) = 3g − 3 + ρ = dim(B)− 8 = dim(Vn,g)− 8.

Since the dimension of the fibre of the moduli map

ΠΣ ◦ n : B →Mg

has dimension at least equal to 8 = dim(Aut(P2), from (51) we deduce that the differential
map of ΠΣ ◦ n has maximal rank at 0. It follows that B is mapped toMg with general fibre
of dimension exactly equal to 8. In particular, dim((ΠΣ ◦ n)−1([C])) = 8. Equivalently, there
exist only finitely many g2n on C. It follows that there are only finitely many g2n on C mapping
C to the plane as a curve with k cusps and d nodes. Equivalently,

dim(δc(W )) = dim(ΠΣ(Σ)) = 3g − 3 + ρ− k.
�

Remark 3.2. Arguing as in the proof of the previous proposition, it has been proved in [37]
that, if Γ is a geometrically linearly normal plane curve with only d nodes as singularities and
the Brill-Noether map µo,C of the normalization morphism of Γ is injective, then Σ = Σn0,d has
general moduli. When Γ is an irreducible plane curve, with nodes and 0 < k < 3n cusps as
singularities, verifying the hypothesis (1) of the proposition 3.1 but such that µo,C is injective,
we may only conclude that ΠVn,g ◦ n is dominant with surjective differential map at [Γ]. So
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dim(Π−1
Vn,g

([C])) = ρ+8. But this is not useful to compute the dimension of δC(W ) = δC(T[Γ]Σ).

However, in this case we get that

δC(T[Γ]Σ) + δC(H
0(C,Kφ)) = δC(H

0(C,Nφ)) = H1(C,ΘC).

Then, by using that dim(δC(H
0(C,Kφ))) ≤ k and by recalling that if k < 3n the number of

moduli of Σnk,d is at most the expected one (see section 1), we find that

3g − 3− k ≤ number of moduli of Σ ≤ 3g − 3 + ρ− k.
Remark 3.3. Notice that, if a plane curve Γ of genus g verifies the hypotheses (1) and

(2) of the previous proposition, then the Brill-Noether number ρ(2, g, n) is not positive and, in
particular, g ≥ 2. We don’t know examples of complete irreducible families Σ ⊂ Σnk,d with the

expected number of moduli whose general element [Γ] corresponds to a curve Γ of genus g, with
ρ(2, g, n) ≤ 0, which doesn’t verify properties (1) and (2). But we mean that, also under the
hypothesis ρ ≤ 0, the properties (1) and (2) are not necessary conditions in order that Σ has
the expected number of moduli. Indeed, if h0(C,OC (1)) = 3, and Σ has the expected number of
moduli, then, it may happen the dim(G2

n(C)) = dim(coker(µo,C )) > 0, but on C there are only
a finite number of g2n mapping C to the plane as a curve with d nodes and k cusps.

Definition 3.4. A coherent sheaf F on Pr is said to be m-regular if and only if

hi(Pr,F(m− i)) = 0, for any i > 0.

Proposition 3.5 (Castelnuovo, Mumford). Let F be a coherent sheaf on Pr. Then, if F is
m-regular, we have that:
1) the maps

H0(Pr,F(l − 1)) ⊗H0(Pr,OPr(1))→ H0(Pr,F(l))
are surjective for any l > m; and
2) H i(Pr,F(l)) = 0, for i > 0, l + i ≥ m.

Lemma 3.6 ([7], Corollary 3.4). Let Γ be an irreducible plane curve of degree n with only
nodes and cusps as singularities and let φ : C → Γ be the normalization morphism of Γ.
Suppose that Γ is geometrically 2-normal, i.e. h0(C,OC (2)) = 6, where OC(1) is the sheaf on
C associated to the pull-back of the hyperplane section of Γ. Then the Brill-Noether map

µo,C : H0(C,OC (1))⊗H0(C,ωC(−1))→ H0(C,ωC)

is surjective, where ωC is the canonical sheaf of C.

Proof. By lemma 2.2, the curve Γ is geometrically 2-normal if and only if the scheme
N of the singular points of Γ imposes independent linear conditions to the linear system
H0(P2,OP2(n− 5)) of plane curves of degree n− 5, i.e. the evaluation map

H0(P2,OP2(n− 5))→ Cd+k

is surjective. Since H0(P2,OP2(n− 5)) ⊂ H0(P2,OP2(n− 4)), also the evaluation map

H0(P2,OP2(n− 4))→ Cd+k

is surjective, and, still using lemma 2.2, we get that h0(C,OC (1)) = 3, i.e. Γ is geometrically
linearly normal. Now, denote by IN |P2 the ideal sheaf of N . By using the terminology intro-
duced in the definition 3.4, we have that the curve Γ is geometrically 2-normal if and only if
the ideal sheaf IN |P2(n− 4) is 0-regular. Indeed, since h2(P2,IN |P2(n− 6)) = 0, the ideal sheaf



76 3. ON THE NUMBER OF MODULI ...

IN |P2(n − 4) is 0-regular if and only if h1(P2,IN |P2(n − 5)) = 0. On the other hand, by the
standard exact sequence

0→ IN |P2(n− 5)→ OP2(n− 5)→ ON → 0

we have that h1(P2,IN |P2(n − 5)) = 0 if and only if Γ is geometrically 2-normal. Therefore
IN |P2(n− 4) is 0-regular and, by setting l = 1 and r = 2 in the proposition 3.5, we deduce that
the natural map

H0(P2,IN |P2(n− 4)) ⊗H0(P2,OP2(1))→ H0(P2,IN |P2(n− 3))

is surjective. On the other hand, by section 1 of chapter 1, there is the following commutative
diagram

H0(P2,OP2(1)) ⊗ H0(P2,IN |P2(n− 4)) → H0(P2,IN |P2(n− 3))
↓ ↓ ↓

H0(C,OC(1)) ⊗ H0(C,ωC(−1))
µo,C→ H0(C,ωC)

where the left-hand vertical arrow and the middle vertical arrow are surjective. Since Γ is
geometrically linearly normal, the left-hand vertical arrow is bijective and hence the Brill-
Noether map µo,C is surjective too. �

Corollary 3.7. Let Σ ⊂ Σnk,d, with 0 ≤ k < 3n, be an irreducible component of Σnk,d, such

that the general point [Γ] ∈ Σ corresponds to a geometrically 2-normal plane curve. Then Σ
has the expected number of moduli equal to 3g − 3 + ρ− k.

Proof. It follows from proposition 3.1 and lemma 3.6. �
In order to produce examples of families of plane curves with nodes and cusps with the

expected number of moduli, we study how increases the rank of the Brill-Noether map by
smoothing a node or a cusp of the general curve of the family.

Let Σ ⊂ Σnk,d, with n ≥ 5, be an irreducible component of Σnk,d, let [Γ] ∈ Σ be a general
point of Σ and let φ : C → Γ be the normalization of Γ. Consider the multiplication map

µo,C : H0(C,OC (1)) ⊗H0(C,ωC(−1))→ H0(C,ωC),

where OC(1) is the sheaf on C associated to the pull-back of the linear series cut out on Γ by
the lines of P2, and ωC is the canonical sheaf of C. Choose a singular point P ∈ Γ and denote
by φ′ : C ′ → Γ the partial normalization of Γ obtained by smoothing all singular points of Γ,
except the point P . If ωC′ is the dualizing sheaf of C ′ and

µo,C′ : H0(C ′,OC′(1)) ⊗H0(C ′, ωC′(−1))→ H0(C ′, ωC′),

is the natural multiplication map, we have the following result.

Lemma 3.8. If h0(C,OC (1)) = 3, and the geometric genus g of C is such that g > n− 2,
with n ≥ 5, then rk(µo,C′) ≥ rk(µo,C) + 1. In particular, if h0(C,OC (1)) = 3, n ≥ 5 and µo,C
is surjective, then also µo,C′ is surjective.

Proof of lemma 3.8. Let ψ : C → C ′ be the normalization map.

C
ψ→ C ′

φց ւ φ′

Γ
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We recall that, if we set φ∗(P ) := p1 + p2 when P is a node and φ∗(P ) = 2φ−1(P ) when P is a
cusp, then the dualizing sheaf of C ′ is a subsheaf of ψ∗(ωC(φ∗(P ))), (see page 12 of this paper
or [21], p.80). More precisely, a local section η of ψ∗(ωC(φ∗(P ))), as section of ωC(φ

∗(P )), is
a section of ωC′ , if and only if Resψ−1(P )η = 0 if P is a cusp and Resp1η +Resp2η = 0, if P is
a node of Γ. We deduce the following exact sequence

(52) 0→ ωC′ → ψ∗ωC(φ∗(P ))→ CP → 0

where CP is the skyscraper sheaf on C with support at P . By the Residue Theorem, we have
that

H0(C ′, ωC′) ≃ H0(C,ωC(φ
∗(P ))).

Moreover, tensoring (52) by OC′(−1), we find the exact sequence

(53) 0→ ωC′(−1)→ ψ∗ωC(φ
∗(P ))(−1)→ CP → 0

from which we get an injective map H0(C ′, ωC′(−1)) → H0(C,ωC(φ
∗(P ))(−1)). On the other

and h0(C ′, ωC′(−1)) = h0(C,ωC(φ
∗(P ))(−1)) = g − n+ 3 and so

H0(C ′, ωC′(−1)) ≃ H0(C,ωC(φ
∗(P ))(−1)).

Moreover, from the hypothesis h0(C,OC(1)) = 3, we have thatH0(C,OC (1)) ≃ H0(C ′,OC′(1)) ≃
H0(P2,OP2(1)). Therefore, in the following commutative diagram

H0(C ′,OC′(1)) ⊗ H0(C ′, ωC′(−1))
µo,C′→ H0(C ′, ωC′)

↓ ↓
H0(C,OC (1)) ⊗ H0(C,ωC(−1)(φ∗(P )))

µ′o,C→ H0(C,ωC(φ
∗(P )))

where we denoted by µ′o,C the natural multiplication map, the vertical maps are isomorphisms.

In particular, rk(µo,C′) = rk(µ′o,C). In order to compute the rank of µ′o,C , we consider the
following commutative diagram

H0(C,OC(1)) ⊗ H0(C,ωC(−1))
µo,C→ H0(C,ωC)

F ↓ ↓ G
H0(C,OC(1)) ⊗ H0(C,ωC(−1)(φ∗(P )))

µ′o,C→ H0(C,ωC(φ
∗(P )))

where the vertical maps are injections. Notice that, since we supposed n ≥ 5, h0(C,OC (1)) = 3
and g > n − 2 ≥ 3, the sheaf OC(1) is special. We deduce that C is not hyperelliptic and,
chosen a basis of H0(C,ωC), the associated map C → Pg−1 is an immersion. On the contrary,
the sheaf ωC(φ

∗(P )) doesn’t define an immersion on C. Choosing a basis of H0(C,ωC(φ
∗(P ))

and denoting by Φ : C → Pg the associated map, this will be an immersion outside φ∗(P ). If
P is a node of C and φ∗(P ) = p1 + p2, the image of C to Pg, with respect to Φ, will have a
node at the image point Q of P1 and P2. If P ∈ Γ is a cusp, then Φ(C) will have a cusp at the
image point Q of φ−1(P ). The hyperplanes of Pg passing through Q cut out on C the canonical
linear series |ωC |. Moreover, if we denote by B ⊂ Pg the subspace which is the base locus of the
hyperplanes of Pg corresponding to Im(µ′o,C), then Q /∈ B. Indeed, B intersects the curve C

in the image of the base locus of |OC(1)| + |ωC(φ∗(P ))(−1)| := P(Im(µ′0,C)), which coincides

with the base locus of |ωC(φ∗(P ))(−1)|, since |OC(1)| is base point free. Now,
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h0(ωC(φ
∗(P ))(−1)) = h0(C,OC(1)(−φ∗(P ))) + 2g − 2 + 2− n− g + 1

= 3 + g − n
= h0(C,ωC(−1)) + 1.

Then φ∗(P ) is not in the base locus of |ωC(φ∗(P ))(−1)|, and so dim(< Q,B >Pg) = dim(B)+1.
Finally, we find that

rk(µo,C) = rk(Gµo,C) ≤ dim(Im(G) ∩ Im(µ′o,C))

≤ g + 1− dim(< B,Q >Pg)− 1

= g − 1− dim(B)

= rk(µ′o,C)− 1.

�
Corollary 3.9. Let Σ ⊂ Σnk,d be an irreducible component of Σnk,d, with n ≥ 5 and 0 ≤ k <

3n. Suppose that Σ has the expected number of moduli and that the general element [Γ] ∈ Σ
corresponds to a g. l. n. plane curve Γ of geometric genus g such that, if C → Γ is the
normalization of Γ, then the map µo,C is surjective. Then, for every k′ ≤ k and d′ ≤ d+k−k′,
there is at least an irreducible component Σ′ ⊂ Σnk′,d′, such that Σ ⊂ Σ′, the general element

[D] ∈ Σ′ corresponds to a g.l.n. plane curve D of geometric genus g′ with normalization
Dν → D and the Brill-Noether map µ0,Dν surjective. In particular, also Σ′ has the expected
number of moduli.

Proof. Let Γ be the curve corresponding to the general element [Γ] of Σ ⊂ Σnk,d, with cusps
at q1, . . . , qk and nodes at p1, . . . , pd. Since k < 3n, we can ”smooth independently nodes, cusps
and cusps to nodes” of Γ, (see corollary 3.17 of chapter 2 ), i.e. chosen arbitrarily k1 cusps,
say q1, . . . , qk1 among the k cusps of Γ, k2 cusps among qk1+1, . . . , qk and d′ nodes among the
nodes of Γ, there exists a family of plane curves G → ∆ of degree n, whose general element
Gt has d′ nodes, tending to the marked nodes of Γ, as Gt specializes to Γ, k1 cusps tending to
q1, . . . , qk1 , and k2 nodes tending to the second group of marked cusps of Γ. Suppose now k′ ≤ k
and d′ = d + k − k′. Let Σ′ be an irreducible component of Σnk′,d′ containing Σ. The general

element of Σ′ corresponds to a plane curve with the same geometric genus g of the plane curve
Γ, corresponding to the general element [Γ] of Σ. Let ∆ ⊂ Σ′ be a general curve of Σ′ passing
through [Γ] and let ∆′ be the normalization of ∆. We denote by C → ∆′ the pullback to ∆′ of
the tautological family of plane curves parametrized by ∆. Normalizing the total space C, we
get a family C′ → ∆′ of smooth curves of genus g whose fibres are the normalizations of the
respective fibres of C → ∆′. Since the special fibre C′0 := C of C′ is such that h0(C,OC (1)) = 3
and the map µo,C has maximal rank, by semicontinuity, if C′t is the general fibre of C′, then
h0(C′t,OC′

t
(1)) = 3 and the Brill-Noether map

H0(C ′
t,OC′

t
(1))⊗H0(C ′

t, ωC′
t
(−1))

µo,C′
t→ H0(C ′

t, ωC′
t
)

is surjective. In order to prove the statement in the general case, it is enough to show it under
the hypothesis k = k′ and d = d′ − 1 or k = k′ − 1 and d = d′. Let Σ′ be an irreducible
component of Σnk′,d′ containing Σ. In this case, if C′ → ∆′ is a family of curves constructed as
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before, the general fibre of it is a smooth curve of genus g+1 which is the normalization of the
plane curve corresponding to the general element [Γ′] of Σnk′,d′ . On the contrary, the special

fibre C′0 := C ′ is a partial normalization of Γ obtained by smoothing all the singular points
of Γ, except for a node or a cusp. By using the geometrically linear normality of C, we find
that h0(C ′,OC′(1))=3. Moreover, since the map µo,C has maximal rank, by lemma 3.8 also
the map µo,C′ has maximal rank equal to g + 1. The corollary follows by semicontinuity and
by proposition 3.1. �

The following lemma has been stated and proved by Sernesi in [37]. Actually, Sernesi
supposes that Γ has only nodes as singularities. But, since his proof works for plane curves Γ
with any type of singularities and, since we need it for curves with nodes and cusps, we state
the lemma in a more general form.

Lemma 3.10. ([37], lemma 2.3) Let Γ be an irreducible and reduced plane curve of degree
n ≥ 5 with any type of singularities. Denote by C the normalization of Γ. Suppose that
h0(C,OC (1)) = 3 and the Brill-Noether map

µo,C : H0(C,OC (1)) ⊗H0(C,ωC(−1))→ H0(C,ωC),

has maximal rank. Let R be a general line and let P1, P2 and P3 be three fixed points of Γ∩R.
We denote by C ′ the partial normalization of Γ′ = Γ ∪ R, obtained smoothing all the singular
points, except P1, P2 and P3. Then h0(C ′,OC′(1)) = 3 and, denoting by ωC′ the dualizing sheaf
of C ′, the multiplication map

µo,C′ : H0(C ′,OC′(1)) ⊗H0(C ′, ωC′(−1))→ H0(C ′, ωC′),

has maximal rank.

Proof. Consider the following exact sequence of sheafs on C ′

0→ OP1(1)(−P1 − P2 − P3)→ OC′(1)→ OC(1)→ 0

By using that h0(P1,OP1(1)(−P1−P2−P3)) = 0, we find that h0(C ′,OC′(1)) = h0(C,OC (1)) =
3. We have to prove that the map µ0,C′ has maximal rank. If h0(C ′, ωC′(−1)) ≤ 1, the map
µ0,C′ is obviously injective. We assume that h0(C ′, ωC′(−1)) > 1. Then, by using that the
arithmetic genus g′ of C ′ is equal to g′ = g + 2 and that, by Riemann-Roch theorem for
singular curves, we have that

h0(C ′, ωC′(−1)) = h0(C ′,OC′(1)) + 2g′ − 2− n− 1− g′ + 1 = g − n+ 3 = h0(C,ωC(−1)) + 1,

we conclude that h0(C,ωC(−1)) ≥ 1 and C is a not hyperelliptic curve of genus g > n− 2 ≥ 3.
Now, by the generality of R, we may assume that P1, P2 and P3 are nodes of C ′. Let, then,
n : C ∪R→ C ′ be the normalization map of C ′ and let p1, p2, p3 and q1, q2, q3 be respectively
the points of C and R over P1, P2, P3. We recall that the dualizing sheaf ωC′ of C ′ associates
to every open set U ⊂ C ′ the set of the rational one-form η on n−1(U) with at most simple
poles at the points pi and qi and such that Respiη + Resqiη = 0, for i = 1, 2, 3. Since, for
every triple a1, a2, a3 ∈ C such that a1 + a2 + a3 = 0, there is a rational one-form η on P1
with at most simple poles at q1, q2, q3 and such that Resqiη = ai, for i = 1, 2, 3, we get
that the natural restriction map ωC′ → ωC(p1 + p2 + p3) is surjective with kernel equal to
ωP1(q1 + q2 + q3)(−q1 − q2 − q3) = ωP1 . It follows the isomorphism

H0(C ′, ωC′) ≃ H0(C,ωC(p1 + p2 + p3)).
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Furthermore, by tensoring the exact sequence

o→ ωP1 → ωC′ → ωC(p1 + p2 + p3)→ 0

by OC′(−1), we find an isomorphism

H0(C ′, ωC′(−1)) ≃ H0(C,ωC(−1)(p1 + p2 + p3)).

Finally, in the commutative diagram below

H0(C ′,OC′(1)) ⊗ H0(C ′, ωC′(−1))
µo,C′→ H0(C ′, ωC′)

↓ ↓
H0(C,OC(1)) ⊗ H0(C,ωC(−1)(p1 + p2 + p3))

µ′o,C→ H0(C,ωC(p1 + p2 + p3))

the verticals maps are isomorphisms. Therefore, we conclude that rk(µo,C′) = rk(µ′o,C). In

order to prove that the map µ′o,C has maximal rank, let < g0, . . . , gg+1 > be a basis of

H0(C,ωC(p1 + p2 + p3)) and let Ψ : C → Pg+1 be the associated morphism. Notice that
Ψ is an embedding. Let us denote by C the image of C in Pg+1 with respect to Ψ. Let
B ⊂ Pg+1 be the base locus of the hyperplanes of Pg+1 cutting out on C the linear se-
ries |OC(1)| + |ωC(−1)(p1 + p2 + p3)| := P(Im(µ′o,C)). Since h0(ωC) = g, the linear span

< p1, p2, p3 >Pg+1 := r of the point pi in Pg+1 is a line. Moreover, since |ωC | is base point free,
we have that

r ∩ C = {p1, p2, p3}.
We claim that

B ∩ r = ∅.
Notice that, since |OC(1)| is base point free, the intersection of B with C coincides with the base
locus of |ω(−1)(p1+p2+p3)|. Since p1, p2 and p3 are not base points of |ωC(−1)(p1+p2+p3)|, we
deduce that pi /∈ B, for i = 1, 2, 3. Suppose that B intersects r at a pointQ different from p1, p2
and p3. Let H ∈ |OC(1)| be the divisor associated to a line different from R passing through
p1. Moreover let H ′ ∈ |ωC(−1)(p1 + p2 + p3)| be a divisor such that p1, p2, p3 /∈ Supp(H ′).
The divisor H +H ′ ∈ |OC(1)|+ |ωC(−1)(p1 + p2 + p3)| generates a hyperplane Λ in Pg+1. By
construction, Λ ⊃< B, p1 >Pg+1=< B, r >Pg+1 . It follows that

p2, p3 ∈ Λ ∩ C.
But this is not possible because

p2, p3 /∈ Supp(H) ∪ Supp(H ′) = Λ ∩ C.
Thus B ∩ r = ∅ and so, from the commutative diagram below

H0(C,OC (1)) ⊗ H0(C,ωC(−1))
µo,C→ H0(C,ωC)

F ↓ ↓ G
H0(C,OC (1)) ⊗ H0(C,ωC(−1)(p1 + p2 + p3))

µ′o,C→ H0(C,ωC(p1 + p2 + p3))

where the vertical map are injections, we deduce that

rk(µo,C) = rk(Gµo,C) ≤ dim(Im(G) ∩ Im(µ′o,C))

= g + 1− dim(< B, p1, p2, p3 >)

= g − 1− dim(B)(54)

= rk(µ′o,C)− 2.
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It follows that, if µ0,C is surjective then µ′o,C too is surjective. Now, suppose that µo,C is

injective but not surjective. In this case, we have that rk(µo,C) = rk(Gµo,C) = 3(g − n + 2).
Since h0(OC(1))h0(ωC(−1)(p1 + p2 + p3)) = 3(g − n + 3), the lemma follows if we show that
rk(µ′o,C) ≥ rk(µo,C) + 3. By (54), it is enough to prove that

Im(Gµo,C) ( Im(G) ∩ Im(µ′o,C).

In order to do this, we consider the following multiplication map

µ′′o,C : H0(C,OC (1)(−p1 − p2 − p3))⊗H0(C,ωC(−1)(p1 + p2 + p3))→ H0(C,ωC).

Since H0(C,OC(1)(−p1 − p2 − p3)) ⊂ H0(C,OC(1)), we have that

Im(Gµ′′0,C) ⊂ Im(µ′o,C) ∩ Im(G).

We shall prove that
Im(µ′′0,C) " Im(µo,C).

Let C → Pg−1 be the canonical map of C. Let A ⊂ P g−1 be the base locus of the hyperplanes
cutting out on C the minimal sum |OC(1)|+|ωC(−1)| := P(Im(µo,C)). We denote by p1+· · ·+pn
the divisor cut out on C by the line R in P2. Notice that A is contained in every (n− 3)-plane
ΛE′ :=< Supp(E′) >Pg−1 , for E′ ∈ |OC(1)| and, in particular, we have that

A ⊂< p1, . . . , pn > .

(Indeed, for every H ∈ |OC(1)|, we have that

< Supp(H) >Pg−1= ∩D∈|ωC(−H)| < Supp(H) ∪ Supp(D) >Pg−1

Observing that H + |ωC(−1)| ⊂ |OC(1)|+ |ωC(−1)|, we conclude that

A ⊂< Supp(H) ∪ Supp(D) >Pg−1

for every D ∈ |ωC(−H)|, and so A ⊂< Supp(H) >Pg−1). Now, by using that h0(p3+ · · ·+pn) =
h0(OC(1)(−p1 − p2)), we find that

< p3, . . . , pn >Pg−1=< p1, . . . , pn >Pg−1

and < p3, . . . , p̂i, . . . , pn >Pg−1 is an hyperplane of < p1, . . . , pn >Pg−1 , for i = 3, . . . , n. More-
over, since ∩i < p3, . . . , p̂i, . . . , pn >Pg−1= ∅, there is some i such that

A *< p3, . . . , p̂i, . . . , pn >Pg−1 .

On the other hand, by the generality of the divisor p1 + · · · + pn, by using general position
theorem, we can interchange any two of the pi’s by moving p1, . . . , pn in |OC(1)|. It follows
that

A *< p3, . . . , p̂i, . . . , pn >Pg−1 , for all i.

In particular, A is not contained in < p4, . . . , pn >. Now, the n − 4 plane < p4, . . . , pn > is
contained in the base locus Y of the family of hyperplanes in Pg−1 cutting out on C the linear
series

|Im(µ′′o,C)| = p4+· · ·+pn+|ωC(−p4−· · ·−pn)| = |OC(1)(−p1−p2−p3))|+|ωC(−1)(p1+p2+p3)|.
On the other hand, the dimension of the previous linear series is equal to

h0(C,ωC(−1)(p1 + p2 + p3)) = g − (n− 3).

Then, we have that dim(Y ) = n − 4 and Y =< p4, . . . , pn >. It follows that the linear series
|Im(µ′′o,C)| is not contained in |OC(1)|+ |ωC(−1)|. This completes the proof. �
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Theorem 3.11. Let Σnk,d be the algebraic system of irreducible plane curves of degree n ≥ 4

with k cusps, d nodes and geometric genus g =
(n−1

2

)
− k − d. Suppose that:

(55) n− 2 ≤ g equivalently k + d ≤ h0(P2,OP2(n− 4))

and

(56) k ≤ 6 +

[
n− 8

3

]
if 3n − 9 ≤ g and n ≥ 6,

(57) k ≤ 6 otherwise.

Then Σnk,d has at least one irreducible component Σ which is not empty and whose general

element [Γ] ∈ Σ parametrizes a geometrically linearly normal curve Γ such that the Brill-
Noether map of the pair (C,H), where C is the normalization of Γ and H denote the pull-back
to C of the hyperplane section of P2, has maximal rank. In particular, when ρ ≤ 0, the algebraic
system Σ has the expected number of moduli equal to 3g − 3 + ρ− k.

Proof. Suppose that (56) holds. Then, by observing that

g ≥ 3n− 9 if and only if k + d ≤ h0(P2,OP2(n − 6))

and by using theorem 2.4 for t = 3, we have that there exists an irreducible component Σ of
Σnk,d whose general element is a plane curve Γ geometrically 3-normal, i.e. a plane curve Γ with
nodes and cusps in sufficiently general position to impose independent linear conditions to the
linear system of plane curves of degree n− 6. In other words, the linear system cut out by the
cubics on the normalization C of Γ is complete. By remark 2.3, it follows that also the linear
systems cut out on C by the conics and the lines are complete. The statement follows from
corollary 3.7.

In order to prove the theorem under the hypothesis (57), we consider the following subcases:

(1) 2n− 5 ≤ g ≤ 3n− 9, i.e. h0(OP2(n− 6)) ≤ k + d ≤ h0(OP2(n− 5)) and n ≥ 5,

(2) n− 2 ≤ g ≤ 2n− 7 and n ≥ 5,

(3) g = 2n − 6 and n ≥ 4.

Suppose that (1) holds. By theorem 2.4 for t = 2, we know that, under this hypothesis,
there exists a nonempty component Σ ⊂ Σnk,d, whose general element is geometrically 2-normal.
We conclude as in the previous case, by corollary 3.7.

Now, suppose that g and n verify (2). We shall prove the theorem by induction on n and g.
Set g = 2n− 7− a, with a ≥ 0 fixed. Suppose that the theorem is true for the pair (n, g), with
n ≥ 7. We shall prove the theorem for (n+ 1, g + 2), observing that g + 2 = 2(n+ 1) − 7− a.
Notice also that, since g ≤ 2n−7 and n ≥ 7, then

(n−1
2

)
−g ≥ 6. Let Γ be a g. l. n. irreducible

plane curve of degree n and genus g = 2n − 7 − a with k ≤ 6 cusps, d nodes and no more
singularities. Let C be the normalization of Γ. Suppose that the Brill-Noether map µo,C has
maximal rank. Let R ⊂ P2 be a general line and let P1, P2 and P3 be three fixed points of
Γ∩R. Since the number of cusps of Γ is less than 3n, we can ”smooth independently the nodes
and cusps of Γ∪R”, see corollary 3.17 of chapter 2. In particular, [Γ∪R] ∈ Σn+1

k,d+n−3 and there

exists a family of irreducible plane curves

C → ∆
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of degree n+1, parametrized by a projective curve ∆ ⊂ Σn+1
k,d+n−3, whose special fibre C0 = Γ∪R

and whose general fibre is irreducible of genus g+2 with d+ n− 3 nodes specializing to nodes
of Γ ∪ R different to P1, P2 and P3 and k cusps specializing to cusps of Γ. Normalizing ∆
and C, we get a family of curves C′ → ∆′, parametrized by a smooth projective curve ∆′,
whose general fibre is the normalization of the general fibre of C → ∆ and whose special fibre
is exactly the partial normalization C ′ of Γ ∪R obtained by smoothing all the singular points,
except P1, P2 and P3. By lemma 3.10, h0(C ′,OC′(1)) = 3 and, denoting by ωC′ the dualizing
sheaf of C ′, the multiplication map,

µo,C′ : H0(C ′,OC′(1)) ⊗H0(C ′, ωC′(−1))→ H0(C ′, ωC′),

has maximal rank. By semicontinuity, we conclude that also the general curve Ct of the family
C → ∆ is geometrically linearly normal and the Brill-Noether map of the pair (C′t,H), whereH
is the pull-back to C′t of the general hyperplane section of Ct, has maximal rank. The induction
step is proved.

Now we prove the first step of induction for n ≥ 7. If n = 7, we get 0 ≤ a ≤ 2. Let a = 0,
then g = 2n − 7 − a = 7. Let Γ be a geometrically linearly normal irreducible plane curve
of degree n = 7, of genus g = n = 7 with k ≤ 6 cusps and nodes as other singularities, such
that no seven singular points of Γ lie on an irreducible conic. To prove that there exists such a
plane curve, notice that, by applying theorem 2.4 for t = 1, we find that, for any fixed k ≤ 6,
there exists a geometrically linearly normal irreducible sextic D of genus four with k cusps and
d = 6 − k nodes. Let R1, . . . , R6 be the singular points of D. Since the points R1, . . . , R6 of
D impose independent linear conditions to the conics, however we choose five singular points
Ri1 , . . . , Ri5 , with I = (i1, . . . , i5) ⊂ (1, . . . , 6), of D, there exists only one conic CI , passing
through these points. Let us set S =

⋃
I CI ∩D and let R be a line intersecting D transversally

at six points out of S. By Bezout theorem, no seven singular points of Γ′ = D ∪ R belongs
to an irreducible conic. Moreover, if D̃ is the normalization of D, if Q1, . . . , Q4 are four fixed
points of D ∩ R and D′ is the partial normalization of Γ′ obtained by smoothing the singular
points except Q1, . . . , Q4, then, by the following exact sequence

(58) 0→ OR(1)(−Q1 − · · · −Q4)→ OD′(1)→ OD(1)→ 0

we find that h0(D′, OD′(1)) = 3. It follows that every irreducible septic Γ obtained from Γ′

”by smoothing the nodes Q1, . . . , Q4”, is like we need. Let now C be the normalization of such
a plane curve Γ. We shall prove that ker(µo,C) = 0. Let ∆ ⊂ C be the adjoint divisor of the
normalization map φ : C → Γ. We recall that, if Γ has a cusp at each of points P1, . . . , Pk
and it has a node at every point Pk+1, . . . , P8, then ∆ =

∑k
i=1 2pi +

∑8
j=k+1(p

1
j + p2j ), where

pi = φ−1(Pi), for 1 ≤ i ≤ k, and {p1j , p2j} = φ−1(Pj), for k+1 ≤ j ≤ 8, (see section 1 of chapter

1). Since Γ is geometrically linearly normal, we have that

h0(C,ωC(−1)) = h0(C,OC(3)(−∆))) = g − n+ 2 = 2.

Then, by the base point free pencil trick, we find that

ker(µo,C) = H0(C,ω∗
C(B)⊗OC(2)),

whereB is the base locus of |ωC(−1) = OC(3)(−∆)|. Let F be the pencil of plane cubics passing
through the eight double points P1, . . . , P8 of Γ and let BF be the base locus of the pencil F .
Let Γ3 be the general element of F . Suppose that BF has dimension one. If BF contains a
line l, then, by Bezout theorem, at most three points among P1, . . . , P8, say P1, . . . , P3 can lie
on l and the other points have to be contained in the base locus of a pencil of conics F ′. Still
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using Bezout theorem, we find that also the curves of F ′ are reducible and the base locus of F ′

contains a line l′. But also l′ contains at most three points of P4, . . . , P6. It follows that there
is only one cubic through P1, . . . , P8. This is not possible by construction. Suppose that BF
contains an irreducible conic Γ2. By Bezout theorem, at most seven points of P1, . . . , P8 may
lie on Γ2. On the other hand, since dim(F) = 1, there are exactly seven points of P1, . . . , P8,
say P1, . . . , P7, on Γ2 and the general cubic Γ3 of F is union of Γ2 and a line passing through
P8. Since, by construction, no seven singular points of Γ lie on a conic, also in this case we get
a contradiction. So the general element Γ3 of F is irreducible. Still using Bezout theorem, we
find that Γ3 is smooth and F has only an other base point Q. We consider the following cases:
a) Q doesn’t lie on Γ;
b) Q lies on Γ, but Q 6= P1, . . . , P8;
c) Q is infinitely near to one of the points P1, . . . , P8, say Pî, i.e. the cubics of F have at Pî
the same tangent line l, but l is not contained in the tangent cone to Γ at Pî;
d) Q is like in the case c), but l is contained in the tangent cone to Γ at Pî.
Suppose that the case a) or c) holds. Thus B = 0 and

ker(µo,C) = H0(C,ω∗
C ⊗OC(2)) = H0(C,OC (−2)(∆)).

By Riemann-Roch theorem, h0(C,OC (−2)(∆)) = h0(C,OC (6)(−2∆))−4. In order to compute
h0(C,OC (6)(−2∆)), let Φ : S → P2 be the blow-up of the plane at P1, . . . , P8, and let E1, . . . , E8

be the exceptional divisors of S. Since Γ has only nodes and cusps as singularities, the map Φ
restricts on the strict transform C := Φ∗(Γ) to the normalization map of Γ and ∆ = C.(

∑
iEi).

From the following exact sequence,

0→ OS(−7)(2
∑

i

Ei)→ OS → OC → 0

by tensoring with OS(6)(−2
∑

iEi), we get the exact sequence

0→ OS(−1)→ OS(6)(−2
∑

i

Ei)→ OC(6)(−2∆)→ 0

from which we deduce that h0(C,OC(6)(−2∆)) = h0(S,OS(6)(−2
∑

iEi)), because, by using

Leray spectral sequence, we find that H i(S̃,OS̃(−1)) = H i(P2,OP2(−1)) = 0, for i = 0, 1.
Denoting by C3 the strict transform with respect to Φ of the general cubic Γ3 of F , from the
following exact sequence

0→ OS(−3)(
∑

i

Ei)→ OS → OC3 → 0

by tensoring with OS(6)(−2
∑

iEi), we obtain the exact sequence

(59) 0→ OS(3)(−
∑

i

Ei)→ OS(6)(−2
∑

i

Ei)→ OC3(6)(−2
∑

i

Ei)→ 0

By Riemann-Roch theorem,

H0(OC3(6)(−2
∑

i

Ei)) = 18− 16− 1 + 1 = 2 and H1(OC3(6)(−2
∑

i

Ei)) = 0.

Moreover, from the following exact sequence

0→ OS(−
∑

i

Ei)→ OS →
8⊕

i=1

OEi → 0
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by tensoring with OS(3), we get the exact sequence

0→ OS(3)(−
∑

i

Ei)→ OS(3)→
8⊕

i=1

OEi → 0

By using that H1(S,OS(3)) = 0 and H0(S,OS(3)((−
∑

iEi))) = 2, we find that

h1(S,OS(3)((−
∑

i

Ei))) = 2− 10 + 8 = 0.

So, from the exact sequence (59), we find that

h0(S,OS(6)(−2
∑

i

Ei)) = 2 + 2 = 4 and ker(µo,C) = 0.

Suppose now that the case b) holds. Thus B = Q and

ker(µo,C) = H0(C,OC (−2)(∆ +Q)) = H0(C,OC (6)(−2∆ −Q))− 3.

Let φ̃ : S̃ → P2 be the blow-up of P2 at P1, . . . , P8 and Q. Let E1, . . . , E8, C and C3 as before
and let EQ be the exceptional divisor corresponding to the point Q. By the following exact
sequence,

0→ OS̃(−1)→ OS̃(6)(−2
∑

i

Ei − EQ)→ OC(6)(−2∆ −Q)→ 0

we find that h0(C,OC (6)(−2∆−Q)) = h0(S̃,OS̃(6)(−2
∑

iEi−EQ)), because, by Leray spectral

sequence H i(S̃,OS̃(−1)) = H i(P2,OP2(−1)) = 0, for i = 0, 1. From the following exact
sequence

0→ OS̃(−3)(
∑

i

Ei + EQ)→ OS̃ → OC3 → 0

by tensoring with OS̃(6)(−2
∑

iEi − EQ), we get the exact sequence

(60) 0→ OS̃(3)(−
∑

i

Ei)→ OS̃(6)(−2
∑

i

Ei − EQ)→ OC3(6)(−2
∑

i

Ei − EQ)→ 0

Now, from the following exact sequence

0→ OS̃(3)(−
∑

i

Ei)→ OS̃(3)→
8⊕

i=1

OEi → 0

we find that H1(S̃,OS̃(3)(−
∑

iEi)) = 0. Therefore, by (60), we conclude that

h0(S̃,OS̃(6)(−2
∑

i

Ei − EQ)) = 2 + 1 = 3, and ker(µo,C) = 0.

Finally, suppose that d) holds. Let Φ : S → P2 be the blow-up of the plane at P1, . . . , P8

with exceptional divisors E1, . . . , E8. Let Q ∈ Eî be the intersection point of Eî and the strict

transform C3 of the general cubic Γ3 of the pencil F . We denote by Φ̃ : S̃ → S the blow-up
of S at Q and by Ψ : S̃ → P2 the composition map of the maps Φ and Φ̃. We still denote by
E1, . . . , E8 their strict transforms on S̃, by C and C3 the strict transforms of Γ and Γ3 and by
EQ the new exceptional divisor of S̃. In this case we have that Ψ−1(Γ) = C + 2

∑
iEi + 3EQ,

Ψ−1(Γ3) = C3 +
∑

iEi + 2EQ. Moreover, the divisor ∆ is cut out on C from
∑

iEi + EQ and
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the base locus B of the linear series |ωC(−1)| coincides with the intersection point of EQ and
C. So, we have that

dim(ker(µo,C)) = h0(C,OC (−2)(
∑

i

Ei + 2EQ)) = h0(C,OC(6)(−2
∑

i

Ei − 3EQ))− 3.

Moreover, from the following exact sequence

0→ OS̃(−7)(2
∑

i

Ei + 3EQ)→ OS̃ → OC → 0

by tensoring with OS̃(6)(−2
∑

iEi − 3Eq), we get the exact sequence

0→ OS̃(−1)→ OS̃(6)(−2
∑

i

Ei − 3EQ)→ OC(6)(−2
∑

i

Ei − 3EQ)→ 0

from which we find that H0(C,OC(6)(−2
∑

iEi−3EQ)) = H0(S̃,OS̃(6)(−2
∑

iEi−3EQ)) and

H1(C,OC (6)(−2
∑

iEi − 3EQ)) = H1(S̃,OS̃(6)(−2
∑

iEi − 3EQ)). Now, from the following
exact sequence

(61) 0→ OS̃(3)(−
∑

i

Ei−EQ)→ OS̃(6)(−2
∑

i

Ei− 3EQ)→ OC3(6)(−2
∑

i

Ei− 3EQ)→ 0

by using that, by Riemann-Roch theorem,

h0(C3,OC3(6)(−2
∑

i

Ei − 3EQ)) = 1 and h1(C3,OC3(6)(−2
∑

i

Ei − 3EQ) = 0

we find that

h0(S̃,OS̃(6)(−2
∑

i

Ei − 3EQ))− h1(S̃,OS̃(6)(−2
∑

i

Ei − 3EQ)) =

h0(S̃,OS̃(3)(−
∑

i

Ei − EQ))− h1(S̃,OS̃(3)(−
∑

i

Ei − EQ)) + 1.

Moreover, from the exact sequence

(62) 0→ OS̃(3)(−
∑

i

Ei − EQ)→ OS̃(3)→ OEî∪EQ

⊕

i 6=î
OEi → 0

we find that

h0(S̃,OS̃(3)(−
∑

i

Ei − EQ))− h1(S̃,OS̃(3)(−
∑

i

Ei −EQ)) =

h0(S̃,OS̃(3)) − h0(EQ ∪i Ei,OEî∪EQ

⊕

i 6=î
OEi) = 10− 8 = 2.

Now, by using Serre duality, we have that

H1(S̃,OS̃(3)(−
∑

i

Ei −EQ))) = H1(S̃,OS̃(−6)(2
∑

i

Ei + 3EQ))).

From the exact sequence

(63) 0→ OS̃(−6)(+2
∑

i

Ei + 3EQ))→ OS̃(1)→ OC(1)→ 0
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by using that the map H0(S̃,OS̃(1))→ H0(C,OC(1)) is surjective and that H1(S̃,OS̃(1)) = 0,
we find that

H1(S̃,OS̃(−6)(+2
∑

i

Ei + 3EQ))) = H1(S̃,OS̃(3)(−
∑

i

Ei − EQ))) = 0.

Finally, by the exact sequence (61), we deduce that h1(S̃,OS̃(6)(−2
∑

iEi − 3EQ)) = 0,

h0(S̃,OS̃(6)(−2
∑

i

Ei − 3Eq)) = 3, and ker(µo,C) = 0.

The first step of induction for g = n = 7 and k ≤ 6 is proved.
We complete the proof of the first step of the induction. When n = 7 and a = 1 or a = 2,

the existence of a g. l. n. plane curve Γ always follows from theorem 2.4. Using the above
notation, h0(C,ωC(−1)) = 1 if a = 1 and h0(C,ωC(−1)) = 0 if a = 2. In any case µo,C is
injective. When n ≥ 8 and a ≤ n − 6 = 2(n − 1) − 7 − (n − 1 − 2) the theorem follows by
induction from the case n = 7. For n ≥ 8 and a = 2n−7−n+2 = n−5, we find that g = n−2,
or, equivalently, k + d = h0(P2,OP2(n − 4)). Always in theorem 2.4, we proved the existence
of geometrically linearly normal plane curves of degree n ≥ 8 and genus g = n− 2, with nodes
and k ≤ 6 cusps. For every such plane curve Γ, using the notation above, the Brill-Noether
map µo,C is injective since h0(C,ωC(−1)) = 0. We still have to prove the first step of the
induction for n = 5, 6. For n = 5 we find g = n− 2 and we argue as before. For n = 6 we find
g = 4 = n − 2 or g = 5 = n − 1. By lemma 2.2, every quintic Γ of genus 4 with nodes and
cusps as singularities is geometrically linearly normal. Moreover, if C is the normalization of
Γ, then µo,C is injective since h0(C,ωC(−1)) = 1. The cases n = 6 and g = 4 and n = 6 and
g = 5 are similar.

Suppose now that n and g verify (3). First of all we prove the theorem for (n, g) = (4, 2),
(5, 4), (6, 6). For n = 4 and g = 2, we find n = g + 2 and we argue as in the case n ≥ 8 and
g = n − 2. Similarly, for (n, g) = (5, 4). For n = 6 and g = 6 in theorem 2.4 we proved the
existence of plane curves Γ with k ≤ 4 cusps and at most nodes as singularities. For every such
a plane curve Γ, denoting by C its normalization, we get that h0(C,ωC(−1)) = 2, i.e. the linear
system F of conics passing through the four singular points P1, . . . , P4 of Γ is a pencil which
cuts out on C the complete linear series |ωC(−1)|. Since, by Bezout theorem, two irreducible
conics intersect in four points, the base locus of F consists of the points P1, . . . , P4 and the
linear series |ωC(−1)| has no base points. Then, by the base point free pencil trick , we find that
ker(µo,C) = H0(C,ω∗

C ⊗ O(2)) = H0(C,OC (−1)(∆)), where ∆ ⊂ C is the adjoint divisor of
the normalization map C → Γ. By Riemann-Roch theorem, we have that h0(C,OC(−1)(∆)) =
h0(C,OC (4)(−2∆)) − 3. If S is the blow-up of the plane at P1, . . . , P4 and E1, . . . , E4 are the
exceptional divisors of S, then, by the following exact sequence

0→ OS(−2)→ OS(4)(−2
∑

i

Ei)→ OC(4)(−2
∑

i

Ei)→ 0

we find that h0(C,OC (4)(−2∆)) = h0(S,OS(4)(−2
∑

iEi)). Moreover, if C2 ⊂ S is the strict
transform of the general conic of the pencil F , then, by the following exact sequence

0→ OS(2)(−
∑

i

Ei)→ OS(2)→
⊕

i

OEi → 0
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we have that h1(S,OS(2)(−
∑

iEi)) = 0. By the following exact sequence

0→ OS(2)(−
∑

i

Ei)→ OS(4)(−2
∑

i

Ei)→ OC2(4)(−2
∑

i

Ei)→ 0

we deduce that

h0(S,OS(4)(−2
∑

i

Ei)) = h0(S,OS(2)(−
∑

i

Ei)) + h0(C2,OC2(4)(−2
∑

i

Ei)) = 3

and, in particular, ker(µo,C) = 0, as we wanted.
Finally, we show the theorem under the hypothesis (3) for n ≥ 7, by using induction on n.

In order to prove the inductive step we may use lemma 3.10, exactly as we did in the case (2).
We prove the first step of induction. If n = 7 we have that g = 8. On page 83 we proved the
existence of geometrically linearly normal plane curves Γ of degree 7 and genus 7 with k ≤ 6,
such that, if P1, . . . , P8 are the singular points of Γ, then no seven points among P1, . . . , P8

lie on a conic. In particular, we proved that, for every such a plane curve Γ, the general
element of the pencil of cubics passing through P1, . . . , P8 is irreducible and, if φ : C → Γ is
the normalization of Γ, then the Brill-Noether map µo,C is injective. Let C ′ be the partial
normalization of Γ which we get by smoothing all the singular points of Γ except a node, say
P8. We recall that, if we denote by φ∗(P8) the divisor of the points of C which lie over P8

and by ψ : C → C ′ be the normalization morphism of C ′, then the dualizing sheaf ωC′ of C ′

is the subsheaf of ψ∗(ωC(φ∗(P8))), whose local sections η are such that
∑

p∈φ−1(P8)
respη = 0.

By using the same notation and by arguing exactly as in the proof of lemma 3.8, we get the
following commutative diagram

H0(C ′,OC′(1)) ⊗ H0(C ′, ωC′(−1))
µo,C′→ H0(C ′, ωC′)

↓ ↓
H0(C,OC (1)) ⊗ H0(C,ωC(−1)(φ∗(P8)))

µ′o,C→ H0(C,ωC(φ
∗(P8)))

where µ′o,C is the multiplication map and the vertical maps are isomorphisms. We want to
prove that the map µo,C′ is surjective. By the previous diagram it is enough to prove that
µ′o,C is surjective. Since h0(C,ωC(φ

∗(P8))) = 8 and h0(C,OC (1))h0(C,ωC(−1)(φ∗(P8))) =

3(7−7+3) = 9, we have that dim(ker(µo,C′)) ≥ 1 and µo,C′ is surjective if dim(ker(µo,C′)) = 1.
By recalling that Γ is geometrically linearly normal, we have that, if Z is the scheme of the
points P1, . . . , P7 and IZ|P2 is the ideal sheaf of Z in P2, then in the following commutative
diagram

H0(C,OC(1)) ⊗ H0(C,ωC(−1)(φ∗(P8)))
µ′o,C→ H0(C,ωC(φ

∗(P8)))
↓ ↓

H0(P2,OP2(1)) ⊗ H0(P2,IZ|P2(3))
µ→ H0(P2,IZ|P2(4))

the vertical maps are isomorphisms. Hence, it is enough to prove that the kernel of the mul-
tiplication map µ has dimension equal to one. Let {f0, f1, f2} be a basis of the vector space
H0(P2,IZ|P2(3)). Since the general cubic passing through P1, . . . , P8 is irreducible, we may as-
sume that f0, f1 and f2 are irreducible. Suppose, by contradiction, that there exist at least two
linearly independent vectors in the kernel of µ. Then, there exist sections u0, u1, u2 and v0, v1, v2
of H0(P2,OP2(1)) such that the sections

∑
i ui ⊗ fi and

∑
i vi ⊗ fi are linearly independent in
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H0(P2,OP2(1)) ⊗H0(P2,IZ|P2(3)) and

(64)

{ ∑3
i=0 uifi = 0∑3
i=0 vifi = 0.

The linear system (64) is a linear system of rank one in the variables f0, f1, f2 and the space of
solutions of (64) is generated by the vector (u1v2−u2v1, u3v0−u0v3, u0v1−u1v0). In particular,
if we set qi = (−1)1+iuivj − viuj , we find that fjqi = fiqj, for every i 6= j. But this is not
possible since f1, f2 and f3 are irreducible. We deduce that

dim(ker(µ)) = dim(ker(µo,C′)) = 1

and µo,C′ is surjective. Now let G → ∆ be a family of plane curves of degree 7, parametrized
by a smooth curve ∆, whose special fibre is equal to Γ and whose general fibre is a curve of
genus 8 with a node at a neighborhood of every node of Γ different from P8 and a cusp at a
neighborhood of every cusp of Γ. Such a family there exists by the lemma 3.17 of chapter 2. If
C → ∆ is the family obtained by G → ∆ by normalizing the total space, then the general fibre
Ct of C → ∆ is the normalization of the general fibre Gt of G → ∆, whereas the special fibre of C
coincides with C ′. Since h0(C ′,OC′(1)) = 3 and the map µo,C′ is surjective, by semicontinuity,
we conclude that h0(Ct,OCt(1)) = 3 and the Brill-Noether map

H0(Ct,OCt(1))⊗H0(Ct, ωCt(−1))
µo,Ct→ H0(Ct, ωCt)

is surjective. This completes the proof of the theorem. �
Remark 3.12. Notice that the conditions which we found in theorem 3.11 in order that

Σnk,d has at least an irreducible component with the expected number of moduli, are not sharp,
even if we suppose ρ ≤ 0. To see this, notice that in remark 2.5 we proved the existence of an
irreducible component Σ of Σ12

9,0 whose general element corresponds to a 3-normal plane curve.
By remark 2.3 and corollary 3.7, we have that Σ has the expected number of moduli.

Theorem 3.13. Σn1,d has the expected number of moduli, for every d ≤
(
n−1
2

)
− 1.

Proof. Before proving the theorem, we recall that, by theorem 3.21 and corollary 3.18 of
chapter 2, the variety Σn1,d is irreducible and not empty for every d ≤

(n−1
2

)
−1. Moreover, from

theorem 3.11 and from corollary 1.7, we know that Σn1,d has the expected number of moduli if
ρ ≤ 0 or ρ ≥ 2. Now we shall prove that, if ρ = 1, then the algebraic system

Σn1,d = Σn
1,

(n−3)2

2
−1

has general moduli. Equivalently, we will show that, if [Γ] ∈ Σn1,d is a general point and

g =
(n−1

2

)
− 1 − d = 3n−7

2 , then, on the normalization curve C of Γ there are only finitely

many linear series g2n with at least a ramification point. First of all we notice that, if g =(n−1
2

)
− 1− d = 3n−7

2 , then n is odd and n ≥ 5. We prove the statement by induction on n.

Let n = 5 and let U ⊂ Σ5
1,1 be the open set of Σ5

1,1 parametrizing irreducible plane curves
Γ of degree 5 with a node and a cusp as singularities such that the cuspidal tangent line of Γ
does not contain the node of Γ. In order to see that U is not empty, we recall that, by corollary
3.18 of chapter 2, there exists an irreducible plane quintic D with a cusp and two node s1 and
s2 as singularities. By Bezout theorem, at least one, say s1, among the nodes of D doesn’t lie
on the cuspidal tangent line of D. By corollary 3.17 of chapter 2, there exists a family of plane
quintics D → ∆ whose special fibre is equal to D and whose general fibre Dt has a node at a
neighborhood of s1, a cusp at a neighborhood of the cusp of D and no further singularities.
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The node of Dt does not lie on the cuspidal tangent line of Dt. Thus U is not empty. Now, in
order to prove that Σ5

1,1 has general moduli, it is enough to prove that U has general moduli.

Let Γ ⊂ P2 be a plane quintic corresponding to a point [Γ] ∈ U and let φ : C → Γ be the
normalization of Γ. If p ∈ Γ is the cusp of Γ, we denote by P ∈ C the point P = φ−1(p).
If we denote by OC(1) the sheaf on C associated to the divisor which is the pull-back of the
general hyperplane divisor on Γ, then h0(C,OC(1)) = 3, the sheaf OC(1) is special and C is a
not hyperelliptic curve of genus four. Moreover, the linear series |ωC(−1)| consists of a point
R ∈ C. By the hypothesis that [Γ] ∈ U , we have that R 6= P . Indeed, if we denote by S1 and
S2 the points of C over the node s of Γ, then H0(C,ωC(−1)) = H0(C,OC(1)(−S1 −S2− 2P ))
and R = P if and only if the node of Γ lies on the cuspidal tangent line l to Γ at the point
p. Thus R 6= P . Now, let C ⊂ P3 be a canonical model of C in P3. We recall that there
exists an unique quadric S2 in P3 containing C, and C is complete intersection of S2 and a
cubic S3, (see for example [22] or [6]). If we still denote by P and R the image points of P
and R in P3, then the linear series |OC(1)| is cut out on C in P3 by the two dimension family
of hyperplanes passing through the point R ∈ C. Projecting C from R we get a birational
morphism from C ⊂ P3 and Γ ⊂ P2. Moreover, since Γ has a cusp at the point p ∈ P2, then the
tangent line to C at P in P3 passes through R ∈ C. Now, suppose by contradiction that on C
there exist infinitely many g25 mapping C to the plane as a quintic parametrized by a point of
U ⊂ Σ5

1,1. Then, through the general point x of C passes a tangent line to C at a point x′ 6= x.
In particular, the general tangent lines to C cuts out on C a divisor of degree r ≥ 3. By using
Bezout theorem, it follows that the general tangent line to C is contained in S2, i.e. S2 is the
tangent variety T (C) of C. But, by using Hurwitz formula, we see that T (C) has degree 8.
Hence S2 6= T (C) and, if

Π : Σ5
1,1 99KM4

is the moduli map of Σ5
1,1, then Π(U) =M4 = Π(Σ5

1,1).
Now we suppose that the theorem is true for n and we prove the theorem for n + 2. Let

Γ ⊂ P2 the plane curve with a cusps and (n−3)2

2 − 1 nodes corresponding to a general point
[Γ] ∈ Σn

1,
(n−3)2

2
−1

and let C2 be an irreducible plane conic intersecting Γ transversally. By

lemmas 3.17 of chapter 2 the point [C2∪Γ] belongs to Σn+2

1, (n+2−3)2

2
−1

. In particular, however we

choose four points P1, . . . , P4 of intersection between Γ and C2, there exists an analytic branch
SP1,..., P4 of Σn+2

1,
(n−1)2

2
−1

, passing through [C2 ∪ Γ] and whose general point corresponds to an

irreducible plane curve of degree n + 2 with a cusp at a neighborhood of the cusp of Γ and a
node at a neighborhood of every node of C2 ∪Γ different from P1, . . . , P4. Moreover, it follows
by lemma 3.22 of chapter 2 that S := SP1,..., P4 is smooth at the point [C2 ∪ Γ]. Let

Π : Σn+2

1,
(n−1)2

2
−1

99KM 3(n+2)−7
2

be the moduli map of Σn+2

1, (n−1)2

2
−1

. In order to prove that Π is dominant it is sufficient to show

that Π(S) =M 3n−1
2

. Always by lemma 3.17 of chapter 2, there exists an analytic branch Si of
Σn+2

1,
(n−3)2

2
−1+2n−i

, with i = 1, 2, 3, and such that

S0 := S ∩ (P5 × Σn
1,

(n−3)2

2
−1

) ⊂ S1 ⊂ S2 ⊂ S3 ⊂ S.
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The general point of every irreducible component of Si, with i = 1, 2, 3, corresponds to an
irreducible plane curve Γi of degree n+2 with a cusp at a neighborhood of the cusp of Γ, a node
at a neighborhood of every node of C2∪Γ different from P1, . . . , P4 and 4− i nodes specializing
to 4−i fixed points among P1, . . . , P4, as Γi specializes to C2∪Γ. Moreover, it follows by lemma
3.22 of chapter 2 that every irreducible component of Si is smooth at [C2 ∪ Γ] and, hence, Si
has an ordinary multiple point at [C2 ∪ Γ] of order

(4
i

)
for every i = 1, 2, 3. Now, notice that

the moduli map Π is not defined at the point [C2 ∪ Γ], but, if S is sufficiently small, then the
restriction of Π to S extends to a regular function on S. More precisely, let C → ∆ be any
family of curves, parametrized by a projective curve ∆ ⊂ S, passing thought the point [C2 ∪Γ]
and whose general point corresponds to an irreducible plane curve of degree n + 2 of genus
3n−1
2 = 3(n+2)−7

2 with a cusp and nodes as singularities. If we denote by C′ → ∆ the family
of curves obtained from C → ∆ by normalizing the total space, we have that the general fibre
of C′ → ∆ is a smooth curve of genus 3n−1

2 , corresponding to the normalization of the general
fibre of C → ∆, whereas the special fibre C′0 is the partial normalization of C2 ∪ Γ, obtained by
normalizing all the singular points, except P1, . . . , P4. Then, the map Π|S is defined at [C2∪Γ]
and it associates to the point [C2 ∪ Γ] the isomorphism class of C′0. Similarly, if [C ′

2 ∪ Γ′] is
a point of S0, corresponding to the union of an irreducible conic C ′

2 and an irreducible plane
curve Γ′ of degree n with a cusps and nodes, then Π|S ([C

′
2∪Γ′]) is the isomorphism class of the

partial normalization of C ′
2∪Γ′, obtained by smoothing all the singular points of C ′

2∪Γ′, except
the four nodes tending to P1, . . . , P4 as C ′

2 ∪ Γ′ tends to C2 ∪ Γ. Finally, if [Γi] is a general
point in one of the irreducible components of Si, with i = 1, 2, 3, then Π|S ([Γi]) is the partial
normalization of Γi obtained by smoothing all the singular points except for the 4 − i nodes
of Γi tending to P1, . . . , P4 as Γi tends to C2 ∪ Γ. It follows that, if we denote by Mj

3n−1
2

the

locus of M 3n−1
2

parametrizing j-nodal curves, then ΠS(Si) ⊆ M4−i
3n−1

2

, for every i = 0, . . . , 4,

and ΠS(Si)  ΠS(Si+1). In particular, we find that

dim(Π|S (S)) ≥ dim(Π|S (S0)) + 4.

In order to compute the dimension of Π|S (S0) we consider the rational map

F : Π|S (S0) 99K M 3n−7
2

forgetting the rational tail. Since, by the hypothesis that Σn
1,

(n−3)2

2
−1

has general moduli, we

have that F is dominant. Moreover, if C is the normalization curve of Γ, by the generality
of [Γ] in Σn

1,
(n−3)2

2
−1

, we may assume that C is general in M 3n−7
2

. We want to show that

dim(F−1([C])) = 5. In order to see this, we recall that, by the hypothesis that Σn
1,

(n−3)2

2
−1

has

general moduli, on C there exist only a finite number of linear series of degree n and dimension
two, mapping C to the plane as curve with a cusp and nodes as singularities. If g2n is such a
linear series, {s0, s1, s2} is a basis of g2n and φ′ : C → Γ′ ⊂ P2 is the associated morphism, then,
if Q1, . . . , Q4 are four general points of Γ′, the linear system of conics through Q1, . . . , Q4 is a
pencil F(Q1, . . . , Q4). Let C ′

2 and D′
2 be two general conics of F(Q1, . . . , Q4). If η : P1 → C ′

2

and β : P1 → D′
2 are isomorphisms between P1 and C ′

2 and D′
2 respectively, then the points

η−1(Q1), . . . , η
−1(Q4) are not projectively equivalent to the points β−1(Q1), . . . , β

−1(Q4). In
order to prove this, we may consider a conic F ⊂ P2 of the plane. If we choose two sets of
points p1, . . . , p4 and q1, . . . , q4 of F not projectively equivalent, then there exist projective
automorphisms A : P2 → P2 and A′ : P2 → P2 such that A(pi) = Qi and A′(qi) = (Qi),
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for every i. This shows that, if C ′
2 and D′

2 are general in F(Q1, . . . , Q4), then the points
η−1(Q1), . . . , η

−1(Q4) are not projectively equivalent to the points β−1(Q1), . . . , β
−1(Q4). In

particular, this implies that the partial normalizations C ′ and D′ of Γ′ ∪ C ′
2 and Γ′ ∪ D′

2,
obtained by smoothing all the singular points except Q1, . . . , Q4, are not isomorphic. Now, let
C ′
2 be a general conic of F(Q1, . . . , Q4) and let R1, . . . , R4 be four general points of Γ′ and

different from Q1, . . . , Q4. If D
′
2 is a general conic of the pencil F(R1, . . . , R4), then the partial

normalization C ′ and D′ of Γ′ ∪ C ′
2 and Γ′ ∪ D′

2 obtained, respectively, by smoothing all the
singular points except Q1, . . . , Q4 and R1, . . . , R4, are not isomorphic. Indeed, since C is a
general curve of genus 3n−7

2 ≥ 7, the only automorphism of C is the identity. We deduce that

dim(F−1([C])) = 5. In particular, we have proved that

dim(Π|S (S0)) = 3
3n − 7

2
− 3 + 5

and

dim(Π|S (S) ≥ 3
3n − 7

2
− 3 + 9 = 3

3(n + 2)− 7

2
− 3.

�

By using theorem 7.11 of chapter 2, theorem 1.6 and theorem 3.11, we are extending the
previous theorem to the case k ≤ 3.

4. On the number of moduli of complete irreducible families of plane sextics with
six cusps

Corollary 3.9 tells us how to compute the number of moduli of an irreducible component
Σ′ of Σnk′,d′ if we know the number of moduli of an irreducible component Σ of Σnk,d such that

Σ ⊂ Σ′, under the hypothesis that the Brill-Noether number ρ(2, n, g) of the linear series of
dimension two and degree n on the normalization curve of the plane curve corresponding to
the general element of Σ is not positive. In this section we shall prove a result like corollary
3.9 by assuming ρ− k ≤ 0 but not necessarily ρ ≤ 0. In order to do this we need the following
result.

Fact 4.1. Let

D = {(a, b, x, y)| y2 = x3 + ax+ b} ⊂ C2 × A2

↓
C2

be the versal deformation family of an ordinary cusp, (see section 5 of chapter 2). We recall
that the general curve of this family is smooth. The locus ∆ of C2 of the pairs (a, b), such that
the corresponding curve is singular, has equation 27b2 = 4a3. For (a, b) ∈ ∆ and (a, b) 6= (0, 0),
the corresponding curve has a node and no other singularities. Let G → C2 be a two parameter
family of smooth curves of genus g ≥ 2, locally given by y2 = x3 + ax + b, with (a, b) ∈ C2.
It has been proved in [21], page 129, that, if ∆ ⊂ C2 is a curve passing through (0, 0) and not
tangent to the axis b = 0 at (0, 0), then the j-invariant of the elliptic tail of the curve which
corresponds to the stable limit of G(0,0), with respect to ∆, doesn’t depend on ∆. Otherwise, for

every j0 ∈ C, there exists a curve ∆j0 ⊂ C2 passing through (0, 0) and tangent to the axis b = 0
at this point, such that the elliptic tail of the stable reduction of G(0,0) with respect to ∆j0, has
j-invariant equal to j0.
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Lemma 4.2. Let Σ ⊂ Σnk,d, with k < 3n, be an irreducible component of Σnk,d. Let g be the
geometric genus of the plane curve corresponding to the general element of Σ. Suppose that
g ≥ 2, ρ(2, g, n)−k ≤ 0 and Σ has the expected number of moduli equal to 3g−3+ρ−k. Then,
for every k′ ≤ k and d′ ≤ d such that g′ =

(n−1
2

)
− k′ − d′ > g =

(n−1
2

)
− k− d, there is at least

a component Σ′ of Σnk′,d′ such that Σ ⊂ Σ′ and such that the number of moduli of Σ′ is equal

to 3g′ − 3 + ρ(2, g′, n)− k′.
Proof. It is enough to prove the theorem in the following two cases:

(a) k′ = k − 1 and d′ = d,
(b) k′ = k and d′ = d− 1.

Suppose that (a) holds. Let q1, . . . , qk be the cusps of Γ. Since k < 3n, by using lemmas
3.17 and 3.22 of chapter 2, [Γ] is a k-fold ordinary point for Σnk−1,d. In particular, for every
fixed cusp pi of Γ there exists an analytic smooth branch Si of Σnk−1,d passing through the

point [Γ] and whose general point corresponds to a plane curve Γ′ of degree n with d nodes
and k − 1 cusps specializing to the singular points of Γ different from pi, as Γ′ specializes to
Γ. Let Σ′ one of the irreducible components of Σnk−1,d containing Σ. Since ρ(2, g′, n) − k′ =
3n− 2g − 2− 6− k + 1 = ρ(2, g, n) − k − 1 < 0, in order to prove the theorem it is enough to
show that the general fibre of the moduli map

ΠΣ′ : Σ′ 99KMg+1

has dimension equal to eight. Let us notice that the map ΠΣ′ is not defined at the general
element [Γ] of Σ. More precisely, let γ ⊂ Si ⊂ Σ′ be a curve passing through [Γ] and not
contained in Σ. Let C → γ be the tautological family of plane curves parametrized by γ. Let
C′ → γ be the family obtained from C → γ by normalizing the total space. The general fibre
of C′ → γ is a smooth curve of genus g + 1, while the special fibre C′0 := Γ′ is the partial
normalization of Γ obtained by smoothing all the singular points of Γ, except the marked cusp
pi. If we restrict the moduli map ΠΣ′ to γ, we get a regular map which associates to [Γ] the
point corresponding to the stable reduction of Γ′ with respect the family C′ → γ, which is the
union of the normalization curve C of Γ and an elliptic curve, intersecting at the point p ∈ C
which maps to the cusp pi ∈ Γ. Now, let G ⊂ Σ′ ×Mg+1 be the graph of ΠΣ′ , let π1 : G → Σ′

and π2 : G → Mg+1 be the natural projections and let U ⊂ Σ be the open set parametrizing
curves of degree n and genus g with exactly k cusps and d nodes as singularities. From what
we observed before, if we denote by ΠΣ′(Σ) the Zariski closure in Mg+1 of π2π

−1
1 (U), then

ΠΣ′(Σ) is contained in the divisor ∆1 ⊂Mg+1, whose points are the isomorphism class of the
reducible curves which are union of a smooth curve of genus g and an elliptic curve, meeting
at a point. Denoting by ΠΣ : Σ→Mg the moduli map of Σ, the rational map

∆1 99KMg

which forgets the elliptic tail, restricts to a rational dominant map

q : ΠΣ′(Σ) 99K ΠΣ(Σ).

The dimension of the general fibre of q is at most two. Since, by hypothesis, the dimension of
the fibre of the moduli map ΠΣ is eight, there exists only a finite number of g2n on C, ramified

at k points, which maps C to a plane curve D such that the associated point [D] ∈ Pn(n+3)
2

belongs to Σ. In particular, the set of points x of C such that there is a g2n with k simple
ramification points, one of which at x, is finite. So, the dimension of the general fibre of q is
at most one. In order to decide if the general fibre of q has dimension zero or one, we have
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to understand how the j-invariant of the elliptic tail of the stable reduction of Γ′ with respect
the family C′ → γ, depends on γ. If C → C2 is the étale versal deformation family of the

cusp, by versality, for every fixed cusp pi of Γ, there exist étale neighborhoods U
u→ P

n(n+3)
2

of [Γ] in P
n(n+3)

2 , V
v→ C2 of (0, 0) in C2 and Ui of pi in the tautological family U → P

n(n+3)
2

with a morphism f : U → V such that the family Ui → U is the pullback, with respect to f ,
of the restriction to V of the versal family. By the property (3) of theorem 5.10 of chapter
2, we have that f−1((0, 0)) is an étale neighborhood of [Γ] in the (smooth) analytic branch
Σn1,0 whose general element corresponds to an irreducible plane curves with only one cusp at a

neighborhood of the cusp pi of Γ. So, dim(f−1((0, 0))) = n(n+3)
2 −2 and the map f is surjective.

Moreover, if g is the restriction of f at u−1(Σ′), then also g is surjective. Indeed,

g−1((0, 0)) = f−1((0, 0)) ∩ u−1(Σ′) = u−1((Σ)).

Since k < 3n, then dim(Σ) = 3n+ g− 1− k = dim(Σ′)− 2 and g is surjective. By using (4.1),
it follows that the general fibre of the natural map ΠΣ′(Σ) → ΠΣ(Σ) has dimension exactly
equal to one. Therefore,

dim(ΠΣ′(Σ)) = dim(ΠΣ(Σ))+ 1 = 3g− 3+ ρ(2, g, n)− k+1 = 3(g+1)− 3+ ρ(2, g+1, n)− k,
and

dim(ΠΣ′(Σ′)) ≥ dim(ΠΣ′(Σ)) + 1 = 3(g + 1)− 3 + ρ(2, g + 1, n)− k + 1.

Since it is always true that dim(ΠΣ′(Σ′)) ≤ 3(g+1)− 3+ ρ(2, g+1, n)− k+1, (see section 1),
the statement has been proved in this case.

Suppose, now, that k = k′ and d′ = d − 1. Also in this case Σ is not contained in the
regularity domain of ΠΣ′ . More precisely, if [Γ] ∈ Σ is general, then ΠΣ′([Γ]) consists of a
finite number of points, corresponding to the isomorphism class of the partial normalizations
of Γ obtained by smoothing all the singular points of Γ, except for a node. Then ΠΣ′(Σ) is
contained in the divisor ∆0 of Mg+1 parametrizing the isomorphism classes of the analytic
curves of arithmetic genus g + 1 with a node and no more singularities. The natural map
∆0 99KMg sending the general point [C ′] of ∆0 to the isomorphism class of the normalization
of C ′, restricts to a rational dominant map q : ΠΣ′(Σ) 99K ΠΣ(Σ). Since we suppose that Σ
has the expected number of moduli and ρ(2, g, n) − k ≤ 0, if C is the normalization of the
plane curve corresponding to the general element of Σ, then the set S of the linear series of
dimension 2 and degree n on C with k simple ramification points, mapping C to a plane curve
D such that the associated point [D] in the Hilbert Scheme belongs to Σ, is finite. We deduce
that also the set S′ of the pairs of points (p1, p2) of C, such that there is a g2n ∈ S such that the
associated morphism maps p1 and p2 to the same point of the plane, is finite. So, also q−1([C])
is finite and dim(ΠΣ′(Σ)) = dim(ΠΣ(Σ)). It follows that

dim(ΠΣ′(Σ′)) ≥ 3g − 3 + 3n− 2g − 6− k + 1 = 3(g + 1)− 3 + 3n− 2(g + 1)− 6− k.
�

Remark 4.3. Notice that, the arguments used before to prove lemma 4.2 don’t work if the
dimension of the general fibre of the moduli map of Σ has dimension bigger than eight. Indeed,
in this case, the dimension of the general fibre of the map ΠΣ′(Σ) 99K ΠΣ(Σ) could be bigger
than one if k′ = k − 1 and d = d′, or than zero if k′ = k and d = d′ − 1.

Corollary 4.4. There exists at least one irreducible component Σ2 of Σ6
6,0 having the ex-

pected number of moduli equal to dim(M4) − 2 and whose general element corresponds to a
sextic with six cusps not on a conic.
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Proof. Let Σ6
9,0 be the variety of elliptic plane curves of degree six with nine cusps and

no more singularities. It is not empty and irreducible, because, by the Plücker formulas (see
[6]), the family of dual curves is Σ3

0,0 ≃ P9, which is irreducible and not empty. Moreover, if

we compose an holomorphic map φ : C → P2 from a complex torus C to a smooth plane cubic
with the natural map φ(C) → φ(C)∗, we get a morphism from C to a plane sextic with nine
cusps, and viceversa. Therefore, the number of moduli of Σ6

9,0 is equal of the number of moduli

of Σ3
0,0, equal to one. Since 6 < 3n = 18, there is at least one irreducible component Σ′ of Σ6

8,0

containing Σ6
9,0. Let ΠΣ′ : Σ′ 99K M2 be the moduli map of Σ′ and let G ⊂ Σ′ ×M2 be its

graph. If we denote by π1 : G → Σ′ and π2 : G →M2 the natural projection, by U the open set
of Σ6

9,0 parametrizing cubics of genus one with nine cusps and by ΠΣ′(Σ6
9,0) the Zariski closure

inM2 of π2π
−1
1 (U), then, by arguing as in the first part of the proof of the lemma 4.2, we have

a dominant map ΠΣ′(Σ6
9,0) 99KM1, whose general fibre has dimension one. We conclude that

dim(πΣ′(Σ′)) ≥ dim(πΣ′(Σ6
9,0)) + 1 = 3

and so, the moduli map of Σ′ is dominant, as one expects, because ρ(2, 2, 6)−8 = 18−4−6−8 =
0. Let D be the plane sextic corresponding to the general point of Σ′. By Bezout theorem, the
height cusps P1, . . . , P8 of D don’t belong to a conic and, for however we choose five cusps of
D, no four of them lie on a line. Then, let C2 be the unique conic containing P1, . . . , P5. There
exists at least a cusp, say P6, which does not belong to C2. ’By smoothing the cusps P7 and
P8’ of Γ and by applying lemma 4.2, we get a family of irreducible sextics with six cusps not
on a conic as singularities, parametrized by a curve ∆, contained in an irreducible component
Σ2 of Σ6

6,0 with the expected number of moduli. �

Now we consider the irreducible component Σ1 of Σ6
6,0 parametrizing plane curves of equa-

tion f23 (x0, x1, x2) + f32 (x0, x1, x2) = 0, where f2 is an homogeneous polynomial of degree
two and f3 is an homogeneous polynomial of degree three, (see remark 3.15 of chapter 2).
The general element of Σ1 corresponds to an irreducible plane curve of degree six with six
cusps on a conic. We want to show that Σ1 has the expected number of moduli equal to
12−3+ρ(2, 4, 6)−6 = 7 = dim(M4)−2. Equivalently, we want to show that the general fibre
of the moduli map

Σ1 99KM4

has dimension equal to eight.

Lemma 4.5. Let Γ2 : f2(x0, x1, x2) = 0 and Γ3 : f3(x0, x1, x2) = 0 be a smooth conic and
a smooth cubic intersecting transversally. Then, the plane curve

Γ : f23 (x0, x1, x2)− f32 (x0, x1, x2) = 0

is an irreducible sextic of genus four with six cusps at the intersection points of Γ2 and Γ3

as singularities. The curve Γ is projection of a canonical curve C ⊂ P3 from a point p ∈ P3
which is contained in six tangent lines to C. Moreover, for every point q ∈ P3 − C such that
the projection plane curve πq(C) of C from q is a sextic with six cusps on a conic of equation
g23(x0, x1, x2)− g32(x0, x1, x2) = 0, where g3 and g2 are two homogeneous polynomials of degree
three and two respectively, there exists a cubic surface S3 ∈ |IC|P3(3)|, containing C, such that

the plane curve πq(C) is the branch locus of the projection πq : S3 → P2.

Remark 4.6. It was pointed out to our attention by G. Pareschi, who provided a proof of
this, that every irreducible sextic with six cusps on a conic as singularities has equation given
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by (f2(x0, x1, x2))
3 + (f3(x0, x1, x2))

2 = 0, with f2 and f3 homogeneous polynomials of degree
two and three. In order words, all the sextics with six cusps on a conic as singularities are
parametrized by a point of Σ1.

Proof of lemma 4.5. Let f(x0, x1, x2) = f23 (x0, x1, x2)− f32 (x0, x1, x2) = 0 be the equa-

tion of Γ. From the relation f3(x) = ±f2(x)
√
f2(x), we deduce that

∂f3
∂xi

(x) = ±2∂f2∂xi
(x)

√
f2(x)

and hence

(65)
∂f

∂xi
(x) = 2

∂f3
∂xi

(x)f3(x)− 3f2(x)
2∂f2
∂xi

(x) = −f2(x)2
∂f2
∂xi

(x).

By using that the conic Γ2 : f2 = 0 is smooth, it follows that, if a point x ∈ Γ is singular, then
x ∈ Γ2 and hence x ∈ Γ3 ∩Γ2. On the other hand, always from (65), if x ∈ Γ2 ∩Γ3, then x is a
singular point of Γ. Hence, the singular locus of Γ coincides with Γ3 ∩ Γ2. Let x be a singular
point of Γ. If

p1(x, y) + terms of degree two = 0

and

q1(x, y) + terms of degree ≥ two = 0

are respectively affine equations of Γ2 and Γ3 at x, then, the affine equation of Γ at x is given
by

q1(x, y)
2 − p1(x, y)3 + terms of degree ≥ four = 0.

Since Γ2 and Γ3 intersect transversally, we have that q1(x, y) does not divide p1(x, y) and hence
Γ has an ordinary cusp at x. Let now φ : C → Γ be the normalization of Γ. Then, by section 1
of chapter 1, the cubics passing through the six cusps of Γ cut out on C the complete canonical
series |ωC |. Since the cusps of Γ is contained in the conic Γ2 ⊂ P2 of equation f2 = 0, the lines
of P2 cut out on C a subseries g ⊂ |ωC | of dimension two of the canonical series. Moreover, if
we still denote by C a canonical model of C in P3, then the linear series g is cut out on C in
P3 from a two dimensional family of hyperplanes passing through a point p ∈ P3 − C. If we
project C from p we get a plane curve projectively equivalent to Γ. Since Γ has six cusps as
singularities, we deduce that there are six tangent lines to C passing through p. To see that Γ
is the branch locus of a triple plane, let S3 ⊂ P3 be the cubic surface of equation

F3(x0, . . . , x3) = x33 − 3f2(x0, x1, x2)x3 + 2f3(x0, x1, x2) = 0.

If p = [0, 0, 0, 1], then, by using Implicit Function Theorem, the ramification locus of the
projection πp : S3 → P2, is given by the intersection of S3 with the quadric S2 of equation
∂F3
∂x3

= x23−f2(x0, x1, x2) = 0. Now, if x = [x0, x1, x2] ∈ S3∩S2, then x3 = ±
√
f2(x0, x1, x2). By

substituting in the equation of S3, we find that the branch locus of the projection πp : S3 → P2
coincides with the plane curve Γ. From what we proved before, it follows that the ramification
locus of the projection map πp : S3 → P2 is the normalization curve C of Γ. Finally, if q ∈ P3−C
is an other point such that the plane projection πq(C) is an irreducible sextic with six cups on
a conic parametrized by a point xq ∈ Σ1 ⊂ P27, then, up to projective motion, we may always
assume that q = [0 : 0 : 0 : 1] and hence, if g23(x0, x1, x2)− g32(x0, x1, x2) = 0 is the equation of
the plane curve πq(C), then C is the locus of ramification of the projection from q to the plane
of the cubic surface of equation

x33 − 3g2(x0, x1, x2)x3 + 2g3(x0, x1, x2) = 0.

�
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Corollary 4.7. The irreducible component Σ1 of Σ6
6,0 parametrizing plane curves of equa-

tion f23 (x0, x1, x2)+ f32 (x0, x1, x2) = 0, where f2 is an homogeneous polynomial of degree 2 and
f3 is an homogeneous polynomial of degree three, has the expected number of moduli equal to
7 = dim(M4) + ρ(2, 4, 6) − 6.

Proof. Let [Γ] ⊂ P2 be a plane sextic of equation f23 (x0, x1, x2)−f32 (x0, x1, x2) = 0, where
the conic f2 = 0 and the cubic f3 = 0 are smooth and they intersect transversally. Let C ⊂ P3
be the normalization curve of Γ and let SC be the set of points v = [v0 : · · · : v3] ∈ P3 such that
there exists a cubic surface S3 ∈ |IC|P3(3)|, containing C, such that the plane curve C is the

ramification locus of the projection πv : S3 → P2. By the former lemma, in order to prove that
Σ1 has the expected number of moduli, it is enough to find a point [Γ] of Σ1 corresponding to
an irreducible plane sextic Γ ⊂ P2 with six cusps of a conic such that the set SC is finite. Let
Γ2 be the smooth conic of equation f2(x0, x1, x2) = x20 + x21 − x22 = 0 and let Γ3 be the smooth
cubic of equation f3(x0, x1, x2) = x30 + x0x

2
2 − x21x2 = 0. If a1, a2 and a3 are the three different

solutions of the polynomial x3 + x2 + x− 1 = 0, then Γ2 and Γ3 intersect transversally at the
points [ai,

√
ai, 1], [ai,−

√
ai, 1], with i = 1, 2, 3. By the former lemma, the plane sextic Γ of

equation f32 − f23 = 0 is irreducible and it has six cusps at the intersection points of Γ2 and Γ3

as singularities. Moreover, the normalization curve C of Γ is the canonical curve of genus 4 in
P3 which is intersection of the cubic surface S3 ⊂ P3 of equation

F3(x0, x1, x2, x3) = x33 + (x20 + x21 − x22)x3 + x30 + x0x
2
2 − x21x2 = 0

and the quadric S2 of equation

∂F3

∂x3
= 3x23 + x20 + x21 − x22 = 0.

We want to show that SC is finite. To see this we observe that, since h0(P3,IC|P3(2)) = 1 and

h0(P3,IC|P3(3)) = 6, the equation of every cubic surface containing C and which is not the
union of S2 and an hyperplane is given by

G(x0, . . . , x3;β0, . . . , β3) = F3(x0, x1, x2, x3) +

3∑

j=0

βjxj
∂F3(x0, x1, x2, x3)

∂x3
= 0,

with βj ∈ C, for i = 0, . . . , 3. Now, a point [v] = [v0, . . . , v3] ∈ SC if and only if there exist
β0, . . . , β3 such that C is contained in the intersection of G(x0, . . . , x3;β0, . . . , β3) = 0 and
∂G(x0,...,x3;β0,...,β3)

∂v = 0. Still using that h0(P3,IC|P3(2)) = 1, a point [v] ∈ P3 belongs to SC if

and only if

(66)
∂G(x0, . . . , x3;β0, . . . , β3)

∂v
= λ

∂F3(x0, . . . , x3)

∂x3

for some λ ∈ R− 0, or, equivalently,

(67)

2∑

i=0

vi
∂F3

∂xi
+

3∑

i=0

vi(

3∑

j=0

βjxj)
∂F3

∂x3∂xi
= (λ−

3∑

i=0

viβi − v3)
∂F3

∂x3
.
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The previous equality of polynomials is equivalent to the following bilinear system of ten
equations in the variables v0, . . . , v3 and β0, . . . , β3

(68)





(1 + β3)v0 + 3β0v3 = 0 (x0x3)

(1 + β3)v1 + 3β1v3 = 0 (x1x3)

(1 + β3)v2 − 3β2v3 = 0 (x2x3)

β1v0 + β0v1 = 0 (x0x1)

β2v0 + (1− β0)v2 = 0 (x0x2)

(1− β2)v1 + β1v2 = 0 (x1x2)

2β1v1 − v2 = λ−∑3
j=0 βjvj − v3 (x21)

−v0 + 2β2v2 = λ−∑3
j=0 βjvj − v3 (x22)

(3 + 2β0)v0 = λ−∑3
j=0 βjvj − v3 (x20)

2β3v3 = λ−∑3
j=0 βjvj − v3 (x23)

The points of SC are the solutions v of the previous linear system, as a linear system whose
coefficients depend on β0, . . . , β3. In order to resolve this linear system we consider the matrix
A of the coefficients of the equations (x0x3), (x1x3), (x2x3) and (x0x1). The determinant of A
is equal to

det(A) = det




1 + β3 0 0 3β0
0 1 + β3 0 3β1
0 0 1 + β3 −3β2
β1 β0 0 0


 = −6β0β1(1 + β3)

2.

It follows that, if β0β1(1 + β3)
2 6= 0, then the linear system (68) has not solutions because,

under this hypothesis, the subsystem of (68) of equations (x0x3), (x1x3), (x2x3) and (x0x1)
admits an unique solution equal to v = (0, . . . , 0) but (0, . . . , 0) is not a solution of (x21). Let
now β0β1(1 + β3)

2 = 0.
Suppose that β0 = 0. Then, by the equation (x0x1), we deduce that v0β1 = 0. If v0 =

β0 = 0, then, by the equation (x0x2), it follows that v2 = v0 = β0 = 0. By substituting

in the equation (x22), we find that λ −∑3
j=0 βjvj − v3 = 0, and hence, by substituting in

(x21) it follows that v1β1 = 0. If v2 = v0 = β0 = v1 = 0, then the system (68) admits
solutions only for β0 = · · · = β3 = 0 and, in this case, (68) admits an unique solution equal to
(v0, . . . , v3) = (0, . . . , 0, λ). If v2 = v0 = β0 = β1 = 0 then, by recalling that λ 6= 0, we find that
the equations (x21) and (x23) are compatible if and only if β3 = 0 and v3 = λ. By (x2x3) and
by (x1x3) it follows that β2 = v1 = 0. Then, also in this case, the linear system (68) admits an
unique solution equal to (0, 0, 0, λ) if β0 = β1 = β2 = β3 = 0 and it has not solutions otherwise.
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Now suppose that β1 = 0 and β0 6= 0. Then, by the equation (x0x1) it follows that v1 = 0
and the linear system (68) is equivalent to the following linear system

(69)





(1 + β3)v0 + 3β0v3 = 0 (x0x3)
′

(1 + β3)v2 − 3β2v3 = 0 (x2x3)
′

β2v0 + (1− β0)v2 = 0 (x0x2)
′

β0v0 + (β2 − 1)v2 + (β3 + 1)v3 = λ (x21)
′

−v0 + (1 + 2β2)v2 = 0 (x22)
′

(3 + 2β0)v0 + v2 = 0 (x20)
′

v2 + 2β3v3 = 0 (x23)
′

where the last three equations of (69) are obtained from the respective equations of (68)
subtracting the equation (x21). In order to resolve the previous linear system, we consider the
matrix B of the coefficients of the subsystem of equations (x0x3)

′, (x2x3)
′ and (x23)

′. The
determinant of B is equal to

det(B) = det



1 + β3 0 3β0

0 1 + β3 −3β2
0 1 2β3


 = (1 + β3)[2β3(1 + β3) + 3β2].

We deduce that, if (1 + β3)[2β3(1 + β3) + 3β2] 6= 0, then the subsystem of (69) of equations
(x0x3)

′, (x2x3)
′ and (x23)

′ admits an unique solution equal to (v0, v2, v3) = (0, 0, 0). Since
(0, 0, 0) is not a solution (x21)

′, we deduce that, in this case, the system (69) has not solutions.
Now suppose that (1 + β3)(3β2 + 2β3(1 + β3)) = 0. If β3 = −1, then, by (x0x3)

′ it follows
that v3 = 0. Therefore, by (x23)

′ and (x22)
′ it follows that v2 = v0 = 0 and, as before, the

linear system (69) has not solutions. Finally, suppose that β3 6= −1 and β2 = −β3(1 + β3). If
β2 = β3 = 0, then, by the equations (x23)

′, (x22)
′ and (x0x3)

′, it follows that v2 = v0 = v3 = 0
and by (x21)

′ the linear system (69) has not solutions. Finally, suppose that β2 = −2
3β3(1+ β3)

but β2β3 6= 0. Then, by (x23)
′, it follows that v2 = −2β3v3. By substituting in (x0x2)

′ and by
using (x0x3)

′, it follows that (2β0− 1)v3 = 0. Now, if v3 = 0, then, as before, the linear system
(69) has not solutions. If β0 = 1/2, then the subsystem of (69) of equations (x0x2)

′, (x20)′ and
(x22)

′ admits an unique solution equal to (v0, v2) = (0, 0). As before, also in this case, the linear
system (69) has not solutions.

Finally, suppose that β3 = −1 and β0β1 6= 0. Then, by the equation (x0x3), it follows that

(70) v3 = 0

By (x23) it follows that

(71) λ−
∑

i

βivi = 0

and by (x21) it follows that

(72) v2 = 2v1β1.

By substituting in (x0)
2, we find that

(73) (3 + 2β0)v0 = 0.

If v0 = 0, then, by (x0x1) and by (x23), it follows that v1 = v2 = 0. Since (v0, v1, v2, v3) =
(0, . . . , 0) is not a solution of (x21), in this case, the linear system (68) has not solution. If
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β0 = −3/2, then the determinant of the matrix of the coefficients of the equations (x0x1),
(x0x2) and (x1x2) is equal to

det



β1 −3/2 0
β2 0 5/2
0 1− β2 β1


 = (−5 + 8β2)β1/2.

If β2 6= 5/8, then the subsystem of (68) of equations (x0x1), (x0x2) and (x1x2) admits an unique
solution equal to (v0, v1, v2) = (0, 0, 0) and the linear system (68) has not solution, because,
by (71) and (70), we have find that 0 6= λ =

∑
i βivi = 0. If β0 = −3/2 and β2 = 5/8, then,

by using (71), we find that the determinant of the matrix of the coefficients of the equations
(x0x1), (x0x2) and (x22) is equal to

det



β1 −3/2 0
5/8 0 5/2
−1 0 2β2


 = −3

2
(
5

4
β2 +

5

2
) = −15

4
(
β2
2

+ 1) = −15

4
(
5

16
+ 1) 6= 0.

As before, also in this case, the linear system (68) has not solutions.
Finally, we have found that the linear system (68) has only a solution equal to (v0, v1, v2, v3) =

(0, 0, 0, λ) if β0 = β1 = β2 = β3 = 0 and it has not solutions otherwise. By the previous lemma,
we conclude that the point [0 : 0 : 0 : 1] ∈ P3 is the only point which belongs to six tangent
lines to the canonical curve C ⊂ P3 which is intersection of the cubic surface of equation

F3(x0, x1, x2, x3) = x33 + (x20 + x21 − x22)x3 + x30 + x0x
2
2 − x21x2 = 0

and the quadric of equation

∂F3

∂x3
= 3x23 + x20 + x21 − x22 = 0.

It follows that, on the normalization curve D of the plane curve Γ′ corresponding to the general
point of Σ1 ⊂ Σ6

6,0 there exists only a finite number of linear series of dimension two with six
ramification points. �

Remark 4.8. By using the notation introduced in the proof of corollary 4.7, we observe
that in this corollary we have proved that if C is a general canonical curve of genus four such
that the set SC is not empty, then SC is finite. Actually, C. Ciliberto pointed out that it is
possible to show, with a very simple argument, that for every canonical curve C of genus four
such that SC is not empty, we have that SC is finite. Finally, we observe that, by remark 4.6,
for every canonical curve C of genus four, the set SC coincides with the set of points of P3
which are contained in six tangent lines to C.
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[18] S. Guffroy: Sur l’incompletude de la série linéare caratheristique d’une famille de courbe planes coeuds et
cusps., Nagoya Math. J., vol. 171, (2003), p.51-83.

[19] J. Harris: On the Severi problem, Invent. Math., vol. 84, (1986).
[20] J. Harris: Algebraic Geometry, Graduate texts in mathematics, vol. 133, Springer, New York, 1992.
[21] J. Harris and I. Morrison: Moduli of curves, Graduate texts in mathematics, vol. 187, Springer, New York,
1988.

[22] R. Hartshorne: Algebraic Geometry, Graduate texts in mathematics, vol. 52, Springer, New York, 1977.
[23] D. Eisenbud and J. Harris: Irreducibility of some families of linear series with Brill-Noether Number -1,
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